OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gcc-4.2.2/] [gcc/] [convert.c] - Diff between revs 154 and 816

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 154 Rev 816
/* Utility routines for data type conversion for GCC.
/* Utility routines for data type conversion for GCC.
   Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1997, 1998,
   Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1997, 1998,
   2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
   2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify it under
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
Software Foundation; either version 3, or (at your option) any later
version.
version.
 
 
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
 
 
/* These routines are somewhat language-independent utility function
/* These routines are somewhat language-independent utility function
   intended to be called by the language-specific convert () functions.  */
   intended to be called by the language-specific convert () functions.  */
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "tree.h"
#include "tree.h"
#include "flags.h"
#include "flags.h"
#include "convert.h"
#include "convert.h"
#include "toplev.h"
#include "toplev.h"
#include "langhooks.h"
#include "langhooks.h"
#include "real.h"
#include "real.h"
 
 
/* Convert EXPR to some pointer or reference type TYPE.
/* Convert EXPR to some pointer or reference type TYPE.
   EXPR must be pointer, reference, integer, enumeral, or literal zero;
   EXPR must be pointer, reference, integer, enumeral, or literal zero;
   in other cases error is called.  */
   in other cases error is called.  */
 
 
tree
tree
convert_to_pointer (tree type, tree expr)
convert_to_pointer (tree type, tree expr)
{
{
  if (TREE_TYPE (expr) == type)
  if (TREE_TYPE (expr) == type)
    return expr;
    return expr;
 
 
  if (integer_zerop (expr))
  if (integer_zerop (expr))
    {
    {
      tree t = build_int_cst (type, 0);
      tree t = build_int_cst (type, 0);
      if (TREE_OVERFLOW (expr) || TREE_CONSTANT_OVERFLOW (expr))
      if (TREE_OVERFLOW (expr) || TREE_CONSTANT_OVERFLOW (expr))
        t = force_fit_type (t, 0, TREE_OVERFLOW (expr),
        t = force_fit_type (t, 0, TREE_OVERFLOW (expr),
                            TREE_CONSTANT_OVERFLOW (expr));
                            TREE_CONSTANT_OVERFLOW (expr));
      return t;
      return t;
    }
    }
 
 
  switch (TREE_CODE (TREE_TYPE (expr)))
  switch (TREE_CODE (TREE_TYPE (expr)))
    {
    {
    case POINTER_TYPE:
    case POINTER_TYPE:
    case REFERENCE_TYPE:
    case REFERENCE_TYPE:
      return fold_build1 (NOP_EXPR, type, expr);
      return fold_build1 (NOP_EXPR, type, expr);
 
 
    case INTEGER_TYPE:
    case INTEGER_TYPE:
    case ENUMERAL_TYPE:
    case ENUMERAL_TYPE:
    case BOOLEAN_TYPE:
    case BOOLEAN_TYPE:
      if (TYPE_PRECISION (TREE_TYPE (expr)) != POINTER_SIZE)
      if (TYPE_PRECISION (TREE_TYPE (expr)) != POINTER_SIZE)
        expr = fold_build1 (NOP_EXPR,
        expr = fold_build1 (NOP_EXPR,
                            lang_hooks.types.type_for_size (POINTER_SIZE, 0),
                            lang_hooks.types.type_for_size (POINTER_SIZE, 0),
                            expr);
                            expr);
      return fold_build1 (CONVERT_EXPR, type, expr);
      return fold_build1 (CONVERT_EXPR, type, expr);
 
 
 
 
    default:
    default:
      error ("cannot convert to a pointer type");
      error ("cannot convert to a pointer type");
      return convert_to_pointer (type, integer_zero_node);
      return convert_to_pointer (type, integer_zero_node);
    }
    }
}
}
 
 
/* Avoid any floating point extensions from EXP.  */
/* Avoid any floating point extensions from EXP.  */
tree
tree
strip_float_extensions (tree exp)
strip_float_extensions (tree exp)
{
{
  tree sub, expt, subt;
  tree sub, expt, subt;
 
 
  /*  For floating point constant look up the narrowest type that can hold
  /*  For floating point constant look up the narrowest type that can hold
      it properly and handle it like (type)(narrowest_type)constant.
      it properly and handle it like (type)(narrowest_type)constant.
      This way we can optimize for instance a=a*2.0 where "a" is float
      This way we can optimize for instance a=a*2.0 where "a" is float
      but 2.0 is double constant.  */
      but 2.0 is double constant.  */
  if (TREE_CODE (exp) == REAL_CST)
  if (TREE_CODE (exp) == REAL_CST)
    {
    {
      REAL_VALUE_TYPE orig;
      REAL_VALUE_TYPE orig;
      tree type = NULL;
      tree type = NULL;
 
 
      orig = TREE_REAL_CST (exp);
      orig = TREE_REAL_CST (exp);
      if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
      if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
          && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
          && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
        type = float_type_node;
        type = float_type_node;
      else if (TYPE_PRECISION (TREE_TYPE (exp))
      else if (TYPE_PRECISION (TREE_TYPE (exp))
               > TYPE_PRECISION (double_type_node)
               > TYPE_PRECISION (double_type_node)
               && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
               && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
        type = double_type_node;
        type = double_type_node;
      if (type)
      if (type)
        return build_real (type, real_value_truncate (TYPE_MODE (type), orig));
        return build_real (type, real_value_truncate (TYPE_MODE (type), orig));
    }
    }
 
 
  if (TREE_CODE (exp) != NOP_EXPR
  if (TREE_CODE (exp) != NOP_EXPR
      && TREE_CODE (exp) != CONVERT_EXPR)
      && TREE_CODE (exp) != CONVERT_EXPR)
    return exp;
    return exp;
 
 
  sub = TREE_OPERAND (exp, 0);
  sub = TREE_OPERAND (exp, 0);
  subt = TREE_TYPE (sub);
  subt = TREE_TYPE (sub);
  expt = TREE_TYPE (exp);
  expt = TREE_TYPE (exp);
 
 
  if (!FLOAT_TYPE_P (subt))
  if (!FLOAT_TYPE_P (subt))
    return exp;
    return exp;
 
 
  if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
  if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
    return exp;
    return exp;
 
 
  return strip_float_extensions (sub);
  return strip_float_extensions (sub);
}
}
 
 
 
 
/* Convert EXPR to some floating-point type TYPE.
/* Convert EXPR to some floating-point type TYPE.
 
 
   EXPR must be float, integer, or enumeral;
   EXPR must be float, integer, or enumeral;
   in other cases error is called.  */
   in other cases error is called.  */
 
 
tree
tree
convert_to_real (tree type, tree expr)
convert_to_real (tree type, tree expr)
{
{
  enum built_in_function fcode = builtin_mathfn_code (expr);
  enum built_in_function fcode = builtin_mathfn_code (expr);
  tree itype = TREE_TYPE (expr);
  tree itype = TREE_TYPE (expr);
 
 
  /* Disable until we figure out how to decide whether the functions are
  /* Disable until we figure out how to decide whether the functions are
     present in runtime.  */
     present in runtime.  */
  /* Convert (float)sqrt((double)x) where x is float into sqrtf(x) */
  /* Convert (float)sqrt((double)x) where x is float into sqrtf(x) */
  if (optimize
  if (optimize
      && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
      && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
          || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
          || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
    {
    {
      switch (fcode)
      switch (fcode)
        {
        {
#define CASE_MATHFN(FN) case BUILT_IN_##FN: case BUILT_IN_##FN##L:
#define CASE_MATHFN(FN) case BUILT_IN_##FN: case BUILT_IN_##FN##L:
          CASE_MATHFN (ACOS)
          CASE_MATHFN (ACOS)
          CASE_MATHFN (ACOSH)
          CASE_MATHFN (ACOSH)
          CASE_MATHFN (ASIN)
          CASE_MATHFN (ASIN)
          CASE_MATHFN (ASINH)
          CASE_MATHFN (ASINH)
          CASE_MATHFN (ATAN)
          CASE_MATHFN (ATAN)
          CASE_MATHFN (ATANH)
          CASE_MATHFN (ATANH)
          CASE_MATHFN (CBRT)
          CASE_MATHFN (CBRT)
          CASE_MATHFN (COS)
          CASE_MATHFN (COS)
          CASE_MATHFN (COSH)
          CASE_MATHFN (COSH)
          CASE_MATHFN (ERF)
          CASE_MATHFN (ERF)
          CASE_MATHFN (ERFC)
          CASE_MATHFN (ERFC)
          CASE_MATHFN (EXP)
          CASE_MATHFN (EXP)
          CASE_MATHFN (EXP10)
          CASE_MATHFN (EXP10)
          CASE_MATHFN (EXP2)
          CASE_MATHFN (EXP2)
          CASE_MATHFN (EXPM1)
          CASE_MATHFN (EXPM1)
          CASE_MATHFN (FABS)
          CASE_MATHFN (FABS)
          CASE_MATHFN (GAMMA)
          CASE_MATHFN (GAMMA)
          CASE_MATHFN (J0)
          CASE_MATHFN (J0)
          CASE_MATHFN (J1)
          CASE_MATHFN (J1)
          CASE_MATHFN (LGAMMA)
          CASE_MATHFN (LGAMMA)
          CASE_MATHFN (LOG)
          CASE_MATHFN (LOG)
          CASE_MATHFN (LOG10)
          CASE_MATHFN (LOG10)
          CASE_MATHFN (LOG1P)
          CASE_MATHFN (LOG1P)
          CASE_MATHFN (LOG2)
          CASE_MATHFN (LOG2)
          CASE_MATHFN (LOGB)
          CASE_MATHFN (LOGB)
          CASE_MATHFN (POW10)
          CASE_MATHFN (POW10)
          CASE_MATHFN (SIN)
          CASE_MATHFN (SIN)
          CASE_MATHFN (SINH)
          CASE_MATHFN (SINH)
          CASE_MATHFN (SQRT)
          CASE_MATHFN (SQRT)
          CASE_MATHFN (TAN)
          CASE_MATHFN (TAN)
          CASE_MATHFN (TANH)
          CASE_MATHFN (TANH)
          CASE_MATHFN (TGAMMA)
          CASE_MATHFN (TGAMMA)
          CASE_MATHFN (Y0)
          CASE_MATHFN (Y0)
          CASE_MATHFN (Y1)
          CASE_MATHFN (Y1)
#undef CASE_MATHFN
#undef CASE_MATHFN
            {
            {
              tree arg0 = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr, 1)));
              tree arg0 = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr, 1)));
              tree newtype = type;
              tree newtype = type;
 
 
              /* We have (outertype)sqrt((innertype)x).  Choose the wider mode from
              /* We have (outertype)sqrt((innertype)x).  Choose the wider mode from
                 the both as the safe type for operation.  */
                 the both as the safe type for operation.  */
              if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (type))
              if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (type))
                newtype = TREE_TYPE (arg0);
                newtype = TREE_TYPE (arg0);
 
 
              /* Be careful about integer to fp conversions.
              /* Be careful about integer to fp conversions.
                 These may overflow still.  */
                 These may overflow still.  */
              if (FLOAT_TYPE_P (TREE_TYPE (arg0))
              if (FLOAT_TYPE_P (TREE_TYPE (arg0))
                  && TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
                  && TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
                  && (TYPE_MODE (newtype) == TYPE_MODE (double_type_node)
                  && (TYPE_MODE (newtype) == TYPE_MODE (double_type_node)
                      || TYPE_MODE (newtype) == TYPE_MODE (float_type_node)))
                      || TYPE_MODE (newtype) == TYPE_MODE (float_type_node)))
                {
                {
                  tree arglist;
                  tree arglist;
                  tree fn = mathfn_built_in (newtype, fcode);
                  tree fn = mathfn_built_in (newtype, fcode);
 
 
                  if (fn)
                  if (fn)
                  {
                  {
                    arglist = build_tree_list (NULL_TREE, fold (convert_to_real (newtype, arg0)));
                    arglist = build_tree_list (NULL_TREE, fold (convert_to_real (newtype, arg0)));
                    expr = build_function_call_expr (fn, arglist);
                    expr = build_function_call_expr (fn, arglist);
                    if (newtype == type)
                    if (newtype == type)
                      return expr;
                      return expr;
                  }
                  }
                }
                }
            }
            }
        default:
        default:
          break;
          break;
        }
        }
    }
    }
  if (optimize
  if (optimize
      && (((fcode == BUILT_IN_FLOORL
      && (((fcode == BUILT_IN_FLOORL
           || fcode == BUILT_IN_CEILL
           || fcode == BUILT_IN_CEILL
           || fcode == BUILT_IN_ROUNDL
           || fcode == BUILT_IN_ROUNDL
           || fcode == BUILT_IN_RINTL
           || fcode == BUILT_IN_RINTL
           || fcode == BUILT_IN_TRUNCL
           || fcode == BUILT_IN_TRUNCL
           || fcode == BUILT_IN_NEARBYINTL)
           || fcode == BUILT_IN_NEARBYINTL)
          && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
          && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
              || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
              || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
          || ((fcode == BUILT_IN_FLOOR
          || ((fcode == BUILT_IN_FLOOR
               || fcode == BUILT_IN_CEIL
               || fcode == BUILT_IN_CEIL
               || fcode == BUILT_IN_ROUND
               || fcode == BUILT_IN_ROUND
               || fcode == BUILT_IN_RINT
               || fcode == BUILT_IN_RINT
               || fcode == BUILT_IN_TRUNC
               || fcode == BUILT_IN_TRUNC
               || fcode == BUILT_IN_NEARBYINT)
               || fcode == BUILT_IN_NEARBYINT)
              && (TYPE_MODE (type) == TYPE_MODE (float_type_node)))))
              && (TYPE_MODE (type) == TYPE_MODE (float_type_node)))))
    {
    {
      tree fn = mathfn_built_in (type, fcode);
      tree fn = mathfn_built_in (type, fcode);
 
 
      if (fn)
      if (fn)
        {
        {
          tree arg
          tree arg
            = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr, 1)));
            = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr, 1)));
 
 
          /* Make sure (type)arg0 is an extension, otherwise we could end up
          /* Make sure (type)arg0 is an extension, otherwise we could end up
             changing (float)floor(double d) into floorf((float)d), which is
             changing (float)floor(double d) into floorf((float)d), which is
             incorrect because (float)d uses round-to-nearest and can round
             incorrect because (float)d uses round-to-nearest and can round
             up to the next integer.  */
             up to the next integer.  */
          if (TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (arg)))
          if (TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (arg)))
            return
            return
              build_function_call_expr (fn,
              build_function_call_expr (fn,
                                        build_tree_list (NULL_TREE,
                                        build_tree_list (NULL_TREE,
                                          fold (convert_to_real (type, arg))));
                                          fold (convert_to_real (type, arg))));
        }
        }
    }
    }
 
 
  /* Propagate the cast into the operation.  */
  /* Propagate the cast into the operation.  */
  if (itype != type && FLOAT_TYPE_P (type))
  if (itype != type && FLOAT_TYPE_P (type))
    switch (TREE_CODE (expr))
    switch (TREE_CODE (expr))
      {
      {
        /* Convert (float)-x into -(float)x.  This is safe for
        /* Convert (float)-x into -(float)x.  This is safe for
           round-to-nearest rounding mode.  */
           round-to-nearest rounding mode.  */
        case ABS_EXPR:
        case ABS_EXPR:
        case NEGATE_EXPR:
        case NEGATE_EXPR:
          if (!flag_rounding_math
          if (!flag_rounding_math
              && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (expr)))
              && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (expr)))
            return build1 (TREE_CODE (expr), type,
            return build1 (TREE_CODE (expr), type,
                           fold (convert_to_real (type,
                           fold (convert_to_real (type,
                                                  TREE_OPERAND (expr, 0))));
                                                  TREE_OPERAND (expr, 0))));
          break;
          break;
        /* Convert (outertype)((innertype0)a+(innertype1)b)
        /* Convert (outertype)((innertype0)a+(innertype1)b)
           into ((newtype)a+(newtype)b) where newtype
           into ((newtype)a+(newtype)b) where newtype
           is the widest mode from all of these.  */
           is the widest mode from all of these.  */
        case PLUS_EXPR:
        case PLUS_EXPR:
        case MINUS_EXPR:
        case MINUS_EXPR:
        case MULT_EXPR:
        case MULT_EXPR:
        case RDIV_EXPR:
        case RDIV_EXPR:
           {
           {
             tree arg0 = strip_float_extensions (TREE_OPERAND (expr, 0));
             tree arg0 = strip_float_extensions (TREE_OPERAND (expr, 0));
             tree arg1 = strip_float_extensions (TREE_OPERAND (expr, 1));
             tree arg1 = strip_float_extensions (TREE_OPERAND (expr, 1));
 
 
             if (FLOAT_TYPE_P (TREE_TYPE (arg0))
             if (FLOAT_TYPE_P (TREE_TYPE (arg0))
                 && FLOAT_TYPE_P (TREE_TYPE (arg1)))
                 && FLOAT_TYPE_P (TREE_TYPE (arg1)))
               {
               {
                  tree newtype = type;
                  tree newtype = type;
 
 
                  if (TYPE_MODE (TREE_TYPE (arg0)) == SDmode
                  if (TYPE_MODE (TREE_TYPE (arg0)) == SDmode
                      || TYPE_MODE (TREE_TYPE (arg1)) == SDmode)
                      || TYPE_MODE (TREE_TYPE (arg1)) == SDmode)
                    newtype = dfloat32_type_node;
                    newtype = dfloat32_type_node;
                  if (TYPE_MODE (TREE_TYPE (arg0)) == DDmode
                  if (TYPE_MODE (TREE_TYPE (arg0)) == DDmode
                      || TYPE_MODE (TREE_TYPE (arg1)) == DDmode)
                      || TYPE_MODE (TREE_TYPE (arg1)) == DDmode)
                    newtype = dfloat64_type_node;
                    newtype = dfloat64_type_node;
                  if (TYPE_MODE (TREE_TYPE (arg0)) == TDmode
                  if (TYPE_MODE (TREE_TYPE (arg0)) == TDmode
                      || TYPE_MODE (TREE_TYPE (arg1)) == TDmode)
                      || TYPE_MODE (TREE_TYPE (arg1)) == TDmode)
                    newtype = dfloat128_type_node;
                    newtype = dfloat128_type_node;
                  if (newtype == dfloat32_type_node
                  if (newtype == dfloat32_type_node
                      || newtype == dfloat64_type_node
                      || newtype == dfloat64_type_node
                      || newtype == dfloat128_type_node)
                      || newtype == dfloat128_type_node)
                    {
                    {
                      expr = build2 (TREE_CODE (expr), newtype,
                      expr = build2 (TREE_CODE (expr), newtype,
                                     fold (convert_to_real (newtype, arg0)),
                                     fold (convert_to_real (newtype, arg0)),
                                     fold (convert_to_real (newtype, arg1)));
                                     fold (convert_to_real (newtype, arg1)));
                      if (newtype == type)
                      if (newtype == type)
                        return expr;
                        return expr;
                      break;
                      break;
                    }
                    }
 
 
                  if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (newtype))
                  if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (newtype))
                    newtype = TREE_TYPE (arg0);
                    newtype = TREE_TYPE (arg0);
                  if (TYPE_PRECISION (TREE_TYPE (arg1)) > TYPE_PRECISION (newtype))
                  if (TYPE_PRECISION (TREE_TYPE (arg1)) > TYPE_PRECISION (newtype))
                    newtype = TREE_TYPE (arg1);
                    newtype = TREE_TYPE (arg1);
                  if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype))
                  if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype))
                    {
                    {
                      expr = build2 (TREE_CODE (expr), newtype,
                      expr = build2 (TREE_CODE (expr), newtype,
                                     fold (convert_to_real (newtype, arg0)),
                                     fold (convert_to_real (newtype, arg0)),
                                     fold (convert_to_real (newtype, arg1)));
                                     fold (convert_to_real (newtype, arg1)));
                      if (newtype == type)
                      if (newtype == type)
                        return expr;
                        return expr;
                    }
                    }
               }
               }
           }
           }
          break;
          break;
        default:
        default:
          break;
          break;
      }
      }
 
 
  switch (TREE_CODE (TREE_TYPE (expr)))
  switch (TREE_CODE (TREE_TYPE (expr)))
    {
    {
    case REAL_TYPE:
    case REAL_TYPE:
      /* Ignore the conversion if we don't need to store intermediate
      /* Ignore the conversion if we don't need to store intermediate
         results and neither type is a decimal float.  */
         results and neither type is a decimal float.  */
      return build1 ((flag_float_store
      return build1 ((flag_float_store
                     || DECIMAL_FLOAT_TYPE_P (type)
                     || DECIMAL_FLOAT_TYPE_P (type)
                     || DECIMAL_FLOAT_TYPE_P (itype))
                     || DECIMAL_FLOAT_TYPE_P (itype))
                     ? CONVERT_EXPR : NOP_EXPR, type, expr);
                     ? CONVERT_EXPR : NOP_EXPR, type, expr);
 
 
    case INTEGER_TYPE:
    case INTEGER_TYPE:
    case ENUMERAL_TYPE:
    case ENUMERAL_TYPE:
    case BOOLEAN_TYPE:
    case BOOLEAN_TYPE:
      return build1 (FLOAT_EXPR, type, expr);
      return build1 (FLOAT_EXPR, type, expr);
 
 
    case COMPLEX_TYPE:
    case COMPLEX_TYPE:
      return convert (type,
      return convert (type,
                      fold_build1 (REALPART_EXPR,
                      fold_build1 (REALPART_EXPR,
                                   TREE_TYPE (TREE_TYPE (expr)), expr));
                                   TREE_TYPE (TREE_TYPE (expr)), expr));
 
 
    case POINTER_TYPE:
    case POINTER_TYPE:
    case REFERENCE_TYPE:
    case REFERENCE_TYPE:
      error ("pointer value used where a floating point value was expected");
      error ("pointer value used where a floating point value was expected");
      return convert_to_real (type, integer_zero_node);
      return convert_to_real (type, integer_zero_node);
 
 
    default:
    default:
      error ("aggregate value used where a float was expected");
      error ("aggregate value used where a float was expected");
      return convert_to_real (type, integer_zero_node);
      return convert_to_real (type, integer_zero_node);
    }
    }
}
}
 
 
/* Convert EXPR to some integer (or enum) type TYPE.
/* Convert EXPR to some integer (or enum) type TYPE.
 
 
   EXPR must be pointer, integer, discrete (enum, char, or bool), float, or
   EXPR must be pointer, integer, discrete (enum, char, or bool), float, or
   vector; in other cases error is called.
   vector; in other cases error is called.
 
 
   The result of this is always supposed to be a newly created tree node
   The result of this is always supposed to be a newly created tree node
   not in use in any existing structure.  */
   not in use in any existing structure.  */
 
 
tree
tree
convert_to_integer (tree type, tree expr)
convert_to_integer (tree type, tree expr)
{
{
  enum tree_code ex_form = TREE_CODE (expr);
  enum tree_code ex_form = TREE_CODE (expr);
  tree intype = TREE_TYPE (expr);
  tree intype = TREE_TYPE (expr);
  unsigned int inprec = TYPE_PRECISION (intype);
  unsigned int inprec = TYPE_PRECISION (intype);
  unsigned int outprec = TYPE_PRECISION (type);
  unsigned int outprec = TYPE_PRECISION (type);
 
 
  /* An INTEGER_TYPE cannot be incomplete, but an ENUMERAL_TYPE can
  /* An INTEGER_TYPE cannot be incomplete, but an ENUMERAL_TYPE can
     be.  Consider `enum E = { a, b = (enum E) 3 };'.  */
     be.  Consider `enum E = { a, b = (enum E) 3 };'.  */
  if (!COMPLETE_TYPE_P (type))
  if (!COMPLETE_TYPE_P (type))
    {
    {
      error ("conversion to incomplete type");
      error ("conversion to incomplete type");
      return error_mark_node;
      return error_mark_node;
    }
    }
 
 
  /* Convert e.g. (long)round(d) -> lround(d).  */
  /* Convert e.g. (long)round(d) -> lround(d).  */
  /* If we're converting to char, we may encounter differing behavior
  /* If we're converting to char, we may encounter differing behavior
     between converting from double->char vs double->long->char.
     between converting from double->char vs double->long->char.
     We're in "undefined" territory but we prefer to be conservative,
     We're in "undefined" territory but we prefer to be conservative,
     so only proceed in "unsafe" math mode.  */
     so only proceed in "unsafe" math mode.  */
  if (optimize
  if (optimize
      && (flag_unsafe_math_optimizations
      && (flag_unsafe_math_optimizations
          || (long_integer_type_node
          || (long_integer_type_node
              && outprec >= TYPE_PRECISION (long_integer_type_node))))
              && outprec >= TYPE_PRECISION (long_integer_type_node))))
    {
    {
      tree s_expr = strip_float_extensions (expr);
      tree s_expr = strip_float_extensions (expr);
      tree s_intype = TREE_TYPE (s_expr);
      tree s_intype = TREE_TYPE (s_expr);
      const enum built_in_function fcode = builtin_mathfn_code (s_expr);
      const enum built_in_function fcode = builtin_mathfn_code (s_expr);
      tree fn = 0;
      tree fn = 0;
 
 
      switch (fcode)
      switch (fcode)
        {
        {
        CASE_FLT_FN (BUILT_IN_CEIL):
        CASE_FLT_FN (BUILT_IN_CEIL):
          /* Only convert in ISO C99 mode.  */
          /* Only convert in ISO C99 mode.  */
          if (!TARGET_C99_FUNCTIONS)
          if (!TARGET_C99_FUNCTIONS)
            break;
            break;
          if (outprec < TYPE_PRECISION (long_integer_type_node)
          if (outprec < TYPE_PRECISION (long_integer_type_node)
              || (outprec == TYPE_PRECISION (long_integer_type_node)
              || (outprec == TYPE_PRECISION (long_integer_type_node)
                  && !TYPE_UNSIGNED (type)))
                  && !TYPE_UNSIGNED (type)))
            fn = mathfn_built_in (s_intype, BUILT_IN_LCEIL);
            fn = mathfn_built_in (s_intype, BUILT_IN_LCEIL);
          else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
          else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
                   && !TYPE_UNSIGNED (type))
                   && !TYPE_UNSIGNED (type))
            fn = mathfn_built_in (s_intype, BUILT_IN_LLCEIL);
            fn = mathfn_built_in (s_intype, BUILT_IN_LLCEIL);
          break;
          break;
 
 
        CASE_FLT_FN (BUILT_IN_FLOOR):
        CASE_FLT_FN (BUILT_IN_FLOOR):
          /* Only convert in ISO C99 mode.  */
          /* Only convert in ISO C99 mode.  */
          if (!TARGET_C99_FUNCTIONS)
          if (!TARGET_C99_FUNCTIONS)
            break;
            break;
          if (outprec < TYPE_PRECISION (long_integer_type_node)
          if (outprec < TYPE_PRECISION (long_integer_type_node)
              || (outprec == TYPE_PRECISION (long_integer_type_node)
              || (outprec == TYPE_PRECISION (long_integer_type_node)
                  && !TYPE_UNSIGNED (type)))
                  && !TYPE_UNSIGNED (type)))
            fn = mathfn_built_in (s_intype, BUILT_IN_LFLOOR);
            fn = mathfn_built_in (s_intype, BUILT_IN_LFLOOR);
          else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
          else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
                   && !TYPE_UNSIGNED (type))
                   && !TYPE_UNSIGNED (type))
            fn = mathfn_built_in (s_intype, BUILT_IN_LLFLOOR);
            fn = mathfn_built_in (s_intype, BUILT_IN_LLFLOOR);
          break;
          break;
 
 
        CASE_FLT_FN (BUILT_IN_ROUND):
        CASE_FLT_FN (BUILT_IN_ROUND):
          if (outprec < TYPE_PRECISION (long_integer_type_node)
          if (outprec < TYPE_PRECISION (long_integer_type_node)
              || (outprec == TYPE_PRECISION (long_integer_type_node)
              || (outprec == TYPE_PRECISION (long_integer_type_node)
                  && !TYPE_UNSIGNED (type)))
                  && !TYPE_UNSIGNED (type)))
            fn = mathfn_built_in (s_intype, BUILT_IN_LROUND);
            fn = mathfn_built_in (s_intype, BUILT_IN_LROUND);
          else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
          else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
                   && !TYPE_UNSIGNED (type))
                   && !TYPE_UNSIGNED (type))
            fn = mathfn_built_in (s_intype, BUILT_IN_LLROUND);
            fn = mathfn_built_in (s_intype, BUILT_IN_LLROUND);
          break;
          break;
 
 
        CASE_FLT_FN (BUILT_IN_NEARBYINT):
        CASE_FLT_FN (BUILT_IN_NEARBYINT):
          /* Only convert nearbyint* if we can ignore math exceptions.  */
          /* Only convert nearbyint* if we can ignore math exceptions.  */
          if (flag_trapping_math)
          if (flag_trapping_math)
            break;
            break;
          /* ... Fall through ...  */
          /* ... Fall through ...  */
        CASE_FLT_FN (BUILT_IN_RINT):
        CASE_FLT_FN (BUILT_IN_RINT):
          if (outprec < TYPE_PRECISION (long_integer_type_node)
          if (outprec < TYPE_PRECISION (long_integer_type_node)
              || (outprec == TYPE_PRECISION (long_integer_type_node)
              || (outprec == TYPE_PRECISION (long_integer_type_node)
                  && !TYPE_UNSIGNED (type)))
                  && !TYPE_UNSIGNED (type)))
            fn = mathfn_built_in (s_intype, BUILT_IN_LRINT);
            fn = mathfn_built_in (s_intype, BUILT_IN_LRINT);
          else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
          else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
                   && !TYPE_UNSIGNED (type))
                   && !TYPE_UNSIGNED (type))
            fn = mathfn_built_in (s_intype, BUILT_IN_LLRINT);
            fn = mathfn_built_in (s_intype, BUILT_IN_LLRINT);
          break;
          break;
 
 
        CASE_FLT_FN (BUILT_IN_TRUNC):
        CASE_FLT_FN (BUILT_IN_TRUNC):
          {
          {
            tree arglist = TREE_OPERAND (s_expr, 1);
            tree arglist = TREE_OPERAND (s_expr, 1);
            return convert_to_integer (type, TREE_VALUE (arglist));
            return convert_to_integer (type, TREE_VALUE (arglist));
          }
          }
 
 
        default:
        default:
          break;
          break;
        }
        }
 
 
      if (fn)
      if (fn)
        {
        {
          tree arglist = TREE_OPERAND (s_expr, 1);
          tree arglist = TREE_OPERAND (s_expr, 1);
          tree newexpr = build_function_call_expr (fn, arglist);
          tree newexpr = build_function_call_expr (fn, arglist);
          return convert_to_integer (type, newexpr);
          return convert_to_integer (type, newexpr);
        }
        }
    }
    }
 
 
  switch (TREE_CODE (intype))
  switch (TREE_CODE (intype))
    {
    {
    case POINTER_TYPE:
    case POINTER_TYPE:
    case REFERENCE_TYPE:
    case REFERENCE_TYPE:
      if (integer_zerop (expr))
      if (integer_zerop (expr))
        return build_int_cst (type, 0);
        return build_int_cst (type, 0);
 
 
      /* Convert to an unsigned integer of the correct width first,
      /* Convert to an unsigned integer of the correct width first,
         and from there widen/truncate to the required type.  */
         and from there widen/truncate to the required type.  */
      expr = fold_build1 (CONVERT_EXPR,
      expr = fold_build1 (CONVERT_EXPR,
                          lang_hooks.types.type_for_size (POINTER_SIZE, 0),
                          lang_hooks.types.type_for_size (POINTER_SIZE, 0),
                          expr);
                          expr);
      return fold_convert (type, expr);
      return fold_convert (type, expr);
 
 
    case INTEGER_TYPE:
    case INTEGER_TYPE:
    case ENUMERAL_TYPE:
    case ENUMERAL_TYPE:
    case BOOLEAN_TYPE:
    case BOOLEAN_TYPE:
      /* If this is a logical operation, which just returns 0 or 1, we can
      /* If this is a logical operation, which just returns 0 or 1, we can
         change the type of the expression.  */
         change the type of the expression.  */
 
 
      if (TREE_CODE_CLASS (ex_form) == tcc_comparison)
      if (TREE_CODE_CLASS (ex_form) == tcc_comparison)
        {
        {
          expr = copy_node (expr);
          expr = copy_node (expr);
          TREE_TYPE (expr) = type;
          TREE_TYPE (expr) = type;
          return expr;
          return expr;
        }
        }
 
 
      /* If we are widening the type, put in an explicit conversion.
      /* If we are widening the type, put in an explicit conversion.
         Similarly if we are not changing the width.  After this, we know
         Similarly if we are not changing the width.  After this, we know
         we are truncating EXPR.  */
         we are truncating EXPR.  */
 
 
      else if (outprec >= inprec)
      else if (outprec >= inprec)
        {
        {
          enum tree_code code;
          enum tree_code code;
          tree tem;
          tree tem;
 
 
          /* If the precision of the EXPR's type is K bits and the
          /* If the precision of the EXPR's type is K bits and the
             destination mode has more bits, and the sign is changing,
             destination mode has more bits, and the sign is changing,
             it is not safe to use a NOP_EXPR.  For example, suppose
             it is not safe to use a NOP_EXPR.  For example, suppose
             that EXPR's type is a 3-bit unsigned integer type, the
             that EXPR's type is a 3-bit unsigned integer type, the
             TYPE is a 3-bit signed integer type, and the machine mode
             TYPE is a 3-bit signed integer type, and the machine mode
             for the types is 8-bit QImode.  In that case, the
             for the types is 8-bit QImode.  In that case, the
             conversion necessitates an explicit sign-extension.  In
             conversion necessitates an explicit sign-extension.  In
             the signed-to-unsigned case the high-order bits have to
             the signed-to-unsigned case the high-order bits have to
             be cleared.  */
             be cleared.  */
          if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (TREE_TYPE (expr))
          if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (TREE_TYPE (expr))
              && (TYPE_PRECISION (TREE_TYPE (expr))
              && (TYPE_PRECISION (TREE_TYPE (expr))
                  != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)))))
                  != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)))))
            code = CONVERT_EXPR;
            code = CONVERT_EXPR;
          else
          else
            code = NOP_EXPR;
            code = NOP_EXPR;
 
 
          tem = fold_unary (code, type, expr);
          tem = fold_unary (code, type, expr);
          if (tem)
          if (tem)
            return tem;
            return tem;
 
 
          tem = build1 (code, type, expr);
          tem = build1 (code, type, expr);
          TREE_NO_WARNING (tem) = 1;
          TREE_NO_WARNING (tem) = 1;
          return tem;
          return tem;
        }
        }
 
 
      /* If TYPE is an enumeral type or a type with a precision less
      /* If TYPE is an enumeral type or a type with a precision less
         than the number of bits in its mode, do the conversion to the
         than the number of bits in its mode, do the conversion to the
         type corresponding to its mode, then do a nop conversion
         type corresponding to its mode, then do a nop conversion
         to TYPE.  */
         to TYPE.  */
      else if (TREE_CODE (type) == ENUMERAL_TYPE
      else if (TREE_CODE (type) == ENUMERAL_TYPE
               || outprec != GET_MODE_BITSIZE (TYPE_MODE (type)))
               || outprec != GET_MODE_BITSIZE (TYPE_MODE (type)))
        return build1 (NOP_EXPR, type,
        return build1 (NOP_EXPR, type,
                       convert (lang_hooks.types.type_for_mode
                       convert (lang_hooks.types.type_for_mode
                                (TYPE_MODE (type), TYPE_UNSIGNED (type)),
                                (TYPE_MODE (type), TYPE_UNSIGNED (type)),
                                expr));
                                expr));
 
 
      /* Here detect when we can distribute the truncation down past some
      /* Here detect when we can distribute the truncation down past some
         arithmetic.  For example, if adding two longs and converting to an
         arithmetic.  For example, if adding two longs and converting to an
         int, we can equally well convert both to ints and then add.
         int, we can equally well convert both to ints and then add.
         For the operations handled here, such truncation distribution
         For the operations handled here, such truncation distribution
         is always safe.
         is always safe.
         It is desirable in these cases:
         It is desirable in these cases:
         1) when truncating down to full-word from a larger size
         1) when truncating down to full-word from a larger size
         2) when truncating takes no work.
         2) when truncating takes no work.
         3) when at least one operand of the arithmetic has been extended
         3) when at least one operand of the arithmetic has been extended
         (as by C's default conversions).  In this case we need two conversions
         (as by C's default conversions).  In this case we need two conversions
         if we do the arithmetic as already requested, so we might as well
         if we do the arithmetic as already requested, so we might as well
         truncate both and then combine.  Perhaps that way we need only one.
         truncate both and then combine.  Perhaps that way we need only one.
 
 
         Note that in general we cannot do the arithmetic in a type
         Note that in general we cannot do the arithmetic in a type
         shorter than the desired result of conversion, even if the operands
         shorter than the desired result of conversion, even if the operands
         are both extended from a shorter type, because they might overflow
         are both extended from a shorter type, because they might overflow
         if combined in that type.  The exceptions to this--the times when
         if combined in that type.  The exceptions to this--the times when
         two narrow values can be combined in their narrow type even to
         two narrow values can be combined in their narrow type even to
         make a wider result--are handled by "shorten" in build_binary_op.  */
         make a wider result--are handled by "shorten" in build_binary_op.  */
 
 
      switch (ex_form)
      switch (ex_form)
        {
        {
        case RSHIFT_EXPR:
        case RSHIFT_EXPR:
          /* We can pass truncation down through right shifting
          /* We can pass truncation down through right shifting
             when the shift count is a nonpositive constant.  */
             when the shift count is a nonpositive constant.  */
          if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
          if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
              && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) <= 0)
              && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) <= 0)
            goto trunc1;
            goto trunc1;
          break;
          break;
 
 
        case LSHIFT_EXPR:
        case LSHIFT_EXPR:
          /* We can pass truncation down through left shifting
          /* We can pass truncation down through left shifting
             when the shift count is a nonnegative constant and
             when the shift count is a nonnegative constant and
             the target type is unsigned.  */
             the target type is unsigned.  */
          if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
          if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
              && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) >= 0
              && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) >= 0
              && TYPE_UNSIGNED (type)
              && TYPE_UNSIGNED (type)
              && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
              && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
            {
            {
              /* If shift count is less than the width of the truncated type,
              /* If shift count is less than the width of the truncated type,
                 really shift.  */
                 really shift.  */
              if (tree_int_cst_lt (TREE_OPERAND (expr, 1), TYPE_SIZE (type)))
              if (tree_int_cst_lt (TREE_OPERAND (expr, 1), TYPE_SIZE (type)))
                /* In this case, shifting is like multiplication.  */
                /* In this case, shifting is like multiplication.  */
                goto trunc1;
                goto trunc1;
              else
              else
                {
                {
                  /* If it is >= that width, result is zero.
                  /* If it is >= that width, result is zero.
                     Handling this with trunc1 would give the wrong result:
                     Handling this with trunc1 would give the wrong result:
                     (int) ((long long) a << 32) is well defined (as 0)
                     (int) ((long long) a << 32) is well defined (as 0)
                     but (int) a << 32 is undefined and would get a
                     but (int) a << 32 is undefined and would get a
                     warning.  */
                     warning.  */
 
 
                  tree t = build_int_cst (type, 0);
                  tree t = build_int_cst (type, 0);
 
 
                  /* If the original expression had side-effects, we must
                  /* If the original expression had side-effects, we must
                     preserve it.  */
                     preserve it.  */
                  if (TREE_SIDE_EFFECTS (expr))
                  if (TREE_SIDE_EFFECTS (expr))
                    return build2 (COMPOUND_EXPR, type, expr, t);
                    return build2 (COMPOUND_EXPR, type, expr, t);
                  else
                  else
                    return t;
                    return t;
                }
                }
            }
            }
          break;
          break;
 
 
        case MAX_EXPR:
        case MAX_EXPR:
        case MIN_EXPR:
        case MIN_EXPR:
        case MULT_EXPR:
        case MULT_EXPR:
          {
          {
            tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
            tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
            tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
            tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
 
 
            /* Don't distribute unless the output precision is at least as big
            /* Don't distribute unless the output precision is at least as big
               as the actual inputs.  Otherwise, the comparison of the
               as the actual inputs.  Otherwise, the comparison of the
               truncated values will be wrong.  */
               truncated values will be wrong.  */
            if (outprec >= TYPE_PRECISION (TREE_TYPE (arg0))
            if (outprec >= TYPE_PRECISION (TREE_TYPE (arg0))
                && outprec >= TYPE_PRECISION (TREE_TYPE (arg1))
                && outprec >= TYPE_PRECISION (TREE_TYPE (arg1))
                /* If signedness of arg0 and arg1 don't match,
                /* If signedness of arg0 and arg1 don't match,
                   we can't necessarily find a type to compare them in.  */
                   we can't necessarily find a type to compare them in.  */
                && (TYPE_UNSIGNED (TREE_TYPE (arg0))
                && (TYPE_UNSIGNED (TREE_TYPE (arg0))
                    == TYPE_UNSIGNED (TREE_TYPE (arg1))))
                    == TYPE_UNSIGNED (TREE_TYPE (arg1))))
              goto trunc1;
              goto trunc1;
            break;
            break;
          }
          }
 
 
        case PLUS_EXPR:
        case PLUS_EXPR:
        case MINUS_EXPR:
        case MINUS_EXPR:
        case BIT_AND_EXPR:
        case BIT_AND_EXPR:
        case BIT_IOR_EXPR:
        case BIT_IOR_EXPR:
        case BIT_XOR_EXPR:
        case BIT_XOR_EXPR:
        trunc1:
        trunc1:
          {
          {
            tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
            tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
            tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
            tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
 
 
            if (outprec >= BITS_PER_WORD
            if (outprec >= BITS_PER_WORD
                || TRULY_NOOP_TRUNCATION (outprec, inprec)
                || TRULY_NOOP_TRUNCATION (outprec, inprec)
                || inprec > TYPE_PRECISION (TREE_TYPE (arg0))
                || inprec > TYPE_PRECISION (TREE_TYPE (arg0))
                || inprec > TYPE_PRECISION (TREE_TYPE (arg1)))
                || inprec > TYPE_PRECISION (TREE_TYPE (arg1)))
              {
              {
                /* Do the arithmetic in type TYPEX,
                /* Do the arithmetic in type TYPEX,
                   then convert result to TYPE.  */
                   then convert result to TYPE.  */
                tree typex = type;
                tree typex = type;
 
 
                /* Can't do arithmetic in enumeral types
                /* Can't do arithmetic in enumeral types
                   so use an integer type that will hold the values.  */
                   so use an integer type that will hold the values.  */
                if (TREE_CODE (typex) == ENUMERAL_TYPE)
                if (TREE_CODE (typex) == ENUMERAL_TYPE)
                  typex = lang_hooks.types.type_for_size
                  typex = lang_hooks.types.type_for_size
                    (TYPE_PRECISION (typex), TYPE_UNSIGNED (typex));
                    (TYPE_PRECISION (typex), TYPE_UNSIGNED (typex));
 
 
                /* But now perhaps TYPEX is as wide as INPREC.
                /* But now perhaps TYPEX is as wide as INPREC.
                   In that case, do nothing special here.
                   In that case, do nothing special here.
                   (Otherwise would recurse infinitely in convert.  */
                   (Otherwise would recurse infinitely in convert.  */
                if (TYPE_PRECISION (typex) != inprec)
                if (TYPE_PRECISION (typex) != inprec)
                  {
                  {
                    /* Don't do unsigned arithmetic where signed was wanted,
                    /* Don't do unsigned arithmetic where signed was wanted,
                       or vice versa.
                       or vice versa.
                       Exception: if both of the original operands were
                       Exception: if both of the original operands were
                       unsigned then we can safely do the work as unsigned.
                       unsigned then we can safely do the work as unsigned.
                       Exception: shift operations take their type solely
                       Exception: shift operations take their type solely
                       from the first argument.
                       from the first argument.
                       Exception: the LSHIFT_EXPR case above requires that
                       Exception: the LSHIFT_EXPR case above requires that
                       we perform this operation unsigned lest we produce
                       we perform this operation unsigned lest we produce
                       signed-overflow undefinedness.
                       signed-overflow undefinedness.
                       And we may need to do it as unsigned
                       And we may need to do it as unsigned
                       if we truncate to the original size.  */
                       if we truncate to the original size.  */
                    if (TYPE_UNSIGNED (TREE_TYPE (expr))
                    if (TYPE_UNSIGNED (TREE_TYPE (expr))
                        || (TYPE_UNSIGNED (TREE_TYPE (arg0))
                        || (TYPE_UNSIGNED (TREE_TYPE (arg0))
                            && (TYPE_UNSIGNED (TREE_TYPE (arg1))
                            && (TYPE_UNSIGNED (TREE_TYPE (arg1))
                                || ex_form == LSHIFT_EXPR
                                || ex_form == LSHIFT_EXPR
                                || ex_form == RSHIFT_EXPR
                                || ex_form == RSHIFT_EXPR
                                || ex_form == LROTATE_EXPR
                                || ex_form == LROTATE_EXPR
                                || ex_form == RROTATE_EXPR))
                                || ex_form == RROTATE_EXPR))
                        || ex_form == LSHIFT_EXPR
                        || ex_form == LSHIFT_EXPR
                        /* If we have !flag_wrapv, and either ARG0 or
                        /* If we have !flag_wrapv, and either ARG0 or
                           ARG1 is of a signed type, we have to do
                           ARG1 is of a signed type, we have to do
                           PLUS_EXPR or MINUS_EXPR in an unsigned
                           PLUS_EXPR or MINUS_EXPR in an unsigned
                           type.  Otherwise, we would introduce
                           type.  Otherwise, we would introduce
                           signed-overflow undefinedness.  */
                           signed-overflow undefinedness.  */
                        || ((!TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0))
                        || ((!TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0))
                             || !TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1)))
                             || !TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1)))
                            && (ex_form == PLUS_EXPR
                            && (ex_form == PLUS_EXPR
                                || ex_form == MINUS_EXPR)))
                                || ex_form == MINUS_EXPR)))
                      typex = lang_hooks.types.unsigned_type (typex);
                      typex = lang_hooks.types.unsigned_type (typex);
                    else
                    else
                      typex = lang_hooks.types.signed_type (typex);
                      typex = lang_hooks.types.signed_type (typex);
                    return convert (type,
                    return convert (type,
                                    fold_build2 (ex_form, typex,
                                    fold_build2 (ex_form, typex,
                                                 convert (typex, arg0),
                                                 convert (typex, arg0),
                                                 convert (typex, arg1)));
                                                 convert (typex, arg1)));
                  }
                  }
              }
              }
          }
          }
          break;
          break;
 
 
        case NEGATE_EXPR:
        case NEGATE_EXPR:
        case BIT_NOT_EXPR:
        case BIT_NOT_EXPR:
          /* This is not correct for ABS_EXPR,
          /* This is not correct for ABS_EXPR,
             since we must test the sign before truncation.  */
             since we must test the sign before truncation.  */
          {
          {
            tree typex;
            tree typex;
 
 
            /* Don't do unsigned arithmetic where signed was wanted,
            /* Don't do unsigned arithmetic where signed was wanted,
               or vice versa.  */
               or vice versa.  */
            if (TYPE_UNSIGNED (TREE_TYPE (expr)))
            if (TYPE_UNSIGNED (TREE_TYPE (expr)))
              typex = lang_hooks.types.unsigned_type (type);
              typex = lang_hooks.types.unsigned_type (type);
            else
            else
              typex = lang_hooks.types.signed_type (type);
              typex = lang_hooks.types.signed_type (type);
            return convert (type,
            return convert (type,
                            fold_build1 (ex_form, typex,
                            fold_build1 (ex_form, typex,
                                         convert (typex,
                                         convert (typex,
                                                  TREE_OPERAND (expr, 0))));
                                                  TREE_OPERAND (expr, 0))));
          }
          }
 
 
        case NOP_EXPR:
        case NOP_EXPR:
          /* Don't introduce a
          /* Don't introduce a
             "can't convert between vector values of different size" error.  */
             "can't convert between vector values of different size" error.  */
          if (TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == VECTOR_TYPE
          if (TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == VECTOR_TYPE
              && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (expr, 0))))
              && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (expr, 0))))
                  != GET_MODE_SIZE (TYPE_MODE (type))))
                  != GET_MODE_SIZE (TYPE_MODE (type))))
            break;
            break;
          /* If truncating after truncating, might as well do all at once.
          /* If truncating after truncating, might as well do all at once.
             If truncating after extending, we may get rid of wasted work.  */
             If truncating after extending, we may get rid of wasted work.  */
          return convert (type, get_unwidened (TREE_OPERAND (expr, 0), type));
          return convert (type, get_unwidened (TREE_OPERAND (expr, 0), type));
 
 
        case COND_EXPR:
        case COND_EXPR:
          /* It is sometimes worthwhile to push the narrowing down through
          /* It is sometimes worthwhile to push the narrowing down through
             the conditional and never loses.  */
             the conditional and never loses.  */
          return fold_build3 (COND_EXPR, type, TREE_OPERAND (expr, 0),
          return fold_build3 (COND_EXPR, type, TREE_OPERAND (expr, 0),
                              convert (type, TREE_OPERAND (expr, 1)),
                              convert (type, TREE_OPERAND (expr, 1)),
                              convert (type, TREE_OPERAND (expr, 2)));
                              convert (type, TREE_OPERAND (expr, 2)));
 
 
        default:
        default:
          break;
          break;
        }
        }
 
 
      return build1 (CONVERT_EXPR, type, expr);
      return build1 (CONVERT_EXPR, type, expr);
 
 
    case REAL_TYPE:
    case REAL_TYPE:
      return build1 (FIX_TRUNC_EXPR, type, expr);
      return build1 (FIX_TRUNC_EXPR, type, expr);
 
 
    case COMPLEX_TYPE:
    case COMPLEX_TYPE:
      return convert (type,
      return convert (type,
                      fold_build1 (REALPART_EXPR,
                      fold_build1 (REALPART_EXPR,
                                   TREE_TYPE (TREE_TYPE (expr)), expr));
                                   TREE_TYPE (TREE_TYPE (expr)), expr));
 
 
    case VECTOR_TYPE:
    case VECTOR_TYPE:
      if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
      if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
        {
        {
          error ("can't convert between vector values of different size");
          error ("can't convert between vector values of different size");
          return error_mark_node;
          return error_mark_node;
        }
        }
      return build1 (VIEW_CONVERT_EXPR, type, expr);
      return build1 (VIEW_CONVERT_EXPR, type, expr);
 
 
    default:
    default:
      error ("aggregate value used where an integer was expected");
      error ("aggregate value used where an integer was expected");
      return convert (type, integer_zero_node);
      return convert (type, integer_zero_node);
    }
    }
}
}
 
 
/* Convert EXPR to the complex type TYPE in the usual ways.  */
/* Convert EXPR to the complex type TYPE in the usual ways.  */
 
 
tree
tree
convert_to_complex (tree type, tree expr)
convert_to_complex (tree type, tree expr)
{
{
  tree subtype = TREE_TYPE (type);
  tree subtype = TREE_TYPE (type);
 
 
  switch (TREE_CODE (TREE_TYPE (expr)))
  switch (TREE_CODE (TREE_TYPE (expr)))
    {
    {
    case REAL_TYPE:
    case REAL_TYPE:
    case INTEGER_TYPE:
    case INTEGER_TYPE:
    case ENUMERAL_TYPE:
    case ENUMERAL_TYPE:
    case BOOLEAN_TYPE:
    case BOOLEAN_TYPE:
      return build2 (COMPLEX_EXPR, type, convert (subtype, expr),
      return build2 (COMPLEX_EXPR, type, convert (subtype, expr),
                     convert (subtype, integer_zero_node));
                     convert (subtype, integer_zero_node));
 
 
    case COMPLEX_TYPE:
    case COMPLEX_TYPE:
      {
      {
        tree elt_type = TREE_TYPE (TREE_TYPE (expr));
        tree elt_type = TREE_TYPE (TREE_TYPE (expr));
 
 
        if (TYPE_MAIN_VARIANT (elt_type) == TYPE_MAIN_VARIANT (subtype))
        if (TYPE_MAIN_VARIANT (elt_type) == TYPE_MAIN_VARIANT (subtype))
          return expr;
          return expr;
        else if (TREE_CODE (expr) == COMPLEX_EXPR)
        else if (TREE_CODE (expr) == COMPLEX_EXPR)
          return fold_build2 (COMPLEX_EXPR, type,
          return fold_build2 (COMPLEX_EXPR, type,
                              convert (subtype, TREE_OPERAND (expr, 0)),
                              convert (subtype, TREE_OPERAND (expr, 0)),
                              convert (subtype, TREE_OPERAND (expr, 1)));
                              convert (subtype, TREE_OPERAND (expr, 1)));
        else
        else
          {
          {
            expr = save_expr (expr);
            expr = save_expr (expr);
            return
            return
              fold_build2 (COMPLEX_EXPR, type,
              fold_build2 (COMPLEX_EXPR, type,
                           convert (subtype,
                           convert (subtype,
                                    fold_build1 (REALPART_EXPR,
                                    fold_build1 (REALPART_EXPR,
                                                 TREE_TYPE (TREE_TYPE (expr)),
                                                 TREE_TYPE (TREE_TYPE (expr)),
                                                 expr)),
                                                 expr)),
                           convert (subtype,
                           convert (subtype,
                                    fold_build1 (IMAGPART_EXPR,
                                    fold_build1 (IMAGPART_EXPR,
                                                 TREE_TYPE (TREE_TYPE (expr)),
                                                 TREE_TYPE (TREE_TYPE (expr)),
                                                 expr)));
                                                 expr)));
          }
          }
      }
      }
 
 
    case POINTER_TYPE:
    case POINTER_TYPE:
    case REFERENCE_TYPE:
    case REFERENCE_TYPE:
      error ("pointer value used where a complex was expected");
      error ("pointer value used where a complex was expected");
      return convert_to_complex (type, integer_zero_node);
      return convert_to_complex (type, integer_zero_node);
 
 
    default:
    default:
      error ("aggregate value used where a complex was expected");
      error ("aggregate value used where a complex was expected");
      return convert_to_complex (type, integer_zero_node);
      return convert_to_complex (type, integer_zero_node);
    }
    }
}
}
 
 
/* Convert EXPR to the vector type TYPE in the usual ways.  */
/* Convert EXPR to the vector type TYPE in the usual ways.  */
 
 
tree
tree
convert_to_vector (tree type, tree expr)
convert_to_vector (tree type, tree expr)
{
{
  switch (TREE_CODE (TREE_TYPE (expr)))
  switch (TREE_CODE (TREE_TYPE (expr)))
    {
    {
    case INTEGER_TYPE:
    case INTEGER_TYPE:
    case VECTOR_TYPE:
    case VECTOR_TYPE:
      if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
      if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
        {
        {
          error ("can't convert between vector values of different size");
          error ("can't convert between vector values of different size");
          return error_mark_node;
          return error_mark_node;
        }
        }
      return build1 (VIEW_CONVERT_EXPR, type, expr);
      return build1 (VIEW_CONVERT_EXPR, type, expr);
 
 
    default:
    default:
      error ("can't convert value to a vector");
      error ("can't convert value to a vector");
      return error_mark_node;
      return error_mark_node;
    }
    }
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.