OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gcc-4.2.2/] [gcc/] [expr.c] - Diff between revs 154 and 816

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 154 Rev 816
/* Convert tree expression to rtl instructions, for GNU compiler.
/* Convert tree expression to rtl instructions, for GNU compiler.
   Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
   Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
   2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
   2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify it under
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
Software Foundation; either version 3, or (at your option) any later
version.
version.
 
 
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "machmode.h"
#include "machmode.h"
#include "real.h"
#include "real.h"
#include "rtl.h"
#include "rtl.h"
#include "tree.h"
#include "tree.h"
#include "flags.h"
#include "flags.h"
#include "regs.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "hard-reg-set.h"
#include "except.h"
#include "except.h"
#include "function.h"
#include "function.h"
#include "insn-config.h"
#include "insn-config.h"
#include "insn-attr.h"
#include "insn-attr.h"
/* Include expr.h after insn-config.h so we get HAVE_conditional_move.  */
/* Include expr.h after insn-config.h so we get HAVE_conditional_move.  */
#include "expr.h"
#include "expr.h"
#include "optabs.h"
#include "optabs.h"
#include "libfuncs.h"
#include "libfuncs.h"
#include "recog.h"
#include "recog.h"
#include "reload.h"
#include "reload.h"
#include "output.h"
#include "output.h"
#include "typeclass.h"
#include "typeclass.h"
#include "toplev.h"
#include "toplev.h"
#include "ggc.h"
#include "ggc.h"
#include "langhooks.h"
#include "langhooks.h"
#include "intl.h"
#include "intl.h"
#include "tm_p.h"
#include "tm_p.h"
#include "tree-iterator.h"
#include "tree-iterator.h"
#include "tree-pass.h"
#include "tree-pass.h"
#include "tree-flow.h"
#include "tree-flow.h"
#include "target.h"
#include "target.h"
#include "timevar.h"
#include "timevar.h"
 
 
/* Decide whether a function's arguments should be processed
/* Decide whether a function's arguments should be processed
   from first to last or from last to first.
   from first to last or from last to first.
 
 
   They should if the stack and args grow in opposite directions, but
   They should if the stack and args grow in opposite directions, but
   only if we have push insns.  */
   only if we have push insns.  */
 
 
#ifdef PUSH_ROUNDING
#ifdef PUSH_ROUNDING
 
 
#ifndef PUSH_ARGS_REVERSED
#ifndef PUSH_ARGS_REVERSED
#if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
#if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
#define PUSH_ARGS_REVERSED      /* If it's last to first.  */
#define PUSH_ARGS_REVERSED      /* If it's last to first.  */
#endif
#endif
#endif
#endif
 
 
#endif
#endif
 
 
#ifndef STACK_PUSH_CODE
#ifndef STACK_PUSH_CODE
#ifdef STACK_GROWS_DOWNWARD
#ifdef STACK_GROWS_DOWNWARD
#define STACK_PUSH_CODE PRE_DEC
#define STACK_PUSH_CODE PRE_DEC
#else
#else
#define STACK_PUSH_CODE PRE_INC
#define STACK_PUSH_CODE PRE_INC
#endif
#endif
#endif
#endif
 
 
 
 
/* If this is nonzero, we do not bother generating VOLATILE
/* If this is nonzero, we do not bother generating VOLATILE
   around volatile memory references, and we are willing to
   around volatile memory references, and we are willing to
   output indirect addresses.  If cse is to follow, we reject
   output indirect addresses.  If cse is to follow, we reject
   indirect addresses so a useful potential cse is generated;
   indirect addresses so a useful potential cse is generated;
   if it is used only once, instruction combination will produce
   if it is used only once, instruction combination will produce
   the same indirect address eventually.  */
   the same indirect address eventually.  */
int cse_not_expected;
int cse_not_expected;
 
 
/* This structure is used by move_by_pieces to describe the move to
/* This structure is used by move_by_pieces to describe the move to
   be performed.  */
   be performed.  */
struct move_by_pieces
struct move_by_pieces
{
{
  rtx to;
  rtx to;
  rtx to_addr;
  rtx to_addr;
  int autinc_to;
  int autinc_to;
  int explicit_inc_to;
  int explicit_inc_to;
  rtx from;
  rtx from;
  rtx from_addr;
  rtx from_addr;
  int autinc_from;
  int autinc_from;
  int explicit_inc_from;
  int explicit_inc_from;
  unsigned HOST_WIDE_INT len;
  unsigned HOST_WIDE_INT len;
  HOST_WIDE_INT offset;
  HOST_WIDE_INT offset;
  int reverse;
  int reverse;
};
};
 
 
/* This structure is used by store_by_pieces to describe the clear to
/* This structure is used by store_by_pieces to describe the clear to
   be performed.  */
   be performed.  */
 
 
struct store_by_pieces
struct store_by_pieces
{
{
  rtx to;
  rtx to;
  rtx to_addr;
  rtx to_addr;
  int autinc_to;
  int autinc_to;
  int explicit_inc_to;
  int explicit_inc_to;
  unsigned HOST_WIDE_INT len;
  unsigned HOST_WIDE_INT len;
  HOST_WIDE_INT offset;
  HOST_WIDE_INT offset;
  rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode);
  rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode);
  void *constfundata;
  void *constfundata;
  int reverse;
  int reverse;
};
};
 
 
static unsigned HOST_WIDE_INT move_by_pieces_ninsns (unsigned HOST_WIDE_INT,
static unsigned HOST_WIDE_INT move_by_pieces_ninsns (unsigned HOST_WIDE_INT,
                                                     unsigned int,
                                                     unsigned int,
                                                     unsigned int);
                                                     unsigned int);
static void move_by_pieces_1 (rtx (*) (rtx, ...), enum machine_mode,
static void move_by_pieces_1 (rtx (*) (rtx, ...), enum machine_mode,
                              struct move_by_pieces *);
                              struct move_by_pieces *);
static bool block_move_libcall_safe_for_call_parm (void);
static bool block_move_libcall_safe_for_call_parm (void);
static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned);
static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned);
static rtx emit_block_move_via_libcall (rtx, rtx, rtx, bool);
static rtx emit_block_move_via_libcall (rtx, rtx, rtx, bool);
static tree emit_block_move_libcall_fn (int);
static tree emit_block_move_libcall_fn (int);
static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode);
static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode);
static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
static void store_by_pieces_1 (struct store_by_pieces *, unsigned int);
static void store_by_pieces_1 (struct store_by_pieces *, unsigned int);
static void store_by_pieces_2 (rtx (*) (rtx, ...), enum machine_mode,
static void store_by_pieces_2 (rtx (*) (rtx, ...), enum machine_mode,
                               struct store_by_pieces *);
                               struct store_by_pieces *);
static rtx clear_storage_via_libcall (rtx, rtx, bool);
static rtx clear_storage_via_libcall (rtx, rtx, bool);
static tree clear_storage_libcall_fn (int);
static tree clear_storage_libcall_fn (int);
static rtx compress_float_constant (rtx, rtx);
static rtx compress_float_constant (rtx, rtx);
static rtx get_subtarget (rtx);
static rtx get_subtarget (rtx);
static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
                                     HOST_WIDE_INT, enum machine_mode,
                                     HOST_WIDE_INT, enum machine_mode,
                                     tree, tree, int, int);
                                     tree, tree, int, int);
static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT, enum machine_mode,
static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT, enum machine_mode,
                        tree, tree, int);
                        tree, tree, int);
 
 
static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (tree, tree);
static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (tree, tree);
 
 
static int is_aligning_offset (tree, tree);
static int is_aligning_offset (tree, tree);
static void expand_operands (tree, tree, rtx, rtx*, rtx*,
static void expand_operands (tree, tree, rtx, rtx*, rtx*,
                             enum expand_modifier);
                             enum expand_modifier);
static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
static rtx do_store_flag (tree, rtx, enum machine_mode, int);
static rtx do_store_flag (tree, rtx, enum machine_mode, int);
#ifdef PUSH_ROUNDING
#ifdef PUSH_ROUNDING
static void emit_single_push_insn (enum machine_mode, rtx, tree);
static void emit_single_push_insn (enum machine_mode, rtx, tree);
#endif
#endif
static void do_tablejump (rtx, enum machine_mode, rtx, rtx, rtx);
static void do_tablejump (rtx, enum machine_mode, rtx, rtx, rtx);
static rtx const_vector_from_tree (tree);
static rtx const_vector_from_tree (tree);
static void write_complex_part (rtx, rtx, bool);
static void write_complex_part (rtx, rtx, bool);
 
 
/* Record for each mode whether we can move a register directly to or
/* Record for each mode whether we can move a register directly to or
   from an object of that mode in memory.  If we can't, we won't try
   from an object of that mode in memory.  If we can't, we won't try
   to use that mode directly when accessing a field of that mode.  */
   to use that mode directly when accessing a field of that mode.  */
 
 
static char direct_load[NUM_MACHINE_MODES];
static char direct_load[NUM_MACHINE_MODES];
static char direct_store[NUM_MACHINE_MODES];
static char direct_store[NUM_MACHINE_MODES];
 
 
/* Record for each mode whether we can float-extend from memory.  */
/* Record for each mode whether we can float-extend from memory.  */
 
 
static bool float_extend_from_mem[NUM_MACHINE_MODES][NUM_MACHINE_MODES];
static bool float_extend_from_mem[NUM_MACHINE_MODES][NUM_MACHINE_MODES];
 
 
/* This macro is used to determine whether move_by_pieces should be called
/* This macro is used to determine whether move_by_pieces should be called
   to perform a structure copy.  */
   to perform a structure copy.  */
#ifndef MOVE_BY_PIECES_P
#ifndef MOVE_BY_PIECES_P
#define MOVE_BY_PIECES_P(SIZE, ALIGN) \
#define MOVE_BY_PIECES_P(SIZE, ALIGN) \
  (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
  (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
   < (unsigned int) MOVE_RATIO)
   < (unsigned int) MOVE_RATIO)
#endif
#endif
 
 
/* This macro is used to determine whether clear_by_pieces should be
/* This macro is used to determine whether clear_by_pieces should be
   called to clear storage.  */
   called to clear storage.  */
#ifndef CLEAR_BY_PIECES_P
#ifndef CLEAR_BY_PIECES_P
#define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
#define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
  (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
  (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
   < (unsigned int) CLEAR_RATIO)
   < (unsigned int) CLEAR_RATIO)
#endif
#endif
 
 
/* This macro is used to determine whether store_by_pieces should be
/* This macro is used to determine whether store_by_pieces should be
   called to "memset" storage with byte values other than zero, or
   called to "memset" storage with byte values other than zero, or
   to "memcpy" storage when the source is a constant string.  */
   to "memcpy" storage when the source is a constant string.  */
#ifndef STORE_BY_PIECES_P
#ifndef STORE_BY_PIECES_P
#define STORE_BY_PIECES_P(SIZE, ALIGN) \
#define STORE_BY_PIECES_P(SIZE, ALIGN) \
  (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
  (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
   < (unsigned int) MOVE_RATIO)
   < (unsigned int) MOVE_RATIO)
#endif
#endif
 
 
/* This array records the insn_code of insns to perform block moves.  */
/* This array records the insn_code of insns to perform block moves.  */
enum insn_code movmem_optab[NUM_MACHINE_MODES];
enum insn_code movmem_optab[NUM_MACHINE_MODES];
 
 
/* This array records the insn_code of insns to perform block sets.  */
/* This array records the insn_code of insns to perform block sets.  */
enum insn_code setmem_optab[NUM_MACHINE_MODES];
enum insn_code setmem_optab[NUM_MACHINE_MODES];
 
 
/* These arrays record the insn_code of three different kinds of insns
/* These arrays record the insn_code of three different kinds of insns
   to perform block compares.  */
   to perform block compares.  */
enum insn_code cmpstr_optab[NUM_MACHINE_MODES];
enum insn_code cmpstr_optab[NUM_MACHINE_MODES];
enum insn_code cmpstrn_optab[NUM_MACHINE_MODES];
enum insn_code cmpstrn_optab[NUM_MACHINE_MODES];
enum insn_code cmpmem_optab[NUM_MACHINE_MODES];
enum insn_code cmpmem_optab[NUM_MACHINE_MODES];
 
 
/* Synchronization primitives.  */
/* Synchronization primitives.  */
enum insn_code sync_add_optab[NUM_MACHINE_MODES];
enum insn_code sync_add_optab[NUM_MACHINE_MODES];
enum insn_code sync_sub_optab[NUM_MACHINE_MODES];
enum insn_code sync_sub_optab[NUM_MACHINE_MODES];
enum insn_code sync_ior_optab[NUM_MACHINE_MODES];
enum insn_code sync_ior_optab[NUM_MACHINE_MODES];
enum insn_code sync_and_optab[NUM_MACHINE_MODES];
enum insn_code sync_and_optab[NUM_MACHINE_MODES];
enum insn_code sync_xor_optab[NUM_MACHINE_MODES];
enum insn_code sync_xor_optab[NUM_MACHINE_MODES];
enum insn_code sync_nand_optab[NUM_MACHINE_MODES];
enum insn_code sync_nand_optab[NUM_MACHINE_MODES];
enum insn_code sync_old_add_optab[NUM_MACHINE_MODES];
enum insn_code sync_old_add_optab[NUM_MACHINE_MODES];
enum insn_code sync_old_sub_optab[NUM_MACHINE_MODES];
enum insn_code sync_old_sub_optab[NUM_MACHINE_MODES];
enum insn_code sync_old_ior_optab[NUM_MACHINE_MODES];
enum insn_code sync_old_ior_optab[NUM_MACHINE_MODES];
enum insn_code sync_old_and_optab[NUM_MACHINE_MODES];
enum insn_code sync_old_and_optab[NUM_MACHINE_MODES];
enum insn_code sync_old_xor_optab[NUM_MACHINE_MODES];
enum insn_code sync_old_xor_optab[NUM_MACHINE_MODES];
enum insn_code sync_old_nand_optab[NUM_MACHINE_MODES];
enum insn_code sync_old_nand_optab[NUM_MACHINE_MODES];
enum insn_code sync_new_add_optab[NUM_MACHINE_MODES];
enum insn_code sync_new_add_optab[NUM_MACHINE_MODES];
enum insn_code sync_new_sub_optab[NUM_MACHINE_MODES];
enum insn_code sync_new_sub_optab[NUM_MACHINE_MODES];
enum insn_code sync_new_ior_optab[NUM_MACHINE_MODES];
enum insn_code sync_new_ior_optab[NUM_MACHINE_MODES];
enum insn_code sync_new_and_optab[NUM_MACHINE_MODES];
enum insn_code sync_new_and_optab[NUM_MACHINE_MODES];
enum insn_code sync_new_xor_optab[NUM_MACHINE_MODES];
enum insn_code sync_new_xor_optab[NUM_MACHINE_MODES];
enum insn_code sync_new_nand_optab[NUM_MACHINE_MODES];
enum insn_code sync_new_nand_optab[NUM_MACHINE_MODES];
enum insn_code sync_compare_and_swap[NUM_MACHINE_MODES];
enum insn_code sync_compare_and_swap[NUM_MACHINE_MODES];
enum insn_code sync_compare_and_swap_cc[NUM_MACHINE_MODES];
enum insn_code sync_compare_and_swap_cc[NUM_MACHINE_MODES];
enum insn_code sync_lock_test_and_set[NUM_MACHINE_MODES];
enum insn_code sync_lock_test_and_set[NUM_MACHINE_MODES];
enum insn_code sync_lock_release[NUM_MACHINE_MODES];
enum insn_code sync_lock_release[NUM_MACHINE_MODES];
 
 
/* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow.  */
/* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow.  */
 
 
#ifndef SLOW_UNALIGNED_ACCESS
#ifndef SLOW_UNALIGNED_ACCESS
#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
#endif
#endif


/* This is run once per compilation to set up which modes can be used
/* This is run once per compilation to set up which modes can be used
   directly in memory and to initialize the block move optab.  */
   directly in memory and to initialize the block move optab.  */
 
 
void
void
init_expr_once (void)
init_expr_once (void)
{
{
  rtx insn, pat;
  rtx insn, pat;
  enum machine_mode mode;
  enum machine_mode mode;
  int num_clobbers;
  int num_clobbers;
  rtx mem, mem1;
  rtx mem, mem1;
  rtx reg;
  rtx reg;
 
 
  /* Try indexing by frame ptr and try by stack ptr.
  /* Try indexing by frame ptr and try by stack ptr.
     It is known that on the Convex the stack ptr isn't a valid index.
     It is known that on the Convex the stack ptr isn't a valid index.
     With luck, one or the other is valid on any machine.  */
     With luck, one or the other is valid on any machine.  */
  mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
  mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
  mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
  mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
 
 
  /* A scratch register we can modify in-place below to avoid
  /* A scratch register we can modify in-place below to avoid
     useless RTL allocations.  */
     useless RTL allocations.  */
  reg = gen_rtx_REG (VOIDmode, -1);
  reg = gen_rtx_REG (VOIDmode, -1);
 
 
  insn = rtx_alloc (INSN);
  insn = rtx_alloc (INSN);
  pat = gen_rtx_SET (0, NULL_RTX, NULL_RTX);
  pat = gen_rtx_SET (0, NULL_RTX, NULL_RTX);
  PATTERN (insn) = pat;
  PATTERN (insn) = pat;
 
 
  for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
  for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
       mode = (enum machine_mode) ((int) mode + 1))
       mode = (enum machine_mode) ((int) mode + 1))
    {
    {
      int regno;
      int regno;
 
 
      direct_load[(int) mode] = direct_store[(int) mode] = 0;
      direct_load[(int) mode] = direct_store[(int) mode] = 0;
      PUT_MODE (mem, mode);
      PUT_MODE (mem, mode);
      PUT_MODE (mem1, mode);
      PUT_MODE (mem1, mode);
      PUT_MODE (reg, mode);
      PUT_MODE (reg, mode);
 
 
      /* See if there is some register that can be used in this mode and
      /* See if there is some register that can be used in this mode and
         directly loaded or stored from memory.  */
         directly loaded or stored from memory.  */
 
 
      if (mode != VOIDmode && mode != BLKmode)
      if (mode != VOIDmode && mode != BLKmode)
        for (regno = 0; regno < FIRST_PSEUDO_REGISTER
        for (regno = 0; regno < FIRST_PSEUDO_REGISTER
             && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
             && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
             regno++)
             regno++)
          {
          {
            if (! HARD_REGNO_MODE_OK (regno, mode))
            if (! HARD_REGNO_MODE_OK (regno, mode))
              continue;
              continue;
 
 
            REGNO (reg) = regno;
            REGNO (reg) = regno;
 
 
            SET_SRC (pat) = mem;
            SET_SRC (pat) = mem;
            SET_DEST (pat) = reg;
            SET_DEST (pat) = reg;
            if (recog (pat, insn, &num_clobbers) >= 0)
            if (recog (pat, insn, &num_clobbers) >= 0)
              direct_load[(int) mode] = 1;
              direct_load[(int) mode] = 1;
 
 
            SET_SRC (pat) = mem1;
            SET_SRC (pat) = mem1;
            SET_DEST (pat) = reg;
            SET_DEST (pat) = reg;
            if (recog (pat, insn, &num_clobbers) >= 0)
            if (recog (pat, insn, &num_clobbers) >= 0)
              direct_load[(int) mode] = 1;
              direct_load[(int) mode] = 1;
 
 
            SET_SRC (pat) = reg;
            SET_SRC (pat) = reg;
            SET_DEST (pat) = mem;
            SET_DEST (pat) = mem;
            if (recog (pat, insn, &num_clobbers) >= 0)
            if (recog (pat, insn, &num_clobbers) >= 0)
              direct_store[(int) mode] = 1;
              direct_store[(int) mode] = 1;
 
 
            SET_SRC (pat) = reg;
            SET_SRC (pat) = reg;
            SET_DEST (pat) = mem1;
            SET_DEST (pat) = mem1;
            if (recog (pat, insn, &num_clobbers) >= 0)
            if (recog (pat, insn, &num_clobbers) >= 0)
              direct_store[(int) mode] = 1;
              direct_store[(int) mode] = 1;
          }
          }
    }
    }
 
 
  mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000));
  mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000));
 
 
  for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
  for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
       mode = GET_MODE_WIDER_MODE (mode))
       mode = GET_MODE_WIDER_MODE (mode))
    {
    {
      enum machine_mode srcmode;
      enum machine_mode srcmode;
      for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
      for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
           srcmode = GET_MODE_WIDER_MODE (srcmode))
           srcmode = GET_MODE_WIDER_MODE (srcmode))
        {
        {
          enum insn_code ic;
          enum insn_code ic;
 
 
          ic = can_extend_p (mode, srcmode, 0);
          ic = can_extend_p (mode, srcmode, 0);
          if (ic == CODE_FOR_nothing)
          if (ic == CODE_FOR_nothing)
            continue;
            continue;
 
 
          PUT_MODE (mem, srcmode);
          PUT_MODE (mem, srcmode);
 
 
          if ((*insn_data[ic].operand[1].predicate) (mem, srcmode))
          if ((*insn_data[ic].operand[1].predicate) (mem, srcmode))
            float_extend_from_mem[mode][srcmode] = true;
            float_extend_from_mem[mode][srcmode] = true;
        }
        }
    }
    }
}
}
 
 
/* This is run at the start of compiling a function.  */
/* This is run at the start of compiling a function.  */
 
 
void
void
init_expr (void)
init_expr (void)
{
{
  cfun->expr = ggc_alloc_cleared (sizeof (struct expr_status));
  cfun->expr = ggc_alloc_cleared (sizeof (struct expr_status));
}
}


/* Copy data from FROM to TO, where the machine modes are not the same.
/* Copy data from FROM to TO, where the machine modes are not the same.
   Both modes may be integer, or both may be floating.
   Both modes may be integer, or both may be floating.
   UNSIGNEDP should be nonzero if FROM is an unsigned type.
   UNSIGNEDP should be nonzero if FROM is an unsigned type.
   This causes zero-extension instead of sign-extension.  */
   This causes zero-extension instead of sign-extension.  */
 
 
void
void
convert_move (rtx to, rtx from, int unsignedp)
convert_move (rtx to, rtx from, int unsignedp)
{
{
  enum machine_mode to_mode = GET_MODE (to);
  enum machine_mode to_mode = GET_MODE (to);
  enum machine_mode from_mode = GET_MODE (from);
  enum machine_mode from_mode = GET_MODE (from);
  int to_real = SCALAR_FLOAT_MODE_P (to_mode);
  int to_real = SCALAR_FLOAT_MODE_P (to_mode);
  int from_real = SCALAR_FLOAT_MODE_P (from_mode);
  int from_real = SCALAR_FLOAT_MODE_P (from_mode);
  enum insn_code code;
  enum insn_code code;
  rtx libcall;
  rtx libcall;
 
 
  /* rtx code for making an equivalent value.  */
  /* rtx code for making an equivalent value.  */
  enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
  enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
                              : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
                              : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
 
 
 
 
  gcc_assert (to_real == from_real);
  gcc_assert (to_real == from_real);
 
 
  /* If the source and destination are already the same, then there's
  /* If the source and destination are already the same, then there's
     nothing to do.  */
     nothing to do.  */
  if (to == from)
  if (to == from)
    return;
    return;
 
 
  /* If FROM is a SUBREG that indicates that we have already done at least
  /* If FROM is a SUBREG that indicates that we have already done at least
     the required extension, strip it.  We don't handle such SUBREGs as
     the required extension, strip it.  We don't handle such SUBREGs as
     TO here.  */
     TO here.  */
 
 
  if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
  if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
      && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from)))
      && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from)))
          >= GET_MODE_SIZE (to_mode))
          >= GET_MODE_SIZE (to_mode))
      && SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
      && SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
    from = gen_lowpart (to_mode, from), from_mode = to_mode;
    from = gen_lowpart (to_mode, from), from_mode = to_mode;
 
 
  gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
  gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
 
 
  if (to_mode == from_mode
  if (to_mode == from_mode
      || (from_mode == VOIDmode && CONSTANT_P (from)))
      || (from_mode == VOIDmode && CONSTANT_P (from)))
    {
    {
      emit_move_insn (to, from);
      emit_move_insn (to, from);
      return;
      return;
    }
    }
 
 
  if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
  if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
    {
    {
      gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
      gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
 
 
      if (VECTOR_MODE_P (to_mode))
      if (VECTOR_MODE_P (to_mode))
        from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
        from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
      else
      else
        to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
        to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
 
 
      emit_move_insn (to, from);
      emit_move_insn (to, from);
      return;
      return;
    }
    }
 
 
  if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
  if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
    {
    {
      convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
      convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
      convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
      convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
      return;
      return;
    }
    }
 
 
  if (to_real)
  if (to_real)
    {
    {
      rtx value, insns;
      rtx value, insns;
      convert_optab tab;
      convert_optab tab;
 
 
      gcc_assert ((GET_MODE_PRECISION (from_mode)
      gcc_assert ((GET_MODE_PRECISION (from_mode)
                   != GET_MODE_PRECISION (to_mode))
                   != GET_MODE_PRECISION (to_mode))
                  || (DECIMAL_FLOAT_MODE_P (from_mode)
                  || (DECIMAL_FLOAT_MODE_P (from_mode)
                      != DECIMAL_FLOAT_MODE_P (to_mode)));
                      != DECIMAL_FLOAT_MODE_P (to_mode)));
 
 
      if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
      if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
        /* Conversion between decimal float and binary float, same size.  */
        /* Conversion between decimal float and binary float, same size.  */
        tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
        tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
      else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
      else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
        tab = sext_optab;
        tab = sext_optab;
      else
      else
        tab = trunc_optab;
        tab = trunc_optab;
 
 
      /* Try converting directly if the insn is supported.  */
      /* Try converting directly if the insn is supported.  */
 
 
      code = tab->handlers[to_mode][from_mode].insn_code;
      code = tab->handlers[to_mode][from_mode].insn_code;
      if (code != CODE_FOR_nothing)
      if (code != CODE_FOR_nothing)
        {
        {
          emit_unop_insn (code, to, from,
          emit_unop_insn (code, to, from,
                          tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
                          tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
          return;
          return;
        }
        }
 
 
      /* Otherwise use a libcall.  */
      /* Otherwise use a libcall.  */
      libcall = tab->handlers[to_mode][from_mode].libfunc;
      libcall = tab->handlers[to_mode][from_mode].libfunc;
 
 
      /* Is this conversion implemented yet?  */
      /* Is this conversion implemented yet?  */
      gcc_assert (libcall);
      gcc_assert (libcall);
 
 
      start_sequence ();
      start_sequence ();
      value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
      value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
                                       1, from, from_mode);
                                       1, from, from_mode);
      insns = get_insns ();
      insns = get_insns ();
      end_sequence ();
      end_sequence ();
      emit_libcall_block (insns, to, value,
      emit_libcall_block (insns, to, value,
                          tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
                          tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
                                                                       from)
                                                                       from)
                          : gen_rtx_FLOAT_EXTEND (to_mode, from));
                          : gen_rtx_FLOAT_EXTEND (to_mode, from));
      return;
      return;
    }
    }
 
 
  /* Handle pointer conversion.  */                     /* SPEE 900220.  */
  /* Handle pointer conversion.  */                     /* SPEE 900220.  */
  /* Targets are expected to provide conversion insns between PxImode and
  /* Targets are expected to provide conversion insns between PxImode and
     xImode for all MODE_PARTIAL_INT modes they use, but no others.  */
     xImode for all MODE_PARTIAL_INT modes they use, but no others.  */
  if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
  if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
    {
    {
      enum machine_mode full_mode
      enum machine_mode full_mode
        = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
        = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
 
 
      gcc_assert (trunc_optab->handlers[to_mode][full_mode].insn_code
      gcc_assert (trunc_optab->handlers[to_mode][full_mode].insn_code
                  != CODE_FOR_nothing);
                  != CODE_FOR_nothing);
 
 
      if (full_mode != from_mode)
      if (full_mode != from_mode)
        from = convert_to_mode (full_mode, from, unsignedp);
        from = convert_to_mode (full_mode, from, unsignedp);
      emit_unop_insn (trunc_optab->handlers[to_mode][full_mode].insn_code,
      emit_unop_insn (trunc_optab->handlers[to_mode][full_mode].insn_code,
                      to, from, UNKNOWN);
                      to, from, UNKNOWN);
      return;
      return;
    }
    }
  if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
  if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
    {
    {
      rtx new_from;
      rtx new_from;
      enum machine_mode full_mode
      enum machine_mode full_mode
        = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
        = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
 
 
      gcc_assert (sext_optab->handlers[full_mode][from_mode].insn_code
      gcc_assert (sext_optab->handlers[full_mode][from_mode].insn_code
                  != CODE_FOR_nothing);
                  != CODE_FOR_nothing);
 
 
      if (to_mode == full_mode)
      if (to_mode == full_mode)
        {
        {
          emit_unop_insn (sext_optab->handlers[full_mode][from_mode].insn_code,
          emit_unop_insn (sext_optab->handlers[full_mode][from_mode].insn_code,
                          to, from, UNKNOWN);
                          to, from, UNKNOWN);
          return;
          return;
        }
        }
 
 
      new_from = gen_reg_rtx (full_mode);
      new_from = gen_reg_rtx (full_mode);
      emit_unop_insn (sext_optab->handlers[full_mode][from_mode].insn_code,
      emit_unop_insn (sext_optab->handlers[full_mode][from_mode].insn_code,
                      new_from, from, UNKNOWN);
                      new_from, from, UNKNOWN);
 
 
      /* else proceed to integer conversions below.  */
      /* else proceed to integer conversions below.  */
      from_mode = full_mode;
      from_mode = full_mode;
      from = new_from;
      from = new_from;
    }
    }
 
 
  /* Now both modes are integers.  */
  /* Now both modes are integers.  */
 
 
  /* Handle expanding beyond a word.  */
  /* Handle expanding beyond a word.  */
  if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode)
  if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode)
      && GET_MODE_BITSIZE (to_mode) > BITS_PER_WORD)
      && GET_MODE_BITSIZE (to_mode) > BITS_PER_WORD)
    {
    {
      rtx insns;
      rtx insns;
      rtx lowpart;
      rtx lowpart;
      rtx fill_value;
      rtx fill_value;
      rtx lowfrom;
      rtx lowfrom;
      int i;
      int i;
      enum machine_mode lowpart_mode;
      enum machine_mode lowpart_mode;
      int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
      int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
 
 
      /* Try converting directly if the insn is supported.  */
      /* Try converting directly if the insn is supported.  */
      if ((code = can_extend_p (to_mode, from_mode, unsignedp))
      if ((code = can_extend_p (to_mode, from_mode, unsignedp))
          != CODE_FOR_nothing)
          != CODE_FOR_nothing)
        {
        {
          /* If FROM is a SUBREG, put it into a register.  Do this
          /* If FROM is a SUBREG, put it into a register.  Do this
             so that we always generate the same set of insns for
             so that we always generate the same set of insns for
             better cse'ing; if an intermediate assignment occurred,
             better cse'ing; if an intermediate assignment occurred,
             we won't be doing the operation directly on the SUBREG.  */
             we won't be doing the operation directly on the SUBREG.  */
          if (optimize > 0 && GET_CODE (from) == SUBREG)
          if (optimize > 0 && GET_CODE (from) == SUBREG)
            from = force_reg (from_mode, from);
            from = force_reg (from_mode, from);
          emit_unop_insn (code, to, from, equiv_code);
          emit_unop_insn (code, to, from, equiv_code);
          return;
          return;
        }
        }
      /* Next, try converting via full word.  */
      /* Next, try converting via full word.  */
      else if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD
      else if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD
               && ((code = can_extend_p (to_mode, word_mode, unsignedp))
               && ((code = can_extend_p (to_mode, word_mode, unsignedp))
                   != CODE_FOR_nothing))
                   != CODE_FOR_nothing))
        {
        {
          if (REG_P (to))
          if (REG_P (to))
            {
            {
              if (reg_overlap_mentioned_p (to, from))
              if (reg_overlap_mentioned_p (to, from))
                from = force_reg (from_mode, from);
                from = force_reg (from_mode, from);
              emit_insn (gen_rtx_CLOBBER (VOIDmode, to));
              emit_insn (gen_rtx_CLOBBER (VOIDmode, to));
            }
            }
          convert_move (gen_lowpart (word_mode, to), from, unsignedp);
          convert_move (gen_lowpart (word_mode, to), from, unsignedp);
          emit_unop_insn (code, to,
          emit_unop_insn (code, to,
                          gen_lowpart (word_mode, to), equiv_code);
                          gen_lowpart (word_mode, to), equiv_code);
          return;
          return;
        }
        }
 
 
      /* No special multiword conversion insn; do it by hand.  */
      /* No special multiword conversion insn; do it by hand.  */
      start_sequence ();
      start_sequence ();
 
 
      /* Since we will turn this into a no conflict block, we must ensure
      /* Since we will turn this into a no conflict block, we must ensure
         that the source does not overlap the target.  */
         that the source does not overlap the target.  */
 
 
      if (reg_overlap_mentioned_p (to, from))
      if (reg_overlap_mentioned_p (to, from))
        from = force_reg (from_mode, from);
        from = force_reg (from_mode, from);
 
 
      /* Get a copy of FROM widened to a word, if necessary.  */
      /* Get a copy of FROM widened to a word, if necessary.  */
      if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD)
      if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD)
        lowpart_mode = word_mode;
        lowpart_mode = word_mode;
      else
      else
        lowpart_mode = from_mode;
        lowpart_mode = from_mode;
 
 
      lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
      lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
 
 
      lowpart = gen_lowpart (lowpart_mode, to);
      lowpart = gen_lowpart (lowpart_mode, to);
      emit_move_insn (lowpart, lowfrom);
      emit_move_insn (lowpart, lowfrom);
 
 
      /* Compute the value to put in each remaining word.  */
      /* Compute the value to put in each remaining word.  */
      if (unsignedp)
      if (unsignedp)
        fill_value = const0_rtx;
        fill_value = const0_rtx;
      else
      else
        {
        {
#ifdef HAVE_slt
#ifdef HAVE_slt
          if (HAVE_slt
          if (HAVE_slt
              && insn_data[(int) CODE_FOR_slt].operand[0].mode == word_mode
              && insn_data[(int) CODE_FOR_slt].operand[0].mode == word_mode
              && STORE_FLAG_VALUE == -1)
              && STORE_FLAG_VALUE == -1)
            {
            {
              emit_cmp_insn (lowfrom, const0_rtx, NE, NULL_RTX,
              emit_cmp_insn (lowfrom, const0_rtx, NE, NULL_RTX,
                             lowpart_mode, 0);
                             lowpart_mode, 0);
              fill_value = gen_reg_rtx (word_mode);
              fill_value = gen_reg_rtx (word_mode);
              emit_insn (gen_slt (fill_value));
              emit_insn (gen_slt (fill_value));
            }
            }
          else
          else
#endif
#endif
            {
            {
              fill_value
              fill_value
                = expand_shift (RSHIFT_EXPR, lowpart_mode, lowfrom,
                = expand_shift (RSHIFT_EXPR, lowpart_mode, lowfrom,
                                size_int (GET_MODE_BITSIZE (lowpart_mode) - 1),
                                size_int (GET_MODE_BITSIZE (lowpart_mode) - 1),
                                NULL_RTX, 0);
                                NULL_RTX, 0);
              fill_value = convert_to_mode (word_mode, fill_value, 1);
              fill_value = convert_to_mode (word_mode, fill_value, 1);
            }
            }
        }
        }
 
 
      /* Fill the remaining words.  */
      /* Fill the remaining words.  */
      for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
      for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
        {
        {
          int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
          int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
          rtx subword = operand_subword (to, index, 1, to_mode);
          rtx subword = operand_subword (to, index, 1, to_mode);
 
 
          gcc_assert (subword);
          gcc_assert (subword);
 
 
          if (fill_value != subword)
          if (fill_value != subword)
            emit_move_insn (subword, fill_value);
            emit_move_insn (subword, fill_value);
        }
        }
 
 
      insns = get_insns ();
      insns = get_insns ();
      end_sequence ();
      end_sequence ();
 
 
      emit_no_conflict_block (insns, to, from, NULL_RTX,
      emit_no_conflict_block (insns, to, from, NULL_RTX,
                              gen_rtx_fmt_e (equiv_code, to_mode, copy_rtx (from)));
                              gen_rtx_fmt_e (equiv_code, to_mode, copy_rtx (from)));
      return;
      return;
    }
    }
 
 
  /* Truncating multi-word to a word or less.  */
  /* Truncating multi-word to a word or less.  */
  if (GET_MODE_BITSIZE (from_mode) > BITS_PER_WORD
  if (GET_MODE_BITSIZE (from_mode) > BITS_PER_WORD
      && GET_MODE_BITSIZE (to_mode) <= BITS_PER_WORD)
      && GET_MODE_BITSIZE (to_mode) <= BITS_PER_WORD)
    {
    {
      if (!((MEM_P (from)
      if (!((MEM_P (from)
             && ! MEM_VOLATILE_P (from)
             && ! MEM_VOLATILE_P (from)
             && direct_load[(int) to_mode]
             && direct_load[(int) to_mode]
             && ! mode_dependent_address_p (XEXP (from, 0)))
             && ! mode_dependent_address_p (XEXP (from, 0)))
            || REG_P (from)
            || REG_P (from)
            || GET_CODE (from) == SUBREG))
            || GET_CODE (from) == SUBREG))
        from = force_reg (from_mode, from);
        from = force_reg (from_mode, from);
      convert_move (to, gen_lowpart (word_mode, from), 0);
      convert_move (to, gen_lowpart (word_mode, from), 0);
      return;
      return;
    }
    }
 
 
  /* Now follow all the conversions between integers
  /* Now follow all the conversions between integers
     no more than a word long.  */
     no more than a word long.  */
 
 
  /* For truncation, usually we can just refer to FROM in a narrower mode.  */
  /* For truncation, usually we can just refer to FROM in a narrower mode.  */
  if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
  if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
      && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
      && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
                                GET_MODE_BITSIZE (from_mode)))
                                GET_MODE_BITSIZE (from_mode)))
    {
    {
      if (!((MEM_P (from)
      if (!((MEM_P (from)
             && ! MEM_VOLATILE_P (from)
             && ! MEM_VOLATILE_P (from)
             && direct_load[(int) to_mode]
             && direct_load[(int) to_mode]
             && ! mode_dependent_address_p (XEXP (from, 0)))
             && ! mode_dependent_address_p (XEXP (from, 0)))
            || REG_P (from)
            || REG_P (from)
            || GET_CODE (from) == SUBREG))
            || GET_CODE (from) == SUBREG))
        from = force_reg (from_mode, from);
        from = force_reg (from_mode, from);
      if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
      if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
          && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
          && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
        from = copy_to_reg (from);
        from = copy_to_reg (from);
      emit_move_insn (to, gen_lowpart (to_mode, from));
      emit_move_insn (to, gen_lowpart (to_mode, from));
      return;
      return;
    }
    }
 
 
  /* Handle extension.  */
  /* Handle extension.  */
  if (GET_MODE_BITSIZE (to_mode) > GET_MODE_BITSIZE (from_mode))
  if (GET_MODE_BITSIZE (to_mode) > GET_MODE_BITSIZE (from_mode))
    {
    {
      /* Convert directly if that works.  */
      /* Convert directly if that works.  */
      if ((code = can_extend_p (to_mode, from_mode, unsignedp))
      if ((code = can_extend_p (to_mode, from_mode, unsignedp))
          != CODE_FOR_nothing)
          != CODE_FOR_nothing)
        {
        {
          emit_unop_insn (code, to, from, equiv_code);
          emit_unop_insn (code, to, from, equiv_code);
          return;
          return;
        }
        }
      else
      else
        {
        {
          enum machine_mode intermediate;
          enum machine_mode intermediate;
          rtx tmp;
          rtx tmp;
          tree shift_amount;
          tree shift_amount;
 
 
          /* Search for a mode to convert via.  */
          /* Search for a mode to convert via.  */
          for (intermediate = from_mode; intermediate != VOIDmode;
          for (intermediate = from_mode; intermediate != VOIDmode;
               intermediate = GET_MODE_WIDER_MODE (intermediate))
               intermediate = GET_MODE_WIDER_MODE (intermediate))
            if (((can_extend_p (to_mode, intermediate, unsignedp)
            if (((can_extend_p (to_mode, intermediate, unsignedp)
                  != CODE_FOR_nothing)
                  != CODE_FOR_nothing)
                 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
                 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
                     && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
                     && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
                                               GET_MODE_BITSIZE (intermediate))))
                                               GET_MODE_BITSIZE (intermediate))))
                && (can_extend_p (intermediate, from_mode, unsignedp)
                && (can_extend_p (intermediate, from_mode, unsignedp)
                    != CODE_FOR_nothing))
                    != CODE_FOR_nothing))
              {
              {
                convert_move (to, convert_to_mode (intermediate, from,
                convert_move (to, convert_to_mode (intermediate, from,
                                                   unsignedp), unsignedp);
                                                   unsignedp), unsignedp);
                return;
                return;
              }
              }
 
 
          /* No suitable intermediate mode.
          /* No suitable intermediate mode.
             Generate what we need with shifts.  */
             Generate what we need with shifts.  */
          shift_amount = build_int_cst (NULL_TREE,
          shift_amount = build_int_cst (NULL_TREE,
                                        GET_MODE_BITSIZE (to_mode)
                                        GET_MODE_BITSIZE (to_mode)
                                        - GET_MODE_BITSIZE (from_mode));
                                        - GET_MODE_BITSIZE (from_mode));
          from = gen_lowpart (to_mode, force_reg (from_mode, from));
          from = gen_lowpart (to_mode, force_reg (from_mode, from));
          tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
          tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
                              to, unsignedp);
                              to, unsignedp);
          tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
          tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
                              to, unsignedp);
                              to, unsignedp);
          if (tmp != to)
          if (tmp != to)
            emit_move_insn (to, tmp);
            emit_move_insn (to, tmp);
          return;
          return;
        }
        }
    }
    }
 
 
  /* Support special truncate insns for certain modes.  */
  /* Support special truncate insns for certain modes.  */
  if (trunc_optab->handlers[to_mode][from_mode].insn_code != CODE_FOR_nothing)
  if (trunc_optab->handlers[to_mode][from_mode].insn_code != CODE_FOR_nothing)
    {
    {
      emit_unop_insn (trunc_optab->handlers[to_mode][from_mode].insn_code,
      emit_unop_insn (trunc_optab->handlers[to_mode][from_mode].insn_code,
                      to, from, UNKNOWN);
                      to, from, UNKNOWN);
      return;
      return;
    }
    }
 
 
  /* Handle truncation of volatile memrefs, and so on;
  /* Handle truncation of volatile memrefs, and so on;
     the things that couldn't be truncated directly,
     the things that couldn't be truncated directly,
     and for which there was no special instruction.
     and for which there was no special instruction.
 
 
     ??? Code above formerly short-circuited this, for most integer
     ??? Code above formerly short-circuited this, for most integer
     mode pairs, with a force_reg in from_mode followed by a recursive
     mode pairs, with a force_reg in from_mode followed by a recursive
     call to this routine.  Appears always to have been wrong.  */
     call to this routine.  Appears always to have been wrong.  */
  if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode))
  if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode))
    {
    {
      rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
      rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
      emit_move_insn (to, temp);
      emit_move_insn (to, temp);
      return;
      return;
    }
    }
 
 
  /* Mode combination is not recognized.  */
  /* Mode combination is not recognized.  */
  gcc_unreachable ();
  gcc_unreachable ();
}
}
 
 
/* Return an rtx for a value that would result
/* Return an rtx for a value that would result
   from converting X to mode MODE.
   from converting X to mode MODE.
   Both X and MODE may be floating, or both integer.
   Both X and MODE may be floating, or both integer.
   UNSIGNEDP is nonzero if X is an unsigned value.
   UNSIGNEDP is nonzero if X is an unsigned value.
   This can be done by referring to a part of X in place
   This can be done by referring to a part of X in place
   or by copying to a new temporary with conversion.  */
   or by copying to a new temporary with conversion.  */
 
 
rtx
rtx
convert_to_mode (enum machine_mode mode, rtx x, int unsignedp)
convert_to_mode (enum machine_mode mode, rtx x, int unsignedp)
{
{
  return convert_modes (mode, VOIDmode, x, unsignedp);
  return convert_modes (mode, VOIDmode, x, unsignedp);
}
}
 
 
/* Return an rtx for a value that would result
/* Return an rtx for a value that would result
   from converting X from mode OLDMODE to mode MODE.
   from converting X from mode OLDMODE to mode MODE.
   Both modes may be floating, or both integer.
   Both modes may be floating, or both integer.
   UNSIGNEDP is nonzero if X is an unsigned value.
   UNSIGNEDP is nonzero if X is an unsigned value.
 
 
   This can be done by referring to a part of X in place
   This can be done by referring to a part of X in place
   or by copying to a new temporary with conversion.
   or by copying to a new temporary with conversion.
 
 
   You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode.  */
   You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode.  */
 
 
rtx
rtx
convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int unsignedp)
convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int unsignedp)
{
{
  rtx temp;
  rtx temp;
 
 
  /* If FROM is a SUBREG that indicates that we have already done at least
  /* If FROM is a SUBREG that indicates that we have already done at least
     the required extension, strip it.  */
     the required extension, strip it.  */
 
 
  if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
  if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
      && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
      && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
      && SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
      && SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
    x = gen_lowpart (mode, x);
    x = gen_lowpart (mode, x);
 
 
  if (GET_MODE (x) != VOIDmode)
  if (GET_MODE (x) != VOIDmode)
    oldmode = GET_MODE (x);
    oldmode = GET_MODE (x);
 
 
  if (mode == oldmode)
  if (mode == oldmode)
    return x;
    return x;
 
 
  /* There is one case that we must handle specially: If we are converting
  /* There is one case that we must handle specially: If we are converting
     a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
     a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
     we are to interpret the constant as unsigned, gen_lowpart will do
     we are to interpret the constant as unsigned, gen_lowpart will do
     the wrong if the constant appears negative.  What we want to do is
     the wrong if the constant appears negative.  What we want to do is
     make the high-order word of the constant zero, not all ones.  */
     make the high-order word of the constant zero, not all ones.  */
 
 
  if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
  if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
      && GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT
      && GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT
      && GET_CODE (x) == CONST_INT && INTVAL (x) < 0)
      && GET_CODE (x) == CONST_INT && INTVAL (x) < 0)
    {
    {
      HOST_WIDE_INT val = INTVAL (x);
      HOST_WIDE_INT val = INTVAL (x);
 
 
      if (oldmode != VOIDmode
      if (oldmode != VOIDmode
          && HOST_BITS_PER_WIDE_INT > GET_MODE_BITSIZE (oldmode))
          && HOST_BITS_PER_WIDE_INT > GET_MODE_BITSIZE (oldmode))
        {
        {
          int width = GET_MODE_BITSIZE (oldmode);
          int width = GET_MODE_BITSIZE (oldmode);
 
 
          /* We need to zero extend VAL.  */
          /* We need to zero extend VAL.  */
          val &= ((HOST_WIDE_INT) 1 << width) - 1;
          val &= ((HOST_WIDE_INT) 1 << width) - 1;
        }
        }
 
 
      return immed_double_const (val, (HOST_WIDE_INT) 0, mode);
      return immed_double_const (val, (HOST_WIDE_INT) 0, mode);
    }
    }
 
 
  /* We can do this with a gen_lowpart if both desired and current modes
  /* We can do this with a gen_lowpart if both desired and current modes
     are integer, and this is either a constant integer, a register, or a
     are integer, and this is either a constant integer, a register, or a
     non-volatile MEM.  Except for the constant case where MODE is no
     non-volatile MEM.  Except for the constant case where MODE is no
     wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand.  */
     wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand.  */
 
 
  if ((GET_CODE (x) == CONST_INT
  if ((GET_CODE (x) == CONST_INT
       && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
       && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
      || (GET_MODE_CLASS (mode) == MODE_INT
      || (GET_MODE_CLASS (mode) == MODE_INT
          && GET_MODE_CLASS (oldmode) == MODE_INT
          && GET_MODE_CLASS (oldmode) == MODE_INT
          && (GET_CODE (x) == CONST_DOUBLE
          && (GET_CODE (x) == CONST_DOUBLE
              || (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (oldmode)
              || (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (oldmode)
                  && ((MEM_P (x) && ! MEM_VOLATILE_P (x)
                  && ((MEM_P (x) && ! MEM_VOLATILE_P (x)
                       && direct_load[(int) mode])
                       && direct_load[(int) mode])
                      || (REG_P (x)
                      || (REG_P (x)
                          && (! HARD_REGISTER_P (x)
                          && (! HARD_REGISTER_P (x)
                              || HARD_REGNO_MODE_OK (REGNO (x), mode))
                              || HARD_REGNO_MODE_OK (REGNO (x), mode))
                          && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
                          && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
                                                    GET_MODE_BITSIZE (GET_MODE (x)))))))))
                                                    GET_MODE_BITSIZE (GET_MODE (x)))))))))
    {
    {
      /* ?? If we don't know OLDMODE, we have to assume here that
      /* ?? If we don't know OLDMODE, we have to assume here that
         X does not need sign- or zero-extension.   This may not be
         X does not need sign- or zero-extension.   This may not be
         the case, but it's the best we can do.  */
         the case, but it's the best we can do.  */
      if (GET_CODE (x) == CONST_INT && oldmode != VOIDmode
      if (GET_CODE (x) == CONST_INT && oldmode != VOIDmode
          && GET_MODE_SIZE (mode) > GET_MODE_SIZE (oldmode))
          && GET_MODE_SIZE (mode) > GET_MODE_SIZE (oldmode))
        {
        {
          HOST_WIDE_INT val = INTVAL (x);
          HOST_WIDE_INT val = INTVAL (x);
          int width = GET_MODE_BITSIZE (oldmode);
          int width = GET_MODE_BITSIZE (oldmode);
 
 
          /* We must sign or zero-extend in this case.  Start by
          /* We must sign or zero-extend in this case.  Start by
             zero-extending, then sign extend if we need to.  */
             zero-extending, then sign extend if we need to.  */
          val &= ((HOST_WIDE_INT) 1 << width) - 1;
          val &= ((HOST_WIDE_INT) 1 << width) - 1;
          if (! unsignedp
          if (! unsignedp
              && (val & ((HOST_WIDE_INT) 1 << (width - 1))))
              && (val & ((HOST_WIDE_INT) 1 << (width - 1))))
            val |= (HOST_WIDE_INT) (-1) << width;
            val |= (HOST_WIDE_INT) (-1) << width;
 
 
          return gen_int_mode (val, mode);
          return gen_int_mode (val, mode);
        }
        }
 
 
      return gen_lowpart (mode, x);
      return gen_lowpart (mode, x);
    }
    }
 
 
  /* Converting from integer constant into mode is always equivalent to an
  /* Converting from integer constant into mode is always equivalent to an
     subreg operation.  */
     subreg operation.  */
  if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
  if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
    {
    {
      gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
      gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
      return simplify_gen_subreg (mode, x, oldmode, 0);
      return simplify_gen_subreg (mode, x, oldmode, 0);
    }
    }
 
 
  temp = gen_reg_rtx (mode);
  temp = gen_reg_rtx (mode);
  convert_move (temp, x, unsignedp);
  convert_move (temp, x, unsignedp);
  return temp;
  return temp;
}
}


/* STORE_MAX_PIECES is the number of bytes at a time that we can
/* STORE_MAX_PIECES is the number of bytes at a time that we can
   store efficiently.  Due to internal GCC limitations, this is
   store efficiently.  Due to internal GCC limitations, this is
   MOVE_MAX_PIECES limited by the number of bytes GCC can represent
   MOVE_MAX_PIECES limited by the number of bytes GCC can represent
   for an immediate constant.  */
   for an immediate constant.  */
 
 
#define STORE_MAX_PIECES  MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
#define STORE_MAX_PIECES  MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
 
 
/* Determine whether the LEN bytes can be moved by using several move
/* Determine whether the LEN bytes can be moved by using several move
   instructions.  Return nonzero if a call to move_by_pieces should
   instructions.  Return nonzero if a call to move_by_pieces should
   succeed.  */
   succeed.  */
 
 
int
int
can_move_by_pieces (unsigned HOST_WIDE_INT len,
can_move_by_pieces (unsigned HOST_WIDE_INT len,
                    unsigned int align ATTRIBUTE_UNUSED)
                    unsigned int align ATTRIBUTE_UNUSED)
{
{
  return MOVE_BY_PIECES_P (len, align);
  return MOVE_BY_PIECES_P (len, align);
}
}
 
 
/* Generate several move instructions to copy LEN bytes from block FROM to
/* Generate several move instructions to copy LEN bytes from block FROM to
   block TO.  (These are MEM rtx's with BLKmode).
   block TO.  (These are MEM rtx's with BLKmode).
 
 
   If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
   If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
   used to push FROM to the stack.
   used to push FROM to the stack.
 
 
   ALIGN is maximum stack alignment we can assume.
   ALIGN is maximum stack alignment we can assume.
 
 
   If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
   If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
   mempcpy, and if ENDP is 2 return memory the end minus one byte ala
   mempcpy, and if ENDP is 2 return memory the end minus one byte ala
   stpcpy.  */
   stpcpy.  */
 
 
rtx
rtx
move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
                unsigned int align, int endp)
                unsigned int align, int endp)
{
{
  struct move_by_pieces data;
  struct move_by_pieces data;
  rtx to_addr, from_addr = XEXP (from, 0);
  rtx to_addr, from_addr = XEXP (from, 0);
  unsigned int max_size = MOVE_MAX_PIECES + 1;
  unsigned int max_size = MOVE_MAX_PIECES + 1;
  enum machine_mode mode = VOIDmode, tmode;
  enum machine_mode mode = VOIDmode, tmode;
  enum insn_code icode;
  enum insn_code icode;
 
 
  align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
  align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
 
 
  data.offset = 0;
  data.offset = 0;
  data.from_addr = from_addr;
  data.from_addr = from_addr;
  if (to)
  if (to)
    {
    {
      to_addr = XEXP (to, 0);
      to_addr = XEXP (to, 0);
      data.to = to;
      data.to = to;
      data.autinc_to
      data.autinc_to
        = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
        = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
           || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
           || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
      data.reverse
      data.reverse
        = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
        = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
    }
    }
  else
  else
    {
    {
      to_addr = NULL_RTX;
      to_addr = NULL_RTX;
      data.to = NULL_RTX;
      data.to = NULL_RTX;
      data.autinc_to = 1;
      data.autinc_to = 1;
#ifdef STACK_GROWS_DOWNWARD
#ifdef STACK_GROWS_DOWNWARD
      data.reverse = 1;
      data.reverse = 1;
#else
#else
      data.reverse = 0;
      data.reverse = 0;
#endif
#endif
    }
    }
  data.to_addr = to_addr;
  data.to_addr = to_addr;
  data.from = from;
  data.from = from;
  data.autinc_from
  data.autinc_from
    = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
    = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
       || GET_CODE (from_addr) == POST_INC
       || GET_CODE (from_addr) == POST_INC
       || GET_CODE (from_addr) == POST_DEC);
       || GET_CODE (from_addr) == POST_DEC);
 
 
  data.explicit_inc_from = 0;
  data.explicit_inc_from = 0;
  data.explicit_inc_to = 0;
  data.explicit_inc_to = 0;
  if (data.reverse) data.offset = len;
  if (data.reverse) data.offset = len;
  data.len = len;
  data.len = len;
 
 
  /* If copying requires more than two move insns,
  /* If copying requires more than two move insns,
     copy addresses to registers (to make displacements shorter)
     copy addresses to registers (to make displacements shorter)
     and use post-increment if available.  */
     and use post-increment if available.  */
  if (!(data.autinc_from && data.autinc_to)
  if (!(data.autinc_from && data.autinc_to)
      && move_by_pieces_ninsns (len, align, max_size) > 2)
      && move_by_pieces_ninsns (len, align, max_size) > 2)
    {
    {
      /* Find the mode of the largest move...  */
      /* Find the mode of the largest move...  */
      for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
      for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
           tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
           tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
        if (GET_MODE_SIZE (tmode) < max_size)
        if (GET_MODE_SIZE (tmode) < max_size)
          mode = tmode;
          mode = tmode;
 
 
      if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
      if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
        {
        {
          data.from_addr = copy_addr_to_reg (plus_constant (from_addr, len));
          data.from_addr = copy_addr_to_reg (plus_constant (from_addr, len));
          data.autinc_from = 1;
          data.autinc_from = 1;
          data.explicit_inc_from = -1;
          data.explicit_inc_from = -1;
        }
        }
      if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
      if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
        {
        {
          data.from_addr = copy_addr_to_reg (from_addr);
          data.from_addr = copy_addr_to_reg (from_addr);
          data.autinc_from = 1;
          data.autinc_from = 1;
          data.explicit_inc_from = 1;
          data.explicit_inc_from = 1;
        }
        }
      if (!data.autinc_from && CONSTANT_P (from_addr))
      if (!data.autinc_from && CONSTANT_P (from_addr))
        data.from_addr = copy_addr_to_reg (from_addr);
        data.from_addr = copy_addr_to_reg (from_addr);
      if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
      if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
        {
        {
          data.to_addr = copy_addr_to_reg (plus_constant (to_addr, len));
          data.to_addr = copy_addr_to_reg (plus_constant (to_addr, len));
          data.autinc_to = 1;
          data.autinc_to = 1;
          data.explicit_inc_to = -1;
          data.explicit_inc_to = -1;
        }
        }
      if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
      if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
        {
        {
          data.to_addr = copy_addr_to_reg (to_addr);
          data.to_addr = copy_addr_to_reg (to_addr);
          data.autinc_to = 1;
          data.autinc_to = 1;
          data.explicit_inc_to = 1;
          data.explicit_inc_to = 1;
        }
        }
      if (!data.autinc_to && CONSTANT_P (to_addr))
      if (!data.autinc_to && CONSTANT_P (to_addr))
        data.to_addr = copy_addr_to_reg (to_addr);
        data.to_addr = copy_addr_to_reg (to_addr);
    }
    }
 
 
  tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
  tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
  if (align >= GET_MODE_ALIGNMENT (tmode))
  if (align >= GET_MODE_ALIGNMENT (tmode))
    align = GET_MODE_ALIGNMENT (tmode);
    align = GET_MODE_ALIGNMENT (tmode);
  else
  else
    {
    {
      enum machine_mode xmode;
      enum machine_mode xmode;
 
 
      for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
      for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
           tmode != VOIDmode;
           tmode != VOIDmode;
           xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
           xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
        if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
        if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
            || SLOW_UNALIGNED_ACCESS (tmode, align))
            || SLOW_UNALIGNED_ACCESS (tmode, align))
          break;
          break;
 
 
      align = MAX (align, GET_MODE_ALIGNMENT (xmode));
      align = MAX (align, GET_MODE_ALIGNMENT (xmode));
    }
    }
 
 
  /* First move what we can in the largest integer mode, then go to
  /* First move what we can in the largest integer mode, then go to
     successively smaller modes.  */
     successively smaller modes.  */
 
 
  while (max_size > 1)
  while (max_size > 1)
    {
    {
      for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
      for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
           tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
           tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
        if (GET_MODE_SIZE (tmode) < max_size)
        if (GET_MODE_SIZE (tmode) < max_size)
          mode = tmode;
          mode = tmode;
 
 
      if (mode == VOIDmode)
      if (mode == VOIDmode)
        break;
        break;
 
 
      icode = mov_optab->handlers[(int) mode].insn_code;
      icode = mov_optab->handlers[(int) mode].insn_code;
      if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
      if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
        move_by_pieces_1 (GEN_FCN (icode), mode, &data);
        move_by_pieces_1 (GEN_FCN (icode), mode, &data);
 
 
      max_size = GET_MODE_SIZE (mode);
      max_size = GET_MODE_SIZE (mode);
    }
    }
 
 
  /* The code above should have handled everything.  */
  /* The code above should have handled everything.  */
  gcc_assert (!data.len);
  gcc_assert (!data.len);
 
 
  if (endp)
  if (endp)
    {
    {
      rtx to1;
      rtx to1;
 
 
      gcc_assert (!data.reverse);
      gcc_assert (!data.reverse);
      if (data.autinc_to)
      if (data.autinc_to)
        {
        {
          if (endp == 2)
          if (endp == 2)
            {
            {
              if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
              if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
                emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
                emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
              else
              else
                data.to_addr = copy_addr_to_reg (plus_constant (data.to_addr,
                data.to_addr = copy_addr_to_reg (plus_constant (data.to_addr,
                                                                -1));
                                                                -1));
            }
            }
          to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
          to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
                                           data.offset);
                                           data.offset);
        }
        }
      else
      else
        {
        {
          if (endp == 2)
          if (endp == 2)
            --data.offset;
            --data.offset;
          to1 = adjust_address (data.to, QImode, data.offset);
          to1 = adjust_address (data.to, QImode, data.offset);
        }
        }
      return to1;
      return to1;
    }
    }
  else
  else
    return data.to;
    return data.to;
}
}
 
 
/* Return number of insns required to move L bytes by pieces.
/* Return number of insns required to move L bytes by pieces.
   ALIGN (in bits) is maximum alignment we can assume.  */
   ALIGN (in bits) is maximum alignment we can assume.  */
 
 
static unsigned HOST_WIDE_INT
static unsigned HOST_WIDE_INT
move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
                       unsigned int max_size)
                       unsigned int max_size)
{
{
  unsigned HOST_WIDE_INT n_insns = 0;
  unsigned HOST_WIDE_INT n_insns = 0;
  enum machine_mode tmode;
  enum machine_mode tmode;
 
 
  tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
  tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
  if (align >= GET_MODE_ALIGNMENT (tmode))
  if (align >= GET_MODE_ALIGNMENT (tmode))
    align = GET_MODE_ALIGNMENT (tmode);
    align = GET_MODE_ALIGNMENT (tmode);
  else
  else
    {
    {
      enum machine_mode tmode, xmode;
      enum machine_mode tmode, xmode;
 
 
      for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
      for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
           tmode != VOIDmode;
           tmode != VOIDmode;
           xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
           xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
        if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
        if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
            || SLOW_UNALIGNED_ACCESS (tmode, align))
            || SLOW_UNALIGNED_ACCESS (tmode, align))
          break;
          break;
 
 
      align = MAX (align, GET_MODE_ALIGNMENT (xmode));
      align = MAX (align, GET_MODE_ALIGNMENT (xmode));
    }
    }
 
 
  while (max_size > 1)
  while (max_size > 1)
    {
    {
      enum machine_mode mode = VOIDmode;
      enum machine_mode mode = VOIDmode;
      enum insn_code icode;
      enum insn_code icode;
 
 
      for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
      for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
           tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
           tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
        if (GET_MODE_SIZE (tmode) < max_size)
        if (GET_MODE_SIZE (tmode) < max_size)
          mode = tmode;
          mode = tmode;
 
 
      if (mode == VOIDmode)
      if (mode == VOIDmode)
        break;
        break;
 
 
      icode = mov_optab->handlers[(int) mode].insn_code;
      icode = mov_optab->handlers[(int) mode].insn_code;
      if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
      if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
        n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
        n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
 
 
      max_size = GET_MODE_SIZE (mode);
      max_size = GET_MODE_SIZE (mode);
    }
    }
 
 
  gcc_assert (!l);
  gcc_assert (!l);
  return n_insns;
  return n_insns;
}
}
 
 
/* Subroutine of move_by_pieces.  Move as many bytes as appropriate
/* Subroutine of move_by_pieces.  Move as many bytes as appropriate
   with move instructions for mode MODE.  GENFUN is the gen_... function
   with move instructions for mode MODE.  GENFUN is the gen_... function
   to make a move insn for that mode.  DATA has all the other info.  */
   to make a move insn for that mode.  DATA has all the other info.  */
 
 
static void
static void
move_by_pieces_1 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
move_by_pieces_1 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
                  struct move_by_pieces *data)
                  struct move_by_pieces *data)
{
{
  unsigned int size = GET_MODE_SIZE (mode);
  unsigned int size = GET_MODE_SIZE (mode);
  rtx to1 = NULL_RTX, from1;
  rtx to1 = NULL_RTX, from1;
 
 
  while (data->len >= size)
  while (data->len >= size)
    {
    {
      if (data->reverse)
      if (data->reverse)
        data->offset -= size;
        data->offset -= size;
 
 
      if (data->to)
      if (data->to)
        {
        {
          if (data->autinc_to)
          if (data->autinc_to)
            to1 = adjust_automodify_address (data->to, mode, data->to_addr,
            to1 = adjust_automodify_address (data->to, mode, data->to_addr,
                                             data->offset);
                                             data->offset);
          else
          else
            to1 = adjust_address (data->to, mode, data->offset);
            to1 = adjust_address (data->to, mode, data->offset);
        }
        }
 
 
      if (data->autinc_from)
      if (data->autinc_from)
        from1 = adjust_automodify_address (data->from, mode, data->from_addr,
        from1 = adjust_automodify_address (data->from, mode, data->from_addr,
                                           data->offset);
                                           data->offset);
      else
      else
        from1 = adjust_address (data->from, mode, data->offset);
        from1 = adjust_address (data->from, mode, data->offset);
 
 
      if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
      if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
        emit_insn (gen_add2_insn (data->to_addr,
        emit_insn (gen_add2_insn (data->to_addr,
                                  GEN_INT (-(HOST_WIDE_INT)size)));
                                  GEN_INT (-(HOST_WIDE_INT)size)));
      if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
      if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
        emit_insn (gen_add2_insn (data->from_addr,
        emit_insn (gen_add2_insn (data->from_addr,
                                  GEN_INT (-(HOST_WIDE_INT)size)));
                                  GEN_INT (-(HOST_WIDE_INT)size)));
 
 
      if (data->to)
      if (data->to)
        emit_insn ((*genfun) (to1, from1));
        emit_insn ((*genfun) (to1, from1));
      else
      else
        {
        {
#ifdef PUSH_ROUNDING
#ifdef PUSH_ROUNDING
          emit_single_push_insn (mode, from1, NULL);
          emit_single_push_insn (mode, from1, NULL);
#else
#else
          gcc_unreachable ();
          gcc_unreachable ();
#endif
#endif
        }
        }
 
 
      if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
      if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
        emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
        emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
      if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
      if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
        emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
        emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
 
 
      if (! data->reverse)
      if (! data->reverse)
        data->offset += size;
        data->offset += size;
 
 
      data->len -= size;
      data->len -= size;
    }
    }
}
}


/* Emit code to move a block Y to a block X.  This may be done with
/* Emit code to move a block Y to a block X.  This may be done with
   string-move instructions, with multiple scalar move instructions,
   string-move instructions, with multiple scalar move instructions,
   or with a library call.
   or with a library call.
 
 
   Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
   Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
   SIZE is an rtx that says how long they are.
   SIZE is an rtx that says how long they are.
   ALIGN is the maximum alignment we can assume they have.
   ALIGN is the maximum alignment we can assume they have.
   METHOD describes what kind of copy this is, and what mechanisms may be used.
   METHOD describes what kind of copy this is, and what mechanisms may be used.
 
 
   Return the address of the new block, if memcpy is called and returns it,
   Return the address of the new block, if memcpy is called and returns it,
   0 otherwise.  */
   0 otherwise.  */
 
 
rtx
rtx
emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
{
{
  bool may_use_call;
  bool may_use_call;
  rtx retval = 0;
  rtx retval = 0;
  unsigned int align;
  unsigned int align;
 
 
  switch (method)
  switch (method)
    {
    {
    case BLOCK_OP_NORMAL:
    case BLOCK_OP_NORMAL:
    case BLOCK_OP_TAILCALL:
    case BLOCK_OP_TAILCALL:
      may_use_call = true;
      may_use_call = true;
      break;
      break;
 
 
    case BLOCK_OP_CALL_PARM:
    case BLOCK_OP_CALL_PARM:
      may_use_call = block_move_libcall_safe_for_call_parm ();
      may_use_call = block_move_libcall_safe_for_call_parm ();
 
 
      /* Make inhibit_defer_pop nonzero around the library call
      /* Make inhibit_defer_pop nonzero around the library call
         to force it to pop the arguments right away.  */
         to force it to pop the arguments right away.  */
      NO_DEFER_POP;
      NO_DEFER_POP;
      break;
      break;
 
 
    case BLOCK_OP_NO_LIBCALL:
    case BLOCK_OP_NO_LIBCALL:
      may_use_call = false;
      may_use_call = false;
      break;
      break;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
  align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
 
 
  gcc_assert (MEM_P (x));
  gcc_assert (MEM_P (x));
  gcc_assert (MEM_P (y));
  gcc_assert (MEM_P (y));
  gcc_assert (size);
  gcc_assert (size);
 
 
  /* Make sure we've got BLKmode addresses; store_one_arg can decide that
  /* Make sure we've got BLKmode addresses; store_one_arg can decide that
     block copy is more efficient for other large modes, e.g. DCmode.  */
     block copy is more efficient for other large modes, e.g. DCmode.  */
  x = adjust_address (x, BLKmode, 0);
  x = adjust_address (x, BLKmode, 0);
  y = adjust_address (y, BLKmode, 0);
  y = adjust_address (y, BLKmode, 0);
 
 
  /* Set MEM_SIZE as appropriate for this block copy.  The main place this
  /* Set MEM_SIZE as appropriate for this block copy.  The main place this
     can be incorrect is coming from __builtin_memcpy.  */
     can be incorrect is coming from __builtin_memcpy.  */
  if (GET_CODE (size) == CONST_INT)
  if (GET_CODE (size) == CONST_INT)
    {
    {
      if (INTVAL (size) == 0)
      if (INTVAL (size) == 0)
        return 0;
        return 0;
 
 
      x = shallow_copy_rtx (x);
      x = shallow_copy_rtx (x);
      y = shallow_copy_rtx (y);
      y = shallow_copy_rtx (y);
      set_mem_size (x, size);
      set_mem_size (x, size);
      set_mem_size (y, size);
      set_mem_size (y, size);
    }
    }
 
 
  if (GET_CODE (size) == CONST_INT && MOVE_BY_PIECES_P (INTVAL (size), align))
  if (GET_CODE (size) == CONST_INT && MOVE_BY_PIECES_P (INTVAL (size), align))
    move_by_pieces (x, y, INTVAL (size), align, 0);
    move_by_pieces (x, y, INTVAL (size), align, 0);
  else if (emit_block_move_via_movmem (x, y, size, align))
  else if (emit_block_move_via_movmem (x, y, size, align))
    ;
    ;
  else if (may_use_call)
  else if (may_use_call)
    retval = emit_block_move_via_libcall (x, y, size,
    retval = emit_block_move_via_libcall (x, y, size,
                                          method == BLOCK_OP_TAILCALL);
                                          method == BLOCK_OP_TAILCALL);
  else
  else
    emit_block_move_via_loop (x, y, size, align);
    emit_block_move_via_loop (x, y, size, align);
 
 
  if (method == BLOCK_OP_CALL_PARM)
  if (method == BLOCK_OP_CALL_PARM)
    OK_DEFER_POP;
    OK_DEFER_POP;
 
 
  return retval;
  return retval;
}
}
 
 
/* A subroutine of emit_block_move.  Returns true if calling the
/* A subroutine of emit_block_move.  Returns true if calling the
   block move libcall will not clobber any parameters which may have
   block move libcall will not clobber any parameters which may have
   already been placed on the stack.  */
   already been placed on the stack.  */
 
 
static bool
static bool
block_move_libcall_safe_for_call_parm (void)
block_move_libcall_safe_for_call_parm (void)
{
{
  /* If arguments are pushed on the stack, then they're safe.  */
  /* If arguments are pushed on the stack, then they're safe.  */
  if (PUSH_ARGS)
  if (PUSH_ARGS)
    return true;
    return true;
 
 
  /* If registers go on the stack anyway, any argument is sure to clobber
  /* If registers go on the stack anyway, any argument is sure to clobber
     an outgoing argument.  */
     an outgoing argument.  */
#if defined (REG_PARM_STACK_SPACE) && defined (OUTGOING_REG_PARM_STACK_SPACE)
#if defined (REG_PARM_STACK_SPACE) && defined (OUTGOING_REG_PARM_STACK_SPACE)
  {
  {
    tree fn = emit_block_move_libcall_fn (false);
    tree fn = emit_block_move_libcall_fn (false);
    (void) fn;
    (void) fn;
    if (REG_PARM_STACK_SPACE (fn) != 0)
    if (REG_PARM_STACK_SPACE (fn) != 0)
      return false;
      return false;
  }
  }
#endif
#endif
 
 
  /* If any argument goes in memory, then it might clobber an outgoing
  /* If any argument goes in memory, then it might clobber an outgoing
     argument.  */
     argument.  */
  {
  {
    CUMULATIVE_ARGS args_so_far;
    CUMULATIVE_ARGS args_so_far;
    tree fn, arg;
    tree fn, arg;
 
 
    fn = emit_block_move_libcall_fn (false);
    fn = emit_block_move_libcall_fn (false);
    INIT_CUMULATIVE_ARGS (args_so_far, TREE_TYPE (fn), NULL_RTX, 0, 3);
    INIT_CUMULATIVE_ARGS (args_so_far, TREE_TYPE (fn), NULL_RTX, 0, 3);
 
 
    arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
    arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
    for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
    for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
      {
      {
        enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
        enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
        rtx tmp = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
        rtx tmp = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
        if (!tmp || !REG_P (tmp))
        if (!tmp || !REG_P (tmp))
          return false;
          return false;
        if (targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL, 1))
        if (targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL, 1))
          return false;
          return false;
        FUNCTION_ARG_ADVANCE (args_so_far, mode, NULL_TREE, 1);
        FUNCTION_ARG_ADVANCE (args_so_far, mode, NULL_TREE, 1);
      }
      }
  }
  }
  return true;
  return true;
}
}
 
 
/* A subroutine of emit_block_move.  Expand a movmem pattern;
/* A subroutine of emit_block_move.  Expand a movmem pattern;
   return true if successful.  */
   return true if successful.  */
 
 
static bool
static bool
emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align)
emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align)
{
{
  rtx opalign = GEN_INT (align / BITS_PER_UNIT);
  rtx opalign = GEN_INT (align / BITS_PER_UNIT);
  int save_volatile_ok = volatile_ok;
  int save_volatile_ok = volatile_ok;
  enum machine_mode mode;
  enum machine_mode mode;
 
 
  /* Since this is a move insn, we don't care about volatility.  */
  /* Since this is a move insn, we don't care about volatility.  */
  volatile_ok = 1;
  volatile_ok = 1;
 
 
  /* Try the most limited insn first, because there's no point
  /* Try the most limited insn first, because there's no point
     including more than one in the machine description unless
     including more than one in the machine description unless
     the more limited one has some advantage.  */
     the more limited one has some advantage.  */
 
 
  for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
  for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
       mode = GET_MODE_WIDER_MODE (mode))
       mode = GET_MODE_WIDER_MODE (mode))
    {
    {
      enum insn_code code = movmem_optab[(int) mode];
      enum insn_code code = movmem_optab[(int) mode];
      insn_operand_predicate_fn pred;
      insn_operand_predicate_fn pred;
 
 
      if (code != CODE_FOR_nothing
      if (code != CODE_FOR_nothing
          /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
          /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
             here because if SIZE is less than the mode mask, as it is
             here because if SIZE is less than the mode mask, as it is
             returned by the macro, it will definitely be less than the
             returned by the macro, it will definitely be less than the
             actual mode mask.  */
             actual mode mask.  */
          && ((GET_CODE (size) == CONST_INT
          && ((GET_CODE (size) == CONST_INT
               && ((unsigned HOST_WIDE_INT) INTVAL (size)
               && ((unsigned HOST_WIDE_INT) INTVAL (size)
                   <= (GET_MODE_MASK (mode) >> 1)))
                   <= (GET_MODE_MASK (mode) >> 1)))
              || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
              || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
          && ((pred = insn_data[(int) code].operand[0].predicate) == 0
          && ((pred = insn_data[(int) code].operand[0].predicate) == 0
              || (*pred) (x, BLKmode))
              || (*pred) (x, BLKmode))
          && ((pred = insn_data[(int) code].operand[1].predicate) == 0
          && ((pred = insn_data[(int) code].operand[1].predicate) == 0
              || (*pred) (y, BLKmode))
              || (*pred) (y, BLKmode))
          && ((pred = insn_data[(int) code].operand[3].predicate) == 0
          && ((pred = insn_data[(int) code].operand[3].predicate) == 0
              || (*pred) (opalign, VOIDmode)))
              || (*pred) (opalign, VOIDmode)))
        {
        {
          rtx op2;
          rtx op2;
          rtx last = get_last_insn ();
          rtx last = get_last_insn ();
          rtx pat;
          rtx pat;
 
 
          op2 = convert_to_mode (mode, size, 1);
          op2 = convert_to_mode (mode, size, 1);
          pred = insn_data[(int) code].operand[2].predicate;
          pred = insn_data[(int) code].operand[2].predicate;
          if (pred != 0 && ! (*pred) (op2, mode))
          if (pred != 0 && ! (*pred) (op2, mode))
            op2 = copy_to_mode_reg (mode, op2);
            op2 = copy_to_mode_reg (mode, op2);
 
 
          /* ??? When called via emit_block_move_for_call, it'd be
          /* ??? When called via emit_block_move_for_call, it'd be
             nice if there were some way to inform the backend, so
             nice if there were some way to inform the backend, so
             that it doesn't fail the expansion because it thinks
             that it doesn't fail the expansion because it thinks
             emitting the libcall would be more efficient.  */
             emitting the libcall would be more efficient.  */
 
 
          pat = GEN_FCN ((int) code) (x, y, op2, opalign);
          pat = GEN_FCN ((int) code) (x, y, op2, opalign);
          if (pat)
          if (pat)
            {
            {
              emit_insn (pat);
              emit_insn (pat);
              volatile_ok = save_volatile_ok;
              volatile_ok = save_volatile_ok;
              return true;
              return true;
            }
            }
          else
          else
            delete_insns_since (last);
            delete_insns_since (last);
        }
        }
    }
    }
 
 
  volatile_ok = save_volatile_ok;
  volatile_ok = save_volatile_ok;
  return false;
  return false;
}
}
 
 
/* A subroutine of emit_block_move.  Expand a call to memcpy.
/* A subroutine of emit_block_move.  Expand a call to memcpy.
   Return the return value from memcpy, 0 otherwise.  */
   Return the return value from memcpy, 0 otherwise.  */
 
 
static rtx
static rtx
emit_block_move_via_libcall (rtx dst, rtx src, rtx size, bool tailcall)
emit_block_move_via_libcall (rtx dst, rtx src, rtx size, bool tailcall)
{
{
  rtx dst_addr, src_addr;
  rtx dst_addr, src_addr;
  tree call_expr, arg_list, fn, src_tree, dst_tree, size_tree;
  tree call_expr, arg_list, fn, src_tree, dst_tree, size_tree;
  enum machine_mode size_mode;
  enum machine_mode size_mode;
  rtx retval;
  rtx retval;
 
 
  /* Emit code to copy the addresses of DST and SRC and SIZE into new
  /* Emit code to copy the addresses of DST and SRC and SIZE into new
     pseudos.  We can then place those new pseudos into a VAR_DECL and
     pseudos.  We can then place those new pseudos into a VAR_DECL and
     use them later.  */
     use them later.  */
 
 
  dst_addr = copy_to_mode_reg (Pmode, XEXP (dst, 0));
  dst_addr = copy_to_mode_reg (Pmode, XEXP (dst, 0));
  src_addr = copy_to_mode_reg (Pmode, XEXP (src, 0));
  src_addr = copy_to_mode_reg (Pmode, XEXP (src, 0));
 
 
  dst_addr = convert_memory_address (ptr_mode, dst_addr);
  dst_addr = convert_memory_address (ptr_mode, dst_addr);
  src_addr = convert_memory_address (ptr_mode, src_addr);
  src_addr = convert_memory_address (ptr_mode, src_addr);
 
 
  dst_tree = make_tree (ptr_type_node, dst_addr);
  dst_tree = make_tree (ptr_type_node, dst_addr);
  src_tree = make_tree (ptr_type_node, src_addr);
  src_tree = make_tree (ptr_type_node, src_addr);
 
 
  size_mode = TYPE_MODE (sizetype);
  size_mode = TYPE_MODE (sizetype);
 
 
  size = convert_to_mode (size_mode, size, 1);
  size = convert_to_mode (size_mode, size, 1);
  size = copy_to_mode_reg (size_mode, size);
  size = copy_to_mode_reg (size_mode, size);
 
 
  /* It is incorrect to use the libcall calling conventions to call
  /* It is incorrect to use the libcall calling conventions to call
     memcpy in this context.  This could be a user call to memcpy and
     memcpy in this context.  This could be a user call to memcpy and
     the user may wish to examine the return value from memcpy.  For
     the user may wish to examine the return value from memcpy.  For
     targets where libcalls and normal calls have different conventions
     targets where libcalls and normal calls have different conventions
     for returning pointers, we could end up generating incorrect code.  */
     for returning pointers, we could end up generating incorrect code.  */
 
 
  size_tree = make_tree (sizetype, size);
  size_tree = make_tree (sizetype, size);
 
 
  fn = emit_block_move_libcall_fn (true);
  fn = emit_block_move_libcall_fn (true);
  arg_list = tree_cons (NULL_TREE, size_tree, NULL_TREE);
  arg_list = tree_cons (NULL_TREE, size_tree, NULL_TREE);
  arg_list = tree_cons (NULL_TREE, src_tree, arg_list);
  arg_list = tree_cons (NULL_TREE, src_tree, arg_list);
  arg_list = tree_cons (NULL_TREE, dst_tree, arg_list);
  arg_list = tree_cons (NULL_TREE, dst_tree, arg_list);
 
 
  /* Now we have to build up the CALL_EXPR itself.  */
  /* Now we have to build up the CALL_EXPR itself.  */
  call_expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
  call_expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
  call_expr = build3 (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
  call_expr = build3 (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
                      call_expr, arg_list, NULL_TREE);
                      call_expr, arg_list, NULL_TREE);
  CALL_EXPR_TAILCALL (call_expr) = tailcall;
  CALL_EXPR_TAILCALL (call_expr) = tailcall;
 
 
  retval = expand_normal (call_expr);
  retval = expand_normal (call_expr);
 
 
  return retval;
  return retval;
}
}
 
 
/* A subroutine of emit_block_move_via_libcall.  Create the tree node
/* A subroutine of emit_block_move_via_libcall.  Create the tree node
   for the function we use for block copies.  The first time FOR_CALL
   for the function we use for block copies.  The first time FOR_CALL
   is true, we call assemble_external.  */
   is true, we call assemble_external.  */
 
 
static GTY(()) tree block_move_fn;
static GTY(()) tree block_move_fn;
 
 
void
void
init_block_move_fn (const char *asmspec)
init_block_move_fn (const char *asmspec)
{
{
  if (!block_move_fn)
  if (!block_move_fn)
    {
    {
      tree args, fn;
      tree args, fn;
 
 
      fn = get_identifier ("memcpy");
      fn = get_identifier ("memcpy");
      args = build_function_type_list (ptr_type_node, ptr_type_node,
      args = build_function_type_list (ptr_type_node, ptr_type_node,
                                       const_ptr_type_node, sizetype,
                                       const_ptr_type_node, sizetype,
                                       NULL_TREE);
                                       NULL_TREE);
 
 
      fn = build_decl (FUNCTION_DECL, fn, args);
      fn = build_decl (FUNCTION_DECL, fn, args);
      DECL_EXTERNAL (fn) = 1;
      DECL_EXTERNAL (fn) = 1;
      TREE_PUBLIC (fn) = 1;
      TREE_PUBLIC (fn) = 1;
      DECL_ARTIFICIAL (fn) = 1;
      DECL_ARTIFICIAL (fn) = 1;
      TREE_NOTHROW (fn) = 1;
      TREE_NOTHROW (fn) = 1;
      DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
      DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
      DECL_VISIBILITY_SPECIFIED (fn) = 1;
      DECL_VISIBILITY_SPECIFIED (fn) = 1;
 
 
      block_move_fn = fn;
      block_move_fn = fn;
    }
    }
 
 
  if (asmspec)
  if (asmspec)
    set_user_assembler_name (block_move_fn, asmspec);
    set_user_assembler_name (block_move_fn, asmspec);
}
}
 
 
static tree
static tree
emit_block_move_libcall_fn (int for_call)
emit_block_move_libcall_fn (int for_call)
{
{
  static bool emitted_extern;
  static bool emitted_extern;
 
 
  if (!block_move_fn)
  if (!block_move_fn)
    init_block_move_fn (NULL);
    init_block_move_fn (NULL);
 
 
  if (for_call && !emitted_extern)
  if (for_call && !emitted_extern)
    {
    {
      emitted_extern = true;
      emitted_extern = true;
      make_decl_rtl (block_move_fn);
      make_decl_rtl (block_move_fn);
      assemble_external (block_move_fn);
      assemble_external (block_move_fn);
    }
    }
 
 
  return block_move_fn;
  return block_move_fn;
}
}
 
 
/* A subroutine of emit_block_move.  Copy the data via an explicit
/* A subroutine of emit_block_move.  Copy the data via an explicit
   loop.  This is used only when libcalls are forbidden.  */
   loop.  This is used only when libcalls are forbidden.  */
/* ??? It'd be nice to copy in hunks larger than QImode.  */
/* ??? It'd be nice to copy in hunks larger than QImode.  */
 
 
static void
static void
emit_block_move_via_loop (rtx x, rtx y, rtx size,
emit_block_move_via_loop (rtx x, rtx y, rtx size,
                          unsigned int align ATTRIBUTE_UNUSED)
                          unsigned int align ATTRIBUTE_UNUSED)
{
{
  rtx cmp_label, top_label, iter, x_addr, y_addr, tmp;
  rtx cmp_label, top_label, iter, x_addr, y_addr, tmp;
  enum machine_mode iter_mode;
  enum machine_mode iter_mode;
 
 
  iter_mode = GET_MODE (size);
  iter_mode = GET_MODE (size);
  if (iter_mode == VOIDmode)
  if (iter_mode == VOIDmode)
    iter_mode = word_mode;
    iter_mode = word_mode;
 
 
  top_label = gen_label_rtx ();
  top_label = gen_label_rtx ();
  cmp_label = gen_label_rtx ();
  cmp_label = gen_label_rtx ();
  iter = gen_reg_rtx (iter_mode);
  iter = gen_reg_rtx (iter_mode);
 
 
  emit_move_insn (iter, const0_rtx);
  emit_move_insn (iter, const0_rtx);
 
 
  x_addr = force_operand (XEXP (x, 0), NULL_RTX);
  x_addr = force_operand (XEXP (x, 0), NULL_RTX);
  y_addr = force_operand (XEXP (y, 0), NULL_RTX);
  y_addr = force_operand (XEXP (y, 0), NULL_RTX);
  do_pending_stack_adjust ();
  do_pending_stack_adjust ();
 
 
  emit_jump (cmp_label);
  emit_jump (cmp_label);
  emit_label (top_label);
  emit_label (top_label);
 
 
  tmp = convert_modes (Pmode, iter_mode, iter, true);
  tmp = convert_modes (Pmode, iter_mode, iter, true);
  x_addr = gen_rtx_PLUS (Pmode, x_addr, tmp);
  x_addr = gen_rtx_PLUS (Pmode, x_addr, tmp);
  y_addr = gen_rtx_PLUS (Pmode, y_addr, tmp);
  y_addr = gen_rtx_PLUS (Pmode, y_addr, tmp);
  x = change_address (x, QImode, x_addr);
  x = change_address (x, QImode, x_addr);
  y = change_address (y, QImode, y_addr);
  y = change_address (y, QImode, y_addr);
 
 
  emit_move_insn (x, y);
  emit_move_insn (x, y);
 
 
  tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
  tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
                             true, OPTAB_LIB_WIDEN);
                             true, OPTAB_LIB_WIDEN);
  if (tmp != iter)
  if (tmp != iter)
    emit_move_insn (iter, tmp);
    emit_move_insn (iter, tmp);
 
 
  emit_label (cmp_label);
  emit_label (cmp_label);
 
 
  emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
  emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
                           true, top_label);
                           true, top_label);
}
}


/* Copy all or part of a value X into registers starting at REGNO.
/* Copy all or part of a value X into registers starting at REGNO.
   The number of registers to be filled is NREGS.  */
   The number of registers to be filled is NREGS.  */
 
 
void
void
move_block_to_reg (int regno, rtx x, int nregs, enum machine_mode mode)
move_block_to_reg (int regno, rtx x, int nregs, enum machine_mode mode)
{
{
  int i;
  int i;
#ifdef HAVE_load_multiple
#ifdef HAVE_load_multiple
  rtx pat;
  rtx pat;
  rtx last;
  rtx last;
#endif
#endif
 
 
  if (nregs == 0)
  if (nregs == 0)
    return;
    return;
 
 
  if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
  if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
    x = validize_mem (force_const_mem (mode, x));
    x = validize_mem (force_const_mem (mode, x));
 
 
  /* See if the machine can do this with a load multiple insn.  */
  /* See if the machine can do this with a load multiple insn.  */
#ifdef HAVE_load_multiple
#ifdef HAVE_load_multiple
  if (HAVE_load_multiple)
  if (HAVE_load_multiple)
    {
    {
      last = get_last_insn ();
      last = get_last_insn ();
      pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
      pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
                               GEN_INT (nregs));
                               GEN_INT (nregs));
      if (pat)
      if (pat)
        {
        {
          emit_insn (pat);
          emit_insn (pat);
          return;
          return;
        }
        }
      else
      else
        delete_insns_since (last);
        delete_insns_since (last);
    }
    }
#endif
#endif
 
 
  for (i = 0; i < nregs; i++)
  for (i = 0; i < nregs; i++)
    emit_move_insn (gen_rtx_REG (word_mode, regno + i),
    emit_move_insn (gen_rtx_REG (word_mode, regno + i),
                    operand_subword_force (x, i, mode));
                    operand_subword_force (x, i, mode));
}
}
 
 
/* Copy all or part of a BLKmode value X out of registers starting at REGNO.
/* Copy all or part of a BLKmode value X out of registers starting at REGNO.
   The number of registers to be filled is NREGS.  */
   The number of registers to be filled is NREGS.  */
 
 
void
void
move_block_from_reg (int regno, rtx x, int nregs)
move_block_from_reg (int regno, rtx x, int nregs)
{
{
  int i;
  int i;
 
 
  if (nregs == 0)
  if (nregs == 0)
    return;
    return;
 
 
  /* See if the machine can do this with a store multiple insn.  */
  /* See if the machine can do this with a store multiple insn.  */
#ifdef HAVE_store_multiple
#ifdef HAVE_store_multiple
  if (HAVE_store_multiple)
  if (HAVE_store_multiple)
    {
    {
      rtx last = get_last_insn ();
      rtx last = get_last_insn ();
      rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
      rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
                                    GEN_INT (nregs));
                                    GEN_INT (nregs));
      if (pat)
      if (pat)
        {
        {
          emit_insn (pat);
          emit_insn (pat);
          return;
          return;
        }
        }
      else
      else
        delete_insns_since (last);
        delete_insns_since (last);
    }
    }
#endif
#endif
 
 
  for (i = 0; i < nregs; i++)
  for (i = 0; i < nregs; i++)
    {
    {
      rtx tem = operand_subword (x, i, 1, BLKmode);
      rtx tem = operand_subword (x, i, 1, BLKmode);
 
 
      gcc_assert (tem);
      gcc_assert (tem);
 
 
      emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
      emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
    }
    }
}
}
 
 
/* Generate a PARALLEL rtx for a new non-consecutive group of registers from
/* Generate a PARALLEL rtx for a new non-consecutive group of registers from
   ORIG, where ORIG is a non-consecutive group of registers represented by
   ORIG, where ORIG is a non-consecutive group of registers represented by
   a PARALLEL.  The clone is identical to the original except in that the
   a PARALLEL.  The clone is identical to the original except in that the
   original set of registers is replaced by a new set of pseudo registers.
   original set of registers is replaced by a new set of pseudo registers.
   The new set has the same modes as the original set.  */
   The new set has the same modes as the original set.  */
 
 
rtx
rtx
gen_group_rtx (rtx orig)
gen_group_rtx (rtx orig)
{
{
  int i, length;
  int i, length;
  rtx *tmps;
  rtx *tmps;
 
 
  gcc_assert (GET_CODE (orig) == PARALLEL);
  gcc_assert (GET_CODE (orig) == PARALLEL);
 
 
  length = XVECLEN (orig, 0);
  length = XVECLEN (orig, 0);
  tmps = alloca (sizeof (rtx) * length);
  tmps = alloca (sizeof (rtx) * length);
 
 
  /* Skip a NULL entry in first slot.  */
  /* Skip a NULL entry in first slot.  */
  i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
  i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
 
 
  if (i)
  if (i)
    tmps[0] = 0;
    tmps[0] = 0;
 
 
  for (; i < length; i++)
  for (; i < length; i++)
    {
    {
      enum machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
      enum machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
      rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
      rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
 
 
      tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
      tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
    }
    }
 
 
  return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
  return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
}
}
 
 
/* A subroutine of emit_group_load.  Arguments as for emit_group_load,
/* A subroutine of emit_group_load.  Arguments as for emit_group_load,
   except that values are placed in TMPS[i], and must later be moved
   except that values are placed in TMPS[i], and must later be moved
   into corresponding XEXP (XVECEXP (DST, 0, i), 0) element.  */
   into corresponding XEXP (XVECEXP (DST, 0, i), 0) element.  */
 
 
static void
static void
emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
{
{
  rtx src;
  rtx src;
  int start, i;
  int start, i;
  enum machine_mode m = GET_MODE (orig_src);
  enum machine_mode m = GET_MODE (orig_src);
 
 
  gcc_assert (GET_CODE (dst) == PARALLEL);
  gcc_assert (GET_CODE (dst) == PARALLEL);
 
 
  if (m != VOIDmode
  if (m != VOIDmode
      && !SCALAR_INT_MODE_P (m)
      && !SCALAR_INT_MODE_P (m)
      && !MEM_P (orig_src)
      && !MEM_P (orig_src)
      && GET_CODE (orig_src) != CONCAT)
      && GET_CODE (orig_src) != CONCAT)
    {
    {
      enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
      enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
      if (imode == BLKmode)
      if (imode == BLKmode)
        src = assign_stack_temp (GET_MODE (orig_src), ssize, 0);
        src = assign_stack_temp (GET_MODE (orig_src), ssize, 0);
      else
      else
        src = gen_reg_rtx (imode);
        src = gen_reg_rtx (imode);
      if (imode != BLKmode)
      if (imode != BLKmode)
        src = gen_lowpart (GET_MODE (orig_src), src);
        src = gen_lowpart (GET_MODE (orig_src), src);
      emit_move_insn (src, orig_src);
      emit_move_insn (src, orig_src);
      /* ...and back again.  */
      /* ...and back again.  */
      if (imode != BLKmode)
      if (imode != BLKmode)
        src = gen_lowpart (imode, src);
        src = gen_lowpart (imode, src);
      emit_group_load_1 (tmps, dst, src, type, ssize);
      emit_group_load_1 (tmps, dst, src, type, ssize);
      return;
      return;
    }
    }
 
 
  /* Check for a NULL entry, used to indicate that the parameter goes
  /* Check for a NULL entry, used to indicate that the parameter goes
     both on the stack and in registers.  */
     both on the stack and in registers.  */
  if (XEXP (XVECEXP (dst, 0, 0), 0))
  if (XEXP (XVECEXP (dst, 0, 0), 0))
    start = 0;
    start = 0;
  else
  else
    start = 1;
    start = 1;
 
 
  /* Process the pieces.  */
  /* Process the pieces.  */
  for (i = start; i < XVECLEN (dst, 0); i++)
  for (i = start; i < XVECLEN (dst, 0); i++)
    {
    {
      enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
      enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
      HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
      HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
      unsigned int bytelen = GET_MODE_SIZE (mode);
      unsigned int bytelen = GET_MODE_SIZE (mode);
      int shift = 0;
      int shift = 0;
 
 
      /* Handle trailing fragments that run over the size of the struct.  */
      /* Handle trailing fragments that run over the size of the struct.  */
      if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
      if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
        {
        {
          /* Arrange to shift the fragment to where it belongs.
          /* Arrange to shift the fragment to where it belongs.
             extract_bit_field loads to the lsb of the reg.  */
             extract_bit_field loads to the lsb of the reg.  */
          if (
          if (
#ifdef BLOCK_REG_PADDING
#ifdef BLOCK_REG_PADDING
              BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
              BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
              == (BYTES_BIG_ENDIAN ? upward : downward)
              == (BYTES_BIG_ENDIAN ? upward : downward)
#else
#else
              BYTES_BIG_ENDIAN
              BYTES_BIG_ENDIAN
#endif
#endif
              )
              )
            shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
            shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
          bytelen = ssize - bytepos;
          bytelen = ssize - bytepos;
          gcc_assert (bytelen > 0);
          gcc_assert (bytelen > 0);
        }
        }
 
 
      /* If we won't be loading directly from memory, protect the real source
      /* If we won't be loading directly from memory, protect the real source
         from strange tricks we might play; but make sure that the source can
         from strange tricks we might play; but make sure that the source can
         be loaded directly into the destination.  */
         be loaded directly into the destination.  */
      src = orig_src;
      src = orig_src;
      if (!MEM_P (orig_src)
      if (!MEM_P (orig_src)
          && (!CONSTANT_P (orig_src)
          && (!CONSTANT_P (orig_src)
              || (GET_MODE (orig_src) != mode
              || (GET_MODE (orig_src) != mode
                  && GET_MODE (orig_src) != VOIDmode)))
                  && GET_MODE (orig_src) != VOIDmode)))
        {
        {
          if (GET_MODE (orig_src) == VOIDmode)
          if (GET_MODE (orig_src) == VOIDmode)
            src = gen_reg_rtx (mode);
            src = gen_reg_rtx (mode);
          else
          else
            src = gen_reg_rtx (GET_MODE (orig_src));
            src = gen_reg_rtx (GET_MODE (orig_src));
 
 
          emit_move_insn (src, orig_src);
          emit_move_insn (src, orig_src);
        }
        }
 
 
      /* Optimize the access just a bit.  */
      /* Optimize the access just a bit.  */
      if (MEM_P (src)
      if (MEM_P (src)
          && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
          && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
              || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
              || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
          && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
          && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
          && bytelen == GET_MODE_SIZE (mode))
          && bytelen == GET_MODE_SIZE (mode))
        {
        {
          tmps[i] = gen_reg_rtx (mode);
          tmps[i] = gen_reg_rtx (mode);
          emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
          emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
        }
        }
      else if (COMPLEX_MODE_P (mode)
      else if (COMPLEX_MODE_P (mode)
               && GET_MODE (src) == mode
               && GET_MODE (src) == mode
               && bytelen == GET_MODE_SIZE (mode))
               && bytelen == GET_MODE_SIZE (mode))
        /* Let emit_move_complex do the bulk of the work.  */
        /* Let emit_move_complex do the bulk of the work.  */
        tmps[i] = src;
        tmps[i] = src;
      else if (GET_CODE (src) == CONCAT)
      else if (GET_CODE (src) == CONCAT)
        {
        {
          unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
          unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
          unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
          unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
 
 
          if ((bytepos == 0 && bytelen == slen0)
          if ((bytepos == 0 && bytelen == slen0)
              || (bytepos != 0 && bytepos + bytelen <= slen))
              || (bytepos != 0 && bytepos + bytelen <= slen))
            {
            {
              /* The following assumes that the concatenated objects all
              /* The following assumes that the concatenated objects all
                 have the same size.  In this case, a simple calculation
                 have the same size.  In this case, a simple calculation
                 can be used to determine the object and the bit field
                 can be used to determine the object and the bit field
                 to be extracted.  */
                 to be extracted.  */
              tmps[i] = XEXP (src, bytepos / slen0);
              tmps[i] = XEXP (src, bytepos / slen0);
              if (! CONSTANT_P (tmps[i])
              if (! CONSTANT_P (tmps[i])
                  && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
                  && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
                tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
                tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
                                             (bytepos % slen0) * BITS_PER_UNIT,
                                             (bytepos % slen0) * BITS_PER_UNIT,
                                             1, NULL_RTX, mode, mode);
                                             1, NULL_RTX, mode, mode);
            }
            }
          else
          else
            {
            {
              rtx mem;
              rtx mem;
 
 
              gcc_assert (!bytepos);
              gcc_assert (!bytepos);
              mem = assign_stack_temp (GET_MODE (src), slen, 0);
              mem = assign_stack_temp (GET_MODE (src), slen, 0);
              emit_move_insn (mem, src);
              emit_move_insn (mem, src);
              tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
              tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
                                           0, 1, NULL_RTX, mode, mode);
                                           0, 1, NULL_RTX, mode, mode);
            }
            }
        }
        }
      /* FIXME: A SIMD parallel will eventually lead to a subreg of a
      /* FIXME: A SIMD parallel will eventually lead to a subreg of a
         SIMD register, which is currently broken.  While we get GCC
         SIMD register, which is currently broken.  While we get GCC
         to emit proper RTL for these cases, let's dump to memory.  */
         to emit proper RTL for these cases, let's dump to memory.  */
      else if (VECTOR_MODE_P (GET_MODE (dst))
      else if (VECTOR_MODE_P (GET_MODE (dst))
               && REG_P (src))
               && REG_P (src))
        {
        {
          int slen = GET_MODE_SIZE (GET_MODE (src));
          int slen = GET_MODE_SIZE (GET_MODE (src));
          rtx mem;
          rtx mem;
 
 
          mem = assign_stack_temp (GET_MODE (src), slen, 0);
          mem = assign_stack_temp (GET_MODE (src), slen, 0);
          emit_move_insn (mem, src);
          emit_move_insn (mem, src);
          tmps[i] = adjust_address (mem, mode, (int) bytepos);
          tmps[i] = adjust_address (mem, mode, (int) bytepos);
        }
        }
      else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
      else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
               && XVECLEN (dst, 0) > 1)
               && XVECLEN (dst, 0) > 1)
        tmps[i] = simplify_gen_subreg (mode, src, GET_MODE(dst), bytepos);
        tmps[i] = simplify_gen_subreg (mode, src, GET_MODE(dst), bytepos);
      else if (CONSTANT_P (src)
      else if (CONSTANT_P (src)
               || (REG_P (src) && GET_MODE (src) == mode))
               || (REG_P (src) && GET_MODE (src) == mode))
        tmps[i] = src;
        tmps[i] = src;
      else
      else
        tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
        tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
                                     bytepos * BITS_PER_UNIT, 1, NULL_RTX,
                                     bytepos * BITS_PER_UNIT, 1, NULL_RTX,
                                     mode, mode);
                                     mode, mode);
 
 
      if (shift)
      if (shift)
        tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
        tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
                                build_int_cst (NULL_TREE, shift), tmps[i], 0);
                                build_int_cst (NULL_TREE, shift), tmps[i], 0);
    }
    }
}
}
 
 
/* Emit code to move a block SRC of type TYPE to a block DST,
/* Emit code to move a block SRC of type TYPE to a block DST,
   where DST is non-consecutive registers represented by a PARALLEL.
   where DST is non-consecutive registers represented by a PARALLEL.
   SSIZE represents the total size of block ORIG_SRC in bytes, or -1
   SSIZE represents the total size of block ORIG_SRC in bytes, or -1
   if not known.  */
   if not known.  */
 
 
void
void
emit_group_load (rtx dst, rtx src, tree type, int ssize)
emit_group_load (rtx dst, rtx src, tree type, int ssize)
{
{
  rtx *tmps;
  rtx *tmps;
  int i;
  int i;
 
 
  tmps = alloca (sizeof (rtx) * XVECLEN (dst, 0));
  tmps = alloca (sizeof (rtx) * XVECLEN (dst, 0));
  emit_group_load_1 (tmps, dst, src, type, ssize);
  emit_group_load_1 (tmps, dst, src, type, ssize);
 
 
  /* Copy the extracted pieces into the proper (probable) hard regs.  */
  /* Copy the extracted pieces into the proper (probable) hard regs.  */
  for (i = 0; i < XVECLEN (dst, 0); i++)
  for (i = 0; i < XVECLEN (dst, 0); i++)
    {
    {
      rtx d = XEXP (XVECEXP (dst, 0, i), 0);
      rtx d = XEXP (XVECEXP (dst, 0, i), 0);
      if (d == NULL)
      if (d == NULL)
        continue;
        continue;
      emit_move_insn (d, tmps[i]);
      emit_move_insn (d, tmps[i]);
    }
    }
}
}
 
 
/* Similar, but load SRC into new pseudos in a format that looks like
/* Similar, but load SRC into new pseudos in a format that looks like
   PARALLEL.  This can later be fed to emit_group_move to get things
   PARALLEL.  This can later be fed to emit_group_move to get things
   in the right place.  */
   in the right place.  */
 
 
rtx
rtx
emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
{
{
  rtvec vec;
  rtvec vec;
  int i;
  int i;
 
 
  vec = rtvec_alloc (XVECLEN (parallel, 0));
  vec = rtvec_alloc (XVECLEN (parallel, 0));
  emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
  emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
 
 
  /* Convert the vector to look just like the original PARALLEL, except
  /* Convert the vector to look just like the original PARALLEL, except
     with the computed values.  */
     with the computed values.  */
  for (i = 0; i < XVECLEN (parallel, 0); i++)
  for (i = 0; i < XVECLEN (parallel, 0); i++)
    {
    {
      rtx e = XVECEXP (parallel, 0, i);
      rtx e = XVECEXP (parallel, 0, i);
      rtx d = XEXP (e, 0);
      rtx d = XEXP (e, 0);
 
 
      if (d)
      if (d)
        {
        {
          d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
          d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
          e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
          e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
        }
        }
      RTVEC_ELT (vec, i) = e;
      RTVEC_ELT (vec, i) = e;
    }
    }
 
 
  return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
  return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
}
}
 
 
/* Emit code to move a block SRC to block DST, where SRC and DST are
/* Emit code to move a block SRC to block DST, where SRC and DST are
   non-consecutive groups of registers, each represented by a PARALLEL.  */
   non-consecutive groups of registers, each represented by a PARALLEL.  */
 
 
void
void
emit_group_move (rtx dst, rtx src)
emit_group_move (rtx dst, rtx src)
{
{
  int i;
  int i;
 
 
  gcc_assert (GET_CODE (src) == PARALLEL
  gcc_assert (GET_CODE (src) == PARALLEL
              && GET_CODE (dst) == PARALLEL
              && GET_CODE (dst) == PARALLEL
              && XVECLEN (src, 0) == XVECLEN (dst, 0));
              && XVECLEN (src, 0) == XVECLEN (dst, 0));
 
 
  /* Skip first entry if NULL.  */
  /* Skip first entry if NULL.  */
  for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
  for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
    emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
    emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
                    XEXP (XVECEXP (src, 0, i), 0));
                    XEXP (XVECEXP (src, 0, i), 0));
}
}
 
 
/* Move a group of registers represented by a PARALLEL into pseudos.  */
/* Move a group of registers represented by a PARALLEL into pseudos.  */
 
 
rtx
rtx
emit_group_move_into_temps (rtx src)
emit_group_move_into_temps (rtx src)
{
{
  rtvec vec = rtvec_alloc (XVECLEN (src, 0));
  rtvec vec = rtvec_alloc (XVECLEN (src, 0));
  int i;
  int i;
 
 
  for (i = 0; i < XVECLEN (src, 0); i++)
  for (i = 0; i < XVECLEN (src, 0); i++)
    {
    {
      rtx e = XVECEXP (src, 0, i);
      rtx e = XVECEXP (src, 0, i);
      rtx d = XEXP (e, 0);
      rtx d = XEXP (e, 0);
 
 
      if (d)
      if (d)
        e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
        e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
      RTVEC_ELT (vec, i) = e;
      RTVEC_ELT (vec, i) = e;
    }
    }
 
 
  return gen_rtx_PARALLEL (GET_MODE (src), vec);
  return gen_rtx_PARALLEL (GET_MODE (src), vec);
}
}
 
 
/* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
/* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
   where SRC is non-consecutive registers represented by a PARALLEL.
   where SRC is non-consecutive registers represented by a PARALLEL.
   SSIZE represents the total size of block ORIG_DST, or -1 if not
   SSIZE represents the total size of block ORIG_DST, or -1 if not
   known.  */
   known.  */
 
 
void
void
emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
{
{
  rtx *tmps, dst;
  rtx *tmps, dst;
  int start, finish, i;
  int start, finish, i;
  enum machine_mode m = GET_MODE (orig_dst);
  enum machine_mode m = GET_MODE (orig_dst);
 
 
  gcc_assert (GET_CODE (src) == PARALLEL);
  gcc_assert (GET_CODE (src) == PARALLEL);
 
 
  if (!SCALAR_INT_MODE_P (m)
  if (!SCALAR_INT_MODE_P (m)
      && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
      && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
    {
    {
      enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
      enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
      if (imode == BLKmode)
      if (imode == BLKmode)
        dst = assign_stack_temp (GET_MODE (orig_dst), ssize, 0);
        dst = assign_stack_temp (GET_MODE (orig_dst), ssize, 0);
      else
      else
        dst = gen_reg_rtx (imode);
        dst = gen_reg_rtx (imode);
      emit_group_store (dst, src, type, ssize);
      emit_group_store (dst, src, type, ssize);
      if (imode != BLKmode)
      if (imode != BLKmode)
        dst = gen_lowpart (GET_MODE (orig_dst), dst);
        dst = gen_lowpart (GET_MODE (orig_dst), dst);
      emit_move_insn (orig_dst, dst);
      emit_move_insn (orig_dst, dst);
      return;
      return;
    }
    }
 
 
  /* Check for a NULL entry, used to indicate that the parameter goes
  /* Check for a NULL entry, used to indicate that the parameter goes
     both on the stack and in registers.  */
     both on the stack and in registers.  */
  if (XEXP (XVECEXP (src, 0, 0), 0))
  if (XEXP (XVECEXP (src, 0, 0), 0))
    start = 0;
    start = 0;
  else
  else
    start = 1;
    start = 1;
  finish = XVECLEN (src, 0);
  finish = XVECLEN (src, 0);
 
 
  tmps = alloca (sizeof (rtx) * finish);
  tmps = alloca (sizeof (rtx) * finish);
 
 
  /* Copy the (probable) hard regs into pseudos.  */
  /* Copy the (probable) hard regs into pseudos.  */
  for (i = start; i < finish; i++)
  for (i = start; i < finish; i++)
    {
    {
      rtx reg = XEXP (XVECEXP (src, 0, i), 0);
      rtx reg = XEXP (XVECEXP (src, 0, i), 0);
      if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
      if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
        {
        {
          tmps[i] = gen_reg_rtx (GET_MODE (reg));
          tmps[i] = gen_reg_rtx (GET_MODE (reg));
          emit_move_insn (tmps[i], reg);
          emit_move_insn (tmps[i], reg);
        }
        }
      else
      else
        tmps[i] = reg;
        tmps[i] = reg;
    }
    }
 
 
  /* If we won't be storing directly into memory, protect the real destination
  /* If we won't be storing directly into memory, protect the real destination
     from strange tricks we might play.  */
     from strange tricks we might play.  */
  dst = orig_dst;
  dst = orig_dst;
  if (GET_CODE (dst) == PARALLEL)
  if (GET_CODE (dst) == PARALLEL)
    {
    {
      rtx temp;
      rtx temp;
 
 
      /* We can get a PARALLEL dst if there is a conditional expression in
      /* We can get a PARALLEL dst if there is a conditional expression in
         a return statement.  In that case, the dst and src are the same,
         a return statement.  In that case, the dst and src are the same,
         so no action is necessary.  */
         so no action is necessary.  */
      if (rtx_equal_p (dst, src))
      if (rtx_equal_p (dst, src))
        return;
        return;
 
 
      /* It is unclear if we can ever reach here, but we may as well handle
      /* It is unclear if we can ever reach here, but we may as well handle
         it.  Allocate a temporary, and split this into a store/load to/from
         it.  Allocate a temporary, and split this into a store/load to/from
         the temporary.  */
         the temporary.  */
 
 
      temp = assign_stack_temp (GET_MODE (dst), ssize, 0);
      temp = assign_stack_temp (GET_MODE (dst), ssize, 0);
      emit_group_store (temp, src, type, ssize);
      emit_group_store (temp, src, type, ssize);
      emit_group_load (dst, temp, type, ssize);
      emit_group_load (dst, temp, type, ssize);
      return;
      return;
    }
    }
  else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
  else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
    {
    {
      enum machine_mode outer = GET_MODE (dst);
      enum machine_mode outer = GET_MODE (dst);
      enum machine_mode inner;
      enum machine_mode inner;
      HOST_WIDE_INT bytepos;
      HOST_WIDE_INT bytepos;
      bool done = false;
      bool done = false;
      rtx temp;
      rtx temp;
 
 
      if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
      if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
        dst = gen_reg_rtx (outer);
        dst = gen_reg_rtx (outer);
 
 
      /* Make life a bit easier for combine.  */
      /* Make life a bit easier for combine.  */
      /* If the first element of the vector is the low part
      /* If the first element of the vector is the low part
         of the destination mode, use a paradoxical subreg to
         of the destination mode, use a paradoxical subreg to
         initialize the destination.  */
         initialize the destination.  */
      if (start < finish)
      if (start < finish)
        {
        {
          inner = GET_MODE (tmps[start]);
          inner = GET_MODE (tmps[start]);
          bytepos = subreg_lowpart_offset (inner, outer);
          bytepos = subreg_lowpart_offset (inner, outer);
          if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
          if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
            {
            {
              temp = simplify_gen_subreg (outer, tmps[start],
              temp = simplify_gen_subreg (outer, tmps[start],
                                          inner, 0);
                                          inner, 0);
              if (temp)
              if (temp)
                {
                {
                  emit_move_insn (dst, temp);
                  emit_move_insn (dst, temp);
                  done = true;
                  done = true;
                  start++;
                  start++;
                }
                }
            }
            }
        }
        }
 
 
      /* If the first element wasn't the low part, try the last.  */
      /* If the first element wasn't the low part, try the last.  */
      if (!done
      if (!done
          && start < finish - 1)
          && start < finish - 1)
        {
        {
          inner = GET_MODE (tmps[finish - 1]);
          inner = GET_MODE (tmps[finish - 1]);
          bytepos = subreg_lowpart_offset (inner, outer);
          bytepos = subreg_lowpart_offset (inner, outer);
          if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
          if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
            {
            {
              temp = simplify_gen_subreg (outer, tmps[finish - 1],
              temp = simplify_gen_subreg (outer, tmps[finish - 1],
                                          inner, 0);
                                          inner, 0);
              if (temp)
              if (temp)
                {
                {
                  emit_move_insn (dst, temp);
                  emit_move_insn (dst, temp);
                  done = true;
                  done = true;
                  finish--;
                  finish--;
                }
                }
            }
            }
        }
        }
 
 
      /* Otherwise, simply initialize the result to zero.  */
      /* Otherwise, simply initialize the result to zero.  */
      if (!done)
      if (!done)
        emit_move_insn (dst, CONST0_RTX (outer));
        emit_move_insn (dst, CONST0_RTX (outer));
    }
    }
 
 
  /* Process the pieces.  */
  /* Process the pieces.  */
  for (i = start; i < finish; i++)
  for (i = start; i < finish; i++)
    {
    {
      HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
      HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
      enum machine_mode mode = GET_MODE (tmps[i]);
      enum machine_mode mode = GET_MODE (tmps[i]);
      unsigned int bytelen = GET_MODE_SIZE (mode);
      unsigned int bytelen = GET_MODE_SIZE (mode);
      rtx dest = dst;
      rtx dest = dst;
 
 
      /* Handle trailing fragments that run over the size of the struct.  */
      /* Handle trailing fragments that run over the size of the struct.  */
      if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
      if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
        {
        {
          /* store_bit_field always takes its value from the lsb.
          /* store_bit_field always takes its value from the lsb.
             Move the fragment to the lsb if it's not already there.  */
             Move the fragment to the lsb if it's not already there.  */
          if (
          if (
#ifdef BLOCK_REG_PADDING
#ifdef BLOCK_REG_PADDING
              BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
              BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
              == (BYTES_BIG_ENDIAN ? upward : downward)
              == (BYTES_BIG_ENDIAN ? upward : downward)
#else
#else
              BYTES_BIG_ENDIAN
              BYTES_BIG_ENDIAN
#endif
#endif
              )
              )
            {
            {
              int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
              int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
              tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
              tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
                                      build_int_cst (NULL_TREE, shift),
                                      build_int_cst (NULL_TREE, shift),
                                      tmps[i], 0);
                                      tmps[i], 0);
            }
            }
          bytelen = ssize - bytepos;
          bytelen = ssize - bytepos;
        }
        }
 
 
      if (GET_CODE (dst) == CONCAT)
      if (GET_CODE (dst) == CONCAT)
        {
        {
          if (bytepos + bytelen <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
          if (bytepos + bytelen <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
            dest = XEXP (dst, 0);
            dest = XEXP (dst, 0);
          else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
          else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
            {
            {
              bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
              bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
              dest = XEXP (dst, 1);
              dest = XEXP (dst, 1);
            }
            }
          else
          else
            {
            {
              gcc_assert (bytepos == 0 && XVECLEN (src, 0));
              gcc_assert (bytepos == 0 && XVECLEN (src, 0));
              dest = assign_stack_temp (GET_MODE (dest),
              dest = assign_stack_temp (GET_MODE (dest),
                                        GET_MODE_SIZE (GET_MODE (dest)), 0);
                                        GET_MODE_SIZE (GET_MODE (dest)), 0);
              emit_move_insn (adjust_address (dest, GET_MODE (tmps[i]), bytepos),
              emit_move_insn (adjust_address (dest, GET_MODE (tmps[i]), bytepos),
                              tmps[i]);
                              tmps[i]);
              dst = dest;
              dst = dest;
              break;
              break;
            }
            }
        }
        }
 
 
      /* Optimize the access just a bit.  */
      /* Optimize the access just a bit.  */
      if (MEM_P (dest)
      if (MEM_P (dest)
          && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
          && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
              || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
              || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
          && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
          && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
          && bytelen == GET_MODE_SIZE (mode))
          && bytelen == GET_MODE_SIZE (mode))
        emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
        emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
      else
      else
        store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
        store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
                         mode, tmps[i]);
                         mode, tmps[i]);
    }
    }
 
 
  /* Copy from the pseudo into the (probable) hard reg.  */
  /* Copy from the pseudo into the (probable) hard reg.  */
  if (orig_dst != dst)
  if (orig_dst != dst)
    emit_move_insn (orig_dst, dst);
    emit_move_insn (orig_dst, dst);
}
}
 
 
/* Generate code to copy a BLKmode object of TYPE out of a
/* Generate code to copy a BLKmode object of TYPE out of a
   set of registers starting with SRCREG into TGTBLK.  If TGTBLK
   set of registers starting with SRCREG into TGTBLK.  If TGTBLK
   is null, a stack temporary is created.  TGTBLK is returned.
   is null, a stack temporary is created.  TGTBLK is returned.
 
 
   The purpose of this routine is to handle functions that return
   The purpose of this routine is to handle functions that return
   BLKmode structures in registers.  Some machines (the PA for example)
   BLKmode structures in registers.  Some machines (the PA for example)
   want to return all small structures in registers regardless of the
   want to return all small structures in registers regardless of the
   structure's alignment.  */
   structure's alignment.  */
 
 
rtx
rtx
copy_blkmode_from_reg (rtx tgtblk, rtx srcreg, tree type)
copy_blkmode_from_reg (rtx tgtblk, rtx srcreg, tree type)
{
{
  unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
  unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
  rtx src = NULL, dst = NULL;
  rtx src = NULL, dst = NULL;
  unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
  unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
  unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
  unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
 
 
  if (tgtblk == 0)
  if (tgtblk == 0)
    {
    {
      tgtblk = assign_temp (build_qualified_type (type,
      tgtblk = assign_temp (build_qualified_type (type,
                                                  (TYPE_QUALS (type)
                                                  (TYPE_QUALS (type)
                                                   | TYPE_QUAL_CONST)),
                                                   | TYPE_QUAL_CONST)),
                            0, 1, 1);
                            0, 1, 1);
      preserve_temp_slots (tgtblk);
      preserve_temp_slots (tgtblk);
    }
    }
 
 
  /* This code assumes srcreg is at least a full word.  If it isn't, copy it
  /* This code assumes srcreg is at least a full word.  If it isn't, copy it
     into a new pseudo which is a full word.  */
     into a new pseudo which is a full word.  */
 
 
  if (GET_MODE (srcreg) != BLKmode
  if (GET_MODE (srcreg) != BLKmode
      && GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD)
      && GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD)
    srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
    srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
 
 
  /* If the structure doesn't take up a whole number of words, see whether
  /* If the structure doesn't take up a whole number of words, see whether
     SRCREG is padded on the left or on the right.  If it's on the left,
     SRCREG is padded on the left or on the right.  If it's on the left,
     set PADDING_CORRECTION to the number of bits to skip.
     set PADDING_CORRECTION to the number of bits to skip.
 
 
     In most ABIs, the structure will be returned at the least end of
     In most ABIs, the structure will be returned at the least end of
     the register, which translates to right padding on little-endian
     the register, which translates to right padding on little-endian
     targets and left padding on big-endian targets.  The opposite
     targets and left padding on big-endian targets.  The opposite
     holds if the structure is returned at the most significant
     holds if the structure is returned at the most significant
     end of the register.  */
     end of the register.  */
  if (bytes % UNITS_PER_WORD != 0
  if (bytes % UNITS_PER_WORD != 0
      && (targetm.calls.return_in_msb (type)
      && (targetm.calls.return_in_msb (type)
          ? !BYTES_BIG_ENDIAN
          ? !BYTES_BIG_ENDIAN
          : BYTES_BIG_ENDIAN))
          : BYTES_BIG_ENDIAN))
    padding_correction
    padding_correction
      = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
      = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
 
 
  /* Copy the structure BITSIZE bites at a time.
  /* Copy the structure BITSIZE bites at a time.
 
 
     We could probably emit more efficient code for machines which do not use
     We could probably emit more efficient code for machines which do not use
     strict alignment, but it doesn't seem worth the effort at the current
     strict alignment, but it doesn't seem worth the effort at the current
     time.  */
     time.  */
  for (bitpos = 0, xbitpos = padding_correction;
  for (bitpos = 0, xbitpos = padding_correction;
       bitpos < bytes * BITS_PER_UNIT;
       bitpos < bytes * BITS_PER_UNIT;
       bitpos += bitsize, xbitpos += bitsize)
       bitpos += bitsize, xbitpos += bitsize)
    {
    {
      /* We need a new source operand each time xbitpos is on a
      /* We need a new source operand each time xbitpos is on a
         word boundary and when xbitpos == padding_correction
         word boundary and when xbitpos == padding_correction
         (the first time through).  */
         (the first time through).  */
      if (xbitpos % BITS_PER_WORD == 0
      if (xbitpos % BITS_PER_WORD == 0
          || xbitpos == padding_correction)
          || xbitpos == padding_correction)
        src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD,
        src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD,
                                     GET_MODE (srcreg));
                                     GET_MODE (srcreg));
 
 
      /* We need a new destination operand each time bitpos is on
      /* We need a new destination operand each time bitpos is on
         a word boundary.  */
         a word boundary.  */
      if (bitpos % BITS_PER_WORD == 0)
      if (bitpos % BITS_PER_WORD == 0)
        dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode);
        dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode);
 
 
      /* Use xbitpos for the source extraction (right justified) and
      /* Use xbitpos for the source extraction (right justified) and
         xbitpos for the destination store (left justified).  */
         xbitpos for the destination store (left justified).  */
      store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, word_mode,
      store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, word_mode,
                       extract_bit_field (src, bitsize,
                       extract_bit_field (src, bitsize,
                                          xbitpos % BITS_PER_WORD, 1,
                                          xbitpos % BITS_PER_WORD, 1,
                                          NULL_RTX, word_mode, word_mode));
                                          NULL_RTX, word_mode, word_mode));
    }
    }
 
 
  return tgtblk;
  return tgtblk;
}
}
 
 
/* Add a USE expression for REG to the (possibly empty) list pointed
/* Add a USE expression for REG to the (possibly empty) list pointed
   to by CALL_FUSAGE.  REG must denote a hard register.  */
   to by CALL_FUSAGE.  REG must denote a hard register.  */
 
 
void
void
use_reg (rtx *call_fusage, rtx reg)
use_reg (rtx *call_fusage, rtx reg)
{
{
  gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
  gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
 
 
  *call_fusage
  *call_fusage
    = gen_rtx_EXPR_LIST (VOIDmode,
    = gen_rtx_EXPR_LIST (VOIDmode,
                         gen_rtx_USE (VOIDmode, reg), *call_fusage);
                         gen_rtx_USE (VOIDmode, reg), *call_fusage);
}
}
 
 
/* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
/* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
   starting at REGNO.  All of these registers must be hard registers.  */
   starting at REGNO.  All of these registers must be hard registers.  */
 
 
void
void
use_regs (rtx *call_fusage, int regno, int nregs)
use_regs (rtx *call_fusage, int regno, int nregs)
{
{
  int i;
  int i;
 
 
  gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
  gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
 
 
  for (i = 0; i < nregs; i++)
  for (i = 0; i < nregs; i++)
    use_reg (call_fusage, regno_reg_rtx[regno + i]);
    use_reg (call_fusage, regno_reg_rtx[regno + i]);
}
}
 
 
/* Add USE expressions to *CALL_FUSAGE for each REG contained in the
/* Add USE expressions to *CALL_FUSAGE for each REG contained in the
   PARALLEL REGS.  This is for calls that pass values in multiple
   PARALLEL REGS.  This is for calls that pass values in multiple
   non-contiguous locations.  The Irix 6 ABI has examples of this.  */
   non-contiguous locations.  The Irix 6 ABI has examples of this.  */
 
 
void
void
use_group_regs (rtx *call_fusage, rtx regs)
use_group_regs (rtx *call_fusage, rtx regs)
{
{
  int i;
  int i;
 
 
  for (i = 0; i < XVECLEN (regs, 0); i++)
  for (i = 0; i < XVECLEN (regs, 0); i++)
    {
    {
      rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
      rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
 
 
      /* A NULL entry means the parameter goes both on the stack and in
      /* A NULL entry means the parameter goes both on the stack and in
         registers.  This can also be a MEM for targets that pass values
         registers.  This can also be a MEM for targets that pass values
         partially on the stack and partially in registers.  */
         partially on the stack and partially in registers.  */
      if (reg != 0 && REG_P (reg))
      if (reg != 0 && REG_P (reg))
        use_reg (call_fusage, reg);
        use_reg (call_fusage, reg);
    }
    }
}
}


 
 
/* Determine whether the LEN bytes generated by CONSTFUN can be
/* Determine whether the LEN bytes generated by CONSTFUN can be
   stored to memory using several move instructions.  CONSTFUNDATA is
   stored to memory using several move instructions.  CONSTFUNDATA is
   a pointer which will be passed as argument in every CONSTFUN call.
   a pointer which will be passed as argument in every CONSTFUN call.
   ALIGN is maximum alignment we can assume.  Return nonzero if a
   ALIGN is maximum alignment we can assume.  Return nonzero if a
   call to store_by_pieces should succeed.  */
   call to store_by_pieces should succeed.  */
 
 
int
int
can_store_by_pieces (unsigned HOST_WIDE_INT len,
can_store_by_pieces (unsigned HOST_WIDE_INT len,
                     rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
                     rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
                     void *constfundata, unsigned int align)
                     void *constfundata, unsigned int align)
{
{
  unsigned HOST_WIDE_INT l;
  unsigned HOST_WIDE_INT l;
  unsigned int max_size;
  unsigned int max_size;
  HOST_WIDE_INT offset = 0;
  HOST_WIDE_INT offset = 0;
  enum machine_mode mode, tmode;
  enum machine_mode mode, tmode;
  enum insn_code icode;
  enum insn_code icode;
  int reverse;
  int reverse;
  rtx cst;
  rtx cst;
 
 
  if (len == 0)
  if (len == 0)
    return 1;
    return 1;
 
 
  if (! STORE_BY_PIECES_P (len, align))
  if (! STORE_BY_PIECES_P (len, align))
    return 0;
    return 0;
 
 
  tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
  tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
  if (align >= GET_MODE_ALIGNMENT (tmode))
  if (align >= GET_MODE_ALIGNMENT (tmode))
    align = GET_MODE_ALIGNMENT (tmode);
    align = GET_MODE_ALIGNMENT (tmode);
  else
  else
    {
    {
      enum machine_mode xmode;
      enum machine_mode xmode;
 
 
      for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
      for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
           tmode != VOIDmode;
           tmode != VOIDmode;
           xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
           xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
        if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
        if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
            || SLOW_UNALIGNED_ACCESS (tmode, align))
            || SLOW_UNALIGNED_ACCESS (tmode, align))
          break;
          break;
 
 
      align = MAX (align, GET_MODE_ALIGNMENT (xmode));
      align = MAX (align, GET_MODE_ALIGNMENT (xmode));
    }
    }
 
 
  /* We would first store what we can in the largest integer mode, then go to
  /* We would first store what we can in the largest integer mode, then go to
     successively smaller modes.  */
     successively smaller modes.  */
 
 
  for (reverse = 0;
  for (reverse = 0;
       reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
       reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
       reverse++)
       reverse++)
    {
    {
      l = len;
      l = len;
      mode = VOIDmode;
      mode = VOIDmode;
      max_size = STORE_MAX_PIECES + 1;
      max_size = STORE_MAX_PIECES + 1;
      while (max_size > 1)
      while (max_size > 1)
        {
        {
          for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
          for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
               tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
               tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
            if (GET_MODE_SIZE (tmode) < max_size)
            if (GET_MODE_SIZE (tmode) < max_size)
              mode = tmode;
              mode = tmode;
 
 
          if (mode == VOIDmode)
          if (mode == VOIDmode)
            break;
            break;
 
 
          icode = mov_optab->handlers[(int) mode].insn_code;
          icode = mov_optab->handlers[(int) mode].insn_code;
          if (icode != CODE_FOR_nothing
          if (icode != CODE_FOR_nothing
              && align >= GET_MODE_ALIGNMENT (mode))
              && align >= GET_MODE_ALIGNMENT (mode))
            {
            {
              unsigned int size = GET_MODE_SIZE (mode);
              unsigned int size = GET_MODE_SIZE (mode);
 
 
              while (l >= size)
              while (l >= size)
                {
                {
                  if (reverse)
                  if (reverse)
                    offset -= size;
                    offset -= size;
 
 
                  cst = (*constfun) (constfundata, offset, mode);
                  cst = (*constfun) (constfundata, offset, mode);
                  if (!LEGITIMATE_CONSTANT_P (cst))
                  if (!LEGITIMATE_CONSTANT_P (cst))
                    return 0;
                    return 0;
 
 
                  if (!reverse)
                  if (!reverse)
                    offset += size;
                    offset += size;
 
 
                  l -= size;
                  l -= size;
                }
                }
            }
            }
 
 
          max_size = GET_MODE_SIZE (mode);
          max_size = GET_MODE_SIZE (mode);
        }
        }
 
 
      /* The code above should have handled everything.  */
      /* The code above should have handled everything.  */
      gcc_assert (!l);
      gcc_assert (!l);
    }
    }
 
 
  return 1;
  return 1;
}
}
 
 
/* Generate several move instructions to store LEN bytes generated by
/* Generate several move instructions to store LEN bytes generated by
   CONSTFUN to block TO.  (A MEM rtx with BLKmode).  CONSTFUNDATA is a
   CONSTFUN to block TO.  (A MEM rtx with BLKmode).  CONSTFUNDATA is a
   pointer which will be passed as argument in every CONSTFUN call.
   pointer which will be passed as argument in every CONSTFUN call.
   ALIGN is maximum alignment we can assume.
   ALIGN is maximum alignment we can assume.
   If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
   If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
   mempcpy, and if ENDP is 2 return memory the end minus one byte ala
   mempcpy, and if ENDP is 2 return memory the end minus one byte ala
   stpcpy.  */
   stpcpy.  */
 
 
rtx
rtx
store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
                 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
                 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
                 void *constfundata, unsigned int align, int endp)
                 void *constfundata, unsigned int align, int endp)
{
{
  struct store_by_pieces data;
  struct store_by_pieces data;
 
 
  if (len == 0)
  if (len == 0)
    {
    {
      gcc_assert (endp != 2);
      gcc_assert (endp != 2);
      return to;
      return to;
    }
    }
 
 
  gcc_assert (STORE_BY_PIECES_P (len, align));
  gcc_assert (STORE_BY_PIECES_P (len, align));
  data.constfun = constfun;
  data.constfun = constfun;
  data.constfundata = constfundata;
  data.constfundata = constfundata;
  data.len = len;
  data.len = len;
  data.to = to;
  data.to = to;
  store_by_pieces_1 (&data, align);
  store_by_pieces_1 (&data, align);
  if (endp)
  if (endp)
    {
    {
      rtx to1;
      rtx to1;
 
 
      gcc_assert (!data.reverse);
      gcc_assert (!data.reverse);
      if (data.autinc_to)
      if (data.autinc_to)
        {
        {
          if (endp == 2)
          if (endp == 2)
            {
            {
              if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
              if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
                emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
                emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
              else
              else
                data.to_addr = copy_addr_to_reg (plus_constant (data.to_addr,
                data.to_addr = copy_addr_to_reg (plus_constant (data.to_addr,
                                                                -1));
                                                                -1));
            }
            }
          to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
          to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
                                           data.offset);
                                           data.offset);
        }
        }
      else
      else
        {
        {
          if (endp == 2)
          if (endp == 2)
            --data.offset;
            --data.offset;
          to1 = adjust_address (data.to, QImode, data.offset);
          to1 = adjust_address (data.to, QImode, data.offset);
        }
        }
      return to1;
      return to1;
    }
    }
  else
  else
    return data.to;
    return data.to;
}
}
 
 
/* Generate several move instructions to clear LEN bytes of block TO.  (A MEM
/* Generate several move instructions to clear LEN bytes of block TO.  (A MEM
   rtx with BLKmode).  ALIGN is maximum alignment we can assume.  */
   rtx with BLKmode).  ALIGN is maximum alignment we can assume.  */
 
 
static void
static void
clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
{
{
  struct store_by_pieces data;
  struct store_by_pieces data;
 
 
  if (len == 0)
  if (len == 0)
    return;
    return;
 
 
  data.constfun = clear_by_pieces_1;
  data.constfun = clear_by_pieces_1;
  data.constfundata = NULL;
  data.constfundata = NULL;
  data.len = len;
  data.len = len;
  data.to = to;
  data.to = to;
  store_by_pieces_1 (&data, align);
  store_by_pieces_1 (&data, align);
}
}
 
 
/* Callback routine for clear_by_pieces.
/* Callback routine for clear_by_pieces.
   Return const0_rtx unconditionally.  */
   Return const0_rtx unconditionally.  */
 
 
static rtx
static rtx
clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
                   HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
                   HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
                   enum machine_mode mode ATTRIBUTE_UNUSED)
                   enum machine_mode mode ATTRIBUTE_UNUSED)
{
{
  return const0_rtx;
  return const0_rtx;
}
}
 
 
/* Subroutine of clear_by_pieces and store_by_pieces.
/* Subroutine of clear_by_pieces and store_by_pieces.
   Generate several move instructions to store LEN bytes of block TO.  (A MEM
   Generate several move instructions to store LEN bytes of block TO.  (A MEM
   rtx with BLKmode).  ALIGN is maximum alignment we can assume.  */
   rtx with BLKmode).  ALIGN is maximum alignment we can assume.  */
 
 
static void
static void
store_by_pieces_1 (struct store_by_pieces *data ATTRIBUTE_UNUSED,
store_by_pieces_1 (struct store_by_pieces *data ATTRIBUTE_UNUSED,
                   unsigned int align ATTRIBUTE_UNUSED)
                   unsigned int align ATTRIBUTE_UNUSED)
{
{
  rtx to_addr = XEXP (data->to, 0);
  rtx to_addr = XEXP (data->to, 0);
  unsigned int max_size = STORE_MAX_PIECES + 1;
  unsigned int max_size = STORE_MAX_PIECES + 1;
  enum machine_mode mode = VOIDmode, tmode;
  enum machine_mode mode = VOIDmode, tmode;
  enum insn_code icode;
  enum insn_code icode;
 
 
  data->offset = 0;
  data->offset = 0;
  data->to_addr = to_addr;
  data->to_addr = to_addr;
  data->autinc_to
  data->autinc_to
    = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
    = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
       || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
       || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
 
 
  data->explicit_inc_to = 0;
  data->explicit_inc_to = 0;
  data->reverse
  data->reverse
    = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
    = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
  if (data->reverse)
  if (data->reverse)
    data->offset = data->len;
    data->offset = data->len;
 
 
  /* If storing requires more than two move insns,
  /* If storing requires more than two move insns,
     copy addresses to registers (to make displacements shorter)
     copy addresses to registers (to make displacements shorter)
     and use post-increment if available.  */
     and use post-increment if available.  */
  if (!data->autinc_to
  if (!data->autinc_to
      && move_by_pieces_ninsns (data->len, align, max_size) > 2)
      && move_by_pieces_ninsns (data->len, align, max_size) > 2)
    {
    {
      /* Determine the main mode we'll be using.  */
      /* Determine the main mode we'll be using.  */
      for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
      for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
           tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
           tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
        if (GET_MODE_SIZE (tmode) < max_size)
        if (GET_MODE_SIZE (tmode) < max_size)
          mode = tmode;
          mode = tmode;
 
 
      if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
      if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
        {
        {
          data->to_addr = copy_addr_to_reg (plus_constant (to_addr, data->len));
          data->to_addr = copy_addr_to_reg (plus_constant (to_addr, data->len));
          data->autinc_to = 1;
          data->autinc_to = 1;
          data->explicit_inc_to = -1;
          data->explicit_inc_to = -1;
        }
        }
 
 
      if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
      if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
          && ! data->autinc_to)
          && ! data->autinc_to)
        {
        {
          data->to_addr = copy_addr_to_reg (to_addr);
          data->to_addr = copy_addr_to_reg (to_addr);
          data->autinc_to = 1;
          data->autinc_to = 1;
          data->explicit_inc_to = 1;
          data->explicit_inc_to = 1;
        }
        }
 
 
      if ( !data->autinc_to && CONSTANT_P (to_addr))
      if ( !data->autinc_to && CONSTANT_P (to_addr))
        data->to_addr = copy_addr_to_reg (to_addr);
        data->to_addr = copy_addr_to_reg (to_addr);
    }
    }
 
 
  tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
  tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
  if (align >= GET_MODE_ALIGNMENT (tmode))
  if (align >= GET_MODE_ALIGNMENT (tmode))
    align = GET_MODE_ALIGNMENT (tmode);
    align = GET_MODE_ALIGNMENT (tmode);
  else
  else
    {
    {
      enum machine_mode xmode;
      enum machine_mode xmode;
 
 
      for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
      for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
           tmode != VOIDmode;
           tmode != VOIDmode;
           xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
           xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
        if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
        if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
            || SLOW_UNALIGNED_ACCESS (tmode, align))
            || SLOW_UNALIGNED_ACCESS (tmode, align))
          break;
          break;
 
 
      align = MAX (align, GET_MODE_ALIGNMENT (xmode));
      align = MAX (align, GET_MODE_ALIGNMENT (xmode));
    }
    }
 
 
  /* First store what we can in the largest integer mode, then go to
  /* First store what we can in the largest integer mode, then go to
     successively smaller modes.  */
     successively smaller modes.  */
 
 
  while (max_size > 1)
  while (max_size > 1)
    {
    {
      for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
      for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
           tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
           tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
        if (GET_MODE_SIZE (tmode) < max_size)
        if (GET_MODE_SIZE (tmode) < max_size)
          mode = tmode;
          mode = tmode;
 
 
      if (mode == VOIDmode)
      if (mode == VOIDmode)
        break;
        break;
 
 
      icode = mov_optab->handlers[(int) mode].insn_code;
      icode = mov_optab->handlers[(int) mode].insn_code;
      if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
      if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
        store_by_pieces_2 (GEN_FCN (icode), mode, data);
        store_by_pieces_2 (GEN_FCN (icode), mode, data);
 
 
      max_size = GET_MODE_SIZE (mode);
      max_size = GET_MODE_SIZE (mode);
    }
    }
 
 
  /* The code above should have handled everything.  */
  /* The code above should have handled everything.  */
  gcc_assert (!data->len);
  gcc_assert (!data->len);
}
}
 
 
/* Subroutine of store_by_pieces_1.  Store as many bytes as appropriate
/* Subroutine of store_by_pieces_1.  Store as many bytes as appropriate
   with move instructions for mode MODE.  GENFUN is the gen_... function
   with move instructions for mode MODE.  GENFUN is the gen_... function
   to make a move insn for that mode.  DATA has all the other info.  */
   to make a move insn for that mode.  DATA has all the other info.  */
 
 
static void
static void
store_by_pieces_2 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
store_by_pieces_2 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
                   struct store_by_pieces *data)
                   struct store_by_pieces *data)
{
{
  unsigned int size = GET_MODE_SIZE (mode);
  unsigned int size = GET_MODE_SIZE (mode);
  rtx to1, cst;
  rtx to1, cst;
 
 
  while (data->len >= size)
  while (data->len >= size)
    {
    {
      if (data->reverse)
      if (data->reverse)
        data->offset -= size;
        data->offset -= size;
 
 
      if (data->autinc_to)
      if (data->autinc_to)
        to1 = adjust_automodify_address (data->to, mode, data->to_addr,
        to1 = adjust_automodify_address (data->to, mode, data->to_addr,
                                         data->offset);
                                         data->offset);
      else
      else
        to1 = adjust_address (data->to, mode, data->offset);
        to1 = adjust_address (data->to, mode, data->offset);
 
 
      if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
      if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
        emit_insn (gen_add2_insn (data->to_addr,
        emit_insn (gen_add2_insn (data->to_addr,
                                  GEN_INT (-(HOST_WIDE_INT) size)));
                                  GEN_INT (-(HOST_WIDE_INT) size)));
 
 
      cst = (*data->constfun) (data->constfundata, data->offset, mode);
      cst = (*data->constfun) (data->constfundata, data->offset, mode);
      emit_insn ((*genfun) (to1, cst));
      emit_insn ((*genfun) (to1, cst));
 
 
      if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
      if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
        emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
        emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
 
 
      if (! data->reverse)
      if (! data->reverse)
        data->offset += size;
        data->offset += size;
 
 
      data->len -= size;
      data->len -= size;
    }
    }
}
}


/* Write zeros through the storage of OBJECT.  If OBJECT has BLKmode, SIZE is
/* Write zeros through the storage of OBJECT.  If OBJECT has BLKmode, SIZE is
   its length in bytes.  */
   its length in bytes.  */
 
 
rtx
rtx
clear_storage (rtx object, rtx size, enum block_op_methods method)
clear_storage (rtx object, rtx size, enum block_op_methods method)
{
{
  enum machine_mode mode = GET_MODE (object);
  enum machine_mode mode = GET_MODE (object);
  unsigned int align;
  unsigned int align;
 
 
  gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
  gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
 
 
  /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
  /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
     just move a zero.  Otherwise, do this a piece at a time.  */
     just move a zero.  Otherwise, do this a piece at a time.  */
  if (mode != BLKmode
  if (mode != BLKmode
      && GET_CODE (size) == CONST_INT
      && GET_CODE (size) == CONST_INT
      && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
      && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
    {
    {
      rtx zero = CONST0_RTX (mode);
      rtx zero = CONST0_RTX (mode);
      if (zero != NULL)
      if (zero != NULL)
        {
        {
          emit_move_insn (object, zero);
          emit_move_insn (object, zero);
          return NULL;
          return NULL;
        }
        }
 
 
      if (COMPLEX_MODE_P (mode))
      if (COMPLEX_MODE_P (mode))
        {
        {
          zero = CONST0_RTX (GET_MODE_INNER (mode));
          zero = CONST0_RTX (GET_MODE_INNER (mode));
          if (zero != NULL)
          if (zero != NULL)
            {
            {
              write_complex_part (object, zero, 0);
              write_complex_part (object, zero, 0);
              write_complex_part (object, zero, 1);
              write_complex_part (object, zero, 1);
              return NULL;
              return NULL;
            }
            }
        }
        }
    }
    }
 
 
  if (size == const0_rtx)
  if (size == const0_rtx)
    return NULL;
    return NULL;
 
 
  align = MEM_ALIGN (object);
  align = MEM_ALIGN (object);
 
 
  if (GET_CODE (size) == CONST_INT
  if (GET_CODE (size) == CONST_INT
      && CLEAR_BY_PIECES_P (INTVAL (size), align))
      && CLEAR_BY_PIECES_P (INTVAL (size), align))
    clear_by_pieces (object, INTVAL (size), align);
    clear_by_pieces (object, INTVAL (size), align);
  else if (set_storage_via_setmem (object, size, const0_rtx, align))
  else if (set_storage_via_setmem (object, size, const0_rtx, align))
    ;
    ;
  else
  else
    return clear_storage_via_libcall (object, size,
    return clear_storage_via_libcall (object, size,
                                      method == BLOCK_OP_TAILCALL);
                                      method == BLOCK_OP_TAILCALL);
 
 
  return NULL;
  return NULL;
}
}
 
 
/* A subroutine of clear_storage.  Expand a call to memset.
/* A subroutine of clear_storage.  Expand a call to memset.
   Return the return value of memset, 0 otherwise.  */
   Return the return value of memset, 0 otherwise.  */
 
 
static rtx
static rtx
clear_storage_via_libcall (rtx object, rtx size, bool tailcall)
clear_storage_via_libcall (rtx object, rtx size, bool tailcall)
{
{
  tree call_expr, arg_list, fn, object_tree, size_tree;
  tree call_expr, arg_list, fn, object_tree, size_tree;
  enum machine_mode size_mode;
  enum machine_mode size_mode;
  rtx retval;
  rtx retval;
 
 
  /* Emit code to copy OBJECT and SIZE into new pseudos.  We can then
  /* Emit code to copy OBJECT and SIZE into new pseudos.  We can then
     place those into new pseudos into a VAR_DECL and use them later.  */
     place those into new pseudos into a VAR_DECL and use them later.  */
 
 
  object = copy_to_mode_reg (Pmode, XEXP (object, 0));
  object = copy_to_mode_reg (Pmode, XEXP (object, 0));
 
 
  size_mode = TYPE_MODE (sizetype);
  size_mode = TYPE_MODE (sizetype);
  size = convert_to_mode (size_mode, size, 1);
  size = convert_to_mode (size_mode, size, 1);
  size = copy_to_mode_reg (size_mode, size);
  size = copy_to_mode_reg (size_mode, size);
 
 
  /* It is incorrect to use the libcall calling conventions to call
  /* It is incorrect to use the libcall calling conventions to call
     memset in this context.  This could be a user call to memset and
     memset in this context.  This could be a user call to memset and
     the user may wish to examine the return value from memset.  For
     the user may wish to examine the return value from memset.  For
     targets where libcalls and normal calls have different conventions
     targets where libcalls and normal calls have different conventions
     for returning pointers, we could end up generating incorrect code.  */
     for returning pointers, we could end up generating incorrect code.  */
 
 
  object_tree = make_tree (ptr_type_node, object);
  object_tree = make_tree (ptr_type_node, object);
  size_tree = make_tree (sizetype, size);
  size_tree = make_tree (sizetype, size);
 
 
  fn = clear_storage_libcall_fn (true);
  fn = clear_storage_libcall_fn (true);
  arg_list = tree_cons (NULL_TREE, size_tree, NULL_TREE);
  arg_list = tree_cons (NULL_TREE, size_tree, NULL_TREE);
  arg_list = tree_cons (NULL_TREE, integer_zero_node, arg_list);
  arg_list = tree_cons (NULL_TREE, integer_zero_node, arg_list);
  arg_list = tree_cons (NULL_TREE, object_tree, arg_list);
  arg_list = tree_cons (NULL_TREE, object_tree, arg_list);
 
 
  /* Now we have to build up the CALL_EXPR itself.  */
  /* Now we have to build up the CALL_EXPR itself.  */
  call_expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
  call_expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
  call_expr = build3 (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
  call_expr = build3 (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
                      call_expr, arg_list, NULL_TREE);
                      call_expr, arg_list, NULL_TREE);
  CALL_EXPR_TAILCALL (call_expr) = tailcall;
  CALL_EXPR_TAILCALL (call_expr) = tailcall;
 
 
  retval = expand_normal (call_expr);
  retval = expand_normal (call_expr);
 
 
  return retval;
  return retval;
}
}
 
 
/* A subroutine of clear_storage_via_libcall.  Create the tree node
/* A subroutine of clear_storage_via_libcall.  Create the tree node
   for the function we use for block clears.  The first time FOR_CALL
   for the function we use for block clears.  The first time FOR_CALL
   is true, we call assemble_external.  */
   is true, we call assemble_external.  */
 
 
static GTY(()) tree block_clear_fn;
static GTY(()) tree block_clear_fn;
 
 
void
void
init_block_clear_fn (const char *asmspec)
init_block_clear_fn (const char *asmspec)
{
{
  if (!block_clear_fn)
  if (!block_clear_fn)
    {
    {
      tree fn, args;
      tree fn, args;
 
 
      fn = get_identifier ("memset");
      fn = get_identifier ("memset");
      args = build_function_type_list (ptr_type_node, ptr_type_node,
      args = build_function_type_list (ptr_type_node, ptr_type_node,
                                       integer_type_node, sizetype,
                                       integer_type_node, sizetype,
                                       NULL_TREE);
                                       NULL_TREE);
 
 
      fn = build_decl (FUNCTION_DECL, fn, args);
      fn = build_decl (FUNCTION_DECL, fn, args);
      DECL_EXTERNAL (fn) = 1;
      DECL_EXTERNAL (fn) = 1;
      TREE_PUBLIC (fn) = 1;
      TREE_PUBLIC (fn) = 1;
      DECL_ARTIFICIAL (fn) = 1;
      DECL_ARTIFICIAL (fn) = 1;
      TREE_NOTHROW (fn) = 1;
      TREE_NOTHROW (fn) = 1;
      DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
      DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
      DECL_VISIBILITY_SPECIFIED (fn) = 1;
      DECL_VISIBILITY_SPECIFIED (fn) = 1;
 
 
      block_clear_fn = fn;
      block_clear_fn = fn;
    }
    }
 
 
  if (asmspec)
  if (asmspec)
    set_user_assembler_name (block_clear_fn, asmspec);
    set_user_assembler_name (block_clear_fn, asmspec);
}
}
 
 
static tree
static tree
clear_storage_libcall_fn (int for_call)
clear_storage_libcall_fn (int for_call)
{
{
  static bool emitted_extern;
  static bool emitted_extern;
 
 
  if (!block_clear_fn)
  if (!block_clear_fn)
    init_block_clear_fn (NULL);
    init_block_clear_fn (NULL);
 
 
  if (for_call && !emitted_extern)
  if (for_call && !emitted_extern)
    {
    {
      emitted_extern = true;
      emitted_extern = true;
      make_decl_rtl (block_clear_fn);
      make_decl_rtl (block_clear_fn);
      assemble_external (block_clear_fn);
      assemble_external (block_clear_fn);
    }
    }
 
 
  return block_clear_fn;
  return block_clear_fn;
}
}


/* Expand a setmem pattern; return true if successful.  */
/* Expand a setmem pattern; return true if successful.  */
 
 
bool
bool
set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align)
set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align)
{
{
  /* Try the most limited insn first, because there's no point
  /* Try the most limited insn first, because there's no point
     including more than one in the machine description unless
     including more than one in the machine description unless
     the more limited one has some advantage.  */
     the more limited one has some advantage.  */
 
 
  rtx opalign = GEN_INT (align / BITS_PER_UNIT);
  rtx opalign = GEN_INT (align / BITS_PER_UNIT);
  enum machine_mode mode;
  enum machine_mode mode;
 
 
  for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
  for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
       mode = GET_MODE_WIDER_MODE (mode))
       mode = GET_MODE_WIDER_MODE (mode))
    {
    {
      enum insn_code code = setmem_optab[(int) mode];
      enum insn_code code = setmem_optab[(int) mode];
      insn_operand_predicate_fn pred;
      insn_operand_predicate_fn pred;
 
 
      if (code != CODE_FOR_nothing
      if (code != CODE_FOR_nothing
          /* We don't need MODE to be narrower than
          /* We don't need MODE to be narrower than
             BITS_PER_HOST_WIDE_INT here because if SIZE is less than
             BITS_PER_HOST_WIDE_INT here because if SIZE is less than
             the mode mask, as it is returned by the macro, it will
             the mode mask, as it is returned by the macro, it will
             definitely be less than the actual mode mask.  */
             definitely be less than the actual mode mask.  */
          && ((GET_CODE (size) == CONST_INT
          && ((GET_CODE (size) == CONST_INT
               && ((unsigned HOST_WIDE_INT) INTVAL (size)
               && ((unsigned HOST_WIDE_INT) INTVAL (size)
                   <= (GET_MODE_MASK (mode) >> 1)))
                   <= (GET_MODE_MASK (mode) >> 1)))
              || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
              || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
          && ((pred = insn_data[(int) code].operand[0].predicate) == 0
          && ((pred = insn_data[(int) code].operand[0].predicate) == 0
              || (*pred) (object, BLKmode))
              || (*pred) (object, BLKmode))
          && ((pred = insn_data[(int) code].operand[3].predicate) == 0
          && ((pred = insn_data[(int) code].operand[3].predicate) == 0
              || (*pred) (opalign, VOIDmode)))
              || (*pred) (opalign, VOIDmode)))
        {
        {
          rtx opsize, opchar;
          rtx opsize, opchar;
          enum machine_mode char_mode;
          enum machine_mode char_mode;
          rtx last = get_last_insn ();
          rtx last = get_last_insn ();
          rtx pat;
          rtx pat;
 
 
          opsize = convert_to_mode (mode, size, 1);
          opsize = convert_to_mode (mode, size, 1);
          pred = insn_data[(int) code].operand[1].predicate;
          pred = insn_data[(int) code].operand[1].predicate;
          if (pred != 0 && ! (*pred) (opsize, mode))
          if (pred != 0 && ! (*pred) (opsize, mode))
            opsize = copy_to_mode_reg (mode, opsize);
            opsize = copy_to_mode_reg (mode, opsize);
 
 
          opchar = val;
          opchar = val;
          char_mode = insn_data[(int) code].operand[2].mode;
          char_mode = insn_data[(int) code].operand[2].mode;
          if (char_mode != VOIDmode)
          if (char_mode != VOIDmode)
            {
            {
              opchar = convert_to_mode (char_mode, opchar, 1);
              opchar = convert_to_mode (char_mode, opchar, 1);
              pred = insn_data[(int) code].operand[2].predicate;
              pred = insn_data[(int) code].operand[2].predicate;
              if (pred != 0 && ! (*pred) (opchar, char_mode))
              if (pred != 0 && ! (*pred) (opchar, char_mode))
                opchar = copy_to_mode_reg (char_mode, opchar);
                opchar = copy_to_mode_reg (char_mode, opchar);
            }
            }
 
 
          pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign);
          pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign);
          if (pat)
          if (pat)
            {
            {
              emit_insn (pat);
              emit_insn (pat);
              return true;
              return true;
            }
            }
          else
          else
            delete_insns_since (last);
            delete_insns_since (last);
        }
        }
    }
    }
 
 
  return false;
  return false;
}
}
 
 


/* Write to one of the components of the complex value CPLX.  Write VAL to
/* Write to one of the components of the complex value CPLX.  Write VAL to
   the real part if IMAG_P is false, and the imaginary part if its true.  */
   the real part if IMAG_P is false, and the imaginary part if its true.  */
 
 
static void
static void
write_complex_part (rtx cplx, rtx val, bool imag_p)
write_complex_part (rtx cplx, rtx val, bool imag_p)
{
{
  enum machine_mode cmode;
  enum machine_mode cmode;
  enum machine_mode imode;
  enum machine_mode imode;
  unsigned ibitsize;
  unsigned ibitsize;
 
 
  if (GET_CODE (cplx) == CONCAT)
  if (GET_CODE (cplx) == CONCAT)
    {
    {
      emit_move_insn (XEXP (cplx, imag_p), val);
      emit_move_insn (XEXP (cplx, imag_p), val);
      return;
      return;
    }
    }
 
 
  cmode = GET_MODE (cplx);
  cmode = GET_MODE (cplx);
  imode = GET_MODE_INNER (cmode);
  imode = GET_MODE_INNER (cmode);
  ibitsize = GET_MODE_BITSIZE (imode);
  ibitsize = GET_MODE_BITSIZE (imode);
 
 
  /* For MEMs simplify_gen_subreg may generate an invalid new address
  /* For MEMs simplify_gen_subreg may generate an invalid new address
     because, e.g., the original address is considered mode-dependent
     because, e.g., the original address is considered mode-dependent
     by the target, which restricts simplify_subreg from invoking
     by the target, which restricts simplify_subreg from invoking
     adjust_address_nv.  Instead of preparing fallback support for an
     adjust_address_nv.  Instead of preparing fallback support for an
     invalid address, we call adjust_address_nv directly.  */
     invalid address, we call adjust_address_nv directly.  */
  if (MEM_P (cplx))
  if (MEM_P (cplx))
    {
    {
      emit_move_insn (adjust_address_nv (cplx, imode,
      emit_move_insn (adjust_address_nv (cplx, imode,
                                         imag_p ? GET_MODE_SIZE (imode) : 0),
                                         imag_p ? GET_MODE_SIZE (imode) : 0),
                      val);
                      val);
      return;
      return;
    }
    }
 
 
  /* If the sub-object is at least word sized, then we know that subregging
  /* If the sub-object is at least word sized, then we know that subregging
     will work.  This special case is important, since store_bit_field
     will work.  This special case is important, since store_bit_field
     wants to operate on integer modes, and there's rarely an OImode to
     wants to operate on integer modes, and there's rarely an OImode to
     correspond to TCmode.  */
     correspond to TCmode.  */
  if (ibitsize >= BITS_PER_WORD
  if (ibitsize >= BITS_PER_WORD
      /* For hard regs we have exact predicates.  Assume we can split
      /* For hard regs we have exact predicates.  Assume we can split
         the original object if it spans an even number of hard regs.
         the original object if it spans an even number of hard regs.
         This special case is important for SCmode on 64-bit platforms
         This special case is important for SCmode on 64-bit platforms
         where the natural size of floating-point regs is 32-bit.  */
         where the natural size of floating-point regs is 32-bit.  */
      || (REG_P (cplx)
      || (REG_P (cplx)
          && REGNO (cplx) < FIRST_PSEUDO_REGISTER
          && REGNO (cplx) < FIRST_PSEUDO_REGISTER
          && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
          && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
    {
    {
      rtx part = simplify_gen_subreg (imode, cplx, cmode,
      rtx part = simplify_gen_subreg (imode, cplx, cmode,
                                      imag_p ? GET_MODE_SIZE (imode) : 0);
                                      imag_p ? GET_MODE_SIZE (imode) : 0);
      if (part)
      if (part)
        {
        {
          emit_move_insn (part, val);
          emit_move_insn (part, val);
          return;
          return;
        }
        }
      else
      else
        /* simplify_gen_subreg may fail for sub-word MEMs.  */
        /* simplify_gen_subreg may fail for sub-word MEMs.  */
        gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
        gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
    }
    }
 
 
  store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, imode, val);
  store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, imode, val);
}
}
 
 
/* Extract one of the components of the complex value CPLX.  Extract the
/* Extract one of the components of the complex value CPLX.  Extract the
   real part if IMAG_P is false, and the imaginary part if it's true.  */
   real part if IMAG_P is false, and the imaginary part if it's true.  */
 
 
static rtx
static rtx
read_complex_part (rtx cplx, bool imag_p)
read_complex_part (rtx cplx, bool imag_p)
{
{
  enum machine_mode cmode, imode;
  enum machine_mode cmode, imode;
  unsigned ibitsize;
  unsigned ibitsize;
 
 
  if (GET_CODE (cplx) == CONCAT)
  if (GET_CODE (cplx) == CONCAT)
    return XEXP (cplx, imag_p);
    return XEXP (cplx, imag_p);
 
 
  cmode = GET_MODE (cplx);
  cmode = GET_MODE (cplx);
  imode = GET_MODE_INNER (cmode);
  imode = GET_MODE_INNER (cmode);
  ibitsize = GET_MODE_BITSIZE (imode);
  ibitsize = GET_MODE_BITSIZE (imode);
 
 
  /* Special case reads from complex constants that got spilled to memory.  */
  /* Special case reads from complex constants that got spilled to memory.  */
  if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
  if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
    {
    {
      tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
      tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
      if (decl && TREE_CODE (decl) == COMPLEX_CST)
      if (decl && TREE_CODE (decl) == COMPLEX_CST)
        {
        {
          tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
          tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
          if (CONSTANT_CLASS_P (part))
          if (CONSTANT_CLASS_P (part))
            return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
            return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
        }
        }
    }
    }
 
 
  /* For MEMs simplify_gen_subreg may generate an invalid new address
  /* For MEMs simplify_gen_subreg may generate an invalid new address
     because, e.g., the original address is considered mode-dependent
     because, e.g., the original address is considered mode-dependent
     by the target, which restricts simplify_subreg from invoking
     by the target, which restricts simplify_subreg from invoking
     adjust_address_nv.  Instead of preparing fallback support for an
     adjust_address_nv.  Instead of preparing fallback support for an
     invalid address, we call adjust_address_nv directly.  */
     invalid address, we call adjust_address_nv directly.  */
  if (MEM_P (cplx))
  if (MEM_P (cplx))
    return adjust_address_nv (cplx, imode,
    return adjust_address_nv (cplx, imode,
                              imag_p ? GET_MODE_SIZE (imode) : 0);
                              imag_p ? GET_MODE_SIZE (imode) : 0);
 
 
  /* If the sub-object is at least word sized, then we know that subregging
  /* If the sub-object is at least word sized, then we know that subregging
     will work.  This special case is important, since extract_bit_field
     will work.  This special case is important, since extract_bit_field
     wants to operate on integer modes, and there's rarely an OImode to
     wants to operate on integer modes, and there's rarely an OImode to
     correspond to TCmode.  */
     correspond to TCmode.  */
  if (ibitsize >= BITS_PER_WORD
  if (ibitsize >= BITS_PER_WORD
      /* For hard regs we have exact predicates.  Assume we can split
      /* For hard regs we have exact predicates.  Assume we can split
         the original object if it spans an even number of hard regs.
         the original object if it spans an even number of hard regs.
         This special case is important for SCmode on 64-bit platforms
         This special case is important for SCmode on 64-bit platforms
         where the natural size of floating-point regs is 32-bit.  */
         where the natural size of floating-point regs is 32-bit.  */
      || (REG_P (cplx)
      || (REG_P (cplx)
          && REGNO (cplx) < FIRST_PSEUDO_REGISTER
          && REGNO (cplx) < FIRST_PSEUDO_REGISTER
          && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
          && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
    {
    {
      rtx ret = simplify_gen_subreg (imode, cplx, cmode,
      rtx ret = simplify_gen_subreg (imode, cplx, cmode,
                                     imag_p ? GET_MODE_SIZE (imode) : 0);
                                     imag_p ? GET_MODE_SIZE (imode) : 0);
      if (ret)
      if (ret)
        return ret;
        return ret;
      else
      else
        /* simplify_gen_subreg may fail for sub-word MEMs.  */
        /* simplify_gen_subreg may fail for sub-word MEMs.  */
        gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
        gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
    }
    }
 
 
  return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
  return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
                            true, NULL_RTX, imode, imode);
                            true, NULL_RTX, imode, imode);
}
}


/* A subroutine of emit_move_insn_1.  Yet another lowpart generator.
/* A subroutine of emit_move_insn_1.  Yet another lowpart generator.
   NEW_MODE and OLD_MODE are the same size.  Return NULL if X cannot be
   NEW_MODE and OLD_MODE are the same size.  Return NULL if X cannot be
   represented in NEW_MODE.  If FORCE is true, this will never happen, as
   represented in NEW_MODE.  If FORCE is true, this will never happen, as
   we'll force-create a SUBREG if needed.  */
   we'll force-create a SUBREG if needed.  */
 
 
static rtx
static rtx
emit_move_change_mode (enum machine_mode new_mode,
emit_move_change_mode (enum machine_mode new_mode,
                       enum machine_mode old_mode, rtx x, bool force)
                       enum machine_mode old_mode, rtx x, bool force)
{
{
  rtx ret;
  rtx ret;
 
 
  if (MEM_P (x))
  if (MEM_P (x))
    {
    {
      /* We don't have to worry about changing the address since the
      /* We don't have to worry about changing the address since the
         size in bytes is supposed to be the same.  */
         size in bytes is supposed to be the same.  */
      if (reload_in_progress)
      if (reload_in_progress)
        {
        {
          /* Copy the MEM to change the mode and move any
          /* Copy the MEM to change the mode and move any
             substitutions from the old MEM to the new one.  */
             substitutions from the old MEM to the new one.  */
          ret = adjust_address_nv (x, new_mode, 0);
          ret = adjust_address_nv (x, new_mode, 0);
          copy_replacements (x, ret);
          copy_replacements (x, ret);
        }
        }
      else
      else
        ret = adjust_address (x, new_mode, 0);
        ret = adjust_address (x, new_mode, 0);
    }
    }
  else
  else
    {
    {
      /* Note that we do want simplify_subreg's behavior of validating
      /* Note that we do want simplify_subreg's behavior of validating
         that the new mode is ok for a hard register.  If we were to use
         that the new mode is ok for a hard register.  If we were to use
         simplify_gen_subreg, we would create the subreg, but would
         simplify_gen_subreg, we would create the subreg, but would
         probably run into the target not being able to implement it.  */
         probably run into the target not being able to implement it.  */
      /* Except, of course, when FORCE is true, when this is exactly what
      /* Except, of course, when FORCE is true, when this is exactly what
         we want.  Which is needed for CCmodes on some targets.  */
         we want.  Which is needed for CCmodes on some targets.  */
      if (force)
      if (force)
        ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
        ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
      else
      else
        ret = simplify_subreg (new_mode, x, old_mode, 0);
        ret = simplify_subreg (new_mode, x, old_mode, 0);
    }
    }
 
 
  return ret;
  return ret;
}
}
 
 
/* A subroutine of emit_move_insn_1.  Generate a move from Y into X using
/* A subroutine of emit_move_insn_1.  Generate a move from Y into X using
   an integer mode of the same size as MODE.  Returns the instruction
   an integer mode of the same size as MODE.  Returns the instruction
   emitted, or NULL if such a move could not be generated.  */
   emitted, or NULL if such a move could not be generated.  */
 
 
static rtx
static rtx
emit_move_via_integer (enum machine_mode mode, rtx x, rtx y, bool force)
emit_move_via_integer (enum machine_mode mode, rtx x, rtx y, bool force)
{
{
  enum machine_mode imode;
  enum machine_mode imode;
  enum insn_code code;
  enum insn_code code;
 
 
  /* There must exist a mode of the exact size we require.  */
  /* There must exist a mode of the exact size we require.  */
  imode = int_mode_for_mode (mode);
  imode = int_mode_for_mode (mode);
  if (imode == BLKmode)
  if (imode == BLKmode)
    return NULL_RTX;
    return NULL_RTX;
 
 
  /* The target must support moves in this mode.  */
  /* The target must support moves in this mode.  */
  code = mov_optab->handlers[imode].insn_code;
  code = mov_optab->handlers[imode].insn_code;
  if (code == CODE_FOR_nothing)
  if (code == CODE_FOR_nothing)
    return NULL_RTX;
    return NULL_RTX;
 
 
  x = emit_move_change_mode (imode, mode, x, force);
  x = emit_move_change_mode (imode, mode, x, force);
  if (x == NULL_RTX)
  if (x == NULL_RTX)
    return NULL_RTX;
    return NULL_RTX;
  y = emit_move_change_mode (imode, mode, y, force);
  y = emit_move_change_mode (imode, mode, y, force);
  if (y == NULL_RTX)
  if (y == NULL_RTX)
    return NULL_RTX;
    return NULL_RTX;
  return emit_insn (GEN_FCN (code) (x, y));
  return emit_insn (GEN_FCN (code) (x, y));
}
}
 
 
/* A subroutine of emit_move_insn_1.  X is a push_operand in MODE.
/* A subroutine of emit_move_insn_1.  X is a push_operand in MODE.
   Return an equivalent MEM that does not use an auto-increment.  */
   Return an equivalent MEM that does not use an auto-increment.  */
 
 
static rtx
static rtx
emit_move_resolve_push (enum machine_mode mode, rtx x)
emit_move_resolve_push (enum machine_mode mode, rtx x)
{
{
  enum rtx_code code = GET_CODE (XEXP (x, 0));
  enum rtx_code code = GET_CODE (XEXP (x, 0));
  HOST_WIDE_INT adjust;
  HOST_WIDE_INT adjust;
  rtx temp;
  rtx temp;
 
 
  adjust = GET_MODE_SIZE (mode);
  adjust = GET_MODE_SIZE (mode);
#ifdef PUSH_ROUNDING
#ifdef PUSH_ROUNDING
  adjust = PUSH_ROUNDING (adjust);
  adjust = PUSH_ROUNDING (adjust);
#endif
#endif
  if (code == PRE_DEC || code == POST_DEC)
  if (code == PRE_DEC || code == POST_DEC)
    adjust = -adjust;
    adjust = -adjust;
  else if (code == PRE_MODIFY || code == POST_MODIFY)
  else if (code == PRE_MODIFY || code == POST_MODIFY)
    {
    {
      rtx expr = XEXP (XEXP (x, 0), 1);
      rtx expr = XEXP (XEXP (x, 0), 1);
      HOST_WIDE_INT val;
      HOST_WIDE_INT val;
 
 
      gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
      gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
      gcc_assert (GET_CODE (XEXP (expr, 1)) == CONST_INT);
      gcc_assert (GET_CODE (XEXP (expr, 1)) == CONST_INT);
      val = INTVAL (XEXP (expr, 1));
      val = INTVAL (XEXP (expr, 1));
      if (GET_CODE (expr) == MINUS)
      if (GET_CODE (expr) == MINUS)
        val = -val;
        val = -val;
      gcc_assert (adjust == val || adjust == -val);
      gcc_assert (adjust == val || adjust == -val);
      adjust = val;
      adjust = val;
    }
    }
 
 
  /* Do not use anti_adjust_stack, since we don't want to update
  /* Do not use anti_adjust_stack, since we don't want to update
     stack_pointer_delta.  */
     stack_pointer_delta.  */
  temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
  temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
                              GEN_INT (adjust), stack_pointer_rtx,
                              GEN_INT (adjust), stack_pointer_rtx,
                              0, OPTAB_LIB_WIDEN);
                              0, OPTAB_LIB_WIDEN);
  if (temp != stack_pointer_rtx)
  if (temp != stack_pointer_rtx)
    emit_move_insn (stack_pointer_rtx, temp);
    emit_move_insn (stack_pointer_rtx, temp);
 
 
  switch (code)
  switch (code)
    {
    {
    case PRE_INC:
    case PRE_INC:
    case PRE_DEC:
    case PRE_DEC:
    case PRE_MODIFY:
    case PRE_MODIFY:
      temp = stack_pointer_rtx;
      temp = stack_pointer_rtx;
      break;
      break;
    case POST_INC:
    case POST_INC:
    case POST_DEC:
    case POST_DEC:
    case POST_MODIFY:
    case POST_MODIFY:
      temp = plus_constant (stack_pointer_rtx, -adjust);
      temp = plus_constant (stack_pointer_rtx, -adjust);
      break;
      break;
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  return replace_equiv_address (x, temp);
  return replace_equiv_address (x, temp);
}
}
 
 
/* A subroutine of emit_move_complex.  Generate a move from Y into X.
/* A subroutine of emit_move_complex.  Generate a move from Y into X.
   X is known to satisfy push_operand, and MODE is known to be complex.
   X is known to satisfy push_operand, and MODE is known to be complex.
   Returns the last instruction emitted.  */
   Returns the last instruction emitted.  */
 
 
static rtx
static rtx
emit_move_complex_push (enum machine_mode mode, rtx x, rtx y)
emit_move_complex_push (enum machine_mode mode, rtx x, rtx y)
{
{
  enum machine_mode submode = GET_MODE_INNER (mode);
  enum machine_mode submode = GET_MODE_INNER (mode);
  bool imag_first;
  bool imag_first;
 
 
#ifdef PUSH_ROUNDING
#ifdef PUSH_ROUNDING
  unsigned int submodesize = GET_MODE_SIZE (submode);
  unsigned int submodesize = GET_MODE_SIZE (submode);
 
 
  /* In case we output to the stack, but the size is smaller than the
  /* In case we output to the stack, but the size is smaller than the
     machine can push exactly, we need to use move instructions.  */
     machine can push exactly, we need to use move instructions.  */
  if (PUSH_ROUNDING (submodesize) != submodesize)
  if (PUSH_ROUNDING (submodesize) != submodesize)
    {
    {
      x = emit_move_resolve_push (mode, x);
      x = emit_move_resolve_push (mode, x);
      return emit_move_insn (x, y);
      return emit_move_insn (x, y);
    }
    }
#endif
#endif
 
 
  /* Note that the real part always precedes the imag part in memory
  /* Note that the real part always precedes the imag part in memory
     regardless of machine's endianness.  */
     regardless of machine's endianness.  */
  switch (GET_CODE (XEXP (x, 0)))
  switch (GET_CODE (XEXP (x, 0)))
    {
    {
    case PRE_DEC:
    case PRE_DEC:
    case POST_DEC:
    case POST_DEC:
      imag_first = true;
      imag_first = true;
      break;
      break;
    case PRE_INC:
    case PRE_INC:
    case POST_INC:
    case POST_INC:
      imag_first = false;
      imag_first = false;
      break;
      break;
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
  emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
                  read_complex_part (y, imag_first));
                  read_complex_part (y, imag_first));
  return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
  return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
                         read_complex_part (y, !imag_first));
                         read_complex_part (y, !imag_first));
}
}
 
 
/* A subroutine of emit_move_insn_1.  Generate a move from Y into X.
/* A subroutine of emit_move_insn_1.  Generate a move from Y into X.
   MODE is known to be complex.  Returns the last instruction emitted.  */
   MODE is known to be complex.  Returns the last instruction emitted.  */
 
 
static rtx
static rtx
emit_move_complex (enum machine_mode mode, rtx x, rtx y)
emit_move_complex (enum machine_mode mode, rtx x, rtx y)
{
{
  bool try_int;
  bool try_int;
 
 
  /* Need to take special care for pushes, to maintain proper ordering
  /* Need to take special care for pushes, to maintain proper ordering
     of the data, and possibly extra padding.  */
     of the data, and possibly extra padding.  */
  if (push_operand (x, mode))
  if (push_operand (x, mode))
    return emit_move_complex_push (mode, x, y);
    return emit_move_complex_push (mode, x, y);
 
 
  /* See if we can coerce the target into moving both values at once.  */
  /* See if we can coerce the target into moving both values at once.  */
 
 
  /* Move floating point as parts.  */
  /* Move floating point as parts.  */
  if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
  if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
      && mov_optab->handlers[GET_MODE_INNER (mode)].insn_code != CODE_FOR_nothing)
      && mov_optab->handlers[GET_MODE_INNER (mode)].insn_code != CODE_FOR_nothing)
    try_int = false;
    try_int = false;
  /* Not possible if the values are inherently not adjacent.  */
  /* Not possible if the values are inherently not adjacent.  */
  else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
  else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
    try_int = false;
    try_int = false;
  /* Is possible if both are registers (or subregs of registers).  */
  /* Is possible if both are registers (or subregs of registers).  */
  else if (register_operand (x, mode) && register_operand (y, mode))
  else if (register_operand (x, mode) && register_operand (y, mode))
    try_int = true;
    try_int = true;
  /* If one of the operands is a memory, and alignment constraints
  /* If one of the operands is a memory, and alignment constraints
     are friendly enough, we may be able to do combined memory operations.
     are friendly enough, we may be able to do combined memory operations.
     We do not attempt this if Y is a constant because that combination is
     We do not attempt this if Y is a constant because that combination is
     usually better with the by-parts thing below.  */
     usually better with the by-parts thing below.  */
  else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
  else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
           && (!STRICT_ALIGNMENT
           && (!STRICT_ALIGNMENT
               || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
               || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
    try_int = true;
    try_int = true;
  else
  else
    try_int = false;
    try_int = false;
 
 
  if (try_int)
  if (try_int)
    {
    {
      rtx ret;
      rtx ret;
 
 
      /* For memory to memory moves, optimal behavior can be had with the
      /* For memory to memory moves, optimal behavior can be had with the
         existing block move logic.  */
         existing block move logic.  */
      if (MEM_P (x) && MEM_P (y))
      if (MEM_P (x) && MEM_P (y))
        {
        {
          emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
          emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
                           BLOCK_OP_NO_LIBCALL);
                           BLOCK_OP_NO_LIBCALL);
          return get_last_insn ();
          return get_last_insn ();
        }
        }
 
 
      ret = emit_move_via_integer (mode, x, y, true);
      ret = emit_move_via_integer (mode, x, y, true);
      if (ret)
      if (ret)
        return ret;
        return ret;
    }
    }
 
 
  /* Show the output dies here.  This is necessary for SUBREGs
  /* Show the output dies here.  This is necessary for SUBREGs
     of pseudos since we cannot track their lifetimes correctly;
     of pseudos since we cannot track their lifetimes correctly;
     hard regs shouldn't appear here except as return values.  */
     hard regs shouldn't appear here except as return values.  */
  if (!reload_completed && !reload_in_progress
  if (!reload_completed && !reload_in_progress
      && REG_P (x) && !reg_overlap_mentioned_p (x, y))
      && REG_P (x) && !reg_overlap_mentioned_p (x, y))
    emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
    emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
 
 
  write_complex_part (x, read_complex_part (y, false), false);
  write_complex_part (x, read_complex_part (y, false), false);
  write_complex_part (x, read_complex_part (y, true), true);
  write_complex_part (x, read_complex_part (y, true), true);
  return get_last_insn ();
  return get_last_insn ();
}
}
 
 
/* A subroutine of emit_move_insn_1.  Generate a move from Y into X.
/* A subroutine of emit_move_insn_1.  Generate a move from Y into X.
   MODE is known to be MODE_CC.  Returns the last instruction emitted.  */
   MODE is known to be MODE_CC.  Returns the last instruction emitted.  */
 
 
static rtx
static rtx
emit_move_ccmode (enum machine_mode mode, rtx x, rtx y)
emit_move_ccmode (enum machine_mode mode, rtx x, rtx y)
{
{
  rtx ret;
  rtx ret;
 
 
  /* Assume all MODE_CC modes are equivalent; if we have movcc, use it.  */
  /* Assume all MODE_CC modes are equivalent; if we have movcc, use it.  */
  if (mode != CCmode)
  if (mode != CCmode)
    {
    {
      enum insn_code code = mov_optab->handlers[CCmode].insn_code;
      enum insn_code code = mov_optab->handlers[CCmode].insn_code;
      if (code != CODE_FOR_nothing)
      if (code != CODE_FOR_nothing)
        {
        {
          x = emit_move_change_mode (CCmode, mode, x, true);
          x = emit_move_change_mode (CCmode, mode, x, true);
          y = emit_move_change_mode (CCmode, mode, y, true);
          y = emit_move_change_mode (CCmode, mode, y, true);
          return emit_insn (GEN_FCN (code) (x, y));
          return emit_insn (GEN_FCN (code) (x, y));
        }
        }
    }
    }
 
 
  /* Otherwise, find the MODE_INT mode of the same width.  */
  /* Otherwise, find the MODE_INT mode of the same width.  */
  ret = emit_move_via_integer (mode, x, y, false);
  ret = emit_move_via_integer (mode, x, y, false);
  gcc_assert (ret != NULL);
  gcc_assert (ret != NULL);
  return ret;
  return ret;
}
}
 
 
/* Return true if word I of OP lies entirely in the
/* Return true if word I of OP lies entirely in the
   undefined bits of a paradoxical subreg.  */
   undefined bits of a paradoxical subreg.  */
 
 
static bool
static bool
undefined_operand_subword_p (rtx op, int i)
undefined_operand_subword_p (rtx op, int i)
{
{
  enum machine_mode innermode, innermostmode;
  enum machine_mode innermode, innermostmode;
  int offset;
  int offset;
  if (GET_CODE (op) != SUBREG)
  if (GET_CODE (op) != SUBREG)
    return false;
    return false;
  innermode = GET_MODE (op);
  innermode = GET_MODE (op);
  innermostmode = GET_MODE (SUBREG_REG (op));
  innermostmode = GET_MODE (SUBREG_REG (op));
  offset = i * UNITS_PER_WORD + SUBREG_BYTE (op);
  offset = i * UNITS_PER_WORD + SUBREG_BYTE (op);
  /* The SUBREG_BYTE represents offset, as if the value were stored in
  /* The SUBREG_BYTE represents offset, as if the value were stored in
     memory, except for a paradoxical subreg where we define
     memory, except for a paradoxical subreg where we define
     SUBREG_BYTE to be 0; undo this exception as in
     SUBREG_BYTE to be 0; undo this exception as in
     simplify_subreg.  */
     simplify_subreg.  */
  if (SUBREG_BYTE (op) == 0
  if (SUBREG_BYTE (op) == 0
      && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
      && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
    {
    {
      int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
      int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
      if (WORDS_BIG_ENDIAN)
      if (WORDS_BIG_ENDIAN)
        offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
        offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
      if (BYTES_BIG_ENDIAN)
      if (BYTES_BIG_ENDIAN)
        offset += difference % UNITS_PER_WORD;
        offset += difference % UNITS_PER_WORD;
    }
    }
  if (offset >= GET_MODE_SIZE (innermostmode)
  if (offset >= GET_MODE_SIZE (innermostmode)
      || offset <= -GET_MODE_SIZE (word_mode))
      || offset <= -GET_MODE_SIZE (word_mode))
    return true;
    return true;
  return false;
  return false;
}
}
 
 
/* A subroutine of emit_move_insn_1.  Generate a move from Y into X.
/* A subroutine of emit_move_insn_1.  Generate a move from Y into X.
   MODE is any multi-word or full-word mode that lacks a move_insn
   MODE is any multi-word or full-word mode that lacks a move_insn
   pattern.  Note that you will get better code if you define such
   pattern.  Note that you will get better code if you define such
   patterns, even if they must turn into multiple assembler instructions.  */
   patterns, even if they must turn into multiple assembler instructions.  */
 
 
static rtx
static rtx
emit_move_multi_word (enum machine_mode mode, rtx x, rtx y)
emit_move_multi_word (enum machine_mode mode, rtx x, rtx y)
{
{
  rtx last_insn = 0;
  rtx last_insn = 0;
  rtx seq, inner;
  rtx seq, inner;
  bool need_clobber;
  bool need_clobber;
  int i;
  int i;
 
 
  gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
  gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
 
 
  /* If X is a push on the stack, do the push now and replace
  /* If X is a push on the stack, do the push now and replace
     X with a reference to the stack pointer.  */
     X with a reference to the stack pointer.  */
  if (push_operand (x, mode))
  if (push_operand (x, mode))
    x = emit_move_resolve_push (mode, x);
    x = emit_move_resolve_push (mode, x);
 
 
  /* If we are in reload, see if either operand is a MEM whose address
  /* If we are in reload, see if either operand is a MEM whose address
     is scheduled for replacement.  */
     is scheduled for replacement.  */
  if (reload_in_progress && MEM_P (x)
  if (reload_in_progress && MEM_P (x)
      && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
      && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
    x = replace_equiv_address_nv (x, inner);
    x = replace_equiv_address_nv (x, inner);
  if (reload_in_progress && MEM_P (y)
  if (reload_in_progress && MEM_P (y)
      && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
      && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
    y = replace_equiv_address_nv (y, inner);
    y = replace_equiv_address_nv (y, inner);
 
 
  start_sequence ();
  start_sequence ();
 
 
  need_clobber = false;
  need_clobber = false;
  for (i = 0;
  for (i = 0;
       i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
       i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
       i++)
       i++)
    {
    {
      rtx xpart = operand_subword (x, i, 1, mode);
      rtx xpart = operand_subword (x, i, 1, mode);
      rtx ypart;
      rtx ypart;
 
 
      /* Do not generate code for a move if it would come entirely
      /* Do not generate code for a move if it would come entirely
         from the undefined bits of a paradoxical subreg.  */
         from the undefined bits of a paradoxical subreg.  */
      if (undefined_operand_subword_p (y, i))
      if (undefined_operand_subword_p (y, i))
        continue;
        continue;
 
 
      ypart = operand_subword (y, i, 1, mode);
      ypart = operand_subword (y, i, 1, mode);
 
 
      /* If we can't get a part of Y, put Y into memory if it is a
      /* If we can't get a part of Y, put Y into memory if it is a
         constant.  Otherwise, force it into a register.  Then we must
         constant.  Otherwise, force it into a register.  Then we must
         be able to get a part of Y.  */
         be able to get a part of Y.  */
      if (ypart == 0 && CONSTANT_P (y))
      if (ypart == 0 && CONSTANT_P (y))
        {
        {
          y = use_anchored_address (force_const_mem (mode, y));
          y = use_anchored_address (force_const_mem (mode, y));
          ypart = operand_subword (y, i, 1, mode);
          ypart = operand_subword (y, i, 1, mode);
        }
        }
      else if (ypart == 0)
      else if (ypart == 0)
        ypart = operand_subword_force (y, i, mode);
        ypart = operand_subword_force (y, i, mode);
 
 
      gcc_assert (xpart && ypart);
      gcc_assert (xpart && ypart);
 
 
      need_clobber |= (GET_CODE (xpart) == SUBREG);
      need_clobber |= (GET_CODE (xpart) == SUBREG);
 
 
      last_insn = emit_move_insn (xpart, ypart);
      last_insn = emit_move_insn (xpart, ypart);
    }
    }
 
 
  seq = get_insns ();
  seq = get_insns ();
  end_sequence ();
  end_sequence ();
 
 
  /* Show the output dies here.  This is necessary for SUBREGs
  /* Show the output dies here.  This is necessary for SUBREGs
     of pseudos since we cannot track their lifetimes correctly;
     of pseudos since we cannot track their lifetimes correctly;
     hard regs shouldn't appear here except as return values.
     hard regs shouldn't appear here except as return values.
     We never want to emit such a clobber after reload.  */
     We never want to emit such a clobber after reload.  */
  if (x != y
  if (x != y
      && ! (reload_in_progress || reload_completed)
      && ! (reload_in_progress || reload_completed)
      && need_clobber != 0)
      && need_clobber != 0)
    emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
    emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
 
 
  emit_insn (seq);
  emit_insn (seq);
 
 
  return last_insn;
  return last_insn;
}
}
 
 
/* Low level part of emit_move_insn.
/* Low level part of emit_move_insn.
   Called just like emit_move_insn, but assumes X and Y
   Called just like emit_move_insn, but assumes X and Y
   are basically valid.  */
   are basically valid.  */
 
 
rtx
rtx
emit_move_insn_1 (rtx x, rtx y)
emit_move_insn_1 (rtx x, rtx y)
{
{
  enum machine_mode mode = GET_MODE (x);
  enum machine_mode mode = GET_MODE (x);
  enum insn_code code;
  enum insn_code code;
 
 
  gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
  gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
 
 
  code = mov_optab->handlers[mode].insn_code;
  code = mov_optab->handlers[mode].insn_code;
  if (code != CODE_FOR_nothing)
  if (code != CODE_FOR_nothing)
    return emit_insn (GEN_FCN (code) (x, y));
    return emit_insn (GEN_FCN (code) (x, y));
 
 
  /* Expand complex moves by moving real part and imag part.  */
  /* Expand complex moves by moving real part and imag part.  */
  if (COMPLEX_MODE_P (mode))
  if (COMPLEX_MODE_P (mode))
    return emit_move_complex (mode, x, y);
    return emit_move_complex (mode, x, y);
 
 
  if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT)
  if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT)
    {
    {
      rtx result = emit_move_via_integer (mode, x, y, true);
      rtx result = emit_move_via_integer (mode, x, y, true);
 
 
      /* If we can't find an integer mode, use multi words.  */
      /* If we can't find an integer mode, use multi words.  */
      if (result)
      if (result)
        return result;
        return result;
      else
      else
        return emit_move_multi_word (mode, x, y);
        return emit_move_multi_word (mode, x, y);
    }
    }
 
 
  if (GET_MODE_CLASS (mode) == MODE_CC)
  if (GET_MODE_CLASS (mode) == MODE_CC)
    return emit_move_ccmode (mode, x, y);
    return emit_move_ccmode (mode, x, y);
 
 
  /* Try using a move pattern for the corresponding integer mode.  This is
  /* Try using a move pattern for the corresponding integer mode.  This is
     only safe when simplify_subreg can convert MODE constants into integer
     only safe when simplify_subreg can convert MODE constants into integer
     constants.  At present, it can only do this reliably if the value
     constants.  At present, it can only do this reliably if the value
     fits within a HOST_WIDE_INT.  */
     fits within a HOST_WIDE_INT.  */
  if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
  if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
    {
    {
      rtx ret = emit_move_via_integer (mode, x, y, false);
      rtx ret = emit_move_via_integer (mode, x, y, false);
      if (ret)
      if (ret)
        return ret;
        return ret;
    }
    }
 
 
  return emit_move_multi_word (mode, x, y);
  return emit_move_multi_word (mode, x, y);
}
}
 
 
/* Generate code to copy Y into X.
/* Generate code to copy Y into X.
   Both Y and X must have the same mode, except that
   Both Y and X must have the same mode, except that
   Y can be a constant with VOIDmode.
   Y can be a constant with VOIDmode.
   This mode cannot be BLKmode; use emit_block_move for that.
   This mode cannot be BLKmode; use emit_block_move for that.
 
 
   Return the last instruction emitted.  */
   Return the last instruction emitted.  */
 
 
rtx
rtx
emit_move_insn (rtx x, rtx y)
emit_move_insn (rtx x, rtx y)
{
{
  enum machine_mode mode = GET_MODE (x);
  enum machine_mode mode = GET_MODE (x);
  rtx y_cst = NULL_RTX;
  rtx y_cst = NULL_RTX;
  rtx last_insn, set;
  rtx last_insn, set;
 
 
  gcc_assert (mode != BLKmode
  gcc_assert (mode != BLKmode
              && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
              && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
 
 
  if (CONSTANT_P (y))
  if (CONSTANT_P (y))
    {
    {
      if (optimize
      if (optimize
          && SCALAR_FLOAT_MODE_P (GET_MODE (x))
          && SCALAR_FLOAT_MODE_P (GET_MODE (x))
          && (last_insn = compress_float_constant (x, y)))
          && (last_insn = compress_float_constant (x, y)))
        return last_insn;
        return last_insn;
 
 
      y_cst = y;
      y_cst = y;
 
 
      if (!LEGITIMATE_CONSTANT_P (y))
      if (!LEGITIMATE_CONSTANT_P (y))
        {
        {
          y = force_const_mem (mode, y);
          y = force_const_mem (mode, y);
 
 
          /* If the target's cannot_force_const_mem prevented the spill,
          /* If the target's cannot_force_const_mem prevented the spill,
             assume that the target's move expanders will also take care
             assume that the target's move expanders will also take care
             of the non-legitimate constant.  */
             of the non-legitimate constant.  */
          if (!y)
          if (!y)
            y = y_cst;
            y = y_cst;
          else
          else
            y = use_anchored_address (y);
            y = use_anchored_address (y);
        }
        }
    }
    }
 
 
  /* If X or Y are memory references, verify that their addresses are valid
  /* If X or Y are memory references, verify that their addresses are valid
     for the machine.  */
     for the machine.  */
  if (MEM_P (x)
  if (MEM_P (x)
      && ((! memory_address_p (GET_MODE (x), XEXP (x, 0))
      && ((! memory_address_p (GET_MODE (x), XEXP (x, 0))
           && ! push_operand (x, GET_MODE (x)))
           && ! push_operand (x, GET_MODE (x)))
          || (flag_force_addr
          || (flag_force_addr
              && CONSTANT_ADDRESS_P (XEXP (x, 0)))))
              && CONSTANT_ADDRESS_P (XEXP (x, 0)))))
    x = validize_mem (x);
    x = validize_mem (x);
 
 
  if (MEM_P (y)
  if (MEM_P (y)
      && (! memory_address_p (GET_MODE (y), XEXP (y, 0))
      && (! memory_address_p (GET_MODE (y), XEXP (y, 0))
          || (flag_force_addr
          || (flag_force_addr
              && CONSTANT_ADDRESS_P (XEXP (y, 0)))))
              && CONSTANT_ADDRESS_P (XEXP (y, 0)))))
    y = validize_mem (y);
    y = validize_mem (y);
 
 
  gcc_assert (mode != BLKmode);
  gcc_assert (mode != BLKmode);
 
 
  last_insn = emit_move_insn_1 (x, y);
  last_insn = emit_move_insn_1 (x, y);
 
 
  if (y_cst && REG_P (x)
  if (y_cst && REG_P (x)
      && (set = single_set (last_insn)) != NULL_RTX
      && (set = single_set (last_insn)) != NULL_RTX
      && SET_DEST (set) == x
      && SET_DEST (set) == x
      && ! rtx_equal_p (y_cst, SET_SRC (set)))
      && ! rtx_equal_p (y_cst, SET_SRC (set)))
    set_unique_reg_note (last_insn, REG_EQUAL, y_cst);
    set_unique_reg_note (last_insn, REG_EQUAL, y_cst);
 
 
  return last_insn;
  return last_insn;
}
}
 
 
/* If Y is representable exactly in a narrower mode, and the target can
/* If Y is representable exactly in a narrower mode, and the target can
   perform the extension directly from constant or memory, then emit the
   perform the extension directly from constant or memory, then emit the
   move as an extension.  */
   move as an extension.  */
 
 
static rtx
static rtx
compress_float_constant (rtx x, rtx y)
compress_float_constant (rtx x, rtx y)
{
{
  enum machine_mode dstmode = GET_MODE (x);
  enum machine_mode dstmode = GET_MODE (x);
  enum machine_mode orig_srcmode = GET_MODE (y);
  enum machine_mode orig_srcmode = GET_MODE (y);
  enum machine_mode srcmode;
  enum machine_mode srcmode;
  REAL_VALUE_TYPE r;
  REAL_VALUE_TYPE r;
  int oldcost, newcost;
  int oldcost, newcost;
 
 
  REAL_VALUE_FROM_CONST_DOUBLE (r, y);
  REAL_VALUE_FROM_CONST_DOUBLE (r, y);
 
 
  if (LEGITIMATE_CONSTANT_P (y))
  if (LEGITIMATE_CONSTANT_P (y))
    oldcost = rtx_cost (y, SET);
    oldcost = rtx_cost (y, SET);
  else
  else
    oldcost = rtx_cost (force_const_mem (dstmode, y), SET);
    oldcost = rtx_cost (force_const_mem (dstmode, y), SET);
 
 
  for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
  for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
       srcmode != orig_srcmode;
       srcmode != orig_srcmode;
       srcmode = GET_MODE_WIDER_MODE (srcmode))
       srcmode = GET_MODE_WIDER_MODE (srcmode))
    {
    {
      enum insn_code ic;
      enum insn_code ic;
      rtx trunc_y, last_insn;
      rtx trunc_y, last_insn;
 
 
      /* Skip if the target can't extend this way.  */
      /* Skip if the target can't extend this way.  */
      ic = can_extend_p (dstmode, srcmode, 0);
      ic = can_extend_p (dstmode, srcmode, 0);
      if (ic == CODE_FOR_nothing)
      if (ic == CODE_FOR_nothing)
        continue;
        continue;
 
 
      /* Skip if the narrowed value isn't exact.  */
      /* Skip if the narrowed value isn't exact.  */
      if (! exact_real_truncate (srcmode, &r))
      if (! exact_real_truncate (srcmode, &r))
        continue;
        continue;
 
 
      trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
      trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
 
 
      if (LEGITIMATE_CONSTANT_P (trunc_y))
      if (LEGITIMATE_CONSTANT_P (trunc_y))
        {
        {
          /* Skip if the target needs extra instructions to perform
          /* Skip if the target needs extra instructions to perform
             the extension.  */
             the extension.  */
          if (! (*insn_data[ic].operand[1].predicate) (trunc_y, srcmode))
          if (! (*insn_data[ic].operand[1].predicate) (trunc_y, srcmode))
            continue;
            continue;
          /* This is valid, but may not be cheaper than the original. */
          /* This is valid, but may not be cheaper than the original. */
          newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET);
          newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET);
          if (oldcost < newcost)
          if (oldcost < newcost)
            continue;
            continue;
        }
        }
      else if (float_extend_from_mem[dstmode][srcmode])
      else if (float_extend_from_mem[dstmode][srcmode])
        {
        {
          trunc_y = force_const_mem (srcmode, trunc_y);
          trunc_y = force_const_mem (srcmode, trunc_y);
          /* This is valid, but may not be cheaper than the original. */
          /* This is valid, but may not be cheaper than the original. */
          newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET);
          newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET);
          if (oldcost < newcost)
          if (oldcost < newcost)
            continue;
            continue;
          trunc_y = validize_mem (trunc_y);
          trunc_y = validize_mem (trunc_y);
        }
        }
      else
      else
        continue;
        continue;
 
 
      /* For CSE's benefit, force the compressed constant pool entry
      /* For CSE's benefit, force the compressed constant pool entry
         into a new pseudo.  This constant may be used in different modes,
         into a new pseudo.  This constant may be used in different modes,
         and if not, combine will put things back together for us.  */
         and if not, combine will put things back together for us.  */
      trunc_y = force_reg (srcmode, trunc_y);
      trunc_y = force_reg (srcmode, trunc_y);
      emit_unop_insn (ic, x, trunc_y, UNKNOWN);
      emit_unop_insn (ic, x, trunc_y, UNKNOWN);
      last_insn = get_last_insn ();
      last_insn = get_last_insn ();
 
 
      if (REG_P (x))
      if (REG_P (x))
        set_unique_reg_note (last_insn, REG_EQUAL, y);
        set_unique_reg_note (last_insn, REG_EQUAL, y);
 
 
      return last_insn;
      return last_insn;
    }
    }
 
 
  return NULL_RTX;
  return NULL_RTX;
}
}


/* Pushing data onto the stack.  */
/* Pushing data onto the stack.  */
 
 
/* Push a block of length SIZE (perhaps variable)
/* Push a block of length SIZE (perhaps variable)
   and return an rtx to address the beginning of the block.
   and return an rtx to address the beginning of the block.
   The value may be virtual_outgoing_args_rtx.
   The value may be virtual_outgoing_args_rtx.
 
 
   EXTRA is the number of bytes of padding to push in addition to SIZE.
   EXTRA is the number of bytes of padding to push in addition to SIZE.
   BELOW nonzero means this padding comes at low addresses;
   BELOW nonzero means this padding comes at low addresses;
   otherwise, the padding comes at high addresses.  */
   otherwise, the padding comes at high addresses.  */
 
 
rtx
rtx
push_block (rtx size, int extra, int below)
push_block (rtx size, int extra, int below)
{
{
  rtx temp;
  rtx temp;
 
 
  size = convert_modes (Pmode, ptr_mode, size, 1);
  size = convert_modes (Pmode, ptr_mode, size, 1);
  if (CONSTANT_P (size))
  if (CONSTANT_P (size))
    anti_adjust_stack (plus_constant (size, extra));
    anti_adjust_stack (plus_constant (size, extra));
  else if (REG_P (size) && extra == 0)
  else if (REG_P (size) && extra == 0)
    anti_adjust_stack (size);
    anti_adjust_stack (size);
  else
  else
    {
    {
      temp = copy_to_mode_reg (Pmode, size);
      temp = copy_to_mode_reg (Pmode, size);
      if (extra != 0)
      if (extra != 0)
        temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
        temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
                             temp, 0, OPTAB_LIB_WIDEN);
                             temp, 0, OPTAB_LIB_WIDEN);
      anti_adjust_stack (temp);
      anti_adjust_stack (temp);
    }
    }
 
 
#ifndef STACK_GROWS_DOWNWARD
#ifndef STACK_GROWS_DOWNWARD
  if (0)
  if (0)
#else
#else
  if (1)
  if (1)
#endif
#endif
    {
    {
      temp = virtual_outgoing_args_rtx;
      temp = virtual_outgoing_args_rtx;
      if (extra != 0 && below)
      if (extra != 0 && below)
        temp = plus_constant (temp, extra);
        temp = plus_constant (temp, extra);
    }
    }
  else
  else
    {
    {
      if (GET_CODE (size) == CONST_INT)
      if (GET_CODE (size) == CONST_INT)
        temp = plus_constant (virtual_outgoing_args_rtx,
        temp = plus_constant (virtual_outgoing_args_rtx,
                              -INTVAL (size) - (below ? 0 : extra));
                              -INTVAL (size) - (below ? 0 : extra));
      else if (extra != 0 && !below)
      else if (extra != 0 && !below)
        temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
        temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
                             negate_rtx (Pmode, plus_constant (size, extra)));
                             negate_rtx (Pmode, plus_constant (size, extra)));
      else
      else
        temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
        temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
                             negate_rtx (Pmode, size));
                             negate_rtx (Pmode, size));
    }
    }
 
 
  return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
  return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
}
}
 
 
#ifdef PUSH_ROUNDING
#ifdef PUSH_ROUNDING
 
 
/* Emit single push insn.  */
/* Emit single push insn.  */
 
 
static void
static void
emit_single_push_insn (enum machine_mode mode, rtx x, tree type)
emit_single_push_insn (enum machine_mode mode, rtx x, tree type)
{
{
  rtx dest_addr;
  rtx dest_addr;
  unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
  unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
  rtx dest;
  rtx dest;
  enum insn_code icode;
  enum insn_code icode;
  insn_operand_predicate_fn pred;
  insn_operand_predicate_fn pred;
 
 
  stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
  stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
  /* If there is push pattern, use it.  Otherwise try old way of throwing
  /* If there is push pattern, use it.  Otherwise try old way of throwing
     MEM representing push operation to move expander.  */
     MEM representing push operation to move expander.  */
  icode = push_optab->handlers[(int) mode].insn_code;
  icode = push_optab->handlers[(int) mode].insn_code;
  if (icode != CODE_FOR_nothing)
  if (icode != CODE_FOR_nothing)
    {
    {
      if (((pred = insn_data[(int) icode].operand[0].predicate)
      if (((pred = insn_data[(int) icode].operand[0].predicate)
           && !((*pred) (x, mode))))
           && !((*pred) (x, mode))))
        x = force_reg (mode, x);
        x = force_reg (mode, x);
      emit_insn (GEN_FCN (icode) (x));
      emit_insn (GEN_FCN (icode) (x));
      return;
      return;
    }
    }
  if (GET_MODE_SIZE (mode) == rounded_size)
  if (GET_MODE_SIZE (mode) == rounded_size)
    dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
    dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
  /* If we are to pad downward, adjust the stack pointer first and
  /* If we are to pad downward, adjust the stack pointer first and
     then store X into the stack location using an offset.  This is
     then store X into the stack location using an offset.  This is
     because emit_move_insn does not know how to pad; it does not have
     because emit_move_insn does not know how to pad; it does not have
     access to type.  */
     access to type.  */
  else if (FUNCTION_ARG_PADDING (mode, type) == downward)
  else if (FUNCTION_ARG_PADDING (mode, type) == downward)
    {
    {
      unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
      unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
      HOST_WIDE_INT offset;
      HOST_WIDE_INT offset;
 
 
      emit_move_insn (stack_pointer_rtx,
      emit_move_insn (stack_pointer_rtx,
                      expand_binop (Pmode,
                      expand_binop (Pmode,
#ifdef STACK_GROWS_DOWNWARD
#ifdef STACK_GROWS_DOWNWARD
                                    sub_optab,
                                    sub_optab,
#else
#else
                                    add_optab,
                                    add_optab,
#endif
#endif
                                    stack_pointer_rtx,
                                    stack_pointer_rtx,
                                    GEN_INT (rounded_size),
                                    GEN_INT (rounded_size),
                                    NULL_RTX, 0, OPTAB_LIB_WIDEN));
                                    NULL_RTX, 0, OPTAB_LIB_WIDEN));
 
 
      offset = (HOST_WIDE_INT) padding_size;
      offset = (HOST_WIDE_INT) padding_size;
#ifdef STACK_GROWS_DOWNWARD
#ifdef STACK_GROWS_DOWNWARD
      if (STACK_PUSH_CODE == POST_DEC)
      if (STACK_PUSH_CODE == POST_DEC)
        /* We have already decremented the stack pointer, so get the
        /* We have already decremented the stack pointer, so get the
           previous value.  */
           previous value.  */
        offset += (HOST_WIDE_INT) rounded_size;
        offset += (HOST_WIDE_INT) rounded_size;
#else
#else
      if (STACK_PUSH_CODE == POST_INC)
      if (STACK_PUSH_CODE == POST_INC)
        /* We have already incremented the stack pointer, so get the
        /* We have already incremented the stack pointer, so get the
           previous value.  */
           previous value.  */
        offset -= (HOST_WIDE_INT) rounded_size;
        offset -= (HOST_WIDE_INT) rounded_size;
#endif
#endif
      dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset));
      dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset));
    }
    }
  else
  else
    {
    {
#ifdef STACK_GROWS_DOWNWARD
#ifdef STACK_GROWS_DOWNWARD
      /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC.  */
      /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC.  */
      dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
      dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
                                GEN_INT (-(HOST_WIDE_INT) rounded_size));
                                GEN_INT (-(HOST_WIDE_INT) rounded_size));
#else
#else
      /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC.  */
      /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC.  */
      dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
      dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
                                GEN_INT (rounded_size));
                                GEN_INT (rounded_size));
#endif
#endif
      dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
      dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
    }
    }
 
 
  dest = gen_rtx_MEM (mode, dest_addr);
  dest = gen_rtx_MEM (mode, dest_addr);
 
 
  if (type != 0)
  if (type != 0)
    {
    {
      set_mem_attributes (dest, type, 1);
      set_mem_attributes (dest, type, 1);
 
 
      if (flag_optimize_sibling_calls)
      if (flag_optimize_sibling_calls)
        /* Function incoming arguments may overlap with sibling call
        /* Function incoming arguments may overlap with sibling call
           outgoing arguments and we cannot allow reordering of reads
           outgoing arguments and we cannot allow reordering of reads
           from function arguments with stores to outgoing arguments
           from function arguments with stores to outgoing arguments
           of sibling calls.  */
           of sibling calls.  */
        set_mem_alias_set (dest, 0);
        set_mem_alias_set (dest, 0);
    }
    }
  emit_move_insn (dest, x);
  emit_move_insn (dest, x);
}
}
#endif
#endif
 
 
/* Generate code to push X onto the stack, assuming it has mode MODE and
/* Generate code to push X onto the stack, assuming it has mode MODE and
   type TYPE.
   type TYPE.
   MODE is redundant except when X is a CONST_INT (since they don't
   MODE is redundant except when X is a CONST_INT (since they don't
   carry mode info).
   carry mode info).
   SIZE is an rtx for the size of data to be copied (in bytes),
   SIZE is an rtx for the size of data to be copied (in bytes),
   needed only if X is BLKmode.
   needed only if X is BLKmode.
 
 
   ALIGN (in bits) is maximum alignment we can assume.
   ALIGN (in bits) is maximum alignment we can assume.
 
 
   If PARTIAL and REG are both nonzero, then copy that many of the first
   If PARTIAL and REG are both nonzero, then copy that many of the first
   bytes of X into registers starting with REG, and push the rest of X.
   bytes of X into registers starting with REG, and push the rest of X.
   The amount of space pushed is decreased by PARTIAL bytes.
   The amount of space pushed is decreased by PARTIAL bytes.
   REG must be a hard register in this case.
   REG must be a hard register in this case.
   If REG is zero but PARTIAL is not, take any all others actions for an
   If REG is zero but PARTIAL is not, take any all others actions for an
   argument partially in registers, but do not actually load any
   argument partially in registers, but do not actually load any
   registers.
   registers.
 
 
   EXTRA is the amount in bytes of extra space to leave next to this arg.
   EXTRA is the amount in bytes of extra space to leave next to this arg.
   This is ignored if an argument block has already been allocated.
   This is ignored if an argument block has already been allocated.
 
 
   On a machine that lacks real push insns, ARGS_ADDR is the address of
   On a machine that lacks real push insns, ARGS_ADDR is the address of
   the bottom of the argument block for this call.  We use indexing off there
   the bottom of the argument block for this call.  We use indexing off there
   to store the arg.  On machines with push insns, ARGS_ADDR is 0 when a
   to store the arg.  On machines with push insns, ARGS_ADDR is 0 when a
   argument block has not been preallocated.
   argument block has not been preallocated.
 
 
   ARGS_SO_FAR is the size of args previously pushed for this call.
   ARGS_SO_FAR is the size of args previously pushed for this call.
 
 
   REG_PARM_STACK_SPACE is nonzero if functions require stack space
   REG_PARM_STACK_SPACE is nonzero if functions require stack space
   for arguments passed in registers.  If nonzero, it will be the number
   for arguments passed in registers.  If nonzero, it will be the number
   of bytes required.  */
   of bytes required.  */
 
 
void
void
emit_push_insn (rtx x, enum machine_mode mode, tree type, rtx size,
emit_push_insn (rtx x, enum machine_mode mode, tree type, rtx size,
                unsigned int align, int partial, rtx reg, int extra,
                unsigned int align, int partial, rtx reg, int extra,
                rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
                rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
                rtx alignment_pad)
                rtx alignment_pad)
{
{
  rtx xinner;
  rtx xinner;
  enum direction stack_direction
  enum direction stack_direction
#ifdef STACK_GROWS_DOWNWARD
#ifdef STACK_GROWS_DOWNWARD
    = downward;
    = downward;
#else
#else
    = upward;
    = upward;
#endif
#endif
 
 
  /* Decide where to pad the argument: `downward' for below,
  /* Decide where to pad the argument: `downward' for below,
     `upward' for above, or `none' for don't pad it.
     `upward' for above, or `none' for don't pad it.
     Default is below for small data on big-endian machines; else above.  */
     Default is below for small data on big-endian machines; else above.  */
  enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
  enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
 
 
  /* Invert direction if stack is post-decrement.
  /* Invert direction if stack is post-decrement.
     FIXME: why?  */
     FIXME: why?  */
  if (STACK_PUSH_CODE == POST_DEC)
  if (STACK_PUSH_CODE == POST_DEC)
    if (where_pad != none)
    if (where_pad != none)
      where_pad = (where_pad == downward ? upward : downward);
      where_pad = (where_pad == downward ? upward : downward);
 
 
  xinner = x;
  xinner = x;
 
 
  if (mode == BLKmode)
  if (mode == BLKmode)
    {
    {
      /* Copy a block into the stack, entirely or partially.  */
      /* Copy a block into the stack, entirely or partially.  */
 
 
      rtx temp;
      rtx temp;
      int used;
      int used;
      int offset;
      int offset;
      int skip;
      int skip;
 
 
      offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
      offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
      used = partial - offset;
      used = partial - offset;
 
 
      gcc_assert (size);
      gcc_assert (size);
 
 
      /* USED is now the # of bytes we need not copy to the stack
      /* USED is now the # of bytes we need not copy to the stack
         because registers will take care of them.  */
         because registers will take care of them.  */
 
 
      if (partial != 0)
      if (partial != 0)
        xinner = adjust_address (xinner, BLKmode, used);
        xinner = adjust_address (xinner, BLKmode, used);
 
 
      /* If the partial register-part of the arg counts in its stack size,
      /* If the partial register-part of the arg counts in its stack size,
         skip the part of stack space corresponding to the registers.
         skip the part of stack space corresponding to the registers.
         Otherwise, start copying to the beginning of the stack space,
         Otherwise, start copying to the beginning of the stack space,
         by setting SKIP to 0.  */
         by setting SKIP to 0.  */
      skip = (reg_parm_stack_space == 0) ? 0 : used;
      skip = (reg_parm_stack_space == 0) ? 0 : used;
 
 
#ifdef PUSH_ROUNDING
#ifdef PUSH_ROUNDING
      /* Do it with several push insns if that doesn't take lots of insns
      /* Do it with several push insns if that doesn't take lots of insns
         and if there is no difficulty with push insns that skip bytes
         and if there is no difficulty with push insns that skip bytes
         on the stack for alignment purposes.  */
         on the stack for alignment purposes.  */
      if (args_addr == 0
      if (args_addr == 0
          && PUSH_ARGS
          && PUSH_ARGS
          && GET_CODE (size) == CONST_INT
          && GET_CODE (size) == CONST_INT
          && skip == 0
          && skip == 0
          && MEM_ALIGN (xinner) >= align
          && MEM_ALIGN (xinner) >= align
          && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
          && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
          /* Here we avoid the case of a structure whose weak alignment
          /* Here we avoid the case of a structure whose weak alignment
             forces many pushes of a small amount of data,
             forces many pushes of a small amount of data,
             and such small pushes do rounding that causes trouble.  */
             and such small pushes do rounding that causes trouble.  */
          && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
          && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
              || align >= BIGGEST_ALIGNMENT
              || align >= BIGGEST_ALIGNMENT
              || (PUSH_ROUNDING (align / BITS_PER_UNIT)
              || (PUSH_ROUNDING (align / BITS_PER_UNIT)
                  == (align / BITS_PER_UNIT)))
                  == (align / BITS_PER_UNIT)))
          && PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
          && PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
        {
        {
          /* Push padding now if padding above and stack grows down,
          /* Push padding now if padding above and stack grows down,
             or if padding below and stack grows up.
             or if padding below and stack grows up.
             But if space already allocated, this has already been done.  */
             But if space already allocated, this has already been done.  */
          if (extra && args_addr == 0
          if (extra && args_addr == 0
              && where_pad != none && where_pad != stack_direction)
              && where_pad != none && where_pad != stack_direction)
            anti_adjust_stack (GEN_INT (extra));
            anti_adjust_stack (GEN_INT (extra));
 
 
          move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
          move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
        }
        }
      else
      else
#endif /* PUSH_ROUNDING  */
#endif /* PUSH_ROUNDING  */
        {
        {
          rtx target;
          rtx target;
 
 
          /* Otherwise make space on the stack and copy the data
          /* Otherwise make space on the stack and copy the data
             to the address of that space.  */
             to the address of that space.  */
 
 
          /* Deduct words put into registers from the size we must copy.  */
          /* Deduct words put into registers from the size we must copy.  */
          if (partial != 0)
          if (partial != 0)
            {
            {
              if (GET_CODE (size) == CONST_INT)
              if (GET_CODE (size) == CONST_INT)
                size = GEN_INT (INTVAL (size) - used);
                size = GEN_INT (INTVAL (size) - used);
              else
              else
                size = expand_binop (GET_MODE (size), sub_optab, size,
                size = expand_binop (GET_MODE (size), sub_optab, size,
                                     GEN_INT (used), NULL_RTX, 0,
                                     GEN_INT (used), NULL_RTX, 0,
                                     OPTAB_LIB_WIDEN);
                                     OPTAB_LIB_WIDEN);
            }
            }
 
 
          /* Get the address of the stack space.
          /* Get the address of the stack space.
             In this case, we do not deal with EXTRA separately.
             In this case, we do not deal with EXTRA separately.
             A single stack adjust will do.  */
             A single stack adjust will do.  */
          if (! args_addr)
          if (! args_addr)
            {
            {
              temp = push_block (size, extra, where_pad == downward);
              temp = push_block (size, extra, where_pad == downward);
              extra = 0;
              extra = 0;
            }
            }
          else if (GET_CODE (args_so_far) == CONST_INT)
          else if (GET_CODE (args_so_far) == CONST_INT)
            temp = memory_address (BLKmode,
            temp = memory_address (BLKmode,
                                   plus_constant (args_addr,
                                   plus_constant (args_addr,
                                                  skip + INTVAL (args_so_far)));
                                                  skip + INTVAL (args_so_far)));
          else
          else
            temp = memory_address (BLKmode,
            temp = memory_address (BLKmode,
                                   plus_constant (gen_rtx_PLUS (Pmode,
                                   plus_constant (gen_rtx_PLUS (Pmode,
                                                                args_addr,
                                                                args_addr,
                                                                args_so_far),
                                                                args_so_far),
                                                  skip));
                                                  skip));
 
 
          if (!ACCUMULATE_OUTGOING_ARGS)
          if (!ACCUMULATE_OUTGOING_ARGS)
            {
            {
              /* If the source is referenced relative to the stack pointer,
              /* If the source is referenced relative to the stack pointer,
                 copy it to another register to stabilize it.  We do not need
                 copy it to another register to stabilize it.  We do not need
                 to do this if we know that we won't be changing sp.  */
                 to do this if we know that we won't be changing sp.  */
 
 
              if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
              if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
                  || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
                  || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
                temp = copy_to_reg (temp);
                temp = copy_to_reg (temp);
            }
            }
 
 
          target = gen_rtx_MEM (BLKmode, temp);
          target = gen_rtx_MEM (BLKmode, temp);
 
 
          /* We do *not* set_mem_attributes here, because incoming arguments
          /* We do *not* set_mem_attributes here, because incoming arguments
             may overlap with sibling call outgoing arguments and we cannot
             may overlap with sibling call outgoing arguments and we cannot
             allow reordering of reads from function arguments with stores
             allow reordering of reads from function arguments with stores
             to outgoing arguments of sibling calls.  We do, however, want
             to outgoing arguments of sibling calls.  We do, however, want
             to record the alignment of the stack slot.  */
             to record the alignment of the stack slot.  */
          /* ALIGN may well be better aligned than TYPE, e.g. due to
          /* ALIGN may well be better aligned than TYPE, e.g. due to
             PARM_BOUNDARY.  Assume the caller isn't lying.  */
             PARM_BOUNDARY.  Assume the caller isn't lying.  */
          set_mem_align (target, align);
          set_mem_align (target, align);
 
 
          emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
          emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
        }
        }
    }
    }
  else if (partial > 0)
  else if (partial > 0)
    {
    {
      /* Scalar partly in registers.  */
      /* Scalar partly in registers.  */
 
 
      int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
      int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
      int i;
      int i;
      int not_stack;
      int not_stack;
      /* # bytes of start of argument
      /* # bytes of start of argument
         that we must make space for but need not store.  */
         that we must make space for but need not store.  */
      int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
      int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
      int args_offset = INTVAL (args_so_far);
      int args_offset = INTVAL (args_so_far);
      int skip;
      int skip;
 
 
      /* Push padding now if padding above and stack grows down,
      /* Push padding now if padding above and stack grows down,
         or if padding below and stack grows up.
         or if padding below and stack grows up.
         But if space already allocated, this has already been done.  */
         But if space already allocated, this has already been done.  */
      if (extra && args_addr == 0
      if (extra && args_addr == 0
          && where_pad != none && where_pad != stack_direction)
          && where_pad != none && where_pad != stack_direction)
        anti_adjust_stack (GEN_INT (extra));
        anti_adjust_stack (GEN_INT (extra));
 
 
      /* If we make space by pushing it, we might as well push
      /* If we make space by pushing it, we might as well push
         the real data.  Otherwise, we can leave OFFSET nonzero
         the real data.  Otherwise, we can leave OFFSET nonzero
         and leave the space uninitialized.  */
         and leave the space uninitialized.  */
      if (args_addr == 0)
      if (args_addr == 0)
        offset = 0;
        offset = 0;
 
 
      /* Now NOT_STACK gets the number of words that we don't need to
      /* Now NOT_STACK gets the number of words that we don't need to
         allocate on the stack.  Convert OFFSET to words too.  */
         allocate on the stack.  Convert OFFSET to words too.  */
      not_stack = (partial - offset) / UNITS_PER_WORD;
      not_stack = (partial - offset) / UNITS_PER_WORD;
      offset /= UNITS_PER_WORD;
      offset /= UNITS_PER_WORD;
 
 
      /* If the partial register-part of the arg counts in its stack size,
      /* If the partial register-part of the arg counts in its stack size,
         skip the part of stack space corresponding to the registers.
         skip the part of stack space corresponding to the registers.
         Otherwise, start copying to the beginning of the stack space,
         Otherwise, start copying to the beginning of the stack space,
         by setting SKIP to 0.  */
         by setting SKIP to 0.  */
      skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
      skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
 
 
      if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
      if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
        x = validize_mem (force_const_mem (mode, x));
        x = validize_mem (force_const_mem (mode, x));
 
 
      /* If X is a hard register in a non-integer mode, copy it into a pseudo;
      /* If X is a hard register in a non-integer mode, copy it into a pseudo;
         SUBREGs of such registers are not allowed.  */
         SUBREGs of such registers are not allowed.  */
      if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
      if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
           && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
           && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
        x = copy_to_reg (x);
        x = copy_to_reg (x);
 
 
      /* Loop over all the words allocated on the stack for this arg.  */
      /* Loop over all the words allocated on the stack for this arg.  */
      /* We can do it by words, because any scalar bigger than a word
      /* We can do it by words, because any scalar bigger than a word
         has a size a multiple of a word.  */
         has a size a multiple of a word.  */
#ifndef PUSH_ARGS_REVERSED
#ifndef PUSH_ARGS_REVERSED
      for (i = not_stack; i < size; i++)
      for (i = not_stack; i < size; i++)
#else
#else
      for (i = size - 1; i >= not_stack; i--)
      for (i = size - 1; i >= not_stack; i--)
#endif
#endif
        if (i >= not_stack + offset)
        if (i >= not_stack + offset)
          emit_push_insn (operand_subword_force (x, i, mode),
          emit_push_insn (operand_subword_force (x, i, mode),
                          word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
                          word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
                          0, args_addr,
                          0, args_addr,
                          GEN_INT (args_offset + ((i - not_stack + skip)
                          GEN_INT (args_offset + ((i - not_stack + skip)
                                                  * UNITS_PER_WORD)),
                                                  * UNITS_PER_WORD)),
                          reg_parm_stack_space, alignment_pad);
                          reg_parm_stack_space, alignment_pad);
    }
    }
  else
  else
    {
    {
      rtx addr;
      rtx addr;
      rtx dest;
      rtx dest;
 
 
      /* Push padding now if padding above and stack grows down,
      /* Push padding now if padding above and stack grows down,
         or if padding below and stack grows up.
         or if padding below and stack grows up.
         But if space already allocated, this has already been done.  */
         But if space already allocated, this has already been done.  */
      if (extra && args_addr == 0
      if (extra && args_addr == 0
          && where_pad != none && where_pad != stack_direction)
          && where_pad != none && where_pad != stack_direction)
        anti_adjust_stack (GEN_INT (extra));
        anti_adjust_stack (GEN_INT (extra));
 
 
#ifdef PUSH_ROUNDING
#ifdef PUSH_ROUNDING
      if (args_addr == 0 && PUSH_ARGS)
      if (args_addr == 0 && PUSH_ARGS)
        emit_single_push_insn (mode, x, type);
        emit_single_push_insn (mode, x, type);
      else
      else
#endif
#endif
        {
        {
          if (GET_CODE (args_so_far) == CONST_INT)
          if (GET_CODE (args_so_far) == CONST_INT)
            addr
            addr
              = memory_address (mode,
              = memory_address (mode,
                                plus_constant (args_addr,
                                plus_constant (args_addr,
                                               INTVAL (args_so_far)));
                                               INTVAL (args_so_far)));
          else
          else
            addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
            addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
                                                       args_so_far));
                                                       args_so_far));
          dest = gen_rtx_MEM (mode, addr);
          dest = gen_rtx_MEM (mode, addr);
 
 
          /* We do *not* set_mem_attributes here, because incoming arguments
          /* We do *not* set_mem_attributes here, because incoming arguments
             may overlap with sibling call outgoing arguments and we cannot
             may overlap with sibling call outgoing arguments and we cannot
             allow reordering of reads from function arguments with stores
             allow reordering of reads from function arguments with stores
             to outgoing arguments of sibling calls.  We do, however, want
             to outgoing arguments of sibling calls.  We do, however, want
             to record the alignment of the stack slot.  */
             to record the alignment of the stack slot.  */
          /* ALIGN may well be better aligned than TYPE, e.g. due to
          /* ALIGN may well be better aligned than TYPE, e.g. due to
             PARM_BOUNDARY.  Assume the caller isn't lying.  */
             PARM_BOUNDARY.  Assume the caller isn't lying.  */
          set_mem_align (dest, align);
          set_mem_align (dest, align);
 
 
          emit_move_insn (dest, x);
          emit_move_insn (dest, x);
        }
        }
    }
    }
 
 
  /* If part should go in registers, copy that part
  /* If part should go in registers, copy that part
     into the appropriate registers.  Do this now, at the end,
     into the appropriate registers.  Do this now, at the end,
     since mem-to-mem copies above may do function calls.  */
     since mem-to-mem copies above may do function calls.  */
  if (partial > 0 && reg != 0)
  if (partial > 0 && reg != 0)
    {
    {
      /* Handle calls that pass values in multiple non-contiguous locations.
      /* Handle calls that pass values in multiple non-contiguous locations.
         The Irix 6 ABI has examples of this.  */
         The Irix 6 ABI has examples of this.  */
      if (GET_CODE (reg) == PARALLEL)
      if (GET_CODE (reg) == PARALLEL)
        emit_group_load (reg, x, type, -1);
        emit_group_load (reg, x, type, -1);
      else
      else
        {
        {
          gcc_assert (partial % UNITS_PER_WORD == 0);
          gcc_assert (partial % UNITS_PER_WORD == 0);
          move_block_to_reg (REGNO (reg), x, partial / UNITS_PER_WORD, mode);
          move_block_to_reg (REGNO (reg), x, partial / UNITS_PER_WORD, mode);
        }
        }
    }
    }
 
 
  if (extra && args_addr == 0 && where_pad == stack_direction)
  if (extra && args_addr == 0 && where_pad == stack_direction)
    anti_adjust_stack (GEN_INT (extra));
    anti_adjust_stack (GEN_INT (extra));
 
 
  if (alignment_pad && args_addr == 0)
  if (alignment_pad && args_addr == 0)
    anti_adjust_stack (alignment_pad);
    anti_adjust_stack (alignment_pad);
}
}


/* Return X if X can be used as a subtarget in a sequence of arithmetic
/* Return X if X can be used as a subtarget in a sequence of arithmetic
   operations.  */
   operations.  */
 
 
static rtx
static rtx
get_subtarget (rtx x)
get_subtarget (rtx x)
{
{
  return (optimize
  return (optimize
          || x == 0
          || x == 0
           /* Only registers can be subtargets.  */
           /* Only registers can be subtargets.  */
           || !REG_P (x)
           || !REG_P (x)
           /* Don't use hard regs to avoid extending their life.  */
           /* Don't use hard regs to avoid extending their life.  */
           || REGNO (x) < FIRST_PSEUDO_REGISTER
           || REGNO (x) < FIRST_PSEUDO_REGISTER
          ? 0 : x);
          ? 0 : x);
}
}
 
 
/* A subroutine of expand_assignment.  Optimize FIELD op= VAL, where
/* A subroutine of expand_assignment.  Optimize FIELD op= VAL, where
   FIELD is a bitfield.  Returns true if the optimization was successful,
   FIELD is a bitfield.  Returns true if the optimization was successful,
   and there's nothing else to do.  */
   and there's nothing else to do.  */
 
 
static bool
static bool
optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
                                 unsigned HOST_WIDE_INT bitpos,
                                 unsigned HOST_WIDE_INT bitpos,
                                 enum machine_mode mode1, rtx str_rtx,
                                 enum machine_mode mode1, rtx str_rtx,
                                 tree to, tree src)
                                 tree to, tree src)
{
{
  enum machine_mode str_mode = GET_MODE (str_rtx);
  enum machine_mode str_mode = GET_MODE (str_rtx);
  unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
  unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
  tree op0, op1;
  tree op0, op1;
  rtx value, result;
  rtx value, result;
  optab binop;
  optab binop;
 
 
  if (mode1 != VOIDmode
  if (mode1 != VOIDmode
      || bitsize >= BITS_PER_WORD
      || bitsize >= BITS_PER_WORD
      || str_bitsize > BITS_PER_WORD
      || str_bitsize > BITS_PER_WORD
      || TREE_SIDE_EFFECTS (to)
      || TREE_SIDE_EFFECTS (to)
      || TREE_THIS_VOLATILE (to))
      || TREE_THIS_VOLATILE (to))
    return false;
    return false;
 
 
  STRIP_NOPS (src);
  STRIP_NOPS (src);
  if (!BINARY_CLASS_P (src)
  if (!BINARY_CLASS_P (src)
      || TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
      || TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
    return false;
    return false;
 
 
  op0 = TREE_OPERAND (src, 0);
  op0 = TREE_OPERAND (src, 0);
  op1 = TREE_OPERAND (src, 1);
  op1 = TREE_OPERAND (src, 1);
  STRIP_NOPS (op0);
  STRIP_NOPS (op0);
 
 
  if (!operand_equal_p (to, op0, 0))
  if (!operand_equal_p (to, op0, 0))
    return false;
    return false;
 
 
  if (MEM_P (str_rtx))
  if (MEM_P (str_rtx))
    {
    {
      unsigned HOST_WIDE_INT offset1;
      unsigned HOST_WIDE_INT offset1;
 
 
      if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
      if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
        str_mode = word_mode;
        str_mode = word_mode;
      str_mode = get_best_mode (bitsize, bitpos,
      str_mode = get_best_mode (bitsize, bitpos,
                                MEM_ALIGN (str_rtx), str_mode, 0);
                                MEM_ALIGN (str_rtx), str_mode, 0);
      if (str_mode == VOIDmode)
      if (str_mode == VOIDmode)
        return false;
        return false;
      str_bitsize = GET_MODE_BITSIZE (str_mode);
      str_bitsize = GET_MODE_BITSIZE (str_mode);
 
 
      offset1 = bitpos;
      offset1 = bitpos;
      bitpos %= str_bitsize;
      bitpos %= str_bitsize;
      offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
      offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
      str_rtx = adjust_address (str_rtx, str_mode, offset1);
      str_rtx = adjust_address (str_rtx, str_mode, offset1);
    }
    }
  else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
  else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
    return false;
    return false;
 
 
  /* If the bit field covers the whole REG/MEM, store_field
  /* If the bit field covers the whole REG/MEM, store_field
     will likely generate better code.  */
     will likely generate better code.  */
  if (bitsize >= str_bitsize)
  if (bitsize >= str_bitsize)
    return false;
    return false;
 
 
  /* We can't handle fields split across multiple entities.  */
  /* We can't handle fields split across multiple entities.  */
  if (bitpos + bitsize > str_bitsize)
  if (bitpos + bitsize > str_bitsize)
    return false;
    return false;
 
 
  if (BYTES_BIG_ENDIAN)
  if (BYTES_BIG_ENDIAN)
    bitpos = str_bitsize - bitpos - bitsize;
    bitpos = str_bitsize - bitpos - bitsize;
 
 
  switch (TREE_CODE (src))
  switch (TREE_CODE (src))
    {
    {
    case PLUS_EXPR:
    case PLUS_EXPR:
    case MINUS_EXPR:
    case MINUS_EXPR:
      /* For now, just optimize the case of the topmost bitfield
      /* For now, just optimize the case of the topmost bitfield
         where we don't need to do any masking and also
         where we don't need to do any masking and also
         1 bit bitfields where xor can be used.
         1 bit bitfields where xor can be used.
         We might win by one instruction for the other bitfields
         We might win by one instruction for the other bitfields
         too if insv/extv instructions aren't used, so that
         too if insv/extv instructions aren't used, so that
         can be added later.  */
         can be added later.  */
      if (bitpos + bitsize != str_bitsize
      if (bitpos + bitsize != str_bitsize
          && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
          && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
        break;
        break;
 
 
      value = expand_expr (op1, NULL_RTX, str_mode, 0);
      value = expand_expr (op1, NULL_RTX, str_mode, 0);
      value = convert_modes (str_mode,
      value = convert_modes (str_mode,
                             TYPE_MODE (TREE_TYPE (op1)), value,
                             TYPE_MODE (TREE_TYPE (op1)), value,
                             TYPE_UNSIGNED (TREE_TYPE (op1)));
                             TYPE_UNSIGNED (TREE_TYPE (op1)));
 
 
      /* We may be accessing data outside the field, which means
      /* We may be accessing data outside the field, which means
         we can alias adjacent data.  */
         we can alias adjacent data.  */
      if (MEM_P (str_rtx))
      if (MEM_P (str_rtx))
        {
        {
          str_rtx = shallow_copy_rtx (str_rtx);
          str_rtx = shallow_copy_rtx (str_rtx);
          set_mem_alias_set (str_rtx, 0);
          set_mem_alias_set (str_rtx, 0);
          set_mem_expr (str_rtx, 0);
          set_mem_expr (str_rtx, 0);
        }
        }
 
 
      binop = TREE_CODE (src) == PLUS_EXPR ? add_optab : sub_optab;
      binop = TREE_CODE (src) == PLUS_EXPR ? add_optab : sub_optab;
      if (bitsize == 1 && bitpos + bitsize != str_bitsize)
      if (bitsize == 1 && bitpos + bitsize != str_bitsize)
        {
        {
          value = expand_and (str_mode, value, const1_rtx, NULL);
          value = expand_and (str_mode, value, const1_rtx, NULL);
          binop = xor_optab;
          binop = xor_optab;
        }
        }
      value = expand_shift (LSHIFT_EXPR, str_mode, value,
      value = expand_shift (LSHIFT_EXPR, str_mode, value,
                            build_int_cst (NULL_TREE, bitpos),
                            build_int_cst (NULL_TREE, bitpos),
                            NULL_RTX, 1);
                            NULL_RTX, 1);
      result = expand_binop (str_mode, binop, str_rtx,
      result = expand_binop (str_mode, binop, str_rtx,
                             value, str_rtx, 1, OPTAB_WIDEN);
                             value, str_rtx, 1, OPTAB_WIDEN);
      if (result != str_rtx)
      if (result != str_rtx)
        emit_move_insn (str_rtx, result);
        emit_move_insn (str_rtx, result);
      return true;
      return true;
 
 
    case BIT_IOR_EXPR:
    case BIT_IOR_EXPR:
    case BIT_XOR_EXPR:
    case BIT_XOR_EXPR:
      if (TREE_CODE (op1) != INTEGER_CST)
      if (TREE_CODE (op1) != INTEGER_CST)
        break;
        break;
      value = expand_expr (op1, NULL_RTX, GET_MODE (str_rtx), 0);
      value = expand_expr (op1, NULL_RTX, GET_MODE (str_rtx), 0);
      value = convert_modes (GET_MODE (str_rtx),
      value = convert_modes (GET_MODE (str_rtx),
                             TYPE_MODE (TREE_TYPE (op1)), value,
                             TYPE_MODE (TREE_TYPE (op1)), value,
                             TYPE_UNSIGNED (TREE_TYPE (op1)));
                             TYPE_UNSIGNED (TREE_TYPE (op1)));
 
 
      /* We may be accessing data outside the field, which means
      /* We may be accessing data outside the field, which means
         we can alias adjacent data.  */
         we can alias adjacent data.  */
      if (MEM_P (str_rtx))
      if (MEM_P (str_rtx))
        {
        {
          str_rtx = shallow_copy_rtx (str_rtx);
          str_rtx = shallow_copy_rtx (str_rtx);
          set_mem_alias_set (str_rtx, 0);
          set_mem_alias_set (str_rtx, 0);
          set_mem_expr (str_rtx, 0);
          set_mem_expr (str_rtx, 0);
        }
        }
 
 
      binop = TREE_CODE (src) == BIT_IOR_EXPR ? ior_optab : xor_optab;
      binop = TREE_CODE (src) == BIT_IOR_EXPR ? ior_optab : xor_optab;
      if (bitpos + bitsize != GET_MODE_BITSIZE (GET_MODE (str_rtx)))
      if (bitpos + bitsize != GET_MODE_BITSIZE (GET_MODE (str_rtx)))
        {
        {
          rtx mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << bitsize)
          rtx mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << bitsize)
                              - 1);
                              - 1);
          value = expand_and (GET_MODE (str_rtx), value, mask,
          value = expand_and (GET_MODE (str_rtx), value, mask,
                              NULL_RTX);
                              NULL_RTX);
        }
        }
      value = expand_shift (LSHIFT_EXPR, GET_MODE (str_rtx), value,
      value = expand_shift (LSHIFT_EXPR, GET_MODE (str_rtx), value,
                            build_int_cst (NULL_TREE, bitpos),
                            build_int_cst (NULL_TREE, bitpos),
                            NULL_RTX, 1);
                            NULL_RTX, 1);
      result = expand_binop (GET_MODE (str_rtx), binop, str_rtx,
      result = expand_binop (GET_MODE (str_rtx), binop, str_rtx,
                             value, str_rtx, 1, OPTAB_WIDEN);
                             value, str_rtx, 1, OPTAB_WIDEN);
      if (result != str_rtx)
      if (result != str_rtx)
        emit_move_insn (str_rtx, result);
        emit_move_insn (str_rtx, result);
      return true;
      return true;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  return false;
  return false;
}
}
 
 
 
 
/* Expand an assignment that stores the value of FROM into TO.  */
/* Expand an assignment that stores the value of FROM into TO.  */
 
 
void
void
expand_assignment (tree to, tree from)
expand_assignment (tree to, tree from)
{
{
  rtx to_rtx = 0;
  rtx to_rtx = 0;
  rtx result;
  rtx result;
 
 
  /* Don't crash if the lhs of the assignment was erroneous.  */
  /* Don't crash if the lhs of the assignment was erroneous.  */
  if (TREE_CODE (to) == ERROR_MARK)
  if (TREE_CODE (to) == ERROR_MARK)
    {
    {
      result = expand_normal (from);
      result = expand_normal (from);
      return;
      return;
    }
    }
 
 
  /* Optimize away no-op moves without side-effects.  */
  /* Optimize away no-op moves without side-effects.  */
  if (operand_equal_p (to, from, 0))
  if (operand_equal_p (to, from, 0))
    return;
    return;
 
 
  /* Assignment of a structure component needs special treatment
  /* Assignment of a structure component needs special treatment
     if the structure component's rtx is not simply a MEM.
     if the structure component's rtx is not simply a MEM.
     Assignment of an array element at a constant index, and assignment of
     Assignment of an array element at a constant index, and assignment of
     an array element in an unaligned packed structure field, has the same
     an array element in an unaligned packed structure field, has the same
     problem.  */
     problem.  */
  if (handled_component_p (to)
  if (handled_component_p (to)
      || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
      || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
    {
    {
      enum machine_mode mode1;
      enum machine_mode mode1;
      HOST_WIDE_INT bitsize, bitpos;
      HOST_WIDE_INT bitsize, bitpos;
      tree offset;
      tree offset;
      int unsignedp;
      int unsignedp;
      int volatilep = 0;
      int volatilep = 0;
      tree tem;
      tree tem;
 
 
      push_temp_slots ();
      push_temp_slots ();
      tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
      tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
                                 &unsignedp, &volatilep, true);
                                 &unsignedp, &volatilep, true);
 
 
      /* If we are going to use store_bit_field and extract_bit_field,
      /* If we are going to use store_bit_field and extract_bit_field,
         make sure to_rtx will be safe for multiple use.  */
         make sure to_rtx will be safe for multiple use.  */
 
 
      to_rtx = expand_normal (tem);
      to_rtx = expand_normal (tem);
 
 
      if (offset != 0)
      if (offset != 0)
        {
        {
          rtx offset_rtx;
          rtx offset_rtx;
 
 
          if (!MEM_P (to_rtx))
          if (!MEM_P (to_rtx))
            {
            {
              /* We can get constant negative offsets into arrays with broken
              /* We can get constant negative offsets into arrays with broken
                 user code.  Translate this to a trap instead of ICEing.  */
                 user code.  Translate this to a trap instead of ICEing.  */
              gcc_assert (TREE_CODE (offset) == INTEGER_CST);
              gcc_assert (TREE_CODE (offset) == INTEGER_CST);
              expand_builtin_trap ();
              expand_builtin_trap ();
              to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
              to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
            }
            }
 
 
          offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
          offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
#ifdef POINTERS_EXTEND_UNSIGNED
#ifdef POINTERS_EXTEND_UNSIGNED
          if (GET_MODE (offset_rtx) != Pmode)
          if (GET_MODE (offset_rtx) != Pmode)
            offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
            offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
#else
#else
          if (GET_MODE (offset_rtx) != ptr_mode)
          if (GET_MODE (offset_rtx) != ptr_mode)
            offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
            offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
#endif
#endif
 
 
          /* A constant address in TO_RTX can have VOIDmode, we must not try
          /* A constant address in TO_RTX can have VOIDmode, we must not try
             to call force_reg for that case.  Avoid that case.  */
             to call force_reg for that case.  Avoid that case.  */
          if (MEM_P (to_rtx)
          if (MEM_P (to_rtx)
              && GET_MODE (to_rtx) == BLKmode
              && GET_MODE (to_rtx) == BLKmode
              && GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
              && GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
              && bitsize > 0
              && bitsize > 0
              && (bitpos % bitsize) == 0
              && (bitpos % bitsize) == 0
              && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
              && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
              && MEM_ALIGN (to_rtx) == GET_MODE_ALIGNMENT (mode1))
              && MEM_ALIGN (to_rtx) == GET_MODE_ALIGNMENT (mode1))
            {
            {
              to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
              to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
              bitpos = 0;
              bitpos = 0;
            }
            }
 
 
          to_rtx = offset_address (to_rtx, offset_rtx,
          to_rtx = offset_address (to_rtx, offset_rtx,
                                   highest_pow2_factor_for_target (to,
                                   highest_pow2_factor_for_target (to,
                                                                   offset));
                                                                   offset));
        }
        }
 
 
      /* Handle expand_expr of a complex value returning a CONCAT.  */
      /* Handle expand_expr of a complex value returning a CONCAT.  */
      if (GET_CODE (to_rtx) == CONCAT)
      if (GET_CODE (to_rtx) == CONCAT)
        {
        {
          if (TREE_CODE (TREE_TYPE (from)) == COMPLEX_TYPE)
          if (TREE_CODE (TREE_TYPE (from)) == COMPLEX_TYPE)
            {
            {
              gcc_assert (bitpos == 0);
              gcc_assert (bitpos == 0);
              result = store_expr (from, to_rtx, false);
              result = store_expr (from, to_rtx, false);
            }
            }
          else
          else
            {
            {
              gcc_assert (bitpos == 0 || bitpos == GET_MODE_BITSIZE (mode1));
              gcc_assert (bitpos == 0 || bitpos == GET_MODE_BITSIZE (mode1));
              result = store_expr (from, XEXP (to_rtx, bitpos != 0), false);
              result = store_expr (from, XEXP (to_rtx, bitpos != 0), false);
            }
            }
        }
        }
      else
      else
        {
        {
          if (MEM_P (to_rtx))
          if (MEM_P (to_rtx))
            {
            {
              /* If the field is at offset zero, we could have been given the
              /* If the field is at offset zero, we could have been given the
                 DECL_RTX of the parent struct.  Don't munge it.  */
                 DECL_RTX of the parent struct.  Don't munge it.  */
              to_rtx = shallow_copy_rtx (to_rtx);
              to_rtx = shallow_copy_rtx (to_rtx);
 
 
              set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
              set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
 
 
              /* Deal with volatile and readonly fields.  The former is only
              /* Deal with volatile and readonly fields.  The former is only
                 done for MEM.  Also set MEM_KEEP_ALIAS_SET_P if needed.  */
                 done for MEM.  Also set MEM_KEEP_ALIAS_SET_P if needed.  */
              if (volatilep)
              if (volatilep)
                MEM_VOLATILE_P (to_rtx) = 1;
                MEM_VOLATILE_P (to_rtx) = 1;
              if (component_uses_parent_alias_set (to))
              if (component_uses_parent_alias_set (to))
                MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
                MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
            }
            }
 
 
          if (optimize_bitfield_assignment_op (bitsize, bitpos, mode1,
          if (optimize_bitfield_assignment_op (bitsize, bitpos, mode1,
                                               to_rtx, to, from))
                                               to_rtx, to, from))
            result = NULL;
            result = NULL;
          else
          else
            result = store_field (to_rtx, bitsize, bitpos, mode1, from,
            result = store_field (to_rtx, bitsize, bitpos, mode1, from,
                                  TREE_TYPE (tem), get_alias_set (to));
                                  TREE_TYPE (tem), get_alias_set (to));
        }
        }
 
 
      if (result)
      if (result)
        preserve_temp_slots (result);
        preserve_temp_slots (result);
      free_temp_slots ();
      free_temp_slots ();
      pop_temp_slots ();
      pop_temp_slots ();
      return;
      return;
    }
    }
 
 
  /* If the rhs is a function call and its value is not an aggregate,
  /* If the rhs is a function call and its value is not an aggregate,
     call the function before we start to compute the lhs.
     call the function before we start to compute the lhs.
     This is needed for correct code for cases such as
     This is needed for correct code for cases such as
     val = setjmp (buf) on machines where reference to val
     val = setjmp (buf) on machines where reference to val
     requires loading up part of an address in a separate insn.
     requires loading up part of an address in a separate insn.
 
 
     Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
     Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
     since it might be a promoted variable where the zero- or sign- extension
     since it might be a promoted variable where the zero- or sign- extension
     needs to be done.  Handling this in the normal way is safe because no
     needs to be done.  Handling this in the normal way is safe because no
     computation is done before the call.  */
     computation is done before the call.  */
  if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
  if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
      && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
      && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
      && ! ((TREE_CODE (to) == VAR_DECL || TREE_CODE (to) == PARM_DECL)
      && ! ((TREE_CODE (to) == VAR_DECL || TREE_CODE (to) == PARM_DECL)
            && REG_P (DECL_RTL (to))))
            && REG_P (DECL_RTL (to))))
    {
    {
      rtx value;
      rtx value;
 
 
      push_temp_slots ();
      push_temp_slots ();
      value = expand_normal (from);
      value = expand_normal (from);
      if (to_rtx == 0)
      if (to_rtx == 0)
        to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
        to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
 
 
      /* Handle calls that return values in multiple non-contiguous locations.
      /* Handle calls that return values in multiple non-contiguous locations.
         The Irix 6 ABI has examples of this.  */
         The Irix 6 ABI has examples of this.  */
      if (GET_CODE (to_rtx) == PARALLEL)
      if (GET_CODE (to_rtx) == PARALLEL)
        emit_group_load (to_rtx, value, TREE_TYPE (from),
        emit_group_load (to_rtx, value, TREE_TYPE (from),
                         int_size_in_bytes (TREE_TYPE (from)));
                         int_size_in_bytes (TREE_TYPE (from)));
      else if (GET_MODE (to_rtx) == BLKmode)
      else if (GET_MODE (to_rtx) == BLKmode)
        emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
        emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
      else
      else
        {
        {
          if (POINTER_TYPE_P (TREE_TYPE (to)))
          if (POINTER_TYPE_P (TREE_TYPE (to)))
            value = convert_memory_address (GET_MODE (to_rtx), value);
            value = convert_memory_address (GET_MODE (to_rtx), value);
          emit_move_insn (to_rtx, value);
          emit_move_insn (to_rtx, value);
        }
        }
      preserve_temp_slots (to_rtx);
      preserve_temp_slots (to_rtx);
      free_temp_slots ();
      free_temp_slots ();
      pop_temp_slots ();
      pop_temp_slots ();
      return;
      return;
    }
    }
 
 
  /* Ordinary treatment.  Expand TO to get a REG or MEM rtx.
  /* Ordinary treatment.  Expand TO to get a REG or MEM rtx.
     Don't re-expand if it was expanded already (in COMPONENT_REF case).  */
     Don't re-expand if it was expanded already (in COMPONENT_REF case).  */
 
 
  if (to_rtx == 0)
  if (to_rtx == 0)
    to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
    to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
 
 
  /* Don't move directly into a return register.  */
  /* Don't move directly into a return register.  */
  if (TREE_CODE (to) == RESULT_DECL
  if (TREE_CODE (to) == RESULT_DECL
      && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
      && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
    {
    {
      rtx temp;
      rtx temp;
 
 
      push_temp_slots ();
      push_temp_slots ();
      temp = expand_expr (from, 0, GET_MODE (to_rtx), 0);
      temp = expand_expr (from, 0, GET_MODE (to_rtx), 0);
 
 
      if (GET_CODE (to_rtx) == PARALLEL)
      if (GET_CODE (to_rtx) == PARALLEL)
        emit_group_load (to_rtx, temp, TREE_TYPE (from),
        emit_group_load (to_rtx, temp, TREE_TYPE (from),
                         int_size_in_bytes (TREE_TYPE (from)));
                         int_size_in_bytes (TREE_TYPE (from)));
      else
      else
        emit_move_insn (to_rtx, temp);
        emit_move_insn (to_rtx, temp);
 
 
      preserve_temp_slots (to_rtx);
      preserve_temp_slots (to_rtx);
      free_temp_slots ();
      free_temp_slots ();
      pop_temp_slots ();
      pop_temp_slots ();
      return;
      return;
    }
    }
 
 
  /* In case we are returning the contents of an object which overlaps
  /* In case we are returning the contents of an object which overlaps
     the place the value is being stored, use a safe function when copying
     the place the value is being stored, use a safe function when copying
     a value through a pointer into a structure value return block.  */
     a value through a pointer into a structure value return block.  */
  if (TREE_CODE (to) == RESULT_DECL && TREE_CODE (from) == INDIRECT_REF
  if (TREE_CODE (to) == RESULT_DECL && TREE_CODE (from) == INDIRECT_REF
      && current_function_returns_struct
      && current_function_returns_struct
      && !current_function_returns_pcc_struct)
      && !current_function_returns_pcc_struct)
    {
    {
      rtx from_rtx, size;
      rtx from_rtx, size;
 
 
      push_temp_slots ();
      push_temp_slots ();
      size = expr_size (from);
      size = expr_size (from);
      from_rtx = expand_normal (from);
      from_rtx = expand_normal (from);
 
 
      emit_library_call (memmove_libfunc, LCT_NORMAL,
      emit_library_call (memmove_libfunc, LCT_NORMAL,
                         VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
                         VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
                         XEXP (from_rtx, 0), Pmode,
                         XEXP (from_rtx, 0), Pmode,
                         convert_to_mode (TYPE_MODE (sizetype),
                         convert_to_mode (TYPE_MODE (sizetype),
                                          size, TYPE_UNSIGNED (sizetype)),
                                          size, TYPE_UNSIGNED (sizetype)),
                         TYPE_MODE (sizetype));
                         TYPE_MODE (sizetype));
 
 
      preserve_temp_slots (to_rtx);
      preserve_temp_slots (to_rtx);
      free_temp_slots ();
      free_temp_slots ();
      pop_temp_slots ();
      pop_temp_slots ();
      return;
      return;
    }
    }
 
 
  /* Compute FROM and store the value in the rtx we got.  */
  /* Compute FROM and store the value in the rtx we got.  */
 
 
  push_temp_slots ();
  push_temp_slots ();
  result = store_expr (from, to_rtx, 0);
  result = store_expr (from, to_rtx, 0);
  preserve_temp_slots (result);
  preserve_temp_slots (result);
  free_temp_slots ();
  free_temp_slots ();
  pop_temp_slots ();
  pop_temp_slots ();
  return;
  return;
}
}
 
 
/* Generate code for computing expression EXP,
/* Generate code for computing expression EXP,
   and storing the value into TARGET.
   and storing the value into TARGET.
 
 
   If the mode is BLKmode then we may return TARGET itself.
   If the mode is BLKmode then we may return TARGET itself.
   It turns out that in BLKmode it doesn't cause a problem.
   It turns out that in BLKmode it doesn't cause a problem.
   because C has no operators that could combine two different
   because C has no operators that could combine two different
   assignments into the same BLKmode object with different values
   assignments into the same BLKmode object with different values
   with no sequence point.  Will other languages need this to
   with no sequence point.  Will other languages need this to
   be more thorough?
   be more thorough?
 
 
   If CALL_PARAM_P is nonzero, this is a store into a call param on the
   If CALL_PARAM_P is nonzero, this is a store into a call param on the
   stack, and block moves may need to be treated specially.  */
   stack, and block moves may need to be treated specially.  */
 
 
rtx
rtx
store_expr (tree exp, rtx target, int call_param_p)
store_expr (tree exp, rtx target, int call_param_p)
{
{
  rtx temp;
  rtx temp;
  rtx alt_rtl = NULL_RTX;
  rtx alt_rtl = NULL_RTX;
  int dont_return_target = 0;
  int dont_return_target = 0;
 
 
  if (VOID_TYPE_P (TREE_TYPE (exp)))
  if (VOID_TYPE_P (TREE_TYPE (exp)))
    {
    {
      /* C++ can generate ?: expressions with a throw expression in one
      /* C++ can generate ?: expressions with a throw expression in one
         branch and an rvalue in the other. Here, we resolve attempts to
         branch and an rvalue in the other. Here, we resolve attempts to
         store the throw expression's nonexistent result.  */
         store the throw expression's nonexistent result.  */
      gcc_assert (!call_param_p);
      gcc_assert (!call_param_p);
      expand_expr (exp, const0_rtx, VOIDmode, 0);
      expand_expr (exp, const0_rtx, VOIDmode, 0);
      return NULL_RTX;
      return NULL_RTX;
    }
    }
  if (TREE_CODE (exp) == COMPOUND_EXPR)
  if (TREE_CODE (exp) == COMPOUND_EXPR)
    {
    {
      /* Perform first part of compound expression, then assign from second
      /* Perform first part of compound expression, then assign from second
         part.  */
         part.  */
      expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
      expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
                   call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
                   call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
      return store_expr (TREE_OPERAND (exp, 1), target, call_param_p);
      return store_expr (TREE_OPERAND (exp, 1), target, call_param_p);
    }
    }
  else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
  else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
    {
    {
      /* For conditional expression, get safe form of the target.  Then
      /* For conditional expression, get safe form of the target.  Then
         test the condition, doing the appropriate assignment on either
         test the condition, doing the appropriate assignment on either
         side.  This avoids the creation of unnecessary temporaries.
         side.  This avoids the creation of unnecessary temporaries.
         For non-BLKmode, it is more efficient not to do this.  */
         For non-BLKmode, it is more efficient not to do this.  */
 
 
      rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
      rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
 
 
      do_pending_stack_adjust ();
      do_pending_stack_adjust ();
      NO_DEFER_POP;
      NO_DEFER_POP;
      jumpifnot (TREE_OPERAND (exp, 0), lab1);
      jumpifnot (TREE_OPERAND (exp, 0), lab1);
      store_expr (TREE_OPERAND (exp, 1), target, call_param_p);
      store_expr (TREE_OPERAND (exp, 1), target, call_param_p);
      emit_jump_insn (gen_jump (lab2));
      emit_jump_insn (gen_jump (lab2));
      emit_barrier ();
      emit_barrier ();
      emit_label (lab1);
      emit_label (lab1);
      store_expr (TREE_OPERAND (exp, 2), target, call_param_p);
      store_expr (TREE_OPERAND (exp, 2), target, call_param_p);
      emit_label (lab2);
      emit_label (lab2);
      OK_DEFER_POP;
      OK_DEFER_POP;
 
 
      return NULL_RTX;
      return NULL_RTX;
    }
    }
  else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
  else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
    /* If this is a scalar in a register that is stored in a wider mode
    /* If this is a scalar in a register that is stored in a wider mode
       than the declared mode, compute the result into its declared mode
       than the declared mode, compute the result into its declared mode
       and then convert to the wider mode.  Our value is the computed
       and then convert to the wider mode.  Our value is the computed
       expression.  */
       expression.  */
    {
    {
      rtx inner_target = 0;
      rtx inner_target = 0;
 
 
      /* We can do the conversion inside EXP, which will often result
      /* We can do the conversion inside EXP, which will often result
         in some optimizations.  Do the conversion in two steps: first
         in some optimizations.  Do the conversion in two steps: first
         change the signedness, if needed, then the extend.  But don't
         change the signedness, if needed, then the extend.  But don't
         do this if the type of EXP is a subtype of something else
         do this if the type of EXP is a subtype of something else
         since then the conversion might involve more than just
         since then the conversion might involve more than just
         converting modes.  */
         converting modes.  */
      if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
      if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
          && TREE_TYPE (TREE_TYPE (exp)) == 0
          && TREE_TYPE (TREE_TYPE (exp)) == 0
          && (!lang_hooks.reduce_bit_field_operations
          && (!lang_hooks.reduce_bit_field_operations
              || (GET_MODE_PRECISION (GET_MODE (target))
              || (GET_MODE_PRECISION (GET_MODE (target))
                  == TYPE_PRECISION (TREE_TYPE (exp)))))
                  == TYPE_PRECISION (TREE_TYPE (exp)))))
        {
        {
          if (TYPE_UNSIGNED (TREE_TYPE (exp))
          if (TYPE_UNSIGNED (TREE_TYPE (exp))
              != SUBREG_PROMOTED_UNSIGNED_P (target))
              != SUBREG_PROMOTED_UNSIGNED_P (target))
            exp = fold_convert
            exp = fold_convert
              (lang_hooks.types.signed_or_unsigned_type
              (lang_hooks.types.signed_or_unsigned_type
               (SUBREG_PROMOTED_UNSIGNED_P (target), TREE_TYPE (exp)), exp);
               (SUBREG_PROMOTED_UNSIGNED_P (target), TREE_TYPE (exp)), exp);
 
 
          exp = fold_convert (lang_hooks.types.type_for_mode
          exp = fold_convert (lang_hooks.types.type_for_mode
                                (GET_MODE (SUBREG_REG (target)),
                                (GET_MODE (SUBREG_REG (target)),
                                 SUBREG_PROMOTED_UNSIGNED_P (target)),
                                 SUBREG_PROMOTED_UNSIGNED_P (target)),
                              exp);
                              exp);
 
 
          inner_target = SUBREG_REG (target);
          inner_target = SUBREG_REG (target);
        }
        }
 
 
      temp = expand_expr (exp, inner_target, VOIDmode,
      temp = expand_expr (exp, inner_target, VOIDmode,
                          call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
                          call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
 
 
      /* If TEMP is a VOIDmode constant, use convert_modes to make
      /* If TEMP is a VOIDmode constant, use convert_modes to make
         sure that we properly convert it.  */
         sure that we properly convert it.  */
      if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
      if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
        {
        {
          temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
          temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
                                temp, SUBREG_PROMOTED_UNSIGNED_P (target));
                                temp, SUBREG_PROMOTED_UNSIGNED_P (target));
          temp = convert_modes (GET_MODE (SUBREG_REG (target)),
          temp = convert_modes (GET_MODE (SUBREG_REG (target)),
                                GET_MODE (target), temp,
                                GET_MODE (target), temp,
                                SUBREG_PROMOTED_UNSIGNED_P (target));
                                SUBREG_PROMOTED_UNSIGNED_P (target));
        }
        }
 
 
      convert_move (SUBREG_REG (target), temp,
      convert_move (SUBREG_REG (target), temp,
                    SUBREG_PROMOTED_UNSIGNED_P (target));
                    SUBREG_PROMOTED_UNSIGNED_P (target));
 
 
      return NULL_RTX;
      return NULL_RTX;
    }
    }
  else
  else
    {
    {
      temp = expand_expr_real (exp, target, GET_MODE (target),
      temp = expand_expr_real (exp, target, GET_MODE (target),
                               (call_param_p
                               (call_param_p
                                ? EXPAND_STACK_PARM : EXPAND_NORMAL),
                                ? EXPAND_STACK_PARM : EXPAND_NORMAL),
                               &alt_rtl);
                               &alt_rtl);
      /* Return TARGET if it's a specified hardware register.
      /* Return TARGET if it's a specified hardware register.
         If TARGET is a volatile mem ref, either return TARGET
         If TARGET is a volatile mem ref, either return TARGET
         or return a reg copied *from* TARGET; ANSI requires this.
         or return a reg copied *from* TARGET; ANSI requires this.
 
 
         Otherwise, if TEMP is not TARGET, return TEMP
         Otherwise, if TEMP is not TARGET, return TEMP
         if it is constant (for efficiency),
         if it is constant (for efficiency),
         or if we really want the correct value.  */
         or if we really want the correct value.  */
      if (!(target && REG_P (target)
      if (!(target && REG_P (target)
            && REGNO (target) < FIRST_PSEUDO_REGISTER)
            && REGNO (target) < FIRST_PSEUDO_REGISTER)
          && !(MEM_P (target) && MEM_VOLATILE_P (target))
          && !(MEM_P (target) && MEM_VOLATILE_P (target))
          && ! rtx_equal_p (temp, target)
          && ! rtx_equal_p (temp, target)
          && CONSTANT_P (temp))
          && CONSTANT_P (temp))
        dont_return_target = 1;
        dont_return_target = 1;
    }
    }
 
 
  /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
  /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
     the same as that of TARGET, adjust the constant.  This is needed, for
     the same as that of TARGET, adjust the constant.  This is needed, for
     example, in case it is a CONST_DOUBLE and we want only a word-sized
     example, in case it is a CONST_DOUBLE and we want only a word-sized
     value.  */
     value.  */
  if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
  if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
      && TREE_CODE (exp) != ERROR_MARK
      && TREE_CODE (exp) != ERROR_MARK
      && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
      && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
    temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
    temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
                          temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
                          temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
 
 
  /* If value was not generated in the target, store it there.
  /* If value was not generated in the target, store it there.
     Convert the value to TARGET's type first if necessary and emit the
     Convert the value to TARGET's type first if necessary and emit the
     pending incrementations that have been queued when expanding EXP.
     pending incrementations that have been queued when expanding EXP.
     Note that we cannot emit the whole queue blindly because this will
     Note that we cannot emit the whole queue blindly because this will
     effectively disable the POST_INC optimization later.
     effectively disable the POST_INC optimization later.
 
 
     If TEMP and TARGET compare equal according to rtx_equal_p, but
     If TEMP and TARGET compare equal according to rtx_equal_p, but
     one or both of them are volatile memory refs, we have to distinguish
     one or both of them are volatile memory refs, we have to distinguish
     two cases:
     two cases:
     - expand_expr has used TARGET.  In this case, we must not generate
     - expand_expr has used TARGET.  In this case, we must not generate
       another copy.  This can be detected by TARGET being equal according
       another copy.  This can be detected by TARGET being equal according
       to == .
       to == .
     - expand_expr has not used TARGET - that means that the source just
     - expand_expr has not used TARGET - that means that the source just
       happens to have the same RTX form.  Since temp will have been created
       happens to have the same RTX form.  Since temp will have been created
       by expand_expr, it will compare unequal according to == .
       by expand_expr, it will compare unequal according to == .
       We must generate a copy in this case, to reach the correct number
       We must generate a copy in this case, to reach the correct number
       of volatile memory references.  */
       of volatile memory references.  */
 
 
  if ((! rtx_equal_p (temp, target)
  if ((! rtx_equal_p (temp, target)
       || (temp != target && (side_effects_p (temp)
       || (temp != target && (side_effects_p (temp)
                              || side_effects_p (target))))
                              || side_effects_p (target))))
      && TREE_CODE (exp) != ERROR_MARK
      && TREE_CODE (exp) != ERROR_MARK
      /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
      /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
         but TARGET is not valid memory reference, TEMP will differ
         but TARGET is not valid memory reference, TEMP will differ
         from TARGET although it is really the same location.  */
         from TARGET although it is really the same location.  */
      && !(alt_rtl && rtx_equal_p (alt_rtl, target))
      && !(alt_rtl && rtx_equal_p (alt_rtl, target))
      /* If there's nothing to copy, don't bother.  Don't call
      /* If there's nothing to copy, don't bother.  Don't call
         expr_size unless necessary, because some front-ends (C++)
         expr_size unless necessary, because some front-ends (C++)
         expr_size-hook must not be given objects that are not
         expr_size-hook must not be given objects that are not
         supposed to be bit-copied or bit-initialized.  */
         supposed to be bit-copied or bit-initialized.  */
      && expr_size (exp) != const0_rtx)
      && expr_size (exp) != const0_rtx)
    {
    {
      if (GET_MODE (temp) != GET_MODE (target)
      if (GET_MODE (temp) != GET_MODE (target)
          && GET_MODE (temp) != VOIDmode)
          && GET_MODE (temp) != VOIDmode)
        {
        {
          int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
          int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
          if (dont_return_target)
          if (dont_return_target)
            {
            {
              /* In this case, we will return TEMP,
              /* In this case, we will return TEMP,
                 so make sure it has the proper mode.
                 so make sure it has the proper mode.
                 But don't forget to store the value into TARGET.  */
                 But don't forget to store the value into TARGET.  */
              temp = convert_to_mode (GET_MODE (target), temp, unsignedp);
              temp = convert_to_mode (GET_MODE (target), temp, unsignedp);
              emit_move_insn (target, temp);
              emit_move_insn (target, temp);
            }
            }
          else
          else
            convert_move (target, temp, unsignedp);
            convert_move (target, temp, unsignedp);
        }
        }
 
 
      else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
      else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
        {
        {
          /* Handle copying a string constant into an array.  The string
          /* Handle copying a string constant into an array.  The string
             constant may be shorter than the array.  So copy just the string's
             constant may be shorter than the array.  So copy just the string's
             actual length, and clear the rest.  First get the size of the data
             actual length, and clear the rest.  First get the size of the data
             type of the string, which is actually the size of the target.  */
             type of the string, which is actually the size of the target.  */
          rtx size = expr_size (exp);
          rtx size = expr_size (exp);
 
 
          if (GET_CODE (size) == CONST_INT
          if (GET_CODE (size) == CONST_INT
              && INTVAL (size) < TREE_STRING_LENGTH (exp))
              && INTVAL (size) < TREE_STRING_LENGTH (exp))
            emit_block_move (target, temp, size,
            emit_block_move (target, temp, size,
                             (call_param_p
                             (call_param_p
                              ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
                              ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
          else
          else
            {
            {
              /* Compute the size of the data to copy from the string.  */
              /* Compute the size of the data to copy from the string.  */
              tree copy_size
              tree copy_size
                = size_binop (MIN_EXPR,
                = size_binop (MIN_EXPR,
                              make_tree (sizetype, size),
                              make_tree (sizetype, size),
                              size_int (TREE_STRING_LENGTH (exp)));
                              size_int (TREE_STRING_LENGTH (exp)));
              rtx copy_size_rtx
              rtx copy_size_rtx
                = expand_expr (copy_size, NULL_RTX, VOIDmode,
                = expand_expr (copy_size, NULL_RTX, VOIDmode,
                               (call_param_p
                               (call_param_p
                                ? EXPAND_STACK_PARM : EXPAND_NORMAL));
                                ? EXPAND_STACK_PARM : EXPAND_NORMAL));
              rtx label = 0;
              rtx label = 0;
 
 
              /* Copy that much.  */
              /* Copy that much.  */
              copy_size_rtx = convert_to_mode (ptr_mode, copy_size_rtx,
              copy_size_rtx = convert_to_mode (ptr_mode, copy_size_rtx,
                                               TYPE_UNSIGNED (sizetype));
                                               TYPE_UNSIGNED (sizetype));
              emit_block_move (target, temp, copy_size_rtx,
              emit_block_move (target, temp, copy_size_rtx,
                               (call_param_p
                               (call_param_p
                                ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
                                ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
 
 
              /* Figure out how much is left in TARGET that we have to clear.
              /* Figure out how much is left in TARGET that we have to clear.
                 Do all calculations in ptr_mode.  */
                 Do all calculations in ptr_mode.  */
              if (GET_CODE (copy_size_rtx) == CONST_INT)
              if (GET_CODE (copy_size_rtx) == CONST_INT)
                {
                {
                  size = plus_constant (size, -INTVAL (copy_size_rtx));
                  size = plus_constant (size, -INTVAL (copy_size_rtx));
                  target = adjust_address (target, BLKmode,
                  target = adjust_address (target, BLKmode,
                                           INTVAL (copy_size_rtx));
                                           INTVAL (copy_size_rtx));
                }
                }
              else
              else
                {
                {
                  size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
                  size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
                                       copy_size_rtx, NULL_RTX, 0,
                                       copy_size_rtx, NULL_RTX, 0,
                                       OPTAB_LIB_WIDEN);
                                       OPTAB_LIB_WIDEN);
 
 
#ifdef POINTERS_EXTEND_UNSIGNED
#ifdef POINTERS_EXTEND_UNSIGNED
                  if (GET_MODE (copy_size_rtx) != Pmode)
                  if (GET_MODE (copy_size_rtx) != Pmode)
                    copy_size_rtx = convert_to_mode (Pmode, copy_size_rtx,
                    copy_size_rtx = convert_to_mode (Pmode, copy_size_rtx,
                                                     TYPE_UNSIGNED (sizetype));
                                                     TYPE_UNSIGNED (sizetype));
#endif
#endif
 
 
                  target = offset_address (target, copy_size_rtx,
                  target = offset_address (target, copy_size_rtx,
                                           highest_pow2_factor (copy_size));
                                           highest_pow2_factor (copy_size));
                  label = gen_label_rtx ();
                  label = gen_label_rtx ();
                  emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
                  emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
                                           GET_MODE (size), 0, label);
                                           GET_MODE (size), 0, label);
                }
                }
 
 
              if (size != const0_rtx)
              if (size != const0_rtx)
                clear_storage (target, size, BLOCK_OP_NORMAL);
                clear_storage (target, size, BLOCK_OP_NORMAL);
 
 
              if (label)
              if (label)
                emit_label (label);
                emit_label (label);
            }
            }
        }
        }
      /* Handle calls that return values in multiple non-contiguous locations.
      /* Handle calls that return values in multiple non-contiguous locations.
         The Irix 6 ABI has examples of this.  */
         The Irix 6 ABI has examples of this.  */
      else if (GET_CODE (target) == PARALLEL)
      else if (GET_CODE (target) == PARALLEL)
        emit_group_load (target, temp, TREE_TYPE (exp),
        emit_group_load (target, temp, TREE_TYPE (exp),
                         int_size_in_bytes (TREE_TYPE (exp)));
                         int_size_in_bytes (TREE_TYPE (exp)));
      else if (GET_MODE (temp) == BLKmode)
      else if (GET_MODE (temp) == BLKmode)
        emit_block_move (target, temp, expr_size (exp),
        emit_block_move (target, temp, expr_size (exp),
                         (call_param_p
                         (call_param_p
                          ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
                          ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
      else
      else
        {
        {
          temp = force_operand (temp, target);
          temp = force_operand (temp, target);
          if (temp != target)
          if (temp != target)
            emit_move_insn (target, temp);
            emit_move_insn (target, temp);
        }
        }
    }
    }
 
 
  return NULL_RTX;
  return NULL_RTX;
}
}


/* Helper for categorize_ctor_elements.  Identical interface.  */
/* Helper for categorize_ctor_elements.  Identical interface.  */
 
 
static bool
static bool
categorize_ctor_elements_1 (tree ctor, HOST_WIDE_INT *p_nz_elts,
categorize_ctor_elements_1 (tree ctor, HOST_WIDE_INT *p_nz_elts,
                            HOST_WIDE_INT *p_elt_count,
                            HOST_WIDE_INT *p_elt_count,
                            bool *p_must_clear)
                            bool *p_must_clear)
{
{
  unsigned HOST_WIDE_INT idx;
  unsigned HOST_WIDE_INT idx;
  HOST_WIDE_INT nz_elts, elt_count;
  HOST_WIDE_INT nz_elts, elt_count;
  tree value, purpose;
  tree value, purpose;
 
 
  /* Whether CTOR is a valid constant initializer, in accordance with what
  /* Whether CTOR is a valid constant initializer, in accordance with what
     initializer_constant_valid_p does.  If inferred from the constructor
     initializer_constant_valid_p does.  If inferred from the constructor
     elements, true until proven otherwise.  */
     elements, true until proven otherwise.  */
  bool const_from_elts_p = constructor_static_from_elts_p (ctor);
  bool const_from_elts_p = constructor_static_from_elts_p (ctor);
  bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
  bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
 
 
  nz_elts = 0;
  nz_elts = 0;
  elt_count = 0;
  elt_count = 0;
 
 
  FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
  FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
    {
    {
      HOST_WIDE_INT mult;
      HOST_WIDE_INT mult;
 
 
      mult = 1;
      mult = 1;
      if (TREE_CODE (purpose) == RANGE_EXPR)
      if (TREE_CODE (purpose) == RANGE_EXPR)
        {
        {
          tree lo_index = TREE_OPERAND (purpose, 0);
          tree lo_index = TREE_OPERAND (purpose, 0);
          tree hi_index = TREE_OPERAND (purpose, 1);
          tree hi_index = TREE_OPERAND (purpose, 1);
 
 
          if (host_integerp (lo_index, 1) && host_integerp (hi_index, 1))
          if (host_integerp (lo_index, 1) && host_integerp (hi_index, 1))
            mult = (tree_low_cst (hi_index, 1)
            mult = (tree_low_cst (hi_index, 1)
                    - tree_low_cst (lo_index, 1) + 1);
                    - tree_low_cst (lo_index, 1) + 1);
        }
        }
 
 
      switch (TREE_CODE (value))
      switch (TREE_CODE (value))
        {
        {
        case CONSTRUCTOR:
        case CONSTRUCTOR:
          {
          {
            HOST_WIDE_INT nz = 0, ic = 0;
            HOST_WIDE_INT nz = 0, ic = 0;
 
 
            bool const_elt_p
            bool const_elt_p
              = categorize_ctor_elements_1 (value, &nz, &ic, p_must_clear);
              = categorize_ctor_elements_1 (value, &nz, &ic, p_must_clear);
 
 
            nz_elts += mult * nz;
            nz_elts += mult * nz;
            elt_count += mult * ic;
            elt_count += mult * ic;
 
 
            if (const_from_elts_p && const_p)
            if (const_from_elts_p && const_p)
              const_p = const_elt_p;
              const_p = const_elt_p;
          }
          }
          break;
          break;
 
 
        case INTEGER_CST:
        case INTEGER_CST:
        case REAL_CST:
        case REAL_CST:
          if (!initializer_zerop (value))
          if (!initializer_zerop (value))
            nz_elts += mult;
            nz_elts += mult;
          elt_count += mult;
          elt_count += mult;
          break;
          break;
 
 
        case STRING_CST:
        case STRING_CST:
          nz_elts += mult * TREE_STRING_LENGTH (value);
          nz_elts += mult * TREE_STRING_LENGTH (value);
          elt_count += mult * TREE_STRING_LENGTH (value);
          elt_count += mult * TREE_STRING_LENGTH (value);
          break;
          break;
 
 
        case COMPLEX_CST:
        case COMPLEX_CST:
          if (!initializer_zerop (TREE_REALPART (value)))
          if (!initializer_zerop (TREE_REALPART (value)))
            nz_elts += mult;
            nz_elts += mult;
          if (!initializer_zerop (TREE_IMAGPART (value)))
          if (!initializer_zerop (TREE_IMAGPART (value)))
            nz_elts += mult;
            nz_elts += mult;
          elt_count += mult;
          elt_count += mult;
          break;
          break;
 
 
        case VECTOR_CST:
        case VECTOR_CST:
          {
          {
            tree v;
            tree v;
            for (v = TREE_VECTOR_CST_ELTS (value); v; v = TREE_CHAIN (v))
            for (v = TREE_VECTOR_CST_ELTS (value); v; v = TREE_CHAIN (v))
              {
              {
                if (!initializer_zerop (TREE_VALUE (v)))
                if (!initializer_zerop (TREE_VALUE (v)))
                  nz_elts += mult;
                  nz_elts += mult;
                elt_count += mult;
                elt_count += mult;
              }
              }
          }
          }
          break;
          break;
 
 
        default:
        default:
          nz_elts += mult;
          nz_elts += mult;
          elt_count += mult;
          elt_count += mult;
 
 
          if (const_from_elts_p && const_p)
          if (const_from_elts_p && const_p)
            const_p = initializer_constant_valid_p (value, TREE_TYPE (value))
            const_p = initializer_constant_valid_p (value, TREE_TYPE (value))
                      != NULL_TREE;
                      != NULL_TREE;
          break;
          break;
        }
        }
    }
    }
 
 
  if (!*p_must_clear
  if (!*p_must_clear
      && (TREE_CODE (TREE_TYPE (ctor)) == UNION_TYPE
      && (TREE_CODE (TREE_TYPE (ctor)) == UNION_TYPE
          || TREE_CODE (TREE_TYPE (ctor)) == QUAL_UNION_TYPE))
          || TREE_CODE (TREE_TYPE (ctor)) == QUAL_UNION_TYPE))
    {
    {
      tree init_sub_type;
      tree init_sub_type;
      bool clear_this = true;
      bool clear_this = true;
 
 
      if (!VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (ctor)))
      if (!VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (ctor)))
        {
        {
          /* We don't expect more than one element of the union to be
          /* We don't expect more than one element of the union to be
             initialized.  Not sure what we should do otherwise... */
             initialized.  Not sure what we should do otherwise... */
          gcc_assert (VEC_length (constructor_elt, CONSTRUCTOR_ELTS (ctor))
          gcc_assert (VEC_length (constructor_elt, CONSTRUCTOR_ELTS (ctor))
                      == 1);
                      == 1);
 
 
          init_sub_type = TREE_TYPE (VEC_index (constructor_elt,
          init_sub_type = TREE_TYPE (VEC_index (constructor_elt,
                                                CONSTRUCTOR_ELTS (ctor),
                                                CONSTRUCTOR_ELTS (ctor),
                                                0)->value);
                                                0)->value);
 
 
          /* ??? We could look at each element of the union, and find the
          /* ??? We could look at each element of the union, and find the
             largest element.  Which would avoid comparing the size of the
             largest element.  Which would avoid comparing the size of the
             initialized element against any tail padding in the union.
             initialized element against any tail padding in the union.
             Doesn't seem worth the effort...  */
             Doesn't seem worth the effort...  */
          if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (ctor)),
          if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (ctor)),
                                TYPE_SIZE (init_sub_type)) == 1)
                                TYPE_SIZE (init_sub_type)) == 1)
            {
            {
              /* And now we have to find out if the element itself is fully
              /* And now we have to find out if the element itself is fully
                 constructed.  E.g. for union { struct { int a, b; } s; } u
                 constructed.  E.g. for union { struct { int a, b; } s; } u
                 = { .s = { .a = 1 } }.  */
                 = { .s = { .a = 1 } }.  */
              if (elt_count == count_type_elements (init_sub_type, false))
              if (elt_count == count_type_elements (init_sub_type, false))
                clear_this = false;
                clear_this = false;
            }
            }
        }
        }
 
 
      *p_must_clear = clear_this;
      *p_must_clear = clear_this;
    }
    }
 
 
  *p_nz_elts += nz_elts;
  *p_nz_elts += nz_elts;
  *p_elt_count += elt_count;
  *p_elt_count += elt_count;
 
 
  return const_p;
  return const_p;
}
}
 
 
/* Examine CTOR to discover:
/* Examine CTOR to discover:
   * how many scalar fields are set to nonzero values,
   * how many scalar fields are set to nonzero values,
     and place it in *P_NZ_ELTS;
     and place it in *P_NZ_ELTS;
   * how many scalar fields in total are in CTOR,
   * how many scalar fields in total are in CTOR,
     and place it in *P_ELT_COUNT.
     and place it in *P_ELT_COUNT.
   * if a type is a union, and the initializer from the constructor
   * if a type is a union, and the initializer from the constructor
     is not the largest element in the union, then set *p_must_clear.
     is not the largest element in the union, then set *p_must_clear.
 
 
   Return whether or not CTOR is a valid static constant initializer, the same
   Return whether or not CTOR is a valid static constant initializer, the same
   as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0".  */
   as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0".  */
 
 
bool
bool
categorize_ctor_elements (tree ctor, HOST_WIDE_INT *p_nz_elts,
categorize_ctor_elements (tree ctor, HOST_WIDE_INT *p_nz_elts,
                          HOST_WIDE_INT *p_elt_count,
                          HOST_WIDE_INT *p_elt_count,
                          bool *p_must_clear)
                          bool *p_must_clear)
{
{
  *p_nz_elts = 0;
  *p_nz_elts = 0;
  *p_elt_count = 0;
  *p_elt_count = 0;
  *p_must_clear = false;
  *p_must_clear = false;
 
 
  return
  return
    categorize_ctor_elements_1 (ctor, p_nz_elts, p_elt_count, p_must_clear);
    categorize_ctor_elements_1 (ctor, p_nz_elts, p_elt_count, p_must_clear);
}
}
 
 
/* Count the number of scalars in TYPE.  Return -1 on overflow or
/* Count the number of scalars in TYPE.  Return -1 on overflow or
   variable-sized.  If ALLOW_FLEXARR is true, don't count flexible
   variable-sized.  If ALLOW_FLEXARR is true, don't count flexible
   array member at the end of the structure.  */
   array member at the end of the structure.  */
 
 
HOST_WIDE_INT
HOST_WIDE_INT
count_type_elements (tree type, bool allow_flexarr)
count_type_elements (tree type, bool allow_flexarr)
{
{
  const HOST_WIDE_INT max = ~((HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1));
  const HOST_WIDE_INT max = ~((HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1));
  switch (TREE_CODE (type))
  switch (TREE_CODE (type))
    {
    {
    case ARRAY_TYPE:
    case ARRAY_TYPE:
      {
      {
        tree telts = array_type_nelts (type);
        tree telts = array_type_nelts (type);
        if (telts && host_integerp (telts, 1))
        if (telts && host_integerp (telts, 1))
          {
          {
            HOST_WIDE_INT n = tree_low_cst (telts, 1) + 1;
            HOST_WIDE_INT n = tree_low_cst (telts, 1) + 1;
            HOST_WIDE_INT m = count_type_elements (TREE_TYPE (type), false);
            HOST_WIDE_INT m = count_type_elements (TREE_TYPE (type), false);
            if (n == 0)
            if (n == 0)
              return 0;
              return 0;
            else if (max / n > m)
            else if (max / n > m)
              return n * m;
              return n * m;
          }
          }
        return -1;
        return -1;
      }
      }
 
 
    case RECORD_TYPE:
    case RECORD_TYPE:
      {
      {
        HOST_WIDE_INT n = 0, t;
        HOST_WIDE_INT n = 0, t;
        tree f;
        tree f;
 
 
        for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
        for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
          if (TREE_CODE (f) == FIELD_DECL)
          if (TREE_CODE (f) == FIELD_DECL)
            {
            {
              t = count_type_elements (TREE_TYPE (f), false);
              t = count_type_elements (TREE_TYPE (f), false);
              if (t < 0)
              if (t < 0)
                {
                {
                  /* Check for structures with flexible array member.  */
                  /* Check for structures with flexible array member.  */
                  tree tf = TREE_TYPE (f);
                  tree tf = TREE_TYPE (f);
                  if (allow_flexarr
                  if (allow_flexarr
                      && TREE_CHAIN (f) == NULL
                      && TREE_CHAIN (f) == NULL
                      && TREE_CODE (tf) == ARRAY_TYPE
                      && TREE_CODE (tf) == ARRAY_TYPE
                      && TYPE_DOMAIN (tf)
                      && TYPE_DOMAIN (tf)
                      && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
                      && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
                      && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
                      && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
                      && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
                      && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
                      && int_size_in_bytes (type) >= 0)
                      && int_size_in_bytes (type) >= 0)
                    break;
                    break;
 
 
                  return -1;
                  return -1;
                }
                }
              n += t;
              n += t;
            }
            }
 
 
        return n;
        return n;
      }
      }
 
 
    case UNION_TYPE:
    case UNION_TYPE:
    case QUAL_UNION_TYPE:
    case QUAL_UNION_TYPE:
      {
      {
        /* Ho hum.  How in the world do we guess here?  Clearly it isn't
        /* Ho hum.  How in the world do we guess here?  Clearly it isn't
           right to count the fields.  Guess based on the number of words.  */
           right to count the fields.  Guess based on the number of words.  */
        HOST_WIDE_INT n = int_size_in_bytes (type);
        HOST_WIDE_INT n = int_size_in_bytes (type);
        if (n < 0)
        if (n < 0)
          return -1;
          return -1;
        return n / UNITS_PER_WORD;
        return n / UNITS_PER_WORD;
      }
      }
 
 
    case COMPLEX_TYPE:
    case COMPLEX_TYPE:
      return 2;
      return 2;
 
 
    case VECTOR_TYPE:
    case VECTOR_TYPE:
      return TYPE_VECTOR_SUBPARTS (type);
      return TYPE_VECTOR_SUBPARTS (type);
 
 
    case INTEGER_TYPE:
    case INTEGER_TYPE:
    case REAL_TYPE:
    case REAL_TYPE:
    case ENUMERAL_TYPE:
    case ENUMERAL_TYPE:
    case BOOLEAN_TYPE:
    case BOOLEAN_TYPE:
    case POINTER_TYPE:
    case POINTER_TYPE:
    case OFFSET_TYPE:
    case OFFSET_TYPE:
    case REFERENCE_TYPE:
    case REFERENCE_TYPE:
      return 1;
      return 1;
 
 
    case VOID_TYPE:
    case VOID_TYPE:
    case METHOD_TYPE:
    case METHOD_TYPE:
    case FUNCTION_TYPE:
    case FUNCTION_TYPE:
    case LANG_TYPE:
    case LANG_TYPE:
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}
 
 
/* Return 1 if EXP contains mostly (3/4)  zeros.  */
/* Return 1 if EXP contains mostly (3/4)  zeros.  */
 
 
static int
static int
mostly_zeros_p (tree exp)
mostly_zeros_p (tree exp)
{
{
  if (TREE_CODE (exp) == CONSTRUCTOR)
  if (TREE_CODE (exp) == CONSTRUCTOR)
 
 
    {
    {
      HOST_WIDE_INT nz_elts, count, elts;
      HOST_WIDE_INT nz_elts, count, elts;
      bool must_clear;
      bool must_clear;
 
 
      categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
      categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
      if (must_clear)
      if (must_clear)
        return 1;
        return 1;
 
 
      elts = count_type_elements (TREE_TYPE (exp), false);
      elts = count_type_elements (TREE_TYPE (exp), false);
 
 
      return nz_elts < elts / 4;
      return nz_elts < elts / 4;
    }
    }
 
 
  return initializer_zerop (exp);
  return initializer_zerop (exp);
}
}
 
 
/* Return 1 if EXP contains all zeros.  */
/* Return 1 if EXP contains all zeros.  */
 
 
static int
static int
all_zeros_p (tree exp)
all_zeros_p (tree exp)
{
{
  if (TREE_CODE (exp) == CONSTRUCTOR)
  if (TREE_CODE (exp) == CONSTRUCTOR)
 
 
    {
    {
      HOST_WIDE_INT nz_elts, count;
      HOST_WIDE_INT nz_elts, count;
      bool must_clear;
      bool must_clear;
 
 
      categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
      categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
      return nz_elts == 0;
      return nz_elts == 0;
    }
    }
 
 
  return initializer_zerop (exp);
  return initializer_zerop (exp);
}
}


/* Helper function for store_constructor.
/* Helper function for store_constructor.
   TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
   TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
   TYPE is the type of the CONSTRUCTOR, not the element type.
   TYPE is the type of the CONSTRUCTOR, not the element type.
   CLEARED is as for store_constructor.
   CLEARED is as for store_constructor.
   ALIAS_SET is the alias set to use for any stores.
   ALIAS_SET is the alias set to use for any stores.
 
 
   This provides a recursive shortcut back to store_constructor when it isn't
   This provides a recursive shortcut back to store_constructor when it isn't
   necessary to go through store_field.  This is so that we can pass through
   necessary to go through store_field.  This is so that we can pass through
   the cleared field to let store_constructor know that we may not have to
   the cleared field to let store_constructor know that we may not have to
   clear a substructure if the outer structure has already been cleared.  */
   clear a substructure if the outer structure has already been cleared.  */
 
 
static void
static void
store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
                         HOST_WIDE_INT bitpos, enum machine_mode mode,
                         HOST_WIDE_INT bitpos, enum machine_mode mode,
                         tree exp, tree type, int cleared, int alias_set)
                         tree exp, tree type, int cleared, int alias_set)
{
{
  if (TREE_CODE (exp) == CONSTRUCTOR
  if (TREE_CODE (exp) == CONSTRUCTOR
      /* We can only call store_constructor recursively if the size and
      /* We can only call store_constructor recursively if the size and
         bit position are on a byte boundary.  */
         bit position are on a byte boundary.  */
      && bitpos % BITS_PER_UNIT == 0
      && bitpos % BITS_PER_UNIT == 0
      && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
      && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
      /* If we have a nonzero bitpos for a register target, then we just
      /* If we have a nonzero bitpos for a register target, then we just
         let store_field do the bitfield handling.  This is unlikely to
         let store_field do the bitfield handling.  This is unlikely to
         generate unnecessary clear instructions anyways.  */
         generate unnecessary clear instructions anyways.  */
      && (bitpos == 0 || MEM_P (target)))
      && (bitpos == 0 || MEM_P (target)))
    {
    {
      if (MEM_P (target))
      if (MEM_P (target))
        target
        target
          = adjust_address (target,
          = adjust_address (target,
                            GET_MODE (target) == BLKmode
                            GET_MODE (target) == BLKmode
                            || 0 != (bitpos
                            || 0 != (bitpos
                                     % GET_MODE_ALIGNMENT (GET_MODE (target)))
                                     % GET_MODE_ALIGNMENT (GET_MODE (target)))
                            ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
                            ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
 
 
 
 
      /* Update the alias set, if required.  */
      /* Update the alias set, if required.  */
      if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
      if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
          && MEM_ALIAS_SET (target) != 0)
          && MEM_ALIAS_SET (target) != 0)
        {
        {
          target = copy_rtx (target);
          target = copy_rtx (target);
          set_mem_alias_set (target, alias_set);
          set_mem_alias_set (target, alias_set);
        }
        }
 
 
      store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
      store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
    }
    }
  else
  else
    store_field (target, bitsize, bitpos, mode, exp, type, alias_set);
    store_field (target, bitsize, bitpos, mode, exp, type, alias_set);
}
}
 
 
/* Store the value of constructor EXP into the rtx TARGET.
/* Store the value of constructor EXP into the rtx TARGET.
   TARGET is either a REG or a MEM; we know it cannot conflict, since
   TARGET is either a REG or a MEM; we know it cannot conflict, since
   safe_from_p has been called.
   safe_from_p has been called.
   CLEARED is true if TARGET is known to have been zero'd.
   CLEARED is true if TARGET is known to have been zero'd.
   SIZE is the number of bytes of TARGET we are allowed to modify: this
   SIZE is the number of bytes of TARGET we are allowed to modify: this
   may not be the same as the size of EXP if we are assigning to a field
   may not be the same as the size of EXP if we are assigning to a field
   which has been packed to exclude padding bits.  */
   which has been packed to exclude padding bits.  */
 
 
static void
static void
store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
{
{
  tree type = TREE_TYPE (exp);
  tree type = TREE_TYPE (exp);
#ifdef WORD_REGISTER_OPERATIONS
#ifdef WORD_REGISTER_OPERATIONS
  HOST_WIDE_INT exp_size = int_size_in_bytes (type);
  HOST_WIDE_INT exp_size = int_size_in_bytes (type);
#endif
#endif
 
 
  switch (TREE_CODE (type))
  switch (TREE_CODE (type))
    {
    {
    case RECORD_TYPE:
    case RECORD_TYPE:
    case UNION_TYPE:
    case UNION_TYPE:
    case QUAL_UNION_TYPE:
    case QUAL_UNION_TYPE:
      {
      {
        unsigned HOST_WIDE_INT idx;
        unsigned HOST_WIDE_INT idx;
        tree field, value;
        tree field, value;
 
 
        /* If size is zero or the target is already cleared, do nothing.  */
        /* If size is zero or the target is already cleared, do nothing.  */
        if (size == 0 || cleared)
        if (size == 0 || cleared)
          cleared = 1;
          cleared = 1;
        /* We either clear the aggregate or indicate the value is dead.  */
        /* We either clear the aggregate or indicate the value is dead.  */
        else if ((TREE_CODE (type) == UNION_TYPE
        else if ((TREE_CODE (type) == UNION_TYPE
                  || TREE_CODE (type) == QUAL_UNION_TYPE)
                  || TREE_CODE (type) == QUAL_UNION_TYPE)
                 && ! CONSTRUCTOR_ELTS (exp))
                 && ! CONSTRUCTOR_ELTS (exp))
          /* If the constructor is empty, clear the union.  */
          /* If the constructor is empty, clear the union.  */
          {
          {
            clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
            clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
            cleared = 1;
            cleared = 1;
          }
          }
 
 
        /* If we are building a static constructor into a register,
        /* If we are building a static constructor into a register,
           set the initial value as zero so we can fold the value into
           set the initial value as zero so we can fold the value into
           a constant.  But if more than one register is involved,
           a constant.  But if more than one register is involved,
           this probably loses.  */
           this probably loses.  */
        else if (REG_P (target) && TREE_STATIC (exp)
        else if (REG_P (target) && TREE_STATIC (exp)
                 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
                 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
          {
          {
            emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
            emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
            cleared = 1;
            cleared = 1;
          }
          }
 
 
        /* If the constructor has fewer fields than the structure or
        /* If the constructor has fewer fields than the structure or
           if we are initializing the structure to mostly zeros, clear
           if we are initializing the structure to mostly zeros, clear
           the whole structure first.  Don't do this if TARGET is a
           the whole structure first.  Don't do this if TARGET is a
           register whose mode size isn't equal to SIZE since
           register whose mode size isn't equal to SIZE since
           clear_storage can't handle this case.  */
           clear_storage can't handle this case.  */
        else if (size > 0
        else if (size > 0
                 && (((int)VEC_length (constructor_elt, CONSTRUCTOR_ELTS (exp))
                 && (((int)VEC_length (constructor_elt, CONSTRUCTOR_ELTS (exp))
                      != fields_length (type))
                      != fields_length (type))
                     || mostly_zeros_p (exp))
                     || mostly_zeros_p (exp))
                 && (!REG_P (target)
                 && (!REG_P (target)
                     || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
                     || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
                         == size)))
                         == size)))
          {
          {
            clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
            clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
            cleared = 1;
            cleared = 1;
          }
          }
 
 
        if (! cleared)
        if (! cleared)
          emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
          emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
 
 
        /* Store each element of the constructor into the
        /* Store each element of the constructor into the
           corresponding field of TARGET.  */
           corresponding field of TARGET.  */
        FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
        FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
          {
          {
            enum machine_mode mode;
            enum machine_mode mode;
            HOST_WIDE_INT bitsize;
            HOST_WIDE_INT bitsize;
            HOST_WIDE_INT bitpos = 0;
            HOST_WIDE_INT bitpos = 0;
            tree offset;
            tree offset;
            rtx to_rtx = target;
            rtx to_rtx = target;
 
 
            /* Just ignore missing fields.  We cleared the whole
            /* Just ignore missing fields.  We cleared the whole
               structure, above, if any fields are missing.  */
               structure, above, if any fields are missing.  */
            if (field == 0)
            if (field == 0)
              continue;
              continue;
 
 
            if (cleared && initializer_zerop (value))
            if (cleared && initializer_zerop (value))
              continue;
              continue;
 
 
            if (host_integerp (DECL_SIZE (field), 1))
            if (host_integerp (DECL_SIZE (field), 1))
              bitsize = tree_low_cst (DECL_SIZE (field), 1);
              bitsize = tree_low_cst (DECL_SIZE (field), 1);
            else
            else
              bitsize = -1;
              bitsize = -1;
 
 
            mode = DECL_MODE (field);
            mode = DECL_MODE (field);
            if (DECL_BIT_FIELD (field))
            if (DECL_BIT_FIELD (field))
              mode = VOIDmode;
              mode = VOIDmode;
 
 
            offset = DECL_FIELD_OFFSET (field);
            offset = DECL_FIELD_OFFSET (field);
            if (host_integerp (offset, 0)
            if (host_integerp (offset, 0)
                && host_integerp (bit_position (field), 0))
                && host_integerp (bit_position (field), 0))
              {
              {
                bitpos = int_bit_position (field);
                bitpos = int_bit_position (field);
                offset = 0;
                offset = 0;
              }
              }
            else
            else
              bitpos = tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 0);
              bitpos = tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 0);
 
 
            if (offset)
            if (offset)
              {
              {
                rtx offset_rtx;
                rtx offset_rtx;
 
 
                offset
                offset
                  = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
                  = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
                                                    make_tree (TREE_TYPE (exp),
                                                    make_tree (TREE_TYPE (exp),
                                                               target));
                                                               target));
 
 
                offset_rtx = expand_normal (offset);
                offset_rtx = expand_normal (offset);
                gcc_assert (MEM_P (to_rtx));
                gcc_assert (MEM_P (to_rtx));
 
 
#ifdef POINTERS_EXTEND_UNSIGNED
#ifdef POINTERS_EXTEND_UNSIGNED
                if (GET_MODE (offset_rtx) != Pmode)
                if (GET_MODE (offset_rtx) != Pmode)
                  offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
                  offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
#else
#else
                if (GET_MODE (offset_rtx) != ptr_mode)
                if (GET_MODE (offset_rtx) != ptr_mode)
                  offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
                  offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
#endif
#endif
 
 
                to_rtx = offset_address (to_rtx, offset_rtx,
                to_rtx = offset_address (to_rtx, offset_rtx,
                                         highest_pow2_factor (offset));
                                         highest_pow2_factor (offset));
              }
              }
 
 
#ifdef WORD_REGISTER_OPERATIONS
#ifdef WORD_REGISTER_OPERATIONS
            /* If this initializes a field that is smaller than a
            /* If this initializes a field that is smaller than a
               word, at the start of a word, try to widen it to a full
               word, at the start of a word, try to widen it to a full
               word.  This special case allows us to output C++ member
               word.  This special case allows us to output C++ member
               function initializations in a form that the optimizers
               function initializations in a form that the optimizers
               can understand.  */
               can understand.  */
            if (REG_P (target)
            if (REG_P (target)
                && bitsize < BITS_PER_WORD
                && bitsize < BITS_PER_WORD
                && bitpos % BITS_PER_WORD == 0
                && bitpos % BITS_PER_WORD == 0
                && GET_MODE_CLASS (mode) == MODE_INT
                && GET_MODE_CLASS (mode) == MODE_INT
                && TREE_CODE (value) == INTEGER_CST
                && TREE_CODE (value) == INTEGER_CST
                && exp_size >= 0
                && exp_size >= 0
                && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
                && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
              {
              {
                tree type = TREE_TYPE (value);
                tree type = TREE_TYPE (value);
 
 
                if (TYPE_PRECISION (type) < BITS_PER_WORD)
                if (TYPE_PRECISION (type) < BITS_PER_WORD)
                  {
                  {
                    type = lang_hooks.types.type_for_size
                    type = lang_hooks.types.type_for_size
                      (BITS_PER_WORD, TYPE_UNSIGNED (type));
                      (BITS_PER_WORD, TYPE_UNSIGNED (type));
                    value = fold_convert (type, value);
                    value = fold_convert (type, value);
                  }
                  }
 
 
                if (BYTES_BIG_ENDIAN)
                if (BYTES_BIG_ENDIAN)
                  value
                  value
                   = fold_build2 (LSHIFT_EXPR, type, value,
                   = fold_build2 (LSHIFT_EXPR, type, value,
                                   build_int_cst (type,
                                   build_int_cst (type,
                                                  BITS_PER_WORD - bitsize));
                                                  BITS_PER_WORD - bitsize));
                bitsize = BITS_PER_WORD;
                bitsize = BITS_PER_WORD;
                mode = word_mode;
                mode = word_mode;
              }
              }
#endif
#endif
 
 
            if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
            if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
                && DECL_NONADDRESSABLE_P (field))
                && DECL_NONADDRESSABLE_P (field))
              {
              {
                to_rtx = copy_rtx (to_rtx);
                to_rtx = copy_rtx (to_rtx);
                MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
                MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
              }
              }
 
 
            store_constructor_field (to_rtx, bitsize, bitpos, mode,
            store_constructor_field (to_rtx, bitsize, bitpos, mode,
                                     value, type, cleared,
                                     value, type, cleared,
                                     get_alias_set (TREE_TYPE (field)));
                                     get_alias_set (TREE_TYPE (field)));
          }
          }
        break;
        break;
      }
      }
    case ARRAY_TYPE:
    case ARRAY_TYPE:
      {
      {
        tree value, index;
        tree value, index;
        unsigned HOST_WIDE_INT i;
        unsigned HOST_WIDE_INT i;
        int need_to_clear;
        int need_to_clear;
        tree domain;
        tree domain;
        tree elttype = TREE_TYPE (type);
        tree elttype = TREE_TYPE (type);
        int const_bounds_p;
        int const_bounds_p;
        HOST_WIDE_INT minelt = 0;
        HOST_WIDE_INT minelt = 0;
        HOST_WIDE_INT maxelt = 0;
        HOST_WIDE_INT maxelt = 0;
 
 
        domain = TYPE_DOMAIN (type);
        domain = TYPE_DOMAIN (type);
        const_bounds_p = (TYPE_MIN_VALUE (domain)
        const_bounds_p = (TYPE_MIN_VALUE (domain)
                          && TYPE_MAX_VALUE (domain)
                          && TYPE_MAX_VALUE (domain)
                          && host_integerp (TYPE_MIN_VALUE (domain), 0)
                          && host_integerp (TYPE_MIN_VALUE (domain), 0)
                          && host_integerp (TYPE_MAX_VALUE (domain), 0));
                          && host_integerp (TYPE_MAX_VALUE (domain), 0));
 
 
        /* If we have constant bounds for the range of the type, get them.  */
        /* If we have constant bounds for the range of the type, get them.  */
        if (const_bounds_p)
        if (const_bounds_p)
          {
          {
            minelt = tree_low_cst (TYPE_MIN_VALUE (domain), 0);
            minelt = tree_low_cst (TYPE_MIN_VALUE (domain), 0);
            maxelt = tree_low_cst (TYPE_MAX_VALUE (domain), 0);
            maxelt = tree_low_cst (TYPE_MAX_VALUE (domain), 0);
          }
          }
 
 
        /* If the constructor has fewer elements than the array, clear
        /* If the constructor has fewer elements than the array, clear
           the whole array first.  Similarly if this is static
           the whole array first.  Similarly if this is static
           constructor of a non-BLKmode object.  */
           constructor of a non-BLKmode object.  */
        if (cleared)
        if (cleared)
          need_to_clear = 0;
          need_to_clear = 0;
        else if (REG_P (target) && TREE_STATIC (exp))
        else if (REG_P (target) && TREE_STATIC (exp))
          need_to_clear = 1;
          need_to_clear = 1;
        else
        else
          {
          {
            unsigned HOST_WIDE_INT idx;
            unsigned HOST_WIDE_INT idx;
            tree index, value;
            tree index, value;
            HOST_WIDE_INT count = 0, zero_count = 0;
            HOST_WIDE_INT count = 0, zero_count = 0;
            need_to_clear = ! const_bounds_p;
            need_to_clear = ! const_bounds_p;
 
 
            /* This loop is a more accurate version of the loop in
            /* This loop is a more accurate version of the loop in
               mostly_zeros_p (it handles RANGE_EXPR in an index).  It
               mostly_zeros_p (it handles RANGE_EXPR in an index).  It
               is also needed to check for missing elements.  */
               is also needed to check for missing elements.  */
            FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
            FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
              {
              {
                HOST_WIDE_INT this_node_count;
                HOST_WIDE_INT this_node_count;
 
 
                if (need_to_clear)
                if (need_to_clear)
                  break;
                  break;
 
 
                if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
                if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
                  {
                  {
                    tree lo_index = TREE_OPERAND (index, 0);
                    tree lo_index = TREE_OPERAND (index, 0);
                    tree hi_index = TREE_OPERAND (index, 1);
                    tree hi_index = TREE_OPERAND (index, 1);
 
 
                    if (! host_integerp (lo_index, 1)
                    if (! host_integerp (lo_index, 1)
                        || ! host_integerp (hi_index, 1))
                        || ! host_integerp (hi_index, 1))
                      {
                      {
                        need_to_clear = 1;
                        need_to_clear = 1;
                        break;
                        break;
                      }
                      }
 
 
                    this_node_count = (tree_low_cst (hi_index, 1)
                    this_node_count = (tree_low_cst (hi_index, 1)
                                       - tree_low_cst (lo_index, 1) + 1);
                                       - tree_low_cst (lo_index, 1) + 1);
                  }
                  }
                else
                else
                  this_node_count = 1;
                  this_node_count = 1;
 
 
                count += this_node_count;
                count += this_node_count;
                if (mostly_zeros_p (value))
                if (mostly_zeros_p (value))
                  zero_count += this_node_count;
                  zero_count += this_node_count;
              }
              }
 
 
            /* Clear the entire array first if there are any missing
            /* Clear the entire array first if there are any missing
               elements, or if the incidence of zero elements is >=
               elements, or if the incidence of zero elements is >=
               75%.  */
               75%.  */
            if (! need_to_clear
            if (! need_to_clear
                && (count < maxelt - minelt + 1
                && (count < maxelt - minelt + 1
                    || 4 * zero_count >= 3 * count))
                    || 4 * zero_count >= 3 * count))
              need_to_clear = 1;
              need_to_clear = 1;
          }
          }
 
 
        if (need_to_clear && size > 0)
        if (need_to_clear && size > 0)
          {
          {
            if (REG_P (target))
            if (REG_P (target))
              emit_move_insn (target,  CONST0_RTX (GET_MODE (target)));
              emit_move_insn (target,  CONST0_RTX (GET_MODE (target)));
            else
            else
              clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
              clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
            cleared = 1;
            cleared = 1;
          }
          }
 
 
        if (!cleared && REG_P (target))
        if (!cleared && REG_P (target))
          /* Inform later passes that the old value is dead.  */
          /* Inform later passes that the old value is dead.  */
          emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
          emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
 
 
        /* Store each element of the constructor into the
        /* Store each element of the constructor into the
           corresponding element of TARGET, determined by counting the
           corresponding element of TARGET, determined by counting the
           elements.  */
           elements.  */
        FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
        FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
          {
          {
            enum machine_mode mode;
            enum machine_mode mode;
            HOST_WIDE_INT bitsize;
            HOST_WIDE_INT bitsize;
            HOST_WIDE_INT bitpos;
            HOST_WIDE_INT bitpos;
            int unsignedp;
            int unsignedp;
            rtx xtarget = target;
            rtx xtarget = target;
 
 
            if (cleared && initializer_zerop (value))
            if (cleared && initializer_zerop (value))
              continue;
              continue;
 
 
            unsignedp = TYPE_UNSIGNED (elttype);
            unsignedp = TYPE_UNSIGNED (elttype);
            mode = TYPE_MODE (elttype);
            mode = TYPE_MODE (elttype);
            if (mode == BLKmode)
            if (mode == BLKmode)
              bitsize = (host_integerp (TYPE_SIZE (elttype), 1)
              bitsize = (host_integerp (TYPE_SIZE (elttype), 1)
                         ? tree_low_cst (TYPE_SIZE (elttype), 1)
                         ? tree_low_cst (TYPE_SIZE (elttype), 1)
                         : -1);
                         : -1);
            else
            else
              bitsize = GET_MODE_BITSIZE (mode);
              bitsize = GET_MODE_BITSIZE (mode);
 
 
            if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
            if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
              {
              {
                tree lo_index = TREE_OPERAND (index, 0);
                tree lo_index = TREE_OPERAND (index, 0);
                tree hi_index = TREE_OPERAND (index, 1);
                tree hi_index = TREE_OPERAND (index, 1);
                rtx index_r, pos_rtx;
                rtx index_r, pos_rtx;
                HOST_WIDE_INT lo, hi, count;
                HOST_WIDE_INT lo, hi, count;
                tree position;
                tree position;
 
 
                /* If the range is constant and "small", unroll the loop.  */
                /* If the range is constant and "small", unroll the loop.  */
                if (const_bounds_p
                if (const_bounds_p
                    && host_integerp (lo_index, 0)
                    && host_integerp (lo_index, 0)
                    && host_integerp (hi_index, 0)
                    && host_integerp (hi_index, 0)
                    && (lo = tree_low_cst (lo_index, 0),
                    && (lo = tree_low_cst (lo_index, 0),
                        hi = tree_low_cst (hi_index, 0),
                        hi = tree_low_cst (hi_index, 0),
                        count = hi - lo + 1,
                        count = hi - lo + 1,
                        (!MEM_P (target)
                        (!MEM_P (target)
                         || count <= 2
                         || count <= 2
                         || (host_integerp (TYPE_SIZE (elttype), 1)
                         || (host_integerp (TYPE_SIZE (elttype), 1)
                             && (tree_low_cst (TYPE_SIZE (elttype), 1) * count
                             && (tree_low_cst (TYPE_SIZE (elttype), 1) * count
                                 <= 40 * 8)))))
                                 <= 40 * 8)))))
                  {
                  {
                    lo -= minelt;  hi -= minelt;
                    lo -= minelt;  hi -= minelt;
                    for (; lo <= hi; lo++)
                    for (; lo <= hi; lo++)
                      {
                      {
                        bitpos = lo * tree_low_cst (TYPE_SIZE (elttype), 0);
                        bitpos = lo * tree_low_cst (TYPE_SIZE (elttype), 0);
 
 
                        if (MEM_P (target)
                        if (MEM_P (target)
                            && !MEM_KEEP_ALIAS_SET_P (target)
                            && !MEM_KEEP_ALIAS_SET_P (target)
                            && TREE_CODE (type) == ARRAY_TYPE
                            && TREE_CODE (type) == ARRAY_TYPE
                            && TYPE_NONALIASED_COMPONENT (type))
                            && TYPE_NONALIASED_COMPONENT (type))
                          {
                          {
                            target = copy_rtx (target);
                            target = copy_rtx (target);
                            MEM_KEEP_ALIAS_SET_P (target) = 1;
                            MEM_KEEP_ALIAS_SET_P (target) = 1;
                          }
                          }
 
 
                        store_constructor_field
                        store_constructor_field
                          (target, bitsize, bitpos, mode, value, type, cleared,
                          (target, bitsize, bitpos, mode, value, type, cleared,
                           get_alias_set (elttype));
                           get_alias_set (elttype));
                      }
                      }
                  }
                  }
                else
                else
                  {
                  {
                    rtx loop_start = gen_label_rtx ();
                    rtx loop_start = gen_label_rtx ();
                    rtx loop_end = gen_label_rtx ();
                    rtx loop_end = gen_label_rtx ();
                    tree exit_cond;
                    tree exit_cond;
 
 
                    expand_normal (hi_index);
                    expand_normal (hi_index);
                    unsignedp = TYPE_UNSIGNED (domain);
                    unsignedp = TYPE_UNSIGNED (domain);
 
 
                    index = build_decl (VAR_DECL, NULL_TREE, domain);
                    index = build_decl (VAR_DECL, NULL_TREE, domain);
 
 
                    index_r
                    index_r
                      = gen_reg_rtx (promote_mode (domain, DECL_MODE (index),
                      = gen_reg_rtx (promote_mode (domain, DECL_MODE (index),
                                                   &unsignedp, 0));
                                                   &unsignedp, 0));
                    SET_DECL_RTL (index, index_r);
                    SET_DECL_RTL (index, index_r);
                    store_expr (lo_index, index_r, 0);
                    store_expr (lo_index, index_r, 0);
 
 
                    /* Build the head of the loop.  */
                    /* Build the head of the loop.  */
                    do_pending_stack_adjust ();
                    do_pending_stack_adjust ();
                    emit_label (loop_start);
                    emit_label (loop_start);
 
 
                    /* Assign value to element index.  */
                    /* Assign value to element index.  */
                    position =
                    position =
                      fold_convert (ssizetype,
                      fold_convert (ssizetype,
                                    fold_build2 (MINUS_EXPR,
                                    fold_build2 (MINUS_EXPR,
                                                 TREE_TYPE (index),
                                                 TREE_TYPE (index),
                                                 index,
                                                 index,
                                                 TYPE_MIN_VALUE (domain)));
                                                 TYPE_MIN_VALUE (domain)));
 
 
                    position =
                    position =
                        size_binop (MULT_EXPR, position,
                        size_binop (MULT_EXPR, position,
                                    fold_convert (ssizetype,
                                    fold_convert (ssizetype,
                                                  TYPE_SIZE_UNIT (elttype)));
                                                  TYPE_SIZE_UNIT (elttype)));
 
 
                    pos_rtx = expand_normal (position);
                    pos_rtx = expand_normal (position);
                    xtarget = offset_address (target, pos_rtx,
                    xtarget = offset_address (target, pos_rtx,
                                              highest_pow2_factor (position));
                                              highest_pow2_factor (position));
                    xtarget = adjust_address (xtarget, mode, 0);
                    xtarget = adjust_address (xtarget, mode, 0);
                    if (TREE_CODE (value) == CONSTRUCTOR)
                    if (TREE_CODE (value) == CONSTRUCTOR)
                      store_constructor (value, xtarget, cleared,
                      store_constructor (value, xtarget, cleared,
                                         bitsize / BITS_PER_UNIT);
                                         bitsize / BITS_PER_UNIT);
                    else
                    else
                      store_expr (value, xtarget, 0);
                      store_expr (value, xtarget, 0);
 
 
                    /* Generate a conditional jump to exit the loop.  */
                    /* Generate a conditional jump to exit the loop.  */
                    exit_cond = build2 (LT_EXPR, integer_type_node,
                    exit_cond = build2 (LT_EXPR, integer_type_node,
                                        index, hi_index);
                                        index, hi_index);
                    jumpif (exit_cond, loop_end);
                    jumpif (exit_cond, loop_end);
 
 
                    /* Update the loop counter, and jump to the head of
                    /* Update the loop counter, and jump to the head of
                       the loop.  */
                       the loop.  */
                    expand_assignment (index,
                    expand_assignment (index,
                                       build2 (PLUS_EXPR, TREE_TYPE (index),
                                       build2 (PLUS_EXPR, TREE_TYPE (index),
                                               index, integer_one_node));
                                               index, integer_one_node));
 
 
                    emit_jump (loop_start);
                    emit_jump (loop_start);
 
 
                    /* Build the end of the loop.  */
                    /* Build the end of the loop.  */
                    emit_label (loop_end);
                    emit_label (loop_end);
                  }
                  }
              }
              }
            else if ((index != 0 && ! host_integerp (index, 0))
            else if ((index != 0 && ! host_integerp (index, 0))
                     || ! host_integerp (TYPE_SIZE (elttype), 1))
                     || ! host_integerp (TYPE_SIZE (elttype), 1))
              {
              {
                tree position;
                tree position;
 
 
                if (index == 0)
                if (index == 0)
                  index = ssize_int (1);
                  index = ssize_int (1);
 
 
                if (minelt)
                if (minelt)
                  index = fold_convert (ssizetype,
                  index = fold_convert (ssizetype,
                                        fold_build2 (MINUS_EXPR,
                                        fold_build2 (MINUS_EXPR,
                                                     TREE_TYPE (index),
                                                     TREE_TYPE (index),
                                                     index,
                                                     index,
                                                     TYPE_MIN_VALUE (domain)));
                                                     TYPE_MIN_VALUE (domain)));
 
 
                position =
                position =
                  size_binop (MULT_EXPR, index,
                  size_binop (MULT_EXPR, index,
                              fold_convert (ssizetype,
                              fold_convert (ssizetype,
                                            TYPE_SIZE_UNIT (elttype)));
                                            TYPE_SIZE_UNIT (elttype)));
                xtarget = offset_address (target,
                xtarget = offset_address (target,
                                          expand_normal (position),
                                          expand_normal (position),
                                          highest_pow2_factor (position));
                                          highest_pow2_factor (position));
                xtarget = adjust_address (xtarget, mode, 0);
                xtarget = adjust_address (xtarget, mode, 0);
                store_expr (value, xtarget, 0);
                store_expr (value, xtarget, 0);
              }
              }
            else
            else
              {
              {
                if (index != 0)
                if (index != 0)
                  bitpos = ((tree_low_cst (index, 0) - minelt)
                  bitpos = ((tree_low_cst (index, 0) - minelt)
                            * tree_low_cst (TYPE_SIZE (elttype), 1));
                            * tree_low_cst (TYPE_SIZE (elttype), 1));
                else
                else
                  bitpos = (i * tree_low_cst (TYPE_SIZE (elttype), 1));
                  bitpos = (i * tree_low_cst (TYPE_SIZE (elttype), 1));
 
 
                if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
                if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
                    && TREE_CODE (type) == ARRAY_TYPE
                    && TREE_CODE (type) == ARRAY_TYPE
                    && TYPE_NONALIASED_COMPONENT (type))
                    && TYPE_NONALIASED_COMPONENT (type))
                  {
                  {
                    target = copy_rtx (target);
                    target = copy_rtx (target);
                    MEM_KEEP_ALIAS_SET_P (target) = 1;
                    MEM_KEEP_ALIAS_SET_P (target) = 1;
                  }
                  }
                store_constructor_field (target, bitsize, bitpos, mode, value,
                store_constructor_field (target, bitsize, bitpos, mode, value,
                                         type, cleared, get_alias_set (elttype));
                                         type, cleared, get_alias_set (elttype));
              }
              }
          }
          }
        break;
        break;
      }
      }
 
 
    case VECTOR_TYPE:
    case VECTOR_TYPE:
      {
      {
        unsigned HOST_WIDE_INT idx;
        unsigned HOST_WIDE_INT idx;
        constructor_elt *ce;
        constructor_elt *ce;
        int i;
        int i;
        int need_to_clear;
        int need_to_clear;
        int icode = 0;
        int icode = 0;
        tree elttype = TREE_TYPE (type);
        tree elttype = TREE_TYPE (type);
        int elt_size = tree_low_cst (TYPE_SIZE (elttype), 1);
        int elt_size = tree_low_cst (TYPE_SIZE (elttype), 1);
        enum machine_mode eltmode = TYPE_MODE (elttype);
        enum machine_mode eltmode = TYPE_MODE (elttype);
        HOST_WIDE_INT bitsize;
        HOST_WIDE_INT bitsize;
        HOST_WIDE_INT bitpos;
        HOST_WIDE_INT bitpos;
        rtvec vector = NULL;
        rtvec vector = NULL;
        unsigned n_elts;
        unsigned n_elts;
 
 
        gcc_assert (eltmode != BLKmode);
        gcc_assert (eltmode != BLKmode);
 
 
        n_elts = TYPE_VECTOR_SUBPARTS (type);
        n_elts = TYPE_VECTOR_SUBPARTS (type);
        if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
        if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
          {
          {
            enum machine_mode mode = GET_MODE (target);
            enum machine_mode mode = GET_MODE (target);
 
 
            icode = (int) vec_init_optab->handlers[mode].insn_code;
            icode = (int) vec_init_optab->handlers[mode].insn_code;
            if (icode != CODE_FOR_nothing)
            if (icode != CODE_FOR_nothing)
              {
              {
                unsigned int i;
                unsigned int i;
 
 
                vector = rtvec_alloc (n_elts);
                vector = rtvec_alloc (n_elts);
                for (i = 0; i < n_elts; i++)
                for (i = 0; i < n_elts; i++)
                  RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
                  RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
              }
              }
          }
          }
 
 
        /* If the constructor has fewer elements than the vector,
        /* If the constructor has fewer elements than the vector,
           clear the whole array first.  Similarly if this is static
           clear the whole array first.  Similarly if this is static
           constructor of a non-BLKmode object.  */
           constructor of a non-BLKmode object.  */
        if (cleared)
        if (cleared)
          need_to_clear = 0;
          need_to_clear = 0;
        else if (REG_P (target) && TREE_STATIC (exp))
        else if (REG_P (target) && TREE_STATIC (exp))
          need_to_clear = 1;
          need_to_clear = 1;
        else
        else
          {
          {
            unsigned HOST_WIDE_INT count = 0, zero_count = 0;
            unsigned HOST_WIDE_INT count = 0, zero_count = 0;
            tree value;
            tree value;
 
 
            FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
            FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
              {
              {
                int n_elts_here = tree_low_cst
                int n_elts_here = tree_low_cst
                  (int_const_binop (TRUNC_DIV_EXPR,
                  (int_const_binop (TRUNC_DIV_EXPR,
                                    TYPE_SIZE (TREE_TYPE (value)),
                                    TYPE_SIZE (TREE_TYPE (value)),
                                    TYPE_SIZE (elttype), 0), 1);
                                    TYPE_SIZE (elttype), 0), 1);
 
 
                count += n_elts_here;
                count += n_elts_here;
                if (mostly_zeros_p (value))
                if (mostly_zeros_p (value))
                  zero_count += n_elts_here;
                  zero_count += n_elts_here;
              }
              }
 
 
            /* Clear the entire vector first if there are any missing elements,
            /* Clear the entire vector first if there are any missing elements,
               or if the incidence of zero elements is >= 75%.  */
               or if the incidence of zero elements is >= 75%.  */
            need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
            need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
          }
          }
 
 
        if (need_to_clear && size > 0 && !vector)
        if (need_to_clear && size > 0 && !vector)
          {
          {
            if (REG_P (target))
            if (REG_P (target))
              emit_move_insn (target,  CONST0_RTX (GET_MODE (target)));
              emit_move_insn (target,  CONST0_RTX (GET_MODE (target)));
            else
            else
              clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
              clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
            cleared = 1;
            cleared = 1;
          }
          }
 
 
        /* Inform later passes that the old value is dead.  */
        /* Inform later passes that the old value is dead.  */
        if (!cleared && !vector && REG_P (target))
        if (!cleared && !vector && REG_P (target))
          emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
          emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
 
 
        /* Store each element of the constructor into the corresponding
        /* Store each element of the constructor into the corresponding
           element of TARGET, determined by counting the elements.  */
           element of TARGET, determined by counting the elements.  */
        for (idx = 0, i = 0;
        for (idx = 0, i = 0;
             VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
             VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
             idx++, i += bitsize / elt_size)
             idx++, i += bitsize / elt_size)
          {
          {
            HOST_WIDE_INT eltpos;
            HOST_WIDE_INT eltpos;
            tree value = ce->value;
            tree value = ce->value;
 
 
            bitsize = tree_low_cst (TYPE_SIZE (TREE_TYPE (value)), 1);
            bitsize = tree_low_cst (TYPE_SIZE (TREE_TYPE (value)), 1);
            if (cleared && initializer_zerop (value))
            if (cleared && initializer_zerop (value))
              continue;
              continue;
 
 
            if (ce->index)
            if (ce->index)
              eltpos = tree_low_cst (ce->index, 1);
              eltpos = tree_low_cst (ce->index, 1);
            else
            else
              eltpos = i;
              eltpos = i;
 
 
            if (vector)
            if (vector)
              {
              {
                /* Vector CONSTRUCTORs should only be built from smaller
                /* Vector CONSTRUCTORs should only be built from smaller
                   vectors in the case of BLKmode vectors.  */
                   vectors in the case of BLKmode vectors.  */
                gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
                gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
                RTVEC_ELT (vector, eltpos)
                RTVEC_ELT (vector, eltpos)
                  = expand_normal (value);
                  = expand_normal (value);
              }
              }
            else
            else
              {
              {
                enum machine_mode value_mode =
                enum machine_mode value_mode =
                  TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
                  TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
                  ? TYPE_MODE (TREE_TYPE (value))
                  ? TYPE_MODE (TREE_TYPE (value))
                  : eltmode;
                  : eltmode;
                bitpos = eltpos * elt_size;
                bitpos = eltpos * elt_size;
                store_constructor_field (target, bitsize, bitpos,
                store_constructor_field (target, bitsize, bitpos,
                                         value_mode, value, type,
                                         value_mode, value, type,
                                         cleared, get_alias_set (elttype));
                                         cleared, get_alias_set (elttype));
              }
              }
          }
          }
 
 
        if (vector)
        if (vector)
          emit_insn (GEN_FCN (icode)
          emit_insn (GEN_FCN (icode)
                     (target,
                     (target,
                      gen_rtx_PARALLEL (GET_MODE (target), vector)));
                      gen_rtx_PARALLEL (GET_MODE (target), vector)));
        break;
        break;
      }
      }
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}
 
 
/* Store the value of EXP (an expression tree)
/* Store the value of EXP (an expression tree)
   into a subfield of TARGET which has mode MODE and occupies
   into a subfield of TARGET which has mode MODE and occupies
   BITSIZE bits, starting BITPOS bits from the start of TARGET.
   BITSIZE bits, starting BITPOS bits from the start of TARGET.
   If MODE is VOIDmode, it means that we are storing into a bit-field.
   If MODE is VOIDmode, it means that we are storing into a bit-field.
 
 
   Always return const0_rtx unless we have something particular to
   Always return const0_rtx unless we have something particular to
   return.
   return.
 
 
   TYPE is the type of the underlying object,
   TYPE is the type of the underlying object,
 
 
   ALIAS_SET is the alias set for the destination.  This value will
   ALIAS_SET is the alias set for the destination.  This value will
   (in general) be different from that for TARGET, since TARGET is a
   (in general) be different from that for TARGET, since TARGET is a
   reference to the containing structure.  */
   reference to the containing structure.  */
 
 
static rtx
static rtx
store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
             enum machine_mode mode, tree exp, tree type, int alias_set)
             enum machine_mode mode, tree exp, tree type, int alias_set)
{
{
  HOST_WIDE_INT width_mask = 0;
  HOST_WIDE_INT width_mask = 0;
 
 
  if (TREE_CODE (exp) == ERROR_MARK)
  if (TREE_CODE (exp) == ERROR_MARK)
    return const0_rtx;
    return const0_rtx;
 
 
  /* If we have nothing to store, do nothing unless the expression has
  /* If we have nothing to store, do nothing unless the expression has
     side-effects.  */
     side-effects.  */
  if (bitsize == 0)
  if (bitsize == 0)
    return expand_expr (exp, const0_rtx, VOIDmode, 0);
    return expand_expr (exp, const0_rtx, VOIDmode, 0);
  else if (bitsize >= 0 && bitsize < HOST_BITS_PER_WIDE_INT)
  else if (bitsize >= 0 && bitsize < HOST_BITS_PER_WIDE_INT)
    width_mask = ((HOST_WIDE_INT) 1 << bitsize) - 1;
    width_mask = ((HOST_WIDE_INT) 1 << bitsize) - 1;
 
 
  /* If we are storing into an unaligned field of an aligned union that is
  /* If we are storing into an unaligned field of an aligned union that is
     in a register, we may have the mode of TARGET being an integer mode but
     in a register, we may have the mode of TARGET being an integer mode but
     MODE == BLKmode.  In that case, get an aligned object whose size and
     MODE == BLKmode.  In that case, get an aligned object whose size and
     alignment are the same as TARGET and store TARGET into it (we can avoid
     alignment are the same as TARGET and store TARGET into it (we can avoid
     the store if the field being stored is the entire width of TARGET).  Then
     the store if the field being stored is the entire width of TARGET).  Then
     call ourselves recursively to store the field into a BLKmode version of
     call ourselves recursively to store the field into a BLKmode version of
     that object.  Finally, load from the object into TARGET.  This is not
     that object.  Finally, load from the object into TARGET.  This is not
     very efficient in general, but should only be slightly more expensive
     very efficient in general, but should only be slightly more expensive
     than the otherwise-required unaligned accesses.  Perhaps this can be
     than the otherwise-required unaligned accesses.  Perhaps this can be
     cleaned up later.  It's tempting to make OBJECT readonly, but it's set
     cleaned up later.  It's tempting to make OBJECT readonly, but it's set
     twice, once with emit_move_insn and once via store_field.  */
     twice, once with emit_move_insn and once via store_field.  */
 
 
  if (mode == BLKmode
  if (mode == BLKmode
      && (REG_P (target) || GET_CODE (target) == SUBREG))
      && (REG_P (target) || GET_CODE (target) == SUBREG))
    {
    {
      rtx object = assign_temp (type, 0, 1, 1);
      rtx object = assign_temp (type, 0, 1, 1);
      rtx blk_object = adjust_address (object, BLKmode, 0);
      rtx blk_object = adjust_address (object, BLKmode, 0);
 
 
      if (bitsize != (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (target)))
      if (bitsize != (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (target)))
        emit_move_insn (object, target);
        emit_move_insn (object, target);
 
 
      store_field (blk_object, bitsize, bitpos, mode, exp, type, alias_set);
      store_field (blk_object, bitsize, bitpos, mode, exp, type, alias_set);
 
 
      emit_move_insn (target, object);
      emit_move_insn (target, object);
 
 
      /* We want to return the BLKmode version of the data.  */
      /* We want to return the BLKmode version of the data.  */
      return blk_object;
      return blk_object;
    }
    }
 
 
  if (GET_CODE (target) == CONCAT)
  if (GET_CODE (target) == CONCAT)
    {
    {
      /* We're storing into a struct containing a single __complex.  */
      /* We're storing into a struct containing a single __complex.  */
 
 
      gcc_assert (!bitpos);
      gcc_assert (!bitpos);
      return store_expr (exp, target, 0);
      return store_expr (exp, target, 0);
    }
    }
 
 
  /* If the structure is in a register or if the component
  /* If the structure is in a register or if the component
     is a bit field, we cannot use addressing to access it.
     is a bit field, we cannot use addressing to access it.
     Use bit-field techniques or SUBREG to store in it.  */
     Use bit-field techniques or SUBREG to store in it.  */
 
 
  if (mode == VOIDmode
  if (mode == VOIDmode
      || (mode != BLKmode && ! direct_store[(int) mode]
      || (mode != BLKmode && ! direct_store[(int) mode]
          && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
          && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
          && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
          && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
      || REG_P (target)
      || REG_P (target)
      || GET_CODE (target) == SUBREG
      || GET_CODE (target) == SUBREG
      /* If the field isn't aligned enough to store as an ordinary memref,
      /* If the field isn't aligned enough to store as an ordinary memref,
         store it as a bit field.  */
         store it as a bit field.  */
      || (mode != BLKmode
      || (mode != BLKmode
          && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
          && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
                || bitpos % GET_MODE_ALIGNMENT (mode))
                || bitpos % GET_MODE_ALIGNMENT (mode))
               && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
               && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
              || (bitpos % BITS_PER_UNIT != 0)))
              || (bitpos % BITS_PER_UNIT != 0)))
      /* If the RHS and field are a constant size and the size of the
      /* If the RHS and field are a constant size and the size of the
         RHS isn't the same size as the bitfield, we must use bitfield
         RHS isn't the same size as the bitfield, we must use bitfield
         operations.  */
         operations.  */
      || (bitsize >= 0
      || (bitsize >= 0
          && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
          && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
          && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0))
          && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0))
    {
    {
      rtx temp;
      rtx temp;
 
 
      /* If EXP is a NOP_EXPR of precision less than its mode, then that
      /* If EXP is a NOP_EXPR of precision less than its mode, then that
         implies a mask operation.  If the precision is the same size as
         implies a mask operation.  If the precision is the same size as
         the field we're storing into, that mask is redundant.  This is
         the field we're storing into, that mask is redundant.  This is
         particularly common with bit field assignments generated by the
         particularly common with bit field assignments generated by the
         C front end.  */
         C front end.  */
      if (TREE_CODE (exp) == NOP_EXPR)
      if (TREE_CODE (exp) == NOP_EXPR)
        {
        {
          tree type = TREE_TYPE (exp);
          tree type = TREE_TYPE (exp);
          if (INTEGRAL_TYPE_P (type)
          if (INTEGRAL_TYPE_P (type)
              && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
              && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
              && bitsize == TYPE_PRECISION (type))
              && bitsize == TYPE_PRECISION (type))
            {
            {
              type = TREE_TYPE (TREE_OPERAND (exp, 0));
              type = TREE_TYPE (TREE_OPERAND (exp, 0));
              if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
              if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
                exp = TREE_OPERAND (exp, 0);
                exp = TREE_OPERAND (exp, 0);
            }
            }
        }
        }
 
 
      temp = expand_normal (exp);
      temp = expand_normal (exp);
 
 
      /* If BITSIZE is narrower than the size of the type of EXP
      /* If BITSIZE is narrower than the size of the type of EXP
         we will be narrowing TEMP.  Normally, what's wanted are the
         we will be narrowing TEMP.  Normally, what's wanted are the
         low-order bits.  However, if EXP's type is a record and this is
         low-order bits.  However, if EXP's type is a record and this is
         big-endian machine, we want the upper BITSIZE bits.  */
         big-endian machine, we want the upper BITSIZE bits.  */
      if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
      if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
          && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
          && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
          && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
          && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
        temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
        temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
                             size_int (GET_MODE_BITSIZE (GET_MODE (temp))
                             size_int (GET_MODE_BITSIZE (GET_MODE (temp))
                                       - bitsize),
                                       - bitsize),
                             NULL_RTX, 1);
                             NULL_RTX, 1);
 
 
      /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
      /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
         MODE.  */
         MODE.  */
      if (mode != VOIDmode && mode != BLKmode
      if (mode != VOIDmode && mode != BLKmode
          && mode != TYPE_MODE (TREE_TYPE (exp)))
          && mode != TYPE_MODE (TREE_TYPE (exp)))
        temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
        temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
 
 
      /* If the modes of TARGET and TEMP are both BLKmode, both
      /* If the modes of TARGET and TEMP are both BLKmode, both
         must be in memory and BITPOS must be aligned on a byte
         must be in memory and BITPOS must be aligned on a byte
         boundary.  If so, we simply do a block copy.  */
         boundary.  If so, we simply do a block copy.  */
      if (GET_MODE (target) == BLKmode && GET_MODE (temp) == BLKmode)
      if (GET_MODE (target) == BLKmode && GET_MODE (temp) == BLKmode)
        {
        {
          gcc_assert (MEM_P (target) && MEM_P (temp)
          gcc_assert (MEM_P (target) && MEM_P (temp)
                      && !(bitpos % BITS_PER_UNIT));
                      && !(bitpos % BITS_PER_UNIT));
 
 
          target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
          target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
          emit_block_move (target, temp,
          emit_block_move (target, temp,
                           GEN_INT ((bitsize + BITS_PER_UNIT - 1)
                           GEN_INT ((bitsize + BITS_PER_UNIT - 1)
                                    / BITS_PER_UNIT),
                                    / BITS_PER_UNIT),
                           BLOCK_OP_NORMAL);
                           BLOCK_OP_NORMAL);
 
 
          return const0_rtx;
          return const0_rtx;
        }
        }
 
 
      /* Store the value in the bitfield.  */
      /* Store the value in the bitfield.  */
      store_bit_field (target, bitsize, bitpos, mode, temp);
      store_bit_field (target, bitsize, bitpos, mode, temp);
 
 
      return const0_rtx;
      return const0_rtx;
    }
    }
  else
  else
    {
    {
      /* Now build a reference to just the desired component.  */
      /* Now build a reference to just the desired component.  */
      rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
      rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
 
 
      if (to_rtx == target)
      if (to_rtx == target)
        to_rtx = copy_rtx (to_rtx);
        to_rtx = copy_rtx (to_rtx);
 
 
      MEM_SET_IN_STRUCT_P (to_rtx, 1);
      MEM_SET_IN_STRUCT_P (to_rtx, 1);
      if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
      if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
        set_mem_alias_set (to_rtx, alias_set);
        set_mem_alias_set (to_rtx, alias_set);
 
 
      return store_expr (exp, to_rtx, 0);
      return store_expr (exp, to_rtx, 0);
    }
    }
}
}


/* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
/* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
   an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
   an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
   codes and find the ultimate containing object, which we return.
   codes and find the ultimate containing object, which we return.
 
 
   We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
   We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
   bit position, and *PUNSIGNEDP to the signedness of the field.
   bit position, and *PUNSIGNEDP to the signedness of the field.
   If the position of the field is variable, we store a tree
   If the position of the field is variable, we store a tree
   giving the variable offset (in units) in *POFFSET.
   giving the variable offset (in units) in *POFFSET.
   This offset is in addition to the bit position.
   This offset is in addition to the bit position.
   If the position is not variable, we store 0 in *POFFSET.
   If the position is not variable, we store 0 in *POFFSET.
 
 
   If any of the extraction expressions is volatile,
   If any of the extraction expressions is volatile,
   we store 1 in *PVOLATILEP.  Otherwise we don't change that.
   we store 1 in *PVOLATILEP.  Otherwise we don't change that.
 
 
   If the field is a bit-field, *PMODE is set to VOIDmode.  Otherwise, it
   If the field is a bit-field, *PMODE is set to VOIDmode.  Otherwise, it
   is a mode that can be used to access the field.  In that case, *PBITSIZE
   is a mode that can be used to access the field.  In that case, *PBITSIZE
   is redundant.
   is redundant.
 
 
   If the field describes a variable-sized object, *PMODE is set to
   If the field describes a variable-sized object, *PMODE is set to
   VOIDmode and *PBITSIZE is set to -1.  An access cannot be made in
   VOIDmode and *PBITSIZE is set to -1.  An access cannot be made in
   this case, but the address of the object can be found.
   this case, but the address of the object can be found.
 
 
   If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
   If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
   look through nodes that serve as markers of a greater alignment than
   look through nodes that serve as markers of a greater alignment than
   the one that can be deduced from the expression.  These nodes make it
   the one that can be deduced from the expression.  These nodes make it
   possible for front-ends to prevent temporaries from being created by
   possible for front-ends to prevent temporaries from being created by
   the middle-end on alignment considerations.  For that purpose, the
   the middle-end on alignment considerations.  For that purpose, the
   normal operating mode at high-level is to always pass FALSE so that
   normal operating mode at high-level is to always pass FALSE so that
   the ultimate containing object is really returned; moreover, the
   the ultimate containing object is really returned; moreover, the
   associated predicate handled_component_p will always return TRUE
   associated predicate handled_component_p will always return TRUE
   on these nodes, thus indicating that they are essentially handled
   on these nodes, thus indicating that they are essentially handled
   by get_inner_reference.  TRUE should only be passed when the caller
   by get_inner_reference.  TRUE should only be passed when the caller
   is scanning the expression in order to build another representation
   is scanning the expression in order to build another representation
   and specifically knows how to handle these nodes; as such, this is
   and specifically knows how to handle these nodes; as such, this is
   the normal operating mode in the RTL expanders.  */
   the normal operating mode in the RTL expanders.  */
 
 
tree
tree
get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
                     HOST_WIDE_INT *pbitpos, tree *poffset,
                     HOST_WIDE_INT *pbitpos, tree *poffset,
                     enum machine_mode *pmode, int *punsignedp,
                     enum machine_mode *pmode, int *punsignedp,
                     int *pvolatilep, bool keep_aligning)
                     int *pvolatilep, bool keep_aligning)
{
{
  tree size_tree = 0;
  tree size_tree = 0;
  enum machine_mode mode = VOIDmode;
  enum machine_mode mode = VOIDmode;
  tree offset = size_zero_node;
  tree offset = size_zero_node;
  tree bit_offset = bitsize_zero_node;
  tree bit_offset = bitsize_zero_node;
 
 
  /* First get the mode, signedness, and size.  We do this from just the
  /* First get the mode, signedness, and size.  We do this from just the
     outermost expression.  */
     outermost expression.  */
  if (TREE_CODE (exp) == COMPONENT_REF)
  if (TREE_CODE (exp) == COMPONENT_REF)
    {
    {
      size_tree = DECL_SIZE (TREE_OPERAND (exp, 1));
      size_tree = DECL_SIZE (TREE_OPERAND (exp, 1));
      if (! DECL_BIT_FIELD (TREE_OPERAND (exp, 1)))
      if (! DECL_BIT_FIELD (TREE_OPERAND (exp, 1)))
        mode = DECL_MODE (TREE_OPERAND (exp, 1));
        mode = DECL_MODE (TREE_OPERAND (exp, 1));
 
 
      *punsignedp = DECL_UNSIGNED (TREE_OPERAND (exp, 1));
      *punsignedp = DECL_UNSIGNED (TREE_OPERAND (exp, 1));
    }
    }
  else if (TREE_CODE (exp) == BIT_FIELD_REF)
  else if (TREE_CODE (exp) == BIT_FIELD_REF)
    {
    {
      size_tree = TREE_OPERAND (exp, 1);
      size_tree = TREE_OPERAND (exp, 1);
      *punsignedp = BIT_FIELD_REF_UNSIGNED (exp);
      *punsignedp = BIT_FIELD_REF_UNSIGNED (exp);
    }
    }
  else
  else
    {
    {
      mode = TYPE_MODE (TREE_TYPE (exp));
      mode = TYPE_MODE (TREE_TYPE (exp));
      *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
      *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
 
 
      if (mode == BLKmode)
      if (mode == BLKmode)
        size_tree = TYPE_SIZE (TREE_TYPE (exp));
        size_tree = TYPE_SIZE (TREE_TYPE (exp));
      else
      else
        *pbitsize = GET_MODE_BITSIZE (mode);
        *pbitsize = GET_MODE_BITSIZE (mode);
    }
    }
 
 
  if (size_tree != 0)
  if (size_tree != 0)
    {
    {
      if (! host_integerp (size_tree, 1))
      if (! host_integerp (size_tree, 1))
        mode = BLKmode, *pbitsize = -1;
        mode = BLKmode, *pbitsize = -1;
      else
      else
        *pbitsize = tree_low_cst (size_tree, 1);
        *pbitsize = tree_low_cst (size_tree, 1);
    }
    }
 
 
  *pmode = mode;
  *pmode = mode;
 
 
  /* Compute cumulative bit-offset for nested component-refs and array-refs,
  /* Compute cumulative bit-offset for nested component-refs and array-refs,
     and find the ultimate containing object.  */
     and find the ultimate containing object.  */
  while (1)
  while (1)
    {
    {
      switch (TREE_CODE (exp))
      switch (TREE_CODE (exp))
        {
        {
        case BIT_FIELD_REF:
        case BIT_FIELD_REF:
          bit_offset = size_binop (PLUS_EXPR, bit_offset,
          bit_offset = size_binop (PLUS_EXPR, bit_offset,
                                   TREE_OPERAND (exp, 2));
                                   TREE_OPERAND (exp, 2));
          break;
          break;
 
 
        case COMPONENT_REF:
        case COMPONENT_REF:
          {
          {
            tree field = TREE_OPERAND (exp, 1);
            tree field = TREE_OPERAND (exp, 1);
            tree this_offset = component_ref_field_offset (exp);
            tree this_offset = component_ref_field_offset (exp);
 
 
            /* If this field hasn't been filled in yet, don't go past it.
            /* If this field hasn't been filled in yet, don't go past it.
               This should only happen when folding expressions made during
               This should only happen when folding expressions made during
               type construction.  */
               type construction.  */
            if (this_offset == 0)
            if (this_offset == 0)
              break;
              break;
 
 
            offset = size_binop (PLUS_EXPR, offset, this_offset);
            offset = size_binop (PLUS_EXPR, offset, this_offset);
            bit_offset = size_binop (PLUS_EXPR, bit_offset,
            bit_offset = size_binop (PLUS_EXPR, bit_offset,
                                     DECL_FIELD_BIT_OFFSET (field));
                                     DECL_FIELD_BIT_OFFSET (field));
 
 
            /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN.  */
            /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN.  */
          }
          }
          break;
          break;
 
 
        case ARRAY_REF:
        case ARRAY_REF:
        case ARRAY_RANGE_REF:
        case ARRAY_RANGE_REF:
          {
          {
            tree index = TREE_OPERAND (exp, 1);
            tree index = TREE_OPERAND (exp, 1);
            tree low_bound = array_ref_low_bound (exp);
            tree low_bound = array_ref_low_bound (exp);
            tree unit_size = array_ref_element_size (exp);
            tree unit_size = array_ref_element_size (exp);
 
 
            /* We assume all arrays have sizes that are a multiple of a byte.
            /* We assume all arrays have sizes that are a multiple of a byte.
               First subtract the lower bound, if any, in the type of the
               First subtract the lower bound, if any, in the type of the
               index, then convert to sizetype and multiply by the size of
               index, then convert to sizetype and multiply by the size of
               the array element.  */
               the array element.  */
            if (! integer_zerop (low_bound))
            if (! integer_zerop (low_bound))
              index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
              index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
                                   index, low_bound);
                                   index, low_bound);
 
 
            offset = size_binop (PLUS_EXPR, offset,
            offset = size_binop (PLUS_EXPR, offset,
                                 size_binop (MULT_EXPR,
                                 size_binop (MULT_EXPR,
                                             fold_convert (sizetype, index),
                                             fold_convert (sizetype, index),
                                             unit_size));
                                             unit_size));
          }
          }
          break;
          break;
 
 
        case REALPART_EXPR:
        case REALPART_EXPR:
          break;
          break;
 
 
        case IMAGPART_EXPR:
        case IMAGPART_EXPR:
          bit_offset = size_binop (PLUS_EXPR, bit_offset,
          bit_offset = size_binop (PLUS_EXPR, bit_offset,
                                   bitsize_int (*pbitsize));
                                   bitsize_int (*pbitsize));
          break;
          break;
 
 
        case VIEW_CONVERT_EXPR:
        case VIEW_CONVERT_EXPR:
          if (keep_aligning && STRICT_ALIGNMENT
          if (keep_aligning && STRICT_ALIGNMENT
              && (TYPE_ALIGN (TREE_TYPE (exp))
              && (TYPE_ALIGN (TREE_TYPE (exp))
               > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
               > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
              && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
              && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
                  < BIGGEST_ALIGNMENT)
                  < BIGGEST_ALIGNMENT)
              && (TYPE_ALIGN_OK (TREE_TYPE (exp))
              && (TYPE_ALIGN_OK (TREE_TYPE (exp))
                  || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
                  || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
            goto done;
            goto done;
          break;
          break;
 
 
        default:
        default:
          goto done;
          goto done;
        }
        }
 
 
      /* If any reference in the chain is volatile, the effect is volatile.  */
      /* If any reference in the chain is volatile, the effect is volatile.  */
      if (TREE_THIS_VOLATILE (exp))
      if (TREE_THIS_VOLATILE (exp))
        *pvolatilep = 1;
        *pvolatilep = 1;
 
 
      exp = TREE_OPERAND (exp, 0);
      exp = TREE_OPERAND (exp, 0);
    }
    }
 done:
 done:
 
 
  /* If OFFSET is constant, see if we can return the whole thing as a
  /* If OFFSET is constant, see if we can return the whole thing as a
     constant bit position.  Make sure to handle overflow during
     constant bit position.  Make sure to handle overflow during
     this conversion.  */
     this conversion.  */
  if (host_integerp (offset, 0))
  if (host_integerp (offset, 0))
    {
    {
      double_int tem = double_int_mul (tree_to_double_int (offset),
      double_int tem = double_int_mul (tree_to_double_int (offset),
                                       uhwi_to_double_int (BITS_PER_UNIT));
                                       uhwi_to_double_int (BITS_PER_UNIT));
      tem = double_int_add (tem, tree_to_double_int (bit_offset));
      tem = double_int_add (tem, tree_to_double_int (bit_offset));
      if (double_int_fits_in_shwi_p (tem))
      if (double_int_fits_in_shwi_p (tem))
        {
        {
          *pbitpos = double_int_to_shwi (tem);
          *pbitpos = double_int_to_shwi (tem);
          *poffset = NULL_TREE;
          *poffset = NULL_TREE;
          return exp;
          return exp;
        }
        }
    }
    }
 
 
  /* Otherwise, split it up.  */
  /* Otherwise, split it up.  */
  *pbitpos = tree_low_cst (bit_offset, 0);
  *pbitpos = tree_low_cst (bit_offset, 0);
  *poffset = offset;
  *poffset = offset;
 
 
  return exp;
  return exp;
}
}
 
 
/* Given an expression EXP that may be a COMPONENT_REF or an ARRAY_REF,
/* Given an expression EXP that may be a COMPONENT_REF or an ARRAY_REF,
   look for whether EXP or any nested component-refs within EXP is marked
   look for whether EXP or any nested component-refs within EXP is marked
   as PACKED.  */
   as PACKED.  */
 
 
bool
bool
contains_packed_reference (tree exp)
contains_packed_reference (tree exp)
{
{
  bool packed_p = false;
  bool packed_p = false;
 
 
  while (1)
  while (1)
    {
    {
      switch (TREE_CODE (exp))
      switch (TREE_CODE (exp))
        {
        {
        case COMPONENT_REF:
        case COMPONENT_REF:
          {
          {
            tree field = TREE_OPERAND (exp, 1);
            tree field = TREE_OPERAND (exp, 1);
            packed_p = DECL_PACKED (field)
            packed_p = DECL_PACKED (field)
                       || TYPE_PACKED (TREE_TYPE (field))
                       || TYPE_PACKED (TREE_TYPE (field))
                       || TYPE_PACKED (TREE_TYPE (exp));
                       || TYPE_PACKED (TREE_TYPE (exp));
            if (packed_p)
            if (packed_p)
              goto done;
              goto done;
          }
          }
          break;
          break;
 
 
        case BIT_FIELD_REF:
        case BIT_FIELD_REF:
        case ARRAY_REF:
        case ARRAY_REF:
        case ARRAY_RANGE_REF:
        case ARRAY_RANGE_REF:
        case REALPART_EXPR:
        case REALPART_EXPR:
        case IMAGPART_EXPR:
        case IMAGPART_EXPR:
        case VIEW_CONVERT_EXPR:
        case VIEW_CONVERT_EXPR:
          break;
          break;
 
 
        default:
        default:
          goto done;
          goto done;
        }
        }
      exp = TREE_OPERAND (exp, 0);
      exp = TREE_OPERAND (exp, 0);
    }
    }
 done:
 done:
  return packed_p;
  return packed_p;
}
}
 
 
/* Return a tree of sizetype representing the size, in bytes, of the element
/* Return a tree of sizetype representing the size, in bytes, of the element
   of EXP, an ARRAY_REF.  */
   of EXP, an ARRAY_REF.  */
 
 
tree
tree
array_ref_element_size (tree exp)
array_ref_element_size (tree exp)
{
{
  tree aligned_size = TREE_OPERAND (exp, 3);
  tree aligned_size = TREE_OPERAND (exp, 3);
  tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
  tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
 
 
  /* If a size was specified in the ARRAY_REF, it's the size measured
  /* If a size was specified in the ARRAY_REF, it's the size measured
     in alignment units of the element type.  So multiply by that value.  */
     in alignment units of the element type.  So multiply by that value.  */
  if (aligned_size)
  if (aligned_size)
    {
    {
      /* ??? tree_ssa_useless_type_conversion will eliminate casts to
      /* ??? tree_ssa_useless_type_conversion will eliminate casts to
         sizetype from another type of the same width and signedness.  */
         sizetype from another type of the same width and signedness.  */
      if (TREE_TYPE (aligned_size) != sizetype)
      if (TREE_TYPE (aligned_size) != sizetype)
        aligned_size = fold_convert (sizetype, aligned_size);
        aligned_size = fold_convert (sizetype, aligned_size);
      return size_binop (MULT_EXPR, aligned_size,
      return size_binop (MULT_EXPR, aligned_size,
                         size_int (TYPE_ALIGN_UNIT (elmt_type)));
                         size_int (TYPE_ALIGN_UNIT (elmt_type)));
    }
    }
 
 
  /* Otherwise, take the size from that of the element type.  Substitute
  /* Otherwise, take the size from that of the element type.  Substitute
     any PLACEHOLDER_EXPR that we have.  */
     any PLACEHOLDER_EXPR that we have.  */
  else
  else
    return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
    return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
}
}
 
 
/* Return a tree representing the lower bound of the array mentioned in
/* Return a tree representing the lower bound of the array mentioned in
   EXP, an ARRAY_REF.  */
   EXP, an ARRAY_REF.  */
 
 
tree
tree
array_ref_low_bound (tree exp)
array_ref_low_bound (tree exp)
{
{
  tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
  tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
 
 
  /* If a lower bound is specified in EXP, use it.  */
  /* If a lower bound is specified in EXP, use it.  */
  if (TREE_OPERAND (exp, 2))
  if (TREE_OPERAND (exp, 2))
    return TREE_OPERAND (exp, 2);
    return TREE_OPERAND (exp, 2);
 
 
  /* Otherwise, if there is a domain type and it has a lower bound, use it,
  /* Otherwise, if there is a domain type and it has a lower bound, use it,
     substituting for a PLACEHOLDER_EXPR as needed.  */
     substituting for a PLACEHOLDER_EXPR as needed.  */
  if (domain_type && TYPE_MIN_VALUE (domain_type))
  if (domain_type && TYPE_MIN_VALUE (domain_type))
    return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
    return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
 
 
  /* Otherwise, return a zero of the appropriate type.  */
  /* Otherwise, return a zero of the appropriate type.  */
  return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
  return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
}
}
 
 
/* Return a tree representing the upper bound of the array mentioned in
/* Return a tree representing the upper bound of the array mentioned in
   EXP, an ARRAY_REF.  */
   EXP, an ARRAY_REF.  */
 
 
tree
tree
array_ref_up_bound (tree exp)
array_ref_up_bound (tree exp)
{
{
  tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
  tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
 
 
  /* If there is a domain type and it has an upper bound, use it, substituting
  /* If there is a domain type and it has an upper bound, use it, substituting
     for a PLACEHOLDER_EXPR as needed.  */
     for a PLACEHOLDER_EXPR as needed.  */
  if (domain_type && TYPE_MAX_VALUE (domain_type))
  if (domain_type && TYPE_MAX_VALUE (domain_type))
    return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
    return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
 
 
  /* Otherwise fail.  */
  /* Otherwise fail.  */
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Return a tree representing the offset, in bytes, of the field referenced
/* Return a tree representing the offset, in bytes, of the field referenced
   by EXP.  This does not include any offset in DECL_FIELD_BIT_OFFSET.  */
   by EXP.  This does not include any offset in DECL_FIELD_BIT_OFFSET.  */
 
 
tree
tree
component_ref_field_offset (tree exp)
component_ref_field_offset (tree exp)
{
{
  tree aligned_offset = TREE_OPERAND (exp, 2);
  tree aligned_offset = TREE_OPERAND (exp, 2);
  tree field = TREE_OPERAND (exp, 1);
  tree field = TREE_OPERAND (exp, 1);
 
 
  /* If an offset was specified in the COMPONENT_REF, it's the offset measured
  /* If an offset was specified in the COMPONENT_REF, it's the offset measured
     in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT.  So multiply by that
     in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT.  So multiply by that
     value.  */
     value.  */
  if (aligned_offset)
  if (aligned_offset)
    {
    {
      /* ??? tree_ssa_useless_type_conversion will eliminate casts to
      /* ??? tree_ssa_useless_type_conversion will eliminate casts to
         sizetype from another type of the same width and signedness.  */
         sizetype from another type of the same width and signedness.  */
      if (TREE_TYPE (aligned_offset) != sizetype)
      if (TREE_TYPE (aligned_offset) != sizetype)
        aligned_offset = fold_convert (sizetype, aligned_offset);
        aligned_offset = fold_convert (sizetype, aligned_offset);
      return size_binop (MULT_EXPR, aligned_offset,
      return size_binop (MULT_EXPR, aligned_offset,
                         size_int (DECL_OFFSET_ALIGN (field) / BITS_PER_UNIT));
                         size_int (DECL_OFFSET_ALIGN (field) / BITS_PER_UNIT));
    }
    }
 
 
  /* Otherwise, take the offset from that of the field.  Substitute
  /* Otherwise, take the offset from that of the field.  Substitute
     any PLACEHOLDER_EXPR that we have.  */
     any PLACEHOLDER_EXPR that we have.  */
  else
  else
    return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
    return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
}
}
 
 
/* Return 1 if T is an expression that get_inner_reference handles.  */
/* Return 1 if T is an expression that get_inner_reference handles.  */
 
 
int
int
handled_component_p (tree t)
handled_component_p (tree t)
{
{
  switch (TREE_CODE (t))
  switch (TREE_CODE (t))
    {
    {
    case BIT_FIELD_REF:
    case BIT_FIELD_REF:
    case COMPONENT_REF:
    case COMPONENT_REF:
    case ARRAY_REF:
    case ARRAY_REF:
    case ARRAY_RANGE_REF:
    case ARRAY_RANGE_REF:
    case VIEW_CONVERT_EXPR:
    case VIEW_CONVERT_EXPR:
    case REALPART_EXPR:
    case REALPART_EXPR:
    case IMAGPART_EXPR:
    case IMAGPART_EXPR:
      return 1;
      return 1;
 
 
    default:
    default:
      return 0;
      return 0;
    }
    }
}
}


/* Given an rtx VALUE that may contain additions and multiplications, return
/* Given an rtx VALUE that may contain additions and multiplications, return
   an equivalent value that just refers to a register, memory, or constant.
   an equivalent value that just refers to a register, memory, or constant.
   This is done by generating instructions to perform the arithmetic and
   This is done by generating instructions to perform the arithmetic and
   returning a pseudo-register containing the value.
   returning a pseudo-register containing the value.
 
 
   The returned value may be a REG, SUBREG, MEM or constant.  */
   The returned value may be a REG, SUBREG, MEM or constant.  */
 
 
rtx
rtx
force_operand (rtx value, rtx target)
force_operand (rtx value, rtx target)
{
{
  rtx op1, op2;
  rtx op1, op2;
  /* Use subtarget as the target for operand 0 of a binary operation.  */
  /* Use subtarget as the target for operand 0 of a binary operation.  */
  rtx subtarget = get_subtarget (target);
  rtx subtarget = get_subtarget (target);
  enum rtx_code code = GET_CODE (value);
  enum rtx_code code = GET_CODE (value);
 
 
  /* Check for subreg applied to an expression produced by loop optimizer.  */
  /* Check for subreg applied to an expression produced by loop optimizer.  */
  if (code == SUBREG
  if (code == SUBREG
      && !REG_P (SUBREG_REG (value))
      && !REG_P (SUBREG_REG (value))
      && !MEM_P (SUBREG_REG (value)))
      && !MEM_P (SUBREG_REG (value)))
    {
    {
      value = simplify_gen_subreg (GET_MODE (value),
      value = simplify_gen_subreg (GET_MODE (value),
                                   force_reg (GET_MODE (SUBREG_REG (value)),
                                   force_reg (GET_MODE (SUBREG_REG (value)),
                                              force_operand (SUBREG_REG (value),
                                              force_operand (SUBREG_REG (value),
                                                             NULL_RTX)),
                                                             NULL_RTX)),
                                   GET_MODE (SUBREG_REG (value)),
                                   GET_MODE (SUBREG_REG (value)),
                                   SUBREG_BYTE (value));
                                   SUBREG_BYTE (value));
      code = GET_CODE (value);
      code = GET_CODE (value);
    }
    }
 
 
  /* Check for a PIC address load.  */
  /* Check for a PIC address load.  */
  if ((code == PLUS || code == MINUS)
  if ((code == PLUS || code == MINUS)
      && XEXP (value, 0) == pic_offset_table_rtx
      && XEXP (value, 0) == pic_offset_table_rtx
      && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
      && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
          || GET_CODE (XEXP (value, 1)) == LABEL_REF
          || GET_CODE (XEXP (value, 1)) == LABEL_REF
          || GET_CODE (XEXP (value, 1)) == CONST))
          || GET_CODE (XEXP (value, 1)) == CONST))
    {
    {
      if (!subtarget)
      if (!subtarget)
        subtarget = gen_reg_rtx (GET_MODE (value));
        subtarget = gen_reg_rtx (GET_MODE (value));
      emit_move_insn (subtarget, value);
      emit_move_insn (subtarget, value);
      return subtarget;
      return subtarget;
    }
    }
 
 
  if (ARITHMETIC_P (value))
  if (ARITHMETIC_P (value))
    {
    {
      op2 = XEXP (value, 1);
      op2 = XEXP (value, 1);
      if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
      if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
        subtarget = 0;
        subtarget = 0;
      if (code == MINUS && GET_CODE (op2) == CONST_INT)
      if (code == MINUS && GET_CODE (op2) == CONST_INT)
        {
        {
          code = PLUS;
          code = PLUS;
          op2 = negate_rtx (GET_MODE (value), op2);
          op2 = negate_rtx (GET_MODE (value), op2);
        }
        }
 
 
      /* Check for an addition with OP2 a constant integer and our first
      /* Check for an addition with OP2 a constant integer and our first
         operand a PLUS of a virtual register and something else.  In that
         operand a PLUS of a virtual register and something else.  In that
         case, we want to emit the sum of the virtual register and the
         case, we want to emit the sum of the virtual register and the
         constant first and then add the other value.  This allows virtual
         constant first and then add the other value.  This allows virtual
         register instantiation to simply modify the constant rather than
         register instantiation to simply modify the constant rather than
         creating another one around this addition.  */
         creating another one around this addition.  */
      if (code == PLUS && GET_CODE (op2) == CONST_INT
      if (code == PLUS && GET_CODE (op2) == CONST_INT
          && GET_CODE (XEXP (value, 0)) == PLUS
          && GET_CODE (XEXP (value, 0)) == PLUS
          && REG_P (XEXP (XEXP (value, 0), 0))
          && REG_P (XEXP (XEXP (value, 0), 0))
          && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
          && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
          && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
          && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
        {
        {
          rtx temp = expand_simple_binop (GET_MODE (value), code,
          rtx temp = expand_simple_binop (GET_MODE (value), code,
                                          XEXP (XEXP (value, 0), 0), op2,
                                          XEXP (XEXP (value, 0), 0), op2,
                                          subtarget, 0, OPTAB_LIB_WIDEN);
                                          subtarget, 0, OPTAB_LIB_WIDEN);
          return expand_simple_binop (GET_MODE (value), code, temp,
          return expand_simple_binop (GET_MODE (value), code, temp,
                                      force_operand (XEXP (XEXP (value,
                                      force_operand (XEXP (XEXP (value,
                                                                 0), 1), 0),
                                                                 0), 1), 0),
                                      target, 0, OPTAB_LIB_WIDEN);
                                      target, 0, OPTAB_LIB_WIDEN);
        }
        }
 
 
      op1 = force_operand (XEXP (value, 0), subtarget);
      op1 = force_operand (XEXP (value, 0), subtarget);
      op2 = force_operand (op2, NULL_RTX);
      op2 = force_operand (op2, NULL_RTX);
      switch (code)
      switch (code)
        {
        {
        case MULT:
        case MULT:
          return expand_mult (GET_MODE (value), op1, op2, target, 1);
          return expand_mult (GET_MODE (value), op1, op2, target, 1);
        case DIV:
        case DIV:
          if (!INTEGRAL_MODE_P (GET_MODE (value)))
          if (!INTEGRAL_MODE_P (GET_MODE (value)))
            return expand_simple_binop (GET_MODE (value), code, op1, op2,
            return expand_simple_binop (GET_MODE (value), code, op1, op2,
                                        target, 1, OPTAB_LIB_WIDEN);
                                        target, 1, OPTAB_LIB_WIDEN);
          else
          else
            return expand_divmod (0,
            return expand_divmod (0,
                                  FLOAT_MODE_P (GET_MODE (value))
                                  FLOAT_MODE_P (GET_MODE (value))
                                  ? RDIV_EXPR : TRUNC_DIV_EXPR,
                                  ? RDIV_EXPR : TRUNC_DIV_EXPR,
                                  GET_MODE (value), op1, op2, target, 0);
                                  GET_MODE (value), op1, op2, target, 0);
          break;
          break;
        case MOD:
        case MOD:
          return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
          return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
                                target, 0);
                                target, 0);
          break;
          break;
        case UDIV:
        case UDIV:
          return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
          return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
                                target, 1);
                                target, 1);
          break;
          break;
        case UMOD:
        case UMOD:
          return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
          return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
                                target, 1);
                                target, 1);
          break;
          break;
        case ASHIFTRT:
        case ASHIFTRT:
          return expand_simple_binop (GET_MODE (value), code, op1, op2,
          return expand_simple_binop (GET_MODE (value), code, op1, op2,
                                      target, 0, OPTAB_LIB_WIDEN);
                                      target, 0, OPTAB_LIB_WIDEN);
          break;
          break;
        default:
        default:
          return expand_simple_binop (GET_MODE (value), code, op1, op2,
          return expand_simple_binop (GET_MODE (value), code, op1, op2,
                                      target, 1, OPTAB_LIB_WIDEN);
                                      target, 1, OPTAB_LIB_WIDEN);
        }
        }
    }
    }
  if (UNARY_P (value))
  if (UNARY_P (value))
    {
    {
      if (!target)
      if (!target)
        target = gen_reg_rtx (GET_MODE (value));
        target = gen_reg_rtx (GET_MODE (value));
      op1 = force_operand (XEXP (value, 0), NULL_RTX);
      op1 = force_operand (XEXP (value, 0), NULL_RTX);
      switch (code)
      switch (code)
        {
        {
        case ZERO_EXTEND:
        case ZERO_EXTEND:
        case SIGN_EXTEND:
        case SIGN_EXTEND:
        case TRUNCATE:
        case TRUNCATE:
        case FLOAT_EXTEND:
        case FLOAT_EXTEND:
        case FLOAT_TRUNCATE:
        case FLOAT_TRUNCATE:
          convert_move (target, op1, code == ZERO_EXTEND);
          convert_move (target, op1, code == ZERO_EXTEND);
          return target;
          return target;
 
 
        case FIX:
        case FIX:
        case UNSIGNED_FIX:
        case UNSIGNED_FIX:
          expand_fix (target, op1, code == UNSIGNED_FIX);
          expand_fix (target, op1, code == UNSIGNED_FIX);
          return target;
          return target;
 
 
        case FLOAT:
        case FLOAT:
        case UNSIGNED_FLOAT:
        case UNSIGNED_FLOAT:
          expand_float (target, op1, code == UNSIGNED_FLOAT);
          expand_float (target, op1, code == UNSIGNED_FLOAT);
          return target;
          return target;
 
 
        default:
        default:
          return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
          return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
        }
        }
    }
    }
 
 
#ifdef INSN_SCHEDULING
#ifdef INSN_SCHEDULING
  /* On machines that have insn scheduling, we want all memory reference to be
  /* On machines that have insn scheduling, we want all memory reference to be
     explicit, so we need to deal with such paradoxical SUBREGs.  */
     explicit, so we need to deal with such paradoxical SUBREGs.  */
  if (GET_CODE (value) == SUBREG && MEM_P (SUBREG_REG (value))
  if (GET_CODE (value) == SUBREG && MEM_P (SUBREG_REG (value))
      && (GET_MODE_SIZE (GET_MODE (value))
      && (GET_MODE_SIZE (GET_MODE (value))
          > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value)))))
          > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value)))))
    value
    value
      = simplify_gen_subreg (GET_MODE (value),
      = simplify_gen_subreg (GET_MODE (value),
                             force_reg (GET_MODE (SUBREG_REG (value)),
                             force_reg (GET_MODE (SUBREG_REG (value)),
                                        force_operand (SUBREG_REG (value),
                                        force_operand (SUBREG_REG (value),
                                                       NULL_RTX)),
                                                       NULL_RTX)),
                             GET_MODE (SUBREG_REG (value)),
                             GET_MODE (SUBREG_REG (value)),
                             SUBREG_BYTE (value));
                             SUBREG_BYTE (value));
#endif
#endif
 
 
  return value;
  return value;
}
}


/* Subroutine of expand_expr: return nonzero iff there is no way that
/* Subroutine of expand_expr: return nonzero iff there is no way that
   EXP can reference X, which is being modified.  TOP_P is nonzero if this
   EXP can reference X, which is being modified.  TOP_P is nonzero if this
   call is going to be used to determine whether we need a temporary
   call is going to be used to determine whether we need a temporary
   for EXP, as opposed to a recursive call to this function.
   for EXP, as opposed to a recursive call to this function.
 
 
   It is always safe for this routine to return zero since it merely
   It is always safe for this routine to return zero since it merely
   searches for optimization opportunities.  */
   searches for optimization opportunities.  */
 
 
int
int
safe_from_p (rtx x, tree exp, int top_p)
safe_from_p (rtx x, tree exp, int top_p)
{
{
  rtx exp_rtl = 0;
  rtx exp_rtl = 0;
  int i, nops;
  int i, nops;
 
 
  if (x == 0
  if (x == 0
      /* If EXP has varying size, we MUST use a target since we currently
      /* If EXP has varying size, we MUST use a target since we currently
         have no way of allocating temporaries of variable size
         have no way of allocating temporaries of variable size
         (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
         (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
         So we assume here that something at a higher level has prevented a
         So we assume here that something at a higher level has prevented a
         clash.  This is somewhat bogus, but the best we can do.  Only
         clash.  This is somewhat bogus, but the best we can do.  Only
         do this when X is BLKmode and when we are at the top level.  */
         do this when X is BLKmode and when we are at the top level.  */
      || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
      || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
          && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
          && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
          && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
          && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
              || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
              || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
              || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
              || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
              != INTEGER_CST)
              != INTEGER_CST)
          && GET_MODE (x) == BLKmode)
          && GET_MODE (x) == BLKmode)
      /* If X is in the outgoing argument area, it is always safe.  */
      /* If X is in the outgoing argument area, it is always safe.  */
      || (MEM_P (x)
      || (MEM_P (x)
          && (XEXP (x, 0) == virtual_outgoing_args_rtx
          && (XEXP (x, 0) == virtual_outgoing_args_rtx
              || (GET_CODE (XEXP (x, 0)) == PLUS
              || (GET_CODE (XEXP (x, 0)) == PLUS
                  && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
                  && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
    return 1;
    return 1;
 
 
  /* If this is a subreg of a hard register, declare it unsafe, otherwise,
  /* If this is a subreg of a hard register, declare it unsafe, otherwise,
     find the underlying pseudo.  */
     find the underlying pseudo.  */
  if (GET_CODE (x) == SUBREG)
  if (GET_CODE (x) == SUBREG)
    {
    {
      x = SUBREG_REG (x);
      x = SUBREG_REG (x);
      if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
      if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
        return 0;
        return 0;
    }
    }
 
 
  /* Now look at our tree code and possibly recurse.  */
  /* Now look at our tree code and possibly recurse.  */
  switch (TREE_CODE_CLASS (TREE_CODE (exp)))
  switch (TREE_CODE_CLASS (TREE_CODE (exp)))
    {
    {
    case tcc_declaration:
    case tcc_declaration:
      exp_rtl = DECL_RTL_IF_SET (exp);
      exp_rtl = DECL_RTL_IF_SET (exp);
      break;
      break;
 
 
    case tcc_constant:
    case tcc_constant:
      return 1;
      return 1;
 
 
    case tcc_exceptional:
    case tcc_exceptional:
      if (TREE_CODE (exp) == TREE_LIST)
      if (TREE_CODE (exp) == TREE_LIST)
        {
        {
          while (1)
          while (1)
            {
            {
              if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
              if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
                return 0;
                return 0;
              exp = TREE_CHAIN (exp);
              exp = TREE_CHAIN (exp);
              if (!exp)
              if (!exp)
                return 1;
                return 1;
              if (TREE_CODE (exp) != TREE_LIST)
              if (TREE_CODE (exp) != TREE_LIST)
                return safe_from_p (x, exp, 0);
                return safe_from_p (x, exp, 0);
            }
            }
        }
        }
      else if (TREE_CODE (exp) == CONSTRUCTOR)
      else if (TREE_CODE (exp) == CONSTRUCTOR)
        {
        {
          constructor_elt *ce;
          constructor_elt *ce;
          unsigned HOST_WIDE_INT idx;
          unsigned HOST_WIDE_INT idx;
 
 
          for (idx = 0;
          for (idx = 0;
               VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
               VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
               idx++)
               idx++)
            if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
            if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
                || !safe_from_p (x, ce->value, 0))
                || !safe_from_p (x, ce->value, 0))
              return 0;
              return 0;
          return 1;
          return 1;
        }
        }
      else if (TREE_CODE (exp) == ERROR_MARK)
      else if (TREE_CODE (exp) == ERROR_MARK)
        return 1;       /* An already-visited SAVE_EXPR? */
        return 1;       /* An already-visited SAVE_EXPR? */
      else
      else
        return 0;
        return 0;
 
 
    case tcc_statement:
    case tcc_statement:
      /* The only case we look at here is the DECL_INITIAL inside a
      /* The only case we look at here is the DECL_INITIAL inside a
         DECL_EXPR.  */
         DECL_EXPR.  */
      return (TREE_CODE (exp) != DECL_EXPR
      return (TREE_CODE (exp) != DECL_EXPR
              || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
              || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
              || !DECL_INITIAL (DECL_EXPR_DECL (exp))
              || !DECL_INITIAL (DECL_EXPR_DECL (exp))
              || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
              || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
 
 
    case tcc_binary:
    case tcc_binary:
    case tcc_comparison:
    case tcc_comparison:
      if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
      if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
        return 0;
        return 0;
      /* Fall through.  */
      /* Fall through.  */
 
 
    case tcc_unary:
    case tcc_unary:
      return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
      return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
 
 
    case tcc_expression:
    case tcc_expression:
    case tcc_reference:
    case tcc_reference:
      /* Now do code-specific tests.  EXP_RTL is set to any rtx we find in
      /* Now do code-specific tests.  EXP_RTL is set to any rtx we find in
         the expression.  If it is set, we conflict iff we are that rtx or
         the expression.  If it is set, we conflict iff we are that rtx or
         both are in memory.  Otherwise, we check all operands of the
         both are in memory.  Otherwise, we check all operands of the
         expression recursively.  */
         expression recursively.  */
 
 
      switch (TREE_CODE (exp))
      switch (TREE_CODE (exp))
        {
        {
        case ADDR_EXPR:
        case ADDR_EXPR:
          /* If the operand is static or we are static, we can't conflict.
          /* If the operand is static or we are static, we can't conflict.
             Likewise if we don't conflict with the operand at all.  */
             Likewise if we don't conflict with the operand at all.  */
          if (staticp (TREE_OPERAND (exp, 0))
          if (staticp (TREE_OPERAND (exp, 0))
              || TREE_STATIC (exp)
              || TREE_STATIC (exp)
              || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
              || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
            return 1;
            return 1;
 
 
          /* Otherwise, the only way this can conflict is if we are taking
          /* Otherwise, the only way this can conflict is if we are taking
             the address of a DECL a that address if part of X, which is
             the address of a DECL a that address if part of X, which is
             very rare.  */
             very rare.  */
          exp = TREE_OPERAND (exp, 0);
          exp = TREE_OPERAND (exp, 0);
          if (DECL_P (exp))
          if (DECL_P (exp))
            {
            {
              if (!DECL_RTL_SET_P (exp)
              if (!DECL_RTL_SET_P (exp)
                  || !MEM_P (DECL_RTL (exp)))
                  || !MEM_P (DECL_RTL (exp)))
                return 0;
                return 0;
              else
              else
                exp_rtl = XEXP (DECL_RTL (exp), 0);
                exp_rtl = XEXP (DECL_RTL (exp), 0);
            }
            }
          break;
          break;
 
 
        case MISALIGNED_INDIRECT_REF:
        case MISALIGNED_INDIRECT_REF:
        case ALIGN_INDIRECT_REF:
        case ALIGN_INDIRECT_REF:
        case INDIRECT_REF:
        case INDIRECT_REF:
          if (MEM_P (x)
          if (MEM_P (x)
              && alias_sets_conflict_p (MEM_ALIAS_SET (x),
              && alias_sets_conflict_p (MEM_ALIAS_SET (x),
                                        get_alias_set (exp)))
                                        get_alias_set (exp)))
            return 0;
            return 0;
          break;
          break;
 
 
        case CALL_EXPR:
        case CALL_EXPR:
          /* Assume that the call will clobber all hard registers and
          /* Assume that the call will clobber all hard registers and
             all of memory.  */
             all of memory.  */
          if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
          if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
              || MEM_P (x))
              || MEM_P (x))
            return 0;
            return 0;
          break;
          break;
 
 
        case WITH_CLEANUP_EXPR:
        case WITH_CLEANUP_EXPR:
        case CLEANUP_POINT_EXPR:
        case CLEANUP_POINT_EXPR:
          /* Lowered by gimplify.c.  */
          /* Lowered by gimplify.c.  */
          gcc_unreachable ();
          gcc_unreachable ();
 
 
        case SAVE_EXPR:
        case SAVE_EXPR:
          return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
          return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
 
 
        default:
        default:
          break;
          break;
        }
        }
 
 
      /* If we have an rtx, we do not need to scan our operands.  */
      /* If we have an rtx, we do not need to scan our operands.  */
      if (exp_rtl)
      if (exp_rtl)
        break;
        break;
 
 
      nops = TREE_CODE_LENGTH (TREE_CODE (exp));
      nops = TREE_CODE_LENGTH (TREE_CODE (exp));
      for (i = 0; i < nops; i++)
      for (i = 0; i < nops; i++)
        if (TREE_OPERAND (exp, i) != 0
        if (TREE_OPERAND (exp, i) != 0
            && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
            && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
          return 0;
          return 0;
 
 
      /* If this is a language-specific tree code, it may require
      /* If this is a language-specific tree code, it may require
         special handling.  */
         special handling.  */
      if ((unsigned int) TREE_CODE (exp)
      if ((unsigned int) TREE_CODE (exp)
          >= (unsigned int) LAST_AND_UNUSED_TREE_CODE
          >= (unsigned int) LAST_AND_UNUSED_TREE_CODE
          && !lang_hooks.safe_from_p (x, exp))
          && !lang_hooks.safe_from_p (x, exp))
        return 0;
        return 0;
      break;
      break;
 
 
    case tcc_type:
    case tcc_type:
      /* Should never get a type here.  */
      /* Should never get a type here.  */
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  /* If we have an rtl, find any enclosed object.  Then see if we conflict
  /* If we have an rtl, find any enclosed object.  Then see if we conflict
     with it.  */
     with it.  */
  if (exp_rtl)
  if (exp_rtl)
    {
    {
      if (GET_CODE (exp_rtl) == SUBREG)
      if (GET_CODE (exp_rtl) == SUBREG)
        {
        {
          exp_rtl = SUBREG_REG (exp_rtl);
          exp_rtl = SUBREG_REG (exp_rtl);
          if (REG_P (exp_rtl)
          if (REG_P (exp_rtl)
              && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
              && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
            return 0;
            return 0;
        }
        }
 
 
      /* If the rtl is X, then it is not safe.  Otherwise, it is unless both
      /* If the rtl is X, then it is not safe.  Otherwise, it is unless both
         are memory and they conflict.  */
         are memory and they conflict.  */
      return ! (rtx_equal_p (x, exp_rtl)
      return ! (rtx_equal_p (x, exp_rtl)
                || (MEM_P (x) && MEM_P (exp_rtl)
                || (MEM_P (x) && MEM_P (exp_rtl)
                    && true_dependence (exp_rtl, VOIDmode, x,
                    && true_dependence (exp_rtl, VOIDmode, x,
                                        rtx_addr_varies_p)));
                                        rtx_addr_varies_p)));
    }
    }
 
 
  /* If we reach here, it is safe.  */
  /* If we reach here, it is safe.  */
  return 1;
  return 1;
}
}
 
 


/* Return the highest power of two that EXP is known to be a multiple of.
/* Return the highest power of two that EXP is known to be a multiple of.
   This is used in updating alignment of MEMs in array references.  */
   This is used in updating alignment of MEMs in array references.  */
 
 
unsigned HOST_WIDE_INT
unsigned HOST_WIDE_INT
highest_pow2_factor (tree exp)
highest_pow2_factor (tree exp)
{
{
  unsigned HOST_WIDE_INT c0, c1;
  unsigned HOST_WIDE_INT c0, c1;
 
 
  switch (TREE_CODE (exp))
  switch (TREE_CODE (exp))
    {
    {
    case INTEGER_CST:
    case INTEGER_CST:
      /* We can find the lowest bit that's a one.  If the low
      /* We can find the lowest bit that's a one.  If the low
         HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
         HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
         We need to handle this case since we can find it in a COND_EXPR,
         We need to handle this case since we can find it in a COND_EXPR,
         a MIN_EXPR, or a MAX_EXPR.  If the constant overflows, we have an
         a MIN_EXPR, or a MAX_EXPR.  If the constant overflows, we have an
         erroneous program, so return BIGGEST_ALIGNMENT to avoid any
         erroneous program, so return BIGGEST_ALIGNMENT to avoid any
         later ICE.  */
         later ICE.  */
      if (TREE_CONSTANT_OVERFLOW (exp))
      if (TREE_CONSTANT_OVERFLOW (exp))
        return BIGGEST_ALIGNMENT;
        return BIGGEST_ALIGNMENT;
      else
      else
        {
        {
          /* Note: tree_low_cst is intentionally not used here,
          /* Note: tree_low_cst is intentionally not used here,
             we don't care about the upper bits.  */
             we don't care about the upper bits.  */
          c0 = TREE_INT_CST_LOW (exp);
          c0 = TREE_INT_CST_LOW (exp);
          c0 &= -c0;
          c0 &= -c0;
          return c0 ? c0 : BIGGEST_ALIGNMENT;
          return c0 ? c0 : BIGGEST_ALIGNMENT;
        }
        }
      break;
      break;
 
 
    case PLUS_EXPR:  case MINUS_EXPR:  case MIN_EXPR:  case MAX_EXPR:
    case PLUS_EXPR:  case MINUS_EXPR:  case MIN_EXPR:  case MAX_EXPR:
      c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
      c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
      c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
      c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
      return MIN (c0, c1);
      return MIN (c0, c1);
 
 
    case MULT_EXPR:
    case MULT_EXPR:
      c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
      c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
      c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
      c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
      return c0 * c1;
      return c0 * c1;
 
 
    case ROUND_DIV_EXPR:  case TRUNC_DIV_EXPR:  case FLOOR_DIV_EXPR:
    case ROUND_DIV_EXPR:  case TRUNC_DIV_EXPR:  case FLOOR_DIV_EXPR:
    case CEIL_DIV_EXPR:
    case CEIL_DIV_EXPR:
      if (integer_pow2p (TREE_OPERAND (exp, 1))
      if (integer_pow2p (TREE_OPERAND (exp, 1))
          && host_integerp (TREE_OPERAND (exp, 1), 1))
          && host_integerp (TREE_OPERAND (exp, 1), 1))
        {
        {
          c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
          c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
          c1 = tree_low_cst (TREE_OPERAND (exp, 1), 1);
          c1 = tree_low_cst (TREE_OPERAND (exp, 1), 1);
          return MAX (1, c0 / c1);
          return MAX (1, c0 / c1);
        }
        }
      break;
      break;
 
 
    case NON_LVALUE_EXPR:  case NOP_EXPR:  case CONVERT_EXPR:
    case NON_LVALUE_EXPR:  case NOP_EXPR:  case CONVERT_EXPR:
    case SAVE_EXPR:
    case SAVE_EXPR:
      return highest_pow2_factor (TREE_OPERAND (exp, 0));
      return highest_pow2_factor (TREE_OPERAND (exp, 0));
 
 
    case COMPOUND_EXPR:
    case COMPOUND_EXPR:
      return highest_pow2_factor (TREE_OPERAND (exp, 1));
      return highest_pow2_factor (TREE_OPERAND (exp, 1));
 
 
    case COND_EXPR:
    case COND_EXPR:
      c0 = highest_pow2_factor (TREE_OPERAND (exp, 1));
      c0 = highest_pow2_factor (TREE_OPERAND (exp, 1));
      c1 = highest_pow2_factor (TREE_OPERAND (exp, 2));
      c1 = highest_pow2_factor (TREE_OPERAND (exp, 2));
      return MIN (c0, c1);
      return MIN (c0, c1);
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  return 1;
  return 1;
}
}
 
 
/* Similar, except that the alignment requirements of TARGET are
/* Similar, except that the alignment requirements of TARGET are
   taken into account.  Assume it is at least as aligned as its
   taken into account.  Assume it is at least as aligned as its
   type, unless it is a COMPONENT_REF in which case the layout of
   type, unless it is a COMPONENT_REF in which case the layout of
   the structure gives the alignment.  */
   the structure gives the alignment.  */
 
 
static unsigned HOST_WIDE_INT
static unsigned HOST_WIDE_INT
highest_pow2_factor_for_target (tree target, tree exp)
highest_pow2_factor_for_target (tree target, tree exp)
{
{
  unsigned HOST_WIDE_INT target_align, factor;
  unsigned HOST_WIDE_INT target_align, factor;
 
 
  factor = highest_pow2_factor (exp);
  factor = highest_pow2_factor (exp);
  if (TREE_CODE (target) == COMPONENT_REF)
  if (TREE_CODE (target) == COMPONENT_REF)
    target_align = DECL_ALIGN_UNIT (TREE_OPERAND (target, 1));
    target_align = DECL_ALIGN_UNIT (TREE_OPERAND (target, 1));
  else
  else
    target_align = TYPE_ALIGN_UNIT (TREE_TYPE (target));
    target_align = TYPE_ALIGN_UNIT (TREE_TYPE (target));
  return MAX (factor, target_align);
  return MAX (factor, target_align);
}
}


/* Expands variable VAR.  */
/* Expands variable VAR.  */
 
 
void
void
expand_var (tree var)
expand_var (tree var)
{
{
  if (DECL_EXTERNAL (var))
  if (DECL_EXTERNAL (var))
    return;
    return;
 
 
  if (TREE_STATIC (var))
  if (TREE_STATIC (var))
    /* If this is an inlined copy of a static local variable,
    /* If this is an inlined copy of a static local variable,
       look up the original decl.  */
       look up the original decl.  */
    var = DECL_ORIGIN (var);
    var = DECL_ORIGIN (var);
 
 
  if (TREE_STATIC (var)
  if (TREE_STATIC (var)
      ? !TREE_ASM_WRITTEN (var)
      ? !TREE_ASM_WRITTEN (var)
      : !DECL_RTL_SET_P (var))
      : !DECL_RTL_SET_P (var))
    {
    {
      if (TREE_CODE (var) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (var))
      if (TREE_CODE (var) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (var))
        /* Should be ignored.  */;
        /* Should be ignored.  */;
      else if (lang_hooks.expand_decl (var))
      else if (lang_hooks.expand_decl (var))
        /* OK.  */;
        /* OK.  */;
      else if (TREE_CODE (var) == VAR_DECL && !TREE_STATIC (var))
      else if (TREE_CODE (var) == VAR_DECL && !TREE_STATIC (var))
        expand_decl (var);
        expand_decl (var);
      else if (TREE_CODE (var) == VAR_DECL && TREE_STATIC (var))
      else if (TREE_CODE (var) == VAR_DECL && TREE_STATIC (var))
        rest_of_decl_compilation (var, 0, 0);
        rest_of_decl_compilation (var, 0, 0);
      else
      else
        /* No expansion needed.  */
        /* No expansion needed.  */
        gcc_assert (TREE_CODE (var) == TYPE_DECL
        gcc_assert (TREE_CODE (var) == TYPE_DECL
                    || TREE_CODE (var) == CONST_DECL
                    || TREE_CODE (var) == CONST_DECL
                    || TREE_CODE (var) == FUNCTION_DECL
                    || TREE_CODE (var) == FUNCTION_DECL
                    || TREE_CODE (var) == LABEL_DECL);
                    || TREE_CODE (var) == LABEL_DECL);
    }
    }
}
}
 
 
/* Subroutine of expand_expr.  Expand the two operands of a binary
/* Subroutine of expand_expr.  Expand the two operands of a binary
   expression EXP0 and EXP1 placing the results in OP0 and OP1.
   expression EXP0 and EXP1 placing the results in OP0 and OP1.
   The value may be stored in TARGET if TARGET is nonzero.  The
   The value may be stored in TARGET if TARGET is nonzero.  The
   MODIFIER argument is as documented by expand_expr.  */
   MODIFIER argument is as documented by expand_expr.  */
 
 
static void
static void
expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
                 enum expand_modifier modifier)
                 enum expand_modifier modifier)
{
{
  if (! safe_from_p (target, exp1, 1))
  if (! safe_from_p (target, exp1, 1))
    target = 0;
    target = 0;
  if (operand_equal_p (exp0, exp1, 0))
  if (operand_equal_p (exp0, exp1, 0))
    {
    {
      *op0 = expand_expr (exp0, target, VOIDmode, modifier);
      *op0 = expand_expr (exp0, target, VOIDmode, modifier);
      *op1 = copy_rtx (*op0);
      *op1 = copy_rtx (*op0);
    }
    }
  else
  else
    {
    {
      /* If we need to preserve evaluation order, copy exp0 into its own
      /* If we need to preserve evaluation order, copy exp0 into its own
         temporary variable so that it can't be clobbered by exp1.  */
         temporary variable so that it can't be clobbered by exp1.  */
      if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
      if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
        exp0 = save_expr (exp0);
        exp0 = save_expr (exp0);
      *op0 = expand_expr (exp0, target, VOIDmode, modifier);
      *op0 = expand_expr (exp0, target, VOIDmode, modifier);
      *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
      *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
    }
    }
}
}
 
 


/* Return a MEM that contains constant EXP.  DEFER is as for
/* Return a MEM that contains constant EXP.  DEFER is as for
   output_constant_def and MODIFIER is as for expand_expr.  */
   output_constant_def and MODIFIER is as for expand_expr.  */
 
 
static rtx
static rtx
expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
{
{
  rtx mem;
  rtx mem;
 
 
  mem = output_constant_def (exp, defer);
  mem = output_constant_def (exp, defer);
  if (modifier != EXPAND_INITIALIZER)
  if (modifier != EXPAND_INITIALIZER)
    mem = use_anchored_address (mem);
    mem = use_anchored_address (mem);
  return mem;
  return mem;
}
}
 
 
/* A subroutine of expand_expr_addr_expr.  Evaluate the address of EXP.
/* A subroutine of expand_expr_addr_expr.  Evaluate the address of EXP.
   The TARGET, TMODE and MODIFIER arguments are as for expand_expr.  */
   The TARGET, TMODE and MODIFIER arguments are as for expand_expr.  */
 
 
static rtx
static rtx
expand_expr_addr_expr_1 (tree exp, rtx target, enum machine_mode tmode,
expand_expr_addr_expr_1 (tree exp, rtx target, enum machine_mode tmode,
                         enum expand_modifier modifier)
                         enum expand_modifier modifier)
{
{
  rtx result, subtarget;
  rtx result, subtarget;
  tree inner, offset;
  tree inner, offset;
  HOST_WIDE_INT bitsize, bitpos;
  HOST_WIDE_INT bitsize, bitpos;
  int volatilep, unsignedp;
  int volatilep, unsignedp;
  enum machine_mode mode1;
  enum machine_mode mode1;
 
 
  /* If we are taking the address of a constant and are at the top level,
  /* If we are taking the address of a constant and are at the top level,
     we have to use output_constant_def since we can't call force_const_mem
     we have to use output_constant_def since we can't call force_const_mem
     at top level.  */
     at top level.  */
  /* ??? This should be considered a front-end bug.  We should not be
  /* ??? This should be considered a front-end bug.  We should not be
     generating ADDR_EXPR of something that isn't an LVALUE.  The only
     generating ADDR_EXPR of something that isn't an LVALUE.  The only
     exception here is STRING_CST.  */
     exception here is STRING_CST.  */
  if (TREE_CODE (exp) == CONSTRUCTOR
  if (TREE_CODE (exp) == CONSTRUCTOR
      || CONSTANT_CLASS_P (exp))
      || CONSTANT_CLASS_P (exp))
    return XEXP (expand_expr_constant (exp, 0, modifier), 0);
    return XEXP (expand_expr_constant (exp, 0, modifier), 0);
 
 
  /* Everything must be something allowed by is_gimple_addressable.  */
  /* Everything must be something allowed by is_gimple_addressable.  */
  switch (TREE_CODE (exp))
  switch (TREE_CODE (exp))
    {
    {
    case INDIRECT_REF:
    case INDIRECT_REF:
      /* This case will happen via recursion for &a->b.  */
      /* This case will happen via recursion for &a->b.  */
      return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
      return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
 
 
    case CONST_DECL:
    case CONST_DECL:
      /* Recurse and make the output_constant_def clause above handle this.  */
      /* Recurse and make the output_constant_def clause above handle this.  */
      return expand_expr_addr_expr_1 (DECL_INITIAL (exp), target,
      return expand_expr_addr_expr_1 (DECL_INITIAL (exp), target,
                                      tmode, modifier);
                                      tmode, modifier);
 
 
    case REALPART_EXPR:
    case REALPART_EXPR:
      /* The real part of the complex number is always first, therefore
      /* The real part of the complex number is always first, therefore
         the address is the same as the address of the parent object.  */
         the address is the same as the address of the parent object.  */
      offset = 0;
      offset = 0;
      bitpos = 0;
      bitpos = 0;
      inner = TREE_OPERAND (exp, 0);
      inner = TREE_OPERAND (exp, 0);
      break;
      break;
 
 
    case IMAGPART_EXPR:
    case IMAGPART_EXPR:
      /* The imaginary part of the complex number is always second.
      /* The imaginary part of the complex number is always second.
         The expression is therefore always offset by the size of the
         The expression is therefore always offset by the size of the
         scalar type.  */
         scalar type.  */
      offset = 0;
      offset = 0;
      bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
      bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
      inner = TREE_OPERAND (exp, 0);
      inner = TREE_OPERAND (exp, 0);
      break;
      break;
 
 
    default:
    default:
      /* If the object is a DECL, then expand it for its rtl.  Don't bypass
      /* If the object is a DECL, then expand it for its rtl.  Don't bypass
         expand_expr, as that can have various side effects; LABEL_DECLs for
         expand_expr, as that can have various side effects; LABEL_DECLs for
         example, may not have their DECL_RTL set yet.  Assume language
         example, may not have their DECL_RTL set yet.  Assume language
         specific tree nodes can be expanded in some interesting way.  */
         specific tree nodes can be expanded in some interesting way.  */
      if (DECL_P (exp)
      if (DECL_P (exp)
          || TREE_CODE (exp) >= LAST_AND_UNUSED_TREE_CODE)
          || TREE_CODE (exp) >= LAST_AND_UNUSED_TREE_CODE)
        {
        {
          result = expand_expr (exp, target, tmode,
          result = expand_expr (exp, target, tmode,
                                modifier == EXPAND_INITIALIZER
                                modifier == EXPAND_INITIALIZER
                                ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
                                ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
 
 
          /* If the DECL isn't in memory, then the DECL wasn't properly
          /* If the DECL isn't in memory, then the DECL wasn't properly
             marked TREE_ADDRESSABLE, which will be either a front-end
             marked TREE_ADDRESSABLE, which will be either a front-end
             or a tree optimizer bug.  */
             or a tree optimizer bug.  */
          gcc_assert (MEM_P (result));
          gcc_assert (MEM_P (result));
          result = XEXP (result, 0);
          result = XEXP (result, 0);
 
 
          /* ??? Is this needed anymore?  */
          /* ??? Is this needed anymore?  */
          if (DECL_P (exp) && !TREE_USED (exp) == 0)
          if (DECL_P (exp) && !TREE_USED (exp) == 0)
            {
            {
              assemble_external (exp);
              assemble_external (exp);
              TREE_USED (exp) = 1;
              TREE_USED (exp) = 1;
            }
            }
 
 
          if (modifier != EXPAND_INITIALIZER
          if (modifier != EXPAND_INITIALIZER
              && modifier != EXPAND_CONST_ADDRESS)
              && modifier != EXPAND_CONST_ADDRESS)
            result = force_operand (result, target);
            result = force_operand (result, target);
          return result;
          return result;
        }
        }
 
 
      /* Pass FALSE as the last argument to get_inner_reference although
      /* Pass FALSE as the last argument to get_inner_reference although
         we are expanding to RTL.  The rationale is that we know how to
         we are expanding to RTL.  The rationale is that we know how to
         handle "aligning nodes" here: we can just bypass them because
         handle "aligning nodes" here: we can just bypass them because
         they won't change the final object whose address will be returned
         they won't change the final object whose address will be returned
         (they actually exist only for that purpose).  */
         (they actually exist only for that purpose).  */
      inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
      inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
                                   &mode1, &unsignedp, &volatilep, false);
                                   &mode1, &unsignedp, &volatilep, false);
      break;
      break;
    }
    }
 
 
  /* We must have made progress.  */
  /* We must have made progress.  */
  gcc_assert (inner != exp);
  gcc_assert (inner != exp);
 
 
  subtarget = offset || bitpos ? NULL_RTX : target;
  subtarget = offset || bitpos ? NULL_RTX : target;
  result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier);
  result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier);
 
 
  if (offset)
  if (offset)
    {
    {
      rtx tmp;
      rtx tmp;
 
 
      if (modifier != EXPAND_NORMAL)
      if (modifier != EXPAND_NORMAL)
        result = force_operand (result, NULL);
        result = force_operand (result, NULL);
      tmp = expand_expr (offset, NULL, tmode, EXPAND_NORMAL);
      tmp = expand_expr (offset, NULL, tmode, EXPAND_NORMAL);
 
 
      result = convert_memory_address (tmode, result);
      result = convert_memory_address (tmode, result);
      tmp = convert_memory_address (tmode, tmp);
      tmp = convert_memory_address (tmode, tmp);
 
 
      if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
      if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
        result = gen_rtx_PLUS (tmode, result, tmp);
        result = gen_rtx_PLUS (tmode, result, tmp);
      else
      else
        {
        {
          subtarget = bitpos ? NULL_RTX : target;
          subtarget = bitpos ? NULL_RTX : target;
          result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
          result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
                                        1, OPTAB_LIB_WIDEN);
                                        1, OPTAB_LIB_WIDEN);
        }
        }
    }
    }
 
 
  if (bitpos)
  if (bitpos)
    {
    {
      /* Someone beforehand should have rejected taking the address
      /* Someone beforehand should have rejected taking the address
         of such an object.  */
         of such an object.  */
      gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
      gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
 
 
      result = plus_constant (result, bitpos / BITS_PER_UNIT);
      result = plus_constant (result, bitpos / BITS_PER_UNIT);
      if (modifier < EXPAND_SUM)
      if (modifier < EXPAND_SUM)
        result = force_operand (result, target);
        result = force_operand (result, target);
    }
    }
 
 
  return result;
  return result;
}
}
 
 
/* A subroutine of expand_expr.  Evaluate EXP, which is an ADDR_EXPR.
/* A subroutine of expand_expr.  Evaluate EXP, which is an ADDR_EXPR.
   The TARGET, TMODE and MODIFIER arguments are as for expand_expr.  */
   The TARGET, TMODE and MODIFIER arguments are as for expand_expr.  */
 
 
static rtx
static rtx
expand_expr_addr_expr (tree exp, rtx target, enum machine_mode tmode,
expand_expr_addr_expr (tree exp, rtx target, enum machine_mode tmode,
                       enum expand_modifier modifier)
                       enum expand_modifier modifier)
{
{
  enum machine_mode rmode;
  enum machine_mode rmode;
  rtx result;
  rtx result;
 
 
  /* Target mode of VOIDmode says "whatever's natural".  */
  /* Target mode of VOIDmode says "whatever's natural".  */
  if (tmode == VOIDmode)
  if (tmode == VOIDmode)
    tmode = TYPE_MODE (TREE_TYPE (exp));
    tmode = TYPE_MODE (TREE_TYPE (exp));
 
 
  /* We can get called with some Weird Things if the user does silliness
  /* We can get called with some Weird Things if the user does silliness
     like "(short) &a".  In that case, convert_memory_address won't do
     like "(short) &a".  In that case, convert_memory_address won't do
     the right thing, so ignore the given target mode.  */
     the right thing, so ignore the given target mode.  */
  if (tmode != Pmode && tmode != ptr_mode)
  if (tmode != Pmode && tmode != ptr_mode)
    tmode = Pmode;
    tmode = Pmode;
 
 
  result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
  result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
                                    tmode, modifier);
                                    tmode, modifier);
 
 
  /* Despite expand_expr claims concerning ignoring TMODE when not
  /* Despite expand_expr claims concerning ignoring TMODE when not
     strictly convenient, stuff breaks if we don't honor it.  Note
     strictly convenient, stuff breaks if we don't honor it.  Note
     that combined with the above, we only do this for pointer modes.  */
     that combined with the above, we only do this for pointer modes.  */
  rmode = GET_MODE (result);
  rmode = GET_MODE (result);
  if (rmode == VOIDmode)
  if (rmode == VOIDmode)
    rmode = tmode;
    rmode = tmode;
  if (rmode != tmode)
  if (rmode != tmode)
    result = convert_memory_address (tmode, result);
    result = convert_memory_address (tmode, result);
 
 
  return result;
  return result;
}
}
 
 
 
 
/* expand_expr: generate code for computing expression EXP.
/* expand_expr: generate code for computing expression EXP.
   An rtx for the computed value is returned.  The value is never null.
   An rtx for the computed value is returned.  The value is never null.
   In the case of a void EXP, const0_rtx is returned.
   In the case of a void EXP, const0_rtx is returned.
 
 
   The value may be stored in TARGET if TARGET is nonzero.
   The value may be stored in TARGET if TARGET is nonzero.
   TARGET is just a suggestion; callers must assume that
   TARGET is just a suggestion; callers must assume that
   the rtx returned may not be the same as TARGET.
   the rtx returned may not be the same as TARGET.
 
 
   If TARGET is CONST0_RTX, it means that the value will be ignored.
   If TARGET is CONST0_RTX, it means that the value will be ignored.
 
 
   If TMODE is not VOIDmode, it suggests generating the
   If TMODE is not VOIDmode, it suggests generating the
   result in mode TMODE.  But this is done only when convenient.
   result in mode TMODE.  But this is done only when convenient.
   Otherwise, TMODE is ignored and the value generated in its natural mode.
   Otherwise, TMODE is ignored and the value generated in its natural mode.
   TMODE is just a suggestion; callers must assume that
   TMODE is just a suggestion; callers must assume that
   the rtx returned may not have mode TMODE.
   the rtx returned may not have mode TMODE.
 
 
   Note that TARGET may have neither TMODE nor MODE.  In that case, it
   Note that TARGET may have neither TMODE nor MODE.  In that case, it
   probably will not be used.
   probably will not be used.
 
 
   If MODIFIER is EXPAND_SUM then when EXP is an addition
   If MODIFIER is EXPAND_SUM then when EXP is an addition
   we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
   we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
   or a nest of (PLUS ...) and (MINUS ...) where the terms are
   or a nest of (PLUS ...) and (MINUS ...) where the terms are
   products as above, or REG or MEM, or constant.
   products as above, or REG or MEM, or constant.
   Ordinarily in such cases we would output mul or add instructions
   Ordinarily in such cases we would output mul or add instructions
   and then return a pseudo reg containing the sum.
   and then return a pseudo reg containing the sum.
 
 
   EXPAND_INITIALIZER is much like EXPAND_SUM except that
   EXPAND_INITIALIZER is much like EXPAND_SUM except that
   it also marks a label as absolutely required (it can't be dead).
   it also marks a label as absolutely required (it can't be dead).
   It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
   It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
   This is used for outputting expressions used in initializers.
   This is used for outputting expressions used in initializers.
 
 
   EXPAND_CONST_ADDRESS says that it is okay to return a MEM
   EXPAND_CONST_ADDRESS says that it is okay to return a MEM
   with a constant address even if that address is not normally legitimate.
   with a constant address even if that address is not normally legitimate.
   EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
   EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
 
 
   EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
   EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
   a call parameter.  Such targets require special care as we haven't yet
   a call parameter.  Such targets require special care as we haven't yet
   marked TARGET so that it's safe from being trashed by libcalls.  We
   marked TARGET so that it's safe from being trashed by libcalls.  We
   don't want to use TARGET for anything but the final result;
   don't want to use TARGET for anything but the final result;
   Intermediate values must go elsewhere.   Additionally, calls to
   Intermediate values must go elsewhere.   Additionally, calls to
   emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
   emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
 
 
   If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
   If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
   address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
   address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
   DECL_RTL of the VAR_DECL.  *ALT_RTL is also set if EXP is a
   DECL_RTL of the VAR_DECL.  *ALT_RTL is also set if EXP is a
   COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
   COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
   recursively.  */
   recursively.  */
 
 
static rtx expand_expr_real_1 (tree, rtx, enum machine_mode,
static rtx expand_expr_real_1 (tree, rtx, enum machine_mode,
                               enum expand_modifier, rtx *);
                               enum expand_modifier, rtx *);
 
 
rtx
rtx
expand_expr_real (tree exp, rtx target, enum machine_mode tmode,
expand_expr_real (tree exp, rtx target, enum machine_mode tmode,
                  enum expand_modifier modifier, rtx *alt_rtl)
                  enum expand_modifier modifier, rtx *alt_rtl)
{
{
  int rn = -1;
  int rn = -1;
  rtx ret, last = NULL;
  rtx ret, last = NULL;
 
 
  /* Handle ERROR_MARK before anybody tries to access its type.  */
  /* Handle ERROR_MARK before anybody tries to access its type.  */
  if (TREE_CODE (exp) == ERROR_MARK
  if (TREE_CODE (exp) == ERROR_MARK
      || TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK)
      || TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK)
    {
    {
      ret = CONST0_RTX (tmode);
      ret = CONST0_RTX (tmode);
      return ret ? ret : const0_rtx;
      return ret ? ret : const0_rtx;
    }
    }
 
 
  if (flag_non_call_exceptions)
  if (flag_non_call_exceptions)
    {
    {
      rn = lookup_stmt_eh_region (exp);
      rn = lookup_stmt_eh_region (exp);
      /* If rn < 0, then either (1) tree-ssa not used or (2) doesn't throw.  */
      /* If rn < 0, then either (1) tree-ssa not used or (2) doesn't throw.  */
      if (rn >= 0)
      if (rn >= 0)
        last = get_last_insn ();
        last = get_last_insn ();
    }
    }
 
 
  /* If this is an expression of some kind and it has an associated line
  /* If this is an expression of some kind and it has an associated line
     number, then emit the line number before expanding the expression.
     number, then emit the line number before expanding the expression.
 
 
     We need to save and restore the file and line information so that
     We need to save and restore the file and line information so that
     errors discovered during expansion are emitted with the right
     errors discovered during expansion are emitted with the right
     information.  It would be better of the diagnostic routines
     information.  It would be better of the diagnostic routines
     used the file/line information embedded in the tree nodes rather
     used the file/line information embedded in the tree nodes rather
     than globals.  */
     than globals.  */
  if (cfun && cfun->ib_boundaries_block && EXPR_HAS_LOCATION (exp))
  if (cfun && cfun->ib_boundaries_block && EXPR_HAS_LOCATION (exp))
    {
    {
      location_t saved_location = input_location;
      location_t saved_location = input_location;
      input_location = EXPR_LOCATION (exp);
      input_location = EXPR_LOCATION (exp);
      emit_line_note (input_location);
      emit_line_note (input_location);
 
 
      /* Record where the insns produced belong.  */
      /* Record where the insns produced belong.  */
      record_block_change (TREE_BLOCK (exp));
      record_block_change (TREE_BLOCK (exp));
 
 
      ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
      ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
 
 
      input_location = saved_location;
      input_location = saved_location;
    }
    }
  else
  else
    {
    {
      ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
      ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
    }
    }
 
 
  /* If using non-call exceptions, mark all insns that may trap.
  /* If using non-call exceptions, mark all insns that may trap.
     expand_call() will mark CALL_INSNs before we get to this code,
     expand_call() will mark CALL_INSNs before we get to this code,
     but it doesn't handle libcalls, and these may trap.  */
     but it doesn't handle libcalls, and these may trap.  */
  if (rn >= 0)
  if (rn >= 0)
    {
    {
      rtx insn;
      rtx insn;
      for (insn = next_real_insn (last); insn;
      for (insn = next_real_insn (last); insn;
           insn = next_real_insn (insn))
           insn = next_real_insn (insn))
        {
        {
          if (! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
          if (! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
              /* If we want exceptions for non-call insns, any
              /* If we want exceptions for non-call insns, any
                 may_trap_p instruction may throw.  */
                 may_trap_p instruction may throw.  */
              && GET_CODE (PATTERN (insn)) != CLOBBER
              && GET_CODE (PATTERN (insn)) != CLOBBER
              && GET_CODE (PATTERN (insn)) != USE
              && GET_CODE (PATTERN (insn)) != USE
              && (CALL_P (insn) || may_trap_p (PATTERN (insn))))
              && (CALL_P (insn) || may_trap_p (PATTERN (insn))))
            {
            {
              REG_NOTES (insn) = alloc_EXPR_LIST (REG_EH_REGION, GEN_INT (rn),
              REG_NOTES (insn) = alloc_EXPR_LIST (REG_EH_REGION, GEN_INT (rn),
                                                  REG_NOTES (insn));
                                                  REG_NOTES (insn));
            }
            }
        }
        }
    }
    }
 
 
  return ret;
  return ret;
}
}
 
 
static rtx
static rtx
expand_expr_real_1 (tree exp, rtx target, enum machine_mode tmode,
expand_expr_real_1 (tree exp, rtx target, enum machine_mode tmode,
                    enum expand_modifier modifier, rtx *alt_rtl)
                    enum expand_modifier modifier, rtx *alt_rtl)
{
{
  rtx op0, op1, temp, decl_rtl;
  rtx op0, op1, temp, decl_rtl;
  tree type = TREE_TYPE (exp);
  tree type = TREE_TYPE (exp);
  int unsignedp;
  int unsignedp;
  enum machine_mode mode;
  enum machine_mode mode;
  enum tree_code code = TREE_CODE (exp);
  enum tree_code code = TREE_CODE (exp);
  optab this_optab;
  optab this_optab;
  rtx subtarget, original_target;
  rtx subtarget, original_target;
  int ignore;
  int ignore;
  tree context, subexp0, subexp1;
  tree context, subexp0, subexp1;
  bool reduce_bit_field = false;
  bool reduce_bit_field = false;
#define REDUCE_BIT_FIELD(expr)  (reduce_bit_field && !ignore              \
#define REDUCE_BIT_FIELD(expr)  (reduce_bit_field && !ignore              \
                                 ? reduce_to_bit_field_precision ((expr), \
                                 ? reduce_to_bit_field_precision ((expr), \
                                                                  target, \
                                                                  target, \
                                                                  type)   \
                                                                  type)   \
                                 : (expr))
                                 : (expr))
 
 
  mode = TYPE_MODE (type);
  mode = TYPE_MODE (type);
  unsignedp = TYPE_UNSIGNED (type);
  unsignedp = TYPE_UNSIGNED (type);
  if (lang_hooks.reduce_bit_field_operations
  if (lang_hooks.reduce_bit_field_operations
      && TREE_CODE (type) == INTEGER_TYPE
      && TREE_CODE (type) == INTEGER_TYPE
      && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type))
      && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type))
    {
    {
      /* An operation in what may be a bit-field type needs the
      /* An operation in what may be a bit-field type needs the
         result to be reduced to the precision of the bit-field type,
         result to be reduced to the precision of the bit-field type,
         which is narrower than that of the type's mode.  */
         which is narrower than that of the type's mode.  */
      reduce_bit_field = true;
      reduce_bit_field = true;
      if (modifier == EXPAND_STACK_PARM)
      if (modifier == EXPAND_STACK_PARM)
        target = 0;
        target = 0;
    }
    }
 
 
  /* Use subtarget as the target for operand 0 of a binary operation.  */
  /* Use subtarget as the target for operand 0 of a binary operation.  */
  subtarget = get_subtarget (target);
  subtarget = get_subtarget (target);
  original_target = target;
  original_target = target;
  ignore = (target == const0_rtx
  ignore = (target == const0_rtx
            || ((code == NON_LVALUE_EXPR || code == NOP_EXPR
            || ((code == NON_LVALUE_EXPR || code == NOP_EXPR
                 || code == CONVERT_EXPR || code == COND_EXPR
                 || code == CONVERT_EXPR || code == COND_EXPR
                 || code == VIEW_CONVERT_EXPR)
                 || code == VIEW_CONVERT_EXPR)
                && TREE_CODE (type) == VOID_TYPE));
                && TREE_CODE (type) == VOID_TYPE));
 
 
  /* If we are going to ignore this result, we need only do something
  /* If we are going to ignore this result, we need only do something
     if there is a side-effect somewhere in the expression.  If there
     if there is a side-effect somewhere in the expression.  If there
     is, short-circuit the most common cases here.  Note that we must
     is, short-circuit the most common cases here.  Note that we must
     not call expand_expr with anything but const0_rtx in case this
     not call expand_expr with anything but const0_rtx in case this
     is an initial expansion of a size that contains a PLACEHOLDER_EXPR.  */
     is an initial expansion of a size that contains a PLACEHOLDER_EXPR.  */
 
 
  if (ignore)
  if (ignore)
    {
    {
      if (! TREE_SIDE_EFFECTS (exp))
      if (! TREE_SIDE_EFFECTS (exp))
        return const0_rtx;
        return const0_rtx;
 
 
      /* Ensure we reference a volatile object even if value is ignored, but
      /* Ensure we reference a volatile object even if value is ignored, but
         don't do this if all we are doing is taking its address.  */
         don't do this if all we are doing is taking its address.  */
      if (TREE_THIS_VOLATILE (exp)
      if (TREE_THIS_VOLATILE (exp)
          && TREE_CODE (exp) != FUNCTION_DECL
          && TREE_CODE (exp) != FUNCTION_DECL
          && mode != VOIDmode && mode != BLKmode
          && mode != VOIDmode && mode != BLKmode
          && modifier != EXPAND_CONST_ADDRESS)
          && modifier != EXPAND_CONST_ADDRESS)
        {
        {
          temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
          temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
          if (MEM_P (temp))
          if (MEM_P (temp))
            temp = copy_to_reg (temp);
            temp = copy_to_reg (temp);
          return const0_rtx;
          return const0_rtx;
        }
        }
 
 
      if (TREE_CODE_CLASS (code) == tcc_unary
      if (TREE_CODE_CLASS (code) == tcc_unary
          || code == COMPONENT_REF || code == INDIRECT_REF)
          || code == COMPONENT_REF || code == INDIRECT_REF)
        return expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
        return expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
                            modifier);
                            modifier);
 
 
      else if (TREE_CODE_CLASS (code) == tcc_binary
      else if (TREE_CODE_CLASS (code) == tcc_binary
               || TREE_CODE_CLASS (code) == tcc_comparison
               || TREE_CODE_CLASS (code) == tcc_comparison
               || code == ARRAY_REF || code == ARRAY_RANGE_REF)
               || code == ARRAY_REF || code == ARRAY_RANGE_REF)
        {
        {
          expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier);
          expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier);
          expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, modifier);
          expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, modifier);
          return const0_rtx;
          return const0_rtx;
        }
        }
      else if (code == BIT_FIELD_REF)
      else if (code == BIT_FIELD_REF)
        {
        {
          expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier);
          expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier);
          expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, modifier);
          expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, modifier);
          expand_expr (TREE_OPERAND (exp, 2), const0_rtx, VOIDmode, modifier);
          expand_expr (TREE_OPERAND (exp, 2), const0_rtx, VOIDmode, modifier);
          return const0_rtx;
          return const0_rtx;
        }
        }
 
 
      target = 0;
      target = 0;
    }
    }
 
 
 
 
  switch (code)
  switch (code)
    {
    {
    case LABEL_DECL:
    case LABEL_DECL:
      {
      {
        tree function = decl_function_context (exp);
        tree function = decl_function_context (exp);
 
 
        temp = label_rtx (exp);
        temp = label_rtx (exp);
        temp = gen_rtx_LABEL_REF (Pmode, temp);
        temp = gen_rtx_LABEL_REF (Pmode, temp);
 
 
        if (function != current_function_decl
        if (function != current_function_decl
            && function != 0)
            && function != 0)
          LABEL_REF_NONLOCAL_P (temp) = 1;
          LABEL_REF_NONLOCAL_P (temp) = 1;
 
 
        temp = gen_rtx_MEM (FUNCTION_MODE, temp);
        temp = gen_rtx_MEM (FUNCTION_MODE, temp);
        return temp;
        return temp;
      }
      }
 
 
    case SSA_NAME:
    case SSA_NAME:
      return expand_expr_real_1 (SSA_NAME_VAR (exp), target, tmode, modifier,
      return expand_expr_real_1 (SSA_NAME_VAR (exp), target, tmode, modifier,
                                 NULL);
                                 NULL);
 
 
    case PARM_DECL:
    case PARM_DECL:
    case VAR_DECL:
    case VAR_DECL:
      /* If a static var's type was incomplete when the decl was written,
      /* If a static var's type was incomplete when the decl was written,
         but the type is complete now, lay out the decl now.  */
         but the type is complete now, lay out the decl now.  */
      if (DECL_SIZE (exp) == 0
      if (DECL_SIZE (exp) == 0
          && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
          && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
          && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
          && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
        layout_decl (exp, 0);
        layout_decl (exp, 0);
 
 
      /* ... fall through ...  */
      /* ... fall through ...  */
 
 
    case FUNCTION_DECL:
    case FUNCTION_DECL:
    case RESULT_DECL:
    case RESULT_DECL:
      decl_rtl = DECL_RTL (exp);
      decl_rtl = DECL_RTL (exp);
      gcc_assert (decl_rtl);
      gcc_assert (decl_rtl);
 
 
      /* Ensure variable marked as used even if it doesn't go through
      /* Ensure variable marked as used even if it doesn't go through
         a parser.  If it hasn't be used yet, write out an external
         a parser.  If it hasn't be used yet, write out an external
         definition.  */
         definition.  */
      if (! TREE_USED (exp))
      if (! TREE_USED (exp))
        {
        {
          assemble_external (exp);
          assemble_external (exp);
          TREE_USED (exp) = 1;
          TREE_USED (exp) = 1;
        }
        }
 
 
      /* Show we haven't gotten RTL for this yet.  */
      /* Show we haven't gotten RTL for this yet.  */
      temp = 0;
      temp = 0;
 
 
      /* Variables inherited from containing functions should have
      /* Variables inherited from containing functions should have
         been lowered by this point.  */
         been lowered by this point.  */
      context = decl_function_context (exp);
      context = decl_function_context (exp);
      gcc_assert (!context
      gcc_assert (!context
                  || context == current_function_decl
                  || context == current_function_decl
                  || TREE_STATIC (exp)
                  || TREE_STATIC (exp)
                  /* ??? C++ creates functions that are not TREE_STATIC.  */
                  /* ??? C++ creates functions that are not TREE_STATIC.  */
                  || TREE_CODE (exp) == FUNCTION_DECL);
                  || TREE_CODE (exp) == FUNCTION_DECL);
 
 
      /* This is the case of an array whose size is to be determined
      /* This is the case of an array whose size is to be determined
         from its initializer, while the initializer is still being parsed.
         from its initializer, while the initializer is still being parsed.
         See expand_decl.  */
         See expand_decl.  */
 
 
      if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
      if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
        temp = validize_mem (decl_rtl);
        temp = validize_mem (decl_rtl);
 
 
      /* If DECL_RTL is memory, we are in the normal case and either
      /* If DECL_RTL is memory, we are in the normal case and either
         the address is not valid or it is not a register and -fforce-addr
         the address is not valid or it is not a register and -fforce-addr
         is specified, get the address into a register.  */
         is specified, get the address into a register.  */
 
 
      else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
      else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
        {
        {
          if (alt_rtl)
          if (alt_rtl)
            *alt_rtl = decl_rtl;
            *alt_rtl = decl_rtl;
          decl_rtl = use_anchored_address (decl_rtl);
          decl_rtl = use_anchored_address (decl_rtl);
          if (modifier != EXPAND_CONST_ADDRESS
          if (modifier != EXPAND_CONST_ADDRESS
              && modifier != EXPAND_SUM
              && modifier != EXPAND_SUM
              && (!memory_address_p (DECL_MODE (exp), XEXP (decl_rtl, 0))
              && (!memory_address_p (DECL_MODE (exp), XEXP (decl_rtl, 0))
                  || (flag_force_addr && !REG_P (XEXP (decl_rtl, 0)))))
                  || (flag_force_addr && !REG_P (XEXP (decl_rtl, 0)))))
            temp = replace_equiv_address (decl_rtl,
            temp = replace_equiv_address (decl_rtl,
                                          copy_rtx (XEXP (decl_rtl, 0)));
                                          copy_rtx (XEXP (decl_rtl, 0)));
        }
        }
 
 
      /* If we got something, return it.  But first, set the alignment
      /* If we got something, return it.  But first, set the alignment
         if the address is a register.  */
         if the address is a register.  */
      if (temp != 0)
      if (temp != 0)
        {
        {
          if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
          if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
            mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
            mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
 
 
          return temp;
          return temp;
        }
        }
 
 
      /* If the mode of DECL_RTL does not match that of the decl, it
      /* If the mode of DECL_RTL does not match that of the decl, it
         must be a promoted value.  We return a SUBREG of the wanted mode,
         must be a promoted value.  We return a SUBREG of the wanted mode,
         but mark it so that we know that it was already extended.  */
         but mark it so that we know that it was already extended.  */
 
 
      if (REG_P (decl_rtl)
      if (REG_P (decl_rtl)
          && GET_MODE (decl_rtl) != DECL_MODE (exp))
          && GET_MODE (decl_rtl) != DECL_MODE (exp))
        {
        {
          enum machine_mode pmode;
          enum machine_mode pmode;
 
 
          /* Get the signedness used for this variable.  Ensure we get the
          /* Get the signedness used for this variable.  Ensure we get the
             same mode we got when the variable was declared.  */
             same mode we got when the variable was declared.  */
          pmode = promote_mode (type, DECL_MODE (exp), &unsignedp,
          pmode = promote_mode (type, DECL_MODE (exp), &unsignedp,
                                (TREE_CODE (exp) == RESULT_DECL
                                (TREE_CODE (exp) == RESULT_DECL
                                 || TREE_CODE (exp) == PARM_DECL) ? 1 : 0);
                                 || TREE_CODE (exp) == PARM_DECL) ? 1 : 0);
          gcc_assert (GET_MODE (decl_rtl) == pmode);
          gcc_assert (GET_MODE (decl_rtl) == pmode);
 
 
          temp = gen_lowpart_SUBREG (mode, decl_rtl);
          temp = gen_lowpart_SUBREG (mode, decl_rtl);
          SUBREG_PROMOTED_VAR_P (temp) = 1;
          SUBREG_PROMOTED_VAR_P (temp) = 1;
          SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp);
          SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp);
          return temp;
          return temp;
        }
        }
 
 
      return decl_rtl;
      return decl_rtl;
 
 
    case INTEGER_CST:
    case INTEGER_CST:
      temp = immed_double_const (TREE_INT_CST_LOW (exp),
      temp = immed_double_const (TREE_INT_CST_LOW (exp),
                                 TREE_INT_CST_HIGH (exp), mode);
                                 TREE_INT_CST_HIGH (exp), mode);
 
 
      /* ??? If overflow is set, fold will have done an incomplete job,
      /* ??? If overflow is set, fold will have done an incomplete job,
         which can result in (plus xx (const_int 0)), which can get
         which can result in (plus xx (const_int 0)), which can get
         simplified by validate_replace_rtx during virtual register
         simplified by validate_replace_rtx during virtual register
         instantiation, which can result in unrecognizable insns.
         instantiation, which can result in unrecognizable insns.
         Avoid this by forcing all overflows into registers.  */
         Avoid this by forcing all overflows into registers.  */
      if (TREE_CONSTANT_OVERFLOW (exp)
      if (TREE_CONSTANT_OVERFLOW (exp)
          && modifier != EXPAND_INITIALIZER)
          && modifier != EXPAND_INITIALIZER)
        temp = force_reg (mode, temp);
        temp = force_reg (mode, temp);
 
 
      return temp;
      return temp;
 
 
    case VECTOR_CST:
    case VECTOR_CST:
      {
      {
        tree tmp = NULL_TREE;
        tree tmp = NULL_TREE;
        if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
        if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
            || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
            || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
          return const_vector_from_tree (exp);
          return const_vector_from_tree (exp);
        if (GET_MODE_CLASS (mode) == MODE_INT)
        if (GET_MODE_CLASS (mode) == MODE_INT)
          {
          {
            tree type_for_mode = lang_hooks.types.type_for_mode (mode, 1);
            tree type_for_mode = lang_hooks.types.type_for_mode (mode, 1);
            if (type_for_mode)
            if (type_for_mode)
              tmp = fold_unary (VIEW_CONVERT_EXPR, type_for_mode, exp);
              tmp = fold_unary (VIEW_CONVERT_EXPR, type_for_mode, exp);
          }
          }
        if (!tmp)
        if (!tmp)
          tmp = build_constructor_from_list (type,
          tmp = build_constructor_from_list (type,
                                             TREE_VECTOR_CST_ELTS (exp));
                                             TREE_VECTOR_CST_ELTS (exp));
        return expand_expr (tmp, ignore ? const0_rtx : target,
        return expand_expr (tmp, ignore ? const0_rtx : target,
                            tmode, modifier);
                            tmode, modifier);
      }
      }
 
 
    case CONST_DECL:
    case CONST_DECL:
      return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
      return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
 
 
    case REAL_CST:
    case REAL_CST:
      /* If optimized, generate immediate CONST_DOUBLE
      /* If optimized, generate immediate CONST_DOUBLE
         which will be turned into memory by reload if necessary.
         which will be turned into memory by reload if necessary.
 
 
         We used to force a register so that loop.c could see it.  But
         We used to force a register so that loop.c could see it.  But
         this does not allow gen_* patterns to perform optimizations with
         this does not allow gen_* patterns to perform optimizations with
         the constants.  It also produces two insns in cases like "x = 1.0;".
         the constants.  It also produces two insns in cases like "x = 1.0;".
         On most machines, floating-point constants are not permitted in
         On most machines, floating-point constants are not permitted in
         many insns, so we'd end up copying it to a register in any case.
         many insns, so we'd end up copying it to a register in any case.
 
 
         Now, we do the copying in expand_binop, if appropriate.  */
         Now, we do the copying in expand_binop, if appropriate.  */
      return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
      return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
                                           TYPE_MODE (TREE_TYPE (exp)));
                                           TYPE_MODE (TREE_TYPE (exp)));
 
 
    case COMPLEX_CST:
    case COMPLEX_CST:
      /* Handle evaluating a complex constant in a CONCAT target.  */
      /* Handle evaluating a complex constant in a CONCAT target.  */
      if (original_target && GET_CODE (original_target) == CONCAT)
      if (original_target && GET_CODE (original_target) == CONCAT)
        {
        {
          enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
          enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
          rtx rtarg, itarg;
          rtx rtarg, itarg;
 
 
          rtarg = XEXP (original_target, 0);
          rtarg = XEXP (original_target, 0);
          itarg = XEXP (original_target, 1);
          itarg = XEXP (original_target, 1);
 
 
          /* Move the real and imaginary parts separately.  */
          /* Move the real and imaginary parts separately.  */
          op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, 0);
          op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, 0);
          op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, 0);
          op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, 0);
 
 
          if (op0 != rtarg)
          if (op0 != rtarg)
            emit_move_insn (rtarg, op0);
            emit_move_insn (rtarg, op0);
          if (op1 != itarg)
          if (op1 != itarg)
            emit_move_insn (itarg, op1);
            emit_move_insn (itarg, op1);
 
 
          return original_target;
          return original_target;
        }
        }
 
 
      /* ... fall through ...  */
      /* ... fall through ...  */
 
 
    case STRING_CST:
    case STRING_CST:
      temp = expand_expr_constant (exp, 1, modifier);
      temp = expand_expr_constant (exp, 1, modifier);
 
 
      /* temp contains a constant address.
      /* temp contains a constant address.
         On RISC machines where a constant address isn't valid,
         On RISC machines where a constant address isn't valid,
         make some insns to get that address into a register.  */
         make some insns to get that address into a register.  */
      if (modifier != EXPAND_CONST_ADDRESS
      if (modifier != EXPAND_CONST_ADDRESS
          && modifier != EXPAND_INITIALIZER
          && modifier != EXPAND_INITIALIZER
          && modifier != EXPAND_SUM
          && modifier != EXPAND_SUM
          && (! memory_address_p (mode, XEXP (temp, 0))
          && (! memory_address_p (mode, XEXP (temp, 0))
              || flag_force_addr))
              || flag_force_addr))
        return replace_equiv_address (temp,
        return replace_equiv_address (temp,
                                      copy_rtx (XEXP (temp, 0)));
                                      copy_rtx (XEXP (temp, 0)));
      return temp;
      return temp;
 
 
    case SAVE_EXPR:
    case SAVE_EXPR:
      {
      {
        tree val = TREE_OPERAND (exp, 0);
        tree val = TREE_OPERAND (exp, 0);
        rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl);
        rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl);
 
 
        if (!SAVE_EXPR_RESOLVED_P (exp))
        if (!SAVE_EXPR_RESOLVED_P (exp))
          {
          {
            /* We can indeed still hit this case, typically via builtin
            /* We can indeed still hit this case, typically via builtin
               expanders calling save_expr immediately before expanding
               expanders calling save_expr immediately before expanding
               something.  Assume this means that we only have to deal
               something.  Assume this means that we only have to deal
               with non-BLKmode values.  */
               with non-BLKmode values.  */
            gcc_assert (GET_MODE (ret) != BLKmode);
            gcc_assert (GET_MODE (ret) != BLKmode);
 
 
            val = build_decl (VAR_DECL, NULL, TREE_TYPE (exp));
            val = build_decl (VAR_DECL, NULL, TREE_TYPE (exp));
            DECL_ARTIFICIAL (val) = 1;
            DECL_ARTIFICIAL (val) = 1;
            DECL_IGNORED_P (val) = 1;
            DECL_IGNORED_P (val) = 1;
            TREE_OPERAND (exp, 0) = val;
            TREE_OPERAND (exp, 0) = val;
            SAVE_EXPR_RESOLVED_P (exp) = 1;
            SAVE_EXPR_RESOLVED_P (exp) = 1;
 
 
            if (!CONSTANT_P (ret))
            if (!CONSTANT_P (ret))
              ret = copy_to_reg (ret);
              ret = copy_to_reg (ret);
            SET_DECL_RTL (val, ret);
            SET_DECL_RTL (val, ret);
          }
          }
 
 
        return ret;
        return ret;
      }
      }
 
 
    case GOTO_EXPR:
    case GOTO_EXPR:
      if (TREE_CODE (TREE_OPERAND (exp, 0)) == LABEL_DECL)
      if (TREE_CODE (TREE_OPERAND (exp, 0)) == LABEL_DECL)
        expand_goto (TREE_OPERAND (exp, 0));
        expand_goto (TREE_OPERAND (exp, 0));
      else
      else
        expand_computed_goto (TREE_OPERAND (exp, 0));
        expand_computed_goto (TREE_OPERAND (exp, 0));
      return const0_rtx;
      return const0_rtx;
 
 
    case CONSTRUCTOR:
    case CONSTRUCTOR:
      /* If we don't need the result, just ensure we evaluate any
      /* If we don't need the result, just ensure we evaluate any
         subexpressions.  */
         subexpressions.  */
      if (ignore)
      if (ignore)
        {
        {
          unsigned HOST_WIDE_INT idx;
          unsigned HOST_WIDE_INT idx;
          tree value;
          tree value;
 
 
          FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
          FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
            expand_expr (value, const0_rtx, VOIDmode, 0);
            expand_expr (value, const0_rtx, VOIDmode, 0);
 
 
          return const0_rtx;
          return const0_rtx;
        }
        }
 
 
      /* Try to avoid creating a temporary at all.  This is possible
      /* Try to avoid creating a temporary at all.  This is possible
         if all of the initializer is zero.
         if all of the initializer is zero.
         FIXME: try to handle all [0..255] initializers we can handle
         FIXME: try to handle all [0..255] initializers we can handle
         with memset.  */
         with memset.  */
      else if (TREE_STATIC (exp)
      else if (TREE_STATIC (exp)
               && !TREE_ADDRESSABLE (exp)
               && !TREE_ADDRESSABLE (exp)
               && target != 0 && mode == BLKmode
               && target != 0 && mode == BLKmode
               && all_zeros_p (exp))
               && all_zeros_p (exp))
        {
        {
          clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
          clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
          return target;
          return target;
        }
        }
 
 
      /* All elts simple constants => refer to a constant in memory.  But
      /* All elts simple constants => refer to a constant in memory.  But
         if this is a non-BLKmode mode, let it store a field at a time
         if this is a non-BLKmode mode, let it store a field at a time
         since that should make a CONST_INT or CONST_DOUBLE when we
         since that should make a CONST_INT or CONST_DOUBLE when we
         fold.  Likewise, if we have a target we can use, it is best to
         fold.  Likewise, if we have a target we can use, it is best to
         store directly into the target unless the type is large enough
         store directly into the target unless the type is large enough
         that memcpy will be used.  If we are making an initializer and
         that memcpy will be used.  If we are making an initializer and
         all operands are constant, put it in memory as well.
         all operands are constant, put it in memory as well.
 
 
        FIXME: Avoid trying to fill vector constructors piece-meal.
        FIXME: Avoid trying to fill vector constructors piece-meal.
        Output them with output_constant_def below unless we're sure
        Output them with output_constant_def below unless we're sure
        they're zeros.  This should go away when vector initializers
        they're zeros.  This should go away when vector initializers
        are treated like VECTOR_CST instead of arrays.
        are treated like VECTOR_CST instead of arrays.
      */
      */
      else if ((TREE_STATIC (exp)
      else if ((TREE_STATIC (exp)
                && ((mode == BLKmode
                && ((mode == BLKmode
                     && ! (target != 0 && safe_from_p (target, exp, 1)))
                     && ! (target != 0 && safe_from_p (target, exp, 1)))
                    || TREE_ADDRESSABLE (exp)
                    || TREE_ADDRESSABLE (exp)
                    || (host_integerp (TYPE_SIZE_UNIT (type), 1)
                    || (host_integerp (TYPE_SIZE_UNIT (type), 1)
                        && (! MOVE_BY_PIECES_P
                        && (! MOVE_BY_PIECES_P
                            (tree_low_cst (TYPE_SIZE_UNIT (type), 1),
                            (tree_low_cst (TYPE_SIZE_UNIT (type), 1),
                             TYPE_ALIGN (type)))
                             TYPE_ALIGN (type)))
                        && ! mostly_zeros_p (exp))))
                        && ! mostly_zeros_p (exp))))
               || ((modifier == EXPAND_INITIALIZER
               || ((modifier == EXPAND_INITIALIZER
                    || modifier == EXPAND_CONST_ADDRESS)
                    || modifier == EXPAND_CONST_ADDRESS)
                   && TREE_CONSTANT (exp)))
                   && TREE_CONSTANT (exp)))
        {
        {
          rtx constructor = expand_expr_constant (exp, 1, modifier);
          rtx constructor = expand_expr_constant (exp, 1, modifier);
 
 
          if (modifier != EXPAND_CONST_ADDRESS
          if (modifier != EXPAND_CONST_ADDRESS
              && modifier != EXPAND_INITIALIZER
              && modifier != EXPAND_INITIALIZER
              && modifier != EXPAND_SUM)
              && modifier != EXPAND_SUM)
            constructor = validize_mem (constructor);
            constructor = validize_mem (constructor);
 
 
          return constructor;
          return constructor;
        }
        }
      else
      else
        {
        {
          /* Handle calls that pass values in multiple non-contiguous
          /* Handle calls that pass values in multiple non-contiguous
             locations.  The Irix 6 ABI has examples of this.  */
             locations.  The Irix 6 ABI has examples of this.  */
          if (target == 0 || ! safe_from_p (target, exp, 1)
          if (target == 0 || ! safe_from_p (target, exp, 1)
              || GET_CODE (target) == PARALLEL
              || GET_CODE (target) == PARALLEL
              || modifier == EXPAND_STACK_PARM)
              || modifier == EXPAND_STACK_PARM)
            target
            target
              = assign_temp (build_qualified_type (type,
              = assign_temp (build_qualified_type (type,
                                                   (TYPE_QUALS (type)
                                                   (TYPE_QUALS (type)
                                                    | (TREE_READONLY (exp)
                                                    | (TREE_READONLY (exp)
                                                       * TYPE_QUAL_CONST))),
                                                       * TYPE_QUAL_CONST))),
                             0, TREE_ADDRESSABLE (exp), 1);
                             0, TREE_ADDRESSABLE (exp), 1);
 
 
          store_constructor (exp, target, 0, int_expr_size (exp));
          store_constructor (exp, target, 0, int_expr_size (exp));
          return target;
          return target;
        }
        }
 
 
    case MISALIGNED_INDIRECT_REF:
    case MISALIGNED_INDIRECT_REF:
    case ALIGN_INDIRECT_REF:
    case ALIGN_INDIRECT_REF:
    case INDIRECT_REF:
    case INDIRECT_REF:
      {
      {
        tree exp1 = TREE_OPERAND (exp, 0);
        tree exp1 = TREE_OPERAND (exp, 0);
 
 
        if (modifier != EXPAND_WRITE)
        if (modifier != EXPAND_WRITE)
          {
          {
            tree t;
            tree t;
 
 
            t = fold_read_from_constant_string (exp);
            t = fold_read_from_constant_string (exp);
            if (t)
            if (t)
              return expand_expr (t, target, tmode, modifier);
              return expand_expr (t, target, tmode, modifier);
          }
          }
 
 
        op0 = expand_expr (exp1, NULL_RTX, VOIDmode, EXPAND_SUM);
        op0 = expand_expr (exp1, NULL_RTX, VOIDmode, EXPAND_SUM);
        op0 = memory_address (mode, op0);
        op0 = memory_address (mode, op0);
 
 
        if (code == ALIGN_INDIRECT_REF)
        if (code == ALIGN_INDIRECT_REF)
          {
          {
            int align = TYPE_ALIGN_UNIT (type);
            int align = TYPE_ALIGN_UNIT (type);
            op0 = gen_rtx_AND (Pmode, op0, GEN_INT (-align));
            op0 = gen_rtx_AND (Pmode, op0, GEN_INT (-align));
            op0 = memory_address (mode, op0);
            op0 = memory_address (mode, op0);
          }
          }
 
 
        temp = gen_rtx_MEM (mode, op0);
        temp = gen_rtx_MEM (mode, op0);
 
 
        set_mem_attributes (temp, exp, 0);
        set_mem_attributes (temp, exp, 0);
 
 
        /* Resolve the misalignment now, so that we don't have to remember
        /* Resolve the misalignment now, so that we don't have to remember
           to resolve it later.  Of course, this only works for reads.  */
           to resolve it later.  Of course, this only works for reads.  */
        /* ??? When we get around to supporting writes, we'll have to handle
        /* ??? When we get around to supporting writes, we'll have to handle
           this in store_expr directly.  The vectorizer isn't generating
           this in store_expr directly.  The vectorizer isn't generating
           those yet, however.  */
           those yet, however.  */
        if (code == MISALIGNED_INDIRECT_REF)
        if (code == MISALIGNED_INDIRECT_REF)
          {
          {
            int icode;
            int icode;
            rtx reg, insn;
            rtx reg, insn;
 
 
            gcc_assert (modifier == EXPAND_NORMAL
            gcc_assert (modifier == EXPAND_NORMAL
                        || modifier == EXPAND_STACK_PARM);
                        || modifier == EXPAND_STACK_PARM);
 
 
            /* The vectorizer should have already checked the mode.  */
            /* The vectorizer should have already checked the mode.  */
            icode = movmisalign_optab->handlers[mode].insn_code;
            icode = movmisalign_optab->handlers[mode].insn_code;
            gcc_assert (icode != CODE_FOR_nothing);
            gcc_assert (icode != CODE_FOR_nothing);
 
 
            /* We've already validated the memory, and we're creating a
            /* We've already validated the memory, and we're creating a
               new pseudo destination.  The predicates really can't fail.  */
               new pseudo destination.  The predicates really can't fail.  */
            reg = gen_reg_rtx (mode);
            reg = gen_reg_rtx (mode);
 
 
            /* Nor can the insn generator.  */
            /* Nor can the insn generator.  */
            insn = GEN_FCN (icode) (reg, temp);
            insn = GEN_FCN (icode) (reg, temp);
            emit_insn (insn);
            emit_insn (insn);
 
 
            return reg;
            return reg;
          }
          }
 
 
        return temp;
        return temp;
      }
      }
 
 
    case TARGET_MEM_REF:
    case TARGET_MEM_REF:
      {
      {
        struct mem_address addr;
        struct mem_address addr;
 
 
        get_address_description (exp, &addr);
        get_address_description (exp, &addr);
        op0 = addr_for_mem_ref (&addr, true);
        op0 = addr_for_mem_ref (&addr, true);
        op0 = memory_address (mode, op0);
        op0 = memory_address (mode, op0);
        temp = gen_rtx_MEM (mode, op0);
        temp = gen_rtx_MEM (mode, op0);
        set_mem_attributes (temp, TMR_ORIGINAL (exp), 0);
        set_mem_attributes (temp, TMR_ORIGINAL (exp), 0);
      }
      }
      return temp;
      return temp;
 
 
    case ARRAY_REF:
    case ARRAY_REF:
 
 
      {
      {
        tree array = TREE_OPERAND (exp, 0);
        tree array = TREE_OPERAND (exp, 0);
        tree index = TREE_OPERAND (exp, 1);
        tree index = TREE_OPERAND (exp, 1);
 
 
        /* Fold an expression like: "foo"[2].
        /* Fold an expression like: "foo"[2].
           This is not done in fold so it won't happen inside &.
           This is not done in fold so it won't happen inside &.
           Don't fold if this is for wide characters since it's too
           Don't fold if this is for wide characters since it's too
           difficult to do correctly and this is a very rare case.  */
           difficult to do correctly and this is a very rare case.  */
 
 
        if (modifier != EXPAND_CONST_ADDRESS
        if (modifier != EXPAND_CONST_ADDRESS
            && modifier != EXPAND_INITIALIZER
            && modifier != EXPAND_INITIALIZER
            && modifier != EXPAND_MEMORY)
            && modifier != EXPAND_MEMORY)
          {
          {
            tree t = fold_read_from_constant_string (exp);
            tree t = fold_read_from_constant_string (exp);
 
 
            if (t)
            if (t)
              return expand_expr (t, target, tmode, modifier);
              return expand_expr (t, target, tmode, modifier);
          }
          }
 
 
        /* If this is a constant index into a constant array,
        /* If this is a constant index into a constant array,
           just get the value from the array.  Handle both the cases when
           just get the value from the array.  Handle both the cases when
           we have an explicit constructor and when our operand is a variable
           we have an explicit constructor and when our operand is a variable
           that was declared const.  */
           that was declared const.  */
 
 
        if (modifier != EXPAND_CONST_ADDRESS
        if (modifier != EXPAND_CONST_ADDRESS
            && modifier != EXPAND_INITIALIZER
            && modifier != EXPAND_INITIALIZER
            && modifier != EXPAND_MEMORY
            && modifier != EXPAND_MEMORY
            && TREE_CODE (array) == CONSTRUCTOR
            && TREE_CODE (array) == CONSTRUCTOR
            && ! TREE_SIDE_EFFECTS (array)
            && ! TREE_SIDE_EFFECTS (array)
            && TREE_CODE (index) == INTEGER_CST)
            && TREE_CODE (index) == INTEGER_CST)
          {
          {
            unsigned HOST_WIDE_INT ix;
            unsigned HOST_WIDE_INT ix;
            tree field, value;
            tree field, value;
 
 
            FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
            FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
                                      field, value)
                                      field, value)
              if (tree_int_cst_equal (field, index))
              if (tree_int_cst_equal (field, index))
                {
                {
                  if (!TREE_SIDE_EFFECTS (value))
                  if (!TREE_SIDE_EFFECTS (value))
                    return expand_expr (fold (value), target, tmode, modifier);
                    return expand_expr (fold (value), target, tmode, modifier);
                  break;
                  break;
                }
                }
          }
          }
 
 
        else if (optimize >= 1
        else if (optimize >= 1
                 && modifier != EXPAND_CONST_ADDRESS
                 && modifier != EXPAND_CONST_ADDRESS
                 && modifier != EXPAND_INITIALIZER
                 && modifier != EXPAND_INITIALIZER
                 && modifier != EXPAND_MEMORY
                 && modifier != EXPAND_MEMORY
                 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
                 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
                 && TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
                 && TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
                 && TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK
                 && TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK
                 && targetm.binds_local_p (array))
                 && targetm.binds_local_p (array))
          {
          {
            if (TREE_CODE (index) == INTEGER_CST)
            if (TREE_CODE (index) == INTEGER_CST)
              {
              {
                tree init = DECL_INITIAL (array);
                tree init = DECL_INITIAL (array);
 
 
                if (TREE_CODE (init) == CONSTRUCTOR)
                if (TREE_CODE (init) == CONSTRUCTOR)
                  {
                  {
                    unsigned HOST_WIDE_INT ix;
                    unsigned HOST_WIDE_INT ix;
                    tree field, value;
                    tree field, value;
 
 
                    FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
                    FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
                                              field, value)
                                              field, value)
                      if (tree_int_cst_equal (field, index))
                      if (tree_int_cst_equal (field, index))
                        {
                        {
                          if (!TREE_SIDE_EFFECTS (value))
                          if (!TREE_SIDE_EFFECTS (value))
                            return expand_expr (fold (value), target, tmode,
                            return expand_expr (fold (value), target, tmode,
                                                modifier);
                                                modifier);
                          break;
                          break;
                        }
                        }
                  }
                  }
                else if(TREE_CODE (init) == STRING_CST)
                else if(TREE_CODE (init) == STRING_CST)
                  {
                  {
                    tree index1 = index;
                    tree index1 = index;
                    tree low_bound = array_ref_low_bound (exp);
                    tree low_bound = array_ref_low_bound (exp);
                    index1 = fold_convert (sizetype, TREE_OPERAND (exp, 1));
                    index1 = fold_convert (sizetype, TREE_OPERAND (exp, 1));
 
 
                    /* Optimize the special-case of a zero lower bound.
                    /* Optimize the special-case of a zero lower bound.
 
 
                       We convert the low_bound to sizetype to avoid some problems
                       We convert the low_bound to sizetype to avoid some problems
                       with constant folding.  (E.g. suppose the lower bound is 1,
                       with constant folding.  (E.g. suppose the lower bound is 1,
                       and its mode is QI.  Without the conversion,l (ARRAY
                       and its mode is QI.  Without the conversion,l (ARRAY
                       +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
                       +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
                       +INDEX), which becomes (ARRAY+255+INDEX).  Opps!)  */
                       +INDEX), which becomes (ARRAY+255+INDEX).  Opps!)  */
 
 
                    if (! integer_zerop (low_bound))
                    if (! integer_zerop (low_bound))
                      index1 = size_diffop (index1, fold_convert (sizetype,
                      index1 = size_diffop (index1, fold_convert (sizetype,
                                                                  low_bound));
                                                                  low_bound));
 
 
                    if (0 > compare_tree_int (index1,
                    if (0 > compare_tree_int (index1,
                                              TREE_STRING_LENGTH (init)))
                                              TREE_STRING_LENGTH (init)))
                      {
                      {
                        tree type = TREE_TYPE (TREE_TYPE (init));
                        tree type = TREE_TYPE (TREE_TYPE (init));
                        enum machine_mode mode = TYPE_MODE (type);
                        enum machine_mode mode = TYPE_MODE (type);
 
 
                        if (GET_MODE_CLASS (mode) == MODE_INT
                        if (GET_MODE_CLASS (mode) == MODE_INT
                            && GET_MODE_SIZE (mode) == 1)
                            && GET_MODE_SIZE (mode) == 1)
                          return gen_int_mode (TREE_STRING_POINTER (init)
                          return gen_int_mode (TREE_STRING_POINTER (init)
                                               [TREE_INT_CST_LOW (index1)],
                                               [TREE_INT_CST_LOW (index1)],
                                               mode);
                                               mode);
                      }
                      }
                  }
                  }
              }
              }
          }
          }
      }
      }
      goto normal_inner_ref;
      goto normal_inner_ref;
 
 
    case COMPONENT_REF:
    case COMPONENT_REF:
      /* If the operand is a CONSTRUCTOR, we can just extract the
      /* If the operand is a CONSTRUCTOR, we can just extract the
         appropriate field if it is present.  */
         appropriate field if it is present.  */
      if (TREE_CODE (TREE_OPERAND (exp, 0)) == CONSTRUCTOR)
      if (TREE_CODE (TREE_OPERAND (exp, 0)) == CONSTRUCTOR)
        {
        {
          unsigned HOST_WIDE_INT idx;
          unsigned HOST_WIDE_INT idx;
          tree field, value;
          tree field, value;
 
 
          FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (TREE_OPERAND (exp, 0)),
          FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (TREE_OPERAND (exp, 0)),
                                    idx, field, value)
                                    idx, field, value)
            if (field == TREE_OPERAND (exp, 1)
            if (field == TREE_OPERAND (exp, 1)
                /* We can normally use the value of the field in the
                /* We can normally use the value of the field in the
                   CONSTRUCTOR.  However, if this is a bitfield in
                   CONSTRUCTOR.  However, if this is a bitfield in
                   an integral mode that we can fit in a HOST_WIDE_INT,
                   an integral mode that we can fit in a HOST_WIDE_INT,
                   we must mask only the number of bits in the bitfield,
                   we must mask only the number of bits in the bitfield,
                   since this is done implicitly by the constructor.  If
                   since this is done implicitly by the constructor.  If
                   the bitfield does not meet either of those conditions,
                   the bitfield does not meet either of those conditions,
                   we can't do this optimization.  */
                   we can't do this optimization.  */
                && (! DECL_BIT_FIELD (field)
                && (! DECL_BIT_FIELD (field)
                    || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
                    || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
                        && (GET_MODE_BITSIZE (DECL_MODE (field))
                        && (GET_MODE_BITSIZE (DECL_MODE (field))
                            <= HOST_BITS_PER_WIDE_INT))))
                            <= HOST_BITS_PER_WIDE_INT))))
              {
              {
                if (DECL_BIT_FIELD (field)
                if (DECL_BIT_FIELD (field)
                    && modifier == EXPAND_STACK_PARM)
                    && modifier == EXPAND_STACK_PARM)
                  target = 0;
                  target = 0;
                op0 = expand_expr (value, target, tmode, modifier);
                op0 = expand_expr (value, target, tmode, modifier);
                if (DECL_BIT_FIELD (field))
                if (DECL_BIT_FIELD (field))
                  {
                  {
                    HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
                    HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
                    enum machine_mode imode = TYPE_MODE (TREE_TYPE (field));
                    enum machine_mode imode = TYPE_MODE (TREE_TYPE (field));
 
 
                    if (TYPE_UNSIGNED (TREE_TYPE (field)))
                    if (TYPE_UNSIGNED (TREE_TYPE (field)))
                      {
                      {
                        op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1);
                        op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1);
                        op0 = expand_and (imode, op0, op1, target);
                        op0 = expand_and (imode, op0, op1, target);
                      }
                      }
                    else
                    else
                      {
                      {
                        tree count
                        tree count
                          = build_int_cst (NULL_TREE,
                          = build_int_cst (NULL_TREE,
                                           GET_MODE_BITSIZE (imode) - bitsize);
                                           GET_MODE_BITSIZE (imode) - bitsize);
 
 
                        op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
                        op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
                                            target, 0);
                                            target, 0);
                        op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
                        op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
                                            target, 0);
                                            target, 0);
                      }
                      }
                  }
                  }
 
 
                return op0;
                return op0;
              }
              }
        }
        }
      goto normal_inner_ref;
      goto normal_inner_ref;
 
 
    case BIT_FIELD_REF:
    case BIT_FIELD_REF:
    case ARRAY_RANGE_REF:
    case ARRAY_RANGE_REF:
    normal_inner_ref:
    normal_inner_ref:
      {
      {
        enum machine_mode mode1;
        enum machine_mode mode1;
        HOST_WIDE_INT bitsize, bitpos;
        HOST_WIDE_INT bitsize, bitpos;
        tree offset;
        tree offset;
        int volatilep = 0;
        int volatilep = 0;
        tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
        tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
                                        &mode1, &unsignedp, &volatilep, true);
                                        &mode1, &unsignedp, &volatilep, true);
        rtx orig_op0;
        rtx orig_op0;
 
 
        /* If we got back the original object, something is wrong.  Perhaps
        /* If we got back the original object, something is wrong.  Perhaps
           we are evaluating an expression too early.  In any event, don't
           we are evaluating an expression too early.  In any event, don't
           infinitely recurse.  */
           infinitely recurse.  */
        gcc_assert (tem != exp);
        gcc_assert (tem != exp);
 
 
        /* If TEM's type is a union of variable size, pass TARGET to the inner
        /* If TEM's type is a union of variable size, pass TARGET to the inner
           computation, since it will need a temporary and TARGET is known
           computation, since it will need a temporary and TARGET is known
           to have to do.  This occurs in unchecked conversion in Ada.  */
           to have to do.  This occurs in unchecked conversion in Ada.  */
 
 
        orig_op0 = op0
        orig_op0 = op0
          = expand_expr (tem,
          = expand_expr (tem,
                         (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
                         (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
                          && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
                          && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
                              != INTEGER_CST)
                              != INTEGER_CST)
                          && modifier != EXPAND_STACK_PARM
                          && modifier != EXPAND_STACK_PARM
                          ? target : NULL_RTX),
                          ? target : NULL_RTX),
                         VOIDmode,
                         VOIDmode,
                         (modifier == EXPAND_INITIALIZER
                         (modifier == EXPAND_INITIALIZER
                          || modifier == EXPAND_CONST_ADDRESS
                          || modifier == EXPAND_CONST_ADDRESS
                          || modifier == EXPAND_STACK_PARM)
                          || modifier == EXPAND_STACK_PARM)
                         ? modifier : EXPAND_NORMAL);
                         ? modifier : EXPAND_NORMAL);
 
 
        /* If this is a constant, put it into a register if it is a legitimate
        /* If this is a constant, put it into a register if it is a legitimate
           constant, OFFSET is 0, and we won't try to extract outside the
           constant, OFFSET is 0, and we won't try to extract outside the
           register (in case we were passed a partially uninitialized object
           register (in case we were passed a partially uninitialized object
           or a view_conversion to a larger size).  Force the constant to
           or a view_conversion to a larger size).  Force the constant to
           memory otherwise.  */
           memory otherwise.  */
        if (CONSTANT_P (op0))
        if (CONSTANT_P (op0))
          {
          {
            enum machine_mode mode = TYPE_MODE (TREE_TYPE (tem));
            enum machine_mode mode = TYPE_MODE (TREE_TYPE (tem));
            if (mode != BLKmode && LEGITIMATE_CONSTANT_P (op0)
            if (mode != BLKmode && LEGITIMATE_CONSTANT_P (op0)
                && offset == 0
                && offset == 0
                && bitpos + bitsize <= GET_MODE_BITSIZE (mode))
                && bitpos + bitsize <= GET_MODE_BITSIZE (mode))
              op0 = force_reg (mode, op0);
              op0 = force_reg (mode, op0);
            else
            else
              op0 = validize_mem (force_const_mem (mode, op0));
              op0 = validize_mem (force_const_mem (mode, op0));
          }
          }
 
 
        /* Otherwise, if this object not in memory and we either have an
        /* Otherwise, if this object not in memory and we either have an
           offset, a BLKmode result, or a reference outside the object, put it
           offset, a BLKmode result, or a reference outside the object, put it
           there.  Such cases can occur in Ada if we have unchecked conversion
           there.  Such cases can occur in Ada if we have unchecked conversion
           of an expression from a scalar type to an array or record type or
           of an expression from a scalar type to an array or record type or
           for an ARRAY_RANGE_REF whose type is BLKmode.  */
           for an ARRAY_RANGE_REF whose type is BLKmode.  */
        else if (!MEM_P (op0)
        else if (!MEM_P (op0)
                 && (offset != 0
                 && (offset != 0
                     || (bitpos + bitsize > GET_MODE_BITSIZE (GET_MODE (op0)))
                     || (bitpos + bitsize > GET_MODE_BITSIZE (GET_MODE (op0)))
                     || (code == ARRAY_RANGE_REF && mode == BLKmode)))
                     || (code == ARRAY_RANGE_REF && mode == BLKmode)))
          {
          {
            tree nt = build_qualified_type (TREE_TYPE (tem),
            tree nt = build_qualified_type (TREE_TYPE (tem),
                                            (TYPE_QUALS (TREE_TYPE (tem))
                                            (TYPE_QUALS (TREE_TYPE (tem))
                                             | TYPE_QUAL_CONST));
                                             | TYPE_QUAL_CONST));
            rtx memloc = assign_temp (nt, 1, 1, 1);
            rtx memloc = assign_temp (nt, 1, 1, 1);
 
 
            emit_move_insn (memloc, op0);
            emit_move_insn (memloc, op0);
            op0 = memloc;
            op0 = memloc;
          }
          }
 
 
        if (offset != 0)
        if (offset != 0)
          {
          {
            rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
            rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
                                          EXPAND_SUM);
                                          EXPAND_SUM);
 
 
            gcc_assert (MEM_P (op0));
            gcc_assert (MEM_P (op0));
 
 
#ifdef POINTERS_EXTEND_UNSIGNED
#ifdef POINTERS_EXTEND_UNSIGNED
            if (GET_MODE (offset_rtx) != Pmode)
            if (GET_MODE (offset_rtx) != Pmode)
              offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
              offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
#else
#else
            if (GET_MODE (offset_rtx) != ptr_mode)
            if (GET_MODE (offset_rtx) != ptr_mode)
              offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
              offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
#endif
#endif
 
 
            if (GET_MODE (op0) == BLKmode
            if (GET_MODE (op0) == BLKmode
                /* A constant address in OP0 can have VOIDmode, we must
                /* A constant address in OP0 can have VOIDmode, we must
                   not try to call force_reg in that case.  */
                   not try to call force_reg in that case.  */
                && GET_MODE (XEXP (op0, 0)) != VOIDmode
                && GET_MODE (XEXP (op0, 0)) != VOIDmode
                && bitsize != 0
                && bitsize != 0
                && (bitpos % bitsize) == 0
                && (bitpos % bitsize) == 0
                && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
                && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
                && MEM_ALIGN (op0) == GET_MODE_ALIGNMENT (mode1))
                && MEM_ALIGN (op0) == GET_MODE_ALIGNMENT (mode1))
              {
              {
                op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
                op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
                bitpos = 0;
                bitpos = 0;
              }
              }
 
 
            op0 = offset_address (op0, offset_rtx,
            op0 = offset_address (op0, offset_rtx,
                                  highest_pow2_factor (offset));
                                  highest_pow2_factor (offset));
          }
          }
 
 
        /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
        /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
           record its alignment as BIGGEST_ALIGNMENT.  */
           record its alignment as BIGGEST_ALIGNMENT.  */
        if (MEM_P (op0) && bitpos == 0 && offset != 0
        if (MEM_P (op0) && bitpos == 0 && offset != 0
            && is_aligning_offset (offset, tem))
            && is_aligning_offset (offset, tem))
          set_mem_align (op0, BIGGEST_ALIGNMENT);
          set_mem_align (op0, BIGGEST_ALIGNMENT);
 
 
        /* Don't forget about volatility even if this is a bitfield.  */
        /* Don't forget about volatility even if this is a bitfield.  */
        if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
        if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
          {
          {
            if (op0 == orig_op0)
            if (op0 == orig_op0)
              op0 = copy_rtx (op0);
              op0 = copy_rtx (op0);
 
 
            MEM_VOLATILE_P (op0) = 1;
            MEM_VOLATILE_P (op0) = 1;
          }
          }
 
 
        /* The following code doesn't handle CONCAT.
        /* The following code doesn't handle CONCAT.
           Assume only bitpos == 0 can be used for CONCAT, due to
           Assume only bitpos == 0 can be used for CONCAT, due to
           one element arrays having the same mode as its element.  */
           one element arrays having the same mode as its element.  */
        if (GET_CODE (op0) == CONCAT)
        if (GET_CODE (op0) == CONCAT)
          {
          {
            gcc_assert (bitpos == 0
            gcc_assert (bitpos == 0
                        && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)));
                        && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)));
            return op0;
            return op0;
          }
          }
 
 
        /* In cases where an aligned union has an unaligned object
        /* In cases where an aligned union has an unaligned object
           as a field, we might be extracting a BLKmode value from
           as a field, we might be extracting a BLKmode value from
           an integer-mode (e.g., SImode) object.  Handle this case
           an integer-mode (e.g., SImode) object.  Handle this case
           by doing the extract into an object as wide as the field
           by doing the extract into an object as wide as the field
           (which we know to be the width of a basic mode), then
           (which we know to be the width of a basic mode), then
           storing into memory, and changing the mode to BLKmode.  */
           storing into memory, and changing the mode to BLKmode.  */
        if (mode1 == VOIDmode
        if (mode1 == VOIDmode
            || REG_P (op0) || GET_CODE (op0) == SUBREG
            || REG_P (op0) || GET_CODE (op0) == SUBREG
            || (mode1 != BLKmode && ! direct_load[(int) mode1]
            || (mode1 != BLKmode && ! direct_load[(int) mode1]
                && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
                && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
                && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
                && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
                && modifier != EXPAND_CONST_ADDRESS
                && modifier != EXPAND_CONST_ADDRESS
                && modifier != EXPAND_INITIALIZER)
                && modifier != EXPAND_INITIALIZER)
            /* If the field isn't aligned enough to fetch as a memref,
            /* If the field isn't aligned enough to fetch as a memref,
               fetch it as a bit field.  */
               fetch it as a bit field.  */
            || (mode1 != BLKmode
            || (mode1 != BLKmode
                && (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
                && (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
                      || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
                      || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
                      || (MEM_P (op0)
                      || (MEM_P (op0)
                          && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
                          && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
                              || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
                              || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
                     && ((modifier == EXPAND_CONST_ADDRESS
                     && ((modifier == EXPAND_CONST_ADDRESS
                          || modifier == EXPAND_INITIALIZER)
                          || modifier == EXPAND_INITIALIZER)
                         ? STRICT_ALIGNMENT
                         ? STRICT_ALIGNMENT
                         : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
                         : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
                    || (bitpos % BITS_PER_UNIT != 0)))
                    || (bitpos % BITS_PER_UNIT != 0)))
            /* If the type and the field are a constant size and the
            /* If the type and the field are a constant size and the
               size of the type isn't the same size as the bitfield,
               size of the type isn't the same size as the bitfield,
               we must use bitfield operations.  */
               we must use bitfield operations.  */
            || (bitsize >= 0
            || (bitsize >= 0
                && TYPE_SIZE (TREE_TYPE (exp))
                && TYPE_SIZE (TREE_TYPE (exp))
                && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
                && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
                && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
                && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
                                          bitsize)))
                                          bitsize)))
          {
          {
            enum machine_mode ext_mode = mode;
            enum machine_mode ext_mode = mode;
 
 
            if (ext_mode == BLKmode
            if (ext_mode == BLKmode
                && ! (target != 0 && MEM_P (op0)
                && ! (target != 0 && MEM_P (op0)
                      && MEM_P (target)
                      && MEM_P (target)
                      && bitpos % BITS_PER_UNIT == 0))
                      && bitpos % BITS_PER_UNIT == 0))
              ext_mode = mode_for_size (bitsize, MODE_INT, 1);
              ext_mode = mode_for_size (bitsize, MODE_INT, 1);
 
 
            if (ext_mode == BLKmode)
            if (ext_mode == BLKmode)
              {
              {
                if (target == 0)
                if (target == 0)
                  target = assign_temp (type, 0, 1, 1);
                  target = assign_temp (type, 0, 1, 1);
 
 
                if (bitsize == 0)
                if (bitsize == 0)
                  return target;
                  return target;
 
 
                /* In this case, BITPOS must start at a byte boundary and
                /* In this case, BITPOS must start at a byte boundary and
                   TARGET, if specified, must be a MEM.  */
                   TARGET, if specified, must be a MEM.  */
                gcc_assert (MEM_P (op0)
                gcc_assert (MEM_P (op0)
                            && (!target || MEM_P (target))
                            && (!target || MEM_P (target))
                            && !(bitpos % BITS_PER_UNIT));
                            && !(bitpos % BITS_PER_UNIT));
 
 
                emit_block_move (target,
                emit_block_move (target,
                                 adjust_address (op0, VOIDmode,
                                 adjust_address (op0, VOIDmode,
                                                 bitpos / BITS_PER_UNIT),
                                                 bitpos / BITS_PER_UNIT),
                                 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
                                 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
                                          / BITS_PER_UNIT),
                                          / BITS_PER_UNIT),
                                 (modifier == EXPAND_STACK_PARM
                                 (modifier == EXPAND_STACK_PARM
                                  ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
                                  ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
 
 
                return target;
                return target;
              }
              }
 
 
            op0 = validize_mem (op0);
            op0 = validize_mem (op0);
 
 
            if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
            if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
              mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
              mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
 
 
            op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
            op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
                                     (modifier == EXPAND_STACK_PARM
                                     (modifier == EXPAND_STACK_PARM
                                      ? NULL_RTX : target),
                                      ? NULL_RTX : target),
                                     ext_mode, ext_mode);
                                     ext_mode, ext_mode);
 
 
            /* If the result is a record type and BITSIZE is narrower than
            /* If the result is a record type and BITSIZE is narrower than
               the mode of OP0, an integral mode, and this is a big endian
               the mode of OP0, an integral mode, and this is a big endian
               machine, we must put the field into the high-order bits.  */
               machine, we must put the field into the high-order bits.  */
            if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
            if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
                && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
                && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
                && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
                && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
              op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
              op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
                                  size_int (GET_MODE_BITSIZE (GET_MODE (op0))
                                  size_int (GET_MODE_BITSIZE (GET_MODE (op0))
                                            - bitsize),
                                            - bitsize),
                                  op0, 1);
                                  op0, 1);
 
 
            /* If the result type is BLKmode, store the data into a temporary
            /* If the result type is BLKmode, store the data into a temporary
               of the appropriate type, but with the mode corresponding to the
               of the appropriate type, but with the mode corresponding to the
               mode for the data we have (op0's mode).  It's tempting to make
               mode for the data we have (op0's mode).  It's tempting to make
               this a constant type, since we know it's only being stored once,
               this a constant type, since we know it's only being stored once,
               but that can cause problems if we are taking the address of this
               but that can cause problems if we are taking the address of this
               COMPONENT_REF because the MEM of any reference via that address
               COMPONENT_REF because the MEM of any reference via that address
               will have flags corresponding to the type, which will not
               will have flags corresponding to the type, which will not
               necessarily be constant.  */
               necessarily be constant.  */
            if (mode == BLKmode)
            if (mode == BLKmode)
              {
              {
                rtx new
                rtx new
                  = assign_stack_temp_for_type
                  = assign_stack_temp_for_type
                    (ext_mode, GET_MODE_BITSIZE (ext_mode), 0, type);
                    (ext_mode, GET_MODE_BITSIZE (ext_mode), 0, type);
 
 
                emit_move_insn (new, op0);
                emit_move_insn (new, op0);
                op0 = copy_rtx (new);
                op0 = copy_rtx (new);
                PUT_MODE (op0, BLKmode);
                PUT_MODE (op0, BLKmode);
                set_mem_attributes (op0, exp, 1);
                set_mem_attributes (op0, exp, 1);
              }
              }
 
 
            return op0;
            return op0;
          }
          }
 
 
        /* If the result is BLKmode, use that to access the object
        /* If the result is BLKmode, use that to access the object
           now as well.  */
           now as well.  */
        if (mode == BLKmode)
        if (mode == BLKmode)
          mode1 = BLKmode;
          mode1 = BLKmode;
 
 
        /* Get a reference to just this component.  */
        /* Get a reference to just this component.  */
        if (modifier == EXPAND_CONST_ADDRESS
        if (modifier == EXPAND_CONST_ADDRESS
            || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
            || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
          op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
          op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
        else
        else
          op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
          op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
 
 
        if (op0 == orig_op0)
        if (op0 == orig_op0)
          op0 = copy_rtx (op0);
          op0 = copy_rtx (op0);
 
 
        set_mem_attributes (op0, exp, 0);
        set_mem_attributes (op0, exp, 0);
        if (REG_P (XEXP (op0, 0)))
        if (REG_P (XEXP (op0, 0)))
          mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
          mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
 
 
        MEM_VOLATILE_P (op0) |= volatilep;
        MEM_VOLATILE_P (op0) |= volatilep;
        if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
        if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
            || modifier == EXPAND_CONST_ADDRESS
            || modifier == EXPAND_CONST_ADDRESS
            || modifier == EXPAND_INITIALIZER)
            || modifier == EXPAND_INITIALIZER)
          return op0;
          return op0;
        else if (target == 0)
        else if (target == 0)
          target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
          target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
 
 
        convert_move (target, op0, unsignedp);
        convert_move (target, op0, unsignedp);
        return target;
        return target;
      }
      }
 
 
    case OBJ_TYPE_REF:
    case OBJ_TYPE_REF:
      return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
      return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
 
 
    case CALL_EXPR:
    case CALL_EXPR:
      /* Check for a built-in function.  */
      /* Check for a built-in function.  */
      if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
      if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
          && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
          && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
              == FUNCTION_DECL)
              == FUNCTION_DECL)
          && DECL_BUILT_IN (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
          && DECL_BUILT_IN (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
        {
        {
          if (DECL_BUILT_IN_CLASS (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
          if (DECL_BUILT_IN_CLASS (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
              == BUILT_IN_FRONTEND)
              == BUILT_IN_FRONTEND)
            return lang_hooks.expand_expr (exp, original_target,
            return lang_hooks.expand_expr (exp, original_target,
                                           tmode, modifier,
                                           tmode, modifier,
                                           alt_rtl);
                                           alt_rtl);
          else
          else
            return expand_builtin (exp, target, subtarget, tmode, ignore);
            return expand_builtin (exp, target, subtarget, tmode, ignore);
        }
        }
 
 
      return expand_call (exp, target, ignore);
      return expand_call (exp, target, ignore);
 
 
    case NON_LVALUE_EXPR:
    case NON_LVALUE_EXPR:
    case NOP_EXPR:
    case NOP_EXPR:
    case CONVERT_EXPR:
    case CONVERT_EXPR:
      if (TREE_OPERAND (exp, 0) == error_mark_node)
      if (TREE_OPERAND (exp, 0) == error_mark_node)
        return const0_rtx;
        return const0_rtx;
 
 
      if (TREE_CODE (type) == UNION_TYPE)
      if (TREE_CODE (type) == UNION_TYPE)
        {
        {
          tree valtype = TREE_TYPE (TREE_OPERAND (exp, 0));
          tree valtype = TREE_TYPE (TREE_OPERAND (exp, 0));
 
 
          /* If both input and output are BLKmode, this conversion isn't doing
          /* If both input and output are BLKmode, this conversion isn't doing
             anything except possibly changing memory attribute.  */
             anything except possibly changing memory attribute.  */
          if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
          if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
            {
            {
              rtx result = expand_expr (TREE_OPERAND (exp, 0), target, tmode,
              rtx result = expand_expr (TREE_OPERAND (exp, 0), target, tmode,
                                        modifier);
                                        modifier);
 
 
              result = copy_rtx (result);
              result = copy_rtx (result);
              set_mem_attributes (result, exp, 0);
              set_mem_attributes (result, exp, 0);
              return result;
              return result;
            }
            }
 
 
          if (target == 0)
          if (target == 0)
            {
            {
              if (TYPE_MODE (type) != BLKmode)
              if (TYPE_MODE (type) != BLKmode)
                target = gen_reg_rtx (TYPE_MODE (type));
                target = gen_reg_rtx (TYPE_MODE (type));
              else
              else
                target = assign_temp (type, 0, 1, 1);
                target = assign_temp (type, 0, 1, 1);
            }
            }
 
 
          if (MEM_P (target))
          if (MEM_P (target))
            /* Store data into beginning of memory target.  */
            /* Store data into beginning of memory target.  */
            store_expr (TREE_OPERAND (exp, 0),
            store_expr (TREE_OPERAND (exp, 0),
                        adjust_address (target, TYPE_MODE (valtype), 0),
                        adjust_address (target, TYPE_MODE (valtype), 0),
                        modifier == EXPAND_STACK_PARM);
                        modifier == EXPAND_STACK_PARM);
 
 
          else
          else
            {
            {
              gcc_assert (REG_P (target));
              gcc_assert (REG_P (target));
 
 
              /* Store this field into a union of the proper type.  */
              /* Store this field into a union of the proper type.  */
              store_field (target,
              store_field (target,
                           MIN ((int_size_in_bytes (TREE_TYPE
                           MIN ((int_size_in_bytes (TREE_TYPE
                                                    (TREE_OPERAND (exp, 0)))
                                                    (TREE_OPERAND (exp, 0)))
                                 * BITS_PER_UNIT),
                                 * BITS_PER_UNIT),
                                (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
                                (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
                           0, TYPE_MODE (valtype), TREE_OPERAND (exp, 0),
                           0, TYPE_MODE (valtype), TREE_OPERAND (exp, 0),
                           type, 0);
                           type, 0);
            }
            }
 
 
          /* Return the entire union.  */
          /* Return the entire union.  */
          return target;
          return target;
        }
        }
 
 
      if (mode == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))))
      if (mode == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))))
        {
        {
          op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode,
          op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode,
                             modifier);
                             modifier);
 
 
          /* If the signedness of the conversion differs and OP0 is
          /* If the signedness of the conversion differs and OP0 is
             a promoted SUBREG, clear that indication since we now
             a promoted SUBREG, clear that indication since we now
             have to do the proper extension.  */
             have to do the proper extension.  */
          if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))) != unsignedp
          if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))) != unsignedp
              && GET_CODE (op0) == SUBREG)
              && GET_CODE (op0) == SUBREG)
            SUBREG_PROMOTED_VAR_P (op0) = 0;
            SUBREG_PROMOTED_VAR_P (op0) = 0;
 
 
          return REDUCE_BIT_FIELD (op0);
          return REDUCE_BIT_FIELD (op0);
        }
        }
 
 
      op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode,
      op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode,
                         modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
                         modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
      if (GET_MODE (op0) == mode)
      if (GET_MODE (op0) == mode)
        ;
        ;
 
 
      /* If OP0 is a constant, just convert it into the proper mode.  */
      /* If OP0 is a constant, just convert it into the proper mode.  */
      else if (CONSTANT_P (op0))
      else if (CONSTANT_P (op0))
        {
        {
          tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
          tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
          enum machine_mode inner_mode = TYPE_MODE (inner_type);
          enum machine_mode inner_mode = TYPE_MODE (inner_type);
 
 
          if (modifier == EXPAND_INITIALIZER)
          if (modifier == EXPAND_INITIALIZER)
            op0 = simplify_gen_subreg (mode, op0, inner_mode,
            op0 = simplify_gen_subreg (mode, op0, inner_mode,
                                       subreg_lowpart_offset (mode,
                                       subreg_lowpart_offset (mode,
                                                              inner_mode));
                                                              inner_mode));
          else
          else
            op0=  convert_modes (mode, inner_mode, op0,
            op0=  convert_modes (mode, inner_mode, op0,
                                 TYPE_UNSIGNED (inner_type));
                                 TYPE_UNSIGNED (inner_type));
        }
        }
 
 
      else if (modifier == EXPAND_INITIALIZER)
      else if (modifier == EXPAND_INITIALIZER)
        op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
        op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
 
 
      else if (target == 0)
      else if (target == 0)
        op0 = convert_to_mode (mode, op0,
        op0 = convert_to_mode (mode, op0,
                               TYPE_UNSIGNED (TREE_TYPE
                               TYPE_UNSIGNED (TREE_TYPE
                                              (TREE_OPERAND (exp, 0))));
                                              (TREE_OPERAND (exp, 0))));
      else
      else
        {
        {
          convert_move (target, op0,
          convert_move (target, op0,
                        TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
                        TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
          op0 = target;
          op0 = target;
        }
        }
 
 
      return REDUCE_BIT_FIELD (op0);
      return REDUCE_BIT_FIELD (op0);
 
 
    case VIEW_CONVERT_EXPR:
    case VIEW_CONVERT_EXPR:
      op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode, modifier);
      op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode, modifier);
 
 
      /* If the input and output modes are both the same, we are done.  */
      /* If the input and output modes are both the same, we are done.  */
      if (TYPE_MODE (type) == GET_MODE (op0))
      if (TYPE_MODE (type) == GET_MODE (op0))
        ;
        ;
      /* If neither mode is BLKmode, and both modes are the same size
      /* If neither mode is BLKmode, and both modes are the same size
         then we can use gen_lowpart.  */
         then we can use gen_lowpart.  */
      else if (TYPE_MODE (type) != BLKmode && GET_MODE (op0) != BLKmode
      else if (TYPE_MODE (type) != BLKmode && GET_MODE (op0) != BLKmode
               && GET_MODE_SIZE (TYPE_MODE (type))
               && GET_MODE_SIZE (TYPE_MODE (type))
                   == GET_MODE_SIZE (GET_MODE (op0)))
                   == GET_MODE_SIZE (GET_MODE (op0)))
        {
        {
          if (GET_CODE (op0) == SUBREG)
          if (GET_CODE (op0) == SUBREG)
            op0 = force_reg (GET_MODE (op0), op0);
            op0 = force_reg (GET_MODE (op0), op0);
          op0 = gen_lowpart (TYPE_MODE (type), op0);
          op0 = gen_lowpart (TYPE_MODE (type), op0);
        }
        }
      /* If both modes are integral, then we can convert from one to the
      /* If both modes are integral, then we can convert from one to the
         other.  */
         other.  */
      else if (SCALAR_INT_MODE_P (GET_MODE (op0))
      else if (SCALAR_INT_MODE_P (GET_MODE (op0))
               && SCALAR_INT_MODE_P (TYPE_MODE (type)))
               && SCALAR_INT_MODE_P (TYPE_MODE (type)))
        op0 = convert_modes (TYPE_MODE (type), GET_MODE (op0), op0,
        op0 = convert_modes (TYPE_MODE (type), GET_MODE (op0), op0,
                             TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
                             TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
      /* As a last resort, spill op0 to memory, and reload it in a
      /* As a last resort, spill op0 to memory, and reload it in a
         different mode.  */
         different mode.  */
      else if (!MEM_P (op0))
      else if (!MEM_P (op0))
        {
        {
          /* If the operand is not a MEM, force it into memory.  Since we
          /* If the operand is not a MEM, force it into memory.  Since we
             are going to be changing the mode of the MEM, don't call
             are going to be changing the mode of the MEM, don't call
             force_const_mem for constants because we don't allow pool
             force_const_mem for constants because we don't allow pool
             constants to change mode.  */
             constants to change mode.  */
          tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
          tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
 
 
          gcc_assert (!TREE_ADDRESSABLE (exp));
          gcc_assert (!TREE_ADDRESSABLE (exp));
 
 
          if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
          if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
            target
            target
              = assign_stack_temp_for_type
              = assign_stack_temp_for_type
                (TYPE_MODE (inner_type),
                (TYPE_MODE (inner_type),
                 GET_MODE_SIZE (TYPE_MODE (inner_type)), 0, inner_type);
                 GET_MODE_SIZE (TYPE_MODE (inner_type)), 0, inner_type);
 
 
          emit_move_insn (target, op0);
          emit_move_insn (target, op0);
          op0 = target;
          op0 = target;
        }
        }
 
 
      /* At this point, OP0 is in the correct mode.  If the output type is such
      /* At this point, OP0 is in the correct mode.  If the output type is such
         that the operand is known to be aligned, indicate that it is.
         that the operand is known to be aligned, indicate that it is.
         Otherwise, we need only be concerned about alignment for non-BLKmode
         Otherwise, we need only be concerned about alignment for non-BLKmode
         results.  */
         results.  */
      if (MEM_P (op0))
      if (MEM_P (op0))
        {
        {
          op0 = copy_rtx (op0);
          op0 = copy_rtx (op0);
 
 
          if (TYPE_ALIGN_OK (type))
          if (TYPE_ALIGN_OK (type))
            set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
            set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
          else if (TYPE_MODE (type) != BLKmode && STRICT_ALIGNMENT
          else if (TYPE_MODE (type) != BLKmode && STRICT_ALIGNMENT
                   && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
                   && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
            {
            {
              tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
              tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
              HOST_WIDE_INT temp_size
              HOST_WIDE_INT temp_size
                = MAX (int_size_in_bytes (inner_type),
                = MAX (int_size_in_bytes (inner_type),
                       (HOST_WIDE_INT) GET_MODE_SIZE (TYPE_MODE (type)));
                       (HOST_WIDE_INT) GET_MODE_SIZE (TYPE_MODE (type)));
              rtx new = assign_stack_temp_for_type (TYPE_MODE (type),
              rtx new = assign_stack_temp_for_type (TYPE_MODE (type),
                                                    temp_size, 0, type);
                                                    temp_size, 0, type);
              rtx new_with_op0_mode = adjust_address (new, GET_MODE (op0), 0);
              rtx new_with_op0_mode = adjust_address (new, GET_MODE (op0), 0);
 
 
              gcc_assert (!TREE_ADDRESSABLE (exp));
              gcc_assert (!TREE_ADDRESSABLE (exp));
 
 
              if (GET_MODE (op0) == BLKmode)
              if (GET_MODE (op0) == BLKmode)
                emit_block_move (new_with_op0_mode, op0,
                emit_block_move (new_with_op0_mode, op0,
                                 GEN_INT (GET_MODE_SIZE (TYPE_MODE (type))),
                                 GEN_INT (GET_MODE_SIZE (TYPE_MODE (type))),
                                 (modifier == EXPAND_STACK_PARM
                                 (modifier == EXPAND_STACK_PARM
                                  ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
                                  ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
              else
              else
                emit_move_insn (new_with_op0_mode, op0);
                emit_move_insn (new_with_op0_mode, op0);
 
 
              op0 = new;
              op0 = new;
            }
            }
 
 
          op0 = adjust_address (op0, TYPE_MODE (type), 0);
          op0 = adjust_address (op0, TYPE_MODE (type), 0);
        }
        }
 
 
      return op0;
      return op0;
 
 
    case PLUS_EXPR:
    case PLUS_EXPR:
      /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
      /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
         something else, make sure we add the register to the constant and
         something else, make sure we add the register to the constant and
         then to the other thing.  This case can occur during strength
         then to the other thing.  This case can occur during strength
         reduction and doing it this way will produce better code if the
         reduction and doing it this way will produce better code if the
         frame pointer or argument pointer is eliminated.
         frame pointer or argument pointer is eliminated.
 
 
         fold-const.c will ensure that the constant is always in the inner
         fold-const.c will ensure that the constant is always in the inner
         PLUS_EXPR, so the only case we need to do anything about is if
         PLUS_EXPR, so the only case we need to do anything about is if
         sp, ap, or fp is our second argument, in which case we must swap
         sp, ap, or fp is our second argument, in which case we must swap
         the innermost first argument and our second argument.  */
         the innermost first argument and our second argument.  */
 
 
      if (TREE_CODE (TREE_OPERAND (exp, 0)) == PLUS_EXPR
      if (TREE_CODE (TREE_OPERAND (exp, 0)) == PLUS_EXPR
          && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 1)) == INTEGER_CST
          && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 1)) == INTEGER_CST
          && TREE_CODE (TREE_OPERAND (exp, 1)) == VAR_DECL
          && TREE_CODE (TREE_OPERAND (exp, 1)) == VAR_DECL
          && (DECL_RTL (TREE_OPERAND (exp, 1)) == frame_pointer_rtx
          && (DECL_RTL (TREE_OPERAND (exp, 1)) == frame_pointer_rtx
              || DECL_RTL (TREE_OPERAND (exp, 1)) == stack_pointer_rtx
              || DECL_RTL (TREE_OPERAND (exp, 1)) == stack_pointer_rtx
              || DECL_RTL (TREE_OPERAND (exp, 1)) == arg_pointer_rtx))
              || DECL_RTL (TREE_OPERAND (exp, 1)) == arg_pointer_rtx))
        {
        {
          tree t = TREE_OPERAND (exp, 1);
          tree t = TREE_OPERAND (exp, 1);
 
 
          TREE_OPERAND (exp, 1) = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
          TREE_OPERAND (exp, 1) = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
          TREE_OPERAND (TREE_OPERAND (exp, 0), 0) = t;
          TREE_OPERAND (TREE_OPERAND (exp, 0), 0) = t;
        }
        }
 
 
      /* If the result is to be ptr_mode and we are adding an integer to
      /* If the result is to be ptr_mode and we are adding an integer to
         something, we might be forming a constant.  So try to use
         something, we might be forming a constant.  So try to use
         plus_constant.  If it produces a sum and we can't accept it,
         plus_constant.  If it produces a sum and we can't accept it,
         use force_operand.  This allows P = &ARR[const] to generate
         use force_operand.  This allows P = &ARR[const] to generate
         efficient code on machines where a SYMBOL_REF is not a valid
         efficient code on machines where a SYMBOL_REF is not a valid
         address.
         address.
 
 
         If this is an EXPAND_SUM call, always return the sum.  */
         If this is an EXPAND_SUM call, always return the sum.  */
      if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
      if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
          || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
          || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
        {
        {
          if (modifier == EXPAND_STACK_PARM)
          if (modifier == EXPAND_STACK_PARM)
            target = 0;
            target = 0;
          if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST
          if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST
              && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
              && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
              && TREE_CONSTANT (TREE_OPERAND (exp, 1)))
              && TREE_CONSTANT (TREE_OPERAND (exp, 1)))
            {
            {
              rtx constant_part;
              rtx constant_part;
 
 
              op1 = expand_expr (TREE_OPERAND (exp, 1), subtarget, VOIDmode,
              op1 = expand_expr (TREE_OPERAND (exp, 1), subtarget, VOIDmode,
                                 EXPAND_SUM);
                                 EXPAND_SUM);
              /* Use immed_double_const to ensure that the constant is
              /* Use immed_double_const to ensure that the constant is
                 truncated according to the mode of OP1, then sign extended
                 truncated according to the mode of OP1, then sign extended
                 to a HOST_WIDE_INT.  Using the constant directly can result
                 to a HOST_WIDE_INT.  Using the constant directly can result
                 in non-canonical RTL in a 64x32 cross compile.  */
                 in non-canonical RTL in a 64x32 cross compile.  */
              constant_part
              constant_part
                = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 0)),
                = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 0)),
                                      (HOST_WIDE_INT) 0,
                                      (HOST_WIDE_INT) 0,
                                      TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))));
                                      TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))));
              op1 = plus_constant (op1, INTVAL (constant_part));
              op1 = plus_constant (op1, INTVAL (constant_part));
              if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
              if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
                op1 = force_operand (op1, target);
                op1 = force_operand (op1, target);
              return REDUCE_BIT_FIELD (op1);
              return REDUCE_BIT_FIELD (op1);
            }
            }
 
 
          else if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
          else if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
                   && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
                   && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
                   && TREE_CONSTANT (TREE_OPERAND (exp, 0)))
                   && TREE_CONSTANT (TREE_OPERAND (exp, 0)))
            {
            {
              rtx constant_part;
              rtx constant_part;
 
 
              op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
              op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
                                 (modifier == EXPAND_INITIALIZER
                                 (modifier == EXPAND_INITIALIZER
                                 ? EXPAND_INITIALIZER : EXPAND_SUM));
                                 ? EXPAND_INITIALIZER : EXPAND_SUM));
              if (! CONSTANT_P (op0))
              if (! CONSTANT_P (op0))
                {
                {
                  op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX,
                  op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX,
                                     VOIDmode, modifier);
                                     VOIDmode, modifier);
                  /* Return a PLUS if modifier says it's OK.  */
                  /* Return a PLUS if modifier says it's OK.  */
                  if (modifier == EXPAND_SUM
                  if (modifier == EXPAND_SUM
                      || modifier == EXPAND_INITIALIZER)
                      || modifier == EXPAND_INITIALIZER)
                    return simplify_gen_binary (PLUS, mode, op0, op1);
                    return simplify_gen_binary (PLUS, mode, op0, op1);
                  goto binop2;
                  goto binop2;
                }
                }
              /* Use immed_double_const to ensure that the constant is
              /* Use immed_double_const to ensure that the constant is
                 truncated according to the mode of OP1, then sign extended
                 truncated according to the mode of OP1, then sign extended
                 to a HOST_WIDE_INT.  Using the constant directly can result
                 to a HOST_WIDE_INT.  Using the constant directly can result
                 in non-canonical RTL in a 64x32 cross compile.  */
                 in non-canonical RTL in a 64x32 cross compile.  */
              constant_part
              constant_part
                = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1)),
                = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1)),
                                      (HOST_WIDE_INT) 0,
                                      (HOST_WIDE_INT) 0,
                                      TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))));
                                      TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))));
              op0 = plus_constant (op0, INTVAL (constant_part));
              op0 = plus_constant (op0, INTVAL (constant_part));
              if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
              if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
                op0 = force_operand (op0, target);
                op0 = force_operand (op0, target);
              return REDUCE_BIT_FIELD (op0);
              return REDUCE_BIT_FIELD (op0);
            }
            }
        }
        }
 
 
      /* No sense saving up arithmetic to be done
      /* No sense saving up arithmetic to be done
         if it's all in the wrong mode to form part of an address.
         if it's all in the wrong mode to form part of an address.
         And force_operand won't know whether to sign-extend or
         And force_operand won't know whether to sign-extend or
         zero-extend.  */
         zero-extend.  */
      if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
      if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
          || mode != ptr_mode)
          || mode != ptr_mode)
        {
        {
          expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
          expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
                           subtarget, &op0, &op1, 0);
                           subtarget, &op0, &op1, 0);
          if (op0 == const0_rtx)
          if (op0 == const0_rtx)
            return op1;
            return op1;
          if (op1 == const0_rtx)
          if (op1 == const0_rtx)
            return op0;
            return op0;
          goto binop2;
          goto binop2;
        }
        }
 
 
      expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
      expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
                       subtarget, &op0, &op1, modifier);
                       subtarget, &op0, &op1, modifier);
      return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
      return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
 
 
    case MINUS_EXPR:
    case MINUS_EXPR:
      /* For initializers, we are allowed to return a MINUS of two
      /* For initializers, we are allowed to return a MINUS of two
         symbolic constants.  Here we handle all cases when both operands
         symbolic constants.  Here we handle all cases when both operands
         are constant.  */
         are constant.  */
      /* Handle difference of two symbolic constants,
      /* Handle difference of two symbolic constants,
         for the sake of an initializer.  */
         for the sake of an initializer.  */
      if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
      if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
          && really_constant_p (TREE_OPERAND (exp, 0))
          && really_constant_p (TREE_OPERAND (exp, 0))
          && really_constant_p (TREE_OPERAND (exp, 1)))
          && really_constant_p (TREE_OPERAND (exp, 1)))
        {
        {
          expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
          expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
                           NULL_RTX, &op0, &op1, modifier);
                           NULL_RTX, &op0, &op1, modifier);
 
 
          /* If the last operand is a CONST_INT, use plus_constant of
          /* If the last operand is a CONST_INT, use plus_constant of
             the negated constant.  Else make the MINUS.  */
             the negated constant.  Else make the MINUS.  */
          if (GET_CODE (op1) == CONST_INT)
          if (GET_CODE (op1) == CONST_INT)
            return REDUCE_BIT_FIELD (plus_constant (op0, - INTVAL (op1)));
            return REDUCE_BIT_FIELD (plus_constant (op0, - INTVAL (op1)));
          else
          else
            return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
            return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
        }
        }
 
 
      /* No sense saving up arithmetic to be done
      /* No sense saving up arithmetic to be done
         if it's all in the wrong mode to form part of an address.
         if it's all in the wrong mode to form part of an address.
         And force_operand won't know whether to sign-extend or
         And force_operand won't know whether to sign-extend or
         zero-extend.  */
         zero-extend.  */
      if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
      if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
          || mode != ptr_mode)
          || mode != ptr_mode)
        goto binop;
        goto binop;
 
 
      expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
      expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
                       subtarget, &op0, &op1, modifier);
                       subtarget, &op0, &op1, modifier);
 
 
      /* Convert A - const to A + (-const).  */
      /* Convert A - const to A + (-const).  */
      if (GET_CODE (op1) == CONST_INT)
      if (GET_CODE (op1) == CONST_INT)
        {
        {
          op1 = negate_rtx (mode, op1);
          op1 = negate_rtx (mode, op1);
          return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
          return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
        }
        }
 
 
      goto binop2;
      goto binop2;
 
 
    case MULT_EXPR:
    case MULT_EXPR:
      /* If first operand is constant, swap them.
      /* If first operand is constant, swap them.
         Thus the following special case checks need only
         Thus the following special case checks need only
         check the second operand.  */
         check the second operand.  */
      if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST)
      if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST)
        {
        {
          tree t1 = TREE_OPERAND (exp, 0);
          tree t1 = TREE_OPERAND (exp, 0);
          TREE_OPERAND (exp, 0) = TREE_OPERAND (exp, 1);
          TREE_OPERAND (exp, 0) = TREE_OPERAND (exp, 1);
          TREE_OPERAND (exp, 1) = t1;
          TREE_OPERAND (exp, 1) = t1;
        }
        }
 
 
      /* Attempt to return something suitable for generating an
      /* Attempt to return something suitable for generating an
         indexed address, for machines that support that.  */
         indexed address, for machines that support that.  */
 
 
      if (modifier == EXPAND_SUM && mode == ptr_mode
      if (modifier == EXPAND_SUM && mode == ptr_mode
          && host_integerp (TREE_OPERAND (exp, 1), 0))
          && host_integerp (TREE_OPERAND (exp, 1), 0))
        {
        {
          tree exp1 = TREE_OPERAND (exp, 1);
          tree exp1 = TREE_OPERAND (exp, 1);
 
 
          op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
          op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
                             EXPAND_SUM);
                             EXPAND_SUM);
 
 
          if (!REG_P (op0))
          if (!REG_P (op0))
            op0 = force_operand (op0, NULL_RTX);
            op0 = force_operand (op0, NULL_RTX);
          if (!REG_P (op0))
          if (!REG_P (op0))
            op0 = copy_to_mode_reg (mode, op0);
            op0 = copy_to_mode_reg (mode, op0);
 
 
          return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
          return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
                               gen_int_mode (tree_low_cst (exp1, 0),
                               gen_int_mode (tree_low_cst (exp1, 0),
                                             TYPE_MODE (TREE_TYPE (exp1)))));
                                             TYPE_MODE (TREE_TYPE (exp1)))));
        }
        }
 
 
      if (modifier == EXPAND_STACK_PARM)
      if (modifier == EXPAND_STACK_PARM)
        target = 0;
        target = 0;
 
 
      /* Check for multiplying things that have been extended
      /* Check for multiplying things that have been extended
         from a narrower type.  If this machine supports multiplying
         from a narrower type.  If this machine supports multiplying
         in that narrower type with a result in the desired type,
         in that narrower type with a result in the desired type,
         do it that way, and avoid the explicit type-conversion.  */
         do it that way, and avoid the explicit type-conversion.  */
 
 
      subexp0 = TREE_OPERAND (exp, 0);
      subexp0 = TREE_OPERAND (exp, 0);
      subexp1 = TREE_OPERAND (exp, 1);
      subexp1 = TREE_OPERAND (exp, 1);
      /* First, check if we have a multiplication of one signed and one
      /* First, check if we have a multiplication of one signed and one
         unsigned operand.  */
         unsigned operand.  */
      if (TREE_CODE (subexp0) == NOP_EXPR
      if (TREE_CODE (subexp0) == NOP_EXPR
          && TREE_CODE (subexp1) == NOP_EXPR
          && TREE_CODE (subexp1) == NOP_EXPR
          && TREE_CODE (type) == INTEGER_TYPE
          && TREE_CODE (type) == INTEGER_TYPE
          && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
          && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
              < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))))
              < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))))
          && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
          && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
              == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp1, 0))))
              == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp1, 0))))
          && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
          && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
              != TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp1, 0)))))
              != TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp1, 0)))))
        {
        {
          enum machine_mode innermode
          enum machine_mode innermode
            = TYPE_MODE (TREE_TYPE (TREE_OPERAND (subexp0, 0)));
            = TYPE_MODE (TREE_TYPE (TREE_OPERAND (subexp0, 0)));
          this_optab = usmul_widen_optab;
          this_optab = usmul_widen_optab;
          if (mode == GET_MODE_WIDER_MODE (innermode))
          if (mode == GET_MODE_WIDER_MODE (innermode))
            {
            {
              if (this_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
              if (this_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
                {
                {
                  if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp0, 0))))
                  if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp0, 0))))
                    expand_operands (TREE_OPERAND (subexp0, 0),
                    expand_operands (TREE_OPERAND (subexp0, 0),
                                     TREE_OPERAND (subexp1, 0),
                                     TREE_OPERAND (subexp1, 0),
                                     NULL_RTX, &op0, &op1, 0);
                                     NULL_RTX, &op0, &op1, 0);
                  else
                  else
                    expand_operands (TREE_OPERAND (subexp0, 0),
                    expand_operands (TREE_OPERAND (subexp0, 0),
                                     TREE_OPERAND (subexp1, 0),
                                     TREE_OPERAND (subexp1, 0),
                                     NULL_RTX, &op1, &op0, 0);
                                     NULL_RTX, &op1, &op0, 0);
 
 
                  goto binop3;
                  goto binop3;
                }
                }
            }
            }
        }
        }
      /* Check for a multiplication with matching signedness.  */
      /* Check for a multiplication with matching signedness.  */
      else if (TREE_CODE (TREE_OPERAND (exp, 0)) == NOP_EXPR
      else if (TREE_CODE (TREE_OPERAND (exp, 0)) == NOP_EXPR
          && TREE_CODE (type) == INTEGER_TYPE
          && TREE_CODE (type) == INTEGER_TYPE
          && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
          && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
              < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))))
              < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))))
          && ((TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
          && ((TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
               && int_fits_type_p (TREE_OPERAND (exp, 1),
               && int_fits_type_p (TREE_OPERAND (exp, 1),
                                   TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
                                   TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
               /* Don't use a widening multiply if a shift will do.  */
               /* Don't use a widening multiply if a shift will do.  */
               && ((GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))))
               && ((GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))))
                    > HOST_BITS_PER_WIDE_INT)
                    > HOST_BITS_PER_WIDE_INT)
                   || exact_log2 (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1))) < 0))
                   || exact_log2 (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1))) < 0))
              ||
              ||
              (TREE_CODE (TREE_OPERAND (exp, 1)) == NOP_EXPR
              (TREE_CODE (TREE_OPERAND (exp, 1)) == NOP_EXPR
               && (TYPE_PRECISION (TREE_TYPE
               && (TYPE_PRECISION (TREE_TYPE
                                   (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
                                   (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
                   == TYPE_PRECISION (TREE_TYPE
                   == TYPE_PRECISION (TREE_TYPE
                                      (TREE_OPERAND
                                      (TREE_OPERAND
                                       (TREE_OPERAND (exp, 0), 0))))
                                       (TREE_OPERAND (exp, 0), 0))))
               /* If both operands are extended, they must either both
               /* If both operands are extended, they must either both
                  be zero-extended or both be sign-extended.  */
                  be zero-extended or both be sign-extended.  */
               && (TYPE_UNSIGNED (TREE_TYPE
               && (TYPE_UNSIGNED (TREE_TYPE
                                  (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
                                  (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
                   == TYPE_UNSIGNED (TREE_TYPE
                   == TYPE_UNSIGNED (TREE_TYPE
                                     (TREE_OPERAND
                                     (TREE_OPERAND
                                      (TREE_OPERAND (exp, 0), 0)))))))
                                      (TREE_OPERAND (exp, 0), 0)))))))
        {
        {
          tree op0type = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0));
          tree op0type = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0));
          enum machine_mode innermode = TYPE_MODE (op0type);
          enum machine_mode innermode = TYPE_MODE (op0type);
          bool zextend_p = TYPE_UNSIGNED (op0type);
          bool zextend_p = TYPE_UNSIGNED (op0type);
          optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
          optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
          this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
          this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
 
 
          if (mode == GET_MODE_2XWIDER_MODE (innermode))
          if (mode == GET_MODE_2XWIDER_MODE (innermode))
            {
            {
              if (this_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
              if (this_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
                {
                {
                  if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
                  if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
                    expand_operands (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
                    expand_operands (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
                                     TREE_OPERAND (exp, 1),
                                     TREE_OPERAND (exp, 1),
                                     NULL_RTX, &op0, &op1, EXPAND_NORMAL);
                                     NULL_RTX, &op0, &op1, EXPAND_NORMAL);
                  else
                  else
                    expand_operands (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
                    expand_operands (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
                                     TREE_OPERAND (TREE_OPERAND (exp, 1), 0),
                                     TREE_OPERAND (TREE_OPERAND (exp, 1), 0),
                                     NULL_RTX, &op0, &op1, EXPAND_NORMAL);
                                     NULL_RTX, &op0, &op1, EXPAND_NORMAL);
                  goto binop3;
                  goto binop3;
                }
                }
              else if (other_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
              else if (other_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
                       && innermode == word_mode)
                       && innermode == word_mode)
                {
                {
                  rtx htem, hipart;
                  rtx htem, hipart;
                  op0 = expand_normal (TREE_OPERAND (TREE_OPERAND (exp, 0), 0));
                  op0 = expand_normal (TREE_OPERAND (TREE_OPERAND (exp, 0), 0));
                  if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
                  if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
                    op1 = convert_modes (innermode, mode,
                    op1 = convert_modes (innermode, mode,
                                         expand_normal (TREE_OPERAND (exp, 1)),
                                         expand_normal (TREE_OPERAND (exp, 1)),
                                         unsignedp);
                                         unsignedp);
                  else
                  else
                    op1 = expand_normal (TREE_OPERAND (TREE_OPERAND (exp, 1), 0));
                    op1 = expand_normal (TREE_OPERAND (TREE_OPERAND (exp, 1), 0));
                  temp = expand_binop (mode, other_optab, op0, op1, target,
                  temp = expand_binop (mode, other_optab, op0, op1, target,
                                       unsignedp, OPTAB_LIB_WIDEN);
                                       unsignedp, OPTAB_LIB_WIDEN);
                  hipart = gen_highpart (innermode, temp);
                  hipart = gen_highpart (innermode, temp);
                  htem = expand_mult_highpart_adjust (innermode, hipart,
                  htem = expand_mult_highpart_adjust (innermode, hipart,
                                                      op0, op1, hipart,
                                                      op0, op1, hipart,
                                                      zextend_p);
                                                      zextend_p);
                  if (htem != hipart)
                  if (htem != hipart)
                    emit_move_insn (hipart, htem);
                    emit_move_insn (hipart, htem);
                  return REDUCE_BIT_FIELD (temp);
                  return REDUCE_BIT_FIELD (temp);
                }
                }
            }
            }
        }
        }
      expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
      expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
                       subtarget, &op0, &op1, 0);
                       subtarget, &op0, &op1, 0);
      return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
      return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
 
 
    case TRUNC_DIV_EXPR:
    case TRUNC_DIV_EXPR:
    case FLOOR_DIV_EXPR:
    case FLOOR_DIV_EXPR:
    case CEIL_DIV_EXPR:
    case CEIL_DIV_EXPR:
    case ROUND_DIV_EXPR:
    case ROUND_DIV_EXPR:
    case EXACT_DIV_EXPR:
    case EXACT_DIV_EXPR:
      if (modifier == EXPAND_STACK_PARM)
      if (modifier == EXPAND_STACK_PARM)
        target = 0;
        target = 0;
      /* Possible optimization: compute the dividend with EXPAND_SUM
      /* Possible optimization: compute the dividend with EXPAND_SUM
         then if the divisor is constant can optimize the case
         then if the divisor is constant can optimize the case
         where some terms of the dividend have coeffs divisible by it.  */
         where some terms of the dividend have coeffs divisible by it.  */
      expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
      expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
                       subtarget, &op0, &op1, 0);
                       subtarget, &op0, &op1, 0);
      return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
      return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
 
 
    case RDIV_EXPR:
    case RDIV_EXPR:
      goto binop;
      goto binop;
 
 
    case TRUNC_MOD_EXPR:
    case TRUNC_MOD_EXPR:
    case FLOOR_MOD_EXPR:
    case FLOOR_MOD_EXPR:
    case CEIL_MOD_EXPR:
    case CEIL_MOD_EXPR:
    case ROUND_MOD_EXPR:
    case ROUND_MOD_EXPR:
      if (modifier == EXPAND_STACK_PARM)
      if (modifier == EXPAND_STACK_PARM)
        target = 0;
        target = 0;
      expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
      expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
                       subtarget, &op0, &op1, 0);
                       subtarget, &op0, &op1, 0);
      return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
      return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
 
 
    case FIX_ROUND_EXPR:
    case FIX_ROUND_EXPR:
    case FIX_FLOOR_EXPR:
    case FIX_FLOOR_EXPR:
    case FIX_CEIL_EXPR:
    case FIX_CEIL_EXPR:
      gcc_unreachable ();                       /* Not used for C.  */
      gcc_unreachable ();                       /* Not used for C.  */
 
 
    case FIX_TRUNC_EXPR:
    case FIX_TRUNC_EXPR:
      op0 = expand_normal (TREE_OPERAND (exp, 0));
      op0 = expand_normal (TREE_OPERAND (exp, 0));
      if (target == 0 || modifier == EXPAND_STACK_PARM)
      if (target == 0 || modifier == EXPAND_STACK_PARM)
        target = gen_reg_rtx (mode);
        target = gen_reg_rtx (mode);
      expand_fix (target, op0, unsignedp);
      expand_fix (target, op0, unsignedp);
      return target;
      return target;
 
 
    case FLOAT_EXPR:
    case FLOAT_EXPR:
      op0 = expand_normal (TREE_OPERAND (exp, 0));
      op0 = expand_normal (TREE_OPERAND (exp, 0));
      if (target == 0 || modifier == EXPAND_STACK_PARM)
      if (target == 0 || modifier == EXPAND_STACK_PARM)
        target = gen_reg_rtx (mode);
        target = gen_reg_rtx (mode);
      /* expand_float can't figure out what to do if FROM has VOIDmode.
      /* expand_float can't figure out what to do if FROM has VOIDmode.
         So give it the correct mode.  With -O, cse will optimize this.  */
         So give it the correct mode.  With -O, cse will optimize this.  */
      if (GET_MODE (op0) == VOIDmode)
      if (GET_MODE (op0) == VOIDmode)
        op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))),
        op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))),
                                op0);
                                op0);
      expand_float (target, op0,
      expand_float (target, op0,
                    TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
                    TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
      return target;
      return target;
 
 
    case NEGATE_EXPR:
    case NEGATE_EXPR:
      op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
      op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
      if (modifier == EXPAND_STACK_PARM)
      if (modifier == EXPAND_STACK_PARM)
        target = 0;
        target = 0;
      temp = expand_unop (mode,
      temp = expand_unop (mode,
                          optab_for_tree_code (NEGATE_EXPR, type),
                          optab_for_tree_code (NEGATE_EXPR, type),
                          op0, target, 0);
                          op0, target, 0);
      gcc_assert (temp);
      gcc_assert (temp);
      return REDUCE_BIT_FIELD (temp);
      return REDUCE_BIT_FIELD (temp);
 
 
    case ABS_EXPR:
    case ABS_EXPR:
      op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
      op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
      if (modifier == EXPAND_STACK_PARM)
      if (modifier == EXPAND_STACK_PARM)
        target = 0;
        target = 0;
 
 
      /* ABS_EXPR is not valid for complex arguments.  */
      /* ABS_EXPR is not valid for complex arguments.  */
      gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
      gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
                  && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
                  && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
 
 
      /* Unsigned abs is simply the operand.  Testing here means we don't
      /* Unsigned abs is simply the operand.  Testing here means we don't
         risk generating incorrect code below.  */
         risk generating incorrect code below.  */
      if (TYPE_UNSIGNED (type))
      if (TYPE_UNSIGNED (type))
        return op0;
        return op0;
 
 
      return expand_abs (mode, op0, target, unsignedp,
      return expand_abs (mode, op0, target, unsignedp,
                         safe_from_p (target, TREE_OPERAND (exp, 0), 1));
                         safe_from_p (target, TREE_OPERAND (exp, 0), 1));
 
 
    case MAX_EXPR:
    case MAX_EXPR:
    case MIN_EXPR:
    case MIN_EXPR:
      target = original_target;
      target = original_target;
      if (target == 0
      if (target == 0
          || modifier == EXPAND_STACK_PARM
          || modifier == EXPAND_STACK_PARM
          || (MEM_P (target) && MEM_VOLATILE_P (target))
          || (MEM_P (target) && MEM_VOLATILE_P (target))
          || GET_MODE (target) != mode
          || GET_MODE (target) != mode
          || (REG_P (target)
          || (REG_P (target)
              && REGNO (target) < FIRST_PSEUDO_REGISTER))
              && REGNO (target) < FIRST_PSEUDO_REGISTER))
        target = gen_reg_rtx (mode);
        target = gen_reg_rtx (mode);
      expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
      expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
                       target, &op0, &op1, 0);
                       target, &op0, &op1, 0);
 
 
      /* First try to do it with a special MIN or MAX instruction.
      /* First try to do it with a special MIN or MAX instruction.
         If that does not win, use a conditional jump to select the proper
         If that does not win, use a conditional jump to select the proper
         value.  */
         value.  */
      this_optab = optab_for_tree_code (code, type);
      this_optab = optab_for_tree_code (code, type);
      temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
      temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
                           OPTAB_WIDEN);
                           OPTAB_WIDEN);
      if (temp != 0)
      if (temp != 0)
        return temp;
        return temp;
 
 
      /* At this point, a MEM target is no longer useful; we will get better
      /* At this point, a MEM target is no longer useful; we will get better
         code without it.  */
         code without it.  */
 
 
      if (! REG_P (target))
      if (! REG_P (target))
        target = gen_reg_rtx (mode);
        target = gen_reg_rtx (mode);
 
 
      /* If op1 was placed in target, swap op0 and op1.  */
      /* If op1 was placed in target, swap op0 and op1.  */
      if (target != op0 && target == op1)
      if (target != op0 && target == op1)
        {
        {
          temp = op0;
          temp = op0;
          op0 = op1;
          op0 = op1;
          op1 = temp;
          op1 = temp;
        }
        }
 
 
      /* We generate better code and avoid problems with op1 mentioning
      /* We generate better code and avoid problems with op1 mentioning
         target by forcing op1 into a pseudo if it isn't a constant.  */
         target by forcing op1 into a pseudo if it isn't a constant.  */
      if (! CONSTANT_P (op1))
      if (! CONSTANT_P (op1))
        op1 = force_reg (mode, op1);
        op1 = force_reg (mode, op1);
 
 
      {
      {
        enum rtx_code comparison_code;
        enum rtx_code comparison_code;
        rtx cmpop1 = op1;
        rtx cmpop1 = op1;
 
 
        if (code == MAX_EXPR)
        if (code == MAX_EXPR)
          comparison_code = unsignedp ? GEU : GE;
          comparison_code = unsignedp ? GEU : GE;
        else
        else
          comparison_code = unsignedp ? LEU : LE;
          comparison_code = unsignedp ? LEU : LE;
 
 
        /* Canonicalize to comparisons against 0.  */
        /* Canonicalize to comparisons against 0.  */
        if (op1 == const1_rtx)
        if (op1 == const1_rtx)
          {
          {
            /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
            /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
               or (a != 0 ? a : 1) for unsigned.
               or (a != 0 ? a : 1) for unsigned.
               For MIN we are safe converting (a <= 1 ? a : 1)
               For MIN we are safe converting (a <= 1 ? a : 1)
               into (a <= 0 ? a : 1)  */
               into (a <= 0 ? a : 1)  */
            cmpop1 = const0_rtx;
            cmpop1 = const0_rtx;
            if (code == MAX_EXPR)
            if (code == MAX_EXPR)
              comparison_code = unsignedp ? NE : GT;
              comparison_code = unsignedp ? NE : GT;
          }
          }
        if (op1 == constm1_rtx && !unsignedp)
        if (op1 == constm1_rtx && !unsignedp)
          {
          {
            /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
            /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
               and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
               and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
            cmpop1 = const0_rtx;
            cmpop1 = const0_rtx;
            if (code == MIN_EXPR)
            if (code == MIN_EXPR)
              comparison_code = LT;
              comparison_code = LT;
          }
          }
#ifdef HAVE_conditional_move
#ifdef HAVE_conditional_move
        /* Use a conditional move if possible.  */
        /* Use a conditional move if possible.  */
        if (can_conditionally_move_p (mode))
        if (can_conditionally_move_p (mode))
          {
          {
            rtx insn;
            rtx insn;
 
 
            /* ??? Same problem as in expmed.c: emit_conditional_move
            /* ??? Same problem as in expmed.c: emit_conditional_move
               forces a stack adjustment via compare_from_rtx, and we
               forces a stack adjustment via compare_from_rtx, and we
               lose the stack adjustment if the sequence we are about
               lose the stack adjustment if the sequence we are about
               to create is discarded.  */
               to create is discarded.  */
            do_pending_stack_adjust ();
            do_pending_stack_adjust ();
 
 
            start_sequence ();
            start_sequence ();
 
 
            /* Try to emit the conditional move.  */
            /* Try to emit the conditional move.  */
            insn = emit_conditional_move (target, comparison_code,
            insn = emit_conditional_move (target, comparison_code,
                                          op0, cmpop1, mode,
                                          op0, cmpop1, mode,
                                          op0, op1, mode,
                                          op0, op1, mode,
                                          unsignedp);
                                          unsignedp);
 
 
            /* If we could do the conditional move, emit the sequence,
            /* If we could do the conditional move, emit the sequence,
               and return.  */
               and return.  */
            if (insn)
            if (insn)
              {
              {
                rtx seq = get_insns ();
                rtx seq = get_insns ();
                end_sequence ();
                end_sequence ();
                emit_insn (seq);
                emit_insn (seq);
                return target;
                return target;
              }
              }
 
 
            /* Otherwise discard the sequence and fall back to code with
            /* Otherwise discard the sequence and fall back to code with
               branches.  */
               branches.  */
            end_sequence ();
            end_sequence ();
          }
          }
#endif
#endif
        if (target != op0)
        if (target != op0)
          emit_move_insn (target, op0);
          emit_move_insn (target, op0);
 
 
        temp = gen_label_rtx ();
        temp = gen_label_rtx ();
        do_compare_rtx_and_jump (target, cmpop1, comparison_code,
        do_compare_rtx_and_jump (target, cmpop1, comparison_code,
                                 unsignedp, mode, NULL_RTX, NULL_RTX, temp);
                                 unsignedp, mode, NULL_RTX, NULL_RTX, temp);
      }
      }
      emit_move_insn (target, op1);
      emit_move_insn (target, op1);
      emit_label (temp);
      emit_label (temp);
      return target;
      return target;
 
 
    case BIT_NOT_EXPR:
    case BIT_NOT_EXPR:
      op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
      op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
      if (modifier == EXPAND_STACK_PARM)
      if (modifier == EXPAND_STACK_PARM)
        target = 0;
        target = 0;
      temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
      temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
      gcc_assert (temp);
      gcc_assert (temp);
      return temp;
      return temp;
 
 
      /* ??? Can optimize bitwise operations with one arg constant.
      /* ??? Can optimize bitwise operations with one arg constant.
         Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
         Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
         and (a bitwise1 b) bitwise2 b (etc)
         and (a bitwise1 b) bitwise2 b (etc)
         but that is probably not worth while.  */
         but that is probably not worth while.  */
 
 
      /* BIT_AND_EXPR is for bitwise anding.  TRUTH_AND_EXPR is for anding two
      /* BIT_AND_EXPR is for bitwise anding.  TRUTH_AND_EXPR is for anding two
         boolean values when we want in all cases to compute both of them.  In
         boolean values when we want in all cases to compute both of them.  In
         general it is fastest to do TRUTH_AND_EXPR by computing both operands
         general it is fastest to do TRUTH_AND_EXPR by computing both operands
         as actual zero-or-1 values and then bitwise anding.  In cases where
         as actual zero-or-1 values and then bitwise anding.  In cases where
         there cannot be any side effects, better code would be made by
         there cannot be any side effects, better code would be made by
         treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
         treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
         how to recognize those cases.  */
         how to recognize those cases.  */
 
 
    case TRUTH_AND_EXPR:
    case TRUTH_AND_EXPR:
      code = BIT_AND_EXPR;
      code = BIT_AND_EXPR;
    case BIT_AND_EXPR:
    case BIT_AND_EXPR:
      goto binop;
      goto binop;
 
 
    case TRUTH_OR_EXPR:
    case TRUTH_OR_EXPR:
      code = BIT_IOR_EXPR;
      code = BIT_IOR_EXPR;
    case BIT_IOR_EXPR:
    case BIT_IOR_EXPR:
      goto binop;
      goto binop;
 
 
    case TRUTH_XOR_EXPR:
    case TRUTH_XOR_EXPR:
      code = BIT_XOR_EXPR;
      code = BIT_XOR_EXPR;
    case BIT_XOR_EXPR:
    case BIT_XOR_EXPR:
      goto binop;
      goto binop;
 
 
    case LSHIFT_EXPR:
    case LSHIFT_EXPR:
    case RSHIFT_EXPR:
    case RSHIFT_EXPR:
    case LROTATE_EXPR:
    case LROTATE_EXPR:
    case RROTATE_EXPR:
    case RROTATE_EXPR:
      if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
      if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
        subtarget = 0;
        subtarget = 0;
      if (modifier == EXPAND_STACK_PARM)
      if (modifier == EXPAND_STACK_PARM)
        target = 0;
        target = 0;
      op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
      op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
      return expand_shift (code, mode, op0, TREE_OPERAND (exp, 1), target,
      return expand_shift (code, mode, op0, TREE_OPERAND (exp, 1), target,
                           unsignedp);
                           unsignedp);
 
 
      /* Could determine the answer when only additive constants differ.  Also,
      /* Could determine the answer when only additive constants differ.  Also,
         the addition of one can be handled by changing the condition.  */
         the addition of one can be handled by changing the condition.  */
    case LT_EXPR:
    case LT_EXPR:
    case LE_EXPR:
    case LE_EXPR:
    case GT_EXPR:
    case GT_EXPR:
    case GE_EXPR:
    case GE_EXPR:
    case EQ_EXPR:
    case EQ_EXPR:
    case NE_EXPR:
    case NE_EXPR:
    case UNORDERED_EXPR:
    case UNORDERED_EXPR:
    case ORDERED_EXPR:
    case ORDERED_EXPR:
    case UNLT_EXPR:
    case UNLT_EXPR:
    case UNLE_EXPR:
    case UNLE_EXPR:
    case UNGT_EXPR:
    case UNGT_EXPR:
    case UNGE_EXPR:
    case UNGE_EXPR:
    case UNEQ_EXPR:
    case UNEQ_EXPR:
    case LTGT_EXPR:
    case LTGT_EXPR:
      temp = do_store_flag (exp,
      temp = do_store_flag (exp,
                            modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
                            modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
                            tmode != VOIDmode ? tmode : mode, 0);
                            tmode != VOIDmode ? tmode : mode, 0);
      if (temp != 0)
      if (temp != 0)
        return temp;
        return temp;
 
 
      /* For foo != 0, load foo, and if it is nonzero load 1 instead.  */
      /* For foo != 0, load foo, and if it is nonzero load 1 instead.  */
      if (code == NE_EXPR && integer_zerop (TREE_OPERAND (exp, 1))
      if (code == NE_EXPR && integer_zerop (TREE_OPERAND (exp, 1))
          && original_target
          && original_target
          && REG_P (original_target)
          && REG_P (original_target)
          && (GET_MODE (original_target)
          && (GET_MODE (original_target)
              == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))
              == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))
        {
        {
          temp = expand_expr (TREE_OPERAND (exp, 0), original_target,
          temp = expand_expr (TREE_OPERAND (exp, 0), original_target,
                              VOIDmode, 0);
                              VOIDmode, 0);
 
 
          /* If temp is constant, we can just compute the result.  */
          /* If temp is constant, we can just compute the result.  */
          if (GET_CODE (temp) == CONST_INT)
          if (GET_CODE (temp) == CONST_INT)
            {
            {
              if (INTVAL (temp) != 0)
              if (INTVAL (temp) != 0)
                emit_move_insn (target, const1_rtx);
                emit_move_insn (target, const1_rtx);
              else
              else
                emit_move_insn (target, const0_rtx);
                emit_move_insn (target, const0_rtx);
 
 
              return target;
              return target;
            }
            }
 
 
          if (temp != original_target)
          if (temp != original_target)
            {
            {
              enum machine_mode mode1 = GET_MODE (temp);
              enum machine_mode mode1 = GET_MODE (temp);
              if (mode1 == VOIDmode)
              if (mode1 == VOIDmode)
                mode1 = tmode != VOIDmode ? tmode : mode;
                mode1 = tmode != VOIDmode ? tmode : mode;
 
 
              temp = copy_to_mode_reg (mode1, temp);
              temp = copy_to_mode_reg (mode1, temp);
            }
            }
 
 
          op1 = gen_label_rtx ();
          op1 = gen_label_rtx ();
          emit_cmp_and_jump_insns (temp, const0_rtx, EQ, NULL_RTX,
          emit_cmp_and_jump_insns (temp, const0_rtx, EQ, NULL_RTX,
                                   GET_MODE (temp), unsignedp, op1);
                                   GET_MODE (temp), unsignedp, op1);
          emit_move_insn (temp, const1_rtx);
          emit_move_insn (temp, const1_rtx);
          emit_label (op1);
          emit_label (op1);
          return temp;
          return temp;
        }
        }
 
 
      /* If no set-flag instruction, must generate a conditional store
      /* If no set-flag instruction, must generate a conditional store
         into a temporary variable.  Drop through and handle this
         into a temporary variable.  Drop through and handle this
         like && and ||.  */
         like && and ||.  */
 
 
      if (! ignore
      if (! ignore
          && (target == 0
          && (target == 0
              || modifier == EXPAND_STACK_PARM
              || modifier == EXPAND_STACK_PARM
              || ! safe_from_p (target, exp, 1)
              || ! safe_from_p (target, exp, 1)
              /* Make sure we don't have a hard reg (such as function's return
              /* Make sure we don't have a hard reg (such as function's return
                 value) live across basic blocks, if not optimizing.  */
                 value) live across basic blocks, if not optimizing.  */
              || (!optimize && REG_P (target)
              || (!optimize && REG_P (target)
                  && REGNO (target) < FIRST_PSEUDO_REGISTER)))
                  && REGNO (target) < FIRST_PSEUDO_REGISTER)))
        target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
        target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
 
 
      if (target)
      if (target)
        emit_move_insn (target, const0_rtx);
        emit_move_insn (target, const0_rtx);
 
 
      op1 = gen_label_rtx ();
      op1 = gen_label_rtx ();
      jumpifnot (exp, op1);
      jumpifnot (exp, op1);
 
 
      if (target)
      if (target)
        emit_move_insn (target, const1_rtx);
        emit_move_insn (target, const1_rtx);
 
 
      emit_label (op1);
      emit_label (op1);
      return ignore ? const0_rtx : target;
      return ignore ? const0_rtx : target;
 
 
    case TRUTH_NOT_EXPR:
    case TRUTH_NOT_EXPR:
      if (modifier == EXPAND_STACK_PARM)
      if (modifier == EXPAND_STACK_PARM)
        target = 0;
        target = 0;
      op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode, 0);
      op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode, 0);
      /* The parser is careful to generate TRUTH_NOT_EXPR
      /* The parser is careful to generate TRUTH_NOT_EXPR
         only with operands that are always zero or one.  */
         only with operands that are always zero or one.  */
      temp = expand_binop (mode, xor_optab, op0, const1_rtx,
      temp = expand_binop (mode, xor_optab, op0, const1_rtx,
                           target, 1, OPTAB_LIB_WIDEN);
                           target, 1, OPTAB_LIB_WIDEN);
      gcc_assert (temp);
      gcc_assert (temp);
      return temp;
      return temp;
 
 
    case STATEMENT_LIST:
    case STATEMENT_LIST:
      {
      {
        tree_stmt_iterator iter;
        tree_stmt_iterator iter;
 
 
        gcc_assert (ignore);
        gcc_assert (ignore);
 
 
        for (iter = tsi_start (exp); !tsi_end_p (iter); tsi_next (&iter))
        for (iter = tsi_start (exp); !tsi_end_p (iter); tsi_next (&iter))
          expand_expr (tsi_stmt (iter), const0_rtx, VOIDmode, modifier);
          expand_expr (tsi_stmt (iter), const0_rtx, VOIDmode, modifier);
      }
      }
      return const0_rtx;
      return const0_rtx;
 
 
    case COND_EXPR:
    case COND_EXPR:
      /* A COND_EXPR with its type being VOID_TYPE represents a
      /* A COND_EXPR with its type being VOID_TYPE represents a
         conditional jump and is handled in
         conditional jump and is handled in
         expand_gimple_cond_expr.  */
         expand_gimple_cond_expr.  */
      gcc_assert (!VOID_TYPE_P (TREE_TYPE (exp)));
      gcc_assert (!VOID_TYPE_P (TREE_TYPE (exp)));
 
 
        /* Note that COND_EXPRs whose type is a structure or union
        /* Note that COND_EXPRs whose type is a structure or union
         are required to be constructed to contain assignments of
         are required to be constructed to contain assignments of
         a temporary variable, so that we can evaluate them here
         a temporary variable, so that we can evaluate them here
         for side effect only.  If type is void, we must do likewise.  */
         for side effect only.  If type is void, we must do likewise.  */
 
 
        gcc_assert (!TREE_ADDRESSABLE (type)
        gcc_assert (!TREE_ADDRESSABLE (type)
                    && !ignore
                    && !ignore
                    && TREE_TYPE (TREE_OPERAND (exp, 1)) != void_type_node
                    && TREE_TYPE (TREE_OPERAND (exp, 1)) != void_type_node
                    && TREE_TYPE (TREE_OPERAND (exp, 2)) != void_type_node);
                    && TREE_TYPE (TREE_OPERAND (exp, 2)) != void_type_node);
 
 
       /* If we are not to produce a result, we have no target.  Otherwise,
       /* If we are not to produce a result, we have no target.  Otherwise,
         if a target was specified use it; it will not be used as an
         if a target was specified use it; it will not be used as an
         intermediate target unless it is safe.  If no target, use a
         intermediate target unless it is safe.  If no target, use a
         temporary.  */
         temporary.  */
 
 
       if (modifier != EXPAND_STACK_PARM
       if (modifier != EXPAND_STACK_PARM
          && original_target
          && original_target
          && safe_from_p (original_target, TREE_OPERAND (exp, 0), 1)
          && safe_from_p (original_target, TREE_OPERAND (exp, 0), 1)
          && GET_MODE (original_target) == mode
          && GET_MODE (original_target) == mode
#ifdef HAVE_conditional_move
#ifdef HAVE_conditional_move
          && (! can_conditionally_move_p (mode)
          && (! can_conditionally_move_p (mode)
              || REG_P (original_target))
              || REG_P (original_target))
#endif
#endif
          && !MEM_P (original_target))
          && !MEM_P (original_target))
        temp = original_target;
        temp = original_target;
       else
       else
        temp = assign_temp (type, 0, 0, 1);
        temp = assign_temp (type, 0, 0, 1);
 
 
       do_pending_stack_adjust ();
       do_pending_stack_adjust ();
       NO_DEFER_POP;
       NO_DEFER_POP;
       op0 = gen_label_rtx ();
       op0 = gen_label_rtx ();
       op1 = gen_label_rtx ();
       op1 = gen_label_rtx ();
       jumpifnot (TREE_OPERAND (exp, 0), op0);
       jumpifnot (TREE_OPERAND (exp, 0), op0);
       store_expr (TREE_OPERAND (exp, 1), temp,
       store_expr (TREE_OPERAND (exp, 1), temp,
                  modifier == EXPAND_STACK_PARM);
                  modifier == EXPAND_STACK_PARM);
 
 
       emit_jump_insn (gen_jump (op1));
       emit_jump_insn (gen_jump (op1));
       emit_barrier ();
       emit_barrier ();
       emit_label (op0);
       emit_label (op0);
       store_expr (TREE_OPERAND (exp, 2), temp,
       store_expr (TREE_OPERAND (exp, 2), temp,
                  modifier == EXPAND_STACK_PARM);
                  modifier == EXPAND_STACK_PARM);
 
 
       emit_label (op1);
       emit_label (op1);
       OK_DEFER_POP;
       OK_DEFER_POP;
       return temp;
       return temp;
 
 
    case VEC_COND_EXPR:
    case VEC_COND_EXPR:
        target = expand_vec_cond_expr (exp, target);
        target = expand_vec_cond_expr (exp, target);
        return target;
        return target;
 
 
    case MODIFY_EXPR:
    case MODIFY_EXPR:
      {
      {
        tree lhs = TREE_OPERAND (exp, 0);
        tree lhs = TREE_OPERAND (exp, 0);
        tree rhs = TREE_OPERAND (exp, 1);
        tree rhs = TREE_OPERAND (exp, 1);
 
 
        gcc_assert (ignore);
        gcc_assert (ignore);
 
 
        /* Check for |= or &= of a bitfield of size one into another bitfield
        /* Check for |= or &= of a bitfield of size one into another bitfield
           of size 1.  In this case, (unless we need the result of the
           of size 1.  In this case, (unless we need the result of the
           assignment) we can do this more efficiently with a
           assignment) we can do this more efficiently with a
           test followed by an assignment, if necessary.
           test followed by an assignment, if necessary.
 
 
           ??? At this point, we can't get a BIT_FIELD_REF here.  But if
           ??? At this point, we can't get a BIT_FIELD_REF here.  But if
           things change so we do, this code should be enhanced to
           things change so we do, this code should be enhanced to
           support it.  */
           support it.  */
        if (TREE_CODE (lhs) == COMPONENT_REF
        if (TREE_CODE (lhs) == COMPONENT_REF
            && (TREE_CODE (rhs) == BIT_IOR_EXPR
            && (TREE_CODE (rhs) == BIT_IOR_EXPR
                || TREE_CODE (rhs) == BIT_AND_EXPR)
                || TREE_CODE (rhs) == BIT_AND_EXPR)
            && TREE_OPERAND (rhs, 0) == lhs
            && TREE_OPERAND (rhs, 0) == lhs
            && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
            && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
            && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
            && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
            && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
            && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
          {
          {
            rtx label = gen_label_rtx ();
            rtx label = gen_label_rtx ();
            int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
            int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
            do_jump (TREE_OPERAND (rhs, 1),
            do_jump (TREE_OPERAND (rhs, 1),
                     value ? label : 0,
                     value ? label : 0,
                     value ? 0 : label);
                     value ? 0 : label);
            expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value));
            expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value));
            do_pending_stack_adjust ();
            do_pending_stack_adjust ();
            emit_label (label);
            emit_label (label);
            return const0_rtx;
            return const0_rtx;
          }
          }
 
 
        expand_assignment (lhs, rhs);
        expand_assignment (lhs, rhs);
 
 
        return const0_rtx;
        return const0_rtx;
      }
      }
 
 
    case RETURN_EXPR:
    case RETURN_EXPR:
      if (!TREE_OPERAND (exp, 0))
      if (!TREE_OPERAND (exp, 0))
        expand_null_return ();
        expand_null_return ();
      else
      else
        expand_return (TREE_OPERAND (exp, 0));
        expand_return (TREE_OPERAND (exp, 0));
      return const0_rtx;
      return const0_rtx;
 
 
    case ADDR_EXPR:
    case ADDR_EXPR:
      return expand_expr_addr_expr (exp, target, tmode, modifier);
      return expand_expr_addr_expr (exp, target, tmode, modifier);
 
 
    case COMPLEX_EXPR:
    case COMPLEX_EXPR:
      /* Get the rtx code of the operands.  */
      /* Get the rtx code of the operands.  */
      op0 = expand_normal (TREE_OPERAND (exp, 0));
      op0 = expand_normal (TREE_OPERAND (exp, 0));
      op1 = expand_normal (TREE_OPERAND (exp, 1));
      op1 = expand_normal (TREE_OPERAND (exp, 1));
 
 
      if (!target)
      if (!target)
        target = gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp)));
        target = gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp)));
 
 
      /* Move the real (op0) and imaginary (op1) parts to their location.  */
      /* Move the real (op0) and imaginary (op1) parts to their location.  */
      write_complex_part (target, op0, false);
      write_complex_part (target, op0, false);
      write_complex_part (target, op1, true);
      write_complex_part (target, op1, true);
 
 
      return target;
      return target;
 
 
    case REALPART_EXPR:
    case REALPART_EXPR:
      op0 = expand_normal (TREE_OPERAND (exp, 0));
      op0 = expand_normal (TREE_OPERAND (exp, 0));
      return read_complex_part (op0, false);
      return read_complex_part (op0, false);
 
 
    case IMAGPART_EXPR:
    case IMAGPART_EXPR:
      op0 = expand_normal (TREE_OPERAND (exp, 0));
      op0 = expand_normal (TREE_OPERAND (exp, 0));
      return read_complex_part (op0, true);
      return read_complex_part (op0, true);
 
 
    case RESX_EXPR:
    case RESX_EXPR:
      expand_resx_expr (exp);
      expand_resx_expr (exp);
      return const0_rtx;
      return const0_rtx;
 
 
    case TRY_CATCH_EXPR:
    case TRY_CATCH_EXPR:
    case CATCH_EXPR:
    case CATCH_EXPR:
    case EH_FILTER_EXPR:
    case EH_FILTER_EXPR:
    case TRY_FINALLY_EXPR:
    case TRY_FINALLY_EXPR:
      /* Lowered by tree-eh.c.  */
      /* Lowered by tree-eh.c.  */
      gcc_unreachable ();
      gcc_unreachable ();
 
 
    case WITH_CLEANUP_EXPR:
    case WITH_CLEANUP_EXPR:
    case CLEANUP_POINT_EXPR:
    case CLEANUP_POINT_EXPR:
    case TARGET_EXPR:
    case TARGET_EXPR:
    case CASE_LABEL_EXPR:
    case CASE_LABEL_EXPR:
    case VA_ARG_EXPR:
    case VA_ARG_EXPR:
    case BIND_EXPR:
    case BIND_EXPR:
    case INIT_EXPR:
    case INIT_EXPR:
    case CONJ_EXPR:
    case CONJ_EXPR:
    case COMPOUND_EXPR:
    case COMPOUND_EXPR:
    case PREINCREMENT_EXPR:
    case PREINCREMENT_EXPR:
    case PREDECREMENT_EXPR:
    case PREDECREMENT_EXPR:
    case POSTINCREMENT_EXPR:
    case POSTINCREMENT_EXPR:
    case POSTDECREMENT_EXPR:
    case POSTDECREMENT_EXPR:
    case LOOP_EXPR:
    case LOOP_EXPR:
    case EXIT_EXPR:
    case EXIT_EXPR:
    case TRUTH_ANDIF_EXPR:
    case TRUTH_ANDIF_EXPR:
    case TRUTH_ORIF_EXPR:
    case TRUTH_ORIF_EXPR:
      /* Lowered by gimplify.c.  */
      /* Lowered by gimplify.c.  */
      gcc_unreachable ();
      gcc_unreachable ();
 
 
    case EXC_PTR_EXPR:
    case EXC_PTR_EXPR:
      return get_exception_pointer (cfun);
      return get_exception_pointer (cfun);
 
 
    case FILTER_EXPR:
    case FILTER_EXPR:
      return get_exception_filter (cfun);
      return get_exception_filter (cfun);
 
 
    case FDESC_EXPR:
    case FDESC_EXPR:
      /* Function descriptors are not valid except for as
      /* Function descriptors are not valid except for as
         initialization constants, and should not be expanded.  */
         initialization constants, and should not be expanded.  */
      gcc_unreachable ();
      gcc_unreachable ();
 
 
    case SWITCH_EXPR:
    case SWITCH_EXPR:
      expand_case (exp);
      expand_case (exp);
      return const0_rtx;
      return const0_rtx;
 
 
    case LABEL_EXPR:
    case LABEL_EXPR:
      expand_label (TREE_OPERAND (exp, 0));
      expand_label (TREE_OPERAND (exp, 0));
      return const0_rtx;
      return const0_rtx;
 
 
    case ASM_EXPR:
    case ASM_EXPR:
      expand_asm_expr (exp);
      expand_asm_expr (exp);
      return const0_rtx;
      return const0_rtx;
 
 
    case WITH_SIZE_EXPR:
    case WITH_SIZE_EXPR:
      /* WITH_SIZE_EXPR expands to its first argument.  The caller should
      /* WITH_SIZE_EXPR expands to its first argument.  The caller should
         have pulled out the size to use in whatever context it needed.  */
         have pulled out the size to use in whatever context it needed.  */
      return expand_expr_real (TREE_OPERAND (exp, 0), original_target, tmode,
      return expand_expr_real (TREE_OPERAND (exp, 0), original_target, tmode,
                               modifier, alt_rtl);
                               modifier, alt_rtl);
 
 
    case REALIGN_LOAD_EXPR:
    case REALIGN_LOAD_EXPR:
      {
      {
        tree oprnd0 = TREE_OPERAND (exp, 0);
        tree oprnd0 = TREE_OPERAND (exp, 0);
        tree oprnd1 = TREE_OPERAND (exp, 1);
        tree oprnd1 = TREE_OPERAND (exp, 1);
        tree oprnd2 = TREE_OPERAND (exp, 2);
        tree oprnd2 = TREE_OPERAND (exp, 2);
        rtx op2;
        rtx op2;
 
 
        this_optab = optab_for_tree_code (code, type);
        this_optab = optab_for_tree_code (code, type);
        expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
        expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
        op2 = expand_normal (oprnd2);
        op2 = expand_normal (oprnd2);
        temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
        temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
                                  target, unsignedp);
                                  target, unsignedp);
        gcc_assert (temp);
        gcc_assert (temp);
        return temp;
        return temp;
      }
      }
 
 
    case DOT_PROD_EXPR:
    case DOT_PROD_EXPR:
      {
      {
        tree oprnd0 = TREE_OPERAND (exp, 0);
        tree oprnd0 = TREE_OPERAND (exp, 0);
        tree oprnd1 = TREE_OPERAND (exp, 1);
        tree oprnd1 = TREE_OPERAND (exp, 1);
        tree oprnd2 = TREE_OPERAND (exp, 2);
        tree oprnd2 = TREE_OPERAND (exp, 2);
        rtx op2;
        rtx op2;
 
 
        expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
        expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
        op2 = expand_normal (oprnd2);
        op2 = expand_normal (oprnd2);
        target = expand_widen_pattern_expr (exp, op0, op1, op2,
        target = expand_widen_pattern_expr (exp, op0, op1, op2,
                                            target, unsignedp);
                                            target, unsignedp);
        return target;
        return target;
      }
      }
 
 
    case WIDEN_SUM_EXPR:
    case WIDEN_SUM_EXPR:
      {
      {
        tree oprnd0 = TREE_OPERAND (exp, 0);
        tree oprnd0 = TREE_OPERAND (exp, 0);
        tree oprnd1 = TREE_OPERAND (exp, 1);
        tree oprnd1 = TREE_OPERAND (exp, 1);
 
 
        expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, 0);
        expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, 0);
        target = expand_widen_pattern_expr (exp, op0, NULL_RTX, op1,
        target = expand_widen_pattern_expr (exp, op0, NULL_RTX, op1,
                                            target, unsignedp);
                                            target, unsignedp);
        return target;
        return target;
      }
      }
 
 
    case REDUC_MAX_EXPR:
    case REDUC_MAX_EXPR:
    case REDUC_MIN_EXPR:
    case REDUC_MIN_EXPR:
    case REDUC_PLUS_EXPR:
    case REDUC_PLUS_EXPR:
      {
      {
        op0 = expand_normal (TREE_OPERAND (exp, 0));
        op0 = expand_normal (TREE_OPERAND (exp, 0));
        this_optab = optab_for_tree_code (code, type);
        this_optab = optab_for_tree_code (code, type);
        temp = expand_unop (mode, this_optab, op0, target, unsignedp);
        temp = expand_unop (mode, this_optab, op0, target, unsignedp);
        gcc_assert (temp);
        gcc_assert (temp);
        return temp;
        return temp;
      }
      }
 
 
    case VEC_LSHIFT_EXPR:
    case VEC_LSHIFT_EXPR:
    case VEC_RSHIFT_EXPR:
    case VEC_RSHIFT_EXPR:
      {
      {
        target = expand_vec_shift_expr (exp, target);
        target = expand_vec_shift_expr (exp, target);
        return target;
        return target;
      }
      }
 
 
    default:
    default:
      return lang_hooks.expand_expr (exp, original_target, tmode,
      return lang_hooks.expand_expr (exp, original_target, tmode,
                                     modifier, alt_rtl);
                                     modifier, alt_rtl);
    }
    }
 
 
  /* Here to do an ordinary binary operator.  */
  /* Here to do an ordinary binary operator.  */
 binop:
 binop:
  expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
  expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
                   subtarget, &op0, &op1, 0);
                   subtarget, &op0, &op1, 0);
 binop2:
 binop2:
  this_optab = optab_for_tree_code (code, type);
  this_optab = optab_for_tree_code (code, type);
 binop3:
 binop3:
  if (modifier == EXPAND_STACK_PARM)
  if (modifier == EXPAND_STACK_PARM)
    target = 0;
    target = 0;
  temp = expand_binop (mode, this_optab, op0, op1, target,
  temp = expand_binop (mode, this_optab, op0, op1, target,
                       unsignedp, OPTAB_LIB_WIDEN);
                       unsignedp, OPTAB_LIB_WIDEN);
  gcc_assert (temp);
  gcc_assert (temp);
  return REDUCE_BIT_FIELD (temp);
  return REDUCE_BIT_FIELD (temp);
}
}
#undef REDUCE_BIT_FIELD
#undef REDUCE_BIT_FIELD


/* Subroutine of above: reduce EXP to the precision of TYPE (in the
/* Subroutine of above: reduce EXP to the precision of TYPE (in the
   signedness of TYPE), possibly returning the result in TARGET.  */
   signedness of TYPE), possibly returning the result in TARGET.  */
static rtx
static rtx
reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
{
{
  HOST_WIDE_INT prec = TYPE_PRECISION (type);
  HOST_WIDE_INT prec = TYPE_PRECISION (type);
  if (target && GET_MODE (target) != GET_MODE (exp))
  if (target && GET_MODE (target) != GET_MODE (exp))
    target = 0;
    target = 0;
  /* For constant values, reduce using build_int_cst_type. */
  /* For constant values, reduce using build_int_cst_type. */
  if (GET_CODE (exp) == CONST_INT)
  if (GET_CODE (exp) == CONST_INT)
    {
    {
      HOST_WIDE_INT value = INTVAL (exp);
      HOST_WIDE_INT value = INTVAL (exp);
      tree t = build_int_cst_type (type, value);
      tree t = build_int_cst_type (type, value);
      return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
      return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
    }
    }
  else if (TYPE_UNSIGNED (type))
  else if (TYPE_UNSIGNED (type))
    {
    {
      rtx mask;
      rtx mask;
      if (prec < HOST_BITS_PER_WIDE_INT)
      if (prec < HOST_BITS_PER_WIDE_INT)
        mask = immed_double_const (((unsigned HOST_WIDE_INT) 1 << prec) - 1, 0,
        mask = immed_double_const (((unsigned HOST_WIDE_INT) 1 << prec) - 1, 0,
                                   GET_MODE (exp));
                                   GET_MODE (exp));
      else
      else
        mask = immed_double_const ((unsigned HOST_WIDE_INT) -1,
        mask = immed_double_const ((unsigned HOST_WIDE_INT) -1,
                                   ((unsigned HOST_WIDE_INT) 1
                                   ((unsigned HOST_WIDE_INT) 1
                                    << (prec - HOST_BITS_PER_WIDE_INT)) - 1,
                                    << (prec - HOST_BITS_PER_WIDE_INT)) - 1,
                                   GET_MODE (exp));
                                   GET_MODE (exp));
      return expand_and (GET_MODE (exp), exp, mask, target);
      return expand_and (GET_MODE (exp), exp, mask, target);
    }
    }
  else
  else
    {
    {
      tree count = build_int_cst (NULL_TREE,
      tree count = build_int_cst (NULL_TREE,
                                  GET_MODE_BITSIZE (GET_MODE (exp)) - prec);
                                  GET_MODE_BITSIZE (GET_MODE (exp)) - prec);
      exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
      exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
      return expand_shift (RSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
      return expand_shift (RSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
    }
    }
}
}


/* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
/* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
   when applied to the address of EXP produces an address known to be
   when applied to the address of EXP produces an address known to be
   aligned more than BIGGEST_ALIGNMENT.  */
   aligned more than BIGGEST_ALIGNMENT.  */
 
 
static int
static int
is_aligning_offset (tree offset, tree exp)
is_aligning_offset (tree offset, tree exp)
{
{
  /* Strip off any conversions.  */
  /* Strip off any conversions.  */
  while (TREE_CODE (offset) == NON_LVALUE_EXPR
  while (TREE_CODE (offset) == NON_LVALUE_EXPR
         || TREE_CODE (offset) == NOP_EXPR
         || TREE_CODE (offset) == NOP_EXPR
         || TREE_CODE (offset) == CONVERT_EXPR)
         || TREE_CODE (offset) == CONVERT_EXPR)
    offset = TREE_OPERAND (offset, 0);
    offset = TREE_OPERAND (offset, 0);
 
 
  /* We must now have a BIT_AND_EXPR with a constant that is one less than
  /* We must now have a BIT_AND_EXPR with a constant that is one less than
     power of 2 and which is larger than BIGGEST_ALIGNMENT.  */
     power of 2 and which is larger than BIGGEST_ALIGNMENT.  */
  if (TREE_CODE (offset) != BIT_AND_EXPR
  if (TREE_CODE (offset) != BIT_AND_EXPR
      || !host_integerp (TREE_OPERAND (offset, 1), 1)
      || !host_integerp (TREE_OPERAND (offset, 1), 1)
      || compare_tree_int (TREE_OPERAND (offset, 1),
      || compare_tree_int (TREE_OPERAND (offset, 1),
                           BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
                           BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
      || !exact_log2 (tree_low_cst (TREE_OPERAND (offset, 1), 1) + 1) < 0)
      || !exact_log2 (tree_low_cst (TREE_OPERAND (offset, 1), 1) + 1) < 0)
    return 0;
    return 0;
 
 
  /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
  /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
     It must be NEGATE_EXPR.  Then strip any more conversions.  */
     It must be NEGATE_EXPR.  Then strip any more conversions.  */
  offset = TREE_OPERAND (offset, 0);
  offset = TREE_OPERAND (offset, 0);
  while (TREE_CODE (offset) == NON_LVALUE_EXPR
  while (TREE_CODE (offset) == NON_LVALUE_EXPR
         || TREE_CODE (offset) == NOP_EXPR
         || TREE_CODE (offset) == NOP_EXPR
         || TREE_CODE (offset) == CONVERT_EXPR)
         || TREE_CODE (offset) == CONVERT_EXPR)
    offset = TREE_OPERAND (offset, 0);
    offset = TREE_OPERAND (offset, 0);
 
 
  if (TREE_CODE (offset) != NEGATE_EXPR)
  if (TREE_CODE (offset) != NEGATE_EXPR)
    return 0;
    return 0;
 
 
  offset = TREE_OPERAND (offset, 0);
  offset = TREE_OPERAND (offset, 0);
  while (TREE_CODE (offset) == NON_LVALUE_EXPR
  while (TREE_CODE (offset) == NON_LVALUE_EXPR
         || TREE_CODE (offset) == NOP_EXPR
         || TREE_CODE (offset) == NOP_EXPR
         || TREE_CODE (offset) == CONVERT_EXPR)
         || TREE_CODE (offset) == CONVERT_EXPR)
    offset = TREE_OPERAND (offset, 0);
    offset = TREE_OPERAND (offset, 0);
 
 
  /* This must now be the address of EXP.  */
  /* This must now be the address of EXP.  */
  return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
  return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
}
}


/* Return the tree node if an ARG corresponds to a string constant or zero
/* Return the tree node if an ARG corresponds to a string constant or zero
   if it doesn't.  If we return nonzero, set *PTR_OFFSET to the offset
   if it doesn't.  If we return nonzero, set *PTR_OFFSET to the offset
   in bytes within the string that ARG is accessing.  The type of the
   in bytes within the string that ARG is accessing.  The type of the
   offset will be `sizetype'.  */
   offset will be `sizetype'.  */
 
 
tree
tree
string_constant (tree arg, tree *ptr_offset)
string_constant (tree arg, tree *ptr_offset)
{
{
  tree array, offset;
  tree array, offset;
  STRIP_NOPS (arg);
  STRIP_NOPS (arg);
 
 
  if (TREE_CODE (arg) == ADDR_EXPR)
  if (TREE_CODE (arg) == ADDR_EXPR)
    {
    {
      if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
      if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
        {
        {
          *ptr_offset = size_zero_node;
          *ptr_offset = size_zero_node;
          return TREE_OPERAND (arg, 0);
          return TREE_OPERAND (arg, 0);
        }
        }
      else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
      else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
        {
        {
          array = TREE_OPERAND (arg, 0);
          array = TREE_OPERAND (arg, 0);
          offset = size_zero_node;
          offset = size_zero_node;
        }
        }
      else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
      else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
        {
        {
          array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
          array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
          offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
          offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
          if (TREE_CODE (array) != STRING_CST
          if (TREE_CODE (array) != STRING_CST
              && TREE_CODE (array) != VAR_DECL)
              && TREE_CODE (array) != VAR_DECL)
            return 0;
            return 0;
        }
        }
      else
      else
        return 0;
        return 0;
    }
    }
  else if (TREE_CODE (arg) == PLUS_EXPR)
  else if (TREE_CODE (arg) == PLUS_EXPR)
    {
    {
      tree arg0 = TREE_OPERAND (arg, 0);
      tree arg0 = TREE_OPERAND (arg, 0);
      tree arg1 = TREE_OPERAND (arg, 1);
      tree arg1 = TREE_OPERAND (arg, 1);
 
 
      STRIP_NOPS (arg0);
      STRIP_NOPS (arg0);
      STRIP_NOPS (arg1);
      STRIP_NOPS (arg1);
 
 
      if (TREE_CODE (arg0) == ADDR_EXPR
      if (TREE_CODE (arg0) == ADDR_EXPR
          && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
          && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
              || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
              || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
        {
        {
          array = TREE_OPERAND (arg0, 0);
          array = TREE_OPERAND (arg0, 0);
          offset = arg1;
          offset = arg1;
        }
        }
      else if (TREE_CODE (arg1) == ADDR_EXPR
      else if (TREE_CODE (arg1) == ADDR_EXPR
               && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
               && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
                   || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
                   || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
        {
        {
          array = TREE_OPERAND (arg1, 0);
          array = TREE_OPERAND (arg1, 0);
          offset = arg0;
          offset = arg0;
        }
        }
      else
      else
        return 0;
        return 0;
    }
    }
  else
  else
    return 0;
    return 0;
 
 
  if (TREE_CODE (array) == STRING_CST)
  if (TREE_CODE (array) == STRING_CST)
    {
    {
      *ptr_offset = fold_convert (sizetype, offset);
      *ptr_offset = fold_convert (sizetype, offset);
      return array;
      return array;
    }
    }
  else if (TREE_CODE (array) == VAR_DECL)
  else if (TREE_CODE (array) == VAR_DECL)
    {
    {
      int length;
      int length;
 
 
      /* Variables initialized to string literals can be handled too.  */
      /* Variables initialized to string literals can be handled too.  */
      if (DECL_INITIAL (array) == NULL_TREE
      if (DECL_INITIAL (array) == NULL_TREE
          || TREE_CODE (DECL_INITIAL (array)) != STRING_CST)
          || TREE_CODE (DECL_INITIAL (array)) != STRING_CST)
        return 0;
        return 0;
 
 
      /* If they are read-only, non-volatile and bind locally.  */
      /* If they are read-only, non-volatile and bind locally.  */
      if (! TREE_READONLY (array)
      if (! TREE_READONLY (array)
          || TREE_SIDE_EFFECTS (array)
          || TREE_SIDE_EFFECTS (array)
          || ! targetm.binds_local_p (array))
          || ! targetm.binds_local_p (array))
        return 0;
        return 0;
 
 
      /* Avoid const char foo[4] = "abcde";  */
      /* Avoid const char foo[4] = "abcde";  */
      if (DECL_SIZE_UNIT (array) == NULL_TREE
      if (DECL_SIZE_UNIT (array) == NULL_TREE
          || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
          || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
          || (length = TREE_STRING_LENGTH (DECL_INITIAL (array))) <= 0
          || (length = TREE_STRING_LENGTH (DECL_INITIAL (array))) <= 0
          || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
          || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
        return 0;
        return 0;
 
 
      /* If variable is bigger than the string literal, OFFSET must be constant
      /* If variable is bigger than the string literal, OFFSET must be constant
         and inside of the bounds of the string literal.  */
         and inside of the bounds of the string literal.  */
      offset = fold_convert (sizetype, offset);
      offset = fold_convert (sizetype, offset);
      if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
      if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
          && (! host_integerp (offset, 1)
          && (! host_integerp (offset, 1)
              || compare_tree_int (offset, length) >= 0))
              || compare_tree_int (offset, length) >= 0))
        return 0;
        return 0;
 
 
      *ptr_offset = offset;
      *ptr_offset = offset;
      return DECL_INITIAL (array);
      return DECL_INITIAL (array);
    }
    }
 
 
  return 0;
  return 0;
}
}


/* Generate code to calculate EXP using a store-flag instruction
/* Generate code to calculate EXP using a store-flag instruction
   and return an rtx for the result.  EXP is either a comparison
   and return an rtx for the result.  EXP is either a comparison
   or a TRUTH_NOT_EXPR whose operand is a comparison.
   or a TRUTH_NOT_EXPR whose operand is a comparison.
 
 
   If TARGET is nonzero, store the result there if convenient.
   If TARGET is nonzero, store the result there if convenient.
 
 
   If ONLY_CHEAP is nonzero, only do this if it is likely to be very
   If ONLY_CHEAP is nonzero, only do this if it is likely to be very
   cheap.
   cheap.
 
 
   Return zero if there is no suitable set-flag instruction
   Return zero if there is no suitable set-flag instruction
   available on this machine.
   available on this machine.
 
 
   Once expand_expr has been called on the arguments of the comparison,
   Once expand_expr has been called on the arguments of the comparison,
   we are committed to doing the store flag, since it is not safe to
   we are committed to doing the store flag, since it is not safe to
   re-evaluate the expression.  We emit the store-flag insn by calling
   re-evaluate the expression.  We emit the store-flag insn by calling
   emit_store_flag, but only expand the arguments if we have a reason
   emit_store_flag, but only expand the arguments if we have a reason
   to believe that emit_store_flag will be successful.  If we think that
   to believe that emit_store_flag will be successful.  If we think that
   it will, but it isn't, we have to simulate the store-flag with a
   it will, but it isn't, we have to simulate the store-flag with a
   set/jump/set sequence.  */
   set/jump/set sequence.  */
 
 
static rtx
static rtx
do_store_flag (tree exp, rtx target, enum machine_mode mode, int only_cheap)
do_store_flag (tree exp, rtx target, enum machine_mode mode, int only_cheap)
{
{
  enum rtx_code code;
  enum rtx_code code;
  tree arg0, arg1, type;
  tree arg0, arg1, type;
  tree tem;
  tree tem;
  enum machine_mode operand_mode;
  enum machine_mode operand_mode;
  int invert = 0;
  int invert = 0;
  int unsignedp;
  int unsignedp;
  rtx op0, op1;
  rtx op0, op1;
  enum insn_code icode;
  enum insn_code icode;
  rtx subtarget = target;
  rtx subtarget = target;
  rtx result, label;
  rtx result, label;
 
 
  /* If this is a TRUTH_NOT_EXPR, set a flag indicating we must invert the
  /* If this is a TRUTH_NOT_EXPR, set a flag indicating we must invert the
     result at the end.  We can't simply invert the test since it would
     result at the end.  We can't simply invert the test since it would
     have already been inverted if it were valid.  This case occurs for
     have already been inverted if it were valid.  This case occurs for
     some floating-point comparisons.  */
     some floating-point comparisons.  */
 
 
  if (TREE_CODE (exp) == TRUTH_NOT_EXPR)
  if (TREE_CODE (exp) == TRUTH_NOT_EXPR)
    invert = 1, exp = TREE_OPERAND (exp, 0);
    invert = 1, exp = TREE_OPERAND (exp, 0);
 
 
  arg0 = TREE_OPERAND (exp, 0);
  arg0 = TREE_OPERAND (exp, 0);
  arg1 = TREE_OPERAND (exp, 1);
  arg1 = TREE_OPERAND (exp, 1);
 
 
  /* Don't crash if the comparison was erroneous.  */
  /* Don't crash if the comparison was erroneous.  */
  if (arg0 == error_mark_node || arg1 == error_mark_node)
  if (arg0 == error_mark_node || arg1 == error_mark_node)
    return const0_rtx;
    return const0_rtx;
 
 
  type = TREE_TYPE (arg0);
  type = TREE_TYPE (arg0);
  operand_mode = TYPE_MODE (type);
  operand_mode = TYPE_MODE (type);
  unsignedp = TYPE_UNSIGNED (type);
  unsignedp = TYPE_UNSIGNED (type);
 
 
  /* We won't bother with BLKmode store-flag operations because it would mean
  /* We won't bother with BLKmode store-flag operations because it would mean
     passing a lot of information to emit_store_flag.  */
     passing a lot of information to emit_store_flag.  */
  if (operand_mode == BLKmode)
  if (operand_mode == BLKmode)
    return 0;
    return 0;
 
 
  /* We won't bother with store-flag operations involving function pointers
  /* We won't bother with store-flag operations involving function pointers
     when function pointers must be canonicalized before comparisons.  */
     when function pointers must be canonicalized before comparisons.  */
#ifdef HAVE_canonicalize_funcptr_for_compare
#ifdef HAVE_canonicalize_funcptr_for_compare
  if (HAVE_canonicalize_funcptr_for_compare
  if (HAVE_canonicalize_funcptr_for_compare
      && ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == POINTER_TYPE
      && ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == POINTER_TYPE
           && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))))
           && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))))
               == FUNCTION_TYPE))
               == FUNCTION_TYPE))
          || (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 1))) == POINTER_TYPE
          || (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 1))) == POINTER_TYPE
              && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 1))))
              && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 1))))
                  == FUNCTION_TYPE))))
                  == FUNCTION_TYPE))))
    return 0;
    return 0;
#endif
#endif
 
 
  STRIP_NOPS (arg0);
  STRIP_NOPS (arg0);
  STRIP_NOPS (arg1);
  STRIP_NOPS (arg1);
 
 
  /* Get the rtx comparison code to use.  We know that EXP is a comparison
  /* Get the rtx comparison code to use.  We know that EXP is a comparison
     operation of some type.  Some comparisons against 1 and -1 can be
     operation of some type.  Some comparisons against 1 and -1 can be
     converted to comparisons with zero.  Do so here so that the tests
     converted to comparisons with zero.  Do so here so that the tests
     below will be aware that we have a comparison with zero.   These
     below will be aware that we have a comparison with zero.   These
     tests will not catch constants in the first operand, but constants
     tests will not catch constants in the first operand, but constants
     are rarely passed as the first operand.  */
     are rarely passed as the first operand.  */
 
 
  switch (TREE_CODE (exp))
  switch (TREE_CODE (exp))
    {
    {
    case EQ_EXPR:
    case EQ_EXPR:
      code = EQ;
      code = EQ;
      break;
      break;
    case NE_EXPR:
    case NE_EXPR:
      code = NE;
      code = NE;
      break;
      break;
    case LT_EXPR:
    case LT_EXPR:
      if (integer_onep (arg1))
      if (integer_onep (arg1))
        arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
        arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
      else
      else
        code = unsignedp ? LTU : LT;
        code = unsignedp ? LTU : LT;
      break;
      break;
    case LE_EXPR:
    case LE_EXPR:
      if (! unsignedp && integer_all_onesp (arg1))
      if (! unsignedp && integer_all_onesp (arg1))
        arg1 = integer_zero_node, code = LT;
        arg1 = integer_zero_node, code = LT;
      else
      else
        code = unsignedp ? LEU : LE;
        code = unsignedp ? LEU : LE;
      break;
      break;
    case GT_EXPR:
    case GT_EXPR:
      if (! unsignedp && integer_all_onesp (arg1))
      if (! unsignedp && integer_all_onesp (arg1))
        arg1 = integer_zero_node, code = GE;
        arg1 = integer_zero_node, code = GE;
      else
      else
        code = unsignedp ? GTU : GT;
        code = unsignedp ? GTU : GT;
      break;
      break;
    case GE_EXPR:
    case GE_EXPR:
      if (integer_onep (arg1))
      if (integer_onep (arg1))
        arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
        arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
      else
      else
        code = unsignedp ? GEU : GE;
        code = unsignedp ? GEU : GE;
      break;
      break;
 
 
    case UNORDERED_EXPR:
    case UNORDERED_EXPR:
      code = UNORDERED;
      code = UNORDERED;
      break;
      break;
    case ORDERED_EXPR:
    case ORDERED_EXPR:
      code = ORDERED;
      code = ORDERED;
      break;
      break;
    case UNLT_EXPR:
    case UNLT_EXPR:
      code = UNLT;
      code = UNLT;
      break;
      break;
    case UNLE_EXPR:
    case UNLE_EXPR:
      code = UNLE;
      code = UNLE;
      break;
      break;
    case UNGT_EXPR:
    case UNGT_EXPR:
      code = UNGT;
      code = UNGT;
      break;
      break;
    case UNGE_EXPR:
    case UNGE_EXPR:
      code = UNGE;
      code = UNGE;
      break;
      break;
    case UNEQ_EXPR:
    case UNEQ_EXPR:
      code = UNEQ;
      code = UNEQ;
      break;
      break;
    case LTGT_EXPR:
    case LTGT_EXPR:
      code = LTGT;
      code = LTGT;
      break;
      break;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  /* Put a constant second.  */
  /* Put a constant second.  */
  if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST)
  if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST)
    {
    {
      tem = arg0; arg0 = arg1; arg1 = tem;
      tem = arg0; arg0 = arg1; arg1 = tem;
      code = swap_condition (code);
      code = swap_condition (code);
    }
    }
 
 
  /* If this is an equality or inequality test of a single bit, we can
  /* If this is an equality or inequality test of a single bit, we can
     do this by shifting the bit being tested to the low-order bit and
     do this by shifting the bit being tested to the low-order bit and
     masking the result with the constant 1.  If the condition was EQ,
     masking the result with the constant 1.  If the condition was EQ,
     we xor it with 1.  This does not require an scc insn and is faster
     we xor it with 1.  This does not require an scc insn and is faster
     than an scc insn even if we have it.
     than an scc insn even if we have it.
 
 
     The code to make this transformation was moved into fold_single_bit_test,
     The code to make this transformation was moved into fold_single_bit_test,
     so we just call into the folder and expand its result.  */
     so we just call into the folder and expand its result.  */
 
 
  if ((code == NE || code == EQ)
  if ((code == NE || code == EQ)
      && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
      && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
      && integer_pow2p (TREE_OPERAND (arg0, 1)))
      && integer_pow2p (TREE_OPERAND (arg0, 1)))
    {
    {
      tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
      tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
      return expand_expr (fold_single_bit_test (code == NE ? NE_EXPR : EQ_EXPR,
      return expand_expr (fold_single_bit_test (code == NE ? NE_EXPR : EQ_EXPR,
                                                arg0, arg1, type),
                                                arg0, arg1, type),
                          target, VOIDmode, EXPAND_NORMAL);
                          target, VOIDmode, EXPAND_NORMAL);
    }
    }
 
 
  /* Now see if we are likely to be able to do this.  Return if not.  */
  /* Now see if we are likely to be able to do this.  Return if not.  */
  if (! can_compare_p (code, operand_mode, ccp_store_flag))
  if (! can_compare_p (code, operand_mode, ccp_store_flag))
    return 0;
    return 0;
 
 
  icode = setcc_gen_code[(int) code];
  icode = setcc_gen_code[(int) code];
  if (icode == CODE_FOR_nothing
  if (icode == CODE_FOR_nothing
      || (only_cheap && insn_data[(int) icode].operand[0].mode != mode))
      || (only_cheap && insn_data[(int) icode].operand[0].mode != mode))
    {
    {
      /* We can only do this if it is one of the special cases that
      /* We can only do this if it is one of the special cases that
         can be handled without an scc insn.  */
         can be handled without an scc insn.  */
      if ((code == LT && integer_zerop (arg1))
      if ((code == LT && integer_zerop (arg1))
          || (! only_cheap && code == GE && integer_zerop (arg1)))
          || (! only_cheap && code == GE && integer_zerop (arg1)))
        ;
        ;
      else if (! only_cheap && (code == NE || code == EQ)
      else if (! only_cheap && (code == NE || code == EQ)
               && TREE_CODE (type) != REAL_TYPE
               && TREE_CODE (type) != REAL_TYPE
               && ((abs_optab->handlers[(int) operand_mode].insn_code
               && ((abs_optab->handlers[(int) operand_mode].insn_code
                    != CODE_FOR_nothing)
                    != CODE_FOR_nothing)
                   || (ffs_optab->handlers[(int) operand_mode].insn_code
                   || (ffs_optab->handlers[(int) operand_mode].insn_code
                       != CODE_FOR_nothing)))
                       != CODE_FOR_nothing)))
        ;
        ;
      else
      else
        return 0;
        return 0;
    }
    }
 
 
  if (! get_subtarget (target)
  if (! get_subtarget (target)
      || GET_MODE (subtarget) != operand_mode)
      || GET_MODE (subtarget) != operand_mode)
    subtarget = 0;
    subtarget = 0;
 
 
  expand_operands (arg0, arg1, subtarget, &op0, &op1, 0);
  expand_operands (arg0, arg1, subtarget, &op0, &op1, 0);
 
 
  if (target == 0)
  if (target == 0)
    target = gen_reg_rtx (mode);
    target = gen_reg_rtx (mode);
 
 
  result = emit_store_flag (target, code, op0, op1,
  result = emit_store_flag (target, code, op0, op1,
                            operand_mode, unsignedp, 1);
                            operand_mode, unsignedp, 1);
 
 
  if (result)
  if (result)
    {
    {
      if (invert)
      if (invert)
        result = expand_binop (mode, xor_optab, result, const1_rtx,
        result = expand_binop (mode, xor_optab, result, const1_rtx,
                               result, 0, OPTAB_LIB_WIDEN);
                               result, 0, OPTAB_LIB_WIDEN);
      return result;
      return result;
    }
    }
 
 
  /* If this failed, we have to do this with set/compare/jump/set code.  */
  /* If this failed, we have to do this with set/compare/jump/set code.  */
  if (!REG_P (target)
  if (!REG_P (target)
      || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
      || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
    target = gen_reg_rtx (GET_MODE (target));
    target = gen_reg_rtx (GET_MODE (target));
 
 
  emit_move_insn (target, invert ? const0_rtx : const1_rtx);
  emit_move_insn (target, invert ? const0_rtx : const1_rtx);
  result = compare_from_rtx (op0, op1, code, unsignedp,
  result = compare_from_rtx (op0, op1, code, unsignedp,
                             operand_mode, NULL_RTX);
                             operand_mode, NULL_RTX);
  if (GET_CODE (result) == CONST_INT)
  if (GET_CODE (result) == CONST_INT)
    return (((result == const0_rtx && ! invert)
    return (((result == const0_rtx && ! invert)
             || (result != const0_rtx && invert))
             || (result != const0_rtx && invert))
            ? const0_rtx : const1_rtx);
            ? const0_rtx : const1_rtx);
 
 
  /* The code of RESULT may not match CODE if compare_from_rtx
  /* The code of RESULT may not match CODE if compare_from_rtx
     decided to swap its operands and reverse the original code.
     decided to swap its operands and reverse the original code.
 
 
     We know that compare_from_rtx returns either a CONST_INT or
     We know that compare_from_rtx returns either a CONST_INT or
     a new comparison code, so it is safe to just extract the
     a new comparison code, so it is safe to just extract the
     code from RESULT.  */
     code from RESULT.  */
  code = GET_CODE (result);
  code = GET_CODE (result);
 
 
  label = gen_label_rtx ();
  label = gen_label_rtx ();
  gcc_assert (bcc_gen_fctn[(int) code]);
  gcc_assert (bcc_gen_fctn[(int) code]);
 
 
  emit_jump_insn ((*bcc_gen_fctn[(int) code]) (label));
  emit_jump_insn ((*bcc_gen_fctn[(int) code]) (label));
  emit_move_insn (target, invert ? const1_rtx : const0_rtx);
  emit_move_insn (target, invert ? const1_rtx : const0_rtx);
  emit_label (label);
  emit_label (label);
 
 
  return target;
  return target;
}
}


 
 
/* Stubs in case we haven't got a casesi insn.  */
/* Stubs in case we haven't got a casesi insn.  */
#ifndef HAVE_casesi
#ifndef HAVE_casesi
# define HAVE_casesi 0
# define HAVE_casesi 0
# define gen_casesi(a, b, c, d, e) (0)
# define gen_casesi(a, b, c, d, e) (0)
# define CODE_FOR_casesi CODE_FOR_nothing
# define CODE_FOR_casesi CODE_FOR_nothing
#endif
#endif
 
 
/* If the machine does not have a case insn that compares the bounds,
/* If the machine does not have a case insn that compares the bounds,
   this means extra overhead for dispatch tables, which raises the
   this means extra overhead for dispatch tables, which raises the
   threshold for using them.  */
   threshold for using them.  */
#ifndef CASE_VALUES_THRESHOLD
#ifndef CASE_VALUES_THRESHOLD
#define CASE_VALUES_THRESHOLD (HAVE_casesi ? 4 : 5)
#define CASE_VALUES_THRESHOLD (HAVE_casesi ? 4 : 5)
#endif /* CASE_VALUES_THRESHOLD */
#endif /* CASE_VALUES_THRESHOLD */
 
 
unsigned int
unsigned int
case_values_threshold (void)
case_values_threshold (void)
{
{
  return CASE_VALUES_THRESHOLD;
  return CASE_VALUES_THRESHOLD;
}
}
 
 
/* Attempt to generate a casesi instruction.  Returns 1 if successful,
/* Attempt to generate a casesi instruction.  Returns 1 if successful,
   0 otherwise (i.e. if there is no casesi instruction).  */
   0 otherwise (i.e. if there is no casesi instruction).  */
int
int
try_casesi (tree index_type, tree index_expr, tree minval, tree range,
try_casesi (tree index_type, tree index_expr, tree minval, tree range,
            rtx table_label ATTRIBUTE_UNUSED, rtx default_label)
            rtx table_label ATTRIBUTE_UNUSED, rtx default_label)
{
{
  enum machine_mode index_mode = SImode;
  enum machine_mode index_mode = SImode;
  int index_bits = GET_MODE_BITSIZE (index_mode);
  int index_bits = GET_MODE_BITSIZE (index_mode);
  rtx op1, op2, index;
  rtx op1, op2, index;
  enum machine_mode op_mode;
  enum machine_mode op_mode;
 
 
  if (! HAVE_casesi)
  if (! HAVE_casesi)
    return 0;
    return 0;
 
 
  /* Convert the index to SImode.  */
  /* Convert the index to SImode.  */
  if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
  if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
    {
    {
      enum machine_mode omode = TYPE_MODE (index_type);
      enum machine_mode omode = TYPE_MODE (index_type);
      rtx rangertx = expand_normal (range);
      rtx rangertx = expand_normal (range);
 
 
      /* We must handle the endpoints in the original mode.  */
      /* We must handle the endpoints in the original mode.  */
      index_expr = build2 (MINUS_EXPR, index_type,
      index_expr = build2 (MINUS_EXPR, index_type,
                           index_expr, minval);
                           index_expr, minval);
      minval = integer_zero_node;
      minval = integer_zero_node;
      index = expand_normal (index_expr);
      index = expand_normal (index_expr);
      emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
      emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
                               omode, 1, default_label);
                               omode, 1, default_label);
      /* Now we can safely truncate.  */
      /* Now we can safely truncate.  */
      index = convert_to_mode (index_mode, index, 0);
      index = convert_to_mode (index_mode, index, 0);
    }
    }
  else
  else
    {
    {
      if (TYPE_MODE (index_type) != index_mode)
      if (TYPE_MODE (index_type) != index_mode)
        {
        {
          index_type = lang_hooks.types.type_for_size (index_bits, 0);
          index_type = lang_hooks.types.type_for_size (index_bits, 0);
          index_expr = fold_convert (index_type, index_expr);
          index_expr = fold_convert (index_type, index_expr);
        }
        }
 
 
      index = expand_normal (index_expr);
      index = expand_normal (index_expr);
    }
    }
 
 
  do_pending_stack_adjust ();
  do_pending_stack_adjust ();
 
 
  op_mode = insn_data[(int) CODE_FOR_casesi].operand[0].mode;
  op_mode = insn_data[(int) CODE_FOR_casesi].operand[0].mode;
  if (! (*insn_data[(int) CODE_FOR_casesi].operand[0].predicate)
  if (! (*insn_data[(int) CODE_FOR_casesi].operand[0].predicate)
      (index, op_mode))
      (index, op_mode))
    index = copy_to_mode_reg (op_mode, index);
    index = copy_to_mode_reg (op_mode, index);
 
 
  op1 = expand_normal (minval);
  op1 = expand_normal (minval);
 
 
  op_mode = insn_data[(int) CODE_FOR_casesi].operand[1].mode;
  op_mode = insn_data[(int) CODE_FOR_casesi].operand[1].mode;
  op1 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (minval)),
  op1 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (minval)),
                       op1, TYPE_UNSIGNED (TREE_TYPE (minval)));
                       op1, TYPE_UNSIGNED (TREE_TYPE (minval)));
  if (! (*insn_data[(int) CODE_FOR_casesi].operand[1].predicate)
  if (! (*insn_data[(int) CODE_FOR_casesi].operand[1].predicate)
      (op1, op_mode))
      (op1, op_mode))
    op1 = copy_to_mode_reg (op_mode, op1);
    op1 = copy_to_mode_reg (op_mode, op1);
 
 
  op2 = expand_normal (range);
  op2 = expand_normal (range);
 
 
  op_mode = insn_data[(int) CODE_FOR_casesi].operand[2].mode;
  op_mode = insn_data[(int) CODE_FOR_casesi].operand[2].mode;
  op2 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (range)),
  op2 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (range)),
                       op2, TYPE_UNSIGNED (TREE_TYPE (range)));
                       op2, TYPE_UNSIGNED (TREE_TYPE (range)));
  if (! (*insn_data[(int) CODE_FOR_casesi].operand[2].predicate)
  if (! (*insn_data[(int) CODE_FOR_casesi].operand[2].predicate)
      (op2, op_mode))
      (op2, op_mode))
    op2 = copy_to_mode_reg (op_mode, op2);
    op2 = copy_to_mode_reg (op_mode, op2);
 
 
  emit_jump_insn (gen_casesi (index, op1, op2,
  emit_jump_insn (gen_casesi (index, op1, op2,
                              table_label, default_label));
                              table_label, default_label));
  return 1;
  return 1;
}
}
 
 
/* Attempt to generate a tablejump instruction; same concept.  */
/* Attempt to generate a tablejump instruction; same concept.  */
#ifndef HAVE_tablejump
#ifndef HAVE_tablejump
#define HAVE_tablejump 0
#define HAVE_tablejump 0
#define gen_tablejump(x, y) (0)
#define gen_tablejump(x, y) (0)
#endif
#endif
 
 
/* Subroutine of the next function.
/* Subroutine of the next function.
 
 
   INDEX is the value being switched on, with the lowest value
   INDEX is the value being switched on, with the lowest value
   in the table already subtracted.
   in the table already subtracted.
   MODE is its expected mode (needed if INDEX is constant).
   MODE is its expected mode (needed if INDEX is constant).
   RANGE is the length of the jump table.
   RANGE is the length of the jump table.
   TABLE_LABEL is a CODE_LABEL rtx for the table itself.
   TABLE_LABEL is a CODE_LABEL rtx for the table itself.
 
 
   DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
   DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
   index value is out of range.  */
   index value is out of range.  */
 
 
static void
static void
do_tablejump (rtx index, enum machine_mode mode, rtx range, rtx table_label,
do_tablejump (rtx index, enum machine_mode mode, rtx range, rtx table_label,
              rtx default_label)
              rtx default_label)
{
{
  rtx temp, vector;
  rtx temp, vector;
 
 
  if (INTVAL (range) > cfun->max_jumptable_ents)
  if (INTVAL (range) > cfun->max_jumptable_ents)
    cfun->max_jumptable_ents = INTVAL (range);
    cfun->max_jumptable_ents = INTVAL (range);
 
 
  /* Do an unsigned comparison (in the proper mode) between the index
  /* Do an unsigned comparison (in the proper mode) between the index
     expression and the value which represents the length of the range.
     expression and the value which represents the length of the range.
     Since we just finished subtracting the lower bound of the range
     Since we just finished subtracting the lower bound of the range
     from the index expression, this comparison allows us to simultaneously
     from the index expression, this comparison allows us to simultaneously
     check that the original index expression value is both greater than
     check that the original index expression value is both greater than
     or equal to the minimum value of the range and less than or equal to
     or equal to the minimum value of the range and less than or equal to
     the maximum value of the range.  */
     the maximum value of the range.  */
 
 
  emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
  emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
                           default_label);
                           default_label);
 
 
  /* If index is in range, it must fit in Pmode.
  /* If index is in range, it must fit in Pmode.
     Convert to Pmode so we can index with it.  */
     Convert to Pmode so we can index with it.  */
  if (mode != Pmode)
  if (mode != Pmode)
    index = convert_to_mode (Pmode, index, 1);
    index = convert_to_mode (Pmode, index, 1);
 
 
  /* Don't let a MEM slip through, because then INDEX that comes
  /* Don't let a MEM slip through, because then INDEX that comes
     out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
     out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
     and break_out_memory_refs will go to work on it and mess it up.  */
     and break_out_memory_refs will go to work on it and mess it up.  */
#ifdef PIC_CASE_VECTOR_ADDRESS
#ifdef PIC_CASE_VECTOR_ADDRESS
  if (flag_pic && !REG_P (index))
  if (flag_pic && !REG_P (index))
    index = copy_to_mode_reg (Pmode, index);
    index = copy_to_mode_reg (Pmode, index);
#endif
#endif
 
 
  /* If flag_force_addr were to affect this address
  /* If flag_force_addr were to affect this address
     it could interfere with the tricky assumptions made
     it could interfere with the tricky assumptions made
     about addresses that contain label-refs,
     about addresses that contain label-refs,
     which may be valid only very near the tablejump itself.  */
     which may be valid only very near the tablejump itself.  */
  /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
  /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
     GET_MODE_SIZE, because this indicates how large insns are.  The other
     GET_MODE_SIZE, because this indicates how large insns are.  The other
     uses should all be Pmode, because they are addresses.  This code
     uses should all be Pmode, because they are addresses.  This code
     could fail if addresses and insns are not the same size.  */
     could fail if addresses and insns are not the same size.  */
  index = gen_rtx_PLUS (Pmode,
  index = gen_rtx_PLUS (Pmode,
                        gen_rtx_MULT (Pmode, index,
                        gen_rtx_MULT (Pmode, index,
                                      GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
                                      GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
                        gen_rtx_LABEL_REF (Pmode, table_label));
                        gen_rtx_LABEL_REF (Pmode, table_label));
#ifdef PIC_CASE_VECTOR_ADDRESS
#ifdef PIC_CASE_VECTOR_ADDRESS
  if (flag_pic)
  if (flag_pic)
    index = PIC_CASE_VECTOR_ADDRESS (index);
    index = PIC_CASE_VECTOR_ADDRESS (index);
  else
  else
#endif
#endif
    index = memory_address_noforce (CASE_VECTOR_MODE, index);
    index = memory_address_noforce (CASE_VECTOR_MODE, index);
  temp = gen_reg_rtx (CASE_VECTOR_MODE);
  temp = gen_reg_rtx (CASE_VECTOR_MODE);
  vector = gen_const_mem (CASE_VECTOR_MODE, index);
  vector = gen_const_mem (CASE_VECTOR_MODE, index);
  convert_move (temp, vector, 0);
  convert_move (temp, vector, 0);
 
 
  emit_jump_insn (gen_tablejump (temp, table_label));
  emit_jump_insn (gen_tablejump (temp, table_label));
 
 
  /* If we are generating PIC code or if the table is PC-relative, the
  /* If we are generating PIC code or if the table is PC-relative, the
     table and JUMP_INSN must be adjacent, so don't output a BARRIER.  */
     table and JUMP_INSN must be adjacent, so don't output a BARRIER.  */
  if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
  if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
    emit_barrier ();
    emit_barrier ();
}
}
 
 
int
int
try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
               rtx table_label, rtx default_label)
               rtx table_label, rtx default_label)
{
{
  rtx index;
  rtx index;
 
 
  if (! HAVE_tablejump)
  if (! HAVE_tablejump)
    return 0;
    return 0;
 
 
  index_expr = fold_build2 (MINUS_EXPR, index_type,
  index_expr = fold_build2 (MINUS_EXPR, index_type,
                            fold_convert (index_type, index_expr),
                            fold_convert (index_type, index_expr),
                            fold_convert (index_type, minval));
                            fold_convert (index_type, minval));
  index = expand_normal (index_expr);
  index = expand_normal (index_expr);
  do_pending_stack_adjust ();
  do_pending_stack_adjust ();
 
 
  do_tablejump (index, TYPE_MODE (index_type),
  do_tablejump (index, TYPE_MODE (index_type),
                convert_modes (TYPE_MODE (index_type),
                convert_modes (TYPE_MODE (index_type),
                               TYPE_MODE (TREE_TYPE (range)),
                               TYPE_MODE (TREE_TYPE (range)),
                               expand_normal (range),
                               expand_normal (range),
                               TYPE_UNSIGNED (TREE_TYPE (range))),
                               TYPE_UNSIGNED (TREE_TYPE (range))),
                table_label, default_label);
                table_label, default_label);
  return 1;
  return 1;
}
}
 
 
/* Nonzero if the mode is a valid vector mode for this architecture.
/* Nonzero if the mode is a valid vector mode for this architecture.
   This returns nonzero even if there is no hardware support for the
   This returns nonzero even if there is no hardware support for the
   vector mode, but we can emulate with narrower modes.  */
   vector mode, but we can emulate with narrower modes.  */
 
 
int
int
vector_mode_valid_p (enum machine_mode mode)
vector_mode_valid_p (enum machine_mode mode)
{
{
  enum mode_class class = GET_MODE_CLASS (mode);
  enum mode_class class = GET_MODE_CLASS (mode);
  enum machine_mode innermode;
  enum machine_mode innermode;
 
 
  /* Doh!  What's going on?  */
  /* Doh!  What's going on?  */
  if (class != MODE_VECTOR_INT
  if (class != MODE_VECTOR_INT
      && class != MODE_VECTOR_FLOAT)
      && class != MODE_VECTOR_FLOAT)
    return 0;
    return 0;
 
 
  /* Hardware support.  Woo hoo!  */
  /* Hardware support.  Woo hoo!  */
  if (targetm.vector_mode_supported_p (mode))
  if (targetm.vector_mode_supported_p (mode))
    return 1;
    return 1;
 
 
  innermode = GET_MODE_INNER (mode);
  innermode = GET_MODE_INNER (mode);
 
 
  /* We should probably return 1 if requesting V4DI and we have no DI,
  /* We should probably return 1 if requesting V4DI and we have no DI,
     but we have V2DI, but this is probably very unlikely.  */
     but we have V2DI, but this is probably very unlikely.  */
 
 
  /* If we have support for the inner mode, we can safely emulate it.
  /* If we have support for the inner mode, we can safely emulate it.
     We may not have V2DI, but me can emulate with a pair of DIs.  */
     We may not have V2DI, but me can emulate with a pair of DIs.  */
  return targetm.scalar_mode_supported_p (innermode);
  return targetm.scalar_mode_supported_p (innermode);
}
}
 
 
/* Return a CONST_VECTOR rtx for a VECTOR_CST tree.  */
/* Return a CONST_VECTOR rtx for a VECTOR_CST tree.  */
static rtx
static rtx
const_vector_from_tree (tree exp)
const_vector_from_tree (tree exp)
{
{
  rtvec v;
  rtvec v;
  int units, i;
  int units, i;
  tree link, elt;
  tree link, elt;
  enum machine_mode inner, mode;
  enum machine_mode inner, mode;
 
 
  mode = TYPE_MODE (TREE_TYPE (exp));
  mode = TYPE_MODE (TREE_TYPE (exp));
 
 
  if (initializer_zerop (exp))
  if (initializer_zerop (exp))
    return CONST0_RTX (mode);
    return CONST0_RTX (mode);
 
 
  units = GET_MODE_NUNITS (mode);
  units = GET_MODE_NUNITS (mode);
  inner = GET_MODE_INNER (mode);
  inner = GET_MODE_INNER (mode);
 
 
  v = rtvec_alloc (units);
  v = rtvec_alloc (units);
 
 
  link = TREE_VECTOR_CST_ELTS (exp);
  link = TREE_VECTOR_CST_ELTS (exp);
  for (i = 0; link; link = TREE_CHAIN (link), ++i)
  for (i = 0; link; link = TREE_CHAIN (link), ++i)
    {
    {
      elt = TREE_VALUE (link);
      elt = TREE_VALUE (link);
 
 
      if (TREE_CODE (elt) == REAL_CST)
      if (TREE_CODE (elt) == REAL_CST)
        RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
        RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
                                                         inner);
                                                         inner);
      else
      else
        RTVEC_ELT (v, i) = immed_double_const (TREE_INT_CST_LOW (elt),
        RTVEC_ELT (v, i) = immed_double_const (TREE_INT_CST_LOW (elt),
                                               TREE_INT_CST_HIGH (elt),
                                               TREE_INT_CST_HIGH (elt),
                                               inner);
                                               inner);
    }
    }
 
 
  /* Initialize remaining elements to 0.  */
  /* Initialize remaining elements to 0.  */
  for (; i < units; ++i)
  for (; i < units; ++i)
    RTVEC_ELT (v, i) = CONST0_RTX (inner);
    RTVEC_ELT (v, i) = CONST0_RTX (inner);
 
 
  return gen_rtx_CONST_VECTOR (mode, v);
  return gen_rtx_CONST_VECTOR (mode, v);
}
}
#include "gt-expr.h"
#include "gt-expr.h"
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.