OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gcc-4.2.2/] [gcc/] [ipa-cp.c] - Diff between revs 154 and 816

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 154 Rev 816
/* Interprocedural constant propagation
/* Interprocedural constant propagation
   Copyright (C) 2005, 2007 Free Software Foundation, Inc.
   Copyright (C) 2005, 2007 Free Software Foundation, Inc.
   Contributed by Razya Ladelsky <RAZYA@il.ibm.com>
   Contributed by Razya Ladelsky <RAZYA@il.ibm.com>
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify it under
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
Software Foundation; either version 3, or (at your option) any later
version.
version.
 
 
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
/* Interprocedural constant propagation.
/* Interprocedural constant propagation.
   The aim of interprocedural constant propagation (IPCP) is to find which
   The aim of interprocedural constant propagation (IPCP) is to find which
   function's argument has the same constant value in each invocation throughout
   function's argument has the same constant value in each invocation throughout
   the whole program. For example, for an application consisting of two files,
   the whole program. For example, for an application consisting of two files,
   foo1.c, foo2.c:
   foo1.c, foo2.c:
 
 
   foo1.c contains :
   foo1.c contains :
 
 
   int f (int x)
   int f (int x)
   {
   {
     g (x);
     g (x);
   }
   }
   void main (void)
   void main (void)
   {
   {
     f (3);
     f (3);
     h (3);
     h (3);
   }
   }
 
 
   foo2.c contains :
   foo2.c contains :
 
 
   int h (int y)
   int h (int y)
   {
   {
     g (y);
     g (y);
   }
   }
   int g (int y)
   int g (int y)
   {
   {
     printf ("value is %d",y);
     printf ("value is %d",y);
   }
   }
 
 
   The IPCP algorithm will find that g's formal argument y
   The IPCP algorithm will find that g's formal argument y
   is always called with the value 3.
   is always called with the value 3.
 
 
   The algorithm used is based on "Interprocedural Constant Propagation",
   The algorithm used is based on "Interprocedural Constant Propagation",
   by Challahan David, Keith D Cooper, Ken Kennedy, Linda Torczon, Comp86,
   by Challahan David, Keith D Cooper, Ken Kennedy, Linda Torczon, Comp86,
   pg 152-161
   pg 152-161
 
 
   The optimization is divided into three stages:
   The optimization is divided into three stages:
 
 
   First stage - intraprocedural analysis
   First stage - intraprocedural analysis
   =======================================
   =======================================
   This phase computes jump_function and modify information.
   This phase computes jump_function and modify information.
 
 
   A jump function for a callsite represents the values passed as actual
   A jump function for a callsite represents the values passed as actual
   arguments
   arguments
   of the callsite. There are three types of values :
   of the callsite. There are three types of values :
   Formal - the caller's formal parameter is passed as an actual argument.
   Formal - the caller's formal parameter is passed as an actual argument.
   Constant - a constant is passed as a an actual argument.
   Constant - a constant is passed as a an actual argument.
   Unknown - neither of the above.
   Unknown - neither of the above.
 
 
   In order to compute the jump functions, we need the modify information for
   In order to compute the jump functions, we need the modify information for
   the formal parameters of methods.
   the formal parameters of methods.
 
 
   The jump function info, ipa_jump_func, is defined in ipa_edge
   The jump function info, ipa_jump_func, is defined in ipa_edge
   structure (defined in ipa_prop.h and pointed to by cgraph_node->aux)
   structure (defined in ipa_prop.h and pointed to by cgraph_node->aux)
   The modify info, ipa_modify, is defined in ipa_node structure
   The modify info, ipa_modify, is defined in ipa_node structure
   (defined in ipa_prop.h and pointed to by cgraph_edge->aux).
   (defined in ipa_prop.h and pointed to by cgraph_edge->aux).
 
 
   -ipcp_init_stage() is the first stage driver.
   -ipcp_init_stage() is the first stage driver.
 
 
   Second stage - interprocedural analysis
   Second stage - interprocedural analysis
   ========================================
   ========================================
   This phase does the interprocedural constant propagation.
   This phase does the interprocedural constant propagation.
   It computes for all formal parameters in the program
   It computes for all formal parameters in the program
   their cval value that may be:
   their cval value that may be:
   TOP - unknown.
   TOP - unknown.
   BOTTOM - non constant.
   BOTTOM - non constant.
   CONSTANT_TYPE - constant value.
   CONSTANT_TYPE - constant value.
 
 
   Cval of formal f will have a constant value if all callsites to this
   Cval of formal f will have a constant value if all callsites to this
   function have the same constant value passed to f.
   function have the same constant value passed to f.
 
 
   The cval info, ipcp_formal, is defined in ipa_node structure
   The cval info, ipcp_formal, is defined in ipa_node structure
   (defined in ipa_prop.h and pointed to by cgraph_edge->aux).
   (defined in ipa_prop.h and pointed to by cgraph_edge->aux).
 
 
   -ipcp_iterate_stage() is the second stage driver.
   -ipcp_iterate_stage() is the second stage driver.
 
 
   Third phase - transformation of methods code
   Third phase - transformation of methods code
   ============================================
   ============================================
   Propagates the constant-valued formals into the function.
   Propagates the constant-valued formals into the function.
   For each method mt, whose parameters are consts, we create a clone/version.
   For each method mt, whose parameters are consts, we create a clone/version.
 
 
   We use two ways to annotate the versioned function with the constant
   We use two ways to annotate the versioned function with the constant
   formal information:
   formal information:
   1. We insert an assignment statement 'parameter = const' at the beginning
   1. We insert an assignment statement 'parameter = const' at the beginning
   of the cloned method.
   of the cloned method.
   2. For read-only formals whose address is not taken, we replace all uses
   2. For read-only formals whose address is not taken, we replace all uses
   of the formal with the constant (we provide versioning with an
   of the formal with the constant (we provide versioning with an
   ipa_replace_map struct representing the trees we want to replace).
   ipa_replace_map struct representing the trees we want to replace).
 
 
   We also need to modify some callsites to call to the cloned methods instead
   We also need to modify some callsites to call to the cloned methods instead
   of the original ones. For a callsite passing an argument found to be a
   of the original ones. For a callsite passing an argument found to be a
   constant by IPCP, there are two different cases to handle:
   constant by IPCP, there are two different cases to handle:
   1. A constant is passed as an argument.
   1. A constant is passed as an argument.
   2. A parameter (of the caller) passed as an argument (pass through argument).
   2. A parameter (of the caller) passed as an argument (pass through argument).
 
 
   In the first case, the callsite in the original caller should be redirected
   In the first case, the callsite in the original caller should be redirected
   to call the cloned callee.
   to call the cloned callee.
   In the second case, both the caller and the callee have clones
   In the second case, both the caller and the callee have clones
   and the callsite of the cloned caller would be redirected to call to
   and the callsite of the cloned caller would be redirected to call to
   the cloned callee.
   the cloned callee.
 
 
   The callgraph is updated accordingly.
   The callgraph is updated accordingly.
 
 
   This update is done in two stages:
   This update is done in two stages:
   First all cloned methods are created during a traversal of the callgraph,
   First all cloned methods are created during a traversal of the callgraph,
   during which all callsites are redirected to call the cloned method.
   during which all callsites are redirected to call the cloned method.
   Then the callsites are traversed and updated as described above.
   Then the callsites are traversed and updated as described above.
 
 
   -ipcp_insert_stage() is the third phase driver.
   -ipcp_insert_stage() is the third phase driver.
 
 
*/
*/
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tree.h"
#include "tree.h"
#include "target.h"
#include "target.h"
#include "cgraph.h"
#include "cgraph.h"
#include "ipa-prop.h"
#include "ipa-prop.h"
#include "tree-flow.h"
#include "tree-flow.h"
#include "tree-pass.h"
#include "tree-pass.h"
#include "flags.h"
#include "flags.h"
#include "timevar.h"
#include "timevar.h"
#include "diagnostic.h"
#include "diagnostic.h"
 
 
/* Get orig node field of ipa_node associated with method MT.  */
/* Get orig node field of ipa_node associated with method MT.  */
static inline struct cgraph_node *
static inline struct cgraph_node *
ipcp_method_orig_node (struct cgraph_node *mt)
ipcp_method_orig_node (struct cgraph_node *mt)
{
{
  return IPA_NODE_REF (mt)->ipcp_orig_node;
  return IPA_NODE_REF (mt)->ipcp_orig_node;
}
}
 
 
/* Return true if NODE is a cloned/versioned method.  */
/* Return true if NODE is a cloned/versioned method.  */
static inline bool
static inline bool
ipcp_method_is_cloned (struct cgraph_node *node)
ipcp_method_is_cloned (struct cgraph_node *node)
{
{
  return (ipcp_method_orig_node (node) != NULL);
  return (ipcp_method_orig_node (node) != NULL);
}
}
 
 
/* Set ORIG_NODE in ipa_node associated with method NODE.  */
/* Set ORIG_NODE in ipa_node associated with method NODE.  */
static inline void
static inline void
ipcp_method_set_orig_node (struct cgraph_node *node,
ipcp_method_set_orig_node (struct cgraph_node *node,
                           struct cgraph_node *orig_node)
                           struct cgraph_node *orig_node)
{
{
  IPA_NODE_REF (node)->ipcp_orig_node = orig_node;
  IPA_NODE_REF (node)->ipcp_orig_node = orig_node;
}
}
 
 
/* Create ipa_node and its data structures for NEW_NODE.
/* Create ipa_node and its data structures for NEW_NODE.
   Set ORIG_NODE as the orig_node field in ipa_node.  */
   Set ORIG_NODE as the orig_node field in ipa_node.  */
static void
static void
ipcp_cloned_create (struct cgraph_node *orig_node,
ipcp_cloned_create (struct cgraph_node *orig_node,
                    struct cgraph_node *new_node)
                    struct cgraph_node *new_node)
{
{
  ipa_node_create (new_node);
  ipa_node_create (new_node);
  ipcp_method_set_orig_node (new_node, orig_node);
  ipcp_method_set_orig_node (new_node, orig_node);
  ipa_method_formal_compute_count (new_node);
  ipa_method_formal_compute_count (new_node);
  ipa_method_compute_tree_map (new_node);
  ipa_method_compute_tree_map (new_node);
}
}
 
 
/* Return cval_type field of CVAL.  */
/* Return cval_type field of CVAL.  */
static inline enum cvalue_type
static inline enum cvalue_type
ipcp_cval_get_cvalue_type (struct ipcp_formal *cval)
ipcp_cval_get_cvalue_type (struct ipcp_formal *cval)
{
{
  return cval->cval_type;
  return cval->cval_type;
}
}
 
 
/* Return scale for MT.  */
/* Return scale for MT.  */
static inline gcov_type
static inline gcov_type
ipcp_method_get_scale (struct cgraph_node *mt)
ipcp_method_get_scale (struct cgraph_node *mt)
{
{
  return IPA_NODE_REF (mt)->count_scale;
  return IPA_NODE_REF (mt)->count_scale;
}
}
 
 
/* Set COUNT as scale for MT.  */
/* Set COUNT as scale for MT.  */
static inline void
static inline void
ipcp_method_set_scale (struct cgraph_node *node, gcov_type count)
ipcp_method_set_scale (struct cgraph_node *node, gcov_type count)
{
{
  IPA_NODE_REF (node)->count_scale = count;
  IPA_NODE_REF (node)->count_scale = count;
}
}
 
 
/* Set TYPE as cval_type field of CVAL.  */
/* Set TYPE as cval_type field of CVAL.  */
static inline void
static inline void
ipcp_cval_set_cvalue_type (struct ipcp_formal *cval, enum cvalue_type type)
ipcp_cval_set_cvalue_type (struct ipcp_formal *cval, enum cvalue_type type)
{
{
  cval->cval_type = type;
  cval->cval_type = type;
}
}
 
 
/* Return cvalue field of CVAL.  */
/* Return cvalue field of CVAL.  */
static inline union parameter_info *
static inline union parameter_info *
ipcp_cval_get_cvalue (struct ipcp_formal *cval)
ipcp_cval_get_cvalue (struct ipcp_formal *cval)
{
{
  return &(cval->cvalue);
  return &(cval->cvalue);
}
}
 
 
/* Set VALUE as cvalue field  CVAL.  */
/* Set VALUE as cvalue field  CVAL.  */
static inline void
static inline void
ipcp_cval_set_cvalue (struct ipcp_formal *cval, union parameter_info *value,
ipcp_cval_set_cvalue (struct ipcp_formal *cval, union parameter_info *value,
                      enum cvalue_type type)
                      enum cvalue_type type)
{
{
  if (type == CONST_VALUE || type == CONST_VALUE_REF)
  if (type == CONST_VALUE || type == CONST_VALUE_REF)
    cval->cvalue.value =  value->value;
    cval->cvalue.value =  value->value;
}
}
 
 
/* Return whether TYPE is a constant type.  */
/* Return whether TYPE is a constant type.  */
static bool
static bool
ipcp_type_is_const (enum cvalue_type type)
ipcp_type_is_const (enum cvalue_type type)
{
{
  if (type == CONST_VALUE || type == CONST_VALUE_REF)
  if (type == CONST_VALUE || type == CONST_VALUE_REF)
    return true;
    return true;
  else
  else
    return false;
    return false;
}
}
 
 
/* Return true if CONST_VAL1 and CONST_VAL2 are equal.  */
/* Return true if CONST_VAL1 and CONST_VAL2 are equal.  */
static inline bool
static inline bool
ipcp_cval_equal_cvalues (union parameter_info *const_val1,
ipcp_cval_equal_cvalues (union parameter_info *const_val1,
                         union parameter_info *const_val2,
                         union parameter_info *const_val2,
                         enum cvalue_type type1, enum cvalue_type type2)
                         enum cvalue_type type1, enum cvalue_type type2)
{
{
  gcc_assert (ipcp_type_is_const (type1) && ipcp_type_is_const (type2));
  gcc_assert (ipcp_type_is_const (type1) && ipcp_type_is_const (type2));
  if (type1 != type2)
  if (type1 != type2)
    return false;
    return false;
 
 
  if (operand_equal_p (const_val1->value, const_val2->value, 0))
  if (operand_equal_p (const_val1->value, const_val2->value, 0))
    return true;
    return true;
 
 
  return false;
  return false;
}
}
 
 
/* Compute Meet arithmetics:
/* Compute Meet arithmetics:
   Meet (BOTTOM, x) = BOTTOM
   Meet (BOTTOM, x) = BOTTOM
   Meet (TOP,x) = x
   Meet (TOP,x) = x
   Meet (const_a,const_b) = BOTTOM,  if const_a != const_b.
   Meet (const_a,const_b) = BOTTOM,  if const_a != const_b.
   MEET (const_a,const_b) = const_a, if const_a == const_b.*/
   MEET (const_a,const_b) = const_a, if const_a == const_b.*/
static void
static void
ipcp_cval_meet (struct ipcp_formal *cval, struct ipcp_formal *cval1,
ipcp_cval_meet (struct ipcp_formal *cval, struct ipcp_formal *cval1,
                struct ipcp_formal *cval2)
                struct ipcp_formal *cval2)
{
{
  if (ipcp_cval_get_cvalue_type (cval1) == BOTTOM
  if (ipcp_cval_get_cvalue_type (cval1) == BOTTOM
      || ipcp_cval_get_cvalue_type (cval2) == BOTTOM)
      || ipcp_cval_get_cvalue_type (cval2) == BOTTOM)
    {
    {
      ipcp_cval_set_cvalue_type (cval, BOTTOM);
      ipcp_cval_set_cvalue_type (cval, BOTTOM);
      return;
      return;
    }
    }
  if (ipcp_cval_get_cvalue_type (cval1) == TOP)
  if (ipcp_cval_get_cvalue_type (cval1) == TOP)
    {
    {
      ipcp_cval_set_cvalue_type (cval, ipcp_cval_get_cvalue_type (cval2));
      ipcp_cval_set_cvalue_type (cval, ipcp_cval_get_cvalue_type (cval2));
      ipcp_cval_set_cvalue (cval, ipcp_cval_get_cvalue (cval2),
      ipcp_cval_set_cvalue (cval, ipcp_cval_get_cvalue (cval2),
                            ipcp_cval_get_cvalue_type (cval2));
                            ipcp_cval_get_cvalue_type (cval2));
      return;
      return;
    }
    }
  if (ipcp_cval_get_cvalue_type (cval2) == TOP)
  if (ipcp_cval_get_cvalue_type (cval2) == TOP)
    {
    {
      ipcp_cval_set_cvalue_type (cval, ipcp_cval_get_cvalue_type (cval1));
      ipcp_cval_set_cvalue_type (cval, ipcp_cval_get_cvalue_type (cval1));
      ipcp_cval_set_cvalue (cval, ipcp_cval_get_cvalue (cval1),
      ipcp_cval_set_cvalue (cval, ipcp_cval_get_cvalue (cval1),
                            ipcp_cval_get_cvalue_type (cval1));
                            ipcp_cval_get_cvalue_type (cval1));
      return;
      return;
    }
    }
  if (!ipcp_cval_equal_cvalues (ipcp_cval_get_cvalue (cval1),
  if (!ipcp_cval_equal_cvalues (ipcp_cval_get_cvalue (cval1),
                                ipcp_cval_get_cvalue (cval2),
                                ipcp_cval_get_cvalue (cval2),
                                ipcp_cval_get_cvalue_type (cval1),
                                ipcp_cval_get_cvalue_type (cval1),
                                ipcp_cval_get_cvalue_type (cval2)))
                                ipcp_cval_get_cvalue_type (cval2)))
    {
    {
      ipcp_cval_set_cvalue_type (cval, BOTTOM);
      ipcp_cval_set_cvalue_type (cval, BOTTOM);
      return;
      return;
    }
    }
  ipcp_cval_set_cvalue_type (cval, ipcp_cval_get_cvalue_type (cval1));
  ipcp_cval_set_cvalue_type (cval, ipcp_cval_get_cvalue_type (cval1));
  ipcp_cval_set_cvalue (cval, ipcp_cval_get_cvalue (cval1),
  ipcp_cval_set_cvalue (cval, ipcp_cval_get_cvalue (cval1),
                        ipcp_cval_get_cvalue_type (cval1));
                        ipcp_cval_get_cvalue_type (cval1));
}
}
 
 
/* Return cval structure for the formal at index INFO_TYPE in MT.  */
/* Return cval structure for the formal at index INFO_TYPE in MT.  */
static inline struct ipcp_formal *
static inline struct ipcp_formal *
ipcp_method_cval (struct cgraph_node *mt, int info_type)
ipcp_method_cval (struct cgraph_node *mt, int info_type)
{
{
  return &(IPA_NODE_REF (mt)->ipcp_cval[info_type]);
  return &(IPA_NODE_REF (mt)->ipcp_cval[info_type]);
}
}
 
 
/* Given the jump function (TYPE, INFO_TYPE), compute a new value of CVAL.
/* Given the jump function (TYPE, INFO_TYPE), compute a new value of CVAL.
   If TYPE is FORMAL_IPA_TYPE, the cval of the corresponding formal is
   If TYPE is FORMAL_IPA_TYPE, the cval of the corresponding formal is
   drawn from MT.  */
   drawn from MT.  */
static void
static void
ipcp_cval_compute (struct ipcp_formal *cval, struct cgraph_node *mt,
ipcp_cval_compute (struct ipcp_formal *cval, struct cgraph_node *mt,
                   enum jump_func_type type, union parameter_info *info_type)
                   enum jump_func_type type, union parameter_info *info_type)
{
{
  if (type == UNKNOWN_IPATYPE)
  if (type == UNKNOWN_IPATYPE)
    ipcp_cval_set_cvalue_type (cval, BOTTOM);
    ipcp_cval_set_cvalue_type (cval, BOTTOM);
  else if (type == CONST_IPATYPE)
  else if (type == CONST_IPATYPE)
    {
    {
      ipcp_cval_set_cvalue_type (cval, CONST_VALUE);
      ipcp_cval_set_cvalue_type (cval, CONST_VALUE);
      ipcp_cval_set_cvalue (cval, info_type, CONST_VALUE);
      ipcp_cval_set_cvalue (cval, info_type, CONST_VALUE);
    }
    }
  else if (type == CONST_IPATYPE_REF)
  else if (type == CONST_IPATYPE_REF)
    {
    {
      ipcp_cval_set_cvalue_type (cval, CONST_VALUE_REF);
      ipcp_cval_set_cvalue_type (cval, CONST_VALUE_REF);
      ipcp_cval_set_cvalue (cval, info_type, CONST_VALUE_REF);
      ipcp_cval_set_cvalue (cval, info_type, CONST_VALUE_REF);
    }
    }
  else if (type == FORMAL_IPATYPE)
  else if (type == FORMAL_IPATYPE)
    {
    {
      enum cvalue_type type =
      enum cvalue_type type =
        ipcp_cval_get_cvalue_type (ipcp_method_cval
        ipcp_cval_get_cvalue_type (ipcp_method_cval
                                   (mt, info_type->formal_id));
                                   (mt, info_type->formal_id));
      ipcp_cval_set_cvalue_type (cval, type);
      ipcp_cval_set_cvalue_type (cval, type);
      ipcp_cval_set_cvalue (cval,
      ipcp_cval_set_cvalue (cval,
                            ipcp_cval_get_cvalue (ipcp_method_cval
                            ipcp_cval_get_cvalue (ipcp_method_cval
                                                  (mt, info_type->formal_id)),
                                                  (mt, info_type->formal_id)),
                            type);
                            type);
    }
    }
}
}
 
 
/* True when CVAL1 and CVAL2 values are not the same.  */
/* True when CVAL1 and CVAL2 values are not the same.  */
static bool
static bool
ipcp_cval_changed (struct ipcp_formal *cval1, struct ipcp_formal *cval2)
ipcp_cval_changed (struct ipcp_formal *cval1, struct ipcp_formal *cval2)
{
{
  if (ipcp_cval_get_cvalue_type (cval1) == ipcp_cval_get_cvalue_type (cval2))
  if (ipcp_cval_get_cvalue_type (cval1) == ipcp_cval_get_cvalue_type (cval2))
    {
    {
      if (ipcp_cval_get_cvalue_type (cval1) != CONST_VALUE &&
      if (ipcp_cval_get_cvalue_type (cval1) != CONST_VALUE &&
          ipcp_cval_get_cvalue_type (cval1) != CONST_VALUE_REF)
          ipcp_cval_get_cvalue_type (cval1) != CONST_VALUE_REF)
        return false;
        return false;
      if (ipcp_cval_equal_cvalues (ipcp_cval_get_cvalue (cval1),
      if (ipcp_cval_equal_cvalues (ipcp_cval_get_cvalue (cval1),
                                   ipcp_cval_get_cvalue (cval2),
                                   ipcp_cval_get_cvalue (cval2),
                                   ipcp_cval_get_cvalue_type (cval1),
                                   ipcp_cval_get_cvalue_type (cval1),
                                   ipcp_cval_get_cvalue_type (cval2)))
                                   ipcp_cval_get_cvalue_type (cval2)))
        return false;
        return false;
    }
    }
  return true;
  return true;
}
}
 
 
/* Create cval structure for method MT.  */
/* Create cval structure for method MT.  */
static inline void
static inline void
ipcp_formal_create (struct cgraph_node *mt)
ipcp_formal_create (struct cgraph_node *mt)
{
{
  IPA_NODE_REF (mt)->ipcp_cval =
  IPA_NODE_REF (mt)->ipcp_cval =
    XCNEWVEC (struct ipcp_formal, ipa_method_formal_count (mt));
    XCNEWVEC (struct ipcp_formal, ipa_method_formal_count (mt));
}
}
 
 
/* Set cval structure of I-th formal of MT to CVAL.  */
/* Set cval structure of I-th formal of MT to CVAL.  */
static inline void
static inline void
ipcp_method_cval_set (struct cgraph_node *mt, int i, struct ipcp_formal *cval)
ipcp_method_cval_set (struct cgraph_node *mt, int i, struct ipcp_formal *cval)
{
{
  IPA_NODE_REF (mt)->ipcp_cval[i].cval_type = cval->cval_type;
  IPA_NODE_REF (mt)->ipcp_cval[i].cval_type = cval->cval_type;
  ipcp_cval_set_cvalue (ipcp_method_cval (mt, i),
  ipcp_cval_set_cvalue (ipcp_method_cval (mt, i),
                        ipcp_cval_get_cvalue (cval), cval->cval_type);
                        ipcp_cval_get_cvalue (cval), cval->cval_type);
}
}
 
 
/* Set type of cval structure of formal I of MT to CVAL_TYPE1.  */
/* Set type of cval structure of formal I of MT to CVAL_TYPE1.  */
static inline void
static inline void
ipcp_method_cval_set_cvalue_type (struct cgraph_node *mt, int i,
ipcp_method_cval_set_cvalue_type (struct cgraph_node *mt, int i,
                                  enum cvalue_type cval_type1)
                                  enum cvalue_type cval_type1)
{
{
  IPA_NODE_REF (mt)->ipcp_cval[i].cval_type = cval_type1;
  IPA_NODE_REF (mt)->ipcp_cval[i].cval_type = cval_type1;
}
}
 
 
/* Print ipcp_cval data structures to F.  */
/* Print ipcp_cval data structures to F.  */
static void
static void
ipcp_method_cval_print (FILE * f)
ipcp_method_cval_print (FILE * f)
{
{
  struct cgraph_node *node;
  struct cgraph_node *node;
  int i, count;
  int i, count;
  tree cvalue;
  tree cvalue;
 
 
  fprintf (f, "\nCVAL PRINT\n");
  fprintf (f, "\nCVAL PRINT\n");
  for (node = cgraph_nodes; node; node = node->next)
  for (node = cgraph_nodes; node; node = node->next)
    {
    {
      fprintf (f, "Printing cvals %s:\n", cgraph_node_name (node));
      fprintf (f, "Printing cvals %s:\n", cgraph_node_name (node));
      count = ipa_method_formal_count (node);
      count = ipa_method_formal_count (node);
      for (i = 0; i < count; i++)
      for (i = 0; i < count; i++)
        {
        {
          if (ipcp_cval_get_cvalue_type (ipcp_method_cval (node, i))
          if (ipcp_cval_get_cvalue_type (ipcp_method_cval (node, i))
              == CONST_VALUE
              == CONST_VALUE
              || ipcp_cval_get_cvalue_type (ipcp_method_cval (node, i)) ==
              || ipcp_cval_get_cvalue_type (ipcp_method_cval (node, i)) ==
              CONST_VALUE_REF)
              CONST_VALUE_REF)
            {
            {
              fprintf (f, " param [%d]: ", i);
              fprintf (f, " param [%d]: ", i);
              fprintf (f, "type is CONST ");
              fprintf (f, "type is CONST ");
              cvalue =
              cvalue =
                ipcp_cval_get_cvalue (ipcp_method_cval (node, i))->
                ipcp_cval_get_cvalue (ipcp_method_cval (node, i))->
                  value;
                  value;
              print_generic_expr (f, cvalue, 0);
              print_generic_expr (f, cvalue, 0);
              fprintf (f, "\n");
              fprintf (f, "\n");
            }
            }
          else if (ipcp_method_cval (node, i)->cval_type == TOP)
          else if (ipcp_method_cval (node, i)->cval_type == TOP)
            fprintf (f, "param [%d]: type is TOP  \n", i);
            fprintf (f, "param [%d]: type is TOP  \n", i);
          else
          else
            fprintf (f, "param [%d]: type is BOTTOM  \n", i);
            fprintf (f, "param [%d]: type is BOTTOM  \n", i);
        }
        }
    }
    }
}
}
 
 
/* Initialize ipcp_cval array of MT with TOP values.
/* Initialize ipcp_cval array of MT with TOP values.
   All cvals for a method's formal parameters are initialized to BOTTOM
   All cvals for a method's formal parameters are initialized to BOTTOM
   The currently supported types are integer types, real types and
   The currently supported types are integer types, real types and
   Fortran constants (i.e. references to constants defined as
   Fortran constants (i.e. references to constants defined as
   const_decls). All other types are not analyzed and therefore are
   const_decls). All other types are not analyzed and therefore are
   assigned with BOTTOM.  */
   assigned with BOTTOM.  */
static void
static void
ipcp_method_cval_init (struct cgraph_node *mt)
ipcp_method_cval_init (struct cgraph_node *mt)
{
{
  int i;
  int i;
  tree parm_tree;
  tree parm_tree;
 
 
  ipcp_formal_create (mt);
  ipcp_formal_create (mt);
  for (i = 0; i < ipa_method_formal_count (mt); i++)
  for (i = 0; i < ipa_method_formal_count (mt); i++)
    {
    {
      parm_tree = ipa_method_get_tree (mt, i);
      parm_tree = ipa_method_get_tree (mt, i);
      if (INTEGRAL_TYPE_P (TREE_TYPE (parm_tree))
      if (INTEGRAL_TYPE_P (TREE_TYPE (parm_tree))
          || SCALAR_FLOAT_TYPE_P (TREE_TYPE (parm_tree))
          || SCALAR_FLOAT_TYPE_P (TREE_TYPE (parm_tree))
          || POINTER_TYPE_P (TREE_TYPE (parm_tree)))
          || POINTER_TYPE_P (TREE_TYPE (parm_tree)))
        ipcp_method_cval_set_cvalue_type (mt, i, TOP);
        ipcp_method_cval_set_cvalue_type (mt, i, TOP);
      else
      else
        ipcp_method_cval_set_cvalue_type (mt, i, BOTTOM);
        ipcp_method_cval_set_cvalue_type (mt, i, BOTTOM);
    }
    }
}
}
 
 
/* Create a new assignment statment and make
/* Create a new assignment statment and make
   it the first statement in the function FN
   it the first statement in the function FN
   tree.
   tree.
   PARM1 is the lhs of the assignment and
   PARM1 is the lhs of the assignment and
   VAL is the rhs. */
   VAL is the rhs. */
static void
static void
constant_val_insert (tree fn, tree parm1, tree val)
constant_val_insert (tree fn, tree parm1, tree val)
{
{
  struct function *func;
  struct function *func;
  tree init_stmt;
  tree init_stmt;
  edge e_step;
  edge e_step;
  edge_iterator ei;
  edge_iterator ei;
 
 
  init_stmt = build2 (MODIFY_EXPR, void_type_node, parm1, val);
  init_stmt = build2 (MODIFY_EXPR, void_type_node, parm1, val);
  func = DECL_STRUCT_FUNCTION (fn);
  func = DECL_STRUCT_FUNCTION (fn);
  cfun = func;
  cfun = func;
  current_function_decl = fn;
  current_function_decl = fn;
  if (ENTRY_BLOCK_PTR_FOR_FUNCTION (func)->succs)
  if (ENTRY_BLOCK_PTR_FOR_FUNCTION (func)->succs)
    FOR_EACH_EDGE (e_step, ei, ENTRY_BLOCK_PTR_FOR_FUNCTION (func)->succs)
    FOR_EACH_EDGE (e_step, ei, ENTRY_BLOCK_PTR_FOR_FUNCTION (func)->succs)
      bsi_insert_on_edge_immediate (e_step, init_stmt);
      bsi_insert_on_edge_immediate (e_step, init_stmt);
}
}
 
 
/* build INTEGER_CST tree with type TREE_TYPE and
/* build INTEGER_CST tree with type TREE_TYPE and
   value according to CVALUE. Return the tree.   */
   value according to CVALUE. Return the tree.   */
static tree
static tree
build_const_val (union parameter_info *cvalue, enum cvalue_type type,
build_const_val (union parameter_info *cvalue, enum cvalue_type type,
                 tree tree_type)
                 tree tree_type)
{
{
  tree const_val = NULL;
  tree const_val = NULL;
 
 
  gcc_assert (ipcp_type_is_const (type));
  gcc_assert (ipcp_type_is_const (type));
  const_val = fold_convert (tree_type, cvalue->value);
  const_val = fold_convert (tree_type, cvalue->value);
  return const_val;
  return const_val;
}
}
 
 
/* Build the tree representing the constant and call
/* Build the tree representing the constant and call
   constant_val_insert().  */
   constant_val_insert().  */
static void
static void
ipcp_propagate_const (struct cgraph_node *mt, int param,
ipcp_propagate_const (struct cgraph_node *mt, int param,
                      union parameter_info *cvalue ,enum cvalue_type type)
                      union parameter_info *cvalue ,enum cvalue_type type)
{
{
  tree fndecl;
  tree fndecl;
  tree const_val;
  tree const_val;
  tree parm_tree;
  tree parm_tree;
 
 
  if (dump_file)
  if (dump_file)
    fprintf (dump_file, "propagating const to %s\n", cgraph_node_name (mt));
    fprintf (dump_file, "propagating const to %s\n", cgraph_node_name (mt));
  fndecl = mt->decl;
  fndecl = mt->decl;
  parm_tree = ipa_method_get_tree (mt, param);
  parm_tree = ipa_method_get_tree (mt, param);
  const_val = build_const_val (cvalue, type, TREE_TYPE (parm_tree));
  const_val = build_const_val (cvalue, type, TREE_TYPE (parm_tree));
  constant_val_insert (fndecl, parm_tree, const_val);
  constant_val_insert (fndecl, parm_tree, const_val);
}
}
 
 
/* Compute the proper scale for NODE.  It is the ratio between
/* Compute the proper scale for NODE.  It is the ratio between
   the number of direct calls (represented on the incoming
   the number of direct calls (represented on the incoming
   cgraph_edges) and sum of all invocations of NODE (represented
   cgraph_edges) and sum of all invocations of NODE (represented
   as count in cgraph_node). */
   as count in cgraph_node). */
static void
static void
ipcp_method_compute_scale (struct cgraph_node *node)
ipcp_method_compute_scale (struct cgraph_node *node)
{
{
  gcov_type sum;
  gcov_type sum;
  struct cgraph_edge *cs;
  struct cgraph_edge *cs;
 
 
  sum = 0;
  sum = 0;
  /* Compute sum of all counts of callers. */
  /* Compute sum of all counts of callers. */
  for (cs = node->callers; cs != NULL; cs = cs->next_caller)
  for (cs = node->callers; cs != NULL; cs = cs->next_caller)
    sum += cs->count;
    sum += cs->count;
  if (node->count == 0)
  if (node->count == 0)
    ipcp_method_set_scale (node, 0);
    ipcp_method_set_scale (node, 0);
  else
  else
    ipcp_method_set_scale (node, sum * REG_BR_PROB_BASE / node->count);
    ipcp_method_set_scale (node, sum * REG_BR_PROB_BASE / node->count);
}
}
 
 
/* Initialization and computation of IPCP data structures.
/* Initialization and computation of IPCP data structures.
   It is an intraprocedural
   It is an intraprocedural
   analysis of methods, which gathers information to be propagated
   analysis of methods, which gathers information to be propagated
   later on.  */
   later on.  */
static void
static void
ipcp_init_stage (void)
ipcp_init_stage (void)
{
{
  struct cgraph_node *node;
  struct cgraph_node *node;
  struct cgraph_edge *cs;
  struct cgraph_edge *cs;
 
 
  for (node = cgraph_nodes; node; node = node->next)
  for (node = cgraph_nodes; node; node = node->next)
    {
    {
      ipa_method_formal_compute_count (node);
      ipa_method_formal_compute_count (node);
      ipa_method_compute_tree_map (node);
      ipa_method_compute_tree_map (node);
      ipcp_method_cval_init (node);
      ipcp_method_cval_init (node);
      ipa_method_compute_modify (node);
      ipa_method_compute_modify (node);
      ipcp_method_compute_scale (node);
      ipcp_method_compute_scale (node);
    }
    }
  for (node = cgraph_nodes; node; node = node->next)
  for (node = cgraph_nodes; node; node = node->next)
    {
    {
      /* building jump functions  */
      /* building jump functions  */
      for (cs = node->callees; cs; cs = cs->next_callee)
      for (cs = node->callees; cs; cs = cs->next_callee)
        {
        {
          ipa_callsite_compute_count (cs);
          ipa_callsite_compute_count (cs);
          if (ipa_callsite_param_count (cs)
          if (ipa_callsite_param_count (cs)
              != ipa_method_formal_count (cs->callee))
              != ipa_method_formal_count (cs->callee))
            {
            {
              /* Handle cases of functions with
              /* Handle cases of functions with
                 a variable number of parameters.  */
                 a variable number of parameters.  */
              ipa_callsite_param_count_set (cs, 0);
              ipa_callsite_param_count_set (cs, 0);
              ipa_method_formal_count_set (cs->callee, 0);
              ipa_method_formal_count_set (cs->callee, 0);
            }
            }
          else
          else
            ipa_callsite_compute_param (cs);
            ipa_callsite_compute_param (cs);
        }
        }
    }
    }
}
}
 
 
/* Return true if there are some formal parameters whose value is TOP.
/* Return true if there are some formal parameters whose value is TOP.
   Change their values to BOTTOM, since they weren't determined.  */
   Change their values to BOTTOM, since they weren't determined.  */
static bool
static bool
ipcp_after_propagate (void)
ipcp_after_propagate (void)
{
{
  int i, count;
  int i, count;
  struct cgraph_node *node;
  struct cgraph_node *node;
  bool prop_again;
  bool prop_again;
 
 
  prop_again = false;
  prop_again = false;
  for (node = cgraph_nodes; node; node = node->next)
  for (node = cgraph_nodes; node; node = node->next)
    {
    {
      count = ipa_method_formal_count (node);
      count = ipa_method_formal_count (node);
      for (i = 0; i < count; i++)
      for (i = 0; i < count; i++)
        if (ipcp_cval_get_cvalue_type (ipcp_method_cval (node, i)) == TOP)
        if (ipcp_cval_get_cvalue_type (ipcp_method_cval (node, i)) == TOP)
          {
          {
            prop_again = true;
            prop_again = true;
            ipcp_method_cval_set_cvalue_type (node, i, BOTTOM);
            ipcp_method_cval_set_cvalue_type (node, i, BOTTOM);
          }
          }
    }
    }
  return prop_again;
  return prop_again;
}
}
 
 
/* Interprocedural analysis. The algorithm propagates constants from
/* Interprocedural analysis. The algorithm propagates constants from
   the caller's parameters to the callee's arguments.  */
   the caller's parameters to the callee's arguments.  */
static void
static void
ipcp_propagate_stage (void)
ipcp_propagate_stage (void)
{
{
  int i;
  int i;
  struct ipcp_formal cval1 = { 0, {0} }, cval = { 0,{0} };
  struct ipcp_formal cval1 = { 0, {0} }, cval = { 0,{0} };
  struct ipcp_formal *cval2;
  struct ipcp_formal *cval2;
  struct cgraph_node *mt, *callee;
  struct cgraph_node *mt, *callee;
  struct cgraph_edge *cs;
  struct cgraph_edge *cs;
  struct ipa_jump_func *jump_func;
  struct ipa_jump_func *jump_func;
  enum jump_func_type type;
  enum jump_func_type type;
  union parameter_info *info_type;
  union parameter_info *info_type;
  ipa_methodlist_p wl;
  ipa_methodlist_p wl;
  int count;
  int count;
 
 
  /* Initialize worklist to contain all methods.  */
  /* Initialize worklist to contain all methods.  */
  wl = ipa_methodlist_init ();
  wl = ipa_methodlist_init ();
  while (ipa_methodlist_not_empty (wl))
  while (ipa_methodlist_not_empty (wl))
    {
    {
      mt = ipa_remove_method (&wl);
      mt = ipa_remove_method (&wl);
      for (cs = mt->callees; cs; cs = cs->next_callee)
      for (cs = mt->callees; cs; cs = cs->next_callee)
        {
        {
          callee = ipa_callsite_callee (cs);
          callee = ipa_callsite_callee (cs);
          count = ipa_callsite_param_count (cs);
          count = ipa_callsite_param_count (cs);
          for (i = 0; i < count; i++)
          for (i = 0; i < count; i++)
            {
            {
              jump_func = ipa_callsite_param (cs, i);
              jump_func = ipa_callsite_param (cs, i);
              type = get_type (jump_func);
              type = get_type (jump_func);
              info_type = ipa_jf_get_info_type (jump_func);
              info_type = ipa_jf_get_info_type (jump_func);
              ipcp_cval_compute (&cval1, mt, type, info_type);
              ipcp_cval_compute (&cval1, mt, type, info_type);
              cval2 = ipcp_method_cval (callee, i);
              cval2 = ipcp_method_cval (callee, i);
              ipcp_cval_meet (&cval, &cval1, cval2);
              ipcp_cval_meet (&cval, &cval1, cval2);
              if (ipcp_cval_changed (&cval, cval2))
              if (ipcp_cval_changed (&cval, cval2))
                {
                {
                  ipcp_method_cval_set (callee, i, &cval);
                  ipcp_method_cval_set (callee, i, &cval);
                  ipa_add_method (&wl, callee);
                  ipa_add_method (&wl, callee);
                }
                }
            }
            }
        }
        }
    }
    }
}
}
 
 
/* Call the constant propagation algorithm and re-call it if necessary
/* Call the constant propagation algorithm and re-call it if necessary
   (if there are undetermined values left).  */
   (if there are undetermined values left).  */
static void
static void
ipcp_iterate_stage (void)
ipcp_iterate_stage (void)
{
{
  ipcp_propagate_stage ();
  ipcp_propagate_stage ();
  if (ipcp_after_propagate ())
  if (ipcp_after_propagate ())
    /* Some cvals have changed from TOP to BOTTOM.
    /* Some cvals have changed from TOP to BOTTOM.
       This change should be propagated.  */
       This change should be propagated.  */
    ipcp_propagate_stage ();
    ipcp_propagate_stage ();
}
}
 
 
/* Check conditions to forbid constant insertion to MT.  */
/* Check conditions to forbid constant insertion to MT.  */
static bool
static bool
ipcp_method_dont_insert_const (struct cgraph_node *mt)
ipcp_method_dont_insert_const (struct cgraph_node *mt)
{
{
  /* ??? Handle pending sizes case.  */
  /* ??? Handle pending sizes case.  */
  if (DECL_UNINLINABLE (mt->decl))
  if (DECL_UNINLINABLE (mt->decl))
    return true;
    return true;
  return false;
  return false;
}
}
 
 
/* Print ipa_jump_func data structures to F.  */
/* Print ipa_jump_func data structures to F.  */
static void
static void
ipcp_callsite_param_print (FILE * f)
ipcp_callsite_param_print (FILE * f)
{
{
  struct cgraph_node *node;
  struct cgraph_node *node;
  int i, count;
  int i, count;
  struct cgraph_edge *cs;
  struct cgraph_edge *cs;
  struct ipa_jump_func *jump_func;
  struct ipa_jump_func *jump_func;
  enum jump_func_type type;
  enum jump_func_type type;
  tree info_type;
  tree info_type;
 
 
  fprintf (f, "\nCALLSITE PARAM PRINT\n");
  fprintf (f, "\nCALLSITE PARAM PRINT\n");
  for (node = cgraph_nodes; node; node = node->next)
  for (node = cgraph_nodes; node; node = node->next)
    {
    {
      for (cs = node->callees; cs; cs = cs->next_callee)
      for (cs = node->callees; cs; cs = cs->next_callee)
        {
        {
          fprintf (f, "callsite  %s ", cgraph_node_name (node));
          fprintf (f, "callsite  %s ", cgraph_node_name (node));
          fprintf (f, "-> %s :: \n", cgraph_node_name (cs->callee));
          fprintf (f, "-> %s :: \n", cgraph_node_name (cs->callee));
          count = ipa_callsite_param_count (cs);
          count = ipa_callsite_param_count (cs);
          for (i = 0; i < count; i++)
          for (i = 0; i < count; i++)
            {
            {
              jump_func = ipa_callsite_param (cs, i);
              jump_func = ipa_callsite_param (cs, i);
              type = get_type (jump_func);
              type = get_type (jump_func);
 
 
              fprintf (f, " param %d: ", i);
              fprintf (f, " param %d: ", i);
              if (type == UNKNOWN_IPATYPE)
              if (type == UNKNOWN_IPATYPE)
                fprintf (f, "UNKNOWN\n");
                fprintf (f, "UNKNOWN\n");
              else if (type == CONST_IPATYPE || type == CONST_IPATYPE_REF)
              else if (type == CONST_IPATYPE || type == CONST_IPATYPE_REF)
                {
                {
                  info_type =
                  info_type =
                    ipa_jf_get_info_type (jump_func)->value;
                    ipa_jf_get_info_type (jump_func)->value;
                  fprintf (f, "CONST : ");
                  fprintf (f, "CONST : ");
                  print_generic_expr (f, info_type, 0);
                  print_generic_expr (f, info_type, 0);
                  fprintf (f, "\n");
                  fprintf (f, "\n");
                }
                }
              else if (type == FORMAL_IPATYPE)
              else if (type == FORMAL_IPATYPE)
                {
                {
                  fprintf (f, "FORMAL : ");
                  fprintf (f, "FORMAL : ");
                  fprintf (f, "%d\n",
                  fprintf (f, "%d\n",
                           ipa_jf_get_info_type (jump_func)->formal_id);
                           ipa_jf_get_info_type (jump_func)->formal_id);
                }
                }
            }
            }
        }
        }
    }
    }
}
}
 
 
/* Print count scale data structures.  */
/* Print count scale data structures.  */
static void
static void
ipcp_method_scale_print (FILE * f)
ipcp_method_scale_print (FILE * f)
{
{
  struct cgraph_node *node;
  struct cgraph_node *node;
 
 
  for (node = cgraph_nodes; node; node = node->next)
  for (node = cgraph_nodes; node; node = node->next)
    {
    {
      fprintf (f, "printing scale for %s: ", cgraph_node_name (node));
      fprintf (f, "printing scale for %s: ", cgraph_node_name (node));
      fprintf (f, "value is  " HOST_WIDE_INT_PRINT_DEC
      fprintf (f, "value is  " HOST_WIDE_INT_PRINT_DEC
               "  \n", (HOST_WIDE_INT) ipcp_method_get_scale (node));
               "  \n", (HOST_WIDE_INT) ipcp_method_get_scale (node));
    }
    }
}
}
 
 
/* Print counts of all cgraph nodes.  */
/* Print counts of all cgraph nodes.  */
static void
static void
ipcp_profile_mt_count_print (FILE * f)
ipcp_profile_mt_count_print (FILE * f)
{
{
  struct cgraph_node *node;
  struct cgraph_node *node;
 
 
  for (node = cgraph_nodes; node; node = node->next)
  for (node = cgraph_nodes; node; node = node->next)
    {
    {
      fprintf (f, "method %s: ", cgraph_node_name (node));
      fprintf (f, "method %s: ", cgraph_node_name (node));
      fprintf (f, "count is  " HOST_WIDE_INT_PRINT_DEC
      fprintf (f, "count is  " HOST_WIDE_INT_PRINT_DEC
               "  \n", (HOST_WIDE_INT) node->count);
               "  \n", (HOST_WIDE_INT) node->count);
    }
    }
}
}
 
 
/* Print counts of all cgraph edges.  */
/* Print counts of all cgraph edges.  */
static void
static void
ipcp_profile_cs_count_print (FILE * f)
ipcp_profile_cs_count_print (FILE * f)
{
{
  struct cgraph_node *node;
  struct cgraph_node *node;
  struct cgraph_edge *cs;
  struct cgraph_edge *cs;
 
 
  for (node = cgraph_nodes; node; node = node->next)
  for (node = cgraph_nodes; node; node = node->next)
    {
    {
      for (cs = node->callees; cs; cs = cs->next_callee)
      for (cs = node->callees; cs; cs = cs->next_callee)
        {
        {
          fprintf (f, "%s -> %s ", cgraph_node_name (cs->caller),
          fprintf (f, "%s -> %s ", cgraph_node_name (cs->caller),
                   cgraph_node_name (cs->callee));
                   cgraph_node_name (cs->callee));
          fprintf (f, "count is  " HOST_WIDE_INT_PRINT_DEC "  \n",
          fprintf (f, "count is  " HOST_WIDE_INT_PRINT_DEC "  \n",
                   (HOST_WIDE_INT) cs->count);
                   (HOST_WIDE_INT) cs->count);
        }
        }
    }
    }
}
}
 
 
/* Print all counts and probabilities of cfg edges of all methods.  */
/* Print all counts and probabilities of cfg edges of all methods.  */
static void
static void
ipcp_profile_edge_print (FILE * f)
ipcp_profile_edge_print (FILE * f)
{
{
  struct cgraph_node *node;
  struct cgraph_node *node;
  basic_block bb;
  basic_block bb;
  edge_iterator ei;
  edge_iterator ei;
  edge e;
  edge e;
 
 
  for (node = cgraph_nodes; node; node = node->next)
  for (node = cgraph_nodes; node; node = node->next)
    {
    {
      fprintf (f, "method %s: \n", cgraph_node_name (node));
      fprintf (f, "method %s: \n", cgraph_node_name (node));
      if (DECL_SAVED_TREE (node->decl))
      if (DECL_SAVED_TREE (node->decl))
        {
        {
          bb =
          bb =
            ENTRY_BLOCK_PTR_FOR_FUNCTION (DECL_STRUCT_FUNCTION (node->decl));
            ENTRY_BLOCK_PTR_FOR_FUNCTION (DECL_STRUCT_FUNCTION (node->decl));
          fprintf (f, "ENTRY: ");
          fprintf (f, "ENTRY: ");
          fprintf (f, " " HOST_WIDE_INT_PRINT_DEC
          fprintf (f, " " HOST_WIDE_INT_PRINT_DEC
                   " %d\n", (HOST_WIDE_INT) bb->count, bb->frequency);
                   " %d\n", (HOST_WIDE_INT) bb->count, bb->frequency);
 
 
          if (bb->succs)
          if (bb->succs)
            FOR_EACH_EDGE (e, ei, bb->succs)
            FOR_EACH_EDGE (e, ei, bb->succs)
            {
            {
              if (e->dest ==
              if (e->dest ==
                  EXIT_BLOCK_PTR_FOR_FUNCTION (DECL_STRUCT_FUNCTION
                  EXIT_BLOCK_PTR_FOR_FUNCTION (DECL_STRUCT_FUNCTION
                                               (node->decl)))
                                               (node->decl)))
                fprintf (f, "edge ENTRY -> EXIT,  Count");
                fprintf (f, "edge ENTRY -> EXIT,  Count");
              else
              else
                fprintf (f, "edge ENTRY -> %d,  Count", e->dest->index);
                fprintf (f, "edge ENTRY -> %d,  Count", e->dest->index);
              fprintf (f, " " HOST_WIDE_INT_PRINT_DEC
              fprintf (f, " " HOST_WIDE_INT_PRINT_DEC
                       " Prob %d\n", (HOST_WIDE_INT) e->count,
                       " Prob %d\n", (HOST_WIDE_INT) e->count,
                       e->probability);
                       e->probability);
            }
            }
          FOR_EACH_BB_FN (bb, DECL_STRUCT_FUNCTION (node->decl))
          FOR_EACH_BB_FN (bb, DECL_STRUCT_FUNCTION (node->decl))
          {
          {
            fprintf (f, "bb[%d]: ", bb->index);
            fprintf (f, "bb[%d]: ", bb->index);
            fprintf (f, " " HOST_WIDE_INT_PRINT_DEC
            fprintf (f, " " HOST_WIDE_INT_PRINT_DEC
                     " %d\n", (HOST_WIDE_INT) bb->count, bb->frequency);
                     " %d\n", (HOST_WIDE_INT) bb->count, bb->frequency);
            FOR_EACH_EDGE (e, ei, bb->succs)
            FOR_EACH_EDGE (e, ei, bb->succs)
            {
            {
              if (e->dest ==
              if (e->dest ==
                  EXIT_BLOCK_PTR_FOR_FUNCTION (DECL_STRUCT_FUNCTION
                  EXIT_BLOCK_PTR_FOR_FUNCTION (DECL_STRUCT_FUNCTION
                                               (node->decl)))
                                               (node->decl)))
                fprintf (f, "edge %d -> EXIT,  Count", e->src->index);
                fprintf (f, "edge %d -> EXIT,  Count", e->src->index);
              else
              else
                fprintf (f, "edge %d -> %d,  Count", e->src->index,
                fprintf (f, "edge %d -> %d,  Count", e->src->index,
                         e->dest->index);
                         e->dest->index);
              fprintf (f, " " HOST_WIDE_INT_PRINT_DEC " Prob %d\n",
              fprintf (f, " " HOST_WIDE_INT_PRINT_DEC " Prob %d\n",
                       (HOST_WIDE_INT) e->count, e->probability);
                       (HOST_WIDE_INT) e->count, e->probability);
            }
            }
          }
          }
        }
        }
    }
    }
}
}
 
 
/* Print counts and frequencies for all basic blocks of all methods.  */
/* Print counts and frequencies for all basic blocks of all methods.  */
static void
static void
ipcp_profile_bb_print (FILE * f)
ipcp_profile_bb_print (FILE * f)
{
{
  basic_block bb;
  basic_block bb;
  struct cgraph_node *node;
  struct cgraph_node *node;
 
 
  for (node = cgraph_nodes; node; node = node->next)
  for (node = cgraph_nodes; node; node = node->next)
    {
    {
      fprintf (f, "method %s: \n", cgraph_node_name (node));
      fprintf (f, "method %s: \n", cgraph_node_name (node));
      if (DECL_SAVED_TREE (node->decl))
      if (DECL_SAVED_TREE (node->decl))
        {
        {
          bb =
          bb =
            ENTRY_BLOCK_PTR_FOR_FUNCTION (DECL_STRUCT_FUNCTION (node->decl));
            ENTRY_BLOCK_PTR_FOR_FUNCTION (DECL_STRUCT_FUNCTION (node->decl));
          fprintf (f, "ENTRY: Count");
          fprintf (f, "ENTRY: Count");
          fprintf (f, " " HOST_WIDE_INT_PRINT_DEC
          fprintf (f, " " HOST_WIDE_INT_PRINT_DEC
                   " Frquency  %d\n", (HOST_WIDE_INT) bb->count,
                   " Frquency  %d\n", (HOST_WIDE_INT) bb->count,
                   bb->frequency);
                   bb->frequency);
 
 
          FOR_EACH_BB_FN (bb, DECL_STRUCT_FUNCTION (node->decl))
          FOR_EACH_BB_FN (bb, DECL_STRUCT_FUNCTION (node->decl))
          {
          {
            fprintf (f, "bb[%d]: Count", bb->index);
            fprintf (f, "bb[%d]: Count", bb->index);
            fprintf (f, " " HOST_WIDE_INT_PRINT_DEC
            fprintf (f, " " HOST_WIDE_INT_PRINT_DEC
                     " Frequency %d\n", (HOST_WIDE_INT) bb->count,
                     " Frequency %d\n", (HOST_WIDE_INT) bb->count,
                     bb->frequency);
                     bb->frequency);
          }
          }
          bb =
          bb =
            EXIT_BLOCK_PTR_FOR_FUNCTION (DECL_STRUCT_FUNCTION (node->decl));
            EXIT_BLOCK_PTR_FOR_FUNCTION (DECL_STRUCT_FUNCTION (node->decl));
          fprintf (f, "EXIT: Count");
          fprintf (f, "EXIT: Count");
          fprintf (f, " " HOST_WIDE_INT_PRINT_DEC
          fprintf (f, " " HOST_WIDE_INT_PRINT_DEC
                   " Frequency %d\n", (HOST_WIDE_INT) bb->count,
                   " Frequency %d\n", (HOST_WIDE_INT) bb->count,
                   bb->frequency);
                   bb->frequency);
 
 
        }
        }
    }
    }
}
}
 
 
/* Print all IPCP data structures to F.  */
/* Print all IPCP data structures to F.  */
static void
static void
ipcp_structures_print (FILE * f)
ipcp_structures_print (FILE * f)
{
{
  ipcp_method_cval_print (f);
  ipcp_method_cval_print (f);
  ipcp_method_scale_print (f);
  ipcp_method_scale_print (f);
  ipa_method_tree_print (f);
  ipa_method_tree_print (f);
  ipa_method_modify_print (f);
  ipa_method_modify_print (f);
  ipcp_callsite_param_print (f);
  ipcp_callsite_param_print (f);
}
}
 
 
/* Print profile info for all methods.  */
/* Print profile info for all methods.  */
static void
static void
ipcp_profile_print (FILE * f)
ipcp_profile_print (FILE * f)
{
{
  fprintf (f, "\nNODE COUNTS :\n");
  fprintf (f, "\nNODE COUNTS :\n");
  ipcp_profile_mt_count_print (f);
  ipcp_profile_mt_count_print (f);
  fprintf (f, "\nCS COUNTS stage:\n");
  fprintf (f, "\nCS COUNTS stage:\n");
  ipcp_profile_cs_count_print (f);
  ipcp_profile_cs_count_print (f);
  fprintf (f, "\nBB COUNTS and FREQUENCIES :\n");
  fprintf (f, "\nBB COUNTS and FREQUENCIES :\n");
  ipcp_profile_bb_print (f);
  ipcp_profile_bb_print (f);
  fprintf (f, "\nCFG EDGES COUNTS and PROBABILITIES :\n");
  fprintf (f, "\nCFG EDGES COUNTS and PROBABILITIES :\n");
  ipcp_profile_edge_print (f);
  ipcp_profile_edge_print (f);
}
}
 
 
/* Build and initialize ipa_replace_map struct
/* Build and initialize ipa_replace_map struct
   according to TYPE. This struct is read by versioning, which
   according to TYPE. This struct is read by versioning, which
   operates according to the flags sent.  PARM_TREE is the
   operates according to the flags sent.  PARM_TREE is the
   formal's tree found to be constant.  CVALUE represents the constant.  */
   formal's tree found to be constant.  CVALUE represents the constant.  */
static struct ipa_replace_map *
static struct ipa_replace_map *
ipcp_replace_map_create (enum cvalue_type type, tree parm_tree,
ipcp_replace_map_create (enum cvalue_type type, tree parm_tree,
                         union parameter_info *cvalue)
                         union parameter_info *cvalue)
{
{
  struct ipa_replace_map *replace_map;
  struct ipa_replace_map *replace_map;
  tree const_val;
  tree const_val;
 
 
  replace_map = XCNEW (struct ipa_replace_map);
  replace_map = XCNEW (struct ipa_replace_map);
  gcc_assert (ipcp_type_is_const (type));
  gcc_assert (ipcp_type_is_const (type));
  if (type == CONST_VALUE_REF )
  if (type == CONST_VALUE_REF )
    {
    {
      const_val =
      const_val =
        build_const_val (cvalue, type, TREE_TYPE (TREE_TYPE (parm_tree)));
        build_const_val (cvalue, type, TREE_TYPE (TREE_TYPE (parm_tree)));
      replace_map->old_tree = parm_tree;
      replace_map->old_tree = parm_tree;
      replace_map->new_tree = const_val;
      replace_map->new_tree = const_val;
      replace_map->replace_p = true;
      replace_map->replace_p = true;
      replace_map->ref_p = true;
      replace_map->ref_p = true;
    }
    }
  else if (TREE_READONLY (parm_tree) && !TREE_ADDRESSABLE (parm_tree))
  else if (TREE_READONLY (parm_tree) && !TREE_ADDRESSABLE (parm_tree))
    {
    {
      const_val = build_const_val (cvalue, type, TREE_TYPE (parm_tree));
      const_val = build_const_val (cvalue, type, TREE_TYPE (parm_tree));
      replace_map->old_tree = parm_tree;
      replace_map->old_tree = parm_tree;
      replace_map->new_tree = const_val;
      replace_map->new_tree = const_val;
      replace_map->replace_p = true;
      replace_map->replace_p = true;
      replace_map->ref_p = false;
      replace_map->ref_p = false;
    }
    }
  else
  else
    {
    {
      replace_map->old_tree = NULL;
      replace_map->old_tree = NULL;
      replace_map->new_tree = NULL;
      replace_map->new_tree = NULL;
      replace_map->replace_p = false;
      replace_map->replace_p = false;
      replace_map->ref_p = false;
      replace_map->ref_p = false;
    }
    }
 
 
  return replace_map;
  return replace_map;
}
}
 
 
/* Return true if this callsite should be redirected to
/* Return true if this callsite should be redirected to
   the orig callee (instead of the cloned one).  */
   the orig callee (instead of the cloned one).  */
static bool
static bool
ipcp_redirect (struct cgraph_edge *cs)
ipcp_redirect (struct cgraph_edge *cs)
{
{
  struct cgraph_node *caller, *callee, *orig_callee;
  struct cgraph_node *caller, *callee, *orig_callee;
  int i, count;
  int i, count;
  struct ipa_jump_func *jump_func;
  struct ipa_jump_func *jump_func;
  enum jump_func_type type;
  enum jump_func_type type;
  enum cvalue_type cval_type;
  enum cvalue_type cval_type;
 
 
  caller = cs->caller;
  caller = cs->caller;
  callee = cs->callee;
  callee = cs->callee;
  orig_callee = ipcp_method_orig_node (callee);
  orig_callee = ipcp_method_orig_node (callee);
  count = ipa_method_formal_count (orig_callee);
  count = ipa_method_formal_count (orig_callee);
  for (i = 0; i < count; i++)
  for (i = 0; i < count; i++)
    {
    {
      cval_type =
      cval_type =
        ipcp_cval_get_cvalue_type (ipcp_method_cval (orig_callee, i));
        ipcp_cval_get_cvalue_type (ipcp_method_cval (orig_callee, i));
      if (ipcp_type_is_const (cval_type))
      if (ipcp_type_is_const (cval_type))
        {
        {
          jump_func = ipa_callsite_param (cs, i);
          jump_func = ipa_callsite_param (cs, i);
          type = get_type (jump_func);
          type = get_type (jump_func);
          if (type != CONST_IPATYPE
          if (type != CONST_IPATYPE
              && type != CONST_IPATYPE_REF)
              && type != CONST_IPATYPE_REF)
            return true;
            return true;
        }
        }
    }
    }
 
 
  return false;
  return false;
}
}
 
 
/* Fix the callsites and the callgraph after function cloning was done.  */
/* Fix the callsites and the callgraph after function cloning was done.  */
static void
static void
ipcp_update_callgraph (void)
ipcp_update_callgraph (void)
{
{
  struct cgraph_node *node, *orig_callee;
  struct cgraph_node *node, *orig_callee;
  struct cgraph_edge *cs;
  struct cgraph_edge *cs;
 
 
  for (node = cgraph_nodes; node; node = node->next)
  for (node = cgraph_nodes; node; node = node->next)
    {
    {
      /* want to fix only original nodes  */
      /* want to fix only original nodes  */
      if (ipcp_method_is_cloned (node))
      if (ipcp_method_is_cloned (node))
        continue;
        continue;
      for (cs = node->callees; cs; cs = cs->next_callee)
      for (cs = node->callees; cs; cs = cs->next_callee)
        if (ipcp_method_is_cloned (cs->callee))
        if (ipcp_method_is_cloned (cs->callee))
          {
          {
            /* Callee is a cloned node  */
            /* Callee is a cloned node  */
            orig_callee = ipcp_method_orig_node (cs->callee);
            orig_callee = ipcp_method_orig_node (cs->callee);
            if (ipcp_redirect (cs))
            if (ipcp_redirect (cs))
              {
              {
                cgraph_redirect_edge_callee (cs, orig_callee);
                cgraph_redirect_edge_callee (cs, orig_callee);
                TREE_OPERAND (TREE_OPERAND
                TREE_OPERAND (TREE_OPERAND
                              (get_call_expr_in (cs->call_stmt), 0), 0) =
                              (get_call_expr_in (cs->call_stmt), 0), 0) =
                  orig_callee->decl;
                  orig_callee->decl;
              }
              }
          }
          }
    }
    }
}
}
 
 
/* Update all cfg basic blocks in NODE according to SCALE.  */
/* Update all cfg basic blocks in NODE according to SCALE.  */
static void
static void
ipcp_update_bb_counts (struct cgraph_node *node, gcov_type scale)
ipcp_update_bb_counts (struct cgraph_node *node, gcov_type scale)
{
{
  basic_block bb;
  basic_block bb;
 
 
  FOR_ALL_BB_FN (bb, DECL_STRUCT_FUNCTION (node->decl))
  FOR_ALL_BB_FN (bb, DECL_STRUCT_FUNCTION (node->decl))
    bb->count = bb->count * scale / REG_BR_PROB_BASE;
    bb->count = bb->count * scale / REG_BR_PROB_BASE;
}
}
 
 
/* Update all cfg edges in NODE according to SCALE.  */
/* Update all cfg edges in NODE according to SCALE.  */
static void
static void
ipcp_update_edges_counts (struct cgraph_node *node, gcov_type scale)
ipcp_update_edges_counts (struct cgraph_node *node, gcov_type scale)
{
{
  basic_block bb;
  basic_block bb;
  edge_iterator ei;
  edge_iterator ei;
  edge e;
  edge e;
 
 
  FOR_ALL_BB_FN (bb, DECL_STRUCT_FUNCTION (node->decl))
  FOR_ALL_BB_FN (bb, DECL_STRUCT_FUNCTION (node->decl))
    FOR_EACH_EDGE (e, ei, bb->succs)
    FOR_EACH_EDGE (e, ei, bb->succs)
    e->count = e->count * scale / REG_BR_PROB_BASE;
    e->count = e->count * scale / REG_BR_PROB_BASE;
}
}
 
 
/* Update profiling info for versioned methods and the
/* Update profiling info for versioned methods and the
   methods they were versioned from.  */
   methods they were versioned from.  */
static void
static void
ipcp_update_profiling (void)
ipcp_update_profiling (void)
{
{
  struct cgraph_node *node, *orig_node;
  struct cgraph_node *node, *orig_node;
  gcov_type scale, scale_complement;
  gcov_type scale, scale_complement;
  struct cgraph_edge *cs;
  struct cgraph_edge *cs;
 
 
  for (node = cgraph_nodes; node; node = node->next)
  for (node = cgraph_nodes; node; node = node->next)
    {
    {
      if (ipcp_method_is_cloned (node))
      if (ipcp_method_is_cloned (node))
        {
        {
          orig_node = ipcp_method_orig_node (node);
          orig_node = ipcp_method_orig_node (node);
          scale = ipcp_method_get_scale (orig_node);
          scale = ipcp_method_get_scale (orig_node);
          node->count = orig_node->count * scale / REG_BR_PROB_BASE;
          node->count = orig_node->count * scale / REG_BR_PROB_BASE;
          scale_complement = REG_BR_PROB_BASE - scale;
          scale_complement = REG_BR_PROB_BASE - scale;
          orig_node->count =
          orig_node->count =
            orig_node->count * scale_complement / REG_BR_PROB_BASE;
            orig_node->count * scale_complement / REG_BR_PROB_BASE;
          for (cs = node->callees; cs; cs = cs->next_callee)
          for (cs = node->callees; cs; cs = cs->next_callee)
            cs->count = cs->count * scale / REG_BR_PROB_BASE;
            cs->count = cs->count * scale / REG_BR_PROB_BASE;
          for (cs = orig_node->callees; cs; cs = cs->next_callee)
          for (cs = orig_node->callees; cs; cs = cs->next_callee)
            cs->count = cs->count * scale_complement / REG_BR_PROB_BASE;
            cs->count = cs->count * scale_complement / REG_BR_PROB_BASE;
          ipcp_update_bb_counts (node, scale);
          ipcp_update_bb_counts (node, scale);
          ipcp_update_bb_counts (orig_node, scale_complement);
          ipcp_update_bb_counts (orig_node, scale_complement);
          ipcp_update_edges_counts (node, scale);
          ipcp_update_edges_counts (node, scale);
          ipcp_update_edges_counts (orig_node, scale_complement);
          ipcp_update_edges_counts (orig_node, scale_complement);
        }
        }
    }
    }
}
}
 
 
/* Propagate the constant parameters found by ipcp_iterate_stage()
/* Propagate the constant parameters found by ipcp_iterate_stage()
   to the function's code.  */
   to the function's code.  */
static void
static void
ipcp_insert_stage (void)
ipcp_insert_stage (void)
{
{
  struct cgraph_node *node, *node1 = NULL;
  struct cgraph_node *node, *node1 = NULL;
  int i, const_param;
  int i, const_param;
  union parameter_info *cvalue;
  union parameter_info *cvalue;
  VEC(cgraph_edge_p,heap) *redirect_callers;
  VEC(cgraph_edge_p,heap) *redirect_callers;
  varray_type replace_trees;
  varray_type replace_trees;
  struct cgraph_edge *cs;
  struct cgraph_edge *cs;
  int node_callers, count;
  int node_callers, count;
  tree parm_tree;
  tree parm_tree;
  enum cvalue_type type;
  enum cvalue_type type;
  struct ipa_replace_map *replace_param;
  struct ipa_replace_map *replace_param;
 
 
  for (node = cgraph_nodes; node; node = node->next)
  for (node = cgraph_nodes; node; node = node->next)
    {
    {
      /* Propagation of the constant is forbidden in
      /* Propagation of the constant is forbidden in
         certain conditions.  */
         certain conditions.  */
      if (ipcp_method_dont_insert_const (node))
      if (ipcp_method_dont_insert_const (node))
        continue;
        continue;
      const_param = 0;
      const_param = 0;
      count = ipa_method_formal_count (node);
      count = ipa_method_formal_count (node);
      for (i = 0; i < count; i++)
      for (i = 0; i < count; i++)
        {
        {
          type = ipcp_cval_get_cvalue_type (ipcp_method_cval (node, i));
          type = ipcp_cval_get_cvalue_type (ipcp_method_cval (node, i));
          if (ipcp_type_is_const (type))
          if (ipcp_type_is_const (type))
            const_param++;
            const_param++;
        }
        }
      if (const_param == 0)
      if (const_param == 0)
        continue;
        continue;
      VARRAY_GENERIC_PTR_INIT (replace_trees, const_param, "replace_trees");
      VARRAY_GENERIC_PTR_INIT (replace_trees, const_param, "replace_trees");
      for (i = 0; i < count; i++)
      for (i = 0; i < count; i++)
        {
        {
          type = ipcp_cval_get_cvalue_type (ipcp_method_cval (node, i));
          type = ipcp_cval_get_cvalue_type (ipcp_method_cval (node, i));
          if (ipcp_type_is_const (type))
          if (ipcp_type_is_const (type))
            {
            {
              cvalue = ipcp_cval_get_cvalue (ipcp_method_cval (node, i));
              cvalue = ipcp_cval_get_cvalue (ipcp_method_cval (node, i));
              parm_tree = ipa_method_get_tree (node, i);
              parm_tree = ipa_method_get_tree (node, i);
              replace_param =
              replace_param =
                ipcp_replace_map_create (type, parm_tree, cvalue);
                ipcp_replace_map_create (type, parm_tree, cvalue);
              VARRAY_PUSH_GENERIC_PTR (replace_trees, replace_param);
              VARRAY_PUSH_GENERIC_PTR (replace_trees, replace_param);
            }
            }
        }
        }
      /* Compute how many callers node has.  */
      /* Compute how many callers node has.  */
      node_callers = 0;
      node_callers = 0;
      for (cs = node->callers; cs != NULL; cs = cs->next_caller)
      for (cs = node->callers; cs != NULL; cs = cs->next_caller)
        node_callers++;
        node_callers++;
      redirect_callers = VEC_alloc (cgraph_edge_p, heap, node_callers);
      redirect_callers = VEC_alloc (cgraph_edge_p, heap, node_callers);
      for (cs = node->callers; cs != NULL; cs = cs->next_caller)
      for (cs = node->callers; cs != NULL; cs = cs->next_caller)
        VEC_quick_push (cgraph_edge_p, redirect_callers, cs);
        VEC_quick_push (cgraph_edge_p, redirect_callers, cs);
      /* Redirecting all the callers of the node to the
      /* Redirecting all the callers of the node to the
         new versioned node.  */
         new versioned node.  */
      node1 =
      node1 =
        cgraph_function_versioning (node, redirect_callers, replace_trees);
        cgraph_function_versioning (node, redirect_callers, replace_trees);
      VEC_free (cgraph_edge_p, heap, redirect_callers);
      VEC_free (cgraph_edge_p, heap, redirect_callers);
      VARRAY_CLEAR (replace_trees);
      VARRAY_CLEAR (replace_trees);
      if (node1 == NULL)
      if (node1 == NULL)
        continue;
        continue;
      if (dump_file)
      if (dump_file)
        fprintf (dump_file, "versioned function %s\n",
        fprintf (dump_file, "versioned function %s\n",
                 cgraph_node_name (node));
                 cgraph_node_name (node));
      ipcp_cloned_create (node, node1);
      ipcp_cloned_create (node, node1);
      for (i = 0; i < count; i++)
      for (i = 0; i < count; i++)
        {
        {
          type = ipcp_cval_get_cvalue_type (ipcp_method_cval (node, i));
          type = ipcp_cval_get_cvalue_type (ipcp_method_cval (node, i));
          if (ipcp_type_is_const (type))
          if (ipcp_type_is_const (type))
            {
            {
              cvalue = ipcp_cval_get_cvalue (ipcp_method_cval (node, i));
              cvalue = ipcp_cval_get_cvalue (ipcp_method_cval (node, i));
              parm_tree = ipa_method_get_tree (node, i);
              parm_tree = ipa_method_get_tree (node, i);
              if (type != CONST_VALUE_REF
              if (type != CONST_VALUE_REF
                  && !TREE_READONLY (parm_tree))
                  && !TREE_READONLY (parm_tree))
                ipcp_propagate_const (node1, i, cvalue, type);
                ipcp_propagate_const (node1, i, cvalue, type);
            }
            }
        }
        }
    }
    }
  ipcp_update_callgraph ();
  ipcp_update_callgraph ();
  ipcp_update_profiling ();
  ipcp_update_profiling ();
}
}
 
 
/* The IPCP driver.  */
/* The IPCP driver.  */
unsigned int
unsigned int
ipcp_driver (void)
ipcp_driver (void)
{
{
  if (dump_file)
  if (dump_file)
    fprintf (dump_file, "\nIPA constant propagation start:\n");
    fprintf (dump_file, "\nIPA constant propagation start:\n");
  ipa_nodes_create ();
  ipa_nodes_create ();
  ipa_edges_create ();
  ipa_edges_create ();
  /* 1. Call the init stage to initialize
  /* 1. Call the init stage to initialize
     the ipa_node and ipa_edge structures.  */
     the ipa_node and ipa_edge structures.  */
  ipcp_init_stage ();
  ipcp_init_stage ();
  if (dump_file)
  if (dump_file)
    {
    {
      fprintf (dump_file, "\nIPA structures before propagation:\n");
      fprintf (dump_file, "\nIPA structures before propagation:\n");
      ipcp_structures_print (dump_file);
      ipcp_structures_print (dump_file);
    }
    }
  /* 2. Do the interprocedural propagation.  */
  /* 2. Do the interprocedural propagation.  */
  ipcp_iterate_stage ();
  ipcp_iterate_stage ();
  if (dump_file)
  if (dump_file)
    {
    {
      fprintf (dump_file, "\nIPA structures after propagation:\n");
      fprintf (dump_file, "\nIPA structures after propagation:\n");
      ipcp_structures_print (dump_file);
      ipcp_structures_print (dump_file);
      fprintf (dump_file, "\nProfiling info before insert stage:\n");
      fprintf (dump_file, "\nProfiling info before insert stage:\n");
      ipcp_profile_print (dump_file);
      ipcp_profile_print (dump_file);
    }
    }
  /* 3. Insert the constants found to the functions.  */
  /* 3. Insert the constants found to the functions.  */
  ipcp_insert_stage ();
  ipcp_insert_stage ();
  if (dump_file)
  if (dump_file)
    {
    {
      fprintf (dump_file, "\nProfiling info after insert stage:\n");
      fprintf (dump_file, "\nProfiling info after insert stage:\n");
      ipcp_profile_print (dump_file);
      ipcp_profile_print (dump_file);
    }
    }
  /* Free all IPCP structures.  */
  /* Free all IPCP structures.  */
  ipa_free ();
  ipa_free ();
  ipa_nodes_free ();
  ipa_nodes_free ();
  ipa_edges_free ();
  ipa_edges_free ();
  if (dump_file)
  if (dump_file)
    fprintf (dump_file, "\nIPA constant propagation end\n");
    fprintf (dump_file, "\nIPA constant propagation end\n");
  cgraph_remove_unreachable_nodes (true, NULL);
  cgraph_remove_unreachable_nodes (true, NULL);
  return 0;
  return 0;
}
}
 
 
/* Gate for IPCP optimization.  */
/* Gate for IPCP optimization.  */
static bool
static bool
cgraph_gate_cp (void)
cgraph_gate_cp (void)
{
{
  return flag_ipa_cp;
  return flag_ipa_cp;
}
}
 
 
struct tree_opt_pass pass_ipa_cp = {
struct tree_opt_pass pass_ipa_cp = {
  "cp",                         /* name */
  "cp",                         /* name */
  cgraph_gate_cp,               /* gate */
  cgraph_gate_cp,               /* gate */
  ipcp_driver,                  /* execute */
  ipcp_driver,                  /* execute */
  NULL,                         /* sub */
  NULL,                         /* sub */
  NULL,                         /* next */
  NULL,                         /* next */
  0,                             /* static_pass_number */
  0,                             /* static_pass_number */
  TV_IPA_CONSTANT_PROP,         /* tv_id */
  TV_IPA_CONSTANT_PROP,         /* tv_id */
  0,                             /* properties_required */
  0,                             /* properties_required */
  PROP_trees,                   /* properties_provided */
  PROP_trees,                   /* properties_provided */
  0,                             /* properties_destroyed */
  0,                             /* properties_destroyed */
  0,                             /* todo_flags_start */
  0,                             /* todo_flags_start */
  TODO_dump_cgraph | TODO_dump_func,    /* todo_flags_finish */
  TODO_dump_cgraph | TODO_dump_func,    /* todo_flags_finish */
  0                              /* letter */
  0                              /* letter */
};
};
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.