OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gcc-4.2.2/] [gcc/] [expmed.c] - Diff between revs 154 and 816

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 154 Rev 816
/* Medium-level subroutines: convert bit-field store and extract
/* Medium-level subroutines: convert bit-field store and extract
   and shifts, multiplies and divides to rtl instructions.
   and shifts, multiplies and divides to rtl instructions.
   Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
   Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify it under
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
Software Foundation; either version 3, or (at your option) any later
version.
version.
 
 
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "toplev.h"
#include "toplev.h"
#include "rtl.h"
#include "rtl.h"
#include "tree.h"
#include "tree.h"
#include "tm_p.h"
#include "tm_p.h"
#include "flags.h"
#include "flags.h"
#include "insn-config.h"
#include "insn-config.h"
#include "expr.h"
#include "expr.h"
#include "optabs.h"
#include "optabs.h"
#include "real.h"
#include "real.h"
#include "recog.h"
#include "recog.h"
#include "langhooks.h"
#include "langhooks.h"
 
 
static void store_fixed_bit_field (rtx, unsigned HOST_WIDE_INT,
static void store_fixed_bit_field (rtx, unsigned HOST_WIDE_INT,
                                   unsigned HOST_WIDE_INT,
                                   unsigned HOST_WIDE_INT,
                                   unsigned HOST_WIDE_INT, rtx);
                                   unsigned HOST_WIDE_INT, rtx);
static void store_split_bit_field (rtx, unsigned HOST_WIDE_INT,
static void store_split_bit_field (rtx, unsigned HOST_WIDE_INT,
                                   unsigned HOST_WIDE_INT, rtx);
                                   unsigned HOST_WIDE_INT, rtx);
static rtx extract_fixed_bit_field (enum machine_mode, rtx,
static rtx extract_fixed_bit_field (enum machine_mode, rtx,
                                    unsigned HOST_WIDE_INT,
                                    unsigned HOST_WIDE_INT,
                                    unsigned HOST_WIDE_INT,
                                    unsigned HOST_WIDE_INT,
                                    unsigned HOST_WIDE_INT, rtx, int);
                                    unsigned HOST_WIDE_INT, rtx, int);
static rtx mask_rtx (enum machine_mode, int, int, int);
static rtx mask_rtx (enum machine_mode, int, int, int);
static rtx lshift_value (enum machine_mode, rtx, int, int);
static rtx lshift_value (enum machine_mode, rtx, int, int);
static rtx extract_split_bit_field (rtx, unsigned HOST_WIDE_INT,
static rtx extract_split_bit_field (rtx, unsigned HOST_WIDE_INT,
                                    unsigned HOST_WIDE_INT, int);
                                    unsigned HOST_WIDE_INT, int);
static void do_cmp_and_jump (rtx, rtx, enum rtx_code, enum machine_mode, rtx);
static void do_cmp_and_jump (rtx, rtx, enum rtx_code, enum machine_mode, rtx);
static rtx expand_smod_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
static rtx expand_smod_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
static rtx expand_sdiv_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
static rtx expand_sdiv_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
 
 
/* Test whether a value is zero of a power of two.  */
/* Test whether a value is zero of a power of two.  */
#define EXACT_POWER_OF_2_OR_ZERO_P(x) (((x) & ((x) - 1)) == 0)
#define EXACT_POWER_OF_2_OR_ZERO_P(x) (((x) & ((x) - 1)) == 0)
 
 
/* Nonzero means divides or modulus operations are relatively cheap for
/* Nonzero means divides or modulus operations are relatively cheap for
   powers of two, so don't use branches; emit the operation instead.
   powers of two, so don't use branches; emit the operation instead.
   Usually, this will mean that the MD file will emit non-branch
   Usually, this will mean that the MD file will emit non-branch
   sequences.  */
   sequences.  */
 
 
static bool sdiv_pow2_cheap[NUM_MACHINE_MODES];
static bool sdiv_pow2_cheap[NUM_MACHINE_MODES];
static bool smod_pow2_cheap[NUM_MACHINE_MODES];
static bool smod_pow2_cheap[NUM_MACHINE_MODES];
 
 
#ifndef SLOW_UNALIGNED_ACCESS
#ifndef SLOW_UNALIGNED_ACCESS
#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
#endif
#endif
 
 
/* For compilers that support multiple targets with different word sizes,
/* For compilers that support multiple targets with different word sizes,
   MAX_BITS_PER_WORD contains the biggest value of BITS_PER_WORD.  An example
   MAX_BITS_PER_WORD contains the biggest value of BITS_PER_WORD.  An example
   is the H8/300(H) compiler.  */
   is the H8/300(H) compiler.  */
 
 
#ifndef MAX_BITS_PER_WORD
#ifndef MAX_BITS_PER_WORD
#define MAX_BITS_PER_WORD BITS_PER_WORD
#define MAX_BITS_PER_WORD BITS_PER_WORD
#endif
#endif
 
 
/* Reduce conditional compilation elsewhere.  */
/* Reduce conditional compilation elsewhere.  */
#ifndef HAVE_insv
#ifndef HAVE_insv
#define HAVE_insv       0
#define HAVE_insv       0
#define CODE_FOR_insv   CODE_FOR_nothing
#define CODE_FOR_insv   CODE_FOR_nothing
#define gen_insv(a,b,c,d) NULL_RTX
#define gen_insv(a,b,c,d) NULL_RTX
#endif
#endif
#ifndef HAVE_extv
#ifndef HAVE_extv
#define HAVE_extv       0
#define HAVE_extv       0
#define CODE_FOR_extv   CODE_FOR_nothing
#define CODE_FOR_extv   CODE_FOR_nothing
#define gen_extv(a,b,c,d) NULL_RTX
#define gen_extv(a,b,c,d) NULL_RTX
#endif
#endif
#ifndef HAVE_extzv
#ifndef HAVE_extzv
#define HAVE_extzv      0
#define HAVE_extzv      0
#define CODE_FOR_extzv  CODE_FOR_nothing
#define CODE_FOR_extzv  CODE_FOR_nothing
#define gen_extzv(a,b,c,d) NULL_RTX
#define gen_extzv(a,b,c,d) NULL_RTX
#endif
#endif
 
 
/* Cost of various pieces of RTL.  Note that some of these are indexed by
/* Cost of various pieces of RTL.  Note that some of these are indexed by
   shift count and some by mode.  */
   shift count and some by mode.  */
static int zero_cost;
static int zero_cost;
static int add_cost[NUM_MACHINE_MODES];
static int add_cost[NUM_MACHINE_MODES];
static int neg_cost[NUM_MACHINE_MODES];
static int neg_cost[NUM_MACHINE_MODES];
static int shift_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
static int shift_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
static int shiftadd_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
static int shiftadd_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
static int shiftsub_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
static int shiftsub_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
static int mul_cost[NUM_MACHINE_MODES];
static int mul_cost[NUM_MACHINE_MODES];
static int sdiv_cost[NUM_MACHINE_MODES];
static int sdiv_cost[NUM_MACHINE_MODES];
static int udiv_cost[NUM_MACHINE_MODES];
static int udiv_cost[NUM_MACHINE_MODES];
static int mul_widen_cost[NUM_MACHINE_MODES];
static int mul_widen_cost[NUM_MACHINE_MODES];
static int mul_highpart_cost[NUM_MACHINE_MODES];
static int mul_highpart_cost[NUM_MACHINE_MODES];
 
 
void
void
init_expmed (void)
init_expmed (void)
{
{
  struct
  struct
  {
  {
    struct rtx_def reg;         rtunion reg_fld[2];
    struct rtx_def reg;         rtunion reg_fld[2];
    struct rtx_def plus;        rtunion plus_fld1;
    struct rtx_def plus;        rtunion plus_fld1;
    struct rtx_def neg;
    struct rtx_def neg;
    struct rtx_def mult;        rtunion mult_fld1;
    struct rtx_def mult;        rtunion mult_fld1;
    struct rtx_def sdiv;        rtunion sdiv_fld1;
    struct rtx_def sdiv;        rtunion sdiv_fld1;
    struct rtx_def udiv;        rtunion udiv_fld1;
    struct rtx_def udiv;        rtunion udiv_fld1;
    struct rtx_def zext;
    struct rtx_def zext;
    struct rtx_def sdiv_32;     rtunion sdiv_32_fld1;
    struct rtx_def sdiv_32;     rtunion sdiv_32_fld1;
    struct rtx_def smod_32;     rtunion smod_32_fld1;
    struct rtx_def smod_32;     rtunion smod_32_fld1;
    struct rtx_def wide_mult;   rtunion wide_mult_fld1;
    struct rtx_def wide_mult;   rtunion wide_mult_fld1;
    struct rtx_def wide_lshr;   rtunion wide_lshr_fld1;
    struct rtx_def wide_lshr;   rtunion wide_lshr_fld1;
    struct rtx_def wide_trunc;
    struct rtx_def wide_trunc;
    struct rtx_def shift;       rtunion shift_fld1;
    struct rtx_def shift;       rtunion shift_fld1;
    struct rtx_def shift_mult;  rtunion shift_mult_fld1;
    struct rtx_def shift_mult;  rtunion shift_mult_fld1;
    struct rtx_def shift_add;   rtunion shift_add_fld1;
    struct rtx_def shift_add;   rtunion shift_add_fld1;
    struct rtx_def shift_sub;   rtunion shift_sub_fld1;
    struct rtx_def shift_sub;   rtunion shift_sub_fld1;
  } all;
  } all;
 
 
  rtx pow2[MAX_BITS_PER_WORD];
  rtx pow2[MAX_BITS_PER_WORD];
  rtx cint[MAX_BITS_PER_WORD];
  rtx cint[MAX_BITS_PER_WORD];
  int m, n;
  int m, n;
  enum machine_mode mode, wider_mode;
  enum machine_mode mode, wider_mode;
 
 
  zero_cost = rtx_cost (const0_rtx, 0);
  zero_cost = rtx_cost (const0_rtx, 0);
 
 
  for (m = 1; m < MAX_BITS_PER_WORD; m++)
  for (m = 1; m < MAX_BITS_PER_WORD; m++)
    {
    {
      pow2[m] = GEN_INT ((HOST_WIDE_INT) 1 << m);
      pow2[m] = GEN_INT ((HOST_WIDE_INT) 1 << m);
      cint[m] = GEN_INT (m);
      cint[m] = GEN_INT (m);
    }
    }
 
 
  memset (&all, 0, sizeof all);
  memset (&all, 0, sizeof all);
 
 
  PUT_CODE (&all.reg, REG);
  PUT_CODE (&all.reg, REG);
  /* Avoid using hard regs in ways which may be unsupported.  */
  /* Avoid using hard regs in ways which may be unsupported.  */
  REGNO (&all.reg) = LAST_VIRTUAL_REGISTER + 1;
  REGNO (&all.reg) = LAST_VIRTUAL_REGISTER + 1;
 
 
  PUT_CODE (&all.plus, PLUS);
  PUT_CODE (&all.plus, PLUS);
  XEXP (&all.plus, 0) = &all.reg;
  XEXP (&all.plus, 0) = &all.reg;
  XEXP (&all.plus, 1) = &all.reg;
  XEXP (&all.plus, 1) = &all.reg;
 
 
  PUT_CODE (&all.neg, NEG);
  PUT_CODE (&all.neg, NEG);
  XEXP (&all.neg, 0) = &all.reg;
  XEXP (&all.neg, 0) = &all.reg;
 
 
  PUT_CODE (&all.mult, MULT);
  PUT_CODE (&all.mult, MULT);
  XEXP (&all.mult, 0) = &all.reg;
  XEXP (&all.mult, 0) = &all.reg;
  XEXP (&all.mult, 1) = &all.reg;
  XEXP (&all.mult, 1) = &all.reg;
 
 
  PUT_CODE (&all.sdiv, DIV);
  PUT_CODE (&all.sdiv, DIV);
  XEXP (&all.sdiv, 0) = &all.reg;
  XEXP (&all.sdiv, 0) = &all.reg;
  XEXP (&all.sdiv, 1) = &all.reg;
  XEXP (&all.sdiv, 1) = &all.reg;
 
 
  PUT_CODE (&all.udiv, UDIV);
  PUT_CODE (&all.udiv, UDIV);
  XEXP (&all.udiv, 0) = &all.reg;
  XEXP (&all.udiv, 0) = &all.reg;
  XEXP (&all.udiv, 1) = &all.reg;
  XEXP (&all.udiv, 1) = &all.reg;
 
 
  PUT_CODE (&all.sdiv_32, DIV);
  PUT_CODE (&all.sdiv_32, DIV);
  XEXP (&all.sdiv_32, 0) = &all.reg;
  XEXP (&all.sdiv_32, 0) = &all.reg;
  XEXP (&all.sdiv_32, 1) = 32 < MAX_BITS_PER_WORD ? cint[32] : GEN_INT (32);
  XEXP (&all.sdiv_32, 1) = 32 < MAX_BITS_PER_WORD ? cint[32] : GEN_INT (32);
 
 
  PUT_CODE (&all.smod_32, MOD);
  PUT_CODE (&all.smod_32, MOD);
  XEXP (&all.smod_32, 0) = &all.reg;
  XEXP (&all.smod_32, 0) = &all.reg;
  XEXP (&all.smod_32, 1) = XEXP (&all.sdiv_32, 1);
  XEXP (&all.smod_32, 1) = XEXP (&all.sdiv_32, 1);
 
 
  PUT_CODE (&all.zext, ZERO_EXTEND);
  PUT_CODE (&all.zext, ZERO_EXTEND);
  XEXP (&all.zext, 0) = &all.reg;
  XEXP (&all.zext, 0) = &all.reg;
 
 
  PUT_CODE (&all.wide_mult, MULT);
  PUT_CODE (&all.wide_mult, MULT);
  XEXP (&all.wide_mult, 0) = &all.zext;
  XEXP (&all.wide_mult, 0) = &all.zext;
  XEXP (&all.wide_mult, 1) = &all.zext;
  XEXP (&all.wide_mult, 1) = &all.zext;
 
 
  PUT_CODE (&all.wide_lshr, LSHIFTRT);
  PUT_CODE (&all.wide_lshr, LSHIFTRT);
  XEXP (&all.wide_lshr, 0) = &all.wide_mult;
  XEXP (&all.wide_lshr, 0) = &all.wide_mult;
 
 
  PUT_CODE (&all.wide_trunc, TRUNCATE);
  PUT_CODE (&all.wide_trunc, TRUNCATE);
  XEXP (&all.wide_trunc, 0) = &all.wide_lshr;
  XEXP (&all.wide_trunc, 0) = &all.wide_lshr;
 
 
  PUT_CODE (&all.shift, ASHIFT);
  PUT_CODE (&all.shift, ASHIFT);
  XEXP (&all.shift, 0) = &all.reg;
  XEXP (&all.shift, 0) = &all.reg;
 
 
  PUT_CODE (&all.shift_mult, MULT);
  PUT_CODE (&all.shift_mult, MULT);
  XEXP (&all.shift_mult, 0) = &all.reg;
  XEXP (&all.shift_mult, 0) = &all.reg;
 
 
  PUT_CODE (&all.shift_add, PLUS);
  PUT_CODE (&all.shift_add, PLUS);
  XEXP (&all.shift_add, 0) = &all.shift_mult;
  XEXP (&all.shift_add, 0) = &all.shift_mult;
  XEXP (&all.shift_add, 1) = &all.reg;
  XEXP (&all.shift_add, 1) = &all.reg;
 
 
  PUT_CODE (&all.shift_sub, MINUS);
  PUT_CODE (&all.shift_sub, MINUS);
  XEXP (&all.shift_sub, 0) = &all.shift_mult;
  XEXP (&all.shift_sub, 0) = &all.shift_mult;
  XEXP (&all.shift_sub, 1) = &all.reg;
  XEXP (&all.shift_sub, 1) = &all.reg;
 
 
  for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
  for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
       mode != VOIDmode;
       mode != VOIDmode;
       mode = GET_MODE_WIDER_MODE (mode))
       mode = GET_MODE_WIDER_MODE (mode))
    {
    {
      PUT_MODE (&all.reg, mode);
      PUT_MODE (&all.reg, mode);
      PUT_MODE (&all.plus, mode);
      PUT_MODE (&all.plus, mode);
      PUT_MODE (&all.neg, mode);
      PUT_MODE (&all.neg, mode);
      PUT_MODE (&all.mult, mode);
      PUT_MODE (&all.mult, mode);
      PUT_MODE (&all.sdiv, mode);
      PUT_MODE (&all.sdiv, mode);
      PUT_MODE (&all.udiv, mode);
      PUT_MODE (&all.udiv, mode);
      PUT_MODE (&all.sdiv_32, mode);
      PUT_MODE (&all.sdiv_32, mode);
      PUT_MODE (&all.smod_32, mode);
      PUT_MODE (&all.smod_32, mode);
      PUT_MODE (&all.wide_trunc, mode);
      PUT_MODE (&all.wide_trunc, mode);
      PUT_MODE (&all.shift, mode);
      PUT_MODE (&all.shift, mode);
      PUT_MODE (&all.shift_mult, mode);
      PUT_MODE (&all.shift_mult, mode);
      PUT_MODE (&all.shift_add, mode);
      PUT_MODE (&all.shift_add, mode);
      PUT_MODE (&all.shift_sub, mode);
      PUT_MODE (&all.shift_sub, mode);
 
 
      add_cost[mode] = rtx_cost (&all.plus, SET);
      add_cost[mode] = rtx_cost (&all.plus, SET);
      neg_cost[mode] = rtx_cost (&all.neg, SET);
      neg_cost[mode] = rtx_cost (&all.neg, SET);
      mul_cost[mode] = rtx_cost (&all.mult, SET);
      mul_cost[mode] = rtx_cost (&all.mult, SET);
      sdiv_cost[mode] = rtx_cost (&all.sdiv, SET);
      sdiv_cost[mode] = rtx_cost (&all.sdiv, SET);
      udiv_cost[mode] = rtx_cost (&all.udiv, SET);
      udiv_cost[mode] = rtx_cost (&all.udiv, SET);
 
 
      sdiv_pow2_cheap[mode] = (rtx_cost (&all.sdiv_32, SET)
      sdiv_pow2_cheap[mode] = (rtx_cost (&all.sdiv_32, SET)
                               <= 2 * add_cost[mode]);
                               <= 2 * add_cost[mode]);
      smod_pow2_cheap[mode] = (rtx_cost (&all.smod_32, SET)
      smod_pow2_cheap[mode] = (rtx_cost (&all.smod_32, SET)
                               <= 4 * add_cost[mode]);
                               <= 4 * add_cost[mode]);
 
 
      wider_mode = GET_MODE_WIDER_MODE (mode);
      wider_mode = GET_MODE_WIDER_MODE (mode);
      if (wider_mode != VOIDmode)
      if (wider_mode != VOIDmode)
        {
        {
          PUT_MODE (&all.zext, wider_mode);
          PUT_MODE (&all.zext, wider_mode);
          PUT_MODE (&all.wide_mult, wider_mode);
          PUT_MODE (&all.wide_mult, wider_mode);
          PUT_MODE (&all.wide_lshr, wider_mode);
          PUT_MODE (&all.wide_lshr, wider_mode);
          XEXP (&all.wide_lshr, 1) = GEN_INT (GET_MODE_BITSIZE (mode));
          XEXP (&all.wide_lshr, 1) = GEN_INT (GET_MODE_BITSIZE (mode));
 
 
          mul_widen_cost[wider_mode] = rtx_cost (&all.wide_mult, SET);
          mul_widen_cost[wider_mode] = rtx_cost (&all.wide_mult, SET);
          mul_highpart_cost[mode] = rtx_cost (&all.wide_trunc, SET);
          mul_highpart_cost[mode] = rtx_cost (&all.wide_trunc, SET);
        }
        }
 
 
      shift_cost[mode][0] = 0;
      shift_cost[mode][0] = 0;
      shiftadd_cost[mode][0] = shiftsub_cost[mode][0] = add_cost[mode];
      shiftadd_cost[mode][0] = shiftsub_cost[mode][0] = add_cost[mode];
 
 
      n = MIN (MAX_BITS_PER_WORD, GET_MODE_BITSIZE (mode));
      n = MIN (MAX_BITS_PER_WORD, GET_MODE_BITSIZE (mode));
      for (m = 1; m < n; m++)
      for (m = 1; m < n; m++)
        {
        {
          XEXP (&all.shift, 1) = cint[m];
          XEXP (&all.shift, 1) = cint[m];
          XEXP (&all.shift_mult, 1) = pow2[m];
          XEXP (&all.shift_mult, 1) = pow2[m];
 
 
          shift_cost[mode][m] = rtx_cost (&all.shift, SET);
          shift_cost[mode][m] = rtx_cost (&all.shift, SET);
          shiftadd_cost[mode][m] = rtx_cost (&all.shift_add, SET);
          shiftadd_cost[mode][m] = rtx_cost (&all.shift_add, SET);
          shiftsub_cost[mode][m] = rtx_cost (&all.shift_sub, SET);
          shiftsub_cost[mode][m] = rtx_cost (&all.shift_sub, SET);
        }
        }
    }
    }
}
}
 
 
/* Return an rtx representing minus the value of X.
/* Return an rtx representing minus the value of X.
   MODE is the intended mode of the result,
   MODE is the intended mode of the result,
   useful if X is a CONST_INT.  */
   useful if X is a CONST_INT.  */
 
 
rtx
rtx
negate_rtx (enum machine_mode mode, rtx x)
negate_rtx (enum machine_mode mode, rtx x)
{
{
  rtx result = simplify_unary_operation (NEG, mode, x, mode);
  rtx result = simplify_unary_operation (NEG, mode, x, mode);
 
 
  if (result == 0)
  if (result == 0)
    result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
    result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
 
 
  return result;
  return result;
}
}
 
 
/* Report on the availability of insv/extv/extzv and the desired mode
/* Report on the availability of insv/extv/extzv and the desired mode
   of each of their operands.  Returns MAX_MACHINE_MODE if HAVE_foo
   of each of their operands.  Returns MAX_MACHINE_MODE if HAVE_foo
   is false; else the mode of the specified operand.  If OPNO is -1,
   is false; else the mode of the specified operand.  If OPNO is -1,
   all the caller cares about is whether the insn is available.  */
   all the caller cares about is whether the insn is available.  */
enum machine_mode
enum machine_mode
mode_for_extraction (enum extraction_pattern pattern, int opno)
mode_for_extraction (enum extraction_pattern pattern, int opno)
{
{
  const struct insn_data *data;
  const struct insn_data *data;
 
 
  switch (pattern)
  switch (pattern)
    {
    {
    case EP_insv:
    case EP_insv:
      if (HAVE_insv)
      if (HAVE_insv)
        {
        {
          data = &insn_data[CODE_FOR_insv];
          data = &insn_data[CODE_FOR_insv];
          break;
          break;
        }
        }
      return MAX_MACHINE_MODE;
      return MAX_MACHINE_MODE;
 
 
    case EP_extv:
    case EP_extv:
      if (HAVE_extv)
      if (HAVE_extv)
        {
        {
          data = &insn_data[CODE_FOR_extv];
          data = &insn_data[CODE_FOR_extv];
          break;
          break;
        }
        }
      return MAX_MACHINE_MODE;
      return MAX_MACHINE_MODE;
 
 
    case EP_extzv:
    case EP_extzv:
      if (HAVE_extzv)
      if (HAVE_extzv)
        {
        {
          data = &insn_data[CODE_FOR_extzv];
          data = &insn_data[CODE_FOR_extzv];
          break;
          break;
        }
        }
      return MAX_MACHINE_MODE;
      return MAX_MACHINE_MODE;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  if (opno == -1)
  if (opno == -1)
    return VOIDmode;
    return VOIDmode;
 
 
  /* Everyone who uses this function used to follow it with
  /* Everyone who uses this function used to follow it with
     if (result == VOIDmode) result = word_mode; */
     if (result == VOIDmode) result = word_mode; */
  if (data->operand[opno].mode == VOIDmode)
  if (data->operand[opno].mode == VOIDmode)
    return word_mode;
    return word_mode;
  return data->operand[opno].mode;
  return data->operand[opno].mode;
}
}
 
 


/* Generate code to store value from rtx VALUE
/* Generate code to store value from rtx VALUE
   into a bit-field within structure STR_RTX
   into a bit-field within structure STR_RTX
   containing BITSIZE bits starting at bit BITNUM.
   containing BITSIZE bits starting at bit BITNUM.
   FIELDMODE is the machine-mode of the FIELD_DECL node for this field.
   FIELDMODE is the machine-mode of the FIELD_DECL node for this field.
   ALIGN is the alignment that STR_RTX is known to have.
   ALIGN is the alignment that STR_RTX is known to have.
   TOTAL_SIZE is the size of the structure in bytes, or -1 if varying.  */
   TOTAL_SIZE is the size of the structure in bytes, or -1 if varying.  */
 
 
/* ??? Note that there are two different ideas here for how
/* ??? Note that there are two different ideas here for how
   to determine the size to count bits within, for a register.
   to determine the size to count bits within, for a register.
   One is BITS_PER_WORD, and the other is the size of operand 3
   One is BITS_PER_WORD, and the other is the size of operand 3
   of the insv pattern.
   of the insv pattern.
 
 
   If operand 3 of the insv pattern is VOIDmode, then we will use BITS_PER_WORD
   If operand 3 of the insv pattern is VOIDmode, then we will use BITS_PER_WORD
   else, we use the mode of operand 3.  */
   else, we use the mode of operand 3.  */
 
 
rtx
rtx
store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
                 unsigned HOST_WIDE_INT bitnum, enum machine_mode fieldmode,
                 unsigned HOST_WIDE_INT bitnum, enum machine_mode fieldmode,
                 rtx value)
                 rtx value)
{
{
  unsigned int unit
  unsigned int unit
    = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
    = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
  unsigned HOST_WIDE_INT offset, bitpos;
  unsigned HOST_WIDE_INT offset, bitpos;
  rtx op0 = str_rtx;
  rtx op0 = str_rtx;
  int byte_offset;
  int byte_offset;
  rtx orig_value;
  rtx orig_value;
 
 
  enum machine_mode op_mode = mode_for_extraction (EP_insv, 3);
  enum machine_mode op_mode = mode_for_extraction (EP_insv, 3);
 
 
  while (GET_CODE (op0) == SUBREG)
  while (GET_CODE (op0) == SUBREG)
    {
    {
      /* The following line once was done only if WORDS_BIG_ENDIAN,
      /* The following line once was done only if WORDS_BIG_ENDIAN,
         but I think that is a mistake.  WORDS_BIG_ENDIAN is
         but I think that is a mistake.  WORDS_BIG_ENDIAN is
         meaningful at a much higher level; when structures are copied
         meaningful at a much higher level; when structures are copied
         between memory and regs, the higher-numbered regs
         between memory and regs, the higher-numbered regs
         always get higher addresses.  */
         always get higher addresses.  */
      int inner_mode_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)));
      int inner_mode_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)));
      int outer_mode_size = GET_MODE_SIZE (GET_MODE (op0));
      int outer_mode_size = GET_MODE_SIZE (GET_MODE (op0));
 
 
      byte_offset = 0;
      byte_offset = 0;
 
 
      /* Paradoxical subregs need special handling on big endian machines.  */
      /* Paradoxical subregs need special handling on big endian machines.  */
      if (SUBREG_BYTE (op0) == 0 && inner_mode_size < outer_mode_size)
      if (SUBREG_BYTE (op0) == 0 && inner_mode_size < outer_mode_size)
        {
        {
          int difference = inner_mode_size - outer_mode_size;
          int difference = inner_mode_size - outer_mode_size;
 
 
          if (WORDS_BIG_ENDIAN)
          if (WORDS_BIG_ENDIAN)
            byte_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
            byte_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
          if (BYTES_BIG_ENDIAN)
          if (BYTES_BIG_ENDIAN)
            byte_offset += difference % UNITS_PER_WORD;
            byte_offset += difference % UNITS_PER_WORD;
        }
        }
      else
      else
        byte_offset = SUBREG_BYTE (op0);
        byte_offset = SUBREG_BYTE (op0);
 
 
      bitnum += byte_offset * BITS_PER_UNIT;
      bitnum += byte_offset * BITS_PER_UNIT;
      op0 = SUBREG_REG (op0);
      op0 = SUBREG_REG (op0);
    }
    }
 
 
  /* No action is needed if the target is a register and if the field
  /* No action is needed if the target is a register and if the field
     lies completely outside that register.  This can occur if the source
     lies completely outside that register.  This can occur if the source
     code contains an out-of-bounds access to a small array.  */
     code contains an out-of-bounds access to a small array.  */
  if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
  if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
    return value;
    return value;
 
 
  /* Use vec_set patterns for inserting parts of vectors whenever
  /* Use vec_set patterns for inserting parts of vectors whenever
     available.  */
     available.  */
  if (VECTOR_MODE_P (GET_MODE (op0))
  if (VECTOR_MODE_P (GET_MODE (op0))
      && !MEM_P (op0)
      && !MEM_P (op0)
      && (vec_set_optab->handlers[GET_MODE (op0)].insn_code
      && (vec_set_optab->handlers[GET_MODE (op0)].insn_code
          != CODE_FOR_nothing)
          != CODE_FOR_nothing)
      && fieldmode == GET_MODE_INNER (GET_MODE (op0))
      && fieldmode == GET_MODE_INNER (GET_MODE (op0))
      && bitsize == GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
      && bitsize == GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
      && !(bitnum % GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
      && !(bitnum % GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
    {
    {
      enum machine_mode outermode = GET_MODE (op0);
      enum machine_mode outermode = GET_MODE (op0);
      enum machine_mode innermode = GET_MODE_INNER (outermode);
      enum machine_mode innermode = GET_MODE_INNER (outermode);
      int icode = (int) vec_set_optab->handlers[outermode].insn_code;
      int icode = (int) vec_set_optab->handlers[outermode].insn_code;
      int pos = bitnum / GET_MODE_BITSIZE (innermode);
      int pos = bitnum / GET_MODE_BITSIZE (innermode);
      rtx rtxpos = GEN_INT (pos);
      rtx rtxpos = GEN_INT (pos);
      rtx src = value;
      rtx src = value;
      rtx dest = op0;
      rtx dest = op0;
      rtx pat, seq;
      rtx pat, seq;
      enum machine_mode mode0 = insn_data[icode].operand[0].mode;
      enum machine_mode mode0 = insn_data[icode].operand[0].mode;
      enum machine_mode mode1 = insn_data[icode].operand[1].mode;
      enum machine_mode mode1 = insn_data[icode].operand[1].mode;
      enum machine_mode mode2 = insn_data[icode].operand[2].mode;
      enum machine_mode mode2 = insn_data[icode].operand[2].mode;
 
 
      start_sequence ();
      start_sequence ();
 
 
      if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
      if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
        src = copy_to_mode_reg (mode1, src);
        src = copy_to_mode_reg (mode1, src);
 
 
      if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
      if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
        rtxpos = copy_to_mode_reg (mode1, rtxpos);
        rtxpos = copy_to_mode_reg (mode1, rtxpos);
 
 
      /* We could handle this, but we should always be called with a pseudo
      /* We could handle this, but we should always be called with a pseudo
         for our targets and all insns should take them as outputs.  */
         for our targets and all insns should take them as outputs.  */
      gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
      gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
                  && (*insn_data[icode].operand[1].predicate) (src, mode1)
                  && (*insn_data[icode].operand[1].predicate) (src, mode1)
                  && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
                  && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
      pat = GEN_FCN (icode) (dest, src, rtxpos);
      pat = GEN_FCN (icode) (dest, src, rtxpos);
      seq = get_insns ();
      seq = get_insns ();
      end_sequence ();
      end_sequence ();
      if (pat)
      if (pat)
        {
        {
          emit_insn (seq);
          emit_insn (seq);
          emit_insn (pat);
          emit_insn (pat);
          return dest;
          return dest;
        }
        }
    }
    }
 
 
  /* If the target is a register, overwriting the entire object, or storing
  /* If the target is a register, overwriting the entire object, or storing
     a full-word or multi-word field can be done with just a SUBREG.
     a full-word or multi-word field can be done with just a SUBREG.
 
 
     If the target is memory, storing any naturally aligned field can be
     If the target is memory, storing any naturally aligned field can be
     done with a simple store.  For targets that support fast unaligned
     done with a simple store.  For targets that support fast unaligned
     memory, any naturally sized, unit aligned field can be done directly.  */
     memory, any naturally sized, unit aligned field can be done directly.  */
 
 
  offset = bitnum / unit;
  offset = bitnum / unit;
  bitpos = bitnum % unit;
  bitpos = bitnum % unit;
  byte_offset = (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
  byte_offset = (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
                + (offset * UNITS_PER_WORD);
                + (offset * UNITS_PER_WORD);
 
 
  if (bitpos == 0
  if (bitpos == 0
      && bitsize == GET_MODE_BITSIZE (fieldmode)
      && bitsize == GET_MODE_BITSIZE (fieldmode)
      && (!MEM_P (op0)
      && (!MEM_P (op0)
          ? ((GET_MODE_SIZE (fieldmode) >= UNITS_PER_WORD
          ? ((GET_MODE_SIZE (fieldmode) >= UNITS_PER_WORD
             || GET_MODE_SIZE (GET_MODE (op0)) == GET_MODE_SIZE (fieldmode))
             || GET_MODE_SIZE (GET_MODE (op0)) == GET_MODE_SIZE (fieldmode))
             && byte_offset % GET_MODE_SIZE (fieldmode) == 0)
             && byte_offset % GET_MODE_SIZE (fieldmode) == 0)
          : (! SLOW_UNALIGNED_ACCESS (fieldmode, MEM_ALIGN (op0))
          : (! SLOW_UNALIGNED_ACCESS (fieldmode, MEM_ALIGN (op0))
             || (offset * BITS_PER_UNIT % bitsize == 0
             || (offset * BITS_PER_UNIT % bitsize == 0
                 && MEM_ALIGN (op0) % GET_MODE_BITSIZE (fieldmode) == 0))))
                 && MEM_ALIGN (op0) % GET_MODE_BITSIZE (fieldmode) == 0))))
    {
    {
      if (MEM_P (op0))
      if (MEM_P (op0))
        op0 = adjust_address (op0, fieldmode, offset);
        op0 = adjust_address (op0, fieldmode, offset);
      else if (GET_MODE (op0) != fieldmode)
      else if (GET_MODE (op0) != fieldmode)
        op0 = simplify_gen_subreg (fieldmode, op0, GET_MODE (op0),
        op0 = simplify_gen_subreg (fieldmode, op0, GET_MODE (op0),
                                   byte_offset);
                                   byte_offset);
      emit_move_insn (op0, value);
      emit_move_insn (op0, value);
      return value;
      return value;
    }
    }
 
 
  /* Make sure we are playing with integral modes.  Pun with subregs
  /* Make sure we are playing with integral modes.  Pun with subregs
     if we aren't.  This must come after the entire register case above,
     if we aren't.  This must come after the entire register case above,
     since that case is valid for any mode.  The following cases are only
     since that case is valid for any mode.  The following cases are only
     valid for integral modes.  */
     valid for integral modes.  */
  {
  {
    enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
    enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
    if (imode != GET_MODE (op0))
    if (imode != GET_MODE (op0))
      {
      {
        if (MEM_P (op0))
        if (MEM_P (op0))
          op0 = adjust_address (op0, imode, 0);
          op0 = adjust_address (op0, imode, 0);
        else
        else
          {
          {
            gcc_assert (imode != BLKmode);
            gcc_assert (imode != BLKmode);
            op0 = gen_lowpart (imode, op0);
            op0 = gen_lowpart (imode, op0);
          }
          }
      }
      }
  }
  }
 
 
  /* We may be accessing data outside the field, which means
  /* We may be accessing data outside the field, which means
     we can alias adjacent data.  */
     we can alias adjacent data.  */
  if (MEM_P (op0))
  if (MEM_P (op0))
    {
    {
      op0 = shallow_copy_rtx (op0);
      op0 = shallow_copy_rtx (op0);
      set_mem_alias_set (op0, 0);
      set_mem_alias_set (op0, 0);
      set_mem_expr (op0, 0);
      set_mem_expr (op0, 0);
    }
    }
 
 
  /* If OP0 is a register, BITPOS must count within a word.
  /* If OP0 is a register, BITPOS must count within a word.
     But as we have it, it counts within whatever size OP0 now has.
     But as we have it, it counts within whatever size OP0 now has.
     On a bigendian machine, these are not the same, so convert.  */
     On a bigendian machine, these are not the same, so convert.  */
  if (BYTES_BIG_ENDIAN
  if (BYTES_BIG_ENDIAN
      && !MEM_P (op0)
      && !MEM_P (op0)
      && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
      && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
    bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
    bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
 
 
  /* Storing an lsb-aligned field in a register
  /* Storing an lsb-aligned field in a register
     can be done with a movestrict instruction.  */
     can be done with a movestrict instruction.  */
 
 
  if (!MEM_P (op0)
  if (!MEM_P (op0)
      && (BYTES_BIG_ENDIAN ? bitpos + bitsize == unit : bitpos == 0)
      && (BYTES_BIG_ENDIAN ? bitpos + bitsize == unit : bitpos == 0)
      && bitsize == GET_MODE_BITSIZE (fieldmode)
      && bitsize == GET_MODE_BITSIZE (fieldmode)
      && (movstrict_optab->handlers[fieldmode].insn_code
      && (movstrict_optab->handlers[fieldmode].insn_code
          != CODE_FOR_nothing))
          != CODE_FOR_nothing))
    {
    {
      int icode = movstrict_optab->handlers[fieldmode].insn_code;
      int icode = movstrict_optab->handlers[fieldmode].insn_code;
 
 
      /* Get appropriate low part of the value being stored.  */
      /* Get appropriate low part of the value being stored.  */
      if (GET_CODE (value) == CONST_INT || REG_P (value))
      if (GET_CODE (value) == CONST_INT || REG_P (value))
        value = gen_lowpart (fieldmode, value);
        value = gen_lowpart (fieldmode, value);
      else if (!(GET_CODE (value) == SYMBOL_REF
      else if (!(GET_CODE (value) == SYMBOL_REF
                 || GET_CODE (value) == LABEL_REF
                 || GET_CODE (value) == LABEL_REF
                 || GET_CODE (value) == CONST))
                 || GET_CODE (value) == CONST))
        value = convert_to_mode (fieldmode, value, 0);
        value = convert_to_mode (fieldmode, value, 0);
 
 
      if (! (*insn_data[icode].operand[1].predicate) (value, fieldmode))
      if (! (*insn_data[icode].operand[1].predicate) (value, fieldmode))
        value = copy_to_mode_reg (fieldmode, value);
        value = copy_to_mode_reg (fieldmode, value);
 
 
      if (GET_CODE (op0) == SUBREG)
      if (GET_CODE (op0) == SUBREG)
        {
        {
          /* Else we've got some float mode source being extracted into
          /* Else we've got some float mode source being extracted into
             a different float mode destination -- this combination of
             a different float mode destination -- this combination of
             subregs results in Severe Tire Damage.  */
             subregs results in Severe Tire Damage.  */
          gcc_assert (GET_MODE (SUBREG_REG (op0)) == fieldmode
          gcc_assert (GET_MODE (SUBREG_REG (op0)) == fieldmode
                      || GET_MODE_CLASS (fieldmode) == MODE_INT
                      || GET_MODE_CLASS (fieldmode) == MODE_INT
                      || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
                      || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
          op0 = SUBREG_REG (op0);
          op0 = SUBREG_REG (op0);
        }
        }
 
 
      emit_insn (GEN_FCN (icode)
      emit_insn (GEN_FCN (icode)
                 (gen_rtx_SUBREG (fieldmode, op0,
                 (gen_rtx_SUBREG (fieldmode, op0,
                                  (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
                                  (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
                                  + (offset * UNITS_PER_WORD)),
                                  + (offset * UNITS_PER_WORD)),
                                  value));
                                  value));
 
 
      return value;
      return value;
    }
    }
 
 
  /* Handle fields bigger than a word.  */
  /* Handle fields bigger than a word.  */
 
 
  if (bitsize > BITS_PER_WORD)
  if (bitsize > BITS_PER_WORD)
    {
    {
      /* Here we transfer the words of the field
      /* Here we transfer the words of the field
         in the order least significant first.
         in the order least significant first.
         This is because the most significant word is the one which may
         This is because the most significant word is the one which may
         be less than full.
         be less than full.
         However, only do that if the value is not BLKmode.  */
         However, only do that if the value is not BLKmode.  */
 
 
      unsigned int backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
      unsigned int backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
      unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
      unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
      unsigned int i;
      unsigned int i;
 
 
      /* This is the mode we must force value to, so that there will be enough
      /* This is the mode we must force value to, so that there will be enough
         subwords to extract.  Note that fieldmode will often (always?) be
         subwords to extract.  Note that fieldmode will often (always?) be
         VOIDmode, because that is what store_field uses to indicate that this
         VOIDmode, because that is what store_field uses to indicate that this
         is a bit field, but passing VOIDmode to operand_subword_force
         is a bit field, but passing VOIDmode to operand_subword_force
         is not allowed.  */
         is not allowed.  */
      fieldmode = GET_MODE (value);
      fieldmode = GET_MODE (value);
      if (fieldmode == VOIDmode)
      if (fieldmode == VOIDmode)
        fieldmode = smallest_mode_for_size (nwords * BITS_PER_WORD, MODE_INT);
        fieldmode = smallest_mode_for_size (nwords * BITS_PER_WORD, MODE_INT);
 
 
      for (i = 0; i < nwords; i++)
      for (i = 0; i < nwords; i++)
        {
        {
          /* If I is 0, use the low-order word in both field and target;
          /* If I is 0, use the low-order word in both field and target;
             if I is 1, use the next to lowest word; and so on.  */
             if I is 1, use the next to lowest word; and so on.  */
          unsigned int wordnum = (backwards ? nwords - i - 1 : i);
          unsigned int wordnum = (backwards ? nwords - i - 1 : i);
          unsigned int bit_offset = (backwards
          unsigned int bit_offset = (backwards
                                     ? MAX ((int) bitsize - ((int) i + 1)
                                     ? MAX ((int) bitsize - ((int) i + 1)
                                            * BITS_PER_WORD,
                                            * BITS_PER_WORD,
                                            0)
                                            0)
                                     : (int) i * BITS_PER_WORD);
                                     : (int) i * BITS_PER_WORD);
 
 
          store_bit_field (op0, MIN (BITS_PER_WORD,
          store_bit_field (op0, MIN (BITS_PER_WORD,
                                     bitsize - i * BITS_PER_WORD),
                                     bitsize - i * BITS_PER_WORD),
                           bitnum + bit_offset, word_mode,
                           bitnum + bit_offset, word_mode,
                           operand_subword_force (value, wordnum, fieldmode));
                           operand_subword_force (value, wordnum, fieldmode));
        }
        }
      return value;
      return value;
    }
    }
 
 
  /* From here on we can assume that the field to be stored in is
  /* From here on we can assume that the field to be stored in is
     a full-word (whatever type that is), since it is shorter than a word.  */
     a full-word (whatever type that is), since it is shorter than a word.  */
 
 
  /* OFFSET is the number of words or bytes (UNIT says which)
  /* OFFSET is the number of words or bytes (UNIT says which)
     from STR_RTX to the first word or byte containing part of the field.  */
     from STR_RTX to the first word or byte containing part of the field.  */
 
 
  if (!MEM_P (op0))
  if (!MEM_P (op0))
    {
    {
      if (offset != 0
      if (offset != 0
          || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
          || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
        {
        {
          if (!REG_P (op0))
          if (!REG_P (op0))
            {
            {
              /* Since this is a destination (lvalue), we can't copy
              /* Since this is a destination (lvalue), we can't copy
                 it to a pseudo.  We can remove a SUBREG that does not
                 it to a pseudo.  We can remove a SUBREG that does not
                 change the size of the operand.  Such a SUBREG may
                 change the size of the operand.  Such a SUBREG may
                 have been added above.  */
                 have been added above.  */
              gcc_assert (GET_CODE (op0) == SUBREG
              gcc_assert (GET_CODE (op0) == SUBREG
                          && (GET_MODE_SIZE (GET_MODE (op0))
                          && (GET_MODE_SIZE (GET_MODE (op0))
                              == GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))));
                              == GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))));
              op0 = SUBREG_REG (op0);
              op0 = SUBREG_REG (op0);
            }
            }
          op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
          op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
                                op0, (offset * UNITS_PER_WORD));
                                op0, (offset * UNITS_PER_WORD));
        }
        }
      offset = 0;
      offset = 0;
    }
    }
 
 
  /* If VALUE has a floating-point or complex mode, access it as an
  /* If VALUE has a floating-point or complex mode, access it as an
     integer of the corresponding size.  This can occur on a machine
     integer of the corresponding size.  This can occur on a machine
     with 64 bit registers that uses SFmode for float.  It can also
     with 64 bit registers that uses SFmode for float.  It can also
     occur for unaligned float or complex fields.  */
     occur for unaligned float or complex fields.  */
  orig_value = value;
  orig_value = value;
  if (GET_MODE (value) != VOIDmode
  if (GET_MODE (value) != VOIDmode
      && GET_MODE_CLASS (GET_MODE (value)) != MODE_INT
      && GET_MODE_CLASS (GET_MODE (value)) != MODE_INT
      && GET_MODE_CLASS (GET_MODE (value)) != MODE_PARTIAL_INT)
      && GET_MODE_CLASS (GET_MODE (value)) != MODE_PARTIAL_INT)
    {
    {
      value = gen_reg_rtx (int_mode_for_mode (GET_MODE (value)));
      value = gen_reg_rtx (int_mode_for_mode (GET_MODE (value)));
      emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value);
      emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value);
    }
    }
 
 
  /* Now OFFSET is nonzero only if OP0 is memory
  /* Now OFFSET is nonzero only if OP0 is memory
     and is therefore always measured in bytes.  */
     and is therefore always measured in bytes.  */
 
 
  if (HAVE_insv
  if (HAVE_insv
      && GET_MODE (value) != BLKmode
      && GET_MODE (value) != BLKmode
      && bitsize > 0
      && bitsize > 0
      && GET_MODE_BITSIZE (op_mode) >= bitsize
      && GET_MODE_BITSIZE (op_mode) >= bitsize
      && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
      && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
            && (bitsize + bitpos > GET_MODE_BITSIZE (op_mode)))
            && (bitsize + bitpos > GET_MODE_BITSIZE (op_mode)))
      && insn_data[CODE_FOR_insv].operand[1].predicate (GEN_INT (bitsize),
      && insn_data[CODE_FOR_insv].operand[1].predicate (GEN_INT (bitsize),
                                                        VOIDmode))
                                                        VOIDmode))
    {
    {
      int xbitpos = bitpos;
      int xbitpos = bitpos;
      rtx value1;
      rtx value1;
      rtx xop0 = op0;
      rtx xop0 = op0;
      rtx last = get_last_insn ();
      rtx last = get_last_insn ();
      rtx pat;
      rtx pat;
      enum machine_mode maxmode = mode_for_extraction (EP_insv, 3);
      enum machine_mode maxmode = mode_for_extraction (EP_insv, 3);
      int save_volatile_ok = volatile_ok;
      int save_volatile_ok = volatile_ok;
 
 
      volatile_ok = 1;
      volatile_ok = 1;
 
 
      /* If this machine's insv can only insert into a register, copy OP0
      /* If this machine's insv can only insert into a register, copy OP0
         into a register and save it back later.  */
         into a register and save it back later.  */
      if (MEM_P (op0)
      if (MEM_P (op0)
          && ! ((*insn_data[(int) CODE_FOR_insv].operand[0].predicate)
          && ! ((*insn_data[(int) CODE_FOR_insv].operand[0].predicate)
                (op0, VOIDmode)))
                (op0, VOIDmode)))
        {
        {
          rtx tempreg;
          rtx tempreg;
          enum machine_mode bestmode;
          enum machine_mode bestmode;
 
 
          /* Get the mode to use for inserting into this field.  If OP0 is
          /* Get the mode to use for inserting into this field.  If OP0 is
             BLKmode, get the smallest mode consistent with the alignment. If
             BLKmode, get the smallest mode consistent with the alignment. If
             OP0 is a non-BLKmode object that is no wider than MAXMODE, use its
             OP0 is a non-BLKmode object that is no wider than MAXMODE, use its
             mode. Otherwise, use the smallest mode containing the field.  */
             mode. Otherwise, use the smallest mode containing the field.  */
 
 
          if (GET_MODE (op0) == BLKmode
          if (GET_MODE (op0) == BLKmode
              || GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (maxmode))
              || GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (maxmode))
            bestmode
            bestmode
              = get_best_mode (bitsize, bitnum, MEM_ALIGN (op0), maxmode,
              = get_best_mode (bitsize, bitnum, MEM_ALIGN (op0), maxmode,
                               MEM_VOLATILE_P (op0));
                               MEM_VOLATILE_P (op0));
          else
          else
            bestmode = GET_MODE (op0);
            bestmode = GET_MODE (op0);
 
 
          if (bestmode == VOIDmode
          if (bestmode == VOIDmode
              || GET_MODE_SIZE (bestmode) < GET_MODE_SIZE (fieldmode)
              || GET_MODE_SIZE (bestmode) < GET_MODE_SIZE (fieldmode)
              || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (op0))
              || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (op0))
                  && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (op0)))
                  && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (op0)))
            goto insv_loses;
            goto insv_loses;
 
 
          /* Adjust address to point to the containing unit of that mode.
          /* Adjust address to point to the containing unit of that mode.
             Compute offset as multiple of this unit, counting in bytes.  */
             Compute offset as multiple of this unit, counting in bytes.  */
          unit = GET_MODE_BITSIZE (bestmode);
          unit = GET_MODE_BITSIZE (bestmode);
          offset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
          offset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
          bitpos = bitnum % unit;
          bitpos = bitnum % unit;
          op0 = adjust_address (op0, bestmode,  offset);
          op0 = adjust_address (op0, bestmode,  offset);
 
 
          /* Fetch that unit, store the bitfield in it, then store
          /* Fetch that unit, store the bitfield in it, then store
             the unit.  */
             the unit.  */
          tempreg = copy_to_reg (op0);
          tempreg = copy_to_reg (op0);
          store_bit_field (tempreg, bitsize, bitpos, fieldmode, orig_value);
          store_bit_field (tempreg, bitsize, bitpos, fieldmode, orig_value);
          emit_move_insn (op0, tempreg);
          emit_move_insn (op0, tempreg);
          return value;
          return value;
        }
        }
      volatile_ok = save_volatile_ok;
      volatile_ok = save_volatile_ok;
 
 
      /* Add OFFSET into OP0's address.  */
      /* Add OFFSET into OP0's address.  */
      if (MEM_P (xop0))
      if (MEM_P (xop0))
        xop0 = adjust_address (xop0, byte_mode, offset);
        xop0 = adjust_address (xop0, byte_mode, offset);
 
 
      /* If xop0 is a register, we need it in MAXMODE
      /* If xop0 is a register, we need it in MAXMODE
         to make it acceptable to the format of insv.  */
         to make it acceptable to the format of insv.  */
      if (GET_CODE (xop0) == SUBREG)
      if (GET_CODE (xop0) == SUBREG)
        /* We can't just change the mode, because this might clobber op0,
        /* We can't just change the mode, because this might clobber op0,
           and we will need the original value of op0 if insv fails.  */
           and we will need the original value of op0 if insv fails.  */
        xop0 = gen_rtx_SUBREG (maxmode, SUBREG_REG (xop0), SUBREG_BYTE (xop0));
        xop0 = gen_rtx_SUBREG (maxmode, SUBREG_REG (xop0), SUBREG_BYTE (xop0));
      if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
      if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
        xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
        xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
 
 
      /* On big-endian machines, we count bits from the most significant.
      /* On big-endian machines, we count bits from the most significant.
         If the bit field insn does not, we must invert.  */
         If the bit field insn does not, we must invert.  */
 
 
      if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
      if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
        xbitpos = unit - bitsize - xbitpos;
        xbitpos = unit - bitsize - xbitpos;
 
 
      /* We have been counting XBITPOS within UNIT.
      /* We have been counting XBITPOS within UNIT.
         Count instead within the size of the register.  */
         Count instead within the size of the register.  */
      if (BITS_BIG_ENDIAN && !MEM_P (xop0))
      if (BITS_BIG_ENDIAN && !MEM_P (xop0))
        xbitpos += GET_MODE_BITSIZE (maxmode) - unit;
        xbitpos += GET_MODE_BITSIZE (maxmode) - unit;
 
 
      unit = GET_MODE_BITSIZE (maxmode);
      unit = GET_MODE_BITSIZE (maxmode);
 
 
      /* Convert VALUE to maxmode (which insv insn wants) in VALUE1.  */
      /* Convert VALUE to maxmode (which insv insn wants) in VALUE1.  */
      value1 = value;
      value1 = value;
      if (GET_MODE (value) != maxmode)
      if (GET_MODE (value) != maxmode)
        {
        {
          if (GET_MODE_BITSIZE (GET_MODE (value)) >= bitsize)
          if (GET_MODE_BITSIZE (GET_MODE (value)) >= bitsize)
            {
            {
              /* Optimization: Don't bother really extending VALUE
              /* Optimization: Don't bother really extending VALUE
                 if it has all the bits we will actually use.  However,
                 if it has all the bits we will actually use.  However,
                 if we must narrow it, be sure we do it correctly.  */
                 if we must narrow it, be sure we do it correctly.  */
 
 
              if (GET_MODE_SIZE (GET_MODE (value)) < GET_MODE_SIZE (maxmode))
              if (GET_MODE_SIZE (GET_MODE (value)) < GET_MODE_SIZE (maxmode))
                {
                {
                  rtx tmp;
                  rtx tmp;
 
 
                  tmp = simplify_subreg (maxmode, value1, GET_MODE (value), 0);
                  tmp = simplify_subreg (maxmode, value1, GET_MODE (value), 0);
                  if (! tmp)
                  if (! tmp)
                    tmp = simplify_gen_subreg (maxmode,
                    tmp = simplify_gen_subreg (maxmode,
                                               force_reg (GET_MODE (value),
                                               force_reg (GET_MODE (value),
                                                          value1),
                                                          value1),
                                               GET_MODE (value), 0);
                                               GET_MODE (value), 0);
                  value1 = tmp;
                  value1 = tmp;
                }
                }
              else
              else
                value1 = gen_lowpart (maxmode, value1);
                value1 = gen_lowpart (maxmode, value1);
            }
            }
          else if (GET_CODE (value) == CONST_INT)
          else if (GET_CODE (value) == CONST_INT)
            value1 = gen_int_mode (INTVAL (value), maxmode);
            value1 = gen_int_mode (INTVAL (value), maxmode);
          else
          else
            /* Parse phase is supposed to make VALUE's data type
            /* Parse phase is supposed to make VALUE's data type
               match that of the component reference, which is a type
               match that of the component reference, which is a type
               at least as wide as the field; so VALUE should have
               at least as wide as the field; so VALUE should have
               a mode that corresponds to that type.  */
               a mode that corresponds to that type.  */
            gcc_assert (CONSTANT_P (value));
            gcc_assert (CONSTANT_P (value));
        }
        }
 
 
      /* If this machine's insv insists on a register,
      /* If this machine's insv insists on a register,
         get VALUE1 into a register.  */
         get VALUE1 into a register.  */
      if (! ((*insn_data[(int) CODE_FOR_insv].operand[3].predicate)
      if (! ((*insn_data[(int) CODE_FOR_insv].operand[3].predicate)
             (value1, maxmode)))
             (value1, maxmode)))
        value1 = force_reg (maxmode, value1);
        value1 = force_reg (maxmode, value1);
 
 
      pat = gen_insv (xop0, GEN_INT (bitsize), GEN_INT (xbitpos), value1);
      pat = gen_insv (xop0, GEN_INT (bitsize), GEN_INT (xbitpos), value1);
      if (pat)
      if (pat)
        emit_insn (pat);
        emit_insn (pat);
      else
      else
        {
        {
          delete_insns_since (last);
          delete_insns_since (last);
          store_fixed_bit_field (op0, offset, bitsize, bitpos, value);
          store_fixed_bit_field (op0, offset, bitsize, bitpos, value);
        }
        }
    }
    }
  else
  else
    insv_loses:
    insv_loses:
    /* Insv is not available; store using shifts and boolean ops.  */
    /* Insv is not available; store using shifts and boolean ops.  */
    store_fixed_bit_field (op0, offset, bitsize, bitpos, value);
    store_fixed_bit_field (op0, offset, bitsize, bitpos, value);
  return value;
  return value;
}
}


/* Use shifts and boolean operations to store VALUE
/* Use shifts and boolean operations to store VALUE
   into a bit field of width BITSIZE
   into a bit field of width BITSIZE
   in a memory location specified by OP0 except offset by OFFSET bytes.
   in a memory location specified by OP0 except offset by OFFSET bytes.
     (OFFSET must be 0 if OP0 is a register.)
     (OFFSET must be 0 if OP0 is a register.)
   The field starts at position BITPOS within the byte.
   The field starts at position BITPOS within the byte.
    (If OP0 is a register, it may be a full word or a narrower mode,
    (If OP0 is a register, it may be a full word or a narrower mode,
     but BITPOS still counts within a full word,
     but BITPOS still counts within a full word,
     which is significant on bigendian machines.)  */
     which is significant on bigendian machines.)  */
 
 
static void
static void
store_fixed_bit_field (rtx op0, unsigned HOST_WIDE_INT offset,
store_fixed_bit_field (rtx op0, unsigned HOST_WIDE_INT offset,
                       unsigned HOST_WIDE_INT bitsize,
                       unsigned HOST_WIDE_INT bitsize,
                       unsigned HOST_WIDE_INT bitpos, rtx value)
                       unsigned HOST_WIDE_INT bitpos, rtx value)
{
{
  enum machine_mode mode;
  enum machine_mode mode;
  unsigned int total_bits = BITS_PER_WORD;
  unsigned int total_bits = BITS_PER_WORD;
  rtx temp;
  rtx temp;
  int all_zero = 0;
  int all_zero = 0;
  int all_one = 0;
  int all_one = 0;
 
 
  /* There is a case not handled here:
  /* There is a case not handled here:
     a structure with a known alignment of just a halfword
     a structure with a known alignment of just a halfword
     and a field split across two aligned halfwords within the structure.
     and a field split across two aligned halfwords within the structure.
     Or likewise a structure with a known alignment of just a byte
     Or likewise a structure with a known alignment of just a byte
     and a field split across two bytes.
     and a field split across two bytes.
     Such cases are not supposed to be able to occur.  */
     Such cases are not supposed to be able to occur.  */
 
 
  if (REG_P (op0) || GET_CODE (op0) == SUBREG)
  if (REG_P (op0) || GET_CODE (op0) == SUBREG)
    {
    {
      gcc_assert (!offset);
      gcc_assert (!offset);
      /* Special treatment for a bit field split across two registers.  */
      /* Special treatment for a bit field split across two registers.  */
      if (bitsize + bitpos > BITS_PER_WORD)
      if (bitsize + bitpos > BITS_PER_WORD)
        {
        {
          store_split_bit_field (op0, bitsize, bitpos, value);
          store_split_bit_field (op0, bitsize, bitpos, value);
          return;
          return;
        }
        }
    }
    }
  else
  else
    {
    {
      /* Get the proper mode to use for this field.  We want a mode that
      /* Get the proper mode to use for this field.  We want a mode that
         includes the entire field.  If such a mode would be larger than
         includes the entire field.  If such a mode would be larger than
         a word, we won't be doing the extraction the normal way.
         a word, we won't be doing the extraction the normal way.
         We don't want a mode bigger than the destination.  */
         We don't want a mode bigger than the destination.  */
 
 
      mode = GET_MODE (op0);
      mode = GET_MODE (op0);
      if (GET_MODE_BITSIZE (mode) == 0
      if (GET_MODE_BITSIZE (mode) == 0
          || GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (word_mode))
          || GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (word_mode))
        mode = word_mode;
        mode = word_mode;
      mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
      mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
                            MEM_ALIGN (op0), mode, MEM_VOLATILE_P (op0));
                            MEM_ALIGN (op0), mode, MEM_VOLATILE_P (op0));
 
 
      if (mode == VOIDmode)
      if (mode == VOIDmode)
        {
        {
          /* The only way this should occur is if the field spans word
          /* The only way this should occur is if the field spans word
             boundaries.  */
             boundaries.  */
          store_split_bit_field (op0, bitsize, bitpos + offset * BITS_PER_UNIT,
          store_split_bit_field (op0, bitsize, bitpos + offset * BITS_PER_UNIT,
                                 value);
                                 value);
          return;
          return;
        }
        }
 
 
      total_bits = GET_MODE_BITSIZE (mode);
      total_bits = GET_MODE_BITSIZE (mode);
 
 
      /* Make sure bitpos is valid for the chosen mode.  Adjust BITPOS to
      /* Make sure bitpos is valid for the chosen mode.  Adjust BITPOS to
         be in the range 0 to total_bits-1, and put any excess bytes in
         be in the range 0 to total_bits-1, and put any excess bytes in
         OFFSET.  */
         OFFSET.  */
      if (bitpos >= total_bits)
      if (bitpos >= total_bits)
        {
        {
          offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
          offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
          bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
          bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
                     * BITS_PER_UNIT);
                     * BITS_PER_UNIT);
        }
        }
 
 
      /* Get ref to an aligned byte, halfword, or word containing the field.
      /* Get ref to an aligned byte, halfword, or word containing the field.
         Adjust BITPOS to be position within a word,
         Adjust BITPOS to be position within a word,
         and OFFSET to be the offset of that word.
         and OFFSET to be the offset of that word.
         Then alter OP0 to refer to that word.  */
         Then alter OP0 to refer to that word.  */
      bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
      bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
      offset -= (offset % (total_bits / BITS_PER_UNIT));
      offset -= (offset % (total_bits / BITS_PER_UNIT));
      op0 = adjust_address (op0, mode, offset);
      op0 = adjust_address (op0, mode, offset);
    }
    }
 
 
  mode = GET_MODE (op0);
  mode = GET_MODE (op0);
 
 
  /* Now MODE is either some integral mode for a MEM as OP0,
  /* Now MODE is either some integral mode for a MEM as OP0,
     or is a full-word for a REG as OP0.  TOTAL_BITS corresponds.
     or is a full-word for a REG as OP0.  TOTAL_BITS corresponds.
     The bit field is contained entirely within OP0.
     The bit field is contained entirely within OP0.
     BITPOS is the starting bit number within OP0.
     BITPOS is the starting bit number within OP0.
     (OP0's mode may actually be narrower than MODE.)  */
     (OP0's mode may actually be narrower than MODE.)  */
 
 
  if (BYTES_BIG_ENDIAN)
  if (BYTES_BIG_ENDIAN)
      /* BITPOS is the distance between our msb
      /* BITPOS is the distance between our msb
         and that of the containing datum.
         and that of the containing datum.
         Convert it to the distance from the lsb.  */
         Convert it to the distance from the lsb.  */
      bitpos = total_bits - bitsize - bitpos;
      bitpos = total_bits - bitsize - bitpos;
 
 
  /* Now BITPOS is always the distance between our lsb
  /* Now BITPOS is always the distance between our lsb
     and that of OP0.  */
     and that of OP0.  */
 
 
  /* Shift VALUE left by BITPOS bits.  If VALUE is not constant,
  /* Shift VALUE left by BITPOS bits.  If VALUE is not constant,
     we must first convert its mode to MODE.  */
     we must first convert its mode to MODE.  */
 
 
  if (GET_CODE (value) == CONST_INT)
  if (GET_CODE (value) == CONST_INT)
    {
    {
      HOST_WIDE_INT v = INTVAL (value);
      HOST_WIDE_INT v = INTVAL (value);
 
 
      if (bitsize < HOST_BITS_PER_WIDE_INT)
      if (bitsize < HOST_BITS_PER_WIDE_INT)
        v &= ((HOST_WIDE_INT) 1 << bitsize) - 1;
        v &= ((HOST_WIDE_INT) 1 << bitsize) - 1;
 
 
      if (v == 0)
      if (v == 0)
        all_zero = 1;
        all_zero = 1;
      else if ((bitsize < HOST_BITS_PER_WIDE_INT
      else if ((bitsize < HOST_BITS_PER_WIDE_INT
                && v == ((HOST_WIDE_INT) 1 << bitsize) - 1)
                && v == ((HOST_WIDE_INT) 1 << bitsize) - 1)
               || (bitsize == HOST_BITS_PER_WIDE_INT && v == -1))
               || (bitsize == HOST_BITS_PER_WIDE_INT && v == -1))
        all_one = 1;
        all_one = 1;
 
 
      value = lshift_value (mode, value, bitpos, bitsize);
      value = lshift_value (mode, value, bitpos, bitsize);
    }
    }
  else
  else
    {
    {
      int must_and = (GET_MODE_BITSIZE (GET_MODE (value)) != bitsize
      int must_and = (GET_MODE_BITSIZE (GET_MODE (value)) != bitsize
                      && bitpos + bitsize != GET_MODE_BITSIZE (mode));
                      && bitpos + bitsize != GET_MODE_BITSIZE (mode));
 
 
      if (GET_MODE (value) != mode)
      if (GET_MODE (value) != mode)
        {
        {
          if ((REG_P (value) || GET_CODE (value) == SUBREG)
          if ((REG_P (value) || GET_CODE (value) == SUBREG)
              && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (value)))
              && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (value)))
            value = gen_lowpart (mode, value);
            value = gen_lowpart (mode, value);
          else
          else
            value = convert_to_mode (mode, value, 1);
            value = convert_to_mode (mode, value, 1);
        }
        }
 
 
      if (must_and)
      if (must_and)
        value = expand_binop (mode, and_optab, value,
        value = expand_binop (mode, and_optab, value,
                              mask_rtx (mode, 0, bitsize, 0),
                              mask_rtx (mode, 0, bitsize, 0),
                              NULL_RTX, 1, OPTAB_LIB_WIDEN);
                              NULL_RTX, 1, OPTAB_LIB_WIDEN);
      if (bitpos > 0)
      if (bitpos > 0)
        value = expand_shift (LSHIFT_EXPR, mode, value,
        value = expand_shift (LSHIFT_EXPR, mode, value,
                              build_int_cst (NULL_TREE, bitpos), NULL_RTX, 1);
                              build_int_cst (NULL_TREE, bitpos), NULL_RTX, 1);
    }
    }
 
 
  /* Now clear the chosen bits in OP0,
  /* Now clear the chosen bits in OP0,
     except that if VALUE is -1 we need not bother.  */
     except that if VALUE is -1 we need not bother.  */
  /* We keep the intermediates in registers to allow CSE to combine
  /* We keep the intermediates in registers to allow CSE to combine
     consecutive bitfield assignments.  */
     consecutive bitfield assignments.  */
 
 
  temp = force_reg (mode, op0);
  temp = force_reg (mode, op0);
 
 
  if (! all_one)
  if (! all_one)
    {
    {
      temp = expand_binop (mode, and_optab, temp,
      temp = expand_binop (mode, and_optab, temp,
                           mask_rtx (mode, bitpos, bitsize, 1),
                           mask_rtx (mode, bitpos, bitsize, 1),
                           NULL_RTX, 1, OPTAB_LIB_WIDEN);
                           NULL_RTX, 1, OPTAB_LIB_WIDEN);
      temp = force_reg (mode, temp);
      temp = force_reg (mode, temp);
    }
    }
 
 
  /* Now logical-or VALUE into OP0, unless it is zero.  */
  /* Now logical-or VALUE into OP0, unless it is zero.  */
 
 
  if (! all_zero)
  if (! all_zero)
    {
    {
      temp = expand_binop (mode, ior_optab, temp, value,
      temp = expand_binop (mode, ior_optab, temp, value,
                           NULL_RTX, 1, OPTAB_LIB_WIDEN);
                           NULL_RTX, 1, OPTAB_LIB_WIDEN);
      temp = force_reg (mode, temp);
      temp = force_reg (mode, temp);
    }
    }
 
 
  if (op0 != temp)
  if (op0 != temp)
    emit_move_insn (op0, temp);
    emit_move_insn (op0, temp);
}
}


/* Store a bit field that is split across multiple accessible memory objects.
/* Store a bit field that is split across multiple accessible memory objects.
 
 
   OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
   OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
   BITSIZE is the field width; BITPOS the position of its first bit
   BITSIZE is the field width; BITPOS the position of its first bit
   (within the word).
   (within the word).
   VALUE is the value to store.
   VALUE is the value to store.
 
 
   This does not yet handle fields wider than BITS_PER_WORD.  */
   This does not yet handle fields wider than BITS_PER_WORD.  */
 
 
static void
static void
store_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
store_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
                       unsigned HOST_WIDE_INT bitpos, rtx value)
                       unsigned HOST_WIDE_INT bitpos, rtx value)
{
{
  unsigned int unit;
  unsigned int unit;
  unsigned int bitsdone = 0;
  unsigned int bitsdone = 0;
 
 
  /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
  /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
     much at a time.  */
     much at a time.  */
  if (REG_P (op0) || GET_CODE (op0) == SUBREG)
  if (REG_P (op0) || GET_CODE (op0) == SUBREG)
    unit = BITS_PER_WORD;
    unit = BITS_PER_WORD;
  else
  else
    unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
    unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
 
 
  /* If VALUE is a constant other than a CONST_INT, get it into a register in
  /* If VALUE is a constant other than a CONST_INT, get it into a register in
     WORD_MODE.  If we can do this using gen_lowpart_common, do so.  Note
     WORD_MODE.  If we can do this using gen_lowpart_common, do so.  Note
     that VALUE might be a floating-point constant.  */
     that VALUE might be a floating-point constant.  */
  if (CONSTANT_P (value) && GET_CODE (value) != CONST_INT)
  if (CONSTANT_P (value) && GET_CODE (value) != CONST_INT)
    {
    {
      rtx word = gen_lowpart_common (word_mode, value);
      rtx word = gen_lowpart_common (word_mode, value);
 
 
      if (word && (value != word))
      if (word && (value != word))
        value = word;
        value = word;
      else
      else
        value = gen_lowpart_common (word_mode,
        value = gen_lowpart_common (word_mode,
                                    force_reg (GET_MODE (value) != VOIDmode
                                    force_reg (GET_MODE (value) != VOIDmode
                                               ? GET_MODE (value)
                                               ? GET_MODE (value)
                                               : word_mode, value));
                                               : word_mode, value));
    }
    }
 
 
  while (bitsdone < bitsize)
  while (bitsdone < bitsize)
    {
    {
      unsigned HOST_WIDE_INT thissize;
      unsigned HOST_WIDE_INT thissize;
      rtx part, word;
      rtx part, word;
      unsigned HOST_WIDE_INT thispos;
      unsigned HOST_WIDE_INT thispos;
      unsigned HOST_WIDE_INT offset;
      unsigned HOST_WIDE_INT offset;
 
 
      offset = (bitpos + bitsdone) / unit;
      offset = (bitpos + bitsdone) / unit;
      thispos = (bitpos + bitsdone) % unit;
      thispos = (bitpos + bitsdone) % unit;
 
 
      /* THISSIZE must not overrun a word boundary.  Otherwise,
      /* THISSIZE must not overrun a word boundary.  Otherwise,
         store_fixed_bit_field will call us again, and we will mutually
         store_fixed_bit_field will call us again, and we will mutually
         recurse forever.  */
         recurse forever.  */
      thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
      thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
      thissize = MIN (thissize, unit - thispos);
      thissize = MIN (thissize, unit - thispos);
 
 
      if (BYTES_BIG_ENDIAN)
      if (BYTES_BIG_ENDIAN)
        {
        {
          int total_bits;
          int total_bits;
 
 
          /* We must do an endian conversion exactly the same way as it is
          /* We must do an endian conversion exactly the same way as it is
             done in extract_bit_field, so that the two calls to
             done in extract_bit_field, so that the two calls to
             extract_fixed_bit_field will have comparable arguments.  */
             extract_fixed_bit_field will have comparable arguments.  */
          if (!MEM_P (value) || GET_MODE (value) == BLKmode)
          if (!MEM_P (value) || GET_MODE (value) == BLKmode)
            total_bits = BITS_PER_WORD;
            total_bits = BITS_PER_WORD;
          else
          else
            total_bits = GET_MODE_BITSIZE (GET_MODE (value));
            total_bits = GET_MODE_BITSIZE (GET_MODE (value));
 
 
          /* Fetch successively less significant portions.  */
          /* Fetch successively less significant portions.  */
          if (GET_CODE (value) == CONST_INT)
          if (GET_CODE (value) == CONST_INT)
            part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
            part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
                             >> (bitsize - bitsdone - thissize))
                             >> (bitsize - bitsdone - thissize))
                            & (((HOST_WIDE_INT) 1 << thissize) - 1));
                            & (((HOST_WIDE_INT) 1 << thissize) - 1));
          else
          else
            /* The args are chosen so that the last part includes the
            /* The args are chosen so that the last part includes the
               lsb.  Give extract_bit_field the value it needs (with
               lsb.  Give extract_bit_field the value it needs (with
               endianness compensation) to fetch the piece we want.  */
               endianness compensation) to fetch the piece we want.  */
            part = extract_fixed_bit_field (word_mode, value, 0, thissize,
            part = extract_fixed_bit_field (word_mode, value, 0, thissize,
                                            total_bits - bitsize + bitsdone,
                                            total_bits - bitsize + bitsdone,
                                            NULL_RTX, 1);
                                            NULL_RTX, 1);
        }
        }
      else
      else
        {
        {
          /* Fetch successively more significant portions.  */
          /* Fetch successively more significant portions.  */
          if (GET_CODE (value) == CONST_INT)
          if (GET_CODE (value) == CONST_INT)
            part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
            part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
                             >> bitsdone)
                             >> bitsdone)
                            & (((HOST_WIDE_INT) 1 << thissize) - 1));
                            & (((HOST_WIDE_INT) 1 << thissize) - 1));
          else
          else
            part = extract_fixed_bit_field (word_mode, value, 0, thissize,
            part = extract_fixed_bit_field (word_mode, value, 0, thissize,
                                            bitsdone, NULL_RTX, 1);
                                            bitsdone, NULL_RTX, 1);
        }
        }
 
 
      /* If OP0 is a register, then handle OFFSET here.
      /* If OP0 is a register, then handle OFFSET here.
 
 
         When handling multiword bitfields, extract_bit_field may pass
         When handling multiword bitfields, extract_bit_field may pass
         down a word_mode SUBREG of a larger REG for a bitfield that actually
         down a word_mode SUBREG of a larger REG for a bitfield that actually
         crosses a word boundary.  Thus, for a SUBREG, we must find
         crosses a word boundary.  Thus, for a SUBREG, we must find
         the current word starting from the base register.  */
         the current word starting from the base register.  */
      if (GET_CODE (op0) == SUBREG)
      if (GET_CODE (op0) == SUBREG)
        {
        {
          int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
          int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
          word = operand_subword_force (SUBREG_REG (op0), word_offset,
          word = operand_subword_force (SUBREG_REG (op0), word_offset,
                                        GET_MODE (SUBREG_REG (op0)));
                                        GET_MODE (SUBREG_REG (op0)));
          offset = 0;
          offset = 0;
        }
        }
      else if (REG_P (op0))
      else if (REG_P (op0))
        {
        {
          word = operand_subword_force (op0, offset, GET_MODE (op0));
          word = operand_subword_force (op0, offset, GET_MODE (op0));
          offset = 0;
          offset = 0;
        }
        }
      else
      else
        word = op0;
        word = op0;
 
 
      /* OFFSET is in UNITs, and UNIT is in bits.
      /* OFFSET is in UNITs, and UNIT is in bits.
         store_fixed_bit_field wants offset in bytes.  */
         store_fixed_bit_field wants offset in bytes.  */
      store_fixed_bit_field (word, offset * unit / BITS_PER_UNIT, thissize,
      store_fixed_bit_field (word, offset * unit / BITS_PER_UNIT, thissize,
                             thispos, part);
                             thispos, part);
      bitsdone += thissize;
      bitsdone += thissize;
    }
    }
}
}


/* Generate code to extract a byte-field from STR_RTX
/* Generate code to extract a byte-field from STR_RTX
   containing BITSIZE bits, starting at BITNUM,
   containing BITSIZE bits, starting at BITNUM,
   and put it in TARGET if possible (if TARGET is nonzero).
   and put it in TARGET if possible (if TARGET is nonzero).
   Regardless of TARGET, we return the rtx for where the value is placed.
   Regardless of TARGET, we return the rtx for where the value is placed.
 
 
   STR_RTX is the structure containing the byte (a REG or MEM).
   STR_RTX is the structure containing the byte (a REG or MEM).
   UNSIGNEDP is nonzero if this is an unsigned bit field.
   UNSIGNEDP is nonzero if this is an unsigned bit field.
   MODE is the natural mode of the field value once extracted.
   MODE is the natural mode of the field value once extracted.
   TMODE is the mode the caller would like the value to have;
   TMODE is the mode the caller would like the value to have;
   but the value may be returned with type MODE instead.
   but the value may be returned with type MODE instead.
 
 
   TOTAL_SIZE is the size in bytes of the containing structure,
   TOTAL_SIZE is the size in bytes of the containing structure,
   or -1 if varying.
   or -1 if varying.
 
 
   If a TARGET is specified and we can store in it at no extra cost,
   If a TARGET is specified and we can store in it at no extra cost,
   we do so, and return TARGET.
   we do so, and return TARGET.
   Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
   Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
   if they are equally easy.  */
   if they are equally easy.  */
 
 
rtx
rtx
extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
                   unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
                   unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
                   enum machine_mode mode, enum machine_mode tmode)
                   enum machine_mode mode, enum machine_mode tmode)
{
{
  unsigned int unit
  unsigned int unit
    = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
    = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
  unsigned HOST_WIDE_INT offset, bitpos;
  unsigned HOST_WIDE_INT offset, bitpos;
  rtx op0 = str_rtx;
  rtx op0 = str_rtx;
  rtx spec_target = target;
  rtx spec_target = target;
  rtx spec_target_subreg = 0;
  rtx spec_target_subreg = 0;
  enum machine_mode int_mode;
  enum machine_mode int_mode;
  enum machine_mode extv_mode = mode_for_extraction (EP_extv, 0);
  enum machine_mode extv_mode = mode_for_extraction (EP_extv, 0);
  enum machine_mode extzv_mode = mode_for_extraction (EP_extzv, 0);
  enum machine_mode extzv_mode = mode_for_extraction (EP_extzv, 0);
  enum machine_mode mode1;
  enum machine_mode mode1;
  int byte_offset;
  int byte_offset;
 
 
  if (tmode == VOIDmode)
  if (tmode == VOIDmode)
    tmode = mode;
    tmode = mode;
 
 
  while (GET_CODE (op0) == SUBREG)
  while (GET_CODE (op0) == SUBREG)
    {
    {
      bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
      bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
      op0 = SUBREG_REG (op0);
      op0 = SUBREG_REG (op0);
    }
    }
 
 
  /* If we have an out-of-bounds access to a register, just return an
  /* If we have an out-of-bounds access to a register, just return an
     uninitialized register of the required mode.  This can occur if the
     uninitialized register of the required mode.  This can occur if the
     source code contains an out-of-bounds access to a small array.  */
     source code contains an out-of-bounds access to a small array.  */
  if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
  if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
    return gen_reg_rtx (tmode);
    return gen_reg_rtx (tmode);
 
 
  if (REG_P (op0)
  if (REG_P (op0)
      && mode == GET_MODE (op0)
      && mode == GET_MODE (op0)
      && bitnum == 0
      && bitnum == 0
      && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
      && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
    {
    {
      /* We're trying to extract a full register from itself.  */
      /* We're trying to extract a full register from itself.  */
      return op0;
      return op0;
    }
    }
 
 
  /* Use vec_extract patterns for extracting parts of vectors whenever
  /* Use vec_extract patterns for extracting parts of vectors whenever
     available.  */
     available.  */
  if (VECTOR_MODE_P (GET_MODE (op0))
  if (VECTOR_MODE_P (GET_MODE (op0))
      && !MEM_P (op0)
      && !MEM_P (op0)
      && (vec_extract_optab->handlers[GET_MODE (op0)].insn_code
      && (vec_extract_optab->handlers[GET_MODE (op0)].insn_code
          != CODE_FOR_nothing)
          != CODE_FOR_nothing)
      && ((bitnum + bitsize - 1) / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
      && ((bitnum + bitsize - 1) / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
          == bitnum / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
          == bitnum / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
    {
    {
      enum machine_mode outermode = GET_MODE (op0);
      enum machine_mode outermode = GET_MODE (op0);
      enum machine_mode innermode = GET_MODE_INNER (outermode);
      enum machine_mode innermode = GET_MODE_INNER (outermode);
      int icode = (int) vec_extract_optab->handlers[outermode].insn_code;
      int icode = (int) vec_extract_optab->handlers[outermode].insn_code;
      unsigned HOST_WIDE_INT pos = bitnum / GET_MODE_BITSIZE (innermode);
      unsigned HOST_WIDE_INT pos = bitnum / GET_MODE_BITSIZE (innermode);
      rtx rtxpos = GEN_INT (pos);
      rtx rtxpos = GEN_INT (pos);
      rtx src = op0;
      rtx src = op0;
      rtx dest = NULL, pat, seq;
      rtx dest = NULL, pat, seq;
      enum machine_mode mode0 = insn_data[icode].operand[0].mode;
      enum machine_mode mode0 = insn_data[icode].operand[0].mode;
      enum machine_mode mode1 = insn_data[icode].operand[1].mode;
      enum machine_mode mode1 = insn_data[icode].operand[1].mode;
      enum machine_mode mode2 = insn_data[icode].operand[2].mode;
      enum machine_mode mode2 = insn_data[icode].operand[2].mode;
 
 
      if (innermode == tmode || innermode == mode)
      if (innermode == tmode || innermode == mode)
        dest = target;
        dest = target;
 
 
      if (!dest)
      if (!dest)
        dest = gen_reg_rtx (innermode);
        dest = gen_reg_rtx (innermode);
 
 
      start_sequence ();
      start_sequence ();
 
 
      if (! (*insn_data[icode].operand[0].predicate) (dest, mode0))
      if (! (*insn_data[icode].operand[0].predicate) (dest, mode0))
        dest = copy_to_mode_reg (mode0, dest);
        dest = copy_to_mode_reg (mode0, dest);
 
 
      if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
      if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
        src = copy_to_mode_reg (mode1, src);
        src = copy_to_mode_reg (mode1, src);
 
 
      if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
      if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
        rtxpos = copy_to_mode_reg (mode1, rtxpos);
        rtxpos = copy_to_mode_reg (mode1, rtxpos);
 
 
      /* We could handle this, but we should always be called with a pseudo
      /* We could handle this, but we should always be called with a pseudo
         for our targets and all insns should take them as outputs.  */
         for our targets and all insns should take them as outputs.  */
      gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
      gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
                  && (*insn_data[icode].operand[1].predicate) (src, mode1)
                  && (*insn_data[icode].operand[1].predicate) (src, mode1)
                  && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
                  && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
 
 
      pat = GEN_FCN (icode) (dest, src, rtxpos);
      pat = GEN_FCN (icode) (dest, src, rtxpos);
      seq = get_insns ();
      seq = get_insns ();
      end_sequence ();
      end_sequence ();
      if (pat)
      if (pat)
        {
        {
          emit_insn (seq);
          emit_insn (seq);
          emit_insn (pat);
          emit_insn (pat);
          return dest;
          return dest;
        }
        }
    }
    }
 
 
  /* Make sure we are playing with integral modes.  Pun with subregs
  /* Make sure we are playing with integral modes.  Pun with subregs
     if we aren't.  */
     if we aren't.  */
  {
  {
    enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
    enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
    if (imode != GET_MODE (op0))
    if (imode != GET_MODE (op0))
      {
      {
        if (MEM_P (op0))
        if (MEM_P (op0))
          op0 = adjust_address (op0, imode, 0);
          op0 = adjust_address (op0, imode, 0);
        else
        else
          {
          {
            gcc_assert (imode != BLKmode);
            gcc_assert (imode != BLKmode);
            op0 = gen_lowpart (imode, op0);
            op0 = gen_lowpart (imode, op0);
 
 
            /* If we got a SUBREG, force it into a register since we
            /* If we got a SUBREG, force it into a register since we
               aren't going to be able to do another SUBREG on it.  */
               aren't going to be able to do another SUBREG on it.  */
            if (GET_CODE (op0) == SUBREG)
            if (GET_CODE (op0) == SUBREG)
              op0 = force_reg (imode, op0);
              op0 = force_reg (imode, op0);
          }
          }
      }
      }
  }
  }
 
 
  /* We may be accessing data outside the field, which means
  /* We may be accessing data outside the field, which means
     we can alias adjacent data.  */
     we can alias adjacent data.  */
  if (MEM_P (op0))
  if (MEM_P (op0))
    {
    {
      op0 = shallow_copy_rtx (op0);
      op0 = shallow_copy_rtx (op0);
      set_mem_alias_set (op0, 0);
      set_mem_alias_set (op0, 0);
      set_mem_expr (op0, 0);
      set_mem_expr (op0, 0);
    }
    }
 
 
  /* Extraction of a full-word or multi-word value from a structure
  /* Extraction of a full-word or multi-word value from a structure
     in a register or aligned memory can be done with just a SUBREG.
     in a register or aligned memory can be done with just a SUBREG.
     A subword value in the least significant part of a register
     A subword value in the least significant part of a register
     can also be extracted with a SUBREG.  For this, we need the
     can also be extracted with a SUBREG.  For this, we need the
     byte offset of the value in op0.  */
     byte offset of the value in op0.  */
 
 
  bitpos = bitnum % unit;
  bitpos = bitnum % unit;
  offset = bitnum / unit;
  offset = bitnum / unit;
  byte_offset = bitpos / BITS_PER_UNIT + offset * UNITS_PER_WORD;
  byte_offset = bitpos / BITS_PER_UNIT + offset * UNITS_PER_WORD;
 
 
  /* If OP0 is a register, BITPOS must count within a word.
  /* If OP0 is a register, BITPOS must count within a word.
     But as we have it, it counts within whatever size OP0 now has.
     But as we have it, it counts within whatever size OP0 now has.
     On a bigendian machine, these are not the same, so convert.  */
     On a bigendian machine, these are not the same, so convert.  */
  if (BYTES_BIG_ENDIAN
  if (BYTES_BIG_ENDIAN
      && !MEM_P (op0)
      && !MEM_P (op0)
      && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
      && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
    bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
    bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
 
 
  /* ??? We currently assume TARGET is at least as big as BITSIZE.
  /* ??? We currently assume TARGET is at least as big as BITSIZE.
     If that's wrong, the solution is to test for it and set TARGET to 0
     If that's wrong, the solution is to test for it and set TARGET to 0
     if needed.  */
     if needed.  */
 
 
  /* Only scalar integer modes can be converted via subregs.  There is an
  /* Only scalar integer modes can be converted via subregs.  There is an
     additional problem for FP modes here in that they can have a precision
     additional problem for FP modes here in that they can have a precision
     which is different from the size.  mode_for_size uses precision, but
     which is different from the size.  mode_for_size uses precision, but
     we want a mode based on the size, so we must avoid calling it for FP
     we want a mode based on the size, so we must avoid calling it for FP
     modes.  */
     modes.  */
  mode1  = (SCALAR_INT_MODE_P (tmode)
  mode1  = (SCALAR_INT_MODE_P (tmode)
            ? mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0)
            ? mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0)
            : mode);
            : mode);
 
 
  if (((bitsize >= BITS_PER_WORD && bitsize == GET_MODE_BITSIZE (mode)
  if (((bitsize >= BITS_PER_WORD && bitsize == GET_MODE_BITSIZE (mode)
        && bitpos % BITS_PER_WORD == 0)
        && bitpos % BITS_PER_WORD == 0)
       || (mode1 != BLKmode
       || (mode1 != BLKmode
           /* ??? The big endian test here is wrong.  This is correct
           /* ??? The big endian test here is wrong.  This is correct
              if the value is in a register, and if mode_for_size is not
              if the value is in a register, and if mode_for_size is not
              the same mode as op0.  This causes us to get unnecessarily
              the same mode as op0.  This causes us to get unnecessarily
              inefficient code from the Thumb port when -mbig-endian.  */
              inefficient code from the Thumb port when -mbig-endian.  */
           && (BYTES_BIG_ENDIAN
           && (BYTES_BIG_ENDIAN
               ? bitpos + bitsize == BITS_PER_WORD
               ? bitpos + bitsize == BITS_PER_WORD
               : bitpos == 0)))
               : bitpos == 0)))
      && ((!MEM_P (op0)
      && ((!MEM_P (op0)
           && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
           && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
                                     GET_MODE_BITSIZE (GET_MODE (op0)))
                                     GET_MODE_BITSIZE (GET_MODE (op0)))
           && GET_MODE_SIZE (mode1) != 0
           && GET_MODE_SIZE (mode1) != 0
           && byte_offset % GET_MODE_SIZE (mode1) == 0)
           && byte_offset % GET_MODE_SIZE (mode1) == 0)
          || (MEM_P (op0)
          || (MEM_P (op0)
              && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (op0))
              && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (op0))
                  || (offset * BITS_PER_UNIT % bitsize == 0
                  || (offset * BITS_PER_UNIT % bitsize == 0
                      && MEM_ALIGN (op0) % bitsize == 0)))))
                      && MEM_ALIGN (op0) % bitsize == 0)))))
    {
    {
      if (mode1 != GET_MODE (op0))
      if (mode1 != GET_MODE (op0))
        {
        {
          if (MEM_P (op0))
          if (MEM_P (op0))
            op0 = adjust_address (op0, mode1, offset);
            op0 = adjust_address (op0, mode1, offset);
          else
          else
            {
            {
              rtx sub = simplify_gen_subreg (mode1, op0, GET_MODE (op0),
              rtx sub = simplify_gen_subreg (mode1, op0, GET_MODE (op0),
                                             byte_offset);
                                             byte_offset);
              if (sub == NULL)
              if (sub == NULL)
                goto no_subreg_mode_swap;
                goto no_subreg_mode_swap;
              op0 = sub;
              op0 = sub;
            }
            }
        }
        }
      if (mode1 != mode)
      if (mode1 != mode)
        return convert_to_mode (tmode, op0, unsignedp);
        return convert_to_mode (tmode, op0, unsignedp);
      return op0;
      return op0;
    }
    }
 no_subreg_mode_swap:
 no_subreg_mode_swap:
 
 
  /* Handle fields bigger than a word.  */
  /* Handle fields bigger than a word.  */
 
 
  if (bitsize > BITS_PER_WORD)
  if (bitsize > BITS_PER_WORD)
    {
    {
      /* Here we transfer the words of the field
      /* Here we transfer the words of the field
         in the order least significant first.
         in the order least significant first.
         This is because the most significant word is the one which may
         This is because the most significant word is the one which may
         be less than full.  */
         be less than full.  */
 
 
      unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
      unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
      unsigned int i;
      unsigned int i;
 
 
      if (target == 0 || !REG_P (target))
      if (target == 0 || !REG_P (target))
        target = gen_reg_rtx (mode);
        target = gen_reg_rtx (mode);
 
 
      /* Indicate for flow that the entire target reg is being set.  */
      /* Indicate for flow that the entire target reg is being set.  */
      emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
      emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
 
 
      for (i = 0; i < nwords; i++)
      for (i = 0; i < nwords; i++)
        {
        {
          /* If I is 0, use the low-order word in both field and target;
          /* If I is 0, use the low-order word in both field and target;
             if I is 1, use the next to lowest word; and so on.  */
             if I is 1, use the next to lowest word; and so on.  */
          /* Word number in TARGET to use.  */
          /* Word number in TARGET to use.  */
          unsigned int wordnum
          unsigned int wordnum
            = (WORDS_BIG_ENDIAN
            = (WORDS_BIG_ENDIAN
               ? GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD - i - 1
               ? GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD - i - 1
               : i);
               : i);
          /* Offset from start of field in OP0.  */
          /* Offset from start of field in OP0.  */
          unsigned int bit_offset = (WORDS_BIG_ENDIAN
          unsigned int bit_offset = (WORDS_BIG_ENDIAN
                                     ? MAX (0, ((int) bitsize - ((int) i + 1)
                                     ? MAX (0, ((int) bitsize - ((int) i + 1)
                                                * (int) BITS_PER_WORD))
                                                * (int) BITS_PER_WORD))
                                     : (int) i * BITS_PER_WORD);
                                     : (int) i * BITS_PER_WORD);
          rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
          rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
          rtx result_part
          rtx result_part
            = extract_bit_field (op0, MIN (BITS_PER_WORD,
            = extract_bit_field (op0, MIN (BITS_PER_WORD,
                                           bitsize - i * BITS_PER_WORD),
                                           bitsize - i * BITS_PER_WORD),
                                 bitnum + bit_offset, 1, target_part, mode,
                                 bitnum + bit_offset, 1, target_part, mode,
                                 word_mode);
                                 word_mode);
 
 
          gcc_assert (target_part);
          gcc_assert (target_part);
 
 
          if (result_part != target_part)
          if (result_part != target_part)
            emit_move_insn (target_part, result_part);
            emit_move_insn (target_part, result_part);
        }
        }
 
 
      if (unsignedp)
      if (unsignedp)
        {
        {
          /* Unless we've filled TARGET, the upper regs in a multi-reg value
          /* Unless we've filled TARGET, the upper regs in a multi-reg value
             need to be zero'd out.  */
             need to be zero'd out.  */
          if (GET_MODE_SIZE (GET_MODE (target)) > nwords * UNITS_PER_WORD)
          if (GET_MODE_SIZE (GET_MODE (target)) > nwords * UNITS_PER_WORD)
            {
            {
              unsigned int i, total_words;
              unsigned int i, total_words;
 
 
              total_words = GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD;
              total_words = GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD;
              for (i = nwords; i < total_words; i++)
              for (i = nwords; i < total_words; i++)
                emit_move_insn
                emit_move_insn
                  (operand_subword (target,
                  (operand_subword (target,
                                    WORDS_BIG_ENDIAN ? total_words - i - 1 : i,
                                    WORDS_BIG_ENDIAN ? total_words - i - 1 : i,
                                    1, VOIDmode),
                                    1, VOIDmode),
                   const0_rtx);
                   const0_rtx);
            }
            }
          return target;
          return target;
        }
        }
 
 
      /* Signed bit field: sign-extend with two arithmetic shifts.  */
      /* Signed bit field: sign-extend with two arithmetic shifts.  */
      target = expand_shift (LSHIFT_EXPR, mode, target,
      target = expand_shift (LSHIFT_EXPR, mode, target,
                             build_int_cst (NULL_TREE,
                             build_int_cst (NULL_TREE,
                                            GET_MODE_BITSIZE (mode) - bitsize),
                                            GET_MODE_BITSIZE (mode) - bitsize),
                             NULL_RTX, 0);
                             NULL_RTX, 0);
      return expand_shift (RSHIFT_EXPR, mode, target,
      return expand_shift (RSHIFT_EXPR, mode, target,
                           build_int_cst (NULL_TREE,
                           build_int_cst (NULL_TREE,
                                          GET_MODE_BITSIZE (mode) - bitsize),
                                          GET_MODE_BITSIZE (mode) - bitsize),
                           NULL_RTX, 0);
                           NULL_RTX, 0);
    }
    }
 
 
  /* From here on we know the desired field is smaller than a word.  */
  /* From here on we know the desired field is smaller than a word.  */
 
 
  /* Check if there is a correspondingly-sized integer field, so we can
  /* Check if there is a correspondingly-sized integer field, so we can
     safely extract it as one size of integer, if necessary; then
     safely extract it as one size of integer, if necessary; then
     truncate or extend to the size that is wanted; then use SUBREGs or
     truncate or extend to the size that is wanted; then use SUBREGs or
     convert_to_mode to get one of the modes we really wanted.  */
     convert_to_mode to get one of the modes we really wanted.  */
 
 
  int_mode = int_mode_for_mode (tmode);
  int_mode = int_mode_for_mode (tmode);
  if (int_mode == BLKmode)
  if (int_mode == BLKmode)
    int_mode = int_mode_for_mode (mode);
    int_mode = int_mode_for_mode (mode);
  /* Should probably push op0 out to memory and then do a load.  */
  /* Should probably push op0 out to memory and then do a load.  */
  gcc_assert (int_mode != BLKmode);
  gcc_assert (int_mode != BLKmode);
 
 
  /* OFFSET is the number of words or bytes (UNIT says which)
  /* OFFSET is the number of words or bytes (UNIT says which)
     from STR_RTX to the first word or byte containing part of the field.  */
     from STR_RTX to the first word or byte containing part of the field.  */
  if (!MEM_P (op0))
  if (!MEM_P (op0))
    {
    {
      if (offset != 0
      if (offset != 0
          || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
          || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
        {
        {
          if (!REG_P (op0))
          if (!REG_P (op0))
            op0 = copy_to_reg (op0);
            op0 = copy_to_reg (op0);
          op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
          op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
                                op0, (offset * UNITS_PER_WORD));
                                op0, (offset * UNITS_PER_WORD));
        }
        }
      offset = 0;
      offset = 0;
    }
    }
 
 
  /* Now OFFSET is nonzero only for memory operands.  */
  /* Now OFFSET is nonzero only for memory operands.  */
 
 
  if (unsignedp)
  if (unsignedp)
    {
    {
      if (HAVE_extzv
      if (HAVE_extzv
          && bitsize > 0
          && bitsize > 0
          && GET_MODE_BITSIZE (extzv_mode) >= bitsize
          && GET_MODE_BITSIZE (extzv_mode) >= bitsize
          && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
          && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
                && (bitsize + bitpos > GET_MODE_BITSIZE (extzv_mode))))
                && (bitsize + bitpos > GET_MODE_BITSIZE (extzv_mode))))
        {
        {
          unsigned HOST_WIDE_INT xbitpos = bitpos, xoffset = offset;
          unsigned HOST_WIDE_INT xbitpos = bitpos, xoffset = offset;
          rtx bitsize_rtx, bitpos_rtx;
          rtx bitsize_rtx, bitpos_rtx;
          rtx last = get_last_insn ();
          rtx last = get_last_insn ();
          rtx xop0 = op0;
          rtx xop0 = op0;
          rtx xtarget = target;
          rtx xtarget = target;
          rtx xspec_target = spec_target;
          rtx xspec_target = spec_target;
          rtx xspec_target_subreg = spec_target_subreg;
          rtx xspec_target_subreg = spec_target_subreg;
          rtx pat;
          rtx pat;
          enum machine_mode maxmode = mode_for_extraction (EP_extzv, 0);
          enum machine_mode maxmode = mode_for_extraction (EP_extzv, 0);
 
 
          if (MEM_P (xop0))
          if (MEM_P (xop0))
            {
            {
              int save_volatile_ok = volatile_ok;
              int save_volatile_ok = volatile_ok;
              volatile_ok = 1;
              volatile_ok = 1;
 
 
              /* Is the memory operand acceptable?  */
              /* Is the memory operand acceptable?  */
              if (! ((*insn_data[(int) CODE_FOR_extzv].operand[1].predicate)
              if (! ((*insn_data[(int) CODE_FOR_extzv].operand[1].predicate)
                     (xop0, GET_MODE (xop0))))
                     (xop0, GET_MODE (xop0))))
                {
                {
                  /* No, load into a reg and extract from there.  */
                  /* No, load into a reg and extract from there.  */
                  enum machine_mode bestmode;
                  enum machine_mode bestmode;
 
 
                  /* Get the mode to use for inserting into this field.  If
                  /* Get the mode to use for inserting into this field.  If
                     OP0 is BLKmode, get the smallest mode consistent with the
                     OP0 is BLKmode, get the smallest mode consistent with the
                     alignment. If OP0 is a non-BLKmode object that is no
                     alignment. If OP0 is a non-BLKmode object that is no
                     wider than MAXMODE, use its mode. Otherwise, use the
                     wider than MAXMODE, use its mode. Otherwise, use the
                     smallest mode containing the field.  */
                     smallest mode containing the field.  */
 
 
                  if (GET_MODE (xop0) == BLKmode
                  if (GET_MODE (xop0) == BLKmode
                      || (GET_MODE_SIZE (GET_MODE (op0))
                      || (GET_MODE_SIZE (GET_MODE (op0))
                          > GET_MODE_SIZE (maxmode)))
                          > GET_MODE_SIZE (maxmode)))
                    bestmode = get_best_mode (bitsize, bitnum,
                    bestmode = get_best_mode (bitsize, bitnum,
                                              MEM_ALIGN (xop0), maxmode,
                                              MEM_ALIGN (xop0), maxmode,
                                              MEM_VOLATILE_P (xop0));
                                              MEM_VOLATILE_P (xop0));
                  else
                  else
                    bestmode = GET_MODE (xop0);
                    bestmode = GET_MODE (xop0);
 
 
                  if (bestmode == VOIDmode
                  if (bestmode == VOIDmode
                      || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (xop0))
                      || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (xop0))
                          && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (xop0)))
                          && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (xop0)))
                    goto extzv_loses;
                    goto extzv_loses;
 
 
                  /* Compute offset as multiple of this unit,
                  /* Compute offset as multiple of this unit,
                     counting in bytes.  */
                     counting in bytes.  */
                  unit = GET_MODE_BITSIZE (bestmode);
                  unit = GET_MODE_BITSIZE (bestmode);
                  xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
                  xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
                  xbitpos = bitnum % unit;
                  xbitpos = bitnum % unit;
                  xop0 = adjust_address (xop0, bestmode, xoffset);
                  xop0 = adjust_address (xop0, bestmode, xoffset);
 
 
                  /* Make sure register is big enough for the whole field. */
                  /* Make sure register is big enough for the whole field. */
                  if (xoffset * BITS_PER_UNIT + unit
                  if (xoffset * BITS_PER_UNIT + unit
                      < offset * BITS_PER_UNIT + bitsize)
                      < offset * BITS_PER_UNIT + bitsize)
                    goto extzv_loses;
                    goto extzv_loses;
 
 
                  /* Fetch it to a register in that size.  */
                  /* Fetch it to a register in that size.  */
                  xop0 = force_reg (bestmode, xop0);
                  xop0 = force_reg (bestmode, xop0);
 
 
                  /* XBITPOS counts within UNIT, which is what is expected.  */
                  /* XBITPOS counts within UNIT, which is what is expected.  */
                }
                }
              else
              else
                /* Get ref to first byte containing part of the field.  */
                /* Get ref to first byte containing part of the field.  */
                xop0 = adjust_address (xop0, byte_mode, xoffset);
                xop0 = adjust_address (xop0, byte_mode, xoffset);
 
 
              volatile_ok = save_volatile_ok;
              volatile_ok = save_volatile_ok;
            }
            }
 
 
          /* If op0 is a register, we need it in MAXMODE (which is usually
          /* If op0 is a register, we need it in MAXMODE (which is usually
             SImode). to make it acceptable to the format of extzv.  */
             SImode). to make it acceptable to the format of extzv.  */
          if (GET_CODE (xop0) == SUBREG && GET_MODE (xop0) != maxmode)
          if (GET_CODE (xop0) == SUBREG && GET_MODE (xop0) != maxmode)
            goto extzv_loses;
            goto extzv_loses;
          if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
          if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
            xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
            xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
 
 
          /* On big-endian machines, we count bits from the most significant.
          /* On big-endian machines, we count bits from the most significant.
             If the bit field insn does not, we must invert.  */
             If the bit field insn does not, we must invert.  */
          if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
          if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
            xbitpos = unit - bitsize - xbitpos;
            xbitpos = unit - bitsize - xbitpos;
 
 
          /* Now convert from counting within UNIT to counting in MAXMODE.  */
          /* Now convert from counting within UNIT to counting in MAXMODE.  */
          if (BITS_BIG_ENDIAN && !MEM_P (xop0))
          if (BITS_BIG_ENDIAN && !MEM_P (xop0))
            xbitpos += GET_MODE_BITSIZE (maxmode) - unit;
            xbitpos += GET_MODE_BITSIZE (maxmode) - unit;
 
 
          unit = GET_MODE_BITSIZE (maxmode);
          unit = GET_MODE_BITSIZE (maxmode);
 
 
          if (xtarget == 0)
          if (xtarget == 0)
            xtarget = xspec_target = gen_reg_rtx (tmode);
            xtarget = xspec_target = gen_reg_rtx (tmode);
 
 
          if (GET_MODE (xtarget) != maxmode)
          if (GET_MODE (xtarget) != maxmode)
            {
            {
              if (REG_P (xtarget))
              if (REG_P (xtarget))
                {
                {
                  int wider = (GET_MODE_SIZE (maxmode)
                  int wider = (GET_MODE_SIZE (maxmode)
                               > GET_MODE_SIZE (GET_MODE (xtarget)));
                               > GET_MODE_SIZE (GET_MODE (xtarget)));
                  xtarget = gen_lowpart (maxmode, xtarget);
                  xtarget = gen_lowpart (maxmode, xtarget);
                  if (wider)
                  if (wider)
                    xspec_target_subreg = xtarget;
                    xspec_target_subreg = xtarget;
                }
                }
              else
              else
                xtarget = gen_reg_rtx (maxmode);
                xtarget = gen_reg_rtx (maxmode);
            }
            }
 
 
          /* If this machine's extzv insists on a register target,
          /* If this machine's extzv insists on a register target,
             make sure we have one.  */
             make sure we have one.  */
          if (! ((*insn_data[(int) CODE_FOR_extzv].operand[0].predicate)
          if (! ((*insn_data[(int) CODE_FOR_extzv].operand[0].predicate)
                 (xtarget, maxmode)))
                 (xtarget, maxmode)))
            xtarget = gen_reg_rtx (maxmode);
            xtarget = gen_reg_rtx (maxmode);
 
 
          bitsize_rtx = GEN_INT (bitsize);
          bitsize_rtx = GEN_INT (bitsize);
          bitpos_rtx = GEN_INT (xbitpos);
          bitpos_rtx = GEN_INT (xbitpos);
 
 
          pat = gen_extzv (xtarget, xop0, bitsize_rtx, bitpos_rtx);
          pat = gen_extzv (xtarget, xop0, bitsize_rtx, bitpos_rtx);
          if (pat)
          if (pat)
            {
            {
              emit_insn (pat);
              emit_insn (pat);
              target = xtarget;
              target = xtarget;
              spec_target = xspec_target;
              spec_target = xspec_target;
              spec_target_subreg = xspec_target_subreg;
              spec_target_subreg = xspec_target_subreg;
            }
            }
          else
          else
            {
            {
              delete_insns_since (last);
              delete_insns_since (last);
              target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
              target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
                                                bitpos, target, 1);
                                                bitpos, target, 1);
            }
            }
        }
        }
      else
      else
      extzv_loses:
      extzv_loses:
        target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
        target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
                                          bitpos, target, 1);
                                          bitpos, target, 1);
    }
    }
  else
  else
    {
    {
      if (HAVE_extv
      if (HAVE_extv
          && bitsize > 0
          && bitsize > 0
          && GET_MODE_BITSIZE (extv_mode) >= bitsize
          && GET_MODE_BITSIZE (extv_mode) >= bitsize
          && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
          && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
                && (bitsize + bitpos > GET_MODE_BITSIZE (extv_mode))))
                && (bitsize + bitpos > GET_MODE_BITSIZE (extv_mode))))
        {
        {
          int xbitpos = bitpos, xoffset = offset;
          int xbitpos = bitpos, xoffset = offset;
          rtx bitsize_rtx, bitpos_rtx;
          rtx bitsize_rtx, bitpos_rtx;
          rtx last = get_last_insn ();
          rtx last = get_last_insn ();
          rtx xop0 = op0, xtarget = target;
          rtx xop0 = op0, xtarget = target;
          rtx xspec_target = spec_target;
          rtx xspec_target = spec_target;
          rtx xspec_target_subreg = spec_target_subreg;
          rtx xspec_target_subreg = spec_target_subreg;
          rtx pat;
          rtx pat;
          enum machine_mode maxmode = mode_for_extraction (EP_extv, 0);
          enum machine_mode maxmode = mode_for_extraction (EP_extv, 0);
 
 
          if (MEM_P (xop0))
          if (MEM_P (xop0))
            {
            {
              /* Is the memory operand acceptable?  */
              /* Is the memory operand acceptable?  */
              if (! ((*insn_data[(int) CODE_FOR_extv].operand[1].predicate)
              if (! ((*insn_data[(int) CODE_FOR_extv].operand[1].predicate)
                     (xop0, GET_MODE (xop0))))
                     (xop0, GET_MODE (xop0))))
                {
                {
                  /* No, load into a reg and extract from there.  */
                  /* No, load into a reg and extract from there.  */
                  enum machine_mode bestmode;
                  enum machine_mode bestmode;
 
 
                  /* Get the mode to use for inserting into this field.  If
                  /* Get the mode to use for inserting into this field.  If
                     OP0 is BLKmode, get the smallest mode consistent with the
                     OP0 is BLKmode, get the smallest mode consistent with the
                     alignment. If OP0 is a non-BLKmode object that is no
                     alignment. If OP0 is a non-BLKmode object that is no
                     wider than MAXMODE, use its mode. Otherwise, use the
                     wider than MAXMODE, use its mode. Otherwise, use the
                     smallest mode containing the field.  */
                     smallest mode containing the field.  */
 
 
                  if (GET_MODE (xop0) == BLKmode
                  if (GET_MODE (xop0) == BLKmode
                      || (GET_MODE_SIZE (GET_MODE (op0))
                      || (GET_MODE_SIZE (GET_MODE (op0))
                          > GET_MODE_SIZE (maxmode)))
                          > GET_MODE_SIZE (maxmode)))
                    bestmode = get_best_mode (bitsize, bitnum,
                    bestmode = get_best_mode (bitsize, bitnum,
                                              MEM_ALIGN (xop0), maxmode,
                                              MEM_ALIGN (xop0), maxmode,
                                              MEM_VOLATILE_P (xop0));
                                              MEM_VOLATILE_P (xop0));
                  else
                  else
                    bestmode = GET_MODE (xop0);
                    bestmode = GET_MODE (xop0);
 
 
                  if (bestmode == VOIDmode
                  if (bestmode == VOIDmode
                      || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (xop0))
                      || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (xop0))
                          && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (xop0)))
                          && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (xop0)))
                    goto extv_loses;
                    goto extv_loses;
 
 
                  /* Compute offset as multiple of this unit,
                  /* Compute offset as multiple of this unit,
                     counting in bytes.  */
                     counting in bytes.  */
                  unit = GET_MODE_BITSIZE (bestmode);
                  unit = GET_MODE_BITSIZE (bestmode);
                  xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
                  xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
                  xbitpos = bitnum % unit;
                  xbitpos = bitnum % unit;
                  xop0 = adjust_address (xop0, bestmode, xoffset);
                  xop0 = adjust_address (xop0, bestmode, xoffset);
 
 
                  /* Make sure register is big enough for the whole field. */
                  /* Make sure register is big enough for the whole field. */
                  if (xoffset * BITS_PER_UNIT + unit
                  if (xoffset * BITS_PER_UNIT + unit
                      < offset * BITS_PER_UNIT + bitsize)
                      < offset * BITS_PER_UNIT + bitsize)
                    goto extv_loses;
                    goto extv_loses;
 
 
                  /* Fetch it to a register in that size.  */
                  /* Fetch it to a register in that size.  */
                  xop0 = force_reg (bestmode, xop0);
                  xop0 = force_reg (bestmode, xop0);
 
 
                  /* XBITPOS counts within UNIT, which is what is expected.  */
                  /* XBITPOS counts within UNIT, which is what is expected.  */
                }
                }
              else
              else
                /* Get ref to first byte containing part of the field.  */
                /* Get ref to first byte containing part of the field.  */
                xop0 = adjust_address (xop0, byte_mode, xoffset);
                xop0 = adjust_address (xop0, byte_mode, xoffset);
            }
            }
 
 
          /* If op0 is a register, we need it in MAXMODE (which is usually
          /* If op0 is a register, we need it in MAXMODE (which is usually
             SImode) to make it acceptable to the format of extv.  */
             SImode) to make it acceptable to the format of extv.  */
          if (GET_CODE (xop0) == SUBREG && GET_MODE (xop0) != maxmode)
          if (GET_CODE (xop0) == SUBREG && GET_MODE (xop0) != maxmode)
            goto extv_loses;
            goto extv_loses;
          if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
          if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
            xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
            xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
 
 
          /* On big-endian machines, we count bits from the most significant.
          /* On big-endian machines, we count bits from the most significant.
             If the bit field insn does not, we must invert.  */
             If the bit field insn does not, we must invert.  */
          if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
          if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
            xbitpos = unit - bitsize - xbitpos;
            xbitpos = unit - bitsize - xbitpos;
 
 
          /* XBITPOS counts within a size of UNIT.
          /* XBITPOS counts within a size of UNIT.
             Adjust to count within a size of MAXMODE.  */
             Adjust to count within a size of MAXMODE.  */
          if (BITS_BIG_ENDIAN && !MEM_P (xop0))
          if (BITS_BIG_ENDIAN && !MEM_P (xop0))
            xbitpos += (GET_MODE_BITSIZE (maxmode) - unit);
            xbitpos += (GET_MODE_BITSIZE (maxmode) - unit);
 
 
          unit = GET_MODE_BITSIZE (maxmode);
          unit = GET_MODE_BITSIZE (maxmode);
 
 
          if (xtarget == 0)
          if (xtarget == 0)
            xtarget = xspec_target = gen_reg_rtx (tmode);
            xtarget = xspec_target = gen_reg_rtx (tmode);
 
 
          if (GET_MODE (xtarget) != maxmode)
          if (GET_MODE (xtarget) != maxmode)
            {
            {
              if (REG_P (xtarget))
              if (REG_P (xtarget))
                {
                {
                  int wider = (GET_MODE_SIZE (maxmode)
                  int wider = (GET_MODE_SIZE (maxmode)
                               > GET_MODE_SIZE (GET_MODE (xtarget)));
                               > GET_MODE_SIZE (GET_MODE (xtarget)));
                  xtarget = gen_lowpart (maxmode, xtarget);
                  xtarget = gen_lowpart (maxmode, xtarget);
                  if (wider)
                  if (wider)
                    xspec_target_subreg = xtarget;
                    xspec_target_subreg = xtarget;
                }
                }
              else
              else
                xtarget = gen_reg_rtx (maxmode);
                xtarget = gen_reg_rtx (maxmode);
            }
            }
 
 
          /* If this machine's extv insists on a register target,
          /* If this machine's extv insists on a register target,
             make sure we have one.  */
             make sure we have one.  */
          if (! ((*insn_data[(int) CODE_FOR_extv].operand[0].predicate)
          if (! ((*insn_data[(int) CODE_FOR_extv].operand[0].predicate)
                 (xtarget, maxmode)))
                 (xtarget, maxmode)))
            xtarget = gen_reg_rtx (maxmode);
            xtarget = gen_reg_rtx (maxmode);
 
 
          bitsize_rtx = GEN_INT (bitsize);
          bitsize_rtx = GEN_INT (bitsize);
          bitpos_rtx = GEN_INT (xbitpos);
          bitpos_rtx = GEN_INT (xbitpos);
 
 
          pat = gen_extv (xtarget, xop0, bitsize_rtx, bitpos_rtx);
          pat = gen_extv (xtarget, xop0, bitsize_rtx, bitpos_rtx);
          if (pat)
          if (pat)
            {
            {
              emit_insn (pat);
              emit_insn (pat);
              target = xtarget;
              target = xtarget;
              spec_target = xspec_target;
              spec_target = xspec_target;
              spec_target_subreg = xspec_target_subreg;
              spec_target_subreg = xspec_target_subreg;
            }
            }
          else
          else
            {
            {
              delete_insns_since (last);
              delete_insns_since (last);
              target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
              target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
                                                bitpos, target, 0);
                                                bitpos, target, 0);
            }
            }
        }
        }
      else
      else
      extv_loses:
      extv_loses:
        target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
        target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
                                          bitpos, target, 0);
                                          bitpos, target, 0);
    }
    }
  if (target == spec_target)
  if (target == spec_target)
    return target;
    return target;
  if (target == spec_target_subreg)
  if (target == spec_target_subreg)
    return spec_target;
    return spec_target;
  if (GET_MODE (target) != tmode && GET_MODE (target) != mode)
  if (GET_MODE (target) != tmode && GET_MODE (target) != mode)
    {
    {
      /* If the target mode is not a scalar integral, first convert to the
      /* If the target mode is not a scalar integral, first convert to the
         integer mode of that size and then access it as a floating-point
         integer mode of that size and then access it as a floating-point
         value via a SUBREG.  */
         value via a SUBREG.  */
      if (!SCALAR_INT_MODE_P (tmode))
      if (!SCALAR_INT_MODE_P (tmode))
        {
        {
          enum machine_mode smode
          enum machine_mode smode
            = mode_for_size (GET_MODE_BITSIZE (tmode), MODE_INT, 0);
            = mode_for_size (GET_MODE_BITSIZE (tmode), MODE_INT, 0);
          target = convert_to_mode (smode, target, unsignedp);
          target = convert_to_mode (smode, target, unsignedp);
          target = force_reg (smode, target);
          target = force_reg (smode, target);
          return gen_lowpart (tmode, target);
          return gen_lowpart (tmode, target);
        }
        }
 
 
      return convert_to_mode (tmode, target, unsignedp);
      return convert_to_mode (tmode, target, unsignedp);
    }
    }
  return target;
  return target;
}
}


/* Extract a bit field using shifts and boolean operations
/* Extract a bit field using shifts and boolean operations
   Returns an rtx to represent the value.
   Returns an rtx to represent the value.
   OP0 addresses a register (word) or memory (byte).
   OP0 addresses a register (word) or memory (byte).
   BITPOS says which bit within the word or byte the bit field starts in.
   BITPOS says which bit within the word or byte the bit field starts in.
   OFFSET says how many bytes farther the bit field starts;
   OFFSET says how many bytes farther the bit field starts;
    it is 0 if OP0 is a register.
    it is 0 if OP0 is a register.
   BITSIZE says how many bits long the bit field is.
   BITSIZE says how many bits long the bit field is.
    (If OP0 is a register, it may be narrower than a full word,
    (If OP0 is a register, it may be narrower than a full word,
     but BITPOS still counts within a full word,
     but BITPOS still counts within a full word,
     which is significant on bigendian machines.)
     which is significant on bigendian machines.)
 
 
   UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
   UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
   If TARGET is nonzero, attempts to store the value there
   If TARGET is nonzero, attempts to store the value there
   and return TARGET, but this is not guaranteed.
   and return TARGET, but this is not guaranteed.
   If TARGET is not used, create a pseudo-reg of mode TMODE for the value.  */
   If TARGET is not used, create a pseudo-reg of mode TMODE for the value.  */
 
 
static rtx
static rtx
extract_fixed_bit_field (enum machine_mode tmode, rtx op0,
extract_fixed_bit_field (enum machine_mode tmode, rtx op0,
                         unsigned HOST_WIDE_INT offset,
                         unsigned HOST_WIDE_INT offset,
                         unsigned HOST_WIDE_INT bitsize,
                         unsigned HOST_WIDE_INT bitsize,
                         unsigned HOST_WIDE_INT bitpos, rtx target,
                         unsigned HOST_WIDE_INT bitpos, rtx target,
                         int unsignedp)
                         int unsignedp)
{
{
  unsigned int total_bits = BITS_PER_WORD;
  unsigned int total_bits = BITS_PER_WORD;
  enum machine_mode mode;
  enum machine_mode mode;
 
 
  if (GET_CODE (op0) == SUBREG || REG_P (op0))
  if (GET_CODE (op0) == SUBREG || REG_P (op0))
    {
    {
      /* Special treatment for a bit field split across two registers.  */
      /* Special treatment for a bit field split across two registers.  */
      if (bitsize + bitpos > BITS_PER_WORD)
      if (bitsize + bitpos > BITS_PER_WORD)
        return extract_split_bit_field (op0, bitsize, bitpos, unsignedp);
        return extract_split_bit_field (op0, bitsize, bitpos, unsignedp);
    }
    }
  else
  else
    {
    {
      /* Get the proper mode to use for this field.  We want a mode that
      /* Get the proper mode to use for this field.  We want a mode that
         includes the entire field.  If such a mode would be larger than
         includes the entire field.  If such a mode would be larger than
         a word, we won't be doing the extraction the normal way.  */
         a word, we won't be doing the extraction the normal way.  */
 
 
      mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
      mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
                            MEM_ALIGN (op0), word_mode, MEM_VOLATILE_P (op0));
                            MEM_ALIGN (op0), word_mode, MEM_VOLATILE_P (op0));
 
 
      if (mode == VOIDmode)
      if (mode == VOIDmode)
        /* The only way this should occur is if the field spans word
        /* The only way this should occur is if the field spans word
           boundaries.  */
           boundaries.  */
        return extract_split_bit_field (op0, bitsize,
        return extract_split_bit_field (op0, bitsize,
                                        bitpos + offset * BITS_PER_UNIT,
                                        bitpos + offset * BITS_PER_UNIT,
                                        unsignedp);
                                        unsignedp);
 
 
      total_bits = GET_MODE_BITSIZE (mode);
      total_bits = GET_MODE_BITSIZE (mode);
 
 
      /* Make sure bitpos is valid for the chosen mode.  Adjust BITPOS to
      /* Make sure bitpos is valid for the chosen mode.  Adjust BITPOS to
         be in the range 0 to total_bits-1, and put any excess bytes in
         be in the range 0 to total_bits-1, and put any excess bytes in
         OFFSET.  */
         OFFSET.  */
      if (bitpos >= total_bits)
      if (bitpos >= total_bits)
        {
        {
          offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
          offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
          bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
          bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
                     * BITS_PER_UNIT);
                     * BITS_PER_UNIT);
        }
        }
 
 
      /* Get ref to an aligned byte, halfword, or word containing the field.
      /* Get ref to an aligned byte, halfword, or word containing the field.
         Adjust BITPOS to be position within a word,
         Adjust BITPOS to be position within a word,
         and OFFSET to be the offset of that word.
         and OFFSET to be the offset of that word.
         Then alter OP0 to refer to that word.  */
         Then alter OP0 to refer to that word.  */
      bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
      bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
      offset -= (offset % (total_bits / BITS_PER_UNIT));
      offset -= (offset % (total_bits / BITS_PER_UNIT));
      op0 = adjust_address (op0, mode, offset);
      op0 = adjust_address (op0, mode, offset);
    }
    }
 
 
  mode = GET_MODE (op0);
  mode = GET_MODE (op0);
 
 
  if (BYTES_BIG_ENDIAN)
  if (BYTES_BIG_ENDIAN)
    /* BITPOS is the distance between our msb and that of OP0.
    /* BITPOS is the distance between our msb and that of OP0.
       Convert it to the distance from the lsb.  */
       Convert it to the distance from the lsb.  */
    bitpos = total_bits - bitsize - bitpos;
    bitpos = total_bits - bitsize - bitpos;
 
 
  /* Now BITPOS is always the distance between the field's lsb and that of OP0.
  /* Now BITPOS is always the distance between the field's lsb and that of OP0.
     We have reduced the big-endian case to the little-endian case.  */
     We have reduced the big-endian case to the little-endian case.  */
 
 
  if (unsignedp)
  if (unsignedp)
    {
    {
      if (bitpos)
      if (bitpos)
        {
        {
          /* If the field does not already start at the lsb,
          /* If the field does not already start at the lsb,
             shift it so it does.  */
             shift it so it does.  */
          tree amount = build_int_cst (NULL_TREE, bitpos);
          tree amount = build_int_cst (NULL_TREE, bitpos);
          /* Maybe propagate the target for the shift.  */
          /* Maybe propagate the target for the shift.  */
          /* But not if we will return it--could confuse integrate.c.  */
          /* But not if we will return it--could confuse integrate.c.  */
          rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
          rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
          if (tmode != mode) subtarget = 0;
          if (tmode != mode) subtarget = 0;
          op0 = expand_shift (RSHIFT_EXPR, mode, op0, amount, subtarget, 1);
          op0 = expand_shift (RSHIFT_EXPR, mode, op0, amount, subtarget, 1);
        }
        }
      /* Convert the value to the desired mode.  */
      /* Convert the value to the desired mode.  */
      if (mode != tmode)
      if (mode != tmode)
        op0 = convert_to_mode (tmode, op0, 1);
        op0 = convert_to_mode (tmode, op0, 1);
 
 
      /* Unless the msb of the field used to be the msb when we shifted,
      /* Unless the msb of the field used to be the msb when we shifted,
         mask out the upper bits.  */
         mask out the upper bits.  */
 
 
      if (GET_MODE_BITSIZE (mode) != bitpos + bitsize)
      if (GET_MODE_BITSIZE (mode) != bitpos + bitsize)
        return expand_binop (GET_MODE (op0), and_optab, op0,
        return expand_binop (GET_MODE (op0), and_optab, op0,
                             mask_rtx (GET_MODE (op0), 0, bitsize, 0),
                             mask_rtx (GET_MODE (op0), 0, bitsize, 0),
                             target, 1, OPTAB_LIB_WIDEN);
                             target, 1, OPTAB_LIB_WIDEN);
      return op0;
      return op0;
    }
    }
 
 
  /* To extract a signed bit-field, first shift its msb to the msb of the word,
  /* To extract a signed bit-field, first shift its msb to the msb of the word,
     then arithmetic-shift its lsb to the lsb of the word.  */
     then arithmetic-shift its lsb to the lsb of the word.  */
  op0 = force_reg (mode, op0);
  op0 = force_reg (mode, op0);
  if (mode != tmode)
  if (mode != tmode)
    target = 0;
    target = 0;
 
 
  /* Find the narrowest integer mode that contains the field.  */
  /* Find the narrowest integer mode that contains the field.  */
 
 
  for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
  for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
       mode = GET_MODE_WIDER_MODE (mode))
       mode = GET_MODE_WIDER_MODE (mode))
    if (GET_MODE_BITSIZE (mode) >= bitsize + bitpos)
    if (GET_MODE_BITSIZE (mode) >= bitsize + bitpos)
      {
      {
        op0 = convert_to_mode (mode, op0, 0);
        op0 = convert_to_mode (mode, op0, 0);
        break;
        break;
      }
      }
 
 
  if (GET_MODE_BITSIZE (mode) != (bitsize + bitpos))
  if (GET_MODE_BITSIZE (mode) != (bitsize + bitpos))
    {
    {
      tree amount
      tree amount
        = build_int_cst (NULL_TREE,
        = build_int_cst (NULL_TREE,
                         GET_MODE_BITSIZE (mode) - (bitsize + bitpos));
                         GET_MODE_BITSIZE (mode) - (bitsize + bitpos));
      /* Maybe propagate the target for the shift.  */
      /* Maybe propagate the target for the shift.  */
      rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
      rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
      op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
      op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
    }
    }
 
 
  return expand_shift (RSHIFT_EXPR, mode, op0,
  return expand_shift (RSHIFT_EXPR, mode, op0,
                       build_int_cst (NULL_TREE,
                       build_int_cst (NULL_TREE,
                                      GET_MODE_BITSIZE (mode) - bitsize),
                                      GET_MODE_BITSIZE (mode) - bitsize),
                       target, 0);
                       target, 0);
}
}


/* Return a constant integer (CONST_INT or CONST_DOUBLE) mask value
/* Return a constant integer (CONST_INT or CONST_DOUBLE) mask value
   of mode MODE with BITSIZE ones followed by BITPOS zeros, or the
   of mode MODE with BITSIZE ones followed by BITPOS zeros, or the
   complement of that if COMPLEMENT.  The mask is truncated if
   complement of that if COMPLEMENT.  The mask is truncated if
   necessary to the width of mode MODE.  The mask is zero-extended if
   necessary to the width of mode MODE.  The mask is zero-extended if
   BITSIZE+BITPOS is too small for MODE.  */
   BITSIZE+BITPOS is too small for MODE.  */
 
 
static rtx
static rtx
mask_rtx (enum machine_mode mode, int bitpos, int bitsize, int complement)
mask_rtx (enum machine_mode mode, int bitpos, int bitsize, int complement)
{
{
  HOST_WIDE_INT masklow, maskhigh;
  HOST_WIDE_INT masklow, maskhigh;
 
 
  if (bitsize == 0)
  if (bitsize == 0)
    masklow = 0;
    masklow = 0;
  else if (bitpos < HOST_BITS_PER_WIDE_INT)
  else if (bitpos < HOST_BITS_PER_WIDE_INT)
    masklow = (HOST_WIDE_INT) -1 << bitpos;
    masklow = (HOST_WIDE_INT) -1 << bitpos;
  else
  else
    masklow = 0;
    masklow = 0;
 
 
  if (bitpos + bitsize < HOST_BITS_PER_WIDE_INT)
  if (bitpos + bitsize < HOST_BITS_PER_WIDE_INT)
    masklow &= ((unsigned HOST_WIDE_INT) -1
    masklow &= ((unsigned HOST_WIDE_INT) -1
                >> (HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
                >> (HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
 
 
  if (bitpos <= HOST_BITS_PER_WIDE_INT)
  if (bitpos <= HOST_BITS_PER_WIDE_INT)
    maskhigh = -1;
    maskhigh = -1;
  else
  else
    maskhigh = (HOST_WIDE_INT) -1 << (bitpos - HOST_BITS_PER_WIDE_INT);
    maskhigh = (HOST_WIDE_INT) -1 << (bitpos - HOST_BITS_PER_WIDE_INT);
 
 
  if (bitsize == 0)
  if (bitsize == 0)
    maskhigh = 0;
    maskhigh = 0;
  else if (bitpos + bitsize > HOST_BITS_PER_WIDE_INT)
  else if (bitpos + bitsize > HOST_BITS_PER_WIDE_INT)
    maskhigh &= ((unsigned HOST_WIDE_INT) -1
    maskhigh &= ((unsigned HOST_WIDE_INT) -1
                 >> (2 * HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
                 >> (2 * HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
  else
  else
    maskhigh = 0;
    maskhigh = 0;
 
 
  if (complement)
  if (complement)
    {
    {
      maskhigh = ~maskhigh;
      maskhigh = ~maskhigh;
      masklow = ~masklow;
      masklow = ~masklow;
    }
    }
 
 
  return immed_double_const (masklow, maskhigh, mode);
  return immed_double_const (masklow, maskhigh, mode);
}
}
 
 
/* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
/* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
   VALUE truncated to BITSIZE bits and then shifted left BITPOS bits.  */
   VALUE truncated to BITSIZE bits and then shifted left BITPOS bits.  */
 
 
static rtx
static rtx
lshift_value (enum machine_mode mode, rtx value, int bitpos, int bitsize)
lshift_value (enum machine_mode mode, rtx value, int bitpos, int bitsize)
{
{
  unsigned HOST_WIDE_INT v = INTVAL (value);
  unsigned HOST_WIDE_INT v = INTVAL (value);
  HOST_WIDE_INT low, high;
  HOST_WIDE_INT low, high;
 
 
  if (bitsize < HOST_BITS_PER_WIDE_INT)
  if (bitsize < HOST_BITS_PER_WIDE_INT)
    v &= ~((HOST_WIDE_INT) -1 << bitsize);
    v &= ~((HOST_WIDE_INT) -1 << bitsize);
 
 
  if (bitpos < HOST_BITS_PER_WIDE_INT)
  if (bitpos < HOST_BITS_PER_WIDE_INT)
    {
    {
      low = v << bitpos;
      low = v << bitpos;
      high = (bitpos > 0 ? (v >> (HOST_BITS_PER_WIDE_INT - bitpos)) : 0);
      high = (bitpos > 0 ? (v >> (HOST_BITS_PER_WIDE_INT - bitpos)) : 0);
    }
    }
  else
  else
    {
    {
      low = 0;
      low = 0;
      high = v << (bitpos - HOST_BITS_PER_WIDE_INT);
      high = v << (bitpos - HOST_BITS_PER_WIDE_INT);
    }
    }
 
 
  return immed_double_const (low, high, mode);
  return immed_double_const (low, high, mode);
}
}


/* Extract a bit field from a memory by forcing the alignment of the
/* Extract a bit field from a memory by forcing the alignment of the
   memory.  This efficient only if the field spans at least 4 boundaries.
   memory.  This efficient only if the field spans at least 4 boundaries.
 
 
   OP0 is the MEM.
   OP0 is the MEM.
   BITSIZE is the field width; BITPOS is the position of the first bit.
   BITSIZE is the field width; BITPOS is the position of the first bit.
   UNSIGNEDP is true if the result should be zero-extended.  */
   UNSIGNEDP is true if the result should be zero-extended.  */
 
 
static rtx
static rtx
extract_force_align_mem_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
extract_force_align_mem_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
                                   unsigned HOST_WIDE_INT bitpos,
                                   unsigned HOST_WIDE_INT bitpos,
                                   int unsignedp)
                                   int unsignedp)
{
{
  enum machine_mode mode, dmode;
  enum machine_mode mode, dmode;
  unsigned int m_bitsize, m_size;
  unsigned int m_bitsize, m_size;
  unsigned int sign_shift_up, sign_shift_dn;
  unsigned int sign_shift_up, sign_shift_dn;
  rtx base, a1, a2, v1, v2, comb, shift, result, start;
  rtx base, a1, a2, v1, v2, comb, shift, result, start;
 
 
  /* Choose a mode that will fit BITSIZE.  */
  /* Choose a mode that will fit BITSIZE.  */
  mode = smallest_mode_for_size (bitsize, MODE_INT);
  mode = smallest_mode_for_size (bitsize, MODE_INT);
  m_size = GET_MODE_SIZE (mode);
  m_size = GET_MODE_SIZE (mode);
  m_bitsize = GET_MODE_BITSIZE (mode);
  m_bitsize = GET_MODE_BITSIZE (mode);
 
 
  /* Choose a mode twice as wide.  Fail if no such mode exists.  */
  /* Choose a mode twice as wide.  Fail if no such mode exists.  */
  dmode = mode_for_size (m_bitsize * 2, MODE_INT, false);
  dmode = mode_for_size (m_bitsize * 2, MODE_INT, false);
  if (dmode == BLKmode)
  if (dmode == BLKmode)
    return NULL;
    return NULL;
 
 
  do_pending_stack_adjust ();
  do_pending_stack_adjust ();
  start = get_last_insn ();
  start = get_last_insn ();
 
 
  /* At the end, we'll need an additional shift to deal with sign/zero
  /* At the end, we'll need an additional shift to deal with sign/zero
     extension.  By default this will be a left+right shift of the
     extension.  By default this will be a left+right shift of the
     appropriate size.  But we may be able to eliminate one of them.  */
     appropriate size.  But we may be able to eliminate one of them.  */
  sign_shift_up = sign_shift_dn = m_bitsize - bitsize;
  sign_shift_up = sign_shift_dn = m_bitsize - bitsize;
 
 
  if (STRICT_ALIGNMENT)
  if (STRICT_ALIGNMENT)
    {
    {
      base = plus_constant (XEXP (op0, 0), bitpos / BITS_PER_UNIT);
      base = plus_constant (XEXP (op0, 0), bitpos / BITS_PER_UNIT);
      bitpos %= BITS_PER_UNIT;
      bitpos %= BITS_PER_UNIT;
 
 
      /* We load two values to be concatenate.  There's an edge condition
      /* We load two values to be concatenate.  There's an edge condition
         that bears notice -- an aligned value at the end of a page can
         that bears notice -- an aligned value at the end of a page can
         only load one value lest we segfault.  So the two values we load
         only load one value lest we segfault.  So the two values we load
         are at "base & -size" and "(base + size - 1) & -size".  If base
         are at "base & -size" and "(base + size - 1) & -size".  If base
         is unaligned, the addresses will be aligned and sequential; if
         is unaligned, the addresses will be aligned and sequential; if
         base is aligned, the addresses will both be equal to base.  */
         base is aligned, the addresses will both be equal to base.  */
 
 
      a1 = expand_simple_binop (Pmode, AND, force_operand (base, NULL),
      a1 = expand_simple_binop (Pmode, AND, force_operand (base, NULL),
                                GEN_INT (-(HOST_WIDE_INT)m_size),
                                GEN_INT (-(HOST_WIDE_INT)m_size),
                                NULL, true, OPTAB_LIB_WIDEN);
                                NULL, true, OPTAB_LIB_WIDEN);
      mark_reg_pointer (a1, m_bitsize);
      mark_reg_pointer (a1, m_bitsize);
      v1 = gen_rtx_MEM (mode, a1);
      v1 = gen_rtx_MEM (mode, a1);
      set_mem_align (v1, m_bitsize);
      set_mem_align (v1, m_bitsize);
      v1 = force_reg (mode, validize_mem (v1));
      v1 = force_reg (mode, validize_mem (v1));
 
 
      a2 = plus_constant (base, GET_MODE_SIZE (mode) - 1);
      a2 = plus_constant (base, GET_MODE_SIZE (mode) - 1);
      a2 = expand_simple_binop (Pmode, AND, force_operand (a2, NULL),
      a2 = expand_simple_binop (Pmode, AND, force_operand (a2, NULL),
                                GEN_INT (-(HOST_WIDE_INT)m_size),
                                GEN_INT (-(HOST_WIDE_INT)m_size),
                                NULL, true, OPTAB_LIB_WIDEN);
                                NULL, true, OPTAB_LIB_WIDEN);
      v2 = gen_rtx_MEM (mode, a2);
      v2 = gen_rtx_MEM (mode, a2);
      set_mem_align (v2, m_bitsize);
      set_mem_align (v2, m_bitsize);
      v2 = force_reg (mode, validize_mem (v2));
      v2 = force_reg (mode, validize_mem (v2));
 
 
      /* Combine these two values into a double-word value.  */
      /* Combine these two values into a double-word value.  */
      if (m_bitsize == BITS_PER_WORD)
      if (m_bitsize == BITS_PER_WORD)
        {
        {
          comb = gen_reg_rtx (dmode);
          comb = gen_reg_rtx (dmode);
          emit_insn (gen_rtx_CLOBBER (VOIDmode, comb));
          emit_insn (gen_rtx_CLOBBER (VOIDmode, comb));
          emit_move_insn (gen_rtx_SUBREG (mode, comb, 0), v1);
          emit_move_insn (gen_rtx_SUBREG (mode, comb, 0), v1);
          emit_move_insn (gen_rtx_SUBREG (mode, comb, m_size), v2);
          emit_move_insn (gen_rtx_SUBREG (mode, comb, m_size), v2);
        }
        }
      else
      else
        {
        {
          if (BYTES_BIG_ENDIAN)
          if (BYTES_BIG_ENDIAN)
            comb = v1, v1 = v2, v2 = comb;
            comb = v1, v1 = v2, v2 = comb;
          v1 = convert_modes (dmode, mode, v1, true);
          v1 = convert_modes (dmode, mode, v1, true);
          if (v1 == NULL)
          if (v1 == NULL)
            goto fail;
            goto fail;
          v2 = convert_modes (dmode, mode, v2, true);
          v2 = convert_modes (dmode, mode, v2, true);
          v2 = expand_simple_binop (dmode, ASHIFT, v2, GEN_INT (m_bitsize),
          v2 = expand_simple_binop (dmode, ASHIFT, v2, GEN_INT (m_bitsize),
                                    NULL, true, OPTAB_LIB_WIDEN);
                                    NULL, true, OPTAB_LIB_WIDEN);
          if (v2 == NULL)
          if (v2 == NULL)
            goto fail;
            goto fail;
          comb = expand_simple_binop (dmode, IOR, v1, v2, NULL,
          comb = expand_simple_binop (dmode, IOR, v1, v2, NULL,
                                      true, OPTAB_LIB_WIDEN);
                                      true, OPTAB_LIB_WIDEN);
          if (comb == NULL)
          if (comb == NULL)
            goto fail;
            goto fail;
        }
        }
 
 
      shift = expand_simple_binop (Pmode, AND, base, GEN_INT (m_size - 1),
      shift = expand_simple_binop (Pmode, AND, base, GEN_INT (m_size - 1),
                                   NULL, true, OPTAB_LIB_WIDEN);
                                   NULL, true, OPTAB_LIB_WIDEN);
      shift = expand_mult (Pmode, shift, GEN_INT (BITS_PER_UNIT), NULL, 1);
      shift = expand_mult (Pmode, shift, GEN_INT (BITS_PER_UNIT), NULL, 1);
 
 
      if (bitpos != 0)
      if (bitpos != 0)
        {
        {
          if (sign_shift_up <= bitpos)
          if (sign_shift_up <= bitpos)
            bitpos -= sign_shift_up, sign_shift_up = 0;
            bitpos -= sign_shift_up, sign_shift_up = 0;
          shift = expand_simple_binop (Pmode, PLUS, shift, GEN_INT (bitpos),
          shift = expand_simple_binop (Pmode, PLUS, shift, GEN_INT (bitpos),
                                       NULL, true, OPTAB_LIB_WIDEN);
                                       NULL, true, OPTAB_LIB_WIDEN);
        }
        }
    }
    }
  else
  else
    {
    {
      unsigned HOST_WIDE_INT offset = bitpos / BITS_PER_UNIT;
      unsigned HOST_WIDE_INT offset = bitpos / BITS_PER_UNIT;
      bitpos %= BITS_PER_UNIT;
      bitpos %= BITS_PER_UNIT;
 
 
      /* When strict alignment is not required, we can just load directly
      /* When strict alignment is not required, we can just load directly
         from memory without masking.  If the remaining BITPOS offset is
         from memory without masking.  If the remaining BITPOS offset is
         small enough, we may be able to do all operations in MODE as
         small enough, we may be able to do all operations in MODE as
         opposed to DMODE.  */
         opposed to DMODE.  */
      if (bitpos + bitsize <= m_bitsize)
      if (bitpos + bitsize <= m_bitsize)
        dmode = mode;
        dmode = mode;
      comb = adjust_address (op0, dmode, offset);
      comb = adjust_address (op0, dmode, offset);
 
 
      if (sign_shift_up <= bitpos)
      if (sign_shift_up <= bitpos)
        bitpos -= sign_shift_up, sign_shift_up = 0;
        bitpos -= sign_shift_up, sign_shift_up = 0;
      shift = GEN_INT (bitpos);
      shift = GEN_INT (bitpos);
    }
    }
 
 
  /* Shift down the double-word such that the requested value is at bit 0.  */
  /* Shift down the double-word such that the requested value is at bit 0.  */
  if (shift != const0_rtx)
  if (shift != const0_rtx)
    comb = expand_simple_binop (dmode, unsignedp ? LSHIFTRT : ASHIFTRT,
    comb = expand_simple_binop (dmode, unsignedp ? LSHIFTRT : ASHIFTRT,
                                comb, shift, NULL, unsignedp, OPTAB_LIB_WIDEN);
                                comb, shift, NULL, unsignedp, OPTAB_LIB_WIDEN);
  if (comb == NULL)
  if (comb == NULL)
    goto fail;
    goto fail;
 
 
  /* If the field exactly matches MODE, then all we need to do is return the
  /* If the field exactly matches MODE, then all we need to do is return the
     lowpart.  Otherwise, shift to get the sign bits set properly.  */
     lowpart.  Otherwise, shift to get the sign bits set properly.  */
  result = force_reg (mode, gen_lowpart (mode, comb));
  result = force_reg (mode, gen_lowpart (mode, comb));
 
 
  if (sign_shift_up)
  if (sign_shift_up)
    result = expand_simple_binop (mode, ASHIFT, result,
    result = expand_simple_binop (mode, ASHIFT, result,
                                  GEN_INT (sign_shift_up),
                                  GEN_INT (sign_shift_up),
                                  NULL_RTX, 0, OPTAB_LIB_WIDEN);
                                  NULL_RTX, 0, OPTAB_LIB_WIDEN);
  if (sign_shift_dn)
  if (sign_shift_dn)
    result = expand_simple_binop (mode, unsignedp ? LSHIFTRT : ASHIFTRT,
    result = expand_simple_binop (mode, unsignedp ? LSHIFTRT : ASHIFTRT,
                                  result, GEN_INT (sign_shift_dn),
                                  result, GEN_INT (sign_shift_dn),
                                  NULL_RTX, 0, OPTAB_LIB_WIDEN);
                                  NULL_RTX, 0, OPTAB_LIB_WIDEN);
 
 
  return result;
  return result;
 
 
 fail:
 fail:
  delete_insns_since (start);
  delete_insns_since (start);
  return NULL;
  return NULL;
}
}
 
 
/* Extract a bit field that is split across two words
/* Extract a bit field that is split across two words
   and return an RTX for the result.
   and return an RTX for the result.
 
 
   OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
   OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
   BITSIZE is the field width; BITPOS, position of its first bit, in the word.
   BITSIZE is the field width; BITPOS, position of its first bit, in the word.
   UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend.  */
   UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend.  */
 
 
static rtx
static rtx
extract_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
extract_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
                         unsigned HOST_WIDE_INT bitpos, int unsignedp)
                         unsigned HOST_WIDE_INT bitpos, int unsignedp)
{
{
  unsigned int unit;
  unsigned int unit;
  unsigned int bitsdone = 0;
  unsigned int bitsdone = 0;
  rtx result = NULL_RTX;
  rtx result = NULL_RTX;
  int first = 1;
  int first = 1;
 
 
  /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
  /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
     much at a time.  */
     much at a time.  */
  if (REG_P (op0) || GET_CODE (op0) == SUBREG)
  if (REG_P (op0) || GET_CODE (op0) == SUBREG)
    unit = BITS_PER_WORD;
    unit = BITS_PER_WORD;
  else
  else
    {
    {
      unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
      unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
      if (0 && bitsize / unit > 2)
      if (0 && bitsize / unit > 2)
        {
        {
          rtx tmp = extract_force_align_mem_bit_field (op0, bitsize, bitpos,
          rtx tmp = extract_force_align_mem_bit_field (op0, bitsize, bitpos,
                                                       unsignedp);
                                                       unsignedp);
          if (tmp)
          if (tmp)
            return tmp;
            return tmp;
        }
        }
    }
    }
 
 
  while (bitsdone < bitsize)
  while (bitsdone < bitsize)
    {
    {
      unsigned HOST_WIDE_INT thissize;
      unsigned HOST_WIDE_INT thissize;
      rtx part, word;
      rtx part, word;
      unsigned HOST_WIDE_INT thispos;
      unsigned HOST_WIDE_INT thispos;
      unsigned HOST_WIDE_INT offset;
      unsigned HOST_WIDE_INT offset;
 
 
      offset = (bitpos + bitsdone) / unit;
      offset = (bitpos + bitsdone) / unit;
      thispos = (bitpos + bitsdone) % unit;
      thispos = (bitpos + bitsdone) % unit;
 
 
      /* THISSIZE must not overrun a word boundary.  Otherwise,
      /* THISSIZE must not overrun a word boundary.  Otherwise,
         extract_fixed_bit_field will call us again, and we will mutually
         extract_fixed_bit_field will call us again, and we will mutually
         recurse forever.  */
         recurse forever.  */
      thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
      thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
      thissize = MIN (thissize, unit - thispos);
      thissize = MIN (thissize, unit - thispos);
 
 
      /* If OP0 is a register, then handle OFFSET here.
      /* If OP0 is a register, then handle OFFSET here.
 
 
         When handling multiword bitfields, extract_bit_field may pass
         When handling multiword bitfields, extract_bit_field may pass
         down a word_mode SUBREG of a larger REG for a bitfield that actually
         down a word_mode SUBREG of a larger REG for a bitfield that actually
         crosses a word boundary.  Thus, for a SUBREG, we must find
         crosses a word boundary.  Thus, for a SUBREG, we must find
         the current word starting from the base register.  */
         the current word starting from the base register.  */
      if (GET_CODE (op0) == SUBREG)
      if (GET_CODE (op0) == SUBREG)
        {
        {
          int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
          int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
          word = operand_subword_force (SUBREG_REG (op0), word_offset,
          word = operand_subword_force (SUBREG_REG (op0), word_offset,
                                        GET_MODE (SUBREG_REG (op0)));
                                        GET_MODE (SUBREG_REG (op0)));
          offset = 0;
          offset = 0;
        }
        }
      else if (REG_P (op0))
      else if (REG_P (op0))
        {
        {
          word = operand_subword_force (op0, offset, GET_MODE (op0));
          word = operand_subword_force (op0, offset, GET_MODE (op0));
          offset = 0;
          offset = 0;
        }
        }
      else
      else
        word = op0;
        word = op0;
 
 
      /* Extract the parts in bit-counting order,
      /* Extract the parts in bit-counting order,
         whose meaning is determined by BYTES_PER_UNIT.
         whose meaning is determined by BYTES_PER_UNIT.
         OFFSET is in UNITs, and UNIT is in bits.
         OFFSET is in UNITs, and UNIT is in bits.
         extract_fixed_bit_field wants offset in bytes.  */
         extract_fixed_bit_field wants offset in bytes.  */
      part = extract_fixed_bit_field (word_mode, word,
      part = extract_fixed_bit_field (word_mode, word,
                                      offset * unit / BITS_PER_UNIT,
                                      offset * unit / BITS_PER_UNIT,
                                      thissize, thispos, 0, 1);
                                      thissize, thispos, 0, 1);
      bitsdone += thissize;
      bitsdone += thissize;
 
 
      /* Shift this part into place for the result.  */
      /* Shift this part into place for the result.  */
      if (BYTES_BIG_ENDIAN)
      if (BYTES_BIG_ENDIAN)
        {
        {
          if (bitsize != bitsdone)
          if (bitsize != bitsdone)
            part = expand_shift (LSHIFT_EXPR, word_mode, part,
            part = expand_shift (LSHIFT_EXPR, word_mode, part,
                                 build_int_cst (NULL_TREE, bitsize - bitsdone),
                                 build_int_cst (NULL_TREE, bitsize - bitsdone),
                                 0, 1);
                                 0, 1);
        }
        }
      else
      else
        {
        {
          if (bitsdone != thissize)
          if (bitsdone != thissize)
            part = expand_shift (LSHIFT_EXPR, word_mode, part,
            part = expand_shift (LSHIFT_EXPR, word_mode, part,
                                 build_int_cst (NULL_TREE,
                                 build_int_cst (NULL_TREE,
                                                bitsdone - thissize), 0, 1);
                                                bitsdone - thissize), 0, 1);
        }
        }
 
 
      if (first)
      if (first)
        result = part;
        result = part;
      else
      else
        /* Combine the parts with bitwise or.  This works
        /* Combine the parts with bitwise or.  This works
           because we extracted each part as an unsigned bit field.  */
           because we extracted each part as an unsigned bit field.  */
        result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
        result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
                               OPTAB_LIB_WIDEN);
                               OPTAB_LIB_WIDEN);
 
 
      first = 0;
      first = 0;
    }
    }
 
 
  /* Unsigned bit field: we are done.  */
  /* Unsigned bit field: we are done.  */
  if (unsignedp)
  if (unsignedp)
    return result;
    return result;
  /* Signed bit field: sign-extend with two arithmetic shifts.  */
  /* Signed bit field: sign-extend with two arithmetic shifts.  */
  result = expand_shift (LSHIFT_EXPR, word_mode, result,
  result = expand_shift (LSHIFT_EXPR, word_mode, result,
                         build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
                         build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
                         NULL_RTX, 0);
                         NULL_RTX, 0);
  return expand_shift (RSHIFT_EXPR, word_mode, result,
  return expand_shift (RSHIFT_EXPR, word_mode, result,
                       build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
                       build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
                       NULL_RTX, 0);
                       NULL_RTX, 0);
}
}


/* Add INC into TARGET.  */
/* Add INC into TARGET.  */
 
 
void
void
expand_inc (rtx target, rtx inc)
expand_inc (rtx target, rtx inc)
{
{
  rtx value = expand_binop (GET_MODE (target), add_optab,
  rtx value = expand_binop (GET_MODE (target), add_optab,
                            target, inc,
                            target, inc,
                            target, 0, OPTAB_LIB_WIDEN);
                            target, 0, OPTAB_LIB_WIDEN);
  if (value != target)
  if (value != target)
    emit_move_insn (target, value);
    emit_move_insn (target, value);
}
}
 
 
/* Subtract DEC from TARGET.  */
/* Subtract DEC from TARGET.  */
 
 
void
void
expand_dec (rtx target, rtx dec)
expand_dec (rtx target, rtx dec)
{
{
  rtx value = expand_binop (GET_MODE (target), sub_optab,
  rtx value = expand_binop (GET_MODE (target), sub_optab,
                            target, dec,
                            target, dec,
                            target, 0, OPTAB_LIB_WIDEN);
                            target, 0, OPTAB_LIB_WIDEN);
  if (value != target)
  if (value != target)
    emit_move_insn (target, value);
    emit_move_insn (target, value);
}
}


/* Output a shift instruction for expression code CODE,
/* Output a shift instruction for expression code CODE,
   with SHIFTED being the rtx for the value to shift,
   with SHIFTED being the rtx for the value to shift,
   and AMOUNT the tree for the amount to shift by.
   and AMOUNT the tree for the amount to shift by.
   Store the result in the rtx TARGET, if that is convenient.
   Store the result in the rtx TARGET, if that is convenient.
   If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
   If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
   Return the rtx for where the value is.  */
   Return the rtx for where the value is.  */
 
 
rtx
rtx
expand_shift (enum tree_code code, enum machine_mode mode, rtx shifted,
expand_shift (enum tree_code code, enum machine_mode mode, rtx shifted,
              tree amount, rtx target, int unsignedp)
              tree amount, rtx target, int unsignedp)
{
{
  rtx op1, temp = 0;
  rtx op1, temp = 0;
  int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
  int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
  int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
  int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
  int try;
  int try;
 
 
  /* Previously detected shift-counts computed by NEGATE_EXPR
  /* Previously detected shift-counts computed by NEGATE_EXPR
     and shifted in the other direction; but that does not work
     and shifted in the other direction; but that does not work
     on all machines.  */
     on all machines.  */
 
 
  op1 = expand_normal (amount);
  op1 = expand_normal (amount);
 
 
  if (SHIFT_COUNT_TRUNCATED)
  if (SHIFT_COUNT_TRUNCATED)
    {
    {
      if (GET_CODE (op1) == CONST_INT
      if (GET_CODE (op1) == CONST_INT
          && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
          && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
              (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode)))
              (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode)))
        op1 = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (op1)
        op1 = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (op1)
                       % GET_MODE_BITSIZE (mode));
                       % GET_MODE_BITSIZE (mode));
      else if (GET_CODE (op1) == SUBREG
      else if (GET_CODE (op1) == SUBREG
               && subreg_lowpart_p (op1))
               && subreg_lowpart_p (op1))
        op1 = SUBREG_REG (op1);
        op1 = SUBREG_REG (op1);
    }
    }
 
 
  if (op1 == const0_rtx)
  if (op1 == const0_rtx)
    return shifted;
    return shifted;
 
 
  /* Check whether its cheaper to implement a left shift by a constant
  /* Check whether its cheaper to implement a left shift by a constant
     bit count by a sequence of additions.  */
     bit count by a sequence of additions.  */
  if (code == LSHIFT_EXPR
  if (code == LSHIFT_EXPR
      && GET_CODE (op1) == CONST_INT
      && GET_CODE (op1) == CONST_INT
      && INTVAL (op1) > 0
      && INTVAL (op1) > 0
      && INTVAL (op1) < GET_MODE_BITSIZE (mode)
      && INTVAL (op1) < GET_MODE_BITSIZE (mode)
      && INTVAL (op1) < MAX_BITS_PER_WORD
      && INTVAL (op1) < MAX_BITS_PER_WORD
      && shift_cost[mode][INTVAL (op1)] > INTVAL (op1) * add_cost[mode]
      && shift_cost[mode][INTVAL (op1)] > INTVAL (op1) * add_cost[mode]
      && shift_cost[mode][INTVAL (op1)] != MAX_COST)
      && shift_cost[mode][INTVAL (op1)] != MAX_COST)
    {
    {
      int i;
      int i;
      for (i = 0; i < INTVAL (op1); i++)
      for (i = 0; i < INTVAL (op1); i++)
        {
        {
          temp = force_reg (mode, shifted);
          temp = force_reg (mode, shifted);
          shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
          shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
                                  unsignedp, OPTAB_LIB_WIDEN);
                                  unsignedp, OPTAB_LIB_WIDEN);
        }
        }
      return shifted;
      return shifted;
    }
    }
 
 
  for (try = 0; temp == 0 && try < 3; try++)
  for (try = 0; temp == 0 && try < 3; try++)
    {
    {
      enum optab_methods methods;
      enum optab_methods methods;
 
 
      if (try == 0)
      if (try == 0)
        methods = OPTAB_DIRECT;
        methods = OPTAB_DIRECT;
      else if (try == 1)
      else if (try == 1)
        methods = OPTAB_WIDEN;
        methods = OPTAB_WIDEN;
      else
      else
        methods = OPTAB_LIB_WIDEN;
        methods = OPTAB_LIB_WIDEN;
 
 
      if (rotate)
      if (rotate)
        {
        {
          /* Widening does not work for rotation.  */
          /* Widening does not work for rotation.  */
          if (methods == OPTAB_WIDEN)
          if (methods == OPTAB_WIDEN)
            continue;
            continue;
          else if (methods == OPTAB_LIB_WIDEN)
          else if (methods == OPTAB_LIB_WIDEN)
            {
            {
              /* If we have been unable to open-code this by a rotation,
              /* If we have been unable to open-code this by a rotation,
                 do it as the IOR of two shifts.  I.e., to rotate A
                 do it as the IOR of two shifts.  I.e., to rotate A
                 by N bits, compute (A << N) | ((unsigned) A >> (C - N))
                 by N bits, compute (A << N) | ((unsigned) A >> (C - N))
                 where C is the bitsize of A.
                 where C is the bitsize of A.
 
 
                 It is theoretically possible that the target machine might
                 It is theoretically possible that the target machine might
                 not be able to perform either shift and hence we would
                 not be able to perform either shift and hence we would
                 be making two libcalls rather than just the one for the
                 be making two libcalls rather than just the one for the
                 shift (similarly if IOR could not be done).  We will allow
                 shift (similarly if IOR could not be done).  We will allow
                 this extremely unlikely lossage to avoid complicating the
                 this extremely unlikely lossage to avoid complicating the
                 code below.  */
                 code below.  */
 
 
              rtx subtarget = target == shifted ? 0 : target;
              rtx subtarget = target == shifted ? 0 : target;
              tree new_amount, other_amount;
              tree new_amount, other_amount;
              rtx temp1;
              rtx temp1;
              tree type = TREE_TYPE (amount);
              tree type = TREE_TYPE (amount);
              if (GET_MODE (op1) != TYPE_MODE (type)
              if (GET_MODE (op1) != TYPE_MODE (type)
                  && GET_MODE (op1) != VOIDmode)
                  && GET_MODE (op1) != VOIDmode)
                op1 = convert_to_mode (TYPE_MODE (type), op1, 1);
                op1 = convert_to_mode (TYPE_MODE (type), op1, 1);
              new_amount = make_tree (type, op1);
              new_amount = make_tree (type, op1);
              other_amount
              other_amount
                = fold_build2 (MINUS_EXPR, type,
                = fold_build2 (MINUS_EXPR, type,
                               build_int_cst (type, GET_MODE_BITSIZE (mode)),
                               build_int_cst (type, GET_MODE_BITSIZE (mode)),
                               new_amount);
                               new_amount);
 
 
              shifted = force_reg (mode, shifted);
              shifted = force_reg (mode, shifted);
 
 
              temp = expand_shift (left ? LSHIFT_EXPR : RSHIFT_EXPR,
              temp = expand_shift (left ? LSHIFT_EXPR : RSHIFT_EXPR,
                                   mode, shifted, new_amount, 0, 1);
                                   mode, shifted, new_amount, 0, 1);
              temp1 = expand_shift (left ? RSHIFT_EXPR : LSHIFT_EXPR,
              temp1 = expand_shift (left ? RSHIFT_EXPR : LSHIFT_EXPR,
                                    mode, shifted, other_amount, subtarget, 1);
                                    mode, shifted, other_amount, subtarget, 1);
              return expand_binop (mode, ior_optab, temp, temp1, target,
              return expand_binop (mode, ior_optab, temp, temp1, target,
                                   unsignedp, methods);
                                   unsignedp, methods);
            }
            }
 
 
          temp = expand_binop (mode,
          temp = expand_binop (mode,
                               left ? rotl_optab : rotr_optab,
                               left ? rotl_optab : rotr_optab,
                               shifted, op1, target, unsignedp, methods);
                               shifted, op1, target, unsignedp, methods);
        }
        }
      else if (unsignedp)
      else if (unsignedp)
        temp = expand_binop (mode,
        temp = expand_binop (mode,
                             left ? ashl_optab : lshr_optab,
                             left ? ashl_optab : lshr_optab,
                             shifted, op1, target, unsignedp, methods);
                             shifted, op1, target, unsignedp, methods);
 
 
      /* Do arithmetic shifts.
      /* Do arithmetic shifts.
         Also, if we are going to widen the operand, we can just as well
         Also, if we are going to widen the operand, we can just as well
         use an arithmetic right-shift instead of a logical one.  */
         use an arithmetic right-shift instead of a logical one.  */
      if (temp == 0 && ! rotate
      if (temp == 0 && ! rotate
          && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
          && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
        {
        {
          enum optab_methods methods1 = methods;
          enum optab_methods methods1 = methods;
 
 
          /* If trying to widen a log shift to an arithmetic shift,
          /* If trying to widen a log shift to an arithmetic shift,
             don't accept an arithmetic shift of the same size.  */
             don't accept an arithmetic shift of the same size.  */
          if (unsignedp)
          if (unsignedp)
            methods1 = OPTAB_MUST_WIDEN;
            methods1 = OPTAB_MUST_WIDEN;
 
 
          /* Arithmetic shift */
          /* Arithmetic shift */
 
 
          temp = expand_binop (mode,
          temp = expand_binop (mode,
                               left ? ashl_optab : ashr_optab,
                               left ? ashl_optab : ashr_optab,
                               shifted, op1, target, unsignedp, methods1);
                               shifted, op1, target, unsignedp, methods1);
        }
        }
 
 
      /* We used to try extzv here for logical right shifts, but that was
      /* We used to try extzv here for logical right shifts, but that was
         only useful for one machine, the VAX, and caused poor code
         only useful for one machine, the VAX, and caused poor code
         generation there for lshrdi3, so the code was deleted and a
         generation there for lshrdi3, so the code was deleted and a
         define_expand for lshrsi3 was added to vax.md.  */
         define_expand for lshrsi3 was added to vax.md.  */
    }
    }
 
 
  gcc_assert (temp);
  gcc_assert (temp);
  return temp;
  return temp;
}
}


enum alg_code {
enum alg_code {
  alg_unknown,
  alg_unknown,
  alg_zero,
  alg_zero,
  alg_m, alg_shift,
  alg_m, alg_shift,
  alg_add_t_m2,
  alg_add_t_m2,
  alg_sub_t_m2,
  alg_sub_t_m2,
  alg_add_factor,
  alg_add_factor,
  alg_sub_factor,
  alg_sub_factor,
  alg_add_t2_m,
  alg_add_t2_m,
  alg_sub_t2_m,
  alg_sub_t2_m,
  alg_impossible
  alg_impossible
};
};
 
 
/* This structure holds the "cost" of a multiply sequence.  The
/* This structure holds the "cost" of a multiply sequence.  The
   "cost" field holds the total rtx_cost of every operator in the
   "cost" field holds the total rtx_cost of every operator in the
   synthetic multiplication sequence, hence cost(a op b) is defined
   synthetic multiplication sequence, hence cost(a op b) is defined
   as rtx_cost(op) + cost(a) + cost(b), where cost(leaf) is zero.
   as rtx_cost(op) + cost(a) + cost(b), where cost(leaf) is zero.
   The "latency" field holds the minimum possible latency of the
   The "latency" field holds the minimum possible latency of the
   synthetic multiply, on a hypothetical infinitely parallel CPU.
   synthetic multiply, on a hypothetical infinitely parallel CPU.
   This is the critical path, or the maximum height, of the expression
   This is the critical path, or the maximum height, of the expression
   tree which is the sum of rtx_costs on the most expensive path from
   tree which is the sum of rtx_costs on the most expensive path from
   any leaf to the root.  Hence latency(a op b) is defined as zero for
   any leaf to the root.  Hence latency(a op b) is defined as zero for
   leaves and rtx_cost(op) + max(latency(a), latency(b)) otherwise.  */
   leaves and rtx_cost(op) + max(latency(a), latency(b)) otherwise.  */
 
 
struct mult_cost {
struct mult_cost {
  short cost;     /* Total rtx_cost of the multiplication sequence.  */
  short cost;     /* Total rtx_cost of the multiplication sequence.  */
  short latency;  /* The latency of the multiplication sequence.  */
  short latency;  /* The latency of the multiplication sequence.  */
};
};
 
 
/* This macro is used to compare a pointer to a mult_cost against an
/* This macro is used to compare a pointer to a mult_cost against an
   single integer "rtx_cost" value.  This is equivalent to the macro
   single integer "rtx_cost" value.  This is equivalent to the macro
   CHEAPER_MULT_COST(X,Z) where Z = {Y,Y}.  */
   CHEAPER_MULT_COST(X,Z) where Z = {Y,Y}.  */
#define MULT_COST_LESS(X,Y) ((X)->cost < (Y)    \
#define MULT_COST_LESS(X,Y) ((X)->cost < (Y)    \
                             || ((X)->cost == (Y) && (X)->latency < (Y)))
                             || ((X)->cost == (Y) && (X)->latency < (Y)))
 
 
/* This macro is used to compare two pointers to mult_costs against
/* This macro is used to compare two pointers to mult_costs against
   each other.  The macro returns true if X is cheaper than Y.
   each other.  The macro returns true if X is cheaper than Y.
   Currently, the cheaper of two mult_costs is the one with the
   Currently, the cheaper of two mult_costs is the one with the
   lower "cost".  If "cost"s are tied, the lower latency is cheaper.  */
   lower "cost".  If "cost"s are tied, the lower latency is cheaper.  */
#define CHEAPER_MULT_COST(X,Y)  ((X)->cost < (Y)->cost          \
#define CHEAPER_MULT_COST(X,Y)  ((X)->cost < (Y)->cost          \
                                 || ((X)->cost == (Y)->cost     \
                                 || ((X)->cost == (Y)->cost     \
                                     && (X)->latency < (Y)->latency))
                                     && (X)->latency < (Y)->latency))
 
 
/* This structure records a sequence of operations.
/* This structure records a sequence of operations.
   `ops' is the number of operations recorded.
   `ops' is the number of operations recorded.
   `cost' is their total cost.
   `cost' is their total cost.
   The operations are stored in `op' and the corresponding
   The operations are stored in `op' and the corresponding
   logarithms of the integer coefficients in `log'.
   logarithms of the integer coefficients in `log'.
 
 
   These are the operations:
   These are the operations:
   alg_zero             total := 0;
   alg_zero             total := 0;
   alg_m                total := multiplicand;
   alg_m                total := multiplicand;
   alg_shift            total := total * coeff
   alg_shift            total := total * coeff
   alg_add_t_m2         total := total + multiplicand * coeff;
   alg_add_t_m2         total := total + multiplicand * coeff;
   alg_sub_t_m2         total := total - multiplicand * coeff;
   alg_sub_t_m2         total := total - multiplicand * coeff;
   alg_add_factor       total := total * coeff + total;
   alg_add_factor       total := total * coeff + total;
   alg_sub_factor       total := total * coeff - total;
   alg_sub_factor       total := total * coeff - total;
   alg_add_t2_m         total := total * coeff + multiplicand;
   alg_add_t2_m         total := total * coeff + multiplicand;
   alg_sub_t2_m         total := total * coeff - multiplicand;
   alg_sub_t2_m         total := total * coeff - multiplicand;
 
 
   The first operand must be either alg_zero or alg_m.  */
   The first operand must be either alg_zero or alg_m.  */
 
 
struct algorithm
struct algorithm
{
{
  struct mult_cost cost;
  struct mult_cost cost;
  short ops;
  short ops;
  /* The size of the OP and LOG fields are not directly related to the
  /* The size of the OP and LOG fields are not directly related to the
     word size, but the worst-case algorithms will be if we have few
     word size, but the worst-case algorithms will be if we have few
     consecutive ones or zeros, i.e., a multiplicand like 10101010101...
     consecutive ones or zeros, i.e., a multiplicand like 10101010101...
     In that case we will generate shift-by-2, add, shift-by-2, add,...,
     In that case we will generate shift-by-2, add, shift-by-2, add,...,
     in total wordsize operations.  */
     in total wordsize operations.  */
  enum alg_code op[MAX_BITS_PER_WORD];
  enum alg_code op[MAX_BITS_PER_WORD];
  char log[MAX_BITS_PER_WORD];
  char log[MAX_BITS_PER_WORD];
};
};
 
 
/* The entry for our multiplication cache/hash table.  */
/* The entry for our multiplication cache/hash table.  */
struct alg_hash_entry {
struct alg_hash_entry {
  /* The number we are multiplying by.  */
  /* The number we are multiplying by.  */
  unsigned HOST_WIDE_INT t;
  unsigned HOST_WIDE_INT t;
 
 
  /* The mode in which we are multiplying something by T.  */
  /* The mode in which we are multiplying something by T.  */
  enum machine_mode mode;
  enum machine_mode mode;
 
 
  /* The best multiplication algorithm for t.  */
  /* The best multiplication algorithm for t.  */
  enum alg_code alg;
  enum alg_code alg;
 
 
  /* The cost of multiplication if ALG_CODE is not alg_impossible.
  /* The cost of multiplication if ALG_CODE is not alg_impossible.
     Otherwise, the cost within which multiplication by T is
     Otherwise, the cost within which multiplication by T is
     impossible.  */
     impossible.  */
  struct mult_cost cost;
  struct mult_cost cost;
};
};
 
 
/* The number of cache/hash entries.  */
/* The number of cache/hash entries.  */
#if HOST_BITS_PER_WIDE_INT == 64
#if HOST_BITS_PER_WIDE_INT == 64
#define NUM_ALG_HASH_ENTRIES 1031
#define NUM_ALG_HASH_ENTRIES 1031
#else
#else
#define NUM_ALG_HASH_ENTRIES 307
#define NUM_ALG_HASH_ENTRIES 307
#endif
#endif
 
 
/* Each entry of ALG_HASH caches alg_code for some integer.  This is
/* Each entry of ALG_HASH caches alg_code for some integer.  This is
   actually a hash table.  If we have a collision, that the older
   actually a hash table.  If we have a collision, that the older
   entry is kicked out.  */
   entry is kicked out.  */
static struct alg_hash_entry alg_hash[NUM_ALG_HASH_ENTRIES];
static struct alg_hash_entry alg_hash[NUM_ALG_HASH_ENTRIES];
 
 
/* Indicates the type of fixup needed after a constant multiplication.
/* Indicates the type of fixup needed after a constant multiplication.
   BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
   BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
   the result should be negated, and ADD_VARIANT means that the
   the result should be negated, and ADD_VARIANT means that the
   multiplicand should be added to the result.  */
   multiplicand should be added to the result.  */
enum mult_variant {basic_variant, negate_variant, add_variant};
enum mult_variant {basic_variant, negate_variant, add_variant};
 
 
static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
                        const struct mult_cost *, enum machine_mode mode);
                        const struct mult_cost *, enum machine_mode mode);
static bool choose_mult_variant (enum machine_mode, HOST_WIDE_INT,
static bool choose_mult_variant (enum machine_mode, HOST_WIDE_INT,
                                 struct algorithm *, enum mult_variant *, int);
                                 struct algorithm *, enum mult_variant *, int);
static rtx expand_mult_const (enum machine_mode, rtx, HOST_WIDE_INT, rtx,
static rtx expand_mult_const (enum machine_mode, rtx, HOST_WIDE_INT, rtx,
                              const struct algorithm *, enum mult_variant);
                              const struct algorithm *, enum mult_variant);
static unsigned HOST_WIDE_INT choose_multiplier (unsigned HOST_WIDE_INT, int,
static unsigned HOST_WIDE_INT choose_multiplier (unsigned HOST_WIDE_INT, int,
                                                 int, rtx *, int *, int *);
                                                 int, rtx *, int *, int *);
static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
static rtx extract_high_half (enum machine_mode, rtx);
static rtx extract_high_half (enum machine_mode, rtx);
static rtx expand_mult_highpart (enum machine_mode, rtx, rtx, rtx, int, int);
static rtx expand_mult_highpart (enum machine_mode, rtx, rtx, rtx, int, int);
static rtx expand_mult_highpart_optab (enum machine_mode, rtx, rtx, rtx,
static rtx expand_mult_highpart_optab (enum machine_mode, rtx, rtx, rtx,
                                       int, int);
                                       int, int);
/* Compute and return the best algorithm for multiplying by T.
/* Compute and return the best algorithm for multiplying by T.
   The algorithm must cost less than cost_limit
   The algorithm must cost less than cost_limit
   If retval.cost >= COST_LIMIT, no algorithm was found and all
   If retval.cost >= COST_LIMIT, no algorithm was found and all
   other field of the returned struct are undefined.
   other field of the returned struct are undefined.
   MODE is the machine mode of the multiplication.  */
   MODE is the machine mode of the multiplication.  */
 
 
static void
static void
synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
            const struct mult_cost *cost_limit, enum machine_mode mode)
            const struct mult_cost *cost_limit, enum machine_mode mode)
{
{
  int m;
  int m;
  struct algorithm *alg_in, *best_alg;
  struct algorithm *alg_in, *best_alg;
  struct mult_cost best_cost;
  struct mult_cost best_cost;
  struct mult_cost new_limit;
  struct mult_cost new_limit;
  int op_cost, op_latency;
  int op_cost, op_latency;
  unsigned HOST_WIDE_INT q;
  unsigned HOST_WIDE_INT q;
  int maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (mode));
  int maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (mode));
  int hash_index;
  int hash_index;
  bool cache_hit = false;
  bool cache_hit = false;
  enum alg_code cache_alg = alg_zero;
  enum alg_code cache_alg = alg_zero;
 
 
  /* Indicate that no algorithm is yet found.  If no algorithm
  /* Indicate that no algorithm is yet found.  If no algorithm
     is found, this value will be returned and indicate failure.  */
     is found, this value will be returned and indicate failure.  */
  alg_out->cost.cost = cost_limit->cost + 1;
  alg_out->cost.cost = cost_limit->cost + 1;
  alg_out->cost.latency = cost_limit->latency + 1;
  alg_out->cost.latency = cost_limit->latency + 1;
 
 
  if (cost_limit->cost < 0
  if (cost_limit->cost < 0
      || (cost_limit->cost == 0 && cost_limit->latency <= 0))
      || (cost_limit->cost == 0 && cost_limit->latency <= 0))
    return;
    return;
 
 
  /* Restrict the bits of "t" to the multiplication's mode.  */
  /* Restrict the bits of "t" to the multiplication's mode.  */
  t &= GET_MODE_MASK (mode);
  t &= GET_MODE_MASK (mode);
 
 
  /* t == 1 can be done in zero cost.  */
  /* t == 1 can be done in zero cost.  */
  if (t == 1)
  if (t == 1)
    {
    {
      alg_out->ops = 1;
      alg_out->ops = 1;
      alg_out->cost.cost = 0;
      alg_out->cost.cost = 0;
      alg_out->cost.latency = 0;
      alg_out->cost.latency = 0;
      alg_out->op[0] = alg_m;
      alg_out->op[0] = alg_m;
      return;
      return;
    }
    }
 
 
  /* t == 0 sometimes has a cost.  If it does and it exceeds our limit,
  /* t == 0 sometimes has a cost.  If it does and it exceeds our limit,
     fail now.  */
     fail now.  */
  if (t == 0)
  if (t == 0)
    {
    {
      if (MULT_COST_LESS (cost_limit, zero_cost))
      if (MULT_COST_LESS (cost_limit, zero_cost))
        return;
        return;
      else
      else
        {
        {
          alg_out->ops = 1;
          alg_out->ops = 1;
          alg_out->cost.cost = zero_cost;
          alg_out->cost.cost = zero_cost;
          alg_out->cost.latency = zero_cost;
          alg_out->cost.latency = zero_cost;
          alg_out->op[0] = alg_zero;
          alg_out->op[0] = alg_zero;
          return;
          return;
        }
        }
    }
    }
 
 
  /* We'll be needing a couple extra algorithm structures now.  */
  /* We'll be needing a couple extra algorithm structures now.  */
 
 
  alg_in = alloca (sizeof (struct algorithm));
  alg_in = alloca (sizeof (struct algorithm));
  best_alg = alloca (sizeof (struct algorithm));
  best_alg = alloca (sizeof (struct algorithm));
  best_cost = *cost_limit;
  best_cost = *cost_limit;
 
 
  /* Compute the hash index.  */
  /* Compute the hash index.  */
  hash_index = (t ^ (unsigned int) mode) % NUM_ALG_HASH_ENTRIES;
  hash_index = (t ^ (unsigned int) mode) % NUM_ALG_HASH_ENTRIES;
 
 
  /* See if we already know what to do for T.  */
  /* See if we already know what to do for T.  */
  if (alg_hash[hash_index].t == t
  if (alg_hash[hash_index].t == t
      && alg_hash[hash_index].mode == mode
      && alg_hash[hash_index].mode == mode
      && alg_hash[hash_index].alg != alg_unknown)
      && alg_hash[hash_index].alg != alg_unknown)
    {
    {
      cache_alg = alg_hash[hash_index].alg;
      cache_alg = alg_hash[hash_index].alg;
 
 
      if (cache_alg == alg_impossible)
      if (cache_alg == alg_impossible)
        {
        {
          /* The cache tells us that it's impossible to synthesize
          /* The cache tells us that it's impossible to synthesize
             multiplication by T within alg_hash[hash_index].cost.  */
             multiplication by T within alg_hash[hash_index].cost.  */
          if (!CHEAPER_MULT_COST (&alg_hash[hash_index].cost, cost_limit))
          if (!CHEAPER_MULT_COST (&alg_hash[hash_index].cost, cost_limit))
            /* COST_LIMIT is at least as restrictive as the one
            /* COST_LIMIT is at least as restrictive as the one
               recorded in the hash table, in which case we have no
               recorded in the hash table, in which case we have no
               hope of synthesizing a multiplication.  Just
               hope of synthesizing a multiplication.  Just
               return.  */
               return.  */
            return;
            return;
 
 
          /* If we get here, COST_LIMIT is less restrictive than the
          /* If we get here, COST_LIMIT is less restrictive than the
             one recorded in the hash table, so we may be able to
             one recorded in the hash table, so we may be able to
             synthesize a multiplication.  Proceed as if we didn't
             synthesize a multiplication.  Proceed as if we didn't
             have the cache entry.  */
             have the cache entry.  */
        }
        }
      else
      else
        {
        {
          if (CHEAPER_MULT_COST (cost_limit, &alg_hash[hash_index].cost))
          if (CHEAPER_MULT_COST (cost_limit, &alg_hash[hash_index].cost))
            /* The cached algorithm shows that this multiplication
            /* The cached algorithm shows that this multiplication
               requires more cost than COST_LIMIT.  Just return.  This
               requires more cost than COST_LIMIT.  Just return.  This
               way, we don't clobber this cache entry with
               way, we don't clobber this cache entry with
               alg_impossible but retain useful information.  */
               alg_impossible but retain useful information.  */
            return;
            return;
 
 
          cache_hit = true;
          cache_hit = true;
 
 
          switch (cache_alg)
          switch (cache_alg)
            {
            {
            case alg_shift:
            case alg_shift:
              goto do_alg_shift;
              goto do_alg_shift;
 
 
            case alg_add_t_m2:
            case alg_add_t_m2:
            case alg_sub_t_m2:
            case alg_sub_t_m2:
              goto do_alg_addsub_t_m2;
              goto do_alg_addsub_t_m2;
 
 
            case alg_add_factor:
            case alg_add_factor:
            case alg_sub_factor:
            case alg_sub_factor:
              goto do_alg_addsub_factor;
              goto do_alg_addsub_factor;
 
 
            case alg_add_t2_m:
            case alg_add_t2_m:
              goto do_alg_add_t2_m;
              goto do_alg_add_t2_m;
 
 
            case alg_sub_t2_m:
            case alg_sub_t2_m:
              goto do_alg_sub_t2_m;
              goto do_alg_sub_t2_m;
 
 
            default:
            default:
              gcc_unreachable ();
              gcc_unreachable ();
            }
            }
        }
        }
    }
    }
 
 
  /* If we have a group of zero bits at the low-order part of T, try
  /* If we have a group of zero bits at the low-order part of T, try
     multiplying by the remaining bits and then doing a shift.  */
     multiplying by the remaining bits and then doing a shift.  */
 
 
  if ((t & 1) == 0)
  if ((t & 1) == 0)
    {
    {
    do_alg_shift:
    do_alg_shift:
      m = floor_log2 (t & -t);  /* m = number of low zero bits */
      m = floor_log2 (t & -t);  /* m = number of low zero bits */
      if (m < maxm)
      if (m < maxm)
        {
        {
          q = t >> m;
          q = t >> m;
          /* The function expand_shift will choose between a shift and
          /* The function expand_shift will choose between a shift and
             a sequence of additions, so the observed cost is given as
             a sequence of additions, so the observed cost is given as
             MIN (m * add_cost[mode], shift_cost[mode][m]).  */
             MIN (m * add_cost[mode], shift_cost[mode][m]).  */
          op_cost = m * add_cost[mode];
          op_cost = m * add_cost[mode];
          if (shift_cost[mode][m] < op_cost)
          if (shift_cost[mode][m] < op_cost)
            op_cost = shift_cost[mode][m];
            op_cost = shift_cost[mode][m];
          new_limit.cost = best_cost.cost - op_cost;
          new_limit.cost = best_cost.cost - op_cost;
          new_limit.latency = best_cost.latency - op_cost;
          new_limit.latency = best_cost.latency - op_cost;
          synth_mult (alg_in, q, &new_limit, mode);
          synth_mult (alg_in, q, &new_limit, mode);
 
 
          alg_in->cost.cost += op_cost;
          alg_in->cost.cost += op_cost;
          alg_in->cost.latency += op_cost;
          alg_in->cost.latency += op_cost;
          if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
          if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
            {
            {
              struct algorithm *x;
              struct algorithm *x;
              best_cost = alg_in->cost;
              best_cost = alg_in->cost;
              x = alg_in, alg_in = best_alg, best_alg = x;
              x = alg_in, alg_in = best_alg, best_alg = x;
              best_alg->log[best_alg->ops] = m;
              best_alg->log[best_alg->ops] = m;
              best_alg->op[best_alg->ops] = alg_shift;
              best_alg->op[best_alg->ops] = alg_shift;
            }
            }
        }
        }
      if (cache_hit)
      if (cache_hit)
        goto done;
        goto done;
    }
    }
 
 
  /* If we have an odd number, add or subtract one.  */
  /* If we have an odd number, add or subtract one.  */
  if ((t & 1) != 0)
  if ((t & 1) != 0)
    {
    {
      unsigned HOST_WIDE_INT w;
      unsigned HOST_WIDE_INT w;
 
 
    do_alg_addsub_t_m2:
    do_alg_addsub_t_m2:
      for (w = 1; (w & t) != 0; w <<= 1)
      for (w = 1; (w & t) != 0; w <<= 1)
        ;
        ;
      /* If T was -1, then W will be zero after the loop.  This is another
      /* If T was -1, then W will be zero after the loop.  This is another
         case where T ends with ...111.  Handling this with (T + 1) and
         case where T ends with ...111.  Handling this with (T + 1) and
         subtract 1 produces slightly better code and results in algorithm
         subtract 1 produces slightly better code and results in algorithm
         selection much faster than treating it like the ...0111 case
         selection much faster than treating it like the ...0111 case
         below.  */
         below.  */
      if (w == 0
      if (w == 0
          || (w > 2
          || (w > 2
              /* Reject the case where t is 3.
              /* Reject the case where t is 3.
                 Thus we prefer addition in that case.  */
                 Thus we prefer addition in that case.  */
              && t != 3))
              && t != 3))
        {
        {
          /* T ends with ...111.  Multiply by (T + 1) and subtract 1.  */
          /* T ends with ...111.  Multiply by (T + 1) and subtract 1.  */
 
 
          op_cost = add_cost[mode];
          op_cost = add_cost[mode];
          new_limit.cost = best_cost.cost - op_cost;
          new_limit.cost = best_cost.cost - op_cost;
          new_limit.latency = best_cost.latency - op_cost;
          new_limit.latency = best_cost.latency - op_cost;
          synth_mult (alg_in, t + 1, &new_limit, mode);
          synth_mult (alg_in, t + 1, &new_limit, mode);
 
 
          alg_in->cost.cost += op_cost;
          alg_in->cost.cost += op_cost;
          alg_in->cost.latency += op_cost;
          alg_in->cost.latency += op_cost;
          if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
          if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
            {
            {
              struct algorithm *x;
              struct algorithm *x;
              best_cost = alg_in->cost;
              best_cost = alg_in->cost;
              x = alg_in, alg_in = best_alg, best_alg = x;
              x = alg_in, alg_in = best_alg, best_alg = x;
              best_alg->log[best_alg->ops] = 0;
              best_alg->log[best_alg->ops] = 0;
              best_alg->op[best_alg->ops] = alg_sub_t_m2;
              best_alg->op[best_alg->ops] = alg_sub_t_m2;
            }
            }
        }
        }
      else
      else
        {
        {
          /* T ends with ...01 or ...011.  Multiply by (T - 1) and add 1.  */
          /* T ends with ...01 or ...011.  Multiply by (T - 1) and add 1.  */
 
 
          op_cost = add_cost[mode];
          op_cost = add_cost[mode];
          new_limit.cost = best_cost.cost - op_cost;
          new_limit.cost = best_cost.cost - op_cost;
          new_limit.latency = best_cost.latency - op_cost;
          new_limit.latency = best_cost.latency - op_cost;
          synth_mult (alg_in, t - 1, &new_limit, mode);
          synth_mult (alg_in, t - 1, &new_limit, mode);
 
 
          alg_in->cost.cost += op_cost;
          alg_in->cost.cost += op_cost;
          alg_in->cost.latency += op_cost;
          alg_in->cost.latency += op_cost;
          if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
          if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
            {
            {
              struct algorithm *x;
              struct algorithm *x;
              best_cost = alg_in->cost;
              best_cost = alg_in->cost;
              x = alg_in, alg_in = best_alg, best_alg = x;
              x = alg_in, alg_in = best_alg, best_alg = x;
              best_alg->log[best_alg->ops] = 0;
              best_alg->log[best_alg->ops] = 0;
              best_alg->op[best_alg->ops] = alg_add_t_m2;
              best_alg->op[best_alg->ops] = alg_add_t_m2;
            }
            }
        }
        }
      if (cache_hit)
      if (cache_hit)
        goto done;
        goto done;
    }
    }
 
 
  /* Look for factors of t of the form
  /* Look for factors of t of the form
     t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
     t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
     If we find such a factor, we can multiply by t using an algorithm that
     If we find such a factor, we can multiply by t using an algorithm that
     multiplies by q, shift the result by m and add/subtract it to itself.
     multiplies by q, shift the result by m and add/subtract it to itself.
 
 
     We search for large factors first and loop down, even if large factors
     We search for large factors first and loop down, even if large factors
     are less probable than small; if we find a large factor we will find a
     are less probable than small; if we find a large factor we will find a
     good sequence quickly, and therefore be able to prune (by decreasing
     good sequence quickly, and therefore be able to prune (by decreasing
     COST_LIMIT) the search.  */
     COST_LIMIT) the search.  */
 
 
 do_alg_addsub_factor:
 do_alg_addsub_factor:
  for (m = floor_log2 (t - 1); m >= 2; m--)
  for (m = floor_log2 (t - 1); m >= 2; m--)
    {
    {
      unsigned HOST_WIDE_INT d;
      unsigned HOST_WIDE_INT d;
 
 
      d = ((unsigned HOST_WIDE_INT) 1 << m) + 1;
      d = ((unsigned HOST_WIDE_INT) 1 << m) + 1;
      if (t % d == 0 && t > d && m < maxm
      if (t % d == 0 && t > d && m < maxm
          && (!cache_hit || cache_alg == alg_add_factor))
          && (!cache_hit || cache_alg == alg_add_factor))
        {
        {
          /* If the target has a cheap shift-and-add instruction use
          /* If the target has a cheap shift-and-add instruction use
             that in preference to a shift insn followed by an add insn.
             that in preference to a shift insn followed by an add insn.
             Assume that the shift-and-add is "atomic" with a latency
             Assume that the shift-and-add is "atomic" with a latency
             equal to its cost, otherwise assume that on superscalar
             equal to its cost, otherwise assume that on superscalar
             hardware the shift may be executed concurrently with the
             hardware the shift may be executed concurrently with the
             earlier steps in the algorithm.  */
             earlier steps in the algorithm.  */
          op_cost = add_cost[mode] + shift_cost[mode][m];
          op_cost = add_cost[mode] + shift_cost[mode][m];
          if (shiftadd_cost[mode][m] < op_cost)
          if (shiftadd_cost[mode][m] < op_cost)
            {
            {
              op_cost = shiftadd_cost[mode][m];
              op_cost = shiftadd_cost[mode][m];
              op_latency = op_cost;
              op_latency = op_cost;
            }
            }
          else
          else
            op_latency = add_cost[mode];
            op_latency = add_cost[mode];
 
 
          new_limit.cost = best_cost.cost - op_cost;
          new_limit.cost = best_cost.cost - op_cost;
          new_limit.latency = best_cost.latency - op_latency;
          new_limit.latency = best_cost.latency - op_latency;
          synth_mult (alg_in, t / d, &new_limit, mode);
          synth_mult (alg_in, t / d, &new_limit, mode);
 
 
          alg_in->cost.cost += op_cost;
          alg_in->cost.cost += op_cost;
          alg_in->cost.latency += op_latency;
          alg_in->cost.latency += op_latency;
          if (alg_in->cost.latency < op_cost)
          if (alg_in->cost.latency < op_cost)
            alg_in->cost.latency = op_cost;
            alg_in->cost.latency = op_cost;
          if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
          if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
            {
            {
              struct algorithm *x;
              struct algorithm *x;
              best_cost = alg_in->cost;
              best_cost = alg_in->cost;
              x = alg_in, alg_in = best_alg, best_alg = x;
              x = alg_in, alg_in = best_alg, best_alg = x;
              best_alg->log[best_alg->ops] = m;
              best_alg->log[best_alg->ops] = m;
              best_alg->op[best_alg->ops] = alg_add_factor;
              best_alg->op[best_alg->ops] = alg_add_factor;
            }
            }
          /* Other factors will have been taken care of in the recursion.  */
          /* Other factors will have been taken care of in the recursion.  */
          break;
          break;
        }
        }
 
 
      d = ((unsigned HOST_WIDE_INT) 1 << m) - 1;
      d = ((unsigned HOST_WIDE_INT) 1 << m) - 1;
      if (t % d == 0 && t > d && m < maxm
      if (t % d == 0 && t > d && m < maxm
          && (!cache_hit || cache_alg == alg_sub_factor))
          && (!cache_hit || cache_alg == alg_sub_factor))
        {
        {
          /* If the target has a cheap shift-and-subtract insn use
          /* If the target has a cheap shift-and-subtract insn use
             that in preference to a shift insn followed by a sub insn.
             that in preference to a shift insn followed by a sub insn.
             Assume that the shift-and-sub is "atomic" with a latency
             Assume that the shift-and-sub is "atomic" with a latency
             equal to it's cost, otherwise assume that on superscalar
             equal to it's cost, otherwise assume that on superscalar
             hardware the shift may be executed concurrently with the
             hardware the shift may be executed concurrently with the
             earlier steps in the algorithm.  */
             earlier steps in the algorithm.  */
          op_cost = add_cost[mode] + shift_cost[mode][m];
          op_cost = add_cost[mode] + shift_cost[mode][m];
          if (shiftsub_cost[mode][m] < op_cost)
          if (shiftsub_cost[mode][m] < op_cost)
            {
            {
              op_cost = shiftsub_cost[mode][m];
              op_cost = shiftsub_cost[mode][m];
              op_latency = op_cost;
              op_latency = op_cost;
            }
            }
          else
          else
            op_latency = add_cost[mode];
            op_latency = add_cost[mode];
 
 
          new_limit.cost = best_cost.cost - op_cost;
          new_limit.cost = best_cost.cost - op_cost;
          new_limit.latency = best_cost.latency - op_latency;
          new_limit.latency = best_cost.latency - op_latency;
          synth_mult (alg_in, t / d, &new_limit, mode);
          synth_mult (alg_in, t / d, &new_limit, mode);
 
 
          alg_in->cost.cost += op_cost;
          alg_in->cost.cost += op_cost;
          alg_in->cost.latency += op_latency;
          alg_in->cost.latency += op_latency;
          if (alg_in->cost.latency < op_cost)
          if (alg_in->cost.latency < op_cost)
            alg_in->cost.latency = op_cost;
            alg_in->cost.latency = op_cost;
          if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
          if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
            {
            {
              struct algorithm *x;
              struct algorithm *x;
              best_cost = alg_in->cost;
              best_cost = alg_in->cost;
              x = alg_in, alg_in = best_alg, best_alg = x;
              x = alg_in, alg_in = best_alg, best_alg = x;
              best_alg->log[best_alg->ops] = m;
              best_alg->log[best_alg->ops] = m;
              best_alg->op[best_alg->ops] = alg_sub_factor;
              best_alg->op[best_alg->ops] = alg_sub_factor;
            }
            }
          break;
          break;
        }
        }
    }
    }
  if (cache_hit)
  if (cache_hit)
    goto done;
    goto done;
 
 
  /* Try shift-and-add (load effective address) instructions,
  /* Try shift-and-add (load effective address) instructions,
     i.e. do a*3, a*5, a*9.  */
     i.e. do a*3, a*5, a*9.  */
  if ((t & 1) != 0)
  if ((t & 1) != 0)
    {
    {
    do_alg_add_t2_m:
    do_alg_add_t2_m:
      q = t - 1;
      q = t - 1;
      q = q & -q;
      q = q & -q;
      m = exact_log2 (q);
      m = exact_log2 (q);
      if (m >= 0 && m < maxm)
      if (m >= 0 && m < maxm)
        {
        {
          op_cost = shiftadd_cost[mode][m];
          op_cost = shiftadd_cost[mode][m];
          new_limit.cost = best_cost.cost - op_cost;
          new_limit.cost = best_cost.cost - op_cost;
          new_limit.latency = best_cost.latency - op_cost;
          new_limit.latency = best_cost.latency - op_cost;
          synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
          synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
 
 
          alg_in->cost.cost += op_cost;
          alg_in->cost.cost += op_cost;
          alg_in->cost.latency += op_cost;
          alg_in->cost.latency += op_cost;
          if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
          if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
            {
            {
              struct algorithm *x;
              struct algorithm *x;
              best_cost = alg_in->cost;
              best_cost = alg_in->cost;
              x = alg_in, alg_in = best_alg, best_alg = x;
              x = alg_in, alg_in = best_alg, best_alg = x;
              best_alg->log[best_alg->ops] = m;
              best_alg->log[best_alg->ops] = m;
              best_alg->op[best_alg->ops] = alg_add_t2_m;
              best_alg->op[best_alg->ops] = alg_add_t2_m;
            }
            }
        }
        }
      if (cache_hit)
      if (cache_hit)
        goto done;
        goto done;
 
 
    do_alg_sub_t2_m:
    do_alg_sub_t2_m:
      q = t + 1;
      q = t + 1;
      q = q & -q;
      q = q & -q;
      m = exact_log2 (q);
      m = exact_log2 (q);
      if (m >= 0 && m < maxm)
      if (m >= 0 && m < maxm)
        {
        {
          op_cost = shiftsub_cost[mode][m];
          op_cost = shiftsub_cost[mode][m];
          new_limit.cost = best_cost.cost - op_cost;
          new_limit.cost = best_cost.cost - op_cost;
          new_limit.latency = best_cost.latency - op_cost;
          new_limit.latency = best_cost.latency - op_cost;
          synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
          synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
 
 
          alg_in->cost.cost += op_cost;
          alg_in->cost.cost += op_cost;
          alg_in->cost.latency += op_cost;
          alg_in->cost.latency += op_cost;
          if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
          if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
            {
            {
              struct algorithm *x;
              struct algorithm *x;
              best_cost = alg_in->cost;
              best_cost = alg_in->cost;
              x = alg_in, alg_in = best_alg, best_alg = x;
              x = alg_in, alg_in = best_alg, best_alg = x;
              best_alg->log[best_alg->ops] = m;
              best_alg->log[best_alg->ops] = m;
              best_alg->op[best_alg->ops] = alg_sub_t2_m;
              best_alg->op[best_alg->ops] = alg_sub_t2_m;
            }
            }
        }
        }
      if (cache_hit)
      if (cache_hit)
        goto done;
        goto done;
    }
    }
 
 
 done:
 done:
  /* If best_cost has not decreased, we have not found any algorithm.  */
  /* If best_cost has not decreased, we have not found any algorithm.  */
  if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
  if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
    {
    {
      /* We failed to find an algorithm.  Record alg_impossible for
      /* We failed to find an algorithm.  Record alg_impossible for
         this case (that is, <T, MODE, COST_LIMIT>) so that next time
         this case (that is, <T, MODE, COST_LIMIT>) so that next time
         we are asked to find an algorithm for T within the same or
         we are asked to find an algorithm for T within the same or
         lower COST_LIMIT, we can immediately return to the
         lower COST_LIMIT, we can immediately return to the
         caller.  */
         caller.  */
      alg_hash[hash_index].t = t;
      alg_hash[hash_index].t = t;
      alg_hash[hash_index].mode = mode;
      alg_hash[hash_index].mode = mode;
      alg_hash[hash_index].alg = alg_impossible;
      alg_hash[hash_index].alg = alg_impossible;
      alg_hash[hash_index].cost = *cost_limit;
      alg_hash[hash_index].cost = *cost_limit;
      return;
      return;
    }
    }
 
 
  /* Cache the result.  */
  /* Cache the result.  */
  if (!cache_hit)
  if (!cache_hit)
    {
    {
      alg_hash[hash_index].t = t;
      alg_hash[hash_index].t = t;
      alg_hash[hash_index].mode = mode;
      alg_hash[hash_index].mode = mode;
      alg_hash[hash_index].alg = best_alg->op[best_alg->ops];
      alg_hash[hash_index].alg = best_alg->op[best_alg->ops];
      alg_hash[hash_index].cost.cost = best_cost.cost;
      alg_hash[hash_index].cost.cost = best_cost.cost;
      alg_hash[hash_index].cost.latency = best_cost.latency;
      alg_hash[hash_index].cost.latency = best_cost.latency;
    }
    }
 
 
  /* If we are getting a too long sequence for `struct algorithm'
  /* If we are getting a too long sequence for `struct algorithm'
     to record, make this search fail.  */
     to record, make this search fail.  */
  if (best_alg->ops == MAX_BITS_PER_WORD)
  if (best_alg->ops == MAX_BITS_PER_WORD)
    return;
    return;
 
 
  /* Copy the algorithm from temporary space to the space at alg_out.
  /* Copy the algorithm from temporary space to the space at alg_out.
     We avoid using structure assignment because the majority of
     We avoid using structure assignment because the majority of
     best_alg is normally undefined, and this is a critical function.  */
     best_alg is normally undefined, and this is a critical function.  */
  alg_out->ops = best_alg->ops + 1;
  alg_out->ops = best_alg->ops + 1;
  alg_out->cost = best_cost;
  alg_out->cost = best_cost;
  memcpy (alg_out->op, best_alg->op,
  memcpy (alg_out->op, best_alg->op,
          alg_out->ops * sizeof *alg_out->op);
          alg_out->ops * sizeof *alg_out->op);
  memcpy (alg_out->log, best_alg->log,
  memcpy (alg_out->log, best_alg->log,
          alg_out->ops * sizeof *alg_out->log);
          alg_out->ops * sizeof *alg_out->log);
}
}


/* Find the cheapest way of multiplying a value of mode MODE by VAL.
/* Find the cheapest way of multiplying a value of mode MODE by VAL.
   Try three variations:
   Try three variations:
 
 
       - a shift/add sequence based on VAL itself
       - a shift/add sequence based on VAL itself
       - a shift/add sequence based on -VAL, followed by a negation
       - a shift/add sequence based on -VAL, followed by a negation
       - a shift/add sequence based on VAL - 1, followed by an addition.
       - a shift/add sequence based on VAL - 1, followed by an addition.
 
 
   Return true if the cheapest of these cost less than MULT_COST,
   Return true if the cheapest of these cost less than MULT_COST,
   describing the algorithm in *ALG and final fixup in *VARIANT.  */
   describing the algorithm in *ALG and final fixup in *VARIANT.  */
 
 
static bool
static bool
choose_mult_variant (enum machine_mode mode, HOST_WIDE_INT val,
choose_mult_variant (enum machine_mode mode, HOST_WIDE_INT val,
                     struct algorithm *alg, enum mult_variant *variant,
                     struct algorithm *alg, enum mult_variant *variant,
                     int mult_cost)
                     int mult_cost)
{
{
  struct algorithm alg2;
  struct algorithm alg2;
  struct mult_cost limit;
  struct mult_cost limit;
  int op_cost;
  int op_cost;
 
 
  /* Fail quickly for impossible bounds.  */
  /* Fail quickly for impossible bounds.  */
  if (mult_cost < 0)
  if (mult_cost < 0)
    return false;
    return false;
 
 
  /* Ensure that mult_cost provides a reasonable upper bound.
  /* Ensure that mult_cost provides a reasonable upper bound.
     Any constant multiplication can be performed with less
     Any constant multiplication can be performed with less
     than 2 * bits additions.  */
     than 2 * bits additions.  */
  op_cost = 2 * GET_MODE_BITSIZE (mode) * add_cost[mode];
  op_cost = 2 * GET_MODE_BITSIZE (mode) * add_cost[mode];
  if (mult_cost > op_cost)
  if (mult_cost > op_cost)
    mult_cost = op_cost;
    mult_cost = op_cost;
 
 
  *variant = basic_variant;
  *variant = basic_variant;
  limit.cost = mult_cost;
  limit.cost = mult_cost;
  limit.latency = mult_cost;
  limit.latency = mult_cost;
  synth_mult (alg, val, &limit, mode);
  synth_mult (alg, val, &limit, mode);
 
 
  /* This works only if the inverted value actually fits in an
  /* This works only if the inverted value actually fits in an
     `unsigned int' */
     `unsigned int' */
  if (HOST_BITS_PER_INT >= GET_MODE_BITSIZE (mode))
  if (HOST_BITS_PER_INT >= GET_MODE_BITSIZE (mode))
    {
    {
      op_cost = neg_cost[mode];
      op_cost = neg_cost[mode];
      if (MULT_COST_LESS (&alg->cost, mult_cost))
      if (MULT_COST_LESS (&alg->cost, mult_cost))
        {
        {
          limit.cost = alg->cost.cost - op_cost;
          limit.cost = alg->cost.cost - op_cost;
          limit.latency = alg->cost.latency - op_cost;
          limit.latency = alg->cost.latency - op_cost;
        }
        }
      else
      else
        {
        {
          limit.cost = mult_cost - op_cost;
          limit.cost = mult_cost - op_cost;
          limit.latency = mult_cost - op_cost;
          limit.latency = mult_cost - op_cost;
        }
        }
 
 
      synth_mult (&alg2, -val, &limit, mode);
      synth_mult (&alg2, -val, &limit, mode);
      alg2.cost.cost += op_cost;
      alg2.cost.cost += op_cost;
      alg2.cost.latency += op_cost;
      alg2.cost.latency += op_cost;
      if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
      if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
        *alg = alg2, *variant = negate_variant;
        *alg = alg2, *variant = negate_variant;
    }
    }
 
 
  /* This proves very useful for division-by-constant.  */
  /* This proves very useful for division-by-constant.  */
  op_cost = add_cost[mode];
  op_cost = add_cost[mode];
  if (MULT_COST_LESS (&alg->cost, mult_cost))
  if (MULT_COST_LESS (&alg->cost, mult_cost))
    {
    {
      limit.cost = alg->cost.cost - op_cost;
      limit.cost = alg->cost.cost - op_cost;
      limit.latency = alg->cost.latency - op_cost;
      limit.latency = alg->cost.latency - op_cost;
    }
    }
  else
  else
    {
    {
      limit.cost = mult_cost - op_cost;
      limit.cost = mult_cost - op_cost;
      limit.latency = mult_cost - op_cost;
      limit.latency = mult_cost - op_cost;
    }
    }
 
 
  synth_mult (&alg2, val - 1, &limit, mode);
  synth_mult (&alg2, val - 1, &limit, mode);
  alg2.cost.cost += op_cost;
  alg2.cost.cost += op_cost;
  alg2.cost.latency += op_cost;
  alg2.cost.latency += op_cost;
  if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
  if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
    *alg = alg2, *variant = add_variant;
    *alg = alg2, *variant = add_variant;
 
 
  return MULT_COST_LESS (&alg->cost, mult_cost);
  return MULT_COST_LESS (&alg->cost, mult_cost);
}
}
 
 
/* A subroutine of expand_mult, used for constant multiplications.
/* A subroutine of expand_mult, used for constant multiplications.
   Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
   Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
   convenient.  Use the shift/add sequence described by ALG and apply
   convenient.  Use the shift/add sequence described by ALG and apply
   the final fixup specified by VARIANT.  */
   the final fixup specified by VARIANT.  */
 
 
static rtx
static rtx
expand_mult_const (enum machine_mode mode, rtx op0, HOST_WIDE_INT val,
expand_mult_const (enum machine_mode mode, rtx op0, HOST_WIDE_INT val,
                   rtx target, const struct algorithm *alg,
                   rtx target, const struct algorithm *alg,
                   enum mult_variant variant)
                   enum mult_variant variant)
{
{
  HOST_WIDE_INT val_so_far;
  HOST_WIDE_INT val_so_far;
  rtx insn, accum, tem;
  rtx insn, accum, tem;
  int opno;
  int opno;
  enum machine_mode nmode;
  enum machine_mode nmode;
 
 
  /* Avoid referencing memory over and over.
  /* Avoid referencing memory over and over.
     For speed, but also for correctness when mem is volatile.  */
     For speed, but also for correctness when mem is volatile.  */
  if (MEM_P (op0))
  if (MEM_P (op0))
    op0 = force_reg (mode, op0);
    op0 = force_reg (mode, op0);
 
 
  /* ACCUM starts out either as OP0 or as a zero, depending on
  /* ACCUM starts out either as OP0 or as a zero, depending on
     the first operation.  */
     the first operation.  */
 
 
  if (alg->op[0] == alg_zero)
  if (alg->op[0] == alg_zero)
    {
    {
      accum = copy_to_mode_reg (mode, const0_rtx);
      accum = copy_to_mode_reg (mode, const0_rtx);
      val_so_far = 0;
      val_so_far = 0;
    }
    }
  else if (alg->op[0] == alg_m)
  else if (alg->op[0] == alg_m)
    {
    {
      accum = copy_to_mode_reg (mode, op0);
      accum = copy_to_mode_reg (mode, op0);
      val_so_far = 1;
      val_so_far = 1;
    }
    }
  else
  else
    gcc_unreachable ();
    gcc_unreachable ();
 
 
  for (opno = 1; opno < alg->ops; opno++)
  for (opno = 1; opno < alg->ops; opno++)
    {
    {
      int log = alg->log[opno];
      int log = alg->log[opno];
      rtx shift_subtarget = optimize ? 0 : accum;
      rtx shift_subtarget = optimize ? 0 : accum;
      rtx add_target
      rtx add_target
        = (opno == alg->ops - 1 && target != 0 && variant != add_variant
        = (opno == alg->ops - 1 && target != 0 && variant != add_variant
           && !optimize)
           && !optimize)
          ? target : 0;
          ? target : 0;
      rtx accum_target = optimize ? 0 : accum;
      rtx accum_target = optimize ? 0 : accum;
 
 
      switch (alg->op[opno])
      switch (alg->op[opno])
        {
        {
        case alg_shift:
        case alg_shift:
          accum = expand_shift (LSHIFT_EXPR, mode, accum,
          accum = expand_shift (LSHIFT_EXPR, mode, accum,
                                build_int_cst (NULL_TREE, log),
                                build_int_cst (NULL_TREE, log),
                                NULL_RTX, 0);
                                NULL_RTX, 0);
          val_so_far <<= log;
          val_so_far <<= log;
          break;
          break;
 
 
        case alg_add_t_m2:
        case alg_add_t_m2:
          tem = expand_shift (LSHIFT_EXPR, mode, op0,
          tem = expand_shift (LSHIFT_EXPR, mode, op0,
                              build_int_cst (NULL_TREE, log),
                              build_int_cst (NULL_TREE, log),
                              NULL_RTX, 0);
                              NULL_RTX, 0);
          accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
          accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
                                 add_target ? add_target : accum_target);
                                 add_target ? add_target : accum_target);
          val_so_far += (HOST_WIDE_INT) 1 << log;
          val_so_far += (HOST_WIDE_INT) 1 << log;
          break;
          break;
 
 
        case alg_sub_t_m2:
        case alg_sub_t_m2:
          tem = expand_shift (LSHIFT_EXPR, mode, op0,
          tem = expand_shift (LSHIFT_EXPR, mode, op0,
                              build_int_cst (NULL_TREE, log),
                              build_int_cst (NULL_TREE, log),
                              NULL_RTX, 0);
                              NULL_RTX, 0);
          accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
          accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
                                 add_target ? add_target : accum_target);
                                 add_target ? add_target : accum_target);
          val_so_far -= (HOST_WIDE_INT) 1 << log;
          val_so_far -= (HOST_WIDE_INT) 1 << log;
          break;
          break;
 
 
        case alg_add_t2_m:
        case alg_add_t2_m:
          accum = expand_shift (LSHIFT_EXPR, mode, accum,
          accum = expand_shift (LSHIFT_EXPR, mode, accum,
                                build_int_cst (NULL_TREE, log),
                                build_int_cst (NULL_TREE, log),
                                shift_subtarget,
                                shift_subtarget,
                                0);
                                0);
          accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
          accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
                                 add_target ? add_target : accum_target);
                                 add_target ? add_target : accum_target);
          val_so_far = (val_so_far << log) + 1;
          val_so_far = (val_so_far << log) + 1;
          break;
          break;
 
 
        case alg_sub_t2_m:
        case alg_sub_t2_m:
          accum = expand_shift (LSHIFT_EXPR, mode, accum,
          accum = expand_shift (LSHIFT_EXPR, mode, accum,
                                build_int_cst (NULL_TREE, log),
                                build_int_cst (NULL_TREE, log),
                                shift_subtarget, 0);
                                shift_subtarget, 0);
          accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
          accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
                                 add_target ? add_target : accum_target);
                                 add_target ? add_target : accum_target);
          val_so_far = (val_so_far << log) - 1;
          val_so_far = (val_so_far << log) - 1;
          break;
          break;
 
 
        case alg_add_factor:
        case alg_add_factor:
          tem = expand_shift (LSHIFT_EXPR, mode, accum,
          tem = expand_shift (LSHIFT_EXPR, mode, accum,
                              build_int_cst (NULL_TREE, log),
                              build_int_cst (NULL_TREE, log),
                              NULL_RTX, 0);
                              NULL_RTX, 0);
          accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
          accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
                                 add_target ? add_target : accum_target);
                                 add_target ? add_target : accum_target);
          val_so_far += val_so_far << log;
          val_so_far += val_so_far << log;
          break;
          break;
 
 
        case alg_sub_factor:
        case alg_sub_factor:
          tem = expand_shift (LSHIFT_EXPR, mode, accum,
          tem = expand_shift (LSHIFT_EXPR, mode, accum,
                              build_int_cst (NULL_TREE, log),
                              build_int_cst (NULL_TREE, log),
                              NULL_RTX, 0);
                              NULL_RTX, 0);
          accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
          accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
                                 (add_target
                                 (add_target
                                  ? add_target : (optimize ? 0 : tem)));
                                  ? add_target : (optimize ? 0 : tem)));
          val_so_far = (val_so_far << log) - val_so_far;
          val_so_far = (val_so_far << log) - val_so_far;
          break;
          break;
 
 
        default:
        default:
          gcc_unreachable ();
          gcc_unreachable ();
        }
        }
 
 
      /* Write a REG_EQUAL note on the last insn so that we can cse
      /* Write a REG_EQUAL note on the last insn so that we can cse
         multiplication sequences.  Note that if ACCUM is a SUBREG,
         multiplication sequences.  Note that if ACCUM is a SUBREG,
         we've set the inner register and must properly indicate
         we've set the inner register and must properly indicate
         that.  */
         that.  */
 
 
      tem = op0, nmode = mode;
      tem = op0, nmode = mode;
      if (GET_CODE (accum) == SUBREG)
      if (GET_CODE (accum) == SUBREG)
        {
        {
          nmode = GET_MODE (SUBREG_REG (accum));
          nmode = GET_MODE (SUBREG_REG (accum));
          tem = gen_lowpart (nmode, op0);
          tem = gen_lowpart (nmode, op0);
        }
        }
 
 
      insn = get_last_insn ();
      insn = get_last_insn ();
      set_unique_reg_note (insn, REG_EQUAL,
      set_unique_reg_note (insn, REG_EQUAL,
                           gen_rtx_MULT (nmode, tem, GEN_INT (val_so_far)));
                           gen_rtx_MULT (nmode, tem, GEN_INT (val_so_far)));
    }
    }
 
 
  if (variant == negate_variant)
  if (variant == negate_variant)
    {
    {
      val_so_far = -val_so_far;
      val_so_far = -val_so_far;
      accum = expand_unop (mode, neg_optab, accum, target, 0);
      accum = expand_unop (mode, neg_optab, accum, target, 0);
    }
    }
  else if (variant == add_variant)
  else if (variant == add_variant)
    {
    {
      val_so_far = val_so_far + 1;
      val_so_far = val_so_far + 1;
      accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
      accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
    }
    }
 
 
  /* Compare only the bits of val and val_so_far that are significant
  /* Compare only the bits of val and val_so_far that are significant
     in the result mode, to avoid sign-/zero-extension confusion.  */
     in the result mode, to avoid sign-/zero-extension confusion.  */
  val &= GET_MODE_MASK (mode);
  val &= GET_MODE_MASK (mode);
  val_so_far &= GET_MODE_MASK (mode);
  val_so_far &= GET_MODE_MASK (mode);
  gcc_assert (val == val_so_far);
  gcc_assert (val == val_so_far);
 
 
  return accum;
  return accum;
}
}
 
 
/* Perform a multiplication and return an rtx for the result.
/* Perform a multiplication and return an rtx for the result.
   MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
   MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
   TARGET is a suggestion for where to store the result (an rtx).
   TARGET is a suggestion for where to store the result (an rtx).
 
 
   We check specially for a constant integer as OP1.
   We check specially for a constant integer as OP1.
   If you want this check for OP0 as well, then before calling
   If you want this check for OP0 as well, then before calling
   you should swap the two operands if OP0 would be constant.  */
   you should swap the two operands if OP0 would be constant.  */
 
 
rtx
rtx
expand_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
expand_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
             int unsignedp)
             int unsignedp)
{
{
  enum mult_variant variant;
  enum mult_variant variant;
  struct algorithm algorithm;
  struct algorithm algorithm;
  int max_cost;
  int max_cost;
 
 
  /* Handling const0_rtx here allows us to use zero as a rogue value for
  /* Handling const0_rtx here allows us to use zero as a rogue value for
     coeff below.  */
     coeff below.  */
  if (op1 == const0_rtx)
  if (op1 == const0_rtx)
    return const0_rtx;
    return const0_rtx;
  if (op1 == const1_rtx)
  if (op1 == const1_rtx)
    return op0;
    return op0;
  if (op1 == constm1_rtx)
  if (op1 == constm1_rtx)
    return expand_unop (mode,
    return expand_unop (mode,
                        GET_MODE_CLASS (mode) == MODE_INT
                        GET_MODE_CLASS (mode) == MODE_INT
                        && !unsignedp && flag_trapv
                        && !unsignedp && flag_trapv
                        ? negv_optab : neg_optab,
                        ? negv_optab : neg_optab,
                        op0, target, 0);
                        op0, target, 0);
 
 
  /* These are the operations that are potentially turned into a sequence
  /* These are the operations that are potentially turned into a sequence
     of shifts and additions.  */
     of shifts and additions.  */
  if (SCALAR_INT_MODE_P (mode)
  if (SCALAR_INT_MODE_P (mode)
      && (unsignedp || !flag_trapv))
      && (unsignedp || !flag_trapv))
    {
    {
      HOST_WIDE_INT coeff = 0;
      HOST_WIDE_INT coeff = 0;
      rtx fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
      rtx fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
 
 
      /* synth_mult does an `unsigned int' multiply.  As long as the mode is
      /* synth_mult does an `unsigned int' multiply.  As long as the mode is
         less than or equal in size to `unsigned int' this doesn't matter.
         less than or equal in size to `unsigned int' this doesn't matter.
         If the mode is larger than `unsigned int', then synth_mult works
         If the mode is larger than `unsigned int', then synth_mult works
         only if the constant value exactly fits in an `unsigned int' without
         only if the constant value exactly fits in an `unsigned int' without
         any truncation.  This means that multiplying by negative values does
         any truncation.  This means that multiplying by negative values does
         not work; results are off by 2^32 on a 32 bit machine.  */
         not work; results are off by 2^32 on a 32 bit machine.  */
 
 
      if (GET_CODE (op1) == CONST_INT)
      if (GET_CODE (op1) == CONST_INT)
        {
        {
          /* Attempt to handle multiplication of DImode values by negative
          /* Attempt to handle multiplication of DImode values by negative
             coefficients, by performing the multiplication by a positive
             coefficients, by performing the multiplication by a positive
             multiplier and then inverting the result.  */
             multiplier and then inverting the result.  */
          if (INTVAL (op1) < 0
          if (INTVAL (op1) < 0
              && GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
              && GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
            {
            {
              /* Its safe to use -INTVAL (op1) even for INT_MIN, as the
              /* Its safe to use -INTVAL (op1) even for INT_MIN, as the
                 result is interpreted as an unsigned coefficient.
                 result is interpreted as an unsigned coefficient.
                 Exclude cost of op0 from max_cost to match the cost
                 Exclude cost of op0 from max_cost to match the cost
                 calculation of the synth_mult.  */
                 calculation of the synth_mult.  */
              max_cost = rtx_cost (gen_rtx_MULT (mode, fake_reg, op1), SET)
              max_cost = rtx_cost (gen_rtx_MULT (mode, fake_reg, op1), SET)
                         - neg_cost[mode];
                         - neg_cost[mode];
              if (max_cost > 0
              if (max_cost > 0
                  && choose_mult_variant (mode, -INTVAL (op1), &algorithm,
                  && choose_mult_variant (mode, -INTVAL (op1), &algorithm,
                                          &variant, max_cost))
                                          &variant, max_cost))
                {
                {
                  rtx temp = expand_mult_const (mode, op0, -INTVAL (op1),
                  rtx temp = expand_mult_const (mode, op0, -INTVAL (op1),
                                                NULL_RTX, &algorithm,
                                                NULL_RTX, &algorithm,
                                                variant);
                                                variant);
                  return expand_unop (mode, neg_optab, temp, target, 0);
                  return expand_unop (mode, neg_optab, temp, target, 0);
                }
                }
            }
            }
          else coeff = INTVAL (op1);
          else coeff = INTVAL (op1);
        }
        }
      else if (GET_CODE (op1) == CONST_DOUBLE)
      else if (GET_CODE (op1) == CONST_DOUBLE)
        {
        {
          /* If we are multiplying in DImode, it may still be a win
          /* If we are multiplying in DImode, it may still be a win
             to try to work with shifts and adds.  */
             to try to work with shifts and adds.  */
          if (CONST_DOUBLE_HIGH (op1) == 0)
          if (CONST_DOUBLE_HIGH (op1) == 0)
            coeff = CONST_DOUBLE_LOW (op1);
            coeff = CONST_DOUBLE_LOW (op1);
          else if (CONST_DOUBLE_LOW (op1) == 0
          else if (CONST_DOUBLE_LOW (op1) == 0
                   && EXACT_POWER_OF_2_OR_ZERO_P (CONST_DOUBLE_HIGH (op1)))
                   && EXACT_POWER_OF_2_OR_ZERO_P (CONST_DOUBLE_HIGH (op1)))
            {
            {
              int shift = floor_log2 (CONST_DOUBLE_HIGH (op1))
              int shift = floor_log2 (CONST_DOUBLE_HIGH (op1))
                          + HOST_BITS_PER_WIDE_INT;
                          + HOST_BITS_PER_WIDE_INT;
              return expand_shift (LSHIFT_EXPR, mode, op0,
              return expand_shift (LSHIFT_EXPR, mode, op0,
                                   build_int_cst (NULL_TREE, shift),
                                   build_int_cst (NULL_TREE, shift),
                                   target, unsignedp);
                                   target, unsignedp);
            }
            }
        }
        }
 
 
      /* We used to test optimize here, on the grounds that it's better to
      /* We used to test optimize here, on the grounds that it's better to
         produce a smaller program when -O is not used.  But this causes
         produce a smaller program when -O is not used.  But this causes
         such a terrible slowdown sometimes that it seems better to always
         such a terrible slowdown sometimes that it seems better to always
         use synth_mult.  */
         use synth_mult.  */
      if (coeff != 0)
      if (coeff != 0)
        {
        {
          /* Special case powers of two.  */
          /* Special case powers of two.  */
          if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
          if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
            return expand_shift (LSHIFT_EXPR, mode, op0,
            return expand_shift (LSHIFT_EXPR, mode, op0,
                                 build_int_cst (NULL_TREE, floor_log2 (coeff)),
                                 build_int_cst (NULL_TREE, floor_log2 (coeff)),
                                 target, unsignedp);
                                 target, unsignedp);
 
 
          /* Exclude cost of op0 from max_cost to match the cost
          /* Exclude cost of op0 from max_cost to match the cost
             calculation of the synth_mult.  */
             calculation of the synth_mult.  */
          max_cost = rtx_cost (gen_rtx_MULT (mode, fake_reg, op1), SET);
          max_cost = rtx_cost (gen_rtx_MULT (mode, fake_reg, op1), SET);
          if (choose_mult_variant (mode, coeff, &algorithm, &variant,
          if (choose_mult_variant (mode, coeff, &algorithm, &variant,
                                   max_cost))
                                   max_cost))
            return expand_mult_const (mode, op0, coeff, target,
            return expand_mult_const (mode, op0, coeff, target,
                                      &algorithm, variant);
                                      &algorithm, variant);
        }
        }
    }
    }
 
 
  if (GET_CODE (op0) == CONST_DOUBLE)
  if (GET_CODE (op0) == CONST_DOUBLE)
    {
    {
      rtx temp = op0;
      rtx temp = op0;
      op0 = op1;
      op0 = op1;
      op1 = temp;
      op1 = temp;
    }
    }
 
 
  /* Expand x*2.0 as x+x.  */
  /* Expand x*2.0 as x+x.  */
  if (GET_CODE (op1) == CONST_DOUBLE
  if (GET_CODE (op1) == CONST_DOUBLE
      && SCALAR_FLOAT_MODE_P (mode))
      && SCALAR_FLOAT_MODE_P (mode))
    {
    {
      REAL_VALUE_TYPE d;
      REAL_VALUE_TYPE d;
      REAL_VALUE_FROM_CONST_DOUBLE (d, op1);
      REAL_VALUE_FROM_CONST_DOUBLE (d, op1);
 
 
      if (REAL_VALUES_EQUAL (d, dconst2))
      if (REAL_VALUES_EQUAL (d, dconst2))
        {
        {
          op0 = force_reg (GET_MODE (op0), op0);
          op0 = force_reg (GET_MODE (op0), op0);
          return expand_binop (mode, add_optab, op0, op0,
          return expand_binop (mode, add_optab, op0, op0,
                               target, unsignedp, OPTAB_LIB_WIDEN);
                               target, unsignedp, OPTAB_LIB_WIDEN);
        }
        }
    }
    }
 
 
  /* This used to use umul_optab if unsigned, but for non-widening multiply
  /* This used to use umul_optab if unsigned, but for non-widening multiply
     there is no difference between signed and unsigned.  */
     there is no difference between signed and unsigned.  */
  op0 = expand_binop (mode,
  op0 = expand_binop (mode,
                      ! unsignedp
                      ! unsignedp
                      && flag_trapv && (GET_MODE_CLASS(mode) == MODE_INT)
                      && flag_trapv && (GET_MODE_CLASS(mode) == MODE_INT)
                      ? smulv_optab : smul_optab,
                      ? smulv_optab : smul_optab,
                      op0, op1, target, unsignedp, OPTAB_LIB_WIDEN);
                      op0, op1, target, unsignedp, OPTAB_LIB_WIDEN);
  gcc_assert (op0);
  gcc_assert (op0);
  return op0;
  return op0;
}
}


/* Return the smallest n such that 2**n >= X.  */
/* Return the smallest n such that 2**n >= X.  */
 
 
int
int
ceil_log2 (unsigned HOST_WIDE_INT x)
ceil_log2 (unsigned HOST_WIDE_INT x)
{
{
  return floor_log2 (x - 1) + 1;
  return floor_log2 (x - 1) + 1;
}
}
 
 
/* Choose a minimal N + 1 bit approximation to 1/D that can be used to
/* Choose a minimal N + 1 bit approximation to 1/D that can be used to
   replace division by D, and put the least significant N bits of the result
   replace division by D, and put the least significant N bits of the result
   in *MULTIPLIER_PTR and return the most significant bit.
   in *MULTIPLIER_PTR and return the most significant bit.
 
 
   The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
   The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
   needed precision is in PRECISION (should be <= N).
   needed precision is in PRECISION (should be <= N).
 
 
   PRECISION should be as small as possible so this function can choose
   PRECISION should be as small as possible so this function can choose
   multiplier more freely.
   multiplier more freely.
 
 
   The rounded-up logarithm of D is placed in *lgup_ptr.  A shift count that
   The rounded-up logarithm of D is placed in *lgup_ptr.  A shift count that
   is to be used for a final right shift is placed in *POST_SHIFT_PTR.
   is to be used for a final right shift is placed in *POST_SHIFT_PTR.
 
 
   Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
   Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
   where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier.  */
   where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier.  */
 
 
static
static
unsigned HOST_WIDE_INT
unsigned HOST_WIDE_INT
choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
                   rtx *multiplier_ptr, int *post_shift_ptr, int *lgup_ptr)
                   rtx *multiplier_ptr, int *post_shift_ptr, int *lgup_ptr)
{
{
  HOST_WIDE_INT mhigh_hi, mlow_hi;
  HOST_WIDE_INT mhigh_hi, mlow_hi;
  unsigned HOST_WIDE_INT mhigh_lo, mlow_lo;
  unsigned HOST_WIDE_INT mhigh_lo, mlow_lo;
  int lgup, post_shift;
  int lgup, post_shift;
  int pow, pow2;
  int pow, pow2;
  unsigned HOST_WIDE_INT nl, dummy1;
  unsigned HOST_WIDE_INT nl, dummy1;
  HOST_WIDE_INT nh, dummy2;
  HOST_WIDE_INT nh, dummy2;
 
 
  /* lgup = ceil(log2(divisor)); */
  /* lgup = ceil(log2(divisor)); */
  lgup = ceil_log2 (d);
  lgup = ceil_log2 (d);
 
 
  gcc_assert (lgup <= n);
  gcc_assert (lgup <= n);
 
 
  pow = n + lgup;
  pow = n + lgup;
  pow2 = n + lgup - precision;
  pow2 = n + lgup - precision;
 
 
  /* We could handle this with some effort, but this case is much
  /* We could handle this with some effort, but this case is much
     better handled directly with a scc insn, so rely on caller using
     better handled directly with a scc insn, so rely on caller using
     that.  */
     that.  */
  gcc_assert (pow != 2 * HOST_BITS_PER_WIDE_INT);
  gcc_assert (pow != 2 * HOST_BITS_PER_WIDE_INT);
 
 
  /* mlow = 2^(N + lgup)/d */
  /* mlow = 2^(N + lgup)/d */
 if (pow >= HOST_BITS_PER_WIDE_INT)
 if (pow >= HOST_BITS_PER_WIDE_INT)
    {
    {
      nh = (HOST_WIDE_INT) 1 << (pow - HOST_BITS_PER_WIDE_INT);
      nh = (HOST_WIDE_INT) 1 << (pow - HOST_BITS_PER_WIDE_INT);
      nl = 0;
      nl = 0;
    }
    }
  else
  else
    {
    {
      nh = 0;
      nh = 0;
      nl = (unsigned HOST_WIDE_INT) 1 << pow;
      nl = (unsigned HOST_WIDE_INT) 1 << pow;
    }
    }
  div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
  div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
                        &mlow_lo, &mlow_hi, &dummy1, &dummy2);
                        &mlow_lo, &mlow_hi, &dummy1, &dummy2);
 
 
  /* mhigh = (2^(N + lgup) + 2^N + lgup - precision)/d */
  /* mhigh = (2^(N + lgup) + 2^N + lgup - precision)/d */
  if (pow2 >= HOST_BITS_PER_WIDE_INT)
  if (pow2 >= HOST_BITS_PER_WIDE_INT)
    nh |= (HOST_WIDE_INT) 1 << (pow2 - HOST_BITS_PER_WIDE_INT);
    nh |= (HOST_WIDE_INT) 1 << (pow2 - HOST_BITS_PER_WIDE_INT);
  else
  else
    nl |= (unsigned HOST_WIDE_INT) 1 << pow2;
    nl |= (unsigned HOST_WIDE_INT) 1 << pow2;
  div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
  div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
                        &mhigh_lo, &mhigh_hi, &dummy1, &dummy2);
                        &mhigh_lo, &mhigh_hi, &dummy1, &dummy2);
 
 
  gcc_assert (!mhigh_hi || nh - d < d);
  gcc_assert (!mhigh_hi || nh - d < d);
  gcc_assert (mhigh_hi <= 1 && mlow_hi <= 1);
  gcc_assert (mhigh_hi <= 1 && mlow_hi <= 1);
  /* Assert that mlow < mhigh.  */
  /* Assert that mlow < mhigh.  */
  gcc_assert (mlow_hi < mhigh_hi
  gcc_assert (mlow_hi < mhigh_hi
              || (mlow_hi == mhigh_hi && mlow_lo < mhigh_lo));
              || (mlow_hi == mhigh_hi && mlow_lo < mhigh_lo));
 
 
  /* If precision == N, then mlow, mhigh exceed 2^N
  /* If precision == N, then mlow, mhigh exceed 2^N
     (but they do not exceed 2^(N+1)).  */
     (but they do not exceed 2^(N+1)).  */
 
 
  /* Reduce to lowest terms.  */
  /* Reduce to lowest terms.  */
  for (post_shift = lgup; post_shift > 0; post_shift--)
  for (post_shift = lgup; post_shift > 0; post_shift--)
    {
    {
      unsigned HOST_WIDE_INT ml_lo = (mlow_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mlow_lo >> 1);
      unsigned HOST_WIDE_INT ml_lo = (mlow_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mlow_lo >> 1);
      unsigned HOST_WIDE_INT mh_lo = (mhigh_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mhigh_lo >> 1);
      unsigned HOST_WIDE_INT mh_lo = (mhigh_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mhigh_lo >> 1);
      if (ml_lo >= mh_lo)
      if (ml_lo >= mh_lo)
        break;
        break;
 
 
      mlow_hi = 0;
      mlow_hi = 0;
      mlow_lo = ml_lo;
      mlow_lo = ml_lo;
      mhigh_hi = 0;
      mhigh_hi = 0;
      mhigh_lo = mh_lo;
      mhigh_lo = mh_lo;
    }
    }
 
 
  *post_shift_ptr = post_shift;
  *post_shift_ptr = post_shift;
  *lgup_ptr = lgup;
  *lgup_ptr = lgup;
  if (n < HOST_BITS_PER_WIDE_INT)
  if (n < HOST_BITS_PER_WIDE_INT)
    {
    {
      unsigned HOST_WIDE_INT mask = ((unsigned HOST_WIDE_INT) 1 << n) - 1;
      unsigned HOST_WIDE_INT mask = ((unsigned HOST_WIDE_INT) 1 << n) - 1;
      *multiplier_ptr = GEN_INT (mhigh_lo & mask);
      *multiplier_ptr = GEN_INT (mhigh_lo & mask);
      return mhigh_lo >= mask;
      return mhigh_lo >= mask;
    }
    }
  else
  else
    {
    {
      *multiplier_ptr = GEN_INT (mhigh_lo);
      *multiplier_ptr = GEN_INT (mhigh_lo);
      return mhigh_hi;
      return mhigh_hi;
    }
    }
}
}
 
 
/* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
/* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
   congruent to 1 (mod 2**N).  */
   congruent to 1 (mod 2**N).  */
 
 
static unsigned HOST_WIDE_INT
static unsigned HOST_WIDE_INT
invert_mod2n (unsigned HOST_WIDE_INT x, int n)
invert_mod2n (unsigned HOST_WIDE_INT x, int n)
{
{
  /* Solve x*y == 1 (mod 2^n), where x is odd.  Return y.  */
  /* Solve x*y == 1 (mod 2^n), where x is odd.  Return y.  */
 
 
  /* The algorithm notes that the choice y = x satisfies
  /* The algorithm notes that the choice y = x satisfies
     x*y == 1 mod 2^3, since x is assumed odd.
     x*y == 1 mod 2^3, since x is assumed odd.
     Each iteration doubles the number of bits of significance in y.  */
     Each iteration doubles the number of bits of significance in y.  */
 
 
  unsigned HOST_WIDE_INT mask;
  unsigned HOST_WIDE_INT mask;
  unsigned HOST_WIDE_INT y = x;
  unsigned HOST_WIDE_INT y = x;
  int nbit = 3;
  int nbit = 3;
 
 
  mask = (n == HOST_BITS_PER_WIDE_INT
  mask = (n == HOST_BITS_PER_WIDE_INT
          ? ~(unsigned HOST_WIDE_INT) 0
          ? ~(unsigned HOST_WIDE_INT) 0
          : ((unsigned HOST_WIDE_INT) 1 << n) - 1);
          : ((unsigned HOST_WIDE_INT) 1 << n) - 1);
 
 
  while (nbit < n)
  while (nbit < n)
    {
    {
      y = y * (2 - x*y) & mask;         /* Modulo 2^N */
      y = y * (2 - x*y) & mask;         /* Modulo 2^N */
      nbit *= 2;
      nbit *= 2;
    }
    }
  return y;
  return y;
}
}
 
 
/* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
/* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
   flavor of OP0 and OP1.  ADJ_OPERAND is already the high half of the
   flavor of OP0 and OP1.  ADJ_OPERAND is already the high half of the
   product OP0 x OP1.  If UNSIGNEDP is nonzero, adjust the signed product
   product OP0 x OP1.  If UNSIGNEDP is nonzero, adjust the signed product
   to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
   to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
   become signed.
   become signed.
 
 
   The result is put in TARGET if that is convenient.
   The result is put in TARGET if that is convenient.
 
 
   MODE is the mode of operation.  */
   MODE is the mode of operation.  */
 
 
rtx
rtx
expand_mult_highpart_adjust (enum machine_mode mode, rtx adj_operand, rtx op0,
expand_mult_highpart_adjust (enum machine_mode mode, rtx adj_operand, rtx op0,
                             rtx op1, rtx target, int unsignedp)
                             rtx op1, rtx target, int unsignedp)
{
{
  rtx tem;
  rtx tem;
  enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
  enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
 
 
  tem = expand_shift (RSHIFT_EXPR, mode, op0,
  tem = expand_shift (RSHIFT_EXPR, mode, op0,
                      build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
                      build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
                      NULL_RTX, 0);
                      NULL_RTX, 0);
  tem = expand_and (mode, tem, op1, NULL_RTX);
  tem = expand_and (mode, tem, op1, NULL_RTX);
  adj_operand
  adj_operand
    = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
    = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
                     adj_operand);
                     adj_operand);
 
 
  tem = expand_shift (RSHIFT_EXPR, mode, op1,
  tem = expand_shift (RSHIFT_EXPR, mode, op1,
                      build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
                      build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
                      NULL_RTX, 0);
                      NULL_RTX, 0);
  tem = expand_and (mode, tem, op0, NULL_RTX);
  tem = expand_and (mode, tem, op0, NULL_RTX);
  target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
  target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
                          target);
                          target);
 
 
  return target;
  return target;
}
}
 
 
/* Subroutine of expand_mult_highpart.  Return the MODE high part of OP.  */
/* Subroutine of expand_mult_highpart.  Return the MODE high part of OP.  */
 
 
static rtx
static rtx
extract_high_half (enum machine_mode mode, rtx op)
extract_high_half (enum machine_mode mode, rtx op)
{
{
  enum machine_mode wider_mode;
  enum machine_mode wider_mode;
 
 
  if (mode == word_mode)
  if (mode == word_mode)
    return gen_highpart (mode, op);
    return gen_highpart (mode, op);
 
 
  gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
  gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
 
 
  wider_mode = GET_MODE_WIDER_MODE (mode);
  wider_mode = GET_MODE_WIDER_MODE (mode);
  op = expand_shift (RSHIFT_EXPR, wider_mode, op,
  op = expand_shift (RSHIFT_EXPR, wider_mode, op,
                     build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode)), 0, 1);
                     build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode)), 0, 1);
  return convert_modes (mode, wider_mode, op, 0);
  return convert_modes (mode, wider_mode, op, 0);
}
}
 
 
/* Like expand_mult_highpart, but only consider using a multiplication
/* Like expand_mult_highpart, but only consider using a multiplication
   optab.  OP1 is an rtx for the constant operand.  */
   optab.  OP1 is an rtx for the constant operand.  */
 
 
static rtx
static rtx
expand_mult_highpart_optab (enum machine_mode mode, rtx op0, rtx op1,
expand_mult_highpart_optab (enum machine_mode mode, rtx op0, rtx op1,
                            rtx target, int unsignedp, int max_cost)
                            rtx target, int unsignedp, int max_cost)
{
{
  rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
  rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
  enum machine_mode wider_mode;
  enum machine_mode wider_mode;
  optab moptab;
  optab moptab;
  rtx tem;
  rtx tem;
  int size;
  int size;
 
 
  gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
  gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
 
 
  wider_mode = GET_MODE_WIDER_MODE (mode);
  wider_mode = GET_MODE_WIDER_MODE (mode);
  size = GET_MODE_BITSIZE (mode);
  size = GET_MODE_BITSIZE (mode);
 
 
  /* Firstly, try using a multiplication insn that only generates the needed
  /* Firstly, try using a multiplication insn that only generates the needed
     high part of the product, and in the sign flavor of unsignedp.  */
     high part of the product, and in the sign flavor of unsignedp.  */
  if (mul_highpart_cost[mode] < max_cost)
  if (mul_highpart_cost[mode] < max_cost)
    {
    {
      moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
      moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
      tem = expand_binop (mode, moptab, op0, narrow_op1, target,
      tem = expand_binop (mode, moptab, op0, narrow_op1, target,
                          unsignedp, OPTAB_DIRECT);
                          unsignedp, OPTAB_DIRECT);
      if (tem)
      if (tem)
        return tem;
        return tem;
    }
    }
 
 
  /* Secondly, same as above, but use sign flavor opposite of unsignedp.
  /* Secondly, same as above, but use sign flavor opposite of unsignedp.
     Need to adjust the result after the multiplication.  */
     Need to adjust the result after the multiplication.  */
  if (size - 1 < BITS_PER_WORD
  if (size - 1 < BITS_PER_WORD
      && (mul_highpart_cost[mode] + 2 * shift_cost[mode][size-1]
      && (mul_highpart_cost[mode] + 2 * shift_cost[mode][size-1]
          + 4 * add_cost[mode] < max_cost))
          + 4 * add_cost[mode] < max_cost))
    {
    {
      moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
      moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
      tem = expand_binop (mode, moptab, op0, narrow_op1, target,
      tem = expand_binop (mode, moptab, op0, narrow_op1, target,
                          unsignedp, OPTAB_DIRECT);
                          unsignedp, OPTAB_DIRECT);
      if (tem)
      if (tem)
        /* We used the wrong signedness.  Adjust the result.  */
        /* We used the wrong signedness.  Adjust the result.  */
        return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
        return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
                                            tem, unsignedp);
                                            tem, unsignedp);
    }
    }
 
 
  /* Try widening multiplication.  */
  /* Try widening multiplication.  */
  moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
  moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
  if (moptab->handlers[wider_mode].insn_code != CODE_FOR_nothing
  if (moptab->handlers[wider_mode].insn_code != CODE_FOR_nothing
      && mul_widen_cost[wider_mode] < max_cost)
      && mul_widen_cost[wider_mode] < max_cost)
    {
    {
      tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
      tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
                          unsignedp, OPTAB_WIDEN);
                          unsignedp, OPTAB_WIDEN);
      if (tem)
      if (tem)
        return extract_high_half (mode, tem);
        return extract_high_half (mode, tem);
    }
    }
 
 
  /* Try widening the mode and perform a non-widening multiplication.  */
  /* Try widening the mode and perform a non-widening multiplication.  */
  if (smul_optab->handlers[wider_mode].insn_code != CODE_FOR_nothing
  if (smul_optab->handlers[wider_mode].insn_code != CODE_FOR_nothing
      && size - 1 < BITS_PER_WORD
      && size - 1 < BITS_PER_WORD
      && mul_cost[wider_mode] + shift_cost[mode][size-1] < max_cost)
      && mul_cost[wider_mode] + shift_cost[mode][size-1] < max_cost)
    {
    {
      rtx insns, wop0, wop1;
      rtx insns, wop0, wop1;
 
 
      /* We need to widen the operands, for example to ensure the
      /* We need to widen the operands, for example to ensure the
         constant multiplier is correctly sign or zero extended.
         constant multiplier is correctly sign or zero extended.
         Use a sequence to clean-up any instructions emitted by
         Use a sequence to clean-up any instructions emitted by
         the conversions if things don't work out.  */
         the conversions if things don't work out.  */
      start_sequence ();
      start_sequence ();
      wop0 = convert_modes (wider_mode, mode, op0, unsignedp);
      wop0 = convert_modes (wider_mode, mode, op0, unsignedp);
      wop1 = convert_modes (wider_mode, mode, op1, unsignedp);
      wop1 = convert_modes (wider_mode, mode, op1, unsignedp);
      tem = expand_binop (wider_mode, smul_optab, wop0, wop1, 0,
      tem = expand_binop (wider_mode, smul_optab, wop0, wop1, 0,
                          unsignedp, OPTAB_WIDEN);
                          unsignedp, OPTAB_WIDEN);
      insns = get_insns ();
      insns = get_insns ();
      end_sequence ();
      end_sequence ();
 
 
      if (tem)
      if (tem)
        {
        {
          emit_insn (insns);
          emit_insn (insns);
          return extract_high_half (mode, tem);
          return extract_high_half (mode, tem);
        }
        }
    }
    }
 
 
  /* Try widening multiplication of opposite signedness, and adjust.  */
  /* Try widening multiplication of opposite signedness, and adjust.  */
  moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
  moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
  if (moptab->handlers[wider_mode].insn_code != CODE_FOR_nothing
  if (moptab->handlers[wider_mode].insn_code != CODE_FOR_nothing
      && size - 1 < BITS_PER_WORD
      && size - 1 < BITS_PER_WORD
      && (mul_widen_cost[wider_mode] + 2 * shift_cost[mode][size-1]
      && (mul_widen_cost[wider_mode] + 2 * shift_cost[mode][size-1]
          + 4 * add_cost[mode] < max_cost))
          + 4 * add_cost[mode] < max_cost))
    {
    {
      tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
      tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
                          NULL_RTX, ! unsignedp, OPTAB_WIDEN);
                          NULL_RTX, ! unsignedp, OPTAB_WIDEN);
      if (tem != 0)
      if (tem != 0)
        {
        {
          tem = extract_high_half (mode, tem);
          tem = extract_high_half (mode, tem);
          /* We used the wrong signedness.  Adjust the result.  */
          /* We used the wrong signedness.  Adjust the result.  */
          return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
          return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
                                              target, unsignedp);
                                              target, unsignedp);
        }
        }
    }
    }
 
 
  return 0;
  return 0;
}
}
 
 
/* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
/* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
   putting the high half of the result in TARGET if that is convenient,
   putting the high half of the result in TARGET if that is convenient,
   and return where the result is.  If the operation can not be performed,
   and return where the result is.  If the operation can not be performed,
   0 is returned.
   0 is returned.
 
 
   MODE is the mode of operation and result.
   MODE is the mode of operation and result.
 
 
   UNSIGNEDP nonzero means unsigned multiply.
   UNSIGNEDP nonzero means unsigned multiply.
 
 
   MAX_COST is the total allowed cost for the expanded RTL.  */
   MAX_COST is the total allowed cost for the expanded RTL.  */
 
 
static rtx
static rtx
expand_mult_highpart (enum machine_mode mode, rtx op0, rtx op1,
expand_mult_highpart (enum machine_mode mode, rtx op0, rtx op1,
                      rtx target, int unsignedp, int max_cost)
                      rtx target, int unsignedp, int max_cost)
{
{
  enum machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
  enum machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
  unsigned HOST_WIDE_INT cnst1;
  unsigned HOST_WIDE_INT cnst1;
  int extra_cost;
  int extra_cost;
  bool sign_adjust = false;
  bool sign_adjust = false;
  enum mult_variant variant;
  enum mult_variant variant;
  struct algorithm alg;
  struct algorithm alg;
  rtx tem;
  rtx tem;
 
 
  gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
  gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
  /* We can't support modes wider than HOST_BITS_PER_INT.  */
  /* We can't support modes wider than HOST_BITS_PER_INT.  */
  gcc_assert (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT);
  gcc_assert (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT);
 
 
  cnst1 = INTVAL (op1) & GET_MODE_MASK (mode);
  cnst1 = INTVAL (op1) & GET_MODE_MASK (mode);
 
 
  /* We can't optimize modes wider than BITS_PER_WORD.
  /* We can't optimize modes wider than BITS_PER_WORD.
     ??? We might be able to perform double-word arithmetic if
     ??? We might be able to perform double-word arithmetic if
     mode == word_mode, however all the cost calculations in
     mode == word_mode, however all the cost calculations in
     synth_mult etc. assume single-word operations.  */
     synth_mult etc. assume single-word operations.  */
  if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
  if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
    return expand_mult_highpart_optab (mode, op0, op1, target,
    return expand_mult_highpart_optab (mode, op0, op1, target,
                                       unsignedp, max_cost);
                                       unsignedp, max_cost);
 
 
  extra_cost = shift_cost[mode][GET_MODE_BITSIZE (mode) - 1];
  extra_cost = shift_cost[mode][GET_MODE_BITSIZE (mode) - 1];
 
 
  /* Check whether we try to multiply by a negative constant.  */
  /* Check whether we try to multiply by a negative constant.  */
  if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
  if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
    {
    {
      sign_adjust = true;
      sign_adjust = true;
      extra_cost += add_cost[mode];
      extra_cost += add_cost[mode];
    }
    }
 
 
  /* See whether shift/add multiplication is cheap enough.  */
  /* See whether shift/add multiplication is cheap enough.  */
  if (choose_mult_variant (wider_mode, cnst1, &alg, &variant,
  if (choose_mult_variant (wider_mode, cnst1, &alg, &variant,
                           max_cost - extra_cost))
                           max_cost - extra_cost))
    {
    {
      /* See whether the specialized multiplication optabs are
      /* See whether the specialized multiplication optabs are
         cheaper than the shift/add version.  */
         cheaper than the shift/add version.  */
      tem = expand_mult_highpart_optab (mode, op0, op1, target, unsignedp,
      tem = expand_mult_highpart_optab (mode, op0, op1, target, unsignedp,
                                        alg.cost.cost + extra_cost);
                                        alg.cost.cost + extra_cost);
      if (tem)
      if (tem)
        return tem;
        return tem;
 
 
      tem = convert_to_mode (wider_mode, op0, unsignedp);
      tem = convert_to_mode (wider_mode, op0, unsignedp);
      tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant);
      tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant);
      tem = extract_high_half (mode, tem);
      tem = extract_high_half (mode, tem);
 
 
      /* Adjust result for signedness.  */
      /* Adjust result for signedness.  */
      if (sign_adjust)
      if (sign_adjust)
        tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);
        tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);
 
 
      return tem;
      return tem;
    }
    }
  return expand_mult_highpart_optab (mode, op0, op1, target,
  return expand_mult_highpart_optab (mode, op0, op1, target,
                                     unsignedp, max_cost);
                                     unsignedp, max_cost);
}
}
 
 
 
 
/* Expand signed modulus of OP0 by a power of two D in mode MODE.  */
/* Expand signed modulus of OP0 by a power of two D in mode MODE.  */
 
 
static rtx
static rtx
expand_smod_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
expand_smod_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
{
{
  unsigned HOST_WIDE_INT masklow, maskhigh;
  unsigned HOST_WIDE_INT masklow, maskhigh;
  rtx result, temp, shift, label;
  rtx result, temp, shift, label;
  int logd;
  int logd;
 
 
  logd = floor_log2 (d);
  logd = floor_log2 (d);
  result = gen_reg_rtx (mode);
  result = gen_reg_rtx (mode);
 
 
  /* Avoid conditional branches when they're expensive.  */
  /* Avoid conditional branches when they're expensive.  */
  if (BRANCH_COST >= 2
  if (BRANCH_COST >= 2
      && !optimize_size)
      && !optimize_size)
    {
    {
      rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
      rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
                                      mode, 0, -1);
                                      mode, 0, -1);
      if (signmask)
      if (signmask)
        {
        {
          signmask = force_reg (mode, signmask);
          signmask = force_reg (mode, signmask);
          masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
          masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
          shift = GEN_INT (GET_MODE_BITSIZE (mode) - logd);
          shift = GEN_INT (GET_MODE_BITSIZE (mode) - logd);
 
 
          /* Use the rtx_cost of a LSHIFTRT instruction to determine
          /* Use the rtx_cost of a LSHIFTRT instruction to determine
             which instruction sequence to use.  If logical right shifts
             which instruction sequence to use.  If logical right shifts
             are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
             are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
             use a LSHIFTRT, 1 ADD, 1 SUB and an AND.  */
             use a LSHIFTRT, 1 ADD, 1 SUB and an AND.  */
 
 
          temp = gen_rtx_LSHIFTRT (mode, result, shift);
          temp = gen_rtx_LSHIFTRT (mode, result, shift);
          if (lshr_optab->handlers[mode].insn_code == CODE_FOR_nothing
          if (lshr_optab->handlers[mode].insn_code == CODE_FOR_nothing
              || rtx_cost (temp, SET) > COSTS_N_INSNS (2))
              || rtx_cost (temp, SET) > COSTS_N_INSNS (2))
            {
            {
              temp = expand_binop (mode, xor_optab, op0, signmask,
              temp = expand_binop (mode, xor_optab, op0, signmask,
                                   NULL_RTX, 1, OPTAB_LIB_WIDEN);
                                   NULL_RTX, 1, OPTAB_LIB_WIDEN);
              temp = expand_binop (mode, sub_optab, temp, signmask,
              temp = expand_binop (mode, sub_optab, temp, signmask,
                                   NULL_RTX, 1, OPTAB_LIB_WIDEN);
                                   NULL_RTX, 1, OPTAB_LIB_WIDEN);
              temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
              temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
                                   NULL_RTX, 1, OPTAB_LIB_WIDEN);
                                   NULL_RTX, 1, OPTAB_LIB_WIDEN);
              temp = expand_binop (mode, xor_optab, temp, signmask,
              temp = expand_binop (mode, xor_optab, temp, signmask,
                                   NULL_RTX, 1, OPTAB_LIB_WIDEN);
                                   NULL_RTX, 1, OPTAB_LIB_WIDEN);
              temp = expand_binop (mode, sub_optab, temp, signmask,
              temp = expand_binop (mode, sub_optab, temp, signmask,
                                   NULL_RTX, 1, OPTAB_LIB_WIDEN);
                                   NULL_RTX, 1, OPTAB_LIB_WIDEN);
            }
            }
          else
          else
            {
            {
              signmask = expand_binop (mode, lshr_optab, signmask, shift,
              signmask = expand_binop (mode, lshr_optab, signmask, shift,
                                       NULL_RTX, 1, OPTAB_LIB_WIDEN);
                                       NULL_RTX, 1, OPTAB_LIB_WIDEN);
              signmask = force_reg (mode, signmask);
              signmask = force_reg (mode, signmask);
 
 
              temp = expand_binop (mode, add_optab, op0, signmask,
              temp = expand_binop (mode, add_optab, op0, signmask,
                                   NULL_RTX, 1, OPTAB_LIB_WIDEN);
                                   NULL_RTX, 1, OPTAB_LIB_WIDEN);
              temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
              temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
                                   NULL_RTX, 1, OPTAB_LIB_WIDEN);
                                   NULL_RTX, 1, OPTAB_LIB_WIDEN);
              temp = expand_binop (mode, sub_optab, temp, signmask,
              temp = expand_binop (mode, sub_optab, temp, signmask,
                                   NULL_RTX, 1, OPTAB_LIB_WIDEN);
                                   NULL_RTX, 1, OPTAB_LIB_WIDEN);
            }
            }
          return temp;
          return temp;
        }
        }
    }
    }
 
 
  /* Mask contains the mode's signbit and the significant bits of the
  /* Mask contains the mode's signbit and the significant bits of the
     modulus.  By including the signbit in the operation, many targets
     modulus.  By including the signbit in the operation, many targets
     can avoid an explicit compare operation in the following comparison
     can avoid an explicit compare operation in the following comparison
     against zero.  */
     against zero.  */
 
 
  masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
  masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
  if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
  if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
    {
    {
      masklow |= (HOST_WIDE_INT) -1 << (GET_MODE_BITSIZE (mode) - 1);
      masklow |= (HOST_WIDE_INT) -1 << (GET_MODE_BITSIZE (mode) - 1);
      maskhigh = -1;
      maskhigh = -1;
    }
    }
  else
  else
    maskhigh = (HOST_WIDE_INT) -1
    maskhigh = (HOST_WIDE_INT) -1
                 << (GET_MODE_BITSIZE (mode) - HOST_BITS_PER_WIDE_INT - 1);
                 << (GET_MODE_BITSIZE (mode) - HOST_BITS_PER_WIDE_INT - 1);
 
 
  temp = expand_binop (mode, and_optab, op0,
  temp = expand_binop (mode, and_optab, op0,
                       immed_double_const (masklow, maskhigh, mode),
                       immed_double_const (masklow, maskhigh, mode),
                       result, 1, OPTAB_LIB_WIDEN);
                       result, 1, OPTAB_LIB_WIDEN);
  if (temp != result)
  if (temp != result)
    emit_move_insn (result, temp);
    emit_move_insn (result, temp);
 
 
  label = gen_label_rtx ();
  label = gen_label_rtx ();
  do_cmp_and_jump (result, const0_rtx, GE, mode, label);
  do_cmp_and_jump (result, const0_rtx, GE, mode, label);
 
 
  temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
  temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
                       0, OPTAB_LIB_WIDEN);
                       0, OPTAB_LIB_WIDEN);
  masklow = (HOST_WIDE_INT) -1 << logd;
  masklow = (HOST_WIDE_INT) -1 << logd;
  maskhigh = -1;
  maskhigh = -1;
  temp = expand_binop (mode, ior_optab, temp,
  temp = expand_binop (mode, ior_optab, temp,
                       immed_double_const (masklow, maskhigh, mode),
                       immed_double_const (masklow, maskhigh, mode),
                       result, 1, OPTAB_LIB_WIDEN);
                       result, 1, OPTAB_LIB_WIDEN);
  temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
  temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
                       0, OPTAB_LIB_WIDEN);
                       0, OPTAB_LIB_WIDEN);
  if (temp != result)
  if (temp != result)
    emit_move_insn (result, temp);
    emit_move_insn (result, temp);
  emit_label (label);
  emit_label (label);
  return result;
  return result;
}
}
 
 
/* Expand signed division of OP0 by a power of two D in mode MODE.
/* Expand signed division of OP0 by a power of two D in mode MODE.
   This routine is only called for positive values of D.  */
   This routine is only called for positive values of D.  */
 
 
static rtx
static rtx
expand_sdiv_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
expand_sdiv_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
{
{
  rtx temp, label;
  rtx temp, label;
  tree shift;
  tree shift;
  int logd;
  int logd;
 
 
  logd = floor_log2 (d);
  logd = floor_log2 (d);
  shift = build_int_cst (NULL_TREE, logd);
  shift = build_int_cst (NULL_TREE, logd);
 
 
  if (d == 2 && BRANCH_COST >= 1)
  if (d == 2 && BRANCH_COST >= 1)
    {
    {
      temp = gen_reg_rtx (mode);
      temp = gen_reg_rtx (mode);
      temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
      temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
      temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
      temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
                           0, OPTAB_LIB_WIDEN);
                           0, OPTAB_LIB_WIDEN);
      return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
      return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
    }
    }
 
 
#ifdef HAVE_conditional_move
#ifdef HAVE_conditional_move
  if (BRANCH_COST >= 2)
  if (BRANCH_COST >= 2)
    {
    {
      rtx temp2;
      rtx temp2;
 
 
      /* ??? emit_conditional_move forces a stack adjustment via
      /* ??? emit_conditional_move forces a stack adjustment via
         compare_from_rtx so, if the sequence is discarded, it will
         compare_from_rtx so, if the sequence is discarded, it will
         be lost.  Do it now instead.  */
         be lost.  Do it now instead.  */
      do_pending_stack_adjust ();
      do_pending_stack_adjust ();
 
 
      start_sequence ();
      start_sequence ();
      temp2 = copy_to_mode_reg (mode, op0);
      temp2 = copy_to_mode_reg (mode, op0);
      temp = expand_binop (mode, add_optab, temp2, GEN_INT (d-1),
      temp = expand_binop (mode, add_optab, temp2, GEN_INT (d-1),
                           NULL_RTX, 0, OPTAB_LIB_WIDEN);
                           NULL_RTX, 0, OPTAB_LIB_WIDEN);
      temp = force_reg (mode, temp);
      temp = force_reg (mode, temp);
 
 
      /* Construct "temp2 = (temp2 < 0) ? temp : temp2".  */
      /* Construct "temp2 = (temp2 < 0) ? temp : temp2".  */
      temp2 = emit_conditional_move (temp2, LT, temp2, const0_rtx,
      temp2 = emit_conditional_move (temp2, LT, temp2, const0_rtx,
                                     mode, temp, temp2, mode, 0);
                                     mode, temp, temp2, mode, 0);
      if (temp2)
      if (temp2)
        {
        {
          rtx seq = get_insns ();
          rtx seq = get_insns ();
          end_sequence ();
          end_sequence ();
          emit_insn (seq);
          emit_insn (seq);
          return expand_shift (RSHIFT_EXPR, mode, temp2, shift, NULL_RTX, 0);
          return expand_shift (RSHIFT_EXPR, mode, temp2, shift, NULL_RTX, 0);
        }
        }
      end_sequence ();
      end_sequence ();
    }
    }
#endif
#endif
 
 
  if (BRANCH_COST >= 2)
  if (BRANCH_COST >= 2)
    {
    {
      int ushift = GET_MODE_BITSIZE (mode) - logd;
      int ushift = GET_MODE_BITSIZE (mode) - logd;
 
 
      temp = gen_reg_rtx (mode);
      temp = gen_reg_rtx (mode);
      temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
      temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
      if (shift_cost[mode][ushift] > COSTS_N_INSNS (1))
      if (shift_cost[mode][ushift] > COSTS_N_INSNS (1))
        temp = expand_binop (mode, and_optab, temp, GEN_INT (d - 1),
        temp = expand_binop (mode, and_optab, temp, GEN_INT (d - 1),
                             NULL_RTX, 0, OPTAB_LIB_WIDEN);
                             NULL_RTX, 0, OPTAB_LIB_WIDEN);
      else
      else
        temp = expand_shift (RSHIFT_EXPR, mode, temp,
        temp = expand_shift (RSHIFT_EXPR, mode, temp,
                             build_int_cst (NULL_TREE, ushift),
                             build_int_cst (NULL_TREE, ushift),
                             NULL_RTX, 1);
                             NULL_RTX, 1);
      temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
      temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
                           0, OPTAB_LIB_WIDEN);
                           0, OPTAB_LIB_WIDEN);
      return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
      return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
    }
    }
 
 
  label = gen_label_rtx ();
  label = gen_label_rtx ();
  temp = copy_to_mode_reg (mode, op0);
  temp = copy_to_mode_reg (mode, op0);
  do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
  do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
  expand_inc (temp, GEN_INT (d - 1));
  expand_inc (temp, GEN_INT (d - 1));
  emit_label (label);
  emit_label (label);
  return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
  return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
}
}


/* Emit the code to divide OP0 by OP1, putting the result in TARGET
/* Emit the code to divide OP0 by OP1, putting the result in TARGET
   if that is convenient, and returning where the result is.
   if that is convenient, and returning where the result is.
   You may request either the quotient or the remainder as the result;
   You may request either the quotient or the remainder as the result;
   specify REM_FLAG nonzero to get the remainder.
   specify REM_FLAG nonzero to get the remainder.
 
 
   CODE is the expression code for which kind of division this is;
   CODE is the expression code for which kind of division this is;
   it controls how rounding is done.  MODE is the machine mode to use.
   it controls how rounding is done.  MODE is the machine mode to use.
   UNSIGNEDP nonzero means do unsigned division.  */
   UNSIGNEDP nonzero means do unsigned division.  */
 
 
/* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
/* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
   and then correct it by or'ing in missing high bits
   and then correct it by or'ing in missing high bits
   if result of ANDI is nonzero.
   if result of ANDI is nonzero.
   For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
   For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
   This could optimize to a bfexts instruction.
   This could optimize to a bfexts instruction.
   But C doesn't use these operations, so their optimizations are
   But C doesn't use these operations, so their optimizations are
   left for later.  */
   left for later.  */
/* ??? For modulo, we don't actually need the highpart of the first product,
/* ??? For modulo, we don't actually need the highpart of the first product,
   the low part will do nicely.  And for small divisors, the second multiply
   the low part will do nicely.  And for small divisors, the second multiply
   can also be a low-part only multiply or even be completely left out.
   can also be a low-part only multiply or even be completely left out.
   E.g. to calculate the remainder of a division by 3 with a 32 bit
   E.g. to calculate the remainder of a division by 3 with a 32 bit
   multiply, multiply with 0x55555556 and extract the upper two bits;
   multiply, multiply with 0x55555556 and extract the upper two bits;
   the result is exact for inputs up to 0x1fffffff.
   the result is exact for inputs up to 0x1fffffff.
   The input range can be reduced by using cross-sum rules.
   The input range can be reduced by using cross-sum rules.
   For odd divisors >= 3, the following table gives right shift counts
   For odd divisors >= 3, the following table gives right shift counts
   so that if a number is shifted by an integer multiple of the given
   so that if a number is shifted by an integer multiple of the given
   amount, the remainder stays the same:
   amount, the remainder stays the same:
   2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
   2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
   14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
   14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
   0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
   0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
   20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
   20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
   0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
   0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
 
 
   Cross-sum rules for even numbers can be derived by leaving as many bits
   Cross-sum rules for even numbers can be derived by leaving as many bits
   to the right alone as the divisor has zeros to the right.
   to the right alone as the divisor has zeros to the right.
   E.g. if x is an unsigned 32 bit number:
   E.g. if x is an unsigned 32 bit number:
   (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
   (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
   */
   */
 
 
rtx
rtx
expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
               rtx op0, rtx op1, rtx target, int unsignedp)
               rtx op0, rtx op1, rtx target, int unsignedp)
{
{
  enum machine_mode compute_mode;
  enum machine_mode compute_mode;
  rtx tquotient;
  rtx tquotient;
  rtx quotient = 0, remainder = 0;
  rtx quotient = 0, remainder = 0;
  rtx last;
  rtx last;
  int size;
  int size;
  rtx insn, set;
  rtx insn, set;
  optab optab1, optab2;
  optab optab1, optab2;
  int op1_is_constant, op1_is_pow2 = 0;
  int op1_is_constant, op1_is_pow2 = 0;
  int max_cost, extra_cost;
  int max_cost, extra_cost;
  static HOST_WIDE_INT last_div_const = 0;
  static HOST_WIDE_INT last_div_const = 0;
  static HOST_WIDE_INT ext_op1;
  static HOST_WIDE_INT ext_op1;
 
 
  op1_is_constant = GET_CODE (op1) == CONST_INT;
  op1_is_constant = GET_CODE (op1) == CONST_INT;
  if (op1_is_constant)
  if (op1_is_constant)
    {
    {
      ext_op1 = INTVAL (op1);
      ext_op1 = INTVAL (op1);
      if (unsignedp)
      if (unsignedp)
        ext_op1 &= GET_MODE_MASK (mode);
        ext_op1 &= GET_MODE_MASK (mode);
      op1_is_pow2 = ((EXACT_POWER_OF_2_OR_ZERO_P (ext_op1)
      op1_is_pow2 = ((EXACT_POWER_OF_2_OR_ZERO_P (ext_op1)
                     || (! unsignedp && EXACT_POWER_OF_2_OR_ZERO_P (-ext_op1))));
                     || (! unsignedp && EXACT_POWER_OF_2_OR_ZERO_P (-ext_op1))));
    }
    }
 
 
  /*
  /*
     This is the structure of expand_divmod:
     This is the structure of expand_divmod:
 
 
     First comes code to fix up the operands so we can perform the operations
     First comes code to fix up the operands so we can perform the operations
     correctly and efficiently.
     correctly and efficiently.
 
 
     Second comes a switch statement with code specific for each rounding mode.
     Second comes a switch statement with code specific for each rounding mode.
     For some special operands this code emits all RTL for the desired
     For some special operands this code emits all RTL for the desired
     operation, for other cases, it generates only a quotient and stores it in
     operation, for other cases, it generates only a quotient and stores it in
     QUOTIENT.  The case for trunc division/remainder might leave quotient = 0,
     QUOTIENT.  The case for trunc division/remainder might leave quotient = 0,
     to indicate that it has not done anything.
     to indicate that it has not done anything.
 
 
     Last comes code that finishes the operation.  If QUOTIENT is set and
     Last comes code that finishes the operation.  If QUOTIENT is set and
     REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1.  If
     REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1.  If
     QUOTIENT is not set, it is computed using trunc rounding.
     QUOTIENT is not set, it is computed using trunc rounding.
 
 
     We try to generate special code for division and remainder when OP1 is a
     We try to generate special code for division and remainder when OP1 is a
     constant.  If |OP1| = 2**n we can use shifts and some other fast
     constant.  If |OP1| = 2**n we can use shifts and some other fast
     operations.  For other values of OP1, we compute a carefully selected
     operations.  For other values of OP1, we compute a carefully selected
     fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
     fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
     by m.
     by m.
 
 
     In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
     In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
     half of the product.  Different strategies for generating the product are
     half of the product.  Different strategies for generating the product are
     implemented in expand_mult_highpart.
     implemented in expand_mult_highpart.
 
 
     If what we actually want is the remainder, we generate that by another
     If what we actually want is the remainder, we generate that by another
     by-constant multiplication and a subtraction.  */
     by-constant multiplication and a subtraction.  */
 
 
  /* We shouldn't be called with OP1 == const1_rtx, but some of the
  /* We shouldn't be called with OP1 == const1_rtx, but some of the
     code below will malfunction if we are, so check here and handle
     code below will malfunction if we are, so check here and handle
     the special case if so.  */
     the special case if so.  */
  if (op1 == const1_rtx)
  if (op1 == const1_rtx)
    return rem_flag ? const0_rtx : op0;
    return rem_flag ? const0_rtx : op0;
 
 
    /* When dividing by -1, we could get an overflow.
    /* When dividing by -1, we could get an overflow.
     negv_optab can handle overflows.  */
     negv_optab can handle overflows.  */
  if (! unsignedp && op1 == constm1_rtx)
  if (! unsignedp && op1 == constm1_rtx)
    {
    {
      if (rem_flag)
      if (rem_flag)
        return const0_rtx;
        return const0_rtx;
      return expand_unop (mode, flag_trapv && GET_MODE_CLASS(mode) == MODE_INT
      return expand_unop (mode, flag_trapv && GET_MODE_CLASS(mode) == MODE_INT
                          ? negv_optab : neg_optab, op0, target, 0);
                          ? negv_optab : neg_optab, op0, target, 0);
    }
    }
 
 
  if (target
  if (target
      /* Don't use the function value register as a target
      /* Don't use the function value register as a target
         since we have to read it as well as write it,
         since we have to read it as well as write it,
         and function-inlining gets confused by this.  */
         and function-inlining gets confused by this.  */
      && ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
      && ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
          /* Don't clobber an operand while doing a multi-step calculation.  */
          /* Don't clobber an operand while doing a multi-step calculation.  */
          || ((rem_flag || op1_is_constant)
          || ((rem_flag || op1_is_constant)
              && (reg_mentioned_p (target, op0)
              && (reg_mentioned_p (target, op0)
                  || (MEM_P (op0) && MEM_P (target))))
                  || (MEM_P (op0) && MEM_P (target))))
          || reg_mentioned_p (target, op1)
          || reg_mentioned_p (target, op1)
          || (MEM_P (op1) && MEM_P (target))))
          || (MEM_P (op1) && MEM_P (target))))
    target = 0;
    target = 0;
 
 
  /* Get the mode in which to perform this computation.  Normally it will
  /* Get the mode in which to perform this computation.  Normally it will
     be MODE, but sometimes we can't do the desired operation in MODE.
     be MODE, but sometimes we can't do the desired operation in MODE.
     If so, pick a wider mode in which we can do the operation.  Convert
     If so, pick a wider mode in which we can do the operation.  Convert
     to that mode at the start to avoid repeated conversions.
     to that mode at the start to avoid repeated conversions.
 
 
     First see what operations we need.  These depend on the expression
     First see what operations we need.  These depend on the expression
     we are evaluating.  (We assume that divxx3 insns exist under the
     we are evaluating.  (We assume that divxx3 insns exist under the
     same conditions that modxx3 insns and that these insns don't normally
     same conditions that modxx3 insns and that these insns don't normally
     fail.  If these assumptions are not correct, we may generate less
     fail.  If these assumptions are not correct, we may generate less
     efficient code in some cases.)
     efficient code in some cases.)
 
 
     Then see if we find a mode in which we can open-code that operation
     Then see if we find a mode in which we can open-code that operation
     (either a division, modulus, or shift).  Finally, check for the smallest
     (either a division, modulus, or shift).  Finally, check for the smallest
     mode for which we can do the operation with a library call.  */
     mode for which we can do the operation with a library call.  */
 
 
  /* We might want to refine this now that we have division-by-constant
  /* We might want to refine this now that we have division-by-constant
     optimization.  Since expand_mult_highpart tries so many variants, it is
     optimization.  Since expand_mult_highpart tries so many variants, it is
     not straightforward to generalize this.  Maybe we should make an array
     not straightforward to generalize this.  Maybe we should make an array
     of possible modes in init_expmed?  Save this for GCC 2.7.  */
     of possible modes in init_expmed?  Save this for GCC 2.7.  */
 
 
  optab1 = ((op1_is_pow2 && op1 != const0_rtx)
  optab1 = ((op1_is_pow2 && op1 != const0_rtx)
            ? (unsignedp ? lshr_optab : ashr_optab)
            ? (unsignedp ? lshr_optab : ashr_optab)
            : (unsignedp ? udiv_optab : sdiv_optab));
            : (unsignedp ? udiv_optab : sdiv_optab));
  optab2 = ((op1_is_pow2 && op1 != const0_rtx)
  optab2 = ((op1_is_pow2 && op1 != const0_rtx)
            ? optab1
            ? optab1
            : (unsignedp ? udivmod_optab : sdivmod_optab));
            : (unsignedp ? udivmod_optab : sdivmod_optab));
 
 
  for (compute_mode = mode; compute_mode != VOIDmode;
  for (compute_mode = mode; compute_mode != VOIDmode;
       compute_mode = GET_MODE_WIDER_MODE (compute_mode))
       compute_mode = GET_MODE_WIDER_MODE (compute_mode))
    if (optab1->handlers[compute_mode].insn_code != CODE_FOR_nothing
    if (optab1->handlers[compute_mode].insn_code != CODE_FOR_nothing
        || optab2->handlers[compute_mode].insn_code != CODE_FOR_nothing)
        || optab2->handlers[compute_mode].insn_code != CODE_FOR_nothing)
      break;
      break;
 
 
  if (compute_mode == VOIDmode)
  if (compute_mode == VOIDmode)
    for (compute_mode = mode; compute_mode != VOIDmode;
    for (compute_mode = mode; compute_mode != VOIDmode;
         compute_mode = GET_MODE_WIDER_MODE (compute_mode))
         compute_mode = GET_MODE_WIDER_MODE (compute_mode))
      if (optab1->handlers[compute_mode].libfunc
      if (optab1->handlers[compute_mode].libfunc
          || optab2->handlers[compute_mode].libfunc)
          || optab2->handlers[compute_mode].libfunc)
        break;
        break;
 
 
  /* If we still couldn't find a mode, use MODE, but expand_binop will
  /* If we still couldn't find a mode, use MODE, but expand_binop will
     probably die.  */
     probably die.  */
  if (compute_mode == VOIDmode)
  if (compute_mode == VOIDmode)
    compute_mode = mode;
    compute_mode = mode;
 
 
  if (target && GET_MODE (target) == compute_mode)
  if (target && GET_MODE (target) == compute_mode)
    tquotient = target;
    tquotient = target;
  else
  else
    tquotient = gen_reg_rtx (compute_mode);
    tquotient = gen_reg_rtx (compute_mode);
 
 
  size = GET_MODE_BITSIZE (compute_mode);
  size = GET_MODE_BITSIZE (compute_mode);
#if 0
#if 0
  /* It should be possible to restrict the precision to GET_MODE_BITSIZE
  /* It should be possible to restrict the precision to GET_MODE_BITSIZE
     (mode), and thereby get better code when OP1 is a constant.  Do that
     (mode), and thereby get better code when OP1 is a constant.  Do that
     later.  It will require going over all usages of SIZE below.  */
     later.  It will require going over all usages of SIZE below.  */
  size = GET_MODE_BITSIZE (mode);
  size = GET_MODE_BITSIZE (mode);
#endif
#endif
 
 
  /* Only deduct something for a REM if the last divide done was
  /* Only deduct something for a REM if the last divide done was
     for a different constant.   Then set the constant of the last
     for a different constant.   Then set the constant of the last
     divide.  */
     divide.  */
  max_cost = unsignedp ? udiv_cost[compute_mode] : sdiv_cost[compute_mode];
  max_cost = unsignedp ? udiv_cost[compute_mode] : sdiv_cost[compute_mode];
  if (rem_flag && ! (last_div_const != 0 && op1_is_constant
  if (rem_flag && ! (last_div_const != 0 && op1_is_constant
                     && INTVAL (op1) == last_div_const))
                     && INTVAL (op1) == last_div_const))
    max_cost -= mul_cost[compute_mode] + add_cost[compute_mode];
    max_cost -= mul_cost[compute_mode] + add_cost[compute_mode];
 
 
  last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
  last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
 
 
  /* Now convert to the best mode to use.  */
  /* Now convert to the best mode to use.  */
  if (compute_mode != mode)
  if (compute_mode != mode)
    {
    {
      op0 = convert_modes (compute_mode, mode, op0, unsignedp);
      op0 = convert_modes (compute_mode, mode, op0, unsignedp);
      op1 = convert_modes (compute_mode, mode, op1, unsignedp);
      op1 = convert_modes (compute_mode, mode, op1, unsignedp);
 
 
      /* convert_modes may have placed op1 into a register, so we
      /* convert_modes may have placed op1 into a register, so we
         must recompute the following.  */
         must recompute the following.  */
      op1_is_constant = GET_CODE (op1) == CONST_INT;
      op1_is_constant = GET_CODE (op1) == CONST_INT;
      op1_is_pow2 = (op1_is_constant
      op1_is_pow2 = (op1_is_constant
                     && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
                     && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
                          || (! unsignedp
                          || (! unsignedp
                              && EXACT_POWER_OF_2_OR_ZERO_P (-INTVAL (op1)))))) ;
                              && EXACT_POWER_OF_2_OR_ZERO_P (-INTVAL (op1)))))) ;
    }
    }
 
 
  /* If one of the operands is a volatile MEM, copy it into a register.  */
  /* If one of the operands is a volatile MEM, copy it into a register.  */
 
 
  if (MEM_P (op0) && MEM_VOLATILE_P (op0))
  if (MEM_P (op0) && MEM_VOLATILE_P (op0))
    op0 = force_reg (compute_mode, op0);
    op0 = force_reg (compute_mode, op0);
  if (MEM_P (op1) && MEM_VOLATILE_P (op1))
  if (MEM_P (op1) && MEM_VOLATILE_P (op1))
    op1 = force_reg (compute_mode, op1);
    op1 = force_reg (compute_mode, op1);
 
 
  /* If we need the remainder or if OP1 is constant, we need to
  /* If we need the remainder or if OP1 is constant, we need to
     put OP0 in a register in case it has any queued subexpressions.  */
     put OP0 in a register in case it has any queued subexpressions.  */
  if (rem_flag || op1_is_constant)
  if (rem_flag || op1_is_constant)
    op0 = force_reg (compute_mode, op0);
    op0 = force_reg (compute_mode, op0);
 
 
  last = get_last_insn ();
  last = get_last_insn ();
 
 
  /* Promote floor rounding to trunc rounding for unsigned operations.  */
  /* Promote floor rounding to trunc rounding for unsigned operations.  */
  if (unsignedp)
  if (unsignedp)
    {
    {
      if (code == FLOOR_DIV_EXPR)
      if (code == FLOOR_DIV_EXPR)
        code = TRUNC_DIV_EXPR;
        code = TRUNC_DIV_EXPR;
      if (code == FLOOR_MOD_EXPR)
      if (code == FLOOR_MOD_EXPR)
        code = TRUNC_MOD_EXPR;
        code = TRUNC_MOD_EXPR;
      if (code == EXACT_DIV_EXPR && op1_is_pow2)
      if (code == EXACT_DIV_EXPR && op1_is_pow2)
        code = TRUNC_DIV_EXPR;
        code = TRUNC_DIV_EXPR;
    }
    }
 
 
  if (op1 != const0_rtx)
  if (op1 != const0_rtx)
    switch (code)
    switch (code)
      {
      {
      case TRUNC_MOD_EXPR:
      case TRUNC_MOD_EXPR:
      case TRUNC_DIV_EXPR:
      case TRUNC_DIV_EXPR:
        if (op1_is_constant)
        if (op1_is_constant)
          {
          {
            if (unsignedp)
            if (unsignedp)
              {
              {
                unsigned HOST_WIDE_INT mh;
                unsigned HOST_WIDE_INT mh;
                int pre_shift, post_shift;
                int pre_shift, post_shift;
                int dummy;
                int dummy;
                rtx ml;
                rtx ml;
                unsigned HOST_WIDE_INT d = (INTVAL (op1)
                unsigned HOST_WIDE_INT d = (INTVAL (op1)
                                            & GET_MODE_MASK (compute_mode));
                                            & GET_MODE_MASK (compute_mode));
 
 
                if (EXACT_POWER_OF_2_OR_ZERO_P (d))
                if (EXACT_POWER_OF_2_OR_ZERO_P (d))
                  {
                  {
                    pre_shift = floor_log2 (d);
                    pre_shift = floor_log2 (d);
                    if (rem_flag)
                    if (rem_flag)
                      {
                      {
                        remainder
                        remainder
                          = expand_binop (compute_mode, and_optab, op0,
                          = expand_binop (compute_mode, and_optab, op0,
                                          GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
                                          GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
                                          remainder, 1,
                                          remainder, 1,
                                          OPTAB_LIB_WIDEN);
                                          OPTAB_LIB_WIDEN);
                        if (remainder)
                        if (remainder)
                          return gen_lowpart (mode, remainder);
                          return gen_lowpart (mode, remainder);
                      }
                      }
                    quotient = expand_shift (RSHIFT_EXPR, compute_mode, op0,
                    quotient = expand_shift (RSHIFT_EXPR, compute_mode, op0,
                                             build_int_cst (NULL_TREE,
                                             build_int_cst (NULL_TREE,
                                                            pre_shift),
                                                            pre_shift),
                                             tquotient, 1);
                                             tquotient, 1);
                  }
                  }
                else if (size <= HOST_BITS_PER_WIDE_INT)
                else if (size <= HOST_BITS_PER_WIDE_INT)
                  {
                  {
                    if (d >= ((unsigned HOST_WIDE_INT) 1 << (size - 1)))
                    if (d >= ((unsigned HOST_WIDE_INT) 1 << (size - 1)))
                      {
                      {
                        /* Most significant bit of divisor is set; emit an scc
                        /* Most significant bit of divisor is set; emit an scc
                           insn.  */
                           insn.  */
                        quotient = emit_store_flag (tquotient, GEU, op0, op1,
                        quotient = emit_store_flag (tquotient, GEU, op0, op1,
                                                    compute_mode, 1, 1);
                                                    compute_mode, 1, 1);
                        if (quotient == 0)
                        if (quotient == 0)
                          goto fail1;
                          goto fail1;
                      }
                      }
                    else
                    else
                      {
                      {
                        /* Find a suitable multiplier and right shift count
                        /* Find a suitable multiplier and right shift count
                           instead of multiplying with D.  */
                           instead of multiplying with D.  */
 
 
                        mh = choose_multiplier (d, size, size,
                        mh = choose_multiplier (d, size, size,
                                                &ml, &post_shift, &dummy);
                                                &ml, &post_shift, &dummy);
 
 
                        /* If the suggested multiplier is more than SIZE bits,
                        /* If the suggested multiplier is more than SIZE bits,
                           we can do better for even divisors, using an
                           we can do better for even divisors, using an
                           initial right shift.  */
                           initial right shift.  */
                        if (mh != 0 && (d & 1) == 0)
                        if (mh != 0 && (d & 1) == 0)
                          {
                          {
                            pre_shift = floor_log2 (d & -d);
                            pre_shift = floor_log2 (d & -d);
                            mh = choose_multiplier (d >> pre_shift, size,
                            mh = choose_multiplier (d >> pre_shift, size,
                                                    size - pre_shift,
                                                    size - pre_shift,
                                                    &ml, &post_shift, &dummy);
                                                    &ml, &post_shift, &dummy);
                            gcc_assert (!mh);
                            gcc_assert (!mh);
                          }
                          }
                        else
                        else
                          pre_shift = 0;
                          pre_shift = 0;
 
 
                        if (mh != 0)
                        if (mh != 0)
                          {
                          {
                            rtx t1, t2, t3, t4;
                            rtx t1, t2, t3, t4;
 
 
                            if (post_shift - 1 >= BITS_PER_WORD)
                            if (post_shift - 1 >= BITS_PER_WORD)
                              goto fail1;
                              goto fail1;
 
 
                            extra_cost
                            extra_cost
                              = (shift_cost[compute_mode][post_shift - 1]
                              = (shift_cost[compute_mode][post_shift - 1]
                                 + shift_cost[compute_mode][1]
                                 + shift_cost[compute_mode][1]
                                 + 2 * add_cost[compute_mode]);
                                 + 2 * add_cost[compute_mode]);
                            t1 = expand_mult_highpart (compute_mode, op0, ml,
                            t1 = expand_mult_highpart (compute_mode, op0, ml,
                                                       NULL_RTX, 1,
                                                       NULL_RTX, 1,
                                                       max_cost - extra_cost);
                                                       max_cost - extra_cost);
                            if (t1 == 0)
                            if (t1 == 0)
                              goto fail1;
                              goto fail1;
                            t2 = force_operand (gen_rtx_MINUS (compute_mode,
                            t2 = force_operand (gen_rtx_MINUS (compute_mode,
                                                               op0, t1),
                                                               op0, t1),
                                                NULL_RTX);
                                                NULL_RTX);
                            t3 = expand_shift
                            t3 = expand_shift
                              (RSHIFT_EXPR, compute_mode, t2,
                              (RSHIFT_EXPR, compute_mode, t2,
                               build_int_cst (NULL_TREE, 1),
                               build_int_cst (NULL_TREE, 1),
                               NULL_RTX,1);
                               NULL_RTX,1);
                            t4 = force_operand (gen_rtx_PLUS (compute_mode,
                            t4 = force_operand (gen_rtx_PLUS (compute_mode,
                                                              t1, t3),
                                                              t1, t3),
                                                NULL_RTX);
                                                NULL_RTX);
                            quotient = expand_shift
                            quotient = expand_shift
                              (RSHIFT_EXPR, compute_mode, t4,
                              (RSHIFT_EXPR, compute_mode, t4,
                               build_int_cst (NULL_TREE, post_shift - 1),
                               build_int_cst (NULL_TREE, post_shift - 1),
                               tquotient, 1);
                               tquotient, 1);
                          }
                          }
                        else
                        else
                          {
                          {
                            rtx t1, t2;
                            rtx t1, t2;
 
 
                            if (pre_shift >= BITS_PER_WORD
                            if (pre_shift >= BITS_PER_WORD
                                || post_shift >= BITS_PER_WORD)
                                || post_shift >= BITS_PER_WORD)
                              goto fail1;
                              goto fail1;
 
 
                            t1 = expand_shift
                            t1 = expand_shift
                              (RSHIFT_EXPR, compute_mode, op0,
                              (RSHIFT_EXPR, compute_mode, op0,
                               build_int_cst (NULL_TREE, pre_shift),
                               build_int_cst (NULL_TREE, pre_shift),
                               NULL_RTX, 1);
                               NULL_RTX, 1);
                            extra_cost
                            extra_cost
                              = (shift_cost[compute_mode][pre_shift]
                              = (shift_cost[compute_mode][pre_shift]
                                 + shift_cost[compute_mode][post_shift]);
                                 + shift_cost[compute_mode][post_shift]);
                            t2 = expand_mult_highpart (compute_mode, t1, ml,
                            t2 = expand_mult_highpart (compute_mode, t1, ml,
                                                       NULL_RTX, 1,
                                                       NULL_RTX, 1,
                                                       max_cost - extra_cost);
                                                       max_cost - extra_cost);
                            if (t2 == 0)
                            if (t2 == 0)
                              goto fail1;
                              goto fail1;
                            quotient = expand_shift
                            quotient = expand_shift
                              (RSHIFT_EXPR, compute_mode, t2,
                              (RSHIFT_EXPR, compute_mode, t2,
                               build_int_cst (NULL_TREE, post_shift),
                               build_int_cst (NULL_TREE, post_shift),
                               tquotient, 1);
                               tquotient, 1);
                          }
                          }
                      }
                      }
                  }
                  }
                else            /* Too wide mode to use tricky code */
                else            /* Too wide mode to use tricky code */
                  break;
                  break;
 
 
                insn = get_last_insn ();
                insn = get_last_insn ();
                if (insn != last
                if (insn != last
                    && (set = single_set (insn)) != 0
                    && (set = single_set (insn)) != 0
                    && SET_DEST (set) == quotient)
                    && SET_DEST (set) == quotient)
                  set_unique_reg_note (insn,
                  set_unique_reg_note (insn,
                                       REG_EQUAL,
                                       REG_EQUAL,
                                       gen_rtx_UDIV (compute_mode, op0, op1));
                                       gen_rtx_UDIV (compute_mode, op0, op1));
              }
              }
            else                /* TRUNC_DIV, signed */
            else                /* TRUNC_DIV, signed */
              {
              {
                unsigned HOST_WIDE_INT ml;
                unsigned HOST_WIDE_INT ml;
                int lgup, post_shift;
                int lgup, post_shift;
                rtx mlr;
                rtx mlr;
                HOST_WIDE_INT d = INTVAL (op1);
                HOST_WIDE_INT d = INTVAL (op1);
                unsigned HOST_WIDE_INT abs_d = d >= 0 ? d : -d;
                unsigned HOST_WIDE_INT abs_d = d >= 0 ? d : -d;
 
 
                /* n rem d = n rem -d */
                /* n rem d = n rem -d */
                if (rem_flag && d < 0)
                if (rem_flag && d < 0)
                  {
                  {
                    d = abs_d;
                    d = abs_d;
                    op1 = gen_int_mode (abs_d, compute_mode);
                    op1 = gen_int_mode (abs_d, compute_mode);
                  }
                  }
 
 
                if (d == 1)
                if (d == 1)
                  quotient = op0;
                  quotient = op0;
                else if (d == -1)
                else if (d == -1)
                  quotient = expand_unop (compute_mode, neg_optab, op0,
                  quotient = expand_unop (compute_mode, neg_optab, op0,
                                          tquotient, 0);
                                          tquotient, 0);
                else if (abs_d == (unsigned HOST_WIDE_INT) 1 << (size - 1))
                else if (abs_d == (unsigned HOST_WIDE_INT) 1 << (size - 1))
                  {
                  {
                    /* This case is not handled correctly below.  */
                    /* This case is not handled correctly below.  */
                    quotient = emit_store_flag (tquotient, EQ, op0, op1,
                    quotient = emit_store_flag (tquotient, EQ, op0, op1,
                                                compute_mode, 1, 1);
                                                compute_mode, 1, 1);
                    if (quotient == 0)
                    if (quotient == 0)
                      goto fail1;
                      goto fail1;
                  }
                  }
                else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
                else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
                         && (rem_flag ? smod_pow2_cheap[compute_mode]
                         && (rem_flag ? smod_pow2_cheap[compute_mode]
                                      : sdiv_pow2_cheap[compute_mode])
                                      : sdiv_pow2_cheap[compute_mode])
                         /* We assume that cheap metric is true if the
                         /* We assume that cheap metric is true if the
                            optab has an expander for this mode.  */
                            optab has an expander for this mode.  */
                         && (((rem_flag ? smod_optab : sdiv_optab)
                         && (((rem_flag ? smod_optab : sdiv_optab)
                              ->handlers[compute_mode].insn_code
                              ->handlers[compute_mode].insn_code
                              != CODE_FOR_nothing)
                              != CODE_FOR_nothing)
                             || (sdivmod_optab->handlers[compute_mode]
                             || (sdivmod_optab->handlers[compute_mode]
                                 .insn_code != CODE_FOR_nothing)))
                                 .insn_code != CODE_FOR_nothing)))
                  ;
                  ;
                else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
                else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
                  {
                  {
                    if (rem_flag)
                    if (rem_flag)
                      {
                      {
                        remainder = expand_smod_pow2 (compute_mode, op0, d);
                        remainder = expand_smod_pow2 (compute_mode, op0, d);
                        if (remainder)
                        if (remainder)
                          return gen_lowpart (mode, remainder);
                          return gen_lowpart (mode, remainder);
                      }
                      }
 
 
                    if (sdiv_pow2_cheap[compute_mode]
                    if (sdiv_pow2_cheap[compute_mode]
                        && ((sdiv_optab->handlers[compute_mode].insn_code
                        && ((sdiv_optab->handlers[compute_mode].insn_code
                             != CODE_FOR_nothing)
                             != CODE_FOR_nothing)
                            || (sdivmod_optab->handlers[compute_mode].insn_code
                            || (sdivmod_optab->handlers[compute_mode].insn_code
                                != CODE_FOR_nothing)))
                                != CODE_FOR_nothing)))
                      quotient = expand_divmod (0, TRUNC_DIV_EXPR,
                      quotient = expand_divmod (0, TRUNC_DIV_EXPR,
                                                compute_mode, op0,
                                                compute_mode, op0,
                                                gen_int_mode (abs_d,
                                                gen_int_mode (abs_d,
                                                              compute_mode),
                                                              compute_mode),
                                                NULL_RTX, 0);
                                                NULL_RTX, 0);
                    else
                    else
                      quotient = expand_sdiv_pow2 (compute_mode, op0, abs_d);
                      quotient = expand_sdiv_pow2 (compute_mode, op0, abs_d);
 
 
                    /* We have computed OP0 / abs(OP1).  If OP1 is negative,
                    /* We have computed OP0 / abs(OP1).  If OP1 is negative,
                       negate the quotient.  */
                       negate the quotient.  */
                    if (d < 0)
                    if (d < 0)
                      {
                      {
                        insn = get_last_insn ();
                        insn = get_last_insn ();
                        if (insn != last
                        if (insn != last
                            && (set = single_set (insn)) != 0
                            && (set = single_set (insn)) != 0
                            && SET_DEST (set) == quotient
                            && SET_DEST (set) == quotient
                            && abs_d < ((unsigned HOST_WIDE_INT) 1
                            && abs_d < ((unsigned HOST_WIDE_INT) 1
                                        << (HOST_BITS_PER_WIDE_INT - 1)))
                                        << (HOST_BITS_PER_WIDE_INT - 1)))
                          set_unique_reg_note (insn,
                          set_unique_reg_note (insn,
                                               REG_EQUAL,
                                               REG_EQUAL,
                                               gen_rtx_DIV (compute_mode,
                                               gen_rtx_DIV (compute_mode,
                                                            op0,
                                                            op0,
                                                            GEN_INT
                                                            GEN_INT
                                                            (trunc_int_for_mode
                                                            (trunc_int_for_mode
                                                             (abs_d,
                                                             (abs_d,
                                                              compute_mode))));
                                                              compute_mode))));
 
 
                        quotient = expand_unop (compute_mode, neg_optab,
                        quotient = expand_unop (compute_mode, neg_optab,
                                                quotient, quotient, 0);
                                                quotient, quotient, 0);
                      }
                      }
                  }
                  }
                else if (size <= HOST_BITS_PER_WIDE_INT)
                else if (size <= HOST_BITS_PER_WIDE_INT)
                  {
                  {
                    choose_multiplier (abs_d, size, size - 1,
                    choose_multiplier (abs_d, size, size - 1,
                                       &mlr, &post_shift, &lgup);
                                       &mlr, &post_shift, &lgup);
                    ml = (unsigned HOST_WIDE_INT) INTVAL (mlr);
                    ml = (unsigned HOST_WIDE_INT) INTVAL (mlr);
                    if (ml < (unsigned HOST_WIDE_INT) 1 << (size - 1))
                    if (ml < (unsigned HOST_WIDE_INT) 1 << (size - 1))
                      {
                      {
                        rtx t1, t2, t3;
                        rtx t1, t2, t3;
 
 
                        if (post_shift >= BITS_PER_WORD
                        if (post_shift >= BITS_PER_WORD
                            || size - 1 >= BITS_PER_WORD)
                            || size - 1 >= BITS_PER_WORD)
                          goto fail1;
                          goto fail1;
 
 
                        extra_cost = (shift_cost[compute_mode][post_shift]
                        extra_cost = (shift_cost[compute_mode][post_shift]
                                      + shift_cost[compute_mode][size - 1]
                                      + shift_cost[compute_mode][size - 1]
                                      + add_cost[compute_mode]);
                                      + add_cost[compute_mode]);
                        t1 = expand_mult_highpart (compute_mode, op0, mlr,
                        t1 = expand_mult_highpart (compute_mode, op0, mlr,
                                                   NULL_RTX, 0,
                                                   NULL_RTX, 0,
                                                   max_cost - extra_cost);
                                                   max_cost - extra_cost);
                        if (t1 == 0)
                        if (t1 == 0)
                          goto fail1;
                          goto fail1;
                        t2 = expand_shift
                        t2 = expand_shift
                          (RSHIFT_EXPR, compute_mode, t1,
                          (RSHIFT_EXPR, compute_mode, t1,
                           build_int_cst (NULL_TREE, post_shift),
                           build_int_cst (NULL_TREE, post_shift),
                           NULL_RTX, 0);
                           NULL_RTX, 0);
                        t3 = expand_shift
                        t3 = expand_shift
                          (RSHIFT_EXPR, compute_mode, op0,
                          (RSHIFT_EXPR, compute_mode, op0,
                           build_int_cst (NULL_TREE, size - 1),
                           build_int_cst (NULL_TREE, size - 1),
                           NULL_RTX, 0);
                           NULL_RTX, 0);
                        if (d < 0)
                        if (d < 0)
                          quotient
                          quotient
                            = force_operand (gen_rtx_MINUS (compute_mode,
                            = force_operand (gen_rtx_MINUS (compute_mode,
                                                            t3, t2),
                                                            t3, t2),
                                             tquotient);
                                             tquotient);
                        else
                        else
                          quotient
                          quotient
                            = force_operand (gen_rtx_MINUS (compute_mode,
                            = force_operand (gen_rtx_MINUS (compute_mode,
                                                            t2, t3),
                                                            t2, t3),
                                             tquotient);
                                             tquotient);
                      }
                      }
                    else
                    else
                      {
                      {
                        rtx t1, t2, t3, t4;
                        rtx t1, t2, t3, t4;
 
 
                        if (post_shift >= BITS_PER_WORD
                        if (post_shift >= BITS_PER_WORD
                            || size - 1 >= BITS_PER_WORD)
                            || size - 1 >= BITS_PER_WORD)
                          goto fail1;
                          goto fail1;
 
 
                        ml |= (~(unsigned HOST_WIDE_INT) 0) << (size - 1);
                        ml |= (~(unsigned HOST_WIDE_INT) 0) << (size - 1);
                        mlr = gen_int_mode (ml, compute_mode);
                        mlr = gen_int_mode (ml, compute_mode);
                        extra_cost = (shift_cost[compute_mode][post_shift]
                        extra_cost = (shift_cost[compute_mode][post_shift]
                                      + shift_cost[compute_mode][size - 1]
                                      + shift_cost[compute_mode][size - 1]
                                      + 2 * add_cost[compute_mode]);
                                      + 2 * add_cost[compute_mode]);
                        t1 = expand_mult_highpart (compute_mode, op0, mlr,
                        t1 = expand_mult_highpart (compute_mode, op0, mlr,
                                                   NULL_RTX, 0,
                                                   NULL_RTX, 0,
                                                   max_cost - extra_cost);
                                                   max_cost - extra_cost);
                        if (t1 == 0)
                        if (t1 == 0)
                          goto fail1;
                          goto fail1;
                        t2 = force_operand (gen_rtx_PLUS (compute_mode,
                        t2 = force_operand (gen_rtx_PLUS (compute_mode,
                                                          t1, op0),
                                                          t1, op0),
                                            NULL_RTX);
                                            NULL_RTX);
                        t3 = expand_shift
                        t3 = expand_shift
                          (RSHIFT_EXPR, compute_mode, t2,
                          (RSHIFT_EXPR, compute_mode, t2,
                           build_int_cst (NULL_TREE, post_shift),
                           build_int_cst (NULL_TREE, post_shift),
                           NULL_RTX, 0);
                           NULL_RTX, 0);
                        t4 = expand_shift
                        t4 = expand_shift
                          (RSHIFT_EXPR, compute_mode, op0,
                          (RSHIFT_EXPR, compute_mode, op0,
                           build_int_cst (NULL_TREE, size - 1),
                           build_int_cst (NULL_TREE, size - 1),
                           NULL_RTX, 0);
                           NULL_RTX, 0);
                        if (d < 0)
                        if (d < 0)
                          quotient
                          quotient
                            = force_operand (gen_rtx_MINUS (compute_mode,
                            = force_operand (gen_rtx_MINUS (compute_mode,
                                                            t4, t3),
                                                            t4, t3),
                                             tquotient);
                                             tquotient);
                        else
                        else
                          quotient
                          quotient
                            = force_operand (gen_rtx_MINUS (compute_mode,
                            = force_operand (gen_rtx_MINUS (compute_mode,
                                                            t3, t4),
                                                            t3, t4),
                                             tquotient);
                                             tquotient);
                      }
                      }
                  }
                  }
                else            /* Too wide mode to use tricky code */
                else            /* Too wide mode to use tricky code */
                  break;
                  break;
 
 
                insn = get_last_insn ();
                insn = get_last_insn ();
                if (insn != last
                if (insn != last
                    && (set = single_set (insn)) != 0
                    && (set = single_set (insn)) != 0
                    && SET_DEST (set) == quotient)
                    && SET_DEST (set) == quotient)
                  set_unique_reg_note (insn,
                  set_unique_reg_note (insn,
                                       REG_EQUAL,
                                       REG_EQUAL,
                                       gen_rtx_DIV (compute_mode, op0, op1));
                                       gen_rtx_DIV (compute_mode, op0, op1));
              }
              }
            break;
            break;
          }
          }
      fail1:
      fail1:
        delete_insns_since (last);
        delete_insns_since (last);
        break;
        break;
 
 
      case FLOOR_DIV_EXPR:
      case FLOOR_DIV_EXPR:
      case FLOOR_MOD_EXPR:
      case FLOOR_MOD_EXPR:
      /* We will come here only for signed operations.  */
      /* We will come here only for signed operations.  */
        if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
        if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
          {
          {
            unsigned HOST_WIDE_INT mh;
            unsigned HOST_WIDE_INT mh;
            int pre_shift, lgup, post_shift;
            int pre_shift, lgup, post_shift;
            HOST_WIDE_INT d = INTVAL (op1);
            HOST_WIDE_INT d = INTVAL (op1);
            rtx ml;
            rtx ml;
 
 
            if (d > 0)
            if (d > 0)
              {
              {
                /* We could just as easily deal with negative constants here,
                /* We could just as easily deal with negative constants here,
                   but it does not seem worth the trouble for GCC 2.6.  */
                   but it does not seem worth the trouble for GCC 2.6.  */
                if (EXACT_POWER_OF_2_OR_ZERO_P (d))
                if (EXACT_POWER_OF_2_OR_ZERO_P (d))
                  {
                  {
                    pre_shift = floor_log2 (d);
                    pre_shift = floor_log2 (d);
                    if (rem_flag)
                    if (rem_flag)
                      {
                      {
                        remainder = expand_binop (compute_mode, and_optab, op0,
                        remainder = expand_binop (compute_mode, and_optab, op0,
                                                  GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
                                                  GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
                                                  remainder, 0, OPTAB_LIB_WIDEN);
                                                  remainder, 0, OPTAB_LIB_WIDEN);
                        if (remainder)
                        if (remainder)
                          return gen_lowpart (mode, remainder);
                          return gen_lowpart (mode, remainder);
                      }
                      }
                    quotient = expand_shift
                    quotient = expand_shift
                      (RSHIFT_EXPR, compute_mode, op0,
                      (RSHIFT_EXPR, compute_mode, op0,
                       build_int_cst (NULL_TREE, pre_shift),
                       build_int_cst (NULL_TREE, pre_shift),
                       tquotient, 0);
                       tquotient, 0);
                  }
                  }
                else
                else
                  {
                  {
                    rtx t1, t2, t3, t4;
                    rtx t1, t2, t3, t4;
 
 
                    mh = choose_multiplier (d, size, size - 1,
                    mh = choose_multiplier (d, size, size - 1,
                                            &ml, &post_shift, &lgup);
                                            &ml, &post_shift, &lgup);
                    gcc_assert (!mh);
                    gcc_assert (!mh);
 
 
                    if (post_shift < BITS_PER_WORD
                    if (post_shift < BITS_PER_WORD
                        && size - 1 < BITS_PER_WORD)
                        && size - 1 < BITS_PER_WORD)
                      {
                      {
                        t1 = expand_shift
                        t1 = expand_shift
                          (RSHIFT_EXPR, compute_mode, op0,
                          (RSHIFT_EXPR, compute_mode, op0,
                           build_int_cst (NULL_TREE, size - 1),
                           build_int_cst (NULL_TREE, size - 1),
                           NULL_RTX, 0);
                           NULL_RTX, 0);
                        t2 = expand_binop (compute_mode, xor_optab, op0, t1,
                        t2 = expand_binop (compute_mode, xor_optab, op0, t1,
                                           NULL_RTX, 0, OPTAB_WIDEN);
                                           NULL_RTX, 0, OPTAB_WIDEN);
                        extra_cost = (shift_cost[compute_mode][post_shift]
                        extra_cost = (shift_cost[compute_mode][post_shift]
                                      + shift_cost[compute_mode][size - 1]
                                      + shift_cost[compute_mode][size - 1]
                                      + 2 * add_cost[compute_mode]);
                                      + 2 * add_cost[compute_mode]);
                        t3 = expand_mult_highpart (compute_mode, t2, ml,
                        t3 = expand_mult_highpart (compute_mode, t2, ml,
                                                   NULL_RTX, 1,
                                                   NULL_RTX, 1,
                                                   max_cost - extra_cost);
                                                   max_cost - extra_cost);
                        if (t3 != 0)
                        if (t3 != 0)
                          {
                          {
                            t4 = expand_shift
                            t4 = expand_shift
                              (RSHIFT_EXPR, compute_mode, t3,
                              (RSHIFT_EXPR, compute_mode, t3,
                               build_int_cst (NULL_TREE, post_shift),
                               build_int_cst (NULL_TREE, post_shift),
                               NULL_RTX, 1);
                               NULL_RTX, 1);
                            quotient = expand_binop (compute_mode, xor_optab,
                            quotient = expand_binop (compute_mode, xor_optab,
                                                     t4, t1, tquotient, 0,
                                                     t4, t1, tquotient, 0,
                                                     OPTAB_WIDEN);
                                                     OPTAB_WIDEN);
                          }
                          }
                      }
                      }
                  }
                  }
              }
              }
            else
            else
              {
              {
                rtx nsign, t1, t2, t3, t4;
                rtx nsign, t1, t2, t3, t4;
                t1 = force_operand (gen_rtx_PLUS (compute_mode,
                t1 = force_operand (gen_rtx_PLUS (compute_mode,
                                                  op0, constm1_rtx), NULL_RTX);
                                                  op0, constm1_rtx), NULL_RTX);
                t2 = expand_binop (compute_mode, ior_optab, op0, t1, NULL_RTX,
                t2 = expand_binop (compute_mode, ior_optab, op0, t1, NULL_RTX,
                                   0, OPTAB_WIDEN);
                                   0, OPTAB_WIDEN);
                nsign = expand_shift
                nsign = expand_shift
                  (RSHIFT_EXPR, compute_mode, t2,
                  (RSHIFT_EXPR, compute_mode, t2,
                   build_int_cst (NULL_TREE, size - 1),
                   build_int_cst (NULL_TREE, size - 1),
                   NULL_RTX, 0);
                   NULL_RTX, 0);
                t3 = force_operand (gen_rtx_MINUS (compute_mode, t1, nsign),
                t3 = force_operand (gen_rtx_MINUS (compute_mode, t1, nsign),
                                    NULL_RTX);
                                    NULL_RTX);
                t4 = expand_divmod (0, TRUNC_DIV_EXPR, compute_mode, t3, op1,
                t4 = expand_divmod (0, TRUNC_DIV_EXPR, compute_mode, t3, op1,
                                    NULL_RTX, 0);
                                    NULL_RTX, 0);
                if (t4)
                if (t4)
                  {
                  {
                    rtx t5;
                    rtx t5;
                    t5 = expand_unop (compute_mode, one_cmpl_optab, nsign,
                    t5 = expand_unop (compute_mode, one_cmpl_optab, nsign,
                                      NULL_RTX, 0);
                                      NULL_RTX, 0);
                    quotient = force_operand (gen_rtx_PLUS (compute_mode,
                    quotient = force_operand (gen_rtx_PLUS (compute_mode,
                                                            t4, t5),
                                                            t4, t5),
                                              tquotient);
                                              tquotient);
                  }
                  }
              }
              }
          }
          }
 
 
        if (quotient != 0)
        if (quotient != 0)
          break;
          break;
        delete_insns_since (last);
        delete_insns_since (last);
 
 
        /* Try using an instruction that produces both the quotient and
        /* Try using an instruction that produces both the quotient and
           remainder, using truncation.  We can easily compensate the quotient
           remainder, using truncation.  We can easily compensate the quotient
           or remainder to get floor rounding, once we have the remainder.
           or remainder to get floor rounding, once we have the remainder.
           Notice that we compute also the final remainder value here,
           Notice that we compute also the final remainder value here,
           and return the result right away.  */
           and return the result right away.  */
        if (target == 0 || GET_MODE (target) != compute_mode)
        if (target == 0 || GET_MODE (target) != compute_mode)
          target = gen_reg_rtx (compute_mode);
          target = gen_reg_rtx (compute_mode);
 
 
        if (rem_flag)
        if (rem_flag)
          {
          {
            remainder
            remainder
              = REG_P (target) ? target : gen_reg_rtx (compute_mode);
              = REG_P (target) ? target : gen_reg_rtx (compute_mode);
            quotient = gen_reg_rtx (compute_mode);
            quotient = gen_reg_rtx (compute_mode);
          }
          }
        else
        else
          {
          {
            quotient
            quotient
              = REG_P (target) ? target : gen_reg_rtx (compute_mode);
              = REG_P (target) ? target : gen_reg_rtx (compute_mode);
            remainder = gen_reg_rtx (compute_mode);
            remainder = gen_reg_rtx (compute_mode);
          }
          }
 
 
        if (expand_twoval_binop (sdivmod_optab, op0, op1,
        if (expand_twoval_binop (sdivmod_optab, op0, op1,
                                 quotient, remainder, 0))
                                 quotient, remainder, 0))
          {
          {
            /* This could be computed with a branch-less sequence.
            /* This could be computed with a branch-less sequence.
               Save that for later.  */
               Save that for later.  */
            rtx tem;
            rtx tem;
            rtx label = gen_label_rtx ();
            rtx label = gen_label_rtx ();
            do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
            do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
            tem = expand_binop (compute_mode, xor_optab, op0, op1,
            tem = expand_binop (compute_mode, xor_optab, op0, op1,
                                NULL_RTX, 0, OPTAB_WIDEN);
                                NULL_RTX, 0, OPTAB_WIDEN);
            do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
            do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
            expand_dec (quotient, const1_rtx);
            expand_dec (quotient, const1_rtx);
            expand_inc (remainder, op1);
            expand_inc (remainder, op1);
            emit_label (label);
            emit_label (label);
            return gen_lowpart (mode, rem_flag ? remainder : quotient);
            return gen_lowpart (mode, rem_flag ? remainder : quotient);
          }
          }
 
 
        /* No luck with division elimination or divmod.  Have to do it
        /* No luck with division elimination or divmod.  Have to do it
           by conditionally adjusting op0 *and* the result.  */
           by conditionally adjusting op0 *and* the result.  */
        {
        {
          rtx label1, label2, label3, label4, label5;
          rtx label1, label2, label3, label4, label5;
          rtx adjusted_op0;
          rtx adjusted_op0;
          rtx tem;
          rtx tem;
 
 
          quotient = gen_reg_rtx (compute_mode);
          quotient = gen_reg_rtx (compute_mode);
          adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
          adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
          label1 = gen_label_rtx ();
          label1 = gen_label_rtx ();
          label2 = gen_label_rtx ();
          label2 = gen_label_rtx ();
          label3 = gen_label_rtx ();
          label3 = gen_label_rtx ();
          label4 = gen_label_rtx ();
          label4 = gen_label_rtx ();
          label5 = gen_label_rtx ();
          label5 = gen_label_rtx ();
          do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
          do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
          do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
          do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
          tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
          tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
                              quotient, 0, OPTAB_LIB_WIDEN);
                              quotient, 0, OPTAB_LIB_WIDEN);
          if (tem != quotient)
          if (tem != quotient)
            emit_move_insn (quotient, tem);
            emit_move_insn (quotient, tem);
          emit_jump_insn (gen_jump (label5));
          emit_jump_insn (gen_jump (label5));
          emit_barrier ();
          emit_barrier ();
          emit_label (label1);
          emit_label (label1);
          expand_inc (adjusted_op0, const1_rtx);
          expand_inc (adjusted_op0, const1_rtx);
          emit_jump_insn (gen_jump (label4));
          emit_jump_insn (gen_jump (label4));
          emit_barrier ();
          emit_barrier ();
          emit_label (label2);
          emit_label (label2);
          do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
          do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
          tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
          tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
                              quotient, 0, OPTAB_LIB_WIDEN);
                              quotient, 0, OPTAB_LIB_WIDEN);
          if (tem != quotient)
          if (tem != quotient)
            emit_move_insn (quotient, tem);
            emit_move_insn (quotient, tem);
          emit_jump_insn (gen_jump (label5));
          emit_jump_insn (gen_jump (label5));
          emit_barrier ();
          emit_barrier ();
          emit_label (label3);
          emit_label (label3);
          expand_dec (adjusted_op0, const1_rtx);
          expand_dec (adjusted_op0, const1_rtx);
          emit_label (label4);
          emit_label (label4);
          tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
          tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
                              quotient, 0, OPTAB_LIB_WIDEN);
                              quotient, 0, OPTAB_LIB_WIDEN);
          if (tem != quotient)
          if (tem != quotient)
            emit_move_insn (quotient, tem);
            emit_move_insn (quotient, tem);
          expand_dec (quotient, const1_rtx);
          expand_dec (quotient, const1_rtx);
          emit_label (label5);
          emit_label (label5);
        }
        }
        break;
        break;
 
 
      case CEIL_DIV_EXPR:
      case CEIL_DIV_EXPR:
      case CEIL_MOD_EXPR:
      case CEIL_MOD_EXPR:
        if (unsignedp)
        if (unsignedp)
          {
          {
            if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1)))
            if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1)))
              {
              {
                rtx t1, t2, t3;
                rtx t1, t2, t3;
                unsigned HOST_WIDE_INT d = INTVAL (op1);
                unsigned HOST_WIDE_INT d = INTVAL (op1);
                t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
                t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
                                   build_int_cst (NULL_TREE, floor_log2 (d)),
                                   build_int_cst (NULL_TREE, floor_log2 (d)),
                                   tquotient, 1);
                                   tquotient, 1);
                t2 = expand_binop (compute_mode, and_optab, op0,
                t2 = expand_binop (compute_mode, and_optab, op0,
                                   GEN_INT (d - 1),
                                   GEN_INT (d - 1),
                                   NULL_RTX, 1, OPTAB_LIB_WIDEN);
                                   NULL_RTX, 1, OPTAB_LIB_WIDEN);
                t3 = gen_reg_rtx (compute_mode);
                t3 = gen_reg_rtx (compute_mode);
                t3 = emit_store_flag (t3, NE, t2, const0_rtx,
                t3 = emit_store_flag (t3, NE, t2, const0_rtx,
                                      compute_mode, 1, 1);
                                      compute_mode, 1, 1);
                if (t3 == 0)
                if (t3 == 0)
                  {
                  {
                    rtx lab;
                    rtx lab;
                    lab = gen_label_rtx ();
                    lab = gen_label_rtx ();
                    do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
                    do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
                    expand_inc (t1, const1_rtx);
                    expand_inc (t1, const1_rtx);
                    emit_label (lab);
                    emit_label (lab);
                    quotient = t1;
                    quotient = t1;
                  }
                  }
                else
                else
                  quotient = force_operand (gen_rtx_PLUS (compute_mode,
                  quotient = force_operand (gen_rtx_PLUS (compute_mode,
                                                          t1, t3),
                                                          t1, t3),
                                            tquotient);
                                            tquotient);
                break;
                break;
              }
              }
 
 
            /* Try using an instruction that produces both the quotient and
            /* Try using an instruction that produces both the quotient and
               remainder, using truncation.  We can easily compensate the
               remainder, using truncation.  We can easily compensate the
               quotient or remainder to get ceiling rounding, once we have the
               quotient or remainder to get ceiling rounding, once we have the
               remainder.  Notice that we compute also the final remainder
               remainder.  Notice that we compute also the final remainder
               value here, and return the result right away.  */
               value here, and return the result right away.  */
            if (target == 0 || GET_MODE (target) != compute_mode)
            if (target == 0 || GET_MODE (target) != compute_mode)
              target = gen_reg_rtx (compute_mode);
              target = gen_reg_rtx (compute_mode);
 
 
            if (rem_flag)
            if (rem_flag)
              {
              {
                remainder = (REG_P (target)
                remainder = (REG_P (target)
                             ? target : gen_reg_rtx (compute_mode));
                             ? target : gen_reg_rtx (compute_mode));
                quotient = gen_reg_rtx (compute_mode);
                quotient = gen_reg_rtx (compute_mode);
              }
              }
            else
            else
              {
              {
                quotient = (REG_P (target)
                quotient = (REG_P (target)
                            ? target : gen_reg_rtx (compute_mode));
                            ? target : gen_reg_rtx (compute_mode));
                remainder = gen_reg_rtx (compute_mode);
                remainder = gen_reg_rtx (compute_mode);
              }
              }
 
 
            if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
            if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
                                     remainder, 1))
                                     remainder, 1))
              {
              {
                /* This could be computed with a branch-less sequence.
                /* This could be computed with a branch-less sequence.
                   Save that for later.  */
                   Save that for later.  */
                rtx label = gen_label_rtx ();
                rtx label = gen_label_rtx ();
                do_cmp_and_jump (remainder, const0_rtx, EQ,
                do_cmp_and_jump (remainder, const0_rtx, EQ,
                                 compute_mode, label);
                                 compute_mode, label);
                expand_inc (quotient, const1_rtx);
                expand_inc (quotient, const1_rtx);
                expand_dec (remainder, op1);
                expand_dec (remainder, op1);
                emit_label (label);
                emit_label (label);
                return gen_lowpart (mode, rem_flag ? remainder : quotient);
                return gen_lowpart (mode, rem_flag ? remainder : quotient);
              }
              }
 
 
            /* No luck with division elimination or divmod.  Have to do it
            /* No luck with division elimination or divmod.  Have to do it
               by conditionally adjusting op0 *and* the result.  */
               by conditionally adjusting op0 *and* the result.  */
            {
            {
              rtx label1, label2;
              rtx label1, label2;
              rtx adjusted_op0, tem;
              rtx adjusted_op0, tem;
 
 
              quotient = gen_reg_rtx (compute_mode);
              quotient = gen_reg_rtx (compute_mode);
              adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
              adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
              label1 = gen_label_rtx ();
              label1 = gen_label_rtx ();
              label2 = gen_label_rtx ();
              label2 = gen_label_rtx ();
              do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
              do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
                               compute_mode, label1);
                               compute_mode, label1);
              emit_move_insn  (quotient, const0_rtx);
              emit_move_insn  (quotient, const0_rtx);
              emit_jump_insn (gen_jump (label2));
              emit_jump_insn (gen_jump (label2));
              emit_barrier ();
              emit_barrier ();
              emit_label (label1);
              emit_label (label1);
              expand_dec (adjusted_op0, const1_rtx);
              expand_dec (adjusted_op0, const1_rtx);
              tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
              tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
                                  quotient, 1, OPTAB_LIB_WIDEN);
                                  quotient, 1, OPTAB_LIB_WIDEN);
              if (tem != quotient)
              if (tem != quotient)
                emit_move_insn (quotient, tem);
                emit_move_insn (quotient, tem);
              expand_inc (quotient, const1_rtx);
              expand_inc (quotient, const1_rtx);
              emit_label (label2);
              emit_label (label2);
            }
            }
          }
          }
        else /* signed */
        else /* signed */
          {
          {
            if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
            if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
                && INTVAL (op1) >= 0)
                && INTVAL (op1) >= 0)
              {
              {
                /* This is extremely similar to the code for the unsigned case
                /* This is extremely similar to the code for the unsigned case
                   above.  For 2.7 we should merge these variants, but for
                   above.  For 2.7 we should merge these variants, but for
                   2.6.1 I don't want to touch the code for unsigned since that
                   2.6.1 I don't want to touch the code for unsigned since that
                   get used in C.  The signed case will only be used by other
                   get used in C.  The signed case will only be used by other
                   languages (Ada).  */
                   languages (Ada).  */
 
 
                rtx t1, t2, t3;
                rtx t1, t2, t3;
                unsigned HOST_WIDE_INT d = INTVAL (op1);
                unsigned HOST_WIDE_INT d = INTVAL (op1);
                t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
                t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
                                   build_int_cst (NULL_TREE, floor_log2 (d)),
                                   build_int_cst (NULL_TREE, floor_log2 (d)),
                                   tquotient, 0);
                                   tquotient, 0);
                t2 = expand_binop (compute_mode, and_optab, op0,
                t2 = expand_binop (compute_mode, and_optab, op0,
                                   GEN_INT (d - 1),
                                   GEN_INT (d - 1),
                                   NULL_RTX, 1, OPTAB_LIB_WIDEN);
                                   NULL_RTX, 1, OPTAB_LIB_WIDEN);
                t3 = gen_reg_rtx (compute_mode);
                t3 = gen_reg_rtx (compute_mode);
                t3 = emit_store_flag (t3, NE, t2, const0_rtx,
                t3 = emit_store_flag (t3, NE, t2, const0_rtx,
                                      compute_mode, 1, 1);
                                      compute_mode, 1, 1);
                if (t3 == 0)
                if (t3 == 0)
                  {
                  {
                    rtx lab;
                    rtx lab;
                    lab = gen_label_rtx ();
                    lab = gen_label_rtx ();
                    do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
                    do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
                    expand_inc (t1, const1_rtx);
                    expand_inc (t1, const1_rtx);
                    emit_label (lab);
                    emit_label (lab);
                    quotient = t1;
                    quotient = t1;
                  }
                  }
                else
                else
                  quotient = force_operand (gen_rtx_PLUS (compute_mode,
                  quotient = force_operand (gen_rtx_PLUS (compute_mode,
                                                          t1, t3),
                                                          t1, t3),
                                            tquotient);
                                            tquotient);
                break;
                break;
              }
              }
 
 
            /* Try using an instruction that produces both the quotient and
            /* Try using an instruction that produces both the quotient and
               remainder, using truncation.  We can easily compensate the
               remainder, using truncation.  We can easily compensate the
               quotient or remainder to get ceiling rounding, once we have the
               quotient or remainder to get ceiling rounding, once we have the
               remainder.  Notice that we compute also the final remainder
               remainder.  Notice that we compute also the final remainder
               value here, and return the result right away.  */
               value here, and return the result right away.  */
            if (target == 0 || GET_MODE (target) != compute_mode)
            if (target == 0 || GET_MODE (target) != compute_mode)
              target = gen_reg_rtx (compute_mode);
              target = gen_reg_rtx (compute_mode);
            if (rem_flag)
            if (rem_flag)
              {
              {
                remainder= (REG_P (target)
                remainder= (REG_P (target)
                            ? target : gen_reg_rtx (compute_mode));
                            ? target : gen_reg_rtx (compute_mode));
                quotient = gen_reg_rtx (compute_mode);
                quotient = gen_reg_rtx (compute_mode);
              }
              }
            else
            else
              {
              {
                quotient = (REG_P (target)
                quotient = (REG_P (target)
                            ? target : gen_reg_rtx (compute_mode));
                            ? target : gen_reg_rtx (compute_mode));
                remainder = gen_reg_rtx (compute_mode);
                remainder = gen_reg_rtx (compute_mode);
              }
              }
 
 
            if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
            if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
                                     remainder, 0))
                                     remainder, 0))
              {
              {
                /* This could be computed with a branch-less sequence.
                /* This could be computed with a branch-less sequence.
                   Save that for later.  */
                   Save that for later.  */
                rtx tem;
                rtx tem;
                rtx label = gen_label_rtx ();
                rtx label = gen_label_rtx ();
                do_cmp_and_jump (remainder, const0_rtx, EQ,
                do_cmp_and_jump (remainder, const0_rtx, EQ,
                                 compute_mode, label);
                                 compute_mode, label);
                tem = expand_binop (compute_mode, xor_optab, op0, op1,
                tem = expand_binop (compute_mode, xor_optab, op0, op1,
                                    NULL_RTX, 0, OPTAB_WIDEN);
                                    NULL_RTX, 0, OPTAB_WIDEN);
                do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
                do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
                expand_inc (quotient, const1_rtx);
                expand_inc (quotient, const1_rtx);
                expand_dec (remainder, op1);
                expand_dec (remainder, op1);
                emit_label (label);
                emit_label (label);
                return gen_lowpart (mode, rem_flag ? remainder : quotient);
                return gen_lowpart (mode, rem_flag ? remainder : quotient);
              }
              }
 
 
            /* No luck with division elimination or divmod.  Have to do it
            /* No luck with division elimination or divmod.  Have to do it
               by conditionally adjusting op0 *and* the result.  */
               by conditionally adjusting op0 *and* the result.  */
            {
            {
              rtx label1, label2, label3, label4, label5;
              rtx label1, label2, label3, label4, label5;
              rtx adjusted_op0;
              rtx adjusted_op0;
              rtx tem;
              rtx tem;
 
 
              quotient = gen_reg_rtx (compute_mode);
              quotient = gen_reg_rtx (compute_mode);
              adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
              adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
              label1 = gen_label_rtx ();
              label1 = gen_label_rtx ();
              label2 = gen_label_rtx ();
              label2 = gen_label_rtx ();
              label3 = gen_label_rtx ();
              label3 = gen_label_rtx ();
              label4 = gen_label_rtx ();
              label4 = gen_label_rtx ();
              label5 = gen_label_rtx ();
              label5 = gen_label_rtx ();
              do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
              do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
              do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
              do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
                               compute_mode, label1);
                               compute_mode, label1);
              tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
              tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
                                  quotient, 0, OPTAB_LIB_WIDEN);
                                  quotient, 0, OPTAB_LIB_WIDEN);
              if (tem != quotient)
              if (tem != quotient)
                emit_move_insn (quotient, tem);
                emit_move_insn (quotient, tem);
              emit_jump_insn (gen_jump (label5));
              emit_jump_insn (gen_jump (label5));
              emit_barrier ();
              emit_barrier ();
              emit_label (label1);
              emit_label (label1);
              expand_dec (adjusted_op0, const1_rtx);
              expand_dec (adjusted_op0, const1_rtx);
              emit_jump_insn (gen_jump (label4));
              emit_jump_insn (gen_jump (label4));
              emit_barrier ();
              emit_barrier ();
              emit_label (label2);
              emit_label (label2);
              do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
              do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
                               compute_mode, label3);
                               compute_mode, label3);
              tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
              tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
                                  quotient, 0, OPTAB_LIB_WIDEN);
                                  quotient, 0, OPTAB_LIB_WIDEN);
              if (tem != quotient)
              if (tem != quotient)
                emit_move_insn (quotient, tem);
                emit_move_insn (quotient, tem);
              emit_jump_insn (gen_jump (label5));
              emit_jump_insn (gen_jump (label5));
              emit_barrier ();
              emit_barrier ();
              emit_label (label3);
              emit_label (label3);
              expand_inc (adjusted_op0, const1_rtx);
              expand_inc (adjusted_op0, const1_rtx);
              emit_label (label4);
              emit_label (label4);
              tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
              tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
                                  quotient, 0, OPTAB_LIB_WIDEN);
                                  quotient, 0, OPTAB_LIB_WIDEN);
              if (tem != quotient)
              if (tem != quotient)
                emit_move_insn (quotient, tem);
                emit_move_insn (quotient, tem);
              expand_inc (quotient, const1_rtx);
              expand_inc (quotient, const1_rtx);
              emit_label (label5);
              emit_label (label5);
            }
            }
          }
          }
        break;
        break;
 
 
      case EXACT_DIV_EXPR:
      case EXACT_DIV_EXPR:
        if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
        if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
          {
          {
            HOST_WIDE_INT d = INTVAL (op1);
            HOST_WIDE_INT d = INTVAL (op1);
            unsigned HOST_WIDE_INT ml;
            unsigned HOST_WIDE_INT ml;
            int pre_shift;
            int pre_shift;
            rtx t1;
            rtx t1;
 
 
            pre_shift = floor_log2 (d & -d);
            pre_shift = floor_log2 (d & -d);
            ml = invert_mod2n (d >> pre_shift, size);
            ml = invert_mod2n (d >> pre_shift, size);
            t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
            t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
                               build_int_cst (NULL_TREE, pre_shift),
                               build_int_cst (NULL_TREE, pre_shift),
                               NULL_RTX, unsignedp);
                               NULL_RTX, unsignedp);
            quotient = expand_mult (compute_mode, t1,
            quotient = expand_mult (compute_mode, t1,
                                    gen_int_mode (ml, compute_mode),
                                    gen_int_mode (ml, compute_mode),
                                    NULL_RTX, 1);
                                    NULL_RTX, 1);
 
 
            insn = get_last_insn ();
            insn = get_last_insn ();
            set_unique_reg_note (insn,
            set_unique_reg_note (insn,
                                 REG_EQUAL,
                                 REG_EQUAL,
                                 gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
                                 gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
                                                 compute_mode,
                                                 compute_mode,
                                                 op0, op1));
                                                 op0, op1));
          }
          }
        break;
        break;
 
 
      case ROUND_DIV_EXPR:
      case ROUND_DIV_EXPR:
      case ROUND_MOD_EXPR:
      case ROUND_MOD_EXPR:
        if (unsignedp)
        if (unsignedp)
          {
          {
            rtx tem;
            rtx tem;
            rtx label;
            rtx label;
            label = gen_label_rtx ();
            label = gen_label_rtx ();
            quotient = gen_reg_rtx (compute_mode);
            quotient = gen_reg_rtx (compute_mode);
            remainder = gen_reg_rtx (compute_mode);
            remainder = gen_reg_rtx (compute_mode);
            if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
            if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
              {
              {
                rtx tem;
                rtx tem;
                quotient = expand_binop (compute_mode, udiv_optab, op0, op1,
                quotient = expand_binop (compute_mode, udiv_optab, op0, op1,
                                         quotient, 1, OPTAB_LIB_WIDEN);
                                         quotient, 1, OPTAB_LIB_WIDEN);
                tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 1);
                tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 1);
                remainder = expand_binop (compute_mode, sub_optab, op0, tem,
                remainder = expand_binop (compute_mode, sub_optab, op0, tem,
                                          remainder, 1, OPTAB_LIB_WIDEN);
                                          remainder, 1, OPTAB_LIB_WIDEN);
              }
              }
            tem = plus_constant (op1, -1);
            tem = plus_constant (op1, -1);
            tem = expand_shift (RSHIFT_EXPR, compute_mode, tem,
            tem = expand_shift (RSHIFT_EXPR, compute_mode, tem,
                                build_int_cst (NULL_TREE, 1),
                                build_int_cst (NULL_TREE, 1),
                                NULL_RTX, 1);
                                NULL_RTX, 1);
            do_cmp_and_jump (remainder, tem, LEU, compute_mode, label);
            do_cmp_and_jump (remainder, tem, LEU, compute_mode, label);
            expand_inc (quotient, const1_rtx);
            expand_inc (quotient, const1_rtx);
            expand_dec (remainder, op1);
            expand_dec (remainder, op1);
            emit_label (label);
            emit_label (label);
          }
          }
        else
        else
          {
          {
            rtx abs_rem, abs_op1, tem, mask;
            rtx abs_rem, abs_op1, tem, mask;
            rtx label;
            rtx label;
            label = gen_label_rtx ();
            label = gen_label_rtx ();
            quotient = gen_reg_rtx (compute_mode);
            quotient = gen_reg_rtx (compute_mode);
            remainder = gen_reg_rtx (compute_mode);
            remainder = gen_reg_rtx (compute_mode);
            if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
            if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
              {
              {
                rtx tem;
                rtx tem;
                quotient = expand_binop (compute_mode, sdiv_optab, op0, op1,
                quotient = expand_binop (compute_mode, sdiv_optab, op0, op1,
                                         quotient, 0, OPTAB_LIB_WIDEN);
                                         quotient, 0, OPTAB_LIB_WIDEN);
                tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 0);
                tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 0);
                remainder = expand_binop (compute_mode, sub_optab, op0, tem,
                remainder = expand_binop (compute_mode, sub_optab, op0, tem,
                                          remainder, 0, OPTAB_LIB_WIDEN);
                                          remainder, 0, OPTAB_LIB_WIDEN);
              }
              }
            abs_rem = expand_abs (compute_mode, remainder, NULL_RTX, 1, 0);
            abs_rem = expand_abs (compute_mode, remainder, NULL_RTX, 1, 0);
            abs_op1 = expand_abs (compute_mode, op1, NULL_RTX, 1, 0);
            abs_op1 = expand_abs (compute_mode, op1, NULL_RTX, 1, 0);
            tem = expand_shift (LSHIFT_EXPR, compute_mode, abs_rem,
            tem = expand_shift (LSHIFT_EXPR, compute_mode, abs_rem,
                                build_int_cst (NULL_TREE, 1),
                                build_int_cst (NULL_TREE, 1),
                                NULL_RTX, 1);
                                NULL_RTX, 1);
            do_cmp_and_jump (tem, abs_op1, LTU, compute_mode, label);
            do_cmp_and_jump (tem, abs_op1, LTU, compute_mode, label);
            tem = expand_binop (compute_mode, xor_optab, op0, op1,
            tem = expand_binop (compute_mode, xor_optab, op0, op1,
                                NULL_RTX, 0, OPTAB_WIDEN);
                                NULL_RTX, 0, OPTAB_WIDEN);
            mask = expand_shift (RSHIFT_EXPR, compute_mode, tem,
            mask = expand_shift (RSHIFT_EXPR, compute_mode, tem,
                                 build_int_cst (NULL_TREE, size - 1),
                                 build_int_cst (NULL_TREE, size - 1),
                                 NULL_RTX, 0);
                                 NULL_RTX, 0);
            tem = expand_binop (compute_mode, xor_optab, mask, const1_rtx,
            tem = expand_binop (compute_mode, xor_optab, mask, const1_rtx,
                                NULL_RTX, 0, OPTAB_WIDEN);
                                NULL_RTX, 0, OPTAB_WIDEN);
            tem = expand_binop (compute_mode, sub_optab, tem, mask,
            tem = expand_binop (compute_mode, sub_optab, tem, mask,
                                NULL_RTX, 0, OPTAB_WIDEN);
                                NULL_RTX, 0, OPTAB_WIDEN);
            expand_inc (quotient, tem);
            expand_inc (quotient, tem);
            tem = expand_binop (compute_mode, xor_optab, mask, op1,
            tem = expand_binop (compute_mode, xor_optab, mask, op1,
                                NULL_RTX, 0, OPTAB_WIDEN);
                                NULL_RTX, 0, OPTAB_WIDEN);
            tem = expand_binop (compute_mode, sub_optab, tem, mask,
            tem = expand_binop (compute_mode, sub_optab, tem, mask,
                                NULL_RTX, 0, OPTAB_WIDEN);
                                NULL_RTX, 0, OPTAB_WIDEN);
            expand_dec (remainder, tem);
            expand_dec (remainder, tem);
            emit_label (label);
            emit_label (label);
          }
          }
        return gen_lowpart (mode, rem_flag ? remainder : quotient);
        return gen_lowpart (mode, rem_flag ? remainder : quotient);
 
 
      default:
      default:
        gcc_unreachable ();
        gcc_unreachable ();
      }
      }
 
 
  if (quotient == 0)
  if (quotient == 0)
    {
    {
      if (target && GET_MODE (target) != compute_mode)
      if (target && GET_MODE (target) != compute_mode)
        target = 0;
        target = 0;
 
 
      if (rem_flag)
      if (rem_flag)
        {
        {
          /* Try to produce the remainder without producing the quotient.
          /* Try to produce the remainder without producing the quotient.
             If we seem to have a divmod pattern that does not require widening,
             If we seem to have a divmod pattern that does not require widening,
             don't try widening here.  We should really have a WIDEN argument
             don't try widening here.  We should really have a WIDEN argument
             to expand_twoval_binop, since what we'd really like to do here is
             to expand_twoval_binop, since what we'd really like to do here is
             1) try a mod insn in compute_mode
             1) try a mod insn in compute_mode
             2) try a divmod insn in compute_mode
             2) try a divmod insn in compute_mode
             3) try a div insn in compute_mode and multiply-subtract to get
             3) try a div insn in compute_mode and multiply-subtract to get
                remainder
                remainder
             4) try the same things with widening allowed.  */
             4) try the same things with widening allowed.  */
          remainder
          remainder
            = sign_expand_binop (compute_mode, umod_optab, smod_optab,
            = sign_expand_binop (compute_mode, umod_optab, smod_optab,
                                 op0, op1, target,
                                 op0, op1, target,
                                 unsignedp,
                                 unsignedp,
                                 ((optab2->handlers[compute_mode].insn_code
                                 ((optab2->handlers[compute_mode].insn_code
                                   != CODE_FOR_nothing)
                                   != CODE_FOR_nothing)
                                  ? OPTAB_DIRECT : OPTAB_WIDEN));
                                  ? OPTAB_DIRECT : OPTAB_WIDEN));
          if (remainder == 0)
          if (remainder == 0)
            {
            {
              /* No luck there.  Can we do remainder and divide at once
              /* No luck there.  Can we do remainder and divide at once
                 without a library call?  */
                 without a library call?  */
              remainder = gen_reg_rtx (compute_mode);
              remainder = gen_reg_rtx (compute_mode);
              if (! expand_twoval_binop ((unsignedp
              if (! expand_twoval_binop ((unsignedp
                                          ? udivmod_optab
                                          ? udivmod_optab
                                          : sdivmod_optab),
                                          : sdivmod_optab),
                                         op0, op1,
                                         op0, op1,
                                         NULL_RTX, remainder, unsignedp))
                                         NULL_RTX, remainder, unsignedp))
                remainder = 0;
                remainder = 0;
            }
            }
 
 
          if (remainder)
          if (remainder)
            return gen_lowpart (mode, remainder);
            return gen_lowpart (mode, remainder);
        }
        }
 
 
      /* Produce the quotient.  Try a quotient insn, but not a library call.
      /* Produce the quotient.  Try a quotient insn, but not a library call.
         If we have a divmod in this mode, use it in preference to widening
         If we have a divmod in this mode, use it in preference to widening
         the div (for this test we assume it will not fail). Note that optab2
         the div (for this test we assume it will not fail). Note that optab2
         is set to the one of the two optabs that the call below will use.  */
         is set to the one of the two optabs that the call below will use.  */
      quotient
      quotient
        = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
        = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
                             op0, op1, rem_flag ? NULL_RTX : target,
                             op0, op1, rem_flag ? NULL_RTX : target,
                             unsignedp,
                             unsignedp,
                             ((optab2->handlers[compute_mode].insn_code
                             ((optab2->handlers[compute_mode].insn_code
                               != CODE_FOR_nothing)
                               != CODE_FOR_nothing)
                              ? OPTAB_DIRECT : OPTAB_WIDEN));
                              ? OPTAB_DIRECT : OPTAB_WIDEN));
 
 
      if (quotient == 0)
      if (quotient == 0)
        {
        {
          /* No luck there.  Try a quotient-and-remainder insn,
          /* No luck there.  Try a quotient-and-remainder insn,
             keeping the quotient alone.  */
             keeping the quotient alone.  */
          quotient = gen_reg_rtx (compute_mode);
          quotient = gen_reg_rtx (compute_mode);
          if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
          if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
                                     op0, op1,
                                     op0, op1,
                                     quotient, NULL_RTX, unsignedp))
                                     quotient, NULL_RTX, unsignedp))
            {
            {
              quotient = 0;
              quotient = 0;
              if (! rem_flag)
              if (! rem_flag)
                /* Still no luck.  If we are not computing the remainder,
                /* Still no luck.  If we are not computing the remainder,
                   use a library call for the quotient.  */
                   use a library call for the quotient.  */
                quotient = sign_expand_binop (compute_mode,
                quotient = sign_expand_binop (compute_mode,
                                              udiv_optab, sdiv_optab,
                                              udiv_optab, sdiv_optab,
                                              op0, op1, target,
                                              op0, op1, target,
                                              unsignedp, OPTAB_LIB_WIDEN);
                                              unsignedp, OPTAB_LIB_WIDEN);
            }
            }
        }
        }
    }
    }
 
 
  if (rem_flag)
  if (rem_flag)
    {
    {
      if (target && GET_MODE (target) != compute_mode)
      if (target && GET_MODE (target) != compute_mode)
        target = 0;
        target = 0;
 
 
      if (quotient == 0)
      if (quotient == 0)
        {
        {
          /* No divide instruction either.  Use library for remainder.  */
          /* No divide instruction either.  Use library for remainder.  */
          remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
          remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
                                         op0, op1, target,
                                         op0, op1, target,
                                         unsignedp, OPTAB_LIB_WIDEN);
                                         unsignedp, OPTAB_LIB_WIDEN);
          /* No remainder function.  Try a quotient-and-remainder
          /* No remainder function.  Try a quotient-and-remainder
             function, keeping the remainder.  */
             function, keeping the remainder.  */
          if (!remainder)
          if (!remainder)
            {
            {
              remainder = gen_reg_rtx (compute_mode);
              remainder = gen_reg_rtx (compute_mode);
              if (!expand_twoval_binop_libfunc
              if (!expand_twoval_binop_libfunc
                  (unsignedp ? udivmod_optab : sdivmod_optab,
                  (unsignedp ? udivmod_optab : sdivmod_optab,
                   op0, op1,
                   op0, op1,
                   NULL_RTX, remainder,
                   NULL_RTX, remainder,
                   unsignedp ? UMOD : MOD))
                   unsignedp ? UMOD : MOD))
                remainder = NULL_RTX;
                remainder = NULL_RTX;
            }
            }
        }
        }
      else
      else
        {
        {
          /* We divided.  Now finish doing X - Y * (X / Y).  */
          /* We divided.  Now finish doing X - Y * (X / Y).  */
          remainder = expand_mult (compute_mode, quotient, op1,
          remainder = expand_mult (compute_mode, quotient, op1,
                                   NULL_RTX, unsignedp);
                                   NULL_RTX, unsignedp);
          remainder = expand_binop (compute_mode, sub_optab, op0,
          remainder = expand_binop (compute_mode, sub_optab, op0,
                                    remainder, target, unsignedp,
                                    remainder, target, unsignedp,
                                    OPTAB_LIB_WIDEN);
                                    OPTAB_LIB_WIDEN);
        }
        }
    }
    }
 
 
  return gen_lowpart (mode, rem_flag ? remainder : quotient);
  return gen_lowpart (mode, rem_flag ? remainder : quotient);
}
}


/* Return a tree node with data type TYPE, describing the value of X.
/* Return a tree node with data type TYPE, describing the value of X.
   Usually this is an VAR_DECL, if there is no obvious better choice.
   Usually this is an VAR_DECL, if there is no obvious better choice.
   X may be an expression, however we only support those expressions
   X may be an expression, however we only support those expressions
   generated by loop.c.  */
   generated by loop.c.  */
 
 
tree
tree
make_tree (tree type, rtx x)
make_tree (tree type, rtx x)
{
{
  tree t;
  tree t;
 
 
  switch (GET_CODE (x))
  switch (GET_CODE (x))
    {
    {
    case CONST_INT:
    case CONST_INT:
      {
      {
        HOST_WIDE_INT hi = 0;
        HOST_WIDE_INT hi = 0;
 
 
        if (INTVAL (x) < 0
        if (INTVAL (x) < 0
            && !(TYPE_UNSIGNED (type)
            && !(TYPE_UNSIGNED (type)
                 && (GET_MODE_BITSIZE (TYPE_MODE (type))
                 && (GET_MODE_BITSIZE (TYPE_MODE (type))
                     < HOST_BITS_PER_WIDE_INT)))
                     < HOST_BITS_PER_WIDE_INT)))
          hi = -1;
          hi = -1;
 
 
        t = build_int_cst_wide (type, INTVAL (x), hi);
        t = build_int_cst_wide (type, INTVAL (x), hi);
 
 
        return t;
        return t;
      }
      }
 
 
    case CONST_DOUBLE:
    case CONST_DOUBLE:
      if (GET_MODE (x) == VOIDmode)
      if (GET_MODE (x) == VOIDmode)
        t = build_int_cst_wide (type,
        t = build_int_cst_wide (type,
                                CONST_DOUBLE_LOW (x), CONST_DOUBLE_HIGH (x));
                                CONST_DOUBLE_LOW (x), CONST_DOUBLE_HIGH (x));
      else
      else
        {
        {
          REAL_VALUE_TYPE d;
          REAL_VALUE_TYPE d;
 
 
          REAL_VALUE_FROM_CONST_DOUBLE (d, x);
          REAL_VALUE_FROM_CONST_DOUBLE (d, x);
          t = build_real (type, d);
          t = build_real (type, d);
        }
        }
 
 
      return t;
      return t;
 
 
    case CONST_VECTOR:
    case CONST_VECTOR:
      {
      {
        int units = CONST_VECTOR_NUNITS (x);
        int units = CONST_VECTOR_NUNITS (x);
        tree itype = TREE_TYPE (type);
        tree itype = TREE_TYPE (type);
        tree t = NULL_TREE;
        tree t = NULL_TREE;
        int i;
        int i;
 
 
 
 
        /* Build a tree with vector elements.  */
        /* Build a tree with vector elements.  */
        for (i = units - 1; i >= 0; --i)
        for (i = units - 1; i >= 0; --i)
          {
          {
            rtx elt = CONST_VECTOR_ELT (x, i);
            rtx elt = CONST_VECTOR_ELT (x, i);
            t = tree_cons (NULL_TREE, make_tree (itype, elt), t);
            t = tree_cons (NULL_TREE, make_tree (itype, elt), t);
          }
          }
 
 
        return build_vector (type, t);
        return build_vector (type, t);
      }
      }
 
 
    case PLUS:
    case PLUS:
      return fold_build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
      return fold_build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
                          make_tree (type, XEXP (x, 1)));
                          make_tree (type, XEXP (x, 1)));
 
 
    case MINUS:
    case MINUS:
      return fold_build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
      return fold_build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
                          make_tree (type, XEXP (x, 1)));
                          make_tree (type, XEXP (x, 1)));
 
 
    case NEG:
    case NEG:
      return fold_build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0)));
      return fold_build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0)));
 
 
    case MULT:
    case MULT:
      return fold_build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
      return fold_build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
                          make_tree (type, XEXP (x, 1)));
                          make_tree (type, XEXP (x, 1)));
 
 
    case ASHIFT:
    case ASHIFT:
      return fold_build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
      return fold_build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
                          make_tree (type, XEXP (x, 1)));
                          make_tree (type, XEXP (x, 1)));
 
 
    case LSHIFTRT:
    case LSHIFTRT:
      t = lang_hooks.types.unsigned_type (type);
      t = lang_hooks.types.unsigned_type (type);
      return fold_convert (type, build2 (RSHIFT_EXPR, t,
      return fold_convert (type, build2 (RSHIFT_EXPR, t,
                                         make_tree (t, XEXP (x, 0)),
                                         make_tree (t, XEXP (x, 0)),
                                         make_tree (type, XEXP (x, 1))));
                                         make_tree (type, XEXP (x, 1))));
 
 
    case ASHIFTRT:
    case ASHIFTRT:
      t = lang_hooks.types.signed_type (type);
      t = lang_hooks.types.signed_type (type);
      return fold_convert (type, build2 (RSHIFT_EXPR, t,
      return fold_convert (type, build2 (RSHIFT_EXPR, t,
                                         make_tree (t, XEXP (x, 0)),
                                         make_tree (t, XEXP (x, 0)),
                                         make_tree (type, XEXP (x, 1))));
                                         make_tree (type, XEXP (x, 1))));
 
 
    case DIV:
    case DIV:
      if (TREE_CODE (type) != REAL_TYPE)
      if (TREE_CODE (type) != REAL_TYPE)
        t = lang_hooks.types.signed_type (type);
        t = lang_hooks.types.signed_type (type);
      else
      else
        t = type;
        t = type;
 
 
      return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
      return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
                                         make_tree (t, XEXP (x, 0)),
                                         make_tree (t, XEXP (x, 0)),
                                         make_tree (t, XEXP (x, 1))));
                                         make_tree (t, XEXP (x, 1))));
    case UDIV:
    case UDIV:
      t = lang_hooks.types.unsigned_type (type);
      t = lang_hooks.types.unsigned_type (type);
      return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
      return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
                                         make_tree (t, XEXP (x, 0)),
                                         make_tree (t, XEXP (x, 0)),
                                         make_tree (t, XEXP (x, 1))));
                                         make_tree (t, XEXP (x, 1))));
 
 
    case SIGN_EXTEND:
    case SIGN_EXTEND:
    case ZERO_EXTEND:
    case ZERO_EXTEND:
      t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
      t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
                                          GET_CODE (x) == ZERO_EXTEND);
                                          GET_CODE (x) == ZERO_EXTEND);
      return fold_convert (type, make_tree (t, XEXP (x, 0)));
      return fold_convert (type, make_tree (t, XEXP (x, 0)));
 
 
    case CONST:
    case CONST:
      return make_tree (type, XEXP (x, 0));
      return make_tree (type, XEXP (x, 0));
 
 
    case SYMBOL_REF:
    case SYMBOL_REF:
      t = SYMBOL_REF_DECL (x);
      t = SYMBOL_REF_DECL (x);
      if (t)
      if (t)
        return fold_convert (type, build_fold_addr_expr (t));
        return fold_convert (type, build_fold_addr_expr (t));
      /* else fall through.  */
      /* else fall through.  */
 
 
    default:
    default:
      t = build_decl (VAR_DECL, NULL_TREE, type);
      t = build_decl (VAR_DECL, NULL_TREE, type);
 
 
      /* If TYPE is a POINTER_TYPE, X might be Pmode with TYPE_MODE being
      /* If TYPE is a POINTER_TYPE, X might be Pmode with TYPE_MODE being
         ptr_mode.  So convert.  */
         ptr_mode.  So convert.  */
      if (POINTER_TYPE_P (type))
      if (POINTER_TYPE_P (type))
        x = convert_memory_address (TYPE_MODE (type), x);
        x = convert_memory_address (TYPE_MODE (type), x);
 
 
      /* Note that we do *not* use SET_DECL_RTL here, because we do not
      /* Note that we do *not* use SET_DECL_RTL here, because we do not
         want set_decl_rtl to go adjusting REG_ATTRS for this temporary.  */
         want set_decl_rtl to go adjusting REG_ATTRS for this temporary.  */
      t->decl_with_rtl.rtl = x;
      t->decl_with_rtl.rtl = x;
 
 
      return t;
      return t;
    }
    }
}
}


/* Compute the logical-and of OP0 and OP1, storing it in TARGET
/* Compute the logical-and of OP0 and OP1, storing it in TARGET
   and returning TARGET.
   and returning TARGET.
 
 
   If TARGET is 0, a pseudo-register or constant is returned.  */
   If TARGET is 0, a pseudo-register or constant is returned.  */
 
 
rtx
rtx
expand_and (enum machine_mode mode, rtx op0, rtx op1, rtx target)
expand_and (enum machine_mode mode, rtx op0, rtx op1, rtx target)
{
{
  rtx tem = 0;
  rtx tem = 0;
 
 
  if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
  if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
    tem = simplify_binary_operation (AND, mode, op0, op1);
    tem = simplify_binary_operation (AND, mode, op0, op1);
  if (tem == 0)
  if (tem == 0)
    tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
    tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
 
 
  if (target == 0)
  if (target == 0)
    target = tem;
    target = tem;
  else if (tem != target)
  else if (tem != target)
    emit_move_insn (target, tem);
    emit_move_insn (target, tem);
  return target;
  return target;
}
}


/* Emit a store-flags instruction for comparison CODE on OP0 and OP1
/* Emit a store-flags instruction for comparison CODE on OP0 and OP1
   and storing in TARGET.  Normally return TARGET.
   and storing in TARGET.  Normally return TARGET.
   Return 0 if that cannot be done.
   Return 0 if that cannot be done.
 
 
   MODE is the mode to use for OP0 and OP1 should they be CONST_INTs.  If
   MODE is the mode to use for OP0 and OP1 should they be CONST_INTs.  If
   it is VOIDmode, they cannot both be CONST_INT.
   it is VOIDmode, they cannot both be CONST_INT.
 
 
   UNSIGNEDP is for the case where we have to widen the operands
   UNSIGNEDP is for the case where we have to widen the operands
   to perform the operation.  It says to use zero-extension.
   to perform the operation.  It says to use zero-extension.
 
 
   NORMALIZEP is 1 if we should convert the result to be either zero
   NORMALIZEP is 1 if we should convert the result to be either zero
   or one.  Normalize is -1 if we should convert the result to be
   or one.  Normalize is -1 if we should convert the result to be
   either zero or -1.  If NORMALIZEP is zero, the result will be left
   either zero or -1.  If NORMALIZEP is zero, the result will be left
   "raw" out of the scc insn.  */
   "raw" out of the scc insn.  */
 
 
rtx
rtx
emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
                 enum machine_mode mode, int unsignedp, int normalizep)
                 enum machine_mode mode, int unsignedp, int normalizep)
{
{
  rtx subtarget;
  rtx subtarget;
  enum insn_code icode;
  enum insn_code icode;
  enum machine_mode compare_mode;
  enum machine_mode compare_mode;
  enum machine_mode target_mode = GET_MODE (target);
  enum machine_mode target_mode = GET_MODE (target);
  rtx tem;
  rtx tem;
  rtx last = get_last_insn ();
  rtx last = get_last_insn ();
  rtx pattern, comparison;
  rtx pattern, comparison;
 
 
  if (unsignedp)
  if (unsignedp)
    code = unsigned_condition (code);
    code = unsigned_condition (code);
 
 
  /* If one operand is constant, make it the second one.  Only do this
  /* If one operand is constant, make it the second one.  Only do this
     if the other operand is not constant as well.  */
     if the other operand is not constant as well.  */
 
 
  if (swap_commutative_operands_p (op0, op1))
  if (swap_commutative_operands_p (op0, op1))
    {
    {
      tem = op0;
      tem = op0;
      op0 = op1;
      op0 = op1;
      op1 = tem;
      op1 = tem;
      code = swap_condition (code);
      code = swap_condition (code);
    }
    }
 
 
  if (mode == VOIDmode)
  if (mode == VOIDmode)
    mode = GET_MODE (op0);
    mode = GET_MODE (op0);
 
 
  /* For some comparisons with 1 and -1, we can convert this to
  /* For some comparisons with 1 and -1, we can convert this to
     comparisons with zero.  This will often produce more opportunities for
     comparisons with zero.  This will often produce more opportunities for
     store-flag insns.  */
     store-flag insns.  */
 
 
  switch (code)
  switch (code)
    {
    {
    case LT:
    case LT:
      if (op1 == const1_rtx)
      if (op1 == const1_rtx)
        op1 = const0_rtx, code = LE;
        op1 = const0_rtx, code = LE;
      break;
      break;
    case LE:
    case LE:
      if (op1 == constm1_rtx)
      if (op1 == constm1_rtx)
        op1 = const0_rtx, code = LT;
        op1 = const0_rtx, code = LT;
      break;
      break;
    case GE:
    case GE:
      if (op1 == const1_rtx)
      if (op1 == const1_rtx)
        op1 = const0_rtx, code = GT;
        op1 = const0_rtx, code = GT;
      break;
      break;
    case GT:
    case GT:
      if (op1 == constm1_rtx)
      if (op1 == constm1_rtx)
        op1 = const0_rtx, code = GE;
        op1 = const0_rtx, code = GE;
      break;
      break;
    case GEU:
    case GEU:
      if (op1 == const1_rtx)
      if (op1 == const1_rtx)
        op1 = const0_rtx, code = NE;
        op1 = const0_rtx, code = NE;
      break;
      break;
    case LTU:
    case LTU:
      if (op1 == const1_rtx)
      if (op1 == const1_rtx)
        op1 = const0_rtx, code = EQ;
        op1 = const0_rtx, code = EQ;
      break;
      break;
    default:
    default:
      break;
      break;
    }
    }
 
 
  /* If we are comparing a double-word integer with zero or -1, we can
  /* If we are comparing a double-word integer with zero or -1, we can
     convert the comparison into one involving a single word.  */
     convert the comparison into one involving a single word.  */
  if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD * 2
  if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD * 2
      && GET_MODE_CLASS (mode) == MODE_INT
      && GET_MODE_CLASS (mode) == MODE_INT
      && (!MEM_P (op0) || ! MEM_VOLATILE_P (op0)))
      && (!MEM_P (op0) || ! MEM_VOLATILE_P (op0)))
    {
    {
      if ((code == EQ || code == NE)
      if ((code == EQ || code == NE)
          && (op1 == const0_rtx || op1 == constm1_rtx))
          && (op1 == const0_rtx || op1 == constm1_rtx))
        {
        {
          rtx op00, op01, op0both;
          rtx op00, op01, op0both;
 
 
          /* Do a logical OR or AND of the two words and compare the result.  */
          /* Do a logical OR or AND of the two words and compare the result.  */
          op00 = simplify_gen_subreg (word_mode, op0, mode, 0);
          op00 = simplify_gen_subreg (word_mode, op0, mode, 0);
          op01 = simplify_gen_subreg (word_mode, op0, mode, UNITS_PER_WORD);
          op01 = simplify_gen_subreg (word_mode, op0, mode, UNITS_PER_WORD);
          op0both = expand_binop (word_mode,
          op0both = expand_binop (word_mode,
                                  op1 == const0_rtx ? ior_optab : and_optab,
                                  op1 == const0_rtx ? ior_optab : and_optab,
                                  op00, op01, NULL_RTX, unsignedp, OPTAB_DIRECT);
                                  op00, op01, NULL_RTX, unsignedp, OPTAB_DIRECT);
 
 
          if (op0both != 0)
          if (op0both != 0)
            return emit_store_flag (target, code, op0both, op1, word_mode,
            return emit_store_flag (target, code, op0both, op1, word_mode,
                                    unsignedp, normalizep);
                                    unsignedp, normalizep);
        }
        }
      else if ((code == LT || code == GE) && op1 == const0_rtx)
      else if ((code == LT || code == GE) && op1 == const0_rtx)
        {
        {
          rtx op0h;
          rtx op0h;
 
 
          /* If testing the sign bit, can just test on high word.  */
          /* If testing the sign bit, can just test on high word.  */
          op0h = simplify_gen_subreg (word_mode, op0, mode,
          op0h = simplify_gen_subreg (word_mode, op0, mode,
                                      subreg_highpart_offset (word_mode, mode));
                                      subreg_highpart_offset (word_mode, mode));
          return emit_store_flag (target, code, op0h, op1, word_mode,
          return emit_store_flag (target, code, op0h, op1, word_mode,
                                  unsignedp, normalizep);
                                  unsignedp, normalizep);
        }
        }
    }
    }
 
 
  /* From now on, we won't change CODE, so set ICODE now.  */
  /* From now on, we won't change CODE, so set ICODE now.  */
  icode = setcc_gen_code[(int) code];
  icode = setcc_gen_code[(int) code];
 
 
  /* If this is A < 0 or A >= 0, we can do this by taking the ones
  /* If this is A < 0 or A >= 0, we can do this by taking the ones
     complement of A (for GE) and shifting the sign bit to the low bit.  */
     complement of A (for GE) and shifting the sign bit to the low bit.  */
  if (op1 == const0_rtx && (code == LT || code == GE)
  if (op1 == const0_rtx && (code == LT || code == GE)
      && GET_MODE_CLASS (mode) == MODE_INT
      && GET_MODE_CLASS (mode) == MODE_INT
      && (normalizep || STORE_FLAG_VALUE == 1
      && (normalizep || STORE_FLAG_VALUE == 1
          || (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
          || (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
              && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
              && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
                  == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))))
                  == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))))
    {
    {
      subtarget = target;
      subtarget = target;
 
 
      /* If the result is to be wider than OP0, it is best to convert it
      /* If the result is to be wider than OP0, it is best to convert it
         first.  If it is to be narrower, it is *incorrect* to convert it
         first.  If it is to be narrower, it is *incorrect* to convert it
         first.  */
         first.  */
      if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
      if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
        {
        {
          op0 = convert_modes (target_mode, mode, op0, 0);
          op0 = convert_modes (target_mode, mode, op0, 0);
          mode = target_mode;
          mode = target_mode;
        }
        }
 
 
      if (target_mode != mode)
      if (target_mode != mode)
        subtarget = 0;
        subtarget = 0;
 
 
      if (code == GE)
      if (code == GE)
        op0 = expand_unop (mode, one_cmpl_optab, op0,
        op0 = expand_unop (mode, one_cmpl_optab, op0,
                           ((STORE_FLAG_VALUE == 1 || normalizep)
                           ((STORE_FLAG_VALUE == 1 || normalizep)
                            ? 0 : subtarget), 0);
                            ? 0 : subtarget), 0);
 
 
      if (STORE_FLAG_VALUE == 1 || normalizep)
      if (STORE_FLAG_VALUE == 1 || normalizep)
        /* If we are supposed to produce a 0/1 value, we want to do
        /* If we are supposed to produce a 0/1 value, we want to do
           a logical shift from the sign bit to the low-order bit; for
           a logical shift from the sign bit to the low-order bit; for
           a -1/0 value, we do an arithmetic shift.  */
           a -1/0 value, we do an arithmetic shift.  */
        op0 = expand_shift (RSHIFT_EXPR, mode, op0,
        op0 = expand_shift (RSHIFT_EXPR, mode, op0,
                            size_int (GET_MODE_BITSIZE (mode) - 1),
                            size_int (GET_MODE_BITSIZE (mode) - 1),
                            subtarget, normalizep != -1);
                            subtarget, normalizep != -1);
 
 
      if (mode != target_mode)
      if (mode != target_mode)
        op0 = convert_modes (target_mode, mode, op0, 0);
        op0 = convert_modes (target_mode, mode, op0, 0);
 
 
      return op0;
      return op0;
    }
    }
 
 
  if (icode != CODE_FOR_nothing)
  if (icode != CODE_FOR_nothing)
    {
    {
      insn_operand_predicate_fn pred;
      insn_operand_predicate_fn pred;
 
 
      /* We think we may be able to do this with a scc insn.  Emit the
      /* We think we may be able to do this with a scc insn.  Emit the
         comparison and then the scc insn.  */
         comparison and then the scc insn.  */
 
 
      do_pending_stack_adjust ();
      do_pending_stack_adjust ();
      last = get_last_insn ();
      last = get_last_insn ();
 
 
      comparison
      comparison
        = compare_from_rtx (op0, op1, code, unsignedp, mode, NULL_RTX);
        = compare_from_rtx (op0, op1, code, unsignedp, mode, NULL_RTX);
      if (CONSTANT_P (comparison))
      if (CONSTANT_P (comparison))
        {
        {
          switch (GET_CODE (comparison))
          switch (GET_CODE (comparison))
            {
            {
            case CONST_INT:
            case CONST_INT:
              if (comparison == const0_rtx)
              if (comparison == const0_rtx)
                return const0_rtx;
                return const0_rtx;
              break;
              break;
 
 
#ifdef FLOAT_STORE_FLAG_VALUE
#ifdef FLOAT_STORE_FLAG_VALUE
            case CONST_DOUBLE:
            case CONST_DOUBLE:
              if (comparison == CONST0_RTX (GET_MODE (comparison)))
              if (comparison == CONST0_RTX (GET_MODE (comparison)))
                return const0_rtx;
                return const0_rtx;
              break;
              break;
#endif
#endif
            default:
            default:
              gcc_unreachable ();
              gcc_unreachable ();
            }
            }
 
 
          if (normalizep == 1)
          if (normalizep == 1)
            return const1_rtx;
            return const1_rtx;
          if (normalizep == -1)
          if (normalizep == -1)
            return constm1_rtx;
            return constm1_rtx;
          return const_true_rtx;
          return const_true_rtx;
        }
        }
 
 
      /* The code of COMPARISON may not match CODE if compare_from_rtx
      /* The code of COMPARISON may not match CODE if compare_from_rtx
         decided to swap its operands and reverse the original code.
         decided to swap its operands and reverse the original code.
 
 
         We know that compare_from_rtx returns either a CONST_INT or
         We know that compare_from_rtx returns either a CONST_INT or
         a new comparison code, so it is safe to just extract the
         a new comparison code, so it is safe to just extract the
         code from COMPARISON.  */
         code from COMPARISON.  */
      code = GET_CODE (comparison);
      code = GET_CODE (comparison);
 
 
      /* Get a reference to the target in the proper mode for this insn.  */
      /* Get a reference to the target in the proper mode for this insn.  */
      compare_mode = insn_data[(int) icode].operand[0].mode;
      compare_mode = insn_data[(int) icode].operand[0].mode;
      subtarget = target;
      subtarget = target;
      pred = insn_data[(int) icode].operand[0].predicate;
      pred = insn_data[(int) icode].operand[0].predicate;
      if (optimize || ! (*pred) (subtarget, compare_mode))
      if (optimize || ! (*pred) (subtarget, compare_mode))
        subtarget = gen_reg_rtx (compare_mode);
        subtarget = gen_reg_rtx (compare_mode);
 
 
      pattern = GEN_FCN (icode) (subtarget);
      pattern = GEN_FCN (icode) (subtarget);
      if (pattern)
      if (pattern)
        {
        {
          emit_insn (pattern);
          emit_insn (pattern);
 
 
          /* If we are converting to a wider mode, first convert to
          /* If we are converting to a wider mode, first convert to
             TARGET_MODE, then normalize.  This produces better combining
             TARGET_MODE, then normalize.  This produces better combining
             opportunities on machines that have a SIGN_EXTRACT when we are
             opportunities on machines that have a SIGN_EXTRACT when we are
             testing a single bit.  This mostly benefits the 68k.
             testing a single bit.  This mostly benefits the 68k.
 
 
             If STORE_FLAG_VALUE does not have the sign bit set when
             If STORE_FLAG_VALUE does not have the sign bit set when
             interpreted in COMPARE_MODE, we can do this conversion as
             interpreted in COMPARE_MODE, we can do this conversion as
             unsigned, which is usually more efficient.  */
             unsigned, which is usually more efficient.  */
          if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (compare_mode))
          if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (compare_mode))
            {
            {
              convert_move (target, subtarget,
              convert_move (target, subtarget,
                            (GET_MODE_BITSIZE (compare_mode)
                            (GET_MODE_BITSIZE (compare_mode)
                             <= HOST_BITS_PER_WIDE_INT)
                             <= HOST_BITS_PER_WIDE_INT)
                            && 0 == (STORE_FLAG_VALUE
                            && 0 == (STORE_FLAG_VALUE
                                     & ((HOST_WIDE_INT) 1
                                     & ((HOST_WIDE_INT) 1
                                        << (GET_MODE_BITSIZE (compare_mode) -1))));
                                        << (GET_MODE_BITSIZE (compare_mode) -1))));
              op0 = target;
              op0 = target;
              compare_mode = target_mode;
              compare_mode = target_mode;
            }
            }
          else
          else
            op0 = subtarget;
            op0 = subtarget;
 
 
          /* If we want to keep subexpressions around, don't reuse our
          /* If we want to keep subexpressions around, don't reuse our
             last target.  */
             last target.  */
 
 
          if (optimize)
          if (optimize)
            subtarget = 0;
            subtarget = 0;
 
 
          /* Now normalize to the proper value in COMPARE_MODE.  Sometimes
          /* Now normalize to the proper value in COMPARE_MODE.  Sometimes
             we don't have to do anything.  */
             we don't have to do anything.  */
          if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
          if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
            ;
            ;
          /* STORE_FLAG_VALUE might be the most negative number, so write
          /* STORE_FLAG_VALUE might be the most negative number, so write
             the comparison this way to avoid a compiler-time warning.  */
             the comparison this way to avoid a compiler-time warning.  */
          else if (- normalizep == STORE_FLAG_VALUE)
          else if (- normalizep == STORE_FLAG_VALUE)
            op0 = expand_unop (compare_mode, neg_optab, op0, subtarget, 0);
            op0 = expand_unop (compare_mode, neg_optab, op0, subtarget, 0);
 
 
          /* We don't want to use STORE_FLAG_VALUE < 0 below since this
          /* We don't want to use STORE_FLAG_VALUE < 0 below since this
             makes it hard to use a value of just the sign bit due to
             makes it hard to use a value of just the sign bit due to
             ANSI integer constant typing rules.  */
             ANSI integer constant typing rules.  */
          else if (GET_MODE_BITSIZE (compare_mode) <= HOST_BITS_PER_WIDE_INT
          else if (GET_MODE_BITSIZE (compare_mode) <= HOST_BITS_PER_WIDE_INT
                   && (STORE_FLAG_VALUE
                   && (STORE_FLAG_VALUE
                       & ((HOST_WIDE_INT) 1
                       & ((HOST_WIDE_INT) 1
                          << (GET_MODE_BITSIZE (compare_mode) - 1))))
                          << (GET_MODE_BITSIZE (compare_mode) - 1))))
            op0 = expand_shift (RSHIFT_EXPR, compare_mode, op0,
            op0 = expand_shift (RSHIFT_EXPR, compare_mode, op0,
                                size_int (GET_MODE_BITSIZE (compare_mode) - 1),
                                size_int (GET_MODE_BITSIZE (compare_mode) - 1),
                                subtarget, normalizep == 1);
                                subtarget, normalizep == 1);
          else
          else
            {
            {
              gcc_assert (STORE_FLAG_VALUE & 1);
              gcc_assert (STORE_FLAG_VALUE & 1);
 
 
              op0 = expand_and (compare_mode, op0, const1_rtx, subtarget);
              op0 = expand_and (compare_mode, op0, const1_rtx, subtarget);
              if (normalizep == -1)
              if (normalizep == -1)
                op0 = expand_unop (compare_mode, neg_optab, op0, op0, 0);
                op0 = expand_unop (compare_mode, neg_optab, op0, op0, 0);
            }
            }
 
 
          /* If we were converting to a smaller mode, do the
          /* If we were converting to a smaller mode, do the
             conversion now.  */
             conversion now.  */
          if (target_mode != compare_mode)
          if (target_mode != compare_mode)
            {
            {
              convert_move (target, op0, 0);
              convert_move (target, op0, 0);
              return target;
              return target;
            }
            }
          else
          else
            return op0;
            return op0;
        }
        }
    }
    }
 
 
  delete_insns_since (last);
  delete_insns_since (last);
 
 
  /* If optimizing, use different pseudo registers for each insn, instead
  /* If optimizing, use different pseudo registers for each insn, instead
     of reusing the same pseudo.  This leads to better CSE, but slows
     of reusing the same pseudo.  This leads to better CSE, but slows
     down the compiler, since there are more pseudos */
     down the compiler, since there are more pseudos */
  subtarget = (!optimize
  subtarget = (!optimize
               && (target_mode == mode)) ? target : NULL_RTX;
               && (target_mode == mode)) ? target : NULL_RTX;
 
 
  /* If we reached here, we can't do this with a scc insn.  However, there
  /* If we reached here, we can't do this with a scc insn.  However, there
     are some comparisons that can be done directly.  For example, if
     are some comparisons that can be done directly.  For example, if
     this is an equality comparison of integers, we can try to exclusive-or
     this is an equality comparison of integers, we can try to exclusive-or
     (or subtract) the two operands and use a recursive call to try the
     (or subtract) the two operands and use a recursive call to try the
     comparison with zero.  Don't do any of these cases if branches are
     comparison with zero.  Don't do any of these cases if branches are
     very cheap.  */
     very cheap.  */
 
 
  if (BRANCH_COST > 0
  if (BRANCH_COST > 0
      && GET_MODE_CLASS (mode) == MODE_INT && (code == EQ || code == NE)
      && GET_MODE_CLASS (mode) == MODE_INT && (code == EQ || code == NE)
      && op1 != const0_rtx)
      && op1 != const0_rtx)
    {
    {
      tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
      tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
                          OPTAB_WIDEN);
                          OPTAB_WIDEN);
 
 
      if (tem == 0)
      if (tem == 0)
        tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
        tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
                            OPTAB_WIDEN);
                            OPTAB_WIDEN);
      if (tem != 0)
      if (tem != 0)
        tem = emit_store_flag (target, code, tem, const0_rtx,
        tem = emit_store_flag (target, code, tem, const0_rtx,
                               mode, unsignedp, normalizep);
                               mode, unsignedp, normalizep);
      if (tem == 0)
      if (tem == 0)
        delete_insns_since (last);
        delete_insns_since (last);
      return tem;
      return tem;
    }
    }
 
 
  /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
  /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
     the constant zero.  Reject all other comparisons at this point.  Only
     the constant zero.  Reject all other comparisons at this point.  Only
     do LE and GT if branches are expensive since they are expensive on
     do LE and GT if branches are expensive since they are expensive on
     2-operand machines.  */
     2-operand machines.  */
 
 
  if (BRANCH_COST == 0
  if (BRANCH_COST == 0
      || GET_MODE_CLASS (mode) != MODE_INT || op1 != const0_rtx
      || GET_MODE_CLASS (mode) != MODE_INT || op1 != const0_rtx
      || (code != EQ && code != NE
      || (code != EQ && code != NE
          && (BRANCH_COST <= 1 || (code != LE && code != GT))))
          && (BRANCH_COST <= 1 || (code != LE && code != GT))))
    return 0;
    return 0;
 
 
  /* See what we need to return.  We can only return a 1, -1, or the
  /* See what we need to return.  We can only return a 1, -1, or the
     sign bit.  */
     sign bit.  */
 
 
  if (normalizep == 0)
  if (normalizep == 0)
    {
    {
      if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
      if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
        normalizep = STORE_FLAG_VALUE;
        normalizep = STORE_FLAG_VALUE;
 
 
      else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
      else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
               && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
               && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
                   == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))
                   == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))
        ;
        ;
      else
      else
        return 0;
        return 0;
    }
    }
 
 
  /* Try to put the result of the comparison in the sign bit.  Assume we can't
  /* Try to put the result of the comparison in the sign bit.  Assume we can't
     do the necessary operation below.  */
     do the necessary operation below.  */
 
 
  tem = 0;
  tem = 0;
 
 
  /* To see if A <= 0, compute (A | (A - 1)).  A <= 0 iff that result has
  /* To see if A <= 0, compute (A | (A - 1)).  A <= 0 iff that result has
     the sign bit set.  */
     the sign bit set.  */
 
 
  if (code == LE)
  if (code == LE)
    {
    {
      /* This is destructive, so SUBTARGET can't be OP0.  */
      /* This is destructive, so SUBTARGET can't be OP0.  */
      if (rtx_equal_p (subtarget, op0))
      if (rtx_equal_p (subtarget, op0))
        subtarget = 0;
        subtarget = 0;
 
 
      tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
      tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
                          OPTAB_WIDEN);
                          OPTAB_WIDEN);
      if (tem)
      if (tem)
        tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
        tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
                            OPTAB_WIDEN);
                            OPTAB_WIDEN);
    }
    }
 
 
  /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
  /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
     number of bits in the mode of OP0, minus one.  */
     number of bits in the mode of OP0, minus one.  */
 
 
  if (code == GT)
  if (code == GT)
    {
    {
      if (rtx_equal_p (subtarget, op0))
      if (rtx_equal_p (subtarget, op0))
        subtarget = 0;
        subtarget = 0;
 
 
      tem = expand_shift (RSHIFT_EXPR, mode, op0,
      tem = expand_shift (RSHIFT_EXPR, mode, op0,
                          size_int (GET_MODE_BITSIZE (mode) - 1),
                          size_int (GET_MODE_BITSIZE (mode) - 1),
                          subtarget, 0);
                          subtarget, 0);
      tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
      tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
                          OPTAB_WIDEN);
                          OPTAB_WIDEN);
    }
    }
 
 
  if (code == EQ || code == NE)
  if (code == EQ || code == NE)
    {
    {
      /* For EQ or NE, one way to do the comparison is to apply an operation
      /* For EQ or NE, one way to do the comparison is to apply an operation
         that converts the operand into a positive number if it is nonzero
         that converts the operand into a positive number if it is nonzero
         or zero if it was originally zero.  Then, for EQ, we subtract 1 and
         or zero if it was originally zero.  Then, for EQ, we subtract 1 and
         for NE we negate.  This puts the result in the sign bit.  Then we
         for NE we negate.  This puts the result in the sign bit.  Then we
         normalize with a shift, if needed.
         normalize with a shift, if needed.
 
 
         Two operations that can do the above actions are ABS and FFS, so try
         Two operations that can do the above actions are ABS and FFS, so try
         them.  If that doesn't work, and MODE is smaller than a full word,
         them.  If that doesn't work, and MODE is smaller than a full word,
         we can use zero-extension to the wider mode (an unsigned conversion)
         we can use zero-extension to the wider mode (an unsigned conversion)
         as the operation.  */
         as the operation.  */
 
 
      /* Note that ABS doesn't yield a positive number for INT_MIN, but
      /* Note that ABS doesn't yield a positive number for INT_MIN, but
         that is compensated by the subsequent overflow when subtracting
         that is compensated by the subsequent overflow when subtracting
         one / negating.  */
         one / negating.  */
 
 
      if (abs_optab->handlers[mode].insn_code != CODE_FOR_nothing)
      if (abs_optab->handlers[mode].insn_code != CODE_FOR_nothing)
        tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
        tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
      else if (ffs_optab->handlers[mode].insn_code != CODE_FOR_nothing)
      else if (ffs_optab->handlers[mode].insn_code != CODE_FOR_nothing)
        tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
        tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
      else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
      else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
        {
        {
          tem = convert_modes (word_mode, mode, op0, 1);
          tem = convert_modes (word_mode, mode, op0, 1);
          mode = word_mode;
          mode = word_mode;
        }
        }
 
 
      if (tem != 0)
      if (tem != 0)
        {
        {
          if (code == EQ)
          if (code == EQ)
            tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
            tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
                                0, OPTAB_WIDEN);
                                0, OPTAB_WIDEN);
          else
          else
            tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
            tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
        }
        }
 
 
      /* If we couldn't do it that way, for NE we can "or" the two's complement
      /* If we couldn't do it that way, for NE we can "or" the two's complement
         of the value with itself.  For EQ, we take the one's complement of
         of the value with itself.  For EQ, we take the one's complement of
         that "or", which is an extra insn, so we only handle EQ if branches
         that "or", which is an extra insn, so we only handle EQ if branches
         are expensive.  */
         are expensive.  */
 
 
      if (tem == 0 && (code == NE || BRANCH_COST > 1))
      if (tem == 0 && (code == NE || BRANCH_COST > 1))
        {
        {
          if (rtx_equal_p (subtarget, op0))
          if (rtx_equal_p (subtarget, op0))
            subtarget = 0;
            subtarget = 0;
 
 
          tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
          tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
          tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
          tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
                              OPTAB_WIDEN);
                              OPTAB_WIDEN);
 
 
          if (tem && code == EQ)
          if (tem && code == EQ)
            tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
            tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
        }
        }
    }
    }
 
 
  if (tem && normalizep)
  if (tem && normalizep)
    tem = expand_shift (RSHIFT_EXPR, mode, tem,
    tem = expand_shift (RSHIFT_EXPR, mode, tem,
                        size_int (GET_MODE_BITSIZE (mode) - 1),
                        size_int (GET_MODE_BITSIZE (mode) - 1),
                        subtarget, normalizep == 1);
                        subtarget, normalizep == 1);
 
 
  if (tem)
  if (tem)
    {
    {
      if (GET_MODE (tem) != target_mode)
      if (GET_MODE (tem) != target_mode)
        {
        {
          convert_move (target, tem, 0);
          convert_move (target, tem, 0);
          tem = target;
          tem = target;
        }
        }
      else if (!subtarget)
      else if (!subtarget)
        {
        {
          emit_move_insn (target, tem);
          emit_move_insn (target, tem);
          tem = target;
          tem = target;
        }
        }
    }
    }
  else
  else
    delete_insns_since (last);
    delete_insns_since (last);
 
 
  return tem;
  return tem;
}
}
 
 
/* Like emit_store_flag, but always succeeds.  */
/* Like emit_store_flag, but always succeeds.  */
 
 
rtx
rtx
emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
                       enum machine_mode mode, int unsignedp, int normalizep)
                       enum machine_mode mode, int unsignedp, int normalizep)
{
{
  rtx tem, label;
  rtx tem, label;
 
 
  /* First see if emit_store_flag can do the job.  */
  /* First see if emit_store_flag can do the job.  */
  tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
  tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
  if (tem != 0)
  if (tem != 0)
    return tem;
    return tem;
 
 
  if (normalizep == 0)
  if (normalizep == 0)
    normalizep = 1;
    normalizep = 1;
 
 
  /* If this failed, we have to do this with set/compare/jump/set code.  */
  /* If this failed, we have to do this with set/compare/jump/set code.  */
 
 
  if (!REG_P (target)
  if (!REG_P (target)
      || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
      || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
    target = gen_reg_rtx (GET_MODE (target));
    target = gen_reg_rtx (GET_MODE (target));
 
 
  emit_move_insn (target, const1_rtx);
  emit_move_insn (target, const1_rtx);
  label = gen_label_rtx ();
  label = gen_label_rtx ();
  do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX,
  do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX,
                           NULL_RTX, label);
                           NULL_RTX, label);
 
 
  emit_move_insn (target, const0_rtx);
  emit_move_insn (target, const0_rtx);
  emit_label (label);
  emit_label (label);
 
 
  return target;
  return target;
}
}


/* Perform possibly multi-word comparison and conditional jump to LABEL
/* Perform possibly multi-word comparison and conditional jump to LABEL
   if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE.  This is
   if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE.  This is
   now a thin wrapper around do_compare_rtx_and_jump.  */
   now a thin wrapper around do_compare_rtx_and_jump.  */
 
 
static void
static void
do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, enum machine_mode mode,
do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, enum machine_mode mode,
                 rtx label)
                 rtx label)
{
{
  int unsignedp = (op == LTU || op == LEU || op == GTU || op == GEU);
  int unsignedp = (op == LTU || op == LEU || op == GTU || op == GEU);
  do_compare_rtx_and_jump (arg1, arg2, op, unsignedp, mode,
  do_compare_rtx_and_jump (arg1, arg2, op, unsignedp, mode,
                           NULL_RTX, NULL_RTX, label);
                           NULL_RTX, NULL_RTX, label);
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.