OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gcc-4.2.2/] [gcc/] [ifcvt.c] - Diff between revs 154 and 816

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 154 Rev 816
/* If-conversion support.
/* If-conversion support.
   Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
   Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
   This file is part of GCC.
   This file is part of GCC.
 
 
   GCC is free software; you can redistribute it and/or modify it
   GCC is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by
   under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3, or (at your option)
   the Free Software Foundation; either version 3, or (at your option)
   any later version.
   any later version.
 
 
   GCC is distributed in the hope that it will be useful, but WITHOUT
   GCC is distributed in the hope that it will be useful, but WITHOUT
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
   License for more details.
   License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with GCC; see the file COPYING3.  If not see
   along with GCC; see the file COPYING3.  If not see
   <http://www.gnu.org/licenses/>.  */
   <http://www.gnu.org/licenses/>.  */
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
 
 
#include "rtl.h"
#include "rtl.h"
#include "regs.h"
#include "regs.h"
#include "function.h"
#include "function.h"
#include "flags.h"
#include "flags.h"
#include "insn-config.h"
#include "insn-config.h"
#include "recog.h"
#include "recog.h"
#include "except.h"
#include "except.h"
#include "hard-reg-set.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "basic-block.h"
#include "expr.h"
#include "expr.h"
#include "real.h"
#include "real.h"
#include "output.h"
#include "output.h"
#include "optabs.h"
#include "optabs.h"
#include "toplev.h"
#include "toplev.h"
#include "tm_p.h"
#include "tm_p.h"
#include "cfgloop.h"
#include "cfgloop.h"
#include "target.h"
#include "target.h"
#include "timevar.h"
#include "timevar.h"
#include "tree-pass.h"
#include "tree-pass.h"
 
 
 
 
#ifndef HAVE_conditional_execution
#ifndef HAVE_conditional_execution
#define HAVE_conditional_execution 0
#define HAVE_conditional_execution 0
#endif
#endif
#ifndef HAVE_conditional_move
#ifndef HAVE_conditional_move
#define HAVE_conditional_move 0
#define HAVE_conditional_move 0
#endif
#endif
#ifndef HAVE_incscc
#ifndef HAVE_incscc
#define HAVE_incscc 0
#define HAVE_incscc 0
#endif
#endif
#ifndef HAVE_decscc
#ifndef HAVE_decscc
#define HAVE_decscc 0
#define HAVE_decscc 0
#endif
#endif
#ifndef HAVE_trap
#ifndef HAVE_trap
#define HAVE_trap 0
#define HAVE_trap 0
#endif
#endif
#ifndef HAVE_conditional_trap
#ifndef HAVE_conditional_trap
#define HAVE_conditional_trap 0
#define HAVE_conditional_trap 0
#endif
#endif
 
 
#ifndef MAX_CONDITIONAL_EXECUTE
#ifndef MAX_CONDITIONAL_EXECUTE
#define MAX_CONDITIONAL_EXECUTE   (BRANCH_COST + 1)
#define MAX_CONDITIONAL_EXECUTE   (BRANCH_COST + 1)
#endif
#endif
 
 
#define NULL_BLOCK      ((basic_block) NULL)
#define NULL_BLOCK      ((basic_block) NULL)
 
 
/* # of IF-THEN or IF-THEN-ELSE blocks we looked at  */
/* # of IF-THEN or IF-THEN-ELSE blocks we looked at  */
static int num_possible_if_blocks;
static int num_possible_if_blocks;
 
 
/* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
/* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
   execution.  */
   execution.  */
static int num_updated_if_blocks;
static int num_updated_if_blocks;
 
 
/* # of changes made which require life information to be updated.  */
/* # of changes made which require life information to be updated.  */
static int num_true_changes;
static int num_true_changes;
 
 
/* Whether conditional execution changes were made.  */
/* Whether conditional execution changes were made.  */
static int cond_exec_changed_p;
static int cond_exec_changed_p;
 
 
/* True if life data ok at present.  */
/* True if life data ok at present.  */
static bool life_data_ok;
static bool life_data_ok;
 
 
/* Forward references.  */
/* Forward references.  */
static int count_bb_insns (basic_block);
static int count_bb_insns (basic_block);
static bool cheap_bb_rtx_cost_p (basic_block, int);
static bool cheap_bb_rtx_cost_p (basic_block, int);
static rtx first_active_insn (basic_block);
static rtx first_active_insn (basic_block);
static rtx last_active_insn (basic_block, int);
static rtx last_active_insn (basic_block, int);
static basic_block block_fallthru (basic_block);
static basic_block block_fallthru (basic_block);
static int cond_exec_process_insns (ce_if_block_t *, rtx, rtx, rtx, rtx, int);
static int cond_exec_process_insns (ce_if_block_t *, rtx, rtx, rtx, rtx, int);
static rtx cond_exec_get_condition (rtx);
static rtx cond_exec_get_condition (rtx);
static int cond_exec_process_if_block (ce_if_block_t *, int);
static int cond_exec_process_if_block (ce_if_block_t *, int);
static rtx noce_get_condition (rtx, rtx *);
static rtx noce_get_condition (rtx, rtx *);
static int noce_operand_ok (rtx);
static int noce_operand_ok (rtx);
static int noce_process_if_block (ce_if_block_t *);
static int noce_process_if_block (ce_if_block_t *);
static int process_if_block (ce_if_block_t *);
static int process_if_block (ce_if_block_t *);
static void merge_if_block (ce_if_block_t *);
static void merge_if_block (ce_if_block_t *);
static int find_cond_trap (basic_block, edge, edge);
static int find_cond_trap (basic_block, edge, edge);
static basic_block find_if_header (basic_block, int);
static basic_block find_if_header (basic_block, int);
static int block_jumps_and_fallthru_p (basic_block, basic_block);
static int block_jumps_and_fallthru_p (basic_block, basic_block);
static int find_if_block (ce_if_block_t *);
static int find_if_block (ce_if_block_t *);
static int find_if_case_1 (basic_block, edge, edge);
static int find_if_case_1 (basic_block, edge, edge);
static int find_if_case_2 (basic_block, edge, edge);
static int find_if_case_2 (basic_block, edge, edge);
static int find_memory (rtx *, void *);
static int find_memory (rtx *, void *);
static int dead_or_predicable (basic_block, basic_block, basic_block,
static int dead_or_predicable (basic_block, basic_block, basic_block,
                               basic_block, int);
                               basic_block, int);
static void noce_emit_move_insn (rtx, rtx);
static void noce_emit_move_insn (rtx, rtx);
static rtx block_has_only_trap (basic_block);
static rtx block_has_only_trap (basic_block);


/* Count the number of non-jump active insns in BB.  */
/* Count the number of non-jump active insns in BB.  */
 
 
static int
static int
count_bb_insns (basic_block bb)
count_bb_insns (basic_block bb)
{
{
  int count = 0;
  int count = 0;
  rtx insn = BB_HEAD (bb);
  rtx insn = BB_HEAD (bb);
 
 
  while (1)
  while (1)
    {
    {
      if (CALL_P (insn) || NONJUMP_INSN_P (insn))
      if (CALL_P (insn) || NONJUMP_INSN_P (insn))
        count++;
        count++;
 
 
      if (insn == BB_END (bb))
      if (insn == BB_END (bb))
        break;
        break;
      insn = NEXT_INSN (insn);
      insn = NEXT_INSN (insn);
    }
    }
 
 
  return count;
  return count;
}
}
 
 
/* Determine whether the total insn_rtx_cost on non-jump insns in
/* Determine whether the total insn_rtx_cost on non-jump insns in
   basic block BB is less than MAX_COST.  This function returns
   basic block BB is less than MAX_COST.  This function returns
   false if the cost of any instruction could not be estimated.  */
   false if the cost of any instruction could not be estimated.  */
 
 
static bool
static bool
cheap_bb_rtx_cost_p (basic_block bb, int max_cost)
cheap_bb_rtx_cost_p (basic_block bb, int max_cost)
{
{
  int count = 0;
  int count = 0;
  rtx insn = BB_HEAD (bb);
  rtx insn = BB_HEAD (bb);
 
 
  while (1)
  while (1)
    {
    {
      if (NONJUMP_INSN_P (insn))
      if (NONJUMP_INSN_P (insn))
        {
        {
          int cost = insn_rtx_cost (PATTERN (insn));
          int cost = insn_rtx_cost (PATTERN (insn));
          if (cost == 0)
          if (cost == 0)
            return false;
            return false;
 
 
          /* If this instruction is the load or set of a "stack" register,
          /* If this instruction is the load or set of a "stack" register,
             such as a floating point register on x87, then the cost of
             such as a floating point register on x87, then the cost of
             speculatively executing this insn may need to include
             speculatively executing this insn may need to include
             the additional cost of popping its result off of the
             the additional cost of popping its result off of the
             register stack.  Unfortunately, correctly recognizing and
             register stack.  Unfortunately, correctly recognizing and
             accounting for this additional overhead is tricky, so for
             accounting for this additional overhead is tricky, so for
             now we simply prohibit such speculative execution.  */
             now we simply prohibit such speculative execution.  */
#ifdef STACK_REGS
#ifdef STACK_REGS
          {
          {
            rtx set = single_set (insn);
            rtx set = single_set (insn);
            if (set && STACK_REG_P (SET_DEST (set)))
            if (set && STACK_REG_P (SET_DEST (set)))
              return false;
              return false;
          }
          }
#endif
#endif
 
 
          count += cost;
          count += cost;
          if (count >= max_cost)
          if (count >= max_cost)
            return false;
            return false;
        }
        }
      else if (CALL_P (insn))
      else if (CALL_P (insn))
        return false;
        return false;
 
 
      if (insn == BB_END (bb))
      if (insn == BB_END (bb))
        break;
        break;
      insn = NEXT_INSN (insn);
      insn = NEXT_INSN (insn);
    }
    }
 
 
  return true;
  return true;
}
}
 
 
/* Return the first non-jump active insn in the basic block.  */
/* Return the first non-jump active insn in the basic block.  */
 
 
static rtx
static rtx
first_active_insn (basic_block bb)
first_active_insn (basic_block bb)
{
{
  rtx insn = BB_HEAD (bb);
  rtx insn = BB_HEAD (bb);
 
 
  if (LABEL_P (insn))
  if (LABEL_P (insn))
    {
    {
      if (insn == BB_END (bb))
      if (insn == BB_END (bb))
        return NULL_RTX;
        return NULL_RTX;
      insn = NEXT_INSN (insn);
      insn = NEXT_INSN (insn);
    }
    }
 
 
  while (NOTE_P (insn))
  while (NOTE_P (insn))
    {
    {
      if (insn == BB_END (bb))
      if (insn == BB_END (bb))
        return NULL_RTX;
        return NULL_RTX;
      insn = NEXT_INSN (insn);
      insn = NEXT_INSN (insn);
    }
    }
 
 
  if (JUMP_P (insn))
  if (JUMP_P (insn))
    return NULL_RTX;
    return NULL_RTX;
 
 
  return insn;
  return insn;
}
}
 
 
/* Return the last non-jump active (non-jump) insn in the basic block.  */
/* Return the last non-jump active (non-jump) insn in the basic block.  */
 
 
static rtx
static rtx
last_active_insn (basic_block bb, int skip_use_p)
last_active_insn (basic_block bb, int skip_use_p)
{
{
  rtx insn = BB_END (bb);
  rtx insn = BB_END (bb);
  rtx head = BB_HEAD (bb);
  rtx head = BB_HEAD (bb);
 
 
  while (NOTE_P (insn)
  while (NOTE_P (insn)
         || JUMP_P (insn)
         || JUMP_P (insn)
         || (skip_use_p
         || (skip_use_p
             && NONJUMP_INSN_P (insn)
             && NONJUMP_INSN_P (insn)
             && GET_CODE (PATTERN (insn)) == USE))
             && GET_CODE (PATTERN (insn)) == USE))
    {
    {
      if (insn == head)
      if (insn == head)
        return NULL_RTX;
        return NULL_RTX;
      insn = PREV_INSN (insn);
      insn = PREV_INSN (insn);
    }
    }
 
 
  if (LABEL_P (insn))
  if (LABEL_P (insn))
    return NULL_RTX;
    return NULL_RTX;
 
 
  return insn;
  return insn;
}
}
 
 
/* Return the basic block reached by falling though the basic block BB.  */
/* Return the basic block reached by falling though the basic block BB.  */
 
 
static basic_block
static basic_block
block_fallthru (basic_block bb)
block_fallthru (basic_block bb)
{
{
  edge e;
  edge e;
  edge_iterator ei;
  edge_iterator ei;
 
 
  FOR_EACH_EDGE (e, ei, bb->succs)
  FOR_EACH_EDGE (e, ei, bb->succs)
    if (e->flags & EDGE_FALLTHRU)
    if (e->flags & EDGE_FALLTHRU)
      break;
      break;
 
 
  return (e) ? e->dest : NULL_BLOCK;
  return (e) ? e->dest : NULL_BLOCK;
}
}


/* Go through a bunch of insns, converting them to conditional
/* Go through a bunch of insns, converting them to conditional
   execution format if possible.  Return TRUE if all of the non-note
   execution format if possible.  Return TRUE if all of the non-note
   insns were processed.  */
   insns were processed.  */
 
 
static int
static int
cond_exec_process_insns (ce_if_block_t *ce_info ATTRIBUTE_UNUSED,
cond_exec_process_insns (ce_if_block_t *ce_info ATTRIBUTE_UNUSED,
                         /* if block information */rtx start,
                         /* if block information */rtx start,
                         /* first insn to look at */rtx end,
                         /* first insn to look at */rtx end,
                         /* last insn to look at */rtx test,
                         /* last insn to look at */rtx test,
                         /* conditional execution test */rtx prob_val,
                         /* conditional execution test */rtx prob_val,
                         /* probability of branch taken. */int mod_ok)
                         /* probability of branch taken. */int mod_ok)
{
{
  int must_be_last = FALSE;
  int must_be_last = FALSE;
  rtx insn;
  rtx insn;
  rtx xtest;
  rtx xtest;
  rtx pattern;
  rtx pattern;
 
 
  if (!start || !end)
  if (!start || !end)
    return FALSE;
    return FALSE;
 
 
  for (insn = start; ; insn = NEXT_INSN (insn))
  for (insn = start; ; insn = NEXT_INSN (insn))
    {
    {
      if (NOTE_P (insn))
      if (NOTE_P (insn))
        goto insn_done;
        goto insn_done;
 
 
      gcc_assert(NONJUMP_INSN_P (insn) || CALL_P (insn));
      gcc_assert(NONJUMP_INSN_P (insn) || CALL_P (insn));
 
 
      /* Remove USE insns that get in the way.  */
      /* Remove USE insns that get in the way.  */
      if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
      if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
        {
        {
          /* ??? Ug.  Actually unlinking the thing is problematic,
          /* ??? Ug.  Actually unlinking the thing is problematic,
             given what we'd have to coordinate with our callers.  */
             given what we'd have to coordinate with our callers.  */
          SET_INSN_DELETED (insn);
          SET_INSN_DELETED (insn);
          goto insn_done;
          goto insn_done;
        }
        }
 
 
      /* Last insn wasn't last?  */
      /* Last insn wasn't last?  */
      if (must_be_last)
      if (must_be_last)
        return FALSE;
        return FALSE;
 
 
      if (modified_in_p (test, insn))
      if (modified_in_p (test, insn))
        {
        {
          if (!mod_ok)
          if (!mod_ok)
            return FALSE;
            return FALSE;
          must_be_last = TRUE;
          must_be_last = TRUE;
        }
        }
 
 
      /* Now build the conditional form of the instruction.  */
      /* Now build the conditional form of the instruction.  */
      pattern = PATTERN (insn);
      pattern = PATTERN (insn);
      xtest = copy_rtx (test);
      xtest = copy_rtx (test);
 
 
      /* If this is already a COND_EXEC, rewrite the test to be an AND of the
      /* If this is already a COND_EXEC, rewrite the test to be an AND of the
         two conditions.  */
         two conditions.  */
      if (GET_CODE (pattern) == COND_EXEC)
      if (GET_CODE (pattern) == COND_EXEC)
        {
        {
          if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
          if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
            return FALSE;
            return FALSE;
 
 
          xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
          xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
                               COND_EXEC_TEST (pattern));
                               COND_EXEC_TEST (pattern));
          pattern = COND_EXEC_CODE (pattern);
          pattern = COND_EXEC_CODE (pattern);
        }
        }
 
 
      pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
      pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
 
 
      /* If the machine needs to modify the insn being conditionally executed,
      /* If the machine needs to modify the insn being conditionally executed,
         say for example to force a constant integer operand into a temp
         say for example to force a constant integer operand into a temp
         register, do so here.  */
         register, do so here.  */
#ifdef IFCVT_MODIFY_INSN
#ifdef IFCVT_MODIFY_INSN
      IFCVT_MODIFY_INSN (ce_info, pattern, insn);
      IFCVT_MODIFY_INSN (ce_info, pattern, insn);
      if (! pattern)
      if (! pattern)
        return FALSE;
        return FALSE;
#endif
#endif
 
 
      validate_change (insn, &PATTERN (insn), pattern, 1);
      validate_change (insn, &PATTERN (insn), pattern, 1);
 
 
      if (CALL_P (insn) && prob_val)
      if (CALL_P (insn) && prob_val)
        validate_change (insn, &REG_NOTES (insn),
        validate_change (insn, &REG_NOTES (insn),
                         alloc_EXPR_LIST (REG_BR_PROB, prob_val,
                         alloc_EXPR_LIST (REG_BR_PROB, prob_val,
                                          REG_NOTES (insn)), 1);
                                          REG_NOTES (insn)), 1);
 
 
    insn_done:
    insn_done:
      if (insn == end)
      if (insn == end)
        break;
        break;
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Return the condition for a jump.  Do not do any special processing.  */
/* Return the condition for a jump.  Do not do any special processing.  */
 
 
static rtx
static rtx
cond_exec_get_condition (rtx jump)
cond_exec_get_condition (rtx jump)
{
{
  rtx test_if, cond;
  rtx test_if, cond;
 
 
  if (any_condjump_p (jump))
  if (any_condjump_p (jump))
    test_if = SET_SRC (pc_set (jump));
    test_if = SET_SRC (pc_set (jump));
  else
  else
    return NULL_RTX;
    return NULL_RTX;
  cond = XEXP (test_if, 0);
  cond = XEXP (test_if, 0);
 
 
  /* If this branches to JUMP_LABEL when the condition is false,
  /* If this branches to JUMP_LABEL when the condition is false,
     reverse the condition.  */
     reverse the condition.  */
  if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
  if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
      && XEXP (XEXP (test_if, 2), 0) == JUMP_LABEL (jump))
      && XEXP (XEXP (test_if, 2), 0) == JUMP_LABEL (jump))
    {
    {
      enum rtx_code rev = reversed_comparison_code (cond, jump);
      enum rtx_code rev = reversed_comparison_code (cond, jump);
      if (rev == UNKNOWN)
      if (rev == UNKNOWN)
        return NULL_RTX;
        return NULL_RTX;
 
 
      cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
      cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
                             XEXP (cond, 1));
                             XEXP (cond, 1));
    }
    }
 
 
  return cond;
  return cond;
}
}
 
 
/* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
/* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
   to conditional execution.  Return TRUE if we were successful at
   to conditional execution.  Return TRUE if we were successful at
   converting the block.  */
   converting the block.  */
 
 
static int
static int
cond_exec_process_if_block (ce_if_block_t * ce_info,
cond_exec_process_if_block (ce_if_block_t * ce_info,
                            /* if block information */int do_multiple_p)
                            /* if block information */int do_multiple_p)
{
{
  basic_block test_bb = ce_info->test_bb;       /* last test block */
  basic_block test_bb = ce_info->test_bb;       /* last test block */
  basic_block then_bb = ce_info->then_bb;       /* THEN */
  basic_block then_bb = ce_info->then_bb;       /* THEN */
  basic_block else_bb = ce_info->else_bb;       /* ELSE or NULL */
  basic_block else_bb = ce_info->else_bb;       /* ELSE or NULL */
  rtx test_expr;                /* expression in IF_THEN_ELSE that is tested */
  rtx test_expr;                /* expression in IF_THEN_ELSE that is tested */
  rtx then_start;               /* first insn in THEN block */
  rtx then_start;               /* first insn in THEN block */
  rtx then_end;                 /* last insn + 1 in THEN block */
  rtx then_end;                 /* last insn + 1 in THEN block */
  rtx else_start = NULL_RTX;    /* first insn in ELSE block or NULL */
  rtx else_start = NULL_RTX;    /* first insn in ELSE block or NULL */
  rtx else_end = NULL_RTX;      /* last insn + 1 in ELSE block */
  rtx else_end = NULL_RTX;      /* last insn + 1 in ELSE block */
  int max;                      /* max # of insns to convert.  */
  int max;                      /* max # of insns to convert.  */
  int then_mod_ok;              /* whether conditional mods are ok in THEN */
  int then_mod_ok;              /* whether conditional mods are ok in THEN */
  rtx true_expr;                /* test for else block insns */
  rtx true_expr;                /* test for else block insns */
  rtx false_expr;               /* test for then block insns */
  rtx false_expr;               /* test for then block insns */
  rtx true_prob_val;            /* probability of else block */
  rtx true_prob_val;            /* probability of else block */
  rtx false_prob_val;           /* probability of then block */
  rtx false_prob_val;           /* probability of then block */
  int n_insns;
  int n_insns;
  enum rtx_code false_code;
  enum rtx_code false_code;
 
 
  /* If test is comprised of && or || elements, and we've failed at handling
  /* If test is comprised of && or || elements, and we've failed at handling
     all of them together, just use the last test if it is the special case of
     all of them together, just use the last test if it is the special case of
     && elements without an ELSE block.  */
     && elements without an ELSE block.  */
  if (!do_multiple_p && ce_info->num_multiple_test_blocks)
  if (!do_multiple_p && ce_info->num_multiple_test_blocks)
    {
    {
      if (else_bb || ! ce_info->and_and_p)
      if (else_bb || ! ce_info->and_and_p)
        return FALSE;
        return FALSE;
 
 
      ce_info->test_bb = test_bb = ce_info->last_test_bb;
      ce_info->test_bb = test_bb = ce_info->last_test_bb;
      ce_info->num_multiple_test_blocks = 0;
      ce_info->num_multiple_test_blocks = 0;
      ce_info->num_and_and_blocks = 0;
      ce_info->num_and_and_blocks = 0;
      ce_info->num_or_or_blocks = 0;
      ce_info->num_or_or_blocks = 0;
    }
    }
 
 
  /* Find the conditional jump to the ELSE or JOIN part, and isolate
  /* Find the conditional jump to the ELSE or JOIN part, and isolate
     the test.  */
     the test.  */
  test_expr = cond_exec_get_condition (BB_END (test_bb));
  test_expr = cond_exec_get_condition (BB_END (test_bb));
  if (! test_expr)
  if (! test_expr)
    return FALSE;
    return FALSE;
 
 
  /* If the conditional jump is more than just a conditional jump,
  /* If the conditional jump is more than just a conditional jump,
     then we can not do conditional execution conversion on this block.  */
     then we can not do conditional execution conversion on this block.  */
  if (! onlyjump_p (BB_END (test_bb)))
  if (! onlyjump_p (BB_END (test_bb)))
    return FALSE;
    return FALSE;
 
 
  /* Collect the bounds of where we're to search, skipping any labels, jumps
  /* Collect the bounds of where we're to search, skipping any labels, jumps
     and notes at the beginning and end of the block.  Then count the total
     and notes at the beginning and end of the block.  Then count the total
     number of insns and see if it is small enough to convert.  */
     number of insns and see if it is small enough to convert.  */
  then_start = first_active_insn (then_bb);
  then_start = first_active_insn (then_bb);
  then_end = last_active_insn (then_bb, TRUE);
  then_end = last_active_insn (then_bb, TRUE);
  n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
  n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
  max = MAX_CONDITIONAL_EXECUTE;
  max = MAX_CONDITIONAL_EXECUTE;
 
 
  if (else_bb)
  if (else_bb)
    {
    {
      max *= 2;
      max *= 2;
      else_start = first_active_insn (else_bb);
      else_start = first_active_insn (else_bb);
      else_end = last_active_insn (else_bb, TRUE);
      else_end = last_active_insn (else_bb, TRUE);
      n_insns += ce_info->num_else_insns = count_bb_insns (else_bb);
      n_insns += ce_info->num_else_insns = count_bb_insns (else_bb);
    }
    }
 
 
  if (n_insns > max)
  if (n_insns > max)
    return FALSE;
    return FALSE;
 
 
  /* Map test_expr/test_jump into the appropriate MD tests to use on
  /* Map test_expr/test_jump into the appropriate MD tests to use on
     the conditionally executed code.  */
     the conditionally executed code.  */
 
 
  true_expr = test_expr;
  true_expr = test_expr;
 
 
  false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
  false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
  if (false_code != UNKNOWN)
  if (false_code != UNKNOWN)
    false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
    false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
                                 XEXP (true_expr, 0), XEXP (true_expr, 1));
                                 XEXP (true_expr, 0), XEXP (true_expr, 1));
  else
  else
    false_expr = NULL_RTX;
    false_expr = NULL_RTX;
 
 
#ifdef IFCVT_MODIFY_TESTS
#ifdef IFCVT_MODIFY_TESTS
  /* If the machine description needs to modify the tests, such as setting a
  /* If the machine description needs to modify the tests, such as setting a
     conditional execution register from a comparison, it can do so here.  */
     conditional execution register from a comparison, it can do so here.  */
  IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
  IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
 
 
  /* See if the conversion failed.  */
  /* See if the conversion failed.  */
  if (!true_expr || !false_expr)
  if (!true_expr || !false_expr)
    goto fail;
    goto fail;
#endif
#endif
 
 
  true_prob_val = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
  true_prob_val = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
  if (true_prob_val)
  if (true_prob_val)
    {
    {
      true_prob_val = XEXP (true_prob_val, 0);
      true_prob_val = XEXP (true_prob_val, 0);
      false_prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (true_prob_val));
      false_prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (true_prob_val));
    }
    }
  else
  else
    false_prob_val = NULL_RTX;
    false_prob_val = NULL_RTX;
 
 
  /* If we have && or || tests, do them here.  These tests are in the adjacent
  /* If we have && or || tests, do them here.  These tests are in the adjacent
     blocks after the first block containing the test.  */
     blocks after the first block containing the test.  */
  if (ce_info->num_multiple_test_blocks > 0)
  if (ce_info->num_multiple_test_blocks > 0)
    {
    {
      basic_block bb = test_bb;
      basic_block bb = test_bb;
      basic_block last_test_bb = ce_info->last_test_bb;
      basic_block last_test_bb = ce_info->last_test_bb;
 
 
      if (! false_expr)
      if (! false_expr)
        goto fail;
        goto fail;
 
 
      do
      do
        {
        {
          rtx start, end;
          rtx start, end;
          rtx t, f;
          rtx t, f;
          enum rtx_code f_code;
          enum rtx_code f_code;
 
 
          bb = block_fallthru (bb);
          bb = block_fallthru (bb);
          start = first_active_insn (bb);
          start = first_active_insn (bb);
          end = last_active_insn (bb, TRUE);
          end = last_active_insn (bb, TRUE);
          if (start
          if (start
              && ! cond_exec_process_insns (ce_info, start, end, false_expr,
              && ! cond_exec_process_insns (ce_info, start, end, false_expr,
                                            false_prob_val, FALSE))
                                            false_prob_val, FALSE))
            goto fail;
            goto fail;
 
 
          /* If the conditional jump is more than just a conditional jump, then
          /* If the conditional jump is more than just a conditional jump, then
             we can not do conditional execution conversion on this block.  */
             we can not do conditional execution conversion on this block.  */
          if (! onlyjump_p (BB_END (bb)))
          if (! onlyjump_p (BB_END (bb)))
            goto fail;
            goto fail;
 
 
          /* Find the conditional jump and isolate the test.  */
          /* Find the conditional jump and isolate the test.  */
          t = cond_exec_get_condition (BB_END (bb));
          t = cond_exec_get_condition (BB_END (bb));
          if (! t)
          if (! t)
            goto fail;
            goto fail;
 
 
          f_code = reversed_comparison_code (t, BB_END (bb));
          f_code = reversed_comparison_code (t, BB_END (bb));
          if (f_code == UNKNOWN)
          if (f_code == UNKNOWN)
            goto fail;
            goto fail;
 
 
          f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
          f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
          if (ce_info->and_and_p)
          if (ce_info->and_and_p)
            {
            {
              t = gen_rtx_AND (GET_MODE (t), true_expr, t);
              t = gen_rtx_AND (GET_MODE (t), true_expr, t);
              f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
              f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
            }
            }
          else
          else
            {
            {
              t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
              t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
              f = gen_rtx_AND (GET_MODE (t), false_expr, f);
              f = gen_rtx_AND (GET_MODE (t), false_expr, f);
            }
            }
 
 
          /* If the machine description needs to modify the tests, such as
          /* If the machine description needs to modify the tests, such as
             setting a conditional execution register from a comparison, it can
             setting a conditional execution register from a comparison, it can
             do so here.  */
             do so here.  */
#ifdef IFCVT_MODIFY_MULTIPLE_TESTS
#ifdef IFCVT_MODIFY_MULTIPLE_TESTS
          IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
          IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
 
 
          /* See if the conversion failed.  */
          /* See if the conversion failed.  */
          if (!t || !f)
          if (!t || !f)
            goto fail;
            goto fail;
#endif
#endif
 
 
          true_expr = t;
          true_expr = t;
          false_expr = f;
          false_expr = f;
        }
        }
      while (bb != last_test_bb);
      while (bb != last_test_bb);
    }
    }
 
 
  /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
  /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
     on then THEN block.  */
     on then THEN block.  */
  then_mod_ok = (else_bb == NULL_BLOCK);
  then_mod_ok = (else_bb == NULL_BLOCK);
 
 
  /* Go through the THEN and ELSE blocks converting the insns if possible
  /* Go through the THEN and ELSE blocks converting the insns if possible
     to conditional execution.  */
     to conditional execution.  */
 
 
  if (then_end
  if (then_end
      && (! false_expr
      && (! false_expr
          || ! cond_exec_process_insns (ce_info, then_start, then_end,
          || ! cond_exec_process_insns (ce_info, then_start, then_end,
                                        false_expr, false_prob_val,
                                        false_expr, false_prob_val,
                                        then_mod_ok)))
                                        then_mod_ok)))
    goto fail;
    goto fail;
 
 
  if (else_bb && else_end
  if (else_bb && else_end
      && ! cond_exec_process_insns (ce_info, else_start, else_end,
      && ! cond_exec_process_insns (ce_info, else_start, else_end,
                                    true_expr, true_prob_val, TRUE))
                                    true_expr, true_prob_val, TRUE))
    goto fail;
    goto fail;
 
 
  /* If we cannot apply the changes, fail.  Do not go through the normal fail
  /* If we cannot apply the changes, fail.  Do not go through the normal fail
     processing, since apply_change_group will call cancel_changes.  */
     processing, since apply_change_group will call cancel_changes.  */
  if (! apply_change_group ())
  if (! apply_change_group ())
    {
    {
#ifdef IFCVT_MODIFY_CANCEL
#ifdef IFCVT_MODIFY_CANCEL
      /* Cancel any machine dependent changes.  */
      /* Cancel any machine dependent changes.  */
      IFCVT_MODIFY_CANCEL (ce_info);
      IFCVT_MODIFY_CANCEL (ce_info);
#endif
#endif
      return FALSE;
      return FALSE;
    }
    }
 
 
#ifdef IFCVT_MODIFY_FINAL
#ifdef IFCVT_MODIFY_FINAL
  /* Do any machine dependent final modifications.  */
  /* Do any machine dependent final modifications.  */
  IFCVT_MODIFY_FINAL (ce_info);
  IFCVT_MODIFY_FINAL (ce_info);
#endif
#endif
 
 
  /* Conversion succeeded.  */
  /* Conversion succeeded.  */
  if (dump_file)
  if (dump_file)
    fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
    fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
             n_insns, (n_insns == 1) ? " was" : "s were");
             n_insns, (n_insns == 1) ? " was" : "s were");
 
 
  /* Merge the blocks!  */
  /* Merge the blocks!  */
  merge_if_block (ce_info);
  merge_if_block (ce_info);
  cond_exec_changed_p = TRUE;
  cond_exec_changed_p = TRUE;
  return TRUE;
  return TRUE;
 
 
 fail:
 fail:
#ifdef IFCVT_MODIFY_CANCEL
#ifdef IFCVT_MODIFY_CANCEL
  /* Cancel any machine dependent changes.  */
  /* Cancel any machine dependent changes.  */
  IFCVT_MODIFY_CANCEL (ce_info);
  IFCVT_MODIFY_CANCEL (ce_info);
#endif
#endif
 
 
  cancel_changes (0);
  cancel_changes (0);
  return FALSE;
  return FALSE;
}
}


/* Used by noce_process_if_block to communicate with its subroutines.
/* Used by noce_process_if_block to communicate with its subroutines.
 
 
   The subroutines know that A and B may be evaluated freely.  They
   The subroutines know that A and B may be evaluated freely.  They
   know that X is a register.  They should insert new instructions
   know that X is a register.  They should insert new instructions
   before cond_earliest.  */
   before cond_earliest.  */
 
 
struct noce_if_info
struct noce_if_info
{
{
  basic_block test_bb;
  basic_block test_bb;
  rtx insn_a, insn_b;
  rtx insn_a, insn_b;
  rtx x, a, b;
  rtx x, a, b;
  rtx jump, cond, cond_earliest;
  rtx jump, cond, cond_earliest;
  /* True if "b" was originally evaluated unconditionally.  */
  /* True if "b" was originally evaluated unconditionally.  */
  bool b_unconditional;
  bool b_unconditional;
};
};
 
 
static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
static int noce_try_move (struct noce_if_info *);
static int noce_try_move (struct noce_if_info *);
static int noce_try_store_flag (struct noce_if_info *);
static int noce_try_store_flag (struct noce_if_info *);
static int noce_try_addcc (struct noce_if_info *);
static int noce_try_addcc (struct noce_if_info *);
static int noce_try_store_flag_constants (struct noce_if_info *);
static int noce_try_store_flag_constants (struct noce_if_info *);
static int noce_try_store_flag_mask (struct noce_if_info *);
static int noce_try_store_flag_mask (struct noce_if_info *);
static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
                            rtx, rtx, rtx);
                            rtx, rtx, rtx);
static int noce_try_cmove (struct noce_if_info *);
static int noce_try_cmove (struct noce_if_info *);
static int noce_try_cmove_arith (struct noce_if_info *);
static int noce_try_cmove_arith (struct noce_if_info *);
static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx *);
static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx *);
static int noce_try_minmax (struct noce_if_info *);
static int noce_try_minmax (struct noce_if_info *);
static int noce_try_abs (struct noce_if_info *);
static int noce_try_abs (struct noce_if_info *);
static int noce_try_sign_mask (struct noce_if_info *);
static int noce_try_sign_mask (struct noce_if_info *);
 
 
/* Helper function for noce_try_store_flag*.  */
/* Helper function for noce_try_store_flag*.  */
 
 
static rtx
static rtx
noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
                      int normalize)
                      int normalize)
{
{
  rtx cond = if_info->cond;
  rtx cond = if_info->cond;
  int cond_complex;
  int cond_complex;
  enum rtx_code code;
  enum rtx_code code;
 
 
  cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
  cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
                  || ! general_operand (XEXP (cond, 1), VOIDmode));
                  || ! general_operand (XEXP (cond, 1), VOIDmode));
 
 
  /* If earliest == jump, or when the condition is complex, try to
  /* If earliest == jump, or when the condition is complex, try to
     build the store_flag insn directly.  */
     build the store_flag insn directly.  */
 
 
  if (cond_complex)
  if (cond_complex)
    cond = XEXP (SET_SRC (pc_set (if_info->jump)), 0);
    cond = XEXP (SET_SRC (pc_set (if_info->jump)), 0);
 
 
  if (reversep)
  if (reversep)
    code = reversed_comparison_code (cond, if_info->jump);
    code = reversed_comparison_code (cond, if_info->jump);
  else
  else
    code = GET_CODE (cond);
    code = GET_CODE (cond);
 
 
  if ((if_info->cond_earliest == if_info->jump || cond_complex)
  if ((if_info->cond_earliest == if_info->jump || cond_complex)
      && (normalize == 0 || STORE_FLAG_VALUE == normalize))
      && (normalize == 0 || STORE_FLAG_VALUE == normalize))
    {
    {
      rtx tmp;
      rtx tmp;
 
 
      tmp = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
      tmp = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
                            XEXP (cond, 1));
                            XEXP (cond, 1));
      tmp = gen_rtx_SET (VOIDmode, x, tmp);
      tmp = gen_rtx_SET (VOIDmode, x, tmp);
 
 
      start_sequence ();
      start_sequence ();
      tmp = emit_insn (tmp);
      tmp = emit_insn (tmp);
 
 
      if (recog_memoized (tmp) >= 0)
      if (recog_memoized (tmp) >= 0)
        {
        {
          tmp = get_insns ();
          tmp = get_insns ();
          end_sequence ();
          end_sequence ();
          emit_insn (tmp);
          emit_insn (tmp);
 
 
          if_info->cond_earliest = if_info->jump;
          if_info->cond_earliest = if_info->jump;
 
 
          return x;
          return x;
        }
        }
 
 
      end_sequence ();
      end_sequence ();
    }
    }
 
 
  /* Don't even try if the comparison operands or the mode of X are weird.  */
  /* Don't even try if the comparison operands or the mode of X are weird.  */
  if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
  if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
    return NULL_RTX;
    return NULL_RTX;
 
 
  return emit_store_flag (x, code, XEXP (cond, 0),
  return emit_store_flag (x, code, XEXP (cond, 0),
                          XEXP (cond, 1), VOIDmode,
                          XEXP (cond, 1), VOIDmode,
                          (code == LTU || code == LEU
                          (code == LTU || code == LEU
                           || code == GEU || code == GTU), normalize);
                           || code == GEU || code == GTU), normalize);
}
}
 
 
/* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
/* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
   X is the destination/target and Y is the value to copy.  */
   X is the destination/target and Y is the value to copy.  */
 
 
static void
static void
noce_emit_move_insn (rtx x, rtx y)
noce_emit_move_insn (rtx x, rtx y)
{
{
  enum machine_mode outmode;
  enum machine_mode outmode;
  rtx outer, inner;
  rtx outer, inner;
  int bitpos;
  int bitpos;
 
 
  if (GET_CODE (x) != STRICT_LOW_PART)
  if (GET_CODE (x) != STRICT_LOW_PART)
    {
    {
      rtx seq, insn, target;
      rtx seq, insn, target;
      optab ot;
      optab ot;
 
 
      start_sequence ();
      start_sequence ();
      /* Check that the SET_SRC is reasonable before calling emit_move_insn,
      /* Check that the SET_SRC is reasonable before calling emit_move_insn,
         otherwise construct a suitable SET pattern ourselves.  */
         otherwise construct a suitable SET pattern ourselves.  */
      insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
      insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
             ? emit_move_insn (x, y)
             ? emit_move_insn (x, y)
             : emit_insn (gen_rtx_SET (VOIDmode, x, y));
             : emit_insn (gen_rtx_SET (VOIDmode, x, y));
      seq = get_insns ();
      seq = get_insns ();
      end_sequence();
      end_sequence();
 
 
      if (recog_memoized (insn) <= 0)
      if (recog_memoized (insn) <= 0)
        {
        {
          if (GET_CODE (x) == ZERO_EXTRACT)
          if (GET_CODE (x) == ZERO_EXTRACT)
            {
            {
              rtx op = XEXP (x, 0);
              rtx op = XEXP (x, 0);
              unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
              unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
              unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
              unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
 
 
              /* store_bit_field expects START to be relative to
              /* store_bit_field expects START to be relative to
                 BYTES_BIG_ENDIAN and adjusts this value for machines with
                 BYTES_BIG_ENDIAN and adjusts this value for machines with
                 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN.  In order to be able to
                 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN.  In order to be able to
                 invoke store_bit_field again it is necessary to have the START
                 invoke store_bit_field again it is necessary to have the START
                 value from the first call.  */
                 value from the first call.  */
              if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
              if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
                {
                {
                  if (MEM_P (op))
                  if (MEM_P (op))
                    start = BITS_PER_UNIT - start - size;
                    start = BITS_PER_UNIT - start - size;
                  else
                  else
                    {
                    {
                      gcc_assert (REG_P (op));
                      gcc_assert (REG_P (op));
                      start = BITS_PER_WORD - start - size;
                      start = BITS_PER_WORD - start - size;
                    }
                    }
                }
                }
 
 
              gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
              gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
              store_bit_field (op, size, start, GET_MODE (x), y);
              store_bit_field (op, size, start, GET_MODE (x), y);
              return;
              return;
            }
            }
 
 
          switch (GET_RTX_CLASS (GET_CODE (y)))
          switch (GET_RTX_CLASS (GET_CODE (y)))
            {
            {
            case RTX_UNARY:
            case RTX_UNARY:
              ot = code_to_optab[GET_CODE (y)];
              ot = code_to_optab[GET_CODE (y)];
              if (ot)
              if (ot)
                {
                {
                  start_sequence ();
                  start_sequence ();
                  target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
                  target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
                  if (target != NULL_RTX)
                  if (target != NULL_RTX)
                    {
                    {
                      if (target != x)
                      if (target != x)
                        emit_move_insn (x, target);
                        emit_move_insn (x, target);
                      seq = get_insns ();
                      seq = get_insns ();
                    }
                    }
                  end_sequence ();
                  end_sequence ();
                }
                }
              break;
              break;
 
 
            case RTX_BIN_ARITH:
            case RTX_BIN_ARITH:
            case RTX_COMM_ARITH:
            case RTX_COMM_ARITH:
              ot = code_to_optab[GET_CODE (y)];
              ot = code_to_optab[GET_CODE (y)];
              if (ot)
              if (ot)
                {
                {
                  start_sequence ();
                  start_sequence ();
                  target = expand_binop (GET_MODE (y), ot,
                  target = expand_binop (GET_MODE (y), ot,
                                         XEXP (y, 0), XEXP (y, 1),
                                         XEXP (y, 0), XEXP (y, 1),
                                         x, 0, OPTAB_DIRECT);
                                         x, 0, OPTAB_DIRECT);
                  if (target != NULL_RTX)
                  if (target != NULL_RTX)
                    {
                    {
                      if (target != x)
                      if (target != x)
                          emit_move_insn (x, target);
                          emit_move_insn (x, target);
                      seq = get_insns ();
                      seq = get_insns ();
                    }
                    }
                  end_sequence ();
                  end_sequence ();
                }
                }
              break;
              break;
 
 
            default:
            default:
              break;
              break;
            }
            }
        }
        }
 
 
      emit_insn (seq);
      emit_insn (seq);
      return;
      return;
    }
    }
 
 
  outer = XEXP (x, 0);
  outer = XEXP (x, 0);
  inner = XEXP (outer, 0);
  inner = XEXP (outer, 0);
  outmode = GET_MODE (outer);
  outmode = GET_MODE (outer);
  bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
  bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
  store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos, outmode, y);
  store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos, outmode, y);
}
}
 
 
/* Return sequence of instructions generated by if conversion.  This
/* Return sequence of instructions generated by if conversion.  This
   function calls end_sequence() to end the current stream, ensures
   function calls end_sequence() to end the current stream, ensures
   that are instructions are unshared, recognizable non-jump insns.
   that are instructions are unshared, recognizable non-jump insns.
   On failure, this function returns a NULL_RTX.  */
   On failure, this function returns a NULL_RTX.  */
 
 
static rtx
static rtx
end_ifcvt_sequence (struct noce_if_info *if_info)
end_ifcvt_sequence (struct noce_if_info *if_info)
{
{
  rtx insn;
  rtx insn;
  rtx seq = get_insns ();
  rtx seq = get_insns ();
 
 
  set_used_flags (if_info->x);
  set_used_flags (if_info->x);
  set_used_flags (if_info->cond);
  set_used_flags (if_info->cond);
  unshare_all_rtl_in_chain (seq);
  unshare_all_rtl_in_chain (seq);
  end_sequence ();
  end_sequence ();
 
 
  /* Make sure that all of the instructions emitted are recognizable,
  /* Make sure that all of the instructions emitted are recognizable,
     and that we haven't introduced a new jump instruction.
     and that we haven't introduced a new jump instruction.
     As an exercise for the reader, build a general mechanism that
     As an exercise for the reader, build a general mechanism that
     allows proper placement of required clobbers.  */
     allows proper placement of required clobbers.  */
  for (insn = seq; insn; insn = NEXT_INSN (insn))
  for (insn = seq; insn; insn = NEXT_INSN (insn))
    if (JUMP_P (insn)
    if (JUMP_P (insn)
        || recog_memoized (insn) == -1)
        || recog_memoized (insn) == -1)
      return NULL_RTX;
      return NULL_RTX;
 
 
  return seq;
  return seq;
}
}
 
 
/* Convert "if (a != b) x = a; else x = b" into "x = a" and
/* Convert "if (a != b) x = a; else x = b" into "x = a" and
   "if (a == b) x = a; else x = b" into "x = b".  */
   "if (a == b) x = a; else x = b" into "x = b".  */
 
 
static int
static int
noce_try_move (struct noce_if_info *if_info)
noce_try_move (struct noce_if_info *if_info)
{
{
  rtx cond = if_info->cond;
  rtx cond = if_info->cond;
  enum rtx_code code = GET_CODE (cond);
  enum rtx_code code = GET_CODE (cond);
  rtx y, seq;
  rtx y, seq;
 
 
  if (code != NE && code != EQ)
  if (code != NE && code != EQ)
    return FALSE;
    return FALSE;
 
 
  /* This optimization isn't valid if either A or B could be a NaN
  /* This optimization isn't valid if either A or B could be a NaN
     or a signed zero.  */
     or a signed zero.  */
  if (HONOR_NANS (GET_MODE (if_info->x))
  if (HONOR_NANS (GET_MODE (if_info->x))
      || HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
      || HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
    return FALSE;
    return FALSE;
 
 
  /* Check whether the operands of the comparison are A and in
  /* Check whether the operands of the comparison are A and in
     either order.  */
     either order.  */
  if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
  if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
       && rtx_equal_p (if_info->b, XEXP (cond, 1)))
       && rtx_equal_p (if_info->b, XEXP (cond, 1)))
      || (rtx_equal_p (if_info->a, XEXP (cond, 1))
      || (rtx_equal_p (if_info->a, XEXP (cond, 1))
          && rtx_equal_p (if_info->b, XEXP (cond, 0))))
          && rtx_equal_p (if_info->b, XEXP (cond, 0))))
    {
    {
      y = (code == EQ) ? if_info->a : if_info->b;
      y = (code == EQ) ? if_info->a : if_info->b;
 
 
      /* Avoid generating the move if the source is the destination.  */
      /* Avoid generating the move if the source is the destination.  */
      if (! rtx_equal_p (if_info->x, y))
      if (! rtx_equal_p (if_info->x, y))
        {
        {
          start_sequence ();
          start_sequence ();
          noce_emit_move_insn (if_info->x, y);
          noce_emit_move_insn (if_info->x, y);
          seq = end_ifcvt_sequence (if_info);
          seq = end_ifcvt_sequence (if_info);
          if (!seq)
          if (!seq)
            return FALSE;
            return FALSE;
 
 
          emit_insn_before_setloc (seq, if_info->jump,
          emit_insn_before_setloc (seq, if_info->jump,
                                   INSN_LOCATOR (if_info->insn_a));
                                   INSN_LOCATOR (if_info->insn_a));
        }
        }
      return TRUE;
      return TRUE;
    }
    }
  return FALSE;
  return FALSE;
}
}
 
 
/* Convert "if (test) x = 1; else x = 0".
/* Convert "if (test) x = 1; else x = 0".
 
 
   Only try 0 and STORE_FLAG_VALUE here.  Other combinations will be
   Only try 0 and STORE_FLAG_VALUE here.  Other combinations will be
   tried in noce_try_store_flag_constants after noce_try_cmove has had
   tried in noce_try_store_flag_constants after noce_try_cmove has had
   a go at the conversion.  */
   a go at the conversion.  */
 
 
static int
static int
noce_try_store_flag (struct noce_if_info *if_info)
noce_try_store_flag (struct noce_if_info *if_info)
{
{
  int reversep;
  int reversep;
  rtx target, seq;
  rtx target, seq;
 
 
  if (GET_CODE (if_info->b) == CONST_INT
  if (GET_CODE (if_info->b) == CONST_INT
      && INTVAL (if_info->b) == STORE_FLAG_VALUE
      && INTVAL (if_info->b) == STORE_FLAG_VALUE
      && if_info->a == const0_rtx)
      && if_info->a == const0_rtx)
    reversep = 0;
    reversep = 0;
  else if (if_info->b == const0_rtx
  else if (if_info->b == const0_rtx
           && GET_CODE (if_info->a) == CONST_INT
           && GET_CODE (if_info->a) == CONST_INT
           && INTVAL (if_info->a) == STORE_FLAG_VALUE
           && INTVAL (if_info->a) == STORE_FLAG_VALUE
           && (reversed_comparison_code (if_info->cond, if_info->jump)
           && (reversed_comparison_code (if_info->cond, if_info->jump)
               != UNKNOWN))
               != UNKNOWN))
    reversep = 1;
    reversep = 1;
  else
  else
    return FALSE;
    return FALSE;
 
 
  start_sequence ();
  start_sequence ();
 
 
  target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
  target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
  if (target)
  if (target)
    {
    {
      if (target != if_info->x)
      if (target != if_info->x)
        noce_emit_move_insn (if_info->x, target);
        noce_emit_move_insn (if_info->x, target);
 
 
      seq = end_ifcvt_sequence (if_info);
      seq = end_ifcvt_sequence (if_info);
      if (! seq)
      if (! seq)
        return FALSE;
        return FALSE;
 
 
      emit_insn_before_setloc (seq, if_info->jump,
      emit_insn_before_setloc (seq, if_info->jump,
                               INSN_LOCATOR (if_info->insn_a));
                               INSN_LOCATOR (if_info->insn_a));
      return TRUE;
      return TRUE;
    }
    }
  else
  else
    {
    {
      end_sequence ();
      end_sequence ();
      return FALSE;
      return FALSE;
    }
    }
}
}
 
 
/* Convert "if (test) x = a; else x = b", for A and B constant.  */
/* Convert "if (test) x = a; else x = b", for A and B constant.  */
 
 
static int
static int
noce_try_store_flag_constants (struct noce_if_info *if_info)
noce_try_store_flag_constants (struct noce_if_info *if_info)
{
{
  rtx target, seq;
  rtx target, seq;
  int reversep;
  int reversep;
  HOST_WIDE_INT itrue, ifalse, diff, tmp;
  HOST_WIDE_INT itrue, ifalse, diff, tmp;
  int normalize, can_reverse;
  int normalize, can_reverse;
  enum machine_mode mode;
  enum machine_mode mode;
 
 
  if (! no_new_pseudos
  if (! no_new_pseudos
      && GET_CODE (if_info->a) == CONST_INT
      && GET_CODE (if_info->a) == CONST_INT
      && GET_CODE (if_info->b) == CONST_INT)
      && GET_CODE (if_info->b) == CONST_INT)
    {
    {
      mode = GET_MODE (if_info->x);
      mode = GET_MODE (if_info->x);
      ifalse = INTVAL (if_info->a);
      ifalse = INTVAL (if_info->a);
      itrue = INTVAL (if_info->b);
      itrue = INTVAL (if_info->b);
 
 
      /* Make sure we can represent the difference between the two values.  */
      /* Make sure we can represent the difference between the two values.  */
      if ((itrue - ifalse > 0)
      if ((itrue - ifalse > 0)
          != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
          != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
        return FALSE;
        return FALSE;
 
 
      diff = trunc_int_for_mode (itrue - ifalse, mode);
      diff = trunc_int_for_mode (itrue - ifalse, mode);
 
 
      can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
      can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
                     != UNKNOWN);
                     != UNKNOWN);
 
 
      reversep = 0;
      reversep = 0;
      if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
      if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
        normalize = 0;
        normalize = 0;
      else if (ifalse == 0 && exact_log2 (itrue) >= 0
      else if (ifalse == 0 && exact_log2 (itrue) >= 0
               && (STORE_FLAG_VALUE == 1
               && (STORE_FLAG_VALUE == 1
                   || BRANCH_COST >= 2))
                   || BRANCH_COST >= 2))
        normalize = 1;
        normalize = 1;
      else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
      else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
               && (STORE_FLAG_VALUE == 1 || BRANCH_COST >= 2))
               && (STORE_FLAG_VALUE == 1 || BRANCH_COST >= 2))
        normalize = 1, reversep = 1;
        normalize = 1, reversep = 1;
      else if (itrue == -1
      else if (itrue == -1
               && (STORE_FLAG_VALUE == -1
               && (STORE_FLAG_VALUE == -1
                   || BRANCH_COST >= 2))
                   || BRANCH_COST >= 2))
        normalize = -1;
        normalize = -1;
      else if (ifalse == -1 && can_reverse
      else if (ifalse == -1 && can_reverse
               && (STORE_FLAG_VALUE == -1 || BRANCH_COST >= 2))
               && (STORE_FLAG_VALUE == -1 || BRANCH_COST >= 2))
        normalize = -1, reversep = 1;
        normalize = -1, reversep = 1;
      else if ((BRANCH_COST >= 2 && STORE_FLAG_VALUE == -1)
      else if ((BRANCH_COST >= 2 && STORE_FLAG_VALUE == -1)
               || BRANCH_COST >= 3)
               || BRANCH_COST >= 3)
        normalize = -1;
        normalize = -1;
      else
      else
        return FALSE;
        return FALSE;
 
 
      if (reversep)
      if (reversep)
        {
        {
          tmp = itrue; itrue = ifalse; ifalse = tmp;
          tmp = itrue; itrue = ifalse; ifalse = tmp;
          diff = trunc_int_for_mode (-diff, mode);
          diff = trunc_int_for_mode (-diff, mode);
        }
        }
 
 
      start_sequence ();
      start_sequence ();
      target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
      target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
      if (! target)
      if (! target)
        {
        {
          end_sequence ();
          end_sequence ();
          return FALSE;
          return FALSE;
        }
        }
 
 
      /* if (test) x = 3; else x = 4;
      /* if (test) x = 3; else x = 4;
         =>   x = 3 + (test == 0);  */
         =>   x = 3 + (test == 0);  */
      if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
      if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
        {
        {
          target = expand_simple_binop (mode,
          target = expand_simple_binop (mode,
                                        (diff == STORE_FLAG_VALUE
                                        (diff == STORE_FLAG_VALUE
                                         ? PLUS : MINUS),
                                         ? PLUS : MINUS),
                                        GEN_INT (ifalse), target, if_info->x, 0,
                                        GEN_INT (ifalse), target, if_info->x, 0,
                                        OPTAB_WIDEN);
                                        OPTAB_WIDEN);
        }
        }
 
 
      /* if (test) x = 8; else x = 0;
      /* if (test) x = 8; else x = 0;
         =>   x = (test != 0) << 3;  */
         =>   x = (test != 0) << 3;  */
      else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
      else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
        {
        {
          target = expand_simple_binop (mode, ASHIFT,
          target = expand_simple_binop (mode, ASHIFT,
                                        target, GEN_INT (tmp), if_info->x, 0,
                                        target, GEN_INT (tmp), if_info->x, 0,
                                        OPTAB_WIDEN);
                                        OPTAB_WIDEN);
        }
        }
 
 
      /* if (test) x = -1; else x = b;
      /* if (test) x = -1; else x = b;
         =>   x = -(test != 0) | b;  */
         =>   x = -(test != 0) | b;  */
      else if (itrue == -1)
      else if (itrue == -1)
        {
        {
          target = expand_simple_binop (mode, IOR,
          target = expand_simple_binop (mode, IOR,
                                        target, GEN_INT (ifalse), if_info->x, 0,
                                        target, GEN_INT (ifalse), if_info->x, 0,
                                        OPTAB_WIDEN);
                                        OPTAB_WIDEN);
        }
        }
 
 
      /* if (test) x = a; else x = b;
      /* if (test) x = a; else x = b;
         =>   x = (-(test != 0) & (b - a)) + a;  */
         =>   x = (-(test != 0) & (b - a)) + a;  */
      else
      else
        {
        {
          target = expand_simple_binop (mode, AND,
          target = expand_simple_binop (mode, AND,
                                        target, GEN_INT (diff), if_info->x, 0,
                                        target, GEN_INT (diff), if_info->x, 0,
                                        OPTAB_WIDEN);
                                        OPTAB_WIDEN);
          if (target)
          if (target)
            target = expand_simple_binop (mode, PLUS,
            target = expand_simple_binop (mode, PLUS,
                                          target, GEN_INT (ifalse),
                                          target, GEN_INT (ifalse),
                                          if_info->x, 0, OPTAB_WIDEN);
                                          if_info->x, 0, OPTAB_WIDEN);
        }
        }
 
 
      if (! target)
      if (! target)
        {
        {
          end_sequence ();
          end_sequence ();
          return FALSE;
          return FALSE;
        }
        }
 
 
      if (target != if_info->x)
      if (target != if_info->x)
        noce_emit_move_insn (if_info->x, target);
        noce_emit_move_insn (if_info->x, target);
 
 
      seq = end_ifcvt_sequence (if_info);
      seq = end_ifcvt_sequence (if_info);
      if (!seq)
      if (!seq)
        return FALSE;
        return FALSE;
 
 
      emit_insn_before_setloc (seq, if_info->jump,
      emit_insn_before_setloc (seq, if_info->jump,
                               INSN_LOCATOR (if_info->insn_a));
                               INSN_LOCATOR (if_info->insn_a));
      return TRUE;
      return TRUE;
    }
    }
 
 
  return FALSE;
  return FALSE;
}
}
 
 
/* Convert "if (test) foo++" into "foo += (test != 0)", and
/* Convert "if (test) foo++" into "foo += (test != 0)", and
   similarly for "foo--".  */
   similarly for "foo--".  */
 
 
static int
static int
noce_try_addcc (struct noce_if_info *if_info)
noce_try_addcc (struct noce_if_info *if_info)
{
{
  rtx target, seq;
  rtx target, seq;
  int subtract, normalize;
  int subtract, normalize;
 
 
  if (! no_new_pseudos
  if (! no_new_pseudos
      && GET_CODE (if_info->a) == PLUS
      && GET_CODE (if_info->a) == PLUS
      && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
      && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
      && (reversed_comparison_code (if_info->cond, if_info->jump)
      && (reversed_comparison_code (if_info->cond, if_info->jump)
          != UNKNOWN))
          != UNKNOWN))
    {
    {
      rtx cond = if_info->cond;
      rtx cond = if_info->cond;
      enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
      enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
 
 
      /* First try to use addcc pattern.  */
      /* First try to use addcc pattern.  */
      if (general_operand (XEXP (cond, 0), VOIDmode)
      if (general_operand (XEXP (cond, 0), VOIDmode)
          && general_operand (XEXP (cond, 1), VOIDmode))
          && general_operand (XEXP (cond, 1), VOIDmode))
        {
        {
          start_sequence ();
          start_sequence ();
          target = emit_conditional_add (if_info->x, code,
          target = emit_conditional_add (if_info->x, code,
                                         XEXP (cond, 0),
                                         XEXP (cond, 0),
                                         XEXP (cond, 1),
                                         XEXP (cond, 1),
                                         VOIDmode,
                                         VOIDmode,
                                         if_info->b,
                                         if_info->b,
                                         XEXP (if_info->a, 1),
                                         XEXP (if_info->a, 1),
                                         GET_MODE (if_info->x),
                                         GET_MODE (if_info->x),
                                         (code == LTU || code == GEU
                                         (code == LTU || code == GEU
                                          || code == LEU || code == GTU));
                                          || code == LEU || code == GTU));
          if (target)
          if (target)
            {
            {
              if (target != if_info->x)
              if (target != if_info->x)
                noce_emit_move_insn (if_info->x, target);
                noce_emit_move_insn (if_info->x, target);
 
 
              seq = end_ifcvt_sequence (if_info);
              seq = end_ifcvt_sequence (if_info);
              if (!seq)
              if (!seq)
                return FALSE;
                return FALSE;
 
 
              emit_insn_before_setloc (seq, if_info->jump,
              emit_insn_before_setloc (seq, if_info->jump,
                                       INSN_LOCATOR (if_info->insn_a));
                                       INSN_LOCATOR (if_info->insn_a));
              return TRUE;
              return TRUE;
            }
            }
          end_sequence ();
          end_sequence ();
        }
        }
 
 
      /* If that fails, construct conditional increment or decrement using
      /* If that fails, construct conditional increment or decrement using
         setcc.  */
         setcc.  */
      if (BRANCH_COST >= 2
      if (BRANCH_COST >= 2
          && (XEXP (if_info->a, 1) == const1_rtx
          && (XEXP (if_info->a, 1) == const1_rtx
              || XEXP (if_info->a, 1) == constm1_rtx))
              || XEXP (if_info->a, 1) == constm1_rtx))
        {
        {
          start_sequence ();
          start_sequence ();
          if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
          if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
            subtract = 0, normalize = 0;
            subtract = 0, normalize = 0;
          else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
          else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
            subtract = 1, normalize = 0;
            subtract = 1, normalize = 0;
          else
          else
            subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
            subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
 
 
 
 
          target = noce_emit_store_flag (if_info,
          target = noce_emit_store_flag (if_info,
                                         gen_reg_rtx (GET_MODE (if_info->x)),
                                         gen_reg_rtx (GET_MODE (if_info->x)),
                                         1, normalize);
                                         1, normalize);
 
 
          if (target)
          if (target)
            target = expand_simple_binop (GET_MODE (if_info->x),
            target = expand_simple_binop (GET_MODE (if_info->x),
                                          subtract ? MINUS : PLUS,
                                          subtract ? MINUS : PLUS,
                                          if_info->b, target, if_info->x,
                                          if_info->b, target, if_info->x,
                                          0, OPTAB_WIDEN);
                                          0, OPTAB_WIDEN);
          if (target)
          if (target)
            {
            {
              if (target != if_info->x)
              if (target != if_info->x)
                noce_emit_move_insn (if_info->x, target);
                noce_emit_move_insn (if_info->x, target);
 
 
              seq = end_ifcvt_sequence (if_info);
              seq = end_ifcvt_sequence (if_info);
              if (!seq)
              if (!seq)
                return FALSE;
                return FALSE;
 
 
              emit_insn_before_setloc (seq, if_info->jump,
              emit_insn_before_setloc (seq, if_info->jump,
                                       INSN_LOCATOR (if_info->insn_a));
                                       INSN_LOCATOR (if_info->insn_a));
              return TRUE;
              return TRUE;
            }
            }
          end_sequence ();
          end_sequence ();
        }
        }
    }
    }
 
 
  return FALSE;
  return FALSE;
}
}
 
 
/* Convert "if (test) x = 0;" to "x &= -(test == 0);"  */
/* Convert "if (test) x = 0;" to "x &= -(test == 0);"  */
 
 
static int
static int
noce_try_store_flag_mask (struct noce_if_info *if_info)
noce_try_store_flag_mask (struct noce_if_info *if_info)
{
{
  rtx target, seq;
  rtx target, seq;
  int reversep;
  int reversep;
 
 
  reversep = 0;
  reversep = 0;
  if (! no_new_pseudos
  if (! no_new_pseudos
      && (BRANCH_COST >= 2
      && (BRANCH_COST >= 2
          || STORE_FLAG_VALUE == -1)
          || STORE_FLAG_VALUE == -1)
      && ((if_info->a == const0_rtx
      && ((if_info->a == const0_rtx
           && rtx_equal_p (if_info->b, if_info->x))
           && rtx_equal_p (if_info->b, if_info->x))
          || ((reversep = (reversed_comparison_code (if_info->cond,
          || ((reversep = (reversed_comparison_code (if_info->cond,
                                                     if_info->jump)
                                                     if_info->jump)
                           != UNKNOWN))
                           != UNKNOWN))
              && if_info->b == const0_rtx
              && if_info->b == const0_rtx
              && rtx_equal_p (if_info->a, if_info->x))))
              && rtx_equal_p (if_info->a, if_info->x))))
    {
    {
      start_sequence ();
      start_sequence ();
      target = noce_emit_store_flag (if_info,
      target = noce_emit_store_flag (if_info,
                                     gen_reg_rtx (GET_MODE (if_info->x)),
                                     gen_reg_rtx (GET_MODE (if_info->x)),
                                     reversep, -1);
                                     reversep, -1);
      if (target)
      if (target)
        target = expand_simple_binop (GET_MODE (if_info->x), AND,
        target = expand_simple_binop (GET_MODE (if_info->x), AND,
                                      if_info->x,
                                      if_info->x,
                                      target, if_info->x, 0,
                                      target, if_info->x, 0,
                                      OPTAB_WIDEN);
                                      OPTAB_WIDEN);
 
 
      if (target)
      if (target)
        {
        {
          if (target != if_info->x)
          if (target != if_info->x)
            noce_emit_move_insn (if_info->x, target);
            noce_emit_move_insn (if_info->x, target);
 
 
          seq = end_ifcvt_sequence (if_info);
          seq = end_ifcvt_sequence (if_info);
          if (!seq)
          if (!seq)
            return FALSE;
            return FALSE;
 
 
          emit_insn_before_setloc (seq, if_info->jump,
          emit_insn_before_setloc (seq, if_info->jump,
                                   INSN_LOCATOR (if_info->insn_a));
                                   INSN_LOCATOR (if_info->insn_a));
          return TRUE;
          return TRUE;
        }
        }
 
 
      end_sequence ();
      end_sequence ();
    }
    }
 
 
  return FALSE;
  return FALSE;
}
}
 
 
/* Helper function for noce_try_cmove and noce_try_cmove_arith.  */
/* Helper function for noce_try_cmove and noce_try_cmove_arith.  */
 
 
static rtx
static rtx
noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
                 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
                 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
{
{
  /* If earliest == jump, try to build the cmove insn directly.
  /* If earliest == jump, try to build the cmove insn directly.
     This is helpful when combine has created some complex condition
     This is helpful when combine has created some complex condition
     (like for alpha's cmovlbs) that we can't hope to regenerate
     (like for alpha's cmovlbs) that we can't hope to regenerate
     through the normal interface.  */
     through the normal interface.  */
 
 
  if (if_info->cond_earliest == if_info->jump)
  if (if_info->cond_earliest == if_info->jump)
    {
    {
      rtx tmp;
      rtx tmp;
 
 
      tmp = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
      tmp = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
      tmp = gen_rtx_IF_THEN_ELSE (GET_MODE (x), tmp, vtrue, vfalse);
      tmp = gen_rtx_IF_THEN_ELSE (GET_MODE (x), tmp, vtrue, vfalse);
      tmp = gen_rtx_SET (VOIDmode, x, tmp);
      tmp = gen_rtx_SET (VOIDmode, x, tmp);
 
 
      start_sequence ();
      start_sequence ();
      tmp = emit_insn (tmp);
      tmp = emit_insn (tmp);
 
 
      if (recog_memoized (tmp) >= 0)
      if (recog_memoized (tmp) >= 0)
        {
        {
          tmp = get_insns ();
          tmp = get_insns ();
          end_sequence ();
          end_sequence ();
          emit_insn (tmp);
          emit_insn (tmp);
 
 
          return x;
          return x;
        }
        }
 
 
      end_sequence ();
      end_sequence ();
    }
    }
 
 
  /* Don't even try if the comparison operands are weird.  */
  /* Don't even try if the comparison operands are weird.  */
  if (! general_operand (cmp_a, GET_MODE (cmp_a))
  if (! general_operand (cmp_a, GET_MODE (cmp_a))
      || ! general_operand (cmp_b, GET_MODE (cmp_b)))
      || ! general_operand (cmp_b, GET_MODE (cmp_b)))
    return NULL_RTX;
    return NULL_RTX;
 
 
#if HAVE_conditional_move
#if HAVE_conditional_move
  return emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
  return emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
                                vtrue, vfalse, GET_MODE (x),
                                vtrue, vfalse, GET_MODE (x),
                                (code == LTU || code == GEU
                                (code == LTU || code == GEU
                                 || code == LEU || code == GTU));
                                 || code == LEU || code == GTU));
#else
#else
  /* We'll never get here, as noce_process_if_block doesn't call the
  /* We'll never get here, as noce_process_if_block doesn't call the
     functions involved.  Ifdef code, however, should be discouraged
     functions involved.  Ifdef code, however, should be discouraged
     because it leads to typos in the code not selected.  However,
     because it leads to typos in the code not selected.  However,
     emit_conditional_move won't exist either.  */
     emit_conditional_move won't exist either.  */
  return NULL_RTX;
  return NULL_RTX;
#endif
#endif
}
}
 
 
/* Try only simple constants and registers here.  More complex cases
/* Try only simple constants and registers here.  More complex cases
   are handled in noce_try_cmove_arith after noce_try_store_flag_arith
   are handled in noce_try_cmove_arith after noce_try_store_flag_arith
   has had a go at it.  */
   has had a go at it.  */
 
 
static int
static int
noce_try_cmove (struct noce_if_info *if_info)
noce_try_cmove (struct noce_if_info *if_info)
{
{
  enum rtx_code code;
  enum rtx_code code;
  rtx target, seq;
  rtx target, seq;
 
 
  if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
  if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
      && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
      && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
    {
    {
      start_sequence ();
      start_sequence ();
 
 
      code = GET_CODE (if_info->cond);
      code = GET_CODE (if_info->cond);
      target = noce_emit_cmove (if_info, if_info->x, code,
      target = noce_emit_cmove (if_info, if_info->x, code,
                                XEXP (if_info->cond, 0),
                                XEXP (if_info->cond, 0),
                                XEXP (if_info->cond, 1),
                                XEXP (if_info->cond, 1),
                                if_info->a, if_info->b);
                                if_info->a, if_info->b);
 
 
      if (target)
      if (target)
        {
        {
          if (target != if_info->x)
          if (target != if_info->x)
            noce_emit_move_insn (if_info->x, target);
            noce_emit_move_insn (if_info->x, target);
 
 
          seq = end_ifcvt_sequence (if_info);
          seq = end_ifcvt_sequence (if_info);
          if (!seq)
          if (!seq)
            return FALSE;
            return FALSE;
 
 
          emit_insn_before_setloc (seq, if_info->jump,
          emit_insn_before_setloc (seq, if_info->jump,
                                   INSN_LOCATOR (if_info->insn_a));
                                   INSN_LOCATOR (if_info->insn_a));
          return TRUE;
          return TRUE;
        }
        }
      else
      else
        {
        {
          end_sequence ();
          end_sequence ();
          return FALSE;
          return FALSE;
        }
        }
    }
    }
 
 
  return FALSE;
  return FALSE;
}
}
 
 
/* Try more complex cases involving conditional_move.  */
/* Try more complex cases involving conditional_move.  */
 
 
static int
static int
noce_try_cmove_arith (struct noce_if_info *if_info)
noce_try_cmove_arith (struct noce_if_info *if_info)
{
{
  rtx a = if_info->a;
  rtx a = if_info->a;
  rtx b = if_info->b;
  rtx b = if_info->b;
  rtx x = if_info->x;
  rtx x = if_info->x;
  rtx orig_a, orig_b;
  rtx orig_a, orig_b;
  rtx insn_a, insn_b;
  rtx insn_a, insn_b;
  rtx tmp, target;
  rtx tmp, target;
  int is_mem = 0;
  int is_mem = 0;
  int insn_cost;
  int insn_cost;
  enum rtx_code code;
  enum rtx_code code;
 
 
  /* A conditional move from two memory sources is equivalent to a
  /* A conditional move from two memory sources is equivalent to a
     conditional on their addresses followed by a load.  Don't do this
     conditional on their addresses followed by a load.  Don't do this
     early because it'll screw alias analysis.  Note that we've
     early because it'll screw alias analysis.  Note that we've
     already checked for no side effects.  */
     already checked for no side effects.  */
  if (! no_new_pseudos && cse_not_expected
  if (! no_new_pseudos && cse_not_expected
      && MEM_P (a) && MEM_P (b)
      && MEM_P (a) && MEM_P (b)
      && BRANCH_COST >= 5)
      && BRANCH_COST >= 5)
    {
    {
      a = XEXP (a, 0);
      a = XEXP (a, 0);
      b = XEXP (b, 0);
      b = XEXP (b, 0);
      x = gen_reg_rtx (Pmode);
      x = gen_reg_rtx (Pmode);
      is_mem = 1;
      is_mem = 1;
    }
    }
 
 
  /* ??? We could handle this if we knew that a load from A or B could
  /* ??? We could handle this if we knew that a load from A or B could
     not fault.  This is also true if we've already loaded
     not fault.  This is also true if we've already loaded
     from the address along the path from ENTRY.  */
     from the address along the path from ENTRY.  */
  else if (may_trap_p (a) || may_trap_p (b))
  else if (may_trap_p (a) || may_trap_p (b))
    return FALSE;
    return FALSE;
 
 
  /* if (test) x = a + b; else x = c - d;
  /* if (test) x = a + b; else x = c - d;
     => y = a + b;
     => y = a + b;
        x = c - d;
        x = c - d;
        if (test)
        if (test)
          x = y;
          x = y;
  */
  */
 
 
  code = GET_CODE (if_info->cond);
  code = GET_CODE (if_info->cond);
  insn_a = if_info->insn_a;
  insn_a = if_info->insn_a;
  insn_b = if_info->insn_b;
  insn_b = if_info->insn_b;
 
 
  /* Total insn_rtx_cost should be smaller than branch cost.  Exit
  /* Total insn_rtx_cost should be smaller than branch cost.  Exit
     if insn_rtx_cost can't be estimated.  */
     if insn_rtx_cost can't be estimated.  */
  if (insn_a)
  if (insn_a)
    {
    {
      insn_cost = insn_rtx_cost (PATTERN (insn_a));
      insn_cost = insn_rtx_cost (PATTERN (insn_a));
      if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (BRANCH_COST))
      if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (BRANCH_COST))
        return FALSE;
        return FALSE;
    }
    }
  else
  else
    {
    {
      insn_cost = 0;
      insn_cost = 0;
    }
    }
 
 
  if (insn_b) {
  if (insn_b) {
    insn_cost += insn_rtx_cost (PATTERN (insn_b));
    insn_cost += insn_rtx_cost (PATTERN (insn_b));
    if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (BRANCH_COST))
    if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (BRANCH_COST))
      return FALSE;
      return FALSE;
  }
  }
 
 
  /* Possibly rearrange operands to make things come out more natural.  */
  /* Possibly rearrange operands to make things come out more natural.  */
  if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
  if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
    {
    {
      int reversep = 0;
      int reversep = 0;
      if (rtx_equal_p (b, x))
      if (rtx_equal_p (b, x))
        reversep = 1;
        reversep = 1;
      else if (general_operand (b, GET_MODE (b)))
      else if (general_operand (b, GET_MODE (b)))
        reversep = 1;
        reversep = 1;
 
 
      if (reversep)
      if (reversep)
        {
        {
          code = reversed_comparison_code (if_info->cond, if_info->jump);
          code = reversed_comparison_code (if_info->cond, if_info->jump);
          tmp = a, a = b, b = tmp;
          tmp = a, a = b, b = tmp;
          tmp = insn_a, insn_a = insn_b, insn_b = tmp;
          tmp = insn_a, insn_a = insn_b, insn_b = tmp;
        }
        }
    }
    }
 
 
  start_sequence ();
  start_sequence ();
 
 
  orig_a = a;
  orig_a = a;
  orig_b = b;
  orig_b = b;
 
 
  /* If either operand is complex, load it into a register first.
  /* If either operand is complex, load it into a register first.
     The best way to do this is to copy the original insn.  In this
     The best way to do this is to copy the original insn.  In this
     way we preserve any clobbers etc that the insn may have had.
     way we preserve any clobbers etc that the insn may have had.
     This is of course not possible in the IS_MEM case.  */
     This is of course not possible in the IS_MEM case.  */
  if (! general_operand (a, GET_MODE (a)))
  if (! general_operand (a, GET_MODE (a)))
    {
    {
      rtx set;
      rtx set;
 
 
      if (no_new_pseudos)
      if (no_new_pseudos)
        goto end_seq_and_fail;
        goto end_seq_and_fail;
 
 
      if (is_mem)
      if (is_mem)
        {
        {
          tmp = gen_reg_rtx (GET_MODE (a));
          tmp = gen_reg_rtx (GET_MODE (a));
          tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, a));
          tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, a));
        }
        }
      else if (! insn_a)
      else if (! insn_a)
        goto end_seq_and_fail;
        goto end_seq_and_fail;
      else
      else
        {
        {
          a = gen_reg_rtx (GET_MODE (a));
          a = gen_reg_rtx (GET_MODE (a));
          tmp = copy_rtx (insn_a);
          tmp = copy_rtx (insn_a);
          set = single_set (tmp);
          set = single_set (tmp);
          SET_DEST (set) = a;
          SET_DEST (set) = a;
          tmp = emit_insn (PATTERN (tmp));
          tmp = emit_insn (PATTERN (tmp));
        }
        }
      if (recog_memoized (tmp) < 0)
      if (recog_memoized (tmp) < 0)
        goto end_seq_and_fail;
        goto end_seq_and_fail;
    }
    }
  if (! general_operand (b, GET_MODE (b)))
  if (! general_operand (b, GET_MODE (b)))
    {
    {
      rtx set, last;
      rtx set, last;
 
 
      if (no_new_pseudos)
      if (no_new_pseudos)
        goto end_seq_and_fail;
        goto end_seq_and_fail;
 
 
      if (is_mem)
      if (is_mem)
        {
        {
          tmp = gen_reg_rtx (GET_MODE (b));
          tmp = gen_reg_rtx (GET_MODE (b));
          tmp = gen_rtx_SET (VOIDmode, tmp, b);
          tmp = gen_rtx_SET (VOIDmode, tmp, b);
        }
        }
      else if (! insn_b)
      else if (! insn_b)
        goto end_seq_and_fail;
        goto end_seq_and_fail;
      else
      else
        {
        {
          b = gen_reg_rtx (GET_MODE (b));
          b = gen_reg_rtx (GET_MODE (b));
          tmp = copy_rtx (insn_b);
          tmp = copy_rtx (insn_b);
          set = single_set (tmp);
          set = single_set (tmp);
          SET_DEST (set) = b;
          SET_DEST (set) = b;
          tmp = PATTERN (tmp);
          tmp = PATTERN (tmp);
        }
        }
 
 
      /* If insn to set up A clobbers any registers B depends on, try to
      /* If insn to set up A clobbers any registers B depends on, try to
         swap insn that sets up A with the one that sets up B.  If even
         swap insn that sets up A with the one that sets up B.  If even
         that doesn't help, punt.  */
         that doesn't help, punt.  */
      last = get_last_insn ();
      last = get_last_insn ();
      if (last && modified_in_p (orig_b, last))
      if (last && modified_in_p (orig_b, last))
        {
        {
          tmp = emit_insn_before (tmp, get_insns ());
          tmp = emit_insn_before (tmp, get_insns ());
          if (modified_in_p (orig_a, tmp))
          if (modified_in_p (orig_a, tmp))
            goto end_seq_and_fail;
            goto end_seq_and_fail;
        }
        }
      else
      else
        tmp = emit_insn (tmp);
        tmp = emit_insn (tmp);
 
 
      if (recog_memoized (tmp) < 0)
      if (recog_memoized (tmp) < 0)
        goto end_seq_and_fail;
        goto end_seq_and_fail;
    }
    }
 
 
  target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
  target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
                            XEXP (if_info->cond, 1), a, b);
                            XEXP (if_info->cond, 1), a, b);
 
 
  if (! target)
  if (! target)
    goto end_seq_and_fail;
    goto end_seq_and_fail;
 
 
  /* If we're handling a memory for above, emit the load now.  */
  /* If we're handling a memory for above, emit the load now.  */
  if (is_mem)
  if (is_mem)
    {
    {
      tmp = gen_rtx_MEM (GET_MODE (if_info->x), target);
      tmp = gen_rtx_MEM (GET_MODE (if_info->x), target);
 
 
      /* Copy over flags as appropriate.  */
      /* Copy over flags as appropriate.  */
      if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
      if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
        MEM_VOLATILE_P (tmp) = 1;
        MEM_VOLATILE_P (tmp) = 1;
      if (MEM_IN_STRUCT_P (if_info->a) && MEM_IN_STRUCT_P (if_info->b))
      if (MEM_IN_STRUCT_P (if_info->a) && MEM_IN_STRUCT_P (if_info->b))
        MEM_IN_STRUCT_P (tmp) = 1;
        MEM_IN_STRUCT_P (tmp) = 1;
      if (MEM_SCALAR_P (if_info->a) && MEM_SCALAR_P (if_info->b))
      if (MEM_SCALAR_P (if_info->a) && MEM_SCALAR_P (if_info->b))
        MEM_SCALAR_P (tmp) = 1;
        MEM_SCALAR_P (tmp) = 1;
      if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
      if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
        set_mem_alias_set (tmp, MEM_ALIAS_SET (if_info->a));
        set_mem_alias_set (tmp, MEM_ALIAS_SET (if_info->a));
      set_mem_align (tmp,
      set_mem_align (tmp,
                     MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
                     MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
 
 
      noce_emit_move_insn (if_info->x, tmp);
      noce_emit_move_insn (if_info->x, tmp);
    }
    }
  else if (target != x)
  else if (target != x)
    noce_emit_move_insn (x, target);
    noce_emit_move_insn (x, target);
 
 
  tmp = end_ifcvt_sequence (if_info);
  tmp = end_ifcvt_sequence (if_info);
  if (!tmp)
  if (!tmp)
    return FALSE;
    return FALSE;
 
 
  emit_insn_before_setloc (tmp, if_info->jump, INSN_LOCATOR (if_info->insn_a));
  emit_insn_before_setloc (tmp, if_info->jump, INSN_LOCATOR (if_info->insn_a));
  return TRUE;
  return TRUE;
 
 
 end_seq_and_fail:
 end_seq_and_fail:
  end_sequence ();
  end_sequence ();
  return FALSE;
  return FALSE;
}
}
 
 
/* For most cases, the simplified condition we found is the best
/* For most cases, the simplified condition we found is the best
   choice, but this is not the case for the min/max/abs transforms.
   choice, but this is not the case for the min/max/abs transforms.
   For these we wish to know that it is A or B in the condition.  */
   For these we wish to know that it is A or B in the condition.  */
 
 
static rtx
static rtx
noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
                        rtx *earliest)
                        rtx *earliest)
{
{
  rtx cond, set, insn;
  rtx cond, set, insn;
  int reverse;
  int reverse;
 
 
  /* If target is already mentioned in the known condition, return it.  */
  /* If target is already mentioned in the known condition, return it.  */
  if (reg_mentioned_p (target, if_info->cond))
  if (reg_mentioned_p (target, if_info->cond))
    {
    {
      *earliest = if_info->cond_earliest;
      *earliest = if_info->cond_earliest;
      return if_info->cond;
      return if_info->cond;
    }
    }
 
 
  set = pc_set (if_info->jump);
  set = pc_set (if_info->jump);
  cond = XEXP (SET_SRC (set), 0);
  cond = XEXP (SET_SRC (set), 0);
  reverse
  reverse
    = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
    = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
      && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump);
      && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump);
 
 
  /* If we're looking for a constant, try to make the conditional
  /* If we're looking for a constant, try to make the conditional
     have that constant in it.  There are two reasons why it may
     have that constant in it.  There are two reasons why it may
     not have the constant we want:
     not have the constant we want:
 
 
     1. GCC may have needed to put the constant in a register, because
     1. GCC may have needed to put the constant in a register, because
        the target can't compare directly against that constant.  For
        the target can't compare directly against that constant.  For
        this case, we look for a SET immediately before the comparison
        this case, we look for a SET immediately before the comparison
        that puts a constant in that register.
        that puts a constant in that register.
 
 
     2. GCC may have canonicalized the conditional, for example
     2. GCC may have canonicalized the conditional, for example
        replacing "if x < 4" with "if x <= 3".  We can undo that (or
        replacing "if x < 4" with "if x <= 3".  We can undo that (or
        make equivalent types of changes) to get the constants we need
        make equivalent types of changes) to get the constants we need
        if they're off by one in the right direction.  */
        if they're off by one in the right direction.  */
 
 
  if (GET_CODE (target) == CONST_INT)
  if (GET_CODE (target) == CONST_INT)
    {
    {
      enum rtx_code code = GET_CODE (if_info->cond);
      enum rtx_code code = GET_CODE (if_info->cond);
      rtx op_a = XEXP (if_info->cond, 0);
      rtx op_a = XEXP (if_info->cond, 0);
      rtx op_b = XEXP (if_info->cond, 1);
      rtx op_b = XEXP (if_info->cond, 1);
      rtx prev_insn;
      rtx prev_insn;
 
 
      /* First, look to see if we put a constant in a register.  */
      /* First, look to see if we put a constant in a register.  */
      prev_insn = prev_nonnote_insn (if_info->cond_earliest);
      prev_insn = prev_nonnote_insn (if_info->cond_earliest);
      if (prev_insn
      if (prev_insn
          && INSN_P (prev_insn)
          && INSN_P (prev_insn)
          && GET_CODE (PATTERN (prev_insn)) == SET)
          && GET_CODE (PATTERN (prev_insn)) == SET)
        {
        {
          rtx src = find_reg_equal_equiv_note (prev_insn);
          rtx src = find_reg_equal_equiv_note (prev_insn);
          if (!src)
          if (!src)
            src = SET_SRC (PATTERN (prev_insn));
            src = SET_SRC (PATTERN (prev_insn));
          if (GET_CODE (src) == CONST_INT)
          if (GET_CODE (src) == CONST_INT)
            {
            {
              if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
              if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
                op_a = src;
                op_a = src;
              else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
              else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
                op_b = src;
                op_b = src;
 
 
              if (GET_CODE (op_a) == CONST_INT)
              if (GET_CODE (op_a) == CONST_INT)
                {
                {
                  rtx tmp = op_a;
                  rtx tmp = op_a;
                  op_a = op_b;
                  op_a = op_b;
                  op_b = tmp;
                  op_b = tmp;
                  code = swap_condition (code);
                  code = swap_condition (code);
                }
                }
            }
            }
        }
        }
 
 
      /* Now, look to see if we can get the right constant by
      /* Now, look to see if we can get the right constant by
         adjusting the conditional.  */
         adjusting the conditional.  */
      if (GET_CODE (op_b) == CONST_INT)
      if (GET_CODE (op_b) == CONST_INT)
        {
        {
          HOST_WIDE_INT desired_val = INTVAL (target);
          HOST_WIDE_INT desired_val = INTVAL (target);
          HOST_WIDE_INT actual_val = INTVAL (op_b);
          HOST_WIDE_INT actual_val = INTVAL (op_b);
 
 
          switch (code)
          switch (code)
            {
            {
            case LT:
            case LT:
              if (actual_val == desired_val + 1)
              if (actual_val == desired_val + 1)
                {
                {
                  code = LE;
                  code = LE;
                  op_b = GEN_INT (desired_val);
                  op_b = GEN_INT (desired_val);
                }
                }
              break;
              break;
            case LE:
            case LE:
              if (actual_val == desired_val - 1)
              if (actual_val == desired_val - 1)
                {
                {
                  code = LT;
                  code = LT;
                  op_b = GEN_INT (desired_val);
                  op_b = GEN_INT (desired_val);
                }
                }
              break;
              break;
            case GT:
            case GT:
              if (actual_val == desired_val - 1)
              if (actual_val == desired_val - 1)
                {
                {
                  code = GE;
                  code = GE;
                  op_b = GEN_INT (desired_val);
                  op_b = GEN_INT (desired_val);
                }
                }
              break;
              break;
            case GE:
            case GE:
              if (actual_val == desired_val + 1)
              if (actual_val == desired_val + 1)
                {
                {
                  code = GT;
                  code = GT;
                  op_b = GEN_INT (desired_val);
                  op_b = GEN_INT (desired_val);
                }
                }
              break;
              break;
            default:
            default:
              break;
              break;
            }
            }
        }
        }
 
 
      /* If we made any changes, generate a new conditional that is
      /* If we made any changes, generate a new conditional that is
         equivalent to what we started with, but has the right
         equivalent to what we started with, but has the right
         constants in it.  */
         constants in it.  */
      if (code != GET_CODE (if_info->cond)
      if (code != GET_CODE (if_info->cond)
          || op_a != XEXP (if_info->cond, 0)
          || op_a != XEXP (if_info->cond, 0)
          || op_b != XEXP (if_info->cond, 1))
          || op_b != XEXP (if_info->cond, 1))
        {
        {
          cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
          cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
          *earliest = if_info->cond_earliest;
          *earliest = if_info->cond_earliest;
          return cond;
          return cond;
        }
        }
    }
    }
 
 
  cond = canonicalize_condition (if_info->jump, cond, reverse,
  cond = canonicalize_condition (if_info->jump, cond, reverse,
                                 earliest, target, false, true);
                                 earliest, target, false, true);
  if (! cond || ! reg_mentioned_p (target, cond))
  if (! cond || ! reg_mentioned_p (target, cond))
    return NULL;
    return NULL;
 
 
  /* We almost certainly searched back to a different place.
  /* We almost certainly searched back to a different place.
     Need to re-verify correct lifetimes.  */
     Need to re-verify correct lifetimes.  */
 
 
  /* X may not be mentioned in the range (cond_earliest, jump].  */
  /* X may not be mentioned in the range (cond_earliest, jump].  */
  for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
  for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
    if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
    if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
      return NULL;
      return NULL;
 
 
  /* A and B may not be modified in the range [cond_earliest, jump).  */
  /* A and B may not be modified in the range [cond_earliest, jump).  */
  for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
  for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
    if (INSN_P (insn)
    if (INSN_P (insn)
        && (modified_in_p (if_info->a, insn)
        && (modified_in_p (if_info->a, insn)
            || modified_in_p (if_info->b, insn)))
            || modified_in_p (if_info->b, insn)))
      return NULL;
      return NULL;
 
 
  return cond;
  return cond;
}
}
 
 
/* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc.  */
/* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc.  */
 
 
static int
static int
noce_try_minmax (struct noce_if_info *if_info)
noce_try_minmax (struct noce_if_info *if_info)
{
{
  rtx cond, earliest, target, seq;
  rtx cond, earliest, target, seq;
  enum rtx_code code, op;
  enum rtx_code code, op;
  int unsignedp;
  int unsignedp;
 
 
  /* ??? Can't guarantee that expand_binop won't create pseudos.  */
  /* ??? Can't guarantee that expand_binop won't create pseudos.  */
  if (no_new_pseudos)
  if (no_new_pseudos)
    return FALSE;
    return FALSE;
 
 
  /* ??? Reject modes with NaNs or signed zeros since we don't know how
  /* ??? Reject modes with NaNs or signed zeros since we don't know how
     they will be resolved with an SMIN/SMAX.  It wouldn't be too hard
     they will be resolved with an SMIN/SMAX.  It wouldn't be too hard
     to get the target to tell us...  */
     to get the target to tell us...  */
  if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x))
  if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x))
      || HONOR_NANS (GET_MODE (if_info->x)))
      || HONOR_NANS (GET_MODE (if_info->x)))
    return FALSE;
    return FALSE;
 
 
  cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
  cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
  if (!cond)
  if (!cond)
    return FALSE;
    return FALSE;
 
 
  /* Verify the condition is of the form we expect, and canonicalize
  /* Verify the condition is of the form we expect, and canonicalize
     the comparison code.  */
     the comparison code.  */
  code = GET_CODE (cond);
  code = GET_CODE (cond);
  if (rtx_equal_p (XEXP (cond, 0), if_info->a))
  if (rtx_equal_p (XEXP (cond, 0), if_info->a))
    {
    {
      if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
      if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
        return FALSE;
        return FALSE;
    }
    }
  else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
  else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
    {
    {
      if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
      if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
        return FALSE;
        return FALSE;
      code = swap_condition (code);
      code = swap_condition (code);
    }
    }
  else
  else
    return FALSE;
    return FALSE;
 
 
  /* Determine what sort of operation this is.  Note that the code is for
  /* Determine what sort of operation this is.  Note that the code is for
     a taken branch, so the code->operation mapping appears backwards.  */
     a taken branch, so the code->operation mapping appears backwards.  */
  switch (code)
  switch (code)
    {
    {
    case LT:
    case LT:
    case LE:
    case LE:
    case UNLT:
    case UNLT:
    case UNLE:
    case UNLE:
      op = SMAX;
      op = SMAX;
      unsignedp = 0;
      unsignedp = 0;
      break;
      break;
    case GT:
    case GT:
    case GE:
    case GE:
    case UNGT:
    case UNGT:
    case UNGE:
    case UNGE:
      op = SMIN;
      op = SMIN;
      unsignedp = 0;
      unsignedp = 0;
      break;
      break;
    case LTU:
    case LTU:
    case LEU:
    case LEU:
      op = UMAX;
      op = UMAX;
      unsignedp = 1;
      unsignedp = 1;
      break;
      break;
    case GTU:
    case GTU:
    case GEU:
    case GEU:
      op = UMIN;
      op = UMIN;
      unsignedp = 1;
      unsignedp = 1;
      break;
      break;
    default:
    default:
      return FALSE;
      return FALSE;
    }
    }
 
 
  start_sequence ();
  start_sequence ();
 
 
  target = expand_simple_binop (GET_MODE (if_info->x), op,
  target = expand_simple_binop (GET_MODE (if_info->x), op,
                                if_info->a, if_info->b,
                                if_info->a, if_info->b,
                                if_info->x, unsignedp, OPTAB_WIDEN);
                                if_info->x, unsignedp, OPTAB_WIDEN);
  if (! target)
  if (! target)
    {
    {
      end_sequence ();
      end_sequence ();
      return FALSE;
      return FALSE;
    }
    }
  if (target != if_info->x)
  if (target != if_info->x)
    noce_emit_move_insn (if_info->x, target);
    noce_emit_move_insn (if_info->x, target);
 
 
  seq = end_ifcvt_sequence (if_info);
  seq = end_ifcvt_sequence (if_info);
  if (!seq)
  if (!seq)
    return FALSE;
    return FALSE;
 
 
  emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
  emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
  if_info->cond = cond;
  if_info->cond = cond;
  if_info->cond_earliest = earliest;
  if_info->cond_earliest = earliest;
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);", etc.  */
/* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);", etc.  */
 
 
static int
static int
noce_try_abs (struct noce_if_info *if_info)
noce_try_abs (struct noce_if_info *if_info)
{
{
  rtx cond, earliest, target, seq, a, b, c;
  rtx cond, earliest, target, seq, a, b, c;
  int negate;
  int negate;
 
 
  /* ??? Can't guarantee that expand_binop won't create pseudos.  */
  /* ??? Can't guarantee that expand_binop won't create pseudos.  */
  if (no_new_pseudos)
  if (no_new_pseudos)
    return FALSE;
    return FALSE;
 
 
  /* Recognize A and B as constituting an ABS or NABS.  The canonical
  /* Recognize A and B as constituting an ABS or NABS.  The canonical
     form is a branch around the negation, taken when the object is the
     form is a branch around the negation, taken when the object is the
     first operand of a comparison against 0 that evaluates to true.  */
     first operand of a comparison against 0 that evaluates to true.  */
  a = if_info->a;
  a = if_info->a;
  b = if_info->b;
  b = if_info->b;
  if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
  if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
    negate = 0;
    negate = 0;
  else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
  else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
    {
    {
      c = a; a = b; b = c;
      c = a; a = b; b = c;
      negate = 1;
      negate = 1;
    }
    }
  else
  else
    return FALSE;
    return FALSE;
 
 
  cond = noce_get_alt_condition (if_info, b, &earliest);
  cond = noce_get_alt_condition (if_info, b, &earliest);
  if (!cond)
  if (!cond)
    return FALSE;
    return FALSE;
 
 
  /* Verify the condition is of the form we expect.  */
  /* Verify the condition is of the form we expect.  */
  if (rtx_equal_p (XEXP (cond, 0), b))
  if (rtx_equal_p (XEXP (cond, 0), b))
    c = XEXP (cond, 1);
    c = XEXP (cond, 1);
  else if (rtx_equal_p (XEXP (cond, 1), b))
  else if (rtx_equal_p (XEXP (cond, 1), b))
    {
    {
      c = XEXP (cond, 0);
      c = XEXP (cond, 0);
      negate = !negate;
      negate = !negate;
    }
    }
  else
  else
    return FALSE;
    return FALSE;
 
 
  /* Verify that C is zero.  Search one step backward for a
  /* Verify that C is zero.  Search one step backward for a
     REG_EQUAL note or a simple source if necessary.  */
     REG_EQUAL note or a simple source if necessary.  */
  if (REG_P (c))
  if (REG_P (c))
    {
    {
      rtx set, insn = prev_nonnote_insn (earliest);
      rtx set, insn = prev_nonnote_insn (earliest);
      if (insn
      if (insn
          && (set = single_set (insn))
          && (set = single_set (insn))
          && rtx_equal_p (SET_DEST (set), c))
          && rtx_equal_p (SET_DEST (set), c))
        {
        {
          rtx note = find_reg_equal_equiv_note (insn);
          rtx note = find_reg_equal_equiv_note (insn);
          if (note)
          if (note)
            c = XEXP (note, 0);
            c = XEXP (note, 0);
          else
          else
            c = SET_SRC (set);
            c = SET_SRC (set);
        }
        }
      else
      else
        return FALSE;
        return FALSE;
    }
    }
  if (MEM_P (c)
  if (MEM_P (c)
      && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
      && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
      && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
      && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
    c = get_pool_constant (XEXP (c, 0));
    c = get_pool_constant (XEXP (c, 0));
 
 
  /* Work around funny ideas get_condition has wrt canonicalization.
  /* Work around funny ideas get_condition has wrt canonicalization.
     Note that these rtx constants are known to be CONST_INT, and
     Note that these rtx constants are known to be CONST_INT, and
     therefore imply integer comparisons.  */
     therefore imply integer comparisons.  */
  if (c == constm1_rtx && GET_CODE (cond) == GT)
  if (c == constm1_rtx && GET_CODE (cond) == GT)
    ;
    ;
  else if (c == const1_rtx && GET_CODE (cond) == LT)
  else if (c == const1_rtx && GET_CODE (cond) == LT)
    ;
    ;
  else if (c != CONST0_RTX (GET_MODE (b)))
  else if (c != CONST0_RTX (GET_MODE (b)))
    return FALSE;
    return FALSE;
 
 
  /* Determine what sort of operation this is.  */
  /* Determine what sort of operation this is.  */
  switch (GET_CODE (cond))
  switch (GET_CODE (cond))
    {
    {
    case LT:
    case LT:
    case LE:
    case LE:
    case UNLT:
    case UNLT:
    case UNLE:
    case UNLE:
      negate = !negate;
      negate = !negate;
      break;
      break;
    case GT:
    case GT:
    case GE:
    case GE:
    case UNGT:
    case UNGT:
    case UNGE:
    case UNGE:
      break;
      break;
    default:
    default:
      return FALSE;
      return FALSE;
    }
    }
 
 
  start_sequence ();
  start_sequence ();
 
 
  target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
  target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
 
 
  /* ??? It's a quandary whether cmove would be better here, especially
  /* ??? It's a quandary whether cmove would be better here, especially
     for integers.  Perhaps combine will clean things up.  */
     for integers.  Perhaps combine will clean things up.  */
  if (target && negate)
  if (target && negate)
    target = expand_simple_unop (GET_MODE (target), NEG, target, if_info->x, 0);
    target = expand_simple_unop (GET_MODE (target), NEG, target, if_info->x, 0);
 
 
  if (! target)
  if (! target)
    {
    {
      end_sequence ();
      end_sequence ();
      return FALSE;
      return FALSE;
    }
    }
 
 
  if (target != if_info->x)
  if (target != if_info->x)
    noce_emit_move_insn (if_info->x, target);
    noce_emit_move_insn (if_info->x, target);
 
 
  seq = end_ifcvt_sequence (if_info);
  seq = end_ifcvt_sequence (if_info);
  if (!seq)
  if (!seq)
    return FALSE;
    return FALSE;
 
 
  emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
  emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
  if_info->cond = cond;
  if_info->cond = cond;
  if_info->cond_earliest = earliest;
  if_info->cond_earliest = earliest;
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;".  */
/* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;".  */
 
 
static int
static int
noce_try_sign_mask (struct noce_if_info *if_info)
noce_try_sign_mask (struct noce_if_info *if_info)
{
{
  rtx cond, t, m, c, seq;
  rtx cond, t, m, c, seq;
  enum machine_mode mode;
  enum machine_mode mode;
  enum rtx_code code;
  enum rtx_code code;
 
 
  if (no_new_pseudos)
  if (no_new_pseudos)
    return FALSE;
    return FALSE;
 
 
  cond = if_info->cond;
  cond = if_info->cond;
  code = GET_CODE (cond);
  code = GET_CODE (cond);
  m = XEXP (cond, 0);
  m = XEXP (cond, 0);
  c = XEXP (cond, 1);
  c = XEXP (cond, 1);
 
 
  t = NULL_RTX;
  t = NULL_RTX;
  if (if_info->a == const0_rtx)
  if (if_info->a == const0_rtx)
    {
    {
      if ((code == LT && c == const0_rtx)
      if ((code == LT && c == const0_rtx)
          || (code == LE && c == constm1_rtx))
          || (code == LE && c == constm1_rtx))
        t = if_info->b;
        t = if_info->b;
    }
    }
  else if (if_info->b == const0_rtx)
  else if (if_info->b == const0_rtx)
    {
    {
      if ((code == GE && c == const0_rtx)
      if ((code == GE && c == const0_rtx)
          || (code == GT && c == constm1_rtx))
          || (code == GT && c == constm1_rtx))
        t = if_info->a;
        t = if_info->a;
    }
    }
 
 
  if (! t || side_effects_p (t))
  if (! t || side_effects_p (t))
    return FALSE;
    return FALSE;
 
 
  /* We currently don't handle different modes.  */
  /* We currently don't handle different modes.  */
  mode = GET_MODE (t);
  mode = GET_MODE (t);
  if (GET_MODE (m) != mode)
  if (GET_MODE (m) != mode)
    return FALSE;
    return FALSE;
 
 
  /* This is only profitable if T is cheap, or T is unconditionally
  /* This is only profitable if T is cheap, or T is unconditionally
     executed/evaluated in the original insn sequence.  */
     executed/evaluated in the original insn sequence.  */
  if (rtx_cost (t, SET) >= COSTS_N_INSNS (2)
  if (rtx_cost (t, SET) >= COSTS_N_INSNS (2)
      && (!if_info->b_unconditional
      && (!if_info->b_unconditional
          || t != if_info->b))
          || t != if_info->b))
    return FALSE;
    return FALSE;
 
 
  start_sequence ();
  start_sequence ();
  /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
  /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
     "(signed) m >> 31" directly.  This benefits targets with specialized
     "(signed) m >> 31" directly.  This benefits targets with specialized
     insns to obtain the signmask, but still uses ashr_optab otherwise.  */
     insns to obtain the signmask, but still uses ashr_optab otherwise.  */
  m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
  m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
  t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
  t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
        : NULL_RTX;
        : NULL_RTX;
 
 
  if (!t)
  if (!t)
    {
    {
      end_sequence ();
      end_sequence ();
      return FALSE;
      return FALSE;
    }
    }
 
 
  noce_emit_move_insn (if_info->x, t);
  noce_emit_move_insn (if_info->x, t);
 
 
  seq = end_ifcvt_sequence (if_info);
  seq = end_ifcvt_sequence (if_info);
  if (!seq)
  if (!seq)
    return FALSE;
    return FALSE;
 
 
  emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
  emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
  return TRUE;
  return TRUE;
}
}
 
 
 
 
/* Optimize away "if (x & C) x |= C" and similar bit manipulation
/* Optimize away "if (x & C) x |= C" and similar bit manipulation
   transformations.  */
   transformations.  */
 
 
static int
static int
noce_try_bitop (struct noce_if_info *if_info)
noce_try_bitop (struct noce_if_info *if_info)
{
{
  rtx cond, x, a, result, seq;
  rtx cond, x, a, result, seq;
  enum machine_mode mode;
  enum machine_mode mode;
  enum rtx_code code;
  enum rtx_code code;
  int bitnum;
  int bitnum;
 
 
  x = if_info->x;
  x = if_info->x;
  cond = if_info->cond;
  cond = if_info->cond;
  code = GET_CODE (cond);
  code = GET_CODE (cond);
 
 
  /* Check for no else condition.  */
  /* Check for no else condition.  */
  if (! rtx_equal_p (x, if_info->b))
  if (! rtx_equal_p (x, if_info->b))
    return FALSE;
    return FALSE;
 
 
  /* Check for a suitable condition.  */
  /* Check for a suitable condition.  */
  if (code != NE && code != EQ)
  if (code != NE && code != EQ)
    return FALSE;
    return FALSE;
  if (XEXP (cond, 1) != const0_rtx)
  if (XEXP (cond, 1) != const0_rtx)
    return FALSE;
    return FALSE;
  cond = XEXP (cond, 0);
  cond = XEXP (cond, 0);
 
 
  /* ??? We could also handle AND here.  */
  /* ??? We could also handle AND here.  */
  if (GET_CODE (cond) == ZERO_EXTRACT)
  if (GET_CODE (cond) == ZERO_EXTRACT)
    {
    {
      if (XEXP (cond, 1) != const1_rtx
      if (XEXP (cond, 1) != const1_rtx
          || GET_CODE (XEXP (cond, 2)) != CONST_INT
          || GET_CODE (XEXP (cond, 2)) != CONST_INT
          || ! rtx_equal_p (x, XEXP (cond, 0)))
          || ! rtx_equal_p (x, XEXP (cond, 0)))
        return FALSE;
        return FALSE;
      bitnum = INTVAL (XEXP (cond, 2));
      bitnum = INTVAL (XEXP (cond, 2));
      mode = GET_MODE (x);
      mode = GET_MODE (x);
      if (BITS_BIG_ENDIAN)
      if (BITS_BIG_ENDIAN)
        bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
        bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
      if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
      if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
        return FALSE;
        return FALSE;
    }
    }
  else
  else
    return FALSE;
    return FALSE;
 
 
  a = if_info->a;
  a = if_info->a;
  if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
  if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
    {
    {
      /* Check for "if (X & C) x = x op C".  */
      /* Check for "if (X & C) x = x op C".  */
      if (! rtx_equal_p (x, XEXP (a, 0))
      if (! rtx_equal_p (x, XEXP (a, 0))
          || GET_CODE (XEXP (a, 1)) != CONST_INT
          || GET_CODE (XEXP (a, 1)) != CONST_INT
          || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
          || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
             != (unsigned HOST_WIDE_INT) 1 << bitnum)
             != (unsigned HOST_WIDE_INT) 1 << bitnum)
        return FALSE;
        return FALSE;
 
 
      /* if ((x & C) == 0) x |= C; is transformed to x |= C.   */
      /* if ((x & C) == 0) x |= C; is transformed to x |= C.   */
      /* if ((x & C) != 0) x |= C; is transformed to nothing.  */
      /* if ((x & C) != 0) x |= C; is transformed to nothing.  */
      if (GET_CODE (a) == IOR)
      if (GET_CODE (a) == IOR)
        result = (code == NE) ? a : NULL_RTX;
        result = (code == NE) ? a : NULL_RTX;
      else if (code == NE)
      else if (code == NE)
        {
        {
          /* if ((x & C) == 0) x ^= C; is transformed to x |= C.   */
          /* if ((x & C) == 0) x ^= C; is transformed to x |= C.   */
          result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode);
          result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode);
          result = simplify_gen_binary (IOR, mode, x, result);
          result = simplify_gen_binary (IOR, mode, x, result);
        }
        }
      else
      else
        {
        {
          /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C.  */
          /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C.  */
          result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode);
          result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode);
          result = simplify_gen_binary (AND, mode, x, result);
          result = simplify_gen_binary (AND, mode, x, result);
        }
        }
    }
    }
  else if (GET_CODE (a) == AND)
  else if (GET_CODE (a) == AND)
    {
    {
      /* Check for "if (X & C) x &= ~C".  */
      /* Check for "if (X & C) x &= ~C".  */
      if (! rtx_equal_p (x, XEXP (a, 0))
      if (! rtx_equal_p (x, XEXP (a, 0))
          || GET_CODE (XEXP (a, 1)) != CONST_INT
          || GET_CODE (XEXP (a, 1)) != CONST_INT
          || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
          || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
             != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode)))
             != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode)))
        return FALSE;
        return FALSE;
 
 
      /* if ((x & C) == 0) x &= ~C; is transformed to nothing.  */
      /* if ((x & C) == 0) x &= ~C; is transformed to nothing.  */
      /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C.  */
      /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C.  */
      result = (code == EQ) ? a : NULL_RTX;
      result = (code == EQ) ? a : NULL_RTX;
    }
    }
  else
  else
    return FALSE;
    return FALSE;
 
 
  if (result)
  if (result)
    {
    {
      start_sequence ();
      start_sequence ();
      noce_emit_move_insn (x, result);
      noce_emit_move_insn (x, result);
      seq = end_ifcvt_sequence (if_info);
      seq = end_ifcvt_sequence (if_info);
      if (!seq)
      if (!seq)
        return FALSE;
        return FALSE;
 
 
      emit_insn_before_setloc (seq, if_info->jump,
      emit_insn_before_setloc (seq, if_info->jump,
                               INSN_LOCATOR (if_info->insn_a));
                               INSN_LOCATOR (if_info->insn_a));
    }
    }
  return TRUE;
  return TRUE;
}
}
 
 
 
 
/* Similar to get_condition, only the resulting condition must be
/* Similar to get_condition, only the resulting condition must be
   valid at JUMP, instead of at EARLIEST.  */
   valid at JUMP, instead of at EARLIEST.  */
 
 
static rtx
static rtx
noce_get_condition (rtx jump, rtx *earliest)
noce_get_condition (rtx jump, rtx *earliest)
{
{
  rtx cond, set, tmp;
  rtx cond, set, tmp;
  bool reverse;
  bool reverse;
 
 
  if (! any_condjump_p (jump))
  if (! any_condjump_p (jump))
    return NULL_RTX;
    return NULL_RTX;
 
 
  set = pc_set (jump);
  set = pc_set (jump);
 
 
  /* If this branches to JUMP_LABEL when the condition is false,
  /* If this branches to JUMP_LABEL when the condition is false,
     reverse the condition.  */
     reverse the condition.  */
  reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
  reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
             && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump));
             && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump));
 
 
  /* If the condition variable is a register and is MODE_INT, accept it.  */
  /* If the condition variable is a register and is MODE_INT, accept it.  */
 
 
  cond = XEXP (SET_SRC (set), 0);
  cond = XEXP (SET_SRC (set), 0);
  tmp = XEXP (cond, 0);
  tmp = XEXP (cond, 0);
  if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT)
  if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT)
    {
    {
      *earliest = jump;
      *earliest = jump;
 
 
      if (reverse)
      if (reverse)
        cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
        cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
                               GET_MODE (cond), tmp, XEXP (cond, 1));
                               GET_MODE (cond), tmp, XEXP (cond, 1));
      return cond;
      return cond;
    }
    }
 
 
  /* Otherwise, fall back on canonicalize_condition to do the dirty
  /* Otherwise, fall back on canonicalize_condition to do the dirty
     work of manipulating MODE_CC values and COMPARE rtx codes.  */
     work of manipulating MODE_CC values and COMPARE rtx codes.  */
  return canonicalize_condition (jump, cond, reverse, earliest,
  return canonicalize_condition (jump, cond, reverse, earliest,
                                 NULL_RTX, false, true);
                                 NULL_RTX, false, true);
}
}
 
 
/* Initialize for a simple IF-THEN or IF-THEN-ELSE block.  We will not
/* Initialize for a simple IF-THEN or IF-THEN-ELSE block.  We will not
   be using conditional execution.  Set some fields of IF_INFO based
   be using conditional execution.  Set some fields of IF_INFO based
   on CE_INFO: test_bb, cond, jump, cond_earliest.  Return TRUE if
   on CE_INFO: test_bb, cond, jump, cond_earliest.  Return TRUE if
   things look OK.  */
   things look OK.  */
 
 
static int
static int
noce_init_if_info (struct ce_if_block *ce_info, struct noce_if_info *if_info)
noce_init_if_info (struct ce_if_block *ce_info, struct noce_if_info *if_info)
{
{
  basic_block test_bb = ce_info->test_bb;
  basic_block test_bb = ce_info->test_bb;
  rtx cond, jump;
  rtx cond, jump;
 
 
  /* If test is comprised of && or || elements, don't handle it unless
  /* If test is comprised of && or || elements, don't handle it unless
     it is the special case of && elements without an ELSE block.  */
     it is the special case of && elements without an ELSE block.  */
  if (ce_info->num_multiple_test_blocks)
  if (ce_info->num_multiple_test_blocks)
    {
    {
      if (ce_info->else_bb || !ce_info->and_and_p)
      if (ce_info->else_bb || !ce_info->and_and_p)
        return FALSE;
        return FALSE;
 
 
      ce_info->test_bb = test_bb = ce_info->last_test_bb;
      ce_info->test_bb = test_bb = ce_info->last_test_bb;
      ce_info->num_multiple_test_blocks = 0;
      ce_info->num_multiple_test_blocks = 0;
      ce_info->num_and_and_blocks = 0;
      ce_info->num_and_and_blocks = 0;
      ce_info->num_or_or_blocks = 0;
      ce_info->num_or_or_blocks = 0;
    }
    }
 
 
  /* If this is not a standard conditional jump, we can't parse it.  */
  /* If this is not a standard conditional jump, we can't parse it.  */
  jump = BB_END (test_bb);
  jump = BB_END (test_bb);
  cond = noce_get_condition (jump, &if_info->cond_earliest);
  cond = noce_get_condition (jump, &if_info->cond_earliest);
  if (!cond)
  if (!cond)
    return FALSE;
    return FALSE;
 
 
  /* If the conditional jump is more than just a conditional
  /* If the conditional jump is more than just a conditional
     jump, then we can not do if-conversion on this block.  */
     jump, then we can not do if-conversion on this block.  */
  if (! onlyjump_p (jump))
  if (! onlyjump_p (jump))
    return FALSE;
    return FALSE;
 
 
  /* We must be comparing objects whose modes imply the size.  */
  /* We must be comparing objects whose modes imply the size.  */
  if (GET_MODE (XEXP (cond, 0)) == BLKmode)
  if (GET_MODE (XEXP (cond, 0)) == BLKmode)
    return FALSE;
    return FALSE;
 
 
  if_info->test_bb = test_bb;
  if_info->test_bb = test_bb;
  if_info->cond = cond;
  if_info->cond = cond;
  if_info->jump = jump;
  if_info->jump = jump;
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Return true if OP is ok for if-then-else processing.  */
/* Return true if OP is ok for if-then-else processing.  */
 
 
static int
static int
noce_operand_ok (rtx op)
noce_operand_ok (rtx op)
{
{
  /* We special-case memories, so handle any of them with
  /* We special-case memories, so handle any of them with
     no address side effects.  */
     no address side effects.  */
  if (MEM_P (op))
  if (MEM_P (op))
    return ! side_effects_p (XEXP (op, 0));
    return ! side_effects_p (XEXP (op, 0));
 
 
  if (side_effects_p (op))
  if (side_effects_p (op))
    return FALSE;
    return FALSE;
 
 
  return ! may_trap_p (op);
  return ! may_trap_p (op);
}
}
 
 
/* Return true if a write into MEM may trap or fault.  */
/* Return true if a write into MEM may trap or fault.  */
 
 
static bool
static bool
noce_mem_write_may_trap_or_fault_p (rtx mem)
noce_mem_write_may_trap_or_fault_p (rtx mem)
{
{
  rtx addr;
  rtx addr;
 
 
  if (MEM_READONLY_P (mem))
  if (MEM_READONLY_P (mem))
    return true;
    return true;
 
 
  if (may_trap_or_fault_p (mem))
  if (may_trap_or_fault_p (mem))
    return true;
    return true;
 
 
  addr = XEXP (mem, 0);
  addr = XEXP (mem, 0);
 
 
  /* Call target hook to avoid the effects of -fpic etc....  */
  /* Call target hook to avoid the effects of -fpic etc....  */
  addr = targetm.delegitimize_address (addr);
  addr = targetm.delegitimize_address (addr);
 
 
  while (addr)
  while (addr)
    switch (GET_CODE (addr))
    switch (GET_CODE (addr))
      {
      {
      case CONST:
      case CONST:
      case PRE_DEC:
      case PRE_DEC:
      case PRE_INC:
      case PRE_INC:
      case POST_DEC:
      case POST_DEC:
      case POST_INC:
      case POST_INC:
      case POST_MODIFY:
      case POST_MODIFY:
        addr = XEXP (addr, 0);
        addr = XEXP (addr, 0);
        break;
        break;
      case LO_SUM:
      case LO_SUM:
      case PRE_MODIFY:
      case PRE_MODIFY:
        addr = XEXP (addr, 1);
        addr = XEXP (addr, 1);
        break;
        break;
      case PLUS:
      case PLUS:
        if (GET_CODE (XEXP (addr, 1)) == CONST_INT)
        if (GET_CODE (XEXP (addr, 1)) == CONST_INT)
          addr = XEXP (addr, 0);
          addr = XEXP (addr, 0);
        else
        else
          return false;
          return false;
        break;
        break;
      case LABEL_REF:
      case LABEL_REF:
        return true;
        return true;
      case SYMBOL_REF:
      case SYMBOL_REF:
        if (SYMBOL_REF_DECL (addr)
        if (SYMBOL_REF_DECL (addr)
            && decl_readonly_section (SYMBOL_REF_DECL (addr), 0))
            && decl_readonly_section (SYMBOL_REF_DECL (addr), 0))
          return true;
          return true;
        return false;
        return false;
      default:
      default:
        return false;
        return false;
      }
      }
 
 
  return false;
  return false;
}
}
 
 
/* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
/* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
   without using conditional execution.  Return TRUE if we were
   without using conditional execution.  Return TRUE if we were
   successful at converting the block.  */
   successful at converting the block.  */
 
 
static int
static int
noce_process_if_block (struct ce_if_block * ce_info)
noce_process_if_block (struct ce_if_block * ce_info)
{
{
  basic_block test_bb = ce_info->test_bb;       /* test block */
  basic_block test_bb = ce_info->test_bb;       /* test block */
  basic_block then_bb = ce_info->then_bb;       /* THEN */
  basic_block then_bb = ce_info->then_bb;       /* THEN */
  basic_block else_bb = ce_info->else_bb;       /* ELSE or NULL */
  basic_block else_bb = ce_info->else_bb;       /* ELSE or NULL */
  struct noce_if_info if_info;
  struct noce_if_info if_info;
  rtx insn_a, insn_b;
  rtx insn_a, insn_b;
  rtx set_a, set_b;
  rtx set_a, set_b;
  rtx orig_x, x, a, b;
  rtx orig_x, x, a, b;
  rtx jump, cond;
  rtx jump, cond;
 
 
  /* We're looking for patterns of the form
  /* We're looking for patterns of the form
 
 
     (1) if (...) x = a; else x = b;
     (1) if (...) x = a; else x = b;
     (2) x = b; if (...) x = a;
     (2) x = b; if (...) x = a;
     (3) if (...) x = a;   // as if with an initial x = x.
     (3) if (...) x = a;   // as if with an initial x = x.
 
 
     The later patterns require jumps to be more expensive.
     The later patterns require jumps to be more expensive.
 
 
     ??? For future expansion, look for multiple X in such patterns.  */
     ??? For future expansion, look for multiple X in such patterns.  */
 
 
  if (!noce_init_if_info (ce_info, &if_info))
  if (!noce_init_if_info (ce_info, &if_info))
    return FALSE;
    return FALSE;
 
 
  cond = if_info.cond;
  cond = if_info.cond;
  jump = if_info.jump;
  jump = if_info.jump;
 
 
  /* Look for one of the potential sets.  */
  /* Look for one of the potential sets.  */
  insn_a = first_active_insn (then_bb);
  insn_a = first_active_insn (then_bb);
  if (! insn_a
  if (! insn_a
      || insn_a != last_active_insn (then_bb, FALSE)
      || insn_a != last_active_insn (then_bb, FALSE)
      || (set_a = single_set (insn_a)) == NULL_RTX)
      || (set_a = single_set (insn_a)) == NULL_RTX)
    return FALSE;
    return FALSE;
 
 
  x = SET_DEST (set_a);
  x = SET_DEST (set_a);
  a = SET_SRC (set_a);
  a = SET_SRC (set_a);
 
 
  /* Look for the other potential set.  Make sure we've got equivalent
  /* Look for the other potential set.  Make sure we've got equivalent
     destinations.  */
     destinations.  */
  /* ??? This is overconservative.  Storing to two different mems is
  /* ??? This is overconservative.  Storing to two different mems is
     as easy as conditionally computing the address.  Storing to a
     as easy as conditionally computing the address.  Storing to a
     single mem merely requires a scratch memory to use as one of the
     single mem merely requires a scratch memory to use as one of the
     destination addresses; often the memory immediately below the
     destination addresses; often the memory immediately below the
     stack pointer is available for this.  */
     stack pointer is available for this.  */
  set_b = NULL_RTX;
  set_b = NULL_RTX;
  if (else_bb)
  if (else_bb)
    {
    {
      insn_b = first_active_insn (else_bb);
      insn_b = first_active_insn (else_bb);
      if (! insn_b
      if (! insn_b
          || insn_b != last_active_insn (else_bb, FALSE)
          || insn_b != last_active_insn (else_bb, FALSE)
          || (set_b = single_set (insn_b)) == NULL_RTX
          || (set_b = single_set (insn_b)) == NULL_RTX
          || ! rtx_equal_p (x, SET_DEST (set_b)))
          || ! rtx_equal_p (x, SET_DEST (set_b)))
        return FALSE;
        return FALSE;
    }
    }
  else
  else
    {
    {
      insn_b = prev_nonnote_insn (if_info.cond_earliest);
      insn_b = prev_nonnote_insn (if_info.cond_earliest);
      /* We're going to be moving the evaluation of B down from above
      /* We're going to be moving the evaluation of B down from above
         COND_EARLIEST to JUMP.  Make sure the relevant data is still
         COND_EARLIEST to JUMP.  Make sure the relevant data is still
         intact.  */
         intact.  */
      if (! insn_b
      if (! insn_b
          || !NONJUMP_INSN_P (insn_b)
          || !NONJUMP_INSN_P (insn_b)
          || (set_b = single_set (insn_b)) == NULL_RTX
          || (set_b = single_set (insn_b)) == NULL_RTX
          || ! rtx_equal_p (x, SET_DEST (set_b))
          || ! rtx_equal_p (x, SET_DEST (set_b))
          || reg_overlap_mentioned_p (x, SET_SRC (set_b))
          || reg_overlap_mentioned_p (x, SET_SRC (set_b))
          || modified_between_p (SET_SRC (set_b),
          || modified_between_p (SET_SRC (set_b),
                                 PREV_INSN (if_info.cond_earliest), jump)
                                 PREV_INSN (if_info.cond_earliest), jump)
          /* Likewise with X.  In particular this can happen when
          /* Likewise with X.  In particular this can happen when
             noce_get_condition looks farther back in the instruction
             noce_get_condition looks farther back in the instruction
             stream than one might expect.  */
             stream than one might expect.  */
          || reg_overlap_mentioned_p (x, cond)
          || reg_overlap_mentioned_p (x, cond)
          || reg_overlap_mentioned_p (x, a)
          || reg_overlap_mentioned_p (x, a)
          || modified_between_p (x, PREV_INSN (if_info.cond_earliest), jump))
          || modified_between_p (x, PREV_INSN (if_info.cond_earliest), jump))
        insn_b = set_b = NULL_RTX;
        insn_b = set_b = NULL_RTX;
    }
    }
 
 
  /* If x has side effects then only the if-then-else form is safe to
  /* If x has side effects then only the if-then-else form is safe to
     convert.  But even in that case we would need to restore any notes
     convert.  But even in that case we would need to restore any notes
     (such as REG_INC) at then end.  That can be tricky if
     (such as REG_INC) at then end.  That can be tricky if
     noce_emit_move_insn expands to more than one insn, so disable the
     noce_emit_move_insn expands to more than one insn, so disable the
     optimization entirely for now if there are side effects.  */
     optimization entirely for now if there are side effects.  */
  if (side_effects_p (x))
  if (side_effects_p (x))
    return FALSE;
    return FALSE;
 
 
  b = (set_b ? SET_SRC (set_b) : x);
  b = (set_b ? SET_SRC (set_b) : x);
 
 
  /* Only operate on register destinations, and even then avoid extending
  /* Only operate on register destinations, and even then avoid extending
     the lifetime of hard registers on small register class machines.  */
     the lifetime of hard registers on small register class machines.  */
  orig_x = x;
  orig_x = x;
  if (!REG_P (x)
  if (!REG_P (x)
      || (SMALL_REGISTER_CLASSES
      || (SMALL_REGISTER_CLASSES
          && REGNO (x) < FIRST_PSEUDO_REGISTER))
          && REGNO (x) < FIRST_PSEUDO_REGISTER))
    {
    {
      if (no_new_pseudos || GET_MODE (x) == BLKmode)
      if (no_new_pseudos || GET_MODE (x) == BLKmode)
        return FALSE;
        return FALSE;
 
 
      if (GET_MODE (x) == ZERO_EXTRACT
      if (GET_MODE (x) == ZERO_EXTRACT
          && (GET_CODE (XEXP (x, 1)) != CONST_INT
          && (GET_CODE (XEXP (x, 1)) != CONST_INT
              || GET_CODE (XEXP (x, 2)) != CONST_INT))
              || GET_CODE (XEXP (x, 2)) != CONST_INT))
        return FALSE;
        return FALSE;
 
 
      x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
      x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
                                 ? XEXP (x, 0) : x));
                                 ? XEXP (x, 0) : x));
    }
    }
 
 
  /* Don't operate on sources that may trap or are volatile.  */
  /* Don't operate on sources that may trap or are volatile.  */
  if (! noce_operand_ok (a) || ! noce_operand_ok (b))
  if (! noce_operand_ok (a) || ! noce_operand_ok (b))
    return FALSE;
    return FALSE;
 
 
  /* Set up the info block for our subroutines.  */
  /* Set up the info block for our subroutines.  */
  if_info.insn_a = insn_a;
  if_info.insn_a = insn_a;
  if_info.insn_b = insn_b;
  if_info.insn_b = insn_b;
  if_info.x = x;
  if_info.x = x;
  if_info.a = a;
  if_info.a = a;
  if_info.b = b;
  if_info.b = b;
  if_info.b_unconditional = else_bb == 0;
  if_info.b_unconditional = else_bb == 0;
 
 
  /* Try optimizations in some approximation of a useful order.  */
  /* Try optimizations in some approximation of a useful order.  */
  /* ??? Should first look to see if X is live incoming at all.  If it
  /* ??? Should first look to see if X is live incoming at all.  If it
     isn't, we don't need anything but an unconditional set.  */
     isn't, we don't need anything but an unconditional set.  */
 
 
  /* Look and see if A and B are really the same.  Avoid creating silly
  /* Look and see if A and B are really the same.  Avoid creating silly
     cmove constructs that no one will fix up later.  */
     cmove constructs that no one will fix up later.  */
  if (rtx_equal_p (a, b))
  if (rtx_equal_p (a, b))
    {
    {
      /* If we have an INSN_B, we don't have to create any new rtl.  Just
      /* If we have an INSN_B, we don't have to create any new rtl.  Just
         move the instruction that we already have.  If we don't have an
         move the instruction that we already have.  If we don't have an
         INSN_B, that means that A == X, and we've got a noop move.  In
         INSN_B, that means that A == X, and we've got a noop move.  In
         that case don't do anything and let the code below delete INSN_A.  */
         that case don't do anything and let the code below delete INSN_A.  */
      if (insn_b && else_bb)
      if (insn_b && else_bb)
        {
        {
          rtx note;
          rtx note;
 
 
          if (else_bb && insn_b == BB_END (else_bb))
          if (else_bb && insn_b == BB_END (else_bb))
            BB_END (else_bb) = PREV_INSN (insn_b);
            BB_END (else_bb) = PREV_INSN (insn_b);
          reorder_insns (insn_b, insn_b, PREV_INSN (jump));
          reorder_insns (insn_b, insn_b, PREV_INSN (jump));
 
 
          /* If there was a REG_EQUAL note, delete it since it may have been
          /* If there was a REG_EQUAL note, delete it since it may have been
             true due to this insn being after a jump.  */
             true due to this insn being after a jump.  */
          if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
          if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
            remove_note (insn_b, note);
            remove_note (insn_b, note);
 
 
          insn_b = NULL_RTX;
          insn_b = NULL_RTX;
        }
        }
      /* If we have "x = b; if (...) x = a;", and x has side-effects, then
      /* If we have "x = b; if (...) x = a;", and x has side-effects, then
         x must be executed twice.  */
         x must be executed twice.  */
      else if (insn_b && side_effects_p (orig_x))
      else if (insn_b && side_effects_p (orig_x))
        return FALSE;
        return FALSE;
 
 
      x = orig_x;
      x = orig_x;
      goto success;
      goto success;
    }
    }
 
 
  /* Disallow the "if (...) x = a;" form (with an implicit "else x = x;")
  /* Disallow the "if (...) x = a;" form (with an implicit "else x = x;")
     for optimizations if writing to x may trap or fault, i.e. it's a memory
     for optimizations if writing to x may trap or fault, i.e. it's a memory
     other than a static var or a stack slot, is misaligned on strict
     other than a static var or a stack slot, is misaligned on strict
     aligned machines or is read-only.
     aligned machines or is read-only.
     If x is a read-only memory, then the program is valid only if we
     If x is a read-only memory, then the program is valid only if we
     avoid the store into it.  If there are stores on both the THEN and
     avoid the store into it.  If there are stores on both the THEN and
     ELSE arms, then we can go ahead with the conversion; either the
     ELSE arms, then we can go ahead with the conversion; either the
     program is broken, or the condition is always false such that the
     program is broken, or the condition is always false such that the
     other memory is selected.  */
     other memory is selected.  */
  if (!set_b && MEM_P (orig_x) && noce_mem_write_may_trap_or_fault_p (orig_x))
  if (!set_b && MEM_P (orig_x) && noce_mem_write_may_trap_or_fault_p (orig_x))
    return FALSE;
    return FALSE;
 
 
  if (noce_try_move (&if_info))
  if (noce_try_move (&if_info))
    goto success;
    goto success;
  if (noce_try_store_flag (&if_info))
  if (noce_try_store_flag (&if_info))
    goto success;
    goto success;
  if (noce_try_bitop (&if_info))
  if (noce_try_bitop (&if_info))
    goto success;
    goto success;
  if (noce_try_minmax (&if_info))
  if (noce_try_minmax (&if_info))
    goto success;
    goto success;
  if (noce_try_abs (&if_info))
  if (noce_try_abs (&if_info))
    goto success;
    goto success;
  if (HAVE_conditional_move
  if (HAVE_conditional_move
      && noce_try_cmove (&if_info))
      && noce_try_cmove (&if_info))
    goto success;
    goto success;
  if (! HAVE_conditional_execution)
  if (! HAVE_conditional_execution)
    {
    {
      if (noce_try_store_flag_constants (&if_info))
      if (noce_try_store_flag_constants (&if_info))
        goto success;
        goto success;
      if (noce_try_addcc (&if_info))
      if (noce_try_addcc (&if_info))
        goto success;
        goto success;
      if (noce_try_store_flag_mask (&if_info))
      if (noce_try_store_flag_mask (&if_info))
        goto success;
        goto success;
      if (HAVE_conditional_move
      if (HAVE_conditional_move
          && noce_try_cmove_arith (&if_info))
          && noce_try_cmove_arith (&if_info))
        goto success;
        goto success;
      if (noce_try_sign_mask (&if_info))
      if (noce_try_sign_mask (&if_info))
        goto success;
        goto success;
    }
    }
 
 
  return FALSE;
  return FALSE;
 
 
 success:
 success:
  /* The original sets may now be killed.  */
  /* The original sets may now be killed.  */
  delete_insn (insn_a);
  delete_insn (insn_a);
 
 
  /* Several special cases here: First, we may have reused insn_b above,
  /* Several special cases here: First, we may have reused insn_b above,
     in which case insn_b is now NULL.  Second, we want to delete insn_b
     in which case insn_b is now NULL.  Second, we want to delete insn_b
     if it came from the ELSE block, because follows the now correct
     if it came from the ELSE block, because follows the now correct
     write that appears in the TEST block.  However, if we got insn_b from
     write that appears in the TEST block.  However, if we got insn_b from
     the TEST block, it may in fact be loading data needed for the comparison.
     the TEST block, it may in fact be loading data needed for the comparison.
     We'll let life_analysis remove the insn if it's really dead.  */
     We'll let life_analysis remove the insn if it's really dead.  */
  if (insn_b && else_bb)
  if (insn_b && else_bb)
    delete_insn (insn_b);
    delete_insn (insn_b);
 
 
  /* The new insns will have been inserted immediately before the jump.  We
  /* The new insns will have been inserted immediately before the jump.  We
     should be able to remove the jump with impunity, but the condition itself
     should be able to remove the jump with impunity, but the condition itself
     may have been modified by gcse to be shared across basic blocks.  */
     may have been modified by gcse to be shared across basic blocks.  */
  delete_insn (jump);
  delete_insn (jump);
 
 
  /* If we used a temporary, fix it up now.  */
  /* If we used a temporary, fix it up now.  */
  if (orig_x != x)
  if (orig_x != x)
    {
    {
      start_sequence ();
      start_sequence ();
      noce_emit_move_insn (orig_x, x);
      noce_emit_move_insn (orig_x, x);
      insn_b = get_insns ();
      insn_b = get_insns ();
      set_used_flags (orig_x);
      set_used_flags (orig_x);
      unshare_all_rtl_in_chain (insn_b);
      unshare_all_rtl_in_chain (insn_b);
      end_sequence ();
      end_sequence ();
 
 
      emit_insn_after_setloc (insn_b, BB_END (test_bb), INSN_LOCATOR (insn_a));
      emit_insn_after_setloc (insn_b, BB_END (test_bb), INSN_LOCATOR (insn_a));
    }
    }
 
 
  /* Merge the blocks!  */
  /* Merge the blocks!  */
  merge_if_block (ce_info);
  merge_if_block (ce_info);
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Check whether a block is suitable for conditional move conversion.
/* Check whether a block is suitable for conditional move conversion.
   Every insn must be a simple set of a register to a constant or a
   Every insn must be a simple set of a register to a constant or a
   register.  For each assignment, store the value in the array VALS,
   register.  For each assignment, store the value in the array VALS,
   indexed by register number.  COND is the condition we will
   indexed by register number.  COND is the condition we will
   test.  */
   test.  */
 
 
static int
static int
check_cond_move_block (basic_block bb, rtx *vals, rtx cond)
check_cond_move_block (basic_block bb, rtx *vals, rtx cond)
{
{
  rtx insn;
  rtx insn;
 
 
  FOR_BB_INSNS (bb, insn)
  FOR_BB_INSNS (bb, insn)
    {
    {
      rtx set, dest, src;
      rtx set, dest, src;
 
 
      if (!INSN_P (insn) || JUMP_P (insn))
      if (!INSN_P (insn) || JUMP_P (insn))
        continue;
        continue;
      set = single_set (insn);
      set = single_set (insn);
      if (!set)
      if (!set)
        return FALSE;
        return FALSE;
 
 
      dest = SET_DEST (set);
      dest = SET_DEST (set);
      src = SET_SRC (set);
      src = SET_SRC (set);
      if (!REG_P (dest)
      if (!REG_P (dest)
          || (SMALL_REGISTER_CLASSES && HARD_REGISTER_P (dest)))
          || (SMALL_REGISTER_CLASSES && HARD_REGISTER_P (dest)))
        return FALSE;
        return FALSE;
 
 
      if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
      if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
        return FALSE;
        return FALSE;
 
 
      if (side_effects_p (src) || side_effects_p (dest))
      if (side_effects_p (src) || side_effects_p (dest))
        return FALSE;
        return FALSE;
 
 
      if (may_trap_p (src) || may_trap_p (dest))
      if (may_trap_p (src) || may_trap_p (dest))
        return FALSE;
        return FALSE;
 
 
      /* Don't try to handle this if the source register was
      /* Don't try to handle this if the source register was
         modified earlier in the block.  */
         modified earlier in the block.  */
      if ((REG_P (src)
      if ((REG_P (src)
           && vals[REGNO (src)] != NULL)
           && vals[REGNO (src)] != NULL)
          || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
          || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
              && vals[REGNO (SUBREG_REG (src))] != NULL))
              && vals[REGNO (SUBREG_REG (src))] != NULL))
        return FALSE;
        return FALSE;
 
 
      /* Don't try to handle this if the destination register was
      /* Don't try to handle this if the destination register was
         modified earlier in the block.  */
         modified earlier in the block.  */
      if (vals[REGNO (dest)] != NULL)
      if (vals[REGNO (dest)] != NULL)
        return FALSE;
        return FALSE;
 
 
      /* Don't try to handle this if the condition uses the
      /* Don't try to handle this if the condition uses the
         destination register.  */
         destination register.  */
      if (reg_overlap_mentioned_p (dest, cond))
      if (reg_overlap_mentioned_p (dest, cond))
        return FALSE;
        return FALSE;
 
 
      vals[REGNO (dest)] = src;
      vals[REGNO (dest)] = src;
 
 
      /* Don't try to handle this if the source register is modified
      /* Don't try to handle this if the source register is modified
         later in the block.  */
         later in the block.  */
      if (!CONSTANT_P (src)
      if (!CONSTANT_P (src)
          && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
          && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
        return FALSE;
        return FALSE;
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
/* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
   using only conditional moves.  Return TRUE if we were successful at
   using only conditional moves.  Return TRUE if we were successful at
   converting the block.  */
   converting the block.  */
 
 
static int
static int
cond_move_process_if_block (struct ce_if_block *ce_info)
cond_move_process_if_block (struct ce_if_block *ce_info)
{
{
  basic_block then_bb = ce_info->then_bb;
  basic_block then_bb = ce_info->then_bb;
  basic_block else_bb = ce_info->else_bb;
  basic_block else_bb = ce_info->else_bb;
  struct noce_if_info if_info;
  struct noce_if_info if_info;
  rtx jump, cond, insn, seq, cond_arg0, cond_arg1, loc_insn;
  rtx jump, cond, insn, seq, cond_arg0, cond_arg1, loc_insn;
  int max_reg, size, c, i;
  int max_reg, size, c, i;
  rtx *then_vals;
  rtx *then_vals;
  rtx *else_vals;
  rtx *else_vals;
  enum rtx_code code;
  enum rtx_code code;
 
 
  if (!HAVE_conditional_move || no_new_pseudos)
  if (!HAVE_conditional_move || no_new_pseudos)
    return FALSE;
    return FALSE;
 
 
  memset (&if_info, 0, sizeof if_info);
  memset (&if_info, 0, sizeof if_info);
 
 
  if (!noce_init_if_info (ce_info, &if_info))
  if (!noce_init_if_info (ce_info, &if_info))
    return FALSE;
    return FALSE;
 
 
  cond = if_info.cond;
  cond = if_info.cond;
  jump = if_info.jump;
  jump = if_info.jump;
 
 
  /* Build a mapping for each block to the value used for each
  /* Build a mapping for each block to the value used for each
     register.  */
     register.  */
  max_reg = max_reg_num ();
  max_reg = max_reg_num ();
  size = (max_reg + 1) * sizeof (rtx);
  size = (max_reg + 1) * sizeof (rtx);
  then_vals = (rtx *) alloca (size);
  then_vals = (rtx *) alloca (size);
  else_vals = (rtx *) alloca (size);
  else_vals = (rtx *) alloca (size);
  memset (then_vals, 0, size);
  memset (then_vals, 0, size);
  memset (else_vals, 0, size);
  memset (else_vals, 0, size);
 
 
  /* Make sure the blocks are suitable.  */
  /* Make sure the blocks are suitable.  */
  if (!check_cond_move_block (then_bb, then_vals, cond)
  if (!check_cond_move_block (then_bb, then_vals, cond)
      || (else_bb && !check_cond_move_block (else_bb, else_vals, cond)))
      || (else_bb && !check_cond_move_block (else_bb, else_vals, cond)))
    return FALSE;
    return FALSE;
 
 
  /* Make sure the blocks can be used together.  If the same register
  /* Make sure the blocks can be used together.  If the same register
     is set in both blocks, and is not set to a constant in both
     is set in both blocks, and is not set to a constant in both
     cases, then both blocks must set it to the same register.  We
     cases, then both blocks must set it to the same register.  We
     have already verified that if it is set to a register, that the
     have already verified that if it is set to a register, that the
     source register does not change after the assignment.  Also count
     source register does not change after the assignment.  Also count
     the number of registers set in only one of the blocks.  */
     the number of registers set in only one of the blocks.  */
  c = 0;
  c = 0;
  for (i = 0; i <= max_reg; ++i)
  for (i = 0; i <= max_reg; ++i)
    {
    {
      if (!then_vals[i] && !else_vals[i])
      if (!then_vals[i] && !else_vals[i])
        continue;
        continue;
 
 
      if (!then_vals[i] || !else_vals[i])
      if (!then_vals[i] || !else_vals[i])
        ++c;
        ++c;
      else
      else
        {
        {
          if (!CONSTANT_P (then_vals[i])
          if (!CONSTANT_P (then_vals[i])
              && !CONSTANT_P (else_vals[i])
              && !CONSTANT_P (else_vals[i])
              && !rtx_equal_p (then_vals[i], else_vals[i]))
              && !rtx_equal_p (then_vals[i], else_vals[i]))
            return FALSE;
            return FALSE;
        }
        }
    }
    }
 
 
  /* Make sure it is reasonable to convert this block.  What matters
  /* Make sure it is reasonable to convert this block.  What matters
     is the number of assignments currently made in only one of the
     is the number of assignments currently made in only one of the
     branches, since if we convert we are going to always execute
     branches, since if we convert we are going to always execute
     them.  */
     them.  */
  if (c > MAX_CONDITIONAL_EXECUTE)
  if (c > MAX_CONDITIONAL_EXECUTE)
    return FALSE;
    return FALSE;
 
 
  /* Emit the conditional moves.  First do the then block, then do
  /* Emit the conditional moves.  First do the then block, then do
     anything left in the else blocks.  */
     anything left in the else blocks.  */
 
 
  code = GET_CODE (cond);
  code = GET_CODE (cond);
  cond_arg0 = XEXP (cond, 0);
  cond_arg0 = XEXP (cond, 0);
  cond_arg1 = XEXP (cond, 1);
  cond_arg1 = XEXP (cond, 1);
 
 
  start_sequence ();
  start_sequence ();
 
 
  FOR_BB_INSNS (then_bb, insn)
  FOR_BB_INSNS (then_bb, insn)
    {
    {
      rtx set, target, dest, t, e;
      rtx set, target, dest, t, e;
      unsigned int regno;
      unsigned int regno;
 
 
      if (!INSN_P (insn) || JUMP_P (insn))
      if (!INSN_P (insn) || JUMP_P (insn))
        continue;
        continue;
      set = single_set (insn);
      set = single_set (insn);
      gcc_assert (set && REG_P (SET_DEST (set)));
      gcc_assert (set && REG_P (SET_DEST (set)));
 
 
      dest = SET_DEST (set);
      dest = SET_DEST (set);
      regno = REGNO (dest);
      regno = REGNO (dest);
      t = then_vals[regno];
      t = then_vals[regno];
      e = else_vals[regno];
      e = else_vals[regno];
      gcc_assert (t);
      gcc_assert (t);
      if (!e)
      if (!e)
        e = dest;
        e = dest;
      target = noce_emit_cmove (&if_info, dest, code, cond_arg0, cond_arg1,
      target = noce_emit_cmove (&if_info, dest, code, cond_arg0, cond_arg1,
                                t, e);
                                t, e);
      if (!target)
      if (!target)
        {
        {
          end_sequence ();
          end_sequence ();
          return FALSE;
          return FALSE;
        }
        }
 
 
      if (target != dest)
      if (target != dest)
        noce_emit_move_insn (dest, target);
        noce_emit_move_insn (dest, target);
    }
    }
 
 
  if (else_bb)
  if (else_bb)
    {
    {
      FOR_BB_INSNS (else_bb, insn)
      FOR_BB_INSNS (else_bb, insn)
        {
        {
          rtx set, target, dest;
          rtx set, target, dest;
          unsigned int regno;
          unsigned int regno;
 
 
          if (!INSN_P (insn) || JUMP_P (insn))
          if (!INSN_P (insn) || JUMP_P (insn))
            continue;
            continue;
          set = single_set (insn);
          set = single_set (insn);
          gcc_assert (set && REG_P (SET_DEST (set)));
          gcc_assert (set && REG_P (SET_DEST (set)));
 
 
          dest = SET_DEST (set);
          dest = SET_DEST (set);
          regno = REGNO (dest);
          regno = REGNO (dest);
 
 
          /* If this register was set in the then block, we already
          /* If this register was set in the then block, we already
             handled this case above.  */
             handled this case above.  */
          if (then_vals[regno])
          if (then_vals[regno])
            continue;
            continue;
          gcc_assert (else_vals[regno]);
          gcc_assert (else_vals[regno]);
 
 
          target = noce_emit_cmove (&if_info, dest, code, cond_arg0, cond_arg1,
          target = noce_emit_cmove (&if_info, dest, code, cond_arg0, cond_arg1,
                                    dest, else_vals[regno]);
                                    dest, else_vals[regno]);
          if (!target)
          if (!target)
            {
            {
              end_sequence ();
              end_sequence ();
              return FALSE;
              return FALSE;
            }
            }
 
 
          if (target != dest)
          if (target != dest)
            noce_emit_move_insn (dest, target);
            noce_emit_move_insn (dest, target);
        }
        }
    }
    }
 
 
  seq = end_ifcvt_sequence (&if_info);
  seq = end_ifcvt_sequence (&if_info);
  if (!seq)
  if (!seq)
    return FALSE;
    return FALSE;
 
 
  loc_insn = first_active_insn (then_bb);
  loc_insn = first_active_insn (then_bb);
  if (!loc_insn)
  if (!loc_insn)
    {
    {
      loc_insn = first_active_insn (else_bb);
      loc_insn = first_active_insn (else_bb);
      gcc_assert (loc_insn);
      gcc_assert (loc_insn);
    }
    }
  emit_insn_before_setloc (seq, jump, INSN_LOCATOR (loc_insn));
  emit_insn_before_setloc (seq, jump, INSN_LOCATOR (loc_insn));
 
 
  FOR_BB_INSNS (then_bb, insn)
  FOR_BB_INSNS (then_bb, insn)
    if (INSN_P (insn) && !JUMP_P (insn))
    if (INSN_P (insn) && !JUMP_P (insn))
      delete_insn (insn);
      delete_insn (insn);
  if (else_bb)
  if (else_bb)
    {
    {
      FOR_BB_INSNS (else_bb, insn)
      FOR_BB_INSNS (else_bb, insn)
        if (INSN_P (insn) && !JUMP_P (insn))
        if (INSN_P (insn) && !JUMP_P (insn))
          delete_insn (insn);
          delete_insn (insn);
    }
    }
  delete_insn (jump);
  delete_insn (jump);
 
 
  merge_if_block (ce_info);
  merge_if_block (ce_info);
 
 
  return TRUE;
  return TRUE;
}
}


/* Attempt to convert an IF-THEN or IF-THEN-ELSE block into
/* Attempt to convert an IF-THEN or IF-THEN-ELSE block into
   straight line code.  Return true if successful.  */
   straight line code.  Return true if successful.  */
 
 
static int
static int
process_if_block (struct ce_if_block * ce_info)
process_if_block (struct ce_if_block * ce_info)
{
{
  if (! reload_completed
  if (! reload_completed
      && noce_process_if_block (ce_info))
      && noce_process_if_block (ce_info))
    return TRUE;
    return TRUE;
 
 
  if (HAVE_conditional_move
  if (HAVE_conditional_move
      && cond_move_process_if_block (ce_info))
      && cond_move_process_if_block (ce_info))
    return TRUE;
    return TRUE;
 
 
  if (HAVE_conditional_execution && reload_completed)
  if (HAVE_conditional_execution && reload_completed)
    {
    {
      /* If we have && and || tests, try to first handle combining the && and
      /* If we have && and || tests, try to first handle combining the && and
         || tests into the conditional code, and if that fails, go back and
         || tests into the conditional code, and if that fails, go back and
         handle it without the && and ||, which at present handles the && case
         handle it without the && and ||, which at present handles the && case
         if there was no ELSE block.  */
         if there was no ELSE block.  */
      if (cond_exec_process_if_block (ce_info, TRUE))
      if (cond_exec_process_if_block (ce_info, TRUE))
        return TRUE;
        return TRUE;
 
 
      if (ce_info->num_multiple_test_blocks)
      if (ce_info->num_multiple_test_blocks)
        {
        {
          cancel_changes (0);
          cancel_changes (0);
 
 
          if (cond_exec_process_if_block (ce_info, FALSE))
          if (cond_exec_process_if_block (ce_info, FALSE))
            return TRUE;
            return TRUE;
        }
        }
    }
    }
 
 
  return FALSE;
  return FALSE;
}
}
 
 
/* Merge the blocks and mark for local life update.  */
/* Merge the blocks and mark for local life update.  */
 
 
static void
static void
merge_if_block (struct ce_if_block * ce_info)
merge_if_block (struct ce_if_block * ce_info)
{
{
  basic_block test_bb = ce_info->test_bb;       /* last test block */
  basic_block test_bb = ce_info->test_bb;       /* last test block */
  basic_block then_bb = ce_info->then_bb;       /* THEN */
  basic_block then_bb = ce_info->then_bb;       /* THEN */
  basic_block else_bb = ce_info->else_bb;       /* ELSE or NULL */
  basic_block else_bb = ce_info->else_bb;       /* ELSE or NULL */
  basic_block join_bb = ce_info->join_bb;       /* join block */
  basic_block join_bb = ce_info->join_bb;       /* join block */
  basic_block combo_bb;
  basic_block combo_bb;
 
 
  /* All block merging is done into the lower block numbers.  */
  /* All block merging is done into the lower block numbers.  */
 
 
  combo_bb = test_bb;
  combo_bb = test_bb;
 
 
  /* Merge any basic blocks to handle && and || subtests.  Each of
  /* Merge any basic blocks to handle && and || subtests.  Each of
     the blocks are on the fallthru path from the predecessor block.  */
     the blocks are on the fallthru path from the predecessor block.  */
  if (ce_info->num_multiple_test_blocks > 0)
  if (ce_info->num_multiple_test_blocks > 0)
    {
    {
      basic_block bb = test_bb;
      basic_block bb = test_bb;
      basic_block last_test_bb = ce_info->last_test_bb;
      basic_block last_test_bb = ce_info->last_test_bb;
      basic_block fallthru = block_fallthru (bb);
      basic_block fallthru = block_fallthru (bb);
 
 
      do
      do
        {
        {
          bb = fallthru;
          bb = fallthru;
          fallthru = block_fallthru (bb);
          fallthru = block_fallthru (bb);
          merge_blocks (combo_bb, bb);
          merge_blocks (combo_bb, bb);
          num_true_changes++;
          num_true_changes++;
        }
        }
      while (bb != last_test_bb);
      while (bb != last_test_bb);
    }
    }
 
 
  /* Merge TEST block into THEN block.  Normally the THEN block won't have a
  /* Merge TEST block into THEN block.  Normally the THEN block won't have a
     label, but it might if there were || tests.  That label's count should be
     label, but it might if there were || tests.  That label's count should be
     zero, and it normally should be removed.  */
     zero, and it normally should be removed.  */
 
 
  if (then_bb)
  if (then_bb)
    {
    {
      if (combo_bb->il.rtl->global_live_at_end)
      if (combo_bb->il.rtl->global_live_at_end)
        COPY_REG_SET (combo_bb->il.rtl->global_live_at_end,
        COPY_REG_SET (combo_bb->il.rtl->global_live_at_end,
                      then_bb->il.rtl->global_live_at_end);
                      then_bb->il.rtl->global_live_at_end);
      merge_blocks (combo_bb, then_bb);
      merge_blocks (combo_bb, then_bb);
      num_true_changes++;
      num_true_changes++;
    }
    }
 
 
  /* The ELSE block, if it existed, had a label.  That label count
  /* The ELSE block, if it existed, had a label.  That label count
     will almost always be zero, but odd things can happen when labels
     will almost always be zero, but odd things can happen when labels
     get their addresses taken.  */
     get their addresses taken.  */
  if (else_bb)
  if (else_bb)
    {
    {
      merge_blocks (combo_bb, else_bb);
      merge_blocks (combo_bb, else_bb);
      num_true_changes++;
      num_true_changes++;
    }
    }
 
 
  /* If there was no join block reported, that means it was not adjacent
  /* If there was no join block reported, that means it was not adjacent
     to the others, and so we cannot merge them.  */
     to the others, and so we cannot merge them.  */
 
 
  if (! join_bb)
  if (! join_bb)
    {
    {
      rtx last = BB_END (combo_bb);
      rtx last = BB_END (combo_bb);
 
 
      /* The outgoing edge for the current COMBO block should already
      /* The outgoing edge for the current COMBO block should already
         be correct.  Verify this.  */
         be correct.  Verify this.  */
      if (EDGE_COUNT (combo_bb->succs) == 0)
      if (EDGE_COUNT (combo_bb->succs) == 0)
        gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
        gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
                    || (NONJUMP_INSN_P (last)
                    || (NONJUMP_INSN_P (last)
                        && GET_CODE (PATTERN (last)) == TRAP_IF
                        && GET_CODE (PATTERN (last)) == TRAP_IF
                        && (TRAP_CONDITION (PATTERN (last))
                        && (TRAP_CONDITION (PATTERN (last))
                            == const_true_rtx)));
                            == const_true_rtx)));
 
 
      else
      else
      /* There should still be something at the end of the THEN or ELSE
      /* There should still be something at the end of the THEN or ELSE
         blocks taking us to our final destination.  */
         blocks taking us to our final destination.  */
        gcc_assert (JUMP_P (last)
        gcc_assert (JUMP_P (last)
                    || (EDGE_SUCC (combo_bb, 0)->dest == EXIT_BLOCK_PTR
                    || (EDGE_SUCC (combo_bb, 0)->dest == EXIT_BLOCK_PTR
                        && CALL_P (last)
                        && CALL_P (last)
                        && SIBLING_CALL_P (last))
                        && SIBLING_CALL_P (last))
                    || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
                    || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
                        && can_throw_internal (last)));
                        && can_throw_internal (last)));
    }
    }
 
 
  /* The JOIN block may have had quite a number of other predecessors too.
  /* The JOIN block may have had quite a number of other predecessors too.
     Since we've already merged the TEST, THEN and ELSE blocks, we should
     Since we've already merged the TEST, THEN and ELSE blocks, we should
     have only one remaining edge from our if-then-else diamond.  If there
     have only one remaining edge from our if-then-else diamond.  If there
     is more than one remaining edge, it must come from elsewhere.  There
     is more than one remaining edge, it must come from elsewhere.  There
     may be zero incoming edges if the THEN block didn't actually join
     may be zero incoming edges if the THEN block didn't actually join
     back up (as with a call to a non-return function).  */
     back up (as with a call to a non-return function).  */
  else if (EDGE_COUNT (join_bb->preds) < 2
  else if (EDGE_COUNT (join_bb->preds) < 2
           && join_bb != EXIT_BLOCK_PTR)
           && join_bb != EXIT_BLOCK_PTR)
    {
    {
      /* We can merge the JOIN.  */
      /* We can merge the JOIN.  */
      if (combo_bb->il.rtl->global_live_at_end)
      if (combo_bb->il.rtl->global_live_at_end)
        COPY_REG_SET (combo_bb->il.rtl->global_live_at_end,
        COPY_REG_SET (combo_bb->il.rtl->global_live_at_end,
                      join_bb->il.rtl->global_live_at_end);
                      join_bb->il.rtl->global_live_at_end);
 
 
      merge_blocks (combo_bb, join_bb);
      merge_blocks (combo_bb, join_bb);
      num_true_changes++;
      num_true_changes++;
    }
    }
  else
  else
    {
    {
      /* We cannot merge the JOIN.  */
      /* We cannot merge the JOIN.  */
 
 
      /* The outgoing edge for the current COMBO block should already
      /* The outgoing edge for the current COMBO block should already
         be correct.  Verify this.  */
         be correct.  Verify this.  */
      gcc_assert (single_succ_p (combo_bb)
      gcc_assert (single_succ_p (combo_bb)
                  && single_succ (combo_bb) == join_bb);
                  && single_succ (combo_bb) == join_bb);
 
 
      /* Remove the jump and cruft from the end of the COMBO block.  */
      /* Remove the jump and cruft from the end of the COMBO block.  */
      if (join_bb != EXIT_BLOCK_PTR)
      if (join_bb != EXIT_BLOCK_PTR)
        tidy_fallthru_edge (single_succ_edge (combo_bb));
        tidy_fallthru_edge (single_succ_edge (combo_bb));
    }
    }
 
 
  num_updated_if_blocks++;
  num_updated_if_blocks++;
}
}


/* Find a block ending in a simple IF condition and try to transform it
/* Find a block ending in a simple IF condition and try to transform it
   in some way.  When converting a multi-block condition, put the new code
   in some way.  When converting a multi-block condition, put the new code
   in the first such block and delete the rest.  Return a pointer to this
   in the first such block and delete the rest.  Return a pointer to this
   first block if some transformation was done.  Return NULL otherwise.  */
   first block if some transformation was done.  Return NULL otherwise.  */
 
 
static basic_block
static basic_block
find_if_header (basic_block test_bb, int pass)
find_if_header (basic_block test_bb, int pass)
{
{
  ce_if_block_t ce_info;
  ce_if_block_t ce_info;
  edge then_edge;
  edge then_edge;
  edge else_edge;
  edge else_edge;
 
 
  /* The kind of block we're looking for has exactly two successors.  */
  /* The kind of block we're looking for has exactly two successors.  */
  if (EDGE_COUNT (test_bb->succs) != 2)
  if (EDGE_COUNT (test_bb->succs) != 2)
    return NULL;
    return NULL;
 
 
  then_edge = EDGE_SUCC (test_bb, 0);
  then_edge = EDGE_SUCC (test_bb, 0);
  else_edge = EDGE_SUCC (test_bb, 1);
  else_edge = EDGE_SUCC (test_bb, 1);
 
 
  /* Neither edge should be abnormal.  */
  /* Neither edge should be abnormal.  */
  if ((then_edge->flags & EDGE_COMPLEX)
  if ((then_edge->flags & EDGE_COMPLEX)
      || (else_edge->flags & EDGE_COMPLEX))
      || (else_edge->flags & EDGE_COMPLEX))
    return NULL;
    return NULL;
 
 
  /* Nor exit the loop.  */
  /* Nor exit the loop.  */
  if ((then_edge->flags & EDGE_LOOP_EXIT)
  if ((then_edge->flags & EDGE_LOOP_EXIT)
      || (else_edge->flags & EDGE_LOOP_EXIT))
      || (else_edge->flags & EDGE_LOOP_EXIT))
    return NULL;
    return NULL;
 
 
  /* The THEN edge is canonically the one that falls through.  */
  /* The THEN edge is canonically the one that falls through.  */
  if (then_edge->flags & EDGE_FALLTHRU)
  if (then_edge->flags & EDGE_FALLTHRU)
    ;
    ;
  else if (else_edge->flags & EDGE_FALLTHRU)
  else if (else_edge->flags & EDGE_FALLTHRU)
    {
    {
      edge e = else_edge;
      edge e = else_edge;
      else_edge = then_edge;
      else_edge = then_edge;
      then_edge = e;
      then_edge = e;
    }
    }
  else
  else
    /* Otherwise this must be a multiway branch of some sort.  */
    /* Otherwise this must be a multiway branch of some sort.  */
    return NULL;
    return NULL;
 
 
  memset (&ce_info, '\0', sizeof (ce_info));
  memset (&ce_info, '\0', sizeof (ce_info));
  ce_info.test_bb = test_bb;
  ce_info.test_bb = test_bb;
  ce_info.then_bb = then_edge->dest;
  ce_info.then_bb = then_edge->dest;
  ce_info.else_bb = else_edge->dest;
  ce_info.else_bb = else_edge->dest;
  ce_info.pass = pass;
  ce_info.pass = pass;
 
 
#ifdef IFCVT_INIT_EXTRA_FIELDS
#ifdef IFCVT_INIT_EXTRA_FIELDS
  IFCVT_INIT_EXTRA_FIELDS (&ce_info);
  IFCVT_INIT_EXTRA_FIELDS (&ce_info);
#endif
#endif
 
 
  if (find_if_block (&ce_info))
  if (find_if_block (&ce_info))
    goto success;
    goto success;
 
 
  if (HAVE_trap && HAVE_conditional_trap
  if (HAVE_trap && HAVE_conditional_trap
      && find_cond_trap (test_bb, then_edge, else_edge))
      && find_cond_trap (test_bb, then_edge, else_edge))
    goto success;
    goto success;
 
 
  if (dom_computed[CDI_POST_DOMINATORS] >= DOM_NO_FAST_QUERY
  if (dom_computed[CDI_POST_DOMINATORS] >= DOM_NO_FAST_QUERY
      && (! HAVE_conditional_execution || reload_completed))
      && (! HAVE_conditional_execution || reload_completed))
    {
    {
      if (find_if_case_1 (test_bb, then_edge, else_edge))
      if (find_if_case_1 (test_bb, then_edge, else_edge))
        goto success;
        goto success;
      if (find_if_case_2 (test_bb, then_edge, else_edge))
      if (find_if_case_2 (test_bb, then_edge, else_edge))
        goto success;
        goto success;
    }
    }
 
 
  return NULL;
  return NULL;
 
 
 success:
 success:
  if (dump_file)
  if (dump_file)
    fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
    fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
  return ce_info.test_bb;
  return ce_info.test_bb;
}
}
 
 
/* Return true if a block has two edges, one of which falls through to the next
/* Return true if a block has two edges, one of which falls through to the next
   block, and the other jumps to a specific block, so that we can tell if the
   block, and the other jumps to a specific block, so that we can tell if the
   block is part of an && test or an || test.  Returns either -1 or the number
   block is part of an && test or an || test.  Returns either -1 or the number
   of non-note, non-jump, non-USE/CLOBBER insns in the block.  */
   of non-note, non-jump, non-USE/CLOBBER insns in the block.  */
 
 
static int
static int
block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
{
{
  edge cur_edge;
  edge cur_edge;
  int fallthru_p = FALSE;
  int fallthru_p = FALSE;
  int jump_p = FALSE;
  int jump_p = FALSE;
  rtx insn;
  rtx insn;
  rtx end;
  rtx end;
  int n_insns = 0;
  int n_insns = 0;
  edge_iterator ei;
  edge_iterator ei;
 
 
  if (!cur_bb || !target_bb)
  if (!cur_bb || !target_bb)
    return -1;
    return -1;
 
 
  /* If no edges, obviously it doesn't jump or fallthru.  */
  /* If no edges, obviously it doesn't jump or fallthru.  */
  if (EDGE_COUNT (cur_bb->succs) == 0)
  if (EDGE_COUNT (cur_bb->succs) == 0)
    return FALSE;
    return FALSE;
 
 
  FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
  FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
    {
    {
      if (cur_edge->flags & EDGE_COMPLEX)
      if (cur_edge->flags & EDGE_COMPLEX)
        /* Anything complex isn't what we want.  */
        /* Anything complex isn't what we want.  */
        return -1;
        return -1;
 
 
      else if (cur_edge->flags & EDGE_FALLTHRU)
      else if (cur_edge->flags & EDGE_FALLTHRU)
        fallthru_p = TRUE;
        fallthru_p = TRUE;
 
 
      else if (cur_edge->dest == target_bb)
      else if (cur_edge->dest == target_bb)
        jump_p = TRUE;
        jump_p = TRUE;
 
 
      else
      else
        return -1;
        return -1;
    }
    }
 
 
  if ((jump_p & fallthru_p) == 0)
  if ((jump_p & fallthru_p) == 0)
    return -1;
    return -1;
 
 
  /* Don't allow calls in the block, since this is used to group && and ||
  /* Don't allow calls in the block, since this is used to group && and ||
     together for conditional execution support.  ??? we should support
     together for conditional execution support.  ??? we should support
     conditional execution support across calls for IA-64 some day, but
     conditional execution support across calls for IA-64 some day, but
     for now it makes the code simpler.  */
     for now it makes the code simpler.  */
  end = BB_END (cur_bb);
  end = BB_END (cur_bb);
  insn = BB_HEAD (cur_bb);
  insn = BB_HEAD (cur_bb);
 
 
  while (insn != NULL_RTX)
  while (insn != NULL_RTX)
    {
    {
      if (CALL_P (insn))
      if (CALL_P (insn))
        return -1;
        return -1;
 
 
      if (INSN_P (insn)
      if (INSN_P (insn)
          && !JUMP_P (insn)
          && !JUMP_P (insn)
          && GET_CODE (PATTERN (insn)) != USE
          && GET_CODE (PATTERN (insn)) != USE
          && GET_CODE (PATTERN (insn)) != CLOBBER)
          && GET_CODE (PATTERN (insn)) != CLOBBER)
        n_insns++;
        n_insns++;
 
 
      if (insn == end)
      if (insn == end)
        break;
        break;
 
 
      insn = NEXT_INSN (insn);
      insn = NEXT_INSN (insn);
    }
    }
 
 
  return n_insns;
  return n_insns;
}
}
 
 
/* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
/* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
   block.  If so, we'll try to convert the insns to not require the branch.
   block.  If so, we'll try to convert the insns to not require the branch.
   Return TRUE if we were successful at converting the block.  */
   Return TRUE if we were successful at converting the block.  */
 
 
static int
static int
find_if_block (struct ce_if_block * ce_info)
find_if_block (struct ce_if_block * ce_info)
{
{
  basic_block test_bb = ce_info->test_bb;
  basic_block test_bb = ce_info->test_bb;
  basic_block then_bb = ce_info->then_bb;
  basic_block then_bb = ce_info->then_bb;
  basic_block else_bb = ce_info->else_bb;
  basic_block else_bb = ce_info->else_bb;
  basic_block join_bb = NULL_BLOCK;
  basic_block join_bb = NULL_BLOCK;
  edge cur_edge;
  edge cur_edge;
  basic_block next;
  basic_block next;
  edge_iterator ei;
  edge_iterator ei;
 
 
  ce_info->last_test_bb = test_bb;
  ce_info->last_test_bb = test_bb;
 
 
  /* Discover if any fall through predecessors of the current test basic block
  /* Discover if any fall through predecessors of the current test basic block
     were && tests (which jump to the else block) or || tests (which jump to
     were && tests (which jump to the else block) or || tests (which jump to
     the then block).  */
     the then block).  */
  if (HAVE_conditional_execution && reload_completed
  if (HAVE_conditional_execution && reload_completed
      && single_pred_p (test_bb)
      && single_pred_p (test_bb)
      && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
      && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
    {
    {
      basic_block bb = single_pred (test_bb);
      basic_block bb = single_pred (test_bb);
      basic_block target_bb;
      basic_block target_bb;
      int max_insns = MAX_CONDITIONAL_EXECUTE;
      int max_insns = MAX_CONDITIONAL_EXECUTE;
      int n_insns;
      int n_insns;
 
 
      /* Determine if the preceding block is an && or || block.  */
      /* Determine if the preceding block is an && or || block.  */
      if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
      if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
        {
        {
          ce_info->and_and_p = TRUE;
          ce_info->and_and_p = TRUE;
          target_bb = else_bb;
          target_bb = else_bb;
        }
        }
      else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
      else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
        {
        {
          ce_info->and_and_p = FALSE;
          ce_info->and_and_p = FALSE;
          target_bb = then_bb;
          target_bb = then_bb;
        }
        }
      else
      else
        target_bb = NULL_BLOCK;
        target_bb = NULL_BLOCK;
 
 
      if (target_bb && n_insns <= max_insns)
      if (target_bb && n_insns <= max_insns)
        {
        {
          int total_insns = 0;
          int total_insns = 0;
          int blocks = 0;
          int blocks = 0;
 
 
          ce_info->last_test_bb = test_bb;
          ce_info->last_test_bb = test_bb;
 
 
          /* Found at least one && or || block, look for more.  */
          /* Found at least one && or || block, look for more.  */
          do
          do
            {
            {
              ce_info->test_bb = test_bb = bb;
              ce_info->test_bb = test_bb = bb;
              total_insns += n_insns;
              total_insns += n_insns;
              blocks++;
              blocks++;
 
 
              if (!single_pred_p (bb))
              if (!single_pred_p (bb))
                break;
                break;
 
 
              bb = single_pred (bb);
              bb = single_pred (bb);
              n_insns = block_jumps_and_fallthru_p (bb, target_bb);
              n_insns = block_jumps_and_fallthru_p (bb, target_bb);
            }
            }
          while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
          while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
 
 
          ce_info->num_multiple_test_blocks = blocks;
          ce_info->num_multiple_test_blocks = blocks;
          ce_info->num_multiple_test_insns = total_insns;
          ce_info->num_multiple_test_insns = total_insns;
 
 
          if (ce_info->and_and_p)
          if (ce_info->and_and_p)
            ce_info->num_and_and_blocks = blocks;
            ce_info->num_and_and_blocks = blocks;
          else
          else
            ce_info->num_or_or_blocks = blocks;
            ce_info->num_or_or_blocks = blocks;
        }
        }
    }
    }
 
 
  /* The THEN block of an IF-THEN combo must have exactly one predecessor,
  /* The THEN block of an IF-THEN combo must have exactly one predecessor,
     other than any || blocks which jump to the THEN block.  */
     other than any || blocks which jump to the THEN block.  */
  if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
  if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
    return FALSE;
    return FALSE;
 
 
  /* The edges of the THEN and ELSE blocks cannot have complex edges.  */
  /* The edges of the THEN and ELSE blocks cannot have complex edges.  */
  FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
  FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
    {
    {
      if (cur_edge->flags & EDGE_COMPLEX)
      if (cur_edge->flags & EDGE_COMPLEX)
        return FALSE;
        return FALSE;
    }
    }
 
 
  FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
  FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
    {
    {
      if (cur_edge->flags & EDGE_COMPLEX)
      if (cur_edge->flags & EDGE_COMPLEX)
        return FALSE;
        return FALSE;
    }
    }
 
 
  /* The THEN block of an IF-THEN combo must have zero or one successors.  */
  /* The THEN block of an IF-THEN combo must have zero or one successors.  */
  if (EDGE_COUNT (then_bb->succs) > 0
  if (EDGE_COUNT (then_bb->succs) > 0
      && (!single_succ_p (then_bb)
      && (!single_succ_p (then_bb)
          || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
          || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
          || (flow2_completed && tablejump_p (BB_END (then_bb), NULL, NULL))))
          || (flow2_completed && tablejump_p (BB_END (then_bb), NULL, NULL))))
    return FALSE;
    return FALSE;
 
 
  /* If the THEN block has no successors, conditional execution can still
  /* If the THEN block has no successors, conditional execution can still
     make a conditional call.  Don't do this unless the ELSE block has
     make a conditional call.  Don't do this unless the ELSE block has
     only one incoming edge -- the CFG manipulation is too ugly otherwise.
     only one incoming edge -- the CFG manipulation is too ugly otherwise.
     Check for the last insn of the THEN block being an indirect jump, which
     Check for the last insn of the THEN block being an indirect jump, which
     is listed as not having any successors, but confuses the rest of the CE
     is listed as not having any successors, but confuses the rest of the CE
     code processing.  ??? we should fix this in the future.  */
     code processing.  ??? we should fix this in the future.  */
  if (EDGE_COUNT (then_bb->succs) == 0)
  if (EDGE_COUNT (then_bb->succs) == 0)
    {
    {
      if (single_pred_p (else_bb))
      if (single_pred_p (else_bb))
        {
        {
          rtx last_insn = BB_END (then_bb);
          rtx last_insn = BB_END (then_bb);
 
 
          while (last_insn
          while (last_insn
                 && NOTE_P (last_insn)
                 && NOTE_P (last_insn)
                 && last_insn != BB_HEAD (then_bb))
                 && last_insn != BB_HEAD (then_bb))
            last_insn = PREV_INSN (last_insn);
            last_insn = PREV_INSN (last_insn);
 
 
          if (last_insn
          if (last_insn
              && JUMP_P (last_insn)
              && JUMP_P (last_insn)
              && ! simplejump_p (last_insn))
              && ! simplejump_p (last_insn))
            return FALSE;
            return FALSE;
 
 
          join_bb = else_bb;
          join_bb = else_bb;
          else_bb = NULL_BLOCK;
          else_bb = NULL_BLOCK;
        }
        }
      else
      else
        return FALSE;
        return FALSE;
    }
    }
 
 
  /* If the THEN block's successor is the other edge out of the TEST block,
  /* If the THEN block's successor is the other edge out of the TEST block,
     then we have an IF-THEN combo without an ELSE.  */
     then we have an IF-THEN combo without an ELSE.  */
  else if (single_succ (then_bb) == else_bb)
  else if (single_succ (then_bb) == else_bb)
    {
    {
      join_bb = else_bb;
      join_bb = else_bb;
      else_bb = NULL_BLOCK;
      else_bb = NULL_BLOCK;
    }
    }
 
 
  /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
  /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
     has exactly one predecessor and one successor, and the outgoing edge
     has exactly one predecessor and one successor, and the outgoing edge
     is not complex, then we have an IF-THEN-ELSE combo.  */
     is not complex, then we have an IF-THEN-ELSE combo.  */
  else if (single_succ_p (else_bb)
  else if (single_succ_p (else_bb)
           && single_succ (then_bb) == single_succ (else_bb)
           && single_succ (then_bb) == single_succ (else_bb)
           && single_pred_p (else_bb)
           && single_pred_p (else_bb)
           && ! (single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
           && ! (single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
           && ! (flow2_completed && tablejump_p (BB_END (else_bb), NULL, NULL)))
           && ! (flow2_completed && tablejump_p (BB_END (else_bb), NULL, NULL)))
    join_bb = single_succ (else_bb);
    join_bb = single_succ (else_bb);
 
 
  /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination.  */
  /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination.  */
  else
  else
    return FALSE;
    return FALSE;
 
 
  num_possible_if_blocks++;
  num_possible_if_blocks++;
 
 
  if (dump_file)
  if (dump_file)
    {
    {
      fprintf (dump_file,
      fprintf (dump_file,
               "\nIF-THEN%s block found, pass %d, start block %d "
               "\nIF-THEN%s block found, pass %d, start block %d "
               "[insn %d], then %d [%d]",
               "[insn %d], then %d [%d]",
               (else_bb) ? "-ELSE" : "",
               (else_bb) ? "-ELSE" : "",
               ce_info->pass,
               ce_info->pass,
               test_bb->index,
               test_bb->index,
               BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
               BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
               then_bb->index,
               then_bb->index,
               BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
               BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
 
 
      if (else_bb)
      if (else_bb)
        fprintf (dump_file, ", else %d [%d]",
        fprintf (dump_file, ", else %d [%d]",
                 else_bb->index,
                 else_bb->index,
                 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
                 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
 
 
      fprintf (dump_file, ", join %d [%d]",
      fprintf (dump_file, ", join %d [%d]",
               join_bb->index,
               join_bb->index,
               BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
               BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
 
 
      if (ce_info->num_multiple_test_blocks > 0)
      if (ce_info->num_multiple_test_blocks > 0)
        fprintf (dump_file, ", %d %s block%s last test %d [%d]",
        fprintf (dump_file, ", %d %s block%s last test %d [%d]",
                 ce_info->num_multiple_test_blocks,
                 ce_info->num_multiple_test_blocks,
                 (ce_info->and_and_p) ? "&&" : "||",
                 (ce_info->and_and_p) ? "&&" : "||",
                 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
                 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
                 ce_info->last_test_bb->index,
                 ce_info->last_test_bb->index,
                 ((BB_HEAD (ce_info->last_test_bb))
                 ((BB_HEAD (ce_info->last_test_bb))
                  ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
                  ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
                  : -1));
                  : -1));
 
 
      fputc ('\n', dump_file);
      fputc ('\n', dump_file);
    }
    }
 
 
  /* Make sure IF, THEN, and ELSE, blocks are adjacent.  Actually, we get the
  /* Make sure IF, THEN, and ELSE, blocks are adjacent.  Actually, we get the
     first condition for free, since we've already asserted that there's a
     first condition for free, since we've already asserted that there's a
     fallthru edge from IF to THEN.  Likewise for the && and || blocks, since
     fallthru edge from IF to THEN.  Likewise for the && and || blocks, since
     we checked the FALLTHRU flag, those are already adjacent to the last IF
     we checked the FALLTHRU flag, those are already adjacent to the last IF
     block.  */
     block.  */
  /* ??? As an enhancement, move the ELSE block.  Have to deal with
  /* ??? As an enhancement, move the ELSE block.  Have to deal with
     BLOCK notes, if by no other means than backing out the merge if they
     BLOCK notes, if by no other means than backing out the merge if they
     exist.  Sticky enough I don't want to think about it now.  */
     exist.  Sticky enough I don't want to think about it now.  */
  next = then_bb;
  next = then_bb;
  if (else_bb && (next = next->next_bb) != else_bb)
  if (else_bb && (next = next->next_bb) != else_bb)
    return FALSE;
    return FALSE;
  if ((next = next->next_bb) != join_bb && join_bb != EXIT_BLOCK_PTR)
  if ((next = next->next_bb) != join_bb && join_bb != EXIT_BLOCK_PTR)
    {
    {
      if (else_bb)
      if (else_bb)
        join_bb = NULL;
        join_bb = NULL;
      else
      else
        return FALSE;
        return FALSE;
    }
    }
 
 
  /* Do the real work.  */
  /* Do the real work.  */
  ce_info->else_bb = else_bb;
  ce_info->else_bb = else_bb;
  ce_info->join_bb = join_bb;
  ce_info->join_bb = join_bb;
 
 
  return process_if_block (ce_info);
  return process_if_block (ce_info);
}
}
 
 
/* Convert a branch over a trap, or a branch
/* Convert a branch over a trap, or a branch
   to a trap, into a conditional trap.  */
   to a trap, into a conditional trap.  */
 
 
static int
static int
find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
{
{
  basic_block then_bb = then_edge->dest;
  basic_block then_bb = then_edge->dest;
  basic_block else_bb = else_edge->dest;
  basic_block else_bb = else_edge->dest;
  basic_block other_bb, trap_bb;
  basic_block other_bb, trap_bb;
  rtx trap, jump, cond, cond_earliest, seq;
  rtx trap, jump, cond, cond_earliest, seq;
  enum rtx_code code;
  enum rtx_code code;
 
 
  /* Locate the block with the trap instruction.  */
  /* Locate the block with the trap instruction.  */
  /* ??? While we look for no successors, we really ought to allow
  /* ??? While we look for no successors, we really ought to allow
     EH successors.  Need to fix merge_if_block for that to work.  */
     EH successors.  Need to fix merge_if_block for that to work.  */
  if ((trap = block_has_only_trap (then_bb)) != NULL)
  if ((trap = block_has_only_trap (then_bb)) != NULL)
    trap_bb = then_bb, other_bb = else_bb;
    trap_bb = then_bb, other_bb = else_bb;
  else if ((trap = block_has_only_trap (else_bb)) != NULL)
  else if ((trap = block_has_only_trap (else_bb)) != NULL)
    trap_bb = else_bb, other_bb = then_bb;
    trap_bb = else_bb, other_bb = then_bb;
  else
  else
    return FALSE;
    return FALSE;
 
 
  if (dump_file)
  if (dump_file)
    {
    {
      fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
      fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
               test_bb->index, trap_bb->index);
               test_bb->index, trap_bb->index);
    }
    }
 
 
  /* If this is not a standard conditional jump, we can't parse it.  */
  /* If this is not a standard conditional jump, we can't parse it.  */
  jump = BB_END (test_bb);
  jump = BB_END (test_bb);
  cond = noce_get_condition (jump, &cond_earliest);
  cond = noce_get_condition (jump, &cond_earliest);
  if (! cond)
  if (! cond)
    return FALSE;
    return FALSE;
 
 
  /* If the conditional jump is more than just a conditional jump, then
  /* If the conditional jump is more than just a conditional jump, then
     we can not do if-conversion on this block.  */
     we can not do if-conversion on this block.  */
  if (! onlyjump_p (jump))
  if (! onlyjump_p (jump))
    return FALSE;
    return FALSE;
 
 
  /* We must be comparing objects whose modes imply the size.  */
  /* We must be comparing objects whose modes imply the size.  */
  if (GET_MODE (XEXP (cond, 0)) == BLKmode)
  if (GET_MODE (XEXP (cond, 0)) == BLKmode)
    return FALSE;
    return FALSE;
 
 
  /* Reverse the comparison code, if necessary.  */
  /* Reverse the comparison code, if necessary.  */
  code = GET_CODE (cond);
  code = GET_CODE (cond);
  if (then_bb == trap_bb)
  if (then_bb == trap_bb)
    {
    {
      code = reversed_comparison_code (cond, jump);
      code = reversed_comparison_code (cond, jump);
      if (code == UNKNOWN)
      if (code == UNKNOWN)
        return FALSE;
        return FALSE;
    }
    }
 
 
  /* Attempt to generate the conditional trap.  */
  /* Attempt to generate the conditional trap.  */
  seq = gen_cond_trap (code, XEXP (cond, 0),
  seq = gen_cond_trap (code, XEXP (cond, 0),
                       XEXP (cond, 1),
                       XEXP (cond, 1),
                       TRAP_CODE (PATTERN (trap)));
                       TRAP_CODE (PATTERN (trap)));
  if (seq == NULL)
  if (seq == NULL)
    return FALSE;
    return FALSE;
 
 
  num_true_changes++;
  num_true_changes++;
 
 
  /* Emit the new insns before cond_earliest.  */
  /* Emit the new insns before cond_earliest.  */
  emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATOR (trap));
  emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATOR (trap));
 
 
  /* Delete the trap block if possible.  */
  /* Delete the trap block if possible.  */
  remove_edge (trap_bb == then_bb ? then_edge : else_edge);
  remove_edge (trap_bb == then_bb ? then_edge : else_edge);
  if (EDGE_COUNT (trap_bb->preds) == 0)
  if (EDGE_COUNT (trap_bb->preds) == 0)
    delete_basic_block (trap_bb);
    delete_basic_block (trap_bb);
 
 
  /* If the non-trap block and the test are now adjacent, merge them.
  /* If the non-trap block and the test are now adjacent, merge them.
     Otherwise we must insert a direct branch.  */
     Otherwise we must insert a direct branch.  */
  if (test_bb->next_bb == other_bb)
  if (test_bb->next_bb == other_bb)
    {
    {
      struct ce_if_block new_ce_info;
      struct ce_if_block new_ce_info;
      delete_insn (jump);
      delete_insn (jump);
      memset (&new_ce_info, '\0', sizeof (new_ce_info));
      memset (&new_ce_info, '\0', sizeof (new_ce_info));
      new_ce_info.test_bb = test_bb;
      new_ce_info.test_bb = test_bb;
      new_ce_info.then_bb = NULL;
      new_ce_info.then_bb = NULL;
      new_ce_info.else_bb = NULL;
      new_ce_info.else_bb = NULL;
      new_ce_info.join_bb = other_bb;
      new_ce_info.join_bb = other_bb;
      merge_if_block (&new_ce_info);
      merge_if_block (&new_ce_info);
    }
    }
  else
  else
    {
    {
      rtx lab, newjump;
      rtx lab, newjump;
 
 
      lab = JUMP_LABEL (jump);
      lab = JUMP_LABEL (jump);
      newjump = emit_jump_insn_after (gen_jump (lab), jump);
      newjump = emit_jump_insn_after (gen_jump (lab), jump);
      LABEL_NUSES (lab) += 1;
      LABEL_NUSES (lab) += 1;
      JUMP_LABEL (newjump) = lab;
      JUMP_LABEL (newjump) = lab;
      emit_barrier_after (newjump);
      emit_barrier_after (newjump);
 
 
      delete_insn (jump);
      delete_insn (jump);
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Subroutine of find_cond_trap: if BB contains only a trap insn,
/* Subroutine of find_cond_trap: if BB contains only a trap insn,
   return it.  */
   return it.  */
 
 
static rtx
static rtx
block_has_only_trap (basic_block bb)
block_has_only_trap (basic_block bb)
{
{
  rtx trap;
  rtx trap;
 
 
  /* We're not the exit block.  */
  /* We're not the exit block.  */
  if (bb == EXIT_BLOCK_PTR)
  if (bb == EXIT_BLOCK_PTR)
    return NULL_RTX;
    return NULL_RTX;
 
 
  /* The block must have no successors.  */
  /* The block must have no successors.  */
  if (EDGE_COUNT (bb->succs) > 0)
  if (EDGE_COUNT (bb->succs) > 0)
    return NULL_RTX;
    return NULL_RTX;
 
 
  /* The only instruction in the THEN block must be the trap.  */
  /* The only instruction in the THEN block must be the trap.  */
  trap = first_active_insn (bb);
  trap = first_active_insn (bb);
  if (! (trap == BB_END (bb)
  if (! (trap == BB_END (bb)
         && GET_CODE (PATTERN (trap)) == TRAP_IF
         && GET_CODE (PATTERN (trap)) == TRAP_IF
         && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
         && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
    return NULL_RTX;
    return NULL_RTX;
 
 
  return trap;
  return trap;
}
}
 
 
/* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
/* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
   transformable, but not necessarily the other.  There need be no
   transformable, but not necessarily the other.  There need be no
   JOIN block.
   JOIN block.
 
 
   Return TRUE if we were successful at converting the block.
   Return TRUE if we were successful at converting the block.
 
 
   Cases we'd like to look at:
   Cases we'd like to look at:
 
 
   (1)
   (1)
        if (test) goto over; // x not live
        if (test) goto over; // x not live
        x = a;
        x = a;
        goto label;
        goto label;
        over:
        over:
 
 
   becomes
   becomes
 
 
        x = a;
        x = a;
        if (! test) goto label;
        if (! test) goto label;
 
 
   (2)
   (2)
        if (test) goto E; // x not live
        if (test) goto E; // x not live
        x = big();
        x = big();
        goto L;
        goto L;
        E:
        E:
        x = b;
        x = b;
        goto M;
        goto M;
 
 
   becomes
   becomes
 
 
        x = b;
        x = b;
        if (test) goto M;
        if (test) goto M;
        x = big();
        x = big();
        goto L;
        goto L;
 
 
   (3) // This one's really only interesting for targets that can do
   (3) // This one's really only interesting for targets that can do
       // multiway branching, e.g. IA-64 BBB bundles.  For other targets
       // multiway branching, e.g. IA-64 BBB bundles.  For other targets
       // it results in multiple branches on a cache line, which often
       // it results in multiple branches on a cache line, which often
       // does not sit well with predictors.
       // does not sit well with predictors.
 
 
        if (test1) goto E; // predicted not taken
        if (test1) goto E; // predicted not taken
        x = a;
        x = a;
        if (test2) goto F;
        if (test2) goto F;
        ...
        ...
        E:
        E:
        x = b;
        x = b;
        J:
        J:
 
 
   becomes
   becomes
 
 
        x = a;
        x = a;
        if (test1) goto E;
        if (test1) goto E;
        if (test2) goto F;
        if (test2) goto F;
 
 
   Notes:
   Notes:
 
 
   (A) Don't do (2) if the branch is predicted against the block we're
   (A) Don't do (2) if the branch is predicted against the block we're
   eliminating.  Do it anyway if we can eliminate a branch; this requires
   eliminating.  Do it anyway if we can eliminate a branch; this requires
   that the sole successor of the eliminated block postdominate the other
   that the sole successor of the eliminated block postdominate the other
   side of the if.
   side of the if.
 
 
   (B) With CE, on (3) we can steal from both sides of the if, creating
   (B) With CE, on (3) we can steal from both sides of the if, creating
 
 
        if (test1) x = a;
        if (test1) x = a;
        if (!test1) x = b;
        if (!test1) x = b;
        if (test1) goto J;
        if (test1) goto J;
        if (test2) goto F;
        if (test2) goto F;
        ...
        ...
        J:
        J:
 
 
   Again, this is most useful if J postdominates.
   Again, this is most useful if J postdominates.
 
 
   (C) CE substitutes for helpful life information.
   (C) CE substitutes for helpful life information.
 
 
   (D) These heuristics need a lot of work.  */
   (D) These heuristics need a lot of work.  */
 
 
/* Tests for case 1 above.  */
/* Tests for case 1 above.  */
 
 
static int
static int
find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
{
{
  basic_block then_bb = then_edge->dest;
  basic_block then_bb = then_edge->dest;
  basic_block else_bb = else_edge->dest, new_bb;
  basic_block else_bb = else_edge->dest, new_bb;
  int then_bb_index;
  int then_bb_index;
 
 
  /* If we are partitioning hot/cold basic blocks, we don't want to
  /* If we are partitioning hot/cold basic blocks, we don't want to
     mess up unconditional or indirect jumps that cross between hot
     mess up unconditional or indirect jumps that cross between hot
     and cold sections.
     and cold sections.
 
 
     Basic block partitioning may result in some jumps that appear to
     Basic block partitioning may result in some jumps that appear to
     be optimizable (or blocks that appear to be mergeable), but which really
     be optimizable (or blocks that appear to be mergeable), but which really
     must be left untouched (they are required to make it safely across
     must be left untouched (they are required to make it safely across
     partition boundaries).  See  the comments at the top of
     partition boundaries).  See  the comments at the top of
     bb-reorder.c:partition_hot_cold_basic_blocks for complete details.  */
     bb-reorder.c:partition_hot_cold_basic_blocks for complete details.  */
 
 
  if ((BB_END (then_bb)
  if ((BB_END (then_bb)
       && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
       && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
      || (BB_END (test_bb)
      || (BB_END (test_bb)
          && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
          && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
      || (BB_END (else_bb)
      || (BB_END (else_bb)
          && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
          && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
                            NULL_RTX)))
                            NULL_RTX)))
    return FALSE;
    return FALSE;
 
 
  /* THEN has one successor.  */
  /* THEN has one successor.  */
  if (!single_succ_p (then_bb))
  if (!single_succ_p (then_bb))
    return FALSE;
    return FALSE;
 
 
  /* THEN does not fall through, but is not strange either.  */
  /* THEN does not fall through, but is not strange either.  */
  if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
  if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
    return FALSE;
    return FALSE;
 
 
  /* THEN has one predecessor.  */
  /* THEN has one predecessor.  */
  if (!single_pred_p (then_bb))
  if (!single_pred_p (then_bb))
    return FALSE;
    return FALSE;
 
 
  /* THEN must do something.  */
  /* THEN must do something.  */
  if (forwarder_block_p (then_bb))
  if (forwarder_block_p (then_bb))
    return FALSE;
    return FALSE;
 
 
  num_possible_if_blocks++;
  num_possible_if_blocks++;
  if (dump_file)
  if (dump_file)
    fprintf (dump_file,
    fprintf (dump_file,
             "\nIF-CASE-1 found, start %d, then %d\n",
             "\nIF-CASE-1 found, start %d, then %d\n",
             test_bb->index, then_bb->index);
             test_bb->index, then_bb->index);
 
 
  /* THEN is small.  */
  /* THEN is small.  */
  if (! cheap_bb_rtx_cost_p (then_bb, COSTS_N_INSNS (BRANCH_COST)))
  if (! cheap_bb_rtx_cost_p (then_bb, COSTS_N_INSNS (BRANCH_COST)))
    return FALSE;
    return FALSE;
 
 
  /* Registers set are dead, or are predicable.  */
  /* Registers set are dead, or are predicable.  */
  if (! dead_or_predicable (test_bb, then_bb, else_bb,
  if (! dead_or_predicable (test_bb, then_bb, else_bb,
                            single_succ (then_bb), 1))
                            single_succ (then_bb), 1))
    return FALSE;
    return FALSE;
 
 
  /* Conversion went ok, including moving the insns and fixing up the
  /* Conversion went ok, including moving the insns and fixing up the
     jump.  Adjust the CFG to match.  */
     jump.  Adjust the CFG to match.  */
 
 
  bitmap_ior (test_bb->il.rtl->global_live_at_end,
  bitmap_ior (test_bb->il.rtl->global_live_at_end,
              else_bb->il.rtl->global_live_at_start,
              else_bb->il.rtl->global_live_at_start,
              then_bb->il.rtl->global_live_at_end);
              then_bb->il.rtl->global_live_at_end);
 
 
 
 
  /* We can avoid creating a new basic block if then_bb is immediately
  /* We can avoid creating a new basic block if then_bb is immediately
     followed by else_bb, i.e. deleting then_bb allows test_bb to fall
     followed by else_bb, i.e. deleting then_bb allows test_bb to fall
     thru to else_bb.  */
     thru to else_bb.  */
 
 
  if (then_bb->next_bb == else_bb
  if (then_bb->next_bb == else_bb
      && then_bb->prev_bb == test_bb
      && then_bb->prev_bb == test_bb
      && else_bb != EXIT_BLOCK_PTR)
      && else_bb != EXIT_BLOCK_PTR)
    {
    {
      redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
      redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
      new_bb = 0;
      new_bb = 0;
    }
    }
  else
  else
    new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
    new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
                                             else_bb);
                                             else_bb);
 
 
  then_bb_index = then_bb->index;
  then_bb_index = then_bb->index;
  delete_basic_block (then_bb);
  delete_basic_block (then_bb);
 
 
  /* Make rest of code believe that the newly created block is the THEN_BB
  /* Make rest of code believe that the newly created block is the THEN_BB
     block we removed.  */
     block we removed.  */
  if (new_bb)
  if (new_bb)
    {
    {
      new_bb->index = then_bb_index;
      new_bb->index = then_bb_index;
      SET_BASIC_BLOCK (then_bb_index, new_bb);
      SET_BASIC_BLOCK (then_bb_index, new_bb);
      /* Since the fallthru edge was redirected from test_bb to new_bb,
      /* Since the fallthru edge was redirected from test_bb to new_bb,
         we need to ensure that new_bb is in the same partition as
         we need to ensure that new_bb is in the same partition as
         test bb (you can not fall through across section boundaries).  */
         test bb (you can not fall through across section boundaries).  */
      BB_COPY_PARTITION (new_bb, test_bb);
      BB_COPY_PARTITION (new_bb, test_bb);
    }
    }
  /* We've possibly created jump to next insn, cleanup_cfg will solve that
  /* We've possibly created jump to next insn, cleanup_cfg will solve that
     later.  */
     later.  */
 
 
  num_true_changes++;
  num_true_changes++;
  num_updated_if_blocks++;
  num_updated_if_blocks++;
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Test for case 2 above.  */
/* Test for case 2 above.  */
 
 
static int
static int
find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
{
{
  basic_block then_bb = then_edge->dest;
  basic_block then_bb = then_edge->dest;
  basic_block else_bb = else_edge->dest;
  basic_block else_bb = else_edge->dest;
  edge else_succ;
  edge else_succ;
  rtx note;
  rtx note;
 
 
  /* If we are partitioning hot/cold basic blocks, we don't want to
  /* If we are partitioning hot/cold basic blocks, we don't want to
     mess up unconditional or indirect jumps that cross between hot
     mess up unconditional or indirect jumps that cross between hot
     and cold sections.
     and cold sections.
 
 
     Basic block partitioning may result in some jumps that appear to
     Basic block partitioning may result in some jumps that appear to
     be optimizable (or blocks that appear to be mergeable), but which really
     be optimizable (or blocks that appear to be mergeable), but which really
     must be left untouched (they are required to make it safely across
     must be left untouched (they are required to make it safely across
     partition boundaries).  See  the comments at the top of
     partition boundaries).  See  the comments at the top of
     bb-reorder.c:partition_hot_cold_basic_blocks for complete details.  */
     bb-reorder.c:partition_hot_cold_basic_blocks for complete details.  */
 
 
  if ((BB_END (then_bb)
  if ((BB_END (then_bb)
       && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
       && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
      || (BB_END (test_bb)
      || (BB_END (test_bb)
          && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
          && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
      || (BB_END (else_bb)
      || (BB_END (else_bb)
          && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
          && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
                            NULL_RTX)))
                            NULL_RTX)))
    return FALSE;
    return FALSE;
 
 
  /* ELSE has one successor.  */
  /* ELSE has one successor.  */
  if (!single_succ_p (else_bb))
  if (!single_succ_p (else_bb))
    return FALSE;
    return FALSE;
  else
  else
    else_succ = single_succ_edge (else_bb);
    else_succ = single_succ_edge (else_bb);
 
 
  /* ELSE outgoing edge is not complex.  */
  /* ELSE outgoing edge is not complex.  */
  if (else_succ->flags & EDGE_COMPLEX)
  if (else_succ->flags & EDGE_COMPLEX)
    return FALSE;
    return FALSE;
 
 
  /* ELSE has one predecessor.  */
  /* ELSE has one predecessor.  */
  if (!single_pred_p (else_bb))
  if (!single_pred_p (else_bb))
    return FALSE;
    return FALSE;
 
 
  /* THEN is not EXIT.  */
  /* THEN is not EXIT.  */
  if (then_bb->index < NUM_FIXED_BLOCKS)
  if (then_bb->index < NUM_FIXED_BLOCKS)
    return FALSE;
    return FALSE;
 
 
  /* ELSE is predicted or SUCC(ELSE) postdominates THEN.  */
  /* ELSE is predicted or SUCC(ELSE) postdominates THEN.  */
  note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
  note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
  if (note && INTVAL (XEXP (note, 0)) >= REG_BR_PROB_BASE / 2)
  if (note && INTVAL (XEXP (note, 0)) >= REG_BR_PROB_BASE / 2)
    ;
    ;
  else if (else_succ->dest->index < NUM_FIXED_BLOCKS
  else if (else_succ->dest->index < NUM_FIXED_BLOCKS
           || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
           || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
                              else_succ->dest))
                              else_succ->dest))
    ;
    ;
  else
  else
    return FALSE;
    return FALSE;
 
 
  num_possible_if_blocks++;
  num_possible_if_blocks++;
  if (dump_file)
  if (dump_file)
    fprintf (dump_file,
    fprintf (dump_file,
             "\nIF-CASE-2 found, start %d, else %d\n",
             "\nIF-CASE-2 found, start %d, else %d\n",
             test_bb->index, else_bb->index);
             test_bb->index, else_bb->index);
 
 
  /* ELSE is small.  */
  /* ELSE is small.  */
  if (! cheap_bb_rtx_cost_p (else_bb, COSTS_N_INSNS (BRANCH_COST)))
  if (! cheap_bb_rtx_cost_p (else_bb, COSTS_N_INSNS (BRANCH_COST)))
    return FALSE;
    return FALSE;
 
 
  /* Registers set are dead, or are predicable.  */
  /* Registers set are dead, or are predicable.  */
  if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ->dest, 0))
  if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ->dest, 0))
    return FALSE;
    return FALSE;
 
 
  /* Conversion went ok, including moving the insns and fixing up the
  /* Conversion went ok, including moving the insns and fixing up the
     jump.  Adjust the CFG to match.  */
     jump.  Adjust the CFG to match.  */
 
 
  bitmap_ior (test_bb->il.rtl->global_live_at_end,
  bitmap_ior (test_bb->il.rtl->global_live_at_end,
              then_bb->il.rtl->global_live_at_start,
              then_bb->il.rtl->global_live_at_start,
              else_bb->il.rtl->global_live_at_end);
              else_bb->il.rtl->global_live_at_end);
 
 
  delete_basic_block (else_bb);
  delete_basic_block (else_bb);
 
 
  num_true_changes++;
  num_true_changes++;
  num_updated_if_blocks++;
  num_updated_if_blocks++;
 
 
  /* ??? We may now fallthru from one of THEN's successors into a join
  /* ??? We may now fallthru from one of THEN's successors into a join
     block.  Rerun cleanup_cfg?  Examine things manually?  Wait?  */
     block.  Rerun cleanup_cfg?  Examine things manually?  Wait?  */
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* A subroutine of dead_or_predicable called through for_each_rtx.
/* A subroutine of dead_or_predicable called through for_each_rtx.
   Return 1 if a memory is found.  */
   Return 1 if a memory is found.  */
 
 
static int
static int
find_memory (rtx *px, void *data ATTRIBUTE_UNUSED)
find_memory (rtx *px, void *data ATTRIBUTE_UNUSED)
{
{
  return MEM_P (*px);
  return MEM_P (*px);
}
}
 
 
/* Used by the code above to perform the actual rtl transformations.
/* Used by the code above to perform the actual rtl transformations.
   Return TRUE if successful.
   Return TRUE if successful.
 
 
   TEST_BB is the block containing the conditional branch.  MERGE_BB
   TEST_BB is the block containing the conditional branch.  MERGE_BB
   is the block containing the code to manipulate.  NEW_DEST is the
   is the block containing the code to manipulate.  NEW_DEST is the
   label TEST_BB should be branching to after the conversion.
   label TEST_BB should be branching to after the conversion.
   REVERSEP is true if the sense of the branch should be reversed.  */
   REVERSEP is true if the sense of the branch should be reversed.  */
 
 
static int
static int
dead_or_predicable (basic_block test_bb, basic_block merge_bb,
dead_or_predicable (basic_block test_bb, basic_block merge_bb,
                    basic_block other_bb, basic_block new_dest, int reversep)
                    basic_block other_bb, basic_block new_dest, int reversep)
{
{
  rtx head, end, jump, earliest = NULL_RTX, old_dest, new_label = NULL_RTX;
  rtx head, end, jump, earliest = NULL_RTX, old_dest, new_label = NULL_RTX;
 
 
  jump = BB_END (test_bb);
  jump = BB_END (test_bb);
 
 
  /* Find the extent of the real code in the merge block.  */
  /* Find the extent of the real code in the merge block.  */
  head = BB_HEAD (merge_bb);
  head = BB_HEAD (merge_bb);
  end = BB_END (merge_bb);
  end = BB_END (merge_bb);
 
 
  /* If merge_bb ends with a tablejump, predicating/moving insn's
  /* If merge_bb ends with a tablejump, predicating/moving insn's
     into test_bb and then deleting merge_bb will result in the jumptable
     into test_bb and then deleting merge_bb will result in the jumptable
     that follows merge_bb being removed along with merge_bb and then we
     that follows merge_bb being removed along with merge_bb and then we
     get an unresolved reference to the jumptable.  */
     get an unresolved reference to the jumptable.  */
  if (tablejump_p (end, NULL, NULL))
  if (tablejump_p (end, NULL, NULL))
    return FALSE;
    return FALSE;
 
 
  if (LABEL_P (head))
  if (LABEL_P (head))
    head = NEXT_INSN (head);
    head = NEXT_INSN (head);
  if (NOTE_P (head))
  if (NOTE_P (head))
    {
    {
      if (head == end)
      if (head == end)
        {
        {
          head = end = NULL_RTX;
          head = end = NULL_RTX;
          goto no_body;
          goto no_body;
        }
        }
      head = NEXT_INSN (head);
      head = NEXT_INSN (head);
    }
    }
 
 
  if (JUMP_P (end))
  if (JUMP_P (end))
    {
    {
      if (head == end)
      if (head == end)
        {
        {
          head = end = NULL_RTX;
          head = end = NULL_RTX;
          goto no_body;
          goto no_body;
        }
        }
      end = PREV_INSN (end);
      end = PREV_INSN (end);
    }
    }
 
 
  /* Disable handling dead code by conditional execution if the machine needs
  /* Disable handling dead code by conditional execution if the machine needs
     to do anything funny with the tests, etc.  */
     to do anything funny with the tests, etc.  */
#ifndef IFCVT_MODIFY_TESTS
#ifndef IFCVT_MODIFY_TESTS
  if (HAVE_conditional_execution)
  if (HAVE_conditional_execution)
    {
    {
      /* In the conditional execution case, we have things easy.  We know
      /* In the conditional execution case, we have things easy.  We know
         the condition is reversible.  We don't have to check life info
         the condition is reversible.  We don't have to check life info
         because we're going to conditionally execute the code anyway.
         because we're going to conditionally execute the code anyway.
         All that's left is making sure the insns involved can actually
         All that's left is making sure the insns involved can actually
         be predicated.  */
         be predicated.  */
 
 
      rtx cond, prob_val;
      rtx cond, prob_val;
 
 
      cond = cond_exec_get_condition (jump);
      cond = cond_exec_get_condition (jump);
      if (! cond)
      if (! cond)
        return FALSE;
        return FALSE;
 
 
      prob_val = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
      prob_val = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
      if (prob_val)
      if (prob_val)
        prob_val = XEXP (prob_val, 0);
        prob_val = XEXP (prob_val, 0);
 
 
      if (reversep)
      if (reversep)
        {
        {
          enum rtx_code rev = reversed_comparison_code (cond, jump);
          enum rtx_code rev = reversed_comparison_code (cond, jump);
          if (rev == UNKNOWN)
          if (rev == UNKNOWN)
            return FALSE;
            return FALSE;
          cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
          cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
                                 XEXP (cond, 1));
                                 XEXP (cond, 1));
          if (prob_val)
          if (prob_val)
            prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (prob_val));
            prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (prob_val));
        }
        }
 
 
      if (! cond_exec_process_insns ((ce_if_block_t *)0, head, end, cond,
      if (! cond_exec_process_insns ((ce_if_block_t *)0, head, end, cond,
                                     prob_val, 0))
                                     prob_val, 0))
        goto cancel;
        goto cancel;
 
 
      earliest = jump;
      earliest = jump;
    }
    }
  else
  else
#endif
#endif
    {
    {
      /* In the non-conditional execution case, we have to verify that there
      /* In the non-conditional execution case, we have to verify that there
         are no trapping operations, no calls, no references to memory, and
         are no trapping operations, no calls, no references to memory, and
         that any registers modified are dead at the branch site.  */
         that any registers modified are dead at the branch site.  */
 
 
      rtx insn, cond, prev;
      rtx insn, cond, prev;
      regset merge_set, tmp, test_live, test_set;
      regset merge_set, tmp, test_live, test_set;
      struct propagate_block_info *pbi;
      struct propagate_block_info *pbi;
      unsigned i, fail = 0;
      unsigned i, fail = 0;
      bitmap_iterator bi;
      bitmap_iterator bi;
 
 
      /* Check for no calls or trapping operations.  */
      /* Check for no calls or trapping operations.  */
      for (insn = head; ; insn = NEXT_INSN (insn))
      for (insn = head; ; insn = NEXT_INSN (insn))
        {
        {
          if (CALL_P (insn))
          if (CALL_P (insn))
            return FALSE;
            return FALSE;
          if (INSN_P (insn))
          if (INSN_P (insn))
            {
            {
              if (may_trap_p (PATTERN (insn)))
              if (may_trap_p (PATTERN (insn)))
                return FALSE;
                return FALSE;
 
 
              /* ??? Even non-trapping memories such as stack frame
              /* ??? Even non-trapping memories such as stack frame
                 references must be avoided.  For stores, we collect
                 references must be avoided.  For stores, we collect
                 no lifetime info; for reads, we'd have to assert
                 no lifetime info; for reads, we'd have to assert
                 true_dependence false against every store in the
                 true_dependence false against every store in the
                 TEST range.  */
                 TEST range.  */
              if (for_each_rtx (&PATTERN (insn), find_memory, NULL))
              if (for_each_rtx (&PATTERN (insn), find_memory, NULL))
                return FALSE;
                return FALSE;
            }
            }
          if (insn == end)
          if (insn == end)
            break;
            break;
        }
        }
 
 
      if (! any_condjump_p (jump))
      if (! any_condjump_p (jump))
        return FALSE;
        return FALSE;
 
 
      /* Find the extent of the conditional.  */
      /* Find the extent of the conditional.  */
      cond = noce_get_condition (jump, &earliest);
      cond = noce_get_condition (jump, &earliest);
      if (! cond)
      if (! cond)
        return FALSE;
        return FALSE;
 
 
      /* Collect:
      /* Collect:
           MERGE_SET = set of registers set in MERGE_BB
           MERGE_SET = set of registers set in MERGE_BB
           TEST_LIVE = set of registers live at EARLIEST
           TEST_LIVE = set of registers live at EARLIEST
           TEST_SET  = set of registers set between EARLIEST and the
           TEST_SET  = set of registers set between EARLIEST and the
                       end of the block.  */
                       end of the block.  */
 
 
      tmp = ALLOC_REG_SET (&reg_obstack);
      tmp = ALLOC_REG_SET (&reg_obstack);
      merge_set = ALLOC_REG_SET (&reg_obstack);
      merge_set = ALLOC_REG_SET (&reg_obstack);
      test_live = ALLOC_REG_SET (&reg_obstack);
      test_live = ALLOC_REG_SET (&reg_obstack);
      test_set = ALLOC_REG_SET (&reg_obstack);
      test_set = ALLOC_REG_SET (&reg_obstack);
 
 
      /* ??? bb->local_set is only valid during calculate_global_regs_live,
      /* ??? bb->local_set is only valid during calculate_global_regs_live,
         so we must recompute usage for MERGE_BB.  Not so bad, I suppose,
         so we must recompute usage for MERGE_BB.  Not so bad, I suppose,
         since we've already asserted that MERGE_BB is small.  */
         since we've already asserted that MERGE_BB is small.  */
      /* If we allocated new pseudos (e.g. in the conditional move
      /* If we allocated new pseudos (e.g. in the conditional move
         expander called from noce_emit_cmove), we must resize the
         expander called from noce_emit_cmove), we must resize the
         array first.  */
         array first.  */
      if (max_regno < max_reg_num ())
      if (max_regno < max_reg_num ())
        {
        {
          max_regno = max_reg_num ();
          max_regno = max_reg_num ();
          allocate_reg_info (max_regno, FALSE, FALSE);
          allocate_reg_info (max_regno, FALSE, FALSE);
        }
        }
      propagate_block (merge_bb, tmp, merge_set, merge_set, 0);
      propagate_block (merge_bb, tmp, merge_set, merge_set, 0);
 
 
      /* For small register class machines, don't lengthen lifetimes of
      /* For small register class machines, don't lengthen lifetimes of
         hard registers before reload.  */
         hard registers before reload.  */
      if (SMALL_REGISTER_CLASSES && ! reload_completed)
      if (SMALL_REGISTER_CLASSES && ! reload_completed)
        {
        {
          EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
          EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
            {
            {
              if (i < FIRST_PSEUDO_REGISTER
              if (i < FIRST_PSEUDO_REGISTER
                  && ! fixed_regs[i]
                  && ! fixed_regs[i]
                  && ! global_regs[i])
                  && ! global_regs[i])
                fail = 1;
                fail = 1;
            }
            }
        }
        }
 
 
      /* For TEST, we're interested in a range of insns, not a whole block.
      /* For TEST, we're interested in a range of insns, not a whole block.
         Moreover, we're interested in the insns live from OTHER_BB.  */
         Moreover, we're interested in the insns live from OTHER_BB.  */
 
 
      COPY_REG_SET (test_live, other_bb->il.rtl->global_live_at_start);
      COPY_REG_SET (test_live, other_bb->il.rtl->global_live_at_start);
      pbi = init_propagate_block_info (test_bb, test_live, test_set, test_set,
      pbi = init_propagate_block_info (test_bb, test_live, test_set, test_set,
                                       0);
                                       0);
 
 
      for (insn = jump; ; insn = prev)
      for (insn = jump; ; insn = prev)
        {
        {
          prev = propagate_one_insn (pbi, insn);
          prev = propagate_one_insn (pbi, insn);
          if (insn == earliest)
          if (insn == earliest)
            break;
            break;
        }
        }
 
 
      free_propagate_block_info (pbi);
      free_propagate_block_info (pbi);
 
 
      /* We can perform the transformation if
      /* We can perform the transformation if
           MERGE_SET & (TEST_SET | TEST_LIVE)
           MERGE_SET & (TEST_SET | TEST_LIVE)
         and
         and
           TEST_SET & merge_bb->il.rtl->global_live_at_start
           TEST_SET & merge_bb->il.rtl->global_live_at_start
         are empty.  */
         are empty.  */
 
 
      if (bitmap_intersect_p (test_set, merge_set)
      if (bitmap_intersect_p (test_set, merge_set)
          || bitmap_intersect_p (test_live, merge_set)
          || bitmap_intersect_p (test_live, merge_set)
          || bitmap_intersect_p (test_set,
          || bitmap_intersect_p (test_set,
                                 merge_bb->il.rtl->global_live_at_start))
                                 merge_bb->il.rtl->global_live_at_start))
        fail = 1;
        fail = 1;
 
 
      FREE_REG_SET (tmp);
      FREE_REG_SET (tmp);
      FREE_REG_SET (merge_set);
      FREE_REG_SET (merge_set);
      FREE_REG_SET (test_live);
      FREE_REG_SET (test_live);
      FREE_REG_SET (test_set);
      FREE_REG_SET (test_set);
 
 
      if (fail)
      if (fail)
        return FALSE;
        return FALSE;
    }
    }
 
 
 no_body:
 no_body:
  /* We don't want to use normal invert_jump or redirect_jump because
  /* We don't want to use normal invert_jump or redirect_jump because
     we don't want to delete_insn called.  Also, we want to do our own
     we don't want to delete_insn called.  Also, we want to do our own
     change group management.  */
     change group management.  */
 
 
  old_dest = JUMP_LABEL (jump);
  old_dest = JUMP_LABEL (jump);
  if (other_bb != new_dest)
  if (other_bb != new_dest)
    {
    {
      new_label = block_label (new_dest);
      new_label = block_label (new_dest);
      if (reversep
      if (reversep
          ? ! invert_jump_1 (jump, new_label)
          ? ! invert_jump_1 (jump, new_label)
          : ! redirect_jump_1 (jump, new_label))
          : ! redirect_jump_1 (jump, new_label))
        goto cancel;
        goto cancel;
    }
    }
 
 
  if (! apply_change_group ())
  if (! apply_change_group ())
    return FALSE;
    return FALSE;
 
 
  if (other_bb != new_dest)
  if (other_bb != new_dest)
    {
    {
      redirect_jump_2 (jump, old_dest, new_label, -1, reversep);
      redirect_jump_2 (jump, old_dest, new_label, -1, reversep);
 
 
      redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
      redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
      if (reversep)
      if (reversep)
        {
        {
          gcov_type count, probability;
          gcov_type count, probability;
          count = BRANCH_EDGE (test_bb)->count;
          count = BRANCH_EDGE (test_bb)->count;
          BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count;
          BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count;
          FALLTHRU_EDGE (test_bb)->count = count;
          FALLTHRU_EDGE (test_bb)->count = count;
          probability = BRANCH_EDGE (test_bb)->probability;
          probability = BRANCH_EDGE (test_bb)->probability;
          BRANCH_EDGE (test_bb)->probability
          BRANCH_EDGE (test_bb)->probability
            = FALLTHRU_EDGE (test_bb)->probability;
            = FALLTHRU_EDGE (test_bb)->probability;
          FALLTHRU_EDGE (test_bb)->probability = probability;
          FALLTHRU_EDGE (test_bb)->probability = probability;
          update_br_prob_note (test_bb);
          update_br_prob_note (test_bb);
        }
        }
    }
    }
 
 
  /* Move the insns out of MERGE_BB to before the branch.  */
  /* Move the insns out of MERGE_BB to before the branch.  */
  if (head != NULL)
  if (head != NULL)
    {
    {
      rtx insn;
      rtx insn;
 
 
      if (end == BB_END (merge_bb))
      if (end == BB_END (merge_bb))
        BB_END (merge_bb) = PREV_INSN (head);
        BB_END (merge_bb) = PREV_INSN (head);
 
 
      if (squeeze_notes (&head, &end))
      if (squeeze_notes (&head, &end))
        return TRUE;
        return TRUE;
 
 
      /* PR 21767: When moving insns above a conditional branch, REG_EQUAL
      /* PR 21767: When moving insns above a conditional branch, REG_EQUAL
         notes might become invalid.  */
         notes might become invalid.  */
      insn = head;
      insn = head;
      do
      do
        {
        {
          rtx note, set;
          rtx note, set;
 
 
          if (! INSN_P (insn))
          if (! INSN_P (insn))
            continue;
            continue;
          note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
          note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
          if (! note)
          if (! note)
            continue;
            continue;
          set = single_set (insn);
          set = single_set (insn);
          if (!set || !function_invariant_p (SET_SRC (set)))
          if (!set || !function_invariant_p (SET_SRC (set)))
            remove_note (insn, note);
            remove_note (insn, note);
        } while (insn != end && (insn = NEXT_INSN (insn)));
        } while (insn != end && (insn = NEXT_INSN (insn)));
 
 
      reorder_insns (head, end, PREV_INSN (earliest));
      reorder_insns (head, end, PREV_INSN (earliest));
    }
    }
 
 
  /* Remove the jump and edge if we can.  */
  /* Remove the jump and edge if we can.  */
  if (other_bb == new_dest)
  if (other_bb == new_dest)
    {
    {
      delete_insn (jump);
      delete_insn (jump);
      remove_edge (BRANCH_EDGE (test_bb));
      remove_edge (BRANCH_EDGE (test_bb));
      /* ??? Can't merge blocks here, as then_bb is still in use.
      /* ??? Can't merge blocks here, as then_bb is still in use.
         At minimum, the merge will get done just before bb-reorder.  */
         At minimum, the merge will get done just before bb-reorder.  */
    }
    }
 
 
  return TRUE;
  return TRUE;
 
 
 cancel:
 cancel:
  cancel_changes (0);
  cancel_changes (0);
  return FALSE;
  return FALSE;
}
}


/* Main entry point for all if-conversion.  */
/* Main entry point for all if-conversion.  */
 
 
static void
static void
if_convert (int x_life_data_ok)
if_convert (int x_life_data_ok)
{
{
  basic_block bb;
  basic_block bb;
  int pass;
  int pass;
 
 
  num_possible_if_blocks = 0;
  num_possible_if_blocks = 0;
  num_updated_if_blocks = 0;
  num_updated_if_blocks = 0;
  num_true_changes = 0;
  num_true_changes = 0;
  life_data_ok = (x_life_data_ok != 0);
  life_data_ok = (x_life_data_ok != 0);
 
 
  if ((! targetm.cannot_modify_jumps_p ())
  if ((! targetm.cannot_modify_jumps_p ())
      && (!flag_reorder_blocks_and_partition || !no_new_pseudos
      && (!flag_reorder_blocks_and_partition || !no_new_pseudos
          || !targetm.have_named_sections))
          || !targetm.have_named_sections))
    {
    {
      struct loops loops;
      struct loops loops;
 
 
      flow_loops_find (&loops);
      flow_loops_find (&loops);
      mark_loop_exit_edges (&loops);
      mark_loop_exit_edges (&loops);
      flow_loops_free (&loops);
      flow_loops_free (&loops);
      free_dominance_info (CDI_DOMINATORS);
      free_dominance_info (CDI_DOMINATORS);
    }
    }
 
 
  /* Compute postdominators if we think we'll use them.  */
  /* Compute postdominators if we think we'll use them.  */
  if (HAVE_conditional_execution || life_data_ok)
  if (HAVE_conditional_execution || life_data_ok)
    calculate_dominance_info (CDI_POST_DOMINATORS);
    calculate_dominance_info (CDI_POST_DOMINATORS);
 
 
  if (life_data_ok)
  if (life_data_ok)
    clear_bb_flags ();
    clear_bb_flags ();
 
 
  /* Go through each of the basic blocks looking for things to convert.  If we
  /* Go through each of the basic blocks looking for things to convert.  If we
     have conditional execution, we make multiple passes to allow us to handle
     have conditional execution, we make multiple passes to allow us to handle
     IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks.  */
     IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks.  */
  pass = 0;
  pass = 0;
  do
  do
    {
    {
      cond_exec_changed_p = FALSE;
      cond_exec_changed_p = FALSE;
      pass++;
      pass++;
 
 
#ifdef IFCVT_MULTIPLE_DUMPS
#ifdef IFCVT_MULTIPLE_DUMPS
      if (dump_file && pass > 1)
      if (dump_file && pass > 1)
        fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
        fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
#endif
#endif
 
 
      FOR_EACH_BB (bb)
      FOR_EACH_BB (bb)
        {
        {
          basic_block new_bb;
          basic_block new_bb;
          while ((new_bb = find_if_header (bb, pass)))
          while ((new_bb = find_if_header (bb, pass)))
            bb = new_bb;
            bb = new_bb;
        }
        }
 
 
#ifdef IFCVT_MULTIPLE_DUMPS
#ifdef IFCVT_MULTIPLE_DUMPS
      if (dump_file && cond_exec_changed_p)
      if (dump_file && cond_exec_changed_p)
        print_rtl_with_bb (dump_file, get_insns ());
        print_rtl_with_bb (dump_file, get_insns ());
#endif
#endif
    }
    }
  while (cond_exec_changed_p);
  while (cond_exec_changed_p);
 
 
#ifdef IFCVT_MULTIPLE_DUMPS
#ifdef IFCVT_MULTIPLE_DUMPS
  if (dump_file)
  if (dump_file)
    fprintf (dump_file, "\n\n========== no more changes\n");
    fprintf (dump_file, "\n\n========== no more changes\n");
#endif
#endif
 
 
  free_dominance_info (CDI_POST_DOMINATORS);
  free_dominance_info (CDI_POST_DOMINATORS);
 
 
  if (dump_file)
  if (dump_file)
    fflush (dump_file);
    fflush (dump_file);
 
 
  clear_aux_for_blocks ();
  clear_aux_for_blocks ();
 
 
  /* Rebuild life info for basic blocks that require it.  */
  /* Rebuild life info for basic blocks that require it.  */
  if (num_true_changes && life_data_ok)
  if (num_true_changes && life_data_ok)
    {
    {
      /* If we allocated new pseudos, we must resize the array for sched1.  */
      /* If we allocated new pseudos, we must resize the array for sched1.  */
      if (max_regno < max_reg_num ())
      if (max_regno < max_reg_num ())
        {
        {
          max_regno = max_reg_num ();
          max_regno = max_reg_num ();
          allocate_reg_info (max_regno, FALSE, FALSE);
          allocate_reg_info (max_regno, FALSE, FALSE);
        }
        }
      update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
      update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
                                        PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
                                        PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
                                        | PROP_KILL_DEAD_CODE);
                                        | PROP_KILL_DEAD_CODE);
    }
    }
 
 
  /* Write the final stats.  */
  /* Write the final stats.  */
  if (dump_file && num_possible_if_blocks > 0)
  if (dump_file && num_possible_if_blocks > 0)
    {
    {
      fprintf (dump_file,
      fprintf (dump_file,
               "\n%d possible IF blocks searched.\n",
               "\n%d possible IF blocks searched.\n",
               num_possible_if_blocks);
               num_possible_if_blocks);
      fprintf (dump_file,
      fprintf (dump_file,
               "%d IF blocks converted.\n",
               "%d IF blocks converted.\n",
               num_updated_if_blocks);
               num_updated_if_blocks);
      fprintf (dump_file,
      fprintf (dump_file,
               "%d true changes made.\n\n\n",
               "%d true changes made.\n\n\n",
               num_true_changes);
               num_true_changes);
    }
    }
 
 
#ifdef ENABLE_CHECKING
#ifdef ENABLE_CHECKING
  verify_flow_info ();
  verify_flow_info ();
#endif
#endif
}
}


static bool
static bool
gate_handle_if_conversion (void)
gate_handle_if_conversion (void)
{
{
  return (optimize > 0);
  return (optimize > 0);
}
}
 
 
/* If-conversion and CFG cleanup.  */
/* If-conversion and CFG cleanup.  */
static unsigned int
static unsigned int
rest_of_handle_if_conversion (void)
rest_of_handle_if_conversion (void)
{
{
  if (flag_if_conversion)
  if (flag_if_conversion)
    {
    {
      if (dump_file)
      if (dump_file)
        dump_flow_info (dump_file, dump_flags);
        dump_flow_info (dump_file, dump_flags);
      cleanup_cfg (CLEANUP_EXPENSIVE);
      cleanup_cfg (CLEANUP_EXPENSIVE);
      reg_scan (get_insns (), max_reg_num ());
      reg_scan (get_insns (), max_reg_num ());
      if_convert (0);
      if_convert (0);
    }
    }
 
 
  timevar_push (TV_JUMP);
  timevar_push (TV_JUMP);
  cleanup_cfg (CLEANUP_EXPENSIVE);
  cleanup_cfg (CLEANUP_EXPENSIVE);
  reg_scan (get_insns (), max_reg_num ());
  reg_scan (get_insns (), max_reg_num ());
  timevar_pop (TV_JUMP);
  timevar_pop (TV_JUMP);
  return 0;
  return 0;
}
}
 
 
struct tree_opt_pass pass_rtl_ifcvt =
struct tree_opt_pass pass_rtl_ifcvt =
{
{
  "ce1",                                /* name */
  "ce1",                                /* name */
  gate_handle_if_conversion,            /* gate */
  gate_handle_if_conversion,            /* gate */
  rest_of_handle_if_conversion,         /* execute */
  rest_of_handle_if_conversion,         /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  NULL,                                 /* next */
  0,                                    /* static_pass_number */
  0,                                    /* static_pass_number */
  TV_IFCVT,                             /* tv_id */
  TV_IFCVT,                             /* tv_id */
  0,                                    /* properties_required */
  0,                                    /* properties_required */
  0,                                    /* properties_provided */
  0,                                    /* properties_provided */
  0,                                    /* properties_destroyed */
  0,                                    /* properties_destroyed */
  0,                                    /* todo_flags_start */
  0,                                    /* todo_flags_start */
  TODO_dump_func,                       /* todo_flags_finish */
  TODO_dump_func,                       /* todo_flags_finish */
  'C'                                   /* letter */
  'C'                                   /* letter */
};
};
 
 
static bool
static bool
gate_handle_if_after_combine (void)
gate_handle_if_after_combine (void)
{
{
  return (optimize > 0 && flag_if_conversion);
  return (optimize > 0 && flag_if_conversion);
}
}
 
 
 
 
/* Rerun if-conversion, as combine may have simplified things enough
/* Rerun if-conversion, as combine may have simplified things enough
   to now meet sequence length restrictions.  */
   to now meet sequence length restrictions.  */
static unsigned int
static unsigned int
rest_of_handle_if_after_combine (void)
rest_of_handle_if_after_combine (void)
{
{
  no_new_pseudos = 0;
  no_new_pseudos = 0;
  if_convert (1);
  if_convert (1);
  no_new_pseudos = 1;
  no_new_pseudos = 1;
  return 0;
  return 0;
}
}
 
 
struct tree_opt_pass pass_if_after_combine =
struct tree_opt_pass pass_if_after_combine =
{
{
  "ce2",                                /* name */
  "ce2",                                /* name */
  gate_handle_if_after_combine,         /* gate */
  gate_handle_if_after_combine,         /* gate */
  rest_of_handle_if_after_combine,      /* execute */
  rest_of_handle_if_after_combine,      /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  NULL,                                 /* next */
  0,                                    /* static_pass_number */
  0,                                    /* static_pass_number */
  TV_IFCVT,                             /* tv_id */
  TV_IFCVT,                             /* tv_id */
  0,                                    /* properties_required */
  0,                                    /* properties_required */
  0,                                    /* properties_provided */
  0,                                    /* properties_provided */
  0,                                    /* properties_destroyed */
  0,                                    /* properties_destroyed */
  0,                                    /* todo_flags_start */
  0,                                    /* todo_flags_start */
  TODO_dump_func |
  TODO_dump_func |
  TODO_ggc_collect,                     /* todo_flags_finish */
  TODO_ggc_collect,                     /* todo_flags_finish */
  'C'                                   /* letter */
  'C'                                   /* letter */
};
};
 
 
 
 
static bool
static bool
gate_handle_if_after_reload (void)
gate_handle_if_after_reload (void)
{
{
  return (optimize > 0);
  return (optimize > 0);
}
}
 
 
static unsigned int
static unsigned int
rest_of_handle_if_after_reload (void)
rest_of_handle_if_after_reload (void)
{
{
  /* Last attempt to optimize CFG, as scheduling, peepholing and insn
  /* Last attempt to optimize CFG, as scheduling, peepholing and insn
     splitting possibly introduced more crossjumping opportunities.  */
     splitting possibly introduced more crossjumping opportunities.  */
  cleanup_cfg (CLEANUP_EXPENSIVE
  cleanup_cfg (CLEANUP_EXPENSIVE
               | CLEANUP_UPDATE_LIFE
               | CLEANUP_UPDATE_LIFE
               | (flag_crossjumping ? CLEANUP_CROSSJUMP : 0));
               | (flag_crossjumping ? CLEANUP_CROSSJUMP : 0));
  if (flag_if_conversion2)
  if (flag_if_conversion2)
    if_convert (1);
    if_convert (1);
  return 0;
  return 0;
}
}
 
 
 
 
struct tree_opt_pass pass_if_after_reload =
struct tree_opt_pass pass_if_after_reload =
{
{
  "ce3",                                /* name */
  "ce3",                                /* name */
  gate_handle_if_after_reload,          /* gate */
  gate_handle_if_after_reload,          /* gate */
  rest_of_handle_if_after_reload,       /* execute */
  rest_of_handle_if_after_reload,       /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  NULL,                                 /* next */
  0,                                    /* static_pass_number */
  0,                                    /* static_pass_number */
  TV_IFCVT2,                            /* tv_id */
  TV_IFCVT2,                            /* tv_id */
  0,                                    /* properties_required */
  0,                                    /* properties_required */
  0,                                    /* properties_provided */
  0,                                    /* properties_provided */
  0,                                    /* properties_destroyed */
  0,                                    /* properties_destroyed */
  0,                                    /* todo_flags_start */
  0,                                    /* todo_flags_start */
  TODO_dump_func |
  TODO_dump_func |
  TODO_ggc_collect,                     /* todo_flags_finish */
  TODO_ggc_collect,                     /* todo_flags_finish */
  'E'                                   /* letter */
  'E'                                   /* letter */
};
};
 
 
 
 
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.