OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gcc-4.2.2/] [gcc/] [gensupport.c] - Diff between revs 154 and 816

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 154 Rev 816
/* Support routines for the various generation passes.
/* Support routines for the various generation passes.
   Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
   Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
   This file is part of GCC.
   This file is part of GCC.
 
 
   GCC is free software; you can redistribute it and/or modify it
   GCC is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by
   under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3, or (at your option)
   the Free Software Foundation; either version 3, or (at your option)
   any later version.
   any later version.
 
 
   GCC is distributed in the hope that it will be useful, but WITHOUT
   GCC is distributed in the hope that it will be useful, but WITHOUT
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
   License for more details.
   License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with GCC; see the file COPYING3.  If not see
   along with GCC; see the file COPYING3.  If not see
   <http://www.gnu.org/licenses/>.  */
   <http://www.gnu.org/licenses/>.  */
 
 
#include "bconfig.h"
#include "bconfig.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "rtl.h"
#include "rtl.h"
#include "obstack.h"
#include "obstack.h"
#include "errors.h"
#include "errors.h"
#include "hashtab.h"
#include "hashtab.h"
#include "gensupport.h"
#include "gensupport.h"
 
 
 
 
/* In case some macros used by files we include need it, define this here.  */
/* In case some macros used by files we include need it, define this here.  */
int target_flags;
int target_flags;
 
 
int insn_elision = 1;
int insn_elision = 1;
 
 
const char *in_fname;
const char *in_fname;
 
 
/* This callback will be invoked whenever an rtl include directive is
/* This callback will be invoked whenever an rtl include directive is
   processed.  To be used for creation of the dependency file.  */
   processed.  To be used for creation of the dependency file.  */
void (*include_callback) (const char *);
void (*include_callback) (const char *);
 
 
static struct obstack obstack;
static struct obstack obstack;
struct obstack *rtl_obstack = &obstack;
struct obstack *rtl_obstack = &obstack;
 
 
static int sequence_num;
static int sequence_num;
static int errors;
static int errors;
 
 
static int predicable_default;
static int predicable_default;
static const char *predicable_true;
static const char *predicable_true;
static const char *predicable_false;
static const char *predicable_false;
 
 
static htab_t condition_table;
static htab_t condition_table;
 
 
static char *base_dir = NULL;
static char *base_dir = NULL;
 
 
/* We initially queue all patterns, process the define_insn and
/* We initially queue all patterns, process the define_insn and
   define_cond_exec patterns, then return them one at a time.  */
   define_cond_exec patterns, then return them one at a time.  */
 
 
struct queue_elem
struct queue_elem
{
{
  rtx data;
  rtx data;
  const char *filename;
  const char *filename;
  int lineno;
  int lineno;
  struct queue_elem *next;
  struct queue_elem *next;
  /* In a DEFINE_INSN that came from a DEFINE_INSN_AND_SPLIT, SPLIT
  /* In a DEFINE_INSN that came from a DEFINE_INSN_AND_SPLIT, SPLIT
     points to the generated DEFINE_SPLIT.  */
     points to the generated DEFINE_SPLIT.  */
  struct queue_elem *split;
  struct queue_elem *split;
};
};
 
 
static struct queue_elem *define_attr_queue;
static struct queue_elem *define_attr_queue;
static struct queue_elem **define_attr_tail = &define_attr_queue;
static struct queue_elem **define_attr_tail = &define_attr_queue;
static struct queue_elem *define_pred_queue;
static struct queue_elem *define_pred_queue;
static struct queue_elem **define_pred_tail = &define_pred_queue;
static struct queue_elem **define_pred_tail = &define_pred_queue;
static struct queue_elem *define_insn_queue;
static struct queue_elem *define_insn_queue;
static struct queue_elem **define_insn_tail = &define_insn_queue;
static struct queue_elem **define_insn_tail = &define_insn_queue;
static struct queue_elem *define_cond_exec_queue;
static struct queue_elem *define_cond_exec_queue;
static struct queue_elem **define_cond_exec_tail = &define_cond_exec_queue;
static struct queue_elem **define_cond_exec_tail = &define_cond_exec_queue;
static struct queue_elem *other_queue;
static struct queue_elem *other_queue;
static struct queue_elem **other_tail = &other_queue;
static struct queue_elem **other_tail = &other_queue;
 
 
static struct queue_elem *queue_pattern (rtx, struct queue_elem ***,
static struct queue_elem *queue_pattern (rtx, struct queue_elem ***,
                                         const char *, int);
                                         const char *, int);
 
 
/* Current maximum length of directory names in the search path
/* Current maximum length of directory names in the search path
   for include files.  (Altered as we get more of them.)  */
   for include files.  (Altered as we get more of them.)  */
 
 
size_t max_include_len;
size_t max_include_len;
 
 
struct file_name_list
struct file_name_list
  {
  {
    struct file_name_list *next;
    struct file_name_list *next;
    const char *fname;
    const char *fname;
  };
  };
 
 
struct file_name_list *first_dir_md_include = 0;  /* First dir to search */
struct file_name_list *first_dir_md_include = 0;  /* First dir to search */
        /* First dir to search for <file> */
        /* First dir to search for <file> */
struct file_name_list *first_bracket_include = 0;
struct file_name_list *first_bracket_include = 0;
struct file_name_list *last_dir_md_include = 0;        /* Last in chain */
struct file_name_list *last_dir_md_include = 0;        /* Last in chain */
 
 
static void remove_constraints (rtx);
static void remove_constraints (rtx);
static void process_rtx (rtx, int);
static void process_rtx (rtx, int);
 
 
static int is_predicable (struct queue_elem *);
static int is_predicable (struct queue_elem *);
static void identify_predicable_attribute (void);
static void identify_predicable_attribute (void);
static int n_alternatives (const char *);
static int n_alternatives (const char *);
static void collect_insn_data (rtx, int *, int *);
static void collect_insn_data (rtx, int *, int *);
static rtx alter_predicate_for_insn (rtx, int, int, int);
static rtx alter_predicate_for_insn (rtx, int, int, int);
static const char *alter_test_for_insn (struct queue_elem *,
static const char *alter_test_for_insn (struct queue_elem *,
                                        struct queue_elem *);
                                        struct queue_elem *);
static char *shift_output_template (char *, const char *, int);
static char *shift_output_template (char *, const char *, int);
static const char *alter_output_for_insn (struct queue_elem *,
static const char *alter_output_for_insn (struct queue_elem *,
                                          struct queue_elem *,
                                          struct queue_elem *,
                                          int, int);
                                          int, int);
static void process_one_cond_exec (struct queue_elem *);
static void process_one_cond_exec (struct queue_elem *);
static void process_define_cond_exec (void);
static void process_define_cond_exec (void);
static void process_include (rtx, int);
static void process_include (rtx, int);
static char *save_string (const char *, int);
static char *save_string (const char *, int);
static void init_predicate_table (void);
static void init_predicate_table (void);
static void record_insn_name (int, const char *);
static void record_insn_name (int, const char *);


void
void
message_with_line (int lineno, const char *msg, ...)
message_with_line (int lineno, const char *msg, ...)
{
{
  va_list ap;
  va_list ap;
 
 
  va_start (ap, msg);
  va_start (ap, msg);
 
 
  fprintf (stderr, "%s:%d: ", read_rtx_filename, lineno);
  fprintf (stderr, "%s:%d: ", read_rtx_filename, lineno);
  vfprintf (stderr, msg, ap);
  vfprintf (stderr, msg, ap);
  fputc ('\n', stderr);
  fputc ('\n', stderr);
 
 
  va_end (ap);
  va_end (ap);
}
}
 
 
/* Make a version of gen_rtx_CONST_INT so that GEN_INT can be used in
/* Make a version of gen_rtx_CONST_INT so that GEN_INT can be used in
   the gensupport programs.  */
   the gensupport programs.  */
 
 
rtx
rtx
gen_rtx_CONST_INT (enum machine_mode ARG_UNUSED (mode),
gen_rtx_CONST_INT (enum machine_mode ARG_UNUSED (mode),
                   HOST_WIDE_INT arg)
                   HOST_WIDE_INT arg)
{
{
  rtx rt = rtx_alloc (CONST_INT);
  rtx rt = rtx_alloc (CONST_INT);
 
 
  XWINT (rt, 0) = arg;
  XWINT (rt, 0) = arg;
  return rt;
  return rt;
}
}


/* Queue PATTERN on LIST_TAIL.  Return the address of the new queue
/* Queue PATTERN on LIST_TAIL.  Return the address of the new queue
   element.  */
   element.  */
 
 
static struct queue_elem *
static struct queue_elem *
queue_pattern (rtx pattern, struct queue_elem ***list_tail,
queue_pattern (rtx pattern, struct queue_elem ***list_tail,
               const char *filename, int lineno)
               const char *filename, int lineno)
{
{
  struct queue_elem *e = XNEW(struct queue_elem);
  struct queue_elem *e = XNEW(struct queue_elem);
  e->data = pattern;
  e->data = pattern;
  e->filename = filename;
  e->filename = filename;
  e->lineno = lineno;
  e->lineno = lineno;
  e->next = NULL;
  e->next = NULL;
  e->split = NULL;
  e->split = NULL;
  **list_tail = e;
  **list_tail = e;
  *list_tail = &e->next;
  *list_tail = &e->next;
  return e;
  return e;
}
}
 
 
/* Recursively remove constraints from an rtx.  */
/* Recursively remove constraints from an rtx.  */
 
 
static void
static void
remove_constraints (rtx part)
remove_constraints (rtx part)
{
{
  int i, j;
  int i, j;
  const char *format_ptr;
  const char *format_ptr;
 
 
  if (part == 0)
  if (part == 0)
    return;
    return;
 
 
  if (GET_CODE (part) == MATCH_OPERAND)
  if (GET_CODE (part) == MATCH_OPERAND)
    XSTR (part, 2) = "";
    XSTR (part, 2) = "";
  else if (GET_CODE (part) == MATCH_SCRATCH)
  else if (GET_CODE (part) == MATCH_SCRATCH)
    XSTR (part, 1) = "";
    XSTR (part, 1) = "";
 
 
  format_ptr = GET_RTX_FORMAT (GET_CODE (part));
  format_ptr = GET_RTX_FORMAT (GET_CODE (part));
 
 
  for (i = 0; i < GET_RTX_LENGTH (GET_CODE (part)); i++)
  for (i = 0; i < GET_RTX_LENGTH (GET_CODE (part)); i++)
    switch (*format_ptr++)
    switch (*format_ptr++)
      {
      {
      case 'e':
      case 'e':
      case 'u':
      case 'u':
        remove_constraints (XEXP (part, i));
        remove_constraints (XEXP (part, i));
        break;
        break;
      case 'E':
      case 'E':
        if (XVEC (part, i) != NULL)
        if (XVEC (part, i) != NULL)
          for (j = 0; j < XVECLEN (part, i); j++)
          for (j = 0; j < XVECLEN (part, i); j++)
            remove_constraints (XVECEXP (part, i, j));
            remove_constraints (XVECEXP (part, i, j));
        break;
        break;
      }
      }
}
}
 
 
/* Process an include file assuming that it lives in gcc/config/{target}/
/* Process an include file assuming that it lives in gcc/config/{target}/
   if the include looks like (include "file").  */
   if the include looks like (include "file").  */
 
 
static void
static void
process_include (rtx desc, int lineno)
process_include (rtx desc, int lineno)
{
{
  const char *filename = XSTR (desc, 0);
  const char *filename = XSTR (desc, 0);
  const char *old_filename;
  const char *old_filename;
  int old_lineno;
  int old_lineno;
  char *pathname;
  char *pathname;
  FILE *input_file;
  FILE *input_file;
 
 
  /* If specified file name is absolute, skip the include stack.  */
  /* If specified file name is absolute, skip the include stack.  */
  if (! IS_ABSOLUTE_PATH (filename))
  if (! IS_ABSOLUTE_PATH (filename))
    {
    {
      struct file_name_list *stackp;
      struct file_name_list *stackp;
 
 
      /* Search directory path, trying to open the file.  */
      /* Search directory path, trying to open the file.  */
      for (stackp = first_dir_md_include; stackp; stackp = stackp->next)
      for (stackp = first_dir_md_include; stackp; stackp = stackp->next)
        {
        {
          static const char sep[2] = { DIR_SEPARATOR, '\0' };
          static const char sep[2] = { DIR_SEPARATOR, '\0' };
 
 
          pathname = concat (stackp->fname, sep, filename, NULL);
          pathname = concat (stackp->fname, sep, filename, NULL);
          input_file = fopen (pathname, "r");
          input_file = fopen (pathname, "r");
          if (input_file != NULL)
          if (input_file != NULL)
            goto success;
            goto success;
          free (pathname);
          free (pathname);
        }
        }
    }
    }
 
 
  if (base_dir)
  if (base_dir)
    pathname = concat (base_dir, filename, NULL);
    pathname = concat (base_dir, filename, NULL);
  else
  else
    pathname = xstrdup (filename);
    pathname = xstrdup (filename);
  input_file = fopen (pathname, "r");
  input_file = fopen (pathname, "r");
  if (input_file == NULL)
  if (input_file == NULL)
    {
    {
      free (pathname);
      free (pathname);
      message_with_line (lineno, "include file `%s' not found", filename);
      message_with_line (lineno, "include file `%s' not found", filename);
      errors = 1;
      errors = 1;
      return;
      return;
    }
    }
 success:
 success:
 
 
  /* Save old cursor; setup new for the new file.  Note that "lineno" the
  /* Save old cursor; setup new for the new file.  Note that "lineno" the
     argument to this function is the beginning of the include statement,
     argument to this function is the beginning of the include statement,
     while read_rtx_lineno has already been advanced.  */
     while read_rtx_lineno has already been advanced.  */
  old_filename = read_rtx_filename;
  old_filename = read_rtx_filename;
  old_lineno = read_rtx_lineno;
  old_lineno = read_rtx_lineno;
  read_rtx_filename = pathname;
  read_rtx_filename = pathname;
  read_rtx_lineno = 1;
  read_rtx_lineno = 1;
 
 
  if (include_callback)
  if (include_callback)
    include_callback (pathname);
    include_callback (pathname);
 
 
  /* Read the entire file.  */
  /* Read the entire file.  */
  while (read_rtx (input_file, &desc, &lineno))
  while (read_rtx (input_file, &desc, &lineno))
    process_rtx (desc, lineno);
    process_rtx (desc, lineno);
 
 
  /* Do not free pathname.  It is attached to the various rtx queue
  /* Do not free pathname.  It is attached to the various rtx queue
     elements.  */
     elements.  */
 
 
  read_rtx_filename = old_filename;
  read_rtx_filename = old_filename;
  read_rtx_lineno = old_lineno;
  read_rtx_lineno = old_lineno;
 
 
  fclose (input_file);
  fclose (input_file);
}
}
 
 
/* Process a top level rtx in some way, queuing as appropriate.  */
/* Process a top level rtx in some way, queuing as appropriate.  */
 
 
static void
static void
process_rtx (rtx desc, int lineno)
process_rtx (rtx desc, int lineno)
{
{
  switch (GET_CODE (desc))
  switch (GET_CODE (desc))
    {
    {
    case DEFINE_INSN:
    case DEFINE_INSN:
      queue_pattern (desc, &define_insn_tail, read_rtx_filename, lineno);
      queue_pattern (desc, &define_insn_tail, read_rtx_filename, lineno);
      break;
      break;
 
 
    case DEFINE_COND_EXEC:
    case DEFINE_COND_EXEC:
      queue_pattern (desc, &define_cond_exec_tail, read_rtx_filename, lineno);
      queue_pattern (desc, &define_cond_exec_tail, read_rtx_filename, lineno);
      break;
      break;
 
 
    case DEFINE_ATTR:
    case DEFINE_ATTR:
      queue_pattern (desc, &define_attr_tail, read_rtx_filename, lineno);
      queue_pattern (desc, &define_attr_tail, read_rtx_filename, lineno);
      break;
      break;
 
 
    case DEFINE_PREDICATE:
    case DEFINE_PREDICATE:
    case DEFINE_SPECIAL_PREDICATE:
    case DEFINE_SPECIAL_PREDICATE:
    case DEFINE_CONSTRAINT:
    case DEFINE_CONSTRAINT:
    case DEFINE_REGISTER_CONSTRAINT:
    case DEFINE_REGISTER_CONSTRAINT:
    case DEFINE_MEMORY_CONSTRAINT:
    case DEFINE_MEMORY_CONSTRAINT:
    case DEFINE_ADDRESS_CONSTRAINT:
    case DEFINE_ADDRESS_CONSTRAINT:
      queue_pattern (desc, &define_pred_tail, read_rtx_filename, lineno);
      queue_pattern (desc, &define_pred_tail, read_rtx_filename, lineno);
      break;
      break;
 
 
    case INCLUDE:
    case INCLUDE:
      process_include (desc, lineno);
      process_include (desc, lineno);
      break;
      break;
 
 
    case DEFINE_INSN_AND_SPLIT:
    case DEFINE_INSN_AND_SPLIT:
      {
      {
        const char *split_cond;
        const char *split_cond;
        rtx split;
        rtx split;
        rtvec attr;
        rtvec attr;
        int i;
        int i;
        struct queue_elem *insn_elem;
        struct queue_elem *insn_elem;
        struct queue_elem *split_elem;
        struct queue_elem *split_elem;
 
 
        /* Create a split with values from the insn_and_split.  */
        /* Create a split with values from the insn_and_split.  */
        split = rtx_alloc (DEFINE_SPLIT);
        split = rtx_alloc (DEFINE_SPLIT);
 
 
        i = XVECLEN (desc, 1);
        i = XVECLEN (desc, 1);
        XVEC (split, 0) = rtvec_alloc (i);
        XVEC (split, 0) = rtvec_alloc (i);
        while (--i >= 0)
        while (--i >= 0)
          {
          {
            XVECEXP (split, 0, i) = copy_rtx (XVECEXP (desc, 1, i));
            XVECEXP (split, 0, i) = copy_rtx (XVECEXP (desc, 1, i));
            remove_constraints (XVECEXP (split, 0, i));
            remove_constraints (XVECEXP (split, 0, i));
          }
          }
 
 
        /* If the split condition starts with "&&", append it to the
        /* If the split condition starts with "&&", append it to the
           insn condition to create the new split condition.  */
           insn condition to create the new split condition.  */
        split_cond = XSTR (desc, 4);
        split_cond = XSTR (desc, 4);
        if (split_cond[0] == '&' && split_cond[1] == '&')
        if (split_cond[0] == '&' && split_cond[1] == '&')
          {
          {
            copy_rtx_ptr_loc (split_cond + 2, split_cond);
            copy_rtx_ptr_loc (split_cond + 2, split_cond);
            split_cond = join_c_conditions (XSTR (desc, 2), split_cond + 2);
            split_cond = join_c_conditions (XSTR (desc, 2), split_cond + 2);
          }
          }
        XSTR (split, 1) = split_cond;
        XSTR (split, 1) = split_cond;
        XVEC (split, 2) = XVEC (desc, 5);
        XVEC (split, 2) = XVEC (desc, 5);
        XSTR (split, 3) = XSTR (desc, 6);
        XSTR (split, 3) = XSTR (desc, 6);
 
 
        /* Fix up the DEFINE_INSN.  */
        /* Fix up the DEFINE_INSN.  */
        attr = XVEC (desc, 7);
        attr = XVEC (desc, 7);
        PUT_CODE (desc, DEFINE_INSN);
        PUT_CODE (desc, DEFINE_INSN);
        XVEC (desc, 4) = attr;
        XVEC (desc, 4) = attr;
 
 
        /* Queue them.  */
        /* Queue them.  */
        insn_elem
        insn_elem
          = queue_pattern (desc, &define_insn_tail, read_rtx_filename,
          = queue_pattern (desc, &define_insn_tail, read_rtx_filename,
                           lineno);
                           lineno);
        split_elem
        split_elem
          = queue_pattern (split, &other_tail, read_rtx_filename, lineno);
          = queue_pattern (split, &other_tail, read_rtx_filename, lineno);
        insn_elem->split = split_elem;
        insn_elem->split = split_elem;
        break;
        break;
      }
      }
 
 
    default:
    default:
      queue_pattern (desc, &other_tail, read_rtx_filename, lineno);
      queue_pattern (desc, &other_tail, read_rtx_filename, lineno);
      break;
      break;
    }
    }
}
}


/* Return true if attribute PREDICABLE is true for ELEM, which holds
/* Return true if attribute PREDICABLE is true for ELEM, which holds
   a DEFINE_INSN.  */
   a DEFINE_INSN.  */
 
 
static int
static int
is_predicable (struct queue_elem *elem)
is_predicable (struct queue_elem *elem)
{
{
  rtvec vec = XVEC (elem->data, 4);
  rtvec vec = XVEC (elem->data, 4);
  const char *value;
  const char *value;
  int i;
  int i;
 
 
  if (! vec)
  if (! vec)
    return predicable_default;
    return predicable_default;
 
 
  for (i = GET_NUM_ELEM (vec) - 1; i >= 0; --i)
  for (i = GET_NUM_ELEM (vec) - 1; i >= 0; --i)
    {
    {
      rtx sub = RTVEC_ELT (vec, i);
      rtx sub = RTVEC_ELT (vec, i);
      switch (GET_CODE (sub))
      switch (GET_CODE (sub))
        {
        {
        case SET_ATTR:
        case SET_ATTR:
          if (strcmp (XSTR (sub, 0), "predicable") == 0)
          if (strcmp (XSTR (sub, 0), "predicable") == 0)
            {
            {
              value = XSTR (sub, 1);
              value = XSTR (sub, 1);
              goto found;
              goto found;
            }
            }
          break;
          break;
 
 
        case SET_ATTR_ALTERNATIVE:
        case SET_ATTR_ALTERNATIVE:
          if (strcmp (XSTR (sub, 0), "predicable") == 0)
          if (strcmp (XSTR (sub, 0), "predicable") == 0)
            {
            {
              message_with_line (elem->lineno,
              message_with_line (elem->lineno,
                                 "multiple alternatives for `predicable'");
                                 "multiple alternatives for `predicable'");
              errors = 1;
              errors = 1;
              return 0;
              return 0;
            }
            }
          break;
          break;
 
 
        case SET:
        case SET:
          if (GET_CODE (SET_DEST (sub)) != ATTR
          if (GET_CODE (SET_DEST (sub)) != ATTR
              || strcmp (XSTR (SET_DEST (sub), 0), "predicable") != 0)
              || strcmp (XSTR (SET_DEST (sub), 0), "predicable") != 0)
            break;
            break;
          sub = SET_SRC (sub);
          sub = SET_SRC (sub);
          if (GET_CODE (sub) == CONST_STRING)
          if (GET_CODE (sub) == CONST_STRING)
            {
            {
              value = XSTR (sub, 0);
              value = XSTR (sub, 0);
              goto found;
              goto found;
            }
            }
 
 
          /* ??? It would be possible to handle this if we really tried.
          /* ??? It would be possible to handle this if we really tried.
             It's not easy though, and I'm not going to bother until it
             It's not easy though, and I'm not going to bother until it
             really proves necessary.  */
             really proves necessary.  */
          message_with_line (elem->lineno,
          message_with_line (elem->lineno,
                             "non-constant value for `predicable'");
                             "non-constant value for `predicable'");
          errors = 1;
          errors = 1;
          return 0;
          return 0;
 
 
        default:
        default:
          gcc_unreachable ();
          gcc_unreachable ();
        }
        }
    }
    }
 
 
  return predicable_default;
  return predicable_default;
 
 
 found:
 found:
  /* Verify that predicability does not vary on the alternative.  */
  /* Verify that predicability does not vary on the alternative.  */
  /* ??? It should be possible to handle this by simply eliminating
  /* ??? It should be possible to handle this by simply eliminating
     the non-predicable alternatives from the insn.  FRV would like
     the non-predicable alternatives from the insn.  FRV would like
     to do this.  Delay this until we've got the basics solid.  */
     to do this.  Delay this until we've got the basics solid.  */
  if (strchr (value, ',') != NULL)
  if (strchr (value, ',') != NULL)
    {
    {
      message_with_line (elem->lineno,
      message_with_line (elem->lineno,
                         "multiple alternatives for `predicable'");
                         "multiple alternatives for `predicable'");
      errors = 1;
      errors = 1;
      return 0;
      return 0;
    }
    }
 
 
  /* Find out which value we're looking at.  */
  /* Find out which value we're looking at.  */
  if (strcmp (value, predicable_true) == 0)
  if (strcmp (value, predicable_true) == 0)
    return 1;
    return 1;
  if (strcmp (value, predicable_false) == 0)
  if (strcmp (value, predicable_false) == 0)
    return 0;
    return 0;
 
 
  message_with_line (elem->lineno,
  message_with_line (elem->lineno,
                     "unknown value `%s' for `predicable' attribute",
                     "unknown value `%s' for `predicable' attribute",
                     value);
                     value);
  errors = 1;
  errors = 1;
  return 0;
  return 0;
}
}
 
 
/* Examine the attribute "predicable"; discover its boolean values
/* Examine the attribute "predicable"; discover its boolean values
   and its default.  */
   and its default.  */
 
 
static void
static void
identify_predicable_attribute (void)
identify_predicable_attribute (void)
{
{
  struct queue_elem *elem;
  struct queue_elem *elem;
  char *p_true, *p_false;
  char *p_true, *p_false;
  const char *value;
  const char *value;
 
 
  /* Look for the DEFINE_ATTR for `predicable', which must exist.  */
  /* Look for the DEFINE_ATTR for `predicable', which must exist.  */
  for (elem = define_attr_queue; elem ; elem = elem->next)
  for (elem = define_attr_queue; elem ; elem = elem->next)
    if (strcmp (XSTR (elem->data, 0), "predicable") == 0)
    if (strcmp (XSTR (elem->data, 0), "predicable") == 0)
      goto found;
      goto found;
 
 
  message_with_line (define_cond_exec_queue->lineno,
  message_with_line (define_cond_exec_queue->lineno,
                     "attribute `predicable' not defined");
                     "attribute `predicable' not defined");
  errors = 1;
  errors = 1;
  return;
  return;
 
 
 found:
 found:
  value = XSTR (elem->data, 1);
  value = XSTR (elem->data, 1);
  p_false = xstrdup (value);
  p_false = xstrdup (value);
  p_true = strchr (p_false, ',');
  p_true = strchr (p_false, ',');
  if (p_true == NULL || strchr (++p_true, ',') != NULL)
  if (p_true == NULL || strchr (++p_true, ',') != NULL)
    {
    {
      message_with_line (elem->lineno,
      message_with_line (elem->lineno,
                         "attribute `predicable' is not a boolean");
                         "attribute `predicable' is not a boolean");
      errors = 1;
      errors = 1;
      if (p_false)
      if (p_false)
        free (p_false);
        free (p_false);
      return;
      return;
    }
    }
  p_true[-1] = '\0';
  p_true[-1] = '\0';
 
 
  predicable_true = p_true;
  predicable_true = p_true;
  predicable_false = p_false;
  predicable_false = p_false;
 
 
  switch (GET_CODE (XEXP (elem->data, 2)))
  switch (GET_CODE (XEXP (elem->data, 2)))
    {
    {
    case CONST_STRING:
    case CONST_STRING:
      value = XSTR (XEXP (elem->data, 2), 0);
      value = XSTR (XEXP (elem->data, 2), 0);
      break;
      break;
 
 
    case CONST:
    case CONST:
      message_with_line (elem->lineno,
      message_with_line (elem->lineno,
                         "attribute `predicable' cannot be const");
                         "attribute `predicable' cannot be const");
      errors = 1;
      errors = 1;
      if (p_false)
      if (p_false)
        free (p_false);
        free (p_false);
      return;
      return;
 
 
    default:
    default:
      message_with_line (elem->lineno,
      message_with_line (elem->lineno,
                         "attribute `predicable' must have a constant default");
                         "attribute `predicable' must have a constant default");
      errors = 1;
      errors = 1;
      if (p_false)
      if (p_false)
        free (p_false);
        free (p_false);
      return;
      return;
    }
    }
 
 
  if (strcmp (value, p_true) == 0)
  if (strcmp (value, p_true) == 0)
    predicable_default = 1;
    predicable_default = 1;
  else if (strcmp (value, p_false) == 0)
  else if (strcmp (value, p_false) == 0)
    predicable_default = 0;
    predicable_default = 0;
  else
  else
    {
    {
      message_with_line (elem->lineno,
      message_with_line (elem->lineno,
                         "unknown value `%s' for `predicable' attribute",
                         "unknown value `%s' for `predicable' attribute",
                         value);
                         value);
      errors = 1;
      errors = 1;
      if (p_false)
      if (p_false)
        free (p_false);
        free (p_false);
    }
    }
}
}
 
 
/* Return the number of alternatives in constraint S.  */
/* Return the number of alternatives in constraint S.  */
 
 
static int
static int
n_alternatives (const char *s)
n_alternatives (const char *s)
{
{
  int n = 1;
  int n = 1;
 
 
  if (s)
  if (s)
    while (*s)
    while (*s)
      n += (*s++ == ',');
      n += (*s++ == ',');
 
 
  return n;
  return n;
}
}
 
 
/* Determine how many alternatives there are in INSN, and how many
/* Determine how many alternatives there are in INSN, and how many
   operands.  */
   operands.  */
 
 
static void
static void
collect_insn_data (rtx pattern, int *palt, int *pmax)
collect_insn_data (rtx pattern, int *palt, int *pmax)
{
{
  const char *fmt;
  const char *fmt;
  enum rtx_code code;
  enum rtx_code code;
  int i, j, len;
  int i, j, len;
 
 
  code = GET_CODE (pattern);
  code = GET_CODE (pattern);
  switch (code)
  switch (code)
    {
    {
    case MATCH_OPERAND:
    case MATCH_OPERAND:
      i = n_alternatives (XSTR (pattern, 2));
      i = n_alternatives (XSTR (pattern, 2));
      *palt = (i > *palt ? i : *palt);
      *palt = (i > *palt ? i : *palt);
      /* Fall through.  */
      /* Fall through.  */
 
 
    case MATCH_OPERATOR:
    case MATCH_OPERATOR:
    case MATCH_SCRATCH:
    case MATCH_SCRATCH:
    case MATCH_PARALLEL:
    case MATCH_PARALLEL:
      i = XINT (pattern, 0);
      i = XINT (pattern, 0);
      if (i > *pmax)
      if (i > *pmax)
        *pmax = i;
        *pmax = i;
      break;
      break;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  fmt = GET_RTX_FORMAT (code);
  fmt = GET_RTX_FORMAT (code);
  len = GET_RTX_LENGTH (code);
  len = GET_RTX_LENGTH (code);
  for (i = 0; i < len; i++)
  for (i = 0; i < len; i++)
    {
    {
      switch (fmt[i])
      switch (fmt[i])
        {
        {
        case 'e': case 'u':
        case 'e': case 'u':
          collect_insn_data (XEXP (pattern, i), palt, pmax);
          collect_insn_data (XEXP (pattern, i), palt, pmax);
          break;
          break;
 
 
        case 'V':
        case 'V':
          if (XVEC (pattern, i) == NULL)
          if (XVEC (pattern, i) == NULL)
            break;
            break;
          /* Fall through.  */
          /* Fall through.  */
        case 'E':
        case 'E':
          for (j = XVECLEN (pattern, i) - 1; j >= 0; --j)
          for (j = XVECLEN (pattern, i) - 1; j >= 0; --j)
            collect_insn_data (XVECEXP (pattern, i, j), palt, pmax);
            collect_insn_data (XVECEXP (pattern, i, j), palt, pmax);
          break;
          break;
 
 
        case 'i': case 'w': case '0': case 's': case 'S': case 'T':
        case 'i': case 'w': case '0': case 's': case 'S': case 'T':
          break;
          break;
 
 
        default:
        default:
          gcc_unreachable ();
          gcc_unreachable ();
        }
        }
    }
    }
}
}
 
 
static rtx
static rtx
alter_predicate_for_insn (rtx pattern, int alt, int max_op, int lineno)
alter_predicate_for_insn (rtx pattern, int alt, int max_op, int lineno)
{
{
  const char *fmt;
  const char *fmt;
  enum rtx_code code;
  enum rtx_code code;
  int i, j, len;
  int i, j, len;
 
 
  code = GET_CODE (pattern);
  code = GET_CODE (pattern);
  switch (code)
  switch (code)
    {
    {
    case MATCH_OPERAND:
    case MATCH_OPERAND:
      {
      {
        const char *c = XSTR (pattern, 2);
        const char *c = XSTR (pattern, 2);
 
 
        if (n_alternatives (c) != 1)
        if (n_alternatives (c) != 1)
          {
          {
            message_with_line (lineno,
            message_with_line (lineno,
                               "too many alternatives for operand %d",
                               "too many alternatives for operand %d",
                               XINT (pattern, 0));
                               XINT (pattern, 0));
            errors = 1;
            errors = 1;
            return NULL;
            return NULL;
          }
          }
 
 
        /* Replicate C as needed to fill out ALT alternatives.  */
        /* Replicate C as needed to fill out ALT alternatives.  */
        if (c && *c && alt > 1)
        if (c && *c && alt > 1)
          {
          {
            size_t c_len = strlen (c);
            size_t c_len = strlen (c);
            size_t len = alt * (c_len + 1);
            size_t len = alt * (c_len + 1);
            char *new_c = XNEWVEC(char, len);
            char *new_c = XNEWVEC(char, len);
 
 
            memcpy (new_c, c, c_len);
            memcpy (new_c, c, c_len);
            for (i = 1; i < alt; ++i)
            for (i = 1; i < alt; ++i)
              {
              {
                new_c[i * (c_len + 1) - 1] = ',';
                new_c[i * (c_len + 1) - 1] = ',';
                memcpy (&new_c[i * (c_len + 1)], c, c_len);
                memcpy (&new_c[i * (c_len + 1)], c, c_len);
              }
              }
            new_c[len - 1] = '\0';
            new_c[len - 1] = '\0';
            XSTR (pattern, 2) = new_c;
            XSTR (pattern, 2) = new_c;
          }
          }
      }
      }
      /* Fall through.  */
      /* Fall through.  */
 
 
    case MATCH_OPERATOR:
    case MATCH_OPERATOR:
    case MATCH_SCRATCH:
    case MATCH_SCRATCH:
    case MATCH_PARALLEL:
    case MATCH_PARALLEL:
      XINT (pattern, 0) += max_op;
      XINT (pattern, 0) += max_op;
      break;
      break;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  fmt = GET_RTX_FORMAT (code);
  fmt = GET_RTX_FORMAT (code);
  len = GET_RTX_LENGTH (code);
  len = GET_RTX_LENGTH (code);
  for (i = 0; i < len; i++)
  for (i = 0; i < len; i++)
    {
    {
      rtx r;
      rtx r;
 
 
      switch (fmt[i])
      switch (fmt[i])
        {
        {
        case 'e': case 'u':
        case 'e': case 'u':
          r = alter_predicate_for_insn (XEXP (pattern, i), alt,
          r = alter_predicate_for_insn (XEXP (pattern, i), alt,
                                        max_op, lineno);
                                        max_op, lineno);
          if (r == NULL)
          if (r == NULL)
            return r;
            return r;
          break;
          break;
 
 
        case 'E':
        case 'E':
          for (j = XVECLEN (pattern, i) - 1; j >= 0; --j)
          for (j = XVECLEN (pattern, i) - 1; j >= 0; --j)
            {
            {
              r = alter_predicate_for_insn (XVECEXP (pattern, i, j),
              r = alter_predicate_for_insn (XVECEXP (pattern, i, j),
                                            alt, max_op, lineno);
                                            alt, max_op, lineno);
              if (r == NULL)
              if (r == NULL)
                return r;
                return r;
            }
            }
          break;
          break;
 
 
        case 'i': case 'w': case '0': case 's':
        case 'i': case 'w': case '0': case 's':
          break;
          break;
 
 
        default:
        default:
          gcc_unreachable ();
          gcc_unreachable ();
        }
        }
    }
    }
 
 
  return pattern;
  return pattern;
}
}
 
 
static const char *
static const char *
alter_test_for_insn (struct queue_elem *ce_elem,
alter_test_for_insn (struct queue_elem *ce_elem,
                     struct queue_elem *insn_elem)
                     struct queue_elem *insn_elem)
{
{
  return join_c_conditions (XSTR (ce_elem->data, 1),
  return join_c_conditions (XSTR (ce_elem->data, 1),
                            XSTR (insn_elem->data, 2));
                            XSTR (insn_elem->data, 2));
}
}
 
 
/* Adjust all of the operand numbers in SRC to match the shift they'll
/* Adjust all of the operand numbers in SRC to match the shift they'll
   get from an operand displacement of DISP.  Return a pointer after the
   get from an operand displacement of DISP.  Return a pointer after the
   adjusted string.  */
   adjusted string.  */
 
 
static char *
static char *
shift_output_template (char *dest, const char *src, int disp)
shift_output_template (char *dest, const char *src, int disp)
{
{
  while (*src)
  while (*src)
    {
    {
      char c = *src++;
      char c = *src++;
      *dest++ = c;
      *dest++ = c;
      if (c == '%')
      if (c == '%')
        {
        {
          c = *src++;
          c = *src++;
          if (ISDIGIT ((unsigned char) c))
          if (ISDIGIT ((unsigned char) c))
            c += disp;
            c += disp;
          else if (ISALPHA (c))
          else if (ISALPHA (c))
            {
            {
              *dest++ = c;
              *dest++ = c;
              c = *src++ + disp;
              c = *src++ + disp;
            }
            }
          *dest++ = c;
          *dest++ = c;
        }
        }
    }
    }
 
 
  return dest;
  return dest;
}
}
 
 
static const char *
static const char *
alter_output_for_insn (struct queue_elem *ce_elem,
alter_output_for_insn (struct queue_elem *ce_elem,
                       struct queue_elem *insn_elem,
                       struct queue_elem *insn_elem,
                       int alt, int max_op)
                       int alt, int max_op)
{
{
  const char *ce_out, *insn_out;
  const char *ce_out, *insn_out;
  char *result, *p;
  char *result, *p;
  size_t len, ce_len, insn_len;
  size_t len, ce_len, insn_len;
 
 
  /* ??? Could coordinate with genoutput to not duplicate code here.  */
  /* ??? Could coordinate with genoutput to not duplicate code here.  */
 
 
  ce_out = XSTR (ce_elem->data, 2);
  ce_out = XSTR (ce_elem->data, 2);
  insn_out = XTMPL (insn_elem->data, 3);
  insn_out = XTMPL (insn_elem->data, 3);
  if (!ce_out || *ce_out == '\0')
  if (!ce_out || *ce_out == '\0')
    return insn_out;
    return insn_out;
 
 
  ce_len = strlen (ce_out);
  ce_len = strlen (ce_out);
  insn_len = strlen (insn_out);
  insn_len = strlen (insn_out);
 
 
  if (*insn_out == '*')
  if (*insn_out == '*')
    /* You must take care of the predicate yourself.  */
    /* You must take care of the predicate yourself.  */
    return insn_out;
    return insn_out;
 
 
  if (*insn_out == '@')
  if (*insn_out == '@')
    {
    {
      len = (ce_len + 1) * alt + insn_len + 1;
      len = (ce_len + 1) * alt + insn_len + 1;
      p = result = XNEWVEC(char, len);
      p = result = XNEWVEC(char, len);
 
 
      do
      do
        {
        {
          do
          do
            *p++ = *insn_out++;
            *p++ = *insn_out++;
          while (ISSPACE ((unsigned char) *insn_out));
          while (ISSPACE ((unsigned char) *insn_out));
 
 
          if (*insn_out != '#')
          if (*insn_out != '#')
            {
            {
              p = shift_output_template (p, ce_out, max_op);
              p = shift_output_template (p, ce_out, max_op);
              *p++ = ' ';
              *p++ = ' ';
            }
            }
 
 
          do
          do
            *p++ = *insn_out++;
            *p++ = *insn_out++;
          while (*insn_out && *insn_out != '\n');
          while (*insn_out && *insn_out != '\n');
        }
        }
      while (*insn_out);
      while (*insn_out);
      *p = '\0';
      *p = '\0';
    }
    }
  else
  else
    {
    {
      len = ce_len + 1 + insn_len + 1;
      len = ce_len + 1 + insn_len + 1;
      result = XNEWVEC (char, len);
      result = XNEWVEC (char, len);
 
 
      p = shift_output_template (result, ce_out, max_op);
      p = shift_output_template (result, ce_out, max_op);
      *p++ = ' ';
      *p++ = ' ';
      memcpy (p, insn_out, insn_len + 1);
      memcpy (p, insn_out, insn_len + 1);
    }
    }
 
 
  return result;
  return result;
}
}
 
 
/* Replicate insns as appropriate for the given DEFINE_COND_EXEC.  */
/* Replicate insns as appropriate for the given DEFINE_COND_EXEC.  */
 
 
static void
static void
process_one_cond_exec (struct queue_elem *ce_elem)
process_one_cond_exec (struct queue_elem *ce_elem)
{
{
  struct queue_elem *insn_elem;
  struct queue_elem *insn_elem;
  for (insn_elem = define_insn_queue; insn_elem ; insn_elem = insn_elem->next)
  for (insn_elem = define_insn_queue; insn_elem ; insn_elem = insn_elem->next)
    {
    {
      int alternatives, max_operand;
      int alternatives, max_operand;
      rtx pred, insn, pattern, split;
      rtx pred, insn, pattern, split;
      int i;
      int i;
 
 
      if (! is_predicable (insn_elem))
      if (! is_predicable (insn_elem))
        continue;
        continue;
 
 
      alternatives = 1;
      alternatives = 1;
      max_operand = -1;
      max_operand = -1;
      collect_insn_data (insn_elem->data, &alternatives, &max_operand);
      collect_insn_data (insn_elem->data, &alternatives, &max_operand);
      max_operand += 1;
      max_operand += 1;
 
 
      if (XVECLEN (ce_elem->data, 0) != 1)
      if (XVECLEN (ce_elem->data, 0) != 1)
        {
        {
          message_with_line (ce_elem->lineno,
          message_with_line (ce_elem->lineno,
                             "too many patterns in predicate");
                             "too many patterns in predicate");
          errors = 1;
          errors = 1;
          return;
          return;
        }
        }
 
 
      pred = copy_rtx (XVECEXP (ce_elem->data, 0, 0));
      pred = copy_rtx (XVECEXP (ce_elem->data, 0, 0));
      pred = alter_predicate_for_insn (pred, alternatives, max_operand,
      pred = alter_predicate_for_insn (pred, alternatives, max_operand,
                                       ce_elem->lineno);
                                       ce_elem->lineno);
      if (pred == NULL)
      if (pred == NULL)
        return;
        return;
 
 
      /* Construct a new pattern for the new insn.  */
      /* Construct a new pattern for the new insn.  */
      insn = copy_rtx (insn_elem->data);
      insn = copy_rtx (insn_elem->data);
      XSTR (insn, 0) = "";
      XSTR (insn, 0) = "";
      pattern = rtx_alloc (COND_EXEC);
      pattern = rtx_alloc (COND_EXEC);
      XEXP (pattern, 0) = pred;
      XEXP (pattern, 0) = pred;
      if (XVECLEN (insn, 1) == 1)
      if (XVECLEN (insn, 1) == 1)
        {
        {
          XEXP (pattern, 1) = XVECEXP (insn, 1, 0);
          XEXP (pattern, 1) = XVECEXP (insn, 1, 0);
          XVECEXP (insn, 1, 0) = pattern;
          XVECEXP (insn, 1, 0) = pattern;
          PUT_NUM_ELEM (XVEC (insn, 1), 1);
          PUT_NUM_ELEM (XVEC (insn, 1), 1);
        }
        }
      else
      else
        {
        {
          XEXP (pattern, 1) = rtx_alloc (PARALLEL);
          XEXP (pattern, 1) = rtx_alloc (PARALLEL);
          XVEC (XEXP (pattern, 1), 0) = XVEC (insn, 1);
          XVEC (XEXP (pattern, 1), 0) = XVEC (insn, 1);
          XVEC (insn, 1) = rtvec_alloc (1);
          XVEC (insn, 1) = rtvec_alloc (1);
          XVECEXP (insn, 1, 0) = pattern;
          XVECEXP (insn, 1, 0) = pattern;
        }
        }
 
 
      XSTR (insn, 2) = alter_test_for_insn (ce_elem, insn_elem);
      XSTR (insn, 2) = alter_test_for_insn (ce_elem, insn_elem);
      XTMPL (insn, 3) = alter_output_for_insn (ce_elem, insn_elem,
      XTMPL (insn, 3) = alter_output_for_insn (ce_elem, insn_elem,
                                              alternatives, max_operand);
                                              alternatives, max_operand);
 
 
      /* ??? Set `predicable' to false.  Not crucial since it's really
      /* ??? Set `predicable' to false.  Not crucial since it's really
         only used here, and we won't reprocess this new pattern.  */
         only used here, and we won't reprocess this new pattern.  */
 
 
      /* Put the new pattern on the `other' list so that it
      /* Put the new pattern on the `other' list so that it
         (a) is not reprocessed by other define_cond_exec patterns
         (a) is not reprocessed by other define_cond_exec patterns
         (b) appears after all normal define_insn patterns.
         (b) appears after all normal define_insn patterns.
 
 
         ??? B is debatable.  If one has normal insns that match
         ??? B is debatable.  If one has normal insns that match
         cond_exec patterns, they will be preferred over these
         cond_exec patterns, they will be preferred over these
         generated patterns.  Whether this matters in practice, or if
         generated patterns.  Whether this matters in practice, or if
         it's a good thing, or whether we should thread these new
         it's a good thing, or whether we should thread these new
         patterns into the define_insn chain just after their generator
         patterns into the define_insn chain just after their generator
         is something we'll have to experiment with.  */
         is something we'll have to experiment with.  */
 
 
      queue_pattern (insn, &other_tail, insn_elem->filename,
      queue_pattern (insn, &other_tail, insn_elem->filename,
                     insn_elem->lineno);
                     insn_elem->lineno);
 
 
      if (!insn_elem->split)
      if (!insn_elem->split)
        continue;
        continue;
 
 
      /* If the original insn came from a define_insn_and_split,
      /* If the original insn came from a define_insn_and_split,
         generate a new split to handle the predicated insn.  */
         generate a new split to handle the predicated insn.  */
      split = copy_rtx (insn_elem->split->data);
      split = copy_rtx (insn_elem->split->data);
      /* Predicate the pattern matched by the split.  */
      /* Predicate the pattern matched by the split.  */
      pattern = rtx_alloc (COND_EXEC);
      pattern = rtx_alloc (COND_EXEC);
      XEXP (pattern, 0) = pred;
      XEXP (pattern, 0) = pred;
      if (XVECLEN (split, 0) == 1)
      if (XVECLEN (split, 0) == 1)
        {
        {
          XEXP (pattern, 1) = XVECEXP (split, 0, 0);
          XEXP (pattern, 1) = XVECEXP (split, 0, 0);
          XVECEXP (split, 0, 0) = pattern;
          XVECEXP (split, 0, 0) = pattern;
          PUT_NUM_ELEM (XVEC (split, 0), 1);
          PUT_NUM_ELEM (XVEC (split, 0), 1);
        }
        }
      else
      else
        {
        {
          XEXP (pattern, 1) = rtx_alloc (PARALLEL);
          XEXP (pattern, 1) = rtx_alloc (PARALLEL);
          XVEC (XEXP (pattern, 1), 0) = XVEC (split, 0);
          XVEC (XEXP (pattern, 1), 0) = XVEC (split, 0);
          XVEC (split, 0) = rtvec_alloc (1);
          XVEC (split, 0) = rtvec_alloc (1);
          XVECEXP (split, 0, 0) = pattern;
          XVECEXP (split, 0, 0) = pattern;
        }
        }
      /* Predicate all of the insns generated by the split.  */
      /* Predicate all of the insns generated by the split.  */
      for (i = 0; i < XVECLEN (split, 2); i++)
      for (i = 0; i < XVECLEN (split, 2); i++)
        {
        {
          pattern = rtx_alloc (COND_EXEC);
          pattern = rtx_alloc (COND_EXEC);
          XEXP (pattern, 0) = pred;
          XEXP (pattern, 0) = pred;
          XEXP (pattern, 1) = XVECEXP (split, 2, i);
          XEXP (pattern, 1) = XVECEXP (split, 2, i);
          XVECEXP (split, 2, i) = pattern;
          XVECEXP (split, 2, i) = pattern;
        }
        }
      /* Add the new split to the queue.  */
      /* Add the new split to the queue.  */
      queue_pattern (split, &other_tail, read_rtx_filename,
      queue_pattern (split, &other_tail, read_rtx_filename,
                     insn_elem->split->lineno);
                     insn_elem->split->lineno);
    }
    }
}
}
 
 
/* If we have any DEFINE_COND_EXEC patterns, expand the DEFINE_INSN
/* If we have any DEFINE_COND_EXEC patterns, expand the DEFINE_INSN
   patterns appropriately.  */
   patterns appropriately.  */
 
 
static void
static void
process_define_cond_exec (void)
process_define_cond_exec (void)
{
{
  struct queue_elem *elem;
  struct queue_elem *elem;
 
 
  identify_predicable_attribute ();
  identify_predicable_attribute ();
  if (errors)
  if (errors)
    return;
    return;
 
 
  for (elem = define_cond_exec_queue; elem ; elem = elem->next)
  for (elem = define_cond_exec_queue; elem ; elem = elem->next)
    process_one_cond_exec (elem);
    process_one_cond_exec (elem);
}
}
 
 
static char *
static char *
save_string (const char *s, int len)
save_string (const char *s, int len)
{
{
  char *result = XNEWVEC (char, len + 1);
  char *result = XNEWVEC (char, len + 1);
 
 
  memcpy (result, s, len);
  memcpy (result, s, len);
  result[len] = 0;
  result[len] = 0;
  return result;
  return result;
}
}
 
 


/* The entry point for initializing the reader.  */
/* The entry point for initializing the reader.  */
 
 
int
int
init_md_reader_args_cb (int argc, char **argv, bool (*parse_opt)(const char *))
init_md_reader_args_cb (int argc, char **argv, bool (*parse_opt)(const char *))
{
{
  FILE *input_file;
  FILE *input_file;
  int c, i, lineno;
  int c, i, lineno;
  char *lastsl;
  char *lastsl;
  rtx desc;
  rtx desc;
  bool no_more_options;
  bool no_more_options;
  bool already_read_stdin;
  bool already_read_stdin;
 
 
  /* Unlock the stdio streams.  */
  /* Unlock the stdio streams.  */
  unlock_std_streams ();
  unlock_std_streams ();
 
 
  /* First we loop over all the options.  */
  /* First we loop over all the options.  */
  for (i = 1; i < argc; i++)
  for (i = 1; i < argc; i++)
    {
    {
      if (argv[i][0] != '-')
      if (argv[i][0] != '-')
        continue;
        continue;
 
 
      c = argv[i][1];
      c = argv[i][1];
      switch (c)
      switch (c)
        {
        {
        case 'I':               /* Add directory to path for includes.  */
        case 'I':               /* Add directory to path for includes.  */
          {
          {
            struct file_name_list *dirtmp;
            struct file_name_list *dirtmp;
 
 
            dirtmp = XNEW (struct file_name_list);
            dirtmp = XNEW (struct file_name_list);
            dirtmp->next = 0;    /* New one goes on the end */
            dirtmp->next = 0;    /* New one goes on the end */
            if (first_dir_md_include == 0)
            if (first_dir_md_include == 0)
              first_dir_md_include = dirtmp;
              first_dir_md_include = dirtmp;
            else
            else
              last_dir_md_include->next = dirtmp;
              last_dir_md_include->next = dirtmp;
            last_dir_md_include = dirtmp;       /* Tail follows the last one */
            last_dir_md_include = dirtmp;       /* Tail follows the last one */
            if (argv[i][1] == 'I' && argv[i][2] != 0)
            if (argv[i][1] == 'I' && argv[i][2] != 0)
              dirtmp->fname = argv[i] + 2;
              dirtmp->fname = argv[i] + 2;
            else if (i + 1 == argc)
            else if (i + 1 == argc)
              fatal ("directory name missing after -I option");
              fatal ("directory name missing after -I option");
            else
            else
              dirtmp->fname = argv[++i];
              dirtmp->fname = argv[++i];
            if (strlen (dirtmp->fname) > max_include_len)
            if (strlen (dirtmp->fname) > max_include_len)
              max_include_len = strlen (dirtmp->fname);
              max_include_len = strlen (dirtmp->fname);
          }
          }
          break;
          break;
 
 
        case '\0':
        case '\0':
          /* An argument consisting of exactly one dash is a request to
          /* An argument consisting of exactly one dash is a request to
             read stdin.  This will be handled in the second loop.  */
             read stdin.  This will be handled in the second loop.  */
          continue;
          continue;
 
 
        case '-':
        case '-':
          /* An argument consisting of just two dashes causes option
          /* An argument consisting of just two dashes causes option
             parsing to cease.  */
             parsing to cease.  */
          if (argv[i][2] == '\0')
          if (argv[i][2] == '\0')
            goto stop_parsing_options;
            goto stop_parsing_options;
 
 
        default:
        default:
          /* The program may have provided a callback so it can
          /* The program may have provided a callback so it can
             accept its own options.  */
             accept its own options.  */
          if (parse_opt && parse_opt (argv[i]))
          if (parse_opt && parse_opt (argv[i]))
            break;
            break;
 
 
          fatal ("invalid option `%s'", argv[i]);
          fatal ("invalid option `%s'", argv[i]);
        }
        }
    }
    }
 
 
 stop_parsing_options:
 stop_parsing_options:
 
 
  /* Prepare to read input.  */
  /* Prepare to read input.  */
  condition_table = htab_create (500, hash_c_test, cmp_c_test, NULL);
  condition_table = htab_create (500, hash_c_test, cmp_c_test, NULL);
  init_predicate_table ();
  init_predicate_table ();
  obstack_init (rtl_obstack);
  obstack_init (rtl_obstack);
  errors = 0;
  errors = 0;
  sequence_num = 0;
  sequence_num = 0;
  no_more_options = false;
  no_more_options = false;
  already_read_stdin = false;
  already_read_stdin = false;
 
 
 
 
  /* Now loop over all input files.  */
  /* Now loop over all input files.  */
  for (i = 1; i < argc; i++)
  for (i = 1; i < argc; i++)
    {
    {
      if (argv[i][0] == '-')
      if (argv[i][0] == '-')
        {
        {
          if (argv[i][1] == '\0')
          if (argv[i][1] == '\0')
            {
            {
              /* Read stdin.  */
              /* Read stdin.  */
              if (already_read_stdin)
              if (already_read_stdin)
                fatal ("cannot read standard input twice");
                fatal ("cannot read standard input twice");
 
 
              base_dir = NULL;
              base_dir = NULL;
              read_rtx_filename = in_fname = "<stdin>";
              read_rtx_filename = in_fname = "<stdin>";
              read_rtx_lineno = 1;
              read_rtx_lineno = 1;
              input_file = stdin;
              input_file = stdin;
              already_read_stdin = true;
              already_read_stdin = true;
 
 
              while (read_rtx (input_file, &desc, &lineno))
              while (read_rtx (input_file, &desc, &lineno))
                process_rtx (desc, lineno);
                process_rtx (desc, lineno);
              fclose (input_file);
              fclose (input_file);
              continue;
              continue;
            }
            }
          else if (argv[i][1] == '-' && argv[i][2] == '\0')
          else if (argv[i][1] == '-' && argv[i][2] == '\0')
            {
            {
              /* No further arguments are to be treated as options.  */
              /* No further arguments are to be treated as options.  */
              no_more_options = true;
              no_more_options = true;
              continue;
              continue;
            }
            }
          else if (!no_more_options)
          else if (!no_more_options)
            continue;
            continue;
        }
        }
 
 
      /* If we get here we are looking at a non-option argument, i.e.
      /* If we get here we are looking at a non-option argument, i.e.
         a file to be processed.  */
         a file to be processed.  */
 
 
      in_fname = argv[i];
      in_fname = argv[i];
      lastsl = strrchr (in_fname, '/');
      lastsl = strrchr (in_fname, '/');
      if (lastsl != NULL)
      if (lastsl != NULL)
        base_dir = save_string (in_fname, lastsl - in_fname + 1 );
        base_dir = save_string (in_fname, lastsl - in_fname + 1 );
      else
      else
        base_dir = NULL;
        base_dir = NULL;
 
 
      read_rtx_filename = in_fname;
      read_rtx_filename = in_fname;
      read_rtx_lineno = 1;
      read_rtx_lineno = 1;
      input_file = fopen (in_fname, "r");
      input_file = fopen (in_fname, "r");
      if (input_file == 0)
      if (input_file == 0)
        {
        {
          perror (in_fname);
          perror (in_fname);
          return FATAL_EXIT_CODE;
          return FATAL_EXIT_CODE;
        }
        }
 
 
      while (read_rtx (input_file, &desc, &lineno))
      while (read_rtx (input_file, &desc, &lineno))
        process_rtx (desc, lineno);
        process_rtx (desc, lineno);
      fclose (input_file);
      fclose (input_file);
    }
    }
 
 
  /* If we get to this point without having seen any files to process,
  /* If we get to this point without having seen any files to process,
     read standard input now.  */
     read standard input now.  */
  if (!in_fname)
  if (!in_fname)
    {
    {
      base_dir = NULL;
      base_dir = NULL;
      read_rtx_filename = in_fname = "<stdin>";
      read_rtx_filename = in_fname = "<stdin>";
      read_rtx_lineno = 1;
      read_rtx_lineno = 1;
      input_file = stdin;
      input_file = stdin;
 
 
      while (read_rtx (input_file, &desc, &lineno))
      while (read_rtx (input_file, &desc, &lineno))
        process_rtx (desc, lineno);
        process_rtx (desc, lineno);
      fclose (input_file);
      fclose (input_file);
    }
    }
 
 
  /* Process define_cond_exec patterns.  */
  /* Process define_cond_exec patterns.  */
  if (define_cond_exec_queue != NULL)
  if (define_cond_exec_queue != NULL)
    process_define_cond_exec ();
    process_define_cond_exec ();
 
 
  return errors ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE;
  return errors ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE;
}
}
 
 
/* Programs that don't have their own options can use this entry point
/* Programs that don't have their own options can use this entry point
   instead.  */
   instead.  */
int
int
init_md_reader_args (int argc, char **argv)
init_md_reader_args (int argc, char **argv)
{
{
  return init_md_reader_args_cb (argc, argv, 0);
  return init_md_reader_args_cb (argc, argv, 0);
}
}


/* The entry point for reading a single rtx from an md file.  */
/* The entry point for reading a single rtx from an md file.  */
 
 
rtx
rtx
read_md_rtx (int *lineno, int *seqnr)
read_md_rtx (int *lineno, int *seqnr)
{
{
  struct queue_elem **queue, *elem;
  struct queue_elem **queue, *elem;
  rtx desc;
  rtx desc;
 
 
 discard:
 discard:
 
 
  /* Read all patterns from a given queue before moving on to the next.  */
  /* Read all patterns from a given queue before moving on to the next.  */
  if (define_attr_queue != NULL)
  if (define_attr_queue != NULL)
    queue = &define_attr_queue;
    queue = &define_attr_queue;
  else if (define_pred_queue != NULL)
  else if (define_pred_queue != NULL)
    queue = &define_pred_queue;
    queue = &define_pred_queue;
  else if (define_insn_queue != NULL)
  else if (define_insn_queue != NULL)
    queue = &define_insn_queue;
    queue = &define_insn_queue;
  else if (other_queue != NULL)
  else if (other_queue != NULL)
    queue = &other_queue;
    queue = &other_queue;
  else
  else
    return NULL_RTX;
    return NULL_RTX;
 
 
  elem = *queue;
  elem = *queue;
  *queue = elem->next;
  *queue = elem->next;
  desc = elem->data;
  desc = elem->data;
  read_rtx_filename = elem->filename;
  read_rtx_filename = elem->filename;
  *lineno = elem->lineno;
  *lineno = elem->lineno;
  *seqnr = sequence_num;
  *seqnr = sequence_num;
 
 
  free (elem);
  free (elem);
 
 
  /* Discard insn patterns which we know can never match (because
  /* Discard insn patterns which we know can never match (because
     their C test is provably always false).  If insn_elision is
     their C test is provably always false).  If insn_elision is
     false, our caller needs to see all the patterns.  Note that the
     false, our caller needs to see all the patterns.  Note that the
     elided patterns are never counted by the sequence numbering; it
     elided patterns are never counted by the sequence numbering; it
     it is the caller's responsibility, when insn_elision is false, not
     it is the caller's responsibility, when insn_elision is false, not
     to use elided pattern numbers for anything.  */
     to use elided pattern numbers for anything.  */
  switch (GET_CODE (desc))
  switch (GET_CODE (desc))
    {
    {
    case DEFINE_INSN:
    case DEFINE_INSN:
    case DEFINE_EXPAND:
    case DEFINE_EXPAND:
      if (maybe_eval_c_test (XSTR (desc, 2)) != 0)
      if (maybe_eval_c_test (XSTR (desc, 2)) != 0)
        sequence_num++;
        sequence_num++;
      else if (insn_elision)
      else if (insn_elision)
        goto discard;
        goto discard;
 
 
      /* *seqnr is used here so the name table will match caller's
      /* *seqnr is used here so the name table will match caller's
         idea of insn numbering, whether or not elision is active.  */
         idea of insn numbering, whether or not elision is active.  */
      record_insn_name (*seqnr, XSTR (desc, 0));
      record_insn_name (*seqnr, XSTR (desc, 0));
      break;
      break;
 
 
    case DEFINE_SPLIT:
    case DEFINE_SPLIT:
    case DEFINE_PEEPHOLE:
    case DEFINE_PEEPHOLE:
    case DEFINE_PEEPHOLE2:
    case DEFINE_PEEPHOLE2:
      if (maybe_eval_c_test (XSTR (desc, 1)) != 0)
      if (maybe_eval_c_test (XSTR (desc, 1)) != 0)
        sequence_num++;
        sequence_num++;
      else if (insn_elision)
      else if (insn_elision)
            goto discard;
            goto discard;
      break;
      break;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  return desc;
  return desc;
}
}
 
 
/* Helper functions for insn elision.  */
/* Helper functions for insn elision.  */
 
 
/* Compute a hash function of a c_test structure, which is keyed
/* Compute a hash function of a c_test structure, which is keyed
   by its ->expr field.  */
   by its ->expr field.  */
hashval_t
hashval_t
hash_c_test (const void *x)
hash_c_test (const void *x)
{
{
  const struct c_test *a = (const struct c_test *) x;
  const struct c_test *a = (const struct c_test *) x;
  const unsigned char *base, *s = (const unsigned char *) a->expr;
  const unsigned char *base, *s = (const unsigned char *) a->expr;
  hashval_t hash;
  hashval_t hash;
  unsigned char c;
  unsigned char c;
  unsigned int len;
  unsigned int len;
 
 
  base = s;
  base = s;
  hash = 0;
  hash = 0;
 
 
  while ((c = *s++) != '\0')
  while ((c = *s++) != '\0')
    {
    {
      hash += c + (c << 17);
      hash += c + (c << 17);
      hash ^= hash >> 2;
      hash ^= hash >> 2;
    }
    }
 
 
  len = s - base;
  len = s - base;
  hash += len + (len << 17);
  hash += len + (len << 17);
  hash ^= hash >> 2;
  hash ^= hash >> 2;
 
 
  return hash;
  return hash;
}
}
 
 
/* Compare two c_test expression structures.  */
/* Compare two c_test expression structures.  */
int
int
cmp_c_test (const void *x, const void *y)
cmp_c_test (const void *x, const void *y)
{
{
  const struct c_test *a = (const struct c_test *) x;
  const struct c_test *a = (const struct c_test *) x;
  const struct c_test *b = (const struct c_test *) y;
  const struct c_test *b = (const struct c_test *) y;
 
 
  return !strcmp (a->expr, b->expr);
  return !strcmp (a->expr, b->expr);
}
}
 
 
/* Given a string representing a C test expression, look it up in the
/* Given a string representing a C test expression, look it up in the
   condition_table and report whether or not its value is known
   condition_table and report whether or not its value is known
   at compile time.  Returns a tristate: 1 for known true, 0 for
   at compile time.  Returns a tristate: 1 for known true, 0 for
   known false, -1 for unknown.  */
   known false, -1 for unknown.  */
int
int
maybe_eval_c_test (const char *expr)
maybe_eval_c_test (const char *expr)
{
{
  const struct c_test *test;
  const struct c_test *test;
  struct c_test dummy;
  struct c_test dummy;
 
 
  if (expr[0] == 0)
  if (expr[0] == 0)
    return 1;
    return 1;
 
 
  dummy.expr = expr;
  dummy.expr = expr;
  test = (const struct c_test *)htab_find (condition_table, &dummy);
  test = (const struct c_test *)htab_find (condition_table, &dummy);
  if (!test)
  if (!test)
    return -1;
    return -1;
  return test->value;
  return test->value;
}
}
 
 
/* Record the C test expression EXPR in the condition_table, with
/* Record the C test expression EXPR in the condition_table, with
   value VAL.  Duplicates clobber previous entries.  */
   value VAL.  Duplicates clobber previous entries.  */
 
 
void
void
add_c_test (const char *expr, int value)
add_c_test (const char *expr, int value)
{
{
  struct c_test *test;
  struct c_test *test;
 
 
  if (expr[0] == 0)
  if (expr[0] == 0)
    return;
    return;
 
 
  test = XNEW (struct c_test);
  test = XNEW (struct c_test);
  test->expr = expr;
  test->expr = expr;
  test->value = value;
  test->value = value;
 
 
  *(htab_find_slot (condition_table, test, INSERT)) = test;
  *(htab_find_slot (condition_table, test, INSERT)) = test;
}
}
 
 
/* For every C test, call CALLBACK with two arguments: a pointer to
/* For every C test, call CALLBACK with two arguments: a pointer to
   the condition structure and INFO.  Stops when CALLBACK returns zero.  */
   the condition structure and INFO.  Stops when CALLBACK returns zero.  */
void
void
traverse_c_tests (htab_trav callback, void *info)
traverse_c_tests (htab_trav callback, void *info)
{
{
  if (condition_table)
  if (condition_table)
    htab_traverse (condition_table, callback, info);
    htab_traverse (condition_table, callback, info);
}
}
 
 
 
 
/* Given a string, return the number of comma-separated elements in it.
/* Given a string, return the number of comma-separated elements in it.
   Return 0 for the null string.  */
   Return 0 for the null string.  */
int
int
n_comma_elts (const char *s)
n_comma_elts (const char *s)
{
{
  int n;
  int n;
 
 
  if (*s == '\0')
  if (*s == '\0')
    return 0;
    return 0;
 
 
  for (n = 1; *s; s++)
  for (n = 1; *s; s++)
    if (*s == ',')
    if (*s == ',')
      n++;
      n++;
 
 
  return n;
  return n;
}
}
 
 
/* Given a pointer to a (char *), return a pointer to the beginning of the
/* Given a pointer to a (char *), return a pointer to the beginning of the
   next comma-separated element in the string.  Advance the pointer given
   next comma-separated element in the string.  Advance the pointer given
   to the end of that element.  Return NULL if at end of string.  Caller
   to the end of that element.  Return NULL if at end of string.  Caller
   is responsible for copying the string if necessary.  White space between
   is responsible for copying the string if necessary.  White space between
   a comma and an element is ignored.  */
   a comma and an element is ignored.  */
 
 
const char *
const char *
scan_comma_elt (const char **pstr)
scan_comma_elt (const char **pstr)
{
{
  const char *start;
  const char *start;
  const char *p = *pstr;
  const char *p = *pstr;
 
 
  if (*p == ',')
  if (*p == ',')
    p++;
    p++;
  while (ISSPACE(*p))
  while (ISSPACE(*p))
    p++;
    p++;
 
 
  if (*p == '\0')
  if (*p == '\0')
    return NULL;
    return NULL;
 
 
  start = p;
  start = p;
 
 
  while (*p != ',' && *p != '\0')
  while (*p != ',' && *p != '\0')
    p++;
    p++;
 
 
  *pstr = p;
  *pstr = p;
  return start;
  return start;
}
}
 
 
/* Helper functions for define_predicate and define_special_predicate
/* Helper functions for define_predicate and define_special_predicate
   processing.  Shared between genrecog.c and genpreds.c.  */
   processing.  Shared between genrecog.c and genpreds.c.  */
 
 
static htab_t predicate_table;
static htab_t predicate_table;
struct pred_data *first_predicate;
struct pred_data *first_predicate;
static struct pred_data **last_predicate = &first_predicate;
static struct pred_data **last_predicate = &first_predicate;
 
 
static hashval_t
static hashval_t
hash_struct_pred_data (const void *ptr)
hash_struct_pred_data (const void *ptr)
{
{
  return htab_hash_string (((const struct pred_data *)ptr)->name);
  return htab_hash_string (((const struct pred_data *)ptr)->name);
}
}
 
 
static int
static int
eq_struct_pred_data (const void *a, const void *b)
eq_struct_pred_data (const void *a, const void *b)
{
{
  return !strcmp (((const struct pred_data *)a)->name,
  return !strcmp (((const struct pred_data *)a)->name,
                  ((const struct pred_data *)b)->name);
                  ((const struct pred_data *)b)->name);
}
}
 
 
struct pred_data *
struct pred_data *
lookup_predicate (const char *name)
lookup_predicate (const char *name)
{
{
  struct pred_data key;
  struct pred_data key;
  key.name = name;
  key.name = name;
  return (struct pred_data *) htab_find (predicate_table, &key);
  return (struct pred_data *) htab_find (predicate_table, &key);
}
}
 
 
void
void
add_predicate (struct pred_data *pred)
add_predicate (struct pred_data *pred)
{
{
  void **slot = htab_find_slot (predicate_table, pred, INSERT);
  void **slot = htab_find_slot (predicate_table, pred, INSERT);
  if (*slot)
  if (*slot)
    {
    {
      error ("duplicate predicate definition for '%s'", pred->name);
      error ("duplicate predicate definition for '%s'", pred->name);
      return;
      return;
    }
    }
  *slot = pred;
  *slot = pred;
  *last_predicate = pred;
  *last_predicate = pred;
  last_predicate = &pred->next;
  last_predicate = &pred->next;
}
}
 
 
/* This array gives the initial content of the predicate table.  It
/* This array gives the initial content of the predicate table.  It
   has entries for all predicates defined in recog.c.  */
   has entries for all predicates defined in recog.c.  */
 
 
struct std_pred_table
struct std_pred_table
{
{
  const char *name;
  const char *name;
  bool special;
  bool special;
  RTX_CODE codes[NUM_RTX_CODE];
  RTX_CODE codes[NUM_RTX_CODE];
};
};
 
 
static const struct std_pred_table std_preds[] = {
static const struct std_pred_table std_preds[] = {
  {"general_operand", false, {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
  {"general_operand", false, {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
                              LABEL_REF, SUBREG, REG, MEM }},
                              LABEL_REF, SUBREG, REG, MEM }},
  {"address_operand", true, {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
  {"address_operand", true, {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
                             LABEL_REF, SUBREG, REG, MEM,
                             LABEL_REF, SUBREG, REG, MEM,
                             PLUS, MINUS, MULT}},
                             PLUS, MINUS, MULT}},
  {"register_operand", false, {SUBREG, REG}},
  {"register_operand", false, {SUBREG, REG}},
  {"pmode_register_operand", true, {SUBREG, REG}},
  {"pmode_register_operand", true, {SUBREG, REG}},
  {"scratch_operand", false, {SCRATCH, REG}},
  {"scratch_operand", false, {SCRATCH, REG}},
  {"immediate_operand", false, {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
  {"immediate_operand", false, {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
                                LABEL_REF}},
                                LABEL_REF}},
  {"const_int_operand", false, {CONST_INT}},
  {"const_int_operand", false, {CONST_INT}},
  {"const_double_operand", false, {CONST_INT, CONST_DOUBLE}},
  {"const_double_operand", false, {CONST_INT, CONST_DOUBLE}},
  {"nonimmediate_operand", false, {SUBREG, REG, MEM}},
  {"nonimmediate_operand", false, {SUBREG, REG, MEM}},
  {"nonmemory_operand", false, {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
  {"nonmemory_operand", false, {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
                                LABEL_REF, SUBREG, REG}},
                                LABEL_REF, SUBREG, REG}},
  {"push_operand", false, {MEM}},
  {"push_operand", false, {MEM}},
  {"pop_operand", false, {MEM}},
  {"pop_operand", false, {MEM}},
  {"memory_operand", false, {SUBREG, MEM}},
  {"memory_operand", false, {SUBREG, MEM}},
  {"indirect_operand", false, {SUBREG, MEM}},
  {"indirect_operand", false, {SUBREG, MEM}},
  {"comparison_operator", false, {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, GTU,
  {"comparison_operator", false, {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, GTU,
                                  UNORDERED, ORDERED, UNEQ, UNGE, UNGT, UNLE,
                                  UNORDERED, ORDERED, UNEQ, UNGE, UNGT, UNLE,
                                  UNLT, LTGT}}
                                  UNLT, LTGT}}
};
};
#define NUM_KNOWN_STD_PREDS ARRAY_SIZE (std_preds)
#define NUM_KNOWN_STD_PREDS ARRAY_SIZE (std_preds)
 
 
/* Initialize the table of predicate definitions, starting with
/* Initialize the table of predicate definitions, starting with
   the information we have on generic predicates.  */
   the information we have on generic predicates.  */
 
 
static void
static void
init_predicate_table (void)
init_predicate_table (void)
{
{
  size_t i, j;
  size_t i, j;
  struct pred_data *pred;
  struct pred_data *pred;
 
 
  predicate_table = htab_create_alloc (37, hash_struct_pred_data,
  predicate_table = htab_create_alloc (37, hash_struct_pred_data,
                                       eq_struct_pred_data, 0,
                                       eq_struct_pred_data, 0,
                                       xcalloc, free);
                                       xcalloc, free);
 
 
  for (i = 0; i < NUM_KNOWN_STD_PREDS; i++)
  for (i = 0; i < NUM_KNOWN_STD_PREDS; i++)
    {
    {
      pred = XCNEW (struct pred_data);
      pred = XCNEW (struct pred_data);
      pred->name = std_preds[i].name;
      pred->name = std_preds[i].name;
      pred->special = std_preds[i].special;
      pred->special = std_preds[i].special;
 
 
      for (j = 0; std_preds[i].codes[j] != 0; j++)
      for (j = 0; std_preds[i].codes[j] != 0; j++)
        {
        {
          enum rtx_code code = std_preds[i].codes[j];
          enum rtx_code code = std_preds[i].codes[j];
 
 
          pred->codes[code] = true;
          pred->codes[code] = true;
          if (GET_RTX_CLASS (code) != RTX_CONST_OBJ)
          if (GET_RTX_CLASS (code) != RTX_CONST_OBJ)
            pred->allows_non_const = true;
            pred->allows_non_const = true;
          if (code != REG
          if (code != REG
              && code != SUBREG
              && code != SUBREG
              && code != MEM
              && code != MEM
              && code != CONCAT
              && code != CONCAT
              && code != PARALLEL
              && code != PARALLEL
              && code != STRICT_LOW_PART)
              && code != STRICT_LOW_PART)
            pred->allows_non_lvalue = true;
            pred->allows_non_lvalue = true;
        }
        }
      if (j == 1)
      if (j == 1)
        pred->singleton = std_preds[i].codes[0];
        pred->singleton = std_preds[i].codes[0];
 
 
      add_predicate (pred);
      add_predicate (pred);
    }
    }
}
}


/* These functions allow linkage with print-rtl.c.  Also, some generators
/* These functions allow linkage with print-rtl.c.  Also, some generators
   like to annotate their output with insn names.  */
   like to annotate their output with insn names.  */
 
 
/* Holds an array of names indexed by insn_code_number.  */
/* Holds an array of names indexed by insn_code_number.  */
static char **insn_name_ptr = 0;
static char **insn_name_ptr = 0;
static int insn_name_ptr_size = 0;
static int insn_name_ptr_size = 0;
 
 
const char *
const char *
get_insn_name (int code)
get_insn_name (int code)
{
{
  if (code < insn_name_ptr_size)
  if (code < insn_name_ptr_size)
    return insn_name_ptr[code];
    return insn_name_ptr[code];
  else
  else
    return NULL;
    return NULL;
}
}
 
 
static void
static void
record_insn_name (int code, const char *name)
record_insn_name (int code, const char *name)
{
{
  static const char *last_real_name = "insn";
  static const char *last_real_name = "insn";
  static int last_real_code = 0;
  static int last_real_code = 0;
  char *new;
  char *new;
 
 
  if (insn_name_ptr_size <= code)
  if (insn_name_ptr_size <= code)
    {
    {
      int new_size;
      int new_size;
      new_size = (insn_name_ptr_size ? insn_name_ptr_size * 2 : 512);
      new_size = (insn_name_ptr_size ? insn_name_ptr_size * 2 : 512);
      insn_name_ptr = xrealloc (insn_name_ptr, sizeof(char *) * new_size);
      insn_name_ptr = xrealloc (insn_name_ptr, sizeof(char *) * new_size);
      memset (insn_name_ptr + insn_name_ptr_size, 0,
      memset (insn_name_ptr + insn_name_ptr_size, 0,
              sizeof(char *) * (new_size - insn_name_ptr_size));
              sizeof(char *) * (new_size - insn_name_ptr_size));
      insn_name_ptr_size = new_size;
      insn_name_ptr_size = new_size;
    }
    }
 
 
  if (!name || name[0] == '\0')
  if (!name || name[0] == '\0')
    {
    {
      new = xmalloc (strlen (last_real_name) + 10);
      new = xmalloc (strlen (last_real_name) + 10);
      sprintf (new, "%s+%d", last_real_name, code - last_real_code);
      sprintf (new, "%s+%d", last_real_name, code - last_real_code);
    }
    }
  else
  else
    {
    {
      last_real_name = new = xstrdup (name);
      last_real_name = new = xstrdup (name);
      last_real_code = code;
      last_real_code = code;
    }
    }
 
 
  insn_name_ptr[code] = new;
  insn_name_ptr[code] = new;
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.