OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gcc-4.2.2/] [gcc/] [except.c] - Diff between revs 154 and 816

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 154 Rev 816
/* Implements exception handling.
/* Implements exception handling.
   Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
   Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007
   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
   Contributed by Mike Stump <mrs@cygnus.com>.
   Contributed by Mike Stump <mrs@cygnus.com>.
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify it under
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
Software Foundation; either version 3, or (at your option) any later
version.
version.
 
 
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
 
 
/* An exception is an event that can be signaled from within a
/* An exception is an event that can be signaled from within a
   function. This event can then be "caught" or "trapped" by the
   function. This event can then be "caught" or "trapped" by the
   callers of this function. This potentially allows program flow to
   callers of this function. This potentially allows program flow to
   be transferred to any arbitrary code associated with a function call
   be transferred to any arbitrary code associated with a function call
   several levels up the stack.
   several levels up the stack.
 
 
   The intended use for this mechanism is for signaling "exceptional
   The intended use for this mechanism is for signaling "exceptional
   events" in an out-of-band fashion, hence its name. The C++ language
   events" in an out-of-band fashion, hence its name. The C++ language
   (and many other OO-styled or functional languages) practically
   (and many other OO-styled or functional languages) practically
   requires such a mechanism, as otherwise it becomes very difficult
   requires such a mechanism, as otherwise it becomes very difficult
   or even impossible to signal failure conditions in complex
   or even impossible to signal failure conditions in complex
   situations.  The traditional C++ example is when an error occurs in
   situations.  The traditional C++ example is when an error occurs in
   the process of constructing an object; without such a mechanism, it
   the process of constructing an object; without such a mechanism, it
   is impossible to signal that the error occurs without adding global
   is impossible to signal that the error occurs without adding global
   state variables and error checks around every object construction.
   state variables and error checks around every object construction.
 
 
   The act of causing this event to occur is referred to as "throwing
   The act of causing this event to occur is referred to as "throwing
   an exception". (Alternate terms include "raising an exception" or
   an exception". (Alternate terms include "raising an exception" or
   "signaling an exception".) The term "throw" is used because control
   "signaling an exception".) The term "throw" is used because control
   is returned to the callers of the function that is signaling the
   is returned to the callers of the function that is signaling the
   exception, and thus there is the concept of "throwing" the
   exception, and thus there is the concept of "throwing" the
   exception up the call stack.
   exception up the call stack.
 
 
   [ Add updated documentation on how to use this.  ]  */
   [ Add updated documentation on how to use this.  ]  */
 
 
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "rtl.h"
#include "rtl.h"
#include "tree.h"
#include "tree.h"
#include "flags.h"
#include "flags.h"
#include "function.h"
#include "function.h"
#include "expr.h"
#include "expr.h"
#include "libfuncs.h"
#include "libfuncs.h"
#include "insn-config.h"
#include "insn-config.h"
#include "except.h"
#include "except.h"
#include "integrate.h"
#include "integrate.h"
#include "hard-reg-set.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "basic-block.h"
#include "output.h"
#include "output.h"
#include "dwarf2asm.h"
#include "dwarf2asm.h"
#include "dwarf2out.h"
#include "dwarf2out.h"
#include "dwarf2.h"
#include "dwarf2.h"
#include "toplev.h"
#include "toplev.h"
#include "hashtab.h"
#include "hashtab.h"
#include "intl.h"
#include "intl.h"
#include "ggc.h"
#include "ggc.h"
#include "tm_p.h"
#include "tm_p.h"
#include "target.h"
#include "target.h"
#include "langhooks.h"
#include "langhooks.h"
#include "cgraph.h"
#include "cgraph.h"
#include "diagnostic.h"
#include "diagnostic.h"
#include "tree-pass.h"
#include "tree-pass.h"
#include "timevar.h"
#include "timevar.h"
 
 
/* Provide defaults for stuff that may not be defined when using
/* Provide defaults for stuff that may not be defined when using
   sjlj exceptions.  */
   sjlj exceptions.  */
#ifndef EH_RETURN_DATA_REGNO
#ifndef EH_RETURN_DATA_REGNO
#define EH_RETURN_DATA_REGNO(N) INVALID_REGNUM
#define EH_RETURN_DATA_REGNO(N) INVALID_REGNUM
#endif
#endif
 
 
 
 
/* Protect cleanup actions with must-not-throw regions, with a call
/* Protect cleanup actions with must-not-throw regions, with a call
   to the given failure handler.  */
   to the given failure handler.  */
tree (*lang_protect_cleanup_actions) (void);
tree (*lang_protect_cleanup_actions) (void);
 
 
/* Return true if type A catches type B.  */
/* Return true if type A catches type B.  */
int (*lang_eh_type_covers) (tree a, tree b);
int (*lang_eh_type_covers) (tree a, tree b);
 
 
/* Map a type to a runtime object to match type.  */
/* Map a type to a runtime object to match type.  */
tree (*lang_eh_runtime_type) (tree);
tree (*lang_eh_runtime_type) (tree);
 
 
/* A hash table of label to region number.  */
/* A hash table of label to region number.  */
 
 
struct ehl_map_entry GTY(())
struct ehl_map_entry GTY(())
{
{
  rtx label;
  rtx label;
  struct eh_region *region;
  struct eh_region *region;
};
};
 
 
static GTY(()) int call_site_base;
static GTY(()) int call_site_base;
static GTY ((param_is (union tree_node)))
static GTY ((param_is (union tree_node)))
  htab_t type_to_runtime_map;
  htab_t type_to_runtime_map;
 
 
/* Describe the SjLj_Function_Context structure.  */
/* Describe the SjLj_Function_Context structure.  */
static GTY(()) tree sjlj_fc_type_node;
static GTY(()) tree sjlj_fc_type_node;
static int sjlj_fc_call_site_ofs;
static int sjlj_fc_call_site_ofs;
static int sjlj_fc_data_ofs;
static int sjlj_fc_data_ofs;
static int sjlj_fc_personality_ofs;
static int sjlj_fc_personality_ofs;
static int sjlj_fc_lsda_ofs;
static int sjlj_fc_lsda_ofs;
static int sjlj_fc_jbuf_ofs;
static int sjlj_fc_jbuf_ofs;


/* Describes one exception region.  */
/* Describes one exception region.  */
struct eh_region GTY(())
struct eh_region GTY(())
{
{
  /* The immediately surrounding region.  */
  /* The immediately surrounding region.  */
  struct eh_region *outer;
  struct eh_region *outer;
 
 
  /* The list of immediately contained regions.  */
  /* The list of immediately contained regions.  */
  struct eh_region *inner;
  struct eh_region *inner;
  struct eh_region *next_peer;
  struct eh_region *next_peer;
 
 
  /* An identifier for this region.  */
  /* An identifier for this region.  */
  int region_number;
  int region_number;
 
 
  /* When a region is deleted, its parents inherit the REG_EH_REGION
  /* When a region is deleted, its parents inherit the REG_EH_REGION
     numbers already assigned.  */
     numbers already assigned.  */
  bitmap aka;
  bitmap aka;
 
 
  /* Each region does exactly one thing.  */
  /* Each region does exactly one thing.  */
  enum eh_region_type
  enum eh_region_type
  {
  {
    ERT_UNKNOWN = 0,
    ERT_UNKNOWN = 0,
    ERT_CLEANUP,
    ERT_CLEANUP,
    ERT_TRY,
    ERT_TRY,
    ERT_CATCH,
    ERT_CATCH,
    ERT_ALLOWED_EXCEPTIONS,
    ERT_ALLOWED_EXCEPTIONS,
    ERT_MUST_NOT_THROW,
    ERT_MUST_NOT_THROW,
    ERT_THROW
    ERT_THROW
  } type;
  } type;
 
 
  /* Holds the action to perform based on the preceding type.  */
  /* Holds the action to perform based on the preceding type.  */
  union eh_region_u {
  union eh_region_u {
    /* A list of catch blocks, a surrounding try block,
    /* A list of catch blocks, a surrounding try block,
       and the label for continuing after a catch.  */
       and the label for continuing after a catch.  */
    struct eh_region_u_try {
    struct eh_region_u_try {
      struct eh_region *catch;
      struct eh_region *catch;
      struct eh_region *last_catch;
      struct eh_region *last_catch;
    } GTY ((tag ("ERT_TRY"))) try;
    } GTY ((tag ("ERT_TRY"))) try;
 
 
    /* The list through the catch handlers, the list of type objects
    /* The list through the catch handlers, the list of type objects
       matched, and the list of associated filters.  */
       matched, and the list of associated filters.  */
    struct eh_region_u_catch {
    struct eh_region_u_catch {
      struct eh_region *next_catch;
      struct eh_region *next_catch;
      struct eh_region *prev_catch;
      struct eh_region *prev_catch;
      tree type_list;
      tree type_list;
      tree filter_list;
      tree filter_list;
    } GTY ((tag ("ERT_CATCH"))) catch;
    } GTY ((tag ("ERT_CATCH"))) catch;
 
 
    /* A tree_list of allowed types.  */
    /* A tree_list of allowed types.  */
    struct eh_region_u_allowed {
    struct eh_region_u_allowed {
      tree type_list;
      tree type_list;
      int filter;
      int filter;
    } GTY ((tag ("ERT_ALLOWED_EXCEPTIONS"))) allowed;
    } GTY ((tag ("ERT_ALLOWED_EXCEPTIONS"))) allowed;
 
 
    /* The type given by a call to "throw foo();", or discovered
    /* The type given by a call to "throw foo();", or discovered
       for a throw.  */
       for a throw.  */
    struct eh_region_u_throw {
    struct eh_region_u_throw {
      tree type;
      tree type;
    } GTY ((tag ("ERT_THROW"))) throw;
    } GTY ((tag ("ERT_THROW"))) throw;
 
 
    /* Retain the cleanup expression even after expansion so that
    /* Retain the cleanup expression even after expansion so that
       we can match up fixup regions.  */
       we can match up fixup regions.  */
    struct eh_region_u_cleanup {
    struct eh_region_u_cleanup {
      struct eh_region *prev_try;
      struct eh_region *prev_try;
    } GTY ((tag ("ERT_CLEANUP"))) cleanup;
    } GTY ((tag ("ERT_CLEANUP"))) cleanup;
  } GTY ((desc ("%0.type"))) u;
  } GTY ((desc ("%0.type"))) u;
 
 
  /* Entry point for this region's handler before landing pads are built.  */
  /* Entry point for this region's handler before landing pads are built.  */
  rtx label;
  rtx label;
  tree tree_label;
  tree tree_label;
 
 
  /* Entry point for this region's handler from the runtime eh library.  */
  /* Entry point for this region's handler from the runtime eh library.  */
  rtx landing_pad;
  rtx landing_pad;
 
 
  /* Entry point for this region's handler from an inner region.  */
  /* Entry point for this region's handler from an inner region.  */
  rtx post_landing_pad;
  rtx post_landing_pad;
 
 
  /* The RESX insn for handing off control to the next outermost handler,
  /* The RESX insn for handing off control to the next outermost handler,
     if appropriate.  */
     if appropriate.  */
  rtx resume;
  rtx resume;
 
 
  /* True if something in this region may throw.  */
  /* True if something in this region may throw.  */
  unsigned may_contain_throw : 1;
  unsigned may_contain_throw : 1;
};
};
 
 
typedef struct eh_region *eh_region;
typedef struct eh_region *eh_region;
 
 
struct call_site_record GTY(())
struct call_site_record GTY(())
{
{
  rtx landing_pad;
  rtx landing_pad;
  int action;
  int action;
};
};
 
 
DEF_VEC_P(eh_region);
DEF_VEC_P(eh_region);
DEF_VEC_ALLOC_P(eh_region, gc);
DEF_VEC_ALLOC_P(eh_region, gc);
 
 
/* Used to save exception status for each function.  */
/* Used to save exception status for each function.  */
struct eh_status GTY(())
struct eh_status GTY(())
{
{
  /* The tree of all regions for this function.  */
  /* The tree of all regions for this function.  */
  struct eh_region *region_tree;
  struct eh_region *region_tree;
 
 
  /* The same information as an indexable array.  */
  /* The same information as an indexable array.  */
  VEC(eh_region,gc) *region_array;
  VEC(eh_region,gc) *region_array;
 
 
  /* The most recently open region.  */
  /* The most recently open region.  */
  struct eh_region *cur_region;
  struct eh_region *cur_region;
 
 
  /* This is the region for which we are processing catch blocks.  */
  /* This is the region for which we are processing catch blocks.  */
  struct eh_region *try_region;
  struct eh_region *try_region;
 
 
  rtx filter;
  rtx filter;
  rtx exc_ptr;
  rtx exc_ptr;
 
 
  int built_landing_pads;
  int built_landing_pads;
  int last_region_number;
  int last_region_number;
 
 
  VEC(tree,gc) *ttype_data;
  VEC(tree,gc) *ttype_data;
  varray_type ehspec_data;
  varray_type ehspec_data;
  varray_type action_record_data;
  varray_type action_record_data;
 
 
  htab_t GTY ((param_is (struct ehl_map_entry))) exception_handler_label_map;
  htab_t GTY ((param_is (struct ehl_map_entry))) exception_handler_label_map;
 
 
  struct call_site_record * GTY ((length ("%h.call_site_data_used")))
  struct call_site_record * GTY ((length ("%h.call_site_data_used")))
    call_site_data;
    call_site_data;
  int call_site_data_used;
  int call_site_data_used;
  int call_site_data_size;
  int call_site_data_size;
 
 
  rtx ehr_stackadj;
  rtx ehr_stackadj;
  rtx ehr_handler;
  rtx ehr_handler;
  rtx ehr_label;
  rtx ehr_label;
 
 
  rtx sjlj_fc;
  rtx sjlj_fc;
  rtx sjlj_exit_after;
  rtx sjlj_exit_after;
 
 
  htab_t GTY((param_is (struct throw_stmt_node))) throw_stmt_table;
  htab_t GTY((param_is (struct throw_stmt_node))) throw_stmt_table;
};
};


static int t2r_eq (const void *, const void *);
static int t2r_eq (const void *, const void *);
static hashval_t t2r_hash (const void *);
static hashval_t t2r_hash (const void *);
static void add_type_for_runtime (tree);
static void add_type_for_runtime (tree);
static tree lookup_type_for_runtime (tree);
static tree lookup_type_for_runtime (tree);
 
 
static void remove_unreachable_regions (rtx);
static void remove_unreachable_regions (rtx);
 
 
static int ttypes_filter_eq (const void *, const void *);
static int ttypes_filter_eq (const void *, const void *);
static hashval_t ttypes_filter_hash (const void *);
static hashval_t ttypes_filter_hash (const void *);
static int ehspec_filter_eq (const void *, const void *);
static int ehspec_filter_eq (const void *, const void *);
static hashval_t ehspec_filter_hash (const void *);
static hashval_t ehspec_filter_hash (const void *);
static int add_ttypes_entry (htab_t, tree);
static int add_ttypes_entry (htab_t, tree);
static int add_ehspec_entry (htab_t, htab_t, tree);
static int add_ehspec_entry (htab_t, htab_t, tree);
static void assign_filter_values (void);
static void assign_filter_values (void);
static void build_post_landing_pads (void);
static void build_post_landing_pads (void);
static void connect_post_landing_pads (void);
static void connect_post_landing_pads (void);
static void dw2_build_landing_pads (void);
static void dw2_build_landing_pads (void);
 
 
struct sjlj_lp_info;
struct sjlj_lp_info;
static bool sjlj_find_directly_reachable_regions (struct sjlj_lp_info *);
static bool sjlj_find_directly_reachable_regions (struct sjlj_lp_info *);
static void sjlj_assign_call_site_values (rtx, struct sjlj_lp_info *);
static void sjlj_assign_call_site_values (rtx, struct sjlj_lp_info *);
static void sjlj_mark_call_sites (struct sjlj_lp_info *);
static void sjlj_mark_call_sites (struct sjlj_lp_info *);
static void sjlj_emit_function_enter (rtx);
static void sjlj_emit_function_enter (rtx);
static void sjlj_emit_function_exit (void);
static void sjlj_emit_function_exit (void);
static void sjlj_emit_dispatch_table (rtx, struct sjlj_lp_info *);
static void sjlj_emit_dispatch_table (rtx, struct sjlj_lp_info *);
static void sjlj_build_landing_pads (void);
static void sjlj_build_landing_pads (void);
 
 
static hashval_t ehl_hash (const void *);
static hashval_t ehl_hash (const void *);
static int ehl_eq (const void *, const void *);
static int ehl_eq (const void *, const void *);
static void add_ehl_entry (rtx, struct eh_region *);
static void add_ehl_entry (rtx, struct eh_region *);
static void remove_exception_handler_label (rtx);
static void remove_exception_handler_label (rtx);
static void remove_eh_handler (struct eh_region *);
static void remove_eh_handler (struct eh_region *);
static int for_each_eh_label_1 (void **, void *);
static int for_each_eh_label_1 (void **, void *);
 
 
/* The return value of reachable_next_level.  */
/* The return value of reachable_next_level.  */
enum reachable_code
enum reachable_code
{
{
  /* The given exception is not processed by the given region.  */
  /* The given exception is not processed by the given region.  */
  RNL_NOT_CAUGHT,
  RNL_NOT_CAUGHT,
  /* The given exception may need processing by the given region.  */
  /* The given exception may need processing by the given region.  */
  RNL_MAYBE_CAUGHT,
  RNL_MAYBE_CAUGHT,
  /* The given exception is completely processed by the given region.  */
  /* The given exception is completely processed by the given region.  */
  RNL_CAUGHT,
  RNL_CAUGHT,
  /* The given exception is completely processed by the runtime.  */
  /* The given exception is completely processed by the runtime.  */
  RNL_BLOCKED
  RNL_BLOCKED
};
};
 
 
struct reachable_info;
struct reachable_info;
static enum reachable_code reachable_next_level (struct eh_region *, tree,
static enum reachable_code reachable_next_level (struct eh_region *, tree,
                                                 struct reachable_info *);
                                                 struct reachable_info *);
 
 
static int action_record_eq (const void *, const void *);
static int action_record_eq (const void *, const void *);
static hashval_t action_record_hash (const void *);
static hashval_t action_record_hash (const void *);
static int add_action_record (htab_t, int, int);
static int add_action_record (htab_t, int, int);
static int collect_one_action_chain (htab_t, struct eh_region *);
static int collect_one_action_chain (htab_t, struct eh_region *);
static int add_call_site (rtx, int);
static int add_call_site (rtx, int);
 
 
static void push_uleb128 (varray_type *, unsigned int);
static void push_uleb128 (varray_type *, unsigned int);
static void push_sleb128 (varray_type *, int);
static void push_sleb128 (varray_type *, int);
#ifndef HAVE_AS_LEB128
#ifndef HAVE_AS_LEB128
static int dw2_size_of_call_site_table (void);
static int dw2_size_of_call_site_table (void);
static int sjlj_size_of_call_site_table (void);
static int sjlj_size_of_call_site_table (void);
#endif
#endif
static void dw2_output_call_site_table (void);
static void dw2_output_call_site_table (void);
static void sjlj_output_call_site_table (void);
static void sjlj_output_call_site_table (void);
 
 


/* Routine to see if exception handling is turned on.
/* Routine to see if exception handling is turned on.
   DO_WARN is nonzero if we want to inform the user that exception
   DO_WARN is nonzero if we want to inform the user that exception
   handling is turned off.
   handling is turned off.
 
 
   This is used to ensure that -fexceptions has been specified if the
   This is used to ensure that -fexceptions has been specified if the
   compiler tries to use any exception-specific functions.  */
   compiler tries to use any exception-specific functions.  */
 
 
int
int
doing_eh (int do_warn)
doing_eh (int do_warn)
{
{
  if (! flag_exceptions)
  if (! flag_exceptions)
    {
    {
      static int warned = 0;
      static int warned = 0;
      if (! warned && do_warn)
      if (! warned && do_warn)
        {
        {
          error ("exception handling disabled, use -fexceptions to enable");
          error ("exception handling disabled, use -fexceptions to enable");
          warned = 1;
          warned = 1;
        }
        }
      return 0;
      return 0;
    }
    }
  return 1;
  return 1;
}
}
 
 


void
void
init_eh (void)
init_eh (void)
{
{
  if (! flag_exceptions)
  if (! flag_exceptions)
    return;
    return;
 
 
  type_to_runtime_map = htab_create_ggc (31, t2r_hash, t2r_eq, NULL);
  type_to_runtime_map = htab_create_ggc (31, t2r_hash, t2r_eq, NULL);
 
 
  /* Create the SjLj_Function_Context structure.  This should match
  /* Create the SjLj_Function_Context structure.  This should match
     the definition in unwind-sjlj.c.  */
     the definition in unwind-sjlj.c.  */
  if (USING_SJLJ_EXCEPTIONS)
  if (USING_SJLJ_EXCEPTIONS)
    {
    {
      tree f_jbuf, f_per, f_lsda, f_prev, f_cs, f_data, tmp;
      tree f_jbuf, f_per, f_lsda, f_prev, f_cs, f_data, tmp;
 
 
      sjlj_fc_type_node = lang_hooks.types.make_type (RECORD_TYPE);
      sjlj_fc_type_node = lang_hooks.types.make_type (RECORD_TYPE);
 
 
      f_prev = build_decl (FIELD_DECL, get_identifier ("__prev"),
      f_prev = build_decl (FIELD_DECL, get_identifier ("__prev"),
                           build_pointer_type (sjlj_fc_type_node));
                           build_pointer_type (sjlj_fc_type_node));
      DECL_FIELD_CONTEXT (f_prev) = sjlj_fc_type_node;
      DECL_FIELD_CONTEXT (f_prev) = sjlj_fc_type_node;
 
 
      f_cs = build_decl (FIELD_DECL, get_identifier ("__call_site"),
      f_cs = build_decl (FIELD_DECL, get_identifier ("__call_site"),
                         integer_type_node);
                         integer_type_node);
      DECL_FIELD_CONTEXT (f_cs) = sjlj_fc_type_node;
      DECL_FIELD_CONTEXT (f_cs) = sjlj_fc_type_node;
 
 
      tmp = build_index_type (build_int_cst (NULL_TREE, 4 - 1));
      tmp = build_index_type (build_int_cst (NULL_TREE, 4 - 1));
      tmp = build_array_type (lang_hooks.types.type_for_mode (word_mode, 1),
      tmp = build_array_type (lang_hooks.types.type_for_mode (word_mode, 1),
                              tmp);
                              tmp);
      f_data = build_decl (FIELD_DECL, get_identifier ("__data"), tmp);
      f_data = build_decl (FIELD_DECL, get_identifier ("__data"), tmp);
      DECL_FIELD_CONTEXT (f_data) = sjlj_fc_type_node;
      DECL_FIELD_CONTEXT (f_data) = sjlj_fc_type_node;
 
 
      f_per = build_decl (FIELD_DECL, get_identifier ("__personality"),
      f_per = build_decl (FIELD_DECL, get_identifier ("__personality"),
                          ptr_type_node);
                          ptr_type_node);
      DECL_FIELD_CONTEXT (f_per) = sjlj_fc_type_node;
      DECL_FIELD_CONTEXT (f_per) = sjlj_fc_type_node;
 
 
      f_lsda = build_decl (FIELD_DECL, get_identifier ("__lsda"),
      f_lsda = build_decl (FIELD_DECL, get_identifier ("__lsda"),
                           ptr_type_node);
                           ptr_type_node);
      DECL_FIELD_CONTEXT (f_lsda) = sjlj_fc_type_node;
      DECL_FIELD_CONTEXT (f_lsda) = sjlj_fc_type_node;
 
 
#ifdef DONT_USE_BUILTIN_SETJMP
#ifdef DONT_USE_BUILTIN_SETJMP
#ifdef JMP_BUF_SIZE
#ifdef JMP_BUF_SIZE
      tmp = build_int_cst (NULL_TREE, JMP_BUF_SIZE - 1);
      tmp = build_int_cst (NULL_TREE, JMP_BUF_SIZE - 1);
#else
#else
      /* Should be large enough for most systems, if it is not,
      /* Should be large enough for most systems, if it is not,
         JMP_BUF_SIZE should be defined with the proper value.  It will
         JMP_BUF_SIZE should be defined with the proper value.  It will
         also tend to be larger than necessary for most systems, a more
         also tend to be larger than necessary for most systems, a more
         optimal port will define JMP_BUF_SIZE.  */
         optimal port will define JMP_BUF_SIZE.  */
      tmp = build_int_cst (NULL_TREE, FIRST_PSEUDO_REGISTER + 2 - 1);
      tmp = build_int_cst (NULL_TREE, FIRST_PSEUDO_REGISTER + 2 - 1);
#endif
#endif
#else
#else
      /* builtin_setjmp takes a pointer to 5 words.  */
      /* builtin_setjmp takes a pointer to 5 words.  */
      tmp = build_int_cst (NULL_TREE, 5 * BITS_PER_WORD / POINTER_SIZE - 1);
      tmp = build_int_cst (NULL_TREE, 5 * BITS_PER_WORD / POINTER_SIZE - 1);
#endif
#endif
      tmp = build_index_type (tmp);
      tmp = build_index_type (tmp);
      tmp = build_array_type (ptr_type_node, tmp);
      tmp = build_array_type (ptr_type_node, tmp);
      f_jbuf = build_decl (FIELD_DECL, get_identifier ("__jbuf"), tmp);
      f_jbuf = build_decl (FIELD_DECL, get_identifier ("__jbuf"), tmp);
#ifdef DONT_USE_BUILTIN_SETJMP
#ifdef DONT_USE_BUILTIN_SETJMP
      /* We don't know what the alignment requirements of the
      /* We don't know what the alignment requirements of the
         runtime's jmp_buf has.  Overestimate.  */
         runtime's jmp_buf has.  Overestimate.  */
      DECL_ALIGN (f_jbuf) = BIGGEST_ALIGNMENT;
      DECL_ALIGN (f_jbuf) = BIGGEST_ALIGNMENT;
      DECL_USER_ALIGN (f_jbuf) = 1;
      DECL_USER_ALIGN (f_jbuf) = 1;
#endif
#endif
      DECL_FIELD_CONTEXT (f_jbuf) = sjlj_fc_type_node;
      DECL_FIELD_CONTEXT (f_jbuf) = sjlj_fc_type_node;
 
 
      TYPE_FIELDS (sjlj_fc_type_node) = f_prev;
      TYPE_FIELDS (sjlj_fc_type_node) = f_prev;
      TREE_CHAIN (f_prev) = f_cs;
      TREE_CHAIN (f_prev) = f_cs;
      TREE_CHAIN (f_cs) = f_data;
      TREE_CHAIN (f_cs) = f_data;
      TREE_CHAIN (f_data) = f_per;
      TREE_CHAIN (f_data) = f_per;
      TREE_CHAIN (f_per) = f_lsda;
      TREE_CHAIN (f_per) = f_lsda;
      TREE_CHAIN (f_lsda) = f_jbuf;
      TREE_CHAIN (f_lsda) = f_jbuf;
 
 
      layout_type (sjlj_fc_type_node);
      layout_type (sjlj_fc_type_node);
 
 
      /* Cache the interesting field offsets so that we have
      /* Cache the interesting field offsets so that we have
         easy access from rtl.  */
         easy access from rtl.  */
      sjlj_fc_call_site_ofs
      sjlj_fc_call_site_ofs
        = (tree_low_cst (DECL_FIELD_OFFSET (f_cs), 1)
        = (tree_low_cst (DECL_FIELD_OFFSET (f_cs), 1)
           + tree_low_cst (DECL_FIELD_BIT_OFFSET (f_cs), 1) / BITS_PER_UNIT);
           + tree_low_cst (DECL_FIELD_BIT_OFFSET (f_cs), 1) / BITS_PER_UNIT);
      sjlj_fc_data_ofs
      sjlj_fc_data_ofs
        = (tree_low_cst (DECL_FIELD_OFFSET (f_data), 1)
        = (tree_low_cst (DECL_FIELD_OFFSET (f_data), 1)
           + tree_low_cst (DECL_FIELD_BIT_OFFSET (f_data), 1) / BITS_PER_UNIT);
           + tree_low_cst (DECL_FIELD_BIT_OFFSET (f_data), 1) / BITS_PER_UNIT);
      sjlj_fc_personality_ofs
      sjlj_fc_personality_ofs
        = (tree_low_cst (DECL_FIELD_OFFSET (f_per), 1)
        = (tree_low_cst (DECL_FIELD_OFFSET (f_per), 1)
           + tree_low_cst (DECL_FIELD_BIT_OFFSET (f_per), 1) / BITS_PER_UNIT);
           + tree_low_cst (DECL_FIELD_BIT_OFFSET (f_per), 1) / BITS_PER_UNIT);
      sjlj_fc_lsda_ofs
      sjlj_fc_lsda_ofs
        = (tree_low_cst (DECL_FIELD_OFFSET (f_lsda), 1)
        = (tree_low_cst (DECL_FIELD_OFFSET (f_lsda), 1)
           + tree_low_cst (DECL_FIELD_BIT_OFFSET (f_lsda), 1) / BITS_PER_UNIT);
           + tree_low_cst (DECL_FIELD_BIT_OFFSET (f_lsda), 1) / BITS_PER_UNIT);
      sjlj_fc_jbuf_ofs
      sjlj_fc_jbuf_ofs
        = (tree_low_cst (DECL_FIELD_OFFSET (f_jbuf), 1)
        = (tree_low_cst (DECL_FIELD_OFFSET (f_jbuf), 1)
           + tree_low_cst (DECL_FIELD_BIT_OFFSET (f_jbuf), 1) / BITS_PER_UNIT);
           + tree_low_cst (DECL_FIELD_BIT_OFFSET (f_jbuf), 1) / BITS_PER_UNIT);
    }
    }
}
}
 
 
void
void
init_eh_for_function (void)
init_eh_for_function (void)
{
{
  cfun->eh = ggc_alloc_cleared (sizeof (struct eh_status));
  cfun->eh = ggc_alloc_cleared (sizeof (struct eh_status));
}
}


/* Routines to generate the exception tree somewhat directly.
/* Routines to generate the exception tree somewhat directly.
   These are used from tree-eh.c when processing exception related
   These are used from tree-eh.c when processing exception related
   nodes during tree optimization.  */
   nodes during tree optimization.  */
 
 
static struct eh_region *
static struct eh_region *
gen_eh_region (enum eh_region_type type, struct eh_region *outer)
gen_eh_region (enum eh_region_type type, struct eh_region *outer)
{
{
  struct eh_region *new;
  struct eh_region *new;
 
 
#ifdef ENABLE_CHECKING
#ifdef ENABLE_CHECKING
  gcc_assert (doing_eh (0));
  gcc_assert (doing_eh (0));
#endif
#endif
 
 
  /* Insert a new blank region as a leaf in the tree.  */
  /* Insert a new blank region as a leaf in the tree.  */
  new = ggc_alloc_cleared (sizeof (*new));
  new = ggc_alloc_cleared (sizeof (*new));
  new->type = type;
  new->type = type;
  new->outer = outer;
  new->outer = outer;
  if (outer)
  if (outer)
    {
    {
      new->next_peer = outer->inner;
      new->next_peer = outer->inner;
      outer->inner = new;
      outer->inner = new;
    }
    }
  else
  else
    {
    {
      new->next_peer = cfun->eh->region_tree;
      new->next_peer = cfun->eh->region_tree;
      cfun->eh->region_tree = new;
      cfun->eh->region_tree = new;
    }
    }
 
 
  new->region_number = ++cfun->eh->last_region_number;
  new->region_number = ++cfun->eh->last_region_number;
 
 
  return new;
  return new;
}
}
 
 
struct eh_region *
struct eh_region *
gen_eh_region_cleanup (struct eh_region *outer, struct eh_region *prev_try)
gen_eh_region_cleanup (struct eh_region *outer, struct eh_region *prev_try)
{
{
  struct eh_region *cleanup = gen_eh_region (ERT_CLEANUP, outer);
  struct eh_region *cleanup = gen_eh_region (ERT_CLEANUP, outer);
  cleanup->u.cleanup.prev_try = prev_try;
  cleanup->u.cleanup.prev_try = prev_try;
  return cleanup;
  return cleanup;
}
}
 
 
struct eh_region *
struct eh_region *
gen_eh_region_try (struct eh_region *outer)
gen_eh_region_try (struct eh_region *outer)
{
{
  return gen_eh_region (ERT_TRY, outer);
  return gen_eh_region (ERT_TRY, outer);
}
}
 
 
struct eh_region *
struct eh_region *
gen_eh_region_catch (struct eh_region *t, tree type_or_list)
gen_eh_region_catch (struct eh_region *t, tree type_or_list)
{
{
  struct eh_region *c, *l;
  struct eh_region *c, *l;
  tree type_list, type_node;
  tree type_list, type_node;
 
 
  /* Ensure to always end up with a type list to normalize further
  /* Ensure to always end up with a type list to normalize further
     processing, then register each type against the runtime types map.  */
     processing, then register each type against the runtime types map.  */
  type_list = type_or_list;
  type_list = type_or_list;
  if (type_or_list)
  if (type_or_list)
    {
    {
      if (TREE_CODE (type_or_list) != TREE_LIST)
      if (TREE_CODE (type_or_list) != TREE_LIST)
        type_list = tree_cons (NULL_TREE, type_or_list, NULL_TREE);
        type_list = tree_cons (NULL_TREE, type_or_list, NULL_TREE);
 
 
      type_node = type_list;
      type_node = type_list;
      for (; type_node; type_node = TREE_CHAIN (type_node))
      for (; type_node; type_node = TREE_CHAIN (type_node))
        add_type_for_runtime (TREE_VALUE (type_node));
        add_type_for_runtime (TREE_VALUE (type_node));
    }
    }
 
 
  c = gen_eh_region (ERT_CATCH, t->outer);
  c = gen_eh_region (ERT_CATCH, t->outer);
  c->u.catch.type_list = type_list;
  c->u.catch.type_list = type_list;
  l = t->u.try.last_catch;
  l = t->u.try.last_catch;
  c->u.catch.prev_catch = l;
  c->u.catch.prev_catch = l;
  if (l)
  if (l)
    l->u.catch.next_catch = c;
    l->u.catch.next_catch = c;
  else
  else
    t->u.try.catch = c;
    t->u.try.catch = c;
  t->u.try.last_catch = c;
  t->u.try.last_catch = c;
 
 
  return c;
  return c;
}
}
 
 
struct eh_region *
struct eh_region *
gen_eh_region_allowed (struct eh_region *outer, tree allowed)
gen_eh_region_allowed (struct eh_region *outer, tree allowed)
{
{
  struct eh_region *region = gen_eh_region (ERT_ALLOWED_EXCEPTIONS, outer);
  struct eh_region *region = gen_eh_region (ERT_ALLOWED_EXCEPTIONS, outer);
  region->u.allowed.type_list = allowed;
  region->u.allowed.type_list = allowed;
 
 
  for (; allowed ; allowed = TREE_CHAIN (allowed))
  for (; allowed ; allowed = TREE_CHAIN (allowed))
    add_type_for_runtime (TREE_VALUE (allowed));
    add_type_for_runtime (TREE_VALUE (allowed));
 
 
  return region;
  return region;
}
}
 
 
struct eh_region *
struct eh_region *
gen_eh_region_must_not_throw (struct eh_region *outer)
gen_eh_region_must_not_throw (struct eh_region *outer)
{
{
  return gen_eh_region (ERT_MUST_NOT_THROW, outer);
  return gen_eh_region (ERT_MUST_NOT_THROW, outer);
}
}
 
 
int
int
get_eh_region_number (struct eh_region *region)
get_eh_region_number (struct eh_region *region)
{
{
  return region->region_number;
  return region->region_number;
}
}
 
 
bool
bool
get_eh_region_may_contain_throw (struct eh_region *region)
get_eh_region_may_contain_throw (struct eh_region *region)
{
{
  return region->may_contain_throw;
  return region->may_contain_throw;
}
}
 
 
tree
tree
get_eh_region_tree_label (struct eh_region *region)
get_eh_region_tree_label (struct eh_region *region)
{
{
  return region->tree_label;
  return region->tree_label;
}
}
 
 
void
void
set_eh_region_tree_label (struct eh_region *region, tree lab)
set_eh_region_tree_label (struct eh_region *region, tree lab)
{
{
  region->tree_label = lab;
  region->tree_label = lab;
}
}


void
void
expand_resx_expr (tree exp)
expand_resx_expr (tree exp)
{
{
  int region_nr = TREE_INT_CST_LOW (TREE_OPERAND (exp, 0));
  int region_nr = TREE_INT_CST_LOW (TREE_OPERAND (exp, 0));
  struct eh_region *reg = VEC_index (eh_region,
  struct eh_region *reg = VEC_index (eh_region,
                                     cfun->eh->region_array, region_nr);
                                     cfun->eh->region_array, region_nr);
 
 
  gcc_assert (!reg->resume);
  gcc_assert (!reg->resume);
  reg->resume = emit_jump_insn (gen_rtx_RESX (VOIDmode, region_nr));
  reg->resume = emit_jump_insn (gen_rtx_RESX (VOIDmode, region_nr));
  emit_barrier ();
  emit_barrier ();
}
}
 
 
/* Note that the current EH region (if any) may contain a throw, or a
/* Note that the current EH region (if any) may contain a throw, or a
   call to a function which itself may contain a throw.  */
   call to a function which itself may contain a throw.  */
 
 
void
void
note_eh_region_may_contain_throw (struct eh_region *region)
note_eh_region_may_contain_throw (struct eh_region *region)
{
{
  while (region && !region->may_contain_throw)
  while (region && !region->may_contain_throw)
    {
    {
      region->may_contain_throw = 1;
      region->may_contain_throw = 1;
      region = region->outer;
      region = region->outer;
    }
    }
}
}
 
 
void
void
note_current_region_may_contain_throw (void)
note_current_region_may_contain_throw (void)
{
{
  note_eh_region_may_contain_throw (cfun->eh->cur_region);
  note_eh_region_may_contain_throw (cfun->eh->cur_region);
}
}
 
 
 
 
/* Return an rtl expression for a pointer to the exception object
/* Return an rtl expression for a pointer to the exception object
   within a handler.  */
   within a handler.  */
 
 
rtx
rtx
get_exception_pointer (struct function *fun)
get_exception_pointer (struct function *fun)
{
{
  rtx exc_ptr = fun->eh->exc_ptr;
  rtx exc_ptr = fun->eh->exc_ptr;
  if (fun == cfun && ! exc_ptr)
  if (fun == cfun && ! exc_ptr)
    {
    {
      exc_ptr = gen_reg_rtx (ptr_mode);
      exc_ptr = gen_reg_rtx (ptr_mode);
      fun->eh->exc_ptr = exc_ptr;
      fun->eh->exc_ptr = exc_ptr;
    }
    }
  return exc_ptr;
  return exc_ptr;
}
}
 
 
/* Return an rtl expression for the exception dispatch filter
/* Return an rtl expression for the exception dispatch filter
   within a handler.  */
   within a handler.  */
 
 
rtx
rtx
get_exception_filter (struct function *fun)
get_exception_filter (struct function *fun)
{
{
  rtx filter = fun->eh->filter;
  rtx filter = fun->eh->filter;
  if (fun == cfun && ! filter)
  if (fun == cfun && ! filter)
    {
    {
      filter = gen_reg_rtx (targetm.eh_return_filter_mode ());
      filter = gen_reg_rtx (targetm.eh_return_filter_mode ());
      fun->eh->filter = filter;
      fun->eh->filter = filter;
    }
    }
  return filter;
  return filter;
}
}


/* This section is for the exception handling specific optimization pass.  */
/* This section is for the exception handling specific optimization pass.  */
 
 
/* Random access the exception region tree.  */
/* Random access the exception region tree.  */
 
 
void
void
collect_eh_region_array (void)
collect_eh_region_array (void)
{
{
  struct eh_region *i;
  struct eh_region *i;
 
 
  i = cfun->eh->region_tree;
  i = cfun->eh->region_tree;
  if (! i)
  if (! i)
    return;
    return;
 
 
  VEC_safe_grow (eh_region, gc, cfun->eh->region_array,
  VEC_safe_grow (eh_region, gc, cfun->eh->region_array,
                 cfun->eh->last_region_number + 1);
                 cfun->eh->last_region_number + 1);
  VEC_replace (eh_region, cfun->eh->region_array, 0, 0);
  VEC_replace (eh_region, cfun->eh->region_array, 0, 0);
 
 
  while (1)
  while (1)
    {
    {
      VEC_replace (eh_region, cfun->eh->region_array, i->region_number, i);
      VEC_replace (eh_region, cfun->eh->region_array, i->region_number, i);
 
 
      /* If there are sub-regions, process them.  */
      /* If there are sub-regions, process them.  */
      if (i->inner)
      if (i->inner)
        i = i->inner;
        i = i->inner;
      /* If there are peers, process them.  */
      /* If there are peers, process them.  */
      else if (i->next_peer)
      else if (i->next_peer)
        i = i->next_peer;
        i = i->next_peer;
      /* Otherwise, step back up the tree to the next peer.  */
      /* Otherwise, step back up the tree to the next peer.  */
      else
      else
        {
        {
          do {
          do {
            i = i->outer;
            i = i->outer;
            if (i == NULL)
            if (i == NULL)
              return;
              return;
          } while (i->next_peer == NULL);
          } while (i->next_peer == NULL);
          i = i->next_peer;
          i = i->next_peer;
        }
        }
    }
    }
}
}
 
 
/* Remove all regions whose labels are not reachable from insns.  */
/* Remove all regions whose labels are not reachable from insns.  */
 
 
static void
static void
remove_unreachable_regions (rtx insns)
remove_unreachable_regions (rtx insns)
{
{
  int i, *uid_region_num;
  int i, *uid_region_num;
  bool *reachable;
  bool *reachable;
  struct eh_region *r;
  struct eh_region *r;
  rtx insn;
  rtx insn;
 
 
  uid_region_num = xcalloc (get_max_uid (), sizeof(int));
  uid_region_num = xcalloc (get_max_uid (), sizeof(int));
  reachable = xcalloc (cfun->eh->last_region_number + 1, sizeof(bool));
  reachable = xcalloc (cfun->eh->last_region_number + 1, sizeof(bool));
 
 
  for (i = cfun->eh->last_region_number; i > 0; --i)
  for (i = cfun->eh->last_region_number; i > 0; --i)
    {
    {
      r = VEC_index (eh_region, cfun->eh->region_array, i);
      r = VEC_index (eh_region, cfun->eh->region_array, i);
      if (!r || r->region_number != i)
      if (!r || r->region_number != i)
        continue;
        continue;
 
 
      if (r->resume)
      if (r->resume)
        {
        {
          gcc_assert (!uid_region_num[INSN_UID (r->resume)]);
          gcc_assert (!uid_region_num[INSN_UID (r->resume)]);
          uid_region_num[INSN_UID (r->resume)] = i;
          uid_region_num[INSN_UID (r->resume)] = i;
        }
        }
      if (r->label)
      if (r->label)
        {
        {
          gcc_assert (!uid_region_num[INSN_UID (r->label)]);
          gcc_assert (!uid_region_num[INSN_UID (r->label)]);
          uid_region_num[INSN_UID (r->label)] = i;
          uid_region_num[INSN_UID (r->label)] = i;
        }
        }
    }
    }
 
 
  for (insn = insns; insn; insn = NEXT_INSN (insn))
  for (insn = insns; insn; insn = NEXT_INSN (insn))
    reachable[uid_region_num[INSN_UID (insn)]] = true;
    reachable[uid_region_num[INSN_UID (insn)]] = true;
 
 
  for (i = cfun->eh->last_region_number; i > 0; --i)
  for (i = cfun->eh->last_region_number; i > 0; --i)
    {
    {
      r = VEC_index (eh_region, cfun->eh->region_array, i);
      r = VEC_index (eh_region, cfun->eh->region_array, i);
      if (r && r->region_number == i && !reachable[i])
      if (r && r->region_number == i && !reachable[i])
        {
        {
          bool kill_it = true;
          bool kill_it = true;
          switch (r->type)
          switch (r->type)
            {
            {
            case ERT_THROW:
            case ERT_THROW:
              /* Don't remove ERT_THROW regions if their outer region
              /* Don't remove ERT_THROW regions if their outer region
                 is reachable.  */
                 is reachable.  */
              if (r->outer && reachable[r->outer->region_number])
              if (r->outer && reachable[r->outer->region_number])
                kill_it = false;
                kill_it = false;
              break;
              break;
 
 
            case ERT_MUST_NOT_THROW:
            case ERT_MUST_NOT_THROW:
              /* MUST_NOT_THROW regions are implementable solely in the
              /* MUST_NOT_THROW regions are implementable solely in the
                 runtime, but their existence continues to affect calls
                 runtime, but their existence continues to affect calls
                 within that region.  Never delete them here.  */
                 within that region.  Never delete them here.  */
              kill_it = false;
              kill_it = false;
              break;
              break;
 
 
            case ERT_TRY:
            case ERT_TRY:
              {
              {
                /* TRY regions are reachable if any of its CATCH regions
                /* TRY regions are reachable if any of its CATCH regions
                   are reachable.  */
                   are reachable.  */
                struct eh_region *c;
                struct eh_region *c;
                for (c = r->u.try.catch; c ; c = c->u.catch.next_catch)
                for (c = r->u.try.catch; c ; c = c->u.catch.next_catch)
                  if (reachable[c->region_number])
                  if (reachable[c->region_number])
                    {
                    {
                      kill_it = false;
                      kill_it = false;
                      break;
                      break;
                    }
                    }
                break;
                break;
              }
              }
 
 
            default:
            default:
              break;
              break;
            }
            }
 
 
          if (kill_it)
          if (kill_it)
            remove_eh_handler (r);
            remove_eh_handler (r);
        }
        }
    }
    }
 
 
  free (reachable);
  free (reachable);
  free (uid_region_num);
  free (uid_region_num);
}
}
 
 
/* Set up EH labels for RTL.  */
/* Set up EH labels for RTL.  */
 
 
void
void
convert_from_eh_region_ranges (void)
convert_from_eh_region_ranges (void)
{
{
  rtx insns = get_insns ();
  rtx insns = get_insns ();
  int i, n = cfun->eh->last_region_number;
  int i, n = cfun->eh->last_region_number;
 
 
  /* Most of the work is already done at the tree level.  All we need to
  /* Most of the work is already done at the tree level.  All we need to
     do is collect the rtl labels that correspond to the tree labels that
     do is collect the rtl labels that correspond to the tree labels that
     collect the rtl labels that correspond to the tree labels
     collect the rtl labels that correspond to the tree labels
     we allocated earlier.  */
     we allocated earlier.  */
  for (i = 1; i <= n; ++i)
  for (i = 1; i <= n; ++i)
    {
    {
      struct eh_region *region;
      struct eh_region *region;
 
 
      region = VEC_index (eh_region, cfun->eh->region_array, i);
      region = VEC_index (eh_region, cfun->eh->region_array, i);
      if (region && region->tree_label)
      if (region && region->tree_label)
        region->label = DECL_RTL_IF_SET (region->tree_label);
        region->label = DECL_RTL_IF_SET (region->tree_label);
    }
    }
 
 
  remove_unreachable_regions (insns);
  remove_unreachable_regions (insns);
}
}
 
 
static void
static void
add_ehl_entry (rtx label, struct eh_region *region)
add_ehl_entry (rtx label, struct eh_region *region)
{
{
  struct ehl_map_entry **slot, *entry;
  struct ehl_map_entry **slot, *entry;
 
 
  LABEL_PRESERVE_P (label) = 1;
  LABEL_PRESERVE_P (label) = 1;
 
 
  entry = ggc_alloc (sizeof (*entry));
  entry = ggc_alloc (sizeof (*entry));
  entry->label = label;
  entry->label = label;
  entry->region = region;
  entry->region = region;
 
 
  slot = (struct ehl_map_entry **)
  slot = (struct ehl_map_entry **)
    htab_find_slot (cfun->eh->exception_handler_label_map, entry, INSERT);
    htab_find_slot (cfun->eh->exception_handler_label_map, entry, INSERT);
 
 
  /* Before landing pad creation, each exception handler has its own
  /* Before landing pad creation, each exception handler has its own
     label.  After landing pad creation, the exception handlers may
     label.  After landing pad creation, the exception handlers may
     share landing pads.  This is ok, since maybe_remove_eh_handler
     share landing pads.  This is ok, since maybe_remove_eh_handler
     only requires the 1-1 mapping before landing pad creation.  */
     only requires the 1-1 mapping before landing pad creation.  */
  gcc_assert (!*slot || cfun->eh->built_landing_pads);
  gcc_assert (!*slot || cfun->eh->built_landing_pads);
 
 
  *slot = entry;
  *slot = entry;
}
}
 
 
void
void
find_exception_handler_labels (void)
find_exception_handler_labels (void)
{
{
  int i;
  int i;
 
 
  if (cfun->eh->exception_handler_label_map)
  if (cfun->eh->exception_handler_label_map)
    htab_empty (cfun->eh->exception_handler_label_map);
    htab_empty (cfun->eh->exception_handler_label_map);
  else
  else
    {
    {
      /* ??? The expansion factor here (3/2) must be greater than the htab
      /* ??? The expansion factor here (3/2) must be greater than the htab
         occupancy factor (4/3) to avoid unnecessary resizing.  */
         occupancy factor (4/3) to avoid unnecessary resizing.  */
      cfun->eh->exception_handler_label_map
      cfun->eh->exception_handler_label_map
        = htab_create_ggc (cfun->eh->last_region_number * 3 / 2,
        = htab_create_ggc (cfun->eh->last_region_number * 3 / 2,
                           ehl_hash, ehl_eq, NULL);
                           ehl_hash, ehl_eq, NULL);
    }
    }
 
 
  if (cfun->eh->region_tree == NULL)
  if (cfun->eh->region_tree == NULL)
    return;
    return;
 
 
  for (i = cfun->eh->last_region_number; i > 0; --i)
  for (i = cfun->eh->last_region_number; i > 0; --i)
    {
    {
      struct eh_region *region;
      struct eh_region *region;
      rtx lab;
      rtx lab;
 
 
      region = VEC_index (eh_region, cfun->eh->region_array, i);
      region = VEC_index (eh_region, cfun->eh->region_array, i);
      if (! region || region->region_number != i)
      if (! region || region->region_number != i)
        continue;
        continue;
      if (cfun->eh->built_landing_pads)
      if (cfun->eh->built_landing_pads)
        lab = region->landing_pad;
        lab = region->landing_pad;
      else
      else
        lab = region->label;
        lab = region->label;
 
 
      if (lab)
      if (lab)
        add_ehl_entry (lab, region);
        add_ehl_entry (lab, region);
    }
    }
 
 
  /* For sjlj exceptions, need the return label to remain live until
  /* For sjlj exceptions, need the return label to remain live until
     after landing pad generation.  */
     after landing pad generation.  */
  if (USING_SJLJ_EXCEPTIONS && ! cfun->eh->built_landing_pads)
  if (USING_SJLJ_EXCEPTIONS && ! cfun->eh->built_landing_pads)
    add_ehl_entry (return_label, NULL);
    add_ehl_entry (return_label, NULL);
}
}
 
 
/* Returns true if the current function has exception handling regions.  */
/* Returns true if the current function has exception handling regions.  */
 
 
bool
bool
current_function_has_exception_handlers (void)
current_function_has_exception_handlers (void)
{
{
  int i;
  int i;
 
 
  for (i = cfun->eh->last_region_number; i > 0; --i)
  for (i = cfun->eh->last_region_number; i > 0; --i)
    {
    {
      struct eh_region *region;
      struct eh_region *region;
 
 
      region = VEC_index (eh_region, cfun->eh->region_array, i);
      region = VEC_index (eh_region, cfun->eh->region_array, i);
      if (region
      if (region
          && region->region_number == i
          && region->region_number == i
          && region->type != ERT_THROW)
          && region->type != ERT_THROW)
        return true;
        return true;
    }
    }
 
 
  return false;
  return false;
}
}


/* A subroutine of duplicate_eh_regions.  Search the region tree under O
/* A subroutine of duplicate_eh_regions.  Search the region tree under O
   for the minimum and maximum region numbers.  Update *MIN and *MAX.  */
   for the minimum and maximum region numbers.  Update *MIN and *MAX.  */
 
 
static void
static void
duplicate_eh_regions_0 (eh_region o, int *min, int *max)
duplicate_eh_regions_0 (eh_region o, int *min, int *max)
{
{
  if (o->region_number < *min)
  if (o->region_number < *min)
    *min = o->region_number;
    *min = o->region_number;
  if (o->region_number > *max)
  if (o->region_number > *max)
    *max = o->region_number;
    *max = o->region_number;
 
 
  if (o->inner)
  if (o->inner)
    {
    {
      o = o->inner;
      o = o->inner;
      duplicate_eh_regions_0 (o, min, max);
      duplicate_eh_regions_0 (o, min, max);
      while (o->next_peer)
      while (o->next_peer)
        {
        {
          o = o->next_peer;
          o = o->next_peer;
          duplicate_eh_regions_0 (o, min, max);
          duplicate_eh_regions_0 (o, min, max);
        }
        }
    }
    }
}
}
 
 
/* A subroutine of duplicate_eh_regions.  Copy the region tree under OLD.
/* A subroutine of duplicate_eh_regions.  Copy the region tree under OLD.
   Root it at OUTER, and apply EH_OFFSET to the region number.  Don't worry
   Root it at OUTER, and apply EH_OFFSET to the region number.  Don't worry
   about the other internal pointers just yet, just the tree-like pointers.  */
   about the other internal pointers just yet, just the tree-like pointers.  */
 
 
static eh_region
static eh_region
duplicate_eh_regions_1 (eh_region old, eh_region outer, int eh_offset)
duplicate_eh_regions_1 (eh_region old, eh_region outer, int eh_offset)
{
{
  eh_region ret, n;
  eh_region ret, n;
 
 
  ret = n = ggc_alloc (sizeof (struct eh_region));
  ret = n = ggc_alloc (sizeof (struct eh_region));
 
 
  *n = *old;
  *n = *old;
  n->outer = outer;
  n->outer = outer;
  n->next_peer = NULL;
  n->next_peer = NULL;
  gcc_assert (!old->aka);
  gcc_assert (!old->aka);
 
 
  n->region_number += eh_offset;
  n->region_number += eh_offset;
  VEC_replace (eh_region, cfun->eh->region_array, n->region_number, n);
  VEC_replace (eh_region, cfun->eh->region_array, n->region_number, n);
 
 
  if (old->inner)
  if (old->inner)
    {
    {
      old = old->inner;
      old = old->inner;
      n = n->inner = duplicate_eh_regions_1 (old, ret, eh_offset);
      n = n->inner = duplicate_eh_regions_1 (old, ret, eh_offset);
      while (old->next_peer)
      while (old->next_peer)
        {
        {
          old = old->next_peer;
          old = old->next_peer;
          n = n->next_peer = duplicate_eh_regions_1 (old, ret, eh_offset);
          n = n->next_peer = duplicate_eh_regions_1 (old, ret, eh_offset);
        }
        }
    }
    }
 
 
  return ret;
  return ret;
}
}
 
 
/* Duplicate the EH regions of IFUN, rooted at COPY_REGION, into current
/* Duplicate the EH regions of IFUN, rooted at COPY_REGION, into current
   function and root the tree below OUTER_REGION.  Remap labels using MAP
   function and root the tree below OUTER_REGION.  Remap labels using MAP
   callback.  The special case of COPY_REGION of 0 means all regions.  */
   callback.  The special case of COPY_REGION of 0 means all regions.  */
 
 
int
int
duplicate_eh_regions (struct function *ifun, duplicate_eh_regions_map map,
duplicate_eh_regions (struct function *ifun, duplicate_eh_regions_map map,
                      void *data, int copy_region, int outer_region)
                      void *data, int copy_region, int outer_region)
{
{
  eh_region cur, prev_try, outer, *splice;
  eh_region cur, prev_try, outer, *splice;
  int i, min_region, max_region, eh_offset, cfun_last_region_number;
  int i, min_region, max_region, eh_offset, cfun_last_region_number;
  int num_regions;
  int num_regions;
 
 
  if (!ifun->eh->region_tree)
  if (!ifun->eh->region_tree)
    return 0;
    return 0;
 
 
  /* Find the range of region numbers to be copied.  The interface we
  /* Find the range of region numbers to be copied.  The interface we
     provide here mandates a single offset to find new number from old,
     provide here mandates a single offset to find new number from old,
     which means we must look at the numbers present, instead of the
     which means we must look at the numbers present, instead of the
     count or something else.  */
     count or something else.  */
  if (copy_region > 0)
  if (copy_region > 0)
    {
    {
      min_region = INT_MAX;
      min_region = INT_MAX;
      max_region = 0;
      max_region = 0;
 
 
      cur = VEC_index (eh_region, ifun->eh->region_array, copy_region);
      cur = VEC_index (eh_region, ifun->eh->region_array, copy_region);
      duplicate_eh_regions_0 (cur, &min_region, &max_region);
      duplicate_eh_regions_0 (cur, &min_region, &max_region);
    }
    }
  else
  else
    min_region = 1, max_region = ifun->eh->last_region_number;
    min_region = 1, max_region = ifun->eh->last_region_number;
  num_regions = max_region - min_region + 1;
  num_regions = max_region - min_region + 1;
  cfun_last_region_number = cfun->eh->last_region_number;
  cfun_last_region_number = cfun->eh->last_region_number;
  eh_offset = cfun_last_region_number + 1 - min_region;
  eh_offset = cfun_last_region_number + 1 - min_region;
 
 
  /* If we've not yet created a region array, do so now.  */
  /* If we've not yet created a region array, do so now.  */
  VEC_safe_grow (eh_region, gc, cfun->eh->region_array,
  VEC_safe_grow (eh_region, gc, cfun->eh->region_array,
                 cfun_last_region_number + 1 + num_regions);
                 cfun_last_region_number + 1 + num_regions);
  cfun->eh->last_region_number = max_region + eh_offset;
  cfun->eh->last_region_number = max_region + eh_offset;
 
 
  /* We may have just allocated the array for the first time.
  /* We may have just allocated the array for the first time.
     Make sure that element zero is null.  */
     Make sure that element zero is null.  */
  VEC_replace (eh_region, cfun->eh->region_array, 0, 0);
  VEC_replace (eh_region, cfun->eh->region_array, 0, 0);
 
 
  /* Zero all entries in the range allocated.  */
  /* Zero all entries in the range allocated.  */
  memset (VEC_address (eh_region, cfun->eh->region_array)
  memset (VEC_address (eh_region, cfun->eh->region_array)
          + cfun_last_region_number + 1, 0, num_regions * sizeof (eh_region));
          + cfun_last_region_number + 1, 0, num_regions * sizeof (eh_region));
 
 
  /* Locate the spot at which to insert the new tree.  */
  /* Locate the spot at which to insert the new tree.  */
  if (outer_region > 0)
  if (outer_region > 0)
    {
    {
      outer = VEC_index (eh_region, cfun->eh->region_array, outer_region);
      outer = VEC_index (eh_region, cfun->eh->region_array, outer_region);
      splice = &outer->inner;
      splice = &outer->inner;
    }
    }
  else
  else
    {
    {
      outer = NULL;
      outer = NULL;
      splice = &cfun->eh->region_tree;
      splice = &cfun->eh->region_tree;
    }
    }
  while (*splice)
  while (*splice)
    splice = &(*splice)->next_peer;
    splice = &(*splice)->next_peer;
 
 
  /* Copy all the regions in the subtree.  */
  /* Copy all the regions in the subtree.  */
  if (copy_region > 0)
  if (copy_region > 0)
    {
    {
      cur = VEC_index (eh_region, ifun->eh->region_array, copy_region);
      cur = VEC_index (eh_region, ifun->eh->region_array, copy_region);
      *splice = duplicate_eh_regions_1 (cur, outer, eh_offset);
      *splice = duplicate_eh_regions_1 (cur, outer, eh_offset);
    }
    }
  else
  else
    {
    {
      eh_region n;
      eh_region n;
 
 
      cur = ifun->eh->region_tree;
      cur = ifun->eh->region_tree;
      *splice = n = duplicate_eh_regions_1 (cur, outer, eh_offset);
      *splice = n = duplicate_eh_regions_1 (cur, outer, eh_offset);
      while (cur->next_peer)
      while (cur->next_peer)
        {
        {
          cur = cur->next_peer;
          cur = cur->next_peer;
          n = n->next_peer = duplicate_eh_regions_1 (cur, outer, eh_offset);
          n = n->next_peer = duplicate_eh_regions_1 (cur, outer, eh_offset);
        }
        }
    }
    }
 
 
  /* Remap all the labels in the new regions.  */
  /* Remap all the labels in the new regions.  */
  for (i = cfun_last_region_number + 1;
  for (i = cfun_last_region_number + 1;
       VEC_iterate (eh_region, cfun->eh->region_array, i, cur); ++i)
       VEC_iterate (eh_region, cfun->eh->region_array, i, cur); ++i)
    if (cur && cur->tree_label)
    if (cur && cur->tree_label)
      cur->tree_label = map (cur->tree_label, data);
      cur->tree_label = map (cur->tree_label, data);
 
 
  /* Search for the containing ERT_TRY region to fix up
  /* Search for the containing ERT_TRY region to fix up
     the prev_try short-cuts for ERT_CLEANUP regions.  */
     the prev_try short-cuts for ERT_CLEANUP regions.  */
  prev_try = NULL;
  prev_try = NULL;
  if (outer_region > 0)
  if (outer_region > 0)
    for (prev_try = VEC_index (eh_region, cfun->eh->region_array, outer_region);
    for (prev_try = VEC_index (eh_region, cfun->eh->region_array, outer_region);
         prev_try && prev_try->type != ERT_TRY;
         prev_try && prev_try->type != ERT_TRY;
         prev_try = prev_try->outer)
         prev_try = prev_try->outer)
      if (prev_try->type == ERT_MUST_NOT_THROW)
      if (prev_try->type == ERT_MUST_NOT_THROW)
        {
        {
          prev_try = NULL;
          prev_try = NULL;
          break;
          break;
        }
        }
 
 
  /* Remap all of the internal catch and cleanup linkages.  Since we
  /* Remap all of the internal catch and cleanup linkages.  Since we
     duplicate entire subtrees, all of the referenced regions will have
     duplicate entire subtrees, all of the referenced regions will have
     been copied too.  And since we renumbered them as a block, a simple
     been copied too.  And since we renumbered them as a block, a simple
     bit of arithmetic finds us the index for the replacement region.  */
     bit of arithmetic finds us the index for the replacement region.  */
  for (i = cfun_last_region_number + 1;
  for (i = cfun_last_region_number + 1;
       VEC_iterate (eh_region, cfun->eh->region_array, i, cur); ++i)
       VEC_iterate (eh_region, cfun->eh->region_array, i, cur); ++i)
    {
    {
      if (cur == NULL)
      if (cur == NULL)
        continue;
        continue;
 
 
#define REMAP(REG) \
#define REMAP(REG) \
        (REG) = VEC_index (eh_region, cfun->eh->region_array, \
        (REG) = VEC_index (eh_region, cfun->eh->region_array, \
                           (REG)->region_number + eh_offset)
                           (REG)->region_number + eh_offset)
 
 
      switch (cur->type)
      switch (cur->type)
        {
        {
        case ERT_TRY:
        case ERT_TRY:
          if (cur->u.try.catch)
          if (cur->u.try.catch)
            REMAP (cur->u.try.catch);
            REMAP (cur->u.try.catch);
          if (cur->u.try.last_catch)
          if (cur->u.try.last_catch)
            REMAP (cur->u.try.last_catch);
            REMAP (cur->u.try.last_catch);
          break;
          break;
 
 
        case ERT_CATCH:
        case ERT_CATCH:
          if (cur->u.catch.next_catch)
          if (cur->u.catch.next_catch)
            REMAP (cur->u.catch.next_catch);
            REMAP (cur->u.catch.next_catch);
          if (cur->u.catch.prev_catch)
          if (cur->u.catch.prev_catch)
            REMAP (cur->u.catch.prev_catch);
            REMAP (cur->u.catch.prev_catch);
          break;
          break;
 
 
        case ERT_CLEANUP:
        case ERT_CLEANUP:
          if (cur->u.cleanup.prev_try)
          if (cur->u.cleanup.prev_try)
            REMAP (cur->u.cleanup.prev_try);
            REMAP (cur->u.cleanup.prev_try);
          else
          else
            cur->u.cleanup.prev_try = prev_try;
            cur->u.cleanup.prev_try = prev_try;
          break;
          break;
 
 
        default:
        default:
          break;
          break;
        }
        }
 
 
#undef REMAP
#undef REMAP
    }
    }
 
 
  return eh_offset;
  return eh_offset;
}
}
 
 
/* Return true if REGION_A is outer to REGION_B in IFUN.  */
/* Return true if REGION_A is outer to REGION_B in IFUN.  */
 
 
bool
bool
eh_region_outer_p (struct function *ifun, int region_a, int region_b)
eh_region_outer_p (struct function *ifun, int region_a, int region_b)
{
{
  struct eh_region *rp_a, *rp_b;
  struct eh_region *rp_a, *rp_b;
 
 
  gcc_assert (ifun->eh->last_region_number > 0);
  gcc_assert (ifun->eh->last_region_number > 0);
  gcc_assert (ifun->eh->region_tree);
  gcc_assert (ifun->eh->region_tree);
 
 
  rp_a = VEC_index (eh_region, ifun->eh->region_array, region_a);
  rp_a = VEC_index (eh_region, ifun->eh->region_array, region_a);
  rp_b = VEC_index (eh_region, ifun->eh->region_array, region_b);
  rp_b = VEC_index (eh_region, ifun->eh->region_array, region_b);
  gcc_assert (rp_a != NULL);
  gcc_assert (rp_a != NULL);
  gcc_assert (rp_b != NULL);
  gcc_assert (rp_b != NULL);
 
 
  do
  do
    {
    {
      if (rp_a == rp_b)
      if (rp_a == rp_b)
        return true;
        return true;
      rp_b = rp_b->outer;
      rp_b = rp_b->outer;
    }
    }
  while (rp_b);
  while (rp_b);
 
 
  return false;
  return false;
}
}
 
 
/* Return region number of region that is outer to both if REGION_A and
/* Return region number of region that is outer to both if REGION_A and
   REGION_B in IFUN.  */
   REGION_B in IFUN.  */
 
 
int
int
eh_region_outermost (struct function *ifun, int region_a, int region_b)
eh_region_outermost (struct function *ifun, int region_a, int region_b)
{
{
  struct eh_region *rp_a, *rp_b;
  struct eh_region *rp_a, *rp_b;
  sbitmap b_outer;
  sbitmap b_outer;
 
 
  gcc_assert (ifun->eh->last_region_number > 0);
  gcc_assert (ifun->eh->last_region_number > 0);
  gcc_assert (ifun->eh->region_tree);
  gcc_assert (ifun->eh->region_tree);
 
 
  rp_a = VEC_index (eh_region, ifun->eh->region_array, region_a);
  rp_a = VEC_index (eh_region, ifun->eh->region_array, region_a);
  rp_b = VEC_index (eh_region, ifun->eh->region_array, region_b);
  rp_b = VEC_index (eh_region, ifun->eh->region_array, region_b);
  gcc_assert (rp_a != NULL);
  gcc_assert (rp_a != NULL);
  gcc_assert (rp_b != NULL);
  gcc_assert (rp_b != NULL);
 
 
  b_outer = sbitmap_alloc (ifun->eh->last_region_number + 1);
  b_outer = sbitmap_alloc (ifun->eh->last_region_number + 1);
  sbitmap_zero (b_outer);
  sbitmap_zero (b_outer);
 
 
  do
  do
    {
    {
      SET_BIT (b_outer, rp_b->region_number);
      SET_BIT (b_outer, rp_b->region_number);
      rp_b = rp_b->outer;
      rp_b = rp_b->outer;
    }
    }
  while (rp_b);
  while (rp_b);
 
 
  do
  do
    {
    {
      if (TEST_BIT (b_outer, rp_a->region_number))
      if (TEST_BIT (b_outer, rp_a->region_number))
        {
        {
          sbitmap_free (b_outer);
          sbitmap_free (b_outer);
          return rp_a->region_number;
          return rp_a->region_number;
        }
        }
      rp_a = rp_a->outer;
      rp_a = rp_a->outer;
    }
    }
  while (rp_a);
  while (rp_a);
 
 
  sbitmap_free (b_outer);
  sbitmap_free (b_outer);
  return -1;
  return -1;
}
}


static int
static int
t2r_eq (const void *pentry, const void *pdata)
t2r_eq (const void *pentry, const void *pdata)
{
{
  tree entry = (tree) pentry;
  tree entry = (tree) pentry;
  tree data = (tree) pdata;
  tree data = (tree) pdata;
 
 
  return TREE_PURPOSE (entry) == data;
  return TREE_PURPOSE (entry) == data;
}
}
 
 
static hashval_t
static hashval_t
t2r_hash (const void *pentry)
t2r_hash (const void *pentry)
{
{
  tree entry = (tree) pentry;
  tree entry = (tree) pentry;
  return TREE_HASH (TREE_PURPOSE (entry));
  return TREE_HASH (TREE_PURPOSE (entry));
}
}
 
 
static void
static void
add_type_for_runtime (tree type)
add_type_for_runtime (tree type)
{
{
  tree *slot;
  tree *slot;
 
 
  slot = (tree *) htab_find_slot_with_hash (type_to_runtime_map, type,
  slot = (tree *) htab_find_slot_with_hash (type_to_runtime_map, type,
                                            TREE_HASH (type), INSERT);
                                            TREE_HASH (type), INSERT);
  if (*slot == NULL)
  if (*slot == NULL)
    {
    {
      tree runtime = (*lang_eh_runtime_type) (type);
      tree runtime = (*lang_eh_runtime_type) (type);
      *slot = tree_cons (type, runtime, NULL_TREE);
      *slot = tree_cons (type, runtime, NULL_TREE);
    }
    }
}
}
 
 
static tree
static tree
lookup_type_for_runtime (tree type)
lookup_type_for_runtime (tree type)
{
{
  tree *slot;
  tree *slot;
 
 
  slot = (tree *) htab_find_slot_with_hash (type_to_runtime_map, type,
  slot = (tree *) htab_find_slot_with_hash (type_to_runtime_map, type,
                                            TREE_HASH (type), NO_INSERT);
                                            TREE_HASH (type), NO_INSERT);
 
 
  /* We should have always inserted the data earlier.  */
  /* We should have always inserted the data earlier.  */
  return TREE_VALUE (*slot);
  return TREE_VALUE (*slot);
}
}
 
 


/* Represent an entry in @TTypes for either catch actions
/* Represent an entry in @TTypes for either catch actions
   or exception filter actions.  */
   or exception filter actions.  */
struct ttypes_filter GTY(())
struct ttypes_filter GTY(())
{
{
  tree t;
  tree t;
  int filter;
  int filter;
};
};
 
 
/* Compare ENTRY (a ttypes_filter entry in the hash table) with DATA
/* Compare ENTRY (a ttypes_filter entry in the hash table) with DATA
   (a tree) for a @TTypes type node we are thinking about adding.  */
   (a tree) for a @TTypes type node we are thinking about adding.  */
 
 
static int
static int
ttypes_filter_eq (const void *pentry, const void *pdata)
ttypes_filter_eq (const void *pentry, const void *pdata)
{
{
  const struct ttypes_filter *entry = (const struct ttypes_filter *) pentry;
  const struct ttypes_filter *entry = (const struct ttypes_filter *) pentry;
  tree data = (tree) pdata;
  tree data = (tree) pdata;
 
 
  return entry->t == data;
  return entry->t == data;
}
}
 
 
static hashval_t
static hashval_t
ttypes_filter_hash (const void *pentry)
ttypes_filter_hash (const void *pentry)
{
{
  const struct ttypes_filter *entry = (const struct ttypes_filter *) pentry;
  const struct ttypes_filter *entry = (const struct ttypes_filter *) pentry;
  return TREE_HASH (entry->t);
  return TREE_HASH (entry->t);
}
}
 
 
/* Compare ENTRY with DATA (both struct ttypes_filter) for a @TTypes
/* Compare ENTRY with DATA (both struct ttypes_filter) for a @TTypes
   exception specification list we are thinking about adding.  */
   exception specification list we are thinking about adding.  */
/* ??? Currently we use the type lists in the order given.  Someone
/* ??? Currently we use the type lists in the order given.  Someone
   should put these in some canonical order.  */
   should put these in some canonical order.  */
 
 
static int
static int
ehspec_filter_eq (const void *pentry, const void *pdata)
ehspec_filter_eq (const void *pentry, const void *pdata)
{
{
  const struct ttypes_filter *entry = (const struct ttypes_filter *) pentry;
  const struct ttypes_filter *entry = (const struct ttypes_filter *) pentry;
  const struct ttypes_filter *data = (const struct ttypes_filter *) pdata;
  const struct ttypes_filter *data = (const struct ttypes_filter *) pdata;
 
 
  return type_list_equal (entry->t, data->t);
  return type_list_equal (entry->t, data->t);
}
}
 
 
/* Hash function for exception specification lists.  */
/* Hash function for exception specification lists.  */
 
 
static hashval_t
static hashval_t
ehspec_filter_hash (const void *pentry)
ehspec_filter_hash (const void *pentry)
{
{
  const struct ttypes_filter *entry = (const struct ttypes_filter *) pentry;
  const struct ttypes_filter *entry = (const struct ttypes_filter *) pentry;
  hashval_t h = 0;
  hashval_t h = 0;
  tree list;
  tree list;
 
 
  for (list = entry->t; list ; list = TREE_CHAIN (list))
  for (list = entry->t; list ; list = TREE_CHAIN (list))
    h = (h << 5) + (h >> 27) + TREE_HASH (TREE_VALUE (list));
    h = (h << 5) + (h >> 27) + TREE_HASH (TREE_VALUE (list));
  return h;
  return h;
}
}
 
 
/* Add TYPE (which may be NULL) to cfun->eh->ttype_data, using TYPES_HASH
/* Add TYPE (which may be NULL) to cfun->eh->ttype_data, using TYPES_HASH
   to speed up the search.  Return the filter value to be used.  */
   to speed up the search.  Return the filter value to be used.  */
 
 
static int
static int
add_ttypes_entry (htab_t ttypes_hash, tree type)
add_ttypes_entry (htab_t ttypes_hash, tree type)
{
{
  struct ttypes_filter **slot, *n;
  struct ttypes_filter **slot, *n;
 
 
  slot = (struct ttypes_filter **)
  slot = (struct ttypes_filter **)
    htab_find_slot_with_hash (ttypes_hash, type, TREE_HASH (type), INSERT);
    htab_find_slot_with_hash (ttypes_hash, type, TREE_HASH (type), INSERT);
 
 
  if ((n = *slot) == NULL)
  if ((n = *slot) == NULL)
    {
    {
      /* Filter value is a 1 based table index.  */
      /* Filter value is a 1 based table index.  */
 
 
      n = XNEW (struct ttypes_filter);
      n = XNEW (struct ttypes_filter);
      n->t = type;
      n->t = type;
      n->filter = VEC_length (tree, cfun->eh->ttype_data) + 1;
      n->filter = VEC_length (tree, cfun->eh->ttype_data) + 1;
      *slot = n;
      *slot = n;
 
 
      VEC_safe_push (tree, gc, cfun->eh->ttype_data, type);
      VEC_safe_push (tree, gc, cfun->eh->ttype_data, type);
    }
    }
 
 
  return n->filter;
  return n->filter;
}
}
 
 
/* Add LIST to cfun->eh->ehspec_data, using EHSPEC_HASH and TYPES_HASH
/* Add LIST to cfun->eh->ehspec_data, using EHSPEC_HASH and TYPES_HASH
   to speed up the search.  Return the filter value to be used.  */
   to speed up the search.  Return the filter value to be used.  */
 
 
static int
static int
add_ehspec_entry (htab_t ehspec_hash, htab_t ttypes_hash, tree list)
add_ehspec_entry (htab_t ehspec_hash, htab_t ttypes_hash, tree list)
{
{
  struct ttypes_filter **slot, *n;
  struct ttypes_filter **slot, *n;
  struct ttypes_filter dummy;
  struct ttypes_filter dummy;
 
 
  dummy.t = list;
  dummy.t = list;
  slot = (struct ttypes_filter **)
  slot = (struct ttypes_filter **)
    htab_find_slot (ehspec_hash, &dummy, INSERT);
    htab_find_slot (ehspec_hash, &dummy, INSERT);
 
 
  if ((n = *slot) == NULL)
  if ((n = *slot) == NULL)
    {
    {
      /* Filter value is a -1 based byte index into a uleb128 buffer.  */
      /* Filter value is a -1 based byte index into a uleb128 buffer.  */
 
 
      n = XNEW (struct ttypes_filter);
      n = XNEW (struct ttypes_filter);
      n->t = list;
      n->t = list;
      n->filter = -(VARRAY_ACTIVE_SIZE (cfun->eh->ehspec_data) + 1);
      n->filter = -(VARRAY_ACTIVE_SIZE (cfun->eh->ehspec_data) + 1);
      *slot = n;
      *slot = n;
 
 
      /* Generate a 0 terminated list of filter values.  */
      /* Generate a 0 terminated list of filter values.  */
      for (; list ; list = TREE_CHAIN (list))
      for (; list ; list = TREE_CHAIN (list))
        {
        {
          if (targetm.arm_eabi_unwinder)
          if (targetm.arm_eabi_unwinder)
            VARRAY_PUSH_TREE (cfun->eh->ehspec_data, TREE_VALUE (list));
            VARRAY_PUSH_TREE (cfun->eh->ehspec_data, TREE_VALUE (list));
          else
          else
            {
            {
              /* Look up each type in the list and encode its filter
              /* Look up each type in the list and encode its filter
                 value as a uleb128.  */
                 value as a uleb128.  */
              push_uleb128 (&cfun->eh->ehspec_data,
              push_uleb128 (&cfun->eh->ehspec_data,
                  add_ttypes_entry (ttypes_hash, TREE_VALUE (list)));
                  add_ttypes_entry (ttypes_hash, TREE_VALUE (list)));
            }
            }
        }
        }
      if (targetm.arm_eabi_unwinder)
      if (targetm.arm_eabi_unwinder)
        VARRAY_PUSH_TREE (cfun->eh->ehspec_data, NULL_TREE);
        VARRAY_PUSH_TREE (cfun->eh->ehspec_data, NULL_TREE);
      else
      else
        VARRAY_PUSH_UCHAR (cfun->eh->ehspec_data, 0);
        VARRAY_PUSH_UCHAR (cfun->eh->ehspec_data, 0);
    }
    }
 
 
  return n->filter;
  return n->filter;
}
}
 
 
/* Generate the action filter values to be used for CATCH and
/* Generate the action filter values to be used for CATCH and
   ALLOWED_EXCEPTIONS regions.  When using dwarf2 exception regions,
   ALLOWED_EXCEPTIONS regions.  When using dwarf2 exception regions,
   we use lots of landing pads, and so every type or list can share
   we use lots of landing pads, and so every type or list can share
   the same filter value, which saves table space.  */
   the same filter value, which saves table space.  */
 
 
static void
static void
assign_filter_values (void)
assign_filter_values (void)
{
{
  int i;
  int i;
  htab_t ttypes, ehspec;
  htab_t ttypes, ehspec;
 
 
  cfun->eh->ttype_data = VEC_alloc (tree, gc, 16);
  cfun->eh->ttype_data = VEC_alloc (tree, gc, 16);
  if (targetm.arm_eabi_unwinder)
  if (targetm.arm_eabi_unwinder)
    VARRAY_TREE_INIT (cfun->eh->ehspec_data, 64, "ehspec_data");
    VARRAY_TREE_INIT (cfun->eh->ehspec_data, 64, "ehspec_data");
  else
  else
    VARRAY_UCHAR_INIT (cfun->eh->ehspec_data, 64, "ehspec_data");
    VARRAY_UCHAR_INIT (cfun->eh->ehspec_data, 64, "ehspec_data");
 
 
  ttypes = htab_create (31, ttypes_filter_hash, ttypes_filter_eq, free);
  ttypes = htab_create (31, ttypes_filter_hash, ttypes_filter_eq, free);
  ehspec = htab_create (31, ehspec_filter_hash, ehspec_filter_eq, free);
  ehspec = htab_create (31, ehspec_filter_hash, ehspec_filter_eq, free);
 
 
  for (i = cfun->eh->last_region_number; i > 0; --i)
  for (i = cfun->eh->last_region_number; i > 0; --i)
    {
    {
      struct eh_region *r;
      struct eh_region *r;
 
 
      r = VEC_index (eh_region, cfun->eh->region_array, i);
      r = VEC_index (eh_region, cfun->eh->region_array, i);
 
 
      /* Mind we don't process a region more than once.  */
      /* Mind we don't process a region more than once.  */
      if (!r || r->region_number != i)
      if (!r || r->region_number != i)
        continue;
        continue;
 
 
      switch (r->type)
      switch (r->type)
        {
        {
        case ERT_CATCH:
        case ERT_CATCH:
          /* Whatever type_list is (NULL or true list), we build a list
          /* Whatever type_list is (NULL or true list), we build a list
             of filters for the region.  */
             of filters for the region.  */
          r->u.catch.filter_list = NULL_TREE;
          r->u.catch.filter_list = NULL_TREE;
 
 
          if (r->u.catch.type_list != NULL)
          if (r->u.catch.type_list != NULL)
            {
            {
              /* Get a filter value for each of the types caught and store
              /* Get a filter value for each of the types caught and store
                 them in the region's dedicated list.  */
                 them in the region's dedicated list.  */
              tree tp_node = r->u.catch.type_list;
              tree tp_node = r->u.catch.type_list;
 
 
              for (;tp_node; tp_node = TREE_CHAIN (tp_node))
              for (;tp_node; tp_node = TREE_CHAIN (tp_node))
                {
                {
                  int flt = add_ttypes_entry (ttypes, TREE_VALUE (tp_node));
                  int flt = add_ttypes_entry (ttypes, TREE_VALUE (tp_node));
                  tree flt_node = build_int_cst (NULL_TREE, flt);
                  tree flt_node = build_int_cst (NULL_TREE, flt);
 
 
                  r->u.catch.filter_list
                  r->u.catch.filter_list
                    = tree_cons (NULL_TREE, flt_node, r->u.catch.filter_list);
                    = tree_cons (NULL_TREE, flt_node, r->u.catch.filter_list);
                }
                }
            }
            }
          else
          else
            {
            {
              /* Get a filter value for the NULL list also since it will need
              /* Get a filter value for the NULL list also since it will need
                 an action record anyway.  */
                 an action record anyway.  */
              int flt = add_ttypes_entry (ttypes, NULL);
              int flt = add_ttypes_entry (ttypes, NULL);
              tree flt_node = build_int_cst (NULL_TREE, flt);
              tree flt_node = build_int_cst (NULL_TREE, flt);
 
 
              r->u.catch.filter_list
              r->u.catch.filter_list
                = tree_cons (NULL_TREE, flt_node, r->u.catch.filter_list);
                = tree_cons (NULL_TREE, flt_node, r->u.catch.filter_list);
            }
            }
 
 
          break;
          break;
 
 
        case ERT_ALLOWED_EXCEPTIONS:
        case ERT_ALLOWED_EXCEPTIONS:
          r->u.allowed.filter
          r->u.allowed.filter
            = add_ehspec_entry (ehspec, ttypes, r->u.allowed.type_list);
            = add_ehspec_entry (ehspec, ttypes, r->u.allowed.type_list);
          break;
          break;
 
 
        default:
        default:
          break;
          break;
        }
        }
    }
    }
 
 
  htab_delete (ttypes);
  htab_delete (ttypes);
  htab_delete (ehspec);
  htab_delete (ehspec);
}
}
 
 
/* Emit SEQ into basic block just before INSN (that is assumed to be
/* Emit SEQ into basic block just before INSN (that is assumed to be
   first instruction of some existing BB and return the newly
   first instruction of some existing BB and return the newly
   produced block.  */
   produced block.  */
static basic_block
static basic_block
emit_to_new_bb_before (rtx seq, rtx insn)
emit_to_new_bb_before (rtx seq, rtx insn)
{
{
  rtx last;
  rtx last;
  basic_block bb;
  basic_block bb;
  edge e;
  edge e;
  edge_iterator ei;
  edge_iterator ei;
 
 
  /* If there happens to be a fallthru edge (possibly created by cleanup_cfg
  /* If there happens to be a fallthru edge (possibly created by cleanup_cfg
     call), we don't want it to go into newly created landing pad or other EH
     call), we don't want it to go into newly created landing pad or other EH
     construct.  */
     construct.  */
  for (ei = ei_start (BLOCK_FOR_INSN (insn)->preds); (e = ei_safe_edge (ei)); )
  for (ei = ei_start (BLOCK_FOR_INSN (insn)->preds); (e = ei_safe_edge (ei)); )
    if (e->flags & EDGE_FALLTHRU)
    if (e->flags & EDGE_FALLTHRU)
      force_nonfallthru (e);
      force_nonfallthru (e);
    else
    else
      ei_next (&ei);
      ei_next (&ei);
  last = emit_insn_before (seq, insn);
  last = emit_insn_before (seq, insn);
  if (BARRIER_P (last))
  if (BARRIER_P (last))
    last = PREV_INSN (last);
    last = PREV_INSN (last);
  bb = create_basic_block (seq, last, BLOCK_FOR_INSN (insn)->prev_bb);
  bb = create_basic_block (seq, last, BLOCK_FOR_INSN (insn)->prev_bb);
  update_bb_for_insn (bb);
  update_bb_for_insn (bb);
  bb->flags |= BB_SUPERBLOCK;
  bb->flags |= BB_SUPERBLOCK;
  return bb;
  return bb;
}
}
 
 
/* Generate the code to actually handle exceptions, which will follow the
/* Generate the code to actually handle exceptions, which will follow the
   landing pads.  */
   landing pads.  */
 
 
static void
static void
build_post_landing_pads (void)
build_post_landing_pads (void)
{
{
  int i;
  int i;
 
 
  for (i = cfun->eh->last_region_number; i > 0; --i)
  for (i = cfun->eh->last_region_number; i > 0; --i)
    {
    {
      struct eh_region *region;
      struct eh_region *region;
      rtx seq;
      rtx seq;
 
 
      region = VEC_index (eh_region, cfun->eh->region_array, i);
      region = VEC_index (eh_region, cfun->eh->region_array, i);
      /* Mind we don't process a region more than once.  */
      /* Mind we don't process a region more than once.  */
      if (!region || region->region_number != i)
      if (!region || region->region_number != i)
        continue;
        continue;
 
 
      switch (region->type)
      switch (region->type)
        {
        {
        case ERT_TRY:
        case ERT_TRY:
          /* ??? Collect the set of all non-overlapping catch handlers
          /* ??? Collect the set of all non-overlapping catch handlers
               all the way up the chain until blocked by a cleanup.  */
               all the way up the chain until blocked by a cleanup.  */
          /* ??? Outer try regions can share landing pads with inner
          /* ??? Outer try regions can share landing pads with inner
             try regions if the types are completely non-overlapping,
             try regions if the types are completely non-overlapping,
             and there are no intervening cleanups.  */
             and there are no intervening cleanups.  */
 
 
          region->post_landing_pad = gen_label_rtx ();
          region->post_landing_pad = gen_label_rtx ();
 
 
          start_sequence ();
          start_sequence ();
 
 
          emit_label (region->post_landing_pad);
          emit_label (region->post_landing_pad);
 
 
          /* ??? It is mighty inconvenient to call back into the
          /* ??? It is mighty inconvenient to call back into the
             switch statement generation code in expand_end_case.
             switch statement generation code in expand_end_case.
             Rapid prototyping sez a sequence of ifs.  */
             Rapid prototyping sez a sequence of ifs.  */
          {
          {
            struct eh_region *c;
            struct eh_region *c;
            for (c = region->u.try.catch; c ; c = c->u.catch.next_catch)
            for (c = region->u.try.catch; c ; c = c->u.catch.next_catch)
              {
              {
                if (c->u.catch.type_list == NULL)
                if (c->u.catch.type_list == NULL)
                  emit_jump (c->label);
                  emit_jump (c->label);
                else
                else
                  {
                  {
                    /* Need for one cmp/jump per type caught. Each type
                    /* Need for one cmp/jump per type caught. Each type
                       list entry has a matching entry in the filter list
                       list entry has a matching entry in the filter list
                       (see assign_filter_values).  */
                       (see assign_filter_values).  */
                    tree tp_node = c->u.catch.type_list;
                    tree tp_node = c->u.catch.type_list;
                    tree flt_node = c->u.catch.filter_list;
                    tree flt_node = c->u.catch.filter_list;
 
 
                    for (; tp_node; )
                    for (; tp_node; )
                      {
                      {
                        emit_cmp_and_jump_insns
                        emit_cmp_and_jump_insns
                          (cfun->eh->filter,
                          (cfun->eh->filter,
                           GEN_INT (tree_low_cst (TREE_VALUE (flt_node), 0)),
                           GEN_INT (tree_low_cst (TREE_VALUE (flt_node), 0)),
                           EQ, NULL_RTX,
                           EQ, NULL_RTX,
                           targetm.eh_return_filter_mode (), 0, c->label);
                           targetm.eh_return_filter_mode (), 0, c->label);
 
 
                        tp_node = TREE_CHAIN (tp_node);
                        tp_node = TREE_CHAIN (tp_node);
                        flt_node = TREE_CHAIN (flt_node);
                        flt_node = TREE_CHAIN (flt_node);
                      }
                      }
                  }
                  }
              }
              }
          }
          }
 
 
          /* We delay the generation of the _Unwind_Resume until we generate
          /* We delay the generation of the _Unwind_Resume until we generate
             landing pads.  We emit a marker here so as to get good control
             landing pads.  We emit a marker here so as to get good control
             flow data in the meantime.  */
             flow data in the meantime.  */
          region->resume
          region->resume
            = emit_jump_insn (gen_rtx_RESX (VOIDmode, region->region_number));
            = emit_jump_insn (gen_rtx_RESX (VOIDmode, region->region_number));
          emit_barrier ();
          emit_barrier ();
 
 
          seq = get_insns ();
          seq = get_insns ();
          end_sequence ();
          end_sequence ();
 
 
          emit_to_new_bb_before (seq, region->u.try.catch->label);
          emit_to_new_bb_before (seq, region->u.try.catch->label);
 
 
          break;
          break;
 
 
        case ERT_ALLOWED_EXCEPTIONS:
        case ERT_ALLOWED_EXCEPTIONS:
          region->post_landing_pad = gen_label_rtx ();
          region->post_landing_pad = gen_label_rtx ();
 
 
          start_sequence ();
          start_sequence ();
 
 
          emit_label (region->post_landing_pad);
          emit_label (region->post_landing_pad);
 
 
          emit_cmp_and_jump_insns (cfun->eh->filter,
          emit_cmp_and_jump_insns (cfun->eh->filter,
                                   GEN_INT (region->u.allowed.filter),
                                   GEN_INT (region->u.allowed.filter),
                                   EQ, NULL_RTX,
                                   EQ, NULL_RTX,
                                   targetm.eh_return_filter_mode (), 0, region->label);
                                   targetm.eh_return_filter_mode (), 0, region->label);
 
 
          /* We delay the generation of the _Unwind_Resume until we generate
          /* We delay the generation of the _Unwind_Resume until we generate
             landing pads.  We emit a marker here so as to get good control
             landing pads.  We emit a marker here so as to get good control
             flow data in the meantime.  */
             flow data in the meantime.  */
          region->resume
          region->resume
            = emit_jump_insn (gen_rtx_RESX (VOIDmode, region->region_number));
            = emit_jump_insn (gen_rtx_RESX (VOIDmode, region->region_number));
          emit_barrier ();
          emit_barrier ();
 
 
          seq = get_insns ();
          seq = get_insns ();
          end_sequence ();
          end_sequence ();
 
 
          emit_to_new_bb_before (seq, region->label);
          emit_to_new_bb_before (seq, region->label);
          break;
          break;
 
 
        case ERT_CLEANUP:
        case ERT_CLEANUP:
        case ERT_MUST_NOT_THROW:
        case ERT_MUST_NOT_THROW:
          region->post_landing_pad = region->label;
          region->post_landing_pad = region->label;
          break;
          break;
 
 
        case ERT_CATCH:
        case ERT_CATCH:
        case ERT_THROW:
        case ERT_THROW:
          /* Nothing to do.  */
          /* Nothing to do.  */
          break;
          break;
 
 
        default:
        default:
          gcc_unreachable ();
          gcc_unreachable ();
        }
        }
    }
    }
}
}
 
 
/* Replace RESX patterns with jumps to the next handler if any, or calls to
/* Replace RESX patterns with jumps to the next handler if any, or calls to
   _Unwind_Resume otherwise.  */
   _Unwind_Resume otherwise.  */
 
 
static void
static void
connect_post_landing_pads (void)
connect_post_landing_pads (void)
{
{
  int i;
  int i;
 
 
  for (i = cfun->eh->last_region_number; i > 0; --i)
  for (i = cfun->eh->last_region_number; i > 0; --i)
    {
    {
      struct eh_region *region;
      struct eh_region *region;
      struct eh_region *outer;
      struct eh_region *outer;
      rtx seq;
      rtx seq;
      rtx barrier;
      rtx barrier;
 
 
      region = VEC_index (eh_region, cfun->eh->region_array, i);
      region = VEC_index (eh_region, cfun->eh->region_array, i);
      /* Mind we don't process a region more than once.  */
      /* Mind we don't process a region more than once.  */
      if (!region || region->region_number != i)
      if (!region || region->region_number != i)
        continue;
        continue;
 
 
      /* If there is no RESX, or it has been deleted by flow, there's
      /* If there is no RESX, or it has been deleted by flow, there's
         nothing to fix up.  */
         nothing to fix up.  */
      if (! region->resume || INSN_DELETED_P (region->resume))
      if (! region->resume || INSN_DELETED_P (region->resume))
        continue;
        continue;
 
 
      /* Search for another landing pad in this function.  */
      /* Search for another landing pad in this function.  */
      for (outer = region->outer; outer ; outer = outer->outer)
      for (outer = region->outer; outer ; outer = outer->outer)
        if (outer->post_landing_pad)
        if (outer->post_landing_pad)
          break;
          break;
 
 
      start_sequence ();
      start_sequence ();
 
 
      if (outer)
      if (outer)
        {
        {
          edge e;
          edge e;
          basic_block src, dest;
          basic_block src, dest;
 
 
          emit_jump (outer->post_landing_pad);
          emit_jump (outer->post_landing_pad);
          src = BLOCK_FOR_INSN (region->resume);
          src = BLOCK_FOR_INSN (region->resume);
          dest = BLOCK_FOR_INSN (outer->post_landing_pad);
          dest = BLOCK_FOR_INSN (outer->post_landing_pad);
          while (EDGE_COUNT (src->succs) > 0)
          while (EDGE_COUNT (src->succs) > 0)
            remove_edge (EDGE_SUCC (src, 0));
            remove_edge (EDGE_SUCC (src, 0));
          e = make_edge (src, dest, 0);
          e = make_edge (src, dest, 0);
          e->probability = REG_BR_PROB_BASE;
          e->probability = REG_BR_PROB_BASE;
          e->count = src->count;
          e->count = src->count;
        }
        }
      else
      else
        {
        {
          emit_library_call (unwind_resume_libfunc, LCT_THROW,
          emit_library_call (unwind_resume_libfunc, LCT_THROW,
                             VOIDmode, 1, cfun->eh->exc_ptr, ptr_mode);
                             VOIDmode, 1, cfun->eh->exc_ptr, ptr_mode);
 
 
          /* What we just emitted was a throwing libcall, so it got a
          /* What we just emitted was a throwing libcall, so it got a
             barrier automatically added after it.  If the last insn in
             barrier automatically added after it.  If the last insn in
             the libcall sequence isn't the barrier, it's because the
             the libcall sequence isn't the barrier, it's because the
             target emits multiple insns for a call, and there are insns
             target emits multiple insns for a call, and there are insns
             after the actual call insn (which are redundant and would be
             after the actual call insn (which are redundant and would be
             optimized away).  The barrier is inserted exactly after the
             optimized away).  The barrier is inserted exactly after the
             call insn, so let's go get that and delete the insns after
             call insn, so let's go get that and delete the insns after
             it, because below we need the barrier to be the last insn in
             it, because below we need the barrier to be the last insn in
             the sequence.  */
             the sequence.  */
          delete_insns_since (NEXT_INSN (last_call_insn ()));
          delete_insns_since (NEXT_INSN (last_call_insn ()));
        }
        }
 
 
      seq = get_insns ();
      seq = get_insns ();
      end_sequence ();
      end_sequence ();
      barrier = emit_insn_before (seq, region->resume);
      barrier = emit_insn_before (seq, region->resume);
      /* Avoid duplicate barrier.  */
      /* Avoid duplicate barrier.  */
      gcc_assert (BARRIER_P (barrier));
      gcc_assert (BARRIER_P (barrier));
      delete_insn (barrier);
      delete_insn (barrier);
      delete_insn (region->resume);
      delete_insn (region->resume);
 
 
      /* ??? From tree-ssa we can wind up with catch regions whose
      /* ??? From tree-ssa we can wind up with catch regions whose
         label is not instantiated, but whose resx is present.  Now
         label is not instantiated, but whose resx is present.  Now
         that we've dealt with the resx, kill the region.  */
         that we've dealt with the resx, kill the region.  */
      if (region->label == NULL && region->type == ERT_CLEANUP)
      if (region->label == NULL && region->type == ERT_CLEANUP)
        remove_eh_handler (region);
        remove_eh_handler (region);
    }
    }
}
}
 
 


static void
static void
dw2_build_landing_pads (void)
dw2_build_landing_pads (void)
{
{
  int i;
  int i;
 
 
  for (i = cfun->eh->last_region_number; i > 0; --i)
  for (i = cfun->eh->last_region_number; i > 0; --i)
    {
    {
      struct eh_region *region;
      struct eh_region *region;
      rtx seq;
      rtx seq;
      basic_block bb;
      basic_block bb;
      edge e;
      edge e;
 
 
      region = VEC_index (eh_region, cfun->eh->region_array, i);
      region = VEC_index (eh_region, cfun->eh->region_array, i);
      /* Mind we don't process a region more than once.  */
      /* Mind we don't process a region more than once.  */
      if (!region || region->region_number != i)
      if (!region || region->region_number != i)
        continue;
        continue;
 
 
      if (region->type != ERT_CLEANUP
      if (region->type != ERT_CLEANUP
          && region->type != ERT_TRY
          && region->type != ERT_TRY
          && region->type != ERT_ALLOWED_EXCEPTIONS)
          && region->type != ERT_ALLOWED_EXCEPTIONS)
        continue;
        continue;
 
 
      start_sequence ();
      start_sequence ();
 
 
      region->landing_pad = gen_label_rtx ();
      region->landing_pad = gen_label_rtx ();
      emit_label (region->landing_pad);
      emit_label (region->landing_pad);
 
 
#ifdef HAVE_exception_receiver
#ifdef HAVE_exception_receiver
      if (HAVE_exception_receiver)
      if (HAVE_exception_receiver)
        emit_insn (gen_exception_receiver ());
        emit_insn (gen_exception_receiver ());
      else
      else
#endif
#endif
#ifdef HAVE_nonlocal_goto_receiver
#ifdef HAVE_nonlocal_goto_receiver
        if (HAVE_nonlocal_goto_receiver)
        if (HAVE_nonlocal_goto_receiver)
          emit_insn (gen_nonlocal_goto_receiver ());
          emit_insn (gen_nonlocal_goto_receiver ());
        else
        else
#endif
#endif
          { /* Nothing */ }
          { /* Nothing */ }
 
 
      emit_move_insn (cfun->eh->exc_ptr,
      emit_move_insn (cfun->eh->exc_ptr,
                      gen_rtx_REG (ptr_mode, EH_RETURN_DATA_REGNO (0)));
                      gen_rtx_REG (ptr_mode, EH_RETURN_DATA_REGNO (0)));
      emit_move_insn (cfun->eh->filter,
      emit_move_insn (cfun->eh->filter,
                      gen_rtx_REG (targetm.eh_return_filter_mode (),
                      gen_rtx_REG (targetm.eh_return_filter_mode (),
                                   EH_RETURN_DATA_REGNO (1)));
                                   EH_RETURN_DATA_REGNO (1)));
 
 
      seq = get_insns ();
      seq = get_insns ();
      end_sequence ();
      end_sequence ();
 
 
      bb = emit_to_new_bb_before (seq, region->post_landing_pad);
      bb = emit_to_new_bb_before (seq, region->post_landing_pad);
      e = make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
      e = make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
      e->count = bb->count;
      e->count = bb->count;
      e->probability = REG_BR_PROB_BASE;
      e->probability = REG_BR_PROB_BASE;
    }
    }
}
}
 
 


struct sjlj_lp_info
struct sjlj_lp_info
{
{
  int directly_reachable;
  int directly_reachable;
  int action_index;
  int action_index;
  int dispatch_index;
  int dispatch_index;
  int call_site_index;
  int call_site_index;
};
};
 
 
static bool
static bool
sjlj_find_directly_reachable_regions (struct sjlj_lp_info *lp_info)
sjlj_find_directly_reachable_regions (struct sjlj_lp_info *lp_info)
{
{
  rtx insn;
  rtx insn;
  bool found_one = false;
  bool found_one = false;
 
 
  for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
  for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
    {
    {
      struct eh_region *region;
      struct eh_region *region;
      enum reachable_code rc;
      enum reachable_code rc;
      tree type_thrown;
      tree type_thrown;
      rtx note;
      rtx note;
 
 
      if (! INSN_P (insn))
      if (! INSN_P (insn))
        continue;
        continue;
 
 
      note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
      note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
      if (!note || INTVAL (XEXP (note, 0)) <= 0)
      if (!note || INTVAL (XEXP (note, 0)) <= 0)
        continue;
        continue;
 
 
      region = VEC_index (eh_region, cfun->eh->region_array, INTVAL (XEXP (note, 0)));
      region = VEC_index (eh_region, cfun->eh->region_array, INTVAL (XEXP (note, 0)));
 
 
      type_thrown = NULL_TREE;
      type_thrown = NULL_TREE;
      if (region->type == ERT_THROW)
      if (region->type == ERT_THROW)
        {
        {
          type_thrown = region->u.throw.type;
          type_thrown = region->u.throw.type;
          region = region->outer;
          region = region->outer;
        }
        }
 
 
      /* Find the first containing region that might handle the exception.
      /* Find the first containing region that might handle the exception.
         That's the landing pad to which we will transfer control.  */
         That's the landing pad to which we will transfer control.  */
      rc = RNL_NOT_CAUGHT;
      rc = RNL_NOT_CAUGHT;
      for (; region; region = region->outer)
      for (; region; region = region->outer)
        {
        {
          rc = reachable_next_level (region, type_thrown, NULL);
          rc = reachable_next_level (region, type_thrown, NULL);
          if (rc != RNL_NOT_CAUGHT)
          if (rc != RNL_NOT_CAUGHT)
            break;
            break;
        }
        }
      if (rc == RNL_MAYBE_CAUGHT || rc == RNL_CAUGHT)
      if (rc == RNL_MAYBE_CAUGHT || rc == RNL_CAUGHT)
        {
        {
          lp_info[region->region_number].directly_reachable = 1;
          lp_info[region->region_number].directly_reachable = 1;
          found_one = true;
          found_one = true;
        }
        }
    }
    }
 
 
  return found_one;
  return found_one;
}
}
 
 
static void
static void
sjlj_assign_call_site_values (rtx dispatch_label, struct sjlj_lp_info *lp_info)
sjlj_assign_call_site_values (rtx dispatch_label, struct sjlj_lp_info *lp_info)
{
{
  htab_t ar_hash;
  htab_t ar_hash;
  int i, index;
  int i, index;
 
 
  /* First task: build the action table.  */
  /* First task: build the action table.  */
 
 
  VARRAY_UCHAR_INIT (cfun->eh->action_record_data, 64, "action_record_data");
  VARRAY_UCHAR_INIT (cfun->eh->action_record_data, 64, "action_record_data");
  ar_hash = htab_create (31, action_record_hash, action_record_eq, free);
  ar_hash = htab_create (31, action_record_hash, action_record_eq, free);
 
 
  for (i = cfun->eh->last_region_number; i > 0; --i)
  for (i = cfun->eh->last_region_number; i > 0; --i)
    if (lp_info[i].directly_reachable)
    if (lp_info[i].directly_reachable)
      {
      {
        struct eh_region *r = VEC_index (eh_region, cfun->eh->region_array, i);
        struct eh_region *r = VEC_index (eh_region, cfun->eh->region_array, i);
 
 
        r->landing_pad = dispatch_label;
        r->landing_pad = dispatch_label;
        lp_info[i].action_index = collect_one_action_chain (ar_hash, r);
        lp_info[i].action_index = collect_one_action_chain (ar_hash, r);
        if (lp_info[i].action_index != -1)
        if (lp_info[i].action_index != -1)
          cfun->uses_eh_lsda = 1;
          cfun->uses_eh_lsda = 1;
      }
      }
 
 
  htab_delete (ar_hash);
  htab_delete (ar_hash);
 
 
  /* Next: assign dispatch values.  In dwarf2 terms, this would be the
  /* Next: assign dispatch values.  In dwarf2 terms, this would be the
     landing pad label for the region.  For sjlj though, there is one
     landing pad label for the region.  For sjlj though, there is one
     common landing pad from which we dispatch to the post-landing pads.
     common landing pad from which we dispatch to the post-landing pads.
 
 
     A region receives a dispatch index if it is directly reachable
     A region receives a dispatch index if it is directly reachable
     and requires in-function processing.  Regions that share post-landing
     and requires in-function processing.  Regions that share post-landing
     pads may share dispatch indices.  */
     pads may share dispatch indices.  */
  /* ??? Post-landing pad sharing doesn't actually happen at the moment
  /* ??? Post-landing pad sharing doesn't actually happen at the moment
     (see build_post_landing_pads) so we don't bother checking for it.  */
     (see build_post_landing_pads) so we don't bother checking for it.  */
 
 
  index = 0;
  index = 0;
  for (i = cfun->eh->last_region_number; i > 0; --i)
  for (i = cfun->eh->last_region_number; i > 0; --i)
    if (lp_info[i].directly_reachable)
    if (lp_info[i].directly_reachable)
      lp_info[i].dispatch_index = index++;
      lp_info[i].dispatch_index = index++;
 
 
  /* Finally: assign call-site values.  If dwarf2 terms, this would be
  /* Finally: assign call-site values.  If dwarf2 terms, this would be
     the region number assigned by convert_to_eh_region_ranges, but
     the region number assigned by convert_to_eh_region_ranges, but
     handles no-action and must-not-throw differently.  */
     handles no-action and must-not-throw differently.  */
 
 
  call_site_base = 1;
  call_site_base = 1;
  for (i = cfun->eh->last_region_number; i > 0; --i)
  for (i = cfun->eh->last_region_number; i > 0; --i)
    if (lp_info[i].directly_reachable)
    if (lp_info[i].directly_reachable)
      {
      {
        int action = lp_info[i].action_index;
        int action = lp_info[i].action_index;
 
 
        /* Map must-not-throw to otherwise unused call-site index 0.  */
        /* Map must-not-throw to otherwise unused call-site index 0.  */
        if (action == -2)
        if (action == -2)
          index = 0;
          index = 0;
        /* Map no-action to otherwise unused call-site index -1.  */
        /* Map no-action to otherwise unused call-site index -1.  */
        else if (action == -1)
        else if (action == -1)
          index = -1;
          index = -1;
        /* Otherwise, look it up in the table.  */
        /* Otherwise, look it up in the table.  */
        else
        else
          index = add_call_site (GEN_INT (lp_info[i].dispatch_index), action);
          index = add_call_site (GEN_INT (lp_info[i].dispatch_index), action);
 
 
        lp_info[i].call_site_index = index;
        lp_info[i].call_site_index = index;
      }
      }
}
}
 
 
static void
static void
sjlj_mark_call_sites (struct sjlj_lp_info *lp_info)
sjlj_mark_call_sites (struct sjlj_lp_info *lp_info)
{
{
  int last_call_site = -2;
  int last_call_site = -2;
  rtx insn, mem;
  rtx insn, mem;
 
 
  for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
  for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
    {
    {
      struct eh_region *region;
      struct eh_region *region;
      int this_call_site;
      int this_call_site;
      rtx note, before, p;
      rtx note, before, p;
 
 
      /* Reset value tracking at extended basic block boundaries.  */
      /* Reset value tracking at extended basic block boundaries.  */
      if (LABEL_P (insn))
      if (LABEL_P (insn))
        last_call_site = -2;
        last_call_site = -2;
 
 
      if (! INSN_P (insn))
      if (! INSN_P (insn))
        continue;
        continue;
 
 
      note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
      note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
      if (!note)
      if (!note)
        {
        {
          /* Calls (and trapping insns) without notes are outside any
          /* Calls (and trapping insns) without notes are outside any
             exception handling region in this function.  Mark them as
             exception handling region in this function.  Mark them as
             no action.  */
             no action.  */
          if (CALL_P (insn)
          if (CALL_P (insn)
              || (flag_non_call_exceptions
              || (flag_non_call_exceptions
                  && may_trap_p (PATTERN (insn))))
                  && may_trap_p (PATTERN (insn))))
            this_call_site = -1;
            this_call_site = -1;
          else
          else
            continue;
            continue;
        }
        }
      else
      else
        {
        {
          /* Calls that are known to not throw need not be marked.  */
          /* Calls that are known to not throw need not be marked.  */
          if (INTVAL (XEXP (note, 0)) <= 0)
          if (INTVAL (XEXP (note, 0)) <= 0)
            continue;
            continue;
 
 
          region = VEC_index (eh_region, cfun->eh->region_array, INTVAL (XEXP (note, 0)));
          region = VEC_index (eh_region, cfun->eh->region_array, INTVAL (XEXP (note, 0)));
          this_call_site = lp_info[region->region_number].call_site_index;
          this_call_site = lp_info[region->region_number].call_site_index;
        }
        }
 
 
      if (this_call_site == last_call_site)
      if (this_call_site == last_call_site)
        continue;
        continue;
 
 
      /* Don't separate a call from it's argument loads.  */
      /* Don't separate a call from it's argument loads.  */
      before = insn;
      before = insn;
      if (CALL_P (insn))
      if (CALL_P (insn))
        before = find_first_parameter_load (insn, NULL_RTX);
        before = find_first_parameter_load (insn, NULL_RTX);
 
 
      start_sequence ();
      start_sequence ();
      mem = adjust_address (cfun->eh->sjlj_fc, TYPE_MODE (integer_type_node),
      mem = adjust_address (cfun->eh->sjlj_fc, TYPE_MODE (integer_type_node),
                            sjlj_fc_call_site_ofs);
                            sjlj_fc_call_site_ofs);
      emit_move_insn (mem, GEN_INT (this_call_site));
      emit_move_insn (mem, GEN_INT (this_call_site));
      p = get_insns ();
      p = get_insns ();
      end_sequence ();
      end_sequence ();
 
 
      emit_insn_before (p, before);
      emit_insn_before (p, before);
      last_call_site = this_call_site;
      last_call_site = this_call_site;
    }
    }
}
}
 
 
/* Construct the SjLj_Function_Context.  */
/* Construct the SjLj_Function_Context.  */
 
 
static void
static void
sjlj_emit_function_enter (rtx dispatch_label)
sjlj_emit_function_enter (rtx dispatch_label)
{
{
  rtx fn_begin, fc, mem, seq;
  rtx fn_begin, fc, mem, seq;
  bool fn_begin_outside_block;
  bool fn_begin_outside_block;
 
 
  fc = cfun->eh->sjlj_fc;
  fc = cfun->eh->sjlj_fc;
 
 
  start_sequence ();
  start_sequence ();
 
 
  /* We're storing this libcall's address into memory instead of
  /* We're storing this libcall's address into memory instead of
     calling it directly.  Thus, we must call assemble_external_libcall
     calling it directly.  Thus, we must call assemble_external_libcall
     here, as we can not depend on emit_library_call to do it for us.  */
     here, as we can not depend on emit_library_call to do it for us.  */
  assemble_external_libcall (eh_personality_libfunc);
  assemble_external_libcall (eh_personality_libfunc);
  mem = adjust_address (fc, Pmode, sjlj_fc_personality_ofs);
  mem = adjust_address (fc, Pmode, sjlj_fc_personality_ofs);
  emit_move_insn (mem, eh_personality_libfunc);
  emit_move_insn (mem, eh_personality_libfunc);
 
 
  mem = adjust_address (fc, Pmode, sjlj_fc_lsda_ofs);
  mem = adjust_address (fc, Pmode, sjlj_fc_lsda_ofs);
  if (cfun->uses_eh_lsda)
  if (cfun->uses_eh_lsda)
    {
    {
      char buf[20];
      char buf[20];
      rtx sym;
      rtx sym;
 
 
      ASM_GENERATE_INTERNAL_LABEL (buf, "LLSDA", current_function_funcdef_no);
      ASM_GENERATE_INTERNAL_LABEL (buf, "LLSDA", current_function_funcdef_no);
      sym = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (buf));
      sym = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (buf));
      SYMBOL_REF_FLAGS (sym) = SYMBOL_FLAG_LOCAL;
      SYMBOL_REF_FLAGS (sym) = SYMBOL_FLAG_LOCAL;
      emit_move_insn (mem, sym);
      emit_move_insn (mem, sym);
    }
    }
  else
  else
    emit_move_insn (mem, const0_rtx);
    emit_move_insn (mem, const0_rtx);
 
 
#ifdef DONT_USE_BUILTIN_SETJMP
#ifdef DONT_USE_BUILTIN_SETJMP
  {
  {
    rtx x, note;
    rtx x, note;
    x = emit_library_call_value (setjmp_libfunc, NULL_RTX, LCT_RETURNS_TWICE,
    x = emit_library_call_value (setjmp_libfunc, NULL_RTX, LCT_RETURNS_TWICE,
                                 TYPE_MODE (integer_type_node), 1,
                                 TYPE_MODE (integer_type_node), 1,
                                 plus_constant (XEXP (fc, 0),
                                 plus_constant (XEXP (fc, 0),
                                                sjlj_fc_jbuf_ofs), Pmode);
                                                sjlj_fc_jbuf_ofs), Pmode);
 
 
    note = emit_note (NOTE_INSN_EXPECTED_VALUE);
    note = emit_note (NOTE_INSN_EXPECTED_VALUE);
    NOTE_EXPECTED_VALUE (note) = gen_rtx_EQ (VOIDmode, x, const0_rtx);
    NOTE_EXPECTED_VALUE (note) = gen_rtx_EQ (VOIDmode, x, const0_rtx);
 
 
    emit_cmp_and_jump_insns (x, const0_rtx, NE, 0,
    emit_cmp_and_jump_insns (x, const0_rtx, NE, 0,
                             TYPE_MODE (integer_type_node), 0, dispatch_label);
                             TYPE_MODE (integer_type_node), 0, dispatch_label);
  }
  }
#else
#else
  expand_builtin_setjmp_setup (plus_constant (XEXP (fc, 0), sjlj_fc_jbuf_ofs),
  expand_builtin_setjmp_setup (plus_constant (XEXP (fc, 0), sjlj_fc_jbuf_ofs),
                               dispatch_label);
                               dispatch_label);
#endif
#endif
 
 
  emit_library_call (unwind_sjlj_register_libfunc, LCT_NORMAL, VOIDmode,
  emit_library_call (unwind_sjlj_register_libfunc, LCT_NORMAL, VOIDmode,
                     1, XEXP (fc, 0), Pmode);
                     1, XEXP (fc, 0), Pmode);
 
 
  seq = get_insns ();
  seq = get_insns ();
  end_sequence ();
  end_sequence ();
 
 
  /* ??? Instead of doing this at the beginning of the function,
  /* ??? Instead of doing this at the beginning of the function,
     do this in a block that is at loop level 0 and dominates all
     do this in a block that is at loop level 0 and dominates all
     can_throw_internal instructions.  */
     can_throw_internal instructions.  */
 
 
  fn_begin_outside_block = true;
  fn_begin_outside_block = true;
  for (fn_begin = get_insns (); ; fn_begin = NEXT_INSN (fn_begin))
  for (fn_begin = get_insns (); ; fn_begin = NEXT_INSN (fn_begin))
    if (NOTE_P (fn_begin))
    if (NOTE_P (fn_begin))
      {
      {
        if (NOTE_LINE_NUMBER (fn_begin) == NOTE_INSN_FUNCTION_BEG)
        if (NOTE_LINE_NUMBER (fn_begin) == NOTE_INSN_FUNCTION_BEG)
          break;
          break;
        else if (NOTE_LINE_NUMBER (fn_begin) == NOTE_INSN_BASIC_BLOCK)
        else if (NOTE_LINE_NUMBER (fn_begin) == NOTE_INSN_BASIC_BLOCK)
          fn_begin_outside_block = false;
          fn_begin_outside_block = false;
      }
      }
 
 
  if (fn_begin_outside_block)
  if (fn_begin_outside_block)
    insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
    insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
  else
  else
    emit_insn_after (seq, fn_begin);
    emit_insn_after (seq, fn_begin);
}
}
 
 
/* Call back from expand_function_end to know where we should put
/* Call back from expand_function_end to know where we should put
   the call to unwind_sjlj_unregister_libfunc if needed.  */
   the call to unwind_sjlj_unregister_libfunc if needed.  */
 
 
void
void
sjlj_emit_function_exit_after (rtx after)
sjlj_emit_function_exit_after (rtx after)
{
{
  cfun->eh->sjlj_exit_after = after;
  cfun->eh->sjlj_exit_after = after;
}
}
 
 
static void
static void
sjlj_emit_function_exit (void)
sjlj_emit_function_exit (void)
{
{
  rtx seq;
  rtx seq;
  edge e;
  edge e;
  edge_iterator ei;
  edge_iterator ei;
 
 
  start_sequence ();
  start_sequence ();
 
 
  emit_library_call (unwind_sjlj_unregister_libfunc, LCT_NORMAL, VOIDmode,
  emit_library_call (unwind_sjlj_unregister_libfunc, LCT_NORMAL, VOIDmode,
                     1, XEXP (cfun->eh->sjlj_fc, 0), Pmode);
                     1, XEXP (cfun->eh->sjlj_fc, 0), Pmode);
 
 
  seq = get_insns ();
  seq = get_insns ();
  end_sequence ();
  end_sequence ();
 
 
  /* ??? Really this can be done in any block at loop level 0 that
  /* ??? Really this can be done in any block at loop level 0 that
     post-dominates all can_throw_internal instructions.  This is
     post-dominates all can_throw_internal instructions.  This is
     the last possible moment.  */
     the last possible moment.  */
 
 
  FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
  FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
    if (e->flags & EDGE_FALLTHRU)
    if (e->flags & EDGE_FALLTHRU)
      break;
      break;
  if (e)
  if (e)
    {
    {
      rtx insn;
      rtx insn;
 
 
      /* Figure out whether the place we are supposed to insert libcall
      /* Figure out whether the place we are supposed to insert libcall
         is inside the last basic block or after it.  In the other case
         is inside the last basic block or after it.  In the other case
         we need to emit to edge.  */
         we need to emit to edge.  */
      gcc_assert (e->src->next_bb == EXIT_BLOCK_PTR);
      gcc_assert (e->src->next_bb == EXIT_BLOCK_PTR);
      for (insn = BB_HEAD (e->src); ; insn = NEXT_INSN (insn))
      for (insn = BB_HEAD (e->src); ; insn = NEXT_INSN (insn))
        {
        {
          if (insn == cfun->eh->sjlj_exit_after)
          if (insn == cfun->eh->sjlj_exit_after)
            {
            {
              if (LABEL_P (insn))
              if (LABEL_P (insn))
                insn = NEXT_INSN (insn);
                insn = NEXT_INSN (insn);
              emit_insn_after (seq, insn);
              emit_insn_after (seq, insn);
              return;
              return;
            }
            }
          if (insn == BB_END (e->src))
          if (insn == BB_END (e->src))
            break;
            break;
        }
        }
      insert_insn_on_edge (seq, e);
      insert_insn_on_edge (seq, e);
    }
    }
}
}
 
 
static void
static void
sjlj_emit_dispatch_table (rtx dispatch_label, struct sjlj_lp_info *lp_info)
sjlj_emit_dispatch_table (rtx dispatch_label, struct sjlj_lp_info *lp_info)
{
{
  int i, first_reachable;
  int i, first_reachable;
  rtx mem, dispatch, seq, fc;
  rtx mem, dispatch, seq, fc;
  rtx before;
  rtx before;
  basic_block bb;
  basic_block bb;
  edge e;
  edge e;
 
 
  fc = cfun->eh->sjlj_fc;
  fc = cfun->eh->sjlj_fc;
 
 
  start_sequence ();
  start_sequence ();
 
 
  emit_label (dispatch_label);
  emit_label (dispatch_label);
 
 
#ifndef DONT_USE_BUILTIN_SETJMP
#ifndef DONT_USE_BUILTIN_SETJMP
  expand_builtin_setjmp_receiver (dispatch_label);
  expand_builtin_setjmp_receiver (dispatch_label);
#endif
#endif
 
 
  /* Load up dispatch index, exc_ptr and filter values from the
  /* Load up dispatch index, exc_ptr and filter values from the
     function context.  */
     function context.  */
  mem = adjust_address (fc, TYPE_MODE (integer_type_node),
  mem = adjust_address (fc, TYPE_MODE (integer_type_node),
                        sjlj_fc_call_site_ofs);
                        sjlj_fc_call_site_ofs);
  dispatch = copy_to_reg (mem);
  dispatch = copy_to_reg (mem);
 
 
  mem = adjust_address (fc, word_mode, sjlj_fc_data_ofs);
  mem = adjust_address (fc, word_mode, sjlj_fc_data_ofs);
  if (word_mode != ptr_mode)
  if (word_mode != ptr_mode)
    {
    {
#ifdef POINTERS_EXTEND_UNSIGNED
#ifdef POINTERS_EXTEND_UNSIGNED
      mem = convert_memory_address (ptr_mode, mem);
      mem = convert_memory_address (ptr_mode, mem);
#else
#else
      mem = convert_to_mode (ptr_mode, mem, 0);
      mem = convert_to_mode (ptr_mode, mem, 0);
#endif
#endif
    }
    }
  emit_move_insn (cfun->eh->exc_ptr, mem);
  emit_move_insn (cfun->eh->exc_ptr, mem);
 
 
  mem = adjust_address (fc, word_mode, sjlj_fc_data_ofs + UNITS_PER_WORD);
  mem = adjust_address (fc, word_mode, sjlj_fc_data_ofs + UNITS_PER_WORD);
  emit_move_insn (cfun->eh->filter, mem);
  emit_move_insn (cfun->eh->filter, mem);
 
 
  /* Jump to one of the directly reachable regions.  */
  /* Jump to one of the directly reachable regions.  */
  /* ??? This really ought to be using a switch statement.  */
  /* ??? This really ought to be using a switch statement.  */
 
 
  first_reachable = 0;
  first_reachable = 0;
  for (i = cfun->eh->last_region_number; i > 0; --i)
  for (i = cfun->eh->last_region_number; i > 0; --i)
    {
    {
      if (! lp_info[i].directly_reachable)
      if (! lp_info[i].directly_reachable)
        continue;
        continue;
 
 
      if (! first_reachable)
      if (! first_reachable)
        {
        {
          first_reachable = i;
          first_reachable = i;
          continue;
          continue;
        }
        }
 
 
      emit_cmp_and_jump_insns (dispatch, GEN_INT (lp_info[i].dispatch_index),
      emit_cmp_and_jump_insns (dispatch, GEN_INT (lp_info[i].dispatch_index),
                               EQ, NULL_RTX, TYPE_MODE (integer_type_node), 0,
                               EQ, NULL_RTX, TYPE_MODE (integer_type_node), 0,
                               ((struct eh_region *)VEC_index (eh_region, cfun->eh->region_array, i))
                               ((struct eh_region *)VEC_index (eh_region, cfun->eh->region_array, i))
                                ->post_landing_pad);
                                ->post_landing_pad);
    }
    }
 
 
  seq = get_insns ();
  seq = get_insns ();
  end_sequence ();
  end_sequence ();
 
 
  before = (((struct eh_region *)VEC_index (eh_region, cfun->eh->region_array, first_reachable))
  before = (((struct eh_region *)VEC_index (eh_region, cfun->eh->region_array, first_reachable))
            ->post_landing_pad);
            ->post_landing_pad);
 
 
  bb = emit_to_new_bb_before (seq, before);
  bb = emit_to_new_bb_before (seq, before);
  e = make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
  e = make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
  e->count = bb->count;
  e->count = bb->count;
  e->probability = REG_BR_PROB_BASE;
  e->probability = REG_BR_PROB_BASE;
}
}
 
 
static void
static void
sjlj_build_landing_pads (void)
sjlj_build_landing_pads (void)
{
{
  struct sjlj_lp_info *lp_info;
  struct sjlj_lp_info *lp_info;
 
 
  lp_info = XCNEWVEC (struct sjlj_lp_info, cfun->eh->last_region_number + 1);
  lp_info = XCNEWVEC (struct sjlj_lp_info, cfun->eh->last_region_number + 1);
 
 
  if (sjlj_find_directly_reachable_regions (lp_info))
  if (sjlj_find_directly_reachable_regions (lp_info))
    {
    {
      rtx dispatch_label = gen_label_rtx ();
      rtx dispatch_label = gen_label_rtx ();
 
 
      cfun->eh->sjlj_fc
      cfun->eh->sjlj_fc
        = assign_stack_local (TYPE_MODE (sjlj_fc_type_node),
        = assign_stack_local (TYPE_MODE (sjlj_fc_type_node),
                              int_size_in_bytes (sjlj_fc_type_node),
                              int_size_in_bytes (sjlj_fc_type_node),
                              TYPE_ALIGN (sjlj_fc_type_node));
                              TYPE_ALIGN (sjlj_fc_type_node));
 
 
      sjlj_assign_call_site_values (dispatch_label, lp_info);
      sjlj_assign_call_site_values (dispatch_label, lp_info);
      sjlj_mark_call_sites (lp_info);
      sjlj_mark_call_sites (lp_info);
 
 
      sjlj_emit_function_enter (dispatch_label);
      sjlj_emit_function_enter (dispatch_label);
      sjlj_emit_dispatch_table (dispatch_label, lp_info);
      sjlj_emit_dispatch_table (dispatch_label, lp_info);
      sjlj_emit_function_exit ();
      sjlj_emit_function_exit ();
    }
    }
 
 
  free (lp_info);
  free (lp_info);
}
}
 
 
void
void
finish_eh_generation (void)
finish_eh_generation (void)
{
{
  basic_block bb;
  basic_block bb;
 
 
  /* Nothing to do if no regions created.  */
  /* Nothing to do if no regions created.  */
  if (cfun->eh->region_tree == NULL)
  if (cfun->eh->region_tree == NULL)
    return;
    return;
 
 
  /* The object here is to provide find_basic_blocks with detailed
  /* The object here is to provide find_basic_blocks with detailed
     information (via reachable_handlers) on how exception control
     information (via reachable_handlers) on how exception control
     flows within the function.  In this first pass, we can include
     flows within the function.  In this first pass, we can include
     type information garnered from ERT_THROW and ERT_ALLOWED_EXCEPTIONS
     type information garnered from ERT_THROW and ERT_ALLOWED_EXCEPTIONS
     regions, and hope that it will be useful in deleting unreachable
     regions, and hope that it will be useful in deleting unreachable
     handlers.  Subsequently, we will generate landing pads which will
     handlers.  Subsequently, we will generate landing pads which will
     connect many of the handlers, and then type information will not
     connect many of the handlers, and then type information will not
     be effective.  Still, this is a win over previous implementations.  */
     be effective.  Still, this is a win over previous implementations.  */
 
 
  /* These registers are used by the landing pads.  Make sure they
  /* These registers are used by the landing pads.  Make sure they
     have been generated.  */
     have been generated.  */
  get_exception_pointer (cfun);
  get_exception_pointer (cfun);
  get_exception_filter (cfun);
  get_exception_filter (cfun);
 
 
  /* Construct the landing pads.  */
  /* Construct the landing pads.  */
 
 
  assign_filter_values ();
  assign_filter_values ();
  build_post_landing_pads ();
  build_post_landing_pads ();
  connect_post_landing_pads ();
  connect_post_landing_pads ();
  if (USING_SJLJ_EXCEPTIONS)
  if (USING_SJLJ_EXCEPTIONS)
    sjlj_build_landing_pads ();
    sjlj_build_landing_pads ();
  else
  else
    dw2_build_landing_pads ();
    dw2_build_landing_pads ();
 
 
  cfun->eh->built_landing_pads = 1;
  cfun->eh->built_landing_pads = 1;
 
 
  /* We've totally changed the CFG.  Start over.  */
  /* We've totally changed the CFG.  Start over.  */
  find_exception_handler_labels ();
  find_exception_handler_labels ();
  break_superblocks ();
  break_superblocks ();
  if (USING_SJLJ_EXCEPTIONS)
  if (USING_SJLJ_EXCEPTIONS)
    commit_edge_insertions ();
    commit_edge_insertions ();
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    {
    {
      edge e;
      edge e;
      edge_iterator ei;
      edge_iterator ei;
      bool eh = false;
      bool eh = false;
      for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
      for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
        {
        {
          if (e->flags & EDGE_EH)
          if (e->flags & EDGE_EH)
            {
            {
              remove_edge (e);
              remove_edge (e);
              eh = true;
              eh = true;
            }
            }
          else
          else
            ei_next (&ei);
            ei_next (&ei);
        }
        }
      if (eh)
      if (eh)
        rtl_make_eh_edge (NULL, bb, BB_END (bb));
        rtl_make_eh_edge (NULL, bb, BB_END (bb));
    }
    }
}
}


static hashval_t
static hashval_t
ehl_hash (const void *pentry)
ehl_hash (const void *pentry)
{
{
  struct ehl_map_entry *entry = (struct ehl_map_entry *) pentry;
  struct ehl_map_entry *entry = (struct ehl_map_entry *) pentry;
 
 
  /* 2^32 * ((sqrt(5) - 1) / 2) */
  /* 2^32 * ((sqrt(5) - 1) / 2) */
  const hashval_t scaled_golden_ratio = 0x9e3779b9;
  const hashval_t scaled_golden_ratio = 0x9e3779b9;
  return CODE_LABEL_NUMBER (entry->label) * scaled_golden_ratio;
  return CODE_LABEL_NUMBER (entry->label) * scaled_golden_ratio;
}
}
 
 
static int
static int
ehl_eq (const void *pentry, const void *pdata)
ehl_eq (const void *pentry, const void *pdata)
{
{
  struct ehl_map_entry *entry = (struct ehl_map_entry *) pentry;
  struct ehl_map_entry *entry = (struct ehl_map_entry *) pentry;
  struct ehl_map_entry *data = (struct ehl_map_entry *) pdata;
  struct ehl_map_entry *data = (struct ehl_map_entry *) pdata;
 
 
  return entry->label == data->label;
  return entry->label == data->label;
}
}
 
 
/* This section handles removing dead code for flow.  */
/* This section handles removing dead code for flow.  */
 
 
/* Remove LABEL from exception_handler_label_map.  */
/* Remove LABEL from exception_handler_label_map.  */
 
 
static void
static void
remove_exception_handler_label (rtx label)
remove_exception_handler_label (rtx label)
{
{
  struct ehl_map_entry **slot, tmp;
  struct ehl_map_entry **slot, tmp;
 
 
  /* If exception_handler_label_map was not built yet,
  /* If exception_handler_label_map was not built yet,
     there is nothing to do.  */
     there is nothing to do.  */
  if (cfun->eh->exception_handler_label_map == NULL)
  if (cfun->eh->exception_handler_label_map == NULL)
    return;
    return;
 
 
  tmp.label = label;
  tmp.label = label;
  slot = (struct ehl_map_entry **)
  slot = (struct ehl_map_entry **)
    htab_find_slot (cfun->eh->exception_handler_label_map, &tmp, NO_INSERT);
    htab_find_slot (cfun->eh->exception_handler_label_map, &tmp, NO_INSERT);
  gcc_assert (slot);
  gcc_assert (slot);
 
 
  htab_clear_slot (cfun->eh->exception_handler_label_map, (void **) slot);
  htab_clear_slot (cfun->eh->exception_handler_label_map, (void **) slot);
}
}
 
 
/* Splice REGION from the region tree etc.  */
/* Splice REGION from the region tree etc.  */
 
 
static void
static void
remove_eh_handler (struct eh_region *region)
remove_eh_handler (struct eh_region *region)
{
{
  struct eh_region **pp, **pp_start, *p, *outer, *inner;
  struct eh_region **pp, **pp_start, *p, *outer, *inner;
  rtx lab;
  rtx lab;
 
 
  /* For the benefit of efficiently handling REG_EH_REGION notes,
  /* For the benefit of efficiently handling REG_EH_REGION notes,
     replace this region in the region array with its containing
     replace this region in the region array with its containing
     region.  Note that previous region deletions may result in
     region.  Note that previous region deletions may result in
     multiple copies of this region in the array, so we have a
     multiple copies of this region in the array, so we have a
     list of alternate numbers by which we are known.  */
     list of alternate numbers by which we are known.  */
 
 
  outer = region->outer;
  outer = region->outer;
  VEC_replace (eh_region, cfun->eh->region_array, region->region_number, outer);
  VEC_replace (eh_region, cfun->eh->region_array, region->region_number, outer);
  if (region->aka)
  if (region->aka)
    {
    {
      unsigned i;
      unsigned i;
      bitmap_iterator bi;
      bitmap_iterator bi;
 
 
      EXECUTE_IF_SET_IN_BITMAP (region->aka, 0, i, bi)
      EXECUTE_IF_SET_IN_BITMAP (region->aka, 0, i, bi)
        {
        {
          VEC_replace (eh_region, cfun->eh->region_array, i, outer);
          VEC_replace (eh_region, cfun->eh->region_array, i, outer);
        }
        }
    }
    }
 
 
  if (outer)
  if (outer)
    {
    {
      if (!outer->aka)
      if (!outer->aka)
        outer->aka = BITMAP_GGC_ALLOC ();
        outer->aka = BITMAP_GGC_ALLOC ();
      if (region->aka)
      if (region->aka)
        bitmap_ior_into (outer->aka, region->aka);
        bitmap_ior_into (outer->aka, region->aka);
      bitmap_set_bit (outer->aka, region->region_number);
      bitmap_set_bit (outer->aka, region->region_number);
    }
    }
 
 
  if (cfun->eh->built_landing_pads)
  if (cfun->eh->built_landing_pads)
    lab = region->landing_pad;
    lab = region->landing_pad;
  else
  else
    lab = region->label;
    lab = region->label;
  if (lab)
  if (lab)
    remove_exception_handler_label (lab);
    remove_exception_handler_label (lab);
 
 
  if (outer)
  if (outer)
    pp_start = &outer->inner;
    pp_start = &outer->inner;
  else
  else
    pp_start = &cfun->eh->region_tree;
    pp_start = &cfun->eh->region_tree;
  for (pp = pp_start, p = *pp; p != region; pp = &p->next_peer, p = *pp)
  for (pp = pp_start, p = *pp; p != region; pp = &p->next_peer, p = *pp)
    continue;
    continue;
  *pp = region->next_peer;
  *pp = region->next_peer;
 
 
  inner = region->inner;
  inner = region->inner;
  if (inner)
  if (inner)
    {
    {
      for (p = inner; p->next_peer ; p = p->next_peer)
      for (p = inner; p->next_peer ; p = p->next_peer)
        p->outer = outer;
        p->outer = outer;
      p->outer = outer;
      p->outer = outer;
 
 
      p->next_peer = *pp_start;
      p->next_peer = *pp_start;
      *pp_start = inner;
      *pp_start = inner;
    }
    }
 
 
  if (region->type == ERT_CATCH)
  if (region->type == ERT_CATCH)
    {
    {
      struct eh_region *try, *next, *prev;
      struct eh_region *try, *next, *prev;
 
 
      for (try = region->next_peer;
      for (try = region->next_peer;
           try->type == ERT_CATCH;
           try->type == ERT_CATCH;
           try = try->next_peer)
           try = try->next_peer)
        continue;
        continue;
      gcc_assert (try->type == ERT_TRY);
      gcc_assert (try->type == ERT_TRY);
 
 
      next = region->u.catch.next_catch;
      next = region->u.catch.next_catch;
      prev = region->u.catch.prev_catch;
      prev = region->u.catch.prev_catch;
 
 
      if (next)
      if (next)
        next->u.catch.prev_catch = prev;
        next->u.catch.prev_catch = prev;
      else
      else
        try->u.try.last_catch = prev;
        try->u.try.last_catch = prev;
      if (prev)
      if (prev)
        prev->u.catch.next_catch = next;
        prev->u.catch.next_catch = next;
      else
      else
        {
        {
          try->u.try.catch = next;
          try->u.try.catch = next;
          if (! next)
          if (! next)
            remove_eh_handler (try);
            remove_eh_handler (try);
        }
        }
    }
    }
}
}
 
 
/* LABEL heads a basic block that is about to be deleted.  If this
/* LABEL heads a basic block that is about to be deleted.  If this
   label corresponds to an exception region, we may be able to
   label corresponds to an exception region, we may be able to
   delete the region.  */
   delete the region.  */
 
 
void
void
maybe_remove_eh_handler (rtx label)
maybe_remove_eh_handler (rtx label)
{
{
  struct ehl_map_entry **slot, tmp;
  struct ehl_map_entry **slot, tmp;
  struct eh_region *region;
  struct eh_region *region;
 
 
  /* ??? After generating landing pads, it's not so simple to determine
  /* ??? After generating landing pads, it's not so simple to determine
     if the region data is completely unused.  One must examine the
     if the region data is completely unused.  One must examine the
     landing pad and the post landing pad, and whether an inner try block
     landing pad and the post landing pad, and whether an inner try block
     is referencing the catch handlers directly.  */
     is referencing the catch handlers directly.  */
  if (cfun->eh->built_landing_pads)
  if (cfun->eh->built_landing_pads)
    return;
    return;
 
 
  tmp.label = label;
  tmp.label = label;
  slot = (struct ehl_map_entry **)
  slot = (struct ehl_map_entry **)
    htab_find_slot (cfun->eh->exception_handler_label_map, &tmp, NO_INSERT);
    htab_find_slot (cfun->eh->exception_handler_label_map, &tmp, NO_INSERT);
  if (! slot)
  if (! slot)
    return;
    return;
  region = (*slot)->region;
  region = (*slot)->region;
  if (! region)
  if (! region)
    return;
    return;
 
 
  /* Flow will want to remove MUST_NOT_THROW regions as unreachable
  /* Flow will want to remove MUST_NOT_THROW regions as unreachable
     because there is no path to the fallback call to terminate.
     because there is no path to the fallback call to terminate.
     But the region continues to affect call-site data until there
     But the region continues to affect call-site data until there
     are no more contained calls, which we don't see here.  */
     are no more contained calls, which we don't see here.  */
  if (region->type == ERT_MUST_NOT_THROW)
  if (region->type == ERT_MUST_NOT_THROW)
    {
    {
      htab_clear_slot (cfun->eh->exception_handler_label_map, (void **) slot);
      htab_clear_slot (cfun->eh->exception_handler_label_map, (void **) slot);
      region->label = NULL_RTX;
      region->label = NULL_RTX;
    }
    }
  else
  else
    remove_eh_handler (region);
    remove_eh_handler (region);
}
}
 
 
/* Invokes CALLBACK for every exception handler label.  Only used by old
/* Invokes CALLBACK for every exception handler label.  Only used by old
   loop hackery; should not be used by new code.  */
   loop hackery; should not be used by new code.  */
 
 
void
void
for_each_eh_label (void (*callback) (rtx))
for_each_eh_label (void (*callback) (rtx))
{
{
  htab_traverse (cfun->eh->exception_handler_label_map, for_each_eh_label_1,
  htab_traverse (cfun->eh->exception_handler_label_map, for_each_eh_label_1,
                 (void *) &callback);
                 (void *) &callback);
}
}
 
 
static int
static int
for_each_eh_label_1 (void **pentry, void *data)
for_each_eh_label_1 (void **pentry, void *data)
{
{
  struct ehl_map_entry *entry = *(struct ehl_map_entry **)pentry;
  struct ehl_map_entry *entry = *(struct ehl_map_entry **)pentry;
  void (*callback) (rtx) = *(void (**) (rtx)) data;
  void (*callback) (rtx) = *(void (**) (rtx)) data;
 
 
  (*callback) (entry->label);
  (*callback) (entry->label);
  return 1;
  return 1;
}
}
 
 
/* Invoke CALLBACK for every exception region in the current function.  */
/* Invoke CALLBACK for every exception region in the current function.  */
 
 
void
void
for_each_eh_region (void (*callback) (struct eh_region *))
for_each_eh_region (void (*callback) (struct eh_region *))
{
{
  int i, n = cfun->eh->last_region_number;
  int i, n = cfun->eh->last_region_number;
  for (i = 1; i <= n; ++i)
  for (i = 1; i <= n; ++i)
    {
    {
      struct eh_region *region;
      struct eh_region *region;
 
 
      region = VEC_index (eh_region, cfun->eh->region_array, i);
      region = VEC_index (eh_region, cfun->eh->region_array, i);
      if (region)
      if (region)
        (*callback) (region);
        (*callback) (region);
    }
    }
}
}


/* This section describes CFG exception edges for flow.  */
/* This section describes CFG exception edges for flow.  */
 
 
/* For communicating between calls to reachable_next_level.  */
/* For communicating between calls to reachable_next_level.  */
struct reachable_info
struct reachable_info
{
{
  tree types_caught;
  tree types_caught;
  tree types_allowed;
  tree types_allowed;
  void (*callback) (struct eh_region *, void *);
  void (*callback) (struct eh_region *, void *);
  void *callback_data;
  void *callback_data;
  bool saw_any_handlers;
  bool saw_any_handlers;
};
};
 
 
/* A subroutine of reachable_next_level.  Return true if TYPE, or a
/* A subroutine of reachable_next_level.  Return true if TYPE, or a
   base class of TYPE, is in HANDLED.  */
   base class of TYPE, is in HANDLED.  */
 
 
static int
static int
check_handled (tree handled, tree type)
check_handled (tree handled, tree type)
{
{
  tree t;
  tree t;
 
 
  /* We can check for exact matches without front-end help.  */
  /* We can check for exact matches without front-end help.  */
  if (! lang_eh_type_covers)
  if (! lang_eh_type_covers)
    {
    {
      for (t = handled; t ; t = TREE_CHAIN (t))
      for (t = handled; t ; t = TREE_CHAIN (t))
        if (TREE_VALUE (t) == type)
        if (TREE_VALUE (t) == type)
          return 1;
          return 1;
    }
    }
  else
  else
    {
    {
      for (t = handled; t ; t = TREE_CHAIN (t))
      for (t = handled; t ; t = TREE_CHAIN (t))
        if ((*lang_eh_type_covers) (TREE_VALUE (t), type))
        if ((*lang_eh_type_covers) (TREE_VALUE (t), type))
          return 1;
          return 1;
    }
    }
 
 
  return 0;
  return 0;
}
}
 
 
/* A subroutine of reachable_next_level.  If we are collecting a list
/* A subroutine of reachable_next_level.  If we are collecting a list
   of handlers, add one.  After landing pad generation, reference
   of handlers, add one.  After landing pad generation, reference
   it instead of the handlers themselves.  Further, the handlers are
   it instead of the handlers themselves.  Further, the handlers are
   all wired together, so by referencing one, we've got them all.
   all wired together, so by referencing one, we've got them all.
   Before landing pad generation we reference each handler individually.
   Before landing pad generation we reference each handler individually.
 
 
   LP_REGION contains the landing pad; REGION is the handler.  */
   LP_REGION contains the landing pad; REGION is the handler.  */
 
 
static void
static void
add_reachable_handler (struct reachable_info *info,
add_reachable_handler (struct reachable_info *info,
                       struct eh_region *lp_region, struct eh_region *region)
                       struct eh_region *lp_region, struct eh_region *region)
{
{
  if (! info)
  if (! info)
    return;
    return;
 
 
  info->saw_any_handlers = true;
  info->saw_any_handlers = true;
 
 
  if (cfun->eh->built_landing_pads)
  if (cfun->eh->built_landing_pads)
    info->callback (lp_region, info->callback_data);
    info->callback (lp_region, info->callback_data);
  else
  else
    info->callback (region, info->callback_data);
    info->callback (region, info->callback_data);
}
}
 
 
/* Process one level of exception regions for reachability.
/* Process one level of exception regions for reachability.
   If TYPE_THROWN is non-null, then it is the *exact* type being
   If TYPE_THROWN is non-null, then it is the *exact* type being
   propagated.  If INFO is non-null, then collect handler labels
   propagated.  If INFO is non-null, then collect handler labels
   and caught/allowed type information between invocations.  */
   and caught/allowed type information between invocations.  */
 
 
static enum reachable_code
static enum reachable_code
reachable_next_level (struct eh_region *region, tree type_thrown,
reachable_next_level (struct eh_region *region, tree type_thrown,
                      struct reachable_info *info)
                      struct reachable_info *info)
{
{
  switch (region->type)
  switch (region->type)
    {
    {
    case ERT_CLEANUP:
    case ERT_CLEANUP:
      /* Before landing-pad generation, we model control flow
      /* Before landing-pad generation, we model control flow
         directly to the individual handlers.  In this way we can
         directly to the individual handlers.  In this way we can
         see that catch handler types may shadow one another.  */
         see that catch handler types may shadow one another.  */
      add_reachable_handler (info, region, region);
      add_reachable_handler (info, region, region);
      return RNL_MAYBE_CAUGHT;
      return RNL_MAYBE_CAUGHT;
 
 
    case ERT_TRY:
    case ERT_TRY:
      {
      {
        struct eh_region *c;
        struct eh_region *c;
        enum reachable_code ret = RNL_NOT_CAUGHT;
        enum reachable_code ret = RNL_NOT_CAUGHT;
 
 
        for (c = region->u.try.catch; c ; c = c->u.catch.next_catch)
        for (c = region->u.try.catch; c ; c = c->u.catch.next_catch)
          {
          {
            /* A catch-all handler ends the search.  */
            /* A catch-all handler ends the search.  */
            if (c->u.catch.type_list == NULL)
            if (c->u.catch.type_list == NULL)
              {
              {
                add_reachable_handler (info, region, c);
                add_reachable_handler (info, region, c);
                return RNL_CAUGHT;
                return RNL_CAUGHT;
              }
              }
 
 
            if (type_thrown)
            if (type_thrown)
              {
              {
                /* If we have at least one type match, end the search.  */
                /* If we have at least one type match, end the search.  */
                tree tp_node = c->u.catch.type_list;
                tree tp_node = c->u.catch.type_list;
 
 
                for (; tp_node; tp_node = TREE_CHAIN (tp_node))
                for (; tp_node; tp_node = TREE_CHAIN (tp_node))
                  {
                  {
                    tree type = TREE_VALUE (tp_node);
                    tree type = TREE_VALUE (tp_node);
 
 
                    if (type == type_thrown
                    if (type == type_thrown
                        || (lang_eh_type_covers
                        || (lang_eh_type_covers
                            && (*lang_eh_type_covers) (type, type_thrown)))
                            && (*lang_eh_type_covers) (type, type_thrown)))
                      {
                      {
                        add_reachable_handler (info, region, c);
                        add_reachable_handler (info, region, c);
                        return RNL_CAUGHT;
                        return RNL_CAUGHT;
                      }
                      }
                  }
                  }
 
 
                /* If we have definitive information of a match failure,
                /* If we have definitive information of a match failure,
                   the catch won't trigger.  */
                   the catch won't trigger.  */
                if (lang_eh_type_covers)
                if (lang_eh_type_covers)
                  return RNL_NOT_CAUGHT;
                  return RNL_NOT_CAUGHT;
              }
              }
 
 
            /* At this point, we either don't know what type is thrown or
            /* At this point, we either don't know what type is thrown or
               don't have front-end assistance to help deciding if it is
               don't have front-end assistance to help deciding if it is
               covered by one of the types in the list for this region.
               covered by one of the types in the list for this region.
 
 
               We'd then like to add this region to the list of reachable
               We'd then like to add this region to the list of reachable
               handlers since it is indeed potentially reachable based on the
               handlers since it is indeed potentially reachable based on the
               information we have.
               information we have.
 
 
               Actually, this handler is for sure not reachable if all the
               Actually, this handler is for sure not reachable if all the
               types it matches have already been caught. That is, it is only
               types it matches have already been caught. That is, it is only
               potentially reachable if at least one of the types it catches
               potentially reachable if at least one of the types it catches
               has not been previously caught.  */
               has not been previously caught.  */
 
 
            if (! info)
            if (! info)
              ret = RNL_MAYBE_CAUGHT;
              ret = RNL_MAYBE_CAUGHT;
            else
            else
              {
              {
                tree tp_node = c->u.catch.type_list;
                tree tp_node = c->u.catch.type_list;
                bool maybe_reachable = false;
                bool maybe_reachable = false;
 
 
                /* Compute the potential reachability of this handler and
                /* Compute the potential reachability of this handler and
                   update the list of types caught at the same time.  */
                   update the list of types caught at the same time.  */
                for (; tp_node; tp_node = TREE_CHAIN (tp_node))
                for (; tp_node; tp_node = TREE_CHAIN (tp_node))
                  {
                  {
                    tree type = TREE_VALUE (tp_node);
                    tree type = TREE_VALUE (tp_node);
 
 
                    if (! check_handled (info->types_caught, type))
                    if (! check_handled (info->types_caught, type))
                      {
                      {
                        info->types_caught
                        info->types_caught
                          = tree_cons (NULL, type, info->types_caught);
                          = tree_cons (NULL, type, info->types_caught);
 
 
                        maybe_reachable = true;
                        maybe_reachable = true;
                      }
                      }
                  }
                  }
 
 
                if (maybe_reachable)
                if (maybe_reachable)
                  {
                  {
                    add_reachable_handler (info, region, c);
                    add_reachable_handler (info, region, c);
 
 
                    /* ??? If the catch type is a base class of every allowed
                    /* ??? If the catch type is a base class of every allowed
                       type, then we know we can stop the search.  */
                       type, then we know we can stop the search.  */
                    ret = RNL_MAYBE_CAUGHT;
                    ret = RNL_MAYBE_CAUGHT;
                  }
                  }
              }
              }
          }
          }
 
 
        return ret;
        return ret;
      }
      }
 
 
    case ERT_ALLOWED_EXCEPTIONS:
    case ERT_ALLOWED_EXCEPTIONS:
      /* An empty list of types definitely ends the search.  */
      /* An empty list of types definitely ends the search.  */
      if (region->u.allowed.type_list == NULL_TREE)
      if (region->u.allowed.type_list == NULL_TREE)
        {
        {
          add_reachable_handler (info, region, region);
          add_reachable_handler (info, region, region);
          return RNL_CAUGHT;
          return RNL_CAUGHT;
        }
        }
 
 
      /* Collect a list of lists of allowed types for use in detecting
      /* Collect a list of lists of allowed types for use in detecting
         when a catch may be transformed into a catch-all.  */
         when a catch may be transformed into a catch-all.  */
      if (info)
      if (info)
        info->types_allowed = tree_cons (NULL_TREE,
        info->types_allowed = tree_cons (NULL_TREE,
                                         region->u.allowed.type_list,
                                         region->u.allowed.type_list,
                                         info->types_allowed);
                                         info->types_allowed);
 
 
      /* If we have definitive information about the type hierarchy,
      /* If we have definitive information about the type hierarchy,
         then we can tell if the thrown type will pass through the
         then we can tell if the thrown type will pass through the
         filter.  */
         filter.  */
      if (type_thrown && lang_eh_type_covers)
      if (type_thrown && lang_eh_type_covers)
        {
        {
          if (check_handled (region->u.allowed.type_list, type_thrown))
          if (check_handled (region->u.allowed.type_list, type_thrown))
            return RNL_NOT_CAUGHT;
            return RNL_NOT_CAUGHT;
          else
          else
            {
            {
              add_reachable_handler (info, region, region);
              add_reachable_handler (info, region, region);
              return RNL_CAUGHT;
              return RNL_CAUGHT;
            }
            }
        }
        }
 
 
      add_reachable_handler (info, region, region);
      add_reachable_handler (info, region, region);
      return RNL_MAYBE_CAUGHT;
      return RNL_MAYBE_CAUGHT;
 
 
    case ERT_CATCH:
    case ERT_CATCH:
      /* Catch regions are handled by their controlling try region.  */
      /* Catch regions are handled by their controlling try region.  */
      return RNL_NOT_CAUGHT;
      return RNL_NOT_CAUGHT;
 
 
    case ERT_MUST_NOT_THROW:
    case ERT_MUST_NOT_THROW:
      /* Here we end our search, since no exceptions may propagate.
      /* Here we end our search, since no exceptions may propagate.
         If we've touched down at some landing pad previous, then the
         If we've touched down at some landing pad previous, then the
         explicit function call we generated may be used.  Otherwise
         explicit function call we generated may be used.  Otherwise
         the call is made by the runtime.
         the call is made by the runtime.
 
 
         Before inlining, do not perform this optimization.  We may
         Before inlining, do not perform this optimization.  We may
         inline a subroutine that contains handlers, and that will
         inline a subroutine that contains handlers, and that will
         change the value of saw_any_handlers.  */
         change the value of saw_any_handlers.  */
 
 
      if ((info && info->saw_any_handlers) || !cfun->after_inlining)
      if ((info && info->saw_any_handlers) || !cfun->after_inlining)
        {
        {
          add_reachable_handler (info, region, region);
          add_reachable_handler (info, region, region);
          return RNL_CAUGHT;
          return RNL_CAUGHT;
        }
        }
      else
      else
        return RNL_BLOCKED;
        return RNL_BLOCKED;
 
 
    case ERT_THROW:
    case ERT_THROW:
    case ERT_UNKNOWN:
    case ERT_UNKNOWN:
      /* Shouldn't see these here.  */
      /* Shouldn't see these here.  */
      gcc_unreachable ();
      gcc_unreachable ();
      break;
      break;
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}
 
 
/* Invoke CALLBACK on each region reachable from REGION_NUMBER.  */
/* Invoke CALLBACK on each region reachable from REGION_NUMBER.  */
 
 
void
void
foreach_reachable_handler (int region_number, bool is_resx,
foreach_reachable_handler (int region_number, bool is_resx,
                           void (*callback) (struct eh_region *, void *),
                           void (*callback) (struct eh_region *, void *),
                           void *callback_data)
                           void *callback_data)
{
{
  struct reachable_info info;
  struct reachable_info info;
  struct eh_region *region;
  struct eh_region *region;
  tree type_thrown;
  tree type_thrown;
 
 
  memset (&info, 0, sizeof (info));
  memset (&info, 0, sizeof (info));
  info.callback = callback;
  info.callback = callback;
  info.callback_data = callback_data;
  info.callback_data = callback_data;
 
 
  region = VEC_index (eh_region, cfun->eh->region_array, region_number);
  region = VEC_index (eh_region, cfun->eh->region_array, region_number);
 
 
  type_thrown = NULL_TREE;
  type_thrown = NULL_TREE;
  if (is_resx)
  if (is_resx)
    {
    {
      /* A RESX leaves a region instead of entering it.  Thus the
      /* A RESX leaves a region instead of entering it.  Thus the
         region itself may have been deleted out from under us.  */
         region itself may have been deleted out from under us.  */
      if (region == NULL)
      if (region == NULL)
        return;
        return;
      region = region->outer;
      region = region->outer;
    }
    }
  else if (region->type == ERT_THROW)
  else if (region->type == ERT_THROW)
    {
    {
      type_thrown = region->u.throw.type;
      type_thrown = region->u.throw.type;
      region = region->outer;
      region = region->outer;
    }
    }
 
 
  while (region)
  while (region)
    {
    {
      if (reachable_next_level (region, type_thrown, &info) >= RNL_CAUGHT)
      if (reachable_next_level (region, type_thrown, &info) >= RNL_CAUGHT)
        break;
        break;
      /* If we have processed one cleanup, there is no point in
      /* If we have processed one cleanup, there is no point in
         processing any more of them.  Each cleanup will have an edge
         processing any more of them.  Each cleanup will have an edge
         to the next outer cleanup region, so the flow graph will be
         to the next outer cleanup region, so the flow graph will be
         accurate.  */
         accurate.  */
      if (region->type == ERT_CLEANUP)
      if (region->type == ERT_CLEANUP)
        region = region->u.cleanup.prev_try;
        region = region->u.cleanup.prev_try;
      else
      else
        region = region->outer;
        region = region->outer;
    }
    }
}
}
 
 
/* Retrieve a list of labels of exception handlers which can be
/* Retrieve a list of labels of exception handlers which can be
   reached by a given insn.  */
   reached by a given insn.  */
 
 
static void
static void
arh_to_landing_pad (struct eh_region *region, void *data)
arh_to_landing_pad (struct eh_region *region, void *data)
{
{
  rtx *p_handlers = data;
  rtx *p_handlers = data;
  if (! *p_handlers)
  if (! *p_handlers)
    *p_handlers = alloc_INSN_LIST (region->landing_pad, NULL_RTX);
    *p_handlers = alloc_INSN_LIST (region->landing_pad, NULL_RTX);
}
}
 
 
static void
static void
arh_to_label (struct eh_region *region, void *data)
arh_to_label (struct eh_region *region, void *data)
{
{
  rtx *p_handlers = data;
  rtx *p_handlers = data;
  *p_handlers = alloc_INSN_LIST (region->label, *p_handlers);
  *p_handlers = alloc_INSN_LIST (region->label, *p_handlers);
}
}
 
 
rtx
rtx
reachable_handlers (rtx insn)
reachable_handlers (rtx insn)
{
{
  bool is_resx = false;
  bool is_resx = false;
  rtx handlers = NULL;
  rtx handlers = NULL;
  int region_number;
  int region_number;
 
 
  if (JUMP_P (insn)
  if (JUMP_P (insn)
      && GET_CODE (PATTERN (insn)) == RESX)
      && GET_CODE (PATTERN (insn)) == RESX)
    {
    {
      region_number = XINT (PATTERN (insn), 0);
      region_number = XINT (PATTERN (insn), 0);
      is_resx = true;
      is_resx = true;
    }
    }
  else
  else
    {
    {
      rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
      rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
      if (!note || INTVAL (XEXP (note, 0)) <= 0)
      if (!note || INTVAL (XEXP (note, 0)) <= 0)
        return NULL;
        return NULL;
      region_number = INTVAL (XEXP (note, 0));
      region_number = INTVAL (XEXP (note, 0));
    }
    }
 
 
  foreach_reachable_handler (region_number, is_resx,
  foreach_reachable_handler (region_number, is_resx,
                             (cfun->eh->built_landing_pads
                             (cfun->eh->built_landing_pads
                              ? arh_to_landing_pad
                              ? arh_to_landing_pad
                              : arh_to_label),
                              : arh_to_label),
                             &handlers);
                             &handlers);
 
 
  return handlers;
  return handlers;
}
}
 
 
/* Determine if the given INSN can throw an exception that is caught
/* Determine if the given INSN can throw an exception that is caught
   within the function.  */
   within the function.  */
 
 
bool
bool
can_throw_internal_1 (int region_number, bool is_resx)
can_throw_internal_1 (int region_number, bool is_resx)
{
{
  struct eh_region *region;
  struct eh_region *region;
  tree type_thrown;
  tree type_thrown;
 
 
  region = VEC_index (eh_region, cfun->eh->region_array, region_number);
  region = VEC_index (eh_region, cfun->eh->region_array, region_number);
 
 
  type_thrown = NULL_TREE;
  type_thrown = NULL_TREE;
  if (is_resx)
  if (is_resx)
    region = region->outer;
    region = region->outer;
  else if (region->type == ERT_THROW)
  else if (region->type == ERT_THROW)
    {
    {
      type_thrown = region->u.throw.type;
      type_thrown = region->u.throw.type;
      region = region->outer;
      region = region->outer;
    }
    }
 
 
  /* If this exception is ignored by each and every containing region,
  /* If this exception is ignored by each and every containing region,
     then control passes straight out.  The runtime may handle some
     then control passes straight out.  The runtime may handle some
     regions, which also do not require processing internally.  */
     regions, which also do not require processing internally.  */
  for (; region; region = region->outer)
  for (; region; region = region->outer)
    {
    {
      enum reachable_code how = reachable_next_level (region, type_thrown, 0);
      enum reachable_code how = reachable_next_level (region, type_thrown, 0);
      if (how == RNL_BLOCKED)
      if (how == RNL_BLOCKED)
        return false;
        return false;
      if (how != RNL_NOT_CAUGHT)
      if (how != RNL_NOT_CAUGHT)
        return true;
        return true;
    }
    }
 
 
  return false;
  return false;
}
}
 
 
bool
bool
can_throw_internal (rtx insn)
can_throw_internal (rtx insn)
{
{
  rtx note;
  rtx note;
 
 
  if (! INSN_P (insn))
  if (! INSN_P (insn))
    return false;
    return false;
 
 
  if (JUMP_P (insn)
  if (JUMP_P (insn)
      && GET_CODE (PATTERN (insn)) == RESX
      && GET_CODE (PATTERN (insn)) == RESX
      && XINT (PATTERN (insn), 0) > 0)
      && XINT (PATTERN (insn), 0) > 0)
    return can_throw_internal_1 (XINT (PATTERN (insn), 0), true);
    return can_throw_internal_1 (XINT (PATTERN (insn), 0), true);
 
 
  if (NONJUMP_INSN_P (insn)
  if (NONJUMP_INSN_P (insn)
      && GET_CODE (PATTERN (insn)) == SEQUENCE)
      && GET_CODE (PATTERN (insn)) == SEQUENCE)
    insn = XVECEXP (PATTERN (insn), 0, 0);
    insn = XVECEXP (PATTERN (insn), 0, 0);
 
 
  /* Every insn that might throw has an EH_REGION note.  */
  /* Every insn that might throw has an EH_REGION note.  */
  note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
  note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
  if (!note || INTVAL (XEXP (note, 0)) <= 0)
  if (!note || INTVAL (XEXP (note, 0)) <= 0)
    return false;
    return false;
 
 
  return can_throw_internal_1 (INTVAL (XEXP (note, 0)), false);
  return can_throw_internal_1 (INTVAL (XEXP (note, 0)), false);
}
}
 
 
/* Determine if the given INSN can throw an exception that is
/* Determine if the given INSN can throw an exception that is
   visible outside the function.  */
   visible outside the function.  */
 
 
bool
bool
can_throw_external_1 (int region_number, bool is_resx)
can_throw_external_1 (int region_number, bool is_resx)
{
{
  struct eh_region *region;
  struct eh_region *region;
  tree type_thrown;
  tree type_thrown;
 
 
  region = VEC_index (eh_region, cfun->eh->region_array, region_number);
  region = VEC_index (eh_region, cfun->eh->region_array, region_number);
 
 
  type_thrown = NULL_TREE;
  type_thrown = NULL_TREE;
  if (is_resx)
  if (is_resx)
    region = region->outer;
    region = region->outer;
  else if (region->type == ERT_THROW)
  else if (region->type == ERT_THROW)
    {
    {
      type_thrown = region->u.throw.type;
      type_thrown = region->u.throw.type;
      region = region->outer;
      region = region->outer;
    }
    }
 
 
  /* If the exception is caught or blocked by any containing region,
  /* If the exception is caught or blocked by any containing region,
     then it is not seen by any calling function.  */
     then it is not seen by any calling function.  */
  for (; region ; region = region->outer)
  for (; region ; region = region->outer)
    if (reachable_next_level (region, type_thrown, NULL) >= RNL_CAUGHT)
    if (reachable_next_level (region, type_thrown, NULL) >= RNL_CAUGHT)
      return false;
      return false;
 
 
  return true;
  return true;
}
}
 
 
bool
bool
can_throw_external (rtx insn)
can_throw_external (rtx insn)
{
{
  rtx note;
  rtx note;
 
 
  if (! INSN_P (insn))
  if (! INSN_P (insn))
    return false;
    return false;
 
 
  if (JUMP_P (insn)
  if (JUMP_P (insn)
      && GET_CODE (PATTERN (insn)) == RESX
      && GET_CODE (PATTERN (insn)) == RESX
      && XINT (PATTERN (insn), 0) > 0)
      && XINT (PATTERN (insn), 0) > 0)
    return can_throw_external_1 (XINT (PATTERN (insn), 0), true);
    return can_throw_external_1 (XINT (PATTERN (insn), 0), true);
 
 
  if (NONJUMP_INSN_P (insn)
  if (NONJUMP_INSN_P (insn)
      && GET_CODE (PATTERN (insn)) == SEQUENCE)
      && GET_CODE (PATTERN (insn)) == SEQUENCE)
    insn = XVECEXP (PATTERN (insn), 0, 0);
    insn = XVECEXP (PATTERN (insn), 0, 0);
 
 
  note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
  note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
  if (!note)
  if (!note)
    {
    {
      /* Calls (and trapping insns) without notes are outside any
      /* Calls (and trapping insns) without notes are outside any
         exception handling region in this function.  We have to
         exception handling region in this function.  We have to
         assume it might throw.  Given that the front end and middle
         assume it might throw.  Given that the front end and middle
         ends mark known NOTHROW functions, this isn't so wildly
         ends mark known NOTHROW functions, this isn't so wildly
         inaccurate.  */
         inaccurate.  */
      return (CALL_P (insn)
      return (CALL_P (insn)
              || (flag_non_call_exceptions
              || (flag_non_call_exceptions
                  && may_trap_p (PATTERN (insn))));
                  && may_trap_p (PATTERN (insn))));
    }
    }
  if (INTVAL (XEXP (note, 0)) <= 0)
  if (INTVAL (XEXP (note, 0)) <= 0)
    return false;
    return false;
 
 
  return can_throw_external_1 (INTVAL (XEXP (note, 0)), false);
  return can_throw_external_1 (INTVAL (XEXP (note, 0)), false);
}
}
 
 
/* Set TREE_NOTHROW and cfun->all_throwers_are_sibcalls.  */
/* Set TREE_NOTHROW and cfun->all_throwers_are_sibcalls.  */
 
 
unsigned int
unsigned int
set_nothrow_function_flags (void)
set_nothrow_function_flags (void)
{
{
  rtx insn;
  rtx insn;
 
 
  /* If we don't know that this implementation of the function will
  /* If we don't know that this implementation of the function will
     actually be used, then we must not set TREE_NOTHROW, since
     actually be used, then we must not set TREE_NOTHROW, since
     callers must not assume that this function does not throw.  */
     callers must not assume that this function does not throw.  */
  if (DECL_REPLACEABLE_P (current_function_decl))
  if (DECL_REPLACEABLE_P (current_function_decl))
    return 0;
    return 0;
 
 
  TREE_NOTHROW (current_function_decl) = 1;
  TREE_NOTHROW (current_function_decl) = 1;
 
 
  /* Assume cfun->all_throwers_are_sibcalls until we encounter
  /* Assume cfun->all_throwers_are_sibcalls until we encounter
     something that can throw an exception.  We specifically exempt
     something that can throw an exception.  We specifically exempt
     CALL_INSNs that are SIBLING_CALL_P, as these are really jumps,
     CALL_INSNs that are SIBLING_CALL_P, as these are really jumps,
     and can't throw.  Most CALL_INSNs are not SIBLING_CALL_P, so this
     and can't throw.  Most CALL_INSNs are not SIBLING_CALL_P, so this
     is optimistic.  */
     is optimistic.  */
 
 
  cfun->all_throwers_are_sibcalls = 1;
  cfun->all_throwers_are_sibcalls = 1;
 
 
  if (! flag_exceptions)
  if (! flag_exceptions)
    return 0;
    return 0;
 
 
  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
    if (can_throw_external (insn))
    if (can_throw_external (insn))
      {
      {
        TREE_NOTHROW (current_function_decl) = 0;
        TREE_NOTHROW (current_function_decl) = 0;
 
 
        if (!CALL_P (insn) || !SIBLING_CALL_P (insn))
        if (!CALL_P (insn) || !SIBLING_CALL_P (insn))
          {
          {
            cfun->all_throwers_are_sibcalls = 0;
            cfun->all_throwers_are_sibcalls = 0;
            return 0;
            return 0;
          }
          }
      }
      }
 
 
  for (insn = current_function_epilogue_delay_list; insn;
  for (insn = current_function_epilogue_delay_list; insn;
       insn = XEXP (insn, 1))
       insn = XEXP (insn, 1))
    if (can_throw_external (insn))
    if (can_throw_external (insn))
      {
      {
        TREE_NOTHROW (current_function_decl) = 0;
        TREE_NOTHROW (current_function_decl) = 0;
 
 
        if (!CALL_P (insn) || !SIBLING_CALL_P (insn))
        if (!CALL_P (insn) || !SIBLING_CALL_P (insn))
          {
          {
            cfun->all_throwers_are_sibcalls = 0;
            cfun->all_throwers_are_sibcalls = 0;
            return 0;
            return 0;
          }
          }
      }
      }
  return 0;
  return 0;
}
}
 
 
struct tree_opt_pass pass_set_nothrow_function_flags =
struct tree_opt_pass pass_set_nothrow_function_flags =
{
{
  NULL,                                 /* name */
  NULL,                                 /* name */
  NULL,                                 /* gate */
  NULL,                                 /* gate */
  set_nothrow_function_flags,           /* execute */
  set_nothrow_function_flags,           /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  NULL,                                 /* next */
  0,                                    /* static_pass_number */
  0,                                    /* static_pass_number */
  0,                                    /* tv_id */
  0,                                    /* tv_id */
  0,                                    /* properties_required */
  0,                                    /* properties_required */
  0,                                    /* properties_provided */
  0,                                    /* properties_provided */
  0,                                    /* properties_destroyed */
  0,                                    /* properties_destroyed */
  0,                                    /* todo_flags_start */
  0,                                    /* todo_flags_start */
  0,                                    /* todo_flags_finish */
  0,                                    /* todo_flags_finish */
  0                                     /* letter */
  0                                     /* letter */
};
};
 
 


/* Various hooks for unwind library.  */
/* Various hooks for unwind library.  */
 
 
/* Do any necessary initialization to access arbitrary stack frames.
/* Do any necessary initialization to access arbitrary stack frames.
   On the SPARC, this means flushing the register windows.  */
   On the SPARC, this means flushing the register windows.  */
 
 
void
void
expand_builtin_unwind_init (void)
expand_builtin_unwind_init (void)
{
{
  /* Set this so all the registers get saved in our frame; we need to be
  /* Set this so all the registers get saved in our frame; we need to be
     able to copy the saved values for any registers from frames we unwind.  */
     able to copy the saved values for any registers from frames we unwind.  */
  current_function_has_nonlocal_label = 1;
  current_function_has_nonlocal_label = 1;
 
 
#ifdef SETUP_FRAME_ADDRESSES
#ifdef SETUP_FRAME_ADDRESSES
  SETUP_FRAME_ADDRESSES ();
  SETUP_FRAME_ADDRESSES ();
#endif
#endif
}
}
 
 
rtx
rtx
expand_builtin_eh_return_data_regno (tree arglist)
expand_builtin_eh_return_data_regno (tree arglist)
{
{
  tree which = TREE_VALUE (arglist);
  tree which = TREE_VALUE (arglist);
  unsigned HOST_WIDE_INT iwhich;
  unsigned HOST_WIDE_INT iwhich;
 
 
  if (TREE_CODE (which) != INTEGER_CST)
  if (TREE_CODE (which) != INTEGER_CST)
    {
    {
      error ("argument of %<__builtin_eh_return_regno%> must be constant");
      error ("argument of %<__builtin_eh_return_regno%> must be constant");
      return constm1_rtx;
      return constm1_rtx;
    }
    }
 
 
  iwhich = tree_low_cst (which, 1);
  iwhich = tree_low_cst (which, 1);
  iwhich = EH_RETURN_DATA_REGNO (iwhich);
  iwhich = EH_RETURN_DATA_REGNO (iwhich);
  if (iwhich == INVALID_REGNUM)
  if (iwhich == INVALID_REGNUM)
    return constm1_rtx;
    return constm1_rtx;
 
 
#ifdef DWARF_FRAME_REGNUM
#ifdef DWARF_FRAME_REGNUM
  iwhich = DWARF_FRAME_REGNUM (iwhich);
  iwhich = DWARF_FRAME_REGNUM (iwhich);
#else
#else
  iwhich = DBX_REGISTER_NUMBER (iwhich);
  iwhich = DBX_REGISTER_NUMBER (iwhich);
#endif
#endif
 
 
  return GEN_INT (iwhich);
  return GEN_INT (iwhich);
}
}
 
 
/* Given a value extracted from the return address register or stack slot,
/* Given a value extracted from the return address register or stack slot,
   return the actual address encoded in that value.  */
   return the actual address encoded in that value.  */
 
 
rtx
rtx
expand_builtin_extract_return_addr (tree addr_tree)
expand_builtin_extract_return_addr (tree addr_tree)
{
{
  rtx addr = expand_expr (addr_tree, NULL_RTX, Pmode, 0);
  rtx addr = expand_expr (addr_tree, NULL_RTX, Pmode, 0);
 
 
  if (GET_MODE (addr) != Pmode
  if (GET_MODE (addr) != Pmode
      && GET_MODE (addr) != VOIDmode)
      && GET_MODE (addr) != VOIDmode)
    {
    {
#ifdef POINTERS_EXTEND_UNSIGNED
#ifdef POINTERS_EXTEND_UNSIGNED
      addr = convert_memory_address (Pmode, addr);
      addr = convert_memory_address (Pmode, addr);
#else
#else
      addr = convert_to_mode (Pmode, addr, 0);
      addr = convert_to_mode (Pmode, addr, 0);
#endif
#endif
    }
    }
 
 
  /* First mask out any unwanted bits.  */
  /* First mask out any unwanted bits.  */
#ifdef MASK_RETURN_ADDR
#ifdef MASK_RETURN_ADDR
  expand_and (Pmode, addr, MASK_RETURN_ADDR, addr);
  expand_and (Pmode, addr, MASK_RETURN_ADDR, addr);
#endif
#endif
 
 
  /* Then adjust to find the real return address.  */
  /* Then adjust to find the real return address.  */
#if defined (RETURN_ADDR_OFFSET)
#if defined (RETURN_ADDR_OFFSET)
  addr = plus_constant (addr, RETURN_ADDR_OFFSET);
  addr = plus_constant (addr, RETURN_ADDR_OFFSET);
#endif
#endif
 
 
  return addr;
  return addr;
}
}
 
 
/* Given an actual address in addr_tree, do any necessary encoding
/* Given an actual address in addr_tree, do any necessary encoding
   and return the value to be stored in the return address register or
   and return the value to be stored in the return address register or
   stack slot so the epilogue will return to that address.  */
   stack slot so the epilogue will return to that address.  */
 
 
rtx
rtx
expand_builtin_frob_return_addr (tree addr_tree)
expand_builtin_frob_return_addr (tree addr_tree)
{
{
  rtx addr = expand_expr (addr_tree, NULL_RTX, ptr_mode, 0);
  rtx addr = expand_expr (addr_tree, NULL_RTX, ptr_mode, 0);
 
 
  addr = convert_memory_address (Pmode, addr);
  addr = convert_memory_address (Pmode, addr);
 
 
#ifdef RETURN_ADDR_OFFSET
#ifdef RETURN_ADDR_OFFSET
  addr = force_reg (Pmode, addr);
  addr = force_reg (Pmode, addr);
  addr = plus_constant (addr, -RETURN_ADDR_OFFSET);
  addr = plus_constant (addr, -RETURN_ADDR_OFFSET);
#endif
#endif
 
 
  return addr;
  return addr;
}
}
 
 
/* Set up the epilogue with the magic bits we'll need to return to the
/* Set up the epilogue with the magic bits we'll need to return to the
   exception handler.  */
   exception handler.  */
 
 
void
void
expand_builtin_eh_return (tree stackadj_tree ATTRIBUTE_UNUSED,
expand_builtin_eh_return (tree stackadj_tree ATTRIBUTE_UNUSED,
                          tree handler_tree)
                          tree handler_tree)
{
{
  rtx tmp;
  rtx tmp;
 
 
#ifdef EH_RETURN_STACKADJ_RTX
#ifdef EH_RETURN_STACKADJ_RTX
  tmp = expand_expr (stackadj_tree, cfun->eh->ehr_stackadj, VOIDmode, 0);
  tmp = expand_expr (stackadj_tree, cfun->eh->ehr_stackadj, VOIDmode, 0);
  tmp = convert_memory_address (Pmode, tmp);
  tmp = convert_memory_address (Pmode, tmp);
  if (!cfun->eh->ehr_stackadj)
  if (!cfun->eh->ehr_stackadj)
    cfun->eh->ehr_stackadj = copy_to_reg (tmp);
    cfun->eh->ehr_stackadj = copy_to_reg (tmp);
  else if (tmp != cfun->eh->ehr_stackadj)
  else if (tmp != cfun->eh->ehr_stackadj)
    emit_move_insn (cfun->eh->ehr_stackadj, tmp);
    emit_move_insn (cfun->eh->ehr_stackadj, tmp);
#endif
#endif
 
 
  tmp = expand_expr (handler_tree, cfun->eh->ehr_handler, VOIDmode, 0);
  tmp = expand_expr (handler_tree, cfun->eh->ehr_handler, VOIDmode, 0);
  tmp = convert_memory_address (Pmode, tmp);
  tmp = convert_memory_address (Pmode, tmp);
  if (!cfun->eh->ehr_handler)
  if (!cfun->eh->ehr_handler)
    cfun->eh->ehr_handler = copy_to_reg (tmp);
    cfun->eh->ehr_handler = copy_to_reg (tmp);
  else if (tmp != cfun->eh->ehr_handler)
  else if (tmp != cfun->eh->ehr_handler)
    emit_move_insn (cfun->eh->ehr_handler, tmp);
    emit_move_insn (cfun->eh->ehr_handler, tmp);
 
 
  if (!cfun->eh->ehr_label)
  if (!cfun->eh->ehr_label)
    cfun->eh->ehr_label = gen_label_rtx ();
    cfun->eh->ehr_label = gen_label_rtx ();
  emit_jump (cfun->eh->ehr_label);
  emit_jump (cfun->eh->ehr_label);
}
}
 
 
void
void
expand_eh_return (void)
expand_eh_return (void)
{
{
  rtx around_label;
  rtx around_label;
 
 
  if (! cfun->eh->ehr_label)
  if (! cfun->eh->ehr_label)
    return;
    return;
 
 
  current_function_calls_eh_return = 1;
  current_function_calls_eh_return = 1;
 
 
#ifdef EH_RETURN_STACKADJ_RTX
#ifdef EH_RETURN_STACKADJ_RTX
  emit_move_insn (EH_RETURN_STACKADJ_RTX, const0_rtx);
  emit_move_insn (EH_RETURN_STACKADJ_RTX, const0_rtx);
#endif
#endif
 
 
  around_label = gen_label_rtx ();
  around_label = gen_label_rtx ();
  emit_jump (around_label);
  emit_jump (around_label);
 
 
  emit_label (cfun->eh->ehr_label);
  emit_label (cfun->eh->ehr_label);
  clobber_return_register ();
  clobber_return_register ();
 
 
#ifdef EH_RETURN_STACKADJ_RTX
#ifdef EH_RETURN_STACKADJ_RTX
  emit_move_insn (EH_RETURN_STACKADJ_RTX, cfun->eh->ehr_stackadj);
  emit_move_insn (EH_RETURN_STACKADJ_RTX, cfun->eh->ehr_stackadj);
#endif
#endif
 
 
#ifdef HAVE_eh_return
#ifdef HAVE_eh_return
  if (HAVE_eh_return)
  if (HAVE_eh_return)
    emit_insn (gen_eh_return (cfun->eh->ehr_handler));
    emit_insn (gen_eh_return (cfun->eh->ehr_handler));
  else
  else
#endif
#endif
    {
    {
#ifdef EH_RETURN_HANDLER_RTX
#ifdef EH_RETURN_HANDLER_RTX
      emit_move_insn (EH_RETURN_HANDLER_RTX, cfun->eh->ehr_handler);
      emit_move_insn (EH_RETURN_HANDLER_RTX, cfun->eh->ehr_handler);
#else
#else
      error ("__builtin_eh_return not supported on this target");
      error ("__builtin_eh_return not supported on this target");
#endif
#endif
    }
    }
 
 
  emit_label (around_label);
  emit_label (around_label);
}
}
 
 
/* Convert a ptr_mode address ADDR_TREE to a Pmode address controlled by
/* Convert a ptr_mode address ADDR_TREE to a Pmode address controlled by
   POINTERS_EXTEND_UNSIGNED and return it.  */
   POINTERS_EXTEND_UNSIGNED and return it.  */
 
 
rtx
rtx
expand_builtin_extend_pointer (tree addr_tree)
expand_builtin_extend_pointer (tree addr_tree)
{
{
  rtx addr = expand_expr (addr_tree, NULL_RTX, ptr_mode, 0);
  rtx addr = expand_expr (addr_tree, NULL_RTX, ptr_mode, 0);
  int extend;
  int extend;
 
 
#ifdef POINTERS_EXTEND_UNSIGNED
#ifdef POINTERS_EXTEND_UNSIGNED
  extend = POINTERS_EXTEND_UNSIGNED;
  extend = POINTERS_EXTEND_UNSIGNED;
#else
#else
  /* The previous EH code did an unsigned extend by default, so we do this also
  /* The previous EH code did an unsigned extend by default, so we do this also
     for consistency.  */
     for consistency.  */
  extend = 1;
  extend = 1;
#endif
#endif
 
 
  return convert_modes (word_mode, ptr_mode, addr, extend);
  return convert_modes (word_mode, ptr_mode, addr, extend);
}
}


/* In the following functions, we represent entries in the action table
/* In the following functions, we represent entries in the action table
   as 1-based indices.  Special cases are:
   as 1-based indices.  Special cases are:
 
 
         0:     null action record, non-null landing pad; implies cleanups
         0:     null action record, non-null landing pad; implies cleanups
        -1:     null action record, null landing pad; implies no action
        -1:     null action record, null landing pad; implies no action
        -2:     no call-site entry; implies must_not_throw
        -2:     no call-site entry; implies must_not_throw
        -3:     we have yet to process outer regions
        -3:     we have yet to process outer regions
 
 
   Further, no special cases apply to the "next" field of the record.
   Further, no special cases apply to the "next" field of the record.
   For next, 0 means end of list.  */
   For next, 0 means end of list.  */
 
 
struct action_record
struct action_record
{
{
  int offset;
  int offset;
  int filter;
  int filter;
  int next;
  int next;
};
};
 
 
static int
static int
action_record_eq (const void *pentry, const void *pdata)
action_record_eq (const void *pentry, const void *pdata)
{
{
  const struct action_record *entry = (const struct action_record *) pentry;
  const struct action_record *entry = (const struct action_record *) pentry;
  const struct action_record *data = (const struct action_record *) pdata;
  const struct action_record *data = (const struct action_record *) pdata;
  return entry->filter == data->filter && entry->next == data->next;
  return entry->filter == data->filter && entry->next == data->next;
}
}
 
 
static hashval_t
static hashval_t
action_record_hash (const void *pentry)
action_record_hash (const void *pentry)
{
{
  const struct action_record *entry = (const struct action_record *) pentry;
  const struct action_record *entry = (const struct action_record *) pentry;
  return entry->next * 1009 + entry->filter;
  return entry->next * 1009 + entry->filter;
}
}
 
 
static int
static int
add_action_record (htab_t ar_hash, int filter, int next)
add_action_record (htab_t ar_hash, int filter, int next)
{
{
  struct action_record **slot, *new, tmp;
  struct action_record **slot, *new, tmp;
 
 
  tmp.filter = filter;
  tmp.filter = filter;
  tmp.next = next;
  tmp.next = next;
  slot = (struct action_record **) htab_find_slot (ar_hash, &tmp, INSERT);
  slot = (struct action_record **) htab_find_slot (ar_hash, &tmp, INSERT);
 
 
  if ((new = *slot) == NULL)
  if ((new = *slot) == NULL)
    {
    {
      new = xmalloc (sizeof (*new));
      new = xmalloc (sizeof (*new));
      new->offset = VARRAY_ACTIVE_SIZE (cfun->eh->action_record_data) + 1;
      new->offset = VARRAY_ACTIVE_SIZE (cfun->eh->action_record_data) + 1;
      new->filter = filter;
      new->filter = filter;
      new->next = next;
      new->next = next;
      *slot = new;
      *slot = new;
 
 
      /* The filter value goes in untouched.  The link to the next
      /* The filter value goes in untouched.  The link to the next
         record is a "self-relative" byte offset, or zero to indicate
         record is a "self-relative" byte offset, or zero to indicate
         that there is no next record.  So convert the absolute 1 based
         that there is no next record.  So convert the absolute 1 based
         indices we've been carrying around into a displacement.  */
         indices we've been carrying around into a displacement.  */
 
 
      push_sleb128 (&cfun->eh->action_record_data, filter);
      push_sleb128 (&cfun->eh->action_record_data, filter);
      if (next)
      if (next)
        next -= VARRAY_ACTIVE_SIZE (cfun->eh->action_record_data) + 1;
        next -= VARRAY_ACTIVE_SIZE (cfun->eh->action_record_data) + 1;
      push_sleb128 (&cfun->eh->action_record_data, next);
      push_sleb128 (&cfun->eh->action_record_data, next);
    }
    }
 
 
  return new->offset;
  return new->offset;
}
}
 
 
static int
static int
collect_one_action_chain (htab_t ar_hash, struct eh_region *region)
collect_one_action_chain (htab_t ar_hash, struct eh_region *region)
{
{
  struct eh_region *c;
  struct eh_region *c;
  int next;
  int next;
 
 
  /* If we've reached the top of the region chain, then we have
  /* If we've reached the top of the region chain, then we have
     no actions, and require no landing pad.  */
     no actions, and require no landing pad.  */
  if (region == NULL)
  if (region == NULL)
    return -1;
    return -1;
 
 
  switch (region->type)
  switch (region->type)
    {
    {
    case ERT_CLEANUP:
    case ERT_CLEANUP:
      /* A cleanup adds a zero filter to the beginning of the chain, but
      /* A cleanup adds a zero filter to the beginning of the chain, but
         there are special cases to look out for.  If there are *only*
         there are special cases to look out for.  If there are *only*
         cleanups along a path, then it compresses to a zero action.
         cleanups along a path, then it compresses to a zero action.
         Further, if there are multiple cleanups along a path, we only
         Further, if there are multiple cleanups along a path, we only
         need to represent one of them, as that is enough to trigger
         need to represent one of them, as that is enough to trigger
         entry to the landing pad at runtime.  */
         entry to the landing pad at runtime.  */
      next = collect_one_action_chain (ar_hash, region->outer);
      next = collect_one_action_chain (ar_hash, region->outer);
      if (next <= 0)
      if (next <= 0)
        return 0;
        return 0;
      for (c = region->outer; c ; c = c->outer)
      for (c = region->outer; c ; c = c->outer)
        if (c->type == ERT_CLEANUP)
        if (c->type == ERT_CLEANUP)
          return next;
          return next;
      return add_action_record (ar_hash, 0, next);
      return add_action_record (ar_hash, 0, next);
 
 
    case ERT_TRY:
    case ERT_TRY:
      /* Process the associated catch regions in reverse order.
      /* Process the associated catch regions in reverse order.
         If there's a catch-all handler, then we don't need to
         If there's a catch-all handler, then we don't need to
         search outer regions.  Use a magic -3 value to record
         search outer regions.  Use a magic -3 value to record
         that we haven't done the outer search.  */
         that we haven't done the outer search.  */
      next = -3;
      next = -3;
      for (c = region->u.try.last_catch; c ; c = c->u.catch.prev_catch)
      for (c = region->u.try.last_catch; c ; c = c->u.catch.prev_catch)
        {
        {
          if (c->u.catch.type_list == NULL)
          if (c->u.catch.type_list == NULL)
            {
            {
              /* Retrieve the filter from the head of the filter list
              /* Retrieve the filter from the head of the filter list
                 where we have stored it (see assign_filter_values).  */
                 where we have stored it (see assign_filter_values).  */
              int filter
              int filter
                = TREE_INT_CST_LOW (TREE_VALUE (c->u.catch.filter_list));
                = TREE_INT_CST_LOW (TREE_VALUE (c->u.catch.filter_list));
 
 
              next = add_action_record (ar_hash, filter, 0);
              next = add_action_record (ar_hash, filter, 0);
            }
            }
          else
          else
            {
            {
              /* Once the outer search is done, trigger an action record for
              /* Once the outer search is done, trigger an action record for
                 each filter we have.  */
                 each filter we have.  */
              tree flt_node;
              tree flt_node;
 
 
              if (next == -3)
              if (next == -3)
                {
                {
                  next = collect_one_action_chain (ar_hash, region->outer);
                  next = collect_one_action_chain (ar_hash, region->outer);
 
 
                  /* If there is no next action, terminate the chain.  */
                  /* If there is no next action, terminate the chain.  */
                  if (next == -1)
                  if (next == -1)
                    next = 0;
                    next = 0;
                  /* If all outer actions are cleanups or must_not_throw,
                  /* If all outer actions are cleanups or must_not_throw,
                     we'll have no action record for it, since we had wanted
                     we'll have no action record for it, since we had wanted
                     to encode these states in the call-site record directly.
                     to encode these states in the call-site record directly.
                     Add a cleanup action to the chain to catch these.  */
                     Add a cleanup action to the chain to catch these.  */
                  else if (next <= 0)
                  else if (next <= 0)
                    next = add_action_record (ar_hash, 0, 0);
                    next = add_action_record (ar_hash, 0, 0);
                }
                }
 
 
              flt_node = c->u.catch.filter_list;
              flt_node = c->u.catch.filter_list;
              for (; flt_node; flt_node = TREE_CHAIN (flt_node))
              for (; flt_node; flt_node = TREE_CHAIN (flt_node))
                {
                {
                  int filter = TREE_INT_CST_LOW (TREE_VALUE (flt_node));
                  int filter = TREE_INT_CST_LOW (TREE_VALUE (flt_node));
                  next = add_action_record (ar_hash, filter, next);
                  next = add_action_record (ar_hash, filter, next);
                }
                }
            }
            }
        }
        }
      return next;
      return next;
 
 
    case ERT_ALLOWED_EXCEPTIONS:
    case ERT_ALLOWED_EXCEPTIONS:
      /* An exception specification adds its filter to the
      /* An exception specification adds its filter to the
         beginning of the chain.  */
         beginning of the chain.  */
      next = collect_one_action_chain (ar_hash, region->outer);
      next = collect_one_action_chain (ar_hash, region->outer);
 
 
      /* If there is no next action, terminate the chain.  */
      /* If there is no next action, terminate the chain.  */
      if (next == -1)
      if (next == -1)
        next = 0;
        next = 0;
      /* If all outer actions are cleanups or must_not_throw,
      /* If all outer actions are cleanups or must_not_throw,
         we'll have no action record for it, since we had wanted
         we'll have no action record for it, since we had wanted
         to encode these states in the call-site record directly.
         to encode these states in the call-site record directly.
         Add a cleanup action to the chain to catch these.  */
         Add a cleanup action to the chain to catch these.  */
      else if (next <= 0)
      else if (next <= 0)
        next = add_action_record (ar_hash, 0, 0);
        next = add_action_record (ar_hash, 0, 0);
 
 
      return add_action_record (ar_hash, region->u.allowed.filter, next);
      return add_action_record (ar_hash, region->u.allowed.filter, next);
 
 
    case ERT_MUST_NOT_THROW:
    case ERT_MUST_NOT_THROW:
      /* A must-not-throw region with no inner handlers or cleanups
      /* A must-not-throw region with no inner handlers or cleanups
         requires no call-site entry.  Note that this differs from
         requires no call-site entry.  Note that this differs from
         the no handler or cleanup case in that we do require an lsda
         the no handler or cleanup case in that we do require an lsda
         to be generated.  Return a magic -2 value to record this.  */
         to be generated.  Return a magic -2 value to record this.  */
      return -2;
      return -2;
 
 
    case ERT_CATCH:
    case ERT_CATCH:
    case ERT_THROW:
    case ERT_THROW:
      /* CATCH regions are handled in TRY above.  THROW regions are
      /* CATCH regions are handled in TRY above.  THROW regions are
         for optimization information only and produce no output.  */
         for optimization information only and produce no output.  */
      return collect_one_action_chain (ar_hash, region->outer);
      return collect_one_action_chain (ar_hash, region->outer);
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}
 
 
static int
static int
add_call_site (rtx landing_pad, int action)
add_call_site (rtx landing_pad, int action)
{
{
  struct call_site_record *data = cfun->eh->call_site_data;
  struct call_site_record *data = cfun->eh->call_site_data;
  int used = cfun->eh->call_site_data_used;
  int used = cfun->eh->call_site_data_used;
  int size = cfun->eh->call_site_data_size;
  int size = cfun->eh->call_site_data_size;
 
 
  if (used >= size)
  if (used >= size)
    {
    {
      size = (size ? size * 2 : 64);
      size = (size ? size * 2 : 64);
      data = ggc_realloc (data, sizeof (*data) * size);
      data = ggc_realloc (data, sizeof (*data) * size);
      cfun->eh->call_site_data = data;
      cfun->eh->call_site_data = data;
      cfun->eh->call_site_data_size = size;
      cfun->eh->call_site_data_size = size;
    }
    }
 
 
  data[used].landing_pad = landing_pad;
  data[used].landing_pad = landing_pad;
  data[used].action = action;
  data[used].action = action;
 
 
  cfun->eh->call_site_data_used = used + 1;
  cfun->eh->call_site_data_used = used + 1;
 
 
  return used + call_site_base;
  return used + call_site_base;
}
}
 
 
/* Turn REG_EH_REGION notes back into NOTE_INSN_EH_REGION notes.
/* Turn REG_EH_REGION notes back into NOTE_INSN_EH_REGION notes.
   The new note numbers will not refer to region numbers, but
   The new note numbers will not refer to region numbers, but
   instead to call site entries.  */
   instead to call site entries.  */
 
 
unsigned int
unsigned int
convert_to_eh_region_ranges (void)
convert_to_eh_region_ranges (void)
{
{
  rtx insn, iter, note;
  rtx insn, iter, note;
  htab_t ar_hash;
  htab_t ar_hash;
  int last_action = -3;
  int last_action = -3;
  rtx last_action_insn = NULL_RTX;
  rtx last_action_insn = NULL_RTX;
  rtx last_landing_pad = NULL_RTX;
  rtx last_landing_pad = NULL_RTX;
  rtx first_no_action_insn = NULL_RTX;
  rtx first_no_action_insn = NULL_RTX;
  int call_site = 0;
  int call_site = 0;
 
 
  if (USING_SJLJ_EXCEPTIONS || cfun->eh->region_tree == NULL)
  if (USING_SJLJ_EXCEPTIONS || cfun->eh->region_tree == NULL)
    return 0;
    return 0;
 
 
  VARRAY_UCHAR_INIT (cfun->eh->action_record_data, 64, "action_record_data");
  VARRAY_UCHAR_INIT (cfun->eh->action_record_data, 64, "action_record_data");
 
 
  ar_hash = htab_create (31, action_record_hash, action_record_eq, free);
  ar_hash = htab_create (31, action_record_hash, action_record_eq, free);
 
 
  for (iter = get_insns (); iter ; iter = NEXT_INSN (iter))
  for (iter = get_insns (); iter ; iter = NEXT_INSN (iter))
    if (INSN_P (iter))
    if (INSN_P (iter))
      {
      {
        struct eh_region *region;
        struct eh_region *region;
        int this_action;
        int this_action;
        rtx this_landing_pad;
        rtx this_landing_pad;
 
 
        insn = iter;
        insn = iter;
        if (NONJUMP_INSN_P (insn)
        if (NONJUMP_INSN_P (insn)
            && GET_CODE (PATTERN (insn)) == SEQUENCE)
            && GET_CODE (PATTERN (insn)) == SEQUENCE)
          insn = XVECEXP (PATTERN (insn), 0, 0);
          insn = XVECEXP (PATTERN (insn), 0, 0);
 
 
        note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
        note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
        if (!note)
        if (!note)
          {
          {
            if (! (CALL_P (insn)
            if (! (CALL_P (insn)
                   || (flag_non_call_exceptions
                   || (flag_non_call_exceptions
                       && may_trap_p (PATTERN (insn)))))
                       && may_trap_p (PATTERN (insn)))))
              continue;
              continue;
            this_action = -1;
            this_action = -1;
            region = NULL;
            region = NULL;
          }
          }
        else
        else
          {
          {
            if (INTVAL (XEXP (note, 0)) <= 0)
            if (INTVAL (XEXP (note, 0)) <= 0)
              continue;
              continue;
            region = VEC_index (eh_region, cfun->eh->region_array, INTVAL (XEXP (note, 0)));
            region = VEC_index (eh_region, cfun->eh->region_array, INTVAL (XEXP (note, 0)));
            this_action = collect_one_action_chain (ar_hash, region);
            this_action = collect_one_action_chain (ar_hash, region);
          }
          }
 
 
        /* Existence of catch handlers, or must-not-throw regions
        /* Existence of catch handlers, or must-not-throw regions
           implies that an lsda is needed (even if empty).  */
           implies that an lsda is needed (even if empty).  */
        if (this_action != -1)
        if (this_action != -1)
          cfun->uses_eh_lsda = 1;
          cfun->uses_eh_lsda = 1;
 
 
        /* Delay creation of region notes for no-action regions
        /* Delay creation of region notes for no-action regions
           until we're sure that an lsda will be required.  */
           until we're sure that an lsda will be required.  */
        else if (last_action == -3)
        else if (last_action == -3)
          {
          {
            first_no_action_insn = iter;
            first_no_action_insn = iter;
            last_action = -1;
            last_action = -1;
          }
          }
 
 
        /* Cleanups and handlers may share action chains but not
        /* Cleanups and handlers may share action chains but not
           landing pads.  Collect the landing pad for this region.  */
           landing pads.  Collect the landing pad for this region.  */
        if (this_action >= 0)
        if (this_action >= 0)
          {
          {
            struct eh_region *o;
            struct eh_region *o;
            for (o = region; ! o->landing_pad ; o = o->outer)
            for (o = region; ! o->landing_pad ; o = o->outer)
              continue;
              continue;
            this_landing_pad = o->landing_pad;
            this_landing_pad = o->landing_pad;
          }
          }
        else
        else
          this_landing_pad = NULL_RTX;
          this_landing_pad = NULL_RTX;
 
 
        /* Differing actions or landing pads implies a change in call-site
        /* Differing actions or landing pads implies a change in call-site
           info, which implies some EH_REGION note should be emitted.  */
           info, which implies some EH_REGION note should be emitted.  */
        if (last_action != this_action
        if (last_action != this_action
            || last_landing_pad != this_landing_pad)
            || last_landing_pad != this_landing_pad)
          {
          {
            /* If we'd not seen a previous action (-3) or the previous
            /* If we'd not seen a previous action (-3) or the previous
               action was must-not-throw (-2), then we do not need an
               action was must-not-throw (-2), then we do not need an
               end note.  */
               end note.  */
            if (last_action >= -1)
            if (last_action >= -1)
              {
              {
                /* If we delayed the creation of the begin, do it now.  */
                /* If we delayed the creation of the begin, do it now.  */
                if (first_no_action_insn)
                if (first_no_action_insn)
                  {
                  {
                    call_site = add_call_site (NULL_RTX, 0);
                    call_site = add_call_site (NULL_RTX, 0);
                    note = emit_note_before (NOTE_INSN_EH_REGION_BEG,
                    note = emit_note_before (NOTE_INSN_EH_REGION_BEG,
                                             first_no_action_insn);
                                             first_no_action_insn);
                    NOTE_EH_HANDLER (note) = call_site;
                    NOTE_EH_HANDLER (note) = call_site;
                    first_no_action_insn = NULL_RTX;
                    first_no_action_insn = NULL_RTX;
                  }
                  }
 
 
                note = emit_note_after (NOTE_INSN_EH_REGION_END,
                note = emit_note_after (NOTE_INSN_EH_REGION_END,
                                        last_action_insn);
                                        last_action_insn);
                NOTE_EH_HANDLER (note) = call_site;
                NOTE_EH_HANDLER (note) = call_site;
              }
              }
 
 
            /* If the new action is must-not-throw, then no region notes
            /* If the new action is must-not-throw, then no region notes
               are created.  */
               are created.  */
            if (this_action >= -1)
            if (this_action >= -1)
              {
              {
                call_site = add_call_site (this_landing_pad,
                call_site = add_call_site (this_landing_pad,
                                           this_action < 0 ? 0 : this_action);
                                           this_action < 0 ? 0 : this_action);
                note = emit_note_before (NOTE_INSN_EH_REGION_BEG, iter);
                note = emit_note_before (NOTE_INSN_EH_REGION_BEG, iter);
                NOTE_EH_HANDLER (note) = call_site;
                NOTE_EH_HANDLER (note) = call_site;
              }
              }
 
 
            last_action = this_action;
            last_action = this_action;
            last_landing_pad = this_landing_pad;
            last_landing_pad = this_landing_pad;
          }
          }
        last_action_insn = iter;
        last_action_insn = iter;
      }
      }
 
 
  if (last_action >= -1 && ! first_no_action_insn)
  if (last_action >= -1 && ! first_no_action_insn)
    {
    {
      note = emit_note_after (NOTE_INSN_EH_REGION_END, last_action_insn);
      note = emit_note_after (NOTE_INSN_EH_REGION_END, last_action_insn);
      NOTE_EH_HANDLER (note) = call_site;
      NOTE_EH_HANDLER (note) = call_site;
    }
    }
 
 
  htab_delete (ar_hash);
  htab_delete (ar_hash);
  return 0;
  return 0;
}
}
 
 
struct tree_opt_pass pass_convert_to_eh_region_ranges =
struct tree_opt_pass pass_convert_to_eh_region_ranges =
{
{
  "eh-ranges",                          /* name */
  "eh-ranges",                          /* name */
  NULL,                                 /* gate */
  NULL,                                 /* gate */
  convert_to_eh_region_ranges,          /* execute */
  convert_to_eh_region_ranges,          /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  NULL,                                 /* next */
  0,                                    /* static_pass_number */
  0,                                    /* static_pass_number */
  0,                                    /* tv_id */
  0,                                    /* tv_id */
  0,                                    /* properties_required */
  0,                                    /* properties_required */
  0,                                    /* properties_provided */
  0,                                    /* properties_provided */
  0,                                    /* properties_destroyed */
  0,                                    /* properties_destroyed */
  0,                                    /* todo_flags_start */
  0,                                    /* todo_flags_start */
  TODO_dump_func,                       /* todo_flags_finish */
  TODO_dump_func,                       /* todo_flags_finish */
  0                                     /* letter */
  0                                     /* letter */
};
};
 
 


static void
static void
push_uleb128 (varray_type *data_area, unsigned int value)
push_uleb128 (varray_type *data_area, unsigned int value)
{
{
  do
  do
    {
    {
      unsigned char byte = value & 0x7f;
      unsigned char byte = value & 0x7f;
      value >>= 7;
      value >>= 7;
      if (value)
      if (value)
        byte |= 0x80;
        byte |= 0x80;
      VARRAY_PUSH_UCHAR (*data_area, byte);
      VARRAY_PUSH_UCHAR (*data_area, byte);
    }
    }
  while (value);
  while (value);
}
}
 
 
static void
static void
push_sleb128 (varray_type *data_area, int value)
push_sleb128 (varray_type *data_area, int value)
{
{
  unsigned char byte;
  unsigned char byte;
  int more;
  int more;
 
 
  do
  do
    {
    {
      byte = value & 0x7f;
      byte = value & 0x7f;
      value >>= 7;
      value >>= 7;
      more = ! ((value == 0 && (byte & 0x40) == 0)
      more = ! ((value == 0 && (byte & 0x40) == 0)
                || (value == -1 && (byte & 0x40) != 0));
                || (value == -1 && (byte & 0x40) != 0));
      if (more)
      if (more)
        byte |= 0x80;
        byte |= 0x80;
      VARRAY_PUSH_UCHAR (*data_area, byte);
      VARRAY_PUSH_UCHAR (*data_area, byte);
    }
    }
  while (more);
  while (more);
}
}
 
 


#ifndef HAVE_AS_LEB128
#ifndef HAVE_AS_LEB128
static int
static int
dw2_size_of_call_site_table (void)
dw2_size_of_call_site_table (void)
{
{
  int n = cfun->eh->call_site_data_used;
  int n = cfun->eh->call_site_data_used;
  int size = n * (4 + 4 + 4);
  int size = n * (4 + 4 + 4);
  int i;
  int i;
 
 
  for (i = 0; i < n; ++i)
  for (i = 0; i < n; ++i)
    {
    {
      struct call_site_record *cs = &cfun->eh->call_site_data[i];
      struct call_site_record *cs = &cfun->eh->call_site_data[i];
      size += size_of_uleb128 (cs->action);
      size += size_of_uleb128 (cs->action);
    }
    }
 
 
  return size;
  return size;
}
}
 
 
static int
static int
sjlj_size_of_call_site_table (void)
sjlj_size_of_call_site_table (void)
{
{
  int n = cfun->eh->call_site_data_used;
  int n = cfun->eh->call_site_data_used;
  int size = 0;
  int size = 0;
  int i;
  int i;
 
 
  for (i = 0; i < n; ++i)
  for (i = 0; i < n; ++i)
    {
    {
      struct call_site_record *cs = &cfun->eh->call_site_data[i];
      struct call_site_record *cs = &cfun->eh->call_site_data[i];
      size += size_of_uleb128 (INTVAL (cs->landing_pad));
      size += size_of_uleb128 (INTVAL (cs->landing_pad));
      size += size_of_uleb128 (cs->action);
      size += size_of_uleb128 (cs->action);
    }
    }
 
 
  return size;
  return size;
}
}
#endif
#endif
 
 
static void
static void
dw2_output_call_site_table (void)
dw2_output_call_site_table (void)
{
{
  int n = cfun->eh->call_site_data_used;
  int n = cfun->eh->call_site_data_used;
  int i;
  int i;
 
 
  for (i = 0; i < n; ++i)
  for (i = 0; i < n; ++i)
    {
    {
      struct call_site_record *cs = &cfun->eh->call_site_data[i];
      struct call_site_record *cs = &cfun->eh->call_site_data[i];
      char reg_start_lab[32];
      char reg_start_lab[32];
      char reg_end_lab[32];
      char reg_end_lab[32];
      char landing_pad_lab[32];
      char landing_pad_lab[32];
 
 
      ASM_GENERATE_INTERNAL_LABEL (reg_start_lab, "LEHB", call_site_base + i);
      ASM_GENERATE_INTERNAL_LABEL (reg_start_lab, "LEHB", call_site_base + i);
      ASM_GENERATE_INTERNAL_LABEL (reg_end_lab, "LEHE", call_site_base + i);
      ASM_GENERATE_INTERNAL_LABEL (reg_end_lab, "LEHE", call_site_base + i);
 
 
      if (cs->landing_pad)
      if (cs->landing_pad)
        ASM_GENERATE_INTERNAL_LABEL (landing_pad_lab, "L",
        ASM_GENERATE_INTERNAL_LABEL (landing_pad_lab, "L",
                                     CODE_LABEL_NUMBER (cs->landing_pad));
                                     CODE_LABEL_NUMBER (cs->landing_pad));
 
 
      /* ??? Perhaps use insn length scaling if the assembler supports
      /* ??? Perhaps use insn length scaling if the assembler supports
         generic arithmetic.  */
         generic arithmetic.  */
      /* ??? Perhaps use attr_length to choose data1 or data2 instead of
      /* ??? Perhaps use attr_length to choose data1 or data2 instead of
         data4 if the function is small enough.  */
         data4 if the function is small enough.  */
#ifdef HAVE_AS_LEB128
#ifdef HAVE_AS_LEB128
      dw2_asm_output_delta_uleb128 (reg_start_lab,
      dw2_asm_output_delta_uleb128 (reg_start_lab,
                                    current_function_func_begin_label,
                                    current_function_func_begin_label,
                                    "region %d start", i);
                                    "region %d start", i);
      dw2_asm_output_delta_uleb128 (reg_end_lab, reg_start_lab,
      dw2_asm_output_delta_uleb128 (reg_end_lab, reg_start_lab,
                                    "length");
                                    "length");
      if (cs->landing_pad)
      if (cs->landing_pad)
        dw2_asm_output_delta_uleb128 (landing_pad_lab,
        dw2_asm_output_delta_uleb128 (landing_pad_lab,
                                      current_function_func_begin_label,
                                      current_function_func_begin_label,
                                      "landing pad");
                                      "landing pad");
      else
      else
        dw2_asm_output_data_uleb128 (0, "landing pad");
        dw2_asm_output_data_uleb128 (0, "landing pad");
#else
#else
      dw2_asm_output_delta (4, reg_start_lab,
      dw2_asm_output_delta (4, reg_start_lab,
                            current_function_func_begin_label,
                            current_function_func_begin_label,
                            "region %d start", i);
                            "region %d start", i);
      dw2_asm_output_delta (4, reg_end_lab, reg_start_lab, "length");
      dw2_asm_output_delta (4, reg_end_lab, reg_start_lab, "length");
      if (cs->landing_pad)
      if (cs->landing_pad)
        dw2_asm_output_delta (4, landing_pad_lab,
        dw2_asm_output_delta (4, landing_pad_lab,
                              current_function_func_begin_label,
                              current_function_func_begin_label,
                              "landing pad");
                              "landing pad");
      else
      else
        dw2_asm_output_data (4, 0, "landing pad");
        dw2_asm_output_data (4, 0, "landing pad");
#endif
#endif
      dw2_asm_output_data_uleb128 (cs->action, "action");
      dw2_asm_output_data_uleb128 (cs->action, "action");
    }
    }
 
 
  call_site_base += n;
  call_site_base += n;
}
}
 
 
static void
static void
sjlj_output_call_site_table (void)
sjlj_output_call_site_table (void)
{
{
  int n = cfun->eh->call_site_data_used;
  int n = cfun->eh->call_site_data_used;
  int i;
  int i;
 
 
  for (i = 0; i < n; ++i)
  for (i = 0; i < n; ++i)
    {
    {
      struct call_site_record *cs = &cfun->eh->call_site_data[i];
      struct call_site_record *cs = &cfun->eh->call_site_data[i];
 
 
      dw2_asm_output_data_uleb128 (INTVAL (cs->landing_pad),
      dw2_asm_output_data_uleb128 (INTVAL (cs->landing_pad),
                                   "region %d landing pad", i);
                                   "region %d landing pad", i);
      dw2_asm_output_data_uleb128 (cs->action, "action");
      dw2_asm_output_data_uleb128 (cs->action, "action");
    }
    }
 
 
  call_site_base += n;
  call_site_base += n;
}
}
 
 
#ifndef TARGET_UNWIND_INFO
#ifndef TARGET_UNWIND_INFO
/* Switch to the section that should be used for exception tables.  */
/* Switch to the section that should be used for exception tables.  */
 
 
static void
static void
switch_to_exception_section (void)
switch_to_exception_section (void)
{
{
  if (exception_section == 0)
  if (exception_section == 0)
    {
    {
      if (targetm.have_named_sections)
      if (targetm.have_named_sections)
        {
        {
          int flags;
          int flags;
 
 
          if (EH_TABLES_CAN_BE_READ_ONLY)
          if (EH_TABLES_CAN_BE_READ_ONLY)
            {
            {
              int tt_format =
              int tt_format =
                ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/1);
                ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/1);
              flags = ((! flag_pic
              flags = ((! flag_pic
                        || ((tt_format & 0x70) != DW_EH_PE_absptr
                        || ((tt_format & 0x70) != DW_EH_PE_absptr
                            && (tt_format & 0x70) != DW_EH_PE_aligned))
                            && (tt_format & 0x70) != DW_EH_PE_aligned))
                       ? 0 : SECTION_WRITE);
                       ? 0 : SECTION_WRITE);
            }
            }
          else
          else
            flags = SECTION_WRITE;
            flags = SECTION_WRITE;
          exception_section = get_section (".gcc_except_table", flags, NULL);
          exception_section = get_section (".gcc_except_table", flags, NULL);
        }
        }
      else
      else
        exception_section = flag_pic ? data_section : readonly_data_section;
        exception_section = flag_pic ? data_section : readonly_data_section;
    }
    }
  switch_to_section (exception_section);
  switch_to_section (exception_section);
}
}
#endif
#endif
 
 
 
 
/* Output a reference from an exception table to the type_info object TYPE.
/* Output a reference from an exception table to the type_info object TYPE.
   TT_FORMAT and TT_FORMAT_SIZE describe the DWARF encoding method used for
   TT_FORMAT and TT_FORMAT_SIZE describe the DWARF encoding method used for
   the value.  */
   the value.  */
 
 
static void
static void
output_ttype (tree type, int tt_format, int tt_format_size)
output_ttype (tree type, int tt_format, int tt_format_size)
{
{
  rtx value;
  rtx value;
  bool public = true;
  bool public = true;
 
 
  if (type == NULL_TREE)
  if (type == NULL_TREE)
    value = const0_rtx;
    value = const0_rtx;
  else
  else
    {
    {
      struct cgraph_varpool_node *node;
      struct cgraph_varpool_node *node;
 
 
      type = lookup_type_for_runtime (type);
      type = lookup_type_for_runtime (type);
      value = expand_expr (type, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);
      value = expand_expr (type, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);
 
 
      /* Let cgraph know that the rtti decl is used.  Not all of the
      /* Let cgraph know that the rtti decl is used.  Not all of the
         paths below go through assemble_integer, which would take
         paths below go through assemble_integer, which would take
         care of this for us.  */
         care of this for us.  */
      STRIP_NOPS (type);
      STRIP_NOPS (type);
      if (TREE_CODE (type) == ADDR_EXPR)
      if (TREE_CODE (type) == ADDR_EXPR)
        {
        {
          type = TREE_OPERAND (type, 0);
          type = TREE_OPERAND (type, 0);
          if (TREE_CODE (type) == VAR_DECL)
          if (TREE_CODE (type) == VAR_DECL)
            {
            {
              node = cgraph_varpool_node (type);
              node = cgraph_varpool_node (type);
              if (node)
              if (node)
                cgraph_varpool_mark_needed_node (node);
                cgraph_varpool_mark_needed_node (node);
              public = TREE_PUBLIC (type);
              public = TREE_PUBLIC (type);
            }
            }
        }
        }
      else
      else
        gcc_assert (TREE_CODE (type) == INTEGER_CST);
        gcc_assert (TREE_CODE (type) == INTEGER_CST);
    }
    }
 
 
  /* Allow the target to override the type table entry format.  */
  /* Allow the target to override the type table entry format.  */
  if (targetm.asm_out.ttype (value))
  if (targetm.asm_out.ttype (value))
    return;
    return;
 
 
  if (tt_format == DW_EH_PE_absptr || tt_format == DW_EH_PE_aligned)
  if (tt_format == DW_EH_PE_absptr || tt_format == DW_EH_PE_aligned)
    assemble_integer (value, tt_format_size,
    assemble_integer (value, tt_format_size,
                      tt_format_size * BITS_PER_UNIT, 1);
                      tt_format_size * BITS_PER_UNIT, 1);
  else
  else
    dw2_asm_output_encoded_addr_rtx (tt_format, value, public, NULL);
    dw2_asm_output_encoded_addr_rtx (tt_format, value, public, NULL);
}
}
 
 
void
void
output_function_exception_table (void)
output_function_exception_table (void)
{
{
  int tt_format, cs_format, lp_format, i, n;
  int tt_format, cs_format, lp_format, i, n;
#ifdef HAVE_AS_LEB128
#ifdef HAVE_AS_LEB128
  char ttype_label[32];
  char ttype_label[32];
  char cs_after_size_label[32];
  char cs_after_size_label[32];
  char cs_end_label[32];
  char cs_end_label[32];
#else
#else
  int call_site_len;
  int call_site_len;
#endif
#endif
  int have_tt_data;
  int have_tt_data;
  int tt_format_size = 0;
  int tt_format_size = 0;
 
 
  if (eh_personality_libfunc)
  if (eh_personality_libfunc)
    assemble_external_libcall (eh_personality_libfunc);
    assemble_external_libcall (eh_personality_libfunc);
 
 
  /* Not all functions need anything.  */
  /* Not all functions need anything.  */
  if (! cfun->uses_eh_lsda)
  if (! cfun->uses_eh_lsda)
    return;
    return;
 
 
#ifdef TARGET_UNWIND_INFO
#ifdef TARGET_UNWIND_INFO
  /* TODO: Move this into target file.  */
  /* TODO: Move this into target file.  */
  fputs ("\t.personality\t", asm_out_file);
  fputs ("\t.personality\t", asm_out_file);
  output_addr_const (asm_out_file, eh_personality_libfunc);
  output_addr_const (asm_out_file, eh_personality_libfunc);
  fputs ("\n\t.handlerdata\n", asm_out_file);
  fputs ("\n\t.handlerdata\n", asm_out_file);
  /* Note that varasm still thinks we're in the function's code section.
  /* Note that varasm still thinks we're in the function's code section.
     The ".endp" directive that will immediately follow will take us back.  */
     The ".endp" directive that will immediately follow will take us back.  */
#else
#else
  switch_to_exception_section ();
  switch_to_exception_section ();
#endif
#endif
 
 
  /* If the target wants a label to begin the table, emit it here.  */
  /* If the target wants a label to begin the table, emit it here.  */
  targetm.asm_out.except_table_label (asm_out_file);
  targetm.asm_out.except_table_label (asm_out_file);
 
 
  have_tt_data = (VEC_length (tree, cfun->eh->ttype_data) > 0
  have_tt_data = (VEC_length (tree, cfun->eh->ttype_data) > 0
                  || VARRAY_ACTIVE_SIZE (cfun->eh->ehspec_data) > 0);
                  || VARRAY_ACTIVE_SIZE (cfun->eh->ehspec_data) > 0);
 
 
  /* Indicate the format of the @TType entries.  */
  /* Indicate the format of the @TType entries.  */
  if (! have_tt_data)
  if (! have_tt_data)
    tt_format = DW_EH_PE_omit;
    tt_format = DW_EH_PE_omit;
  else
  else
    {
    {
      tt_format = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/1);
      tt_format = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/1);
#ifdef HAVE_AS_LEB128
#ifdef HAVE_AS_LEB128
      ASM_GENERATE_INTERNAL_LABEL (ttype_label, "LLSDATT",
      ASM_GENERATE_INTERNAL_LABEL (ttype_label, "LLSDATT",
                                   current_function_funcdef_no);
                                   current_function_funcdef_no);
#endif
#endif
      tt_format_size = size_of_encoded_value (tt_format);
      tt_format_size = size_of_encoded_value (tt_format);
 
 
      assemble_align (tt_format_size * BITS_PER_UNIT);
      assemble_align (tt_format_size * BITS_PER_UNIT);
    }
    }
 
 
  targetm.asm_out.internal_label (asm_out_file, "LLSDA",
  targetm.asm_out.internal_label (asm_out_file, "LLSDA",
                             current_function_funcdef_no);
                             current_function_funcdef_no);
 
 
  /* The LSDA header.  */
  /* The LSDA header.  */
 
 
  /* Indicate the format of the landing pad start pointer.  An omitted
  /* Indicate the format of the landing pad start pointer.  An omitted
     field implies @LPStart == @Start.  */
     field implies @LPStart == @Start.  */
  /* Currently we always put @LPStart == @Start.  This field would
  /* Currently we always put @LPStart == @Start.  This field would
     be most useful in moving the landing pads completely out of
     be most useful in moving the landing pads completely out of
     line to another section, but it could also be used to minimize
     line to another section, but it could also be used to minimize
     the size of uleb128 landing pad offsets.  */
     the size of uleb128 landing pad offsets.  */
  lp_format = DW_EH_PE_omit;
  lp_format = DW_EH_PE_omit;
  dw2_asm_output_data (1, lp_format, "@LPStart format (%s)",
  dw2_asm_output_data (1, lp_format, "@LPStart format (%s)",
                       eh_data_format_name (lp_format));
                       eh_data_format_name (lp_format));
 
 
  /* @LPStart pointer would go here.  */
  /* @LPStart pointer would go here.  */
 
 
  dw2_asm_output_data (1, tt_format, "@TType format (%s)",
  dw2_asm_output_data (1, tt_format, "@TType format (%s)",
                       eh_data_format_name (tt_format));
                       eh_data_format_name (tt_format));
 
 
#ifndef HAVE_AS_LEB128
#ifndef HAVE_AS_LEB128
  if (USING_SJLJ_EXCEPTIONS)
  if (USING_SJLJ_EXCEPTIONS)
    call_site_len = sjlj_size_of_call_site_table ();
    call_site_len = sjlj_size_of_call_site_table ();
  else
  else
    call_site_len = dw2_size_of_call_site_table ();
    call_site_len = dw2_size_of_call_site_table ();
#endif
#endif
 
 
  /* A pc-relative 4-byte displacement to the @TType data.  */
  /* A pc-relative 4-byte displacement to the @TType data.  */
  if (have_tt_data)
  if (have_tt_data)
    {
    {
#ifdef HAVE_AS_LEB128
#ifdef HAVE_AS_LEB128
      char ttype_after_disp_label[32];
      char ttype_after_disp_label[32];
      ASM_GENERATE_INTERNAL_LABEL (ttype_after_disp_label, "LLSDATTD",
      ASM_GENERATE_INTERNAL_LABEL (ttype_after_disp_label, "LLSDATTD",
                                   current_function_funcdef_no);
                                   current_function_funcdef_no);
      dw2_asm_output_delta_uleb128 (ttype_label, ttype_after_disp_label,
      dw2_asm_output_delta_uleb128 (ttype_label, ttype_after_disp_label,
                                    "@TType base offset");
                                    "@TType base offset");
      ASM_OUTPUT_LABEL (asm_out_file, ttype_after_disp_label);
      ASM_OUTPUT_LABEL (asm_out_file, ttype_after_disp_label);
#else
#else
      /* Ug.  Alignment queers things.  */
      /* Ug.  Alignment queers things.  */
      unsigned int before_disp, after_disp, last_disp, disp;
      unsigned int before_disp, after_disp, last_disp, disp;
 
 
      before_disp = 1 + 1;
      before_disp = 1 + 1;
      after_disp = (1 + size_of_uleb128 (call_site_len)
      after_disp = (1 + size_of_uleb128 (call_site_len)
                    + call_site_len
                    + call_site_len
                    + VARRAY_ACTIVE_SIZE (cfun->eh->action_record_data)
                    + VARRAY_ACTIVE_SIZE (cfun->eh->action_record_data)
                    + (VEC_length (tree, cfun->eh->ttype_data)
                    + (VEC_length (tree, cfun->eh->ttype_data)
                       * tt_format_size));
                       * tt_format_size));
 
 
      disp = after_disp;
      disp = after_disp;
      do
      do
        {
        {
          unsigned int disp_size, pad;
          unsigned int disp_size, pad;
 
 
          last_disp = disp;
          last_disp = disp;
          disp_size = size_of_uleb128 (disp);
          disp_size = size_of_uleb128 (disp);
          pad = before_disp + disp_size + after_disp;
          pad = before_disp + disp_size + after_disp;
          if (pad % tt_format_size)
          if (pad % tt_format_size)
            pad = tt_format_size - (pad % tt_format_size);
            pad = tt_format_size - (pad % tt_format_size);
          else
          else
            pad = 0;
            pad = 0;
          disp = after_disp + pad;
          disp = after_disp + pad;
        }
        }
      while (disp != last_disp);
      while (disp != last_disp);
 
 
      dw2_asm_output_data_uleb128 (disp, "@TType base offset");
      dw2_asm_output_data_uleb128 (disp, "@TType base offset");
#endif
#endif
    }
    }
 
 
  /* Indicate the format of the call-site offsets.  */
  /* Indicate the format of the call-site offsets.  */
#ifdef HAVE_AS_LEB128
#ifdef HAVE_AS_LEB128
  cs_format = DW_EH_PE_uleb128;
  cs_format = DW_EH_PE_uleb128;
#else
#else
  cs_format = DW_EH_PE_udata4;
  cs_format = DW_EH_PE_udata4;
#endif
#endif
  dw2_asm_output_data (1, cs_format, "call-site format (%s)",
  dw2_asm_output_data (1, cs_format, "call-site format (%s)",
                       eh_data_format_name (cs_format));
                       eh_data_format_name (cs_format));
 
 
#ifdef HAVE_AS_LEB128
#ifdef HAVE_AS_LEB128
  ASM_GENERATE_INTERNAL_LABEL (cs_after_size_label, "LLSDACSB",
  ASM_GENERATE_INTERNAL_LABEL (cs_after_size_label, "LLSDACSB",
                               current_function_funcdef_no);
                               current_function_funcdef_no);
  ASM_GENERATE_INTERNAL_LABEL (cs_end_label, "LLSDACSE",
  ASM_GENERATE_INTERNAL_LABEL (cs_end_label, "LLSDACSE",
                               current_function_funcdef_no);
                               current_function_funcdef_no);
  dw2_asm_output_delta_uleb128 (cs_end_label, cs_after_size_label,
  dw2_asm_output_delta_uleb128 (cs_end_label, cs_after_size_label,
                                "Call-site table length");
                                "Call-site table length");
  ASM_OUTPUT_LABEL (asm_out_file, cs_after_size_label);
  ASM_OUTPUT_LABEL (asm_out_file, cs_after_size_label);
  if (USING_SJLJ_EXCEPTIONS)
  if (USING_SJLJ_EXCEPTIONS)
    sjlj_output_call_site_table ();
    sjlj_output_call_site_table ();
  else
  else
    dw2_output_call_site_table ();
    dw2_output_call_site_table ();
  ASM_OUTPUT_LABEL (asm_out_file, cs_end_label);
  ASM_OUTPUT_LABEL (asm_out_file, cs_end_label);
#else
#else
  dw2_asm_output_data_uleb128 (call_site_len,"Call-site table length");
  dw2_asm_output_data_uleb128 (call_site_len,"Call-site table length");
  if (USING_SJLJ_EXCEPTIONS)
  if (USING_SJLJ_EXCEPTIONS)
    sjlj_output_call_site_table ();
    sjlj_output_call_site_table ();
  else
  else
    dw2_output_call_site_table ();
    dw2_output_call_site_table ();
#endif
#endif
 
 
  /* ??? Decode and interpret the data for flag_debug_asm.  */
  /* ??? Decode and interpret the data for flag_debug_asm.  */
  n = VARRAY_ACTIVE_SIZE (cfun->eh->action_record_data);
  n = VARRAY_ACTIVE_SIZE (cfun->eh->action_record_data);
  for (i = 0; i < n; ++i)
  for (i = 0; i < n; ++i)
    dw2_asm_output_data (1, VARRAY_UCHAR (cfun->eh->action_record_data, i),
    dw2_asm_output_data (1, VARRAY_UCHAR (cfun->eh->action_record_data, i),
                         (i ? NULL : "Action record table"));
                         (i ? NULL : "Action record table"));
 
 
  if (have_tt_data)
  if (have_tt_data)
    assemble_align (tt_format_size * BITS_PER_UNIT);
    assemble_align (tt_format_size * BITS_PER_UNIT);
 
 
  i = VEC_length (tree, cfun->eh->ttype_data);
  i = VEC_length (tree, cfun->eh->ttype_data);
  while (i-- > 0)
  while (i-- > 0)
    {
    {
      tree type = VEC_index (tree, cfun->eh->ttype_data, i);
      tree type = VEC_index (tree, cfun->eh->ttype_data, i);
      output_ttype (type, tt_format, tt_format_size);
      output_ttype (type, tt_format, tt_format_size);
    }
    }
 
 
#ifdef HAVE_AS_LEB128
#ifdef HAVE_AS_LEB128
  if (have_tt_data)
  if (have_tt_data)
      ASM_OUTPUT_LABEL (asm_out_file, ttype_label);
      ASM_OUTPUT_LABEL (asm_out_file, ttype_label);
#endif
#endif
 
 
  /* ??? Decode and interpret the data for flag_debug_asm.  */
  /* ??? Decode and interpret the data for flag_debug_asm.  */
  n = VARRAY_ACTIVE_SIZE (cfun->eh->ehspec_data);
  n = VARRAY_ACTIVE_SIZE (cfun->eh->ehspec_data);
  for (i = 0; i < n; ++i)
  for (i = 0; i < n; ++i)
    {
    {
      if (targetm.arm_eabi_unwinder)
      if (targetm.arm_eabi_unwinder)
        {
        {
          tree type = VARRAY_TREE (cfun->eh->ehspec_data, i);
          tree type = VARRAY_TREE (cfun->eh->ehspec_data, i);
          output_ttype (type, tt_format, tt_format_size);
          output_ttype (type, tt_format, tt_format_size);
        }
        }
      else
      else
        dw2_asm_output_data (1, VARRAY_UCHAR (cfun->eh->ehspec_data, i),
        dw2_asm_output_data (1, VARRAY_UCHAR (cfun->eh->ehspec_data, i),
                             (i ? NULL : "Exception specification table"));
                             (i ? NULL : "Exception specification table"));
    }
    }
 
 
  switch_to_section (current_function_section ());
  switch_to_section (current_function_section ());
}
}
 
 
void
void
set_eh_throw_stmt_table (struct function *fun, struct htab *table)
set_eh_throw_stmt_table (struct function *fun, struct htab *table)
{
{
  fun->eh->throw_stmt_table = table;
  fun->eh->throw_stmt_table = table;
}
}
 
 
htab_t
htab_t
get_eh_throw_stmt_table (struct function *fun)
get_eh_throw_stmt_table (struct function *fun)
{
{
  return fun->eh->throw_stmt_table;
  return fun->eh->throw_stmt_table;
}
}
 
 
/* Dump EH information to OUT.  */
/* Dump EH information to OUT.  */
void
void
dump_eh_tree (FILE *out, struct function *fun)
dump_eh_tree (FILE *out, struct function *fun)
{
{
  struct eh_region *i;
  struct eh_region *i;
  int depth = 0;
  int depth = 0;
  static const char * const type_name[] = {"unknown", "cleanup", "try", "catch",
  static const char * const type_name[] = {"unknown", "cleanup", "try", "catch",
                                           "allowed_exceptions", "must_not_throw",
                                           "allowed_exceptions", "must_not_throw",
                                           "throw"};
                                           "throw"};
 
 
  i = fun->eh->region_tree;
  i = fun->eh->region_tree;
  if (! i)
  if (! i)
    return;
    return;
 
 
  fprintf (out, "Eh tree:\n");
  fprintf (out, "Eh tree:\n");
  while (1)
  while (1)
    {
    {
      fprintf (out, "  %*s %i %s", depth * 2, "",
      fprintf (out, "  %*s %i %s", depth * 2, "",
               i->region_number, type_name [(int)i->type]);
               i->region_number, type_name [(int)i->type]);
      if (i->tree_label)
      if (i->tree_label)
        {
        {
          fprintf (out, " tree_label:");
          fprintf (out, " tree_label:");
          print_generic_expr (out, i->tree_label, 0);
          print_generic_expr (out, i->tree_label, 0);
        }
        }
      fprintf (out, "\n");
      fprintf (out, "\n");
      /* If there are sub-regions, process them.  */
      /* If there are sub-regions, process them.  */
      if (i->inner)
      if (i->inner)
        i = i->inner, depth++;
        i = i->inner, depth++;
      /* If there are peers, process them.  */
      /* If there are peers, process them.  */
      else if (i->next_peer)
      else if (i->next_peer)
        i = i->next_peer;
        i = i->next_peer;
      /* Otherwise, step back up the tree to the next peer.  */
      /* Otherwise, step back up the tree to the next peer.  */
      else
      else
        {
        {
          do {
          do {
            i = i->outer;
            i = i->outer;
            depth--;
            depth--;
            if (i == NULL)
            if (i == NULL)
              return;
              return;
          } while (i->next_peer == NULL);
          } while (i->next_peer == NULL);
          i = i->next_peer;
          i = i->next_peer;
        }
        }
    }
    }
}
}
 
 
/* Verify some basic invariants on EH datastructures.  Could be extended to
/* Verify some basic invariants on EH datastructures.  Could be extended to
   catch more.  */
   catch more.  */
void
void
verify_eh_tree (struct function *fun)
verify_eh_tree (struct function *fun)
{
{
  struct eh_region *i, *outer = NULL;
  struct eh_region *i, *outer = NULL;
  bool err = false;
  bool err = false;
  int nvisited = 0;
  int nvisited = 0;
  int count = 0;
  int count = 0;
  int j;
  int j;
  int depth = 0;
  int depth = 0;
 
 
  i = fun->eh->region_tree;
  i = fun->eh->region_tree;
  if (! i)
  if (! i)
    return;
    return;
  for (j = fun->eh->last_region_number; j > 0; --j)
  for (j = fun->eh->last_region_number; j > 0; --j)
    if ((i = VEC_index (eh_region, cfun->eh->region_array, j)))
    if ((i = VEC_index (eh_region, cfun->eh->region_array, j)))
      {
      {
        count++;
        count++;
        if (i->region_number != j)
        if (i->region_number != j)
          {
          {
            error ("region_array is corrupted for region %i", i->region_number);
            error ("region_array is corrupted for region %i", i->region_number);
            err = true;
            err = true;
          }
          }
      }
      }
 
 
  while (1)
  while (1)
    {
    {
      if (VEC_index (eh_region, cfun->eh->region_array, i->region_number) != i)
      if (VEC_index (eh_region, cfun->eh->region_array, i->region_number) != i)
        {
        {
          error ("region_array is corrupted for region %i", i->region_number);
          error ("region_array is corrupted for region %i", i->region_number);
          err = true;
          err = true;
        }
        }
      if (i->outer != outer)
      if (i->outer != outer)
        {
        {
          error ("outer block of region %i is wrong", i->region_number);
          error ("outer block of region %i is wrong", i->region_number);
          err = true;
          err = true;
        }
        }
      if (i->may_contain_throw && outer && !outer->may_contain_throw)
      if (i->may_contain_throw && outer && !outer->may_contain_throw)
        {
        {
          error ("region %i may contain throw and is contained in region that may not",
          error ("region %i may contain throw and is contained in region that may not",
                 i->region_number);
                 i->region_number);
          err = true;
          err = true;
        }
        }
      if (depth < 0)
      if (depth < 0)
        {
        {
          error ("negative nesting depth of region %i", i->region_number);
          error ("negative nesting depth of region %i", i->region_number);
          err = true;
          err = true;
        }
        }
      nvisited ++;
      nvisited ++;
      /* If there are sub-regions, process them.  */
      /* If there are sub-regions, process them.  */
      if (i->inner)
      if (i->inner)
        outer = i, i = i->inner, depth++;
        outer = i, i = i->inner, depth++;
      /* If there are peers, process them.  */
      /* If there are peers, process them.  */
      else if (i->next_peer)
      else if (i->next_peer)
        i = i->next_peer;
        i = i->next_peer;
      /* Otherwise, step back up the tree to the next peer.  */
      /* Otherwise, step back up the tree to the next peer.  */
      else
      else
        {
        {
          do {
          do {
            i = i->outer;
            i = i->outer;
            depth--;
            depth--;
            if (i == NULL)
            if (i == NULL)
              {
              {
                if (depth != -1)
                if (depth != -1)
                  {
                  {
                    error ("tree list ends on depth %i", depth + 1);
                    error ("tree list ends on depth %i", depth + 1);
                    err = true;
                    err = true;
                  }
                  }
                if (count != nvisited)
                if (count != nvisited)
                  {
                  {
                    error ("array does not match the region tree");
                    error ("array does not match the region tree");
                    err = true;
                    err = true;
                  }
                  }
                if (err)
                if (err)
                  {
                  {
                    dump_eh_tree (stderr, fun);
                    dump_eh_tree (stderr, fun);
                    internal_error ("verify_eh_tree failed");
                    internal_error ("verify_eh_tree failed");
                  }
                  }
                return;
                return;
              }
              }
            outer = i->outer;
            outer = i->outer;
          } while (i->next_peer == NULL);
          } while (i->next_peer == NULL);
          i = i->next_peer;
          i = i->next_peer;
        }
        }
    }
    }
}
}
 
 
/* Initialize unwind_resume_libfunc.  */
/* Initialize unwind_resume_libfunc.  */
 
 
void
void
default_init_unwind_resume_libfunc (void)
default_init_unwind_resume_libfunc (void)
{
{
  /* The default c++ routines aren't actually c++ specific, so use those.  */
  /* The default c++ routines aren't actually c++ specific, so use those.  */
  unwind_resume_libfunc =
  unwind_resume_libfunc =
    init_one_libfunc ( USING_SJLJ_EXCEPTIONS ? "_Unwind_SjLj_Resume"
    init_one_libfunc ( USING_SJLJ_EXCEPTIONS ? "_Unwind_SjLj_Resume"
                                             : "_Unwind_Resume");
                                             : "_Unwind_Resume");
}
}
 
 


static bool
static bool
gate_handle_eh (void)
gate_handle_eh (void)
{
{
  return doing_eh (0);
  return doing_eh (0);
}
}
 
 
/* Complete generation of exception handling code.  */
/* Complete generation of exception handling code.  */
static unsigned int
static unsigned int
rest_of_handle_eh (void)
rest_of_handle_eh (void)
{
{
  cleanup_cfg (CLEANUP_NO_INSN_DEL);
  cleanup_cfg (CLEANUP_NO_INSN_DEL);
  finish_eh_generation ();
  finish_eh_generation ();
  cleanup_cfg (CLEANUP_NO_INSN_DEL);
  cleanup_cfg (CLEANUP_NO_INSN_DEL);
  return 0;
  return 0;
}
}
 
 
struct tree_opt_pass pass_rtl_eh =
struct tree_opt_pass pass_rtl_eh =
{
{
  "eh",                                 /* name */
  "eh",                                 /* name */
  gate_handle_eh,                       /* gate */
  gate_handle_eh,                       /* gate */
  rest_of_handle_eh,                    /* execute */
  rest_of_handle_eh,                    /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  NULL,                                 /* next */
  0,                                    /* static_pass_number */
  0,                                    /* static_pass_number */
  TV_JUMP,                              /* tv_id */
  TV_JUMP,                              /* tv_id */
  0,                                    /* properties_required */
  0,                                    /* properties_required */
  0,                                    /* properties_provided */
  0,                                    /* properties_provided */
  0,                                    /* properties_destroyed */
  0,                                    /* properties_destroyed */
  0,                                    /* todo_flags_start */
  0,                                    /* todo_flags_start */
  TODO_dump_func,                       /* todo_flags_finish */
  TODO_dump_func,                       /* todo_flags_finish */
  'h'                                   /* letter */
  'h'                                   /* letter */
};
};
 
 
#include "gt-except.h"
#include "gt-except.h"
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.