OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gcc-4.2.2/] [gcc/] [fold-const.c] - Diff between revs 154 and 816

Only display areas with differences | Details | Blame | View Log

Rev 154 Rev 816
/* Fold a constant sub-tree into a single node for C-compiler
/* Fold a constant sub-tree into a single node for C-compiler
   Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
   Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
   2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
   2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify it under
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
Software Foundation; either version 3, or (at your option) any later
version.
version.
 
 
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
/*@@ This file should be rewritten to use an arbitrary precision
/*@@ This file should be rewritten to use an arbitrary precision
  @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
  @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
  @@ Perhaps the routines could also be used for bc/dc, and made a lib.
  @@ Perhaps the routines could also be used for bc/dc, and made a lib.
  @@ The routines that translate from the ap rep should
  @@ The routines that translate from the ap rep should
  @@ warn if precision et. al. is lost.
  @@ warn if precision et. al. is lost.
  @@ This would also make life easier when this technology is used
  @@ This would also make life easier when this technology is used
  @@ for cross-compilers.  */
  @@ for cross-compilers.  */
 
 
/* The entry points in this file are fold, size_int_wide, size_binop
/* The entry points in this file are fold, size_int_wide, size_binop
   and force_fit_type.
   and force_fit_type.
 
 
   fold takes a tree as argument and returns a simplified tree.
   fold takes a tree as argument and returns a simplified tree.
 
 
   size_binop takes a tree code for an arithmetic operation
   size_binop takes a tree code for an arithmetic operation
   and two operands that are trees, and produces a tree for the
   and two operands that are trees, and produces a tree for the
   result, assuming the type comes from `sizetype'.
   result, assuming the type comes from `sizetype'.
 
 
   size_int takes an integer value, and creates a tree constant
   size_int takes an integer value, and creates a tree constant
   with type from `sizetype'.
   with type from `sizetype'.
 
 
   force_fit_type takes a constant, an overflowable flag and prior
   force_fit_type takes a constant, an overflowable flag and prior
   overflow indicators.  It forces the value to fit the type and sets
   overflow indicators.  It forces the value to fit the type and sets
   TREE_OVERFLOW and TREE_CONSTANT_OVERFLOW as appropriate.  */
   TREE_OVERFLOW and TREE_CONSTANT_OVERFLOW as appropriate.  */
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "flags.h"
#include "flags.h"
#include "tree.h"
#include "tree.h"
#include "real.h"
#include "real.h"
#include "rtl.h"
#include "rtl.h"
#include "expr.h"
#include "expr.h"
#include "tm_p.h"
#include "tm_p.h"
#include "toplev.h"
#include "toplev.h"
#include "intl.h"
#include "intl.h"
#include "ggc.h"
#include "ggc.h"
#include "hashtab.h"
#include "hashtab.h"
#include "langhooks.h"
#include "langhooks.h"
#include "md5.h"
#include "md5.h"
 
 
/* Non-zero if we are folding constants inside an initializer; zero
/* Non-zero if we are folding constants inside an initializer; zero
   otherwise.  */
   otherwise.  */
int folding_initializer = 0;
int folding_initializer = 0;
 
 
/* The following constants represent a bit based encoding of GCC's
/* The following constants represent a bit based encoding of GCC's
   comparison operators.  This encoding simplifies transformations
   comparison operators.  This encoding simplifies transformations
   on relational comparison operators, such as AND and OR.  */
   on relational comparison operators, such as AND and OR.  */
enum comparison_code {
enum comparison_code {
  COMPCODE_FALSE = 0,
  COMPCODE_FALSE = 0,
  COMPCODE_LT = 1,
  COMPCODE_LT = 1,
  COMPCODE_EQ = 2,
  COMPCODE_EQ = 2,
  COMPCODE_LE = 3,
  COMPCODE_LE = 3,
  COMPCODE_GT = 4,
  COMPCODE_GT = 4,
  COMPCODE_LTGT = 5,
  COMPCODE_LTGT = 5,
  COMPCODE_GE = 6,
  COMPCODE_GE = 6,
  COMPCODE_ORD = 7,
  COMPCODE_ORD = 7,
  COMPCODE_UNORD = 8,
  COMPCODE_UNORD = 8,
  COMPCODE_UNLT = 9,
  COMPCODE_UNLT = 9,
  COMPCODE_UNEQ = 10,
  COMPCODE_UNEQ = 10,
  COMPCODE_UNLE = 11,
  COMPCODE_UNLE = 11,
  COMPCODE_UNGT = 12,
  COMPCODE_UNGT = 12,
  COMPCODE_NE = 13,
  COMPCODE_NE = 13,
  COMPCODE_UNGE = 14,
  COMPCODE_UNGE = 14,
  COMPCODE_TRUE = 15
  COMPCODE_TRUE = 15
};
};
 
 
static void encode (HOST_WIDE_INT *, unsigned HOST_WIDE_INT, HOST_WIDE_INT);
static void encode (HOST_WIDE_INT *, unsigned HOST_WIDE_INT, HOST_WIDE_INT);
static void decode (HOST_WIDE_INT *, unsigned HOST_WIDE_INT *, HOST_WIDE_INT *);
static void decode (HOST_WIDE_INT *, unsigned HOST_WIDE_INT *, HOST_WIDE_INT *);
static bool negate_mathfn_p (enum built_in_function);
static bool negate_mathfn_p (enum built_in_function);
static bool negate_expr_p (tree);
static bool negate_expr_p (tree);
static tree negate_expr (tree);
static tree negate_expr (tree);
static tree split_tree (tree, enum tree_code, tree *, tree *, tree *, int);
static tree split_tree (tree, enum tree_code, tree *, tree *, tree *, int);
static tree associate_trees (tree, tree, enum tree_code, tree);
static tree associate_trees (tree, tree, enum tree_code, tree);
static tree const_binop (enum tree_code, tree, tree, int);
static tree const_binop (enum tree_code, tree, tree, int);
static enum comparison_code comparison_to_compcode (enum tree_code);
static enum comparison_code comparison_to_compcode (enum tree_code);
static enum tree_code compcode_to_comparison (enum comparison_code);
static enum tree_code compcode_to_comparison (enum comparison_code);
static tree combine_comparisons (enum tree_code, enum tree_code,
static tree combine_comparisons (enum tree_code, enum tree_code,
                                 enum tree_code, tree, tree, tree);
                                 enum tree_code, tree, tree, tree);
static int truth_value_p (enum tree_code);
static int truth_value_p (enum tree_code);
static int operand_equal_for_comparison_p (tree, tree, tree);
static int operand_equal_for_comparison_p (tree, tree, tree);
static int twoval_comparison_p (tree, tree *, tree *, int *);
static int twoval_comparison_p (tree, tree *, tree *, int *);
static tree eval_subst (tree, tree, tree, tree, tree);
static tree eval_subst (tree, tree, tree, tree, tree);
static tree pedantic_omit_one_operand (tree, tree, tree);
static tree pedantic_omit_one_operand (tree, tree, tree);
static tree distribute_bit_expr (enum tree_code, tree, tree, tree);
static tree distribute_bit_expr (enum tree_code, tree, tree, tree);
static tree make_bit_field_ref (tree, tree, int, int, int);
static tree make_bit_field_ref (tree, tree, int, int, int);
static tree optimize_bit_field_compare (enum tree_code, tree, tree, tree);
static tree optimize_bit_field_compare (enum tree_code, tree, tree, tree);
static tree decode_field_reference (tree, HOST_WIDE_INT *, HOST_WIDE_INT *,
static tree decode_field_reference (tree, HOST_WIDE_INT *, HOST_WIDE_INT *,
                                    enum machine_mode *, int *, int *,
                                    enum machine_mode *, int *, int *,
                                    tree *, tree *);
                                    tree *, tree *);
static int all_ones_mask_p (tree, int);
static int all_ones_mask_p (tree, int);
static tree sign_bit_p (tree, tree);
static tree sign_bit_p (tree, tree);
static int simple_operand_p (tree);
static int simple_operand_p (tree);
static tree range_binop (enum tree_code, tree, tree, int, tree, int);
static tree range_binop (enum tree_code, tree, tree, int, tree, int);
static tree range_predecessor (tree);
static tree range_predecessor (tree);
static tree range_successor (tree);
static tree range_successor (tree);
static tree make_range (tree, int *, tree *, tree *, bool *);
static tree make_range (tree, int *, tree *, tree *, bool *);
static tree build_range_check (tree, tree, int, tree, tree);
static tree build_range_check (tree, tree, int, tree, tree);
static int merge_ranges (int *, tree *, tree *, int, tree, tree, int, tree,
static int merge_ranges (int *, tree *, tree *, int, tree, tree, int, tree,
                         tree);
                         tree);
static tree fold_range_test (enum tree_code, tree, tree, tree);
static tree fold_range_test (enum tree_code, tree, tree, tree);
static tree fold_cond_expr_with_comparison (tree, tree, tree, tree);
static tree fold_cond_expr_with_comparison (tree, tree, tree, tree);
static tree unextend (tree, int, int, tree);
static tree unextend (tree, int, int, tree);
static tree fold_truthop (enum tree_code, tree, tree, tree);
static tree fold_truthop (enum tree_code, tree, tree, tree);
static tree optimize_minmax_comparison (enum tree_code, tree, tree, tree);
static tree optimize_minmax_comparison (enum tree_code, tree, tree, tree);
static tree extract_muldiv (tree, tree, enum tree_code, tree, bool *);
static tree extract_muldiv (tree, tree, enum tree_code, tree, bool *);
static tree extract_muldiv_1 (tree, tree, enum tree_code, tree, bool *);
static tree extract_muldiv_1 (tree, tree, enum tree_code, tree, bool *);
static int multiple_of_p (tree, tree, tree);
static int multiple_of_p (tree, tree, tree);
static tree fold_binary_op_with_conditional_arg (enum tree_code, tree,
static tree fold_binary_op_with_conditional_arg (enum tree_code, tree,
                                                 tree, tree,
                                                 tree, tree,
                                                 tree, tree, int);
                                                 tree, tree, int);
static bool fold_real_zero_addition_p (tree, tree, int);
static bool fold_real_zero_addition_p (tree, tree, int);
static tree fold_mathfn_compare (enum built_in_function, enum tree_code,
static tree fold_mathfn_compare (enum built_in_function, enum tree_code,
                                 tree, tree, tree);
                                 tree, tree, tree);
static tree fold_inf_compare (enum tree_code, tree, tree, tree);
static tree fold_inf_compare (enum tree_code, tree, tree, tree);
static tree fold_div_compare (enum tree_code, tree, tree, tree);
static tree fold_div_compare (enum tree_code, tree, tree, tree);
static bool reorder_operands_p (tree, tree);
static bool reorder_operands_p (tree, tree);
static tree fold_negate_const (tree, tree);
static tree fold_negate_const (tree, tree);
static tree fold_not_const (tree, tree);
static tree fold_not_const (tree, tree);
static tree fold_relational_const (enum tree_code, tree, tree, tree);
static tree fold_relational_const (enum tree_code, tree, tree, tree);
static int native_encode_expr (tree, unsigned char *, int);
static int native_encode_expr (tree, unsigned char *, int);
static tree native_interpret_expr (tree, unsigned char *, int);
static tree native_interpret_expr (tree, unsigned char *, int);
 
 
 
 
/* We know that A1 + B1 = SUM1, using 2's complement arithmetic and ignoring
/* We know that A1 + B1 = SUM1, using 2's complement arithmetic and ignoring
   overflow.  Suppose A, B and SUM have the same respective signs as A1, B1,
   overflow.  Suppose A, B and SUM have the same respective signs as A1, B1,
   and SUM1.  Then this yields nonzero if overflow occurred during the
   and SUM1.  Then this yields nonzero if overflow occurred during the
   addition.
   addition.
 
 
   Overflow occurs if A and B have the same sign, but A and SUM differ in
   Overflow occurs if A and B have the same sign, but A and SUM differ in
   sign.  Use `^' to test whether signs differ, and `< 0' to isolate the
   sign.  Use `^' to test whether signs differ, and `< 0' to isolate the
   sign.  */
   sign.  */
#define OVERFLOW_SUM_SIGN(a, b, sum) ((~((a) ^ (b)) & ((a) ^ (sum))) < 0)
#define OVERFLOW_SUM_SIGN(a, b, sum) ((~((a) ^ (b)) & ((a) ^ (sum))) < 0)


/* To do constant folding on INTEGER_CST nodes requires two-word arithmetic.
/* To do constant folding on INTEGER_CST nodes requires two-word arithmetic.
   We do that by representing the two-word integer in 4 words, with only
   We do that by representing the two-word integer in 4 words, with only
   HOST_BITS_PER_WIDE_INT / 2 bits stored in each word, as a positive
   HOST_BITS_PER_WIDE_INT / 2 bits stored in each word, as a positive
   number.  The value of the word is LOWPART + HIGHPART * BASE.  */
   number.  The value of the word is LOWPART + HIGHPART * BASE.  */
 
 
#define LOWPART(x) \
#define LOWPART(x) \
  ((x) & (((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)) - 1))
  ((x) & (((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)) - 1))
#define HIGHPART(x) \
#define HIGHPART(x) \
  ((unsigned HOST_WIDE_INT) (x) >> HOST_BITS_PER_WIDE_INT / 2)
  ((unsigned HOST_WIDE_INT) (x) >> HOST_BITS_PER_WIDE_INT / 2)
#define BASE ((unsigned HOST_WIDE_INT) 1 << HOST_BITS_PER_WIDE_INT / 2)
#define BASE ((unsigned HOST_WIDE_INT) 1 << HOST_BITS_PER_WIDE_INT / 2)
 
 
/* Unpack a two-word integer into 4 words.
/* Unpack a two-word integer into 4 words.
   LOW and HI are the integer, as two `HOST_WIDE_INT' pieces.
   LOW and HI are the integer, as two `HOST_WIDE_INT' pieces.
   WORDS points to the array of HOST_WIDE_INTs.  */
   WORDS points to the array of HOST_WIDE_INTs.  */
 
 
static void
static void
encode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
encode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
{
{
  words[0] = LOWPART (low);
  words[0] = LOWPART (low);
  words[1] = HIGHPART (low);
  words[1] = HIGHPART (low);
  words[2] = LOWPART (hi);
  words[2] = LOWPART (hi);
  words[3] = HIGHPART (hi);
  words[3] = HIGHPART (hi);
}
}
 
 
/* Pack an array of 4 words into a two-word integer.
/* Pack an array of 4 words into a two-word integer.
   WORDS points to the array of words.
   WORDS points to the array of words.
   The integer is stored into *LOW and *HI as two `HOST_WIDE_INT' pieces.  */
   The integer is stored into *LOW and *HI as two `HOST_WIDE_INT' pieces.  */
 
 
static void
static void
decode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT *low,
decode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT *low,
        HOST_WIDE_INT *hi)
        HOST_WIDE_INT *hi)
{
{
  *low = words[0] + words[1] * BASE;
  *low = words[0] + words[1] * BASE;
  *hi = words[2] + words[3] * BASE;
  *hi = words[2] + words[3] * BASE;
}
}


/* T is an INT_CST node.  OVERFLOWABLE indicates if we are interested
/* T is an INT_CST node.  OVERFLOWABLE indicates if we are interested
   in overflow of the value, when >0 we are only interested in signed
   in overflow of the value, when >0 we are only interested in signed
   overflow, for <0 we are interested in any overflow.  OVERFLOWED
   overflow, for <0 we are interested in any overflow.  OVERFLOWED
   indicates whether overflow has already occurred.  CONST_OVERFLOWED
   indicates whether overflow has already occurred.  CONST_OVERFLOWED
   indicates whether constant overflow has already occurred.  We force
   indicates whether constant overflow has already occurred.  We force
   T's value to be within range of T's type (by setting to 0 or 1 all
   T's value to be within range of T's type (by setting to 0 or 1 all
   the bits outside the type's range).  We set TREE_OVERFLOWED if,
   the bits outside the type's range).  We set TREE_OVERFLOWED if,
        OVERFLOWED is nonzero,
        OVERFLOWED is nonzero,
        or OVERFLOWABLE is >0 and signed overflow occurs
        or OVERFLOWABLE is >0 and signed overflow occurs
        or OVERFLOWABLE is <0 and any overflow occurs
        or OVERFLOWABLE is <0 and any overflow occurs
   We set TREE_CONSTANT_OVERFLOWED if,
   We set TREE_CONSTANT_OVERFLOWED if,
        CONST_OVERFLOWED is nonzero
        CONST_OVERFLOWED is nonzero
        or we set TREE_OVERFLOWED.
        or we set TREE_OVERFLOWED.
  We return either the original T, or a copy.  */
  We return either the original T, or a copy.  */
 
 
tree
tree
force_fit_type (tree t, int overflowable,
force_fit_type (tree t, int overflowable,
                bool overflowed, bool overflowed_const)
                bool overflowed, bool overflowed_const)
{
{
  unsigned HOST_WIDE_INT low;
  unsigned HOST_WIDE_INT low;
  HOST_WIDE_INT high;
  HOST_WIDE_INT high;
  unsigned int prec;
  unsigned int prec;
  int sign_extended_type;
  int sign_extended_type;
 
 
  gcc_assert (TREE_CODE (t) == INTEGER_CST);
  gcc_assert (TREE_CODE (t) == INTEGER_CST);
 
 
  low = TREE_INT_CST_LOW (t);
  low = TREE_INT_CST_LOW (t);
  high = TREE_INT_CST_HIGH (t);
  high = TREE_INT_CST_HIGH (t);
 
 
  if (POINTER_TYPE_P (TREE_TYPE (t))
  if (POINTER_TYPE_P (TREE_TYPE (t))
      || TREE_CODE (TREE_TYPE (t)) == OFFSET_TYPE)
      || TREE_CODE (TREE_TYPE (t)) == OFFSET_TYPE)
    prec = POINTER_SIZE;
    prec = POINTER_SIZE;
  else
  else
    prec = TYPE_PRECISION (TREE_TYPE (t));
    prec = TYPE_PRECISION (TREE_TYPE (t));
  /* Size types *are* sign extended.  */
  /* Size types *are* sign extended.  */
  sign_extended_type = (!TYPE_UNSIGNED (TREE_TYPE (t))
  sign_extended_type = (!TYPE_UNSIGNED (TREE_TYPE (t))
                        || (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
                        || (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
                            && TYPE_IS_SIZETYPE (TREE_TYPE (t))));
                            && TYPE_IS_SIZETYPE (TREE_TYPE (t))));
 
 
  /* First clear all bits that are beyond the type's precision.  */
  /* First clear all bits that are beyond the type's precision.  */
 
 
  if (prec >= 2 * HOST_BITS_PER_WIDE_INT)
  if (prec >= 2 * HOST_BITS_PER_WIDE_INT)
    ;
    ;
  else if (prec > HOST_BITS_PER_WIDE_INT)
  else if (prec > HOST_BITS_PER_WIDE_INT)
    high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
    high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
  else
  else
    {
    {
      high = 0;
      high = 0;
      if (prec < HOST_BITS_PER_WIDE_INT)
      if (prec < HOST_BITS_PER_WIDE_INT)
        low &= ~((HOST_WIDE_INT) (-1) << prec);
        low &= ~((HOST_WIDE_INT) (-1) << prec);
    }
    }
 
 
  if (!sign_extended_type)
  if (!sign_extended_type)
    /* No sign extension */;
    /* No sign extension */;
  else if (prec >= 2 * HOST_BITS_PER_WIDE_INT)
  else if (prec >= 2 * HOST_BITS_PER_WIDE_INT)
    /* Correct width already.  */;
    /* Correct width already.  */;
  else if (prec > HOST_BITS_PER_WIDE_INT)
  else if (prec > HOST_BITS_PER_WIDE_INT)
    {
    {
      /* Sign extend top half? */
      /* Sign extend top half? */
      if (high & ((unsigned HOST_WIDE_INT)1
      if (high & ((unsigned HOST_WIDE_INT)1
                  << (prec - HOST_BITS_PER_WIDE_INT - 1)))
                  << (prec - HOST_BITS_PER_WIDE_INT - 1)))
        high |= (HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT);
        high |= (HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT);
    }
    }
  else if (prec == HOST_BITS_PER_WIDE_INT)
  else if (prec == HOST_BITS_PER_WIDE_INT)
    {
    {
      if ((HOST_WIDE_INT)low < 0)
      if ((HOST_WIDE_INT)low < 0)
        high = -1;
        high = -1;
    }
    }
  else
  else
    {
    {
      /* Sign extend bottom half? */
      /* Sign extend bottom half? */
      if (low & ((unsigned HOST_WIDE_INT)1 << (prec - 1)))
      if (low & ((unsigned HOST_WIDE_INT)1 << (prec - 1)))
        {
        {
          high = -1;
          high = -1;
          low |= (HOST_WIDE_INT)(-1) << prec;
          low |= (HOST_WIDE_INT)(-1) << prec;
        }
        }
    }
    }
 
 
  /* If the value changed, return a new node.  */
  /* If the value changed, return a new node.  */
  if (overflowed || overflowed_const
  if (overflowed || overflowed_const
      || low != TREE_INT_CST_LOW (t) || high != TREE_INT_CST_HIGH (t))
      || low != TREE_INT_CST_LOW (t) || high != TREE_INT_CST_HIGH (t))
    {
    {
      t = build_int_cst_wide (TREE_TYPE (t), low, high);
      t = build_int_cst_wide (TREE_TYPE (t), low, high);
 
 
      if (overflowed
      if (overflowed
          || overflowable < 0
          || overflowable < 0
          || (overflowable > 0 && sign_extended_type))
          || (overflowable > 0 && sign_extended_type))
        {
        {
          t = copy_node (t);
          t = copy_node (t);
          TREE_OVERFLOW (t) = 1;
          TREE_OVERFLOW (t) = 1;
          TREE_CONSTANT_OVERFLOW (t) = 1;
          TREE_CONSTANT_OVERFLOW (t) = 1;
        }
        }
      else if (overflowed_const)
      else if (overflowed_const)
        {
        {
          t = copy_node (t);
          t = copy_node (t);
          TREE_CONSTANT_OVERFLOW (t) = 1;
          TREE_CONSTANT_OVERFLOW (t) = 1;
        }
        }
    }
    }
 
 
  return t;
  return t;
}
}


/* Add two doubleword integers with doubleword result.
/* Add two doubleword integers with doubleword result.
   Return nonzero if the operation overflows according to UNSIGNED_P.
   Return nonzero if the operation overflows according to UNSIGNED_P.
   Each argument is given as two `HOST_WIDE_INT' pieces.
   Each argument is given as two `HOST_WIDE_INT' pieces.
   One argument is L1 and H1; the other, L2 and H2.
   One argument is L1 and H1; the other, L2 and H2.
   The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV.  */
   The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV.  */
 
 
int
int
add_double_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
add_double_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
                      unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
                      unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
                      unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
                      unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
                      bool unsigned_p)
                      bool unsigned_p)
{
{
  unsigned HOST_WIDE_INT l;
  unsigned HOST_WIDE_INT l;
  HOST_WIDE_INT h;
  HOST_WIDE_INT h;
 
 
  l = l1 + l2;
  l = l1 + l2;
  h = h1 + h2 + (l < l1);
  h = h1 + h2 + (l < l1);
 
 
  *lv = l;
  *lv = l;
  *hv = h;
  *hv = h;
 
 
  if (unsigned_p)
  if (unsigned_p)
    return (unsigned HOST_WIDE_INT) h < (unsigned HOST_WIDE_INT) h1;
    return (unsigned HOST_WIDE_INT) h < (unsigned HOST_WIDE_INT) h1;
  else
  else
    return OVERFLOW_SUM_SIGN (h1, h2, h);
    return OVERFLOW_SUM_SIGN (h1, h2, h);
}
}
 
 
/* Negate a doubleword integer with doubleword result.
/* Negate a doubleword integer with doubleword result.
   Return nonzero if the operation overflows, assuming it's signed.
   Return nonzero if the operation overflows, assuming it's signed.
   The argument is given as two `HOST_WIDE_INT' pieces in L1 and H1.
   The argument is given as two `HOST_WIDE_INT' pieces in L1 and H1.
   The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV.  */
   The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV.  */
 
 
int
int
neg_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
neg_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
            unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
            unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
{
{
  if (l1 == 0)
  if (l1 == 0)
    {
    {
      *lv = 0;
      *lv = 0;
      *hv = - h1;
      *hv = - h1;
      return (*hv & h1) < 0;
      return (*hv & h1) < 0;
    }
    }
  else
  else
    {
    {
      *lv = -l1;
      *lv = -l1;
      *hv = ~h1;
      *hv = ~h1;
      return 0;
      return 0;
    }
    }
}
}


/* Multiply two doubleword integers with doubleword result.
/* Multiply two doubleword integers with doubleword result.
   Return nonzero if the operation overflows according to UNSIGNED_P.
   Return nonzero if the operation overflows according to UNSIGNED_P.
   Each argument is given as two `HOST_WIDE_INT' pieces.
   Each argument is given as two `HOST_WIDE_INT' pieces.
   One argument is L1 and H1; the other, L2 and H2.
   One argument is L1 and H1; the other, L2 and H2.
   The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV.  */
   The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV.  */
 
 
int
int
mul_double_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
mul_double_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
                      unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
                      unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
                      unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
                      unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
                      bool unsigned_p)
                      bool unsigned_p)
{
{
  HOST_WIDE_INT arg1[4];
  HOST_WIDE_INT arg1[4];
  HOST_WIDE_INT arg2[4];
  HOST_WIDE_INT arg2[4];
  HOST_WIDE_INT prod[4 * 2];
  HOST_WIDE_INT prod[4 * 2];
  unsigned HOST_WIDE_INT carry;
  unsigned HOST_WIDE_INT carry;
  int i, j, k;
  int i, j, k;
  unsigned HOST_WIDE_INT toplow, neglow;
  unsigned HOST_WIDE_INT toplow, neglow;
  HOST_WIDE_INT tophigh, neghigh;
  HOST_WIDE_INT tophigh, neghigh;
 
 
  encode (arg1, l1, h1);
  encode (arg1, l1, h1);
  encode (arg2, l2, h2);
  encode (arg2, l2, h2);
 
 
  memset (prod, 0, sizeof prod);
  memset (prod, 0, sizeof prod);
 
 
  for (i = 0; i < 4; i++)
  for (i = 0; i < 4; i++)
    {
    {
      carry = 0;
      carry = 0;
      for (j = 0; j < 4; j++)
      for (j = 0; j < 4; j++)
        {
        {
          k = i + j;
          k = i + j;
          /* This product is <= 0xFFFE0001, the sum <= 0xFFFF0000.  */
          /* This product is <= 0xFFFE0001, the sum <= 0xFFFF0000.  */
          carry += arg1[i] * arg2[j];
          carry += arg1[i] * arg2[j];
          /* Since prod[p] < 0xFFFF, this sum <= 0xFFFFFFFF.  */
          /* Since prod[p] < 0xFFFF, this sum <= 0xFFFFFFFF.  */
          carry += prod[k];
          carry += prod[k];
          prod[k] = LOWPART (carry);
          prod[k] = LOWPART (carry);
          carry = HIGHPART (carry);
          carry = HIGHPART (carry);
        }
        }
      prod[i + 4] = carry;
      prod[i + 4] = carry;
    }
    }
 
 
  decode (prod, lv, hv);
  decode (prod, lv, hv);
  decode (prod + 4, &toplow, &tophigh);
  decode (prod + 4, &toplow, &tophigh);
 
 
  /* Unsigned overflow is immediate.  */
  /* Unsigned overflow is immediate.  */
  if (unsigned_p)
  if (unsigned_p)
    return (toplow | tophigh) != 0;
    return (toplow | tophigh) != 0;
 
 
  /* Check for signed overflow by calculating the signed representation of the
  /* Check for signed overflow by calculating the signed representation of the
     top half of the result; it should agree with the low half's sign bit.  */
     top half of the result; it should agree with the low half's sign bit.  */
  if (h1 < 0)
  if (h1 < 0)
    {
    {
      neg_double (l2, h2, &neglow, &neghigh);
      neg_double (l2, h2, &neglow, &neghigh);
      add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
      add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
    }
    }
  if (h2 < 0)
  if (h2 < 0)
    {
    {
      neg_double (l1, h1, &neglow, &neghigh);
      neg_double (l1, h1, &neglow, &neghigh);
      add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
      add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
    }
    }
  return (*hv < 0 ? ~(toplow & tophigh) : toplow | tophigh) != 0;
  return (*hv < 0 ? ~(toplow & tophigh) : toplow | tophigh) != 0;
}
}


/* Shift the doubleword integer in L1, H1 left by COUNT places
/* Shift the doubleword integer in L1, H1 left by COUNT places
   keeping only PREC bits of result.
   keeping only PREC bits of result.
   Shift right if COUNT is negative.
   Shift right if COUNT is negative.
   ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
   ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
   Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV.  */
   Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV.  */
 
 
void
void
lshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
lshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
               HOST_WIDE_INT count, unsigned int prec,
               HOST_WIDE_INT count, unsigned int prec,
               unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv, int arith)
               unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv, int arith)
{
{
  unsigned HOST_WIDE_INT signmask;
  unsigned HOST_WIDE_INT signmask;
 
 
  if (count < 0)
  if (count < 0)
    {
    {
      rshift_double (l1, h1, -count, prec, lv, hv, arith);
      rshift_double (l1, h1, -count, prec, lv, hv, arith);
      return;
      return;
    }
    }
 
 
  if (SHIFT_COUNT_TRUNCATED)
  if (SHIFT_COUNT_TRUNCATED)
    count %= prec;
    count %= prec;
 
 
  if (count >= 2 * HOST_BITS_PER_WIDE_INT)
  if (count >= 2 * HOST_BITS_PER_WIDE_INT)
    {
    {
      /* Shifting by the host word size is undefined according to the
      /* Shifting by the host word size is undefined according to the
         ANSI standard, so we must handle this as a special case.  */
         ANSI standard, so we must handle this as a special case.  */
      *hv = 0;
      *hv = 0;
      *lv = 0;
      *lv = 0;
    }
    }
  else if (count >= HOST_BITS_PER_WIDE_INT)
  else if (count >= HOST_BITS_PER_WIDE_INT)
    {
    {
      *hv = l1 << (count - HOST_BITS_PER_WIDE_INT);
      *hv = l1 << (count - HOST_BITS_PER_WIDE_INT);
      *lv = 0;
      *lv = 0;
    }
    }
  else
  else
    {
    {
      *hv = (((unsigned HOST_WIDE_INT) h1 << count)
      *hv = (((unsigned HOST_WIDE_INT) h1 << count)
             | (l1 >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1));
             | (l1 >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1));
      *lv = l1 << count;
      *lv = l1 << count;
    }
    }
 
 
  /* Sign extend all bits that are beyond the precision.  */
  /* Sign extend all bits that are beyond the precision.  */
 
 
  signmask = -((prec > HOST_BITS_PER_WIDE_INT
  signmask = -((prec > HOST_BITS_PER_WIDE_INT
                ? ((unsigned HOST_WIDE_INT) *hv
                ? ((unsigned HOST_WIDE_INT) *hv
                   >> (prec - HOST_BITS_PER_WIDE_INT - 1))
                   >> (prec - HOST_BITS_PER_WIDE_INT - 1))
                : (*lv >> (prec - 1))) & 1);
                : (*lv >> (prec - 1))) & 1);
 
 
  if (prec >= 2 * HOST_BITS_PER_WIDE_INT)
  if (prec >= 2 * HOST_BITS_PER_WIDE_INT)
    ;
    ;
  else if (prec >= HOST_BITS_PER_WIDE_INT)
  else if (prec >= HOST_BITS_PER_WIDE_INT)
    {
    {
      *hv &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
      *hv &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
      *hv |= signmask << (prec - HOST_BITS_PER_WIDE_INT);
      *hv |= signmask << (prec - HOST_BITS_PER_WIDE_INT);
    }
    }
  else
  else
    {
    {
      *hv = signmask;
      *hv = signmask;
      *lv &= ~((unsigned HOST_WIDE_INT) (-1) << prec);
      *lv &= ~((unsigned HOST_WIDE_INT) (-1) << prec);
      *lv |= signmask << prec;
      *lv |= signmask << prec;
    }
    }
}
}
 
 
/* Shift the doubleword integer in L1, H1 right by COUNT places
/* Shift the doubleword integer in L1, H1 right by COUNT places
   keeping only PREC bits of result.  COUNT must be positive.
   keeping only PREC bits of result.  COUNT must be positive.
   ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
   ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
   Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV.  */
   Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV.  */
 
 
void
void
rshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
rshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
               HOST_WIDE_INT count, unsigned int prec,
               HOST_WIDE_INT count, unsigned int prec,
               unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
               unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
               int arith)
               int arith)
{
{
  unsigned HOST_WIDE_INT signmask;
  unsigned HOST_WIDE_INT signmask;
 
 
  signmask = (arith
  signmask = (arith
              ? -((unsigned HOST_WIDE_INT) h1 >> (HOST_BITS_PER_WIDE_INT - 1))
              ? -((unsigned HOST_WIDE_INT) h1 >> (HOST_BITS_PER_WIDE_INT - 1))
              : 0);
              : 0);
 
 
  if (SHIFT_COUNT_TRUNCATED)
  if (SHIFT_COUNT_TRUNCATED)
    count %= prec;
    count %= prec;
 
 
  if (count >= 2 * HOST_BITS_PER_WIDE_INT)
  if (count >= 2 * HOST_BITS_PER_WIDE_INT)
    {
    {
      /* Shifting by the host word size is undefined according to the
      /* Shifting by the host word size is undefined according to the
         ANSI standard, so we must handle this as a special case.  */
         ANSI standard, so we must handle this as a special case.  */
      *hv = 0;
      *hv = 0;
      *lv = 0;
      *lv = 0;
    }
    }
  else if (count >= HOST_BITS_PER_WIDE_INT)
  else if (count >= HOST_BITS_PER_WIDE_INT)
    {
    {
      *hv = 0;
      *hv = 0;
      *lv = (unsigned HOST_WIDE_INT) h1 >> (count - HOST_BITS_PER_WIDE_INT);
      *lv = (unsigned HOST_WIDE_INT) h1 >> (count - HOST_BITS_PER_WIDE_INT);
    }
    }
  else
  else
    {
    {
      *hv = (unsigned HOST_WIDE_INT) h1 >> count;
      *hv = (unsigned HOST_WIDE_INT) h1 >> count;
      *lv = ((l1 >> count)
      *lv = ((l1 >> count)
             | ((unsigned HOST_WIDE_INT) h1 << (HOST_BITS_PER_WIDE_INT - count - 1) << 1));
             | ((unsigned HOST_WIDE_INT) h1 << (HOST_BITS_PER_WIDE_INT - count - 1) << 1));
    }
    }
 
 
  /* Zero / sign extend all bits that are beyond the precision.  */
  /* Zero / sign extend all bits that are beyond the precision.  */
 
 
  if (count >= (HOST_WIDE_INT)prec)
  if (count >= (HOST_WIDE_INT)prec)
    {
    {
      *hv = signmask;
      *hv = signmask;
      *lv = signmask;
      *lv = signmask;
    }
    }
  else if ((prec - count) >= 2 * HOST_BITS_PER_WIDE_INT)
  else if ((prec - count) >= 2 * HOST_BITS_PER_WIDE_INT)
    ;
    ;
  else if ((prec - count) >= HOST_BITS_PER_WIDE_INT)
  else if ((prec - count) >= HOST_BITS_PER_WIDE_INT)
    {
    {
      *hv &= ~((HOST_WIDE_INT) (-1) << (prec - count - HOST_BITS_PER_WIDE_INT));
      *hv &= ~((HOST_WIDE_INT) (-1) << (prec - count - HOST_BITS_PER_WIDE_INT));
      *hv |= signmask << (prec - count - HOST_BITS_PER_WIDE_INT);
      *hv |= signmask << (prec - count - HOST_BITS_PER_WIDE_INT);
    }
    }
  else
  else
    {
    {
      *hv = signmask;
      *hv = signmask;
      *lv &= ~((unsigned HOST_WIDE_INT) (-1) << (prec - count));
      *lv &= ~((unsigned HOST_WIDE_INT) (-1) << (prec - count));
      *lv |= signmask << (prec - count);
      *lv |= signmask << (prec - count);
    }
    }
}
}


/* Rotate the doubleword integer in L1, H1 left by COUNT places
/* Rotate the doubleword integer in L1, H1 left by COUNT places
   keeping only PREC bits of result.
   keeping only PREC bits of result.
   Rotate right if COUNT is negative.
   Rotate right if COUNT is negative.
   Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV.  */
   Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV.  */
 
 
void
void
lrotate_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
lrotate_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
                HOST_WIDE_INT count, unsigned int prec,
                HOST_WIDE_INT count, unsigned int prec,
                unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
                unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
{
{
  unsigned HOST_WIDE_INT s1l, s2l;
  unsigned HOST_WIDE_INT s1l, s2l;
  HOST_WIDE_INT s1h, s2h;
  HOST_WIDE_INT s1h, s2h;
 
 
  count %= prec;
  count %= prec;
  if (count < 0)
  if (count < 0)
    count += prec;
    count += prec;
 
 
  lshift_double (l1, h1, count, prec, &s1l, &s1h, 0);
  lshift_double (l1, h1, count, prec, &s1l, &s1h, 0);
  rshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0);
  rshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0);
  *lv = s1l | s2l;
  *lv = s1l | s2l;
  *hv = s1h | s2h;
  *hv = s1h | s2h;
}
}
 
 
/* Rotate the doubleword integer in L1, H1 left by COUNT places
/* Rotate the doubleword integer in L1, H1 left by COUNT places
   keeping only PREC bits of result.  COUNT must be positive.
   keeping only PREC bits of result.  COUNT must be positive.
   Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV.  */
   Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV.  */
 
 
void
void
rrotate_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
rrotate_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
                HOST_WIDE_INT count, unsigned int prec,
                HOST_WIDE_INT count, unsigned int prec,
                unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
                unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
{
{
  unsigned HOST_WIDE_INT s1l, s2l;
  unsigned HOST_WIDE_INT s1l, s2l;
  HOST_WIDE_INT s1h, s2h;
  HOST_WIDE_INT s1h, s2h;
 
 
  count %= prec;
  count %= prec;
  if (count < 0)
  if (count < 0)
    count += prec;
    count += prec;
 
 
  rshift_double (l1, h1, count, prec, &s1l, &s1h, 0);
  rshift_double (l1, h1, count, prec, &s1l, &s1h, 0);
  lshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0);
  lshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0);
  *lv = s1l | s2l;
  *lv = s1l | s2l;
  *hv = s1h | s2h;
  *hv = s1h | s2h;
}
}


/* Divide doubleword integer LNUM, HNUM by doubleword integer LDEN, HDEN
/* Divide doubleword integer LNUM, HNUM by doubleword integer LDEN, HDEN
   for a quotient (stored in *LQUO, *HQUO) and remainder (in *LREM, *HREM).
   for a quotient (stored in *LQUO, *HQUO) and remainder (in *LREM, *HREM).
   CODE is a tree code for a kind of division, one of
   CODE is a tree code for a kind of division, one of
   TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR, ROUND_DIV_EXPR
   TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR, ROUND_DIV_EXPR
   or EXACT_DIV_EXPR
   or EXACT_DIV_EXPR
   It controls how the quotient is rounded to an integer.
   It controls how the quotient is rounded to an integer.
   Return nonzero if the operation overflows.
   Return nonzero if the operation overflows.
   UNS nonzero says do unsigned division.  */
   UNS nonzero says do unsigned division.  */
 
 
int
int
div_and_round_double (enum tree_code code, int uns,
div_and_round_double (enum tree_code code, int uns,
                      unsigned HOST_WIDE_INT lnum_orig, /* num == numerator == dividend */
                      unsigned HOST_WIDE_INT lnum_orig, /* num == numerator == dividend */
                      HOST_WIDE_INT hnum_orig,
                      HOST_WIDE_INT hnum_orig,
                      unsigned HOST_WIDE_INT lden_orig, /* den == denominator == divisor */
                      unsigned HOST_WIDE_INT lden_orig, /* den == denominator == divisor */
                      HOST_WIDE_INT hden_orig,
                      HOST_WIDE_INT hden_orig,
                      unsigned HOST_WIDE_INT *lquo,
                      unsigned HOST_WIDE_INT *lquo,
                      HOST_WIDE_INT *hquo, unsigned HOST_WIDE_INT *lrem,
                      HOST_WIDE_INT *hquo, unsigned HOST_WIDE_INT *lrem,
                      HOST_WIDE_INT *hrem)
                      HOST_WIDE_INT *hrem)
{
{
  int quo_neg = 0;
  int quo_neg = 0;
  HOST_WIDE_INT num[4 + 1];     /* extra element for scaling.  */
  HOST_WIDE_INT num[4 + 1];     /* extra element for scaling.  */
  HOST_WIDE_INT den[4], quo[4];
  HOST_WIDE_INT den[4], quo[4];
  int i, j;
  int i, j;
  unsigned HOST_WIDE_INT work;
  unsigned HOST_WIDE_INT work;
  unsigned HOST_WIDE_INT carry = 0;
  unsigned HOST_WIDE_INT carry = 0;
  unsigned HOST_WIDE_INT lnum = lnum_orig;
  unsigned HOST_WIDE_INT lnum = lnum_orig;
  HOST_WIDE_INT hnum = hnum_orig;
  HOST_WIDE_INT hnum = hnum_orig;
  unsigned HOST_WIDE_INT lden = lden_orig;
  unsigned HOST_WIDE_INT lden = lden_orig;
  HOST_WIDE_INT hden = hden_orig;
  HOST_WIDE_INT hden = hden_orig;
  int overflow = 0;
  int overflow = 0;
 
 
  if (hden == 0 && lden == 0)
  if (hden == 0 && lden == 0)
    overflow = 1, lden = 1;
    overflow = 1, lden = 1;
 
 
  /* Calculate quotient sign and convert operands to unsigned.  */
  /* Calculate quotient sign and convert operands to unsigned.  */
  if (!uns)
  if (!uns)
    {
    {
      if (hnum < 0)
      if (hnum < 0)
        {
        {
          quo_neg = ~ quo_neg;
          quo_neg = ~ quo_neg;
          /* (minimum integer) / (-1) is the only overflow case.  */
          /* (minimum integer) / (-1) is the only overflow case.  */
          if (neg_double (lnum, hnum, &lnum, &hnum)
          if (neg_double (lnum, hnum, &lnum, &hnum)
              && ((HOST_WIDE_INT) lden & hden) == -1)
              && ((HOST_WIDE_INT) lden & hden) == -1)
            overflow = 1;
            overflow = 1;
        }
        }
      if (hden < 0)
      if (hden < 0)
        {
        {
          quo_neg = ~ quo_neg;
          quo_neg = ~ quo_neg;
          neg_double (lden, hden, &lden, &hden);
          neg_double (lden, hden, &lden, &hden);
        }
        }
    }
    }
 
 
  if (hnum == 0 && hden == 0)
  if (hnum == 0 && hden == 0)
    {                           /* single precision */
    {                           /* single precision */
      *hquo = *hrem = 0;
      *hquo = *hrem = 0;
      /* This unsigned division rounds toward zero.  */
      /* This unsigned division rounds toward zero.  */
      *lquo = lnum / lden;
      *lquo = lnum / lden;
      goto finish_up;
      goto finish_up;
    }
    }
 
 
  if (hnum == 0)
  if (hnum == 0)
    {                           /* trivial case: dividend < divisor */
    {                           /* trivial case: dividend < divisor */
      /* hden != 0 already checked.  */
      /* hden != 0 already checked.  */
      *hquo = *lquo = 0;
      *hquo = *lquo = 0;
      *hrem = hnum;
      *hrem = hnum;
      *lrem = lnum;
      *lrem = lnum;
      goto finish_up;
      goto finish_up;
    }
    }
 
 
  memset (quo, 0, sizeof quo);
  memset (quo, 0, sizeof quo);
 
 
  memset (num, 0, sizeof num);   /* to zero 9th element */
  memset (num, 0, sizeof num);   /* to zero 9th element */
  memset (den, 0, sizeof den);
  memset (den, 0, sizeof den);
 
 
  encode (num, lnum, hnum);
  encode (num, lnum, hnum);
  encode (den, lden, hden);
  encode (den, lden, hden);
 
 
  /* Special code for when the divisor < BASE.  */
  /* Special code for when the divisor < BASE.  */
  if (hden == 0 && lden < (unsigned HOST_WIDE_INT) BASE)
  if (hden == 0 && lden < (unsigned HOST_WIDE_INT) BASE)
    {
    {
      /* hnum != 0 already checked.  */
      /* hnum != 0 already checked.  */
      for (i = 4 - 1; i >= 0; i--)
      for (i = 4 - 1; i >= 0; i--)
        {
        {
          work = num[i] + carry * BASE;
          work = num[i] + carry * BASE;
          quo[i] = work / lden;
          quo[i] = work / lden;
          carry = work % lden;
          carry = work % lden;
        }
        }
    }
    }
  else
  else
    {
    {
      /* Full double precision division,
      /* Full double precision division,
         with thanks to Don Knuth's "Seminumerical Algorithms".  */
         with thanks to Don Knuth's "Seminumerical Algorithms".  */
      int num_hi_sig, den_hi_sig;
      int num_hi_sig, den_hi_sig;
      unsigned HOST_WIDE_INT quo_est, scale;
      unsigned HOST_WIDE_INT quo_est, scale;
 
 
      /* Find the highest nonzero divisor digit.  */
      /* Find the highest nonzero divisor digit.  */
      for (i = 4 - 1;; i--)
      for (i = 4 - 1;; i--)
        if (den[i] != 0)
        if (den[i] != 0)
          {
          {
            den_hi_sig = i;
            den_hi_sig = i;
            break;
            break;
          }
          }
 
 
      /* Insure that the first digit of the divisor is at least BASE/2.
      /* Insure that the first digit of the divisor is at least BASE/2.
         This is required by the quotient digit estimation algorithm.  */
         This is required by the quotient digit estimation algorithm.  */
 
 
      scale = BASE / (den[den_hi_sig] + 1);
      scale = BASE / (den[den_hi_sig] + 1);
      if (scale > 1)
      if (scale > 1)
        {               /* scale divisor and dividend */
        {               /* scale divisor and dividend */
          carry = 0;
          carry = 0;
          for (i = 0; i <= 4 - 1; i++)
          for (i = 0; i <= 4 - 1; i++)
            {
            {
              work = (num[i] * scale) + carry;
              work = (num[i] * scale) + carry;
              num[i] = LOWPART (work);
              num[i] = LOWPART (work);
              carry = HIGHPART (work);
              carry = HIGHPART (work);
            }
            }
 
 
          num[4] = carry;
          num[4] = carry;
          carry = 0;
          carry = 0;
          for (i = 0; i <= 4 - 1; i++)
          for (i = 0; i <= 4 - 1; i++)
            {
            {
              work = (den[i] * scale) + carry;
              work = (den[i] * scale) + carry;
              den[i] = LOWPART (work);
              den[i] = LOWPART (work);
              carry = HIGHPART (work);
              carry = HIGHPART (work);
              if (den[i] != 0) den_hi_sig = i;
              if (den[i] != 0) den_hi_sig = i;
            }
            }
        }
        }
 
 
      num_hi_sig = 4;
      num_hi_sig = 4;
 
 
      /* Main loop */
      /* Main loop */
      for (i = num_hi_sig - den_hi_sig - 1; i >= 0; i--)
      for (i = num_hi_sig - den_hi_sig - 1; i >= 0; i--)
        {
        {
          /* Guess the next quotient digit, quo_est, by dividing the first
          /* Guess the next quotient digit, quo_est, by dividing the first
             two remaining dividend digits by the high order quotient digit.
             two remaining dividend digits by the high order quotient digit.
             quo_est is never low and is at most 2 high.  */
             quo_est is never low and is at most 2 high.  */
          unsigned HOST_WIDE_INT tmp;
          unsigned HOST_WIDE_INT tmp;
 
 
          num_hi_sig = i + den_hi_sig + 1;
          num_hi_sig = i + den_hi_sig + 1;
          work = num[num_hi_sig] * BASE + num[num_hi_sig - 1];
          work = num[num_hi_sig] * BASE + num[num_hi_sig - 1];
          if (num[num_hi_sig] != den[den_hi_sig])
          if (num[num_hi_sig] != den[den_hi_sig])
            quo_est = work / den[den_hi_sig];
            quo_est = work / den[den_hi_sig];
          else
          else
            quo_est = BASE - 1;
            quo_est = BASE - 1;
 
 
          /* Refine quo_est so it's usually correct, and at most one high.  */
          /* Refine quo_est so it's usually correct, and at most one high.  */
          tmp = work - quo_est * den[den_hi_sig];
          tmp = work - quo_est * den[den_hi_sig];
          if (tmp < BASE
          if (tmp < BASE
              && (den[den_hi_sig - 1] * quo_est
              && (den[den_hi_sig - 1] * quo_est
                  > (tmp * BASE + num[num_hi_sig - 2])))
                  > (tmp * BASE + num[num_hi_sig - 2])))
            quo_est--;
            quo_est--;
 
 
          /* Try QUO_EST as the quotient digit, by multiplying the
          /* Try QUO_EST as the quotient digit, by multiplying the
             divisor by QUO_EST and subtracting from the remaining dividend.
             divisor by QUO_EST and subtracting from the remaining dividend.
             Keep in mind that QUO_EST is the I - 1st digit.  */
             Keep in mind that QUO_EST is the I - 1st digit.  */
 
 
          carry = 0;
          carry = 0;
          for (j = 0; j <= den_hi_sig; j++)
          for (j = 0; j <= den_hi_sig; j++)
            {
            {
              work = quo_est * den[j] + carry;
              work = quo_est * den[j] + carry;
              carry = HIGHPART (work);
              carry = HIGHPART (work);
              work = num[i + j] - LOWPART (work);
              work = num[i + j] - LOWPART (work);
              num[i + j] = LOWPART (work);
              num[i + j] = LOWPART (work);
              carry += HIGHPART (work) != 0;
              carry += HIGHPART (work) != 0;
            }
            }
 
 
          /* If quo_est was high by one, then num[i] went negative and
          /* If quo_est was high by one, then num[i] went negative and
             we need to correct things.  */
             we need to correct things.  */
          if (num[num_hi_sig] < (HOST_WIDE_INT) carry)
          if (num[num_hi_sig] < (HOST_WIDE_INT) carry)
            {
            {
              quo_est--;
              quo_est--;
              carry = 0;         /* add divisor back in */
              carry = 0;         /* add divisor back in */
              for (j = 0; j <= den_hi_sig; j++)
              for (j = 0; j <= den_hi_sig; j++)
                {
                {
                  work = num[i + j] + den[j] + carry;
                  work = num[i + j] + den[j] + carry;
                  carry = HIGHPART (work);
                  carry = HIGHPART (work);
                  num[i + j] = LOWPART (work);
                  num[i + j] = LOWPART (work);
                }
                }
 
 
              num [num_hi_sig] += carry;
              num [num_hi_sig] += carry;
            }
            }
 
 
          /* Store the quotient digit.  */
          /* Store the quotient digit.  */
          quo[i] = quo_est;
          quo[i] = quo_est;
        }
        }
    }
    }
 
 
  decode (quo, lquo, hquo);
  decode (quo, lquo, hquo);
 
 
 finish_up:
 finish_up:
  /* If result is negative, make it so.  */
  /* If result is negative, make it so.  */
  if (quo_neg)
  if (quo_neg)
    neg_double (*lquo, *hquo, lquo, hquo);
    neg_double (*lquo, *hquo, lquo, hquo);
 
 
  /* Compute trial remainder:  rem = num - (quo * den)  */
  /* Compute trial remainder:  rem = num - (quo * den)  */
  mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
  mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
  neg_double (*lrem, *hrem, lrem, hrem);
  neg_double (*lrem, *hrem, lrem, hrem);
  add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
  add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
 
 
  switch (code)
  switch (code)
    {
    {
    case TRUNC_DIV_EXPR:
    case TRUNC_DIV_EXPR:
    case TRUNC_MOD_EXPR:        /* round toward zero */
    case TRUNC_MOD_EXPR:        /* round toward zero */
    case EXACT_DIV_EXPR:        /* for this one, it shouldn't matter */
    case EXACT_DIV_EXPR:        /* for this one, it shouldn't matter */
      return overflow;
      return overflow;
 
 
    case FLOOR_DIV_EXPR:
    case FLOOR_DIV_EXPR:
    case FLOOR_MOD_EXPR:        /* round toward negative infinity */
    case FLOOR_MOD_EXPR:        /* round toward negative infinity */
      if (quo_neg && (*lrem != 0 || *hrem != 0))   /* ratio < 0 && rem != 0 */
      if (quo_neg && (*lrem != 0 || *hrem != 0))   /* ratio < 0 && rem != 0 */
        {
        {
          /* quo = quo - 1;  */
          /* quo = quo - 1;  */
          add_double (*lquo, *hquo, (HOST_WIDE_INT) -1, (HOST_WIDE_INT)  -1,
          add_double (*lquo, *hquo, (HOST_WIDE_INT) -1, (HOST_WIDE_INT)  -1,
                      lquo, hquo);
                      lquo, hquo);
        }
        }
      else
      else
        return overflow;
        return overflow;
      break;
      break;
 
 
    case CEIL_DIV_EXPR:
    case CEIL_DIV_EXPR:
    case CEIL_MOD_EXPR:         /* round toward positive infinity */
    case CEIL_MOD_EXPR:         /* round toward positive infinity */
      if (!quo_neg && (*lrem != 0 || *hrem != 0))  /* ratio > 0 && rem != 0 */
      if (!quo_neg && (*lrem != 0 || *hrem != 0))  /* ratio > 0 && rem != 0 */
        {
        {
          add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
          add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
                      lquo, hquo);
                      lquo, hquo);
        }
        }
      else
      else
        return overflow;
        return overflow;
      break;
      break;
 
 
    case ROUND_DIV_EXPR:
    case ROUND_DIV_EXPR:
    case ROUND_MOD_EXPR:        /* round to closest integer */
    case ROUND_MOD_EXPR:        /* round to closest integer */
      {
      {
        unsigned HOST_WIDE_INT labs_rem = *lrem;
        unsigned HOST_WIDE_INT labs_rem = *lrem;
        HOST_WIDE_INT habs_rem = *hrem;
        HOST_WIDE_INT habs_rem = *hrem;
        unsigned HOST_WIDE_INT labs_den = lden, ltwice;
        unsigned HOST_WIDE_INT labs_den = lden, ltwice;
        HOST_WIDE_INT habs_den = hden, htwice;
        HOST_WIDE_INT habs_den = hden, htwice;
 
 
        /* Get absolute values.  */
        /* Get absolute values.  */
        if (*hrem < 0)
        if (*hrem < 0)
          neg_double (*lrem, *hrem, &labs_rem, &habs_rem);
          neg_double (*lrem, *hrem, &labs_rem, &habs_rem);
        if (hden < 0)
        if (hden < 0)
          neg_double (lden, hden, &labs_den, &habs_den);
          neg_double (lden, hden, &labs_den, &habs_den);
 
 
        /* If (2 * abs (lrem) >= abs (lden)) */
        /* If (2 * abs (lrem) >= abs (lden)) */
        mul_double ((HOST_WIDE_INT) 2, (HOST_WIDE_INT) 0,
        mul_double ((HOST_WIDE_INT) 2, (HOST_WIDE_INT) 0,
                    labs_rem, habs_rem, &ltwice, &htwice);
                    labs_rem, habs_rem, &ltwice, &htwice);
 
 
        if (((unsigned HOST_WIDE_INT) habs_den
        if (((unsigned HOST_WIDE_INT) habs_den
             < (unsigned HOST_WIDE_INT) htwice)
             < (unsigned HOST_WIDE_INT) htwice)
            || (((unsigned HOST_WIDE_INT) habs_den
            || (((unsigned HOST_WIDE_INT) habs_den
                 == (unsigned HOST_WIDE_INT) htwice)
                 == (unsigned HOST_WIDE_INT) htwice)
                && (labs_den < ltwice)))
                && (labs_den < ltwice)))
          {
          {
            if (*hquo < 0)
            if (*hquo < 0)
              /* quo = quo - 1;  */
              /* quo = quo - 1;  */
              add_double (*lquo, *hquo,
              add_double (*lquo, *hquo,
                          (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1, lquo, hquo);
                          (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1, lquo, hquo);
            else
            else
              /* quo = quo + 1; */
              /* quo = quo + 1; */
              add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
              add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
                          lquo, hquo);
                          lquo, hquo);
          }
          }
        else
        else
          return overflow;
          return overflow;
      }
      }
      break;
      break;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  /* Compute true remainder:  rem = num - (quo * den)  */
  /* Compute true remainder:  rem = num - (quo * den)  */
  mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
  mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
  neg_double (*lrem, *hrem, lrem, hrem);
  neg_double (*lrem, *hrem, lrem, hrem);
  add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
  add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
  return overflow;
  return overflow;
}
}
 
 
/* If ARG2 divides ARG1 with zero remainder, carries out the division
/* If ARG2 divides ARG1 with zero remainder, carries out the division
   of type CODE and returns the quotient.
   of type CODE and returns the quotient.
   Otherwise returns NULL_TREE.  */
   Otherwise returns NULL_TREE.  */
 
 
static tree
static tree
div_if_zero_remainder (enum tree_code code, tree arg1, tree arg2)
div_if_zero_remainder (enum tree_code code, tree arg1, tree arg2)
{
{
  unsigned HOST_WIDE_INT int1l, int2l;
  unsigned HOST_WIDE_INT int1l, int2l;
  HOST_WIDE_INT int1h, int2h;
  HOST_WIDE_INT int1h, int2h;
  unsigned HOST_WIDE_INT quol, reml;
  unsigned HOST_WIDE_INT quol, reml;
  HOST_WIDE_INT quoh, remh;
  HOST_WIDE_INT quoh, remh;
  tree type = TREE_TYPE (arg1);
  tree type = TREE_TYPE (arg1);
  int uns = TYPE_UNSIGNED (type);
  int uns = TYPE_UNSIGNED (type);
 
 
  int1l = TREE_INT_CST_LOW (arg1);
  int1l = TREE_INT_CST_LOW (arg1);
  int1h = TREE_INT_CST_HIGH (arg1);
  int1h = TREE_INT_CST_HIGH (arg1);
  int2l = TREE_INT_CST_LOW (arg2);
  int2l = TREE_INT_CST_LOW (arg2);
  int2h = TREE_INT_CST_HIGH (arg2);
  int2h = TREE_INT_CST_HIGH (arg2);
 
 
  div_and_round_double (code, uns, int1l, int1h, int2l, int2h,
  div_and_round_double (code, uns, int1l, int1h, int2l, int2h,
                        &quol, &quoh, &reml, &remh);
                        &quol, &quoh, &reml, &remh);
  if (remh != 0 || reml != 0)
  if (remh != 0 || reml != 0)
    return NULL_TREE;
    return NULL_TREE;
 
 
  return build_int_cst_wide (type, quol, quoh);
  return build_int_cst_wide (type, quol, quoh);
}
}


/* This is non-zero if we should defer warnings about undefined
/* This is non-zero if we should defer warnings about undefined
   overflow.  This facility exists because these warnings are a
   overflow.  This facility exists because these warnings are a
   special case.  The code to estimate loop iterations does not want
   special case.  The code to estimate loop iterations does not want
   to issue any warnings, since it works with expressions which do not
   to issue any warnings, since it works with expressions which do not
   occur in user code.  Various bits of cleanup code call fold(), but
   occur in user code.  Various bits of cleanup code call fold(), but
   only use the result if it has certain characteristics (e.g., is a
   only use the result if it has certain characteristics (e.g., is a
   constant); that code only wants to issue a warning if the result is
   constant); that code only wants to issue a warning if the result is
   used.  */
   used.  */
 
 
static int fold_deferring_overflow_warnings;
static int fold_deferring_overflow_warnings;
 
 
/* If a warning about undefined overflow is deferred, this is the
/* If a warning about undefined overflow is deferred, this is the
   warning.  Note that this may cause us to turn two warnings into
   warning.  Note that this may cause us to turn two warnings into
   one, but that is fine since it is sufficient to only give one
   one, but that is fine since it is sufficient to only give one
   warning per expression.  */
   warning per expression.  */
 
 
static const char* fold_deferred_overflow_warning;
static const char* fold_deferred_overflow_warning;
 
 
/* If a warning about undefined overflow is deferred, this is the
/* If a warning about undefined overflow is deferred, this is the
   level at which the warning should be emitted.  */
   level at which the warning should be emitted.  */
 
 
static enum warn_strict_overflow_code fold_deferred_overflow_code;
static enum warn_strict_overflow_code fold_deferred_overflow_code;
 
 
/* Start deferring overflow warnings.  We could use a stack here to
/* Start deferring overflow warnings.  We could use a stack here to
   permit nested calls, but at present it is not necessary.  */
   permit nested calls, but at present it is not necessary.  */
 
 
void
void
fold_defer_overflow_warnings (void)
fold_defer_overflow_warnings (void)
{
{
  ++fold_deferring_overflow_warnings;
  ++fold_deferring_overflow_warnings;
}
}
 
 
/* Stop deferring overflow warnings.  If there is a pending warning,
/* Stop deferring overflow warnings.  If there is a pending warning,
   and ISSUE is true, then issue the warning if appropriate.  STMT is
   and ISSUE is true, then issue the warning if appropriate.  STMT is
   the statement with which the warning should be associated (used for
   the statement with which the warning should be associated (used for
   location information); STMT may be NULL.  CODE is the level of the
   location information); STMT may be NULL.  CODE is the level of the
   warning--a warn_strict_overflow_code value.  This function will use
   warning--a warn_strict_overflow_code value.  This function will use
   the smaller of CODE and the deferred code when deciding whether to
   the smaller of CODE and the deferred code when deciding whether to
   issue the warning.  CODE may be zero to mean to always use the
   issue the warning.  CODE may be zero to mean to always use the
   deferred code.  */
   deferred code.  */
 
 
void
void
fold_undefer_overflow_warnings (bool issue, tree stmt, int code)
fold_undefer_overflow_warnings (bool issue, tree stmt, int code)
{
{
  const char *warnmsg;
  const char *warnmsg;
  location_t locus;
  location_t locus;
 
 
  gcc_assert (fold_deferring_overflow_warnings > 0);
  gcc_assert (fold_deferring_overflow_warnings > 0);
  --fold_deferring_overflow_warnings;
  --fold_deferring_overflow_warnings;
  if (fold_deferring_overflow_warnings > 0)
  if (fold_deferring_overflow_warnings > 0)
    {
    {
      if (fold_deferred_overflow_warning != NULL
      if (fold_deferred_overflow_warning != NULL
          && code != 0
          && code != 0
          && code < (int) fold_deferred_overflow_code)
          && code < (int) fold_deferred_overflow_code)
        fold_deferred_overflow_code = code;
        fold_deferred_overflow_code = code;
      return;
      return;
    }
    }
 
 
  warnmsg = fold_deferred_overflow_warning;
  warnmsg = fold_deferred_overflow_warning;
  fold_deferred_overflow_warning = NULL;
  fold_deferred_overflow_warning = NULL;
 
 
  if (!issue || warnmsg == NULL)
  if (!issue || warnmsg == NULL)
    return;
    return;
 
 
  /* Use the smallest code level when deciding to issue the
  /* Use the smallest code level when deciding to issue the
     warning.  */
     warning.  */
  if (code == 0 || code > (int) fold_deferred_overflow_code)
  if (code == 0 || code > (int) fold_deferred_overflow_code)
    code = fold_deferred_overflow_code;
    code = fold_deferred_overflow_code;
 
 
  if (!issue_strict_overflow_warning (code))
  if (!issue_strict_overflow_warning (code))
    return;
    return;
 
 
  if (stmt == NULL_TREE || !EXPR_HAS_LOCATION (stmt))
  if (stmt == NULL_TREE || !EXPR_HAS_LOCATION (stmt))
    locus = input_location;
    locus = input_location;
  else
  else
    locus = EXPR_LOCATION (stmt);
    locus = EXPR_LOCATION (stmt);
  warning (OPT_Wstrict_overflow, "%H%s", &locus, warnmsg);
  warning (OPT_Wstrict_overflow, "%H%s", &locus, warnmsg);
}
}
 
 
/* Stop deferring overflow warnings, ignoring any deferred
/* Stop deferring overflow warnings, ignoring any deferred
   warnings.  */
   warnings.  */
 
 
void
void
fold_undefer_and_ignore_overflow_warnings (void)
fold_undefer_and_ignore_overflow_warnings (void)
{
{
  fold_undefer_overflow_warnings (false, NULL_TREE, 0);
  fold_undefer_overflow_warnings (false, NULL_TREE, 0);
}
}
 
 
/* Whether we are deferring overflow warnings.  */
/* Whether we are deferring overflow warnings.  */
 
 
bool
bool
fold_deferring_overflow_warnings_p (void)
fold_deferring_overflow_warnings_p (void)
{
{
  return fold_deferring_overflow_warnings > 0;
  return fold_deferring_overflow_warnings > 0;
}
}
 
 
/* This is called when we fold something based on the fact that signed
/* This is called when we fold something based on the fact that signed
   overflow is undefined.  */
   overflow is undefined.  */
 
 
static void
static void
fold_overflow_warning (const char* gmsgid, enum warn_strict_overflow_code wc)
fold_overflow_warning (const char* gmsgid, enum warn_strict_overflow_code wc)
{
{
  gcc_assert (!flag_wrapv && !flag_trapv);
  gcc_assert (!flag_wrapv && !flag_trapv);
  if (fold_deferring_overflow_warnings > 0)
  if (fold_deferring_overflow_warnings > 0)
    {
    {
      if (fold_deferred_overflow_warning == NULL
      if (fold_deferred_overflow_warning == NULL
          || wc < fold_deferred_overflow_code)
          || wc < fold_deferred_overflow_code)
        {
        {
          fold_deferred_overflow_warning = gmsgid;
          fold_deferred_overflow_warning = gmsgid;
          fold_deferred_overflow_code = wc;
          fold_deferred_overflow_code = wc;
        }
        }
    }
    }
  else if (issue_strict_overflow_warning (wc))
  else if (issue_strict_overflow_warning (wc))
    warning (OPT_Wstrict_overflow, gmsgid);
    warning (OPT_Wstrict_overflow, gmsgid);
}
}


/* Return true if the built-in mathematical function specified by CODE
/* Return true if the built-in mathematical function specified by CODE
   is odd, i.e. -f(x) == f(-x).  */
   is odd, i.e. -f(x) == f(-x).  */
 
 
static bool
static bool
negate_mathfn_p (enum built_in_function code)
negate_mathfn_p (enum built_in_function code)
{
{
  switch (code)
  switch (code)
    {
    {
    CASE_FLT_FN (BUILT_IN_ASIN):
    CASE_FLT_FN (BUILT_IN_ASIN):
    CASE_FLT_FN (BUILT_IN_ASINH):
    CASE_FLT_FN (BUILT_IN_ASINH):
    CASE_FLT_FN (BUILT_IN_ATAN):
    CASE_FLT_FN (BUILT_IN_ATAN):
    CASE_FLT_FN (BUILT_IN_ATANH):
    CASE_FLT_FN (BUILT_IN_ATANH):
    CASE_FLT_FN (BUILT_IN_CBRT):
    CASE_FLT_FN (BUILT_IN_CBRT):
    CASE_FLT_FN (BUILT_IN_SIN):
    CASE_FLT_FN (BUILT_IN_SIN):
    CASE_FLT_FN (BUILT_IN_SINH):
    CASE_FLT_FN (BUILT_IN_SINH):
    CASE_FLT_FN (BUILT_IN_TAN):
    CASE_FLT_FN (BUILT_IN_TAN):
    CASE_FLT_FN (BUILT_IN_TANH):
    CASE_FLT_FN (BUILT_IN_TANH):
      return true;
      return true;
 
 
    default:
    default:
      break;
      break;
    }
    }
  return false;
  return false;
}
}
 
 
/* Check whether we may negate an integer constant T without causing
/* Check whether we may negate an integer constant T without causing
   overflow.  */
   overflow.  */
 
 
bool
bool
may_negate_without_overflow_p (tree t)
may_negate_without_overflow_p (tree t)
{
{
  unsigned HOST_WIDE_INT val;
  unsigned HOST_WIDE_INT val;
  unsigned int prec;
  unsigned int prec;
  tree type;
  tree type;
 
 
  gcc_assert (TREE_CODE (t) == INTEGER_CST);
  gcc_assert (TREE_CODE (t) == INTEGER_CST);
 
 
  type = TREE_TYPE (t);
  type = TREE_TYPE (t);
  if (TYPE_UNSIGNED (type))
  if (TYPE_UNSIGNED (type))
    return false;
    return false;
 
 
  prec = TYPE_PRECISION (type);
  prec = TYPE_PRECISION (type);
  if (prec > HOST_BITS_PER_WIDE_INT)
  if (prec > HOST_BITS_PER_WIDE_INT)
    {
    {
      if (TREE_INT_CST_LOW (t) != 0)
      if (TREE_INT_CST_LOW (t) != 0)
        return true;
        return true;
      prec -= HOST_BITS_PER_WIDE_INT;
      prec -= HOST_BITS_PER_WIDE_INT;
      val = TREE_INT_CST_HIGH (t);
      val = TREE_INT_CST_HIGH (t);
    }
    }
  else
  else
    val = TREE_INT_CST_LOW (t);
    val = TREE_INT_CST_LOW (t);
  if (prec < HOST_BITS_PER_WIDE_INT)
  if (prec < HOST_BITS_PER_WIDE_INT)
    val &= ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
    val &= ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
  return val != ((unsigned HOST_WIDE_INT) 1 << (prec - 1));
  return val != ((unsigned HOST_WIDE_INT) 1 << (prec - 1));
}
}
 
 
/* Determine whether an expression T can be cheaply negated using
/* Determine whether an expression T can be cheaply negated using
   the function negate_expr without introducing undefined overflow.  */
   the function negate_expr without introducing undefined overflow.  */
 
 
static bool
static bool
negate_expr_p (tree t)
negate_expr_p (tree t)
{
{
  tree type;
  tree type;
 
 
  if (t == 0)
  if (t == 0)
    return false;
    return false;
 
 
  type = TREE_TYPE (t);
  type = TREE_TYPE (t);
 
 
  STRIP_SIGN_NOPS (t);
  STRIP_SIGN_NOPS (t);
  switch (TREE_CODE (t))
  switch (TREE_CODE (t))
    {
    {
    case INTEGER_CST:
    case INTEGER_CST:
      if (TYPE_OVERFLOW_WRAPS (type))
      if (TYPE_OVERFLOW_WRAPS (type))
        return true;
        return true;
 
 
      /* Check that -CST will not overflow type.  */
      /* Check that -CST will not overflow type.  */
      return may_negate_without_overflow_p (t);
      return may_negate_without_overflow_p (t);
    case BIT_NOT_EXPR:
    case BIT_NOT_EXPR:
      return (INTEGRAL_TYPE_P (type)
      return (INTEGRAL_TYPE_P (type)
              && TYPE_OVERFLOW_WRAPS (type));
              && TYPE_OVERFLOW_WRAPS (type));
 
 
    case REAL_CST:
    case REAL_CST:
    case NEGATE_EXPR:
    case NEGATE_EXPR:
      return true;
      return true;
 
 
    case COMPLEX_CST:
    case COMPLEX_CST:
      return negate_expr_p (TREE_REALPART (t))
      return negate_expr_p (TREE_REALPART (t))
             && negate_expr_p (TREE_IMAGPART (t));
             && negate_expr_p (TREE_IMAGPART (t));
 
 
    case PLUS_EXPR:
    case PLUS_EXPR:
      if (FLOAT_TYPE_P (type) && !flag_unsafe_math_optimizations)
      if (FLOAT_TYPE_P (type) && !flag_unsafe_math_optimizations)
        return false;
        return false;
      /* -(A + B) -> (-B) - A.  */
      /* -(A + B) -> (-B) - A.  */
      if (negate_expr_p (TREE_OPERAND (t, 1))
      if (negate_expr_p (TREE_OPERAND (t, 1))
          && reorder_operands_p (TREE_OPERAND (t, 0),
          && reorder_operands_p (TREE_OPERAND (t, 0),
                                 TREE_OPERAND (t, 1)))
                                 TREE_OPERAND (t, 1)))
        return true;
        return true;
      /* -(A + B) -> (-A) - B.  */
      /* -(A + B) -> (-A) - B.  */
      return negate_expr_p (TREE_OPERAND (t, 0));
      return negate_expr_p (TREE_OPERAND (t, 0));
 
 
    case MINUS_EXPR:
    case MINUS_EXPR:
      /* We can't turn -(A-B) into B-A when we honor signed zeros.  */
      /* We can't turn -(A-B) into B-A when we honor signed zeros.  */
      return (! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
      return (! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
             && reorder_operands_p (TREE_OPERAND (t, 0),
             && reorder_operands_p (TREE_OPERAND (t, 0),
                                    TREE_OPERAND (t, 1));
                                    TREE_OPERAND (t, 1));
 
 
    case MULT_EXPR:
    case MULT_EXPR:
      if (TYPE_UNSIGNED (TREE_TYPE (t)))
      if (TYPE_UNSIGNED (TREE_TYPE (t)))
        break;
        break;
 
 
      /* Fall through.  */
      /* Fall through.  */
 
 
    case RDIV_EXPR:
    case RDIV_EXPR:
      if (! HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (TREE_TYPE (t))))
      if (! HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (TREE_TYPE (t))))
        return negate_expr_p (TREE_OPERAND (t, 1))
        return negate_expr_p (TREE_OPERAND (t, 1))
               || negate_expr_p (TREE_OPERAND (t, 0));
               || negate_expr_p (TREE_OPERAND (t, 0));
      break;
      break;
 
 
    case TRUNC_DIV_EXPR:
    case TRUNC_DIV_EXPR:
    case ROUND_DIV_EXPR:
    case ROUND_DIV_EXPR:
    case FLOOR_DIV_EXPR:
    case FLOOR_DIV_EXPR:
    case CEIL_DIV_EXPR:
    case CEIL_DIV_EXPR:
    case EXACT_DIV_EXPR:
    case EXACT_DIV_EXPR:
      /* In general we can't negate A / B, because if A is INT_MIN and
      /* In general we can't negate A / B, because if A is INT_MIN and
         B is 1, we may turn this into INT_MIN / -1 which is undefined
         B is 1, we may turn this into INT_MIN / -1 which is undefined
         and actually traps on some architectures.  But if overflow is
         and actually traps on some architectures.  But if overflow is
         undefined, we can negate, because - (INT_MIN / 1) is an
         undefined, we can negate, because - (INT_MIN / 1) is an
         overflow.  */
         overflow.  */
      if (INTEGRAL_TYPE_P (TREE_TYPE (t))
      if (INTEGRAL_TYPE_P (TREE_TYPE (t))
          && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t)))
          && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t)))
        break;
        break;
      return negate_expr_p (TREE_OPERAND (t, 1))
      return negate_expr_p (TREE_OPERAND (t, 1))
             || negate_expr_p (TREE_OPERAND (t, 0));
             || negate_expr_p (TREE_OPERAND (t, 0));
 
 
    case NOP_EXPR:
    case NOP_EXPR:
      /* Negate -((double)float) as (double)(-float).  */
      /* Negate -((double)float) as (double)(-float).  */
      if (TREE_CODE (type) == REAL_TYPE)
      if (TREE_CODE (type) == REAL_TYPE)
        {
        {
          tree tem = strip_float_extensions (t);
          tree tem = strip_float_extensions (t);
          if (tem != t)
          if (tem != t)
            return negate_expr_p (tem);
            return negate_expr_p (tem);
        }
        }
      break;
      break;
 
 
    case CALL_EXPR:
    case CALL_EXPR:
      /* Negate -f(x) as f(-x).  */
      /* Negate -f(x) as f(-x).  */
      if (negate_mathfn_p (builtin_mathfn_code (t)))
      if (negate_mathfn_p (builtin_mathfn_code (t)))
        return negate_expr_p (TREE_VALUE (TREE_OPERAND (t, 1)));
        return negate_expr_p (TREE_VALUE (TREE_OPERAND (t, 1)));
      break;
      break;
 
 
    case RSHIFT_EXPR:
    case RSHIFT_EXPR:
      /* Optimize -((int)x >> 31) into (unsigned)x >> 31.  */
      /* Optimize -((int)x >> 31) into (unsigned)x >> 31.  */
      if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
      if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
        {
        {
          tree op1 = TREE_OPERAND (t, 1);
          tree op1 = TREE_OPERAND (t, 1);
          if (TREE_INT_CST_HIGH (op1) == 0
          if (TREE_INT_CST_HIGH (op1) == 0
              && (unsigned HOST_WIDE_INT) (TYPE_PRECISION (type) - 1)
              && (unsigned HOST_WIDE_INT) (TYPE_PRECISION (type) - 1)
                 == TREE_INT_CST_LOW (op1))
                 == TREE_INT_CST_LOW (op1))
            return true;
            return true;
        }
        }
      break;
      break;
 
 
    default:
    default:
      break;
      break;
    }
    }
  return false;
  return false;
}
}
 
 
/* Given T, an expression, return a folded tree for -T or NULL_TREE, if no
/* Given T, an expression, return a folded tree for -T or NULL_TREE, if no
   simplification is possible.
   simplification is possible.
   If negate_expr_p would return true for T, NULL_TREE will never be
   If negate_expr_p would return true for T, NULL_TREE will never be
   returned.  */
   returned.  */
 
 
static tree
static tree
fold_negate_expr (tree t)
fold_negate_expr (tree t)
{
{
  tree type = TREE_TYPE (t);
  tree type = TREE_TYPE (t);
  tree tem;
  tree tem;
 
 
  switch (TREE_CODE (t))
  switch (TREE_CODE (t))
    {
    {
    /* Convert - (~A) to A + 1.  */
    /* Convert - (~A) to A + 1.  */
    case BIT_NOT_EXPR:
    case BIT_NOT_EXPR:
      if (INTEGRAL_TYPE_P (type))
      if (INTEGRAL_TYPE_P (type))
        return fold_build2 (PLUS_EXPR, type, TREE_OPERAND (t, 0),
        return fold_build2 (PLUS_EXPR, type, TREE_OPERAND (t, 0),
                            build_int_cst (type, 1));
                            build_int_cst (type, 1));
      break;
      break;
 
 
    case INTEGER_CST:
    case INTEGER_CST:
      tem = fold_negate_const (t, type);
      tem = fold_negate_const (t, type);
      if (!TREE_OVERFLOW (tem)
      if (!TREE_OVERFLOW (tem)
          || !TYPE_OVERFLOW_TRAPS (type))
          || !TYPE_OVERFLOW_TRAPS (type))
        return tem;
        return tem;
      break;
      break;
 
 
    case REAL_CST:
    case REAL_CST:
      tem = fold_negate_const (t, type);
      tem = fold_negate_const (t, type);
      /* Two's complement FP formats, such as c4x, may overflow.  */
      /* Two's complement FP formats, such as c4x, may overflow.  */
      if (! TREE_OVERFLOW (tem) || ! flag_trapping_math)
      if (! TREE_OVERFLOW (tem) || ! flag_trapping_math)
        return tem;
        return tem;
      break;
      break;
 
 
    case COMPLEX_CST:
    case COMPLEX_CST:
      {
      {
        tree rpart = negate_expr (TREE_REALPART (t));
        tree rpart = negate_expr (TREE_REALPART (t));
        tree ipart = negate_expr (TREE_IMAGPART (t));
        tree ipart = negate_expr (TREE_IMAGPART (t));
 
 
        if ((TREE_CODE (rpart) == REAL_CST
        if ((TREE_CODE (rpart) == REAL_CST
             && TREE_CODE (ipart) == REAL_CST)
             && TREE_CODE (ipart) == REAL_CST)
            || (TREE_CODE (rpart) == INTEGER_CST
            || (TREE_CODE (rpart) == INTEGER_CST
                && TREE_CODE (ipart) == INTEGER_CST))
                && TREE_CODE (ipart) == INTEGER_CST))
          return build_complex (type, rpart, ipart);
          return build_complex (type, rpart, ipart);
      }
      }
      break;
      break;
 
 
    case NEGATE_EXPR:
    case NEGATE_EXPR:
      return TREE_OPERAND (t, 0);
      return TREE_OPERAND (t, 0);
 
 
    case PLUS_EXPR:
    case PLUS_EXPR:
      if (! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
      if (! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
        {
        {
          /* -(A + B) -> (-B) - A.  */
          /* -(A + B) -> (-B) - A.  */
          if (negate_expr_p (TREE_OPERAND (t, 1))
          if (negate_expr_p (TREE_OPERAND (t, 1))
              && reorder_operands_p (TREE_OPERAND (t, 0),
              && reorder_operands_p (TREE_OPERAND (t, 0),
                                     TREE_OPERAND (t, 1)))
                                     TREE_OPERAND (t, 1)))
            {
            {
              tem = negate_expr (TREE_OPERAND (t, 1));
              tem = negate_expr (TREE_OPERAND (t, 1));
              return fold_build2 (MINUS_EXPR, type,
              return fold_build2 (MINUS_EXPR, type,
                                  tem, TREE_OPERAND (t, 0));
                                  tem, TREE_OPERAND (t, 0));
            }
            }
 
 
          /* -(A + B) -> (-A) - B.  */
          /* -(A + B) -> (-A) - B.  */
          if (negate_expr_p (TREE_OPERAND (t, 0)))
          if (negate_expr_p (TREE_OPERAND (t, 0)))
            {
            {
              tem = negate_expr (TREE_OPERAND (t, 0));
              tem = negate_expr (TREE_OPERAND (t, 0));
              return fold_build2 (MINUS_EXPR, type,
              return fold_build2 (MINUS_EXPR, type,
                                  tem, TREE_OPERAND (t, 1));
                                  tem, TREE_OPERAND (t, 1));
            }
            }
        }
        }
      break;
      break;
 
 
    case MINUS_EXPR:
    case MINUS_EXPR:
      /* - (A - B) -> B - A  */
      /* - (A - B) -> B - A  */
      if ((! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
      if ((! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
          && reorder_operands_p (TREE_OPERAND (t, 0), TREE_OPERAND (t, 1)))
          && reorder_operands_p (TREE_OPERAND (t, 0), TREE_OPERAND (t, 1)))
        return fold_build2 (MINUS_EXPR, type,
        return fold_build2 (MINUS_EXPR, type,
                            TREE_OPERAND (t, 1), TREE_OPERAND (t, 0));
                            TREE_OPERAND (t, 1), TREE_OPERAND (t, 0));
      break;
      break;
 
 
    case MULT_EXPR:
    case MULT_EXPR:
      if (TYPE_UNSIGNED (type))
      if (TYPE_UNSIGNED (type))
        break;
        break;
 
 
      /* Fall through.  */
      /* Fall through.  */
 
 
    case RDIV_EXPR:
    case RDIV_EXPR:
      if (! HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type)))
      if (! HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type)))
        {
        {
          tem = TREE_OPERAND (t, 1);
          tem = TREE_OPERAND (t, 1);
          if (negate_expr_p (tem))
          if (negate_expr_p (tem))
            return fold_build2 (TREE_CODE (t), type,
            return fold_build2 (TREE_CODE (t), type,
                                TREE_OPERAND (t, 0), negate_expr (tem));
                                TREE_OPERAND (t, 0), negate_expr (tem));
          tem = TREE_OPERAND (t, 0);
          tem = TREE_OPERAND (t, 0);
          if (negate_expr_p (tem))
          if (negate_expr_p (tem))
            return fold_build2 (TREE_CODE (t), type,
            return fold_build2 (TREE_CODE (t), type,
                                negate_expr (tem), TREE_OPERAND (t, 1));
                                negate_expr (tem), TREE_OPERAND (t, 1));
        }
        }
      break;
      break;
 
 
    case TRUNC_DIV_EXPR:
    case TRUNC_DIV_EXPR:
    case ROUND_DIV_EXPR:
    case ROUND_DIV_EXPR:
    case FLOOR_DIV_EXPR:
    case FLOOR_DIV_EXPR:
    case CEIL_DIV_EXPR:
    case CEIL_DIV_EXPR:
    case EXACT_DIV_EXPR:
    case EXACT_DIV_EXPR:
      /* In general we can't negate A / B, because if A is INT_MIN and
      /* In general we can't negate A / B, because if A is INT_MIN and
         B is 1, we may turn this into INT_MIN / -1 which is undefined
         B is 1, we may turn this into INT_MIN / -1 which is undefined
         and actually traps on some architectures.  But if overflow is
         and actually traps on some architectures.  But if overflow is
         undefined, we can negate, because - (INT_MIN / 1) is an
         undefined, we can negate, because - (INT_MIN / 1) is an
         overflow.  */
         overflow.  */
      if (!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
      if (!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
        {
        {
          const char * const warnmsg = G_("assuming signed overflow does not "
          const char * const warnmsg = G_("assuming signed overflow does not "
                                          "occur when negating a division");
                                          "occur when negating a division");
          tem = TREE_OPERAND (t, 1);
          tem = TREE_OPERAND (t, 1);
          if (negate_expr_p (tem))
          if (negate_expr_p (tem))
            {
            {
              if (INTEGRAL_TYPE_P (type)
              if (INTEGRAL_TYPE_P (type)
                  && (TREE_CODE (tem) != INTEGER_CST
                  && (TREE_CODE (tem) != INTEGER_CST
                      || integer_onep (tem)))
                      || integer_onep (tem)))
                fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MISC);
                fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MISC);
              return fold_build2 (TREE_CODE (t), type,
              return fold_build2 (TREE_CODE (t), type,
                                  TREE_OPERAND (t, 0), negate_expr (tem));
                                  TREE_OPERAND (t, 0), negate_expr (tem));
            }
            }
          tem = TREE_OPERAND (t, 0);
          tem = TREE_OPERAND (t, 0);
          if (negate_expr_p (tem))
          if (negate_expr_p (tem))
            {
            {
              if (INTEGRAL_TYPE_P (type)
              if (INTEGRAL_TYPE_P (type)
                  && (TREE_CODE (tem) != INTEGER_CST
                  && (TREE_CODE (tem) != INTEGER_CST
                      || tree_int_cst_equal (tem, TYPE_MIN_VALUE (type))))
                      || tree_int_cst_equal (tem, TYPE_MIN_VALUE (type))))
                fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MISC);
                fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MISC);
              return fold_build2 (TREE_CODE (t), type,
              return fold_build2 (TREE_CODE (t), type,
                                  negate_expr (tem), TREE_OPERAND (t, 1));
                                  negate_expr (tem), TREE_OPERAND (t, 1));
            }
            }
        }
        }
      break;
      break;
 
 
    case NOP_EXPR:
    case NOP_EXPR:
      /* Convert -((double)float) into (double)(-float).  */
      /* Convert -((double)float) into (double)(-float).  */
      if (TREE_CODE (type) == REAL_TYPE)
      if (TREE_CODE (type) == REAL_TYPE)
        {
        {
          tem = strip_float_extensions (t);
          tem = strip_float_extensions (t);
          if (tem != t && negate_expr_p (tem))
          if (tem != t && negate_expr_p (tem))
            return negate_expr (tem);
            return negate_expr (tem);
        }
        }
      break;
      break;
 
 
    case CALL_EXPR:
    case CALL_EXPR:
      /* Negate -f(x) as f(-x).  */
      /* Negate -f(x) as f(-x).  */
      if (negate_mathfn_p (builtin_mathfn_code (t))
      if (negate_mathfn_p (builtin_mathfn_code (t))
          && negate_expr_p (TREE_VALUE (TREE_OPERAND (t, 1))))
          && negate_expr_p (TREE_VALUE (TREE_OPERAND (t, 1))))
        {
        {
          tree fndecl, arg, arglist;
          tree fndecl, arg, arglist;
 
 
          fndecl = get_callee_fndecl (t);
          fndecl = get_callee_fndecl (t);
          arg = negate_expr (TREE_VALUE (TREE_OPERAND (t, 1)));
          arg = negate_expr (TREE_VALUE (TREE_OPERAND (t, 1)));
          arglist = build_tree_list (NULL_TREE, arg);
          arglist = build_tree_list (NULL_TREE, arg);
          return build_function_call_expr (fndecl, arglist);
          return build_function_call_expr (fndecl, arglist);
        }
        }
      break;
      break;
 
 
    case RSHIFT_EXPR:
    case RSHIFT_EXPR:
      /* Optimize -((int)x >> 31) into (unsigned)x >> 31.  */
      /* Optimize -((int)x >> 31) into (unsigned)x >> 31.  */
      if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
      if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
        {
        {
          tree op1 = TREE_OPERAND (t, 1);
          tree op1 = TREE_OPERAND (t, 1);
          if (TREE_INT_CST_HIGH (op1) == 0
          if (TREE_INT_CST_HIGH (op1) == 0
              && (unsigned HOST_WIDE_INT) (TYPE_PRECISION (type) - 1)
              && (unsigned HOST_WIDE_INT) (TYPE_PRECISION (type) - 1)
                 == TREE_INT_CST_LOW (op1))
                 == TREE_INT_CST_LOW (op1))
            {
            {
              tree ntype = TYPE_UNSIGNED (type)
              tree ntype = TYPE_UNSIGNED (type)
                           ? lang_hooks.types.signed_type (type)
                           ? lang_hooks.types.signed_type (type)
                           : lang_hooks.types.unsigned_type (type);
                           : lang_hooks.types.unsigned_type (type);
              tree temp = fold_convert (ntype, TREE_OPERAND (t, 0));
              tree temp = fold_convert (ntype, TREE_OPERAND (t, 0));
              temp = fold_build2 (RSHIFT_EXPR, ntype, temp, op1);
              temp = fold_build2 (RSHIFT_EXPR, ntype, temp, op1);
              return fold_convert (type, temp);
              return fold_convert (type, temp);
            }
            }
        }
        }
      break;
      break;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T can not be
/* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T can not be
   negated in a simpler way.  Also allow for T to be NULL_TREE, in which case
   negated in a simpler way.  Also allow for T to be NULL_TREE, in which case
   return NULL_TREE. */
   return NULL_TREE. */
 
 
static tree
static tree
negate_expr (tree t)
negate_expr (tree t)
{
{
  tree type, tem;
  tree type, tem;
 
 
  if (t == NULL_TREE)
  if (t == NULL_TREE)
    return NULL_TREE;
    return NULL_TREE;
 
 
  type = TREE_TYPE (t);
  type = TREE_TYPE (t);
  STRIP_SIGN_NOPS (t);
  STRIP_SIGN_NOPS (t);
 
 
  tem = fold_negate_expr (t);
  tem = fold_negate_expr (t);
  if (!tem)
  if (!tem)
    tem = build1 (NEGATE_EXPR, TREE_TYPE (t), t);
    tem = build1 (NEGATE_EXPR, TREE_TYPE (t), t);
  return fold_convert (type, tem);
  return fold_convert (type, tem);
}
}


/* Split a tree IN into a constant, literal and variable parts that could be
/* Split a tree IN into a constant, literal and variable parts that could be
   combined with CODE to make IN.  "constant" means an expression with
   combined with CODE to make IN.  "constant" means an expression with
   TREE_CONSTANT but that isn't an actual constant.  CODE must be a
   TREE_CONSTANT but that isn't an actual constant.  CODE must be a
   commutative arithmetic operation.  Store the constant part into *CONP,
   commutative arithmetic operation.  Store the constant part into *CONP,
   the literal in *LITP and return the variable part.  If a part isn't
   the literal in *LITP and return the variable part.  If a part isn't
   present, set it to null.  If the tree does not decompose in this way,
   present, set it to null.  If the tree does not decompose in this way,
   return the entire tree as the variable part and the other parts as null.
   return the entire tree as the variable part and the other parts as null.
 
 
   If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR.  In that
   If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR.  In that
   case, we negate an operand that was subtracted.  Except if it is a
   case, we negate an operand that was subtracted.  Except if it is a
   literal for which we use *MINUS_LITP instead.
   literal for which we use *MINUS_LITP instead.
 
 
   If NEGATE_P is true, we are negating all of IN, again except a literal
   If NEGATE_P is true, we are negating all of IN, again except a literal
   for which we use *MINUS_LITP instead.
   for which we use *MINUS_LITP instead.
 
 
   If IN is itself a literal or constant, return it as appropriate.
   If IN is itself a literal or constant, return it as appropriate.
 
 
   Note that we do not guarantee that any of the three values will be the
   Note that we do not guarantee that any of the three values will be the
   same type as IN, but they will have the same signedness and mode.  */
   same type as IN, but they will have the same signedness and mode.  */
 
 
static tree
static tree
split_tree (tree in, enum tree_code code, tree *conp, tree *litp,
split_tree (tree in, enum tree_code code, tree *conp, tree *litp,
            tree *minus_litp, int negate_p)
            tree *minus_litp, int negate_p)
{
{
  tree var = 0;
  tree var = 0;
 
 
  *conp = 0;
  *conp = 0;
  *litp = 0;
  *litp = 0;
  *minus_litp = 0;
  *minus_litp = 0;
 
 
  /* Strip any conversions that don't change the machine mode or signedness.  */
  /* Strip any conversions that don't change the machine mode or signedness.  */
  STRIP_SIGN_NOPS (in);
  STRIP_SIGN_NOPS (in);
 
 
  if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST)
  if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST)
    *litp = in;
    *litp = in;
  else if (TREE_CODE (in) == code
  else if (TREE_CODE (in) == code
           || (! FLOAT_TYPE_P (TREE_TYPE (in))
           || (! FLOAT_TYPE_P (TREE_TYPE (in))
               /* We can associate addition and subtraction together (even
               /* We can associate addition and subtraction together (even
                  though the C standard doesn't say so) for integers because
                  though the C standard doesn't say so) for integers because
                  the value is not affected.  For reals, the value might be
                  the value is not affected.  For reals, the value might be
                  affected, so we can't.  */
                  affected, so we can't.  */
               && ((code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
               && ((code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
                   || (code == MINUS_EXPR && TREE_CODE (in) == PLUS_EXPR))))
                   || (code == MINUS_EXPR && TREE_CODE (in) == PLUS_EXPR))))
    {
    {
      tree op0 = TREE_OPERAND (in, 0);
      tree op0 = TREE_OPERAND (in, 0);
      tree op1 = TREE_OPERAND (in, 1);
      tree op1 = TREE_OPERAND (in, 1);
      int neg1_p = TREE_CODE (in) == MINUS_EXPR;
      int neg1_p = TREE_CODE (in) == MINUS_EXPR;
      int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0;
      int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0;
 
 
      /* First see if either of the operands is a literal, then a constant.  */
      /* First see if either of the operands is a literal, then a constant.  */
      if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST)
      if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST)
        *litp = op0, op0 = 0;
        *litp = op0, op0 = 0;
      else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST)
      else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST)
        *litp = op1, neg_litp_p = neg1_p, op1 = 0;
        *litp = op1, neg_litp_p = neg1_p, op1 = 0;
 
 
      if (op0 != 0 && TREE_CONSTANT (op0))
      if (op0 != 0 && TREE_CONSTANT (op0))
        *conp = op0, op0 = 0;
        *conp = op0, op0 = 0;
      else if (op1 != 0 && TREE_CONSTANT (op1))
      else if (op1 != 0 && TREE_CONSTANT (op1))
        *conp = op1, neg_conp_p = neg1_p, op1 = 0;
        *conp = op1, neg_conp_p = neg1_p, op1 = 0;
 
 
      /* If we haven't dealt with either operand, this is not a case we can
      /* If we haven't dealt with either operand, this is not a case we can
         decompose.  Otherwise, VAR is either of the ones remaining, if any.  */
         decompose.  Otherwise, VAR is either of the ones remaining, if any.  */
      if (op0 != 0 && op1 != 0)
      if (op0 != 0 && op1 != 0)
        var = in;
        var = in;
      else if (op0 != 0)
      else if (op0 != 0)
        var = op0;
        var = op0;
      else
      else
        var = op1, neg_var_p = neg1_p;
        var = op1, neg_var_p = neg1_p;
 
 
      /* Now do any needed negations.  */
      /* Now do any needed negations.  */
      if (neg_litp_p)
      if (neg_litp_p)
        *minus_litp = *litp, *litp = 0;
        *minus_litp = *litp, *litp = 0;
      if (neg_conp_p)
      if (neg_conp_p)
        *conp = negate_expr (*conp);
        *conp = negate_expr (*conp);
      if (neg_var_p)
      if (neg_var_p)
        var = negate_expr (var);
        var = negate_expr (var);
    }
    }
  else if (TREE_CONSTANT (in))
  else if (TREE_CONSTANT (in))
    *conp = in;
    *conp = in;
  else
  else
    var = in;
    var = in;
 
 
  if (negate_p)
  if (negate_p)
    {
    {
      if (*litp)
      if (*litp)
        *minus_litp = *litp, *litp = 0;
        *minus_litp = *litp, *litp = 0;
      else if (*minus_litp)
      else if (*minus_litp)
        *litp = *minus_litp, *minus_litp = 0;
        *litp = *minus_litp, *minus_litp = 0;
      *conp = negate_expr (*conp);
      *conp = negate_expr (*conp);
      var = negate_expr (var);
      var = negate_expr (var);
    }
    }
 
 
  return var;
  return var;
}
}
 
 
/* Re-associate trees split by the above function.  T1 and T2 are either
/* Re-associate trees split by the above function.  T1 and T2 are either
   expressions to associate or null.  Return the new expression, if any.  If
   expressions to associate or null.  Return the new expression, if any.  If
   we build an operation, do it in TYPE and with CODE.  */
   we build an operation, do it in TYPE and with CODE.  */
 
 
static tree
static tree
associate_trees (tree t1, tree t2, enum tree_code code, tree type)
associate_trees (tree t1, tree t2, enum tree_code code, tree type)
{
{
  if (t1 == 0)
  if (t1 == 0)
    return t2;
    return t2;
  else if (t2 == 0)
  else if (t2 == 0)
    return t1;
    return t1;
 
 
  /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
  /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
     try to fold this since we will have infinite recursion.  But do
     try to fold this since we will have infinite recursion.  But do
     deal with any NEGATE_EXPRs.  */
     deal with any NEGATE_EXPRs.  */
  if (TREE_CODE (t1) == code || TREE_CODE (t2) == code
  if (TREE_CODE (t1) == code || TREE_CODE (t2) == code
      || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR)
      || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR)
    {
    {
      if (code == PLUS_EXPR)
      if (code == PLUS_EXPR)
        {
        {
          if (TREE_CODE (t1) == NEGATE_EXPR)
          if (TREE_CODE (t1) == NEGATE_EXPR)
            return build2 (MINUS_EXPR, type, fold_convert (type, t2),
            return build2 (MINUS_EXPR, type, fold_convert (type, t2),
                           fold_convert (type, TREE_OPERAND (t1, 0)));
                           fold_convert (type, TREE_OPERAND (t1, 0)));
          else if (TREE_CODE (t2) == NEGATE_EXPR)
          else if (TREE_CODE (t2) == NEGATE_EXPR)
            return build2 (MINUS_EXPR, type, fold_convert (type, t1),
            return build2 (MINUS_EXPR, type, fold_convert (type, t1),
                           fold_convert (type, TREE_OPERAND (t2, 0)));
                           fold_convert (type, TREE_OPERAND (t2, 0)));
          else if (integer_zerop (t2))
          else if (integer_zerop (t2))
            return fold_convert (type, t1);
            return fold_convert (type, t1);
        }
        }
      else if (code == MINUS_EXPR)
      else if (code == MINUS_EXPR)
        {
        {
          if (integer_zerop (t2))
          if (integer_zerop (t2))
            return fold_convert (type, t1);
            return fold_convert (type, t1);
        }
        }
 
 
      return build2 (code, type, fold_convert (type, t1),
      return build2 (code, type, fold_convert (type, t1),
                     fold_convert (type, t2));
                     fold_convert (type, t2));
    }
    }
 
 
  return fold_build2 (code, type, fold_convert (type, t1),
  return fold_build2 (code, type, fold_convert (type, t1),
                      fold_convert (type, t2));
                      fold_convert (type, t2));
}
}


/* Combine two integer constants ARG1 and ARG2 under operation CODE
/* Combine two integer constants ARG1 and ARG2 under operation CODE
   to produce a new constant.  Return NULL_TREE if we don't know how
   to produce a new constant.  Return NULL_TREE if we don't know how
   to evaluate CODE at compile-time.
   to evaluate CODE at compile-time.
 
 
   If NOTRUNC is nonzero, do not truncate the result to fit the data type.  */
   If NOTRUNC is nonzero, do not truncate the result to fit the data type.  */
 
 
tree
tree
int_const_binop (enum tree_code code, tree arg1, tree arg2, int notrunc)
int_const_binop (enum tree_code code, tree arg1, tree arg2, int notrunc)
{
{
  unsigned HOST_WIDE_INT int1l, int2l;
  unsigned HOST_WIDE_INT int1l, int2l;
  HOST_WIDE_INT int1h, int2h;
  HOST_WIDE_INT int1h, int2h;
  unsigned HOST_WIDE_INT low;
  unsigned HOST_WIDE_INT low;
  HOST_WIDE_INT hi;
  HOST_WIDE_INT hi;
  unsigned HOST_WIDE_INT garbagel;
  unsigned HOST_WIDE_INT garbagel;
  HOST_WIDE_INT garbageh;
  HOST_WIDE_INT garbageh;
  tree t;
  tree t;
  tree type = TREE_TYPE (arg1);
  tree type = TREE_TYPE (arg1);
  int uns = TYPE_UNSIGNED (type);
  int uns = TYPE_UNSIGNED (type);
  int is_sizetype
  int is_sizetype
    = (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type));
    = (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type));
  int overflow = 0;
  int overflow = 0;
 
 
  int1l = TREE_INT_CST_LOW (arg1);
  int1l = TREE_INT_CST_LOW (arg1);
  int1h = TREE_INT_CST_HIGH (arg1);
  int1h = TREE_INT_CST_HIGH (arg1);
  int2l = TREE_INT_CST_LOW (arg2);
  int2l = TREE_INT_CST_LOW (arg2);
  int2h = TREE_INT_CST_HIGH (arg2);
  int2h = TREE_INT_CST_HIGH (arg2);
 
 
  switch (code)
  switch (code)
    {
    {
    case BIT_IOR_EXPR:
    case BIT_IOR_EXPR:
      low = int1l | int2l, hi = int1h | int2h;
      low = int1l | int2l, hi = int1h | int2h;
      break;
      break;
 
 
    case BIT_XOR_EXPR:
    case BIT_XOR_EXPR:
      low = int1l ^ int2l, hi = int1h ^ int2h;
      low = int1l ^ int2l, hi = int1h ^ int2h;
      break;
      break;
 
 
    case BIT_AND_EXPR:
    case BIT_AND_EXPR:
      low = int1l & int2l, hi = int1h & int2h;
      low = int1l & int2l, hi = int1h & int2h;
      break;
      break;
 
 
    case RSHIFT_EXPR:
    case RSHIFT_EXPR:
      int2l = -int2l;
      int2l = -int2l;
    case LSHIFT_EXPR:
    case LSHIFT_EXPR:
      /* It's unclear from the C standard whether shifts can overflow.
      /* It's unclear from the C standard whether shifts can overflow.
         The following code ignores overflow; perhaps a C standard
         The following code ignores overflow; perhaps a C standard
         interpretation ruling is needed.  */
         interpretation ruling is needed.  */
      lshift_double (int1l, int1h, int2l, TYPE_PRECISION (type),
      lshift_double (int1l, int1h, int2l, TYPE_PRECISION (type),
                     &low, &hi, !uns);
                     &low, &hi, !uns);
      break;
      break;
 
 
    case RROTATE_EXPR:
    case RROTATE_EXPR:
      int2l = - int2l;
      int2l = - int2l;
    case LROTATE_EXPR:
    case LROTATE_EXPR:
      lrotate_double (int1l, int1h, int2l, TYPE_PRECISION (type),
      lrotate_double (int1l, int1h, int2l, TYPE_PRECISION (type),
                      &low, &hi);
                      &low, &hi);
      break;
      break;
 
 
    case PLUS_EXPR:
    case PLUS_EXPR:
      overflow = add_double (int1l, int1h, int2l, int2h, &low, &hi);
      overflow = add_double (int1l, int1h, int2l, int2h, &low, &hi);
      break;
      break;
 
 
    case MINUS_EXPR:
    case MINUS_EXPR:
      neg_double (int2l, int2h, &low, &hi);
      neg_double (int2l, int2h, &low, &hi);
      add_double (int1l, int1h, low, hi, &low, &hi);
      add_double (int1l, int1h, low, hi, &low, &hi);
      overflow = OVERFLOW_SUM_SIGN (hi, int2h, int1h);
      overflow = OVERFLOW_SUM_SIGN (hi, int2h, int1h);
      break;
      break;
 
 
    case MULT_EXPR:
    case MULT_EXPR:
      overflow = mul_double (int1l, int1h, int2l, int2h, &low, &hi);
      overflow = mul_double (int1l, int1h, int2l, int2h, &low, &hi);
      break;
      break;
 
 
    case TRUNC_DIV_EXPR:
    case TRUNC_DIV_EXPR:
    case FLOOR_DIV_EXPR: case CEIL_DIV_EXPR:
    case FLOOR_DIV_EXPR: case CEIL_DIV_EXPR:
    case EXACT_DIV_EXPR:
    case EXACT_DIV_EXPR:
      /* This is a shortcut for a common special case.  */
      /* This is a shortcut for a common special case.  */
      if (int2h == 0 && (HOST_WIDE_INT) int2l > 0
      if (int2h == 0 && (HOST_WIDE_INT) int2l > 0
          && ! TREE_CONSTANT_OVERFLOW (arg1)
          && ! TREE_CONSTANT_OVERFLOW (arg1)
          && ! TREE_CONSTANT_OVERFLOW (arg2)
          && ! TREE_CONSTANT_OVERFLOW (arg2)
          && int1h == 0 && (HOST_WIDE_INT) int1l >= 0)
          && int1h == 0 && (HOST_WIDE_INT) int1l >= 0)
        {
        {
          if (code == CEIL_DIV_EXPR)
          if (code == CEIL_DIV_EXPR)
            int1l += int2l - 1;
            int1l += int2l - 1;
 
 
          low = int1l / int2l, hi = 0;
          low = int1l / int2l, hi = 0;
          break;
          break;
        }
        }
 
 
      /* ... fall through ...  */
      /* ... fall through ...  */
 
 
    case ROUND_DIV_EXPR:
    case ROUND_DIV_EXPR:
      if (int2h == 0 && int2l == 0)
      if (int2h == 0 && int2l == 0)
        return NULL_TREE;
        return NULL_TREE;
      if (int2h == 0 && int2l == 1)
      if (int2h == 0 && int2l == 1)
        {
        {
          low = int1l, hi = int1h;
          low = int1l, hi = int1h;
          break;
          break;
        }
        }
      if (int1l == int2l && int1h == int2h
      if (int1l == int2l && int1h == int2h
          && ! (int1l == 0 && int1h == 0))
          && ! (int1l == 0 && int1h == 0))
        {
        {
          low = 1, hi = 0;
          low = 1, hi = 0;
          break;
          break;
        }
        }
      overflow = div_and_round_double (code, uns, int1l, int1h, int2l, int2h,
      overflow = div_and_round_double (code, uns, int1l, int1h, int2l, int2h,
                                       &low, &hi, &garbagel, &garbageh);
                                       &low, &hi, &garbagel, &garbageh);
      break;
      break;
 
 
    case TRUNC_MOD_EXPR:
    case TRUNC_MOD_EXPR:
    case FLOOR_MOD_EXPR: case CEIL_MOD_EXPR:
    case FLOOR_MOD_EXPR: case CEIL_MOD_EXPR:
      /* This is a shortcut for a common special case.  */
      /* This is a shortcut for a common special case.  */
      if (int2h == 0 && (HOST_WIDE_INT) int2l > 0
      if (int2h == 0 && (HOST_WIDE_INT) int2l > 0
          && ! TREE_CONSTANT_OVERFLOW (arg1)
          && ! TREE_CONSTANT_OVERFLOW (arg1)
          && ! TREE_CONSTANT_OVERFLOW (arg2)
          && ! TREE_CONSTANT_OVERFLOW (arg2)
          && int1h == 0 && (HOST_WIDE_INT) int1l >= 0)
          && int1h == 0 && (HOST_WIDE_INT) int1l >= 0)
        {
        {
          if (code == CEIL_MOD_EXPR)
          if (code == CEIL_MOD_EXPR)
            int1l += int2l - 1;
            int1l += int2l - 1;
          low = int1l % int2l, hi = 0;
          low = int1l % int2l, hi = 0;
          break;
          break;
        }
        }
 
 
      /* ... fall through ...  */
      /* ... fall through ...  */
 
 
    case ROUND_MOD_EXPR:
    case ROUND_MOD_EXPR:
      if (int2h == 0 && int2l == 0)
      if (int2h == 0 && int2l == 0)
        return NULL_TREE;
        return NULL_TREE;
      overflow = div_and_round_double (code, uns,
      overflow = div_and_round_double (code, uns,
                                       int1l, int1h, int2l, int2h,
                                       int1l, int1h, int2l, int2h,
                                       &garbagel, &garbageh, &low, &hi);
                                       &garbagel, &garbageh, &low, &hi);
      break;
      break;
 
 
    case MIN_EXPR:
    case MIN_EXPR:
    case MAX_EXPR:
    case MAX_EXPR:
      if (uns)
      if (uns)
        low = (((unsigned HOST_WIDE_INT) int1h
        low = (((unsigned HOST_WIDE_INT) int1h
                < (unsigned HOST_WIDE_INT) int2h)
                < (unsigned HOST_WIDE_INT) int2h)
               || (((unsigned HOST_WIDE_INT) int1h
               || (((unsigned HOST_WIDE_INT) int1h
                    == (unsigned HOST_WIDE_INT) int2h)
                    == (unsigned HOST_WIDE_INT) int2h)
                   && int1l < int2l));
                   && int1l < int2l));
      else
      else
        low = (int1h < int2h
        low = (int1h < int2h
               || (int1h == int2h && int1l < int2l));
               || (int1h == int2h && int1l < int2l));
 
 
      if (low == (code == MIN_EXPR))
      if (low == (code == MIN_EXPR))
        low = int1l, hi = int1h;
        low = int1l, hi = int1h;
      else
      else
        low = int2l, hi = int2h;
        low = int2l, hi = int2h;
      break;
      break;
 
 
    default:
    default:
      return NULL_TREE;
      return NULL_TREE;
    }
    }
 
 
  t = build_int_cst_wide (TREE_TYPE (arg1), low, hi);
  t = build_int_cst_wide (TREE_TYPE (arg1), low, hi);
 
 
  if (notrunc)
  if (notrunc)
    {
    {
      /* Propagate overflow flags ourselves.  */
      /* Propagate overflow flags ourselves.  */
      if (((!uns || is_sizetype) && overflow)
      if (((!uns || is_sizetype) && overflow)
          | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2))
          | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2))
        {
        {
          t = copy_node (t);
          t = copy_node (t);
          TREE_OVERFLOW (t) = 1;
          TREE_OVERFLOW (t) = 1;
          TREE_CONSTANT_OVERFLOW (t) = 1;
          TREE_CONSTANT_OVERFLOW (t) = 1;
        }
        }
      else if (TREE_CONSTANT_OVERFLOW (arg1) | TREE_CONSTANT_OVERFLOW (arg2))
      else if (TREE_CONSTANT_OVERFLOW (arg1) | TREE_CONSTANT_OVERFLOW (arg2))
        {
        {
          t = copy_node (t);
          t = copy_node (t);
          TREE_CONSTANT_OVERFLOW (t) = 1;
          TREE_CONSTANT_OVERFLOW (t) = 1;
        }
        }
    }
    }
  else
  else
    t = force_fit_type (t, 1,
    t = force_fit_type (t, 1,
                        ((!uns || is_sizetype) && overflow)
                        ((!uns || is_sizetype) && overflow)
                        | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2),
                        | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2),
                        TREE_CONSTANT_OVERFLOW (arg1)
                        TREE_CONSTANT_OVERFLOW (arg1)
                        | TREE_CONSTANT_OVERFLOW (arg2));
                        | TREE_CONSTANT_OVERFLOW (arg2));
 
 
  return t;
  return t;
}
}
 
 
/* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
/* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
   constant.  We assume ARG1 and ARG2 have the same data type, or at least
   constant.  We assume ARG1 and ARG2 have the same data type, or at least
   are the same kind of constant and the same machine mode.  Return zero if
   are the same kind of constant and the same machine mode.  Return zero if
   combining the constants is not allowed in the current operating mode.
   combining the constants is not allowed in the current operating mode.
 
 
   If NOTRUNC is nonzero, do not truncate the result to fit the data type.  */
   If NOTRUNC is nonzero, do not truncate the result to fit the data type.  */
 
 
static tree
static tree
const_binop (enum tree_code code, tree arg1, tree arg2, int notrunc)
const_binop (enum tree_code code, tree arg1, tree arg2, int notrunc)
{
{
  /* Sanity check for the recursive cases.  */
  /* Sanity check for the recursive cases.  */
  if (!arg1 || !arg2)
  if (!arg1 || !arg2)
    return NULL_TREE;
    return NULL_TREE;
 
 
  STRIP_NOPS (arg1);
  STRIP_NOPS (arg1);
  STRIP_NOPS (arg2);
  STRIP_NOPS (arg2);
 
 
  if (TREE_CODE (arg1) == INTEGER_CST)
  if (TREE_CODE (arg1) == INTEGER_CST)
    return int_const_binop (code, arg1, arg2, notrunc);
    return int_const_binop (code, arg1, arg2, notrunc);
 
 
  if (TREE_CODE (arg1) == REAL_CST)
  if (TREE_CODE (arg1) == REAL_CST)
    {
    {
      enum machine_mode mode;
      enum machine_mode mode;
      REAL_VALUE_TYPE d1;
      REAL_VALUE_TYPE d1;
      REAL_VALUE_TYPE d2;
      REAL_VALUE_TYPE d2;
      REAL_VALUE_TYPE value;
      REAL_VALUE_TYPE value;
      REAL_VALUE_TYPE result;
      REAL_VALUE_TYPE result;
      bool inexact;
      bool inexact;
      tree t, type;
      tree t, type;
 
 
      /* The following codes are handled by real_arithmetic.  */
      /* The following codes are handled by real_arithmetic.  */
      switch (code)
      switch (code)
        {
        {
        case PLUS_EXPR:
        case PLUS_EXPR:
        case MINUS_EXPR:
        case MINUS_EXPR:
        case MULT_EXPR:
        case MULT_EXPR:
        case RDIV_EXPR:
        case RDIV_EXPR:
        case MIN_EXPR:
        case MIN_EXPR:
        case MAX_EXPR:
        case MAX_EXPR:
          break;
          break;
 
 
        default:
        default:
          return NULL_TREE;
          return NULL_TREE;
        }
        }
 
 
      d1 = TREE_REAL_CST (arg1);
      d1 = TREE_REAL_CST (arg1);
      d2 = TREE_REAL_CST (arg2);
      d2 = TREE_REAL_CST (arg2);
 
 
      type = TREE_TYPE (arg1);
      type = TREE_TYPE (arg1);
      mode = TYPE_MODE (type);
      mode = TYPE_MODE (type);
 
 
      /* Don't perform operation if we honor signaling NaNs and
      /* Don't perform operation if we honor signaling NaNs and
         either operand is a NaN.  */
         either operand is a NaN.  */
      if (HONOR_SNANS (mode)
      if (HONOR_SNANS (mode)
          && (REAL_VALUE_ISNAN (d1) || REAL_VALUE_ISNAN (d2)))
          && (REAL_VALUE_ISNAN (d1) || REAL_VALUE_ISNAN (d2)))
        return NULL_TREE;
        return NULL_TREE;
 
 
      /* Don't perform operation if it would raise a division
      /* Don't perform operation if it would raise a division
         by zero exception.  */
         by zero exception.  */
      if (code == RDIV_EXPR
      if (code == RDIV_EXPR
          && REAL_VALUES_EQUAL (d2, dconst0)
          && REAL_VALUES_EQUAL (d2, dconst0)
          && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
          && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
        return NULL_TREE;
        return NULL_TREE;
 
 
      /* If either operand is a NaN, just return it.  Otherwise, set up
      /* If either operand is a NaN, just return it.  Otherwise, set up
         for floating-point trap; we return an overflow.  */
         for floating-point trap; we return an overflow.  */
      if (REAL_VALUE_ISNAN (d1))
      if (REAL_VALUE_ISNAN (d1))
        return arg1;
        return arg1;
      else if (REAL_VALUE_ISNAN (d2))
      else if (REAL_VALUE_ISNAN (d2))
        return arg2;
        return arg2;
 
 
      inexact = real_arithmetic (&value, code, &d1, &d2);
      inexact = real_arithmetic (&value, code, &d1, &d2);
      real_convert (&result, mode, &value);
      real_convert (&result, mode, &value);
 
 
      /* Don't constant fold this floating point operation if
      /* Don't constant fold this floating point operation if
         the result has overflowed and flag_trapping_math.  */
         the result has overflowed and flag_trapping_math.  */
      if (flag_trapping_math
      if (flag_trapping_math
          && MODE_HAS_INFINITIES (mode)
          && MODE_HAS_INFINITIES (mode)
          && REAL_VALUE_ISINF (result)
          && REAL_VALUE_ISINF (result)
          && !REAL_VALUE_ISINF (d1)
          && !REAL_VALUE_ISINF (d1)
          && !REAL_VALUE_ISINF (d2))
          && !REAL_VALUE_ISINF (d2))
        return NULL_TREE;
        return NULL_TREE;
 
 
      /* Don't constant fold this floating point operation if the
      /* Don't constant fold this floating point operation if the
         result may dependent upon the run-time rounding mode and
         result may dependent upon the run-time rounding mode and
         flag_rounding_math is set, or if GCC's software emulation
         flag_rounding_math is set, or if GCC's software emulation
         is unable to accurately represent the result.  */
         is unable to accurately represent the result.  */
      if ((flag_rounding_math
      if ((flag_rounding_math
           || (REAL_MODE_FORMAT_COMPOSITE_P (mode)
           || (REAL_MODE_FORMAT_COMPOSITE_P (mode)
               && !flag_unsafe_math_optimizations))
               && !flag_unsafe_math_optimizations))
          && (inexact || !real_identical (&result, &value)))
          && (inexact || !real_identical (&result, &value)))
        return NULL_TREE;
        return NULL_TREE;
 
 
      t = build_real (type, result);
      t = build_real (type, result);
 
 
      TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2);
      TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2);
      TREE_CONSTANT_OVERFLOW (t)
      TREE_CONSTANT_OVERFLOW (t)
        = TREE_OVERFLOW (t)
        = TREE_OVERFLOW (t)
          | TREE_CONSTANT_OVERFLOW (arg1)
          | TREE_CONSTANT_OVERFLOW (arg1)
          | TREE_CONSTANT_OVERFLOW (arg2);
          | TREE_CONSTANT_OVERFLOW (arg2);
      return t;
      return t;
    }
    }
 
 
  if (TREE_CODE (arg1) == COMPLEX_CST)
  if (TREE_CODE (arg1) == COMPLEX_CST)
    {
    {
      tree type = TREE_TYPE (arg1);
      tree type = TREE_TYPE (arg1);
      tree r1 = TREE_REALPART (arg1);
      tree r1 = TREE_REALPART (arg1);
      tree i1 = TREE_IMAGPART (arg1);
      tree i1 = TREE_IMAGPART (arg1);
      tree r2 = TREE_REALPART (arg2);
      tree r2 = TREE_REALPART (arg2);
      tree i2 = TREE_IMAGPART (arg2);
      tree i2 = TREE_IMAGPART (arg2);
      tree real, imag;
      tree real, imag;
 
 
      switch (code)
      switch (code)
        {
        {
        case PLUS_EXPR:
        case PLUS_EXPR:
        case MINUS_EXPR:
        case MINUS_EXPR:
          real = const_binop (code, r1, r2, notrunc);
          real = const_binop (code, r1, r2, notrunc);
          imag = const_binop (code, i1, i2, notrunc);
          imag = const_binop (code, i1, i2, notrunc);
          break;
          break;
 
 
        case MULT_EXPR:
        case MULT_EXPR:
          real = const_binop (MINUS_EXPR,
          real = const_binop (MINUS_EXPR,
                              const_binop (MULT_EXPR, r1, r2, notrunc),
                              const_binop (MULT_EXPR, r1, r2, notrunc),
                              const_binop (MULT_EXPR, i1, i2, notrunc),
                              const_binop (MULT_EXPR, i1, i2, notrunc),
                              notrunc);
                              notrunc);
          imag = const_binop (PLUS_EXPR,
          imag = const_binop (PLUS_EXPR,
                              const_binop (MULT_EXPR, r1, i2, notrunc),
                              const_binop (MULT_EXPR, r1, i2, notrunc),
                              const_binop (MULT_EXPR, i1, r2, notrunc),
                              const_binop (MULT_EXPR, i1, r2, notrunc),
                              notrunc);
                              notrunc);
          break;
          break;
 
 
        case RDIV_EXPR:
        case RDIV_EXPR:
          {
          {
            tree magsquared
            tree magsquared
              = const_binop (PLUS_EXPR,
              = const_binop (PLUS_EXPR,
                             const_binop (MULT_EXPR, r2, r2, notrunc),
                             const_binop (MULT_EXPR, r2, r2, notrunc),
                             const_binop (MULT_EXPR, i2, i2, notrunc),
                             const_binop (MULT_EXPR, i2, i2, notrunc),
                             notrunc);
                             notrunc);
            tree t1
            tree t1
              = const_binop (PLUS_EXPR,
              = const_binop (PLUS_EXPR,
                             const_binop (MULT_EXPR, r1, r2, notrunc),
                             const_binop (MULT_EXPR, r1, r2, notrunc),
                             const_binop (MULT_EXPR, i1, i2, notrunc),
                             const_binop (MULT_EXPR, i1, i2, notrunc),
                             notrunc);
                             notrunc);
            tree t2
            tree t2
              = const_binop (MINUS_EXPR,
              = const_binop (MINUS_EXPR,
                             const_binop (MULT_EXPR, i1, r2, notrunc),
                             const_binop (MULT_EXPR, i1, r2, notrunc),
                             const_binop (MULT_EXPR, r1, i2, notrunc),
                             const_binop (MULT_EXPR, r1, i2, notrunc),
                             notrunc);
                             notrunc);
 
 
            if (INTEGRAL_TYPE_P (TREE_TYPE (r1)))
            if (INTEGRAL_TYPE_P (TREE_TYPE (r1)))
              code = TRUNC_DIV_EXPR;
              code = TRUNC_DIV_EXPR;
 
 
            real = const_binop (code, t1, magsquared, notrunc);
            real = const_binop (code, t1, magsquared, notrunc);
            imag = const_binop (code, t2, magsquared, notrunc);
            imag = const_binop (code, t2, magsquared, notrunc);
          }
          }
          break;
          break;
 
 
        default:
        default:
          return NULL_TREE;
          return NULL_TREE;
        }
        }
 
 
      if (real && imag)
      if (real && imag)
        return build_complex (type, real, imag);
        return build_complex (type, real, imag);
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Create a size type INT_CST node with NUMBER sign extended.  KIND
/* Create a size type INT_CST node with NUMBER sign extended.  KIND
   indicates which particular sizetype to create.  */
   indicates which particular sizetype to create.  */
 
 
tree
tree
size_int_kind (HOST_WIDE_INT number, enum size_type_kind kind)
size_int_kind (HOST_WIDE_INT number, enum size_type_kind kind)
{
{
  return build_int_cst (sizetype_tab[(int) kind], number);
  return build_int_cst (sizetype_tab[(int) kind], number);
}
}


/* Combine operands OP1 and OP2 with arithmetic operation CODE.  CODE
/* Combine operands OP1 and OP2 with arithmetic operation CODE.  CODE
   is a tree code.  The type of the result is taken from the operands.
   is a tree code.  The type of the result is taken from the operands.
   Both must be the same type integer type and it must be a size type.
   Both must be the same type integer type and it must be a size type.
   If the operands are constant, so is the result.  */
   If the operands are constant, so is the result.  */
 
 
tree
tree
size_binop (enum tree_code code, tree arg0, tree arg1)
size_binop (enum tree_code code, tree arg0, tree arg1)
{
{
  tree type = TREE_TYPE (arg0);
  tree type = TREE_TYPE (arg0);
 
 
  if (arg0 == error_mark_node || arg1 == error_mark_node)
  if (arg0 == error_mark_node || arg1 == error_mark_node)
    return error_mark_node;
    return error_mark_node;
 
 
  gcc_assert (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type)
  gcc_assert (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type)
              && type == TREE_TYPE (arg1));
              && type == TREE_TYPE (arg1));
 
 
  /* Handle the special case of two integer constants faster.  */
  /* Handle the special case of two integer constants faster.  */
  if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
  if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
    {
    {
      /* And some specific cases even faster than that.  */
      /* And some specific cases even faster than that.  */
      if (code == PLUS_EXPR && integer_zerop (arg0))
      if (code == PLUS_EXPR && integer_zerop (arg0))
        return arg1;
        return arg1;
      else if ((code == MINUS_EXPR || code == PLUS_EXPR)
      else if ((code == MINUS_EXPR || code == PLUS_EXPR)
               && integer_zerop (arg1))
               && integer_zerop (arg1))
        return arg0;
        return arg0;
      else if (code == MULT_EXPR && integer_onep (arg0))
      else if (code == MULT_EXPR && integer_onep (arg0))
        return arg1;
        return arg1;
 
 
      /* Handle general case of two integer constants.  */
      /* Handle general case of two integer constants.  */
      return int_const_binop (code, arg0, arg1, 0);
      return int_const_binop (code, arg0, arg1, 0);
    }
    }
 
 
  return fold_build2 (code, type, arg0, arg1);
  return fold_build2 (code, type, arg0, arg1);
}
}
 
 
/* Given two values, either both of sizetype or both of bitsizetype,
/* Given two values, either both of sizetype or both of bitsizetype,
   compute the difference between the two values.  Return the value
   compute the difference between the two values.  Return the value
   in signed type corresponding to the type of the operands.  */
   in signed type corresponding to the type of the operands.  */
 
 
tree
tree
size_diffop (tree arg0, tree arg1)
size_diffop (tree arg0, tree arg1)
{
{
  tree type = TREE_TYPE (arg0);
  tree type = TREE_TYPE (arg0);
  tree ctype;
  tree ctype;
 
 
  gcc_assert (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type)
  gcc_assert (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type)
              && type == TREE_TYPE (arg1));
              && type == TREE_TYPE (arg1));
 
 
  /* If the type is already signed, just do the simple thing.  */
  /* If the type is already signed, just do the simple thing.  */
  if (!TYPE_UNSIGNED (type))
  if (!TYPE_UNSIGNED (type))
    return size_binop (MINUS_EXPR, arg0, arg1);
    return size_binop (MINUS_EXPR, arg0, arg1);
 
 
  ctype = type == bitsizetype ? sbitsizetype : ssizetype;
  ctype = type == bitsizetype ? sbitsizetype : ssizetype;
 
 
  /* If either operand is not a constant, do the conversions to the signed
  /* If either operand is not a constant, do the conversions to the signed
     type and subtract.  The hardware will do the right thing with any
     type and subtract.  The hardware will do the right thing with any
     overflow in the subtraction.  */
     overflow in the subtraction.  */
  if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST)
  if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST)
    return size_binop (MINUS_EXPR, fold_convert (ctype, arg0),
    return size_binop (MINUS_EXPR, fold_convert (ctype, arg0),
                       fold_convert (ctype, arg1));
                       fold_convert (ctype, arg1));
 
 
  /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
  /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
     Otherwise, subtract the other way, convert to CTYPE (we know that can't
     Otherwise, subtract the other way, convert to CTYPE (we know that can't
     overflow) and negate (which can't either).  Special-case a result
     overflow) and negate (which can't either).  Special-case a result
     of zero while we're here.  */
     of zero while we're here.  */
  if (tree_int_cst_equal (arg0, arg1))
  if (tree_int_cst_equal (arg0, arg1))
    return build_int_cst (ctype, 0);
    return build_int_cst (ctype, 0);
  else if (tree_int_cst_lt (arg1, arg0))
  else if (tree_int_cst_lt (arg1, arg0))
    return fold_convert (ctype, size_binop (MINUS_EXPR, arg0, arg1));
    return fold_convert (ctype, size_binop (MINUS_EXPR, arg0, arg1));
  else
  else
    return size_binop (MINUS_EXPR, build_int_cst (ctype, 0),
    return size_binop (MINUS_EXPR, build_int_cst (ctype, 0),
                       fold_convert (ctype, size_binop (MINUS_EXPR,
                       fold_convert (ctype, size_binop (MINUS_EXPR,
                                                        arg1, arg0)));
                                                        arg1, arg0)));
}
}


/* A subroutine of fold_convert_const handling conversions of an
/* A subroutine of fold_convert_const handling conversions of an
   INTEGER_CST to another integer type.  */
   INTEGER_CST to another integer type.  */
 
 
static tree
static tree
fold_convert_const_int_from_int (tree type, tree arg1)
fold_convert_const_int_from_int (tree type, tree arg1)
{
{
  tree t;
  tree t;
 
 
  /* Given an integer constant, make new constant with new type,
  /* Given an integer constant, make new constant with new type,
     appropriately sign-extended or truncated.  */
     appropriately sign-extended or truncated.  */
  t = build_int_cst_wide (type, TREE_INT_CST_LOW (arg1),
  t = build_int_cst_wide (type, TREE_INT_CST_LOW (arg1),
                          TREE_INT_CST_HIGH (arg1));
                          TREE_INT_CST_HIGH (arg1));
 
 
  t = force_fit_type (t,
  t = force_fit_type (t,
                      /* Don't set the overflow when
                      /* Don't set the overflow when
                         converting a pointer  */
                         converting a pointer  */
                      !POINTER_TYPE_P (TREE_TYPE (arg1)),
                      !POINTER_TYPE_P (TREE_TYPE (arg1)),
                      (TREE_INT_CST_HIGH (arg1) < 0
                      (TREE_INT_CST_HIGH (arg1) < 0
                       && (TYPE_UNSIGNED (type)
                       && (TYPE_UNSIGNED (type)
                           < TYPE_UNSIGNED (TREE_TYPE (arg1))))
                           < TYPE_UNSIGNED (TREE_TYPE (arg1))))
                      | TREE_OVERFLOW (arg1),
                      | TREE_OVERFLOW (arg1),
                      TREE_CONSTANT_OVERFLOW (arg1));
                      TREE_CONSTANT_OVERFLOW (arg1));
 
 
  return t;
  return t;
}
}
 
 
/* A subroutine of fold_convert_const handling conversions a REAL_CST
/* A subroutine of fold_convert_const handling conversions a REAL_CST
   to an integer type.  */
   to an integer type.  */
 
 
static tree
static tree
fold_convert_const_int_from_real (enum tree_code code, tree type, tree arg1)
fold_convert_const_int_from_real (enum tree_code code, tree type, tree arg1)
{
{
  int overflow = 0;
  int overflow = 0;
  tree t;
  tree t;
 
 
  /* The following code implements the floating point to integer
  /* The following code implements the floating point to integer
     conversion rules required by the Java Language Specification,
     conversion rules required by the Java Language Specification,
     that IEEE NaNs are mapped to zero and values that overflow
     that IEEE NaNs are mapped to zero and values that overflow
     the target precision saturate, i.e. values greater than
     the target precision saturate, i.e. values greater than
     INT_MAX are mapped to INT_MAX, and values less than INT_MIN
     INT_MAX are mapped to INT_MAX, and values less than INT_MIN
     are mapped to INT_MIN.  These semantics are allowed by the
     are mapped to INT_MIN.  These semantics are allowed by the
     C and C++ standards that simply state that the behavior of
     C and C++ standards that simply state that the behavior of
     FP-to-integer conversion is unspecified upon overflow.  */
     FP-to-integer conversion is unspecified upon overflow.  */
 
 
  HOST_WIDE_INT high, low;
  HOST_WIDE_INT high, low;
  REAL_VALUE_TYPE r;
  REAL_VALUE_TYPE r;
  REAL_VALUE_TYPE x = TREE_REAL_CST (arg1);
  REAL_VALUE_TYPE x = TREE_REAL_CST (arg1);
 
 
  switch (code)
  switch (code)
    {
    {
    case FIX_TRUNC_EXPR:
    case FIX_TRUNC_EXPR:
      real_trunc (&r, VOIDmode, &x);
      real_trunc (&r, VOIDmode, &x);
      break;
      break;
 
 
    case FIX_CEIL_EXPR:
    case FIX_CEIL_EXPR:
      real_ceil (&r, VOIDmode, &x);
      real_ceil (&r, VOIDmode, &x);
      break;
      break;
 
 
    case FIX_FLOOR_EXPR:
    case FIX_FLOOR_EXPR:
      real_floor (&r, VOIDmode, &x);
      real_floor (&r, VOIDmode, &x);
      break;
      break;
 
 
    case FIX_ROUND_EXPR:
    case FIX_ROUND_EXPR:
      real_round (&r, VOIDmode, &x);
      real_round (&r, VOIDmode, &x);
      break;
      break;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  /* If R is NaN, return zero and show we have an overflow.  */
  /* If R is NaN, return zero and show we have an overflow.  */
  if (REAL_VALUE_ISNAN (r))
  if (REAL_VALUE_ISNAN (r))
    {
    {
      overflow = 1;
      overflow = 1;
      high = 0;
      high = 0;
      low = 0;
      low = 0;
    }
    }
 
 
  /* See if R is less than the lower bound or greater than the
  /* See if R is less than the lower bound or greater than the
     upper bound.  */
     upper bound.  */
 
 
  if (! overflow)
  if (! overflow)
    {
    {
      tree lt = TYPE_MIN_VALUE (type);
      tree lt = TYPE_MIN_VALUE (type);
      REAL_VALUE_TYPE l = real_value_from_int_cst (NULL_TREE, lt);
      REAL_VALUE_TYPE l = real_value_from_int_cst (NULL_TREE, lt);
      if (REAL_VALUES_LESS (r, l))
      if (REAL_VALUES_LESS (r, l))
        {
        {
          overflow = 1;
          overflow = 1;
          high = TREE_INT_CST_HIGH (lt);
          high = TREE_INT_CST_HIGH (lt);
          low = TREE_INT_CST_LOW (lt);
          low = TREE_INT_CST_LOW (lt);
        }
        }
    }
    }
 
 
  if (! overflow)
  if (! overflow)
    {
    {
      tree ut = TYPE_MAX_VALUE (type);
      tree ut = TYPE_MAX_VALUE (type);
      if (ut)
      if (ut)
        {
        {
          REAL_VALUE_TYPE u = real_value_from_int_cst (NULL_TREE, ut);
          REAL_VALUE_TYPE u = real_value_from_int_cst (NULL_TREE, ut);
          if (REAL_VALUES_LESS (u, r))
          if (REAL_VALUES_LESS (u, r))
            {
            {
              overflow = 1;
              overflow = 1;
              high = TREE_INT_CST_HIGH (ut);
              high = TREE_INT_CST_HIGH (ut);
              low = TREE_INT_CST_LOW (ut);
              low = TREE_INT_CST_LOW (ut);
            }
            }
        }
        }
    }
    }
 
 
  if (! overflow)
  if (! overflow)
    REAL_VALUE_TO_INT (&low, &high, r);
    REAL_VALUE_TO_INT (&low, &high, r);
 
 
  t = build_int_cst_wide (type, low, high);
  t = build_int_cst_wide (type, low, high);
 
 
  t = force_fit_type (t, -1, overflow | TREE_OVERFLOW (arg1),
  t = force_fit_type (t, -1, overflow | TREE_OVERFLOW (arg1),
                      TREE_CONSTANT_OVERFLOW (arg1));
                      TREE_CONSTANT_OVERFLOW (arg1));
  return t;
  return t;
}
}
 
 
/* A subroutine of fold_convert_const handling conversions a REAL_CST
/* A subroutine of fold_convert_const handling conversions a REAL_CST
   to another floating point type.  */
   to another floating point type.  */
 
 
static tree
static tree
fold_convert_const_real_from_real (tree type, tree arg1)
fold_convert_const_real_from_real (tree type, tree arg1)
{
{
  REAL_VALUE_TYPE value;
  REAL_VALUE_TYPE value;
  tree t;
  tree t;
 
 
  real_convert (&value, TYPE_MODE (type), &TREE_REAL_CST (arg1));
  real_convert (&value, TYPE_MODE (type), &TREE_REAL_CST (arg1));
  t = build_real (type, value);
  t = build_real (type, value);
 
 
  TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
  TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
  TREE_CONSTANT_OVERFLOW (t)
  TREE_CONSTANT_OVERFLOW (t)
    = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg1);
    = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg1);
  return t;
  return t;
}
}
 
 
/* Attempt to fold type conversion operation CODE of expression ARG1 to
/* Attempt to fold type conversion operation CODE of expression ARG1 to
   type TYPE.  If no simplification can be done return NULL_TREE.  */
   type TYPE.  If no simplification can be done return NULL_TREE.  */
 
 
static tree
static tree
fold_convert_const (enum tree_code code, tree type, tree arg1)
fold_convert_const (enum tree_code code, tree type, tree arg1)
{
{
  if (TREE_TYPE (arg1) == type)
  if (TREE_TYPE (arg1) == type)
    return arg1;
    return arg1;
 
 
  if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type))
  if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type))
    {
    {
      if (TREE_CODE (arg1) == INTEGER_CST)
      if (TREE_CODE (arg1) == INTEGER_CST)
        return fold_convert_const_int_from_int (type, arg1);
        return fold_convert_const_int_from_int (type, arg1);
      else if (TREE_CODE (arg1) == REAL_CST)
      else if (TREE_CODE (arg1) == REAL_CST)
        return fold_convert_const_int_from_real (code, type, arg1);
        return fold_convert_const_int_from_real (code, type, arg1);
    }
    }
  else if (TREE_CODE (type) == REAL_TYPE)
  else if (TREE_CODE (type) == REAL_TYPE)
    {
    {
      if (TREE_CODE (arg1) == INTEGER_CST)
      if (TREE_CODE (arg1) == INTEGER_CST)
        return build_real_from_int_cst (type, arg1);
        return build_real_from_int_cst (type, arg1);
      if (TREE_CODE (arg1) == REAL_CST)
      if (TREE_CODE (arg1) == REAL_CST)
        return fold_convert_const_real_from_real (type, arg1);
        return fold_convert_const_real_from_real (type, arg1);
    }
    }
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Construct a vector of zero elements of vector type TYPE.  */
/* Construct a vector of zero elements of vector type TYPE.  */
 
 
static tree
static tree
build_zero_vector (tree type)
build_zero_vector (tree type)
{
{
  tree elem, list;
  tree elem, list;
  int i, units;
  int i, units;
 
 
  elem = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node);
  elem = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node);
  units = TYPE_VECTOR_SUBPARTS (type);
  units = TYPE_VECTOR_SUBPARTS (type);
 
 
  list = NULL_TREE;
  list = NULL_TREE;
  for (i = 0; i < units; i++)
  for (i = 0; i < units; i++)
    list = tree_cons (NULL_TREE, elem, list);
    list = tree_cons (NULL_TREE, elem, list);
  return build_vector (type, list);
  return build_vector (type, list);
}
}
 
 
/* Convert expression ARG to type TYPE.  Used by the middle-end for
/* Convert expression ARG to type TYPE.  Used by the middle-end for
   simple conversions in preference to calling the front-end's convert.  */
   simple conversions in preference to calling the front-end's convert.  */
 
 
tree
tree
fold_convert (tree type, tree arg)
fold_convert (tree type, tree arg)
{
{
  tree orig = TREE_TYPE (arg);
  tree orig = TREE_TYPE (arg);
  tree tem;
  tree tem;
 
 
  if (type == orig)
  if (type == orig)
    return arg;
    return arg;
 
 
  if (TREE_CODE (arg) == ERROR_MARK
  if (TREE_CODE (arg) == ERROR_MARK
      || TREE_CODE (type) == ERROR_MARK
      || TREE_CODE (type) == ERROR_MARK
      || TREE_CODE (orig) == ERROR_MARK)
      || TREE_CODE (orig) == ERROR_MARK)
    return error_mark_node;
    return error_mark_node;
 
 
  if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig)
  if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig)
      || lang_hooks.types_compatible_p (TYPE_MAIN_VARIANT (type),
      || lang_hooks.types_compatible_p (TYPE_MAIN_VARIANT (type),
                                        TYPE_MAIN_VARIANT (orig)))
                                        TYPE_MAIN_VARIANT (orig)))
    return fold_build1 (NOP_EXPR, type, arg);
    return fold_build1 (NOP_EXPR, type, arg);
 
 
  switch (TREE_CODE (type))
  switch (TREE_CODE (type))
    {
    {
    case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
    case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
    case POINTER_TYPE: case REFERENCE_TYPE:
    case POINTER_TYPE: case REFERENCE_TYPE:
    case OFFSET_TYPE:
    case OFFSET_TYPE:
      if (TREE_CODE (arg) == INTEGER_CST)
      if (TREE_CODE (arg) == INTEGER_CST)
        {
        {
          tem = fold_convert_const (NOP_EXPR, type, arg);
          tem = fold_convert_const (NOP_EXPR, type, arg);
          if (tem != NULL_TREE)
          if (tem != NULL_TREE)
            return tem;
            return tem;
        }
        }
      if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
      if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
          || TREE_CODE (orig) == OFFSET_TYPE)
          || TREE_CODE (orig) == OFFSET_TYPE)
        return fold_build1 (NOP_EXPR, type, arg);
        return fold_build1 (NOP_EXPR, type, arg);
      if (TREE_CODE (orig) == COMPLEX_TYPE)
      if (TREE_CODE (orig) == COMPLEX_TYPE)
        {
        {
          tem = fold_build1 (REALPART_EXPR, TREE_TYPE (orig), arg);
          tem = fold_build1 (REALPART_EXPR, TREE_TYPE (orig), arg);
          return fold_convert (type, tem);
          return fold_convert (type, tem);
        }
        }
      gcc_assert (TREE_CODE (orig) == VECTOR_TYPE
      gcc_assert (TREE_CODE (orig) == VECTOR_TYPE
                  && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
                  && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
      return fold_build1 (NOP_EXPR, type, arg);
      return fold_build1 (NOP_EXPR, type, arg);
 
 
    case REAL_TYPE:
    case REAL_TYPE:
      if (TREE_CODE (arg) == INTEGER_CST)
      if (TREE_CODE (arg) == INTEGER_CST)
        {
        {
          tem = fold_convert_const (FLOAT_EXPR, type, arg);
          tem = fold_convert_const (FLOAT_EXPR, type, arg);
          if (tem != NULL_TREE)
          if (tem != NULL_TREE)
            return tem;
            return tem;
        }
        }
      else if (TREE_CODE (arg) == REAL_CST)
      else if (TREE_CODE (arg) == REAL_CST)
        {
        {
          tem = fold_convert_const (NOP_EXPR, type, arg);
          tem = fold_convert_const (NOP_EXPR, type, arg);
          if (tem != NULL_TREE)
          if (tem != NULL_TREE)
            return tem;
            return tem;
        }
        }
 
 
      switch (TREE_CODE (orig))
      switch (TREE_CODE (orig))
        {
        {
        case INTEGER_TYPE:
        case INTEGER_TYPE:
        case BOOLEAN_TYPE: case ENUMERAL_TYPE:
        case BOOLEAN_TYPE: case ENUMERAL_TYPE:
        case POINTER_TYPE: case REFERENCE_TYPE:
        case POINTER_TYPE: case REFERENCE_TYPE:
          return fold_build1 (FLOAT_EXPR, type, arg);
          return fold_build1 (FLOAT_EXPR, type, arg);
 
 
        case REAL_TYPE:
        case REAL_TYPE:
          return fold_build1 (NOP_EXPR, type, arg);
          return fold_build1 (NOP_EXPR, type, arg);
 
 
        case COMPLEX_TYPE:
        case COMPLEX_TYPE:
          tem = fold_build1 (REALPART_EXPR, TREE_TYPE (orig), arg);
          tem = fold_build1 (REALPART_EXPR, TREE_TYPE (orig), arg);
          return fold_convert (type, tem);
          return fold_convert (type, tem);
 
 
        default:
        default:
          gcc_unreachable ();
          gcc_unreachable ();
        }
        }
 
 
    case COMPLEX_TYPE:
    case COMPLEX_TYPE:
      switch (TREE_CODE (orig))
      switch (TREE_CODE (orig))
        {
        {
        case INTEGER_TYPE:
        case INTEGER_TYPE:
        case BOOLEAN_TYPE: case ENUMERAL_TYPE:
        case BOOLEAN_TYPE: case ENUMERAL_TYPE:
        case POINTER_TYPE: case REFERENCE_TYPE:
        case POINTER_TYPE: case REFERENCE_TYPE:
        case REAL_TYPE:
        case REAL_TYPE:
          return build2 (COMPLEX_EXPR, type,
          return build2 (COMPLEX_EXPR, type,
                         fold_convert (TREE_TYPE (type), arg),
                         fold_convert (TREE_TYPE (type), arg),
                         fold_convert (TREE_TYPE (type), integer_zero_node));
                         fold_convert (TREE_TYPE (type), integer_zero_node));
        case COMPLEX_TYPE:
        case COMPLEX_TYPE:
          {
          {
            tree rpart, ipart;
            tree rpart, ipart;
 
 
            if (TREE_CODE (arg) == COMPLEX_EXPR)
            if (TREE_CODE (arg) == COMPLEX_EXPR)
              {
              {
                rpart = fold_convert (TREE_TYPE (type), TREE_OPERAND (arg, 0));
                rpart = fold_convert (TREE_TYPE (type), TREE_OPERAND (arg, 0));
                ipart = fold_convert (TREE_TYPE (type), TREE_OPERAND (arg, 1));
                ipart = fold_convert (TREE_TYPE (type), TREE_OPERAND (arg, 1));
                return fold_build2 (COMPLEX_EXPR, type, rpart, ipart);
                return fold_build2 (COMPLEX_EXPR, type, rpart, ipart);
              }
              }
 
 
            arg = save_expr (arg);
            arg = save_expr (arg);
            rpart = fold_build1 (REALPART_EXPR, TREE_TYPE (orig), arg);
            rpart = fold_build1 (REALPART_EXPR, TREE_TYPE (orig), arg);
            ipart = fold_build1 (IMAGPART_EXPR, TREE_TYPE (orig), arg);
            ipart = fold_build1 (IMAGPART_EXPR, TREE_TYPE (orig), arg);
            rpart = fold_convert (TREE_TYPE (type), rpart);
            rpart = fold_convert (TREE_TYPE (type), rpart);
            ipart = fold_convert (TREE_TYPE (type), ipart);
            ipart = fold_convert (TREE_TYPE (type), ipart);
            return fold_build2 (COMPLEX_EXPR, type, rpart, ipart);
            return fold_build2 (COMPLEX_EXPR, type, rpart, ipart);
          }
          }
 
 
        default:
        default:
          gcc_unreachable ();
          gcc_unreachable ();
        }
        }
 
 
    case VECTOR_TYPE:
    case VECTOR_TYPE:
      if (integer_zerop (arg))
      if (integer_zerop (arg))
        return build_zero_vector (type);
        return build_zero_vector (type);
      gcc_assert (tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
      gcc_assert (tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
      gcc_assert (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
      gcc_assert (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
                  || TREE_CODE (orig) == VECTOR_TYPE);
                  || TREE_CODE (orig) == VECTOR_TYPE);
      return fold_build1 (VIEW_CONVERT_EXPR, type, arg);
      return fold_build1 (VIEW_CONVERT_EXPR, type, arg);
 
 
    case VOID_TYPE:
    case VOID_TYPE:
      return fold_build1 (NOP_EXPR, type, fold_ignored_result (arg));
      return fold_build1 (NOP_EXPR, type, fold_ignored_result (arg));
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}


/* Return false if expr can be assumed not to be an lvalue, true
/* Return false if expr can be assumed not to be an lvalue, true
   otherwise.  */
   otherwise.  */
 
 
static bool
static bool
maybe_lvalue_p (tree x)
maybe_lvalue_p (tree x)
{
{
  /* We only need to wrap lvalue tree codes.  */
  /* We only need to wrap lvalue tree codes.  */
  switch (TREE_CODE (x))
  switch (TREE_CODE (x))
  {
  {
  case VAR_DECL:
  case VAR_DECL:
  case PARM_DECL:
  case PARM_DECL:
  case RESULT_DECL:
  case RESULT_DECL:
  case LABEL_DECL:
  case LABEL_DECL:
  case FUNCTION_DECL:
  case FUNCTION_DECL:
  case SSA_NAME:
  case SSA_NAME:
 
 
  case COMPONENT_REF:
  case COMPONENT_REF:
  case INDIRECT_REF:
  case INDIRECT_REF:
  case ALIGN_INDIRECT_REF:
  case ALIGN_INDIRECT_REF:
  case MISALIGNED_INDIRECT_REF:
  case MISALIGNED_INDIRECT_REF:
  case ARRAY_REF:
  case ARRAY_REF:
  case ARRAY_RANGE_REF:
  case ARRAY_RANGE_REF:
  case BIT_FIELD_REF:
  case BIT_FIELD_REF:
  case OBJ_TYPE_REF:
  case OBJ_TYPE_REF:
 
 
  case REALPART_EXPR:
  case REALPART_EXPR:
  case IMAGPART_EXPR:
  case IMAGPART_EXPR:
  case PREINCREMENT_EXPR:
  case PREINCREMENT_EXPR:
  case PREDECREMENT_EXPR:
  case PREDECREMENT_EXPR:
  case SAVE_EXPR:
  case SAVE_EXPR:
  case TRY_CATCH_EXPR:
  case TRY_CATCH_EXPR:
  case WITH_CLEANUP_EXPR:
  case WITH_CLEANUP_EXPR:
  case COMPOUND_EXPR:
  case COMPOUND_EXPR:
  case MODIFY_EXPR:
  case MODIFY_EXPR:
  case TARGET_EXPR:
  case TARGET_EXPR:
  case COND_EXPR:
  case COND_EXPR:
  case BIND_EXPR:
  case BIND_EXPR:
  case MIN_EXPR:
  case MIN_EXPR:
  case MAX_EXPR:
  case MAX_EXPR:
    break;
    break;
 
 
  default:
  default:
    /* Assume the worst for front-end tree codes.  */
    /* Assume the worst for front-end tree codes.  */
    if ((int)TREE_CODE (x) >= NUM_TREE_CODES)
    if ((int)TREE_CODE (x) >= NUM_TREE_CODES)
      break;
      break;
    return false;
    return false;
  }
  }
 
 
  return true;
  return true;
}
}
 
 
/* Return an expr equal to X but certainly not valid as an lvalue.  */
/* Return an expr equal to X but certainly not valid as an lvalue.  */
 
 
tree
tree
non_lvalue (tree x)
non_lvalue (tree x)
{
{
  /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
  /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
     us.  */
     us.  */
  if (in_gimple_form)
  if (in_gimple_form)
    return x;
    return x;
 
 
  if (! maybe_lvalue_p (x))
  if (! maybe_lvalue_p (x))
    return x;
    return x;
  return build1 (NON_LVALUE_EXPR, TREE_TYPE (x), x);
  return build1 (NON_LVALUE_EXPR, TREE_TYPE (x), x);
}
}
 
 
/* Nonzero means lvalues are limited to those valid in pedantic ANSI C.
/* Nonzero means lvalues are limited to those valid in pedantic ANSI C.
   Zero means allow extended lvalues.  */
   Zero means allow extended lvalues.  */
 
 
int pedantic_lvalues;
int pedantic_lvalues;
 
 
/* When pedantic, return an expr equal to X but certainly not valid as a
/* When pedantic, return an expr equal to X but certainly not valid as a
   pedantic lvalue.  Otherwise, return X.  */
   pedantic lvalue.  Otherwise, return X.  */
 
 
static tree
static tree
pedantic_non_lvalue (tree x)
pedantic_non_lvalue (tree x)
{
{
  if (pedantic_lvalues)
  if (pedantic_lvalues)
    return non_lvalue (x);
    return non_lvalue (x);
  else
  else
    return x;
    return x;
}
}


/* Given a tree comparison code, return the code that is the logical inverse
/* Given a tree comparison code, return the code that is the logical inverse
   of the given code.  It is not safe to do this for floating-point
   of the given code.  It is not safe to do this for floating-point
   comparisons, except for NE_EXPR and EQ_EXPR, so we receive a machine mode
   comparisons, except for NE_EXPR and EQ_EXPR, so we receive a machine mode
   as well: if reversing the comparison is unsafe, return ERROR_MARK.  */
   as well: if reversing the comparison is unsafe, return ERROR_MARK.  */
 
 
enum tree_code
enum tree_code
invert_tree_comparison (enum tree_code code, bool honor_nans)
invert_tree_comparison (enum tree_code code, bool honor_nans)
{
{
  if (honor_nans && flag_trapping_math)
  if (honor_nans && flag_trapping_math)
    return ERROR_MARK;
    return ERROR_MARK;
 
 
  switch (code)
  switch (code)
    {
    {
    case EQ_EXPR:
    case EQ_EXPR:
      return NE_EXPR;
      return NE_EXPR;
    case NE_EXPR:
    case NE_EXPR:
      return EQ_EXPR;
      return EQ_EXPR;
    case GT_EXPR:
    case GT_EXPR:
      return honor_nans ? UNLE_EXPR : LE_EXPR;
      return honor_nans ? UNLE_EXPR : LE_EXPR;
    case GE_EXPR:
    case GE_EXPR:
      return honor_nans ? UNLT_EXPR : LT_EXPR;
      return honor_nans ? UNLT_EXPR : LT_EXPR;
    case LT_EXPR:
    case LT_EXPR:
      return honor_nans ? UNGE_EXPR : GE_EXPR;
      return honor_nans ? UNGE_EXPR : GE_EXPR;
    case LE_EXPR:
    case LE_EXPR:
      return honor_nans ? UNGT_EXPR : GT_EXPR;
      return honor_nans ? UNGT_EXPR : GT_EXPR;
    case LTGT_EXPR:
    case LTGT_EXPR:
      return UNEQ_EXPR;
      return UNEQ_EXPR;
    case UNEQ_EXPR:
    case UNEQ_EXPR:
      return LTGT_EXPR;
      return LTGT_EXPR;
    case UNGT_EXPR:
    case UNGT_EXPR:
      return LE_EXPR;
      return LE_EXPR;
    case UNGE_EXPR:
    case UNGE_EXPR:
      return LT_EXPR;
      return LT_EXPR;
    case UNLT_EXPR:
    case UNLT_EXPR:
      return GE_EXPR;
      return GE_EXPR;
    case UNLE_EXPR:
    case UNLE_EXPR:
      return GT_EXPR;
      return GT_EXPR;
    case ORDERED_EXPR:
    case ORDERED_EXPR:
      return UNORDERED_EXPR;
      return UNORDERED_EXPR;
    case UNORDERED_EXPR:
    case UNORDERED_EXPR:
      return ORDERED_EXPR;
      return ORDERED_EXPR;
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}
 
 
/* Similar, but return the comparison that results if the operands are
/* Similar, but return the comparison that results if the operands are
   swapped.  This is safe for floating-point.  */
   swapped.  This is safe for floating-point.  */
 
 
enum tree_code
enum tree_code
swap_tree_comparison (enum tree_code code)
swap_tree_comparison (enum tree_code code)
{
{
  switch (code)
  switch (code)
    {
    {
    case EQ_EXPR:
    case EQ_EXPR:
    case NE_EXPR:
    case NE_EXPR:
    case ORDERED_EXPR:
    case ORDERED_EXPR:
    case UNORDERED_EXPR:
    case UNORDERED_EXPR:
    case LTGT_EXPR:
    case LTGT_EXPR:
    case UNEQ_EXPR:
    case UNEQ_EXPR:
      return code;
      return code;
    case GT_EXPR:
    case GT_EXPR:
      return LT_EXPR;
      return LT_EXPR;
    case GE_EXPR:
    case GE_EXPR:
      return LE_EXPR;
      return LE_EXPR;
    case LT_EXPR:
    case LT_EXPR:
      return GT_EXPR;
      return GT_EXPR;
    case LE_EXPR:
    case LE_EXPR:
      return GE_EXPR;
      return GE_EXPR;
    case UNGT_EXPR:
    case UNGT_EXPR:
      return UNLT_EXPR;
      return UNLT_EXPR;
    case UNGE_EXPR:
    case UNGE_EXPR:
      return UNLE_EXPR;
      return UNLE_EXPR;
    case UNLT_EXPR:
    case UNLT_EXPR:
      return UNGT_EXPR;
      return UNGT_EXPR;
    case UNLE_EXPR:
    case UNLE_EXPR:
      return UNGE_EXPR;
      return UNGE_EXPR;
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}
 
 
 
 
/* Convert a comparison tree code from an enum tree_code representation
/* Convert a comparison tree code from an enum tree_code representation
   into a compcode bit-based encoding.  This function is the inverse of
   into a compcode bit-based encoding.  This function is the inverse of
   compcode_to_comparison.  */
   compcode_to_comparison.  */
 
 
static enum comparison_code
static enum comparison_code
comparison_to_compcode (enum tree_code code)
comparison_to_compcode (enum tree_code code)
{
{
  switch (code)
  switch (code)
    {
    {
    case LT_EXPR:
    case LT_EXPR:
      return COMPCODE_LT;
      return COMPCODE_LT;
    case EQ_EXPR:
    case EQ_EXPR:
      return COMPCODE_EQ;
      return COMPCODE_EQ;
    case LE_EXPR:
    case LE_EXPR:
      return COMPCODE_LE;
      return COMPCODE_LE;
    case GT_EXPR:
    case GT_EXPR:
      return COMPCODE_GT;
      return COMPCODE_GT;
    case NE_EXPR:
    case NE_EXPR:
      return COMPCODE_NE;
      return COMPCODE_NE;
    case GE_EXPR:
    case GE_EXPR:
      return COMPCODE_GE;
      return COMPCODE_GE;
    case ORDERED_EXPR:
    case ORDERED_EXPR:
      return COMPCODE_ORD;
      return COMPCODE_ORD;
    case UNORDERED_EXPR:
    case UNORDERED_EXPR:
      return COMPCODE_UNORD;
      return COMPCODE_UNORD;
    case UNLT_EXPR:
    case UNLT_EXPR:
      return COMPCODE_UNLT;
      return COMPCODE_UNLT;
    case UNEQ_EXPR:
    case UNEQ_EXPR:
      return COMPCODE_UNEQ;
      return COMPCODE_UNEQ;
    case UNLE_EXPR:
    case UNLE_EXPR:
      return COMPCODE_UNLE;
      return COMPCODE_UNLE;
    case UNGT_EXPR:
    case UNGT_EXPR:
      return COMPCODE_UNGT;
      return COMPCODE_UNGT;
    case LTGT_EXPR:
    case LTGT_EXPR:
      return COMPCODE_LTGT;
      return COMPCODE_LTGT;
    case UNGE_EXPR:
    case UNGE_EXPR:
      return COMPCODE_UNGE;
      return COMPCODE_UNGE;
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}
 
 
/* Convert a compcode bit-based encoding of a comparison operator back
/* Convert a compcode bit-based encoding of a comparison operator back
   to GCC's enum tree_code representation.  This function is the
   to GCC's enum tree_code representation.  This function is the
   inverse of comparison_to_compcode.  */
   inverse of comparison_to_compcode.  */
 
 
static enum tree_code
static enum tree_code
compcode_to_comparison (enum comparison_code code)
compcode_to_comparison (enum comparison_code code)
{
{
  switch (code)
  switch (code)
    {
    {
    case COMPCODE_LT:
    case COMPCODE_LT:
      return LT_EXPR;
      return LT_EXPR;
    case COMPCODE_EQ:
    case COMPCODE_EQ:
      return EQ_EXPR;
      return EQ_EXPR;
    case COMPCODE_LE:
    case COMPCODE_LE:
      return LE_EXPR;
      return LE_EXPR;
    case COMPCODE_GT:
    case COMPCODE_GT:
      return GT_EXPR;
      return GT_EXPR;
    case COMPCODE_NE:
    case COMPCODE_NE:
      return NE_EXPR;
      return NE_EXPR;
    case COMPCODE_GE:
    case COMPCODE_GE:
      return GE_EXPR;
      return GE_EXPR;
    case COMPCODE_ORD:
    case COMPCODE_ORD:
      return ORDERED_EXPR;
      return ORDERED_EXPR;
    case COMPCODE_UNORD:
    case COMPCODE_UNORD:
      return UNORDERED_EXPR;
      return UNORDERED_EXPR;
    case COMPCODE_UNLT:
    case COMPCODE_UNLT:
      return UNLT_EXPR;
      return UNLT_EXPR;
    case COMPCODE_UNEQ:
    case COMPCODE_UNEQ:
      return UNEQ_EXPR;
      return UNEQ_EXPR;
    case COMPCODE_UNLE:
    case COMPCODE_UNLE:
      return UNLE_EXPR;
      return UNLE_EXPR;
    case COMPCODE_UNGT:
    case COMPCODE_UNGT:
      return UNGT_EXPR;
      return UNGT_EXPR;
    case COMPCODE_LTGT:
    case COMPCODE_LTGT:
      return LTGT_EXPR;
      return LTGT_EXPR;
    case COMPCODE_UNGE:
    case COMPCODE_UNGE:
      return UNGE_EXPR;
      return UNGE_EXPR;
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}
 
 
/* Return a tree for the comparison which is the combination of
/* Return a tree for the comparison which is the combination of
   doing the AND or OR (depending on CODE) of the two operations LCODE
   doing the AND or OR (depending on CODE) of the two operations LCODE
   and RCODE on the identical operands LL_ARG and LR_ARG.  Take into account
   and RCODE on the identical operands LL_ARG and LR_ARG.  Take into account
   the possibility of trapping if the mode has NaNs, and return NULL_TREE
   the possibility of trapping if the mode has NaNs, and return NULL_TREE
   if this makes the transformation invalid.  */
   if this makes the transformation invalid.  */
 
 
tree
tree
combine_comparisons (enum tree_code code, enum tree_code lcode,
combine_comparisons (enum tree_code code, enum tree_code lcode,
                     enum tree_code rcode, tree truth_type,
                     enum tree_code rcode, tree truth_type,
                     tree ll_arg, tree lr_arg)
                     tree ll_arg, tree lr_arg)
{
{
  bool honor_nans = HONOR_NANS (TYPE_MODE (TREE_TYPE (ll_arg)));
  bool honor_nans = HONOR_NANS (TYPE_MODE (TREE_TYPE (ll_arg)));
  enum comparison_code lcompcode = comparison_to_compcode (lcode);
  enum comparison_code lcompcode = comparison_to_compcode (lcode);
  enum comparison_code rcompcode = comparison_to_compcode (rcode);
  enum comparison_code rcompcode = comparison_to_compcode (rcode);
  enum comparison_code compcode;
  enum comparison_code compcode;
 
 
  switch (code)
  switch (code)
    {
    {
    case TRUTH_AND_EXPR: case TRUTH_ANDIF_EXPR:
    case TRUTH_AND_EXPR: case TRUTH_ANDIF_EXPR:
      compcode = lcompcode & rcompcode;
      compcode = lcompcode & rcompcode;
      break;
      break;
 
 
    case TRUTH_OR_EXPR: case TRUTH_ORIF_EXPR:
    case TRUTH_OR_EXPR: case TRUTH_ORIF_EXPR:
      compcode = lcompcode | rcompcode;
      compcode = lcompcode | rcompcode;
      break;
      break;
 
 
    default:
    default:
      return NULL_TREE;
      return NULL_TREE;
    }
    }
 
 
  if (!honor_nans)
  if (!honor_nans)
    {
    {
      /* Eliminate unordered comparisons, as well as LTGT and ORD
      /* Eliminate unordered comparisons, as well as LTGT and ORD
         which are not used unless the mode has NaNs.  */
         which are not used unless the mode has NaNs.  */
      compcode &= ~COMPCODE_UNORD;
      compcode &= ~COMPCODE_UNORD;
      if (compcode == COMPCODE_LTGT)
      if (compcode == COMPCODE_LTGT)
        compcode = COMPCODE_NE;
        compcode = COMPCODE_NE;
      else if (compcode == COMPCODE_ORD)
      else if (compcode == COMPCODE_ORD)
        compcode = COMPCODE_TRUE;
        compcode = COMPCODE_TRUE;
    }
    }
   else if (flag_trapping_math)
   else if (flag_trapping_math)
     {
     {
        /* Check that the original operation and the optimized ones will trap
        /* Check that the original operation and the optimized ones will trap
           under the same condition.  */
           under the same condition.  */
        bool ltrap = (lcompcode & COMPCODE_UNORD) == 0
        bool ltrap = (lcompcode & COMPCODE_UNORD) == 0
                     && (lcompcode != COMPCODE_EQ)
                     && (lcompcode != COMPCODE_EQ)
                     && (lcompcode != COMPCODE_ORD);
                     && (lcompcode != COMPCODE_ORD);
        bool rtrap = (rcompcode & COMPCODE_UNORD) == 0
        bool rtrap = (rcompcode & COMPCODE_UNORD) == 0
                     && (rcompcode != COMPCODE_EQ)
                     && (rcompcode != COMPCODE_EQ)
                     && (rcompcode != COMPCODE_ORD);
                     && (rcompcode != COMPCODE_ORD);
        bool trap = (compcode & COMPCODE_UNORD) == 0
        bool trap = (compcode & COMPCODE_UNORD) == 0
                    && (compcode != COMPCODE_EQ)
                    && (compcode != COMPCODE_EQ)
                    && (compcode != COMPCODE_ORD);
                    && (compcode != COMPCODE_ORD);
 
 
        /* In a short-circuited boolean expression the LHS might be
        /* In a short-circuited boolean expression the LHS might be
           such that the RHS, if evaluated, will never trap.  For
           such that the RHS, if evaluated, will never trap.  For
           example, in ORD (x, y) && (x < y), we evaluate the RHS only
           example, in ORD (x, y) && (x < y), we evaluate the RHS only
           if neither x nor y is NaN.  (This is a mixed blessing: for
           if neither x nor y is NaN.  (This is a mixed blessing: for
           example, the expression above will never trap, hence
           example, the expression above will never trap, hence
           optimizing it to x < y would be invalid).  */
           optimizing it to x < y would be invalid).  */
        if ((code == TRUTH_ORIF_EXPR && (lcompcode & COMPCODE_UNORD))
        if ((code == TRUTH_ORIF_EXPR && (lcompcode & COMPCODE_UNORD))
            || (code == TRUTH_ANDIF_EXPR && !(lcompcode & COMPCODE_UNORD)))
            || (code == TRUTH_ANDIF_EXPR && !(lcompcode & COMPCODE_UNORD)))
          rtrap = false;
          rtrap = false;
 
 
        /* If the comparison was short-circuited, and only the RHS
        /* If the comparison was short-circuited, and only the RHS
           trapped, we may now generate a spurious trap.  */
           trapped, we may now generate a spurious trap.  */
        if (rtrap && !ltrap
        if (rtrap && !ltrap
            && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
            && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
          return NULL_TREE;
          return NULL_TREE;
 
 
        /* If we changed the conditions that cause a trap, we lose.  */
        /* If we changed the conditions that cause a trap, we lose.  */
        if ((ltrap || rtrap) != trap)
        if ((ltrap || rtrap) != trap)
          return NULL_TREE;
          return NULL_TREE;
      }
      }
 
 
  if (compcode == COMPCODE_TRUE)
  if (compcode == COMPCODE_TRUE)
    return constant_boolean_node (true, truth_type);
    return constant_boolean_node (true, truth_type);
  else if (compcode == COMPCODE_FALSE)
  else if (compcode == COMPCODE_FALSE)
    return constant_boolean_node (false, truth_type);
    return constant_boolean_node (false, truth_type);
  else
  else
    return fold_build2 (compcode_to_comparison (compcode),
    return fold_build2 (compcode_to_comparison (compcode),
                        truth_type, ll_arg, lr_arg);
                        truth_type, ll_arg, lr_arg);
}
}
 
 
/* Return nonzero if CODE is a tree code that represents a truth value.  */
/* Return nonzero if CODE is a tree code that represents a truth value.  */
 
 
static int
static int
truth_value_p (enum tree_code code)
truth_value_p (enum tree_code code)
{
{
  return (TREE_CODE_CLASS (code) == tcc_comparison
  return (TREE_CODE_CLASS (code) == tcc_comparison
          || code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR
          || code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR
          || code == TRUTH_OR_EXPR || code == TRUTH_ORIF_EXPR
          || code == TRUTH_OR_EXPR || code == TRUTH_ORIF_EXPR
          || code == TRUTH_XOR_EXPR || code == TRUTH_NOT_EXPR);
          || code == TRUTH_XOR_EXPR || code == TRUTH_NOT_EXPR);
}
}


/* Return nonzero if two operands (typically of the same tree node)
/* Return nonzero if two operands (typically of the same tree node)
   are necessarily equal.  If either argument has side-effects this
   are necessarily equal.  If either argument has side-effects this
   function returns zero.  FLAGS modifies behavior as follows:
   function returns zero.  FLAGS modifies behavior as follows:
 
 
   If OEP_ONLY_CONST is set, only return nonzero for constants.
   If OEP_ONLY_CONST is set, only return nonzero for constants.
   This function tests whether the operands are indistinguishable;
   This function tests whether the operands are indistinguishable;
   it does not test whether they are equal using C's == operation.
   it does not test whether they are equal using C's == operation.
   The distinction is important for IEEE floating point, because
   The distinction is important for IEEE floating point, because
   (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
   (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
   (2) two NaNs may be indistinguishable, but NaN!=NaN.
   (2) two NaNs may be indistinguishable, but NaN!=NaN.
 
 
   If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
   If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
   even though it may hold multiple values during a function.
   even though it may hold multiple values during a function.
   This is because a GCC tree node guarantees that nothing else is
   This is because a GCC tree node guarantees that nothing else is
   executed between the evaluation of its "operands" (which may often
   executed between the evaluation of its "operands" (which may often
   be evaluated in arbitrary order).  Hence if the operands themselves
   be evaluated in arbitrary order).  Hence if the operands themselves
   don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
   don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
   same value in each operand/subexpression.  Hence leaving OEP_ONLY_CONST
   same value in each operand/subexpression.  Hence leaving OEP_ONLY_CONST
   unset means assuming isochronic (or instantaneous) tree equivalence.
   unset means assuming isochronic (or instantaneous) tree equivalence.
   Unless comparing arbitrary expression trees, such as from different
   Unless comparing arbitrary expression trees, such as from different
   statements, this flag can usually be left unset.
   statements, this flag can usually be left unset.
 
 
   If OEP_PURE_SAME is set, then pure functions with identical arguments
   If OEP_PURE_SAME is set, then pure functions with identical arguments
   are considered the same.  It is used when the caller has other ways
   are considered the same.  It is used when the caller has other ways
   to ensure that global memory is unchanged in between.  */
   to ensure that global memory is unchanged in between.  */
 
 
int
int
operand_equal_p (tree arg0, tree arg1, unsigned int flags)
operand_equal_p (tree arg0, tree arg1, unsigned int flags)
{
{
  /* If either is ERROR_MARK, they aren't equal.  */
  /* If either is ERROR_MARK, they aren't equal.  */
  if (TREE_CODE (arg0) == ERROR_MARK || TREE_CODE (arg1) == ERROR_MARK)
  if (TREE_CODE (arg0) == ERROR_MARK || TREE_CODE (arg1) == ERROR_MARK)
    return 0;
    return 0;
 
 
  /* If both types don't have the same signedness, then we can't consider
  /* If both types don't have the same signedness, then we can't consider
     them equal.  We must check this before the STRIP_NOPS calls
     them equal.  We must check this before the STRIP_NOPS calls
     because they may change the signedness of the arguments.  */
     because they may change the signedness of the arguments.  */
  if (TYPE_UNSIGNED (TREE_TYPE (arg0)) != TYPE_UNSIGNED (TREE_TYPE (arg1)))
  if (TYPE_UNSIGNED (TREE_TYPE (arg0)) != TYPE_UNSIGNED (TREE_TYPE (arg1)))
    return 0;
    return 0;
 
 
  /* If both types don't have the same precision, then it is not safe
  /* If both types don't have the same precision, then it is not safe
     to strip NOPs.  */
     to strip NOPs.  */
  if (TYPE_PRECISION (TREE_TYPE (arg0)) != TYPE_PRECISION (TREE_TYPE (arg1)))
  if (TYPE_PRECISION (TREE_TYPE (arg0)) != TYPE_PRECISION (TREE_TYPE (arg1)))
    return 0;
    return 0;
 
 
  STRIP_NOPS (arg0);
  STRIP_NOPS (arg0);
  STRIP_NOPS (arg1);
  STRIP_NOPS (arg1);
 
 
  /* In case both args are comparisons but with different comparison
  /* In case both args are comparisons but with different comparison
     code, try to swap the comparison operands of one arg to produce
     code, try to swap the comparison operands of one arg to produce
     a match and compare that variant.  */
     a match and compare that variant.  */
  if (TREE_CODE (arg0) != TREE_CODE (arg1)
  if (TREE_CODE (arg0) != TREE_CODE (arg1)
      && COMPARISON_CLASS_P (arg0)
      && COMPARISON_CLASS_P (arg0)
      && COMPARISON_CLASS_P (arg1))
      && COMPARISON_CLASS_P (arg1))
    {
    {
      enum tree_code swap_code = swap_tree_comparison (TREE_CODE (arg1));
      enum tree_code swap_code = swap_tree_comparison (TREE_CODE (arg1));
 
 
      if (TREE_CODE (arg0) == swap_code)
      if (TREE_CODE (arg0) == swap_code)
        return operand_equal_p (TREE_OPERAND (arg0, 0),
        return operand_equal_p (TREE_OPERAND (arg0, 0),
                                TREE_OPERAND (arg1, 1), flags)
                                TREE_OPERAND (arg1, 1), flags)
               && operand_equal_p (TREE_OPERAND (arg0, 1),
               && operand_equal_p (TREE_OPERAND (arg0, 1),
                                   TREE_OPERAND (arg1, 0), flags);
                                   TREE_OPERAND (arg1, 0), flags);
    }
    }
 
 
  if (TREE_CODE (arg0) != TREE_CODE (arg1)
  if (TREE_CODE (arg0) != TREE_CODE (arg1)
      /* This is needed for conversions and for COMPONENT_REF.
      /* This is needed for conversions and for COMPONENT_REF.
         Might as well play it safe and always test this.  */
         Might as well play it safe and always test this.  */
      || TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK
      || TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK
      || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK
      || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK
      || TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1)))
      || TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1)))
    return 0;
    return 0;
 
 
  /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
  /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
     We don't care about side effects in that case because the SAVE_EXPR
     We don't care about side effects in that case because the SAVE_EXPR
     takes care of that for us. In all other cases, two expressions are
     takes care of that for us. In all other cases, two expressions are
     equal if they have no side effects.  If we have two identical
     equal if they have no side effects.  If we have two identical
     expressions with side effects that should be treated the same due
     expressions with side effects that should be treated the same due
     to the only side effects being identical SAVE_EXPR's, that will
     to the only side effects being identical SAVE_EXPR's, that will
     be detected in the recursive calls below.  */
     be detected in the recursive calls below.  */
  if (arg0 == arg1 && ! (flags & OEP_ONLY_CONST)
  if (arg0 == arg1 && ! (flags & OEP_ONLY_CONST)
      && (TREE_CODE (arg0) == SAVE_EXPR
      && (TREE_CODE (arg0) == SAVE_EXPR
          || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
          || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
    return 1;
    return 1;
 
 
  /* Next handle constant cases, those for which we can return 1 even
  /* Next handle constant cases, those for which we can return 1 even
     if ONLY_CONST is set.  */
     if ONLY_CONST is set.  */
  if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
  if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
    switch (TREE_CODE (arg0))
    switch (TREE_CODE (arg0))
      {
      {
      case INTEGER_CST:
      case INTEGER_CST:
        return (! TREE_CONSTANT_OVERFLOW (arg0)
        return (! TREE_CONSTANT_OVERFLOW (arg0)
                && ! TREE_CONSTANT_OVERFLOW (arg1)
                && ! TREE_CONSTANT_OVERFLOW (arg1)
                && tree_int_cst_equal (arg0, arg1));
                && tree_int_cst_equal (arg0, arg1));
 
 
      case REAL_CST:
      case REAL_CST:
        return (! TREE_CONSTANT_OVERFLOW (arg0)
        return (! TREE_CONSTANT_OVERFLOW (arg0)
                && ! TREE_CONSTANT_OVERFLOW (arg1)
                && ! TREE_CONSTANT_OVERFLOW (arg1)
                && REAL_VALUES_IDENTICAL (TREE_REAL_CST (arg0),
                && REAL_VALUES_IDENTICAL (TREE_REAL_CST (arg0),
                                          TREE_REAL_CST (arg1)));
                                          TREE_REAL_CST (arg1)));
 
 
      case VECTOR_CST:
      case VECTOR_CST:
        {
        {
          tree v1, v2;
          tree v1, v2;
 
 
          if (TREE_CONSTANT_OVERFLOW (arg0)
          if (TREE_CONSTANT_OVERFLOW (arg0)
              || TREE_CONSTANT_OVERFLOW (arg1))
              || TREE_CONSTANT_OVERFLOW (arg1))
            return 0;
            return 0;
 
 
          v1 = TREE_VECTOR_CST_ELTS (arg0);
          v1 = TREE_VECTOR_CST_ELTS (arg0);
          v2 = TREE_VECTOR_CST_ELTS (arg1);
          v2 = TREE_VECTOR_CST_ELTS (arg1);
          while (v1 && v2)
          while (v1 && v2)
            {
            {
              if (!operand_equal_p (TREE_VALUE (v1), TREE_VALUE (v2),
              if (!operand_equal_p (TREE_VALUE (v1), TREE_VALUE (v2),
                                    flags))
                                    flags))
                return 0;
                return 0;
              v1 = TREE_CHAIN (v1);
              v1 = TREE_CHAIN (v1);
              v2 = TREE_CHAIN (v2);
              v2 = TREE_CHAIN (v2);
            }
            }
 
 
          return v1 == v2;
          return v1 == v2;
        }
        }
 
 
      case COMPLEX_CST:
      case COMPLEX_CST:
        return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
        return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
                                 flags)
                                 flags)
                && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
                && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
                                    flags));
                                    flags));
 
 
      case STRING_CST:
      case STRING_CST:
        return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
        return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
                && ! memcmp (TREE_STRING_POINTER (arg0),
                && ! memcmp (TREE_STRING_POINTER (arg0),
                              TREE_STRING_POINTER (arg1),
                              TREE_STRING_POINTER (arg1),
                              TREE_STRING_LENGTH (arg0)));
                              TREE_STRING_LENGTH (arg0)));
 
 
      case ADDR_EXPR:
      case ADDR_EXPR:
        return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
        return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
                                0);
                                0);
      default:
      default:
        break;
        break;
      }
      }
 
 
  if (flags & OEP_ONLY_CONST)
  if (flags & OEP_ONLY_CONST)
    return 0;
    return 0;
 
 
/* Define macros to test an operand from arg0 and arg1 for equality and a
/* Define macros to test an operand from arg0 and arg1 for equality and a
   variant that allows null and views null as being different from any
   variant that allows null and views null as being different from any
   non-null value.  In the latter case, if either is null, the both
   non-null value.  In the latter case, if either is null, the both
   must be; otherwise, do the normal comparison.  */
   must be; otherwise, do the normal comparison.  */
#define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N),     \
#define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N),     \
                                    TREE_OPERAND (arg1, N), flags)
                                    TREE_OPERAND (arg1, N), flags)
 
 
#define OP_SAME_WITH_NULL(N)                            \
#define OP_SAME_WITH_NULL(N)                            \
  ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
  ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
   ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
   ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
 
 
  switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
  switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
    {
    {
    case tcc_unary:
    case tcc_unary:
      /* Two conversions are equal only if signedness and modes match.  */
      /* Two conversions are equal only if signedness and modes match.  */
      switch (TREE_CODE (arg0))
      switch (TREE_CODE (arg0))
        {
        {
        case NOP_EXPR:
        case NOP_EXPR:
        case CONVERT_EXPR:
        case CONVERT_EXPR:
        case FIX_CEIL_EXPR:
        case FIX_CEIL_EXPR:
        case FIX_TRUNC_EXPR:
        case FIX_TRUNC_EXPR:
        case FIX_FLOOR_EXPR:
        case FIX_FLOOR_EXPR:
        case FIX_ROUND_EXPR:
        case FIX_ROUND_EXPR:
          if (TYPE_UNSIGNED (TREE_TYPE (arg0))
          if (TYPE_UNSIGNED (TREE_TYPE (arg0))
              != TYPE_UNSIGNED (TREE_TYPE (arg1)))
              != TYPE_UNSIGNED (TREE_TYPE (arg1)))
            return 0;
            return 0;
          break;
          break;
        default:
        default:
          break;
          break;
        }
        }
 
 
      return OP_SAME (0);
      return OP_SAME (0);
 
 
 
 
    case tcc_comparison:
    case tcc_comparison:
    case tcc_binary:
    case tcc_binary:
      if (OP_SAME (0) && OP_SAME (1))
      if (OP_SAME (0) && OP_SAME (1))
        return 1;
        return 1;
 
 
      /* For commutative ops, allow the other order.  */
      /* For commutative ops, allow the other order.  */
      return (commutative_tree_code (TREE_CODE (arg0))
      return (commutative_tree_code (TREE_CODE (arg0))
              && operand_equal_p (TREE_OPERAND (arg0, 0),
              && operand_equal_p (TREE_OPERAND (arg0, 0),
                                  TREE_OPERAND (arg1, 1), flags)
                                  TREE_OPERAND (arg1, 1), flags)
              && operand_equal_p (TREE_OPERAND (arg0, 1),
              && operand_equal_p (TREE_OPERAND (arg0, 1),
                                  TREE_OPERAND (arg1, 0), flags));
                                  TREE_OPERAND (arg1, 0), flags));
 
 
    case tcc_reference:
    case tcc_reference:
      /* If either of the pointer (or reference) expressions we are
      /* If either of the pointer (or reference) expressions we are
         dereferencing contain a side effect, these cannot be equal.  */
         dereferencing contain a side effect, these cannot be equal.  */
      if (TREE_SIDE_EFFECTS (arg0)
      if (TREE_SIDE_EFFECTS (arg0)
          || TREE_SIDE_EFFECTS (arg1))
          || TREE_SIDE_EFFECTS (arg1))
        return 0;
        return 0;
 
 
      switch (TREE_CODE (arg0))
      switch (TREE_CODE (arg0))
        {
        {
        case INDIRECT_REF:
        case INDIRECT_REF:
        case ALIGN_INDIRECT_REF:
        case ALIGN_INDIRECT_REF:
        case MISALIGNED_INDIRECT_REF:
        case MISALIGNED_INDIRECT_REF:
        case REALPART_EXPR:
        case REALPART_EXPR:
        case IMAGPART_EXPR:
        case IMAGPART_EXPR:
          return OP_SAME (0);
          return OP_SAME (0);
 
 
        case ARRAY_REF:
        case ARRAY_REF:
        case ARRAY_RANGE_REF:
        case ARRAY_RANGE_REF:
          /* Operands 2 and 3 may be null.  */
          /* Operands 2 and 3 may be null.  */
          return (OP_SAME (0)
          return (OP_SAME (0)
                  && OP_SAME (1)
                  && OP_SAME (1)
                  && OP_SAME_WITH_NULL (2)
                  && OP_SAME_WITH_NULL (2)
                  && OP_SAME_WITH_NULL (3));
                  && OP_SAME_WITH_NULL (3));
 
 
        case COMPONENT_REF:
        case COMPONENT_REF:
          /* Handle operand 2 the same as for ARRAY_REF.  Operand 0
          /* Handle operand 2 the same as for ARRAY_REF.  Operand 0
             may be NULL when we're called to compare MEM_EXPRs.  */
             may be NULL when we're called to compare MEM_EXPRs.  */
          return OP_SAME_WITH_NULL (0)
          return OP_SAME_WITH_NULL (0)
                 && OP_SAME (1)
                 && OP_SAME (1)
                 && OP_SAME_WITH_NULL (2);
                 && OP_SAME_WITH_NULL (2);
 
 
        case BIT_FIELD_REF:
        case BIT_FIELD_REF:
          return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
          return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
 
 
        default:
        default:
          return 0;
          return 0;
        }
        }
 
 
    case tcc_expression:
    case tcc_expression:
      switch (TREE_CODE (arg0))
      switch (TREE_CODE (arg0))
        {
        {
        case ADDR_EXPR:
        case ADDR_EXPR:
        case TRUTH_NOT_EXPR:
        case TRUTH_NOT_EXPR:
          return OP_SAME (0);
          return OP_SAME (0);
 
 
        case TRUTH_ANDIF_EXPR:
        case TRUTH_ANDIF_EXPR:
        case TRUTH_ORIF_EXPR:
        case TRUTH_ORIF_EXPR:
          return OP_SAME (0) && OP_SAME (1);
          return OP_SAME (0) && OP_SAME (1);
 
 
        case TRUTH_AND_EXPR:
        case TRUTH_AND_EXPR:
        case TRUTH_OR_EXPR:
        case TRUTH_OR_EXPR:
        case TRUTH_XOR_EXPR:
        case TRUTH_XOR_EXPR:
          if (OP_SAME (0) && OP_SAME (1))
          if (OP_SAME (0) && OP_SAME (1))
            return 1;
            return 1;
 
 
          /* Otherwise take into account this is a commutative operation.  */
          /* Otherwise take into account this is a commutative operation.  */
          return (operand_equal_p (TREE_OPERAND (arg0, 0),
          return (operand_equal_p (TREE_OPERAND (arg0, 0),
                                   TREE_OPERAND (arg1, 1), flags)
                                   TREE_OPERAND (arg1, 1), flags)
                  && operand_equal_p (TREE_OPERAND (arg0, 1),
                  && operand_equal_p (TREE_OPERAND (arg0, 1),
                                      TREE_OPERAND (arg1, 0), flags));
                                      TREE_OPERAND (arg1, 0), flags));
 
 
        case CALL_EXPR:
        case CALL_EXPR:
          /* If the CALL_EXPRs call different functions, then they
          /* If the CALL_EXPRs call different functions, then they
             clearly can not be equal.  */
             clearly can not be equal.  */
          if (!OP_SAME (0))
          if (!OP_SAME (0))
            return 0;
            return 0;
 
 
          {
          {
            unsigned int cef = call_expr_flags (arg0);
            unsigned int cef = call_expr_flags (arg0);
            if (flags & OEP_PURE_SAME)
            if (flags & OEP_PURE_SAME)
              cef &= ECF_CONST | ECF_PURE;
              cef &= ECF_CONST | ECF_PURE;
            else
            else
              cef &= ECF_CONST;
              cef &= ECF_CONST;
            if (!cef)
            if (!cef)
              return 0;
              return 0;
          }
          }
 
 
          /* Now see if all the arguments are the same.  operand_equal_p
          /* Now see if all the arguments are the same.  operand_equal_p
             does not handle TREE_LIST, so we walk the operands here
             does not handle TREE_LIST, so we walk the operands here
             feeding them to operand_equal_p.  */
             feeding them to operand_equal_p.  */
          arg0 = TREE_OPERAND (arg0, 1);
          arg0 = TREE_OPERAND (arg0, 1);
          arg1 = TREE_OPERAND (arg1, 1);
          arg1 = TREE_OPERAND (arg1, 1);
          while (arg0 && arg1)
          while (arg0 && arg1)
            {
            {
              if (! operand_equal_p (TREE_VALUE (arg0), TREE_VALUE (arg1),
              if (! operand_equal_p (TREE_VALUE (arg0), TREE_VALUE (arg1),
                                     flags))
                                     flags))
                return 0;
                return 0;
 
 
              arg0 = TREE_CHAIN (arg0);
              arg0 = TREE_CHAIN (arg0);
              arg1 = TREE_CHAIN (arg1);
              arg1 = TREE_CHAIN (arg1);
            }
            }
 
 
          /* If we get here and both argument lists are exhausted
          /* If we get here and both argument lists are exhausted
             then the CALL_EXPRs are equal.  */
             then the CALL_EXPRs are equal.  */
          return ! (arg0 || arg1);
          return ! (arg0 || arg1);
 
 
        default:
        default:
          return 0;
          return 0;
        }
        }
 
 
    case tcc_declaration:
    case tcc_declaration:
      /* Consider __builtin_sqrt equal to sqrt.  */
      /* Consider __builtin_sqrt equal to sqrt.  */
      return (TREE_CODE (arg0) == FUNCTION_DECL
      return (TREE_CODE (arg0) == FUNCTION_DECL
              && DECL_BUILT_IN (arg0) && DECL_BUILT_IN (arg1)
              && DECL_BUILT_IN (arg0) && DECL_BUILT_IN (arg1)
              && DECL_BUILT_IN_CLASS (arg0) == DECL_BUILT_IN_CLASS (arg1)
              && DECL_BUILT_IN_CLASS (arg0) == DECL_BUILT_IN_CLASS (arg1)
              && DECL_FUNCTION_CODE (arg0) == DECL_FUNCTION_CODE (arg1));
              && DECL_FUNCTION_CODE (arg0) == DECL_FUNCTION_CODE (arg1));
 
 
    default:
    default:
      return 0;
      return 0;
    }
    }
 
 
#undef OP_SAME
#undef OP_SAME
#undef OP_SAME_WITH_NULL
#undef OP_SAME_WITH_NULL
}
}


/* Similar to operand_equal_p, but see if ARG0 might have been made by
/* Similar to operand_equal_p, but see if ARG0 might have been made by
   shorten_compare from ARG1 when ARG1 was being compared with OTHER.
   shorten_compare from ARG1 when ARG1 was being compared with OTHER.
 
 
   When in doubt, return 0.  */
   When in doubt, return 0.  */
 
 
static int
static int
operand_equal_for_comparison_p (tree arg0, tree arg1, tree other)
operand_equal_for_comparison_p (tree arg0, tree arg1, tree other)
{
{
  int unsignedp1, unsignedpo;
  int unsignedp1, unsignedpo;
  tree primarg0, primarg1, primother;
  tree primarg0, primarg1, primother;
  unsigned int correct_width;
  unsigned int correct_width;
 
 
  if (operand_equal_p (arg0, arg1, 0))
  if (operand_equal_p (arg0, arg1, 0))
    return 1;
    return 1;
 
 
  if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
  if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
      || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
      || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
    return 0;
    return 0;
 
 
  /* Discard any conversions that don't change the modes of ARG0 and ARG1
  /* Discard any conversions that don't change the modes of ARG0 and ARG1
     and see if the inner values are the same.  This removes any
     and see if the inner values are the same.  This removes any
     signedness comparison, which doesn't matter here.  */
     signedness comparison, which doesn't matter here.  */
  primarg0 = arg0, primarg1 = arg1;
  primarg0 = arg0, primarg1 = arg1;
  STRIP_NOPS (primarg0);
  STRIP_NOPS (primarg0);
  STRIP_NOPS (primarg1);
  STRIP_NOPS (primarg1);
  if (operand_equal_p (primarg0, primarg1, 0))
  if (operand_equal_p (primarg0, primarg1, 0))
    return 1;
    return 1;
 
 
  /* Duplicate what shorten_compare does to ARG1 and see if that gives the
  /* Duplicate what shorten_compare does to ARG1 and see if that gives the
     actual comparison operand, ARG0.
     actual comparison operand, ARG0.
 
 
     First throw away any conversions to wider types
     First throw away any conversions to wider types
     already present in the operands.  */
     already present in the operands.  */
 
 
  primarg1 = get_narrower (arg1, &unsignedp1);
  primarg1 = get_narrower (arg1, &unsignedp1);
  primother = get_narrower (other, &unsignedpo);
  primother = get_narrower (other, &unsignedpo);
 
 
  correct_width = TYPE_PRECISION (TREE_TYPE (arg1));
  correct_width = TYPE_PRECISION (TREE_TYPE (arg1));
  if (unsignedp1 == unsignedpo
  if (unsignedp1 == unsignedpo
      && TYPE_PRECISION (TREE_TYPE (primarg1)) < correct_width
      && TYPE_PRECISION (TREE_TYPE (primarg1)) < correct_width
      && TYPE_PRECISION (TREE_TYPE (primother)) < correct_width)
      && TYPE_PRECISION (TREE_TYPE (primother)) < correct_width)
    {
    {
      tree type = TREE_TYPE (arg0);
      tree type = TREE_TYPE (arg0);
 
 
      /* Make sure shorter operand is extended the right way
      /* Make sure shorter operand is extended the right way
         to match the longer operand.  */
         to match the longer operand.  */
      primarg1 = fold_convert (lang_hooks.types.signed_or_unsigned_type
      primarg1 = fold_convert (lang_hooks.types.signed_or_unsigned_type
                               (unsignedp1, TREE_TYPE (primarg1)), primarg1);
                               (unsignedp1, TREE_TYPE (primarg1)), primarg1);
 
 
      if (operand_equal_p (arg0, fold_convert (type, primarg1), 0))
      if (operand_equal_p (arg0, fold_convert (type, primarg1), 0))
        return 1;
        return 1;
    }
    }
 
 
  return 0;
  return 0;
}
}


/* See if ARG is an expression that is either a comparison or is performing
/* See if ARG is an expression that is either a comparison or is performing
   arithmetic on comparisons.  The comparisons must only be comparing
   arithmetic on comparisons.  The comparisons must only be comparing
   two different values, which will be stored in *CVAL1 and *CVAL2; if
   two different values, which will be stored in *CVAL1 and *CVAL2; if
   they are nonzero it means that some operands have already been found.
   they are nonzero it means that some operands have already been found.
   No variables may be used anywhere else in the expression except in the
   No variables may be used anywhere else in the expression except in the
   comparisons.  If SAVE_P is true it means we removed a SAVE_EXPR around
   comparisons.  If SAVE_P is true it means we removed a SAVE_EXPR around
   the expression and save_expr needs to be called with CVAL1 and CVAL2.
   the expression and save_expr needs to be called with CVAL1 and CVAL2.
 
 
   If this is true, return 1.  Otherwise, return zero.  */
   If this is true, return 1.  Otherwise, return zero.  */
 
 
static int
static int
twoval_comparison_p (tree arg, tree *cval1, tree *cval2, int *save_p)
twoval_comparison_p (tree arg, tree *cval1, tree *cval2, int *save_p)
{
{
  enum tree_code code = TREE_CODE (arg);
  enum tree_code code = TREE_CODE (arg);
  enum tree_code_class class = TREE_CODE_CLASS (code);
  enum tree_code_class class = TREE_CODE_CLASS (code);
 
 
  /* We can handle some of the tcc_expression cases here.  */
  /* We can handle some of the tcc_expression cases here.  */
  if (class == tcc_expression && code == TRUTH_NOT_EXPR)
  if (class == tcc_expression && code == TRUTH_NOT_EXPR)
    class = tcc_unary;
    class = tcc_unary;
  else if (class == tcc_expression
  else if (class == tcc_expression
           && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
           && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
               || code == COMPOUND_EXPR))
               || code == COMPOUND_EXPR))
    class = tcc_binary;
    class = tcc_binary;
 
 
  else if (class == tcc_expression && code == SAVE_EXPR
  else if (class == tcc_expression && code == SAVE_EXPR
           && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg, 0)))
           && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg, 0)))
    {
    {
      /* If we've already found a CVAL1 or CVAL2, this expression is
      /* If we've already found a CVAL1 or CVAL2, this expression is
         two complex to handle.  */
         two complex to handle.  */
      if (*cval1 || *cval2)
      if (*cval1 || *cval2)
        return 0;
        return 0;
 
 
      class = tcc_unary;
      class = tcc_unary;
      *save_p = 1;
      *save_p = 1;
    }
    }
 
 
  switch (class)
  switch (class)
    {
    {
    case tcc_unary:
    case tcc_unary:
      return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p);
      return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p);
 
 
    case tcc_binary:
    case tcc_binary:
      return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p)
      return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p)
              && twoval_comparison_p (TREE_OPERAND (arg, 1),
              && twoval_comparison_p (TREE_OPERAND (arg, 1),
                                      cval1, cval2, save_p));
                                      cval1, cval2, save_p));
 
 
    case tcc_constant:
    case tcc_constant:
      return 1;
      return 1;
 
 
    case tcc_expression:
    case tcc_expression:
      if (code == COND_EXPR)
      if (code == COND_EXPR)
        return (twoval_comparison_p (TREE_OPERAND (arg, 0),
        return (twoval_comparison_p (TREE_OPERAND (arg, 0),
                                     cval1, cval2, save_p)
                                     cval1, cval2, save_p)
                && twoval_comparison_p (TREE_OPERAND (arg, 1),
                && twoval_comparison_p (TREE_OPERAND (arg, 1),
                                        cval1, cval2, save_p)
                                        cval1, cval2, save_p)
                && twoval_comparison_p (TREE_OPERAND (arg, 2),
                && twoval_comparison_p (TREE_OPERAND (arg, 2),
                                        cval1, cval2, save_p));
                                        cval1, cval2, save_p));
      return 0;
      return 0;
 
 
    case tcc_comparison:
    case tcc_comparison:
      /* First see if we can handle the first operand, then the second.  For
      /* First see if we can handle the first operand, then the second.  For
         the second operand, we know *CVAL1 can't be zero.  It must be that
         the second operand, we know *CVAL1 can't be zero.  It must be that
         one side of the comparison is each of the values; test for the
         one side of the comparison is each of the values; test for the
         case where this isn't true by failing if the two operands
         case where this isn't true by failing if the two operands
         are the same.  */
         are the same.  */
 
 
      if (operand_equal_p (TREE_OPERAND (arg, 0),
      if (operand_equal_p (TREE_OPERAND (arg, 0),
                           TREE_OPERAND (arg, 1), 0))
                           TREE_OPERAND (arg, 1), 0))
        return 0;
        return 0;
 
 
      if (*cval1 == 0)
      if (*cval1 == 0)
        *cval1 = TREE_OPERAND (arg, 0);
        *cval1 = TREE_OPERAND (arg, 0);
      else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
      else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
        ;
        ;
      else if (*cval2 == 0)
      else if (*cval2 == 0)
        *cval2 = TREE_OPERAND (arg, 0);
        *cval2 = TREE_OPERAND (arg, 0);
      else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
      else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
        ;
        ;
      else
      else
        return 0;
        return 0;
 
 
      if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
      if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
        ;
        ;
      else if (*cval2 == 0)
      else if (*cval2 == 0)
        *cval2 = TREE_OPERAND (arg, 1);
        *cval2 = TREE_OPERAND (arg, 1);
      else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
      else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
        ;
        ;
      else
      else
        return 0;
        return 0;
 
 
      return 1;
      return 1;
 
 
    default:
    default:
      return 0;
      return 0;
    }
    }
}
}


/* ARG is a tree that is known to contain just arithmetic operations and
/* ARG is a tree that is known to contain just arithmetic operations and
   comparisons.  Evaluate the operations in the tree substituting NEW0 for
   comparisons.  Evaluate the operations in the tree substituting NEW0 for
   any occurrence of OLD0 as an operand of a comparison and likewise for
   any occurrence of OLD0 as an operand of a comparison and likewise for
   NEW1 and OLD1.  */
   NEW1 and OLD1.  */
 
 
static tree
static tree
eval_subst (tree arg, tree old0, tree new0, tree old1, tree new1)
eval_subst (tree arg, tree old0, tree new0, tree old1, tree new1)
{
{
  tree type = TREE_TYPE (arg);
  tree type = TREE_TYPE (arg);
  enum tree_code code = TREE_CODE (arg);
  enum tree_code code = TREE_CODE (arg);
  enum tree_code_class class = TREE_CODE_CLASS (code);
  enum tree_code_class class = TREE_CODE_CLASS (code);
 
 
  /* We can handle some of the tcc_expression cases here.  */
  /* We can handle some of the tcc_expression cases here.  */
  if (class == tcc_expression && code == TRUTH_NOT_EXPR)
  if (class == tcc_expression && code == TRUTH_NOT_EXPR)
    class = tcc_unary;
    class = tcc_unary;
  else if (class == tcc_expression
  else if (class == tcc_expression
           && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
           && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
    class = tcc_binary;
    class = tcc_binary;
 
 
  switch (class)
  switch (class)
    {
    {
    case tcc_unary:
    case tcc_unary:
      return fold_build1 (code, type,
      return fold_build1 (code, type,
                          eval_subst (TREE_OPERAND (arg, 0),
                          eval_subst (TREE_OPERAND (arg, 0),
                                      old0, new0, old1, new1));
                                      old0, new0, old1, new1));
 
 
    case tcc_binary:
    case tcc_binary:
      return fold_build2 (code, type,
      return fold_build2 (code, type,
                          eval_subst (TREE_OPERAND (arg, 0),
                          eval_subst (TREE_OPERAND (arg, 0),
                                      old0, new0, old1, new1),
                                      old0, new0, old1, new1),
                          eval_subst (TREE_OPERAND (arg, 1),
                          eval_subst (TREE_OPERAND (arg, 1),
                                      old0, new0, old1, new1));
                                      old0, new0, old1, new1));
 
 
    case tcc_expression:
    case tcc_expression:
      switch (code)
      switch (code)
        {
        {
        case SAVE_EXPR:
        case SAVE_EXPR:
          return eval_subst (TREE_OPERAND (arg, 0), old0, new0, old1, new1);
          return eval_subst (TREE_OPERAND (arg, 0), old0, new0, old1, new1);
 
 
        case COMPOUND_EXPR:
        case COMPOUND_EXPR:
          return eval_subst (TREE_OPERAND (arg, 1), old0, new0, old1, new1);
          return eval_subst (TREE_OPERAND (arg, 1), old0, new0, old1, new1);
 
 
        case COND_EXPR:
        case COND_EXPR:
          return fold_build3 (code, type,
          return fold_build3 (code, type,
                              eval_subst (TREE_OPERAND (arg, 0),
                              eval_subst (TREE_OPERAND (arg, 0),
                                          old0, new0, old1, new1),
                                          old0, new0, old1, new1),
                              eval_subst (TREE_OPERAND (arg, 1),
                              eval_subst (TREE_OPERAND (arg, 1),
                                          old0, new0, old1, new1),
                                          old0, new0, old1, new1),
                              eval_subst (TREE_OPERAND (arg, 2),
                              eval_subst (TREE_OPERAND (arg, 2),
                                          old0, new0, old1, new1));
                                          old0, new0, old1, new1));
        default:
        default:
          break;
          break;
        }
        }
      /* Fall through - ???  */
      /* Fall through - ???  */
 
 
    case tcc_comparison:
    case tcc_comparison:
      {
      {
        tree arg0 = TREE_OPERAND (arg, 0);
        tree arg0 = TREE_OPERAND (arg, 0);
        tree arg1 = TREE_OPERAND (arg, 1);
        tree arg1 = TREE_OPERAND (arg, 1);
 
 
        /* We need to check both for exact equality and tree equality.  The
        /* We need to check both for exact equality and tree equality.  The
           former will be true if the operand has a side-effect.  In that
           former will be true if the operand has a side-effect.  In that
           case, we know the operand occurred exactly once.  */
           case, we know the operand occurred exactly once.  */
 
 
        if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
        if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
          arg0 = new0;
          arg0 = new0;
        else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
        else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
          arg0 = new1;
          arg0 = new1;
 
 
        if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
        if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
          arg1 = new0;
          arg1 = new0;
        else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
        else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
          arg1 = new1;
          arg1 = new1;
 
 
        return fold_build2 (code, type, arg0, arg1);
        return fold_build2 (code, type, arg0, arg1);
      }
      }
 
 
    default:
    default:
      return arg;
      return arg;
    }
    }
}
}


/* Return a tree for the case when the result of an expression is RESULT
/* Return a tree for the case when the result of an expression is RESULT
   converted to TYPE and OMITTED was previously an operand of the expression
   converted to TYPE and OMITTED was previously an operand of the expression
   but is now not needed (e.g., we folded OMITTED * 0).
   but is now not needed (e.g., we folded OMITTED * 0).
 
 
   If OMITTED has side effects, we must evaluate it.  Otherwise, just do
   If OMITTED has side effects, we must evaluate it.  Otherwise, just do
   the conversion of RESULT to TYPE.  */
   the conversion of RESULT to TYPE.  */
 
 
tree
tree
omit_one_operand (tree type, tree result, tree omitted)
omit_one_operand (tree type, tree result, tree omitted)
{
{
  tree t = fold_convert (type, result);
  tree t = fold_convert (type, result);
 
 
  if (TREE_SIDE_EFFECTS (omitted))
  if (TREE_SIDE_EFFECTS (omitted))
    return build2 (COMPOUND_EXPR, type, fold_ignored_result (omitted), t);
    return build2 (COMPOUND_EXPR, type, fold_ignored_result (omitted), t);
 
 
  return non_lvalue (t);
  return non_lvalue (t);
}
}
 
 
/* Similar, but call pedantic_non_lvalue instead of non_lvalue.  */
/* Similar, but call pedantic_non_lvalue instead of non_lvalue.  */
 
 
static tree
static tree
pedantic_omit_one_operand (tree type, tree result, tree omitted)
pedantic_omit_one_operand (tree type, tree result, tree omitted)
{
{
  tree t = fold_convert (type, result);
  tree t = fold_convert (type, result);
 
 
  if (TREE_SIDE_EFFECTS (omitted))
  if (TREE_SIDE_EFFECTS (omitted))
    return build2 (COMPOUND_EXPR, type, fold_ignored_result (omitted), t);
    return build2 (COMPOUND_EXPR, type, fold_ignored_result (omitted), t);
 
 
  return pedantic_non_lvalue (t);
  return pedantic_non_lvalue (t);
}
}
 
 
/* Return a tree for the case when the result of an expression is RESULT
/* Return a tree for the case when the result of an expression is RESULT
   converted to TYPE and OMITTED1 and OMITTED2 were previously operands
   converted to TYPE and OMITTED1 and OMITTED2 were previously operands
   of the expression but are now not needed.
   of the expression but are now not needed.
 
 
   If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
   If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
   If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
   If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
   evaluated before OMITTED2.  Otherwise, if neither has side effects,
   evaluated before OMITTED2.  Otherwise, if neither has side effects,
   just do the conversion of RESULT to TYPE.  */
   just do the conversion of RESULT to TYPE.  */
 
 
tree
tree
omit_two_operands (tree type, tree result, tree omitted1, tree omitted2)
omit_two_operands (tree type, tree result, tree omitted1, tree omitted2)
{
{
  tree t = fold_convert (type, result);
  tree t = fold_convert (type, result);
 
 
  if (TREE_SIDE_EFFECTS (omitted2))
  if (TREE_SIDE_EFFECTS (omitted2))
    t = build2 (COMPOUND_EXPR, type, omitted2, t);
    t = build2 (COMPOUND_EXPR, type, omitted2, t);
  if (TREE_SIDE_EFFECTS (omitted1))
  if (TREE_SIDE_EFFECTS (omitted1))
    t = build2 (COMPOUND_EXPR, type, omitted1, t);
    t = build2 (COMPOUND_EXPR, type, omitted1, t);
 
 
  return TREE_CODE (t) != COMPOUND_EXPR ? non_lvalue (t) : t;
  return TREE_CODE (t) != COMPOUND_EXPR ? non_lvalue (t) : t;
}
}
 
 


/* Return a simplified tree node for the truth-negation of ARG.  This
/* Return a simplified tree node for the truth-negation of ARG.  This
   never alters ARG itself.  We assume that ARG is an operation that
   never alters ARG itself.  We assume that ARG is an operation that
   returns a truth value (0 or 1).
   returns a truth value (0 or 1).
 
 
   FIXME: one would think we would fold the result, but it causes
   FIXME: one would think we would fold the result, but it causes
   problems with the dominator optimizer.  */
   problems with the dominator optimizer.  */
 
 
tree
tree
fold_truth_not_expr (tree arg)
fold_truth_not_expr (tree arg)
{
{
  tree type = TREE_TYPE (arg);
  tree type = TREE_TYPE (arg);
  enum tree_code code = TREE_CODE (arg);
  enum tree_code code = TREE_CODE (arg);
 
 
  /* If this is a comparison, we can simply invert it, except for
  /* If this is a comparison, we can simply invert it, except for
     floating-point non-equality comparisons, in which case we just
     floating-point non-equality comparisons, in which case we just
     enclose a TRUTH_NOT_EXPR around what we have.  */
     enclose a TRUTH_NOT_EXPR around what we have.  */
 
 
  if (TREE_CODE_CLASS (code) == tcc_comparison)
  if (TREE_CODE_CLASS (code) == tcc_comparison)
    {
    {
      tree op_type = TREE_TYPE (TREE_OPERAND (arg, 0));
      tree op_type = TREE_TYPE (TREE_OPERAND (arg, 0));
      if (FLOAT_TYPE_P (op_type)
      if (FLOAT_TYPE_P (op_type)
          && flag_trapping_math
          && flag_trapping_math
          && code != ORDERED_EXPR && code != UNORDERED_EXPR
          && code != ORDERED_EXPR && code != UNORDERED_EXPR
          && code != NE_EXPR && code != EQ_EXPR)
          && code != NE_EXPR && code != EQ_EXPR)
        return NULL_TREE;
        return NULL_TREE;
      else
      else
        {
        {
          code = invert_tree_comparison (code,
          code = invert_tree_comparison (code,
                                         HONOR_NANS (TYPE_MODE (op_type)));
                                         HONOR_NANS (TYPE_MODE (op_type)));
          if (code == ERROR_MARK)
          if (code == ERROR_MARK)
            return NULL_TREE;
            return NULL_TREE;
          else
          else
            return build2 (code, type,
            return build2 (code, type,
                           TREE_OPERAND (arg, 0), TREE_OPERAND (arg, 1));
                           TREE_OPERAND (arg, 0), TREE_OPERAND (arg, 1));
        }
        }
    }
    }
 
 
  switch (code)
  switch (code)
    {
    {
    case INTEGER_CST:
    case INTEGER_CST:
      return constant_boolean_node (integer_zerop (arg), type);
      return constant_boolean_node (integer_zerop (arg), type);
 
 
    case TRUTH_AND_EXPR:
    case TRUTH_AND_EXPR:
      return build2 (TRUTH_OR_EXPR, type,
      return build2 (TRUTH_OR_EXPR, type,
                     invert_truthvalue (TREE_OPERAND (arg, 0)),
                     invert_truthvalue (TREE_OPERAND (arg, 0)),
                     invert_truthvalue (TREE_OPERAND (arg, 1)));
                     invert_truthvalue (TREE_OPERAND (arg, 1)));
 
 
    case TRUTH_OR_EXPR:
    case TRUTH_OR_EXPR:
      return build2 (TRUTH_AND_EXPR, type,
      return build2 (TRUTH_AND_EXPR, type,
                     invert_truthvalue (TREE_OPERAND (arg, 0)),
                     invert_truthvalue (TREE_OPERAND (arg, 0)),
                     invert_truthvalue (TREE_OPERAND (arg, 1)));
                     invert_truthvalue (TREE_OPERAND (arg, 1)));
 
 
    case TRUTH_XOR_EXPR:
    case TRUTH_XOR_EXPR:
      /* Here we can invert either operand.  We invert the first operand
      /* Here we can invert either operand.  We invert the first operand
         unless the second operand is a TRUTH_NOT_EXPR in which case our
         unless the second operand is a TRUTH_NOT_EXPR in which case our
         result is the XOR of the first operand with the inside of the
         result is the XOR of the first operand with the inside of the
         negation of the second operand.  */
         negation of the second operand.  */
 
 
      if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
      if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
        return build2 (TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
        return build2 (TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
                       TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
                       TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
      else
      else
        return build2 (TRUTH_XOR_EXPR, type,
        return build2 (TRUTH_XOR_EXPR, type,
                       invert_truthvalue (TREE_OPERAND (arg, 0)),
                       invert_truthvalue (TREE_OPERAND (arg, 0)),
                       TREE_OPERAND (arg, 1));
                       TREE_OPERAND (arg, 1));
 
 
    case TRUTH_ANDIF_EXPR:
    case TRUTH_ANDIF_EXPR:
      return build2 (TRUTH_ORIF_EXPR, type,
      return build2 (TRUTH_ORIF_EXPR, type,
                     invert_truthvalue (TREE_OPERAND (arg, 0)),
                     invert_truthvalue (TREE_OPERAND (arg, 0)),
                     invert_truthvalue (TREE_OPERAND (arg, 1)));
                     invert_truthvalue (TREE_OPERAND (arg, 1)));
 
 
    case TRUTH_ORIF_EXPR:
    case TRUTH_ORIF_EXPR:
      return build2 (TRUTH_ANDIF_EXPR, type,
      return build2 (TRUTH_ANDIF_EXPR, type,
                     invert_truthvalue (TREE_OPERAND (arg, 0)),
                     invert_truthvalue (TREE_OPERAND (arg, 0)),
                     invert_truthvalue (TREE_OPERAND (arg, 1)));
                     invert_truthvalue (TREE_OPERAND (arg, 1)));
 
 
    case TRUTH_NOT_EXPR:
    case TRUTH_NOT_EXPR:
      return TREE_OPERAND (arg, 0);
      return TREE_OPERAND (arg, 0);
 
 
    case COND_EXPR:
    case COND_EXPR:
      {
      {
        tree arg1 = TREE_OPERAND (arg, 1);
        tree arg1 = TREE_OPERAND (arg, 1);
        tree arg2 = TREE_OPERAND (arg, 2);
        tree arg2 = TREE_OPERAND (arg, 2);
        /* A COND_EXPR may have a throw as one operand, which
        /* A COND_EXPR may have a throw as one operand, which
           then has void type.  Just leave void operands
           then has void type.  Just leave void operands
           as they are.  */
           as they are.  */
        return build3 (COND_EXPR, type, TREE_OPERAND (arg, 0),
        return build3 (COND_EXPR, type, TREE_OPERAND (arg, 0),
                       VOID_TYPE_P (TREE_TYPE (arg1))
                       VOID_TYPE_P (TREE_TYPE (arg1))
                       ? arg1 : invert_truthvalue (arg1),
                       ? arg1 : invert_truthvalue (arg1),
                       VOID_TYPE_P (TREE_TYPE (arg2))
                       VOID_TYPE_P (TREE_TYPE (arg2))
                       ? arg2 : invert_truthvalue (arg2));
                       ? arg2 : invert_truthvalue (arg2));
      }
      }
 
 
    case COMPOUND_EXPR:
    case COMPOUND_EXPR:
      return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg, 0),
      return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg, 0),
                     invert_truthvalue (TREE_OPERAND (arg, 1)));
                     invert_truthvalue (TREE_OPERAND (arg, 1)));
 
 
    case NON_LVALUE_EXPR:
    case NON_LVALUE_EXPR:
      return invert_truthvalue (TREE_OPERAND (arg, 0));
      return invert_truthvalue (TREE_OPERAND (arg, 0));
 
 
    case NOP_EXPR:
    case NOP_EXPR:
      if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
      if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
        return build1 (TRUTH_NOT_EXPR, type, arg);
        return build1 (TRUTH_NOT_EXPR, type, arg);
 
 
    case CONVERT_EXPR:
    case CONVERT_EXPR:
    case FLOAT_EXPR:
    case FLOAT_EXPR:
      return build1 (TREE_CODE (arg), type,
      return build1 (TREE_CODE (arg), type,
                     invert_truthvalue (TREE_OPERAND (arg, 0)));
                     invert_truthvalue (TREE_OPERAND (arg, 0)));
 
 
    case BIT_AND_EXPR:
    case BIT_AND_EXPR:
      if (!integer_onep (TREE_OPERAND (arg, 1)))
      if (!integer_onep (TREE_OPERAND (arg, 1)))
        break;
        break;
      return build2 (EQ_EXPR, type, arg,
      return build2 (EQ_EXPR, type, arg,
                     build_int_cst (type, 0));
                     build_int_cst (type, 0));
 
 
    case SAVE_EXPR:
    case SAVE_EXPR:
      return build1 (TRUTH_NOT_EXPR, type, arg);
      return build1 (TRUTH_NOT_EXPR, type, arg);
 
 
    case CLEANUP_POINT_EXPR:
    case CLEANUP_POINT_EXPR:
      return build1 (CLEANUP_POINT_EXPR, type,
      return build1 (CLEANUP_POINT_EXPR, type,
                     invert_truthvalue (TREE_OPERAND (arg, 0)));
                     invert_truthvalue (TREE_OPERAND (arg, 0)));
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Return a simplified tree node for the truth-negation of ARG.  This
/* Return a simplified tree node for the truth-negation of ARG.  This
   never alters ARG itself.  We assume that ARG is an operation that
   never alters ARG itself.  We assume that ARG is an operation that
   returns a truth value (0 or 1).
   returns a truth value (0 or 1).
 
 
   FIXME: one would think we would fold the result, but it causes
   FIXME: one would think we would fold the result, but it causes
   problems with the dominator optimizer.  */
   problems with the dominator optimizer.  */
 
 
tree
tree
invert_truthvalue (tree arg)
invert_truthvalue (tree arg)
{
{
  tree tem;
  tree tem;
 
 
  if (TREE_CODE (arg) == ERROR_MARK)
  if (TREE_CODE (arg) == ERROR_MARK)
    return arg;
    return arg;
 
 
  tem = fold_truth_not_expr (arg);
  tem = fold_truth_not_expr (arg);
  if (!tem)
  if (!tem)
    tem = build1 (TRUTH_NOT_EXPR, TREE_TYPE (arg), arg);
    tem = build1 (TRUTH_NOT_EXPR, TREE_TYPE (arg), arg);
 
 
  return tem;
  return tem;
}
}
 
 
/* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
/* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
   operands are another bit-wise operation with a common input.  If so,
   operands are another bit-wise operation with a common input.  If so,
   distribute the bit operations to save an operation and possibly two if
   distribute the bit operations to save an operation and possibly two if
   constants are involved.  For example, convert
   constants are involved.  For example, convert
        (A | B) & (A | C) into A | (B & C)
        (A | B) & (A | C) into A | (B & C)
   Further simplification will occur if B and C are constants.
   Further simplification will occur if B and C are constants.
 
 
   If this optimization cannot be done, 0 will be returned.  */
   If this optimization cannot be done, 0 will be returned.  */
 
 
static tree
static tree
distribute_bit_expr (enum tree_code code, tree type, tree arg0, tree arg1)
distribute_bit_expr (enum tree_code code, tree type, tree arg0, tree arg1)
{
{
  tree common;
  tree common;
  tree left, right;
  tree left, right;
 
 
  if (TREE_CODE (arg0) != TREE_CODE (arg1)
  if (TREE_CODE (arg0) != TREE_CODE (arg1)
      || TREE_CODE (arg0) == code
      || TREE_CODE (arg0) == code
      || (TREE_CODE (arg0) != BIT_AND_EXPR
      || (TREE_CODE (arg0) != BIT_AND_EXPR
          && TREE_CODE (arg0) != BIT_IOR_EXPR))
          && TREE_CODE (arg0) != BIT_IOR_EXPR))
    return 0;
    return 0;
 
 
  if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0), 0))
  if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0), 0))
    {
    {
      common = TREE_OPERAND (arg0, 0);
      common = TREE_OPERAND (arg0, 0);
      left = TREE_OPERAND (arg0, 1);
      left = TREE_OPERAND (arg0, 1);
      right = TREE_OPERAND (arg1, 1);
      right = TREE_OPERAND (arg1, 1);
    }
    }
  else if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 1), 0))
  else if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 1), 0))
    {
    {
      common = TREE_OPERAND (arg0, 0);
      common = TREE_OPERAND (arg0, 0);
      left = TREE_OPERAND (arg0, 1);
      left = TREE_OPERAND (arg0, 1);
      right = TREE_OPERAND (arg1, 0);
      right = TREE_OPERAND (arg1, 0);
    }
    }
  else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 0), 0))
  else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 0), 0))
    {
    {
      common = TREE_OPERAND (arg0, 1);
      common = TREE_OPERAND (arg0, 1);
      left = TREE_OPERAND (arg0, 0);
      left = TREE_OPERAND (arg0, 0);
      right = TREE_OPERAND (arg1, 1);
      right = TREE_OPERAND (arg1, 1);
    }
    }
  else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 1), 0))
  else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 1), 0))
    {
    {
      common = TREE_OPERAND (arg0, 1);
      common = TREE_OPERAND (arg0, 1);
      left = TREE_OPERAND (arg0, 0);
      left = TREE_OPERAND (arg0, 0);
      right = TREE_OPERAND (arg1, 0);
      right = TREE_OPERAND (arg1, 0);
    }
    }
  else
  else
    return 0;
    return 0;
 
 
  return fold_build2 (TREE_CODE (arg0), type, common,
  return fold_build2 (TREE_CODE (arg0), type, common,
                      fold_build2 (code, type, left, right));
                      fold_build2 (code, type, left, right));
}
}
 
 
/* Knowing that ARG0 and ARG1 are both RDIV_EXPRs, simplify a binary operation
/* Knowing that ARG0 and ARG1 are both RDIV_EXPRs, simplify a binary operation
   with code CODE.  This optimization is unsafe.  */
   with code CODE.  This optimization is unsafe.  */
static tree
static tree
distribute_real_division (enum tree_code code, tree type, tree arg0, tree arg1)
distribute_real_division (enum tree_code code, tree type, tree arg0, tree arg1)
{
{
  bool mul0 = TREE_CODE (arg0) == MULT_EXPR;
  bool mul0 = TREE_CODE (arg0) == MULT_EXPR;
  bool mul1 = TREE_CODE (arg1) == MULT_EXPR;
  bool mul1 = TREE_CODE (arg1) == MULT_EXPR;
 
 
  /* (A / C) +- (B / C) -> (A +- B) / C.  */
  /* (A / C) +- (B / C) -> (A +- B) / C.  */
  if (mul0 == mul1
  if (mul0 == mul1
      && operand_equal_p (TREE_OPERAND (arg0, 1),
      && operand_equal_p (TREE_OPERAND (arg0, 1),
                       TREE_OPERAND (arg1, 1), 0))
                       TREE_OPERAND (arg1, 1), 0))
    return fold_build2 (mul0 ? MULT_EXPR : RDIV_EXPR, type,
    return fold_build2 (mul0 ? MULT_EXPR : RDIV_EXPR, type,
                        fold_build2 (code, type,
                        fold_build2 (code, type,
                                     TREE_OPERAND (arg0, 0),
                                     TREE_OPERAND (arg0, 0),
                                     TREE_OPERAND (arg1, 0)),
                                     TREE_OPERAND (arg1, 0)),
                        TREE_OPERAND (arg0, 1));
                        TREE_OPERAND (arg0, 1));
 
 
  /* (A / C1) +- (A / C2) -> A * (1 / C1 +- 1 / C2).  */
  /* (A / C1) +- (A / C2) -> A * (1 / C1 +- 1 / C2).  */
  if (operand_equal_p (TREE_OPERAND (arg0, 0),
  if (operand_equal_p (TREE_OPERAND (arg0, 0),
                       TREE_OPERAND (arg1, 0), 0)
                       TREE_OPERAND (arg1, 0), 0)
      && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
      && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
      && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
      && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
    {
    {
      REAL_VALUE_TYPE r0, r1;
      REAL_VALUE_TYPE r0, r1;
      r0 = TREE_REAL_CST (TREE_OPERAND (arg0, 1));
      r0 = TREE_REAL_CST (TREE_OPERAND (arg0, 1));
      r1 = TREE_REAL_CST (TREE_OPERAND (arg1, 1));
      r1 = TREE_REAL_CST (TREE_OPERAND (arg1, 1));
      if (!mul0)
      if (!mul0)
        real_arithmetic (&r0, RDIV_EXPR, &dconst1, &r0);
        real_arithmetic (&r0, RDIV_EXPR, &dconst1, &r0);
      if (!mul1)
      if (!mul1)
        real_arithmetic (&r1, RDIV_EXPR, &dconst1, &r1);
        real_arithmetic (&r1, RDIV_EXPR, &dconst1, &r1);
      real_arithmetic (&r0, code, &r0, &r1);
      real_arithmetic (&r0, code, &r0, &r1);
      return fold_build2 (MULT_EXPR, type,
      return fold_build2 (MULT_EXPR, type,
                          TREE_OPERAND (arg0, 0),
                          TREE_OPERAND (arg0, 0),
                          build_real (type, r0));
                          build_real (type, r0));
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}


/* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
/* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
   starting at BITPOS.  The field is unsigned if UNSIGNEDP is nonzero.  */
   starting at BITPOS.  The field is unsigned if UNSIGNEDP is nonzero.  */
 
 
static tree
static tree
make_bit_field_ref (tree inner, tree type, int bitsize, int bitpos,
make_bit_field_ref (tree inner, tree type, int bitsize, int bitpos,
                    int unsignedp)
                    int unsignedp)
{
{
  tree result;
  tree result;
 
 
  if (bitpos == 0)
  if (bitpos == 0)
    {
    {
      tree size = TYPE_SIZE (TREE_TYPE (inner));
      tree size = TYPE_SIZE (TREE_TYPE (inner));
      if ((INTEGRAL_TYPE_P (TREE_TYPE (inner))
      if ((INTEGRAL_TYPE_P (TREE_TYPE (inner))
           || POINTER_TYPE_P (TREE_TYPE (inner)))
           || POINTER_TYPE_P (TREE_TYPE (inner)))
          && host_integerp (size, 0)
          && host_integerp (size, 0)
          && tree_low_cst (size, 0) == bitsize)
          && tree_low_cst (size, 0) == bitsize)
        return fold_convert (type, inner);
        return fold_convert (type, inner);
    }
    }
 
 
  result = build3 (BIT_FIELD_REF, type, inner,
  result = build3 (BIT_FIELD_REF, type, inner,
                   size_int (bitsize), bitsize_int (bitpos));
                   size_int (bitsize), bitsize_int (bitpos));
 
 
  BIT_FIELD_REF_UNSIGNED (result) = unsignedp;
  BIT_FIELD_REF_UNSIGNED (result) = unsignedp;
 
 
  return result;
  return result;
}
}
 
 
/* Optimize a bit-field compare.
/* Optimize a bit-field compare.
 
 
   There are two cases:  First is a compare against a constant and the
   There are two cases:  First is a compare against a constant and the
   second is a comparison of two items where the fields are at the same
   second is a comparison of two items where the fields are at the same
   bit position relative to the start of a chunk (byte, halfword, word)
   bit position relative to the start of a chunk (byte, halfword, word)
   large enough to contain it.  In these cases we can avoid the shift
   large enough to contain it.  In these cases we can avoid the shift
   implicit in bitfield extractions.
   implicit in bitfield extractions.
 
 
   For constants, we emit a compare of the shifted constant with the
   For constants, we emit a compare of the shifted constant with the
   BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
   BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
   compared.  For two fields at the same position, we do the ANDs with the
   compared.  For two fields at the same position, we do the ANDs with the
   similar mask and compare the result of the ANDs.
   similar mask and compare the result of the ANDs.
 
 
   CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
   CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
   COMPARE_TYPE is the type of the comparison, and LHS and RHS
   COMPARE_TYPE is the type of the comparison, and LHS and RHS
   are the left and right operands of the comparison, respectively.
   are the left and right operands of the comparison, respectively.
 
 
   If the optimization described above can be done, we return the resulting
   If the optimization described above can be done, we return the resulting
   tree.  Otherwise we return zero.  */
   tree.  Otherwise we return zero.  */
 
 
static tree
static tree
optimize_bit_field_compare (enum tree_code code, tree compare_type,
optimize_bit_field_compare (enum tree_code code, tree compare_type,
                            tree lhs, tree rhs)
                            tree lhs, tree rhs)
{
{
  HOST_WIDE_INT lbitpos, lbitsize, rbitpos, rbitsize, nbitpos, nbitsize;
  HOST_WIDE_INT lbitpos, lbitsize, rbitpos, rbitsize, nbitpos, nbitsize;
  tree type = TREE_TYPE (lhs);
  tree type = TREE_TYPE (lhs);
  tree signed_type, unsigned_type;
  tree signed_type, unsigned_type;
  int const_p = TREE_CODE (rhs) == INTEGER_CST;
  int const_p = TREE_CODE (rhs) == INTEGER_CST;
  enum machine_mode lmode, rmode, nmode;
  enum machine_mode lmode, rmode, nmode;
  int lunsignedp, runsignedp;
  int lunsignedp, runsignedp;
  int lvolatilep = 0, rvolatilep = 0;
  int lvolatilep = 0, rvolatilep = 0;
  tree linner, rinner = NULL_TREE;
  tree linner, rinner = NULL_TREE;
  tree mask;
  tree mask;
  tree offset;
  tree offset;
 
 
  /* Get all the information about the extractions being done.  If the bit size
  /* Get all the information about the extractions being done.  If the bit size
     if the same as the size of the underlying object, we aren't doing an
     if the same as the size of the underlying object, we aren't doing an
     extraction at all and so can do nothing.  We also don't want to
     extraction at all and so can do nothing.  We also don't want to
     do anything if the inner expression is a PLACEHOLDER_EXPR since we
     do anything if the inner expression is a PLACEHOLDER_EXPR since we
     then will no longer be able to replace it.  */
     then will no longer be able to replace it.  */
  linner = get_inner_reference (lhs, &lbitsize, &lbitpos, &offset, &lmode,
  linner = get_inner_reference (lhs, &lbitsize, &lbitpos, &offset, &lmode,
                                &lunsignedp, &lvolatilep, false);
                                &lunsignedp, &lvolatilep, false);
  if (linner == lhs || lbitsize == GET_MODE_BITSIZE (lmode) || lbitsize < 0
  if (linner == lhs || lbitsize == GET_MODE_BITSIZE (lmode) || lbitsize < 0
      || offset != 0 || TREE_CODE (linner) == PLACEHOLDER_EXPR)
      || offset != 0 || TREE_CODE (linner) == PLACEHOLDER_EXPR)
    return 0;
    return 0;
 
 
 if (!const_p)
 if (!const_p)
   {
   {
     /* If this is not a constant, we can only do something if bit positions,
     /* If this is not a constant, we can only do something if bit positions,
        sizes, and signedness are the same.  */
        sizes, and signedness are the same.  */
     rinner = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
     rinner = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
                                   &runsignedp, &rvolatilep, false);
                                   &runsignedp, &rvolatilep, false);
 
 
     if (rinner == rhs || lbitpos != rbitpos || lbitsize != rbitsize
     if (rinner == rhs || lbitpos != rbitpos || lbitsize != rbitsize
         || lunsignedp != runsignedp || offset != 0
         || lunsignedp != runsignedp || offset != 0
         || TREE_CODE (rinner) == PLACEHOLDER_EXPR)
         || TREE_CODE (rinner) == PLACEHOLDER_EXPR)
       return 0;
       return 0;
   }
   }
 
 
  /* See if we can find a mode to refer to this field.  We should be able to,
  /* See if we can find a mode to refer to this field.  We should be able to,
     but fail if we can't.  */
     but fail if we can't.  */
  nmode = get_best_mode (lbitsize, lbitpos,
  nmode = get_best_mode (lbitsize, lbitpos,
                         const_p ? TYPE_ALIGN (TREE_TYPE (linner))
                         const_p ? TYPE_ALIGN (TREE_TYPE (linner))
                         : MIN (TYPE_ALIGN (TREE_TYPE (linner)),
                         : MIN (TYPE_ALIGN (TREE_TYPE (linner)),
                                TYPE_ALIGN (TREE_TYPE (rinner))),
                                TYPE_ALIGN (TREE_TYPE (rinner))),
                         word_mode, lvolatilep || rvolatilep);
                         word_mode, lvolatilep || rvolatilep);
  if (nmode == VOIDmode)
  if (nmode == VOIDmode)
    return 0;
    return 0;
 
 
  /* Set signed and unsigned types of the precision of this mode for the
  /* Set signed and unsigned types of the precision of this mode for the
     shifts below.  */
     shifts below.  */
  signed_type = lang_hooks.types.type_for_mode (nmode, 0);
  signed_type = lang_hooks.types.type_for_mode (nmode, 0);
  unsigned_type = lang_hooks.types.type_for_mode (nmode, 1);
  unsigned_type = lang_hooks.types.type_for_mode (nmode, 1);
 
 
  /* Compute the bit position and size for the new reference and our offset
  /* Compute the bit position and size for the new reference and our offset
     within it. If the new reference is the same size as the original, we
     within it. If the new reference is the same size as the original, we
     won't optimize anything, so return zero.  */
     won't optimize anything, so return zero.  */
  nbitsize = GET_MODE_BITSIZE (nmode);
  nbitsize = GET_MODE_BITSIZE (nmode);
  nbitpos = lbitpos & ~ (nbitsize - 1);
  nbitpos = lbitpos & ~ (nbitsize - 1);
  lbitpos -= nbitpos;
  lbitpos -= nbitpos;
  if (nbitsize == lbitsize)
  if (nbitsize == lbitsize)
    return 0;
    return 0;
 
 
  if (BYTES_BIG_ENDIAN)
  if (BYTES_BIG_ENDIAN)
    lbitpos = nbitsize - lbitsize - lbitpos;
    lbitpos = nbitsize - lbitsize - lbitpos;
 
 
  /* Make the mask to be used against the extracted field.  */
  /* Make the mask to be used against the extracted field.  */
  mask = build_int_cst (unsigned_type, -1);
  mask = build_int_cst (unsigned_type, -1);
  mask = force_fit_type (mask, 0, false, false);
  mask = force_fit_type (mask, 0, false, false);
  mask = fold_convert (unsigned_type, mask);
  mask = fold_convert (unsigned_type, mask);
  mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize), 0);
  mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize), 0);
  mask = const_binop (RSHIFT_EXPR, mask,
  mask = const_binop (RSHIFT_EXPR, mask,
                      size_int (nbitsize - lbitsize - lbitpos), 0);
                      size_int (nbitsize - lbitsize - lbitpos), 0);
 
 
  if (! const_p)
  if (! const_p)
    /* If not comparing with constant, just rework the comparison
    /* If not comparing with constant, just rework the comparison
       and return.  */
       and return.  */
    return build2 (code, compare_type,
    return build2 (code, compare_type,
                   build2 (BIT_AND_EXPR, unsigned_type,
                   build2 (BIT_AND_EXPR, unsigned_type,
                           make_bit_field_ref (linner, unsigned_type,
                           make_bit_field_ref (linner, unsigned_type,
                                               nbitsize, nbitpos, 1),
                                               nbitsize, nbitpos, 1),
                           mask),
                           mask),
                   build2 (BIT_AND_EXPR, unsigned_type,
                   build2 (BIT_AND_EXPR, unsigned_type,
                           make_bit_field_ref (rinner, unsigned_type,
                           make_bit_field_ref (rinner, unsigned_type,
                                               nbitsize, nbitpos, 1),
                                               nbitsize, nbitpos, 1),
                           mask));
                           mask));
 
 
  /* Otherwise, we are handling the constant case. See if the constant is too
  /* Otherwise, we are handling the constant case. See if the constant is too
     big for the field.  Warn and return a tree of for 0 (false) if so.  We do
     big for the field.  Warn and return a tree of for 0 (false) if so.  We do
     this not only for its own sake, but to avoid having to test for this
     this not only for its own sake, but to avoid having to test for this
     error case below.  If we didn't, we might generate wrong code.
     error case below.  If we didn't, we might generate wrong code.
 
 
     For unsigned fields, the constant shifted right by the field length should
     For unsigned fields, the constant shifted right by the field length should
     be all zero.  For signed fields, the high-order bits should agree with
     be all zero.  For signed fields, the high-order bits should agree with
     the sign bit.  */
     the sign bit.  */
 
 
  if (lunsignedp)
  if (lunsignedp)
    {
    {
      if (! integer_zerop (const_binop (RSHIFT_EXPR,
      if (! integer_zerop (const_binop (RSHIFT_EXPR,
                                        fold_convert (unsigned_type, rhs),
                                        fold_convert (unsigned_type, rhs),
                                        size_int (lbitsize), 0)))
                                        size_int (lbitsize), 0)))
        {
        {
          warning (0, "comparison is always %d due to width of bit-field",
          warning (0, "comparison is always %d due to width of bit-field",
                   code == NE_EXPR);
                   code == NE_EXPR);
          return constant_boolean_node (code == NE_EXPR, compare_type);
          return constant_boolean_node (code == NE_EXPR, compare_type);
        }
        }
    }
    }
  else
  else
    {
    {
      tree tem = const_binop (RSHIFT_EXPR, fold_convert (signed_type, rhs),
      tree tem = const_binop (RSHIFT_EXPR, fold_convert (signed_type, rhs),
                              size_int (lbitsize - 1), 0);
                              size_int (lbitsize - 1), 0);
      if (! integer_zerop (tem) && ! integer_all_onesp (tem))
      if (! integer_zerop (tem) && ! integer_all_onesp (tem))
        {
        {
          warning (0, "comparison is always %d due to width of bit-field",
          warning (0, "comparison is always %d due to width of bit-field",
                   code == NE_EXPR);
                   code == NE_EXPR);
          return constant_boolean_node (code == NE_EXPR, compare_type);
          return constant_boolean_node (code == NE_EXPR, compare_type);
        }
        }
    }
    }
 
 
  /* Single-bit compares should always be against zero.  */
  /* Single-bit compares should always be against zero.  */
  if (lbitsize == 1 && ! integer_zerop (rhs))
  if (lbitsize == 1 && ! integer_zerop (rhs))
    {
    {
      code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
      code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
      rhs = build_int_cst (type, 0);
      rhs = build_int_cst (type, 0);
    }
    }
 
 
  /* Make a new bitfield reference, shift the constant over the
  /* Make a new bitfield reference, shift the constant over the
     appropriate number of bits and mask it with the computed mask
     appropriate number of bits and mask it with the computed mask
     (in case this was a signed field).  If we changed it, make a new one.  */
     (in case this was a signed field).  If we changed it, make a new one.  */
  lhs = make_bit_field_ref (linner, unsigned_type, nbitsize, nbitpos, 1);
  lhs = make_bit_field_ref (linner, unsigned_type, nbitsize, nbitpos, 1);
  if (lvolatilep)
  if (lvolatilep)
    {
    {
      TREE_SIDE_EFFECTS (lhs) = 1;
      TREE_SIDE_EFFECTS (lhs) = 1;
      TREE_THIS_VOLATILE (lhs) = 1;
      TREE_THIS_VOLATILE (lhs) = 1;
    }
    }
 
 
  rhs = const_binop (BIT_AND_EXPR,
  rhs = const_binop (BIT_AND_EXPR,
                     const_binop (LSHIFT_EXPR,
                     const_binop (LSHIFT_EXPR,
                                  fold_convert (unsigned_type, rhs),
                                  fold_convert (unsigned_type, rhs),
                                  size_int (lbitpos), 0),
                                  size_int (lbitpos), 0),
                     mask, 0);
                     mask, 0);
 
 
  return build2 (code, compare_type,
  return build2 (code, compare_type,
                 build2 (BIT_AND_EXPR, unsigned_type, lhs, mask),
                 build2 (BIT_AND_EXPR, unsigned_type, lhs, mask),
                 rhs);
                 rhs);
}
}


/* Subroutine for fold_truthop: decode a field reference.
/* Subroutine for fold_truthop: decode a field reference.
 
 
   If EXP is a comparison reference, we return the innermost reference.
   If EXP is a comparison reference, we return the innermost reference.
 
 
   *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
   *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
   set to the starting bit number.
   set to the starting bit number.
 
 
   If the innermost field can be completely contained in a mode-sized
   If the innermost field can be completely contained in a mode-sized
   unit, *PMODE is set to that mode.  Otherwise, it is set to VOIDmode.
   unit, *PMODE is set to that mode.  Otherwise, it is set to VOIDmode.
 
 
   *PVOLATILEP is set to 1 if the any expression encountered is volatile;
   *PVOLATILEP is set to 1 if the any expression encountered is volatile;
   otherwise it is not changed.
   otherwise it is not changed.
 
 
   *PUNSIGNEDP is set to the signedness of the field.
   *PUNSIGNEDP is set to the signedness of the field.
 
 
   *PMASK is set to the mask used.  This is either contained in a
   *PMASK is set to the mask used.  This is either contained in a
   BIT_AND_EXPR or derived from the width of the field.
   BIT_AND_EXPR or derived from the width of the field.
 
 
   *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
   *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
 
 
   Return 0 if this is not a component reference or is one that we can't
   Return 0 if this is not a component reference or is one that we can't
   do anything with.  */
   do anything with.  */
 
 
static tree
static tree
decode_field_reference (tree exp, HOST_WIDE_INT *pbitsize,
decode_field_reference (tree exp, HOST_WIDE_INT *pbitsize,
                        HOST_WIDE_INT *pbitpos, enum machine_mode *pmode,
                        HOST_WIDE_INT *pbitpos, enum machine_mode *pmode,
                        int *punsignedp, int *pvolatilep,
                        int *punsignedp, int *pvolatilep,
                        tree *pmask, tree *pand_mask)
                        tree *pmask, tree *pand_mask)
{
{
  tree outer_type = 0;
  tree outer_type = 0;
  tree and_mask = 0;
  tree and_mask = 0;
  tree mask, inner, offset;
  tree mask, inner, offset;
  tree unsigned_type;
  tree unsigned_type;
  unsigned int precision;
  unsigned int precision;
 
 
  /* All the optimizations using this function assume integer fields.
  /* All the optimizations using this function assume integer fields.
     There are problems with FP fields since the type_for_size call
     There are problems with FP fields since the type_for_size call
     below can fail for, e.g., XFmode.  */
     below can fail for, e.g., XFmode.  */
  if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
  if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
    return 0;
    return 0;
 
 
  /* We are interested in the bare arrangement of bits, so strip everything
  /* We are interested in the bare arrangement of bits, so strip everything
     that doesn't affect the machine mode.  However, record the type of the
     that doesn't affect the machine mode.  However, record the type of the
     outermost expression if it may matter below.  */
     outermost expression if it may matter below.  */
  if (TREE_CODE (exp) == NOP_EXPR
  if (TREE_CODE (exp) == NOP_EXPR
      || TREE_CODE (exp) == CONVERT_EXPR
      || TREE_CODE (exp) == CONVERT_EXPR
      || TREE_CODE (exp) == NON_LVALUE_EXPR)
      || TREE_CODE (exp) == NON_LVALUE_EXPR)
    outer_type = TREE_TYPE (exp);
    outer_type = TREE_TYPE (exp);
  STRIP_NOPS (exp);
  STRIP_NOPS (exp);
 
 
  if (TREE_CODE (exp) == BIT_AND_EXPR)
  if (TREE_CODE (exp) == BIT_AND_EXPR)
    {
    {
      and_mask = TREE_OPERAND (exp, 1);
      and_mask = TREE_OPERAND (exp, 1);
      exp = TREE_OPERAND (exp, 0);
      exp = TREE_OPERAND (exp, 0);
      STRIP_NOPS (exp); STRIP_NOPS (and_mask);
      STRIP_NOPS (exp); STRIP_NOPS (and_mask);
      if (TREE_CODE (and_mask) != INTEGER_CST)
      if (TREE_CODE (and_mask) != INTEGER_CST)
        return 0;
        return 0;
    }
    }
 
 
  inner = get_inner_reference (exp, pbitsize, pbitpos, &offset, pmode,
  inner = get_inner_reference (exp, pbitsize, pbitpos, &offset, pmode,
                               punsignedp, pvolatilep, false);
                               punsignedp, pvolatilep, false);
  if ((inner == exp && and_mask == 0)
  if ((inner == exp && and_mask == 0)
      || *pbitsize < 0 || offset != 0
      || *pbitsize < 0 || offset != 0
      || TREE_CODE (inner) == PLACEHOLDER_EXPR)
      || TREE_CODE (inner) == PLACEHOLDER_EXPR)
    return 0;
    return 0;
 
 
  /* If the number of bits in the reference is the same as the bitsize of
  /* If the number of bits in the reference is the same as the bitsize of
     the outer type, then the outer type gives the signedness. Otherwise
     the outer type, then the outer type gives the signedness. Otherwise
     (in case of a small bitfield) the signedness is unchanged.  */
     (in case of a small bitfield) the signedness is unchanged.  */
  if (outer_type && *pbitsize == TYPE_PRECISION (outer_type))
  if (outer_type && *pbitsize == TYPE_PRECISION (outer_type))
    *punsignedp = TYPE_UNSIGNED (outer_type);
    *punsignedp = TYPE_UNSIGNED (outer_type);
 
 
  /* Compute the mask to access the bitfield.  */
  /* Compute the mask to access the bitfield.  */
  unsigned_type = lang_hooks.types.type_for_size (*pbitsize, 1);
  unsigned_type = lang_hooks.types.type_for_size (*pbitsize, 1);
  precision = TYPE_PRECISION (unsigned_type);
  precision = TYPE_PRECISION (unsigned_type);
 
 
  mask = build_int_cst (unsigned_type, -1);
  mask = build_int_cst (unsigned_type, -1);
  mask = force_fit_type (mask, 0, false, false);
  mask = force_fit_type (mask, 0, false, false);
 
 
  mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize), 0);
  mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize), 0);
  mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize), 0);
  mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize), 0);
 
 
  /* Merge it with the mask we found in the BIT_AND_EXPR, if any.  */
  /* Merge it with the mask we found in the BIT_AND_EXPR, if any.  */
  if (and_mask != 0)
  if (and_mask != 0)
    mask = fold_build2 (BIT_AND_EXPR, unsigned_type,
    mask = fold_build2 (BIT_AND_EXPR, unsigned_type,
                        fold_convert (unsigned_type, and_mask), mask);
                        fold_convert (unsigned_type, and_mask), mask);
 
 
  *pmask = mask;
  *pmask = mask;
  *pand_mask = and_mask;
  *pand_mask = and_mask;
  return inner;
  return inner;
}
}
 
 
/* Return nonzero if MASK represents a mask of SIZE ones in the low-order
/* Return nonzero if MASK represents a mask of SIZE ones in the low-order
   bit positions.  */
   bit positions.  */
 
 
static int
static int
all_ones_mask_p (tree mask, int size)
all_ones_mask_p (tree mask, int size)
{
{
  tree type = TREE_TYPE (mask);
  tree type = TREE_TYPE (mask);
  unsigned int precision = TYPE_PRECISION (type);
  unsigned int precision = TYPE_PRECISION (type);
  tree tmask;
  tree tmask;
 
 
  tmask = build_int_cst (lang_hooks.types.signed_type (type), -1);
  tmask = build_int_cst (lang_hooks.types.signed_type (type), -1);
  tmask = force_fit_type (tmask, 0, false, false);
  tmask = force_fit_type (tmask, 0, false, false);
 
 
  return
  return
    tree_int_cst_equal (mask,
    tree_int_cst_equal (mask,
                        const_binop (RSHIFT_EXPR,
                        const_binop (RSHIFT_EXPR,
                                     const_binop (LSHIFT_EXPR, tmask,
                                     const_binop (LSHIFT_EXPR, tmask,
                                                  size_int (precision - size),
                                                  size_int (precision - size),
                                                  0),
                                                  0),
                                     size_int (precision - size), 0));
                                     size_int (precision - size), 0));
}
}
 
 
/* Subroutine for fold: determine if VAL is the INTEGER_CONST that
/* Subroutine for fold: determine if VAL is the INTEGER_CONST that
   represents the sign bit of EXP's type.  If EXP represents a sign
   represents the sign bit of EXP's type.  If EXP represents a sign
   or zero extension, also test VAL against the unextended type.
   or zero extension, also test VAL against the unextended type.
   The return value is the (sub)expression whose sign bit is VAL,
   The return value is the (sub)expression whose sign bit is VAL,
   or NULL_TREE otherwise.  */
   or NULL_TREE otherwise.  */
 
 
static tree
static tree
sign_bit_p (tree exp, tree val)
sign_bit_p (tree exp, tree val)
{
{
  unsigned HOST_WIDE_INT mask_lo, lo;
  unsigned HOST_WIDE_INT mask_lo, lo;
  HOST_WIDE_INT mask_hi, hi;
  HOST_WIDE_INT mask_hi, hi;
  int width;
  int width;
  tree t;
  tree t;
 
 
  /* Tree EXP must have an integral type.  */
  /* Tree EXP must have an integral type.  */
  t = TREE_TYPE (exp);
  t = TREE_TYPE (exp);
  if (! INTEGRAL_TYPE_P (t))
  if (! INTEGRAL_TYPE_P (t))
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* Tree VAL must be an integer constant.  */
  /* Tree VAL must be an integer constant.  */
  if (TREE_CODE (val) != INTEGER_CST
  if (TREE_CODE (val) != INTEGER_CST
      || TREE_CONSTANT_OVERFLOW (val))
      || TREE_CONSTANT_OVERFLOW (val))
    return NULL_TREE;
    return NULL_TREE;
 
 
  width = TYPE_PRECISION (t);
  width = TYPE_PRECISION (t);
  if (width > HOST_BITS_PER_WIDE_INT)
  if (width > HOST_BITS_PER_WIDE_INT)
    {
    {
      hi = (unsigned HOST_WIDE_INT) 1 << (width - HOST_BITS_PER_WIDE_INT - 1);
      hi = (unsigned HOST_WIDE_INT) 1 << (width - HOST_BITS_PER_WIDE_INT - 1);
      lo = 0;
      lo = 0;
 
 
      mask_hi = ((unsigned HOST_WIDE_INT) -1
      mask_hi = ((unsigned HOST_WIDE_INT) -1
                 >> (2 * HOST_BITS_PER_WIDE_INT - width));
                 >> (2 * HOST_BITS_PER_WIDE_INT - width));
      mask_lo = -1;
      mask_lo = -1;
    }
    }
  else
  else
    {
    {
      hi = 0;
      hi = 0;
      lo = (unsigned HOST_WIDE_INT) 1 << (width - 1);
      lo = (unsigned HOST_WIDE_INT) 1 << (width - 1);
 
 
      mask_hi = 0;
      mask_hi = 0;
      mask_lo = ((unsigned HOST_WIDE_INT) -1
      mask_lo = ((unsigned HOST_WIDE_INT) -1
                 >> (HOST_BITS_PER_WIDE_INT - width));
                 >> (HOST_BITS_PER_WIDE_INT - width));
    }
    }
 
 
  /* We mask off those bits beyond TREE_TYPE (exp) so that we can
  /* We mask off those bits beyond TREE_TYPE (exp) so that we can
     treat VAL as if it were unsigned.  */
     treat VAL as if it were unsigned.  */
  if ((TREE_INT_CST_HIGH (val) & mask_hi) == hi
  if ((TREE_INT_CST_HIGH (val) & mask_hi) == hi
      && (TREE_INT_CST_LOW (val) & mask_lo) == lo)
      && (TREE_INT_CST_LOW (val) & mask_lo) == lo)
    return exp;
    return exp;
 
 
  /* Handle extension from a narrower type.  */
  /* Handle extension from a narrower type.  */
  if (TREE_CODE (exp) == NOP_EXPR
  if (TREE_CODE (exp) == NOP_EXPR
      && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width)
      && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width)
    return sign_bit_p (TREE_OPERAND (exp, 0), val);
    return sign_bit_p (TREE_OPERAND (exp, 0), val);
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Subroutine for fold_truthop: determine if an operand is simple enough
/* Subroutine for fold_truthop: determine if an operand is simple enough
   to be evaluated unconditionally.  */
   to be evaluated unconditionally.  */
 
 
static int
static int
simple_operand_p (tree exp)
simple_operand_p (tree exp)
{
{
  /* Strip any conversions that don't change the machine mode.  */
  /* Strip any conversions that don't change the machine mode.  */
  STRIP_NOPS (exp);
  STRIP_NOPS (exp);
 
 
  return (CONSTANT_CLASS_P (exp)
  return (CONSTANT_CLASS_P (exp)
          || TREE_CODE (exp) == SSA_NAME
          || TREE_CODE (exp) == SSA_NAME
          || (DECL_P (exp)
          || (DECL_P (exp)
              && ! TREE_ADDRESSABLE (exp)
              && ! TREE_ADDRESSABLE (exp)
              && ! TREE_THIS_VOLATILE (exp)
              && ! TREE_THIS_VOLATILE (exp)
              && ! DECL_NONLOCAL (exp)
              && ! DECL_NONLOCAL (exp)
              /* Don't regard global variables as simple.  They may be
              /* Don't regard global variables as simple.  They may be
                 allocated in ways unknown to the compiler (shared memory,
                 allocated in ways unknown to the compiler (shared memory,
                 #pragma weak, etc).  */
                 #pragma weak, etc).  */
              && ! TREE_PUBLIC (exp)
              && ! TREE_PUBLIC (exp)
              && ! DECL_EXTERNAL (exp)
              && ! DECL_EXTERNAL (exp)
              /* Loading a static variable is unduly expensive, but global
              /* Loading a static variable is unduly expensive, but global
                 registers aren't expensive.  */
                 registers aren't expensive.  */
              && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
              && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
}
}


/* The following functions are subroutines to fold_range_test and allow it to
/* The following functions are subroutines to fold_range_test and allow it to
   try to change a logical combination of comparisons into a range test.
   try to change a logical combination of comparisons into a range test.
 
 
   For example, both
   For example, both
        X == 2 || X == 3 || X == 4 || X == 5
        X == 2 || X == 3 || X == 4 || X == 5
   and
   and
        X >= 2 && X <= 5
        X >= 2 && X <= 5
   are converted to
   are converted to
        (unsigned) (X - 2) <= 3
        (unsigned) (X - 2) <= 3
 
 
   We describe each set of comparisons as being either inside or outside
   We describe each set of comparisons as being either inside or outside
   a range, using a variable named like IN_P, and then describe the
   a range, using a variable named like IN_P, and then describe the
   range with a lower and upper bound.  If one of the bounds is omitted,
   range with a lower and upper bound.  If one of the bounds is omitted,
   it represents either the highest or lowest value of the type.
   it represents either the highest or lowest value of the type.
 
 
   In the comments below, we represent a range by two numbers in brackets
   In the comments below, we represent a range by two numbers in brackets
   preceded by a "+" to designate being inside that range, or a "-" to
   preceded by a "+" to designate being inside that range, or a "-" to
   designate being outside that range, so the condition can be inverted by
   designate being outside that range, so the condition can be inverted by
   flipping the prefix.  An omitted bound is represented by a "-".  For
   flipping the prefix.  An omitted bound is represented by a "-".  For
   example, "- [-, 10]" means being outside the range starting at the lowest
   example, "- [-, 10]" means being outside the range starting at the lowest
   possible value and ending at 10, in other words, being greater than 10.
   possible value and ending at 10, in other words, being greater than 10.
   The range "+ [-, -]" is always true and hence the range "- [-, -]" is
   The range "+ [-, -]" is always true and hence the range "- [-, -]" is
   always false.
   always false.
 
 
   We set up things so that the missing bounds are handled in a consistent
   We set up things so that the missing bounds are handled in a consistent
   manner so neither a missing bound nor "true" and "false" need to be
   manner so neither a missing bound nor "true" and "false" need to be
   handled using a special case.  */
   handled using a special case.  */
 
 
/* Return the result of applying CODE to ARG0 and ARG1, but handle the case
/* Return the result of applying CODE to ARG0 and ARG1, but handle the case
   of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
   of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
   and UPPER1_P are nonzero if the respective argument is an upper bound
   and UPPER1_P are nonzero if the respective argument is an upper bound
   and zero for a lower.  TYPE, if nonzero, is the type of the result; it
   and zero for a lower.  TYPE, if nonzero, is the type of the result; it
   must be specified for a comparison.  ARG1 will be converted to ARG0's
   must be specified for a comparison.  ARG1 will be converted to ARG0's
   type if both are specified.  */
   type if both are specified.  */
 
 
static tree
static tree
range_binop (enum tree_code code, tree type, tree arg0, int upper0_p,
range_binop (enum tree_code code, tree type, tree arg0, int upper0_p,
             tree arg1, int upper1_p)
             tree arg1, int upper1_p)
{
{
  tree tem;
  tree tem;
  int result;
  int result;
  int sgn0, sgn1;
  int sgn0, sgn1;
 
 
  /* If neither arg represents infinity, do the normal operation.
  /* If neither arg represents infinity, do the normal operation.
     Else, if not a comparison, return infinity.  Else handle the special
     Else, if not a comparison, return infinity.  Else handle the special
     comparison rules. Note that most of the cases below won't occur, but
     comparison rules. Note that most of the cases below won't occur, but
     are handled for consistency.  */
     are handled for consistency.  */
 
 
  if (arg0 != 0 && arg1 != 0)
  if (arg0 != 0 && arg1 != 0)
    {
    {
      tem = fold_build2 (code, type != 0 ? type : TREE_TYPE (arg0),
      tem = fold_build2 (code, type != 0 ? type : TREE_TYPE (arg0),
                         arg0, fold_convert (TREE_TYPE (arg0), arg1));
                         arg0, fold_convert (TREE_TYPE (arg0), arg1));
      STRIP_NOPS (tem);
      STRIP_NOPS (tem);
      return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
      return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
    }
    }
 
 
  if (TREE_CODE_CLASS (code) != tcc_comparison)
  if (TREE_CODE_CLASS (code) != tcc_comparison)
    return 0;
    return 0;
 
 
  /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
  /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
     for neither.  In real maths, we cannot assume open ended ranges are
     for neither.  In real maths, we cannot assume open ended ranges are
     the same. But, this is computer arithmetic, where numbers are finite.
     the same. But, this is computer arithmetic, where numbers are finite.
     We can therefore make the transformation of any unbounded range with
     We can therefore make the transformation of any unbounded range with
     the value Z, Z being greater than any representable number. This permits
     the value Z, Z being greater than any representable number. This permits
     us to treat unbounded ranges as equal.  */
     us to treat unbounded ranges as equal.  */
  sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
  sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
  sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
  sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
  switch (code)
  switch (code)
    {
    {
    case EQ_EXPR:
    case EQ_EXPR:
      result = sgn0 == sgn1;
      result = sgn0 == sgn1;
      break;
      break;
    case NE_EXPR:
    case NE_EXPR:
      result = sgn0 != sgn1;
      result = sgn0 != sgn1;
      break;
      break;
    case LT_EXPR:
    case LT_EXPR:
      result = sgn0 < sgn1;
      result = sgn0 < sgn1;
      break;
      break;
    case LE_EXPR:
    case LE_EXPR:
      result = sgn0 <= sgn1;
      result = sgn0 <= sgn1;
      break;
      break;
    case GT_EXPR:
    case GT_EXPR:
      result = sgn0 > sgn1;
      result = sgn0 > sgn1;
      break;
      break;
    case GE_EXPR:
    case GE_EXPR:
      result = sgn0 >= sgn1;
      result = sgn0 >= sgn1;
      break;
      break;
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  return constant_boolean_node (result, type);
  return constant_boolean_node (result, type);
}
}


/* Given EXP, a logical expression, set the range it is testing into
/* Given EXP, a logical expression, set the range it is testing into
   variables denoted by PIN_P, PLOW, and PHIGH.  Return the expression
   variables denoted by PIN_P, PLOW, and PHIGH.  Return the expression
   actually being tested.  *PLOW and *PHIGH will be made of the same
   actually being tested.  *PLOW and *PHIGH will be made of the same
   type as the returned expression.  If EXP is not a comparison, we
   type as the returned expression.  If EXP is not a comparison, we
   will most likely not be returning a useful value and range.  Set
   will most likely not be returning a useful value and range.  Set
   *STRICT_OVERFLOW_P to true if the return value is only valid
   *STRICT_OVERFLOW_P to true if the return value is only valid
   because signed overflow is undefined; otherwise, do not change
   because signed overflow is undefined; otherwise, do not change
   *STRICT_OVERFLOW_P.  */
   *STRICT_OVERFLOW_P.  */
 
 
static tree
static tree
make_range (tree exp, int *pin_p, tree *plow, tree *phigh,
make_range (tree exp, int *pin_p, tree *plow, tree *phigh,
            bool *strict_overflow_p)
            bool *strict_overflow_p)
{
{
  enum tree_code code;
  enum tree_code code;
  tree arg0 = NULL_TREE, arg1 = NULL_TREE;
  tree arg0 = NULL_TREE, arg1 = NULL_TREE;
  tree exp_type = NULL_TREE, arg0_type = NULL_TREE;
  tree exp_type = NULL_TREE, arg0_type = NULL_TREE;
  int in_p, n_in_p;
  int in_p, n_in_p;
  tree low, high, n_low, n_high;
  tree low, high, n_low, n_high;
 
 
  /* Start with simply saying "EXP != 0" and then look at the code of EXP
  /* Start with simply saying "EXP != 0" and then look at the code of EXP
     and see if we can refine the range.  Some of the cases below may not
     and see if we can refine the range.  Some of the cases below may not
     happen, but it doesn't seem worth worrying about this.  We "continue"
     happen, but it doesn't seem worth worrying about this.  We "continue"
     the outer loop when we've changed something; otherwise we "break"
     the outer loop when we've changed something; otherwise we "break"
     the switch, which will "break" the while.  */
     the switch, which will "break" the while.  */
 
 
  in_p = 0;
  in_p = 0;
  low = high = build_int_cst (TREE_TYPE (exp), 0);
  low = high = build_int_cst (TREE_TYPE (exp), 0);
 
 
  while (1)
  while (1)
    {
    {
      code = TREE_CODE (exp);
      code = TREE_CODE (exp);
      exp_type = TREE_TYPE (exp);
      exp_type = TREE_TYPE (exp);
 
 
      if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
      if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
        {
        {
          if (TREE_CODE_LENGTH (code) > 0)
          if (TREE_CODE_LENGTH (code) > 0)
            arg0 = TREE_OPERAND (exp, 0);
            arg0 = TREE_OPERAND (exp, 0);
          if (TREE_CODE_CLASS (code) == tcc_comparison
          if (TREE_CODE_CLASS (code) == tcc_comparison
              || TREE_CODE_CLASS (code) == tcc_unary
              || TREE_CODE_CLASS (code) == tcc_unary
              || TREE_CODE_CLASS (code) == tcc_binary)
              || TREE_CODE_CLASS (code) == tcc_binary)
            arg0_type = TREE_TYPE (arg0);
            arg0_type = TREE_TYPE (arg0);
          if (TREE_CODE_CLASS (code) == tcc_binary
          if (TREE_CODE_CLASS (code) == tcc_binary
              || TREE_CODE_CLASS (code) == tcc_comparison
              || TREE_CODE_CLASS (code) == tcc_comparison
              || (TREE_CODE_CLASS (code) == tcc_expression
              || (TREE_CODE_CLASS (code) == tcc_expression
                  && TREE_CODE_LENGTH (code) > 1))
                  && TREE_CODE_LENGTH (code) > 1))
            arg1 = TREE_OPERAND (exp, 1);
            arg1 = TREE_OPERAND (exp, 1);
        }
        }
 
 
      switch (code)
      switch (code)
        {
        {
        case TRUTH_NOT_EXPR:
        case TRUTH_NOT_EXPR:
          in_p = ! in_p, exp = arg0;
          in_p = ! in_p, exp = arg0;
          continue;
          continue;
 
 
        case EQ_EXPR: case NE_EXPR:
        case EQ_EXPR: case NE_EXPR:
        case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
        case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
          /* We can only do something if the range is testing for zero
          /* We can only do something if the range is testing for zero
             and if the second operand is an integer constant.  Note that
             and if the second operand is an integer constant.  Note that
             saying something is "in" the range we make is done by
             saying something is "in" the range we make is done by
             complementing IN_P since it will set in the initial case of
             complementing IN_P since it will set in the initial case of
             being not equal to zero; "out" is leaving it alone.  */
             being not equal to zero; "out" is leaving it alone.  */
          if (low == 0 || high == 0
          if (low == 0 || high == 0
              || ! integer_zerop (low) || ! integer_zerop (high)
              || ! integer_zerop (low) || ! integer_zerop (high)
              || TREE_CODE (arg1) != INTEGER_CST)
              || TREE_CODE (arg1) != INTEGER_CST)
            break;
            break;
 
 
          switch (code)
          switch (code)
            {
            {
            case NE_EXPR:  /* - [c, c]  */
            case NE_EXPR:  /* - [c, c]  */
              low = high = arg1;
              low = high = arg1;
              break;
              break;
            case EQ_EXPR:  /* + [c, c]  */
            case EQ_EXPR:  /* + [c, c]  */
              in_p = ! in_p, low = high = arg1;
              in_p = ! in_p, low = high = arg1;
              break;
              break;
            case GT_EXPR:  /* - [-, c] */
            case GT_EXPR:  /* - [-, c] */
              low = 0, high = arg1;
              low = 0, high = arg1;
              break;
              break;
            case GE_EXPR:  /* + [c, -] */
            case GE_EXPR:  /* + [c, -] */
              in_p = ! in_p, low = arg1, high = 0;
              in_p = ! in_p, low = arg1, high = 0;
              break;
              break;
            case LT_EXPR:  /* - [c, -] */
            case LT_EXPR:  /* - [c, -] */
              low = arg1, high = 0;
              low = arg1, high = 0;
              break;
              break;
            case LE_EXPR:  /* + [-, c] */
            case LE_EXPR:  /* + [-, c] */
              in_p = ! in_p, low = 0, high = arg1;
              in_p = ! in_p, low = 0, high = arg1;
              break;
              break;
            default:
            default:
              gcc_unreachable ();
              gcc_unreachable ();
            }
            }
 
 
          /* If this is an unsigned comparison, we also know that EXP is
          /* If this is an unsigned comparison, we also know that EXP is
             greater than or equal to zero.  We base the range tests we make
             greater than or equal to zero.  We base the range tests we make
             on that fact, so we record it here so we can parse existing
             on that fact, so we record it here so we can parse existing
             range tests.  We test arg0_type since often the return type
             range tests.  We test arg0_type since often the return type
             of, e.g. EQ_EXPR, is boolean.  */
             of, e.g. EQ_EXPR, is boolean.  */
          if (TYPE_UNSIGNED (arg0_type) && (low == 0 || high == 0))
          if (TYPE_UNSIGNED (arg0_type) && (low == 0 || high == 0))
            {
            {
              if (! merge_ranges (&n_in_p, &n_low, &n_high,
              if (! merge_ranges (&n_in_p, &n_low, &n_high,
                                  in_p, low, high, 1,
                                  in_p, low, high, 1,
                                  build_int_cst (arg0_type, 0),
                                  build_int_cst (arg0_type, 0),
                                  NULL_TREE))
                                  NULL_TREE))
                break;
                break;
 
 
              in_p = n_in_p, low = n_low, high = n_high;
              in_p = n_in_p, low = n_low, high = n_high;
 
 
              /* If the high bound is missing, but we have a nonzero low
              /* If the high bound is missing, but we have a nonzero low
                 bound, reverse the range so it goes from zero to the low bound
                 bound, reverse the range so it goes from zero to the low bound
                 minus 1.  */
                 minus 1.  */
              if (high == 0 && low && ! integer_zerop (low))
              if (high == 0 && low && ! integer_zerop (low))
                {
                {
                  in_p = ! in_p;
                  in_p = ! in_p;
                  high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
                  high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
                                      integer_one_node, 0);
                                      integer_one_node, 0);
                  low = build_int_cst (arg0_type, 0);
                  low = build_int_cst (arg0_type, 0);
                }
                }
            }
            }
 
 
          exp = arg0;
          exp = arg0;
          continue;
          continue;
 
 
        case NEGATE_EXPR:
        case NEGATE_EXPR:
          /* (-x) IN [a,b] -> x in [-b, -a]  */
          /* (-x) IN [a,b] -> x in [-b, -a]  */
          n_low = range_binop (MINUS_EXPR, exp_type,
          n_low = range_binop (MINUS_EXPR, exp_type,
                               build_int_cst (exp_type, 0),
                               build_int_cst (exp_type, 0),
                               0, high, 1);
                               0, high, 1);
          n_high = range_binop (MINUS_EXPR, exp_type,
          n_high = range_binop (MINUS_EXPR, exp_type,
                                build_int_cst (exp_type, 0),
                                build_int_cst (exp_type, 0),
                                0, low, 0);
                                0, low, 0);
          low = n_low, high = n_high;
          low = n_low, high = n_high;
          exp = arg0;
          exp = arg0;
          continue;
          continue;
 
 
        case BIT_NOT_EXPR:
        case BIT_NOT_EXPR:
          /* ~ X -> -X - 1  */
          /* ~ X -> -X - 1  */
          exp = build2 (MINUS_EXPR, exp_type, negate_expr (arg0),
          exp = build2 (MINUS_EXPR, exp_type, negate_expr (arg0),
                        build_int_cst (exp_type, 1));
                        build_int_cst (exp_type, 1));
          continue;
          continue;
 
 
        case PLUS_EXPR:  case MINUS_EXPR:
        case PLUS_EXPR:  case MINUS_EXPR:
          if (TREE_CODE (arg1) != INTEGER_CST)
          if (TREE_CODE (arg1) != INTEGER_CST)
            break;
            break;
 
 
          /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
          /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
             move a constant to the other side.  */
             move a constant to the other side.  */
          if (!TYPE_UNSIGNED (arg0_type)
          if (!TYPE_UNSIGNED (arg0_type)
              && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
              && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
            break;
            break;
 
 
          /* If EXP is signed, any overflow in the computation is undefined,
          /* If EXP is signed, any overflow in the computation is undefined,
             so we don't worry about it so long as our computations on
             so we don't worry about it so long as our computations on
             the bounds don't overflow.  For unsigned, overflow is defined
             the bounds don't overflow.  For unsigned, overflow is defined
             and this is exactly the right thing.  */
             and this is exactly the right thing.  */
          n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
          n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
                               arg0_type, low, 0, arg1, 0);
                               arg0_type, low, 0, arg1, 0);
          n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
          n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
                                arg0_type, high, 1, arg1, 0);
                                arg0_type, high, 1, arg1, 0);
          if ((n_low != 0 && TREE_OVERFLOW (n_low))
          if ((n_low != 0 && TREE_OVERFLOW (n_low))
              || (n_high != 0 && TREE_OVERFLOW (n_high)))
              || (n_high != 0 && TREE_OVERFLOW (n_high)))
            break;
            break;
 
 
          if (TYPE_OVERFLOW_UNDEFINED (arg0_type))
          if (TYPE_OVERFLOW_UNDEFINED (arg0_type))
            *strict_overflow_p = true;
            *strict_overflow_p = true;
 
 
          /* Check for an unsigned range which has wrapped around the maximum
          /* Check for an unsigned range which has wrapped around the maximum
             value thus making n_high < n_low, and normalize it.  */
             value thus making n_high < n_low, and normalize it.  */
          if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
          if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
            {
            {
              low = range_binop (PLUS_EXPR, arg0_type, n_high, 0,
              low = range_binop (PLUS_EXPR, arg0_type, n_high, 0,
                                 integer_one_node, 0);
                                 integer_one_node, 0);
              high = range_binop (MINUS_EXPR, arg0_type, n_low, 0,
              high = range_binop (MINUS_EXPR, arg0_type, n_low, 0,
                                  integer_one_node, 0);
                                  integer_one_node, 0);
 
 
              /* If the range is of the form +/- [ x+1, x ], we won't
              /* If the range is of the form +/- [ x+1, x ], we won't
                 be able to normalize it.  But then, it represents the
                 be able to normalize it.  But then, it represents the
                 whole range or the empty set, so make it
                 whole range or the empty set, so make it
                 +/- [ -, - ].  */
                 +/- [ -, - ].  */
              if (tree_int_cst_equal (n_low, low)
              if (tree_int_cst_equal (n_low, low)
                  && tree_int_cst_equal (n_high, high))
                  && tree_int_cst_equal (n_high, high))
                low = high = 0;
                low = high = 0;
              else
              else
                in_p = ! in_p;
                in_p = ! in_p;
            }
            }
          else
          else
            low = n_low, high = n_high;
            low = n_low, high = n_high;
 
 
          exp = arg0;
          exp = arg0;
          continue;
          continue;
 
 
        case NOP_EXPR:  case NON_LVALUE_EXPR:  case CONVERT_EXPR:
        case NOP_EXPR:  case NON_LVALUE_EXPR:  case CONVERT_EXPR:
          if (TYPE_PRECISION (arg0_type) > TYPE_PRECISION (exp_type))
          if (TYPE_PRECISION (arg0_type) > TYPE_PRECISION (exp_type))
            break;
            break;
 
 
          if (! INTEGRAL_TYPE_P (arg0_type)
          if (! INTEGRAL_TYPE_P (arg0_type)
              || (low != 0 && ! int_fits_type_p (low, arg0_type))
              || (low != 0 && ! int_fits_type_p (low, arg0_type))
              || (high != 0 && ! int_fits_type_p (high, arg0_type)))
              || (high != 0 && ! int_fits_type_p (high, arg0_type)))
            break;
            break;
 
 
          n_low = low, n_high = high;
          n_low = low, n_high = high;
 
 
          if (n_low != 0)
          if (n_low != 0)
            n_low = fold_convert (arg0_type, n_low);
            n_low = fold_convert (arg0_type, n_low);
 
 
          if (n_high != 0)
          if (n_high != 0)
            n_high = fold_convert (arg0_type, n_high);
            n_high = fold_convert (arg0_type, n_high);
 
 
 
 
          /* If we're converting arg0 from an unsigned type, to exp,
          /* If we're converting arg0 from an unsigned type, to exp,
             a signed type,  we will be doing the comparison as unsigned.
             a signed type,  we will be doing the comparison as unsigned.
             The tests above have already verified that LOW and HIGH
             The tests above have already verified that LOW and HIGH
             are both positive.
             are both positive.
 
 
             So we have to ensure that we will handle large unsigned
             So we have to ensure that we will handle large unsigned
             values the same way that the current signed bounds treat
             values the same way that the current signed bounds treat
             negative values.  */
             negative values.  */
 
 
          if (!TYPE_UNSIGNED (exp_type) && TYPE_UNSIGNED (arg0_type))
          if (!TYPE_UNSIGNED (exp_type) && TYPE_UNSIGNED (arg0_type))
            {
            {
              tree high_positive;
              tree high_positive;
              tree equiv_type = lang_hooks.types.type_for_mode
              tree equiv_type = lang_hooks.types.type_for_mode
                (TYPE_MODE (arg0_type), 1);
                (TYPE_MODE (arg0_type), 1);
 
 
              /* A range without an upper bound is, naturally, unbounded.
              /* A range without an upper bound is, naturally, unbounded.
                 Since convert would have cropped a very large value, use
                 Since convert would have cropped a very large value, use
                 the max value for the destination type.  */
                 the max value for the destination type.  */
              high_positive
              high_positive
                = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
                = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
                : TYPE_MAX_VALUE (arg0_type);
                : TYPE_MAX_VALUE (arg0_type);
 
 
              if (TYPE_PRECISION (exp_type) == TYPE_PRECISION (arg0_type))
              if (TYPE_PRECISION (exp_type) == TYPE_PRECISION (arg0_type))
                high_positive = fold_build2 (RSHIFT_EXPR, arg0_type,
                high_positive = fold_build2 (RSHIFT_EXPR, arg0_type,
                                             fold_convert (arg0_type,
                                             fold_convert (arg0_type,
                                                           high_positive),
                                                           high_positive),
                                             fold_convert (arg0_type,
                                             fold_convert (arg0_type,
                                                           integer_one_node));
                                                           integer_one_node));
 
 
              /* If the low bound is specified, "and" the range with the
              /* If the low bound is specified, "and" the range with the
                 range for which the original unsigned value will be
                 range for which the original unsigned value will be
                 positive.  */
                 positive.  */
              if (low != 0)
              if (low != 0)
                {
                {
                  if (! merge_ranges (&n_in_p, &n_low, &n_high,
                  if (! merge_ranges (&n_in_p, &n_low, &n_high,
                                      1, n_low, n_high, 1,
                                      1, n_low, n_high, 1,
                                      fold_convert (arg0_type,
                                      fold_convert (arg0_type,
                                                    integer_zero_node),
                                                    integer_zero_node),
                                      high_positive))
                                      high_positive))
                    break;
                    break;
 
 
                  in_p = (n_in_p == in_p);
                  in_p = (n_in_p == in_p);
                }
                }
              else
              else
                {
                {
                  /* Otherwise, "or" the range with the range of the input
                  /* Otherwise, "or" the range with the range of the input
                     that will be interpreted as negative.  */
                     that will be interpreted as negative.  */
                  if (! merge_ranges (&n_in_p, &n_low, &n_high,
                  if (! merge_ranges (&n_in_p, &n_low, &n_high,
                                      0, n_low, n_high, 1,
                                      0, n_low, n_high, 1,
                                      fold_convert (arg0_type,
                                      fold_convert (arg0_type,
                                                    integer_zero_node),
                                                    integer_zero_node),
                                      high_positive))
                                      high_positive))
                    break;
                    break;
 
 
                  in_p = (in_p != n_in_p);
                  in_p = (in_p != n_in_p);
                }
                }
            }
            }
 
 
          exp = arg0;
          exp = arg0;
          low = n_low, high = n_high;
          low = n_low, high = n_high;
          continue;
          continue;
 
 
        default:
        default:
          break;
          break;
        }
        }
 
 
      break;
      break;
    }
    }
 
 
  /* If EXP is a constant, we can evaluate whether this is true or false.  */
  /* If EXP is a constant, we can evaluate whether this is true or false.  */
  if (TREE_CODE (exp) == INTEGER_CST)
  if (TREE_CODE (exp) == INTEGER_CST)
    {
    {
      in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
      in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
                                                 exp, 0, low, 0))
                                                 exp, 0, low, 0))
                      && integer_onep (range_binop (LE_EXPR, integer_type_node,
                      && integer_onep (range_binop (LE_EXPR, integer_type_node,
                                                    exp, 1, high, 1)));
                                                    exp, 1, high, 1)));
      low = high = 0;
      low = high = 0;
      exp = 0;
      exp = 0;
    }
    }
 
 
  *pin_p = in_p, *plow = low, *phigh = high;
  *pin_p = in_p, *plow = low, *phigh = high;
  return exp;
  return exp;
}
}


/* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
/* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
   type, TYPE, return an expression to test if EXP is in (or out of, depending
   type, TYPE, return an expression to test if EXP is in (or out of, depending
   on IN_P) the range.  Return 0 if the test couldn't be created.  */
   on IN_P) the range.  Return 0 if the test couldn't be created.  */
 
 
static tree
static tree
build_range_check (tree type, tree exp, int in_p, tree low, tree high)
build_range_check (tree type, tree exp, int in_p, tree low, tree high)
{
{
  tree etype = TREE_TYPE (exp);
  tree etype = TREE_TYPE (exp);
  tree value;
  tree value;
 
 
#ifdef HAVE_canonicalize_funcptr_for_compare
#ifdef HAVE_canonicalize_funcptr_for_compare
  /* Disable this optimization for function pointer expressions
  /* Disable this optimization for function pointer expressions
     on targets that require function pointer canonicalization.  */
     on targets that require function pointer canonicalization.  */
  if (HAVE_canonicalize_funcptr_for_compare
  if (HAVE_canonicalize_funcptr_for_compare
      && TREE_CODE (etype) == POINTER_TYPE
      && TREE_CODE (etype) == POINTER_TYPE
      && TREE_CODE (TREE_TYPE (etype)) == FUNCTION_TYPE)
      && TREE_CODE (TREE_TYPE (etype)) == FUNCTION_TYPE)
    return NULL_TREE;
    return NULL_TREE;
#endif
#endif
 
 
  if (! in_p)
  if (! in_p)
    {
    {
      value = build_range_check (type, exp, 1, low, high);
      value = build_range_check (type, exp, 1, low, high);
      if (value != 0)
      if (value != 0)
        return invert_truthvalue (value);
        return invert_truthvalue (value);
 
 
      return 0;
      return 0;
    }
    }
 
 
  if (low == 0 && high == 0)
  if (low == 0 && high == 0)
    return build_int_cst (type, 1);
    return build_int_cst (type, 1);
 
 
  if (low == 0)
  if (low == 0)
    return fold_build2 (LE_EXPR, type, exp,
    return fold_build2 (LE_EXPR, type, exp,
                        fold_convert (etype, high));
                        fold_convert (etype, high));
 
 
  if (high == 0)
  if (high == 0)
    return fold_build2 (GE_EXPR, type, exp,
    return fold_build2 (GE_EXPR, type, exp,
                        fold_convert (etype, low));
                        fold_convert (etype, low));
 
 
  if (operand_equal_p (low, high, 0))
  if (operand_equal_p (low, high, 0))
    return fold_build2 (EQ_EXPR, type, exp,
    return fold_build2 (EQ_EXPR, type, exp,
                        fold_convert (etype, low));
                        fold_convert (etype, low));
 
 
  if (integer_zerop (low))
  if (integer_zerop (low))
    {
    {
      if (! TYPE_UNSIGNED (etype))
      if (! TYPE_UNSIGNED (etype))
        {
        {
          etype = lang_hooks.types.unsigned_type (etype);
          etype = lang_hooks.types.unsigned_type (etype);
          high = fold_convert (etype, high);
          high = fold_convert (etype, high);
          exp = fold_convert (etype, exp);
          exp = fold_convert (etype, exp);
        }
        }
      return build_range_check (type, exp, 1, 0, high);
      return build_range_check (type, exp, 1, 0, high);
    }
    }
 
 
  /* Optimize (c>=1) && (c<=127) into (signed char)c > 0.  */
  /* Optimize (c>=1) && (c<=127) into (signed char)c > 0.  */
  if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST)
  if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST)
    {
    {
      unsigned HOST_WIDE_INT lo;
      unsigned HOST_WIDE_INT lo;
      HOST_WIDE_INT hi;
      HOST_WIDE_INT hi;
      int prec;
      int prec;
 
 
      prec = TYPE_PRECISION (etype);
      prec = TYPE_PRECISION (etype);
      if (prec <= HOST_BITS_PER_WIDE_INT)
      if (prec <= HOST_BITS_PER_WIDE_INT)
        {
        {
          hi = 0;
          hi = 0;
          lo = ((unsigned HOST_WIDE_INT) 1 << (prec - 1)) - 1;
          lo = ((unsigned HOST_WIDE_INT) 1 << (prec - 1)) - 1;
        }
        }
      else
      else
        {
        {
          hi = ((HOST_WIDE_INT) 1 << (prec - HOST_BITS_PER_WIDE_INT - 1)) - 1;
          hi = ((HOST_WIDE_INT) 1 << (prec - HOST_BITS_PER_WIDE_INT - 1)) - 1;
          lo = (unsigned HOST_WIDE_INT) -1;
          lo = (unsigned HOST_WIDE_INT) -1;
        }
        }
 
 
      if (TREE_INT_CST_HIGH (high) == hi && TREE_INT_CST_LOW (high) == lo)
      if (TREE_INT_CST_HIGH (high) == hi && TREE_INT_CST_LOW (high) == lo)
        {
        {
          if (TYPE_UNSIGNED (etype))
          if (TYPE_UNSIGNED (etype))
            {
            {
              etype = lang_hooks.types.signed_type (etype);
              etype = lang_hooks.types.signed_type (etype);
              exp = fold_convert (etype, exp);
              exp = fold_convert (etype, exp);
            }
            }
          return fold_build2 (GT_EXPR, type, exp,
          return fold_build2 (GT_EXPR, type, exp,
                              build_int_cst (etype, 0));
                              build_int_cst (etype, 0));
        }
        }
    }
    }
 
 
  /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low).
  /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low).
     This requires wrap-around arithmetics for the type of the expression.  */
     This requires wrap-around arithmetics for the type of the expression.  */
  switch (TREE_CODE (etype))
  switch (TREE_CODE (etype))
    {
    {
    case INTEGER_TYPE:
    case INTEGER_TYPE:
      /* There is no requirement that LOW be within the range of ETYPE
      /* There is no requirement that LOW be within the range of ETYPE
         if the latter is a subtype.  It must, however, be within the base
         if the latter is a subtype.  It must, however, be within the base
         type of ETYPE.  So be sure we do the subtraction in that type.  */
         type of ETYPE.  So be sure we do the subtraction in that type.  */
      if (TREE_TYPE (etype))
      if (TREE_TYPE (etype))
        etype = TREE_TYPE (etype);
        etype = TREE_TYPE (etype);
      break;
      break;
 
 
    case ENUMERAL_TYPE:
    case ENUMERAL_TYPE:
    case BOOLEAN_TYPE:
    case BOOLEAN_TYPE:
      etype = lang_hooks.types.type_for_size (TYPE_PRECISION (etype),
      etype = lang_hooks.types.type_for_size (TYPE_PRECISION (etype),
                                              TYPE_UNSIGNED (etype));
                                              TYPE_UNSIGNED (etype));
      break;
      break;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  /* If we don't have wrap-around arithmetics upfront, try to force it.  */
  /* If we don't have wrap-around arithmetics upfront, try to force it.  */
  if (TREE_CODE (etype) == INTEGER_TYPE
  if (TREE_CODE (etype) == INTEGER_TYPE
      && !TYPE_OVERFLOW_WRAPS (etype))
      && !TYPE_OVERFLOW_WRAPS (etype))
    {
    {
      tree utype, minv, maxv;
      tree utype, minv, maxv;
 
 
      /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
      /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
         for the type in question, as we rely on this here.  */
         for the type in question, as we rely on this here.  */
      utype = lang_hooks.types.unsigned_type (etype);
      utype = lang_hooks.types.unsigned_type (etype);
      maxv = fold_convert (utype, TYPE_MAX_VALUE (etype));
      maxv = fold_convert (utype, TYPE_MAX_VALUE (etype));
      maxv = range_binop (PLUS_EXPR, NULL_TREE, maxv, 1,
      maxv = range_binop (PLUS_EXPR, NULL_TREE, maxv, 1,
                          integer_one_node, 1);
                          integer_one_node, 1);
      minv = fold_convert (utype, TYPE_MIN_VALUE (etype));
      minv = fold_convert (utype, TYPE_MIN_VALUE (etype));
 
 
      if (integer_zerop (range_binop (NE_EXPR, integer_type_node,
      if (integer_zerop (range_binop (NE_EXPR, integer_type_node,
                                      minv, 1, maxv, 1)))
                                      minv, 1, maxv, 1)))
        etype = utype;
        etype = utype;
      else
      else
        return 0;
        return 0;
    }
    }
 
 
  high = fold_convert (etype, high);
  high = fold_convert (etype, high);
  low = fold_convert (etype, low);
  low = fold_convert (etype, low);
  exp = fold_convert (etype, exp);
  exp = fold_convert (etype, exp);
 
 
  value = const_binop (MINUS_EXPR, high, low, 0);
  value = const_binop (MINUS_EXPR, high, low, 0);
 
 
  if (value != 0 && !TREE_OVERFLOW (value))
  if (value != 0 && !TREE_OVERFLOW (value))
    return build_range_check (type,
    return build_range_check (type,
                              fold_build2 (MINUS_EXPR, etype, exp, low),
                              fold_build2 (MINUS_EXPR, etype, exp, low),
                              1, build_int_cst (etype, 0), value);
                              1, build_int_cst (etype, 0), value);
 
 
  return 0;
  return 0;
}
}


/* Return the predecessor of VAL in its type, handling the infinite case.  */
/* Return the predecessor of VAL in its type, handling the infinite case.  */
 
 
static tree
static tree
range_predecessor (tree val)
range_predecessor (tree val)
{
{
  tree type = TREE_TYPE (val);
  tree type = TREE_TYPE (val);
 
 
  if (INTEGRAL_TYPE_P (type)
  if (INTEGRAL_TYPE_P (type)
      && operand_equal_p (val, TYPE_MIN_VALUE (type), 0))
      && operand_equal_p (val, TYPE_MIN_VALUE (type), 0))
    return 0;
    return 0;
  else
  else
    return range_binop (MINUS_EXPR, NULL_TREE, val, 0, integer_one_node, 0);
    return range_binop (MINUS_EXPR, NULL_TREE, val, 0, integer_one_node, 0);
}
}
 
 
/* Return the successor of VAL in its type, handling the infinite case.  */
/* Return the successor of VAL in its type, handling the infinite case.  */
 
 
static tree
static tree
range_successor (tree val)
range_successor (tree val)
{
{
  tree type = TREE_TYPE (val);
  tree type = TREE_TYPE (val);
 
 
  if (INTEGRAL_TYPE_P (type)
  if (INTEGRAL_TYPE_P (type)
      && operand_equal_p (val, TYPE_MAX_VALUE (type), 0))
      && operand_equal_p (val, TYPE_MAX_VALUE (type), 0))
    return 0;
    return 0;
  else
  else
    return range_binop (PLUS_EXPR, NULL_TREE, val, 0, integer_one_node, 0);
    return range_binop (PLUS_EXPR, NULL_TREE, val, 0, integer_one_node, 0);
}
}
 
 
/* Given two ranges, see if we can merge them into one.  Return 1 if we
/* Given two ranges, see if we can merge them into one.  Return 1 if we
   can, 0 if we can't.  Set the output range into the specified parameters.  */
   can, 0 if we can't.  Set the output range into the specified parameters.  */
 
 
static int
static int
merge_ranges (int *pin_p, tree *plow, tree *phigh, int in0_p, tree low0,
merge_ranges (int *pin_p, tree *plow, tree *phigh, int in0_p, tree low0,
              tree high0, int in1_p, tree low1, tree high1)
              tree high0, int in1_p, tree low1, tree high1)
{
{
  int no_overlap;
  int no_overlap;
  int subset;
  int subset;
  int temp;
  int temp;
  tree tem;
  tree tem;
  int in_p;
  int in_p;
  tree low, high;
  tree low, high;
  int lowequal = ((low0 == 0 && low1 == 0)
  int lowequal = ((low0 == 0 && low1 == 0)
                  || integer_onep (range_binop (EQ_EXPR, integer_type_node,
                  || integer_onep (range_binop (EQ_EXPR, integer_type_node,
                                                low0, 0, low1, 0)));
                                                low0, 0, low1, 0)));
  int highequal = ((high0 == 0 && high1 == 0)
  int highequal = ((high0 == 0 && high1 == 0)
                   || integer_onep (range_binop (EQ_EXPR, integer_type_node,
                   || integer_onep (range_binop (EQ_EXPR, integer_type_node,
                                                 high0, 1, high1, 1)));
                                                 high0, 1, high1, 1)));
 
 
  /* Make range 0 be the range that starts first, or ends last if they
  /* Make range 0 be the range that starts first, or ends last if they
     start at the same value.  Swap them if it isn't.  */
     start at the same value.  Swap them if it isn't.  */
  if (integer_onep (range_binop (GT_EXPR, integer_type_node,
  if (integer_onep (range_binop (GT_EXPR, integer_type_node,
                                 low0, 0, low1, 0))
                                 low0, 0, low1, 0))
      || (lowequal
      || (lowequal
          && integer_onep (range_binop (GT_EXPR, integer_type_node,
          && integer_onep (range_binop (GT_EXPR, integer_type_node,
                                        high1, 1, high0, 1))))
                                        high1, 1, high0, 1))))
    {
    {
      temp = in0_p, in0_p = in1_p, in1_p = temp;
      temp = in0_p, in0_p = in1_p, in1_p = temp;
      tem = low0, low0 = low1, low1 = tem;
      tem = low0, low0 = low1, low1 = tem;
      tem = high0, high0 = high1, high1 = tem;
      tem = high0, high0 = high1, high1 = tem;
    }
    }
 
 
  /* Now flag two cases, whether the ranges are disjoint or whether the
  /* Now flag two cases, whether the ranges are disjoint or whether the
     second range is totally subsumed in the first.  Note that the tests
     second range is totally subsumed in the first.  Note that the tests
     below are simplified by the ones above.  */
     below are simplified by the ones above.  */
  no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
  no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
                                          high0, 1, low1, 0));
                                          high0, 1, low1, 0));
  subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
  subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
                                      high1, 1, high0, 1));
                                      high1, 1, high0, 1));
 
 
  /* We now have four cases, depending on whether we are including or
  /* We now have four cases, depending on whether we are including or
     excluding the two ranges.  */
     excluding the two ranges.  */
  if (in0_p && in1_p)
  if (in0_p && in1_p)
    {
    {
      /* If they don't overlap, the result is false.  If the second range
      /* If they don't overlap, the result is false.  If the second range
         is a subset it is the result.  Otherwise, the range is from the start
         is a subset it is the result.  Otherwise, the range is from the start
         of the second to the end of the first.  */
         of the second to the end of the first.  */
      if (no_overlap)
      if (no_overlap)
        in_p = 0, low = high = 0;
        in_p = 0, low = high = 0;
      else if (subset)
      else if (subset)
        in_p = 1, low = low1, high = high1;
        in_p = 1, low = low1, high = high1;
      else
      else
        in_p = 1, low = low1, high = high0;
        in_p = 1, low = low1, high = high0;
    }
    }
 
 
  else if (in0_p && ! in1_p)
  else if (in0_p && ! in1_p)
    {
    {
      /* If they don't overlap, the result is the first range.  If they are
      /* If they don't overlap, the result is the first range.  If they are
         equal, the result is false.  If the second range is a subset of the
         equal, the result is false.  If the second range is a subset of the
         first, and the ranges begin at the same place, we go from just after
         first, and the ranges begin at the same place, we go from just after
         the end of the second range to the end of the first.  If the second
         the end of the second range to the end of the first.  If the second
         range is not a subset of the first, or if it is a subset and both
         range is not a subset of the first, or if it is a subset and both
         ranges end at the same place, the range starts at the start of the
         ranges end at the same place, the range starts at the start of the
         first range and ends just before the second range.
         first range and ends just before the second range.
         Otherwise, we can't describe this as a single range.  */
         Otherwise, we can't describe this as a single range.  */
      if (no_overlap)
      if (no_overlap)
        in_p = 1, low = low0, high = high0;
        in_p = 1, low = low0, high = high0;
      else if (lowequal && highequal)
      else if (lowequal && highequal)
        in_p = 0, low = high = 0;
        in_p = 0, low = high = 0;
      else if (subset && lowequal)
      else if (subset && lowequal)
        {
        {
          low = range_successor (high1);
          low = range_successor (high1);
          high = high0;
          high = high0;
          in_p = 1;
          in_p = 1;
          if (low == 0)
          if (low == 0)
            {
            {
              /* We are in the weird situation where high0 > high1 but
              /* We are in the weird situation where high0 > high1 but
                 high1 has no successor.  Punt.  */
                 high1 has no successor.  Punt.  */
              return 0;
              return 0;
            }
            }
        }
        }
      else if (! subset || highequal)
      else if (! subset || highequal)
        {
        {
          low = low0;
          low = low0;
          high = range_predecessor (low1);
          high = range_predecessor (low1);
          in_p = 1;
          in_p = 1;
          if (high == 0)
          if (high == 0)
            {
            {
              /* low0 < low1 but low1 has no predecessor.  Punt.  */
              /* low0 < low1 but low1 has no predecessor.  Punt.  */
              return 0;
              return 0;
            }
            }
        }
        }
      else
      else
        return 0;
        return 0;
    }
    }
 
 
  else if (! in0_p && in1_p)
  else if (! in0_p && in1_p)
    {
    {
      /* If they don't overlap, the result is the second range.  If the second
      /* If they don't overlap, the result is the second range.  If the second
         is a subset of the first, the result is false.  Otherwise,
         is a subset of the first, the result is false.  Otherwise,
         the range starts just after the first range and ends at the
         the range starts just after the first range and ends at the
         end of the second.  */
         end of the second.  */
      if (no_overlap)
      if (no_overlap)
        in_p = 1, low = low1, high = high1;
        in_p = 1, low = low1, high = high1;
      else if (subset || highequal)
      else if (subset || highequal)
        in_p = 0, low = high = 0;
        in_p = 0, low = high = 0;
      else
      else
        {
        {
          low = range_successor (high0);
          low = range_successor (high0);
          high = high1;
          high = high1;
          in_p = 1;
          in_p = 1;
          if (low == 0)
          if (low == 0)
            {
            {
              /* high1 > high0 but high0 has no successor.  Punt.  */
              /* high1 > high0 but high0 has no successor.  Punt.  */
              return 0;
              return 0;
            }
            }
        }
        }
    }
    }
 
 
  else
  else
    {
    {
      /* The case where we are excluding both ranges.  Here the complex case
      /* The case where we are excluding both ranges.  Here the complex case
         is if they don't overlap.  In that case, the only time we have a
         is if they don't overlap.  In that case, the only time we have a
         range is if they are adjacent.  If the second is a subset of the
         range is if they are adjacent.  If the second is a subset of the
         first, the result is the first.  Otherwise, the range to exclude
         first, the result is the first.  Otherwise, the range to exclude
         starts at the beginning of the first range and ends at the end of the
         starts at the beginning of the first range and ends at the end of the
         second.  */
         second.  */
      if (no_overlap)
      if (no_overlap)
        {
        {
          if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
          if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
                                         range_successor (high0),
                                         range_successor (high0),
                                         1, low1, 0)))
                                         1, low1, 0)))
            in_p = 0, low = low0, high = high1;
            in_p = 0, low = low0, high = high1;
          else
          else
            {
            {
              /* Canonicalize - [min, x] into - [-, x].  */
              /* Canonicalize - [min, x] into - [-, x].  */
              if (low0 && TREE_CODE (low0) == INTEGER_CST)
              if (low0 && TREE_CODE (low0) == INTEGER_CST)
                switch (TREE_CODE (TREE_TYPE (low0)))
                switch (TREE_CODE (TREE_TYPE (low0)))
                  {
                  {
                  case ENUMERAL_TYPE:
                  case ENUMERAL_TYPE:
                    if (TYPE_PRECISION (TREE_TYPE (low0))
                    if (TYPE_PRECISION (TREE_TYPE (low0))
                        != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low0))))
                        != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low0))))
                      break;
                      break;
                    /* FALLTHROUGH */
                    /* FALLTHROUGH */
                  case INTEGER_TYPE:
                  case INTEGER_TYPE:
                    if (tree_int_cst_equal (low0,
                    if (tree_int_cst_equal (low0,
                                            TYPE_MIN_VALUE (TREE_TYPE (low0))))
                                            TYPE_MIN_VALUE (TREE_TYPE (low0))))
                      low0 = 0;
                      low0 = 0;
                    break;
                    break;
                  case POINTER_TYPE:
                  case POINTER_TYPE:
                    if (TYPE_UNSIGNED (TREE_TYPE (low0))
                    if (TYPE_UNSIGNED (TREE_TYPE (low0))
                        && integer_zerop (low0))
                        && integer_zerop (low0))
                      low0 = 0;
                      low0 = 0;
                    break;
                    break;
                  default:
                  default:
                    break;
                    break;
                  }
                  }
 
 
              /* Canonicalize - [x, max] into - [x, -].  */
              /* Canonicalize - [x, max] into - [x, -].  */
              if (high1 && TREE_CODE (high1) == INTEGER_CST)
              if (high1 && TREE_CODE (high1) == INTEGER_CST)
                switch (TREE_CODE (TREE_TYPE (high1)))
                switch (TREE_CODE (TREE_TYPE (high1)))
                  {
                  {
                  case ENUMERAL_TYPE:
                  case ENUMERAL_TYPE:
                    if (TYPE_PRECISION (TREE_TYPE (high1))
                    if (TYPE_PRECISION (TREE_TYPE (high1))
                        != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (high1))))
                        != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (high1))))
                      break;
                      break;
                    /* FALLTHROUGH */
                    /* FALLTHROUGH */
                  case INTEGER_TYPE:
                  case INTEGER_TYPE:
                    if (tree_int_cst_equal (high1,
                    if (tree_int_cst_equal (high1,
                                            TYPE_MAX_VALUE (TREE_TYPE (high1))))
                                            TYPE_MAX_VALUE (TREE_TYPE (high1))))
                      high1 = 0;
                      high1 = 0;
                    break;
                    break;
                  case POINTER_TYPE:
                  case POINTER_TYPE:
                    if (TYPE_UNSIGNED (TREE_TYPE (high1))
                    if (TYPE_UNSIGNED (TREE_TYPE (high1))
                        && integer_zerop (range_binop (PLUS_EXPR, NULL_TREE,
                        && integer_zerop (range_binop (PLUS_EXPR, NULL_TREE,
                                                       high1, 1,
                                                       high1, 1,
                                                       integer_one_node, 1)))
                                                       integer_one_node, 1)))
                      high1 = 0;
                      high1 = 0;
                    break;
                    break;
                  default:
                  default:
                    break;
                    break;
                  }
                  }
 
 
              /* The ranges might be also adjacent between the maximum and
              /* The ranges might be also adjacent between the maximum and
                 minimum values of the given type.  For
                 minimum values of the given type.  For
                 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
                 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
                 return + [x + 1, y - 1].  */
                 return + [x + 1, y - 1].  */
              if (low0 == 0 && high1 == 0)
              if (low0 == 0 && high1 == 0)
                {
                {
                  low = range_successor (high0);
                  low = range_successor (high0);
                  high = range_predecessor (low1);
                  high = range_predecessor (low1);
                  if (low == 0 || high == 0)
                  if (low == 0 || high == 0)
                    return 0;
                    return 0;
 
 
                  in_p = 1;
                  in_p = 1;
                }
                }
              else
              else
                return 0;
                return 0;
            }
            }
        }
        }
      else if (subset)
      else if (subset)
        in_p = 0, low = low0, high = high0;
        in_p = 0, low = low0, high = high0;
      else
      else
        in_p = 0, low = low0, high = high1;
        in_p = 0, low = low0, high = high1;
    }
    }
 
 
  *pin_p = in_p, *plow = low, *phigh = high;
  *pin_p = in_p, *plow = low, *phigh = high;
  return 1;
  return 1;
}
}


 
 
/* Subroutine of fold, looking inside expressions of the form
/* Subroutine of fold, looking inside expressions of the form
   A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
   A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
   of the COND_EXPR.  This function is being used also to optimize
   of the COND_EXPR.  This function is being used also to optimize
   A op B ? C : A, by reversing the comparison first.
   A op B ? C : A, by reversing the comparison first.
 
 
   Return a folded expression whose code is not a COND_EXPR
   Return a folded expression whose code is not a COND_EXPR
   anymore, or NULL_TREE if no folding opportunity is found.  */
   anymore, or NULL_TREE if no folding opportunity is found.  */
 
 
static tree
static tree
fold_cond_expr_with_comparison (tree type, tree arg0, tree arg1, tree arg2)
fold_cond_expr_with_comparison (tree type, tree arg0, tree arg1, tree arg2)
{
{
  enum tree_code comp_code = TREE_CODE (arg0);
  enum tree_code comp_code = TREE_CODE (arg0);
  tree arg00 = TREE_OPERAND (arg0, 0);
  tree arg00 = TREE_OPERAND (arg0, 0);
  tree arg01 = TREE_OPERAND (arg0, 1);
  tree arg01 = TREE_OPERAND (arg0, 1);
  tree arg1_type = TREE_TYPE (arg1);
  tree arg1_type = TREE_TYPE (arg1);
  tree tem;
  tree tem;
 
 
  STRIP_NOPS (arg1);
  STRIP_NOPS (arg1);
  STRIP_NOPS (arg2);
  STRIP_NOPS (arg2);
 
 
  /* If we have A op 0 ? A : -A, consider applying the following
  /* If we have A op 0 ? A : -A, consider applying the following
     transformations:
     transformations:
 
 
     A == 0? A : -A    same as -A
     A == 0? A : -A    same as -A
     A != 0? A : -A    same as A
     A != 0? A : -A    same as A
     A >= 0? A : -A    same as abs (A)
     A >= 0? A : -A    same as abs (A)
     A > 0?  A : -A    same as abs (A)
     A > 0?  A : -A    same as abs (A)
     A <= 0? A : -A    same as -abs (A)
     A <= 0? A : -A    same as -abs (A)
     A < 0?  A : -A    same as -abs (A)
     A < 0?  A : -A    same as -abs (A)
 
 
     None of these transformations work for modes with signed
     None of these transformations work for modes with signed
     zeros.  If A is +/-0, the first two transformations will
     zeros.  If A is +/-0, the first two transformations will
     change the sign of the result (from +0 to -0, or vice
     change the sign of the result (from +0 to -0, or vice
     versa).  The last four will fix the sign of the result,
     versa).  The last four will fix the sign of the result,
     even though the original expressions could be positive or
     even though the original expressions could be positive or
     negative, depending on the sign of A.
     negative, depending on the sign of A.
 
 
     Note that all these transformations are correct if A is
     Note that all these transformations are correct if A is
     NaN, since the two alternatives (A and -A) are also NaNs.  */
     NaN, since the two alternatives (A and -A) are also NaNs.  */
  if ((FLOAT_TYPE_P (TREE_TYPE (arg01))
  if ((FLOAT_TYPE_P (TREE_TYPE (arg01))
       ? real_zerop (arg01)
       ? real_zerop (arg01)
       : integer_zerop (arg01))
       : integer_zerop (arg01))
      && ((TREE_CODE (arg2) == NEGATE_EXPR
      && ((TREE_CODE (arg2) == NEGATE_EXPR
           && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0))
           && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0))
             /* In the case that A is of the form X-Y, '-A' (arg2) may
             /* In the case that A is of the form X-Y, '-A' (arg2) may
                have already been folded to Y-X, check for that. */
                have already been folded to Y-X, check for that. */
          || (TREE_CODE (arg1) == MINUS_EXPR
          || (TREE_CODE (arg1) == MINUS_EXPR
              && TREE_CODE (arg2) == MINUS_EXPR
              && TREE_CODE (arg2) == MINUS_EXPR
              && operand_equal_p (TREE_OPERAND (arg1, 0),
              && operand_equal_p (TREE_OPERAND (arg1, 0),
                                  TREE_OPERAND (arg2, 1), 0)
                                  TREE_OPERAND (arg2, 1), 0)
              && operand_equal_p (TREE_OPERAND (arg1, 1),
              && operand_equal_p (TREE_OPERAND (arg1, 1),
                                  TREE_OPERAND (arg2, 0), 0))))
                                  TREE_OPERAND (arg2, 0), 0))))
    switch (comp_code)
    switch (comp_code)
      {
      {
      case EQ_EXPR:
      case EQ_EXPR:
      case UNEQ_EXPR:
      case UNEQ_EXPR:
        tem = fold_convert (arg1_type, arg1);
        tem = fold_convert (arg1_type, arg1);
        return pedantic_non_lvalue (fold_convert (type, negate_expr (tem)));
        return pedantic_non_lvalue (fold_convert (type, negate_expr (tem)));
      case NE_EXPR:
      case NE_EXPR:
      case LTGT_EXPR:
      case LTGT_EXPR:
        return pedantic_non_lvalue (fold_convert (type, arg1));
        return pedantic_non_lvalue (fold_convert (type, arg1));
      case UNGE_EXPR:
      case UNGE_EXPR:
      case UNGT_EXPR:
      case UNGT_EXPR:
        if (flag_trapping_math)
        if (flag_trapping_math)
          break;
          break;
        /* Fall through.  */
        /* Fall through.  */
      case GE_EXPR:
      case GE_EXPR:
      case GT_EXPR:
      case GT_EXPR:
        if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
        if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
          arg1 = fold_convert (lang_hooks.types.signed_type
          arg1 = fold_convert (lang_hooks.types.signed_type
                               (TREE_TYPE (arg1)), arg1);
                               (TREE_TYPE (arg1)), arg1);
        tem = fold_build1 (ABS_EXPR, TREE_TYPE (arg1), arg1);
        tem = fold_build1 (ABS_EXPR, TREE_TYPE (arg1), arg1);
        return pedantic_non_lvalue (fold_convert (type, tem));
        return pedantic_non_lvalue (fold_convert (type, tem));
      case UNLE_EXPR:
      case UNLE_EXPR:
      case UNLT_EXPR:
      case UNLT_EXPR:
        if (flag_trapping_math)
        if (flag_trapping_math)
          break;
          break;
      case LE_EXPR:
      case LE_EXPR:
      case LT_EXPR:
      case LT_EXPR:
        if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
        if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
          arg1 = fold_convert (lang_hooks.types.signed_type
          arg1 = fold_convert (lang_hooks.types.signed_type
                               (TREE_TYPE (arg1)), arg1);
                               (TREE_TYPE (arg1)), arg1);
        tem = fold_build1 (ABS_EXPR, TREE_TYPE (arg1), arg1);
        tem = fold_build1 (ABS_EXPR, TREE_TYPE (arg1), arg1);
        return negate_expr (fold_convert (type, tem));
        return negate_expr (fold_convert (type, tem));
      default:
      default:
        gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
        gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
        break;
        break;
      }
      }
 
 
  /* A != 0 ? A : 0 is simply A, unless A is -0.  Likewise
  /* A != 0 ? A : 0 is simply A, unless A is -0.  Likewise
     A == 0 ? A : 0 is always 0 unless A is -0.  Note that
     A == 0 ? A : 0 is always 0 unless A is -0.  Note that
     both transformations are correct when A is NaN: A != 0
     both transformations are correct when A is NaN: A != 0
     is then true, and A == 0 is false.  */
     is then true, and A == 0 is false.  */
 
 
  if (integer_zerop (arg01) && integer_zerop (arg2))
  if (integer_zerop (arg01) && integer_zerop (arg2))
    {
    {
      if (comp_code == NE_EXPR)
      if (comp_code == NE_EXPR)
        return pedantic_non_lvalue (fold_convert (type, arg1));
        return pedantic_non_lvalue (fold_convert (type, arg1));
      else if (comp_code == EQ_EXPR)
      else if (comp_code == EQ_EXPR)
        return build_int_cst (type, 0);
        return build_int_cst (type, 0);
    }
    }
 
 
  /* Try some transformations of A op B ? A : B.
  /* Try some transformations of A op B ? A : B.
 
 
     A == B? A : B    same as B
     A == B? A : B    same as B
     A != B? A : B    same as A
     A != B? A : B    same as A
     A >= B? A : B    same as max (A, B)
     A >= B? A : B    same as max (A, B)
     A > B?  A : B    same as max (B, A)
     A > B?  A : B    same as max (B, A)
     A <= B? A : B    same as min (A, B)
     A <= B? A : B    same as min (A, B)
     A < B?  A : B    same as min (B, A)
     A < B?  A : B    same as min (B, A)
 
 
     As above, these transformations don't work in the presence
     As above, these transformations don't work in the presence
     of signed zeros.  For example, if A and B are zeros of
     of signed zeros.  For example, if A and B are zeros of
     opposite sign, the first two transformations will change
     opposite sign, the first two transformations will change
     the sign of the result.  In the last four, the original
     the sign of the result.  In the last four, the original
     expressions give different results for (A=+0, B=-0) and
     expressions give different results for (A=+0, B=-0) and
     (A=-0, B=+0), but the transformed expressions do not.
     (A=-0, B=+0), but the transformed expressions do not.
 
 
     The first two transformations are correct if either A or B
     The first two transformations are correct if either A or B
     is a NaN.  In the first transformation, the condition will
     is a NaN.  In the first transformation, the condition will
     be false, and B will indeed be chosen.  In the case of the
     be false, and B will indeed be chosen.  In the case of the
     second transformation, the condition A != B will be true,
     second transformation, the condition A != B will be true,
     and A will be chosen.
     and A will be chosen.
 
 
     The conversions to max() and min() are not correct if B is
     The conversions to max() and min() are not correct if B is
     a number and A is not.  The conditions in the original
     a number and A is not.  The conditions in the original
     expressions will be false, so all four give B.  The min()
     expressions will be false, so all four give B.  The min()
     and max() versions would give a NaN instead.  */
     and max() versions would give a NaN instead.  */
  if (operand_equal_for_comparison_p (arg01, arg2, arg00)
  if (operand_equal_for_comparison_p (arg01, arg2, arg00)
      /* Avoid these transformations if the COND_EXPR may be used
      /* Avoid these transformations if the COND_EXPR may be used
         as an lvalue in the C++ front-end.  PR c++/19199.  */
         as an lvalue in the C++ front-end.  PR c++/19199.  */
      && (in_gimple_form
      && (in_gimple_form
          || (strcmp (lang_hooks.name, "GNU C++") != 0
          || (strcmp (lang_hooks.name, "GNU C++") != 0
              && strcmp (lang_hooks.name, "GNU Objective-C++") != 0)
              && strcmp (lang_hooks.name, "GNU Objective-C++") != 0)
          || ! maybe_lvalue_p (arg1)
          || ! maybe_lvalue_p (arg1)
          || ! maybe_lvalue_p (arg2)))
          || ! maybe_lvalue_p (arg2)))
    {
    {
      tree comp_op0 = arg00;
      tree comp_op0 = arg00;
      tree comp_op1 = arg01;
      tree comp_op1 = arg01;
      tree comp_type = TREE_TYPE (comp_op0);
      tree comp_type = TREE_TYPE (comp_op0);
 
 
      /* Avoid adding NOP_EXPRs in case this is an lvalue.  */
      /* Avoid adding NOP_EXPRs in case this is an lvalue.  */
      if (TYPE_MAIN_VARIANT (comp_type) == TYPE_MAIN_VARIANT (type))
      if (TYPE_MAIN_VARIANT (comp_type) == TYPE_MAIN_VARIANT (type))
        {
        {
          comp_type = type;
          comp_type = type;
          comp_op0 = arg1;
          comp_op0 = arg1;
          comp_op1 = arg2;
          comp_op1 = arg2;
        }
        }
 
 
      switch (comp_code)
      switch (comp_code)
        {
        {
        case EQ_EXPR:
        case EQ_EXPR:
          return pedantic_non_lvalue (fold_convert (type, arg2));
          return pedantic_non_lvalue (fold_convert (type, arg2));
        case NE_EXPR:
        case NE_EXPR:
          return pedantic_non_lvalue (fold_convert (type, arg1));
          return pedantic_non_lvalue (fold_convert (type, arg1));
        case LE_EXPR:
        case LE_EXPR:
        case LT_EXPR:
        case LT_EXPR:
        case UNLE_EXPR:
        case UNLE_EXPR:
        case UNLT_EXPR:
        case UNLT_EXPR:
          /* In C++ a ?: expression can be an lvalue, so put the
          /* In C++ a ?: expression can be an lvalue, so put the
             operand which will be used if they are equal first
             operand which will be used if they are equal first
             so that we can convert this back to the
             so that we can convert this back to the
             corresponding COND_EXPR.  */
             corresponding COND_EXPR.  */
          if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
          if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
            {
            {
              comp_op0 = fold_convert (comp_type, comp_op0);
              comp_op0 = fold_convert (comp_type, comp_op0);
              comp_op1 = fold_convert (comp_type, comp_op1);
              comp_op1 = fold_convert (comp_type, comp_op1);
              tem = (comp_code == LE_EXPR || comp_code == UNLE_EXPR)
              tem = (comp_code == LE_EXPR || comp_code == UNLE_EXPR)
                    ? fold_build2 (MIN_EXPR, comp_type, comp_op0, comp_op1)
                    ? fold_build2 (MIN_EXPR, comp_type, comp_op0, comp_op1)
                    : fold_build2 (MIN_EXPR, comp_type, comp_op1, comp_op0);
                    : fold_build2 (MIN_EXPR, comp_type, comp_op1, comp_op0);
              return pedantic_non_lvalue (fold_convert (type, tem));
              return pedantic_non_lvalue (fold_convert (type, tem));
            }
            }
          break;
          break;
        case GE_EXPR:
        case GE_EXPR:
        case GT_EXPR:
        case GT_EXPR:
        case UNGE_EXPR:
        case UNGE_EXPR:
        case UNGT_EXPR:
        case UNGT_EXPR:
          if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
          if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
            {
            {
              comp_op0 = fold_convert (comp_type, comp_op0);
              comp_op0 = fold_convert (comp_type, comp_op0);
              comp_op1 = fold_convert (comp_type, comp_op1);
              comp_op1 = fold_convert (comp_type, comp_op1);
              tem = (comp_code == GE_EXPR || comp_code == UNGE_EXPR)
              tem = (comp_code == GE_EXPR || comp_code == UNGE_EXPR)
                    ? fold_build2 (MAX_EXPR, comp_type, comp_op0, comp_op1)
                    ? fold_build2 (MAX_EXPR, comp_type, comp_op0, comp_op1)
                    : fold_build2 (MAX_EXPR, comp_type, comp_op1, comp_op0);
                    : fold_build2 (MAX_EXPR, comp_type, comp_op1, comp_op0);
              return pedantic_non_lvalue (fold_convert (type, tem));
              return pedantic_non_lvalue (fold_convert (type, tem));
            }
            }
          break;
          break;
        case UNEQ_EXPR:
        case UNEQ_EXPR:
          if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
          if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
            return pedantic_non_lvalue (fold_convert (type, arg2));
            return pedantic_non_lvalue (fold_convert (type, arg2));
          break;
          break;
        case LTGT_EXPR:
        case LTGT_EXPR:
          if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
          if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
            return pedantic_non_lvalue (fold_convert (type, arg1));
            return pedantic_non_lvalue (fold_convert (type, arg1));
          break;
          break;
        default:
        default:
          gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
          gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
          break;
          break;
        }
        }
    }
    }
 
 
  /* If this is A op C1 ? A : C2 with C1 and C2 constant integers,
  /* If this is A op C1 ? A : C2 with C1 and C2 constant integers,
     we might still be able to simplify this.  For example,
     we might still be able to simplify this.  For example,
     if C1 is one less or one more than C2, this might have started
     if C1 is one less or one more than C2, this might have started
     out as a MIN or MAX and been transformed by this function.
     out as a MIN or MAX and been transformed by this function.
     Only good for INTEGER_TYPEs, because we need TYPE_MAX_VALUE.  */
     Only good for INTEGER_TYPEs, because we need TYPE_MAX_VALUE.  */
 
 
  if (INTEGRAL_TYPE_P (type)
  if (INTEGRAL_TYPE_P (type)
      && TREE_CODE (arg01) == INTEGER_CST
      && TREE_CODE (arg01) == INTEGER_CST
      && TREE_CODE (arg2) == INTEGER_CST)
      && TREE_CODE (arg2) == INTEGER_CST)
    switch (comp_code)
    switch (comp_code)
      {
      {
      case EQ_EXPR:
      case EQ_EXPR:
        /* We can replace A with C1 in this case.  */
        /* We can replace A with C1 in this case.  */
        arg1 = fold_convert (type, arg01);
        arg1 = fold_convert (type, arg01);
        return fold_build3 (COND_EXPR, type, arg0, arg1, arg2);
        return fold_build3 (COND_EXPR, type, arg0, arg1, arg2);
 
 
      case LT_EXPR:
      case LT_EXPR:
        /* If C1 is C2 + 1, this is min(A, C2).  */
        /* If C1 is C2 + 1, this is min(A, C2).  */
        if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
        if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
                               OEP_ONLY_CONST)
                               OEP_ONLY_CONST)
            && operand_equal_p (arg01,
            && operand_equal_p (arg01,
                                const_binop (PLUS_EXPR, arg2,
                                const_binop (PLUS_EXPR, arg2,
                                             integer_one_node, 0),
                                             integer_one_node, 0),
                                OEP_ONLY_CONST))
                                OEP_ONLY_CONST))
          return pedantic_non_lvalue (fold_build2 (MIN_EXPR,
          return pedantic_non_lvalue (fold_build2 (MIN_EXPR,
                                                   type, arg1, arg2));
                                                   type, arg1, arg2));
        break;
        break;
 
 
      case LE_EXPR:
      case LE_EXPR:
        /* If C1 is C2 - 1, this is min(A, C2).  */
        /* If C1 is C2 - 1, this is min(A, C2).  */
        if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
        if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
                               OEP_ONLY_CONST)
                               OEP_ONLY_CONST)
            && operand_equal_p (arg01,
            && operand_equal_p (arg01,
                                const_binop (MINUS_EXPR, arg2,
                                const_binop (MINUS_EXPR, arg2,
                                             integer_one_node, 0),
                                             integer_one_node, 0),
                                OEP_ONLY_CONST))
                                OEP_ONLY_CONST))
          return pedantic_non_lvalue (fold_build2 (MIN_EXPR,
          return pedantic_non_lvalue (fold_build2 (MIN_EXPR,
                                                   type, arg1, arg2));
                                                   type, arg1, arg2));
        break;
        break;
 
 
      case GT_EXPR:
      case GT_EXPR:
        /* If C1 is C2 - 1, this is max(A, C2).  */
        /* If C1 is C2 - 1, this is max(A, C2).  */
        if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
        if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
                               OEP_ONLY_CONST)
                               OEP_ONLY_CONST)
            && operand_equal_p (arg01,
            && operand_equal_p (arg01,
                                const_binop (MINUS_EXPR, arg2,
                                const_binop (MINUS_EXPR, arg2,
                                             integer_one_node, 0),
                                             integer_one_node, 0),
                                OEP_ONLY_CONST))
                                OEP_ONLY_CONST))
          return pedantic_non_lvalue (fold_build2 (MAX_EXPR,
          return pedantic_non_lvalue (fold_build2 (MAX_EXPR,
                                                   type, arg1, arg2));
                                                   type, arg1, arg2));
        break;
        break;
 
 
      case GE_EXPR:
      case GE_EXPR:
        /* If C1 is C2 + 1, this is max(A, C2).  */
        /* If C1 is C2 + 1, this is max(A, C2).  */
        if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
        if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
                               OEP_ONLY_CONST)
                               OEP_ONLY_CONST)
            && operand_equal_p (arg01,
            && operand_equal_p (arg01,
                                const_binop (PLUS_EXPR, arg2,
                                const_binop (PLUS_EXPR, arg2,
                                             integer_one_node, 0),
                                             integer_one_node, 0),
                                OEP_ONLY_CONST))
                                OEP_ONLY_CONST))
          return pedantic_non_lvalue (fold_build2 (MAX_EXPR,
          return pedantic_non_lvalue (fold_build2 (MAX_EXPR,
                                                   type, arg1, arg2));
                                                   type, arg1, arg2));
        break;
        break;
      case NE_EXPR:
      case NE_EXPR:
        break;
        break;
      default:
      default:
        gcc_unreachable ();
        gcc_unreachable ();
      }
      }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
 
 


#ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
#ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
#define LOGICAL_OP_NON_SHORT_CIRCUIT (BRANCH_COST >= 2)
#define LOGICAL_OP_NON_SHORT_CIRCUIT (BRANCH_COST >= 2)
#endif
#endif
 
 
/* EXP is some logical combination of boolean tests.  See if we can
/* EXP is some logical combination of boolean tests.  See if we can
   merge it into some range test.  Return the new tree if so.  */
   merge it into some range test.  Return the new tree if so.  */
 
 
static tree
static tree
fold_range_test (enum tree_code code, tree type, tree op0, tree op1)
fold_range_test (enum tree_code code, tree type, tree op0, tree op1)
{
{
  int or_op = (code == TRUTH_ORIF_EXPR
  int or_op = (code == TRUTH_ORIF_EXPR
               || code == TRUTH_OR_EXPR);
               || code == TRUTH_OR_EXPR);
  int in0_p, in1_p, in_p;
  int in0_p, in1_p, in_p;
  tree low0, low1, low, high0, high1, high;
  tree low0, low1, low, high0, high1, high;
  bool strict_overflow_p = false;
  bool strict_overflow_p = false;
  tree lhs = make_range (op0, &in0_p, &low0, &high0, &strict_overflow_p);
  tree lhs = make_range (op0, &in0_p, &low0, &high0, &strict_overflow_p);
  tree rhs = make_range (op1, &in1_p, &low1, &high1, &strict_overflow_p);
  tree rhs = make_range (op1, &in1_p, &low1, &high1, &strict_overflow_p);
  tree tem;
  tree tem;
  const char * const warnmsg = G_("assuming signed overflow does not occur "
  const char * const warnmsg = G_("assuming signed overflow does not occur "
                                  "when simplifying range test");
                                  "when simplifying range test");
 
 
  /* If this is an OR operation, invert both sides; we will invert
  /* If this is an OR operation, invert both sides; we will invert
     again at the end.  */
     again at the end.  */
  if (or_op)
  if (or_op)
    in0_p = ! in0_p, in1_p = ! in1_p;
    in0_p = ! in0_p, in1_p = ! in1_p;
 
 
  /* If both expressions are the same, if we can merge the ranges, and we
  /* If both expressions are the same, if we can merge the ranges, and we
     can build the range test, return it or it inverted.  If one of the
     can build the range test, return it or it inverted.  If one of the
     ranges is always true or always false, consider it to be the same
     ranges is always true or always false, consider it to be the same
     expression as the other.  */
     expression as the other.  */
  if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
  if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
      && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
      && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
                       in1_p, low1, high1)
                       in1_p, low1, high1)
      && 0 != (tem = (build_range_check (type,
      && 0 != (tem = (build_range_check (type,
                                         lhs != 0 ? lhs
                                         lhs != 0 ? lhs
                                         : rhs != 0 ? rhs : integer_zero_node,
                                         : rhs != 0 ? rhs : integer_zero_node,
                                         in_p, low, high))))
                                         in_p, low, high))))
    {
    {
      if (strict_overflow_p)
      if (strict_overflow_p)
        fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
        fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
      return or_op ? invert_truthvalue (tem) : tem;
      return or_op ? invert_truthvalue (tem) : tem;
    }
    }
 
 
  /* On machines where the branch cost is expensive, if this is a
  /* On machines where the branch cost is expensive, if this is a
     short-circuited branch and the underlying object on both sides
     short-circuited branch and the underlying object on both sides
     is the same, make a non-short-circuit operation.  */
     is the same, make a non-short-circuit operation.  */
  else if (LOGICAL_OP_NON_SHORT_CIRCUIT
  else if (LOGICAL_OP_NON_SHORT_CIRCUIT
           && lhs != 0 && rhs != 0
           && lhs != 0 && rhs != 0
           && (code == TRUTH_ANDIF_EXPR
           && (code == TRUTH_ANDIF_EXPR
               || code == TRUTH_ORIF_EXPR)
               || code == TRUTH_ORIF_EXPR)
           && operand_equal_p (lhs, rhs, 0))
           && operand_equal_p (lhs, rhs, 0))
    {
    {
      /* If simple enough, just rewrite.  Otherwise, make a SAVE_EXPR
      /* If simple enough, just rewrite.  Otherwise, make a SAVE_EXPR
         unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
         unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
         which cases we can't do this.  */
         which cases we can't do this.  */
      if (simple_operand_p (lhs))
      if (simple_operand_p (lhs))
        return build2 (code == TRUTH_ANDIF_EXPR
        return build2 (code == TRUTH_ANDIF_EXPR
                       ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
                       ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
                       type, op0, op1);
                       type, op0, op1);
 
 
      else if (lang_hooks.decls.global_bindings_p () == 0
      else if (lang_hooks.decls.global_bindings_p () == 0
               && ! CONTAINS_PLACEHOLDER_P (lhs))
               && ! CONTAINS_PLACEHOLDER_P (lhs))
        {
        {
          tree common = save_expr (lhs);
          tree common = save_expr (lhs);
 
 
          if (0 != (lhs = build_range_check (type, common,
          if (0 != (lhs = build_range_check (type, common,
                                             or_op ? ! in0_p : in0_p,
                                             or_op ? ! in0_p : in0_p,
                                             low0, high0))
                                             low0, high0))
              && (0 != (rhs = build_range_check (type, common,
              && (0 != (rhs = build_range_check (type, common,
                                                 or_op ? ! in1_p : in1_p,
                                                 or_op ? ! in1_p : in1_p,
                                                 low1, high1))))
                                                 low1, high1))))
            {
            {
              if (strict_overflow_p)
              if (strict_overflow_p)
                fold_overflow_warning (warnmsg,
                fold_overflow_warning (warnmsg,
                                       WARN_STRICT_OVERFLOW_COMPARISON);
                                       WARN_STRICT_OVERFLOW_COMPARISON);
              return build2 (code == TRUTH_ANDIF_EXPR
              return build2 (code == TRUTH_ANDIF_EXPR
                             ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
                             ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
                             type, lhs, rhs);
                             type, lhs, rhs);
            }
            }
        }
        }
    }
    }
 
 
  return 0;
  return 0;
}
}


/* Subroutine for fold_truthop: C is an INTEGER_CST interpreted as a P
/* Subroutine for fold_truthop: C is an INTEGER_CST interpreted as a P
   bit value.  Arrange things so the extra bits will be set to zero if and
   bit value.  Arrange things so the extra bits will be set to zero if and
   only if C is signed-extended to its full width.  If MASK is nonzero,
   only if C is signed-extended to its full width.  If MASK is nonzero,
   it is an INTEGER_CST that should be AND'ed with the extra bits.  */
   it is an INTEGER_CST that should be AND'ed with the extra bits.  */
 
 
static tree
static tree
unextend (tree c, int p, int unsignedp, tree mask)
unextend (tree c, int p, int unsignedp, tree mask)
{
{
  tree type = TREE_TYPE (c);
  tree type = TREE_TYPE (c);
  int modesize = GET_MODE_BITSIZE (TYPE_MODE (type));
  int modesize = GET_MODE_BITSIZE (TYPE_MODE (type));
  tree temp;
  tree temp;
 
 
  if (p == modesize || unsignedp)
  if (p == modesize || unsignedp)
    return c;
    return c;
 
 
  /* We work by getting just the sign bit into the low-order bit, then
  /* We work by getting just the sign bit into the low-order bit, then
     into the high-order bit, then sign-extend.  We then XOR that value
     into the high-order bit, then sign-extend.  We then XOR that value
     with C.  */
     with C.  */
  temp = const_binop (RSHIFT_EXPR, c, size_int (p - 1), 0);
  temp = const_binop (RSHIFT_EXPR, c, size_int (p - 1), 0);
  temp = const_binop (BIT_AND_EXPR, temp, size_int (1), 0);
  temp = const_binop (BIT_AND_EXPR, temp, size_int (1), 0);
 
 
  /* We must use a signed type in order to get an arithmetic right shift.
  /* We must use a signed type in order to get an arithmetic right shift.
     However, we must also avoid introducing accidental overflows, so that
     However, we must also avoid introducing accidental overflows, so that
     a subsequent call to integer_zerop will work.  Hence we must
     a subsequent call to integer_zerop will work.  Hence we must
     do the type conversion here.  At this point, the constant is either
     do the type conversion here.  At this point, the constant is either
     zero or one, and the conversion to a signed type can never overflow.
     zero or one, and the conversion to a signed type can never overflow.
     We could get an overflow if this conversion is done anywhere else.  */
     We could get an overflow if this conversion is done anywhere else.  */
  if (TYPE_UNSIGNED (type))
  if (TYPE_UNSIGNED (type))
    temp = fold_convert (lang_hooks.types.signed_type (type), temp);
    temp = fold_convert (lang_hooks.types.signed_type (type), temp);
 
 
  temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1), 0);
  temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1), 0);
  temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1), 0);
  temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1), 0);
  if (mask != 0)
  if (mask != 0)
    temp = const_binop (BIT_AND_EXPR, temp,
    temp = const_binop (BIT_AND_EXPR, temp,
                        fold_convert (TREE_TYPE (c), mask), 0);
                        fold_convert (TREE_TYPE (c), mask), 0);
  /* If necessary, convert the type back to match the type of C.  */
  /* If necessary, convert the type back to match the type of C.  */
  if (TYPE_UNSIGNED (type))
  if (TYPE_UNSIGNED (type))
    temp = fold_convert (type, temp);
    temp = fold_convert (type, temp);
 
 
  return fold_convert (type, const_binop (BIT_XOR_EXPR, c, temp, 0));
  return fold_convert (type, const_binop (BIT_XOR_EXPR, c, temp, 0));
}
}


/* Find ways of folding logical expressions of LHS and RHS:
/* Find ways of folding logical expressions of LHS and RHS:
   Try to merge two comparisons to the same innermost item.
   Try to merge two comparisons to the same innermost item.
   Look for range tests like "ch >= '0' && ch <= '9'".
   Look for range tests like "ch >= '0' && ch <= '9'".
   Look for combinations of simple terms on machines with expensive branches
   Look for combinations of simple terms on machines with expensive branches
   and evaluate the RHS unconditionally.
   and evaluate the RHS unconditionally.
 
 
   For example, if we have p->a == 2 && p->b == 4 and we can make an
   For example, if we have p->a == 2 && p->b == 4 and we can make an
   object large enough to span both A and B, we can do this with a comparison
   object large enough to span both A and B, we can do this with a comparison
   against the object ANDed with the a mask.
   against the object ANDed with the a mask.
 
 
   If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
   If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
   operations to do this with one comparison.
   operations to do this with one comparison.
 
 
   We check for both normal comparisons and the BIT_AND_EXPRs made this by
   We check for both normal comparisons and the BIT_AND_EXPRs made this by
   function and the one above.
   function and the one above.
 
 
   CODE is the logical operation being done.  It can be TRUTH_ANDIF_EXPR,
   CODE is the logical operation being done.  It can be TRUTH_ANDIF_EXPR,
   TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
   TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
 
 
   TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
   TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
   two operands.
   two operands.
 
 
   We return the simplified tree or 0 if no optimization is possible.  */
   We return the simplified tree or 0 if no optimization is possible.  */
 
 
static tree
static tree
fold_truthop (enum tree_code code, tree truth_type, tree lhs, tree rhs)
fold_truthop (enum tree_code code, tree truth_type, tree lhs, tree rhs)
{
{
  /* If this is the "or" of two comparisons, we can do something if
  /* If this is the "or" of two comparisons, we can do something if
     the comparisons are NE_EXPR.  If this is the "and", we can do something
     the comparisons are NE_EXPR.  If this is the "and", we can do something
     if the comparisons are EQ_EXPR.  I.e.,
     if the comparisons are EQ_EXPR.  I.e.,
        (a->b == 2 && a->c == 4) can become (a->new == NEW).
        (a->b == 2 && a->c == 4) can become (a->new == NEW).
 
 
     WANTED_CODE is this operation code.  For single bit fields, we can
     WANTED_CODE is this operation code.  For single bit fields, we can
     convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
     convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
     comparison for one-bit fields.  */
     comparison for one-bit fields.  */
 
 
  enum tree_code wanted_code;
  enum tree_code wanted_code;
  enum tree_code lcode, rcode;
  enum tree_code lcode, rcode;
  tree ll_arg, lr_arg, rl_arg, rr_arg;
  tree ll_arg, lr_arg, rl_arg, rr_arg;
  tree ll_inner, lr_inner, rl_inner, rr_inner;
  tree ll_inner, lr_inner, rl_inner, rr_inner;
  HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
  HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
  HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
  HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
  HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
  HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
  HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos;
  HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos;
  int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
  int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
  enum machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
  enum machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
  enum machine_mode lnmode, rnmode;
  enum machine_mode lnmode, rnmode;
  tree ll_mask, lr_mask, rl_mask, rr_mask;
  tree ll_mask, lr_mask, rl_mask, rr_mask;
  tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
  tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
  tree l_const, r_const;
  tree l_const, r_const;
  tree lntype, rntype, result;
  tree lntype, rntype, result;
  int first_bit, end_bit;
  int first_bit, end_bit;
  int volatilep;
  int volatilep;
  tree orig_lhs = lhs, orig_rhs = rhs;
  tree orig_lhs = lhs, orig_rhs = rhs;
  enum tree_code orig_code = code;
  enum tree_code orig_code = code;
 
 
  /* Start by getting the comparison codes.  Fail if anything is volatile.
  /* Start by getting the comparison codes.  Fail if anything is volatile.
     If one operand is a BIT_AND_EXPR with the constant one, treat it as if
     If one operand is a BIT_AND_EXPR with the constant one, treat it as if
     it were surrounded with a NE_EXPR.  */
     it were surrounded with a NE_EXPR.  */
 
 
  if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
  if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
    return 0;
    return 0;
 
 
  lcode = TREE_CODE (lhs);
  lcode = TREE_CODE (lhs);
  rcode = TREE_CODE (rhs);
  rcode = TREE_CODE (rhs);
 
 
  if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
  if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
    {
    {
      lhs = build2 (NE_EXPR, truth_type, lhs,
      lhs = build2 (NE_EXPR, truth_type, lhs,
                    build_int_cst (TREE_TYPE (lhs), 0));
                    build_int_cst (TREE_TYPE (lhs), 0));
      lcode = NE_EXPR;
      lcode = NE_EXPR;
    }
    }
 
 
  if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
  if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
    {
    {
      rhs = build2 (NE_EXPR, truth_type, rhs,
      rhs = build2 (NE_EXPR, truth_type, rhs,
                    build_int_cst (TREE_TYPE (rhs), 0));
                    build_int_cst (TREE_TYPE (rhs), 0));
      rcode = NE_EXPR;
      rcode = NE_EXPR;
    }
    }
 
 
  if (TREE_CODE_CLASS (lcode) != tcc_comparison
  if (TREE_CODE_CLASS (lcode) != tcc_comparison
      || TREE_CODE_CLASS (rcode) != tcc_comparison)
      || TREE_CODE_CLASS (rcode) != tcc_comparison)
    return 0;
    return 0;
 
 
  ll_arg = TREE_OPERAND (lhs, 0);
  ll_arg = TREE_OPERAND (lhs, 0);
  lr_arg = TREE_OPERAND (lhs, 1);
  lr_arg = TREE_OPERAND (lhs, 1);
  rl_arg = TREE_OPERAND (rhs, 0);
  rl_arg = TREE_OPERAND (rhs, 0);
  rr_arg = TREE_OPERAND (rhs, 1);
  rr_arg = TREE_OPERAND (rhs, 1);
 
 
  /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations.  */
  /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations.  */
  if (simple_operand_p (ll_arg)
  if (simple_operand_p (ll_arg)
      && simple_operand_p (lr_arg))
      && simple_operand_p (lr_arg))
    {
    {
      tree result;
      tree result;
      if (operand_equal_p (ll_arg, rl_arg, 0)
      if (operand_equal_p (ll_arg, rl_arg, 0)
          && operand_equal_p (lr_arg, rr_arg, 0))
          && operand_equal_p (lr_arg, rr_arg, 0))
        {
        {
          result = combine_comparisons (code, lcode, rcode,
          result = combine_comparisons (code, lcode, rcode,
                                        truth_type, ll_arg, lr_arg);
                                        truth_type, ll_arg, lr_arg);
          if (result)
          if (result)
            return result;
            return result;
        }
        }
      else if (operand_equal_p (ll_arg, rr_arg, 0)
      else if (operand_equal_p (ll_arg, rr_arg, 0)
               && operand_equal_p (lr_arg, rl_arg, 0))
               && operand_equal_p (lr_arg, rl_arg, 0))
        {
        {
          result = combine_comparisons (code, lcode,
          result = combine_comparisons (code, lcode,
                                        swap_tree_comparison (rcode),
                                        swap_tree_comparison (rcode),
                                        truth_type, ll_arg, lr_arg);
                                        truth_type, ll_arg, lr_arg);
          if (result)
          if (result)
            return result;
            return result;
        }
        }
    }
    }
 
 
  code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
  code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
          ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);
          ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);
 
 
  /* If the RHS can be evaluated unconditionally and its operands are
  /* If the RHS can be evaluated unconditionally and its operands are
     simple, it wins to evaluate the RHS unconditionally on machines
     simple, it wins to evaluate the RHS unconditionally on machines
     with expensive branches.  In this case, this isn't a comparison
     with expensive branches.  In this case, this isn't a comparison
     that can be merged.  Avoid doing this if the RHS is a floating-point
     that can be merged.  Avoid doing this if the RHS is a floating-point
     comparison since those can trap.  */
     comparison since those can trap.  */
 
 
  if (BRANCH_COST >= 2
  if (BRANCH_COST >= 2
      && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg))
      && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg))
      && simple_operand_p (rl_arg)
      && simple_operand_p (rl_arg)
      && simple_operand_p (rr_arg))
      && simple_operand_p (rr_arg))
    {
    {
      /* Convert (a != 0) || (b != 0) into (a | b) != 0.  */
      /* Convert (a != 0) || (b != 0) into (a | b) != 0.  */
      if (code == TRUTH_OR_EXPR
      if (code == TRUTH_OR_EXPR
          && lcode == NE_EXPR && integer_zerop (lr_arg)
          && lcode == NE_EXPR && integer_zerop (lr_arg)
          && rcode == NE_EXPR && integer_zerop (rr_arg)
          && rcode == NE_EXPR && integer_zerop (rr_arg)
          && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg))
          && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg))
        return build2 (NE_EXPR, truth_type,
        return build2 (NE_EXPR, truth_type,
                       build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
                       build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
                               ll_arg, rl_arg),
                               ll_arg, rl_arg),
                       build_int_cst (TREE_TYPE (ll_arg), 0));
                       build_int_cst (TREE_TYPE (ll_arg), 0));
 
 
      /* Convert (a == 0) && (b == 0) into (a | b) == 0.  */
      /* Convert (a == 0) && (b == 0) into (a | b) == 0.  */
      if (code == TRUTH_AND_EXPR
      if (code == TRUTH_AND_EXPR
          && lcode == EQ_EXPR && integer_zerop (lr_arg)
          && lcode == EQ_EXPR && integer_zerop (lr_arg)
          && rcode == EQ_EXPR && integer_zerop (rr_arg)
          && rcode == EQ_EXPR && integer_zerop (rr_arg)
          && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg))
          && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg))
        return build2 (EQ_EXPR, truth_type,
        return build2 (EQ_EXPR, truth_type,
                       build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
                       build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
                               ll_arg, rl_arg),
                               ll_arg, rl_arg),
                       build_int_cst (TREE_TYPE (ll_arg), 0));
                       build_int_cst (TREE_TYPE (ll_arg), 0));
 
 
      if (LOGICAL_OP_NON_SHORT_CIRCUIT)
      if (LOGICAL_OP_NON_SHORT_CIRCUIT)
        {
        {
          if (code != orig_code || lhs != orig_lhs || rhs != orig_rhs)
          if (code != orig_code || lhs != orig_lhs || rhs != orig_rhs)
            return build2 (code, truth_type, lhs, rhs);
            return build2 (code, truth_type, lhs, rhs);
          return NULL_TREE;
          return NULL_TREE;
        }
        }
    }
    }
 
 
  /* See if the comparisons can be merged.  Then get all the parameters for
  /* See if the comparisons can be merged.  Then get all the parameters for
     each side.  */
     each side.  */
 
 
  if ((lcode != EQ_EXPR && lcode != NE_EXPR)
  if ((lcode != EQ_EXPR && lcode != NE_EXPR)
      || (rcode != EQ_EXPR && rcode != NE_EXPR))
      || (rcode != EQ_EXPR && rcode != NE_EXPR))
    return 0;
    return 0;
 
 
  volatilep = 0;
  volatilep = 0;
  ll_inner = decode_field_reference (ll_arg,
  ll_inner = decode_field_reference (ll_arg,
                                     &ll_bitsize, &ll_bitpos, &ll_mode,
                                     &ll_bitsize, &ll_bitpos, &ll_mode,
                                     &ll_unsignedp, &volatilep, &ll_mask,
                                     &ll_unsignedp, &volatilep, &ll_mask,
                                     &ll_and_mask);
                                     &ll_and_mask);
  lr_inner = decode_field_reference (lr_arg,
  lr_inner = decode_field_reference (lr_arg,
                                     &lr_bitsize, &lr_bitpos, &lr_mode,
                                     &lr_bitsize, &lr_bitpos, &lr_mode,
                                     &lr_unsignedp, &volatilep, &lr_mask,
                                     &lr_unsignedp, &volatilep, &lr_mask,
                                     &lr_and_mask);
                                     &lr_and_mask);
  rl_inner = decode_field_reference (rl_arg,
  rl_inner = decode_field_reference (rl_arg,
                                     &rl_bitsize, &rl_bitpos, &rl_mode,
                                     &rl_bitsize, &rl_bitpos, &rl_mode,
                                     &rl_unsignedp, &volatilep, &rl_mask,
                                     &rl_unsignedp, &volatilep, &rl_mask,
                                     &rl_and_mask);
                                     &rl_and_mask);
  rr_inner = decode_field_reference (rr_arg,
  rr_inner = decode_field_reference (rr_arg,
                                     &rr_bitsize, &rr_bitpos, &rr_mode,
                                     &rr_bitsize, &rr_bitpos, &rr_mode,
                                     &rr_unsignedp, &volatilep, &rr_mask,
                                     &rr_unsignedp, &volatilep, &rr_mask,
                                     &rr_and_mask);
                                     &rr_and_mask);
 
 
  /* It must be true that the inner operation on the lhs of each
  /* It must be true that the inner operation on the lhs of each
     comparison must be the same if we are to be able to do anything.
     comparison must be the same if we are to be able to do anything.
     Then see if we have constants.  If not, the same must be true for
     Then see if we have constants.  If not, the same must be true for
     the rhs's.  */
     the rhs's.  */
  if (volatilep || ll_inner == 0 || rl_inner == 0
  if (volatilep || ll_inner == 0 || rl_inner == 0
      || ! operand_equal_p (ll_inner, rl_inner, 0))
      || ! operand_equal_p (ll_inner, rl_inner, 0))
    return 0;
    return 0;
 
 
  if (TREE_CODE (lr_arg) == INTEGER_CST
  if (TREE_CODE (lr_arg) == INTEGER_CST
      && TREE_CODE (rr_arg) == INTEGER_CST)
      && TREE_CODE (rr_arg) == INTEGER_CST)
    l_const = lr_arg, r_const = rr_arg;
    l_const = lr_arg, r_const = rr_arg;
  else if (lr_inner == 0 || rr_inner == 0
  else if (lr_inner == 0 || rr_inner == 0
           || ! operand_equal_p (lr_inner, rr_inner, 0))
           || ! operand_equal_p (lr_inner, rr_inner, 0))
    return 0;
    return 0;
  else
  else
    l_const = r_const = 0;
    l_const = r_const = 0;
 
 
  /* If either comparison code is not correct for our logical operation,
  /* If either comparison code is not correct for our logical operation,
     fail.  However, we can convert a one-bit comparison against zero into
     fail.  However, we can convert a one-bit comparison against zero into
     the opposite comparison against that bit being set in the field.  */
     the opposite comparison against that bit being set in the field.  */
 
 
  wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
  wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
  if (lcode != wanted_code)
  if (lcode != wanted_code)
    {
    {
      if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
      if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
        {
        {
          /* Make the left operand unsigned, since we are only interested
          /* Make the left operand unsigned, since we are only interested
             in the value of one bit.  Otherwise we are doing the wrong
             in the value of one bit.  Otherwise we are doing the wrong
             thing below.  */
             thing below.  */
          ll_unsignedp = 1;
          ll_unsignedp = 1;
          l_const = ll_mask;
          l_const = ll_mask;
        }
        }
      else
      else
        return 0;
        return 0;
    }
    }
 
 
  /* This is analogous to the code for l_const above.  */
  /* This is analogous to the code for l_const above.  */
  if (rcode != wanted_code)
  if (rcode != wanted_code)
    {
    {
      if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
      if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
        {
        {
          rl_unsignedp = 1;
          rl_unsignedp = 1;
          r_const = rl_mask;
          r_const = rl_mask;
        }
        }
      else
      else
        return 0;
        return 0;
    }
    }
 
 
  /* After this point all optimizations will generate bit-field
  /* After this point all optimizations will generate bit-field
     references, which we might not want.  */
     references, which we might not want.  */
  if (! lang_hooks.can_use_bit_fields_p ())
  if (! lang_hooks.can_use_bit_fields_p ())
    return 0;
    return 0;
 
 
  /* See if we can find a mode that contains both fields being compared on
  /* See if we can find a mode that contains both fields being compared on
     the left.  If we can't, fail.  Otherwise, update all constants and masks
     the left.  If we can't, fail.  Otherwise, update all constants and masks
     to be relative to a field of that size.  */
     to be relative to a field of that size.  */
  first_bit = MIN (ll_bitpos, rl_bitpos);
  first_bit = MIN (ll_bitpos, rl_bitpos);
  end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
  end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
  lnmode = get_best_mode (end_bit - first_bit, first_bit,
  lnmode = get_best_mode (end_bit - first_bit, first_bit,
                          TYPE_ALIGN (TREE_TYPE (ll_inner)), word_mode,
                          TYPE_ALIGN (TREE_TYPE (ll_inner)), word_mode,
                          volatilep);
                          volatilep);
  if (lnmode == VOIDmode)
  if (lnmode == VOIDmode)
    return 0;
    return 0;
 
 
  lnbitsize = GET_MODE_BITSIZE (lnmode);
  lnbitsize = GET_MODE_BITSIZE (lnmode);
  lnbitpos = first_bit & ~ (lnbitsize - 1);
  lnbitpos = first_bit & ~ (lnbitsize - 1);
  lntype = lang_hooks.types.type_for_size (lnbitsize, 1);
  lntype = lang_hooks.types.type_for_size (lnbitsize, 1);
  xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;
  xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;
 
 
  if (BYTES_BIG_ENDIAN)
  if (BYTES_BIG_ENDIAN)
    {
    {
      xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
      xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
      xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
      xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
    }
    }
 
 
  ll_mask = const_binop (LSHIFT_EXPR, fold_convert (lntype, ll_mask),
  ll_mask = const_binop (LSHIFT_EXPR, fold_convert (lntype, ll_mask),
                         size_int (xll_bitpos), 0);
                         size_int (xll_bitpos), 0);
  rl_mask = const_binop (LSHIFT_EXPR, fold_convert (lntype, rl_mask),
  rl_mask = const_binop (LSHIFT_EXPR, fold_convert (lntype, rl_mask),
                         size_int (xrl_bitpos), 0);
                         size_int (xrl_bitpos), 0);
 
 
  if (l_const)
  if (l_const)
    {
    {
      l_const = fold_convert (lntype, l_const);
      l_const = fold_convert (lntype, l_const);
      l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
      l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
      l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos), 0);
      l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos), 0);
      if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
      if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
                                        fold_build1 (BIT_NOT_EXPR,
                                        fold_build1 (BIT_NOT_EXPR,
                                                     lntype, ll_mask),
                                                     lntype, ll_mask),
                                        0)))
                                        0)))
        {
        {
          warning (0, "comparison is always %d", wanted_code == NE_EXPR);
          warning (0, "comparison is always %d", wanted_code == NE_EXPR);
 
 
          return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
          return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
        }
        }
    }
    }
  if (r_const)
  if (r_const)
    {
    {
      r_const = fold_convert (lntype, r_const);
      r_const = fold_convert (lntype, r_const);
      r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
      r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
      r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos), 0);
      r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos), 0);
      if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
      if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
                                        fold_build1 (BIT_NOT_EXPR,
                                        fold_build1 (BIT_NOT_EXPR,
                                                     lntype, rl_mask),
                                                     lntype, rl_mask),
                                        0)))
                                        0)))
        {
        {
          warning (0, "comparison is always %d", wanted_code == NE_EXPR);
          warning (0, "comparison is always %d", wanted_code == NE_EXPR);
 
 
          return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
          return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
        }
        }
    }
    }
 
 
  /* If the right sides are not constant, do the same for it.  Also,
  /* If the right sides are not constant, do the same for it.  Also,
     disallow this optimization if a size or signedness mismatch occurs
     disallow this optimization if a size or signedness mismatch occurs
     between the left and right sides.  */
     between the left and right sides.  */
  if (l_const == 0)
  if (l_const == 0)
    {
    {
      if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
      if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
          || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
          || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
          /* Make sure the two fields on the right
          /* Make sure the two fields on the right
             correspond to the left without being swapped.  */
             correspond to the left without being swapped.  */
          || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
          || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
        return 0;
        return 0;
 
 
      first_bit = MIN (lr_bitpos, rr_bitpos);
      first_bit = MIN (lr_bitpos, rr_bitpos);
      end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
      end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
      rnmode = get_best_mode (end_bit - first_bit, first_bit,
      rnmode = get_best_mode (end_bit - first_bit, first_bit,
                              TYPE_ALIGN (TREE_TYPE (lr_inner)), word_mode,
                              TYPE_ALIGN (TREE_TYPE (lr_inner)), word_mode,
                              volatilep);
                              volatilep);
      if (rnmode == VOIDmode)
      if (rnmode == VOIDmode)
        return 0;
        return 0;
 
 
      rnbitsize = GET_MODE_BITSIZE (rnmode);
      rnbitsize = GET_MODE_BITSIZE (rnmode);
      rnbitpos = first_bit & ~ (rnbitsize - 1);
      rnbitpos = first_bit & ~ (rnbitsize - 1);
      rntype = lang_hooks.types.type_for_size (rnbitsize, 1);
      rntype = lang_hooks.types.type_for_size (rnbitsize, 1);
      xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;
      xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;
 
 
      if (BYTES_BIG_ENDIAN)
      if (BYTES_BIG_ENDIAN)
        {
        {
          xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
          xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
          xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
          xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
        }
        }
 
 
      lr_mask = const_binop (LSHIFT_EXPR, fold_convert (rntype, lr_mask),
      lr_mask = const_binop (LSHIFT_EXPR, fold_convert (rntype, lr_mask),
                             size_int (xlr_bitpos), 0);
                             size_int (xlr_bitpos), 0);
      rr_mask = const_binop (LSHIFT_EXPR, fold_convert (rntype, rr_mask),
      rr_mask = const_binop (LSHIFT_EXPR, fold_convert (rntype, rr_mask),
                             size_int (xrr_bitpos), 0);
                             size_int (xrr_bitpos), 0);
 
 
      /* Make a mask that corresponds to both fields being compared.
      /* Make a mask that corresponds to both fields being compared.
         Do this for both items being compared.  If the operands are the
         Do this for both items being compared.  If the operands are the
         same size and the bits being compared are in the same position
         same size and the bits being compared are in the same position
         then we can do this by masking both and comparing the masked
         then we can do this by masking both and comparing the masked
         results.  */
         results.  */
      ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask, 0);
      ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask, 0);
      lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask, 0);
      lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask, 0);
      if (lnbitsize == rnbitsize && xll_bitpos == xlr_bitpos)
      if (lnbitsize == rnbitsize && xll_bitpos == xlr_bitpos)
        {
        {
          lhs = make_bit_field_ref (ll_inner, lntype, lnbitsize, lnbitpos,
          lhs = make_bit_field_ref (ll_inner, lntype, lnbitsize, lnbitpos,
                                    ll_unsignedp || rl_unsignedp);
                                    ll_unsignedp || rl_unsignedp);
          if (! all_ones_mask_p (ll_mask, lnbitsize))
          if (! all_ones_mask_p (ll_mask, lnbitsize))
            lhs = build2 (BIT_AND_EXPR, lntype, lhs, ll_mask);
            lhs = build2 (BIT_AND_EXPR, lntype, lhs, ll_mask);
 
 
          rhs = make_bit_field_ref (lr_inner, rntype, rnbitsize, rnbitpos,
          rhs = make_bit_field_ref (lr_inner, rntype, rnbitsize, rnbitpos,
                                    lr_unsignedp || rr_unsignedp);
                                    lr_unsignedp || rr_unsignedp);
          if (! all_ones_mask_p (lr_mask, rnbitsize))
          if (! all_ones_mask_p (lr_mask, rnbitsize))
            rhs = build2 (BIT_AND_EXPR, rntype, rhs, lr_mask);
            rhs = build2 (BIT_AND_EXPR, rntype, rhs, lr_mask);
 
 
          return build2 (wanted_code, truth_type, lhs, rhs);
          return build2 (wanted_code, truth_type, lhs, rhs);
        }
        }
 
 
      /* There is still another way we can do something:  If both pairs of
      /* There is still another way we can do something:  If both pairs of
         fields being compared are adjacent, we may be able to make a wider
         fields being compared are adjacent, we may be able to make a wider
         field containing them both.
         field containing them both.
 
 
         Note that we still must mask the lhs/rhs expressions.  Furthermore,
         Note that we still must mask the lhs/rhs expressions.  Furthermore,
         the mask must be shifted to account for the shift done by
         the mask must be shifted to account for the shift done by
         make_bit_field_ref.  */
         make_bit_field_ref.  */
      if ((ll_bitsize + ll_bitpos == rl_bitpos
      if ((ll_bitsize + ll_bitpos == rl_bitpos
           && lr_bitsize + lr_bitpos == rr_bitpos)
           && lr_bitsize + lr_bitpos == rr_bitpos)
          || (ll_bitpos == rl_bitpos + rl_bitsize
          || (ll_bitpos == rl_bitpos + rl_bitsize
              && lr_bitpos == rr_bitpos + rr_bitsize))
              && lr_bitpos == rr_bitpos + rr_bitsize))
        {
        {
          tree type;
          tree type;
 
 
          lhs = make_bit_field_ref (ll_inner, lntype, ll_bitsize + rl_bitsize,
          lhs = make_bit_field_ref (ll_inner, lntype, ll_bitsize + rl_bitsize,
                                    MIN (ll_bitpos, rl_bitpos), ll_unsignedp);
                                    MIN (ll_bitpos, rl_bitpos), ll_unsignedp);
          rhs = make_bit_field_ref (lr_inner, rntype, lr_bitsize + rr_bitsize,
          rhs = make_bit_field_ref (lr_inner, rntype, lr_bitsize + rr_bitsize,
                                    MIN (lr_bitpos, rr_bitpos), lr_unsignedp);
                                    MIN (lr_bitpos, rr_bitpos), lr_unsignedp);
 
 
          ll_mask = const_binop (RSHIFT_EXPR, ll_mask,
          ll_mask = const_binop (RSHIFT_EXPR, ll_mask,
                                 size_int (MIN (xll_bitpos, xrl_bitpos)), 0);
                                 size_int (MIN (xll_bitpos, xrl_bitpos)), 0);
          lr_mask = const_binop (RSHIFT_EXPR, lr_mask,
          lr_mask = const_binop (RSHIFT_EXPR, lr_mask,
                                 size_int (MIN (xlr_bitpos, xrr_bitpos)), 0);
                                 size_int (MIN (xlr_bitpos, xrr_bitpos)), 0);
 
 
          /* Convert to the smaller type before masking out unwanted bits.  */
          /* Convert to the smaller type before masking out unwanted bits.  */
          type = lntype;
          type = lntype;
          if (lntype != rntype)
          if (lntype != rntype)
            {
            {
              if (lnbitsize > rnbitsize)
              if (lnbitsize > rnbitsize)
                {
                {
                  lhs = fold_convert (rntype, lhs);
                  lhs = fold_convert (rntype, lhs);
                  ll_mask = fold_convert (rntype, ll_mask);
                  ll_mask = fold_convert (rntype, ll_mask);
                  type = rntype;
                  type = rntype;
                }
                }
              else if (lnbitsize < rnbitsize)
              else if (lnbitsize < rnbitsize)
                {
                {
                  rhs = fold_convert (lntype, rhs);
                  rhs = fold_convert (lntype, rhs);
                  lr_mask = fold_convert (lntype, lr_mask);
                  lr_mask = fold_convert (lntype, lr_mask);
                  type = lntype;
                  type = lntype;
                }
                }
            }
            }
 
 
          if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize))
          if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize))
            lhs = build2 (BIT_AND_EXPR, type, lhs, ll_mask);
            lhs = build2 (BIT_AND_EXPR, type, lhs, ll_mask);
 
 
          if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize))
          if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize))
            rhs = build2 (BIT_AND_EXPR, type, rhs, lr_mask);
            rhs = build2 (BIT_AND_EXPR, type, rhs, lr_mask);
 
 
          return build2 (wanted_code, truth_type, lhs, rhs);
          return build2 (wanted_code, truth_type, lhs, rhs);
        }
        }
 
 
      return 0;
      return 0;
    }
    }
 
 
  /* Handle the case of comparisons with constants.  If there is something in
  /* Handle the case of comparisons with constants.  If there is something in
     common between the masks, those bits of the constants must be the same.
     common between the masks, those bits of the constants must be the same.
     If not, the condition is always false.  Test for this to avoid generating
     If not, the condition is always false.  Test for this to avoid generating
     incorrect code below.  */
     incorrect code below.  */
  result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask, 0);
  result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask, 0);
  if (! integer_zerop (result)
  if (! integer_zerop (result)
      && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const, 0),
      && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const, 0),
                           const_binop (BIT_AND_EXPR, result, r_const, 0)) != 1)
                           const_binop (BIT_AND_EXPR, result, r_const, 0)) != 1)
    {
    {
      if (wanted_code == NE_EXPR)
      if (wanted_code == NE_EXPR)
        {
        {
          warning (0, "%<or%> of unmatched not-equal tests is always 1");
          warning (0, "%<or%> of unmatched not-equal tests is always 1");
          return constant_boolean_node (true, truth_type);
          return constant_boolean_node (true, truth_type);
        }
        }
      else
      else
        {
        {
          warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
          warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
          return constant_boolean_node (false, truth_type);
          return constant_boolean_node (false, truth_type);
        }
        }
    }
    }
 
 
  /* Construct the expression we will return.  First get the component
  /* Construct the expression we will return.  First get the component
     reference we will make.  Unless the mask is all ones the width of
     reference we will make.  Unless the mask is all ones the width of
     that field, perform the mask operation.  Then compare with the
     that field, perform the mask operation.  Then compare with the
     merged constant.  */
     merged constant.  */
  result = make_bit_field_ref (ll_inner, lntype, lnbitsize, lnbitpos,
  result = make_bit_field_ref (ll_inner, lntype, lnbitsize, lnbitpos,
                               ll_unsignedp || rl_unsignedp);
                               ll_unsignedp || rl_unsignedp);
 
 
  ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask, 0);
  ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask, 0);
  if (! all_ones_mask_p (ll_mask, lnbitsize))
  if (! all_ones_mask_p (ll_mask, lnbitsize))
    result = build2 (BIT_AND_EXPR, lntype, result, ll_mask);
    result = build2 (BIT_AND_EXPR, lntype, result, ll_mask);
 
 
  return build2 (wanted_code, truth_type, result,
  return build2 (wanted_code, truth_type, result,
                 const_binop (BIT_IOR_EXPR, l_const, r_const, 0));
                 const_binop (BIT_IOR_EXPR, l_const, r_const, 0));
}
}


/* Optimize T, which is a comparison of a MIN_EXPR or MAX_EXPR with a
/* Optimize T, which is a comparison of a MIN_EXPR or MAX_EXPR with a
   constant.  */
   constant.  */
 
 
static tree
static tree
optimize_minmax_comparison (enum tree_code code, tree type, tree op0, tree op1)
optimize_minmax_comparison (enum tree_code code, tree type, tree op0, tree op1)
{
{
  tree arg0 = op0;
  tree arg0 = op0;
  enum tree_code op_code;
  enum tree_code op_code;
  tree comp_const = op1;
  tree comp_const = op1;
  tree minmax_const;
  tree minmax_const;
  int consts_equal, consts_lt;
  int consts_equal, consts_lt;
  tree inner;
  tree inner;
 
 
  STRIP_SIGN_NOPS (arg0);
  STRIP_SIGN_NOPS (arg0);
 
 
  op_code = TREE_CODE (arg0);
  op_code = TREE_CODE (arg0);
  minmax_const = TREE_OPERAND (arg0, 1);
  minmax_const = TREE_OPERAND (arg0, 1);
  consts_equal = tree_int_cst_equal (minmax_const, comp_const);
  consts_equal = tree_int_cst_equal (minmax_const, comp_const);
  consts_lt = tree_int_cst_lt (minmax_const, comp_const);
  consts_lt = tree_int_cst_lt (minmax_const, comp_const);
  inner = TREE_OPERAND (arg0, 0);
  inner = TREE_OPERAND (arg0, 0);
 
 
  /* If something does not permit us to optimize, return the original tree.  */
  /* If something does not permit us to optimize, return the original tree.  */
  if ((op_code != MIN_EXPR && op_code != MAX_EXPR)
  if ((op_code != MIN_EXPR && op_code != MAX_EXPR)
      || TREE_CODE (comp_const) != INTEGER_CST
      || TREE_CODE (comp_const) != INTEGER_CST
      || TREE_CONSTANT_OVERFLOW (comp_const)
      || TREE_CONSTANT_OVERFLOW (comp_const)
      || TREE_CODE (minmax_const) != INTEGER_CST
      || TREE_CODE (minmax_const) != INTEGER_CST
      || TREE_CONSTANT_OVERFLOW (minmax_const))
      || TREE_CONSTANT_OVERFLOW (minmax_const))
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* Now handle all the various comparison codes.  We only handle EQ_EXPR
  /* Now handle all the various comparison codes.  We only handle EQ_EXPR
     and GT_EXPR, doing the rest with recursive calls using logical
     and GT_EXPR, doing the rest with recursive calls using logical
     simplifications.  */
     simplifications.  */
  switch (code)
  switch (code)
    {
    {
    case NE_EXPR:  case LT_EXPR:  case LE_EXPR:
    case NE_EXPR:  case LT_EXPR:  case LE_EXPR:
      {
      {
        tree tem = optimize_minmax_comparison (invert_tree_comparison (code, false),
        tree tem = optimize_minmax_comparison (invert_tree_comparison (code, false),
                                          type, op0, op1);
                                          type, op0, op1);
        if (tem)
        if (tem)
          return invert_truthvalue (tem);
          return invert_truthvalue (tem);
        return NULL_TREE;
        return NULL_TREE;
      }
      }
 
 
    case GE_EXPR:
    case GE_EXPR:
      return
      return
        fold_build2 (TRUTH_ORIF_EXPR, type,
        fold_build2 (TRUTH_ORIF_EXPR, type,
                     optimize_minmax_comparison
                     optimize_minmax_comparison
                     (EQ_EXPR, type, arg0, comp_const),
                     (EQ_EXPR, type, arg0, comp_const),
                     optimize_minmax_comparison
                     optimize_minmax_comparison
                     (GT_EXPR, type, arg0, comp_const));
                     (GT_EXPR, type, arg0, comp_const));
 
 
    case EQ_EXPR:
    case EQ_EXPR:
      if (op_code == MAX_EXPR && consts_equal)
      if (op_code == MAX_EXPR && consts_equal)
        /* MAX (X, 0) == 0  ->  X <= 0  */
        /* MAX (X, 0) == 0  ->  X <= 0  */
        return fold_build2 (LE_EXPR, type, inner, comp_const);
        return fold_build2 (LE_EXPR, type, inner, comp_const);
 
 
      else if (op_code == MAX_EXPR && consts_lt)
      else if (op_code == MAX_EXPR && consts_lt)
        /* MAX (X, 0) == 5  ->  X == 5   */
        /* MAX (X, 0) == 5  ->  X == 5   */
        return fold_build2 (EQ_EXPR, type, inner, comp_const);
        return fold_build2 (EQ_EXPR, type, inner, comp_const);
 
 
      else if (op_code == MAX_EXPR)
      else if (op_code == MAX_EXPR)
        /* MAX (X, 0) == -1  ->  false  */
        /* MAX (X, 0) == -1  ->  false  */
        return omit_one_operand (type, integer_zero_node, inner);
        return omit_one_operand (type, integer_zero_node, inner);
 
 
      else if (consts_equal)
      else if (consts_equal)
        /* MIN (X, 0) == 0  ->  X >= 0  */
        /* MIN (X, 0) == 0  ->  X >= 0  */
        return fold_build2 (GE_EXPR, type, inner, comp_const);
        return fold_build2 (GE_EXPR, type, inner, comp_const);
 
 
      else if (consts_lt)
      else if (consts_lt)
        /* MIN (X, 0) == 5  ->  false  */
        /* MIN (X, 0) == 5  ->  false  */
        return omit_one_operand (type, integer_zero_node, inner);
        return omit_one_operand (type, integer_zero_node, inner);
 
 
      else
      else
        /* MIN (X, 0) == -1  ->  X == -1  */
        /* MIN (X, 0) == -1  ->  X == -1  */
        return fold_build2 (EQ_EXPR, type, inner, comp_const);
        return fold_build2 (EQ_EXPR, type, inner, comp_const);
 
 
    case GT_EXPR:
    case GT_EXPR:
      if (op_code == MAX_EXPR && (consts_equal || consts_lt))
      if (op_code == MAX_EXPR && (consts_equal || consts_lt))
        /* MAX (X, 0) > 0  ->  X > 0
        /* MAX (X, 0) > 0  ->  X > 0
           MAX (X, 0) > 5  ->  X > 5  */
           MAX (X, 0) > 5  ->  X > 5  */
        return fold_build2 (GT_EXPR, type, inner, comp_const);
        return fold_build2 (GT_EXPR, type, inner, comp_const);
 
 
      else if (op_code == MAX_EXPR)
      else if (op_code == MAX_EXPR)
        /* MAX (X, 0) > -1  ->  true  */
        /* MAX (X, 0) > -1  ->  true  */
        return omit_one_operand (type, integer_one_node, inner);
        return omit_one_operand (type, integer_one_node, inner);
 
 
      else if (op_code == MIN_EXPR && (consts_equal || consts_lt))
      else if (op_code == MIN_EXPR && (consts_equal || consts_lt))
        /* MIN (X, 0) > 0  ->  false
        /* MIN (X, 0) > 0  ->  false
           MIN (X, 0) > 5  ->  false  */
           MIN (X, 0) > 5  ->  false  */
        return omit_one_operand (type, integer_zero_node, inner);
        return omit_one_operand (type, integer_zero_node, inner);
 
 
      else
      else
        /* MIN (X, 0) > -1  ->  X > -1  */
        /* MIN (X, 0) > -1  ->  X > -1  */
        return fold_build2 (GT_EXPR, type, inner, comp_const);
        return fold_build2 (GT_EXPR, type, inner, comp_const);
 
 
    default:
    default:
      return NULL_TREE;
      return NULL_TREE;
    }
    }
}
}


/* T is an integer expression that is being multiplied, divided, or taken a
/* T is an integer expression that is being multiplied, divided, or taken a
   modulus (CODE says which and what kind of divide or modulus) by a
   modulus (CODE says which and what kind of divide or modulus) by a
   constant C.  See if we can eliminate that operation by folding it with
   constant C.  See if we can eliminate that operation by folding it with
   other operations already in T.  WIDE_TYPE, if non-null, is a type that
   other operations already in T.  WIDE_TYPE, if non-null, is a type that
   should be used for the computation if wider than our type.
   should be used for the computation if wider than our type.
 
 
   For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
   For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
   (X * 2) + (Y * 4).  We must, however, be assured that either the original
   (X * 2) + (Y * 4).  We must, however, be assured that either the original
   expression would not overflow or that overflow is undefined for the type
   expression would not overflow or that overflow is undefined for the type
   in the language in question.
   in the language in question.
 
 
   We also canonicalize (X + 7) * 4 into X * 4 + 28 in the hope that either
   We also canonicalize (X + 7) * 4 into X * 4 + 28 in the hope that either
   the machine has a multiply-accumulate insn or that this is part of an
   the machine has a multiply-accumulate insn or that this is part of an
   addressing calculation.
   addressing calculation.
 
 
   If we return a non-null expression, it is an equivalent form of the
   If we return a non-null expression, it is an equivalent form of the
   original computation, but need not be in the original type.
   original computation, but need not be in the original type.
 
 
   We set *STRICT_OVERFLOW_P to true if the return values depends on
   We set *STRICT_OVERFLOW_P to true if the return values depends on
   signed overflow being undefined.  Otherwise we do not change
   signed overflow being undefined.  Otherwise we do not change
   *STRICT_OVERFLOW_P.  */
   *STRICT_OVERFLOW_P.  */
 
 
static tree
static tree
extract_muldiv (tree t, tree c, enum tree_code code, tree wide_type,
extract_muldiv (tree t, tree c, enum tree_code code, tree wide_type,
                bool *strict_overflow_p)
                bool *strict_overflow_p)
{
{
  /* To avoid exponential search depth, refuse to allow recursion past
  /* To avoid exponential search depth, refuse to allow recursion past
     three levels.  Beyond that (1) it's highly unlikely that we'll find
     three levels.  Beyond that (1) it's highly unlikely that we'll find
     something interesting and (2) we've probably processed it before
     something interesting and (2) we've probably processed it before
     when we built the inner expression.  */
     when we built the inner expression.  */
 
 
  static int depth;
  static int depth;
  tree ret;
  tree ret;
 
 
  if (depth > 3)
  if (depth > 3)
    return NULL;
    return NULL;
 
 
  depth++;
  depth++;
  ret = extract_muldiv_1 (t, c, code, wide_type, strict_overflow_p);
  ret = extract_muldiv_1 (t, c, code, wide_type, strict_overflow_p);
  depth--;
  depth--;
 
 
  return ret;
  return ret;
}
}
 
 
static tree
static tree
extract_muldiv_1 (tree t, tree c, enum tree_code code, tree wide_type,
extract_muldiv_1 (tree t, tree c, enum tree_code code, tree wide_type,
                  bool *strict_overflow_p)
                  bool *strict_overflow_p)
{
{
  tree type = TREE_TYPE (t);
  tree type = TREE_TYPE (t);
  enum tree_code tcode = TREE_CODE (t);
  enum tree_code tcode = TREE_CODE (t);
  tree ctype = (wide_type != 0 && (GET_MODE_SIZE (TYPE_MODE (wide_type))
  tree ctype = (wide_type != 0 && (GET_MODE_SIZE (TYPE_MODE (wide_type))
                                   > GET_MODE_SIZE (TYPE_MODE (type)))
                                   > GET_MODE_SIZE (TYPE_MODE (type)))
                ? wide_type : type);
                ? wide_type : type);
  tree t1, t2;
  tree t1, t2;
  int same_p = tcode == code;
  int same_p = tcode == code;
  tree op0 = NULL_TREE, op1 = NULL_TREE;
  tree op0 = NULL_TREE, op1 = NULL_TREE;
  bool sub_strict_overflow_p;
  bool sub_strict_overflow_p;
 
 
  /* Don't deal with constants of zero here; they confuse the code below.  */
  /* Don't deal with constants of zero here; they confuse the code below.  */
  if (integer_zerop (c))
  if (integer_zerop (c))
    return NULL_TREE;
    return NULL_TREE;
 
 
  if (TREE_CODE_CLASS (tcode) == tcc_unary)
  if (TREE_CODE_CLASS (tcode) == tcc_unary)
    op0 = TREE_OPERAND (t, 0);
    op0 = TREE_OPERAND (t, 0);
 
 
  if (TREE_CODE_CLASS (tcode) == tcc_binary)
  if (TREE_CODE_CLASS (tcode) == tcc_binary)
    op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1);
    op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1);
 
 
  /* Note that we need not handle conditional operations here since fold
  /* Note that we need not handle conditional operations here since fold
     already handles those cases.  So just do arithmetic here.  */
     already handles those cases.  So just do arithmetic here.  */
  switch (tcode)
  switch (tcode)
    {
    {
    case INTEGER_CST:
    case INTEGER_CST:
      /* For a constant, we can always simplify if we are a multiply
      /* For a constant, we can always simplify if we are a multiply
         or (for divide and modulus) if it is a multiple of our constant.  */
         or (for divide and modulus) if it is a multiple of our constant.  */
      if (code == MULT_EXPR
      if (code == MULT_EXPR
          || integer_zerop (const_binop (TRUNC_MOD_EXPR, t, c, 0)))
          || integer_zerop (const_binop (TRUNC_MOD_EXPR, t, c, 0)))
        return const_binop (code, fold_convert (ctype, t),
        return const_binop (code, fold_convert (ctype, t),
                            fold_convert (ctype, c), 0);
                            fold_convert (ctype, c), 0);
      break;
      break;
 
 
    case CONVERT_EXPR:  case NON_LVALUE_EXPR:  case NOP_EXPR:
    case CONVERT_EXPR:  case NON_LVALUE_EXPR:  case NOP_EXPR:
      /* If op0 is an expression ...  */
      /* If op0 is an expression ...  */
      if ((COMPARISON_CLASS_P (op0)
      if ((COMPARISON_CLASS_P (op0)
           || UNARY_CLASS_P (op0)
           || UNARY_CLASS_P (op0)
           || BINARY_CLASS_P (op0)
           || BINARY_CLASS_P (op0)
           || EXPRESSION_CLASS_P (op0))
           || EXPRESSION_CLASS_P (op0))
          /* ... and is unsigned, and its type is smaller than ctype,
          /* ... and is unsigned, and its type is smaller than ctype,
             then we cannot pass through as widening.  */
             then we cannot pass through as widening.  */
          && ((TYPE_UNSIGNED (TREE_TYPE (op0))
          && ((TYPE_UNSIGNED (TREE_TYPE (op0))
               && ! (TREE_CODE (TREE_TYPE (op0)) == INTEGER_TYPE
               && ! (TREE_CODE (TREE_TYPE (op0)) == INTEGER_TYPE
                     && TYPE_IS_SIZETYPE (TREE_TYPE (op0)))
                     && TYPE_IS_SIZETYPE (TREE_TYPE (op0)))
               && (GET_MODE_SIZE (TYPE_MODE (ctype))
               && (GET_MODE_SIZE (TYPE_MODE (ctype))
                   > GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0)))))
                   > GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0)))))
              /* ... or this is a truncation (t is narrower than op0),
              /* ... or this is a truncation (t is narrower than op0),
                 then we cannot pass through this narrowing.  */
                 then we cannot pass through this narrowing.  */
              || (GET_MODE_SIZE (TYPE_MODE (type))
              || (GET_MODE_SIZE (TYPE_MODE (type))
                  < GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0))))
                  < GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0))))
              /* ... or signedness changes for division or modulus,
              /* ... or signedness changes for division or modulus,
                 then we cannot pass through this conversion.  */
                 then we cannot pass through this conversion.  */
              || (code != MULT_EXPR
              || (code != MULT_EXPR
                  && (TYPE_UNSIGNED (ctype)
                  && (TYPE_UNSIGNED (ctype)
                      != TYPE_UNSIGNED (TREE_TYPE (op0))))))
                      != TYPE_UNSIGNED (TREE_TYPE (op0))))))
        break;
        break;
 
 
      /* Pass the constant down and see if we can make a simplification.  If
      /* Pass the constant down and see if we can make a simplification.  If
         we can, replace this expression with the inner simplification for
         we can, replace this expression with the inner simplification for
         possible later conversion to our or some other type.  */
         possible later conversion to our or some other type.  */
      if ((t2 = fold_convert (TREE_TYPE (op0), c)) != 0
      if ((t2 = fold_convert (TREE_TYPE (op0), c)) != 0
          && TREE_CODE (t2) == INTEGER_CST
          && TREE_CODE (t2) == INTEGER_CST
          && ! TREE_CONSTANT_OVERFLOW (t2)
          && ! TREE_CONSTANT_OVERFLOW (t2)
          && (0 != (t1 = extract_muldiv (op0, t2, code,
          && (0 != (t1 = extract_muldiv (op0, t2, code,
                                         code == MULT_EXPR
                                         code == MULT_EXPR
                                         ? ctype : NULL_TREE,
                                         ? ctype : NULL_TREE,
                                         strict_overflow_p))))
                                         strict_overflow_p))))
        return t1;
        return t1;
      break;
      break;
 
 
    case ABS_EXPR:
    case ABS_EXPR:
      /* If widening the type changes it from signed to unsigned, then we
      /* If widening the type changes it from signed to unsigned, then we
         must avoid building ABS_EXPR itself as unsigned.  */
         must avoid building ABS_EXPR itself as unsigned.  */
      if (TYPE_UNSIGNED (ctype) && !TYPE_UNSIGNED (type))
      if (TYPE_UNSIGNED (ctype) && !TYPE_UNSIGNED (type))
        {
        {
          tree cstype = (*lang_hooks.types.signed_type) (ctype);
          tree cstype = (*lang_hooks.types.signed_type) (ctype);
          if ((t1 = extract_muldiv (op0, c, code, cstype, strict_overflow_p))
          if ((t1 = extract_muldiv (op0, c, code, cstype, strict_overflow_p))
              != 0)
              != 0)
            {
            {
              t1 = fold_build1 (tcode, cstype, fold_convert (cstype, t1));
              t1 = fold_build1 (tcode, cstype, fold_convert (cstype, t1));
              return fold_convert (ctype, t1);
              return fold_convert (ctype, t1);
            }
            }
          break;
          break;
        }
        }
      /* FALLTHROUGH */
      /* FALLTHROUGH */
    case NEGATE_EXPR:
    case NEGATE_EXPR:
      if ((t1 = extract_muldiv (op0, c, code, wide_type, strict_overflow_p))
      if ((t1 = extract_muldiv (op0, c, code, wide_type, strict_overflow_p))
          != 0)
          != 0)
        return fold_build1 (tcode, ctype, fold_convert (ctype, t1));
        return fold_build1 (tcode, ctype, fold_convert (ctype, t1));
      break;
      break;
 
 
    case MIN_EXPR:  case MAX_EXPR:
    case MIN_EXPR:  case MAX_EXPR:
      /* If widening the type changes the signedness, then we can't perform
      /* If widening the type changes the signedness, then we can't perform
         this optimization as that changes the result.  */
         this optimization as that changes the result.  */
      if (TYPE_UNSIGNED (ctype) != TYPE_UNSIGNED (type))
      if (TYPE_UNSIGNED (ctype) != TYPE_UNSIGNED (type))
        break;
        break;
 
 
      /* MIN (a, b) / 5 -> MIN (a / 5, b / 5)  */
      /* MIN (a, b) / 5 -> MIN (a / 5, b / 5)  */
      sub_strict_overflow_p = false;
      sub_strict_overflow_p = false;
      if ((t1 = extract_muldiv (op0, c, code, wide_type,
      if ((t1 = extract_muldiv (op0, c, code, wide_type,
                                &sub_strict_overflow_p)) != 0
                                &sub_strict_overflow_p)) != 0
          && (t2 = extract_muldiv (op1, c, code, wide_type,
          && (t2 = extract_muldiv (op1, c, code, wide_type,
                                   &sub_strict_overflow_p)) != 0)
                                   &sub_strict_overflow_p)) != 0)
        {
        {
          if (tree_int_cst_sgn (c) < 0)
          if (tree_int_cst_sgn (c) < 0)
            tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR);
            tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR);
          if (sub_strict_overflow_p)
          if (sub_strict_overflow_p)
            *strict_overflow_p = true;
            *strict_overflow_p = true;
          return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
          return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
                              fold_convert (ctype, t2));
                              fold_convert (ctype, t2));
        }
        }
      break;
      break;
 
 
    case LSHIFT_EXPR:  case RSHIFT_EXPR:
    case LSHIFT_EXPR:  case RSHIFT_EXPR:
      /* If the second operand is constant, this is a multiplication
      /* If the second operand is constant, this is a multiplication
         or floor division, by a power of two, so we can treat it that
         or floor division, by a power of two, so we can treat it that
         way unless the multiplier or divisor overflows.  Signed
         way unless the multiplier or divisor overflows.  Signed
         left-shift overflow is implementation-defined rather than
         left-shift overflow is implementation-defined rather than
         undefined in C90, so do not convert signed left shift into
         undefined in C90, so do not convert signed left shift into
         multiplication.  */
         multiplication.  */
      if (TREE_CODE (op1) == INTEGER_CST
      if (TREE_CODE (op1) == INTEGER_CST
          && (tcode == RSHIFT_EXPR || TYPE_UNSIGNED (TREE_TYPE (op0)))
          && (tcode == RSHIFT_EXPR || TYPE_UNSIGNED (TREE_TYPE (op0)))
          /* const_binop may not detect overflow correctly,
          /* const_binop may not detect overflow correctly,
             so check for it explicitly here.  */
             so check for it explicitly here.  */
          && TYPE_PRECISION (TREE_TYPE (size_one_node)) > TREE_INT_CST_LOW (op1)
          && TYPE_PRECISION (TREE_TYPE (size_one_node)) > TREE_INT_CST_LOW (op1)
          && TREE_INT_CST_HIGH (op1) == 0
          && TREE_INT_CST_HIGH (op1) == 0
          && 0 != (t1 = fold_convert (ctype,
          && 0 != (t1 = fold_convert (ctype,
                                      const_binop (LSHIFT_EXPR,
                                      const_binop (LSHIFT_EXPR,
                                                   size_one_node,
                                                   size_one_node,
                                                   op1, 0)))
                                                   op1, 0)))
          && ! TREE_OVERFLOW (t1))
          && ! TREE_OVERFLOW (t1))
        return extract_muldiv (build2 (tcode == LSHIFT_EXPR
        return extract_muldiv (build2 (tcode == LSHIFT_EXPR
                                       ? MULT_EXPR : FLOOR_DIV_EXPR,
                                       ? MULT_EXPR : FLOOR_DIV_EXPR,
                                       ctype, fold_convert (ctype, op0), t1),
                                       ctype, fold_convert (ctype, op0), t1),
                               c, code, wide_type, strict_overflow_p);
                               c, code, wide_type, strict_overflow_p);
      break;
      break;
 
 
    case PLUS_EXPR:  case MINUS_EXPR:
    case PLUS_EXPR:  case MINUS_EXPR:
      /* See if we can eliminate the operation on both sides.  If we can, we
      /* See if we can eliminate the operation on both sides.  If we can, we
         can return a new PLUS or MINUS.  If we can't, the only remaining
         can return a new PLUS or MINUS.  If we can't, the only remaining
         cases where we can do anything are if the second operand is a
         cases where we can do anything are if the second operand is a
         constant.  */
         constant.  */
      sub_strict_overflow_p = false;
      sub_strict_overflow_p = false;
      t1 = extract_muldiv (op0, c, code, wide_type, &sub_strict_overflow_p);
      t1 = extract_muldiv (op0, c, code, wide_type, &sub_strict_overflow_p);
      t2 = extract_muldiv (op1, c, code, wide_type, &sub_strict_overflow_p);
      t2 = extract_muldiv (op1, c, code, wide_type, &sub_strict_overflow_p);
      if (t1 != 0 && t2 != 0
      if (t1 != 0 && t2 != 0
          && (code == MULT_EXPR
          && (code == MULT_EXPR
              /* If not multiplication, we can only do this if both operands
              /* If not multiplication, we can only do this if both operands
                 are divisible by c.  */
                 are divisible by c.  */
              || (multiple_of_p (ctype, op0, c)
              || (multiple_of_p (ctype, op0, c)
                  && multiple_of_p (ctype, op1, c))))
                  && multiple_of_p (ctype, op1, c))))
        {
        {
          if (sub_strict_overflow_p)
          if (sub_strict_overflow_p)
            *strict_overflow_p = true;
            *strict_overflow_p = true;
          return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
          return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
                              fold_convert (ctype, t2));
                              fold_convert (ctype, t2));
        }
        }
 
 
      /* If this was a subtraction, negate OP1 and set it to be an addition.
      /* If this was a subtraction, negate OP1 and set it to be an addition.
         This simplifies the logic below.  */
         This simplifies the logic below.  */
      if (tcode == MINUS_EXPR)
      if (tcode == MINUS_EXPR)
        tcode = PLUS_EXPR, op1 = negate_expr (op1);
        tcode = PLUS_EXPR, op1 = negate_expr (op1);
 
 
      if (TREE_CODE (op1) != INTEGER_CST)
      if (TREE_CODE (op1) != INTEGER_CST)
        break;
        break;
 
 
      /* If either OP1 or C are negative, this optimization is not safe for
      /* If either OP1 or C are negative, this optimization is not safe for
         some of the division and remainder types while for others we need
         some of the division and remainder types while for others we need
         to change the code.  */
         to change the code.  */
      if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0)
      if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0)
        {
        {
          if (code == CEIL_DIV_EXPR)
          if (code == CEIL_DIV_EXPR)
            code = FLOOR_DIV_EXPR;
            code = FLOOR_DIV_EXPR;
          else if (code == FLOOR_DIV_EXPR)
          else if (code == FLOOR_DIV_EXPR)
            code = CEIL_DIV_EXPR;
            code = CEIL_DIV_EXPR;
          else if (code != MULT_EXPR
          else if (code != MULT_EXPR
                   && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR)
                   && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR)
            break;
            break;
        }
        }
 
 
      /* If it's a multiply or a division/modulus operation of a multiple
      /* If it's a multiply or a division/modulus operation of a multiple
         of our constant, do the operation and verify it doesn't overflow.  */
         of our constant, do the operation and verify it doesn't overflow.  */
      if (code == MULT_EXPR
      if (code == MULT_EXPR
          || integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
          || integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
        {
        {
          op1 = const_binop (code, fold_convert (ctype, op1),
          op1 = const_binop (code, fold_convert (ctype, op1),
                             fold_convert (ctype, c), 0);
                             fold_convert (ctype, c), 0);
          /* We allow the constant to overflow with wrapping semantics.  */
          /* We allow the constant to overflow with wrapping semantics.  */
          if (op1 == 0
          if (op1 == 0
              || (TREE_OVERFLOW (op1) && !TYPE_OVERFLOW_WRAPS (ctype)))
              || (TREE_OVERFLOW (op1) && !TYPE_OVERFLOW_WRAPS (ctype)))
            break;
            break;
        }
        }
      else
      else
        break;
        break;
 
 
      /* If we have an unsigned type is not a sizetype, we cannot widen
      /* If we have an unsigned type is not a sizetype, we cannot widen
         the operation since it will change the result if the original
         the operation since it will change the result if the original
         computation overflowed.  */
         computation overflowed.  */
      if (TYPE_UNSIGNED (ctype)
      if (TYPE_UNSIGNED (ctype)
          && ! (TREE_CODE (ctype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (ctype))
          && ! (TREE_CODE (ctype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (ctype))
          && ctype != type)
          && ctype != type)
        break;
        break;
 
 
      /* If we were able to eliminate our operation from the first side,
      /* If we were able to eliminate our operation from the first side,
         apply our operation to the second side and reform the PLUS.  */
         apply our operation to the second side and reform the PLUS.  */
      if (t1 != 0 && (TREE_CODE (t1) != code || code == MULT_EXPR))
      if (t1 != 0 && (TREE_CODE (t1) != code || code == MULT_EXPR))
        return fold_build2 (tcode, ctype, fold_convert (ctype, t1), op1);
        return fold_build2 (tcode, ctype, fold_convert (ctype, t1), op1);
 
 
      /* The last case is if we are a multiply.  In that case, we can
      /* The last case is if we are a multiply.  In that case, we can
         apply the distributive law to commute the multiply and addition
         apply the distributive law to commute the multiply and addition
         if the multiplication of the constants doesn't overflow.  */
         if the multiplication of the constants doesn't overflow.  */
      if (code == MULT_EXPR)
      if (code == MULT_EXPR)
        return fold_build2 (tcode, ctype,
        return fold_build2 (tcode, ctype,
                            fold_build2 (code, ctype,
                            fold_build2 (code, ctype,
                                         fold_convert (ctype, op0),
                                         fold_convert (ctype, op0),
                                         fold_convert (ctype, c)),
                                         fold_convert (ctype, c)),
                            op1);
                            op1);
 
 
      break;
      break;
 
 
    case MULT_EXPR:
    case MULT_EXPR:
      /* We have a special case here if we are doing something like
      /* We have a special case here if we are doing something like
         (C * 8) % 4 since we know that's zero.  */
         (C * 8) % 4 since we know that's zero.  */
      if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR
      if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR
           || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR)
           || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR)
          && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
          && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
          && integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
          && integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
        return omit_one_operand (type, integer_zero_node, op0);
        return omit_one_operand (type, integer_zero_node, op0);
 
 
      /* ... fall through ...  */
      /* ... fall through ...  */
 
 
    case TRUNC_DIV_EXPR:  case CEIL_DIV_EXPR:  case FLOOR_DIV_EXPR:
    case TRUNC_DIV_EXPR:  case CEIL_DIV_EXPR:  case FLOOR_DIV_EXPR:
    case ROUND_DIV_EXPR:  case EXACT_DIV_EXPR:
    case ROUND_DIV_EXPR:  case EXACT_DIV_EXPR:
      /* If we can extract our operation from the LHS, do so and return a
      /* If we can extract our operation from the LHS, do so and return a
         new operation.  Likewise for the RHS from a MULT_EXPR.  Otherwise,
         new operation.  Likewise for the RHS from a MULT_EXPR.  Otherwise,
         do something only if the second operand is a constant.  */
         do something only if the second operand is a constant.  */
      if (same_p
      if (same_p
          && (t1 = extract_muldiv (op0, c, code, wide_type,
          && (t1 = extract_muldiv (op0, c, code, wide_type,
                                   strict_overflow_p)) != 0)
                                   strict_overflow_p)) != 0)
        return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
        return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
                            fold_convert (ctype, op1));
                            fold_convert (ctype, op1));
      else if (tcode == MULT_EXPR && code == MULT_EXPR
      else if (tcode == MULT_EXPR && code == MULT_EXPR
               && (t1 = extract_muldiv (op1, c, code, wide_type,
               && (t1 = extract_muldiv (op1, c, code, wide_type,
                                        strict_overflow_p)) != 0)
                                        strict_overflow_p)) != 0)
        return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
        return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
                            fold_convert (ctype, t1));
                            fold_convert (ctype, t1));
      else if (TREE_CODE (op1) != INTEGER_CST)
      else if (TREE_CODE (op1) != INTEGER_CST)
        return 0;
        return 0;
 
 
      /* If these are the same operation types, we can associate them
      /* If these are the same operation types, we can associate them
         assuming no overflow.  */
         assuming no overflow.  */
      if (tcode == code
      if (tcode == code
          && 0 != (t1 = const_binop (MULT_EXPR, fold_convert (ctype, op1),
          && 0 != (t1 = const_binop (MULT_EXPR, fold_convert (ctype, op1),
                                     fold_convert (ctype, c), 0))
                                     fold_convert (ctype, c), 0))
          && ! TREE_OVERFLOW (t1))
          && ! TREE_OVERFLOW (t1))
        return fold_build2 (tcode, ctype, fold_convert (ctype, op0), t1);
        return fold_build2 (tcode, ctype, fold_convert (ctype, op0), t1);
 
 
      /* If these operations "cancel" each other, we have the main
      /* If these operations "cancel" each other, we have the main
         optimizations of this pass, which occur when either constant is a
         optimizations of this pass, which occur when either constant is a
         multiple of the other, in which case we replace this with either an
         multiple of the other, in which case we replace this with either an
         operation or CODE or TCODE.
         operation or CODE or TCODE.
 
 
         If we have an unsigned type that is not a sizetype, we cannot do
         If we have an unsigned type that is not a sizetype, we cannot do
         this since it will change the result if the original computation
         this since it will change the result if the original computation
         overflowed.  */
         overflowed.  */
      if ((TYPE_OVERFLOW_UNDEFINED (ctype)
      if ((TYPE_OVERFLOW_UNDEFINED (ctype)
           || (TREE_CODE (ctype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (ctype)))
           || (TREE_CODE (ctype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (ctype)))
          && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR)
          && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR)
              || (tcode == MULT_EXPR
              || (tcode == MULT_EXPR
                  && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR
                  && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR
                  && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR)))
                  && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR)))
        {
        {
          if (integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
          if (integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
            {
            {
              if (TYPE_OVERFLOW_UNDEFINED (ctype))
              if (TYPE_OVERFLOW_UNDEFINED (ctype))
                *strict_overflow_p = true;
                *strict_overflow_p = true;
              return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
              return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
                                  fold_convert (ctype,
                                  fold_convert (ctype,
                                                const_binop (TRUNC_DIV_EXPR,
                                                const_binop (TRUNC_DIV_EXPR,
                                                             op1, c, 0)));
                                                             op1, c, 0)));
            }
            }
          else if (integer_zerop (const_binop (TRUNC_MOD_EXPR, c, op1, 0)))
          else if (integer_zerop (const_binop (TRUNC_MOD_EXPR, c, op1, 0)))
            {
            {
              if (TYPE_OVERFLOW_UNDEFINED (ctype))
              if (TYPE_OVERFLOW_UNDEFINED (ctype))
                *strict_overflow_p = true;
                *strict_overflow_p = true;
              return fold_build2 (code, ctype, fold_convert (ctype, op0),
              return fold_build2 (code, ctype, fold_convert (ctype, op0),
                                  fold_convert (ctype,
                                  fold_convert (ctype,
                                                const_binop (TRUNC_DIV_EXPR,
                                                const_binop (TRUNC_DIV_EXPR,
                                                             c, op1, 0)));
                                                             c, op1, 0)));
            }
            }
        }
        }
      break;
      break;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  return 0;
  return 0;
}
}


/* Return a node which has the indicated constant VALUE (either 0 or
/* Return a node which has the indicated constant VALUE (either 0 or
   1), and is of the indicated TYPE.  */
   1), and is of the indicated TYPE.  */
 
 
tree
tree
constant_boolean_node (int value, tree type)
constant_boolean_node (int value, tree type)
{
{
  if (type == integer_type_node)
  if (type == integer_type_node)
    return value ? integer_one_node : integer_zero_node;
    return value ? integer_one_node : integer_zero_node;
  else if (type == boolean_type_node)
  else if (type == boolean_type_node)
    return value ? boolean_true_node : boolean_false_node;
    return value ? boolean_true_node : boolean_false_node;
  else
  else
    return build_int_cst (type, value);
    return build_int_cst (type, value);
}
}
 
 
 
 
/* Return true if expr looks like an ARRAY_REF and set base and
/* Return true if expr looks like an ARRAY_REF and set base and
   offset to the appropriate trees.  If there is no offset,
   offset to the appropriate trees.  If there is no offset,
   offset is set to NULL_TREE.  Base will be canonicalized to
   offset is set to NULL_TREE.  Base will be canonicalized to
   something you can get the element type from using
   something you can get the element type from using
   TREE_TYPE (TREE_TYPE (base)).  Offset will be the offset
   TREE_TYPE (TREE_TYPE (base)).  Offset will be the offset
   in bytes to the base.  */
   in bytes to the base.  */
 
 
static bool
static bool
extract_array_ref (tree expr, tree *base, tree *offset)
extract_array_ref (tree expr, tree *base, tree *offset)
{
{
  /* One canonical form is a PLUS_EXPR with the first
  /* One canonical form is a PLUS_EXPR with the first
     argument being an ADDR_EXPR with a possible NOP_EXPR
     argument being an ADDR_EXPR with a possible NOP_EXPR
     attached.  */
     attached.  */
  if (TREE_CODE (expr) == PLUS_EXPR)
  if (TREE_CODE (expr) == PLUS_EXPR)
    {
    {
      tree op0 = TREE_OPERAND (expr, 0);
      tree op0 = TREE_OPERAND (expr, 0);
      tree inner_base, dummy1;
      tree inner_base, dummy1;
      /* Strip NOP_EXPRs here because the C frontends and/or
      /* Strip NOP_EXPRs here because the C frontends and/or
         folders present us (int *)&x.a + 4B possibly.  */
         folders present us (int *)&x.a + 4B possibly.  */
      STRIP_NOPS (op0);
      STRIP_NOPS (op0);
      if (extract_array_ref (op0, &inner_base, &dummy1))
      if (extract_array_ref (op0, &inner_base, &dummy1))
        {
        {
          *base = inner_base;
          *base = inner_base;
          if (dummy1 == NULL_TREE)
          if (dummy1 == NULL_TREE)
            *offset = TREE_OPERAND (expr, 1);
            *offset = TREE_OPERAND (expr, 1);
          else
          else
            *offset = fold_build2 (PLUS_EXPR, TREE_TYPE (expr),
            *offset = fold_build2 (PLUS_EXPR, TREE_TYPE (expr),
                                   dummy1, TREE_OPERAND (expr, 1));
                                   dummy1, TREE_OPERAND (expr, 1));
          return true;
          return true;
        }
        }
    }
    }
  /* Other canonical form is an ADDR_EXPR of an ARRAY_REF,
  /* Other canonical form is an ADDR_EXPR of an ARRAY_REF,
     which we transform into an ADDR_EXPR with appropriate
     which we transform into an ADDR_EXPR with appropriate
     offset.  For other arguments to the ADDR_EXPR we assume
     offset.  For other arguments to the ADDR_EXPR we assume
     zero offset and as such do not care about the ADDR_EXPR
     zero offset and as such do not care about the ADDR_EXPR
     type and strip possible nops from it.  */
     type and strip possible nops from it.  */
  else if (TREE_CODE (expr) == ADDR_EXPR)
  else if (TREE_CODE (expr) == ADDR_EXPR)
    {
    {
      tree op0 = TREE_OPERAND (expr, 0);
      tree op0 = TREE_OPERAND (expr, 0);
      if (TREE_CODE (op0) == ARRAY_REF)
      if (TREE_CODE (op0) == ARRAY_REF)
        {
        {
          tree idx = TREE_OPERAND (op0, 1);
          tree idx = TREE_OPERAND (op0, 1);
          *base = TREE_OPERAND (op0, 0);
          *base = TREE_OPERAND (op0, 0);
          *offset = fold_build2 (MULT_EXPR, TREE_TYPE (idx), idx,
          *offset = fold_build2 (MULT_EXPR, TREE_TYPE (idx), idx,
                                 array_ref_element_size (op0));
                                 array_ref_element_size (op0));
        }
        }
      else
      else
        {
        {
          /* Handle array-to-pointer decay as &a.  */
          /* Handle array-to-pointer decay as &a.  */
          if (TREE_CODE (TREE_TYPE (op0)) == ARRAY_TYPE)
          if (TREE_CODE (TREE_TYPE (op0)) == ARRAY_TYPE)
            *base = TREE_OPERAND (expr, 0);
            *base = TREE_OPERAND (expr, 0);
          else
          else
            *base = expr;
            *base = expr;
          *offset = NULL_TREE;
          *offset = NULL_TREE;
        }
        }
      return true;
      return true;
    }
    }
  /* The next canonical form is a VAR_DECL with POINTER_TYPE.  */
  /* The next canonical form is a VAR_DECL with POINTER_TYPE.  */
  else if (SSA_VAR_P (expr)
  else if (SSA_VAR_P (expr)
           && TREE_CODE (TREE_TYPE (expr)) == POINTER_TYPE)
           && TREE_CODE (TREE_TYPE (expr)) == POINTER_TYPE)
    {
    {
      *base = expr;
      *base = expr;
      *offset = NULL_TREE;
      *offset = NULL_TREE;
      return true;
      return true;
    }
    }
 
 
  return false;
  return false;
}
}
 
 
 
 
/* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
/* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
   Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'.  Here
   Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'.  Here
   CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
   CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
   expression, and ARG to `a'.  If COND_FIRST_P is nonzero, then the
   expression, and ARG to `a'.  If COND_FIRST_P is nonzero, then the
   COND is the first argument to CODE; otherwise (as in the example
   COND is the first argument to CODE; otherwise (as in the example
   given here), it is the second argument.  TYPE is the type of the
   given here), it is the second argument.  TYPE is the type of the
   original expression.  Return NULL_TREE if no simplification is
   original expression.  Return NULL_TREE if no simplification is
   possible.  */
   possible.  */
 
 
static tree
static tree
fold_binary_op_with_conditional_arg (enum tree_code code,
fold_binary_op_with_conditional_arg (enum tree_code code,
                                     tree type, tree op0, tree op1,
                                     tree type, tree op0, tree op1,
                                     tree cond, tree arg, int cond_first_p)
                                     tree cond, tree arg, int cond_first_p)
{
{
  tree cond_type = cond_first_p ? TREE_TYPE (op0) : TREE_TYPE (op1);
  tree cond_type = cond_first_p ? TREE_TYPE (op0) : TREE_TYPE (op1);
  tree arg_type = cond_first_p ? TREE_TYPE (op1) : TREE_TYPE (op0);
  tree arg_type = cond_first_p ? TREE_TYPE (op1) : TREE_TYPE (op0);
  tree test, true_value, false_value;
  tree test, true_value, false_value;
  tree lhs = NULL_TREE;
  tree lhs = NULL_TREE;
  tree rhs = NULL_TREE;
  tree rhs = NULL_TREE;
 
 
  /* This transformation is only worthwhile if we don't have to wrap
  /* This transformation is only worthwhile if we don't have to wrap
     arg in a SAVE_EXPR, and the operation can be simplified on at least
     arg in a SAVE_EXPR, and the operation can be simplified on at least
     one of the branches once its pushed inside the COND_EXPR.  */
     one of the branches once its pushed inside the COND_EXPR.  */
  if (!TREE_CONSTANT (arg))
  if (!TREE_CONSTANT (arg))
    return NULL_TREE;
    return NULL_TREE;
 
 
  if (TREE_CODE (cond) == COND_EXPR)
  if (TREE_CODE (cond) == COND_EXPR)
    {
    {
      test = TREE_OPERAND (cond, 0);
      test = TREE_OPERAND (cond, 0);
      true_value = TREE_OPERAND (cond, 1);
      true_value = TREE_OPERAND (cond, 1);
      false_value = TREE_OPERAND (cond, 2);
      false_value = TREE_OPERAND (cond, 2);
      /* If this operand throws an expression, then it does not make
      /* If this operand throws an expression, then it does not make
         sense to try to perform a logical or arithmetic operation
         sense to try to perform a logical or arithmetic operation
         involving it.  */
         involving it.  */
      if (VOID_TYPE_P (TREE_TYPE (true_value)))
      if (VOID_TYPE_P (TREE_TYPE (true_value)))
        lhs = true_value;
        lhs = true_value;
      if (VOID_TYPE_P (TREE_TYPE (false_value)))
      if (VOID_TYPE_P (TREE_TYPE (false_value)))
        rhs = false_value;
        rhs = false_value;
    }
    }
  else
  else
    {
    {
      tree testtype = TREE_TYPE (cond);
      tree testtype = TREE_TYPE (cond);
      test = cond;
      test = cond;
      true_value = constant_boolean_node (true, testtype);
      true_value = constant_boolean_node (true, testtype);
      false_value = constant_boolean_node (false, testtype);
      false_value = constant_boolean_node (false, testtype);
    }
    }
 
 
  arg = fold_convert (arg_type, arg);
  arg = fold_convert (arg_type, arg);
  if (lhs == 0)
  if (lhs == 0)
    {
    {
      true_value = fold_convert (cond_type, true_value);
      true_value = fold_convert (cond_type, true_value);
      if (cond_first_p)
      if (cond_first_p)
        lhs = fold_build2 (code, type, true_value, arg);
        lhs = fold_build2 (code, type, true_value, arg);
      else
      else
        lhs = fold_build2 (code, type, arg, true_value);
        lhs = fold_build2 (code, type, arg, true_value);
    }
    }
  if (rhs == 0)
  if (rhs == 0)
    {
    {
      false_value = fold_convert (cond_type, false_value);
      false_value = fold_convert (cond_type, false_value);
      if (cond_first_p)
      if (cond_first_p)
        rhs = fold_build2 (code, type, false_value, arg);
        rhs = fold_build2 (code, type, false_value, arg);
      else
      else
        rhs = fold_build2 (code, type, arg, false_value);
        rhs = fold_build2 (code, type, arg, false_value);
    }
    }
 
 
  test = fold_build3 (COND_EXPR, type, test, lhs, rhs);
  test = fold_build3 (COND_EXPR, type, test, lhs, rhs);
  return fold_convert (type, test);
  return fold_convert (type, test);
}
}
 
 


/* Subroutine of fold() that checks for the addition of +/- 0.0.
/* Subroutine of fold() that checks for the addition of +/- 0.0.
 
 
   If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
   If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
   TYPE, X + ADDEND is the same as X.  If NEGATE, return true if X -
   TYPE, X + ADDEND is the same as X.  If NEGATE, return true if X -
   ADDEND is the same as X.
   ADDEND is the same as X.
 
 
   X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
   X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
   and finite.  The problematic cases are when X is zero, and its mode
   and finite.  The problematic cases are when X is zero, and its mode
   has signed zeros.  In the case of rounding towards -infinity,
   has signed zeros.  In the case of rounding towards -infinity,
   X - 0 is not the same as X because 0 - 0 is -0.  In other rounding
   X - 0 is not the same as X because 0 - 0 is -0.  In other rounding
   modes, X + 0 is not the same as X because -0 + 0 is 0.  */
   modes, X + 0 is not the same as X because -0 + 0 is 0.  */
 
 
static bool
static bool
fold_real_zero_addition_p (tree type, tree addend, int negate)
fold_real_zero_addition_p (tree type, tree addend, int negate)
{
{
  if (!real_zerop (addend))
  if (!real_zerop (addend))
    return false;
    return false;
 
 
  /* Don't allow the fold with -fsignaling-nans.  */
  /* Don't allow the fold with -fsignaling-nans.  */
  if (HONOR_SNANS (TYPE_MODE (type)))
  if (HONOR_SNANS (TYPE_MODE (type)))
    return false;
    return false;
 
 
  /* Allow the fold if zeros aren't signed, or their sign isn't important.  */
  /* Allow the fold if zeros aren't signed, or their sign isn't important.  */
  if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type)))
  if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type)))
    return true;
    return true;
 
 
  /* Treat x + -0 as x - 0 and x - -0 as x + 0.  */
  /* Treat x + -0 as x - 0 and x - -0 as x + 0.  */
  if (TREE_CODE (addend) == REAL_CST
  if (TREE_CODE (addend) == REAL_CST
      && REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend)))
      && REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend)))
    negate = !negate;
    negate = !negate;
 
 
  /* The mode has signed zeros, and we have to honor their sign.
  /* The mode has signed zeros, and we have to honor their sign.
     In this situation, there is only one case we can return true for.
     In this situation, there is only one case we can return true for.
     X - 0 is the same as X unless rounding towards -infinity is
     X - 0 is the same as X unless rounding towards -infinity is
     supported.  */
     supported.  */
  return negate && !HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type));
  return negate && !HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type));
}
}
 
 
/* Subroutine of fold() that checks comparisons of built-in math
/* Subroutine of fold() that checks comparisons of built-in math
   functions against real constants.
   functions against real constants.
 
 
   FCODE is the DECL_FUNCTION_CODE of the built-in, CODE is the comparison
   FCODE is the DECL_FUNCTION_CODE of the built-in, CODE is the comparison
   operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR, GE_EXPR or LE_EXPR.  TYPE
   operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR, GE_EXPR or LE_EXPR.  TYPE
   is the type of the result and ARG0 and ARG1 are the operands of the
   is the type of the result and ARG0 and ARG1 are the operands of the
   comparison.  ARG1 must be a TREE_REAL_CST.
   comparison.  ARG1 must be a TREE_REAL_CST.
 
 
   The function returns the constant folded tree if a simplification
   The function returns the constant folded tree if a simplification
   can be made, and NULL_TREE otherwise.  */
   can be made, and NULL_TREE otherwise.  */
 
 
static tree
static tree
fold_mathfn_compare (enum built_in_function fcode, enum tree_code code,
fold_mathfn_compare (enum built_in_function fcode, enum tree_code code,
                     tree type, tree arg0, tree arg1)
                     tree type, tree arg0, tree arg1)
{
{
  REAL_VALUE_TYPE c;
  REAL_VALUE_TYPE c;
 
 
  if (BUILTIN_SQRT_P (fcode))
  if (BUILTIN_SQRT_P (fcode))
    {
    {
      tree arg = TREE_VALUE (TREE_OPERAND (arg0, 1));
      tree arg = TREE_VALUE (TREE_OPERAND (arg0, 1));
      enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg0));
      enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg0));
 
 
      c = TREE_REAL_CST (arg1);
      c = TREE_REAL_CST (arg1);
      if (REAL_VALUE_NEGATIVE (c))
      if (REAL_VALUE_NEGATIVE (c))
        {
        {
          /* sqrt(x) < y is always false, if y is negative.  */
          /* sqrt(x) < y is always false, if y is negative.  */
          if (code == EQ_EXPR || code == LT_EXPR || code == LE_EXPR)
          if (code == EQ_EXPR || code == LT_EXPR || code == LE_EXPR)
            return omit_one_operand (type, integer_zero_node, arg);
            return omit_one_operand (type, integer_zero_node, arg);
 
 
          /* sqrt(x) > y is always true, if y is negative and we
          /* sqrt(x) > y is always true, if y is negative and we
             don't care about NaNs, i.e. negative values of x.  */
             don't care about NaNs, i.e. negative values of x.  */
          if (code == NE_EXPR || !HONOR_NANS (mode))
          if (code == NE_EXPR || !HONOR_NANS (mode))
            return omit_one_operand (type, integer_one_node, arg);
            return omit_one_operand (type, integer_one_node, arg);
 
 
          /* sqrt(x) > y is the same as x >= 0, if y is negative.  */
          /* sqrt(x) > y is the same as x >= 0, if y is negative.  */
          return fold_build2 (GE_EXPR, type, arg,
          return fold_build2 (GE_EXPR, type, arg,
                              build_real (TREE_TYPE (arg), dconst0));
                              build_real (TREE_TYPE (arg), dconst0));
        }
        }
      else if (code == GT_EXPR || code == GE_EXPR)
      else if (code == GT_EXPR || code == GE_EXPR)
        {
        {
          REAL_VALUE_TYPE c2;
          REAL_VALUE_TYPE c2;
 
 
          REAL_ARITHMETIC (c2, MULT_EXPR, c, c);
          REAL_ARITHMETIC (c2, MULT_EXPR, c, c);
          real_convert (&c2, mode, &c2);
          real_convert (&c2, mode, &c2);
 
 
          if (REAL_VALUE_ISINF (c2))
          if (REAL_VALUE_ISINF (c2))
            {
            {
              /* sqrt(x) > y is x == +Inf, when y is very large.  */
              /* sqrt(x) > y is x == +Inf, when y is very large.  */
              if (HONOR_INFINITIES (mode))
              if (HONOR_INFINITIES (mode))
                return fold_build2 (EQ_EXPR, type, arg,
                return fold_build2 (EQ_EXPR, type, arg,
                                    build_real (TREE_TYPE (arg), c2));
                                    build_real (TREE_TYPE (arg), c2));
 
 
              /* sqrt(x) > y is always false, when y is very large
              /* sqrt(x) > y is always false, when y is very large
                 and we don't care about infinities.  */
                 and we don't care about infinities.  */
              return omit_one_operand (type, integer_zero_node, arg);
              return omit_one_operand (type, integer_zero_node, arg);
            }
            }
 
 
          /* sqrt(x) > c is the same as x > c*c.  */
          /* sqrt(x) > c is the same as x > c*c.  */
          return fold_build2 (code, type, arg,
          return fold_build2 (code, type, arg,
                              build_real (TREE_TYPE (arg), c2));
                              build_real (TREE_TYPE (arg), c2));
        }
        }
      else if (code == LT_EXPR || code == LE_EXPR)
      else if (code == LT_EXPR || code == LE_EXPR)
        {
        {
          REAL_VALUE_TYPE c2;
          REAL_VALUE_TYPE c2;
 
 
          REAL_ARITHMETIC (c2, MULT_EXPR, c, c);
          REAL_ARITHMETIC (c2, MULT_EXPR, c, c);
          real_convert (&c2, mode, &c2);
          real_convert (&c2, mode, &c2);
 
 
          if (REAL_VALUE_ISINF (c2))
          if (REAL_VALUE_ISINF (c2))
            {
            {
              /* sqrt(x) < y is always true, when y is a very large
              /* sqrt(x) < y is always true, when y is a very large
                 value and we don't care about NaNs or Infinities.  */
                 value and we don't care about NaNs or Infinities.  */
              if (! HONOR_NANS (mode) && ! HONOR_INFINITIES (mode))
              if (! HONOR_NANS (mode) && ! HONOR_INFINITIES (mode))
                return omit_one_operand (type, integer_one_node, arg);
                return omit_one_operand (type, integer_one_node, arg);
 
 
              /* sqrt(x) < y is x != +Inf when y is very large and we
              /* sqrt(x) < y is x != +Inf when y is very large and we
                 don't care about NaNs.  */
                 don't care about NaNs.  */
              if (! HONOR_NANS (mode))
              if (! HONOR_NANS (mode))
                return fold_build2 (NE_EXPR, type, arg,
                return fold_build2 (NE_EXPR, type, arg,
                                    build_real (TREE_TYPE (arg), c2));
                                    build_real (TREE_TYPE (arg), c2));
 
 
              /* sqrt(x) < y is x >= 0 when y is very large and we
              /* sqrt(x) < y is x >= 0 when y is very large and we
                 don't care about Infinities.  */
                 don't care about Infinities.  */
              if (! HONOR_INFINITIES (mode))
              if (! HONOR_INFINITIES (mode))
                return fold_build2 (GE_EXPR, type, arg,
                return fold_build2 (GE_EXPR, type, arg,
                                    build_real (TREE_TYPE (arg), dconst0));
                                    build_real (TREE_TYPE (arg), dconst0));
 
 
              /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large.  */
              /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large.  */
              if (lang_hooks.decls.global_bindings_p () != 0
              if (lang_hooks.decls.global_bindings_p () != 0
                  || CONTAINS_PLACEHOLDER_P (arg))
                  || CONTAINS_PLACEHOLDER_P (arg))
                return NULL_TREE;
                return NULL_TREE;
 
 
              arg = save_expr (arg);
              arg = save_expr (arg);
              return fold_build2 (TRUTH_ANDIF_EXPR, type,
              return fold_build2 (TRUTH_ANDIF_EXPR, type,
                                  fold_build2 (GE_EXPR, type, arg,
                                  fold_build2 (GE_EXPR, type, arg,
                                               build_real (TREE_TYPE (arg),
                                               build_real (TREE_TYPE (arg),
                                                           dconst0)),
                                                           dconst0)),
                                  fold_build2 (NE_EXPR, type, arg,
                                  fold_build2 (NE_EXPR, type, arg,
                                               build_real (TREE_TYPE (arg),
                                               build_real (TREE_TYPE (arg),
                                                           c2)));
                                                           c2)));
            }
            }
 
 
          /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs.  */
          /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs.  */
          if (! HONOR_NANS (mode))
          if (! HONOR_NANS (mode))
            return fold_build2 (code, type, arg,
            return fold_build2 (code, type, arg,
                                build_real (TREE_TYPE (arg), c2));
                                build_real (TREE_TYPE (arg), c2));
 
 
          /* sqrt(x) < c is the same as x >= 0 && x < c*c.  */
          /* sqrt(x) < c is the same as x >= 0 && x < c*c.  */
          if (lang_hooks.decls.global_bindings_p () == 0
          if (lang_hooks.decls.global_bindings_p () == 0
              && ! CONTAINS_PLACEHOLDER_P (arg))
              && ! CONTAINS_PLACEHOLDER_P (arg))
            {
            {
              arg = save_expr (arg);
              arg = save_expr (arg);
              return fold_build2 (TRUTH_ANDIF_EXPR, type,
              return fold_build2 (TRUTH_ANDIF_EXPR, type,
                                  fold_build2 (GE_EXPR, type, arg,
                                  fold_build2 (GE_EXPR, type, arg,
                                               build_real (TREE_TYPE (arg),
                                               build_real (TREE_TYPE (arg),
                                                           dconst0)),
                                                           dconst0)),
                                  fold_build2 (code, type, arg,
                                  fold_build2 (code, type, arg,
                                               build_real (TREE_TYPE (arg),
                                               build_real (TREE_TYPE (arg),
                                                           c2)));
                                                           c2)));
            }
            }
        }
        }
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Subroutine of fold() that optimizes comparisons against Infinities,
/* Subroutine of fold() that optimizes comparisons against Infinities,
   either +Inf or -Inf.
   either +Inf or -Inf.
 
 
   CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
   CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
   GE_EXPR or LE_EXPR.  TYPE is the type of the result and ARG0 and ARG1
   GE_EXPR or LE_EXPR.  TYPE is the type of the result and ARG0 and ARG1
   are the operands of the comparison.  ARG1 must be a TREE_REAL_CST.
   are the operands of the comparison.  ARG1 must be a TREE_REAL_CST.
 
 
   The function returns the constant folded tree if a simplification
   The function returns the constant folded tree if a simplification
   can be made, and NULL_TREE otherwise.  */
   can be made, and NULL_TREE otherwise.  */
 
 
static tree
static tree
fold_inf_compare (enum tree_code code, tree type, tree arg0, tree arg1)
fold_inf_compare (enum tree_code code, tree type, tree arg0, tree arg1)
{
{
  enum machine_mode mode;
  enum machine_mode mode;
  REAL_VALUE_TYPE max;
  REAL_VALUE_TYPE max;
  tree temp;
  tree temp;
  bool neg;
  bool neg;
 
 
  mode = TYPE_MODE (TREE_TYPE (arg0));
  mode = TYPE_MODE (TREE_TYPE (arg0));
 
 
  /* For negative infinity swap the sense of the comparison.  */
  /* For negative infinity swap the sense of the comparison.  */
  neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1));
  neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1));
  if (neg)
  if (neg)
    code = swap_tree_comparison (code);
    code = swap_tree_comparison (code);
 
 
  switch (code)
  switch (code)
    {
    {
    case GT_EXPR:
    case GT_EXPR:
      /* x > +Inf is always false, if with ignore sNANs.  */
      /* x > +Inf is always false, if with ignore sNANs.  */
      if (HONOR_SNANS (mode))
      if (HONOR_SNANS (mode))
        return NULL_TREE;
        return NULL_TREE;
      return omit_one_operand (type, integer_zero_node, arg0);
      return omit_one_operand (type, integer_zero_node, arg0);
 
 
    case LE_EXPR:
    case LE_EXPR:
      /* x <= +Inf is always true, if we don't case about NaNs.  */
      /* x <= +Inf is always true, if we don't case about NaNs.  */
      if (! HONOR_NANS (mode))
      if (! HONOR_NANS (mode))
        return omit_one_operand (type, integer_one_node, arg0);
        return omit_one_operand (type, integer_one_node, arg0);
 
 
      /* x <= +Inf is the same as x == x, i.e. isfinite(x).  */
      /* x <= +Inf is the same as x == x, i.e. isfinite(x).  */
      if (lang_hooks.decls.global_bindings_p () == 0
      if (lang_hooks.decls.global_bindings_p () == 0
          && ! CONTAINS_PLACEHOLDER_P (arg0))
          && ! CONTAINS_PLACEHOLDER_P (arg0))
        {
        {
          arg0 = save_expr (arg0);
          arg0 = save_expr (arg0);
          return fold_build2 (EQ_EXPR, type, arg0, arg0);
          return fold_build2 (EQ_EXPR, type, arg0, arg0);
        }
        }
      break;
      break;
 
 
    case EQ_EXPR:
    case EQ_EXPR:
    case GE_EXPR:
    case GE_EXPR:
      /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX.  */
      /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX.  */
      real_maxval (&max, neg, mode);
      real_maxval (&max, neg, mode);
      return fold_build2 (neg ? LT_EXPR : GT_EXPR, type,
      return fold_build2 (neg ? LT_EXPR : GT_EXPR, type,
                          arg0, build_real (TREE_TYPE (arg0), max));
                          arg0, build_real (TREE_TYPE (arg0), max));
 
 
    case LT_EXPR:
    case LT_EXPR:
      /* x < +Inf is always equal to x <= DBL_MAX.  */
      /* x < +Inf is always equal to x <= DBL_MAX.  */
      real_maxval (&max, neg, mode);
      real_maxval (&max, neg, mode);
      return fold_build2 (neg ? GE_EXPR : LE_EXPR, type,
      return fold_build2 (neg ? GE_EXPR : LE_EXPR, type,
                          arg0, build_real (TREE_TYPE (arg0), max));
                          arg0, build_real (TREE_TYPE (arg0), max));
 
 
    case NE_EXPR:
    case NE_EXPR:
      /* x != +Inf is always equal to !(x > DBL_MAX).  */
      /* x != +Inf is always equal to !(x > DBL_MAX).  */
      real_maxval (&max, neg, mode);
      real_maxval (&max, neg, mode);
      if (! HONOR_NANS (mode))
      if (! HONOR_NANS (mode))
        return fold_build2 (neg ? GE_EXPR : LE_EXPR, type,
        return fold_build2 (neg ? GE_EXPR : LE_EXPR, type,
                            arg0, build_real (TREE_TYPE (arg0), max));
                            arg0, build_real (TREE_TYPE (arg0), max));
 
 
      /* The transformation below creates non-gimple code and thus is
      /* The transformation below creates non-gimple code and thus is
         not appropriate if we are in gimple form.  */
         not appropriate if we are in gimple form.  */
      if (in_gimple_form)
      if (in_gimple_form)
        return NULL_TREE;
        return NULL_TREE;
 
 
      temp = fold_build2 (neg ? LT_EXPR : GT_EXPR, type,
      temp = fold_build2 (neg ? LT_EXPR : GT_EXPR, type,
                          arg0, build_real (TREE_TYPE (arg0), max));
                          arg0, build_real (TREE_TYPE (arg0), max));
      return fold_build1 (TRUTH_NOT_EXPR, type, temp);
      return fold_build1 (TRUTH_NOT_EXPR, type, temp);
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Subroutine of fold() that optimizes comparisons of a division by
/* Subroutine of fold() that optimizes comparisons of a division by
   a nonzero integer constant against an integer constant, i.e.
   a nonzero integer constant against an integer constant, i.e.
   X/C1 op C2.
   X/C1 op C2.
 
 
   CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
   CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
   GE_EXPR or LE_EXPR.  TYPE is the type of the result and ARG0 and ARG1
   GE_EXPR or LE_EXPR.  TYPE is the type of the result and ARG0 and ARG1
   are the operands of the comparison.  ARG1 must be a TREE_REAL_CST.
   are the operands of the comparison.  ARG1 must be a TREE_REAL_CST.
 
 
   The function returns the constant folded tree if a simplification
   The function returns the constant folded tree if a simplification
   can be made, and NULL_TREE otherwise.  */
   can be made, and NULL_TREE otherwise.  */
 
 
static tree
static tree
fold_div_compare (enum tree_code code, tree type, tree arg0, tree arg1)
fold_div_compare (enum tree_code code, tree type, tree arg0, tree arg1)
{
{
  tree prod, tmp, hi, lo;
  tree prod, tmp, hi, lo;
  tree arg00 = TREE_OPERAND (arg0, 0);
  tree arg00 = TREE_OPERAND (arg0, 0);
  tree arg01 = TREE_OPERAND (arg0, 1);
  tree arg01 = TREE_OPERAND (arg0, 1);
  unsigned HOST_WIDE_INT lpart;
  unsigned HOST_WIDE_INT lpart;
  HOST_WIDE_INT hpart;
  HOST_WIDE_INT hpart;
  bool unsigned_p = TYPE_UNSIGNED (TREE_TYPE (arg0));
  bool unsigned_p = TYPE_UNSIGNED (TREE_TYPE (arg0));
  bool neg_overflow;
  bool neg_overflow;
  int overflow;
  int overflow;
 
 
  /* We have to do this the hard way to detect unsigned overflow.
  /* We have to do this the hard way to detect unsigned overflow.
     prod = int_const_binop (MULT_EXPR, arg01, arg1, 0);  */
     prod = int_const_binop (MULT_EXPR, arg01, arg1, 0);  */
  overflow = mul_double_with_sign (TREE_INT_CST_LOW (arg01),
  overflow = mul_double_with_sign (TREE_INT_CST_LOW (arg01),
                                   TREE_INT_CST_HIGH (arg01),
                                   TREE_INT_CST_HIGH (arg01),
                                   TREE_INT_CST_LOW (arg1),
                                   TREE_INT_CST_LOW (arg1),
                                   TREE_INT_CST_HIGH (arg1),
                                   TREE_INT_CST_HIGH (arg1),
                                   &lpart, &hpart, unsigned_p);
                                   &lpart, &hpart, unsigned_p);
  prod = build_int_cst_wide (TREE_TYPE (arg00), lpart, hpart);
  prod = build_int_cst_wide (TREE_TYPE (arg00), lpart, hpart);
  prod = force_fit_type (prod, -1, overflow, false);
  prod = force_fit_type (prod, -1, overflow, false);
  neg_overflow = false;
  neg_overflow = false;
 
 
  if (unsigned_p)
  if (unsigned_p)
    {
    {
      tmp = int_const_binop (MINUS_EXPR, arg01, integer_one_node, 0);
      tmp = int_const_binop (MINUS_EXPR, arg01, integer_one_node, 0);
      lo = prod;
      lo = prod;
 
 
      /* Likewise hi = int_const_binop (PLUS_EXPR, prod, tmp, 0).  */
      /* Likewise hi = int_const_binop (PLUS_EXPR, prod, tmp, 0).  */
      overflow = add_double_with_sign (TREE_INT_CST_LOW (prod),
      overflow = add_double_with_sign (TREE_INT_CST_LOW (prod),
                                       TREE_INT_CST_HIGH (prod),
                                       TREE_INT_CST_HIGH (prod),
                                       TREE_INT_CST_LOW (tmp),
                                       TREE_INT_CST_LOW (tmp),
                                       TREE_INT_CST_HIGH (tmp),
                                       TREE_INT_CST_HIGH (tmp),
                                       &lpart, &hpart, unsigned_p);
                                       &lpart, &hpart, unsigned_p);
      hi = build_int_cst_wide (TREE_TYPE (arg00), lpart, hpart);
      hi = build_int_cst_wide (TREE_TYPE (arg00), lpart, hpart);
      hi = force_fit_type (hi, -1, overflow | TREE_OVERFLOW (prod),
      hi = force_fit_type (hi, -1, overflow | TREE_OVERFLOW (prod),
                           TREE_CONSTANT_OVERFLOW (prod));
                           TREE_CONSTANT_OVERFLOW (prod));
    }
    }
  else if (tree_int_cst_sgn (arg01) >= 0)
  else if (tree_int_cst_sgn (arg01) >= 0)
    {
    {
      tmp = int_const_binop (MINUS_EXPR, arg01, integer_one_node, 0);
      tmp = int_const_binop (MINUS_EXPR, arg01, integer_one_node, 0);
      switch (tree_int_cst_sgn (arg1))
      switch (tree_int_cst_sgn (arg1))
        {
        {
        case -1:
        case -1:
          neg_overflow = true;
          neg_overflow = true;
          lo = int_const_binop (MINUS_EXPR, prod, tmp, 0);
          lo = int_const_binop (MINUS_EXPR, prod, tmp, 0);
          hi = prod;
          hi = prod;
          break;
          break;
 
 
        case  0:
        case  0:
          lo = fold_negate_const (tmp, TREE_TYPE (arg0));
          lo = fold_negate_const (tmp, TREE_TYPE (arg0));
          hi = tmp;
          hi = tmp;
          break;
          break;
 
 
        case  1:
        case  1:
          hi = int_const_binop (PLUS_EXPR, prod, tmp, 0);
          hi = int_const_binop (PLUS_EXPR, prod, tmp, 0);
          lo = prod;
          lo = prod;
          break;
          break;
 
 
        default:
        default:
          gcc_unreachable ();
          gcc_unreachable ();
        }
        }
    }
    }
  else
  else
    {
    {
      /* A negative divisor reverses the relational operators.  */
      /* A negative divisor reverses the relational operators.  */
      code = swap_tree_comparison (code);
      code = swap_tree_comparison (code);
 
 
      tmp = int_const_binop (PLUS_EXPR, arg01, integer_one_node, 0);
      tmp = int_const_binop (PLUS_EXPR, arg01, integer_one_node, 0);
      switch (tree_int_cst_sgn (arg1))
      switch (tree_int_cst_sgn (arg1))
        {
        {
        case -1:
        case -1:
          hi = int_const_binop (MINUS_EXPR, prod, tmp, 0);
          hi = int_const_binop (MINUS_EXPR, prod, tmp, 0);
          lo = prod;
          lo = prod;
          break;
          break;
 
 
        case  0:
        case  0:
          hi = fold_negate_const (tmp, TREE_TYPE (arg0));
          hi = fold_negate_const (tmp, TREE_TYPE (arg0));
          lo = tmp;
          lo = tmp;
          break;
          break;
 
 
        case  1:
        case  1:
          neg_overflow = true;
          neg_overflow = true;
          lo = int_const_binop (PLUS_EXPR, prod, tmp, 0);
          lo = int_const_binop (PLUS_EXPR, prod, tmp, 0);
          hi = prod;
          hi = prod;
          break;
          break;
 
 
        default:
        default:
          gcc_unreachable ();
          gcc_unreachable ();
        }
        }
    }
    }
 
 
  switch (code)
  switch (code)
    {
    {
    case EQ_EXPR:
    case EQ_EXPR:
      if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
      if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
        return omit_one_operand (type, integer_zero_node, arg00);
        return omit_one_operand (type, integer_zero_node, arg00);
      if (TREE_OVERFLOW (hi))
      if (TREE_OVERFLOW (hi))
        return fold_build2 (GE_EXPR, type, arg00, lo);
        return fold_build2 (GE_EXPR, type, arg00, lo);
      if (TREE_OVERFLOW (lo))
      if (TREE_OVERFLOW (lo))
        return fold_build2 (LE_EXPR, type, arg00, hi);
        return fold_build2 (LE_EXPR, type, arg00, hi);
      return build_range_check (type, arg00, 1, lo, hi);
      return build_range_check (type, arg00, 1, lo, hi);
 
 
    case NE_EXPR:
    case NE_EXPR:
      if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
      if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
        return omit_one_operand (type, integer_one_node, arg00);
        return omit_one_operand (type, integer_one_node, arg00);
      if (TREE_OVERFLOW (hi))
      if (TREE_OVERFLOW (hi))
        return fold_build2 (LT_EXPR, type, arg00, lo);
        return fold_build2 (LT_EXPR, type, arg00, lo);
      if (TREE_OVERFLOW (lo))
      if (TREE_OVERFLOW (lo))
        return fold_build2 (GT_EXPR, type, arg00, hi);
        return fold_build2 (GT_EXPR, type, arg00, hi);
      return build_range_check (type, arg00, 0, lo, hi);
      return build_range_check (type, arg00, 0, lo, hi);
 
 
    case LT_EXPR:
    case LT_EXPR:
      if (TREE_OVERFLOW (lo))
      if (TREE_OVERFLOW (lo))
        {
        {
          tmp = neg_overflow ? integer_zero_node : integer_one_node;
          tmp = neg_overflow ? integer_zero_node : integer_one_node;
          return omit_one_operand (type, tmp, arg00);
          return omit_one_operand (type, tmp, arg00);
        }
        }
      return fold_build2 (LT_EXPR, type, arg00, lo);
      return fold_build2 (LT_EXPR, type, arg00, lo);
 
 
    case LE_EXPR:
    case LE_EXPR:
      if (TREE_OVERFLOW (hi))
      if (TREE_OVERFLOW (hi))
        {
        {
          tmp = neg_overflow ? integer_zero_node : integer_one_node;
          tmp = neg_overflow ? integer_zero_node : integer_one_node;
          return omit_one_operand (type, tmp, arg00);
          return omit_one_operand (type, tmp, arg00);
        }
        }
      return fold_build2 (LE_EXPR, type, arg00, hi);
      return fold_build2 (LE_EXPR, type, arg00, hi);
 
 
    case GT_EXPR:
    case GT_EXPR:
      if (TREE_OVERFLOW (hi))
      if (TREE_OVERFLOW (hi))
        {
        {
          tmp = neg_overflow ? integer_one_node : integer_zero_node;
          tmp = neg_overflow ? integer_one_node : integer_zero_node;
          return omit_one_operand (type, tmp, arg00);
          return omit_one_operand (type, tmp, arg00);
        }
        }
      return fold_build2 (GT_EXPR, type, arg00, hi);
      return fold_build2 (GT_EXPR, type, arg00, hi);
 
 
    case GE_EXPR:
    case GE_EXPR:
      if (TREE_OVERFLOW (lo))
      if (TREE_OVERFLOW (lo))
        {
        {
          tmp = neg_overflow ? integer_one_node : integer_zero_node;
          tmp = neg_overflow ? integer_one_node : integer_zero_node;
          return omit_one_operand (type, tmp, arg00);
          return omit_one_operand (type, tmp, arg00);
        }
        }
      return fold_build2 (GE_EXPR, type, arg00, lo);
      return fold_build2 (GE_EXPR, type, arg00, lo);
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
 
 
/* If CODE with arguments ARG0 and ARG1 represents a single bit
/* If CODE with arguments ARG0 and ARG1 represents a single bit
   equality/inequality test, then return a simplified form of the test
   equality/inequality test, then return a simplified form of the test
   using a sign testing.  Otherwise return NULL.  TYPE is the desired
   using a sign testing.  Otherwise return NULL.  TYPE is the desired
   result type.  */
   result type.  */
 
 
static tree
static tree
fold_single_bit_test_into_sign_test (enum tree_code code, tree arg0, tree arg1,
fold_single_bit_test_into_sign_test (enum tree_code code, tree arg0, tree arg1,
                                     tree result_type)
                                     tree result_type)
{
{
  /* If this is testing a single bit, we can optimize the test.  */
  /* If this is testing a single bit, we can optimize the test.  */
  if ((code == NE_EXPR || code == EQ_EXPR)
  if ((code == NE_EXPR || code == EQ_EXPR)
      && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
      && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
      && integer_pow2p (TREE_OPERAND (arg0, 1)))
      && integer_pow2p (TREE_OPERAND (arg0, 1)))
    {
    {
      /* If we have (A & C) != 0 where C is the sign bit of A, convert
      /* If we have (A & C) != 0 where C is the sign bit of A, convert
         this into A < 0.  Similarly for (A & C) == 0 into A >= 0.  */
         this into A < 0.  Similarly for (A & C) == 0 into A >= 0.  */
      tree arg00 = sign_bit_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
      tree arg00 = sign_bit_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
 
 
      if (arg00 != NULL_TREE
      if (arg00 != NULL_TREE
          /* This is only a win if casting to a signed type is cheap,
          /* This is only a win if casting to a signed type is cheap,
             i.e. when arg00's type is not a partial mode.  */
             i.e. when arg00's type is not a partial mode.  */
          && TYPE_PRECISION (TREE_TYPE (arg00))
          && TYPE_PRECISION (TREE_TYPE (arg00))
             == GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (arg00))))
             == GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (arg00))))
        {
        {
          tree stype = lang_hooks.types.signed_type (TREE_TYPE (arg00));
          tree stype = lang_hooks.types.signed_type (TREE_TYPE (arg00));
          return fold_build2 (code == EQ_EXPR ? GE_EXPR : LT_EXPR,
          return fold_build2 (code == EQ_EXPR ? GE_EXPR : LT_EXPR,
                              result_type, fold_convert (stype, arg00),
                              result_type, fold_convert (stype, arg00),
                              build_int_cst (stype, 0));
                              build_int_cst (stype, 0));
        }
        }
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* If CODE with arguments ARG0 and ARG1 represents a single bit
/* If CODE with arguments ARG0 and ARG1 represents a single bit
   equality/inequality test, then return a simplified form of
   equality/inequality test, then return a simplified form of
   the test using shifts and logical operations.  Otherwise return
   the test using shifts and logical operations.  Otherwise return
   NULL.  TYPE is the desired result type.  */
   NULL.  TYPE is the desired result type.  */
 
 
tree
tree
fold_single_bit_test (enum tree_code code, tree arg0, tree arg1,
fold_single_bit_test (enum tree_code code, tree arg0, tree arg1,
                      tree result_type)
                      tree result_type)
{
{
  /* If this is testing a single bit, we can optimize the test.  */
  /* If this is testing a single bit, we can optimize the test.  */
  if ((code == NE_EXPR || code == EQ_EXPR)
  if ((code == NE_EXPR || code == EQ_EXPR)
      && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
      && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
      && integer_pow2p (TREE_OPERAND (arg0, 1)))
      && integer_pow2p (TREE_OPERAND (arg0, 1)))
    {
    {
      tree inner = TREE_OPERAND (arg0, 0);
      tree inner = TREE_OPERAND (arg0, 0);
      tree type = TREE_TYPE (arg0);
      tree type = TREE_TYPE (arg0);
      int bitnum = tree_log2 (TREE_OPERAND (arg0, 1));
      int bitnum = tree_log2 (TREE_OPERAND (arg0, 1));
      enum machine_mode operand_mode = TYPE_MODE (type);
      enum machine_mode operand_mode = TYPE_MODE (type);
      int ops_unsigned;
      int ops_unsigned;
      tree signed_type, unsigned_type, intermediate_type;
      tree signed_type, unsigned_type, intermediate_type;
      tree tem;
      tree tem;
 
 
      /* First, see if we can fold the single bit test into a sign-bit
      /* First, see if we can fold the single bit test into a sign-bit
         test.  */
         test.  */
      tem = fold_single_bit_test_into_sign_test (code, arg0, arg1,
      tem = fold_single_bit_test_into_sign_test (code, arg0, arg1,
                                                 result_type);
                                                 result_type);
      if (tem)
      if (tem)
        return tem;
        return tem;
 
 
      /* Otherwise we have (A & C) != 0 where C is a single bit,
      /* Otherwise we have (A & C) != 0 where C is a single bit,
         convert that into ((A >> C2) & 1).  Where C2 = log2(C).
         convert that into ((A >> C2) & 1).  Where C2 = log2(C).
         Similarly for (A & C) == 0.  */
         Similarly for (A & C) == 0.  */
 
 
      /* If INNER is a right shift of a constant and it plus BITNUM does
      /* If INNER is a right shift of a constant and it plus BITNUM does
         not overflow, adjust BITNUM and INNER.  */
         not overflow, adjust BITNUM and INNER.  */
      if (TREE_CODE (inner) == RSHIFT_EXPR
      if (TREE_CODE (inner) == RSHIFT_EXPR
          && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST
          && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST
          && TREE_INT_CST_HIGH (TREE_OPERAND (inner, 1)) == 0
          && TREE_INT_CST_HIGH (TREE_OPERAND (inner, 1)) == 0
          && bitnum < TYPE_PRECISION (type)
          && bitnum < TYPE_PRECISION (type)
          && 0 > compare_tree_int (TREE_OPERAND (inner, 1),
          && 0 > compare_tree_int (TREE_OPERAND (inner, 1),
                                   bitnum - TYPE_PRECISION (type)))
                                   bitnum - TYPE_PRECISION (type)))
        {
        {
          bitnum += TREE_INT_CST_LOW (TREE_OPERAND (inner, 1));
          bitnum += TREE_INT_CST_LOW (TREE_OPERAND (inner, 1));
          inner = TREE_OPERAND (inner, 0);
          inner = TREE_OPERAND (inner, 0);
        }
        }
 
 
      /* If we are going to be able to omit the AND below, we must do our
      /* If we are going to be able to omit the AND below, we must do our
         operations as unsigned.  If we must use the AND, we have a choice.
         operations as unsigned.  If we must use the AND, we have a choice.
         Normally unsigned is faster, but for some machines signed is.  */
         Normally unsigned is faster, but for some machines signed is.  */
#ifdef LOAD_EXTEND_OP
#ifdef LOAD_EXTEND_OP
      ops_unsigned = (LOAD_EXTEND_OP (operand_mode) == SIGN_EXTEND
      ops_unsigned = (LOAD_EXTEND_OP (operand_mode) == SIGN_EXTEND
                      && !flag_syntax_only) ? 0 : 1;
                      && !flag_syntax_only) ? 0 : 1;
#else
#else
      ops_unsigned = 1;
      ops_unsigned = 1;
#endif
#endif
 
 
      signed_type = lang_hooks.types.type_for_mode (operand_mode, 0);
      signed_type = lang_hooks.types.type_for_mode (operand_mode, 0);
      unsigned_type = lang_hooks.types.type_for_mode (operand_mode, 1);
      unsigned_type = lang_hooks.types.type_for_mode (operand_mode, 1);
      intermediate_type = ops_unsigned ? unsigned_type : signed_type;
      intermediate_type = ops_unsigned ? unsigned_type : signed_type;
      inner = fold_convert (intermediate_type, inner);
      inner = fold_convert (intermediate_type, inner);
 
 
      if (bitnum != 0)
      if (bitnum != 0)
        inner = build2 (RSHIFT_EXPR, intermediate_type,
        inner = build2 (RSHIFT_EXPR, intermediate_type,
                        inner, size_int (bitnum));
                        inner, size_int (bitnum));
 
 
      if (code == EQ_EXPR)
      if (code == EQ_EXPR)
        inner = fold_build2 (BIT_XOR_EXPR, intermediate_type,
        inner = fold_build2 (BIT_XOR_EXPR, intermediate_type,
                             inner, integer_one_node);
                             inner, integer_one_node);
 
 
      /* Put the AND last so it can combine with more things.  */
      /* Put the AND last so it can combine with more things.  */
      inner = build2 (BIT_AND_EXPR, intermediate_type,
      inner = build2 (BIT_AND_EXPR, intermediate_type,
                      inner, integer_one_node);
                      inner, integer_one_node);
 
 
      /* Make sure to return the proper type.  */
      /* Make sure to return the proper type.  */
      inner = fold_convert (result_type, inner);
      inner = fold_convert (result_type, inner);
 
 
      return inner;
      return inner;
    }
    }
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Check whether we are allowed to reorder operands arg0 and arg1,
/* Check whether we are allowed to reorder operands arg0 and arg1,
   such that the evaluation of arg1 occurs before arg0.  */
   such that the evaluation of arg1 occurs before arg0.  */
 
 
static bool
static bool
reorder_operands_p (tree arg0, tree arg1)
reorder_operands_p (tree arg0, tree arg1)
{
{
  if (! flag_evaluation_order)
  if (! flag_evaluation_order)
      return true;
      return true;
  if (TREE_CONSTANT (arg0) || TREE_CONSTANT (arg1))
  if (TREE_CONSTANT (arg0) || TREE_CONSTANT (arg1))
    return true;
    return true;
  return ! TREE_SIDE_EFFECTS (arg0)
  return ! TREE_SIDE_EFFECTS (arg0)
         && ! TREE_SIDE_EFFECTS (arg1);
         && ! TREE_SIDE_EFFECTS (arg1);
}
}
 
 
/* Test whether it is preferable two swap two operands, ARG0 and
/* Test whether it is preferable two swap two operands, ARG0 and
   ARG1, for example because ARG0 is an integer constant and ARG1
   ARG1, for example because ARG0 is an integer constant and ARG1
   isn't.  If REORDER is true, only recommend swapping if we can
   isn't.  If REORDER is true, only recommend swapping if we can
   evaluate the operands in reverse order.  */
   evaluate the operands in reverse order.  */
 
 
bool
bool
tree_swap_operands_p (tree arg0, tree arg1, bool reorder)
tree_swap_operands_p (tree arg0, tree arg1, bool reorder)
{
{
  STRIP_SIGN_NOPS (arg0);
  STRIP_SIGN_NOPS (arg0);
  STRIP_SIGN_NOPS (arg1);
  STRIP_SIGN_NOPS (arg1);
 
 
  if (TREE_CODE (arg1) == INTEGER_CST)
  if (TREE_CODE (arg1) == INTEGER_CST)
    return 0;
    return 0;
  if (TREE_CODE (arg0) == INTEGER_CST)
  if (TREE_CODE (arg0) == INTEGER_CST)
    return 1;
    return 1;
 
 
  if (TREE_CODE (arg1) == REAL_CST)
  if (TREE_CODE (arg1) == REAL_CST)
    return 0;
    return 0;
  if (TREE_CODE (arg0) == REAL_CST)
  if (TREE_CODE (arg0) == REAL_CST)
    return 1;
    return 1;
 
 
  if (TREE_CODE (arg1) == COMPLEX_CST)
  if (TREE_CODE (arg1) == COMPLEX_CST)
    return 0;
    return 0;
  if (TREE_CODE (arg0) == COMPLEX_CST)
  if (TREE_CODE (arg0) == COMPLEX_CST)
    return 1;
    return 1;
 
 
  if (TREE_CONSTANT (arg1))
  if (TREE_CONSTANT (arg1))
    return 0;
    return 0;
  if (TREE_CONSTANT (arg0))
  if (TREE_CONSTANT (arg0))
    return 1;
    return 1;
 
 
  if (optimize_size)
  if (optimize_size)
    return 0;
    return 0;
 
 
  if (reorder && flag_evaluation_order
  if (reorder && flag_evaluation_order
      && (TREE_SIDE_EFFECTS (arg0) || TREE_SIDE_EFFECTS (arg1)))
      && (TREE_SIDE_EFFECTS (arg0) || TREE_SIDE_EFFECTS (arg1)))
    return 0;
    return 0;
 
 
  if (DECL_P (arg1))
  if (DECL_P (arg1))
    return 0;
    return 0;
  if (DECL_P (arg0))
  if (DECL_P (arg0))
    return 1;
    return 1;
 
 
  /* It is preferable to swap two SSA_NAME to ensure a canonical form
  /* It is preferable to swap two SSA_NAME to ensure a canonical form
     for commutative and comparison operators.  Ensuring a canonical
     for commutative and comparison operators.  Ensuring a canonical
     form allows the optimizers to find additional redundancies without
     form allows the optimizers to find additional redundancies without
     having to explicitly check for both orderings.  */
     having to explicitly check for both orderings.  */
  if (TREE_CODE (arg0) == SSA_NAME
  if (TREE_CODE (arg0) == SSA_NAME
      && TREE_CODE (arg1) == SSA_NAME
      && TREE_CODE (arg1) == SSA_NAME
      && SSA_NAME_VERSION (arg0) > SSA_NAME_VERSION (arg1))
      && SSA_NAME_VERSION (arg0) > SSA_NAME_VERSION (arg1))
    return 1;
    return 1;
 
 
  return 0;
  return 0;
}
}
 
 
/* Fold comparison ARG0 CODE ARG1 (with result in TYPE), where
/* Fold comparison ARG0 CODE ARG1 (with result in TYPE), where
   ARG0 is extended to a wider type.  */
   ARG0 is extended to a wider type.  */
 
 
static tree
static tree
fold_widened_comparison (enum tree_code code, tree type, tree arg0, tree arg1)
fold_widened_comparison (enum tree_code code, tree type, tree arg0, tree arg1)
{
{
  tree arg0_unw = get_unwidened (arg0, NULL_TREE);
  tree arg0_unw = get_unwidened (arg0, NULL_TREE);
  tree arg1_unw;
  tree arg1_unw;
  tree shorter_type, outer_type;
  tree shorter_type, outer_type;
  tree min, max;
  tree min, max;
  bool above, below;
  bool above, below;
 
 
  if (arg0_unw == arg0)
  if (arg0_unw == arg0)
    return NULL_TREE;
    return NULL_TREE;
  shorter_type = TREE_TYPE (arg0_unw);
  shorter_type = TREE_TYPE (arg0_unw);
 
 
#ifdef HAVE_canonicalize_funcptr_for_compare
#ifdef HAVE_canonicalize_funcptr_for_compare
  /* Disable this optimization if we're casting a function pointer
  /* Disable this optimization if we're casting a function pointer
     type on targets that require function pointer canonicalization.  */
     type on targets that require function pointer canonicalization.  */
  if (HAVE_canonicalize_funcptr_for_compare
  if (HAVE_canonicalize_funcptr_for_compare
      && TREE_CODE (shorter_type) == POINTER_TYPE
      && TREE_CODE (shorter_type) == POINTER_TYPE
      && TREE_CODE (TREE_TYPE (shorter_type)) == FUNCTION_TYPE)
      && TREE_CODE (TREE_TYPE (shorter_type)) == FUNCTION_TYPE)
    return NULL_TREE;
    return NULL_TREE;
#endif
#endif
 
 
  if (TYPE_PRECISION (TREE_TYPE (arg0)) <= TYPE_PRECISION (shorter_type))
  if (TYPE_PRECISION (TREE_TYPE (arg0)) <= TYPE_PRECISION (shorter_type))
    return NULL_TREE;
    return NULL_TREE;
 
 
  arg1_unw = get_unwidened (arg1, shorter_type);
  arg1_unw = get_unwidened (arg1, shorter_type);
 
 
  /* If possible, express the comparison in the shorter mode.  */
  /* If possible, express the comparison in the shorter mode.  */
  if ((code == EQ_EXPR || code == NE_EXPR
  if ((code == EQ_EXPR || code == NE_EXPR
       || TYPE_UNSIGNED (TREE_TYPE (arg0)) == TYPE_UNSIGNED (shorter_type))
       || TYPE_UNSIGNED (TREE_TYPE (arg0)) == TYPE_UNSIGNED (shorter_type))
      && (TREE_TYPE (arg1_unw) == shorter_type
      && (TREE_TYPE (arg1_unw) == shorter_type
          || (TREE_CODE (arg1_unw) == INTEGER_CST
          || (TREE_CODE (arg1_unw) == INTEGER_CST
              && (TREE_CODE (shorter_type) == INTEGER_TYPE
              && (TREE_CODE (shorter_type) == INTEGER_TYPE
                  || TREE_CODE (shorter_type) == BOOLEAN_TYPE)
                  || TREE_CODE (shorter_type) == BOOLEAN_TYPE)
              && int_fits_type_p (arg1_unw, shorter_type))))
              && int_fits_type_p (arg1_unw, shorter_type))))
    return fold_build2 (code, type, arg0_unw,
    return fold_build2 (code, type, arg0_unw,
                       fold_convert (shorter_type, arg1_unw));
                       fold_convert (shorter_type, arg1_unw));
 
 
  if (TREE_CODE (arg1_unw) != INTEGER_CST
  if (TREE_CODE (arg1_unw) != INTEGER_CST
      || TREE_CODE (shorter_type) != INTEGER_TYPE
      || TREE_CODE (shorter_type) != INTEGER_TYPE
      || !int_fits_type_p (arg1_unw, shorter_type))
      || !int_fits_type_p (arg1_unw, shorter_type))
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* If we are comparing with the integer that does not fit into the range
  /* If we are comparing with the integer that does not fit into the range
     of the shorter type, the result is known.  */
     of the shorter type, the result is known.  */
  outer_type = TREE_TYPE (arg1_unw);
  outer_type = TREE_TYPE (arg1_unw);
  min = lower_bound_in_type (outer_type, shorter_type);
  min = lower_bound_in_type (outer_type, shorter_type);
  max = upper_bound_in_type (outer_type, shorter_type);
  max = upper_bound_in_type (outer_type, shorter_type);
 
 
  above = integer_nonzerop (fold_relational_const (LT_EXPR, type,
  above = integer_nonzerop (fold_relational_const (LT_EXPR, type,
                                                   max, arg1_unw));
                                                   max, arg1_unw));
  below = integer_nonzerop (fold_relational_const (LT_EXPR, type,
  below = integer_nonzerop (fold_relational_const (LT_EXPR, type,
                                                   arg1_unw, min));
                                                   arg1_unw, min));
 
 
  switch (code)
  switch (code)
    {
    {
    case EQ_EXPR:
    case EQ_EXPR:
      if (above || below)
      if (above || below)
        return omit_one_operand (type, integer_zero_node, arg0);
        return omit_one_operand (type, integer_zero_node, arg0);
      break;
      break;
 
 
    case NE_EXPR:
    case NE_EXPR:
      if (above || below)
      if (above || below)
        return omit_one_operand (type, integer_one_node, arg0);
        return omit_one_operand (type, integer_one_node, arg0);
      break;
      break;
 
 
    case LT_EXPR:
    case LT_EXPR:
    case LE_EXPR:
    case LE_EXPR:
      if (above)
      if (above)
        return omit_one_operand (type, integer_one_node, arg0);
        return omit_one_operand (type, integer_one_node, arg0);
      else if (below)
      else if (below)
        return omit_one_operand (type, integer_zero_node, arg0);
        return omit_one_operand (type, integer_zero_node, arg0);
 
 
    case GT_EXPR:
    case GT_EXPR:
    case GE_EXPR:
    case GE_EXPR:
      if (above)
      if (above)
        return omit_one_operand (type, integer_zero_node, arg0);
        return omit_one_operand (type, integer_zero_node, arg0);
      else if (below)
      else if (below)
        return omit_one_operand (type, integer_one_node, arg0);
        return omit_one_operand (type, integer_one_node, arg0);
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Fold comparison ARG0 CODE ARG1 (with result in TYPE), where for
/* Fold comparison ARG0 CODE ARG1 (with result in TYPE), where for
   ARG0 just the signedness is changed.  */
   ARG0 just the signedness is changed.  */
 
 
static tree
static tree
fold_sign_changed_comparison (enum tree_code code, tree type,
fold_sign_changed_comparison (enum tree_code code, tree type,
                              tree arg0, tree arg1)
                              tree arg0, tree arg1)
{
{
  tree arg0_inner, tmp;
  tree arg0_inner, tmp;
  tree inner_type, outer_type;
  tree inner_type, outer_type;
 
 
  if (TREE_CODE (arg0) != NOP_EXPR
  if (TREE_CODE (arg0) != NOP_EXPR
      && TREE_CODE (arg0) != CONVERT_EXPR)
      && TREE_CODE (arg0) != CONVERT_EXPR)
    return NULL_TREE;
    return NULL_TREE;
 
 
  outer_type = TREE_TYPE (arg0);
  outer_type = TREE_TYPE (arg0);
  arg0_inner = TREE_OPERAND (arg0, 0);
  arg0_inner = TREE_OPERAND (arg0, 0);
  inner_type = TREE_TYPE (arg0_inner);
  inner_type = TREE_TYPE (arg0_inner);
 
 
#ifdef HAVE_canonicalize_funcptr_for_compare
#ifdef HAVE_canonicalize_funcptr_for_compare
  /* Disable this optimization if we're casting a function pointer
  /* Disable this optimization if we're casting a function pointer
     type on targets that require function pointer canonicalization.  */
     type on targets that require function pointer canonicalization.  */
  if (HAVE_canonicalize_funcptr_for_compare
  if (HAVE_canonicalize_funcptr_for_compare
      && TREE_CODE (inner_type) == POINTER_TYPE
      && TREE_CODE (inner_type) == POINTER_TYPE
      && TREE_CODE (TREE_TYPE (inner_type)) == FUNCTION_TYPE)
      && TREE_CODE (TREE_TYPE (inner_type)) == FUNCTION_TYPE)
    return NULL_TREE;
    return NULL_TREE;
#endif
#endif
 
 
  if (TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
  if (TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
    return NULL_TREE;
    return NULL_TREE;
 
 
  if (TREE_CODE (arg1) != INTEGER_CST
  if (TREE_CODE (arg1) != INTEGER_CST
      && !((TREE_CODE (arg1) == NOP_EXPR
      && !((TREE_CODE (arg1) == NOP_EXPR
            || TREE_CODE (arg1) == CONVERT_EXPR)
            || TREE_CODE (arg1) == CONVERT_EXPR)
           && TREE_TYPE (TREE_OPERAND (arg1, 0)) == inner_type))
           && TREE_TYPE (TREE_OPERAND (arg1, 0)) == inner_type))
    return NULL_TREE;
    return NULL_TREE;
 
 
  if (TYPE_UNSIGNED (inner_type) != TYPE_UNSIGNED (outer_type)
  if (TYPE_UNSIGNED (inner_type) != TYPE_UNSIGNED (outer_type)
      && code != NE_EXPR
      && code != NE_EXPR
      && code != EQ_EXPR)
      && code != EQ_EXPR)
    return NULL_TREE;
    return NULL_TREE;
 
 
  if (TREE_CODE (arg1) == INTEGER_CST)
  if (TREE_CODE (arg1) == INTEGER_CST)
    {
    {
      tmp = build_int_cst_wide (inner_type,
      tmp = build_int_cst_wide (inner_type,
                                TREE_INT_CST_LOW (arg1),
                                TREE_INT_CST_LOW (arg1),
                                TREE_INT_CST_HIGH (arg1));
                                TREE_INT_CST_HIGH (arg1));
      arg1 = force_fit_type (tmp, 0,
      arg1 = force_fit_type (tmp, 0,
                             TREE_OVERFLOW (arg1),
                             TREE_OVERFLOW (arg1),
                             TREE_CONSTANT_OVERFLOW (arg1));
                             TREE_CONSTANT_OVERFLOW (arg1));
    }
    }
  else
  else
    arg1 = fold_convert (inner_type, arg1);
    arg1 = fold_convert (inner_type, arg1);
 
 
  return fold_build2 (code, type, arg0_inner, arg1);
  return fold_build2 (code, type, arg0_inner, arg1);
}
}
 
 
/* Tries to replace &a[idx] CODE s * delta with &a[idx CODE delta], if s is
/* Tries to replace &a[idx] CODE s * delta with &a[idx CODE delta], if s is
   step of the array.  Reconstructs s and delta in the case of s * delta
   step of the array.  Reconstructs s and delta in the case of s * delta
   being an integer constant (and thus already folded).
   being an integer constant (and thus already folded).
   ADDR is the address. MULT is the multiplicative expression.
   ADDR is the address. MULT is the multiplicative expression.
   If the function succeeds, the new address expression is returned.  Otherwise
   If the function succeeds, the new address expression is returned.  Otherwise
   NULL_TREE is returned.  */
   NULL_TREE is returned.  */
 
 
static tree
static tree
try_move_mult_to_index (enum tree_code code, tree addr, tree op1)
try_move_mult_to_index (enum tree_code code, tree addr, tree op1)
{
{
  tree s, delta, step;
  tree s, delta, step;
  tree ref = TREE_OPERAND (addr, 0), pref;
  tree ref = TREE_OPERAND (addr, 0), pref;
  tree ret, pos;
  tree ret, pos;
  tree itype;
  tree itype;
 
 
  /* Canonicalize op1 into a possibly non-constant delta
  /* Canonicalize op1 into a possibly non-constant delta
     and an INTEGER_CST s.  */
     and an INTEGER_CST s.  */
  if (TREE_CODE (op1) == MULT_EXPR)
  if (TREE_CODE (op1) == MULT_EXPR)
    {
    {
      tree arg0 = TREE_OPERAND (op1, 0), arg1 = TREE_OPERAND (op1, 1);
      tree arg0 = TREE_OPERAND (op1, 0), arg1 = TREE_OPERAND (op1, 1);
 
 
      STRIP_NOPS (arg0);
      STRIP_NOPS (arg0);
      STRIP_NOPS (arg1);
      STRIP_NOPS (arg1);
 
 
      if (TREE_CODE (arg0) == INTEGER_CST)
      if (TREE_CODE (arg0) == INTEGER_CST)
        {
        {
          s = arg0;
          s = arg0;
          delta = arg1;
          delta = arg1;
        }
        }
      else if (TREE_CODE (arg1) == INTEGER_CST)
      else if (TREE_CODE (arg1) == INTEGER_CST)
        {
        {
          s = arg1;
          s = arg1;
          delta = arg0;
          delta = arg0;
        }
        }
      else
      else
        return NULL_TREE;
        return NULL_TREE;
    }
    }
  else if (TREE_CODE (op1) == INTEGER_CST)
  else if (TREE_CODE (op1) == INTEGER_CST)
    {
    {
      delta = op1;
      delta = op1;
      s = NULL_TREE;
      s = NULL_TREE;
    }
    }
  else
  else
    {
    {
      /* Simulate we are delta * 1.  */
      /* Simulate we are delta * 1.  */
      delta = op1;
      delta = op1;
      s = integer_one_node;
      s = integer_one_node;
    }
    }
 
 
  for (;; ref = TREE_OPERAND (ref, 0))
  for (;; ref = TREE_OPERAND (ref, 0))
    {
    {
      if (TREE_CODE (ref) == ARRAY_REF)
      if (TREE_CODE (ref) == ARRAY_REF)
        {
        {
          itype = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (ref, 0)));
          itype = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (ref, 0)));
          if (! itype)
          if (! itype)
            continue;
            continue;
 
 
          step = array_ref_element_size (ref);
          step = array_ref_element_size (ref);
          if (TREE_CODE (step) != INTEGER_CST)
          if (TREE_CODE (step) != INTEGER_CST)
            continue;
            continue;
 
 
          if (s)
          if (s)
            {
            {
              if (! tree_int_cst_equal (step, s))
              if (! tree_int_cst_equal (step, s))
                continue;
                continue;
            }
            }
          else
          else
            {
            {
              /* Try if delta is a multiple of step.  */
              /* Try if delta is a multiple of step.  */
              tree tmp = div_if_zero_remainder (EXACT_DIV_EXPR, delta, step);
              tree tmp = div_if_zero_remainder (EXACT_DIV_EXPR, delta, step);
              if (! tmp)
              if (! tmp)
                continue;
                continue;
              delta = tmp;
              delta = tmp;
            }
            }
 
 
          break;
          break;
        }
        }
 
 
      if (!handled_component_p (ref))
      if (!handled_component_p (ref))
        return NULL_TREE;
        return NULL_TREE;
    }
    }
 
 
  /* We found the suitable array reference.  So copy everything up to it,
  /* We found the suitable array reference.  So copy everything up to it,
     and replace the index.  */
     and replace the index.  */
 
 
  pref = TREE_OPERAND (addr, 0);
  pref = TREE_OPERAND (addr, 0);
  ret = copy_node (pref);
  ret = copy_node (pref);
  pos = ret;
  pos = ret;
 
 
  while (pref != ref)
  while (pref != ref)
    {
    {
      pref = TREE_OPERAND (pref, 0);
      pref = TREE_OPERAND (pref, 0);
      TREE_OPERAND (pos, 0) = copy_node (pref);
      TREE_OPERAND (pos, 0) = copy_node (pref);
      pos = TREE_OPERAND (pos, 0);
      pos = TREE_OPERAND (pos, 0);
    }
    }
 
 
  TREE_OPERAND (pos, 1) = fold_build2 (code, itype,
  TREE_OPERAND (pos, 1) = fold_build2 (code, itype,
                                       fold_convert (itype,
                                       fold_convert (itype,
                                                     TREE_OPERAND (pos, 1)),
                                                     TREE_OPERAND (pos, 1)),
                                       fold_convert (itype, delta));
                                       fold_convert (itype, delta));
 
 
  return fold_build1 (ADDR_EXPR, TREE_TYPE (addr), ret);
  return fold_build1 (ADDR_EXPR, TREE_TYPE (addr), ret);
}
}
 
 
 
 
/* Fold A < X && A + 1 > Y to A < X && A >= Y.  Normally A + 1 > Y
/* Fold A < X && A + 1 > Y to A < X && A >= Y.  Normally A + 1 > Y
   means A >= Y && A != MAX, but in this case we know that
   means A >= Y && A != MAX, but in this case we know that
   A < X <= MAX.  INEQ is A + 1 > Y, BOUND is A < X.  */
   A < X <= MAX.  INEQ is A + 1 > Y, BOUND is A < X.  */
 
 
static tree
static tree
fold_to_nonsharp_ineq_using_bound (tree ineq, tree bound)
fold_to_nonsharp_ineq_using_bound (tree ineq, tree bound)
{
{
  tree a, typea, type = TREE_TYPE (ineq), a1, diff, y;
  tree a, typea, type = TREE_TYPE (ineq), a1, diff, y;
 
 
  if (TREE_CODE (bound) == LT_EXPR)
  if (TREE_CODE (bound) == LT_EXPR)
    a = TREE_OPERAND (bound, 0);
    a = TREE_OPERAND (bound, 0);
  else if (TREE_CODE (bound) == GT_EXPR)
  else if (TREE_CODE (bound) == GT_EXPR)
    a = TREE_OPERAND (bound, 1);
    a = TREE_OPERAND (bound, 1);
  else
  else
    return NULL_TREE;
    return NULL_TREE;
 
 
  typea = TREE_TYPE (a);
  typea = TREE_TYPE (a);
  if (!INTEGRAL_TYPE_P (typea)
  if (!INTEGRAL_TYPE_P (typea)
      && !POINTER_TYPE_P (typea))
      && !POINTER_TYPE_P (typea))
    return NULL_TREE;
    return NULL_TREE;
 
 
  if (TREE_CODE (ineq) == LT_EXPR)
  if (TREE_CODE (ineq) == LT_EXPR)
    {
    {
      a1 = TREE_OPERAND (ineq, 1);
      a1 = TREE_OPERAND (ineq, 1);
      y = TREE_OPERAND (ineq, 0);
      y = TREE_OPERAND (ineq, 0);
    }
    }
  else if (TREE_CODE (ineq) == GT_EXPR)
  else if (TREE_CODE (ineq) == GT_EXPR)
    {
    {
      a1 = TREE_OPERAND (ineq, 0);
      a1 = TREE_OPERAND (ineq, 0);
      y = TREE_OPERAND (ineq, 1);
      y = TREE_OPERAND (ineq, 1);
    }
    }
  else
  else
    return NULL_TREE;
    return NULL_TREE;
 
 
  if (TREE_TYPE (a1) != typea)
  if (TREE_TYPE (a1) != typea)
    return NULL_TREE;
    return NULL_TREE;
 
 
  diff = fold_build2 (MINUS_EXPR, typea, a1, a);
  diff = fold_build2 (MINUS_EXPR, typea, a1, a);
  if (!integer_onep (diff))
  if (!integer_onep (diff))
    return NULL_TREE;
    return NULL_TREE;
 
 
  return fold_build2 (GE_EXPR, type, a, y);
  return fold_build2 (GE_EXPR, type, a, y);
}
}
 
 
/* Fold a sum or difference of at least one multiplication.
/* Fold a sum or difference of at least one multiplication.
   Returns the folded tree or NULL if no simplification could be made.  */
   Returns the folded tree or NULL if no simplification could be made.  */
 
 
static tree
static tree
fold_plusminus_mult_expr (enum tree_code code, tree type, tree arg0, tree arg1)
fold_plusminus_mult_expr (enum tree_code code, tree type, tree arg0, tree arg1)
{
{
  tree arg00, arg01, arg10, arg11;
  tree arg00, arg01, arg10, arg11;
  tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;
  tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;
 
 
  /* (A * C) +- (B * C) -> (A+-B) * C.
  /* (A * C) +- (B * C) -> (A+-B) * C.
     (A * C) +- A -> A * (C+-1).
     (A * C) +- A -> A * (C+-1).
     We are most concerned about the case where C is a constant,
     We are most concerned about the case where C is a constant,
     but other combinations show up during loop reduction.  Since
     but other combinations show up during loop reduction.  Since
     it is not difficult, try all four possibilities.  */
     it is not difficult, try all four possibilities.  */
 
 
  if (TREE_CODE (arg0) == MULT_EXPR)
  if (TREE_CODE (arg0) == MULT_EXPR)
    {
    {
      arg00 = TREE_OPERAND (arg0, 0);
      arg00 = TREE_OPERAND (arg0, 0);
      arg01 = TREE_OPERAND (arg0, 1);
      arg01 = TREE_OPERAND (arg0, 1);
    }
    }
  else
  else
    {
    {
      arg00 = arg0;
      arg00 = arg0;
      arg01 = build_one_cst (type);
      arg01 = build_one_cst (type);
    }
    }
  if (TREE_CODE (arg1) == MULT_EXPR)
  if (TREE_CODE (arg1) == MULT_EXPR)
    {
    {
      arg10 = TREE_OPERAND (arg1, 0);
      arg10 = TREE_OPERAND (arg1, 0);
      arg11 = TREE_OPERAND (arg1, 1);
      arg11 = TREE_OPERAND (arg1, 1);
    }
    }
  else
  else
    {
    {
      arg10 = arg1;
      arg10 = arg1;
      arg11 = build_one_cst (type);
      arg11 = build_one_cst (type);
    }
    }
  same = NULL_TREE;
  same = NULL_TREE;
 
 
  if (operand_equal_p (arg01, arg11, 0))
  if (operand_equal_p (arg01, arg11, 0))
    same = arg01, alt0 = arg00, alt1 = arg10;
    same = arg01, alt0 = arg00, alt1 = arg10;
  else if (operand_equal_p (arg00, arg10, 0))
  else if (operand_equal_p (arg00, arg10, 0))
    same = arg00, alt0 = arg01, alt1 = arg11;
    same = arg00, alt0 = arg01, alt1 = arg11;
  else if (operand_equal_p (arg00, arg11, 0))
  else if (operand_equal_p (arg00, arg11, 0))
    same = arg00, alt0 = arg01, alt1 = arg10;
    same = arg00, alt0 = arg01, alt1 = arg10;
  else if (operand_equal_p (arg01, arg10, 0))
  else if (operand_equal_p (arg01, arg10, 0))
    same = arg01, alt0 = arg00, alt1 = arg11;
    same = arg01, alt0 = arg00, alt1 = arg11;
 
 
  /* No identical multiplicands; see if we can find a common
  /* No identical multiplicands; see if we can find a common
     power-of-two factor in non-power-of-two multiplies.  This
     power-of-two factor in non-power-of-two multiplies.  This
     can help in multi-dimensional array access.  */
     can help in multi-dimensional array access.  */
  else if (host_integerp (arg01, 0)
  else if (host_integerp (arg01, 0)
           && host_integerp (arg11, 0))
           && host_integerp (arg11, 0))
    {
    {
      HOST_WIDE_INT int01, int11, tmp;
      HOST_WIDE_INT int01, int11, tmp;
      bool swap = false;
      bool swap = false;
      tree maybe_same;
      tree maybe_same;
      int01 = TREE_INT_CST_LOW (arg01);
      int01 = TREE_INT_CST_LOW (arg01);
      int11 = TREE_INT_CST_LOW (arg11);
      int11 = TREE_INT_CST_LOW (arg11);
 
 
      /* Move min of absolute values to int11.  */
      /* Move min of absolute values to int11.  */
      if ((int01 >= 0 ? int01 : -int01)
      if ((int01 >= 0 ? int01 : -int01)
          < (int11 >= 0 ? int11 : -int11))
          < (int11 >= 0 ? int11 : -int11))
        {
        {
          tmp = int01, int01 = int11, int11 = tmp;
          tmp = int01, int01 = int11, int11 = tmp;
          alt0 = arg00, arg00 = arg10, arg10 = alt0;
          alt0 = arg00, arg00 = arg10, arg10 = alt0;
          maybe_same = arg01;
          maybe_same = arg01;
          swap = true;
          swap = true;
        }
        }
      else
      else
        maybe_same = arg11;
        maybe_same = arg11;
 
 
      if (exact_log2 (int11) > 0 && int01 % int11 == 0)
      if (exact_log2 (int11) > 0 && int01 % int11 == 0)
        {
        {
          alt0 = fold_build2 (MULT_EXPR, TREE_TYPE (arg00), arg00,
          alt0 = fold_build2 (MULT_EXPR, TREE_TYPE (arg00), arg00,
                              build_int_cst (TREE_TYPE (arg00),
                              build_int_cst (TREE_TYPE (arg00),
                                             int01 / int11));
                                             int01 / int11));
          alt1 = arg10;
          alt1 = arg10;
          same = maybe_same;
          same = maybe_same;
          if (swap)
          if (swap)
            maybe_same = alt0, alt0 = alt1, alt1 = maybe_same;
            maybe_same = alt0, alt0 = alt1, alt1 = maybe_same;
        }
        }
    }
    }
 
 
  if (same)
  if (same)
    return fold_build2 (MULT_EXPR, type,
    return fold_build2 (MULT_EXPR, type,
                        fold_build2 (code, type,
                        fold_build2 (code, type,
                                     fold_convert (type, alt0),
                                     fold_convert (type, alt0),
                                     fold_convert (type, alt1)),
                                     fold_convert (type, alt1)),
                        fold_convert (type, same));
                        fold_convert (type, same));
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Subroutine of native_encode_expr.  Encode the INTEGER_CST
/* Subroutine of native_encode_expr.  Encode the INTEGER_CST
   specified by EXPR into the buffer PTR of length LEN bytes.
   specified by EXPR into the buffer PTR of length LEN bytes.
   Return the number of bytes placed in the buffer, or zero
   Return the number of bytes placed in the buffer, or zero
   upon failure.  */
   upon failure.  */
 
 
static int
static int
native_encode_int (tree expr, unsigned char *ptr, int len)
native_encode_int (tree expr, unsigned char *ptr, int len)
{
{
  tree type = TREE_TYPE (expr);
  tree type = TREE_TYPE (expr);
  int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
  int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
  int byte, offset, word, words;
  int byte, offset, word, words;
  unsigned char value;
  unsigned char value;
 
 
  if (total_bytes > len)
  if (total_bytes > len)
    return 0;
    return 0;
  words = total_bytes / UNITS_PER_WORD;
  words = total_bytes / UNITS_PER_WORD;
 
 
  for (byte = 0; byte < total_bytes; byte++)
  for (byte = 0; byte < total_bytes; byte++)
    {
    {
      int bitpos = byte * BITS_PER_UNIT;
      int bitpos = byte * BITS_PER_UNIT;
      if (bitpos < HOST_BITS_PER_WIDE_INT)
      if (bitpos < HOST_BITS_PER_WIDE_INT)
        value = (unsigned char) (TREE_INT_CST_LOW (expr) >> bitpos);
        value = (unsigned char) (TREE_INT_CST_LOW (expr) >> bitpos);
      else
      else
        value = (unsigned char) (TREE_INT_CST_HIGH (expr)
        value = (unsigned char) (TREE_INT_CST_HIGH (expr)
                                 >> (bitpos - HOST_BITS_PER_WIDE_INT));
                                 >> (bitpos - HOST_BITS_PER_WIDE_INT));
 
 
      if (total_bytes > UNITS_PER_WORD)
      if (total_bytes > UNITS_PER_WORD)
        {
        {
          word = byte / UNITS_PER_WORD;
          word = byte / UNITS_PER_WORD;
          if (WORDS_BIG_ENDIAN)
          if (WORDS_BIG_ENDIAN)
            word = (words - 1) - word;
            word = (words - 1) - word;
          offset = word * UNITS_PER_WORD;
          offset = word * UNITS_PER_WORD;
          if (BYTES_BIG_ENDIAN)
          if (BYTES_BIG_ENDIAN)
            offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
            offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
          else
          else
            offset += byte % UNITS_PER_WORD;
            offset += byte % UNITS_PER_WORD;
        }
        }
      else
      else
        offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
        offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
      ptr[offset] = value;
      ptr[offset] = value;
    }
    }
  return total_bytes;
  return total_bytes;
}
}
 
 
 
 
/* Subroutine of native_encode_expr.  Encode the REAL_CST
/* Subroutine of native_encode_expr.  Encode the REAL_CST
   specified by EXPR into the buffer PTR of length LEN bytes.
   specified by EXPR into the buffer PTR of length LEN bytes.
   Return the number of bytes placed in the buffer, or zero
   Return the number of bytes placed in the buffer, or zero
   upon failure.  */
   upon failure.  */
 
 
static int
static int
native_encode_real (tree expr, unsigned char *ptr, int len)
native_encode_real (tree expr, unsigned char *ptr, int len)
{
{
  tree type = TREE_TYPE (expr);
  tree type = TREE_TYPE (expr);
  int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
  int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
  int byte, offset, word, words, bitpos;
  int byte, offset, word, words, bitpos;
  unsigned char value;
  unsigned char value;
 
 
  /* There are always 32 bits in each long, no matter the size of
  /* There are always 32 bits in each long, no matter the size of
     the hosts long.  We handle floating point representations with
     the hosts long.  We handle floating point representations with
     up to 192 bits.  */
     up to 192 bits.  */
  long tmp[6];
  long tmp[6];
 
 
  if (total_bytes > len)
  if (total_bytes > len)
    return 0;
    return 0;
  words = 32 / UNITS_PER_WORD;
  words = 32 / UNITS_PER_WORD;
 
 
  real_to_target (tmp, TREE_REAL_CST_PTR (expr), TYPE_MODE (type));
  real_to_target (tmp, TREE_REAL_CST_PTR (expr), TYPE_MODE (type));
 
 
  for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
  for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
       bitpos += BITS_PER_UNIT)
       bitpos += BITS_PER_UNIT)
    {
    {
      byte = (bitpos / BITS_PER_UNIT) & 3;
      byte = (bitpos / BITS_PER_UNIT) & 3;
      value = (unsigned char) (tmp[bitpos / 32] >> (bitpos & 31));
      value = (unsigned char) (tmp[bitpos / 32] >> (bitpos & 31));
 
 
      if (UNITS_PER_WORD < 4)
      if (UNITS_PER_WORD < 4)
        {
        {
          word = byte / UNITS_PER_WORD;
          word = byte / UNITS_PER_WORD;
          if (WORDS_BIG_ENDIAN)
          if (WORDS_BIG_ENDIAN)
            word = (words - 1) - word;
            word = (words - 1) - word;
          offset = word * UNITS_PER_WORD;
          offset = word * UNITS_PER_WORD;
          if (BYTES_BIG_ENDIAN)
          if (BYTES_BIG_ENDIAN)
            offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
            offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
          else
          else
            offset += byte % UNITS_PER_WORD;
            offset += byte % UNITS_PER_WORD;
        }
        }
      else
      else
        offset = BYTES_BIG_ENDIAN ? 3 - byte : byte;
        offset = BYTES_BIG_ENDIAN ? 3 - byte : byte;
      ptr[offset + ((bitpos / BITS_PER_UNIT) & ~3)] = value;
      ptr[offset + ((bitpos / BITS_PER_UNIT) & ~3)] = value;
    }
    }
  return total_bytes;
  return total_bytes;
}
}
 
 
/* Subroutine of native_encode_expr.  Encode the COMPLEX_CST
/* Subroutine of native_encode_expr.  Encode the COMPLEX_CST
   specified by EXPR into the buffer PTR of length LEN bytes.
   specified by EXPR into the buffer PTR of length LEN bytes.
   Return the number of bytes placed in the buffer, or zero
   Return the number of bytes placed in the buffer, or zero
   upon failure.  */
   upon failure.  */
 
 
static int
static int
native_encode_complex (tree expr, unsigned char *ptr, int len)
native_encode_complex (tree expr, unsigned char *ptr, int len)
{
{
  int rsize, isize;
  int rsize, isize;
  tree part;
  tree part;
 
 
  part = TREE_REALPART (expr);
  part = TREE_REALPART (expr);
  rsize = native_encode_expr (part, ptr, len);
  rsize = native_encode_expr (part, ptr, len);
  if (rsize == 0)
  if (rsize == 0)
    return 0;
    return 0;
  part = TREE_IMAGPART (expr);
  part = TREE_IMAGPART (expr);
  isize = native_encode_expr (part, ptr+rsize, len-rsize);
  isize = native_encode_expr (part, ptr+rsize, len-rsize);
  if (isize != rsize)
  if (isize != rsize)
    return 0;
    return 0;
  return rsize + isize;
  return rsize + isize;
}
}
 
 
 
 
/* Subroutine of native_encode_expr.  Encode the VECTOR_CST
/* Subroutine of native_encode_expr.  Encode the VECTOR_CST
   specified by EXPR into the buffer PTR of length LEN bytes.
   specified by EXPR into the buffer PTR of length LEN bytes.
   Return the number of bytes placed in the buffer, or zero
   Return the number of bytes placed in the buffer, or zero
   upon failure.  */
   upon failure.  */
 
 
static int
static int
native_encode_vector (tree expr, unsigned char *ptr, int len)
native_encode_vector (tree expr, unsigned char *ptr, int len)
{
{
  int i, size, offset, count;
  int i, size, offset, count;
  tree itype, elem, elements;
  tree itype, elem, elements;
 
 
  offset = 0;
  offset = 0;
  elements = TREE_VECTOR_CST_ELTS (expr);
  elements = TREE_VECTOR_CST_ELTS (expr);
  count = TYPE_VECTOR_SUBPARTS (TREE_TYPE (expr));
  count = TYPE_VECTOR_SUBPARTS (TREE_TYPE (expr));
  itype = TREE_TYPE (TREE_TYPE (expr));
  itype = TREE_TYPE (TREE_TYPE (expr));
  size = GET_MODE_SIZE (TYPE_MODE (itype));
  size = GET_MODE_SIZE (TYPE_MODE (itype));
  for (i = 0; i < count; i++)
  for (i = 0; i < count; i++)
    {
    {
      if (elements)
      if (elements)
        {
        {
          elem = TREE_VALUE (elements);
          elem = TREE_VALUE (elements);
          elements = TREE_CHAIN (elements);
          elements = TREE_CHAIN (elements);
        }
        }
      else
      else
        elem = NULL_TREE;
        elem = NULL_TREE;
 
 
      if (elem)
      if (elem)
        {
        {
          if (native_encode_expr (elem, ptr+offset, len-offset) != size)
          if (native_encode_expr (elem, ptr+offset, len-offset) != size)
            return 0;
            return 0;
        }
        }
      else
      else
        {
        {
          if (offset + size > len)
          if (offset + size > len)
            return 0;
            return 0;
          memset (ptr+offset, 0, size);
          memset (ptr+offset, 0, size);
        }
        }
      offset += size;
      offset += size;
    }
    }
  return offset;
  return offset;
}
}
 
 
 
 
/* Subroutine of fold_view_convert_expr.  Encode the INTEGER_CST,
/* Subroutine of fold_view_convert_expr.  Encode the INTEGER_CST,
   REAL_CST, COMPLEX_CST or VECTOR_CST specified by EXPR into the
   REAL_CST, COMPLEX_CST or VECTOR_CST specified by EXPR into the
   buffer PTR of length LEN bytes.  Return the number of bytes
   buffer PTR of length LEN bytes.  Return the number of bytes
   placed in the buffer, or zero upon failure.  */
   placed in the buffer, or zero upon failure.  */
 
 
static int
static int
native_encode_expr (tree expr, unsigned char *ptr, int len)
native_encode_expr (tree expr, unsigned char *ptr, int len)
{
{
  switch (TREE_CODE (expr))
  switch (TREE_CODE (expr))
    {
    {
    case INTEGER_CST:
    case INTEGER_CST:
      return native_encode_int (expr, ptr, len);
      return native_encode_int (expr, ptr, len);
 
 
    case REAL_CST:
    case REAL_CST:
      return native_encode_real (expr, ptr, len);
      return native_encode_real (expr, ptr, len);
 
 
    case COMPLEX_CST:
    case COMPLEX_CST:
      return native_encode_complex (expr, ptr, len);
      return native_encode_complex (expr, ptr, len);
 
 
    case VECTOR_CST:
    case VECTOR_CST:
      return native_encode_vector (expr, ptr, len);
      return native_encode_vector (expr, ptr, len);
 
 
    default:
    default:
      return 0;
      return 0;
    }
    }
}
}
 
 
 
 
/* Subroutine of native_interpret_expr.  Interpret the contents of
/* Subroutine of native_interpret_expr.  Interpret the contents of
   the buffer PTR of length LEN as an INTEGER_CST of type TYPE.
   the buffer PTR of length LEN as an INTEGER_CST of type TYPE.
   If the buffer cannot be interpreted, return NULL_TREE.  */
   If the buffer cannot be interpreted, return NULL_TREE.  */
 
 
static tree
static tree
native_interpret_int (tree type, unsigned char *ptr, int len)
native_interpret_int (tree type, unsigned char *ptr, int len)
{
{
  int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
  int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
  int byte, offset, word, words;
  int byte, offset, word, words;
  unsigned char value;
  unsigned char value;
  unsigned int HOST_WIDE_INT lo = 0;
  unsigned int HOST_WIDE_INT lo = 0;
  HOST_WIDE_INT hi = 0;
  HOST_WIDE_INT hi = 0;
 
 
  if (total_bytes > len)
  if (total_bytes > len)
    return NULL_TREE;
    return NULL_TREE;
  if (total_bytes * BITS_PER_UNIT > 2 * HOST_BITS_PER_WIDE_INT)
  if (total_bytes * BITS_PER_UNIT > 2 * HOST_BITS_PER_WIDE_INT)
    return NULL_TREE;
    return NULL_TREE;
  words = total_bytes / UNITS_PER_WORD;
  words = total_bytes / UNITS_PER_WORD;
 
 
  for (byte = 0; byte < total_bytes; byte++)
  for (byte = 0; byte < total_bytes; byte++)
    {
    {
      int bitpos = byte * BITS_PER_UNIT;
      int bitpos = byte * BITS_PER_UNIT;
      if (total_bytes > UNITS_PER_WORD)
      if (total_bytes > UNITS_PER_WORD)
        {
        {
          word = byte / UNITS_PER_WORD;
          word = byte / UNITS_PER_WORD;
          if (WORDS_BIG_ENDIAN)
          if (WORDS_BIG_ENDIAN)
            word = (words - 1) - word;
            word = (words - 1) - word;
          offset = word * UNITS_PER_WORD;
          offset = word * UNITS_PER_WORD;
          if (BYTES_BIG_ENDIAN)
          if (BYTES_BIG_ENDIAN)
            offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
            offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
          else
          else
            offset += byte % UNITS_PER_WORD;
            offset += byte % UNITS_PER_WORD;
        }
        }
      else
      else
        offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
        offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
      value = ptr[offset];
      value = ptr[offset];
 
 
      if (bitpos < HOST_BITS_PER_WIDE_INT)
      if (bitpos < HOST_BITS_PER_WIDE_INT)
        lo |= (unsigned HOST_WIDE_INT) value << bitpos;
        lo |= (unsigned HOST_WIDE_INT) value << bitpos;
      else
      else
        hi |= (unsigned HOST_WIDE_INT) value
        hi |= (unsigned HOST_WIDE_INT) value
              << (bitpos - HOST_BITS_PER_WIDE_INT);
              << (bitpos - HOST_BITS_PER_WIDE_INT);
    }
    }
 
 
  return force_fit_type (build_int_cst_wide (type, lo, hi),
  return force_fit_type (build_int_cst_wide (type, lo, hi),
                         0, false, false);
                         0, false, false);
}
}
 
 
 
 
/* Subroutine of native_interpret_expr.  Interpret the contents of
/* Subroutine of native_interpret_expr.  Interpret the contents of
   the buffer PTR of length LEN as a REAL_CST of type TYPE.
   the buffer PTR of length LEN as a REAL_CST of type TYPE.
   If the buffer cannot be interpreted, return NULL_TREE.  */
   If the buffer cannot be interpreted, return NULL_TREE.  */
 
 
static tree
static tree
native_interpret_real (tree type, unsigned char *ptr, int len)
native_interpret_real (tree type, unsigned char *ptr, int len)
{
{
  enum machine_mode mode = TYPE_MODE (type);
  enum machine_mode mode = TYPE_MODE (type);
  int total_bytes = GET_MODE_SIZE (mode);
  int total_bytes = GET_MODE_SIZE (mode);
  int byte, offset, word, words, bitpos;
  int byte, offset, word, words, bitpos;
  unsigned char value;
  unsigned char value;
  /* There are always 32 bits in each long, no matter the size of
  /* There are always 32 bits in each long, no matter the size of
     the hosts long.  We handle floating point representations with
     the hosts long.  We handle floating point representations with
     up to 192 bits.  */
     up to 192 bits.  */
  REAL_VALUE_TYPE r;
  REAL_VALUE_TYPE r;
  long tmp[6];
  long tmp[6];
 
 
  total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
  total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
  if (total_bytes > len || total_bytes > 24)
  if (total_bytes > len || total_bytes > 24)
    return NULL_TREE;
    return NULL_TREE;
  words = 32 / UNITS_PER_WORD;
  words = 32 / UNITS_PER_WORD;
 
 
  memset (tmp, 0, sizeof (tmp));
  memset (tmp, 0, sizeof (tmp));
  for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
  for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
       bitpos += BITS_PER_UNIT)
       bitpos += BITS_PER_UNIT)
    {
    {
      byte = (bitpos / BITS_PER_UNIT) & 3;
      byte = (bitpos / BITS_PER_UNIT) & 3;
      if (UNITS_PER_WORD < 4)
      if (UNITS_PER_WORD < 4)
        {
        {
          word = byte / UNITS_PER_WORD;
          word = byte / UNITS_PER_WORD;
          if (WORDS_BIG_ENDIAN)
          if (WORDS_BIG_ENDIAN)
            word = (words - 1) - word;
            word = (words - 1) - word;
          offset = word * UNITS_PER_WORD;
          offset = word * UNITS_PER_WORD;
          if (BYTES_BIG_ENDIAN)
          if (BYTES_BIG_ENDIAN)
            offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
            offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
          else
          else
            offset += byte % UNITS_PER_WORD;
            offset += byte % UNITS_PER_WORD;
        }
        }
      else
      else
        offset = BYTES_BIG_ENDIAN ? 3 - byte : byte;
        offset = BYTES_BIG_ENDIAN ? 3 - byte : byte;
      value = ptr[offset + ((bitpos / BITS_PER_UNIT) & ~3)];
      value = ptr[offset + ((bitpos / BITS_PER_UNIT) & ~3)];
 
 
      tmp[bitpos / 32] |= (unsigned long)value << (bitpos & 31);
      tmp[bitpos / 32] |= (unsigned long)value << (bitpos & 31);
    }
    }
 
 
  real_from_target (&r, tmp, mode);
  real_from_target (&r, tmp, mode);
  return build_real (type, r);
  return build_real (type, r);
}
}
 
 
 
 
/* Subroutine of native_interpret_expr.  Interpret the contents of
/* Subroutine of native_interpret_expr.  Interpret the contents of
   the buffer PTR of length LEN as a COMPLEX_CST of type TYPE.
   the buffer PTR of length LEN as a COMPLEX_CST of type TYPE.
   If the buffer cannot be interpreted, return NULL_TREE.  */
   If the buffer cannot be interpreted, return NULL_TREE.  */
 
 
static tree
static tree
native_interpret_complex (tree type, unsigned char *ptr, int len)
native_interpret_complex (tree type, unsigned char *ptr, int len)
{
{
  tree etype, rpart, ipart;
  tree etype, rpart, ipart;
  int size;
  int size;
 
 
  etype = TREE_TYPE (type);
  etype = TREE_TYPE (type);
  size = GET_MODE_SIZE (TYPE_MODE (etype));
  size = GET_MODE_SIZE (TYPE_MODE (etype));
  if (size * 2 > len)
  if (size * 2 > len)
    return NULL_TREE;
    return NULL_TREE;
  rpart = native_interpret_expr (etype, ptr, size);
  rpart = native_interpret_expr (etype, ptr, size);
  if (!rpart)
  if (!rpart)
    return NULL_TREE;
    return NULL_TREE;
  ipart = native_interpret_expr (etype, ptr+size, size);
  ipart = native_interpret_expr (etype, ptr+size, size);
  if (!ipart)
  if (!ipart)
    return NULL_TREE;
    return NULL_TREE;
  return build_complex (type, rpart, ipart);
  return build_complex (type, rpart, ipart);
}
}
 
 
 
 
/* Subroutine of native_interpret_expr.  Interpret the contents of
/* Subroutine of native_interpret_expr.  Interpret the contents of
   the buffer PTR of length LEN as a VECTOR_CST of type TYPE.
   the buffer PTR of length LEN as a VECTOR_CST of type TYPE.
   If the buffer cannot be interpreted, return NULL_TREE.  */
   If the buffer cannot be interpreted, return NULL_TREE.  */
 
 
static tree
static tree
native_interpret_vector (tree type, unsigned char *ptr, int len)
native_interpret_vector (tree type, unsigned char *ptr, int len)
{
{
  tree etype, elem, elements;
  tree etype, elem, elements;
  int i, size, count;
  int i, size, count;
 
 
  etype = TREE_TYPE (type);
  etype = TREE_TYPE (type);
  size = GET_MODE_SIZE (TYPE_MODE (etype));
  size = GET_MODE_SIZE (TYPE_MODE (etype));
  count = TYPE_VECTOR_SUBPARTS (type);
  count = TYPE_VECTOR_SUBPARTS (type);
  if (size * count > len)
  if (size * count > len)
    return NULL_TREE;
    return NULL_TREE;
 
 
  elements = NULL_TREE;
  elements = NULL_TREE;
  for (i = count - 1; i >= 0; i--)
  for (i = count - 1; i >= 0; i--)
    {
    {
      elem = native_interpret_expr (etype, ptr+(i*size), size);
      elem = native_interpret_expr (etype, ptr+(i*size), size);
      if (!elem)
      if (!elem)
        return NULL_TREE;
        return NULL_TREE;
      elements = tree_cons (NULL_TREE, elem, elements);
      elements = tree_cons (NULL_TREE, elem, elements);
    }
    }
  return build_vector (type, elements);
  return build_vector (type, elements);
}
}
 
 
 
 
/* Subroutine of fold_view_convert_expr.  Interpret the contents of
/* Subroutine of fold_view_convert_expr.  Interpret the contents of
   the buffer PTR of length LEN as a constant of type TYPE.  For
   the buffer PTR of length LEN as a constant of type TYPE.  For
   INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P
   INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P
   we return a REAL_CST, etc...  If the buffer cannot be interpreted,
   we return a REAL_CST, etc...  If the buffer cannot be interpreted,
   return NULL_TREE.  */
   return NULL_TREE.  */
 
 
static tree
static tree
native_interpret_expr (tree type, unsigned char *ptr, int len)
native_interpret_expr (tree type, unsigned char *ptr, int len)
{
{
  switch (TREE_CODE (type))
  switch (TREE_CODE (type))
    {
    {
    case INTEGER_TYPE:
    case INTEGER_TYPE:
    case ENUMERAL_TYPE:
    case ENUMERAL_TYPE:
    case BOOLEAN_TYPE:
    case BOOLEAN_TYPE:
      return native_interpret_int (type, ptr, len);
      return native_interpret_int (type, ptr, len);
 
 
    case REAL_TYPE:
    case REAL_TYPE:
      return native_interpret_real (type, ptr, len);
      return native_interpret_real (type, ptr, len);
 
 
    case COMPLEX_TYPE:
    case COMPLEX_TYPE:
      return native_interpret_complex (type, ptr, len);
      return native_interpret_complex (type, ptr, len);
 
 
    case VECTOR_TYPE:
    case VECTOR_TYPE:
      return native_interpret_vector (type, ptr, len);
      return native_interpret_vector (type, ptr, len);
 
 
    default:
    default:
      return NULL_TREE;
      return NULL_TREE;
    }
    }
}
}
 
 
 
 
/* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type
/* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type
   TYPE at compile-time.  If we're unable to perform the conversion
   TYPE at compile-time.  If we're unable to perform the conversion
   return NULL_TREE.  */
   return NULL_TREE.  */
 
 
static tree
static tree
fold_view_convert_expr (tree type, tree expr)
fold_view_convert_expr (tree type, tree expr)
{
{
  /* We support up to 512-bit values (for V8DFmode).  */
  /* We support up to 512-bit values (for V8DFmode).  */
  unsigned char buffer[64];
  unsigned char buffer[64];
  int len;
  int len;
 
 
  /* Check that the host and target are sane.  */
  /* Check that the host and target are sane.  */
  if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
  if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
    return NULL_TREE;
    return NULL_TREE;
 
 
  len = native_encode_expr (expr, buffer, sizeof (buffer));
  len = native_encode_expr (expr, buffer, sizeof (buffer));
  if (len == 0)
  if (len == 0)
    return NULL_TREE;
    return NULL_TREE;
 
 
  return native_interpret_expr (type, buffer, len);
  return native_interpret_expr (type, buffer, len);
}
}
 
 
 
 
/* Fold a unary expression of code CODE and type TYPE with operand
/* Fold a unary expression of code CODE and type TYPE with operand
   OP0.  Return the folded expression if folding is successful.
   OP0.  Return the folded expression if folding is successful.
   Otherwise, return NULL_TREE.  */
   Otherwise, return NULL_TREE.  */
 
 
tree
tree
fold_unary (enum tree_code code, tree type, tree op0)
fold_unary (enum tree_code code, tree type, tree op0)
{
{
  tree tem;
  tree tem;
  tree arg0;
  tree arg0;
  enum tree_code_class kind = TREE_CODE_CLASS (code);
  enum tree_code_class kind = TREE_CODE_CLASS (code);
 
 
  gcc_assert (IS_EXPR_CODE_CLASS (kind)
  gcc_assert (IS_EXPR_CODE_CLASS (kind)
              && TREE_CODE_LENGTH (code) == 1);
              && TREE_CODE_LENGTH (code) == 1);
 
 
  arg0 = op0;
  arg0 = op0;
  if (arg0)
  if (arg0)
    {
    {
      if (code == NOP_EXPR || code == CONVERT_EXPR
      if (code == NOP_EXPR || code == CONVERT_EXPR
          || code == FLOAT_EXPR || code == ABS_EXPR)
          || code == FLOAT_EXPR || code == ABS_EXPR)
        {
        {
          /* Don't use STRIP_NOPS, because signedness of argument type
          /* Don't use STRIP_NOPS, because signedness of argument type
             matters.  */
             matters.  */
          STRIP_SIGN_NOPS (arg0);
          STRIP_SIGN_NOPS (arg0);
        }
        }
      else
      else
        {
        {
          /* Strip any conversions that don't change the mode.  This
          /* Strip any conversions that don't change the mode.  This
             is safe for every expression, except for a comparison
             is safe for every expression, except for a comparison
             expression because its signedness is derived from its
             expression because its signedness is derived from its
             operands.
             operands.
 
 
             Note that this is done as an internal manipulation within
             Note that this is done as an internal manipulation within
             the constant folder, in order to find the simplest
             the constant folder, in order to find the simplest
             representation of the arguments so that their form can be
             representation of the arguments so that their form can be
             studied.  In any cases, the appropriate type conversions
             studied.  In any cases, the appropriate type conversions
             should be put back in the tree that will get out of the
             should be put back in the tree that will get out of the
             constant folder.  */
             constant folder.  */
          STRIP_NOPS (arg0);
          STRIP_NOPS (arg0);
        }
        }
    }
    }
 
 
  if (TREE_CODE_CLASS (code) == tcc_unary)
  if (TREE_CODE_CLASS (code) == tcc_unary)
    {
    {
      if (TREE_CODE (arg0) == COMPOUND_EXPR)
      if (TREE_CODE (arg0) == COMPOUND_EXPR)
        return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
        return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
                       fold_build1 (code, type, TREE_OPERAND (arg0, 1)));
                       fold_build1 (code, type, TREE_OPERAND (arg0, 1)));
      else if (TREE_CODE (arg0) == COND_EXPR)
      else if (TREE_CODE (arg0) == COND_EXPR)
        {
        {
          tree arg01 = TREE_OPERAND (arg0, 1);
          tree arg01 = TREE_OPERAND (arg0, 1);
          tree arg02 = TREE_OPERAND (arg0, 2);
          tree arg02 = TREE_OPERAND (arg0, 2);
          if (! VOID_TYPE_P (TREE_TYPE (arg01)))
          if (! VOID_TYPE_P (TREE_TYPE (arg01)))
            arg01 = fold_build1 (code, type, arg01);
            arg01 = fold_build1 (code, type, arg01);
          if (! VOID_TYPE_P (TREE_TYPE (arg02)))
          if (! VOID_TYPE_P (TREE_TYPE (arg02)))
            arg02 = fold_build1 (code, type, arg02);
            arg02 = fold_build1 (code, type, arg02);
          tem = fold_build3 (COND_EXPR, type, TREE_OPERAND (arg0, 0),
          tem = fold_build3 (COND_EXPR, type, TREE_OPERAND (arg0, 0),
                             arg01, arg02);
                             arg01, arg02);
 
 
          /* If this was a conversion, and all we did was to move into
          /* If this was a conversion, and all we did was to move into
             inside the COND_EXPR, bring it back out.  But leave it if
             inside the COND_EXPR, bring it back out.  But leave it if
             it is a conversion from integer to integer and the
             it is a conversion from integer to integer and the
             result precision is no wider than a word since such a
             result precision is no wider than a word since such a
             conversion is cheap and may be optimized away by combine,
             conversion is cheap and may be optimized away by combine,
             while it couldn't if it were outside the COND_EXPR.  Then return
             while it couldn't if it were outside the COND_EXPR.  Then return
             so we don't get into an infinite recursion loop taking the
             so we don't get into an infinite recursion loop taking the
             conversion out and then back in.  */
             conversion out and then back in.  */
 
 
          if ((code == NOP_EXPR || code == CONVERT_EXPR
          if ((code == NOP_EXPR || code == CONVERT_EXPR
               || code == NON_LVALUE_EXPR)
               || code == NON_LVALUE_EXPR)
              && TREE_CODE (tem) == COND_EXPR
              && TREE_CODE (tem) == COND_EXPR
              && TREE_CODE (TREE_OPERAND (tem, 1)) == code
              && TREE_CODE (TREE_OPERAND (tem, 1)) == code
              && TREE_CODE (TREE_OPERAND (tem, 2)) == code
              && TREE_CODE (TREE_OPERAND (tem, 2)) == code
              && ! VOID_TYPE_P (TREE_OPERAND (tem, 1))
              && ! VOID_TYPE_P (TREE_OPERAND (tem, 1))
              && ! VOID_TYPE_P (TREE_OPERAND (tem, 2))
              && ! VOID_TYPE_P (TREE_OPERAND (tem, 2))
              && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))
              && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))
                  == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 2), 0)))
                  == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 2), 0)))
              && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem))
              && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem))
                     && (INTEGRAL_TYPE_P
                     && (INTEGRAL_TYPE_P
                         (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))))
                         (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))))
                     && TYPE_PRECISION (TREE_TYPE (tem)) <= BITS_PER_WORD)
                     && TYPE_PRECISION (TREE_TYPE (tem)) <= BITS_PER_WORD)
                  || flag_syntax_only))
                  || flag_syntax_only))
            tem = build1 (code, type,
            tem = build1 (code, type,
                          build3 (COND_EXPR,
                          build3 (COND_EXPR,
                                  TREE_TYPE (TREE_OPERAND
                                  TREE_TYPE (TREE_OPERAND
                                             (TREE_OPERAND (tem, 1), 0)),
                                             (TREE_OPERAND (tem, 1), 0)),
                                  TREE_OPERAND (tem, 0),
                                  TREE_OPERAND (tem, 0),
                                  TREE_OPERAND (TREE_OPERAND (tem, 1), 0),
                                  TREE_OPERAND (TREE_OPERAND (tem, 1), 0),
                                  TREE_OPERAND (TREE_OPERAND (tem, 2), 0)));
                                  TREE_OPERAND (TREE_OPERAND (tem, 2), 0)));
          return tem;
          return tem;
        }
        }
      else if (COMPARISON_CLASS_P (arg0))
      else if (COMPARISON_CLASS_P (arg0))
        {
        {
          if (TREE_CODE (type) == BOOLEAN_TYPE)
          if (TREE_CODE (type) == BOOLEAN_TYPE)
            {
            {
              arg0 = copy_node (arg0);
              arg0 = copy_node (arg0);
              TREE_TYPE (arg0) = type;
              TREE_TYPE (arg0) = type;
              return arg0;
              return arg0;
            }
            }
          else if (TREE_CODE (type) != INTEGER_TYPE)
          else if (TREE_CODE (type) != INTEGER_TYPE)
            return fold_build3 (COND_EXPR, type, arg0,
            return fold_build3 (COND_EXPR, type, arg0,
                                fold_build1 (code, type,
                                fold_build1 (code, type,
                                             integer_one_node),
                                             integer_one_node),
                                fold_build1 (code, type,
                                fold_build1 (code, type,
                                             integer_zero_node));
                                             integer_zero_node));
        }
        }
   }
   }
 
 
  switch (code)
  switch (code)
    {
    {
    case NOP_EXPR:
    case NOP_EXPR:
    case FLOAT_EXPR:
    case FLOAT_EXPR:
    case CONVERT_EXPR:
    case CONVERT_EXPR:
    case FIX_TRUNC_EXPR:
    case FIX_TRUNC_EXPR:
    case FIX_CEIL_EXPR:
    case FIX_CEIL_EXPR:
    case FIX_FLOOR_EXPR:
    case FIX_FLOOR_EXPR:
    case FIX_ROUND_EXPR:
    case FIX_ROUND_EXPR:
      if (TREE_TYPE (op0) == type)
      if (TREE_TYPE (op0) == type)
        return op0;
        return op0;
 
 
      /* If we have (type) (a CMP b) and type is an integral type, return
      /* If we have (type) (a CMP b) and type is an integral type, return
         new expression involving the new type.  */
         new expression involving the new type.  */
      if (COMPARISON_CLASS_P (op0) && INTEGRAL_TYPE_P (type))
      if (COMPARISON_CLASS_P (op0) && INTEGRAL_TYPE_P (type))
        return fold_build2 (TREE_CODE (op0), type, TREE_OPERAND (op0, 0),
        return fold_build2 (TREE_CODE (op0), type, TREE_OPERAND (op0, 0),
                            TREE_OPERAND (op0, 1));
                            TREE_OPERAND (op0, 1));
 
 
      /* Handle cases of two conversions in a row.  */
      /* Handle cases of two conversions in a row.  */
      if (TREE_CODE (op0) == NOP_EXPR
      if (TREE_CODE (op0) == NOP_EXPR
          || TREE_CODE (op0) == CONVERT_EXPR)
          || TREE_CODE (op0) == CONVERT_EXPR)
        {
        {
          tree inside_type = TREE_TYPE (TREE_OPERAND (op0, 0));
          tree inside_type = TREE_TYPE (TREE_OPERAND (op0, 0));
          tree inter_type = TREE_TYPE (op0);
          tree inter_type = TREE_TYPE (op0);
          int inside_int = INTEGRAL_TYPE_P (inside_type);
          int inside_int = INTEGRAL_TYPE_P (inside_type);
          int inside_ptr = POINTER_TYPE_P (inside_type);
          int inside_ptr = POINTER_TYPE_P (inside_type);
          int inside_float = FLOAT_TYPE_P (inside_type);
          int inside_float = FLOAT_TYPE_P (inside_type);
          int inside_vec = TREE_CODE (inside_type) == VECTOR_TYPE;
          int inside_vec = TREE_CODE (inside_type) == VECTOR_TYPE;
          unsigned int inside_prec = TYPE_PRECISION (inside_type);
          unsigned int inside_prec = TYPE_PRECISION (inside_type);
          int inside_unsignedp = TYPE_UNSIGNED (inside_type);
          int inside_unsignedp = TYPE_UNSIGNED (inside_type);
          int inter_int = INTEGRAL_TYPE_P (inter_type);
          int inter_int = INTEGRAL_TYPE_P (inter_type);
          int inter_ptr = POINTER_TYPE_P (inter_type);
          int inter_ptr = POINTER_TYPE_P (inter_type);
          int inter_float = FLOAT_TYPE_P (inter_type);
          int inter_float = FLOAT_TYPE_P (inter_type);
          int inter_vec = TREE_CODE (inter_type) == VECTOR_TYPE;
          int inter_vec = TREE_CODE (inter_type) == VECTOR_TYPE;
          unsigned int inter_prec = TYPE_PRECISION (inter_type);
          unsigned int inter_prec = TYPE_PRECISION (inter_type);
          int inter_unsignedp = TYPE_UNSIGNED (inter_type);
          int inter_unsignedp = TYPE_UNSIGNED (inter_type);
          int final_int = INTEGRAL_TYPE_P (type);
          int final_int = INTEGRAL_TYPE_P (type);
          int final_ptr = POINTER_TYPE_P (type);
          int final_ptr = POINTER_TYPE_P (type);
          int final_float = FLOAT_TYPE_P (type);
          int final_float = FLOAT_TYPE_P (type);
          int final_vec = TREE_CODE (type) == VECTOR_TYPE;
          int final_vec = TREE_CODE (type) == VECTOR_TYPE;
          unsigned int final_prec = TYPE_PRECISION (type);
          unsigned int final_prec = TYPE_PRECISION (type);
          int final_unsignedp = TYPE_UNSIGNED (type);
          int final_unsignedp = TYPE_UNSIGNED (type);
 
 
          /* In addition to the cases of two conversions in a row
          /* In addition to the cases of two conversions in a row
             handled below, if we are converting something to its own
             handled below, if we are converting something to its own
             type via an object of identical or wider precision, neither
             type via an object of identical or wider precision, neither
             conversion is needed.  */
             conversion is needed.  */
          if (TYPE_MAIN_VARIANT (inside_type) == TYPE_MAIN_VARIANT (type)
          if (TYPE_MAIN_VARIANT (inside_type) == TYPE_MAIN_VARIANT (type)
              && (((inter_int || inter_ptr) && final_int)
              && (((inter_int || inter_ptr) && final_int)
                  || (inter_float && final_float))
                  || (inter_float && final_float))
              && inter_prec >= final_prec)
              && inter_prec >= final_prec)
            return fold_build1 (code, type, TREE_OPERAND (op0, 0));
            return fold_build1 (code, type, TREE_OPERAND (op0, 0));
 
 
          /* Likewise, if the intermediate and final types are either both
          /* Likewise, if the intermediate and final types are either both
             float or both integer, we don't need the middle conversion if
             float or both integer, we don't need the middle conversion if
             it is wider than the final type and doesn't change the signedness
             it is wider than the final type and doesn't change the signedness
             (for integers).  Avoid this if the final type is a pointer
             (for integers).  Avoid this if the final type is a pointer
             since then we sometimes need the inner conversion.  Likewise if
             since then we sometimes need the inner conversion.  Likewise if
             the outer has a precision not equal to the size of its mode.  */
             the outer has a precision not equal to the size of its mode.  */
          if ((((inter_int || inter_ptr) && (inside_int || inside_ptr))
          if ((((inter_int || inter_ptr) && (inside_int || inside_ptr))
               || (inter_float && inside_float)
               || (inter_float && inside_float)
               || (inter_vec && inside_vec))
               || (inter_vec && inside_vec))
              && inter_prec >= inside_prec
              && inter_prec >= inside_prec
              && (inter_float || inter_vec
              && (inter_float || inter_vec
                  || inter_unsignedp == inside_unsignedp)
                  || inter_unsignedp == inside_unsignedp)
              && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (type))
              && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (type))
                    && TYPE_MODE (type) == TYPE_MODE (inter_type))
                    && TYPE_MODE (type) == TYPE_MODE (inter_type))
              && ! final_ptr
              && ! final_ptr
              && (! final_vec || inter_prec == inside_prec))
              && (! final_vec || inter_prec == inside_prec))
            return fold_build1 (code, type, TREE_OPERAND (op0, 0));
            return fold_build1 (code, type, TREE_OPERAND (op0, 0));
 
 
          /* If we have a sign-extension of a zero-extended value, we can
          /* If we have a sign-extension of a zero-extended value, we can
             replace that by a single zero-extension.  */
             replace that by a single zero-extension.  */
          if (inside_int && inter_int && final_int
          if (inside_int && inter_int && final_int
              && inside_prec < inter_prec && inter_prec < final_prec
              && inside_prec < inter_prec && inter_prec < final_prec
              && inside_unsignedp && !inter_unsignedp)
              && inside_unsignedp && !inter_unsignedp)
            return fold_build1 (code, type, TREE_OPERAND (op0, 0));
            return fold_build1 (code, type, TREE_OPERAND (op0, 0));
 
 
          /* Two conversions in a row are not needed unless:
          /* Two conversions in a row are not needed unless:
             - some conversion is floating-point (overstrict for now), or
             - some conversion is floating-point (overstrict for now), or
             - some conversion is a vector (overstrict for now), or
             - some conversion is a vector (overstrict for now), or
             - the intermediate type is narrower than both initial and
             - the intermediate type is narrower than both initial and
               final, or
               final, or
             - the intermediate type and innermost type differ in signedness,
             - the intermediate type and innermost type differ in signedness,
               and the outermost type is wider than the intermediate, or
               and the outermost type is wider than the intermediate, or
             - the initial type is a pointer type and the precisions of the
             - the initial type is a pointer type and the precisions of the
               intermediate and final types differ, or
               intermediate and final types differ, or
             - the final type is a pointer type and the precisions of the
             - the final type is a pointer type and the precisions of the
               initial and intermediate types differ.
               initial and intermediate types differ.
             - the final type is a pointer type and the initial type not
             - the final type is a pointer type and the initial type not
             - the initial type is a pointer to an array and the final type
             - the initial type is a pointer to an array and the final type
               not.  */
               not.  */
          /* Java pointer type conversions generate checks in some
          /* Java pointer type conversions generate checks in some
             cases, so we explicitly disallow this optimization.  */
             cases, so we explicitly disallow this optimization.  */
          if (! inside_float && ! inter_float && ! final_float
          if (! inside_float && ! inter_float && ! final_float
              && ! inside_vec && ! inter_vec && ! final_vec
              && ! inside_vec && ! inter_vec && ! final_vec
              && (inter_prec >= inside_prec || inter_prec >= final_prec)
              && (inter_prec >= inside_prec || inter_prec >= final_prec)
              && ! (inside_int && inter_int
              && ! (inside_int && inter_int
                    && inter_unsignedp != inside_unsignedp
                    && inter_unsignedp != inside_unsignedp
                    && inter_prec < final_prec)
                    && inter_prec < final_prec)
              && ((inter_unsignedp && inter_prec > inside_prec)
              && ((inter_unsignedp && inter_prec > inside_prec)
                  == (final_unsignedp && final_prec > inter_prec))
                  == (final_unsignedp && final_prec > inter_prec))
              && ! (inside_ptr && inter_prec != final_prec)
              && ! (inside_ptr && inter_prec != final_prec)
              && ! (final_ptr && inside_prec != inter_prec)
              && ! (final_ptr && inside_prec != inter_prec)
              && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (type))
              && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (type))
                    && TYPE_MODE (type) == TYPE_MODE (inter_type))
                    && TYPE_MODE (type) == TYPE_MODE (inter_type))
              && final_ptr == inside_ptr
              && final_ptr == inside_ptr
              && ! (inside_ptr
              && ! (inside_ptr
                    && TREE_CODE (TREE_TYPE (inside_type)) == ARRAY_TYPE
                    && TREE_CODE (TREE_TYPE (inside_type)) == ARRAY_TYPE
                    && TREE_CODE (TREE_TYPE (type)) != ARRAY_TYPE)
                    && TREE_CODE (TREE_TYPE (type)) != ARRAY_TYPE)
              && ! ((strcmp (lang_hooks.name, "GNU Java") == 0)
              && ! ((strcmp (lang_hooks.name, "GNU Java") == 0)
                    && final_ptr))
                    && final_ptr))
            return fold_build1 (code, type, TREE_OPERAND (op0, 0));
            return fold_build1 (code, type, TREE_OPERAND (op0, 0));
        }
        }
 
 
      /* Handle (T *)&A.B.C for A being of type T and B and C
      /* Handle (T *)&A.B.C for A being of type T and B and C
         living at offset zero.  This occurs frequently in
         living at offset zero.  This occurs frequently in
         C++ upcasting and then accessing the base.  */
         C++ upcasting and then accessing the base.  */
      if (TREE_CODE (op0) == ADDR_EXPR
      if (TREE_CODE (op0) == ADDR_EXPR
          && POINTER_TYPE_P (type)
          && POINTER_TYPE_P (type)
          && handled_component_p (TREE_OPERAND (op0, 0)))
          && handled_component_p (TREE_OPERAND (op0, 0)))
        {
        {
          HOST_WIDE_INT bitsize, bitpos;
          HOST_WIDE_INT bitsize, bitpos;
          tree offset;
          tree offset;
          enum machine_mode mode;
          enum machine_mode mode;
          int unsignedp, volatilep;
          int unsignedp, volatilep;
          tree base = TREE_OPERAND (op0, 0);
          tree base = TREE_OPERAND (op0, 0);
          base = get_inner_reference (base, &bitsize, &bitpos, &offset,
          base = get_inner_reference (base, &bitsize, &bitpos, &offset,
                                      &mode, &unsignedp, &volatilep, false);
                                      &mode, &unsignedp, &volatilep, false);
          /* If the reference was to a (constant) zero offset, we can use
          /* If the reference was to a (constant) zero offset, we can use
             the address of the base if it has the same base type
             the address of the base if it has the same base type
             as the result type.  */
             as the result type.  */
          if (! offset && bitpos == 0
          if (! offset && bitpos == 0
              && TYPE_MAIN_VARIANT (TREE_TYPE (type))
              && TYPE_MAIN_VARIANT (TREE_TYPE (type))
                  == TYPE_MAIN_VARIANT (TREE_TYPE (base)))
                  == TYPE_MAIN_VARIANT (TREE_TYPE (base)))
            return fold_convert (type, build_fold_addr_expr (base));
            return fold_convert (type, build_fold_addr_expr (base));
        }
        }
 
 
      if (TREE_CODE (op0) == MODIFY_EXPR
      if (TREE_CODE (op0) == MODIFY_EXPR
          && TREE_CONSTANT (TREE_OPERAND (op0, 1))
          && TREE_CONSTANT (TREE_OPERAND (op0, 1))
          /* Detect assigning a bitfield.  */
          /* Detect assigning a bitfield.  */
          && !(TREE_CODE (TREE_OPERAND (op0, 0)) == COMPONENT_REF
          && !(TREE_CODE (TREE_OPERAND (op0, 0)) == COMPONENT_REF
               && DECL_BIT_FIELD (TREE_OPERAND (TREE_OPERAND (op0, 0), 1))))
               && DECL_BIT_FIELD (TREE_OPERAND (TREE_OPERAND (op0, 0), 1))))
        {
        {
          /* Don't leave an assignment inside a conversion
          /* Don't leave an assignment inside a conversion
             unless assigning a bitfield.  */
             unless assigning a bitfield.  */
          tem = fold_build1 (code, type, TREE_OPERAND (op0, 1));
          tem = fold_build1 (code, type, TREE_OPERAND (op0, 1));
          /* First do the assignment, then return converted constant.  */
          /* First do the assignment, then return converted constant.  */
          tem = build2 (COMPOUND_EXPR, TREE_TYPE (tem), op0, tem);
          tem = build2 (COMPOUND_EXPR, TREE_TYPE (tem), op0, tem);
          TREE_NO_WARNING (tem) = 1;
          TREE_NO_WARNING (tem) = 1;
          TREE_USED (tem) = 1;
          TREE_USED (tem) = 1;
          return tem;
          return tem;
        }
        }
 
 
      /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
      /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
         constants (if x has signed type, the sign bit cannot be set
         constants (if x has signed type, the sign bit cannot be set
         in c).  This folds extension into the BIT_AND_EXPR.  */
         in c).  This folds extension into the BIT_AND_EXPR.  */
      if (INTEGRAL_TYPE_P (type)
      if (INTEGRAL_TYPE_P (type)
          && TREE_CODE (type) != BOOLEAN_TYPE
          && TREE_CODE (type) != BOOLEAN_TYPE
          && TREE_CODE (op0) == BIT_AND_EXPR
          && TREE_CODE (op0) == BIT_AND_EXPR
          && TREE_CODE (TREE_OPERAND (op0, 1)) == INTEGER_CST)
          && TREE_CODE (TREE_OPERAND (op0, 1)) == INTEGER_CST)
        {
        {
          tree and = op0;
          tree and = op0;
          tree and0 = TREE_OPERAND (and, 0), and1 = TREE_OPERAND (and, 1);
          tree and0 = TREE_OPERAND (and, 0), and1 = TREE_OPERAND (and, 1);
          int change = 0;
          int change = 0;
 
 
          if (TYPE_UNSIGNED (TREE_TYPE (and))
          if (TYPE_UNSIGNED (TREE_TYPE (and))
              || (TYPE_PRECISION (type)
              || (TYPE_PRECISION (type)
                  <= TYPE_PRECISION (TREE_TYPE (and))))
                  <= TYPE_PRECISION (TREE_TYPE (and))))
            change = 1;
            change = 1;
          else if (TYPE_PRECISION (TREE_TYPE (and1))
          else if (TYPE_PRECISION (TREE_TYPE (and1))
                   <= HOST_BITS_PER_WIDE_INT
                   <= HOST_BITS_PER_WIDE_INT
                   && host_integerp (and1, 1))
                   && host_integerp (and1, 1))
            {
            {
              unsigned HOST_WIDE_INT cst;
              unsigned HOST_WIDE_INT cst;
 
 
              cst = tree_low_cst (and1, 1);
              cst = tree_low_cst (and1, 1);
              cst &= (HOST_WIDE_INT) -1
              cst &= (HOST_WIDE_INT) -1
                     << (TYPE_PRECISION (TREE_TYPE (and1)) - 1);
                     << (TYPE_PRECISION (TREE_TYPE (and1)) - 1);
              change = (cst == 0);
              change = (cst == 0);
#ifdef LOAD_EXTEND_OP
#ifdef LOAD_EXTEND_OP
              if (change
              if (change
                  && !flag_syntax_only
                  && !flag_syntax_only
                  && (LOAD_EXTEND_OP (TYPE_MODE (TREE_TYPE (and0)))
                  && (LOAD_EXTEND_OP (TYPE_MODE (TREE_TYPE (and0)))
                      == ZERO_EXTEND))
                      == ZERO_EXTEND))
                {
                {
                  tree uns = lang_hooks.types.unsigned_type (TREE_TYPE (and0));
                  tree uns = lang_hooks.types.unsigned_type (TREE_TYPE (and0));
                  and0 = fold_convert (uns, and0);
                  and0 = fold_convert (uns, and0);
                  and1 = fold_convert (uns, and1);
                  and1 = fold_convert (uns, and1);
                }
                }
#endif
#endif
            }
            }
          if (change)
          if (change)
            {
            {
              tem = build_int_cst_wide (type, TREE_INT_CST_LOW (and1),
              tem = build_int_cst_wide (type, TREE_INT_CST_LOW (and1),
                                        TREE_INT_CST_HIGH (and1));
                                        TREE_INT_CST_HIGH (and1));
              tem = force_fit_type (tem, 0, TREE_OVERFLOW (and1),
              tem = force_fit_type (tem, 0, TREE_OVERFLOW (and1),
                                    TREE_CONSTANT_OVERFLOW (and1));
                                    TREE_CONSTANT_OVERFLOW (and1));
              return fold_build2 (BIT_AND_EXPR, type,
              return fold_build2 (BIT_AND_EXPR, type,
                                  fold_convert (type, and0), tem);
                                  fold_convert (type, and0), tem);
            }
            }
        }
        }
 
 
      /* Convert (T1)((T2)X op Y) into (T1)X op Y, for pointer types T1 and
      /* Convert (T1)((T2)X op Y) into (T1)X op Y, for pointer types T1 and
         T2 being pointers to types of the same size.  */
         T2 being pointers to types of the same size.  */
      if (POINTER_TYPE_P (type)
      if (POINTER_TYPE_P (type)
          && BINARY_CLASS_P (arg0)
          && BINARY_CLASS_P (arg0)
          && TREE_CODE (TREE_OPERAND (arg0, 0)) == NOP_EXPR
          && TREE_CODE (TREE_OPERAND (arg0, 0)) == NOP_EXPR
          && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (arg0, 0))))
          && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (arg0, 0))))
        {
        {
          tree arg00 = TREE_OPERAND (arg0, 0);
          tree arg00 = TREE_OPERAND (arg0, 0);
          tree t0 = type;
          tree t0 = type;
          tree t1 = TREE_TYPE (arg00);
          tree t1 = TREE_TYPE (arg00);
          tree tt0 = TREE_TYPE (t0);
          tree tt0 = TREE_TYPE (t0);
          tree tt1 = TREE_TYPE (t1);
          tree tt1 = TREE_TYPE (t1);
          tree s0 = TYPE_SIZE (tt0);
          tree s0 = TYPE_SIZE (tt0);
          tree s1 = TYPE_SIZE (tt1);
          tree s1 = TYPE_SIZE (tt1);
 
 
          if (s0 && s1 && operand_equal_p (s0, s1, OEP_ONLY_CONST))
          if (s0 && s1 && operand_equal_p (s0, s1, OEP_ONLY_CONST))
            return build2 (TREE_CODE (arg0), t0, fold_convert (t0, arg00),
            return build2 (TREE_CODE (arg0), t0, fold_convert (t0, arg00),
                           TREE_OPERAND (arg0, 1));
                           TREE_OPERAND (arg0, 1));
        }
        }
 
 
      /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types
      /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types
         of the same precision, and X is a integer type not narrower than
         of the same precision, and X is a integer type not narrower than
         types T1 or T2, i.e. the cast (T2)X isn't an extension.  */
         types T1 or T2, i.e. the cast (T2)X isn't an extension.  */
      if (INTEGRAL_TYPE_P (type)
      if (INTEGRAL_TYPE_P (type)
          && TREE_CODE (op0) == BIT_NOT_EXPR
          && TREE_CODE (op0) == BIT_NOT_EXPR
          && INTEGRAL_TYPE_P (TREE_TYPE (op0))
          && INTEGRAL_TYPE_P (TREE_TYPE (op0))
          && (TREE_CODE (TREE_OPERAND (op0, 0)) == NOP_EXPR
          && (TREE_CODE (TREE_OPERAND (op0, 0)) == NOP_EXPR
              || TREE_CODE (TREE_OPERAND (op0, 0)) == CONVERT_EXPR)
              || TREE_CODE (TREE_OPERAND (op0, 0)) == CONVERT_EXPR)
          && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (op0)))
          && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (op0)))
        {
        {
          tem = TREE_OPERAND (TREE_OPERAND (op0, 0), 0);
          tem = TREE_OPERAND (TREE_OPERAND (op0, 0), 0);
          if (INTEGRAL_TYPE_P (TREE_TYPE (tem))
          if (INTEGRAL_TYPE_P (TREE_TYPE (tem))
              && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (tem)))
              && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (tem)))
            return fold_build1 (BIT_NOT_EXPR, type, fold_convert (type, tem));
            return fold_build1 (BIT_NOT_EXPR, type, fold_convert (type, tem));
        }
        }
 
 
      tem = fold_convert_const (code, type, op0);
      tem = fold_convert_const (code, type, op0);
      return tem ? tem : NULL_TREE;
      return tem ? tem : NULL_TREE;
 
 
    case VIEW_CONVERT_EXPR:
    case VIEW_CONVERT_EXPR:
      if (TREE_CODE (op0) == VIEW_CONVERT_EXPR)
      if (TREE_CODE (op0) == VIEW_CONVERT_EXPR)
        return fold_build1 (VIEW_CONVERT_EXPR, type, TREE_OPERAND (op0, 0));
        return fold_build1 (VIEW_CONVERT_EXPR, type, TREE_OPERAND (op0, 0));
      return fold_view_convert_expr (type, op0);
      return fold_view_convert_expr (type, op0);
 
 
    case NEGATE_EXPR:
    case NEGATE_EXPR:
      tem = fold_negate_expr (arg0);
      tem = fold_negate_expr (arg0);
      if (tem)
      if (tem)
        return fold_convert (type, tem);
        return fold_convert (type, tem);
      return NULL_TREE;
      return NULL_TREE;
 
 
    case ABS_EXPR:
    case ABS_EXPR:
      if (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST)
      if (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST)
        return fold_abs_const (arg0, type);
        return fold_abs_const (arg0, type);
      else if (TREE_CODE (arg0) == NEGATE_EXPR)
      else if (TREE_CODE (arg0) == NEGATE_EXPR)
        return fold_build1 (ABS_EXPR, type, TREE_OPERAND (arg0, 0));
        return fold_build1 (ABS_EXPR, type, TREE_OPERAND (arg0, 0));
      /* Convert fabs((double)float) into (double)fabsf(float).  */
      /* Convert fabs((double)float) into (double)fabsf(float).  */
      else if (TREE_CODE (arg0) == NOP_EXPR
      else if (TREE_CODE (arg0) == NOP_EXPR
               && TREE_CODE (type) == REAL_TYPE)
               && TREE_CODE (type) == REAL_TYPE)
        {
        {
          tree targ0 = strip_float_extensions (arg0);
          tree targ0 = strip_float_extensions (arg0);
          if (targ0 != arg0)
          if (targ0 != arg0)
            return fold_convert (type, fold_build1 (ABS_EXPR,
            return fold_convert (type, fold_build1 (ABS_EXPR,
                                                    TREE_TYPE (targ0),
                                                    TREE_TYPE (targ0),
                                                    targ0));
                                                    targ0));
        }
        }
      /* ABS_EXPR<ABS_EXPR<x>> = ABS_EXPR<x> even if flag_wrapv is on.  */
      /* ABS_EXPR<ABS_EXPR<x>> = ABS_EXPR<x> even if flag_wrapv is on.  */
      else if (TREE_CODE (arg0) == ABS_EXPR)
      else if (TREE_CODE (arg0) == ABS_EXPR)
        return arg0;
        return arg0;
      else if (tree_expr_nonnegative_p (arg0))
      else if (tree_expr_nonnegative_p (arg0))
        return arg0;
        return arg0;
 
 
      /* Strip sign ops from argument.  */
      /* Strip sign ops from argument.  */
      if (TREE_CODE (type) == REAL_TYPE)
      if (TREE_CODE (type) == REAL_TYPE)
        {
        {
          tem = fold_strip_sign_ops (arg0);
          tem = fold_strip_sign_ops (arg0);
          if (tem)
          if (tem)
            return fold_build1 (ABS_EXPR, type, fold_convert (type, tem));
            return fold_build1 (ABS_EXPR, type, fold_convert (type, tem));
        }
        }
      return NULL_TREE;
      return NULL_TREE;
 
 
    case CONJ_EXPR:
    case CONJ_EXPR:
      if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
      if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
        return fold_convert (type, arg0);
        return fold_convert (type, arg0);
      if (TREE_CODE (arg0) == COMPLEX_EXPR)
      if (TREE_CODE (arg0) == COMPLEX_EXPR)
        {
        {
          tree itype = TREE_TYPE (type);
          tree itype = TREE_TYPE (type);
          tree rpart = fold_convert (itype, TREE_OPERAND (arg0, 0));
          tree rpart = fold_convert (itype, TREE_OPERAND (arg0, 0));
          tree ipart = fold_convert (itype, TREE_OPERAND (arg0, 1));
          tree ipart = fold_convert (itype, TREE_OPERAND (arg0, 1));
          return fold_build2 (COMPLEX_EXPR, type, rpart, negate_expr (ipart));
          return fold_build2 (COMPLEX_EXPR, type, rpart, negate_expr (ipart));
        }
        }
      if (TREE_CODE (arg0) == COMPLEX_CST)
      if (TREE_CODE (arg0) == COMPLEX_CST)
        {
        {
          tree itype = TREE_TYPE (type);
          tree itype = TREE_TYPE (type);
          tree rpart = fold_convert (itype, TREE_REALPART (arg0));
          tree rpart = fold_convert (itype, TREE_REALPART (arg0));
          tree ipart = fold_convert (itype, TREE_IMAGPART (arg0));
          tree ipart = fold_convert (itype, TREE_IMAGPART (arg0));
          return build_complex (type, rpart, negate_expr (ipart));
          return build_complex (type, rpart, negate_expr (ipart));
        }
        }
      if (TREE_CODE (arg0) == CONJ_EXPR)
      if (TREE_CODE (arg0) == CONJ_EXPR)
        return fold_convert (type, TREE_OPERAND (arg0, 0));
        return fold_convert (type, TREE_OPERAND (arg0, 0));
      return NULL_TREE;
      return NULL_TREE;
 
 
    case BIT_NOT_EXPR:
    case BIT_NOT_EXPR:
      if (TREE_CODE (arg0) == INTEGER_CST)
      if (TREE_CODE (arg0) == INTEGER_CST)
        return fold_not_const (arg0, type);
        return fold_not_const (arg0, type);
      else if (TREE_CODE (arg0) == BIT_NOT_EXPR)
      else if (TREE_CODE (arg0) == BIT_NOT_EXPR)
        return TREE_OPERAND (arg0, 0);
        return TREE_OPERAND (arg0, 0);
      /* Convert ~ (-A) to A - 1.  */
      /* Convert ~ (-A) to A - 1.  */
      else if (INTEGRAL_TYPE_P (type) && TREE_CODE (arg0) == NEGATE_EXPR)
      else if (INTEGRAL_TYPE_P (type) && TREE_CODE (arg0) == NEGATE_EXPR)
        return fold_build2 (MINUS_EXPR, type, TREE_OPERAND (arg0, 0),
        return fold_build2 (MINUS_EXPR, type, TREE_OPERAND (arg0, 0),
                            build_int_cst (type, 1));
                            build_int_cst (type, 1));
      /* Convert ~ (A - 1) or ~ (A + -1) to -A.  */
      /* Convert ~ (A - 1) or ~ (A + -1) to -A.  */
      else if (INTEGRAL_TYPE_P (type)
      else if (INTEGRAL_TYPE_P (type)
               && ((TREE_CODE (arg0) == MINUS_EXPR
               && ((TREE_CODE (arg0) == MINUS_EXPR
                    && integer_onep (TREE_OPERAND (arg0, 1)))
                    && integer_onep (TREE_OPERAND (arg0, 1)))
                   || (TREE_CODE (arg0) == PLUS_EXPR
                   || (TREE_CODE (arg0) == PLUS_EXPR
                       && integer_all_onesp (TREE_OPERAND (arg0, 1)))))
                       && integer_all_onesp (TREE_OPERAND (arg0, 1)))))
        return fold_build1 (NEGATE_EXPR, type, TREE_OPERAND (arg0, 0));
        return fold_build1 (NEGATE_EXPR, type, TREE_OPERAND (arg0, 0));
      /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify.  */
      /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify.  */
      else if (TREE_CODE (arg0) == BIT_XOR_EXPR
      else if (TREE_CODE (arg0) == BIT_XOR_EXPR
               && (tem = fold_unary (BIT_NOT_EXPR, type,
               && (tem = fold_unary (BIT_NOT_EXPR, type,
                                     fold_convert (type,
                                     fold_convert (type,
                                                   TREE_OPERAND (arg0, 0)))))
                                                   TREE_OPERAND (arg0, 0)))))
        return fold_build2 (BIT_XOR_EXPR, type, tem,
        return fold_build2 (BIT_XOR_EXPR, type, tem,
                            fold_convert (type, TREE_OPERAND (arg0, 1)));
                            fold_convert (type, TREE_OPERAND (arg0, 1)));
      else if (TREE_CODE (arg0) == BIT_XOR_EXPR
      else if (TREE_CODE (arg0) == BIT_XOR_EXPR
               && (tem = fold_unary (BIT_NOT_EXPR, type,
               && (tem = fold_unary (BIT_NOT_EXPR, type,
                                     fold_convert (type,
                                     fold_convert (type,
                                                   TREE_OPERAND (arg0, 1)))))
                                                   TREE_OPERAND (arg0, 1)))))
        return fold_build2 (BIT_XOR_EXPR, type,
        return fold_build2 (BIT_XOR_EXPR, type,
                            fold_convert (type, TREE_OPERAND (arg0, 0)), tem);
                            fold_convert (type, TREE_OPERAND (arg0, 0)), tem);
 
 
      return NULL_TREE;
      return NULL_TREE;
 
 
    case TRUTH_NOT_EXPR:
    case TRUTH_NOT_EXPR:
      /* The argument to invert_truthvalue must have Boolean type.  */
      /* The argument to invert_truthvalue must have Boolean type.  */
      if (TREE_CODE (TREE_TYPE (arg0)) != BOOLEAN_TYPE)
      if (TREE_CODE (TREE_TYPE (arg0)) != BOOLEAN_TYPE)
          arg0 = fold_convert (boolean_type_node, arg0);
          arg0 = fold_convert (boolean_type_node, arg0);
 
 
      /* Note that the operand of this must be an int
      /* Note that the operand of this must be an int
         and its values must be 0 or 1.
         and its values must be 0 or 1.
         ("true" is a fixed value perhaps depending on the language,
         ("true" is a fixed value perhaps depending on the language,
         but we don't handle values other than 1 correctly yet.)  */
         but we don't handle values other than 1 correctly yet.)  */
      tem = fold_truth_not_expr (arg0);
      tem = fold_truth_not_expr (arg0);
      if (!tem)
      if (!tem)
        return NULL_TREE;
        return NULL_TREE;
      return fold_convert (type, tem);
      return fold_convert (type, tem);
 
 
    case REALPART_EXPR:
    case REALPART_EXPR:
      if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
      if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
        return fold_convert (type, arg0);
        return fold_convert (type, arg0);
      if (TREE_CODE (arg0) == COMPLEX_EXPR)
      if (TREE_CODE (arg0) == COMPLEX_EXPR)
        return omit_one_operand (type, TREE_OPERAND (arg0, 0),
        return omit_one_operand (type, TREE_OPERAND (arg0, 0),
                                 TREE_OPERAND (arg0, 1));
                                 TREE_OPERAND (arg0, 1));
      if (TREE_CODE (arg0) == COMPLEX_CST)
      if (TREE_CODE (arg0) == COMPLEX_CST)
        return fold_convert (type, TREE_REALPART (arg0));
        return fold_convert (type, TREE_REALPART (arg0));
      if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
      if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
        {
        {
          tree itype = TREE_TYPE (TREE_TYPE (arg0));
          tree itype = TREE_TYPE (TREE_TYPE (arg0));
          tem = fold_build2 (TREE_CODE (arg0), itype,
          tem = fold_build2 (TREE_CODE (arg0), itype,
                             fold_build1 (REALPART_EXPR, itype,
                             fold_build1 (REALPART_EXPR, itype,
                                          TREE_OPERAND (arg0, 0)),
                                          TREE_OPERAND (arg0, 0)),
                             fold_build1 (REALPART_EXPR, itype,
                             fold_build1 (REALPART_EXPR, itype,
                                          TREE_OPERAND (arg0, 1)));
                                          TREE_OPERAND (arg0, 1)));
          return fold_convert (type, tem);
          return fold_convert (type, tem);
        }
        }
      if (TREE_CODE (arg0) == CONJ_EXPR)
      if (TREE_CODE (arg0) == CONJ_EXPR)
        {
        {
          tree itype = TREE_TYPE (TREE_TYPE (arg0));
          tree itype = TREE_TYPE (TREE_TYPE (arg0));
          tem = fold_build1 (REALPART_EXPR, itype, TREE_OPERAND (arg0, 0));
          tem = fold_build1 (REALPART_EXPR, itype, TREE_OPERAND (arg0, 0));
          return fold_convert (type, tem);
          return fold_convert (type, tem);
        }
        }
      return NULL_TREE;
      return NULL_TREE;
 
 
    case IMAGPART_EXPR:
    case IMAGPART_EXPR:
      if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
      if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
        return fold_convert (type, integer_zero_node);
        return fold_convert (type, integer_zero_node);
      if (TREE_CODE (arg0) == COMPLEX_EXPR)
      if (TREE_CODE (arg0) == COMPLEX_EXPR)
        return omit_one_operand (type, TREE_OPERAND (arg0, 1),
        return omit_one_operand (type, TREE_OPERAND (arg0, 1),
                                 TREE_OPERAND (arg0, 0));
                                 TREE_OPERAND (arg0, 0));
      if (TREE_CODE (arg0) == COMPLEX_CST)
      if (TREE_CODE (arg0) == COMPLEX_CST)
        return fold_convert (type, TREE_IMAGPART (arg0));
        return fold_convert (type, TREE_IMAGPART (arg0));
      if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
      if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
        {
        {
          tree itype = TREE_TYPE (TREE_TYPE (arg0));
          tree itype = TREE_TYPE (TREE_TYPE (arg0));
          tem = fold_build2 (TREE_CODE (arg0), itype,
          tem = fold_build2 (TREE_CODE (arg0), itype,
                             fold_build1 (IMAGPART_EXPR, itype,
                             fold_build1 (IMAGPART_EXPR, itype,
                                          TREE_OPERAND (arg0, 0)),
                                          TREE_OPERAND (arg0, 0)),
                             fold_build1 (IMAGPART_EXPR, itype,
                             fold_build1 (IMAGPART_EXPR, itype,
                                          TREE_OPERAND (arg0, 1)));
                                          TREE_OPERAND (arg0, 1)));
          return fold_convert (type, tem);
          return fold_convert (type, tem);
        }
        }
      if (TREE_CODE (arg0) == CONJ_EXPR)
      if (TREE_CODE (arg0) == CONJ_EXPR)
        {
        {
          tree itype = TREE_TYPE (TREE_TYPE (arg0));
          tree itype = TREE_TYPE (TREE_TYPE (arg0));
          tem = fold_build1 (IMAGPART_EXPR, itype, TREE_OPERAND (arg0, 0));
          tem = fold_build1 (IMAGPART_EXPR, itype, TREE_OPERAND (arg0, 0));
          return fold_convert (type, negate_expr (tem));
          return fold_convert (type, negate_expr (tem));
        }
        }
      return NULL_TREE;
      return NULL_TREE;
 
 
    default:
    default:
      return NULL_TREE;
      return NULL_TREE;
    } /* switch (code) */
    } /* switch (code) */
}
}
 
 
/* Fold a binary expression of code CODE and type TYPE with operands
/* Fold a binary expression of code CODE and type TYPE with operands
   OP0 and OP1, containing either a MIN-MAX or a MAX-MIN combination.
   OP0 and OP1, containing either a MIN-MAX or a MAX-MIN combination.
   Return the folded expression if folding is successful.  Otherwise,
   Return the folded expression if folding is successful.  Otherwise,
   return NULL_TREE.  */
   return NULL_TREE.  */
 
 
static tree
static tree
fold_minmax (enum tree_code code, tree type, tree op0, tree op1)
fold_minmax (enum tree_code code, tree type, tree op0, tree op1)
{
{
  enum tree_code compl_code;
  enum tree_code compl_code;
 
 
  if (code == MIN_EXPR)
  if (code == MIN_EXPR)
    compl_code = MAX_EXPR;
    compl_code = MAX_EXPR;
  else if (code == MAX_EXPR)
  else if (code == MAX_EXPR)
    compl_code = MIN_EXPR;
    compl_code = MIN_EXPR;
  else
  else
    gcc_unreachable ();
    gcc_unreachable ();
 
 
  /* MIN (MAX (a, b), b) == b.  */
  /* MIN (MAX (a, b), b) == b.  */
  if (TREE_CODE (op0) == compl_code
  if (TREE_CODE (op0) == compl_code
      && operand_equal_p (TREE_OPERAND (op0, 1), op1, 0))
      && operand_equal_p (TREE_OPERAND (op0, 1), op1, 0))
    return omit_one_operand (type, op1, TREE_OPERAND (op0, 0));
    return omit_one_operand (type, op1, TREE_OPERAND (op0, 0));
 
 
  /* MIN (MAX (b, a), b) == b.  */
  /* MIN (MAX (b, a), b) == b.  */
  if (TREE_CODE (op0) == compl_code
  if (TREE_CODE (op0) == compl_code
      && operand_equal_p (TREE_OPERAND (op0, 0), op1, 0)
      && operand_equal_p (TREE_OPERAND (op0, 0), op1, 0)
      && reorder_operands_p (TREE_OPERAND (op0, 1), op1))
      && reorder_operands_p (TREE_OPERAND (op0, 1), op1))
    return omit_one_operand (type, op1, TREE_OPERAND (op0, 1));
    return omit_one_operand (type, op1, TREE_OPERAND (op0, 1));
 
 
  /* MIN (a, MAX (a, b)) == a.  */
  /* MIN (a, MAX (a, b)) == a.  */
  if (TREE_CODE (op1) == compl_code
  if (TREE_CODE (op1) == compl_code
      && operand_equal_p (op0, TREE_OPERAND (op1, 0), 0)
      && operand_equal_p (op0, TREE_OPERAND (op1, 0), 0)
      && reorder_operands_p (op0, TREE_OPERAND (op1, 1)))
      && reorder_operands_p (op0, TREE_OPERAND (op1, 1)))
    return omit_one_operand (type, op0, TREE_OPERAND (op1, 1));
    return omit_one_operand (type, op0, TREE_OPERAND (op1, 1));
 
 
  /* MIN (a, MAX (b, a)) == a.  */
  /* MIN (a, MAX (b, a)) == a.  */
  if (TREE_CODE (op1) == compl_code
  if (TREE_CODE (op1) == compl_code
      && operand_equal_p (op0, TREE_OPERAND (op1, 1), 0)
      && operand_equal_p (op0, TREE_OPERAND (op1, 1), 0)
      && reorder_operands_p (op0, TREE_OPERAND (op1, 0)))
      && reorder_operands_p (op0, TREE_OPERAND (op1, 0)))
    return omit_one_operand (type, op0, TREE_OPERAND (op1, 0));
    return omit_one_operand (type, op0, TREE_OPERAND (op1, 0));
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Subroutine of fold_binary.  This routine performs all of the
/* Subroutine of fold_binary.  This routine performs all of the
   transformations that are common to the equality/inequality
   transformations that are common to the equality/inequality
   operators (EQ_EXPR and NE_EXPR) and the ordering operators
   operators (EQ_EXPR and NE_EXPR) and the ordering operators
   (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR).  Callers other than
   (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR).  Callers other than
   fold_binary should call fold_binary.  Fold a comparison with
   fold_binary should call fold_binary.  Fold a comparison with
   tree code CODE and type TYPE with operands OP0 and OP1.  Return
   tree code CODE and type TYPE with operands OP0 and OP1.  Return
   the folded comparison or NULL_TREE.  */
   the folded comparison or NULL_TREE.  */
 
 
static tree
static tree
fold_comparison (enum tree_code code, tree type, tree op0, tree op1)
fold_comparison (enum tree_code code, tree type, tree op0, tree op1)
{
{
  tree arg0, arg1, tem;
  tree arg0, arg1, tem;
 
 
  arg0 = op0;
  arg0 = op0;
  arg1 = op1;
  arg1 = op1;
 
 
  STRIP_SIGN_NOPS (arg0);
  STRIP_SIGN_NOPS (arg0);
  STRIP_SIGN_NOPS (arg1);
  STRIP_SIGN_NOPS (arg1);
 
 
  tem = fold_relational_const (code, type, arg0, arg1);
  tem = fold_relational_const (code, type, arg0, arg1);
  if (tem != NULL_TREE)
  if (tem != NULL_TREE)
    return tem;
    return tem;
 
 
  /* If one arg is a real or integer constant, put it last.  */
  /* If one arg is a real or integer constant, put it last.  */
  if (tree_swap_operands_p (arg0, arg1, true))
  if (tree_swap_operands_p (arg0, arg1, true))
    return fold_build2 (swap_tree_comparison (code), type, op1, op0);
    return fold_build2 (swap_tree_comparison (code), type, op1, op0);
 
 
  /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 +- C1.  */
  /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 +- C1.  */
  if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
  if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
      && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
      && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
          && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
          && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
          && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
          && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
      && (TREE_CODE (arg1) == INTEGER_CST
      && (TREE_CODE (arg1) == INTEGER_CST
          && !TREE_OVERFLOW (arg1)))
          && !TREE_OVERFLOW (arg1)))
    {
    {
      tree const1 = TREE_OPERAND (arg0, 1);
      tree const1 = TREE_OPERAND (arg0, 1);
      tree const2 = arg1;
      tree const2 = arg1;
      tree variable = TREE_OPERAND (arg0, 0);
      tree variable = TREE_OPERAND (arg0, 0);
      tree lhs;
      tree lhs;
      int lhs_add;
      int lhs_add;
      lhs_add = TREE_CODE (arg0) != PLUS_EXPR;
      lhs_add = TREE_CODE (arg0) != PLUS_EXPR;
 
 
      lhs = fold_build2 (lhs_add ? PLUS_EXPR : MINUS_EXPR,
      lhs = fold_build2 (lhs_add ? PLUS_EXPR : MINUS_EXPR,
                         TREE_TYPE (arg1), const2, const1);
                         TREE_TYPE (arg1), const2, const1);
      if (TREE_CODE (lhs) == TREE_CODE (arg1)
      if (TREE_CODE (lhs) == TREE_CODE (arg1)
          && (TREE_CODE (lhs) != INTEGER_CST
          && (TREE_CODE (lhs) != INTEGER_CST
              || !TREE_OVERFLOW (lhs)))
              || !TREE_OVERFLOW (lhs)))
        {
        {
          fold_overflow_warning (("assuming signed overflow does not occur "
          fold_overflow_warning (("assuming signed overflow does not occur "
                                  "when changing X +- C1 cmp C2 to "
                                  "when changing X +- C1 cmp C2 to "
                                  "X cmp C1 +- C2"),
                                  "X cmp C1 +- C2"),
                                 WARN_STRICT_OVERFLOW_COMPARISON);
                                 WARN_STRICT_OVERFLOW_COMPARISON);
          return fold_build2 (code, type, variable, lhs);
          return fold_build2 (code, type, variable, lhs);
        }
        }
    }
    }
 
 
  /* If this is a comparison of two exprs that look like an ARRAY_REF of the
  /* If this is a comparison of two exprs that look like an ARRAY_REF of the
     same object, then we can fold this to a comparison of the two offsets in
     same object, then we can fold this to a comparison of the two offsets in
     signed size type.  This is possible because pointer arithmetic is
     signed size type.  This is possible because pointer arithmetic is
     restricted to retain within an object and overflow on pointer differences
     restricted to retain within an object and overflow on pointer differences
     is undefined as of 6.5.6/8 and /9 with respect to the signed ptrdiff_t.
     is undefined as of 6.5.6/8 and /9 with respect to the signed ptrdiff_t.
 
 
     We check flag_wrapv directly because pointers types are unsigned,
     We check flag_wrapv directly because pointers types are unsigned,
     and therefore TYPE_OVERFLOW_WRAPS returns true for them.  That is
     and therefore TYPE_OVERFLOW_WRAPS returns true for them.  That is
     normally what we want to avoid certain odd overflow cases, but
     normally what we want to avoid certain odd overflow cases, but
     not here.  */
     not here.  */
  if (POINTER_TYPE_P (TREE_TYPE (arg0))
  if (POINTER_TYPE_P (TREE_TYPE (arg0))
      && !flag_wrapv
      && !flag_wrapv
      && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (arg0)))
      && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (arg0)))
    {
    {
      tree base0, offset0, base1, offset1;
      tree base0, offset0, base1, offset1;
 
 
      if (extract_array_ref (arg0, &base0, &offset0)
      if (extract_array_ref (arg0, &base0, &offset0)
          && extract_array_ref (arg1, &base1, &offset1)
          && extract_array_ref (arg1, &base1, &offset1)
          && operand_equal_p (base0, base1, 0))
          && operand_equal_p (base0, base1, 0))
        {
        {
          tree signed_size_type_node;
          tree signed_size_type_node;
          signed_size_type_node = signed_type_for (size_type_node);
          signed_size_type_node = signed_type_for (size_type_node);
 
 
          /* By converting to signed size type we cover middle-end pointer
          /* By converting to signed size type we cover middle-end pointer
             arithmetic which operates on unsigned pointer types of size
             arithmetic which operates on unsigned pointer types of size
             type size and ARRAY_REF offsets which are properly sign or
             type size and ARRAY_REF offsets which are properly sign or
             zero extended from their type in case it is narrower than
             zero extended from their type in case it is narrower than
             size type.  */
             size type.  */
          if (offset0 == NULL_TREE)
          if (offset0 == NULL_TREE)
            offset0 = build_int_cst (signed_size_type_node, 0);
            offset0 = build_int_cst (signed_size_type_node, 0);
          else
          else
            offset0 = fold_convert (signed_size_type_node, offset0);
            offset0 = fold_convert (signed_size_type_node, offset0);
          if (offset1 == NULL_TREE)
          if (offset1 == NULL_TREE)
            offset1 = build_int_cst (signed_size_type_node, 0);
            offset1 = build_int_cst (signed_size_type_node, 0);
          else
          else
            offset1 = fold_convert (signed_size_type_node, offset1);
            offset1 = fold_convert (signed_size_type_node, offset1);
 
 
          return fold_build2 (code, type, offset0, offset1);
          return fold_build2 (code, type, offset0, offset1);
        }
        }
    }
    }
 
 
  if (FLOAT_TYPE_P (TREE_TYPE (arg0)))
  if (FLOAT_TYPE_P (TREE_TYPE (arg0)))
    {
    {
      tree targ0 = strip_float_extensions (arg0);
      tree targ0 = strip_float_extensions (arg0);
      tree targ1 = strip_float_extensions (arg1);
      tree targ1 = strip_float_extensions (arg1);
      tree newtype = TREE_TYPE (targ0);
      tree newtype = TREE_TYPE (targ0);
 
 
      if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
      if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
        newtype = TREE_TYPE (targ1);
        newtype = TREE_TYPE (targ1);
 
 
      /* Fold (double)float1 CMP (double)float2 into float1 CMP float2.  */
      /* Fold (double)float1 CMP (double)float2 into float1 CMP float2.  */
      if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
      if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
        return fold_build2 (code, type, fold_convert (newtype, targ0),
        return fold_build2 (code, type, fold_convert (newtype, targ0),
                            fold_convert (newtype, targ1));
                            fold_convert (newtype, targ1));
 
 
      /* (-a) CMP (-b) -> b CMP a  */
      /* (-a) CMP (-b) -> b CMP a  */
      if (TREE_CODE (arg0) == NEGATE_EXPR
      if (TREE_CODE (arg0) == NEGATE_EXPR
          && TREE_CODE (arg1) == NEGATE_EXPR)
          && TREE_CODE (arg1) == NEGATE_EXPR)
        return fold_build2 (code, type, TREE_OPERAND (arg1, 0),
        return fold_build2 (code, type, TREE_OPERAND (arg1, 0),
                            TREE_OPERAND (arg0, 0));
                            TREE_OPERAND (arg0, 0));
 
 
      if (TREE_CODE (arg1) == REAL_CST)
      if (TREE_CODE (arg1) == REAL_CST)
        {
        {
          REAL_VALUE_TYPE cst;
          REAL_VALUE_TYPE cst;
          cst = TREE_REAL_CST (arg1);
          cst = TREE_REAL_CST (arg1);
 
 
          /* (-a) CMP CST -> a swap(CMP) (-CST)  */
          /* (-a) CMP CST -> a swap(CMP) (-CST)  */
          if (TREE_CODE (arg0) == NEGATE_EXPR)
          if (TREE_CODE (arg0) == NEGATE_EXPR)
            return fold_build2 (swap_tree_comparison (code), type,
            return fold_build2 (swap_tree_comparison (code), type,
                                TREE_OPERAND (arg0, 0),
                                TREE_OPERAND (arg0, 0),
                                build_real (TREE_TYPE (arg1),
                                build_real (TREE_TYPE (arg1),
                                            REAL_VALUE_NEGATE (cst)));
                                            REAL_VALUE_NEGATE (cst)));
 
 
          /* IEEE doesn't distinguish +0 and -0 in comparisons.  */
          /* IEEE doesn't distinguish +0 and -0 in comparisons.  */
          /* a CMP (-0) -> a CMP 0  */
          /* a CMP (-0) -> a CMP 0  */
          if (REAL_VALUE_MINUS_ZERO (cst))
          if (REAL_VALUE_MINUS_ZERO (cst))
            return fold_build2 (code, type, arg0,
            return fold_build2 (code, type, arg0,
                                build_real (TREE_TYPE (arg1), dconst0));
                                build_real (TREE_TYPE (arg1), dconst0));
 
 
          /* x != NaN is always true, other ops are always false.  */
          /* x != NaN is always true, other ops are always false.  */
          if (REAL_VALUE_ISNAN (cst)
          if (REAL_VALUE_ISNAN (cst)
              && ! HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1))))
              && ! HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1))))
            {
            {
              tem = (code == NE_EXPR) ? integer_one_node : integer_zero_node;
              tem = (code == NE_EXPR) ? integer_one_node : integer_zero_node;
              return omit_one_operand (type, tem, arg0);
              return omit_one_operand (type, tem, arg0);
            }
            }
 
 
          /* Fold comparisons against infinity.  */
          /* Fold comparisons against infinity.  */
          if (REAL_VALUE_ISINF (cst))
          if (REAL_VALUE_ISINF (cst))
            {
            {
              tem = fold_inf_compare (code, type, arg0, arg1);
              tem = fold_inf_compare (code, type, arg0, arg1);
              if (tem != NULL_TREE)
              if (tem != NULL_TREE)
                return tem;
                return tem;
            }
            }
        }
        }
 
 
      /* If this is a comparison of a real constant with a PLUS_EXPR
      /* If this is a comparison of a real constant with a PLUS_EXPR
         or a MINUS_EXPR of a real constant, we can convert it into a
         or a MINUS_EXPR of a real constant, we can convert it into a
         comparison with a revised real constant as long as no overflow
         comparison with a revised real constant as long as no overflow
         occurs when unsafe_math_optimizations are enabled.  */
         occurs when unsafe_math_optimizations are enabled.  */
      if (flag_unsafe_math_optimizations
      if (flag_unsafe_math_optimizations
          && TREE_CODE (arg1) == REAL_CST
          && TREE_CODE (arg1) == REAL_CST
          && (TREE_CODE (arg0) == PLUS_EXPR
          && (TREE_CODE (arg0) == PLUS_EXPR
              || TREE_CODE (arg0) == MINUS_EXPR)
              || TREE_CODE (arg0) == MINUS_EXPR)
          && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
          && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
          && 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
          && 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
                                      ? MINUS_EXPR : PLUS_EXPR,
                                      ? MINUS_EXPR : PLUS_EXPR,
                                      arg1, TREE_OPERAND (arg0, 1), 0))
                                      arg1, TREE_OPERAND (arg0, 1), 0))
          && ! TREE_CONSTANT_OVERFLOW (tem))
          && ! TREE_CONSTANT_OVERFLOW (tem))
        return fold_build2 (code, type, TREE_OPERAND (arg0, 0), tem);
        return fold_build2 (code, type, TREE_OPERAND (arg0, 0), tem);
 
 
      /* Likewise, we can simplify a comparison of a real constant with
      /* Likewise, we can simplify a comparison of a real constant with
         a MINUS_EXPR whose first operand is also a real constant, i.e.
         a MINUS_EXPR whose first operand is also a real constant, i.e.
         (c1 - x) < c2 becomes x > c1-c2.  */
         (c1 - x) < c2 becomes x > c1-c2.  */
      if (flag_unsafe_math_optimizations
      if (flag_unsafe_math_optimizations
          && TREE_CODE (arg1) == REAL_CST
          && TREE_CODE (arg1) == REAL_CST
          && TREE_CODE (arg0) == MINUS_EXPR
          && TREE_CODE (arg0) == MINUS_EXPR
          && TREE_CODE (TREE_OPERAND (arg0, 0)) == REAL_CST
          && TREE_CODE (TREE_OPERAND (arg0, 0)) == REAL_CST
          && 0 != (tem = const_binop (MINUS_EXPR, TREE_OPERAND (arg0, 0),
          && 0 != (tem = const_binop (MINUS_EXPR, TREE_OPERAND (arg0, 0),
                                      arg1, 0))
                                      arg1, 0))
          && ! TREE_CONSTANT_OVERFLOW (tem))
          && ! TREE_CONSTANT_OVERFLOW (tem))
        return fold_build2 (swap_tree_comparison (code), type,
        return fold_build2 (swap_tree_comparison (code), type,
                            TREE_OPERAND (arg0, 1), tem);
                            TREE_OPERAND (arg0, 1), tem);
 
 
      /* Fold comparisons against built-in math functions.  */
      /* Fold comparisons against built-in math functions.  */
      if (TREE_CODE (arg1) == REAL_CST
      if (TREE_CODE (arg1) == REAL_CST
          && flag_unsafe_math_optimizations
          && flag_unsafe_math_optimizations
          && ! flag_errno_math)
          && ! flag_errno_math)
        {
        {
          enum built_in_function fcode = builtin_mathfn_code (arg0);
          enum built_in_function fcode = builtin_mathfn_code (arg0);
 
 
          if (fcode != END_BUILTINS)
          if (fcode != END_BUILTINS)
            {
            {
              tem = fold_mathfn_compare (fcode, code, type, arg0, arg1);
              tem = fold_mathfn_compare (fcode, code, type, arg0, arg1);
              if (tem != NULL_TREE)
              if (tem != NULL_TREE)
                return tem;
                return tem;
            }
            }
        }
        }
    }
    }
 
 
  /* Convert foo++ == CONST into ++foo == CONST + INCR.  */
  /* Convert foo++ == CONST into ++foo == CONST + INCR.  */
  if (TREE_CONSTANT (arg1)
  if (TREE_CONSTANT (arg1)
      && (TREE_CODE (arg0) == POSTINCREMENT_EXPR
      && (TREE_CODE (arg0) == POSTINCREMENT_EXPR
          || TREE_CODE (arg0) == POSTDECREMENT_EXPR)
          || TREE_CODE (arg0) == POSTDECREMENT_EXPR)
      /* This optimization is invalid for ordered comparisons
      /* This optimization is invalid for ordered comparisons
         if CONST+INCR overflows or if foo+incr might overflow.
         if CONST+INCR overflows or if foo+incr might overflow.
         This optimization is invalid for floating point due to rounding.
         This optimization is invalid for floating point due to rounding.
         For pointer types we assume overflow doesn't happen.  */
         For pointer types we assume overflow doesn't happen.  */
      && (POINTER_TYPE_P (TREE_TYPE (arg0))
      && (POINTER_TYPE_P (TREE_TYPE (arg0))
          || (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
          || (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
              && (code == EQ_EXPR || code == NE_EXPR))))
              && (code == EQ_EXPR || code == NE_EXPR))))
    {
    {
      tree varop, newconst;
      tree varop, newconst;
 
 
      if (TREE_CODE (arg0) == POSTINCREMENT_EXPR)
      if (TREE_CODE (arg0) == POSTINCREMENT_EXPR)
        {
        {
          newconst = fold_build2 (PLUS_EXPR, TREE_TYPE (arg0),
          newconst = fold_build2 (PLUS_EXPR, TREE_TYPE (arg0),
                                  arg1, TREE_OPERAND (arg0, 1));
                                  arg1, TREE_OPERAND (arg0, 1));
          varop = build2 (PREINCREMENT_EXPR, TREE_TYPE (arg0),
          varop = build2 (PREINCREMENT_EXPR, TREE_TYPE (arg0),
                          TREE_OPERAND (arg0, 0),
                          TREE_OPERAND (arg0, 0),
                          TREE_OPERAND (arg0, 1));
                          TREE_OPERAND (arg0, 1));
        }
        }
      else
      else
        {
        {
          newconst = fold_build2 (MINUS_EXPR, TREE_TYPE (arg0),
          newconst = fold_build2 (MINUS_EXPR, TREE_TYPE (arg0),
                                  arg1, TREE_OPERAND (arg0, 1));
                                  arg1, TREE_OPERAND (arg0, 1));
          varop = build2 (PREDECREMENT_EXPR, TREE_TYPE (arg0),
          varop = build2 (PREDECREMENT_EXPR, TREE_TYPE (arg0),
                          TREE_OPERAND (arg0, 0),
                          TREE_OPERAND (arg0, 0),
                          TREE_OPERAND (arg0, 1));
                          TREE_OPERAND (arg0, 1));
        }
        }
 
 
 
 
      /* If VAROP is a reference to a bitfield, we must mask
      /* If VAROP is a reference to a bitfield, we must mask
         the constant by the width of the field.  */
         the constant by the width of the field.  */
      if (TREE_CODE (TREE_OPERAND (varop, 0)) == COMPONENT_REF
      if (TREE_CODE (TREE_OPERAND (varop, 0)) == COMPONENT_REF
          && DECL_BIT_FIELD (TREE_OPERAND (TREE_OPERAND (varop, 0), 1))
          && DECL_BIT_FIELD (TREE_OPERAND (TREE_OPERAND (varop, 0), 1))
          && host_integerp (DECL_SIZE (TREE_OPERAND
          && host_integerp (DECL_SIZE (TREE_OPERAND
                                         (TREE_OPERAND (varop, 0), 1)), 1))
                                         (TREE_OPERAND (varop, 0), 1)), 1))
        {
        {
          tree fielddecl = TREE_OPERAND (TREE_OPERAND (varop, 0), 1);
          tree fielddecl = TREE_OPERAND (TREE_OPERAND (varop, 0), 1);
          HOST_WIDE_INT size = tree_low_cst (DECL_SIZE (fielddecl), 1);
          HOST_WIDE_INT size = tree_low_cst (DECL_SIZE (fielddecl), 1);
          tree folded_compare, shift;
          tree folded_compare, shift;
 
 
          /* First check whether the comparison would come out
          /* First check whether the comparison would come out
             always the same.  If we don't do that we would
             always the same.  If we don't do that we would
             change the meaning with the masking.  */
             change the meaning with the masking.  */
          folded_compare = fold_build2 (code, type,
          folded_compare = fold_build2 (code, type,
                                        TREE_OPERAND (varop, 0), arg1);
                                        TREE_OPERAND (varop, 0), arg1);
          if (TREE_CODE (folded_compare) == INTEGER_CST)
          if (TREE_CODE (folded_compare) == INTEGER_CST)
            return omit_one_operand (type, folded_compare, varop);
            return omit_one_operand (type, folded_compare, varop);
 
 
          shift = build_int_cst (NULL_TREE,
          shift = build_int_cst (NULL_TREE,
                                 TYPE_PRECISION (TREE_TYPE (varop)) - size);
                                 TYPE_PRECISION (TREE_TYPE (varop)) - size);
          shift = fold_convert (TREE_TYPE (varop), shift);
          shift = fold_convert (TREE_TYPE (varop), shift);
          newconst = fold_build2 (LSHIFT_EXPR, TREE_TYPE (varop),
          newconst = fold_build2 (LSHIFT_EXPR, TREE_TYPE (varop),
                                  newconst, shift);
                                  newconst, shift);
          newconst = fold_build2 (RSHIFT_EXPR, TREE_TYPE (varop),
          newconst = fold_build2 (RSHIFT_EXPR, TREE_TYPE (varop),
                                  newconst, shift);
                                  newconst, shift);
        }
        }
 
 
      return fold_build2 (code, type, varop, newconst);
      return fold_build2 (code, type, varop, newconst);
    }
    }
 
 
  if (TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE
  if (TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE
      && (TREE_CODE (arg0) == NOP_EXPR
      && (TREE_CODE (arg0) == NOP_EXPR
          || TREE_CODE (arg0) == CONVERT_EXPR))
          || TREE_CODE (arg0) == CONVERT_EXPR))
    {
    {
      /* If we are widening one operand of an integer comparison,
      /* If we are widening one operand of an integer comparison,
         see if the other operand is similarly being widened.  Perhaps we
         see if the other operand is similarly being widened.  Perhaps we
         can do the comparison in the narrower type.  */
         can do the comparison in the narrower type.  */
      tem = fold_widened_comparison (code, type, arg0, arg1);
      tem = fold_widened_comparison (code, type, arg0, arg1);
      if (tem)
      if (tem)
        return tem;
        return tem;
 
 
      /* Or if we are changing signedness.  */
      /* Or if we are changing signedness.  */
      tem = fold_sign_changed_comparison (code, type, arg0, arg1);
      tem = fold_sign_changed_comparison (code, type, arg0, arg1);
      if (tem)
      if (tem)
        return tem;
        return tem;
    }
    }
 
 
  /* If this is comparing a constant with a MIN_EXPR or a MAX_EXPR of a
  /* If this is comparing a constant with a MIN_EXPR or a MAX_EXPR of a
     constant, we can simplify it.  */
     constant, we can simplify it.  */
  if (TREE_CODE (arg1) == INTEGER_CST
  if (TREE_CODE (arg1) == INTEGER_CST
      && (TREE_CODE (arg0) == MIN_EXPR
      && (TREE_CODE (arg0) == MIN_EXPR
          || TREE_CODE (arg0) == MAX_EXPR)
          || TREE_CODE (arg0) == MAX_EXPR)
      && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
      && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
    {
    {
      tem = optimize_minmax_comparison (code, type, op0, op1);
      tem = optimize_minmax_comparison (code, type, op0, op1);
      if (tem)
      if (tem)
        return tem;
        return tem;
    }
    }
 
 
  /* Simplify comparison of something with itself.  (For IEEE
  /* Simplify comparison of something with itself.  (For IEEE
     floating-point, we can only do some of these simplifications.)  */
     floating-point, we can only do some of these simplifications.)  */
  if (operand_equal_p (arg0, arg1, 0))
  if (operand_equal_p (arg0, arg1, 0))
    {
    {
      switch (code)
      switch (code)
        {
        {
        case EQ_EXPR:
        case EQ_EXPR:
          if (! FLOAT_TYPE_P (TREE_TYPE (arg0))
          if (! FLOAT_TYPE_P (TREE_TYPE (arg0))
              || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
              || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
            return constant_boolean_node (1, type);
            return constant_boolean_node (1, type);
          break;
          break;
 
 
        case GE_EXPR:
        case GE_EXPR:
        case LE_EXPR:
        case LE_EXPR:
          if (! FLOAT_TYPE_P (TREE_TYPE (arg0))
          if (! FLOAT_TYPE_P (TREE_TYPE (arg0))
              || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
              || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
            return constant_boolean_node (1, type);
            return constant_boolean_node (1, type);
          return fold_build2 (EQ_EXPR, type, arg0, arg1);
          return fold_build2 (EQ_EXPR, type, arg0, arg1);
 
 
        case NE_EXPR:
        case NE_EXPR:
          /* For NE, we can only do this simplification if integer
          /* For NE, we can only do this simplification if integer
             or we don't honor IEEE floating point NaNs.  */
             or we don't honor IEEE floating point NaNs.  */
          if (FLOAT_TYPE_P (TREE_TYPE (arg0))
          if (FLOAT_TYPE_P (TREE_TYPE (arg0))
              && HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
              && HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
            break;
            break;
          /* ... fall through ...  */
          /* ... fall through ...  */
        case GT_EXPR:
        case GT_EXPR:
        case LT_EXPR:
        case LT_EXPR:
          return constant_boolean_node (0, type);
          return constant_boolean_node (0, type);
        default:
        default:
          gcc_unreachable ();
          gcc_unreachable ();
        }
        }
    }
    }
 
 
  /* If we are comparing an expression that just has comparisons
  /* If we are comparing an expression that just has comparisons
     of two integer values, arithmetic expressions of those comparisons,
     of two integer values, arithmetic expressions of those comparisons,
     and constants, we can simplify it.  There are only three cases
     and constants, we can simplify it.  There are only three cases
     to check: the two values can either be equal, the first can be
     to check: the two values can either be equal, the first can be
     greater, or the second can be greater.  Fold the expression for
     greater, or the second can be greater.  Fold the expression for
     those three values.  Since each value must be 0 or 1, we have
     those three values.  Since each value must be 0 or 1, we have
     eight possibilities, each of which corresponds to the constant 0
     eight possibilities, each of which corresponds to the constant 0
     or 1 or one of the six possible comparisons.
     or 1 or one of the six possible comparisons.
 
 
     This handles common cases like (a > b) == 0 but also handles
     This handles common cases like (a > b) == 0 but also handles
     expressions like  ((x > y) - (y > x)) > 0, which supposedly
     expressions like  ((x > y) - (y > x)) > 0, which supposedly
     occur in macroized code.  */
     occur in macroized code.  */
 
 
  if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
  if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
    {
    {
      tree cval1 = 0, cval2 = 0;
      tree cval1 = 0, cval2 = 0;
      int save_p = 0;
      int save_p = 0;
 
 
      if (twoval_comparison_p (arg0, &cval1, &cval2, &save_p)
      if (twoval_comparison_p (arg0, &cval1, &cval2, &save_p)
          /* Don't handle degenerate cases here; they should already
          /* Don't handle degenerate cases here; they should already
             have been handled anyway.  */
             have been handled anyway.  */
          && cval1 != 0 && cval2 != 0
          && cval1 != 0 && cval2 != 0
          && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
          && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
          && TREE_TYPE (cval1) == TREE_TYPE (cval2)
          && TREE_TYPE (cval1) == TREE_TYPE (cval2)
          && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
          && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
          && TYPE_MAX_VALUE (TREE_TYPE (cval1))
          && TYPE_MAX_VALUE (TREE_TYPE (cval1))
          && TYPE_MAX_VALUE (TREE_TYPE (cval2))
          && TYPE_MAX_VALUE (TREE_TYPE (cval2))
          && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
          && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
                                TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
                                TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
        {
        {
          tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
          tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
          tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
          tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
 
 
          /* We can't just pass T to eval_subst in case cval1 or cval2
          /* We can't just pass T to eval_subst in case cval1 or cval2
             was the same as ARG1.  */
             was the same as ARG1.  */
 
 
          tree high_result
          tree high_result
                = fold_build2 (code, type,
                = fold_build2 (code, type,
                               eval_subst (arg0, cval1, maxval,
                               eval_subst (arg0, cval1, maxval,
                                           cval2, minval),
                                           cval2, minval),
                               arg1);
                               arg1);
          tree equal_result
          tree equal_result
                = fold_build2 (code, type,
                = fold_build2 (code, type,
                               eval_subst (arg0, cval1, maxval,
                               eval_subst (arg0, cval1, maxval,
                                           cval2, maxval),
                                           cval2, maxval),
                               arg1);
                               arg1);
          tree low_result
          tree low_result
                = fold_build2 (code, type,
                = fold_build2 (code, type,
                               eval_subst (arg0, cval1, minval,
                               eval_subst (arg0, cval1, minval,
                                           cval2, maxval),
                                           cval2, maxval),
                               arg1);
                               arg1);
 
 
          /* All three of these results should be 0 or 1.  Confirm they are.
          /* All three of these results should be 0 or 1.  Confirm they are.
             Then use those values to select the proper code to use.  */
             Then use those values to select the proper code to use.  */
 
 
          if (TREE_CODE (high_result) == INTEGER_CST
          if (TREE_CODE (high_result) == INTEGER_CST
              && TREE_CODE (equal_result) == INTEGER_CST
              && TREE_CODE (equal_result) == INTEGER_CST
              && TREE_CODE (low_result) == INTEGER_CST)
              && TREE_CODE (low_result) == INTEGER_CST)
            {
            {
              /* Make a 3-bit mask with the high-order bit being the
              /* Make a 3-bit mask with the high-order bit being the
                 value for `>', the next for '=', and the low for '<'.  */
                 value for `>', the next for '=', and the low for '<'.  */
              switch ((integer_onep (high_result) * 4)
              switch ((integer_onep (high_result) * 4)
                      + (integer_onep (equal_result) * 2)
                      + (integer_onep (equal_result) * 2)
                      + integer_onep (low_result))
                      + integer_onep (low_result))
                {
                {
                case 0:
                case 0:
                  /* Always false.  */
                  /* Always false.  */
                  return omit_one_operand (type, integer_zero_node, arg0);
                  return omit_one_operand (type, integer_zero_node, arg0);
                case 1:
                case 1:
                  code = LT_EXPR;
                  code = LT_EXPR;
                  break;
                  break;
                case 2:
                case 2:
                  code = EQ_EXPR;
                  code = EQ_EXPR;
                  break;
                  break;
                case 3:
                case 3:
                  code = LE_EXPR;
                  code = LE_EXPR;
                  break;
                  break;
                case 4:
                case 4:
                  code = GT_EXPR;
                  code = GT_EXPR;
                  break;
                  break;
                case 5:
                case 5:
                  code = NE_EXPR;
                  code = NE_EXPR;
                  break;
                  break;
                case 6:
                case 6:
                  code = GE_EXPR;
                  code = GE_EXPR;
                  break;
                  break;
                case 7:
                case 7:
                  /* Always true.  */
                  /* Always true.  */
                  return omit_one_operand (type, integer_one_node, arg0);
                  return omit_one_operand (type, integer_one_node, arg0);
                }
                }
 
 
              if (save_p)
              if (save_p)
                return save_expr (build2 (code, type, cval1, cval2));
                return save_expr (build2 (code, type, cval1, cval2));
              return fold_build2 (code, type, cval1, cval2);
              return fold_build2 (code, type, cval1, cval2);
            }
            }
        }
        }
    }
    }
 
 
  /* Fold a comparison of the address of COMPONENT_REFs with the same
  /* Fold a comparison of the address of COMPONENT_REFs with the same
     type and component to a comparison of the address of the base
     type and component to a comparison of the address of the base
     object.  In short, &x->a OP &y->a to x OP y and
     object.  In short, &x->a OP &y->a to x OP y and
     &x->a OP &y.a to x OP &y  */
     &x->a OP &y.a to x OP &y  */
  if (TREE_CODE (arg0) == ADDR_EXPR
  if (TREE_CODE (arg0) == ADDR_EXPR
      && TREE_CODE (TREE_OPERAND (arg0, 0)) == COMPONENT_REF
      && TREE_CODE (TREE_OPERAND (arg0, 0)) == COMPONENT_REF
      && TREE_CODE (arg1) == ADDR_EXPR
      && TREE_CODE (arg1) == ADDR_EXPR
      && TREE_CODE (TREE_OPERAND (arg1, 0)) == COMPONENT_REF)
      && TREE_CODE (TREE_OPERAND (arg1, 0)) == COMPONENT_REF)
    {
    {
      tree cref0 = TREE_OPERAND (arg0, 0);
      tree cref0 = TREE_OPERAND (arg0, 0);
      tree cref1 = TREE_OPERAND (arg1, 0);
      tree cref1 = TREE_OPERAND (arg1, 0);
      if (TREE_OPERAND (cref0, 1) == TREE_OPERAND (cref1, 1))
      if (TREE_OPERAND (cref0, 1) == TREE_OPERAND (cref1, 1))
        {
        {
          tree op0 = TREE_OPERAND (cref0, 0);
          tree op0 = TREE_OPERAND (cref0, 0);
          tree op1 = TREE_OPERAND (cref1, 0);
          tree op1 = TREE_OPERAND (cref1, 0);
          return fold_build2 (code, type,
          return fold_build2 (code, type,
                              build_fold_addr_expr (op0),
                              build_fold_addr_expr (op0),
                              build_fold_addr_expr (op1));
                              build_fold_addr_expr (op1));
        }
        }
    }
    }
 
 
  /* We can fold X/C1 op C2 where C1 and C2 are integer constants
  /* We can fold X/C1 op C2 where C1 and C2 are integer constants
     into a single range test.  */
     into a single range test.  */
  if ((TREE_CODE (arg0) == TRUNC_DIV_EXPR
  if ((TREE_CODE (arg0) == TRUNC_DIV_EXPR
       || TREE_CODE (arg0) == EXACT_DIV_EXPR)
       || TREE_CODE (arg0) == EXACT_DIV_EXPR)
      && TREE_CODE (arg1) == INTEGER_CST
      && TREE_CODE (arg1) == INTEGER_CST
      && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
      && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
      && !integer_zerop (TREE_OPERAND (arg0, 1))
      && !integer_zerop (TREE_OPERAND (arg0, 1))
      && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
      && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
      && !TREE_OVERFLOW (arg1))
      && !TREE_OVERFLOW (arg1))
    {
    {
      tem = fold_div_compare (code, type, arg0, arg1);
      tem = fold_div_compare (code, type, arg0, arg1);
      if (tem != NULL_TREE)
      if (tem != NULL_TREE)
        return tem;
        return tem;
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
 
 
/* Subroutine of fold_binary.  Optimize complex multiplications of the
/* Subroutine of fold_binary.  Optimize complex multiplications of the
   form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2).  The
   form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2).  The
   argument EXPR represents the expression "z" of type TYPE.  */
   argument EXPR represents the expression "z" of type TYPE.  */
 
 
static tree
static tree
fold_mult_zconjz (tree type, tree expr)
fold_mult_zconjz (tree type, tree expr)
{
{
  tree itype = TREE_TYPE (type);
  tree itype = TREE_TYPE (type);
  tree rpart, ipart, tem;
  tree rpart, ipart, tem;
 
 
  if (TREE_CODE (expr) == COMPLEX_EXPR)
  if (TREE_CODE (expr) == COMPLEX_EXPR)
    {
    {
      rpart = TREE_OPERAND (expr, 0);
      rpart = TREE_OPERAND (expr, 0);
      ipart = TREE_OPERAND (expr, 1);
      ipart = TREE_OPERAND (expr, 1);
    }
    }
  else if (TREE_CODE (expr) == COMPLEX_CST)
  else if (TREE_CODE (expr) == COMPLEX_CST)
    {
    {
      rpart = TREE_REALPART (expr);
      rpart = TREE_REALPART (expr);
      ipart = TREE_IMAGPART (expr);
      ipart = TREE_IMAGPART (expr);
    }
    }
  else
  else
    {
    {
      expr = save_expr (expr);
      expr = save_expr (expr);
      rpart = fold_build1 (REALPART_EXPR, itype, expr);
      rpart = fold_build1 (REALPART_EXPR, itype, expr);
      ipart = fold_build1 (IMAGPART_EXPR, itype, expr);
      ipart = fold_build1 (IMAGPART_EXPR, itype, expr);
    }
    }
 
 
  rpart = save_expr (rpart);
  rpart = save_expr (rpart);
  ipart = save_expr (ipart);
  ipart = save_expr (ipart);
  tem = fold_build2 (PLUS_EXPR, itype,
  tem = fold_build2 (PLUS_EXPR, itype,
                     fold_build2 (MULT_EXPR, itype, rpart, rpart),
                     fold_build2 (MULT_EXPR, itype, rpart, rpart),
                     fold_build2 (MULT_EXPR, itype, ipart, ipart));
                     fold_build2 (MULT_EXPR, itype, ipart, ipart));
  return fold_build2 (COMPLEX_EXPR, type, tem,
  return fold_build2 (COMPLEX_EXPR, type, tem,
                      fold_convert (itype, integer_zero_node));
                      fold_convert (itype, integer_zero_node));
}
}
 
 
 
 
/* Fold a binary expression of code CODE and type TYPE with operands
/* Fold a binary expression of code CODE and type TYPE with operands
   OP0 and OP1.  Return the folded expression if folding is
   OP0 and OP1.  Return the folded expression if folding is
   successful.  Otherwise, return NULL_TREE.  */
   successful.  Otherwise, return NULL_TREE.  */
 
 
tree
tree
fold_binary (enum tree_code code, tree type, tree op0, tree op1)
fold_binary (enum tree_code code, tree type, tree op0, tree op1)
{
{
  enum tree_code_class kind = TREE_CODE_CLASS (code);
  enum tree_code_class kind = TREE_CODE_CLASS (code);
  tree arg0, arg1, tem;
  tree arg0, arg1, tem;
  tree t1 = NULL_TREE;
  tree t1 = NULL_TREE;
  bool strict_overflow_p;
  bool strict_overflow_p;
 
 
  gcc_assert (IS_EXPR_CODE_CLASS (kind)
  gcc_assert (IS_EXPR_CODE_CLASS (kind)
              && TREE_CODE_LENGTH (code) == 2
              && TREE_CODE_LENGTH (code) == 2
              && op0 != NULL_TREE
              && op0 != NULL_TREE
              && op1 != NULL_TREE);
              && op1 != NULL_TREE);
 
 
  arg0 = op0;
  arg0 = op0;
  arg1 = op1;
  arg1 = op1;
 
 
  /* Strip any conversions that don't change the mode.  This is
  /* Strip any conversions that don't change the mode.  This is
     safe for every expression, except for a comparison expression
     safe for every expression, except for a comparison expression
     because its signedness is derived from its operands.  So, in
     because its signedness is derived from its operands.  So, in
     the latter case, only strip conversions that don't change the
     the latter case, only strip conversions that don't change the
     signedness.
     signedness.
 
 
     Note that this is done as an internal manipulation within the
     Note that this is done as an internal manipulation within the
     constant folder, in order to find the simplest representation
     constant folder, in order to find the simplest representation
     of the arguments so that their form can be studied.  In any
     of the arguments so that their form can be studied.  In any
     cases, the appropriate type conversions should be put back in
     cases, the appropriate type conversions should be put back in
     the tree that will get out of the constant folder.  */
     the tree that will get out of the constant folder.  */
 
 
  if (kind == tcc_comparison)
  if (kind == tcc_comparison)
    {
    {
      STRIP_SIGN_NOPS (arg0);
      STRIP_SIGN_NOPS (arg0);
      STRIP_SIGN_NOPS (arg1);
      STRIP_SIGN_NOPS (arg1);
    }
    }
  else
  else
    {
    {
      STRIP_NOPS (arg0);
      STRIP_NOPS (arg0);
      STRIP_NOPS (arg1);
      STRIP_NOPS (arg1);
    }
    }
 
 
  /* Note that TREE_CONSTANT isn't enough: static var addresses are
  /* Note that TREE_CONSTANT isn't enough: static var addresses are
     constant but we can't do arithmetic on them.  */
     constant but we can't do arithmetic on them.  */
  if ((TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
  if ((TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
      || (TREE_CODE (arg0) == REAL_CST && TREE_CODE (arg1) == REAL_CST)
      || (TREE_CODE (arg0) == REAL_CST && TREE_CODE (arg1) == REAL_CST)
      || (TREE_CODE (arg0) == COMPLEX_CST && TREE_CODE (arg1) == COMPLEX_CST)
      || (TREE_CODE (arg0) == COMPLEX_CST && TREE_CODE (arg1) == COMPLEX_CST)
      || (TREE_CODE (arg0) == VECTOR_CST && TREE_CODE (arg1) == VECTOR_CST))
      || (TREE_CODE (arg0) == VECTOR_CST && TREE_CODE (arg1) == VECTOR_CST))
    {
    {
      if (kind == tcc_binary)
      if (kind == tcc_binary)
        tem = const_binop (code, arg0, arg1, 0);
        tem = const_binop (code, arg0, arg1, 0);
      else if (kind == tcc_comparison)
      else if (kind == tcc_comparison)
        tem = fold_relational_const (code, type, arg0, arg1);
        tem = fold_relational_const (code, type, arg0, arg1);
      else
      else
        tem = NULL_TREE;
        tem = NULL_TREE;
 
 
      if (tem != NULL_TREE)
      if (tem != NULL_TREE)
        {
        {
          if (TREE_TYPE (tem) != type)
          if (TREE_TYPE (tem) != type)
            tem = fold_convert (type, tem);
            tem = fold_convert (type, tem);
          return tem;
          return tem;
        }
        }
    }
    }
 
 
  /* If this is a commutative operation, and ARG0 is a constant, move it
  /* If this is a commutative operation, and ARG0 is a constant, move it
     to ARG1 to reduce the number of tests below.  */
     to ARG1 to reduce the number of tests below.  */
  if (commutative_tree_code (code)
  if (commutative_tree_code (code)
      && tree_swap_operands_p (arg0, arg1, true))
      && tree_swap_operands_p (arg0, arg1, true))
    return fold_build2 (code, type, op1, op0);
    return fold_build2 (code, type, op1, op0);
 
 
  /* ARG0 is the first operand of EXPR, and ARG1 is the second operand.
  /* ARG0 is the first operand of EXPR, and ARG1 is the second operand.
 
 
     First check for cases where an arithmetic operation is applied to a
     First check for cases where an arithmetic operation is applied to a
     compound, conditional, or comparison operation.  Push the arithmetic
     compound, conditional, or comparison operation.  Push the arithmetic
     operation inside the compound or conditional to see if any folding
     operation inside the compound or conditional to see if any folding
     can then be done.  Convert comparison to conditional for this purpose.
     can then be done.  Convert comparison to conditional for this purpose.
     The also optimizes non-constant cases that used to be done in
     The also optimizes non-constant cases that used to be done in
     expand_expr.
     expand_expr.
 
 
     Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
     Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
     one of the operands is a comparison and the other is a comparison, a
     one of the operands is a comparison and the other is a comparison, a
     BIT_AND_EXPR with the constant 1, or a truth value.  In that case, the
     BIT_AND_EXPR with the constant 1, or a truth value.  In that case, the
     code below would make the expression more complex.  Change it to a
     code below would make the expression more complex.  Change it to a
     TRUTH_{AND,OR}_EXPR.  Likewise, convert a similar NE_EXPR to
     TRUTH_{AND,OR}_EXPR.  Likewise, convert a similar NE_EXPR to
     TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR.  */
     TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR.  */
 
 
  if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
  if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
       || code == EQ_EXPR || code == NE_EXPR)
       || code == EQ_EXPR || code == NE_EXPR)
      && ((truth_value_p (TREE_CODE (arg0))
      && ((truth_value_p (TREE_CODE (arg0))
           && (truth_value_p (TREE_CODE (arg1))
           && (truth_value_p (TREE_CODE (arg1))
               || (TREE_CODE (arg1) == BIT_AND_EXPR
               || (TREE_CODE (arg1) == BIT_AND_EXPR
                   && integer_onep (TREE_OPERAND (arg1, 1)))))
                   && integer_onep (TREE_OPERAND (arg1, 1)))))
          || (truth_value_p (TREE_CODE (arg1))
          || (truth_value_p (TREE_CODE (arg1))
              && (truth_value_p (TREE_CODE (arg0))
              && (truth_value_p (TREE_CODE (arg0))
                  || (TREE_CODE (arg0) == BIT_AND_EXPR
                  || (TREE_CODE (arg0) == BIT_AND_EXPR
                      && integer_onep (TREE_OPERAND (arg0, 1)))))))
                      && integer_onep (TREE_OPERAND (arg0, 1)))))))
    {
    {
      tem = fold_build2 (code == BIT_AND_EXPR ? TRUTH_AND_EXPR
      tem = fold_build2 (code == BIT_AND_EXPR ? TRUTH_AND_EXPR
                         : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
                         : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
                         : TRUTH_XOR_EXPR,
                         : TRUTH_XOR_EXPR,
                         boolean_type_node,
                         boolean_type_node,
                         fold_convert (boolean_type_node, arg0),
                         fold_convert (boolean_type_node, arg0),
                         fold_convert (boolean_type_node, arg1));
                         fold_convert (boolean_type_node, arg1));
 
 
      if (code == EQ_EXPR)
      if (code == EQ_EXPR)
        tem = invert_truthvalue (tem);
        tem = invert_truthvalue (tem);
 
 
      return fold_convert (type, tem);
      return fold_convert (type, tem);
    }
    }
 
 
  if (TREE_CODE_CLASS (code) == tcc_binary
  if (TREE_CODE_CLASS (code) == tcc_binary
      || TREE_CODE_CLASS (code) == tcc_comparison)
      || TREE_CODE_CLASS (code) == tcc_comparison)
    {
    {
      if (TREE_CODE (arg0) == COMPOUND_EXPR)
      if (TREE_CODE (arg0) == COMPOUND_EXPR)
        return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
        return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
                       fold_build2 (code, type,
                       fold_build2 (code, type,
                                    TREE_OPERAND (arg0, 1), op1));
                                    TREE_OPERAND (arg0, 1), op1));
      if (TREE_CODE (arg1) == COMPOUND_EXPR
      if (TREE_CODE (arg1) == COMPOUND_EXPR
          && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
          && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
        return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
        return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
                       fold_build2 (code, type,
                       fold_build2 (code, type,
                                    op0, TREE_OPERAND (arg1, 1)));
                                    op0, TREE_OPERAND (arg1, 1)));
 
 
      if (TREE_CODE (arg0) == COND_EXPR || COMPARISON_CLASS_P (arg0))
      if (TREE_CODE (arg0) == COND_EXPR || COMPARISON_CLASS_P (arg0))
        {
        {
          tem = fold_binary_op_with_conditional_arg (code, type, op0, op1,
          tem = fold_binary_op_with_conditional_arg (code, type, op0, op1,
                                                     arg0, arg1,
                                                     arg0, arg1,
                                                     /*cond_first_p=*/1);
                                                     /*cond_first_p=*/1);
          if (tem != NULL_TREE)
          if (tem != NULL_TREE)
            return tem;
            return tem;
        }
        }
 
 
      if (TREE_CODE (arg1) == COND_EXPR || COMPARISON_CLASS_P (arg1))
      if (TREE_CODE (arg1) == COND_EXPR || COMPARISON_CLASS_P (arg1))
        {
        {
          tem = fold_binary_op_with_conditional_arg (code, type, op0, op1,
          tem = fold_binary_op_with_conditional_arg (code, type, op0, op1,
                                                     arg1, arg0,
                                                     arg1, arg0,
                                                     /*cond_first_p=*/0);
                                                     /*cond_first_p=*/0);
          if (tem != NULL_TREE)
          if (tem != NULL_TREE)
            return tem;
            return tem;
        }
        }
    }
    }
 
 
  switch (code)
  switch (code)
    {
    {
    case PLUS_EXPR:
    case PLUS_EXPR:
      /* A + (-B) -> A - B */
      /* A + (-B) -> A - B */
      if (TREE_CODE (arg1) == NEGATE_EXPR)
      if (TREE_CODE (arg1) == NEGATE_EXPR)
        return fold_build2 (MINUS_EXPR, type,
        return fold_build2 (MINUS_EXPR, type,
                            fold_convert (type, arg0),
                            fold_convert (type, arg0),
                            fold_convert (type, TREE_OPERAND (arg1, 0)));
                            fold_convert (type, TREE_OPERAND (arg1, 0)));
      /* (-A) + B -> B - A */
      /* (-A) + B -> B - A */
      if (TREE_CODE (arg0) == NEGATE_EXPR
      if (TREE_CODE (arg0) == NEGATE_EXPR
          && reorder_operands_p (TREE_OPERAND (arg0, 0), arg1))
          && reorder_operands_p (TREE_OPERAND (arg0, 0), arg1))
        return fold_build2 (MINUS_EXPR, type,
        return fold_build2 (MINUS_EXPR, type,
                            fold_convert (type, arg1),
                            fold_convert (type, arg1),
                            fold_convert (type, TREE_OPERAND (arg0, 0)));
                            fold_convert (type, TREE_OPERAND (arg0, 0)));
      /* Convert ~A + 1 to -A.  */
      /* Convert ~A + 1 to -A.  */
      if (INTEGRAL_TYPE_P (type)
      if (INTEGRAL_TYPE_P (type)
          && TREE_CODE (arg0) == BIT_NOT_EXPR
          && TREE_CODE (arg0) == BIT_NOT_EXPR
          && integer_onep (arg1))
          && integer_onep (arg1))
        return fold_build1 (NEGATE_EXPR, type, TREE_OPERAND (arg0, 0));
        return fold_build1 (NEGATE_EXPR, type, TREE_OPERAND (arg0, 0));
 
 
      /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the
      /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the
         same or one.  */
         same or one.  */
      if ((TREE_CODE (arg0) == MULT_EXPR
      if ((TREE_CODE (arg0) == MULT_EXPR
           || TREE_CODE (arg1) == MULT_EXPR)
           || TREE_CODE (arg1) == MULT_EXPR)
          && (!FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations))
          && (!FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations))
        {
        {
          tree tem = fold_plusminus_mult_expr (code, type, arg0, arg1);
          tree tem = fold_plusminus_mult_expr (code, type, arg0, arg1);
          if (tem)
          if (tem)
            return tem;
            return tem;
        }
        }
 
 
      if (! FLOAT_TYPE_P (type))
      if (! FLOAT_TYPE_P (type))
        {
        {
          if (integer_zerop (arg1))
          if (integer_zerop (arg1))
            return non_lvalue (fold_convert (type, arg0));
            return non_lvalue (fold_convert (type, arg0));
 
 
          /* If we are adding two BIT_AND_EXPR's, both of which are and'ing
          /* If we are adding two BIT_AND_EXPR's, both of which are and'ing
             with a constant, and the two constants have no bits in common,
             with a constant, and the two constants have no bits in common,
             we should treat this as a BIT_IOR_EXPR since this may produce more
             we should treat this as a BIT_IOR_EXPR since this may produce more
             simplifications.  */
             simplifications.  */
          if (TREE_CODE (arg0) == BIT_AND_EXPR
          if (TREE_CODE (arg0) == BIT_AND_EXPR
              && TREE_CODE (arg1) == BIT_AND_EXPR
              && TREE_CODE (arg1) == BIT_AND_EXPR
              && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
              && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
              && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
              && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
              && integer_zerop (const_binop (BIT_AND_EXPR,
              && integer_zerop (const_binop (BIT_AND_EXPR,
                                             TREE_OPERAND (arg0, 1),
                                             TREE_OPERAND (arg0, 1),
                                             TREE_OPERAND (arg1, 1), 0)))
                                             TREE_OPERAND (arg1, 1), 0)))
            {
            {
              code = BIT_IOR_EXPR;
              code = BIT_IOR_EXPR;
              goto bit_ior;
              goto bit_ior;
            }
            }
 
 
          /* Reassociate (plus (plus (mult) (foo)) (mult)) as
          /* Reassociate (plus (plus (mult) (foo)) (mult)) as
             (plus (plus (mult) (mult)) (foo)) so that we can
             (plus (plus (mult) (mult)) (foo)) so that we can
             take advantage of the factoring cases below.  */
             take advantage of the factoring cases below.  */
          if (((TREE_CODE (arg0) == PLUS_EXPR
          if (((TREE_CODE (arg0) == PLUS_EXPR
                || TREE_CODE (arg0) == MINUS_EXPR)
                || TREE_CODE (arg0) == MINUS_EXPR)
               && TREE_CODE (arg1) == MULT_EXPR)
               && TREE_CODE (arg1) == MULT_EXPR)
              || ((TREE_CODE (arg1) == PLUS_EXPR
              || ((TREE_CODE (arg1) == PLUS_EXPR
                   || TREE_CODE (arg1) == MINUS_EXPR)
                   || TREE_CODE (arg1) == MINUS_EXPR)
                  && TREE_CODE (arg0) == MULT_EXPR))
                  && TREE_CODE (arg0) == MULT_EXPR))
            {
            {
              tree parg0, parg1, parg, marg;
              tree parg0, parg1, parg, marg;
              enum tree_code pcode;
              enum tree_code pcode;
 
 
              if (TREE_CODE (arg1) == MULT_EXPR)
              if (TREE_CODE (arg1) == MULT_EXPR)
                parg = arg0, marg = arg1;
                parg = arg0, marg = arg1;
              else
              else
                parg = arg1, marg = arg0;
                parg = arg1, marg = arg0;
              pcode = TREE_CODE (parg);
              pcode = TREE_CODE (parg);
              parg0 = TREE_OPERAND (parg, 0);
              parg0 = TREE_OPERAND (parg, 0);
              parg1 = TREE_OPERAND (parg, 1);
              parg1 = TREE_OPERAND (parg, 1);
              STRIP_NOPS (parg0);
              STRIP_NOPS (parg0);
              STRIP_NOPS (parg1);
              STRIP_NOPS (parg1);
 
 
              if (TREE_CODE (parg0) == MULT_EXPR
              if (TREE_CODE (parg0) == MULT_EXPR
                  && TREE_CODE (parg1) != MULT_EXPR)
                  && TREE_CODE (parg1) != MULT_EXPR)
                return fold_build2 (pcode, type,
                return fold_build2 (pcode, type,
                                    fold_build2 (PLUS_EXPR, type,
                                    fold_build2 (PLUS_EXPR, type,
                                                 fold_convert (type, parg0),
                                                 fold_convert (type, parg0),
                                                 fold_convert (type, marg)),
                                                 fold_convert (type, marg)),
                                    fold_convert (type, parg1));
                                    fold_convert (type, parg1));
              if (TREE_CODE (parg0) != MULT_EXPR
              if (TREE_CODE (parg0) != MULT_EXPR
                  && TREE_CODE (parg1) == MULT_EXPR)
                  && TREE_CODE (parg1) == MULT_EXPR)
                return fold_build2 (PLUS_EXPR, type,
                return fold_build2 (PLUS_EXPR, type,
                                    fold_convert (type, parg0),
                                    fold_convert (type, parg0),
                                    fold_build2 (pcode, type,
                                    fold_build2 (pcode, type,
                                                 fold_convert (type, marg),
                                                 fold_convert (type, marg),
                                                 fold_convert (type,
                                                 fold_convert (type,
                                                               parg1)));
                                                               parg1)));
            }
            }
 
 
          /* Try replacing &a[i1] + c * i2 with &a[i1 + i2], if c is step
          /* Try replacing &a[i1] + c * i2 with &a[i1 + i2], if c is step
             of the array.  Loop optimizer sometimes produce this type of
             of the array.  Loop optimizer sometimes produce this type of
             expressions.  */
             expressions.  */
          if (TREE_CODE (arg0) == ADDR_EXPR)
          if (TREE_CODE (arg0) == ADDR_EXPR)
            {
            {
              tem = try_move_mult_to_index (PLUS_EXPR, arg0, arg1);
              tem = try_move_mult_to_index (PLUS_EXPR, arg0, arg1);
              if (tem)
              if (tem)
                return fold_convert (type, tem);
                return fold_convert (type, tem);
            }
            }
          else if (TREE_CODE (arg1) == ADDR_EXPR)
          else if (TREE_CODE (arg1) == ADDR_EXPR)
            {
            {
              tem = try_move_mult_to_index (PLUS_EXPR, arg1, arg0);
              tem = try_move_mult_to_index (PLUS_EXPR, arg1, arg0);
              if (tem)
              if (tem)
                return fold_convert (type, tem);
                return fold_convert (type, tem);
            }
            }
        }
        }
      else
      else
        {
        {
          /* See if ARG1 is zero and X + ARG1 reduces to X.  */
          /* See if ARG1 is zero and X + ARG1 reduces to X.  */
          if (fold_real_zero_addition_p (TREE_TYPE (arg0), arg1, 0))
          if (fold_real_zero_addition_p (TREE_TYPE (arg0), arg1, 0))
            return non_lvalue (fold_convert (type, arg0));
            return non_lvalue (fold_convert (type, arg0));
 
 
          /* Likewise if the operands are reversed.  */
          /* Likewise if the operands are reversed.  */
          if (fold_real_zero_addition_p (TREE_TYPE (arg1), arg0, 0))
          if (fold_real_zero_addition_p (TREE_TYPE (arg1), arg0, 0))
            return non_lvalue (fold_convert (type, arg1));
            return non_lvalue (fold_convert (type, arg1));
 
 
          /* Convert X + -C into X - C.  */
          /* Convert X + -C into X - C.  */
          if (TREE_CODE (arg1) == REAL_CST
          if (TREE_CODE (arg1) == REAL_CST
              && REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1)))
              && REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1)))
            {
            {
              tem = fold_negate_const (arg1, type);
              tem = fold_negate_const (arg1, type);
              if (!TREE_OVERFLOW (arg1) || !flag_trapping_math)
              if (!TREE_OVERFLOW (arg1) || !flag_trapping_math)
                return fold_build2 (MINUS_EXPR, type,
                return fold_build2 (MINUS_EXPR, type,
                                    fold_convert (type, arg0),
                                    fold_convert (type, arg0),
                                    fold_convert (type, tem));
                                    fold_convert (type, tem));
            }
            }
 
 
          if (flag_unsafe_math_optimizations
          if (flag_unsafe_math_optimizations
              && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
              && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
              && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
              && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
              && (tem = distribute_real_division (code, type, arg0, arg1)))
              && (tem = distribute_real_division (code, type, arg0, arg1)))
            return tem;
            return tem;
 
 
          /* Convert x+x into x*2.0.  */
          /* Convert x+x into x*2.0.  */
          if (operand_equal_p (arg0, arg1, 0)
          if (operand_equal_p (arg0, arg1, 0)
              && SCALAR_FLOAT_TYPE_P (type))
              && SCALAR_FLOAT_TYPE_P (type))
            return fold_build2 (MULT_EXPR, type, arg0,
            return fold_build2 (MULT_EXPR, type, arg0,
                                build_real (type, dconst2));
                                build_real (type, dconst2));
 
 
          /* Convert a + (b*c + d*e) into (a + b*c) + d*e.  */
          /* Convert a + (b*c + d*e) into (a + b*c) + d*e.  */
          if (flag_unsafe_math_optimizations
          if (flag_unsafe_math_optimizations
              && TREE_CODE (arg1) == PLUS_EXPR
              && TREE_CODE (arg1) == PLUS_EXPR
              && TREE_CODE (arg0) != MULT_EXPR)
              && TREE_CODE (arg0) != MULT_EXPR)
            {
            {
              tree tree10 = TREE_OPERAND (arg1, 0);
              tree tree10 = TREE_OPERAND (arg1, 0);
              tree tree11 = TREE_OPERAND (arg1, 1);
              tree tree11 = TREE_OPERAND (arg1, 1);
              if (TREE_CODE (tree11) == MULT_EXPR
              if (TREE_CODE (tree11) == MULT_EXPR
                  && TREE_CODE (tree10) == MULT_EXPR)
                  && TREE_CODE (tree10) == MULT_EXPR)
                {
                {
                  tree tree0;
                  tree tree0;
                  tree0 = fold_build2 (PLUS_EXPR, type, arg0, tree10);
                  tree0 = fold_build2 (PLUS_EXPR, type, arg0, tree10);
                  return fold_build2 (PLUS_EXPR, type, tree0, tree11);
                  return fold_build2 (PLUS_EXPR, type, tree0, tree11);
                }
                }
            }
            }
          /* Convert (b*c + d*e) + a into b*c + (d*e +a).  */
          /* Convert (b*c + d*e) + a into b*c + (d*e +a).  */
          if (flag_unsafe_math_optimizations
          if (flag_unsafe_math_optimizations
              && TREE_CODE (arg0) == PLUS_EXPR
              && TREE_CODE (arg0) == PLUS_EXPR
              && TREE_CODE (arg1) != MULT_EXPR)
              && TREE_CODE (arg1) != MULT_EXPR)
            {
            {
              tree tree00 = TREE_OPERAND (arg0, 0);
              tree tree00 = TREE_OPERAND (arg0, 0);
              tree tree01 = TREE_OPERAND (arg0, 1);
              tree tree01 = TREE_OPERAND (arg0, 1);
              if (TREE_CODE (tree01) == MULT_EXPR
              if (TREE_CODE (tree01) == MULT_EXPR
                  && TREE_CODE (tree00) == MULT_EXPR)
                  && TREE_CODE (tree00) == MULT_EXPR)
                {
                {
                  tree tree0;
                  tree tree0;
                  tree0 = fold_build2 (PLUS_EXPR, type, tree01, arg1);
                  tree0 = fold_build2 (PLUS_EXPR, type, tree01, arg1);
                  return fold_build2 (PLUS_EXPR, type, tree00, tree0);
                  return fold_build2 (PLUS_EXPR, type, tree00, tree0);
                }
                }
            }
            }
        }
        }
 
 
     bit_rotate:
     bit_rotate:
      /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
      /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
         is a rotate of A by C1 bits.  */
         is a rotate of A by C1 bits.  */
      /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
      /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
         is a rotate of A by B bits.  */
         is a rotate of A by B bits.  */
      {
      {
        enum tree_code code0, code1;
        enum tree_code code0, code1;
        code0 = TREE_CODE (arg0);
        code0 = TREE_CODE (arg0);
        code1 = TREE_CODE (arg1);
        code1 = TREE_CODE (arg1);
        if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
        if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
             || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
             || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
            && operand_equal_p (TREE_OPERAND (arg0, 0),
            && operand_equal_p (TREE_OPERAND (arg0, 0),
                                TREE_OPERAND (arg1, 0), 0)
                                TREE_OPERAND (arg1, 0), 0)
            && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
            && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
          {
          {
            tree tree01, tree11;
            tree tree01, tree11;
            enum tree_code code01, code11;
            enum tree_code code01, code11;
 
 
            tree01 = TREE_OPERAND (arg0, 1);
            tree01 = TREE_OPERAND (arg0, 1);
            tree11 = TREE_OPERAND (arg1, 1);
            tree11 = TREE_OPERAND (arg1, 1);
            STRIP_NOPS (tree01);
            STRIP_NOPS (tree01);
            STRIP_NOPS (tree11);
            STRIP_NOPS (tree11);
            code01 = TREE_CODE (tree01);
            code01 = TREE_CODE (tree01);
            code11 = TREE_CODE (tree11);
            code11 = TREE_CODE (tree11);
            if (code01 == INTEGER_CST
            if (code01 == INTEGER_CST
                && code11 == INTEGER_CST
                && code11 == INTEGER_CST
                && TREE_INT_CST_HIGH (tree01) == 0
                && TREE_INT_CST_HIGH (tree01) == 0
                && TREE_INT_CST_HIGH (tree11) == 0
                && TREE_INT_CST_HIGH (tree11) == 0
                && ((TREE_INT_CST_LOW (tree01) + TREE_INT_CST_LOW (tree11))
                && ((TREE_INT_CST_LOW (tree01) + TREE_INT_CST_LOW (tree11))
                    == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)))))
                    == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)))))
              return build2 (LROTATE_EXPR, type, TREE_OPERAND (arg0, 0),
              return build2 (LROTATE_EXPR, type, TREE_OPERAND (arg0, 0),
                             code0 == LSHIFT_EXPR ? tree01 : tree11);
                             code0 == LSHIFT_EXPR ? tree01 : tree11);
            else if (code11 == MINUS_EXPR)
            else if (code11 == MINUS_EXPR)
              {
              {
                tree tree110, tree111;
                tree tree110, tree111;
                tree110 = TREE_OPERAND (tree11, 0);
                tree110 = TREE_OPERAND (tree11, 0);
                tree111 = TREE_OPERAND (tree11, 1);
                tree111 = TREE_OPERAND (tree11, 1);
                STRIP_NOPS (tree110);
                STRIP_NOPS (tree110);
                STRIP_NOPS (tree111);
                STRIP_NOPS (tree111);
                if (TREE_CODE (tree110) == INTEGER_CST
                if (TREE_CODE (tree110) == INTEGER_CST
                    && 0 == compare_tree_int (tree110,
                    && 0 == compare_tree_int (tree110,
                                              TYPE_PRECISION
                                              TYPE_PRECISION
                                              (TREE_TYPE (TREE_OPERAND
                                              (TREE_TYPE (TREE_OPERAND
                                                          (arg0, 0))))
                                                          (arg0, 0))))
                    && operand_equal_p (tree01, tree111, 0))
                    && operand_equal_p (tree01, tree111, 0))
                  return build2 ((code0 == LSHIFT_EXPR
                  return build2 ((code0 == LSHIFT_EXPR
                                  ? LROTATE_EXPR
                                  ? LROTATE_EXPR
                                  : RROTATE_EXPR),
                                  : RROTATE_EXPR),
                                 type, TREE_OPERAND (arg0, 0), tree01);
                                 type, TREE_OPERAND (arg0, 0), tree01);
              }
              }
            else if (code01 == MINUS_EXPR)
            else if (code01 == MINUS_EXPR)
              {
              {
                tree tree010, tree011;
                tree tree010, tree011;
                tree010 = TREE_OPERAND (tree01, 0);
                tree010 = TREE_OPERAND (tree01, 0);
                tree011 = TREE_OPERAND (tree01, 1);
                tree011 = TREE_OPERAND (tree01, 1);
                STRIP_NOPS (tree010);
                STRIP_NOPS (tree010);
                STRIP_NOPS (tree011);
                STRIP_NOPS (tree011);
                if (TREE_CODE (tree010) == INTEGER_CST
                if (TREE_CODE (tree010) == INTEGER_CST
                    && 0 == compare_tree_int (tree010,
                    && 0 == compare_tree_int (tree010,
                                              TYPE_PRECISION
                                              TYPE_PRECISION
                                              (TREE_TYPE (TREE_OPERAND
                                              (TREE_TYPE (TREE_OPERAND
                                                          (arg0, 0))))
                                                          (arg0, 0))))
                    && operand_equal_p (tree11, tree011, 0))
                    && operand_equal_p (tree11, tree011, 0))
                  return build2 ((code0 != LSHIFT_EXPR
                  return build2 ((code0 != LSHIFT_EXPR
                                  ? LROTATE_EXPR
                                  ? LROTATE_EXPR
                                  : RROTATE_EXPR),
                                  : RROTATE_EXPR),
                                 type, TREE_OPERAND (arg0, 0), tree11);
                                 type, TREE_OPERAND (arg0, 0), tree11);
              }
              }
          }
          }
      }
      }
 
 
    associate:
    associate:
      /* In most languages, can't associate operations on floats through
      /* In most languages, can't associate operations on floats through
         parentheses.  Rather than remember where the parentheses were, we
         parentheses.  Rather than remember where the parentheses were, we
         don't associate floats at all, unless the user has specified
         don't associate floats at all, unless the user has specified
         -funsafe-math-optimizations.  */
         -funsafe-math-optimizations.  */
 
 
      if (! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
      if (! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
        {
        {
          tree var0, con0, lit0, minus_lit0;
          tree var0, con0, lit0, minus_lit0;
          tree var1, con1, lit1, minus_lit1;
          tree var1, con1, lit1, minus_lit1;
          bool ok = true;
          bool ok = true;
 
 
          /* Split both trees into variables, constants, and literals.  Then
          /* Split both trees into variables, constants, and literals.  Then
             associate each group together, the constants with literals,
             associate each group together, the constants with literals,
             then the result with variables.  This increases the chances of
             then the result with variables.  This increases the chances of
             literals being recombined later and of generating relocatable
             literals being recombined later and of generating relocatable
             expressions for the sum of a constant and literal.  */
             expressions for the sum of a constant and literal.  */
          var0 = split_tree (arg0, code, &con0, &lit0, &minus_lit0, 0);
          var0 = split_tree (arg0, code, &con0, &lit0, &minus_lit0, 0);
          var1 = split_tree (arg1, code, &con1, &lit1, &minus_lit1,
          var1 = split_tree (arg1, code, &con1, &lit1, &minus_lit1,
                             code == MINUS_EXPR);
                             code == MINUS_EXPR);
 
 
          /* With undefined overflow we can only associate constants
          /* With undefined overflow we can only associate constants
             with one variable.  */
             with one variable.  */
          if ((POINTER_TYPE_P (type)
          if ((POINTER_TYPE_P (type)
               || (INTEGRAL_TYPE_P (type)
               || (INTEGRAL_TYPE_P (type)
                   && !(TYPE_UNSIGNED (type) || flag_wrapv)))
                   && !(TYPE_UNSIGNED (type) || flag_wrapv)))
              && var0 && var1)
              && var0 && var1)
            {
            {
              tree tmp0 = var0;
              tree tmp0 = var0;
              tree tmp1 = var1;
              tree tmp1 = var1;
 
 
              if (TREE_CODE (tmp0) == NEGATE_EXPR)
              if (TREE_CODE (tmp0) == NEGATE_EXPR)
                tmp0 = TREE_OPERAND (tmp0, 0);
                tmp0 = TREE_OPERAND (tmp0, 0);
              if (TREE_CODE (tmp1) == NEGATE_EXPR)
              if (TREE_CODE (tmp1) == NEGATE_EXPR)
                tmp1 = TREE_OPERAND (tmp1, 0);
                tmp1 = TREE_OPERAND (tmp1, 0);
              /* The only case we can still associate with two variables
              /* The only case we can still associate with two variables
                 is if they are the same, modulo negation.  */
                 is if they are the same, modulo negation.  */
              if (!operand_equal_p (tmp0, tmp1, 0))
              if (!operand_equal_p (tmp0, tmp1, 0))
                ok = false;
                ok = false;
            }
            }
 
 
          /* Only do something if we found more than two objects.  Otherwise,
          /* Only do something if we found more than two objects.  Otherwise,
             nothing has changed and we risk infinite recursion.  */
             nothing has changed and we risk infinite recursion.  */
          if (ok
          if (ok
              && (2 < ((var0 != 0) + (var1 != 0)
              && (2 < ((var0 != 0) + (var1 != 0)
                       + (con0 != 0) + (con1 != 0)
                       + (con0 != 0) + (con1 != 0)
                       + (lit0 != 0) + (lit1 != 0)
                       + (lit0 != 0) + (lit1 != 0)
                       + (minus_lit0 != 0) + (minus_lit1 != 0))))
                       + (minus_lit0 != 0) + (minus_lit1 != 0))))
            {
            {
              /* Recombine MINUS_EXPR operands by using PLUS_EXPR.  */
              /* Recombine MINUS_EXPR operands by using PLUS_EXPR.  */
              if (code == MINUS_EXPR)
              if (code == MINUS_EXPR)
                code = PLUS_EXPR;
                code = PLUS_EXPR;
 
 
              var0 = associate_trees (var0, var1, code, type);
              var0 = associate_trees (var0, var1, code, type);
              con0 = associate_trees (con0, con1, code, type);
              con0 = associate_trees (con0, con1, code, type);
              lit0 = associate_trees (lit0, lit1, code, type);
              lit0 = associate_trees (lit0, lit1, code, type);
              minus_lit0 = associate_trees (minus_lit0, minus_lit1, code, type);
              minus_lit0 = associate_trees (minus_lit0, minus_lit1, code, type);
 
 
              /* Preserve the MINUS_EXPR if the negative part of the literal is
              /* Preserve the MINUS_EXPR if the negative part of the literal is
                 greater than the positive part.  Otherwise, the multiplicative
                 greater than the positive part.  Otherwise, the multiplicative
                 folding code (i.e extract_muldiv) may be fooled in case
                 folding code (i.e extract_muldiv) may be fooled in case
                 unsigned constants are subtracted, like in the following
                 unsigned constants are subtracted, like in the following
                 example: ((X*2 + 4) - 8U)/2.  */
                 example: ((X*2 + 4) - 8U)/2.  */
              if (minus_lit0 && lit0)
              if (minus_lit0 && lit0)
                {
                {
                  if (TREE_CODE (lit0) == INTEGER_CST
                  if (TREE_CODE (lit0) == INTEGER_CST
                      && TREE_CODE (minus_lit0) == INTEGER_CST
                      && TREE_CODE (minus_lit0) == INTEGER_CST
                      && tree_int_cst_lt (lit0, minus_lit0))
                      && tree_int_cst_lt (lit0, minus_lit0))
                    {
                    {
                      minus_lit0 = associate_trees (minus_lit0, lit0,
                      minus_lit0 = associate_trees (minus_lit0, lit0,
                                                    MINUS_EXPR, type);
                                                    MINUS_EXPR, type);
                      lit0 = 0;
                      lit0 = 0;
                    }
                    }
                  else
                  else
                    {
                    {
                      lit0 = associate_trees (lit0, minus_lit0,
                      lit0 = associate_trees (lit0, minus_lit0,
                                              MINUS_EXPR, type);
                                              MINUS_EXPR, type);
                      minus_lit0 = 0;
                      minus_lit0 = 0;
                    }
                    }
                }
                }
              if (minus_lit0)
              if (minus_lit0)
                {
                {
                  if (con0 == 0)
                  if (con0 == 0)
                    return fold_convert (type,
                    return fold_convert (type,
                                         associate_trees (var0, minus_lit0,
                                         associate_trees (var0, minus_lit0,
                                                          MINUS_EXPR, type));
                                                          MINUS_EXPR, type));
                  else
                  else
                    {
                    {
                      con0 = associate_trees (con0, minus_lit0,
                      con0 = associate_trees (con0, minus_lit0,
                                              MINUS_EXPR, type);
                                              MINUS_EXPR, type);
                      return fold_convert (type,
                      return fold_convert (type,
                                           associate_trees (var0, con0,
                                           associate_trees (var0, con0,
                                                            PLUS_EXPR, type));
                                                            PLUS_EXPR, type));
                    }
                    }
                }
                }
 
 
              con0 = associate_trees (con0, lit0, code, type);
              con0 = associate_trees (con0, lit0, code, type);
              return fold_convert (type, associate_trees (var0, con0,
              return fold_convert (type, associate_trees (var0, con0,
                                                          code, type));
                                                          code, type));
            }
            }
        }
        }
 
 
      return NULL_TREE;
      return NULL_TREE;
 
 
    case MINUS_EXPR:
    case MINUS_EXPR:
      /* A - (-B) -> A + B */
      /* A - (-B) -> A + B */
      if (TREE_CODE (arg1) == NEGATE_EXPR)
      if (TREE_CODE (arg1) == NEGATE_EXPR)
        return fold_build2 (PLUS_EXPR, type, arg0, TREE_OPERAND (arg1, 0));
        return fold_build2 (PLUS_EXPR, type, arg0, TREE_OPERAND (arg1, 0));
      /* (-A) - B -> (-B) - A  where B is easily negated and we can swap.  */
      /* (-A) - B -> (-B) - A  where B is easily negated and we can swap.  */
      if (TREE_CODE (arg0) == NEGATE_EXPR
      if (TREE_CODE (arg0) == NEGATE_EXPR
          && (FLOAT_TYPE_P (type)
          && (FLOAT_TYPE_P (type)
              || (INTEGRAL_TYPE_P (type) && flag_wrapv && !flag_trapv))
              || (INTEGRAL_TYPE_P (type) && flag_wrapv && !flag_trapv))
          && negate_expr_p (arg1)
          && negate_expr_p (arg1)
          && reorder_operands_p (arg0, arg1))
          && reorder_operands_p (arg0, arg1))
        return fold_build2 (MINUS_EXPR, type, negate_expr (arg1),
        return fold_build2 (MINUS_EXPR, type, negate_expr (arg1),
                            TREE_OPERAND (arg0, 0));
                            TREE_OPERAND (arg0, 0));
      /* Convert -A - 1 to ~A.  */
      /* Convert -A - 1 to ~A.  */
      if (INTEGRAL_TYPE_P (type)
      if (INTEGRAL_TYPE_P (type)
          && TREE_CODE (arg0) == NEGATE_EXPR
          && TREE_CODE (arg0) == NEGATE_EXPR
          && integer_onep (arg1))
          && integer_onep (arg1))
        return fold_build1 (BIT_NOT_EXPR, type,
        return fold_build1 (BIT_NOT_EXPR, type,
                            fold_convert (type, TREE_OPERAND (arg0, 0)));
                            fold_convert (type, TREE_OPERAND (arg0, 0)));
 
 
      /* Convert -1 - A to ~A.  */
      /* Convert -1 - A to ~A.  */
      if (INTEGRAL_TYPE_P (type)
      if (INTEGRAL_TYPE_P (type)
          && integer_all_onesp (arg0))
          && integer_all_onesp (arg0))
        return fold_build1 (BIT_NOT_EXPR, type, arg1);
        return fold_build1 (BIT_NOT_EXPR, type, arg1);
 
 
      if (! FLOAT_TYPE_P (type))
      if (! FLOAT_TYPE_P (type))
        {
        {
          if (integer_zerop (arg0))
          if (integer_zerop (arg0))
            return negate_expr (fold_convert (type, arg1));
            return negate_expr (fold_convert (type, arg1));
          if (integer_zerop (arg1))
          if (integer_zerop (arg1))
            return non_lvalue (fold_convert (type, arg0));
            return non_lvalue (fold_convert (type, arg0));
 
 
          /* Fold A - (A & B) into ~B & A.  */
          /* Fold A - (A & B) into ~B & A.  */
          if (!TREE_SIDE_EFFECTS (arg0)
          if (!TREE_SIDE_EFFECTS (arg0)
              && TREE_CODE (arg1) == BIT_AND_EXPR)
              && TREE_CODE (arg1) == BIT_AND_EXPR)
            {
            {
              if (operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0))
              if (operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0))
                return fold_build2 (BIT_AND_EXPR, type,
                return fold_build2 (BIT_AND_EXPR, type,
                                    fold_build1 (BIT_NOT_EXPR, type,
                                    fold_build1 (BIT_NOT_EXPR, type,
                                                 TREE_OPERAND (arg1, 0)),
                                                 TREE_OPERAND (arg1, 0)),
                                    arg0);
                                    arg0);
              if (operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
              if (operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
                return fold_build2 (BIT_AND_EXPR, type,
                return fold_build2 (BIT_AND_EXPR, type,
                                    fold_build1 (BIT_NOT_EXPR, type,
                                    fold_build1 (BIT_NOT_EXPR, type,
                                                 TREE_OPERAND (arg1, 1)),
                                                 TREE_OPERAND (arg1, 1)),
                                    arg0);
                                    arg0);
            }
            }
 
 
          /* Fold (A & ~B) - (A & B) into (A ^ B) - B, where B is
          /* Fold (A & ~B) - (A & B) into (A ^ B) - B, where B is
             any power of 2 minus 1.  */
             any power of 2 minus 1.  */
          if (TREE_CODE (arg0) == BIT_AND_EXPR
          if (TREE_CODE (arg0) == BIT_AND_EXPR
              && TREE_CODE (arg1) == BIT_AND_EXPR
              && TREE_CODE (arg1) == BIT_AND_EXPR
              && operand_equal_p (TREE_OPERAND (arg0, 0),
              && operand_equal_p (TREE_OPERAND (arg0, 0),
                                  TREE_OPERAND (arg1, 0), 0))
                                  TREE_OPERAND (arg1, 0), 0))
            {
            {
              tree mask0 = TREE_OPERAND (arg0, 1);
              tree mask0 = TREE_OPERAND (arg0, 1);
              tree mask1 = TREE_OPERAND (arg1, 1);
              tree mask1 = TREE_OPERAND (arg1, 1);
              tree tem = fold_build1 (BIT_NOT_EXPR, type, mask0);
              tree tem = fold_build1 (BIT_NOT_EXPR, type, mask0);
 
 
              if (operand_equal_p (tem, mask1, 0))
              if (operand_equal_p (tem, mask1, 0))
                {
                {
                  tem = fold_build2 (BIT_XOR_EXPR, type,
                  tem = fold_build2 (BIT_XOR_EXPR, type,
                                     TREE_OPERAND (arg0, 0), mask1);
                                     TREE_OPERAND (arg0, 0), mask1);
                  return fold_build2 (MINUS_EXPR, type, tem, mask1);
                  return fold_build2 (MINUS_EXPR, type, tem, mask1);
                }
                }
            }
            }
        }
        }
 
 
      /* See if ARG1 is zero and X - ARG1 reduces to X.  */
      /* See if ARG1 is zero and X - ARG1 reduces to X.  */
      else if (fold_real_zero_addition_p (TREE_TYPE (arg0), arg1, 1))
      else if (fold_real_zero_addition_p (TREE_TYPE (arg0), arg1, 1))
        return non_lvalue (fold_convert (type, arg0));
        return non_lvalue (fold_convert (type, arg0));
 
 
      /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0).  So check whether
      /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0).  So check whether
         ARG0 is zero and X + ARG0 reduces to X, since that would mean
         ARG0 is zero and X + ARG0 reduces to X, since that would mean
         (-ARG1 + ARG0) reduces to -ARG1.  */
         (-ARG1 + ARG0) reduces to -ARG1.  */
      else if (fold_real_zero_addition_p (TREE_TYPE (arg1), arg0, 0))
      else if (fold_real_zero_addition_p (TREE_TYPE (arg1), arg0, 0))
        return negate_expr (fold_convert (type, arg1));
        return negate_expr (fold_convert (type, arg1));
 
 
      /* Fold &x - &x.  This can happen from &x.foo - &x.
      /* Fold &x - &x.  This can happen from &x.foo - &x.
         This is unsafe for certain floats even in non-IEEE formats.
         This is unsafe for certain floats even in non-IEEE formats.
         In IEEE, it is unsafe because it does wrong for NaNs.
         In IEEE, it is unsafe because it does wrong for NaNs.
         Also note that operand_equal_p is always false if an operand
         Also note that operand_equal_p is always false if an operand
         is volatile.  */
         is volatile.  */
 
 
      if ((! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
      if ((! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
          && operand_equal_p (arg0, arg1, 0))
          && operand_equal_p (arg0, arg1, 0))
        return fold_convert (type, integer_zero_node);
        return fold_convert (type, integer_zero_node);
 
 
      /* A - B -> A + (-B) if B is easily negatable.  */
      /* A - B -> A + (-B) if B is easily negatable.  */
      if (negate_expr_p (arg1)
      if (negate_expr_p (arg1)
          && ((FLOAT_TYPE_P (type)
          && ((FLOAT_TYPE_P (type)
               /* Avoid this transformation if B is a positive REAL_CST.  */
               /* Avoid this transformation if B is a positive REAL_CST.  */
               && (TREE_CODE (arg1) != REAL_CST
               && (TREE_CODE (arg1) != REAL_CST
                   ||  REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1))))
                   ||  REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1))))
              || (INTEGRAL_TYPE_P (type) && flag_wrapv && !flag_trapv)))
              || (INTEGRAL_TYPE_P (type) && flag_wrapv && !flag_trapv)))
        return fold_build2 (PLUS_EXPR, type,
        return fold_build2 (PLUS_EXPR, type,
                            fold_convert (type, arg0),
                            fold_convert (type, arg0),
                            fold_convert (type, negate_expr (arg1)));
                            fold_convert (type, negate_expr (arg1)));
 
 
      /* Try folding difference of addresses.  */
      /* Try folding difference of addresses.  */
      {
      {
        HOST_WIDE_INT diff;
        HOST_WIDE_INT diff;
 
 
        if ((TREE_CODE (arg0) == ADDR_EXPR
        if ((TREE_CODE (arg0) == ADDR_EXPR
             || TREE_CODE (arg1) == ADDR_EXPR)
             || TREE_CODE (arg1) == ADDR_EXPR)
            && ptr_difference_const (arg0, arg1, &diff))
            && ptr_difference_const (arg0, arg1, &diff))
          return build_int_cst_type (type, diff);
          return build_int_cst_type (type, diff);
      }
      }
 
 
      /* Fold &a[i] - &a[j] to i-j.  */
      /* Fold &a[i] - &a[j] to i-j.  */
      if (TREE_CODE (arg0) == ADDR_EXPR
      if (TREE_CODE (arg0) == ADDR_EXPR
          && TREE_CODE (TREE_OPERAND (arg0, 0)) == ARRAY_REF
          && TREE_CODE (TREE_OPERAND (arg0, 0)) == ARRAY_REF
          && TREE_CODE (arg1) == ADDR_EXPR
          && TREE_CODE (arg1) == ADDR_EXPR
          && TREE_CODE (TREE_OPERAND (arg1, 0)) == ARRAY_REF)
          && TREE_CODE (TREE_OPERAND (arg1, 0)) == ARRAY_REF)
        {
        {
          tree aref0 = TREE_OPERAND (arg0, 0);
          tree aref0 = TREE_OPERAND (arg0, 0);
          tree aref1 = TREE_OPERAND (arg1, 0);
          tree aref1 = TREE_OPERAND (arg1, 0);
          if (operand_equal_p (TREE_OPERAND (aref0, 0),
          if (operand_equal_p (TREE_OPERAND (aref0, 0),
                               TREE_OPERAND (aref1, 0), 0))
                               TREE_OPERAND (aref1, 0), 0))
            {
            {
              tree op0 = fold_convert (type, TREE_OPERAND (aref0, 1));
              tree op0 = fold_convert (type, TREE_OPERAND (aref0, 1));
              tree op1 = fold_convert (type, TREE_OPERAND (aref1, 1));
              tree op1 = fold_convert (type, TREE_OPERAND (aref1, 1));
              tree esz = array_ref_element_size (aref0);
              tree esz = array_ref_element_size (aref0);
              tree diff = build2 (MINUS_EXPR, type, op0, op1);
              tree diff = build2 (MINUS_EXPR, type, op0, op1);
              return fold_build2 (MULT_EXPR, type, diff,
              return fold_build2 (MULT_EXPR, type, diff,
                                  fold_convert (type, esz));
                                  fold_convert (type, esz));
 
 
            }
            }
        }
        }
 
 
      /* Try replacing &a[i1] - c * i2 with &a[i1 - i2], if c is step
      /* Try replacing &a[i1] - c * i2 with &a[i1 - i2], if c is step
         of the array.  Loop optimizer sometimes produce this type of
         of the array.  Loop optimizer sometimes produce this type of
         expressions.  */
         expressions.  */
      if (TREE_CODE (arg0) == ADDR_EXPR)
      if (TREE_CODE (arg0) == ADDR_EXPR)
        {
        {
          tem = try_move_mult_to_index (MINUS_EXPR, arg0, arg1);
          tem = try_move_mult_to_index (MINUS_EXPR, arg0, arg1);
          if (tem)
          if (tem)
            return fold_convert (type, tem);
            return fold_convert (type, tem);
        }
        }
 
 
      if (flag_unsafe_math_optimizations
      if (flag_unsafe_math_optimizations
          && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
          && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
          && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
          && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
          && (tem = distribute_real_division (code, type, arg0, arg1)))
          && (tem = distribute_real_division (code, type, arg0, arg1)))
        return tem;
        return tem;
 
 
      /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the
      /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the
         same or one.  */
         same or one.  */
      if ((TREE_CODE (arg0) == MULT_EXPR
      if ((TREE_CODE (arg0) == MULT_EXPR
           || TREE_CODE (arg1) == MULT_EXPR)
           || TREE_CODE (arg1) == MULT_EXPR)
          && (!FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations))
          && (!FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations))
        {
        {
          tree tem = fold_plusminus_mult_expr (code, type, arg0, arg1);
          tree tem = fold_plusminus_mult_expr (code, type, arg0, arg1);
          if (tem)
          if (tem)
            return tem;
            return tem;
        }
        }
 
 
      goto associate;
      goto associate;
 
 
    case MULT_EXPR:
    case MULT_EXPR:
      /* (-A) * (-B) -> A * B  */
      /* (-A) * (-B) -> A * B  */
      if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
      if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
        return fold_build2 (MULT_EXPR, type,
        return fold_build2 (MULT_EXPR, type,
                            fold_convert (type, TREE_OPERAND (arg0, 0)),
                            fold_convert (type, TREE_OPERAND (arg0, 0)),
                            fold_convert (type, negate_expr (arg1)));
                            fold_convert (type, negate_expr (arg1)));
      if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
      if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
        return fold_build2 (MULT_EXPR, type,
        return fold_build2 (MULT_EXPR, type,
                            fold_convert (type, negate_expr (arg0)),
                            fold_convert (type, negate_expr (arg0)),
                            fold_convert (type, TREE_OPERAND (arg1, 0)));
                            fold_convert (type, TREE_OPERAND (arg1, 0)));
 
 
      if (! FLOAT_TYPE_P (type))
      if (! FLOAT_TYPE_P (type))
        {
        {
          if (integer_zerop (arg1))
          if (integer_zerop (arg1))
            return omit_one_operand (type, arg1, arg0);
            return omit_one_operand (type, arg1, arg0);
          if (integer_onep (arg1))
          if (integer_onep (arg1))
            return non_lvalue (fold_convert (type, arg0));
            return non_lvalue (fold_convert (type, arg0));
          /* Transform x * -1 into -x.  */
          /* Transform x * -1 into -x.  */
          if (integer_all_onesp (arg1))
          if (integer_all_onesp (arg1))
            return fold_convert (type, negate_expr (arg0));
            return fold_convert (type, negate_expr (arg0));
 
 
          /* (a * (1 << b)) is (a << b)  */
          /* (a * (1 << b)) is (a << b)  */
          if (TREE_CODE (arg1) == LSHIFT_EXPR
          if (TREE_CODE (arg1) == LSHIFT_EXPR
              && integer_onep (TREE_OPERAND (arg1, 0)))
              && integer_onep (TREE_OPERAND (arg1, 0)))
            return fold_build2 (LSHIFT_EXPR, type, arg0,
            return fold_build2 (LSHIFT_EXPR, type, arg0,
                                TREE_OPERAND (arg1, 1));
                                TREE_OPERAND (arg1, 1));
          if (TREE_CODE (arg0) == LSHIFT_EXPR
          if (TREE_CODE (arg0) == LSHIFT_EXPR
              && integer_onep (TREE_OPERAND (arg0, 0)))
              && integer_onep (TREE_OPERAND (arg0, 0)))
            return fold_build2 (LSHIFT_EXPR, type, arg1,
            return fold_build2 (LSHIFT_EXPR, type, arg1,
                                TREE_OPERAND (arg0, 1));
                                TREE_OPERAND (arg0, 1));
 
 
          strict_overflow_p = false;
          strict_overflow_p = false;
          if (TREE_CODE (arg1) == INTEGER_CST
          if (TREE_CODE (arg1) == INTEGER_CST
              && 0 != (tem = extract_muldiv (op0,
              && 0 != (tem = extract_muldiv (op0,
                                             fold_convert (type, arg1),
                                             fold_convert (type, arg1),
                                             code, NULL_TREE,
                                             code, NULL_TREE,
                                             &strict_overflow_p)))
                                             &strict_overflow_p)))
            {
            {
              if (strict_overflow_p)
              if (strict_overflow_p)
                fold_overflow_warning (("assuming signed overflow does not "
                fold_overflow_warning (("assuming signed overflow does not "
                                        "occur when simplifying "
                                        "occur when simplifying "
                                        "multiplication"),
                                        "multiplication"),
                                       WARN_STRICT_OVERFLOW_MISC);
                                       WARN_STRICT_OVERFLOW_MISC);
              return fold_convert (type, tem);
              return fold_convert (type, tem);
            }
            }
 
 
          /* Optimize z * conj(z) for integer complex numbers.  */
          /* Optimize z * conj(z) for integer complex numbers.  */
          if (TREE_CODE (arg0) == CONJ_EXPR
          if (TREE_CODE (arg0) == CONJ_EXPR
              && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
              && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
            return fold_mult_zconjz (type, arg1);
            return fold_mult_zconjz (type, arg1);
          if (TREE_CODE (arg1) == CONJ_EXPR
          if (TREE_CODE (arg1) == CONJ_EXPR
              && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
              && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
            return fold_mult_zconjz (type, arg0);
            return fold_mult_zconjz (type, arg0);
        }
        }
      else
      else
        {
        {
          /* Maybe fold x * 0 to 0.  The expressions aren't the same
          /* Maybe fold x * 0 to 0.  The expressions aren't the same
             when x is NaN, since x * 0 is also NaN.  Nor are they the
             when x is NaN, since x * 0 is also NaN.  Nor are they the
             same in modes with signed zeros, since multiplying a
             same in modes with signed zeros, since multiplying a
             negative value by 0 gives -0, not +0.  */
             negative value by 0 gives -0, not +0.  */
          if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
          if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
              && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
              && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
              && real_zerop (arg1))
              && real_zerop (arg1))
            return omit_one_operand (type, arg1, arg0);
            return omit_one_operand (type, arg1, arg0);
          /* In IEEE floating point, x*1 is not equivalent to x for snans.  */
          /* In IEEE floating point, x*1 is not equivalent to x for snans.  */
          if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
          if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
              && real_onep (arg1))
              && real_onep (arg1))
            return non_lvalue (fold_convert (type, arg0));
            return non_lvalue (fold_convert (type, arg0));
 
 
          /* Transform x * -1.0 into -x.  */
          /* Transform x * -1.0 into -x.  */
          if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
          if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
              && real_minus_onep (arg1))
              && real_minus_onep (arg1))
            return fold_convert (type, negate_expr (arg0));
            return fold_convert (type, negate_expr (arg0));
 
 
          /* Convert (C1/X)*C2 into (C1*C2)/X.  */
          /* Convert (C1/X)*C2 into (C1*C2)/X.  */
          if (flag_unsafe_math_optimizations
          if (flag_unsafe_math_optimizations
              && TREE_CODE (arg0) == RDIV_EXPR
              && TREE_CODE (arg0) == RDIV_EXPR
              && TREE_CODE (arg1) == REAL_CST
              && TREE_CODE (arg1) == REAL_CST
              && TREE_CODE (TREE_OPERAND (arg0, 0)) == REAL_CST)
              && TREE_CODE (TREE_OPERAND (arg0, 0)) == REAL_CST)
            {
            {
              tree tem = const_binop (MULT_EXPR, TREE_OPERAND (arg0, 0),
              tree tem = const_binop (MULT_EXPR, TREE_OPERAND (arg0, 0),
                                      arg1, 0);
                                      arg1, 0);
              if (tem)
              if (tem)
                return fold_build2 (RDIV_EXPR, type, tem,
                return fold_build2 (RDIV_EXPR, type, tem,
                                    TREE_OPERAND (arg0, 1));
                                    TREE_OPERAND (arg0, 1));
            }
            }
 
 
          /* Strip sign operations from X in X*X, i.e. -Y*-Y -> Y*Y.  */
          /* Strip sign operations from X in X*X, i.e. -Y*-Y -> Y*Y.  */
          if (operand_equal_p (arg0, arg1, 0))
          if (operand_equal_p (arg0, arg1, 0))
            {
            {
              tree tem = fold_strip_sign_ops (arg0);
              tree tem = fold_strip_sign_ops (arg0);
              if (tem != NULL_TREE)
              if (tem != NULL_TREE)
                {
                {
                  tem = fold_convert (type, tem);
                  tem = fold_convert (type, tem);
                  return fold_build2 (MULT_EXPR, type, tem, tem);
                  return fold_build2 (MULT_EXPR, type, tem, tem);
                }
                }
            }
            }
 
 
          /* Optimize z * conj(z) for floating point complex numbers.
          /* Optimize z * conj(z) for floating point complex numbers.
             Guarded by flag_unsafe_math_optimizations as non-finite
             Guarded by flag_unsafe_math_optimizations as non-finite
             imaginary components don't produce scalar results.  */
             imaginary components don't produce scalar results.  */
          if (flag_unsafe_math_optimizations
          if (flag_unsafe_math_optimizations
              && TREE_CODE (arg0) == CONJ_EXPR
              && TREE_CODE (arg0) == CONJ_EXPR
              && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
              && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
            return fold_mult_zconjz (type, arg1);
            return fold_mult_zconjz (type, arg1);
          if (flag_unsafe_math_optimizations
          if (flag_unsafe_math_optimizations
              && TREE_CODE (arg1) == CONJ_EXPR
              && TREE_CODE (arg1) == CONJ_EXPR
              && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
              && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
            return fold_mult_zconjz (type, arg0);
            return fold_mult_zconjz (type, arg0);
 
 
          if (flag_unsafe_math_optimizations)
          if (flag_unsafe_math_optimizations)
            {
            {
              enum built_in_function fcode0 = builtin_mathfn_code (arg0);
              enum built_in_function fcode0 = builtin_mathfn_code (arg0);
              enum built_in_function fcode1 = builtin_mathfn_code (arg1);
              enum built_in_function fcode1 = builtin_mathfn_code (arg1);
 
 
              /* Optimizations of root(...)*root(...).  */
              /* Optimizations of root(...)*root(...).  */
              if (fcode0 == fcode1 && BUILTIN_ROOT_P (fcode0))
              if (fcode0 == fcode1 && BUILTIN_ROOT_P (fcode0))
                {
                {
                  tree rootfn, arg, arglist;
                  tree rootfn, arg, arglist;
                  tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
                  tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
                  tree arg10 = TREE_VALUE (TREE_OPERAND (arg1, 1));
                  tree arg10 = TREE_VALUE (TREE_OPERAND (arg1, 1));
 
 
                  /* Optimize sqrt(x)*sqrt(x) as x.  */
                  /* Optimize sqrt(x)*sqrt(x) as x.  */
                  if (BUILTIN_SQRT_P (fcode0)
                  if (BUILTIN_SQRT_P (fcode0)
                      && operand_equal_p (arg00, arg10, 0)
                      && operand_equal_p (arg00, arg10, 0)
                      && ! HONOR_SNANS (TYPE_MODE (type)))
                      && ! HONOR_SNANS (TYPE_MODE (type)))
                    return arg00;
                    return arg00;
 
 
                  /* Optimize root(x)*root(y) as root(x*y).  */
                  /* Optimize root(x)*root(y) as root(x*y).  */
                  rootfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
                  rootfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
                  arg = fold_build2 (MULT_EXPR, type, arg00, arg10);
                  arg = fold_build2 (MULT_EXPR, type, arg00, arg10);
                  arglist = build_tree_list (NULL_TREE, arg);
                  arglist = build_tree_list (NULL_TREE, arg);
                  return build_function_call_expr (rootfn, arglist);
                  return build_function_call_expr (rootfn, arglist);
                }
                }
 
 
              /* Optimize expN(x)*expN(y) as expN(x+y).  */
              /* Optimize expN(x)*expN(y) as expN(x+y).  */
              if (fcode0 == fcode1 && BUILTIN_EXPONENT_P (fcode0))
              if (fcode0 == fcode1 && BUILTIN_EXPONENT_P (fcode0))
                {
                {
                  tree expfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
                  tree expfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
                  tree arg = fold_build2 (PLUS_EXPR, type,
                  tree arg = fold_build2 (PLUS_EXPR, type,
                                          TREE_VALUE (TREE_OPERAND (arg0, 1)),
                                          TREE_VALUE (TREE_OPERAND (arg0, 1)),
                                          TREE_VALUE (TREE_OPERAND (arg1, 1)));
                                          TREE_VALUE (TREE_OPERAND (arg1, 1)));
                  tree arglist = build_tree_list (NULL_TREE, arg);
                  tree arglist = build_tree_list (NULL_TREE, arg);
                  return build_function_call_expr (expfn, arglist);
                  return build_function_call_expr (expfn, arglist);
                }
                }
 
 
              /* Optimizations of pow(...)*pow(...).  */
              /* Optimizations of pow(...)*pow(...).  */
              if ((fcode0 == BUILT_IN_POW && fcode1 == BUILT_IN_POW)
              if ((fcode0 == BUILT_IN_POW && fcode1 == BUILT_IN_POW)
                  || (fcode0 == BUILT_IN_POWF && fcode1 == BUILT_IN_POWF)
                  || (fcode0 == BUILT_IN_POWF && fcode1 == BUILT_IN_POWF)
                  || (fcode0 == BUILT_IN_POWL && fcode1 == BUILT_IN_POWL))
                  || (fcode0 == BUILT_IN_POWL && fcode1 == BUILT_IN_POWL))
                {
                {
                  tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
                  tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
                  tree arg01 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg0,
                  tree arg01 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg0,
                                                                     1)));
                                                                     1)));
                  tree arg10 = TREE_VALUE (TREE_OPERAND (arg1, 1));
                  tree arg10 = TREE_VALUE (TREE_OPERAND (arg1, 1));
                  tree arg11 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg1,
                  tree arg11 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg1,
                                                                     1)));
                                                                     1)));
 
 
                  /* Optimize pow(x,y)*pow(z,y) as pow(x*z,y).  */
                  /* Optimize pow(x,y)*pow(z,y) as pow(x*z,y).  */
                  if (operand_equal_p (arg01, arg11, 0))
                  if (operand_equal_p (arg01, arg11, 0))
                    {
                    {
                      tree powfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
                      tree powfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
                      tree arg = fold_build2 (MULT_EXPR, type, arg00, arg10);
                      tree arg = fold_build2 (MULT_EXPR, type, arg00, arg10);
                      tree arglist = tree_cons (NULL_TREE, arg,
                      tree arglist = tree_cons (NULL_TREE, arg,
                                                build_tree_list (NULL_TREE,
                                                build_tree_list (NULL_TREE,
                                                                 arg01));
                                                                 arg01));
                      return build_function_call_expr (powfn, arglist);
                      return build_function_call_expr (powfn, arglist);
                    }
                    }
 
 
                  /* Optimize pow(x,y)*pow(x,z) as pow(x,y+z).  */
                  /* Optimize pow(x,y)*pow(x,z) as pow(x,y+z).  */
                  if (operand_equal_p (arg00, arg10, 0))
                  if (operand_equal_p (arg00, arg10, 0))
                    {
                    {
                      tree powfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
                      tree powfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
                      tree arg = fold_build2 (PLUS_EXPR, type, arg01, arg11);
                      tree arg = fold_build2 (PLUS_EXPR, type, arg01, arg11);
                      tree arglist = tree_cons (NULL_TREE, arg00,
                      tree arglist = tree_cons (NULL_TREE, arg00,
                                                build_tree_list (NULL_TREE,
                                                build_tree_list (NULL_TREE,
                                                                 arg));
                                                                 arg));
                      return build_function_call_expr (powfn, arglist);
                      return build_function_call_expr (powfn, arglist);
                    }
                    }
                }
                }
 
 
              /* Optimize tan(x)*cos(x) as sin(x).  */
              /* Optimize tan(x)*cos(x) as sin(x).  */
              if (((fcode0 == BUILT_IN_TAN && fcode1 == BUILT_IN_COS)
              if (((fcode0 == BUILT_IN_TAN && fcode1 == BUILT_IN_COS)
                   || (fcode0 == BUILT_IN_TANF && fcode1 == BUILT_IN_COSF)
                   || (fcode0 == BUILT_IN_TANF && fcode1 == BUILT_IN_COSF)
                   || (fcode0 == BUILT_IN_TANL && fcode1 == BUILT_IN_COSL)
                   || (fcode0 == BUILT_IN_TANL && fcode1 == BUILT_IN_COSL)
                   || (fcode0 == BUILT_IN_COS && fcode1 == BUILT_IN_TAN)
                   || (fcode0 == BUILT_IN_COS && fcode1 == BUILT_IN_TAN)
                   || (fcode0 == BUILT_IN_COSF && fcode1 == BUILT_IN_TANF)
                   || (fcode0 == BUILT_IN_COSF && fcode1 == BUILT_IN_TANF)
                   || (fcode0 == BUILT_IN_COSL && fcode1 == BUILT_IN_TANL))
                   || (fcode0 == BUILT_IN_COSL && fcode1 == BUILT_IN_TANL))
                  && operand_equal_p (TREE_VALUE (TREE_OPERAND (arg0, 1)),
                  && operand_equal_p (TREE_VALUE (TREE_OPERAND (arg0, 1)),
                                      TREE_VALUE (TREE_OPERAND (arg1, 1)), 0))
                                      TREE_VALUE (TREE_OPERAND (arg1, 1)), 0))
                {
                {
                  tree sinfn = mathfn_built_in (type, BUILT_IN_SIN);
                  tree sinfn = mathfn_built_in (type, BUILT_IN_SIN);
 
 
                  if (sinfn != NULL_TREE)
                  if (sinfn != NULL_TREE)
                    return build_function_call_expr (sinfn,
                    return build_function_call_expr (sinfn,
                                                     TREE_OPERAND (arg0, 1));
                                                     TREE_OPERAND (arg0, 1));
                }
                }
 
 
              /* Optimize x*pow(x,c) as pow(x,c+1).  */
              /* Optimize x*pow(x,c) as pow(x,c+1).  */
              if (fcode1 == BUILT_IN_POW
              if (fcode1 == BUILT_IN_POW
                  || fcode1 == BUILT_IN_POWF
                  || fcode1 == BUILT_IN_POWF
                  || fcode1 == BUILT_IN_POWL)
                  || fcode1 == BUILT_IN_POWL)
                {
                {
                  tree arg10 = TREE_VALUE (TREE_OPERAND (arg1, 1));
                  tree arg10 = TREE_VALUE (TREE_OPERAND (arg1, 1));
                  tree arg11 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg1,
                  tree arg11 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg1,
                                                                     1)));
                                                                     1)));
                  if (TREE_CODE (arg11) == REAL_CST
                  if (TREE_CODE (arg11) == REAL_CST
                      && ! TREE_CONSTANT_OVERFLOW (arg11)
                      && ! TREE_CONSTANT_OVERFLOW (arg11)
                      && operand_equal_p (arg0, arg10, 0))
                      && operand_equal_p (arg0, arg10, 0))
                    {
                    {
                      tree powfn = TREE_OPERAND (TREE_OPERAND (arg1, 0), 0);
                      tree powfn = TREE_OPERAND (TREE_OPERAND (arg1, 0), 0);
                      REAL_VALUE_TYPE c;
                      REAL_VALUE_TYPE c;
                      tree arg, arglist;
                      tree arg, arglist;
 
 
                      c = TREE_REAL_CST (arg11);
                      c = TREE_REAL_CST (arg11);
                      real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
                      real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
                      arg = build_real (type, c);
                      arg = build_real (type, c);
                      arglist = build_tree_list (NULL_TREE, arg);
                      arglist = build_tree_list (NULL_TREE, arg);
                      arglist = tree_cons (NULL_TREE, arg0, arglist);
                      arglist = tree_cons (NULL_TREE, arg0, arglist);
                      return build_function_call_expr (powfn, arglist);
                      return build_function_call_expr (powfn, arglist);
                    }
                    }
                }
                }
 
 
              /* Optimize pow(x,c)*x as pow(x,c+1).  */
              /* Optimize pow(x,c)*x as pow(x,c+1).  */
              if (fcode0 == BUILT_IN_POW
              if (fcode0 == BUILT_IN_POW
                  || fcode0 == BUILT_IN_POWF
                  || fcode0 == BUILT_IN_POWF
                  || fcode0 == BUILT_IN_POWL)
                  || fcode0 == BUILT_IN_POWL)
                {
                {
                  tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
                  tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
                  tree arg01 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg0,
                  tree arg01 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg0,
                                                                     1)));
                                                                     1)));
                  if (TREE_CODE (arg01) == REAL_CST
                  if (TREE_CODE (arg01) == REAL_CST
                      && ! TREE_CONSTANT_OVERFLOW (arg01)
                      && ! TREE_CONSTANT_OVERFLOW (arg01)
                      && operand_equal_p (arg1, arg00, 0))
                      && operand_equal_p (arg1, arg00, 0))
                    {
                    {
                      tree powfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
                      tree powfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
                      REAL_VALUE_TYPE c;
                      REAL_VALUE_TYPE c;
                      tree arg, arglist;
                      tree arg, arglist;
 
 
                      c = TREE_REAL_CST (arg01);
                      c = TREE_REAL_CST (arg01);
                      real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
                      real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
                      arg = build_real (type, c);
                      arg = build_real (type, c);
                      arglist = build_tree_list (NULL_TREE, arg);
                      arglist = build_tree_list (NULL_TREE, arg);
                      arglist = tree_cons (NULL_TREE, arg1, arglist);
                      arglist = tree_cons (NULL_TREE, arg1, arglist);
                      return build_function_call_expr (powfn, arglist);
                      return build_function_call_expr (powfn, arglist);
                    }
                    }
                }
                }
 
 
              /* Optimize x*x as pow(x,2.0), which is expanded as x*x.  */
              /* Optimize x*x as pow(x,2.0), which is expanded as x*x.  */
              if (! optimize_size
              if (! optimize_size
                  && operand_equal_p (arg0, arg1, 0))
                  && operand_equal_p (arg0, arg1, 0))
                {
                {
                  tree powfn = mathfn_built_in (type, BUILT_IN_POW);
                  tree powfn = mathfn_built_in (type, BUILT_IN_POW);
 
 
                  if (powfn)
                  if (powfn)
                    {
                    {
                      tree arg = build_real (type, dconst2);
                      tree arg = build_real (type, dconst2);
                      tree arglist = build_tree_list (NULL_TREE, arg);
                      tree arglist = build_tree_list (NULL_TREE, arg);
                      arglist = tree_cons (NULL_TREE, arg0, arglist);
                      arglist = tree_cons (NULL_TREE, arg0, arglist);
                      return build_function_call_expr (powfn, arglist);
                      return build_function_call_expr (powfn, arglist);
                    }
                    }
                }
                }
            }
            }
        }
        }
      goto associate;
      goto associate;
 
 
    case BIT_IOR_EXPR:
    case BIT_IOR_EXPR:
    bit_ior:
    bit_ior:
      if (integer_all_onesp (arg1))
      if (integer_all_onesp (arg1))
        return omit_one_operand (type, arg1, arg0);
        return omit_one_operand (type, arg1, arg0);
      if (integer_zerop (arg1))
      if (integer_zerop (arg1))
        return non_lvalue (fold_convert (type, arg0));
        return non_lvalue (fold_convert (type, arg0));
      if (operand_equal_p (arg0, arg1, 0))
      if (operand_equal_p (arg0, arg1, 0))
        return non_lvalue (fold_convert (type, arg0));
        return non_lvalue (fold_convert (type, arg0));
 
 
      /* ~X | X is -1.  */
      /* ~X | X is -1.  */
      if (TREE_CODE (arg0) == BIT_NOT_EXPR
      if (TREE_CODE (arg0) == BIT_NOT_EXPR
          && INTEGRAL_TYPE_P (TREE_TYPE (arg1))
          && INTEGRAL_TYPE_P (TREE_TYPE (arg1))
          && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
          && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
        {
        {
          t1 = build_int_cst (type, -1);
          t1 = build_int_cst (type, -1);
          t1 = force_fit_type (t1, 0, false, false);
          t1 = force_fit_type (t1, 0, false, false);
          return omit_one_operand (type, t1, arg1);
          return omit_one_operand (type, t1, arg1);
        }
        }
 
 
      /* X | ~X is -1.  */
      /* X | ~X is -1.  */
      if (TREE_CODE (arg1) == BIT_NOT_EXPR
      if (TREE_CODE (arg1) == BIT_NOT_EXPR
          && INTEGRAL_TYPE_P (TREE_TYPE (arg0))
          && INTEGRAL_TYPE_P (TREE_TYPE (arg0))
          && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
          && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
        {
        {
          t1 = build_int_cst (type, -1);
          t1 = build_int_cst (type, -1);
          t1 = force_fit_type (t1, 0, false, false);
          t1 = force_fit_type (t1, 0, false, false);
          return omit_one_operand (type, t1, arg0);
          return omit_one_operand (type, t1, arg0);
        }
        }
 
 
      /* Canonicalize (X & C1) | C2.  */
      /* Canonicalize (X & C1) | C2.  */
      if (TREE_CODE (arg0) == BIT_AND_EXPR
      if (TREE_CODE (arg0) == BIT_AND_EXPR
          && TREE_CODE (arg1) == INTEGER_CST
          && TREE_CODE (arg1) == INTEGER_CST
          && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
          && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
        {
        {
          unsigned HOST_WIDE_INT hi1, lo1, hi2, lo2, mlo, mhi;
          unsigned HOST_WIDE_INT hi1, lo1, hi2, lo2, mlo, mhi;
          int width = TYPE_PRECISION (type);
          int width = TYPE_PRECISION (type);
          hi1 = TREE_INT_CST_HIGH (TREE_OPERAND (arg0, 1));
          hi1 = TREE_INT_CST_HIGH (TREE_OPERAND (arg0, 1));
          lo1 = TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1));
          lo1 = TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1));
          hi2 = TREE_INT_CST_HIGH (arg1);
          hi2 = TREE_INT_CST_HIGH (arg1);
          lo2 = TREE_INT_CST_LOW (arg1);
          lo2 = TREE_INT_CST_LOW (arg1);
 
 
          /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2).  */
          /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2).  */
          if ((hi1 & hi2) == hi1 && (lo1 & lo2) == lo1)
          if ((hi1 & hi2) == hi1 && (lo1 & lo2) == lo1)
            return omit_one_operand (type, arg1, TREE_OPERAND (arg0, 0));
            return omit_one_operand (type, arg1, TREE_OPERAND (arg0, 0));
 
 
          if (width > HOST_BITS_PER_WIDE_INT)
          if (width > HOST_BITS_PER_WIDE_INT)
            {
            {
              mhi = (unsigned HOST_WIDE_INT) -1
              mhi = (unsigned HOST_WIDE_INT) -1
                    >> (2 * HOST_BITS_PER_WIDE_INT - width);
                    >> (2 * HOST_BITS_PER_WIDE_INT - width);
              mlo = -1;
              mlo = -1;
            }
            }
          else
          else
            {
            {
              mhi = 0;
              mhi = 0;
              mlo = (unsigned HOST_WIDE_INT) -1
              mlo = (unsigned HOST_WIDE_INT) -1
                    >> (HOST_BITS_PER_WIDE_INT - width);
                    >> (HOST_BITS_PER_WIDE_INT - width);
            }
            }
 
 
          /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2.  */
          /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2.  */
          if ((~(hi1 | hi2) & mhi) == 0 && (~(lo1 | lo2) & mlo) == 0)
          if ((~(hi1 | hi2) & mhi) == 0 && (~(lo1 | lo2) & mlo) == 0)
            return fold_build2 (BIT_IOR_EXPR, type,
            return fold_build2 (BIT_IOR_EXPR, type,
                                TREE_OPERAND (arg0, 0), arg1);
                                TREE_OPERAND (arg0, 0), arg1);
 
 
          /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2.  */
          /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2.  */
          hi1 &= mhi;
          hi1 &= mhi;
          lo1 &= mlo;
          lo1 &= mlo;
          if ((hi1 & ~hi2) != hi1 || (lo1 & ~lo2) != lo1)
          if ((hi1 & ~hi2) != hi1 || (lo1 & ~lo2) != lo1)
            return fold_build2 (BIT_IOR_EXPR, type,
            return fold_build2 (BIT_IOR_EXPR, type,
                                fold_build2 (BIT_AND_EXPR, type,
                                fold_build2 (BIT_AND_EXPR, type,
                                             TREE_OPERAND (arg0, 0),
                                             TREE_OPERAND (arg0, 0),
                                             build_int_cst_wide (type,
                                             build_int_cst_wide (type,
                                                                 lo1 & ~lo2,
                                                                 lo1 & ~lo2,
                                                                 hi1 & ~hi2)),
                                                                 hi1 & ~hi2)),
                                arg1);
                                arg1);
        }
        }
 
 
      /* (X & Y) | Y is (X, Y).  */
      /* (X & Y) | Y is (X, Y).  */
      if (TREE_CODE (arg0) == BIT_AND_EXPR
      if (TREE_CODE (arg0) == BIT_AND_EXPR
          && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
          && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
        return omit_one_operand (type, arg1, TREE_OPERAND (arg0, 0));
        return omit_one_operand (type, arg1, TREE_OPERAND (arg0, 0));
      /* (X & Y) | X is (Y, X).  */
      /* (X & Y) | X is (Y, X).  */
      if (TREE_CODE (arg0) == BIT_AND_EXPR
      if (TREE_CODE (arg0) == BIT_AND_EXPR
          && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
          && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
          && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
          && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
        return omit_one_operand (type, arg1, TREE_OPERAND (arg0, 1));
        return omit_one_operand (type, arg1, TREE_OPERAND (arg0, 1));
      /* X | (X & Y) is (Y, X).  */
      /* X | (X & Y) is (Y, X).  */
      if (TREE_CODE (arg1) == BIT_AND_EXPR
      if (TREE_CODE (arg1) == BIT_AND_EXPR
          && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)
          && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)
          && reorder_operands_p (arg0, TREE_OPERAND (arg1, 1)))
          && reorder_operands_p (arg0, TREE_OPERAND (arg1, 1)))
        return omit_one_operand (type, arg0, TREE_OPERAND (arg1, 1));
        return omit_one_operand (type, arg0, TREE_OPERAND (arg1, 1));
      /* X | (Y & X) is (Y, X).  */
      /* X | (Y & X) is (Y, X).  */
      if (TREE_CODE (arg1) == BIT_AND_EXPR
      if (TREE_CODE (arg1) == BIT_AND_EXPR
          && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
          && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
          && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
          && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
        return omit_one_operand (type, arg0, TREE_OPERAND (arg1, 0));
        return omit_one_operand (type, arg0, TREE_OPERAND (arg1, 0));
 
 
      t1 = distribute_bit_expr (code, type, arg0, arg1);
      t1 = distribute_bit_expr (code, type, arg0, arg1);
      if (t1 != NULL_TREE)
      if (t1 != NULL_TREE)
        return t1;
        return t1;
 
 
      /* Convert (or (not arg0) (not arg1)) to (not (and (arg0) (arg1))).
      /* Convert (or (not arg0) (not arg1)) to (not (and (arg0) (arg1))).
 
 
         This results in more efficient code for machines without a NAND
         This results in more efficient code for machines without a NAND
         instruction.  Combine will canonicalize to the first form
         instruction.  Combine will canonicalize to the first form
         which will allow use of NAND instructions provided by the
         which will allow use of NAND instructions provided by the
         backend if they exist.  */
         backend if they exist.  */
      if (TREE_CODE (arg0) == BIT_NOT_EXPR
      if (TREE_CODE (arg0) == BIT_NOT_EXPR
          && TREE_CODE (arg1) == BIT_NOT_EXPR)
          && TREE_CODE (arg1) == BIT_NOT_EXPR)
        {
        {
          return fold_build1 (BIT_NOT_EXPR, type,
          return fold_build1 (BIT_NOT_EXPR, type,
                              build2 (BIT_AND_EXPR, type,
                              build2 (BIT_AND_EXPR, type,
                                      TREE_OPERAND (arg0, 0),
                                      TREE_OPERAND (arg0, 0),
                                      TREE_OPERAND (arg1, 0)));
                                      TREE_OPERAND (arg1, 0)));
        }
        }
 
 
      /* See if this can be simplified into a rotate first.  If that
      /* See if this can be simplified into a rotate first.  If that
         is unsuccessful continue in the association code.  */
         is unsuccessful continue in the association code.  */
      goto bit_rotate;
      goto bit_rotate;
 
 
    case BIT_XOR_EXPR:
    case BIT_XOR_EXPR:
      if (integer_zerop (arg1))
      if (integer_zerop (arg1))
        return non_lvalue (fold_convert (type, arg0));
        return non_lvalue (fold_convert (type, arg0));
      if (integer_all_onesp (arg1))
      if (integer_all_onesp (arg1))
        return fold_build1 (BIT_NOT_EXPR, type, arg0);
        return fold_build1 (BIT_NOT_EXPR, type, arg0);
      if (operand_equal_p (arg0, arg1, 0))
      if (operand_equal_p (arg0, arg1, 0))
        return omit_one_operand (type, integer_zero_node, arg0);
        return omit_one_operand (type, integer_zero_node, arg0);
 
 
      /* ~X ^ X is -1.  */
      /* ~X ^ X is -1.  */
      if (TREE_CODE (arg0) == BIT_NOT_EXPR
      if (TREE_CODE (arg0) == BIT_NOT_EXPR
          && INTEGRAL_TYPE_P (TREE_TYPE (arg1))
          && INTEGRAL_TYPE_P (TREE_TYPE (arg1))
          && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
          && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
        {
        {
          t1 = build_int_cst (type, -1);
          t1 = build_int_cst (type, -1);
          t1 = force_fit_type (t1, 0, false, false);
          t1 = force_fit_type (t1, 0, false, false);
          return omit_one_operand (type, t1, arg1);
          return omit_one_operand (type, t1, arg1);
        }
        }
 
 
      /* X ^ ~X is -1.  */
      /* X ^ ~X is -1.  */
      if (TREE_CODE (arg1) == BIT_NOT_EXPR
      if (TREE_CODE (arg1) == BIT_NOT_EXPR
          && INTEGRAL_TYPE_P (TREE_TYPE (arg0))
          && INTEGRAL_TYPE_P (TREE_TYPE (arg0))
          && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
          && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
        {
        {
          t1 = build_int_cst (type, -1);
          t1 = build_int_cst (type, -1);
          t1 = force_fit_type (t1, 0, false, false);
          t1 = force_fit_type (t1, 0, false, false);
          return omit_one_operand (type, t1, arg0);
          return omit_one_operand (type, t1, arg0);
        }
        }
 
 
      /* If we are XORing two BIT_AND_EXPR's, both of which are and'ing
      /* If we are XORing two BIT_AND_EXPR's, both of which are and'ing
         with a constant, and the two constants have no bits in common,
         with a constant, and the two constants have no bits in common,
         we should treat this as a BIT_IOR_EXPR since this may produce more
         we should treat this as a BIT_IOR_EXPR since this may produce more
         simplifications.  */
         simplifications.  */
      if (TREE_CODE (arg0) == BIT_AND_EXPR
      if (TREE_CODE (arg0) == BIT_AND_EXPR
          && TREE_CODE (arg1) == BIT_AND_EXPR
          && TREE_CODE (arg1) == BIT_AND_EXPR
          && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
          && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
          && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
          && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
          && integer_zerop (const_binop (BIT_AND_EXPR,
          && integer_zerop (const_binop (BIT_AND_EXPR,
                                         TREE_OPERAND (arg0, 1),
                                         TREE_OPERAND (arg0, 1),
                                         TREE_OPERAND (arg1, 1), 0)))
                                         TREE_OPERAND (arg1, 1), 0)))
        {
        {
          code = BIT_IOR_EXPR;
          code = BIT_IOR_EXPR;
          goto bit_ior;
          goto bit_ior;
        }
        }
 
 
      /* (X | Y) ^ X -> Y & ~ X*/
      /* (X | Y) ^ X -> Y & ~ X*/
      if (TREE_CODE (arg0) == BIT_IOR_EXPR
      if (TREE_CODE (arg0) == BIT_IOR_EXPR
          && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
          && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
        {
        {
          tree t2 = TREE_OPERAND (arg0, 1);
          tree t2 = TREE_OPERAND (arg0, 1);
          t1 = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg1),
          t1 = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg1),
                            arg1);
                            arg1);
          t1 = fold_build2 (BIT_AND_EXPR, type, fold_convert (type, t2),
          t1 = fold_build2 (BIT_AND_EXPR, type, fold_convert (type, t2),
                            fold_convert (type, t1));
                            fold_convert (type, t1));
          return t1;
          return t1;
        }
        }
 
 
      /* (Y | X) ^ X -> Y & ~ X*/
      /* (Y | X) ^ X -> Y & ~ X*/
      if (TREE_CODE (arg0) == BIT_IOR_EXPR
      if (TREE_CODE (arg0) == BIT_IOR_EXPR
          && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
          && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
        {
        {
          tree t2 = TREE_OPERAND (arg0, 0);
          tree t2 = TREE_OPERAND (arg0, 0);
          t1 = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg1),
          t1 = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg1),
                            arg1);
                            arg1);
          t1 = fold_build2 (BIT_AND_EXPR, type, fold_convert (type, t2),
          t1 = fold_build2 (BIT_AND_EXPR, type, fold_convert (type, t2),
                            fold_convert (type, t1));
                            fold_convert (type, t1));
          return t1;
          return t1;
        }
        }
 
 
      /* X ^ (X | Y) -> Y & ~ X*/
      /* X ^ (X | Y) -> Y & ~ X*/
      if (TREE_CODE (arg1) == BIT_IOR_EXPR
      if (TREE_CODE (arg1) == BIT_IOR_EXPR
          && operand_equal_p (TREE_OPERAND (arg1, 0), arg0, 0))
          && operand_equal_p (TREE_OPERAND (arg1, 0), arg0, 0))
        {
        {
          tree t2 = TREE_OPERAND (arg1, 1);
          tree t2 = TREE_OPERAND (arg1, 1);
          t1 = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg0),
          t1 = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg0),
                            arg0);
                            arg0);
          t1 = fold_build2 (BIT_AND_EXPR, type, fold_convert (type, t2),
          t1 = fold_build2 (BIT_AND_EXPR, type, fold_convert (type, t2),
                            fold_convert (type, t1));
                            fold_convert (type, t1));
          return t1;
          return t1;
        }
        }
 
 
      /* X ^ (Y | X) -> Y & ~ X*/
      /* X ^ (Y | X) -> Y & ~ X*/
      if (TREE_CODE (arg1) == BIT_IOR_EXPR
      if (TREE_CODE (arg1) == BIT_IOR_EXPR
          && operand_equal_p (TREE_OPERAND (arg1, 1), arg0, 0))
          && operand_equal_p (TREE_OPERAND (arg1, 1), arg0, 0))
        {
        {
          tree t2 = TREE_OPERAND (arg1, 0);
          tree t2 = TREE_OPERAND (arg1, 0);
          t1 = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg0),
          t1 = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg0),
                            arg0);
                            arg0);
          t1 = fold_build2 (BIT_AND_EXPR, type, fold_convert (type, t2),
          t1 = fold_build2 (BIT_AND_EXPR, type, fold_convert (type, t2),
                            fold_convert (type, t1));
                            fold_convert (type, t1));
          return t1;
          return t1;
        }
        }
 
 
      /* Convert ~X ^ ~Y to X ^ Y.  */
      /* Convert ~X ^ ~Y to X ^ Y.  */
      if (TREE_CODE (arg0) == BIT_NOT_EXPR
      if (TREE_CODE (arg0) == BIT_NOT_EXPR
          && TREE_CODE (arg1) == BIT_NOT_EXPR)
          && TREE_CODE (arg1) == BIT_NOT_EXPR)
        return fold_build2 (code, type,
        return fold_build2 (code, type,
                            fold_convert (type, TREE_OPERAND (arg0, 0)),
                            fold_convert (type, TREE_OPERAND (arg0, 0)),
                            fold_convert (type, TREE_OPERAND (arg1, 0)));
                            fold_convert (type, TREE_OPERAND (arg1, 0)));
 
 
      /* Fold (X & 1) ^ 1 as (X & 1) == 0.  */
      /* Fold (X & 1) ^ 1 as (X & 1) == 0.  */
      if (TREE_CODE (arg0) == BIT_AND_EXPR
      if (TREE_CODE (arg0) == BIT_AND_EXPR
          && integer_onep (TREE_OPERAND (arg0, 1))
          && integer_onep (TREE_OPERAND (arg0, 1))
          && integer_onep (arg1))
          && integer_onep (arg1))
        return fold_build2 (EQ_EXPR, type, arg0,
        return fold_build2 (EQ_EXPR, type, arg0,
                            build_int_cst (TREE_TYPE (arg0), 0));
                            build_int_cst (TREE_TYPE (arg0), 0));
 
 
      /* Fold (X & Y) ^ Y as ~X & Y.  */
      /* Fold (X & Y) ^ Y as ~X & Y.  */
      if (TREE_CODE (arg0) == BIT_AND_EXPR
      if (TREE_CODE (arg0) == BIT_AND_EXPR
          && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
          && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
        {
        {
          tem = fold_convert (type, TREE_OPERAND (arg0, 0));
          tem = fold_convert (type, TREE_OPERAND (arg0, 0));
          return fold_build2 (BIT_AND_EXPR, type,
          return fold_build2 (BIT_AND_EXPR, type,
                              fold_build1 (BIT_NOT_EXPR, type, tem),
                              fold_build1 (BIT_NOT_EXPR, type, tem),
                              fold_convert (type, arg1));
                              fold_convert (type, arg1));
        }
        }
      /* Fold (X & Y) ^ X as ~Y & X.  */
      /* Fold (X & Y) ^ X as ~Y & X.  */
      if (TREE_CODE (arg0) == BIT_AND_EXPR
      if (TREE_CODE (arg0) == BIT_AND_EXPR
          && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
          && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
          && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
          && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
        {
        {
          tem = fold_convert (type, TREE_OPERAND (arg0, 1));
          tem = fold_convert (type, TREE_OPERAND (arg0, 1));
          return fold_build2 (BIT_AND_EXPR, type,
          return fold_build2 (BIT_AND_EXPR, type,
                              fold_build1 (BIT_NOT_EXPR, type, tem),
                              fold_build1 (BIT_NOT_EXPR, type, tem),
                              fold_convert (type, arg1));
                              fold_convert (type, arg1));
        }
        }
      /* Fold X ^ (X & Y) as X & ~Y.  */
      /* Fold X ^ (X & Y) as X & ~Y.  */
      if (TREE_CODE (arg1) == BIT_AND_EXPR
      if (TREE_CODE (arg1) == BIT_AND_EXPR
          && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
          && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
        {
        {
          tem = fold_convert (type, TREE_OPERAND (arg1, 1));
          tem = fold_convert (type, TREE_OPERAND (arg1, 1));
          return fold_build2 (BIT_AND_EXPR, type,
          return fold_build2 (BIT_AND_EXPR, type,
                              fold_convert (type, arg0),
                              fold_convert (type, arg0),
                              fold_build1 (BIT_NOT_EXPR, type, tem));
                              fold_build1 (BIT_NOT_EXPR, type, tem));
        }
        }
      /* Fold X ^ (Y & X) as ~Y & X.  */
      /* Fold X ^ (Y & X) as ~Y & X.  */
      if (TREE_CODE (arg1) == BIT_AND_EXPR
      if (TREE_CODE (arg1) == BIT_AND_EXPR
          && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
          && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
          && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
          && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
        {
        {
          tem = fold_convert (type, TREE_OPERAND (arg1, 0));
          tem = fold_convert (type, TREE_OPERAND (arg1, 0));
          return fold_build2 (BIT_AND_EXPR, type,
          return fold_build2 (BIT_AND_EXPR, type,
                              fold_build1 (BIT_NOT_EXPR, type, tem),
                              fold_build1 (BIT_NOT_EXPR, type, tem),
                              fold_convert (type, arg0));
                              fold_convert (type, arg0));
        }
        }
 
 
      /* See if this can be simplified into a rotate first.  If that
      /* See if this can be simplified into a rotate first.  If that
         is unsuccessful continue in the association code.  */
         is unsuccessful continue in the association code.  */
      goto bit_rotate;
      goto bit_rotate;
 
 
    case BIT_AND_EXPR:
    case BIT_AND_EXPR:
      if (integer_all_onesp (arg1))
      if (integer_all_onesp (arg1))
        return non_lvalue (fold_convert (type, arg0));
        return non_lvalue (fold_convert (type, arg0));
      if (integer_zerop (arg1))
      if (integer_zerop (arg1))
        return omit_one_operand (type, arg1, arg0);
        return omit_one_operand (type, arg1, arg0);
      if (operand_equal_p (arg0, arg1, 0))
      if (operand_equal_p (arg0, arg1, 0))
        return non_lvalue (fold_convert (type, arg0));
        return non_lvalue (fold_convert (type, arg0));
 
 
      /* ~X & X is always zero.  */
      /* ~X & X is always zero.  */
      if (TREE_CODE (arg0) == BIT_NOT_EXPR
      if (TREE_CODE (arg0) == BIT_NOT_EXPR
          && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
          && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
        return omit_one_operand (type, integer_zero_node, arg1);
        return omit_one_operand (type, integer_zero_node, arg1);
 
 
      /* X & ~X is always zero.  */
      /* X & ~X is always zero.  */
      if (TREE_CODE (arg1) == BIT_NOT_EXPR
      if (TREE_CODE (arg1) == BIT_NOT_EXPR
          && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
          && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
        return omit_one_operand (type, integer_zero_node, arg0);
        return omit_one_operand (type, integer_zero_node, arg0);
 
 
      /* Canonicalize (X | C1) & C2 as (X & C2) | (C1 & C2).  */
      /* Canonicalize (X | C1) & C2 as (X & C2) | (C1 & C2).  */
      if (TREE_CODE (arg0) == BIT_IOR_EXPR
      if (TREE_CODE (arg0) == BIT_IOR_EXPR
          && TREE_CODE (arg1) == INTEGER_CST
          && TREE_CODE (arg1) == INTEGER_CST
          && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
          && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
        return fold_build2 (BIT_IOR_EXPR, type,
        return fold_build2 (BIT_IOR_EXPR, type,
                            fold_build2 (BIT_AND_EXPR, type,
                            fold_build2 (BIT_AND_EXPR, type,
                                         TREE_OPERAND (arg0, 0), arg1),
                                         TREE_OPERAND (arg0, 0), arg1),
                            fold_build2 (BIT_AND_EXPR, type,
                            fold_build2 (BIT_AND_EXPR, type,
                                         TREE_OPERAND (arg0, 1), arg1));
                                         TREE_OPERAND (arg0, 1), arg1));
 
 
      /* (X | Y) & Y is (X, Y).  */
      /* (X | Y) & Y is (X, Y).  */
      if (TREE_CODE (arg0) == BIT_IOR_EXPR
      if (TREE_CODE (arg0) == BIT_IOR_EXPR
          && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
          && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
        return omit_one_operand (type, arg1, TREE_OPERAND (arg0, 0));
        return omit_one_operand (type, arg1, TREE_OPERAND (arg0, 0));
      /* (X | Y) & X is (Y, X).  */
      /* (X | Y) & X is (Y, X).  */
      if (TREE_CODE (arg0) == BIT_IOR_EXPR
      if (TREE_CODE (arg0) == BIT_IOR_EXPR
          && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
          && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
          && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
          && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
        return omit_one_operand (type, arg1, TREE_OPERAND (arg0, 1));
        return omit_one_operand (type, arg1, TREE_OPERAND (arg0, 1));
      /* X & (X | Y) is (Y, X).  */
      /* X & (X | Y) is (Y, X).  */
      if (TREE_CODE (arg1) == BIT_IOR_EXPR
      if (TREE_CODE (arg1) == BIT_IOR_EXPR
          && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)
          && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)
          && reorder_operands_p (arg0, TREE_OPERAND (arg1, 1)))
          && reorder_operands_p (arg0, TREE_OPERAND (arg1, 1)))
        return omit_one_operand (type, arg0, TREE_OPERAND (arg1, 1));
        return omit_one_operand (type, arg0, TREE_OPERAND (arg1, 1));
      /* X & (Y | X) is (Y, X).  */
      /* X & (Y | X) is (Y, X).  */
      if (TREE_CODE (arg1) == BIT_IOR_EXPR
      if (TREE_CODE (arg1) == BIT_IOR_EXPR
          && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
          && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
          && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
          && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
        return omit_one_operand (type, arg0, TREE_OPERAND (arg1, 0));
        return omit_one_operand (type, arg0, TREE_OPERAND (arg1, 0));
 
 
      /* Fold (X ^ 1) & 1 as (X & 1) == 0.  */
      /* Fold (X ^ 1) & 1 as (X & 1) == 0.  */
      if (TREE_CODE (arg0) == BIT_XOR_EXPR
      if (TREE_CODE (arg0) == BIT_XOR_EXPR
          && integer_onep (TREE_OPERAND (arg0, 1))
          && integer_onep (TREE_OPERAND (arg0, 1))
          && integer_onep (arg1))
          && integer_onep (arg1))
        {
        {
          tem = TREE_OPERAND (arg0, 0);
          tem = TREE_OPERAND (arg0, 0);
          return fold_build2 (EQ_EXPR, type,
          return fold_build2 (EQ_EXPR, type,
                              fold_build2 (BIT_AND_EXPR, TREE_TYPE (tem), tem,
                              fold_build2 (BIT_AND_EXPR, TREE_TYPE (tem), tem,
                                           build_int_cst (TREE_TYPE (tem), 1)),
                                           build_int_cst (TREE_TYPE (tem), 1)),
                              build_int_cst (TREE_TYPE (tem), 0));
                              build_int_cst (TREE_TYPE (tem), 0));
        }
        }
      /* Fold ~X & 1 as (X & 1) == 0.  */
      /* Fold ~X & 1 as (X & 1) == 0.  */
      if (TREE_CODE (arg0) == BIT_NOT_EXPR
      if (TREE_CODE (arg0) == BIT_NOT_EXPR
          && integer_onep (arg1))
          && integer_onep (arg1))
        {
        {
          tem = TREE_OPERAND (arg0, 0);
          tem = TREE_OPERAND (arg0, 0);
          return fold_build2 (EQ_EXPR, type,
          return fold_build2 (EQ_EXPR, type,
                              fold_build2 (BIT_AND_EXPR, TREE_TYPE (tem), tem,
                              fold_build2 (BIT_AND_EXPR, TREE_TYPE (tem), tem,
                                           build_int_cst (TREE_TYPE (tem), 1)),
                                           build_int_cst (TREE_TYPE (tem), 1)),
                              build_int_cst (TREE_TYPE (tem), 0));
                              build_int_cst (TREE_TYPE (tem), 0));
        }
        }
 
 
      /* Fold (X ^ Y) & Y as ~X & Y.  */
      /* Fold (X ^ Y) & Y as ~X & Y.  */
      if (TREE_CODE (arg0) == BIT_XOR_EXPR
      if (TREE_CODE (arg0) == BIT_XOR_EXPR
          && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
          && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
        {
        {
          tem = fold_convert (type, TREE_OPERAND (arg0, 0));
          tem = fold_convert (type, TREE_OPERAND (arg0, 0));
          return fold_build2 (BIT_AND_EXPR, type,
          return fold_build2 (BIT_AND_EXPR, type,
                              fold_build1 (BIT_NOT_EXPR, type, tem),
                              fold_build1 (BIT_NOT_EXPR, type, tem),
                              fold_convert (type, arg1));
                              fold_convert (type, arg1));
        }
        }
      /* Fold (X ^ Y) & X as ~Y & X.  */
      /* Fold (X ^ Y) & X as ~Y & X.  */
      if (TREE_CODE (arg0) == BIT_XOR_EXPR
      if (TREE_CODE (arg0) == BIT_XOR_EXPR
          && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
          && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
          && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
          && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
        {
        {
          tem = fold_convert (type, TREE_OPERAND (arg0, 1));
          tem = fold_convert (type, TREE_OPERAND (arg0, 1));
          return fold_build2 (BIT_AND_EXPR, type,
          return fold_build2 (BIT_AND_EXPR, type,
                              fold_build1 (BIT_NOT_EXPR, type, tem),
                              fold_build1 (BIT_NOT_EXPR, type, tem),
                              fold_convert (type, arg1));
                              fold_convert (type, arg1));
        }
        }
      /* Fold X & (X ^ Y) as X & ~Y.  */
      /* Fold X & (X ^ Y) as X & ~Y.  */
      if (TREE_CODE (arg1) == BIT_XOR_EXPR
      if (TREE_CODE (arg1) == BIT_XOR_EXPR
          && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
          && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
        {
        {
          tem = fold_convert (type, TREE_OPERAND (arg1, 1));
          tem = fold_convert (type, TREE_OPERAND (arg1, 1));
          return fold_build2 (BIT_AND_EXPR, type,
          return fold_build2 (BIT_AND_EXPR, type,
                              fold_convert (type, arg0),
                              fold_convert (type, arg0),
                              fold_build1 (BIT_NOT_EXPR, type, tem));
                              fold_build1 (BIT_NOT_EXPR, type, tem));
        }
        }
      /* Fold X & (Y ^ X) as ~Y & X.  */
      /* Fold X & (Y ^ X) as ~Y & X.  */
      if (TREE_CODE (arg1) == BIT_XOR_EXPR
      if (TREE_CODE (arg1) == BIT_XOR_EXPR
          && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
          && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
          && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
          && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
        {
        {
          tem = fold_convert (type, TREE_OPERAND (arg1, 0));
          tem = fold_convert (type, TREE_OPERAND (arg1, 0));
          return fold_build2 (BIT_AND_EXPR, type,
          return fold_build2 (BIT_AND_EXPR, type,
                              fold_build1 (BIT_NOT_EXPR, type, tem),
                              fold_build1 (BIT_NOT_EXPR, type, tem),
                              fold_convert (type, arg0));
                              fold_convert (type, arg0));
        }
        }
 
 
      t1 = distribute_bit_expr (code, type, arg0, arg1);
      t1 = distribute_bit_expr (code, type, arg0, arg1);
      if (t1 != NULL_TREE)
      if (t1 != NULL_TREE)
        return t1;
        return t1;
      /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char.  */
      /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char.  */
      if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
      if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
          && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
          && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
        {
        {
          unsigned int prec
          unsigned int prec
            = TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)));
            = TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)));
 
 
          if (prec < BITS_PER_WORD && prec < HOST_BITS_PER_WIDE_INT
          if (prec < BITS_PER_WORD && prec < HOST_BITS_PER_WIDE_INT
              && (~TREE_INT_CST_LOW (arg1)
              && (~TREE_INT_CST_LOW (arg1)
                  & (((HOST_WIDE_INT) 1 << prec) - 1)) == 0)
                  & (((HOST_WIDE_INT) 1 << prec) - 1)) == 0)
            return fold_convert (type, TREE_OPERAND (arg0, 0));
            return fold_convert (type, TREE_OPERAND (arg0, 0));
        }
        }
 
 
      /* Convert (and (not arg0) (not arg1)) to (not (or (arg0) (arg1))).
      /* Convert (and (not arg0) (not arg1)) to (not (or (arg0) (arg1))).
 
 
         This results in more efficient code for machines without a NOR
         This results in more efficient code for machines without a NOR
         instruction.  Combine will canonicalize to the first form
         instruction.  Combine will canonicalize to the first form
         which will allow use of NOR instructions provided by the
         which will allow use of NOR instructions provided by the
         backend if they exist.  */
         backend if they exist.  */
      if (TREE_CODE (arg0) == BIT_NOT_EXPR
      if (TREE_CODE (arg0) == BIT_NOT_EXPR
          && TREE_CODE (arg1) == BIT_NOT_EXPR)
          && TREE_CODE (arg1) == BIT_NOT_EXPR)
        {
        {
          return fold_build1 (BIT_NOT_EXPR, type,
          return fold_build1 (BIT_NOT_EXPR, type,
                              build2 (BIT_IOR_EXPR, type,
                              build2 (BIT_IOR_EXPR, type,
                                      TREE_OPERAND (arg0, 0),
                                      TREE_OPERAND (arg0, 0),
                                      TREE_OPERAND (arg1, 0)));
                                      TREE_OPERAND (arg1, 0)));
        }
        }
 
 
      goto associate;
      goto associate;
 
 
    case RDIV_EXPR:
    case RDIV_EXPR:
      /* Don't touch a floating-point divide by zero unless the mode
      /* Don't touch a floating-point divide by zero unless the mode
         of the constant can represent infinity.  */
         of the constant can represent infinity.  */
      if (TREE_CODE (arg1) == REAL_CST
      if (TREE_CODE (arg1) == REAL_CST
          && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1)))
          && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1)))
          && real_zerop (arg1))
          && real_zerop (arg1))
        return NULL_TREE;
        return NULL_TREE;
 
 
      /* Optimize A / A to 1.0 if we don't care about
      /* Optimize A / A to 1.0 if we don't care about
         NaNs or Infinities.  Skip the transformation
         NaNs or Infinities.  Skip the transformation
         for non-real operands.  */
         for non-real operands.  */
      if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (arg0))
      if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (arg0))
          && ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
          && ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
          && ! HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg0)))
          && ! HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg0)))
          && operand_equal_p (arg0, arg1, 0))
          && operand_equal_p (arg0, arg1, 0))
        {
        {
          tree r = build_real (TREE_TYPE (arg0), dconst1);
          tree r = build_real (TREE_TYPE (arg0), dconst1);
 
 
          return omit_two_operands (type, r, arg0, arg1);
          return omit_two_operands (type, r, arg0, arg1);
        }
        }
 
 
      /* The complex version of the above A / A optimization.  */
      /* The complex version of the above A / A optimization.  */
      if (COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))
      if (COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))
          && operand_equal_p (arg0, arg1, 0))
          && operand_equal_p (arg0, arg1, 0))
        {
        {
          tree elem_type = TREE_TYPE (TREE_TYPE (arg0));
          tree elem_type = TREE_TYPE (TREE_TYPE (arg0));
          if (! HONOR_NANS (TYPE_MODE (elem_type))
          if (! HONOR_NANS (TYPE_MODE (elem_type))
              && ! HONOR_INFINITIES (TYPE_MODE (elem_type)))
              && ! HONOR_INFINITIES (TYPE_MODE (elem_type)))
            {
            {
              tree r = build_real (elem_type, dconst1);
              tree r = build_real (elem_type, dconst1);
              /* omit_two_operands will call fold_convert for us.  */
              /* omit_two_operands will call fold_convert for us.  */
              return omit_two_operands (type, r, arg0, arg1);
              return omit_two_operands (type, r, arg0, arg1);
            }
            }
        }
        }
 
 
      /* (-A) / (-B) -> A / B  */
      /* (-A) / (-B) -> A / B  */
      if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
      if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
        return fold_build2 (RDIV_EXPR, type,
        return fold_build2 (RDIV_EXPR, type,
                            TREE_OPERAND (arg0, 0),
                            TREE_OPERAND (arg0, 0),
                            negate_expr (arg1));
                            negate_expr (arg1));
      if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
      if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
        return fold_build2 (RDIV_EXPR, type,
        return fold_build2 (RDIV_EXPR, type,
                            negate_expr (arg0),
                            negate_expr (arg0),
                            TREE_OPERAND (arg1, 0));
                            TREE_OPERAND (arg1, 0));
 
 
      /* In IEEE floating point, x/1 is not equivalent to x for snans.  */
      /* In IEEE floating point, x/1 is not equivalent to x for snans.  */
      if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
      if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
          && real_onep (arg1))
          && real_onep (arg1))
        return non_lvalue (fold_convert (type, arg0));
        return non_lvalue (fold_convert (type, arg0));
 
 
      /* In IEEE floating point, x/-1 is not equivalent to -x for snans.  */
      /* In IEEE floating point, x/-1 is not equivalent to -x for snans.  */
      if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
      if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
          && real_minus_onep (arg1))
          && real_minus_onep (arg1))
        return non_lvalue (fold_convert (type, negate_expr (arg0)));
        return non_lvalue (fold_convert (type, negate_expr (arg0)));
 
 
      /* If ARG1 is a constant, we can convert this to a multiply by the
      /* If ARG1 is a constant, we can convert this to a multiply by the
         reciprocal.  This does not have the same rounding properties,
         reciprocal.  This does not have the same rounding properties,
         so only do this if -funsafe-math-optimizations.  We can actually
         so only do this if -funsafe-math-optimizations.  We can actually
         always safely do it if ARG1 is a power of two, but it's hard to
         always safely do it if ARG1 is a power of two, but it's hard to
         tell if it is or not in a portable manner.  */
         tell if it is or not in a portable manner.  */
      if (TREE_CODE (arg1) == REAL_CST)
      if (TREE_CODE (arg1) == REAL_CST)
        {
        {
          if (flag_unsafe_math_optimizations
          if (flag_unsafe_math_optimizations
              && 0 != (tem = const_binop (code, build_real (type, dconst1),
              && 0 != (tem = const_binop (code, build_real (type, dconst1),
                                          arg1, 0)))
                                          arg1, 0)))
            return fold_build2 (MULT_EXPR, type, arg0, tem);
            return fold_build2 (MULT_EXPR, type, arg0, tem);
          /* Find the reciprocal if optimizing and the result is exact.  */
          /* Find the reciprocal if optimizing and the result is exact.  */
          if (optimize)
          if (optimize)
            {
            {
              REAL_VALUE_TYPE r;
              REAL_VALUE_TYPE r;
              r = TREE_REAL_CST (arg1);
              r = TREE_REAL_CST (arg1);
              if (exact_real_inverse (TYPE_MODE(TREE_TYPE(arg0)), &r))
              if (exact_real_inverse (TYPE_MODE(TREE_TYPE(arg0)), &r))
                {
                {
                  tem = build_real (type, r);
                  tem = build_real (type, r);
                  return fold_build2 (MULT_EXPR, type,
                  return fold_build2 (MULT_EXPR, type,
                                      fold_convert (type, arg0), tem);
                                      fold_convert (type, arg0), tem);
                }
                }
            }
            }
        }
        }
      /* Convert A/B/C to A/(B*C).  */
      /* Convert A/B/C to A/(B*C).  */
      if (flag_unsafe_math_optimizations
      if (flag_unsafe_math_optimizations
          && TREE_CODE (arg0) == RDIV_EXPR)
          && TREE_CODE (arg0) == RDIV_EXPR)
        return fold_build2 (RDIV_EXPR, type, TREE_OPERAND (arg0, 0),
        return fold_build2 (RDIV_EXPR, type, TREE_OPERAND (arg0, 0),
                            fold_build2 (MULT_EXPR, type,
                            fold_build2 (MULT_EXPR, type,
                                         TREE_OPERAND (arg0, 1), arg1));
                                         TREE_OPERAND (arg0, 1), arg1));
 
 
      /* Convert A/(B/C) to (A/B)*C.  */
      /* Convert A/(B/C) to (A/B)*C.  */
      if (flag_unsafe_math_optimizations
      if (flag_unsafe_math_optimizations
          && TREE_CODE (arg1) == RDIV_EXPR)
          && TREE_CODE (arg1) == RDIV_EXPR)
        return fold_build2 (MULT_EXPR, type,
        return fold_build2 (MULT_EXPR, type,
                            fold_build2 (RDIV_EXPR, type, arg0,
                            fold_build2 (RDIV_EXPR, type, arg0,
                                         TREE_OPERAND (arg1, 0)),
                                         TREE_OPERAND (arg1, 0)),
                            TREE_OPERAND (arg1, 1));
                            TREE_OPERAND (arg1, 1));
 
 
      /* Convert C1/(X*C2) into (C1/C2)/X.  */
      /* Convert C1/(X*C2) into (C1/C2)/X.  */
      if (flag_unsafe_math_optimizations
      if (flag_unsafe_math_optimizations
          && TREE_CODE (arg1) == MULT_EXPR
          && TREE_CODE (arg1) == MULT_EXPR
          && TREE_CODE (arg0) == REAL_CST
          && TREE_CODE (arg0) == REAL_CST
          && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
          && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
        {
        {
          tree tem = const_binop (RDIV_EXPR, arg0,
          tree tem = const_binop (RDIV_EXPR, arg0,
                                  TREE_OPERAND (arg1, 1), 0);
                                  TREE_OPERAND (arg1, 1), 0);
          if (tem)
          if (tem)
            return fold_build2 (RDIV_EXPR, type, tem,
            return fold_build2 (RDIV_EXPR, type, tem,
                                TREE_OPERAND (arg1, 0));
                                TREE_OPERAND (arg1, 0));
        }
        }
 
 
      if (flag_unsafe_math_optimizations)
      if (flag_unsafe_math_optimizations)
        {
        {
          enum built_in_function fcode0 = builtin_mathfn_code (arg0);
          enum built_in_function fcode0 = builtin_mathfn_code (arg0);
          enum built_in_function fcode1 = builtin_mathfn_code (arg1);
          enum built_in_function fcode1 = builtin_mathfn_code (arg1);
 
 
          /* Optimize sin(x)/cos(x) as tan(x).  */
          /* Optimize sin(x)/cos(x) as tan(x).  */
          if (((fcode0 == BUILT_IN_SIN && fcode1 == BUILT_IN_COS)
          if (((fcode0 == BUILT_IN_SIN && fcode1 == BUILT_IN_COS)
               || (fcode0 == BUILT_IN_SINF && fcode1 == BUILT_IN_COSF)
               || (fcode0 == BUILT_IN_SINF && fcode1 == BUILT_IN_COSF)
               || (fcode0 == BUILT_IN_SINL && fcode1 == BUILT_IN_COSL))
               || (fcode0 == BUILT_IN_SINL && fcode1 == BUILT_IN_COSL))
              && operand_equal_p (TREE_VALUE (TREE_OPERAND (arg0, 1)),
              && operand_equal_p (TREE_VALUE (TREE_OPERAND (arg0, 1)),
                                  TREE_VALUE (TREE_OPERAND (arg1, 1)), 0))
                                  TREE_VALUE (TREE_OPERAND (arg1, 1)), 0))
            {
            {
              tree tanfn = mathfn_built_in (type, BUILT_IN_TAN);
              tree tanfn = mathfn_built_in (type, BUILT_IN_TAN);
 
 
              if (tanfn != NULL_TREE)
              if (tanfn != NULL_TREE)
                return build_function_call_expr (tanfn,
                return build_function_call_expr (tanfn,
                                                 TREE_OPERAND (arg0, 1));
                                                 TREE_OPERAND (arg0, 1));
            }
            }
 
 
          /* Optimize cos(x)/sin(x) as 1.0/tan(x).  */
          /* Optimize cos(x)/sin(x) as 1.0/tan(x).  */
          if (((fcode0 == BUILT_IN_COS && fcode1 == BUILT_IN_SIN)
          if (((fcode0 == BUILT_IN_COS && fcode1 == BUILT_IN_SIN)
               || (fcode0 == BUILT_IN_COSF && fcode1 == BUILT_IN_SINF)
               || (fcode0 == BUILT_IN_COSF && fcode1 == BUILT_IN_SINF)
               || (fcode0 == BUILT_IN_COSL && fcode1 == BUILT_IN_SINL))
               || (fcode0 == BUILT_IN_COSL && fcode1 == BUILT_IN_SINL))
              && operand_equal_p (TREE_VALUE (TREE_OPERAND (arg0, 1)),
              && operand_equal_p (TREE_VALUE (TREE_OPERAND (arg0, 1)),
                                  TREE_VALUE (TREE_OPERAND (arg1, 1)), 0))
                                  TREE_VALUE (TREE_OPERAND (arg1, 1)), 0))
            {
            {
              tree tanfn = mathfn_built_in (type, BUILT_IN_TAN);
              tree tanfn = mathfn_built_in (type, BUILT_IN_TAN);
 
 
              if (tanfn != NULL_TREE)
              if (tanfn != NULL_TREE)
                {
                {
                  tree tmp = TREE_OPERAND (arg0, 1);
                  tree tmp = TREE_OPERAND (arg0, 1);
                  tmp = build_function_call_expr (tanfn, tmp);
                  tmp = build_function_call_expr (tanfn, tmp);
                  return fold_build2 (RDIV_EXPR, type,
                  return fold_build2 (RDIV_EXPR, type,
                                      build_real (type, dconst1), tmp);
                                      build_real (type, dconst1), tmp);
                }
                }
            }
            }
 
 
          /* Optimize sin(x)/tan(x) as cos(x) if we don't care about
          /* Optimize sin(x)/tan(x) as cos(x) if we don't care about
             NaNs or Infinities.  */
             NaNs or Infinities.  */
          if (((fcode0 == BUILT_IN_SIN && fcode1 == BUILT_IN_TAN)
          if (((fcode0 == BUILT_IN_SIN && fcode1 == BUILT_IN_TAN)
               || (fcode0 == BUILT_IN_SINF && fcode1 == BUILT_IN_TANF)
               || (fcode0 == BUILT_IN_SINF && fcode1 == BUILT_IN_TANF)
               || (fcode0 == BUILT_IN_SINL && fcode1 == BUILT_IN_TANL)))
               || (fcode0 == BUILT_IN_SINL && fcode1 == BUILT_IN_TANL)))
            {
            {
              tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
              tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
              tree arg01 = TREE_VALUE (TREE_OPERAND (arg1, 1));
              tree arg01 = TREE_VALUE (TREE_OPERAND (arg1, 1));
 
 
              if (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg00)))
              if (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg00)))
                  && ! HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg00)))
                  && ! HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg00)))
                  && operand_equal_p (arg00, arg01, 0))
                  && operand_equal_p (arg00, arg01, 0))
                {
                {
                  tree cosfn = mathfn_built_in (type, BUILT_IN_COS);
                  tree cosfn = mathfn_built_in (type, BUILT_IN_COS);
 
 
                  if (cosfn != NULL_TREE)
                  if (cosfn != NULL_TREE)
                    return build_function_call_expr (cosfn,
                    return build_function_call_expr (cosfn,
                                                     TREE_OPERAND (arg0, 1));
                                                     TREE_OPERAND (arg0, 1));
                }
                }
            }
            }
 
 
          /* Optimize tan(x)/sin(x) as 1.0/cos(x) if we don't care about
          /* Optimize tan(x)/sin(x) as 1.0/cos(x) if we don't care about
             NaNs or Infinities.  */
             NaNs or Infinities.  */
          if (((fcode0 == BUILT_IN_TAN && fcode1 == BUILT_IN_SIN)
          if (((fcode0 == BUILT_IN_TAN && fcode1 == BUILT_IN_SIN)
               || (fcode0 == BUILT_IN_TANF && fcode1 == BUILT_IN_SINF)
               || (fcode0 == BUILT_IN_TANF && fcode1 == BUILT_IN_SINF)
               || (fcode0 == BUILT_IN_TANL && fcode1 == BUILT_IN_SINL)))
               || (fcode0 == BUILT_IN_TANL && fcode1 == BUILT_IN_SINL)))
            {
            {
              tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
              tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
              tree arg01 = TREE_VALUE (TREE_OPERAND (arg1, 1));
              tree arg01 = TREE_VALUE (TREE_OPERAND (arg1, 1));
 
 
              if (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg00)))
              if (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg00)))
                  && ! HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg00)))
                  && ! HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg00)))
                  && operand_equal_p (arg00, arg01, 0))
                  && operand_equal_p (arg00, arg01, 0))
                {
                {
                  tree cosfn = mathfn_built_in (type, BUILT_IN_COS);
                  tree cosfn = mathfn_built_in (type, BUILT_IN_COS);
 
 
                  if (cosfn != NULL_TREE)
                  if (cosfn != NULL_TREE)
                    {
                    {
                      tree tmp = TREE_OPERAND (arg0, 1);
                      tree tmp = TREE_OPERAND (arg0, 1);
                      tmp = build_function_call_expr (cosfn, tmp);
                      tmp = build_function_call_expr (cosfn, tmp);
                      return fold_build2 (RDIV_EXPR, type,
                      return fold_build2 (RDIV_EXPR, type,
                                          build_real (type, dconst1),
                                          build_real (type, dconst1),
                                          tmp);
                                          tmp);
                    }
                    }
                }
                }
            }
            }
 
 
          /* Optimize pow(x,c)/x as pow(x,c-1).  */
          /* Optimize pow(x,c)/x as pow(x,c-1).  */
          if (fcode0 == BUILT_IN_POW
          if (fcode0 == BUILT_IN_POW
              || fcode0 == BUILT_IN_POWF
              || fcode0 == BUILT_IN_POWF
              || fcode0 == BUILT_IN_POWL)
              || fcode0 == BUILT_IN_POWL)
            {
            {
              tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
              tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
              tree arg01 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg0, 1)));
              tree arg01 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg0, 1)));
              if (TREE_CODE (arg01) == REAL_CST
              if (TREE_CODE (arg01) == REAL_CST
                  && ! TREE_CONSTANT_OVERFLOW (arg01)
                  && ! TREE_CONSTANT_OVERFLOW (arg01)
                  && operand_equal_p (arg1, arg00, 0))
                  && operand_equal_p (arg1, arg00, 0))
                {
                {
                  tree powfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
                  tree powfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
                  REAL_VALUE_TYPE c;
                  REAL_VALUE_TYPE c;
                  tree arg, arglist;
                  tree arg, arglist;
 
 
                  c = TREE_REAL_CST (arg01);
                  c = TREE_REAL_CST (arg01);
                  real_arithmetic (&c, MINUS_EXPR, &c, &dconst1);
                  real_arithmetic (&c, MINUS_EXPR, &c, &dconst1);
                  arg = build_real (type, c);
                  arg = build_real (type, c);
                  arglist = build_tree_list (NULL_TREE, arg);
                  arglist = build_tree_list (NULL_TREE, arg);
                  arglist = tree_cons (NULL_TREE, arg1, arglist);
                  arglist = tree_cons (NULL_TREE, arg1, arglist);
                  return build_function_call_expr (powfn, arglist);
                  return build_function_call_expr (powfn, arglist);
                }
                }
            }
            }
 
 
          /* Optimize x/expN(y) into x*expN(-y).  */
          /* Optimize x/expN(y) into x*expN(-y).  */
          if (BUILTIN_EXPONENT_P (fcode1))
          if (BUILTIN_EXPONENT_P (fcode1))
            {
            {
              tree expfn = TREE_OPERAND (TREE_OPERAND (arg1, 0), 0);
              tree expfn = TREE_OPERAND (TREE_OPERAND (arg1, 0), 0);
              tree arg = negate_expr (TREE_VALUE (TREE_OPERAND (arg1, 1)));
              tree arg = negate_expr (TREE_VALUE (TREE_OPERAND (arg1, 1)));
              tree arglist = build_tree_list (NULL_TREE,
              tree arglist = build_tree_list (NULL_TREE,
                                              fold_convert (type, arg));
                                              fold_convert (type, arg));
              arg1 = build_function_call_expr (expfn, arglist);
              arg1 = build_function_call_expr (expfn, arglist);
              return fold_build2 (MULT_EXPR, type, arg0, arg1);
              return fold_build2 (MULT_EXPR, type, arg0, arg1);
            }
            }
 
 
          /* Optimize x/pow(y,z) into x*pow(y,-z).  */
          /* Optimize x/pow(y,z) into x*pow(y,-z).  */
          if (fcode1 == BUILT_IN_POW
          if (fcode1 == BUILT_IN_POW
              || fcode1 == BUILT_IN_POWF
              || fcode1 == BUILT_IN_POWF
              || fcode1 == BUILT_IN_POWL)
              || fcode1 == BUILT_IN_POWL)
            {
            {
              tree powfn = TREE_OPERAND (TREE_OPERAND (arg1, 0), 0);
              tree powfn = TREE_OPERAND (TREE_OPERAND (arg1, 0), 0);
              tree arg10 = TREE_VALUE (TREE_OPERAND (arg1, 1));
              tree arg10 = TREE_VALUE (TREE_OPERAND (arg1, 1));
              tree arg11 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg1, 1)));
              tree arg11 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg1, 1)));
              tree neg11 = fold_convert (type, negate_expr (arg11));
              tree neg11 = fold_convert (type, negate_expr (arg11));
              tree arglist = tree_cons(NULL_TREE, arg10,
              tree arglist = tree_cons(NULL_TREE, arg10,
                                       build_tree_list (NULL_TREE, neg11));
                                       build_tree_list (NULL_TREE, neg11));
              arg1 = build_function_call_expr (powfn, arglist);
              arg1 = build_function_call_expr (powfn, arglist);
              return fold_build2 (MULT_EXPR, type, arg0, arg1);
              return fold_build2 (MULT_EXPR, type, arg0, arg1);
            }
            }
        }
        }
      return NULL_TREE;
      return NULL_TREE;
 
 
    case TRUNC_DIV_EXPR:
    case TRUNC_DIV_EXPR:
    case FLOOR_DIV_EXPR:
    case FLOOR_DIV_EXPR:
      /* Simplify A / (B << N) where A and B are positive and B is
      /* Simplify A / (B << N) where A and B are positive and B is
         a power of 2, to A >> (N + log2(B)).  */
         a power of 2, to A >> (N + log2(B)).  */
      strict_overflow_p = false;
      strict_overflow_p = false;
      if (TREE_CODE (arg1) == LSHIFT_EXPR
      if (TREE_CODE (arg1) == LSHIFT_EXPR
          && (TYPE_UNSIGNED (type)
          && (TYPE_UNSIGNED (type)
              || tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p)))
              || tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p)))
        {
        {
          tree sval = TREE_OPERAND (arg1, 0);
          tree sval = TREE_OPERAND (arg1, 0);
          if (integer_pow2p (sval) && tree_int_cst_sgn (sval) > 0)
          if (integer_pow2p (sval) && tree_int_cst_sgn (sval) > 0)
            {
            {
              tree sh_cnt = TREE_OPERAND (arg1, 1);
              tree sh_cnt = TREE_OPERAND (arg1, 1);
              unsigned long pow2 = exact_log2 (TREE_INT_CST_LOW (sval));
              unsigned long pow2 = exact_log2 (TREE_INT_CST_LOW (sval));
 
 
              if (strict_overflow_p)
              if (strict_overflow_p)
                fold_overflow_warning (("assuming signed overflow does not "
                fold_overflow_warning (("assuming signed overflow does not "
                                        "occur when simplifying A / (B << N)"),
                                        "occur when simplifying A / (B << N)"),
                                       WARN_STRICT_OVERFLOW_MISC);
                                       WARN_STRICT_OVERFLOW_MISC);
 
 
              sh_cnt = fold_build2 (PLUS_EXPR, TREE_TYPE (sh_cnt),
              sh_cnt = fold_build2 (PLUS_EXPR, TREE_TYPE (sh_cnt),
                                    sh_cnt, build_int_cst (NULL_TREE, pow2));
                                    sh_cnt, build_int_cst (NULL_TREE, pow2));
              return fold_build2 (RSHIFT_EXPR, type,
              return fold_build2 (RSHIFT_EXPR, type,
                                  fold_convert (type, arg0), sh_cnt);
                                  fold_convert (type, arg0), sh_cnt);
            }
            }
        }
        }
      /* Fall thru */
      /* Fall thru */
 
 
    case ROUND_DIV_EXPR:
    case ROUND_DIV_EXPR:
    case CEIL_DIV_EXPR:
    case CEIL_DIV_EXPR:
    case EXACT_DIV_EXPR:
    case EXACT_DIV_EXPR:
      if (integer_onep (arg1))
      if (integer_onep (arg1))
        return non_lvalue (fold_convert (type, arg0));
        return non_lvalue (fold_convert (type, arg0));
      if (integer_zerop (arg1))
      if (integer_zerop (arg1))
        return NULL_TREE;
        return NULL_TREE;
      /* X / -1 is -X.  */
      /* X / -1 is -X.  */
      if (!TYPE_UNSIGNED (type)
      if (!TYPE_UNSIGNED (type)
          && TREE_CODE (arg1) == INTEGER_CST
          && TREE_CODE (arg1) == INTEGER_CST
          && TREE_INT_CST_LOW (arg1) == (unsigned HOST_WIDE_INT) -1
          && TREE_INT_CST_LOW (arg1) == (unsigned HOST_WIDE_INT) -1
          && TREE_INT_CST_HIGH (arg1) == -1)
          && TREE_INT_CST_HIGH (arg1) == -1)
        return fold_convert (type, negate_expr (arg0));
        return fold_convert (type, negate_expr (arg0));
 
 
      /* Convert -A / -B to A / B when the type is signed and overflow is
      /* Convert -A / -B to A / B when the type is signed and overflow is
         undefined.  */
         undefined.  */
      if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
      if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
          && TREE_CODE (arg0) == NEGATE_EXPR
          && TREE_CODE (arg0) == NEGATE_EXPR
          && negate_expr_p (arg1))
          && negate_expr_p (arg1))
        {
        {
          if (INTEGRAL_TYPE_P (type))
          if (INTEGRAL_TYPE_P (type))
            fold_overflow_warning (("assuming signed overflow does not occur "
            fold_overflow_warning (("assuming signed overflow does not occur "
                                    "when distributing negation across "
                                    "when distributing negation across "
                                    "division"),
                                    "division"),
                                   WARN_STRICT_OVERFLOW_MISC);
                                   WARN_STRICT_OVERFLOW_MISC);
          return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
          return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
                              negate_expr (arg1));
                              negate_expr (arg1));
        }
        }
      if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
      if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
          && TREE_CODE (arg1) == NEGATE_EXPR
          && TREE_CODE (arg1) == NEGATE_EXPR
          && negate_expr_p (arg0))
          && negate_expr_p (arg0))
        {
        {
          if (INTEGRAL_TYPE_P (type))
          if (INTEGRAL_TYPE_P (type))
            fold_overflow_warning (("assuming signed overflow does not occur "
            fold_overflow_warning (("assuming signed overflow does not occur "
                                    "when distributing negation across "
                                    "when distributing negation across "
                                    "division"),
                                    "division"),
                                   WARN_STRICT_OVERFLOW_MISC);
                                   WARN_STRICT_OVERFLOW_MISC);
          return fold_build2 (code, type, negate_expr (arg0),
          return fold_build2 (code, type, negate_expr (arg0),
                              TREE_OPERAND (arg1, 0));
                              TREE_OPERAND (arg1, 0));
        }
        }
 
 
      /* If arg0 is a multiple of arg1, then rewrite to the fastest div
      /* If arg0 is a multiple of arg1, then rewrite to the fastest div
         operation, EXACT_DIV_EXPR.
         operation, EXACT_DIV_EXPR.
 
 
         Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
         Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
         At one time others generated faster code, it's not clear if they do
         At one time others generated faster code, it's not clear if they do
         after the last round to changes to the DIV code in expmed.c.  */
         after the last round to changes to the DIV code in expmed.c.  */
      if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
      if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
          && multiple_of_p (type, arg0, arg1))
          && multiple_of_p (type, arg0, arg1))
        return fold_build2 (EXACT_DIV_EXPR, type, arg0, arg1);
        return fold_build2 (EXACT_DIV_EXPR, type, arg0, arg1);
 
 
      strict_overflow_p = false;
      strict_overflow_p = false;
      if (TREE_CODE (arg1) == INTEGER_CST
      if (TREE_CODE (arg1) == INTEGER_CST
          && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
          && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
                                         &strict_overflow_p)))
                                         &strict_overflow_p)))
        {
        {
          if (strict_overflow_p)
          if (strict_overflow_p)
            fold_overflow_warning (("assuming signed overflow does not occur "
            fold_overflow_warning (("assuming signed overflow does not occur "
                                    "when simplifying division"),
                                    "when simplifying division"),
                                   WARN_STRICT_OVERFLOW_MISC);
                                   WARN_STRICT_OVERFLOW_MISC);
          return fold_convert (type, tem);
          return fold_convert (type, tem);
        }
        }
 
 
      return NULL_TREE;
      return NULL_TREE;
 
 
    case CEIL_MOD_EXPR:
    case CEIL_MOD_EXPR:
    case FLOOR_MOD_EXPR:
    case FLOOR_MOD_EXPR:
    case ROUND_MOD_EXPR:
    case ROUND_MOD_EXPR:
    case TRUNC_MOD_EXPR:
    case TRUNC_MOD_EXPR:
      /* X % 1 is always zero, but be sure to preserve any side
      /* X % 1 is always zero, but be sure to preserve any side
         effects in X.  */
         effects in X.  */
      if (integer_onep (arg1))
      if (integer_onep (arg1))
        return omit_one_operand (type, integer_zero_node, arg0);
        return omit_one_operand (type, integer_zero_node, arg0);
 
 
      /* X % 0, return X % 0 unchanged so that we can get the
      /* X % 0, return X % 0 unchanged so that we can get the
         proper warnings and errors.  */
         proper warnings and errors.  */
      if (integer_zerop (arg1))
      if (integer_zerop (arg1))
        return NULL_TREE;
        return NULL_TREE;
 
 
      /* 0 % X is always zero, but be sure to preserve any side
      /* 0 % X is always zero, but be sure to preserve any side
         effects in X.  Place this after checking for X == 0.  */
         effects in X.  Place this after checking for X == 0.  */
      if (integer_zerop (arg0))
      if (integer_zerop (arg0))
        return omit_one_operand (type, integer_zero_node, arg1);
        return omit_one_operand (type, integer_zero_node, arg1);
 
 
      /* X % -1 is zero.  */
      /* X % -1 is zero.  */
      if (!TYPE_UNSIGNED (type)
      if (!TYPE_UNSIGNED (type)
          && TREE_CODE (arg1) == INTEGER_CST
          && TREE_CODE (arg1) == INTEGER_CST
          && TREE_INT_CST_LOW (arg1) == (unsigned HOST_WIDE_INT) -1
          && TREE_INT_CST_LOW (arg1) == (unsigned HOST_WIDE_INT) -1
          && TREE_INT_CST_HIGH (arg1) == -1)
          && TREE_INT_CST_HIGH (arg1) == -1)
        return omit_one_operand (type, integer_zero_node, arg0);
        return omit_one_operand (type, integer_zero_node, arg0);
 
 
      /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
      /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
         i.e. "X % C" into "X & (C - 1)", if X and C are positive.  */
         i.e. "X % C" into "X & (C - 1)", if X and C are positive.  */
      strict_overflow_p = false;
      strict_overflow_p = false;
      if ((code == TRUNC_MOD_EXPR || code == FLOOR_MOD_EXPR)
      if ((code == TRUNC_MOD_EXPR || code == FLOOR_MOD_EXPR)
          && (TYPE_UNSIGNED (type)
          && (TYPE_UNSIGNED (type)
              || tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p)))
              || tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p)))
        {
        {
          tree c = arg1;
          tree c = arg1;
          /* Also optimize A % (C << N)  where C is a power of 2,
          /* Also optimize A % (C << N)  where C is a power of 2,
             to A & ((C << N) - 1).  */
             to A & ((C << N) - 1).  */
          if (TREE_CODE (arg1) == LSHIFT_EXPR)
          if (TREE_CODE (arg1) == LSHIFT_EXPR)
            c = TREE_OPERAND (arg1, 0);
            c = TREE_OPERAND (arg1, 0);
 
 
          if (integer_pow2p (c) && tree_int_cst_sgn (c) > 0)
          if (integer_pow2p (c) && tree_int_cst_sgn (c) > 0)
            {
            {
              tree mask = fold_build2 (MINUS_EXPR, TREE_TYPE (arg1),
              tree mask = fold_build2 (MINUS_EXPR, TREE_TYPE (arg1),
                                       arg1, integer_one_node);
                                       arg1, integer_one_node);
              if (strict_overflow_p)
              if (strict_overflow_p)
                fold_overflow_warning (("assuming signed overflow does not "
                fold_overflow_warning (("assuming signed overflow does not "
                                        "occur when simplifying "
                                        "occur when simplifying "
                                        "X % (power of two)"),
                                        "X % (power of two)"),
                                       WARN_STRICT_OVERFLOW_MISC);
                                       WARN_STRICT_OVERFLOW_MISC);
              return fold_build2 (BIT_AND_EXPR, type,
              return fold_build2 (BIT_AND_EXPR, type,
                                  fold_convert (type, arg0),
                                  fold_convert (type, arg0),
                                  fold_convert (type, mask));
                                  fold_convert (type, mask));
            }
            }
        }
        }
 
 
      /* X % -C is the same as X % C.  */
      /* X % -C is the same as X % C.  */
      if (code == TRUNC_MOD_EXPR
      if (code == TRUNC_MOD_EXPR
          && !TYPE_UNSIGNED (type)
          && !TYPE_UNSIGNED (type)
          && TREE_CODE (arg1) == INTEGER_CST
          && TREE_CODE (arg1) == INTEGER_CST
          && !TREE_CONSTANT_OVERFLOW (arg1)
          && !TREE_CONSTANT_OVERFLOW (arg1)
          && TREE_INT_CST_HIGH (arg1) < 0
          && TREE_INT_CST_HIGH (arg1) < 0
          && !TYPE_OVERFLOW_TRAPS (type)
          && !TYPE_OVERFLOW_TRAPS (type)
          /* Avoid this transformation if C is INT_MIN, i.e. C == -C.  */
          /* Avoid this transformation if C is INT_MIN, i.e. C == -C.  */
          && !sign_bit_p (arg1, arg1))
          && !sign_bit_p (arg1, arg1))
        return fold_build2 (code, type, fold_convert (type, arg0),
        return fold_build2 (code, type, fold_convert (type, arg0),
                            fold_convert (type, negate_expr (arg1)));
                            fold_convert (type, negate_expr (arg1)));
 
 
      /* X % -Y is the same as X % Y.  */
      /* X % -Y is the same as X % Y.  */
      if (code == TRUNC_MOD_EXPR
      if (code == TRUNC_MOD_EXPR
          && !TYPE_UNSIGNED (type)
          && !TYPE_UNSIGNED (type)
          && TREE_CODE (arg1) == NEGATE_EXPR
          && TREE_CODE (arg1) == NEGATE_EXPR
          && !TYPE_OVERFLOW_TRAPS (type))
          && !TYPE_OVERFLOW_TRAPS (type))
        return fold_build2 (code, type, fold_convert (type, arg0),
        return fold_build2 (code, type, fold_convert (type, arg0),
                            fold_convert (type, TREE_OPERAND (arg1, 0)));
                            fold_convert (type, TREE_OPERAND (arg1, 0)));
 
 
      if (TREE_CODE (arg1) == INTEGER_CST
      if (TREE_CODE (arg1) == INTEGER_CST
          && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
          && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
                                         &strict_overflow_p)))
                                         &strict_overflow_p)))
        {
        {
          if (strict_overflow_p)
          if (strict_overflow_p)
            fold_overflow_warning (("assuming signed overflow does not occur "
            fold_overflow_warning (("assuming signed overflow does not occur "
                                    "when simplifying modulos"),
                                    "when simplifying modulos"),
                                   WARN_STRICT_OVERFLOW_MISC);
                                   WARN_STRICT_OVERFLOW_MISC);
          return fold_convert (type, tem);
          return fold_convert (type, tem);
        }
        }
 
 
      return NULL_TREE;
      return NULL_TREE;
 
 
    case LROTATE_EXPR:
    case LROTATE_EXPR:
    case RROTATE_EXPR:
    case RROTATE_EXPR:
      if (integer_all_onesp (arg0))
      if (integer_all_onesp (arg0))
        return omit_one_operand (type, arg0, arg1);
        return omit_one_operand (type, arg0, arg1);
      goto shift;
      goto shift;
 
 
    case RSHIFT_EXPR:
    case RSHIFT_EXPR:
      /* Optimize -1 >> x for arithmetic right shifts.  */
      /* Optimize -1 >> x for arithmetic right shifts.  */
      if (integer_all_onesp (arg0) && !TYPE_UNSIGNED (type))
      if (integer_all_onesp (arg0) && !TYPE_UNSIGNED (type))
        return omit_one_operand (type, arg0, arg1);
        return omit_one_operand (type, arg0, arg1);
      /* ... fall through ...  */
      /* ... fall through ...  */
 
 
    case LSHIFT_EXPR:
    case LSHIFT_EXPR:
    shift:
    shift:
      if (integer_zerop (arg1))
      if (integer_zerop (arg1))
        return non_lvalue (fold_convert (type, arg0));
        return non_lvalue (fold_convert (type, arg0));
      if (integer_zerop (arg0))
      if (integer_zerop (arg0))
        return omit_one_operand (type, arg0, arg1);
        return omit_one_operand (type, arg0, arg1);
 
 
      /* Since negative shift count is not well-defined,
      /* Since negative shift count is not well-defined,
         don't try to compute it in the compiler.  */
         don't try to compute it in the compiler.  */
      if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
      if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
        return NULL_TREE;
        return NULL_TREE;
 
 
      /* Turn (a OP c1) OP c2 into a OP (c1+c2).  */
      /* Turn (a OP c1) OP c2 into a OP (c1+c2).  */
      if (TREE_CODE (op0) == code && host_integerp (arg1, false)
      if (TREE_CODE (op0) == code && host_integerp (arg1, false)
          && TREE_INT_CST_LOW (arg1) < TYPE_PRECISION (type)
          && TREE_INT_CST_LOW (arg1) < TYPE_PRECISION (type)
          && host_integerp (TREE_OPERAND (arg0, 1), false)
          && host_integerp (TREE_OPERAND (arg0, 1), false)
          && TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)) < TYPE_PRECISION (type))
          && TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)) < TYPE_PRECISION (type))
        {
        {
          HOST_WIDE_INT low = (TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1))
          HOST_WIDE_INT low = (TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1))
                               + TREE_INT_CST_LOW (arg1));
                               + TREE_INT_CST_LOW (arg1));
 
 
          /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
          /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
             being well defined.  */
             being well defined.  */
          if (low >= TYPE_PRECISION (type))
          if (low >= TYPE_PRECISION (type))
            {
            {
              if (code == LROTATE_EXPR || code == RROTATE_EXPR)
              if (code == LROTATE_EXPR || code == RROTATE_EXPR)
                low = low % TYPE_PRECISION (type);
                low = low % TYPE_PRECISION (type);
              else if (TYPE_UNSIGNED (type) || code == LSHIFT_EXPR)
              else if (TYPE_UNSIGNED (type) || code == LSHIFT_EXPR)
                return build_int_cst (type, 0);
                return build_int_cst (type, 0);
              else
              else
                low = TYPE_PRECISION (type) - 1;
                low = TYPE_PRECISION (type) - 1;
            }
            }
 
 
          return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
          return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
                              build_int_cst (type, low));
                              build_int_cst (type, low));
        }
        }
 
 
      /* Transform (x >> c) << c into x & (-1<<c), or transform (x << c) >> c
      /* Transform (x >> c) << c into x & (-1<<c), or transform (x << c) >> c
         into x & ((unsigned)-1 >> c) for unsigned types.  */
         into x & ((unsigned)-1 >> c) for unsigned types.  */
      if (((code == LSHIFT_EXPR && TREE_CODE (arg0) == RSHIFT_EXPR)
      if (((code == LSHIFT_EXPR && TREE_CODE (arg0) == RSHIFT_EXPR)
           || (TYPE_UNSIGNED (type)
           || (TYPE_UNSIGNED (type)
               && code == RSHIFT_EXPR && TREE_CODE (arg0) == LSHIFT_EXPR))
               && code == RSHIFT_EXPR && TREE_CODE (arg0) == LSHIFT_EXPR))
          && host_integerp (arg1, false)
          && host_integerp (arg1, false)
          && TREE_INT_CST_LOW (arg1) < TYPE_PRECISION (type)
          && TREE_INT_CST_LOW (arg1) < TYPE_PRECISION (type)
          && host_integerp (TREE_OPERAND (arg0, 1), false)
          && host_integerp (TREE_OPERAND (arg0, 1), false)
          && TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)) < TYPE_PRECISION (type))
          && TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)) < TYPE_PRECISION (type))
        {
        {
          HOST_WIDE_INT low0 = TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1));
          HOST_WIDE_INT low0 = TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1));
          HOST_WIDE_INT low1 = TREE_INT_CST_LOW (arg1);
          HOST_WIDE_INT low1 = TREE_INT_CST_LOW (arg1);
          tree lshift;
          tree lshift;
          tree arg00;
          tree arg00;
 
 
          if (low0 == low1)
          if (low0 == low1)
            {
            {
              arg00 = fold_convert (type, TREE_OPERAND (arg0, 0));
              arg00 = fold_convert (type, TREE_OPERAND (arg0, 0));
 
 
              lshift = build_int_cst (type, -1);
              lshift = build_int_cst (type, -1);
              lshift = int_const_binop (code, lshift, arg1, 0);
              lshift = int_const_binop (code, lshift, arg1, 0);
 
 
              return fold_build2 (BIT_AND_EXPR, type, arg00, lshift);
              return fold_build2 (BIT_AND_EXPR, type, arg00, lshift);
            }
            }
        }
        }
 
 
      /* Rewrite an LROTATE_EXPR by a constant into an
      /* Rewrite an LROTATE_EXPR by a constant into an
         RROTATE_EXPR by a new constant.  */
         RROTATE_EXPR by a new constant.  */
      if (code == LROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST)
      if (code == LROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST)
        {
        {
          tree tem = build_int_cst (NULL_TREE,
          tree tem = build_int_cst (NULL_TREE,
                                    GET_MODE_BITSIZE (TYPE_MODE (type)));
                                    GET_MODE_BITSIZE (TYPE_MODE (type)));
          tem = fold_convert (TREE_TYPE (arg1), tem);
          tem = fold_convert (TREE_TYPE (arg1), tem);
          tem = const_binop (MINUS_EXPR, tem, arg1, 0);
          tem = const_binop (MINUS_EXPR, tem, arg1, 0);
          return fold_build2 (RROTATE_EXPR, type, arg0, tem);
          return fold_build2 (RROTATE_EXPR, type, arg0, tem);
        }
        }
 
 
      /* If we have a rotate of a bit operation with the rotate count and
      /* If we have a rotate of a bit operation with the rotate count and
         the second operand of the bit operation both constant,
         the second operand of the bit operation both constant,
         permute the two operations.  */
         permute the two operations.  */
      if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
      if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
          && (TREE_CODE (arg0) == BIT_AND_EXPR
          && (TREE_CODE (arg0) == BIT_AND_EXPR
              || TREE_CODE (arg0) == BIT_IOR_EXPR
              || TREE_CODE (arg0) == BIT_IOR_EXPR
              || TREE_CODE (arg0) == BIT_XOR_EXPR)
              || TREE_CODE (arg0) == BIT_XOR_EXPR)
          && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
          && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
        return fold_build2 (TREE_CODE (arg0), type,
        return fold_build2 (TREE_CODE (arg0), type,
                            fold_build2 (code, type,
                            fold_build2 (code, type,
                                         TREE_OPERAND (arg0, 0), arg1),
                                         TREE_OPERAND (arg0, 0), arg1),
                            fold_build2 (code, type,
                            fold_build2 (code, type,
                                         TREE_OPERAND (arg0, 1), arg1));
                                         TREE_OPERAND (arg0, 1), arg1));
 
 
      /* Two consecutive rotates adding up to the width of the mode can
      /* Two consecutive rotates adding up to the width of the mode can
         be ignored.  */
         be ignored.  */
      if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
      if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
          && TREE_CODE (arg0) == RROTATE_EXPR
          && TREE_CODE (arg0) == RROTATE_EXPR
          && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
          && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
          && TREE_INT_CST_HIGH (arg1) == 0
          && TREE_INT_CST_HIGH (arg1) == 0
          && TREE_INT_CST_HIGH (TREE_OPERAND (arg0, 1)) == 0
          && TREE_INT_CST_HIGH (TREE_OPERAND (arg0, 1)) == 0
          && ((TREE_INT_CST_LOW (arg1)
          && ((TREE_INT_CST_LOW (arg1)
               + TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)))
               + TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)))
              == (unsigned int) GET_MODE_BITSIZE (TYPE_MODE (type))))
              == (unsigned int) GET_MODE_BITSIZE (TYPE_MODE (type))))
        return TREE_OPERAND (arg0, 0);
        return TREE_OPERAND (arg0, 0);
 
 
      return NULL_TREE;
      return NULL_TREE;
 
 
    case MIN_EXPR:
    case MIN_EXPR:
      if (operand_equal_p (arg0, arg1, 0))
      if (operand_equal_p (arg0, arg1, 0))
        return omit_one_operand (type, arg0, arg1);
        return omit_one_operand (type, arg0, arg1);
      if (INTEGRAL_TYPE_P (type)
      if (INTEGRAL_TYPE_P (type)
          && operand_equal_p (arg1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
          && operand_equal_p (arg1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
        return omit_one_operand (type, arg1, arg0);
        return omit_one_operand (type, arg1, arg0);
      tem = fold_minmax (MIN_EXPR, type, arg0, arg1);
      tem = fold_minmax (MIN_EXPR, type, arg0, arg1);
      if (tem)
      if (tem)
        return tem;
        return tem;
      goto associate;
      goto associate;
 
 
    case MAX_EXPR:
    case MAX_EXPR:
      if (operand_equal_p (arg0, arg1, 0))
      if (operand_equal_p (arg0, arg1, 0))
        return omit_one_operand (type, arg0, arg1);
        return omit_one_operand (type, arg0, arg1);
      if (INTEGRAL_TYPE_P (type)
      if (INTEGRAL_TYPE_P (type)
          && TYPE_MAX_VALUE (type)
          && TYPE_MAX_VALUE (type)
          && operand_equal_p (arg1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
          && operand_equal_p (arg1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
        return omit_one_operand (type, arg1, arg0);
        return omit_one_operand (type, arg1, arg0);
      tem = fold_minmax (MAX_EXPR, type, arg0, arg1);
      tem = fold_minmax (MAX_EXPR, type, arg0, arg1);
      if (tem)
      if (tem)
        return tem;
        return tem;
      goto associate;
      goto associate;
 
 
    case TRUTH_ANDIF_EXPR:
    case TRUTH_ANDIF_EXPR:
      /* Note that the operands of this must be ints
      /* Note that the operands of this must be ints
         and their values must be 0 or 1.
         and their values must be 0 or 1.
         ("true" is a fixed value perhaps depending on the language.)  */
         ("true" is a fixed value perhaps depending on the language.)  */
      /* If first arg is constant zero, return it.  */
      /* If first arg is constant zero, return it.  */
      if (integer_zerop (arg0))
      if (integer_zerop (arg0))
        return fold_convert (type, arg0);
        return fold_convert (type, arg0);
    case TRUTH_AND_EXPR:
    case TRUTH_AND_EXPR:
      /* If either arg is constant true, drop it.  */
      /* If either arg is constant true, drop it.  */
      if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
      if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
        return non_lvalue (fold_convert (type, arg1));
        return non_lvalue (fold_convert (type, arg1));
      if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)
      if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)
          /* Preserve sequence points.  */
          /* Preserve sequence points.  */
          && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
          && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
        return non_lvalue (fold_convert (type, arg0));
        return non_lvalue (fold_convert (type, arg0));
      /* If second arg is constant zero, result is zero, but first arg
      /* If second arg is constant zero, result is zero, but first arg
         must be evaluated.  */
         must be evaluated.  */
      if (integer_zerop (arg1))
      if (integer_zerop (arg1))
        return omit_one_operand (type, arg1, arg0);
        return omit_one_operand (type, arg1, arg0);
      /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
      /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
         case will be handled here.  */
         case will be handled here.  */
      if (integer_zerop (arg0))
      if (integer_zerop (arg0))
        return omit_one_operand (type, arg0, arg1);
        return omit_one_operand (type, arg0, arg1);
 
 
      /* !X && X is always false.  */
      /* !X && X is always false.  */
      if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
      if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
          && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
          && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
        return omit_one_operand (type, integer_zero_node, arg1);
        return omit_one_operand (type, integer_zero_node, arg1);
      /* X && !X is always false.  */
      /* X && !X is always false.  */
      if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
      if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
          && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
          && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
        return omit_one_operand (type, integer_zero_node, arg0);
        return omit_one_operand (type, integer_zero_node, arg0);
 
 
      /* A < X && A + 1 > Y ==> A < X && A >= Y.  Normally A + 1 > Y
      /* A < X && A + 1 > Y ==> A < X && A >= Y.  Normally A + 1 > Y
         means A >= Y && A != MAX, but in this case we know that
         means A >= Y && A != MAX, but in this case we know that
         A < X <= MAX.  */
         A < X <= MAX.  */
 
 
      if (!TREE_SIDE_EFFECTS (arg0)
      if (!TREE_SIDE_EFFECTS (arg0)
          && !TREE_SIDE_EFFECTS (arg1))
          && !TREE_SIDE_EFFECTS (arg1))
        {
        {
          tem = fold_to_nonsharp_ineq_using_bound (arg0, arg1);
          tem = fold_to_nonsharp_ineq_using_bound (arg0, arg1);
          if (tem && !operand_equal_p (tem, arg0, 0))
          if (tem && !operand_equal_p (tem, arg0, 0))
            return fold_build2 (code, type, tem, arg1);
            return fold_build2 (code, type, tem, arg1);
 
 
          tem = fold_to_nonsharp_ineq_using_bound (arg1, arg0);
          tem = fold_to_nonsharp_ineq_using_bound (arg1, arg0);
          if (tem && !operand_equal_p (tem, arg1, 0))
          if (tem && !operand_equal_p (tem, arg1, 0))
            return fold_build2 (code, type, arg0, tem);
            return fold_build2 (code, type, arg0, tem);
        }
        }
 
 
    truth_andor:
    truth_andor:
      /* We only do these simplifications if we are optimizing.  */
      /* We only do these simplifications if we are optimizing.  */
      if (!optimize)
      if (!optimize)
        return NULL_TREE;
        return NULL_TREE;
 
 
      /* Check for things like (A || B) && (A || C).  We can convert this
      /* Check for things like (A || B) && (A || C).  We can convert this
         to A || (B && C).  Note that either operator can be any of the four
         to A || (B && C).  Note that either operator can be any of the four
         truth and/or operations and the transformation will still be
         truth and/or operations and the transformation will still be
         valid.   Also note that we only care about order for the
         valid.   Also note that we only care about order for the
         ANDIF and ORIF operators.  If B contains side effects, this
         ANDIF and ORIF operators.  If B contains side effects, this
         might change the truth-value of A.  */
         might change the truth-value of A.  */
      if (TREE_CODE (arg0) == TREE_CODE (arg1)
      if (TREE_CODE (arg0) == TREE_CODE (arg1)
          && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
          && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
              || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
              || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
              || TREE_CODE (arg0) == TRUTH_AND_EXPR
              || TREE_CODE (arg0) == TRUTH_AND_EXPR
              || TREE_CODE (arg0) == TRUTH_OR_EXPR)
              || TREE_CODE (arg0) == TRUTH_OR_EXPR)
          && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
          && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
        {
        {
          tree a00 = TREE_OPERAND (arg0, 0);
          tree a00 = TREE_OPERAND (arg0, 0);
          tree a01 = TREE_OPERAND (arg0, 1);
          tree a01 = TREE_OPERAND (arg0, 1);
          tree a10 = TREE_OPERAND (arg1, 0);
          tree a10 = TREE_OPERAND (arg1, 0);
          tree a11 = TREE_OPERAND (arg1, 1);
          tree a11 = TREE_OPERAND (arg1, 1);
          int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
          int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
                              || TREE_CODE (arg0) == TRUTH_AND_EXPR)
                              || TREE_CODE (arg0) == TRUTH_AND_EXPR)
                             && (code == TRUTH_AND_EXPR
                             && (code == TRUTH_AND_EXPR
                                 || code == TRUTH_OR_EXPR));
                                 || code == TRUTH_OR_EXPR));
 
 
          if (operand_equal_p (a00, a10, 0))
          if (operand_equal_p (a00, a10, 0))
            return fold_build2 (TREE_CODE (arg0), type, a00,
            return fold_build2 (TREE_CODE (arg0), type, a00,
                                fold_build2 (code, type, a01, a11));
                                fold_build2 (code, type, a01, a11));
          else if (commutative && operand_equal_p (a00, a11, 0))
          else if (commutative && operand_equal_p (a00, a11, 0))
            return fold_build2 (TREE_CODE (arg0), type, a00,
            return fold_build2 (TREE_CODE (arg0), type, a00,
                                fold_build2 (code, type, a01, a10));
                                fold_build2 (code, type, a01, a10));
          else if (commutative && operand_equal_p (a01, a10, 0))
          else if (commutative && operand_equal_p (a01, a10, 0))
            return fold_build2 (TREE_CODE (arg0), type, a01,
            return fold_build2 (TREE_CODE (arg0), type, a01,
                                fold_build2 (code, type, a00, a11));
                                fold_build2 (code, type, a00, a11));
 
 
          /* This case if tricky because we must either have commutative
          /* This case if tricky because we must either have commutative
             operators or else A10 must not have side-effects.  */
             operators or else A10 must not have side-effects.  */
 
 
          else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
          else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
                   && operand_equal_p (a01, a11, 0))
                   && operand_equal_p (a01, a11, 0))
            return fold_build2 (TREE_CODE (arg0), type,
            return fold_build2 (TREE_CODE (arg0), type,
                                fold_build2 (code, type, a00, a10),
                                fold_build2 (code, type, a00, a10),
                                a01);
                                a01);
        }
        }
 
 
      /* See if we can build a range comparison.  */
      /* See if we can build a range comparison.  */
      if (0 != (tem = fold_range_test (code, type, op0, op1)))
      if (0 != (tem = fold_range_test (code, type, op0, op1)))
        return tem;
        return tem;
 
 
      /* Check for the possibility of merging component references.  If our
      /* Check for the possibility of merging component references.  If our
         lhs is another similar operation, try to merge its rhs with our
         lhs is another similar operation, try to merge its rhs with our
         rhs.  Then try to merge our lhs and rhs.  */
         rhs.  Then try to merge our lhs and rhs.  */
      if (TREE_CODE (arg0) == code
      if (TREE_CODE (arg0) == code
          && 0 != (tem = fold_truthop (code, type,
          && 0 != (tem = fold_truthop (code, type,
                                       TREE_OPERAND (arg0, 1), arg1)))
                                       TREE_OPERAND (arg0, 1), arg1)))
        return fold_build2 (code, type, TREE_OPERAND (arg0, 0), tem);
        return fold_build2 (code, type, TREE_OPERAND (arg0, 0), tem);
 
 
      if ((tem = fold_truthop (code, type, arg0, arg1)) != 0)
      if ((tem = fold_truthop (code, type, arg0, arg1)) != 0)
        return tem;
        return tem;
 
 
      return NULL_TREE;
      return NULL_TREE;
 
 
    case TRUTH_ORIF_EXPR:
    case TRUTH_ORIF_EXPR:
      /* Note that the operands of this must be ints
      /* Note that the operands of this must be ints
         and their values must be 0 or true.
         and their values must be 0 or true.
         ("true" is a fixed value perhaps depending on the language.)  */
         ("true" is a fixed value perhaps depending on the language.)  */
      /* If first arg is constant true, return it.  */
      /* If first arg is constant true, return it.  */
      if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
      if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
        return fold_convert (type, arg0);
        return fold_convert (type, arg0);
    case TRUTH_OR_EXPR:
    case TRUTH_OR_EXPR:
      /* If either arg is constant zero, drop it.  */
      /* If either arg is constant zero, drop it.  */
      if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
      if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
        return non_lvalue (fold_convert (type, arg1));
        return non_lvalue (fold_convert (type, arg1));
      if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1)
      if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1)
          /* Preserve sequence points.  */
          /* Preserve sequence points.  */
          && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
          && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
        return non_lvalue (fold_convert (type, arg0));
        return non_lvalue (fold_convert (type, arg0));
      /* If second arg is constant true, result is true, but we must
      /* If second arg is constant true, result is true, but we must
         evaluate first arg.  */
         evaluate first arg.  */
      if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
      if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
        return omit_one_operand (type, arg1, arg0);
        return omit_one_operand (type, arg1, arg0);
      /* Likewise for first arg, but note this only occurs here for
      /* Likewise for first arg, but note this only occurs here for
         TRUTH_OR_EXPR.  */
         TRUTH_OR_EXPR.  */
      if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
      if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
        return omit_one_operand (type, arg0, arg1);
        return omit_one_operand (type, arg0, arg1);
 
 
      /* !X || X is always true.  */
      /* !X || X is always true.  */
      if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
      if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
          && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
          && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
        return omit_one_operand (type, integer_one_node, arg1);
        return omit_one_operand (type, integer_one_node, arg1);
      /* X || !X is always true.  */
      /* X || !X is always true.  */
      if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
      if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
          && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
          && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
        return omit_one_operand (type, integer_one_node, arg0);
        return omit_one_operand (type, integer_one_node, arg0);
 
 
      goto truth_andor;
      goto truth_andor;
 
 
    case TRUTH_XOR_EXPR:
    case TRUTH_XOR_EXPR:
      /* If the second arg is constant zero, drop it.  */
      /* If the second arg is constant zero, drop it.  */
      if (integer_zerop (arg1))
      if (integer_zerop (arg1))
        return non_lvalue (fold_convert (type, arg0));
        return non_lvalue (fold_convert (type, arg0));
      /* If the second arg is constant true, this is a logical inversion.  */
      /* If the second arg is constant true, this is a logical inversion.  */
      if (integer_onep (arg1))
      if (integer_onep (arg1))
        {
        {
          /* Only call invert_truthvalue if operand is a truth value.  */
          /* Only call invert_truthvalue if operand is a truth value.  */
          if (TREE_CODE (TREE_TYPE (arg0)) != BOOLEAN_TYPE)
          if (TREE_CODE (TREE_TYPE (arg0)) != BOOLEAN_TYPE)
            tem = fold_build1 (TRUTH_NOT_EXPR, TREE_TYPE (arg0), arg0);
            tem = fold_build1 (TRUTH_NOT_EXPR, TREE_TYPE (arg0), arg0);
          else
          else
            tem = invert_truthvalue (arg0);
            tem = invert_truthvalue (arg0);
          return non_lvalue (fold_convert (type, tem));
          return non_lvalue (fold_convert (type, tem));
        }
        }
      /* Identical arguments cancel to zero.  */
      /* Identical arguments cancel to zero.  */
      if (operand_equal_p (arg0, arg1, 0))
      if (operand_equal_p (arg0, arg1, 0))
        return omit_one_operand (type, integer_zero_node, arg0);
        return omit_one_operand (type, integer_zero_node, arg0);
 
 
      /* !X ^ X is always true.  */
      /* !X ^ X is always true.  */
      if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
      if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
          && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
          && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
        return omit_one_operand (type, integer_one_node, arg1);
        return omit_one_operand (type, integer_one_node, arg1);
 
 
      /* X ^ !X is always true.  */
      /* X ^ !X is always true.  */
      if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
      if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
          && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
          && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
        return omit_one_operand (type, integer_one_node, arg0);
        return omit_one_operand (type, integer_one_node, arg0);
 
 
      return NULL_TREE;
      return NULL_TREE;
 
 
    case EQ_EXPR:
    case EQ_EXPR:
    case NE_EXPR:
    case NE_EXPR:
      tem = fold_comparison (code, type, op0, op1);
      tem = fold_comparison (code, type, op0, op1);
      if (tem != NULL_TREE)
      if (tem != NULL_TREE)
        return tem;
        return tem;
 
 
      /* bool_var != 0 becomes bool_var. */
      /* bool_var != 0 becomes bool_var. */
      if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
      if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
          && code == NE_EXPR)
          && code == NE_EXPR)
        return non_lvalue (fold_convert (type, arg0));
        return non_lvalue (fold_convert (type, arg0));
 
 
      /* bool_var == 1 becomes bool_var. */
      /* bool_var == 1 becomes bool_var. */
      if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
      if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
          && code == EQ_EXPR)
          && code == EQ_EXPR)
        return non_lvalue (fold_convert (type, arg0));
        return non_lvalue (fold_convert (type, arg0));
 
 
      /* bool_var != 1 becomes !bool_var. */
      /* bool_var != 1 becomes !bool_var. */
      if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
      if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
          && code == NE_EXPR)
          && code == NE_EXPR)
        return fold_build1 (TRUTH_NOT_EXPR, type, arg0);
        return fold_build1 (TRUTH_NOT_EXPR, type, arg0);
 
 
      /* bool_var == 0 becomes !bool_var. */
      /* bool_var == 0 becomes !bool_var. */
      if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
      if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
          && code == EQ_EXPR)
          && code == EQ_EXPR)
        return fold_build1 (TRUTH_NOT_EXPR, type, arg0);
        return fold_build1 (TRUTH_NOT_EXPR, type, arg0);
 
 
      /*  ~a != C becomes a != ~C where C is a constant.  Likewise for ==.  */
      /*  ~a != C becomes a != ~C where C is a constant.  Likewise for ==.  */
      if (TREE_CODE (arg0) == BIT_NOT_EXPR
      if (TREE_CODE (arg0) == BIT_NOT_EXPR
          && TREE_CODE (arg1) == INTEGER_CST)
          && TREE_CODE (arg1) == INTEGER_CST)
        {
        {
          tree cmp_type = TREE_TYPE (TREE_OPERAND (arg0, 0));
          tree cmp_type = TREE_TYPE (TREE_OPERAND (arg0, 0));
          return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
          return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
                              fold_build1 (BIT_NOT_EXPR, cmp_type,
                              fold_build1 (BIT_NOT_EXPR, cmp_type,
                                           fold_convert (cmp_type, arg1)));
                                           fold_convert (cmp_type, arg1)));
        }
        }
 
 
      /* If this is an equality comparison of the address of a non-weak
      /* If this is an equality comparison of the address of a non-weak
         object against zero, then we know the result.  */
         object against zero, then we know the result.  */
      if (TREE_CODE (arg0) == ADDR_EXPR
      if (TREE_CODE (arg0) == ADDR_EXPR
          && VAR_OR_FUNCTION_DECL_P (TREE_OPERAND (arg0, 0))
          && VAR_OR_FUNCTION_DECL_P (TREE_OPERAND (arg0, 0))
          && ! DECL_WEAK (TREE_OPERAND (arg0, 0))
          && ! DECL_WEAK (TREE_OPERAND (arg0, 0))
          && integer_zerop (arg1))
          && integer_zerop (arg1))
        return constant_boolean_node (code != EQ_EXPR, type);
        return constant_boolean_node (code != EQ_EXPR, type);
 
 
      /* If this is an equality comparison of the address of two non-weak,
      /* If this is an equality comparison of the address of two non-weak,
         unaliased symbols neither of which are extern (since we do not
         unaliased symbols neither of which are extern (since we do not
         have access to attributes for externs), then we know the result.  */
         have access to attributes for externs), then we know the result.  */
      if (TREE_CODE (arg0) == ADDR_EXPR
      if (TREE_CODE (arg0) == ADDR_EXPR
          && VAR_OR_FUNCTION_DECL_P (TREE_OPERAND (arg0, 0))
          && VAR_OR_FUNCTION_DECL_P (TREE_OPERAND (arg0, 0))
          && ! DECL_WEAK (TREE_OPERAND (arg0, 0))
          && ! DECL_WEAK (TREE_OPERAND (arg0, 0))
          && ! lookup_attribute ("alias",
          && ! lookup_attribute ("alias",
                                 DECL_ATTRIBUTES (TREE_OPERAND (arg0, 0)))
                                 DECL_ATTRIBUTES (TREE_OPERAND (arg0, 0)))
          && ! DECL_EXTERNAL (TREE_OPERAND (arg0, 0))
          && ! DECL_EXTERNAL (TREE_OPERAND (arg0, 0))
          && TREE_CODE (arg1) == ADDR_EXPR
          && TREE_CODE (arg1) == ADDR_EXPR
          && VAR_OR_FUNCTION_DECL_P (TREE_OPERAND (arg1, 0))
          && VAR_OR_FUNCTION_DECL_P (TREE_OPERAND (arg1, 0))
          && ! DECL_WEAK (TREE_OPERAND (arg1, 0))
          && ! DECL_WEAK (TREE_OPERAND (arg1, 0))
          && ! lookup_attribute ("alias",
          && ! lookup_attribute ("alias",
                                 DECL_ATTRIBUTES (TREE_OPERAND (arg1, 0)))
                                 DECL_ATTRIBUTES (TREE_OPERAND (arg1, 0)))
          && ! DECL_EXTERNAL (TREE_OPERAND (arg1, 0)))
          && ! DECL_EXTERNAL (TREE_OPERAND (arg1, 0)))
        {
        {
          /* We know that we're looking at the address of two
          /* We know that we're looking at the address of two
             non-weak, unaliased, static _DECL nodes.
             non-weak, unaliased, static _DECL nodes.
 
 
             It is both wasteful and incorrect to call operand_equal_p
             It is both wasteful and incorrect to call operand_equal_p
             to compare the two ADDR_EXPR nodes.  It is wasteful in that
             to compare the two ADDR_EXPR nodes.  It is wasteful in that
             all we need to do is test pointer equality for the arguments
             all we need to do is test pointer equality for the arguments
             to the two ADDR_EXPR nodes.  It is incorrect to use
             to the two ADDR_EXPR nodes.  It is incorrect to use
             operand_equal_p as that function is NOT equivalent to a
             operand_equal_p as that function is NOT equivalent to a
             C equality test.  It can in fact return false for two
             C equality test.  It can in fact return false for two
             objects which would test as equal using the C equality
             objects which would test as equal using the C equality
             operator.  */
             operator.  */
          bool equal = TREE_OPERAND (arg0, 0) == TREE_OPERAND (arg1, 0);
          bool equal = TREE_OPERAND (arg0, 0) == TREE_OPERAND (arg1, 0);
          return constant_boolean_node (equal
          return constant_boolean_node (equal
                                        ? code == EQ_EXPR : code != EQ_EXPR,
                                        ? code == EQ_EXPR : code != EQ_EXPR,
                                        type);
                                        type);
        }
        }
 
 
      /* If this is an EQ or NE comparison of a constant with a PLUS_EXPR or
      /* If this is an EQ or NE comparison of a constant with a PLUS_EXPR or
         a MINUS_EXPR of a constant, we can convert it into a comparison with
         a MINUS_EXPR of a constant, we can convert it into a comparison with
         a revised constant as long as no overflow occurs.  */
         a revised constant as long as no overflow occurs.  */
      if (TREE_CODE (arg1) == INTEGER_CST
      if (TREE_CODE (arg1) == INTEGER_CST
          && (TREE_CODE (arg0) == PLUS_EXPR
          && (TREE_CODE (arg0) == PLUS_EXPR
              || TREE_CODE (arg0) == MINUS_EXPR)
              || TREE_CODE (arg0) == MINUS_EXPR)
          && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
          && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
          && 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
          && 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
                                      ? MINUS_EXPR : PLUS_EXPR,
                                      ? MINUS_EXPR : PLUS_EXPR,
                                      fold_convert (TREE_TYPE (arg0), arg1),
                                      fold_convert (TREE_TYPE (arg0), arg1),
                                      TREE_OPERAND (arg0, 1), 0))
                                      TREE_OPERAND (arg0, 1), 0))
          && ! TREE_CONSTANT_OVERFLOW (tem))
          && ! TREE_CONSTANT_OVERFLOW (tem))
        return fold_build2 (code, type, TREE_OPERAND (arg0, 0), tem);
        return fold_build2 (code, type, TREE_OPERAND (arg0, 0), tem);
 
 
      /* Similarly for a NEGATE_EXPR.  */
      /* Similarly for a NEGATE_EXPR.  */
      if (TREE_CODE (arg0) == NEGATE_EXPR
      if (TREE_CODE (arg0) == NEGATE_EXPR
          && TREE_CODE (arg1) == INTEGER_CST
          && TREE_CODE (arg1) == INTEGER_CST
          && 0 != (tem = negate_expr (arg1))
          && 0 != (tem = negate_expr (arg1))
          && TREE_CODE (tem) == INTEGER_CST
          && TREE_CODE (tem) == INTEGER_CST
          && ! TREE_CONSTANT_OVERFLOW (tem))
          && ! TREE_CONSTANT_OVERFLOW (tem))
        return fold_build2 (code, type, TREE_OPERAND (arg0, 0), tem);
        return fold_build2 (code, type, TREE_OPERAND (arg0, 0), tem);
 
 
      /* If we have X - Y == 0, we can convert that to X == Y and similarly
      /* If we have X - Y == 0, we can convert that to X == Y and similarly
         for !=.  Don't do this for ordered comparisons due to overflow.  */
         for !=.  Don't do this for ordered comparisons due to overflow.  */
      if (TREE_CODE (arg0) == MINUS_EXPR
      if (TREE_CODE (arg0) == MINUS_EXPR
          && integer_zerop (arg1))
          && integer_zerop (arg1))
        return fold_build2 (code, type,
        return fold_build2 (code, type,
                            TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
                            TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
 
 
      /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0.  */
      /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0.  */
      if (TREE_CODE (arg0) == ABS_EXPR
      if (TREE_CODE (arg0) == ABS_EXPR
          && (integer_zerop (arg1) || real_zerop (arg1)))
          && (integer_zerop (arg1) || real_zerop (arg1)))
        return fold_build2 (code, type, TREE_OPERAND (arg0, 0), arg1);
        return fold_build2 (code, type, TREE_OPERAND (arg0, 0), arg1);
 
 
      /* If this is an EQ or NE comparison with zero and ARG0 is
      /* If this is an EQ or NE comparison with zero and ARG0 is
         (1 << foo) & bar, convert it to (bar >> foo) & 1.  Both require
         (1 << foo) & bar, convert it to (bar >> foo) & 1.  Both require
         two operations, but the latter can be done in one less insn
         two operations, but the latter can be done in one less insn
         on machines that have only two-operand insns or on which a
         on machines that have only two-operand insns or on which a
         constant cannot be the first operand.  */
         constant cannot be the first operand.  */
      if (TREE_CODE (arg0) == BIT_AND_EXPR
      if (TREE_CODE (arg0) == BIT_AND_EXPR
          && integer_zerop (arg1))
          && integer_zerop (arg1))
        {
        {
          tree arg00 = TREE_OPERAND (arg0, 0);
          tree arg00 = TREE_OPERAND (arg0, 0);
          tree arg01 = TREE_OPERAND (arg0, 1);
          tree arg01 = TREE_OPERAND (arg0, 1);
          if (TREE_CODE (arg00) == LSHIFT_EXPR
          if (TREE_CODE (arg00) == LSHIFT_EXPR
              && integer_onep (TREE_OPERAND (arg00, 0)))
              && integer_onep (TREE_OPERAND (arg00, 0)))
            return
            return
              fold_build2 (code, type,
              fold_build2 (code, type,
                           build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
                           build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
                                   build2 (RSHIFT_EXPR, TREE_TYPE (arg00),
                                   build2 (RSHIFT_EXPR, TREE_TYPE (arg00),
                                           arg01, TREE_OPERAND (arg00, 1)),
                                           arg01, TREE_OPERAND (arg00, 1)),
                                   fold_convert (TREE_TYPE (arg0),
                                   fold_convert (TREE_TYPE (arg0),
                                                 integer_one_node)),
                                                 integer_one_node)),
                           arg1);
                           arg1);
          else if (TREE_CODE (TREE_OPERAND (arg0, 1)) == LSHIFT_EXPR
          else if (TREE_CODE (TREE_OPERAND (arg0, 1)) == LSHIFT_EXPR
                   && integer_onep (TREE_OPERAND (TREE_OPERAND (arg0, 1), 0)))
                   && integer_onep (TREE_OPERAND (TREE_OPERAND (arg0, 1), 0)))
            return
            return
              fold_build2 (code, type,
              fold_build2 (code, type,
                           build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
                           build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
                                   build2 (RSHIFT_EXPR, TREE_TYPE (arg01),
                                   build2 (RSHIFT_EXPR, TREE_TYPE (arg01),
                                           arg00, TREE_OPERAND (arg01, 1)),
                                           arg00, TREE_OPERAND (arg01, 1)),
                                   fold_convert (TREE_TYPE (arg0),
                                   fold_convert (TREE_TYPE (arg0),
                                                 integer_one_node)),
                                                 integer_one_node)),
                           arg1);
                           arg1);
        }
        }
 
 
      /* If this is an NE or EQ comparison of zero against the result of a
      /* If this is an NE or EQ comparison of zero against the result of a
         signed MOD operation whose second operand is a power of 2, make
         signed MOD operation whose second operand is a power of 2, make
         the MOD operation unsigned since it is simpler and equivalent.  */
         the MOD operation unsigned since it is simpler and equivalent.  */
      if (integer_zerop (arg1)
      if (integer_zerop (arg1)
          && !TYPE_UNSIGNED (TREE_TYPE (arg0))
          && !TYPE_UNSIGNED (TREE_TYPE (arg0))
          && (TREE_CODE (arg0) == TRUNC_MOD_EXPR
          && (TREE_CODE (arg0) == TRUNC_MOD_EXPR
              || TREE_CODE (arg0) == CEIL_MOD_EXPR
              || TREE_CODE (arg0) == CEIL_MOD_EXPR
              || TREE_CODE (arg0) == FLOOR_MOD_EXPR
              || TREE_CODE (arg0) == FLOOR_MOD_EXPR
              || TREE_CODE (arg0) == ROUND_MOD_EXPR)
              || TREE_CODE (arg0) == ROUND_MOD_EXPR)
          && integer_pow2p (TREE_OPERAND (arg0, 1)))
          && integer_pow2p (TREE_OPERAND (arg0, 1)))
        {
        {
          tree newtype = lang_hooks.types.unsigned_type (TREE_TYPE (arg0));
          tree newtype = lang_hooks.types.unsigned_type (TREE_TYPE (arg0));
          tree newmod = fold_build2 (TREE_CODE (arg0), newtype,
          tree newmod = fold_build2 (TREE_CODE (arg0), newtype,
                                     fold_convert (newtype,
                                     fold_convert (newtype,
                                                   TREE_OPERAND (arg0, 0)),
                                                   TREE_OPERAND (arg0, 0)),
                                     fold_convert (newtype,
                                     fold_convert (newtype,
                                                   TREE_OPERAND (arg0, 1)));
                                                   TREE_OPERAND (arg0, 1)));
 
 
          return fold_build2 (code, type, newmod,
          return fold_build2 (code, type, newmod,
                              fold_convert (newtype, arg1));
                              fold_convert (newtype, arg1));
        }
        }
 
 
      /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where
      /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where
         C1 is a valid shift constant, and C2 is a power of two, i.e.
         C1 is a valid shift constant, and C2 is a power of two, i.e.
         a single bit.  */
         a single bit.  */
      if (TREE_CODE (arg0) == BIT_AND_EXPR
      if (TREE_CODE (arg0) == BIT_AND_EXPR
          && TREE_CODE (TREE_OPERAND (arg0, 0)) == RSHIFT_EXPR
          && TREE_CODE (TREE_OPERAND (arg0, 0)) == RSHIFT_EXPR
          && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1))
          && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1))
             == INTEGER_CST
             == INTEGER_CST
          && integer_pow2p (TREE_OPERAND (arg0, 1))
          && integer_pow2p (TREE_OPERAND (arg0, 1))
          && integer_zerop (arg1))
          && integer_zerop (arg1))
        {
        {
          tree itype = TREE_TYPE (arg0);
          tree itype = TREE_TYPE (arg0);
          unsigned HOST_WIDE_INT prec = TYPE_PRECISION (itype);
          unsigned HOST_WIDE_INT prec = TYPE_PRECISION (itype);
          tree arg001 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 1);
          tree arg001 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 1);
 
 
          /* Check for a valid shift count.  */
          /* Check for a valid shift count.  */
          if (TREE_INT_CST_HIGH (arg001) == 0
          if (TREE_INT_CST_HIGH (arg001) == 0
              && TREE_INT_CST_LOW (arg001) < prec)
              && TREE_INT_CST_LOW (arg001) < prec)
            {
            {
              tree arg01 = TREE_OPERAND (arg0, 1);
              tree arg01 = TREE_OPERAND (arg0, 1);
              tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
              tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
              unsigned HOST_WIDE_INT log2 = tree_log2 (arg01);
              unsigned HOST_WIDE_INT log2 = tree_log2 (arg01);
              /* If (C2 << C1) doesn't overflow, then ((X >> C1) & C2) != 0
              /* If (C2 << C1) doesn't overflow, then ((X >> C1) & C2) != 0
                 can be rewritten as (X & (C2 << C1)) != 0.  */
                 can be rewritten as (X & (C2 << C1)) != 0.  */
              if ((log2 + TREE_INT_CST_LOW (arg001)) < prec)
              if ((log2 + TREE_INT_CST_LOW (arg001)) < prec)
                {
                {
                  tem = fold_build2 (LSHIFT_EXPR, itype, arg01, arg001);
                  tem = fold_build2 (LSHIFT_EXPR, itype, arg01, arg001);
                  tem = fold_build2 (BIT_AND_EXPR, itype, arg000, tem);
                  tem = fold_build2 (BIT_AND_EXPR, itype, arg000, tem);
                  return fold_build2 (code, type, tem, arg1);
                  return fold_build2 (code, type, tem, arg1);
                }
                }
              /* Otherwise, for signed (arithmetic) shifts,
              /* Otherwise, for signed (arithmetic) shifts,
                 ((X >> C1) & C2) != 0 is rewritten as X < 0, and
                 ((X >> C1) & C2) != 0 is rewritten as X < 0, and
                 ((X >> C1) & C2) == 0 is rewritten as X >= 0.  */
                 ((X >> C1) & C2) == 0 is rewritten as X >= 0.  */
              else if (!TYPE_UNSIGNED (itype))
              else if (!TYPE_UNSIGNED (itype))
                return fold_build2 (code == EQ_EXPR ? GE_EXPR : LT_EXPR, type,
                return fold_build2 (code == EQ_EXPR ? GE_EXPR : LT_EXPR, type,
                                    arg000, build_int_cst (itype, 0));
                                    arg000, build_int_cst (itype, 0));
              /* Otherwise, of unsigned (logical) shifts,
              /* Otherwise, of unsigned (logical) shifts,
                 ((X >> C1) & C2) != 0 is rewritten as (X,false), and
                 ((X >> C1) & C2) != 0 is rewritten as (X,false), and
                 ((X >> C1) & C2) == 0 is rewritten as (X,true).  */
                 ((X >> C1) & C2) == 0 is rewritten as (X,true).  */
              else
              else
                return omit_one_operand (type,
                return omit_one_operand (type,
                                         code == EQ_EXPR ? integer_one_node
                                         code == EQ_EXPR ? integer_one_node
                                                         : integer_zero_node,
                                                         : integer_zero_node,
                                         arg000);
                                         arg000);
            }
            }
        }
        }
 
 
      /* If this is an NE comparison of zero with an AND of one, remove the
      /* If this is an NE comparison of zero with an AND of one, remove the
         comparison since the AND will give the correct value.  */
         comparison since the AND will give the correct value.  */
      if (code == NE_EXPR
      if (code == NE_EXPR
          && integer_zerop (arg1)
          && integer_zerop (arg1)
          && TREE_CODE (arg0) == BIT_AND_EXPR
          && TREE_CODE (arg0) == BIT_AND_EXPR
          && integer_onep (TREE_OPERAND (arg0, 1)))
          && integer_onep (TREE_OPERAND (arg0, 1)))
        return fold_convert (type, arg0);
        return fold_convert (type, arg0);
 
 
      /* If we have (A & C) == C where C is a power of 2, convert this into
      /* If we have (A & C) == C where C is a power of 2, convert this into
         (A & C) != 0.  Similarly for NE_EXPR.  */
         (A & C) != 0.  Similarly for NE_EXPR.  */
      if (TREE_CODE (arg0) == BIT_AND_EXPR
      if (TREE_CODE (arg0) == BIT_AND_EXPR
          && integer_pow2p (TREE_OPERAND (arg0, 1))
          && integer_pow2p (TREE_OPERAND (arg0, 1))
          && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
          && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
        return fold_build2 (code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
        return fold_build2 (code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
                            arg0, fold_convert (TREE_TYPE (arg0),
                            arg0, fold_convert (TREE_TYPE (arg0),
                                                integer_zero_node));
                                                integer_zero_node));
 
 
      /* If we have (A & C) != 0 or (A & C) == 0 and C is the sign
      /* If we have (A & C) != 0 or (A & C) == 0 and C is the sign
         bit, then fold the expression into A < 0 or A >= 0.  */
         bit, then fold the expression into A < 0 or A >= 0.  */
      tem = fold_single_bit_test_into_sign_test (code, arg0, arg1, type);
      tem = fold_single_bit_test_into_sign_test (code, arg0, arg1, type);
      if (tem)
      if (tem)
        return tem;
        return tem;
 
 
      /* If we have (A & C) == D where D & ~C != 0, convert this into 0.
      /* If we have (A & C) == D where D & ~C != 0, convert this into 0.
         Similarly for NE_EXPR.  */
         Similarly for NE_EXPR.  */
      if (TREE_CODE (arg0) == BIT_AND_EXPR
      if (TREE_CODE (arg0) == BIT_AND_EXPR
          && TREE_CODE (arg1) == INTEGER_CST
          && TREE_CODE (arg1) == INTEGER_CST
          && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
          && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
        {
        {
          tree notc = fold_build1 (BIT_NOT_EXPR,
          tree notc = fold_build1 (BIT_NOT_EXPR,
                                   TREE_TYPE (TREE_OPERAND (arg0, 1)),
                                   TREE_TYPE (TREE_OPERAND (arg0, 1)),
                                   TREE_OPERAND (arg0, 1));
                                   TREE_OPERAND (arg0, 1));
          tree dandnotc = fold_build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
          tree dandnotc = fold_build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
                                       arg1, notc);
                                       arg1, notc);
          tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
          tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
          if (integer_nonzerop (dandnotc))
          if (integer_nonzerop (dandnotc))
            return omit_one_operand (type, rslt, arg0);
            return omit_one_operand (type, rslt, arg0);
        }
        }
 
 
      /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
      /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
         Similarly for NE_EXPR.  */
         Similarly for NE_EXPR.  */
      if (TREE_CODE (arg0) == BIT_IOR_EXPR
      if (TREE_CODE (arg0) == BIT_IOR_EXPR
          && TREE_CODE (arg1) == INTEGER_CST
          && TREE_CODE (arg1) == INTEGER_CST
          && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
          && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
        {
        {
          tree notd = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg1), arg1);
          tree notd = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg1), arg1);
          tree candnotd = fold_build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
          tree candnotd = fold_build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
                                       TREE_OPERAND (arg0, 1), notd);
                                       TREE_OPERAND (arg0, 1), notd);
          tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
          tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
          if (integer_nonzerop (candnotd))
          if (integer_nonzerop (candnotd))
            return omit_one_operand (type, rslt, arg0);
            return omit_one_operand (type, rslt, arg0);
        }
        }
 
 
      /* If this is a comparison of a field, we may be able to simplify it.  */
      /* If this is a comparison of a field, we may be able to simplify it.  */
      if (((TREE_CODE (arg0) == COMPONENT_REF
      if (((TREE_CODE (arg0) == COMPONENT_REF
            && lang_hooks.can_use_bit_fields_p ())
            && lang_hooks.can_use_bit_fields_p ())
           || TREE_CODE (arg0) == BIT_FIELD_REF)
           || TREE_CODE (arg0) == BIT_FIELD_REF)
          /* Handle the constant case even without -O
          /* Handle the constant case even without -O
             to make sure the warnings are given.  */
             to make sure the warnings are given.  */
          && (optimize || TREE_CODE (arg1) == INTEGER_CST))
          && (optimize || TREE_CODE (arg1) == INTEGER_CST))
        {
        {
          t1 = optimize_bit_field_compare (code, type, arg0, arg1);
          t1 = optimize_bit_field_compare (code, type, arg0, arg1);
          if (t1)
          if (t1)
            return t1;
            return t1;
        }
        }
 
 
      /* Optimize comparisons of strlen vs zero to a compare of the
      /* Optimize comparisons of strlen vs zero to a compare of the
         first character of the string vs zero.  To wit,
         first character of the string vs zero.  To wit,
                strlen(ptr) == 0   =>  *ptr == 0
                strlen(ptr) == 0   =>  *ptr == 0
                strlen(ptr) != 0   =>  *ptr != 0
                strlen(ptr) != 0   =>  *ptr != 0
         Other cases should reduce to one of these two (or a constant)
         Other cases should reduce to one of these two (or a constant)
         due to the return value of strlen being unsigned.  */
         due to the return value of strlen being unsigned.  */
      if (TREE_CODE (arg0) == CALL_EXPR
      if (TREE_CODE (arg0) == CALL_EXPR
          && integer_zerop (arg1))
          && integer_zerop (arg1))
        {
        {
          tree fndecl = get_callee_fndecl (arg0);
          tree fndecl = get_callee_fndecl (arg0);
          tree arglist;
          tree arglist;
 
 
          if (fndecl
          if (fndecl
              && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
              && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
              && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STRLEN
              && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STRLEN
              && (arglist = TREE_OPERAND (arg0, 1))
              && (arglist = TREE_OPERAND (arg0, 1))
              && TREE_CODE (TREE_TYPE (TREE_VALUE (arglist))) == POINTER_TYPE
              && TREE_CODE (TREE_TYPE (TREE_VALUE (arglist))) == POINTER_TYPE
              && ! TREE_CHAIN (arglist))
              && ! TREE_CHAIN (arglist))
            {
            {
              tree iref = build_fold_indirect_ref (TREE_VALUE (arglist));
              tree iref = build_fold_indirect_ref (TREE_VALUE (arglist));
              return fold_build2 (code, type, iref,
              return fold_build2 (code, type, iref,
                                  build_int_cst (TREE_TYPE (iref), 0));
                                  build_int_cst (TREE_TYPE (iref), 0));
            }
            }
        }
        }
 
 
      /* Fold (X >> C) != 0 into X < 0 if C is one less than the width
      /* Fold (X >> C) != 0 into X < 0 if C is one less than the width
         of X.  Similarly fold (X >> C) == 0 into X >= 0.  */
         of X.  Similarly fold (X >> C) == 0 into X >= 0.  */
      if (TREE_CODE (arg0) == RSHIFT_EXPR
      if (TREE_CODE (arg0) == RSHIFT_EXPR
          && integer_zerop (arg1)
          && integer_zerop (arg1)
          && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
          && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
        {
        {
          tree arg00 = TREE_OPERAND (arg0, 0);
          tree arg00 = TREE_OPERAND (arg0, 0);
          tree arg01 = TREE_OPERAND (arg0, 1);
          tree arg01 = TREE_OPERAND (arg0, 1);
          tree itype = TREE_TYPE (arg00);
          tree itype = TREE_TYPE (arg00);
          if (TREE_INT_CST_HIGH (arg01) == 0
          if (TREE_INT_CST_HIGH (arg01) == 0
              && TREE_INT_CST_LOW (arg01)
              && TREE_INT_CST_LOW (arg01)
                 == (unsigned HOST_WIDE_INT) (TYPE_PRECISION (itype) - 1))
                 == (unsigned HOST_WIDE_INT) (TYPE_PRECISION (itype) - 1))
            {
            {
              if (TYPE_UNSIGNED (itype))
              if (TYPE_UNSIGNED (itype))
                {
                {
                  itype = lang_hooks.types.signed_type (itype);
                  itype = lang_hooks.types.signed_type (itype);
                  arg00 = fold_convert (itype, arg00);
                  arg00 = fold_convert (itype, arg00);
                }
                }
              return fold_build2 (code == EQ_EXPR ? GE_EXPR : LT_EXPR,
              return fold_build2 (code == EQ_EXPR ? GE_EXPR : LT_EXPR,
                                  type, arg00, build_int_cst (itype, 0));
                                  type, arg00, build_int_cst (itype, 0));
            }
            }
        }
        }
 
 
      /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y.  */
      /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y.  */
      if (integer_zerop (arg1)
      if (integer_zerop (arg1)
          && TREE_CODE (arg0) == BIT_XOR_EXPR)
          && TREE_CODE (arg0) == BIT_XOR_EXPR)
        return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
        return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
                            TREE_OPERAND (arg0, 1));
                            TREE_OPERAND (arg0, 1));
 
 
      /* (X ^ Y) == Y becomes X == 0.  We know that Y has no side-effects.  */
      /* (X ^ Y) == Y becomes X == 0.  We know that Y has no side-effects.  */
      if (TREE_CODE (arg0) == BIT_XOR_EXPR
      if (TREE_CODE (arg0) == BIT_XOR_EXPR
          && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
          && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
        return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
        return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
                            build_int_cst (TREE_TYPE (arg1), 0));
                            build_int_cst (TREE_TYPE (arg1), 0));
      /* Likewise (X ^ Y) == X becomes Y == 0.  X has no side-effects.  */
      /* Likewise (X ^ Y) == X becomes Y == 0.  X has no side-effects.  */
      if (TREE_CODE (arg0) == BIT_XOR_EXPR
      if (TREE_CODE (arg0) == BIT_XOR_EXPR
          && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
          && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
          && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
          && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
        return fold_build2 (code, type, TREE_OPERAND (arg0, 1),
        return fold_build2 (code, type, TREE_OPERAND (arg0, 1),
                            build_int_cst (TREE_TYPE (arg1), 0));
                            build_int_cst (TREE_TYPE (arg1), 0));
 
 
      /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2).  */
      /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2).  */
      if (TREE_CODE (arg0) == BIT_XOR_EXPR
      if (TREE_CODE (arg0) == BIT_XOR_EXPR
          && TREE_CODE (arg1) == INTEGER_CST
          && TREE_CODE (arg1) == INTEGER_CST
          && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
          && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
        return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
        return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
                            fold_build2 (BIT_XOR_EXPR, TREE_TYPE (arg1),
                            fold_build2 (BIT_XOR_EXPR, TREE_TYPE (arg1),
                                         TREE_OPERAND (arg0, 1), arg1));
                                         TREE_OPERAND (arg0, 1), arg1));
 
 
      /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into
      /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into
         (X & C) == 0 when C is a single bit.  */
         (X & C) == 0 when C is a single bit.  */
      if (TREE_CODE (arg0) == BIT_AND_EXPR
      if (TREE_CODE (arg0) == BIT_AND_EXPR
          && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_NOT_EXPR
          && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_NOT_EXPR
          && integer_zerop (arg1)
          && integer_zerop (arg1)
          && integer_pow2p (TREE_OPERAND (arg0, 1)))
          && integer_pow2p (TREE_OPERAND (arg0, 1)))
        {
        {
          tem = fold_build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
          tem = fold_build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
                             TREE_OPERAND (TREE_OPERAND (arg0, 0), 0),
                             TREE_OPERAND (TREE_OPERAND (arg0, 0), 0),
                             TREE_OPERAND (arg0, 1));
                             TREE_OPERAND (arg0, 1));
          return fold_build2 (code == EQ_EXPR ? NE_EXPR : EQ_EXPR,
          return fold_build2 (code == EQ_EXPR ? NE_EXPR : EQ_EXPR,
                              type, tem, arg1);
                              type, tem, arg1);
        }
        }
 
 
      /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the
      /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the
         constant C is a power of two, i.e. a single bit.  */
         constant C is a power of two, i.e. a single bit.  */
      if (TREE_CODE (arg0) == BIT_XOR_EXPR
      if (TREE_CODE (arg0) == BIT_XOR_EXPR
          && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
          && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
          && integer_zerop (arg1)
          && integer_zerop (arg1)
          && integer_pow2p (TREE_OPERAND (arg0, 1))
          && integer_pow2p (TREE_OPERAND (arg0, 1))
          && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
          && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
                              TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
                              TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
        {
        {
          tree arg00 = TREE_OPERAND (arg0, 0);
          tree arg00 = TREE_OPERAND (arg0, 0);
          return fold_build2 (code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
          return fold_build2 (code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
                              arg00, build_int_cst (TREE_TYPE (arg00), 0));
                              arg00, build_int_cst (TREE_TYPE (arg00), 0));
        }
        }
 
 
      /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0,
      /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0,
         when is C is a power of two, i.e. a single bit.  */
         when is C is a power of two, i.e. a single bit.  */
      if (TREE_CODE (arg0) == BIT_AND_EXPR
      if (TREE_CODE (arg0) == BIT_AND_EXPR
          && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_XOR_EXPR
          && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_XOR_EXPR
          && integer_zerop (arg1)
          && integer_zerop (arg1)
          && integer_pow2p (TREE_OPERAND (arg0, 1))
          && integer_pow2p (TREE_OPERAND (arg0, 1))
          && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
          && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
                              TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
                              TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
        {
        {
          tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
          tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
          tem = fold_build2 (BIT_AND_EXPR, TREE_TYPE (arg000),
          tem = fold_build2 (BIT_AND_EXPR, TREE_TYPE (arg000),
                             arg000, TREE_OPERAND (arg0, 1));
                             arg000, TREE_OPERAND (arg0, 1));
          return fold_build2 (code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
          return fold_build2 (code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
                              tem, build_int_cst (TREE_TYPE (tem), 0));
                              tem, build_int_cst (TREE_TYPE (tem), 0));
        }
        }
 
 
      if (integer_zerop (arg1)
      if (integer_zerop (arg1)
          && tree_expr_nonzero_p (arg0))
          && tree_expr_nonzero_p (arg0))
        {
        {
          tree res = constant_boolean_node (code==NE_EXPR, type);
          tree res = constant_boolean_node (code==NE_EXPR, type);
          return omit_one_operand (type, res, arg0);
          return omit_one_operand (type, res, arg0);
        }
        }
      return NULL_TREE;
      return NULL_TREE;
 
 
    case LT_EXPR:
    case LT_EXPR:
    case GT_EXPR:
    case GT_EXPR:
    case LE_EXPR:
    case LE_EXPR:
    case GE_EXPR:
    case GE_EXPR:
      tem = fold_comparison (code, type, op0, op1);
      tem = fold_comparison (code, type, op0, op1);
      if (tem != NULL_TREE)
      if (tem != NULL_TREE)
        return tem;
        return tem;
 
 
      /* Transform comparisons of the form X +- C CMP X.  */
      /* Transform comparisons of the form X +- C CMP X.  */
      if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
      if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
          && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
          && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
          && ((TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
          && ((TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
               && !HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0))))
               && !HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0))))
              || (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
              || (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
                  && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))))
                  && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))))
        {
        {
          tree arg01 = TREE_OPERAND (arg0, 1);
          tree arg01 = TREE_OPERAND (arg0, 1);
          enum tree_code code0 = TREE_CODE (arg0);
          enum tree_code code0 = TREE_CODE (arg0);
          int is_positive;
          int is_positive;
 
 
          if (TREE_CODE (arg01) == REAL_CST)
          if (TREE_CODE (arg01) == REAL_CST)
            is_positive = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01)) ? -1 : 1;
            is_positive = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01)) ? -1 : 1;
          else
          else
            is_positive = tree_int_cst_sgn (arg01);
            is_positive = tree_int_cst_sgn (arg01);
 
 
          /* (X - c) > X becomes false.  */
          /* (X - c) > X becomes false.  */
          if (code == GT_EXPR
          if (code == GT_EXPR
              && ((code0 == MINUS_EXPR && is_positive >= 0)
              && ((code0 == MINUS_EXPR && is_positive >= 0)
                  || (code0 == PLUS_EXPR && is_positive <= 0)))
                  || (code0 == PLUS_EXPR && is_positive <= 0)))
            {
            {
              if (TREE_CODE (arg01) == INTEGER_CST
              if (TREE_CODE (arg01) == INTEGER_CST
                  && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
                  && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
                fold_overflow_warning (("assuming signed overflow does not "
                fold_overflow_warning (("assuming signed overflow does not "
                                        "occur when assuming that (X - c) > X "
                                        "occur when assuming that (X - c) > X "
                                        "is always false"),
                                        "is always false"),
                                       WARN_STRICT_OVERFLOW_ALL);
                                       WARN_STRICT_OVERFLOW_ALL);
              return constant_boolean_node (0, type);
              return constant_boolean_node (0, type);
            }
            }
 
 
          /* Likewise (X + c) < X becomes false.  */
          /* Likewise (X + c) < X becomes false.  */
          if (code == LT_EXPR
          if (code == LT_EXPR
              && ((code0 == PLUS_EXPR && is_positive >= 0)
              && ((code0 == PLUS_EXPR && is_positive >= 0)
                  || (code0 == MINUS_EXPR && is_positive <= 0)))
                  || (code0 == MINUS_EXPR && is_positive <= 0)))
            {
            {
              if (TREE_CODE (arg01) == INTEGER_CST
              if (TREE_CODE (arg01) == INTEGER_CST
                  && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
                  && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
                fold_overflow_warning (("assuming signed overflow does not "
                fold_overflow_warning (("assuming signed overflow does not "
                                        "occur when assuming that "
                                        "occur when assuming that "
                                        "(X + c) < X is always false"),
                                        "(X + c) < X is always false"),
                                       WARN_STRICT_OVERFLOW_ALL);
                                       WARN_STRICT_OVERFLOW_ALL);
              return constant_boolean_node (0, type);
              return constant_boolean_node (0, type);
            }
            }
 
 
          /* Convert (X - c) <= X to true.  */
          /* Convert (X - c) <= X to true.  */
          if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1)))
          if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1)))
              && code == LE_EXPR
              && code == LE_EXPR
              && ((code0 == MINUS_EXPR && is_positive >= 0)
              && ((code0 == MINUS_EXPR && is_positive >= 0)
                  || (code0 == PLUS_EXPR && is_positive <= 0)))
                  || (code0 == PLUS_EXPR && is_positive <= 0)))
            {
            {
              if (TREE_CODE (arg01) == INTEGER_CST
              if (TREE_CODE (arg01) == INTEGER_CST
                  && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
                  && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
                fold_overflow_warning (("assuming signed overflow does not "
                fold_overflow_warning (("assuming signed overflow does not "
                                        "occur when assuming that "
                                        "occur when assuming that "
                                        "(X - c) <= X is always true"),
                                        "(X - c) <= X is always true"),
                                       WARN_STRICT_OVERFLOW_ALL);
                                       WARN_STRICT_OVERFLOW_ALL);
              return constant_boolean_node (1, type);
              return constant_boolean_node (1, type);
            }
            }
 
 
          /* Convert (X + c) >= X to true.  */
          /* Convert (X + c) >= X to true.  */
          if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1)))
          if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1)))
              && code == GE_EXPR
              && code == GE_EXPR
              && ((code0 == PLUS_EXPR && is_positive >= 0)
              && ((code0 == PLUS_EXPR && is_positive >= 0)
                  || (code0 == MINUS_EXPR && is_positive <= 0)))
                  || (code0 == MINUS_EXPR && is_positive <= 0)))
            {
            {
              if (TREE_CODE (arg01) == INTEGER_CST
              if (TREE_CODE (arg01) == INTEGER_CST
                  && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
                  && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
                fold_overflow_warning (("assuming signed overflow does not "
                fold_overflow_warning (("assuming signed overflow does not "
                                        "occur when assuming that "
                                        "occur when assuming that "
                                        "(X + c) >= X is always true"),
                                        "(X + c) >= X is always true"),
                                       WARN_STRICT_OVERFLOW_ALL);
                                       WARN_STRICT_OVERFLOW_ALL);
              return constant_boolean_node (1, type);
              return constant_boolean_node (1, type);
            }
            }
 
 
          if (TREE_CODE (arg01) == INTEGER_CST)
          if (TREE_CODE (arg01) == INTEGER_CST)
            {
            {
              /* Convert X + c > X and X - c < X to true for integers.  */
              /* Convert X + c > X and X - c < X to true for integers.  */
              if (code == GT_EXPR
              if (code == GT_EXPR
                  && ((code0 == PLUS_EXPR && is_positive > 0)
                  && ((code0 == PLUS_EXPR && is_positive > 0)
                      || (code0 == MINUS_EXPR && is_positive < 0)))
                      || (code0 == MINUS_EXPR && is_positive < 0)))
                {
                {
                  if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
                  if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
                    fold_overflow_warning (("assuming signed overflow does "
                    fold_overflow_warning (("assuming signed overflow does "
                                            "not occur when assuming that "
                                            "not occur when assuming that "
                                            "(X + c) > X is always true"),
                                            "(X + c) > X is always true"),
                                           WARN_STRICT_OVERFLOW_ALL);
                                           WARN_STRICT_OVERFLOW_ALL);
                  return constant_boolean_node (1, type);
                  return constant_boolean_node (1, type);
                }
                }
 
 
              if (code == LT_EXPR
              if (code == LT_EXPR
                  && ((code0 == MINUS_EXPR && is_positive > 0)
                  && ((code0 == MINUS_EXPR && is_positive > 0)
                      || (code0 == PLUS_EXPR && is_positive < 0)))
                      || (code0 == PLUS_EXPR && is_positive < 0)))
                {
                {
                  if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
                  if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
                    fold_overflow_warning (("assuming signed overflow does "
                    fold_overflow_warning (("assuming signed overflow does "
                                            "not occur when assuming that "
                                            "not occur when assuming that "
                                            "(X - c) < X is always true"),
                                            "(X - c) < X is always true"),
                                           WARN_STRICT_OVERFLOW_ALL);
                                           WARN_STRICT_OVERFLOW_ALL);
                  return constant_boolean_node (1, type);
                  return constant_boolean_node (1, type);
                }
                }
 
 
              /* Convert X + c <= X and X - c >= X to false for integers.  */
              /* Convert X + c <= X and X - c >= X to false for integers.  */
              if (code == LE_EXPR
              if (code == LE_EXPR
                  && ((code0 == PLUS_EXPR && is_positive > 0)
                  && ((code0 == PLUS_EXPR && is_positive > 0)
                      || (code0 == MINUS_EXPR && is_positive < 0)))
                      || (code0 == MINUS_EXPR && is_positive < 0)))
                {
                {
                  if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
                  if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
                    fold_overflow_warning (("assuming signed overflow does "
                    fold_overflow_warning (("assuming signed overflow does "
                                            "not occur when assuming that "
                                            "not occur when assuming that "
                                            "(X + c) <= X is always false"),
                                            "(X + c) <= X is always false"),
                                           WARN_STRICT_OVERFLOW_ALL);
                                           WARN_STRICT_OVERFLOW_ALL);
                  return constant_boolean_node (0, type);
                  return constant_boolean_node (0, type);
                }
                }
 
 
              if (code == GE_EXPR
              if (code == GE_EXPR
                  && ((code0 == MINUS_EXPR && is_positive > 0)
                  && ((code0 == MINUS_EXPR && is_positive > 0)
                      || (code0 == PLUS_EXPR && is_positive < 0)))
                      || (code0 == PLUS_EXPR && is_positive < 0)))
                {
                {
                  if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
                  if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
                    fold_overflow_warning (("assuming signed overflow does "
                    fold_overflow_warning (("assuming signed overflow does "
                                            "not occur when assuming that "
                                            "not occur when assuming that "
                                            "(X - c) >= X is always true"),
                                            "(X - c) >= X is always true"),
                                           WARN_STRICT_OVERFLOW_ALL);
                                           WARN_STRICT_OVERFLOW_ALL);
                  return constant_boolean_node (0, type);
                  return constant_boolean_node (0, type);
                }
                }
            }
            }
        }
        }
 
 
      /* Change X >= C to X > (C - 1) and X < C to X <= (C - 1) if C > 0.
      /* Change X >= C to X > (C - 1) and X < C to X <= (C - 1) if C > 0.
         This transformation affects the cases which are handled in later
         This transformation affects the cases which are handled in later
         optimizations involving comparisons with non-negative constants.  */
         optimizations involving comparisons with non-negative constants.  */
      if (TREE_CODE (arg1) == INTEGER_CST
      if (TREE_CODE (arg1) == INTEGER_CST
          && TREE_CODE (arg0) != INTEGER_CST
          && TREE_CODE (arg0) != INTEGER_CST
          && tree_int_cst_sgn (arg1) > 0)
          && tree_int_cst_sgn (arg1) > 0)
        {
        {
          if (code == GE_EXPR)
          if (code == GE_EXPR)
            {
            {
              arg1 = const_binop (MINUS_EXPR, arg1,
              arg1 = const_binop (MINUS_EXPR, arg1,
                                  build_int_cst (TREE_TYPE (arg1), 1), 0);
                                  build_int_cst (TREE_TYPE (arg1), 1), 0);
              return fold_build2 (GT_EXPR, type, arg0,
              return fold_build2 (GT_EXPR, type, arg0,
                                  fold_convert (TREE_TYPE (arg0), arg1));
                                  fold_convert (TREE_TYPE (arg0), arg1));
            }
            }
          if (code == LT_EXPR)
          if (code == LT_EXPR)
            {
            {
              arg1 = const_binop (MINUS_EXPR, arg1,
              arg1 = const_binop (MINUS_EXPR, arg1,
                                  build_int_cst (TREE_TYPE (arg1), 1), 0);
                                  build_int_cst (TREE_TYPE (arg1), 1), 0);
              return fold_build2 (LE_EXPR, type, arg0,
              return fold_build2 (LE_EXPR, type, arg0,
                                  fold_convert (TREE_TYPE (arg0), arg1));
                                  fold_convert (TREE_TYPE (arg0), arg1));
            }
            }
        }
        }
 
 
      /* Comparisons with the highest or lowest possible integer of
      /* Comparisons with the highest or lowest possible integer of
         the specified size will have known values.  */
         the specified size will have known values.  */
      {
      {
        int width = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (arg1)));
        int width = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (arg1)));
 
 
        if (TREE_CODE (arg1) == INTEGER_CST
        if (TREE_CODE (arg1) == INTEGER_CST
            && ! TREE_CONSTANT_OVERFLOW (arg1)
            && ! TREE_CONSTANT_OVERFLOW (arg1)
            && width <= 2 * HOST_BITS_PER_WIDE_INT
            && width <= 2 * HOST_BITS_PER_WIDE_INT
            && (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
            && (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
                || POINTER_TYPE_P (TREE_TYPE (arg1))))
                || POINTER_TYPE_P (TREE_TYPE (arg1))))
          {
          {
            HOST_WIDE_INT signed_max_hi;
            HOST_WIDE_INT signed_max_hi;
            unsigned HOST_WIDE_INT signed_max_lo;
            unsigned HOST_WIDE_INT signed_max_lo;
            unsigned HOST_WIDE_INT max_hi, max_lo, min_hi, min_lo;
            unsigned HOST_WIDE_INT max_hi, max_lo, min_hi, min_lo;
 
 
            if (width <= HOST_BITS_PER_WIDE_INT)
            if (width <= HOST_BITS_PER_WIDE_INT)
              {
              {
                signed_max_lo = ((unsigned HOST_WIDE_INT) 1 << (width - 1))
                signed_max_lo = ((unsigned HOST_WIDE_INT) 1 << (width - 1))
                                - 1;
                                - 1;
                signed_max_hi = 0;
                signed_max_hi = 0;
                max_hi = 0;
                max_hi = 0;
 
 
                if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
                if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
                  {
                  {
                    max_lo = ((unsigned HOST_WIDE_INT) 2 << (width - 1)) - 1;
                    max_lo = ((unsigned HOST_WIDE_INT) 2 << (width - 1)) - 1;
                    min_lo = 0;
                    min_lo = 0;
                    min_hi = 0;
                    min_hi = 0;
                  }
                  }
                else
                else
                  {
                  {
                    max_lo = signed_max_lo;
                    max_lo = signed_max_lo;
                    min_lo = ((unsigned HOST_WIDE_INT) -1 << (width - 1));
                    min_lo = ((unsigned HOST_WIDE_INT) -1 << (width - 1));
                    min_hi = -1;
                    min_hi = -1;
                  }
                  }
              }
              }
            else
            else
              {
              {
                width -= HOST_BITS_PER_WIDE_INT;
                width -= HOST_BITS_PER_WIDE_INT;
                signed_max_lo = -1;
                signed_max_lo = -1;
                signed_max_hi = ((unsigned HOST_WIDE_INT) 1 << (width - 1))
                signed_max_hi = ((unsigned HOST_WIDE_INT) 1 << (width - 1))
                                - 1;
                                - 1;
                max_lo = -1;
                max_lo = -1;
                min_lo = 0;
                min_lo = 0;
 
 
                if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
                if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
                  {
                  {
                    max_hi = ((unsigned HOST_WIDE_INT) 2 << (width - 1)) - 1;
                    max_hi = ((unsigned HOST_WIDE_INT) 2 << (width - 1)) - 1;
                    min_hi = 0;
                    min_hi = 0;
                  }
                  }
                else
                else
                  {
                  {
                    max_hi = signed_max_hi;
                    max_hi = signed_max_hi;
                    min_hi = ((unsigned HOST_WIDE_INT) -1 << (width - 1));
                    min_hi = ((unsigned HOST_WIDE_INT) -1 << (width - 1));
                  }
                  }
              }
              }
 
 
            if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1) == max_hi
            if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1) == max_hi
                && TREE_INT_CST_LOW (arg1) == max_lo)
                && TREE_INT_CST_LOW (arg1) == max_lo)
              switch (code)
              switch (code)
                {
                {
                case GT_EXPR:
                case GT_EXPR:
                  return omit_one_operand (type, integer_zero_node, arg0);
                  return omit_one_operand (type, integer_zero_node, arg0);
 
 
                case GE_EXPR:
                case GE_EXPR:
                  return fold_build2 (EQ_EXPR, type, op0, op1);
                  return fold_build2 (EQ_EXPR, type, op0, op1);
 
 
                case LE_EXPR:
                case LE_EXPR:
                  return omit_one_operand (type, integer_one_node, arg0);
                  return omit_one_operand (type, integer_one_node, arg0);
 
 
                case LT_EXPR:
                case LT_EXPR:
                  return fold_build2 (NE_EXPR, type, op0, op1);
                  return fold_build2 (NE_EXPR, type, op0, op1);
 
 
                /* The GE_EXPR and LT_EXPR cases above are not normally
                /* The GE_EXPR and LT_EXPR cases above are not normally
                   reached because of previous transformations.  */
                   reached because of previous transformations.  */
 
 
                default:
                default:
                  break;
                  break;
                }
                }
            else if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1)
            else if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1)
                     == max_hi
                     == max_hi
                     && TREE_INT_CST_LOW (arg1) == max_lo - 1)
                     && TREE_INT_CST_LOW (arg1) == max_lo - 1)
              switch (code)
              switch (code)
                {
                {
                case GT_EXPR:
                case GT_EXPR:
                  arg1 = const_binop (PLUS_EXPR, arg1, integer_one_node, 0);
                  arg1 = const_binop (PLUS_EXPR, arg1, integer_one_node, 0);
                  return fold_build2 (EQ_EXPR, type,
                  return fold_build2 (EQ_EXPR, type,
                                      fold_convert (TREE_TYPE (arg1), arg0),
                                      fold_convert (TREE_TYPE (arg1), arg0),
                                      arg1);
                                      arg1);
                case LE_EXPR:
                case LE_EXPR:
                  arg1 = const_binop (PLUS_EXPR, arg1, integer_one_node, 0);
                  arg1 = const_binop (PLUS_EXPR, arg1, integer_one_node, 0);
                  return fold_build2 (NE_EXPR, type,
                  return fold_build2 (NE_EXPR, type,
                                      fold_convert (TREE_TYPE (arg1), arg0),
                                      fold_convert (TREE_TYPE (arg1), arg0),
                                      arg1);
                                      arg1);
                default:
                default:
                  break;
                  break;
                }
                }
            else if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1)
            else if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1)
                     == min_hi
                     == min_hi
                     && TREE_INT_CST_LOW (arg1) == min_lo)
                     && TREE_INT_CST_LOW (arg1) == min_lo)
              switch (code)
              switch (code)
                {
                {
                case LT_EXPR:
                case LT_EXPR:
                  return omit_one_operand (type, integer_zero_node, arg0);
                  return omit_one_operand (type, integer_zero_node, arg0);
 
 
                case LE_EXPR:
                case LE_EXPR:
                  return fold_build2 (EQ_EXPR, type, op0, op1);
                  return fold_build2 (EQ_EXPR, type, op0, op1);
 
 
                case GE_EXPR:
                case GE_EXPR:
                  return omit_one_operand (type, integer_one_node, arg0);
                  return omit_one_operand (type, integer_one_node, arg0);
 
 
                case GT_EXPR:
                case GT_EXPR:
                  return fold_build2 (NE_EXPR, type, op0, op1);
                  return fold_build2 (NE_EXPR, type, op0, op1);
 
 
                default:
                default:
                  break;
                  break;
                }
                }
            else if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1)
            else if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1)
                     == min_hi
                     == min_hi
                     && TREE_INT_CST_LOW (arg1) == min_lo + 1)
                     && TREE_INT_CST_LOW (arg1) == min_lo + 1)
              switch (code)
              switch (code)
                {
                {
                case GE_EXPR:
                case GE_EXPR:
                  arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
                  arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
                  return fold_build2 (NE_EXPR, type,
                  return fold_build2 (NE_EXPR, type,
                                      fold_convert (TREE_TYPE (arg1), arg0),
                                      fold_convert (TREE_TYPE (arg1), arg0),
                                      arg1);
                                      arg1);
                case LT_EXPR:
                case LT_EXPR:
                  arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
                  arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
                  return fold_build2 (EQ_EXPR, type,
                  return fold_build2 (EQ_EXPR, type,
                                      fold_convert (TREE_TYPE (arg1), arg0),
                                      fold_convert (TREE_TYPE (arg1), arg0),
                                      arg1);
                                      arg1);
                default:
                default:
                  break;
                  break;
                }
                }
 
 
            else if (!in_gimple_form
            else if (!in_gimple_form
                     && TREE_INT_CST_HIGH (arg1) == signed_max_hi
                     && TREE_INT_CST_HIGH (arg1) == signed_max_hi
                     && TREE_INT_CST_LOW (arg1) == signed_max_lo
                     && TREE_INT_CST_LOW (arg1) == signed_max_lo
                     && TYPE_UNSIGNED (TREE_TYPE (arg1))
                     && TYPE_UNSIGNED (TREE_TYPE (arg1))
                     /* signed_type does not work on pointer types.  */
                     /* signed_type does not work on pointer types.  */
                     && INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
                     && INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
              {
              {
                /* The following case also applies to X < signed_max+1
                /* The following case also applies to X < signed_max+1
                   and X >= signed_max+1 because previous transformations.  */
                   and X >= signed_max+1 because previous transformations.  */
                if (code == LE_EXPR || code == GT_EXPR)
                if (code == LE_EXPR || code == GT_EXPR)
                  {
                  {
                    tree st;
                    tree st;
                    st = lang_hooks.types.signed_type (TREE_TYPE (arg1));
                    st = lang_hooks.types.signed_type (TREE_TYPE (arg1));
                    return fold_build2 (code == LE_EXPR ? GE_EXPR : LT_EXPR,
                    return fold_build2 (code == LE_EXPR ? GE_EXPR : LT_EXPR,
                                        type, fold_convert (st, arg0),
                                        type, fold_convert (st, arg0),
                                        build_int_cst (st, 0));
                                        build_int_cst (st, 0));
                  }
                  }
              }
              }
          }
          }
      }
      }
 
 
      /* If we are comparing an ABS_EXPR with a constant, we can
      /* If we are comparing an ABS_EXPR with a constant, we can
         convert all the cases into explicit comparisons, but they may
         convert all the cases into explicit comparisons, but they may
         well not be faster than doing the ABS and one comparison.
         well not be faster than doing the ABS and one comparison.
         But ABS (X) <= C is a range comparison, which becomes a subtraction
         But ABS (X) <= C is a range comparison, which becomes a subtraction
         and a comparison, and is probably faster.  */
         and a comparison, and is probably faster.  */
      if (code == LE_EXPR
      if (code == LE_EXPR
          && TREE_CODE (arg1) == INTEGER_CST
          && TREE_CODE (arg1) == INTEGER_CST
          && TREE_CODE (arg0) == ABS_EXPR
          && TREE_CODE (arg0) == ABS_EXPR
          && ! TREE_SIDE_EFFECTS (arg0)
          && ! TREE_SIDE_EFFECTS (arg0)
          && (0 != (tem = negate_expr (arg1)))
          && (0 != (tem = negate_expr (arg1)))
          && TREE_CODE (tem) == INTEGER_CST
          && TREE_CODE (tem) == INTEGER_CST
          && ! TREE_CONSTANT_OVERFLOW (tem))
          && ! TREE_CONSTANT_OVERFLOW (tem))
        return fold_build2 (TRUTH_ANDIF_EXPR, type,
        return fold_build2 (TRUTH_ANDIF_EXPR, type,
                            build2 (GE_EXPR, type,
                            build2 (GE_EXPR, type,
                                    TREE_OPERAND (arg0, 0), tem),
                                    TREE_OPERAND (arg0, 0), tem),
                            build2 (LE_EXPR, type,
                            build2 (LE_EXPR, type,
                                    TREE_OPERAND (arg0, 0), arg1));
                                    TREE_OPERAND (arg0, 0), arg1));
 
 
      /* Convert ABS_EXPR<x> >= 0 to true.  */
      /* Convert ABS_EXPR<x> >= 0 to true.  */
      strict_overflow_p = false;
      strict_overflow_p = false;
      if (code == GE_EXPR
      if (code == GE_EXPR
          && (integer_zerop (arg1)
          && (integer_zerop (arg1)
              || (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
              || (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
                  && real_zerop (arg1)))
                  && real_zerop (arg1)))
          && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
          && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
        {
        {
          if (strict_overflow_p)
          if (strict_overflow_p)
            fold_overflow_warning (("assuming signed overflow does not occur "
            fold_overflow_warning (("assuming signed overflow does not occur "
                                    "when simplifying comparison of "
                                    "when simplifying comparison of "
                                    "absolute value and zero"),
                                    "absolute value and zero"),
                                   WARN_STRICT_OVERFLOW_CONDITIONAL);
                                   WARN_STRICT_OVERFLOW_CONDITIONAL);
          return omit_one_operand (type, integer_one_node, arg0);
          return omit_one_operand (type, integer_one_node, arg0);
        }
        }
 
 
      /* Convert ABS_EXPR<x> < 0 to false.  */
      /* Convert ABS_EXPR<x> < 0 to false.  */
      strict_overflow_p = false;
      strict_overflow_p = false;
      if (code == LT_EXPR
      if (code == LT_EXPR
          && (integer_zerop (arg1) || real_zerop (arg1))
          && (integer_zerop (arg1) || real_zerop (arg1))
          && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
          && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
        {
        {
          if (strict_overflow_p)
          if (strict_overflow_p)
            fold_overflow_warning (("assuming signed overflow does not occur "
            fold_overflow_warning (("assuming signed overflow does not occur "
                                    "when simplifying comparison of "
                                    "when simplifying comparison of "
                                    "absolute value and zero"),
                                    "absolute value and zero"),
                                   WARN_STRICT_OVERFLOW_CONDITIONAL);
                                   WARN_STRICT_OVERFLOW_CONDITIONAL);
          return omit_one_operand (type, integer_zero_node, arg0);
          return omit_one_operand (type, integer_zero_node, arg0);
        }
        }
 
 
      /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
      /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
         and similarly for >= into !=.  */
         and similarly for >= into !=.  */
      if ((code == LT_EXPR || code == GE_EXPR)
      if ((code == LT_EXPR || code == GE_EXPR)
          && TYPE_UNSIGNED (TREE_TYPE (arg0))
          && TYPE_UNSIGNED (TREE_TYPE (arg0))
          && TREE_CODE (arg1) == LSHIFT_EXPR
          && TREE_CODE (arg1) == LSHIFT_EXPR
          && integer_onep (TREE_OPERAND (arg1, 0)))
          && integer_onep (TREE_OPERAND (arg1, 0)))
        return build2 (code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
        return build2 (code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
                       build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
                       build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
                               TREE_OPERAND (arg1, 1)),
                               TREE_OPERAND (arg1, 1)),
                       build_int_cst (TREE_TYPE (arg0), 0));
                       build_int_cst (TREE_TYPE (arg0), 0));
 
 
      if ((code == LT_EXPR || code == GE_EXPR)
      if ((code == LT_EXPR || code == GE_EXPR)
          && TYPE_UNSIGNED (TREE_TYPE (arg0))
          && TYPE_UNSIGNED (TREE_TYPE (arg0))
          && (TREE_CODE (arg1) == NOP_EXPR
          && (TREE_CODE (arg1) == NOP_EXPR
              || TREE_CODE (arg1) == CONVERT_EXPR)
              || TREE_CODE (arg1) == CONVERT_EXPR)
          && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
          && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
          && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
          && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
        return
        return
          build2 (code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
          build2 (code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
                  fold_convert (TREE_TYPE (arg0),
                  fold_convert (TREE_TYPE (arg0),
                                build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
                                build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
                                        TREE_OPERAND (TREE_OPERAND (arg1, 0),
                                        TREE_OPERAND (TREE_OPERAND (arg1, 0),
                                                      1))),
                                                      1))),
                  build_int_cst (TREE_TYPE (arg0), 0));
                  build_int_cst (TREE_TYPE (arg0), 0));
 
 
      return NULL_TREE;
      return NULL_TREE;
 
 
    case UNORDERED_EXPR:
    case UNORDERED_EXPR:
    case ORDERED_EXPR:
    case ORDERED_EXPR:
    case UNLT_EXPR:
    case UNLT_EXPR:
    case UNLE_EXPR:
    case UNLE_EXPR:
    case UNGT_EXPR:
    case UNGT_EXPR:
    case UNGE_EXPR:
    case UNGE_EXPR:
    case UNEQ_EXPR:
    case UNEQ_EXPR:
    case LTGT_EXPR:
    case LTGT_EXPR:
      if (TREE_CODE (arg0) == REAL_CST && TREE_CODE (arg1) == REAL_CST)
      if (TREE_CODE (arg0) == REAL_CST && TREE_CODE (arg1) == REAL_CST)
        {
        {
          t1 = fold_relational_const (code, type, arg0, arg1);
          t1 = fold_relational_const (code, type, arg0, arg1);
          if (t1 != NULL_TREE)
          if (t1 != NULL_TREE)
            return t1;
            return t1;
        }
        }
 
 
      /* If the first operand is NaN, the result is constant.  */
      /* If the first operand is NaN, the result is constant.  */
      if (TREE_CODE (arg0) == REAL_CST
      if (TREE_CODE (arg0) == REAL_CST
          && REAL_VALUE_ISNAN (TREE_REAL_CST (arg0))
          && REAL_VALUE_ISNAN (TREE_REAL_CST (arg0))
          && (code != LTGT_EXPR || ! flag_trapping_math))
          && (code != LTGT_EXPR || ! flag_trapping_math))
        {
        {
          t1 = (code == ORDERED_EXPR || code == LTGT_EXPR)
          t1 = (code == ORDERED_EXPR || code == LTGT_EXPR)
               ? integer_zero_node
               ? integer_zero_node
               : integer_one_node;
               : integer_one_node;
          return omit_one_operand (type, t1, arg1);
          return omit_one_operand (type, t1, arg1);
        }
        }
 
 
      /* If the second operand is NaN, the result is constant.  */
      /* If the second operand is NaN, the result is constant.  */
      if (TREE_CODE (arg1) == REAL_CST
      if (TREE_CODE (arg1) == REAL_CST
          && REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
          && REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
          && (code != LTGT_EXPR || ! flag_trapping_math))
          && (code != LTGT_EXPR || ! flag_trapping_math))
        {
        {
          t1 = (code == ORDERED_EXPR || code == LTGT_EXPR)
          t1 = (code == ORDERED_EXPR || code == LTGT_EXPR)
               ? integer_zero_node
               ? integer_zero_node
               : integer_one_node;
               : integer_one_node;
          return omit_one_operand (type, t1, arg0);
          return omit_one_operand (type, t1, arg0);
        }
        }
 
 
      /* Simplify unordered comparison of something with itself.  */
      /* Simplify unordered comparison of something with itself.  */
      if ((code == UNLE_EXPR || code == UNGE_EXPR || code == UNEQ_EXPR)
      if ((code == UNLE_EXPR || code == UNGE_EXPR || code == UNEQ_EXPR)
          && operand_equal_p (arg0, arg1, 0))
          && operand_equal_p (arg0, arg1, 0))
        return constant_boolean_node (1, type);
        return constant_boolean_node (1, type);
 
 
      if (code == LTGT_EXPR
      if (code == LTGT_EXPR
          && !flag_trapping_math
          && !flag_trapping_math
          && operand_equal_p (arg0, arg1, 0))
          && operand_equal_p (arg0, arg1, 0))
        return constant_boolean_node (0, type);
        return constant_boolean_node (0, type);
 
 
      /* Fold (double)float1 CMP (double)float2 into float1 CMP float2.  */
      /* Fold (double)float1 CMP (double)float2 into float1 CMP float2.  */
      {
      {
        tree targ0 = strip_float_extensions (arg0);
        tree targ0 = strip_float_extensions (arg0);
        tree targ1 = strip_float_extensions (arg1);
        tree targ1 = strip_float_extensions (arg1);
        tree newtype = TREE_TYPE (targ0);
        tree newtype = TREE_TYPE (targ0);
 
 
        if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
        if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
          newtype = TREE_TYPE (targ1);
          newtype = TREE_TYPE (targ1);
 
 
        if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
        if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
          return fold_build2 (code, type, fold_convert (newtype, targ0),
          return fold_build2 (code, type, fold_convert (newtype, targ0),
                              fold_convert (newtype, targ1));
                              fold_convert (newtype, targ1));
      }
      }
 
 
      return NULL_TREE;
      return NULL_TREE;
 
 
    case COMPOUND_EXPR:
    case COMPOUND_EXPR:
      /* When pedantic, a compound expression can be neither an lvalue
      /* When pedantic, a compound expression can be neither an lvalue
         nor an integer constant expression.  */
         nor an integer constant expression.  */
      if (TREE_SIDE_EFFECTS (arg0) || TREE_CONSTANT (arg1))
      if (TREE_SIDE_EFFECTS (arg0) || TREE_CONSTANT (arg1))
        return NULL_TREE;
        return NULL_TREE;
      /* Don't let (0, 0) be null pointer constant.  */
      /* Don't let (0, 0) be null pointer constant.  */
      tem = integer_zerop (arg1) ? build1 (NOP_EXPR, type, arg1)
      tem = integer_zerop (arg1) ? build1 (NOP_EXPR, type, arg1)
                                 : fold_convert (type, arg1);
                                 : fold_convert (type, arg1);
      return pedantic_non_lvalue (tem);
      return pedantic_non_lvalue (tem);
 
 
    case COMPLEX_EXPR:
    case COMPLEX_EXPR:
      if ((TREE_CODE (arg0) == REAL_CST
      if ((TREE_CODE (arg0) == REAL_CST
           && TREE_CODE (arg1) == REAL_CST)
           && TREE_CODE (arg1) == REAL_CST)
          || (TREE_CODE (arg0) == INTEGER_CST
          || (TREE_CODE (arg0) == INTEGER_CST
              && TREE_CODE (arg1) == INTEGER_CST))
              && TREE_CODE (arg1) == INTEGER_CST))
        return build_complex (type, arg0, arg1);
        return build_complex (type, arg0, arg1);
      return NULL_TREE;
      return NULL_TREE;
 
 
    case ASSERT_EXPR:
    case ASSERT_EXPR:
      /* An ASSERT_EXPR should never be passed to fold_binary.  */
      /* An ASSERT_EXPR should never be passed to fold_binary.  */
      gcc_unreachable ();
      gcc_unreachable ();
 
 
    default:
    default:
      return NULL_TREE;
      return NULL_TREE;
    } /* switch (code) */
    } /* switch (code) */
}
}
 
 
/* Callback for walk_tree, looking for LABEL_EXPR.
/* Callback for walk_tree, looking for LABEL_EXPR.
   Returns tree TP if it is LABEL_EXPR. Otherwise it returns NULL_TREE.
   Returns tree TP if it is LABEL_EXPR. Otherwise it returns NULL_TREE.
   Do not check the sub-tree of GOTO_EXPR.  */
   Do not check the sub-tree of GOTO_EXPR.  */
 
 
static tree
static tree
contains_label_1 (tree *tp,
contains_label_1 (tree *tp,
                  int *walk_subtrees,
                  int *walk_subtrees,
                  void *data ATTRIBUTE_UNUSED)
                  void *data ATTRIBUTE_UNUSED)
{
{
  switch (TREE_CODE (*tp))
  switch (TREE_CODE (*tp))
    {
    {
    case LABEL_EXPR:
    case LABEL_EXPR:
      return *tp;
      return *tp;
    case GOTO_EXPR:
    case GOTO_EXPR:
      *walk_subtrees = 0;
      *walk_subtrees = 0;
    /* no break */
    /* no break */
    default:
    default:
      return NULL_TREE;
      return NULL_TREE;
    }
    }
}
}
 
 
/* Checks whether the sub-tree ST contains a label LABEL_EXPR which is
/* Checks whether the sub-tree ST contains a label LABEL_EXPR which is
   accessible from outside the sub-tree. Returns NULL_TREE if no
   accessible from outside the sub-tree. Returns NULL_TREE if no
   addressable label is found.  */
   addressable label is found.  */
 
 
static bool
static bool
contains_label_p (tree st)
contains_label_p (tree st)
{
{
  return (walk_tree (&st, contains_label_1 , NULL, NULL) != NULL_TREE);
  return (walk_tree (&st, contains_label_1 , NULL, NULL) != NULL_TREE);
}
}
 
 
/* Fold a ternary expression of code CODE and type TYPE with operands
/* Fold a ternary expression of code CODE and type TYPE with operands
   OP0, OP1, and OP2.  Return the folded expression if folding is
   OP0, OP1, and OP2.  Return the folded expression if folding is
   successful.  Otherwise, return NULL_TREE.  */
   successful.  Otherwise, return NULL_TREE.  */
 
 
tree
tree
fold_ternary (enum tree_code code, tree type, tree op0, tree op1, tree op2)
fold_ternary (enum tree_code code, tree type, tree op0, tree op1, tree op2)
{
{
  tree tem;
  tree tem;
  tree arg0 = NULL_TREE, arg1 = NULL_TREE;
  tree arg0 = NULL_TREE, arg1 = NULL_TREE;
  enum tree_code_class kind = TREE_CODE_CLASS (code);
  enum tree_code_class kind = TREE_CODE_CLASS (code);
 
 
  gcc_assert (IS_EXPR_CODE_CLASS (kind)
  gcc_assert (IS_EXPR_CODE_CLASS (kind)
              && TREE_CODE_LENGTH (code) == 3);
              && TREE_CODE_LENGTH (code) == 3);
 
 
  /* Strip any conversions that don't change the mode.  This is safe
  /* Strip any conversions that don't change the mode.  This is safe
     for every expression, except for a comparison expression because
     for every expression, except for a comparison expression because
     its signedness is derived from its operands.  So, in the latter
     its signedness is derived from its operands.  So, in the latter
     case, only strip conversions that don't change the signedness.
     case, only strip conversions that don't change the signedness.
 
 
     Note that this is done as an internal manipulation within the
     Note that this is done as an internal manipulation within the
     constant folder, in order to find the simplest representation of
     constant folder, in order to find the simplest representation of
     the arguments so that their form can be studied.  In any cases,
     the arguments so that their form can be studied.  In any cases,
     the appropriate type conversions should be put back in the tree
     the appropriate type conversions should be put back in the tree
     that will get out of the constant folder.  */
     that will get out of the constant folder.  */
  if (op0)
  if (op0)
    {
    {
      arg0 = op0;
      arg0 = op0;
      STRIP_NOPS (arg0);
      STRIP_NOPS (arg0);
    }
    }
 
 
  if (op1)
  if (op1)
    {
    {
      arg1 = op1;
      arg1 = op1;
      STRIP_NOPS (arg1);
      STRIP_NOPS (arg1);
    }
    }
 
 
  switch (code)
  switch (code)
    {
    {
    case COMPONENT_REF:
    case COMPONENT_REF:
      if (TREE_CODE (arg0) == CONSTRUCTOR
      if (TREE_CODE (arg0) == CONSTRUCTOR
          && ! type_contains_placeholder_p (TREE_TYPE (arg0)))
          && ! type_contains_placeholder_p (TREE_TYPE (arg0)))
        {
        {
          unsigned HOST_WIDE_INT idx;
          unsigned HOST_WIDE_INT idx;
          tree field, value;
          tree field, value;
          FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0), idx, field, value)
          FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0), idx, field, value)
            if (field == arg1)
            if (field == arg1)
              return value;
              return value;
        }
        }
      return NULL_TREE;
      return NULL_TREE;
 
 
    case COND_EXPR:
    case COND_EXPR:
      /* Pedantic ANSI C says that a conditional expression is never an lvalue,
      /* Pedantic ANSI C says that a conditional expression is never an lvalue,
         so all simple results must be passed through pedantic_non_lvalue.  */
         so all simple results must be passed through pedantic_non_lvalue.  */
      if (TREE_CODE (arg0) == INTEGER_CST)
      if (TREE_CODE (arg0) == INTEGER_CST)
        {
        {
          tree unused_op = integer_zerop (arg0) ? op1 : op2;
          tree unused_op = integer_zerop (arg0) ? op1 : op2;
          tem = integer_zerop (arg0) ? op2 : op1;
          tem = integer_zerop (arg0) ? op2 : op1;
          /* Only optimize constant conditions when the selected branch
          /* Only optimize constant conditions when the selected branch
             has the same type as the COND_EXPR.  This avoids optimizing
             has the same type as the COND_EXPR.  This avoids optimizing
             away "c ? x : throw", where the throw has a void type.
             away "c ? x : throw", where the throw has a void type.
             Avoid throwing away that operand which contains label.  */
             Avoid throwing away that operand which contains label.  */
          if ((!TREE_SIDE_EFFECTS (unused_op)
          if ((!TREE_SIDE_EFFECTS (unused_op)
               || !contains_label_p (unused_op))
               || !contains_label_p (unused_op))
              && (! VOID_TYPE_P (TREE_TYPE (tem))
              && (! VOID_TYPE_P (TREE_TYPE (tem))
                  || VOID_TYPE_P (type)))
                  || VOID_TYPE_P (type)))
            return pedantic_non_lvalue (tem);
            return pedantic_non_lvalue (tem);
          return NULL_TREE;
          return NULL_TREE;
        }
        }
      if (operand_equal_p (arg1, op2, 0))
      if (operand_equal_p (arg1, op2, 0))
        return pedantic_omit_one_operand (type, arg1, arg0);
        return pedantic_omit_one_operand (type, arg1, arg0);
 
 
      /* If we have A op B ? A : C, we may be able to convert this to a
      /* If we have A op B ? A : C, we may be able to convert this to a
         simpler expression, depending on the operation and the values
         simpler expression, depending on the operation and the values
         of B and C.  Signed zeros prevent all of these transformations,
         of B and C.  Signed zeros prevent all of these transformations,
         for reasons given above each one.
         for reasons given above each one.
 
 
         Also try swapping the arguments and inverting the conditional.  */
         Also try swapping the arguments and inverting the conditional.  */
      if (COMPARISON_CLASS_P (arg0)
      if (COMPARISON_CLASS_P (arg0)
          && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
          && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
                                             arg1, TREE_OPERAND (arg0, 1))
                                             arg1, TREE_OPERAND (arg0, 1))
          && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
          && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
        {
        {
          tem = fold_cond_expr_with_comparison (type, arg0, op1, op2);
          tem = fold_cond_expr_with_comparison (type, arg0, op1, op2);
          if (tem)
          if (tem)
            return tem;
            return tem;
        }
        }
 
 
      if (COMPARISON_CLASS_P (arg0)
      if (COMPARISON_CLASS_P (arg0)
          && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
          && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
                                             op2,
                                             op2,
                                             TREE_OPERAND (arg0, 1))
                                             TREE_OPERAND (arg0, 1))
          && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (op2))))
          && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (op2))))
        {
        {
          tem = fold_truth_not_expr (arg0);
          tem = fold_truth_not_expr (arg0);
          if (tem && COMPARISON_CLASS_P (tem))
          if (tem && COMPARISON_CLASS_P (tem))
            {
            {
              tem = fold_cond_expr_with_comparison (type, tem, op2, op1);
              tem = fold_cond_expr_with_comparison (type, tem, op2, op1);
              if (tem)
              if (tem)
                return tem;
                return tem;
            }
            }
        }
        }
 
 
      /* If the second operand is simpler than the third, swap them
      /* If the second operand is simpler than the third, swap them
         since that produces better jump optimization results.  */
         since that produces better jump optimization results.  */
      if (truth_value_p (TREE_CODE (arg0))
      if (truth_value_p (TREE_CODE (arg0))
          && tree_swap_operands_p (op1, op2, false))
          && tree_swap_operands_p (op1, op2, false))
        {
        {
          /* See if this can be inverted.  If it can't, possibly because
          /* See if this can be inverted.  If it can't, possibly because
             it was a floating-point inequality comparison, don't do
             it was a floating-point inequality comparison, don't do
             anything.  */
             anything.  */
          tem = fold_truth_not_expr (arg0);
          tem = fold_truth_not_expr (arg0);
          if (tem)
          if (tem)
            return fold_build3 (code, type, tem, op2, op1);
            return fold_build3 (code, type, tem, op2, op1);
        }
        }
 
 
      /* Convert A ? 1 : 0 to simply A.  */
      /* Convert A ? 1 : 0 to simply A.  */
      if (integer_onep (op1)
      if (integer_onep (op1)
          && integer_zerop (op2)
          && integer_zerop (op2)
          /* If we try to convert OP0 to our type, the
          /* If we try to convert OP0 to our type, the
             call to fold will try to move the conversion inside
             call to fold will try to move the conversion inside
             a COND, which will recurse.  In that case, the COND_EXPR
             a COND, which will recurse.  In that case, the COND_EXPR
             is probably the best choice, so leave it alone.  */
             is probably the best choice, so leave it alone.  */
          && type == TREE_TYPE (arg0))
          && type == TREE_TYPE (arg0))
        return pedantic_non_lvalue (arg0);
        return pedantic_non_lvalue (arg0);
 
 
      /* Convert A ? 0 : 1 to !A.  This prefers the use of NOT_EXPR
      /* Convert A ? 0 : 1 to !A.  This prefers the use of NOT_EXPR
         over COND_EXPR in cases such as floating point comparisons.  */
         over COND_EXPR in cases such as floating point comparisons.  */
      if (integer_zerop (op1)
      if (integer_zerop (op1)
          && integer_onep (op2)
          && integer_onep (op2)
          && truth_value_p (TREE_CODE (arg0)))
          && truth_value_p (TREE_CODE (arg0)))
        return pedantic_non_lvalue (fold_convert (type,
        return pedantic_non_lvalue (fold_convert (type,
                                                  invert_truthvalue (arg0)));
                                                  invert_truthvalue (arg0)));
 
 
      /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>).  */
      /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>).  */
      if (TREE_CODE (arg0) == LT_EXPR
      if (TREE_CODE (arg0) == LT_EXPR
          && integer_zerop (TREE_OPERAND (arg0, 1))
          && integer_zerop (TREE_OPERAND (arg0, 1))
          && integer_zerop (op2)
          && integer_zerop (op2)
          && (tem = sign_bit_p (TREE_OPERAND (arg0, 0), arg1)))
          && (tem = sign_bit_p (TREE_OPERAND (arg0, 0), arg1)))
        {
        {
          /* sign_bit_p only checks ARG1 bits within A's precision.
          /* sign_bit_p only checks ARG1 bits within A's precision.
             If <sign bit of A> has wider type than A, bits outside
             If <sign bit of A> has wider type than A, bits outside
             of A's precision in <sign bit of A> need to be checked.
             of A's precision in <sign bit of A> need to be checked.
             If they are all 0, this optimization needs to be done
             If they are all 0, this optimization needs to be done
             in unsigned A's type, if they are all 1 in signed A's type,
             in unsigned A's type, if they are all 1 in signed A's type,
             otherwise this can't be done.  */
             otherwise this can't be done.  */
          if (TYPE_PRECISION (TREE_TYPE (tem))
          if (TYPE_PRECISION (TREE_TYPE (tem))
              < TYPE_PRECISION (TREE_TYPE (arg1))
              < TYPE_PRECISION (TREE_TYPE (arg1))
              && TYPE_PRECISION (TREE_TYPE (tem))
              && TYPE_PRECISION (TREE_TYPE (tem))
                 < TYPE_PRECISION (type))
                 < TYPE_PRECISION (type))
            {
            {
              unsigned HOST_WIDE_INT mask_lo;
              unsigned HOST_WIDE_INT mask_lo;
              HOST_WIDE_INT mask_hi;
              HOST_WIDE_INT mask_hi;
              int inner_width, outer_width;
              int inner_width, outer_width;
              tree tem_type;
              tree tem_type;
 
 
              inner_width = TYPE_PRECISION (TREE_TYPE (tem));
              inner_width = TYPE_PRECISION (TREE_TYPE (tem));
              outer_width = TYPE_PRECISION (TREE_TYPE (arg1));
              outer_width = TYPE_PRECISION (TREE_TYPE (arg1));
              if (outer_width > TYPE_PRECISION (type))
              if (outer_width > TYPE_PRECISION (type))
                outer_width = TYPE_PRECISION (type);
                outer_width = TYPE_PRECISION (type);
 
 
              if (outer_width > HOST_BITS_PER_WIDE_INT)
              if (outer_width > HOST_BITS_PER_WIDE_INT)
                {
                {
                  mask_hi = ((unsigned HOST_WIDE_INT) -1
                  mask_hi = ((unsigned HOST_WIDE_INT) -1
                             >> (2 * HOST_BITS_PER_WIDE_INT - outer_width));
                             >> (2 * HOST_BITS_PER_WIDE_INT - outer_width));
                  mask_lo = -1;
                  mask_lo = -1;
                }
                }
              else
              else
                {
                {
                  mask_hi = 0;
                  mask_hi = 0;
                  mask_lo = ((unsigned HOST_WIDE_INT) -1
                  mask_lo = ((unsigned HOST_WIDE_INT) -1
                             >> (HOST_BITS_PER_WIDE_INT - outer_width));
                             >> (HOST_BITS_PER_WIDE_INT - outer_width));
                }
                }
              if (inner_width > HOST_BITS_PER_WIDE_INT)
              if (inner_width > HOST_BITS_PER_WIDE_INT)
                {
                {
                  mask_hi &= ~((unsigned HOST_WIDE_INT) -1
                  mask_hi &= ~((unsigned HOST_WIDE_INT) -1
                               >> (HOST_BITS_PER_WIDE_INT - inner_width));
                               >> (HOST_BITS_PER_WIDE_INT - inner_width));
                  mask_lo = 0;
                  mask_lo = 0;
                }
                }
              else
              else
                mask_lo &= ~((unsigned HOST_WIDE_INT) -1
                mask_lo &= ~((unsigned HOST_WIDE_INT) -1
                             >> (HOST_BITS_PER_WIDE_INT - inner_width));
                             >> (HOST_BITS_PER_WIDE_INT - inner_width));
 
 
              if ((TREE_INT_CST_HIGH (arg1) & mask_hi) == mask_hi
              if ((TREE_INT_CST_HIGH (arg1) & mask_hi) == mask_hi
                  && (TREE_INT_CST_LOW (arg1) & mask_lo) == mask_lo)
                  && (TREE_INT_CST_LOW (arg1) & mask_lo) == mask_lo)
                {
                {
                  tem_type = lang_hooks.types.signed_type (TREE_TYPE (tem));
                  tem_type = lang_hooks.types.signed_type (TREE_TYPE (tem));
                  tem = fold_convert (tem_type, tem);
                  tem = fold_convert (tem_type, tem);
                }
                }
              else if ((TREE_INT_CST_HIGH (arg1) & mask_hi) == 0
              else if ((TREE_INT_CST_HIGH (arg1) & mask_hi) == 0
                       && (TREE_INT_CST_LOW (arg1) & mask_lo) == 0)
                       && (TREE_INT_CST_LOW (arg1) & mask_lo) == 0)
                {
                {
                  tem_type = lang_hooks.types.unsigned_type (TREE_TYPE (tem));
                  tem_type = lang_hooks.types.unsigned_type (TREE_TYPE (tem));
                  tem = fold_convert (tem_type, tem);
                  tem = fold_convert (tem_type, tem);
                }
                }
              else
              else
                tem = NULL;
                tem = NULL;
            }
            }
 
 
          if (tem)
          if (tem)
            return fold_convert (type,
            return fold_convert (type,
                                 fold_build2 (BIT_AND_EXPR,
                                 fold_build2 (BIT_AND_EXPR,
                                              TREE_TYPE (tem), tem,
                                              TREE_TYPE (tem), tem,
                                              fold_convert (TREE_TYPE (tem),
                                              fold_convert (TREE_TYPE (tem),
                                                            arg1)));
                                                            arg1)));
        }
        }
 
 
      /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N).  A & 1 was
      /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N).  A & 1 was
         already handled above.  */
         already handled above.  */
      if (TREE_CODE (arg0) == BIT_AND_EXPR
      if (TREE_CODE (arg0) == BIT_AND_EXPR
          && integer_onep (TREE_OPERAND (arg0, 1))
          && integer_onep (TREE_OPERAND (arg0, 1))
          && integer_zerop (op2)
          && integer_zerop (op2)
          && integer_pow2p (arg1))
          && integer_pow2p (arg1))
        {
        {
          tree tem = TREE_OPERAND (arg0, 0);
          tree tem = TREE_OPERAND (arg0, 0);
          STRIP_NOPS (tem);
          STRIP_NOPS (tem);
          if (TREE_CODE (tem) == RSHIFT_EXPR
          if (TREE_CODE (tem) == RSHIFT_EXPR
              && TREE_CODE (TREE_OPERAND (tem, 1)) == INTEGER_CST
              && TREE_CODE (TREE_OPERAND (tem, 1)) == INTEGER_CST
              && (unsigned HOST_WIDE_INT) tree_log2 (arg1) ==
              && (unsigned HOST_WIDE_INT) tree_log2 (arg1) ==
                 TREE_INT_CST_LOW (TREE_OPERAND (tem, 1)))
                 TREE_INT_CST_LOW (TREE_OPERAND (tem, 1)))
            return fold_build2 (BIT_AND_EXPR, type,
            return fold_build2 (BIT_AND_EXPR, type,
                                TREE_OPERAND (tem, 0), arg1);
                                TREE_OPERAND (tem, 0), arg1);
        }
        }
 
 
      /* A & N ? N : 0 is simply A & N if N is a power of two.  This
      /* A & N ? N : 0 is simply A & N if N is a power of two.  This
         is probably obsolete because the first operand should be a
         is probably obsolete because the first operand should be a
         truth value (that's why we have the two cases above), but let's
         truth value (that's why we have the two cases above), but let's
         leave it in until we can confirm this for all front-ends.  */
         leave it in until we can confirm this for all front-ends.  */
      if (integer_zerop (op2)
      if (integer_zerop (op2)
          && TREE_CODE (arg0) == NE_EXPR
          && TREE_CODE (arg0) == NE_EXPR
          && integer_zerop (TREE_OPERAND (arg0, 1))
          && integer_zerop (TREE_OPERAND (arg0, 1))
          && integer_pow2p (arg1)
          && integer_pow2p (arg1)
          && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
          && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
          && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
          && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
                              arg1, OEP_ONLY_CONST))
                              arg1, OEP_ONLY_CONST))
        return pedantic_non_lvalue (fold_convert (type,
        return pedantic_non_lvalue (fold_convert (type,
                                                  TREE_OPERAND (arg0, 0)));
                                                  TREE_OPERAND (arg0, 0)));
 
 
      /* Convert A ? B : 0 into A && B if A and B are truth values.  */
      /* Convert A ? B : 0 into A && B if A and B are truth values.  */
      if (integer_zerop (op2)
      if (integer_zerop (op2)
          && truth_value_p (TREE_CODE (arg0))
          && truth_value_p (TREE_CODE (arg0))
          && truth_value_p (TREE_CODE (arg1)))
          && truth_value_p (TREE_CODE (arg1)))
        return fold_build2 (TRUTH_ANDIF_EXPR, type,
        return fold_build2 (TRUTH_ANDIF_EXPR, type,
                            fold_convert (type, arg0),
                            fold_convert (type, arg0),
                            arg1);
                            arg1);
 
 
      /* Convert A ? B : 1 into !A || B if A and B are truth values.  */
      /* Convert A ? B : 1 into !A || B if A and B are truth values.  */
      if (integer_onep (op2)
      if (integer_onep (op2)
          && truth_value_p (TREE_CODE (arg0))
          && truth_value_p (TREE_CODE (arg0))
          && truth_value_p (TREE_CODE (arg1)))
          && truth_value_p (TREE_CODE (arg1)))
        {
        {
          /* Only perform transformation if ARG0 is easily inverted.  */
          /* Only perform transformation if ARG0 is easily inverted.  */
          tem = fold_truth_not_expr (arg0);
          tem = fold_truth_not_expr (arg0);
          if (tem)
          if (tem)
            return fold_build2 (TRUTH_ORIF_EXPR, type,
            return fold_build2 (TRUTH_ORIF_EXPR, type,
                                fold_convert (type, tem),
                                fold_convert (type, tem),
                                arg1);
                                arg1);
        }
        }
 
 
      /* Convert A ? 0 : B into !A && B if A and B are truth values.  */
      /* Convert A ? 0 : B into !A && B if A and B are truth values.  */
      if (integer_zerop (arg1)
      if (integer_zerop (arg1)
          && truth_value_p (TREE_CODE (arg0))
          && truth_value_p (TREE_CODE (arg0))
          && truth_value_p (TREE_CODE (op2)))
          && truth_value_p (TREE_CODE (op2)))
        {
        {
          /* Only perform transformation if ARG0 is easily inverted.  */
          /* Only perform transformation if ARG0 is easily inverted.  */
          tem = fold_truth_not_expr (arg0);
          tem = fold_truth_not_expr (arg0);
          if (tem)
          if (tem)
            return fold_build2 (TRUTH_ANDIF_EXPR, type,
            return fold_build2 (TRUTH_ANDIF_EXPR, type,
                                fold_convert (type, tem),
                                fold_convert (type, tem),
                                op2);
                                op2);
        }
        }
 
 
      /* Convert A ? 1 : B into A || B if A and B are truth values.  */
      /* Convert A ? 1 : B into A || B if A and B are truth values.  */
      if (integer_onep (arg1)
      if (integer_onep (arg1)
          && truth_value_p (TREE_CODE (arg0))
          && truth_value_p (TREE_CODE (arg0))
          && truth_value_p (TREE_CODE (op2)))
          && truth_value_p (TREE_CODE (op2)))
        return fold_build2 (TRUTH_ORIF_EXPR, type,
        return fold_build2 (TRUTH_ORIF_EXPR, type,
                            fold_convert (type, arg0),
                            fold_convert (type, arg0),
                            op2);
                            op2);
 
 
      return NULL_TREE;
      return NULL_TREE;
 
 
    case CALL_EXPR:
    case CALL_EXPR:
      /* Check for a built-in function.  */
      /* Check for a built-in function.  */
      if (TREE_CODE (op0) == ADDR_EXPR
      if (TREE_CODE (op0) == ADDR_EXPR
          && TREE_CODE (TREE_OPERAND (op0, 0)) == FUNCTION_DECL
          && TREE_CODE (TREE_OPERAND (op0, 0)) == FUNCTION_DECL
          && DECL_BUILT_IN (TREE_OPERAND (op0, 0)))
          && DECL_BUILT_IN (TREE_OPERAND (op0, 0)))
        return fold_builtin (TREE_OPERAND (op0, 0), op1, false);
        return fold_builtin (TREE_OPERAND (op0, 0), op1, false);
      return NULL_TREE;
      return NULL_TREE;
 
 
    case BIT_FIELD_REF:
    case BIT_FIELD_REF:
      if (TREE_CODE (arg0) == VECTOR_CST
      if (TREE_CODE (arg0) == VECTOR_CST
          && type == TREE_TYPE (TREE_TYPE (arg0))
          && type == TREE_TYPE (TREE_TYPE (arg0))
          && host_integerp (arg1, 1)
          && host_integerp (arg1, 1)
          && host_integerp (op2, 1))
          && host_integerp (op2, 1))
        {
        {
          unsigned HOST_WIDE_INT width = tree_low_cst (arg1, 1);
          unsigned HOST_WIDE_INT width = tree_low_cst (arg1, 1);
          unsigned HOST_WIDE_INT idx = tree_low_cst (op2, 1);
          unsigned HOST_WIDE_INT idx = tree_low_cst (op2, 1);
 
 
          if (width != 0
          if (width != 0
              && simple_cst_equal (arg1, TYPE_SIZE (type)) == 1
              && simple_cst_equal (arg1, TYPE_SIZE (type)) == 1
              && (idx % width) == 0
              && (idx % width) == 0
              && (idx = idx / width)
              && (idx = idx / width)
                 < TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)))
                 < TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)))
            {
            {
              tree elements = TREE_VECTOR_CST_ELTS (arg0);
              tree elements = TREE_VECTOR_CST_ELTS (arg0);
              while (idx-- > 0 && elements)
              while (idx-- > 0 && elements)
                elements = TREE_CHAIN (elements);
                elements = TREE_CHAIN (elements);
              if (elements)
              if (elements)
                return TREE_VALUE (elements);
                return TREE_VALUE (elements);
              else
              else
                return fold_convert (type, integer_zero_node);
                return fold_convert (type, integer_zero_node);
            }
            }
        }
        }
      return NULL_TREE;
      return NULL_TREE;
 
 
    default:
    default:
      return NULL_TREE;
      return NULL_TREE;
    } /* switch (code) */
    } /* switch (code) */
}
}
 
 
/* Perform constant folding and related simplification of EXPR.
/* Perform constant folding and related simplification of EXPR.
   The related simplifications include x*1 => x, x*0 => 0, etc.,
   The related simplifications include x*1 => x, x*0 => 0, etc.,
   and application of the associative law.
   and application of the associative law.
   NOP_EXPR conversions may be removed freely (as long as we
   NOP_EXPR conversions may be removed freely (as long as we
   are careful not to change the type of the overall expression).
   are careful not to change the type of the overall expression).
   We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
   We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
   but we can constant-fold them if they have constant operands.  */
   but we can constant-fold them if they have constant operands.  */
 
 
#ifdef ENABLE_FOLD_CHECKING
#ifdef ENABLE_FOLD_CHECKING
# define fold(x) fold_1 (x)
# define fold(x) fold_1 (x)
static tree fold_1 (tree);
static tree fold_1 (tree);
static
static
#endif
#endif
tree
tree
fold (tree expr)
fold (tree expr)
{
{
  const tree t = expr;
  const tree t = expr;
  enum tree_code code = TREE_CODE (t);
  enum tree_code code = TREE_CODE (t);
  enum tree_code_class kind = TREE_CODE_CLASS (code);
  enum tree_code_class kind = TREE_CODE_CLASS (code);
  tree tem;
  tree tem;
 
 
  /* Return right away if a constant.  */
  /* Return right away if a constant.  */
  if (kind == tcc_constant)
  if (kind == tcc_constant)
    return t;
    return t;
 
 
  if (IS_EXPR_CODE_CLASS (kind))
  if (IS_EXPR_CODE_CLASS (kind))
    {
    {
      tree type = TREE_TYPE (t);
      tree type = TREE_TYPE (t);
      tree op0, op1, op2;
      tree op0, op1, op2;
 
 
      switch (TREE_CODE_LENGTH (code))
      switch (TREE_CODE_LENGTH (code))
        {
        {
        case 1:
        case 1:
          op0 = TREE_OPERAND (t, 0);
          op0 = TREE_OPERAND (t, 0);
          tem = fold_unary (code, type, op0);
          tem = fold_unary (code, type, op0);
          return tem ? tem : expr;
          return tem ? tem : expr;
        case 2:
        case 2:
          op0 = TREE_OPERAND (t, 0);
          op0 = TREE_OPERAND (t, 0);
          op1 = TREE_OPERAND (t, 1);
          op1 = TREE_OPERAND (t, 1);
          tem = fold_binary (code, type, op0, op1);
          tem = fold_binary (code, type, op0, op1);
          return tem ? tem : expr;
          return tem ? tem : expr;
        case 3:
        case 3:
          op0 = TREE_OPERAND (t, 0);
          op0 = TREE_OPERAND (t, 0);
          op1 = TREE_OPERAND (t, 1);
          op1 = TREE_OPERAND (t, 1);
          op2 = TREE_OPERAND (t, 2);
          op2 = TREE_OPERAND (t, 2);
          tem = fold_ternary (code, type, op0, op1, op2);
          tem = fold_ternary (code, type, op0, op1, op2);
          return tem ? tem : expr;
          return tem ? tem : expr;
        default:
        default:
          break;
          break;
        }
        }
    }
    }
 
 
  switch (code)
  switch (code)
    {
    {
    case CONST_DECL:
    case CONST_DECL:
      return fold (DECL_INITIAL (t));
      return fold (DECL_INITIAL (t));
 
 
    default:
    default:
      return t;
      return t;
    } /* switch (code) */
    } /* switch (code) */
}
}
 
 
#ifdef ENABLE_FOLD_CHECKING
#ifdef ENABLE_FOLD_CHECKING
#undef fold
#undef fold
 
 
static void fold_checksum_tree (tree, struct md5_ctx *, htab_t);
static void fold_checksum_tree (tree, struct md5_ctx *, htab_t);
static void fold_check_failed (tree, tree);
static void fold_check_failed (tree, tree);
void print_fold_checksum (tree);
void print_fold_checksum (tree);
 
 
/* When --enable-checking=fold, compute a digest of expr before
/* When --enable-checking=fold, compute a digest of expr before
   and after actual fold call to see if fold did not accidentally
   and after actual fold call to see if fold did not accidentally
   change original expr.  */
   change original expr.  */
 
 
tree
tree
fold (tree expr)
fold (tree expr)
{
{
  tree ret;
  tree ret;
  struct md5_ctx ctx;
  struct md5_ctx ctx;
  unsigned char checksum_before[16], checksum_after[16];
  unsigned char checksum_before[16], checksum_after[16];
  htab_t ht;
  htab_t ht;
 
 
  ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
  ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
  md5_init_ctx (&ctx);
  md5_init_ctx (&ctx);
  fold_checksum_tree (expr, &ctx, ht);
  fold_checksum_tree (expr, &ctx, ht);
  md5_finish_ctx (&ctx, checksum_before);
  md5_finish_ctx (&ctx, checksum_before);
  htab_empty (ht);
  htab_empty (ht);
 
 
  ret = fold_1 (expr);
  ret = fold_1 (expr);
 
 
  md5_init_ctx (&ctx);
  md5_init_ctx (&ctx);
  fold_checksum_tree (expr, &ctx, ht);
  fold_checksum_tree (expr, &ctx, ht);
  md5_finish_ctx (&ctx, checksum_after);
  md5_finish_ctx (&ctx, checksum_after);
  htab_delete (ht);
  htab_delete (ht);
 
 
  if (memcmp (checksum_before, checksum_after, 16))
  if (memcmp (checksum_before, checksum_after, 16))
    fold_check_failed (expr, ret);
    fold_check_failed (expr, ret);
 
 
  return ret;
  return ret;
}
}
 
 
void
void
print_fold_checksum (tree expr)
print_fold_checksum (tree expr)
{
{
  struct md5_ctx ctx;
  struct md5_ctx ctx;
  unsigned char checksum[16], cnt;
  unsigned char checksum[16], cnt;
  htab_t ht;
  htab_t ht;
 
 
  ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
  ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
  md5_init_ctx (&ctx);
  md5_init_ctx (&ctx);
  fold_checksum_tree (expr, &ctx, ht);
  fold_checksum_tree (expr, &ctx, ht);
  md5_finish_ctx (&ctx, checksum);
  md5_finish_ctx (&ctx, checksum);
  htab_delete (ht);
  htab_delete (ht);
  for (cnt = 0; cnt < 16; ++cnt)
  for (cnt = 0; cnt < 16; ++cnt)
    fprintf (stderr, "%02x", checksum[cnt]);
    fprintf (stderr, "%02x", checksum[cnt]);
  putc ('\n', stderr);
  putc ('\n', stderr);
}
}
 
 
static void
static void
fold_check_failed (tree expr ATTRIBUTE_UNUSED, tree ret ATTRIBUTE_UNUSED)
fold_check_failed (tree expr ATTRIBUTE_UNUSED, tree ret ATTRIBUTE_UNUSED)
{
{
  internal_error ("fold check: original tree changed by fold");
  internal_error ("fold check: original tree changed by fold");
}
}
 
 
static void
static void
fold_checksum_tree (tree expr, struct md5_ctx *ctx, htab_t ht)
fold_checksum_tree (tree expr, struct md5_ctx *ctx, htab_t ht)
{
{
  void **slot;
  void **slot;
  enum tree_code code;
  enum tree_code code;
  struct tree_function_decl buf;
  struct tree_function_decl buf;
  int i, len;
  int i, len;
 
 
recursive_label:
recursive_label:
 
 
  gcc_assert ((sizeof (struct tree_exp) + 5 * sizeof (tree)
  gcc_assert ((sizeof (struct tree_exp) + 5 * sizeof (tree)
               <= sizeof (struct tree_function_decl))
               <= sizeof (struct tree_function_decl))
              && sizeof (struct tree_type) <= sizeof (struct tree_function_decl));
              && sizeof (struct tree_type) <= sizeof (struct tree_function_decl));
  if (expr == NULL)
  if (expr == NULL)
    return;
    return;
  slot = htab_find_slot (ht, expr, INSERT);
  slot = htab_find_slot (ht, expr, INSERT);
  if (*slot != NULL)
  if (*slot != NULL)
    return;
    return;
  *slot = expr;
  *slot = expr;
  code = TREE_CODE (expr);
  code = TREE_CODE (expr);
  if (TREE_CODE_CLASS (code) == tcc_declaration
  if (TREE_CODE_CLASS (code) == tcc_declaration
      && DECL_ASSEMBLER_NAME_SET_P (expr))
      && DECL_ASSEMBLER_NAME_SET_P (expr))
    {
    {
      /* Allow DECL_ASSEMBLER_NAME to be modified.  */
      /* Allow DECL_ASSEMBLER_NAME to be modified.  */
      memcpy ((char *) &buf, expr, tree_size (expr));
      memcpy ((char *) &buf, expr, tree_size (expr));
      expr = (tree) &buf;
      expr = (tree) &buf;
      SET_DECL_ASSEMBLER_NAME (expr, NULL);
      SET_DECL_ASSEMBLER_NAME (expr, NULL);
    }
    }
  else if (TREE_CODE_CLASS (code) == tcc_type
  else if (TREE_CODE_CLASS (code) == tcc_type
           && (TYPE_POINTER_TO (expr) || TYPE_REFERENCE_TO (expr)
           && (TYPE_POINTER_TO (expr) || TYPE_REFERENCE_TO (expr)
               || TYPE_CACHED_VALUES_P (expr)
               || TYPE_CACHED_VALUES_P (expr)
               || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr)))
               || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr)))
    {
    {
      /* Allow these fields to be modified.  */
      /* Allow these fields to be modified.  */
      memcpy ((char *) &buf, expr, tree_size (expr));
      memcpy ((char *) &buf, expr, tree_size (expr));
      expr = (tree) &buf;
      expr = (tree) &buf;
      TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr) = 0;
      TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr) = 0;
      TYPE_POINTER_TO (expr) = NULL;
      TYPE_POINTER_TO (expr) = NULL;
      TYPE_REFERENCE_TO (expr) = NULL;
      TYPE_REFERENCE_TO (expr) = NULL;
      if (TYPE_CACHED_VALUES_P (expr))
      if (TYPE_CACHED_VALUES_P (expr))
        {
        {
          TYPE_CACHED_VALUES_P (expr) = 0;
          TYPE_CACHED_VALUES_P (expr) = 0;
          TYPE_CACHED_VALUES (expr) = NULL;
          TYPE_CACHED_VALUES (expr) = NULL;
        }
        }
    }
    }
  md5_process_bytes (expr, tree_size (expr), ctx);
  md5_process_bytes (expr, tree_size (expr), ctx);
  fold_checksum_tree (TREE_TYPE (expr), ctx, ht);
  fold_checksum_tree (TREE_TYPE (expr), ctx, ht);
  if (TREE_CODE_CLASS (code) != tcc_type
  if (TREE_CODE_CLASS (code) != tcc_type
      && TREE_CODE_CLASS (code) != tcc_declaration
      && TREE_CODE_CLASS (code) != tcc_declaration
      && code != TREE_LIST)
      && code != TREE_LIST)
    fold_checksum_tree (TREE_CHAIN (expr), ctx, ht);
    fold_checksum_tree (TREE_CHAIN (expr), ctx, ht);
  switch (TREE_CODE_CLASS (code))
  switch (TREE_CODE_CLASS (code))
    {
    {
    case tcc_constant:
    case tcc_constant:
      switch (code)
      switch (code)
        {
        {
        case STRING_CST:
        case STRING_CST:
          md5_process_bytes (TREE_STRING_POINTER (expr),
          md5_process_bytes (TREE_STRING_POINTER (expr),
                             TREE_STRING_LENGTH (expr), ctx);
                             TREE_STRING_LENGTH (expr), ctx);
          break;
          break;
        case COMPLEX_CST:
        case COMPLEX_CST:
          fold_checksum_tree (TREE_REALPART (expr), ctx, ht);
          fold_checksum_tree (TREE_REALPART (expr), ctx, ht);
          fold_checksum_tree (TREE_IMAGPART (expr), ctx, ht);
          fold_checksum_tree (TREE_IMAGPART (expr), ctx, ht);
          break;
          break;
        case VECTOR_CST:
        case VECTOR_CST:
          fold_checksum_tree (TREE_VECTOR_CST_ELTS (expr), ctx, ht);
          fold_checksum_tree (TREE_VECTOR_CST_ELTS (expr), ctx, ht);
          break;
          break;
        default:
        default:
          break;
          break;
        }
        }
      break;
      break;
    case tcc_exceptional:
    case tcc_exceptional:
      switch (code)
      switch (code)
        {
        {
        case TREE_LIST:
        case TREE_LIST:
          fold_checksum_tree (TREE_PURPOSE (expr), ctx, ht);
          fold_checksum_tree (TREE_PURPOSE (expr), ctx, ht);
          fold_checksum_tree (TREE_VALUE (expr), ctx, ht);
          fold_checksum_tree (TREE_VALUE (expr), ctx, ht);
          expr = TREE_CHAIN (expr);
          expr = TREE_CHAIN (expr);
          goto recursive_label;
          goto recursive_label;
          break;
          break;
        case TREE_VEC:
        case TREE_VEC:
          for (i = 0; i < TREE_VEC_LENGTH (expr); ++i)
          for (i = 0; i < TREE_VEC_LENGTH (expr); ++i)
            fold_checksum_tree (TREE_VEC_ELT (expr, i), ctx, ht);
            fold_checksum_tree (TREE_VEC_ELT (expr, i), ctx, ht);
          break;
          break;
        default:
        default:
          break;
          break;
        }
        }
      break;
      break;
    case tcc_expression:
    case tcc_expression:
    case tcc_reference:
    case tcc_reference:
    case tcc_comparison:
    case tcc_comparison:
    case tcc_unary:
    case tcc_unary:
    case tcc_binary:
    case tcc_binary:
    case tcc_statement:
    case tcc_statement:
      len = TREE_CODE_LENGTH (code);
      len = TREE_CODE_LENGTH (code);
      for (i = 0; i < len; ++i)
      for (i = 0; i < len; ++i)
        fold_checksum_tree (TREE_OPERAND (expr, i), ctx, ht);
        fold_checksum_tree (TREE_OPERAND (expr, i), ctx, ht);
      break;
      break;
    case tcc_declaration:
    case tcc_declaration:
      fold_checksum_tree (DECL_NAME (expr), ctx, ht);
      fold_checksum_tree (DECL_NAME (expr), ctx, ht);
      fold_checksum_tree (DECL_CONTEXT (expr), ctx, ht);
      fold_checksum_tree (DECL_CONTEXT (expr), ctx, ht);
      if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_COMMON))
      if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_COMMON))
        {
        {
          fold_checksum_tree (DECL_SIZE (expr), ctx, ht);
          fold_checksum_tree (DECL_SIZE (expr), ctx, ht);
          fold_checksum_tree (DECL_SIZE_UNIT (expr), ctx, ht);
          fold_checksum_tree (DECL_SIZE_UNIT (expr), ctx, ht);
          fold_checksum_tree (DECL_INITIAL (expr), ctx, ht);
          fold_checksum_tree (DECL_INITIAL (expr), ctx, ht);
          fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr), ctx, ht);
          fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr), ctx, ht);
          fold_checksum_tree (DECL_ATTRIBUTES (expr), ctx, ht);
          fold_checksum_tree (DECL_ATTRIBUTES (expr), ctx, ht);
        }
        }
      if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_WITH_VIS))
      if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_WITH_VIS))
        fold_checksum_tree (DECL_SECTION_NAME (expr), ctx, ht);
        fold_checksum_tree (DECL_SECTION_NAME (expr), ctx, ht);
 
 
      if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_NON_COMMON))
      if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_NON_COMMON))
        {
        {
          fold_checksum_tree (DECL_VINDEX (expr), ctx, ht);
          fold_checksum_tree (DECL_VINDEX (expr), ctx, ht);
          fold_checksum_tree (DECL_RESULT_FLD (expr), ctx, ht);
          fold_checksum_tree (DECL_RESULT_FLD (expr), ctx, ht);
          fold_checksum_tree (DECL_ARGUMENT_FLD (expr), ctx, ht);
          fold_checksum_tree (DECL_ARGUMENT_FLD (expr), ctx, ht);
        }
        }
      break;
      break;
    case tcc_type:
    case tcc_type:
      if (TREE_CODE (expr) == ENUMERAL_TYPE)
      if (TREE_CODE (expr) == ENUMERAL_TYPE)
        fold_checksum_tree (TYPE_VALUES (expr), ctx, ht);
        fold_checksum_tree (TYPE_VALUES (expr), ctx, ht);
      fold_checksum_tree (TYPE_SIZE (expr), ctx, ht);
      fold_checksum_tree (TYPE_SIZE (expr), ctx, ht);
      fold_checksum_tree (TYPE_SIZE_UNIT (expr), ctx, ht);
      fold_checksum_tree (TYPE_SIZE_UNIT (expr), ctx, ht);
      fold_checksum_tree (TYPE_ATTRIBUTES (expr), ctx, ht);
      fold_checksum_tree (TYPE_ATTRIBUTES (expr), ctx, ht);
      fold_checksum_tree (TYPE_NAME (expr), ctx, ht);
      fold_checksum_tree (TYPE_NAME (expr), ctx, ht);
      if (INTEGRAL_TYPE_P (expr)
      if (INTEGRAL_TYPE_P (expr)
          || SCALAR_FLOAT_TYPE_P (expr))
          || SCALAR_FLOAT_TYPE_P (expr))
        {
        {
          fold_checksum_tree (TYPE_MIN_VALUE (expr), ctx, ht);
          fold_checksum_tree (TYPE_MIN_VALUE (expr), ctx, ht);
          fold_checksum_tree (TYPE_MAX_VALUE (expr), ctx, ht);
          fold_checksum_tree (TYPE_MAX_VALUE (expr), ctx, ht);
        }
        }
      fold_checksum_tree (TYPE_MAIN_VARIANT (expr), ctx, ht);
      fold_checksum_tree (TYPE_MAIN_VARIANT (expr), ctx, ht);
      if (TREE_CODE (expr) == RECORD_TYPE
      if (TREE_CODE (expr) == RECORD_TYPE
          || TREE_CODE (expr) == UNION_TYPE
          || TREE_CODE (expr) == UNION_TYPE
          || TREE_CODE (expr) == QUAL_UNION_TYPE)
          || TREE_CODE (expr) == QUAL_UNION_TYPE)
        fold_checksum_tree (TYPE_BINFO (expr), ctx, ht);
        fold_checksum_tree (TYPE_BINFO (expr), ctx, ht);
      fold_checksum_tree (TYPE_CONTEXT (expr), ctx, ht);
      fold_checksum_tree (TYPE_CONTEXT (expr), ctx, ht);
      break;
      break;
    default:
    default:
      break;
      break;
    }
    }
}
}
 
 
#endif
#endif
 
 
/* Fold a unary tree expression with code CODE of type TYPE with an
/* Fold a unary tree expression with code CODE of type TYPE with an
   operand OP0.  Return a folded expression if successful.  Otherwise,
   operand OP0.  Return a folded expression if successful.  Otherwise,
   return a tree expression with code CODE of type TYPE with an
   return a tree expression with code CODE of type TYPE with an
   operand OP0.  */
   operand OP0.  */
 
 
tree
tree
fold_build1_stat (enum tree_code code, tree type, tree op0 MEM_STAT_DECL)
fold_build1_stat (enum tree_code code, tree type, tree op0 MEM_STAT_DECL)
{
{
  tree tem;
  tree tem;
#ifdef ENABLE_FOLD_CHECKING
#ifdef ENABLE_FOLD_CHECKING
  unsigned char checksum_before[16], checksum_after[16];
  unsigned char checksum_before[16], checksum_after[16];
  struct md5_ctx ctx;
  struct md5_ctx ctx;
  htab_t ht;
  htab_t ht;
 
 
  ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
  ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
  md5_init_ctx (&ctx);
  md5_init_ctx (&ctx);
  fold_checksum_tree (op0, &ctx, ht);
  fold_checksum_tree (op0, &ctx, ht);
  md5_finish_ctx (&ctx, checksum_before);
  md5_finish_ctx (&ctx, checksum_before);
  htab_empty (ht);
  htab_empty (ht);
#endif
#endif
 
 
  tem = fold_unary (code, type, op0);
  tem = fold_unary (code, type, op0);
  if (!tem)
  if (!tem)
    tem = build1_stat (code, type, op0 PASS_MEM_STAT);
    tem = build1_stat (code, type, op0 PASS_MEM_STAT);
 
 
#ifdef ENABLE_FOLD_CHECKING
#ifdef ENABLE_FOLD_CHECKING
  md5_init_ctx (&ctx);
  md5_init_ctx (&ctx);
  fold_checksum_tree (op0, &ctx, ht);
  fold_checksum_tree (op0, &ctx, ht);
  md5_finish_ctx (&ctx, checksum_after);
  md5_finish_ctx (&ctx, checksum_after);
  htab_delete (ht);
  htab_delete (ht);
 
 
  if (memcmp (checksum_before, checksum_after, 16))
  if (memcmp (checksum_before, checksum_after, 16))
    fold_check_failed (op0, tem);
    fold_check_failed (op0, tem);
#endif
#endif
  return tem;
  return tem;
}
}
 
 
/* Fold a binary tree expression with code CODE of type TYPE with
/* Fold a binary tree expression with code CODE of type TYPE with
   operands OP0 and OP1.  Return a folded expression if successful.
   operands OP0 and OP1.  Return a folded expression if successful.
   Otherwise, return a tree expression with code CODE of type TYPE
   Otherwise, return a tree expression with code CODE of type TYPE
   with operands OP0 and OP1.  */
   with operands OP0 and OP1.  */
 
 
tree
tree
fold_build2_stat (enum tree_code code, tree type, tree op0, tree op1
fold_build2_stat (enum tree_code code, tree type, tree op0, tree op1
                  MEM_STAT_DECL)
                  MEM_STAT_DECL)
{
{
  tree tem;
  tree tem;
#ifdef ENABLE_FOLD_CHECKING
#ifdef ENABLE_FOLD_CHECKING
  unsigned char checksum_before_op0[16],
  unsigned char checksum_before_op0[16],
                checksum_before_op1[16],
                checksum_before_op1[16],
                checksum_after_op0[16],
                checksum_after_op0[16],
                checksum_after_op1[16];
                checksum_after_op1[16];
  struct md5_ctx ctx;
  struct md5_ctx ctx;
  htab_t ht;
  htab_t ht;
 
 
  ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
  ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
  md5_init_ctx (&ctx);
  md5_init_ctx (&ctx);
  fold_checksum_tree (op0, &ctx, ht);
  fold_checksum_tree (op0, &ctx, ht);
  md5_finish_ctx (&ctx, checksum_before_op0);
  md5_finish_ctx (&ctx, checksum_before_op0);
  htab_empty (ht);
  htab_empty (ht);
 
 
  md5_init_ctx (&ctx);
  md5_init_ctx (&ctx);
  fold_checksum_tree (op1, &ctx, ht);
  fold_checksum_tree (op1, &ctx, ht);
  md5_finish_ctx (&ctx, checksum_before_op1);
  md5_finish_ctx (&ctx, checksum_before_op1);
  htab_empty (ht);
  htab_empty (ht);
#endif
#endif
 
 
  tem = fold_binary (code, type, op0, op1);
  tem = fold_binary (code, type, op0, op1);
  if (!tem)
  if (!tem)
    tem = build2_stat (code, type, op0, op1 PASS_MEM_STAT);
    tem = build2_stat (code, type, op0, op1 PASS_MEM_STAT);
 
 
#ifdef ENABLE_FOLD_CHECKING
#ifdef ENABLE_FOLD_CHECKING
  md5_init_ctx (&ctx);
  md5_init_ctx (&ctx);
  fold_checksum_tree (op0, &ctx, ht);
  fold_checksum_tree (op0, &ctx, ht);
  md5_finish_ctx (&ctx, checksum_after_op0);
  md5_finish_ctx (&ctx, checksum_after_op0);
  htab_empty (ht);
  htab_empty (ht);
 
 
  if (memcmp (checksum_before_op0, checksum_after_op0, 16))
  if (memcmp (checksum_before_op0, checksum_after_op0, 16))
    fold_check_failed (op0, tem);
    fold_check_failed (op0, tem);
 
 
  md5_init_ctx (&ctx);
  md5_init_ctx (&ctx);
  fold_checksum_tree (op1, &ctx, ht);
  fold_checksum_tree (op1, &ctx, ht);
  md5_finish_ctx (&ctx, checksum_after_op1);
  md5_finish_ctx (&ctx, checksum_after_op1);
  htab_delete (ht);
  htab_delete (ht);
 
 
  if (memcmp (checksum_before_op1, checksum_after_op1, 16))
  if (memcmp (checksum_before_op1, checksum_after_op1, 16))
    fold_check_failed (op1, tem);
    fold_check_failed (op1, tem);
#endif
#endif
  return tem;
  return tem;
}
}
 
 
/* Fold a ternary tree expression with code CODE of type TYPE with
/* Fold a ternary tree expression with code CODE of type TYPE with
   operands OP0, OP1, and OP2.  Return a folded expression if
   operands OP0, OP1, and OP2.  Return a folded expression if
   successful.  Otherwise, return a tree expression with code CODE of
   successful.  Otherwise, return a tree expression with code CODE of
   type TYPE with operands OP0, OP1, and OP2.  */
   type TYPE with operands OP0, OP1, and OP2.  */
 
 
tree
tree
fold_build3_stat (enum tree_code code, tree type, tree op0, tree op1, tree op2
fold_build3_stat (enum tree_code code, tree type, tree op0, tree op1, tree op2
             MEM_STAT_DECL)
             MEM_STAT_DECL)
{
{
  tree tem;
  tree tem;
#ifdef ENABLE_FOLD_CHECKING
#ifdef ENABLE_FOLD_CHECKING
  unsigned char checksum_before_op0[16],
  unsigned char checksum_before_op0[16],
                checksum_before_op1[16],
                checksum_before_op1[16],
                checksum_before_op2[16],
                checksum_before_op2[16],
                checksum_after_op0[16],
                checksum_after_op0[16],
                checksum_after_op1[16],
                checksum_after_op1[16],
                checksum_after_op2[16];
                checksum_after_op2[16];
  struct md5_ctx ctx;
  struct md5_ctx ctx;
  htab_t ht;
  htab_t ht;
 
 
  ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
  ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
  md5_init_ctx (&ctx);
  md5_init_ctx (&ctx);
  fold_checksum_tree (op0, &ctx, ht);
  fold_checksum_tree (op0, &ctx, ht);
  md5_finish_ctx (&ctx, checksum_before_op0);
  md5_finish_ctx (&ctx, checksum_before_op0);
  htab_empty (ht);
  htab_empty (ht);
 
 
  md5_init_ctx (&ctx);
  md5_init_ctx (&ctx);
  fold_checksum_tree (op1, &ctx, ht);
  fold_checksum_tree (op1, &ctx, ht);
  md5_finish_ctx (&ctx, checksum_before_op1);
  md5_finish_ctx (&ctx, checksum_before_op1);
  htab_empty (ht);
  htab_empty (ht);
 
 
  md5_init_ctx (&ctx);
  md5_init_ctx (&ctx);
  fold_checksum_tree (op2, &ctx, ht);
  fold_checksum_tree (op2, &ctx, ht);
  md5_finish_ctx (&ctx, checksum_before_op2);
  md5_finish_ctx (&ctx, checksum_before_op2);
  htab_empty (ht);
  htab_empty (ht);
#endif
#endif
 
 
  tem = fold_ternary (code, type, op0, op1, op2);
  tem = fold_ternary (code, type, op0, op1, op2);
  if (!tem)
  if (!tem)
    tem =  build3_stat (code, type, op0, op1, op2 PASS_MEM_STAT);
    tem =  build3_stat (code, type, op0, op1, op2 PASS_MEM_STAT);
 
 
#ifdef ENABLE_FOLD_CHECKING
#ifdef ENABLE_FOLD_CHECKING
  md5_init_ctx (&ctx);
  md5_init_ctx (&ctx);
  fold_checksum_tree (op0, &ctx, ht);
  fold_checksum_tree (op0, &ctx, ht);
  md5_finish_ctx (&ctx, checksum_after_op0);
  md5_finish_ctx (&ctx, checksum_after_op0);
  htab_empty (ht);
  htab_empty (ht);
 
 
  if (memcmp (checksum_before_op0, checksum_after_op0, 16))
  if (memcmp (checksum_before_op0, checksum_after_op0, 16))
    fold_check_failed (op0, tem);
    fold_check_failed (op0, tem);
 
 
  md5_init_ctx (&ctx);
  md5_init_ctx (&ctx);
  fold_checksum_tree (op1, &ctx, ht);
  fold_checksum_tree (op1, &ctx, ht);
  md5_finish_ctx (&ctx, checksum_after_op1);
  md5_finish_ctx (&ctx, checksum_after_op1);
  htab_empty (ht);
  htab_empty (ht);
 
 
  if (memcmp (checksum_before_op1, checksum_after_op1, 16))
  if (memcmp (checksum_before_op1, checksum_after_op1, 16))
    fold_check_failed (op1, tem);
    fold_check_failed (op1, tem);
 
 
  md5_init_ctx (&ctx);
  md5_init_ctx (&ctx);
  fold_checksum_tree (op2, &ctx, ht);
  fold_checksum_tree (op2, &ctx, ht);
  md5_finish_ctx (&ctx, checksum_after_op2);
  md5_finish_ctx (&ctx, checksum_after_op2);
  htab_delete (ht);
  htab_delete (ht);
 
 
  if (memcmp (checksum_before_op2, checksum_after_op2, 16))
  if (memcmp (checksum_before_op2, checksum_after_op2, 16))
    fold_check_failed (op2, tem);
    fold_check_failed (op2, tem);
#endif
#endif
  return tem;
  return tem;
}
}
 
 
/* Perform constant folding and related simplification of initializer
/* Perform constant folding and related simplification of initializer
   expression EXPR.  These behave identically to "fold_buildN" but ignore
   expression EXPR.  These behave identically to "fold_buildN" but ignore
   potential run-time traps and exceptions that fold must preserve.  */
   potential run-time traps and exceptions that fold must preserve.  */
 
 
#define START_FOLD_INIT \
#define START_FOLD_INIT \
  int saved_signaling_nans = flag_signaling_nans;\
  int saved_signaling_nans = flag_signaling_nans;\
  int saved_trapping_math = flag_trapping_math;\
  int saved_trapping_math = flag_trapping_math;\
  int saved_rounding_math = flag_rounding_math;\
  int saved_rounding_math = flag_rounding_math;\
  int saved_trapv = flag_trapv;\
  int saved_trapv = flag_trapv;\
  int saved_folding_initializer = folding_initializer;\
  int saved_folding_initializer = folding_initializer;\
  flag_signaling_nans = 0;\
  flag_signaling_nans = 0;\
  flag_trapping_math = 0;\
  flag_trapping_math = 0;\
  flag_rounding_math = 0;\
  flag_rounding_math = 0;\
  flag_trapv = 0;\
  flag_trapv = 0;\
  folding_initializer = 1;
  folding_initializer = 1;
 
 
#define END_FOLD_INIT \
#define END_FOLD_INIT \
  flag_signaling_nans = saved_signaling_nans;\
  flag_signaling_nans = saved_signaling_nans;\
  flag_trapping_math = saved_trapping_math;\
  flag_trapping_math = saved_trapping_math;\
  flag_rounding_math = saved_rounding_math;\
  flag_rounding_math = saved_rounding_math;\
  flag_trapv = saved_trapv;\
  flag_trapv = saved_trapv;\
  folding_initializer = saved_folding_initializer;
  folding_initializer = saved_folding_initializer;
 
 
tree
tree
fold_build1_initializer (enum tree_code code, tree type, tree op)
fold_build1_initializer (enum tree_code code, tree type, tree op)
{
{
  tree result;
  tree result;
  START_FOLD_INIT;
  START_FOLD_INIT;
 
 
  result = fold_build1 (code, type, op);
  result = fold_build1 (code, type, op);
 
 
  END_FOLD_INIT;
  END_FOLD_INIT;
  return result;
  return result;
}
}
 
 
tree
tree
fold_build2_initializer (enum tree_code code, tree type, tree op0, tree op1)
fold_build2_initializer (enum tree_code code, tree type, tree op0, tree op1)
{
{
  tree result;
  tree result;
  START_FOLD_INIT;
  START_FOLD_INIT;
 
 
  result = fold_build2 (code, type, op0, op1);
  result = fold_build2 (code, type, op0, op1);
 
 
  END_FOLD_INIT;
  END_FOLD_INIT;
  return result;
  return result;
}
}
 
 
tree
tree
fold_build3_initializer (enum tree_code code, tree type, tree op0, tree op1,
fold_build3_initializer (enum tree_code code, tree type, tree op0, tree op1,
                         tree op2)
                         tree op2)
{
{
  tree result;
  tree result;
  START_FOLD_INIT;
  START_FOLD_INIT;
 
 
  result = fold_build3 (code, type, op0, op1, op2);
  result = fold_build3 (code, type, op0, op1, op2);
 
 
  END_FOLD_INIT;
  END_FOLD_INIT;
  return result;
  return result;
}
}
 
 
#undef START_FOLD_INIT
#undef START_FOLD_INIT
#undef END_FOLD_INIT
#undef END_FOLD_INIT
 
 
/* Determine if first argument is a multiple of second argument.  Return 0 if
/* Determine if first argument is a multiple of second argument.  Return 0 if
   it is not, or we cannot easily determined it to be.
   it is not, or we cannot easily determined it to be.
 
 
   An example of the sort of thing we care about (at this point; this routine
   An example of the sort of thing we care about (at this point; this routine
   could surely be made more general, and expanded to do what the *_DIV_EXPR's
   could surely be made more general, and expanded to do what the *_DIV_EXPR's
   fold cases do now) is discovering that
   fold cases do now) is discovering that
 
 
     SAVE_EXPR (I) * SAVE_EXPR (J * 8)
     SAVE_EXPR (I) * SAVE_EXPR (J * 8)
 
 
   is a multiple of
   is a multiple of
 
 
     SAVE_EXPR (J * 8)
     SAVE_EXPR (J * 8)
 
 
   when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
   when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
 
 
   This code also handles discovering that
   This code also handles discovering that
 
 
     SAVE_EXPR (I) * SAVE_EXPR (J * 8)
     SAVE_EXPR (I) * SAVE_EXPR (J * 8)
 
 
   is a multiple of 8 so we don't have to worry about dealing with a
   is a multiple of 8 so we don't have to worry about dealing with a
   possible remainder.
   possible remainder.
 
 
   Note that we *look* inside a SAVE_EXPR only to determine how it was
   Note that we *look* inside a SAVE_EXPR only to determine how it was
   calculated; it is not safe for fold to do much of anything else with the
   calculated; it is not safe for fold to do much of anything else with the
   internals of a SAVE_EXPR, since it cannot know when it will be evaluated
   internals of a SAVE_EXPR, since it cannot know when it will be evaluated
   at run time.  For example, the latter example above *cannot* be implemented
   at run time.  For example, the latter example above *cannot* be implemented
   as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
   as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
   evaluation time of the original SAVE_EXPR is not necessarily the same at
   evaluation time of the original SAVE_EXPR is not necessarily the same at
   the time the new expression is evaluated.  The only optimization of this
   the time the new expression is evaluated.  The only optimization of this
   sort that would be valid is changing
   sort that would be valid is changing
 
 
     SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
     SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
 
 
   divided by 8 to
   divided by 8 to
 
 
     SAVE_EXPR (I) * SAVE_EXPR (J)
     SAVE_EXPR (I) * SAVE_EXPR (J)
 
 
   (where the same SAVE_EXPR (J) is used in the original and the
   (where the same SAVE_EXPR (J) is used in the original and the
   transformed version).  */
   transformed version).  */
 
 
static int
static int
multiple_of_p (tree type, tree top, tree bottom)
multiple_of_p (tree type, tree top, tree bottom)
{
{
  if (operand_equal_p (top, bottom, 0))
  if (operand_equal_p (top, bottom, 0))
    return 1;
    return 1;
 
 
  if (TREE_CODE (type) != INTEGER_TYPE)
  if (TREE_CODE (type) != INTEGER_TYPE)
    return 0;
    return 0;
 
 
  switch (TREE_CODE (top))
  switch (TREE_CODE (top))
    {
    {
    case BIT_AND_EXPR:
    case BIT_AND_EXPR:
      /* Bitwise and provides a power of two multiple.  If the mask is
      /* Bitwise and provides a power of two multiple.  If the mask is
         a multiple of BOTTOM then TOP is a multiple of BOTTOM.  */
         a multiple of BOTTOM then TOP is a multiple of BOTTOM.  */
      if (!integer_pow2p (bottom))
      if (!integer_pow2p (bottom))
        return 0;
        return 0;
      /* FALLTHRU */
      /* FALLTHRU */
 
 
    case MULT_EXPR:
    case MULT_EXPR:
      return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
      return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
              || multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
              || multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
 
 
    case PLUS_EXPR:
    case PLUS_EXPR:
    case MINUS_EXPR:
    case MINUS_EXPR:
      return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
      return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
              && multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
              && multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
 
 
    case LSHIFT_EXPR:
    case LSHIFT_EXPR:
      if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST)
      if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST)
        {
        {
          tree op1, t1;
          tree op1, t1;
 
 
          op1 = TREE_OPERAND (top, 1);
          op1 = TREE_OPERAND (top, 1);
          /* const_binop may not detect overflow correctly,
          /* const_binop may not detect overflow correctly,
             so check for it explicitly here.  */
             so check for it explicitly here.  */
          if (TYPE_PRECISION (TREE_TYPE (size_one_node))
          if (TYPE_PRECISION (TREE_TYPE (size_one_node))
              > TREE_INT_CST_LOW (op1)
              > TREE_INT_CST_LOW (op1)
              && TREE_INT_CST_HIGH (op1) == 0
              && TREE_INT_CST_HIGH (op1) == 0
              && 0 != (t1 = fold_convert (type,
              && 0 != (t1 = fold_convert (type,
                                          const_binop (LSHIFT_EXPR,
                                          const_binop (LSHIFT_EXPR,
                                                       size_one_node,
                                                       size_one_node,
                                                       op1, 0)))
                                                       op1, 0)))
              && ! TREE_OVERFLOW (t1))
              && ! TREE_OVERFLOW (t1))
            return multiple_of_p (type, t1, bottom);
            return multiple_of_p (type, t1, bottom);
        }
        }
      return 0;
      return 0;
 
 
    case NOP_EXPR:
    case NOP_EXPR:
      /* Can't handle conversions from non-integral or wider integral type.  */
      /* Can't handle conversions from non-integral or wider integral type.  */
      if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE)
      if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE)
          || (TYPE_PRECISION (type)
          || (TYPE_PRECISION (type)
              < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0)))))
              < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0)))))
        return 0;
        return 0;
 
 
      /* .. fall through ...  */
      /* .. fall through ...  */
 
 
    case SAVE_EXPR:
    case SAVE_EXPR:
      return multiple_of_p (type, TREE_OPERAND (top, 0), bottom);
      return multiple_of_p (type, TREE_OPERAND (top, 0), bottom);
 
 
    case INTEGER_CST:
    case INTEGER_CST:
      if (TREE_CODE (bottom) != INTEGER_CST
      if (TREE_CODE (bottom) != INTEGER_CST
          || (TYPE_UNSIGNED (type)
          || (TYPE_UNSIGNED (type)
              && (tree_int_cst_sgn (top) < 0
              && (tree_int_cst_sgn (top) < 0
                  || tree_int_cst_sgn (bottom) < 0)))
                  || tree_int_cst_sgn (bottom) < 0)))
        return 0;
        return 0;
      return integer_zerop (const_binop (TRUNC_MOD_EXPR,
      return integer_zerop (const_binop (TRUNC_MOD_EXPR,
                                         top, bottom, 0));
                                         top, bottom, 0));
 
 
    default:
    default:
      return 0;
      return 0;
    }
    }
}
}
 
 
/* Return true if `t' is known to be non-negative.  If the return
/* Return true if `t' is known to be non-negative.  If the return
   value is based on the assumption that signed overflow is undefined,
   value is based on the assumption that signed overflow is undefined,
   set *STRICT_OVERFLOW_P to true; otherwise, don't change
   set *STRICT_OVERFLOW_P to true; otherwise, don't change
   *STRICT_OVERFLOW_P.  */
   *STRICT_OVERFLOW_P.  */
 
 
int
int
tree_expr_nonnegative_warnv_p (tree t, bool *strict_overflow_p)
tree_expr_nonnegative_warnv_p (tree t, bool *strict_overflow_p)
{
{
  if (t == error_mark_node)
  if (t == error_mark_node)
    return 0;
    return 0;
 
 
  if (TYPE_UNSIGNED (TREE_TYPE (t)))
  if (TYPE_UNSIGNED (TREE_TYPE (t)))
    return 1;
    return 1;
 
 
  switch (TREE_CODE (t))
  switch (TREE_CODE (t))
    {
    {
    case SSA_NAME:
    case SSA_NAME:
      /* Query VRP to see if it has recorded any information about
      /* Query VRP to see if it has recorded any information about
         the range of this object.  */
         the range of this object.  */
      return ssa_name_nonnegative_p (t);
      return ssa_name_nonnegative_p (t);
 
 
    case ABS_EXPR:
    case ABS_EXPR:
      /* We can't return 1 if flag_wrapv is set because
      /* We can't return 1 if flag_wrapv is set because
         ABS_EXPR<INT_MIN> = INT_MIN.  */
         ABS_EXPR<INT_MIN> = INT_MIN.  */
      if (!INTEGRAL_TYPE_P (TREE_TYPE (t)))
      if (!INTEGRAL_TYPE_P (TREE_TYPE (t)))
        return 1;
        return 1;
      if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t)))
      if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t)))
        {
        {
          *strict_overflow_p = true;
          *strict_overflow_p = true;
          return 1;
          return 1;
        }
        }
      break;
      break;
 
 
    case INTEGER_CST:
    case INTEGER_CST:
      return tree_int_cst_sgn (t) >= 0;
      return tree_int_cst_sgn (t) >= 0;
 
 
    case REAL_CST:
    case REAL_CST:
      return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
      return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
 
 
    case PLUS_EXPR:
    case PLUS_EXPR:
      if (FLOAT_TYPE_P (TREE_TYPE (t)))
      if (FLOAT_TYPE_P (TREE_TYPE (t)))
        return (tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
        return (tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
                                               strict_overflow_p)
                                               strict_overflow_p)
                && tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
                && tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
                                                  strict_overflow_p));
                                                  strict_overflow_p));
 
 
      /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
      /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
         both unsigned and at least 2 bits shorter than the result.  */
         both unsigned and at least 2 bits shorter than the result.  */
      if (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
      if (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
          && TREE_CODE (TREE_OPERAND (t, 0)) == NOP_EXPR
          && TREE_CODE (TREE_OPERAND (t, 0)) == NOP_EXPR
          && TREE_CODE (TREE_OPERAND (t, 1)) == NOP_EXPR)
          && TREE_CODE (TREE_OPERAND (t, 1)) == NOP_EXPR)
        {
        {
          tree inner1 = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 0), 0));
          tree inner1 = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 0), 0));
          tree inner2 = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 1), 0));
          tree inner2 = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 1), 0));
          if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
          if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
              && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
              && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
            {
            {
              unsigned int prec = MAX (TYPE_PRECISION (inner1),
              unsigned int prec = MAX (TYPE_PRECISION (inner1),
                                       TYPE_PRECISION (inner2)) + 1;
                                       TYPE_PRECISION (inner2)) + 1;
              return prec < TYPE_PRECISION (TREE_TYPE (t));
              return prec < TYPE_PRECISION (TREE_TYPE (t));
            }
            }
        }
        }
      break;
      break;
 
 
    case MULT_EXPR:
    case MULT_EXPR:
      if (FLOAT_TYPE_P (TREE_TYPE (t)))
      if (FLOAT_TYPE_P (TREE_TYPE (t)))
        {
        {
          /* x * x for floating point x is always non-negative.  */
          /* x * x for floating point x is always non-negative.  */
          if (operand_equal_p (TREE_OPERAND (t, 0), TREE_OPERAND (t, 1), 0))
          if (operand_equal_p (TREE_OPERAND (t, 0), TREE_OPERAND (t, 1), 0))
            return 1;
            return 1;
          return (tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
          return (tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
                                                 strict_overflow_p)
                                                 strict_overflow_p)
                  && tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
                  && tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
                                                    strict_overflow_p));
                                                    strict_overflow_p));
        }
        }
 
 
      /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
      /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
         both unsigned and their total bits is shorter than the result.  */
         both unsigned and their total bits is shorter than the result.  */
      if (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
      if (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
          && TREE_CODE (TREE_OPERAND (t, 0)) == NOP_EXPR
          && TREE_CODE (TREE_OPERAND (t, 0)) == NOP_EXPR
          && TREE_CODE (TREE_OPERAND (t, 1)) == NOP_EXPR)
          && TREE_CODE (TREE_OPERAND (t, 1)) == NOP_EXPR)
        {
        {
          tree inner1 = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 0), 0));
          tree inner1 = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 0), 0));
          tree inner2 = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 1), 0));
          tree inner2 = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 1), 0));
          if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
          if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
              && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
              && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
            return TYPE_PRECISION (inner1) + TYPE_PRECISION (inner2)
            return TYPE_PRECISION (inner1) + TYPE_PRECISION (inner2)
                   < TYPE_PRECISION (TREE_TYPE (t));
                   < TYPE_PRECISION (TREE_TYPE (t));
        }
        }
      return 0;
      return 0;
 
 
    case BIT_AND_EXPR:
    case BIT_AND_EXPR:
    case MAX_EXPR:
    case MAX_EXPR:
      return (tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
      return (tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
                                             strict_overflow_p)
                                             strict_overflow_p)
              || tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
              || tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
                                                strict_overflow_p));
                                                strict_overflow_p));
 
 
    case BIT_IOR_EXPR:
    case BIT_IOR_EXPR:
    case BIT_XOR_EXPR:
    case BIT_XOR_EXPR:
    case MIN_EXPR:
    case MIN_EXPR:
    case RDIV_EXPR:
    case RDIV_EXPR:
    case TRUNC_DIV_EXPR:
    case TRUNC_DIV_EXPR:
    case CEIL_DIV_EXPR:
    case CEIL_DIV_EXPR:
    case FLOOR_DIV_EXPR:
    case FLOOR_DIV_EXPR:
    case ROUND_DIV_EXPR:
    case ROUND_DIV_EXPR:
      return (tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
      return (tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
                                             strict_overflow_p)
                                             strict_overflow_p)
              && tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
              && tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
                                                strict_overflow_p));
                                                strict_overflow_p));
 
 
    case TRUNC_MOD_EXPR:
    case TRUNC_MOD_EXPR:
    case CEIL_MOD_EXPR:
    case CEIL_MOD_EXPR:
    case FLOOR_MOD_EXPR:
    case FLOOR_MOD_EXPR:
    case ROUND_MOD_EXPR:
    case ROUND_MOD_EXPR:
    case SAVE_EXPR:
    case SAVE_EXPR:
    case NON_LVALUE_EXPR:
    case NON_LVALUE_EXPR:
    case FLOAT_EXPR:
    case FLOAT_EXPR:
    case FIX_TRUNC_EXPR:
    case FIX_TRUNC_EXPR:
      return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
      return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
                                            strict_overflow_p);
                                            strict_overflow_p);
 
 
    case COMPOUND_EXPR:
    case COMPOUND_EXPR:
    case MODIFY_EXPR:
    case MODIFY_EXPR:
      return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
      return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
                                            strict_overflow_p);
                                            strict_overflow_p);
 
 
    case BIND_EXPR:
    case BIND_EXPR:
      return tree_expr_nonnegative_warnv_p (expr_last (TREE_OPERAND (t, 1)),
      return tree_expr_nonnegative_warnv_p (expr_last (TREE_OPERAND (t, 1)),
                                            strict_overflow_p);
                                            strict_overflow_p);
 
 
    case COND_EXPR:
    case COND_EXPR:
      return (tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
      return (tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
                                             strict_overflow_p)
                                             strict_overflow_p)
              && tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 2),
              && tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 2),
                                                strict_overflow_p));
                                                strict_overflow_p));
 
 
    case NOP_EXPR:
    case NOP_EXPR:
      {
      {
        tree inner_type = TREE_TYPE (TREE_OPERAND (t, 0));
        tree inner_type = TREE_TYPE (TREE_OPERAND (t, 0));
        tree outer_type = TREE_TYPE (t);
        tree outer_type = TREE_TYPE (t);
 
 
        if (TREE_CODE (outer_type) == REAL_TYPE)
        if (TREE_CODE (outer_type) == REAL_TYPE)
          {
          {
            if (TREE_CODE (inner_type) == REAL_TYPE)
            if (TREE_CODE (inner_type) == REAL_TYPE)
              return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
              return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
                                                    strict_overflow_p);
                                                    strict_overflow_p);
            if (TREE_CODE (inner_type) == INTEGER_TYPE)
            if (TREE_CODE (inner_type) == INTEGER_TYPE)
              {
              {
                if (TYPE_UNSIGNED (inner_type))
                if (TYPE_UNSIGNED (inner_type))
                  return 1;
                  return 1;
                return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
                return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
                                                      strict_overflow_p);
                                                      strict_overflow_p);
              }
              }
          }
          }
        else if (TREE_CODE (outer_type) == INTEGER_TYPE)
        else if (TREE_CODE (outer_type) == INTEGER_TYPE)
          {
          {
            if (TREE_CODE (inner_type) == REAL_TYPE)
            if (TREE_CODE (inner_type) == REAL_TYPE)
              return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t,0),
              return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t,0),
                                                    strict_overflow_p);
                                                    strict_overflow_p);
            if (TREE_CODE (inner_type) == INTEGER_TYPE)
            if (TREE_CODE (inner_type) == INTEGER_TYPE)
              return TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type)
              return TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type)
                      && TYPE_UNSIGNED (inner_type);
                      && TYPE_UNSIGNED (inner_type);
          }
          }
      }
      }
      break;
      break;
 
 
    case TARGET_EXPR:
    case TARGET_EXPR:
      {
      {
        tree temp = TARGET_EXPR_SLOT (t);
        tree temp = TARGET_EXPR_SLOT (t);
        t = TARGET_EXPR_INITIAL (t);
        t = TARGET_EXPR_INITIAL (t);
 
 
        /* If the initializer is non-void, then it's a normal expression
        /* If the initializer is non-void, then it's a normal expression
           that will be assigned to the slot.  */
           that will be assigned to the slot.  */
        if (!VOID_TYPE_P (t))
        if (!VOID_TYPE_P (t))
          return tree_expr_nonnegative_warnv_p (t, strict_overflow_p);
          return tree_expr_nonnegative_warnv_p (t, strict_overflow_p);
 
 
        /* Otherwise, the initializer sets the slot in some way.  One common
        /* Otherwise, the initializer sets the slot in some way.  One common
           way is an assignment statement at the end of the initializer.  */
           way is an assignment statement at the end of the initializer.  */
        while (1)
        while (1)
          {
          {
            if (TREE_CODE (t) == BIND_EXPR)
            if (TREE_CODE (t) == BIND_EXPR)
              t = expr_last (BIND_EXPR_BODY (t));
              t = expr_last (BIND_EXPR_BODY (t));
            else if (TREE_CODE (t) == TRY_FINALLY_EXPR
            else if (TREE_CODE (t) == TRY_FINALLY_EXPR
                     || TREE_CODE (t) == TRY_CATCH_EXPR)
                     || TREE_CODE (t) == TRY_CATCH_EXPR)
              t = expr_last (TREE_OPERAND (t, 0));
              t = expr_last (TREE_OPERAND (t, 0));
            else if (TREE_CODE (t) == STATEMENT_LIST)
            else if (TREE_CODE (t) == STATEMENT_LIST)
              t = expr_last (t);
              t = expr_last (t);
            else
            else
              break;
              break;
          }
          }
        if (TREE_CODE (t) == MODIFY_EXPR
        if (TREE_CODE (t) == MODIFY_EXPR
            && TREE_OPERAND (t, 0) == temp)
            && TREE_OPERAND (t, 0) == temp)
          return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
          return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
                                                strict_overflow_p);
                                                strict_overflow_p);
 
 
        return 0;
        return 0;
      }
      }
 
 
    case CALL_EXPR:
    case CALL_EXPR:
      {
      {
        tree fndecl = get_callee_fndecl (t);
        tree fndecl = get_callee_fndecl (t);
        tree arglist = TREE_OPERAND (t, 1);
        tree arglist = TREE_OPERAND (t, 1);
        if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
        if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
          switch (DECL_FUNCTION_CODE (fndecl))
          switch (DECL_FUNCTION_CODE (fndecl))
            {
            {
            CASE_FLT_FN (BUILT_IN_ACOS):
            CASE_FLT_FN (BUILT_IN_ACOS):
            CASE_FLT_FN (BUILT_IN_ACOSH):
            CASE_FLT_FN (BUILT_IN_ACOSH):
            CASE_FLT_FN (BUILT_IN_CABS):
            CASE_FLT_FN (BUILT_IN_CABS):
            CASE_FLT_FN (BUILT_IN_COSH):
            CASE_FLT_FN (BUILT_IN_COSH):
            CASE_FLT_FN (BUILT_IN_ERFC):
            CASE_FLT_FN (BUILT_IN_ERFC):
            CASE_FLT_FN (BUILT_IN_EXP):
            CASE_FLT_FN (BUILT_IN_EXP):
            CASE_FLT_FN (BUILT_IN_EXP10):
            CASE_FLT_FN (BUILT_IN_EXP10):
            CASE_FLT_FN (BUILT_IN_EXP2):
            CASE_FLT_FN (BUILT_IN_EXP2):
            CASE_FLT_FN (BUILT_IN_FABS):
            CASE_FLT_FN (BUILT_IN_FABS):
            CASE_FLT_FN (BUILT_IN_FDIM):
            CASE_FLT_FN (BUILT_IN_FDIM):
            CASE_FLT_FN (BUILT_IN_HYPOT):
            CASE_FLT_FN (BUILT_IN_HYPOT):
            CASE_FLT_FN (BUILT_IN_POW10):
            CASE_FLT_FN (BUILT_IN_POW10):
            CASE_INT_FN (BUILT_IN_FFS):
            CASE_INT_FN (BUILT_IN_FFS):
            CASE_INT_FN (BUILT_IN_PARITY):
            CASE_INT_FN (BUILT_IN_PARITY):
            CASE_INT_FN (BUILT_IN_POPCOUNT):
            CASE_INT_FN (BUILT_IN_POPCOUNT):
              /* Always true.  */
              /* Always true.  */
              return 1;
              return 1;
 
 
            CASE_FLT_FN (BUILT_IN_SQRT):
            CASE_FLT_FN (BUILT_IN_SQRT):
              /* sqrt(-0.0) is -0.0.  */
              /* sqrt(-0.0) is -0.0.  */
              if (!HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (t))))
              if (!HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (t))))
                return 1;
                return 1;
              return tree_expr_nonnegative_warnv_p (TREE_VALUE (arglist),
              return tree_expr_nonnegative_warnv_p (TREE_VALUE (arglist),
                                                    strict_overflow_p);
                                                    strict_overflow_p);
 
 
            CASE_FLT_FN (BUILT_IN_ASINH):
            CASE_FLT_FN (BUILT_IN_ASINH):
            CASE_FLT_FN (BUILT_IN_ATAN):
            CASE_FLT_FN (BUILT_IN_ATAN):
            CASE_FLT_FN (BUILT_IN_ATANH):
            CASE_FLT_FN (BUILT_IN_ATANH):
            CASE_FLT_FN (BUILT_IN_CBRT):
            CASE_FLT_FN (BUILT_IN_CBRT):
            CASE_FLT_FN (BUILT_IN_CEIL):
            CASE_FLT_FN (BUILT_IN_CEIL):
            CASE_FLT_FN (BUILT_IN_ERF):
            CASE_FLT_FN (BUILT_IN_ERF):
            CASE_FLT_FN (BUILT_IN_EXPM1):
            CASE_FLT_FN (BUILT_IN_EXPM1):
            CASE_FLT_FN (BUILT_IN_FLOOR):
            CASE_FLT_FN (BUILT_IN_FLOOR):
            CASE_FLT_FN (BUILT_IN_FMOD):
            CASE_FLT_FN (BUILT_IN_FMOD):
            CASE_FLT_FN (BUILT_IN_FREXP):
            CASE_FLT_FN (BUILT_IN_FREXP):
            CASE_FLT_FN (BUILT_IN_LCEIL):
            CASE_FLT_FN (BUILT_IN_LCEIL):
            CASE_FLT_FN (BUILT_IN_LDEXP):
            CASE_FLT_FN (BUILT_IN_LDEXP):
            CASE_FLT_FN (BUILT_IN_LFLOOR):
            CASE_FLT_FN (BUILT_IN_LFLOOR):
            CASE_FLT_FN (BUILT_IN_LLCEIL):
            CASE_FLT_FN (BUILT_IN_LLCEIL):
            CASE_FLT_FN (BUILT_IN_LLFLOOR):
            CASE_FLT_FN (BUILT_IN_LLFLOOR):
            CASE_FLT_FN (BUILT_IN_LLRINT):
            CASE_FLT_FN (BUILT_IN_LLRINT):
            CASE_FLT_FN (BUILT_IN_LLROUND):
            CASE_FLT_FN (BUILT_IN_LLROUND):
            CASE_FLT_FN (BUILT_IN_LRINT):
            CASE_FLT_FN (BUILT_IN_LRINT):
            CASE_FLT_FN (BUILT_IN_LROUND):
            CASE_FLT_FN (BUILT_IN_LROUND):
            CASE_FLT_FN (BUILT_IN_MODF):
            CASE_FLT_FN (BUILT_IN_MODF):
            CASE_FLT_FN (BUILT_IN_NEARBYINT):
            CASE_FLT_FN (BUILT_IN_NEARBYINT):
            CASE_FLT_FN (BUILT_IN_POW):
            CASE_FLT_FN (BUILT_IN_POW):
            CASE_FLT_FN (BUILT_IN_RINT):
            CASE_FLT_FN (BUILT_IN_RINT):
            CASE_FLT_FN (BUILT_IN_ROUND):
            CASE_FLT_FN (BUILT_IN_ROUND):
            CASE_FLT_FN (BUILT_IN_SIGNBIT):
            CASE_FLT_FN (BUILT_IN_SIGNBIT):
            CASE_FLT_FN (BUILT_IN_SINH):
            CASE_FLT_FN (BUILT_IN_SINH):
            CASE_FLT_FN (BUILT_IN_TANH):
            CASE_FLT_FN (BUILT_IN_TANH):
            CASE_FLT_FN (BUILT_IN_TRUNC):
            CASE_FLT_FN (BUILT_IN_TRUNC):
              /* True if the 1st argument is nonnegative.  */
              /* True if the 1st argument is nonnegative.  */
              return tree_expr_nonnegative_warnv_p (TREE_VALUE (arglist),
              return tree_expr_nonnegative_warnv_p (TREE_VALUE (arglist),
                                                    strict_overflow_p);
                                                    strict_overflow_p);
 
 
            CASE_FLT_FN (BUILT_IN_FMAX):
            CASE_FLT_FN (BUILT_IN_FMAX):
              /* True if the 1st OR 2nd arguments are nonnegative.  */
              /* True if the 1st OR 2nd arguments are nonnegative.  */
              return (tree_expr_nonnegative_warnv_p (TREE_VALUE (arglist),
              return (tree_expr_nonnegative_warnv_p (TREE_VALUE (arglist),
                                                     strict_overflow_p)
                                                     strict_overflow_p)
                      || (tree_expr_nonnegative_warnv_p
                      || (tree_expr_nonnegative_warnv_p
                          (TREE_VALUE (TREE_CHAIN (arglist)),
                          (TREE_VALUE (TREE_CHAIN (arglist)),
                           strict_overflow_p)));
                           strict_overflow_p)));
 
 
            CASE_FLT_FN (BUILT_IN_FMIN):
            CASE_FLT_FN (BUILT_IN_FMIN):
              /* True if the 1st AND 2nd arguments are nonnegative.  */
              /* True if the 1st AND 2nd arguments are nonnegative.  */
              return (tree_expr_nonnegative_warnv_p (TREE_VALUE (arglist),
              return (tree_expr_nonnegative_warnv_p (TREE_VALUE (arglist),
                                                     strict_overflow_p)
                                                     strict_overflow_p)
                      && (tree_expr_nonnegative_warnv_p
                      && (tree_expr_nonnegative_warnv_p
                          (TREE_VALUE (TREE_CHAIN (arglist)),
                          (TREE_VALUE (TREE_CHAIN (arglist)),
                           strict_overflow_p)));
                           strict_overflow_p)));
 
 
            CASE_FLT_FN (BUILT_IN_COPYSIGN):
            CASE_FLT_FN (BUILT_IN_COPYSIGN):
              /* True if the 2nd argument is nonnegative.  */
              /* True if the 2nd argument is nonnegative.  */
              return (tree_expr_nonnegative_warnv_p
              return (tree_expr_nonnegative_warnv_p
                      (TREE_VALUE (TREE_CHAIN (arglist)),
                      (TREE_VALUE (TREE_CHAIN (arglist)),
                       strict_overflow_p));
                       strict_overflow_p));
 
 
            default:
            default:
              break;
              break;
            }
            }
      }
      }
 
 
      /* ... fall through ...  */
      /* ... fall through ...  */
 
 
    default:
    default:
      {
      {
        tree type = TREE_TYPE (t);
        tree type = TREE_TYPE (t);
        if ((TYPE_PRECISION (type) != 1 || TYPE_UNSIGNED (type))
        if ((TYPE_PRECISION (type) != 1 || TYPE_UNSIGNED (type))
            && truth_value_p (TREE_CODE (t)))
            && truth_value_p (TREE_CODE (t)))
          /* Truth values evaluate to 0 or 1, which is nonnegative unless we
          /* Truth values evaluate to 0 or 1, which is nonnegative unless we
             have a signed:1 type (where the value is -1 and 0).  */
             have a signed:1 type (where the value is -1 and 0).  */
          return true;
          return true;
      }
      }
    }
    }
 
 
  /* We don't know sign of `t', so be conservative and return false.  */
  /* We don't know sign of `t', so be conservative and return false.  */
  return 0;
  return 0;
}
}
 
 
/* Return true if `t' is known to be non-negative.  Handle warnings
/* Return true if `t' is known to be non-negative.  Handle warnings
   about undefined signed overflow.  */
   about undefined signed overflow.  */
 
 
int
int
tree_expr_nonnegative_p (tree t)
tree_expr_nonnegative_p (tree t)
{
{
  int ret;
  int ret;
  bool strict_overflow_p;
  bool strict_overflow_p;
 
 
  strict_overflow_p = false;
  strict_overflow_p = false;
  ret = tree_expr_nonnegative_warnv_p (t, &strict_overflow_p);
  ret = tree_expr_nonnegative_warnv_p (t, &strict_overflow_p);
  if (strict_overflow_p)
  if (strict_overflow_p)
    fold_overflow_warning (("assuming signed overflow does not occur when "
    fold_overflow_warning (("assuming signed overflow does not occur when "
                            "determining that expression is always "
                            "determining that expression is always "
                            "non-negative"),
                            "non-negative"),
                           WARN_STRICT_OVERFLOW_MISC);
                           WARN_STRICT_OVERFLOW_MISC);
  return ret;
  return ret;
}
}
 
 
/* Return true when T is an address and is known to be nonzero.
/* Return true when T is an address and is known to be nonzero.
   For floating point we further ensure that T is not denormal.
   For floating point we further ensure that T is not denormal.
   Similar logic is present in nonzero_address in rtlanal.h.
   Similar logic is present in nonzero_address in rtlanal.h.
 
 
   If the return value is based on the assumption that signed overflow
   If the return value is based on the assumption that signed overflow
   is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
   is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
   change *STRICT_OVERFLOW_P.  */
   change *STRICT_OVERFLOW_P.  */
 
 
bool
bool
tree_expr_nonzero_warnv_p (tree t, bool *strict_overflow_p)
tree_expr_nonzero_warnv_p (tree t, bool *strict_overflow_p)
{
{
  tree type = TREE_TYPE (t);
  tree type = TREE_TYPE (t);
  bool sub_strict_overflow_p;
  bool sub_strict_overflow_p;
 
 
  /* Doing something useful for floating point would need more work.  */
  /* Doing something useful for floating point would need more work.  */
  if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type))
  if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type))
    return false;
    return false;
 
 
  switch (TREE_CODE (t))
  switch (TREE_CODE (t))
    {
    {
    case SSA_NAME:
    case SSA_NAME:
      /* Query VRP to see if it has recorded any information about
      /* Query VRP to see if it has recorded any information about
         the range of this object.  */
         the range of this object.  */
      return ssa_name_nonzero_p (t);
      return ssa_name_nonzero_p (t);
 
 
    case ABS_EXPR:
    case ABS_EXPR:
      return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
      return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
                                        strict_overflow_p);
                                        strict_overflow_p);
 
 
    case INTEGER_CST:
    case INTEGER_CST:
      /* We used to test for !integer_zerop here.  This does not work correctly
      /* We used to test for !integer_zerop here.  This does not work correctly
         if TREE_CONSTANT_OVERFLOW (t).  */
         if TREE_CONSTANT_OVERFLOW (t).  */
      return (TREE_INT_CST_LOW (t) != 0
      return (TREE_INT_CST_LOW (t) != 0
              || TREE_INT_CST_HIGH (t) != 0);
              || TREE_INT_CST_HIGH (t) != 0);
 
 
    case PLUS_EXPR:
    case PLUS_EXPR:
      if (TYPE_OVERFLOW_UNDEFINED (type))
      if (TYPE_OVERFLOW_UNDEFINED (type))
        {
        {
          /* With the presence of negative values it is hard
          /* With the presence of negative values it is hard
             to say something.  */
             to say something.  */
          sub_strict_overflow_p = false;
          sub_strict_overflow_p = false;
          if (!tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
          if (!tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
                                              &sub_strict_overflow_p)
                                              &sub_strict_overflow_p)
              || !tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
              || !tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
                                                 &sub_strict_overflow_p))
                                                 &sub_strict_overflow_p))
            return false;
            return false;
          /* One of operands must be positive and the other non-negative.  */
          /* One of operands must be positive and the other non-negative.  */
          /* We don't set *STRICT_OVERFLOW_P here: even if this value
          /* We don't set *STRICT_OVERFLOW_P here: even if this value
             overflows, on a twos-complement machine the sum of two
             overflows, on a twos-complement machine the sum of two
             nonnegative numbers can never be zero.  */
             nonnegative numbers can never be zero.  */
          return (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
          return (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
                                             strict_overflow_p)
                                             strict_overflow_p)
                  || tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
                  || tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
                                                strict_overflow_p));
                                                strict_overflow_p));
        }
        }
      break;
      break;
 
 
    case MULT_EXPR:
    case MULT_EXPR:
      if (TYPE_OVERFLOW_UNDEFINED (type))
      if (TYPE_OVERFLOW_UNDEFINED (type))
        {
        {
          if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
          if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
                                         strict_overflow_p)
                                         strict_overflow_p)
              && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
              && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
                                            strict_overflow_p))
                                            strict_overflow_p))
            {
            {
              *strict_overflow_p = true;
              *strict_overflow_p = true;
              return true;
              return true;
            }
            }
        }
        }
      break;
      break;
 
 
    case NOP_EXPR:
    case NOP_EXPR:
      {
      {
        tree inner_type = TREE_TYPE (TREE_OPERAND (t, 0));
        tree inner_type = TREE_TYPE (TREE_OPERAND (t, 0));
        tree outer_type = TREE_TYPE (t);
        tree outer_type = TREE_TYPE (t);
 
 
        return (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
        return (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
                && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
                && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
                                              strict_overflow_p));
                                              strict_overflow_p));
      }
      }
      break;
      break;
 
 
   case ADDR_EXPR:
   case ADDR_EXPR:
      {
      {
        tree base = get_base_address (TREE_OPERAND (t, 0));
        tree base = get_base_address (TREE_OPERAND (t, 0));
 
 
        if (!base)
        if (!base)
          return false;
          return false;
 
 
        /* Weak declarations may link to NULL.  */
        /* Weak declarations may link to NULL.  */
        if (VAR_OR_FUNCTION_DECL_P (base))
        if (VAR_OR_FUNCTION_DECL_P (base))
          return !DECL_WEAK (base);
          return !DECL_WEAK (base);
 
 
        /* Constants are never weak.  */
        /* Constants are never weak.  */
        if (CONSTANT_CLASS_P (base))
        if (CONSTANT_CLASS_P (base))
          return true;
          return true;
 
 
        return false;
        return false;
      }
      }
 
 
    case COND_EXPR:
    case COND_EXPR:
      sub_strict_overflow_p = false;
      sub_strict_overflow_p = false;
      if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
      if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
                                     &sub_strict_overflow_p)
                                     &sub_strict_overflow_p)
          && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 2),
          && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 2),
                                        &sub_strict_overflow_p))
                                        &sub_strict_overflow_p))
        {
        {
          if (sub_strict_overflow_p)
          if (sub_strict_overflow_p)
            *strict_overflow_p = true;
            *strict_overflow_p = true;
          return true;
          return true;
        }
        }
      break;
      break;
 
 
    case MIN_EXPR:
    case MIN_EXPR:
      sub_strict_overflow_p = false;
      sub_strict_overflow_p = false;
      if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
      if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
                                     &sub_strict_overflow_p)
                                     &sub_strict_overflow_p)
          && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
          && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
                                        &sub_strict_overflow_p))
                                        &sub_strict_overflow_p))
        {
        {
          if (sub_strict_overflow_p)
          if (sub_strict_overflow_p)
            *strict_overflow_p = true;
            *strict_overflow_p = true;
        }
        }
      break;
      break;
 
 
    case MAX_EXPR:
    case MAX_EXPR:
      sub_strict_overflow_p = false;
      sub_strict_overflow_p = false;
      if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
      if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
                                     &sub_strict_overflow_p))
                                     &sub_strict_overflow_p))
        {
        {
          if (sub_strict_overflow_p)
          if (sub_strict_overflow_p)
            *strict_overflow_p = true;
            *strict_overflow_p = true;
 
 
          /* When both operands are nonzero, then MAX must be too.  */
          /* When both operands are nonzero, then MAX must be too.  */
          if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
          if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
                                         strict_overflow_p))
                                         strict_overflow_p))
            return true;
            return true;
 
 
          /* MAX where operand 0 is positive is positive.  */
          /* MAX where operand 0 is positive is positive.  */
          return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
          return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
                                               strict_overflow_p);
                                               strict_overflow_p);
        }
        }
      /* MAX where operand 1 is positive is positive.  */
      /* MAX where operand 1 is positive is positive.  */
      else if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
      else if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
                                          &sub_strict_overflow_p)
                                          &sub_strict_overflow_p)
               && tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
               && tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
                                                 &sub_strict_overflow_p))
                                                 &sub_strict_overflow_p))
        {
        {
          if (sub_strict_overflow_p)
          if (sub_strict_overflow_p)
            *strict_overflow_p = true;
            *strict_overflow_p = true;
          return true;
          return true;
        }
        }
      break;
      break;
 
 
    case COMPOUND_EXPR:
    case COMPOUND_EXPR:
    case MODIFY_EXPR:
    case MODIFY_EXPR:
    case BIND_EXPR:
    case BIND_EXPR:
      return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
      return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
                                        strict_overflow_p);
                                        strict_overflow_p);
 
 
    case SAVE_EXPR:
    case SAVE_EXPR:
    case NON_LVALUE_EXPR:
    case NON_LVALUE_EXPR:
      return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
      return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
                                        strict_overflow_p);
                                        strict_overflow_p);
 
 
    case BIT_IOR_EXPR:
    case BIT_IOR_EXPR:
      return (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
      return (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
                                        strict_overflow_p)
                                        strict_overflow_p)
              || tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
              || tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
                                            strict_overflow_p));
                                            strict_overflow_p));
 
 
    case CALL_EXPR:
    case CALL_EXPR:
      return alloca_call_p (t);
      return alloca_call_p (t);
 
 
    default:
    default:
      break;
      break;
    }
    }
  return false;
  return false;
}
}
 
 
/* Return true when T is an address and is known to be nonzero.
/* Return true when T is an address and is known to be nonzero.
   Handle warnings about undefined signed overflow.  */
   Handle warnings about undefined signed overflow.  */
 
 
bool
bool
tree_expr_nonzero_p (tree t)
tree_expr_nonzero_p (tree t)
{
{
  bool ret, strict_overflow_p;
  bool ret, strict_overflow_p;
 
 
  strict_overflow_p = false;
  strict_overflow_p = false;
  ret = tree_expr_nonzero_warnv_p (t, &strict_overflow_p);
  ret = tree_expr_nonzero_warnv_p (t, &strict_overflow_p);
  if (strict_overflow_p)
  if (strict_overflow_p)
    fold_overflow_warning (("assuming signed overflow does not occur when "
    fold_overflow_warning (("assuming signed overflow does not occur when "
                            "determining that expression is always "
                            "determining that expression is always "
                            "non-zero"),
                            "non-zero"),
                           WARN_STRICT_OVERFLOW_MISC);
                           WARN_STRICT_OVERFLOW_MISC);
  return ret;
  return ret;
}
}
 
 
/* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
/* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
   attempt to fold the expression to a constant without modifying TYPE,
   attempt to fold the expression to a constant without modifying TYPE,
   OP0 or OP1.
   OP0 or OP1.
 
 
   If the expression could be simplified to a constant, then return
   If the expression could be simplified to a constant, then return
   the constant.  If the expression would not be simplified to a
   the constant.  If the expression would not be simplified to a
   constant, then return NULL_TREE.  */
   constant, then return NULL_TREE.  */
 
 
tree
tree
fold_binary_to_constant (enum tree_code code, tree type, tree op0, tree op1)
fold_binary_to_constant (enum tree_code code, tree type, tree op0, tree op1)
{
{
  tree tem = fold_binary (code, type, op0, op1);
  tree tem = fold_binary (code, type, op0, op1);
  return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
  return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
}
}
 
 
/* Given the components of a unary expression CODE, TYPE and OP0,
/* Given the components of a unary expression CODE, TYPE and OP0,
   attempt to fold the expression to a constant without modifying
   attempt to fold the expression to a constant without modifying
   TYPE or OP0.
   TYPE or OP0.
 
 
   If the expression could be simplified to a constant, then return
   If the expression could be simplified to a constant, then return
   the constant.  If the expression would not be simplified to a
   the constant.  If the expression would not be simplified to a
   constant, then return NULL_TREE.  */
   constant, then return NULL_TREE.  */
 
 
tree
tree
fold_unary_to_constant (enum tree_code code, tree type, tree op0)
fold_unary_to_constant (enum tree_code code, tree type, tree op0)
{
{
  tree tem = fold_unary (code, type, op0);
  tree tem = fold_unary (code, type, op0);
  return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
  return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
}
}
 
 
/* If EXP represents referencing an element in a constant string
/* If EXP represents referencing an element in a constant string
   (either via pointer arithmetic or array indexing), return the
   (either via pointer arithmetic or array indexing), return the
   tree representing the value accessed, otherwise return NULL.  */
   tree representing the value accessed, otherwise return NULL.  */
 
 
tree
tree
fold_read_from_constant_string (tree exp)
fold_read_from_constant_string (tree exp)
{
{
  if ((TREE_CODE (exp) == INDIRECT_REF
  if ((TREE_CODE (exp) == INDIRECT_REF
       || TREE_CODE (exp) == ARRAY_REF)
       || TREE_CODE (exp) == ARRAY_REF)
      && TREE_CODE (TREE_TYPE (exp)) == INTEGER_TYPE)
      && TREE_CODE (TREE_TYPE (exp)) == INTEGER_TYPE)
    {
    {
      tree exp1 = TREE_OPERAND (exp, 0);
      tree exp1 = TREE_OPERAND (exp, 0);
      tree index;
      tree index;
      tree string;
      tree string;
 
 
      if (TREE_CODE (exp) == INDIRECT_REF)
      if (TREE_CODE (exp) == INDIRECT_REF)
        string = string_constant (exp1, &index);
        string = string_constant (exp1, &index);
      else
      else
        {
        {
          tree low_bound = array_ref_low_bound (exp);
          tree low_bound = array_ref_low_bound (exp);
          index = fold_convert (sizetype, TREE_OPERAND (exp, 1));
          index = fold_convert (sizetype, TREE_OPERAND (exp, 1));
 
 
          /* Optimize the special-case of a zero lower bound.
          /* Optimize the special-case of a zero lower bound.
 
 
             We convert the low_bound to sizetype to avoid some problems
             We convert the low_bound to sizetype to avoid some problems
             with constant folding.  (E.g. suppose the lower bound is 1,
             with constant folding.  (E.g. suppose the lower bound is 1,
             and its mode is QI.  Without the conversion,l (ARRAY
             and its mode is QI.  Without the conversion,l (ARRAY
             +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
             +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
             +INDEX), which becomes (ARRAY+255+INDEX).  Opps!)  */
             +INDEX), which becomes (ARRAY+255+INDEX).  Opps!)  */
          if (! integer_zerop (low_bound))
          if (! integer_zerop (low_bound))
            index = size_diffop (index, fold_convert (sizetype, low_bound));
            index = size_diffop (index, fold_convert (sizetype, low_bound));
 
 
          string = exp1;
          string = exp1;
        }
        }
 
 
      if (string
      if (string
          && TYPE_MODE (TREE_TYPE (exp)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))
          && TYPE_MODE (TREE_TYPE (exp)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))
          && TREE_CODE (string) == STRING_CST
          && TREE_CODE (string) == STRING_CST
          && TREE_CODE (index) == INTEGER_CST
          && TREE_CODE (index) == INTEGER_CST
          && compare_tree_int (index, TREE_STRING_LENGTH (string)) < 0
          && compare_tree_int (index, TREE_STRING_LENGTH (string)) < 0
          && (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_TYPE (string))))
          && (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_TYPE (string))))
              == MODE_INT)
              == MODE_INT)
          && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))) == 1))
          && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))) == 1))
        return fold_convert (TREE_TYPE (exp),
        return fold_convert (TREE_TYPE (exp),
                             build_int_cst (NULL_TREE,
                             build_int_cst (NULL_TREE,
                                            (TREE_STRING_POINTER (string)
                                            (TREE_STRING_POINTER (string)
                                             [TREE_INT_CST_LOW (index)])));
                                             [TREE_INT_CST_LOW (index)])));
    }
    }
  return NULL;
  return NULL;
}
}
 
 
/* Return the tree for neg (ARG0) when ARG0 is known to be either
/* Return the tree for neg (ARG0) when ARG0 is known to be either
   an integer constant or real constant.
   an integer constant or real constant.
 
 
   TYPE is the type of the result.  */
   TYPE is the type of the result.  */
 
 
static tree
static tree
fold_negate_const (tree arg0, tree type)
fold_negate_const (tree arg0, tree type)
{
{
  tree t = NULL_TREE;
  tree t = NULL_TREE;
 
 
  switch (TREE_CODE (arg0))
  switch (TREE_CODE (arg0))
    {
    {
    case INTEGER_CST:
    case INTEGER_CST:
      {
      {
        unsigned HOST_WIDE_INT low;
        unsigned HOST_WIDE_INT low;
        HOST_WIDE_INT high;
        HOST_WIDE_INT high;
        int overflow = neg_double (TREE_INT_CST_LOW (arg0),
        int overflow = neg_double (TREE_INT_CST_LOW (arg0),
                                   TREE_INT_CST_HIGH (arg0),
                                   TREE_INT_CST_HIGH (arg0),
                                   &low, &high);
                                   &low, &high);
        t = build_int_cst_wide (type, low, high);
        t = build_int_cst_wide (type, low, high);
        t = force_fit_type (t, 1,
        t = force_fit_type (t, 1,
                            (overflow | TREE_OVERFLOW (arg0))
                            (overflow | TREE_OVERFLOW (arg0))
                            && !TYPE_UNSIGNED (type),
                            && !TYPE_UNSIGNED (type),
                            TREE_CONSTANT_OVERFLOW (arg0));
                            TREE_CONSTANT_OVERFLOW (arg0));
        break;
        break;
      }
      }
 
 
    case REAL_CST:
    case REAL_CST:
      t = build_real (type, REAL_VALUE_NEGATE (TREE_REAL_CST (arg0)));
      t = build_real (type, REAL_VALUE_NEGATE (TREE_REAL_CST (arg0)));
      break;
      break;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  return t;
  return t;
}
}
 
 
/* Return the tree for abs (ARG0) when ARG0 is known to be either
/* Return the tree for abs (ARG0) when ARG0 is known to be either
   an integer constant or real constant.
   an integer constant or real constant.
 
 
   TYPE is the type of the result.  */
   TYPE is the type of the result.  */
 
 
tree
tree
fold_abs_const (tree arg0, tree type)
fold_abs_const (tree arg0, tree type)
{
{
  tree t = NULL_TREE;
  tree t = NULL_TREE;
 
 
  switch (TREE_CODE (arg0))
  switch (TREE_CODE (arg0))
    {
    {
    case INTEGER_CST:
    case INTEGER_CST:
      /* If the value is unsigned, then the absolute value is
      /* If the value is unsigned, then the absolute value is
         the same as the ordinary value.  */
         the same as the ordinary value.  */
      if (TYPE_UNSIGNED (type))
      if (TYPE_UNSIGNED (type))
        t = arg0;
        t = arg0;
      /* Similarly, if the value is non-negative.  */
      /* Similarly, if the value is non-negative.  */
      else if (INT_CST_LT (integer_minus_one_node, arg0))
      else if (INT_CST_LT (integer_minus_one_node, arg0))
        t = arg0;
        t = arg0;
      /* If the value is negative, then the absolute value is
      /* If the value is negative, then the absolute value is
         its negation.  */
         its negation.  */
      else
      else
        {
        {
          unsigned HOST_WIDE_INT low;
          unsigned HOST_WIDE_INT low;
          HOST_WIDE_INT high;
          HOST_WIDE_INT high;
          int overflow = neg_double (TREE_INT_CST_LOW (arg0),
          int overflow = neg_double (TREE_INT_CST_LOW (arg0),
                                     TREE_INT_CST_HIGH (arg0),
                                     TREE_INT_CST_HIGH (arg0),
                                     &low, &high);
                                     &low, &high);
          t = build_int_cst_wide (type, low, high);
          t = build_int_cst_wide (type, low, high);
          t = force_fit_type (t, -1, overflow | TREE_OVERFLOW (arg0),
          t = force_fit_type (t, -1, overflow | TREE_OVERFLOW (arg0),
                              TREE_CONSTANT_OVERFLOW (arg0));
                              TREE_CONSTANT_OVERFLOW (arg0));
        }
        }
      break;
      break;
 
 
    case REAL_CST:
    case REAL_CST:
      if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
      if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
        t = build_real (type, REAL_VALUE_NEGATE (TREE_REAL_CST (arg0)));
        t = build_real (type, REAL_VALUE_NEGATE (TREE_REAL_CST (arg0)));
      else
      else
        t =  arg0;
        t =  arg0;
      break;
      break;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  return t;
  return t;
}
}
 
 
/* Return the tree for not (ARG0) when ARG0 is known to be an integer
/* Return the tree for not (ARG0) when ARG0 is known to be an integer
   constant.  TYPE is the type of the result.  */
   constant.  TYPE is the type of the result.  */
 
 
static tree
static tree
fold_not_const (tree arg0, tree type)
fold_not_const (tree arg0, tree type)
{
{
  tree t = NULL_TREE;
  tree t = NULL_TREE;
 
 
  gcc_assert (TREE_CODE (arg0) == INTEGER_CST);
  gcc_assert (TREE_CODE (arg0) == INTEGER_CST);
 
 
  t = build_int_cst_wide (type,
  t = build_int_cst_wide (type,
                          ~ TREE_INT_CST_LOW (arg0),
                          ~ TREE_INT_CST_LOW (arg0),
                          ~ TREE_INT_CST_HIGH (arg0));
                          ~ TREE_INT_CST_HIGH (arg0));
  t = force_fit_type (t, 0, TREE_OVERFLOW (arg0),
  t = force_fit_type (t, 0, TREE_OVERFLOW (arg0),
                      TREE_CONSTANT_OVERFLOW (arg0));
                      TREE_CONSTANT_OVERFLOW (arg0));
 
 
  return t;
  return t;
}
}
 
 
/* Given CODE, a relational operator, the target type, TYPE and two
/* Given CODE, a relational operator, the target type, TYPE and two
   constant operands OP0 and OP1, return the result of the
   constant operands OP0 and OP1, return the result of the
   relational operation.  If the result is not a compile time
   relational operation.  If the result is not a compile time
   constant, then return NULL_TREE.  */
   constant, then return NULL_TREE.  */
 
 
static tree
static tree
fold_relational_const (enum tree_code code, tree type, tree op0, tree op1)
fold_relational_const (enum tree_code code, tree type, tree op0, tree op1)
{
{
  int result, invert;
  int result, invert;
 
 
  /* From here on, the only cases we handle are when the result is
  /* From here on, the only cases we handle are when the result is
     known to be a constant.  */
     known to be a constant.  */
 
 
  if (TREE_CODE (op0) == REAL_CST && TREE_CODE (op1) == REAL_CST)
  if (TREE_CODE (op0) == REAL_CST && TREE_CODE (op1) == REAL_CST)
    {
    {
      const REAL_VALUE_TYPE *c0 = TREE_REAL_CST_PTR (op0);
      const REAL_VALUE_TYPE *c0 = TREE_REAL_CST_PTR (op0);
      const REAL_VALUE_TYPE *c1 = TREE_REAL_CST_PTR (op1);
      const REAL_VALUE_TYPE *c1 = TREE_REAL_CST_PTR (op1);
 
 
      /* Handle the cases where either operand is a NaN.  */
      /* Handle the cases where either operand is a NaN.  */
      if (real_isnan (c0) || real_isnan (c1))
      if (real_isnan (c0) || real_isnan (c1))
        {
        {
          switch (code)
          switch (code)
            {
            {
            case EQ_EXPR:
            case EQ_EXPR:
            case ORDERED_EXPR:
            case ORDERED_EXPR:
              result = 0;
              result = 0;
              break;
              break;
 
 
            case NE_EXPR:
            case NE_EXPR:
            case UNORDERED_EXPR:
            case UNORDERED_EXPR:
            case UNLT_EXPR:
            case UNLT_EXPR:
            case UNLE_EXPR:
            case UNLE_EXPR:
            case UNGT_EXPR:
            case UNGT_EXPR:
            case UNGE_EXPR:
            case UNGE_EXPR:
            case UNEQ_EXPR:
            case UNEQ_EXPR:
              result = 1;
              result = 1;
              break;
              break;
 
 
            case LT_EXPR:
            case LT_EXPR:
            case LE_EXPR:
            case LE_EXPR:
            case GT_EXPR:
            case GT_EXPR:
            case GE_EXPR:
            case GE_EXPR:
            case LTGT_EXPR:
            case LTGT_EXPR:
              if (flag_trapping_math)
              if (flag_trapping_math)
                return NULL_TREE;
                return NULL_TREE;
              result = 0;
              result = 0;
              break;
              break;
 
 
            default:
            default:
              gcc_unreachable ();
              gcc_unreachable ();
            }
            }
 
 
          return constant_boolean_node (result, type);
          return constant_boolean_node (result, type);
        }
        }
 
 
      return constant_boolean_node (real_compare (code, c0, c1), type);
      return constant_boolean_node (real_compare (code, c0, c1), type);
    }
    }
 
 
  /* Handle equality/inequality of complex constants.  */
  /* Handle equality/inequality of complex constants.  */
  if (TREE_CODE (op0) == COMPLEX_CST && TREE_CODE (op1) == COMPLEX_CST)
  if (TREE_CODE (op0) == COMPLEX_CST && TREE_CODE (op1) == COMPLEX_CST)
    {
    {
      tree rcond = fold_relational_const (code, type,
      tree rcond = fold_relational_const (code, type,
                                          TREE_REALPART (op0),
                                          TREE_REALPART (op0),
                                          TREE_REALPART (op1));
                                          TREE_REALPART (op1));
      tree icond = fold_relational_const (code, type,
      tree icond = fold_relational_const (code, type,
                                          TREE_IMAGPART (op0),
                                          TREE_IMAGPART (op0),
                                          TREE_IMAGPART (op1));
                                          TREE_IMAGPART (op1));
      if (code == EQ_EXPR)
      if (code == EQ_EXPR)
        return fold_build2 (TRUTH_ANDIF_EXPR, type, rcond, icond);
        return fold_build2 (TRUTH_ANDIF_EXPR, type, rcond, icond);
      else if (code == NE_EXPR)
      else if (code == NE_EXPR)
        return fold_build2 (TRUTH_ORIF_EXPR, type, rcond, icond);
        return fold_build2 (TRUTH_ORIF_EXPR, type, rcond, icond);
      else
      else
        return NULL_TREE;
        return NULL_TREE;
    }
    }
 
 
  /* From here on we only handle LT, LE, GT, GE, EQ and NE.
  /* From here on we only handle LT, LE, GT, GE, EQ and NE.
 
 
     To compute GT, swap the arguments and do LT.
     To compute GT, swap the arguments and do LT.
     To compute GE, do LT and invert the result.
     To compute GE, do LT and invert the result.
     To compute LE, swap the arguments, do LT and invert the result.
     To compute LE, swap the arguments, do LT and invert the result.
     To compute NE, do EQ and invert the result.
     To compute NE, do EQ and invert the result.
 
 
     Therefore, the code below must handle only EQ and LT.  */
     Therefore, the code below must handle only EQ and LT.  */
 
 
  if (code == LE_EXPR || code == GT_EXPR)
  if (code == LE_EXPR || code == GT_EXPR)
    {
    {
      tree tem = op0;
      tree tem = op0;
      op0 = op1;
      op0 = op1;
      op1 = tem;
      op1 = tem;
      code = swap_tree_comparison (code);
      code = swap_tree_comparison (code);
    }
    }
 
 
  /* Note that it is safe to invert for real values here because we
  /* Note that it is safe to invert for real values here because we
     have already handled the one case that it matters.  */
     have already handled the one case that it matters.  */
 
 
  invert = 0;
  invert = 0;
  if (code == NE_EXPR || code == GE_EXPR)
  if (code == NE_EXPR || code == GE_EXPR)
    {
    {
      invert = 1;
      invert = 1;
      code = invert_tree_comparison (code, false);
      code = invert_tree_comparison (code, false);
    }
    }
 
 
  /* Compute a result for LT or EQ if args permit;
  /* Compute a result for LT or EQ if args permit;
     Otherwise return T.  */
     Otherwise return T.  */
  if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST)
  if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST)
    {
    {
      if (code == EQ_EXPR)
      if (code == EQ_EXPR)
        result = tree_int_cst_equal (op0, op1);
        result = tree_int_cst_equal (op0, op1);
      else if (TYPE_UNSIGNED (TREE_TYPE (op0)))
      else if (TYPE_UNSIGNED (TREE_TYPE (op0)))
        result = INT_CST_LT_UNSIGNED (op0, op1);
        result = INT_CST_LT_UNSIGNED (op0, op1);
      else
      else
        result = INT_CST_LT (op0, op1);
        result = INT_CST_LT (op0, op1);
    }
    }
  else
  else
    return NULL_TREE;
    return NULL_TREE;
 
 
  if (invert)
  if (invert)
    result ^= 1;
    result ^= 1;
  return constant_boolean_node (result, type);
  return constant_boolean_node (result, type);
}
}
 
 
/* Build an expression for the a clean point containing EXPR with type TYPE.
/* Build an expression for the a clean point containing EXPR with type TYPE.
   Don't build a cleanup point expression for EXPR which don't have side
   Don't build a cleanup point expression for EXPR which don't have side
   effects.  */
   effects.  */
 
 
tree
tree
fold_build_cleanup_point_expr (tree type, tree expr)
fold_build_cleanup_point_expr (tree type, tree expr)
{
{
  /* If the expression does not have side effects then we don't have to wrap
  /* If the expression does not have side effects then we don't have to wrap
     it with a cleanup point expression.  */
     it with a cleanup point expression.  */
  if (!TREE_SIDE_EFFECTS (expr))
  if (!TREE_SIDE_EFFECTS (expr))
    return expr;
    return expr;
 
 
  /* If the expression is a return, check to see if the expression inside the
  /* If the expression is a return, check to see if the expression inside the
     return has no side effects or the right hand side of the modify expression
     return has no side effects or the right hand side of the modify expression
     inside the return. If either don't have side effects set we don't need to
     inside the return. If either don't have side effects set we don't need to
     wrap the expression in a cleanup point expression.  Note we don't check the
     wrap the expression in a cleanup point expression.  Note we don't check the
     left hand side of the modify because it should always be a return decl.  */
     left hand side of the modify because it should always be a return decl.  */
  if (TREE_CODE (expr) == RETURN_EXPR)
  if (TREE_CODE (expr) == RETURN_EXPR)
    {
    {
      tree op = TREE_OPERAND (expr, 0);
      tree op = TREE_OPERAND (expr, 0);
      if (!op || !TREE_SIDE_EFFECTS (op))
      if (!op || !TREE_SIDE_EFFECTS (op))
        return expr;
        return expr;
      op = TREE_OPERAND (op, 1);
      op = TREE_OPERAND (op, 1);
      if (!TREE_SIDE_EFFECTS (op))
      if (!TREE_SIDE_EFFECTS (op))
        return expr;
        return expr;
    }
    }
 
 
  return build1 (CLEANUP_POINT_EXPR, type, expr);
  return build1 (CLEANUP_POINT_EXPR, type, expr);
}
}
 
 
/* Build an expression for the address of T.  Folds away INDIRECT_REF to
/* Build an expression for the address of T.  Folds away INDIRECT_REF to
   avoid confusing the gimplify process.  */
   avoid confusing the gimplify process.  */
 
 
tree
tree
build_fold_addr_expr_with_type (tree t, tree ptrtype)
build_fold_addr_expr_with_type (tree t, tree ptrtype)
{
{
  /* The size of the object is not relevant when talking about its address.  */
  /* The size of the object is not relevant when talking about its address.  */
  if (TREE_CODE (t) == WITH_SIZE_EXPR)
  if (TREE_CODE (t) == WITH_SIZE_EXPR)
    t = TREE_OPERAND (t, 0);
    t = TREE_OPERAND (t, 0);
 
 
  /* Note: doesn't apply to ALIGN_INDIRECT_REF */
  /* Note: doesn't apply to ALIGN_INDIRECT_REF */
  if (TREE_CODE (t) == INDIRECT_REF
  if (TREE_CODE (t) == INDIRECT_REF
      || TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
      || TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
    {
    {
      t = TREE_OPERAND (t, 0);
      t = TREE_OPERAND (t, 0);
      if (TREE_TYPE (t) != ptrtype)
      if (TREE_TYPE (t) != ptrtype)
        t = build1 (NOP_EXPR, ptrtype, t);
        t = build1 (NOP_EXPR, ptrtype, t);
    }
    }
  else
  else
    {
    {
      tree base = t;
      tree base = t;
 
 
      while (handled_component_p (base))
      while (handled_component_p (base))
        base = TREE_OPERAND (base, 0);
        base = TREE_OPERAND (base, 0);
      if (DECL_P (base))
      if (DECL_P (base))
        TREE_ADDRESSABLE (base) = 1;
        TREE_ADDRESSABLE (base) = 1;
 
 
      t = build1 (ADDR_EXPR, ptrtype, t);
      t = build1 (ADDR_EXPR, ptrtype, t);
    }
    }
 
 
  return t;
  return t;
}
}
 
 
tree
tree
build_fold_addr_expr (tree t)
build_fold_addr_expr (tree t)
{
{
  return build_fold_addr_expr_with_type (t, build_pointer_type (TREE_TYPE (t)));
  return build_fold_addr_expr_with_type (t, build_pointer_type (TREE_TYPE (t)));
}
}
 
 
/* Given a pointer value OP0 and a type TYPE, return a simplified version
/* Given a pointer value OP0 and a type TYPE, return a simplified version
   of an indirection through OP0, or NULL_TREE if no simplification is
   of an indirection through OP0, or NULL_TREE if no simplification is
   possible.  */
   possible.  */
 
 
tree
tree
fold_indirect_ref_1 (tree type, tree op0)
fold_indirect_ref_1 (tree type, tree op0)
{
{
  tree sub = op0;
  tree sub = op0;
  tree subtype;
  tree subtype;
 
 
  STRIP_NOPS (sub);
  STRIP_NOPS (sub);
  subtype = TREE_TYPE (sub);
  subtype = TREE_TYPE (sub);
  if (!POINTER_TYPE_P (subtype))
  if (!POINTER_TYPE_P (subtype))
    return NULL_TREE;
    return NULL_TREE;
 
 
  if (TREE_CODE (sub) == ADDR_EXPR)
  if (TREE_CODE (sub) == ADDR_EXPR)
    {
    {
      tree op = TREE_OPERAND (sub, 0);
      tree op = TREE_OPERAND (sub, 0);
      tree optype = TREE_TYPE (op);
      tree optype = TREE_TYPE (op);
      /* *&CONST_DECL -> to the value of the const decl.  */
      /* *&CONST_DECL -> to the value of the const decl.  */
      if (TREE_CODE (op) == CONST_DECL)
      if (TREE_CODE (op) == CONST_DECL)
        return DECL_INITIAL (op);
        return DECL_INITIAL (op);
      /* *&p => p;  make sure to handle *&"str"[cst] here.  */
      /* *&p => p;  make sure to handle *&"str"[cst] here.  */
      if (type == optype)
      if (type == optype)
        {
        {
          tree fop = fold_read_from_constant_string (op);
          tree fop = fold_read_from_constant_string (op);
          if (fop)
          if (fop)
            return fop;
            return fop;
          else
          else
            return op;
            return op;
        }
        }
      /* *(foo *)&fooarray => fooarray[0] */
      /* *(foo *)&fooarray => fooarray[0] */
      else if (TREE_CODE (optype) == ARRAY_TYPE
      else if (TREE_CODE (optype) == ARRAY_TYPE
               && type == TREE_TYPE (optype))
               && type == TREE_TYPE (optype))
        {
        {
          tree type_domain = TYPE_DOMAIN (optype);
          tree type_domain = TYPE_DOMAIN (optype);
          tree min_val = size_zero_node;
          tree min_val = size_zero_node;
          if (type_domain && TYPE_MIN_VALUE (type_domain))
          if (type_domain && TYPE_MIN_VALUE (type_domain))
            min_val = TYPE_MIN_VALUE (type_domain);
            min_val = TYPE_MIN_VALUE (type_domain);
          return build4 (ARRAY_REF, type, op, min_val, NULL_TREE, NULL_TREE);
          return build4 (ARRAY_REF, type, op, min_val, NULL_TREE, NULL_TREE);
        }
        }
      /* *(foo *)&complexfoo => __real__ complexfoo */
      /* *(foo *)&complexfoo => __real__ complexfoo */
      else if (TREE_CODE (optype) == COMPLEX_TYPE
      else if (TREE_CODE (optype) == COMPLEX_TYPE
               && type == TREE_TYPE (optype))
               && type == TREE_TYPE (optype))
        return fold_build1 (REALPART_EXPR, type, op);
        return fold_build1 (REALPART_EXPR, type, op);
    }
    }
 
 
  /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */
  /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */
  if (TREE_CODE (sub) == PLUS_EXPR
  if (TREE_CODE (sub) == PLUS_EXPR
      && TREE_CODE (TREE_OPERAND (sub, 1)) == INTEGER_CST)
      && TREE_CODE (TREE_OPERAND (sub, 1)) == INTEGER_CST)
    {
    {
      tree op00 = TREE_OPERAND (sub, 0);
      tree op00 = TREE_OPERAND (sub, 0);
      tree op01 = TREE_OPERAND (sub, 1);
      tree op01 = TREE_OPERAND (sub, 1);
      tree op00type;
      tree op00type;
 
 
      STRIP_NOPS (op00);
      STRIP_NOPS (op00);
      op00type = TREE_TYPE (op00);
      op00type = TREE_TYPE (op00);
      if (TREE_CODE (op00) == ADDR_EXPR
      if (TREE_CODE (op00) == ADDR_EXPR
          && TREE_CODE (TREE_TYPE (op00type)) == COMPLEX_TYPE
          && TREE_CODE (TREE_TYPE (op00type)) == COMPLEX_TYPE
          && type == TREE_TYPE (TREE_TYPE (op00type)))
          && type == TREE_TYPE (TREE_TYPE (op00type)))
        {
        {
          tree size = TYPE_SIZE_UNIT (type);
          tree size = TYPE_SIZE_UNIT (type);
          if (tree_int_cst_equal (size, op01))
          if (tree_int_cst_equal (size, op01))
            return fold_build1 (IMAGPART_EXPR, type, TREE_OPERAND (op00, 0));
            return fold_build1 (IMAGPART_EXPR, type, TREE_OPERAND (op00, 0));
        }
        }
    }
    }
 
 
  /* *(foo *)fooarrptr => (*fooarrptr)[0] */
  /* *(foo *)fooarrptr => (*fooarrptr)[0] */
  if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE
  if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE
      && type == TREE_TYPE (TREE_TYPE (subtype)))
      && type == TREE_TYPE (TREE_TYPE (subtype)))
    {
    {
      tree type_domain;
      tree type_domain;
      tree min_val = size_zero_node;
      tree min_val = size_zero_node;
      sub = build_fold_indirect_ref (sub);
      sub = build_fold_indirect_ref (sub);
      type_domain = TYPE_DOMAIN (TREE_TYPE (sub));
      type_domain = TYPE_DOMAIN (TREE_TYPE (sub));
      if (type_domain && TYPE_MIN_VALUE (type_domain))
      if (type_domain && TYPE_MIN_VALUE (type_domain))
        min_val = TYPE_MIN_VALUE (type_domain);
        min_val = TYPE_MIN_VALUE (type_domain);
      return build4 (ARRAY_REF, type, sub, min_val, NULL_TREE, NULL_TREE);
      return build4 (ARRAY_REF, type, sub, min_val, NULL_TREE, NULL_TREE);
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Builds an expression for an indirection through T, simplifying some
/* Builds an expression for an indirection through T, simplifying some
   cases.  */
   cases.  */
 
 
tree
tree
build_fold_indirect_ref (tree t)
build_fold_indirect_ref (tree t)
{
{
  tree type = TREE_TYPE (TREE_TYPE (t));
  tree type = TREE_TYPE (TREE_TYPE (t));
  tree sub = fold_indirect_ref_1 (type, t);
  tree sub = fold_indirect_ref_1 (type, t);
 
 
  if (sub)
  if (sub)
    return sub;
    return sub;
  else
  else
    return build1 (INDIRECT_REF, type, t);
    return build1 (INDIRECT_REF, type, t);
}
}
 
 
/* Given an INDIRECT_REF T, return either T or a simplified version.  */
/* Given an INDIRECT_REF T, return either T or a simplified version.  */
 
 
tree
tree
fold_indirect_ref (tree t)
fold_indirect_ref (tree t)
{
{
  tree sub = fold_indirect_ref_1 (TREE_TYPE (t), TREE_OPERAND (t, 0));
  tree sub = fold_indirect_ref_1 (TREE_TYPE (t), TREE_OPERAND (t, 0));
 
 
  if (sub)
  if (sub)
    return sub;
    return sub;
  else
  else
    return t;
    return t;
}
}
 
 
/* Strip non-trapping, non-side-effecting tree nodes from an expression
/* Strip non-trapping, non-side-effecting tree nodes from an expression
   whose result is ignored.  The type of the returned tree need not be
   whose result is ignored.  The type of the returned tree need not be
   the same as the original expression.  */
   the same as the original expression.  */
 
 
tree
tree
fold_ignored_result (tree t)
fold_ignored_result (tree t)
{
{
  if (!TREE_SIDE_EFFECTS (t))
  if (!TREE_SIDE_EFFECTS (t))
    return integer_zero_node;
    return integer_zero_node;
 
 
  for (;;)
  for (;;)
    switch (TREE_CODE_CLASS (TREE_CODE (t)))
    switch (TREE_CODE_CLASS (TREE_CODE (t)))
      {
      {
      case tcc_unary:
      case tcc_unary:
        t = TREE_OPERAND (t, 0);
        t = TREE_OPERAND (t, 0);
        break;
        break;
 
 
      case tcc_binary:
      case tcc_binary:
      case tcc_comparison:
      case tcc_comparison:
        if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
        if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
          t = TREE_OPERAND (t, 0);
          t = TREE_OPERAND (t, 0);
        else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0)))
        else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0)))
          t = TREE_OPERAND (t, 1);
          t = TREE_OPERAND (t, 1);
        else
        else
          return t;
          return t;
        break;
        break;
 
 
      case tcc_expression:
      case tcc_expression:
        switch (TREE_CODE (t))
        switch (TREE_CODE (t))
          {
          {
          case COMPOUND_EXPR:
          case COMPOUND_EXPR:
            if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
            if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
              return t;
              return t;
            t = TREE_OPERAND (t, 0);
            t = TREE_OPERAND (t, 0);
            break;
            break;
 
 
          case COND_EXPR:
          case COND_EXPR:
            if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1))
            if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1))
                || TREE_SIDE_EFFECTS (TREE_OPERAND (t, 2)))
                || TREE_SIDE_EFFECTS (TREE_OPERAND (t, 2)))
              return t;
              return t;
            t = TREE_OPERAND (t, 0);
            t = TREE_OPERAND (t, 0);
            break;
            break;
 
 
          default:
          default:
            return t;
            return t;
          }
          }
        break;
        break;
 
 
      default:
      default:
        return t;
        return t;
      }
      }
}
}
 
 
/* Return the value of VALUE, rounded up to a multiple of DIVISOR.
/* Return the value of VALUE, rounded up to a multiple of DIVISOR.
   This can only be applied to objects of a sizetype.  */
   This can only be applied to objects of a sizetype.  */
 
 
tree
tree
round_up (tree value, int divisor)
round_up (tree value, int divisor)
{
{
  tree div = NULL_TREE;
  tree div = NULL_TREE;
 
 
  gcc_assert (divisor > 0);
  gcc_assert (divisor > 0);
  if (divisor == 1)
  if (divisor == 1)
    return value;
    return value;
 
 
  /* See if VALUE is already a multiple of DIVISOR.  If so, we don't
  /* See if VALUE is already a multiple of DIVISOR.  If so, we don't
     have to do anything.  Only do this when we are not given a const,
     have to do anything.  Only do this when we are not given a const,
     because in that case, this check is more expensive than just
     because in that case, this check is more expensive than just
     doing it.  */
     doing it.  */
  if (TREE_CODE (value) != INTEGER_CST)
  if (TREE_CODE (value) != INTEGER_CST)
    {
    {
      div = build_int_cst (TREE_TYPE (value), divisor);
      div = build_int_cst (TREE_TYPE (value), divisor);
 
 
      if (multiple_of_p (TREE_TYPE (value), value, div))
      if (multiple_of_p (TREE_TYPE (value), value, div))
        return value;
        return value;
    }
    }
 
 
  /* If divisor is a power of two, simplify this to bit manipulation.  */
  /* If divisor is a power of two, simplify this to bit manipulation.  */
  if (divisor == (divisor & -divisor))
  if (divisor == (divisor & -divisor))
    {
    {
      tree t;
      tree t;
 
 
      t = build_int_cst (TREE_TYPE (value), divisor - 1);
      t = build_int_cst (TREE_TYPE (value), divisor - 1);
      value = size_binop (PLUS_EXPR, value, t);
      value = size_binop (PLUS_EXPR, value, t);
      t = build_int_cst (TREE_TYPE (value), -divisor);
      t = build_int_cst (TREE_TYPE (value), -divisor);
      value = size_binop (BIT_AND_EXPR, value, t);
      value = size_binop (BIT_AND_EXPR, value, t);
    }
    }
  else
  else
    {
    {
      if (!div)
      if (!div)
        div = build_int_cst (TREE_TYPE (value), divisor);
        div = build_int_cst (TREE_TYPE (value), divisor);
      value = size_binop (CEIL_DIV_EXPR, value, div);
      value = size_binop (CEIL_DIV_EXPR, value, div);
      value = size_binop (MULT_EXPR, value, div);
      value = size_binop (MULT_EXPR, value, div);
    }
    }
 
 
  return value;
  return value;
}
}
 
 
/* Likewise, but round down.  */
/* Likewise, but round down.  */
 
 
tree
tree
round_down (tree value, int divisor)
round_down (tree value, int divisor)
{
{
  tree div = NULL_TREE;
  tree div = NULL_TREE;
 
 
  gcc_assert (divisor > 0);
  gcc_assert (divisor > 0);
  if (divisor == 1)
  if (divisor == 1)
    return value;
    return value;
 
 
  /* See if VALUE is already a multiple of DIVISOR.  If so, we don't
  /* See if VALUE is already a multiple of DIVISOR.  If so, we don't
     have to do anything.  Only do this when we are not given a const,
     have to do anything.  Only do this when we are not given a const,
     because in that case, this check is more expensive than just
     because in that case, this check is more expensive than just
     doing it.  */
     doing it.  */
  if (TREE_CODE (value) != INTEGER_CST)
  if (TREE_CODE (value) != INTEGER_CST)
    {
    {
      div = build_int_cst (TREE_TYPE (value), divisor);
      div = build_int_cst (TREE_TYPE (value), divisor);
 
 
      if (multiple_of_p (TREE_TYPE (value), value, div))
      if (multiple_of_p (TREE_TYPE (value), value, div))
        return value;
        return value;
    }
    }
 
 
  /* If divisor is a power of two, simplify this to bit manipulation.  */
  /* If divisor is a power of two, simplify this to bit manipulation.  */
  if (divisor == (divisor & -divisor))
  if (divisor == (divisor & -divisor))
    {
    {
      tree t;
      tree t;
 
 
      t = build_int_cst (TREE_TYPE (value), -divisor);
      t = build_int_cst (TREE_TYPE (value), -divisor);
      value = size_binop (BIT_AND_EXPR, value, t);
      value = size_binop (BIT_AND_EXPR, value, t);
    }
    }
  else
  else
    {
    {
      if (!div)
      if (!div)
        div = build_int_cst (TREE_TYPE (value), divisor);
        div = build_int_cst (TREE_TYPE (value), divisor);
      value = size_binop (FLOOR_DIV_EXPR, value, div);
      value = size_binop (FLOOR_DIV_EXPR, value, div);
      value = size_binop (MULT_EXPR, value, div);
      value = size_binop (MULT_EXPR, value, div);
    }
    }
 
 
  return value;
  return value;
}
}
 
 
/* Returns the pointer to the base of the object addressed by EXP and
/* Returns the pointer to the base of the object addressed by EXP and
   extracts the information about the offset of the access, storing it
   extracts the information about the offset of the access, storing it
   to PBITPOS and POFFSET.  */
   to PBITPOS and POFFSET.  */
 
 
static tree
static tree
split_address_to_core_and_offset (tree exp,
split_address_to_core_and_offset (tree exp,
                                  HOST_WIDE_INT *pbitpos, tree *poffset)
                                  HOST_WIDE_INT *pbitpos, tree *poffset)
{
{
  tree core;
  tree core;
  enum machine_mode mode;
  enum machine_mode mode;
  int unsignedp, volatilep;
  int unsignedp, volatilep;
  HOST_WIDE_INT bitsize;
  HOST_WIDE_INT bitsize;
 
 
  if (TREE_CODE (exp) == ADDR_EXPR)
  if (TREE_CODE (exp) == ADDR_EXPR)
    {
    {
      core = get_inner_reference (TREE_OPERAND (exp, 0), &bitsize, pbitpos,
      core = get_inner_reference (TREE_OPERAND (exp, 0), &bitsize, pbitpos,
                                  poffset, &mode, &unsignedp, &volatilep,
                                  poffset, &mode, &unsignedp, &volatilep,
                                  false);
                                  false);
      core = build_fold_addr_expr (core);
      core = build_fold_addr_expr (core);
    }
    }
  else
  else
    {
    {
      core = exp;
      core = exp;
      *pbitpos = 0;
      *pbitpos = 0;
      *poffset = NULL_TREE;
      *poffset = NULL_TREE;
    }
    }
 
 
  return core;
  return core;
}
}
 
 
/* Returns true if addresses of E1 and E2 differ by a constant, false
/* Returns true if addresses of E1 and E2 differ by a constant, false
   otherwise.  If they do, E1 - E2 is stored in *DIFF.  */
   otherwise.  If they do, E1 - E2 is stored in *DIFF.  */
 
 
bool
bool
ptr_difference_const (tree e1, tree e2, HOST_WIDE_INT *diff)
ptr_difference_const (tree e1, tree e2, HOST_WIDE_INT *diff)
{
{
  tree core1, core2;
  tree core1, core2;
  HOST_WIDE_INT bitpos1, bitpos2;
  HOST_WIDE_INT bitpos1, bitpos2;
  tree toffset1, toffset2, tdiff, type;
  tree toffset1, toffset2, tdiff, type;
 
 
  core1 = split_address_to_core_and_offset (e1, &bitpos1, &toffset1);
  core1 = split_address_to_core_and_offset (e1, &bitpos1, &toffset1);
  core2 = split_address_to_core_and_offset (e2, &bitpos2, &toffset2);
  core2 = split_address_to_core_and_offset (e2, &bitpos2, &toffset2);
 
 
  if (bitpos1 % BITS_PER_UNIT != 0
  if (bitpos1 % BITS_PER_UNIT != 0
      || bitpos2 % BITS_PER_UNIT != 0
      || bitpos2 % BITS_PER_UNIT != 0
      || !operand_equal_p (core1, core2, 0))
      || !operand_equal_p (core1, core2, 0))
    return false;
    return false;
 
 
  if (toffset1 && toffset2)
  if (toffset1 && toffset2)
    {
    {
      type = TREE_TYPE (toffset1);
      type = TREE_TYPE (toffset1);
      if (type != TREE_TYPE (toffset2))
      if (type != TREE_TYPE (toffset2))
        toffset2 = fold_convert (type, toffset2);
        toffset2 = fold_convert (type, toffset2);
 
 
      tdiff = fold_build2 (MINUS_EXPR, type, toffset1, toffset2);
      tdiff = fold_build2 (MINUS_EXPR, type, toffset1, toffset2);
      if (!cst_and_fits_in_hwi (tdiff))
      if (!cst_and_fits_in_hwi (tdiff))
        return false;
        return false;
 
 
      *diff = int_cst_value (tdiff);
      *diff = int_cst_value (tdiff);
    }
    }
  else if (toffset1 || toffset2)
  else if (toffset1 || toffset2)
    {
    {
      /* If only one of the offsets is non-constant, the difference cannot
      /* If only one of the offsets is non-constant, the difference cannot
         be a constant.  */
         be a constant.  */
      return false;
      return false;
    }
    }
  else
  else
    *diff = 0;
    *diff = 0;
 
 
  *diff += (bitpos1 - bitpos2) / BITS_PER_UNIT;
  *diff += (bitpos1 - bitpos2) / BITS_PER_UNIT;
  return true;
  return true;
}
}
 
 
/* Simplify the floating point expression EXP when the sign of the
/* Simplify the floating point expression EXP when the sign of the
   result is not significant.  Return NULL_TREE if no simplification
   result is not significant.  Return NULL_TREE if no simplification
   is possible.  */
   is possible.  */
 
 
tree
tree
fold_strip_sign_ops (tree exp)
fold_strip_sign_ops (tree exp)
{
{
  tree arg0, arg1;
  tree arg0, arg1;
 
 
  switch (TREE_CODE (exp))
  switch (TREE_CODE (exp))
    {
    {
    case ABS_EXPR:
    case ABS_EXPR:
    case NEGATE_EXPR:
    case NEGATE_EXPR:
      arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 0));
      arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 0));
      return arg0 ? arg0 : TREE_OPERAND (exp, 0);
      return arg0 ? arg0 : TREE_OPERAND (exp, 0);
 
 
    case MULT_EXPR:
    case MULT_EXPR:
    case RDIV_EXPR:
    case RDIV_EXPR:
      if (HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (TREE_TYPE (exp))))
      if (HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (TREE_TYPE (exp))))
        return NULL_TREE;
        return NULL_TREE;
      arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 0));
      arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 0));
      arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
      arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
      if (arg0 != NULL_TREE || arg1 != NULL_TREE)
      if (arg0 != NULL_TREE || arg1 != NULL_TREE)
        return fold_build2 (TREE_CODE (exp), TREE_TYPE (exp),
        return fold_build2 (TREE_CODE (exp), TREE_TYPE (exp),
                            arg0 ? arg0 : TREE_OPERAND (exp, 0),
                            arg0 ? arg0 : TREE_OPERAND (exp, 0),
                            arg1 ? arg1 : TREE_OPERAND (exp, 1));
                            arg1 ? arg1 : TREE_OPERAND (exp, 1));
      break;
      break;
 
 
    default:
    default:
      break;
      break;
    }
    }
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.