OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gcc-4.2.2/] [gcc/] [jump.c] - Diff between revs 154 and 816

Only display areas with differences | Details | Blame | View Log

Rev 154 Rev 816
/* Optimize jump instructions, for GNU compiler.
/* Optimize jump instructions, for GNU compiler.
   Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
   Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
   1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007
   1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify it under
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
Software Foundation; either version 3, or (at your option) any later
version.
version.
 
 
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
/* This is the pathetic reminder of old fame of the jump-optimization pass
/* This is the pathetic reminder of old fame of the jump-optimization pass
   of the compiler.  Now it contains basically a set of utility functions to
   of the compiler.  Now it contains basically a set of utility functions to
   operate with jumps.
   operate with jumps.
 
 
   Each CODE_LABEL has a count of the times it is used
   Each CODE_LABEL has a count of the times it is used
   stored in the LABEL_NUSES internal field, and each JUMP_INSN
   stored in the LABEL_NUSES internal field, and each JUMP_INSN
   has one label that it refers to stored in the
   has one label that it refers to stored in the
   JUMP_LABEL internal field.  With this we can detect labels that
   JUMP_LABEL internal field.  With this we can detect labels that
   become unused because of the deletion of all the jumps that
   become unused because of the deletion of all the jumps that
   formerly used them.  The JUMP_LABEL info is sometimes looked
   formerly used them.  The JUMP_LABEL info is sometimes looked
   at by later passes.
   at by later passes.
 
 
   The subroutines redirect_jump and invert_jump are used
   The subroutines redirect_jump and invert_jump are used
   from other passes as well.  */
   from other passes as well.  */
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "rtl.h"
#include "rtl.h"
#include "tm_p.h"
#include "tm_p.h"
#include "flags.h"
#include "flags.h"
#include "hard-reg-set.h"
#include "hard-reg-set.h"
#include "regs.h"
#include "regs.h"
#include "insn-config.h"
#include "insn-config.h"
#include "insn-attr.h"
#include "insn-attr.h"
#include "recog.h"
#include "recog.h"
#include "function.h"
#include "function.h"
#include "expr.h"
#include "expr.h"
#include "real.h"
#include "real.h"
#include "except.h"
#include "except.h"
#include "diagnostic.h"
#include "diagnostic.h"
#include "toplev.h"
#include "toplev.h"
#include "reload.h"
#include "reload.h"
#include "predict.h"
#include "predict.h"
#include "timevar.h"
#include "timevar.h"
#include "tree-pass.h"
#include "tree-pass.h"
#include "target.h"
#include "target.h"
 
 
/* Optimize jump y; x: ... y: jumpif... x?
/* Optimize jump y; x: ... y: jumpif... x?
   Don't know if it is worth bothering with.  */
   Don't know if it is worth bothering with.  */
/* Optimize two cases of conditional jump to conditional jump?
/* Optimize two cases of conditional jump to conditional jump?
   This can never delete any instruction or make anything dead,
   This can never delete any instruction or make anything dead,
   or even change what is live at any point.
   or even change what is live at any point.
   So perhaps let combiner do it.  */
   So perhaps let combiner do it.  */
 
 
static void init_label_info (rtx);
static void init_label_info (rtx);
static void mark_all_labels (rtx);
static void mark_all_labels (rtx);
static void delete_computation (rtx);
static void delete_computation (rtx);
static void redirect_exp_1 (rtx *, rtx, rtx, rtx);
static void redirect_exp_1 (rtx *, rtx, rtx, rtx);
static int invert_exp_1 (rtx, rtx);
static int invert_exp_1 (rtx, rtx);
static int returnjump_p_1 (rtx *, void *);
static int returnjump_p_1 (rtx *, void *);
static void delete_prior_computation (rtx, rtx);
static void delete_prior_computation (rtx, rtx);


/* Alternate entry into the jump optimizer.  This entry point only rebuilds
/* Alternate entry into the jump optimizer.  This entry point only rebuilds
   the JUMP_LABEL field in jumping insns and REG_LABEL notes in non-jumping
   the JUMP_LABEL field in jumping insns and REG_LABEL notes in non-jumping
   instructions.  */
   instructions.  */
void
void
rebuild_jump_labels (rtx f)
rebuild_jump_labels (rtx f)
{
{
  rtx insn;
  rtx insn;
 
 
  timevar_push (TV_REBUILD_JUMP);
  timevar_push (TV_REBUILD_JUMP);
  init_label_info (f);
  init_label_info (f);
  mark_all_labels (f);
  mark_all_labels (f);
 
 
  /* Keep track of labels used from static data; we don't track them
  /* Keep track of labels used from static data; we don't track them
     closely enough to delete them here, so make sure their reference
     closely enough to delete them here, so make sure their reference
     count doesn't drop to zero.  */
     count doesn't drop to zero.  */
 
 
  for (insn = forced_labels; insn; insn = XEXP (insn, 1))
  for (insn = forced_labels; insn; insn = XEXP (insn, 1))
    if (LABEL_P (XEXP (insn, 0)))
    if (LABEL_P (XEXP (insn, 0)))
      LABEL_NUSES (XEXP (insn, 0))++;
      LABEL_NUSES (XEXP (insn, 0))++;
  timevar_pop (TV_REBUILD_JUMP);
  timevar_pop (TV_REBUILD_JUMP);
}
}


/* Some old code expects exactly one BARRIER as the NEXT_INSN of a
/* Some old code expects exactly one BARRIER as the NEXT_INSN of a
   non-fallthru insn.  This is not generally true, as multiple barriers
   non-fallthru insn.  This is not generally true, as multiple barriers
   may have crept in, or the BARRIER may be separated from the last
   may have crept in, or the BARRIER may be separated from the last
   real insn by one or more NOTEs.
   real insn by one or more NOTEs.
 
 
   This simple pass moves barriers and removes duplicates so that the
   This simple pass moves barriers and removes duplicates so that the
   old code is happy.
   old code is happy.
 */
 */
unsigned int
unsigned int
cleanup_barriers (void)
cleanup_barriers (void)
{
{
  rtx insn, next, prev;
  rtx insn, next, prev;
  for (insn = get_insns (); insn; insn = next)
  for (insn = get_insns (); insn; insn = next)
    {
    {
      next = NEXT_INSN (insn);
      next = NEXT_INSN (insn);
      if (BARRIER_P (insn))
      if (BARRIER_P (insn))
        {
        {
          prev = prev_nonnote_insn (insn);
          prev = prev_nonnote_insn (insn);
          if (BARRIER_P (prev))
          if (BARRIER_P (prev))
            delete_insn (insn);
            delete_insn (insn);
          else if (prev != PREV_INSN (insn))
          else if (prev != PREV_INSN (insn))
            reorder_insns (insn, insn, prev);
            reorder_insns (insn, insn, prev);
        }
        }
    }
    }
  return 0;
  return 0;
}
}
 
 
struct tree_opt_pass pass_cleanup_barriers =
struct tree_opt_pass pass_cleanup_barriers =
{
{
  "barriers",                           /* name */
  "barriers",                           /* name */
  NULL,                                 /* gate */
  NULL,                                 /* gate */
  cleanup_barriers,                     /* execute */
  cleanup_barriers,                     /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  NULL,                                 /* next */
  0,                                    /* static_pass_number */
  0,                                    /* static_pass_number */
  0,                                    /* tv_id */
  0,                                    /* tv_id */
  0,                                    /* properties_required */
  0,                                    /* properties_required */
  0,                                    /* properties_provided */
  0,                                    /* properties_provided */
  0,                                    /* properties_destroyed */
  0,                                    /* properties_destroyed */
  0,                                    /* todo_flags_start */
  0,                                    /* todo_flags_start */
  TODO_dump_func,                       /* todo_flags_finish */
  TODO_dump_func,                       /* todo_flags_finish */
  0                                     /* letter */
  0                                     /* letter */
};
};
 
 
unsigned int
unsigned int
purge_line_number_notes (void)
purge_line_number_notes (void)
{
{
  rtx last_note = 0;
  rtx last_note = 0;
  rtx insn;
  rtx insn;
  /* Delete extraneous line number notes.
  /* Delete extraneous line number notes.
     Note that two consecutive notes for different lines are not really
     Note that two consecutive notes for different lines are not really
     extraneous.  There should be some indication where that line belonged,
     extraneous.  There should be some indication where that line belonged,
     even if it became empty.  */
     even if it became empty.  */
 
 
  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
    if (NOTE_P (insn))
    if (NOTE_P (insn))
      {
      {
        if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
        if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
          /* Any previous line note was for the prologue; gdb wants a new
          /* Any previous line note was for the prologue; gdb wants a new
             note after the prologue even if it is for the same line.  */
             note after the prologue even if it is for the same line.  */
          last_note = NULL_RTX;
          last_note = NULL_RTX;
        else if (NOTE_LINE_NUMBER (insn) >= 0)
        else if (NOTE_LINE_NUMBER (insn) >= 0)
          {
          {
            /* Delete this note if it is identical to previous note.  */
            /* Delete this note if it is identical to previous note.  */
            if (last_note
            if (last_note
#ifdef USE_MAPPED_LOCATION
#ifdef USE_MAPPED_LOCATION
                && NOTE_SOURCE_LOCATION (insn) == NOTE_SOURCE_LOCATION (last_note)
                && NOTE_SOURCE_LOCATION (insn) == NOTE_SOURCE_LOCATION (last_note)
#else
#else
                && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last_note)
                && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last_note)
                && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last_note)
                && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last_note)
#endif
#endif
)
)
              {
              {
                delete_related_insns (insn);
                delete_related_insns (insn);
                continue;
                continue;
              }
              }
 
 
            last_note = insn;
            last_note = insn;
          }
          }
      }
      }
  return 0;
  return 0;
}
}
 
 
struct tree_opt_pass pass_purge_lineno_notes =
struct tree_opt_pass pass_purge_lineno_notes =
{
{
  "elnotes",                            /* name */
  "elnotes",                            /* name */
  NULL,                                 /* gate */
  NULL,                                 /* gate */
  purge_line_number_notes,              /* execute */
  purge_line_number_notes,              /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  NULL,                                 /* next */
  0,                                    /* static_pass_number */
  0,                                    /* static_pass_number */
  0,                                    /* tv_id */
  0,                                    /* tv_id */
  0,                                    /* properties_required */
  0,                                    /* properties_required */
  0,                                    /* properties_provided */
  0,                                    /* properties_provided */
  0,                                    /* properties_destroyed */
  0,                                    /* properties_destroyed */
  0,                                    /* todo_flags_start */
  0,                                    /* todo_flags_start */
  TODO_dump_func,                       /* todo_flags_finish */
  TODO_dump_func,                       /* todo_flags_finish */
  0                                     /* letter */
  0                                     /* letter */
};
};
 
 


/* Initialize LABEL_NUSES and JUMP_LABEL fields.  Delete any REG_LABEL
/* Initialize LABEL_NUSES and JUMP_LABEL fields.  Delete any REG_LABEL
   notes whose labels don't occur in the insn any more.  Returns the
   notes whose labels don't occur in the insn any more.  Returns the
   largest INSN_UID found.  */
   largest INSN_UID found.  */
static void
static void
init_label_info (rtx f)
init_label_info (rtx f)
{
{
  rtx insn;
  rtx insn;
 
 
  for (insn = f; insn; insn = NEXT_INSN (insn))
  for (insn = f; insn; insn = NEXT_INSN (insn))
    if (LABEL_P (insn))
    if (LABEL_P (insn))
      LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
      LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
    else if (JUMP_P (insn))
    else if (JUMP_P (insn))
      JUMP_LABEL (insn) = 0;
      JUMP_LABEL (insn) = 0;
    else if (NONJUMP_INSN_P (insn) || CALL_P (insn))
    else if (NONJUMP_INSN_P (insn) || CALL_P (insn))
      {
      {
        rtx note, next;
        rtx note, next;
 
 
        for (note = REG_NOTES (insn); note; note = next)
        for (note = REG_NOTES (insn); note; note = next)
          {
          {
            next = XEXP (note, 1);
            next = XEXP (note, 1);
            if (REG_NOTE_KIND (note) == REG_LABEL
            if (REG_NOTE_KIND (note) == REG_LABEL
                && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
                && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
              remove_note (insn, note);
              remove_note (insn, note);
          }
          }
      }
      }
}
}
 
 
/* Mark the label each jump jumps to.
/* Mark the label each jump jumps to.
   Combine consecutive labels, and count uses of labels.  */
   Combine consecutive labels, and count uses of labels.  */
 
 
static void
static void
mark_all_labels (rtx f)
mark_all_labels (rtx f)
{
{
  rtx insn;
  rtx insn;
 
 
  for (insn = f; insn; insn = NEXT_INSN (insn))
  for (insn = f; insn; insn = NEXT_INSN (insn))
    if (INSN_P (insn))
    if (INSN_P (insn))
      {
      {
        mark_jump_label (PATTERN (insn), insn, 0);
        mark_jump_label (PATTERN (insn), insn, 0);
        if (! INSN_DELETED_P (insn) && JUMP_P (insn))
        if (! INSN_DELETED_P (insn) && JUMP_P (insn))
          {
          {
            /* When we know the LABEL_REF contained in a REG used in
            /* When we know the LABEL_REF contained in a REG used in
               an indirect jump, we'll have a REG_LABEL note so that
               an indirect jump, we'll have a REG_LABEL note so that
               flow can tell where it's going.  */
               flow can tell where it's going.  */
            if (JUMP_LABEL (insn) == 0)
            if (JUMP_LABEL (insn) == 0)
              {
              {
                rtx label_note = find_reg_note (insn, REG_LABEL, NULL_RTX);
                rtx label_note = find_reg_note (insn, REG_LABEL, NULL_RTX);
                if (label_note)
                if (label_note)
                  {
                  {
                    /* But a LABEL_REF around the REG_LABEL note, so
                    /* But a LABEL_REF around the REG_LABEL note, so
                       that we can canonicalize it.  */
                       that we can canonicalize it.  */
                    rtx label_ref = gen_rtx_LABEL_REF (Pmode,
                    rtx label_ref = gen_rtx_LABEL_REF (Pmode,
                                                       XEXP (label_note, 0));
                                                       XEXP (label_note, 0));
 
 
                    mark_jump_label (label_ref, insn, 0);
                    mark_jump_label (label_ref, insn, 0);
                    XEXP (label_note, 0) = XEXP (label_ref, 0);
                    XEXP (label_note, 0) = XEXP (label_ref, 0);
                    JUMP_LABEL (insn) = XEXP (label_note, 0);
                    JUMP_LABEL (insn) = XEXP (label_note, 0);
                  }
                  }
              }
              }
          }
          }
      }
      }
}
}


/* Move all block-beg, block-end and loop-beg notes between START and END out
/* Move all block-beg, block-end and loop-beg notes between START and END out
   before START.  START and END may be such notes.  Returns the values of the
   before START.  START and END may be such notes.  Returns the values of the
   new starting and ending insns, which may be different if the original ones
   new starting and ending insns, which may be different if the original ones
   were such notes.  Return true if there were only such notes and no real
   were such notes.  Return true if there were only such notes and no real
   instructions.  */
   instructions.  */
 
 
bool
bool
squeeze_notes (rtx* startp, rtx* endp)
squeeze_notes (rtx* startp, rtx* endp)
{
{
  rtx start = *startp;
  rtx start = *startp;
  rtx end = *endp;
  rtx end = *endp;
 
 
  rtx insn;
  rtx insn;
  rtx next;
  rtx next;
  rtx last = NULL;
  rtx last = NULL;
  rtx past_end = NEXT_INSN (end);
  rtx past_end = NEXT_INSN (end);
 
 
  for (insn = start; insn != past_end; insn = next)
  for (insn = start; insn != past_end; insn = next)
    {
    {
      next = NEXT_INSN (insn);
      next = NEXT_INSN (insn);
      if (NOTE_P (insn)
      if (NOTE_P (insn)
          && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END
          && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END
              || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG))
              || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG))
        {
        {
          /* BLOCK_BEG or BLOCK_END notes only exist in the `final' pass.  */
          /* BLOCK_BEG or BLOCK_END notes only exist in the `final' pass.  */
          gcc_assert (NOTE_LINE_NUMBER (insn) != NOTE_INSN_BLOCK_BEG
          gcc_assert (NOTE_LINE_NUMBER (insn) != NOTE_INSN_BLOCK_BEG
                      && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BLOCK_END);
                      && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BLOCK_END);
 
 
          if (insn == start)
          if (insn == start)
            start = next;
            start = next;
          else
          else
            {
            {
              rtx prev = PREV_INSN (insn);
              rtx prev = PREV_INSN (insn);
              PREV_INSN (insn) = PREV_INSN (start);
              PREV_INSN (insn) = PREV_INSN (start);
              NEXT_INSN (insn) = start;
              NEXT_INSN (insn) = start;
              NEXT_INSN (PREV_INSN (insn)) = insn;
              NEXT_INSN (PREV_INSN (insn)) = insn;
              PREV_INSN (NEXT_INSN (insn)) = insn;
              PREV_INSN (NEXT_INSN (insn)) = insn;
              NEXT_INSN (prev) = next;
              NEXT_INSN (prev) = next;
              PREV_INSN (next) = prev;
              PREV_INSN (next) = prev;
            }
            }
        }
        }
      else
      else
        last = insn;
        last = insn;
    }
    }
 
 
  /* There were no real instructions.  */
  /* There were no real instructions.  */
  if (start == past_end)
  if (start == past_end)
    return true;
    return true;
 
 
  end = last;
  end = last;
 
 
  *startp = start;
  *startp = start;
  *endp = end;
  *endp = end;
  return false;
  return false;
}
}


/* Return the label before INSN, or put a new label there.  */
/* Return the label before INSN, or put a new label there.  */
 
 
rtx
rtx
get_label_before (rtx insn)
get_label_before (rtx insn)
{
{
  rtx label;
  rtx label;
 
 
  /* Find an existing label at this point
  /* Find an existing label at this point
     or make a new one if there is none.  */
     or make a new one if there is none.  */
  label = prev_nonnote_insn (insn);
  label = prev_nonnote_insn (insn);
 
 
  if (label == 0 || !LABEL_P (label))
  if (label == 0 || !LABEL_P (label))
    {
    {
      rtx prev = PREV_INSN (insn);
      rtx prev = PREV_INSN (insn);
 
 
      label = gen_label_rtx ();
      label = gen_label_rtx ();
      emit_label_after (label, prev);
      emit_label_after (label, prev);
      LABEL_NUSES (label) = 0;
      LABEL_NUSES (label) = 0;
    }
    }
  return label;
  return label;
}
}
 
 
/* Return the label after INSN, or put a new label there.  */
/* Return the label after INSN, or put a new label there.  */
 
 
rtx
rtx
get_label_after (rtx insn)
get_label_after (rtx insn)
{
{
  rtx label;
  rtx label;
 
 
  /* Find an existing label at this point
  /* Find an existing label at this point
     or make a new one if there is none.  */
     or make a new one if there is none.  */
  label = next_nonnote_insn (insn);
  label = next_nonnote_insn (insn);
 
 
  if (label == 0 || !LABEL_P (label))
  if (label == 0 || !LABEL_P (label))
    {
    {
      label = gen_label_rtx ();
      label = gen_label_rtx ();
      emit_label_after (label, insn);
      emit_label_after (label, insn);
      LABEL_NUSES (label) = 0;
      LABEL_NUSES (label) = 0;
    }
    }
  return label;
  return label;
}
}


/* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
/* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
   of reversed comparison if it is possible to do so.  Otherwise return UNKNOWN.
   of reversed comparison if it is possible to do so.  Otherwise return UNKNOWN.
   UNKNOWN may be returned in case we are having CC_MODE compare and we don't
   UNKNOWN may be returned in case we are having CC_MODE compare and we don't
   know whether it's source is floating point or integer comparison.  Machine
   know whether it's source is floating point or integer comparison.  Machine
   description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
   description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
   to help this function avoid overhead in these cases.  */
   to help this function avoid overhead in these cases.  */
enum rtx_code
enum rtx_code
reversed_comparison_code_parts (enum rtx_code code, rtx arg0, rtx arg1, rtx insn)
reversed_comparison_code_parts (enum rtx_code code, rtx arg0, rtx arg1, rtx insn)
{
{
  enum machine_mode mode;
  enum machine_mode mode;
 
 
  /* If this is not actually a comparison, we can't reverse it.  */
  /* If this is not actually a comparison, we can't reverse it.  */
  if (GET_RTX_CLASS (code) != RTX_COMPARE
  if (GET_RTX_CLASS (code) != RTX_COMPARE
      && GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
      && GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
    return UNKNOWN;
    return UNKNOWN;
 
 
  mode = GET_MODE (arg0);
  mode = GET_MODE (arg0);
  if (mode == VOIDmode)
  if (mode == VOIDmode)
    mode = GET_MODE (arg1);
    mode = GET_MODE (arg1);
 
 
  /* First see if machine description supplies us way to reverse the
  /* First see if machine description supplies us way to reverse the
     comparison.  Give it priority over everything else to allow
     comparison.  Give it priority over everything else to allow
     machine description to do tricks.  */
     machine description to do tricks.  */
  if (GET_MODE_CLASS (mode) == MODE_CC
  if (GET_MODE_CLASS (mode) == MODE_CC
      && REVERSIBLE_CC_MODE (mode))
      && REVERSIBLE_CC_MODE (mode))
    {
    {
#ifdef REVERSE_CONDITION
#ifdef REVERSE_CONDITION
      return REVERSE_CONDITION (code, mode);
      return REVERSE_CONDITION (code, mode);
#endif
#endif
      return reverse_condition (code);
      return reverse_condition (code);
    }
    }
 
 
  /* Try a few special cases based on the comparison code.  */
  /* Try a few special cases based on the comparison code.  */
  switch (code)
  switch (code)
    {
    {
    case GEU:
    case GEU:
    case GTU:
    case GTU:
    case LEU:
    case LEU:
    case LTU:
    case LTU:
    case NE:
    case NE:
    case EQ:
    case EQ:
      /* It is always safe to reverse EQ and NE, even for the floating
      /* It is always safe to reverse EQ and NE, even for the floating
         point.  Similarly the unsigned comparisons are never used for
         point.  Similarly the unsigned comparisons are never used for
         floating point so we can reverse them in the default way.  */
         floating point so we can reverse them in the default way.  */
      return reverse_condition (code);
      return reverse_condition (code);
    case ORDERED:
    case ORDERED:
    case UNORDERED:
    case UNORDERED:
    case LTGT:
    case LTGT:
    case UNEQ:
    case UNEQ:
      /* In case we already see unordered comparison, we can be sure to
      /* In case we already see unordered comparison, we can be sure to
         be dealing with floating point so we don't need any more tests.  */
         be dealing with floating point so we don't need any more tests.  */
      return reverse_condition_maybe_unordered (code);
      return reverse_condition_maybe_unordered (code);
    case UNLT:
    case UNLT:
    case UNLE:
    case UNLE:
    case UNGT:
    case UNGT:
    case UNGE:
    case UNGE:
      /* We don't have safe way to reverse these yet.  */
      /* We don't have safe way to reverse these yet.  */
      return UNKNOWN;
      return UNKNOWN;
    default:
    default:
      break;
      break;
    }
    }
 
 
  if (GET_MODE_CLASS (mode) == MODE_CC || CC0_P (arg0))
  if (GET_MODE_CLASS (mode) == MODE_CC || CC0_P (arg0))
    {
    {
      rtx prev;
      rtx prev;
      /* Try to search for the comparison to determine the real mode.
      /* Try to search for the comparison to determine the real mode.
         This code is expensive, but with sane machine description it
         This code is expensive, but with sane machine description it
         will be never used, since REVERSIBLE_CC_MODE will return true
         will be never used, since REVERSIBLE_CC_MODE will return true
         in all cases.  */
         in all cases.  */
      if (! insn)
      if (! insn)
        return UNKNOWN;
        return UNKNOWN;
 
 
      for (prev = prev_nonnote_insn (insn);
      for (prev = prev_nonnote_insn (insn);
           prev != 0 && !LABEL_P (prev);
           prev != 0 && !LABEL_P (prev);
           prev = prev_nonnote_insn (prev))
           prev = prev_nonnote_insn (prev))
        {
        {
          rtx set = set_of (arg0, prev);
          rtx set = set_of (arg0, prev);
          if (set && GET_CODE (set) == SET
          if (set && GET_CODE (set) == SET
              && rtx_equal_p (SET_DEST (set), arg0))
              && rtx_equal_p (SET_DEST (set), arg0))
            {
            {
              rtx src = SET_SRC (set);
              rtx src = SET_SRC (set);
 
 
              if (GET_CODE (src) == COMPARE)
              if (GET_CODE (src) == COMPARE)
                {
                {
                  rtx comparison = src;
                  rtx comparison = src;
                  arg0 = XEXP (src, 0);
                  arg0 = XEXP (src, 0);
                  mode = GET_MODE (arg0);
                  mode = GET_MODE (arg0);
                  if (mode == VOIDmode)
                  if (mode == VOIDmode)
                    mode = GET_MODE (XEXP (comparison, 1));
                    mode = GET_MODE (XEXP (comparison, 1));
                  break;
                  break;
                }
                }
              /* We can get past reg-reg moves.  This may be useful for model
              /* We can get past reg-reg moves.  This may be useful for model
                 of i387 comparisons that first move flag registers around.  */
                 of i387 comparisons that first move flag registers around.  */
              if (REG_P (src))
              if (REG_P (src))
                {
                {
                  arg0 = src;
                  arg0 = src;
                  continue;
                  continue;
                }
                }
            }
            }
          /* If register is clobbered in some ununderstandable way,
          /* If register is clobbered in some ununderstandable way,
             give up.  */
             give up.  */
          if (set)
          if (set)
            return UNKNOWN;
            return UNKNOWN;
        }
        }
    }
    }
 
 
  /* Test for an integer condition, or a floating-point comparison
  /* Test for an integer condition, or a floating-point comparison
     in which NaNs can be ignored.  */
     in which NaNs can be ignored.  */
  if (GET_CODE (arg0) == CONST_INT
  if (GET_CODE (arg0) == CONST_INT
      || (GET_MODE (arg0) != VOIDmode
      || (GET_MODE (arg0) != VOIDmode
          && GET_MODE_CLASS (mode) != MODE_CC
          && GET_MODE_CLASS (mode) != MODE_CC
          && !HONOR_NANS (mode)))
          && !HONOR_NANS (mode)))
    return reverse_condition (code);
    return reverse_condition (code);
 
 
  return UNKNOWN;
  return UNKNOWN;
}
}
 
 
/* A wrapper around the previous function to take COMPARISON as rtx
/* A wrapper around the previous function to take COMPARISON as rtx
   expression.  This simplifies many callers.  */
   expression.  This simplifies many callers.  */
enum rtx_code
enum rtx_code
reversed_comparison_code (rtx comparison, rtx insn)
reversed_comparison_code (rtx comparison, rtx insn)
{
{
  if (!COMPARISON_P (comparison))
  if (!COMPARISON_P (comparison))
    return UNKNOWN;
    return UNKNOWN;
  return reversed_comparison_code_parts (GET_CODE (comparison),
  return reversed_comparison_code_parts (GET_CODE (comparison),
                                         XEXP (comparison, 0),
                                         XEXP (comparison, 0),
                                         XEXP (comparison, 1), insn);
                                         XEXP (comparison, 1), insn);
}
}
 
 
/* Return comparison with reversed code of EXP.
/* Return comparison with reversed code of EXP.
   Return NULL_RTX in case we fail to do the reversal.  */
   Return NULL_RTX in case we fail to do the reversal.  */
rtx
rtx
reversed_comparison (rtx exp, enum machine_mode mode)
reversed_comparison (rtx exp, enum machine_mode mode)
{
{
  enum rtx_code reversed_code = reversed_comparison_code (exp, NULL_RTX);
  enum rtx_code reversed_code = reversed_comparison_code (exp, NULL_RTX);
  if (reversed_code == UNKNOWN)
  if (reversed_code == UNKNOWN)
    return NULL_RTX;
    return NULL_RTX;
  else
  else
    return simplify_gen_relational (reversed_code, mode, VOIDmode,
    return simplify_gen_relational (reversed_code, mode, VOIDmode,
                                    XEXP (exp, 0), XEXP (exp, 1));
                                    XEXP (exp, 0), XEXP (exp, 1));
}
}
 
 


/* Given an rtx-code for a comparison, return the code for the negated
/* Given an rtx-code for a comparison, return the code for the negated
   comparison.  If no such code exists, return UNKNOWN.
   comparison.  If no such code exists, return UNKNOWN.
 
 
   WATCH OUT!  reverse_condition is not safe to use on a jump that might
   WATCH OUT!  reverse_condition is not safe to use on a jump that might
   be acting on the results of an IEEE floating point comparison, because
   be acting on the results of an IEEE floating point comparison, because
   of the special treatment of non-signaling nans in comparisons.
   of the special treatment of non-signaling nans in comparisons.
   Use reversed_comparison_code instead.  */
   Use reversed_comparison_code instead.  */
 
 
enum rtx_code
enum rtx_code
reverse_condition (enum rtx_code code)
reverse_condition (enum rtx_code code)
{
{
  switch (code)
  switch (code)
    {
    {
    case EQ:
    case EQ:
      return NE;
      return NE;
    case NE:
    case NE:
      return EQ;
      return EQ;
    case GT:
    case GT:
      return LE;
      return LE;
    case GE:
    case GE:
      return LT;
      return LT;
    case LT:
    case LT:
      return GE;
      return GE;
    case LE:
    case LE:
      return GT;
      return GT;
    case GTU:
    case GTU:
      return LEU;
      return LEU;
    case GEU:
    case GEU:
      return LTU;
      return LTU;
    case LTU:
    case LTU:
      return GEU;
      return GEU;
    case LEU:
    case LEU:
      return GTU;
      return GTU;
    case UNORDERED:
    case UNORDERED:
      return ORDERED;
      return ORDERED;
    case ORDERED:
    case ORDERED:
      return UNORDERED;
      return UNORDERED;
 
 
    case UNLT:
    case UNLT:
    case UNLE:
    case UNLE:
    case UNGT:
    case UNGT:
    case UNGE:
    case UNGE:
    case UNEQ:
    case UNEQ:
    case LTGT:
    case LTGT:
      return UNKNOWN;
      return UNKNOWN;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}
 
 
/* Similar, but we're allowed to generate unordered comparisons, which
/* Similar, but we're allowed to generate unordered comparisons, which
   makes it safe for IEEE floating-point.  Of course, we have to recognize
   makes it safe for IEEE floating-point.  Of course, we have to recognize
   that the target will support them too...  */
   that the target will support them too...  */
 
 
enum rtx_code
enum rtx_code
reverse_condition_maybe_unordered (enum rtx_code code)
reverse_condition_maybe_unordered (enum rtx_code code)
{
{
  switch (code)
  switch (code)
    {
    {
    case EQ:
    case EQ:
      return NE;
      return NE;
    case NE:
    case NE:
      return EQ;
      return EQ;
    case GT:
    case GT:
      return UNLE;
      return UNLE;
    case GE:
    case GE:
      return UNLT;
      return UNLT;
    case LT:
    case LT:
      return UNGE;
      return UNGE;
    case LE:
    case LE:
      return UNGT;
      return UNGT;
    case LTGT:
    case LTGT:
      return UNEQ;
      return UNEQ;
    case UNORDERED:
    case UNORDERED:
      return ORDERED;
      return ORDERED;
    case ORDERED:
    case ORDERED:
      return UNORDERED;
      return UNORDERED;
    case UNLT:
    case UNLT:
      return GE;
      return GE;
    case UNLE:
    case UNLE:
      return GT;
      return GT;
    case UNGT:
    case UNGT:
      return LE;
      return LE;
    case UNGE:
    case UNGE:
      return LT;
      return LT;
    case UNEQ:
    case UNEQ:
      return LTGT;
      return LTGT;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}
 
 
/* Similar, but return the code when two operands of a comparison are swapped.
/* Similar, but return the code when two operands of a comparison are swapped.
   This IS safe for IEEE floating-point.  */
   This IS safe for IEEE floating-point.  */
 
 
enum rtx_code
enum rtx_code
swap_condition (enum rtx_code code)
swap_condition (enum rtx_code code)
{
{
  switch (code)
  switch (code)
    {
    {
    case EQ:
    case EQ:
    case NE:
    case NE:
    case UNORDERED:
    case UNORDERED:
    case ORDERED:
    case ORDERED:
    case UNEQ:
    case UNEQ:
    case LTGT:
    case LTGT:
      return code;
      return code;
 
 
    case GT:
    case GT:
      return LT;
      return LT;
    case GE:
    case GE:
      return LE;
      return LE;
    case LT:
    case LT:
      return GT;
      return GT;
    case LE:
    case LE:
      return GE;
      return GE;
    case GTU:
    case GTU:
      return LTU;
      return LTU;
    case GEU:
    case GEU:
      return LEU;
      return LEU;
    case LTU:
    case LTU:
      return GTU;
      return GTU;
    case LEU:
    case LEU:
      return GEU;
      return GEU;
    case UNLT:
    case UNLT:
      return UNGT;
      return UNGT;
    case UNLE:
    case UNLE:
      return UNGE;
      return UNGE;
    case UNGT:
    case UNGT:
      return UNLT;
      return UNLT;
    case UNGE:
    case UNGE:
      return UNLE;
      return UNLE;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}
 
 
/* Given a comparison CODE, return the corresponding unsigned comparison.
/* Given a comparison CODE, return the corresponding unsigned comparison.
   If CODE is an equality comparison or already an unsigned comparison,
   If CODE is an equality comparison or already an unsigned comparison,
   CODE is returned.  */
   CODE is returned.  */
 
 
enum rtx_code
enum rtx_code
unsigned_condition (enum rtx_code code)
unsigned_condition (enum rtx_code code)
{
{
  switch (code)
  switch (code)
    {
    {
    case EQ:
    case EQ:
    case NE:
    case NE:
    case GTU:
    case GTU:
    case GEU:
    case GEU:
    case LTU:
    case LTU:
    case LEU:
    case LEU:
      return code;
      return code;
 
 
    case GT:
    case GT:
      return GTU;
      return GTU;
    case GE:
    case GE:
      return GEU;
      return GEU;
    case LT:
    case LT:
      return LTU;
      return LTU;
    case LE:
    case LE:
      return LEU;
      return LEU;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}
 
 
/* Similarly, return the signed version of a comparison.  */
/* Similarly, return the signed version of a comparison.  */
 
 
enum rtx_code
enum rtx_code
signed_condition (enum rtx_code code)
signed_condition (enum rtx_code code)
{
{
  switch (code)
  switch (code)
    {
    {
    case EQ:
    case EQ:
    case NE:
    case NE:
    case GT:
    case GT:
    case GE:
    case GE:
    case LT:
    case LT:
    case LE:
    case LE:
      return code;
      return code;
 
 
    case GTU:
    case GTU:
      return GT;
      return GT;
    case GEU:
    case GEU:
      return GE;
      return GE;
    case LTU:
    case LTU:
      return LT;
      return LT;
    case LEU:
    case LEU:
      return LE;
      return LE;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}


/* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
/* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
   truth of CODE1 implies the truth of CODE2.  */
   truth of CODE1 implies the truth of CODE2.  */
 
 
int
int
comparison_dominates_p (enum rtx_code code1, enum rtx_code code2)
comparison_dominates_p (enum rtx_code code1, enum rtx_code code2)
{
{
  /* UNKNOWN comparison codes can happen as a result of trying to revert
  /* UNKNOWN comparison codes can happen as a result of trying to revert
     comparison codes.
     comparison codes.
     They can't match anything, so we have to reject them here.  */
     They can't match anything, so we have to reject them here.  */
  if (code1 == UNKNOWN || code2 == UNKNOWN)
  if (code1 == UNKNOWN || code2 == UNKNOWN)
    return 0;
    return 0;
 
 
  if (code1 == code2)
  if (code1 == code2)
    return 1;
    return 1;
 
 
  switch (code1)
  switch (code1)
    {
    {
    case UNEQ:
    case UNEQ:
      if (code2 == UNLE || code2 == UNGE)
      if (code2 == UNLE || code2 == UNGE)
        return 1;
        return 1;
      break;
      break;
 
 
    case EQ:
    case EQ:
      if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
      if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
          || code2 == ORDERED)
          || code2 == ORDERED)
        return 1;
        return 1;
      break;
      break;
 
 
    case UNLT:
    case UNLT:
      if (code2 == UNLE || code2 == NE)
      if (code2 == UNLE || code2 == NE)
        return 1;
        return 1;
      break;
      break;
 
 
    case LT:
    case LT:
      if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
      if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
        return 1;
        return 1;
      break;
      break;
 
 
    case UNGT:
    case UNGT:
      if (code2 == UNGE || code2 == NE)
      if (code2 == UNGE || code2 == NE)
        return 1;
        return 1;
      break;
      break;
 
 
    case GT:
    case GT:
      if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
      if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
        return 1;
        return 1;
      break;
      break;
 
 
    case GE:
    case GE:
    case LE:
    case LE:
      if (code2 == ORDERED)
      if (code2 == ORDERED)
        return 1;
        return 1;
      break;
      break;
 
 
    case LTGT:
    case LTGT:
      if (code2 == NE || code2 == ORDERED)
      if (code2 == NE || code2 == ORDERED)
        return 1;
        return 1;
      break;
      break;
 
 
    case LTU:
    case LTU:
      if (code2 == LEU || code2 == NE)
      if (code2 == LEU || code2 == NE)
        return 1;
        return 1;
      break;
      break;
 
 
    case GTU:
    case GTU:
      if (code2 == GEU || code2 == NE)
      if (code2 == GEU || code2 == NE)
        return 1;
        return 1;
      break;
      break;
 
 
    case UNORDERED:
    case UNORDERED:
      if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
      if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
          || code2 == UNGE || code2 == UNGT)
          || code2 == UNGE || code2 == UNGT)
        return 1;
        return 1;
      break;
      break;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  return 0;
  return 0;
}
}


/* Return 1 if INSN is an unconditional jump and nothing else.  */
/* Return 1 if INSN is an unconditional jump and nothing else.  */
 
 
int
int
simplejump_p (rtx insn)
simplejump_p (rtx insn)
{
{
  return (JUMP_P (insn)
  return (JUMP_P (insn)
          && GET_CODE (PATTERN (insn)) == SET
          && GET_CODE (PATTERN (insn)) == SET
          && GET_CODE (SET_DEST (PATTERN (insn))) == PC
          && GET_CODE (SET_DEST (PATTERN (insn))) == PC
          && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
          && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
}
}
 
 
/* Return nonzero if INSN is a (possibly) conditional jump
/* Return nonzero if INSN is a (possibly) conditional jump
   and nothing more.
   and nothing more.
 
 
   Use of this function is deprecated, since we need to support combined
   Use of this function is deprecated, since we need to support combined
   branch and compare insns.  Use any_condjump_p instead whenever possible.  */
   branch and compare insns.  Use any_condjump_p instead whenever possible.  */
 
 
int
int
condjump_p (rtx insn)
condjump_p (rtx insn)
{
{
  rtx x = PATTERN (insn);
  rtx x = PATTERN (insn);
 
 
  if (GET_CODE (x) != SET
  if (GET_CODE (x) != SET
      || GET_CODE (SET_DEST (x)) != PC)
      || GET_CODE (SET_DEST (x)) != PC)
    return 0;
    return 0;
 
 
  x = SET_SRC (x);
  x = SET_SRC (x);
  if (GET_CODE (x) == LABEL_REF)
  if (GET_CODE (x) == LABEL_REF)
    return 1;
    return 1;
  else
  else
    return (GET_CODE (x) == IF_THEN_ELSE
    return (GET_CODE (x) == IF_THEN_ELSE
            && ((GET_CODE (XEXP (x, 2)) == PC
            && ((GET_CODE (XEXP (x, 2)) == PC
                 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
                 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
                     || GET_CODE (XEXP (x, 1)) == RETURN))
                     || GET_CODE (XEXP (x, 1)) == RETURN))
                || (GET_CODE (XEXP (x, 1)) == PC
                || (GET_CODE (XEXP (x, 1)) == PC
                    && (GET_CODE (XEXP (x, 2)) == LABEL_REF
                    && (GET_CODE (XEXP (x, 2)) == LABEL_REF
                        || GET_CODE (XEXP (x, 2)) == RETURN))));
                        || GET_CODE (XEXP (x, 2)) == RETURN))));
}
}
 
 
/* Return nonzero if INSN is a (possibly) conditional jump inside a
/* Return nonzero if INSN is a (possibly) conditional jump inside a
   PARALLEL.
   PARALLEL.
 
 
   Use this function is deprecated, since we need to support combined
   Use this function is deprecated, since we need to support combined
   branch and compare insns.  Use any_condjump_p instead whenever possible.  */
   branch and compare insns.  Use any_condjump_p instead whenever possible.  */
 
 
int
int
condjump_in_parallel_p (rtx insn)
condjump_in_parallel_p (rtx insn)
{
{
  rtx x = PATTERN (insn);
  rtx x = PATTERN (insn);
 
 
  if (GET_CODE (x) != PARALLEL)
  if (GET_CODE (x) != PARALLEL)
    return 0;
    return 0;
  else
  else
    x = XVECEXP (x, 0, 0);
    x = XVECEXP (x, 0, 0);
 
 
  if (GET_CODE (x) != SET)
  if (GET_CODE (x) != SET)
    return 0;
    return 0;
  if (GET_CODE (SET_DEST (x)) != PC)
  if (GET_CODE (SET_DEST (x)) != PC)
    return 0;
    return 0;
  if (GET_CODE (SET_SRC (x)) == LABEL_REF)
  if (GET_CODE (SET_SRC (x)) == LABEL_REF)
    return 1;
    return 1;
  if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
  if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
    return 0;
    return 0;
  if (XEXP (SET_SRC (x), 2) == pc_rtx
  if (XEXP (SET_SRC (x), 2) == pc_rtx
      && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
      && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
          || GET_CODE (XEXP (SET_SRC (x), 1)) == RETURN))
          || GET_CODE (XEXP (SET_SRC (x), 1)) == RETURN))
    return 1;
    return 1;
  if (XEXP (SET_SRC (x), 1) == pc_rtx
  if (XEXP (SET_SRC (x), 1) == pc_rtx
      && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
      && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
          || GET_CODE (XEXP (SET_SRC (x), 2)) == RETURN))
          || GET_CODE (XEXP (SET_SRC (x), 2)) == RETURN))
    return 1;
    return 1;
  return 0;
  return 0;
}
}
 
 
/* Return set of PC, otherwise NULL.  */
/* Return set of PC, otherwise NULL.  */
 
 
rtx
rtx
pc_set (rtx insn)
pc_set (rtx insn)
{
{
  rtx pat;
  rtx pat;
  if (!JUMP_P (insn))
  if (!JUMP_P (insn))
    return NULL_RTX;
    return NULL_RTX;
  pat = PATTERN (insn);
  pat = PATTERN (insn);
 
 
  /* The set is allowed to appear either as the insn pattern or
  /* The set is allowed to appear either as the insn pattern or
     the first set in a PARALLEL.  */
     the first set in a PARALLEL.  */
  if (GET_CODE (pat) == PARALLEL)
  if (GET_CODE (pat) == PARALLEL)
    pat = XVECEXP (pat, 0, 0);
    pat = XVECEXP (pat, 0, 0);
  if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
  if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
    return pat;
    return pat;
 
 
  return NULL_RTX;
  return NULL_RTX;
}
}
 
 
/* Return true when insn is an unconditional direct jump,
/* Return true when insn is an unconditional direct jump,
   possibly bundled inside a PARALLEL.  */
   possibly bundled inside a PARALLEL.  */
 
 
int
int
any_uncondjump_p (rtx insn)
any_uncondjump_p (rtx insn)
{
{
  rtx x = pc_set (insn);
  rtx x = pc_set (insn);
  if (!x)
  if (!x)
    return 0;
    return 0;
  if (GET_CODE (SET_SRC (x)) != LABEL_REF)
  if (GET_CODE (SET_SRC (x)) != LABEL_REF)
    return 0;
    return 0;
  if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
  if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
    return 0;
    return 0;
  return 1;
  return 1;
}
}
 
 
/* Return true when insn is a conditional jump.  This function works for
/* Return true when insn is a conditional jump.  This function works for
   instructions containing PC sets in PARALLELs.  The instruction may have
   instructions containing PC sets in PARALLELs.  The instruction may have
   various other effects so before removing the jump you must verify
   various other effects so before removing the jump you must verify
   onlyjump_p.
   onlyjump_p.
 
 
   Note that unlike condjump_p it returns false for unconditional jumps.  */
   Note that unlike condjump_p it returns false for unconditional jumps.  */
 
 
int
int
any_condjump_p (rtx insn)
any_condjump_p (rtx insn)
{
{
  rtx x = pc_set (insn);
  rtx x = pc_set (insn);
  enum rtx_code a, b;
  enum rtx_code a, b;
 
 
  if (!x)
  if (!x)
    return 0;
    return 0;
  if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
  if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
    return 0;
    return 0;
 
 
  a = GET_CODE (XEXP (SET_SRC (x), 1));
  a = GET_CODE (XEXP (SET_SRC (x), 1));
  b = GET_CODE (XEXP (SET_SRC (x), 2));
  b = GET_CODE (XEXP (SET_SRC (x), 2));
 
 
  return ((b == PC && (a == LABEL_REF || a == RETURN))
  return ((b == PC && (a == LABEL_REF || a == RETURN))
          || (a == PC && (b == LABEL_REF || b == RETURN)));
          || (a == PC && (b == LABEL_REF || b == RETURN)));
}
}
 
 
/* Return the label of a conditional jump.  */
/* Return the label of a conditional jump.  */
 
 
rtx
rtx
condjump_label (rtx insn)
condjump_label (rtx insn)
{
{
  rtx x = pc_set (insn);
  rtx x = pc_set (insn);
 
 
  if (!x)
  if (!x)
    return NULL_RTX;
    return NULL_RTX;
  x = SET_SRC (x);
  x = SET_SRC (x);
  if (GET_CODE (x) == LABEL_REF)
  if (GET_CODE (x) == LABEL_REF)
    return x;
    return x;
  if (GET_CODE (x) != IF_THEN_ELSE)
  if (GET_CODE (x) != IF_THEN_ELSE)
    return NULL_RTX;
    return NULL_RTX;
  if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
  if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
    return XEXP (x, 1);
    return XEXP (x, 1);
  if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
  if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
    return XEXP (x, 2);
    return XEXP (x, 2);
  return NULL_RTX;
  return NULL_RTX;
}
}
 
 
/* Return true if INSN is a (possibly conditional) return insn.  */
/* Return true if INSN is a (possibly conditional) return insn.  */
 
 
static int
static int
returnjump_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
returnjump_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
{
{
  rtx x = *loc;
  rtx x = *loc;
 
 
  return x && (GET_CODE (x) == RETURN
  return x && (GET_CODE (x) == RETURN
               || (GET_CODE (x) == SET && SET_IS_RETURN_P (x)));
               || (GET_CODE (x) == SET && SET_IS_RETURN_P (x)));
}
}
 
 
int
int
returnjump_p (rtx insn)
returnjump_p (rtx insn)
{
{
  if (!JUMP_P (insn))
  if (!JUMP_P (insn))
    return 0;
    return 0;
  return for_each_rtx (&PATTERN (insn), returnjump_p_1, NULL);
  return for_each_rtx (&PATTERN (insn), returnjump_p_1, NULL);
}
}
 
 
/* Return true if INSN is a jump that only transfers control and
/* Return true if INSN is a jump that only transfers control and
   nothing more.  */
   nothing more.  */
 
 
int
int
onlyjump_p (rtx insn)
onlyjump_p (rtx insn)
{
{
  rtx set;
  rtx set;
 
 
  if (!JUMP_P (insn))
  if (!JUMP_P (insn))
    return 0;
    return 0;
 
 
  set = single_set (insn);
  set = single_set (insn);
  if (set == NULL)
  if (set == NULL)
    return 0;
    return 0;
  if (GET_CODE (SET_DEST (set)) != PC)
  if (GET_CODE (SET_DEST (set)) != PC)
    return 0;
    return 0;
  if (side_effects_p (SET_SRC (set)))
  if (side_effects_p (SET_SRC (set)))
    return 0;
    return 0;
 
 
  return 1;
  return 1;
}
}
 
 
#ifdef HAVE_cc0
#ifdef HAVE_cc0
 
 
/* Return nonzero if X is an RTX that only sets the condition codes
/* Return nonzero if X is an RTX that only sets the condition codes
   and has no side effects.  */
   and has no side effects.  */
 
 
int
int
only_sets_cc0_p (rtx x)
only_sets_cc0_p (rtx x)
{
{
  if (! x)
  if (! x)
    return 0;
    return 0;
 
 
  if (INSN_P (x))
  if (INSN_P (x))
    x = PATTERN (x);
    x = PATTERN (x);
 
 
  return sets_cc0_p (x) == 1 && ! side_effects_p (x);
  return sets_cc0_p (x) == 1 && ! side_effects_p (x);
}
}
 
 
/* Return 1 if X is an RTX that does nothing but set the condition codes
/* Return 1 if X is an RTX that does nothing but set the condition codes
   and CLOBBER or USE registers.
   and CLOBBER or USE registers.
   Return -1 if X does explicitly set the condition codes,
   Return -1 if X does explicitly set the condition codes,
   but also does other things.  */
   but also does other things.  */
 
 
int
int
sets_cc0_p (rtx x)
sets_cc0_p (rtx x)
{
{
  if (! x)
  if (! x)
    return 0;
    return 0;
 
 
  if (INSN_P (x))
  if (INSN_P (x))
    x = PATTERN (x);
    x = PATTERN (x);
 
 
  if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
  if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
    return 1;
    return 1;
  if (GET_CODE (x) == PARALLEL)
  if (GET_CODE (x) == PARALLEL)
    {
    {
      int i;
      int i;
      int sets_cc0 = 0;
      int sets_cc0 = 0;
      int other_things = 0;
      int other_things = 0;
      for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
      for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
        {
        {
          if (GET_CODE (XVECEXP (x, 0, i)) == SET
          if (GET_CODE (XVECEXP (x, 0, i)) == SET
              && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
              && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
            sets_cc0 = 1;
            sets_cc0 = 1;
          else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
          else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
            other_things = 1;
            other_things = 1;
        }
        }
      return ! sets_cc0 ? 0 : other_things ? -1 : 1;
      return ! sets_cc0 ? 0 : other_things ? -1 : 1;
    }
    }
  return 0;
  return 0;
}
}
#endif
#endif


/* Follow any unconditional jump at LABEL;
/* Follow any unconditional jump at LABEL;
   return the ultimate label reached by any such chain of jumps.
   return the ultimate label reached by any such chain of jumps.
   Return null if the chain ultimately leads to a return instruction.
   Return null if the chain ultimately leads to a return instruction.
   If LABEL is not followed by a jump, return LABEL.
   If LABEL is not followed by a jump, return LABEL.
   If the chain loops or we can't find end, return LABEL,
   If the chain loops or we can't find end, return LABEL,
   since that tells caller to avoid changing the insn.
   since that tells caller to avoid changing the insn.
 
 
   If RELOAD_COMPLETED is 0, we do not chain across a USE or CLOBBER.  */
   If RELOAD_COMPLETED is 0, we do not chain across a USE or CLOBBER.  */
 
 
rtx
rtx
follow_jumps (rtx label)
follow_jumps (rtx label)
{
{
  rtx insn;
  rtx insn;
  rtx next;
  rtx next;
  rtx value = label;
  rtx value = label;
  int depth;
  int depth;
 
 
  for (depth = 0;
  for (depth = 0;
       (depth < 10
       (depth < 10
        && (insn = next_active_insn (value)) != 0
        && (insn = next_active_insn (value)) != 0
        && JUMP_P (insn)
        && JUMP_P (insn)
        && ((JUMP_LABEL (insn) != 0 && any_uncondjump_p (insn)
        && ((JUMP_LABEL (insn) != 0 && any_uncondjump_p (insn)
             && onlyjump_p (insn))
             && onlyjump_p (insn))
            || GET_CODE (PATTERN (insn)) == RETURN)
            || GET_CODE (PATTERN (insn)) == RETURN)
        && (next = NEXT_INSN (insn))
        && (next = NEXT_INSN (insn))
        && BARRIER_P (next));
        && BARRIER_P (next));
       depth++)
       depth++)
    {
    {
      rtx tem;
      rtx tem;
      if (!reload_completed && flag_test_coverage)
      if (!reload_completed && flag_test_coverage)
        {
        {
          /* ??? Optional.  Disables some optimizations, but makes
          /* ??? Optional.  Disables some optimizations, but makes
             gcov output more accurate with -O.  */
             gcov output more accurate with -O.  */
          for (tem = value; tem != insn; tem = NEXT_INSN (tem))
          for (tem = value; tem != insn; tem = NEXT_INSN (tem))
            if (NOTE_P (tem) && NOTE_LINE_NUMBER (tem) > 0)
            if (NOTE_P (tem) && NOTE_LINE_NUMBER (tem) > 0)
              return value;
              return value;
        }
        }
 
 
      /* If we have found a cycle, make the insn jump to itself.  */
      /* If we have found a cycle, make the insn jump to itself.  */
      if (JUMP_LABEL (insn) == label)
      if (JUMP_LABEL (insn) == label)
        return label;
        return label;
 
 
      tem = next_active_insn (JUMP_LABEL (insn));
      tem = next_active_insn (JUMP_LABEL (insn));
      if (tem && (GET_CODE (PATTERN (tem)) == ADDR_VEC
      if (tem && (GET_CODE (PATTERN (tem)) == ADDR_VEC
                  || GET_CODE (PATTERN (tem)) == ADDR_DIFF_VEC))
                  || GET_CODE (PATTERN (tem)) == ADDR_DIFF_VEC))
        break;
        break;
 
 
      value = JUMP_LABEL (insn);
      value = JUMP_LABEL (insn);
    }
    }
  if (depth == 10)
  if (depth == 10)
    return label;
    return label;
  return value;
  return value;
}
}
 
 


/* Find all CODE_LABELs referred to in X, and increment their use counts.
/* Find all CODE_LABELs referred to in X, and increment their use counts.
   If INSN is a JUMP_INSN and there is at least one CODE_LABEL referenced
   If INSN is a JUMP_INSN and there is at least one CODE_LABEL referenced
   in INSN, then store one of them in JUMP_LABEL (INSN).
   in INSN, then store one of them in JUMP_LABEL (INSN).
   If INSN is an INSN or a CALL_INSN and there is at least one CODE_LABEL
   If INSN is an INSN or a CALL_INSN and there is at least one CODE_LABEL
   referenced in INSN, add a REG_LABEL note containing that label to INSN.
   referenced in INSN, add a REG_LABEL note containing that label to INSN.
   Also, when there are consecutive labels, canonicalize on the last of them.
   Also, when there are consecutive labels, canonicalize on the last of them.
 
 
   Note that two labels separated by a loop-beginning note
   Note that two labels separated by a loop-beginning note
   must be kept distinct if we have not yet done loop-optimization,
   must be kept distinct if we have not yet done loop-optimization,
   because the gap between them is where loop-optimize
   because the gap between them is where loop-optimize
   will want to move invariant code to.  CROSS_JUMP tells us
   will want to move invariant code to.  CROSS_JUMP tells us
   that loop-optimization is done with.  */
   that loop-optimization is done with.  */
 
 
void
void
mark_jump_label (rtx x, rtx insn, int in_mem)
mark_jump_label (rtx x, rtx insn, int in_mem)
{
{
  RTX_CODE code = GET_CODE (x);
  RTX_CODE code = GET_CODE (x);
  int i;
  int i;
  const char *fmt;
  const char *fmt;
 
 
  switch (code)
  switch (code)
    {
    {
    case PC:
    case PC:
    case CC0:
    case CC0:
    case REG:
    case REG:
    case CONST_INT:
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST_DOUBLE:
    case CLOBBER:
    case CLOBBER:
    case CALL:
    case CALL:
      return;
      return;
 
 
    case MEM:
    case MEM:
      in_mem = 1;
      in_mem = 1;
      break;
      break;
 
 
    case SYMBOL_REF:
    case SYMBOL_REF:
      if (!in_mem)
      if (!in_mem)
        return;
        return;
 
 
      /* If this is a constant-pool reference, see if it is a label.  */
      /* If this is a constant-pool reference, see if it is a label.  */
      if (CONSTANT_POOL_ADDRESS_P (x))
      if (CONSTANT_POOL_ADDRESS_P (x))
        mark_jump_label (get_pool_constant (x), insn, in_mem);
        mark_jump_label (get_pool_constant (x), insn, in_mem);
      break;
      break;
 
 
    case LABEL_REF:
    case LABEL_REF:
      {
      {
        rtx label = XEXP (x, 0);
        rtx label = XEXP (x, 0);
 
 
        /* Ignore remaining references to unreachable labels that
        /* Ignore remaining references to unreachable labels that
           have been deleted.  */
           have been deleted.  */
        if (NOTE_P (label)
        if (NOTE_P (label)
            && NOTE_LINE_NUMBER (label) == NOTE_INSN_DELETED_LABEL)
            && NOTE_LINE_NUMBER (label) == NOTE_INSN_DELETED_LABEL)
          break;
          break;
 
 
        gcc_assert (LABEL_P (label));
        gcc_assert (LABEL_P (label));
 
 
        /* Ignore references to labels of containing functions.  */
        /* Ignore references to labels of containing functions.  */
        if (LABEL_REF_NONLOCAL_P (x))
        if (LABEL_REF_NONLOCAL_P (x))
          break;
          break;
 
 
        XEXP (x, 0) = label;
        XEXP (x, 0) = label;
        if (! insn || ! INSN_DELETED_P (insn))
        if (! insn || ! INSN_DELETED_P (insn))
          ++LABEL_NUSES (label);
          ++LABEL_NUSES (label);
 
 
        if (insn)
        if (insn)
          {
          {
            if (JUMP_P (insn))
            if (JUMP_P (insn))
              JUMP_LABEL (insn) = label;
              JUMP_LABEL (insn) = label;
            else
            else
              {
              {
                /* Add a REG_LABEL note for LABEL unless there already
                /* Add a REG_LABEL note for LABEL unless there already
                   is one.  All uses of a label, except for labels
                   is one.  All uses of a label, except for labels
                   that are the targets of jumps, must have a
                   that are the targets of jumps, must have a
                   REG_LABEL note.  */
                   REG_LABEL note.  */
                if (! find_reg_note (insn, REG_LABEL, label))
                if (! find_reg_note (insn, REG_LABEL, label))
                  REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, label,
                  REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, label,
                                                        REG_NOTES (insn));
                                                        REG_NOTES (insn));
              }
              }
          }
          }
        return;
        return;
      }
      }
 
 
  /* Do walk the labels in a vector, but not the first operand of an
  /* Do walk the labels in a vector, but not the first operand of an
     ADDR_DIFF_VEC.  Don't set the JUMP_LABEL of a vector.  */
     ADDR_DIFF_VEC.  Don't set the JUMP_LABEL of a vector.  */
    case ADDR_VEC:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
    case ADDR_DIFF_VEC:
      if (! INSN_DELETED_P (insn))
      if (! INSN_DELETED_P (insn))
        {
        {
          int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
          int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
 
 
          for (i = 0; i < XVECLEN (x, eltnum); i++)
          for (i = 0; i < XVECLEN (x, eltnum); i++)
            mark_jump_label (XVECEXP (x, eltnum, i), NULL_RTX, in_mem);
            mark_jump_label (XVECEXP (x, eltnum, i), NULL_RTX, in_mem);
        }
        }
      return;
      return;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  fmt = GET_RTX_FORMAT (code);
  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
    {
      if (fmt[i] == 'e')
      if (fmt[i] == 'e')
        mark_jump_label (XEXP (x, i), insn, in_mem);
        mark_jump_label (XEXP (x, i), insn, in_mem);
      else if (fmt[i] == 'E')
      else if (fmt[i] == 'E')
        {
        {
          int j;
          int j;
          for (j = 0; j < XVECLEN (x, i); j++)
          for (j = 0; j < XVECLEN (x, i); j++)
            mark_jump_label (XVECEXP (x, i, j), insn, in_mem);
            mark_jump_label (XVECEXP (x, i, j), insn, in_mem);
        }
        }
    }
    }
}
}
 
 
/* If all INSN does is set the pc, delete it,
/* If all INSN does is set the pc, delete it,
   and delete the insn that set the condition codes for it
   and delete the insn that set the condition codes for it
   if that's what the previous thing was.  */
   if that's what the previous thing was.  */
 
 
void
void
delete_jump (rtx insn)
delete_jump (rtx insn)
{
{
  rtx set = single_set (insn);
  rtx set = single_set (insn);
 
 
  if (set && GET_CODE (SET_DEST (set)) == PC)
  if (set && GET_CODE (SET_DEST (set)) == PC)
    delete_computation (insn);
    delete_computation (insn);
}
}
 
 
/* Recursively delete prior insns that compute the value (used only by INSN
/* Recursively delete prior insns that compute the value (used only by INSN
   which the caller is deleting) stored in the register mentioned by NOTE
   which the caller is deleting) stored in the register mentioned by NOTE
   which is a REG_DEAD note associated with INSN.  */
   which is a REG_DEAD note associated with INSN.  */
 
 
static void
static void
delete_prior_computation (rtx note, rtx insn)
delete_prior_computation (rtx note, rtx insn)
{
{
  rtx our_prev;
  rtx our_prev;
  rtx reg = XEXP (note, 0);
  rtx reg = XEXP (note, 0);
 
 
  for (our_prev = prev_nonnote_insn (insn);
  for (our_prev = prev_nonnote_insn (insn);
       our_prev && (NONJUMP_INSN_P (our_prev)
       our_prev && (NONJUMP_INSN_P (our_prev)
                    || CALL_P (our_prev));
                    || CALL_P (our_prev));
       our_prev = prev_nonnote_insn (our_prev))
       our_prev = prev_nonnote_insn (our_prev))
    {
    {
      rtx pat = PATTERN (our_prev);
      rtx pat = PATTERN (our_prev);
 
 
      /* If we reach a CALL which is not calling a const function
      /* If we reach a CALL which is not calling a const function
         or the callee pops the arguments, then give up.  */
         or the callee pops the arguments, then give up.  */
      if (CALL_P (our_prev)
      if (CALL_P (our_prev)
          && (! CONST_OR_PURE_CALL_P (our_prev)
          && (! CONST_OR_PURE_CALL_P (our_prev)
              || GET_CODE (pat) != SET || GET_CODE (SET_SRC (pat)) != CALL))
              || GET_CODE (pat) != SET || GET_CODE (SET_SRC (pat)) != CALL))
        break;
        break;
 
 
      /* If we reach a SEQUENCE, it is too complex to try to
      /* If we reach a SEQUENCE, it is too complex to try to
         do anything with it, so give up.  We can be run during
         do anything with it, so give up.  We can be run during
         and after reorg, so SEQUENCE rtl can legitimately show
         and after reorg, so SEQUENCE rtl can legitimately show
         up here.  */
         up here.  */
      if (GET_CODE (pat) == SEQUENCE)
      if (GET_CODE (pat) == SEQUENCE)
        break;
        break;
 
 
      if (GET_CODE (pat) == USE
      if (GET_CODE (pat) == USE
          && NONJUMP_INSN_P (XEXP (pat, 0)))
          && NONJUMP_INSN_P (XEXP (pat, 0)))
        /* reorg creates USEs that look like this.  We leave them
        /* reorg creates USEs that look like this.  We leave them
           alone because reorg needs them for its own purposes.  */
           alone because reorg needs them for its own purposes.  */
        break;
        break;
 
 
      if (reg_set_p (reg, pat))
      if (reg_set_p (reg, pat))
        {
        {
          if (side_effects_p (pat) && !CALL_P (our_prev))
          if (side_effects_p (pat) && !CALL_P (our_prev))
            break;
            break;
 
 
          if (GET_CODE (pat) == PARALLEL)
          if (GET_CODE (pat) == PARALLEL)
            {
            {
              /* If we find a SET of something else, we can't
              /* If we find a SET of something else, we can't
                 delete the insn.  */
                 delete the insn.  */
 
 
              int i;
              int i;
 
 
              for (i = 0; i < XVECLEN (pat, 0); i++)
              for (i = 0; i < XVECLEN (pat, 0); i++)
                {
                {
                  rtx part = XVECEXP (pat, 0, i);
                  rtx part = XVECEXP (pat, 0, i);
 
 
                  if (GET_CODE (part) == SET
                  if (GET_CODE (part) == SET
                      && SET_DEST (part) != reg)
                      && SET_DEST (part) != reg)
                    break;
                    break;
                }
                }
 
 
              if (i == XVECLEN (pat, 0))
              if (i == XVECLEN (pat, 0))
                delete_computation (our_prev);
                delete_computation (our_prev);
            }
            }
          else if (GET_CODE (pat) == SET
          else if (GET_CODE (pat) == SET
                   && REG_P (SET_DEST (pat)))
                   && REG_P (SET_DEST (pat)))
            {
            {
              int dest_regno = REGNO (SET_DEST (pat));
              int dest_regno = REGNO (SET_DEST (pat));
              int dest_endregno
              int dest_endregno
                = (dest_regno
                = (dest_regno
                   + (dest_regno < FIRST_PSEUDO_REGISTER
                   + (dest_regno < FIRST_PSEUDO_REGISTER
                      ? hard_regno_nregs[dest_regno]
                      ? hard_regno_nregs[dest_regno]
                                        [GET_MODE (SET_DEST (pat))] : 1));
                                        [GET_MODE (SET_DEST (pat))] : 1));
              int regno = REGNO (reg);
              int regno = REGNO (reg);
              int endregno
              int endregno
                = (regno
                = (regno
                   + (regno < FIRST_PSEUDO_REGISTER
                   + (regno < FIRST_PSEUDO_REGISTER
                      ? hard_regno_nregs[regno][GET_MODE (reg)] : 1));
                      ? hard_regno_nregs[regno][GET_MODE (reg)] : 1));
 
 
              if (dest_regno >= regno
              if (dest_regno >= regno
                  && dest_endregno <= endregno)
                  && dest_endregno <= endregno)
                delete_computation (our_prev);
                delete_computation (our_prev);
 
 
              /* We may have a multi-word hard register and some, but not
              /* We may have a multi-word hard register and some, but not
                 all, of the words of the register are needed in subsequent
                 all, of the words of the register are needed in subsequent
                 insns.  Write REG_UNUSED notes for those parts that were not
                 insns.  Write REG_UNUSED notes for those parts that were not
                 needed.  */
                 needed.  */
              else if (dest_regno <= regno
              else if (dest_regno <= regno
                       && dest_endregno >= endregno)
                       && dest_endregno >= endregno)
                {
                {
                  int i;
                  int i;
 
 
                  REG_NOTES (our_prev)
                  REG_NOTES (our_prev)
                    = gen_rtx_EXPR_LIST (REG_UNUSED, reg,
                    = gen_rtx_EXPR_LIST (REG_UNUSED, reg,
                                         REG_NOTES (our_prev));
                                         REG_NOTES (our_prev));
 
 
                  for (i = dest_regno; i < dest_endregno; i++)
                  for (i = dest_regno; i < dest_endregno; i++)
                    if (! find_regno_note (our_prev, REG_UNUSED, i))
                    if (! find_regno_note (our_prev, REG_UNUSED, i))
                      break;
                      break;
 
 
                  if (i == dest_endregno)
                  if (i == dest_endregno)
                    delete_computation (our_prev);
                    delete_computation (our_prev);
                }
                }
            }
            }
 
 
          break;
          break;
        }
        }
 
 
      /* If PAT references the register that dies here, it is an
      /* If PAT references the register that dies here, it is an
         additional use.  Hence any prior SET isn't dead.  However, this
         additional use.  Hence any prior SET isn't dead.  However, this
         insn becomes the new place for the REG_DEAD note.  */
         insn becomes the new place for the REG_DEAD note.  */
      if (reg_overlap_mentioned_p (reg, pat))
      if (reg_overlap_mentioned_p (reg, pat))
        {
        {
          XEXP (note, 1) = REG_NOTES (our_prev);
          XEXP (note, 1) = REG_NOTES (our_prev);
          REG_NOTES (our_prev) = note;
          REG_NOTES (our_prev) = note;
          break;
          break;
        }
        }
    }
    }
}
}
 
 
/* Delete INSN and recursively delete insns that compute values used only
/* Delete INSN and recursively delete insns that compute values used only
   by INSN.  This uses the REG_DEAD notes computed during flow analysis.
   by INSN.  This uses the REG_DEAD notes computed during flow analysis.
   If we are running before flow.c, we need do nothing since flow.c will
   If we are running before flow.c, we need do nothing since flow.c will
   delete dead code.  We also can't know if the registers being used are
   delete dead code.  We also can't know if the registers being used are
   dead or not at this point.
   dead or not at this point.
 
 
   Otherwise, look at all our REG_DEAD notes.  If a previous insn does
   Otherwise, look at all our REG_DEAD notes.  If a previous insn does
   nothing other than set a register that dies in this insn, we can delete
   nothing other than set a register that dies in this insn, we can delete
   that insn as well.
   that insn as well.
 
 
   On machines with CC0, if CC0 is used in this insn, we may be able to
   On machines with CC0, if CC0 is used in this insn, we may be able to
   delete the insn that set it.  */
   delete the insn that set it.  */
 
 
static void
static void
delete_computation (rtx insn)
delete_computation (rtx insn)
{
{
  rtx note, next;
  rtx note, next;
 
 
#ifdef HAVE_cc0
#ifdef HAVE_cc0
  if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
  if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
    {
    {
      rtx prev = prev_nonnote_insn (insn);
      rtx prev = prev_nonnote_insn (insn);
      /* We assume that at this stage
      /* We assume that at this stage
         CC's are always set explicitly
         CC's are always set explicitly
         and always immediately before the jump that
         and always immediately before the jump that
         will use them.  So if the previous insn
         will use them.  So if the previous insn
         exists to set the CC's, delete it
         exists to set the CC's, delete it
         (unless it performs auto-increments, etc.).  */
         (unless it performs auto-increments, etc.).  */
      if (prev && NONJUMP_INSN_P (prev)
      if (prev && NONJUMP_INSN_P (prev)
          && sets_cc0_p (PATTERN (prev)))
          && sets_cc0_p (PATTERN (prev)))
        {
        {
          if (sets_cc0_p (PATTERN (prev)) > 0
          if (sets_cc0_p (PATTERN (prev)) > 0
              && ! side_effects_p (PATTERN (prev)))
              && ! side_effects_p (PATTERN (prev)))
            delete_computation (prev);
            delete_computation (prev);
          else
          else
            /* Otherwise, show that cc0 won't be used.  */
            /* Otherwise, show that cc0 won't be used.  */
            REG_NOTES (prev) = gen_rtx_EXPR_LIST (REG_UNUSED,
            REG_NOTES (prev) = gen_rtx_EXPR_LIST (REG_UNUSED,
                                                  cc0_rtx, REG_NOTES (prev));
                                                  cc0_rtx, REG_NOTES (prev));
        }
        }
    }
    }
#endif
#endif
 
 
  for (note = REG_NOTES (insn); note; note = next)
  for (note = REG_NOTES (insn); note; note = next)
    {
    {
      next = XEXP (note, 1);
      next = XEXP (note, 1);
 
 
      if (REG_NOTE_KIND (note) != REG_DEAD
      if (REG_NOTE_KIND (note) != REG_DEAD
          /* Verify that the REG_NOTE is legitimate.  */
          /* Verify that the REG_NOTE is legitimate.  */
          || !REG_P (XEXP (note, 0)))
          || !REG_P (XEXP (note, 0)))
        continue;
        continue;
 
 
      delete_prior_computation (note, insn);
      delete_prior_computation (note, insn);
    }
    }
 
 
  delete_related_insns (insn);
  delete_related_insns (insn);
}
}


/* Delete insn INSN from the chain of insns and update label ref counts
/* Delete insn INSN from the chain of insns and update label ref counts
   and delete insns now unreachable.
   and delete insns now unreachable.
 
 
   Returns the first insn after INSN that was not deleted.
   Returns the first insn after INSN that was not deleted.
 
 
   Usage of this instruction is deprecated.  Use delete_insn instead and
   Usage of this instruction is deprecated.  Use delete_insn instead and
   subsequent cfg_cleanup pass to delete unreachable code if needed.  */
   subsequent cfg_cleanup pass to delete unreachable code if needed.  */
 
 
rtx
rtx
delete_related_insns (rtx insn)
delete_related_insns (rtx insn)
{
{
  int was_code_label = (LABEL_P (insn));
  int was_code_label = (LABEL_P (insn));
  rtx note;
  rtx note;
  rtx next = NEXT_INSN (insn), prev = PREV_INSN (insn);
  rtx next = NEXT_INSN (insn), prev = PREV_INSN (insn);
 
 
  while (next && INSN_DELETED_P (next))
  while (next && INSN_DELETED_P (next))
    next = NEXT_INSN (next);
    next = NEXT_INSN (next);
 
 
  /* This insn is already deleted => return first following nondeleted.  */
  /* This insn is already deleted => return first following nondeleted.  */
  if (INSN_DELETED_P (insn))
  if (INSN_DELETED_P (insn))
    return next;
    return next;
 
 
  delete_insn (insn);
  delete_insn (insn);
 
 
  /* If instruction is followed by a barrier,
  /* If instruction is followed by a barrier,
     delete the barrier too.  */
     delete the barrier too.  */
 
 
  if (next != 0 && BARRIER_P (next))
  if (next != 0 && BARRIER_P (next))
    delete_insn (next);
    delete_insn (next);
 
 
  /* If deleting a jump, decrement the count of the label,
  /* If deleting a jump, decrement the count of the label,
     and delete the label if it is now unused.  */
     and delete the label if it is now unused.  */
 
 
  if (JUMP_P (insn) && JUMP_LABEL (insn))
  if (JUMP_P (insn) && JUMP_LABEL (insn))
    {
    {
      rtx lab = JUMP_LABEL (insn), lab_next;
      rtx lab = JUMP_LABEL (insn), lab_next;
 
 
      if (LABEL_NUSES (lab) == 0)
      if (LABEL_NUSES (lab) == 0)
        {
        {
          /* This can delete NEXT or PREV,
          /* This can delete NEXT or PREV,
             either directly if NEXT is JUMP_LABEL (INSN),
             either directly if NEXT is JUMP_LABEL (INSN),
             or indirectly through more levels of jumps.  */
             or indirectly through more levels of jumps.  */
          delete_related_insns (lab);
          delete_related_insns (lab);
 
 
          /* I feel a little doubtful about this loop,
          /* I feel a little doubtful about this loop,
             but I see no clean and sure alternative way
             but I see no clean and sure alternative way
             to find the first insn after INSN that is not now deleted.
             to find the first insn after INSN that is not now deleted.
             I hope this works.  */
             I hope this works.  */
          while (next && INSN_DELETED_P (next))
          while (next && INSN_DELETED_P (next))
            next = NEXT_INSN (next);
            next = NEXT_INSN (next);
          return next;
          return next;
        }
        }
      else if (tablejump_p (insn, NULL, &lab_next))
      else if (tablejump_p (insn, NULL, &lab_next))
        {
        {
          /* If we're deleting the tablejump, delete the dispatch table.
          /* If we're deleting the tablejump, delete the dispatch table.
             We may not be able to kill the label immediately preceding
             We may not be able to kill the label immediately preceding
             just yet, as it might be referenced in code leading up to
             just yet, as it might be referenced in code leading up to
             the tablejump.  */
             the tablejump.  */
          delete_related_insns (lab_next);
          delete_related_insns (lab_next);
        }
        }
    }
    }
 
 
  /* Likewise if we're deleting a dispatch table.  */
  /* Likewise if we're deleting a dispatch table.  */
 
 
  if (JUMP_P (insn)
  if (JUMP_P (insn)
      && (GET_CODE (PATTERN (insn)) == ADDR_VEC
      && (GET_CODE (PATTERN (insn)) == ADDR_VEC
          || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
          || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
    {
    {
      rtx pat = PATTERN (insn);
      rtx pat = PATTERN (insn);
      int i, diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
      int i, diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
      int len = XVECLEN (pat, diff_vec_p);
      int len = XVECLEN (pat, diff_vec_p);
 
 
      for (i = 0; i < len; i++)
      for (i = 0; i < len; i++)
        if (LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0)) == 0)
        if (LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0)) == 0)
          delete_related_insns (XEXP (XVECEXP (pat, diff_vec_p, i), 0));
          delete_related_insns (XEXP (XVECEXP (pat, diff_vec_p, i), 0));
      while (next && INSN_DELETED_P (next))
      while (next && INSN_DELETED_P (next))
        next = NEXT_INSN (next);
        next = NEXT_INSN (next);
      return next;
      return next;
    }
    }
 
 
  /* Likewise for an ordinary INSN / CALL_INSN with a REG_LABEL note.  */
  /* Likewise for an ordinary INSN / CALL_INSN with a REG_LABEL note.  */
  if (NONJUMP_INSN_P (insn) || CALL_P (insn))
  if (NONJUMP_INSN_P (insn) || CALL_P (insn))
    for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
    for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
      if (REG_NOTE_KIND (note) == REG_LABEL
      if (REG_NOTE_KIND (note) == REG_LABEL
          /* This could also be a NOTE_INSN_DELETED_LABEL note.  */
          /* This could also be a NOTE_INSN_DELETED_LABEL note.  */
          && LABEL_P (XEXP (note, 0)))
          && LABEL_P (XEXP (note, 0)))
        if (LABEL_NUSES (XEXP (note, 0)) == 0)
        if (LABEL_NUSES (XEXP (note, 0)) == 0)
          delete_related_insns (XEXP (note, 0));
          delete_related_insns (XEXP (note, 0));
 
 
  while (prev && (INSN_DELETED_P (prev) || NOTE_P (prev)))
  while (prev && (INSN_DELETED_P (prev) || NOTE_P (prev)))
    prev = PREV_INSN (prev);
    prev = PREV_INSN (prev);
 
 
  /* If INSN was a label and a dispatch table follows it,
  /* If INSN was a label and a dispatch table follows it,
     delete the dispatch table.  The tablejump must have gone already.
     delete the dispatch table.  The tablejump must have gone already.
     It isn't useful to fall through into a table.  */
     It isn't useful to fall through into a table.  */
 
 
  if (was_code_label
  if (was_code_label
      && NEXT_INSN (insn) != 0
      && NEXT_INSN (insn) != 0
      && JUMP_P (NEXT_INSN (insn))
      && JUMP_P (NEXT_INSN (insn))
      && (GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_VEC
      && (GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_VEC
          || GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_DIFF_VEC))
          || GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_DIFF_VEC))
    next = delete_related_insns (NEXT_INSN (insn));
    next = delete_related_insns (NEXT_INSN (insn));
 
 
  /* If INSN was a label, delete insns following it if now unreachable.  */
  /* If INSN was a label, delete insns following it if now unreachable.  */
 
 
  if (was_code_label && prev && BARRIER_P (prev))
  if (was_code_label && prev && BARRIER_P (prev))
    {
    {
      enum rtx_code code;
      enum rtx_code code;
      while (next)
      while (next)
        {
        {
          code = GET_CODE (next);
          code = GET_CODE (next);
          if (code == NOTE
          if (code == NOTE
              && NOTE_LINE_NUMBER (next) != NOTE_INSN_FUNCTION_END)
              && NOTE_LINE_NUMBER (next) != NOTE_INSN_FUNCTION_END)
            next = NEXT_INSN (next);
            next = NEXT_INSN (next);
          /* Keep going past other deleted labels to delete what follows.  */
          /* Keep going past other deleted labels to delete what follows.  */
          else if (code == CODE_LABEL && INSN_DELETED_P (next))
          else if (code == CODE_LABEL && INSN_DELETED_P (next))
            next = NEXT_INSN (next);
            next = NEXT_INSN (next);
          else if (code == BARRIER || INSN_P (next))
          else if (code == BARRIER || INSN_P (next))
            /* Note: if this deletes a jump, it can cause more
            /* Note: if this deletes a jump, it can cause more
               deletion of unreachable code, after a different label.
               deletion of unreachable code, after a different label.
               As long as the value from this recursive call is correct,
               As long as the value from this recursive call is correct,
               this invocation functions correctly.  */
               this invocation functions correctly.  */
            next = delete_related_insns (next);
            next = delete_related_insns (next);
          else
          else
            break;
            break;
        }
        }
    }
    }
 
 
  return next;
  return next;
}
}


/* Delete a range of insns from FROM to TO, inclusive.
/* Delete a range of insns from FROM to TO, inclusive.
   This is for the sake of peephole optimization, so assume
   This is for the sake of peephole optimization, so assume
   that whatever these insns do will still be done by a new
   that whatever these insns do will still be done by a new
   peephole insn that will replace them.  */
   peephole insn that will replace them.  */
 
 
void
void
delete_for_peephole (rtx from, rtx to)
delete_for_peephole (rtx from, rtx to)
{
{
  rtx insn = from;
  rtx insn = from;
 
 
  while (1)
  while (1)
    {
    {
      rtx next = NEXT_INSN (insn);
      rtx next = NEXT_INSN (insn);
      rtx prev = PREV_INSN (insn);
      rtx prev = PREV_INSN (insn);
 
 
      if (!NOTE_P (insn))
      if (!NOTE_P (insn))
        {
        {
          INSN_DELETED_P (insn) = 1;
          INSN_DELETED_P (insn) = 1;
 
 
          /* Patch this insn out of the chain.  */
          /* Patch this insn out of the chain.  */
          /* We don't do this all at once, because we
          /* We don't do this all at once, because we
             must preserve all NOTEs.  */
             must preserve all NOTEs.  */
          if (prev)
          if (prev)
            NEXT_INSN (prev) = next;
            NEXT_INSN (prev) = next;
 
 
          if (next)
          if (next)
            PREV_INSN (next) = prev;
            PREV_INSN (next) = prev;
        }
        }
 
 
      if (insn == to)
      if (insn == to)
        break;
        break;
      insn = next;
      insn = next;
    }
    }
 
 
  /* Note that if TO is an unconditional jump
  /* Note that if TO is an unconditional jump
     we *do not* delete the BARRIER that follows,
     we *do not* delete the BARRIER that follows,
     since the peephole that replaces this sequence
     since the peephole that replaces this sequence
     is also an unconditional jump in that case.  */
     is also an unconditional jump in that case.  */
}
}


/* Throughout LOC, redirect OLABEL to NLABEL.  Treat null OLABEL or
/* Throughout LOC, redirect OLABEL to NLABEL.  Treat null OLABEL or
   NLABEL as a return.  Accrue modifications into the change group.  */
   NLABEL as a return.  Accrue modifications into the change group.  */
 
 
static void
static void
redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx insn)
redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx insn)
{
{
  rtx x = *loc;
  rtx x = *loc;
  RTX_CODE code = GET_CODE (x);
  RTX_CODE code = GET_CODE (x);
  int i;
  int i;
  const char *fmt;
  const char *fmt;
 
 
  if (code == LABEL_REF)
  if (code == LABEL_REF)
    {
    {
      if (XEXP (x, 0) == olabel)
      if (XEXP (x, 0) == olabel)
        {
        {
          rtx n;
          rtx n;
          if (nlabel)
          if (nlabel)
            n = gen_rtx_LABEL_REF (Pmode, nlabel);
            n = gen_rtx_LABEL_REF (Pmode, nlabel);
          else
          else
            n = gen_rtx_RETURN (VOIDmode);
            n = gen_rtx_RETURN (VOIDmode);
 
 
          validate_change (insn, loc, n, 1);
          validate_change (insn, loc, n, 1);
          return;
          return;
        }
        }
    }
    }
  else if (code == RETURN && olabel == 0)
  else if (code == RETURN && olabel == 0)
    {
    {
      if (nlabel)
      if (nlabel)
        x = gen_rtx_LABEL_REF (Pmode, nlabel);
        x = gen_rtx_LABEL_REF (Pmode, nlabel);
      else
      else
        x = gen_rtx_RETURN (VOIDmode);
        x = gen_rtx_RETURN (VOIDmode);
      if (loc == &PATTERN (insn))
      if (loc == &PATTERN (insn))
        x = gen_rtx_SET (VOIDmode, pc_rtx, x);
        x = gen_rtx_SET (VOIDmode, pc_rtx, x);
      validate_change (insn, loc, x, 1);
      validate_change (insn, loc, x, 1);
      return;
      return;
    }
    }
 
 
  if (code == SET && nlabel == 0 && SET_DEST (x) == pc_rtx
  if (code == SET && nlabel == 0 && SET_DEST (x) == pc_rtx
      && GET_CODE (SET_SRC (x)) == LABEL_REF
      && GET_CODE (SET_SRC (x)) == LABEL_REF
      && XEXP (SET_SRC (x), 0) == olabel)
      && XEXP (SET_SRC (x), 0) == olabel)
    {
    {
      validate_change (insn, loc, gen_rtx_RETURN (VOIDmode), 1);
      validate_change (insn, loc, gen_rtx_RETURN (VOIDmode), 1);
      return;
      return;
    }
    }
 
 
  fmt = GET_RTX_FORMAT (code);
  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
    {
      if (fmt[i] == 'e')
      if (fmt[i] == 'e')
        redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
        redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
      else if (fmt[i] == 'E')
      else if (fmt[i] == 'E')
        {
        {
          int j;
          int j;
          for (j = 0; j < XVECLEN (x, i); j++)
          for (j = 0; j < XVECLEN (x, i); j++)
            redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
            redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
        }
        }
    }
    }
}
}
 
 
/* Make JUMP go to NLABEL instead of where it jumps now.  Accrue
/* Make JUMP go to NLABEL instead of where it jumps now.  Accrue
   the modifications into the change group.  Return false if we did
   the modifications into the change group.  Return false if we did
   not see how to do that.  */
   not see how to do that.  */
 
 
int
int
redirect_jump_1 (rtx jump, rtx nlabel)
redirect_jump_1 (rtx jump, rtx nlabel)
{
{
  int ochanges = num_validated_changes ();
  int ochanges = num_validated_changes ();
  rtx *loc;
  rtx *loc;
 
 
  if (GET_CODE (PATTERN (jump)) == PARALLEL)
  if (GET_CODE (PATTERN (jump)) == PARALLEL)
    loc = &XVECEXP (PATTERN (jump), 0, 0);
    loc = &XVECEXP (PATTERN (jump), 0, 0);
  else
  else
    loc = &PATTERN (jump);
    loc = &PATTERN (jump);
 
 
  redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
  redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
  return num_validated_changes () > ochanges;
  return num_validated_changes () > ochanges;
}
}
 
 
/* Make JUMP go to NLABEL instead of where it jumps now.  If the old
/* Make JUMP go to NLABEL instead of where it jumps now.  If the old
   jump target label is unused as a result, it and the code following
   jump target label is unused as a result, it and the code following
   it may be deleted.
   it may be deleted.
 
 
   If NLABEL is zero, we are to turn the jump into a (possibly conditional)
   If NLABEL is zero, we are to turn the jump into a (possibly conditional)
   RETURN insn.
   RETURN insn.
 
 
   The return value will be 1 if the change was made, 0 if it wasn't
   The return value will be 1 if the change was made, 0 if it wasn't
   (this can only occur for NLABEL == 0).  */
   (this can only occur for NLABEL == 0).  */
 
 
int
int
redirect_jump (rtx jump, rtx nlabel, int delete_unused)
redirect_jump (rtx jump, rtx nlabel, int delete_unused)
{
{
  rtx olabel = JUMP_LABEL (jump);
  rtx olabel = JUMP_LABEL (jump);
 
 
  if (nlabel == olabel)
  if (nlabel == olabel)
    return 1;
    return 1;
 
 
  if (! redirect_jump_1 (jump, nlabel) || ! apply_change_group ())
  if (! redirect_jump_1 (jump, nlabel) || ! apply_change_group ())
    return 0;
    return 0;
 
 
  redirect_jump_2 (jump, olabel, nlabel, delete_unused, 0);
  redirect_jump_2 (jump, olabel, nlabel, delete_unused, 0);
  return 1;
  return 1;
}
}
 
 
/* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
/* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
   NLABEL in JUMP.  If DELETE_UNUSED is non-negative, copy a
   NLABEL in JUMP.  If DELETE_UNUSED is non-negative, copy a
   NOTE_INSN_FUNCTION_END found after OLABEL to the place after NLABEL.
   NOTE_INSN_FUNCTION_END found after OLABEL to the place after NLABEL.
   If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
   If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
   count has dropped to zero.  */
   count has dropped to zero.  */
void
void
redirect_jump_2 (rtx jump, rtx olabel, rtx nlabel, int delete_unused,
redirect_jump_2 (rtx jump, rtx olabel, rtx nlabel, int delete_unused,
                 int invert)
                 int invert)
{
{
  rtx note;
  rtx note;
 
 
  JUMP_LABEL (jump) = nlabel;
  JUMP_LABEL (jump) = nlabel;
  if (nlabel)
  if (nlabel)
    ++LABEL_NUSES (nlabel);
    ++LABEL_NUSES (nlabel);
 
 
  /* Update labels in any REG_EQUAL note.  */
  /* Update labels in any REG_EQUAL note.  */
  if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX)
  if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX)
    {
    {
      if (!nlabel || (invert && !invert_exp_1 (XEXP (note, 0), jump)))
      if (!nlabel || (invert && !invert_exp_1 (XEXP (note, 0), jump)))
        remove_note (jump, note);
        remove_note (jump, note);
      else
      else
        {
        {
          redirect_exp_1 (&XEXP (note, 0), olabel, nlabel, jump);
          redirect_exp_1 (&XEXP (note, 0), olabel, nlabel, jump);
          confirm_change_group ();
          confirm_change_group ();
        }
        }
    }
    }
 
 
  /* If we're eliding the jump over exception cleanups at the end of a
  /* If we're eliding the jump over exception cleanups at the end of a
     function, move the function end note so that -Wreturn-type works.  */
     function, move the function end note so that -Wreturn-type works.  */
  if (olabel && nlabel
  if (olabel && nlabel
      && NEXT_INSN (olabel)
      && NEXT_INSN (olabel)
      && NOTE_P (NEXT_INSN (olabel))
      && NOTE_P (NEXT_INSN (olabel))
      && NOTE_LINE_NUMBER (NEXT_INSN (olabel)) == NOTE_INSN_FUNCTION_END
      && NOTE_LINE_NUMBER (NEXT_INSN (olabel)) == NOTE_INSN_FUNCTION_END
      && delete_unused >= 0)
      && delete_unused >= 0)
    emit_note_after (NOTE_INSN_FUNCTION_END, nlabel);
    emit_note_after (NOTE_INSN_FUNCTION_END, nlabel);
 
 
  if (olabel && --LABEL_NUSES (olabel) == 0 && delete_unused > 0
  if (olabel && --LABEL_NUSES (olabel) == 0 && delete_unused > 0
      /* Undefined labels will remain outside the insn stream.  */
      /* Undefined labels will remain outside the insn stream.  */
      && INSN_UID (olabel))
      && INSN_UID (olabel))
    delete_related_insns (olabel);
    delete_related_insns (olabel);
  if (invert)
  if (invert)
    invert_br_probabilities (jump);
    invert_br_probabilities (jump);
}
}
 
 
/* Invert the jump condition X contained in jump insn INSN.  Accrue the
/* Invert the jump condition X contained in jump insn INSN.  Accrue the
   modifications into the change group.  Return nonzero for success.  */
   modifications into the change group.  Return nonzero for success.  */
static int
static int
invert_exp_1 (rtx x, rtx insn)
invert_exp_1 (rtx x, rtx insn)
{
{
  RTX_CODE code = GET_CODE (x);
  RTX_CODE code = GET_CODE (x);
 
 
  if (code == IF_THEN_ELSE)
  if (code == IF_THEN_ELSE)
    {
    {
      rtx comp = XEXP (x, 0);
      rtx comp = XEXP (x, 0);
      rtx tem;
      rtx tem;
      enum rtx_code reversed_code;
      enum rtx_code reversed_code;
 
 
      /* We can do this in two ways:  The preferable way, which can only
      /* We can do this in two ways:  The preferable way, which can only
         be done if this is not an integer comparison, is to reverse
         be done if this is not an integer comparison, is to reverse
         the comparison code.  Otherwise, swap the THEN-part and ELSE-part
         the comparison code.  Otherwise, swap the THEN-part and ELSE-part
         of the IF_THEN_ELSE.  If we can't do either, fail.  */
         of the IF_THEN_ELSE.  If we can't do either, fail.  */
 
 
      reversed_code = reversed_comparison_code (comp, insn);
      reversed_code = reversed_comparison_code (comp, insn);
 
 
      if (reversed_code != UNKNOWN)
      if (reversed_code != UNKNOWN)
        {
        {
          validate_change (insn, &XEXP (x, 0),
          validate_change (insn, &XEXP (x, 0),
                           gen_rtx_fmt_ee (reversed_code,
                           gen_rtx_fmt_ee (reversed_code,
                                           GET_MODE (comp), XEXP (comp, 0),
                                           GET_MODE (comp), XEXP (comp, 0),
                                           XEXP (comp, 1)),
                                           XEXP (comp, 1)),
                           1);
                           1);
          return 1;
          return 1;
        }
        }
 
 
      tem = XEXP (x, 1);
      tem = XEXP (x, 1);
      validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
      validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
      validate_change (insn, &XEXP (x, 2), tem, 1);
      validate_change (insn, &XEXP (x, 2), tem, 1);
      return 1;
      return 1;
    }
    }
  else
  else
    return 0;
    return 0;
}
}
 
 
/* Invert the condition of the jump JUMP, and make it jump to label
/* Invert the condition of the jump JUMP, and make it jump to label
   NLABEL instead of where it jumps now.  Accrue changes into the
   NLABEL instead of where it jumps now.  Accrue changes into the
   change group.  Return false if we didn't see how to perform the
   change group.  Return false if we didn't see how to perform the
   inversion and redirection.  */
   inversion and redirection.  */
 
 
int
int
invert_jump_1 (rtx jump, rtx nlabel)
invert_jump_1 (rtx jump, rtx nlabel)
{
{
  rtx x = pc_set (jump);
  rtx x = pc_set (jump);
  int ochanges;
  int ochanges;
  int ok;
  int ok;
 
 
  ochanges = num_validated_changes ();
  ochanges = num_validated_changes ();
  gcc_assert (x);
  gcc_assert (x);
  ok = invert_exp_1 (SET_SRC (x), jump);
  ok = invert_exp_1 (SET_SRC (x), jump);
  gcc_assert (ok);
  gcc_assert (ok);
 
 
  if (num_validated_changes () == ochanges)
  if (num_validated_changes () == ochanges)
    return 0;
    return 0;
 
 
  /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
  /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
     in Pmode, so checking this is not merely an optimization.  */
     in Pmode, so checking this is not merely an optimization.  */
  return nlabel == JUMP_LABEL (jump) || redirect_jump_1 (jump, nlabel);
  return nlabel == JUMP_LABEL (jump) || redirect_jump_1 (jump, nlabel);
}
}
 
 
/* Invert the condition of the jump JUMP, and make it jump to label
/* Invert the condition of the jump JUMP, and make it jump to label
   NLABEL instead of where it jumps now.  Return true if successful.  */
   NLABEL instead of where it jumps now.  Return true if successful.  */
 
 
int
int
invert_jump (rtx jump, rtx nlabel, int delete_unused)
invert_jump (rtx jump, rtx nlabel, int delete_unused)
{
{
  rtx olabel = JUMP_LABEL (jump);
  rtx olabel = JUMP_LABEL (jump);
 
 
  if (invert_jump_1 (jump, nlabel) && apply_change_group ())
  if (invert_jump_1 (jump, nlabel) && apply_change_group ())
    {
    {
      redirect_jump_2 (jump, olabel, nlabel, delete_unused, 1);
      redirect_jump_2 (jump, olabel, nlabel, delete_unused, 1);
      return 1;
      return 1;
    }
    }
  cancel_changes (0);
  cancel_changes (0);
  return 0;
  return 0;
}
}
 
 


/* Like rtx_equal_p except that it considers two REGs as equal
/* Like rtx_equal_p except that it considers two REGs as equal
   if they renumber to the same value and considers two commutative
   if they renumber to the same value and considers two commutative
   operations to be the same if the order of the operands has been
   operations to be the same if the order of the operands has been
   reversed.  */
   reversed.  */
 
 
int
int
rtx_renumbered_equal_p (rtx x, rtx y)
rtx_renumbered_equal_p (rtx x, rtx y)
{
{
  int i;
  int i;
  enum rtx_code code = GET_CODE (x);
  enum rtx_code code = GET_CODE (x);
  const char *fmt;
  const char *fmt;
 
 
  if (x == y)
  if (x == y)
    return 1;
    return 1;
 
 
  if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
  if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
      && (REG_P (y) || (GET_CODE (y) == SUBREG
      && (REG_P (y) || (GET_CODE (y) == SUBREG
                                  && REG_P (SUBREG_REG (y)))))
                                  && REG_P (SUBREG_REG (y)))))
    {
    {
      int reg_x = -1, reg_y = -1;
      int reg_x = -1, reg_y = -1;
      int byte_x = 0, byte_y = 0;
      int byte_x = 0, byte_y = 0;
 
 
      if (GET_MODE (x) != GET_MODE (y))
      if (GET_MODE (x) != GET_MODE (y))
        return 0;
        return 0;
 
 
      /* If we haven't done any renumbering, don't
      /* If we haven't done any renumbering, don't
         make any assumptions.  */
         make any assumptions.  */
      if (reg_renumber == 0)
      if (reg_renumber == 0)
        return rtx_equal_p (x, y);
        return rtx_equal_p (x, y);
 
 
      if (code == SUBREG)
      if (code == SUBREG)
        {
        {
          reg_x = REGNO (SUBREG_REG (x));
          reg_x = REGNO (SUBREG_REG (x));
          byte_x = SUBREG_BYTE (x);
          byte_x = SUBREG_BYTE (x);
 
 
          if (reg_renumber[reg_x] >= 0)
          if (reg_renumber[reg_x] >= 0)
            {
            {
              reg_x = subreg_regno_offset (reg_renumber[reg_x],
              reg_x = subreg_regno_offset (reg_renumber[reg_x],
                                           GET_MODE (SUBREG_REG (x)),
                                           GET_MODE (SUBREG_REG (x)),
                                           byte_x,
                                           byte_x,
                                           GET_MODE (x));
                                           GET_MODE (x));
              byte_x = 0;
              byte_x = 0;
            }
            }
        }
        }
      else
      else
        {
        {
          reg_x = REGNO (x);
          reg_x = REGNO (x);
          if (reg_renumber[reg_x] >= 0)
          if (reg_renumber[reg_x] >= 0)
            reg_x = reg_renumber[reg_x];
            reg_x = reg_renumber[reg_x];
        }
        }
 
 
      if (GET_CODE (y) == SUBREG)
      if (GET_CODE (y) == SUBREG)
        {
        {
          reg_y = REGNO (SUBREG_REG (y));
          reg_y = REGNO (SUBREG_REG (y));
          byte_y = SUBREG_BYTE (y);
          byte_y = SUBREG_BYTE (y);
 
 
          if (reg_renumber[reg_y] >= 0)
          if (reg_renumber[reg_y] >= 0)
            {
            {
              reg_y = subreg_regno_offset (reg_renumber[reg_y],
              reg_y = subreg_regno_offset (reg_renumber[reg_y],
                                           GET_MODE (SUBREG_REG (y)),
                                           GET_MODE (SUBREG_REG (y)),
                                           byte_y,
                                           byte_y,
                                           GET_MODE (y));
                                           GET_MODE (y));
              byte_y = 0;
              byte_y = 0;
            }
            }
        }
        }
      else
      else
        {
        {
          reg_y = REGNO (y);
          reg_y = REGNO (y);
          if (reg_renumber[reg_y] >= 0)
          if (reg_renumber[reg_y] >= 0)
            reg_y = reg_renumber[reg_y];
            reg_y = reg_renumber[reg_y];
        }
        }
 
 
      return reg_x >= 0 && reg_x == reg_y && byte_x == byte_y;
      return reg_x >= 0 && reg_x == reg_y && byte_x == byte_y;
    }
    }
 
 
  /* Now we have disposed of all the cases
  /* Now we have disposed of all the cases
     in which different rtx codes can match.  */
     in which different rtx codes can match.  */
  if (code != GET_CODE (y))
  if (code != GET_CODE (y))
    return 0;
    return 0;
 
 
  switch (code)
  switch (code)
    {
    {
    case PC:
    case PC:
    case CC0:
    case CC0:
    case ADDR_VEC:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
    case ADDR_DIFF_VEC:
    case CONST_INT:
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST_DOUBLE:
      return 0;
      return 0;
 
 
    case LABEL_REF:
    case LABEL_REF:
      /* We can't assume nonlocal labels have their following insns yet.  */
      /* We can't assume nonlocal labels have their following insns yet.  */
      if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
      if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
        return XEXP (x, 0) == XEXP (y, 0);
        return XEXP (x, 0) == XEXP (y, 0);
 
 
      /* Two label-refs are equivalent if they point at labels
      /* Two label-refs are equivalent if they point at labels
         in the same position in the instruction stream.  */
         in the same position in the instruction stream.  */
      return (next_real_insn (XEXP (x, 0))
      return (next_real_insn (XEXP (x, 0))
              == next_real_insn (XEXP (y, 0)));
              == next_real_insn (XEXP (y, 0)));
 
 
    case SYMBOL_REF:
    case SYMBOL_REF:
      return XSTR (x, 0) == XSTR (y, 0);
      return XSTR (x, 0) == XSTR (y, 0);
 
 
    case CODE_LABEL:
    case CODE_LABEL:
      /* If we didn't match EQ equality above, they aren't the same.  */
      /* If we didn't match EQ equality above, they aren't the same.  */
      return 0;
      return 0;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.  */
  /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.  */
 
 
  if (GET_MODE (x) != GET_MODE (y))
  if (GET_MODE (x) != GET_MODE (y))
    return 0;
    return 0;
 
 
  /* For commutative operations, the RTX match if the operand match in any
  /* For commutative operations, the RTX match if the operand match in any
     order.  Also handle the simple binary and unary cases without a loop.  */
     order.  Also handle the simple binary and unary cases without a loop.  */
  if (targetm.commutative_p (x, UNKNOWN))
  if (targetm.commutative_p (x, UNKNOWN))
    return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
    return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
             && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
             && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
            || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
            || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
                && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
                && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
  else if (NON_COMMUTATIVE_P (x))
  else if (NON_COMMUTATIVE_P (x))
    return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
    return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
            && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
            && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
  else if (UNARY_P (x))
  else if (UNARY_P (x))
    return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
    return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
 
 
  /* Compare the elements.  If any pair of corresponding elements
  /* Compare the elements.  If any pair of corresponding elements
     fail to match, return 0 for the whole things.  */
     fail to match, return 0 for the whole things.  */
 
 
  fmt = GET_RTX_FORMAT (code);
  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
    {
      int j;
      int j;
      switch (fmt[i])
      switch (fmt[i])
        {
        {
        case 'w':
        case 'w':
          if (XWINT (x, i) != XWINT (y, i))
          if (XWINT (x, i) != XWINT (y, i))
            return 0;
            return 0;
          break;
          break;
 
 
        case 'i':
        case 'i':
          if (XINT (x, i) != XINT (y, i))
          if (XINT (x, i) != XINT (y, i))
            return 0;
            return 0;
          break;
          break;
 
 
        case 't':
        case 't':
          if (XTREE (x, i) != XTREE (y, i))
          if (XTREE (x, i) != XTREE (y, i))
            return 0;
            return 0;
          break;
          break;
 
 
        case 's':
        case 's':
          if (strcmp (XSTR (x, i), XSTR (y, i)))
          if (strcmp (XSTR (x, i), XSTR (y, i)))
            return 0;
            return 0;
          break;
          break;
 
 
        case 'e':
        case 'e':
          if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
          if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
            return 0;
            return 0;
          break;
          break;
 
 
        case 'u':
        case 'u':
          if (XEXP (x, i) != XEXP (y, i))
          if (XEXP (x, i) != XEXP (y, i))
            return 0;
            return 0;
          /* Fall through.  */
          /* Fall through.  */
        case '0':
        case '0':
          break;
          break;
 
 
        case 'E':
        case 'E':
          if (XVECLEN (x, i) != XVECLEN (y, i))
          if (XVECLEN (x, i) != XVECLEN (y, i))
            return 0;
            return 0;
          for (j = XVECLEN (x, i) - 1; j >= 0; j--)
          for (j = XVECLEN (x, i) - 1; j >= 0; j--)
            if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
            if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
              return 0;
              return 0;
          break;
          break;
 
 
        default:
        default:
          gcc_unreachable ();
          gcc_unreachable ();
        }
        }
    }
    }
  return 1;
  return 1;
}
}


/* If X is a hard register or equivalent to one or a subregister of one,
/* If X is a hard register or equivalent to one or a subregister of one,
   return the hard register number.  If X is a pseudo register that was not
   return the hard register number.  If X is a pseudo register that was not
   assigned a hard register, return the pseudo register number.  Otherwise,
   assigned a hard register, return the pseudo register number.  Otherwise,
   return -1.  Any rtx is valid for X.  */
   return -1.  Any rtx is valid for X.  */
 
 
int
int
true_regnum (rtx x)
true_regnum (rtx x)
{
{
  if (REG_P (x))
  if (REG_P (x))
    {
    {
      if (REGNO (x) >= FIRST_PSEUDO_REGISTER && reg_renumber[REGNO (x)] >= 0)
      if (REGNO (x) >= FIRST_PSEUDO_REGISTER && reg_renumber[REGNO (x)] >= 0)
        return reg_renumber[REGNO (x)];
        return reg_renumber[REGNO (x)];
      return REGNO (x);
      return REGNO (x);
    }
    }
  if (GET_CODE (x) == SUBREG)
  if (GET_CODE (x) == SUBREG)
    {
    {
      int base = true_regnum (SUBREG_REG (x));
      int base = true_regnum (SUBREG_REG (x));
      if (base >= 0
      if (base >= 0
          && base < FIRST_PSEUDO_REGISTER
          && base < FIRST_PSEUDO_REGISTER
          && subreg_offset_representable_p (REGNO (SUBREG_REG (x)),
          && subreg_offset_representable_p (REGNO (SUBREG_REG (x)),
                                            GET_MODE (SUBREG_REG (x)),
                                            GET_MODE (SUBREG_REG (x)),
                                            SUBREG_BYTE (x), GET_MODE (x)))
                                            SUBREG_BYTE (x), GET_MODE (x)))
        return base + subreg_regno_offset (REGNO (SUBREG_REG (x)),
        return base + subreg_regno_offset (REGNO (SUBREG_REG (x)),
                                           GET_MODE (SUBREG_REG (x)),
                                           GET_MODE (SUBREG_REG (x)),
                                           SUBREG_BYTE (x), GET_MODE (x));
                                           SUBREG_BYTE (x), GET_MODE (x));
    }
    }
  return -1;
  return -1;
}
}
 
 
/* Return regno of the register REG and handle subregs too.  */
/* Return regno of the register REG and handle subregs too.  */
unsigned int
unsigned int
reg_or_subregno (rtx reg)
reg_or_subregno (rtx reg)
{
{
  if (GET_CODE (reg) == SUBREG)
  if (GET_CODE (reg) == SUBREG)
    reg = SUBREG_REG (reg);
    reg = SUBREG_REG (reg);
  gcc_assert (REG_P (reg));
  gcc_assert (REG_P (reg));
  return REGNO (reg);
  return REGNO (reg);
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.