OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gcc-4.2.2/] [gcc/] [gcse.c] - Diff between revs 154 and 816

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 154 Rev 816
/* Global common subexpression elimination/Partial redundancy elimination
/* Global common subexpression elimination/Partial redundancy elimination
   and global constant/copy propagation for GNU compiler.
   and global constant/copy propagation for GNU compiler.
   Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007
   Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify it under
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
Software Foundation; either version 3, or (at your option) any later
version.
version.
 
 
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
/* TODO
/* TODO
   - reordering of memory allocation and freeing to be more space efficient
   - reordering of memory allocation and freeing to be more space efficient
   - do rough calc of how many regs are needed in each block, and a rough
   - do rough calc of how many regs are needed in each block, and a rough
     calc of how many regs are available in each class and use that to
     calc of how many regs are available in each class and use that to
     throttle back the code in cases where RTX_COST is minimal.
     throttle back the code in cases where RTX_COST is minimal.
   - a store to the same address as a load does not kill the load if the
   - a store to the same address as a load does not kill the load if the
     source of the store is also the destination of the load.  Handling this
     source of the store is also the destination of the load.  Handling this
     allows more load motion, particularly out of loops.
     allows more load motion, particularly out of loops.
   - ability to realloc sbitmap vectors would allow one initial computation
   - ability to realloc sbitmap vectors would allow one initial computation
     of reg_set_in_block with only subsequent additions, rather than
     of reg_set_in_block with only subsequent additions, rather than
     recomputing it for each pass
     recomputing it for each pass
 
 
*/
*/
 
 
/* References searched while implementing this.
/* References searched while implementing this.
 
 
   Compilers Principles, Techniques and Tools
   Compilers Principles, Techniques and Tools
   Aho, Sethi, Ullman
   Aho, Sethi, Ullman
   Addison-Wesley, 1988
   Addison-Wesley, 1988
 
 
   Global Optimization by Suppression of Partial Redundancies
   Global Optimization by Suppression of Partial Redundancies
   E. Morel, C. Renvoise
   E. Morel, C. Renvoise
   communications of the acm, Vol. 22, Num. 2, Feb. 1979
   communications of the acm, Vol. 22, Num. 2, Feb. 1979
 
 
   A Portable Machine-Independent Global Optimizer - Design and Measurements
   A Portable Machine-Independent Global Optimizer - Design and Measurements
   Frederick Chow
   Frederick Chow
   Stanford Ph.D. thesis, Dec. 1983
   Stanford Ph.D. thesis, Dec. 1983
 
 
   A Fast Algorithm for Code Movement Optimization
   A Fast Algorithm for Code Movement Optimization
   D.M. Dhamdhere
   D.M. Dhamdhere
   SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
   SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
 
 
   A Solution to a Problem with Morel and Renvoise's
   A Solution to a Problem with Morel and Renvoise's
   Global Optimization by Suppression of Partial Redundancies
   Global Optimization by Suppression of Partial Redundancies
   K-H Drechsler, M.P. Stadel
   K-H Drechsler, M.P. Stadel
   ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
   ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
 
 
   Practical Adaptation of the Global Optimization
   Practical Adaptation of the Global Optimization
   Algorithm of Morel and Renvoise
   Algorithm of Morel and Renvoise
   D.M. Dhamdhere
   D.M. Dhamdhere
   ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
   ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
 
 
   Efficiently Computing Static Single Assignment Form and the Control
   Efficiently Computing Static Single Assignment Form and the Control
   Dependence Graph
   Dependence Graph
   R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
   R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
   ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
   ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
 
 
   Lazy Code Motion
   Lazy Code Motion
   J. Knoop, O. Ruthing, B. Steffen
   J. Knoop, O. Ruthing, B. Steffen
   ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
   ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
 
 
   What's In a Region?  Or Computing Control Dependence Regions in Near-Linear
   What's In a Region?  Or Computing Control Dependence Regions in Near-Linear
   Time for Reducible Flow Control
   Time for Reducible Flow Control
   Thomas Ball
   Thomas Ball
   ACM Letters on Programming Languages and Systems,
   ACM Letters on Programming Languages and Systems,
   Vol. 2, Num. 1-4, Mar-Dec 1993
   Vol. 2, Num. 1-4, Mar-Dec 1993
 
 
   An Efficient Representation for Sparse Sets
   An Efficient Representation for Sparse Sets
   Preston Briggs, Linda Torczon
   Preston Briggs, Linda Torczon
   ACM Letters on Programming Languages and Systems,
   ACM Letters on Programming Languages and Systems,
   Vol. 2, Num. 1-4, Mar-Dec 1993
   Vol. 2, Num. 1-4, Mar-Dec 1993
 
 
   A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
   A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
   K-H Drechsler, M.P. Stadel
   K-H Drechsler, M.P. Stadel
   ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
   ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
 
 
   Partial Dead Code Elimination
   Partial Dead Code Elimination
   J. Knoop, O. Ruthing, B. Steffen
   J. Knoop, O. Ruthing, B. Steffen
   ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
   ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
 
 
   Effective Partial Redundancy Elimination
   Effective Partial Redundancy Elimination
   P. Briggs, K.D. Cooper
   P. Briggs, K.D. Cooper
   ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
   ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
 
 
   The Program Structure Tree: Computing Control Regions in Linear Time
   The Program Structure Tree: Computing Control Regions in Linear Time
   R. Johnson, D. Pearson, K. Pingali
   R. Johnson, D. Pearson, K. Pingali
   ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
   ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
 
 
   Optimal Code Motion: Theory and Practice
   Optimal Code Motion: Theory and Practice
   J. Knoop, O. Ruthing, B. Steffen
   J. Knoop, O. Ruthing, B. Steffen
   ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
   ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
 
 
   The power of assignment motion
   The power of assignment motion
   J. Knoop, O. Ruthing, B. Steffen
   J. Knoop, O. Ruthing, B. Steffen
   ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
   ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
 
 
   Global code motion / global value numbering
   Global code motion / global value numbering
   C. Click
   C. Click
   ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
   ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
 
 
   Value Driven Redundancy Elimination
   Value Driven Redundancy Elimination
   L.T. Simpson
   L.T. Simpson
   Rice University Ph.D. thesis, Apr. 1996
   Rice University Ph.D. thesis, Apr. 1996
 
 
   Value Numbering
   Value Numbering
   L.T. Simpson
   L.T. Simpson
   Massively Scalar Compiler Project, Rice University, Sep. 1996
   Massively Scalar Compiler Project, Rice University, Sep. 1996
 
 
   High Performance Compilers for Parallel Computing
   High Performance Compilers for Parallel Computing
   Michael Wolfe
   Michael Wolfe
   Addison-Wesley, 1996
   Addison-Wesley, 1996
 
 
   Advanced Compiler Design and Implementation
   Advanced Compiler Design and Implementation
   Steven Muchnick
   Steven Muchnick
   Morgan Kaufmann, 1997
   Morgan Kaufmann, 1997
 
 
   Building an Optimizing Compiler
   Building an Optimizing Compiler
   Robert Morgan
   Robert Morgan
   Digital Press, 1998
   Digital Press, 1998
 
 
   People wishing to speed up the code here should read:
   People wishing to speed up the code here should read:
     Elimination Algorithms for Data Flow Analysis
     Elimination Algorithms for Data Flow Analysis
     B.G. Ryder, M.C. Paull
     B.G. Ryder, M.C. Paull
     ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
     ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
 
 
     How to Analyze Large Programs Efficiently and Informatively
     How to Analyze Large Programs Efficiently and Informatively
     D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
     D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
     ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
     ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
 
 
   People wishing to do something different can find various possibilities
   People wishing to do something different can find various possibilities
   in the above papers and elsewhere.
   in the above papers and elsewhere.
*/
*/
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "toplev.h"
#include "toplev.h"
 
 
#include "rtl.h"
#include "rtl.h"
#include "tree.h"
#include "tree.h"
#include "tm_p.h"
#include "tm_p.h"
#include "regs.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "hard-reg-set.h"
#include "flags.h"
#include "flags.h"
#include "real.h"
#include "real.h"
#include "insn-config.h"
#include "insn-config.h"
#include "recog.h"
#include "recog.h"
#include "basic-block.h"
#include "basic-block.h"
#include "output.h"
#include "output.h"
#include "function.h"
#include "function.h"
#include "expr.h"
#include "expr.h"
#include "except.h"
#include "except.h"
#include "ggc.h"
#include "ggc.h"
#include "params.h"
#include "params.h"
#include "cselib.h"
#include "cselib.h"
#include "intl.h"
#include "intl.h"
#include "obstack.h"
#include "obstack.h"
#include "timevar.h"
#include "timevar.h"
#include "tree-pass.h"
#include "tree-pass.h"
#include "hashtab.h"
#include "hashtab.h"
 
 
/* Propagate flow information through back edges and thus enable PRE's
/* Propagate flow information through back edges and thus enable PRE's
   moving loop invariant calculations out of loops.
   moving loop invariant calculations out of loops.
 
 
   Originally this tended to create worse overall code, but several
   Originally this tended to create worse overall code, but several
   improvements during the development of PRE seem to have made following
   improvements during the development of PRE seem to have made following
   back edges generally a win.
   back edges generally a win.
 
 
   Note much of the loop invariant code motion done here would normally
   Note much of the loop invariant code motion done here would normally
   be done by loop.c, which has more heuristics for when to move invariants
   be done by loop.c, which has more heuristics for when to move invariants
   out of loops.  At some point we might need to move some of those
   out of loops.  At some point we might need to move some of those
   heuristics into gcse.c.  */
   heuristics into gcse.c.  */
 
 
/* We support GCSE via Partial Redundancy Elimination.  PRE optimizations
/* We support GCSE via Partial Redundancy Elimination.  PRE optimizations
   are a superset of those done by GCSE.
   are a superset of those done by GCSE.
 
 
   We perform the following steps:
   We perform the following steps:
 
 
   1) Compute basic block information.
   1) Compute basic block information.
 
 
   2) Compute table of places where registers are set.
   2) Compute table of places where registers are set.
 
 
   3) Perform copy/constant propagation.
   3) Perform copy/constant propagation.
 
 
   4) Perform global cse using lazy code motion if not optimizing
   4) Perform global cse using lazy code motion if not optimizing
      for size, or code hoisting if we are.
      for size, or code hoisting if we are.
 
 
   5) Perform another pass of copy/constant propagation.
   5) Perform another pass of copy/constant propagation.
 
 
   Two passes of copy/constant propagation are done because the first one
   Two passes of copy/constant propagation are done because the first one
   enables more GCSE and the second one helps to clean up the copies that
   enables more GCSE and the second one helps to clean up the copies that
   GCSE creates.  This is needed more for PRE than for Classic because Classic
   GCSE creates.  This is needed more for PRE than for Classic because Classic
   GCSE will try to use an existing register containing the common
   GCSE will try to use an existing register containing the common
   subexpression rather than create a new one.  This is harder to do for PRE
   subexpression rather than create a new one.  This is harder to do for PRE
   because of the code motion (which Classic GCSE doesn't do).
   because of the code motion (which Classic GCSE doesn't do).
 
 
   Expressions we are interested in GCSE-ing are of the form
   Expressions we are interested in GCSE-ing are of the form
   (set (pseudo-reg) (expression)).
   (set (pseudo-reg) (expression)).
   Function want_to_gcse_p says what these are.
   Function want_to_gcse_p says what these are.
 
 
   PRE handles moving invariant expressions out of loops (by treating them as
   PRE handles moving invariant expressions out of loops (by treating them as
   partially redundant).
   partially redundant).
 
 
   Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
   Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
   assignment) based GVN (global value numbering).  L. T. Simpson's paper
   assignment) based GVN (global value numbering).  L. T. Simpson's paper
   (Rice University) on value numbering is a useful reference for this.
   (Rice University) on value numbering is a useful reference for this.
 
 
   **********************
   **********************
 
 
   We used to support multiple passes but there are diminishing returns in
   We used to support multiple passes but there are diminishing returns in
   doing so.  The first pass usually makes 90% of the changes that are doable.
   doing so.  The first pass usually makes 90% of the changes that are doable.
   A second pass can make a few more changes made possible by the first pass.
   A second pass can make a few more changes made possible by the first pass.
   Experiments show any further passes don't make enough changes to justify
   Experiments show any further passes don't make enough changes to justify
   the expense.
   the expense.
 
 
   A study of spec92 using an unlimited number of passes:
   A study of spec92 using an unlimited number of passes:
   [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
   [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
   [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
   [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
   [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
   [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
 
 
   It was found doing copy propagation between each pass enables further
   It was found doing copy propagation between each pass enables further
   substitutions.
   substitutions.
 
 
   PRE is quite expensive in complicated functions because the DFA can take
   PRE is quite expensive in complicated functions because the DFA can take
   a while to converge.  Hence we only perform one pass.  The parameter
   a while to converge.  Hence we only perform one pass.  The parameter
   max-gcse-passes can be modified if one wants to experiment.
   max-gcse-passes can be modified if one wants to experiment.
 
 
   **********************
   **********************
 
 
   The steps for PRE are:
   The steps for PRE are:
 
 
   1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
   1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
 
 
   2) Perform the data flow analysis for PRE.
   2) Perform the data flow analysis for PRE.
 
 
   3) Delete the redundant instructions
   3) Delete the redundant instructions
 
 
   4) Insert the required copies [if any] that make the partially
   4) Insert the required copies [if any] that make the partially
      redundant instructions fully redundant.
      redundant instructions fully redundant.
 
 
   5) For other reaching expressions, insert an instruction to copy the value
   5) For other reaching expressions, insert an instruction to copy the value
      to a newly created pseudo that will reach the redundant instruction.
      to a newly created pseudo that will reach the redundant instruction.
 
 
   The deletion is done first so that when we do insertions we
   The deletion is done first so that when we do insertions we
   know which pseudo reg to use.
   know which pseudo reg to use.
 
 
   Various papers have argued that PRE DFA is expensive (O(n^2)) and others
   Various papers have argued that PRE DFA is expensive (O(n^2)) and others
   argue it is not.  The number of iterations for the algorithm to converge
   argue it is not.  The number of iterations for the algorithm to converge
   is typically 2-4 so I don't view it as that expensive (relatively speaking).
   is typically 2-4 so I don't view it as that expensive (relatively speaking).
 
 
   PRE GCSE depends heavily on the second CSE pass to clean up the copies
   PRE GCSE depends heavily on the second CSE pass to clean up the copies
   we create.  To make an expression reach the place where it's redundant,
   we create.  To make an expression reach the place where it's redundant,
   the result of the expression is copied to a new register, and the redundant
   the result of the expression is copied to a new register, and the redundant
   expression is deleted by replacing it with this new register.  Classic GCSE
   expression is deleted by replacing it with this new register.  Classic GCSE
   doesn't have this problem as much as it computes the reaching defs of
   doesn't have this problem as much as it computes the reaching defs of
   each register in each block and thus can try to use an existing
   each register in each block and thus can try to use an existing
   register.  */
   register.  */


/* GCSE global vars.  */
/* GCSE global vars.  */
 
 
/* Note whether or not we should run jump optimization after gcse.  We
/* Note whether or not we should run jump optimization after gcse.  We
   want to do this for two cases.
   want to do this for two cases.
 
 
    * If we changed any jumps via cprop.
    * If we changed any jumps via cprop.
 
 
    * If we added any labels via edge splitting.  */
    * If we added any labels via edge splitting.  */
static int run_jump_opt_after_gcse;
static int run_jump_opt_after_gcse;
 
 
/* An obstack for our working variables.  */
/* An obstack for our working variables.  */
static struct obstack gcse_obstack;
static struct obstack gcse_obstack;
 
 
struct reg_use {rtx reg_rtx; };
struct reg_use {rtx reg_rtx; };
 
 
/* Hash table of expressions.  */
/* Hash table of expressions.  */
 
 
struct expr
struct expr
{
{
  /* The expression (SET_SRC for expressions, PATTERN for assignments).  */
  /* The expression (SET_SRC for expressions, PATTERN for assignments).  */
  rtx expr;
  rtx expr;
  /* Index in the available expression bitmaps.  */
  /* Index in the available expression bitmaps.  */
  int bitmap_index;
  int bitmap_index;
  /* Next entry with the same hash.  */
  /* Next entry with the same hash.  */
  struct expr *next_same_hash;
  struct expr *next_same_hash;
  /* List of anticipatable occurrences in basic blocks in the function.
  /* List of anticipatable occurrences in basic blocks in the function.
     An "anticipatable occurrence" is one that is the first occurrence in the
     An "anticipatable occurrence" is one that is the first occurrence in the
     basic block, the operands are not modified in the basic block prior
     basic block, the operands are not modified in the basic block prior
     to the occurrence and the output is not used between the start of
     to the occurrence and the output is not used between the start of
     the block and the occurrence.  */
     the block and the occurrence.  */
  struct occr *antic_occr;
  struct occr *antic_occr;
  /* List of available occurrence in basic blocks in the function.
  /* List of available occurrence in basic blocks in the function.
     An "available occurrence" is one that is the last occurrence in the
     An "available occurrence" is one that is the last occurrence in the
     basic block and the operands are not modified by following statements in
     basic block and the operands are not modified by following statements in
     the basic block [including this insn].  */
     the basic block [including this insn].  */
  struct occr *avail_occr;
  struct occr *avail_occr;
  /* Non-null if the computation is PRE redundant.
  /* Non-null if the computation is PRE redundant.
     The value is the newly created pseudo-reg to record a copy of the
     The value is the newly created pseudo-reg to record a copy of the
     expression in all the places that reach the redundant copy.  */
     expression in all the places that reach the redundant copy.  */
  rtx reaching_reg;
  rtx reaching_reg;
};
};
 
 
/* Occurrence of an expression.
/* Occurrence of an expression.
   There is one per basic block.  If a pattern appears more than once the
   There is one per basic block.  If a pattern appears more than once the
   last appearance is used [or first for anticipatable expressions].  */
   last appearance is used [or first for anticipatable expressions].  */
 
 
struct occr
struct occr
{
{
  /* Next occurrence of this expression.  */
  /* Next occurrence of this expression.  */
  struct occr *next;
  struct occr *next;
  /* The insn that computes the expression.  */
  /* The insn that computes the expression.  */
  rtx insn;
  rtx insn;
  /* Nonzero if this [anticipatable] occurrence has been deleted.  */
  /* Nonzero if this [anticipatable] occurrence has been deleted.  */
  char deleted_p;
  char deleted_p;
  /* Nonzero if this [available] occurrence has been copied to
  /* Nonzero if this [available] occurrence has been copied to
     reaching_reg.  */
     reaching_reg.  */
  /* ??? This is mutually exclusive with deleted_p, so they could share
  /* ??? This is mutually exclusive with deleted_p, so they could share
     the same byte.  */
     the same byte.  */
  char copied_p;
  char copied_p;
};
};
 
 
/* Expression and copy propagation hash tables.
/* Expression and copy propagation hash tables.
   Each hash table is an array of buckets.
   Each hash table is an array of buckets.
   ??? It is known that if it were an array of entries, structure elements
   ??? It is known that if it were an array of entries, structure elements
   `next_same_hash' and `bitmap_index' wouldn't be necessary.  However, it is
   `next_same_hash' and `bitmap_index' wouldn't be necessary.  However, it is
   not clear whether in the final analysis a sufficient amount of memory would
   not clear whether in the final analysis a sufficient amount of memory would
   be saved as the size of the available expression bitmaps would be larger
   be saved as the size of the available expression bitmaps would be larger
   [one could build a mapping table without holes afterwards though].
   [one could build a mapping table without holes afterwards though].
   Someday I'll perform the computation and figure it out.  */
   Someday I'll perform the computation and figure it out.  */
 
 
struct hash_table
struct hash_table
{
{
  /* The table itself.
  /* The table itself.
     This is an array of `expr_hash_table_size' elements.  */
     This is an array of `expr_hash_table_size' elements.  */
  struct expr **table;
  struct expr **table;
 
 
  /* Size of the hash table, in elements.  */
  /* Size of the hash table, in elements.  */
  unsigned int size;
  unsigned int size;
 
 
  /* Number of hash table elements.  */
  /* Number of hash table elements.  */
  unsigned int n_elems;
  unsigned int n_elems;
 
 
  /* Whether the table is expression of copy propagation one.  */
  /* Whether the table is expression of copy propagation one.  */
  int set_p;
  int set_p;
};
};
 
 
/* Expression hash table.  */
/* Expression hash table.  */
static struct hash_table expr_hash_table;
static struct hash_table expr_hash_table;
 
 
/* Copy propagation hash table.  */
/* Copy propagation hash table.  */
static struct hash_table set_hash_table;
static struct hash_table set_hash_table;
 
 
/* Mapping of uids to cuids.
/* Mapping of uids to cuids.
   Only real insns get cuids.  */
   Only real insns get cuids.  */
static int *uid_cuid;
static int *uid_cuid;
 
 
/* Highest UID in UID_CUID.  */
/* Highest UID in UID_CUID.  */
static int max_uid;
static int max_uid;
 
 
/* Get the cuid of an insn.  */
/* Get the cuid of an insn.  */
#ifdef ENABLE_CHECKING
#ifdef ENABLE_CHECKING
#define INSN_CUID(INSN) \
#define INSN_CUID(INSN) \
  (gcc_assert (INSN_UID (INSN) <= max_uid), uid_cuid[INSN_UID (INSN)])
  (gcc_assert (INSN_UID (INSN) <= max_uid), uid_cuid[INSN_UID (INSN)])
#else
#else
#define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
#define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
#endif
#endif
 
 
/* Number of cuids.  */
/* Number of cuids.  */
static int max_cuid;
static int max_cuid;
 
 
/* Mapping of cuids to insns.  */
/* Mapping of cuids to insns.  */
static rtx *cuid_insn;
static rtx *cuid_insn;
 
 
/* Get insn from cuid.  */
/* Get insn from cuid.  */
#define CUID_INSN(CUID) (cuid_insn[CUID])
#define CUID_INSN(CUID) (cuid_insn[CUID])
 
 
/* Maximum register number in function prior to doing gcse + 1.
/* Maximum register number in function prior to doing gcse + 1.
   Registers created during this pass have regno >= max_gcse_regno.
   Registers created during this pass have regno >= max_gcse_regno.
   This is named with "gcse" to not collide with global of same name.  */
   This is named with "gcse" to not collide with global of same name.  */
static unsigned int max_gcse_regno;
static unsigned int max_gcse_regno;
 
 
/* Table of registers that are modified.
/* Table of registers that are modified.
 
 
   For each register, each element is a list of places where the pseudo-reg
   For each register, each element is a list of places where the pseudo-reg
   is set.
   is set.
 
 
   For simplicity, GCSE is done on sets of pseudo-regs only.  PRE GCSE only
   For simplicity, GCSE is done on sets of pseudo-regs only.  PRE GCSE only
   requires knowledge of which blocks kill which regs [and thus could use
   requires knowledge of which blocks kill which regs [and thus could use
   a bitmap instead of the lists `reg_set_table' uses].
   a bitmap instead of the lists `reg_set_table' uses].
 
 
   `reg_set_table' and could be turned into an array of bitmaps (num-bbs x
   `reg_set_table' and could be turned into an array of bitmaps (num-bbs x
   num-regs) [however perhaps it may be useful to keep the data as is].  One
   num-regs) [however perhaps it may be useful to keep the data as is].  One
   advantage of recording things this way is that `reg_set_table' is fairly
   advantage of recording things this way is that `reg_set_table' is fairly
   sparse with respect to pseudo regs but for hard regs could be fairly dense
   sparse with respect to pseudo regs but for hard regs could be fairly dense
   [relatively speaking].  And recording sets of pseudo-regs in lists speeds
   [relatively speaking].  And recording sets of pseudo-regs in lists speeds
   up functions like compute_transp since in the case of pseudo-regs we only
   up functions like compute_transp since in the case of pseudo-regs we only
   need to iterate over the number of times a pseudo-reg is set, not over the
   need to iterate over the number of times a pseudo-reg is set, not over the
   number of basic blocks [clearly there is a bit of a slow down in the cases
   number of basic blocks [clearly there is a bit of a slow down in the cases
   where a pseudo is set more than once in a block, however it is believed
   where a pseudo is set more than once in a block, however it is believed
   that the net effect is to speed things up].  This isn't done for hard-regs
   that the net effect is to speed things up].  This isn't done for hard-regs
   because recording call-clobbered hard-regs in `reg_set_table' at each
   because recording call-clobbered hard-regs in `reg_set_table' at each
   function call can consume a fair bit of memory, and iterating over
   function call can consume a fair bit of memory, and iterating over
   hard-regs stored this way in compute_transp will be more expensive.  */
   hard-regs stored this way in compute_transp will be more expensive.  */
 
 
typedef struct reg_set
typedef struct reg_set
{
{
  /* The next setting of this register.  */
  /* The next setting of this register.  */
  struct reg_set *next;
  struct reg_set *next;
  /* The index of the block where it was set.  */
  /* The index of the block where it was set.  */
  int bb_index;
  int bb_index;
} reg_set;
} reg_set;
 
 
static reg_set **reg_set_table;
static reg_set **reg_set_table;
 
 
/* Size of `reg_set_table'.
/* Size of `reg_set_table'.
   The table starts out at max_gcse_regno + slop, and is enlarged as
   The table starts out at max_gcse_regno + slop, and is enlarged as
   necessary.  */
   necessary.  */
static int reg_set_table_size;
static int reg_set_table_size;
 
 
/* Amount to grow `reg_set_table' by when it's full.  */
/* Amount to grow `reg_set_table' by when it's full.  */
#define REG_SET_TABLE_SLOP 100
#define REG_SET_TABLE_SLOP 100
 
 
/* This is a list of expressions which are MEMs and will be used by load
/* This is a list of expressions which are MEMs and will be used by load
   or store motion.
   or store motion.
   Load motion tracks MEMs which aren't killed by
   Load motion tracks MEMs which aren't killed by
   anything except itself. (i.e., loads and stores to a single location).
   anything except itself. (i.e., loads and stores to a single location).
   We can then allow movement of these MEM refs with a little special
   We can then allow movement of these MEM refs with a little special
   allowance. (all stores copy the same value to the reaching reg used
   allowance. (all stores copy the same value to the reaching reg used
   for the loads).  This means all values used to store into memory must have
   for the loads).  This means all values used to store into memory must have
   no side effects so we can re-issue the setter value.
   no side effects so we can re-issue the setter value.
   Store Motion uses this structure as an expression table to track stores
   Store Motion uses this structure as an expression table to track stores
   which look interesting, and might be moveable towards the exit block.  */
   which look interesting, and might be moveable towards the exit block.  */
 
 
struct ls_expr
struct ls_expr
{
{
  struct expr * expr;           /* Gcse expression reference for LM.  */
  struct expr * expr;           /* Gcse expression reference for LM.  */
  rtx pattern;                  /* Pattern of this mem.  */
  rtx pattern;                  /* Pattern of this mem.  */
  rtx pattern_regs;             /* List of registers mentioned by the mem.  */
  rtx pattern_regs;             /* List of registers mentioned by the mem.  */
  rtx loads;                    /* INSN list of loads seen.  */
  rtx loads;                    /* INSN list of loads seen.  */
  rtx stores;                   /* INSN list of stores seen.  */
  rtx stores;                   /* INSN list of stores seen.  */
  struct ls_expr * next;        /* Next in the list.  */
  struct ls_expr * next;        /* Next in the list.  */
  int invalid;                  /* Invalid for some reason.  */
  int invalid;                  /* Invalid for some reason.  */
  int index;                    /* If it maps to a bitmap index.  */
  int index;                    /* If it maps to a bitmap index.  */
  unsigned int hash_index;      /* Index when in a hash table.  */
  unsigned int hash_index;      /* Index when in a hash table.  */
  rtx reaching_reg;             /* Register to use when re-writing.  */
  rtx reaching_reg;             /* Register to use when re-writing.  */
};
};
 
 
/* Array of implicit set patterns indexed by basic block index.  */
/* Array of implicit set patterns indexed by basic block index.  */
static rtx *implicit_sets;
static rtx *implicit_sets;
 
 
/* Head of the list of load/store memory refs.  */
/* Head of the list of load/store memory refs.  */
static struct ls_expr * pre_ldst_mems = NULL;
static struct ls_expr * pre_ldst_mems = NULL;
 
 
/* Hashtable for the load/store memory refs.  */
/* Hashtable for the load/store memory refs.  */
static htab_t pre_ldst_table = NULL;
static htab_t pre_ldst_table = NULL;
 
 
/* Bitmap containing one bit for each register in the program.
/* Bitmap containing one bit for each register in the program.
   Used when performing GCSE to track which registers have been set since
   Used when performing GCSE to track which registers have been set since
   the start of the basic block.  */
   the start of the basic block.  */
static regset reg_set_bitmap;
static regset reg_set_bitmap;
 
 
/* For each block, a bitmap of registers set in the block.
/* For each block, a bitmap of registers set in the block.
   This is used by compute_transp.
   This is used by compute_transp.
   It is computed during hash table computation and not by compute_sets
   It is computed during hash table computation and not by compute_sets
   as it includes registers added since the last pass (or between cprop and
   as it includes registers added since the last pass (or between cprop and
   gcse) and it's currently not easy to realloc sbitmap vectors.  */
   gcse) and it's currently not easy to realloc sbitmap vectors.  */
static sbitmap *reg_set_in_block;
static sbitmap *reg_set_in_block;
 
 
/* Array, indexed by basic block number for a list of insns which modify
/* Array, indexed by basic block number for a list of insns which modify
   memory within that block.  */
   memory within that block.  */
static rtx * modify_mem_list;
static rtx * modify_mem_list;
static bitmap modify_mem_list_set;
static bitmap modify_mem_list_set;
 
 
/* This array parallels modify_mem_list, but is kept canonicalized.  */
/* This array parallels modify_mem_list, but is kept canonicalized.  */
static rtx * canon_modify_mem_list;
static rtx * canon_modify_mem_list;
 
 
/* Bitmap indexed by block numbers to record which blocks contain
/* Bitmap indexed by block numbers to record which blocks contain
   function calls.  */
   function calls.  */
static bitmap blocks_with_calls;
static bitmap blocks_with_calls;
 
 
/* Various variables for statistics gathering.  */
/* Various variables for statistics gathering.  */
 
 
/* Memory used in a pass.
/* Memory used in a pass.
   This isn't intended to be absolutely precise.  Its intent is only
   This isn't intended to be absolutely precise.  Its intent is only
   to keep an eye on memory usage.  */
   to keep an eye on memory usage.  */
static int bytes_used;
static int bytes_used;
 
 
/* GCSE substitutions made.  */
/* GCSE substitutions made.  */
static int gcse_subst_count;
static int gcse_subst_count;
/* Number of copy instructions created.  */
/* Number of copy instructions created.  */
static int gcse_create_count;
static int gcse_create_count;
/* Number of local constants propagated.  */
/* Number of local constants propagated.  */
static int local_const_prop_count;
static int local_const_prop_count;
/* Number of local copies propagated.  */
/* Number of local copies propagated.  */
static int local_copy_prop_count;
static int local_copy_prop_count;
/* Number of global constants propagated.  */
/* Number of global constants propagated.  */
static int global_const_prop_count;
static int global_const_prop_count;
/* Number of global copies propagated.  */
/* Number of global copies propagated.  */
static int global_copy_prop_count;
static int global_copy_prop_count;


/* For available exprs */
/* For available exprs */
static sbitmap *ae_kill, *ae_gen;
static sbitmap *ae_kill, *ae_gen;


static void compute_can_copy (void);
static void compute_can_copy (void);
static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
static void *grealloc (void *, size_t);
static void *grealloc (void *, size_t);
static void *gcse_alloc (unsigned long);
static void *gcse_alloc (unsigned long);
static void alloc_gcse_mem (void);
static void alloc_gcse_mem (void);
static void free_gcse_mem (void);
static void free_gcse_mem (void);
static void alloc_reg_set_mem (int);
static void alloc_reg_set_mem (int);
static void free_reg_set_mem (void);
static void free_reg_set_mem (void);
static void record_one_set (int, rtx);
static void record_one_set (int, rtx);
static void record_set_info (rtx, rtx, void *);
static void record_set_info (rtx, rtx, void *);
static void compute_sets (void);
static void compute_sets (void);
static void hash_scan_insn (rtx, struct hash_table *, int);
static void hash_scan_insn (rtx, struct hash_table *, int);
static void hash_scan_set (rtx, rtx, struct hash_table *);
static void hash_scan_set (rtx, rtx, struct hash_table *);
static void hash_scan_clobber (rtx, rtx, struct hash_table *);
static void hash_scan_clobber (rtx, rtx, struct hash_table *);
static void hash_scan_call (rtx, rtx, struct hash_table *);
static void hash_scan_call (rtx, rtx, struct hash_table *);
static int want_to_gcse_p (rtx);
static int want_to_gcse_p (rtx);
static bool can_assign_to_reg_p (rtx);
static bool can_assign_to_reg_p (rtx);
static bool gcse_constant_p (rtx);
static bool gcse_constant_p (rtx);
static int oprs_unchanged_p (rtx, rtx, int);
static int oprs_unchanged_p (rtx, rtx, int);
static int oprs_anticipatable_p (rtx, rtx);
static int oprs_anticipatable_p (rtx, rtx);
static int oprs_available_p (rtx, rtx);
static int oprs_available_p (rtx, rtx);
static void insert_expr_in_table (rtx, enum machine_mode, rtx, int, int,
static void insert_expr_in_table (rtx, enum machine_mode, rtx, int, int,
                                  struct hash_table *);
                                  struct hash_table *);
static void insert_set_in_table (rtx, rtx, struct hash_table *);
static void insert_set_in_table (rtx, rtx, struct hash_table *);
static unsigned int hash_expr (rtx, enum machine_mode, int *, int);
static unsigned int hash_expr (rtx, enum machine_mode, int *, int);
static unsigned int hash_set (int, int);
static unsigned int hash_set (int, int);
static int expr_equiv_p (rtx, rtx);
static int expr_equiv_p (rtx, rtx);
static void record_last_reg_set_info (rtx, int);
static void record_last_reg_set_info (rtx, int);
static void record_last_mem_set_info (rtx);
static void record_last_mem_set_info (rtx);
static void record_last_set_info (rtx, rtx, void *);
static void record_last_set_info (rtx, rtx, void *);
static void compute_hash_table (struct hash_table *);
static void compute_hash_table (struct hash_table *);
static void alloc_hash_table (int, struct hash_table *, int);
static void alloc_hash_table (int, struct hash_table *, int);
static void free_hash_table (struct hash_table *);
static void free_hash_table (struct hash_table *);
static void compute_hash_table_work (struct hash_table *);
static void compute_hash_table_work (struct hash_table *);
static void dump_hash_table (FILE *, const char *, struct hash_table *);
static void dump_hash_table (FILE *, const char *, struct hash_table *);
static struct expr *lookup_set (unsigned int, struct hash_table *);
static struct expr *lookup_set (unsigned int, struct hash_table *);
static struct expr *next_set (unsigned int, struct expr *);
static struct expr *next_set (unsigned int, struct expr *);
static void reset_opr_set_tables (void);
static void reset_opr_set_tables (void);
static int oprs_not_set_p (rtx, rtx);
static int oprs_not_set_p (rtx, rtx);
static void mark_call (rtx);
static void mark_call (rtx);
static void mark_set (rtx, rtx);
static void mark_set (rtx, rtx);
static void mark_clobber (rtx, rtx);
static void mark_clobber (rtx, rtx);
static void mark_oprs_set (rtx);
static void mark_oprs_set (rtx);
static void alloc_cprop_mem (int, int);
static void alloc_cprop_mem (int, int);
static void free_cprop_mem (void);
static void free_cprop_mem (void);
static void compute_transp (rtx, int, sbitmap *, int);
static void compute_transp (rtx, int, sbitmap *, int);
static void compute_transpout (void);
static void compute_transpout (void);
static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
                                      struct hash_table *);
                                      struct hash_table *);
static void compute_cprop_data (void);
static void compute_cprop_data (void);
static void find_used_regs (rtx *, void *);
static void find_used_regs (rtx *, void *);
static int try_replace_reg (rtx, rtx, rtx);
static int try_replace_reg (rtx, rtx, rtx);
static struct expr *find_avail_set (int, rtx);
static struct expr *find_avail_set (int, rtx);
static int cprop_jump (basic_block, rtx, rtx, rtx, rtx);
static int cprop_jump (basic_block, rtx, rtx, rtx, rtx);
static void mems_conflict_for_gcse_p (rtx, rtx, void *);
static void mems_conflict_for_gcse_p (rtx, rtx, void *);
static int load_killed_in_block_p (basic_block, int, rtx, int);
static int load_killed_in_block_p (basic_block, int, rtx, int);
static void canon_list_insert (rtx, rtx, void *);
static void canon_list_insert (rtx, rtx, void *);
static int cprop_insn (rtx, int);
static int cprop_insn (rtx, int);
static int cprop (int);
static int cprop (int);
static void find_implicit_sets (void);
static void find_implicit_sets (void);
static int one_cprop_pass (int, bool, bool);
static int one_cprop_pass (int, bool, bool);
static bool constprop_register (rtx, rtx, rtx, bool);
static bool constprop_register (rtx, rtx, rtx, bool);
static struct expr *find_bypass_set (int, int);
static struct expr *find_bypass_set (int, int);
static bool reg_killed_on_edge (rtx, edge);
static bool reg_killed_on_edge (rtx, edge);
static int bypass_block (basic_block, rtx, rtx);
static int bypass_block (basic_block, rtx, rtx);
static int bypass_conditional_jumps (void);
static int bypass_conditional_jumps (void);
static void alloc_pre_mem (int, int);
static void alloc_pre_mem (int, int);
static void free_pre_mem (void);
static void free_pre_mem (void);
static void compute_pre_data (void);
static void compute_pre_data (void);
static int pre_expr_reaches_here_p (basic_block, struct expr *,
static int pre_expr_reaches_here_p (basic_block, struct expr *,
                                    basic_block);
                                    basic_block);
static void insert_insn_end_bb (struct expr *, basic_block, int);
static void insert_insn_end_bb (struct expr *, basic_block, int);
static void pre_insert_copy_insn (struct expr *, rtx);
static void pre_insert_copy_insn (struct expr *, rtx);
static void pre_insert_copies (void);
static void pre_insert_copies (void);
static int pre_delete (void);
static int pre_delete (void);
static int pre_gcse (void);
static int pre_gcse (void);
static int one_pre_gcse_pass (int);
static int one_pre_gcse_pass (int);
static void add_label_notes (rtx, rtx);
static void add_label_notes (rtx, rtx);
static void alloc_code_hoist_mem (int, int);
static void alloc_code_hoist_mem (int, int);
static void free_code_hoist_mem (void);
static void free_code_hoist_mem (void);
static void compute_code_hoist_vbeinout (void);
static void compute_code_hoist_vbeinout (void);
static void compute_code_hoist_data (void);
static void compute_code_hoist_data (void);
static int hoist_expr_reaches_here_p (basic_block, int, basic_block, char *);
static int hoist_expr_reaches_here_p (basic_block, int, basic_block, char *);
static void hoist_code (void);
static void hoist_code (void);
static int one_code_hoisting_pass (void);
static int one_code_hoisting_pass (void);
static rtx process_insert_insn (struct expr *);
static rtx process_insert_insn (struct expr *);
static int pre_edge_insert (struct edge_list *, struct expr **);
static int pre_edge_insert (struct edge_list *, struct expr **);
static int pre_expr_reaches_here_p_work (basic_block, struct expr *,
static int pre_expr_reaches_here_p_work (basic_block, struct expr *,
                                         basic_block, char *);
                                         basic_block, char *);
static struct ls_expr * ldst_entry (rtx);
static struct ls_expr * ldst_entry (rtx);
static void free_ldst_entry (struct ls_expr *);
static void free_ldst_entry (struct ls_expr *);
static void free_ldst_mems (void);
static void free_ldst_mems (void);
static void print_ldst_list (FILE *);
static void print_ldst_list (FILE *);
static struct ls_expr * find_rtx_in_ldst (rtx);
static struct ls_expr * find_rtx_in_ldst (rtx);
static int enumerate_ldsts (void);
static int enumerate_ldsts (void);
static inline struct ls_expr * first_ls_expr (void);
static inline struct ls_expr * first_ls_expr (void);
static inline struct ls_expr * next_ls_expr (struct ls_expr *);
static inline struct ls_expr * next_ls_expr (struct ls_expr *);
static int simple_mem (rtx);
static int simple_mem (rtx);
static void invalidate_any_buried_refs (rtx);
static void invalidate_any_buried_refs (rtx);
static void compute_ld_motion_mems (void);
static void compute_ld_motion_mems (void);
static void trim_ld_motion_mems (void);
static void trim_ld_motion_mems (void);
static void update_ld_motion_stores (struct expr *);
static void update_ld_motion_stores (struct expr *);
static void reg_set_info (rtx, rtx, void *);
static void reg_set_info (rtx, rtx, void *);
static void reg_clear_last_set (rtx, rtx, void *);
static void reg_clear_last_set (rtx, rtx, void *);
static bool store_ops_ok (rtx, int *);
static bool store_ops_ok (rtx, int *);
static rtx extract_mentioned_regs (rtx);
static rtx extract_mentioned_regs (rtx);
static rtx extract_mentioned_regs_helper (rtx, rtx);
static rtx extract_mentioned_regs_helper (rtx, rtx);
static void find_moveable_store (rtx, int *, int *);
static void find_moveable_store (rtx, int *, int *);
static int compute_store_table (void);
static int compute_store_table (void);
static bool load_kills_store (rtx, rtx, int);
static bool load_kills_store (rtx, rtx, int);
static bool find_loads (rtx, rtx, int);
static bool find_loads (rtx, rtx, int);
static bool store_killed_in_insn (rtx, rtx, rtx, int);
static bool store_killed_in_insn (rtx, rtx, rtx, int);
static bool store_killed_after (rtx, rtx, rtx, basic_block, int *, rtx *);
static bool store_killed_after (rtx, rtx, rtx, basic_block, int *, rtx *);
static bool store_killed_before (rtx, rtx, rtx, basic_block, int *);
static bool store_killed_before (rtx, rtx, rtx, basic_block, int *);
static void build_store_vectors (void);
static void build_store_vectors (void);
static void insert_insn_start_bb (rtx, basic_block);
static void insert_insn_start_bb (rtx, basic_block);
static int insert_store (struct ls_expr *, edge);
static int insert_store (struct ls_expr *, edge);
static void remove_reachable_equiv_notes (basic_block, struct ls_expr *);
static void remove_reachable_equiv_notes (basic_block, struct ls_expr *);
static void replace_store_insn (rtx, rtx, basic_block, struct ls_expr *);
static void replace_store_insn (rtx, rtx, basic_block, struct ls_expr *);
static void delete_store (struct ls_expr *, basic_block);
static void delete_store (struct ls_expr *, basic_block);
static void free_store_memory (void);
static void free_store_memory (void);
static void store_motion (void);
static void store_motion (void);
static void free_insn_expr_list_list (rtx *);
static void free_insn_expr_list_list (rtx *);
static void clear_modify_mem_tables (void);
static void clear_modify_mem_tables (void);
static void free_modify_mem_tables (void);
static void free_modify_mem_tables (void);
static rtx gcse_emit_move_after (rtx, rtx, rtx);
static rtx gcse_emit_move_after (rtx, rtx, rtx);
static void local_cprop_find_used_regs (rtx *, void *);
static void local_cprop_find_used_regs (rtx *, void *);
static bool do_local_cprop (rtx, rtx, bool, rtx*);
static bool do_local_cprop (rtx, rtx, bool, rtx*);
static bool adjust_libcall_notes (rtx, rtx, rtx, rtx*);
static bool adjust_libcall_notes (rtx, rtx, rtx, rtx*);
static void local_cprop_pass (bool);
static void local_cprop_pass (bool);
static bool is_too_expensive (const char *);
static bool is_too_expensive (const char *);


 
 
/* Entry point for global common subexpression elimination.
/* Entry point for global common subexpression elimination.
   F is the first instruction in the function.  Return nonzero if a
   F is the first instruction in the function.  Return nonzero if a
   change is mode.  */
   change is mode.  */
 
 
static int
static int
gcse_main (rtx f ATTRIBUTE_UNUSED)
gcse_main (rtx f ATTRIBUTE_UNUSED)
{
{
  int changed, pass;
  int changed, pass;
  /* Bytes used at start of pass.  */
  /* Bytes used at start of pass.  */
  int initial_bytes_used;
  int initial_bytes_used;
  /* Maximum number of bytes used by a pass.  */
  /* Maximum number of bytes used by a pass.  */
  int max_pass_bytes;
  int max_pass_bytes;
  /* Point to release obstack data from for each pass.  */
  /* Point to release obstack data from for each pass.  */
  char *gcse_obstack_bottom;
  char *gcse_obstack_bottom;
 
 
  /* We do not construct an accurate cfg in functions which call
  /* We do not construct an accurate cfg in functions which call
     setjmp, so just punt to be safe.  */
     setjmp, so just punt to be safe.  */
  if (current_function_calls_setjmp)
  if (current_function_calls_setjmp)
    return 0;
    return 0;
 
 
  /* Assume that we do not need to run jump optimizations after gcse.  */
  /* Assume that we do not need to run jump optimizations after gcse.  */
  run_jump_opt_after_gcse = 0;
  run_jump_opt_after_gcse = 0;
 
 
  /* Identify the basic block information for this function, including
  /* Identify the basic block information for this function, including
     successors and predecessors.  */
     successors and predecessors.  */
  max_gcse_regno = max_reg_num ();
  max_gcse_regno = max_reg_num ();
 
 
  if (dump_file)
  if (dump_file)
    dump_flow_info (dump_file, dump_flags);
    dump_flow_info (dump_file, dump_flags);
 
 
  /* Return if there's nothing to do, or it is too expensive.  */
  /* Return if there's nothing to do, or it is too expensive.  */
  if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
  if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
      || is_too_expensive (_("GCSE disabled")))
      || is_too_expensive (_("GCSE disabled")))
    return 0;
    return 0;
 
 
  gcc_obstack_init (&gcse_obstack);
  gcc_obstack_init (&gcse_obstack);
  bytes_used = 0;
  bytes_used = 0;
 
 
  /* We need alias.  */
  /* We need alias.  */
  init_alias_analysis ();
  init_alias_analysis ();
  /* Record where pseudo-registers are set.  This data is kept accurate
  /* Record where pseudo-registers are set.  This data is kept accurate
     during each pass.  ??? We could also record hard-reg information here
     during each pass.  ??? We could also record hard-reg information here
     [since it's unchanging], however it is currently done during hash table
     [since it's unchanging], however it is currently done during hash table
     computation.
     computation.
 
 
     It may be tempting to compute MEM set information here too, but MEM sets
     It may be tempting to compute MEM set information here too, but MEM sets
     will be subject to code motion one day and thus we need to compute
     will be subject to code motion one day and thus we need to compute
     information about memory sets when we build the hash tables.  */
     information about memory sets when we build the hash tables.  */
 
 
  alloc_reg_set_mem (max_gcse_regno);
  alloc_reg_set_mem (max_gcse_regno);
  compute_sets ();
  compute_sets ();
 
 
  pass = 0;
  pass = 0;
  initial_bytes_used = bytes_used;
  initial_bytes_used = bytes_used;
  max_pass_bytes = 0;
  max_pass_bytes = 0;
  gcse_obstack_bottom = gcse_alloc (1);
  gcse_obstack_bottom = gcse_alloc (1);
  changed = 1;
  changed = 1;
  while (changed && pass < MAX_GCSE_PASSES)
  while (changed && pass < MAX_GCSE_PASSES)
    {
    {
      changed = 0;
      changed = 0;
      if (dump_file)
      if (dump_file)
        fprintf (dump_file, "GCSE pass %d\n\n", pass + 1);
        fprintf (dump_file, "GCSE pass %d\n\n", pass + 1);
 
 
      /* Initialize bytes_used to the space for the pred/succ lists,
      /* Initialize bytes_used to the space for the pred/succ lists,
         and the reg_set_table data.  */
         and the reg_set_table data.  */
      bytes_used = initial_bytes_used;
      bytes_used = initial_bytes_used;
 
 
      /* Each pass may create new registers, so recalculate each time.  */
      /* Each pass may create new registers, so recalculate each time.  */
      max_gcse_regno = max_reg_num ();
      max_gcse_regno = max_reg_num ();
 
 
      alloc_gcse_mem ();
      alloc_gcse_mem ();
 
 
      /* Don't allow constant propagation to modify jumps
      /* Don't allow constant propagation to modify jumps
         during this pass.  */
         during this pass.  */
      timevar_push (TV_CPROP1);
      timevar_push (TV_CPROP1);
      changed = one_cprop_pass (pass + 1, false, false);
      changed = one_cprop_pass (pass + 1, false, false);
      timevar_pop (TV_CPROP1);
      timevar_pop (TV_CPROP1);
 
 
      if (optimize_size)
      if (optimize_size)
        /* Do nothing.  */ ;
        /* Do nothing.  */ ;
      else
      else
        {
        {
          timevar_push (TV_PRE);
          timevar_push (TV_PRE);
          changed |= one_pre_gcse_pass (pass + 1);
          changed |= one_pre_gcse_pass (pass + 1);
          /* We may have just created new basic blocks.  Release and
          /* We may have just created new basic blocks.  Release and
             recompute various things which are sized on the number of
             recompute various things which are sized on the number of
             basic blocks.  */
             basic blocks.  */
          if (changed)
          if (changed)
            {
            {
              free_modify_mem_tables ();
              free_modify_mem_tables ();
              modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
              modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
              canon_modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
              canon_modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
            }
            }
          free_reg_set_mem ();
          free_reg_set_mem ();
          alloc_reg_set_mem (max_reg_num ());
          alloc_reg_set_mem (max_reg_num ());
          compute_sets ();
          compute_sets ();
          run_jump_opt_after_gcse = 1;
          run_jump_opt_after_gcse = 1;
          timevar_pop (TV_PRE);
          timevar_pop (TV_PRE);
        }
        }
 
 
      if (max_pass_bytes < bytes_used)
      if (max_pass_bytes < bytes_used)
        max_pass_bytes = bytes_used;
        max_pass_bytes = bytes_used;
 
 
      /* Free up memory, then reallocate for code hoisting.  We can
      /* Free up memory, then reallocate for code hoisting.  We can
         not re-use the existing allocated memory because the tables
         not re-use the existing allocated memory because the tables
         will not have info for the insns or registers created by
         will not have info for the insns or registers created by
         partial redundancy elimination.  */
         partial redundancy elimination.  */
      free_gcse_mem ();
      free_gcse_mem ();
 
 
      /* It does not make sense to run code hoisting unless we are optimizing
      /* It does not make sense to run code hoisting unless we are optimizing
         for code size -- it rarely makes programs faster, and can make
         for code size -- it rarely makes programs faster, and can make
         them bigger if we did partial redundancy elimination (when optimizing
         them bigger if we did partial redundancy elimination (when optimizing
         for space, we don't run the partial redundancy algorithms).  */
         for space, we don't run the partial redundancy algorithms).  */
      if (optimize_size)
      if (optimize_size)
        {
        {
          timevar_push (TV_HOIST);
          timevar_push (TV_HOIST);
          max_gcse_regno = max_reg_num ();
          max_gcse_regno = max_reg_num ();
          alloc_gcse_mem ();
          alloc_gcse_mem ();
          changed |= one_code_hoisting_pass ();
          changed |= one_code_hoisting_pass ();
          free_gcse_mem ();
          free_gcse_mem ();
 
 
          if (max_pass_bytes < bytes_used)
          if (max_pass_bytes < bytes_used)
            max_pass_bytes = bytes_used;
            max_pass_bytes = bytes_used;
          timevar_pop (TV_HOIST);
          timevar_pop (TV_HOIST);
        }
        }
 
 
      if (dump_file)
      if (dump_file)
        {
        {
          fprintf (dump_file, "\n");
          fprintf (dump_file, "\n");
          fflush (dump_file);
          fflush (dump_file);
        }
        }
 
 
      obstack_free (&gcse_obstack, gcse_obstack_bottom);
      obstack_free (&gcse_obstack, gcse_obstack_bottom);
      pass++;
      pass++;
    }
    }
 
 
  /* Do one last pass of copy propagation, including cprop into
  /* Do one last pass of copy propagation, including cprop into
     conditional jumps.  */
     conditional jumps.  */
 
 
  max_gcse_regno = max_reg_num ();
  max_gcse_regno = max_reg_num ();
  alloc_gcse_mem ();
  alloc_gcse_mem ();
  /* This time, go ahead and allow cprop to alter jumps.  */
  /* This time, go ahead and allow cprop to alter jumps.  */
  timevar_push (TV_CPROP2);
  timevar_push (TV_CPROP2);
  one_cprop_pass (pass + 1, true, false);
  one_cprop_pass (pass + 1, true, false);
  timevar_pop (TV_CPROP2);
  timevar_pop (TV_CPROP2);
  free_gcse_mem ();
  free_gcse_mem ();
 
 
  if (dump_file)
  if (dump_file)
    {
    {
      fprintf (dump_file, "GCSE of %s: %d basic blocks, ",
      fprintf (dump_file, "GCSE of %s: %d basic blocks, ",
               current_function_name (), n_basic_blocks);
               current_function_name (), n_basic_blocks);
      fprintf (dump_file, "%d pass%s, %d bytes\n\n",
      fprintf (dump_file, "%d pass%s, %d bytes\n\n",
               pass, pass > 1 ? "es" : "", max_pass_bytes);
               pass, pass > 1 ? "es" : "", max_pass_bytes);
    }
    }
 
 
  obstack_free (&gcse_obstack, NULL);
  obstack_free (&gcse_obstack, NULL);
  free_reg_set_mem ();
  free_reg_set_mem ();
 
 
  /* We are finished with alias.  */
  /* We are finished with alias.  */
  end_alias_analysis ();
  end_alias_analysis ();
  allocate_reg_info (max_reg_num (), FALSE, FALSE);
  allocate_reg_info (max_reg_num (), FALSE, FALSE);
 
 
  if (!optimize_size && flag_gcse_sm)
  if (!optimize_size && flag_gcse_sm)
    {
    {
      timevar_push (TV_LSM);
      timevar_push (TV_LSM);
      store_motion ();
      store_motion ();
      timevar_pop (TV_LSM);
      timevar_pop (TV_LSM);
    }
    }
 
 
  /* Record where pseudo-registers are set.  */
  /* Record where pseudo-registers are set.  */
  return run_jump_opt_after_gcse;
  return run_jump_opt_after_gcse;
}
}


/* Misc. utilities.  */
/* Misc. utilities.  */
 
 
/* Nonzero for each mode that supports (set (reg) (reg)).
/* Nonzero for each mode that supports (set (reg) (reg)).
   This is trivially true for integer and floating point values.
   This is trivially true for integer and floating point values.
   It may or may not be true for condition codes.  */
   It may or may not be true for condition codes.  */
static char can_copy[(int) NUM_MACHINE_MODES];
static char can_copy[(int) NUM_MACHINE_MODES];
 
 
/* Compute which modes support reg/reg copy operations.  */
/* Compute which modes support reg/reg copy operations.  */
 
 
static void
static void
compute_can_copy (void)
compute_can_copy (void)
{
{
  int i;
  int i;
#ifndef AVOID_CCMODE_COPIES
#ifndef AVOID_CCMODE_COPIES
  rtx reg, insn;
  rtx reg, insn;
#endif
#endif
  memset (can_copy, 0, NUM_MACHINE_MODES);
  memset (can_copy, 0, NUM_MACHINE_MODES);
 
 
  start_sequence ();
  start_sequence ();
  for (i = 0; i < NUM_MACHINE_MODES; i++)
  for (i = 0; i < NUM_MACHINE_MODES; i++)
    if (GET_MODE_CLASS (i) == MODE_CC)
    if (GET_MODE_CLASS (i) == MODE_CC)
      {
      {
#ifdef AVOID_CCMODE_COPIES
#ifdef AVOID_CCMODE_COPIES
        can_copy[i] = 0;
        can_copy[i] = 0;
#else
#else
        reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
        reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
        insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
        insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
        if (recog (PATTERN (insn), insn, NULL) >= 0)
        if (recog (PATTERN (insn), insn, NULL) >= 0)
          can_copy[i] = 1;
          can_copy[i] = 1;
#endif
#endif
      }
      }
    else
    else
      can_copy[i] = 1;
      can_copy[i] = 1;
 
 
  end_sequence ();
  end_sequence ();
}
}
 
 
/* Returns whether the mode supports reg/reg copy operations.  */
/* Returns whether the mode supports reg/reg copy operations.  */
 
 
bool
bool
can_copy_p (enum machine_mode mode)
can_copy_p (enum machine_mode mode)
{
{
  static bool can_copy_init_p = false;
  static bool can_copy_init_p = false;
 
 
  if (! can_copy_init_p)
  if (! can_copy_init_p)
    {
    {
      compute_can_copy ();
      compute_can_copy ();
      can_copy_init_p = true;
      can_copy_init_p = true;
    }
    }
 
 
  return can_copy[mode] != 0;
  return can_copy[mode] != 0;
}
}


/* Cover function to xmalloc to record bytes allocated.  */
/* Cover function to xmalloc to record bytes allocated.  */
 
 
static void *
static void *
gmalloc (size_t size)
gmalloc (size_t size)
{
{
  bytes_used += size;
  bytes_used += size;
  return xmalloc (size);
  return xmalloc (size);
}
}
 
 
/* Cover function to xcalloc to record bytes allocated.  */
/* Cover function to xcalloc to record bytes allocated.  */
 
 
static void *
static void *
gcalloc (size_t nelem, size_t elsize)
gcalloc (size_t nelem, size_t elsize)
{
{
  bytes_used += nelem * elsize;
  bytes_used += nelem * elsize;
  return xcalloc (nelem, elsize);
  return xcalloc (nelem, elsize);
}
}
 
 
/* Cover function to xrealloc.
/* Cover function to xrealloc.
   We don't record the additional size since we don't know it.
   We don't record the additional size since we don't know it.
   It won't affect memory usage stats much anyway.  */
   It won't affect memory usage stats much anyway.  */
 
 
static void *
static void *
grealloc (void *ptr, size_t size)
grealloc (void *ptr, size_t size)
{
{
  return xrealloc (ptr, size);
  return xrealloc (ptr, size);
}
}
 
 
/* Cover function to obstack_alloc.  */
/* Cover function to obstack_alloc.  */
 
 
static void *
static void *
gcse_alloc (unsigned long size)
gcse_alloc (unsigned long size)
{
{
  bytes_used += size;
  bytes_used += size;
  return obstack_alloc (&gcse_obstack, size);
  return obstack_alloc (&gcse_obstack, size);
}
}
 
 
/* Allocate memory for the cuid mapping array,
/* Allocate memory for the cuid mapping array,
   and reg/memory set tracking tables.
   and reg/memory set tracking tables.
 
 
   This is called at the start of each pass.  */
   This is called at the start of each pass.  */
 
 
static void
static void
alloc_gcse_mem (void)
alloc_gcse_mem (void)
{
{
  int i;
  int i;
  basic_block bb;
  basic_block bb;
  rtx insn;
  rtx insn;
 
 
  /* Find the largest UID and create a mapping from UIDs to CUIDs.
  /* Find the largest UID and create a mapping from UIDs to CUIDs.
     CUIDs are like UIDs except they increase monotonically, have no gaps,
     CUIDs are like UIDs except they increase monotonically, have no gaps,
     and only apply to real insns.
     and only apply to real insns.
     (Actually, there are gaps, for insn that are not inside a basic block.
     (Actually, there are gaps, for insn that are not inside a basic block.
     but we should never see those anyway, so this is OK.)  */
     but we should never see those anyway, so this is OK.)  */
 
 
  max_uid = get_max_uid ();
  max_uid = get_max_uid ();
  uid_cuid = gcalloc (max_uid + 1, sizeof (int));
  uid_cuid = gcalloc (max_uid + 1, sizeof (int));
  i = 0;
  i = 0;
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    FOR_BB_INSNS (bb, insn)
    FOR_BB_INSNS (bb, insn)
      {
      {
        if (INSN_P (insn))
        if (INSN_P (insn))
          uid_cuid[INSN_UID (insn)] = i++;
          uid_cuid[INSN_UID (insn)] = i++;
        else
        else
          uid_cuid[INSN_UID (insn)] = i;
          uid_cuid[INSN_UID (insn)] = i;
      }
      }
 
 
  /* Create a table mapping cuids to insns.  */
  /* Create a table mapping cuids to insns.  */
 
 
  max_cuid = i;
  max_cuid = i;
  cuid_insn = gcalloc (max_cuid + 1, sizeof (rtx));
  cuid_insn = gcalloc (max_cuid + 1, sizeof (rtx));
  i = 0;
  i = 0;
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    FOR_BB_INSNS (bb, insn)
    FOR_BB_INSNS (bb, insn)
      if (INSN_P (insn))
      if (INSN_P (insn))
        CUID_INSN (i++) = insn;
        CUID_INSN (i++) = insn;
 
 
  /* Allocate vars to track sets of regs.  */
  /* Allocate vars to track sets of regs.  */
  reg_set_bitmap = BITMAP_ALLOC (NULL);
  reg_set_bitmap = BITMAP_ALLOC (NULL);
 
 
  /* Allocate vars to track sets of regs, memory per block.  */
  /* Allocate vars to track sets of regs, memory per block.  */
  reg_set_in_block = sbitmap_vector_alloc (last_basic_block, max_gcse_regno);
  reg_set_in_block = sbitmap_vector_alloc (last_basic_block, max_gcse_regno);
  /* Allocate array to keep a list of insns which modify memory in each
  /* Allocate array to keep a list of insns which modify memory in each
     basic block.  */
     basic block.  */
  modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
  modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
  canon_modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
  canon_modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
  modify_mem_list_set = BITMAP_ALLOC (NULL);
  modify_mem_list_set = BITMAP_ALLOC (NULL);
  blocks_with_calls = BITMAP_ALLOC (NULL);
  blocks_with_calls = BITMAP_ALLOC (NULL);
}
}
 
 
/* Free memory allocated by alloc_gcse_mem.  */
/* Free memory allocated by alloc_gcse_mem.  */
 
 
static void
static void
free_gcse_mem (void)
free_gcse_mem (void)
{
{
  free (uid_cuid);
  free (uid_cuid);
  free (cuid_insn);
  free (cuid_insn);
 
 
  BITMAP_FREE (reg_set_bitmap);
  BITMAP_FREE (reg_set_bitmap);
 
 
  sbitmap_vector_free (reg_set_in_block);
  sbitmap_vector_free (reg_set_in_block);
  free_modify_mem_tables ();
  free_modify_mem_tables ();
  BITMAP_FREE (modify_mem_list_set);
  BITMAP_FREE (modify_mem_list_set);
  BITMAP_FREE (blocks_with_calls);
  BITMAP_FREE (blocks_with_calls);
}
}


/* Compute the local properties of each recorded expression.
/* Compute the local properties of each recorded expression.
 
 
   Local properties are those that are defined by the block, irrespective of
   Local properties are those that are defined by the block, irrespective of
   other blocks.
   other blocks.
 
 
   An expression is transparent in a block if its operands are not modified
   An expression is transparent in a block if its operands are not modified
   in the block.
   in the block.
 
 
   An expression is computed (locally available) in a block if it is computed
   An expression is computed (locally available) in a block if it is computed
   at least once and expression would contain the same value if the
   at least once and expression would contain the same value if the
   computation was moved to the end of the block.
   computation was moved to the end of the block.
 
 
   An expression is locally anticipatable in a block if it is computed at
   An expression is locally anticipatable in a block if it is computed at
   least once and expression would contain the same value if the computation
   least once and expression would contain the same value if the computation
   was moved to the beginning of the block.
   was moved to the beginning of the block.
 
 
   We call this routine for cprop, pre and code hoisting.  They all compute
   We call this routine for cprop, pre and code hoisting.  They all compute
   basically the same information and thus can easily share this code.
   basically the same information and thus can easily share this code.
 
 
   TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
   TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
   properties.  If NULL, then it is not necessary to compute or record that
   properties.  If NULL, then it is not necessary to compute or record that
   particular property.
   particular property.
 
 
   TABLE controls which hash table to look at.  If it is  set hash table,
   TABLE controls which hash table to look at.  If it is  set hash table,
   additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
   additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
   ABSALTERED.  */
   ABSALTERED.  */
 
 
static void
static void
compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
                          struct hash_table *table)
                          struct hash_table *table)
{
{
  unsigned int i;
  unsigned int i;
 
 
  /* Initialize any bitmaps that were passed in.  */
  /* Initialize any bitmaps that were passed in.  */
  if (transp)
  if (transp)
    {
    {
      if (table->set_p)
      if (table->set_p)
        sbitmap_vector_zero (transp, last_basic_block);
        sbitmap_vector_zero (transp, last_basic_block);
      else
      else
        sbitmap_vector_ones (transp, last_basic_block);
        sbitmap_vector_ones (transp, last_basic_block);
    }
    }
 
 
  if (comp)
  if (comp)
    sbitmap_vector_zero (comp, last_basic_block);
    sbitmap_vector_zero (comp, last_basic_block);
  if (antloc)
  if (antloc)
    sbitmap_vector_zero (antloc, last_basic_block);
    sbitmap_vector_zero (antloc, last_basic_block);
 
 
  for (i = 0; i < table->size; i++)
  for (i = 0; i < table->size; i++)
    {
    {
      struct expr *expr;
      struct expr *expr;
 
 
      for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
      for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
        {
        {
          int indx = expr->bitmap_index;
          int indx = expr->bitmap_index;
          struct occr *occr;
          struct occr *occr;
 
 
          /* The expression is transparent in this block if it is not killed.
          /* The expression is transparent in this block if it is not killed.
             We start by assuming all are transparent [none are killed], and
             We start by assuming all are transparent [none are killed], and
             then reset the bits for those that are.  */
             then reset the bits for those that are.  */
          if (transp)
          if (transp)
            compute_transp (expr->expr, indx, transp, table->set_p);
            compute_transp (expr->expr, indx, transp, table->set_p);
 
 
          /* The occurrences recorded in antic_occr are exactly those that
          /* The occurrences recorded in antic_occr are exactly those that
             we want to set to nonzero in ANTLOC.  */
             we want to set to nonzero in ANTLOC.  */
          if (antloc)
          if (antloc)
            for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
            for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
              {
              {
                SET_BIT (antloc[BLOCK_NUM (occr->insn)], indx);
                SET_BIT (antloc[BLOCK_NUM (occr->insn)], indx);
 
 
                /* While we're scanning the table, this is a good place to
                /* While we're scanning the table, this is a good place to
                   initialize this.  */
                   initialize this.  */
                occr->deleted_p = 0;
                occr->deleted_p = 0;
              }
              }
 
 
          /* The occurrences recorded in avail_occr are exactly those that
          /* The occurrences recorded in avail_occr are exactly those that
             we want to set to nonzero in COMP.  */
             we want to set to nonzero in COMP.  */
          if (comp)
          if (comp)
            for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
            for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
              {
              {
                SET_BIT (comp[BLOCK_NUM (occr->insn)], indx);
                SET_BIT (comp[BLOCK_NUM (occr->insn)], indx);
 
 
                /* While we're scanning the table, this is a good place to
                /* While we're scanning the table, this is a good place to
                   initialize this.  */
                   initialize this.  */
                occr->copied_p = 0;
                occr->copied_p = 0;
              }
              }
 
 
          /* While we're scanning the table, this is a good place to
          /* While we're scanning the table, this is a good place to
             initialize this.  */
             initialize this.  */
          expr->reaching_reg = 0;
          expr->reaching_reg = 0;
        }
        }
    }
    }
}
}


/* Register set information.
/* Register set information.
 
 
   `reg_set_table' records where each register is set or otherwise
   `reg_set_table' records where each register is set or otherwise
   modified.  */
   modified.  */
 
 
static struct obstack reg_set_obstack;
static struct obstack reg_set_obstack;
 
 
static void
static void
alloc_reg_set_mem (int n_regs)
alloc_reg_set_mem (int n_regs)
{
{
  reg_set_table_size = n_regs + REG_SET_TABLE_SLOP;
  reg_set_table_size = n_regs + REG_SET_TABLE_SLOP;
  reg_set_table = gcalloc (reg_set_table_size, sizeof (struct reg_set *));
  reg_set_table = gcalloc (reg_set_table_size, sizeof (struct reg_set *));
 
 
  gcc_obstack_init (&reg_set_obstack);
  gcc_obstack_init (&reg_set_obstack);
}
}
 
 
static void
static void
free_reg_set_mem (void)
free_reg_set_mem (void)
{
{
  free (reg_set_table);
  free (reg_set_table);
  obstack_free (&reg_set_obstack, NULL);
  obstack_free (&reg_set_obstack, NULL);
}
}
 
 
/* Record REGNO in the reg_set table.  */
/* Record REGNO in the reg_set table.  */
 
 
static void
static void
record_one_set (int regno, rtx insn)
record_one_set (int regno, rtx insn)
{
{
  /* Allocate a new reg_set element and link it onto the list.  */
  /* Allocate a new reg_set element and link it onto the list.  */
  struct reg_set *new_reg_info;
  struct reg_set *new_reg_info;
 
 
  /* If the table isn't big enough, enlarge it.  */
  /* If the table isn't big enough, enlarge it.  */
  if (regno >= reg_set_table_size)
  if (regno >= reg_set_table_size)
    {
    {
      int new_size = regno + REG_SET_TABLE_SLOP;
      int new_size = regno + REG_SET_TABLE_SLOP;
 
 
      reg_set_table = grealloc (reg_set_table,
      reg_set_table = grealloc (reg_set_table,
                                new_size * sizeof (struct reg_set *));
                                new_size * sizeof (struct reg_set *));
      memset (reg_set_table + reg_set_table_size, 0,
      memset (reg_set_table + reg_set_table_size, 0,
              (new_size - reg_set_table_size) * sizeof (struct reg_set *));
              (new_size - reg_set_table_size) * sizeof (struct reg_set *));
      reg_set_table_size = new_size;
      reg_set_table_size = new_size;
    }
    }
 
 
  new_reg_info = obstack_alloc (&reg_set_obstack, sizeof (struct reg_set));
  new_reg_info = obstack_alloc (&reg_set_obstack, sizeof (struct reg_set));
  bytes_used += sizeof (struct reg_set);
  bytes_used += sizeof (struct reg_set);
  new_reg_info->bb_index = BLOCK_NUM (insn);
  new_reg_info->bb_index = BLOCK_NUM (insn);
  new_reg_info->next = reg_set_table[regno];
  new_reg_info->next = reg_set_table[regno];
  reg_set_table[regno] = new_reg_info;
  reg_set_table[regno] = new_reg_info;
}
}
 
 
/* Called from compute_sets via note_stores to handle one SET or CLOBBER in
/* Called from compute_sets via note_stores to handle one SET or CLOBBER in
   an insn.  The DATA is really the instruction in which the SET is
   an insn.  The DATA is really the instruction in which the SET is
   occurring.  */
   occurring.  */
 
 
static void
static void
record_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, void *data)
record_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, void *data)
{
{
  rtx record_set_insn = (rtx) data;
  rtx record_set_insn = (rtx) data;
 
 
  if (REG_P (dest) && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
  if (REG_P (dest) && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
    record_one_set (REGNO (dest), record_set_insn);
    record_one_set (REGNO (dest), record_set_insn);
}
}
 
 
/* Scan the function and record each set of each pseudo-register.
/* Scan the function and record each set of each pseudo-register.
 
 
   This is called once, at the start of the gcse pass.  See the comments for
   This is called once, at the start of the gcse pass.  See the comments for
   `reg_set_table' for further documentation.  */
   `reg_set_table' for further documentation.  */
 
 
static void
static void
compute_sets (void)
compute_sets (void)
{
{
  basic_block bb;
  basic_block bb;
  rtx insn;
  rtx insn;
 
 
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    FOR_BB_INSNS (bb, insn)
    FOR_BB_INSNS (bb, insn)
      if (INSN_P (insn))
      if (INSN_P (insn))
        note_stores (PATTERN (insn), record_set_info, insn);
        note_stores (PATTERN (insn), record_set_info, insn);
}
}


/* Hash table support.  */
/* Hash table support.  */
 
 
struct reg_avail_info
struct reg_avail_info
{
{
  basic_block last_bb;
  basic_block last_bb;
  int first_set;
  int first_set;
  int last_set;
  int last_set;
};
};
 
 
static struct reg_avail_info *reg_avail_info;
static struct reg_avail_info *reg_avail_info;
static basic_block current_bb;
static basic_block current_bb;
 
 
 
 
/* See whether X, the source of a set, is something we want to consider for
/* See whether X, the source of a set, is something we want to consider for
   GCSE.  */
   GCSE.  */
 
 
static int
static int
want_to_gcse_p (rtx x)
want_to_gcse_p (rtx x)
{
{
#ifdef STACK_REGS
#ifdef STACK_REGS
  /* On register stack architectures, don't GCSE constants from the
  /* On register stack architectures, don't GCSE constants from the
     constant pool, as the benefits are often swamped by the overhead
     constant pool, as the benefits are often swamped by the overhead
     of shuffling the register stack between basic blocks.  */
     of shuffling the register stack between basic blocks.  */
  if (IS_STACK_MODE (GET_MODE (x)))
  if (IS_STACK_MODE (GET_MODE (x)))
    x = avoid_constant_pool_reference (x);
    x = avoid_constant_pool_reference (x);
#endif
#endif
 
 
  switch (GET_CODE (x))
  switch (GET_CODE (x))
    {
    {
    case REG:
    case REG:
    case SUBREG:
    case SUBREG:
    case CONST_INT:
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST_DOUBLE:
    case CONST_VECTOR:
    case CONST_VECTOR:
    case CALL:
    case CALL:
      return 0;
      return 0;
 
 
    default:
    default:
      return can_assign_to_reg_p (x);
      return can_assign_to_reg_p (x);
    }
    }
}
}
 
 
/* Used internally by can_assign_to_reg_p.  */
/* Used internally by can_assign_to_reg_p.  */
 
 
static GTY(()) rtx test_insn;
static GTY(()) rtx test_insn;
 
 
/* Return true if we can assign X to a pseudo register.  */
/* Return true if we can assign X to a pseudo register.  */
 
 
static bool
static bool
can_assign_to_reg_p (rtx x)
can_assign_to_reg_p (rtx x)
{
{
  int num_clobbers = 0;
  int num_clobbers = 0;
  int icode;
  int icode;
 
 
  /* If this is a valid operand, we are OK.  If it's VOIDmode, we aren't.  */
  /* If this is a valid operand, we are OK.  If it's VOIDmode, we aren't.  */
  if (general_operand (x, GET_MODE (x)))
  if (general_operand (x, GET_MODE (x)))
    return 1;
    return 1;
  else if (GET_MODE (x) == VOIDmode)
  else if (GET_MODE (x) == VOIDmode)
    return 0;
    return 0;
 
 
  /* Otherwise, check if we can make a valid insn from it.  First initialize
  /* Otherwise, check if we can make a valid insn from it.  First initialize
     our test insn if we haven't already.  */
     our test insn if we haven't already.  */
  if (test_insn == 0)
  if (test_insn == 0)
    {
    {
      test_insn
      test_insn
        = make_insn_raw (gen_rtx_SET (VOIDmode,
        = make_insn_raw (gen_rtx_SET (VOIDmode,
                                      gen_rtx_REG (word_mode,
                                      gen_rtx_REG (word_mode,
                                                   FIRST_PSEUDO_REGISTER * 2),
                                                   FIRST_PSEUDO_REGISTER * 2),
                                      const0_rtx));
                                      const0_rtx));
      NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
      NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
    }
    }
 
 
  /* Now make an insn like the one we would make when GCSE'ing and see if
  /* Now make an insn like the one we would make when GCSE'ing and see if
     valid.  */
     valid.  */
  PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
  PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
  SET_SRC (PATTERN (test_insn)) = x;
  SET_SRC (PATTERN (test_insn)) = x;
  return ((icode = recog (PATTERN (test_insn), test_insn, &num_clobbers)) >= 0
  return ((icode = recog (PATTERN (test_insn), test_insn, &num_clobbers)) >= 0
          && (num_clobbers == 0 || ! added_clobbers_hard_reg_p (icode)));
          && (num_clobbers == 0 || ! added_clobbers_hard_reg_p (icode)));
}
}
 
 
/* Return nonzero if the operands of expression X are unchanged from the
/* Return nonzero if the operands of expression X are unchanged from the
   start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
   start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
   or from INSN to the end of INSN's basic block (if AVAIL_P != 0).  */
   or from INSN to the end of INSN's basic block (if AVAIL_P != 0).  */
 
 
static int
static int
oprs_unchanged_p (rtx x, rtx insn, int avail_p)
oprs_unchanged_p (rtx x, rtx insn, int avail_p)
{
{
  int i, j;
  int i, j;
  enum rtx_code code;
  enum rtx_code code;
  const char *fmt;
  const char *fmt;
 
 
  if (x == 0)
  if (x == 0)
    return 1;
    return 1;
 
 
  code = GET_CODE (x);
  code = GET_CODE (x);
  switch (code)
  switch (code)
    {
    {
    case REG:
    case REG:
      {
      {
        struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
        struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
 
 
        if (info->last_bb != current_bb)
        if (info->last_bb != current_bb)
          return 1;
          return 1;
        if (avail_p)
        if (avail_p)
          return info->last_set < INSN_CUID (insn);
          return info->last_set < INSN_CUID (insn);
        else
        else
          return info->first_set >= INSN_CUID (insn);
          return info->first_set >= INSN_CUID (insn);
      }
      }
 
 
    case MEM:
    case MEM:
      if (load_killed_in_block_p (current_bb, INSN_CUID (insn),
      if (load_killed_in_block_p (current_bb, INSN_CUID (insn),
                                  x, avail_p))
                                  x, avail_p))
        return 0;
        return 0;
      else
      else
        return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
        return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
 
 
    case PRE_DEC:
    case PRE_DEC:
    case PRE_INC:
    case PRE_INC:
    case POST_DEC:
    case POST_DEC:
    case POST_INC:
    case POST_INC:
    case PRE_MODIFY:
    case PRE_MODIFY:
    case POST_MODIFY:
    case POST_MODIFY:
      return 0;
      return 0;
 
 
    case PC:
    case PC:
    case CC0: /*FIXME*/
    case CC0: /*FIXME*/
    case CONST:
    case CONST:
    case CONST_INT:
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST_DOUBLE:
    case CONST_VECTOR:
    case CONST_VECTOR:
    case SYMBOL_REF:
    case SYMBOL_REF:
    case LABEL_REF:
    case LABEL_REF:
    case ADDR_VEC:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
    case ADDR_DIFF_VEC:
      return 1;
      return 1;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
  for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
    {
    {
      if (fmt[i] == 'e')
      if (fmt[i] == 'e')
        {
        {
          /* If we are about to do the last recursive call needed at this
          /* If we are about to do the last recursive call needed at this
             level, change it into iteration.  This function is called enough
             level, change it into iteration.  This function is called enough
             to be worth it.  */
             to be worth it.  */
          if (i == 0)
          if (i == 0)
            return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
            return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
 
 
          else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
          else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
            return 0;
            return 0;
        }
        }
      else if (fmt[i] == 'E')
      else if (fmt[i] == 'E')
        for (j = 0; j < XVECLEN (x, i); j++)
        for (j = 0; j < XVECLEN (x, i); j++)
          if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
          if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
            return 0;
            return 0;
    }
    }
 
 
  return 1;
  return 1;
}
}
 
 
/* Used for communication between mems_conflict_for_gcse_p and
/* Used for communication between mems_conflict_for_gcse_p and
   load_killed_in_block_p.  Nonzero if mems_conflict_for_gcse_p finds a
   load_killed_in_block_p.  Nonzero if mems_conflict_for_gcse_p finds a
   conflict between two memory references.  */
   conflict between two memory references.  */
static int gcse_mems_conflict_p;
static int gcse_mems_conflict_p;
 
 
/* Used for communication between mems_conflict_for_gcse_p and
/* Used for communication between mems_conflict_for_gcse_p and
   load_killed_in_block_p.  A memory reference for a load instruction,
   load_killed_in_block_p.  A memory reference for a load instruction,
   mems_conflict_for_gcse_p will see if a memory store conflicts with
   mems_conflict_for_gcse_p will see if a memory store conflicts with
   this memory load.  */
   this memory load.  */
static rtx gcse_mem_operand;
static rtx gcse_mem_operand;
 
 
/* DEST is the output of an instruction.  If it is a memory reference, and
/* DEST is the output of an instruction.  If it is a memory reference, and
   possibly conflicts with the load found in gcse_mem_operand, then set
   possibly conflicts with the load found in gcse_mem_operand, then set
   gcse_mems_conflict_p to a nonzero value.  */
   gcse_mems_conflict_p to a nonzero value.  */
 
 
static void
static void
mems_conflict_for_gcse_p (rtx dest, rtx setter ATTRIBUTE_UNUSED,
mems_conflict_for_gcse_p (rtx dest, rtx setter ATTRIBUTE_UNUSED,
                          void *data ATTRIBUTE_UNUSED)
                          void *data ATTRIBUTE_UNUSED)
{
{
  while (GET_CODE (dest) == SUBREG
  while (GET_CODE (dest) == SUBREG
         || GET_CODE (dest) == ZERO_EXTRACT
         || GET_CODE (dest) == ZERO_EXTRACT
         || GET_CODE (dest) == STRICT_LOW_PART)
         || GET_CODE (dest) == STRICT_LOW_PART)
    dest = XEXP (dest, 0);
    dest = XEXP (dest, 0);
 
 
  /* If DEST is not a MEM, then it will not conflict with the load.  Note
  /* If DEST is not a MEM, then it will not conflict with the load.  Note
     that function calls are assumed to clobber memory, but are handled
     that function calls are assumed to clobber memory, but are handled
     elsewhere.  */
     elsewhere.  */
  if (! MEM_P (dest))
  if (! MEM_P (dest))
    return;
    return;
 
 
  /* If we are setting a MEM in our list of specially recognized MEMs,
  /* If we are setting a MEM in our list of specially recognized MEMs,
     don't mark as killed this time.  */
     don't mark as killed this time.  */
 
 
  if (expr_equiv_p (dest, gcse_mem_operand) && pre_ldst_mems != NULL)
  if (expr_equiv_p (dest, gcse_mem_operand) && pre_ldst_mems != NULL)
    {
    {
      if (!find_rtx_in_ldst (dest))
      if (!find_rtx_in_ldst (dest))
        gcse_mems_conflict_p = 1;
        gcse_mems_conflict_p = 1;
      return;
      return;
    }
    }
 
 
  if (true_dependence (dest, GET_MODE (dest), gcse_mem_operand,
  if (true_dependence (dest, GET_MODE (dest), gcse_mem_operand,
                       rtx_addr_varies_p))
                       rtx_addr_varies_p))
    gcse_mems_conflict_p = 1;
    gcse_mems_conflict_p = 1;
}
}
 
 
/* Return nonzero if the expression in X (a memory reference) is killed
/* Return nonzero if the expression in X (a memory reference) is killed
   in block BB before or after the insn with the CUID in UID_LIMIT.
   in block BB before or after the insn with the CUID in UID_LIMIT.
   AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
   AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
   before UID_LIMIT.
   before UID_LIMIT.
 
 
   To check the entire block, set UID_LIMIT to max_uid + 1 and
   To check the entire block, set UID_LIMIT to max_uid + 1 and
   AVAIL_P to 0.  */
   AVAIL_P to 0.  */
 
 
static int
static int
load_killed_in_block_p (basic_block bb, int uid_limit, rtx x, int avail_p)
load_killed_in_block_p (basic_block bb, int uid_limit, rtx x, int avail_p)
{
{
  rtx list_entry = modify_mem_list[bb->index];
  rtx list_entry = modify_mem_list[bb->index];
 
 
  /* If this is a readonly then we aren't going to be changing it.  */
  /* If this is a readonly then we aren't going to be changing it.  */
  if (MEM_READONLY_P (x))
  if (MEM_READONLY_P (x))
    return 0;
    return 0;
 
 
  while (list_entry)
  while (list_entry)
    {
    {
      rtx setter;
      rtx setter;
      /* Ignore entries in the list that do not apply.  */
      /* Ignore entries in the list that do not apply.  */
      if ((avail_p
      if ((avail_p
           && INSN_CUID (XEXP (list_entry, 0)) < uid_limit)
           && INSN_CUID (XEXP (list_entry, 0)) < uid_limit)
          || (! avail_p
          || (! avail_p
              && INSN_CUID (XEXP (list_entry, 0)) > uid_limit))
              && INSN_CUID (XEXP (list_entry, 0)) > uid_limit))
        {
        {
          list_entry = XEXP (list_entry, 1);
          list_entry = XEXP (list_entry, 1);
          continue;
          continue;
        }
        }
 
 
      setter = XEXP (list_entry, 0);
      setter = XEXP (list_entry, 0);
 
 
      /* If SETTER is a call everything is clobbered.  Note that calls
      /* If SETTER is a call everything is clobbered.  Note that calls
         to pure functions are never put on the list, so we need not
         to pure functions are never put on the list, so we need not
         worry about them.  */
         worry about them.  */
      if (CALL_P (setter))
      if (CALL_P (setter))
        return 1;
        return 1;
 
 
      /* SETTER must be an INSN of some kind that sets memory.  Call
      /* SETTER must be an INSN of some kind that sets memory.  Call
         note_stores to examine each hunk of memory that is modified.
         note_stores to examine each hunk of memory that is modified.
 
 
         The note_stores interface is pretty limited, so we have to
         The note_stores interface is pretty limited, so we have to
         communicate via global variables.  Yuk.  */
         communicate via global variables.  Yuk.  */
      gcse_mem_operand = x;
      gcse_mem_operand = x;
      gcse_mems_conflict_p = 0;
      gcse_mems_conflict_p = 0;
      note_stores (PATTERN (setter), mems_conflict_for_gcse_p, NULL);
      note_stores (PATTERN (setter), mems_conflict_for_gcse_p, NULL);
      if (gcse_mems_conflict_p)
      if (gcse_mems_conflict_p)
        return 1;
        return 1;
      list_entry = XEXP (list_entry, 1);
      list_entry = XEXP (list_entry, 1);
    }
    }
  return 0;
  return 0;
}
}
 
 
/* Return nonzero if the operands of expression X are unchanged from
/* Return nonzero if the operands of expression X are unchanged from
   the start of INSN's basic block up to but not including INSN.  */
   the start of INSN's basic block up to but not including INSN.  */
 
 
static int
static int
oprs_anticipatable_p (rtx x, rtx insn)
oprs_anticipatable_p (rtx x, rtx insn)
{
{
  return oprs_unchanged_p (x, insn, 0);
  return oprs_unchanged_p (x, insn, 0);
}
}
 
 
/* Return nonzero if the operands of expression X are unchanged from
/* Return nonzero if the operands of expression X are unchanged from
   INSN to the end of INSN's basic block.  */
   INSN to the end of INSN's basic block.  */
 
 
static int
static int
oprs_available_p (rtx x, rtx insn)
oprs_available_p (rtx x, rtx insn)
{
{
  return oprs_unchanged_p (x, insn, 1);
  return oprs_unchanged_p (x, insn, 1);
}
}
 
 
/* Hash expression X.
/* Hash expression X.
 
 
   MODE is only used if X is a CONST_INT.  DO_NOT_RECORD_P is a boolean
   MODE is only used if X is a CONST_INT.  DO_NOT_RECORD_P is a boolean
   indicating if a volatile operand is found or if the expression contains
   indicating if a volatile operand is found or if the expression contains
   something we don't want to insert in the table.  HASH_TABLE_SIZE is
   something we don't want to insert in the table.  HASH_TABLE_SIZE is
   the current size of the hash table to be probed.  */
   the current size of the hash table to be probed.  */
 
 
static unsigned int
static unsigned int
hash_expr (rtx x, enum machine_mode mode, int *do_not_record_p,
hash_expr (rtx x, enum machine_mode mode, int *do_not_record_p,
           int hash_table_size)
           int hash_table_size)
{
{
  unsigned int hash;
  unsigned int hash;
 
 
  *do_not_record_p = 0;
  *do_not_record_p = 0;
 
 
  hash = hash_rtx (x, mode, do_not_record_p,
  hash = hash_rtx (x, mode, do_not_record_p,
                   NULL,  /*have_reg_qty=*/false);
                   NULL,  /*have_reg_qty=*/false);
  return hash % hash_table_size;
  return hash % hash_table_size;
}
}
 
 
/* Hash a set of register REGNO.
/* Hash a set of register REGNO.
 
 
   Sets are hashed on the register that is set.  This simplifies the PRE copy
   Sets are hashed on the register that is set.  This simplifies the PRE copy
   propagation code.
   propagation code.
 
 
   ??? May need to make things more elaborate.  Later, as necessary.  */
   ??? May need to make things more elaborate.  Later, as necessary.  */
 
 
static unsigned int
static unsigned int
hash_set (int regno, int hash_table_size)
hash_set (int regno, int hash_table_size)
{
{
  unsigned int hash;
  unsigned int hash;
 
 
  hash = regno;
  hash = regno;
  return hash % hash_table_size;
  return hash % hash_table_size;
}
}
 
 
/* Return nonzero if exp1 is equivalent to exp2.  */
/* Return nonzero if exp1 is equivalent to exp2.  */
 
 
static int
static int
expr_equiv_p (rtx x, rtx y)
expr_equiv_p (rtx x, rtx y)
{
{
  return exp_equiv_p (x, y, 0, true);
  return exp_equiv_p (x, y, 0, true);
}
}
 
 
/* Insert expression X in INSN in the hash TABLE.
/* Insert expression X in INSN in the hash TABLE.
   If it is already present, record it as the last occurrence in INSN's
   If it is already present, record it as the last occurrence in INSN's
   basic block.
   basic block.
 
 
   MODE is the mode of the value X is being stored into.
   MODE is the mode of the value X is being stored into.
   It is only used if X is a CONST_INT.
   It is only used if X is a CONST_INT.
 
 
   ANTIC_P is nonzero if X is an anticipatable expression.
   ANTIC_P is nonzero if X is an anticipatable expression.
   AVAIL_P is nonzero if X is an available expression.  */
   AVAIL_P is nonzero if X is an available expression.  */
 
 
static void
static void
insert_expr_in_table (rtx x, enum machine_mode mode, rtx insn, int antic_p,
insert_expr_in_table (rtx x, enum machine_mode mode, rtx insn, int antic_p,
                      int avail_p, struct hash_table *table)
                      int avail_p, struct hash_table *table)
{
{
  int found, do_not_record_p;
  int found, do_not_record_p;
  unsigned int hash;
  unsigned int hash;
  struct expr *cur_expr, *last_expr = NULL;
  struct expr *cur_expr, *last_expr = NULL;
  struct occr *antic_occr, *avail_occr;
  struct occr *antic_occr, *avail_occr;
 
 
  hash = hash_expr (x, mode, &do_not_record_p, table->size);
  hash = hash_expr (x, mode, &do_not_record_p, table->size);
 
 
  /* Do not insert expression in table if it contains volatile operands,
  /* Do not insert expression in table if it contains volatile operands,
     or if hash_expr determines the expression is something we don't want
     or if hash_expr determines the expression is something we don't want
     to or can't handle.  */
     to or can't handle.  */
  if (do_not_record_p)
  if (do_not_record_p)
    return;
    return;
 
 
  cur_expr = table->table[hash];
  cur_expr = table->table[hash];
  found = 0;
  found = 0;
 
 
  while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
  while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
    {
    {
      /* If the expression isn't found, save a pointer to the end of
      /* If the expression isn't found, save a pointer to the end of
         the list.  */
         the list.  */
      last_expr = cur_expr;
      last_expr = cur_expr;
      cur_expr = cur_expr->next_same_hash;
      cur_expr = cur_expr->next_same_hash;
    }
    }
 
 
  if (! found)
  if (! found)
    {
    {
      cur_expr = gcse_alloc (sizeof (struct expr));
      cur_expr = gcse_alloc (sizeof (struct expr));
      bytes_used += sizeof (struct expr);
      bytes_used += sizeof (struct expr);
      if (table->table[hash] == NULL)
      if (table->table[hash] == NULL)
        /* This is the first pattern that hashed to this index.  */
        /* This is the first pattern that hashed to this index.  */
        table->table[hash] = cur_expr;
        table->table[hash] = cur_expr;
      else
      else
        /* Add EXPR to end of this hash chain.  */
        /* Add EXPR to end of this hash chain.  */
        last_expr->next_same_hash = cur_expr;
        last_expr->next_same_hash = cur_expr;
 
 
      /* Set the fields of the expr element.  */
      /* Set the fields of the expr element.  */
      cur_expr->expr = x;
      cur_expr->expr = x;
      cur_expr->bitmap_index = table->n_elems++;
      cur_expr->bitmap_index = table->n_elems++;
      cur_expr->next_same_hash = NULL;
      cur_expr->next_same_hash = NULL;
      cur_expr->antic_occr = NULL;
      cur_expr->antic_occr = NULL;
      cur_expr->avail_occr = NULL;
      cur_expr->avail_occr = NULL;
    }
    }
 
 
  /* Now record the occurrence(s).  */
  /* Now record the occurrence(s).  */
  if (antic_p)
  if (antic_p)
    {
    {
      antic_occr = cur_expr->antic_occr;
      antic_occr = cur_expr->antic_occr;
 
 
      if (antic_occr && BLOCK_NUM (antic_occr->insn) != BLOCK_NUM (insn))
      if (antic_occr && BLOCK_NUM (antic_occr->insn) != BLOCK_NUM (insn))
        antic_occr = NULL;
        antic_occr = NULL;
 
 
      if (antic_occr)
      if (antic_occr)
        /* Found another instance of the expression in the same basic block.
        /* Found another instance of the expression in the same basic block.
           Prefer the currently recorded one.  We want the first one in the
           Prefer the currently recorded one.  We want the first one in the
           block and the block is scanned from start to end.  */
           block and the block is scanned from start to end.  */
        ; /* nothing to do */
        ; /* nothing to do */
      else
      else
        {
        {
          /* First occurrence of this expression in this basic block.  */
          /* First occurrence of this expression in this basic block.  */
          antic_occr = gcse_alloc (sizeof (struct occr));
          antic_occr = gcse_alloc (sizeof (struct occr));
          bytes_used += sizeof (struct occr);
          bytes_used += sizeof (struct occr);
          antic_occr->insn = insn;
          antic_occr->insn = insn;
          antic_occr->next = cur_expr->antic_occr;
          antic_occr->next = cur_expr->antic_occr;
          antic_occr->deleted_p = 0;
          antic_occr->deleted_p = 0;
          cur_expr->antic_occr = antic_occr;
          cur_expr->antic_occr = antic_occr;
        }
        }
    }
    }
 
 
  if (avail_p)
  if (avail_p)
    {
    {
      avail_occr = cur_expr->avail_occr;
      avail_occr = cur_expr->avail_occr;
 
 
      if (avail_occr && BLOCK_NUM (avail_occr->insn) == BLOCK_NUM (insn))
      if (avail_occr && BLOCK_NUM (avail_occr->insn) == BLOCK_NUM (insn))
        {
        {
          /* Found another instance of the expression in the same basic block.
          /* Found another instance of the expression in the same basic block.
             Prefer this occurrence to the currently recorded one.  We want
             Prefer this occurrence to the currently recorded one.  We want
             the last one in the block and the block is scanned from start
             the last one in the block and the block is scanned from start
             to end.  */
             to end.  */
          avail_occr->insn = insn;
          avail_occr->insn = insn;
        }
        }
      else
      else
        {
        {
          /* First occurrence of this expression in this basic block.  */
          /* First occurrence of this expression in this basic block.  */
          avail_occr = gcse_alloc (sizeof (struct occr));
          avail_occr = gcse_alloc (sizeof (struct occr));
          bytes_used += sizeof (struct occr);
          bytes_used += sizeof (struct occr);
          avail_occr->insn = insn;
          avail_occr->insn = insn;
          avail_occr->next = cur_expr->avail_occr;
          avail_occr->next = cur_expr->avail_occr;
          avail_occr->deleted_p = 0;
          avail_occr->deleted_p = 0;
          cur_expr->avail_occr = avail_occr;
          cur_expr->avail_occr = avail_occr;
        }
        }
    }
    }
}
}
 
 
/* Insert pattern X in INSN in the hash table.
/* Insert pattern X in INSN in the hash table.
   X is a SET of a reg to either another reg or a constant.
   X is a SET of a reg to either another reg or a constant.
   If it is already present, record it as the last occurrence in INSN's
   If it is already present, record it as the last occurrence in INSN's
   basic block.  */
   basic block.  */
 
 
static void
static void
insert_set_in_table (rtx x, rtx insn, struct hash_table *table)
insert_set_in_table (rtx x, rtx insn, struct hash_table *table)
{
{
  int found;
  int found;
  unsigned int hash;
  unsigned int hash;
  struct expr *cur_expr, *last_expr = NULL;
  struct expr *cur_expr, *last_expr = NULL;
  struct occr *cur_occr;
  struct occr *cur_occr;
 
 
  gcc_assert (GET_CODE (x) == SET && REG_P (SET_DEST (x)));
  gcc_assert (GET_CODE (x) == SET && REG_P (SET_DEST (x)));
 
 
  hash = hash_set (REGNO (SET_DEST (x)), table->size);
  hash = hash_set (REGNO (SET_DEST (x)), table->size);
 
 
  cur_expr = table->table[hash];
  cur_expr = table->table[hash];
  found = 0;
  found = 0;
 
 
  while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
  while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
    {
    {
      /* If the expression isn't found, save a pointer to the end of
      /* If the expression isn't found, save a pointer to the end of
         the list.  */
         the list.  */
      last_expr = cur_expr;
      last_expr = cur_expr;
      cur_expr = cur_expr->next_same_hash;
      cur_expr = cur_expr->next_same_hash;
    }
    }
 
 
  if (! found)
  if (! found)
    {
    {
      cur_expr = gcse_alloc (sizeof (struct expr));
      cur_expr = gcse_alloc (sizeof (struct expr));
      bytes_used += sizeof (struct expr);
      bytes_used += sizeof (struct expr);
      if (table->table[hash] == NULL)
      if (table->table[hash] == NULL)
        /* This is the first pattern that hashed to this index.  */
        /* This is the first pattern that hashed to this index.  */
        table->table[hash] = cur_expr;
        table->table[hash] = cur_expr;
      else
      else
        /* Add EXPR to end of this hash chain.  */
        /* Add EXPR to end of this hash chain.  */
        last_expr->next_same_hash = cur_expr;
        last_expr->next_same_hash = cur_expr;
 
 
      /* Set the fields of the expr element.
      /* Set the fields of the expr element.
         We must copy X because it can be modified when copy propagation is
         We must copy X because it can be modified when copy propagation is
         performed on its operands.  */
         performed on its operands.  */
      cur_expr->expr = copy_rtx (x);
      cur_expr->expr = copy_rtx (x);
      cur_expr->bitmap_index = table->n_elems++;
      cur_expr->bitmap_index = table->n_elems++;
      cur_expr->next_same_hash = NULL;
      cur_expr->next_same_hash = NULL;
      cur_expr->antic_occr = NULL;
      cur_expr->antic_occr = NULL;
      cur_expr->avail_occr = NULL;
      cur_expr->avail_occr = NULL;
    }
    }
 
 
  /* Now record the occurrence.  */
  /* Now record the occurrence.  */
  cur_occr = cur_expr->avail_occr;
  cur_occr = cur_expr->avail_occr;
 
 
  if (cur_occr && BLOCK_NUM (cur_occr->insn) == BLOCK_NUM (insn))
  if (cur_occr && BLOCK_NUM (cur_occr->insn) == BLOCK_NUM (insn))
    {
    {
      /* Found another instance of the expression in the same basic block.
      /* Found another instance of the expression in the same basic block.
         Prefer this occurrence to the currently recorded one.  We want
         Prefer this occurrence to the currently recorded one.  We want
         the last one in the block and the block is scanned from start
         the last one in the block and the block is scanned from start
         to end.  */
         to end.  */
      cur_occr->insn = insn;
      cur_occr->insn = insn;
    }
    }
  else
  else
    {
    {
      /* First occurrence of this expression in this basic block.  */
      /* First occurrence of this expression in this basic block.  */
      cur_occr = gcse_alloc (sizeof (struct occr));
      cur_occr = gcse_alloc (sizeof (struct occr));
      bytes_used += sizeof (struct occr);
      bytes_used += sizeof (struct occr);
 
 
          cur_occr->insn = insn;
          cur_occr->insn = insn;
          cur_occr->next = cur_expr->avail_occr;
          cur_occr->next = cur_expr->avail_occr;
          cur_occr->deleted_p = 0;
          cur_occr->deleted_p = 0;
          cur_expr->avail_occr = cur_occr;
          cur_expr->avail_occr = cur_occr;
    }
    }
}
}
 
 
/* Determine whether the rtx X should be treated as a constant for
/* Determine whether the rtx X should be treated as a constant for
   the purposes of GCSE's constant propagation.  */
   the purposes of GCSE's constant propagation.  */
 
 
static bool
static bool
gcse_constant_p (rtx x)
gcse_constant_p (rtx x)
{
{
  /* Consider a COMPARE of two integers constant.  */
  /* Consider a COMPARE of two integers constant.  */
  if (GET_CODE (x) == COMPARE
  if (GET_CODE (x) == COMPARE
      && GET_CODE (XEXP (x, 0)) == CONST_INT
      && GET_CODE (XEXP (x, 0)) == CONST_INT
      && GET_CODE (XEXP (x, 1)) == CONST_INT)
      && GET_CODE (XEXP (x, 1)) == CONST_INT)
    return true;
    return true;
 
 
  /* Consider a COMPARE of the same registers is a constant
  /* Consider a COMPARE of the same registers is a constant
     if they are not floating point registers.  */
     if they are not floating point registers.  */
  if (GET_CODE(x) == COMPARE
  if (GET_CODE(x) == COMPARE
      && REG_P (XEXP (x, 0)) && REG_P (XEXP (x, 1))
      && REG_P (XEXP (x, 0)) && REG_P (XEXP (x, 1))
      && REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 1))
      && REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 1))
      && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0)))
      && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0)))
      && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 1))))
      && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 1))))
    return true;
    return true;
 
 
  return CONSTANT_P (x);
  return CONSTANT_P (x);
}
}
 
 
/* Scan pattern PAT of INSN and add an entry to the hash TABLE (set or
/* Scan pattern PAT of INSN and add an entry to the hash TABLE (set or
   expression one).  */
   expression one).  */
 
 
static void
static void
hash_scan_set (rtx pat, rtx insn, struct hash_table *table)
hash_scan_set (rtx pat, rtx insn, struct hash_table *table)
{
{
  rtx src = SET_SRC (pat);
  rtx src = SET_SRC (pat);
  rtx dest = SET_DEST (pat);
  rtx dest = SET_DEST (pat);
  rtx note;
  rtx note;
 
 
  if (GET_CODE (src) == CALL)
  if (GET_CODE (src) == CALL)
    hash_scan_call (src, insn, table);
    hash_scan_call (src, insn, table);
 
 
  else if (REG_P (dest))
  else if (REG_P (dest))
    {
    {
      unsigned int regno = REGNO (dest);
      unsigned int regno = REGNO (dest);
      rtx tmp;
      rtx tmp;
 
 
      /* See if a REG_NOTE shows this equivalent to a simpler expression.
      /* See if a REG_NOTE shows this equivalent to a simpler expression.
         This allows us to do a single GCSE pass and still eliminate
         This allows us to do a single GCSE pass and still eliminate
         redundant constants, addresses or other expressions that are
         redundant constants, addresses or other expressions that are
         constructed with multiple instructions.  */
         constructed with multiple instructions.  */
      note = find_reg_equal_equiv_note (insn);
      note = find_reg_equal_equiv_note (insn);
      if (note != 0
      if (note != 0
          && (table->set_p
          && (table->set_p
              ? gcse_constant_p (XEXP (note, 0))
              ? gcse_constant_p (XEXP (note, 0))
              : want_to_gcse_p (XEXP (note, 0))))
              : want_to_gcse_p (XEXP (note, 0))))
        src = XEXP (note, 0), pat = gen_rtx_SET (VOIDmode, dest, src);
        src = XEXP (note, 0), pat = gen_rtx_SET (VOIDmode, dest, src);
 
 
      /* Only record sets of pseudo-regs in the hash table.  */
      /* Only record sets of pseudo-regs in the hash table.  */
      if (! table->set_p
      if (! table->set_p
          && regno >= FIRST_PSEUDO_REGISTER
          && regno >= FIRST_PSEUDO_REGISTER
          /* Don't GCSE something if we can't do a reg/reg copy.  */
          /* Don't GCSE something if we can't do a reg/reg copy.  */
          && can_copy_p (GET_MODE (dest))
          && can_copy_p (GET_MODE (dest))
          /* GCSE commonly inserts instruction after the insn.  We can't
          /* GCSE commonly inserts instruction after the insn.  We can't
             do that easily for EH_REGION notes so disable GCSE on these
             do that easily for EH_REGION notes so disable GCSE on these
             for now.  */
             for now.  */
          && !find_reg_note (insn, REG_EH_REGION, NULL_RTX)
          && !find_reg_note (insn, REG_EH_REGION, NULL_RTX)
          /* Is SET_SRC something we want to gcse?  */
          /* Is SET_SRC something we want to gcse?  */
          && want_to_gcse_p (src)
          && want_to_gcse_p (src)
          /* Don't CSE a nop.  */
          /* Don't CSE a nop.  */
          && ! set_noop_p (pat)
          && ! set_noop_p (pat)
          /* Don't GCSE if it has attached REG_EQUIV note.
          /* Don't GCSE if it has attached REG_EQUIV note.
             At this point this only function parameters should have
             At this point this only function parameters should have
             REG_EQUIV notes and if the argument slot is used somewhere
             REG_EQUIV notes and if the argument slot is used somewhere
             explicitly, it means address of parameter has been taken,
             explicitly, it means address of parameter has been taken,
             so we should not extend the lifetime of the pseudo.  */
             so we should not extend the lifetime of the pseudo.  */
          && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
          && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
        {
        {
          /* An expression is not anticipatable if its operands are
          /* An expression is not anticipatable if its operands are
             modified before this insn or if this is not the only SET in
             modified before this insn or if this is not the only SET in
             this insn.  */
             this insn.  */
          int antic_p = oprs_anticipatable_p (src, insn) && single_set (insn);
          int antic_p = oprs_anticipatable_p (src, insn) && single_set (insn);
          /* An expression is not available if its operands are
          /* An expression is not available if its operands are
             subsequently modified, including this insn.  It's also not
             subsequently modified, including this insn.  It's also not
             available if this is a branch, because we can't insert
             available if this is a branch, because we can't insert
             a set after the branch.  */
             a set after the branch.  */
          int avail_p = (oprs_available_p (src, insn)
          int avail_p = (oprs_available_p (src, insn)
                         && ! JUMP_P (insn));
                         && ! JUMP_P (insn));
 
 
          insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p, table);
          insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p, table);
        }
        }
 
 
      /* Record sets for constant/copy propagation.  */
      /* Record sets for constant/copy propagation.  */
      else if (table->set_p
      else if (table->set_p
               && regno >= FIRST_PSEUDO_REGISTER
               && regno >= FIRST_PSEUDO_REGISTER
               && ((REG_P (src)
               && ((REG_P (src)
                    && REGNO (src) >= FIRST_PSEUDO_REGISTER
                    && REGNO (src) >= FIRST_PSEUDO_REGISTER
                    && can_copy_p (GET_MODE (dest))
                    && can_copy_p (GET_MODE (dest))
                    && REGNO (src) != regno)
                    && REGNO (src) != regno)
                   || gcse_constant_p (src))
                   || gcse_constant_p (src))
               /* A copy is not available if its src or dest is subsequently
               /* A copy is not available if its src or dest is subsequently
                  modified.  Here we want to search from INSN+1 on, but
                  modified.  Here we want to search from INSN+1 on, but
                  oprs_available_p searches from INSN on.  */
                  oprs_available_p searches from INSN on.  */
               && (insn == BB_END (BLOCK_FOR_INSN (insn))
               && (insn == BB_END (BLOCK_FOR_INSN (insn))
                   || ((tmp = next_nonnote_insn (insn)) != NULL_RTX
                   || ((tmp = next_nonnote_insn (insn)) != NULL_RTX
                       && oprs_available_p (pat, tmp))))
                       && oprs_available_p (pat, tmp))))
        insert_set_in_table (pat, insn, table);
        insert_set_in_table (pat, insn, table);
    }
    }
  /* In case of store we want to consider the memory value as available in
  /* In case of store we want to consider the memory value as available in
     the REG stored in that memory. This makes it possible to remove
     the REG stored in that memory. This makes it possible to remove
     redundant loads from due to stores to the same location.  */
     redundant loads from due to stores to the same location.  */
  else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
  else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
      {
      {
        unsigned int regno = REGNO (src);
        unsigned int regno = REGNO (src);
 
 
        /* Do not do this for constant/copy propagation.  */
        /* Do not do this for constant/copy propagation.  */
        if (! table->set_p
        if (! table->set_p
            /* Only record sets of pseudo-regs in the hash table.  */
            /* Only record sets of pseudo-regs in the hash table.  */
            && regno >= FIRST_PSEUDO_REGISTER
            && regno >= FIRST_PSEUDO_REGISTER
           /* Don't GCSE something if we can't do a reg/reg copy.  */
           /* Don't GCSE something if we can't do a reg/reg copy.  */
           && can_copy_p (GET_MODE (src))
           && can_copy_p (GET_MODE (src))
           /* GCSE commonly inserts instruction after the insn.  We can't
           /* GCSE commonly inserts instruction after the insn.  We can't
              do that easily for EH_REGION notes so disable GCSE on these
              do that easily for EH_REGION notes so disable GCSE on these
              for now.  */
              for now.  */
           && ! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
           && ! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
           /* Is SET_DEST something we want to gcse?  */
           /* Is SET_DEST something we want to gcse?  */
           && want_to_gcse_p (dest)
           && want_to_gcse_p (dest)
           /* Don't CSE a nop.  */
           /* Don't CSE a nop.  */
           && ! set_noop_p (pat)
           && ! set_noop_p (pat)
           /* Don't GCSE if it has attached REG_EQUIV note.
           /* Don't GCSE if it has attached REG_EQUIV note.
              At this point this only function parameters should have
              At this point this only function parameters should have
              REG_EQUIV notes and if the argument slot is used somewhere
              REG_EQUIV notes and if the argument slot is used somewhere
              explicitly, it means address of parameter has been taken,
              explicitly, it means address of parameter has been taken,
              so we should not extend the lifetime of the pseudo.  */
              so we should not extend the lifetime of the pseudo.  */
           && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
           && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
               || ! MEM_P (XEXP (note, 0))))
               || ! MEM_P (XEXP (note, 0))))
             {
             {
               /* Stores are never anticipatable.  */
               /* Stores are never anticipatable.  */
               int antic_p = 0;
               int antic_p = 0;
               /* An expression is not available if its operands are
               /* An expression is not available if its operands are
                  subsequently modified, including this insn.  It's also not
                  subsequently modified, including this insn.  It's also not
                  available if this is a branch, because we can't insert
                  available if this is a branch, because we can't insert
                  a set after the branch.  */
                  a set after the branch.  */
               int avail_p = oprs_available_p (dest, insn)
               int avail_p = oprs_available_p (dest, insn)
                             && ! JUMP_P (insn);
                             && ! JUMP_P (insn);
 
 
               /* Record the memory expression (DEST) in the hash table.  */
               /* Record the memory expression (DEST) in the hash table.  */
               insert_expr_in_table (dest, GET_MODE (dest), insn,
               insert_expr_in_table (dest, GET_MODE (dest), insn,
                                     antic_p, avail_p, table);
                                     antic_p, avail_p, table);
             }
             }
      }
      }
}
}
 
 
static void
static void
hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
                   struct hash_table *table ATTRIBUTE_UNUSED)
                   struct hash_table *table ATTRIBUTE_UNUSED)
{
{
  /* Currently nothing to do.  */
  /* Currently nothing to do.  */
}
}
 
 
static void
static void
hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
                struct hash_table *table ATTRIBUTE_UNUSED)
                struct hash_table *table ATTRIBUTE_UNUSED)
{
{
  /* Currently nothing to do.  */
  /* Currently nothing to do.  */
}
}
 
 
/* Process INSN and add hash table entries as appropriate.
/* Process INSN and add hash table entries as appropriate.
 
 
   Only available expressions that set a single pseudo-reg are recorded.
   Only available expressions that set a single pseudo-reg are recorded.
 
 
   Single sets in a PARALLEL could be handled, but it's an extra complication
   Single sets in a PARALLEL could be handled, but it's an extra complication
   that isn't dealt with right now.  The trick is handling the CLOBBERs that
   that isn't dealt with right now.  The trick is handling the CLOBBERs that
   are also in the PARALLEL.  Later.
   are also in the PARALLEL.  Later.
 
 
   If SET_P is nonzero, this is for the assignment hash table,
   If SET_P is nonzero, this is for the assignment hash table,
   otherwise it is for the expression hash table.
   otherwise it is for the expression hash table.
   If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
   If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
   not record any expressions.  */
   not record any expressions.  */
 
 
static void
static void
hash_scan_insn (rtx insn, struct hash_table *table, int in_libcall_block)
hash_scan_insn (rtx insn, struct hash_table *table, int in_libcall_block)
{
{
  rtx pat = PATTERN (insn);
  rtx pat = PATTERN (insn);
  int i;
  int i;
 
 
  if (in_libcall_block)
  if (in_libcall_block)
    return;
    return;
 
 
  /* Pick out the sets of INSN and for other forms of instructions record
  /* Pick out the sets of INSN and for other forms of instructions record
     what's been modified.  */
     what's been modified.  */
 
 
  if (GET_CODE (pat) == SET)
  if (GET_CODE (pat) == SET)
    hash_scan_set (pat, insn, table);
    hash_scan_set (pat, insn, table);
  else if (GET_CODE (pat) == PARALLEL)
  else if (GET_CODE (pat) == PARALLEL)
    for (i = 0; i < XVECLEN (pat, 0); i++)
    for (i = 0; i < XVECLEN (pat, 0); i++)
      {
      {
        rtx x = XVECEXP (pat, 0, i);
        rtx x = XVECEXP (pat, 0, i);
 
 
        if (GET_CODE (x) == SET)
        if (GET_CODE (x) == SET)
          hash_scan_set (x, insn, table);
          hash_scan_set (x, insn, table);
        else if (GET_CODE (x) == CLOBBER)
        else if (GET_CODE (x) == CLOBBER)
          hash_scan_clobber (x, insn, table);
          hash_scan_clobber (x, insn, table);
        else if (GET_CODE (x) == CALL)
        else if (GET_CODE (x) == CALL)
          hash_scan_call (x, insn, table);
          hash_scan_call (x, insn, table);
      }
      }
 
 
  else if (GET_CODE (pat) == CLOBBER)
  else if (GET_CODE (pat) == CLOBBER)
    hash_scan_clobber (pat, insn, table);
    hash_scan_clobber (pat, insn, table);
  else if (GET_CODE (pat) == CALL)
  else if (GET_CODE (pat) == CALL)
    hash_scan_call (pat, insn, table);
    hash_scan_call (pat, insn, table);
}
}
 
 
static void
static void
dump_hash_table (FILE *file, const char *name, struct hash_table *table)
dump_hash_table (FILE *file, const char *name, struct hash_table *table)
{
{
  int i;
  int i;
  /* Flattened out table, so it's printed in proper order.  */
  /* Flattened out table, so it's printed in proper order.  */
  struct expr **flat_table;
  struct expr **flat_table;
  unsigned int *hash_val;
  unsigned int *hash_val;
  struct expr *expr;
  struct expr *expr;
 
 
  flat_table = xcalloc (table->n_elems, sizeof (struct expr *));
  flat_table = xcalloc (table->n_elems, sizeof (struct expr *));
  hash_val = xmalloc (table->n_elems * sizeof (unsigned int));
  hash_val = xmalloc (table->n_elems * sizeof (unsigned int));
 
 
  for (i = 0; i < (int) table->size; i++)
  for (i = 0; i < (int) table->size; i++)
    for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
    for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
      {
      {
        flat_table[expr->bitmap_index] = expr;
        flat_table[expr->bitmap_index] = expr;
        hash_val[expr->bitmap_index] = i;
        hash_val[expr->bitmap_index] = i;
      }
      }
 
 
  fprintf (file, "%s hash table (%d buckets, %d entries)\n",
  fprintf (file, "%s hash table (%d buckets, %d entries)\n",
           name, table->size, table->n_elems);
           name, table->size, table->n_elems);
 
 
  for (i = 0; i < (int) table->n_elems; i++)
  for (i = 0; i < (int) table->n_elems; i++)
    if (flat_table[i] != 0)
    if (flat_table[i] != 0)
      {
      {
        expr = flat_table[i];
        expr = flat_table[i];
        fprintf (file, "Index %d (hash value %d)\n  ",
        fprintf (file, "Index %d (hash value %d)\n  ",
                 expr->bitmap_index, hash_val[i]);
                 expr->bitmap_index, hash_val[i]);
        print_rtl (file, expr->expr);
        print_rtl (file, expr->expr);
        fprintf (file, "\n");
        fprintf (file, "\n");
      }
      }
 
 
  fprintf (file, "\n");
  fprintf (file, "\n");
 
 
  free (flat_table);
  free (flat_table);
  free (hash_val);
  free (hash_val);
}
}
 
 
/* Record register first/last/block set information for REGNO in INSN.
/* Record register first/last/block set information for REGNO in INSN.
 
 
   first_set records the first place in the block where the register
   first_set records the first place in the block where the register
   is set and is used to compute "anticipatability".
   is set and is used to compute "anticipatability".
 
 
   last_set records the last place in the block where the register
   last_set records the last place in the block where the register
   is set and is used to compute "availability".
   is set and is used to compute "availability".
 
 
   last_bb records the block for which first_set and last_set are
   last_bb records the block for which first_set and last_set are
   valid, as a quick test to invalidate them.
   valid, as a quick test to invalidate them.
 
 
   reg_set_in_block records whether the register is set in the block
   reg_set_in_block records whether the register is set in the block
   and is used to compute "transparency".  */
   and is used to compute "transparency".  */
 
 
static void
static void
record_last_reg_set_info (rtx insn, int regno)
record_last_reg_set_info (rtx insn, int regno)
{
{
  struct reg_avail_info *info = &reg_avail_info[regno];
  struct reg_avail_info *info = &reg_avail_info[regno];
  int cuid = INSN_CUID (insn);
  int cuid = INSN_CUID (insn);
 
 
  info->last_set = cuid;
  info->last_set = cuid;
  if (info->last_bb != current_bb)
  if (info->last_bb != current_bb)
    {
    {
      info->last_bb = current_bb;
      info->last_bb = current_bb;
      info->first_set = cuid;
      info->first_set = cuid;
      SET_BIT (reg_set_in_block[current_bb->index], regno);
      SET_BIT (reg_set_in_block[current_bb->index], regno);
    }
    }
}
}
 
 
 
 
/* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
/* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
   Note we store a pair of elements in the list, so they have to be
   Note we store a pair of elements in the list, so they have to be
   taken off pairwise.  */
   taken off pairwise.  */
 
 
static void
static void
canon_list_insert (rtx dest ATTRIBUTE_UNUSED, rtx unused1 ATTRIBUTE_UNUSED,
canon_list_insert (rtx dest ATTRIBUTE_UNUSED, rtx unused1 ATTRIBUTE_UNUSED,
                   void * v_insn)
                   void * v_insn)
{
{
  rtx dest_addr, insn;
  rtx dest_addr, insn;
  int bb;
  int bb;
 
 
  while (GET_CODE (dest) == SUBREG
  while (GET_CODE (dest) == SUBREG
      || GET_CODE (dest) == ZERO_EXTRACT
      || GET_CODE (dest) == ZERO_EXTRACT
      || GET_CODE (dest) == STRICT_LOW_PART)
      || GET_CODE (dest) == STRICT_LOW_PART)
    dest = XEXP (dest, 0);
    dest = XEXP (dest, 0);
 
 
  /* If DEST is not a MEM, then it will not conflict with a load.  Note
  /* If DEST is not a MEM, then it will not conflict with a load.  Note
     that function calls are assumed to clobber memory, but are handled
     that function calls are assumed to clobber memory, but are handled
     elsewhere.  */
     elsewhere.  */
 
 
  if (! MEM_P (dest))
  if (! MEM_P (dest))
    return;
    return;
 
 
  dest_addr = get_addr (XEXP (dest, 0));
  dest_addr = get_addr (XEXP (dest, 0));
  dest_addr = canon_rtx (dest_addr);
  dest_addr = canon_rtx (dest_addr);
  insn = (rtx) v_insn;
  insn = (rtx) v_insn;
  bb = BLOCK_NUM (insn);
  bb = BLOCK_NUM (insn);
 
 
  canon_modify_mem_list[bb] =
  canon_modify_mem_list[bb] =
    alloc_EXPR_LIST (VOIDmode, dest_addr, canon_modify_mem_list[bb]);
    alloc_EXPR_LIST (VOIDmode, dest_addr, canon_modify_mem_list[bb]);
  canon_modify_mem_list[bb] =
  canon_modify_mem_list[bb] =
    alloc_EXPR_LIST (VOIDmode, dest, canon_modify_mem_list[bb]);
    alloc_EXPR_LIST (VOIDmode, dest, canon_modify_mem_list[bb]);
}
}
 
 
/* Record memory modification information for INSN.  We do not actually care
/* Record memory modification information for INSN.  We do not actually care
   about the memory location(s) that are set, or even how they are set (consider
   about the memory location(s) that are set, or even how they are set (consider
   a CALL_INSN).  We merely need to record which insns modify memory.  */
   a CALL_INSN).  We merely need to record which insns modify memory.  */
 
 
static void
static void
record_last_mem_set_info (rtx insn)
record_last_mem_set_info (rtx insn)
{
{
  int bb = BLOCK_NUM (insn);
  int bb = BLOCK_NUM (insn);
 
 
  /* load_killed_in_block_p will handle the case of calls clobbering
  /* load_killed_in_block_p will handle the case of calls clobbering
     everything.  */
     everything.  */
  modify_mem_list[bb] = alloc_INSN_LIST (insn, modify_mem_list[bb]);
  modify_mem_list[bb] = alloc_INSN_LIST (insn, modify_mem_list[bb]);
  bitmap_set_bit (modify_mem_list_set, bb);
  bitmap_set_bit (modify_mem_list_set, bb);
 
 
  if (CALL_P (insn))
  if (CALL_P (insn))
    {
    {
      /* Note that traversals of this loop (other than for free-ing)
      /* Note that traversals of this loop (other than for free-ing)
         will break after encountering a CALL_INSN.  So, there's no
         will break after encountering a CALL_INSN.  So, there's no
         need to insert a pair of items, as canon_list_insert does.  */
         need to insert a pair of items, as canon_list_insert does.  */
      canon_modify_mem_list[bb] =
      canon_modify_mem_list[bb] =
        alloc_INSN_LIST (insn, canon_modify_mem_list[bb]);
        alloc_INSN_LIST (insn, canon_modify_mem_list[bb]);
      bitmap_set_bit (blocks_with_calls, bb);
      bitmap_set_bit (blocks_with_calls, bb);
    }
    }
  else
  else
    note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
    note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
}
}
 
 
/* Called from compute_hash_table via note_stores to handle one
/* Called from compute_hash_table via note_stores to handle one
   SET or CLOBBER in an insn.  DATA is really the instruction in which
   SET or CLOBBER in an insn.  DATA is really the instruction in which
   the SET is taking place.  */
   the SET is taking place.  */
 
 
static void
static void
record_last_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, void *data)
record_last_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, void *data)
{
{
  rtx last_set_insn = (rtx) data;
  rtx last_set_insn = (rtx) data;
 
 
  if (GET_CODE (dest) == SUBREG)
  if (GET_CODE (dest) == SUBREG)
    dest = SUBREG_REG (dest);
    dest = SUBREG_REG (dest);
 
 
  if (REG_P (dest))
  if (REG_P (dest))
    record_last_reg_set_info (last_set_insn, REGNO (dest));
    record_last_reg_set_info (last_set_insn, REGNO (dest));
  else if (MEM_P (dest)
  else if (MEM_P (dest)
           /* Ignore pushes, they clobber nothing.  */
           /* Ignore pushes, they clobber nothing.  */
           && ! push_operand (dest, GET_MODE (dest)))
           && ! push_operand (dest, GET_MODE (dest)))
    record_last_mem_set_info (last_set_insn);
    record_last_mem_set_info (last_set_insn);
}
}
 
 
/* Top level function to create an expression or assignment hash table.
/* Top level function to create an expression or assignment hash table.
 
 
   Expression entries are placed in the hash table if
   Expression entries are placed in the hash table if
   - they are of the form (set (pseudo-reg) src),
   - they are of the form (set (pseudo-reg) src),
   - src is something we want to perform GCSE on,
   - src is something we want to perform GCSE on,
   - none of the operands are subsequently modified in the block
   - none of the operands are subsequently modified in the block
 
 
   Assignment entries are placed in the hash table if
   Assignment entries are placed in the hash table if
   - they are of the form (set (pseudo-reg) src),
   - they are of the form (set (pseudo-reg) src),
   - src is something we want to perform const/copy propagation on,
   - src is something we want to perform const/copy propagation on,
   - none of the operands or target are subsequently modified in the block
   - none of the operands or target are subsequently modified in the block
 
 
   Currently src must be a pseudo-reg or a const_int.
   Currently src must be a pseudo-reg or a const_int.
 
 
   TABLE is the table computed.  */
   TABLE is the table computed.  */
 
 
static void
static void
compute_hash_table_work (struct hash_table *table)
compute_hash_table_work (struct hash_table *table)
{
{
  unsigned int i;
  unsigned int i;
 
 
  /* While we compute the hash table we also compute a bit array of which
  /* While we compute the hash table we also compute a bit array of which
     registers are set in which blocks.
     registers are set in which blocks.
     ??? This isn't needed during const/copy propagation, but it's cheap to
     ??? This isn't needed during const/copy propagation, but it's cheap to
     compute.  Later.  */
     compute.  Later.  */
  sbitmap_vector_zero (reg_set_in_block, last_basic_block);
  sbitmap_vector_zero (reg_set_in_block, last_basic_block);
 
 
  /* re-Cache any INSN_LIST nodes we have allocated.  */
  /* re-Cache any INSN_LIST nodes we have allocated.  */
  clear_modify_mem_tables ();
  clear_modify_mem_tables ();
  /* Some working arrays used to track first and last set in each block.  */
  /* Some working arrays used to track first and last set in each block.  */
  reg_avail_info = gmalloc (max_gcse_regno * sizeof (struct reg_avail_info));
  reg_avail_info = gmalloc (max_gcse_regno * sizeof (struct reg_avail_info));
 
 
  for (i = 0; i < max_gcse_regno; ++i)
  for (i = 0; i < max_gcse_regno; ++i)
    reg_avail_info[i].last_bb = NULL;
    reg_avail_info[i].last_bb = NULL;
 
 
  FOR_EACH_BB (current_bb)
  FOR_EACH_BB (current_bb)
    {
    {
      rtx insn;
      rtx insn;
      unsigned int regno;
      unsigned int regno;
      int in_libcall_block;
      int in_libcall_block;
 
 
      /* First pass over the instructions records information used to
      /* First pass over the instructions records information used to
         determine when registers and memory are first and last set.
         determine when registers and memory are first and last set.
         ??? hard-reg reg_set_in_block computation
         ??? hard-reg reg_set_in_block computation
         could be moved to compute_sets since they currently don't change.  */
         could be moved to compute_sets since they currently don't change.  */
 
 
      FOR_BB_INSNS (current_bb, insn)
      FOR_BB_INSNS (current_bb, insn)
        {
        {
          if (! INSN_P (insn))
          if (! INSN_P (insn))
            continue;
            continue;
 
 
          if (CALL_P (insn))
          if (CALL_P (insn))
            {
            {
              for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
              for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
                if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
                if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
                  record_last_reg_set_info (insn, regno);
                  record_last_reg_set_info (insn, regno);
 
 
              mark_call (insn);
              mark_call (insn);
            }
            }
 
 
          note_stores (PATTERN (insn), record_last_set_info, insn);
          note_stores (PATTERN (insn), record_last_set_info, insn);
        }
        }
 
 
      /* Insert implicit sets in the hash table.  */
      /* Insert implicit sets in the hash table.  */
      if (table->set_p
      if (table->set_p
          && implicit_sets[current_bb->index] != NULL_RTX)
          && implicit_sets[current_bb->index] != NULL_RTX)
        hash_scan_set (implicit_sets[current_bb->index],
        hash_scan_set (implicit_sets[current_bb->index],
                       BB_HEAD (current_bb), table);
                       BB_HEAD (current_bb), table);
 
 
      /* The next pass builds the hash table.  */
      /* The next pass builds the hash table.  */
      in_libcall_block = 0;
      in_libcall_block = 0;
      FOR_BB_INSNS (current_bb, insn)
      FOR_BB_INSNS (current_bb, insn)
        if (INSN_P (insn))
        if (INSN_P (insn))
          {
          {
            if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
            if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
              in_libcall_block = 1;
              in_libcall_block = 1;
            else if (table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
            else if (table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
              in_libcall_block = 0;
              in_libcall_block = 0;
            hash_scan_insn (insn, table, in_libcall_block);
            hash_scan_insn (insn, table, in_libcall_block);
            if (!table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
            if (!table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
              in_libcall_block = 0;
              in_libcall_block = 0;
          }
          }
    }
    }
 
 
  free (reg_avail_info);
  free (reg_avail_info);
  reg_avail_info = NULL;
  reg_avail_info = NULL;
}
}
 
 
/* Allocate space for the set/expr hash TABLE.
/* Allocate space for the set/expr hash TABLE.
   N_INSNS is the number of instructions in the function.
   N_INSNS is the number of instructions in the function.
   It is used to determine the number of buckets to use.
   It is used to determine the number of buckets to use.
   SET_P determines whether set or expression table will
   SET_P determines whether set or expression table will
   be created.  */
   be created.  */
 
 
static void
static void
alloc_hash_table (int n_insns, struct hash_table *table, int set_p)
alloc_hash_table (int n_insns, struct hash_table *table, int set_p)
{
{
  int n;
  int n;
 
 
  table->size = n_insns / 4;
  table->size = n_insns / 4;
  if (table->size < 11)
  if (table->size < 11)
    table->size = 11;
    table->size = 11;
 
 
  /* Attempt to maintain efficient use of hash table.
  /* Attempt to maintain efficient use of hash table.
     Making it an odd number is simplest for now.
     Making it an odd number is simplest for now.
     ??? Later take some measurements.  */
     ??? Later take some measurements.  */
  table->size |= 1;
  table->size |= 1;
  n = table->size * sizeof (struct expr *);
  n = table->size * sizeof (struct expr *);
  table->table = gmalloc (n);
  table->table = gmalloc (n);
  table->set_p = set_p;
  table->set_p = set_p;
}
}
 
 
/* Free things allocated by alloc_hash_table.  */
/* Free things allocated by alloc_hash_table.  */
 
 
static void
static void
free_hash_table (struct hash_table *table)
free_hash_table (struct hash_table *table)
{
{
  free (table->table);
  free (table->table);
}
}
 
 
/* Compute the hash TABLE for doing copy/const propagation or
/* Compute the hash TABLE for doing copy/const propagation or
   expression hash table.  */
   expression hash table.  */
 
 
static void
static void
compute_hash_table (struct hash_table *table)
compute_hash_table (struct hash_table *table)
{
{
  /* Initialize count of number of entries in hash table.  */
  /* Initialize count of number of entries in hash table.  */
  table->n_elems = 0;
  table->n_elems = 0;
  memset (table->table, 0, table->size * sizeof (struct expr *));
  memset (table->table, 0, table->size * sizeof (struct expr *));
 
 
  compute_hash_table_work (table);
  compute_hash_table_work (table);
}
}


/* Expression tracking support.  */
/* Expression tracking support.  */
 
 
/* Lookup REGNO in the set TABLE.  The result is a pointer to the
/* Lookup REGNO in the set TABLE.  The result is a pointer to the
   table entry, or NULL if not found.  */
   table entry, or NULL if not found.  */
 
 
static struct expr *
static struct expr *
lookup_set (unsigned int regno, struct hash_table *table)
lookup_set (unsigned int regno, struct hash_table *table)
{
{
  unsigned int hash = hash_set (regno, table->size);
  unsigned int hash = hash_set (regno, table->size);
  struct expr *expr;
  struct expr *expr;
 
 
  expr = table->table[hash];
  expr = table->table[hash];
 
 
  while (expr && REGNO (SET_DEST (expr->expr)) != regno)
  while (expr && REGNO (SET_DEST (expr->expr)) != regno)
    expr = expr->next_same_hash;
    expr = expr->next_same_hash;
 
 
  return expr;
  return expr;
}
}
 
 
/* Return the next entry for REGNO in list EXPR.  */
/* Return the next entry for REGNO in list EXPR.  */
 
 
static struct expr *
static struct expr *
next_set (unsigned int regno, struct expr *expr)
next_set (unsigned int regno, struct expr *expr)
{
{
  do
  do
    expr = expr->next_same_hash;
    expr = expr->next_same_hash;
  while (expr && REGNO (SET_DEST (expr->expr)) != regno);
  while (expr && REGNO (SET_DEST (expr->expr)) != regno);
 
 
  return expr;
  return expr;
}
}
 
 
/* Like free_INSN_LIST_list or free_EXPR_LIST_list, except that the node
/* Like free_INSN_LIST_list or free_EXPR_LIST_list, except that the node
   types may be mixed.  */
   types may be mixed.  */
 
 
static void
static void
free_insn_expr_list_list (rtx *listp)
free_insn_expr_list_list (rtx *listp)
{
{
  rtx list, next;
  rtx list, next;
 
 
  for (list = *listp; list ; list = next)
  for (list = *listp; list ; list = next)
    {
    {
      next = XEXP (list, 1);
      next = XEXP (list, 1);
      if (GET_CODE (list) == EXPR_LIST)
      if (GET_CODE (list) == EXPR_LIST)
        free_EXPR_LIST_node (list);
        free_EXPR_LIST_node (list);
      else
      else
        free_INSN_LIST_node (list);
        free_INSN_LIST_node (list);
    }
    }
 
 
  *listp = NULL;
  *listp = NULL;
}
}
 
 
/* Clear canon_modify_mem_list and modify_mem_list tables.  */
/* Clear canon_modify_mem_list and modify_mem_list tables.  */
static void
static void
clear_modify_mem_tables (void)
clear_modify_mem_tables (void)
{
{
  unsigned i;
  unsigned i;
  bitmap_iterator bi;
  bitmap_iterator bi;
 
 
  EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
  EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
    {
    {
      free_INSN_LIST_list (modify_mem_list + i);
      free_INSN_LIST_list (modify_mem_list + i);
      free_insn_expr_list_list (canon_modify_mem_list + i);
      free_insn_expr_list_list (canon_modify_mem_list + i);
    }
    }
  bitmap_clear (modify_mem_list_set);
  bitmap_clear (modify_mem_list_set);
  bitmap_clear (blocks_with_calls);
  bitmap_clear (blocks_with_calls);
}
}
 
 
/* Release memory used by modify_mem_list_set.  */
/* Release memory used by modify_mem_list_set.  */
 
 
static void
static void
free_modify_mem_tables (void)
free_modify_mem_tables (void)
{
{
  clear_modify_mem_tables ();
  clear_modify_mem_tables ();
  free (modify_mem_list);
  free (modify_mem_list);
  free (canon_modify_mem_list);
  free (canon_modify_mem_list);
  modify_mem_list = 0;
  modify_mem_list = 0;
  canon_modify_mem_list = 0;
  canon_modify_mem_list = 0;
}
}
 
 
/* Reset tables used to keep track of what's still available [since the
/* Reset tables used to keep track of what's still available [since the
   start of the block].  */
   start of the block].  */
 
 
static void
static void
reset_opr_set_tables (void)
reset_opr_set_tables (void)
{
{
  /* Maintain a bitmap of which regs have been set since beginning of
  /* Maintain a bitmap of which regs have been set since beginning of
     the block.  */
     the block.  */
  CLEAR_REG_SET (reg_set_bitmap);
  CLEAR_REG_SET (reg_set_bitmap);
 
 
  /* Also keep a record of the last instruction to modify memory.
  /* Also keep a record of the last instruction to modify memory.
     For now this is very trivial, we only record whether any memory
     For now this is very trivial, we only record whether any memory
     location has been modified.  */
     location has been modified.  */
  clear_modify_mem_tables ();
  clear_modify_mem_tables ();
}
}
 
 
/* Return nonzero if the operands of X are not set before INSN in
/* Return nonzero if the operands of X are not set before INSN in
   INSN's basic block.  */
   INSN's basic block.  */
 
 
static int
static int
oprs_not_set_p (rtx x, rtx insn)
oprs_not_set_p (rtx x, rtx insn)
{
{
  int i, j;
  int i, j;
  enum rtx_code code;
  enum rtx_code code;
  const char *fmt;
  const char *fmt;
 
 
  if (x == 0)
  if (x == 0)
    return 1;
    return 1;
 
 
  code = GET_CODE (x);
  code = GET_CODE (x);
  switch (code)
  switch (code)
    {
    {
    case PC:
    case PC:
    case CC0:
    case CC0:
    case CONST:
    case CONST:
    case CONST_INT:
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST_DOUBLE:
    case CONST_VECTOR:
    case CONST_VECTOR:
    case SYMBOL_REF:
    case SYMBOL_REF:
    case LABEL_REF:
    case LABEL_REF:
    case ADDR_VEC:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
    case ADDR_DIFF_VEC:
      return 1;
      return 1;
 
 
    case MEM:
    case MEM:
      if (load_killed_in_block_p (BLOCK_FOR_INSN (insn),
      if (load_killed_in_block_p (BLOCK_FOR_INSN (insn),
                                  INSN_CUID (insn), x, 0))
                                  INSN_CUID (insn), x, 0))
        return 0;
        return 0;
      else
      else
        return oprs_not_set_p (XEXP (x, 0), insn);
        return oprs_not_set_p (XEXP (x, 0), insn);
 
 
    case REG:
    case REG:
      return ! REGNO_REG_SET_P (reg_set_bitmap, REGNO (x));
      return ! REGNO_REG_SET_P (reg_set_bitmap, REGNO (x));
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
  for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
    {
    {
      if (fmt[i] == 'e')
      if (fmt[i] == 'e')
        {
        {
          /* If we are about to do the last recursive call
          /* If we are about to do the last recursive call
             needed at this level, change it into iteration.
             needed at this level, change it into iteration.
             This function is called enough to be worth it.  */
             This function is called enough to be worth it.  */
          if (i == 0)
          if (i == 0)
            return oprs_not_set_p (XEXP (x, i), insn);
            return oprs_not_set_p (XEXP (x, i), insn);
 
 
          if (! oprs_not_set_p (XEXP (x, i), insn))
          if (! oprs_not_set_p (XEXP (x, i), insn))
            return 0;
            return 0;
        }
        }
      else if (fmt[i] == 'E')
      else if (fmt[i] == 'E')
        for (j = 0; j < XVECLEN (x, i); j++)
        for (j = 0; j < XVECLEN (x, i); j++)
          if (! oprs_not_set_p (XVECEXP (x, i, j), insn))
          if (! oprs_not_set_p (XVECEXP (x, i, j), insn))
            return 0;
            return 0;
    }
    }
 
 
  return 1;
  return 1;
}
}
 
 
/* Mark things set by a CALL.  */
/* Mark things set by a CALL.  */
 
 
static void
static void
mark_call (rtx insn)
mark_call (rtx insn)
{
{
  if (! CONST_OR_PURE_CALL_P (insn))
  if (! CONST_OR_PURE_CALL_P (insn))
    record_last_mem_set_info (insn);
    record_last_mem_set_info (insn);
}
}
 
 
/* Mark things set by a SET.  */
/* Mark things set by a SET.  */
 
 
static void
static void
mark_set (rtx pat, rtx insn)
mark_set (rtx pat, rtx insn)
{
{
  rtx dest = SET_DEST (pat);
  rtx dest = SET_DEST (pat);
 
 
  while (GET_CODE (dest) == SUBREG
  while (GET_CODE (dest) == SUBREG
         || GET_CODE (dest) == ZERO_EXTRACT
         || GET_CODE (dest) == ZERO_EXTRACT
         || GET_CODE (dest) == STRICT_LOW_PART)
         || GET_CODE (dest) == STRICT_LOW_PART)
    dest = XEXP (dest, 0);
    dest = XEXP (dest, 0);
 
 
  if (REG_P (dest))
  if (REG_P (dest))
    SET_REGNO_REG_SET (reg_set_bitmap, REGNO (dest));
    SET_REGNO_REG_SET (reg_set_bitmap, REGNO (dest));
  else if (MEM_P (dest))
  else if (MEM_P (dest))
    record_last_mem_set_info (insn);
    record_last_mem_set_info (insn);
 
 
  if (GET_CODE (SET_SRC (pat)) == CALL)
  if (GET_CODE (SET_SRC (pat)) == CALL)
    mark_call (insn);
    mark_call (insn);
}
}
 
 
/* Record things set by a CLOBBER.  */
/* Record things set by a CLOBBER.  */
 
 
static void
static void
mark_clobber (rtx pat, rtx insn)
mark_clobber (rtx pat, rtx insn)
{
{
  rtx clob = XEXP (pat, 0);
  rtx clob = XEXP (pat, 0);
 
 
  while (GET_CODE (clob) == SUBREG || GET_CODE (clob) == STRICT_LOW_PART)
  while (GET_CODE (clob) == SUBREG || GET_CODE (clob) == STRICT_LOW_PART)
    clob = XEXP (clob, 0);
    clob = XEXP (clob, 0);
 
 
  if (REG_P (clob))
  if (REG_P (clob))
    SET_REGNO_REG_SET (reg_set_bitmap, REGNO (clob));
    SET_REGNO_REG_SET (reg_set_bitmap, REGNO (clob));
  else
  else
    record_last_mem_set_info (insn);
    record_last_mem_set_info (insn);
}
}
 
 
/* Record things set by INSN.
/* Record things set by INSN.
   This data is used by oprs_not_set_p.  */
   This data is used by oprs_not_set_p.  */
 
 
static void
static void
mark_oprs_set (rtx insn)
mark_oprs_set (rtx insn)
{
{
  rtx pat = PATTERN (insn);
  rtx pat = PATTERN (insn);
  int i;
  int i;
 
 
  if (GET_CODE (pat) == SET)
  if (GET_CODE (pat) == SET)
    mark_set (pat, insn);
    mark_set (pat, insn);
  else if (GET_CODE (pat) == PARALLEL)
  else if (GET_CODE (pat) == PARALLEL)
    for (i = 0; i < XVECLEN (pat, 0); i++)
    for (i = 0; i < XVECLEN (pat, 0); i++)
      {
      {
        rtx x = XVECEXP (pat, 0, i);
        rtx x = XVECEXP (pat, 0, i);
 
 
        if (GET_CODE (x) == SET)
        if (GET_CODE (x) == SET)
          mark_set (x, insn);
          mark_set (x, insn);
        else if (GET_CODE (x) == CLOBBER)
        else if (GET_CODE (x) == CLOBBER)
          mark_clobber (x, insn);
          mark_clobber (x, insn);
        else if (GET_CODE (x) == CALL)
        else if (GET_CODE (x) == CALL)
          mark_call (insn);
          mark_call (insn);
      }
      }
 
 
  else if (GET_CODE (pat) == CLOBBER)
  else if (GET_CODE (pat) == CLOBBER)
    mark_clobber (pat, insn);
    mark_clobber (pat, insn);
  else if (GET_CODE (pat) == CALL)
  else if (GET_CODE (pat) == CALL)
    mark_call (insn);
    mark_call (insn);
}
}
 
 


/* Compute copy/constant propagation working variables.  */
/* Compute copy/constant propagation working variables.  */
 
 
/* Local properties of assignments.  */
/* Local properties of assignments.  */
static sbitmap *cprop_pavloc;
static sbitmap *cprop_pavloc;
static sbitmap *cprop_absaltered;
static sbitmap *cprop_absaltered;
 
 
/* Global properties of assignments (computed from the local properties).  */
/* Global properties of assignments (computed from the local properties).  */
static sbitmap *cprop_avin;
static sbitmap *cprop_avin;
static sbitmap *cprop_avout;
static sbitmap *cprop_avout;
 
 
/* Allocate vars used for copy/const propagation.  N_BLOCKS is the number of
/* Allocate vars used for copy/const propagation.  N_BLOCKS is the number of
   basic blocks.  N_SETS is the number of sets.  */
   basic blocks.  N_SETS is the number of sets.  */
 
 
static void
static void
alloc_cprop_mem (int n_blocks, int n_sets)
alloc_cprop_mem (int n_blocks, int n_sets)
{
{
  cprop_pavloc = sbitmap_vector_alloc (n_blocks, n_sets);
  cprop_pavloc = sbitmap_vector_alloc (n_blocks, n_sets);
  cprop_absaltered = sbitmap_vector_alloc (n_blocks, n_sets);
  cprop_absaltered = sbitmap_vector_alloc (n_blocks, n_sets);
 
 
  cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets);
  cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets);
  cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets);
  cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets);
}
}
 
 
/* Free vars used by copy/const propagation.  */
/* Free vars used by copy/const propagation.  */
 
 
static void
static void
free_cprop_mem (void)
free_cprop_mem (void)
{
{
  sbitmap_vector_free (cprop_pavloc);
  sbitmap_vector_free (cprop_pavloc);
  sbitmap_vector_free (cprop_absaltered);
  sbitmap_vector_free (cprop_absaltered);
  sbitmap_vector_free (cprop_avin);
  sbitmap_vector_free (cprop_avin);
  sbitmap_vector_free (cprop_avout);
  sbitmap_vector_free (cprop_avout);
}
}
 
 
/* For each block, compute whether X is transparent.  X is either an
/* For each block, compute whether X is transparent.  X is either an
   expression or an assignment [though we don't care which, for this context
   expression or an assignment [though we don't care which, for this context
   an assignment is treated as an expression].  For each block where an
   an assignment is treated as an expression].  For each block where an
   element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
   element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
   bit in BMAP.  */
   bit in BMAP.  */
 
 
static void
static void
compute_transp (rtx x, int indx, sbitmap *bmap, int set_p)
compute_transp (rtx x, int indx, sbitmap *bmap, int set_p)
{
{
  int i, j;
  int i, j;
  basic_block bb;
  basic_block bb;
  enum rtx_code code;
  enum rtx_code code;
  reg_set *r;
  reg_set *r;
  const char *fmt;
  const char *fmt;
 
 
  /* repeat is used to turn tail-recursion into iteration since GCC
  /* repeat is used to turn tail-recursion into iteration since GCC
     can't do it when there's no return value.  */
     can't do it when there's no return value.  */
 repeat:
 repeat:
 
 
  if (x == 0)
  if (x == 0)
    return;
    return;
 
 
  code = GET_CODE (x);
  code = GET_CODE (x);
  switch (code)
  switch (code)
    {
    {
    case REG:
    case REG:
      if (set_p)
      if (set_p)
        {
        {
          if (REGNO (x) < FIRST_PSEUDO_REGISTER)
          if (REGNO (x) < FIRST_PSEUDO_REGISTER)
            {
            {
              FOR_EACH_BB (bb)
              FOR_EACH_BB (bb)
                if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
                if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
                  SET_BIT (bmap[bb->index], indx);
                  SET_BIT (bmap[bb->index], indx);
            }
            }
          else
          else
            {
            {
              for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
              for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
                SET_BIT (bmap[r->bb_index], indx);
                SET_BIT (bmap[r->bb_index], indx);
            }
            }
        }
        }
      else
      else
        {
        {
          if (REGNO (x) < FIRST_PSEUDO_REGISTER)
          if (REGNO (x) < FIRST_PSEUDO_REGISTER)
            {
            {
              FOR_EACH_BB (bb)
              FOR_EACH_BB (bb)
                if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
                if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
                  RESET_BIT (bmap[bb->index], indx);
                  RESET_BIT (bmap[bb->index], indx);
            }
            }
          else
          else
            {
            {
              for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
              for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
                RESET_BIT (bmap[r->bb_index], indx);
                RESET_BIT (bmap[r->bb_index], indx);
            }
            }
        }
        }
 
 
      return;
      return;
 
 
    case MEM:
    case MEM:
      if (! MEM_READONLY_P (x))
      if (! MEM_READONLY_P (x))
        {
        {
          bitmap_iterator bi;
          bitmap_iterator bi;
          unsigned bb_index;
          unsigned bb_index;
 
 
          /* First handle all the blocks with calls.  We don't need to
          /* First handle all the blocks with calls.  We don't need to
             do any list walking for them.  */
             do any list walking for them.  */
          EXECUTE_IF_SET_IN_BITMAP (blocks_with_calls, 0, bb_index, bi)
          EXECUTE_IF_SET_IN_BITMAP (blocks_with_calls, 0, bb_index, bi)
            {
            {
              if (set_p)
              if (set_p)
                SET_BIT (bmap[bb_index], indx);
                SET_BIT (bmap[bb_index], indx);
              else
              else
                RESET_BIT (bmap[bb_index], indx);
                RESET_BIT (bmap[bb_index], indx);
            }
            }
 
 
            /* Now iterate over the blocks which have memory modifications
            /* Now iterate over the blocks which have memory modifications
               but which do not have any calls.  */
               but which do not have any calls.  */
            EXECUTE_IF_AND_COMPL_IN_BITMAP (modify_mem_list_set,
            EXECUTE_IF_AND_COMPL_IN_BITMAP (modify_mem_list_set,
                                            blocks_with_calls,
                                            blocks_with_calls,
                                            0, bb_index, bi)
                                            0, bb_index, bi)
              {
              {
                rtx list_entry = canon_modify_mem_list[bb_index];
                rtx list_entry = canon_modify_mem_list[bb_index];
 
 
                while (list_entry)
                while (list_entry)
                  {
                  {
                    rtx dest, dest_addr;
                    rtx dest, dest_addr;
 
 
                    /* LIST_ENTRY must be an INSN of some kind that sets memory.
                    /* LIST_ENTRY must be an INSN of some kind that sets memory.
                       Examine each hunk of memory that is modified.  */
                       Examine each hunk of memory that is modified.  */
 
 
                    dest = XEXP (list_entry, 0);
                    dest = XEXP (list_entry, 0);
                    list_entry = XEXP (list_entry, 1);
                    list_entry = XEXP (list_entry, 1);
                    dest_addr = XEXP (list_entry, 0);
                    dest_addr = XEXP (list_entry, 0);
 
 
                    if (canon_true_dependence (dest, GET_MODE (dest), dest_addr,
                    if (canon_true_dependence (dest, GET_MODE (dest), dest_addr,
                                               x, rtx_addr_varies_p))
                                               x, rtx_addr_varies_p))
                      {
                      {
                        if (set_p)
                        if (set_p)
                          SET_BIT (bmap[bb_index], indx);
                          SET_BIT (bmap[bb_index], indx);
                        else
                        else
                          RESET_BIT (bmap[bb_index], indx);
                          RESET_BIT (bmap[bb_index], indx);
                        break;
                        break;
                      }
                      }
                    list_entry = XEXP (list_entry, 1);
                    list_entry = XEXP (list_entry, 1);
                  }
                  }
              }
              }
        }
        }
 
 
      x = XEXP (x, 0);
      x = XEXP (x, 0);
      goto repeat;
      goto repeat;
 
 
    case PC:
    case PC:
    case CC0: /*FIXME*/
    case CC0: /*FIXME*/
    case CONST:
    case CONST:
    case CONST_INT:
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST_DOUBLE:
    case CONST_VECTOR:
    case CONST_VECTOR:
    case SYMBOL_REF:
    case SYMBOL_REF:
    case LABEL_REF:
    case LABEL_REF:
    case ADDR_VEC:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
    case ADDR_DIFF_VEC:
      return;
      return;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
  for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
    {
    {
      if (fmt[i] == 'e')
      if (fmt[i] == 'e')
        {
        {
          /* If we are about to do the last recursive call
          /* If we are about to do the last recursive call
             needed at this level, change it into iteration.
             needed at this level, change it into iteration.
             This function is called enough to be worth it.  */
             This function is called enough to be worth it.  */
          if (i == 0)
          if (i == 0)
            {
            {
              x = XEXP (x, i);
              x = XEXP (x, i);
              goto repeat;
              goto repeat;
            }
            }
 
 
          compute_transp (XEXP (x, i), indx, bmap, set_p);
          compute_transp (XEXP (x, i), indx, bmap, set_p);
        }
        }
      else if (fmt[i] == 'E')
      else if (fmt[i] == 'E')
        for (j = 0; j < XVECLEN (x, i); j++)
        for (j = 0; j < XVECLEN (x, i); j++)
          compute_transp (XVECEXP (x, i, j), indx, bmap, set_p);
          compute_transp (XVECEXP (x, i, j), indx, bmap, set_p);
    }
    }
}
}
 
 
/* Top level routine to do the dataflow analysis needed by copy/const
/* Top level routine to do the dataflow analysis needed by copy/const
   propagation.  */
   propagation.  */
 
 
static void
static void
compute_cprop_data (void)
compute_cprop_data (void)
{
{
  compute_local_properties (cprop_absaltered, cprop_pavloc, NULL, &set_hash_table);
  compute_local_properties (cprop_absaltered, cprop_pavloc, NULL, &set_hash_table);
  compute_available (cprop_pavloc, cprop_absaltered,
  compute_available (cprop_pavloc, cprop_absaltered,
                     cprop_avout, cprop_avin);
                     cprop_avout, cprop_avin);
}
}


/* Copy/constant propagation.  */
/* Copy/constant propagation.  */
 
 
/* Maximum number of register uses in an insn that we handle.  */
/* Maximum number of register uses in an insn that we handle.  */
#define MAX_USES 8
#define MAX_USES 8
 
 
/* Table of uses found in an insn.
/* Table of uses found in an insn.
   Allocated statically to avoid alloc/free complexity and overhead.  */
   Allocated statically to avoid alloc/free complexity and overhead.  */
static struct reg_use reg_use_table[MAX_USES];
static struct reg_use reg_use_table[MAX_USES];
 
 
/* Index into `reg_use_table' while building it.  */
/* Index into `reg_use_table' while building it.  */
static int reg_use_count;
static int reg_use_count;
 
 
/* Set up a list of register numbers used in INSN.  The found uses are stored
/* Set up a list of register numbers used in INSN.  The found uses are stored
   in `reg_use_table'.  `reg_use_count' is initialized to zero before entry,
   in `reg_use_table'.  `reg_use_count' is initialized to zero before entry,
   and contains the number of uses in the table upon exit.
   and contains the number of uses in the table upon exit.
 
 
   ??? If a register appears multiple times we will record it multiple times.
   ??? If a register appears multiple times we will record it multiple times.
   This doesn't hurt anything but it will slow things down.  */
   This doesn't hurt anything but it will slow things down.  */
 
 
static void
static void
find_used_regs (rtx *xptr, void *data ATTRIBUTE_UNUSED)
find_used_regs (rtx *xptr, void *data ATTRIBUTE_UNUSED)
{
{
  int i, j;
  int i, j;
  enum rtx_code code;
  enum rtx_code code;
  const char *fmt;
  const char *fmt;
  rtx x = *xptr;
  rtx x = *xptr;
 
 
  /* repeat is used to turn tail-recursion into iteration since GCC
  /* repeat is used to turn tail-recursion into iteration since GCC
     can't do it when there's no return value.  */
     can't do it when there's no return value.  */
 repeat:
 repeat:
  if (x == 0)
  if (x == 0)
    return;
    return;
 
 
  code = GET_CODE (x);
  code = GET_CODE (x);
  if (REG_P (x))
  if (REG_P (x))
    {
    {
      if (reg_use_count == MAX_USES)
      if (reg_use_count == MAX_USES)
        return;
        return;
 
 
      reg_use_table[reg_use_count].reg_rtx = x;
      reg_use_table[reg_use_count].reg_rtx = x;
      reg_use_count++;
      reg_use_count++;
    }
    }
 
 
  /* Recursively scan the operands of this expression.  */
  /* Recursively scan the operands of this expression.  */
 
 
  for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
  for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
    {
    {
      if (fmt[i] == 'e')
      if (fmt[i] == 'e')
        {
        {
          /* If we are about to do the last recursive call
          /* If we are about to do the last recursive call
             needed at this level, change it into iteration.
             needed at this level, change it into iteration.
             This function is called enough to be worth it.  */
             This function is called enough to be worth it.  */
          if (i == 0)
          if (i == 0)
            {
            {
              x = XEXP (x, 0);
              x = XEXP (x, 0);
              goto repeat;
              goto repeat;
            }
            }
 
 
          find_used_regs (&XEXP (x, i), data);
          find_used_regs (&XEXP (x, i), data);
        }
        }
      else if (fmt[i] == 'E')
      else if (fmt[i] == 'E')
        for (j = 0; j < XVECLEN (x, i); j++)
        for (j = 0; j < XVECLEN (x, i); j++)
          find_used_regs (&XVECEXP (x, i, j), data);
          find_used_regs (&XVECEXP (x, i, j), data);
    }
    }
}
}
 
 
/* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
/* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
   Returns nonzero is successful.  */
   Returns nonzero is successful.  */
 
 
static int
static int
try_replace_reg (rtx from, rtx to, rtx insn)
try_replace_reg (rtx from, rtx to, rtx insn)
{
{
  rtx note = find_reg_equal_equiv_note (insn);
  rtx note = find_reg_equal_equiv_note (insn);
  rtx src = 0;
  rtx src = 0;
  int success = 0;
  int success = 0;
  rtx set = single_set (insn);
  rtx set = single_set (insn);
 
 
  validate_replace_src_group (from, to, insn);
  validate_replace_src_group (from, to, insn);
  if (num_changes_pending () && apply_change_group ())
  if (num_changes_pending () && apply_change_group ())
    success = 1;
    success = 1;
 
 
  /* Try to simplify SET_SRC if we have substituted a constant.  */
  /* Try to simplify SET_SRC if we have substituted a constant.  */
  if (success && set && CONSTANT_P (to))
  if (success && set && CONSTANT_P (to))
    {
    {
      src = simplify_rtx (SET_SRC (set));
      src = simplify_rtx (SET_SRC (set));
 
 
      if (src)
      if (src)
        validate_change (insn, &SET_SRC (set), src, 0);
        validate_change (insn, &SET_SRC (set), src, 0);
    }
    }
 
 
  /* If there is already a REG_EQUAL note, update the expression in it
  /* If there is already a REG_EQUAL note, update the expression in it
     with our replacement.  */
     with our replacement.  */
  if (note != 0 && REG_NOTE_KIND (note) == REG_EQUAL)
  if (note != 0 && REG_NOTE_KIND (note) == REG_EQUAL)
    XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), from, to);
    XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), from, to);
 
 
  if (!success && set && reg_mentioned_p (from, SET_SRC (set)))
  if (!success && set && reg_mentioned_p (from, SET_SRC (set)))
    {
    {
      /* If above failed and this is a single set, try to simplify the source of
      /* If above failed and this is a single set, try to simplify the source of
         the set given our substitution.  We could perhaps try this for multiple
         the set given our substitution.  We could perhaps try this for multiple
         SETs, but it probably won't buy us anything.  */
         SETs, but it probably won't buy us anything.  */
      src = simplify_replace_rtx (SET_SRC (set), from, to);
      src = simplify_replace_rtx (SET_SRC (set), from, to);
 
 
      if (!rtx_equal_p (src, SET_SRC (set))
      if (!rtx_equal_p (src, SET_SRC (set))
          && validate_change (insn, &SET_SRC (set), src, 0))
          && validate_change (insn, &SET_SRC (set), src, 0))
        success = 1;
        success = 1;
 
 
      /* If we've failed to do replacement, have a single SET, don't already
      /* If we've failed to do replacement, have a single SET, don't already
         have a note, and have no special SET, add a REG_EQUAL note to not
         have a note, and have no special SET, add a REG_EQUAL note to not
         lose information.  */
         lose information.  */
      if (!success && note == 0 && set != 0
      if (!success && note == 0 && set != 0
          && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
          && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
          && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
          && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
        note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
        note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
    }
    }
 
 
  /* REG_EQUAL may get simplified into register.
  /* REG_EQUAL may get simplified into register.
     We don't allow that. Remove that note. This code ought
     We don't allow that. Remove that note. This code ought
     not to happen, because previous code ought to synthesize
     not to happen, because previous code ought to synthesize
     reg-reg move, but be on the safe side.  */
     reg-reg move, but be on the safe side.  */
  if (note && REG_NOTE_KIND (note) == REG_EQUAL && REG_P (XEXP (note, 0)))
  if (note && REG_NOTE_KIND (note) == REG_EQUAL && REG_P (XEXP (note, 0)))
    remove_note (insn, note);
    remove_note (insn, note);
 
 
  return success;
  return success;
}
}
 
 
/* Find a set of REGNOs that are available on entry to INSN's block.  Returns
/* Find a set of REGNOs that are available on entry to INSN's block.  Returns
   NULL no such set is found.  */
   NULL no such set is found.  */
 
 
static struct expr *
static struct expr *
find_avail_set (int regno, rtx insn)
find_avail_set (int regno, rtx insn)
{
{
  /* SET1 contains the last set found that can be returned to the caller for
  /* SET1 contains the last set found that can be returned to the caller for
     use in a substitution.  */
     use in a substitution.  */
  struct expr *set1 = 0;
  struct expr *set1 = 0;
 
 
  /* Loops are not possible here.  To get a loop we would need two sets
  /* Loops are not possible here.  To get a loop we would need two sets
     available at the start of the block containing INSN.  i.e. we would
     available at the start of the block containing INSN.  i.e. we would
     need two sets like this available at the start of the block:
     need two sets like this available at the start of the block:
 
 
       (set (reg X) (reg Y))
       (set (reg X) (reg Y))
       (set (reg Y) (reg X))
       (set (reg Y) (reg X))
 
 
     This can not happen since the set of (reg Y) would have killed the
     This can not happen since the set of (reg Y) would have killed the
     set of (reg X) making it unavailable at the start of this block.  */
     set of (reg X) making it unavailable at the start of this block.  */
  while (1)
  while (1)
    {
    {
      rtx src;
      rtx src;
      struct expr *set = lookup_set (regno, &set_hash_table);
      struct expr *set = lookup_set (regno, &set_hash_table);
 
 
      /* Find a set that is available at the start of the block
      /* Find a set that is available at the start of the block
         which contains INSN.  */
         which contains INSN.  */
      while (set)
      while (set)
        {
        {
          if (TEST_BIT (cprop_avin[BLOCK_NUM (insn)], set->bitmap_index))
          if (TEST_BIT (cprop_avin[BLOCK_NUM (insn)], set->bitmap_index))
            break;
            break;
          set = next_set (regno, set);
          set = next_set (regno, set);
        }
        }
 
 
      /* If no available set was found we've reached the end of the
      /* If no available set was found we've reached the end of the
         (possibly empty) copy chain.  */
         (possibly empty) copy chain.  */
      if (set == 0)
      if (set == 0)
        break;
        break;
 
 
      gcc_assert (GET_CODE (set->expr) == SET);
      gcc_assert (GET_CODE (set->expr) == SET);
 
 
      src = SET_SRC (set->expr);
      src = SET_SRC (set->expr);
 
 
      /* We know the set is available.
      /* We know the set is available.
         Now check that SRC is ANTLOC (i.e. none of the source operands
         Now check that SRC is ANTLOC (i.e. none of the source operands
         have changed since the start of the block).
         have changed since the start of the block).
 
 
         If the source operand changed, we may still use it for the next
         If the source operand changed, we may still use it for the next
         iteration of this loop, but we may not use it for substitutions.  */
         iteration of this loop, but we may not use it for substitutions.  */
 
 
      if (gcse_constant_p (src) || oprs_not_set_p (src, insn))
      if (gcse_constant_p (src) || oprs_not_set_p (src, insn))
        set1 = set;
        set1 = set;
 
 
      /* If the source of the set is anything except a register, then
      /* If the source of the set is anything except a register, then
         we have reached the end of the copy chain.  */
         we have reached the end of the copy chain.  */
      if (! REG_P (src))
      if (! REG_P (src))
        break;
        break;
 
 
      /* Follow the copy chain, i.e. start another iteration of the loop
      /* Follow the copy chain, i.e. start another iteration of the loop
         and see if we have an available copy into SRC.  */
         and see if we have an available copy into SRC.  */
      regno = REGNO (src);
      regno = REGNO (src);
    }
    }
 
 
  /* SET1 holds the last set that was available and anticipatable at
  /* SET1 holds the last set that was available and anticipatable at
     INSN.  */
     INSN.  */
  return set1;
  return set1;
}
}
 
 
/* Subroutine of cprop_insn that tries to propagate constants into
/* Subroutine of cprop_insn that tries to propagate constants into
   JUMP_INSNS.  JUMP must be a conditional jump.  If SETCC is non-NULL
   JUMP_INSNS.  JUMP must be a conditional jump.  If SETCC is non-NULL
   it is the instruction that immediately precedes JUMP, and must be a
   it is the instruction that immediately precedes JUMP, and must be a
   single SET of a register.  FROM is what we will try to replace,
   single SET of a register.  FROM is what we will try to replace,
   SRC is the constant we will try to substitute for it.  Returns nonzero
   SRC is the constant we will try to substitute for it.  Returns nonzero
   if a change was made.  */
   if a change was made.  */
 
 
static int
static int
cprop_jump (basic_block bb, rtx setcc, rtx jump, rtx from, rtx src)
cprop_jump (basic_block bb, rtx setcc, rtx jump, rtx from, rtx src)
{
{
  rtx new, set_src, note_src;
  rtx new, set_src, note_src;
  rtx set = pc_set (jump);
  rtx set = pc_set (jump);
  rtx note = find_reg_equal_equiv_note (jump);
  rtx note = find_reg_equal_equiv_note (jump);
 
 
  if (note)
  if (note)
    {
    {
      note_src = XEXP (note, 0);
      note_src = XEXP (note, 0);
      if (GET_CODE (note_src) == EXPR_LIST)
      if (GET_CODE (note_src) == EXPR_LIST)
        note_src = NULL_RTX;
        note_src = NULL_RTX;
    }
    }
  else note_src = NULL_RTX;
  else note_src = NULL_RTX;
 
 
  /* Prefer REG_EQUAL notes except those containing EXPR_LISTs.  */
  /* Prefer REG_EQUAL notes except those containing EXPR_LISTs.  */
  set_src = note_src ? note_src : SET_SRC (set);
  set_src = note_src ? note_src : SET_SRC (set);
 
 
  /* First substitute the SETCC condition into the JUMP instruction,
  /* First substitute the SETCC condition into the JUMP instruction,
     then substitute that given values into this expanded JUMP.  */
     then substitute that given values into this expanded JUMP.  */
  if (setcc != NULL_RTX
  if (setcc != NULL_RTX
      && !modified_between_p (from, setcc, jump)
      && !modified_between_p (from, setcc, jump)
      && !modified_between_p (src, setcc, jump))
      && !modified_between_p (src, setcc, jump))
    {
    {
      rtx setcc_src;
      rtx setcc_src;
      rtx setcc_set = single_set (setcc);
      rtx setcc_set = single_set (setcc);
      rtx setcc_note = find_reg_equal_equiv_note (setcc);
      rtx setcc_note = find_reg_equal_equiv_note (setcc);
      setcc_src = (setcc_note && GET_CODE (XEXP (setcc_note, 0)) != EXPR_LIST)
      setcc_src = (setcc_note && GET_CODE (XEXP (setcc_note, 0)) != EXPR_LIST)
                ? XEXP (setcc_note, 0) : SET_SRC (setcc_set);
                ? XEXP (setcc_note, 0) : SET_SRC (setcc_set);
      set_src = simplify_replace_rtx (set_src, SET_DEST (setcc_set),
      set_src = simplify_replace_rtx (set_src, SET_DEST (setcc_set),
                                      setcc_src);
                                      setcc_src);
    }
    }
  else
  else
    setcc = NULL_RTX;
    setcc = NULL_RTX;
 
 
  new = simplify_replace_rtx (set_src, from, src);
  new = simplify_replace_rtx (set_src, from, src);
 
 
  /* If no simplification can be made, then try the next register.  */
  /* If no simplification can be made, then try the next register.  */
  if (rtx_equal_p (new, SET_SRC (set)))
  if (rtx_equal_p (new, SET_SRC (set)))
    return 0;
    return 0;
 
 
  /* If this is now a no-op delete it, otherwise this must be a valid insn.  */
  /* If this is now a no-op delete it, otherwise this must be a valid insn.  */
  if (new == pc_rtx)
  if (new == pc_rtx)
    delete_insn (jump);
    delete_insn (jump);
  else
  else
    {
    {
      /* Ensure the value computed inside the jump insn to be equivalent
      /* Ensure the value computed inside the jump insn to be equivalent
         to one computed by setcc.  */
         to one computed by setcc.  */
      if (setcc && modified_in_p (new, setcc))
      if (setcc && modified_in_p (new, setcc))
        return 0;
        return 0;
      if (! validate_change (jump, &SET_SRC (set), new, 0))
      if (! validate_change (jump, &SET_SRC (set), new, 0))
        {
        {
          /* When (some) constants are not valid in a comparison, and there
          /* When (some) constants are not valid in a comparison, and there
             are two registers to be replaced by constants before the entire
             are two registers to be replaced by constants before the entire
             comparison can be folded into a constant, we need to keep
             comparison can be folded into a constant, we need to keep
             intermediate information in REG_EQUAL notes.  For targets with
             intermediate information in REG_EQUAL notes.  For targets with
             separate compare insns, such notes are added by try_replace_reg.
             separate compare insns, such notes are added by try_replace_reg.
             When we have a combined compare-and-branch instruction, however,
             When we have a combined compare-and-branch instruction, however,
             we need to attach a note to the branch itself to make this
             we need to attach a note to the branch itself to make this
             optimization work.  */
             optimization work.  */
 
 
          if (!rtx_equal_p (new, note_src))
          if (!rtx_equal_p (new, note_src))
            set_unique_reg_note (jump, REG_EQUAL, copy_rtx (new));
            set_unique_reg_note (jump, REG_EQUAL, copy_rtx (new));
          return 0;
          return 0;
        }
        }
 
 
      /* Remove REG_EQUAL note after simplification.  */
      /* Remove REG_EQUAL note after simplification.  */
      if (note_src)
      if (note_src)
        remove_note (jump, note);
        remove_note (jump, note);
 
 
      /* If this has turned into an unconditional jump,
      /* If this has turned into an unconditional jump,
         then put a barrier after it so that the unreachable
         then put a barrier after it so that the unreachable
         code will be deleted.  */
         code will be deleted.  */
      if (GET_CODE (SET_SRC (set)) == LABEL_REF)
      if (GET_CODE (SET_SRC (set)) == LABEL_REF)
        emit_barrier_after (jump);
        emit_barrier_after (jump);
     }
     }
 
 
#ifdef HAVE_cc0
#ifdef HAVE_cc0
  /* Delete the cc0 setter.  */
  /* Delete the cc0 setter.  */
  if (setcc != NULL && CC0_P (SET_DEST (single_set (setcc))))
  if (setcc != NULL && CC0_P (SET_DEST (single_set (setcc))))
    delete_insn (setcc);
    delete_insn (setcc);
#endif
#endif
 
 
  run_jump_opt_after_gcse = 1;
  run_jump_opt_after_gcse = 1;
 
 
  global_const_prop_count++;
  global_const_prop_count++;
  if (dump_file != NULL)
  if (dump_file != NULL)
    {
    {
      fprintf (dump_file,
      fprintf (dump_file,
               "GLOBAL CONST-PROP: Replacing reg %d in jump_insn %d with constant ",
               "GLOBAL CONST-PROP: Replacing reg %d in jump_insn %d with constant ",
               REGNO (from), INSN_UID (jump));
               REGNO (from), INSN_UID (jump));
      print_rtl (dump_file, src);
      print_rtl (dump_file, src);
      fprintf (dump_file, "\n");
      fprintf (dump_file, "\n");
    }
    }
  purge_dead_edges (bb);
  purge_dead_edges (bb);
 
 
  return 1;
  return 1;
}
}
 
 
static bool
static bool
constprop_register (rtx insn, rtx from, rtx to, bool alter_jumps)
constprop_register (rtx insn, rtx from, rtx to, bool alter_jumps)
{
{
  rtx sset;
  rtx sset;
 
 
  /* Check for reg or cc0 setting instructions followed by
  /* Check for reg or cc0 setting instructions followed by
     conditional branch instructions first.  */
     conditional branch instructions first.  */
  if (alter_jumps
  if (alter_jumps
      && (sset = single_set (insn)) != NULL
      && (sset = single_set (insn)) != NULL
      && NEXT_INSN (insn)
      && NEXT_INSN (insn)
      && any_condjump_p (NEXT_INSN (insn)) && onlyjump_p (NEXT_INSN (insn)))
      && any_condjump_p (NEXT_INSN (insn)) && onlyjump_p (NEXT_INSN (insn)))
    {
    {
      rtx dest = SET_DEST (sset);
      rtx dest = SET_DEST (sset);
      if ((REG_P (dest) || CC0_P (dest))
      if ((REG_P (dest) || CC0_P (dest))
          && cprop_jump (BLOCK_FOR_INSN (insn), insn, NEXT_INSN (insn), from, to))
          && cprop_jump (BLOCK_FOR_INSN (insn), insn, NEXT_INSN (insn), from, to))
        return 1;
        return 1;
    }
    }
 
 
  /* Handle normal insns next.  */
  /* Handle normal insns next.  */
  if (NONJUMP_INSN_P (insn)
  if (NONJUMP_INSN_P (insn)
      && try_replace_reg (from, to, insn))
      && try_replace_reg (from, to, insn))
    return 1;
    return 1;
 
 
  /* Try to propagate a CONST_INT into a conditional jump.
  /* Try to propagate a CONST_INT into a conditional jump.
     We're pretty specific about what we will handle in this
     We're pretty specific about what we will handle in this
     code, we can extend this as necessary over time.
     code, we can extend this as necessary over time.
 
 
     Right now the insn in question must look like
     Right now the insn in question must look like
     (set (pc) (if_then_else ...))  */
     (set (pc) (if_then_else ...))  */
  else if (alter_jumps && any_condjump_p (insn) && onlyjump_p (insn))
  else if (alter_jumps && any_condjump_p (insn) && onlyjump_p (insn))
    return cprop_jump (BLOCK_FOR_INSN (insn), NULL, insn, from, to);
    return cprop_jump (BLOCK_FOR_INSN (insn), NULL, insn, from, to);
  return 0;
  return 0;
}
}
 
 
/* Perform constant and copy propagation on INSN.
/* Perform constant and copy propagation on INSN.
   The result is nonzero if a change was made.  */
   The result is nonzero if a change was made.  */
 
 
static int
static int
cprop_insn (rtx insn, int alter_jumps)
cprop_insn (rtx insn, int alter_jumps)
{
{
  struct reg_use *reg_used;
  struct reg_use *reg_used;
  int changed = 0;
  int changed = 0;
  rtx note;
  rtx note;
 
 
  if (!INSN_P (insn))
  if (!INSN_P (insn))
    return 0;
    return 0;
 
 
  reg_use_count = 0;
  reg_use_count = 0;
  note_uses (&PATTERN (insn), find_used_regs, NULL);
  note_uses (&PATTERN (insn), find_used_regs, NULL);
 
 
  note = find_reg_equal_equiv_note (insn);
  note = find_reg_equal_equiv_note (insn);
 
 
  /* We may win even when propagating constants into notes.  */
  /* We may win even when propagating constants into notes.  */
  if (note)
  if (note)
    find_used_regs (&XEXP (note, 0), NULL);
    find_used_regs (&XEXP (note, 0), NULL);
 
 
  for (reg_used = &reg_use_table[0]; reg_use_count > 0;
  for (reg_used = &reg_use_table[0]; reg_use_count > 0;
       reg_used++, reg_use_count--)
       reg_used++, reg_use_count--)
    {
    {
      unsigned int regno = REGNO (reg_used->reg_rtx);
      unsigned int regno = REGNO (reg_used->reg_rtx);
      rtx pat, src;
      rtx pat, src;
      struct expr *set;
      struct expr *set;
 
 
      /* Ignore registers created by GCSE.
      /* Ignore registers created by GCSE.
         We do this because ...  */
         We do this because ...  */
      if (regno >= max_gcse_regno)
      if (regno >= max_gcse_regno)
        continue;
        continue;
 
 
      /* If the register has already been set in this block, there's
      /* If the register has already been set in this block, there's
         nothing we can do.  */
         nothing we can do.  */
      if (! oprs_not_set_p (reg_used->reg_rtx, insn))
      if (! oprs_not_set_p (reg_used->reg_rtx, insn))
        continue;
        continue;
 
 
      /* Find an assignment that sets reg_used and is available
      /* Find an assignment that sets reg_used and is available
         at the start of the block.  */
         at the start of the block.  */
      set = find_avail_set (regno, insn);
      set = find_avail_set (regno, insn);
      if (! set)
      if (! set)
        continue;
        continue;
 
 
      pat = set->expr;
      pat = set->expr;
      /* ??? We might be able to handle PARALLELs.  Later.  */
      /* ??? We might be able to handle PARALLELs.  Later.  */
      gcc_assert (GET_CODE (pat) == SET);
      gcc_assert (GET_CODE (pat) == SET);
 
 
      src = SET_SRC (pat);
      src = SET_SRC (pat);
 
 
      /* Constant propagation.  */
      /* Constant propagation.  */
      if (gcse_constant_p (src))
      if (gcse_constant_p (src))
        {
        {
          if (constprop_register (insn, reg_used->reg_rtx, src, alter_jumps))
          if (constprop_register (insn, reg_used->reg_rtx, src, alter_jumps))
            {
            {
              changed = 1;
              changed = 1;
              global_const_prop_count++;
              global_const_prop_count++;
              if (dump_file != NULL)
              if (dump_file != NULL)
                {
                {
                  fprintf (dump_file, "GLOBAL CONST-PROP: Replacing reg %d in ", regno);
                  fprintf (dump_file, "GLOBAL CONST-PROP: Replacing reg %d in ", regno);
                  fprintf (dump_file, "insn %d with constant ", INSN_UID (insn));
                  fprintf (dump_file, "insn %d with constant ", INSN_UID (insn));
                  print_rtl (dump_file, src);
                  print_rtl (dump_file, src);
                  fprintf (dump_file, "\n");
                  fprintf (dump_file, "\n");
                }
                }
              if (INSN_DELETED_P (insn))
              if (INSN_DELETED_P (insn))
                return 1;
                return 1;
            }
            }
        }
        }
      else if (REG_P (src)
      else if (REG_P (src)
               && REGNO (src) >= FIRST_PSEUDO_REGISTER
               && REGNO (src) >= FIRST_PSEUDO_REGISTER
               && REGNO (src) != regno)
               && REGNO (src) != regno)
        {
        {
          if (try_replace_reg (reg_used->reg_rtx, src, insn))
          if (try_replace_reg (reg_used->reg_rtx, src, insn))
            {
            {
              changed = 1;
              changed = 1;
              global_copy_prop_count++;
              global_copy_prop_count++;
              if (dump_file != NULL)
              if (dump_file != NULL)
                {
                {
                  fprintf (dump_file, "GLOBAL COPY-PROP: Replacing reg %d in insn %d",
                  fprintf (dump_file, "GLOBAL COPY-PROP: Replacing reg %d in insn %d",
                           regno, INSN_UID (insn));
                           regno, INSN_UID (insn));
                  fprintf (dump_file, " with reg %d\n", REGNO (src));
                  fprintf (dump_file, " with reg %d\n", REGNO (src));
                }
                }
 
 
              /* The original insn setting reg_used may or may not now be
              /* The original insn setting reg_used may or may not now be
                 deletable.  We leave the deletion to flow.  */
                 deletable.  We leave the deletion to flow.  */
              /* FIXME: If it turns out that the insn isn't deletable,
              /* FIXME: If it turns out that the insn isn't deletable,
                 then we may have unnecessarily extended register lifetimes
                 then we may have unnecessarily extended register lifetimes
                 and made things worse.  */
                 and made things worse.  */
            }
            }
        }
        }
    }
    }
 
 
  return changed;
  return changed;
}
}
 
 
/* Like find_used_regs, but avoid recording uses that appear in
/* Like find_used_regs, but avoid recording uses that appear in
   input-output contexts such as zero_extract or pre_dec.  This
   input-output contexts such as zero_extract or pre_dec.  This
   restricts the cases we consider to those for which local cprop
   restricts the cases we consider to those for which local cprop
   can legitimately make replacements.  */
   can legitimately make replacements.  */
 
 
static void
static void
local_cprop_find_used_regs (rtx *xptr, void *data)
local_cprop_find_used_regs (rtx *xptr, void *data)
{
{
  rtx x = *xptr;
  rtx x = *xptr;
 
 
  if (x == 0)
  if (x == 0)
    return;
    return;
 
 
  switch (GET_CODE (x))
  switch (GET_CODE (x))
    {
    {
    case ZERO_EXTRACT:
    case ZERO_EXTRACT:
    case SIGN_EXTRACT:
    case SIGN_EXTRACT:
    case STRICT_LOW_PART:
    case STRICT_LOW_PART:
      return;
      return;
 
 
    case PRE_DEC:
    case PRE_DEC:
    case PRE_INC:
    case PRE_INC:
    case POST_DEC:
    case POST_DEC:
    case POST_INC:
    case POST_INC:
    case PRE_MODIFY:
    case PRE_MODIFY:
    case POST_MODIFY:
    case POST_MODIFY:
      /* Can only legitimately appear this early in the context of
      /* Can only legitimately appear this early in the context of
         stack pushes for function arguments, but handle all of the
         stack pushes for function arguments, but handle all of the
         codes nonetheless.  */
         codes nonetheless.  */
      return;
      return;
 
 
    case SUBREG:
    case SUBREG:
      /* Setting a subreg of a register larger than word_mode leaves
      /* Setting a subreg of a register larger than word_mode leaves
         the non-written words unchanged.  */
         the non-written words unchanged.  */
      if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) > BITS_PER_WORD)
      if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) > BITS_PER_WORD)
        return;
        return;
      break;
      break;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  find_used_regs (xptr, data);
  find_used_regs (xptr, data);
}
}
 
 
/* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
/* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
   their REG_EQUAL notes need updating.  */
   their REG_EQUAL notes need updating.  */
 
 
static bool
static bool
do_local_cprop (rtx x, rtx insn, bool alter_jumps, rtx *libcall_sp)
do_local_cprop (rtx x, rtx insn, bool alter_jumps, rtx *libcall_sp)
{
{
  rtx newreg = NULL, newcnst = NULL;
  rtx newreg = NULL, newcnst = NULL;
 
 
  /* Rule out USE instructions and ASM statements as we don't want to
  /* Rule out USE instructions and ASM statements as we don't want to
     change the hard registers mentioned.  */
     change the hard registers mentioned.  */
  if (REG_P (x)
  if (REG_P (x)
      && (REGNO (x) >= FIRST_PSEUDO_REGISTER
      && (REGNO (x) >= FIRST_PSEUDO_REGISTER
          || (GET_CODE (PATTERN (insn)) != USE
          || (GET_CODE (PATTERN (insn)) != USE
              && asm_noperands (PATTERN (insn)) < 0)))
              && asm_noperands (PATTERN (insn)) < 0)))
    {
    {
      cselib_val *val = cselib_lookup (x, GET_MODE (x), 0);
      cselib_val *val = cselib_lookup (x, GET_MODE (x), 0);
      struct elt_loc_list *l;
      struct elt_loc_list *l;
 
 
      if (!val)
      if (!val)
        return false;
        return false;
      for (l = val->locs; l; l = l->next)
      for (l = val->locs; l; l = l->next)
        {
        {
          rtx this_rtx = l->loc;
          rtx this_rtx = l->loc;
          rtx note;
          rtx note;
 
 
          /* Don't CSE non-constant values out of libcall blocks.  */
          /* Don't CSE non-constant values out of libcall blocks.  */
          if (l->in_libcall && ! CONSTANT_P (this_rtx))
          if (l->in_libcall && ! CONSTANT_P (this_rtx))
            continue;
            continue;
 
 
          if (gcse_constant_p (this_rtx))
          if (gcse_constant_p (this_rtx))
            newcnst = this_rtx;
            newcnst = this_rtx;
          if (REG_P (this_rtx) && REGNO (this_rtx) >= FIRST_PSEUDO_REGISTER
          if (REG_P (this_rtx) && REGNO (this_rtx) >= FIRST_PSEUDO_REGISTER
              /* Don't copy propagate if it has attached REG_EQUIV note.
              /* Don't copy propagate if it has attached REG_EQUIV note.
                 At this point this only function parameters should have
                 At this point this only function parameters should have
                 REG_EQUIV notes and if the argument slot is used somewhere
                 REG_EQUIV notes and if the argument slot is used somewhere
                 explicitly, it means address of parameter has been taken,
                 explicitly, it means address of parameter has been taken,
                 so we should not extend the lifetime of the pseudo.  */
                 so we should not extend the lifetime of the pseudo.  */
              && (!(note = find_reg_note (l->setting_insn, REG_EQUIV, NULL_RTX))
              && (!(note = find_reg_note (l->setting_insn, REG_EQUIV, NULL_RTX))
                  || ! MEM_P (XEXP (note, 0))))
                  || ! MEM_P (XEXP (note, 0))))
            newreg = this_rtx;
            newreg = this_rtx;
        }
        }
      if (newcnst && constprop_register (insn, x, newcnst, alter_jumps))
      if (newcnst && constprop_register (insn, x, newcnst, alter_jumps))
        {
        {
          /* If we find a case where we can't fix the retval REG_EQUAL notes
          /* If we find a case where we can't fix the retval REG_EQUAL notes
             match the new register, we either have to abandon this replacement
             match the new register, we either have to abandon this replacement
             or fix delete_trivially_dead_insns to preserve the setting insn,
             or fix delete_trivially_dead_insns to preserve the setting insn,
             or make it delete the REG_EUAQL note, and fix up all passes that
             or make it delete the REG_EUAQL note, and fix up all passes that
             require the REG_EQUAL note there.  */
             require the REG_EQUAL note there.  */
          bool adjusted;
          bool adjusted;
 
 
          adjusted = adjust_libcall_notes (x, newcnst, insn, libcall_sp);
          adjusted = adjust_libcall_notes (x, newcnst, insn, libcall_sp);
          gcc_assert (adjusted);
          gcc_assert (adjusted);
 
 
          if (dump_file != NULL)
          if (dump_file != NULL)
            {
            {
              fprintf (dump_file, "LOCAL CONST-PROP: Replacing reg %d in ",
              fprintf (dump_file, "LOCAL CONST-PROP: Replacing reg %d in ",
                       REGNO (x));
                       REGNO (x));
              fprintf (dump_file, "insn %d with constant ",
              fprintf (dump_file, "insn %d with constant ",
                       INSN_UID (insn));
                       INSN_UID (insn));
              print_rtl (dump_file, newcnst);
              print_rtl (dump_file, newcnst);
              fprintf (dump_file, "\n");
              fprintf (dump_file, "\n");
            }
            }
          local_const_prop_count++;
          local_const_prop_count++;
          return true;
          return true;
        }
        }
      else if (newreg && newreg != x && try_replace_reg (x, newreg, insn))
      else if (newreg && newreg != x && try_replace_reg (x, newreg, insn))
        {
        {
          adjust_libcall_notes (x, newreg, insn, libcall_sp);
          adjust_libcall_notes (x, newreg, insn, libcall_sp);
          if (dump_file != NULL)
          if (dump_file != NULL)
            {
            {
              fprintf (dump_file,
              fprintf (dump_file,
                       "LOCAL COPY-PROP: Replacing reg %d in insn %d",
                       "LOCAL COPY-PROP: Replacing reg %d in insn %d",
                       REGNO (x), INSN_UID (insn));
                       REGNO (x), INSN_UID (insn));
              fprintf (dump_file, " with reg %d\n", REGNO (newreg));
              fprintf (dump_file, " with reg %d\n", REGNO (newreg));
            }
            }
          local_copy_prop_count++;
          local_copy_prop_count++;
          return true;
          return true;
        }
        }
    }
    }
  return false;
  return false;
}
}
 
 
/* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
/* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
   their REG_EQUAL notes need updating to reflect that OLDREG has been
   their REG_EQUAL notes need updating to reflect that OLDREG has been
   replaced with NEWVAL in INSN.  Return true if all substitutions could
   replaced with NEWVAL in INSN.  Return true if all substitutions could
   be made.  */
   be made.  */
static bool
static bool
adjust_libcall_notes (rtx oldreg, rtx newval, rtx insn, rtx *libcall_sp)
adjust_libcall_notes (rtx oldreg, rtx newval, rtx insn, rtx *libcall_sp)
{
{
  rtx end;
  rtx end;
 
 
  while ((end = *libcall_sp++))
  while ((end = *libcall_sp++))
    {
    {
      rtx note = find_reg_equal_equiv_note (end);
      rtx note = find_reg_equal_equiv_note (end);
 
 
      if (! note)
      if (! note)
        continue;
        continue;
 
 
      if (REG_P (newval))
      if (REG_P (newval))
        {
        {
          if (reg_set_between_p (newval, PREV_INSN (insn), end))
          if (reg_set_between_p (newval, PREV_INSN (insn), end))
            {
            {
              do
              do
                {
                {
                  note = find_reg_equal_equiv_note (end);
                  note = find_reg_equal_equiv_note (end);
                  if (! note)
                  if (! note)
                    continue;
                    continue;
                  if (reg_mentioned_p (newval, XEXP (note, 0)))
                  if (reg_mentioned_p (newval, XEXP (note, 0)))
                    return false;
                    return false;
                }
                }
              while ((end = *libcall_sp++));
              while ((end = *libcall_sp++));
              return true;
              return true;
            }
            }
        }
        }
      XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), oldreg, newval);
      XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), oldreg, newval);
      insn = end;
      insn = end;
    }
    }
  return true;
  return true;
}
}
 
 
#define MAX_NESTED_LIBCALLS 9
#define MAX_NESTED_LIBCALLS 9
 
 
/* Do local const/copy propagation (i.e. within each basic block).
/* Do local const/copy propagation (i.e. within each basic block).
   If ALTER_JUMPS is true, allow propagating into jump insns, which
   If ALTER_JUMPS is true, allow propagating into jump insns, which
   could modify the CFG.  */
   could modify the CFG.  */
 
 
static void
static void
local_cprop_pass (bool alter_jumps)
local_cprop_pass (bool alter_jumps)
{
{
  basic_block bb;
  basic_block bb;
  rtx insn;
  rtx insn;
  struct reg_use *reg_used;
  struct reg_use *reg_used;
  rtx libcall_stack[MAX_NESTED_LIBCALLS + 1], *libcall_sp;
  rtx libcall_stack[MAX_NESTED_LIBCALLS + 1], *libcall_sp;
  bool changed = false;
  bool changed = false;
 
 
  cselib_init (false);
  cselib_init (false);
  libcall_sp = &libcall_stack[MAX_NESTED_LIBCALLS];
  libcall_sp = &libcall_stack[MAX_NESTED_LIBCALLS];
  *libcall_sp = 0;
  *libcall_sp = 0;
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    {
    {
      FOR_BB_INSNS (bb, insn)
      FOR_BB_INSNS (bb, insn)
        {
        {
          if (INSN_P (insn))
          if (INSN_P (insn))
            {
            {
              rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
              rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
 
 
              if (note)
              if (note)
                {
                {
                  gcc_assert (libcall_sp != libcall_stack);
                  gcc_assert (libcall_sp != libcall_stack);
                  *--libcall_sp = XEXP (note, 0);
                  *--libcall_sp = XEXP (note, 0);
                }
                }
              note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
              note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
              if (note)
              if (note)
                libcall_sp++;
                libcall_sp++;
              note = find_reg_equal_equiv_note (insn);
              note = find_reg_equal_equiv_note (insn);
              do
              do
                {
                {
                  reg_use_count = 0;
                  reg_use_count = 0;
                  note_uses (&PATTERN (insn), local_cprop_find_used_regs,
                  note_uses (&PATTERN (insn), local_cprop_find_used_regs,
                             NULL);
                             NULL);
                  if (note)
                  if (note)
                    local_cprop_find_used_regs (&XEXP (note, 0), NULL);
                    local_cprop_find_used_regs (&XEXP (note, 0), NULL);
 
 
                  for (reg_used = &reg_use_table[0]; reg_use_count > 0;
                  for (reg_used = &reg_use_table[0]; reg_use_count > 0;
                       reg_used++, reg_use_count--)
                       reg_used++, reg_use_count--)
                    if (do_local_cprop (reg_used->reg_rtx, insn, alter_jumps,
                    if (do_local_cprop (reg_used->reg_rtx, insn, alter_jumps,
                        libcall_sp))
                        libcall_sp))
                      {
                      {
                        changed = true;
                        changed = true;
                        break;
                        break;
                      }
                      }
                  if (INSN_DELETED_P (insn))
                  if (INSN_DELETED_P (insn))
                    break;
                    break;
                }
                }
              while (reg_use_count);
              while (reg_use_count);
            }
            }
          cselib_process_insn (insn);
          cselib_process_insn (insn);
        }
        }
 
 
      /* Forget everything at the end of a basic block.  Make sure we are
      /* Forget everything at the end of a basic block.  Make sure we are
         not inside a libcall, they should never cross basic blocks.  */
         not inside a libcall, they should never cross basic blocks.  */
      cselib_clear_table ();
      cselib_clear_table ();
      gcc_assert (libcall_sp == &libcall_stack[MAX_NESTED_LIBCALLS]);
      gcc_assert (libcall_sp == &libcall_stack[MAX_NESTED_LIBCALLS]);
    }
    }
 
 
  cselib_finish ();
  cselib_finish ();
 
 
  /* Global analysis may get into infinite loops for unreachable blocks.  */
  /* Global analysis may get into infinite loops for unreachable blocks.  */
  if (changed && alter_jumps)
  if (changed && alter_jumps)
    {
    {
      delete_unreachable_blocks ();
      delete_unreachable_blocks ();
      free_reg_set_mem ();
      free_reg_set_mem ();
      alloc_reg_set_mem (max_reg_num ());
      alloc_reg_set_mem (max_reg_num ());
      compute_sets ();
      compute_sets ();
    }
    }
}
}
 
 
/* Forward propagate copies.  This includes copies and constants.  Return
/* Forward propagate copies.  This includes copies and constants.  Return
   nonzero if a change was made.  */
   nonzero if a change was made.  */
 
 
static int
static int
cprop (int alter_jumps)
cprop (int alter_jumps)
{
{
  int changed;
  int changed;
  basic_block bb;
  basic_block bb;
  rtx insn;
  rtx insn;
 
 
  /* Note we start at block 1.  */
  /* Note we start at block 1.  */
  if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
  if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
    {
    {
      if (dump_file != NULL)
      if (dump_file != NULL)
        fprintf (dump_file, "\n");
        fprintf (dump_file, "\n");
      return 0;
      return 0;
    }
    }
 
 
  changed = 0;
  changed = 0;
  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, EXIT_BLOCK_PTR, next_bb)
  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, EXIT_BLOCK_PTR, next_bb)
    {
    {
      /* Reset tables used to keep track of what's still valid [since the
      /* Reset tables used to keep track of what's still valid [since the
         start of the block].  */
         start of the block].  */
      reset_opr_set_tables ();
      reset_opr_set_tables ();
 
 
      FOR_BB_INSNS (bb, insn)
      FOR_BB_INSNS (bb, insn)
        if (INSN_P (insn))
        if (INSN_P (insn))
          {
          {
            changed |= cprop_insn (insn, alter_jumps);
            changed |= cprop_insn (insn, alter_jumps);
 
 
            /* Keep track of everything modified by this insn.  */
            /* Keep track of everything modified by this insn.  */
            /* ??? Need to be careful w.r.t. mods done to INSN.  Don't
            /* ??? Need to be careful w.r.t. mods done to INSN.  Don't
               call mark_oprs_set if we turned the insn into a NOTE.  */
               call mark_oprs_set if we turned the insn into a NOTE.  */
            if (! NOTE_P (insn))
            if (! NOTE_P (insn))
              mark_oprs_set (insn);
              mark_oprs_set (insn);
          }
          }
    }
    }
 
 
  if (dump_file != NULL)
  if (dump_file != NULL)
    fprintf (dump_file, "\n");
    fprintf (dump_file, "\n");
 
 
  return changed;
  return changed;
}
}
 
 
/* Similar to get_condition, only the resulting condition must be
/* Similar to get_condition, only the resulting condition must be
   valid at JUMP, instead of at EARLIEST.
   valid at JUMP, instead of at EARLIEST.
 
 
   This differs from noce_get_condition in ifcvt.c in that we prefer not to
   This differs from noce_get_condition in ifcvt.c in that we prefer not to
   settle for the condition variable in the jump instruction being integral.
   settle for the condition variable in the jump instruction being integral.
   We prefer to be able to record the value of a user variable, rather than
   We prefer to be able to record the value of a user variable, rather than
   the value of a temporary used in a condition.  This could be solved by
   the value of a temporary used in a condition.  This could be solved by
   recording the value of *every* register scanned by canonicalize_condition,
   recording the value of *every* register scanned by canonicalize_condition,
   but this would require some code reorganization.  */
   but this would require some code reorganization.  */
 
 
rtx
rtx
fis_get_condition (rtx jump)
fis_get_condition (rtx jump)
{
{
  return get_condition (jump, NULL, false, true);
  return get_condition (jump, NULL, false, true);
}
}
 
 
/* Check the comparison COND to see if we can safely form an implicit set from
/* Check the comparison COND to see if we can safely form an implicit set from
   it.  COND is either an EQ or NE comparison.  */
   it.  COND is either an EQ or NE comparison.  */
 
 
static bool
static bool
implicit_set_cond_p (rtx cond)
implicit_set_cond_p (rtx cond)
{
{
  enum machine_mode mode = GET_MODE (XEXP (cond, 0));
  enum machine_mode mode = GET_MODE (XEXP (cond, 0));
  rtx cst = XEXP (cond, 1);
  rtx cst = XEXP (cond, 1);
 
 
  /* We can't perform this optimization if either operand might be or might
  /* We can't perform this optimization if either operand might be or might
     contain a signed zero.  */
     contain a signed zero.  */
  if (HONOR_SIGNED_ZEROS (mode))
  if (HONOR_SIGNED_ZEROS (mode))
    {
    {
      /* It is sufficient to check if CST is or contains a zero.  We must
      /* It is sufficient to check if CST is or contains a zero.  We must
         handle float, complex, and vector.  If any subpart is a zero, then
         handle float, complex, and vector.  If any subpart is a zero, then
         the optimization can't be performed.  */
         the optimization can't be performed.  */
      /* ??? The complex and vector checks are not implemented yet.  We just
      /* ??? The complex and vector checks are not implemented yet.  We just
         always return zero for them.  */
         always return zero for them.  */
      if (GET_CODE (cst) == CONST_DOUBLE)
      if (GET_CODE (cst) == CONST_DOUBLE)
        {
        {
          REAL_VALUE_TYPE d;
          REAL_VALUE_TYPE d;
          REAL_VALUE_FROM_CONST_DOUBLE (d, cst);
          REAL_VALUE_FROM_CONST_DOUBLE (d, cst);
          if (REAL_VALUES_EQUAL (d, dconst0))
          if (REAL_VALUES_EQUAL (d, dconst0))
            return 0;
            return 0;
        }
        }
      else
      else
        return 0;
        return 0;
    }
    }
 
 
  return gcse_constant_p (cst);
  return gcse_constant_p (cst);
}
}
 
 
/* Find the implicit sets of a function.  An "implicit set" is a constraint
/* Find the implicit sets of a function.  An "implicit set" is a constraint
   on the value of a variable, implied by a conditional jump.  For example,
   on the value of a variable, implied by a conditional jump.  For example,
   following "if (x == 2)", the then branch may be optimized as though the
   following "if (x == 2)", the then branch may be optimized as though the
   conditional performed an "explicit set", in this example, "x = 2".  This
   conditional performed an "explicit set", in this example, "x = 2".  This
   function records the set patterns that are implicit at the start of each
   function records the set patterns that are implicit at the start of each
   basic block.  */
   basic block.  */
 
 
static void
static void
find_implicit_sets (void)
find_implicit_sets (void)
{
{
  basic_block bb, dest;
  basic_block bb, dest;
  unsigned int count;
  unsigned int count;
  rtx cond, new;
  rtx cond, new;
 
 
  count = 0;
  count = 0;
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    /* Check for more than one successor.  */
    /* Check for more than one successor.  */
    if (EDGE_COUNT (bb->succs) > 1)
    if (EDGE_COUNT (bb->succs) > 1)
      {
      {
        cond = fis_get_condition (BB_END (bb));
        cond = fis_get_condition (BB_END (bb));
 
 
        if (cond
        if (cond
            && (GET_CODE (cond) == EQ || GET_CODE (cond) == NE)
            && (GET_CODE (cond) == EQ || GET_CODE (cond) == NE)
            && REG_P (XEXP (cond, 0))
            && REG_P (XEXP (cond, 0))
            && REGNO (XEXP (cond, 0)) >= FIRST_PSEUDO_REGISTER
            && REGNO (XEXP (cond, 0)) >= FIRST_PSEUDO_REGISTER
            && implicit_set_cond_p (cond))
            && implicit_set_cond_p (cond))
          {
          {
            dest = GET_CODE (cond) == EQ ? BRANCH_EDGE (bb)->dest
            dest = GET_CODE (cond) == EQ ? BRANCH_EDGE (bb)->dest
                                         : FALLTHRU_EDGE (bb)->dest;
                                         : FALLTHRU_EDGE (bb)->dest;
 
 
            if (dest && single_pred_p (dest)
            if (dest && single_pred_p (dest)
                && dest != EXIT_BLOCK_PTR)
                && dest != EXIT_BLOCK_PTR)
              {
              {
                new = gen_rtx_SET (VOIDmode, XEXP (cond, 0),
                new = gen_rtx_SET (VOIDmode, XEXP (cond, 0),
                                             XEXP (cond, 1));
                                             XEXP (cond, 1));
                implicit_sets[dest->index] = new;
                implicit_sets[dest->index] = new;
                if (dump_file)
                if (dump_file)
                  {
                  {
                    fprintf(dump_file, "Implicit set of reg %d in ",
                    fprintf(dump_file, "Implicit set of reg %d in ",
                            REGNO (XEXP (cond, 0)));
                            REGNO (XEXP (cond, 0)));
                    fprintf(dump_file, "basic block %d\n", dest->index);
                    fprintf(dump_file, "basic block %d\n", dest->index);
                  }
                  }
                count++;
                count++;
              }
              }
          }
          }
      }
      }
 
 
  if (dump_file)
  if (dump_file)
    fprintf (dump_file, "Found %d implicit sets\n", count);
    fprintf (dump_file, "Found %d implicit sets\n", count);
}
}
 
 
/* Perform one copy/constant propagation pass.
/* Perform one copy/constant propagation pass.
   PASS is the pass count.  If CPROP_JUMPS is true, perform constant
   PASS is the pass count.  If CPROP_JUMPS is true, perform constant
   propagation into conditional jumps.  If BYPASS_JUMPS is true,
   propagation into conditional jumps.  If BYPASS_JUMPS is true,
   perform conditional jump bypassing optimizations.  */
   perform conditional jump bypassing optimizations.  */
 
 
static int
static int
one_cprop_pass (int pass, bool cprop_jumps, bool bypass_jumps)
one_cprop_pass (int pass, bool cprop_jumps, bool bypass_jumps)
{
{
  int changed = 0;
  int changed = 0;
 
 
  global_const_prop_count = local_const_prop_count = 0;
  global_const_prop_count = local_const_prop_count = 0;
  global_copy_prop_count = local_copy_prop_count = 0;
  global_copy_prop_count = local_copy_prop_count = 0;
 
 
  local_cprop_pass (cprop_jumps);
  local_cprop_pass (cprop_jumps);
 
 
  /* Determine implicit sets.  */
  /* Determine implicit sets.  */
  implicit_sets = XCNEWVEC (rtx, last_basic_block);
  implicit_sets = XCNEWVEC (rtx, last_basic_block);
  find_implicit_sets ();
  find_implicit_sets ();
 
 
  alloc_hash_table (max_cuid, &set_hash_table, 1);
  alloc_hash_table (max_cuid, &set_hash_table, 1);
  compute_hash_table (&set_hash_table);
  compute_hash_table (&set_hash_table);
 
 
  /* Free implicit_sets before peak usage.  */
  /* Free implicit_sets before peak usage.  */
  free (implicit_sets);
  free (implicit_sets);
  implicit_sets = NULL;
  implicit_sets = NULL;
 
 
  if (dump_file)
  if (dump_file)
    dump_hash_table (dump_file, "SET", &set_hash_table);
    dump_hash_table (dump_file, "SET", &set_hash_table);
  if (set_hash_table.n_elems > 0)
  if (set_hash_table.n_elems > 0)
    {
    {
      alloc_cprop_mem (last_basic_block, set_hash_table.n_elems);
      alloc_cprop_mem (last_basic_block, set_hash_table.n_elems);
      compute_cprop_data ();
      compute_cprop_data ();
      changed = cprop (cprop_jumps);
      changed = cprop (cprop_jumps);
      if (bypass_jumps)
      if (bypass_jumps)
        changed |= bypass_conditional_jumps ();
        changed |= bypass_conditional_jumps ();
      free_cprop_mem ();
      free_cprop_mem ();
    }
    }
 
 
  free_hash_table (&set_hash_table);
  free_hash_table (&set_hash_table);
 
 
  if (dump_file)
  if (dump_file)
    {
    {
      fprintf (dump_file, "CPROP of %s, pass %d: %d bytes needed, ",
      fprintf (dump_file, "CPROP of %s, pass %d: %d bytes needed, ",
               current_function_name (), pass, bytes_used);
               current_function_name (), pass, bytes_used);
      fprintf (dump_file, "%d local const props, %d local copy props, ",
      fprintf (dump_file, "%d local const props, %d local copy props, ",
               local_const_prop_count, local_copy_prop_count);
               local_const_prop_count, local_copy_prop_count);
      fprintf (dump_file, "%d global const props, %d global copy props\n\n",
      fprintf (dump_file, "%d global const props, %d global copy props\n\n",
               global_const_prop_count, global_copy_prop_count);
               global_const_prop_count, global_copy_prop_count);
    }
    }
  /* Global analysis may get into infinite loops for unreachable blocks.  */
  /* Global analysis may get into infinite loops for unreachable blocks.  */
  if (changed && cprop_jumps)
  if (changed && cprop_jumps)
    delete_unreachable_blocks ();
    delete_unreachable_blocks ();
 
 
  return changed;
  return changed;
}
}


/* Bypass conditional jumps.  */
/* Bypass conditional jumps.  */
 
 
/* The value of last_basic_block at the beginning of the jump_bypass
/* The value of last_basic_block at the beginning of the jump_bypass
   pass.  The use of redirect_edge_and_branch_force may introduce new
   pass.  The use of redirect_edge_and_branch_force may introduce new
   basic blocks, but the data flow analysis is only valid for basic
   basic blocks, but the data flow analysis is only valid for basic
   block indices less than bypass_last_basic_block.  */
   block indices less than bypass_last_basic_block.  */
 
 
static int bypass_last_basic_block;
static int bypass_last_basic_block;
 
 
/* Find a set of REGNO to a constant that is available at the end of basic
/* Find a set of REGNO to a constant that is available at the end of basic
   block BB.  Returns NULL if no such set is found.  Based heavily upon
   block BB.  Returns NULL if no such set is found.  Based heavily upon
   find_avail_set.  */
   find_avail_set.  */
 
 
static struct expr *
static struct expr *
find_bypass_set (int regno, int bb)
find_bypass_set (int regno, int bb)
{
{
  struct expr *result = 0;
  struct expr *result = 0;
 
 
  for (;;)
  for (;;)
    {
    {
      rtx src;
      rtx src;
      struct expr *set = lookup_set (regno, &set_hash_table);
      struct expr *set = lookup_set (regno, &set_hash_table);
 
 
      while (set)
      while (set)
        {
        {
          if (TEST_BIT (cprop_avout[bb], set->bitmap_index))
          if (TEST_BIT (cprop_avout[bb], set->bitmap_index))
            break;
            break;
          set = next_set (regno, set);
          set = next_set (regno, set);
        }
        }
 
 
      if (set == 0)
      if (set == 0)
        break;
        break;
 
 
      gcc_assert (GET_CODE (set->expr) == SET);
      gcc_assert (GET_CODE (set->expr) == SET);
 
 
      src = SET_SRC (set->expr);
      src = SET_SRC (set->expr);
      if (gcse_constant_p (src))
      if (gcse_constant_p (src))
        result = set;
        result = set;
 
 
      if (! REG_P (src))
      if (! REG_P (src))
        break;
        break;
 
 
      regno = REGNO (src);
      regno = REGNO (src);
    }
    }
  return result;
  return result;
}
}
 
 
 
 
/* Subroutine of bypass_block that checks whether a pseudo is killed by
/* Subroutine of bypass_block that checks whether a pseudo is killed by
   any of the instructions inserted on an edge.  Jump bypassing places
   any of the instructions inserted on an edge.  Jump bypassing places
   condition code setters on CFG edges using insert_insn_on_edge.  This
   condition code setters on CFG edges using insert_insn_on_edge.  This
   function is required to check that our data flow analysis is still
   function is required to check that our data flow analysis is still
   valid prior to commit_edge_insertions.  */
   valid prior to commit_edge_insertions.  */
 
 
static bool
static bool
reg_killed_on_edge (rtx reg, edge e)
reg_killed_on_edge (rtx reg, edge e)
{
{
  rtx insn;
  rtx insn;
 
 
  for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
  for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
    if (INSN_P (insn) && reg_set_p (reg, insn))
    if (INSN_P (insn) && reg_set_p (reg, insn))
      return true;
      return true;
 
 
  return false;
  return false;
}
}
 
 
/* Subroutine of bypass_conditional_jumps that attempts to bypass the given
/* Subroutine of bypass_conditional_jumps that attempts to bypass the given
   basic block BB which has more than one predecessor.  If not NULL, SETCC
   basic block BB which has more than one predecessor.  If not NULL, SETCC
   is the first instruction of BB, which is immediately followed by JUMP_INSN
   is the first instruction of BB, which is immediately followed by JUMP_INSN
   JUMP.  Otherwise, SETCC is NULL, and JUMP is the first insn of BB.
   JUMP.  Otherwise, SETCC is NULL, and JUMP is the first insn of BB.
   Returns nonzero if a change was made.
   Returns nonzero if a change was made.
 
 
   During the jump bypassing pass, we may place copies of SETCC instructions
   During the jump bypassing pass, we may place copies of SETCC instructions
   on CFG edges.  The following routine must be careful to pay attention to
   on CFG edges.  The following routine must be careful to pay attention to
   these inserted insns when performing its transformations.  */
   these inserted insns when performing its transformations.  */
 
 
static int
static int
bypass_block (basic_block bb, rtx setcc, rtx jump)
bypass_block (basic_block bb, rtx setcc, rtx jump)
{
{
  rtx insn, note;
  rtx insn, note;
  edge e, edest;
  edge e, edest;
  int i, change;
  int i, change;
  int may_be_loop_header;
  int may_be_loop_header;
  unsigned removed_p;
  unsigned removed_p;
  edge_iterator ei;
  edge_iterator ei;
 
 
  insn = (setcc != NULL) ? setcc : jump;
  insn = (setcc != NULL) ? setcc : jump;
 
 
  /* Determine set of register uses in INSN.  */
  /* Determine set of register uses in INSN.  */
  reg_use_count = 0;
  reg_use_count = 0;
  note_uses (&PATTERN (insn), find_used_regs, NULL);
  note_uses (&PATTERN (insn), find_used_regs, NULL);
  note = find_reg_equal_equiv_note (insn);
  note = find_reg_equal_equiv_note (insn);
  if (note)
  if (note)
    find_used_regs (&XEXP (note, 0), NULL);
    find_used_regs (&XEXP (note, 0), NULL);
 
 
  may_be_loop_header = false;
  may_be_loop_header = false;
  FOR_EACH_EDGE (e, ei, bb->preds)
  FOR_EACH_EDGE (e, ei, bb->preds)
    if (e->flags & EDGE_DFS_BACK)
    if (e->flags & EDGE_DFS_BACK)
      {
      {
        may_be_loop_header = true;
        may_be_loop_header = true;
        break;
        break;
      }
      }
 
 
  change = 0;
  change = 0;
  for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
  for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
    {
    {
      removed_p = 0;
      removed_p = 0;
 
 
      if (e->flags & EDGE_COMPLEX)
      if (e->flags & EDGE_COMPLEX)
        {
        {
          ei_next (&ei);
          ei_next (&ei);
          continue;
          continue;
        }
        }
 
 
      /* We can't redirect edges from new basic blocks.  */
      /* We can't redirect edges from new basic blocks.  */
      if (e->src->index >= bypass_last_basic_block)
      if (e->src->index >= bypass_last_basic_block)
        {
        {
          ei_next (&ei);
          ei_next (&ei);
          continue;
          continue;
        }
        }
 
 
      /* The irreducible loops created by redirecting of edges entering the
      /* The irreducible loops created by redirecting of edges entering the
         loop from outside would decrease effectiveness of some of the following
         loop from outside would decrease effectiveness of some of the following
         optimizations, so prevent this.  */
         optimizations, so prevent this.  */
      if (may_be_loop_header
      if (may_be_loop_header
          && !(e->flags & EDGE_DFS_BACK))
          && !(e->flags & EDGE_DFS_BACK))
        {
        {
          ei_next (&ei);
          ei_next (&ei);
          continue;
          continue;
        }
        }
 
 
      for (i = 0; i < reg_use_count; i++)
      for (i = 0; i < reg_use_count; i++)
        {
        {
          struct reg_use *reg_used = &reg_use_table[i];
          struct reg_use *reg_used = &reg_use_table[i];
          unsigned int regno = REGNO (reg_used->reg_rtx);
          unsigned int regno = REGNO (reg_used->reg_rtx);
          basic_block dest, old_dest;
          basic_block dest, old_dest;
          struct expr *set;
          struct expr *set;
          rtx src, new;
          rtx src, new;
 
 
          if (regno >= max_gcse_regno)
          if (regno >= max_gcse_regno)
            continue;
            continue;
 
 
          set = find_bypass_set (regno, e->src->index);
          set = find_bypass_set (regno, e->src->index);
 
 
          if (! set)
          if (! set)
            continue;
            continue;
 
 
          /* Check the data flow is valid after edge insertions.  */
          /* Check the data flow is valid after edge insertions.  */
          if (e->insns.r && reg_killed_on_edge (reg_used->reg_rtx, e))
          if (e->insns.r && reg_killed_on_edge (reg_used->reg_rtx, e))
            continue;
            continue;
 
 
          src = SET_SRC (pc_set (jump));
          src = SET_SRC (pc_set (jump));
 
 
          if (setcc != NULL)
          if (setcc != NULL)
              src = simplify_replace_rtx (src,
              src = simplify_replace_rtx (src,
                                          SET_DEST (PATTERN (setcc)),
                                          SET_DEST (PATTERN (setcc)),
                                          SET_SRC (PATTERN (setcc)));
                                          SET_SRC (PATTERN (setcc)));
 
 
          new = simplify_replace_rtx (src, reg_used->reg_rtx,
          new = simplify_replace_rtx (src, reg_used->reg_rtx,
                                      SET_SRC (set->expr));
                                      SET_SRC (set->expr));
 
 
          /* Jump bypassing may have already placed instructions on
          /* Jump bypassing may have already placed instructions on
             edges of the CFG.  We can't bypass an outgoing edge that
             edges of the CFG.  We can't bypass an outgoing edge that
             has instructions associated with it, as these insns won't
             has instructions associated with it, as these insns won't
             get executed if the incoming edge is redirected.  */
             get executed if the incoming edge is redirected.  */
 
 
          if (new == pc_rtx)
          if (new == pc_rtx)
            {
            {
              edest = FALLTHRU_EDGE (bb);
              edest = FALLTHRU_EDGE (bb);
              dest = edest->insns.r ? NULL : edest->dest;
              dest = edest->insns.r ? NULL : edest->dest;
            }
            }
          else if (GET_CODE (new) == LABEL_REF)
          else if (GET_CODE (new) == LABEL_REF)
            {
            {
              dest = BLOCK_FOR_INSN (XEXP (new, 0));
              dest = BLOCK_FOR_INSN (XEXP (new, 0));
              /* Don't bypass edges containing instructions.  */
              /* Don't bypass edges containing instructions.  */
              edest = find_edge (bb, dest);
              edest = find_edge (bb, dest);
              if (edest && edest->insns.r)
              if (edest && edest->insns.r)
                dest = NULL;
                dest = NULL;
            }
            }
          else
          else
            dest = NULL;
            dest = NULL;
 
 
          /* Avoid unification of the edge with other edges from original
          /* Avoid unification of the edge with other edges from original
             branch.  We would end up emitting the instruction on "both"
             branch.  We would end up emitting the instruction on "both"
             edges.  */
             edges.  */
 
 
          if (dest && setcc && !CC0_P (SET_DEST (PATTERN (setcc)))
          if (dest && setcc && !CC0_P (SET_DEST (PATTERN (setcc)))
              && find_edge (e->src, dest))
              && find_edge (e->src, dest))
            dest = NULL;
            dest = NULL;
 
 
          old_dest = e->dest;
          old_dest = e->dest;
          if (dest != NULL
          if (dest != NULL
              && dest != old_dest
              && dest != old_dest
              && dest != EXIT_BLOCK_PTR)
              && dest != EXIT_BLOCK_PTR)
            {
            {
              redirect_edge_and_branch_force (e, dest);
              redirect_edge_and_branch_force (e, dest);
 
 
              /* Copy the register setter to the redirected edge.
              /* Copy the register setter to the redirected edge.
                 Don't copy CC0 setters, as CC0 is dead after jump.  */
                 Don't copy CC0 setters, as CC0 is dead after jump.  */
              if (setcc)
              if (setcc)
                {
                {
                  rtx pat = PATTERN (setcc);
                  rtx pat = PATTERN (setcc);
                  if (!CC0_P (SET_DEST (pat)))
                  if (!CC0_P (SET_DEST (pat)))
                    insert_insn_on_edge (copy_insn (pat), e);
                    insert_insn_on_edge (copy_insn (pat), e);
                }
                }
 
 
              if (dump_file != NULL)
              if (dump_file != NULL)
                {
                {
                  fprintf (dump_file, "JUMP-BYPASS: Proved reg %d "
                  fprintf (dump_file, "JUMP-BYPASS: Proved reg %d "
                                      "in jump_insn %d equals constant ",
                                      "in jump_insn %d equals constant ",
                           regno, INSN_UID (jump));
                           regno, INSN_UID (jump));
                  print_rtl (dump_file, SET_SRC (set->expr));
                  print_rtl (dump_file, SET_SRC (set->expr));
                  fprintf (dump_file, "\nBypass edge from %d->%d to %d\n",
                  fprintf (dump_file, "\nBypass edge from %d->%d to %d\n",
                           e->src->index, old_dest->index, dest->index);
                           e->src->index, old_dest->index, dest->index);
                }
                }
              change = 1;
              change = 1;
              removed_p = 1;
              removed_p = 1;
              break;
              break;
            }
            }
        }
        }
      if (!removed_p)
      if (!removed_p)
        ei_next (&ei);
        ei_next (&ei);
    }
    }
  return change;
  return change;
}
}
 
 
/* Find basic blocks with more than one predecessor that only contain a
/* Find basic blocks with more than one predecessor that only contain a
   single conditional jump.  If the result of the comparison is known at
   single conditional jump.  If the result of the comparison is known at
   compile-time from any incoming edge, redirect that edge to the
   compile-time from any incoming edge, redirect that edge to the
   appropriate target.  Returns nonzero if a change was made.
   appropriate target.  Returns nonzero if a change was made.
 
 
   This function is now mis-named, because we also handle indirect jumps.  */
   This function is now mis-named, because we also handle indirect jumps.  */
 
 
static int
static int
bypass_conditional_jumps (void)
bypass_conditional_jumps (void)
{
{
  basic_block bb;
  basic_block bb;
  int changed;
  int changed;
  rtx setcc;
  rtx setcc;
  rtx insn;
  rtx insn;
  rtx dest;
  rtx dest;
 
 
  /* Note we start at block 1.  */
  /* Note we start at block 1.  */
  if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
  if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
    return 0;
    return 0;
 
 
  bypass_last_basic_block = last_basic_block;
  bypass_last_basic_block = last_basic_block;
  mark_dfs_back_edges ();
  mark_dfs_back_edges ();
 
 
  changed = 0;
  changed = 0;
  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb,
  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb,
                  EXIT_BLOCK_PTR, next_bb)
                  EXIT_BLOCK_PTR, next_bb)
    {
    {
      /* Check for more than one predecessor.  */
      /* Check for more than one predecessor.  */
      if (!single_pred_p (bb))
      if (!single_pred_p (bb))
        {
        {
          setcc = NULL_RTX;
          setcc = NULL_RTX;
          FOR_BB_INSNS (bb, insn)
          FOR_BB_INSNS (bb, insn)
            if (NONJUMP_INSN_P (insn))
            if (NONJUMP_INSN_P (insn))
              {
              {
                if (setcc)
                if (setcc)
                  break;
                  break;
                if (GET_CODE (PATTERN (insn)) != SET)
                if (GET_CODE (PATTERN (insn)) != SET)
                  break;
                  break;
 
 
                dest = SET_DEST (PATTERN (insn));
                dest = SET_DEST (PATTERN (insn));
                if (REG_P (dest) || CC0_P (dest))
                if (REG_P (dest) || CC0_P (dest))
                  setcc = insn;
                  setcc = insn;
                else
                else
                  break;
                  break;
              }
              }
            else if (JUMP_P (insn))
            else if (JUMP_P (insn))
              {
              {
                if ((any_condjump_p (insn) || computed_jump_p (insn))
                if ((any_condjump_p (insn) || computed_jump_p (insn))
                    && onlyjump_p (insn))
                    && onlyjump_p (insn))
                  changed |= bypass_block (bb, setcc, insn);
                  changed |= bypass_block (bb, setcc, insn);
                break;
                break;
              }
              }
            else if (INSN_P (insn))
            else if (INSN_P (insn))
              break;
              break;
        }
        }
    }
    }
 
 
  /* If we bypassed any register setting insns, we inserted a
  /* If we bypassed any register setting insns, we inserted a
     copy on the redirected edge.  These need to be committed.  */
     copy on the redirected edge.  These need to be committed.  */
  if (changed)
  if (changed)
    commit_edge_insertions();
    commit_edge_insertions();
 
 
  return changed;
  return changed;
}
}


/* Compute PRE+LCM working variables.  */
/* Compute PRE+LCM working variables.  */
 
 
/* Local properties of expressions.  */
/* Local properties of expressions.  */
/* Nonzero for expressions that are transparent in the block.  */
/* Nonzero for expressions that are transparent in the block.  */
static sbitmap *transp;
static sbitmap *transp;
 
 
/* Nonzero for expressions that are transparent at the end of the block.
/* Nonzero for expressions that are transparent at the end of the block.
   This is only zero for expressions killed by abnormal critical edge
   This is only zero for expressions killed by abnormal critical edge
   created by a calls.  */
   created by a calls.  */
static sbitmap *transpout;
static sbitmap *transpout;
 
 
/* Nonzero for expressions that are computed (available) in the block.  */
/* Nonzero for expressions that are computed (available) in the block.  */
static sbitmap *comp;
static sbitmap *comp;
 
 
/* Nonzero for expressions that are locally anticipatable in the block.  */
/* Nonzero for expressions that are locally anticipatable in the block.  */
static sbitmap *antloc;
static sbitmap *antloc;
 
 
/* Nonzero for expressions where this block is an optimal computation
/* Nonzero for expressions where this block is an optimal computation
   point.  */
   point.  */
static sbitmap *pre_optimal;
static sbitmap *pre_optimal;
 
 
/* Nonzero for expressions which are redundant in a particular block.  */
/* Nonzero for expressions which are redundant in a particular block.  */
static sbitmap *pre_redundant;
static sbitmap *pre_redundant;
 
 
/* Nonzero for expressions which should be inserted on a specific edge.  */
/* Nonzero for expressions which should be inserted on a specific edge.  */
static sbitmap *pre_insert_map;
static sbitmap *pre_insert_map;
 
 
/* Nonzero for expressions which should be deleted in a specific block.  */
/* Nonzero for expressions which should be deleted in a specific block.  */
static sbitmap *pre_delete_map;
static sbitmap *pre_delete_map;
 
 
/* Contains the edge_list returned by pre_edge_lcm.  */
/* Contains the edge_list returned by pre_edge_lcm.  */
static struct edge_list *edge_list;
static struct edge_list *edge_list;
 
 
/* Redundant insns.  */
/* Redundant insns.  */
static sbitmap pre_redundant_insns;
static sbitmap pre_redundant_insns;
 
 
/* Allocate vars used for PRE analysis.  */
/* Allocate vars used for PRE analysis.  */
 
 
static void
static void
alloc_pre_mem (int n_blocks, int n_exprs)
alloc_pre_mem (int n_blocks, int n_exprs)
{
{
  transp = sbitmap_vector_alloc (n_blocks, n_exprs);
  transp = sbitmap_vector_alloc (n_blocks, n_exprs);
  comp = sbitmap_vector_alloc (n_blocks, n_exprs);
  comp = sbitmap_vector_alloc (n_blocks, n_exprs);
  antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
  antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
 
 
  pre_optimal = NULL;
  pre_optimal = NULL;
  pre_redundant = NULL;
  pre_redundant = NULL;
  pre_insert_map = NULL;
  pre_insert_map = NULL;
  pre_delete_map = NULL;
  pre_delete_map = NULL;
  ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
  ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
 
 
  /* pre_insert and pre_delete are allocated later.  */
  /* pre_insert and pre_delete are allocated later.  */
}
}
 
 
/* Free vars used for PRE analysis.  */
/* Free vars used for PRE analysis.  */
 
 
static void
static void
free_pre_mem (void)
free_pre_mem (void)
{
{
  sbitmap_vector_free (transp);
  sbitmap_vector_free (transp);
  sbitmap_vector_free (comp);
  sbitmap_vector_free (comp);
 
 
  /* ANTLOC and AE_KILL are freed just after pre_lcm finishes.  */
  /* ANTLOC and AE_KILL are freed just after pre_lcm finishes.  */
 
 
  if (pre_optimal)
  if (pre_optimal)
    sbitmap_vector_free (pre_optimal);
    sbitmap_vector_free (pre_optimal);
  if (pre_redundant)
  if (pre_redundant)
    sbitmap_vector_free (pre_redundant);
    sbitmap_vector_free (pre_redundant);
  if (pre_insert_map)
  if (pre_insert_map)
    sbitmap_vector_free (pre_insert_map);
    sbitmap_vector_free (pre_insert_map);
  if (pre_delete_map)
  if (pre_delete_map)
    sbitmap_vector_free (pre_delete_map);
    sbitmap_vector_free (pre_delete_map);
 
 
  transp = comp = NULL;
  transp = comp = NULL;
  pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
  pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
}
}
 
 
/* Top level routine to do the dataflow analysis needed by PRE.  */
/* Top level routine to do the dataflow analysis needed by PRE.  */
 
 
static void
static void
compute_pre_data (void)
compute_pre_data (void)
{
{
  sbitmap trapping_expr;
  sbitmap trapping_expr;
  basic_block bb;
  basic_block bb;
  unsigned int ui;
  unsigned int ui;
 
 
  compute_local_properties (transp, comp, antloc, &expr_hash_table);
  compute_local_properties (transp, comp, antloc, &expr_hash_table);
  sbitmap_vector_zero (ae_kill, last_basic_block);
  sbitmap_vector_zero (ae_kill, last_basic_block);
 
 
  /* Collect expressions which might trap.  */
  /* Collect expressions which might trap.  */
  trapping_expr = sbitmap_alloc (expr_hash_table.n_elems);
  trapping_expr = sbitmap_alloc (expr_hash_table.n_elems);
  sbitmap_zero (trapping_expr);
  sbitmap_zero (trapping_expr);
  for (ui = 0; ui < expr_hash_table.size; ui++)
  for (ui = 0; ui < expr_hash_table.size; ui++)
    {
    {
      struct expr *e;
      struct expr *e;
      for (e = expr_hash_table.table[ui]; e != NULL; e = e->next_same_hash)
      for (e = expr_hash_table.table[ui]; e != NULL; e = e->next_same_hash)
        if (may_trap_p (e->expr))
        if (may_trap_p (e->expr))
          SET_BIT (trapping_expr, e->bitmap_index);
          SET_BIT (trapping_expr, e->bitmap_index);
    }
    }
 
 
  /* Compute ae_kill for each basic block using:
  /* Compute ae_kill for each basic block using:
 
 
     ~(TRANSP | COMP)
     ~(TRANSP | COMP)
  */
  */
 
 
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    {
    {
      edge e;
      edge e;
      edge_iterator ei;
      edge_iterator ei;
 
 
      /* If the current block is the destination of an abnormal edge, we
      /* If the current block is the destination of an abnormal edge, we
         kill all trapping expressions because we won't be able to properly
         kill all trapping expressions because we won't be able to properly
         place the instruction on the edge.  So make them neither
         place the instruction on the edge.  So make them neither
         anticipatable nor transparent.  This is fairly conservative.  */
         anticipatable nor transparent.  This is fairly conservative.  */
      FOR_EACH_EDGE (e, ei, bb->preds)
      FOR_EACH_EDGE (e, ei, bb->preds)
        if (e->flags & EDGE_ABNORMAL)
        if (e->flags & EDGE_ABNORMAL)
          {
          {
            sbitmap_difference (antloc[bb->index], antloc[bb->index], trapping_expr);
            sbitmap_difference (antloc[bb->index], antloc[bb->index], trapping_expr);
            sbitmap_difference (transp[bb->index], transp[bb->index], trapping_expr);
            sbitmap_difference (transp[bb->index], transp[bb->index], trapping_expr);
            break;
            break;
          }
          }
 
 
      sbitmap_a_or_b (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
      sbitmap_a_or_b (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
      sbitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
      sbitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
    }
    }
 
 
  edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
  edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
                            ae_kill, &pre_insert_map, &pre_delete_map);
                            ae_kill, &pre_insert_map, &pre_delete_map);
  sbitmap_vector_free (antloc);
  sbitmap_vector_free (antloc);
  antloc = NULL;
  antloc = NULL;
  sbitmap_vector_free (ae_kill);
  sbitmap_vector_free (ae_kill);
  ae_kill = NULL;
  ae_kill = NULL;
  sbitmap_free (trapping_expr);
  sbitmap_free (trapping_expr);
}
}


/* PRE utilities */
/* PRE utilities */
 
 
/* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
/* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
   block BB.
   block BB.
 
 
   VISITED is a pointer to a working buffer for tracking which BB's have
   VISITED is a pointer to a working buffer for tracking which BB's have
   been visited.  It is NULL for the top-level call.
   been visited.  It is NULL for the top-level call.
 
 
   We treat reaching expressions that go through blocks containing the same
   We treat reaching expressions that go through blocks containing the same
   reaching expression as "not reaching".  E.g. if EXPR is generated in blocks
   reaching expression as "not reaching".  E.g. if EXPR is generated in blocks
   2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
   2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
   2 as not reaching.  The intent is to improve the probability of finding
   2 as not reaching.  The intent is to improve the probability of finding
   only one reaching expression and to reduce register lifetimes by picking
   only one reaching expression and to reduce register lifetimes by picking
   the closest such expression.  */
   the closest such expression.  */
 
 
static int
static int
pre_expr_reaches_here_p_work (basic_block occr_bb, struct expr *expr, basic_block bb, char *visited)
pre_expr_reaches_here_p_work (basic_block occr_bb, struct expr *expr, basic_block bb, char *visited)
{
{
  edge pred;
  edge pred;
  edge_iterator ei;
  edge_iterator ei;
 
 
  FOR_EACH_EDGE (pred, ei, bb->preds)
  FOR_EACH_EDGE (pred, ei, bb->preds)
    {
    {
      basic_block pred_bb = pred->src;
      basic_block pred_bb = pred->src;
 
 
      if (pred->src == ENTRY_BLOCK_PTR
      if (pred->src == ENTRY_BLOCK_PTR
          /* Has predecessor has already been visited?  */
          /* Has predecessor has already been visited?  */
          || visited[pred_bb->index])
          || visited[pred_bb->index])
        ;/* Nothing to do.  */
        ;/* Nothing to do.  */
 
 
      /* Does this predecessor generate this expression?  */
      /* Does this predecessor generate this expression?  */
      else if (TEST_BIT (comp[pred_bb->index], expr->bitmap_index))
      else if (TEST_BIT (comp[pred_bb->index], expr->bitmap_index))
        {
        {
          /* Is this the occurrence we're looking for?
          /* Is this the occurrence we're looking for?
             Note that there's only one generating occurrence per block
             Note that there's only one generating occurrence per block
             so we just need to check the block number.  */
             so we just need to check the block number.  */
          if (occr_bb == pred_bb)
          if (occr_bb == pred_bb)
            return 1;
            return 1;
 
 
          visited[pred_bb->index] = 1;
          visited[pred_bb->index] = 1;
        }
        }
      /* Ignore this predecessor if it kills the expression.  */
      /* Ignore this predecessor if it kills the expression.  */
      else if (! TEST_BIT (transp[pred_bb->index], expr->bitmap_index))
      else if (! TEST_BIT (transp[pred_bb->index], expr->bitmap_index))
        visited[pred_bb->index] = 1;
        visited[pred_bb->index] = 1;
 
 
      /* Neither gen nor kill.  */
      /* Neither gen nor kill.  */
      else
      else
        {
        {
          visited[pred_bb->index] = 1;
          visited[pred_bb->index] = 1;
          if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
          if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
            return 1;
            return 1;
        }
        }
    }
    }
 
 
  /* All paths have been checked.  */
  /* All paths have been checked.  */
  return 0;
  return 0;
}
}
 
 
/* The wrapper for pre_expr_reaches_here_work that ensures that any
/* The wrapper for pre_expr_reaches_here_work that ensures that any
   memory allocated for that function is returned.  */
   memory allocated for that function is returned.  */
 
 
static int
static int
pre_expr_reaches_here_p (basic_block occr_bb, struct expr *expr, basic_block bb)
pre_expr_reaches_here_p (basic_block occr_bb, struct expr *expr, basic_block bb)
{
{
  int rval;
  int rval;
  char *visited = XCNEWVEC (char, last_basic_block);
  char *visited = XCNEWVEC (char, last_basic_block);
 
 
  rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
  rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
 
 
  free (visited);
  free (visited);
  return rval;
  return rval;
}
}


 
 
/* Given an expr, generate RTL which we can insert at the end of a BB,
/* Given an expr, generate RTL which we can insert at the end of a BB,
   or on an edge.  Set the block number of any insns generated to
   or on an edge.  Set the block number of any insns generated to
   the value of BB.  */
   the value of BB.  */
 
 
static rtx
static rtx
process_insert_insn (struct expr *expr)
process_insert_insn (struct expr *expr)
{
{
  rtx reg = expr->reaching_reg;
  rtx reg = expr->reaching_reg;
  rtx exp = copy_rtx (expr->expr);
  rtx exp = copy_rtx (expr->expr);
  rtx pat;
  rtx pat;
 
 
  start_sequence ();
  start_sequence ();
 
 
  /* If the expression is something that's an operand, like a constant,
  /* If the expression is something that's an operand, like a constant,
     just copy it to a register.  */
     just copy it to a register.  */
  if (general_operand (exp, GET_MODE (reg)))
  if (general_operand (exp, GET_MODE (reg)))
    emit_move_insn (reg, exp);
    emit_move_insn (reg, exp);
 
 
  /* Otherwise, make a new insn to compute this expression and make sure the
  /* Otherwise, make a new insn to compute this expression and make sure the
     insn will be recognized (this also adds any needed CLOBBERs).  Copy the
     insn will be recognized (this also adds any needed CLOBBERs).  Copy the
     expression to make sure we don't have any sharing issues.  */
     expression to make sure we don't have any sharing issues.  */
  else
  else
    {
    {
      rtx insn = emit_insn (gen_rtx_SET (VOIDmode, reg, exp));
      rtx insn = emit_insn (gen_rtx_SET (VOIDmode, reg, exp));
 
 
      if (insn_invalid_p (insn))
      if (insn_invalid_p (insn))
        gcc_unreachable ();
        gcc_unreachable ();
    }
    }
 
 
 
 
  pat = get_insns ();
  pat = get_insns ();
  end_sequence ();
  end_sequence ();
 
 
  return pat;
  return pat;
}
}
 
 
/* Add EXPR to the end of basic block BB.
/* Add EXPR to the end of basic block BB.
 
 
   This is used by both the PRE and code hoisting.
   This is used by both the PRE and code hoisting.
 
 
   For PRE, we want to verify that the expr is either transparent
   For PRE, we want to verify that the expr is either transparent
   or locally anticipatable in the target block.  This check makes
   or locally anticipatable in the target block.  This check makes
   no sense for code hoisting.  */
   no sense for code hoisting.  */
 
 
static void
static void
insert_insn_end_bb (struct expr *expr, basic_block bb, int pre)
insert_insn_end_bb (struct expr *expr, basic_block bb, int pre)
{
{
  rtx insn = BB_END (bb);
  rtx insn = BB_END (bb);
  rtx new_insn;
  rtx new_insn;
  rtx reg = expr->reaching_reg;
  rtx reg = expr->reaching_reg;
  int regno = REGNO (reg);
  int regno = REGNO (reg);
  rtx pat, pat_end;
  rtx pat, pat_end;
 
 
  pat = process_insert_insn (expr);
  pat = process_insert_insn (expr);
  gcc_assert (pat && INSN_P (pat));
  gcc_assert (pat && INSN_P (pat));
 
 
  pat_end = pat;
  pat_end = pat;
  while (NEXT_INSN (pat_end) != NULL_RTX)
  while (NEXT_INSN (pat_end) != NULL_RTX)
    pat_end = NEXT_INSN (pat_end);
    pat_end = NEXT_INSN (pat_end);
 
 
  /* If the last insn is a jump, insert EXPR in front [taking care to
  /* If the last insn is a jump, insert EXPR in front [taking care to
     handle cc0, etc. properly].  Similarly we need to care trapping
     handle cc0, etc. properly].  Similarly we need to care trapping
     instructions in presence of non-call exceptions.  */
     instructions in presence of non-call exceptions.  */
 
 
  if (JUMP_P (insn)
  if (JUMP_P (insn)
      || (NONJUMP_INSN_P (insn)
      || (NONJUMP_INSN_P (insn)
          && (!single_succ_p (bb)
          && (!single_succ_p (bb)
              || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
              || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
    {
    {
#ifdef HAVE_cc0
#ifdef HAVE_cc0
      rtx note;
      rtx note;
#endif
#endif
      /* It should always be the case that we can put these instructions
      /* It should always be the case that we can put these instructions
         anywhere in the basic block with performing PRE optimizations.
         anywhere in the basic block with performing PRE optimizations.
         Check this.  */
         Check this.  */
      gcc_assert (!NONJUMP_INSN_P (insn) || !pre
      gcc_assert (!NONJUMP_INSN_P (insn) || !pre
                  || TEST_BIT (antloc[bb->index], expr->bitmap_index)
                  || TEST_BIT (antloc[bb->index], expr->bitmap_index)
                  || TEST_BIT (transp[bb->index], expr->bitmap_index));
                  || TEST_BIT (transp[bb->index], expr->bitmap_index));
 
 
      /* If this is a jump table, then we can't insert stuff here.  Since
      /* If this is a jump table, then we can't insert stuff here.  Since
         we know the previous real insn must be the tablejump, we insert
         we know the previous real insn must be the tablejump, we insert
         the new instruction just before the tablejump.  */
         the new instruction just before the tablejump.  */
      if (GET_CODE (PATTERN (insn)) == ADDR_VEC
      if (GET_CODE (PATTERN (insn)) == ADDR_VEC
          || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
          || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
        insn = prev_real_insn (insn);
        insn = prev_real_insn (insn);
 
 
#ifdef HAVE_cc0
#ifdef HAVE_cc0
      /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
      /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
         if cc0 isn't set.  */
         if cc0 isn't set.  */
      note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
      note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
      if (note)
      if (note)
        insn = XEXP (note, 0);
        insn = XEXP (note, 0);
      else
      else
        {
        {
          rtx maybe_cc0_setter = prev_nonnote_insn (insn);
          rtx maybe_cc0_setter = prev_nonnote_insn (insn);
          if (maybe_cc0_setter
          if (maybe_cc0_setter
              && INSN_P (maybe_cc0_setter)
              && INSN_P (maybe_cc0_setter)
              && sets_cc0_p (PATTERN (maybe_cc0_setter)))
              && sets_cc0_p (PATTERN (maybe_cc0_setter)))
            insn = maybe_cc0_setter;
            insn = maybe_cc0_setter;
        }
        }
#endif
#endif
      /* FIXME: What if something in cc0/jump uses value set in new insn?  */
      /* FIXME: What if something in cc0/jump uses value set in new insn?  */
      new_insn = emit_insn_before_noloc (pat, insn);
      new_insn = emit_insn_before_noloc (pat, insn);
    }
    }
 
 
  /* Likewise if the last insn is a call, as will happen in the presence
  /* Likewise if the last insn is a call, as will happen in the presence
     of exception handling.  */
     of exception handling.  */
  else if (CALL_P (insn)
  else if (CALL_P (insn)
           && (!single_succ_p (bb)
           && (!single_succ_p (bb)
               || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
               || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
    {
    {
      /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
      /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
         we search backward and place the instructions before the first
         we search backward and place the instructions before the first
         parameter is loaded.  Do this for everyone for consistency and a
         parameter is loaded.  Do this for everyone for consistency and a
         presumption that we'll get better code elsewhere as well.
         presumption that we'll get better code elsewhere as well.
 
 
         It should always be the case that we can put these instructions
         It should always be the case that we can put these instructions
         anywhere in the basic block with performing PRE optimizations.
         anywhere in the basic block with performing PRE optimizations.
         Check this.  */
         Check this.  */
 
 
      gcc_assert (!pre
      gcc_assert (!pre
                  || TEST_BIT (antloc[bb->index], expr->bitmap_index)
                  || TEST_BIT (antloc[bb->index], expr->bitmap_index)
                  || TEST_BIT (transp[bb->index], expr->bitmap_index));
                  || TEST_BIT (transp[bb->index], expr->bitmap_index));
 
 
      /* Since different machines initialize their parameter registers
      /* Since different machines initialize their parameter registers
         in different orders, assume nothing.  Collect the set of all
         in different orders, assume nothing.  Collect the set of all
         parameter registers.  */
         parameter registers.  */
      insn = find_first_parameter_load (insn, BB_HEAD (bb));
      insn = find_first_parameter_load (insn, BB_HEAD (bb));
 
 
      /* If we found all the parameter loads, then we want to insert
      /* If we found all the parameter loads, then we want to insert
         before the first parameter load.
         before the first parameter load.
 
 
         If we did not find all the parameter loads, then we might have
         If we did not find all the parameter loads, then we might have
         stopped on the head of the block, which could be a CODE_LABEL.
         stopped on the head of the block, which could be a CODE_LABEL.
         If we inserted before the CODE_LABEL, then we would be putting
         If we inserted before the CODE_LABEL, then we would be putting
         the insn in the wrong basic block.  In that case, put the insn
         the insn in the wrong basic block.  In that case, put the insn
         after the CODE_LABEL.  Also, respect NOTE_INSN_BASIC_BLOCK.  */
         after the CODE_LABEL.  Also, respect NOTE_INSN_BASIC_BLOCK.  */
      while (LABEL_P (insn)
      while (LABEL_P (insn)
             || NOTE_INSN_BASIC_BLOCK_P (insn))
             || NOTE_INSN_BASIC_BLOCK_P (insn))
        insn = NEXT_INSN (insn);
        insn = NEXT_INSN (insn);
 
 
      new_insn = emit_insn_before_noloc (pat, insn);
      new_insn = emit_insn_before_noloc (pat, insn);
    }
    }
  else
  else
    new_insn = emit_insn_after_noloc (pat, insn);
    new_insn = emit_insn_after_noloc (pat, insn);
 
 
  while (1)
  while (1)
    {
    {
      if (INSN_P (pat))
      if (INSN_P (pat))
        {
        {
          add_label_notes (PATTERN (pat), new_insn);
          add_label_notes (PATTERN (pat), new_insn);
          note_stores (PATTERN (pat), record_set_info, pat);
          note_stores (PATTERN (pat), record_set_info, pat);
        }
        }
      if (pat == pat_end)
      if (pat == pat_end)
        break;
        break;
      pat = NEXT_INSN (pat);
      pat = NEXT_INSN (pat);
    }
    }
 
 
  gcse_create_count++;
  gcse_create_count++;
 
 
  if (dump_file)
  if (dump_file)
    {
    {
      fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
      fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
               bb->index, INSN_UID (new_insn));
               bb->index, INSN_UID (new_insn));
      fprintf (dump_file, "copying expression %d to reg %d\n",
      fprintf (dump_file, "copying expression %d to reg %d\n",
               expr->bitmap_index, regno);
               expr->bitmap_index, regno);
    }
    }
}
}
 
 
/* Insert partially redundant expressions on edges in the CFG to make
/* Insert partially redundant expressions on edges in the CFG to make
   the expressions fully redundant.  */
   the expressions fully redundant.  */
 
 
static int
static int
pre_edge_insert (struct edge_list *edge_list, struct expr **index_map)
pre_edge_insert (struct edge_list *edge_list, struct expr **index_map)
{
{
  int e, i, j, num_edges, set_size, did_insert = 0;
  int e, i, j, num_edges, set_size, did_insert = 0;
  sbitmap *inserted;
  sbitmap *inserted;
 
 
  /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
  /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
     if it reaches any of the deleted expressions.  */
     if it reaches any of the deleted expressions.  */
 
 
  set_size = pre_insert_map[0]->size;
  set_size = pre_insert_map[0]->size;
  num_edges = NUM_EDGES (edge_list);
  num_edges = NUM_EDGES (edge_list);
  inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
  inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
  sbitmap_vector_zero (inserted, num_edges);
  sbitmap_vector_zero (inserted, num_edges);
 
 
  for (e = 0; e < num_edges; e++)
  for (e = 0; e < num_edges; e++)
    {
    {
      int indx;
      int indx;
      basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
      basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
 
 
      for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
      for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
        {
        {
          SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
          SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
 
 
          for (j = indx; insert && j < (int) expr_hash_table.n_elems; j++, insert >>= 1)
          for (j = indx; insert && j < (int) expr_hash_table.n_elems; j++, insert >>= 1)
            if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
            if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
              {
              {
                struct expr *expr = index_map[j];
                struct expr *expr = index_map[j];
                struct occr *occr;
                struct occr *occr;
 
 
                /* Now look at each deleted occurrence of this expression.  */
                /* Now look at each deleted occurrence of this expression.  */
                for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
                for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
                  {
                  {
                    if (! occr->deleted_p)
                    if (! occr->deleted_p)
                      continue;
                      continue;
 
 
                    /* Insert this expression on this edge if it would
                    /* Insert this expression on this edge if it would
                       reach the deleted occurrence in BB.  */
                       reach the deleted occurrence in BB.  */
                    if (!TEST_BIT (inserted[e], j))
                    if (!TEST_BIT (inserted[e], j))
                      {
                      {
                        rtx insn;
                        rtx insn;
                        edge eg = INDEX_EDGE (edge_list, e);
                        edge eg = INDEX_EDGE (edge_list, e);
 
 
                        /* We can't insert anything on an abnormal and
                        /* We can't insert anything on an abnormal and
                           critical edge, so we insert the insn at the end of
                           critical edge, so we insert the insn at the end of
                           the previous block. There are several alternatives
                           the previous block. There are several alternatives
                           detailed in Morgans book P277 (sec 10.5) for
                           detailed in Morgans book P277 (sec 10.5) for
                           handling this situation.  This one is easiest for
                           handling this situation.  This one is easiest for
                           now.  */
                           now.  */
 
 
                        if (eg->flags & EDGE_ABNORMAL)
                        if (eg->flags & EDGE_ABNORMAL)
                          insert_insn_end_bb (index_map[j], bb, 0);
                          insert_insn_end_bb (index_map[j], bb, 0);
                        else
                        else
                          {
                          {
                            insn = process_insert_insn (index_map[j]);
                            insn = process_insert_insn (index_map[j]);
                            insert_insn_on_edge (insn, eg);
                            insert_insn_on_edge (insn, eg);
                          }
                          }
 
 
                        if (dump_file)
                        if (dump_file)
                          {
                          {
                            fprintf (dump_file, "PRE/HOIST: edge (%d,%d), ",
                            fprintf (dump_file, "PRE/HOIST: edge (%d,%d), ",
                                     bb->index,
                                     bb->index,
                                     INDEX_EDGE_SUCC_BB (edge_list, e)->index);
                                     INDEX_EDGE_SUCC_BB (edge_list, e)->index);
                            fprintf (dump_file, "copy expression %d\n",
                            fprintf (dump_file, "copy expression %d\n",
                                     expr->bitmap_index);
                                     expr->bitmap_index);
                          }
                          }
 
 
                        update_ld_motion_stores (expr);
                        update_ld_motion_stores (expr);
                        SET_BIT (inserted[e], j);
                        SET_BIT (inserted[e], j);
                        did_insert = 1;
                        did_insert = 1;
                        gcse_create_count++;
                        gcse_create_count++;
                      }
                      }
                  }
                  }
              }
              }
        }
        }
    }
    }
 
 
  sbitmap_vector_free (inserted);
  sbitmap_vector_free (inserted);
  return did_insert;
  return did_insert;
}
}
 
 
/* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
/* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
   Given "old_reg <- expr" (INSN), instead of adding after it
   Given "old_reg <- expr" (INSN), instead of adding after it
     reaching_reg <- old_reg
     reaching_reg <- old_reg
   it's better to do the following:
   it's better to do the following:
     reaching_reg <- expr
     reaching_reg <- expr
     old_reg      <- reaching_reg
     old_reg      <- reaching_reg
   because this way copy propagation can discover additional PRE
   because this way copy propagation can discover additional PRE
   opportunities.  But if this fails, we try the old way.
   opportunities.  But if this fails, we try the old way.
   When "expr" is a store, i.e.
   When "expr" is a store, i.e.
   given "MEM <- old_reg", instead of adding after it
   given "MEM <- old_reg", instead of adding after it
     reaching_reg <- old_reg
     reaching_reg <- old_reg
   it's better to add it before as follows:
   it's better to add it before as follows:
     reaching_reg <- old_reg
     reaching_reg <- old_reg
     MEM          <- reaching_reg.  */
     MEM          <- reaching_reg.  */
 
 
static void
static void
pre_insert_copy_insn (struct expr *expr, rtx insn)
pre_insert_copy_insn (struct expr *expr, rtx insn)
{
{
  rtx reg = expr->reaching_reg;
  rtx reg = expr->reaching_reg;
  int regno = REGNO (reg);
  int regno = REGNO (reg);
  int indx = expr->bitmap_index;
  int indx = expr->bitmap_index;
  rtx pat = PATTERN (insn);
  rtx pat = PATTERN (insn);
  rtx set, first_set, new_insn;
  rtx set, first_set, new_insn;
  rtx old_reg;
  rtx old_reg;
  int i;
  int i;
 
 
  /* This block matches the logic in hash_scan_insn.  */
  /* This block matches the logic in hash_scan_insn.  */
  switch (GET_CODE (pat))
  switch (GET_CODE (pat))
    {
    {
    case SET:
    case SET:
      set = pat;
      set = pat;
      break;
      break;
 
 
    case PARALLEL:
    case PARALLEL:
      /* Search through the parallel looking for the set whose
      /* Search through the parallel looking for the set whose
         source was the expression that we're interested in.  */
         source was the expression that we're interested in.  */
      first_set = NULL_RTX;
      first_set = NULL_RTX;
      set = NULL_RTX;
      set = NULL_RTX;
      for (i = 0; i < XVECLEN (pat, 0); i++)
      for (i = 0; i < XVECLEN (pat, 0); i++)
        {
        {
          rtx x = XVECEXP (pat, 0, i);
          rtx x = XVECEXP (pat, 0, i);
          if (GET_CODE (x) == SET)
          if (GET_CODE (x) == SET)
            {
            {
              /* If the source was a REG_EQUAL or REG_EQUIV note, we
              /* If the source was a REG_EQUAL or REG_EQUIV note, we
                 may not find an equivalent expression, but in this
                 may not find an equivalent expression, but in this
                 case the PARALLEL will have a single set.  */
                 case the PARALLEL will have a single set.  */
              if (first_set == NULL_RTX)
              if (first_set == NULL_RTX)
                first_set = x;
                first_set = x;
              if (expr_equiv_p (SET_SRC (x), expr->expr))
              if (expr_equiv_p (SET_SRC (x), expr->expr))
                {
                {
                  set = x;
                  set = x;
                  break;
                  break;
                }
                }
            }
            }
        }
        }
 
 
      gcc_assert (first_set);
      gcc_assert (first_set);
      if (set == NULL_RTX)
      if (set == NULL_RTX)
        set = first_set;
        set = first_set;
      break;
      break;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  if (REG_P (SET_DEST (set)))
  if (REG_P (SET_DEST (set)))
    {
    {
      old_reg = SET_DEST (set);
      old_reg = SET_DEST (set);
      /* Check if we can modify the set destination in the original insn.  */
      /* Check if we can modify the set destination in the original insn.  */
      if (validate_change (insn, &SET_DEST (set), reg, 0))
      if (validate_change (insn, &SET_DEST (set), reg, 0))
        {
        {
          new_insn = gen_move_insn (old_reg, reg);
          new_insn = gen_move_insn (old_reg, reg);
          new_insn = emit_insn_after (new_insn, insn);
          new_insn = emit_insn_after (new_insn, insn);
 
 
          /* Keep register set table up to date.  */
          /* Keep register set table up to date.  */
          record_one_set (regno, insn);
          record_one_set (regno, insn);
        }
        }
      else
      else
        {
        {
          new_insn = gen_move_insn (reg, old_reg);
          new_insn = gen_move_insn (reg, old_reg);
          new_insn = emit_insn_after (new_insn, insn);
          new_insn = emit_insn_after (new_insn, insn);
 
 
          /* Keep register set table up to date.  */
          /* Keep register set table up to date.  */
          record_one_set (regno, new_insn);
          record_one_set (regno, new_insn);
        }
        }
    }
    }
  else /* This is possible only in case of a store to memory.  */
  else /* This is possible only in case of a store to memory.  */
    {
    {
      old_reg = SET_SRC (set);
      old_reg = SET_SRC (set);
      new_insn = gen_move_insn (reg, old_reg);
      new_insn = gen_move_insn (reg, old_reg);
 
 
      /* Check if we can modify the set source in the original insn.  */
      /* Check if we can modify the set source in the original insn.  */
      if (validate_change (insn, &SET_SRC (set), reg, 0))
      if (validate_change (insn, &SET_SRC (set), reg, 0))
        new_insn = emit_insn_before (new_insn, insn);
        new_insn = emit_insn_before (new_insn, insn);
      else
      else
        new_insn = emit_insn_after (new_insn, insn);
        new_insn = emit_insn_after (new_insn, insn);
 
 
      /* Keep register set table up to date.  */
      /* Keep register set table up to date.  */
      record_one_set (regno, new_insn);
      record_one_set (regno, new_insn);
    }
    }
 
 
  gcse_create_count++;
  gcse_create_count++;
 
 
  if (dump_file)
  if (dump_file)
    fprintf (dump_file,
    fprintf (dump_file,
             "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
             "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
              BLOCK_NUM (insn), INSN_UID (new_insn), indx,
              BLOCK_NUM (insn), INSN_UID (new_insn), indx,
              INSN_UID (insn), regno);
              INSN_UID (insn), regno);
}
}
 
 
/* Copy available expressions that reach the redundant expression
/* Copy available expressions that reach the redundant expression
   to `reaching_reg'.  */
   to `reaching_reg'.  */
 
 
static void
static void
pre_insert_copies (void)
pre_insert_copies (void)
{
{
  unsigned int i, added_copy;
  unsigned int i, added_copy;
  struct expr *expr;
  struct expr *expr;
  struct occr *occr;
  struct occr *occr;
  struct occr *avail;
  struct occr *avail;
 
 
  /* For each available expression in the table, copy the result to
  /* For each available expression in the table, copy the result to
     `reaching_reg' if the expression reaches a deleted one.
     `reaching_reg' if the expression reaches a deleted one.
 
 
     ??? The current algorithm is rather brute force.
     ??? The current algorithm is rather brute force.
     Need to do some profiling.  */
     Need to do some profiling.  */
 
 
  for (i = 0; i < expr_hash_table.size; i++)
  for (i = 0; i < expr_hash_table.size; i++)
    for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
    for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
      {
      {
        /* If the basic block isn't reachable, PPOUT will be TRUE.  However,
        /* If the basic block isn't reachable, PPOUT will be TRUE.  However,
           we don't want to insert a copy here because the expression may not
           we don't want to insert a copy here because the expression may not
           really be redundant.  So only insert an insn if the expression was
           really be redundant.  So only insert an insn if the expression was
           deleted.  This test also avoids further processing if the
           deleted.  This test also avoids further processing if the
           expression wasn't deleted anywhere.  */
           expression wasn't deleted anywhere.  */
        if (expr->reaching_reg == NULL)
        if (expr->reaching_reg == NULL)
          continue;
          continue;
 
 
        /* Set when we add a copy for that expression.  */
        /* Set when we add a copy for that expression.  */
        added_copy = 0;
        added_copy = 0;
 
 
        for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
        for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
          {
          {
            if (! occr->deleted_p)
            if (! occr->deleted_p)
              continue;
              continue;
 
 
            for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
            for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
              {
              {
                rtx insn = avail->insn;
                rtx insn = avail->insn;
 
 
                /* No need to handle this one if handled already.  */
                /* No need to handle this one if handled already.  */
                if (avail->copied_p)
                if (avail->copied_p)
                  continue;
                  continue;
 
 
                /* Don't handle this one if it's a redundant one.  */
                /* Don't handle this one if it's a redundant one.  */
                if (TEST_BIT (pre_redundant_insns, INSN_CUID (insn)))
                if (TEST_BIT (pre_redundant_insns, INSN_CUID (insn)))
                  continue;
                  continue;
 
 
                /* Or if the expression doesn't reach the deleted one.  */
                /* Or if the expression doesn't reach the deleted one.  */
                if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
                if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
                                               expr,
                                               expr,
                                               BLOCK_FOR_INSN (occr->insn)))
                                               BLOCK_FOR_INSN (occr->insn)))
                  continue;
                  continue;
 
 
                added_copy = 1;
                added_copy = 1;
 
 
                /* Copy the result of avail to reaching_reg.  */
                /* Copy the result of avail to reaching_reg.  */
                pre_insert_copy_insn (expr, insn);
                pre_insert_copy_insn (expr, insn);
                avail->copied_p = 1;
                avail->copied_p = 1;
              }
              }
          }
          }
 
 
          if (added_copy)
          if (added_copy)
            update_ld_motion_stores (expr);
            update_ld_motion_stores (expr);
      }
      }
}
}
 
 
/* Emit move from SRC to DEST noting the equivalence with expression computed
/* Emit move from SRC to DEST noting the equivalence with expression computed
   in INSN.  */
   in INSN.  */
static rtx
static rtx
gcse_emit_move_after (rtx src, rtx dest, rtx insn)
gcse_emit_move_after (rtx src, rtx dest, rtx insn)
{
{
  rtx new;
  rtx new;
  rtx set = single_set (insn), set2;
  rtx set = single_set (insn), set2;
  rtx note;
  rtx note;
  rtx eqv;
  rtx eqv;
 
 
  /* This should never fail since we're creating a reg->reg copy
  /* This should never fail since we're creating a reg->reg copy
     we've verified to be valid.  */
     we've verified to be valid.  */
 
 
  new = emit_insn_after (gen_move_insn (dest, src), insn);
  new = emit_insn_after (gen_move_insn (dest, src), insn);
 
 
  /* Note the equivalence for local CSE pass.  */
  /* Note the equivalence for local CSE pass.  */
  set2 = single_set (new);
  set2 = single_set (new);
  if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
  if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
    return new;
    return new;
  if ((note = find_reg_equal_equiv_note (insn)))
  if ((note = find_reg_equal_equiv_note (insn)))
    eqv = XEXP (note, 0);
    eqv = XEXP (note, 0);
  else
  else
    eqv = SET_SRC (set);
    eqv = SET_SRC (set);
 
 
  set_unique_reg_note (new, REG_EQUAL, copy_insn_1 (eqv));
  set_unique_reg_note (new, REG_EQUAL, copy_insn_1 (eqv));
 
 
  return new;
  return new;
}
}
 
 
/* Delete redundant computations.
/* Delete redundant computations.
   Deletion is done by changing the insn to copy the `reaching_reg' of
   Deletion is done by changing the insn to copy the `reaching_reg' of
   the expression into the result of the SET.  It is left to later passes
   the expression into the result of the SET.  It is left to later passes
   (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
   (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
 
 
   Returns nonzero if a change is made.  */
   Returns nonzero if a change is made.  */
 
 
static int
static int
pre_delete (void)
pre_delete (void)
{
{
  unsigned int i;
  unsigned int i;
  int changed;
  int changed;
  struct expr *expr;
  struct expr *expr;
  struct occr *occr;
  struct occr *occr;
 
 
  changed = 0;
  changed = 0;
  for (i = 0; i < expr_hash_table.size; i++)
  for (i = 0; i < expr_hash_table.size; i++)
    for (expr = expr_hash_table.table[i];
    for (expr = expr_hash_table.table[i];
         expr != NULL;
         expr != NULL;
         expr = expr->next_same_hash)
         expr = expr->next_same_hash)
      {
      {
        int indx = expr->bitmap_index;
        int indx = expr->bitmap_index;
 
 
        /* We only need to search antic_occr since we require
        /* We only need to search antic_occr since we require
           ANTLOC != 0.  */
           ANTLOC != 0.  */
 
 
        for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
        for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
          {
          {
            rtx insn = occr->insn;
            rtx insn = occr->insn;
            rtx set;
            rtx set;
            basic_block bb = BLOCK_FOR_INSN (insn);
            basic_block bb = BLOCK_FOR_INSN (insn);
 
 
            /* We only delete insns that have a single_set.  */
            /* We only delete insns that have a single_set.  */
            if (TEST_BIT (pre_delete_map[bb->index], indx)
            if (TEST_BIT (pre_delete_map[bb->index], indx)
                && (set = single_set (insn)) != 0)
                && (set = single_set (insn)) != 0)
              {
              {
                /* Create a pseudo-reg to store the result of reaching
                /* Create a pseudo-reg to store the result of reaching
                   expressions into.  Get the mode for the new pseudo from
                   expressions into.  Get the mode for the new pseudo from
                   the mode of the original destination pseudo.  */
                   the mode of the original destination pseudo.  */
                if (expr->reaching_reg == NULL)
                if (expr->reaching_reg == NULL)
                  expr->reaching_reg
                  expr->reaching_reg
                    = gen_reg_rtx (GET_MODE (SET_DEST (set)));
                    = gen_reg_rtx (GET_MODE (SET_DEST (set)));
 
 
                gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
                gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
                delete_insn (insn);
                delete_insn (insn);
                occr->deleted_p = 1;
                occr->deleted_p = 1;
                SET_BIT (pre_redundant_insns, INSN_CUID (insn));
                SET_BIT (pre_redundant_insns, INSN_CUID (insn));
                changed = 1;
                changed = 1;
                gcse_subst_count++;
                gcse_subst_count++;
 
 
                if (dump_file)
                if (dump_file)
                  {
                  {
                    fprintf (dump_file,
                    fprintf (dump_file,
                             "PRE: redundant insn %d (expression %d) in ",
                             "PRE: redundant insn %d (expression %d) in ",
                               INSN_UID (insn), indx);
                               INSN_UID (insn), indx);
                    fprintf (dump_file, "bb %d, reaching reg is %d\n",
                    fprintf (dump_file, "bb %d, reaching reg is %d\n",
                             bb->index, REGNO (expr->reaching_reg));
                             bb->index, REGNO (expr->reaching_reg));
                  }
                  }
              }
              }
          }
          }
      }
      }
 
 
  return changed;
  return changed;
}
}
 
 
/* Perform GCSE optimizations using PRE.
/* Perform GCSE optimizations using PRE.
   This is called by one_pre_gcse_pass after all the dataflow analysis
   This is called by one_pre_gcse_pass after all the dataflow analysis
   has been done.
   has been done.
 
 
   This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
   This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
   lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
   lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
   Compiler Design and Implementation.
   Compiler Design and Implementation.
 
 
   ??? A new pseudo reg is created to hold the reaching expression.  The nice
   ??? A new pseudo reg is created to hold the reaching expression.  The nice
   thing about the classical approach is that it would try to use an existing
   thing about the classical approach is that it would try to use an existing
   reg.  If the register can't be adequately optimized [i.e. we introduce
   reg.  If the register can't be adequately optimized [i.e. we introduce
   reload problems], one could add a pass here to propagate the new register
   reload problems], one could add a pass here to propagate the new register
   through the block.
   through the block.
 
 
   ??? We don't handle single sets in PARALLELs because we're [currently] not
   ??? We don't handle single sets in PARALLELs because we're [currently] not
   able to copy the rest of the parallel when we insert copies to create full
   able to copy the rest of the parallel when we insert copies to create full
   redundancies from partial redundancies.  However, there's no reason why we
   redundancies from partial redundancies.  However, there's no reason why we
   can't handle PARALLELs in the cases where there are no partial
   can't handle PARALLELs in the cases where there are no partial
   redundancies.  */
   redundancies.  */
 
 
static int
static int
pre_gcse (void)
pre_gcse (void)
{
{
  unsigned int i;
  unsigned int i;
  int did_insert, changed;
  int did_insert, changed;
  struct expr **index_map;
  struct expr **index_map;
  struct expr *expr;
  struct expr *expr;
 
 
  /* Compute a mapping from expression number (`bitmap_index') to
  /* Compute a mapping from expression number (`bitmap_index') to
     hash table entry.  */
     hash table entry.  */
 
 
  index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
  index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
  for (i = 0; i < expr_hash_table.size; i++)
  for (i = 0; i < expr_hash_table.size; i++)
    for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
    for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
      index_map[expr->bitmap_index] = expr;
      index_map[expr->bitmap_index] = expr;
 
 
  /* Reset bitmap used to track which insns are redundant.  */
  /* Reset bitmap used to track which insns are redundant.  */
  pre_redundant_insns = sbitmap_alloc (max_cuid);
  pre_redundant_insns = sbitmap_alloc (max_cuid);
  sbitmap_zero (pre_redundant_insns);
  sbitmap_zero (pre_redundant_insns);
 
 
  /* Delete the redundant insns first so that
  /* Delete the redundant insns first so that
     - we know what register to use for the new insns and for the other
     - we know what register to use for the new insns and for the other
       ones with reaching expressions
       ones with reaching expressions
     - we know which insns are redundant when we go to create copies  */
     - we know which insns are redundant when we go to create copies  */
 
 
  changed = pre_delete ();
  changed = pre_delete ();
 
 
  did_insert = pre_edge_insert (edge_list, index_map);
  did_insert = pre_edge_insert (edge_list, index_map);
 
 
  /* In other places with reaching expressions, copy the expression to the
  /* In other places with reaching expressions, copy the expression to the
     specially allocated pseudo-reg that reaches the redundant expr.  */
     specially allocated pseudo-reg that reaches the redundant expr.  */
  pre_insert_copies ();
  pre_insert_copies ();
  if (did_insert)
  if (did_insert)
    {
    {
      commit_edge_insertions ();
      commit_edge_insertions ();
      changed = 1;
      changed = 1;
    }
    }
 
 
  free (index_map);
  free (index_map);
  sbitmap_free (pre_redundant_insns);
  sbitmap_free (pre_redundant_insns);
  return changed;
  return changed;
}
}
 
 
/* Top level routine to perform one PRE GCSE pass.
/* Top level routine to perform one PRE GCSE pass.
 
 
   Return nonzero if a change was made.  */
   Return nonzero if a change was made.  */
 
 
static int
static int
one_pre_gcse_pass (int pass)
one_pre_gcse_pass (int pass)
{
{
  int changed = 0;
  int changed = 0;
 
 
  gcse_subst_count = 0;
  gcse_subst_count = 0;
  gcse_create_count = 0;
  gcse_create_count = 0;
 
 
  alloc_hash_table (max_cuid, &expr_hash_table, 0);
  alloc_hash_table (max_cuid, &expr_hash_table, 0);
  add_noreturn_fake_exit_edges ();
  add_noreturn_fake_exit_edges ();
  if (flag_gcse_lm)
  if (flag_gcse_lm)
    compute_ld_motion_mems ();
    compute_ld_motion_mems ();
 
 
  compute_hash_table (&expr_hash_table);
  compute_hash_table (&expr_hash_table);
  trim_ld_motion_mems ();
  trim_ld_motion_mems ();
  if (dump_file)
  if (dump_file)
    dump_hash_table (dump_file, "Expression", &expr_hash_table);
    dump_hash_table (dump_file, "Expression", &expr_hash_table);
 
 
  if (expr_hash_table.n_elems > 0)
  if (expr_hash_table.n_elems > 0)
    {
    {
      alloc_pre_mem (last_basic_block, expr_hash_table.n_elems);
      alloc_pre_mem (last_basic_block, expr_hash_table.n_elems);
      compute_pre_data ();
      compute_pre_data ();
      changed |= pre_gcse ();
      changed |= pre_gcse ();
      free_edge_list (edge_list);
      free_edge_list (edge_list);
      free_pre_mem ();
      free_pre_mem ();
    }
    }
 
 
  free_ldst_mems ();
  free_ldst_mems ();
  remove_fake_exit_edges ();
  remove_fake_exit_edges ();
  free_hash_table (&expr_hash_table);
  free_hash_table (&expr_hash_table);
 
 
  if (dump_file)
  if (dump_file)
    {
    {
      fprintf (dump_file, "\nPRE GCSE of %s, pass %d: %d bytes needed, ",
      fprintf (dump_file, "\nPRE GCSE of %s, pass %d: %d bytes needed, ",
               current_function_name (), pass, bytes_used);
               current_function_name (), pass, bytes_used);
      fprintf (dump_file, "%d substs, %d insns created\n",
      fprintf (dump_file, "%d substs, %d insns created\n",
               gcse_subst_count, gcse_create_count);
               gcse_subst_count, gcse_create_count);
    }
    }
 
 
  return changed;
  return changed;
}
}


/* If X contains any LABEL_REF's, add REG_LABEL notes for them to INSN.
/* If X contains any LABEL_REF's, add REG_LABEL notes for them to INSN.
   If notes are added to an insn which references a CODE_LABEL, the
   If notes are added to an insn which references a CODE_LABEL, the
   LABEL_NUSES count is incremented.  We have to add REG_LABEL notes,
   LABEL_NUSES count is incremented.  We have to add REG_LABEL notes,
   because the following loop optimization pass requires them.  */
   because the following loop optimization pass requires them.  */
 
 
/* ??? If there was a jump optimization pass after gcse and before loop,
/* ??? If there was a jump optimization pass after gcse and before loop,
   then we would not need to do this here, because jump would add the
   then we would not need to do this here, because jump would add the
   necessary REG_LABEL notes.  */
   necessary REG_LABEL notes.  */
 
 
static void
static void
add_label_notes (rtx x, rtx insn)
add_label_notes (rtx x, rtx insn)
{
{
  enum rtx_code code = GET_CODE (x);
  enum rtx_code code = GET_CODE (x);
  int i, j;
  int i, j;
  const char *fmt;
  const char *fmt;
 
 
  if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
  if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
    {
    {
      /* This code used to ignore labels that referred to dispatch tables to
      /* This code used to ignore labels that referred to dispatch tables to
         avoid flow generating (slightly) worse code.
         avoid flow generating (slightly) worse code.
 
 
         We no longer ignore such label references (see LABEL_REF handling in
         We no longer ignore such label references (see LABEL_REF handling in
         mark_jump_label for additional information).  */
         mark_jump_label for additional information).  */
 
 
      REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, XEXP (x, 0),
      REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, XEXP (x, 0),
                                            REG_NOTES (insn));
                                            REG_NOTES (insn));
      if (LABEL_P (XEXP (x, 0)))
      if (LABEL_P (XEXP (x, 0)))
        LABEL_NUSES (XEXP (x, 0))++;
        LABEL_NUSES (XEXP (x, 0))++;
      return;
      return;
    }
    }
 
 
  for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
  for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
    {
    {
      if (fmt[i] == 'e')
      if (fmt[i] == 'e')
        add_label_notes (XEXP (x, i), insn);
        add_label_notes (XEXP (x, i), insn);
      else if (fmt[i] == 'E')
      else if (fmt[i] == 'E')
        for (j = XVECLEN (x, i) - 1; j >= 0; j--)
        for (j = XVECLEN (x, i) - 1; j >= 0; j--)
          add_label_notes (XVECEXP (x, i, j), insn);
          add_label_notes (XVECEXP (x, i, j), insn);
    }
    }
}
}
 
 
/* Compute transparent outgoing information for each block.
/* Compute transparent outgoing information for each block.
 
 
   An expression is transparent to an edge unless it is killed by
   An expression is transparent to an edge unless it is killed by
   the edge itself.  This can only happen with abnormal control flow,
   the edge itself.  This can only happen with abnormal control flow,
   when the edge is traversed through a call.  This happens with
   when the edge is traversed through a call.  This happens with
   non-local labels and exceptions.
   non-local labels and exceptions.
 
 
   This would not be necessary if we split the edge.  While this is
   This would not be necessary if we split the edge.  While this is
   normally impossible for abnormal critical edges, with some effort
   normally impossible for abnormal critical edges, with some effort
   it should be possible with exception handling, since we still have
   it should be possible with exception handling, since we still have
   control over which handler should be invoked.  But due to increased
   control over which handler should be invoked.  But due to increased
   EH table sizes, this may not be worthwhile.  */
   EH table sizes, this may not be worthwhile.  */
 
 
static void
static void
compute_transpout (void)
compute_transpout (void)
{
{
  basic_block bb;
  basic_block bb;
  unsigned int i;
  unsigned int i;
  struct expr *expr;
  struct expr *expr;
 
 
  sbitmap_vector_ones (transpout, last_basic_block);
  sbitmap_vector_ones (transpout, last_basic_block);
 
 
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    {
    {
      /* Note that flow inserted a nop a the end of basic blocks that
      /* Note that flow inserted a nop a the end of basic blocks that
         end in call instructions for reasons other than abnormal
         end in call instructions for reasons other than abnormal
         control flow.  */
         control flow.  */
      if (! CALL_P (BB_END (bb)))
      if (! CALL_P (BB_END (bb)))
        continue;
        continue;
 
 
      for (i = 0; i < expr_hash_table.size; i++)
      for (i = 0; i < expr_hash_table.size; i++)
        for (expr = expr_hash_table.table[i]; expr ; expr = expr->next_same_hash)
        for (expr = expr_hash_table.table[i]; expr ; expr = expr->next_same_hash)
          if (MEM_P (expr->expr))
          if (MEM_P (expr->expr))
            {
            {
              if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
              if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
                  && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
                  && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
                continue;
                continue;
 
 
              /* ??? Optimally, we would use interprocedural alias
              /* ??? Optimally, we would use interprocedural alias
                 analysis to determine if this mem is actually killed
                 analysis to determine if this mem is actually killed
                 by this call.  */
                 by this call.  */
              RESET_BIT (transpout[bb->index], expr->bitmap_index);
              RESET_BIT (transpout[bb->index], expr->bitmap_index);
            }
            }
    }
    }
}
}
 
 
/* Code Hoisting variables and subroutines.  */
/* Code Hoisting variables and subroutines.  */
 
 
/* Very busy expressions.  */
/* Very busy expressions.  */
static sbitmap *hoist_vbein;
static sbitmap *hoist_vbein;
static sbitmap *hoist_vbeout;
static sbitmap *hoist_vbeout;
 
 
/* Hoistable expressions.  */
/* Hoistable expressions.  */
static sbitmap *hoist_exprs;
static sbitmap *hoist_exprs;
 
 
/* ??? We could compute post dominators and run this algorithm in
/* ??? We could compute post dominators and run this algorithm in
   reverse to perform tail merging, doing so would probably be
   reverse to perform tail merging, doing so would probably be
   more effective than the tail merging code in jump.c.
   more effective than the tail merging code in jump.c.
 
 
   It's unclear if tail merging could be run in parallel with
   It's unclear if tail merging could be run in parallel with
   code hoisting.  It would be nice.  */
   code hoisting.  It would be nice.  */
 
 
/* Allocate vars used for code hoisting analysis.  */
/* Allocate vars used for code hoisting analysis.  */
 
 
static void
static void
alloc_code_hoist_mem (int n_blocks, int n_exprs)
alloc_code_hoist_mem (int n_blocks, int n_exprs)
{
{
  antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
  antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
  transp = sbitmap_vector_alloc (n_blocks, n_exprs);
  transp = sbitmap_vector_alloc (n_blocks, n_exprs);
  comp = sbitmap_vector_alloc (n_blocks, n_exprs);
  comp = sbitmap_vector_alloc (n_blocks, n_exprs);
 
 
  hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
  hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
  hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
  hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
  hoist_exprs = sbitmap_vector_alloc (n_blocks, n_exprs);
  hoist_exprs = sbitmap_vector_alloc (n_blocks, n_exprs);
  transpout = sbitmap_vector_alloc (n_blocks, n_exprs);
  transpout = sbitmap_vector_alloc (n_blocks, n_exprs);
}
}
 
 
/* Free vars used for code hoisting analysis.  */
/* Free vars used for code hoisting analysis.  */
 
 
static void
static void
free_code_hoist_mem (void)
free_code_hoist_mem (void)
{
{
  sbitmap_vector_free (antloc);
  sbitmap_vector_free (antloc);
  sbitmap_vector_free (transp);
  sbitmap_vector_free (transp);
  sbitmap_vector_free (comp);
  sbitmap_vector_free (comp);
 
 
  sbitmap_vector_free (hoist_vbein);
  sbitmap_vector_free (hoist_vbein);
  sbitmap_vector_free (hoist_vbeout);
  sbitmap_vector_free (hoist_vbeout);
  sbitmap_vector_free (hoist_exprs);
  sbitmap_vector_free (hoist_exprs);
  sbitmap_vector_free (transpout);
  sbitmap_vector_free (transpout);
 
 
  free_dominance_info (CDI_DOMINATORS);
  free_dominance_info (CDI_DOMINATORS);
}
}
 
 
/* Compute the very busy expressions at entry/exit from each block.
/* Compute the very busy expressions at entry/exit from each block.
 
 
   An expression is very busy if all paths from a given point
   An expression is very busy if all paths from a given point
   compute the expression.  */
   compute the expression.  */
 
 
static void
static void
compute_code_hoist_vbeinout (void)
compute_code_hoist_vbeinout (void)
{
{
  int changed, passes;
  int changed, passes;
  basic_block bb;
  basic_block bb;
 
 
  sbitmap_vector_zero (hoist_vbeout, last_basic_block);
  sbitmap_vector_zero (hoist_vbeout, last_basic_block);
  sbitmap_vector_zero (hoist_vbein, last_basic_block);
  sbitmap_vector_zero (hoist_vbein, last_basic_block);
 
 
  passes = 0;
  passes = 0;
  changed = 1;
  changed = 1;
 
 
  while (changed)
  while (changed)
    {
    {
      changed = 0;
      changed = 0;
 
 
      /* We scan the blocks in the reverse order to speed up
      /* We scan the blocks in the reverse order to speed up
         the convergence.  */
         the convergence.  */
      FOR_EACH_BB_REVERSE (bb)
      FOR_EACH_BB_REVERSE (bb)
        {
        {
          changed |= sbitmap_a_or_b_and_c_cg (hoist_vbein[bb->index], antloc[bb->index],
          changed |= sbitmap_a_or_b_and_c_cg (hoist_vbein[bb->index], antloc[bb->index],
                                              hoist_vbeout[bb->index], transp[bb->index]);
                                              hoist_vbeout[bb->index], transp[bb->index]);
          if (bb->next_bb != EXIT_BLOCK_PTR)
          if (bb->next_bb != EXIT_BLOCK_PTR)
            sbitmap_intersection_of_succs (hoist_vbeout[bb->index], hoist_vbein, bb->index);
            sbitmap_intersection_of_succs (hoist_vbeout[bb->index], hoist_vbein, bb->index);
        }
        }
 
 
      passes++;
      passes++;
    }
    }
 
 
  if (dump_file)
  if (dump_file)
    fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
    fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
}
}
 
 
/* Top level routine to do the dataflow analysis needed by code hoisting.  */
/* Top level routine to do the dataflow analysis needed by code hoisting.  */
 
 
static void
static void
compute_code_hoist_data (void)
compute_code_hoist_data (void)
{
{
  compute_local_properties (transp, comp, antloc, &expr_hash_table);
  compute_local_properties (transp, comp, antloc, &expr_hash_table);
  compute_transpout ();
  compute_transpout ();
  compute_code_hoist_vbeinout ();
  compute_code_hoist_vbeinout ();
  calculate_dominance_info (CDI_DOMINATORS);
  calculate_dominance_info (CDI_DOMINATORS);
  if (dump_file)
  if (dump_file)
    fprintf (dump_file, "\n");
    fprintf (dump_file, "\n");
}
}
 
 
/* Determine if the expression identified by EXPR_INDEX would
/* Determine if the expression identified by EXPR_INDEX would
   reach BB unimpared if it was placed at the end of EXPR_BB.
   reach BB unimpared if it was placed at the end of EXPR_BB.
 
 
   It's unclear exactly what Muchnick meant by "unimpared".  It seems
   It's unclear exactly what Muchnick meant by "unimpared".  It seems
   to me that the expression must either be computed or transparent in
   to me that the expression must either be computed or transparent in
   *every* block in the path(s) from EXPR_BB to BB.  Any other definition
   *every* block in the path(s) from EXPR_BB to BB.  Any other definition
   would allow the expression to be hoisted out of loops, even if
   would allow the expression to be hoisted out of loops, even if
   the expression wasn't a loop invariant.
   the expression wasn't a loop invariant.
 
 
   Contrast this to reachability for PRE where an expression is
   Contrast this to reachability for PRE where an expression is
   considered reachable if *any* path reaches instead of *all*
   considered reachable if *any* path reaches instead of *all*
   paths.  */
   paths.  */
 
 
static int
static int
hoist_expr_reaches_here_p (basic_block expr_bb, int expr_index, basic_block bb, char *visited)
hoist_expr_reaches_here_p (basic_block expr_bb, int expr_index, basic_block bb, char *visited)
{
{
  edge pred;
  edge pred;
  edge_iterator ei;
  edge_iterator ei;
  int visited_allocated_locally = 0;
  int visited_allocated_locally = 0;
 
 
 
 
  if (visited == NULL)
  if (visited == NULL)
    {
    {
      visited_allocated_locally = 1;
      visited_allocated_locally = 1;
      visited = XCNEWVEC (char, last_basic_block);
      visited = XCNEWVEC (char, last_basic_block);
    }
    }
 
 
  FOR_EACH_EDGE (pred, ei, bb->preds)
  FOR_EACH_EDGE (pred, ei, bb->preds)
    {
    {
      basic_block pred_bb = pred->src;
      basic_block pred_bb = pred->src;
 
 
      if (pred->src == ENTRY_BLOCK_PTR)
      if (pred->src == ENTRY_BLOCK_PTR)
        break;
        break;
      else if (pred_bb == expr_bb)
      else if (pred_bb == expr_bb)
        continue;
        continue;
      else if (visited[pred_bb->index])
      else if (visited[pred_bb->index])
        continue;
        continue;
 
 
      /* Does this predecessor generate this expression?  */
      /* Does this predecessor generate this expression?  */
      else if (TEST_BIT (comp[pred_bb->index], expr_index))
      else if (TEST_BIT (comp[pred_bb->index], expr_index))
        break;
        break;
      else if (! TEST_BIT (transp[pred_bb->index], expr_index))
      else if (! TEST_BIT (transp[pred_bb->index], expr_index))
        break;
        break;
 
 
      /* Not killed.  */
      /* Not killed.  */
      else
      else
        {
        {
          visited[pred_bb->index] = 1;
          visited[pred_bb->index] = 1;
          if (! hoist_expr_reaches_here_p (expr_bb, expr_index,
          if (! hoist_expr_reaches_here_p (expr_bb, expr_index,
                                           pred_bb, visited))
                                           pred_bb, visited))
            break;
            break;
        }
        }
    }
    }
  if (visited_allocated_locally)
  if (visited_allocated_locally)
    free (visited);
    free (visited);
 
 
  return (pred == NULL);
  return (pred == NULL);
}
}


/* Actually perform code hoisting.  */
/* Actually perform code hoisting.  */
 
 
static void
static void
hoist_code (void)
hoist_code (void)
{
{
  basic_block bb, dominated;
  basic_block bb, dominated;
  basic_block *domby;
  basic_block *domby;
  unsigned int domby_len;
  unsigned int domby_len;
  unsigned int i,j;
  unsigned int i,j;
  struct expr **index_map;
  struct expr **index_map;
  struct expr *expr;
  struct expr *expr;
 
 
  sbitmap_vector_zero (hoist_exprs, last_basic_block);
  sbitmap_vector_zero (hoist_exprs, last_basic_block);
 
 
  /* Compute a mapping from expression number (`bitmap_index') to
  /* Compute a mapping from expression number (`bitmap_index') to
     hash table entry.  */
     hash table entry.  */
 
 
  index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
  index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
  for (i = 0; i < expr_hash_table.size; i++)
  for (i = 0; i < expr_hash_table.size; i++)
    for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
    for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
      index_map[expr->bitmap_index] = expr;
      index_map[expr->bitmap_index] = expr;
 
 
  /* Walk over each basic block looking for potentially hoistable
  /* Walk over each basic block looking for potentially hoistable
     expressions, nothing gets hoisted from the entry block.  */
     expressions, nothing gets hoisted from the entry block.  */
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    {
    {
      int found = 0;
      int found = 0;
      int insn_inserted_p;
      int insn_inserted_p;
 
 
      domby_len = get_dominated_by (CDI_DOMINATORS, bb, &domby);
      domby_len = get_dominated_by (CDI_DOMINATORS, bb, &domby);
      /* Examine each expression that is very busy at the exit of this
      /* Examine each expression that is very busy at the exit of this
         block.  These are the potentially hoistable expressions.  */
         block.  These are the potentially hoistable expressions.  */
      for (i = 0; i < hoist_vbeout[bb->index]->n_bits; i++)
      for (i = 0; i < hoist_vbeout[bb->index]->n_bits; i++)
        {
        {
          int hoistable = 0;
          int hoistable = 0;
 
 
          if (TEST_BIT (hoist_vbeout[bb->index], i)
          if (TEST_BIT (hoist_vbeout[bb->index], i)
              && TEST_BIT (transpout[bb->index], i))
              && TEST_BIT (transpout[bb->index], i))
            {
            {
              /* We've found a potentially hoistable expression, now
              /* We've found a potentially hoistable expression, now
                 we look at every block BB dominates to see if it
                 we look at every block BB dominates to see if it
                 computes the expression.  */
                 computes the expression.  */
              for (j = 0; j < domby_len; j++)
              for (j = 0; j < domby_len; j++)
                {
                {
                  dominated = domby[j];
                  dominated = domby[j];
                  /* Ignore self dominance.  */
                  /* Ignore self dominance.  */
                  if (bb == dominated)
                  if (bb == dominated)
                    continue;
                    continue;
                  /* We've found a dominated block, now see if it computes
                  /* We've found a dominated block, now see if it computes
                     the busy expression and whether or not moving that
                     the busy expression and whether or not moving that
                     expression to the "beginning" of that block is safe.  */
                     expression to the "beginning" of that block is safe.  */
                  if (!TEST_BIT (antloc[dominated->index], i))
                  if (!TEST_BIT (antloc[dominated->index], i))
                    continue;
                    continue;
 
 
                  /* Note if the expression would reach the dominated block
                  /* Note if the expression would reach the dominated block
                     unimpared if it was placed at the end of BB.
                     unimpared if it was placed at the end of BB.
 
 
                     Keep track of how many times this expression is hoistable
                     Keep track of how many times this expression is hoistable
                     from a dominated block into BB.  */
                     from a dominated block into BB.  */
                  if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
                  if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
                    hoistable++;
                    hoistable++;
                }
                }
 
 
              /* If we found more than one hoistable occurrence of this
              /* If we found more than one hoistable occurrence of this
                 expression, then note it in the bitmap of expressions to
                 expression, then note it in the bitmap of expressions to
                 hoist.  It makes no sense to hoist things which are computed
                 hoist.  It makes no sense to hoist things which are computed
                 in only one BB, and doing so tends to pessimize register
                 in only one BB, and doing so tends to pessimize register
                 allocation.  One could increase this value to try harder
                 allocation.  One could increase this value to try harder
                 to avoid any possible code expansion due to register
                 to avoid any possible code expansion due to register
                 allocation issues; however experiments have shown that
                 allocation issues; however experiments have shown that
                 the vast majority of hoistable expressions are only movable
                 the vast majority of hoistable expressions are only movable
                 from two successors, so raising this threshold is likely
                 from two successors, so raising this threshold is likely
                 to nullify any benefit we get from code hoisting.  */
                 to nullify any benefit we get from code hoisting.  */
              if (hoistable > 1)
              if (hoistable > 1)
                {
                {
                  SET_BIT (hoist_exprs[bb->index], i);
                  SET_BIT (hoist_exprs[bb->index], i);
                  found = 1;
                  found = 1;
                }
                }
            }
            }
        }
        }
      /* If we found nothing to hoist, then quit now.  */
      /* If we found nothing to hoist, then quit now.  */
      if (! found)
      if (! found)
        {
        {
          free (domby);
          free (domby);
        continue;
        continue;
        }
        }
 
 
      /* Loop over all the hoistable expressions.  */
      /* Loop over all the hoistable expressions.  */
      for (i = 0; i < hoist_exprs[bb->index]->n_bits; i++)
      for (i = 0; i < hoist_exprs[bb->index]->n_bits; i++)
        {
        {
          /* We want to insert the expression into BB only once, so
          /* We want to insert the expression into BB only once, so
             note when we've inserted it.  */
             note when we've inserted it.  */
          insn_inserted_p = 0;
          insn_inserted_p = 0;
 
 
          /* These tests should be the same as the tests above.  */
          /* These tests should be the same as the tests above.  */
          if (TEST_BIT (hoist_exprs[bb->index], i))
          if (TEST_BIT (hoist_exprs[bb->index], i))
            {
            {
              /* We've found a potentially hoistable expression, now
              /* We've found a potentially hoistable expression, now
                 we look at every block BB dominates to see if it
                 we look at every block BB dominates to see if it
                 computes the expression.  */
                 computes the expression.  */
              for (j = 0; j < domby_len; j++)
              for (j = 0; j < domby_len; j++)
                {
                {
                  dominated = domby[j];
                  dominated = domby[j];
                  /* Ignore self dominance.  */
                  /* Ignore self dominance.  */
                  if (bb == dominated)
                  if (bb == dominated)
                    continue;
                    continue;
 
 
                  /* We've found a dominated block, now see if it computes
                  /* We've found a dominated block, now see if it computes
                     the busy expression and whether or not moving that
                     the busy expression and whether or not moving that
                     expression to the "beginning" of that block is safe.  */
                     expression to the "beginning" of that block is safe.  */
                  if (!TEST_BIT (antloc[dominated->index], i))
                  if (!TEST_BIT (antloc[dominated->index], i))
                    continue;
                    continue;
 
 
                  /* The expression is computed in the dominated block and
                  /* The expression is computed in the dominated block and
                     it would be safe to compute it at the start of the
                     it would be safe to compute it at the start of the
                     dominated block.  Now we have to determine if the
                     dominated block.  Now we have to determine if the
                     expression would reach the dominated block if it was
                     expression would reach the dominated block if it was
                     placed at the end of BB.  */
                     placed at the end of BB.  */
                  if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
                  if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
                    {
                    {
                      struct expr *expr = index_map[i];
                      struct expr *expr = index_map[i];
                      struct occr *occr = expr->antic_occr;
                      struct occr *occr = expr->antic_occr;
                      rtx insn;
                      rtx insn;
                      rtx set;
                      rtx set;
 
 
                      /* Find the right occurrence of this expression.  */
                      /* Find the right occurrence of this expression.  */
                      while (BLOCK_FOR_INSN (occr->insn) != dominated && occr)
                      while (BLOCK_FOR_INSN (occr->insn) != dominated && occr)
                        occr = occr->next;
                        occr = occr->next;
 
 
                      gcc_assert (occr);
                      gcc_assert (occr);
                      insn = occr->insn;
                      insn = occr->insn;
                      set = single_set (insn);
                      set = single_set (insn);
                      gcc_assert (set);
                      gcc_assert (set);
 
 
                      /* Create a pseudo-reg to store the result of reaching
                      /* Create a pseudo-reg to store the result of reaching
                         expressions into.  Get the mode for the new pseudo
                         expressions into.  Get the mode for the new pseudo
                         from the mode of the original destination pseudo.  */
                         from the mode of the original destination pseudo.  */
                      if (expr->reaching_reg == NULL)
                      if (expr->reaching_reg == NULL)
                        expr->reaching_reg
                        expr->reaching_reg
                          = gen_reg_rtx (GET_MODE (SET_DEST (set)));
                          = gen_reg_rtx (GET_MODE (SET_DEST (set)));
 
 
                      gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
                      gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
                      delete_insn (insn);
                      delete_insn (insn);
                      occr->deleted_p = 1;
                      occr->deleted_p = 1;
                      if (!insn_inserted_p)
                      if (!insn_inserted_p)
                        {
                        {
                          insert_insn_end_bb (index_map[i], bb, 0);
                          insert_insn_end_bb (index_map[i], bb, 0);
                          insn_inserted_p = 1;
                          insn_inserted_p = 1;
                        }
                        }
                    }
                    }
                }
                }
            }
            }
        }
        }
      free (domby);
      free (domby);
    }
    }
 
 
  free (index_map);
  free (index_map);
}
}
 
 
/* Top level routine to perform one code hoisting (aka unification) pass
/* Top level routine to perform one code hoisting (aka unification) pass
 
 
   Return nonzero if a change was made.  */
   Return nonzero if a change was made.  */
 
 
static int
static int
one_code_hoisting_pass (void)
one_code_hoisting_pass (void)
{
{
  int changed = 0;
  int changed = 0;
 
 
  alloc_hash_table (max_cuid, &expr_hash_table, 0);
  alloc_hash_table (max_cuid, &expr_hash_table, 0);
  compute_hash_table (&expr_hash_table);
  compute_hash_table (&expr_hash_table);
  if (dump_file)
  if (dump_file)
    dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
    dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
 
 
  if (expr_hash_table.n_elems > 0)
  if (expr_hash_table.n_elems > 0)
    {
    {
      alloc_code_hoist_mem (last_basic_block, expr_hash_table.n_elems);
      alloc_code_hoist_mem (last_basic_block, expr_hash_table.n_elems);
      compute_code_hoist_data ();
      compute_code_hoist_data ();
      hoist_code ();
      hoist_code ();
      free_code_hoist_mem ();
      free_code_hoist_mem ();
    }
    }
 
 
  free_hash_table (&expr_hash_table);
  free_hash_table (&expr_hash_table);
 
 
  return changed;
  return changed;
}
}


/*  Here we provide the things required to do store motion towards
/*  Here we provide the things required to do store motion towards
    the exit. In order for this to be effective, gcse also needed to
    the exit. In order for this to be effective, gcse also needed to
    be taught how to move a load when it is kill only by a store to itself.
    be taught how to move a load when it is kill only by a store to itself.
 
 
            int i;
            int i;
            float a[10];
            float a[10];
 
 
            void foo(float scale)
            void foo(float scale)
            {
            {
              for (i=0; i<10; i++)
              for (i=0; i<10; i++)
                a[i] *= scale;
                a[i] *= scale;
            }
            }
 
 
    'i' is both loaded and stored to in the loop. Normally, gcse cannot move
    'i' is both loaded and stored to in the loop. Normally, gcse cannot move
    the load out since its live around the loop, and stored at the bottom
    the load out since its live around the loop, and stored at the bottom
    of the loop.
    of the loop.
 
 
      The 'Load Motion' referred to and implemented in this file is
      The 'Load Motion' referred to and implemented in this file is
    an enhancement to gcse which when using edge based lcm, recognizes
    an enhancement to gcse which when using edge based lcm, recognizes
    this situation and allows gcse to move the load out of the loop.
    this situation and allows gcse to move the load out of the loop.
 
 
      Once gcse has hoisted the load, store motion can then push this
      Once gcse has hoisted the load, store motion can then push this
    load towards the exit, and we end up with no loads or stores of 'i'
    load towards the exit, and we end up with no loads or stores of 'i'
    in the loop.  */
    in the loop.  */
 
 
static hashval_t
static hashval_t
pre_ldst_expr_hash (const void *p)
pre_ldst_expr_hash (const void *p)
{
{
  int do_not_record_p = 0;
  int do_not_record_p = 0;
  const struct ls_expr *x = p;
  const struct ls_expr *x = p;
  return hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
  return hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
}
}
 
 
static int
static int
pre_ldst_expr_eq (const void *p1, const void *p2)
pre_ldst_expr_eq (const void *p1, const void *p2)
{
{
  const struct ls_expr *ptr1 = p1, *ptr2 = p2;
  const struct ls_expr *ptr1 = p1, *ptr2 = p2;
  return expr_equiv_p (ptr1->pattern, ptr2->pattern);
  return expr_equiv_p (ptr1->pattern, ptr2->pattern);
}
}
 
 
/* This will search the ldst list for a matching expression. If it
/* This will search the ldst list for a matching expression. If it
   doesn't find one, we create one and initialize it.  */
   doesn't find one, we create one and initialize it.  */
 
 
static struct ls_expr *
static struct ls_expr *
ldst_entry (rtx x)
ldst_entry (rtx x)
{
{
  int do_not_record_p = 0;
  int do_not_record_p = 0;
  struct ls_expr * ptr;
  struct ls_expr * ptr;
  unsigned int hash;
  unsigned int hash;
  void **slot;
  void **slot;
  struct ls_expr e;
  struct ls_expr e;
 
 
  hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
  hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
                   NULL,  /*have_reg_qty=*/false);
                   NULL,  /*have_reg_qty=*/false);
 
 
  e.pattern = x;
  e.pattern = x;
  slot = htab_find_slot_with_hash (pre_ldst_table, &e, hash, INSERT);
  slot = htab_find_slot_with_hash (pre_ldst_table, &e, hash, INSERT);
  if (*slot)
  if (*slot)
    return (struct ls_expr *)*slot;
    return (struct ls_expr *)*slot;
 
 
  ptr = XNEW (struct ls_expr);
  ptr = XNEW (struct ls_expr);
 
 
  ptr->next         = pre_ldst_mems;
  ptr->next         = pre_ldst_mems;
  ptr->expr         = NULL;
  ptr->expr         = NULL;
  ptr->pattern      = x;
  ptr->pattern      = x;
  ptr->pattern_regs = NULL_RTX;
  ptr->pattern_regs = NULL_RTX;
  ptr->loads        = NULL_RTX;
  ptr->loads        = NULL_RTX;
  ptr->stores       = NULL_RTX;
  ptr->stores       = NULL_RTX;
  ptr->reaching_reg = NULL_RTX;
  ptr->reaching_reg = NULL_RTX;
  ptr->invalid      = 0;
  ptr->invalid      = 0;
  ptr->index        = 0;
  ptr->index        = 0;
  ptr->hash_index   = hash;
  ptr->hash_index   = hash;
  pre_ldst_mems     = ptr;
  pre_ldst_mems     = ptr;
  *slot = ptr;
  *slot = ptr;
 
 
  return ptr;
  return ptr;
}
}
 
 
/* Free up an individual ldst entry.  */
/* Free up an individual ldst entry.  */
 
 
static void
static void
free_ldst_entry (struct ls_expr * ptr)
free_ldst_entry (struct ls_expr * ptr)
{
{
  free_INSN_LIST_list (& ptr->loads);
  free_INSN_LIST_list (& ptr->loads);
  free_INSN_LIST_list (& ptr->stores);
  free_INSN_LIST_list (& ptr->stores);
 
 
  free (ptr);
  free (ptr);
}
}
 
 
/* Free up all memory associated with the ldst list.  */
/* Free up all memory associated with the ldst list.  */
 
 
static void
static void
free_ldst_mems (void)
free_ldst_mems (void)
{
{
  if (pre_ldst_table)
  if (pre_ldst_table)
    htab_delete (pre_ldst_table);
    htab_delete (pre_ldst_table);
  pre_ldst_table = NULL;
  pre_ldst_table = NULL;
 
 
  while (pre_ldst_mems)
  while (pre_ldst_mems)
    {
    {
      struct ls_expr * tmp = pre_ldst_mems;
      struct ls_expr * tmp = pre_ldst_mems;
 
 
      pre_ldst_mems = pre_ldst_mems->next;
      pre_ldst_mems = pre_ldst_mems->next;
 
 
      free_ldst_entry (tmp);
      free_ldst_entry (tmp);
    }
    }
 
 
  pre_ldst_mems = NULL;
  pre_ldst_mems = NULL;
}
}
 
 
/* Dump debugging info about the ldst list.  */
/* Dump debugging info about the ldst list.  */
 
 
static void
static void
print_ldst_list (FILE * file)
print_ldst_list (FILE * file)
{
{
  struct ls_expr * ptr;
  struct ls_expr * ptr;
 
 
  fprintf (file, "LDST list: \n");
  fprintf (file, "LDST list: \n");
 
 
  for (ptr = first_ls_expr(); ptr != NULL; ptr = next_ls_expr (ptr))
  for (ptr = first_ls_expr(); ptr != NULL; ptr = next_ls_expr (ptr))
    {
    {
      fprintf (file, "  Pattern (%3d): ", ptr->index);
      fprintf (file, "  Pattern (%3d): ", ptr->index);
 
 
      print_rtl (file, ptr->pattern);
      print_rtl (file, ptr->pattern);
 
 
      fprintf (file, "\n         Loads : ");
      fprintf (file, "\n         Loads : ");
 
 
      if (ptr->loads)
      if (ptr->loads)
        print_rtl (file, ptr->loads);
        print_rtl (file, ptr->loads);
      else
      else
        fprintf (file, "(nil)");
        fprintf (file, "(nil)");
 
 
      fprintf (file, "\n        Stores : ");
      fprintf (file, "\n        Stores : ");
 
 
      if (ptr->stores)
      if (ptr->stores)
        print_rtl (file, ptr->stores);
        print_rtl (file, ptr->stores);
      else
      else
        fprintf (file, "(nil)");
        fprintf (file, "(nil)");
 
 
      fprintf (file, "\n\n");
      fprintf (file, "\n\n");
    }
    }
 
 
  fprintf (file, "\n");
  fprintf (file, "\n");
}
}
 
 
/* Returns 1 if X is in the list of ldst only expressions.  */
/* Returns 1 if X is in the list of ldst only expressions.  */
 
 
static struct ls_expr *
static struct ls_expr *
find_rtx_in_ldst (rtx x)
find_rtx_in_ldst (rtx x)
{
{
  struct ls_expr e;
  struct ls_expr e;
  void **slot;
  void **slot;
  if (!pre_ldst_table)
  if (!pre_ldst_table)
    return NULL;
    return NULL;
  e.pattern = x;
  e.pattern = x;
  slot = htab_find_slot (pre_ldst_table, &e, NO_INSERT);
  slot = htab_find_slot (pre_ldst_table, &e, NO_INSERT);
  if (!slot || ((struct ls_expr *)*slot)->invalid)
  if (!slot || ((struct ls_expr *)*slot)->invalid)
    return NULL;
    return NULL;
  return *slot;
  return *slot;
}
}
 
 
/* Assign each element of the list of mems a monotonically increasing value.  */
/* Assign each element of the list of mems a monotonically increasing value.  */
 
 
static int
static int
enumerate_ldsts (void)
enumerate_ldsts (void)
{
{
  struct ls_expr * ptr;
  struct ls_expr * ptr;
  int n = 0;
  int n = 0;
 
 
  for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
  for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
    ptr->index = n++;
    ptr->index = n++;
 
 
  return n;
  return n;
}
}
 
 
/* Return first item in the list.  */
/* Return first item in the list.  */
 
 
static inline struct ls_expr *
static inline struct ls_expr *
first_ls_expr (void)
first_ls_expr (void)
{
{
  return pre_ldst_mems;
  return pre_ldst_mems;
}
}
 
 
/* Return the next item in the list after the specified one.  */
/* Return the next item in the list after the specified one.  */
 
 
static inline struct ls_expr *
static inline struct ls_expr *
next_ls_expr (struct ls_expr * ptr)
next_ls_expr (struct ls_expr * ptr)
{
{
  return ptr->next;
  return ptr->next;
}
}


/* Load Motion for loads which only kill themselves.  */
/* Load Motion for loads which only kill themselves.  */
 
 
/* Return true if x is a simple MEM operation, with no registers or
/* Return true if x is a simple MEM operation, with no registers or
   side effects. These are the types of loads we consider for the
   side effects. These are the types of loads we consider for the
   ld_motion list, otherwise we let the usual aliasing take care of it.  */
   ld_motion list, otherwise we let the usual aliasing take care of it.  */
 
 
static int
static int
simple_mem (rtx x)
simple_mem (rtx x)
{
{
  if (! MEM_P (x))
  if (! MEM_P (x))
    return 0;
    return 0;
 
 
  if (MEM_VOLATILE_P (x))
  if (MEM_VOLATILE_P (x))
    return 0;
    return 0;
 
 
  if (GET_MODE (x) == BLKmode)
  if (GET_MODE (x) == BLKmode)
    return 0;
    return 0;
 
 
  /* If we are handling exceptions, we must be careful with memory references
  /* If we are handling exceptions, we must be careful with memory references
     that may trap. If we are not, the behavior is undefined, so we may just
     that may trap. If we are not, the behavior is undefined, so we may just
     continue.  */
     continue.  */
  if (flag_non_call_exceptions && may_trap_p (x))
  if (flag_non_call_exceptions && may_trap_p (x))
    return 0;
    return 0;
 
 
  if (side_effects_p (x))
  if (side_effects_p (x))
    return 0;
    return 0;
 
 
  /* Do not consider function arguments passed on stack.  */
  /* Do not consider function arguments passed on stack.  */
  if (reg_mentioned_p (stack_pointer_rtx, x))
  if (reg_mentioned_p (stack_pointer_rtx, x))
    return 0;
    return 0;
 
 
  if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
  if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
    return 0;
    return 0;
 
 
  return 1;
  return 1;
}
}
 
 
/* Make sure there isn't a buried reference in this pattern anywhere.
/* Make sure there isn't a buried reference in this pattern anywhere.
   If there is, invalidate the entry for it since we're not capable
   If there is, invalidate the entry for it since we're not capable
   of fixing it up just yet.. We have to be sure we know about ALL
   of fixing it up just yet.. We have to be sure we know about ALL
   loads since the aliasing code will allow all entries in the
   loads since the aliasing code will allow all entries in the
   ld_motion list to not-alias itself.  If we miss a load, we will get
   ld_motion list to not-alias itself.  If we miss a load, we will get
   the wrong value since gcse might common it and we won't know to
   the wrong value since gcse might common it and we won't know to
   fix it up.  */
   fix it up.  */
 
 
static void
static void
invalidate_any_buried_refs (rtx x)
invalidate_any_buried_refs (rtx x)
{
{
  const char * fmt;
  const char * fmt;
  int i, j;
  int i, j;
  struct ls_expr * ptr;
  struct ls_expr * ptr;
 
 
  /* Invalidate it in the list.  */
  /* Invalidate it in the list.  */
  if (MEM_P (x) && simple_mem (x))
  if (MEM_P (x) && simple_mem (x))
    {
    {
      ptr = ldst_entry (x);
      ptr = ldst_entry (x);
      ptr->invalid = 1;
      ptr->invalid = 1;
    }
    }
 
 
  /* Recursively process the insn.  */
  /* Recursively process the insn.  */
  fmt = GET_RTX_FORMAT (GET_CODE (x));
  fmt = GET_RTX_FORMAT (GET_CODE (x));
 
 
  for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
  for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
    {
    {
      if (fmt[i] == 'e')
      if (fmt[i] == 'e')
        invalidate_any_buried_refs (XEXP (x, i));
        invalidate_any_buried_refs (XEXP (x, i));
      else if (fmt[i] == 'E')
      else if (fmt[i] == 'E')
        for (j = XVECLEN (x, i) - 1; j >= 0; j--)
        for (j = XVECLEN (x, i) - 1; j >= 0; j--)
          invalidate_any_buried_refs (XVECEXP (x, i, j));
          invalidate_any_buried_refs (XVECEXP (x, i, j));
    }
    }
}
}
 
 
/* Find all the 'simple' MEMs which are used in LOADs and STORES.  Simple
/* Find all the 'simple' MEMs which are used in LOADs and STORES.  Simple
   being defined as MEM loads and stores to symbols, with no side effects
   being defined as MEM loads and stores to symbols, with no side effects
   and no registers in the expression.  For a MEM destination, we also
   and no registers in the expression.  For a MEM destination, we also
   check that the insn is still valid if we replace the destination with a
   check that the insn is still valid if we replace the destination with a
   REG, as is done in update_ld_motion_stores.  If there are any uses/defs
   REG, as is done in update_ld_motion_stores.  If there are any uses/defs
   which don't match this criteria, they are invalidated and trimmed out
   which don't match this criteria, they are invalidated and trimmed out
   later.  */
   later.  */
 
 
static void
static void
compute_ld_motion_mems (void)
compute_ld_motion_mems (void)
{
{
  struct ls_expr * ptr;
  struct ls_expr * ptr;
  basic_block bb;
  basic_block bb;
  rtx insn;
  rtx insn;
 
 
  pre_ldst_mems = NULL;
  pre_ldst_mems = NULL;
  pre_ldst_table = htab_create (13, pre_ldst_expr_hash,
  pre_ldst_table = htab_create (13, pre_ldst_expr_hash,
                                pre_ldst_expr_eq, NULL);
                                pre_ldst_expr_eq, NULL);
 
 
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    {
    {
      FOR_BB_INSNS (bb, insn)
      FOR_BB_INSNS (bb, insn)
        {
        {
          if (INSN_P (insn))
          if (INSN_P (insn))
            {
            {
              if (GET_CODE (PATTERN (insn)) == SET)
              if (GET_CODE (PATTERN (insn)) == SET)
                {
                {
                  rtx src = SET_SRC (PATTERN (insn));
                  rtx src = SET_SRC (PATTERN (insn));
                  rtx dest = SET_DEST (PATTERN (insn));
                  rtx dest = SET_DEST (PATTERN (insn));
 
 
                  /* Check for a simple LOAD...  */
                  /* Check for a simple LOAD...  */
                  if (MEM_P (src) && simple_mem (src))
                  if (MEM_P (src) && simple_mem (src))
                    {
                    {
                      ptr = ldst_entry (src);
                      ptr = ldst_entry (src);
                      if (REG_P (dest))
                      if (REG_P (dest))
                        ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
                        ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
                      else
                      else
                        ptr->invalid = 1;
                        ptr->invalid = 1;
                    }
                    }
                  else
                  else
                    {
                    {
                      /* Make sure there isn't a buried load somewhere.  */
                      /* Make sure there isn't a buried load somewhere.  */
                      invalidate_any_buried_refs (src);
                      invalidate_any_buried_refs (src);
                    }
                    }
 
 
                  /* Check for stores. Don't worry about aliased ones, they
                  /* Check for stores. Don't worry about aliased ones, they
                     will block any movement we might do later. We only care
                     will block any movement we might do later. We only care
                     about this exact pattern since those are the only
                     about this exact pattern since those are the only
                     circumstance that we will ignore the aliasing info.  */
                     circumstance that we will ignore the aliasing info.  */
                  if (MEM_P (dest) && simple_mem (dest))
                  if (MEM_P (dest) && simple_mem (dest))
                    {
                    {
                      ptr = ldst_entry (dest);
                      ptr = ldst_entry (dest);
 
 
                      if (! MEM_P (src)
                      if (! MEM_P (src)
                          && GET_CODE (src) != ASM_OPERANDS
                          && GET_CODE (src) != ASM_OPERANDS
                          /* Check for REG manually since want_to_gcse_p
                          /* Check for REG manually since want_to_gcse_p
                             returns 0 for all REGs.  */
                             returns 0 for all REGs.  */
                          && can_assign_to_reg_p (src))
                          && can_assign_to_reg_p (src))
                        ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
                        ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
                      else
                      else
                        ptr->invalid = 1;
                        ptr->invalid = 1;
                    }
                    }
                }
                }
              else
              else
                invalidate_any_buried_refs (PATTERN (insn));
                invalidate_any_buried_refs (PATTERN (insn));
            }
            }
        }
        }
    }
    }
}
}
 
 
/* Remove any references that have been either invalidated or are not in the
/* Remove any references that have been either invalidated or are not in the
   expression list for pre gcse.  */
   expression list for pre gcse.  */
 
 
static void
static void
trim_ld_motion_mems (void)
trim_ld_motion_mems (void)
{
{
  struct ls_expr * * last = & pre_ldst_mems;
  struct ls_expr * * last = & pre_ldst_mems;
  struct ls_expr * ptr = pre_ldst_mems;
  struct ls_expr * ptr = pre_ldst_mems;
 
 
  while (ptr != NULL)
  while (ptr != NULL)
    {
    {
      struct expr * expr;
      struct expr * expr;
 
 
      /* Delete if entry has been made invalid.  */
      /* Delete if entry has been made invalid.  */
      if (! ptr->invalid)
      if (! ptr->invalid)
        {
        {
          /* Delete if we cannot find this mem in the expression list.  */
          /* Delete if we cannot find this mem in the expression list.  */
          unsigned int hash = ptr->hash_index % expr_hash_table.size;
          unsigned int hash = ptr->hash_index % expr_hash_table.size;
 
 
          for (expr = expr_hash_table.table[hash];
          for (expr = expr_hash_table.table[hash];
               expr != NULL;
               expr != NULL;
               expr = expr->next_same_hash)
               expr = expr->next_same_hash)
            if (expr_equiv_p (expr->expr, ptr->pattern))
            if (expr_equiv_p (expr->expr, ptr->pattern))
              break;
              break;
        }
        }
      else
      else
        expr = (struct expr *) 0;
        expr = (struct expr *) 0;
 
 
      if (expr)
      if (expr)
        {
        {
          /* Set the expression field if we are keeping it.  */
          /* Set the expression field if we are keeping it.  */
          ptr->expr = expr;
          ptr->expr = expr;
          last = & ptr->next;
          last = & ptr->next;
          ptr = ptr->next;
          ptr = ptr->next;
        }
        }
      else
      else
        {
        {
          *last = ptr->next;
          *last = ptr->next;
          htab_remove_elt_with_hash (pre_ldst_table, ptr, ptr->hash_index);
          htab_remove_elt_with_hash (pre_ldst_table, ptr, ptr->hash_index);
          free_ldst_entry (ptr);
          free_ldst_entry (ptr);
          ptr = * last;
          ptr = * last;
        }
        }
    }
    }
 
 
  /* Show the world what we've found.  */
  /* Show the world what we've found.  */
  if (dump_file && pre_ldst_mems != NULL)
  if (dump_file && pre_ldst_mems != NULL)
    print_ldst_list (dump_file);
    print_ldst_list (dump_file);
}
}
 
 
/* This routine will take an expression which we are replacing with
/* This routine will take an expression which we are replacing with
   a reaching register, and update any stores that are needed if
   a reaching register, and update any stores that are needed if
   that expression is in the ld_motion list.  Stores are updated by
   that expression is in the ld_motion list.  Stores are updated by
   copying their SRC to the reaching register, and then storing
   copying their SRC to the reaching register, and then storing
   the reaching register into the store location. These keeps the
   the reaching register into the store location. These keeps the
   correct value in the reaching register for the loads.  */
   correct value in the reaching register for the loads.  */
 
 
static void
static void
update_ld_motion_stores (struct expr * expr)
update_ld_motion_stores (struct expr * expr)
{
{
  struct ls_expr * mem_ptr;
  struct ls_expr * mem_ptr;
 
 
  if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
  if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
    {
    {
      /* We can try to find just the REACHED stores, but is shouldn't
      /* We can try to find just the REACHED stores, but is shouldn't
         matter to set the reaching reg everywhere...  some might be
         matter to set the reaching reg everywhere...  some might be
         dead and should be eliminated later.  */
         dead and should be eliminated later.  */
 
 
      /* We replace (set mem expr) with (set reg expr) (set mem reg)
      /* We replace (set mem expr) with (set reg expr) (set mem reg)
         where reg is the reaching reg used in the load.  We checked in
         where reg is the reaching reg used in the load.  We checked in
         compute_ld_motion_mems that we can replace (set mem expr) with
         compute_ld_motion_mems that we can replace (set mem expr) with
         (set reg expr) in that insn.  */
         (set reg expr) in that insn.  */
      rtx list = mem_ptr->stores;
      rtx list = mem_ptr->stores;
 
 
      for ( ; list != NULL_RTX; list = XEXP (list, 1))
      for ( ; list != NULL_RTX; list = XEXP (list, 1))
        {
        {
          rtx insn = XEXP (list, 0);
          rtx insn = XEXP (list, 0);
          rtx pat = PATTERN (insn);
          rtx pat = PATTERN (insn);
          rtx src = SET_SRC (pat);
          rtx src = SET_SRC (pat);
          rtx reg = expr->reaching_reg;
          rtx reg = expr->reaching_reg;
          rtx copy, new;
          rtx copy, new;
 
 
          /* If we've already copied it, continue.  */
          /* If we've already copied it, continue.  */
          if (expr->reaching_reg == src)
          if (expr->reaching_reg == src)
            continue;
            continue;
 
 
          if (dump_file)
          if (dump_file)
            {
            {
              fprintf (dump_file, "PRE:  store updated with reaching reg ");
              fprintf (dump_file, "PRE:  store updated with reaching reg ");
              print_rtl (dump_file, expr->reaching_reg);
              print_rtl (dump_file, expr->reaching_reg);
              fprintf (dump_file, ":\n  ");
              fprintf (dump_file, ":\n  ");
              print_inline_rtx (dump_file, insn, 8);
              print_inline_rtx (dump_file, insn, 8);
              fprintf (dump_file, "\n");
              fprintf (dump_file, "\n");
            }
            }
 
 
          copy = gen_move_insn ( reg, copy_rtx (SET_SRC (pat)));
          copy = gen_move_insn ( reg, copy_rtx (SET_SRC (pat)));
          new = emit_insn_before (copy, insn);
          new = emit_insn_before (copy, insn);
          record_one_set (REGNO (reg), new);
          record_one_set (REGNO (reg), new);
          SET_SRC (pat) = reg;
          SET_SRC (pat) = reg;
 
 
          /* un-recognize this pattern since it's probably different now.  */
          /* un-recognize this pattern since it's probably different now.  */
          INSN_CODE (insn) = -1;
          INSN_CODE (insn) = -1;
          gcse_create_count++;
          gcse_create_count++;
        }
        }
    }
    }
}
}


/* Store motion code.  */
/* Store motion code.  */
 
 
#define ANTIC_STORE_LIST(x)             ((x)->loads)
#define ANTIC_STORE_LIST(x)             ((x)->loads)
#define AVAIL_STORE_LIST(x)             ((x)->stores)
#define AVAIL_STORE_LIST(x)             ((x)->stores)
#define LAST_AVAIL_CHECK_FAILURE(x)     ((x)->reaching_reg)
#define LAST_AVAIL_CHECK_FAILURE(x)     ((x)->reaching_reg)
 
 
/* This is used to communicate the target bitvector we want to use in the
/* This is used to communicate the target bitvector we want to use in the
   reg_set_info routine when called via the note_stores mechanism.  */
   reg_set_info routine when called via the note_stores mechanism.  */
static int * regvec;
static int * regvec;
 
 
/* And current insn, for the same routine.  */
/* And current insn, for the same routine.  */
static rtx compute_store_table_current_insn;
static rtx compute_store_table_current_insn;
 
 
/* Used in computing the reverse edge graph bit vectors.  */
/* Used in computing the reverse edge graph bit vectors.  */
static sbitmap * st_antloc;
static sbitmap * st_antloc;
 
 
/* Global holding the number of store expressions we are dealing with.  */
/* Global holding the number of store expressions we are dealing with.  */
static int num_stores;
static int num_stores;
 
 
/* Checks to set if we need to mark a register set.  Called from
/* Checks to set if we need to mark a register set.  Called from
   note_stores.  */
   note_stores.  */
 
 
static void
static void
reg_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED,
reg_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED,
              void *data)
              void *data)
{
{
  sbitmap bb_reg = data;
  sbitmap bb_reg = data;
 
 
  if (GET_CODE (dest) == SUBREG)
  if (GET_CODE (dest) == SUBREG)
    dest = SUBREG_REG (dest);
    dest = SUBREG_REG (dest);
 
 
  if (REG_P (dest))
  if (REG_P (dest))
    {
    {
      regvec[REGNO (dest)] = INSN_UID (compute_store_table_current_insn);
      regvec[REGNO (dest)] = INSN_UID (compute_store_table_current_insn);
      if (bb_reg)
      if (bb_reg)
        SET_BIT (bb_reg, REGNO (dest));
        SET_BIT (bb_reg, REGNO (dest));
    }
    }
}
}
 
 
/* Clear any mark that says that this insn sets dest.  Called from
/* Clear any mark that says that this insn sets dest.  Called from
   note_stores.  */
   note_stores.  */
 
 
static void
static void
reg_clear_last_set (rtx dest, rtx setter ATTRIBUTE_UNUSED,
reg_clear_last_set (rtx dest, rtx setter ATTRIBUTE_UNUSED,
              void *data)
              void *data)
{
{
  int *dead_vec = data;
  int *dead_vec = data;
 
 
  if (GET_CODE (dest) == SUBREG)
  if (GET_CODE (dest) == SUBREG)
    dest = SUBREG_REG (dest);
    dest = SUBREG_REG (dest);
 
 
  if (REG_P (dest) &&
  if (REG_P (dest) &&
      dead_vec[REGNO (dest)] == INSN_UID (compute_store_table_current_insn))
      dead_vec[REGNO (dest)] == INSN_UID (compute_store_table_current_insn))
    dead_vec[REGNO (dest)] = 0;
    dead_vec[REGNO (dest)] = 0;
}
}
 
 
/* Return zero if some of the registers in list X are killed
/* Return zero if some of the registers in list X are killed
   due to set of registers in bitmap REGS_SET.  */
   due to set of registers in bitmap REGS_SET.  */
 
 
static bool
static bool
store_ops_ok (rtx x, int *regs_set)
store_ops_ok (rtx x, int *regs_set)
{
{
  rtx reg;
  rtx reg;
 
 
  for (; x; x = XEXP (x, 1))
  for (; x; x = XEXP (x, 1))
    {
    {
      reg = XEXP (x, 0);
      reg = XEXP (x, 0);
      if (regs_set[REGNO(reg)])
      if (regs_set[REGNO(reg)])
        return false;
        return false;
    }
    }
 
 
  return true;
  return true;
}
}
 
 
/* Returns a list of registers mentioned in X.  */
/* Returns a list of registers mentioned in X.  */
static rtx
static rtx
extract_mentioned_regs (rtx x)
extract_mentioned_regs (rtx x)
{
{
  return extract_mentioned_regs_helper (x, NULL_RTX);
  return extract_mentioned_regs_helper (x, NULL_RTX);
}
}
 
 
/* Helper for extract_mentioned_regs; ACCUM is used to accumulate used
/* Helper for extract_mentioned_regs; ACCUM is used to accumulate used
   registers.  */
   registers.  */
static rtx
static rtx
extract_mentioned_regs_helper (rtx x, rtx accum)
extract_mentioned_regs_helper (rtx x, rtx accum)
{
{
  int i;
  int i;
  enum rtx_code code;
  enum rtx_code code;
  const char * fmt;
  const char * fmt;
 
 
  /* Repeat is used to turn tail-recursion into iteration.  */
  /* Repeat is used to turn tail-recursion into iteration.  */
 repeat:
 repeat:
 
 
  if (x == 0)
  if (x == 0)
    return accum;
    return accum;
 
 
  code = GET_CODE (x);
  code = GET_CODE (x);
  switch (code)
  switch (code)
    {
    {
    case REG:
    case REG:
      return alloc_EXPR_LIST (0, x, accum);
      return alloc_EXPR_LIST (0, x, accum);
 
 
    case MEM:
    case MEM:
      x = XEXP (x, 0);
      x = XEXP (x, 0);
      goto repeat;
      goto repeat;
 
 
    case PRE_DEC:
    case PRE_DEC:
    case PRE_INC:
    case PRE_INC:
    case POST_DEC:
    case POST_DEC:
    case POST_INC:
    case POST_INC:
      /* We do not run this function with arguments having side effects.  */
      /* We do not run this function with arguments having side effects.  */
      gcc_unreachable ();
      gcc_unreachable ();
 
 
    case PC:
    case PC:
    case CC0: /*FIXME*/
    case CC0: /*FIXME*/
    case CONST:
    case CONST:
    case CONST_INT:
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST_DOUBLE:
    case CONST_VECTOR:
    case CONST_VECTOR:
    case SYMBOL_REF:
    case SYMBOL_REF:
    case LABEL_REF:
    case LABEL_REF:
    case ADDR_VEC:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
    case ADDR_DIFF_VEC:
      return accum;
      return accum;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  i = GET_RTX_LENGTH (code) - 1;
  i = GET_RTX_LENGTH (code) - 1;
  fmt = GET_RTX_FORMAT (code);
  fmt = GET_RTX_FORMAT (code);
 
 
  for (; i >= 0; i--)
  for (; i >= 0; i--)
    {
    {
      if (fmt[i] == 'e')
      if (fmt[i] == 'e')
        {
        {
          rtx tem = XEXP (x, i);
          rtx tem = XEXP (x, i);
 
 
          /* If we are about to do the last recursive call
          /* If we are about to do the last recursive call
             needed at this level, change it into iteration.  */
             needed at this level, change it into iteration.  */
          if (i == 0)
          if (i == 0)
            {
            {
              x = tem;
              x = tem;
              goto repeat;
              goto repeat;
            }
            }
 
 
          accum = extract_mentioned_regs_helper (tem, accum);
          accum = extract_mentioned_regs_helper (tem, accum);
        }
        }
      else if (fmt[i] == 'E')
      else if (fmt[i] == 'E')
        {
        {
          int j;
          int j;
 
 
          for (j = 0; j < XVECLEN (x, i); j++)
          for (j = 0; j < XVECLEN (x, i); j++)
            accum = extract_mentioned_regs_helper (XVECEXP (x, i, j), accum);
            accum = extract_mentioned_regs_helper (XVECEXP (x, i, j), accum);
        }
        }
    }
    }
 
 
  return accum;
  return accum;
}
}
 
 
/* Determine whether INSN is MEM store pattern that we will consider moving.
/* Determine whether INSN is MEM store pattern that we will consider moving.
   REGS_SET_BEFORE is bitmap of registers set before (and including) the
   REGS_SET_BEFORE is bitmap of registers set before (and including) the
   current insn, REGS_SET_AFTER is bitmap of registers set after (and
   current insn, REGS_SET_AFTER is bitmap of registers set after (and
   including) the insn in this basic block.  We must be passing through BB from
   including) the insn in this basic block.  We must be passing through BB from
   head to end, as we are using this fact to speed things up.
   head to end, as we are using this fact to speed things up.
 
 
   The results are stored this way:
   The results are stored this way:
 
 
   -- the first anticipatable expression is added into ANTIC_STORE_LIST
   -- the first anticipatable expression is added into ANTIC_STORE_LIST
   -- if the processed expression is not anticipatable, NULL_RTX is added
   -- if the processed expression is not anticipatable, NULL_RTX is added
      there instead, so that we can use it as indicator that no further
      there instead, so that we can use it as indicator that no further
      expression of this type may be anticipatable
      expression of this type may be anticipatable
   -- if the expression is available, it is added as head of AVAIL_STORE_LIST;
   -- if the expression is available, it is added as head of AVAIL_STORE_LIST;
      consequently, all of them but this head are dead and may be deleted.
      consequently, all of them but this head are dead and may be deleted.
   -- if the expression is not available, the insn due to that it fails to be
   -- if the expression is not available, the insn due to that it fails to be
      available is stored in reaching_reg.
      available is stored in reaching_reg.
 
 
   The things are complicated a bit by fact that there already may be stores
   The things are complicated a bit by fact that there already may be stores
   to the same MEM from other blocks; also caller must take care of the
   to the same MEM from other blocks; also caller must take care of the
   necessary cleanup of the temporary markers after end of the basic block.
   necessary cleanup of the temporary markers after end of the basic block.
   */
   */
 
 
static void
static void
find_moveable_store (rtx insn, int *regs_set_before, int *regs_set_after)
find_moveable_store (rtx insn, int *regs_set_before, int *regs_set_after)
{
{
  struct ls_expr * ptr;
  struct ls_expr * ptr;
  rtx dest, set, tmp;
  rtx dest, set, tmp;
  int check_anticipatable, check_available;
  int check_anticipatable, check_available;
  basic_block bb = BLOCK_FOR_INSN (insn);
  basic_block bb = BLOCK_FOR_INSN (insn);
 
 
  set = single_set (insn);
  set = single_set (insn);
  if (!set)
  if (!set)
    return;
    return;
 
 
  dest = SET_DEST (set);
  dest = SET_DEST (set);
 
 
  if (! MEM_P (dest) || MEM_VOLATILE_P (dest)
  if (! MEM_P (dest) || MEM_VOLATILE_P (dest)
      || GET_MODE (dest) == BLKmode)
      || GET_MODE (dest) == BLKmode)
    return;
    return;
 
 
  if (side_effects_p (dest))
  if (side_effects_p (dest))
    return;
    return;
 
 
  /* If we are handling exceptions, we must be careful with memory references
  /* If we are handling exceptions, we must be careful with memory references
     that may trap. If we are not, the behavior is undefined, so we may just
     that may trap. If we are not, the behavior is undefined, so we may just
     continue.  */
     continue.  */
  if (flag_non_call_exceptions && may_trap_p (dest))
  if (flag_non_call_exceptions && may_trap_p (dest))
    return;
    return;
 
 
  /* Even if the destination cannot trap, the source may.  In this case we'd
  /* Even if the destination cannot trap, the source may.  In this case we'd
     need to handle updating the REG_EH_REGION note.  */
     need to handle updating the REG_EH_REGION note.  */
  if (find_reg_note (insn, REG_EH_REGION, NULL_RTX))
  if (find_reg_note (insn, REG_EH_REGION, NULL_RTX))
    return;
    return;
 
 
  /* Make sure that the SET_SRC of this store insns can be assigned to
  /* Make sure that the SET_SRC of this store insns can be assigned to
     a register, or we will fail later on in replace_store_insn, which
     a register, or we will fail later on in replace_store_insn, which
     assumes that we can do this.  But sometimes the target machine has
     assumes that we can do this.  But sometimes the target machine has
     oddities like MEM read-modify-write instruction.  See for example
     oddities like MEM read-modify-write instruction.  See for example
     PR24257.  */
     PR24257.  */
  if (!can_assign_to_reg_p (SET_SRC (set)))
  if (!can_assign_to_reg_p (SET_SRC (set)))
    return;
    return;
 
 
  ptr = ldst_entry (dest);
  ptr = ldst_entry (dest);
  if (!ptr->pattern_regs)
  if (!ptr->pattern_regs)
    ptr->pattern_regs = extract_mentioned_regs (dest);
    ptr->pattern_regs = extract_mentioned_regs (dest);
 
 
  /* Do not check for anticipatability if we either found one anticipatable
  /* Do not check for anticipatability if we either found one anticipatable
     store already, or tested for one and found out that it was killed.  */
     store already, or tested for one and found out that it was killed.  */
  check_anticipatable = 0;
  check_anticipatable = 0;
  if (!ANTIC_STORE_LIST (ptr))
  if (!ANTIC_STORE_LIST (ptr))
    check_anticipatable = 1;
    check_anticipatable = 1;
  else
  else
    {
    {
      tmp = XEXP (ANTIC_STORE_LIST (ptr), 0);
      tmp = XEXP (ANTIC_STORE_LIST (ptr), 0);
      if (tmp != NULL_RTX
      if (tmp != NULL_RTX
          && BLOCK_FOR_INSN (tmp) != bb)
          && BLOCK_FOR_INSN (tmp) != bb)
        check_anticipatable = 1;
        check_anticipatable = 1;
    }
    }
  if (check_anticipatable)
  if (check_anticipatable)
    {
    {
      if (store_killed_before (dest, ptr->pattern_regs, insn, bb, regs_set_before))
      if (store_killed_before (dest, ptr->pattern_regs, insn, bb, regs_set_before))
        tmp = NULL_RTX;
        tmp = NULL_RTX;
      else
      else
        tmp = insn;
        tmp = insn;
      ANTIC_STORE_LIST (ptr) = alloc_INSN_LIST (tmp,
      ANTIC_STORE_LIST (ptr) = alloc_INSN_LIST (tmp,
                                                ANTIC_STORE_LIST (ptr));
                                                ANTIC_STORE_LIST (ptr));
    }
    }
 
 
  /* It is not necessary to check whether store is available if we did
  /* It is not necessary to check whether store is available if we did
     it successfully before; if we failed before, do not bother to check
     it successfully before; if we failed before, do not bother to check
     until we reach the insn that caused us to fail.  */
     until we reach the insn that caused us to fail.  */
  check_available = 0;
  check_available = 0;
  if (!AVAIL_STORE_LIST (ptr))
  if (!AVAIL_STORE_LIST (ptr))
    check_available = 1;
    check_available = 1;
  else
  else
    {
    {
      tmp = XEXP (AVAIL_STORE_LIST (ptr), 0);
      tmp = XEXP (AVAIL_STORE_LIST (ptr), 0);
      if (BLOCK_FOR_INSN (tmp) != bb)
      if (BLOCK_FOR_INSN (tmp) != bb)
        check_available = 1;
        check_available = 1;
    }
    }
  if (check_available)
  if (check_available)
    {
    {
      /* Check that we have already reached the insn at that the check
      /* Check that we have already reached the insn at that the check
         failed last time.  */
         failed last time.  */
      if (LAST_AVAIL_CHECK_FAILURE (ptr))
      if (LAST_AVAIL_CHECK_FAILURE (ptr))
        {
        {
          for (tmp = BB_END (bb);
          for (tmp = BB_END (bb);
               tmp != insn && tmp != LAST_AVAIL_CHECK_FAILURE (ptr);
               tmp != insn && tmp != LAST_AVAIL_CHECK_FAILURE (ptr);
               tmp = PREV_INSN (tmp))
               tmp = PREV_INSN (tmp))
            continue;
            continue;
          if (tmp == insn)
          if (tmp == insn)
            check_available = 0;
            check_available = 0;
        }
        }
      else
      else
        check_available = store_killed_after (dest, ptr->pattern_regs, insn,
        check_available = store_killed_after (dest, ptr->pattern_regs, insn,
                                              bb, regs_set_after,
                                              bb, regs_set_after,
                                              &LAST_AVAIL_CHECK_FAILURE (ptr));
                                              &LAST_AVAIL_CHECK_FAILURE (ptr));
    }
    }
  if (!check_available)
  if (!check_available)
    AVAIL_STORE_LIST (ptr) = alloc_INSN_LIST (insn, AVAIL_STORE_LIST (ptr));
    AVAIL_STORE_LIST (ptr) = alloc_INSN_LIST (insn, AVAIL_STORE_LIST (ptr));
}
}
 
 
/* Find available and anticipatable stores.  */
/* Find available and anticipatable stores.  */
 
 
static int
static int
compute_store_table (void)
compute_store_table (void)
{
{
  int ret;
  int ret;
  basic_block bb;
  basic_block bb;
  unsigned regno;
  unsigned regno;
  rtx insn, pat, tmp;
  rtx insn, pat, tmp;
  int *last_set_in, *already_set;
  int *last_set_in, *already_set;
  struct ls_expr * ptr, **prev_next_ptr_ptr;
  struct ls_expr * ptr, **prev_next_ptr_ptr;
 
 
  max_gcse_regno = max_reg_num ();
  max_gcse_regno = max_reg_num ();
 
 
  reg_set_in_block = sbitmap_vector_alloc (last_basic_block,
  reg_set_in_block = sbitmap_vector_alloc (last_basic_block,
                                                       max_gcse_regno);
                                                       max_gcse_regno);
  sbitmap_vector_zero (reg_set_in_block, last_basic_block);
  sbitmap_vector_zero (reg_set_in_block, last_basic_block);
  pre_ldst_mems = 0;
  pre_ldst_mems = 0;
  pre_ldst_table = htab_create (13, pre_ldst_expr_hash,
  pre_ldst_table = htab_create (13, pre_ldst_expr_hash,
                                pre_ldst_expr_eq, NULL);
                                pre_ldst_expr_eq, NULL);
  last_set_in = XCNEWVEC (int, max_gcse_regno);
  last_set_in = XCNEWVEC (int, max_gcse_regno);
  already_set = XNEWVEC (int, max_gcse_regno);
  already_set = XNEWVEC (int, max_gcse_regno);
 
 
  /* Find all the stores we care about.  */
  /* Find all the stores we care about.  */
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    {
    {
      /* First compute the registers set in this block.  */
      /* First compute the registers set in this block.  */
      regvec = last_set_in;
      regvec = last_set_in;
 
 
      FOR_BB_INSNS (bb, insn)
      FOR_BB_INSNS (bb, insn)
        {
        {
          if (! INSN_P (insn))
          if (! INSN_P (insn))
            continue;
            continue;
 
 
          if (CALL_P (insn))
          if (CALL_P (insn))
            {
            {
              for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
              for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
                if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
                if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
                  {
                  {
                    last_set_in[regno] = INSN_UID (insn);
                    last_set_in[regno] = INSN_UID (insn);
                    SET_BIT (reg_set_in_block[bb->index], regno);
                    SET_BIT (reg_set_in_block[bb->index], regno);
                  }
                  }
            }
            }
 
 
          pat = PATTERN (insn);
          pat = PATTERN (insn);
          compute_store_table_current_insn = insn;
          compute_store_table_current_insn = insn;
          note_stores (pat, reg_set_info, reg_set_in_block[bb->index]);
          note_stores (pat, reg_set_info, reg_set_in_block[bb->index]);
        }
        }
 
 
      /* Now find the stores.  */
      /* Now find the stores.  */
      memset (already_set, 0, sizeof (int) * max_gcse_regno);
      memset (already_set, 0, sizeof (int) * max_gcse_regno);
      regvec = already_set;
      regvec = already_set;
      FOR_BB_INSNS (bb, insn)
      FOR_BB_INSNS (bb, insn)
        {
        {
          if (! INSN_P (insn))
          if (! INSN_P (insn))
            continue;
            continue;
 
 
          if (CALL_P (insn))
          if (CALL_P (insn))
            {
            {
              for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
              for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
                if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
                if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
                  already_set[regno] = 1;
                  already_set[regno] = 1;
            }
            }
 
 
          pat = PATTERN (insn);
          pat = PATTERN (insn);
          note_stores (pat, reg_set_info, NULL);
          note_stores (pat, reg_set_info, NULL);
 
 
          /* Now that we've marked regs, look for stores.  */
          /* Now that we've marked regs, look for stores.  */
          find_moveable_store (insn, already_set, last_set_in);
          find_moveable_store (insn, already_set, last_set_in);
 
 
          /* Unmark regs that are no longer set.  */
          /* Unmark regs that are no longer set.  */
          compute_store_table_current_insn = insn;
          compute_store_table_current_insn = insn;
          note_stores (pat, reg_clear_last_set, last_set_in);
          note_stores (pat, reg_clear_last_set, last_set_in);
          if (CALL_P (insn))
          if (CALL_P (insn))
            {
            {
              for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
              for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
                if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
                if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
                    && last_set_in[regno] == INSN_UID (insn))
                    && last_set_in[regno] == INSN_UID (insn))
                  last_set_in[regno] = 0;
                  last_set_in[regno] = 0;
            }
            }
        }
        }
 
 
#ifdef ENABLE_CHECKING
#ifdef ENABLE_CHECKING
      /* last_set_in should now be all-zero.  */
      /* last_set_in should now be all-zero.  */
      for (regno = 0; regno < max_gcse_regno; regno++)
      for (regno = 0; regno < max_gcse_regno; regno++)
        gcc_assert (!last_set_in[regno]);
        gcc_assert (!last_set_in[regno]);
#endif
#endif
 
 
      /* Clear temporary marks.  */
      /* Clear temporary marks.  */
      for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
      for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
        {
        {
          LAST_AVAIL_CHECK_FAILURE(ptr) = NULL_RTX;
          LAST_AVAIL_CHECK_FAILURE(ptr) = NULL_RTX;
          if (ANTIC_STORE_LIST (ptr)
          if (ANTIC_STORE_LIST (ptr)
              && (tmp = XEXP (ANTIC_STORE_LIST (ptr), 0)) == NULL_RTX)
              && (tmp = XEXP (ANTIC_STORE_LIST (ptr), 0)) == NULL_RTX)
            ANTIC_STORE_LIST (ptr) = XEXP (ANTIC_STORE_LIST (ptr), 1);
            ANTIC_STORE_LIST (ptr) = XEXP (ANTIC_STORE_LIST (ptr), 1);
        }
        }
    }
    }
 
 
  /* Remove the stores that are not available anywhere, as there will
  /* Remove the stores that are not available anywhere, as there will
     be no opportunity to optimize them.  */
     be no opportunity to optimize them.  */
  for (ptr = pre_ldst_mems, prev_next_ptr_ptr = &pre_ldst_mems;
  for (ptr = pre_ldst_mems, prev_next_ptr_ptr = &pre_ldst_mems;
       ptr != NULL;
       ptr != NULL;
       ptr = *prev_next_ptr_ptr)
       ptr = *prev_next_ptr_ptr)
    {
    {
      if (!AVAIL_STORE_LIST (ptr))
      if (!AVAIL_STORE_LIST (ptr))
        {
        {
          *prev_next_ptr_ptr = ptr->next;
          *prev_next_ptr_ptr = ptr->next;
          htab_remove_elt_with_hash (pre_ldst_table, ptr, ptr->hash_index);
          htab_remove_elt_with_hash (pre_ldst_table, ptr, ptr->hash_index);
          free_ldst_entry (ptr);
          free_ldst_entry (ptr);
        }
        }
      else
      else
        prev_next_ptr_ptr = &ptr->next;
        prev_next_ptr_ptr = &ptr->next;
    }
    }
 
 
  ret = enumerate_ldsts ();
  ret = enumerate_ldsts ();
 
 
  if (dump_file)
  if (dump_file)
    {
    {
      fprintf (dump_file, "ST_avail and ST_antic (shown under loads..)\n");
      fprintf (dump_file, "ST_avail and ST_antic (shown under loads..)\n");
      print_ldst_list (dump_file);
      print_ldst_list (dump_file);
    }
    }
 
 
  free (last_set_in);
  free (last_set_in);
  free (already_set);
  free (already_set);
  return ret;
  return ret;
}
}
 
 
/* Check to see if the load X is aliased with STORE_PATTERN.
/* Check to see if the load X is aliased with STORE_PATTERN.
   AFTER is true if we are checking the case when STORE_PATTERN occurs
   AFTER is true if we are checking the case when STORE_PATTERN occurs
   after the X.  */
   after the X.  */
 
 
static bool
static bool
load_kills_store (rtx x, rtx store_pattern, int after)
load_kills_store (rtx x, rtx store_pattern, int after)
{
{
  if (after)
  if (after)
    return anti_dependence (x, store_pattern);
    return anti_dependence (x, store_pattern);
  else
  else
    return true_dependence (store_pattern, GET_MODE (store_pattern), x,
    return true_dependence (store_pattern, GET_MODE (store_pattern), x,
                            rtx_addr_varies_p);
                            rtx_addr_varies_p);
}
}
 
 
/* Go through the entire insn X, looking for any loads which might alias
/* Go through the entire insn X, looking for any loads which might alias
   STORE_PATTERN.  Return true if found.
   STORE_PATTERN.  Return true if found.
   AFTER is true if we are checking the case when STORE_PATTERN occurs
   AFTER is true if we are checking the case when STORE_PATTERN occurs
   after the insn X.  */
   after the insn X.  */
 
 
static bool
static bool
find_loads (rtx x, rtx store_pattern, int after)
find_loads (rtx x, rtx store_pattern, int after)
{
{
  const char * fmt;
  const char * fmt;
  int i, j;
  int i, j;
  int ret = false;
  int ret = false;
 
 
  if (!x)
  if (!x)
    return false;
    return false;
 
 
  if (GET_CODE (x) == SET)
  if (GET_CODE (x) == SET)
    x = SET_SRC (x);
    x = SET_SRC (x);
 
 
  if (MEM_P (x))
  if (MEM_P (x))
    {
    {
      if (load_kills_store (x, store_pattern, after))
      if (load_kills_store (x, store_pattern, after))
        return true;
        return true;
    }
    }
 
 
  /* Recursively process the insn.  */
  /* Recursively process the insn.  */
  fmt = GET_RTX_FORMAT (GET_CODE (x));
  fmt = GET_RTX_FORMAT (GET_CODE (x));
 
 
  for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0 && !ret; i--)
  for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0 && !ret; i--)
    {
    {
      if (fmt[i] == 'e')
      if (fmt[i] == 'e')
        ret |= find_loads (XEXP (x, i), store_pattern, after);
        ret |= find_loads (XEXP (x, i), store_pattern, after);
      else if (fmt[i] == 'E')
      else if (fmt[i] == 'E')
        for (j = XVECLEN (x, i) - 1; j >= 0; j--)
        for (j = XVECLEN (x, i) - 1; j >= 0; j--)
          ret |= find_loads (XVECEXP (x, i, j), store_pattern, after);
          ret |= find_loads (XVECEXP (x, i, j), store_pattern, after);
    }
    }
  return ret;
  return ret;
}
}
 
 
/* Check if INSN kills the store pattern X (is aliased with it).
/* Check if INSN kills the store pattern X (is aliased with it).
   AFTER is true if we are checking the case when store X occurs
   AFTER is true if we are checking the case when store X occurs
   after the insn.  Return true if it does.  */
   after the insn.  Return true if it does.  */
 
 
static bool
static bool
store_killed_in_insn (rtx x, rtx x_regs, rtx insn, int after)
store_killed_in_insn (rtx x, rtx x_regs, rtx insn, int after)
{
{
  rtx reg, base, note;
  rtx reg, base, note;
 
 
  if (!INSN_P (insn))
  if (!INSN_P (insn))
    return false;
    return false;
 
 
  if (CALL_P (insn))
  if (CALL_P (insn))
    {
    {
      /* A normal or pure call might read from pattern,
      /* A normal or pure call might read from pattern,
         but a const call will not.  */
         but a const call will not.  */
      if (! CONST_OR_PURE_CALL_P (insn) || pure_call_p (insn))
      if (! CONST_OR_PURE_CALL_P (insn) || pure_call_p (insn))
        return true;
        return true;
 
 
      /* But even a const call reads its parameters.  Check whether the
      /* But even a const call reads its parameters.  Check whether the
         base of some of registers used in mem is stack pointer.  */
         base of some of registers used in mem is stack pointer.  */
      for (reg = x_regs; reg; reg = XEXP (reg, 1))
      for (reg = x_regs; reg; reg = XEXP (reg, 1))
        {
        {
          base = find_base_term (XEXP (reg, 0));
          base = find_base_term (XEXP (reg, 0));
          if (!base
          if (!base
              || (GET_CODE (base) == ADDRESS
              || (GET_CODE (base) == ADDRESS
                  && GET_MODE (base) == Pmode
                  && GET_MODE (base) == Pmode
                  && XEXP (base, 0) == stack_pointer_rtx))
                  && XEXP (base, 0) == stack_pointer_rtx))
            return true;
            return true;
        }
        }
 
 
      return false;
      return false;
    }
    }
 
 
  if (GET_CODE (PATTERN (insn)) == SET)
  if (GET_CODE (PATTERN (insn)) == SET)
    {
    {
      rtx pat = PATTERN (insn);
      rtx pat = PATTERN (insn);
      rtx dest = SET_DEST (pat);
      rtx dest = SET_DEST (pat);
 
 
      if (GET_CODE (dest) == ZERO_EXTRACT)
      if (GET_CODE (dest) == ZERO_EXTRACT)
        dest = XEXP (dest, 0);
        dest = XEXP (dest, 0);
 
 
      /* Check for memory stores to aliased objects.  */
      /* Check for memory stores to aliased objects.  */
      if (MEM_P (dest)
      if (MEM_P (dest)
          && !expr_equiv_p (dest, x))
          && !expr_equiv_p (dest, x))
        {
        {
          if (after)
          if (after)
            {
            {
              if (output_dependence (dest, x))
              if (output_dependence (dest, x))
                return true;
                return true;
            }
            }
          else
          else
            {
            {
              if (output_dependence (x, dest))
              if (output_dependence (x, dest))
                return true;
                return true;
            }
            }
        }
        }
      if (find_loads (SET_SRC (pat), x, after))
      if (find_loads (SET_SRC (pat), x, after))
        return true;
        return true;
    }
    }
  else if (find_loads (PATTERN (insn), x, after))
  else if (find_loads (PATTERN (insn), x, after))
    return true;
    return true;
 
 
  /* If this insn has a REG_EQUAL or REG_EQUIV note referencing a memory
  /* If this insn has a REG_EQUAL or REG_EQUIV note referencing a memory
     location aliased with X, then this insn kills X.  */
     location aliased with X, then this insn kills X.  */
  note = find_reg_equal_equiv_note (insn);
  note = find_reg_equal_equiv_note (insn);
  if (! note)
  if (! note)
    return false;
    return false;
  note = XEXP (note, 0);
  note = XEXP (note, 0);
 
 
  /* However, if the note represents a must alias rather than a may
  /* However, if the note represents a must alias rather than a may
     alias relationship, then it does not kill X.  */
     alias relationship, then it does not kill X.  */
  if (expr_equiv_p (note, x))
  if (expr_equiv_p (note, x))
    return false;
    return false;
 
 
  /* See if there are any aliased loads in the note.  */
  /* See if there are any aliased loads in the note.  */
  return find_loads (note, x, after);
  return find_loads (note, x, after);
}
}
 
 
/* Returns true if the expression X is loaded or clobbered on or after INSN
/* Returns true if the expression X is loaded or clobbered on or after INSN
   within basic block BB.  REGS_SET_AFTER is bitmap of registers set in
   within basic block BB.  REGS_SET_AFTER is bitmap of registers set in
   or after the insn.  X_REGS is list of registers mentioned in X. If the store
   or after the insn.  X_REGS is list of registers mentioned in X. If the store
   is killed, return the last insn in that it occurs in FAIL_INSN.  */
   is killed, return the last insn in that it occurs in FAIL_INSN.  */
 
 
static bool
static bool
store_killed_after (rtx x, rtx x_regs, rtx insn, basic_block bb,
store_killed_after (rtx x, rtx x_regs, rtx insn, basic_block bb,
                    int *regs_set_after, rtx *fail_insn)
                    int *regs_set_after, rtx *fail_insn)
{
{
  rtx last = BB_END (bb), act;
  rtx last = BB_END (bb), act;
 
 
  if (!store_ops_ok (x_regs, regs_set_after))
  if (!store_ops_ok (x_regs, regs_set_after))
    {
    {
      /* We do not know where it will happen.  */
      /* We do not know where it will happen.  */
      if (fail_insn)
      if (fail_insn)
        *fail_insn = NULL_RTX;
        *fail_insn = NULL_RTX;
      return true;
      return true;
    }
    }
 
 
  /* Scan from the end, so that fail_insn is determined correctly.  */
  /* Scan from the end, so that fail_insn is determined correctly.  */
  for (act = last; act != PREV_INSN (insn); act = PREV_INSN (act))
  for (act = last; act != PREV_INSN (insn); act = PREV_INSN (act))
    if (store_killed_in_insn (x, x_regs, act, false))
    if (store_killed_in_insn (x, x_regs, act, false))
      {
      {
        if (fail_insn)
        if (fail_insn)
          *fail_insn = act;
          *fail_insn = act;
        return true;
        return true;
      }
      }
 
 
  return false;
  return false;
}
}
 
 
/* Returns true if the expression X is loaded or clobbered on or before INSN
/* Returns true if the expression X is loaded or clobbered on or before INSN
   within basic block BB. X_REGS is list of registers mentioned in X.
   within basic block BB. X_REGS is list of registers mentioned in X.
   REGS_SET_BEFORE is bitmap of registers set before or in this insn.  */
   REGS_SET_BEFORE is bitmap of registers set before or in this insn.  */
static bool
static bool
store_killed_before (rtx x, rtx x_regs, rtx insn, basic_block bb,
store_killed_before (rtx x, rtx x_regs, rtx insn, basic_block bb,
                     int *regs_set_before)
                     int *regs_set_before)
{
{
  rtx first = BB_HEAD (bb);
  rtx first = BB_HEAD (bb);
 
 
  if (!store_ops_ok (x_regs, regs_set_before))
  if (!store_ops_ok (x_regs, regs_set_before))
    return true;
    return true;
 
 
  for ( ; insn != PREV_INSN (first); insn = PREV_INSN (insn))
  for ( ; insn != PREV_INSN (first); insn = PREV_INSN (insn))
    if (store_killed_in_insn (x, x_regs, insn, true))
    if (store_killed_in_insn (x, x_regs, insn, true))
      return true;
      return true;
 
 
  return false;
  return false;
}
}
 
 
/* Fill in available, anticipatable, transparent and kill vectors in
/* Fill in available, anticipatable, transparent and kill vectors in
   STORE_DATA, based on lists of available and anticipatable stores.  */
   STORE_DATA, based on lists of available and anticipatable stores.  */
static void
static void
build_store_vectors (void)
build_store_vectors (void)
{
{
  basic_block bb;
  basic_block bb;
  int *regs_set_in_block;
  int *regs_set_in_block;
  rtx insn, st;
  rtx insn, st;
  struct ls_expr * ptr;
  struct ls_expr * ptr;
  unsigned regno;
  unsigned regno;
 
 
  /* Build the gen_vector. This is any store in the table which is not killed
  /* Build the gen_vector. This is any store in the table which is not killed
     by aliasing later in its block.  */
     by aliasing later in its block.  */
  ae_gen = sbitmap_vector_alloc (last_basic_block, num_stores);
  ae_gen = sbitmap_vector_alloc (last_basic_block, num_stores);
  sbitmap_vector_zero (ae_gen, last_basic_block);
  sbitmap_vector_zero (ae_gen, last_basic_block);
 
 
  st_antloc = sbitmap_vector_alloc (last_basic_block, num_stores);
  st_antloc = sbitmap_vector_alloc (last_basic_block, num_stores);
  sbitmap_vector_zero (st_antloc, last_basic_block);
  sbitmap_vector_zero (st_antloc, last_basic_block);
 
 
  for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
  for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
    {
    {
      for (st = AVAIL_STORE_LIST (ptr); st != NULL; st = XEXP (st, 1))
      for (st = AVAIL_STORE_LIST (ptr); st != NULL; st = XEXP (st, 1))
        {
        {
          insn = XEXP (st, 0);
          insn = XEXP (st, 0);
          bb = BLOCK_FOR_INSN (insn);
          bb = BLOCK_FOR_INSN (insn);
 
 
          /* If we've already seen an available expression in this block,
          /* If we've already seen an available expression in this block,
             we can delete this one (It occurs earlier in the block). We'll
             we can delete this one (It occurs earlier in the block). We'll
             copy the SRC expression to an unused register in case there
             copy the SRC expression to an unused register in case there
             are any side effects.  */
             are any side effects.  */
          if (TEST_BIT (ae_gen[bb->index], ptr->index))
          if (TEST_BIT (ae_gen[bb->index], ptr->index))
            {
            {
              rtx r = gen_reg_rtx (GET_MODE (ptr->pattern));
              rtx r = gen_reg_rtx (GET_MODE (ptr->pattern));
              if (dump_file)
              if (dump_file)
                fprintf (dump_file, "Removing redundant store:\n");
                fprintf (dump_file, "Removing redundant store:\n");
              replace_store_insn (r, XEXP (st, 0), bb, ptr);
              replace_store_insn (r, XEXP (st, 0), bb, ptr);
              continue;
              continue;
            }
            }
          SET_BIT (ae_gen[bb->index], ptr->index);
          SET_BIT (ae_gen[bb->index], ptr->index);
        }
        }
 
 
      for (st = ANTIC_STORE_LIST (ptr); st != NULL; st = XEXP (st, 1))
      for (st = ANTIC_STORE_LIST (ptr); st != NULL; st = XEXP (st, 1))
        {
        {
          insn = XEXP (st, 0);
          insn = XEXP (st, 0);
          bb = BLOCK_FOR_INSN (insn);
          bb = BLOCK_FOR_INSN (insn);
          SET_BIT (st_antloc[bb->index], ptr->index);
          SET_BIT (st_antloc[bb->index], ptr->index);
        }
        }
    }
    }
 
 
  ae_kill = sbitmap_vector_alloc (last_basic_block, num_stores);
  ae_kill = sbitmap_vector_alloc (last_basic_block, num_stores);
  sbitmap_vector_zero (ae_kill, last_basic_block);
  sbitmap_vector_zero (ae_kill, last_basic_block);
 
 
  transp = sbitmap_vector_alloc (last_basic_block, num_stores);
  transp = sbitmap_vector_alloc (last_basic_block, num_stores);
  sbitmap_vector_zero (transp, last_basic_block);
  sbitmap_vector_zero (transp, last_basic_block);
  regs_set_in_block = XNEWVEC (int, max_gcse_regno);
  regs_set_in_block = XNEWVEC (int, max_gcse_regno);
 
 
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    {
    {
      for (regno = 0; regno < max_gcse_regno; regno++)
      for (regno = 0; regno < max_gcse_regno; regno++)
        regs_set_in_block[regno] = TEST_BIT (reg_set_in_block[bb->index], regno);
        regs_set_in_block[regno] = TEST_BIT (reg_set_in_block[bb->index], regno);
 
 
      for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
      for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
        {
        {
          if (store_killed_after (ptr->pattern, ptr->pattern_regs, BB_HEAD (bb),
          if (store_killed_after (ptr->pattern, ptr->pattern_regs, BB_HEAD (bb),
                                  bb, regs_set_in_block, NULL))
                                  bb, regs_set_in_block, NULL))
            {
            {
              /* It should not be necessary to consider the expression
              /* It should not be necessary to consider the expression
                 killed if it is both anticipatable and available.  */
                 killed if it is both anticipatable and available.  */
              if (!TEST_BIT (st_antloc[bb->index], ptr->index)
              if (!TEST_BIT (st_antloc[bb->index], ptr->index)
                  || !TEST_BIT (ae_gen[bb->index], ptr->index))
                  || !TEST_BIT (ae_gen[bb->index], ptr->index))
                SET_BIT (ae_kill[bb->index], ptr->index);
                SET_BIT (ae_kill[bb->index], ptr->index);
            }
            }
          else
          else
            SET_BIT (transp[bb->index], ptr->index);
            SET_BIT (transp[bb->index], ptr->index);
        }
        }
    }
    }
 
 
  free (regs_set_in_block);
  free (regs_set_in_block);
 
 
  if (dump_file)
  if (dump_file)
    {
    {
      dump_sbitmap_vector (dump_file, "st_antloc", "", st_antloc, last_basic_block);
      dump_sbitmap_vector (dump_file, "st_antloc", "", st_antloc, last_basic_block);
      dump_sbitmap_vector (dump_file, "st_kill", "", ae_kill, last_basic_block);
      dump_sbitmap_vector (dump_file, "st_kill", "", ae_kill, last_basic_block);
      dump_sbitmap_vector (dump_file, "Transpt", "", transp, last_basic_block);
      dump_sbitmap_vector (dump_file, "Transpt", "", transp, last_basic_block);
      dump_sbitmap_vector (dump_file, "st_avloc", "", ae_gen, last_basic_block);
      dump_sbitmap_vector (dump_file, "st_avloc", "", ae_gen, last_basic_block);
    }
    }
}
}
 
 
/* Insert an instruction at the beginning of a basic block, and update
/* Insert an instruction at the beginning of a basic block, and update
   the BB_HEAD if needed.  */
   the BB_HEAD if needed.  */
 
 
static void
static void
insert_insn_start_bb (rtx insn, basic_block bb)
insert_insn_start_bb (rtx insn, basic_block bb)
{
{
  /* Insert at start of successor block.  */
  /* Insert at start of successor block.  */
  rtx prev = PREV_INSN (BB_HEAD (bb));
  rtx prev = PREV_INSN (BB_HEAD (bb));
  rtx before = BB_HEAD (bb);
  rtx before = BB_HEAD (bb);
  while (before != 0)
  while (before != 0)
    {
    {
      if (! LABEL_P (before)
      if (! LABEL_P (before)
          && (! NOTE_P (before)
          && (! NOTE_P (before)
              || NOTE_LINE_NUMBER (before) != NOTE_INSN_BASIC_BLOCK))
              || NOTE_LINE_NUMBER (before) != NOTE_INSN_BASIC_BLOCK))
        break;
        break;
      prev = before;
      prev = before;
      if (prev == BB_END (bb))
      if (prev == BB_END (bb))
        break;
        break;
      before = NEXT_INSN (before);
      before = NEXT_INSN (before);
    }
    }
 
 
  insn = emit_insn_after_noloc (insn, prev);
  insn = emit_insn_after_noloc (insn, prev);
 
 
  if (dump_file)
  if (dump_file)
    {
    {
      fprintf (dump_file, "STORE_MOTION  insert store at start of BB %d:\n",
      fprintf (dump_file, "STORE_MOTION  insert store at start of BB %d:\n",
               bb->index);
               bb->index);
      print_inline_rtx (dump_file, insn, 6);
      print_inline_rtx (dump_file, insn, 6);
      fprintf (dump_file, "\n");
      fprintf (dump_file, "\n");
    }
    }
}
}
 
 
/* This routine will insert a store on an edge. EXPR is the ldst entry for
/* This routine will insert a store on an edge. EXPR is the ldst entry for
   the memory reference, and E is the edge to insert it on.  Returns nonzero
   the memory reference, and E is the edge to insert it on.  Returns nonzero
   if an edge insertion was performed.  */
   if an edge insertion was performed.  */
 
 
static int
static int
insert_store (struct ls_expr * expr, edge e)
insert_store (struct ls_expr * expr, edge e)
{
{
  rtx reg, insn;
  rtx reg, insn;
  basic_block bb;
  basic_block bb;
  edge tmp;
  edge tmp;
  edge_iterator ei;
  edge_iterator ei;
 
 
  /* We did all the deleted before this insert, so if we didn't delete a
  /* We did all the deleted before this insert, so if we didn't delete a
     store, then we haven't set the reaching reg yet either.  */
     store, then we haven't set the reaching reg yet either.  */
  if (expr->reaching_reg == NULL_RTX)
  if (expr->reaching_reg == NULL_RTX)
    return 0;
    return 0;
 
 
  if (e->flags & EDGE_FAKE)
  if (e->flags & EDGE_FAKE)
    return 0;
    return 0;
 
 
  reg = expr->reaching_reg;
  reg = expr->reaching_reg;
  insn = gen_move_insn (copy_rtx (expr->pattern), reg);
  insn = gen_move_insn (copy_rtx (expr->pattern), reg);
 
 
  /* If we are inserting this expression on ALL predecessor edges of a BB,
  /* If we are inserting this expression on ALL predecessor edges of a BB,
     insert it at the start of the BB, and reset the insert bits on the other
     insert it at the start of the BB, and reset the insert bits on the other
     edges so we don't try to insert it on the other edges.  */
     edges so we don't try to insert it on the other edges.  */
  bb = e->dest;
  bb = e->dest;
  FOR_EACH_EDGE (tmp, ei, e->dest->preds)
  FOR_EACH_EDGE (tmp, ei, e->dest->preds)
    if (!(tmp->flags & EDGE_FAKE))
    if (!(tmp->flags & EDGE_FAKE))
      {
      {
        int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
        int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
 
 
        gcc_assert (index != EDGE_INDEX_NO_EDGE);
        gcc_assert (index != EDGE_INDEX_NO_EDGE);
        if (! TEST_BIT (pre_insert_map[index], expr->index))
        if (! TEST_BIT (pre_insert_map[index], expr->index))
          break;
          break;
      }
      }
 
 
  /* If tmp is NULL, we found an insertion on every edge, blank the
  /* If tmp is NULL, we found an insertion on every edge, blank the
     insertion vector for these edges, and insert at the start of the BB.  */
     insertion vector for these edges, and insert at the start of the BB.  */
  if (!tmp && bb != EXIT_BLOCK_PTR)
  if (!tmp && bb != EXIT_BLOCK_PTR)
    {
    {
      FOR_EACH_EDGE (tmp, ei, e->dest->preds)
      FOR_EACH_EDGE (tmp, ei, e->dest->preds)
        {
        {
          int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
          int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
          RESET_BIT (pre_insert_map[index], expr->index);
          RESET_BIT (pre_insert_map[index], expr->index);
        }
        }
      insert_insn_start_bb (insn, bb);
      insert_insn_start_bb (insn, bb);
      return 0;
      return 0;
    }
    }
 
 
  /* We can't put stores in the front of blocks pointed to by abnormal
  /* We can't put stores in the front of blocks pointed to by abnormal
     edges since that may put a store where one didn't used to be.  */
     edges since that may put a store where one didn't used to be.  */
  gcc_assert (!(e->flags & EDGE_ABNORMAL));
  gcc_assert (!(e->flags & EDGE_ABNORMAL));
 
 
  insert_insn_on_edge (insn, e);
  insert_insn_on_edge (insn, e);
 
 
  if (dump_file)
  if (dump_file)
    {
    {
      fprintf (dump_file, "STORE_MOTION  insert insn on edge (%d, %d):\n",
      fprintf (dump_file, "STORE_MOTION  insert insn on edge (%d, %d):\n",
               e->src->index, e->dest->index);
               e->src->index, e->dest->index);
      print_inline_rtx (dump_file, insn, 6);
      print_inline_rtx (dump_file, insn, 6);
      fprintf (dump_file, "\n");
      fprintf (dump_file, "\n");
    }
    }
 
 
  return 1;
  return 1;
}
}
 
 
/* Remove any REG_EQUAL or REG_EQUIV notes containing a reference to the
/* Remove any REG_EQUAL or REG_EQUIV notes containing a reference to the
   memory location in SMEXPR set in basic block BB.
   memory location in SMEXPR set in basic block BB.
 
 
   This could be rather expensive.  */
   This could be rather expensive.  */
 
 
static void
static void
remove_reachable_equiv_notes (basic_block bb, struct ls_expr *smexpr)
remove_reachable_equiv_notes (basic_block bb, struct ls_expr *smexpr)
{
{
  edge_iterator *stack, ei;
  edge_iterator *stack, ei;
  int sp;
  int sp;
  edge act;
  edge act;
  sbitmap visited = sbitmap_alloc (last_basic_block);
  sbitmap visited = sbitmap_alloc (last_basic_block);
  rtx last, insn, note;
  rtx last, insn, note;
  rtx mem = smexpr->pattern;
  rtx mem = smexpr->pattern;
 
 
  stack = XNEWVEC (edge_iterator, n_basic_blocks);
  stack = XNEWVEC (edge_iterator, n_basic_blocks);
  sp = 0;
  sp = 0;
  ei = ei_start (bb->succs);
  ei = ei_start (bb->succs);
 
 
  sbitmap_zero (visited);
  sbitmap_zero (visited);
 
 
  act = (EDGE_COUNT (ei_container (ei)) > 0 ? EDGE_I (ei_container (ei), 0) : NULL);
  act = (EDGE_COUNT (ei_container (ei)) > 0 ? EDGE_I (ei_container (ei), 0) : NULL);
  while (1)
  while (1)
    {
    {
      if (!act)
      if (!act)
        {
        {
          if (!sp)
          if (!sp)
            {
            {
              free (stack);
              free (stack);
              sbitmap_free (visited);
              sbitmap_free (visited);
              return;
              return;
            }
            }
          act = ei_edge (stack[--sp]);
          act = ei_edge (stack[--sp]);
        }
        }
      bb = act->dest;
      bb = act->dest;
 
 
      if (bb == EXIT_BLOCK_PTR
      if (bb == EXIT_BLOCK_PTR
          || TEST_BIT (visited, bb->index))
          || TEST_BIT (visited, bb->index))
        {
        {
          if (!ei_end_p (ei))
          if (!ei_end_p (ei))
              ei_next (&ei);
              ei_next (&ei);
          act = (! ei_end_p (ei)) ? ei_edge (ei) : NULL;
          act = (! ei_end_p (ei)) ? ei_edge (ei) : NULL;
          continue;
          continue;
        }
        }
      SET_BIT (visited, bb->index);
      SET_BIT (visited, bb->index);
 
 
      if (TEST_BIT (st_antloc[bb->index], smexpr->index))
      if (TEST_BIT (st_antloc[bb->index], smexpr->index))
        {
        {
          for (last = ANTIC_STORE_LIST (smexpr);
          for (last = ANTIC_STORE_LIST (smexpr);
               BLOCK_FOR_INSN (XEXP (last, 0)) != bb;
               BLOCK_FOR_INSN (XEXP (last, 0)) != bb;
               last = XEXP (last, 1))
               last = XEXP (last, 1))
            continue;
            continue;
          last = XEXP (last, 0);
          last = XEXP (last, 0);
        }
        }
      else
      else
        last = NEXT_INSN (BB_END (bb));
        last = NEXT_INSN (BB_END (bb));
 
 
      for (insn = BB_HEAD (bb); insn != last; insn = NEXT_INSN (insn))
      for (insn = BB_HEAD (bb); insn != last; insn = NEXT_INSN (insn))
        if (INSN_P (insn))
        if (INSN_P (insn))
          {
          {
            note = find_reg_equal_equiv_note (insn);
            note = find_reg_equal_equiv_note (insn);
            if (!note || !expr_equiv_p (XEXP (note, 0), mem))
            if (!note || !expr_equiv_p (XEXP (note, 0), mem))
              continue;
              continue;
 
 
            if (dump_file)
            if (dump_file)
              fprintf (dump_file, "STORE_MOTION  drop REG_EQUAL note at insn %d:\n",
              fprintf (dump_file, "STORE_MOTION  drop REG_EQUAL note at insn %d:\n",
                       INSN_UID (insn));
                       INSN_UID (insn));
            remove_note (insn, note);
            remove_note (insn, note);
          }
          }
 
 
      if (!ei_end_p (ei))
      if (!ei_end_p (ei))
        ei_next (&ei);
        ei_next (&ei);
      act = (! ei_end_p (ei)) ? ei_edge (ei) : NULL;
      act = (! ei_end_p (ei)) ? ei_edge (ei) : NULL;
 
 
      if (EDGE_COUNT (bb->succs) > 0)
      if (EDGE_COUNT (bb->succs) > 0)
        {
        {
          if (act)
          if (act)
            stack[sp++] = ei;
            stack[sp++] = ei;
          ei = ei_start (bb->succs);
          ei = ei_start (bb->succs);
          act = (EDGE_COUNT (ei_container (ei)) > 0 ? EDGE_I (ei_container (ei), 0) : NULL);
          act = (EDGE_COUNT (ei_container (ei)) > 0 ? EDGE_I (ei_container (ei), 0) : NULL);
        }
        }
    }
    }
}
}
 
 
/* This routine will replace a store with a SET to a specified register.  */
/* This routine will replace a store with a SET to a specified register.  */
 
 
static void
static void
replace_store_insn (rtx reg, rtx del, basic_block bb, struct ls_expr *smexpr)
replace_store_insn (rtx reg, rtx del, basic_block bb, struct ls_expr *smexpr)
{
{
  rtx insn, mem, note, set, ptr, pair;
  rtx insn, mem, note, set, ptr, pair;
 
 
  mem = smexpr->pattern;
  mem = smexpr->pattern;
  insn = gen_move_insn (reg, SET_SRC (single_set (del)));
  insn = gen_move_insn (reg, SET_SRC (single_set (del)));
  insn = emit_insn_after (insn, del);
  insn = emit_insn_after (insn, del);
 
 
  if (dump_file)
  if (dump_file)
    {
    {
      fprintf (dump_file,
      fprintf (dump_file,
               "STORE_MOTION  delete insn in BB %d:\n      ", bb->index);
               "STORE_MOTION  delete insn in BB %d:\n      ", bb->index);
      print_inline_rtx (dump_file, del, 6);
      print_inline_rtx (dump_file, del, 6);
      fprintf (dump_file, "\nSTORE MOTION  replaced with insn:\n      ");
      fprintf (dump_file, "\nSTORE MOTION  replaced with insn:\n      ");
      print_inline_rtx (dump_file, insn, 6);
      print_inline_rtx (dump_file, insn, 6);
      fprintf (dump_file, "\n");
      fprintf (dump_file, "\n");
    }
    }
 
 
  for (ptr = ANTIC_STORE_LIST (smexpr); ptr; ptr = XEXP (ptr, 1))
  for (ptr = ANTIC_STORE_LIST (smexpr); ptr; ptr = XEXP (ptr, 1))
    if (XEXP (ptr, 0) == del)
    if (XEXP (ptr, 0) == del)
      {
      {
        XEXP (ptr, 0) = insn;
        XEXP (ptr, 0) = insn;
        break;
        break;
      }
      }
 
 
  /* Move the notes from the deleted insn to its replacement, and patch
  /* Move the notes from the deleted insn to its replacement, and patch
     up the LIBCALL notes.  */
     up the LIBCALL notes.  */
  REG_NOTES (insn) = REG_NOTES (del);
  REG_NOTES (insn) = REG_NOTES (del);
 
 
  note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
  note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
  if (note)
  if (note)
    {
    {
      pair = XEXP (note, 0);
      pair = XEXP (note, 0);
      note = find_reg_note (pair, REG_LIBCALL, NULL_RTX);
      note = find_reg_note (pair, REG_LIBCALL, NULL_RTX);
      XEXP (note, 0) = insn;
      XEXP (note, 0) = insn;
    }
    }
  note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
  note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
  if (note)
  if (note)
    {
    {
      pair = XEXP (note, 0);
      pair = XEXP (note, 0);
      note = find_reg_note (pair, REG_RETVAL, NULL_RTX);
      note = find_reg_note (pair, REG_RETVAL, NULL_RTX);
      XEXP (note, 0) = insn;
      XEXP (note, 0) = insn;
    }
    }
 
 
  delete_insn (del);
  delete_insn (del);
 
 
  /* Now we must handle REG_EQUAL notes whose contents is equal to the mem;
  /* Now we must handle REG_EQUAL notes whose contents is equal to the mem;
     they are no longer accurate provided that they are reached by this
     they are no longer accurate provided that they are reached by this
     definition, so drop them.  */
     definition, so drop them.  */
  for (; insn != NEXT_INSN (BB_END (bb)); insn = NEXT_INSN (insn))
  for (; insn != NEXT_INSN (BB_END (bb)); insn = NEXT_INSN (insn))
    if (INSN_P (insn))
    if (INSN_P (insn))
      {
      {
        set = single_set (insn);
        set = single_set (insn);
        if (!set)
        if (!set)
          continue;
          continue;
        if (expr_equiv_p (SET_DEST (set), mem))
        if (expr_equiv_p (SET_DEST (set), mem))
          return;
          return;
        note = find_reg_equal_equiv_note (insn);
        note = find_reg_equal_equiv_note (insn);
        if (!note || !expr_equiv_p (XEXP (note, 0), mem))
        if (!note || !expr_equiv_p (XEXP (note, 0), mem))
          continue;
          continue;
 
 
        if (dump_file)
        if (dump_file)
          fprintf (dump_file, "STORE_MOTION  drop REG_EQUAL note at insn %d:\n",
          fprintf (dump_file, "STORE_MOTION  drop REG_EQUAL note at insn %d:\n",
                   INSN_UID (insn));
                   INSN_UID (insn));
        remove_note (insn, note);
        remove_note (insn, note);
      }
      }
  remove_reachable_equiv_notes (bb, smexpr);
  remove_reachable_equiv_notes (bb, smexpr);
}
}
 
 
 
 
/* Delete a store, but copy the value that would have been stored into
/* Delete a store, but copy the value that would have been stored into
   the reaching_reg for later storing.  */
   the reaching_reg for later storing.  */
 
 
static void
static void
delete_store (struct ls_expr * expr, basic_block bb)
delete_store (struct ls_expr * expr, basic_block bb)
{
{
  rtx reg, i, del;
  rtx reg, i, del;
 
 
  if (expr->reaching_reg == NULL_RTX)
  if (expr->reaching_reg == NULL_RTX)
    expr->reaching_reg = gen_reg_rtx (GET_MODE (expr->pattern));
    expr->reaching_reg = gen_reg_rtx (GET_MODE (expr->pattern));
 
 
  reg = expr->reaching_reg;
  reg = expr->reaching_reg;
 
 
  for (i = AVAIL_STORE_LIST (expr); i; i = XEXP (i, 1))
  for (i = AVAIL_STORE_LIST (expr); i; i = XEXP (i, 1))
    {
    {
      del = XEXP (i, 0);
      del = XEXP (i, 0);
      if (BLOCK_FOR_INSN (del) == bb)
      if (BLOCK_FOR_INSN (del) == bb)
        {
        {
          /* We know there is only one since we deleted redundant
          /* We know there is only one since we deleted redundant
             ones during the available computation.  */
             ones during the available computation.  */
          replace_store_insn (reg, del, bb, expr);
          replace_store_insn (reg, del, bb, expr);
          break;
          break;
        }
        }
    }
    }
}
}
 
 
/* Free memory used by store motion.  */
/* Free memory used by store motion.  */
 
 
static void
static void
free_store_memory (void)
free_store_memory (void)
{
{
  free_ldst_mems ();
  free_ldst_mems ();
 
 
  if (ae_gen)
  if (ae_gen)
    sbitmap_vector_free (ae_gen);
    sbitmap_vector_free (ae_gen);
  if (ae_kill)
  if (ae_kill)
    sbitmap_vector_free (ae_kill);
    sbitmap_vector_free (ae_kill);
  if (transp)
  if (transp)
    sbitmap_vector_free (transp);
    sbitmap_vector_free (transp);
  if (st_antloc)
  if (st_antloc)
    sbitmap_vector_free (st_antloc);
    sbitmap_vector_free (st_antloc);
  if (pre_insert_map)
  if (pre_insert_map)
    sbitmap_vector_free (pre_insert_map);
    sbitmap_vector_free (pre_insert_map);
  if (pre_delete_map)
  if (pre_delete_map)
    sbitmap_vector_free (pre_delete_map);
    sbitmap_vector_free (pre_delete_map);
  if (reg_set_in_block)
  if (reg_set_in_block)
    sbitmap_vector_free (reg_set_in_block);
    sbitmap_vector_free (reg_set_in_block);
 
 
  ae_gen = ae_kill = transp = st_antloc = NULL;
  ae_gen = ae_kill = transp = st_antloc = NULL;
  pre_insert_map = pre_delete_map = reg_set_in_block = NULL;
  pre_insert_map = pre_delete_map = reg_set_in_block = NULL;
}
}
 
 
/* Perform store motion. Much like gcse, except we move expressions the
/* Perform store motion. Much like gcse, except we move expressions the
   other way by looking at the flowgraph in reverse.  */
   other way by looking at the flowgraph in reverse.  */
 
 
static void
static void
store_motion (void)
store_motion (void)
{
{
  basic_block bb;
  basic_block bb;
  int x;
  int x;
  struct ls_expr * ptr;
  struct ls_expr * ptr;
  int update_flow = 0;
  int update_flow = 0;
 
 
  if (dump_file)
  if (dump_file)
    {
    {
      fprintf (dump_file, "before store motion\n");
      fprintf (dump_file, "before store motion\n");
      print_rtl (dump_file, get_insns ());
      print_rtl (dump_file, get_insns ());
    }
    }
 
 
  init_alias_analysis ();
  init_alias_analysis ();
 
 
  /* Find all the available and anticipatable stores.  */
  /* Find all the available and anticipatable stores.  */
  num_stores = compute_store_table ();
  num_stores = compute_store_table ();
  if (num_stores == 0)
  if (num_stores == 0)
    {
    {
      htab_delete (pre_ldst_table);
      htab_delete (pre_ldst_table);
      pre_ldst_table = NULL;
      pre_ldst_table = NULL;
      sbitmap_vector_free (reg_set_in_block);
      sbitmap_vector_free (reg_set_in_block);
      end_alias_analysis ();
      end_alias_analysis ();
      return;
      return;
    }
    }
 
 
  /* Now compute kill & transp vectors.  */
  /* Now compute kill & transp vectors.  */
  build_store_vectors ();
  build_store_vectors ();
  add_noreturn_fake_exit_edges ();
  add_noreturn_fake_exit_edges ();
  connect_infinite_loops_to_exit ();
  connect_infinite_loops_to_exit ();
 
 
  edge_list = pre_edge_rev_lcm (num_stores, transp, ae_gen,
  edge_list = pre_edge_rev_lcm (num_stores, transp, ae_gen,
                                st_antloc, ae_kill, &pre_insert_map,
                                st_antloc, ae_kill, &pre_insert_map,
                                &pre_delete_map);
                                &pre_delete_map);
 
 
  /* Now we want to insert the new stores which are going to be needed.  */
  /* Now we want to insert the new stores which are going to be needed.  */
  for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
  for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
    {
    {
      /* If any of the edges we have above are abnormal, we can't move this
      /* If any of the edges we have above are abnormal, we can't move this
         store.  */
         store.  */
      for (x = NUM_EDGES (edge_list) - 1; x >= 0; x--)
      for (x = NUM_EDGES (edge_list) - 1; x >= 0; x--)
        if (TEST_BIT (pre_insert_map[x], ptr->index)
        if (TEST_BIT (pre_insert_map[x], ptr->index)
            && (INDEX_EDGE (edge_list, x)->flags & EDGE_ABNORMAL))
            && (INDEX_EDGE (edge_list, x)->flags & EDGE_ABNORMAL))
          break;
          break;
 
 
      if (x >= 0)
      if (x >= 0)
        {
        {
          if (dump_file != NULL)
          if (dump_file != NULL)
            fprintf (dump_file,
            fprintf (dump_file,
                     "Can't replace store %d: abnormal edge from %d to %d\n",
                     "Can't replace store %d: abnormal edge from %d to %d\n",
                     ptr->index, INDEX_EDGE (edge_list, x)->src->index,
                     ptr->index, INDEX_EDGE (edge_list, x)->src->index,
                     INDEX_EDGE (edge_list, x)->dest->index);
                     INDEX_EDGE (edge_list, x)->dest->index);
          continue;
          continue;
        }
        }
 
 
      /* Now we want to insert the new stores which are going to be needed.  */
      /* Now we want to insert the new stores which are going to be needed.  */
 
 
      FOR_EACH_BB (bb)
      FOR_EACH_BB (bb)
        if (TEST_BIT (pre_delete_map[bb->index], ptr->index))
        if (TEST_BIT (pre_delete_map[bb->index], ptr->index))
          delete_store (ptr, bb);
          delete_store (ptr, bb);
 
 
      for (x = 0; x < NUM_EDGES (edge_list); x++)
      for (x = 0; x < NUM_EDGES (edge_list); x++)
        if (TEST_BIT (pre_insert_map[x], ptr->index))
        if (TEST_BIT (pre_insert_map[x], ptr->index))
          update_flow |= insert_store (ptr, INDEX_EDGE (edge_list, x));
          update_flow |= insert_store (ptr, INDEX_EDGE (edge_list, x));
    }
    }
 
 
  if (update_flow)
  if (update_flow)
    commit_edge_insertions ();
    commit_edge_insertions ();
 
 
  free_store_memory ();
  free_store_memory ();
  free_edge_list (edge_list);
  free_edge_list (edge_list);
  remove_fake_exit_edges ();
  remove_fake_exit_edges ();
  end_alias_analysis ();
  end_alias_analysis ();
}
}
 
 


/* Entry point for jump bypassing optimization pass.  */
/* Entry point for jump bypassing optimization pass.  */
 
 
static int
static int
bypass_jumps (void)
bypass_jumps (void)
{
{
  int changed;
  int changed;
 
 
  /* We do not construct an accurate cfg in functions which call
  /* We do not construct an accurate cfg in functions which call
     setjmp, so just punt to be safe.  */
     setjmp, so just punt to be safe.  */
  if (current_function_calls_setjmp)
  if (current_function_calls_setjmp)
    return 0;
    return 0;
 
 
  /* Identify the basic block information for this function, including
  /* Identify the basic block information for this function, including
     successors and predecessors.  */
     successors and predecessors.  */
  max_gcse_regno = max_reg_num ();
  max_gcse_regno = max_reg_num ();
 
 
  if (dump_file)
  if (dump_file)
    dump_flow_info (dump_file, dump_flags);
    dump_flow_info (dump_file, dump_flags);
 
 
  /* Return if there's nothing to do, or it is too expensive.  */
  /* Return if there's nothing to do, or it is too expensive.  */
  if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
  if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
      || is_too_expensive (_ ("jump bypassing disabled")))
      || is_too_expensive (_ ("jump bypassing disabled")))
    return 0;
    return 0;
 
 
  gcc_obstack_init (&gcse_obstack);
  gcc_obstack_init (&gcse_obstack);
  bytes_used = 0;
  bytes_used = 0;
 
 
  /* We need alias.  */
  /* We need alias.  */
  init_alias_analysis ();
  init_alias_analysis ();
 
 
  /* Record where pseudo-registers are set.  This data is kept accurate
  /* Record where pseudo-registers are set.  This data is kept accurate
     during each pass.  ??? We could also record hard-reg information here
     during each pass.  ??? We could also record hard-reg information here
     [since it's unchanging], however it is currently done during hash table
     [since it's unchanging], however it is currently done during hash table
     computation.
     computation.
 
 
     It may be tempting to compute MEM set information here too, but MEM sets
     It may be tempting to compute MEM set information here too, but MEM sets
     will be subject to code motion one day and thus we need to compute
     will be subject to code motion one day and thus we need to compute
     information about memory sets when we build the hash tables.  */
     information about memory sets when we build the hash tables.  */
 
 
  alloc_reg_set_mem (max_gcse_regno);
  alloc_reg_set_mem (max_gcse_regno);
  compute_sets ();
  compute_sets ();
 
 
  max_gcse_regno = max_reg_num ();
  max_gcse_regno = max_reg_num ();
  alloc_gcse_mem ();
  alloc_gcse_mem ();
  changed = one_cprop_pass (MAX_GCSE_PASSES + 2, true, true);
  changed = one_cprop_pass (MAX_GCSE_PASSES + 2, true, true);
  free_gcse_mem ();
  free_gcse_mem ();
 
 
  if (dump_file)
  if (dump_file)
    {
    {
      fprintf (dump_file, "BYPASS of %s: %d basic blocks, ",
      fprintf (dump_file, "BYPASS of %s: %d basic blocks, ",
               current_function_name (), n_basic_blocks);
               current_function_name (), n_basic_blocks);
      fprintf (dump_file, "%d bytes\n\n", bytes_used);
      fprintf (dump_file, "%d bytes\n\n", bytes_used);
    }
    }
 
 
  obstack_free (&gcse_obstack, NULL);
  obstack_free (&gcse_obstack, NULL);
  free_reg_set_mem ();
  free_reg_set_mem ();
 
 
  /* We are finished with alias.  */
  /* We are finished with alias.  */
  end_alias_analysis ();
  end_alias_analysis ();
  allocate_reg_info (max_reg_num (), FALSE, FALSE);
  allocate_reg_info (max_reg_num (), FALSE, FALSE);
 
 
  return changed;
  return changed;
}
}
 
 
/* Return true if the graph is too expensive to optimize. PASS is the
/* Return true if the graph is too expensive to optimize. PASS is the
   optimization about to be performed.  */
   optimization about to be performed.  */
 
 
static bool
static bool
is_too_expensive (const char *pass)
is_too_expensive (const char *pass)
{
{
  /* Trying to perform global optimizations on flow graphs which have
  /* Trying to perform global optimizations on flow graphs which have
     a high connectivity will take a long time and is unlikely to be
     a high connectivity will take a long time and is unlikely to be
     particularly useful.
     particularly useful.
 
 
     In normal circumstances a cfg should have about twice as many
     In normal circumstances a cfg should have about twice as many
     edges as blocks.  But we do not want to punish small functions
     edges as blocks.  But we do not want to punish small functions
     which have a couple switch statements.  Rather than simply
     which have a couple switch statements.  Rather than simply
     threshold the number of blocks, uses something with a more
     threshold the number of blocks, uses something with a more
     graceful degradation.  */
     graceful degradation.  */
  if (n_edges > 20000 + n_basic_blocks * 4)
  if (n_edges > 20000 + n_basic_blocks * 4)
    {
    {
      warning (OPT_Wdisabled_optimization,
      warning (OPT_Wdisabled_optimization,
               "%s: %d basic blocks and %d edges/basic block",
               "%s: %d basic blocks and %d edges/basic block",
               pass, n_basic_blocks, n_edges / n_basic_blocks);
               pass, n_basic_blocks, n_edges / n_basic_blocks);
 
 
      return true;
      return true;
    }
    }
 
 
  /* If allocating memory for the cprop bitmap would take up too much
  /* If allocating memory for the cprop bitmap would take up too much
     storage it's better just to disable the optimization.  */
     storage it's better just to disable the optimization.  */
  if ((n_basic_blocks
  if ((n_basic_blocks
       * SBITMAP_SET_SIZE (max_reg_num ())
       * SBITMAP_SET_SIZE (max_reg_num ())
       * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
       * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
    {
    {
      warning (OPT_Wdisabled_optimization,
      warning (OPT_Wdisabled_optimization,
               "%s: %d basic blocks and %d registers",
               "%s: %d basic blocks and %d registers",
               pass, n_basic_blocks, max_reg_num ());
               pass, n_basic_blocks, max_reg_num ());
 
 
      return true;
      return true;
    }
    }
 
 
  return false;
  return false;
}
}


static bool
static bool
gate_handle_jump_bypass (void)
gate_handle_jump_bypass (void)
{
{
  return optimize > 0 && flag_gcse;
  return optimize > 0 && flag_gcse;
}
}
 
 
/* Perform jump bypassing and control flow optimizations.  */
/* Perform jump bypassing and control flow optimizations.  */
static unsigned int
static unsigned int
rest_of_handle_jump_bypass (void)
rest_of_handle_jump_bypass (void)
{
{
  cleanup_cfg (CLEANUP_EXPENSIVE);
  cleanup_cfg (CLEANUP_EXPENSIVE);
  reg_scan (get_insns (), max_reg_num ());
  reg_scan (get_insns (), max_reg_num ());
 
 
  if (bypass_jumps ())
  if (bypass_jumps ())
    {
    {
      rebuild_jump_labels (get_insns ());
      rebuild_jump_labels (get_insns ());
      cleanup_cfg (CLEANUP_EXPENSIVE);
      cleanup_cfg (CLEANUP_EXPENSIVE);
      delete_trivially_dead_insns (get_insns (), max_reg_num ());
      delete_trivially_dead_insns (get_insns (), max_reg_num ());
    }
    }
  return 0;
  return 0;
}
}
 
 
struct tree_opt_pass pass_jump_bypass =
struct tree_opt_pass pass_jump_bypass =
{
{
  "bypass",                             /* name */
  "bypass",                             /* name */
  gate_handle_jump_bypass,              /* gate */
  gate_handle_jump_bypass,              /* gate */
  rest_of_handle_jump_bypass,           /* execute */
  rest_of_handle_jump_bypass,           /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  NULL,                                 /* next */
  0,                                    /* static_pass_number */
  0,                                    /* static_pass_number */
  TV_BYPASS,                            /* tv_id */
  TV_BYPASS,                            /* tv_id */
  0,                                    /* properties_required */
  0,                                    /* properties_required */
  0,                                    /* properties_provided */
  0,                                    /* properties_provided */
  0,                                    /* properties_destroyed */
  0,                                    /* properties_destroyed */
  0,                                    /* todo_flags_start */
  0,                                    /* todo_flags_start */
  TODO_dump_func |
  TODO_dump_func |
  TODO_ggc_collect | TODO_verify_flow,  /* todo_flags_finish */
  TODO_ggc_collect | TODO_verify_flow,  /* todo_flags_finish */
  'G'                                   /* letter */
  'G'                                   /* letter */
};
};
 
 
 
 
static bool
static bool
gate_handle_gcse (void)
gate_handle_gcse (void)
{
{
  return optimize > 0 && flag_gcse;
  return optimize > 0 && flag_gcse;
}
}
 
 
 
 
static unsigned int
static unsigned int
rest_of_handle_gcse (void)
rest_of_handle_gcse (void)
{
{
  int save_csb, save_cfj;
  int save_csb, save_cfj;
  int tem2 = 0, tem;
  int tem2 = 0, tem;
 
 
  tem = gcse_main (get_insns ());
  tem = gcse_main (get_insns ());
  rebuild_jump_labels (get_insns ());
  rebuild_jump_labels (get_insns ());
  delete_trivially_dead_insns (get_insns (), max_reg_num ());
  delete_trivially_dead_insns (get_insns (), max_reg_num ());
 
 
  save_csb = flag_cse_skip_blocks;
  save_csb = flag_cse_skip_blocks;
  save_cfj = flag_cse_follow_jumps;
  save_cfj = flag_cse_follow_jumps;
  flag_cse_skip_blocks = flag_cse_follow_jumps = 0;
  flag_cse_skip_blocks = flag_cse_follow_jumps = 0;
 
 
  /* If -fexpensive-optimizations, re-run CSE to clean up things done
  /* If -fexpensive-optimizations, re-run CSE to clean up things done
     by gcse.  */
     by gcse.  */
  if (flag_expensive_optimizations)
  if (flag_expensive_optimizations)
    {
    {
      timevar_push (TV_CSE);
      timevar_push (TV_CSE);
      reg_scan (get_insns (), max_reg_num ());
      reg_scan (get_insns (), max_reg_num ());
      tem2 = cse_main (get_insns (), max_reg_num ());
      tem2 = cse_main (get_insns (), max_reg_num ());
      purge_all_dead_edges ();
      purge_all_dead_edges ();
      delete_trivially_dead_insns (get_insns (), max_reg_num ());
      delete_trivially_dead_insns (get_insns (), max_reg_num ());
      timevar_pop (TV_CSE);
      timevar_pop (TV_CSE);
      cse_not_expected = !flag_rerun_cse_after_loop;
      cse_not_expected = !flag_rerun_cse_after_loop;
    }
    }
 
 
  /* If gcse or cse altered any jumps, rerun jump optimizations to clean
  /* If gcse or cse altered any jumps, rerun jump optimizations to clean
     things up.  */
     things up.  */
  if (tem || tem2)
  if (tem || tem2)
    {
    {
      timevar_push (TV_JUMP);
      timevar_push (TV_JUMP);
      rebuild_jump_labels (get_insns ());
      rebuild_jump_labels (get_insns ());
      delete_dead_jumptables ();
      delete_dead_jumptables ();
      cleanup_cfg (CLEANUP_EXPENSIVE);
      cleanup_cfg (CLEANUP_EXPENSIVE);
      timevar_pop (TV_JUMP);
      timevar_pop (TV_JUMP);
    }
    }
 
 
  flag_cse_skip_blocks = save_csb;
  flag_cse_skip_blocks = save_csb;
  flag_cse_follow_jumps = save_cfj;
  flag_cse_follow_jumps = save_cfj;
  return 0;
  return 0;
}
}
 
 
struct tree_opt_pass pass_gcse =
struct tree_opt_pass pass_gcse =
{
{
  "gcse1",                              /* name */
  "gcse1",                              /* name */
  gate_handle_gcse,                     /* gate */
  gate_handle_gcse,                     /* gate */
  rest_of_handle_gcse,                  /* execute */
  rest_of_handle_gcse,                  /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  NULL,                                 /* next */
  0,                                    /* static_pass_number */
  0,                                    /* static_pass_number */
  TV_GCSE,                              /* tv_id */
  TV_GCSE,                              /* tv_id */
  0,                                    /* properties_required */
  0,                                    /* properties_required */
  0,                                    /* properties_provided */
  0,                                    /* properties_provided */
  0,                                    /* properties_destroyed */
  0,                                    /* properties_destroyed */
  0,                                    /* todo_flags_start */
  0,                                    /* todo_flags_start */
  TODO_dump_func |
  TODO_dump_func |
  TODO_verify_flow | TODO_ggc_collect,  /* todo_flags_finish */
  TODO_verify_flow | TODO_ggc_collect,  /* todo_flags_finish */
  'G'                                   /* letter */
  'G'                                   /* letter */
};
};
 
 
 
 
#include "gt-gcse.h"
#include "gt-gcse.h"
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.