OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gcc-4.2.2/] [gcc/] [df-scan.c] - Diff between revs 154 and 816

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 154 Rev 816
/* FIXME: We need to go back and add the warning messages about code
/* FIXME: We need to go back and add the warning messages about code
   moved across setjmp.  */
   moved across setjmp.  */
 
 
 
 
/* Scanning of rtl for dataflow analysis.
/* Scanning of rtl for dataflow analysis.
   Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
   Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
   Originally contributed by Michael P. Hayes
   Originally contributed by Michael P. Hayes
             (m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com)
             (m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com)
   Major rewrite contributed by Danny Berlin (dberlin@dberlin.org)
   Major rewrite contributed by Danny Berlin (dberlin@dberlin.org)
             and Kenneth Zadeck (zadeck@naturalbridge.com).
             and Kenneth Zadeck (zadeck@naturalbridge.com).
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify it under
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
Software Foundation; either version 3, or (at your option) any later
version.
version.
 
 
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "rtl.h"
#include "rtl.h"
#include "tm_p.h"
#include "tm_p.h"
#include "insn-config.h"
#include "insn-config.h"
#include "recog.h"
#include "recog.h"
#include "function.h"
#include "function.h"
#include "regs.h"
#include "regs.h"
#include "output.h"
#include "output.h"
#include "alloc-pool.h"
#include "alloc-pool.h"
#include "flags.h"
#include "flags.h"
#include "hard-reg-set.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "basic-block.h"
#include "sbitmap.h"
#include "sbitmap.h"
#include "bitmap.h"
#include "bitmap.h"
#include "timevar.h"
#include "timevar.h"
#include "tree.h"
#include "tree.h"
#include "target.h"
#include "target.h"
#include "target-def.h"
#include "target-def.h"
#include "df.h"
#include "df.h"
 
 
#ifndef HAVE_epilogue
#ifndef HAVE_epilogue
#define HAVE_epilogue 0
#define HAVE_epilogue 0
#endif
#endif
#ifndef HAVE_prologue
#ifndef HAVE_prologue
#define HAVE_prologue 0
#define HAVE_prologue 0
#endif
#endif
#ifndef HAVE_sibcall_epilogue
#ifndef HAVE_sibcall_epilogue
#define HAVE_sibcall_epilogue 0
#define HAVE_sibcall_epilogue 0
#endif
#endif
 
 
#ifndef EPILOGUE_USES
#ifndef EPILOGUE_USES
#define EPILOGUE_USES(REGNO)  0
#define EPILOGUE_USES(REGNO)  0
#endif
#endif
 
 
/* The bitmap_obstack is used to hold some static variables that
/* The bitmap_obstack is used to hold some static variables that
   should not be reset after each function is compiled.  */
   should not be reset after each function is compiled.  */
 
 
static bitmap_obstack persistent_obstack;
static bitmap_obstack persistent_obstack;
 
 
/* The set of hard registers in eliminables[i].from. */
/* The set of hard registers in eliminables[i].from. */
 
 
static HARD_REG_SET elim_reg_set;
static HARD_REG_SET elim_reg_set;
 
 
/* This is a bitmap copy of regs_invalidated_by_call so that we can
/* This is a bitmap copy of regs_invalidated_by_call so that we can
   easily add it into bitmaps, etc. */
   easily add it into bitmaps, etc. */
 
 
bitmap df_invalidated_by_call = NULL;
bitmap df_invalidated_by_call = NULL;
 
 
/* Initialize ur_in and ur_out as if all hard registers were partially
/* Initialize ur_in and ur_out as if all hard registers were partially
   available.  */
   available.  */
 
 
static void df_ref_record (struct dataflow *, rtx, rtx *,
static void df_ref_record (struct dataflow *, rtx, rtx *,
                           basic_block, rtx, enum df_ref_type,
                           basic_block, rtx, enum df_ref_type,
                           enum df_ref_flags, bool record_live);
                           enum df_ref_flags, bool record_live);
static void df_def_record_1 (struct dataflow *, rtx, basic_block, rtx,
static void df_def_record_1 (struct dataflow *, rtx, basic_block, rtx,
                             enum df_ref_flags, bool record_live);
                             enum df_ref_flags, bool record_live);
static void df_defs_record (struct dataflow *, rtx, basic_block, rtx);
static void df_defs_record (struct dataflow *, rtx, basic_block, rtx);
static void df_uses_record (struct dataflow *, rtx *, enum df_ref_type,
static void df_uses_record (struct dataflow *, rtx *, enum df_ref_type,
                            basic_block, rtx, enum df_ref_flags);
                            basic_block, rtx, enum df_ref_flags);
 
 
static void df_insn_refs_record (struct dataflow *, basic_block, rtx);
static void df_insn_refs_record (struct dataflow *, basic_block, rtx);
static void df_bb_refs_record (struct dataflow *, basic_block);
static void df_bb_refs_record (struct dataflow *, basic_block);
static void df_refs_record (struct dataflow *, bitmap);
static void df_refs_record (struct dataflow *, bitmap);
static struct df_ref *df_ref_create_structure (struct dataflow *, rtx, rtx *,
static struct df_ref *df_ref_create_structure (struct dataflow *, rtx, rtx *,
                                               basic_block, rtx, enum df_ref_type,
                                               basic_block, rtx, enum df_ref_type,
                                               enum df_ref_flags);
                                               enum df_ref_flags);
static void df_record_entry_block_defs (struct dataflow *);
static void df_record_entry_block_defs (struct dataflow *);
static void df_record_exit_block_uses (struct dataflow *);
static void df_record_exit_block_uses (struct dataflow *);
static void df_grow_reg_info (struct dataflow *, struct df_ref_info *);
static void df_grow_reg_info (struct dataflow *, struct df_ref_info *);
static void df_grow_ref_info (struct df_ref_info *, unsigned int);
static void df_grow_ref_info (struct df_ref_info *, unsigned int);
static void df_grow_insn_info (struct df *);
static void df_grow_insn_info (struct df *);
 
 


/*----------------------------------------------------------------------------
/*----------------------------------------------------------------------------
   SCANNING DATAFLOW PROBLEM
   SCANNING DATAFLOW PROBLEM
 
 
   There are several ways in which scanning looks just like the other
   There are several ways in which scanning looks just like the other
   dataflow problems.  It shares the all the mechanisms for local info
   dataflow problems.  It shares the all the mechanisms for local info
   as well as basic block info.  Where it differs is when and how often
   as well as basic block info.  Where it differs is when and how often
   it gets run.  It also has no need for the iterative solver.
   it gets run.  It also has no need for the iterative solver.
----------------------------------------------------------------------------*/
----------------------------------------------------------------------------*/
 
 
/* Problem data for the scanning dataflow function.  */
/* Problem data for the scanning dataflow function.  */
struct df_scan_problem_data
struct df_scan_problem_data
{
{
  alloc_pool ref_pool;
  alloc_pool ref_pool;
  alloc_pool insn_pool;
  alloc_pool insn_pool;
  alloc_pool reg_pool;
  alloc_pool reg_pool;
  alloc_pool mw_reg_pool;
  alloc_pool mw_reg_pool;
  alloc_pool mw_link_pool;
  alloc_pool mw_link_pool;
};
};
 
 
typedef struct df_scan_bb_info *df_scan_bb_info_t;
typedef struct df_scan_bb_info *df_scan_bb_info_t;
 
 
static void
static void
df_scan_free_internal (struct dataflow *dflow)
df_scan_free_internal (struct dataflow *dflow)
{
{
  struct df *df = dflow->df;
  struct df *df = dflow->df;
  struct df_scan_problem_data *problem_data
  struct df_scan_problem_data *problem_data
    = (struct df_scan_problem_data *) dflow->problem_data;
    = (struct df_scan_problem_data *) dflow->problem_data;
 
 
  free (df->def_info.regs);
  free (df->def_info.regs);
  free (df->def_info.refs);
  free (df->def_info.refs);
  memset (&df->def_info, 0, (sizeof (struct df_ref_info)));
  memset (&df->def_info, 0, (sizeof (struct df_ref_info)));
 
 
  free (df->use_info.regs);
  free (df->use_info.regs);
  free (df->use_info.refs);
  free (df->use_info.refs);
  memset (&df->use_info, 0, (sizeof (struct df_ref_info)));
  memset (&df->use_info, 0, (sizeof (struct df_ref_info)));
 
 
  free (df->insns);
  free (df->insns);
  df->insns = NULL;
  df->insns = NULL;
  df->insns_size = 0;
  df->insns_size = 0;
 
 
  free (dflow->block_info);
  free (dflow->block_info);
  dflow->block_info = NULL;
  dflow->block_info = NULL;
  dflow->block_info_size = 0;
  dflow->block_info_size = 0;
 
 
  BITMAP_FREE (df->hardware_regs_used);
  BITMAP_FREE (df->hardware_regs_used);
  BITMAP_FREE (df->entry_block_defs);
  BITMAP_FREE (df->entry_block_defs);
  BITMAP_FREE (df->exit_block_uses);
  BITMAP_FREE (df->exit_block_uses);
 
 
  free_alloc_pool (dflow->block_pool);
  free_alloc_pool (dflow->block_pool);
  free_alloc_pool (problem_data->ref_pool);
  free_alloc_pool (problem_data->ref_pool);
  free_alloc_pool (problem_data->insn_pool);
  free_alloc_pool (problem_data->insn_pool);
  free_alloc_pool (problem_data->reg_pool);
  free_alloc_pool (problem_data->reg_pool);
  free_alloc_pool (problem_data->mw_reg_pool);
  free_alloc_pool (problem_data->mw_reg_pool);
  free_alloc_pool (problem_data->mw_link_pool);
  free_alloc_pool (problem_data->mw_link_pool);
}
}
 
 
 
 
/* Get basic block info.  */
/* Get basic block info.  */
 
 
struct df_scan_bb_info *
struct df_scan_bb_info *
df_scan_get_bb_info (struct dataflow *dflow, unsigned int index)
df_scan_get_bb_info (struct dataflow *dflow, unsigned int index)
{
{
  gcc_assert (index < dflow->block_info_size);
  gcc_assert (index < dflow->block_info_size);
  return (struct df_scan_bb_info *) dflow->block_info[index];
  return (struct df_scan_bb_info *) dflow->block_info[index];
}
}
 
 
 
 
/* Set basic block info.  */
/* Set basic block info.  */
 
 
static void
static void
df_scan_set_bb_info (struct dataflow *dflow, unsigned int index,
df_scan_set_bb_info (struct dataflow *dflow, unsigned int index,
                     struct df_scan_bb_info *bb_info)
                     struct df_scan_bb_info *bb_info)
{
{
  gcc_assert (index < dflow->block_info_size);
  gcc_assert (index < dflow->block_info_size);
  dflow->block_info[index] = (void *) bb_info;
  dflow->block_info[index] = (void *) bb_info;
}
}
 
 
 
 
/* Free basic block info.  */
/* Free basic block info.  */
 
 
static void
static void
df_scan_free_bb_info (struct dataflow *dflow, basic_block bb, void *vbb_info)
df_scan_free_bb_info (struct dataflow *dflow, basic_block bb, void *vbb_info)
{
{
  struct df_scan_bb_info *bb_info = (struct df_scan_bb_info *) vbb_info;
  struct df_scan_bb_info *bb_info = (struct df_scan_bb_info *) vbb_info;
  if (bb_info)
  if (bb_info)
    {
    {
      df_bb_refs_delete (dflow, bb->index);
      df_bb_refs_delete (dflow, bb->index);
      pool_free (dflow->block_pool, bb_info);
      pool_free (dflow->block_pool, bb_info);
    }
    }
}
}
 
 
 
 
/* Allocate the problem data for the scanning problem.  This should be
/* Allocate the problem data for the scanning problem.  This should be
   called when the problem is created or when the entire function is to
   called when the problem is created or when the entire function is to
   be rescanned.  */
   be rescanned.  */
 
 
static void
static void
df_scan_alloc (struct dataflow *dflow, bitmap blocks_to_rescan,
df_scan_alloc (struct dataflow *dflow, bitmap blocks_to_rescan,
               bitmap all_blocks ATTRIBUTE_UNUSED)
               bitmap all_blocks ATTRIBUTE_UNUSED)
{
{
  struct df *df = dflow->df;
  struct df *df = dflow->df;
  struct df_scan_problem_data *problem_data;
  struct df_scan_problem_data *problem_data;
  unsigned int insn_num = get_max_uid () + 1;
  unsigned int insn_num = get_max_uid () + 1;
  unsigned int block_size = 50;
  unsigned int block_size = 50;
  unsigned int bb_index;
  unsigned int bb_index;
  bitmap_iterator bi;
  bitmap_iterator bi;
 
 
  /* Given the number of pools, this is really faster than tearing
  /* Given the number of pools, this is really faster than tearing
     everything apart.  */
     everything apart.  */
  if (dflow->problem_data)
  if (dflow->problem_data)
    df_scan_free_internal (dflow);
    df_scan_free_internal (dflow);
 
 
  dflow->block_pool
  dflow->block_pool
    = create_alloc_pool ("df_scan_block pool",
    = create_alloc_pool ("df_scan_block pool",
                         sizeof (struct df_scan_bb_info),
                         sizeof (struct df_scan_bb_info),
                         block_size);
                         block_size);
 
 
  problem_data = XNEW (struct df_scan_problem_data);
  problem_data = XNEW (struct df_scan_problem_data);
  dflow->problem_data = problem_data;
  dflow->problem_data = problem_data;
 
 
  problem_data->ref_pool
  problem_data->ref_pool
    = create_alloc_pool ("df_scan_ref pool",
    = create_alloc_pool ("df_scan_ref pool",
                         sizeof (struct df_ref), block_size);
                         sizeof (struct df_ref), block_size);
  problem_data->insn_pool
  problem_data->insn_pool
    = create_alloc_pool ("df_scan_insn pool",
    = create_alloc_pool ("df_scan_insn pool",
                         sizeof (struct df_insn_info), block_size);
                         sizeof (struct df_insn_info), block_size);
  problem_data->reg_pool
  problem_data->reg_pool
    = create_alloc_pool ("df_scan_reg pool",
    = create_alloc_pool ("df_scan_reg pool",
                         sizeof (struct df_reg_info), block_size);
                         sizeof (struct df_reg_info), block_size);
  problem_data->mw_reg_pool
  problem_data->mw_reg_pool
    = create_alloc_pool ("df_scan_mw_reg pool",
    = create_alloc_pool ("df_scan_mw_reg pool",
                         sizeof (struct df_mw_hardreg), block_size);
                         sizeof (struct df_mw_hardreg), block_size);
  problem_data->mw_link_pool
  problem_data->mw_link_pool
    = create_alloc_pool ("df_scan_mw_link pool",
    = create_alloc_pool ("df_scan_mw_link pool",
                         sizeof (struct df_link), block_size);
                         sizeof (struct df_link), block_size);
 
 
  insn_num += insn_num / 4;
  insn_num += insn_num / 4;
  df_grow_reg_info (dflow, &df->def_info);
  df_grow_reg_info (dflow, &df->def_info);
  df_grow_ref_info (&df->def_info, insn_num);
  df_grow_ref_info (&df->def_info, insn_num);
 
 
  df_grow_reg_info (dflow, &df->use_info);
  df_grow_reg_info (dflow, &df->use_info);
  df_grow_ref_info (&df->use_info, insn_num *2);
  df_grow_ref_info (&df->use_info, insn_num *2);
 
 
  df_grow_insn_info (df);
  df_grow_insn_info (df);
  df_grow_bb_info (dflow);
  df_grow_bb_info (dflow);
 
 
  EXECUTE_IF_SET_IN_BITMAP (blocks_to_rescan, 0, bb_index, bi)
  EXECUTE_IF_SET_IN_BITMAP (blocks_to_rescan, 0, bb_index, bi)
    {
    {
      struct df_scan_bb_info *bb_info = df_scan_get_bb_info (dflow, bb_index);
      struct df_scan_bb_info *bb_info = df_scan_get_bb_info (dflow, bb_index);
      if (!bb_info)
      if (!bb_info)
        {
        {
          bb_info = (struct df_scan_bb_info *) pool_alloc (dflow->block_pool);
          bb_info = (struct df_scan_bb_info *) pool_alloc (dflow->block_pool);
          df_scan_set_bb_info (dflow, bb_index, bb_info);
          df_scan_set_bb_info (dflow, bb_index, bb_info);
        }
        }
      bb_info->artificial_defs = NULL;
      bb_info->artificial_defs = NULL;
      bb_info->artificial_uses = NULL;
      bb_info->artificial_uses = NULL;
    }
    }
 
 
  df->hardware_regs_used = BITMAP_ALLOC (NULL);
  df->hardware_regs_used = BITMAP_ALLOC (NULL);
  df->entry_block_defs = BITMAP_ALLOC (NULL);
  df->entry_block_defs = BITMAP_ALLOC (NULL);
  df->exit_block_uses = BITMAP_ALLOC (NULL);
  df->exit_block_uses = BITMAP_ALLOC (NULL);
}
}
 
 
 
 
/* Free all of the data associated with the scan problem.  */
/* Free all of the data associated with the scan problem.  */
 
 
static void
static void
df_scan_free (struct dataflow *dflow)
df_scan_free (struct dataflow *dflow)
{
{
  struct df *df = dflow->df;
  struct df *df = dflow->df;
 
 
  if (dflow->problem_data)
  if (dflow->problem_data)
    {
    {
      df_scan_free_internal (dflow);
      df_scan_free_internal (dflow);
      free (dflow->problem_data);
      free (dflow->problem_data);
    }
    }
 
 
  if (df->blocks_to_scan)
  if (df->blocks_to_scan)
    BITMAP_FREE (df->blocks_to_scan);
    BITMAP_FREE (df->blocks_to_scan);
 
 
  if (df->blocks_to_analyze)
  if (df->blocks_to_analyze)
    BITMAP_FREE (df->blocks_to_analyze);
    BITMAP_FREE (df->blocks_to_analyze);
 
 
  free (dflow);
  free (dflow);
}
}
 
 
static void
static void
df_scan_dump (struct dataflow *dflow ATTRIBUTE_UNUSED, FILE *file ATTRIBUTE_UNUSED)
df_scan_dump (struct dataflow *dflow ATTRIBUTE_UNUSED, FILE *file ATTRIBUTE_UNUSED)
{
{
  struct df *df = dflow->df;
  struct df *df = dflow->df;
  int i;
  int i;
 
 
  fprintf (file, "  invalidated by call \t");
  fprintf (file, "  invalidated by call \t");
  dump_bitmap (file, df_invalidated_by_call);
  dump_bitmap (file, df_invalidated_by_call);
  fprintf (file, "  hardware regs used \t");
  fprintf (file, "  hardware regs used \t");
  dump_bitmap (file, df->hardware_regs_used);
  dump_bitmap (file, df->hardware_regs_used);
  fprintf (file, "  entry block uses \t");
  fprintf (file, "  entry block uses \t");
  dump_bitmap (file, df->entry_block_defs);
  dump_bitmap (file, df->entry_block_defs);
  fprintf (file, "  exit block uses \t");
  fprintf (file, "  exit block uses \t");
  dump_bitmap (file, df->exit_block_uses);
  dump_bitmap (file, df->exit_block_uses);
  fprintf (file, "  regs ever live \t");
  fprintf (file, "  regs ever live \t");
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    if (regs_ever_live[i])
    if (regs_ever_live[i])
      fprintf (file, "%d ", i);
      fprintf (file, "%d ", i);
  fprintf (file, "\n");
  fprintf (file, "\n");
}
}
 
 
static struct df_problem problem_SCAN =
static struct df_problem problem_SCAN =
{
{
  DF_SCAN,                    /* Problem id.  */
  DF_SCAN,                    /* Problem id.  */
  DF_NONE,                    /* Direction.  */
  DF_NONE,                    /* Direction.  */
  df_scan_alloc,              /* Allocate the problem specific data.  */
  df_scan_alloc,              /* Allocate the problem specific data.  */
  NULL,                       /* Reset global information.  */
  NULL,                       /* Reset global information.  */
  df_scan_free_bb_info,       /* Free basic block info.  */
  df_scan_free_bb_info,       /* Free basic block info.  */
  NULL,                       /* Local compute function.  */
  NULL,                       /* Local compute function.  */
  NULL,                       /* Init the solution specific data.  */
  NULL,                       /* Init the solution specific data.  */
  NULL,                       /* Iterative solver.  */
  NULL,                       /* Iterative solver.  */
  NULL,                       /* Confluence operator 0.  */
  NULL,                       /* Confluence operator 0.  */
  NULL,                       /* Confluence operator n.  */
  NULL,                       /* Confluence operator n.  */
  NULL,                       /* Transfer function.  */
  NULL,                       /* Transfer function.  */
  NULL,                       /* Finalize function.  */
  NULL,                       /* Finalize function.  */
  df_scan_free,               /* Free all of the problem information.  */
  df_scan_free,               /* Free all of the problem information.  */
  df_scan_dump,               /* Debugging.  */
  df_scan_dump,               /* Debugging.  */
  NULL,                       /* Dependent problem.  */
  NULL,                       /* Dependent problem.  */
  0                           /* Changeable flags.  */
  0                           /* Changeable flags.  */
};
};
 
 
 
 
/* Create a new DATAFLOW instance and add it to an existing instance
/* Create a new DATAFLOW instance and add it to an existing instance
   of DF.  The returned structure is what is used to get at the
   of DF.  The returned structure is what is used to get at the
   solution.  */
   solution.  */
 
 
struct dataflow *
struct dataflow *
df_scan_add_problem (struct df *df, int flags)
df_scan_add_problem (struct df *df, int flags)
{
{
  return df_add_problem (df, &problem_SCAN, flags);
  return df_add_problem (df, &problem_SCAN, flags);
}
}
 
 
/*----------------------------------------------------------------------------
/*----------------------------------------------------------------------------
   Storage Allocation Utilities
   Storage Allocation Utilities
----------------------------------------------------------------------------*/
----------------------------------------------------------------------------*/
 
 
 
 
/* First, grow the reg_info information.  If the current size is less than
/* First, grow the reg_info information.  If the current size is less than
   the number of psuedos, grow to 25% more than the number of
   the number of psuedos, grow to 25% more than the number of
   pseudos.
   pseudos.
 
 
   Second, assure that all of the slots up to max_reg_num have been
   Second, assure that all of the slots up to max_reg_num have been
   filled with reg_info structures.  */
   filled with reg_info structures.  */
 
 
static void
static void
df_grow_reg_info (struct dataflow *dflow, struct df_ref_info *ref_info)
df_grow_reg_info (struct dataflow *dflow, struct df_ref_info *ref_info)
{
{
  unsigned int max_reg = max_reg_num ();
  unsigned int max_reg = max_reg_num ();
  unsigned int new_size = max_reg;
  unsigned int new_size = max_reg;
  struct df_scan_problem_data *problem_data
  struct df_scan_problem_data *problem_data
    = (struct df_scan_problem_data *) dflow->problem_data;
    = (struct df_scan_problem_data *) dflow->problem_data;
  unsigned int i;
  unsigned int i;
 
 
  if (ref_info->regs_size < new_size)
  if (ref_info->regs_size < new_size)
    {
    {
      new_size += new_size / 4;
      new_size += new_size / 4;
      ref_info->regs = xrealloc (ref_info->regs,
      ref_info->regs = xrealloc (ref_info->regs,
                                 new_size *sizeof (struct df_reg_info*));
                                 new_size *sizeof (struct df_reg_info*));
      ref_info->regs_size = new_size;
      ref_info->regs_size = new_size;
    }
    }
 
 
  for (i = ref_info->regs_inited; i < max_reg; i++)
  for (i = ref_info->regs_inited; i < max_reg; i++)
    {
    {
      struct df_reg_info *reg_info = pool_alloc (problem_data->reg_pool);
      struct df_reg_info *reg_info = pool_alloc (problem_data->reg_pool);
      memset (reg_info, 0, sizeof (struct df_reg_info));
      memset (reg_info, 0, sizeof (struct df_reg_info));
      ref_info->regs[i] = reg_info;
      ref_info->regs[i] = reg_info;
    }
    }
 
 
  ref_info->regs_inited = max_reg;
  ref_info->regs_inited = max_reg;
}
}
 
 
 
 
/* Grow the ref information.  */
/* Grow the ref information.  */
 
 
static void
static void
df_grow_ref_info (struct df_ref_info *ref_info, unsigned int new_size)
df_grow_ref_info (struct df_ref_info *ref_info, unsigned int new_size)
{
{
  if (ref_info->refs_size < new_size)
  if (ref_info->refs_size < new_size)
    {
    {
      ref_info->refs = xrealloc (ref_info->refs,
      ref_info->refs = xrealloc (ref_info->refs,
                                 new_size *sizeof (struct df_ref *));
                                 new_size *sizeof (struct df_ref *));
      memset (ref_info->refs + ref_info->refs_size, 0,
      memset (ref_info->refs + ref_info->refs_size, 0,
              (new_size - ref_info->refs_size) *sizeof (struct df_ref *));
              (new_size - ref_info->refs_size) *sizeof (struct df_ref *));
      ref_info->refs_size = new_size;
      ref_info->refs_size = new_size;
    }
    }
}
}
 
 
 
 
/* Grow the ref information.  If the current size is less than the
/* Grow the ref information.  If the current size is less than the
   number of instructions, grow to 25% more than the number of
   number of instructions, grow to 25% more than the number of
   instructions.  */
   instructions.  */
 
 
static void
static void
df_grow_insn_info (struct df *df)
df_grow_insn_info (struct df *df)
{
{
  unsigned int new_size = get_max_uid () + 1;
  unsigned int new_size = get_max_uid () + 1;
  if (df->insns_size < new_size)
  if (df->insns_size < new_size)
    {
    {
      new_size += new_size / 4;
      new_size += new_size / 4;
      df->insns = xrealloc (df->insns,
      df->insns = xrealloc (df->insns,
                            new_size *sizeof (struct df_insn_info *));
                            new_size *sizeof (struct df_insn_info *));
      memset (df->insns + df->insns_size, 0,
      memset (df->insns + df->insns_size, 0,
              (new_size - df->insns_size) *sizeof (struct df_insn_info *));
              (new_size - df->insns_size) *sizeof (struct df_insn_info *));
      df->insns_size = new_size;
      df->insns_size = new_size;
    }
    }
}
}
 
 
 
 
 
 


/*----------------------------------------------------------------------------
/*----------------------------------------------------------------------------
   PUBLIC INTERFACES FOR SMALL GRAIN CHANGES TO SCANNING.
   PUBLIC INTERFACES FOR SMALL GRAIN CHANGES TO SCANNING.
----------------------------------------------------------------------------*/
----------------------------------------------------------------------------*/
 
 
/* Rescan some BLOCKS or all the blocks defined by the last call to
/* Rescan some BLOCKS or all the blocks defined by the last call to
   df_set_blocks if BLOCKS is NULL);  */
   df_set_blocks if BLOCKS is NULL);  */
 
 
void
void
df_rescan_blocks (struct df *df, bitmap blocks)
df_rescan_blocks (struct df *df, bitmap blocks)
{
{
  bitmap local_blocks_to_scan = BITMAP_ALLOC (NULL);
  bitmap local_blocks_to_scan = BITMAP_ALLOC (NULL);
 
 
  struct dataflow *dflow = df->problems_by_index[DF_SCAN];
  struct dataflow *dflow = df->problems_by_index[DF_SCAN];
  basic_block bb;
  basic_block bb;
 
 
  df->def_info.refs_organized = false;
  df->def_info.refs_organized = false;
  df->use_info.refs_organized = false;
  df->use_info.refs_organized = false;
 
 
  if (blocks)
  if (blocks)
    {
    {
      int i;
      int i;
      unsigned int bb_index;
      unsigned int bb_index;
      bitmap_iterator bi;
      bitmap_iterator bi;
      bool cleared_bits = false;
      bool cleared_bits = false;
 
 
      /* Need to assure that there are space in all of the tables.  */
      /* Need to assure that there are space in all of the tables.  */
      unsigned int insn_num = get_max_uid () + 1;
      unsigned int insn_num = get_max_uid () + 1;
      insn_num += insn_num / 4;
      insn_num += insn_num / 4;
 
 
      df_grow_reg_info (dflow, &df->def_info);
      df_grow_reg_info (dflow, &df->def_info);
      df_grow_ref_info (&df->def_info, insn_num);
      df_grow_ref_info (&df->def_info, insn_num);
 
 
      df_grow_reg_info (dflow, &df->use_info);
      df_grow_reg_info (dflow, &df->use_info);
      df_grow_ref_info (&df->use_info, insn_num *2);
      df_grow_ref_info (&df->use_info, insn_num *2);
 
 
      df_grow_insn_info (df);
      df_grow_insn_info (df);
      df_grow_bb_info (dflow);
      df_grow_bb_info (dflow);
 
 
      bitmap_copy (local_blocks_to_scan, blocks);
      bitmap_copy (local_blocks_to_scan, blocks);
 
 
      EXECUTE_IF_SET_IN_BITMAP (blocks, 0, bb_index, bi)
      EXECUTE_IF_SET_IN_BITMAP (blocks, 0, bb_index, bi)
        {
        {
          basic_block bb = BASIC_BLOCK (bb_index);
          basic_block bb = BASIC_BLOCK (bb_index);
          if (!bb)
          if (!bb)
            {
            {
              bitmap_clear_bit (local_blocks_to_scan, bb_index);
              bitmap_clear_bit (local_blocks_to_scan, bb_index);
              cleared_bits = true;
              cleared_bits = true;
            }
            }
        }
        }
 
 
      if (cleared_bits)
      if (cleared_bits)
        bitmap_copy (blocks, local_blocks_to_scan);
        bitmap_copy (blocks, local_blocks_to_scan);
 
 
      df->def_info.add_refs_inline = true;
      df->def_info.add_refs_inline = true;
      df->use_info.add_refs_inline = true;
      df->use_info.add_refs_inline = true;
 
 
      for (i = df->num_problems_defined; i; i--)
      for (i = df->num_problems_defined; i; i--)
        {
        {
          bitmap blocks_to_reset = NULL;
          bitmap blocks_to_reset = NULL;
          if (dflow->problem->reset_fun)
          if (dflow->problem->reset_fun)
            {
            {
              if (!blocks_to_reset)
              if (!blocks_to_reset)
                {
                {
                  blocks_to_reset = BITMAP_ALLOC (NULL);
                  blocks_to_reset = BITMAP_ALLOC (NULL);
                  bitmap_copy (blocks_to_reset, local_blocks_to_scan);
                  bitmap_copy (blocks_to_reset, local_blocks_to_scan);
                  if (df->blocks_to_scan)
                  if (df->blocks_to_scan)
                    bitmap_ior_into (blocks_to_reset, df->blocks_to_scan);
                    bitmap_ior_into (blocks_to_reset, df->blocks_to_scan);
                }
                }
              dflow->problem->reset_fun (dflow, blocks_to_reset);
              dflow->problem->reset_fun (dflow, blocks_to_reset);
            }
            }
          if (blocks_to_reset)
          if (blocks_to_reset)
            BITMAP_FREE (blocks_to_reset);
            BITMAP_FREE (blocks_to_reset);
        }
        }
 
 
      df_refs_delete (dflow, local_blocks_to_scan);
      df_refs_delete (dflow, local_blocks_to_scan);
 
 
      /* This may be a mistake, but if an explicit blocks is passed in
      /* This may be a mistake, but if an explicit blocks is passed in
         and the set of blocks to analyze has been explicitly set, add
         and the set of blocks to analyze has been explicitly set, add
         the extra blocks to blocks_to_analyze.  The alternative is to
         the extra blocks to blocks_to_analyze.  The alternative is to
         put an assert here.  We do not want this to just go by
         put an assert here.  We do not want this to just go by
         silently or else we may get storage leaks.  */
         silently or else we may get storage leaks.  */
      if (df->blocks_to_analyze)
      if (df->blocks_to_analyze)
        bitmap_ior_into (df->blocks_to_analyze, blocks);
        bitmap_ior_into (df->blocks_to_analyze, blocks);
    }
    }
  else
  else
    {
    {
      /* If we are going to do everything, just reallocate everything.
      /* If we are going to do everything, just reallocate everything.
         Most stuff is allocated in pools so this is faster than
         Most stuff is allocated in pools so this is faster than
         walking it.  */
         walking it.  */
      if (df->blocks_to_analyze)
      if (df->blocks_to_analyze)
        bitmap_copy (local_blocks_to_scan, df->blocks_to_analyze);
        bitmap_copy (local_blocks_to_scan, df->blocks_to_analyze);
      else
      else
        FOR_ALL_BB (bb)
        FOR_ALL_BB (bb)
          {
          {
            bitmap_set_bit (local_blocks_to_scan, bb->index);
            bitmap_set_bit (local_blocks_to_scan, bb->index);
          }
          }
      df_scan_alloc (dflow, local_blocks_to_scan, NULL);
      df_scan_alloc (dflow, local_blocks_to_scan, NULL);
 
 
      df->def_info.add_refs_inline = false;
      df->def_info.add_refs_inline = false;
      df->use_info.add_refs_inline = false;
      df->use_info.add_refs_inline = false;
    }
    }
 
 
  df_refs_record (dflow, local_blocks_to_scan);
  df_refs_record (dflow, local_blocks_to_scan);
#if 0
#if 0
  bitmap_print (stderr, local_blocks_to_scan, "scanning: ", "\n");
  bitmap_print (stderr, local_blocks_to_scan, "scanning: ", "\n");
#endif
#endif
 
 
  if (!df->blocks_to_scan)
  if (!df->blocks_to_scan)
    df->blocks_to_scan = BITMAP_ALLOC (NULL);
    df->blocks_to_scan = BITMAP_ALLOC (NULL);
 
 
  bitmap_ior_into (df->blocks_to_scan, local_blocks_to_scan);
  bitmap_ior_into (df->blocks_to_scan, local_blocks_to_scan);
  BITMAP_FREE (local_blocks_to_scan);
  BITMAP_FREE (local_blocks_to_scan);
}
}
 
 
 
 
/* Create a new ref of type DF_REF_TYPE for register REG at address
/* Create a new ref of type DF_REF_TYPE for register REG at address
   LOC within INSN of BB.  */
   LOC within INSN of BB.  */
 
 
struct df_ref *
struct df_ref *
df_ref_create (struct df *df, rtx reg, rtx *loc, rtx insn,
df_ref_create (struct df *df, rtx reg, rtx *loc, rtx insn,
               basic_block bb,
               basic_block bb,
               enum df_ref_type ref_type,
               enum df_ref_type ref_type,
               enum df_ref_flags ref_flags)
               enum df_ref_flags ref_flags)
{
{
  struct dataflow *dflow = df->problems_by_index[DF_SCAN];
  struct dataflow *dflow = df->problems_by_index[DF_SCAN];
  struct df_scan_bb_info *bb_info;
  struct df_scan_bb_info *bb_info;
 
 
  df_grow_reg_info (dflow, &df->use_info);
  df_grow_reg_info (dflow, &df->use_info);
  df_grow_reg_info (dflow, &df->def_info);
  df_grow_reg_info (dflow, &df->def_info);
  df_grow_bb_info (dflow);
  df_grow_bb_info (dflow);
 
 
  /* Make sure there is the bb_info for this block.  */
  /* Make sure there is the bb_info for this block.  */
  bb_info = df_scan_get_bb_info (dflow, bb->index);
  bb_info = df_scan_get_bb_info (dflow, bb->index);
  if (!bb_info)
  if (!bb_info)
    {
    {
      bb_info = (struct df_scan_bb_info *) pool_alloc (dflow->block_pool);
      bb_info = (struct df_scan_bb_info *) pool_alloc (dflow->block_pool);
      df_scan_set_bb_info (dflow, bb->index, bb_info);
      df_scan_set_bb_info (dflow, bb->index, bb_info);
      bb_info->artificial_defs = NULL;
      bb_info->artificial_defs = NULL;
      bb_info->artificial_uses = NULL;
      bb_info->artificial_uses = NULL;
    }
    }
 
 
  if (ref_type == DF_REF_REG_DEF)
  if (ref_type == DF_REF_REG_DEF)
    df->def_info.add_refs_inline = true;
    df->def_info.add_refs_inline = true;
  else
  else
    df->use_info.add_refs_inline = true;
    df->use_info.add_refs_inline = true;
 
 
  return df_ref_create_structure (dflow, reg, loc, bb, insn, ref_type, ref_flags);
  return df_ref_create_structure (dflow, reg, loc, bb, insn, ref_type, ref_flags);
}
}
 
 
 
 


/*----------------------------------------------------------------------------
/*----------------------------------------------------------------------------
   UTILITIES TO CREATE AND DESTROY REFS AND CHAINS.
   UTILITIES TO CREATE AND DESTROY REFS AND CHAINS.
----------------------------------------------------------------------------*/
----------------------------------------------------------------------------*/
 
 
 
 
/* Get the artificial uses for a basic block.  */
/* Get the artificial uses for a basic block.  */
 
 
struct df_ref *
struct df_ref *
df_get_artificial_defs (struct df *df, unsigned int bb_index)
df_get_artificial_defs (struct df *df, unsigned int bb_index)
{
{
  struct dataflow *dflow = df->problems_by_index[DF_SCAN];
  struct dataflow *dflow = df->problems_by_index[DF_SCAN];
  return df_scan_get_bb_info (dflow, bb_index)->artificial_defs;
  return df_scan_get_bb_info (dflow, bb_index)->artificial_defs;
}
}
 
 
 
 
/* Get the artificial uses for a basic block.  */
/* Get the artificial uses for a basic block.  */
 
 
struct df_ref *
struct df_ref *
df_get_artificial_uses (struct df *df, unsigned int bb_index)
df_get_artificial_uses (struct df *df, unsigned int bb_index)
{
{
  struct dataflow *dflow = df->problems_by_index[DF_SCAN];
  struct dataflow *dflow = df->problems_by_index[DF_SCAN];
  return df_scan_get_bb_info (dflow, bb_index)->artificial_uses;
  return df_scan_get_bb_info (dflow, bb_index)->artificial_uses;
}
}
 
 
 
 
/* Link REF at the front of reg_use or reg_def chain for REGNO.  */
/* Link REF at the front of reg_use or reg_def chain for REGNO.  */
 
 
void
void
df_reg_chain_create (struct df_reg_info *reg_info,
df_reg_chain_create (struct df_reg_info *reg_info,
                     struct df_ref *ref)
                     struct df_ref *ref)
{
{
  struct df_ref *head = reg_info->reg_chain;
  struct df_ref *head = reg_info->reg_chain;
  reg_info->reg_chain = ref;
  reg_info->reg_chain = ref;
 
 
  DF_REF_NEXT_REG (ref) = head;
  DF_REF_NEXT_REG (ref) = head;
 
 
  /* We cannot actually link to the head of the chain.  */
  /* We cannot actually link to the head of the chain.  */
  DF_REF_PREV_REG (ref) = NULL;
  DF_REF_PREV_REG (ref) = NULL;
 
 
  if (head)
  if (head)
    DF_REF_PREV_REG (head) = ref;
    DF_REF_PREV_REG (head) = ref;
}
}
 
 
 
 
/* Remove REF from the CHAIN.  Return the head of the chain.  This
/* Remove REF from the CHAIN.  Return the head of the chain.  This
   will be CHAIN unless the REF was at the beginning of the chain.  */
   will be CHAIN unless the REF was at the beginning of the chain.  */
 
 
static struct df_ref *
static struct df_ref *
df_ref_unlink (struct df_ref *chain, struct df_ref *ref)
df_ref_unlink (struct df_ref *chain, struct df_ref *ref)
{
{
  struct df_ref *orig_chain = chain;
  struct df_ref *orig_chain = chain;
  struct df_ref *prev = NULL;
  struct df_ref *prev = NULL;
  while (chain)
  while (chain)
    {
    {
      if (chain == ref)
      if (chain == ref)
        {
        {
          if (prev)
          if (prev)
            {
            {
              prev->next_ref = ref->next_ref;
              prev->next_ref = ref->next_ref;
              ref->next_ref = NULL;
              ref->next_ref = NULL;
              return orig_chain;
              return orig_chain;
            }
            }
          else
          else
            {
            {
              chain = ref->next_ref;
              chain = ref->next_ref;
              ref->next_ref = NULL;
              ref->next_ref = NULL;
              return chain;
              return chain;
            }
            }
        }
        }
 
 
      prev = chain;
      prev = chain;
      chain = chain->next_ref;
      chain = chain->next_ref;
    }
    }
 
 
  /* Someone passed in a ref that was not in the chain.  */
  /* Someone passed in a ref that was not in the chain.  */
  gcc_unreachable ();
  gcc_unreachable ();
  return NULL;
  return NULL;
}
}
 
 
 
 
/* Unlink and delete REF at the reg_use or reg_def chain.  Also delete
/* Unlink and delete REF at the reg_use or reg_def chain.  Also delete
   the def-use or use-def chain if it exists.  Returns the next ref in
   the def-use or use-def chain if it exists.  Returns the next ref in
   uses or defs chain.  */
   uses or defs chain.  */
 
 
struct df_ref *
struct df_ref *
df_reg_chain_unlink (struct dataflow *dflow, struct df_ref *ref)
df_reg_chain_unlink (struct dataflow *dflow, struct df_ref *ref)
{
{
  struct df *df = dflow->df;
  struct df *df = dflow->df;
  struct df_ref *next = DF_REF_NEXT_REG (ref);
  struct df_ref *next = DF_REF_NEXT_REG (ref);
  struct df_ref *prev = DF_REF_PREV_REG (ref);
  struct df_ref *prev = DF_REF_PREV_REG (ref);
  struct df_scan_problem_data *problem_data
  struct df_scan_problem_data *problem_data
    = (struct df_scan_problem_data *) dflow->problem_data;
    = (struct df_scan_problem_data *) dflow->problem_data;
  struct df_reg_info *reg_info;
  struct df_reg_info *reg_info;
  struct df_ref *next_ref = ref->next_ref;
  struct df_ref *next_ref = ref->next_ref;
  unsigned int id = DF_REF_ID (ref);
  unsigned int id = DF_REF_ID (ref);
 
 
  if (DF_REF_TYPE (ref) == DF_REF_REG_DEF)
  if (DF_REF_TYPE (ref) == DF_REF_REG_DEF)
    {
    {
      reg_info = DF_REG_DEF_GET (df, DF_REF_REGNO (ref));
      reg_info = DF_REG_DEF_GET (df, DF_REF_REGNO (ref));
      df->def_info.bitmap_size--;
      df->def_info.bitmap_size--;
      if (df->def_info.refs && (id < df->def_info.refs_size))
      if (df->def_info.refs && (id < df->def_info.refs_size))
        DF_DEFS_SET (df, id, NULL);
        DF_DEFS_SET (df, id, NULL);
    }
    }
  else
  else
    {
    {
      reg_info = DF_REG_USE_GET (df, DF_REF_REGNO (ref));
      reg_info = DF_REG_USE_GET (df, DF_REF_REGNO (ref));
      df->use_info.bitmap_size--;
      df->use_info.bitmap_size--;
      if (df->use_info.refs && (id < df->use_info.refs_size))
      if (df->use_info.refs && (id < df->use_info.refs_size))
        DF_USES_SET (df, id, NULL);
        DF_USES_SET (df, id, NULL);
    }
    }
 
 
  /* Delete any def-use or use-def chains that start here.  */
  /* Delete any def-use or use-def chains that start here.  */
  if (DF_REF_CHAIN (ref))
  if (DF_REF_CHAIN (ref))
    df_chain_unlink (df->problems_by_index[DF_CHAIN], ref, NULL);
    df_chain_unlink (df->problems_by_index[DF_CHAIN], ref, NULL);
 
 
  reg_info->n_refs--;
  reg_info->n_refs--;
 
 
  /* Unlink from the reg chain.  If there is no prev, this is the
  /* Unlink from the reg chain.  If there is no prev, this is the
     first of the list.  If not, just join the next and prev.  */
     first of the list.  If not, just join the next and prev.  */
  if (prev)
  if (prev)
    {
    {
      DF_REF_NEXT_REG (prev) = next;
      DF_REF_NEXT_REG (prev) = next;
      if (next)
      if (next)
        DF_REF_PREV_REG (next) = prev;
        DF_REF_PREV_REG (next) = prev;
    }
    }
  else
  else
    {
    {
      reg_info->reg_chain = next;
      reg_info->reg_chain = next;
      if (next)
      if (next)
        DF_REF_PREV_REG (next) = NULL;
        DF_REF_PREV_REG (next) = NULL;
    }
    }
 
 
  pool_free (problem_data->ref_pool, ref);
  pool_free (problem_data->ref_pool, ref);
  return next_ref;
  return next_ref;
}
}
 
 
 
 
/* Unlink REF from all def-use/use-def chains, etc.  */
/* Unlink REF from all def-use/use-def chains, etc.  */
 
 
void
void
df_ref_remove (struct df *df, struct df_ref *ref)
df_ref_remove (struct df *df, struct df_ref *ref)
{
{
  struct dataflow *dflow = df->problems_by_index[DF_SCAN];
  struct dataflow *dflow = df->problems_by_index[DF_SCAN];
  if (DF_REF_REG_DEF_P (ref))
  if (DF_REF_REG_DEF_P (ref))
    {
    {
      if (DF_REF_FLAGS (ref) & DF_REF_ARTIFICIAL)
      if (DF_REF_FLAGS (ref) & DF_REF_ARTIFICIAL)
        {
        {
          struct df_scan_bb_info *bb_info
          struct df_scan_bb_info *bb_info
            = df_scan_get_bb_info (dflow, DF_REF_BB (ref)->index);
            = df_scan_get_bb_info (dflow, DF_REF_BB (ref)->index);
          bb_info->artificial_defs
          bb_info->artificial_defs
            = df_ref_unlink (bb_info->artificial_defs, ref);
            = df_ref_unlink (bb_info->artificial_defs, ref);
        }
        }
      else
      else
        DF_INSN_UID_DEFS (df, DF_REF_INSN_UID (ref))
        DF_INSN_UID_DEFS (df, DF_REF_INSN_UID (ref))
          = df_ref_unlink (DF_INSN_UID_DEFS (df, DF_REF_INSN_UID (ref)), ref);
          = df_ref_unlink (DF_INSN_UID_DEFS (df, DF_REF_INSN_UID (ref)), ref);
 
 
      if (df->def_info.add_refs_inline)
      if (df->def_info.add_refs_inline)
        DF_DEFS_SET (df, DF_REF_ID (ref), NULL);
        DF_DEFS_SET (df, DF_REF_ID (ref), NULL);
    }
    }
  else
  else
    {
    {
      if (DF_REF_FLAGS (ref) & DF_REF_ARTIFICIAL)
      if (DF_REF_FLAGS (ref) & DF_REF_ARTIFICIAL)
        {
        {
          struct df_scan_bb_info *bb_info
          struct df_scan_bb_info *bb_info
            = df_scan_get_bb_info (dflow, DF_REF_BB (ref)->index);
            = df_scan_get_bb_info (dflow, DF_REF_BB (ref)->index);
          bb_info->artificial_uses
          bb_info->artificial_uses
            = df_ref_unlink (bb_info->artificial_uses, ref);
            = df_ref_unlink (bb_info->artificial_uses, ref);
        }
        }
      else
      else
        DF_INSN_UID_USES (df, DF_REF_INSN_UID (ref))
        DF_INSN_UID_USES (df, DF_REF_INSN_UID (ref))
          = df_ref_unlink (DF_INSN_UID_USES (df, DF_REF_INSN_UID (ref)), ref);
          = df_ref_unlink (DF_INSN_UID_USES (df, DF_REF_INSN_UID (ref)), ref);
 
 
      if (df->use_info.add_refs_inline)
      if (df->use_info.add_refs_inline)
        DF_USES_SET (df, DF_REF_ID (ref), NULL);
        DF_USES_SET (df, DF_REF_ID (ref), NULL);
    }
    }
 
 
  df_reg_chain_unlink (dflow, ref);
  df_reg_chain_unlink (dflow, ref);
}
}
 
 
 
 
/* Create the insn record for INSN.  If there was one there, zero it out.  */
/* Create the insn record for INSN.  If there was one there, zero it out.  */
 
 
static struct df_insn_info *
static struct df_insn_info *
df_insn_create_insn_record (struct dataflow *dflow, rtx insn)
df_insn_create_insn_record (struct dataflow *dflow, rtx insn)
{
{
  struct df *df = dflow->df;
  struct df *df = dflow->df;
  struct df_scan_problem_data *problem_data
  struct df_scan_problem_data *problem_data
    = (struct df_scan_problem_data *) dflow->problem_data;
    = (struct df_scan_problem_data *) dflow->problem_data;
 
 
  struct df_insn_info *insn_rec = DF_INSN_GET (df, insn);
  struct df_insn_info *insn_rec = DF_INSN_GET (df, insn);
  if (!insn_rec)
  if (!insn_rec)
    {
    {
      insn_rec = pool_alloc (problem_data->insn_pool);
      insn_rec = pool_alloc (problem_data->insn_pool);
      DF_INSN_SET (df, insn, insn_rec);
      DF_INSN_SET (df, insn, insn_rec);
    }
    }
  memset (insn_rec, 0, sizeof (struct df_insn_info));
  memset (insn_rec, 0, sizeof (struct df_insn_info));
 
 
  return insn_rec;
  return insn_rec;
}
}
 
 
 
 
/* Delete all of the refs information from INSN.  */
/* Delete all of the refs information from INSN.  */
 
 
void
void
df_insn_refs_delete (struct dataflow *dflow, rtx insn)
df_insn_refs_delete (struct dataflow *dflow, rtx insn)
{
{
  struct df *df = dflow->df;
  struct df *df = dflow->df;
  unsigned int uid = INSN_UID (insn);
  unsigned int uid = INSN_UID (insn);
  struct df_insn_info *insn_info = NULL;
  struct df_insn_info *insn_info = NULL;
  struct df_ref *ref;
  struct df_ref *ref;
  struct df_scan_problem_data *problem_data
  struct df_scan_problem_data *problem_data
    = (struct df_scan_problem_data *) dflow->problem_data;
    = (struct df_scan_problem_data *) dflow->problem_data;
 
 
  if (uid < df->insns_size)
  if (uid < df->insns_size)
    insn_info = DF_INSN_UID_GET (df, uid);
    insn_info = DF_INSN_UID_GET (df, uid);
 
 
  if (insn_info)
  if (insn_info)
    {
    {
      struct df_mw_hardreg *hardregs = insn_info->mw_hardregs;
      struct df_mw_hardreg *hardregs = insn_info->mw_hardregs;
 
 
      while (hardregs)
      while (hardregs)
        {
        {
          struct df_mw_hardreg *next_hr = hardregs->next;
          struct df_mw_hardreg *next_hr = hardregs->next;
          struct df_link *link = hardregs->regs;
          struct df_link *link = hardregs->regs;
          while (link)
          while (link)
            {
            {
              struct df_link *next_l = link->next;
              struct df_link *next_l = link->next;
              pool_free (problem_data->mw_link_pool, link);
              pool_free (problem_data->mw_link_pool, link);
              link = next_l;
              link = next_l;
            }
            }
 
 
          pool_free (problem_data->mw_reg_pool, hardregs);
          pool_free (problem_data->mw_reg_pool, hardregs);
          hardregs = next_hr;
          hardregs = next_hr;
        }
        }
 
 
      ref = insn_info->defs;
      ref = insn_info->defs;
      while (ref)
      while (ref)
        ref = df_reg_chain_unlink (dflow, ref);
        ref = df_reg_chain_unlink (dflow, ref);
 
 
      ref = insn_info->uses;
      ref = insn_info->uses;
      while (ref)
      while (ref)
        ref = df_reg_chain_unlink (dflow, ref);
        ref = df_reg_chain_unlink (dflow, ref);
 
 
      pool_free (problem_data->insn_pool, insn_info);
      pool_free (problem_data->insn_pool, insn_info);
      DF_INSN_SET (df, insn, NULL);
      DF_INSN_SET (df, insn, NULL);
    }
    }
}
}
 
 
 
 
/* Delete all of the refs information from basic_block with BB_INDEX.  */
/* Delete all of the refs information from basic_block with BB_INDEX.  */
 
 
void
void
df_bb_refs_delete (struct dataflow *dflow, int bb_index)
df_bb_refs_delete (struct dataflow *dflow, int bb_index)
{
{
  struct df_ref *def;
  struct df_ref *def;
  struct df_ref *use;
  struct df_ref *use;
 
 
  struct df_scan_bb_info *bb_info
  struct df_scan_bb_info *bb_info
    = df_scan_get_bb_info (dflow, bb_index);
    = df_scan_get_bb_info (dflow, bb_index);
  rtx insn;
  rtx insn;
  basic_block bb = BASIC_BLOCK (bb_index);
  basic_block bb = BASIC_BLOCK (bb_index);
  FOR_BB_INSNS (bb, insn)
  FOR_BB_INSNS (bb, insn)
    {
    {
      if (INSN_P (insn))
      if (INSN_P (insn))
        {
        {
          /* Record defs within INSN.  */
          /* Record defs within INSN.  */
          df_insn_refs_delete (dflow, insn);
          df_insn_refs_delete (dflow, insn);
        }
        }
    }
    }
 
 
  /* Get rid of any artificial uses or defs.  */
  /* Get rid of any artificial uses or defs.  */
  if (bb_info)
  if (bb_info)
    {
    {
      def = bb_info->artificial_defs;
      def = bb_info->artificial_defs;
      while (def)
      while (def)
        def = df_reg_chain_unlink (dflow, def);
        def = df_reg_chain_unlink (dflow, def);
      bb_info->artificial_defs = NULL;
      bb_info->artificial_defs = NULL;
      use = bb_info->artificial_uses;
      use = bb_info->artificial_uses;
      while (use)
      while (use)
        use = df_reg_chain_unlink (dflow, use);
        use = df_reg_chain_unlink (dflow, use);
      bb_info->artificial_uses = NULL;
      bb_info->artificial_uses = NULL;
    }
    }
}
}
 
 
 
 
/* Delete all of the refs information from BLOCKS.  */
/* Delete all of the refs information from BLOCKS.  */
 
 
void
void
df_refs_delete (struct dataflow *dflow, bitmap blocks)
df_refs_delete (struct dataflow *dflow, bitmap blocks)
{
{
  bitmap_iterator bi;
  bitmap_iterator bi;
  unsigned int bb_index;
  unsigned int bb_index;
 
 
  EXECUTE_IF_SET_IN_BITMAP (blocks, 0, bb_index, bi)
  EXECUTE_IF_SET_IN_BITMAP (blocks, 0, bb_index, bi)
    {
    {
      df_bb_refs_delete (dflow, bb_index);
      df_bb_refs_delete (dflow, bb_index);
    }
    }
}
}
 
 
 
 
/* Take build ref table for either the uses or defs from the reg-use
/* Take build ref table for either the uses or defs from the reg-use
   or reg-def chains.  */
   or reg-def chains.  */
 
 
void
void
df_reorganize_refs (struct df_ref_info *ref_info)
df_reorganize_refs (struct df_ref_info *ref_info)
{
{
  unsigned int m = ref_info->regs_inited;
  unsigned int m = ref_info->regs_inited;
  unsigned int regno;
  unsigned int regno;
  unsigned int offset = 0;
  unsigned int offset = 0;
  unsigned int size = 0;
  unsigned int size = 0;
 
 
  if (ref_info->refs_organized)
  if (ref_info->refs_organized)
    return;
    return;
 
 
  if (ref_info->refs_size < ref_info->bitmap_size)
  if (ref_info->refs_size < ref_info->bitmap_size)
    {
    {
      int new_size = ref_info->bitmap_size + ref_info->bitmap_size / 4;
      int new_size = ref_info->bitmap_size + ref_info->bitmap_size / 4;
      df_grow_ref_info (ref_info, new_size);
      df_grow_ref_info (ref_info, new_size);
    }
    }
 
 
  for (regno = 0; regno < m; regno++)
  for (regno = 0; regno < m; regno++)
    {
    {
      struct df_reg_info *reg_info = ref_info->regs[regno];
      struct df_reg_info *reg_info = ref_info->regs[regno];
      int count = 0;
      int count = 0;
      if (reg_info)
      if (reg_info)
        {
        {
          struct df_ref *ref = reg_info->reg_chain;
          struct df_ref *ref = reg_info->reg_chain;
          reg_info->begin = offset;
          reg_info->begin = offset;
          while (ref)
          while (ref)
            {
            {
              ref_info->refs[offset] = ref;
              ref_info->refs[offset] = ref;
              DF_REF_ID (ref) = offset++;
              DF_REF_ID (ref) = offset++;
              ref = DF_REF_NEXT_REG (ref);
              ref = DF_REF_NEXT_REG (ref);
              count++;
              count++;
              size++;
              size++;
            }
            }
          reg_info->n_refs = count;
          reg_info->n_refs = count;
        }
        }
    }
    }
 
 
  /* The bitmap size is not decremented when refs are deleted.  So
  /* The bitmap size is not decremented when refs are deleted.  So
     reset it now that we have squished out all of the empty
     reset it now that we have squished out all of the empty
     slots.  */
     slots.  */
  ref_info->bitmap_size = size;
  ref_info->bitmap_size = size;
  ref_info->refs_organized = true;
  ref_info->refs_organized = true;
  ref_info->add_refs_inline = true;
  ref_info->add_refs_inline = true;
}
}
 
 


/*----------------------------------------------------------------------------
/*----------------------------------------------------------------------------
   Hard core instruction scanning code.  No external interfaces here,
   Hard core instruction scanning code.  No external interfaces here,
   just a lot of routines that look inside insns.
   just a lot of routines that look inside insns.
----------------------------------------------------------------------------*/
----------------------------------------------------------------------------*/
 
 
/* Create a ref and add it to the reg-def or reg-use chains.  */
/* Create a ref and add it to the reg-def or reg-use chains.  */
 
 
static struct df_ref *
static struct df_ref *
df_ref_create_structure (struct dataflow *dflow, rtx reg, rtx *loc,
df_ref_create_structure (struct dataflow *dflow, rtx reg, rtx *loc,
                         basic_block bb, rtx insn,
                         basic_block bb, rtx insn,
                         enum df_ref_type ref_type,
                         enum df_ref_type ref_type,
                         enum df_ref_flags ref_flags)
                         enum df_ref_flags ref_flags)
{
{
  struct df_ref *this_ref;
  struct df_ref *this_ref;
  struct df *df = dflow->df;
  struct df *df = dflow->df;
  int regno = REGNO (GET_CODE (reg) == SUBREG ? SUBREG_REG (reg) : reg);
  int regno = REGNO (GET_CODE (reg) == SUBREG ? SUBREG_REG (reg) : reg);
  struct df_scan_problem_data *problem_data
  struct df_scan_problem_data *problem_data
    = (struct df_scan_problem_data *) dflow->problem_data;
    = (struct df_scan_problem_data *) dflow->problem_data;
 
 
  this_ref = pool_alloc (problem_data->ref_pool);
  this_ref = pool_alloc (problem_data->ref_pool);
  DF_REF_REG (this_ref) = reg;
  DF_REF_REG (this_ref) = reg;
  DF_REF_REGNO (this_ref) =  regno;
  DF_REF_REGNO (this_ref) =  regno;
  DF_REF_LOC (this_ref) = loc;
  DF_REF_LOC (this_ref) = loc;
  DF_REF_INSN (this_ref) = insn;
  DF_REF_INSN (this_ref) = insn;
  DF_REF_CHAIN (this_ref) = NULL;
  DF_REF_CHAIN (this_ref) = NULL;
  DF_REF_TYPE (this_ref) = ref_type;
  DF_REF_TYPE (this_ref) = ref_type;
  DF_REF_FLAGS (this_ref) = ref_flags;
  DF_REF_FLAGS (this_ref) = ref_flags;
  DF_REF_DATA (this_ref) = NULL;
  DF_REF_DATA (this_ref) = NULL;
  DF_REF_BB (this_ref) = bb;
  DF_REF_BB (this_ref) = bb;
 
 
  /* Link the ref into the reg_def and reg_use chains and keep a count
  /* Link the ref into the reg_def and reg_use chains and keep a count
     of the instances.  */
     of the instances.  */
  switch (ref_type)
  switch (ref_type)
    {
    {
    case DF_REF_REG_DEF:
    case DF_REF_REG_DEF:
      {
      {
        struct df_reg_info *reg_info = DF_REG_DEF_GET (df, regno);
        struct df_reg_info *reg_info = DF_REG_DEF_GET (df, regno);
        reg_info->n_refs++;
        reg_info->n_refs++;
 
 
        /* Add the ref to the reg_def chain.  */
        /* Add the ref to the reg_def chain.  */
        df_reg_chain_create (reg_info, this_ref);
        df_reg_chain_create (reg_info, this_ref);
        DF_REF_ID (this_ref) = df->def_info.bitmap_size;
        DF_REF_ID (this_ref) = df->def_info.bitmap_size;
        if (df->def_info.add_refs_inline)
        if (df->def_info.add_refs_inline)
          {
          {
            if (DF_DEFS_SIZE (df) >= df->def_info.refs_size)
            if (DF_DEFS_SIZE (df) >= df->def_info.refs_size)
              {
              {
                int new_size = df->def_info.bitmap_size
                int new_size = df->def_info.bitmap_size
                  + df->def_info.bitmap_size / 4;
                  + df->def_info.bitmap_size / 4;
                df_grow_ref_info (&df->def_info, new_size);
                df_grow_ref_info (&df->def_info, new_size);
              }
              }
            /* Add the ref to the big array of defs.  */
            /* Add the ref to the big array of defs.  */
            DF_DEFS_SET (df, df->def_info.bitmap_size, this_ref);
            DF_DEFS_SET (df, df->def_info.bitmap_size, this_ref);
            df->def_info.refs_organized = false;
            df->def_info.refs_organized = false;
          }
          }
 
 
        df->def_info.bitmap_size++;
        df->def_info.bitmap_size++;
 
 
        if (DF_REF_FLAGS (this_ref) & DF_REF_ARTIFICIAL)
        if (DF_REF_FLAGS (this_ref) & DF_REF_ARTIFICIAL)
          {
          {
            struct df_scan_bb_info *bb_info
            struct df_scan_bb_info *bb_info
              = df_scan_get_bb_info (dflow, bb->index);
              = df_scan_get_bb_info (dflow, bb->index);
            this_ref->next_ref = bb_info->artificial_defs;
            this_ref->next_ref = bb_info->artificial_defs;
            bb_info->artificial_defs = this_ref;
            bb_info->artificial_defs = this_ref;
          }
          }
        else
        else
          {
          {
            this_ref->next_ref = DF_INSN_GET (df, insn)->defs;
            this_ref->next_ref = DF_INSN_GET (df, insn)->defs;
            DF_INSN_GET (df, insn)->defs = this_ref;
            DF_INSN_GET (df, insn)->defs = this_ref;
          }
          }
      }
      }
      break;
      break;
 
 
    case DF_REF_REG_MEM_LOAD:
    case DF_REF_REG_MEM_LOAD:
    case DF_REF_REG_MEM_STORE:
    case DF_REF_REG_MEM_STORE:
    case DF_REF_REG_USE:
    case DF_REF_REG_USE:
      {
      {
        struct df_reg_info *reg_info = DF_REG_USE_GET (df, regno);
        struct df_reg_info *reg_info = DF_REG_USE_GET (df, regno);
        reg_info->n_refs++;
        reg_info->n_refs++;
 
 
        /* Add the ref to the reg_use chain.  */
        /* Add the ref to the reg_use chain.  */
        df_reg_chain_create (reg_info, this_ref);
        df_reg_chain_create (reg_info, this_ref);
        DF_REF_ID (this_ref) = df->use_info.bitmap_size;
        DF_REF_ID (this_ref) = df->use_info.bitmap_size;
        if (df->use_info.add_refs_inline)
        if (df->use_info.add_refs_inline)
          {
          {
            if (DF_USES_SIZE (df) >= df->use_info.refs_size)
            if (DF_USES_SIZE (df) >= df->use_info.refs_size)
              {
              {
                int new_size = df->use_info.bitmap_size
                int new_size = df->use_info.bitmap_size
                  + df->use_info.bitmap_size / 4;
                  + df->use_info.bitmap_size / 4;
                df_grow_ref_info (&df->use_info, new_size);
                df_grow_ref_info (&df->use_info, new_size);
              }
              }
            /* Add the ref to the big array of defs.  */
            /* Add the ref to the big array of defs.  */
            DF_USES_SET (df, df->use_info.bitmap_size, this_ref);
            DF_USES_SET (df, df->use_info.bitmap_size, this_ref);
            df->use_info.refs_organized = false;
            df->use_info.refs_organized = false;
          }
          }
 
 
        df->use_info.bitmap_size++;
        df->use_info.bitmap_size++;
        if (DF_REF_FLAGS (this_ref) & DF_REF_ARTIFICIAL)
        if (DF_REF_FLAGS (this_ref) & DF_REF_ARTIFICIAL)
          {
          {
            struct df_scan_bb_info *bb_info
            struct df_scan_bb_info *bb_info
              = df_scan_get_bb_info (dflow, bb->index);
              = df_scan_get_bb_info (dflow, bb->index);
            this_ref->next_ref = bb_info->artificial_uses;
            this_ref->next_ref = bb_info->artificial_uses;
            bb_info->artificial_uses = this_ref;
            bb_info->artificial_uses = this_ref;
          }
          }
        else
        else
          {
          {
            this_ref->next_ref = DF_INSN_GET (df, insn)->uses;
            this_ref->next_ref = DF_INSN_GET (df, insn)->uses;
            DF_INSN_GET (df, insn)->uses = this_ref;
            DF_INSN_GET (df, insn)->uses = this_ref;
          }
          }
      }
      }
      break;
      break;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
 
 
    }
    }
  return this_ref;
  return this_ref;
}
}
 
 
 
 
/* Create new references of type DF_REF_TYPE for each part of register REG
/* Create new references of type DF_REF_TYPE for each part of register REG
   at address LOC within INSN of BB.  */
   at address LOC within INSN of BB.  */
 
 
static void
static void
df_ref_record (struct dataflow *dflow, rtx reg, rtx *loc,
df_ref_record (struct dataflow *dflow, rtx reg, rtx *loc,
               basic_block bb, rtx insn,
               basic_block bb, rtx insn,
               enum df_ref_type ref_type,
               enum df_ref_type ref_type,
               enum df_ref_flags ref_flags,
               enum df_ref_flags ref_flags,
               bool record_live)
               bool record_live)
{
{
  struct df *df = dflow->df;
  struct df *df = dflow->df;
  rtx oldreg = reg;
  rtx oldreg = reg;
  unsigned int regno;
  unsigned int regno;
 
 
  gcc_assert (REG_P (reg) || GET_CODE (reg) == SUBREG);
  gcc_assert (REG_P (reg) || GET_CODE (reg) == SUBREG);
 
 
  /* For the reg allocator we are interested in some SUBREG rtx's, but not
  /* For the reg allocator we are interested in some SUBREG rtx's, but not
     all.  Notably only those representing a word extraction from a multi-word
     all.  Notably only those representing a word extraction from a multi-word
     reg.  As written in the docu those should have the form
     reg.  As written in the docu those should have the form
     (subreg:SI (reg:M A) N), with size(SImode) > size(Mmode).
     (subreg:SI (reg:M A) N), with size(SImode) > size(Mmode).
     XXX Is that true?  We could also use the global word_mode variable.  */
     XXX Is that true?  We could also use the global word_mode variable.  */
  if ((dflow->flags & DF_SUBREGS) == 0
  if ((dflow->flags & DF_SUBREGS) == 0
      && GET_CODE (reg) == SUBREG
      && GET_CODE (reg) == SUBREG
      && (GET_MODE_SIZE (GET_MODE (reg)) < GET_MODE_SIZE (word_mode)
      && (GET_MODE_SIZE (GET_MODE (reg)) < GET_MODE_SIZE (word_mode)
          || GET_MODE_SIZE (GET_MODE (reg))
          || GET_MODE_SIZE (GET_MODE (reg))
               >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (reg)))))
               >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (reg)))))
    {
    {
      loc = &SUBREG_REG (reg);
      loc = &SUBREG_REG (reg);
      reg = *loc;
      reg = *loc;
      ref_flags |= DF_REF_STRIPPED;
      ref_flags |= DF_REF_STRIPPED;
    }
    }
 
 
  regno = REGNO (GET_CODE (reg) == SUBREG ? SUBREG_REG (reg) : reg);
  regno = REGNO (GET_CODE (reg) == SUBREG ? SUBREG_REG (reg) : reg);
  if (regno < FIRST_PSEUDO_REGISTER)
  if (regno < FIRST_PSEUDO_REGISTER)
    {
    {
      unsigned int i;
      unsigned int i;
      unsigned int endregno;
      unsigned int endregno;
      struct df_mw_hardreg *hardreg = NULL;
      struct df_mw_hardreg *hardreg = NULL;
      struct df_scan_problem_data *problem_data
      struct df_scan_problem_data *problem_data
        = (struct df_scan_problem_data *) dflow->problem_data;
        = (struct df_scan_problem_data *) dflow->problem_data;
 
 
      if (!(dflow->flags & DF_HARD_REGS))
      if (!(dflow->flags & DF_HARD_REGS))
        return;
        return;
 
 
      /* GET_MODE (reg) is correct here.  We do not want to go into a SUBREG
      /* GET_MODE (reg) is correct here.  We do not want to go into a SUBREG
         for the mode, because we only want to add references to regs, which
         for the mode, because we only want to add references to regs, which
         are really referenced.  E.g., a (subreg:SI (reg:DI 0) 0) does _not_
         are really referenced.  E.g., a (subreg:SI (reg:DI 0) 0) does _not_
         reference the whole reg 0 in DI mode (which would also include
         reference the whole reg 0 in DI mode (which would also include
         reg 1, at least, if 0 and 1 are SImode registers).  */
         reg 1, at least, if 0 and 1 are SImode registers).  */
      endregno = hard_regno_nregs[regno][GET_MODE (reg)];
      endregno = hard_regno_nregs[regno][GET_MODE (reg)];
      if (GET_CODE (reg) == SUBREG)
      if (GET_CODE (reg) == SUBREG)
        regno += subreg_regno_offset (regno, GET_MODE (SUBREG_REG (reg)),
        regno += subreg_regno_offset (regno, GET_MODE (SUBREG_REG (reg)),
                                      SUBREG_BYTE (reg), GET_MODE (reg));
                                      SUBREG_BYTE (reg), GET_MODE (reg));
      endregno += regno;
      endregno += regno;
 
 
      /*  If this is a multiword hardreg, we create some extra datastructures that
      /*  If this is a multiword hardreg, we create some extra datastructures that
          will enable us to easily build REG_DEAD and REG_UNUSED notes.  */
          will enable us to easily build REG_DEAD and REG_UNUSED notes.  */
      if ((endregno != regno + 1) && insn)
      if ((endregno != regno + 1) && insn)
        {
        {
          struct df_insn_info *insn_info = DF_INSN_GET (df, insn);
          struct df_insn_info *insn_info = DF_INSN_GET (df, insn);
          /* Sets to a subreg of a multiword register are partial.
          /* Sets to a subreg of a multiword register are partial.
             Sets to a non-subreg of a multiword register are not.  */
             Sets to a non-subreg of a multiword register are not.  */
          if (GET_CODE (oldreg) == SUBREG)
          if (GET_CODE (oldreg) == SUBREG)
            ref_flags |= DF_REF_PARTIAL;
            ref_flags |= DF_REF_PARTIAL;
          ref_flags |= DF_REF_MW_HARDREG;
          ref_flags |= DF_REF_MW_HARDREG;
          hardreg = pool_alloc (problem_data->mw_reg_pool);
          hardreg = pool_alloc (problem_data->mw_reg_pool);
          hardreg->next = insn_info->mw_hardregs;
          hardreg->next = insn_info->mw_hardregs;
          insn_info->mw_hardregs = hardreg;
          insn_info->mw_hardregs = hardreg;
          hardreg->type = ref_type;
          hardreg->type = ref_type;
          hardreg->flags = ref_flags;
          hardreg->flags = ref_flags;
          hardreg->mw_reg = reg;
          hardreg->mw_reg = reg;
          hardreg->regs = NULL;
          hardreg->regs = NULL;
 
 
        }
        }
 
 
      for (i = regno; i < endregno; i++)
      for (i = regno; i < endregno; i++)
        {
        {
          struct df_ref *ref;
          struct df_ref *ref;
 
 
          /* Calls are handled at call site because regs_ever_live
          /* Calls are handled at call site because regs_ever_live
             doesn't include clobbered regs, only used ones.  */
             doesn't include clobbered regs, only used ones.  */
          if (ref_type == DF_REF_REG_DEF && record_live)
          if (ref_type == DF_REF_REG_DEF && record_live)
            regs_ever_live[i] = 1;
            regs_ever_live[i] = 1;
          else if ((ref_type == DF_REF_REG_USE
          else if ((ref_type == DF_REF_REG_USE
                   || ref_type == DF_REF_REG_MEM_STORE
                   || ref_type == DF_REF_REG_MEM_STORE
                   || ref_type == DF_REF_REG_MEM_LOAD)
                   || ref_type == DF_REF_REG_MEM_LOAD)
                   && ((ref_flags & DF_REF_ARTIFICIAL) == 0))
                   && ((ref_flags & DF_REF_ARTIFICIAL) == 0))
            {
            {
              /* Set regs_ever_live on uses of non-eliminable frame
              /* Set regs_ever_live on uses of non-eliminable frame
                 pointers and arg pointers.  */
                 pointers and arg pointers.  */
              if (!(TEST_HARD_REG_BIT (elim_reg_set, regno)
              if (!(TEST_HARD_REG_BIT (elim_reg_set, regno)
                     && (regno == FRAME_POINTER_REGNUM
                     && (regno == FRAME_POINTER_REGNUM
                         || regno == ARG_POINTER_REGNUM)))
                         || regno == ARG_POINTER_REGNUM)))
                regs_ever_live[i] = 1;
                regs_ever_live[i] = 1;
            }
            }
 
 
          ref = df_ref_create_structure (dflow, regno_reg_rtx[i], loc,
          ref = df_ref_create_structure (dflow, regno_reg_rtx[i], loc,
                                         bb, insn, ref_type, ref_flags);
                                         bb, insn, ref_type, ref_flags);
          if (hardreg)
          if (hardreg)
            {
            {
              struct df_link *link = pool_alloc (problem_data->mw_link_pool);
              struct df_link *link = pool_alloc (problem_data->mw_link_pool);
 
 
              link->next = hardreg->regs;
              link->next = hardreg->regs;
              link->ref = ref;
              link->ref = ref;
              hardreg->regs = link;
              hardreg->regs = link;
            }
            }
        }
        }
    }
    }
  else
  else
    {
    {
      df_ref_create_structure (dflow, reg, loc,
      df_ref_create_structure (dflow, reg, loc,
                               bb, insn, ref_type, ref_flags);
                               bb, insn, ref_type, ref_flags);
    }
    }
}
}
 
 
 
 
/* A set to a non-paradoxical SUBREG for which the number of word_mode units
/* A set to a non-paradoxical SUBREG for which the number of word_mode units
   covered by the outer mode is smaller than that covered by the inner mode,
   covered by the outer mode is smaller than that covered by the inner mode,
   is a read-modify-write operation.
   is a read-modify-write operation.
   This function returns true iff the SUBREG X is such a SUBREG.  */
   This function returns true iff the SUBREG X is such a SUBREG.  */
 
 
bool
bool
df_read_modify_subreg_p (rtx x)
df_read_modify_subreg_p (rtx x)
{
{
  unsigned int isize, osize;
  unsigned int isize, osize;
  if (GET_CODE (x) != SUBREG)
  if (GET_CODE (x) != SUBREG)
    return false;
    return false;
  isize = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
  isize = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
  osize = GET_MODE_SIZE (GET_MODE (x));
  osize = GET_MODE_SIZE (GET_MODE (x));
  return (isize > osize && isize > UNITS_PER_WORD);
  return (isize > osize && isize > UNITS_PER_WORD);
}
}
 
 
 
 
/* Process all the registers defined in the rtx, X.
/* Process all the registers defined in the rtx, X.
   Autoincrement/decrement definitions will be picked up by
   Autoincrement/decrement definitions will be picked up by
   df_uses_record.  */
   df_uses_record.  */
 
 
static void
static void
df_def_record_1 (struct dataflow *dflow, rtx x,
df_def_record_1 (struct dataflow *dflow, rtx x,
                 basic_block bb, rtx insn,
                 basic_block bb, rtx insn,
                 enum df_ref_flags flags, bool record_live)
                 enum df_ref_flags flags, bool record_live)
{
{
  rtx *loc;
  rtx *loc;
  rtx dst;
  rtx dst;
  bool dst_in_strict_lowpart = false;
  bool dst_in_strict_lowpart = false;
 
 
 /* We may recursively call ourselves on EXPR_LIST when dealing with PARALLEL
 /* We may recursively call ourselves on EXPR_LIST when dealing with PARALLEL
     construct.  */
     construct.  */
  if (GET_CODE (x) == EXPR_LIST || GET_CODE (x) == CLOBBER)
  if (GET_CODE (x) == EXPR_LIST || GET_CODE (x) == CLOBBER)
    loc = &XEXP (x, 0);
    loc = &XEXP (x, 0);
  else
  else
    loc = &SET_DEST (x);
    loc = &SET_DEST (x);
  dst = *loc;
  dst = *loc;
 
 
  /* It is legal to have a set destination be a parallel. */
  /* It is legal to have a set destination be a parallel. */
  if (GET_CODE (dst) == PARALLEL)
  if (GET_CODE (dst) == PARALLEL)
    {
    {
      int i;
      int i;
 
 
      for (i = XVECLEN (dst, 0) - 1; i >= 0; i--)
      for (i = XVECLEN (dst, 0) - 1; i >= 0; i--)
        {
        {
          rtx temp = XVECEXP (dst, 0, i);
          rtx temp = XVECEXP (dst, 0, i);
          if (GET_CODE (temp) == EXPR_LIST || GET_CODE (temp) == CLOBBER
          if (GET_CODE (temp) == EXPR_LIST || GET_CODE (temp) == CLOBBER
              || GET_CODE (temp) == SET)
              || GET_CODE (temp) == SET)
            df_def_record_1 (dflow, temp, bb, insn,
            df_def_record_1 (dflow, temp, bb, insn,
                             GET_CODE (temp) == CLOBBER
                             GET_CODE (temp) == CLOBBER
                             ? flags | DF_REF_MUST_CLOBBER : flags,
                             ? flags | DF_REF_MUST_CLOBBER : flags,
                             record_live);
                             record_live);
        }
        }
      return;
      return;
    }
    }
 
 
  /* Maybe, we should flag the use of STRICT_LOW_PART somehow.  It might
  /* Maybe, we should flag the use of STRICT_LOW_PART somehow.  It might
     be handy for the reg allocator.  */
     be handy for the reg allocator.  */
  while (GET_CODE (dst) == STRICT_LOW_PART
  while (GET_CODE (dst) == STRICT_LOW_PART
         || GET_CODE (dst) == ZERO_EXTRACT
         || GET_CODE (dst) == ZERO_EXTRACT
         || df_read_modify_subreg_p (dst))
         || df_read_modify_subreg_p (dst))
    {
    {
#if 0
#if 0
      /* Strict low part always contains SUBREG, but we do not want to make
      /* Strict low part always contains SUBREG, but we do not want to make
         it appear outside, as whole register is always considered.  */
         it appear outside, as whole register is always considered.  */
      if (GET_CODE (dst) == STRICT_LOW_PART)
      if (GET_CODE (dst) == STRICT_LOW_PART)
        {
        {
          loc = &XEXP (dst, 0);
          loc = &XEXP (dst, 0);
          dst = *loc;
          dst = *loc;
        }
        }
#endif
#endif
      loc = &XEXP (dst, 0);
      loc = &XEXP (dst, 0);
      if (GET_CODE (dst) == STRICT_LOW_PART)
      if (GET_CODE (dst) == STRICT_LOW_PART)
        dst_in_strict_lowpart = true;
        dst_in_strict_lowpart = true;
      dst = *loc;
      dst = *loc;
      flags |= DF_REF_READ_WRITE;
      flags |= DF_REF_READ_WRITE;
 
 
    }
    }
 
 
  /* Sets to a subreg of a single word register are partial sets if
  /* Sets to a subreg of a single word register are partial sets if
     they are wrapped in a strict lowpart, and not partial otherwise.
     they are wrapped in a strict lowpart, and not partial otherwise.
  */
  */
  if (GET_CODE (dst) == SUBREG && REG_P (SUBREG_REG (dst))
  if (GET_CODE (dst) == SUBREG && REG_P (SUBREG_REG (dst))
      && dst_in_strict_lowpart)
      && dst_in_strict_lowpart)
    flags |= DF_REF_PARTIAL;
    flags |= DF_REF_PARTIAL;
 
 
  if (REG_P (dst)
  if (REG_P (dst)
      || (GET_CODE (dst) == SUBREG && REG_P (SUBREG_REG (dst))))
      || (GET_CODE (dst) == SUBREG && REG_P (SUBREG_REG (dst))))
    df_ref_record (dflow, dst, loc, bb, insn,
    df_ref_record (dflow, dst, loc, bb, insn,
                   DF_REF_REG_DEF, flags, record_live);
                   DF_REF_REG_DEF, flags, record_live);
}
}
 
 
 
 
/* Process all the registers defined in the pattern rtx, X.  */
/* Process all the registers defined in the pattern rtx, X.  */
 
 
static void
static void
df_defs_record (struct dataflow *dflow, rtx x, basic_block bb, rtx insn)
df_defs_record (struct dataflow *dflow, rtx x, basic_block bb, rtx insn)
{
{
  RTX_CODE code = GET_CODE (x);
  RTX_CODE code = GET_CODE (x);
 
 
  if (code == SET || code == CLOBBER)
  if (code == SET || code == CLOBBER)
    {
    {
      /* Mark the single def within the pattern.  */
      /* Mark the single def within the pattern.  */
      df_def_record_1 (dflow, x, bb, insn,
      df_def_record_1 (dflow, x, bb, insn,
                       code == CLOBBER ? DF_REF_MUST_CLOBBER : 0, true);
                       code == CLOBBER ? DF_REF_MUST_CLOBBER : 0, true);
    }
    }
  else if (code == COND_EXEC)
  else if (code == COND_EXEC)
    {
    {
      df_defs_record  (dflow, COND_EXEC_CODE (x), bb, insn);
      df_defs_record  (dflow, COND_EXEC_CODE (x), bb, insn);
    }
    }
  else if (code == PARALLEL)
  else if (code == PARALLEL)
    {
    {
      int i;
      int i;
 
 
      /* Mark the multiple defs within the pattern.  */
      /* Mark the multiple defs within the pattern.  */
      for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
      for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
         df_defs_record (dflow, XVECEXP (x, 0, i), bb, insn);
         df_defs_record (dflow, XVECEXP (x, 0, i), bb, insn);
    }
    }
}
}
 
 
 
 
/* Process all the registers used in the rtx at address LOC.  */
/* Process all the registers used in the rtx at address LOC.  */
 
 
static void
static void
df_uses_record (struct dataflow *dflow, rtx *loc, enum df_ref_type ref_type,
df_uses_record (struct dataflow *dflow, rtx *loc, enum df_ref_type ref_type,
                basic_block bb, rtx insn, enum df_ref_flags flags)
                basic_block bb, rtx insn, enum df_ref_flags flags)
{
{
  RTX_CODE code;
  RTX_CODE code;
  rtx x;
  rtx x;
 retry:
 retry:
  x = *loc;
  x = *loc;
  if (!x)
  if (!x)
    return;
    return;
  code = GET_CODE (x);
  code = GET_CODE (x);
  switch (code)
  switch (code)
    {
    {
    case LABEL_REF:
    case LABEL_REF:
    case SYMBOL_REF:
    case SYMBOL_REF:
    case CONST_INT:
    case CONST_INT:
    case CONST:
    case CONST:
    case CONST_DOUBLE:
    case CONST_DOUBLE:
    case CONST_VECTOR:
    case CONST_VECTOR:
    case PC:
    case PC:
    case CC0:
    case CC0:
    case ADDR_VEC:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
    case ADDR_DIFF_VEC:
      return;
      return;
 
 
    case CLOBBER:
    case CLOBBER:
      /* If we are clobbering a MEM, mark any registers inside the address
      /* If we are clobbering a MEM, mark any registers inside the address
         as being used.  */
         as being used.  */
      if (MEM_P (XEXP (x, 0)))
      if (MEM_P (XEXP (x, 0)))
        df_uses_record (dflow, &XEXP (XEXP (x, 0), 0),
        df_uses_record (dflow, &XEXP (XEXP (x, 0), 0),
                        DF_REF_REG_MEM_STORE, bb, insn, flags);
                        DF_REF_REG_MEM_STORE, bb, insn, flags);
 
 
      /* If we're clobbering a REG then we have a def so ignore.  */
      /* If we're clobbering a REG then we have a def so ignore.  */
      return;
      return;
 
 
    case MEM:
    case MEM:
      df_uses_record (dflow, &XEXP (x, 0), DF_REF_REG_MEM_LOAD, bb, insn,
      df_uses_record (dflow, &XEXP (x, 0), DF_REF_REG_MEM_LOAD, bb, insn,
                      flags & DF_REF_IN_NOTE);
                      flags & DF_REF_IN_NOTE);
      return;
      return;
 
 
    case SUBREG:
    case SUBREG:
      /* While we're here, optimize this case.  */
      /* While we're here, optimize this case.  */
      flags |= DF_REF_PARTIAL;
      flags |= DF_REF_PARTIAL;
      /* In case the SUBREG is not of a REG, do not optimize.  */
      /* In case the SUBREG is not of a REG, do not optimize.  */
      if (!REG_P (SUBREG_REG (x)))
      if (!REG_P (SUBREG_REG (x)))
        {
        {
          loc = &SUBREG_REG (x);
          loc = &SUBREG_REG (x);
          df_uses_record (dflow, loc, ref_type, bb, insn, flags);
          df_uses_record (dflow, loc, ref_type, bb, insn, flags);
          return;
          return;
        }
        }
      /* ... Fall through ...  */
      /* ... Fall through ...  */
 
 
    case REG:
    case REG:
      df_ref_record (dflow, x, loc, bb, insn, ref_type, flags, true);
      df_ref_record (dflow, x, loc, bb, insn, ref_type, flags, true);
      return;
      return;
 
 
    case SET:
    case SET:
      {
      {
        rtx dst = SET_DEST (x);
        rtx dst = SET_DEST (x);
        gcc_assert (!(flags & DF_REF_IN_NOTE));
        gcc_assert (!(flags & DF_REF_IN_NOTE));
        df_uses_record (dflow, &SET_SRC (x), DF_REF_REG_USE, bb, insn, flags);
        df_uses_record (dflow, &SET_SRC (x), DF_REF_REG_USE, bb, insn, flags);
 
 
        switch (GET_CODE (dst))
        switch (GET_CODE (dst))
          {
          {
            case SUBREG:
            case SUBREG:
              if (df_read_modify_subreg_p (dst))
              if (df_read_modify_subreg_p (dst))
                {
                {
                  df_uses_record (dflow, &SUBREG_REG (dst),
                  df_uses_record (dflow, &SUBREG_REG (dst),
                                  DF_REF_REG_USE, bb,
                                  DF_REF_REG_USE, bb,
                                  insn, flags | DF_REF_READ_WRITE);
                                  insn, flags | DF_REF_READ_WRITE);
                  break;
                  break;
                }
                }
              /* Fall through.  */
              /* Fall through.  */
            case REG:
            case REG:
            case PARALLEL:
            case PARALLEL:
            case SCRATCH:
            case SCRATCH:
            case PC:
            case PC:
            case CC0:
            case CC0:
                break;
                break;
            case MEM:
            case MEM:
              df_uses_record (dflow, &XEXP (dst, 0),
              df_uses_record (dflow, &XEXP (dst, 0),
                              DF_REF_REG_MEM_STORE,
                              DF_REF_REG_MEM_STORE,
                              bb, insn, flags);
                              bb, insn, flags);
              break;
              break;
            case STRICT_LOW_PART:
            case STRICT_LOW_PART:
              {
              {
                rtx *temp = &XEXP (dst, 0);
                rtx *temp = &XEXP (dst, 0);
                /* A strict_low_part uses the whole REG and not just the
                /* A strict_low_part uses the whole REG and not just the
                 SUBREG.  */
                 SUBREG.  */
                dst = XEXP (dst, 0);
                dst = XEXP (dst, 0);
                df_uses_record (dflow,
                df_uses_record (dflow,
                                (GET_CODE (dst) == SUBREG)
                                (GET_CODE (dst) == SUBREG)
                                ? &SUBREG_REG (dst) : temp,
                                ? &SUBREG_REG (dst) : temp,
                                DF_REF_REG_USE, bb,
                                DF_REF_REG_USE, bb,
                                insn, DF_REF_READ_WRITE);
                                insn, DF_REF_READ_WRITE);
              }
              }
              break;
              break;
            case ZERO_EXTRACT:
            case ZERO_EXTRACT:
            case SIGN_EXTRACT:
            case SIGN_EXTRACT:
              df_uses_record (dflow, &XEXP (dst, 0),
              df_uses_record (dflow, &XEXP (dst, 0),
                              DF_REF_REG_USE, bb, insn,
                              DF_REF_REG_USE, bb, insn,
                              DF_REF_READ_WRITE);
                              DF_REF_READ_WRITE);
              df_uses_record (dflow, &XEXP (dst, 1),
              df_uses_record (dflow, &XEXP (dst, 1),
                              DF_REF_REG_USE, bb, insn, flags);
                              DF_REF_REG_USE, bb, insn, flags);
              df_uses_record (dflow, &XEXP (dst, 2),
              df_uses_record (dflow, &XEXP (dst, 2),
                              DF_REF_REG_USE, bb, insn, flags);
                              DF_REF_REG_USE, bb, insn, flags);
              dst = XEXP (dst, 0);
              dst = XEXP (dst, 0);
              break;
              break;
            default:
            default:
              gcc_unreachable ();
              gcc_unreachable ();
          }
          }
        return;
        return;
      }
      }
 
 
    case RETURN:
    case RETURN:
      break;
      break;
 
 
    case ASM_OPERANDS:
    case ASM_OPERANDS:
    case UNSPEC_VOLATILE:
    case UNSPEC_VOLATILE:
    case TRAP_IF:
    case TRAP_IF:
    case ASM_INPUT:
    case ASM_INPUT:
      {
      {
        /* Traditional and volatile asm instructions must be
        /* Traditional and volatile asm instructions must be
           considered to use and clobber all hard registers, all
           considered to use and clobber all hard registers, all
           pseudo-registers and all of memory.  So must TRAP_IF and
           pseudo-registers and all of memory.  So must TRAP_IF and
           UNSPEC_VOLATILE operations.
           UNSPEC_VOLATILE operations.
 
 
           Consider for instance a volatile asm that changes the fpu
           Consider for instance a volatile asm that changes the fpu
           rounding mode.  An insn should not be moved across this
           rounding mode.  An insn should not be moved across this
           even if it only uses pseudo-regs because it might give an
           even if it only uses pseudo-regs because it might give an
           incorrectly rounded result.
           incorrectly rounded result.
 
 
           However, flow.c's liveness computation did *not* do this,
           However, flow.c's liveness computation did *not* do this,
           giving the reasoning as " ?!? Unfortunately, marking all
           giving the reasoning as " ?!? Unfortunately, marking all
           hard registers as live causes massive problems for the
           hard registers as live causes massive problems for the
           register allocator and marking all pseudos as live creates
           register allocator and marking all pseudos as live creates
           mountains of uninitialized variable warnings."
           mountains of uninitialized variable warnings."
 
 
           In order to maintain the status quo with regard to liveness
           In order to maintain the status quo with regard to liveness
           and uses, we do what flow.c did and just mark any regs we
           and uses, we do what flow.c did and just mark any regs we
           can find in ASM_OPERANDS as used.  Later on, when liveness
           can find in ASM_OPERANDS as used.  Later on, when liveness
           is computed, asm insns are scanned and regs_asm_clobbered
           is computed, asm insns are scanned and regs_asm_clobbered
           is filled out.
           is filled out.
 
 
           For all ASM_OPERANDS, we must traverse the vector of input
           For all ASM_OPERANDS, we must traverse the vector of input
           operands.  We can not just fall through here since then we
           operands.  We can not just fall through here since then we
           would be confused by the ASM_INPUT rtx inside ASM_OPERANDS,
           would be confused by the ASM_INPUT rtx inside ASM_OPERANDS,
           which do not indicate traditional asms unlike their normal
           which do not indicate traditional asms unlike their normal
           usage.  */
           usage.  */
        if (code == ASM_OPERANDS)
        if (code == ASM_OPERANDS)
          {
          {
            int j;
            int j;
 
 
            for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
            for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
              df_uses_record (dflow, &ASM_OPERANDS_INPUT (x, j),
              df_uses_record (dflow, &ASM_OPERANDS_INPUT (x, j),
                              DF_REF_REG_USE, bb, insn, flags);
                              DF_REF_REG_USE, bb, insn, flags);
            return;
            return;
          }
          }
        break;
        break;
      }
      }
 
 
    case PRE_DEC:
    case PRE_DEC:
    case POST_DEC:
    case POST_DEC:
    case PRE_INC:
    case PRE_INC:
    case POST_INC:
    case POST_INC:
    case PRE_MODIFY:
    case PRE_MODIFY:
    case POST_MODIFY:
    case POST_MODIFY:
      /* Catch the def of the register being modified.  */
      /* Catch the def of the register being modified.  */
      flags |= DF_REF_READ_WRITE;
      flags |= DF_REF_READ_WRITE;
      df_ref_record (dflow, XEXP (x, 0), &XEXP (x, 0), bb, insn,
      df_ref_record (dflow, XEXP (x, 0), &XEXP (x, 0), bb, insn,
                     DF_REF_REG_DEF, flags, true);
                     DF_REF_REG_DEF, flags, true);
 
 
      /* ... Fall through to handle uses ...  */
      /* ... Fall through to handle uses ...  */
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  /* Recursively scan the operands of this expression.  */
  /* Recursively scan the operands of this expression.  */
  {
  {
    const char *fmt = GET_RTX_FORMAT (code);
    const char *fmt = GET_RTX_FORMAT (code);
    int i;
    int i;
 
 
    for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
      {
      {
        if (fmt[i] == 'e')
        if (fmt[i] == 'e')
          {
          {
            /* Tail recursive case: save a function call level.  */
            /* Tail recursive case: save a function call level.  */
            if (i == 0)
            if (i == 0)
              {
              {
                loc = &XEXP (x, 0);
                loc = &XEXP (x, 0);
                goto retry;
                goto retry;
              }
              }
            df_uses_record (dflow, &XEXP (x, i), ref_type, bb, insn, flags);
            df_uses_record (dflow, &XEXP (x, i), ref_type, bb, insn, flags);
          }
          }
        else if (fmt[i] == 'E')
        else if (fmt[i] == 'E')
          {
          {
            int j;
            int j;
            for (j = 0; j < XVECLEN (x, i); j++)
            for (j = 0; j < XVECLEN (x, i); j++)
              df_uses_record (dflow, &XVECEXP (x, i, j), ref_type,
              df_uses_record (dflow, &XVECEXP (x, i, j), ref_type,
                              bb, insn, flags);
                              bb, insn, flags);
          }
          }
      }
      }
  }
  }
}
}
 
 
/* Return true if *LOC contains an asm.  */
/* Return true if *LOC contains an asm.  */
 
 
static int
static int
df_insn_contains_asm_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
df_insn_contains_asm_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
{
{
  if ( !*loc)
  if ( !*loc)
    return 0;
    return 0;
  if (GET_CODE (*loc) == ASM_OPERANDS)
  if (GET_CODE (*loc) == ASM_OPERANDS)
    return 1;
    return 1;
  return 0;
  return 0;
}
}
 
 
 
 
/* Return true if INSN contains an ASM.  */
/* Return true if INSN contains an ASM.  */
 
 
static int
static int
df_insn_contains_asm (rtx insn)
df_insn_contains_asm (rtx insn)
{
{
  return for_each_rtx (&insn, df_insn_contains_asm_1, NULL);
  return for_each_rtx (&insn, df_insn_contains_asm_1, NULL);
}
}
 
 
 
 
 
 
/* Record all the refs for DF within INSN of basic block BB.  */
/* Record all the refs for DF within INSN of basic block BB.  */
 
 
static void
static void
df_insn_refs_record (struct dataflow *dflow, basic_block bb, rtx insn)
df_insn_refs_record (struct dataflow *dflow, basic_block bb, rtx insn)
{
{
  struct df *df = dflow->df;
  struct df *df = dflow->df;
  int i;
  int i;
 
 
  if (INSN_P (insn))
  if (INSN_P (insn))
    {
    {
      rtx note;
      rtx note;
 
 
      if (df_insn_contains_asm (insn))
      if (df_insn_contains_asm (insn))
        DF_INSN_CONTAINS_ASM (df, insn) = true;
        DF_INSN_CONTAINS_ASM (df, insn) = true;
 
 
      /* Record register defs.  */
      /* Record register defs.  */
      df_defs_record (dflow, PATTERN (insn), bb, insn);
      df_defs_record (dflow, PATTERN (insn), bb, insn);
 
 
      if (dflow->flags & DF_EQUIV_NOTES)
      if (dflow->flags & DF_EQUIV_NOTES)
        for (note = REG_NOTES (insn); note;
        for (note = REG_NOTES (insn); note;
             note = XEXP (note, 1))
             note = XEXP (note, 1))
          {
          {
            switch (REG_NOTE_KIND (note))
            switch (REG_NOTE_KIND (note))
              {
              {
              case REG_EQUIV:
              case REG_EQUIV:
              case REG_EQUAL:
              case REG_EQUAL:
                df_uses_record (dflow, &XEXP (note, 0), DF_REF_REG_USE,
                df_uses_record (dflow, &XEXP (note, 0), DF_REF_REG_USE,
                                bb, insn, DF_REF_IN_NOTE);
                                bb, insn, DF_REF_IN_NOTE);
              default:
              default:
                break;
                break;
              }
              }
          }
          }
 
 
      if (CALL_P (insn))
      if (CALL_P (insn))
        {
        {
          rtx note;
          rtx note;
 
 
          /* Record the registers used to pass arguments, and explicitly
          /* Record the registers used to pass arguments, and explicitly
             noted as clobbered.  */
             noted as clobbered.  */
          for (note = CALL_INSN_FUNCTION_USAGE (insn); note;
          for (note = CALL_INSN_FUNCTION_USAGE (insn); note;
               note = XEXP (note, 1))
               note = XEXP (note, 1))
            {
            {
              if (GET_CODE (XEXP (note, 0)) == USE)
              if (GET_CODE (XEXP (note, 0)) == USE)
                df_uses_record (dflow, &XEXP (XEXP (note, 0), 0),
                df_uses_record (dflow, &XEXP (XEXP (note, 0), 0),
                                DF_REF_REG_USE,
                                DF_REF_REG_USE,
                                bb, insn, 0);
                                bb, insn, 0);
              else if (GET_CODE (XEXP (note, 0)) == CLOBBER)
              else if (GET_CODE (XEXP (note, 0)) == CLOBBER)
                {
                {
                  df_defs_record (dflow, XEXP (note, 0), bb, insn);
                  df_defs_record (dflow, XEXP (note, 0), bb, insn);
                  if (REG_P (XEXP (XEXP (note, 0), 0)))
                  if (REG_P (XEXP (XEXP (note, 0), 0)))
                    {
                    {
                      rtx reg = XEXP (XEXP (note, 0), 0);
                      rtx reg = XEXP (XEXP (note, 0), 0);
                      int regno_last;
                      int regno_last;
                      int regno_first;
                      int regno_first;
                      int i;
                      int i;
 
 
                      regno_last = regno_first = REGNO (reg);
                      regno_last = regno_first = REGNO (reg);
                      if (regno_first < FIRST_PSEUDO_REGISTER)
                      if (regno_first < FIRST_PSEUDO_REGISTER)
                        regno_last
                        regno_last
                          += hard_regno_nregs[regno_first][GET_MODE (reg)] - 1;
                          += hard_regno_nregs[regno_first][GET_MODE (reg)] - 1;
                      for (i = regno_first; i <= regno_last; i++)
                      for (i = regno_first; i <= regno_last; i++)
                        regs_ever_live[i] = 1;
                        regs_ever_live[i] = 1;
                    }
                    }
                }
                }
            }
            }
 
 
          /* The stack ptr is used (honorarily) by a CALL insn.  */
          /* The stack ptr is used (honorarily) by a CALL insn.  */
          df_uses_record (dflow, &regno_reg_rtx[STACK_POINTER_REGNUM],
          df_uses_record (dflow, &regno_reg_rtx[STACK_POINTER_REGNUM],
                          DF_REF_REG_USE, bb, insn,
                          DF_REF_REG_USE, bb, insn,
                          0);
                          0);
 
 
          if (dflow->flags & DF_HARD_REGS)
          if (dflow->flags & DF_HARD_REGS)
            {
            {
              bitmap_iterator bi;
              bitmap_iterator bi;
              unsigned int ui;
              unsigned int ui;
              /* Calls may also reference any of the global registers,
              /* Calls may also reference any of the global registers,
                 so they are recorded as used.  */
                 so they are recorded as used.  */
              for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
              for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
                if (global_regs[i])
                if (global_regs[i])
                  df_uses_record (dflow, &regno_reg_rtx[i],
                  df_uses_record (dflow, &regno_reg_rtx[i],
                                  DF_REF_REG_USE, bb, insn,
                                  DF_REF_REG_USE, bb, insn,
                                  0);
                                  0);
              EXECUTE_IF_SET_IN_BITMAP (df_invalidated_by_call, 0, ui, bi)
              EXECUTE_IF_SET_IN_BITMAP (df_invalidated_by_call, 0, ui, bi)
                df_ref_record (dflow, regno_reg_rtx[ui], &regno_reg_rtx[ui], bb,
                df_ref_record (dflow, regno_reg_rtx[ui], &regno_reg_rtx[ui], bb,
                               insn, DF_REF_REG_DEF, DF_REF_MAY_CLOBBER, false);
                               insn, DF_REF_REG_DEF, DF_REF_MAY_CLOBBER, false);
            }
            }
        }
        }
 
 
      /* Record the register uses.  */
      /* Record the register uses.  */
      df_uses_record (dflow, &PATTERN (insn),
      df_uses_record (dflow, &PATTERN (insn),
                      DF_REF_REG_USE, bb, insn, 0);
                      DF_REF_REG_USE, bb, insn, 0);
 
 
    }
    }
}
}
 
 
static bool
static bool
df_has_eh_preds (basic_block bb)
df_has_eh_preds (basic_block bb)
{
{
  edge e;
  edge e;
  edge_iterator ei;
  edge_iterator ei;
 
 
  FOR_EACH_EDGE (e, ei, bb->preds)
  FOR_EACH_EDGE (e, ei, bb->preds)
    {
    {
      if (e->flags & EDGE_EH)
      if (e->flags & EDGE_EH)
        return true;
        return true;
    }
    }
  return false;
  return false;
}
}
 
 
/* Record all the refs within the basic block BB.  */
/* Record all the refs within the basic block BB.  */
 
 
static void
static void
df_bb_refs_record (struct dataflow *dflow, basic_block bb)
df_bb_refs_record (struct dataflow *dflow, basic_block bb)
{
{
  struct df *df = dflow->df;
  struct df *df = dflow->df;
  rtx insn;
  rtx insn;
  int luid = 0;
  int luid = 0;
  struct df_scan_bb_info *bb_info = df_scan_get_bb_info (dflow, bb->index);
  struct df_scan_bb_info *bb_info = df_scan_get_bb_info (dflow, bb->index);
  bitmap artificial_uses_at_bottom = NULL;
  bitmap artificial_uses_at_bottom = NULL;
 
 
  if (dflow->flags & DF_HARD_REGS)
  if (dflow->flags & DF_HARD_REGS)
    artificial_uses_at_bottom = BITMAP_ALLOC (NULL);
    artificial_uses_at_bottom = BITMAP_ALLOC (NULL);
 
 
  /* Need to make sure that there is a record in the basic block info. */
  /* Need to make sure that there is a record in the basic block info. */
  if (!bb_info)
  if (!bb_info)
    {
    {
      bb_info = (struct df_scan_bb_info *) pool_alloc (dflow->block_pool);
      bb_info = (struct df_scan_bb_info *) pool_alloc (dflow->block_pool);
      df_scan_set_bb_info (dflow, bb->index, bb_info);
      df_scan_set_bb_info (dflow, bb->index, bb_info);
      bb_info->artificial_defs = NULL;
      bb_info->artificial_defs = NULL;
      bb_info->artificial_uses = NULL;
      bb_info->artificial_uses = NULL;
    }
    }
 
 
  /* Scan the block an insn at a time from beginning to end.  */
  /* Scan the block an insn at a time from beginning to end.  */
  FOR_BB_INSNS (bb, insn)
  FOR_BB_INSNS (bb, insn)
    {
    {
      df_insn_create_insn_record (dflow, insn);
      df_insn_create_insn_record (dflow, insn);
      if (INSN_P (insn))
      if (INSN_P (insn))
        {
        {
          /* Record defs within INSN.  */
          /* Record defs within INSN.  */
          DF_INSN_LUID (df, insn) = luid++;
          DF_INSN_LUID (df, insn) = luid++;
          df_insn_refs_record (dflow, bb, insn);
          df_insn_refs_record (dflow, bb, insn);
        }
        }
      DF_INSN_LUID (df, insn) = luid;
      DF_INSN_LUID (df, insn) = luid;
    }
    }
 
 
#ifdef EH_RETURN_DATA_REGNO
#ifdef EH_RETURN_DATA_REGNO
  if ((dflow->flags & DF_HARD_REGS)
  if ((dflow->flags & DF_HARD_REGS)
      && df_has_eh_preds (bb))
      && df_has_eh_preds (bb))
    {
    {
      unsigned int i;
      unsigned int i;
      /* Mark the registers that will contain data for the handler.  */
      /* Mark the registers that will contain data for the handler.  */
      for (i = 0; ; ++i)
      for (i = 0; ; ++i)
        {
        {
          unsigned regno = EH_RETURN_DATA_REGNO (i);
          unsigned regno = EH_RETURN_DATA_REGNO (i);
          if (regno == INVALID_REGNUM)
          if (regno == INVALID_REGNUM)
            break;
            break;
          df_ref_record (dflow, regno_reg_rtx[regno], &regno_reg_rtx[regno],
          df_ref_record (dflow, regno_reg_rtx[regno], &regno_reg_rtx[regno],
                         bb, NULL,
                         bb, NULL,
                         DF_REF_REG_DEF, DF_REF_ARTIFICIAL | DF_REF_AT_TOP,
                         DF_REF_REG_DEF, DF_REF_ARTIFICIAL | DF_REF_AT_TOP,
                         false);
                         false);
        }
        }
    }
    }
#endif
#endif
 
 
 
 
  if ((dflow->flags & DF_HARD_REGS)
  if ((dflow->flags & DF_HARD_REGS)
      && df_has_eh_preds (bb))
      && df_has_eh_preds (bb))
    {
    {
#ifdef EH_USES
#ifdef EH_USES
      unsigned int i;
      unsigned int i;
      /* This code is putting in a artificial ref for the use at the
      /* This code is putting in a artificial ref for the use at the
         TOP of the block that receives the exception.  It is too
         TOP of the block that receives the exception.  It is too
         cumbersome to actually put the ref on the edge.  We could
         cumbersome to actually put the ref on the edge.  We could
         either model this at the top of the receiver block or the
         either model this at the top of the receiver block or the
         bottom of the sender block.
         bottom of the sender block.
 
 
         The bottom of the sender block is problematic because not all
         The bottom of the sender block is problematic because not all
         out-edges of the a block are eh-edges.  However, it is true
         out-edges of the a block are eh-edges.  However, it is true
         that all edges into a block are either eh-edges or none of
         that all edges into a block are either eh-edges or none of
         them are eh-edges.  Thus, we can model this at the top of the
         them are eh-edges.  Thus, we can model this at the top of the
         eh-receiver for all of the edges at once. */
         eh-receiver for all of the edges at once. */
      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
        if (EH_USES (i))
        if (EH_USES (i))
          df_uses_record (dflow, &regno_reg_rtx[i],
          df_uses_record (dflow, &regno_reg_rtx[i],
                          DF_REF_REG_USE, bb, NULL,
                          DF_REF_REG_USE, bb, NULL,
                          DF_REF_ARTIFICIAL | DF_REF_AT_TOP);
                          DF_REF_ARTIFICIAL | DF_REF_AT_TOP);
#endif
#endif
 
 
      /* The following code (down thru the arg_pointer setting APPEARS
      /* The following code (down thru the arg_pointer setting APPEARS
         to be necessary because there is nothing that actually
         to be necessary because there is nothing that actually
         describes what the exception handling code may actually need
         describes what the exception handling code may actually need
         to keep alive.  */
         to keep alive.  */
      if (reload_completed)
      if (reload_completed)
        {
        {
          if (frame_pointer_needed)
          if (frame_pointer_needed)
            {
            {
              bitmap_set_bit (artificial_uses_at_bottom, FRAME_POINTER_REGNUM);
              bitmap_set_bit (artificial_uses_at_bottom, FRAME_POINTER_REGNUM);
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
              bitmap_set_bit (artificial_uses_at_bottom, HARD_FRAME_POINTER_REGNUM);
              bitmap_set_bit (artificial_uses_at_bottom, HARD_FRAME_POINTER_REGNUM);
#endif
#endif
            }
            }
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
          if (fixed_regs[ARG_POINTER_REGNUM])
          if (fixed_regs[ARG_POINTER_REGNUM])
            bitmap_set_bit (artificial_uses_at_bottom, ARG_POINTER_REGNUM);
            bitmap_set_bit (artificial_uses_at_bottom, ARG_POINTER_REGNUM);
#endif
#endif
        }
        }
    }
    }
 
 
  if ((dflow->flags & DF_HARD_REGS)
  if ((dflow->flags & DF_HARD_REGS)
      && bb->index >= NUM_FIXED_BLOCKS)
      && bb->index >= NUM_FIXED_BLOCKS)
    {
    {
      /* Before reload, there are a few registers that must be forced
      /* Before reload, there are a few registers that must be forced
         live everywhere -- which might not already be the case for
         live everywhere -- which might not already be the case for
         blocks within infinite loops.  */
         blocks within infinite loops.  */
      if (!reload_completed)
      if (!reload_completed)
        {
        {
 
 
          /* Any reference to any pseudo before reload is a potential
          /* Any reference to any pseudo before reload is a potential
             reference of the frame pointer.  */
             reference of the frame pointer.  */
          bitmap_set_bit (artificial_uses_at_bottom, FRAME_POINTER_REGNUM);
          bitmap_set_bit (artificial_uses_at_bottom, FRAME_POINTER_REGNUM);
 
 
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
          /* Pseudos with argument area equivalences may require
          /* Pseudos with argument area equivalences may require
             reloading via the argument pointer.  */
             reloading via the argument pointer.  */
          if (fixed_regs[ARG_POINTER_REGNUM])
          if (fixed_regs[ARG_POINTER_REGNUM])
            bitmap_set_bit (artificial_uses_at_bottom, ARG_POINTER_REGNUM);
            bitmap_set_bit (artificial_uses_at_bottom, ARG_POINTER_REGNUM);
#endif
#endif
 
 
          /* Any constant, or pseudo with constant equivalences, may
          /* Any constant, or pseudo with constant equivalences, may
             require reloading from memory using the pic register.  */
             require reloading from memory using the pic register.  */
          if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
          if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
              && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
              && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
            bitmap_set_bit (artificial_uses_at_bottom, PIC_OFFSET_TABLE_REGNUM);
            bitmap_set_bit (artificial_uses_at_bottom, PIC_OFFSET_TABLE_REGNUM);
        }
        }
      /* The all-important stack pointer must always be live.  */
      /* The all-important stack pointer must always be live.  */
      bitmap_set_bit (artificial_uses_at_bottom, STACK_POINTER_REGNUM);
      bitmap_set_bit (artificial_uses_at_bottom, STACK_POINTER_REGNUM);
    }
    }
 
 
  if (dflow->flags & DF_HARD_REGS)
  if (dflow->flags & DF_HARD_REGS)
    {
    {
      bitmap_iterator bi;
      bitmap_iterator bi;
      unsigned int regno;
      unsigned int regno;
 
 
      EXECUTE_IF_SET_IN_BITMAP (artificial_uses_at_bottom, 0, regno, bi)
      EXECUTE_IF_SET_IN_BITMAP (artificial_uses_at_bottom, 0, regno, bi)
        {
        {
          df_uses_record (dflow, &regno_reg_rtx[regno],
          df_uses_record (dflow, &regno_reg_rtx[regno],
                          DF_REF_REG_USE, bb, NULL, DF_REF_ARTIFICIAL);
                          DF_REF_REG_USE, bb, NULL, DF_REF_ARTIFICIAL);
        }
        }
 
 
      BITMAP_FREE (artificial_uses_at_bottom);
      BITMAP_FREE (artificial_uses_at_bottom);
    }
    }
}
}
 
 
 
 
/* Record all the refs in the basic blocks specified by BLOCKS.  */
/* Record all the refs in the basic blocks specified by BLOCKS.  */
 
 
static void
static void
df_refs_record (struct dataflow *dflow, bitmap blocks)
df_refs_record (struct dataflow *dflow, bitmap blocks)
{
{
  unsigned int bb_index;
  unsigned int bb_index;
  bitmap_iterator bi;
  bitmap_iterator bi;
 
 
  EXECUTE_IF_SET_IN_BITMAP (blocks, 0, bb_index, bi)
  EXECUTE_IF_SET_IN_BITMAP (blocks, 0, bb_index, bi)
    {
    {
      basic_block bb = BASIC_BLOCK (bb_index);
      basic_block bb = BASIC_BLOCK (bb_index);
      df_bb_refs_record (dflow, bb);
      df_bb_refs_record (dflow, bb);
    }
    }
 
 
  if (bitmap_bit_p (blocks, EXIT_BLOCK))
  if (bitmap_bit_p (blocks, EXIT_BLOCK))
    df_record_exit_block_uses (dflow);
    df_record_exit_block_uses (dflow);
 
 
  if (bitmap_bit_p (blocks, ENTRY_BLOCK))
  if (bitmap_bit_p (blocks, ENTRY_BLOCK))
    df_record_entry_block_defs (dflow);
    df_record_entry_block_defs (dflow);
}
}
 
 
 
 
/*----------------------------------------------------------------------------
/*----------------------------------------------------------------------------
   Specialized hard register scanning functions.
   Specialized hard register scanning functions.
----------------------------------------------------------------------------*/
----------------------------------------------------------------------------*/
 
 
/* Mark a register in SET.  Hard registers in large modes get all
/* Mark a register in SET.  Hard registers in large modes get all
   of their component registers set as well.  */
   of their component registers set as well.  */
 
 
static void
static void
df_mark_reg (rtx reg, void *vset)
df_mark_reg (rtx reg, void *vset)
{
{
  bitmap set = (bitmap) vset;
  bitmap set = (bitmap) vset;
  int regno = REGNO (reg);
  int regno = REGNO (reg);
 
 
  gcc_assert (GET_MODE (reg) != BLKmode);
  gcc_assert (GET_MODE (reg) != BLKmode);
 
 
  bitmap_set_bit (set, regno);
  bitmap_set_bit (set, regno);
  if (regno < FIRST_PSEUDO_REGISTER)
  if (regno < FIRST_PSEUDO_REGISTER)
    {
    {
      int n = hard_regno_nregs[regno][GET_MODE (reg)];
      int n = hard_regno_nregs[regno][GET_MODE (reg)];
      while (--n > 0)
      while (--n > 0)
        bitmap_set_bit  (set, regno + n);
        bitmap_set_bit  (set, regno + n);
    }
    }
}
}
 
 
 
 
/* Record the (conservative) set of hard registers that are defined on
/* Record the (conservative) set of hard registers that are defined on
   entry to the function.  */
   entry to the function.  */
 
 
static void
static void
df_record_entry_block_defs (struct dataflow *dflow)
df_record_entry_block_defs (struct dataflow *dflow)
{
{
  unsigned int i;
  unsigned int i;
  bitmap_iterator bi;
  bitmap_iterator bi;
  rtx r;
  rtx r;
  struct df *df = dflow->df;
  struct df *df = dflow->df;
 
 
  bitmap_clear (df->entry_block_defs);
  bitmap_clear (df->entry_block_defs);
 
 
  if (!(dflow->flags & DF_HARD_REGS))
  if (!(dflow->flags & DF_HARD_REGS))
    return;
    return;
 
 
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    {
    {
      if (FUNCTION_ARG_REGNO_P (i))
      if (FUNCTION_ARG_REGNO_P (i))
#ifdef INCOMING_REGNO
#ifdef INCOMING_REGNO
        bitmap_set_bit (df->entry_block_defs, INCOMING_REGNO (i));
        bitmap_set_bit (df->entry_block_defs, INCOMING_REGNO (i));
#else
#else
        bitmap_set_bit (df->entry_block_defs, i);
        bitmap_set_bit (df->entry_block_defs, i);
#endif
#endif
    }
    }
 
 
  /* Once the prologue has been generated, all of these registers
  /* Once the prologue has been generated, all of these registers
     should just show up in the first regular block.  */
     should just show up in the first regular block.  */
  if (HAVE_prologue && epilogue_completed)
  if (HAVE_prologue && epilogue_completed)
    {
    {
      /* Defs for the callee saved registers are inserted so that the
      /* Defs for the callee saved registers are inserted so that the
         pushes have some defining location.  */
         pushes have some defining location.  */
      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
        if ((call_used_regs[i] == 0) && (regs_ever_live[i]))
        if ((call_used_regs[i] == 0) && (regs_ever_live[i]))
          bitmap_set_bit (df->entry_block_defs, i);
          bitmap_set_bit (df->entry_block_defs, i);
    }
    }
  else
  else
    {
    {
      /* The always important stack pointer.  */
      /* The always important stack pointer.  */
      bitmap_set_bit (df->entry_block_defs, STACK_POINTER_REGNUM);
      bitmap_set_bit (df->entry_block_defs, STACK_POINTER_REGNUM);
 
 
#ifdef INCOMING_RETURN_ADDR_RTX
#ifdef INCOMING_RETURN_ADDR_RTX
      if (REG_P (INCOMING_RETURN_ADDR_RTX))
      if (REG_P (INCOMING_RETURN_ADDR_RTX))
        bitmap_set_bit (df->entry_block_defs, REGNO (INCOMING_RETURN_ADDR_RTX));
        bitmap_set_bit (df->entry_block_defs, REGNO (INCOMING_RETURN_ADDR_RTX));
#endif
#endif
 
 
      /* If STATIC_CHAIN_INCOMING_REGNUM == STATIC_CHAIN_REGNUM
      /* If STATIC_CHAIN_INCOMING_REGNUM == STATIC_CHAIN_REGNUM
         only STATIC_CHAIN_REGNUM is defined.  If they are different,
         only STATIC_CHAIN_REGNUM is defined.  If they are different,
         we only care about the STATIC_CHAIN_INCOMING_REGNUM.  */
         we only care about the STATIC_CHAIN_INCOMING_REGNUM.  */
#ifdef STATIC_CHAIN_INCOMING_REGNUM
#ifdef STATIC_CHAIN_INCOMING_REGNUM
      bitmap_set_bit (df->entry_block_defs, STATIC_CHAIN_INCOMING_REGNUM);
      bitmap_set_bit (df->entry_block_defs, STATIC_CHAIN_INCOMING_REGNUM);
#else 
#else 
#ifdef STATIC_CHAIN_REGNUM
#ifdef STATIC_CHAIN_REGNUM
      bitmap_set_bit (df->entry_block_defs, STATIC_CHAIN_REGNUM);
      bitmap_set_bit (df->entry_block_defs, STATIC_CHAIN_REGNUM);
#endif
#endif
#endif
#endif
 
 
      r = TARGET_STRUCT_VALUE_RTX (current_function_decl, true);
      r = TARGET_STRUCT_VALUE_RTX (current_function_decl, true);
      if (r && REG_P (r))
      if (r && REG_P (r))
        bitmap_set_bit (df->entry_block_defs, REGNO (r));
        bitmap_set_bit (df->entry_block_defs, REGNO (r));
    }
    }
 
 
  if ((!reload_completed) || frame_pointer_needed)
  if ((!reload_completed) || frame_pointer_needed)
    {
    {
      /* Any reference to any pseudo before reload is a potential
      /* Any reference to any pseudo before reload is a potential
         reference of the frame pointer.  */
         reference of the frame pointer.  */
      bitmap_set_bit (df->entry_block_defs, FRAME_POINTER_REGNUM);
      bitmap_set_bit (df->entry_block_defs, FRAME_POINTER_REGNUM);
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
      /* If they are different, also mark the hard frame pointer as live.  */
      /* If they are different, also mark the hard frame pointer as live.  */
      if (!LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
      if (!LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
        bitmap_set_bit (df->entry_block_defs, HARD_FRAME_POINTER_REGNUM);
        bitmap_set_bit (df->entry_block_defs, HARD_FRAME_POINTER_REGNUM);
#endif
#endif
    }
    }
 
 
  /* These registers are live everywhere.  */
  /* These registers are live everywhere.  */
  if (!reload_completed)
  if (!reload_completed)
    {
    {
#ifdef EH_USES
#ifdef EH_USES
      /* The ia-64, the only machine that uses this, does not define these
      /* The ia-64, the only machine that uses this, does not define these
         until after reload.  */
         until after reload.  */
      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
        if (EH_USES (i))
        if (EH_USES (i))
          {
          {
            bitmap_set_bit (df->entry_block_defs, i);
            bitmap_set_bit (df->entry_block_defs, i);
          }
          }
#endif
#endif
 
 
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
      /* Pseudos with argument area equivalences may require
      /* Pseudos with argument area equivalences may require
         reloading via the argument pointer.  */
         reloading via the argument pointer.  */
      if (fixed_regs[ARG_POINTER_REGNUM])
      if (fixed_regs[ARG_POINTER_REGNUM])
        bitmap_set_bit (df->entry_block_defs, ARG_POINTER_REGNUM);
        bitmap_set_bit (df->entry_block_defs, ARG_POINTER_REGNUM);
#endif
#endif
 
 
#ifdef PIC_OFFSET_TABLE_REGNUM
#ifdef PIC_OFFSET_TABLE_REGNUM
      /* Any constant, or pseudo with constant equivalences, may
      /* Any constant, or pseudo with constant equivalences, may
         require reloading from memory using the pic register.  */
         require reloading from memory using the pic register.  */
      if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
      if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
          && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
          && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
        bitmap_set_bit (df->entry_block_defs, PIC_OFFSET_TABLE_REGNUM);
        bitmap_set_bit (df->entry_block_defs, PIC_OFFSET_TABLE_REGNUM);
#endif
#endif
    }
    }
 
 
  targetm.live_on_entry (df->entry_block_defs);
  targetm.live_on_entry (df->entry_block_defs);
 
 
  EXECUTE_IF_SET_IN_BITMAP (df->entry_block_defs, 0, i, bi)
  EXECUTE_IF_SET_IN_BITMAP (df->entry_block_defs, 0, i, bi)
    {
    {
      df_ref_record (dflow, regno_reg_rtx[i], &regno_reg_rtx[i],
      df_ref_record (dflow, regno_reg_rtx[i], &regno_reg_rtx[i],
                     ENTRY_BLOCK_PTR, NULL,
                     ENTRY_BLOCK_PTR, NULL,
                     DF_REF_REG_DEF, DF_REF_ARTIFICIAL , false);
                     DF_REF_REG_DEF, DF_REF_ARTIFICIAL , false);
    }
    }
}
}
 
 
 
 
/* Record the set of hard registers that are used in the exit block.  */
/* Record the set of hard registers that are used in the exit block.  */
 
 
static void
static void
df_record_exit_block_uses (struct dataflow *dflow)
df_record_exit_block_uses (struct dataflow *dflow)
{
{
  unsigned int i;
  unsigned int i;
  bitmap_iterator bi;
  bitmap_iterator bi;
  struct df *df = dflow->df;
  struct df *df = dflow->df;
 
 
  bitmap_clear (df->exit_block_uses);
  bitmap_clear (df->exit_block_uses);
 
 
  if (!(dflow->flags & DF_HARD_REGS))
  if (!(dflow->flags & DF_HARD_REGS))
    return;
    return;
 
 
  /* If exiting needs the right stack value, consider the stack
  /* If exiting needs the right stack value, consider the stack
     pointer live at the end of the function.  */
     pointer live at the end of the function.  */
  if ((HAVE_epilogue && epilogue_completed)
  if ((HAVE_epilogue && epilogue_completed)
      || !EXIT_IGNORE_STACK
      || !EXIT_IGNORE_STACK
      || (!FRAME_POINTER_REQUIRED
      || (!FRAME_POINTER_REQUIRED
          && !current_function_calls_alloca
          && !current_function_calls_alloca
          && flag_omit_frame_pointer)
          && flag_omit_frame_pointer)
      || current_function_sp_is_unchanging)
      || current_function_sp_is_unchanging)
    {
    {
      bitmap_set_bit (df->exit_block_uses, STACK_POINTER_REGNUM);
      bitmap_set_bit (df->exit_block_uses, STACK_POINTER_REGNUM);
    }
    }
 
 
  /* Mark the frame pointer if needed at the end of the function.
  /* Mark the frame pointer if needed at the end of the function.
     If we end up eliminating it, it will be removed from the live
     If we end up eliminating it, it will be removed from the live
     list of each basic block by reload.  */
     list of each basic block by reload.  */
 
 
  if ((!reload_completed) || frame_pointer_needed)
  if ((!reload_completed) || frame_pointer_needed)
    {
    {
      bitmap_set_bit (df->exit_block_uses, FRAME_POINTER_REGNUM);
      bitmap_set_bit (df->exit_block_uses, FRAME_POINTER_REGNUM);
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
      /* If they are different, also mark the hard frame pointer as live.  */
      /* If they are different, also mark the hard frame pointer as live.  */
      if (!LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
      if (!LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
        bitmap_set_bit (df->exit_block_uses, HARD_FRAME_POINTER_REGNUM);
        bitmap_set_bit (df->exit_block_uses, HARD_FRAME_POINTER_REGNUM);
#endif
#endif
    }
    }
 
 
#ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
#ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
  /* Many architectures have a GP register even without flag_pic.
  /* Many architectures have a GP register even without flag_pic.
     Assume the pic register is not in use, or will be handled by
     Assume the pic register is not in use, or will be handled by
     other means, if it is not fixed.  */
     other means, if it is not fixed.  */
  if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
  if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
      && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
      && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
    bitmap_set_bit (df->exit_block_uses, PIC_OFFSET_TABLE_REGNUM);
    bitmap_set_bit (df->exit_block_uses, PIC_OFFSET_TABLE_REGNUM);
#endif
#endif
 
 
  /* Mark all global registers, and all registers used by the
  /* Mark all global registers, and all registers used by the
     epilogue as being live at the end of the function since they
     epilogue as being live at the end of the function since they
     may be referenced by our caller.  */
     may be referenced by our caller.  */
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    if (global_regs[i] || EPILOGUE_USES (i))
    if (global_regs[i] || EPILOGUE_USES (i))
      bitmap_set_bit (df->exit_block_uses, i);
      bitmap_set_bit (df->exit_block_uses, i);
 
 
  if (HAVE_epilogue && epilogue_completed)
  if (HAVE_epilogue && epilogue_completed)
    {
    {
      /* Mark all call-saved registers that we actually used.  */
      /* Mark all call-saved registers that we actually used.  */
      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
        if (regs_ever_live[i] && !LOCAL_REGNO (i)
        if (regs_ever_live[i] && !LOCAL_REGNO (i)
            && !TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
            && !TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
          bitmap_set_bit (df->exit_block_uses, i);
          bitmap_set_bit (df->exit_block_uses, i);
    }
    }
 
 
#ifdef EH_RETURN_DATA_REGNO
#ifdef EH_RETURN_DATA_REGNO
  /* Mark the registers that will contain data for the handler.  */
  /* Mark the registers that will contain data for the handler.  */
  if (reload_completed && current_function_calls_eh_return)
  if (reload_completed && current_function_calls_eh_return)
    for (i = 0; ; ++i)
    for (i = 0; ; ++i)
      {
      {
        unsigned regno = EH_RETURN_DATA_REGNO (i);
        unsigned regno = EH_RETURN_DATA_REGNO (i);
        if (regno == INVALID_REGNUM)
        if (regno == INVALID_REGNUM)
          break;
          break;
        bitmap_set_bit (df->exit_block_uses, regno);
        bitmap_set_bit (df->exit_block_uses, regno);
      }
      }
#endif
#endif
 
 
#ifdef EH_RETURN_STACKADJ_RTX
#ifdef EH_RETURN_STACKADJ_RTX
  if ((!HAVE_epilogue || ! epilogue_completed)
  if ((!HAVE_epilogue || ! epilogue_completed)
      && current_function_calls_eh_return)
      && current_function_calls_eh_return)
    {
    {
      rtx tmp = EH_RETURN_STACKADJ_RTX;
      rtx tmp = EH_RETURN_STACKADJ_RTX;
      if (tmp && REG_P (tmp))
      if (tmp && REG_P (tmp))
        df_mark_reg (tmp, df->exit_block_uses);
        df_mark_reg (tmp, df->exit_block_uses);
    }
    }
#endif
#endif
 
 
#ifdef EH_RETURN_HANDLER_RTX
#ifdef EH_RETURN_HANDLER_RTX
  if ((!HAVE_epilogue || ! epilogue_completed)
  if ((!HAVE_epilogue || ! epilogue_completed)
      && current_function_calls_eh_return)
      && current_function_calls_eh_return)
    {
    {
      rtx tmp = EH_RETURN_HANDLER_RTX;
      rtx tmp = EH_RETURN_HANDLER_RTX;
      if (tmp && REG_P (tmp))
      if (tmp && REG_P (tmp))
        df_mark_reg (tmp, df->exit_block_uses);
        df_mark_reg (tmp, df->exit_block_uses);
    }
    }
#endif 
#endif 
 
 
  /* Mark function return value.  */
  /* Mark function return value.  */
  diddle_return_value (df_mark_reg, (void*) df->exit_block_uses);
  diddle_return_value (df_mark_reg, (void*) df->exit_block_uses);
 
 
  if (dflow->flags & DF_HARD_REGS)
  if (dflow->flags & DF_HARD_REGS)
    EXECUTE_IF_SET_IN_BITMAP (df->exit_block_uses, 0, i, bi)
    EXECUTE_IF_SET_IN_BITMAP (df->exit_block_uses, 0, i, bi)
      df_uses_record (dflow, &regno_reg_rtx[i],
      df_uses_record (dflow, &regno_reg_rtx[i],
                      DF_REF_REG_USE, EXIT_BLOCK_PTR, NULL,
                      DF_REF_REG_USE, EXIT_BLOCK_PTR, NULL,
                      DF_REF_ARTIFICIAL);
                      DF_REF_ARTIFICIAL);
}
}
 
 
static bool initialized = false;
static bool initialized = false;
 
 
/* Initialize some platform specific structures.  */
/* Initialize some platform specific structures.  */
 
 
void
void
df_hard_reg_init (void)
df_hard_reg_init (void)
{
{
  int i;
  int i;
#ifdef ELIMINABLE_REGS
#ifdef ELIMINABLE_REGS
  static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
  static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
#endif
#endif
  /* After reload, some ports add certain bits to regs_ever_live so
  /* After reload, some ports add certain bits to regs_ever_live so
     this cannot be reset.  */
     this cannot be reset.  */
 
 
  if (!reload_completed)
  if (!reload_completed)
    memset (regs_ever_live, 0, sizeof (regs_ever_live));
    memset (regs_ever_live, 0, sizeof (regs_ever_live));
 
 
  if (initialized)
  if (initialized)
    return;
    return;
 
 
  bitmap_obstack_initialize (&persistent_obstack);
  bitmap_obstack_initialize (&persistent_obstack);
 
 
  /* Record which registers will be eliminated.  We use this in
  /* Record which registers will be eliminated.  We use this in
     mark_used_regs.  */
     mark_used_regs.  */
  CLEAR_HARD_REG_SET (elim_reg_set);
  CLEAR_HARD_REG_SET (elim_reg_set);
 
 
#ifdef ELIMINABLE_REGS
#ifdef ELIMINABLE_REGS
  for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
  for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
    SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
    SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
#else
#else
  SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
  SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
#endif
#endif
 
 
  df_invalidated_by_call = BITMAP_ALLOC (&persistent_obstack);
  df_invalidated_by_call = BITMAP_ALLOC (&persistent_obstack);
 
 
  /* Inconveniently, this is only readily available in hard reg set
  /* Inconveniently, this is only readily available in hard reg set
     form.  */
     form.  */
  for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
  for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
    if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
    if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
      bitmap_set_bit (df_invalidated_by_call, i);
      bitmap_set_bit (df_invalidated_by_call, i);
 
 
  initialized = true;
  initialized = true;
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.