OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gcc-4.2.2/] [gcc/] [optabs.c] - Diff between revs 154 and 816

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 154 Rev 816
/* Expand the basic unary and binary arithmetic operations, for GNU compiler.
/* Expand the basic unary and binary arithmetic operations, for GNU compiler.
   Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
   Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify it under
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
Software Foundation; either version 3, or (at your option) any later
version.
version.
 
 
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "toplev.h"
#include "toplev.h"
 
 
/* Include insn-config.h before expr.h so that HAVE_conditional_move
/* Include insn-config.h before expr.h so that HAVE_conditional_move
   is properly defined.  */
   is properly defined.  */
#include "insn-config.h"
#include "insn-config.h"
#include "rtl.h"
#include "rtl.h"
#include "tree.h"
#include "tree.h"
#include "tm_p.h"
#include "tm_p.h"
#include "flags.h"
#include "flags.h"
#include "function.h"
#include "function.h"
#include "except.h"
#include "except.h"
#include "expr.h"
#include "expr.h"
#include "optabs.h"
#include "optabs.h"
#include "libfuncs.h"
#include "libfuncs.h"
#include "recog.h"
#include "recog.h"
#include "reload.h"
#include "reload.h"
#include "ggc.h"
#include "ggc.h"
#include "real.h"
#include "real.h"
#include "basic-block.h"
#include "basic-block.h"
#include "target.h"
#include "target.h"
 
 
/* Each optab contains info on how this target machine
/* Each optab contains info on how this target machine
   can perform a particular operation
   can perform a particular operation
   for all sizes and kinds of operands.
   for all sizes and kinds of operands.
 
 
   The operation to be performed is often specified
   The operation to be performed is often specified
   by passing one of these optabs as an argument.
   by passing one of these optabs as an argument.
 
 
   See expr.h for documentation of these optabs.  */
   See expr.h for documentation of these optabs.  */
 
 
optab optab_table[OTI_MAX];
optab optab_table[OTI_MAX];
 
 
rtx libfunc_table[LTI_MAX];
rtx libfunc_table[LTI_MAX];
 
 
/* Tables of patterns for converting one mode to another.  */
/* Tables of patterns for converting one mode to another.  */
convert_optab convert_optab_table[COI_MAX];
convert_optab convert_optab_table[COI_MAX];
 
 
/* Contains the optab used for each rtx code.  */
/* Contains the optab used for each rtx code.  */
optab code_to_optab[NUM_RTX_CODE + 1];
optab code_to_optab[NUM_RTX_CODE + 1];
 
 
/* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
/* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
   gives the gen_function to make a branch to test that condition.  */
   gives the gen_function to make a branch to test that condition.  */
 
 
rtxfun bcc_gen_fctn[NUM_RTX_CODE];
rtxfun bcc_gen_fctn[NUM_RTX_CODE];
 
 
/* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
/* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
   gives the insn code to make a store-condition insn
   gives the insn code to make a store-condition insn
   to test that condition.  */
   to test that condition.  */
 
 
enum insn_code setcc_gen_code[NUM_RTX_CODE];
enum insn_code setcc_gen_code[NUM_RTX_CODE];
 
 
#ifdef HAVE_conditional_move
#ifdef HAVE_conditional_move
/* Indexed by the machine mode, gives the insn code to make a conditional
/* Indexed by the machine mode, gives the insn code to make a conditional
   move insn.  This is not indexed by the rtx-code like bcc_gen_fctn and
   move insn.  This is not indexed by the rtx-code like bcc_gen_fctn and
   setcc_gen_code to cut down on the number of named patterns.  Consider a day
   setcc_gen_code to cut down on the number of named patterns.  Consider a day
   when a lot more rtx codes are conditional (eg: for the ARM).  */
   when a lot more rtx codes are conditional (eg: for the ARM).  */
 
 
enum insn_code movcc_gen_code[NUM_MACHINE_MODES];
enum insn_code movcc_gen_code[NUM_MACHINE_MODES];
#endif
#endif
 
 
/* Indexed by the machine mode, gives the insn code for vector conditional
/* Indexed by the machine mode, gives the insn code for vector conditional
   operation.  */
   operation.  */
 
 
enum insn_code vcond_gen_code[NUM_MACHINE_MODES];
enum insn_code vcond_gen_code[NUM_MACHINE_MODES];
enum insn_code vcondu_gen_code[NUM_MACHINE_MODES];
enum insn_code vcondu_gen_code[NUM_MACHINE_MODES];
 
 
/* The insn generating function can not take an rtx_code argument.
/* The insn generating function can not take an rtx_code argument.
   TRAP_RTX is used as an rtx argument.  Its code is replaced with
   TRAP_RTX is used as an rtx argument.  Its code is replaced with
   the code to be used in the trap insn and all other fields are ignored.  */
   the code to be used in the trap insn and all other fields are ignored.  */
static GTY(()) rtx trap_rtx;
static GTY(()) rtx trap_rtx;
 
 
static int add_equal_note (rtx, rtx, enum rtx_code, rtx, rtx);
static int add_equal_note (rtx, rtx, enum rtx_code, rtx, rtx);
static rtx widen_operand (rtx, enum machine_mode, enum machine_mode, int,
static rtx widen_operand (rtx, enum machine_mode, enum machine_mode, int,
                          int);
                          int);
static void prepare_cmp_insn (rtx *, rtx *, enum rtx_code *, rtx,
static void prepare_cmp_insn (rtx *, rtx *, enum rtx_code *, rtx,
                              enum machine_mode *, int *,
                              enum machine_mode *, int *,
                              enum can_compare_purpose);
                              enum can_compare_purpose);
static enum insn_code can_fix_p (enum machine_mode, enum machine_mode, int,
static enum insn_code can_fix_p (enum machine_mode, enum machine_mode, int,
                                 int *);
                                 int *);
static enum insn_code can_float_p (enum machine_mode, enum machine_mode, int);
static enum insn_code can_float_p (enum machine_mode, enum machine_mode, int);
static optab new_optab (void);
static optab new_optab (void);
static convert_optab new_convert_optab (void);
static convert_optab new_convert_optab (void);
static inline optab init_optab (enum rtx_code);
static inline optab init_optab (enum rtx_code);
static inline optab init_optabv (enum rtx_code);
static inline optab init_optabv (enum rtx_code);
static inline convert_optab init_convert_optab (enum rtx_code);
static inline convert_optab init_convert_optab (enum rtx_code);
static void init_libfuncs (optab, int, int, const char *, int);
static void init_libfuncs (optab, int, int, const char *, int);
static void init_integral_libfuncs (optab, const char *, int);
static void init_integral_libfuncs (optab, const char *, int);
static void init_floating_libfuncs (optab, const char *, int);
static void init_floating_libfuncs (optab, const char *, int);
static void init_interclass_conv_libfuncs (convert_optab, const char *,
static void init_interclass_conv_libfuncs (convert_optab, const char *,
                                           enum mode_class, enum mode_class);
                                           enum mode_class, enum mode_class);
static void init_intraclass_conv_libfuncs (convert_optab, const char *,
static void init_intraclass_conv_libfuncs (convert_optab, const char *,
                                           enum mode_class, bool);
                                           enum mode_class, bool);
static void emit_cmp_and_jump_insn_1 (rtx, rtx, enum machine_mode,
static void emit_cmp_and_jump_insn_1 (rtx, rtx, enum machine_mode,
                                      enum rtx_code, int, rtx);
                                      enum rtx_code, int, rtx);
static void prepare_float_lib_cmp (rtx *, rtx *, enum rtx_code *,
static void prepare_float_lib_cmp (rtx *, rtx *, enum rtx_code *,
                                   enum machine_mode *, int *);
                                   enum machine_mode *, int *);
static rtx widen_clz (enum machine_mode, rtx, rtx);
static rtx widen_clz (enum machine_mode, rtx, rtx);
static rtx expand_parity (enum machine_mode, rtx, rtx);
static rtx expand_parity (enum machine_mode, rtx, rtx);
static enum rtx_code get_rtx_code (enum tree_code, bool);
static enum rtx_code get_rtx_code (enum tree_code, bool);
static rtx vector_compare_rtx (tree, bool, enum insn_code);
static rtx vector_compare_rtx (tree, bool, enum insn_code);
 
 
#ifndef HAVE_conditional_trap
#ifndef HAVE_conditional_trap
#define HAVE_conditional_trap 0
#define HAVE_conditional_trap 0
#define gen_conditional_trap(a,b) (gcc_unreachable (), NULL_RTX)
#define gen_conditional_trap(a,b) (gcc_unreachable (), NULL_RTX)
#endif
#endif


/* Add a REG_EQUAL note to the last insn in INSNS.  TARGET is being set to
/* Add a REG_EQUAL note to the last insn in INSNS.  TARGET is being set to
   the result of operation CODE applied to OP0 (and OP1 if it is a binary
   the result of operation CODE applied to OP0 (and OP1 if it is a binary
   operation).
   operation).
 
 
   If the last insn does not set TARGET, don't do anything, but return 1.
   If the last insn does not set TARGET, don't do anything, but return 1.
 
 
   If a previous insn sets TARGET and TARGET is one of OP0 or OP1,
   If a previous insn sets TARGET and TARGET is one of OP0 or OP1,
   don't add the REG_EQUAL note but return 0.  Our caller can then try
   don't add the REG_EQUAL note but return 0.  Our caller can then try
   again, ensuring that TARGET is not one of the operands.  */
   again, ensuring that TARGET is not one of the operands.  */
 
 
static int
static int
add_equal_note (rtx insns, rtx target, enum rtx_code code, rtx op0, rtx op1)
add_equal_note (rtx insns, rtx target, enum rtx_code code, rtx op0, rtx op1)
{
{
  rtx last_insn, insn, set;
  rtx last_insn, insn, set;
  rtx note;
  rtx note;
 
 
  gcc_assert (insns && INSN_P (insns) && NEXT_INSN (insns));
  gcc_assert (insns && INSN_P (insns) && NEXT_INSN (insns));
 
 
  if (GET_RTX_CLASS (code) != RTX_COMM_ARITH
  if (GET_RTX_CLASS (code) != RTX_COMM_ARITH
      && GET_RTX_CLASS (code) != RTX_BIN_ARITH
      && GET_RTX_CLASS (code) != RTX_BIN_ARITH
      && GET_RTX_CLASS (code) != RTX_COMM_COMPARE
      && GET_RTX_CLASS (code) != RTX_COMM_COMPARE
      && GET_RTX_CLASS (code) != RTX_COMPARE
      && GET_RTX_CLASS (code) != RTX_COMPARE
      && GET_RTX_CLASS (code) != RTX_UNARY)
      && GET_RTX_CLASS (code) != RTX_UNARY)
    return 1;
    return 1;
 
 
  if (GET_CODE (target) == ZERO_EXTRACT)
  if (GET_CODE (target) == ZERO_EXTRACT)
    return 1;
    return 1;
 
 
  for (last_insn = insns;
  for (last_insn = insns;
       NEXT_INSN (last_insn) != NULL_RTX;
       NEXT_INSN (last_insn) != NULL_RTX;
       last_insn = NEXT_INSN (last_insn))
       last_insn = NEXT_INSN (last_insn))
    ;
    ;
 
 
  set = single_set (last_insn);
  set = single_set (last_insn);
  if (set == NULL_RTX)
  if (set == NULL_RTX)
    return 1;
    return 1;
 
 
  if (! rtx_equal_p (SET_DEST (set), target)
  if (! rtx_equal_p (SET_DEST (set), target)
      /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it.  */
      /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it.  */
      && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
      && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
          || ! rtx_equal_p (XEXP (SET_DEST (set), 0), target)))
          || ! rtx_equal_p (XEXP (SET_DEST (set), 0), target)))
    return 1;
    return 1;
 
 
  /* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET
  /* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET
     besides the last insn.  */
     besides the last insn.  */
  if (reg_overlap_mentioned_p (target, op0)
  if (reg_overlap_mentioned_p (target, op0)
      || (op1 && reg_overlap_mentioned_p (target, op1)))
      || (op1 && reg_overlap_mentioned_p (target, op1)))
    {
    {
      insn = PREV_INSN (last_insn);
      insn = PREV_INSN (last_insn);
      while (insn != NULL_RTX)
      while (insn != NULL_RTX)
        {
        {
          if (reg_set_p (target, insn))
          if (reg_set_p (target, insn))
            return 0;
            return 0;
 
 
          insn = PREV_INSN (insn);
          insn = PREV_INSN (insn);
        }
        }
    }
    }
 
 
  if (GET_RTX_CLASS (code) == RTX_UNARY)
  if (GET_RTX_CLASS (code) == RTX_UNARY)
    note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
    note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
  else
  else
    note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
    note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
 
 
  set_unique_reg_note (last_insn, REG_EQUAL, note);
  set_unique_reg_note (last_insn, REG_EQUAL, note);
 
 
  return 1;
  return 1;
}
}


/* Widen OP to MODE and return the rtx for the widened operand.  UNSIGNEDP
/* Widen OP to MODE and return the rtx for the widened operand.  UNSIGNEDP
   says whether OP is signed or unsigned.  NO_EXTEND is nonzero if we need
   says whether OP is signed or unsigned.  NO_EXTEND is nonzero if we need
   not actually do a sign-extend or zero-extend, but can leave the
   not actually do a sign-extend or zero-extend, but can leave the
   higher-order bits of the result rtx undefined, for example, in the case
   higher-order bits of the result rtx undefined, for example, in the case
   of logical operations, but not right shifts.  */
   of logical operations, but not right shifts.  */
 
 
static rtx
static rtx
widen_operand (rtx op, enum machine_mode mode, enum machine_mode oldmode,
widen_operand (rtx op, enum machine_mode mode, enum machine_mode oldmode,
               int unsignedp, int no_extend)
               int unsignedp, int no_extend)
{
{
  rtx result;
  rtx result;
 
 
  /* If we don't have to extend and this is a constant, return it.  */
  /* If we don't have to extend and this is a constant, return it.  */
  if (no_extend && GET_MODE (op) == VOIDmode)
  if (no_extend && GET_MODE (op) == VOIDmode)
    return op;
    return op;
 
 
  /* If we must extend do so.  If OP is a SUBREG for a promoted object, also
  /* If we must extend do so.  If OP is a SUBREG for a promoted object, also
     extend since it will be more efficient to do so unless the signedness of
     extend since it will be more efficient to do so unless the signedness of
     a promoted object differs from our extension.  */
     a promoted object differs from our extension.  */
  if (! no_extend
  if (! no_extend
      || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)
      || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)
          && SUBREG_PROMOTED_UNSIGNED_P (op) == unsignedp))
          && SUBREG_PROMOTED_UNSIGNED_P (op) == unsignedp))
    return convert_modes (mode, oldmode, op, unsignedp);
    return convert_modes (mode, oldmode, op, unsignedp);
 
 
  /* If MODE is no wider than a single word, we return a paradoxical
  /* If MODE is no wider than a single word, we return a paradoxical
     SUBREG.  */
     SUBREG.  */
  if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
  if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
    return gen_rtx_SUBREG (mode, force_reg (GET_MODE (op), op), 0);
    return gen_rtx_SUBREG (mode, force_reg (GET_MODE (op), op), 0);
 
 
  /* Otherwise, get an object of MODE, clobber it, and set the low-order
  /* Otherwise, get an object of MODE, clobber it, and set the low-order
     part to OP.  */
     part to OP.  */
 
 
  result = gen_reg_rtx (mode);
  result = gen_reg_rtx (mode);
  emit_insn (gen_rtx_CLOBBER (VOIDmode, result));
  emit_insn (gen_rtx_CLOBBER (VOIDmode, result));
  emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
  emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
  return result;
  return result;
}
}


/* Return the optab used for computing the operation given by
/* Return the optab used for computing the operation given by
   the tree code, CODE.  This function is not always usable (for
   the tree code, CODE.  This function is not always usable (for
   example, it cannot give complete results for multiplication
   example, it cannot give complete results for multiplication
   or division) but probably ought to be relied on more widely
   or division) but probably ought to be relied on more widely
   throughout the expander.  */
   throughout the expander.  */
optab
optab
optab_for_tree_code (enum tree_code code, tree type)
optab_for_tree_code (enum tree_code code, tree type)
{
{
  bool trapv;
  bool trapv;
  switch (code)
  switch (code)
    {
    {
    case BIT_AND_EXPR:
    case BIT_AND_EXPR:
      return and_optab;
      return and_optab;
 
 
    case BIT_IOR_EXPR:
    case BIT_IOR_EXPR:
      return ior_optab;
      return ior_optab;
 
 
    case BIT_NOT_EXPR:
    case BIT_NOT_EXPR:
      return one_cmpl_optab;
      return one_cmpl_optab;
 
 
    case BIT_XOR_EXPR:
    case BIT_XOR_EXPR:
      return xor_optab;
      return xor_optab;
 
 
    case TRUNC_MOD_EXPR:
    case TRUNC_MOD_EXPR:
    case CEIL_MOD_EXPR:
    case CEIL_MOD_EXPR:
    case FLOOR_MOD_EXPR:
    case FLOOR_MOD_EXPR:
    case ROUND_MOD_EXPR:
    case ROUND_MOD_EXPR:
      return TYPE_UNSIGNED (type) ? umod_optab : smod_optab;
      return TYPE_UNSIGNED (type) ? umod_optab : smod_optab;
 
 
    case RDIV_EXPR:
    case RDIV_EXPR:
    case TRUNC_DIV_EXPR:
    case TRUNC_DIV_EXPR:
    case CEIL_DIV_EXPR:
    case CEIL_DIV_EXPR:
    case FLOOR_DIV_EXPR:
    case FLOOR_DIV_EXPR:
    case ROUND_DIV_EXPR:
    case ROUND_DIV_EXPR:
    case EXACT_DIV_EXPR:
    case EXACT_DIV_EXPR:
      return TYPE_UNSIGNED (type) ? udiv_optab : sdiv_optab;
      return TYPE_UNSIGNED (type) ? udiv_optab : sdiv_optab;
 
 
    case LSHIFT_EXPR:
    case LSHIFT_EXPR:
      return ashl_optab;
      return ashl_optab;
 
 
    case RSHIFT_EXPR:
    case RSHIFT_EXPR:
      return TYPE_UNSIGNED (type) ? lshr_optab : ashr_optab;
      return TYPE_UNSIGNED (type) ? lshr_optab : ashr_optab;
 
 
    case LROTATE_EXPR:
    case LROTATE_EXPR:
      return rotl_optab;
      return rotl_optab;
 
 
    case RROTATE_EXPR:
    case RROTATE_EXPR:
      return rotr_optab;
      return rotr_optab;
 
 
    case MAX_EXPR:
    case MAX_EXPR:
      return TYPE_UNSIGNED (type) ? umax_optab : smax_optab;
      return TYPE_UNSIGNED (type) ? umax_optab : smax_optab;
 
 
    case MIN_EXPR:
    case MIN_EXPR:
      return TYPE_UNSIGNED (type) ? umin_optab : smin_optab;
      return TYPE_UNSIGNED (type) ? umin_optab : smin_optab;
 
 
    case REALIGN_LOAD_EXPR:
    case REALIGN_LOAD_EXPR:
      return vec_realign_load_optab;
      return vec_realign_load_optab;
 
 
    case WIDEN_SUM_EXPR:
    case WIDEN_SUM_EXPR:
      return TYPE_UNSIGNED (type) ? usum_widen_optab : ssum_widen_optab;
      return TYPE_UNSIGNED (type) ? usum_widen_optab : ssum_widen_optab;
 
 
    case DOT_PROD_EXPR:
    case DOT_PROD_EXPR:
      return TYPE_UNSIGNED (type) ? udot_prod_optab : sdot_prod_optab;
      return TYPE_UNSIGNED (type) ? udot_prod_optab : sdot_prod_optab;
 
 
    case REDUC_MAX_EXPR:
    case REDUC_MAX_EXPR:
      return TYPE_UNSIGNED (type) ? reduc_umax_optab : reduc_smax_optab;
      return TYPE_UNSIGNED (type) ? reduc_umax_optab : reduc_smax_optab;
 
 
    case REDUC_MIN_EXPR:
    case REDUC_MIN_EXPR:
      return TYPE_UNSIGNED (type) ? reduc_umin_optab : reduc_smin_optab;
      return TYPE_UNSIGNED (type) ? reduc_umin_optab : reduc_smin_optab;
 
 
    case REDUC_PLUS_EXPR:
    case REDUC_PLUS_EXPR:
      return TYPE_UNSIGNED (type) ? reduc_uplus_optab : reduc_splus_optab;
      return TYPE_UNSIGNED (type) ? reduc_uplus_optab : reduc_splus_optab;
 
 
    case VEC_LSHIFT_EXPR:
    case VEC_LSHIFT_EXPR:
      return vec_shl_optab;
      return vec_shl_optab;
 
 
    case VEC_RSHIFT_EXPR:
    case VEC_RSHIFT_EXPR:
      return vec_shr_optab;
      return vec_shr_optab;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  trapv = INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type);
  trapv = INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type);
  switch (code)
  switch (code)
    {
    {
    case PLUS_EXPR:
    case PLUS_EXPR:
      return trapv ? addv_optab : add_optab;
      return trapv ? addv_optab : add_optab;
 
 
    case MINUS_EXPR:
    case MINUS_EXPR:
      return trapv ? subv_optab : sub_optab;
      return trapv ? subv_optab : sub_optab;
 
 
    case MULT_EXPR:
    case MULT_EXPR:
      return trapv ? smulv_optab : smul_optab;
      return trapv ? smulv_optab : smul_optab;
 
 
    case NEGATE_EXPR:
    case NEGATE_EXPR:
      return trapv ? negv_optab : neg_optab;
      return trapv ? negv_optab : neg_optab;
 
 
    case ABS_EXPR:
    case ABS_EXPR:
      return trapv ? absv_optab : abs_optab;
      return trapv ? absv_optab : abs_optab;
 
 
    default:
    default:
      return NULL;
      return NULL;
    }
    }
}
}


 
 
/* Expand vector widening operations.
/* Expand vector widening operations.
 
 
   There are two different classes of operations handled here:
   There are two different classes of operations handled here:
   1) Operations whose result is wider than all the arguments to the operation.
   1) Operations whose result is wider than all the arguments to the operation.
      Examples: VEC_UNPACK_HI/LO_EXPR, VEC_WIDEN_MULT_HI/LO_EXPR
      Examples: VEC_UNPACK_HI/LO_EXPR, VEC_WIDEN_MULT_HI/LO_EXPR
      In this case OP0 and optionally OP1 would be initialized,
      In this case OP0 and optionally OP1 would be initialized,
      but WIDE_OP wouldn't (not relevant for this case).
      but WIDE_OP wouldn't (not relevant for this case).
   2) Operations whose result is of the same size as the last argument to the
   2) Operations whose result is of the same size as the last argument to the
      operation, but wider than all the other arguments to the operation.
      operation, but wider than all the other arguments to the operation.
      Examples: WIDEN_SUM_EXPR, VEC_DOT_PROD_EXPR.
      Examples: WIDEN_SUM_EXPR, VEC_DOT_PROD_EXPR.
      In the case WIDE_OP, OP0 and optionally OP1 would be initialized.
      In the case WIDE_OP, OP0 and optionally OP1 would be initialized.
 
 
   E.g, when called to expand the following operations, this is how
   E.g, when called to expand the following operations, this is how
   the arguments will be initialized:
   the arguments will be initialized:
                                nops    OP0     OP1     WIDE_OP
                                nops    OP0     OP1     WIDE_OP
   widening-sum                 2       oprnd0  -       oprnd1
   widening-sum                 2       oprnd0  -       oprnd1
   widening-dot-product         3       oprnd0  oprnd1  oprnd2
   widening-dot-product         3       oprnd0  oprnd1  oprnd2
   widening-mult                2       oprnd0  oprnd1  -
   widening-mult                2       oprnd0  oprnd1  -
   type-promotion (vec-unpack)  1       oprnd0  -       -  */
   type-promotion (vec-unpack)  1       oprnd0  -       -  */
 
 
rtx
rtx
expand_widen_pattern_expr (tree exp, rtx op0, rtx op1, rtx wide_op, rtx target,
expand_widen_pattern_expr (tree exp, rtx op0, rtx op1, rtx wide_op, rtx target,
                           int unsignedp)
                           int unsignedp)
{
{
  tree oprnd0, oprnd1, oprnd2;
  tree oprnd0, oprnd1, oprnd2;
  enum machine_mode wmode = 0, tmode0, tmode1 = 0;
  enum machine_mode wmode = 0, tmode0, tmode1 = 0;
  optab widen_pattern_optab;
  optab widen_pattern_optab;
  int icode;
  int icode;
  enum machine_mode xmode0, xmode1 = 0, wxmode = 0;
  enum machine_mode xmode0, xmode1 = 0, wxmode = 0;
  rtx temp;
  rtx temp;
  rtx pat;
  rtx pat;
  rtx xop0, xop1, wxop;
  rtx xop0, xop1, wxop;
  int nops = TREE_CODE_LENGTH (TREE_CODE (exp));
  int nops = TREE_CODE_LENGTH (TREE_CODE (exp));
 
 
  oprnd0 = TREE_OPERAND (exp, 0);
  oprnd0 = TREE_OPERAND (exp, 0);
  tmode0 = TYPE_MODE (TREE_TYPE (oprnd0));
  tmode0 = TYPE_MODE (TREE_TYPE (oprnd0));
  widen_pattern_optab =
  widen_pattern_optab =
        optab_for_tree_code (TREE_CODE (exp), TREE_TYPE (oprnd0));
        optab_for_tree_code (TREE_CODE (exp), TREE_TYPE (oprnd0));
  icode = (int) widen_pattern_optab->handlers[(int) tmode0].insn_code;
  icode = (int) widen_pattern_optab->handlers[(int) tmode0].insn_code;
  gcc_assert (icode != CODE_FOR_nothing);
  gcc_assert (icode != CODE_FOR_nothing);
  xmode0 = insn_data[icode].operand[1].mode;
  xmode0 = insn_data[icode].operand[1].mode;
 
 
  if (nops >= 2)
  if (nops >= 2)
    {
    {
      oprnd1 = TREE_OPERAND (exp, 1);
      oprnd1 = TREE_OPERAND (exp, 1);
      tmode1 = TYPE_MODE (TREE_TYPE (oprnd1));
      tmode1 = TYPE_MODE (TREE_TYPE (oprnd1));
      xmode1 = insn_data[icode].operand[2].mode;
      xmode1 = insn_data[icode].operand[2].mode;
    }
    }
 
 
  /* The last operand is of a wider mode than the rest of the operands.  */
  /* The last operand is of a wider mode than the rest of the operands.  */
  if (nops == 2)
  if (nops == 2)
    {
    {
      wmode = tmode1;
      wmode = tmode1;
      wxmode = xmode1;
      wxmode = xmode1;
    }
    }
  else if (nops == 3)
  else if (nops == 3)
    {
    {
      gcc_assert (tmode1 == tmode0);
      gcc_assert (tmode1 == tmode0);
      gcc_assert (op1);
      gcc_assert (op1);
      oprnd2 = TREE_OPERAND (exp, 2);
      oprnd2 = TREE_OPERAND (exp, 2);
      wmode = TYPE_MODE (TREE_TYPE (oprnd2));
      wmode = TYPE_MODE (TREE_TYPE (oprnd2));
      wxmode = insn_data[icode].operand[3].mode;
      wxmode = insn_data[icode].operand[3].mode;
    }
    }
 
 
  if (!wide_op)
  if (!wide_op)
    wmode = wxmode = insn_data[icode].operand[0].mode;
    wmode = wxmode = insn_data[icode].operand[0].mode;
 
 
  if (!target
  if (!target
      || ! (*insn_data[icode].operand[0].predicate) (target, wmode))
      || ! (*insn_data[icode].operand[0].predicate) (target, wmode))
    temp = gen_reg_rtx (wmode);
    temp = gen_reg_rtx (wmode);
  else
  else
    temp = target;
    temp = target;
 
 
  xop0 = op0;
  xop0 = op0;
  xop1 = op1;
  xop1 = op1;
  wxop = wide_op;
  wxop = wide_op;
 
 
  /* In case the insn wants input operands in modes different from
  /* In case the insn wants input operands in modes different from
     those of the actual operands, convert the operands.  It would
     those of the actual operands, convert the operands.  It would
     seem that we don't need to convert CONST_INTs, but we do, so
     seem that we don't need to convert CONST_INTs, but we do, so
     that they're properly zero-extended, sign-extended or truncated
     that they're properly zero-extended, sign-extended or truncated
     for their mode.  */
     for their mode.  */
 
 
  if (GET_MODE (op0) != xmode0 && xmode0 != VOIDmode)
  if (GET_MODE (op0) != xmode0 && xmode0 != VOIDmode)
    xop0 = convert_modes (xmode0,
    xop0 = convert_modes (xmode0,
                          GET_MODE (op0) != VOIDmode
                          GET_MODE (op0) != VOIDmode
                          ? GET_MODE (op0)
                          ? GET_MODE (op0)
                          : tmode0,
                          : tmode0,
                          xop0, unsignedp);
                          xop0, unsignedp);
 
 
  if (op1)
  if (op1)
    if (GET_MODE (op1) != xmode1 && xmode1 != VOIDmode)
    if (GET_MODE (op1) != xmode1 && xmode1 != VOIDmode)
      xop1 = convert_modes (xmode1,
      xop1 = convert_modes (xmode1,
                            GET_MODE (op1) != VOIDmode
                            GET_MODE (op1) != VOIDmode
                            ? GET_MODE (op1)
                            ? GET_MODE (op1)
                            : tmode1,
                            : tmode1,
                            xop1, unsignedp);
                            xop1, unsignedp);
 
 
  if (wide_op)
  if (wide_op)
    if (GET_MODE (wide_op) != wxmode && wxmode != VOIDmode)
    if (GET_MODE (wide_op) != wxmode && wxmode != VOIDmode)
      wxop = convert_modes (wxmode,
      wxop = convert_modes (wxmode,
                            GET_MODE (wide_op) != VOIDmode
                            GET_MODE (wide_op) != VOIDmode
                            ? GET_MODE (wide_op)
                            ? GET_MODE (wide_op)
                            : wmode,
                            : wmode,
                            wxop, unsignedp);
                            wxop, unsignedp);
 
 
  /* Now, if insn's predicates don't allow our operands, put them into
  /* Now, if insn's predicates don't allow our operands, put them into
     pseudo regs.  */
     pseudo regs.  */
 
 
  if (! (*insn_data[icode].operand[1].predicate) (xop0, xmode0)
  if (! (*insn_data[icode].operand[1].predicate) (xop0, xmode0)
      && xmode0 != VOIDmode)
      && xmode0 != VOIDmode)
    xop0 = copy_to_mode_reg (xmode0, xop0);
    xop0 = copy_to_mode_reg (xmode0, xop0);
 
 
  if (op1)
  if (op1)
    {
    {
      if (! (*insn_data[icode].operand[2].predicate) (xop1, xmode1)
      if (! (*insn_data[icode].operand[2].predicate) (xop1, xmode1)
          && xmode1 != VOIDmode)
          && xmode1 != VOIDmode)
        xop1 = copy_to_mode_reg (xmode1, xop1);
        xop1 = copy_to_mode_reg (xmode1, xop1);
 
 
      if (wide_op)
      if (wide_op)
        {
        {
          if (! (*insn_data[icode].operand[3].predicate) (wxop, wxmode)
          if (! (*insn_data[icode].operand[3].predicate) (wxop, wxmode)
              && wxmode != VOIDmode)
              && wxmode != VOIDmode)
            wxop = copy_to_mode_reg (wxmode, wxop);
            wxop = copy_to_mode_reg (wxmode, wxop);
 
 
          pat = GEN_FCN (icode) (temp, xop0, xop1, wxop);
          pat = GEN_FCN (icode) (temp, xop0, xop1, wxop);
        }
        }
      else
      else
        pat = GEN_FCN (icode) (temp, xop0, xop1);
        pat = GEN_FCN (icode) (temp, xop0, xop1);
    }
    }
  else
  else
    {
    {
      if (wide_op)
      if (wide_op)
        {
        {
          if (! (*insn_data[icode].operand[2].predicate) (wxop, wxmode)
          if (! (*insn_data[icode].operand[2].predicate) (wxop, wxmode)
              && wxmode != VOIDmode)
              && wxmode != VOIDmode)
            wxop = copy_to_mode_reg (wxmode, wxop);
            wxop = copy_to_mode_reg (wxmode, wxop);
 
 
          pat = GEN_FCN (icode) (temp, xop0, wxop);
          pat = GEN_FCN (icode) (temp, xop0, wxop);
        }
        }
      else
      else
        pat = GEN_FCN (icode) (temp, xop0);
        pat = GEN_FCN (icode) (temp, xop0);
    }
    }
 
 
  emit_insn (pat);
  emit_insn (pat);
  return temp;
  return temp;
}
}
 
 
/* Generate code to perform an operation specified by TERNARY_OPTAB
/* Generate code to perform an operation specified by TERNARY_OPTAB
   on operands OP0, OP1 and OP2, with result having machine-mode MODE.
   on operands OP0, OP1 and OP2, with result having machine-mode MODE.
 
 
   UNSIGNEDP is for the case where we have to widen the operands
   UNSIGNEDP is for the case where we have to widen the operands
   to perform the operation.  It says to use zero-extension.
   to perform the operation.  It says to use zero-extension.
 
 
   If TARGET is nonzero, the value
   If TARGET is nonzero, the value
   is generated there, if it is convenient to do so.
   is generated there, if it is convenient to do so.
   In all cases an rtx is returned for the locus of the value;
   In all cases an rtx is returned for the locus of the value;
   this may or may not be TARGET.  */
   this may or may not be TARGET.  */
 
 
rtx
rtx
expand_ternary_op (enum machine_mode mode, optab ternary_optab, rtx op0,
expand_ternary_op (enum machine_mode mode, optab ternary_optab, rtx op0,
                   rtx op1, rtx op2, rtx target, int unsignedp)
                   rtx op1, rtx op2, rtx target, int unsignedp)
{
{
  int icode = (int) ternary_optab->handlers[(int) mode].insn_code;
  int icode = (int) ternary_optab->handlers[(int) mode].insn_code;
  enum machine_mode mode0 = insn_data[icode].operand[1].mode;
  enum machine_mode mode0 = insn_data[icode].operand[1].mode;
  enum machine_mode mode1 = insn_data[icode].operand[2].mode;
  enum machine_mode mode1 = insn_data[icode].operand[2].mode;
  enum machine_mode mode2 = insn_data[icode].operand[3].mode;
  enum machine_mode mode2 = insn_data[icode].operand[3].mode;
  rtx temp;
  rtx temp;
  rtx pat;
  rtx pat;
  rtx xop0 = op0, xop1 = op1, xop2 = op2;
  rtx xop0 = op0, xop1 = op1, xop2 = op2;
 
 
  gcc_assert (ternary_optab->handlers[(int) mode].insn_code
  gcc_assert (ternary_optab->handlers[(int) mode].insn_code
              != CODE_FOR_nothing);
              != CODE_FOR_nothing);
 
 
  if (!target || !insn_data[icode].operand[0].predicate (target, mode))
  if (!target || !insn_data[icode].operand[0].predicate (target, mode))
    temp = gen_reg_rtx (mode);
    temp = gen_reg_rtx (mode);
  else
  else
    temp = target;
    temp = target;
 
 
  /* In case the insn wants input operands in modes different from
  /* In case the insn wants input operands in modes different from
     those of the actual operands, convert the operands.  It would
     those of the actual operands, convert the operands.  It would
     seem that we don't need to convert CONST_INTs, but we do, so
     seem that we don't need to convert CONST_INTs, but we do, so
     that they're properly zero-extended, sign-extended or truncated
     that they're properly zero-extended, sign-extended or truncated
     for their mode.  */
     for their mode.  */
 
 
  if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
  if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
    xop0 = convert_modes (mode0,
    xop0 = convert_modes (mode0,
                          GET_MODE (op0) != VOIDmode
                          GET_MODE (op0) != VOIDmode
                          ? GET_MODE (op0)
                          ? GET_MODE (op0)
                          : mode,
                          : mode,
                          xop0, unsignedp);
                          xop0, unsignedp);
 
 
  if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
  if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
    xop1 = convert_modes (mode1,
    xop1 = convert_modes (mode1,
                          GET_MODE (op1) != VOIDmode
                          GET_MODE (op1) != VOIDmode
                          ? GET_MODE (op1)
                          ? GET_MODE (op1)
                          : mode,
                          : mode,
                          xop1, unsignedp);
                          xop1, unsignedp);
 
 
  if (GET_MODE (op2) != mode2 && mode2 != VOIDmode)
  if (GET_MODE (op2) != mode2 && mode2 != VOIDmode)
    xop2 = convert_modes (mode2,
    xop2 = convert_modes (mode2,
                          GET_MODE (op2) != VOIDmode
                          GET_MODE (op2) != VOIDmode
                          ? GET_MODE (op2)
                          ? GET_MODE (op2)
                          : mode,
                          : mode,
                          xop2, unsignedp);
                          xop2, unsignedp);
 
 
  /* Now, if insn's predicates don't allow our operands, put them into
  /* Now, if insn's predicates don't allow our operands, put them into
     pseudo regs.  */
     pseudo regs.  */
 
 
  if (!insn_data[icode].operand[1].predicate (xop0, mode0)
  if (!insn_data[icode].operand[1].predicate (xop0, mode0)
      && mode0 != VOIDmode)
      && mode0 != VOIDmode)
    xop0 = copy_to_mode_reg (mode0, xop0);
    xop0 = copy_to_mode_reg (mode0, xop0);
 
 
  if (!insn_data[icode].operand[2].predicate (xop1, mode1)
  if (!insn_data[icode].operand[2].predicate (xop1, mode1)
      && mode1 != VOIDmode)
      && mode1 != VOIDmode)
    xop1 = copy_to_mode_reg (mode1, xop1);
    xop1 = copy_to_mode_reg (mode1, xop1);
 
 
  if (!insn_data[icode].operand[3].predicate (xop2, mode2)
  if (!insn_data[icode].operand[3].predicate (xop2, mode2)
      && mode2 != VOIDmode)
      && mode2 != VOIDmode)
    xop2 = copy_to_mode_reg (mode2, xop2);
    xop2 = copy_to_mode_reg (mode2, xop2);
 
 
  pat = GEN_FCN (icode) (temp, xop0, xop1, xop2);
  pat = GEN_FCN (icode) (temp, xop0, xop1, xop2);
 
 
  emit_insn (pat);
  emit_insn (pat);
  return temp;
  return temp;
}
}
 
 
 
 
/* Like expand_binop, but return a constant rtx if the result can be
/* Like expand_binop, but return a constant rtx if the result can be
   calculated at compile time.  The arguments and return value are
   calculated at compile time.  The arguments and return value are
   otherwise the same as for expand_binop.  */
   otherwise the same as for expand_binop.  */
 
 
static rtx
static rtx
simplify_expand_binop (enum machine_mode mode, optab binoptab,
simplify_expand_binop (enum machine_mode mode, optab binoptab,
                       rtx op0, rtx op1, rtx target, int unsignedp,
                       rtx op0, rtx op1, rtx target, int unsignedp,
                       enum optab_methods methods)
                       enum optab_methods methods)
{
{
  if (CONSTANT_P (op0) && CONSTANT_P (op1))
  if (CONSTANT_P (op0) && CONSTANT_P (op1))
    {
    {
      rtx x = simplify_binary_operation (binoptab->code, mode, op0, op1);
      rtx x = simplify_binary_operation (binoptab->code, mode, op0, op1);
 
 
      if (x)
      if (x)
        return x;
        return x;
    }
    }
 
 
  return expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods);
  return expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods);
}
}
 
 
/* Like simplify_expand_binop, but always put the result in TARGET.
/* Like simplify_expand_binop, but always put the result in TARGET.
   Return true if the expansion succeeded.  */
   Return true if the expansion succeeded.  */
 
 
bool
bool
force_expand_binop (enum machine_mode mode, optab binoptab,
force_expand_binop (enum machine_mode mode, optab binoptab,
                    rtx op0, rtx op1, rtx target, int unsignedp,
                    rtx op0, rtx op1, rtx target, int unsignedp,
                    enum optab_methods methods)
                    enum optab_methods methods)
{
{
  rtx x = simplify_expand_binop (mode, binoptab, op0, op1,
  rtx x = simplify_expand_binop (mode, binoptab, op0, op1,
                                 target, unsignedp, methods);
                                 target, unsignedp, methods);
  if (x == 0)
  if (x == 0)
    return false;
    return false;
  if (x != target)
  if (x != target)
    emit_move_insn (target, x);
    emit_move_insn (target, x);
  return true;
  return true;
}
}
 
 
/* Generate insns for VEC_LSHIFT_EXPR, VEC_RSHIFT_EXPR.  */
/* Generate insns for VEC_LSHIFT_EXPR, VEC_RSHIFT_EXPR.  */
 
 
rtx
rtx
expand_vec_shift_expr (tree vec_shift_expr, rtx target)
expand_vec_shift_expr (tree vec_shift_expr, rtx target)
{
{
  enum insn_code icode;
  enum insn_code icode;
  rtx rtx_op1, rtx_op2;
  rtx rtx_op1, rtx_op2;
  enum machine_mode mode1;
  enum machine_mode mode1;
  enum machine_mode mode2;
  enum machine_mode mode2;
  enum machine_mode mode = TYPE_MODE (TREE_TYPE (vec_shift_expr));
  enum machine_mode mode = TYPE_MODE (TREE_TYPE (vec_shift_expr));
  tree vec_oprnd = TREE_OPERAND (vec_shift_expr, 0);
  tree vec_oprnd = TREE_OPERAND (vec_shift_expr, 0);
  tree shift_oprnd = TREE_OPERAND (vec_shift_expr, 1);
  tree shift_oprnd = TREE_OPERAND (vec_shift_expr, 1);
  optab shift_optab;
  optab shift_optab;
  rtx pat;
  rtx pat;
 
 
  switch (TREE_CODE (vec_shift_expr))
  switch (TREE_CODE (vec_shift_expr))
    {
    {
      case VEC_RSHIFT_EXPR:
      case VEC_RSHIFT_EXPR:
        shift_optab = vec_shr_optab;
        shift_optab = vec_shr_optab;
        break;
        break;
      case VEC_LSHIFT_EXPR:
      case VEC_LSHIFT_EXPR:
        shift_optab = vec_shl_optab;
        shift_optab = vec_shl_optab;
        break;
        break;
      default:
      default:
        gcc_unreachable ();
        gcc_unreachable ();
    }
    }
 
 
  icode = (int) shift_optab->handlers[(int) mode].insn_code;
  icode = (int) shift_optab->handlers[(int) mode].insn_code;
  gcc_assert (icode != CODE_FOR_nothing);
  gcc_assert (icode != CODE_FOR_nothing);
 
 
  mode1 = insn_data[icode].operand[1].mode;
  mode1 = insn_data[icode].operand[1].mode;
  mode2 = insn_data[icode].operand[2].mode;
  mode2 = insn_data[icode].operand[2].mode;
 
 
  rtx_op1 = expand_expr (vec_oprnd, NULL_RTX, VOIDmode, EXPAND_NORMAL);
  rtx_op1 = expand_expr (vec_oprnd, NULL_RTX, VOIDmode, EXPAND_NORMAL);
  if (!(*insn_data[icode].operand[1].predicate) (rtx_op1, mode1)
  if (!(*insn_data[icode].operand[1].predicate) (rtx_op1, mode1)
      && mode1 != VOIDmode)
      && mode1 != VOIDmode)
    rtx_op1 = force_reg (mode1, rtx_op1);
    rtx_op1 = force_reg (mode1, rtx_op1);
 
 
  rtx_op2 = expand_expr (shift_oprnd, NULL_RTX, VOIDmode, EXPAND_NORMAL);
  rtx_op2 = expand_expr (shift_oprnd, NULL_RTX, VOIDmode, EXPAND_NORMAL);
  if (!(*insn_data[icode].operand[2].predicate) (rtx_op2, mode2)
  if (!(*insn_data[icode].operand[2].predicate) (rtx_op2, mode2)
      && mode2 != VOIDmode)
      && mode2 != VOIDmode)
    rtx_op2 = force_reg (mode2, rtx_op2);
    rtx_op2 = force_reg (mode2, rtx_op2);
 
 
  if (!target
  if (!target
      || ! (*insn_data[icode].operand[0].predicate) (target, mode))
      || ! (*insn_data[icode].operand[0].predicate) (target, mode))
    target = gen_reg_rtx (mode);
    target = gen_reg_rtx (mode);
 
 
  /* Emit instruction */
  /* Emit instruction */
  pat = GEN_FCN (icode) (target, rtx_op1, rtx_op2);
  pat = GEN_FCN (icode) (target, rtx_op1, rtx_op2);
  gcc_assert (pat);
  gcc_assert (pat);
  emit_insn (pat);
  emit_insn (pat);
 
 
  return target;
  return target;
}
}
 
 
/* This subroutine of expand_doubleword_shift handles the cases in which
/* This subroutine of expand_doubleword_shift handles the cases in which
   the effective shift value is >= BITS_PER_WORD.  The arguments and return
   the effective shift value is >= BITS_PER_WORD.  The arguments and return
   value are the same as for the parent routine, except that SUPERWORD_OP1
   value are the same as for the parent routine, except that SUPERWORD_OP1
   is the shift count to use when shifting OUTOF_INPUT into INTO_TARGET.
   is the shift count to use when shifting OUTOF_INPUT into INTO_TARGET.
   INTO_TARGET may be null if the caller has decided to calculate it.  */
   INTO_TARGET may be null if the caller has decided to calculate it.  */
 
 
static bool
static bool
expand_superword_shift (optab binoptab, rtx outof_input, rtx superword_op1,
expand_superword_shift (optab binoptab, rtx outof_input, rtx superword_op1,
                        rtx outof_target, rtx into_target,
                        rtx outof_target, rtx into_target,
                        int unsignedp, enum optab_methods methods)
                        int unsignedp, enum optab_methods methods)
{
{
  if (into_target != 0)
  if (into_target != 0)
    if (!force_expand_binop (word_mode, binoptab, outof_input, superword_op1,
    if (!force_expand_binop (word_mode, binoptab, outof_input, superword_op1,
                             into_target, unsignedp, methods))
                             into_target, unsignedp, methods))
      return false;
      return false;
 
 
  if (outof_target != 0)
  if (outof_target != 0)
    {
    {
      /* For a signed right shift, we must fill OUTOF_TARGET with copies
      /* For a signed right shift, we must fill OUTOF_TARGET with copies
         of the sign bit, otherwise we must fill it with zeros.  */
         of the sign bit, otherwise we must fill it with zeros.  */
      if (binoptab != ashr_optab)
      if (binoptab != ashr_optab)
        emit_move_insn (outof_target, CONST0_RTX (word_mode));
        emit_move_insn (outof_target, CONST0_RTX (word_mode));
      else
      else
        if (!force_expand_binop (word_mode, binoptab,
        if (!force_expand_binop (word_mode, binoptab,
                                 outof_input, GEN_INT (BITS_PER_WORD - 1),
                                 outof_input, GEN_INT (BITS_PER_WORD - 1),
                                 outof_target, unsignedp, methods))
                                 outof_target, unsignedp, methods))
          return false;
          return false;
    }
    }
  return true;
  return true;
}
}
 
 
/* This subroutine of expand_doubleword_shift handles the cases in which
/* This subroutine of expand_doubleword_shift handles the cases in which
   the effective shift value is < BITS_PER_WORD.  The arguments and return
   the effective shift value is < BITS_PER_WORD.  The arguments and return
   value are the same as for the parent routine.  */
   value are the same as for the parent routine.  */
 
 
static bool
static bool
expand_subword_shift (enum machine_mode op1_mode, optab binoptab,
expand_subword_shift (enum machine_mode op1_mode, optab binoptab,
                      rtx outof_input, rtx into_input, rtx op1,
                      rtx outof_input, rtx into_input, rtx op1,
                      rtx outof_target, rtx into_target,
                      rtx outof_target, rtx into_target,
                      int unsignedp, enum optab_methods methods,
                      int unsignedp, enum optab_methods methods,
                      unsigned HOST_WIDE_INT shift_mask)
                      unsigned HOST_WIDE_INT shift_mask)
{
{
  optab reverse_unsigned_shift, unsigned_shift;
  optab reverse_unsigned_shift, unsigned_shift;
  rtx tmp, carries;
  rtx tmp, carries;
 
 
  reverse_unsigned_shift = (binoptab == ashl_optab ? lshr_optab : ashl_optab);
  reverse_unsigned_shift = (binoptab == ashl_optab ? lshr_optab : ashl_optab);
  unsigned_shift = (binoptab == ashl_optab ? ashl_optab : lshr_optab);
  unsigned_shift = (binoptab == ashl_optab ? ashl_optab : lshr_optab);
 
 
  /* The low OP1 bits of INTO_TARGET come from the high bits of OUTOF_INPUT.
  /* The low OP1 bits of INTO_TARGET come from the high bits of OUTOF_INPUT.
     We therefore need to shift OUTOF_INPUT by (BITS_PER_WORD - OP1) bits in
     We therefore need to shift OUTOF_INPUT by (BITS_PER_WORD - OP1) bits in
     the opposite direction to BINOPTAB.  */
     the opposite direction to BINOPTAB.  */
  if (CONSTANT_P (op1) || shift_mask >= BITS_PER_WORD)
  if (CONSTANT_P (op1) || shift_mask >= BITS_PER_WORD)
    {
    {
      carries = outof_input;
      carries = outof_input;
      tmp = immed_double_const (BITS_PER_WORD, 0, op1_mode);
      tmp = immed_double_const (BITS_PER_WORD, 0, op1_mode);
      tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
      tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
                                   0, true, methods);
                                   0, true, methods);
    }
    }
  else
  else
    {
    {
      /* We must avoid shifting by BITS_PER_WORD bits since that is either
      /* We must avoid shifting by BITS_PER_WORD bits since that is either
         the same as a zero shift (if shift_mask == BITS_PER_WORD - 1) or
         the same as a zero shift (if shift_mask == BITS_PER_WORD - 1) or
         has unknown behavior.  Do a single shift first, then shift by the
         has unknown behavior.  Do a single shift first, then shift by the
         remainder.  It's OK to use ~OP1 as the remainder if shift counts
         remainder.  It's OK to use ~OP1 as the remainder if shift counts
         are truncated to the mode size.  */
         are truncated to the mode size.  */
      carries = expand_binop (word_mode, reverse_unsigned_shift,
      carries = expand_binop (word_mode, reverse_unsigned_shift,
                              outof_input, const1_rtx, 0, unsignedp, methods);
                              outof_input, const1_rtx, 0, unsignedp, methods);
      if (shift_mask == BITS_PER_WORD - 1)
      if (shift_mask == BITS_PER_WORD - 1)
        {
        {
          tmp = immed_double_const (-1, -1, op1_mode);
          tmp = immed_double_const (-1, -1, op1_mode);
          tmp = simplify_expand_binop (op1_mode, xor_optab, op1, tmp,
          tmp = simplify_expand_binop (op1_mode, xor_optab, op1, tmp,
                                       0, true, methods);
                                       0, true, methods);
        }
        }
      else
      else
        {
        {
          tmp = immed_double_const (BITS_PER_WORD - 1, 0, op1_mode);
          tmp = immed_double_const (BITS_PER_WORD - 1, 0, op1_mode);
          tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
          tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
                                       0, true, methods);
                                       0, true, methods);
        }
        }
    }
    }
  if (tmp == 0 || carries == 0)
  if (tmp == 0 || carries == 0)
    return false;
    return false;
  carries = expand_binop (word_mode, reverse_unsigned_shift,
  carries = expand_binop (word_mode, reverse_unsigned_shift,
                          carries, tmp, 0, unsignedp, methods);
                          carries, tmp, 0, unsignedp, methods);
  if (carries == 0)
  if (carries == 0)
    return false;
    return false;
 
 
  /* Shift INTO_INPUT logically by OP1.  This is the last use of INTO_INPUT
  /* Shift INTO_INPUT logically by OP1.  This is the last use of INTO_INPUT
     so the result can go directly into INTO_TARGET if convenient.  */
     so the result can go directly into INTO_TARGET if convenient.  */
  tmp = expand_binop (word_mode, unsigned_shift, into_input, op1,
  tmp = expand_binop (word_mode, unsigned_shift, into_input, op1,
                      into_target, unsignedp, methods);
                      into_target, unsignedp, methods);
  if (tmp == 0)
  if (tmp == 0)
    return false;
    return false;
 
 
  /* Now OR in the bits carried over from OUTOF_INPUT.  */
  /* Now OR in the bits carried over from OUTOF_INPUT.  */
  if (!force_expand_binop (word_mode, ior_optab, tmp, carries,
  if (!force_expand_binop (word_mode, ior_optab, tmp, carries,
                           into_target, unsignedp, methods))
                           into_target, unsignedp, methods))
    return false;
    return false;
 
 
  /* Use a standard word_mode shift for the out-of half.  */
  /* Use a standard word_mode shift for the out-of half.  */
  if (outof_target != 0)
  if (outof_target != 0)
    if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
    if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
                             outof_target, unsignedp, methods))
                             outof_target, unsignedp, methods))
      return false;
      return false;
 
 
  return true;
  return true;
}
}
 
 
 
 
#ifdef HAVE_conditional_move
#ifdef HAVE_conditional_move
/* Try implementing expand_doubleword_shift using conditional moves.
/* Try implementing expand_doubleword_shift using conditional moves.
   The shift is by < BITS_PER_WORD if (CMP_CODE CMP1 CMP2) is true,
   The shift is by < BITS_PER_WORD if (CMP_CODE CMP1 CMP2) is true,
   otherwise it is by >= BITS_PER_WORD.  SUBWORD_OP1 and SUPERWORD_OP1
   otherwise it is by >= BITS_PER_WORD.  SUBWORD_OP1 and SUPERWORD_OP1
   are the shift counts to use in the former and latter case.  All other
   are the shift counts to use in the former and latter case.  All other
   arguments are the same as the parent routine.  */
   arguments are the same as the parent routine.  */
 
 
static bool
static bool
expand_doubleword_shift_condmove (enum machine_mode op1_mode, optab binoptab,
expand_doubleword_shift_condmove (enum machine_mode op1_mode, optab binoptab,
                                  enum rtx_code cmp_code, rtx cmp1, rtx cmp2,
                                  enum rtx_code cmp_code, rtx cmp1, rtx cmp2,
                                  rtx outof_input, rtx into_input,
                                  rtx outof_input, rtx into_input,
                                  rtx subword_op1, rtx superword_op1,
                                  rtx subword_op1, rtx superword_op1,
                                  rtx outof_target, rtx into_target,
                                  rtx outof_target, rtx into_target,
                                  int unsignedp, enum optab_methods methods,
                                  int unsignedp, enum optab_methods methods,
                                  unsigned HOST_WIDE_INT shift_mask)
                                  unsigned HOST_WIDE_INT shift_mask)
{
{
  rtx outof_superword, into_superword;
  rtx outof_superword, into_superword;
 
 
  /* Put the superword version of the output into OUTOF_SUPERWORD and
  /* Put the superword version of the output into OUTOF_SUPERWORD and
     INTO_SUPERWORD.  */
     INTO_SUPERWORD.  */
  outof_superword = outof_target != 0 ? gen_reg_rtx (word_mode) : 0;
  outof_superword = outof_target != 0 ? gen_reg_rtx (word_mode) : 0;
  if (outof_target != 0 && subword_op1 == superword_op1)
  if (outof_target != 0 && subword_op1 == superword_op1)
    {
    {
      /* The value INTO_TARGET >> SUBWORD_OP1, which we later store in
      /* The value INTO_TARGET >> SUBWORD_OP1, which we later store in
         OUTOF_TARGET, is the same as the value of INTO_SUPERWORD.  */
         OUTOF_TARGET, is the same as the value of INTO_SUPERWORD.  */
      into_superword = outof_target;
      into_superword = outof_target;
      if (!expand_superword_shift (binoptab, outof_input, superword_op1,
      if (!expand_superword_shift (binoptab, outof_input, superword_op1,
                                   outof_superword, 0, unsignedp, methods))
                                   outof_superword, 0, unsignedp, methods))
        return false;
        return false;
    }
    }
  else
  else
    {
    {
      into_superword = gen_reg_rtx (word_mode);
      into_superword = gen_reg_rtx (word_mode);
      if (!expand_superword_shift (binoptab, outof_input, superword_op1,
      if (!expand_superword_shift (binoptab, outof_input, superword_op1,
                                   outof_superword, into_superword,
                                   outof_superword, into_superword,
                                   unsignedp, methods))
                                   unsignedp, methods))
        return false;
        return false;
    }
    }
 
 
  /* Put the subword version directly in OUTOF_TARGET and INTO_TARGET.  */
  /* Put the subword version directly in OUTOF_TARGET and INTO_TARGET.  */
  if (!expand_subword_shift (op1_mode, binoptab,
  if (!expand_subword_shift (op1_mode, binoptab,
                             outof_input, into_input, subword_op1,
                             outof_input, into_input, subword_op1,
                             outof_target, into_target,
                             outof_target, into_target,
                             unsignedp, methods, shift_mask))
                             unsignedp, methods, shift_mask))
    return false;
    return false;
 
 
  /* Select between them.  Do the INTO half first because INTO_SUPERWORD
  /* Select between them.  Do the INTO half first because INTO_SUPERWORD
     might be the current value of OUTOF_TARGET.  */
     might be the current value of OUTOF_TARGET.  */
  if (!emit_conditional_move (into_target, cmp_code, cmp1, cmp2, op1_mode,
  if (!emit_conditional_move (into_target, cmp_code, cmp1, cmp2, op1_mode,
                              into_target, into_superword, word_mode, false))
                              into_target, into_superword, word_mode, false))
    return false;
    return false;
 
 
  if (outof_target != 0)
  if (outof_target != 0)
    if (!emit_conditional_move (outof_target, cmp_code, cmp1, cmp2, op1_mode,
    if (!emit_conditional_move (outof_target, cmp_code, cmp1, cmp2, op1_mode,
                                outof_target, outof_superword,
                                outof_target, outof_superword,
                                word_mode, false))
                                word_mode, false))
      return false;
      return false;
 
 
  return true;
  return true;
}
}
#endif
#endif
 
 
/* Expand a doubleword shift (ashl, ashr or lshr) using word-mode shifts.
/* Expand a doubleword shift (ashl, ashr or lshr) using word-mode shifts.
   OUTOF_INPUT and INTO_INPUT are the two word-sized halves of the first
   OUTOF_INPUT and INTO_INPUT are the two word-sized halves of the first
   input operand; the shift moves bits in the direction OUTOF_INPUT->
   input operand; the shift moves bits in the direction OUTOF_INPUT->
   INTO_TARGET.  OUTOF_TARGET and INTO_TARGET are the equivalent words
   INTO_TARGET.  OUTOF_TARGET and INTO_TARGET are the equivalent words
   of the target.  OP1 is the shift count and OP1_MODE is its mode.
   of the target.  OP1 is the shift count and OP1_MODE is its mode.
   If OP1 is constant, it will have been truncated as appropriate
   If OP1 is constant, it will have been truncated as appropriate
   and is known to be nonzero.
   and is known to be nonzero.
 
 
   If SHIFT_MASK is zero, the result of word shifts is undefined when the
   If SHIFT_MASK is zero, the result of word shifts is undefined when the
   shift count is outside the range [0, BITS_PER_WORD).  This routine must
   shift count is outside the range [0, BITS_PER_WORD).  This routine must
   avoid generating such shifts for OP1s in the range [0, BITS_PER_WORD * 2).
   avoid generating such shifts for OP1s in the range [0, BITS_PER_WORD * 2).
 
 
   If SHIFT_MASK is nonzero, all word-mode shift counts are effectively
   If SHIFT_MASK is nonzero, all word-mode shift counts are effectively
   masked by it and shifts in the range [BITS_PER_WORD, SHIFT_MASK) will
   masked by it and shifts in the range [BITS_PER_WORD, SHIFT_MASK) will
   fill with zeros or sign bits as appropriate.
   fill with zeros or sign bits as appropriate.
 
 
   If SHIFT_MASK is BITS_PER_WORD - 1, this routine will synthesize
   If SHIFT_MASK is BITS_PER_WORD - 1, this routine will synthesize
   a doubleword shift whose equivalent mask is BITS_PER_WORD * 2 - 1.
   a doubleword shift whose equivalent mask is BITS_PER_WORD * 2 - 1.
   Doing this preserves semantics required by SHIFT_COUNT_TRUNCATED.
   Doing this preserves semantics required by SHIFT_COUNT_TRUNCATED.
   In all other cases, shifts by values outside [0, BITS_PER_UNIT * 2)
   In all other cases, shifts by values outside [0, BITS_PER_UNIT * 2)
   are undefined.
   are undefined.
 
 
   BINOPTAB, UNSIGNEDP and METHODS are as for expand_binop.  This function
   BINOPTAB, UNSIGNEDP and METHODS are as for expand_binop.  This function
   may not use INTO_INPUT after modifying INTO_TARGET, and similarly for
   may not use INTO_INPUT after modifying INTO_TARGET, and similarly for
   OUTOF_INPUT and OUTOF_TARGET.  OUTOF_TARGET can be null if the parent
   OUTOF_INPUT and OUTOF_TARGET.  OUTOF_TARGET can be null if the parent
   function wants to calculate it itself.
   function wants to calculate it itself.
 
 
   Return true if the shift could be successfully synthesized.  */
   Return true if the shift could be successfully synthesized.  */
 
 
static bool
static bool
expand_doubleword_shift (enum machine_mode op1_mode, optab binoptab,
expand_doubleword_shift (enum machine_mode op1_mode, optab binoptab,
                         rtx outof_input, rtx into_input, rtx op1,
                         rtx outof_input, rtx into_input, rtx op1,
                         rtx outof_target, rtx into_target,
                         rtx outof_target, rtx into_target,
                         int unsignedp, enum optab_methods methods,
                         int unsignedp, enum optab_methods methods,
                         unsigned HOST_WIDE_INT shift_mask)
                         unsigned HOST_WIDE_INT shift_mask)
{
{
  rtx superword_op1, tmp, cmp1, cmp2;
  rtx superword_op1, tmp, cmp1, cmp2;
  rtx subword_label, done_label;
  rtx subword_label, done_label;
  enum rtx_code cmp_code;
  enum rtx_code cmp_code;
 
 
  /* See if word-mode shifts by BITS_PER_WORD...BITS_PER_WORD * 2 - 1 will
  /* See if word-mode shifts by BITS_PER_WORD...BITS_PER_WORD * 2 - 1 will
     fill the result with sign or zero bits as appropriate.  If so, the value
     fill the result with sign or zero bits as appropriate.  If so, the value
     of OUTOF_TARGET will always be (SHIFT OUTOF_INPUT OP1).   Recursively call
     of OUTOF_TARGET will always be (SHIFT OUTOF_INPUT OP1).   Recursively call
     this routine to calculate INTO_TARGET (which depends on both OUTOF_INPUT
     this routine to calculate INTO_TARGET (which depends on both OUTOF_INPUT
     and INTO_INPUT), then emit code to set up OUTOF_TARGET.
     and INTO_INPUT), then emit code to set up OUTOF_TARGET.
 
 
     This isn't worthwhile for constant shifts since the optimizers will
     This isn't worthwhile for constant shifts since the optimizers will
     cope better with in-range shift counts.  */
     cope better with in-range shift counts.  */
  if (shift_mask >= BITS_PER_WORD
  if (shift_mask >= BITS_PER_WORD
      && outof_target != 0
      && outof_target != 0
      && !CONSTANT_P (op1))
      && !CONSTANT_P (op1))
    {
    {
      if (!expand_doubleword_shift (op1_mode, binoptab,
      if (!expand_doubleword_shift (op1_mode, binoptab,
                                    outof_input, into_input, op1,
                                    outof_input, into_input, op1,
                                    0, into_target,
                                    0, into_target,
                                    unsignedp, methods, shift_mask))
                                    unsignedp, methods, shift_mask))
        return false;
        return false;
      if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
      if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
                               outof_target, unsignedp, methods))
                               outof_target, unsignedp, methods))
        return false;
        return false;
      return true;
      return true;
    }
    }
 
 
  /* Set CMP_CODE, CMP1 and CMP2 so that the rtx (CMP_CODE CMP1 CMP2)
  /* Set CMP_CODE, CMP1 and CMP2 so that the rtx (CMP_CODE CMP1 CMP2)
     is true when the effective shift value is less than BITS_PER_WORD.
     is true when the effective shift value is less than BITS_PER_WORD.
     Set SUPERWORD_OP1 to the shift count that should be used to shift
     Set SUPERWORD_OP1 to the shift count that should be used to shift
     OUTOF_INPUT into INTO_TARGET when the condition is false.  */
     OUTOF_INPUT into INTO_TARGET when the condition is false.  */
  tmp = immed_double_const (BITS_PER_WORD, 0, op1_mode);
  tmp = immed_double_const (BITS_PER_WORD, 0, op1_mode);
  if (!CONSTANT_P (op1) && shift_mask == BITS_PER_WORD - 1)
  if (!CONSTANT_P (op1) && shift_mask == BITS_PER_WORD - 1)
    {
    {
      /* Set CMP1 to OP1 & BITS_PER_WORD.  The result is zero iff OP1
      /* Set CMP1 to OP1 & BITS_PER_WORD.  The result is zero iff OP1
         is a subword shift count.  */
         is a subword shift count.  */
      cmp1 = simplify_expand_binop (op1_mode, and_optab, op1, tmp,
      cmp1 = simplify_expand_binop (op1_mode, and_optab, op1, tmp,
                                    0, true, methods);
                                    0, true, methods);
      cmp2 = CONST0_RTX (op1_mode);
      cmp2 = CONST0_RTX (op1_mode);
      cmp_code = EQ;
      cmp_code = EQ;
      superword_op1 = op1;
      superword_op1 = op1;
    }
    }
  else
  else
    {
    {
      /* Set CMP1 to OP1 - BITS_PER_WORD.  */
      /* Set CMP1 to OP1 - BITS_PER_WORD.  */
      cmp1 = simplify_expand_binop (op1_mode, sub_optab, op1, tmp,
      cmp1 = simplify_expand_binop (op1_mode, sub_optab, op1, tmp,
                                    0, true, methods);
                                    0, true, methods);
      cmp2 = CONST0_RTX (op1_mode);
      cmp2 = CONST0_RTX (op1_mode);
      cmp_code = LT;
      cmp_code = LT;
      superword_op1 = cmp1;
      superword_op1 = cmp1;
    }
    }
  if (cmp1 == 0)
  if (cmp1 == 0)
    return false;
    return false;
 
 
  /* If we can compute the condition at compile time, pick the
  /* If we can compute the condition at compile time, pick the
     appropriate subroutine.  */
     appropriate subroutine.  */
  tmp = simplify_relational_operation (cmp_code, SImode, op1_mode, cmp1, cmp2);
  tmp = simplify_relational_operation (cmp_code, SImode, op1_mode, cmp1, cmp2);
  if (tmp != 0 && GET_CODE (tmp) == CONST_INT)
  if (tmp != 0 && GET_CODE (tmp) == CONST_INT)
    {
    {
      if (tmp == const0_rtx)
      if (tmp == const0_rtx)
        return expand_superword_shift (binoptab, outof_input, superword_op1,
        return expand_superword_shift (binoptab, outof_input, superword_op1,
                                       outof_target, into_target,
                                       outof_target, into_target,
                                       unsignedp, methods);
                                       unsignedp, methods);
      else
      else
        return expand_subword_shift (op1_mode, binoptab,
        return expand_subword_shift (op1_mode, binoptab,
                                     outof_input, into_input, op1,
                                     outof_input, into_input, op1,
                                     outof_target, into_target,
                                     outof_target, into_target,
                                     unsignedp, methods, shift_mask);
                                     unsignedp, methods, shift_mask);
    }
    }
 
 
#ifdef HAVE_conditional_move
#ifdef HAVE_conditional_move
  /* Try using conditional moves to generate straight-line code.  */
  /* Try using conditional moves to generate straight-line code.  */
  {
  {
    rtx start = get_last_insn ();
    rtx start = get_last_insn ();
    if (expand_doubleword_shift_condmove (op1_mode, binoptab,
    if (expand_doubleword_shift_condmove (op1_mode, binoptab,
                                          cmp_code, cmp1, cmp2,
                                          cmp_code, cmp1, cmp2,
                                          outof_input, into_input,
                                          outof_input, into_input,
                                          op1, superword_op1,
                                          op1, superword_op1,
                                          outof_target, into_target,
                                          outof_target, into_target,
                                          unsignedp, methods, shift_mask))
                                          unsignedp, methods, shift_mask))
      return true;
      return true;
    delete_insns_since (start);
    delete_insns_since (start);
  }
  }
#endif
#endif
 
 
  /* As a last resort, use branches to select the correct alternative.  */
  /* As a last resort, use branches to select the correct alternative.  */
  subword_label = gen_label_rtx ();
  subword_label = gen_label_rtx ();
  done_label = gen_label_rtx ();
  done_label = gen_label_rtx ();
 
 
  NO_DEFER_POP;
  NO_DEFER_POP;
  do_compare_rtx_and_jump (cmp1, cmp2, cmp_code, false, op1_mode,
  do_compare_rtx_and_jump (cmp1, cmp2, cmp_code, false, op1_mode,
                           0, 0, subword_label);
                           0, 0, subword_label);
  OK_DEFER_POP;
  OK_DEFER_POP;
 
 
  if (!expand_superword_shift (binoptab, outof_input, superword_op1,
  if (!expand_superword_shift (binoptab, outof_input, superword_op1,
                               outof_target, into_target,
                               outof_target, into_target,
                               unsignedp, methods))
                               unsignedp, methods))
    return false;
    return false;
 
 
  emit_jump_insn (gen_jump (done_label));
  emit_jump_insn (gen_jump (done_label));
  emit_barrier ();
  emit_barrier ();
  emit_label (subword_label);
  emit_label (subword_label);
 
 
  if (!expand_subword_shift (op1_mode, binoptab,
  if (!expand_subword_shift (op1_mode, binoptab,
                             outof_input, into_input, op1,
                             outof_input, into_input, op1,
                             outof_target, into_target,
                             outof_target, into_target,
                             unsignedp, methods, shift_mask))
                             unsignedp, methods, shift_mask))
    return false;
    return false;
 
 
  emit_label (done_label);
  emit_label (done_label);
  return true;
  return true;
}
}


/* Subroutine of expand_binop.  Perform a double word multiplication of
/* Subroutine of expand_binop.  Perform a double word multiplication of
   operands OP0 and OP1 both of mode MODE, which is exactly twice as wide
   operands OP0 and OP1 both of mode MODE, which is exactly twice as wide
   as the target's word_mode.  This function return NULL_RTX if anything
   as the target's word_mode.  This function return NULL_RTX if anything
   goes wrong, in which case it may have already emitted instructions
   goes wrong, in which case it may have already emitted instructions
   which need to be deleted.
   which need to be deleted.
 
 
   If we want to multiply two two-word values and have normal and widening
   If we want to multiply two two-word values and have normal and widening
   multiplies of single-word values, we can do this with three smaller
   multiplies of single-word values, we can do this with three smaller
   multiplications.  Note that we do not make a REG_NO_CONFLICT block here
   multiplications.  Note that we do not make a REG_NO_CONFLICT block here
   because we are not operating on one word at a time.
   because we are not operating on one word at a time.
 
 
   The multiplication proceeds as follows:
   The multiplication proceeds as follows:
                                 _______________________
                                 _______________________
                                [__op0_high_|__op0_low__]
                                [__op0_high_|__op0_low__]
                                 _______________________
                                 _______________________
        *                       [__op1_high_|__op1_low__]
        *                       [__op1_high_|__op1_low__]
        _______________________________________________
        _______________________________________________
                                 _______________________
                                 _______________________
    (1)                         [__op0_low__*__op1_low__]
    (1)                         [__op0_low__*__op1_low__]
                     _______________________
                     _______________________
    (2a)            [__op0_low__*__op1_high_]
    (2a)            [__op0_low__*__op1_high_]
                     _______________________
                     _______________________
    (2b)            [__op0_high_*__op1_low__]
    (2b)            [__op0_high_*__op1_low__]
         _______________________
         _______________________
    (3) [__op0_high_*__op1_high_]
    (3) [__op0_high_*__op1_high_]
 
 
 
 
  This gives a 4-word result.  Since we are only interested in the
  This gives a 4-word result.  Since we are only interested in the
  lower 2 words, partial result (3) and the upper words of (2a) and
  lower 2 words, partial result (3) and the upper words of (2a) and
  (2b) don't need to be calculated.  Hence (2a) and (2b) can be
  (2b) don't need to be calculated.  Hence (2a) and (2b) can be
  calculated using non-widening multiplication.
  calculated using non-widening multiplication.
 
 
  (1), however, needs to be calculated with an unsigned widening
  (1), however, needs to be calculated with an unsigned widening
  multiplication.  If this operation is not directly supported we
  multiplication.  If this operation is not directly supported we
  try using a signed widening multiplication and adjust the result.
  try using a signed widening multiplication and adjust the result.
  This adjustment works as follows:
  This adjustment works as follows:
 
 
      If both operands are positive then no adjustment is needed.
      If both operands are positive then no adjustment is needed.
 
 
      If the operands have different signs, for example op0_low < 0 and
      If the operands have different signs, for example op0_low < 0 and
      op1_low >= 0, the instruction treats the most significant bit of
      op1_low >= 0, the instruction treats the most significant bit of
      op0_low as a sign bit instead of a bit with significance
      op0_low as a sign bit instead of a bit with significance
      2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
      2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
      with 2**BITS_PER_WORD - op0_low, and two's complements the
      with 2**BITS_PER_WORD - op0_low, and two's complements the
      result.  Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
      result.  Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
      the result.
      the result.
 
 
      Similarly, if both operands are negative, we need to add
      Similarly, if both operands are negative, we need to add
      (op0_low + op1_low) * 2**BITS_PER_WORD.
      (op0_low + op1_low) * 2**BITS_PER_WORD.
 
 
      We use a trick to adjust quickly.  We logically shift op0_low right
      We use a trick to adjust quickly.  We logically shift op0_low right
      (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
      (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
      op0_high (op1_high) before it is used to calculate 2b (2a).  If no
      op0_high (op1_high) before it is used to calculate 2b (2a).  If no
      logical shift exists, we do an arithmetic right shift and subtract
      logical shift exists, we do an arithmetic right shift and subtract
      the 0 or -1.  */
      the 0 or -1.  */
 
 
static rtx
static rtx
expand_doubleword_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
expand_doubleword_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
                       bool umulp, enum optab_methods methods)
                       bool umulp, enum optab_methods methods)
{
{
  int low = (WORDS_BIG_ENDIAN ? 1 : 0);
  int low = (WORDS_BIG_ENDIAN ? 1 : 0);
  int high = (WORDS_BIG_ENDIAN ? 0 : 1);
  int high = (WORDS_BIG_ENDIAN ? 0 : 1);
  rtx wordm1 = umulp ? NULL_RTX : GEN_INT (BITS_PER_WORD - 1);
  rtx wordm1 = umulp ? NULL_RTX : GEN_INT (BITS_PER_WORD - 1);
  rtx product, adjust, product_high, temp;
  rtx product, adjust, product_high, temp;
 
 
  rtx op0_high = operand_subword_force (op0, high, mode);
  rtx op0_high = operand_subword_force (op0, high, mode);
  rtx op0_low = operand_subword_force (op0, low, mode);
  rtx op0_low = operand_subword_force (op0, low, mode);
  rtx op1_high = operand_subword_force (op1, high, mode);
  rtx op1_high = operand_subword_force (op1, high, mode);
  rtx op1_low = operand_subword_force (op1, low, mode);
  rtx op1_low = operand_subword_force (op1, low, mode);
 
 
  /* If we're using an unsigned multiply to directly compute the product
  /* If we're using an unsigned multiply to directly compute the product
     of the low-order words of the operands and perform any required
     of the low-order words of the operands and perform any required
     adjustments of the operands, we begin by trying two more multiplications
     adjustments of the operands, we begin by trying two more multiplications
     and then computing the appropriate sum.
     and then computing the appropriate sum.
 
 
     We have checked above that the required addition is provided.
     We have checked above that the required addition is provided.
     Full-word addition will normally always succeed, especially if
     Full-word addition will normally always succeed, especially if
     it is provided at all, so we don't worry about its failure.  The
     it is provided at all, so we don't worry about its failure.  The
     multiplication may well fail, however, so we do handle that.  */
     multiplication may well fail, however, so we do handle that.  */
 
 
  if (!umulp)
  if (!umulp)
    {
    {
      /* ??? This could be done with emit_store_flag where available.  */
      /* ??? This could be done with emit_store_flag where available.  */
      temp = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
      temp = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
                           NULL_RTX, 1, methods);
                           NULL_RTX, 1, methods);
      if (temp)
      if (temp)
        op0_high = expand_binop (word_mode, add_optab, op0_high, temp,
        op0_high = expand_binop (word_mode, add_optab, op0_high, temp,
                                 NULL_RTX, 0, OPTAB_DIRECT);
                                 NULL_RTX, 0, OPTAB_DIRECT);
      else
      else
        {
        {
          temp = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
          temp = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
                               NULL_RTX, 0, methods);
                               NULL_RTX, 0, methods);
          if (!temp)
          if (!temp)
            return NULL_RTX;
            return NULL_RTX;
          op0_high = expand_binop (word_mode, sub_optab, op0_high, temp,
          op0_high = expand_binop (word_mode, sub_optab, op0_high, temp,
                                   NULL_RTX, 0, OPTAB_DIRECT);
                                   NULL_RTX, 0, OPTAB_DIRECT);
        }
        }
 
 
      if (!op0_high)
      if (!op0_high)
        return NULL_RTX;
        return NULL_RTX;
    }
    }
 
 
  adjust = expand_binop (word_mode, smul_optab, op0_high, op1_low,
  adjust = expand_binop (word_mode, smul_optab, op0_high, op1_low,
                         NULL_RTX, 0, OPTAB_DIRECT);
                         NULL_RTX, 0, OPTAB_DIRECT);
  if (!adjust)
  if (!adjust)
    return NULL_RTX;
    return NULL_RTX;
 
 
  /* OP0_HIGH should now be dead.  */
  /* OP0_HIGH should now be dead.  */
 
 
  if (!umulp)
  if (!umulp)
    {
    {
      /* ??? This could be done with emit_store_flag where available.  */
      /* ??? This could be done with emit_store_flag where available.  */
      temp = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
      temp = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
                           NULL_RTX, 1, methods);
                           NULL_RTX, 1, methods);
      if (temp)
      if (temp)
        op1_high = expand_binop (word_mode, add_optab, op1_high, temp,
        op1_high = expand_binop (word_mode, add_optab, op1_high, temp,
                                 NULL_RTX, 0, OPTAB_DIRECT);
                                 NULL_RTX, 0, OPTAB_DIRECT);
      else
      else
        {
        {
          temp = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
          temp = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
                               NULL_RTX, 0, methods);
                               NULL_RTX, 0, methods);
          if (!temp)
          if (!temp)
            return NULL_RTX;
            return NULL_RTX;
          op1_high = expand_binop (word_mode, sub_optab, op1_high, temp,
          op1_high = expand_binop (word_mode, sub_optab, op1_high, temp,
                                   NULL_RTX, 0, OPTAB_DIRECT);
                                   NULL_RTX, 0, OPTAB_DIRECT);
        }
        }
 
 
      if (!op1_high)
      if (!op1_high)
        return NULL_RTX;
        return NULL_RTX;
    }
    }
 
 
  temp = expand_binop (word_mode, smul_optab, op1_high, op0_low,
  temp = expand_binop (word_mode, smul_optab, op1_high, op0_low,
                       NULL_RTX, 0, OPTAB_DIRECT);
                       NULL_RTX, 0, OPTAB_DIRECT);
  if (!temp)
  if (!temp)
    return NULL_RTX;
    return NULL_RTX;
 
 
  /* OP1_HIGH should now be dead.  */
  /* OP1_HIGH should now be dead.  */
 
 
  adjust = expand_binop (word_mode, add_optab, adjust, temp,
  adjust = expand_binop (word_mode, add_optab, adjust, temp,
                         adjust, 0, OPTAB_DIRECT);
                         adjust, 0, OPTAB_DIRECT);
 
 
  if (target && !REG_P (target))
  if (target && !REG_P (target))
    target = NULL_RTX;
    target = NULL_RTX;
 
 
  if (umulp)
  if (umulp)
    product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
    product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
                            target, 1, OPTAB_DIRECT);
                            target, 1, OPTAB_DIRECT);
  else
  else
    product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
    product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
                            target, 1, OPTAB_DIRECT);
                            target, 1, OPTAB_DIRECT);
 
 
  if (!product)
  if (!product)
    return NULL_RTX;
    return NULL_RTX;
 
 
  product_high = operand_subword (product, high, 1, mode);
  product_high = operand_subword (product, high, 1, mode);
  adjust = expand_binop (word_mode, add_optab, product_high, adjust,
  adjust = expand_binop (word_mode, add_optab, product_high, adjust,
                         REG_P (product_high) ? product_high : adjust,
                         REG_P (product_high) ? product_high : adjust,
                         0, OPTAB_DIRECT);
                         0, OPTAB_DIRECT);
  emit_move_insn (product_high, adjust);
  emit_move_insn (product_high, adjust);
  return product;
  return product;
}
}


/* Wrapper around expand_binop which takes an rtx code to specify
/* Wrapper around expand_binop which takes an rtx code to specify
   the operation to perform, not an optab pointer.  All other
   the operation to perform, not an optab pointer.  All other
   arguments are the same.  */
   arguments are the same.  */
rtx
rtx
expand_simple_binop (enum machine_mode mode, enum rtx_code code, rtx op0,
expand_simple_binop (enum machine_mode mode, enum rtx_code code, rtx op0,
                     rtx op1, rtx target, int unsignedp,
                     rtx op1, rtx target, int unsignedp,
                     enum optab_methods methods)
                     enum optab_methods methods)
{
{
  optab binop = code_to_optab[(int) code];
  optab binop = code_to_optab[(int) code];
  gcc_assert (binop);
  gcc_assert (binop);
 
 
  return expand_binop (mode, binop, op0, op1, target, unsignedp, methods);
  return expand_binop (mode, binop, op0, op1, target, unsignedp, methods);
}
}
 
 
/* Return whether OP0 and OP1 should be swapped when expanding a commutative
/* Return whether OP0 and OP1 should be swapped when expanding a commutative
   binop.  Order them according to commutative_operand_precedence and, if
   binop.  Order them according to commutative_operand_precedence and, if
   possible, try to put TARGET or a pseudo first.  */
   possible, try to put TARGET or a pseudo first.  */
static bool
static bool
swap_commutative_operands_with_target (rtx target, rtx op0, rtx op1)
swap_commutative_operands_with_target (rtx target, rtx op0, rtx op1)
{
{
  int op0_prec = commutative_operand_precedence (op0);
  int op0_prec = commutative_operand_precedence (op0);
  int op1_prec = commutative_operand_precedence (op1);
  int op1_prec = commutative_operand_precedence (op1);
 
 
  if (op0_prec < op1_prec)
  if (op0_prec < op1_prec)
    return true;
    return true;
 
 
  if (op0_prec > op1_prec)
  if (op0_prec > op1_prec)
    return false;
    return false;
 
 
  /* With equal precedence, both orders are ok, but it is better if the
  /* With equal precedence, both orders are ok, but it is better if the
     first operand is TARGET, or if both TARGET and OP0 are pseudos.  */
     first operand is TARGET, or if both TARGET and OP0 are pseudos.  */
  if (target == 0 || REG_P (target))
  if (target == 0 || REG_P (target))
    return (REG_P (op1) && !REG_P (op0)) || target == op1;
    return (REG_P (op1) && !REG_P (op0)) || target == op1;
  else
  else
    return rtx_equal_p (op1, target);
    return rtx_equal_p (op1, target);
}
}
 
 
 
 
/* Generate code to perform an operation specified by BINOPTAB
/* Generate code to perform an operation specified by BINOPTAB
   on operands OP0 and OP1, with result having machine-mode MODE.
   on operands OP0 and OP1, with result having machine-mode MODE.
 
 
   UNSIGNEDP is for the case where we have to widen the operands
   UNSIGNEDP is for the case where we have to widen the operands
   to perform the operation.  It says to use zero-extension.
   to perform the operation.  It says to use zero-extension.
 
 
   If TARGET is nonzero, the value
   If TARGET is nonzero, the value
   is generated there, if it is convenient to do so.
   is generated there, if it is convenient to do so.
   In all cases an rtx is returned for the locus of the value;
   In all cases an rtx is returned for the locus of the value;
   this may or may not be TARGET.  */
   this may or may not be TARGET.  */
 
 
rtx
rtx
expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1,
expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1,
              rtx target, int unsignedp, enum optab_methods methods)
              rtx target, int unsignedp, enum optab_methods methods)
{
{
  enum optab_methods next_methods
  enum optab_methods next_methods
    = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
    = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
       ? OPTAB_WIDEN : methods);
       ? OPTAB_WIDEN : methods);
  enum mode_class class;
  enum mode_class class;
  enum machine_mode wider_mode;
  enum machine_mode wider_mode;
  rtx temp;
  rtx temp;
  int commutative_op = 0;
  int commutative_op = 0;
  int shift_op = (binoptab->code == ASHIFT
  int shift_op = (binoptab->code == ASHIFT
                  || binoptab->code == ASHIFTRT
                  || binoptab->code == ASHIFTRT
                  || binoptab->code == LSHIFTRT
                  || binoptab->code == LSHIFTRT
                  || binoptab->code == ROTATE
                  || binoptab->code == ROTATE
                  || binoptab->code == ROTATERT);
                  || binoptab->code == ROTATERT);
  rtx entry_last = get_last_insn ();
  rtx entry_last = get_last_insn ();
  rtx last;
  rtx last;
  bool first_pass_p = true;
  bool first_pass_p = true;
 
 
  class = GET_MODE_CLASS (mode);
  class = GET_MODE_CLASS (mode);
 
 
  /* If subtracting an integer constant, convert this into an addition of
  /* If subtracting an integer constant, convert this into an addition of
     the negated constant.  */
     the negated constant.  */
 
 
  if (binoptab == sub_optab && GET_CODE (op1) == CONST_INT)
  if (binoptab == sub_optab && GET_CODE (op1) == CONST_INT)
    {
    {
      op1 = negate_rtx (mode, op1);
      op1 = negate_rtx (mode, op1);
      binoptab = add_optab;
      binoptab = add_optab;
    }
    }
 
 
  /* If we are inside an appropriately-short loop and we are optimizing,
  /* If we are inside an appropriately-short loop and we are optimizing,
     force expensive constants into a register.  */
     force expensive constants into a register.  */
  if (CONSTANT_P (op0) && optimize
  if (CONSTANT_P (op0) && optimize
      && rtx_cost (op0, binoptab->code) > COSTS_N_INSNS (1))
      && rtx_cost (op0, binoptab->code) > COSTS_N_INSNS (1))
    {
    {
      if (GET_MODE (op0) != VOIDmode)
      if (GET_MODE (op0) != VOIDmode)
        op0 = convert_modes (mode, VOIDmode, op0, unsignedp);
        op0 = convert_modes (mode, VOIDmode, op0, unsignedp);
      op0 = force_reg (mode, op0);
      op0 = force_reg (mode, op0);
    }
    }
 
 
  if (CONSTANT_P (op1) && optimize
  if (CONSTANT_P (op1) && optimize
      && ! shift_op && rtx_cost (op1, binoptab->code) > COSTS_N_INSNS (1))
      && ! shift_op && rtx_cost (op1, binoptab->code) > COSTS_N_INSNS (1))
    {
    {
      if (GET_MODE (op1) != VOIDmode)
      if (GET_MODE (op1) != VOIDmode)
        op1 = convert_modes (mode, VOIDmode, op1, unsignedp);
        op1 = convert_modes (mode, VOIDmode, op1, unsignedp);
      op1 = force_reg (mode, op1);
      op1 = force_reg (mode, op1);
    }
    }
 
 
  /* Record where to delete back to if we backtrack.  */
  /* Record where to delete back to if we backtrack.  */
  last = get_last_insn ();
  last = get_last_insn ();
 
 
  /* If operation is commutative,
  /* If operation is commutative,
     try to make the first operand a register.
     try to make the first operand a register.
     Even better, try to make it the same as the target.
     Even better, try to make it the same as the target.
     Also try to make the last operand a constant.  */
     Also try to make the last operand a constant.  */
  if (GET_RTX_CLASS (binoptab->code) == RTX_COMM_ARITH
  if (GET_RTX_CLASS (binoptab->code) == RTX_COMM_ARITH
      || binoptab == smul_widen_optab
      || binoptab == smul_widen_optab
      || binoptab == umul_widen_optab
      || binoptab == umul_widen_optab
      || binoptab == smul_highpart_optab
      || binoptab == smul_highpart_optab
      || binoptab == umul_highpart_optab)
      || binoptab == umul_highpart_optab)
    {
    {
      commutative_op = 1;
      commutative_op = 1;
 
 
      if (swap_commutative_operands_with_target (target, op0, op1))
      if (swap_commutative_operands_with_target (target, op0, op1))
        {
        {
          temp = op1;
          temp = op1;
          op1 = op0;
          op1 = op0;
          op0 = temp;
          op0 = temp;
        }
        }
    }
    }
 
 
 retry:
 retry:
 
 
  /* If we can do it with a three-operand insn, do so.  */
  /* If we can do it with a three-operand insn, do so.  */
 
 
  if (methods != OPTAB_MUST_WIDEN
  if (methods != OPTAB_MUST_WIDEN
      && binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
      && binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
    {
    {
      int icode = (int) binoptab->handlers[(int) mode].insn_code;
      int icode = (int) binoptab->handlers[(int) mode].insn_code;
      enum machine_mode mode0 = insn_data[icode].operand[1].mode;
      enum machine_mode mode0 = insn_data[icode].operand[1].mode;
      enum machine_mode mode1 = insn_data[icode].operand[2].mode;
      enum machine_mode mode1 = insn_data[icode].operand[2].mode;
      rtx pat;
      rtx pat;
      rtx xop0 = op0, xop1 = op1;
      rtx xop0 = op0, xop1 = op1;
 
 
      if (target)
      if (target)
        temp = target;
        temp = target;
      else
      else
        temp = gen_reg_rtx (mode);
        temp = gen_reg_rtx (mode);
 
 
      /* If it is a commutative operator and the modes would match
      /* If it is a commutative operator and the modes would match
         if we would swap the operands, we can save the conversions.  */
         if we would swap the operands, we can save the conversions.  */
      if (commutative_op)
      if (commutative_op)
        {
        {
          if (GET_MODE (op0) != mode0 && GET_MODE (op1) != mode1
          if (GET_MODE (op0) != mode0 && GET_MODE (op1) != mode1
              && GET_MODE (op0) == mode1 && GET_MODE (op1) == mode0)
              && GET_MODE (op0) == mode1 && GET_MODE (op1) == mode0)
            {
            {
              rtx tmp;
              rtx tmp;
 
 
              tmp = op0; op0 = op1; op1 = tmp;
              tmp = op0; op0 = op1; op1 = tmp;
              tmp = xop0; xop0 = xop1; xop1 = tmp;
              tmp = xop0; xop0 = xop1; xop1 = tmp;
            }
            }
        }
        }
 
 
      /* In case the insn wants input operands in modes different from
      /* In case the insn wants input operands in modes different from
         those of the actual operands, convert the operands.  It would
         those of the actual operands, convert the operands.  It would
         seem that we don't need to convert CONST_INTs, but we do, so
         seem that we don't need to convert CONST_INTs, but we do, so
         that they're properly zero-extended, sign-extended or truncated
         that they're properly zero-extended, sign-extended or truncated
         for their mode.  */
         for their mode.  */
 
 
      if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
      if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
        xop0 = convert_modes (mode0,
        xop0 = convert_modes (mode0,
                              GET_MODE (op0) != VOIDmode
                              GET_MODE (op0) != VOIDmode
                              ? GET_MODE (op0)
                              ? GET_MODE (op0)
                              : mode,
                              : mode,
                              xop0, unsignedp);
                              xop0, unsignedp);
 
 
      if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
      if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
        xop1 = convert_modes (mode1,
        xop1 = convert_modes (mode1,
                              GET_MODE (op1) != VOIDmode
                              GET_MODE (op1) != VOIDmode
                              ? GET_MODE (op1)
                              ? GET_MODE (op1)
                              : mode,
                              : mode,
                              xop1, unsignedp);
                              xop1, unsignedp);
 
 
      /* Now, if insn's predicates don't allow our operands, put them into
      /* Now, if insn's predicates don't allow our operands, put them into
         pseudo regs.  */
         pseudo regs.  */
 
 
      if (!insn_data[icode].operand[1].predicate (xop0, mode0)
      if (!insn_data[icode].operand[1].predicate (xop0, mode0)
          && mode0 != VOIDmode)
          && mode0 != VOIDmode)
        xop0 = copy_to_mode_reg (mode0, xop0);
        xop0 = copy_to_mode_reg (mode0, xop0);
 
 
      if (!insn_data[icode].operand[2].predicate (xop1, mode1)
      if (!insn_data[icode].operand[2].predicate (xop1, mode1)
          && mode1 != VOIDmode)
          && mode1 != VOIDmode)
        xop1 = copy_to_mode_reg (mode1, xop1);
        xop1 = copy_to_mode_reg (mode1, xop1);
 
 
      if (!insn_data[icode].operand[0].predicate (temp, mode))
      if (!insn_data[icode].operand[0].predicate (temp, mode))
        temp = gen_reg_rtx (mode);
        temp = gen_reg_rtx (mode);
 
 
      pat = GEN_FCN (icode) (temp, xop0, xop1);
      pat = GEN_FCN (icode) (temp, xop0, xop1);
      if (pat)
      if (pat)
        {
        {
          /* If PAT is composed of more than one insn, try to add an appropriate
          /* If PAT is composed of more than one insn, try to add an appropriate
             REG_EQUAL note to it.  If we can't because TEMP conflicts with an
             REG_EQUAL note to it.  If we can't because TEMP conflicts with an
             operand, call ourselves again, this time without a target.  */
             operand, call ourselves again, this time without a target.  */
          if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
          if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
              && ! add_equal_note (pat, temp, binoptab->code, xop0, xop1))
              && ! add_equal_note (pat, temp, binoptab->code, xop0, xop1))
            {
            {
              delete_insns_since (last);
              delete_insns_since (last);
              return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
              return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
                                   unsignedp, methods);
                                   unsignedp, methods);
            }
            }
 
 
          emit_insn (pat);
          emit_insn (pat);
          return temp;
          return temp;
        }
        }
      else
      else
        delete_insns_since (last);
        delete_insns_since (last);
    }
    }
 
 
  /* If we were trying to rotate by a constant value, and that didn't
  /* If we were trying to rotate by a constant value, and that didn't
     work, try rotating the other direction before falling back to
     work, try rotating the other direction before falling back to
     shifts and bitwise-or.  */
     shifts and bitwise-or.  */
  if (first_pass_p
  if (first_pass_p
      && (binoptab == rotl_optab || binoptab == rotr_optab)
      && (binoptab == rotl_optab || binoptab == rotr_optab)
      && class == MODE_INT
      && class == MODE_INT
      && GET_CODE (op1) == CONST_INT
      && GET_CODE (op1) == CONST_INT
      && INTVAL (op1) > 0
      && INTVAL (op1) > 0
      && (unsigned int) INTVAL (op1) < GET_MODE_BITSIZE (mode))
      && (unsigned int) INTVAL (op1) < GET_MODE_BITSIZE (mode))
    {
    {
      first_pass_p = false;
      first_pass_p = false;
      op1 = GEN_INT (GET_MODE_BITSIZE (mode) - INTVAL (op1));
      op1 = GEN_INT (GET_MODE_BITSIZE (mode) - INTVAL (op1));
      binoptab = binoptab == rotl_optab ? rotr_optab : rotl_optab;
      binoptab = binoptab == rotl_optab ? rotr_optab : rotl_optab;
      goto retry;
      goto retry;
    }
    }
 
 
  /* If this is a multiply, see if we can do a widening operation that
  /* If this is a multiply, see if we can do a widening operation that
     takes operands of this mode and makes a wider mode.  */
     takes operands of this mode and makes a wider mode.  */
 
 
  if (binoptab == smul_optab
  if (binoptab == smul_optab
      && GET_MODE_WIDER_MODE (mode) != VOIDmode
      && GET_MODE_WIDER_MODE (mode) != VOIDmode
      && (((unsignedp ? umul_widen_optab : smul_widen_optab)
      && (((unsignedp ? umul_widen_optab : smul_widen_optab)
           ->handlers[(int) GET_MODE_WIDER_MODE (mode)].insn_code)
           ->handlers[(int) GET_MODE_WIDER_MODE (mode)].insn_code)
          != CODE_FOR_nothing))
          != CODE_FOR_nothing))
    {
    {
      temp = expand_binop (GET_MODE_WIDER_MODE (mode),
      temp = expand_binop (GET_MODE_WIDER_MODE (mode),
                           unsignedp ? umul_widen_optab : smul_widen_optab,
                           unsignedp ? umul_widen_optab : smul_widen_optab,
                           op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
                           op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
 
 
      if (temp != 0)
      if (temp != 0)
        {
        {
          if (GET_MODE_CLASS (mode) == MODE_INT
          if (GET_MODE_CLASS (mode) == MODE_INT
              && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
              && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
                                        GET_MODE_BITSIZE (GET_MODE (temp))))
                                        GET_MODE_BITSIZE (GET_MODE (temp))))
            return gen_lowpart (mode, temp);
            return gen_lowpart (mode, temp);
          else
          else
            return convert_to_mode (mode, temp, unsignedp);
            return convert_to_mode (mode, temp, unsignedp);
        }
        }
    }
    }
 
 
  /* Look for a wider mode of the same class for which we think we
  /* Look for a wider mode of the same class for which we think we
     can open-code the operation.  Check for a widening multiply at the
     can open-code the operation.  Check for a widening multiply at the
     wider mode as well.  */
     wider mode as well.  */
 
 
  if (CLASS_HAS_WIDER_MODES_P (class)
  if (CLASS_HAS_WIDER_MODES_P (class)
      && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
      && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
    for (wider_mode = GET_MODE_WIDER_MODE (mode);
    for (wider_mode = GET_MODE_WIDER_MODE (mode);
         wider_mode != VOIDmode;
         wider_mode != VOIDmode;
         wider_mode = GET_MODE_WIDER_MODE (wider_mode))
         wider_mode = GET_MODE_WIDER_MODE (wider_mode))
      {
      {
        if (binoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing
        if (binoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing
            || (binoptab == smul_optab
            || (binoptab == smul_optab
                && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
                && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
                && (((unsignedp ? umul_widen_optab : smul_widen_optab)
                && (((unsignedp ? umul_widen_optab : smul_widen_optab)
                     ->handlers[(int) GET_MODE_WIDER_MODE (wider_mode)].insn_code)
                     ->handlers[(int) GET_MODE_WIDER_MODE (wider_mode)].insn_code)
                    != CODE_FOR_nothing)))
                    != CODE_FOR_nothing)))
          {
          {
            rtx xop0 = op0, xop1 = op1;
            rtx xop0 = op0, xop1 = op1;
            int no_extend = 0;
            int no_extend = 0;
 
 
            /* For certain integer operations, we need not actually extend
            /* For certain integer operations, we need not actually extend
               the narrow operands, as long as we will truncate
               the narrow operands, as long as we will truncate
               the results to the same narrowness.  */
               the results to the same narrowness.  */
 
 
            if ((binoptab == ior_optab || binoptab == and_optab
            if ((binoptab == ior_optab || binoptab == and_optab
                 || binoptab == xor_optab
                 || binoptab == xor_optab
                 || binoptab == add_optab || binoptab == sub_optab
                 || binoptab == add_optab || binoptab == sub_optab
                 || binoptab == smul_optab || binoptab == ashl_optab)
                 || binoptab == smul_optab || binoptab == ashl_optab)
                && class == MODE_INT)
                && class == MODE_INT)
              no_extend = 1;
              no_extend = 1;
 
 
            xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
            xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
 
 
            /* The second operand of a shift must always be extended.  */
            /* The second operand of a shift must always be extended.  */
            xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
            xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
                                  no_extend && binoptab != ashl_optab);
                                  no_extend && binoptab != ashl_optab);
 
 
            temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
            temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
                                 unsignedp, OPTAB_DIRECT);
                                 unsignedp, OPTAB_DIRECT);
            if (temp)
            if (temp)
              {
              {
                if (class != MODE_INT
                if (class != MODE_INT
                    || !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
                    || !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
                                               GET_MODE_BITSIZE (wider_mode)))
                                               GET_MODE_BITSIZE (wider_mode)))
                  {
                  {
                    if (target == 0)
                    if (target == 0)
                      target = gen_reg_rtx (mode);
                      target = gen_reg_rtx (mode);
                    convert_move (target, temp, 0);
                    convert_move (target, temp, 0);
                    return target;
                    return target;
                  }
                  }
                else
                else
                  return gen_lowpart (mode, temp);
                  return gen_lowpart (mode, temp);
              }
              }
            else
            else
              delete_insns_since (last);
              delete_insns_since (last);
          }
          }
      }
      }
 
 
  /* These can be done a word at a time.  */
  /* These can be done a word at a time.  */
  if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
  if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
      && class == MODE_INT
      && class == MODE_INT
      && GET_MODE_SIZE (mode) > UNITS_PER_WORD
      && GET_MODE_SIZE (mode) > UNITS_PER_WORD
      && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
      && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
    {
    {
      int i;
      int i;
      rtx insns;
      rtx insns;
      rtx equiv_value;
      rtx equiv_value;
 
 
      /* If TARGET is the same as one of the operands, the REG_EQUAL note
      /* If TARGET is the same as one of the operands, the REG_EQUAL note
         won't be accurate, so use a new target.  */
         won't be accurate, so use a new target.  */
      if (target == 0 || target == op0 || target == op1)
      if (target == 0 || target == op0 || target == op1)
        target = gen_reg_rtx (mode);
        target = gen_reg_rtx (mode);
 
 
      start_sequence ();
      start_sequence ();
 
 
      /* Do the actual arithmetic.  */
      /* Do the actual arithmetic.  */
      for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
      for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
        {
        {
          rtx target_piece = operand_subword (target, i, 1, mode);
          rtx target_piece = operand_subword (target, i, 1, mode);
          rtx x = expand_binop (word_mode, binoptab,
          rtx x = expand_binop (word_mode, binoptab,
                                operand_subword_force (op0, i, mode),
                                operand_subword_force (op0, i, mode),
                                operand_subword_force (op1, i, mode),
                                operand_subword_force (op1, i, mode),
                                target_piece, unsignedp, next_methods);
                                target_piece, unsignedp, next_methods);
 
 
          if (x == 0)
          if (x == 0)
            break;
            break;
 
 
          if (target_piece != x)
          if (target_piece != x)
            emit_move_insn (target_piece, x);
            emit_move_insn (target_piece, x);
        }
        }
 
 
      insns = get_insns ();
      insns = get_insns ();
      end_sequence ();
      end_sequence ();
 
 
      if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
      if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
        {
        {
          if (binoptab->code != UNKNOWN)
          if (binoptab->code != UNKNOWN)
            equiv_value
            equiv_value
              = gen_rtx_fmt_ee (binoptab->code, mode,
              = gen_rtx_fmt_ee (binoptab->code, mode,
                                copy_rtx (op0), copy_rtx (op1));
                                copy_rtx (op0), copy_rtx (op1));
          else
          else
            equiv_value = 0;
            equiv_value = 0;
 
 
          emit_no_conflict_block (insns, target, op0, op1, equiv_value);
          emit_no_conflict_block (insns, target, op0, op1, equiv_value);
          return target;
          return target;
        }
        }
    }
    }
 
 
  /* Synthesize double word shifts from single word shifts.  */
  /* Synthesize double word shifts from single word shifts.  */
  if ((binoptab == lshr_optab || binoptab == ashl_optab
  if ((binoptab == lshr_optab || binoptab == ashl_optab
       || binoptab == ashr_optab)
       || binoptab == ashr_optab)
      && class == MODE_INT
      && class == MODE_INT
      && (GET_CODE (op1) == CONST_INT || !optimize_size)
      && (GET_CODE (op1) == CONST_INT || !optimize_size)
      && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
      && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
      && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
      && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
      && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
      && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
      && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
      && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
    {
    {
      unsigned HOST_WIDE_INT shift_mask, double_shift_mask;
      unsigned HOST_WIDE_INT shift_mask, double_shift_mask;
      enum machine_mode op1_mode;
      enum machine_mode op1_mode;
 
 
      double_shift_mask = targetm.shift_truncation_mask (mode);
      double_shift_mask = targetm.shift_truncation_mask (mode);
      shift_mask = targetm.shift_truncation_mask (word_mode);
      shift_mask = targetm.shift_truncation_mask (word_mode);
      op1_mode = GET_MODE (op1) != VOIDmode ? GET_MODE (op1) : word_mode;
      op1_mode = GET_MODE (op1) != VOIDmode ? GET_MODE (op1) : word_mode;
 
 
      /* Apply the truncation to constant shifts.  */
      /* Apply the truncation to constant shifts.  */
      if (double_shift_mask > 0 && GET_CODE (op1) == CONST_INT)
      if (double_shift_mask > 0 && GET_CODE (op1) == CONST_INT)
        op1 = GEN_INT (INTVAL (op1) & double_shift_mask);
        op1 = GEN_INT (INTVAL (op1) & double_shift_mask);
 
 
      if (op1 == CONST0_RTX (op1_mode))
      if (op1 == CONST0_RTX (op1_mode))
        return op0;
        return op0;
 
 
      /* Make sure that this is a combination that expand_doubleword_shift
      /* Make sure that this is a combination that expand_doubleword_shift
         can handle.  See the comments there for details.  */
         can handle.  See the comments there for details.  */
      if (double_shift_mask == 0
      if (double_shift_mask == 0
          || (shift_mask == BITS_PER_WORD - 1
          || (shift_mask == BITS_PER_WORD - 1
              && double_shift_mask == BITS_PER_WORD * 2 - 1))
              && double_shift_mask == BITS_PER_WORD * 2 - 1))
        {
        {
          rtx insns, equiv_value;
          rtx insns, equiv_value;
          rtx into_target, outof_target;
          rtx into_target, outof_target;
          rtx into_input, outof_input;
          rtx into_input, outof_input;
          int left_shift, outof_word;
          int left_shift, outof_word;
 
 
          /* If TARGET is the same as one of the operands, the REG_EQUAL note
          /* If TARGET is the same as one of the operands, the REG_EQUAL note
             won't be accurate, so use a new target.  */
             won't be accurate, so use a new target.  */
          if (target == 0 || target == op0 || target == op1)
          if (target == 0 || target == op0 || target == op1)
            target = gen_reg_rtx (mode);
            target = gen_reg_rtx (mode);
 
 
          start_sequence ();
          start_sequence ();
 
 
          /* OUTOF_* is the word we are shifting bits away from, and
          /* OUTOF_* is the word we are shifting bits away from, and
             INTO_* is the word that we are shifting bits towards, thus
             INTO_* is the word that we are shifting bits towards, thus
             they differ depending on the direction of the shift and
             they differ depending on the direction of the shift and
             WORDS_BIG_ENDIAN.  */
             WORDS_BIG_ENDIAN.  */
 
 
          left_shift = binoptab == ashl_optab;
          left_shift = binoptab == ashl_optab;
          outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
          outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
 
 
          outof_target = operand_subword (target, outof_word, 1, mode);
          outof_target = operand_subword (target, outof_word, 1, mode);
          into_target = operand_subword (target, 1 - outof_word, 1, mode);
          into_target = operand_subword (target, 1 - outof_word, 1, mode);
 
 
          outof_input = operand_subword_force (op0, outof_word, mode);
          outof_input = operand_subword_force (op0, outof_word, mode);
          into_input = operand_subword_force (op0, 1 - outof_word, mode);
          into_input = operand_subword_force (op0, 1 - outof_word, mode);
 
 
          if (expand_doubleword_shift (op1_mode, binoptab,
          if (expand_doubleword_shift (op1_mode, binoptab,
                                       outof_input, into_input, op1,
                                       outof_input, into_input, op1,
                                       outof_target, into_target,
                                       outof_target, into_target,
                                       unsignedp, next_methods, shift_mask))
                                       unsignedp, next_methods, shift_mask))
            {
            {
              insns = get_insns ();
              insns = get_insns ();
              end_sequence ();
              end_sequence ();
 
 
              equiv_value = gen_rtx_fmt_ee (binoptab->code, mode, op0, op1);
              equiv_value = gen_rtx_fmt_ee (binoptab->code, mode, op0, op1);
              emit_no_conflict_block (insns, target, op0, op1, equiv_value);
              emit_no_conflict_block (insns, target, op0, op1, equiv_value);
              return target;
              return target;
            }
            }
          end_sequence ();
          end_sequence ();
        }
        }
    }
    }
 
 
  /* Synthesize double word rotates from single word shifts.  */
  /* Synthesize double word rotates from single word shifts.  */
  if ((binoptab == rotl_optab || binoptab == rotr_optab)
  if ((binoptab == rotl_optab || binoptab == rotr_optab)
      && class == MODE_INT
      && class == MODE_INT
      && GET_CODE (op1) == CONST_INT
      && GET_CODE (op1) == CONST_INT
      && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
      && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
      && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
      && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
      && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
      && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
    {
    {
      rtx insns;
      rtx insns;
      rtx into_target, outof_target;
      rtx into_target, outof_target;
      rtx into_input, outof_input;
      rtx into_input, outof_input;
      rtx inter;
      rtx inter;
      int shift_count, left_shift, outof_word;
      int shift_count, left_shift, outof_word;
 
 
      /* If TARGET is the same as one of the operands, the REG_EQUAL note
      /* If TARGET is the same as one of the operands, the REG_EQUAL note
         won't be accurate, so use a new target. Do this also if target is not
         won't be accurate, so use a new target. Do this also if target is not
         a REG, first because having a register instead may open optimization
         a REG, first because having a register instead may open optimization
         opportunities, and second because if target and op0 happen to be MEMs
         opportunities, and second because if target and op0 happen to be MEMs
         designating the same location, we would risk clobbering it too early
         designating the same location, we would risk clobbering it too early
         in the code sequence we generate below.  */
         in the code sequence we generate below.  */
      if (target == 0 || target == op0 || target == op1 || ! REG_P (target))
      if (target == 0 || target == op0 || target == op1 || ! REG_P (target))
        target = gen_reg_rtx (mode);
        target = gen_reg_rtx (mode);
 
 
      start_sequence ();
      start_sequence ();
 
 
      shift_count = INTVAL (op1);
      shift_count = INTVAL (op1);
 
 
      /* OUTOF_* is the word we are shifting bits away from, and
      /* OUTOF_* is the word we are shifting bits away from, and
         INTO_* is the word that we are shifting bits towards, thus
         INTO_* is the word that we are shifting bits towards, thus
         they differ depending on the direction of the shift and
         they differ depending on the direction of the shift and
         WORDS_BIG_ENDIAN.  */
         WORDS_BIG_ENDIAN.  */
 
 
      left_shift = (binoptab == rotl_optab);
      left_shift = (binoptab == rotl_optab);
      outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
      outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
 
 
      outof_target = operand_subword (target, outof_word, 1, mode);
      outof_target = operand_subword (target, outof_word, 1, mode);
      into_target = operand_subword (target, 1 - outof_word, 1, mode);
      into_target = operand_subword (target, 1 - outof_word, 1, mode);
 
 
      outof_input = operand_subword_force (op0, outof_word, mode);
      outof_input = operand_subword_force (op0, outof_word, mode);
      into_input = operand_subword_force (op0, 1 - outof_word, mode);
      into_input = operand_subword_force (op0, 1 - outof_word, mode);
 
 
      if (shift_count == BITS_PER_WORD)
      if (shift_count == BITS_PER_WORD)
        {
        {
          /* This is just a word swap.  */
          /* This is just a word swap.  */
          emit_move_insn (outof_target, into_input);
          emit_move_insn (outof_target, into_input);
          emit_move_insn (into_target, outof_input);
          emit_move_insn (into_target, outof_input);
          inter = const0_rtx;
          inter = const0_rtx;
        }
        }
      else
      else
        {
        {
          rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
          rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
          rtx first_shift_count, second_shift_count;
          rtx first_shift_count, second_shift_count;
          optab reverse_unsigned_shift, unsigned_shift;
          optab reverse_unsigned_shift, unsigned_shift;
 
 
          reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
          reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
                                    ? lshr_optab : ashl_optab);
                                    ? lshr_optab : ashl_optab);
 
 
          unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
          unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
                            ? ashl_optab : lshr_optab);
                            ? ashl_optab : lshr_optab);
 
 
          if (shift_count > BITS_PER_WORD)
          if (shift_count > BITS_PER_WORD)
            {
            {
              first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
              first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
              second_shift_count = GEN_INT (2 * BITS_PER_WORD - shift_count);
              second_shift_count = GEN_INT (2 * BITS_PER_WORD - shift_count);
            }
            }
          else
          else
            {
            {
              first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
              first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
              second_shift_count = GEN_INT (shift_count);
              second_shift_count = GEN_INT (shift_count);
            }
            }
 
 
          into_temp1 = expand_binop (word_mode, unsigned_shift,
          into_temp1 = expand_binop (word_mode, unsigned_shift,
                                     outof_input, first_shift_count,
                                     outof_input, first_shift_count,
                                     NULL_RTX, unsignedp, next_methods);
                                     NULL_RTX, unsignedp, next_methods);
          into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
          into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
                                     into_input, second_shift_count,
                                     into_input, second_shift_count,
                                     NULL_RTX, unsignedp, next_methods);
                                     NULL_RTX, unsignedp, next_methods);
 
 
          if (into_temp1 != 0 && into_temp2 != 0)
          if (into_temp1 != 0 && into_temp2 != 0)
            inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
            inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
                                  into_target, unsignedp, next_methods);
                                  into_target, unsignedp, next_methods);
          else
          else
            inter = 0;
            inter = 0;
 
 
          if (inter != 0 && inter != into_target)
          if (inter != 0 && inter != into_target)
            emit_move_insn (into_target, inter);
            emit_move_insn (into_target, inter);
 
 
          outof_temp1 = expand_binop (word_mode, unsigned_shift,
          outof_temp1 = expand_binop (word_mode, unsigned_shift,
                                      into_input, first_shift_count,
                                      into_input, first_shift_count,
                                      NULL_RTX, unsignedp, next_methods);
                                      NULL_RTX, unsignedp, next_methods);
          outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
          outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
                                      outof_input, second_shift_count,
                                      outof_input, second_shift_count,
                                      NULL_RTX, unsignedp, next_methods);
                                      NULL_RTX, unsignedp, next_methods);
 
 
          if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
          if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
            inter = expand_binop (word_mode, ior_optab,
            inter = expand_binop (word_mode, ior_optab,
                                  outof_temp1, outof_temp2,
                                  outof_temp1, outof_temp2,
                                  outof_target, unsignedp, next_methods);
                                  outof_target, unsignedp, next_methods);
 
 
          if (inter != 0 && inter != outof_target)
          if (inter != 0 && inter != outof_target)
            emit_move_insn (outof_target, inter);
            emit_move_insn (outof_target, inter);
        }
        }
 
 
      insns = get_insns ();
      insns = get_insns ();
      end_sequence ();
      end_sequence ();
 
 
      if (inter != 0)
      if (inter != 0)
        {
        {
          /* One may be tempted to wrap the insns in a REG_NO_CONFLICT
          /* One may be tempted to wrap the insns in a REG_NO_CONFLICT
             block to help the register allocator a bit.  But a multi-word
             block to help the register allocator a bit.  But a multi-word
             rotate will need all the input bits when setting the output
             rotate will need all the input bits when setting the output
             bits, so there clearly is a conflict between the input and
             bits, so there clearly is a conflict between the input and
             output registers.  So we can't use a no-conflict block here.  */
             output registers.  So we can't use a no-conflict block here.  */
          emit_insn (insns);
          emit_insn (insns);
          return target;
          return target;
        }
        }
    }
    }
 
 
  /* These can be done a word at a time by propagating carries.  */
  /* These can be done a word at a time by propagating carries.  */
  if ((binoptab == add_optab || binoptab == sub_optab)
  if ((binoptab == add_optab || binoptab == sub_optab)
      && class == MODE_INT
      && class == MODE_INT
      && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
      && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
      && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
      && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
    {
    {
      unsigned int i;
      unsigned int i;
      optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
      optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
      const unsigned int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
      const unsigned int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
      rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
      rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
      rtx xop0, xop1, xtarget;
      rtx xop0, xop1, xtarget;
 
 
      /* We can handle either a 1 or -1 value for the carry.  If STORE_FLAG
      /* We can handle either a 1 or -1 value for the carry.  If STORE_FLAG
         value is one of those, use it.  Otherwise, use 1 since it is the
         value is one of those, use it.  Otherwise, use 1 since it is the
         one easiest to get.  */
         one easiest to get.  */
#if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
#if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
      int normalizep = STORE_FLAG_VALUE;
      int normalizep = STORE_FLAG_VALUE;
#else
#else
      int normalizep = 1;
      int normalizep = 1;
#endif
#endif
 
 
      /* Prepare the operands.  */
      /* Prepare the operands.  */
      xop0 = force_reg (mode, op0);
      xop0 = force_reg (mode, op0);
      xop1 = force_reg (mode, op1);
      xop1 = force_reg (mode, op1);
 
 
      xtarget = gen_reg_rtx (mode);
      xtarget = gen_reg_rtx (mode);
 
 
      if (target == 0 || !REG_P (target))
      if (target == 0 || !REG_P (target))
        target = xtarget;
        target = xtarget;
 
 
      /* Indicate for flow that the entire target reg is being set.  */
      /* Indicate for flow that the entire target reg is being set.  */
      if (REG_P (target))
      if (REG_P (target))
        emit_insn (gen_rtx_CLOBBER (VOIDmode, xtarget));
        emit_insn (gen_rtx_CLOBBER (VOIDmode, xtarget));
 
 
      /* Do the actual arithmetic.  */
      /* Do the actual arithmetic.  */
      for (i = 0; i < nwords; i++)
      for (i = 0; i < nwords; i++)
        {
        {
          int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
          int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
          rtx target_piece = operand_subword (xtarget, index, 1, mode);
          rtx target_piece = operand_subword (xtarget, index, 1, mode);
          rtx op0_piece = operand_subword_force (xop0, index, mode);
          rtx op0_piece = operand_subword_force (xop0, index, mode);
          rtx op1_piece = operand_subword_force (xop1, index, mode);
          rtx op1_piece = operand_subword_force (xop1, index, mode);
          rtx x;
          rtx x;
 
 
          /* Main add/subtract of the input operands.  */
          /* Main add/subtract of the input operands.  */
          x = expand_binop (word_mode, binoptab,
          x = expand_binop (word_mode, binoptab,
                            op0_piece, op1_piece,
                            op0_piece, op1_piece,
                            target_piece, unsignedp, next_methods);
                            target_piece, unsignedp, next_methods);
          if (x == 0)
          if (x == 0)
            break;
            break;
 
 
          if (i + 1 < nwords)
          if (i + 1 < nwords)
            {
            {
              /* Store carry from main add/subtract.  */
              /* Store carry from main add/subtract.  */
              carry_out = gen_reg_rtx (word_mode);
              carry_out = gen_reg_rtx (word_mode);
              carry_out = emit_store_flag_force (carry_out,
              carry_out = emit_store_flag_force (carry_out,
                                                 (binoptab == add_optab
                                                 (binoptab == add_optab
                                                  ? LT : GT),
                                                  ? LT : GT),
                                                 x, op0_piece,
                                                 x, op0_piece,
                                                 word_mode, 1, normalizep);
                                                 word_mode, 1, normalizep);
            }
            }
 
 
          if (i > 0)
          if (i > 0)
            {
            {
              rtx newx;
              rtx newx;
 
 
              /* Add/subtract previous carry to main result.  */
              /* Add/subtract previous carry to main result.  */
              newx = expand_binop (word_mode,
              newx = expand_binop (word_mode,
                                   normalizep == 1 ? binoptab : otheroptab,
                                   normalizep == 1 ? binoptab : otheroptab,
                                   x, carry_in,
                                   x, carry_in,
                                   NULL_RTX, 1, next_methods);
                                   NULL_RTX, 1, next_methods);
 
 
              if (i + 1 < nwords)
              if (i + 1 < nwords)
                {
                {
                  /* Get out carry from adding/subtracting carry in.  */
                  /* Get out carry from adding/subtracting carry in.  */
                  rtx carry_tmp = gen_reg_rtx (word_mode);
                  rtx carry_tmp = gen_reg_rtx (word_mode);
                  carry_tmp = emit_store_flag_force (carry_tmp,
                  carry_tmp = emit_store_flag_force (carry_tmp,
                                                     (binoptab == add_optab
                                                     (binoptab == add_optab
                                                      ? LT : GT),
                                                      ? LT : GT),
                                                     newx, x,
                                                     newx, x,
                                                     word_mode, 1, normalizep);
                                                     word_mode, 1, normalizep);
 
 
                  /* Logical-ior the two poss. carry together.  */
                  /* Logical-ior the two poss. carry together.  */
                  carry_out = expand_binop (word_mode, ior_optab,
                  carry_out = expand_binop (word_mode, ior_optab,
                                            carry_out, carry_tmp,
                                            carry_out, carry_tmp,
                                            carry_out, 0, next_methods);
                                            carry_out, 0, next_methods);
                  if (carry_out == 0)
                  if (carry_out == 0)
                    break;
                    break;
                }
                }
              emit_move_insn (target_piece, newx);
              emit_move_insn (target_piece, newx);
            }
            }
          else
          else
            {
            {
              if (x != target_piece)
              if (x != target_piece)
                emit_move_insn (target_piece, x);
                emit_move_insn (target_piece, x);
            }
            }
 
 
          carry_in = carry_out;
          carry_in = carry_out;
        }
        }
 
 
      if (i == GET_MODE_BITSIZE (mode) / (unsigned) BITS_PER_WORD)
      if (i == GET_MODE_BITSIZE (mode) / (unsigned) BITS_PER_WORD)
        {
        {
          if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
          if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
              || ! rtx_equal_p (target, xtarget))
              || ! rtx_equal_p (target, xtarget))
            {
            {
              rtx temp = emit_move_insn (target, xtarget);
              rtx temp = emit_move_insn (target, xtarget);
 
 
              set_unique_reg_note (temp,
              set_unique_reg_note (temp,
                                   REG_EQUAL,
                                   REG_EQUAL,
                                   gen_rtx_fmt_ee (binoptab->code, mode,
                                   gen_rtx_fmt_ee (binoptab->code, mode,
                                                   copy_rtx (xop0),
                                                   copy_rtx (xop0),
                                                   copy_rtx (xop1)));
                                                   copy_rtx (xop1)));
            }
            }
          else
          else
            target = xtarget;
            target = xtarget;
 
 
          return target;
          return target;
        }
        }
 
 
      else
      else
        delete_insns_since (last);
        delete_insns_since (last);
    }
    }
 
 
  /* Attempt to synthesize double word multiplies using a sequence of word
  /* Attempt to synthesize double word multiplies using a sequence of word
     mode multiplications.  We first attempt to generate a sequence using a
     mode multiplications.  We first attempt to generate a sequence using a
     more efficient unsigned widening multiply, and if that fails we then
     more efficient unsigned widening multiply, and if that fails we then
     try using a signed widening multiply.  */
     try using a signed widening multiply.  */
 
 
  if (binoptab == smul_optab
  if (binoptab == smul_optab
      && class == MODE_INT
      && class == MODE_INT
      && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
      && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
      && smul_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
      && smul_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
      && add_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
      && add_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
    {
    {
      rtx product = NULL_RTX;
      rtx product = NULL_RTX;
 
 
      if (umul_widen_optab->handlers[(int) mode].insn_code
      if (umul_widen_optab->handlers[(int) mode].insn_code
          != CODE_FOR_nothing)
          != CODE_FOR_nothing)
        {
        {
          product = expand_doubleword_mult (mode, op0, op1, target,
          product = expand_doubleword_mult (mode, op0, op1, target,
                                            true, methods);
                                            true, methods);
          if (!product)
          if (!product)
            delete_insns_since (last);
            delete_insns_since (last);
        }
        }
 
 
      if (product == NULL_RTX
      if (product == NULL_RTX
          && smul_widen_optab->handlers[(int) mode].insn_code
          && smul_widen_optab->handlers[(int) mode].insn_code
             != CODE_FOR_nothing)
             != CODE_FOR_nothing)
        {
        {
          product = expand_doubleword_mult (mode, op0, op1, target,
          product = expand_doubleword_mult (mode, op0, op1, target,
                                            false, methods);
                                            false, methods);
          if (!product)
          if (!product)
            delete_insns_since (last);
            delete_insns_since (last);
        }
        }
 
 
      if (product != NULL_RTX)
      if (product != NULL_RTX)
        {
        {
          if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
          if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
            {
            {
              temp = emit_move_insn (target ? target : product, product);
              temp = emit_move_insn (target ? target : product, product);
              set_unique_reg_note (temp,
              set_unique_reg_note (temp,
                                   REG_EQUAL,
                                   REG_EQUAL,
                                   gen_rtx_fmt_ee (MULT, mode,
                                   gen_rtx_fmt_ee (MULT, mode,
                                                   copy_rtx (op0),
                                                   copy_rtx (op0),
                                                   copy_rtx (op1)));
                                                   copy_rtx (op1)));
            }
            }
          return product;
          return product;
        }
        }
    }
    }
 
 
  /* It can't be open-coded in this mode.
  /* It can't be open-coded in this mode.
     Use a library call if one is available and caller says that's ok.  */
     Use a library call if one is available and caller says that's ok.  */
 
 
  if (binoptab->handlers[(int) mode].libfunc
  if (binoptab->handlers[(int) mode].libfunc
      && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
      && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
    {
    {
      rtx insns;
      rtx insns;
      rtx op1x = op1;
      rtx op1x = op1;
      enum machine_mode op1_mode = mode;
      enum machine_mode op1_mode = mode;
      rtx value;
      rtx value;
 
 
      start_sequence ();
      start_sequence ();
 
 
      if (shift_op)
      if (shift_op)
        {
        {
          op1_mode = word_mode;
          op1_mode = word_mode;
          /* Specify unsigned here,
          /* Specify unsigned here,
             since negative shift counts are meaningless.  */
             since negative shift counts are meaningless.  */
          op1x = convert_to_mode (word_mode, op1, 1);
          op1x = convert_to_mode (word_mode, op1, 1);
        }
        }
 
 
      if (GET_MODE (op0) != VOIDmode
      if (GET_MODE (op0) != VOIDmode
          && GET_MODE (op0) != mode)
          && GET_MODE (op0) != mode)
        op0 = convert_to_mode (mode, op0, unsignedp);
        op0 = convert_to_mode (mode, op0, unsignedp);
 
 
      /* Pass 1 for NO_QUEUE so we don't lose any increments
      /* Pass 1 for NO_QUEUE so we don't lose any increments
         if the libcall is cse'd or moved.  */
         if the libcall is cse'd or moved.  */
      value = emit_library_call_value (binoptab->handlers[(int) mode].libfunc,
      value = emit_library_call_value (binoptab->handlers[(int) mode].libfunc,
                                       NULL_RTX, LCT_CONST, mode, 2,
                                       NULL_RTX, LCT_CONST, mode, 2,
                                       op0, mode, op1x, op1_mode);
                                       op0, mode, op1x, op1_mode);
 
 
      insns = get_insns ();
      insns = get_insns ();
      end_sequence ();
      end_sequence ();
 
 
      target = gen_reg_rtx (mode);
      target = gen_reg_rtx (mode);
      emit_libcall_block (insns, target, value,
      emit_libcall_block (insns, target, value,
                          gen_rtx_fmt_ee (binoptab->code, mode, op0, op1));
                          gen_rtx_fmt_ee (binoptab->code, mode, op0, op1));
 
 
      return target;
      return target;
    }
    }
 
 
  delete_insns_since (last);
  delete_insns_since (last);
 
 
  /* It can't be done in this mode.  Can we do it in a wider mode?  */
  /* It can't be done in this mode.  Can we do it in a wider mode?  */
 
 
  if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
  if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
         || methods == OPTAB_MUST_WIDEN))
         || methods == OPTAB_MUST_WIDEN))
    {
    {
      /* Caller says, don't even try.  */
      /* Caller says, don't even try.  */
      delete_insns_since (entry_last);
      delete_insns_since (entry_last);
      return 0;
      return 0;
    }
    }
 
 
  /* Compute the value of METHODS to pass to recursive calls.
  /* Compute the value of METHODS to pass to recursive calls.
     Don't allow widening to be tried recursively.  */
     Don't allow widening to be tried recursively.  */
 
 
  methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
  methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
 
 
  /* Look for a wider mode of the same class for which it appears we can do
  /* Look for a wider mode of the same class for which it appears we can do
     the operation.  */
     the operation.  */
 
 
  if (CLASS_HAS_WIDER_MODES_P (class))
  if (CLASS_HAS_WIDER_MODES_P (class))
    {
    {
      for (wider_mode = GET_MODE_WIDER_MODE (mode);
      for (wider_mode = GET_MODE_WIDER_MODE (mode);
           wider_mode != VOIDmode;
           wider_mode != VOIDmode;
           wider_mode = GET_MODE_WIDER_MODE (wider_mode))
           wider_mode = GET_MODE_WIDER_MODE (wider_mode))
        {
        {
          if ((binoptab->handlers[(int) wider_mode].insn_code
          if ((binoptab->handlers[(int) wider_mode].insn_code
               != CODE_FOR_nothing)
               != CODE_FOR_nothing)
              || (methods == OPTAB_LIB
              || (methods == OPTAB_LIB
                  && binoptab->handlers[(int) wider_mode].libfunc))
                  && binoptab->handlers[(int) wider_mode].libfunc))
            {
            {
              rtx xop0 = op0, xop1 = op1;
              rtx xop0 = op0, xop1 = op1;
              int no_extend = 0;
              int no_extend = 0;
 
 
              /* For certain integer operations, we need not actually extend
              /* For certain integer operations, we need not actually extend
                 the narrow operands, as long as we will truncate
                 the narrow operands, as long as we will truncate
                 the results to the same narrowness.  */
                 the results to the same narrowness.  */
 
 
              if ((binoptab == ior_optab || binoptab == and_optab
              if ((binoptab == ior_optab || binoptab == and_optab
                   || binoptab == xor_optab
                   || binoptab == xor_optab
                   || binoptab == add_optab || binoptab == sub_optab
                   || binoptab == add_optab || binoptab == sub_optab
                   || binoptab == smul_optab || binoptab == ashl_optab)
                   || binoptab == smul_optab || binoptab == ashl_optab)
                  && class == MODE_INT)
                  && class == MODE_INT)
                no_extend = 1;
                no_extend = 1;
 
 
              xop0 = widen_operand (xop0, wider_mode, mode,
              xop0 = widen_operand (xop0, wider_mode, mode,
                                    unsignedp, no_extend);
                                    unsignedp, no_extend);
 
 
              /* The second operand of a shift must always be extended.  */
              /* The second operand of a shift must always be extended.  */
              xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
              xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
                                    no_extend && binoptab != ashl_optab);
                                    no_extend && binoptab != ashl_optab);
 
 
              temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
              temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
                                   unsignedp, methods);
                                   unsignedp, methods);
              if (temp)
              if (temp)
                {
                {
                  if (class != MODE_INT
                  if (class != MODE_INT
                      || !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
                      || !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
                                                 GET_MODE_BITSIZE (wider_mode)))
                                                 GET_MODE_BITSIZE (wider_mode)))
                    {
                    {
                      if (target == 0)
                      if (target == 0)
                        target = gen_reg_rtx (mode);
                        target = gen_reg_rtx (mode);
                      convert_move (target, temp, 0);
                      convert_move (target, temp, 0);
                      return target;
                      return target;
                    }
                    }
                  else
                  else
                    return gen_lowpart (mode, temp);
                    return gen_lowpart (mode, temp);
                }
                }
              else
              else
                delete_insns_since (last);
                delete_insns_since (last);
            }
            }
        }
        }
    }
    }
 
 
  delete_insns_since (entry_last);
  delete_insns_since (entry_last);
  return 0;
  return 0;
}
}


/* Expand a binary operator which has both signed and unsigned forms.
/* Expand a binary operator which has both signed and unsigned forms.
   UOPTAB is the optab for unsigned operations, and SOPTAB is for
   UOPTAB is the optab for unsigned operations, and SOPTAB is for
   signed operations.
   signed operations.
 
 
   If we widen unsigned operands, we may use a signed wider operation instead
   If we widen unsigned operands, we may use a signed wider operation instead
   of an unsigned wider operation, since the result would be the same.  */
   of an unsigned wider operation, since the result would be the same.  */
 
 
rtx
rtx
sign_expand_binop (enum machine_mode mode, optab uoptab, optab soptab,
sign_expand_binop (enum machine_mode mode, optab uoptab, optab soptab,
                   rtx op0, rtx op1, rtx target, int unsignedp,
                   rtx op0, rtx op1, rtx target, int unsignedp,
                   enum optab_methods methods)
                   enum optab_methods methods)
{
{
  rtx temp;
  rtx temp;
  optab direct_optab = unsignedp ? uoptab : soptab;
  optab direct_optab = unsignedp ? uoptab : soptab;
  struct optab wide_soptab;
  struct optab wide_soptab;
 
 
  /* Do it without widening, if possible.  */
  /* Do it without widening, if possible.  */
  temp = expand_binop (mode, direct_optab, op0, op1, target,
  temp = expand_binop (mode, direct_optab, op0, op1, target,
                       unsignedp, OPTAB_DIRECT);
                       unsignedp, OPTAB_DIRECT);
  if (temp || methods == OPTAB_DIRECT)
  if (temp || methods == OPTAB_DIRECT)
    return temp;
    return temp;
 
 
  /* Try widening to a signed int.  Make a fake signed optab that
  /* Try widening to a signed int.  Make a fake signed optab that
     hides any signed insn for direct use.  */
     hides any signed insn for direct use.  */
  wide_soptab = *soptab;
  wide_soptab = *soptab;
  wide_soptab.handlers[(int) mode].insn_code = CODE_FOR_nothing;
  wide_soptab.handlers[(int) mode].insn_code = CODE_FOR_nothing;
  wide_soptab.handlers[(int) mode].libfunc = 0;
  wide_soptab.handlers[(int) mode].libfunc = 0;
 
 
  temp = expand_binop (mode, &wide_soptab, op0, op1, target,
  temp = expand_binop (mode, &wide_soptab, op0, op1, target,
                       unsignedp, OPTAB_WIDEN);
                       unsignedp, OPTAB_WIDEN);
 
 
  /* For unsigned operands, try widening to an unsigned int.  */
  /* For unsigned operands, try widening to an unsigned int.  */
  if (temp == 0 && unsignedp)
  if (temp == 0 && unsignedp)
    temp = expand_binop (mode, uoptab, op0, op1, target,
    temp = expand_binop (mode, uoptab, op0, op1, target,
                         unsignedp, OPTAB_WIDEN);
                         unsignedp, OPTAB_WIDEN);
  if (temp || methods == OPTAB_WIDEN)
  if (temp || methods == OPTAB_WIDEN)
    return temp;
    return temp;
 
 
  /* Use the right width lib call if that exists.  */
  /* Use the right width lib call if that exists.  */
  temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_LIB);
  temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_LIB);
  if (temp || methods == OPTAB_LIB)
  if (temp || methods == OPTAB_LIB)
    return temp;
    return temp;
 
 
  /* Must widen and use a lib call, use either signed or unsigned.  */
  /* Must widen and use a lib call, use either signed or unsigned.  */
  temp = expand_binop (mode, &wide_soptab, op0, op1, target,
  temp = expand_binop (mode, &wide_soptab, op0, op1, target,
                       unsignedp, methods);
                       unsignedp, methods);
  if (temp != 0)
  if (temp != 0)
    return temp;
    return temp;
  if (unsignedp)
  if (unsignedp)
    return expand_binop (mode, uoptab, op0, op1, target,
    return expand_binop (mode, uoptab, op0, op1, target,
                         unsignedp, methods);
                         unsignedp, methods);
  return 0;
  return 0;
}
}


/* Generate code to perform an operation specified by UNOPPTAB
/* Generate code to perform an operation specified by UNOPPTAB
   on operand OP0, with two results to TARG0 and TARG1.
   on operand OP0, with two results to TARG0 and TARG1.
   We assume that the order of the operands for the instruction
   We assume that the order of the operands for the instruction
   is TARG0, TARG1, OP0.
   is TARG0, TARG1, OP0.
 
 
   Either TARG0 or TARG1 may be zero, but what that means is that
   Either TARG0 or TARG1 may be zero, but what that means is that
   the result is not actually wanted.  We will generate it into
   the result is not actually wanted.  We will generate it into
   a dummy pseudo-reg and discard it.  They may not both be zero.
   a dummy pseudo-reg and discard it.  They may not both be zero.
 
 
   Returns 1 if this operation can be performed; 0 if not.  */
   Returns 1 if this operation can be performed; 0 if not.  */
 
 
int
int
expand_twoval_unop (optab unoptab, rtx op0, rtx targ0, rtx targ1,
expand_twoval_unop (optab unoptab, rtx op0, rtx targ0, rtx targ1,
                    int unsignedp)
                    int unsignedp)
{
{
  enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
  enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
  enum mode_class class;
  enum mode_class class;
  enum machine_mode wider_mode;
  enum machine_mode wider_mode;
  rtx entry_last = get_last_insn ();
  rtx entry_last = get_last_insn ();
  rtx last;
  rtx last;
 
 
  class = GET_MODE_CLASS (mode);
  class = GET_MODE_CLASS (mode);
 
 
  if (!targ0)
  if (!targ0)
    targ0 = gen_reg_rtx (mode);
    targ0 = gen_reg_rtx (mode);
  if (!targ1)
  if (!targ1)
    targ1 = gen_reg_rtx (mode);
    targ1 = gen_reg_rtx (mode);
 
 
  /* Record where to go back to if we fail.  */
  /* Record where to go back to if we fail.  */
  last = get_last_insn ();
  last = get_last_insn ();
 
 
  if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
  if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
    {
    {
      int icode = (int) unoptab->handlers[(int) mode].insn_code;
      int icode = (int) unoptab->handlers[(int) mode].insn_code;
      enum machine_mode mode0 = insn_data[icode].operand[2].mode;
      enum machine_mode mode0 = insn_data[icode].operand[2].mode;
      rtx pat;
      rtx pat;
      rtx xop0 = op0;
      rtx xop0 = op0;
 
 
      if (GET_MODE (xop0) != VOIDmode
      if (GET_MODE (xop0) != VOIDmode
          && GET_MODE (xop0) != mode0)
          && GET_MODE (xop0) != mode0)
        xop0 = convert_to_mode (mode0, xop0, unsignedp);
        xop0 = convert_to_mode (mode0, xop0, unsignedp);
 
 
      /* Now, if insn doesn't accept these operands, put them into pseudos.  */
      /* Now, if insn doesn't accept these operands, put them into pseudos.  */
      if (!insn_data[icode].operand[2].predicate (xop0, mode0))
      if (!insn_data[icode].operand[2].predicate (xop0, mode0))
        xop0 = copy_to_mode_reg (mode0, xop0);
        xop0 = copy_to_mode_reg (mode0, xop0);
 
 
      /* We could handle this, but we should always be called with a pseudo
      /* We could handle this, but we should always be called with a pseudo
         for our targets and all insns should take them as outputs.  */
         for our targets and all insns should take them as outputs.  */
      gcc_assert (insn_data[icode].operand[0].predicate (targ0, mode));
      gcc_assert (insn_data[icode].operand[0].predicate (targ0, mode));
      gcc_assert (insn_data[icode].operand[1].predicate (targ1, mode));
      gcc_assert (insn_data[icode].operand[1].predicate (targ1, mode));
 
 
      pat = GEN_FCN (icode) (targ0, targ1, xop0);
      pat = GEN_FCN (icode) (targ0, targ1, xop0);
      if (pat)
      if (pat)
        {
        {
          emit_insn (pat);
          emit_insn (pat);
          return 1;
          return 1;
        }
        }
      else
      else
        delete_insns_since (last);
        delete_insns_since (last);
    }
    }
 
 
  /* It can't be done in this mode.  Can we do it in a wider mode?  */
  /* It can't be done in this mode.  Can we do it in a wider mode?  */
 
 
  if (CLASS_HAS_WIDER_MODES_P (class))
  if (CLASS_HAS_WIDER_MODES_P (class))
    {
    {
      for (wider_mode = GET_MODE_WIDER_MODE (mode);
      for (wider_mode = GET_MODE_WIDER_MODE (mode);
           wider_mode != VOIDmode;
           wider_mode != VOIDmode;
           wider_mode = GET_MODE_WIDER_MODE (wider_mode))
           wider_mode = GET_MODE_WIDER_MODE (wider_mode))
        {
        {
          if (unoptab->handlers[(int) wider_mode].insn_code
          if (unoptab->handlers[(int) wider_mode].insn_code
              != CODE_FOR_nothing)
              != CODE_FOR_nothing)
            {
            {
              rtx t0 = gen_reg_rtx (wider_mode);
              rtx t0 = gen_reg_rtx (wider_mode);
              rtx t1 = gen_reg_rtx (wider_mode);
              rtx t1 = gen_reg_rtx (wider_mode);
              rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
              rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
 
 
              if (expand_twoval_unop (unoptab, cop0, t0, t1, unsignedp))
              if (expand_twoval_unop (unoptab, cop0, t0, t1, unsignedp))
                {
                {
                  convert_move (targ0, t0, unsignedp);
                  convert_move (targ0, t0, unsignedp);
                  convert_move (targ1, t1, unsignedp);
                  convert_move (targ1, t1, unsignedp);
                  return 1;
                  return 1;
                }
                }
              else
              else
                delete_insns_since (last);
                delete_insns_since (last);
            }
            }
        }
        }
    }
    }
 
 
  delete_insns_since (entry_last);
  delete_insns_since (entry_last);
  return 0;
  return 0;
}
}


/* Generate code to perform an operation specified by BINOPTAB
/* Generate code to perform an operation specified by BINOPTAB
   on operands OP0 and OP1, with two results to TARG1 and TARG2.
   on operands OP0 and OP1, with two results to TARG1 and TARG2.
   We assume that the order of the operands for the instruction
   We assume that the order of the operands for the instruction
   is TARG0, OP0, OP1, TARG1, which would fit a pattern like
   is TARG0, OP0, OP1, TARG1, which would fit a pattern like
   [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
   [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
 
 
   Either TARG0 or TARG1 may be zero, but what that means is that
   Either TARG0 or TARG1 may be zero, but what that means is that
   the result is not actually wanted.  We will generate it into
   the result is not actually wanted.  We will generate it into
   a dummy pseudo-reg and discard it.  They may not both be zero.
   a dummy pseudo-reg and discard it.  They may not both be zero.
 
 
   Returns 1 if this operation can be performed; 0 if not.  */
   Returns 1 if this operation can be performed; 0 if not.  */
 
 
int
int
expand_twoval_binop (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1,
expand_twoval_binop (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1,
                     int unsignedp)
                     int unsignedp)
{
{
  enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
  enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
  enum mode_class class;
  enum mode_class class;
  enum machine_mode wider_mode;
  enum machine_mode wider_mode;
  rtx entry_last = get_last_insn ();
  rtx entry_last = get_last_insn ();
  rtx last;
  rtx last;
 
 
  class = GET_MODE_CLASS (mode);
  class = GET_MODE_CLASS (mode);
 
 
  /* If we are inside an appropriately-short loop and we are optimizing,
  /* If we are inside an appropriately-short loop and we are optimizing,
     force expensive constants into a register.  */
     force expensive constants into a register.  */
  if (CONSTANT_P (op0) && optimize
  if (CONSTANT_P (op0) && optimize
      && rtx_cost (op0, binoptab->code) > COSTS_N_INSNS (1))
      && rtx_cost (op0, binoptab->code) > COSTS_N_INSNS (1))
    op0 = force_reg (mode, op0);
    op0 = force_reg (mode, op0);
 
 
  if (CONSTANT_P (op1) && optimize
  if (CONSTANT_P (op1) && optimize
      && rtx_cost (op1, binoptab->code) > COSTS_N_INSNS (1))
      && rtx_cost (op1, binoptab->code) > COSTS_N_INSNS (1))
    op1 = force_reg (mode, op1);
    op1 = force_reg (mode, op1);
 
 
  if (!targ0)
  if (!targ0)
    targ0 = gen_reg_rtx (mode);
    targ0 = gen_reg_rtx (mode);
  if (!targ1)
  if (!targ1)
    targ1 = gen_reg_rtx (mode);
    targ1 = gen_reg_rtx (mode);
 
 
  /* Record where to go back to if we fail.  */
  /* Record where to go back to if we fail.  */
  last = get_last_insn ();
  last = get_last_insn ();
 
 
  if (binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
  if (binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
    {
    {
      int icode = (int) binoptab->handlers[(int) mode].insn_code;
      int icode = (int) binoptab->handlers[(int) mode].insn_code;
      enum machine_mode mode0 = insn_data[icode].operand[1].mode;
      enum machine_mode mode0 = insn_data[icode].operand[1].mode;
      enum machine_mode mode1 = insn_data[icode].operand[2].mode;
      enum machine_mode mode1 = insn_data[icode].operand[2].mode;
      rtx pat;
      rtx pat;
      rtx xop0 = op0, xop1 = op1;
      rtx xop0 = op0, xop1 = op1;
 
 
      /* In case the insn wants input operands in modes different from
      /* In case the insn wants input operands in modes different from
         those of the actual operands, convert the operands.  It would
         those of the actual operands, convert the operands.  It would
         seem that we don't need to convert CONST_INTs, but we do, so
         seem that we don't need to convert CONST_INTs, but we do, so
         that they're properly zero-extended, sign-extended or truncated
         that they're properly zero-extended, sign-extended or truncated
         for their mode.  */
         for their mode.  */
 
 
      if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
      if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
        xop0 = convert_modes (mode0,
        xop0 = convert_modes (mode0,
                              GET_MODE (op0) != VOIDmode
                              GET_MODE (op0) != VOIDmode
                              ? GET_MODE (op0)
                              ? GET_MODE (op0)
                              : mode,
                              : mode,
                              xop0, unsignedp);
                              xop0, unsignedp);
 
 
      if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
      if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
        xop1 = convert_modes (mode1,
        xop1 = convert_modes (mode1,
                              GET_MODE (op1) != VOIDmode
                              GET_MODE (op1) != VOIDmode
                              ? GET_MODE (op1)
                              ? GET_MODE (op1)
                              : mode,
                              : mode,
                              xop1, unsignedp);
                              xop1, unsignedp);
 
 
      /* Now, if insn doesn't accept these operands, put them into pseudos.  */
      /* Now, if insn doesn't accept these operands, put them into pseudos.  */
      if (!insn_data[icode].operand[1].predicate (xop0, mode0))
      if (!insn_data[icode].operand[1].predicate (xop0, mode0))
        xop0 = copy_to_mode_reg (mode0, xop0);
        xop0 = copy_to_mode_reg (mode0, xop0);
 
 
      if (!insn_data[icode].operand[2].predicate (xop1, mode1))
      if (!insn_data[icode].operand[2].predicate (xop1, mode1))
        xop1 = copy_to_mode_reg (mode1, xop1);
        xop1 = copy_to_mode_reg (mode1, xop1);
 
 
      /* We could handle this, but we should always be called with a pseudo
      /* We could handle this, but we should always be called with a pseudo
         for our targets and all insns should take them as outputs.  */
         for our targets and all insns should take them as outputs.  */
      gcc_assert (insn_data[icode].operand[0].predicate (targ0, mode));
      gcc_assert (insn_data[icode].operand[0].predicate (targ0, mode));
      gcc_assert (insn_data[icode].operand[3].predicate (targ1, mode));
      gcc_assert (insn_data[icode].operand[3].predicate (targ1, mode));
 
 
      pat = GEN_FCN (icode) (targ0, xop0, xop1, targ1);
      pat = GEN_FCN (icode) (targ0, xop0, xop1, targ1);
      if (pat)
      if (pat)
        {
        {
          emit_insn (pat);
          emit_insn (pat);
          return 1;
          return 1;
        }
        }
      else
      else
        delete_insns_since (last);
        delete_insns_since (last);
    }
    }
 
 
  /* It can't be done in this mode.  Can we do it in a wider mode?  */
  /* It can't be done in this mode.  Can we do it in a wider mode?  */
 
 
  if (CLASS_HAS_WIDER_MODES_P (class))
  if (CLASS_HAS_WIDER_MODES_P (class))
    {
    {
      for (wider_mode = GET_MODE_WIDER_MODE (mode);
      for (wider_mode = GET_MODE_WIDER_MODE (mode);
           wider_mode != VOIDmode;
           wider_mode != VOIDmode;
           wider_mode = GET_MODE_WIDER_MODE (wider_mode))
           wider_mode = GET_MODE_WIDER_MODE (wider_mode))
        {
        {
          if (binoptab->handlers[(int) wider_mode].insn_code
          if (binoptab->handlers[(int) wider_mode].insn_code
              != CODE_FOR_nothing)
              != CODE_FOR_nothing)
            {
            {
              rtx t0 = gen_reg_rtx (wider_mode);
              rtx t0 = gen_reg_rtx (wider_mode);
              rtx t1 = gen_reg_rtx (wider_mode);
              rtx t1 = gen_reg_rtx (wider_mode);
              rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
              rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
              rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
              rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
 
 
              if (expand_twoval_binop (binoptab, cop0, cop1,
              if (expand_twoval_binop (binoptab, cop0, cop1,
                                       t0, t1, unsignedp))
                                       t0, t1, unsignedp))
                {
                {
                  convert_move (targ0, t0, unsignedp);
                  convert_move (targ0, t0, unsignedp);
                  convert_move (targ1, t1, unsignedp);
                  convert_move (targ1, t1, unsignedp);
                  return 1;
                  return 1;
                }
                }
              else
              else
                delete_insns_since (last);
                delete_insns_since (last);
            }
            }
        }
        }
    }
    }
 
 
  delete_insns_since (entry_last);
  delete_insns_since (entry_last);
  return 0;
  return 0;
}
}
 
 
/* Expand the two-valued library call indicated by BINOPTAB, but
/* Expand the two-valued library call indicated by BINOPTAB, but
   preserve only one of the values.  If TARG0 is non-NULL, the first
   preserve only one of the values.  If TARG0 is non-NULL, the first
   value is placed into TARG0; otherwise the second value is placed
   value is placed into TARG0; otherwise the second value is placed
   into TARG1.  Exactly one of TARG0 and TARG1 must be non-NULL.  The
   into TARG1.  Exactly one of TARG0 and TARG1 must be non-NULL.  The
   value stored into TARG0 or TARG1 is equivalent to (CODE OP0 OP1).
   value stored into TARG0 or TARG1 is equivalent to (CODE OP0 OP1).
   This routine assumes that the value returned by the library call is
   This routine assumes that the value returned by the library call is
   as if the return value was of an integral mode twice as wide as the
   as if the return value was of an integral mode twice as wide as the
   mode of OP0.  Returns 1 if the call was successful.  */
   mode of OP0.  Returns 1 if the call was successful.  */
 
 
bool
bool
expand_twoval_binop_libfunc (optab binoptab, rtx op0, rtx op1,
expand_twoval_binop_libfunc (optab binoptab, rtx op0, rtx op1,
                             rtx targ0, rtx targ1, enum rtx_code code)
                             rtx targ0, rtx targ1, enum rtx_code code)
{
{
  enum machine_mode mode;
  enum machine_mode mode;
  enum machine_mode libval_mode;
  enum machine_mode libval_mode;
  rtx libval;
  rtx libval;
  rtx insns;
  rtx insns;
 
 
  /* Exactly one of TARG0 or TARG1 should be non-NULL.  */
  /* Exactly one of TARG0 or TARG1 should be non-NULL.  */
  gcc_assert (!targ0 != !targ1);
  gcc_assert (!targ0 != !targ1);
 
 
  mode = GET_MODE (op0);
  mode = GET_MODE (op0);
  if (!binoptab->handlers[(int) mode].libfunc)
  if (!binoptab->handlers[(int) mode].libfunc)
    return false;
    return false;
 
 
  /* The value returned by the library function will have twice as
  /* The value returned by the library function will have twice as
     many bits as the nominal MODE.  */
     many bits as the nominal MODE.  */
  libval_mode = smallest_mode_for_size (2 * GET_MODE_BITSIZE (mode),
  libval_mode = smallest_mode_for_size (2 * GET_MODE_BITSIZE (mode),
                                        MODE_INT);
                                        MODE_INT);
  start_sequence ();
  start_sequence ();
  libval = emit_library_call_value (binoptab->handlers[(int) mode].libfunc,
  libval = emit_library_call_value (binoptab->handlers[(int) mode].libfunc,
                                    NULL_RTX, LCT_CONST,
                                    NULL_RTX, LCT_CONST,
                                    libval_mode, 2,
                                    libval_mode, 2,
                                    op0, mode,
                                    op0, mode,
                                    op1, mode);
                                    op1, mode);
  /* Get the part of VAL containing the value that we want.  */
  /* Get the part of VAL containing the value that we want.  */
  libval = simplify_gen_subreg (mode, libval, libval_mode,
  libval = simplify_gen_subreg (mode, libval, libval_mode,
                                targ0 ? 0 : GET_MODE_SIZE (mode));
                                targ0 ? 0 : GET_MODE_SIZE (mode));
  insns = get_insns ();
  insns = get_insns ();
  end_sequence ();
  end_sequence ();
  /* Move the into the desired location.  */
  /* Move the into the desired location.  */
  emit_libcall_block (insns, targ0 ? targ0 : targ1, libval,
  emit_libcall_block (insns, targ0 ? targ0 : targ1, libval,
                      gen_rtx_fmt_ee (code, mode, op0, op1));
                      gen_rtx_fmt_ee (code, mode, op0, op1));
 
 
  return true;
  return true;
}
}
 
 


/* Wrapper around expand_unop which takes an rtx code to specify
/* Wrapper around expand_unop which takes an rtx code to specify
   the operation to perform, not an optab pointer.  All other
   the operation to perform, not an optab pointer.  All other
   arguments are the same.  */
   arguments are the same.  */
rtx
rtx
expand_simple_unop (enum machine_mode mode, enum rtx_code code, rtx op0,
expand_simple_unop (enum machine_mode mode, enum rtx_code code, rtx op0,
                    rtx target, int unsignedp)
                    rtx target, int unsignedp)
{
{
  optab unop = code_to_optab[(int) code];
  optab unop = code_to_optab[(int) code];
  gcc_assert (unop);
  gcc_assert (unop);
 
 
  return expand_unop (mode, unop, op0, target, unsignedp);
  return expand_unop (mode, unop, op0, target, unsignedp);
}
}
 
 
/* Try calculating
/* Try calculating
        (clz:narrow x)
        (clz:narrow x)
   as
   as
        (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)).  */
        (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)).  */
static rtx
static rtx
widen_clz (enum machine_mode mode, rtx op0, rtx target)
widen_clz (enum machine_mode mode, rtx op0, rtx target)
{
{
  enum mode_class class = GET_MODE_CLASS (mode);
  enum mode_class class = GET_MODE_CLASS (mode);
  if (CLASS_HAS_WIDER_MODES_P (class))
  if (CLASS_HAS_WIDER_MODES_P (class))
    {
    {
      enum machine_mode wider_mode;
      enum machine_mode wider_mode;
      for (wider_mode = GET_MODE_WIDER_MODE (mode);
      for (wider_mode = GET_MODE_WIDER_MODE (mode);
           wider_mode != VOIDmode;
           wider_mode != VOIDmode;
           wider_mode = GET_MODE_WIDER_MODE (wider_mode))
           wider_mode = GET_MODE_WIDER_MODE (wider_mode))
        {
        {
          if (clz_optab->handlers[(int) wider_mode].insn_code
          if (clz_optab->handlers[(int) wider_mode].insn_code
              != CODE_FOR_nothing)
              != CODE_FOR_nothing)
            {
            {
              rtx xop0, temp, last;
              rtx xop0, temp, last;
 
 
              last = get_last_insn ();
              last = get_last_insn ();
 
 
              if (target == 0)
              if (target == 0)
                target = gen_reg_rtx (mode);
                target = gen_reg_rtx (mode);
              xop0 = widen_operand (op0, wider_mode, mode, true, false);
              xop0 = widen_operand (op0, wider_mode, mode, true, false);
              temp = expand_unop (wider_mode, clz_optab, xop0, NULL_RTX, true);
              temp = expand_unop (wider_mode, clz_optab, xop0, NULL_RTX, true);
              if (temp != 0)
              if (temp != 0)
                temp = expand_binop (wider_mode, sub_optab, temp,
                temp = expand_binop (wider_mode, sub_optab, temp,
                                     GEN_INT (GET_MODE_BITSIZE (wider_mode)
                                     GEN_INT (GET_MODE_BITSIZE (wider_mode)
                                              - GET_MODE_BITSIZE (mode)),
                                              - GET_MODE_BITSIZE (mode)),
                                     target, true, OPTAB_DIRECT);
                                     target, true, OPTAB_DIRECT);
              if (temp == 0)
              if (temp == 0)
                delete_insns_since (last);
                delete_insns_since (last);
 
 
              return temp;
              return temp;
            }
            }
        }
        }
    }
    }
  return 0;
  return 0;
}
}
 
 
/* Try calculating (parity x) as (and (popcount x) 1), where
/* Try calculating (parity x) as (and (popcount x) 1), where
   popcount can also be done in a wider mode.  */
   popcount can also be done in a wider mode.  */
static rtx
static rtx
expand_parity (enum machine_mode mode, rtx op0, rtx target)
expand_parity (enum machine_mode mode, rtx op0, rtx target)
{
{
  enum mode_class class = GET_MODE_CLASS (mode);
  enum mode_class class = GET_MODE_CLASS (mode);
  if (CLASS_HAS_WIDER_MODES_P (class))
  if (CLASS_HAS_WIDER_MODES_P (class))
    {
    {
      enum machine_mode wider_mode;
      enum machine_mode wider_mode;
      for (wider_mode = mode; wider_mode != VOIDmode;
      for (wider_mode = mode; wider_mode != VOIDmode;
           wider_mode = GET_MODE_WIDER_MODE (wider_mode))
           wider_mode = GET_MODE_WIDER_MODE (wider_mode))
        {
        {
          if (popcount_optab->handlers[(int) wider_mode].insn_code
          if (popcount_optab->handlers[(int) wider_mode].insn_code
              != CODE_FOR_nothing)
              != CODE_FOR_nothing)
            {
            {
              rtx xop0, temp, last;
              rtx xop0, temp, last;
 
 
              last = get_last_insn ();
              last = get_last_insn ();
 
 
              if (target == 0)
              if (target == 0)
                target = gen_reg_rtx (mode);
                target = gen_reg_rtx (mode);
              xop0 = widen_operand (op0, wider_mode, mode, true, false);
              xop0 = widen_operand (op0, wider_mode, mode, true, false);
              temp = expand_unop (wider_mode, popcount_optab, xop0, NULL_RTX,
              temp = expand_unop (wider_mode, popcount_optab, xop0, NULL_RTX,
                                  true);
                                  true);
              if (temp != 0)
              if (temp != 0)
                temp = expand_binop (wider_mode, and_optab, temp, const1_rtx,
                temp = expand_binop (wider_mode, and_optab, temp, const1_rtx,
                                     target, true, OPTAB_DIRECT);
                                     target, true, OPTAB_DIRECT);
              if (temp == 0)
              if (temp == 0)
                delete_insns_since (last);
                delete_insns_since (last);
 
 
              return temp;
              return temp;
            }
            }
        }
        }
    }
    }
  return 0;
  return 0;
}
}
 
 
/* Extract the OMODE lowpart from VAL, which has IMODE.  Under certain
/* Extract the OMODE lowpart from VAL, which has IMODE.  Under certain
   conditions, VAL may already be a SUBREG against which we cannot generate
   conditions, VAL may already be a SUBREG against which we cannot generate
   a further SUBREG.  In this case, we expect forcing the value into a
   a further SUBREG.  In this case, we expect forcing the value into a
   register will work around the situation.  */
   register will work around the situation.  */
 
 
static rtx
static rtx
lowpart_subreg_maybe_copy (enum machine_mode omode, rtx val,
lowpart_subreg_maybe_copy (enum machine_mode omode, rtx val,
                           enum machine_mode imode)
                           enum machine_mode imode)
{
{
  rtx ret;
  rtx ret;
  ret = lowpart_subreg (omode, val, imode);
  ret = lowpart_subreg (omode, val, imode);
  if (ret == NULL)
  if (ret == NULL)
    {
    {
      val = force_reg (imode, val);
      val = force_reg (imode, val);
      ret = lowpart_subreg (omode, val, imode);
      ret = lowpart_subreg (omode, val, imode);
      gcc_assert (ret != NULL);
      gcc_assert (ret != NULL);
    }
    }
  return ret;
  return ret;
}
}
 
 
/* Expand a floating point absolute value or negation operation via a
/* Expand a floating point absolute value or negation operation via a
   logical operation on the sign bit.  */
   logical operation on the sign bit.  */
 
 
static rtx
static rtx
expand_absneg_bit (enum rtx_code code, enum machine_mode mode,
expand_absneg_bit (enum rtx_code code, enum machine_mode mode,
                   rtx op0, rtx target)
                   rtx op0, rtx target)
{
{
  const struct real_format *fmt;
  const struct real_format *fmt;
  int bitpos, word, nwords, i;
  int bitpos, word, nwords, i;
  enum machine_mode imode;
  enum machine_mode imode;
  HOST_WIDE_INT hi, lo;
  HOST_WIDE_INT hi, lo;
  rtx temp, insns;
  rtx temp, insns;
 
 
  /* The format has to have a simple sign bit.  */
  /* The format has to have a simple sign bit.  */
  fmt = REAL_MODE_FORMAT (mode);
  fmt = REAL_MODE_FORMAT (mode);
  if (fmt == NULL)
  if (fmt == NULL)
    return NULL_RTX;
    return NULL_RTX;
 
 
  bitpos = fmt->signbit_rw;
  bitpos = fmt->signbit_rw;
  if (bitpos < 0)
  if (bitpos < 0)
    return NULL_RTX;
    return NULL_RTX;
 
 
  /* Don't create negative zeros if the format doesn't support them.  */
  /* Don't create negative zeros if the format doesn't support them.  */
  if (code == NEG && !fmt->has_signed_zero)
  if (code == NEG && !fmt->has_signed_zero)
    return NULL_RTX;
    return NULL_RTX;
 
 
  if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
  if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
    {
    {
      imode = int_mode_for_mode (mode);
      imode = int_mode_for_mode (mode);
      if (imode == BLKmode)
      if (imode == BLKmode)
        return NULL_RTX;
        return NULL_RTX;
      word = 0;
      word = 0;
      nwords = 1;
      nwords = 1;
    }
    }
  else
  else
    {
    {
      imode = word_mode;
      imode = word_mode;
 
 
      if (FLOAT_WORDS_BIG_ENDIAN)
      if (FLOAT_WORDS_BIG_ENDIAN)
        word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
        word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
      else
      else
        word = bitpos / BITS_PER_WORD;
        word = bitpos / BITS_PER_WORD;
      bitpos = bitpos % BITS_PER_WORD;
      bitpos = bitpos % BITS_PER_WORD;
      nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
      nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
    }
    }
 
 
  if (bitpos < HOST_BITS_PER_WIDE_INT)
  if (bitpos < HOST_BITS_PER_WIDE_INT)
    {
    {
      hi = 0;
      hi = 0;
      lo = (HOST_WIDE_INT) 1 << bitpos;
      lo = (HOST_WIDE_INT) 1 << bitpos;
    }
    }
  else
  else
    {
    {
      hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
      hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
      lo = 0;
      lo = 0;
    }
    }
  if (code == ABS)
  if (code == ABS)
    lo = ~lo, hi = ~hi;
    lo = ~lo, hi = ~hi;
 
 
  if (target == 0 || target == op0)
  if (target == 0 || target == op0)
    target = gen_reg_rtx (mode);
    target = gen_reg_rtx (mode);
 
 
  if (nwords > 1)
  if (nwords > 1)
    {
    {
      start_sequence ();
      start_sequence ();
 
 
      for (i = 0; i < nwords; ++i)
      for (i = 0; i < nwords; ++i)
        {
        {
          rtx targ_piece = operand_subword (target, i, 1, mode);
          rtx targ_piece = operand_subword (target, i, 1, mode);
          rtx op0_piece = operand_subword_force (op0, i, mode);
          rtx op0_piece = operand_subword_force (op0, i, mode);
 
 
          if (i == word)
          if (i == word)
            {
            {
              temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
              temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
                                   op0_piece,
                                   op0_piece,
                                   immed_double_const (lo, hi, imode),
                                   immed_double_const (lo, hi, imode),
                                   targ_piece, 1, OPTAB_LIB_WIDEN);
                                   targ_piece, 1, OPTAB_LIB_WIDEN);
              if (temp != targ_piece)
              if (temp != targ_piece)
                emit_move_insn (targ_piece, temp);
                emit_move_insn (targ_piece, temp);
            }
            }
          else
          else
            emit_move_insn (targ_piece, op0_piece);
            emit_move_insn (targ_piece, op0_piece);
        }
        }
 
 
      insns = get_insns ();
      insns = get_insns ();
      end_sequence ();
      end_sequence ();
 
 
      temp = gen_rtx_fmt_e (code, mode, copy_rtx (op0));
      temp = gen_rtx_fmt_e (code, mode, copy_rtx (op0));
      emit_no_conflict_block (insns, target, op0, NULL_RTX, temp);
      emit_no_conflict_block (insns, target, op0, NULL_RTX, temp);
    }
    }
  else
  else
    {
    {
      temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
      temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
                           gen_lowpart (imode, op0),
                           gen_lowpart (imode, op0),
                           immed_double_const (lo, hi, imode),
                           immed_double_const (lo, hi, imode),
                           gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
                           gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
      target = lowpart_subreg_maybe_copy (mode, temp, imode);
      target = lowpart_subreg_maybe_copy (mode, temp, imode);
 
 
      set_unique_reg_note (get_last_insn (), REG_EQUAL,
      set_unique_reg_note (get_last_insn (), REG_EQUAL,
                           gen_rtx_fmt_e (code, mode, copy_rtx (op0)));
                           gen_rtx_fmt_e (code, mode, copy_rtx (op0)));
    }
    }
 
 
  return target;
  return target;
}
}
 
 
/* Generate code to perform an operation specified by UNOPTAB
/* Generate code to perform an operation specified by UNOPTAB
   on operand OP0, with result having machine-mode MODE.
   on operand OP0, with result having machine-mode MODE.
 
 
   UNSIGNEDP is for the case where we have to widen the operands
   UNSIGNEDP is for the case where we have to widen the operands
   to perform the operation.  It says to use zero-extension.
   to perform the operation.  It says to use zero-extension.
 
 
   If TARGET is nonzero, the value
   If TARGET is nonzero, the value
   is generated there, if it is convenient to do so.
   is generated there, if it is convenient to do so.
   In all cases an rtx is returned for the locus of the value;
   In all cases an rtx is returned for the locus of the value;
   this may or may not be TARGET.  */
   this may or may not be TARGET.  */
 
 
rtx
rtx
expand_unop (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
expand_unop (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
             int unsignedp)
             int unsignedp)
{
{
  enum mode_class class;
  enum mode_class class;
  enum machine_mode wider_mode;
  enum machine_mode wider_mode;
  rtx temp;
  rtx temp;
  rtx last = get_last_insn ();
  rtx last = get_last_insn ();
  rtx pat;
  rtx pat;
 
 
  class = GET_MODE_CLASS (mode);
  class = GET_MODE_CLASS (mode);
 
 
  if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
  if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
    {
    {
      int icode = (int) unoptab->handlers[(int) mode].insn_code;
      int icode = (int) unoptab->handlers[(int) mode].insn_code;
      enum machine_mode mode0 = insn_data[icode].operand[1].mode;
      enum machine_mode mode0 = insn_data[icode].operand[1].mode;
      rtx xop0 = op0;
      rtx xop0 = op0;
 
 
      if (target)
      if (target)
        temp = target;
        temp = target;
      else
      else
        temp = gen_reg_rtx (mode);
        temp = gen_reg_rtx (mode);
 
 
      if (GET_MODE (xop0) != VOIDmode
      if (GET_MODE (xop0) != VOIDmode
          && GET_MODE (xop0) != mode0)
          && GET_MODE (xop0) != mode0)
        xop0 = convert_to_mode (mode0, xop0, unsignedp);
        xop0 = convert_to_mode (mode0, xop0, unsignedp);
 
 
      /* Now, if insn doesn't accept our operand, put it into a pseudo.  */
      /* Now, if insn doesn't accept our operand, put it into a pseudo.  */
 
 
      if (!insn_data[icode].operand[1].predicate (xop0, mode0))
      if (!insn_data[icode].operand[1].predicate (xop0, mode0))
        xop0 = copy_to_mode_reg (mode0, xop0);
        xop0 = copy_to_mode_reg (mode0, xop0);
 
 
      if (!insn_data[icode].operand[0].predicate (temp, mode))
      if (!insn_data[icode].operand[0].predicate (temp, mode))
        temp = gen_reg_rtx (mode);
        temp = gen_reg_rtx (mode);
 
 
      pat = GEN_FCN (icode) (temp, xop0);
      pat = GEN_FCN (icode) (temp, xop0);
      if (pat)
      if (pat)
        {
        {
          if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
          if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
              && ! add_equal_note (pat, temp, unoptab->code, xop0, NULL_RTX))
              && ! add_equal_note (pat, temp, unoptab->code, xop0, NULL_RTX))
            {
            {
              delete_insns_since (last);
              delete_insns_since (last);
              return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
              return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
            }
            }
 
 
          emit_insn (pat);
          emit_insn (pat);
 
 
          return temp;
          return temp;
        }
        }
      else
      else
        delete_insns_since (last);
        delete_insns_since (last);
    }
    }
 
 
  /* It can't be done in this mode.  Can we open-code it in a wider mode?  */
  /* It can't be done in this mode.  Can we open-code it in a wider mode?  */
 
 
  /* Widening clz needs special treatment.  */
  /* Widening clz needs special treatment.  */
  if (unoptab == clz_optab)
  if (unoptab == clz_optab)
    {
    {
      temp = widen_clz (mode, op0, target);
      temp = widen_clz (mode, op0, target);
      if (temp)
      if (temp)
        return temp;
        return temp;
      else
      else
        goto try_libcall;
        goto try_libcall;
    }
    }
 
 
  if (CLASS_HAS_WIDER_MODES_P (class))
  if (CLASS_HAS_WIDER_MODES_P (class))
    for (wider_mode = GET_MODE_WIDER_MODE (mode);
    for (wider_mode = GET_MODE_WIDER_MODE (mode);
         wider_mode != VOIDmode;
         wider_mode != VOIDmode;
         wider_mode = GET_MODE_WIDER_MODE (wider_mode))
         wider_mode = GET_MODE_WIDER_MODE (wider_mode))
      {
      {
        if (unoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing)
        if (unoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing)
          {
          {
            rtx xop0 = op0;
            rtx xop0 = op0;
 
 
            /* For certain operations, we need not actually extend
            /* For certain operations, we need not actually extend
               the narrow operand, as long as we will truncate the
               the narrow operand, as long as we will truncate the
               results to the same narrowness.  */
               results to the same narrowness.  */
 
 
            xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
            xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
                                  (unoptab == neg_optab
                                  (unoptab == neg_optab
                                   || unoptab == one_cmpl_optab)
                                   || unoptab == one_cmpl_optab)
                                  && class == MODE_INT);
                                  && class == MODE_INT);
 
 
            temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
            temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
                                unsignedp);
                                unsignedp);
 
 
            if (temp)
            if (temp)
              {
              {
                if (class != MODE_INT
                if (class != MODE_INT
                    || !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
                    || !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
                                               GET_MODE_BITSIZE (wider_mode)))
                                               GET_MODE_BITSIZE (wider_mode)))
                  {
                  {
                    if (target == 0)
                    if (target == 0)
                      target = gen_reg_rtx (mode);
                      target = gen_reg_rtx (mode);
                    convert_move (target, temp, 0);
                    convert_move (target, temp, 0);
                    return target;
                    return target;
                  }
                  }
                else
                else
                  return gen_lowpart (mode, temp);
                  return gen_lowpart (mode, temp);
              }
              }
            else
            else
              delete_insns_since (last);
              delete_insns_since (last);
          }
          }
      }
      }
 
 
  /* These can be done a word at a time.  */
  /* These can be done a word at a time.  */
  if (unoptab == one_cmpl_optab
  if (unoptab == one_cmpl_optab
      && class == MODE_INT
      && class == MODE_INT
      && GET_MODE_SIZE (mode) > UNITS_PER_WORD
      && GET_MODE_SIZE (mode) > UNITS_PER_WORD
      && unoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
      && unoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
    {
    {
      int i;
      int i;
      rtx insns;
      rtx insns;
 
 
      if (target == 0 || target == op0)
      if (target == 0 || target == op0)
        target = gen_reg_rtx (mode);
        target = gen_reg_rtx (mode);
 
 
      start_sequence ();
      start_sequence ();
 
 
      /* Do the actual arithmetic.  */
      /* Do the actual arithmetic.  */
      for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
      for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
        {
        {
          rtx target_piece = operand_subword (target, i, 1, mode);
          rtx target_piece = operand_subword (target, i, 1, mode);
          rtx x = expand_unop (word_mode, unoptab,
          rtx x = expand_unop (word_mode, unoptab,
                               operand_subword_force (op0, i, mode),
                               operand_subword_force (op0, i, mode),
                               target_piece, unsignedp);
                               target_piece, unsignedp);
 
 
          if (target_piece != x)
          if (target_piece != x)
            emit_move_insn (target_piece, x);
            emit_move_insn (target_piece, x);
        }
        }
 
 
      insns = get_insns ();
      insns = get_insns ();
      end_sequence ();
      end_sequence ();
 
 
      emit_no_conflict_block (insns, target, op0, NULL_RTX,
      emit_no_conflict_block (insns, target, op0, NULL_RTX,
                              gen_rtx_fmt_e (unoptab->code, mode,
                              gen_rtx_fmt_e (unoptab->code, mode,
                                             copy_rtx (op0)));
                                             copy_rtx (op0)));
      return target;
      return target;
    }
    }
 
 
  if (unoptab->code == NEG)
  if (unoptab->code == NEG)
    {
    {
      /* Try negating floating point values by flipping the sign bit.  */
      /* Try negating floating point values by flipping the sign bit.  */
      if (SCALAR_FLOAT_MODE_P (mode))
      if (SCALAR_FLOAT_MODE_P (mode))
        {
        {
          temp = expand_absneg_bit (NEG, mode, op0, target);
          temp = expand_absneg_bit (NEG, mode, op0, target);
          if (temp)
          if (temp)
            return temp;
            return temp;
        }
        }
 
 
      /* If there is no negation pattern, and we have no negative zero,
      /* If there is no negation pattern, and we have no negative zero,
         try subtracting from zero.  */
         try subtracting from zero.  */
      if (!HONOR_SIGNED_ZEROS (mode))
      if (!HONOR_SIGNED_ZEROS (mode))
        {
        {
          temp = expand_binop (mode, (unoptab == negv_optab
          temp = expand_binop (mode, (unoptab == negv_optab
                                      ? subv_optab : sub_optab),
                                      ? subv_optab : sub_optab),
                               CONST0_RTX (mode), op0, target,
                               CONST0_RTX (mode), op0, target,
                               unsignedp, OPTAB_DIRECT);
                               unsignedp, OPTAB_DIRECT);
          if (temp)
          if (temp)
            return temp;
            return temp;
        }
        }
    }
    }
 
 
  /* Try calculating parity (x) as popcount (x) % 2.  */
  /* Try calculating parity (x) as popcount (x) % 2.  */
  if (unoptab == parity_optab)
  if (unoptab == parity_optab)
    {
    {
      temp = expand_parity (mode, op0, target);
      temp = expand_parity (mode, op0, target);
      if (temp)
      if (temp)
        return temp;
        return temp;
    }
    }
 
 
 try_libcall:
 try_libcall:
  /* Now try a library call in this mode.  */
  /* Now try a library call in this mode.  */
  if (unoptab->handlers[(int) mode].libfunc)
  if (unoptab->handlers[(int) mode].libfunc)
    {
    {
      rtx insns;
      rtx insns;
      rtx value;
      rtx value;
      enum machine_mode outmode = mode;
      enum machine_mode outmode = mode;
 
 
      /* All of these functions return small values.  Thus we choose to
      /* All of these functions return small values.  Thus we choose to
         have them return something that isn't a double-word.  */
         have them return something that isn't a double-word.  */
      if (unoptab == ffs_optab || unoptab == clz_optab || unoptab == ctz_optab
      if (unoptab == ffs_optab || unoptab == clz_optab || unoptab == ctz_optab
          || unoptab == popcount_optab || unoptab == parity_optab)
          || unoptab == popcount_optab || unoptab == parity_optab)
        outmode
        outmode
            = GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node)));
            = GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node)));
 
 
      start_sequence ();
      start_sequence ();
 
 
      /* Pass 1 for NO_QUEUE so we don't lose any increments
      /* Pass 1 for NO_QUEUE so we don't lose any increments
         if the libcall is cse'd or moved.  */
         if the libcall is cse'd or moved.  */
      value = emit_library_call_value (unoptab->handlers[(int) mode].libfunc,
      value = emit_library_call_value (unoptab->handlers[(int) mode].libfunc,
                                       NULL_RTX, LCT_CONST, outmode,
                                       NULL_RTX, LCT_CONST, outmode,
                                       1, op0, mode);
                                       1, op0, mode);
      insns = get_insns ();
      insns = get_insns ();
      end_sequence ();
      end_sequence ();
 
 
      target = gen_reg_rtx (outmode);
      target = gen_reg_rtx (outmode);
      emit_libcall_block (insns, target, value,
      emit_libcall_block (insns, target, value,
                          gen_rtx_fmt_e (unoptab->code, outmode, op0));
                          gen_rtx_fmt_e (unoptab->code, outmode, op0));
 
 
      return target;
      return target;
    }
    }
 
 
  /* It can't be done in this mode.  Can we do it in a wider mode?  */
  /* It can't be done in this mode.  Can we do it in a wider mode?  */
 
 
  if (CLASS_HAS_WIDER_MODES_P (class))
  if (CLASS_HAS_WIDER_MODES_P (class))
    {
    {
      for (wider_mode = GET_MODE_WIDER_MODE (mode);
      for (wider_mode = GET_MODE_WIDER_MODE (mode);
           wider_mode != VOIDmode;
           wider_mode != VOIDmode;
           wider_mode = GET_MODE_WIDER_MODE (wider_mode))
           wider_mode = GET_MODE_WIDER_MODE (wider_mode))
        {
        {
          if ((unoptab->handlers[(int) wider_mode].insn_code
          if ((unoptab->handlers[(int) wider_mode].insn_code
               != CODE_FOR_nothing)
               != CODE_FOR_nothing)
              || unoptab->handlers[(int) wider_mode].libfunc)
              || unoptab->handlers[(int) wider_mode].libfunc)
            {
            {
              rtx xop0 = op0;
              rtx xop0 = op0;
 
 
              /* For certain operations, we need not actually extend
              /* For certain operations, we need not actually extend
                 the narrow operand, as long as we will truncate the
                 the narrow operand, as long as we will truncate the
                 results to the same narrowness.  */
                 results to the same narrowness.  */
 
 
              xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
              xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
                                    (unoptab == neg_optab
                                    (unoptab == neg_optab
                                     || unoptab == one_cmpl_optab)
                                     || unoptab == one_cmpl_optab)
                                    && class == MODE_INT);
                                    && class == MODE_INT);
 
 
              temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
              temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
                                  unsignedp);
                                  unsignedp);
 
 
              /* If we are generating clz using wider mode, adjust the
              /* If we are generating clz using wider mode, adjust the
                 result.  */
                 result.  */
              if (unoptab == clz_optab && temp != 0)
              if (unoptab == clz_optab && temp != 0)
                temp = expand_binop (wider_mode, sub_optab, temp,
                temp = expand_binop (wider_mode, sub_optab, temp,
                                     GEN_INT (GET_MODE_BITSIZE (wider_mode)
                                     GEN_INT (GET_MODE_BITSIZE (wider_mode)
                                              - GET_MODE_BITSIZE (mode)),
                                              - GET_MODE_BITSIZE (mode)),
                                     target, true, OPTAB_DIRECT);
                                     target, true, OPTAB_DIRECT);
 
 
              if (temp)
              if (temp)
                {
                {
                  if (class != MODE_INT)
                  if (class != MODE_INT)
                    {
                    {
                      if (target == 0)
                      if (target == 0)
                        target = gen_reg_rtx (mode);
                        target = gen_reg_rtx (mode);
                      convert_move (target, temp, 0);
                      convert_move (target, temp, 0);
                      return target;
                      return target;
                    }
                    }
                  else
                  else
                    return gen_lowpart (mode, temp);
                    return gen_lowpart (mode, temp);
                }
                }
              else
              else
                delete_insns_since (last);
                delete_insns_since (last);
            }
            }
        }
        }
    }
    }
 
 
  /* One final attempt at implementing negation via subtraction,
  /* One final attempt at implementing negation via subtraction,
     this time allowing widening of the operand.  */
     this time allowing widening of the operand.  */
  if (unoptab->code == NEG && !HONOR_SIGNED_ZEROS (mode))
  if (unoptab->code == NEG && !HONOR_SIGNED_ZEROS (mode))
    {
    {
      rtx temp;
      rtx temp;
      temp = expand_binop (mode,
      temp = expand_binop (mode,
                           unoptab == negv_optab ? subv_optab : sub_optab,
                           unoptab == negv_optab ? subv_optab : sub_optab,
                           CONST0_RTX (mode), op0,
                           CONST0_RTX (mode), op0,
                           target, unsignedp, OPTAB_LIB_WIDEN);
                           target, unsignedp, OPTAB_LIB_WIDEN);
      if (temp)
      if (temp)
        return temp;
        return temp;
    }
    }
 
 
  return 0;
  return 0;
}
}


/* Emit code to compute the absolute value of OP0, with result to
/* Emit code to compute the absolute value of OP0, with result to
   TARGET if convenient.  (TARGET may be 0.)  The return value says
   TARGET if convenient.  (TARGET may be 0.)  The return value says
   where the result actually is to be found.
   where the result actually is to be found.
 
 
   MODE is the mode of the operand; the mode of the result is
   MODE is the mode of the operand; the mode of the result is
   different but can be deduced from MODE.
   different but can be deduced from MODE.
 
 
 */
 */
 
 
rtx
rtx
expand_abs_nojump (enum machine_mode mode, rtx op0, rtx target,
expand_abs_nojump (enum machine_mode mode, rtx op0, rtx target,
                   int result_unsignedp)
                   int result_unsignedp)
{
{
  rtx temp;
  rtx temp;
 
 
  if (! flag_trapv)
  if (! flag_trapv)
    result_unsignedp = 1;
    result_unsignedp = 1;
 
 
  /* First try to do it with a special abs instruction.  */
  /* First try to do it with a special abs instruction.  */
  temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
  temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
                      op0, target, 0);
                      op0, target, 0);
  if (temp != 0)
  if (temp != 0)
    return temp;
    return temp;
 
 
  /* For floating point modes, try clearing the sign bit.  */
  /* For floating point modes, try clearing the sign bit.  */
  if (SCALAR_FLOAT_MODE_P (mode))
  if (SCALAR_FLOAT_MODE_P (mode))
    {
    {
      temp = expand_absneg_bit (ABS, mode, op0, target);
      temp = expand_absneg_bit (ABS, mode, op0, target);
      if (temp)
      if (temp)
        return temp;
        return temp;
    }
    }
 
 
  /* If we have a MAX insn, we can do this as MAX (x, -x).  */
  /* If we have a MAX insn, we can do this as MAX (x, -x).  */
  if (smax_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
  if (smax_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
      && !HONOR_SIGNED_ZEROS (mode))
      && !HONOR_SIGNED_ZEROS (mode))
    {
    {
      rtx last = get_last_insn ();
      rtx last = get_last_insn ();
 
 
      temp = expand_unop (mode, neg_optab, op0, NULL_RTX, 0);
      temp = expand_unop (mode, neg_optab, op0, NULL_RTX, 0);
      if (temp != 0)
      if (temp != 0)
        temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
        temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
                             OPTAB_WIDEN);
                             OPTAB_WIDEN);
 
 
      if (temp != 0)
      if (temp != 0)
        return temp;
        return temp;
 
 
      delete_insns_since (last);
      delete_insns_since (last);
    }
    }
 
 
  /* If this machine has expensive jumps, we can do integer absolute
  /* If this machine has expensive jumps, we can do integer absolute
     value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
     value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
     where W is the width of MODE.  */
     where W is the width of MODE.  */
 
 
  if (GET_MODE_CLASS (mode) == MODE_INT && BRANCH_COST >= 2)
  if (GET_MODE_CLASS (mode) == MODE_INT && BRANCH_COST >= 2)
    {
    {
      rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
      rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
                                   size_int (GET_MODE_BITSIZE (mode) - 1),
                                   size_int (GET_MODE_BITSIZE (mode) - 1),
                                   NULL_RTX, 0);
                                   NULL_RTX, 0);
 
 
      temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
      temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
                           OPTAB_LIB_WIDEN);
                           OPTAB_LIB_WIDEN);
      if (temp != 0)
      if (temp != 0)
        temp = expand_binop (mode, result_unsignedp ? sub_optab : subv_optab,
        temp = expand_binop (mode, result_unsignedp ? sub_optab : subv_optab,
                             temp, extended, target, 0, OPTAB_LIB_WIDEN);
                             temp, extended, target, 0, OPTAB_LIB_WIDEN);
 
 
      if (temp != 0)
      if (temp != 0)
        return temp;
        return temp;
    }
    }
 
 
  return NULL_RTX;
  return NULL_RTX;
}
}
 
 
rtx
rtx
expand_abs (enum machine_mode mode, rtx op0, rtx target,
expand_abs (enum machine_mode mode, rtx op0, rtx target,
            int result_unsignedp, int safe)
            int result_unsignedp, int safe)
{
{
  rtx temp, op1;
  rtx temp, op1;
 
 
  if (! flag_trapv)
  if (! flag_trapv)
    result_unsignedp = 1;
    result_unsignedp = 1;
 
 
  temp = expand_abs_nojump (mode, op0, target, result_unsignedp);
  temp = expand_abs_nojump (mode, op0, target, result_unsignedp);
  if (temp != 0)
  if (temp != 0)
    return temp;
    return temp;
 
 
  /* If that does not win, use conditional jump and negate.  */
  /* If that does not win, use conditional jump and negate.  */
 
 
  /* It is safe to use the target if it is the same
  /* It is safe to use the target if it is the same
     as the source if this is also a pseudo register */
     as the source if this is also a pseudo register */
  if (op0 == target && REG_P (op0)
  if (op0 == target && REG_P (op0)
      && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
      && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
    safe = 1;
    safe = 1;
 
 
  op1 = gen_label_rtx ();
  op1 = gen_label_rtx ();
  if (target == 0 || ! safe
  if (target == 0 || ! safe
      || GET_MODE (target) != mode
      || GET_MODE (target) != mode
      || (MEM_P (target) && MEM_VOLATILE_P (target))
      || (MEM_P (target) && MEM_VOLATILE_P (target))
      || (REG_P (target)
      || (REG_P (target)
          && REGNO (target) < FIRST_PSEUDO_REGISTER))
          && REGNO (target) < FIRST_PSEUDO_REGISTER))
    target = gen_reg_rtx (mode);
    target = gen_reg_rtx (mode);
 
 
  emit_move_insn (target, op0);
  emit_move_insn (target, op0);
  NO_DEFER_POP;
  NO_DEFER_POP;
 
 
  do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
  do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
                           NULL_RTX, NULL_RTX, op1);
                           NULL_RTX, NULL_RTX, op1);
 
 
  op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
  op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
                     target, target, 0);
                     target, target, 0);
  if (op0 != target)
  if (op0 != target)
    emit_move_insn (target, op0);
    emit_move_insn (target, op0);
  emit_label (op1);
  emit_label (op1);
  OK_DEFER_POP;
  OK_DEFER_POP;
  return target;
  return target;
}
}
 
 
/* A subroutine of expand_copysign, perform the copysign operation using the
/* A subroutine of expand_copysign, perform the copysign operation using the
   abs and neg primitives advertised to exist on the target.  The assumption
   abs and neg primitives advertised to exist on the target.  The assumption
   is that we have a split register file, and leaving op0 in fp registers,
   is that we have a split register file, and leaving op0 in fp registers,
   and not playing with subregs so much, will help the register allocator.  */
   and not playing with subregs so much, will help the register allocator.  */
 
 
static rtx
static rtx
expand_copysign_absneg (enum machine_mode mode, rtx op0, rtx op1, rtx target,
expand_copysign_absneg (enum machine_mode mode, rtx op0, rtx op1, rtx target,
                        int bitpos, bool op0_is_abs)
                        int bitpos, bool op0_is_abs)
{
{
  enum machine_mode imode;
  enum machine_mode imode;
  HOST_WIDE_INT hi, lo;
  HOST_WIDE_INT hi, lo;
  int word;
  int word;
  rtx label;
  rtx label;
 
 
  if (target == op1)
  if (target == op1)
    target = NULL_RTX;
    target = NULL_RTX;
 
 
  if (!op0_is_abs)
  if (!op0_is_abs)
    {
    {
      op0 = expand_unop (mode, abs_optab, op0, target, 0);
      op0 = expand_unop (mode, abs_optab, op0, target, 0);
      if (op0 == NULL)
      if (op0 == NULL)
        return NULL_RTX;
        return NULL_RTX;
      target = op0;
      target = op0;
    }
    }
  else
  else
    {
    {
      if (target == NULL_RTX)
      if (target == NULL_RTX)
        target = copy_to_reg (op0);
        target = copy_to_reg (op0);
      else
      else
        emit_move_insn (target, op0);
        emit_move_insn (target, op0);
    }
    }
 
 
  if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
  if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
    {
    {
      imode = int_mode_for_mode (mode);
      imode = int_mode_for_mode (mode);
      if (imode == BLKmode)
      if (imode == BLKmode)
        return NULL_RTX;
        return NULL_RTX;
      op1 = gen_lowpart (imode, op1);
      op1 = gen_lowpart (imode, op1);
    }
    }
  else
  else
    {
    {
      imode = word_mode;
      imode = word_mode;
      if (FLOAT_WORDS_BIG_ENDIAN)
      if (FLOAT_WORDS_BIG_ENDIAN)
        word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
        word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
      else
      else
        word = bitpos / BITS_PER_WORD;
        word = bitpos / BITS_PER_WORD;
      bitpos = bitpos % BITS_PER_WORD;
      bitpos = bitpos % BITS_PER_WORD;
      op1 = operand_subword_force (op1, word, mode);
      op1 = operand_subword_force (op1, word, mode);
    }
    }
 
 
  if (bitpos < HOST_BITS_PER_WIDE_INT)
  if (bitpos < HOST_BITS_PER_WIDE_INT)
    {
    {
      hi = 0;
      hi = 0;
      lo = (HOST_WIDE_INT) 1 << bitpos;
      lo = (HOST_WIDE_INT) 1 << bitpos;
    }
    }
  else
  else
    {
    {
      hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
      hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
      lo = 0;
      lo = 0;
    }
    }
 
 
  op1 = expand_binop (imode, and_optab, op1,
  op1 = expand_binop (imode, and_optab, op1,
                      immed_double_const (lo, hi, imode),
                      immed_double_const (lo, hi, imode),
                      NULL_RTX, 1, OPTAB_LIB_WIDEN);
                      NULL_RTX, 1, OPTAB_LIB_WIDEN);
 
 
  label = gen_label_rtx ();
  label = gen_label_rtx ();
  emit_cmp_and_jump_insns (op1, const0_rtx, EQ, NULL_RTX, imode, 1, label);
  emit_cmp_and_jump_insns (op1, const0_rtx, EQ, NULL_RTX, imode, 1, label);
 
 
  if (GET_CODE (op0) == CONST_DOUBLE)
  if (GET_CODE (op0) == CONST_DOUBLE)
    op0 = simplify_unary_operation (NEG, mode, op0, mode);
    op0 = simplify_unary_operation (NEG, mode, op0, mode);
  else
  else
    op0 = expand_unop (mode, neg_optab, op0, target, 0);
    op0 = expand_unop (mode, neg_optab, op0, target, 0);
  if (op0 != target)
  if (op0 != target)
    emit_move_insn (target, op0);
    emit_move_insn (target, op0);
 
 
  emit_label (label);
  emit_label (label);
 
 
  return target;
  return target;
}
}
 
 
 
 
/* A subroutine of expand_copysign, perform the entire copysign operation
/* A subroutine of expand_copysign, perform the entire copysign operation
   with integer bitmasks.  BITPOS is the position of the sign bit; OP0_IS_ABS
   with integer bitmasks.  BITPOS is the position of the sign bit; OP0_IS_ABS
   is true if op0 is known to have its sign bit clear.  */
   is true if op0 is known to have its sign bit clear.  */
 
 
static rtx
static rtx
expand_copysign_bit (enum machine_mode mode, rtx op0, rtx op1, rtx target,
expand_copysign_bit (enum machine_mode mode, rtx op0, rtx op1, rtx target,
                     int bitpos, bool op0_is_abs)
                     int bitpos, bool op0_is_abs)
{
{
  enum machine_mode imode;
  enum machine_mode imode;
  HOST_WIDE_INT hi, lo;
  HOST_WIDE_INT hi, lo;
  int word, nwords, i;
  int word, nwords, i;
  rtx temp, insns;
  rtx temp, insns;
 
 
  if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
  if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
    {
    {
      imode = int_mode_for_mode (mode);
      imode = int_mode_for_mode (mode);
      if (imode == BLKmode)
      if (imode == BLKmode)
        return NULL_RTX;
        return NULL_RTX;
      word = 0;
      word = 0;
      nwords = 1;
      nwords = 1;
    }
    }
  else
  else
    {
    {
      imode = word_mode;
      imode = word_mode;
 
 
      if (FLOAT_WORDS_BIG_ENDIAN)
      if (FLOAT_WORDS_BIG_ENDIAN)
        word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
        word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
      else
      else
        word = bitpos / BITS_PER_WORD;
        word = bitpos / BITS_PER_WORD;
      bitpos = bitpos % BITS_PER_WORD;
      bitpos = bitpos % BITS_PER_WORD;
      nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
      nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
    }
    }
 
 
  if (bitpos < HOST_BITS_PER_WIDE_INT)
  if (bitpos < HOST_BITS_PER_WIDE_INT)
    {
    {
      hi = 0;
      hi = 0;
      lo = (HOST_WIDE_INT) 1 << bitpos;
      lo = (HOST_WIDE_INT) 1 << bitpos;
    }
    }
  else
  else
    {
    {
      hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
      hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
      lo = 0;
      lo = 0;
    }
    }
 
 
  if (target == 0 || target == op0 || target == op1)
  if (target == 0 || target == op0 || target == op1)
    target = gen_reg_rtx (mode);
    target = gen_reg_rtx (mode);
 
 
  if (nwords > 1)
  if (nwords > 1)
    {
    {
      start_sequence ();
      start_sequence ();
 
 
      for (i = 0; i < nwords; ++i)
      for (i = 0; i < nwords; ++i)
        {
        {
          rtx targ_piece = operand_subword (target, i, 1, mode);
          rtx targ_piece = operand_subword (target, i, 1, mode);
          rtx op0_piece = operand_subword_force (op0, i, mode);
          rtx op0_piece = operand_subword_force (op0, i, mode);
 
 
          if (i == word)
          if (i == word)
            {
            {
              if (!op0_is_abs)
              if (!op0_is_abs)
                op0_piece = expand_binop (imode, and_optab, op0_piece,
                op0_piece = expand_binop (imode, and_optab, op0_piece,
                                          immed_double_const (~lo, ~hi, imode),
                                          immed_double_const (~lo, ~hi, imode),
                                          NULL_RTX, 1, OPTAB_LIB_WIDEN);
                                          NULL_RTX, 1, OPTAB_LIB_WIDEN);
 
 
              op1 = expand_binop (imode, and_optab,
              op1 = expand_binop (imode, and_optab,
                                  operand_subword_force (op1, i, mode),
                                  operand_subword_force (op1, i, mode),
                                  immed_double_const (lo, hi, imode),
                                  immed_double_const (lo, hi, imode),
                                  NULL_RTX, 1, OPTAB_LIB_WIDEN);
                                  NULL_RTX, 1, OPTAB_LIB_WIDEN);
 
 
              temp = expand_binop (imode, ior_optab, op0_piece, op1,
              temp = expand_binop (imode, ior_optab, op0_piece, op1,
                                   targ_piece, 1, OPTAB_LIB_WIDEN);
                                   targ_piece, 1, OPTAB_LIB_WIDEN);
              if (temp != targ_piece)
              if (temp != targ_piece)
                emit_move_insn (targ_piece, temp);
                emit_move_insn (targ_piece, temp);
            }
            }
          else
          else
            emit_move_insn (targ_piece, op0_piece);
            emit_move_insn (targ_piece, op0_piece);
        }
        }
 
 
      insns = get_insns ();
      insns = get_insns ();
      end_sequence ();
      end_sequence ();
 
 
      emit_no_conflict_block (insns, target, op0, op1, NULL_RTX);
      emit_no_conflict_block (insns, target, op0, op1, NULL_RTX);
    }
    }
  else
  else
    {
    {
      op1 = expand_binop (imode, and_optab, gen_lowpart (imode, op1),
      op1 = expand_binop (imode, and_optab, gen_lowpart (imode, op1),
                          immed_double_const (lo, hi, imode),
                          immed_double_const (lo, hi, imode),
                          NULL_RTX, 1, OPTAB_LIB_WIDEN);
                          NULL_RTX, 1, OPTAB_LIB_WIDEN);
 
 
      op0 = gen_lowpart (imode, op0);
      op0 = gen_lowpart (imode, op0);
      if (!op0_is_abs)
      if (!op0_is_abs)
        op0 = expand_binop (imode, and_optab, op0,
        op0 = expand_binop (imode, and_optab, op0,
                            immed_double_const (~lo, ~hi, imode),
                            immed_double_const (~lo, ~hi, imode),
                            NULL_RTX, 1, OPTAB_LIB_WIDEN);
                            NULL_RTX, 1, OPTAB_LIB_WIDEN);
 
 
      temp = expand_binop (imode, ior_optab, op0, op1,
      temp = expand_binop (imode, ior_optab, op0, op1,
                           gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
                           gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
      target = lowpart_subreg_maybe_copy (mode, temp, imode);
      target = lowpart_subreg_maybe_copy (mode, temp, imode);
    }
    }
 
 
  return target;
  return target;
}
}
 
 
/* Expand the C99 copysign operation.  OP0 and OP1 must be the same
/* Expand the C99 copysign operation.  OP0 and OP1 must be the same
   scalar floating point mode.  Return NULL if we do not know how to
   scalar floating point mode.  Return NULL if we do not know how to
   expand the operation inline.  */
   expand the operation inline.  */
 
 
rtx
rtx
expand_copysign (rtx op0, rtx op1, rtx target)
expand_copysign (rtx op0, rtx op1, rtx target)
{
{
  enum machine_mode mode = GET_MODE (op0);
  enum machine_mode mode = GET_MODE (op0);
  const struct real_format *fmt;
  const struct real_format *fmt;
  bool op0_is_abs;
  bool op0_is_abs;
  rtx temp;
  rtx temp;
 
 
  gcc_assert (SCALAR_FLOAT_MODE_P (mode));
  gcc_assert (SCALAR_FLOAT_MODE_P (mode));
  gcc_assert (GET_MODE (op1) == mode);
  gcc_assert (GET_MODE (op1) == mode);
 
 
  /* First try to do it with a special instruction.  */
  /* First try to do it with a special instruction.  */
  temp = expand_binop (mode, copysign_optab, op0, op1,
  temp = expand_binop (mode, copysign_optab, op0, op1,
                       target, 0, OPTAB_DIRECT);
                       target, 0, OPTAB_DIRECT);
  if (temp)
  if (temp)
    return temp;
    return temp;
 
 
  fmt = REAL_MODE_FORMAT (mode);
  fmt = REAL_MODE_FORMAT (mode);
  if (fmt == NULL || !fmt->has_signed_zero)
  if (fmt == NULL || !fmt->has_signed_zero)
    return NULL_RTX;
    return NULL_RTX;
 
 
  op0_is_abs = false;
  op0_is_abs = false;
  if (GET_CODE (op0) == CONST_DOUBLE)
  if (GET_CODE (op0) == CONST_DOUBLE)
    {
    {
      if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0)))
      if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0)))
        op0 = simplify_unary_operation (ABS, mode, op0, mode);
        op0 = simplify_unary_operation (ABS, mode, op0, mode);
      op0_is_abs = true;
      op0_is_abs = true;
    }
    }
 
 
  if (fmt->signbit_ro >= 0
  if (fmt->signbit_ro >= 0
      && (GET_CODE (op0) == CONST_DOUBLE
      && (GET_CODE (op0) == CONST_DOUBLE
          || (neg_optab->handlers[mode].insn_code != CODE_FOR_nothing
          || (neg_optab->handlers[mode].insn_code != CODE_FOR_nothing
              && abs_optab->handlers[mode].insn_code != CODE_FOR_nothing)))
              && abs_optab->handlers[mode].insn_code != CODE_FOR_nothing)))
    {
    {
      temp = expand_copysign_absneg (mode, op0, op1, target,
      temp = expand_copysign_absneg (mode, op0, op1, target,
                                     fmt->signbit_ro, op0_is_abs);
                                     fmt->signbit_ro, op0_is_abs);
      if (temp)
      if (temp)
        return temp;
        return temp;
    }
    }
 
 
  if (fmt->signbit_rw < 0)
  if (fmt->signbit_rw < 0)
    return NULL_RTX;
    return NULL_RTX;
  return expand_copysign_bit (mode, op0, op1, target,
  return expand_copysign_bit (mode, op0, op1, target,
                              fmt->signbit_rw, op0_is_abs);
                              fmt->signbit_rw, op0_is_abs);
}
}


/* Generate an instruction whose insn-code is INSN_CODE,
/* Generate an instruction whose insn-code is INSN_CODE,
   with two operands: an output TARGET and an input OP0.
   with two operands: an output TARGET and an input OP0.
   TARGET *must* be nonzero, and the output is always stored there.
   TARGET *must* be nonzero, and the output is always stored there.
   CODE is an rtx code such that (CODE OP0) is an rtx that describes
   CODE is an rtx code such that (CODE OP0) is an rtx that describes
   the value that is stored into TARGET.  */
   the value that is stored into TARGET.  */
 
 
void
void
emit_unop_insn (int icode, rtx target, rtx op0, enum rtx_code code)
emit_unop_insn (int icode, rtx target, rtx op0, enum rtx_code code)
{
{
  rtx temp;
  rtx temp;
  enum machine_mode mode0 = insn_data[icode].operand[1].mode;
  enum machine_mode mode0 = insn_data[icode].operand[1].mode;
  rtx pat;
  rtx pat;
 
 
  temp = target;
  temp = target;
 
 
  /* Now, if insn does not accept our operands, put them into pseudos.  */
  /* Now, if insn does not accept our operands, put them into pseudos.  */
 
 
  if (!insn_data[icode].operand[1].predicate (op0, mode0))
  if (!insn_data[icode].operand[1].predicate (op0, mode0))
    op0 = copy_to_mode_reg (mode0, op0);
    op0 = copy_to_mode_reg (mode0, op0);
 
 
  if (!insn_data[icode].operand[0].predicate (temp, GET_MODE (temp)))
  if (!insn_data[icode].operand[0].predicate (temp, GET_MODE (temp)))
    temp = gen_reg_rtx (GET_MODE (temp));
    temp = gen_reg_rtx (GET_MODE (temp));
 
 
  pat = GEN_FCN (icode) (temp, op0);
  pat = GEN_FCN (icode) (temp, op0);
 
 
  if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX && code != UNKNOWN)
  if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX && code != UNKNOWN)
    add_equal_note (pat, temp, code, op0, NULL_RTX);
    add_equal_note (pat, temp, code, op0, NULL_RTX);
 
 
  emit_insn (pat);
  emit_insn (pat);
 
 
  if (temp != target)
  if (temp != target)
    emit_move_insn (target, temp);
    emit_move_insn (target, temp);
}
}


struct no_conflict_data
struct no_conflict_data
{
{
  rtx target, first, insn;
  rtx target, first, insn;
  bool must_stay;
  bool must_stay;
};
};
 
 
/* Called via note_stores by emit_no_conflict_block and emit_libcall_block.
/* Called via note_stores by emit_no_conflict_block and emit_libcall_block.
   Set P->must_stay if the currently examined clobber / store has to stay
   Set P->must_stay if the currently examined clobber / store has to stay
   in the list of insns that constitute the actual no_conflict block /
   in the list of insns that constitute the actual no_conflict block /
   libcall block.  */
   libcall block.  */
static void
static void
no_conflict_move_test (rtx dest, rtx set, void *p0)
no_conflict_move_test (rtx dest, rtx set, void *p0)
{
{
  struct no_conflict_data *p= p0;
  struct no_conflict_data *p= p0;
 
 
  /* If this inns directly contributes to setting the target, it must stay.  */
  /* If this inns directly contributes to setting the target, it must stay.  */
  if (reg_overlap_mentioned_p (p->target, dest))
  if (reg_overlap_mentioned_p (p->target, dest))
    p->must_stay = true;
    p->must_stay = true;
  /* If we haven't committed to keeping any other insns in the list yet,
  /* If we haven't committed to keeping any other insns in the list yet,
     there is nothing more to check.  */
     there is nothing more to check.  */
  else if (p->insn == p->first)
  else if (p->insn == p->first)
    return;
    return;
  /* If this insn sets / clobbers a register that feeds one of the insns
  /* If this insn sets / clobbers a register that feeds one of the insns
     already in the list, this insn has to stay too.  */
     already in the list, this insn has to stay too.  */
  else if (reg_overlap_mentioned_p (dest, PATTERN (p->first))
  else if (reg_overlap_mentioned_p (dest, PATTERN (p->first))
           || (CALL_P (p->first) && (find_reg_fusage (p->first, USE, dest)))
           || (CALL_P (p->first) && (find_reg_fusage (p->first, USE, dest)))
           || reg_used_between_p (dest, p->first, p->insn)
           || reg_used_between_p (dest, p->first, p->insn)
           /* Likewise if this insn depends on a register set by a previous
           /* Likewise if this insn depends on a register set by a previous
              insn in the list, or if it sets a result (presumably a hard
              insn in the list, or if it sets a result (presumably a hard
              register) that is set or clobbered by a previous insn.
              register) that is set or clobbered by a previous insn.
              N.B. the modified_*_p (SET_DEST...) tests applied to a MEM
              N.B. the modified_*_p (SET_DEST...) tests applied to a MEM
              SET_DEST perform the former check on the address, and the latter
              SET_DEST perform the former check on the address, and the latter
              check on the MEM.  */
              check on the MEM.  */
           || (GET_CODE (set) == SET
           || (GET_CODE (set) == SET
               && (modified_in_p (SET_SRC (set), p->first)
               && (modified_in_p (SET_SRC (set), p->first)
                   || modified_in_p (SET_DEST (set), p->first)
                   || modified_in_p (SET_DEST (set), p->first)
                   || modified_between_p (SET_SRC (set), p->first, p->insn)
                   || modified_between_p (SET_SRC (set), p->first, p->insn)
                   || modified_between_p (SET_DEST (set), p->first, p->insn))))
                   || modified_between_p (SET_DEST (set), p->first, p->insn))))
    p->must_stay = true;
    p->must_stay = true;
}
}
 
 
/* Encapsulate the block starting at FIRST and ending with LAST, which is
/* Encapsulate the block starting at FIRST and ending with LAST, which is
   logically equivalent to EQUIV, so it gets manipulated as a unit if it
   logically equivalent to EQUIV, so it gets manipulated as a unit if it
   is possible to do so.  */
   is possible to do so.  */
 
 
static void
static void
maybe_encapsulate_block (rtx first, rtx last, rtx equiv)
maybe_encapsulate_block (rtx first, rtx last, rtx equiv)
{
{
  if (!flag_non_call_exceptions || !may_trap_p (equiv))
  if (!flag_non_call_exceptions || !may_trap_p (equiv))
    {
    {
      /* We can't attach the REG_LIBCALL and REG_RETVAL notes when the
      /* We can't attach the REG_LIBCALL and REG_RETVAL notes when the
         encapsulated region would not be in one basic block, i.e. when
         encapsulated region would not be in one basic block, i.e. when
         there is a control_flow_insn_p insn between FIRST and LAST.  */
         there is a control_flow_insn_p insn between FIRST and LAST.  */
      bool attach_libcall_retval_notes = true;
      bool attach_libcall_retval_notes = true;
      rtx insn, next = NEXT_INSN (last);
      rtx insn, next = NEXT_INSN (last);
 
 
      for (insn = first; insn != next; insn = NEXT_INSN (insn))
      for (insn = first; insn != next; insn = NEXT_INSN (insn))
        if (control_flow_insn_p (insn))
        if (control_flow_insn_p (insn))
          {
          {
            attach_libcall_retval_notes = false;
            attach_libcall_retval_notes = false;
            break;
            break;
          }
          }
 
 
      if (attach_libcall_retval_notes)
      if (attach_libcall_retval_notes)
        {
        {
          REG_NOTES (first) = gen_rtx_INSN_LIST (REG_LIBCALL, last,
          REG_NOTES (first) = gen_rtx_INSN_LIST (REG_LIBCALL, last,
                                                 REG_NOTES (first));
                                                 REG_NOTES (first));
          REG_NOTES (last) = gen_rtx_INSN_LIST (REG_RETVAL, first,
          REG_NOTES (last) = gen_rtx_INSN_LIST (REG_RETVAL, first,
                                                REG_NOTES (last));
                                                REG_NOTES (last));
        }
        }
    }
    }
}
}
 
 
/* Emit code to perform a series of operations on a multi-word quantity, one
/* Emit code to perform a series of operations on a multi-word quantity, one
   word at a time.
   word at a time.
 
 
   Such a block is preceded by a CLOBBER of the output, consists of multiple
   Such a block is preceded by a CLOBBER of the output, consists of multiple
   insns, each setting one word of the output, and followed by a SET copying
   insns, each setting one word of the output, and followed by a SET copying
   the output to itself.
   the output to itself.
 
 
   Each of the insns setting words of the output receives a REG_NO_CONFLICT
   Each of the insns setting words of the output receives a REG_NO_CONFLICT
   note indicating that it doesn't conflict with the (also multi-word)
   note indicating that it doesn't conflict with the (also multi-word)
   inputs.  The entire block is surrounded by REG_LIBCALL and REG_RETVAL
   inputs.  The entire block is surrounded by REG_LIBCALL and REG_RETVAL
   notes.
   notes.
 
 
   INSNS is a block of code generated to perform the operation, not including
   INSNS is a block of code generated to perform the operation, not including
   the CLOBBER and final copy.  All insns that compute intermediate values
   the CLOBBER and final copy.  All insns that compute intermediate values
   are first emitted, followed by the block as described above.
   are first emitted, followed by the block as described above.
 
 
   TARGET, OP0, and OP1 are the output and inputs of the operations,
   TARGET, OP0, and OP1 are the output and inputs of the operations,
   respectively.  OP1 may be zero for a unary operation.
   respectively.  OP1 may be zero for a unary operation.
 
 
   EQUIV, if nonzero, is an expression to be placed into a REG_EQUAL note
   EQUIV, if nonzero, is an expression to be placed into a REG_EQUAL note
   on the last insn.
   on the last insn.
 
 
   If TARGET is not a register, INSNS is simply emitted with no special
   If TARGET is not a register, INSNS is simply emitted with no special
   processing.  Likewise if anything in INSNS is not an INSN or if
   processing.  Likewise if anything in INSNS is not an INSN or if
   there is a libcall block inside INSNS.
   there is a libcall block inside INSNS.
 
 
   The final insn emitted is returned.  */
   The final insn emitted is returned.  */
 
 
rtx
rtx
emit_no_conflict_block (rtx insns, rtx target, rtx op0, rtx op1, rtx equiv)
emit_no_conflict_block (rtx insns, rtx target, rtx op0, rtx op1, rtx equiv)
{
{
  rtx prev, next, first, last, insn;
  rtx prev, next, first, last, insn;
 
 
  if (!REG_P (target) || reload_in_progress)
  if (!REG_P (target) || reload_in_progress)
    return emit_insn (insns);
    return emit_insn (insns);
  else
  else
    for (insn = insns; insn; insn = NEXT_INSN (insn))
    for (insn = insns; insn; insn = NEXT_INSN (insn))
      if (!NONJUMP_INSN_P (insn)
      if (!NONJUMP_INSN_P (insn)
          || find_reg_note (insn, REG_LIBCALL, NULL_RTX))
          || find_reg_note (insn, REG_LIBCALL, NULL_RTX))
        return emit_insn (insns);
        return emit_insn (insns);
 
 
  /* First emit all insns that do not store into words of the output and remove
  /* First emit all insns that do not store into words of the output and remove
     these from the list.  */
     these from the list.  */
  for (insn = insns; insn; insn = next)
  for (insn = insns; insn; insn = next)
    {
    {
      rtx note;
      rtx note;
      struct no_conflict_data data;
      struct no_conflict_data data;
 
 
      next = NEXT_INSN (insn);
      next = NEXT_INSN (insn);
 
 
      /* Some ports (cris) create a libcall regions at their own.  We must
      /* Some ports (cris) create a libcall regions at their own.  We must
         avoid any potential nesting of LIBCALLs.  */
         avoid any potential nesting of LIBCALLs.  */
      if ((note = find_reg_note (insn, REG_LIBCALL, NULL)) != NULL)
      if ((note = find_reg_note (insn, REG_LIBCALL, NULL)) != NULL)
        remove_note (insn, note);
        remove_note (insn, note);
      if ((note = find_reg_note (insn, REG_RETVAL, NULL)) != NULL)
      if ((note = find_reg_note (insn, REG_RETVAL, NULL)) != NULL)
        remove_note (insn, note);
        remove_note (insn, note);
 
 
      data.target = target;
      data.target = target;
      data.first = insns;
      data.first = insns;
      data.insn = insn;
      data.insn = insn;
      data.must_stay = 0;
      data.must_stay = 0;
      note_stores (PATTERN (insn), no_conflict_move_test, &data);
      note_stores (PATTERN (insn), no_conflict_move_test, &data);
      if (! data.must_stay)
      if (! data.must_stay)
        {
        {
          if (PREV_INSN (insn))
          if (PREV_INSN (insn))
            NEXT_INSN (PREV_INSN (insn)) = next;
            NEXT_INSN (PREV_INSN (insn)) = next;
          else
          else
            insns = next;
            insns = next;
 
 
          if (next)
          if (next)
            PREV_INSN (next) = PREV_INSN (insn);
            PREV_INSN (next) = PREV_INSN (insn);
 
 
          add_insn (insn);
          add_insn (insn);
        }
        }
    }
    }
 
 
  prev = get_last_insn ();
  prev = get_last_insn ();
 
 
  /* Now write the CLOBBER of the output, followed by the setting of each
  /* Now write the CLOBBER of the output, followed by the setting of each
     of the words, followed by the final copy.  */
     of the words, followed by the final copy.  */
  if (target != op0 && target != op1)
  if (target != op0 && target != op1)
    emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
    emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
 
 
  for (insn = insns; insn; insn = next)
  for (insn = insns; insn; insn = next)
    {
    {
      next = NEXT_INSN (insn);
      next = NEXT_INSN (insn);
      add_insn (insn);
      add_insn (insn);
 
 
      if (op1 && REG_P (op1))
      if (op1 && REG_P (op1))
        REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op1,
        REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op1,
                                              REG_NOTES (insn));
                                              REG_NOTES (insn));
 
 
      if (op0 && REG_P (op0))
      if (op0 && REG_P (op0))
        REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op0,
        REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op0,
                                              REG_NOTES (insn));
                                              REG_NOTES (insn));
    }
    }
 
 
  if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
  if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
      != CODE_FOR_nothing)
      != CODE_FOR_nothing)
    {
    {
      last = emit_move_insn (target, target);
      last = emit_move_insn (target, target);
      if (equiv)
      if (equiv)
        set_unique_reg_note (last, REG_EQUAL, equiv);
        set_unique_reg_note (last, REG_EQUAL, equiv);
    }
    }
  else
  else
    {
    {
      last = get_last_insn ();
      last = get_last_insn ();
 
 
      /* Remove any existing REG_EQUAL note from "last", or else it will
      /* Remove any existing REG_EQUAL note from "last", or else it will
         be mistaken for a note referring to the full contents of the
         be mistaken for a note referring to the full contents of the
         alleged libcall value when found together with the REG_RETVAL
         alleged libcall value when found together with the REG_RETVAL
         note added below.  An existing note can come from an insn
         note added below.  An existing note can come from an insn
         expansion at "last".  */
         expansion at "last".  */
      remove_note (last, find_reg_note (last, REG_EQUAL, NULL_RTX));
      remove_note (last, find_reg_note (last, REG_EQUAL, NULL_RTX));
    }
    }
 
 
  if (prev == 0)
  if (prev == 0)
    first = get_insns ();
    first = get_insns ();
  else
  else
    first = NEXT_INSN (prev);
    first = NEXT_INSN (prev);
 
 
  maybe_encapsulate_block (first, last, equiv);
  maybe_encapsulate_block (first, last, equiv);
 
 
  return last;
  return last;
}
}


/* Emit code to make a call to a constant function or a library call.
/* Emit code to make a call to a constant function or a library call.
 
 
   INSNS is a list containing all insns emitted in the call.
   INSNS is a list containing all insns emitted in the call.
   These insns leave the result in RESULT.  Our block is to copy RESULT
   These insns leave the result in RESULT.  Our block is to copy RESULT
   to TARGET, which is logically equivalent to EQUIV.
   to TARGET, which is logically equivalent to EQUIV.
 
 
   We first emit any insns that set a pseudo on the assumption that these are
   We first emit any insns that set a pseudo on the assumption that these are
   loading constants into registers; doing so allows them to be safely cse'ed
   loading constants into registers; doing so allows them to be safely cse'ed
   between blocks.  Then we emit all the other insns in the block, followed by
   between blocks.  Then we emit all the other insns in the block, followed by
   an insn to move RESULT to TARGET.  This last insn will have a REQ_EQUAL
   an insn to move RESULT to TARGET.  This last insn will have a REQ_EQUAL
   note with an operand of EQUIV.
   note with an operand of EQUIV.
 
 
   Moving assignments to pseudos outside of the block is done to improve
   Moving assignments to pseudos outside of the block is done to improve
   the generated code, but is not required to generate correct code,
   the generated code, but is not required to generate correct code,
   hence being unable to move an assignment is not grounds for not making
   hence being unable to move an assignment is not grounds for not making
   a libcall block.  There are two reasons why it is safe to leave these
   a libcall block.  There are two reasons why it is safe to leave these
   insns inside the block: First, we know that these pseudos cannot be
   insns inside the block: First, we know that these pseudos cannot be
   used in generated RTL outside the block since they are created for
   used in generated RTL outside the block since they are created for
   temporary purposes within the block.  Second, CSE will not record the
   temporary purposes within the block.  Second, CSE will not record the
   values of anything set inside a libcall block, so we know they must
   values of anything set inside a libcall block, so we know they must
   be dead at the end of the block.
   be dead at the end of the block.
 
 
   Except for the first group of insns (the ones setting pseudos), the
   Except for the first group of insns (the ones setting pseudos), the
   block is delimited by REG_RETVAL and REG_LIBCALL notes.  */
   block is delimited by REG_RETVAL and REG_LIBCALL notes.  */
 
 
void
void
emit_libcall_block (rtx insns, rtx target, rtx result, rtx equiv)
emit_libcall_block (rtx insns, rtx target, rtx result, rtx equiv)
{
{
  rtx final_dest = target;
  rtx final_dest = target;
  rtx prev, next, first, last, insn;
  rtx prev, next, first, last, insn;
 
 
  /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
  /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
     into a MEM later.  Protect the libcall block from this change.  */
     into a MEM later.  Protect the libcall block from this change.  */
  if (! REG_P (target) || REG_USERVAR_P (target))
  if (! REG_P (target) || REG_USERVAR_P (target))
    target = gen_reg_rtx (GET_MODE (target));
    target = gen_reg_rtx (GET_MODE (target));
 
 
  /* If we're using non-call exceptions, a libcall corresponding to an
  /* If we're using non-call exceptions, a libcall corresponding to an
     operation that may trap may also trap.  */
     operation that may trap may also trap.  */
  if (flag_non_call_exceptions && may_trap_p (equiv))
  if (flag_non_call_exceptions && may_trap_p (equiv))
    {
    {
      for (insn = insns; insn; insn = NEXT_INSN (insn))
      for (insn = insns; insn; insn = NEXT_INSN (insn))
        if (CALL_P (insn))
        if (CALL_P (insn))
          {
          {
            rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
            rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
 
 
            if (note != 0 && INTVAL (XEXP (note, 0)) <= 0)
            if (note != 0 && INTVAL (XEXP (note, 0)) <= 0)
              remove_note (insn, note);
              remove_note (insn, note);
          }
          }
    }
    }
  else
  else
  /* look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
  /* look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
     reg note to indicate that this call cannot throw or execute a nonlocal
     reg note to indicate that this call cannot throw or execute a nonlocal
     goto (unless there is already a REG_EH_REGION note, in which case
     goto (unless there is already a REG_EH_REGION note, in which case
     we update it).  */
     we update it).  */
    for (insn = insns; insn; insn = NEXT_INSN (insn))
    for (insn = insns; insn; insn = NEXT_INSN (insn))
      if (CALL_P (insn))
      if (CALL_P (insn))
        {
        {
          rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
          rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
 
 
          if (note != 0)
          if (note != 0)
            XEXP (note, 0) = constm1_rtx;
            XEXP (note, 0) = constm1_rtx;
          else
          else
            REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, constm1_rtx,
            REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, constm1_rtx,
                                                  REG_NOTES (insn));
                                                  REG_NOTES (insn));
        }
        }
 
 
  /* First emit all insns that set pseudos.  Remove them from the list as
  /* First emit all insns that set pseudos.  Remove them from the list as
     we go.  Avoid insns that set pseudos which were referenced in previous
     we go.  Avoid insns that set pseudos which were referenced in previous
     insns.  These can be generated by move_by_pieces, for example,
     insns.  These can be generated by move_by_pieces, for example,
     to update an address.  Similarly, avoid insns that reference things
     to update an address.  Similarly, avoid insns that reference things
     set in previous insns.  */
     set in previous insns.  */
 
 
  for (insn = insns; insn; insn = next)
  for (insn = insns; insn; insn = next)
    {
    {
      rtx set = single_set (insn);
      rtx set = single_set (insn);
      rtx note;
      rtx note;
 
 
      /* Some ports (cris) create a libcall regions at their own.  We must
      /* Some ports (cris) create a libcall regions at their own.  We must
         avoid any potential nesting of LIBCALLs.  */
         avoid any potential nesting of LIBCALLs.  */
      if ((note = find_reg_note (insn, REG_LIBCALL, NULL)) != NULL)
      if ((note = find_reg_note (insn, REG_LIBCALL, NULL)) != NULL)
        remove_note (insn, note);
        remove_note (insn, note);
      if ((note = find_reg_note (insn, REG_RETVAL, NULL)) != NULL)
      if ((note = find_reg_note (insn, REG_RETVAL, NULL)) != NULL)
        remove_note (insn, note);
        remove_note (insn, note);
 
 
      next = NEXT_INSN (insn);
      next = NEXT_INSN (insn);
 
 
      if (set != 0 && REG_P (SET_DEST (set))
      if (set != 0 && REG_P (SET_DEST (set))
          && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
          && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
        {
        {
          struct no_conflict_data data;
          struct no_conflict_data data;
 
 
          data.target = const0_rtx;
          data.target = const0_rtx;
          data.first = insns;
          data.first = insns;
          data.insn = insn;
          data.insn = insn;
          data.must_stay = 0;
          data.must_stay = 0;
          note_stores (PATTERN (insn), no_conflict_move_test, &data);
          note_stores (PATTERN (insn), no_conflict_move_test, &data);
          if (! data.must_stay)
          if (! data.must_stay)
            {
            {
              if (PREV_INSN (insn))
              if (PREV_INSN (insn))
                NEXT_INSN (PREV_INSN (insn)) = next;
                NEXT_INSN (PREV_INSN (insn)) = next;
              else
              else
                insns = next;
                insns = next;
 
 
              if (next)
              if (next)
                PREV_INSN (next) = PREV_INSN (insn);
                PREV_INSN (next) = PREV_INSN (insn);
 
 
              add_insn (insn);
              add_insn (insn);
            }
            }
        }
        }
 
 
      /* Some ports use a loop to copy large arguments onto the stack.
      /* Some ports use a loop to copy large arguments onto the stack.
         Don't move anything outside such a loop.  */
         Don't move anything outside such a loop.  */
      if (LABEL_P (insn))
      if (LABEL_P (insn))
        break;
        break;
    }
    }
 
 
  prev = get_last_insn ();
  prev = get_last_insn ();
 
 
  /* Write the remaining insns followed by the final copy.  */
  /* Write the remaining insns followed by the final copy.  */
 
 
  for (insn = insns; insn; insn = next)
  for (insn = insns; insn; insn = next)
    {
    {
      next = NEXT_INSN (insn);
      next = NEXT_INSN (insn);
 
 
      add_insn (insn);
      add_insn (insn);
    }
    }
 
 
  last = emit_move_insn (target, result);
  last = emit_move_insn (target, result);
  if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
  if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
      != CODE_FOR_nothing)
      != CODE_FOR_nothing)
    set_unique_reg_note (last, REG_EQUAL, copy_rtx (equiv));
    set_unique_reg_note (last, REG_EQUAL, copy_rtx (equiv));
  else
  else
    {
    {
      /* Remove any existing REG_EQUAL note from "last", or else it will
      /* Remove any existing REG_EQUAL note from "last", or else it will
         be mistaken for a note referring to the full contents of the
         be mistaken for a note referring to the full contents of the
         libcall value when found together with the REG_RETVAL note added
         libcall value when found together with the REG_RETVAL note added
         below.  An existing note can come from an insn expansion at
         below.  An existing note can come from an insn expansion at
         "last".  */
         "last".  */
      remove_note (last, find_reg_note (last, REG_EQUAL, NULL_RTX));
      remove_note (last, find_reg_note (last, REG_EQUAL, NULL_RTX));
    }
    }
 
 
  if (final_dest != target)
  if (final_dest != target)
    emit_move_insn (final_dest, target);
    emit_move_insn (final_dest, target);
 
 
  if (prev == 0)
  if (prev == 0)
    first = get_insns ();
    first = get_insns ();
  else
  else
    first = NEXT_INSN (prev);
    first = NEXT_INSN (prev);
 
 
  maybe_encapsulate_block (first, last, equiv);
  maybe_encapsulate_block (first, last, equiv);
}
}


/* Nonzero if we can perform a comparison of mode MODE straightforwardly.
/* Nonzero if we can perform a comparison of mode MODE straightforwardly.
   PURPOSE describes how this comparison will be used.  CODE is the rtx
   PURPOSE describes how this comparison will be used.  CODE is the rtx
   comparison code we will be using.
   comparison code we will be using.
 
 
   ??? Actually, CODE is slightly weaker than that.  A target is still
   ??? Actually, CODE is slightly weaker than that.  A target is still
   required to implement all of the normal bcc operations, but not
   required to implement all of the normal bcc operations, but not
   required to implement all (or any) of the unordered bcc operations.  */
   required to implement all (or any) of the unordered bcc operations.  */
 
 
int
int
can_compare_p (enum rtx_code code, enum machine_mode mode,
can_compare_p (enum rtx_code code, enum machine_mode mode,
               enum can_compare_purpose purpose)
               enum can_compare_purpose purpose)
{
{
  do
  do
    {
    {
      if (cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
      if (cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
        {
        {
          if (purpose == ccp_jump)
          if (purpose == ccp_jump)
            return bcc_gen_fctn[(int) code] != NULL;
            return bcc_gen_fctn[(int) code] != NULL;
          else if (purpose == ccp_store_flag)
          else if (purpose == ccp_store_flag)
            return setcc_gen_code[(int) code] != CODE_FOR_nothing;
            return setcc_gen_code[(int) code] != CODE_FOR_nothing;
          else
          else
            /* There's only one cmov entry point, and it's allowed to fail.  */
            /* There's only one cmov entry point, and it's allowed to fail.  */
            return 1;
            return 1;
        }
        }
      if (purpose == ccp_jump
      if (purpose == ccp_jump
          && cbranch_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
          && cbranch_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
        return 1;
        return 1;
      if (purpose == ccp_cmov
      if (purpose == ccp_cmov
          && cmov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
          && cmov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
        return 1;
        return 1;
      if (purpose == ccp_store_flag
      if (purpose == ccp_store_flag
          && cstore_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
          && cstore_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
        return 1;
        return 1;
      mode = GET_MODE_WIDER_MODE (mode);
      mode = GET_MODE_WIDER_MODE (mode);
    }
    }
  while (mode != VOIDmode);
  while (mode != VOIDmode);
 
 
  return 0;
  return 0;
}
}
 
 
/* This function is called when we are going to emit a compare instruction that
/* This function is called when we are going to emit a compare instruction that
   compares the values found in *PX and *PY, using the rtl operator COMPARISON.
   compares the values found in *PX and *PY, using the rtl operator COMPARISON.
 
 
   *PMODE is the mode of the inputs (in case they are const_int).
   *PMODE is the mode of the inputs (in case they are const_int).
   *PUNSIGNEDP nonzero says that the operands are unsigned;
   *PUNSIGNEDP nonzero says that the operands are unsigned;
   this matters if they need to be widened.
   this matters if they need to be widened.
 
 
   If they have mode BLKmode, then SIZE specifies the size of both operands.
   If they have mode BLKmode, then SIZE specifies the size of both operands.
 
 
   This function performs all the setup necessary so that the caller only has
   This function performs all the setup necessary so that the caller only has
   to emit a single comparison insn.  This setup can involve doing a BLKmode
   to emit a single comparison insn.  This setup can involve doing a BLKmode
   comparison or emitting a library call to perform the comparison if no insn
   comparison or emitting a library call to perform the comparison if no insn
   is available to handle it.
   is available to handle it.
   The values which are passed in through pointers can be modified; the caller
   The values which are passed in through pointers can be modified; the caller
   should perform the comparison on the modified values.  Constant
   should perform the comparison on the modified values.  Constant
   comparisons must have already been folded.  */
   comparisons must have already been folded.  */
 
 
static void
static void
prepare_cmp_insn (rtx *px, rtx *py, enum rtx_code *pcomparison, rtx size,
prepare_cmp_insn (rtx *px, rtx *py, enum rtx_code *pcomparison, rtx size,
                  enum machine_mode *pmode, int *punsignedp,
                  enum machine_mode *pmode, int *punsignedp,
                  enum can_compare_purpose purpose)
                  enum can_compare_purpose purpose)
{
{
  enum machine_mode mode = *pmode;
  enum machine_mode mode = *pmode;
  rtx x = *px, y = *py;
  rtx x = *px, y = *py;
  int unsignedp = *punsignedp;
  int unsignedp = *punsignedp;
 
 
  /* If we are inside an appropriately-short loop and we are optimizing,
  /* If we are inside an appropriately-short loop and we are optimizing,
     force expensive constants into a register.  */
     force expensive constants into a register.  */
  if (CONSTANT_P (x) && optimize
  if (CONSTANT_P (x) && optimize
      && rtx_cost (x, COMPARE) > COSTS_N_INSNS (1))
      && rtx_cost (x, COMPARE) > COSTS_N_INSNS (1))
    x = force_reg (mode, x);
    x = force_reg (mode, x);
 
 
  if (CONSTANT_P (y) && optimize
  if (CONSTANT_P (y) && optimize
      && rtx_cost (y, COMPARE) > COSTS_N_INSNS (1))
      && rtx_cost (y, COMPARE) > COSTS_N_INSNS (1))
    y = force_reg (mode, y);
    y = force_reg (mode, y);
 
 
#ifdef HAVE_cc0
#ifdef HAVE_cc0
  /* Make sure if we have a canonical comparison.  The RTL
  /* Make sure if we have a canonical comparison.  The RTL
     documentation states that canonical comparisons are required only
     documentation states that canonical comparisons are required only
     for targets which have cc0.  */
     for targets which have cc0.  */
  gcc_assert (!CONSTANT_P (x) || CONSTANT_P (y));
  gcc_assert (!CONSTANT_P (x) || CONSTANT_P (y));
#endif
#endif
 
 
  /* Don't let both operands fail to indicate the mode.  */
  /* Don't let both operands fail to indicate the mode.  */
  if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
  if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
    x = force_reg (mode, x);
    x = force_reg (mode, x);
 
 
  /* Handle all BLKmode compares.  */
  /* Handle all BLKmode compares.  */
 
 
  if (mode == BLKmode)
  if (mode == BLKmode)
    {
    {
      enum machine_mode cmp_mode, result_mode;
      enum machine_mode cmp_mode, result_mode;
      enum insn_code cmp_code;
      enum insn_code cmp_code;
      tree length_type;
      tree length_type;
      rtx libfunc;
      rtx libfunc;
      rtx result;
      rtx result;
      rtx opalign
      rtx opalign
        = GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT);
        = GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT);
 
 
      gcc_assert (size);
      gcc_assert (size);
 
 
      /* Try to use a memory block compare insn - either cmpstr
      /* Try to use a memory block compare insn - either cmpstr
         or cmpmem will do.  */
         or cmpmem will do.  */
      for (cmp_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
      for (cmp_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
           cmp_mode != VOIDmode;
           cmp_mode != VOIDmode;
           cmp_mode = GET_MODE_WIDER_MODE (cmp_mode))
           cmp_mode = GET_MODE_WIDER_MODE (cmp_mode))
        {
        {
          cmp_code = cmpmem_optab[cmp_mode];
          cmp_code = cmpmem_optab[cmp_mode];
          if (cmp_code == CODE_FOR_nothing)
          if (cmp_code == CODE_FOR_nothing)
            cmp_code = cmpstr_optab[cmp_mode];
            cmp_code = cmpstr_optab[cmp_mode];
          if (cmp_code == CODE_FOR_nothing)
          if (cmp_code == CODE_FOR_nothing)
            cmp_code = cmpstrn_optab[cmp_mode];
            cmp_code = cmpstrn_optab[cmp_mode];
          if (cmp_code == CODE_FOR_nothing)
          if (cmp_code == CODE_FOR_nothing)
            continue;
            continue;
 
 
          /* Must make sure the size fits the insn's mode.  */
          /* Must make sure the size fits the insn's mode.  */
          if ((GET_CODE (size) == CONST_INT
          if ((GET_CODE (size) == CONST_INT
               && INTVAL (size) >= (1 << GET_MODE_BITSIZE (cmp_mode)))
               && INTVAL (size) >= (1 << GET_MODE_BITSIZE (cmp_mode)))
              || (GET_MODE_BITSIZE (GET_MODE (size))
              || (GET_MODE_BITSIZE (GET_MODE (size))
                  > GET_MODE_BITSIZE (cmp_mode)))
                  > GET_MODE_BITSIZE (cmp_mode)))
            continue;
            continue;
 
 
          result_mode = insn_data[cmp_code].operand[0].mode;
          result_mode = insn_data[cmp_code].operand[0].mode;
          result = gen_reg_rtx (result_mode);
          result = gen_reg_rtx (result_mode);
          size = convert_to_mode (cmp_mode, size, 1);
          size = convert_to_mode (cmp_mode, size, 1);
          emit_insn (GEN_FCN (cmp_code) (result, x, y, size, opalign));
          emit_insn (GEN_FCN (cmp_code) (result, x, y, size, opalign));
 
 
          *px = result;
          *px = result;
          *py = const0_rtx;
          *py = const0_rtx;
          *pmode = result_mode;
          *pmode = result_mode;
          return;
          return;
        }
        }
 
 
      /* Otherwise call a library function, memcmp.  */
      /* Otherwise call a library function, memcmp.  */
      libfunc = memcmp_libfunc;
      libfunc = memcmp_libfunc;
      length_type = sizetype;
      length_type = sizetype;
      result_mode = TYPE_MODE (integer_type_node);
      result_mode = TYPE_MODE (integer_type_node);
      cmp_mode = TYPE_MODE (length_type);
      cmp_mode = TYPE_MODE (length_type);
      size = convert_to_mode (TYPE_MODE (length_type), size,
      size = convert_to_mode (TYPE_MODE (length_type), size,
                              TYPE_UNSIGNED (length_type));
                              TYPE_UNSIGNED (length_type));
 
 
      result = emit_library_call_value (libfunc, 0, LCT_PURE_MAKE_BLOCK,
      result = emit_library_call_value (libfunc, 0, LCT_PURE_MAKE_BLOCK,
                                        result_mode, 3,
                                        result_mode, 3,
                                        XEXP (x, 0), Pmode,
                                        XEXP (x, 0), Pmode,
                                        XEXP (y, 0), Pmode,
                                        XEXP (y, 0), Pmode,
                                        size, cmp_mode);
                                        size, cmp_mode);
      *px = result;
      *px = result;
      *py = const0_rtx;
      *py = const0_rtx;
      *pmode = result_mode;
      *pmode = result_mode;
      return;
      return;
    }
    }
 
 
  /* Don't allow operands to the compare to trap, as that can put the
  /* Don't allow operands to the compare to trap, as that can put the
     compare and branch in different basic blocks.  */
     compare and branch in different basic blocks.  */
  if (flag_non_call_exceptions)
  if (flag_non_call_exceptions)
    {
    {
      if (may_trap_p (x))
      if (may_trap_p (x))
        x = force_reg (mode, x);
        x = force_reg (mode, x);
      if (may_trap_p (y))
      if (may_trap_p (y))
        y = force_reg (mode, y);
        y = force_reg (mode, y);
    }
    }
 
 
  *px = x;
  *px = x;
  *py = y;
  *py = y;
  if (can_compare_p (*pcomparison, mode, purpose))
  if (can_compare_p (*pcomparison, mode, purpose))
    return;
    return;
 
 
  /* Handle a lib call just for the mode we are using.  */
  /* Handle a lib call just for the mode we are using.  */
 
 
  if (cmp_optab->handlers[(int) mode].libfunc && !SCALAR_FLOAT_MODE_P (mode))
  if (cmp_optab->handlers[(int) mode].libfunc && !SCALAR_FLOAT_MODE_P (mode))
    {
    {
      rtx libfunc = cmp_optab->handlers[(int) mode].libfunc;
      rtx libfunc = cmp_optab->handlers[(int) mode].libfunc;
      rtx result;
      rtx result;
 
 
      /* If we want unsigned, and this mode has a distinct unsigned
      /* If we want unsigned, and this mode has a distinct unsigned
         comparison routine, use that.  */
         comparison routine, use that.  */
      if (unsignedp && ucmp_optab->handlers[(int) mode].libfunc)
      if (unsignedp && ucmp_optab->handlers[(int) mode].libfunc)
        libfunc = ucmp_optab->handlers[(int) mode].libfunc;
        libfunc = ucmp_optab->handlers[(int) mode].libfunc;
 
 
      result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST_MAKE_BLOCK,
      result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST_MAKE_BLOCK,
                                        word_mode, 2, x, mode, y, mode);
                                        word_mode, 2, x, mode, y, mode);
 
 
      /* There are two kinds of comparison routines. Biased routines
      /* There are two kinds of comparison routines. Biased routines
         return 0/1/2, and unbiased routines return -1/0/1. Other parts
         return 0/1/2, and unbiased routines return -1/0/1. Other parts
         of gcc expect that the comparison operation is equivalent
         of gcc expect that the comparison operation is equivalent
         to the modified comparison. For signed comparisons compare the
         to the modified comparison. For signed comparisons compare the
         result against 1 in the biased case, and zero in the unbiased
         result against 1 in the biased case, and zero in the unbiased
         case. For unsigned comparisons always compare against 1 after
         case. For unsigned comparisons always compare against 1 after
         biasing the unbiased result by adding 1. This gives us a way to
         biasing the unbiased result by adding 1. This gives us a way to
         represent LTU. */
         represent LTU. */
      *px = result;
      *px = result;
      *pmode = word_mode;
      *pmode = word_mode;
      *py = const1_rtx;
      *py = const1_rtx;
 
 
      if (!TARGET_LIB_INT_CMP_BIASED)
      if (!TARGET_LIB_INT_CMP_BIASED)
        {
        {
          if (*punsignedp)
          if (*punsignedp)
            *px = plus_constant (result, 1);
            *px = plus_constant (result, 1);
          else
          else
            *py = const0_rtx;
            *py = const0_rtx;
        }
        }
      return;
      return;
    }
    }
 
 
  gcc_assert (SCALAR_FLOAT_MODE_P (mode));
  gcc_assert (SCALAR_FLOAT_MODE_P (mode));
  prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp);
  prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp);
}
}
 
 
/* Before emitting an insn with code ICODE, make sure that X, which is going
/* Before emitting an insn with code ICODE, make sure that X, which is going
   to be used for operand OPNUM of the insn, is converted from mode MODE to
   to be used for operand OPNUM of the insn, is converted from mode MODE to
   WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
   WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
   that it is accepted by the operand predicate.  Return the new value.  */
   that it is accepted by the operand predicate.  Return the new value.  */
 
 
static rtx
static rtx
prepare_operand (int icode, rtx x, int opnum, enum machine_mode mode,
prepare_operand (int icode, rtx x, int opnum, enum machine_mode mode,
                 enum machine_mode wider_mode, int unsignedp)
                 enum machine_mode wider_mode, int unsignedp)
{
{
  if (mode != wider_mode)
  if (mode != wider_mode)
    x = convert_modes (wider_mode, mode, x, unsignedp);
    x = convert_modes (wider_mode, mode, x, unsignedp);
 
 
  if (!insn_data[icode].operand[opnum].predicate
  if (!insn_data[icode].operand[opnum].predicate
      (x, insn_data[icode].operand[opnum].mode))
      (x, insn_data[icode].operand[opnum].mode))
    {
    {
      if (no_new_pseudos)
      if (no_new_pseudos)
        return NULL_RTX;
        return NULL_RTX;
      x = copy_to_mode_reg (insn_data[icode].operand[opnum].mode, x);
      x = copy_to_mode_reg (insn_data[icode].operand[opnum].mode, x);
    }
    }
 
 
  return x;
  return x;
}
}
 
 
/* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
/* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
   we can do the comparison.
   we can do the comparison.
   The arguments are the same as for emit_cmp_and_jump_insns; but LABEL may
   The arguments are the same as for emit_cmp_and_jump_insns; but LABEL may
   be NULL_RTX which indicates that only a comparison is to be generated.  */
   be NULL_RTX which indicates that only a comparison is to be generated.  */
 
 
static void
static void
emit_cmp_and_jump_insn_1 (rtx x, rtx y, enum machine_mode mode,
emit_cmp_and_jump_insn_1 (rtx x, rtx y, enum machine_mode mode,
                          enum rtx_code comparison, int unsignedp, rtx label)
                          enum rtx_code comparison, int unsignedp, rtx label)
{
{
  rtx test = gen_rtx_fmt_ee (comparison, mode, x, y);
  rtx test = gen_rtx_fmt_ee (comparison, mode, x, y);
  enum mode_class class = GET_MODE_CLASS (mode);
  enum mode_class class = GET_MODE_CLASS (mode);
  enum machine_mode wider_mode = mode;
  enum machine_mode wider_mode = mode;
 
 
  /* Try combined insns first.  */
  /* Try combined insns first.  */
  do
  do
    {
    {
      enum insn_code icode;
      enum insn_code icode;
      PUT_MODE (test, wider_mode);
      PUT_MODE (test, wider_mode);
 
 
      if (label)
      if (label)
        {
        {
          icode = cbranch_optab->handlers[(int) wider_mode].insn_code;
          icode = cbranch_optab->handlers[(int) wider_mode].insn_code;
 
 
          if (icode != CODE_FOR_nothing
          if (icode != CODE_FOR_nothing
              && insn_data[icode].operand[0].predicate (test, wider_mode))
              && insn_data[icode].operand[0].predicate (test, wider_mode))
            {
            {
              x = prepare_operand (icode, x, 1, mode, wider_mode, unsignedp);
              x = prepare_operand (icode, x, 1, mode, wider_mode, unsignedp);
              y = prepare_operand (icode, y, 2, mode, wider_mode, unsignedp);
              y = prepare_operand (icode, y, 2, mode, wider_mode, unsignedp);
              emit_jump_insn (GEN_FCN (icode) (test, x, y, label));
              emit_jump_insn (GEN_FCN (icode) (test, x, y, label));
              return;
              return;
            }
            }
        }
        }
 
 
      /* Handle some compares against zero.  */
      /* Handle some compares against zero.  */
      icode = (int) tst_optab->handlers[(int) wider_mode].insn_code;
      icode = (int) tst_optab->handlers[(int) wider_mode].insn_code;
      if (y == CONST0_RTX (mode) && icode != CODE_FOR_nothing)
      if (y == CONST0_RTX (mode) && icode != CODE_FOR_nothing)
        {
        {
          x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
          x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
          emit_insn (GEN_FCN (icode) (x));
          emit_insn (GEN_FCN (icode) (x));
          if (label)
          if (label)
            emit_jump_insn (bcc_gen_fctn[(int) comparison] (label));
            emit_jump_insn (bcc_gen_fctn[(int) comparison] (label));
          return;
          return;
        }
        }
 
 
      /* Handle compares for which there is a directly suitable insn.  */
      /* Handle compares for which there is a directly suitable insn.  */
 
 
      icode = (int) cmp_optab->handlers[(int) wider_mode].insn_code;
      icode = (int) cmp_optab->handlers[(int) wider_mode].insn_code;
      if (icode != CODE_FOR_nothing)
      if (icode != CODE_FOR_nothing)
        {
        {
          x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
          x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
          y = prepare_operand (icode, y, 1, mode, wider_mode, unsignedp);
          y = prepare_operand (icode, y, 1, mode, wider_mode, unsignedp);
          emit_insn (GEN_FCN (icode) (x, y));
          emit_insn (GEN_FCN (icode) (x, y));
          if (label)
          if (label)
            emit_jump_insn (bcc_gen_fctn[(int) comparison] (label));
            emit_jump_insn (bcc_gen_fctn[(int) comparison] (label));
          return;
          return;
        }
        }
 
 
      if (!CLASS_HAS_WIDER_MODES_P (class))
      if (!CLASS_HAS_WIDER_MODES_P (class))
        break;
        break;
 
 
      wider_mode = GET_MODE_WIDER_MODE (wider_mode);
      wider_mode = GET_MODE_WIDER_MODE (wider_mode);
    }
    }
  while (wider_mode != VOIDmode);
  while (wider_mode != VOIDmode);
 
 
  gcc_unreachable ();
  gcc_unreachable ();
}
}
 
 
/* Generate code to compare X with Y so that the condition codes are
/* Generate code to compare X with Y so that the condition codes are
   set and to jump to LABEL if the condition is true.  If X is a
   set and to jump to LABEL if the condition is true.  If X is a
   constant and Y is not a constant, then the comparison is swapped to
   constant and Y is not a constant, then the comparison is swapped to
   ensure that the comparison RTL has the canonical form.
   ensure that the comparison RTL has the canonical form.
 
 
   UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
   UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
   need to be widened by emit_cmp_insn.  UNSIGNEDP is also used to select
   need to be widened by emit_cmp_insn.  UNSIGNEDP is also used to select
   the proper branch condition code.
   the proper branch condition code.
 
 
   If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
   If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
 
 
   MODE is the mode of the inputs (in case they are const_int).
   MODE is the mode of the inputs (in case they are const_int).
 
 
   COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).  It will
   COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).  It will
   be passed unchanged to emit_cmp_insn, then potentially converted into an
   be passed unchanged to emit_cmp_insn, then potentially converted into an
   unsigned variant based on UNSIGNEDP to select a proper jump instruction.  */
   unsigned variant based on UNSIGNEDP to select a proper jump instruction.  */
 
 
void
void
emit_cmp_and_jump_insns (rtx x, rtx y, enum rtx_code comparison, rtx size,
emit_cmp_and_jump_insns (rtx x, rtx y, enum rtx_code comparison, rtx size,
                         enum machine_mode mode, int unsignedp, rtx label)
                         enum machine_mode mode, int unsignedp, rtx label)
{
{
  rtx op0 = x, op1 = y;
  rtx op0 = x, op1 = y;
 
 
  /* Swap operands and condition to ensure canonical RTL.  */
  /* Swap operands and condition to ensure canonical RTL.  */
  if (swap_commutative_operands_p (x, y))
  if (swap_commutative_operands_p (x, y))
    {
    {
      /* If we're not emitting a branch, this means some caller
      /* If we're not emitting a branch, this means some caller
         is out of sync.  */
         is out of sync.  */
      gcc_assert (label);
      gcc_assert (label);
 
 
      op0 = y, op1 = x;
      op0 = y, op1 = x;
      comparison = swap_condition (comparison);
      comparison = swap_condition (comparison);
    }
    }
 
 
#ifdef HAVE_cc0
#ifdef HAVE_cc0
  /* If OP0 is still a constant, then both X and Y must be constants.
  /* If OP0 is still a constant, then both X and Y must be constants.
     Force X into a register to create canonical RTL.  */
     Force X into a register to create canonical RTL.  */
  if (CONSTANT_P (op0))
  if (CONSTANT_P (op0))
    op0 = force_reg (mode, op0);
    op0 = force_reg (mode, op0);
#endif
#endif
 
 
  if (unsignedp)
  if (unsignedp)
    comparison = unsigned_condition (comparison);
    comparison = unsigned_condition (comparison);
 
 
  prepare_cmp_insn (&op0, &op1, &comparison, size, &mode, &unsignedp,
  prepare_cmp_insn (&op0, &op1, &comparison, size, &mode, &unsignedp,
                    ccp_jump);
                    ccp_jump);
  emit_cmp_and_jump_insn_1 (op0, op1, mode, comparison, unsignedp, label);
  emit_cmp_and_jump_insn_1 (op0, op1, mode, comparison, unsignedp, label);
}
}
 
 
/* Like emit_cmp_and_jump_insns, but generate only the comparison.  */
/* Like emit_cmp_and_jump_insns, but generate only the comparison.  */
 
 
void
void
emit_cmp_insn (rtx x, rtx y, enum rtx_code comparison, rtx size,
emit_cmp_insn (rtx x, rtx y, enum rtx_code comparison, rtx size,
               enum machine_mode mode, int unsignedp)
               enum machine_mode mode, int unsignedp)
{
{
  emit_cmp_and_jump_insns (x, y, comparison, size, mode, unsignedp, 0);
  emit_cmp_and_jump_insns (x, y, comparison, size, mode, unsignedp, 0);
}
}


/* Emit a library call comparison between floating point X and Y.
/* Emit a library call comparison between floating point X and Y.
   COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).  */
   COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).  */
 
 
static void
static void
prepare_float_lib_cmp (rtx *px, rtx *py, enum rtx_code *pcomparison,
prepare_float_lib_cmp (rtx *px, rtx *py, enum rtx_code *pcomparison,
                       enum machine_mode *pmode, int *punsignedp)
                       enum machine_mode *pmode, int *punsignedp)
{
{
  enum rtx_code comparison = *pcomparison;
  enum rtx_code comparison = *pcomparison;
  enum rtx_code swapped = swap_condition (comparison);
  enum rtx_code swapped = swap_condition (comparison);
  enum rtx_code reversed = reverse_condition_maybe_unordered (comparison);
  enum rtx_code reversed = reverse_condition_maybe_unordered (comparison);
  rtx x = *px;
  rtx x = *px;
  rtx y = *py;
  rtx y = *py;
  enum machine_mode orig_mode = GET_MODE (x);
  enum machine_mode orig_mode = GET_MODE (x);
  enum machine_mode mode;
  enum machine_mode mode;
  rtx value, target, insns, equiv;
  rtx value, target, insns, equiv;
  rtx libfunc = 0;
  rtx libfunc = 0;
  bool reversed_p = false;
  bool reversed_p = false;
 
 
  for (mode = orig_mode;
  for (mode = orig_mode;
       mode != VOIDmode;
       mode != VOIDmode;
       mode = GET_MODE_WIDER_MODE (mode))
       mode = GET_MODE_WIDER_MODE (mode))
    {
    {
      if ((libfunc = code_to_optab[comparison]->handlers[mode].libfunc))
      if ((libfunc = code_to_optab[comparison]->handlers[mode].libfunc))
        break;
        break;
 
 
      if ((libfunc = code_to_optab[swapped]->handlers[mode].libfunc))
      if ((libfunc = code_to_optab[swapped]->handlers[mode].libfunc))
        {
        {
          rtx tmp;
          rtx tmp;
          tmp = x; x = y; y = tmp;
          tmp = x; x = y; y = tmp;
          comparison = swapped;
          comparison = swapped;
          break;
          break;
        }
        }
 
 
      if ((libfunc = code_to_optab[reversed]->handlers[mode].libfunc)
      if ((libfunc = code_to_optab[reversed]->handlers[mode].libfunc)
          && FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, reversed))
          && FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, reversed))
        {
        {
          comparison = reversed;
          comparison = reversed;
          reversed_p = true;
          reversed_p = true;
          break;
          break;
        }
        }
    }
    }
 
 
  gcc_assert (mode != VOIDmode);
  gcc_assert (mode != VOIDmode);
 
 
  if (mode != orig_mode)
  if (mode != orig_mode)
    {
    {
      x = convert_to_mode (mode, x, 0);
      x = convert_to_mode (mode, x, 0);
      y = convert_to_mode (mode, y, 0);
      y = convert_to_mode (mode, y, 0);
    }
    }
 
 
  /* Attach a REG_EQUAL note describing the semantics of the libcall to
  /* Attach a REG_EQUAL note describing the semantics of the libcall to
     the RTL.  The allows the RTL optimizers to delete the libcall if the
     the RTL.  The allows the RTL optimizers to delete the libcall if the
     condition can be determined at compile-time.  */
     condition can be determined at compile-time.  */
  if (comparison == UNORDERED)
  if (comparison == UNORDERED)
    {
    {
      rtx temp = simplify_gen_relational (NE, word_mode, mode, x, x);
      rtx temp = simplify_gen_relational (NE, word_mode, mode, x, x);
      equiv = simplify_gen_relational (NE, word_mode, mode, y, y);
      equiv = simplify_gen_relational (NE, word_mode, mode, y, y);
      equiv = simplify_gen_ternary (IF_THEN_ELSE, word_mode, word_mode,
      equiv = simplify_gen_ternary (IF_THEN_ELSE, word_mode, word_mode,
                                    temp, const_true_rtx, equiv);
                                    temp, const_true_rtx, equiv);
    }
    }
  else
  else
    {
    {
      equiv = simplify_gen_relational (comparison, word_mode, mode, x, y);
      equiv = simplify_gen_relational (comparison, word_mode, mode, x, y);
      if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
      if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
        {
        {
          rtx true_rtx, false_rtx;
          rtx true_rtx, false_rtx;
 
 
          switch (comparison)
          switch (comparison)
            {
            {
            case EQ:
            case EQ:
              true_rtx = const0_rtx;
              true_rtx = const0_rtx;
              false_rtx = const_true_rtx;
              false_rtx = const_true_rtx;
              break;
              break;
 
 
            case NE:
            case NE:
              true_rtx = const_true_rtx;
              true_rtx = const_true_rtx;
              false_rtx = const0_rtx;
              false_rtx = const0_rtx;
              break;
              break;
 
 
            case GT:
            case GT:
              true_rtx = const1_rtx;
              true_rtx = const1_rtx;
              false_rtx = const0_rtx;
              false_rtx = const0_rtx;
              break;
              break;
 
 
            case GE:
            case GE:
              true_rtx = const0_rtx;
              true_rtx = const0_rtx;
              false_rtx = constm1_rtx;
              false_rtx = constm1_rtx;
              break;
              break;
 
 
            case LT:
            case LT:
              true_rtx = constm1_rtx;
              true_rtx = constm1_rtx;
              false_rtx = const0_rtx;
              false_rtx = const0_rtx;
              break;
              break;
 
 
            case LE:
            case LE:
              true_rtx = const0_rtx;
              true_rtx = const0_rtx;
              false_rtx = const1_rtx;
              false_rtx = const1_rtx;
              break;
              break;
 
 
            default:
            default:
              gcc_unreachable ();
              gcc_unreachable ();
            }
            }
          equiv = simplify_gen_ternary (IF_THEN_ELSE, word_mode, word_mode,
          equiv = simplify_gen_ternary (IF_THEN_ELSE, word_mode, word_mode,
                                        equiv, true_rtx, false_rtx);
                                        equiv, true_rtx, false_rtx);
        }
        }
    }
    }
 
 
  start_sequence ();
  start_sequence ();
  value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
  value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
                                   word_mode, 2, x, mode, y, mode);
                                   word_mode, 2, x, mode, y, mode);
  insns = get_insns ();
  insns = get_insns ();
  end_sequence ();
  end_sequence ();
 
 
  target = gen_reg_rtx (word_mode);
  target = gen_reg_rtx (word_mode);
  emit_libcall_block (insns, target, value, equiv);
  emit_libcall_block (insns, target, value, equiv);
 
 
  if (comparison == UNORDERED
  if (comparison == UNORDERED
      || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
      || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
    comparison = reversed_p ? EQ : NE;
    comparison = reversed_p ? EQ : NE;
 
 
  *px = target;
  *px = target;
  *py = const0_rtx;
  *py = const0_rtx;
  *pmode = word_mode;
  *pmode = word_mode;
  *pcomparison = comparison;
  *pcomparison = comparison;
  *punsignedp = 0;
  *punsignedp = 0;
}
}


/* Generate code to indirectly jump to a location given in the rtx LOC.  */
/* Generate code to indirectly jump to a location given in the rtx LOC.  */
 
 
void
void
emit_indirect_jump (rtx loc)
emit_indirect_jump (rtx loc)
{
{
  if (!insn_data[(int) CODE_FOR_indirect_jump].operand[0].predicate
  if (!insn_data[(int) CODE_FOR_indirect_jump].operand[0].predicate
      (loc, Pmode))
      (loc, Pmode))
    loc = copy_to_mode_reg (Pmode, loc);
    loc = copy_to_mode_reg (Pmode, loc);
 
 
  emit_jump_insn (gen_indirect_jump (loc));
  emit_jump_insn (gen_indirect_jump (loc));
  emit_barrier ();
  emit_barrier ();
}
}


#ifdef HAVE_conditional_move
#ifdef HAVE_conditional_move
 
 
/* Emit a conditional move instruction if the machine supports one for that
/* Emit a conditional move instruction if the machine supports one for that
   condition and machine mode.
   condition and machine mode.
 
 
   OP0 and OP1 are the operands that should be compared using CODE.  CMODE is
   OP0 and OP1 are the operands that should be compared using CODE.  CMODE is
   the mode to use should they be constants.  If it is VOIDmode, they cannot
   the mode to use should they be constants.  If it is VOIDmode, they cannot
   both be constants.
   both be constants.
 
 
   OP2 should be stored in TARGET if the comparison is true, otherwise OP3
   OP2 should be stored in TARGET if the comparison is true, otherwise OP3
   should be stored there.  MODE is the mode to use should they be constants.
   should be stored there.  MODE is the mode to use should they be constants.
   If it is VOIDmode, they cannot both be constants.
   If it is VOIDmode, they cannot both be constants.
 
 
   The result is either TARGET (perhaps modified) or NULL_RTX if the operation
   The result is either TARGET (perhaps modified) or NULL_RTX if the operation
   is not supported.  */
   is not supported.  */
 
 
rtx
rtx
emit_conditional_move (rtx target, enum rtx_code code, rtx op0, rtx op1,
emit_conditional_move (rtx target, enum rtx_code code, rtx op0, rtx op1,
                       enum machine_mode cmode, rtx op2, rtx op3,
                       enum machine_mode cmode, rtx op2, rtx op3,
                       enum machine_mode mode, int unsignedp)
                       enum machine_mode mode, int unsignedp)
{
{
  rtx tem, subtarget, comparison, insn;
  rtx tem, subtarget, comparison, insn;
  enum insn_code icode;
  enum insn_code icode;
  enum rtx_code reversed;
  enum rtx_code reversed;
 
 
  /* If one operand is constant, make it the second one.  Only do this
  /* If one operand is constant, make it the second one.  Only do this
     if the other operand is not constant as well.  */
     if the other operand is not constant as well.  */
 
 
  if (swap_commutative_operands_p (op0, op1))
  if (swap_commutative_operands_p (op0, op1))
    {
    {
      tem = op0;
      tem = op0;
      op0 = op1;
      op0 = op1;
      op1 = tem;
      op1 = tem;
      code = swap_condition (code);
      code = swap_condition (code);
    }
    }
 
 
  /* get_condition will prefer to generate LT and GT even if the old
  /* get_condition will prefer to generate LT and GT even if the old
     comparison was against zero, so undo that canonicalization here since
     comparison was against zero, so undo that canonicalization here since
     comparisons against zero are cheaper.  */
     comparisons against zero are cheaper.  */
  if (code == LT && op1 == const1_rtx)
  if (code == LT && op1 == const1_rtx)
    code = LE, op1 = const0_rtx;
    code = LE, op1 = const0_rtx;
  else if (code == GT && op1 == constm1_rtx)
  else if (code == GT && op1 == constm1_rtx)
    code = GE, op1 = const0_rtx;
    code = GE, op1 = const0_rtx;
 
 
  if (cmode == VOIDmode)
  if (cmode == VOIDmode)
    cmode = GET_MODE (op0);
    cmode = GET_MODE (op0);
 
 
  if (swap_commutative_operands_p (op2, op3)
  if (swap_commutative_operands_p (op2, op3)
      && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
      && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
          != UNKNOWN))
          != UNKNOWN))
    {
    {
      tem = op2;
      tem = op2;
      op2 = op3;
      op2 = op3;
      op3 = tem;
      op3 = tem;
      code = reversed;
      code = reversed;
    }
    }
 
 
  if (mode == VOIDmode)
  if (mode == VOIDmode)
    mode = GET_MODE (op2);
    mode = GET_MODE (op2);
 
 
  icode = movcc_gen_code[mode];
  icode = movcc_gen_code[mode];
 
 
  if (icode == CODE_FOR_nothing)
  if (icode == CODE_FOR_nothing)
    return 0;
    return 0;
 
 
  if (!target)
  if (!target)
    target = gen_reg_rtx (mode);
    target = gen_reg_rtx (mode);
 
 
  subtarget = target;
  subtarget = target;
 
 
  /* If the insn doesn't accept these operands, put them in pseudos.  */
  /* If the insn doesn't accept these operands, put them in pseudos.  */
 
 
  if (!insn_data[icode].operand[0].predicate
  if (!insn_data[icode].operand[0].predicate
      (subtarget, insn_data[icode].operand[0].mode))
      (subtarget, insn_data[icode].operand[0].mode))
    subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
    subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
 
 
  if (!insn_data[icode].operand[2].predicate
  if (!insn_data[icode].operand[2].predicate
      (op2, insn_data[icode].operand[2].mode))
      (op2, insn_data[icode].operand[2].mode))
    op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
    op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
 
 
  if (!insn_data[icode].operand[3].predicate
  if (!insn_data[icode].operand[3].predicate
      (op3, insn_data[icode].operand[3].mode))
      (op3, insn_data[icode].operand[3].mode))
    op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3);
    op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3);
 
 
  /* Everything should now be in the suitable form, so emit the compare insn
  /* Everything should now be in the suitable form, so emit the compare insn
     and then the conditional move.  */
     and then the conditional move.  */
 
 
  comparison
  comparison
    = compare_from_rtx (op0, op1, code, unsignedp, cmode, NULL_RTX);
    = compare_from_rtx (op0, op1, code, unsignedp, cmode, NULL_RTX);
 
 
  /* ??? Watch for const0_rtx (nop) and const_true_rtx (unconditional)?  */
  /* ??? Watch for const0_rtx (nop) and const_true_rtx (unconditional)?  */
  /* We can get const0_rtx or const_true_rtx in some circumstances.  Just
  /* We can get const0_rtx or const_true_rtx in some circumstances.  Just
     return NULL and let the caller figure out how best to deal with this
     return NULL and let the caller figure out how best to deal with this
     situation.  */
     situation.  */
  if (GET_CODE (comparison) != code)
  if (GET_CODE (comparison) != code)
    return NULL_RTX;
    return NULL_RTX;
 
 
  insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
  insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
 
 
  /* If that failed, then give up.  */
  /* If that failed, then give up.  */
  if (insn == 0)
  if (insn == 0)
    return 0;
    return 0;
 
 
  emit_insn (insn);
  emit_insn (insn);
 
 
  if (subtarget != target)
  if (subtarget != target)
    convert_move (target, subtarget, 0);
    convert_move (target, subtarget, 0);
 
 
  return target;
  return target;
}
}
 
 
/* Return nonzero if a conditional move of mode MODE is supported.
/* Return nonzero if a conditional move of mode MODE is supported.
 
 
   This function is for combine so it can tell whether an insn that looks
   This function is for combine so it can tell whether an insn that looks
   like a conditional move is actually supported by the hardware.  If we
   like a conditional move is actually supported by the hardware.  If we
   guess wrong we lose a bit on optimization, but that's it.  */
   guess wrong we lose a bit on optimization, but that's it.  */
/* ??? sparc64 supports conditionally moving integers values based on fp
/* ??? sparc64 supports conditionally moving integers values based on fp
   comparisons, and vice versa.  How do we handle them?  */
   comparisons, and vice versa.  How do we handle them?  */
 
 
int
int
can_conditionally_move_p (enum machine_mode mode)
can_conditionally_move_p (enum machine_mode mode)
{
{
  if (movcc_gen_code[mode] != CODE_FOR_nothing)
  if (movcc_gen_code[mode] != CODE_FOR_nothing)
    return 1;
    return 1;
 
 
  return 0;
  return 0;
}
}
 
 
#endif /* HAVE_conditional_move */
#endif /* HAVE_conditional_move */
 
 
/* Emit a conditional addition instruction if the machine supports one for that
/* Emit a conditional addition instruction if the machine supports one for that
   condition and machine mode.
   condition and machine mode.
 
 
   OP0 and OP1 are the operands that should be compared using CODE.  CMODE is
   OP0 and OP1 are the operands that should be compared using CODE.  CMODE is
   the mode to use should they be constants.  If it is VOIDmode, they cannot
   the mode to use should they be constants.  If it is VOIDmode, they cannot
   both be constants.
   both be constants.
 
 
   OP2 should be stored in TARGET if the comparison is true, otherwise OP2+OP3
   OP2 should be stored in TARGET if the comparison is true, otherwise OP2+OP3
   should be stored there.  MODE is the mode to use should they be constants.
   should be stored there.  MODE is the mode to use should they be constants.
   If it is VOIDmode, they cannot both be constants.
   If it is VOIDmode, they cannot both be constants.
 
 
   The result is either TARGET (perhaps modified) or NULL_RTX if the operation
   The result is either TARGET (perhaps modified) or NULL_RTX if the operation
   is not supported.  */
   is not supported.  */
 
 
rtx
rtx
emit_conditional_add (rtx target, enum rtx_code code, rtx op0, rtx op1,
emit_conditional_add (rtx target, enum rtx_code code, rtx op0, rtx op1,
                      enum machine_mode cmode, rtx op2, rtx op3,
                      enum machine_mode cmode, rtx op2, rtx op3,
                      enum machine_mode mode, int unsignedp)
                      enum machine_mode mode, int unsignedp)
{
{
  rtx tem, subtarget, comparison, insn;
  rtx tem, subtarget, comparison, insn;
  enum insn_code icode;
  enum insn_code icode;
  enum rtx_code reversed;
  enum rtx_code reversed;
 
 
  /* If one operand is constant, make it the second one.  Only do this
  /* If one operand is constant, make it the second one.  Only do this
     if the other operand is not constant as well.  */
     if the other operand is not constant as well.  */
 
 
  if (swap_commutative_operands_p (op0, op1))
  if (swap_commutative_operands_p (op0, op1))
    {
    {
      tem = op0;
      tem = op0;
      op0 = op1;
      op0 = op1;
      op1 = tem;
      op1 = tem;
      code = swap_condition (code);
      code = swap_condition (code);
    }
    }
 
 
  /* get_condition will prefer to generate LT and GT even if the old
  /* get_condition will prefer to generate LT and GT even if the old
     comparison was against zero, so undo that canonicalization here since
     comparison was against zero, so undo that canonicalization here since
     comparisons against zero are cheaper.  */
     comparisons against zero are cheaper.  */
  if (code == LT && op1 == const1_rtx)
  if (code == LT && op1 == const1_rtx)
    code = LE, op1 = const0_rtx;
    code = LE, op1 = const0_rtx;
  else if (code == GT && op1 == constm1_rtx)
  else if (code == GT && op1 == constm1_rtx)
    code = GE, op1 = const0_rtx;
    code = GE, op1 = const0_rtx;
 
 
  if (cmode == VOIDmode)
  if (cmode == VOIDmode)
    cmode = GET_MODE (op0);
    cmode = GET_MODE (op0);
 
 
  if (swap_commutative_operands_p (op2, op3)
  if (swap_commutative_operands_p (op2, op3)
      && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
      && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
          != UNKNOWN))
          != UNKNOWN))
    {
    {
      tem = op2;
      tem = op2;
      op2 = op3;
      op2 = op3;
      op3 = tem;
      op3 = tem;
      code = reversed;
      code = reversed;
    }
    }
 
 
  if (mode == VOIDmode)
  if (mode == VOIDmode)
    mode = GET_MODE (op2);
    mode = GET_MODE (op2);
 
 
  icode = addcc_optab->handlers[(int) mode].insn_code;
  icode = addcc_optab->handlers[(int) mode].insn_code;
 
 
  if (icode == CODE_FOR_nothing)
  if (icode == CODE_FOR_nothing)
    return 0;
    return 0;
 
 
  if (!target)
  if (!target)
    target = gen_reg_rtx (mode);
    target = gen_reg_rtx (mode);
 
 
  /* If the insn doesn't accept these operands, put them in pseudos.  */
  /* If the insn doesn't accept these operands, put them in pseudos.  */
 
 
  if (!insn_data[icode].operand[0].predicate
  if (!insn_data[icode].operand[0].predicate
      (target, insn_data[icode].operand[0].mode))
      (target, insn_data[icode].operand[0].mode))
    subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
    subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
  else
  else
    subtarget = target;
    subtarget = target;
 
 
  if (!insn_data[icode].operand[2].predicate
  if (!insn_data[icode].operand[2].predicate
      (op2, insn_data[icode].operand[2].mode))
      (op2, insn_data[icode].operand[2].mode))
    op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
    op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
 
 
  if (!insn_data[icode].operand[3].predicate
  if (!insn_data[icode].operand[3].predicate
      (op3, insn_data[icode].operand[3].mode))
      (op3, insn_data[icode].operand[3].mode))
    op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3);
    op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3);
 
 
  /* Everything should now be in the suitable form, so emit the compare insn
  /* Everything should now be in the suitable form, so emit the compare insn
     and then the conditional move.  */
     and then the conditional move.  */
 
 
  comparison
  comparison
    = compare_from_rtx (op0, op1, code, unsignedp, cmode, NULL_RTX);
    = compare_from_rtx (op0, op1, code, unsignedp, cmode, NULL_RTX);
 
 
  /* ??? Watch for const0_rtx (nop) and const_true_rtx (unconditional)?  */
  /* ??? Watch for const0_rtx (nop) and const_true_rtx (unconditional)?  */
  /* We can get const0_rtx or const_true_rtx in some circumstances.  Just
  /* We can get const0_rtx or const_true_rtx in some circumstances.  Just
     return NULL and let the caller figure out how best to deal with this
     return NULL and let the caller figure out how best to deal with this
     situation.  */
     situation.  */
  if (GET_CODE (comparison) != code)
  if (GET_CODE (comparison) != code)
    return NULL_RTX;
    return NULL_RTX;
 
 
  insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
  insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
 
 
  /* If that failed, then give up.  */
  /* If that failed, then give up.  */
  if (insn == 0)
  if (insn == 0)
    return 0;
    return 0;
 
 
  emit_insn (insn);
  emit_insn (insn);
 
 
  if (subtarget != target)
  if (subtarget != target)
    convert_move (target, subtarget, 0);
    convert_move (target, subtarget, 0);
 
 
  return target;
  return target;
}
}


/* These functions attempt to generate an insn body, rather than
/* These functions attempt to generate an insn body, rather than
   emitting the insn, but if the gen function already emits them, we
   emitting the insn, but if the gen function already emits them, we
   make no attempt to turn them back into naked patterns.  */
   make no attempt to turn them back into naked patterns.  */
 
 
/* Generate and return an insn body to add Y to X.  */
/* Generate and return an insn body to add Y to X.  */
 
 
rtx
rtx
gen_add2_insn (rtx x, rtx y)
gen_add2_insn (rtx x, rtx y)
{
{
  int icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
  int icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
 
 
  gcc_assert (insn_data[icode].operand[0].predicate
  gcc_assert (insn_data[icode].operand[0].predicate
              (x, insn_data[icode].operand[0].mode));
              (x, insn_data[icode].operand[0].mode));
  gcc_assert (insn_data[icode].operand[1].predicate
  gcc_assert (insn_data[icode].operand[1].predicate
              (x, insn_data[icode].operand[1].mode));
              (x, insn_data[icode].operand[1].mode));
  gcc_assert (insn_data[icode].operand[2].predicate
  gcc_assert (insn_data[icode].operand[2].predicate
              (y, insn_data[icode].operand[2].mode));
              (y, insn_data[icode].operand[2].mode));
 
 
  return GEN_FCN (icode) (x, x, y);
  return GEN_FCN (icode) (x, x, y);
}
}
 
 
/* Generate and return an insn body to add r1 and c,
/* Generate and return an insn body to add r1 and c,
   storing the result in r0.  */
   storing the result in r0.  */
rtx
rtx
gen_add3_insn (rtx r0, rtx r1, rtx c)
gen_add3_insn (rtx r0, rtx r1, rtx c)
{
{
  int icode = (int) add_optab->handlers[(int) GET_MODE (r0)].insn_code;
  int icode = (int) add_optab->handlers[(int) GET_MODE (r0)].insn_code;
 
 
  if (icode == CODE_FOR_nothing
  if (icode == CODE_FOR_nothing
      || !(insn_data[icode].operand[0].predicate
      || !(insn_data[icode].operand[0].predicate
           (r0, insn_data[icode].operand[0].mode))
           (r0, insn_data[icode].operand[0].mode))
      || !(insn_data[icode].operand[1].predicate
      || !(insn_data[icode].operand[1].predicate
           (r1, insn_data[icode].operand[1].mode))
           (r1, insn_data[icode].operand[1].mode))
      || !(insn_data[icode].operand[2].predicate
      || !(insn_data[icode].operand[2].predicate
           (c, insn_data[icode].operand[2].mode)))
           (c, insn_data[icode].operand[2].mode)))
    return NULL_RTX;
    return NULL_RTX;
 
 
  return GEN_FCN (icode) (r0, r1, c);
  return GEN_FCN (icode) (r0, r1, c);
}
}
 
 
int
int
have_add2_insn (rtx x, rtx y)
have_add2_insn (rtx x, rtx y)
{
{
  int icode;
  int icode;
 
 
  gcc_assert (GET_MODE (x) != VOIDmode);
  gcc_assert (GET_MODE (x) != VOIDmode);
 
 
  icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
  icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
 
 
  if (icode == CODE_FOR_nothing)
  if (icode == CODE_FOR_nothing)
    return 0;
    return 0;
 
 
  if (!(insn_data[icode].operand[0].predicate
  if (!(insn_data[icode].operand[0].predicate
        (x, insn_data[icode].operand[0].mode))
        (x, insn_data[icode].operand[0].mode))
      || !(insn_data[icode].operand[1].predicate
      || !(insn_data[icode].operand[1].predicate
           (x, insn_data[icode].operand[1].mode))
           (x, insn_data[icode].operand[1].mode))
      || !(insn_data[icode].operand[2].predicate
      || !(insn_data[icode].operand[2].predicate
           (y, insn_data[icode].operand[2].mode)))
           (y, insn_data[icode].operand[2].mode)))
    return 0;
    return 0;
 
 
  return 1;
  return 1;
}
}
 
 
/* Generate and return an insn body to subtract Y from X.  */
/* Generate and return an insn body to subtract Y from X.  */
 
 
rtx
rtx
gen_sub2_insn (rtx x, rtx y)
gen_sub2_insn (rtx x, rtx y)
{
{
  int icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
  int icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
 
 
  gcc_assert (insn_data[icode].operand[0].predicate
  gcc_assert (insn_data[icode].operand[0].predicate
              (x, insn_data[icode].operand[0].mode));
              (x, insn_data[icode].operand[0].mode));
  gcc_assert (insn_data[icode].operand[1].predicate
  gcc_assert (insn_data[icode].operand[1].predicate
              (x, insn_data[icode].operand[1].mode));
              (x, insn_data[icode].operand[1].mode));
  gcc_assert  (insn_data[icode].operand[2].predicate
  gcc_assert  (insn_data[icode].operand[2].predicate
               (y, insn_data[icode].operand[2].mode));
               (y, insn_data[icode].operand[2].mode));
 
 
  return GEN_FCN (icode) (x, x, y);
  return GEN_FCN (icode) (x, x, y);
}
}
 
 
/* Generate and return an insn body to subtract r1 and c,
/* Generate and return an insn body to subtract r1 and c,
   storing the result in r0.  */
   storing the result in r0.  */
rtx
rtx
gen_sub3_insn (rtx r0, rtx r1, rtx c)
gen_sub3_insn (rtx r0, rtx r1, rtx c)
{
{
  int icode = (int) sub_optab->handlers[(int) GET_MODE (r0)].insn_code;
  int icode = (int) sub_optab->handlers[(int) GET_MODE (r0)].insn_code;
 
 
  if (icode == CODE_FOR_nothing
  if (icode == CODE_FOR_nothing
      || !(insn_data[icode].operand[0].predicate
      || !(insn_data[icode].operand[0].predicate
           (r0, insn_data[icode].operand[0].mode))
           (r0, insn_data[icode].operand[0].mode))
      || !(insn_data[icode].operand[1].predicate
      || !(insn_data[icode].operand[1].predicate
           (r1, insn_data[icode].operand[1].mode))
           (r1, insn_data[icode].operand[1].mode))
      || !(insn_data[icode].operand[2].predicate
      || !(insn_data[icode].operand[2].predicate
           (c, insn_data[icode].operand[2].mode)))
           (c, insn_data[icode].operand[2].mode)))
    return NULL_RTX;
    return NULL_RTX;
 
 
  return GEN_FCN (icode) (r0, r1, c);
  return GEN_FCN (icode) (r0, r1, c);
}
}
 
 
int
int
have_sub2_insn (rtx x, rtx y)
have_sub2_insn (rtx x, rtx y)
{
{
  int icode;
  int icode;
 
 
  gcc_assert (GET_MODE (x) != VOIDmode);
  gcc_assert (GET_MODE (x) != VOIDmode);
 
 
  icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
  icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
 
 
  if (icode == CODE_FOR_nothing)
  if (icode == CODE_FOR_nothing)
    return 0;
    return 0;
 
 
  if (!(insn_data[icode].operand[0].predicate
  if (!(insn_data[icode].operand[0].predicate
        (x, insn_data[icode].operand[0].mode))
        (x, insn_data[icode].operand[0].mode))
      || !(insn_data[icode].operand[1].predicate
      || !(insn_data[icode].operand[1].predicate
           (x, insn_data[icode].operand[1].mode))
           (x, insn_data[icode].operand[1].mode))
      || !(insn_data[icode].operand[2].predicate
      || !(insn_data[icode].operand[2].predicate
           (y, insn_data[icode].operand[2].mode)))
           (y, insn_data[icode].operand[2].mode)))
    return 0;
    return 0;
 
 
  return 1;
  return 1;
}
}
 
 
/* Generate the body of an instruction to copy Y into X.
/* Generate the body of an instruction to copy Y into X.
   It may be a list of insns, if one insn isn't enough.  */
   It may be a list of insns, if one insn isn't enough.  */
 
 
rtx
rtx
gen_move_insn (rtx x, rtx y)
gen_move_insn (rtx x, rtx y)
{
{
  rtx seq;
  rtx seq;
 
 
  start_sequence ();
  start_sequence ();
  emit_move_insn_1 (x, y);
  emit_move_insn_1 (x, y);
  seq = get_insns ();
  seq = get_insns ();
  end_sequence ();
  end_sequence ();
  return seq;
  return seq;
}
}


/* Return the insn code used to extend FROM_MODE to TO_MODE.
/* Return the insn code used to extend FROM_MODE to TO_MODE.
   UNSIGNEDP specifies zero-extension instead of sign-extension.  If
   UNSIGNEDP specifies zero-extension instead of sign-extension.  If
   no such operation exists, CODE_FOR_nothing will be returned.  */
   no such operation exists, CODE_FOR_nothing will be returned.  */
 
 
enum insn_code
enum insn_code
can_extend_p (enum machine_mode to_mode, enum machine_mode from_mode,
can_extend_p (enum machine_mode to_mode, enum machine_mode from_mode,
              int unsignedp)
              int unsignedp)
{
{
  convert_optab tab;
  convert_optab tab;
#ifdef HAVE_ptr_extend
#ifdef HAVE_ptr_extend
  if (unsignedp < 0)
  if (unsignedp < 0)
    return CODE_FOR_ptr_extend;
    return CODE_FOR_ptr_extend;
#endif
#endif
 
 
  tab = unsignedp ? zext_optab : sext_optab;
  tab = unsignedp ? zext_optab : sext_optab;
  return tab->handlers[to_mode][from_mode].insn_code;
  return tab->handlers[to_mode][from_mode].insn_code;
}
}
 
 
/* Generate the body of an insn to extend Y (with mode MFROM)
/* Generate the body of an insn to extend Y (with mode MFROM)
   into X (with mode MTO).  Do zero-extension if UNSIGNEDP is nonzero.  */
   into X (with mode MTO).  Do zero-extension if UNSIGNEDP is nonzero.  */
 
 
rtx
rtx
gen_extend_insn (rtx x, rtx y, enum machine_mode mto,
gen_extend_insn (rtx x, rtx y, enum machine_mode mto,
                 enum machine_mode mfrom, int unsignedp)
                 enum machine_mode mfrom, int unsignedp)
{
{
  enum insn_code icode = can_extend_p (mto, mfrom, unsignedp);
  enum insn_code icode = can_extend_p (mto, mfrom, unsignedp);
  return GEN_FCN (icode) (x, y);
  return GEN_FCN (icode) (x, y);
}
}


/* can_fix_p and can_float_p say whether the target machine
/* can_fix_p and can_float_p say whether the target machine
   can directly convert a given fixed point type to
   can directly convert a given fixed point type to
   a given floating point type, or vice versa.
   a given floating point type, or vice versa.
   The returned value is the CODE_FOR_... value to use,
   The returned value is the CODE_FOR_... value to use,
   or CODE_FOR_nothing if these modes cannot be directly converted.
   or CODE_FOR_nothing if these modes cannot be directly converted.
 
 
   *TRUNCP_PTR is set to 1 if it is necessary to output
   *TRUNCP_PTR is set to 1 if it is necessary to output
   an explicit FTRUNC insn before the fix insn; otherwise 0.  */
   an explicit FTRUNC insn before the fix insn; otherwise 0.  */
 
 
static enum insn_code
static enum insn_code
can_fix_p (enum machine_mode fixmode, enum machine_mode fltmode,
can_fix_p (enum machine_mode fixmode, enum machine_mode fltmode,
           int unsignedp, int *truncp_ptr)
           int unsignedp, int *truncp_ptr)
{
{
  convert_optab tab;
  convert_optab tab;
  enum insn_code icode;
  enum insn_code icode;
 
 
  tab = unsignedp ? ufixtrunc_optab : sfixtrunc_optab;
  tab = unsignedp ? ufixtrunc_optab : sfixtrunc_optab;
  icode = tab->handlers[fixmode][fltmode].insn_code;
  icode = tab->handlers[fixmode][fltmode].insn_code;
  if (icode != CODE_FOR_nothing)
  if (icode != CODE_FOR_nothing)
    {
    {
      *truncp_ptr = 0;
      *truncp_ptr = 0;
      return icode;
      return icode;
    }
    }
 
 
  /* FIXME: This requires a port to define both FIX and FTRUNC pattern
  /* FIXME: This requires a port to define both FIX and FTRUNC pattern
     for this to work. We need to rework the fix* and ftrunc* patterns
     for this to work. We need to rework the fix* and ftrunc* patterns
     and documentation.  */
     and documentation.  */
  tab = unsignedp ? ufix_optab : sfix_optab;
  tab = unsignedp ? ufix_optab : sfix_optab;
  icode = tab->handlers[fixmode][fltmode].insn_code;
  icode = tab->handlers[fixmode][fltmode].insn_code;
  if (icode != CODE_FOR_nothing
  if (icode != CODE_FOR_nothing
      && ftrunc_optab->handlers[fltmode].insn_code != CODE_FOR_nothing)
      && ftrunc_optab->handlers[fltmode].insn_code != CODE_FOR_nothing)
    {
    {
      *truncp_ptr = 1;
      *truncp_ptr = 1;
      return icode;
      return icode;
    }
    }
 
 
  *truncp_ptr = 0;
  *truncp_ptr = 0;
  return CODE_FOR_nothing;
  return CODE_FOR_nothing;
}
}
 
 
static enum insn_code
static enum insn_code
can_float_p (enum machine_mode fltmode, enum machine_mode fixmode,
can_float_p (enum machine_mode fltmode, enum machine_mode fixmode,
             int unsignedp)
             int unsignedp)
{
{
  convert_optab tab;
  convert_optab tab;
 
 
  tab = unsignedp ? ufloat_optab : sfloat_optab;
  tab = unsignedp ? ufloat_optab : sfloat_optab;
  return tab->handlers[fltmode][fixmode].insn_code;
  return tab->handlers[fltmode][fixmode].insn_code;
}
}


/* Generate code to convert FROM to floating point
/* Generate code to convert FROM to floating point
   and store in TO.  FROM must be fixed point and not VOIDmode.
   and store in TO.  FROM must be fixed point and not VOIDmode.
   UNSIGNEDP nonzero means regard FROM as unsigned.
   UNSIGNEDP nonzero means regard FROM as unsigned.
   Normally this is done by correcting the final value
   Normally this is done by correcting the final value
   if it is negative.  */
   if it is negative.  */
 
 
void
void
expand_float (rtx to, rtx from, int unsignedp)
expand_float (rtx to, rtx from, int unsignedp)
{
{
  enum insn_code icode;
  enum insn_code icode;
  rtx target = to;
  rtx target = to;
  enum machine_mode fmode, imode;
  enum machine_mode fmode, imode;
  bool can_do_signed = false;
  bool can_do_signed = false;
 
 
  /* Crash now, because we won't be able to decide which mode to use.  */
  /* Crash now, because we won't be able to decide which mode to use.  */
  gcc_assert (GET_MODE (from) != VOIDmode);
  gcc_assert (GET_MODE (from) != VOIDmode);
 
 
  /* Look for an insn to do the conversion.  Do it in the specified
  /* Look for an insn to do the conversion.  Do it in the specified
     modes if possible; otherwise convert either input, output or both to
     modes if possible; otherwise convert either input, output or both to
     wider mode.  If the integer mode is wider than the mode of FROM,
     wider mode.  If the integer mode is wider than the mode of FROM,
     we can do the conversion signed even if the input is unsigned.  */
     we can do the conversion signed even if the input is unsigned.  */
 
 
  for (fmode = GET_MODE (to); fmode != VOIDmode;
  for (fmode = GET_MODE (to); fmode != VOIDmode;
       fmode = GET_MODE_WIDER_MODE (fmode))
       fmode = GET_MODE_WIDER_MODE (fmode))
    for (imode = GET_MODE (from); imode != VOIDmode;
    for (imode = GET_MODE (from); imode != VOIDmode;
         imode = GET_MODE_WIDER_MODE (imode))
         imode = GET_MODE_WIDER_MODE (imode))
      {
      {
        int doing_unsigned = unsignedp;
        int doing_unsigned = unsignedp;
 
 
        if (fmode != GET_MODE (to)
        if (fmode != GET_MODE (to)
            && significand_size (fmode) < GET_MODE_BITSIZE (GET_MODE (from)))
            && significand_size (fmode) < GET_MODE_BITSIZE (GET_MODE (from)))
          continue;
          continue;
 
 
        icode = can_float_p (fmode, imode, unsignedp);
        icode = can_float_p (fmode, imode, unsignedp);
        if (icode == CODE_FOR_nothing && unsignedp)
        if (icode == CODE_FOR_nothing && unsignedp)
          {
          {
            enum insn_code scode = can_float_p (fmode, imode, 0);
            enum insn_code scode = can_float_p (fmode, imode, 0);
            if (scode != CODE_FOR_nothing)
            if (scode != CODE_FOR_nothing)
              can_do_signed = true;
              can_do_signed = true;
            if (imode != GET_MODE (from))
            if (imode != GET_MODE (from))
              icode = scode, doing_unsigned = 0;
              icode = scode, doing_unsigned = 0;
          }
          }
 
 
        if (icode != CODE_FOR_nothing)
        if (icode != CODE_FOR_nothing)
          {
          {
            if (imode != GET_MODE (from))
            if (imode != GET_MODE (from))
              from = convert_to_mode (imode, from, unsignedp);
              from = convert_to_mode (imode, from, unsignedp);
 
 
            if (fmode != GET_MODE (to))
            if (fmode != GET_MODE (to))
              target = gen_reg_rtx (fmode);
              target = gen_reg_rtx (fmode);
 
 
            emit_unop_insn (icode, target, from,
            emit_unop_insn (icode, target, from,
                            doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
                            doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
 
 
            if (target != to)
            if (target != to)
              convert_move (to, target, 0);
              convert_move (to, target, 0);
            return;
            return;
          }
          }
      }
      }
 
 
  /* Unsigned integer, and no way to convert directly.  For binary
  /* Unsigned integer, and no way to convert directly.  For binary
     floating point modes, convert as signed, then conditionally adjust
     floating point modes, convert as signed, then conditionally adjust
     the result.  */
     the result.  */
  if (unsignedp && can_do_signed && !DECIMAL_FLOAT_MODE_P (GET_MODE (to)))
  if (unsignedp && can_do_signed && !DECIMAL_FLOAT_MODE_P (GET_MODE (to)))
    {
    {
      rtx label = gen_label_rtx ();
      rtx label = gen_label_rtx ();
      rtx temp;
      rtx temp;
      REAL_VALUE_TYPE offset;
      REAL_VALUE_TYPE offset;
 
 
      /* Look for a usable floating mode FMODE wider than the source and at
      /* Look for a usable floating mode FMODE wider than the source and at
         least as wide as the target.  Using FMODE will avoid rounding woes
         least as wide as the target.  Using FMODE will avoid rounding woes
         with unsigned values greater than the signed maximum value.  */
         with unsigned values greater than the signed maximum value.  */
 
 
      for (fmode = GET_MODE (to);  fmode != VOIDmode;
      for (fmode = GET_MODE (to);  fmode != VOIDmode;
           fmode = GET_MODE_WIDER_MODE (fmode))
           fmode = GET_MODE_WIDER_MODE (fmode))
        if (GET_MODE_BITSIZE (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
        if (GET_MODE_BITSIZE (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
            && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
            && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
          break;
          break;
 
 
      if (fmode == VOIDmode)
      if (fmode == VOIDmode)
        {
        {
          /* There is no such mode.  Pretend the target is wide enough.  */
          /* There is no such mode.  Pretend the target is wide enough.  */
          fmode = GET_MODE (to);
          fmode = GET_MODE (to);
 
 
          /* Avoid double-rounding when TO is narrower than FROM.  */
          /* Avoid double-rounding when TO is narrower than FROM.  */
          if ((significand_size (fmode) + 1)
          if ((significand_size (fmode) + 1)
              < GET_MODE_BITSIZE (GET_MODE (from)))
              < GET_MODE_BITSIZE (GET_MODE (from)))
            {
            {
              rtx temp1;
              rtx temp1;
              rtx neglabel = gen_label_rtx ();
              rtx neglabel = gen_label_rtx ();
 
 
              /* Don't use TARGET if it isn't a register, is a hard register,
              /* Don't use TARGET if it isn't a register, is a hard register,
                 or is the wrong mode.  */
                 or is the wrong mode.  */
              if (!REG_P (target)
              if (!REG_P (target)
                  || REGNO (target) < FIRST_PSEUDO_REGISTER
                  || REGNO (target) < FIRST_PSEUDO_REGISTER
                  || GET_MODE (target) != fmode)
                  || GET_MODE (target) != fmode)
                target = gen_reg_rtx (fmode);
                target = gen_reg_rtx (fmode);
 
 
              imode = GET_MODE (from);
              imode = GET_MODE (from);
              do_pending_stack_adjust ();
              do_pending_stack_adjust ();
 
 
              /* Test whether the sign bit is set.  */
              /* Test whether the sign bit is set.  */
              emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
              emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
                                       0, neglabel);
                                       0, neglabel);
 
 
              /* The sign bit is not set.  Convert as signed.  */
              /* The sign bit is not set.  Convert as signed.  */
              expand_float (target, from, 0);
              expand_float (target, from, 0);
              emit_jump_insn (gen_jump (label));
              emit_jump_insn (gen_jump (label));
              emit_barrier ();
              emit_barrier ();
 
 
              /* The sign bit is set.
              /* The sign bit is set.
                 Convert to a usable (positive signed) value by shifting right
                 Convert to a usable (positive signed) value by shifting right
                 one bit, while remembering if a nonzero bit was shifted
                 one bit, while remembering if a nonzero bit was shifted
                 out; i.e., compute  (from & 1) | (from >> 1).  */
                 out; i.e., compute  (from & 1) | (from >> 1).  */
 
 
              emit_label (neglabel);
              emit_label (neglabel);
              temp = expand_binop (imode, and_optab, from, const1_rtx,
              temp = expand_binop (imode, and_optab, from, const1_rtx,
                                   NULL_RTX, 1, OPTAB_LIB_WIDEN);
                                   NULL_RTX, 1, OPTAB_LIB_WIDEN);
              temp1 = expand_shift (RSHIFT_EXPR, imode, from, integer_one_node,
              temp1 = expand_shift (RSHIFT_EXPR, imode, from, integer_one_node,
                                    NULL_RTX, 1);
                                    NULL_RTX, 1);
              temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
              temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
                                   OPTAB_LIB_WIDEN);
                                   OPTAB_LIB_WIDEN);
              expand_float (target, temp, 0);
              expand_float (target, temp, 0);
 
 
              /* Multiply by 2 to undo the shift above.  */
              /* Multiply by 2 to undo the shift above.  */
              temp = expand_binop (fmode, add_optab, target, target,
              temp = expand_binop (fmode, add_optab, target, target,
                                   target, 0, OPTAB_LIB_WIDEN);
                                   target, 0, OPTAB_LIB_WIDEN);
              if (temp != target)
              if (temp != target)
                emit_move_insn (target, temp);
                emit_move_insn (target, temp);
 
 
              do_pending_stack_adjust ();
              do_pending_stack_adjust ();
              emit_label (label);
              emit_label (label);
              goto done;
              goto done;
            }
            }
        }
        }
 
 
      /* If we are about to do some arithmetic to correct for an
      /* If we are about to do some arithmetic to correct for an
         unsigned operand, do it in a pseudo-register.  */
         unsigned operand, do it in a pseudo-register.  */
 
 
      if (GET_MODE (to) != fmode
      if (GET_MODE (to) != fmode
          || !REG_P (to) || REGNO (to) < FIRST_PSEUDO_REGISTER)
          || !REG_P (to) || REGNO (to) < FIRST_PSEUDO_REGISTER)
        target = gen_reg_rtx (fmode);
        target = gen_reg_rtx (fmode);
 
 
      /* Convert as signed integer to floating.  */
      /* Convert as signed integer to floating.  */
      expand_float (target, from, 0);
      expand_float (target, from, 0);
 
 
      /* If FROM is negative (and therefore TO is negative),
      /* If FROM is negative (and therefore TO is negative),
         correct its value by 2**bitwidth.  */
         correct its value by 2**bitwidth.  */
 
 
      do_pending_stack_adjust ();
      do_pending_stack_adjust ();
      emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
      emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
                               0, label);
                               0, label);
 
 
 
 
      real_2expN (&offset, GET_MODE_BITSIZE (GET_MODE (from)));
      real_2expN (&offset, GET_MODE_BITSIZE (GET_MODE (from)));
      temp = expand_binop (fmode, add_optab, target,
      temp = expand_binop (fmode, add_optab, target,
                           CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
                           CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
                           target, 0, OPTAB_LIB_WIDEN);
                           target, 0, OPTAB_LIB_WIDEN);
      if (temp != target)
      if (temp != target)
        emit_move_insn (target, temp);
        emit_move_insn (target, temp);
 
 
      do_pending_stack_adjust ();
      do_pending_stack_adjust ();
      emit_label (label);
      emit_label (label);
      goto done;
      goto done;
    }
    }
 
 
  /* No hardware instruction available; call a library routine.  */
  /* No hardware instruction available; call a library routine.  */
    {
    {
      rtx libfunc;
      rtx libfunc;
      rtx insns;
      rtx insns;
      rtx value;
      rtx value;
      convert_optab tab = unsignedp ? ufloat_optab : sfloat_optab;
      convert_optab tab = unsignedp ? ufloat_optab : sfloat_optab;
 
 
      if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
      if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
        from = convert_to_mode (SImode, from, unsignedp);
        from = convert_to_mode (SImode, from, unsignedp);
 
 
      libfunc = tab->handlers[GET_MODE (to)][GET_MODE (from)].libfunc;
      libfunc = tab->handlers[GET_MODE (to)][GET_MODE (from)].libfunc;
      gcc_assert (libfunc);
      gcc_assert (libfunc);
 
 
      start_sequence ();
      start_sequence ();
 
 
      value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
      value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
                                       GET_MODE (to), 1, from,
                                       GET_MODE (to), 1, from,
                                       GET_MODE (from));
                                       GET_MODE (from));
      insns = get_insns ();
      insns = get_insns ();
      end_sequence ();
      end_sequence ();
 
 
      emit_libcall_block (insns, target, value,
      emit_libcall_block (insns, target, value,
                          gen_rtx_FLOAT (GET_MODE (to), from));
                          gen_rtx_FLOAT (GET_MODE (to), from));
    }
    }
 
 
 done:
 done:
 
 
  /* Copy result to requested destination
  /* Copy result to requested destination
     if we have been computing in a temp location.  */
     if we have been computing in a temp location.  */
 
 
  if (target != to)
  if (target != to)
    {
    {
      if (GET_MODE (target) == GET_MODE (to))
      if (GET_MODE (target) == GET_MODE (to))
        emit_move_insn (to, target);
        emit_move_insn (to, target);
      else
      else
        convert_move (to, target, 0);
        convert_move (to, target, 0);
    }
    }
}
}


/* Generate code to convert FROM to fixed point and store in TO.  FROM
/* Generate code to convert FROM to fixed point and store in TO.  FROM
   must be floating point.  */
   must be floating point.  */
 
 
void
void
expand_fix (rtx to, rtx from, int unsignedp)
expand_fix (rtx to, rtx from, int unsignedp)
{
{
  enum insn_code icode;
  enum insn_code icode;
  rtx target = to;
  rtx target = to;
  enum machine_mode fmode, imode;
  enum machine_mode fmode, imode;
  int must_trunc = 0;
  int must_trunc = 0;
 
 
  /* We first try to find a pair of modes, one real and one integer, at
  /* We first try to find a pair of modes, one real and one integer, at
     least as wide as FROM and TO, respectively, in which we can open-code
     least as wide as FROM and TO, respectively, in which we can open-code
     this conversion.  If the integer mode is wider than the mode of TO,
     this conversion.  If the integer mode is wider than the mode of TO,
     we can do the conversion either signed or unsigned.  */
     we can do the conversion either signed or unsigned.  */
 
 
  for (fmode = GET_MODE (from); fmode != VOIDmode;
  for (fmode = GET_MODE (from); fmode != VOIDmode;
       fmode = GET_MODE_WIDER_MODE (fmode))
       fmode = GET_MODE_WIDER_MODE (fmode))
    for (imode = GET_MODE (to); imode != VOIDmode;
    for (imode = GET_MODE (to); imode != VOIDmode;
         imode = GET_MODE_WIDER_MODE (imode))
         imode = GET_MODE_WIDER_MODE (imode))
      {
      {
        int doing_unsigned = unsignedp;
        int doing_unsigned = unsignedp;
 
 
        icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
        icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
        if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
        if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
          icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
          icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
 
 
        if (icode != CODE_FOR_nothing)
        if (icode != CODE_FOR_nothing)
          {
          {
            if (fmode != GET_MODE (from))
            if (fmode != GET_MODE (from))
              from = convert_to_mode (fmode, from, 0);
              from = convert_to_mode (fmode, from, 0);
 
 
            if (must_trunc)
            if (must_trunc)
              {
              {
                rtx temp = gen_reg_rtx (GET_MODE (from));
                rtx temp = gen_reg_rtx (GET_MODE (from));
                from = expand_unop (GET_MODE (from), ftrunc_optab, from,
                from = expand_unop (GET_MODE (from), ftrunc_optab, from,
                                    temp, 0);
                                    temp, 0);
              }
              }
 
 
            if (imode != GET_MODE (to))
            if (imode != GET_MODE (to))
              target = gen_reg_rtx (imode);
              target = gen_reg_rtx (imode);
 
 
            emit_unop_insn (icode, target, from,
            emit_unop_insn (icode, target, from,
                            doing_unsigned ? UNSIGNED_FIX : FIX);
                            doing_unsigned ? UNSIGNED_FIX : FIX);
            if (target != to)
            if (target != to)
              convert_move (to, target, unsignedp);
              convert_move (to, target, unsignedp);
            return;
            return;
          }
          }
      }
      }
 
 
  /* For an unsigned conversion, there is one more way to do it.
  /* For an unsigned conversion, there is one more way to do it.
     If we have a signed conversion, we generate code that compares
     If we have a signed conversion, we generate code that compares
     the real value to the largest representable positive number.  If if
     the real value to the largest representable positive number.  If if
     is smaller, the conversion is done normally.  Otherwise, subtract
     is smaller, the conversion is done normally.  Otherwise, subtract
     one plus the highest signed number, convert, and add it back.
     one plus the highest signed number, convert, and add it back.
 
 
     We only need to check all real modes, since we know we didn't find
     We only need to check all real modes, since we know we didn't find
     anything with a wider integer mode.
     anything with a wider integer mode.
 
 
     This code used to extend FP value into mode wider than the destination.
     This code used to extend FP value into mode wider than the destination.
     This is not needed.  Consider, for instance conversion from SFmode
     This is not needed.  Consider, for instance conversion from SFmode
     into DImode.
     into DImode.
 
 
     The hot path through the code is dealing with inputs smaller than 2^63
     The hot path through the code is dealing with inputs smaller than 2^63
     and doing just the conversion, so there is no bits to lose.
     and doing just the conversion, so there is no bits to lose.
 
 
     In the other path we know the value is positive in the range 2^63..2^64-1
     In the other path we know the value is positive in the range 2^63..2^64-1
     inclusive.  (as for other imput overflow happens and result is undefined)
     inclusive.  (as for other imput overflow happens and result is undefined)
     So we know that the most important bit set in mantissa corresponds to
     So we know that the most important bit set in mantissa corresponds to
     2^63.  The subtraction of 2^63 should not generate any rounding as it
     2^63.  The subtraction of 2^63 should not generate any rounding as it
     simply clears out that bit.  The rest is trivial.  */
     simply clears out that bit.  The rest is trivial.  */
 
 
  if (unsignedp && GET_MODE_BITSIZE (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
  if (unsignedp && GET_MODE_BITSIZE (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
    for (fmode = GET_MODE (from); fmode != VOIDmode;
    for (fmode = GET_MODE (from); fmode != VOIDmode;
         fmode = GET_MODE_WIDER_MODE (fmode))
         fmode = GET_MODE_WIDER_MODE (fmode))
      if (CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0,
      if (CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0,
                                         &must_trunc))
                                         &must_trunc))
        {
        {
          int bitsize;
          int bitsize;
          REAL_VALUE_TYPE offset;
          REAL_VALUE_TYPE offset;
          rtx limit, lab1, lab2, insn;
          rtx limit, lab1, lab2, insn;
 
 
          bitsize = GET_MODE_BITSIZE (GET_MODE (to));
          bitsize = GET_MODE_BITSIZE (GET_MODE (to));
          real_2expN (&offset, bitsize - 1);
          real_2expN (&offset, bitsize - 1);
          limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
          limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
          lab1 = gen_label_rtx ();
          lab1 = gen_label_rtx ();
          lab2 = gen_label_rtx ();
          lab2 = gen_label_rtx ();
 
 
          if (fmode != GET_MODE (from))
          if (fmode != GET_MODE (from))
            from = convert_to_mode (fmode, from, 0);
            from = convert_to_mode (fmode, from, 0);
 
 
          /* See if we need to do the subtraction.  */
          /* See if we need to do the subtraction.  */
          do_pending_stack_adjust ();
          do_pending_stack_adjust ();
          emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
          emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
                                   0, lab1);
                                   0, lab1);
 
 
          /* If not, do the signed "fix" and branch around fixup code.  */
          /* If not, do the signed "fix" and branch around fixup code.  */
          expand_fix (to, from, 0);
          expand_fix (to, from, 0);
          emit_jump_insn (gen_jump (lab2));
          emit_jump_insn (gen_jump (lab2));
          emit_barrier ();
          emit_barrier ();
 
 
          /* Otherwise, subtract 2**(N-1), convert to signed number,
          /* Otherwise, subtract 2**(N-1), convert to signed number,
             then add 2**(N-1).  Do the addition using XOR since this
             then add 2**(N-1).  Do the addition using XOR since this
             will often generate better code.  */
             will often generate better code.  */
          emit_label (lab1);
          emit_label (lab1);
          target = expand_binop (GET_MODE (from), sub_optab, from, limit,
          target = expand_binop (GET_MODE (from), sub_optab, from, limit,
                                 NULL_RTX, 0, OPTAB_LIB_WIDEN);
                                 NULL_RTX, 0, OPTAB_LIB_WIDEN);
          expand_fix (to, target, 0);
          expand_fix (to, target, 0);
          target = expand_binop (GET_MODE (to), xor_optab, to,
          target = expand_binop (GET_MODE (to), xor_optab, to,
                                 gen_int_mode
                                 gen_int_mode
                                 ((HOST_WIDE_INT) 1 << (bitsize - 1),
                                 ((HOST_WIDE_INT) 1 << (bitsize - 1),
                                  GET_MODE (to)),
                                  GET_MODE (to)),
                                 to, 1, OPTAB_LIB_WIDEN);
                                 to, 1, OPTAB_LIB_WIDEN);
 
 
          if (target != to)
          if (target != to)
            emit_move_insn (to, target);
            emit_move_insn (to, target);
 
 
          emit_label (lab2);
          emit_label (lab2);
 
 
          if (mov_optab->handlers[(int) GET_MODE (to)].insn_code
          if (mov_optab->handlers[(int) GET_MODE (to)].insn_code
              != CODE_FOR_nothing)
              != CODE_FOR_nothing)
            {
            {
              /* Make a place for a REG_NOTE and add it.  */
              /* Make a place for a REG_NOTE and add it.  */
              insn = emit_move_insn (to, to);
              insn = emit_move_insn (to, to);
              set_unique_reg_note (insn,
              set_unique_reg_note (insn,
                                   REG_EQUAL,
                                   REG_EQUAL,
                                   gen_rtx_fmt_e (UNSIGNED_FIX,
                                   gen_rtx_fmt_e (UNSIGNED_FIX,
                                                  GET_MODE (to),
                                                  GET_MODE (to),
                                                  copy_rtx (from)));
                                                  copy_rtx (from)));
            }
            }
 
 
          return;
          return;
        }
        }
 
 
  /* We can't do it with an insn, so use a library call.  But first ensure
  /* We can't do it with an insn, so use a library call.  But first ensure
     that the mode of TO is at least as wide as SImode, since those are the
     that the mode of TO is at least as wide as SImode, since those are the
     only library calls we know about.  */
     only library calls we know about.  */
 
 
  if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
  if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
    {
    {
      target = gen_reg_rtx (SImode);
      target = gen_reg_rtx (SImode);
 
 
      expand_fix (target, from, unsignedp);
      expand_fix (target, from, unsignedp);
    }
    }
  else
  else
    {
    {
      rtx insns;
      rtx insns;
      rtx value;
      rtx value;
      rtx libfunc;
      rtx libfunc;
 
 
      convert_optab tab = unsignedp ? ufix_optab : sfix_optab;
      convert_optab tab = unsignedp ? ufix_optab : sfix_optab;
      libfunc = tab->handlers[GET_MODE (to)][GET_MODE (from)].libfunc;
      libfunc = tab->handlers[GET_MODE (to)][GET_MODE (from)].libfunc;
      gcc_assert (libfunc);
      gcc_assert (libfunc);
 
 
      start_sequence ();
      start_sequence ();
 
 
      value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
      value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
                                       GET_MODE (to), 1, from,
                                       GET_MODE (to), 1, from,
                                       GET_MODE (from));
                                       GET_MODE (from));
      insns = get_insns ();
      insns = get_insns ();
      end_sequence ();
      end_sequence ();
 
 
      emit_libcall_block (insns, target, value,
      emit_libcall_block (insns, target, value,
                          gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
                          gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
                                         GET_MODE (to), from));
                                         GET_MODE (to), from));
    }
    }
 
 
  if (target != to)
  if (target != to)
    {
    {
      if (GET_MODE (to) == GET_MODE (target))
      if (GET_MODE (to) == GET_MODE (target))
        emit_move_insn (to, target);
        emit_move_insn (to, target);
      else
      else
        convert_move (to, target, 0);
        convert_move (to, target, 0);
    }
    }
}
}


/* Report whether we have an instruction to perform the operation
/* Report whether we have an instruction to perform the operation
   specified by CODE on operands of mode MODE.  */
   specified by CODE on operands of mode MODE.  */
int
int
have_insn_for (enum rtx_code code, enum machine_mode mode)
have_insn_for (enum rtx_code code, enum machine_mode mode)
{
{
  return (code_to_optab[(int) code] != 0
  return (code_to_optab[(int) code] != 0
          && (code_to_optab[(int) code]->handlers[(int) mode].insn_code
          && (code_to_optab[(int) code]->handlers[(int) mode].insn_code
              != CODE_FOR_nothing));
              != CODE_FOR_nothing));
}
}
 
 
/* Create a blank optab.  */
/* Create a blank optab.  */
static optab
static optab
new_optab (void)
new_optab (void)
{
{
  int i;
  int i;
  optab op = ggc_alloc (sizeof (struct optab));
  optab op = ggc_alloc (sizeof (struct optab));
  for (i = 0; i < NUM_MACHINE_MODES; i++)
  for (i = 0; i < NUM_MACHINE_MODES; i++)
    {
    {
      op->handlers[i].insn_code = CODE_FOR_nothing;
      op->handlers[i].insn_code = CODE_FOR_nothing;
      op->handlers[i].libfunc = 0;
      op->handlers[i].libfunc = 0;
    }
    }
 
 
  return op;
  return op;
}
}
 
 
static convert_optab
static convert_optab
new_convert_optab (void)
new_convert_optab (void)
{
{
  int i, j;
  int i, j;
  convert_optab op = ggc_alloc (sizeof (struct convert_optab));
  convert_optab op = ggc_alloc (sizeof (struct convert_optab));
  for (i = 0; i < NUM_MACHINE_MODES; i++)
  for (i = 0; i < NUM_MACHINE_MODES; i++)
    for (j = 0; j < NUM_MACHINE_MODES; j++)
    for (j = 0; j < NUM_MACHINE_MODES; j++)
      {
      {
        op->handlers[i][j].insn_code = CODE_FOR_nothing;
        op->handlers[i][j].insn_code = CODE_FOR_nothing;
        op->handlers[i][j].libfunc = 0;
        op->handlers[i][j].libfunc = 0;
      }
      }
  return op;
  return op;
}
}
 
 
/* Same, but fill in its code as CODE, and write it into the
/* Same, but fill in its code as CODE, and write it into the
   code_to_optab table.  */
   code_to_optab table.  */
static inline optab
static inline optab
init_optab (enum rtx_code code)
init_optab (enum rtx_code code)
{
{
  optab op = new_optab ();
  optab op = new_optab ();
  op->code = code;
  op->code = code;
  code_to_optab[(int) code] = op;
  code_to_optab[(int) code] = op;
  return op;
  return op;
}
}
 
 
/* Same, but fill in its code as CODE, and do _not_ write it into
/* Same, but fill in its code as CODE, and do _not_ write it into
   the code_to_optab table.  */
   the code_to_optab table.  */
static inline optab
static inline optab
init_optabv (enum rtx_code code)
init_optabv (enum rtx_code code)
{
{
  optab op = new_optab ();
  optab op = new_optab ();
  op->code = code;
  op->code = code;
  return op;
  return op;
}
}
 
 
/* Conversion optabs never go in the code_to_optab table.  */
/* Conversion optabs never go in the code_to_optab table.  */
static inline convert_optab
static inline convert_optab
init_convert_optab (enum rtx_code code)
init_convert_optab (enum rtx_code code)
{
{
  convert_optab op = new_convert_optab ();
  convert_optab op = new_convert_optab ();
  op->code = code;
  op->code = code;
  return op;
  return op;
}
}
 
 
/* Initialize the libfunc fields of an entire group of entries in some
/* Initialize the libfunc fields of an entire group of entries in some
   optab.  Each entry is set equal to a string consisting of a leading
   optab.  Each entry is set equal to a string consisting of a leading
   pair of underscores followed by a generic operation name followed by
   pair of underscores followed by a generic operation name followed by
   a mode name (downshifted to lowercase) followed by a single character
   a mode name (downshifted to lowercase) followed by a single character
   representing the number of operands for the given operation (which is
   representing the number of operands for the given operation (which is
   usually one of the characters '2', '3', or '4').
   usually one of the characters '2', '3', or '4').
 
 
   OPTABLE is the table in which libfunc fields are to be initialized.
   OPTABLE is the table in which libfunc fields are to be initialized.
   FIRST_MODE is the first machine mode index in the given optab to
   FIRST_MODE is the first machine mode index in the given optab to
     initialize.
     initialize.
   LAST_MODE is the last machine mode index in the given optab to
   LAST_MODE is the last machine mode index in the given optab to
     initialize.
     initialize.
   OPNAME is the generic (string) name of the operation.
   OPNAME is the generic (string) name of the operation.
   SUFFIX is the character which specifies the number of operands for
   SUFFIX is the character which specifies the number of operands for
     the given generic operation.
     the given generic operation.
*/
*/
 
 
static void
static void
init_libfuncs (optab optable, int first_mode, int last_mode,
init_libfuncs (optab optable, int first_mode, int last_mode,
               const char *opname, int suffix)
               const char *opname, int suffix)
{
{
  int mode;
  int mode;
  unsigned opname_len = strlen (opname);
  unsigned opname_len = strlen (opname);
 
 
  for (mode = first_mode; (int) mode <= (int) last_mode;
  for (mode = first_mode; (int) mode <= (int) last_mode;
       mode = (enum machine_mode) ((int) mode + 1))
       mode = (enum machine_mode) ((int) mode + 1))
    {
    {
      const char *mname = GET_MODE_NAME (mode);
      const char *mname = GET_MODE_NAME (mode);
      unsigned mname_len = strlen (mname);
      unsigned mname_len = strlen (mname);
      char *libfunc_name = alloca (2 + opname_len + mname_len + 1 + 1);
      char *libfunc_name = alloca (2 + opname_len + mname_len + 1 + 1);
      char *p;
      char *p;
      const char *q;
      const char *q;
 
 
      p = libfunc_name;
      p = libfunc_name;
      *p++ = '_';
      *p++ = '_';
      *p++ = '_';
      *p++ = '_';
      for (q = opname; *q; )
      for (q = opname; *q; )
        *p++ = *q++;
        *p++ = *q++;
      for (q = mname; *q; q++)
      for (q = mname; *q; q++)
        *p++ = TOLOWER (*q);
        *p++ = TOLOWER (*q);
      *p++ = suffix;
      *p++ = suffix;
      *p = '\0';
      *p = '\0';
 
 
      optable->handlers[(int) mode].libfunc
      optable->handlers[(int) mode].libfunc
        = init_one_libfunc (ggc_alloc_string (libfunc_name, p - libfunc_name));
        = init_one_libfunc (ggc_alloc_string (libfunc_name, p - libfunc_name));
    }
    }
}
}
 
 
/* Initialize the libfunc fields of an entire group of entries in some
/* Initialize the libfunc fields of an entire group of entries in some
   optab which correspond to all integer mode operations.  The parameters
   optab which correspond to all integer mode operations.  The parameters
   have the same meaning as similarly named ones for the `init_libfuncs'
   have the same meaning as similarly named ones for the `init_libfuncs'
   routine.  (See above).  */
   routine.  (See above).  */
 
 
static void
static void
init_integral_libfuncs (optab optable, const char *opname, int suffix)
init_integral_libfuncs (optab optable, const char *opname, int suffix)
{
{
  int maxsize = 2*BITS_PER_WORD;
  int maxsize = 2*BITS_PER_WORD;
  if (maxsize < LONG_LONG_TYPE_SIZE)
  if (maxsize < LONG_LONG_TYPE_SIZE)
    maxsize = LONG_LONG_TYPE_SIZE;
    maxsize = LONG_LONG_TYPE_SIZE;
  init_libfuncs (optable, word_mode,
  init_libfuncs (optable, word_mode,
                 mode_for_size (maxsize, MODE_INT, 0),
                 mode_for_size (maxsize, MODE_INT, 0),
                 opname, suffix);
                 opname, suffix);
}
}
 
 
/* Initialize the libfunc fields of an entire group of entries in some
/* Initialize the libfunc fields of an entire group of entries in some
   optab which correspond to all real mode operations.  The parameters
   optab which correspond to all real mode operations.  The parameters
   have the same meaning as similarly named ones for the `init_libfuncs'
   have the same meaning as similarly named ones for the `init_libfuncs'
   routine.  (See above).  */
   routine.  (See above).  */
 
 
static void
static void
init_floating_libfuncs (optab optable, const char *opname, int suffix)
init_floating_libfuncs (optab optable, const char *opname, int suffix)
{
{
  init_libfuncs (optable, MIN_MODE_FLOAT, MAX_MODE_FLOAT, opname, suffix);
  init_libfuncs (optable, MIN_MODE_FLOAT, MAX_MODE_FLOAT, opname, suffix);
  init_libfuncs (optable, MIN_MODE_DECIMAL_FLOAT, MAX_MODE_DECIMAL_FLOAT,
  init_libfuncs (optable, MIN_MODE_DECIMAL_FLOAT, MAX_MODE_DECIMAL_FLOAT,
                 opname, suffix);
                 opname, suffix);
}
}
 
 
/* Initialize the libfunc fields of an entire group of entries of an
/* Initialize the libfunc fields of an entire group of entries of an
   inter-mode-class conversion optab.  The string formation rules are
   inter-mode-class conversion optab.  The string formation rules are
   similar to the ones for init_libfuncs, above, but instead of having
   similar to the ones for init_libfuncs, above, but instead of having
   a mode name and an operand count these functions have two mode names
   a mode name and an operand count these functions have two mode names
   and no operand count.  */
   and no operand count.  */
static void
static void
init_interclass_conv_libfuncs (convert_optab tab, const char *opname,
init_interclass_conv_libfuncs (convert_optab tab, const char *opname,
                               enum mode_class from_class,
                               enum mode_class from_class,
                               enum mode_class to_class)
                               enum mode_class to_class)
{
{
  enum machine_mode first_from_mode = GET_CLASS_NARROWEST_MODE (from_class);
  enum machine_mode first_from_mode = GET_CLASS_NARROWEST_MODE (from_class);
  enum machine_mode first_to_mode = GET_CLASS_NARROWEST_MODE (to_class);
  enum machine_mode first_to_mode = GET_CLASS_NARROWEST_MODE (to_class);
  size_t opname_len = strlen (opname);
  size_t opname_len = strlen (opname);
  size_t max_mname_len = 0;
  size_t max_mname_len = 0;
 
 
  enum machine_mode fmode, tmode;
  enum machine_mode fmode, tmode;
  const char *fname, *tname;
  const char *fname, *tname;
  const char *q;
  const char *q;
  char *libfunc_name, *suffix;
  char *libfunc_name, *suffix;
  char *p;
  char *p;
 
 
  for (fmode = first_from_mode;
  for (fmode = first_from_mode;
       fmode != VOIDmode;
       fmode != VOIDmode;
       fmode = GET_MODE_WIDER_MODE (fmode))
       fmode = GET_MODE_WIDER_MODE (fmode))
    max_mname_len = MAX (max_mname_len, strlen (GET_MODE_NAME (fmode)));
    max_mname_len = MAX (max_mname_len, strlen (GET_MODE_NAME (fmode)));
 
 
  for (tmode = first_to_mode;
  for (tmode = first_to_mode;
       tmode != VOIDmode;
       tmode != VOIDmode;
       tmode = GET_MODE_WIDER_MODE (tmode))
       tmode = GET_MODE_WIDER_MODE (tmode))
    max_mname_len = MAX (max_mname_len, strlen (GET_MODE_NAME (tmode)));
    max_mname_len = MAX (max_mname_len, strlen (GET_MODE_NAME (tmode)));
 
 
  libfunc_name = alloca (2 + opname_len + 2*max_mname_len + 1 + 1);
  libfunc_name = alloca (2 + opname_len + 2*max_mname_len + 1 + 1);
  libfunc_name[0] = '_';
  libfunc_name[0] = '_';
  libfunc_name[1] = '_';
  libfunc_name[1] = '_';
  memcpy (&libfunc_name[2], opname, opname_len);
  memcpy (&libfunc_name[2], opname, opname_len);
  suffix = libfunc_name + opname_len + 2;
  suffix = libfunc_name + opname_len + 2;
 
 
  for (fmode = first_from_mode; fmode != VOIDmode;
  for (fmode = first_from_mode; fmode != VOIDmode;
       fmode = GET_MODE_WIDER_MODE (fmode))
       fmode = GET_MODE_WIDER_MODE (fmode))
    for (tmode = first_to_mode; tmode != VOIDmode;
    for (tmode = first_to_mode; tmode != VOIDmode;
         tmode = GET_MODE_WIDER_MODE (tmode))
         tmode = GET_MODE_WIDER_MODE (tmode))
      {
      {
        fname = GET_MODE_NAME (fmode);
        fname = GET_MODE_NAME (fmode);
        tname = GET_MODE_NAME (tmode);
        tname = GET_MODE_NAME (tmode);
 
 
        p = suffix;
        p = suffix;
        for (q = fname; *q; p++, q++)
        for (q = fname; *q; p++, q++)
          *p = TOLOWER (*q);
          *p = TOLOWER (*q);
        for (q = tname; *q; p++, q++)
        for (q = tname; *q; p++, q++)
          *p = TOLOWER (*q);
          *p = TOLOWER (*q);
 
 
        *p = '\0';
        *p = '\0';
 
 
        tab->handlers[tmode][fmode].libfunc
        tab->handlers[tmode][fmode].libfunc
          = init_one_libfunc (ggc_alloc_string (libfunc_name,
          = init_one_libfunc (ggc_alloc_string (libfunc_name,
                                                p - libfunc_name));
                                                p - libfunc_name));
      }
      }
}
}
 
 
/* Initialize the libfunc fields of an entire group of entries of an
/* Initialize the libfunc fields of an entire group of entries of an
   intra-mode-class conversion optab.  The string formation rules are
   intra-mode-class conversion optab.  The string formation rules are
   similar to the ones for init_libfunc, above.  WIDENING says whether
   similar to the ones for init_libfunc, above.  WIDENING says whether
   the optab goes from narrow to wide modes or vice versa.  These functions
   the optab goes from narrow to wide modes or vice versa.  These functions
   have two mode names _and_ an operand count.  */
   have two mode names _and_ an operand count.  */
static void
static void
init_intraclass_conv_libfuncs (convert_optab tab, const char *opname,
init_intraclass_conv_libfuncs (convert_optab tab, const char *opname,
                               enum mode_class class, bool widening)
                               enum mode_class class, bool widening)
{
{
  enum machine_mode first_mode = GET_CLASS_NARROWEST_MODE (class);
  enum machine_mode first_mode = GET_CLASS_NARROWEST_MODE (class);
  size_t opname_len = strlen (opname);
  size_t opname_len = strlen (opname);
  size_t max_mname_len = 0;
  size_t max_mname_len = 0;
 
 
  enum machine_mode nmode, wmode;
  enum machine_mode nmode, wmode;
  const char *nname, *wname;
  const char *nname, *wname;
  const char *q;
  const char *q;
  char *libfunc_name, *suffix;
  char *libfunc_name, *suffix;
  char *p;
  char *p;
 
 
  for (nmode = first_mode; nmode != VOIDmode;
  for (nmode = first_mode; nmode != VOIDmode;
       nmode = GET_MODE_WIDER_MODE (nmode))
       nmode = GET_MODE_WIDER_MODE (nmode))
    max_mname_len = MAX (max_mname_len, strlen (GET_MODE_NAME (nmode)));
    max_mname_len = MAX (max_mname_len, strlen (GET_MODE_NAME (nmode)));
 
 
  libfunc_name = alloca (2 + opname_len + 2*max_mname_len + 1 + 1);
  libfunc_name = alloca (2 + opname_len + 2*max_mname_len + 1 + 1);
  libfunc_name[0] = '_';
  libfunc_name[0] = '_';
  libfunc_name[1] = '_';
  libfunc_name[1] = '_';
  memcpy (&libfunc_name[2], opname, opname_len);
  memcpy (&libfunc_name[2], opname, opname_len);
  suffix = libfunc_name + opname_len + 2;
  suffix = libfunc_name + opname_len + 2;
 
 
  for (nmode = first_mode; nmode != VOIDmode;
  for (nmode = first_mode; nmode != VOIDmode;
       nmode = GET_MODE_WIDER_MODE (nmode))
       nmode = GET_MODE_WIDER_MODE (nmode))
    for (wmode = GET_MODE_WIDER_MODE (nmode); wmode != VOIDmode;
    for (wmode = GET_MODE_WIDER_MODE (nmode); wmode != VOIDmode;
         wmode = GET_MODE_WIDER_MODE (wmode))
         wmode = GET_MODE_WIDER_MODE (wmode))
      {
      {
        nname = GET_MODE_NAME (nmode);
        nname = GET_MODE_NAME (nmode);
        wname = GET_MODE_NAME (wmode);
        wname = GET_MODE_NAME (wmode);
 
 
        p = suffix;
        p = suffix;
        for (q = widening ? nname : wname; *q; p++, q++)
        for (q = widening ? nname : wname; *q; p++, q++)
          *p = TOLOWER (*q);
          *p = TOLOWER (*q);
        for (q = widening ? wname : nname; *q; p++, q++)
        for (q = widening ? wname : nname; *q; p++, q++)
          *p = TOLOWER (*q);
          *p = TOLOWER (*q);
 
 
        *p++ = '2';
        *p++ = '2';
        *p = '\0';
        *p = '\0';
 
 
        tab->handlers[widening ? wmode : nmode]
        tab->handlers[widening ? wmode : nmode]
                     [widening ? nmode : wmode].libfunc
                     [widening ? nmode : wmode].libfunc
          = init_one_libfunc (ggc_alloc_string (libfunc_name,
          = init_one_libfunc (ggc_alloc_string (libfunc_name,
                                                p - libfunc_name));
                                                p - libfunc_name));
      }
      }
}
}
 
 
 
 
rtx
rtx
init_one_libfunc (const char *name)
init_one_libfunc (const char *name)
{
{
  rtx symbol;
  rtx symbol;
 
 
  /* Create a FUNCTION_DECL that can be passed to
  /* Create a FUNCTION_DECL that can be passed to
     targetm.encode_section_info.  */
     targetm.encode_section_info.  */
  /* ??? We don't have any type information except for this is
  /* ??? We don't have any type information except for this is
     a function.  Pretend this is "int foo()".  */
     a function.  Pretend this is "int foo()".  */
  tree decl = build_decl (FUNCTION_DECL, get_identifier (name),
  tree decl = build_decl (FUNCTION_DECL, get_identifier (name),
                          build_function_type (integer_type_node, NULL_TREE));
                          build_function_type (integer_type_node, NULL_TREE));
  DECL_ARTIFICIAL (decl) = 1;
  DECL_ARTIFICIAL (decl) = 1;
  DECL_EXTERNAL (decl) = 1;
  DECL_EXTERNAL (decl) = 1;
  TREE_PUBLIC (decl) = 1;
  TREE_PUBLIC (decl) = 1;
 
 
  symbol = XEXP (DECL_RTL (decl), 0);
  symbol = XEXP (DECL_RTL (decl), 0);
 
 
  /* Zap the nonsensical SYMBOL_REF_DECL for this.  What we're left with
  /* Zap the nonsensical SYMBOL_REF_DECL for this.  What we're left with
     are the flags assigned by targetm.encode_section_info.  */
     are the flags assigned by targetm.encode_section_info.  */
  SET_SYMBOL_REF_DECL (symbol, 0);
  SET_SYMBOL_REF_DECL (symbol, 0);
 
 
  return symbol;
  return symbol;
}
}
 
 
/* Call this to reset the function entry for one optab (OPTABLE) in mode
/* Call this to reset the function entry for one optab (OPTABLE) in mode
   MODE to NAME, which should be either 0 or a string constant.  */
   MODE to NAME, which should be either 0 or a string constant.  */
void
void
set_optab_libfunc (optab optable, enum machine_mode mode, const char *name)
set_optab_libfunc (optab optable, enum machine_mode mode, const char *name)
{
{
  if (name)
  if (name)
    optable->handlers[mode].libfunc = init_one_libfunc (name);
    optable->handlers[mode].libfunc = init_one_libfunc (name);
  else
  else
    optable->handlers[mode].libfunc = 0;
    optable->handlers[mode].libfunc = 0;
}
}
 
 
/* Call this to reset the function entry for one conversion optab
/* Call this to reset the function entry for one conversion optab
   (OPTABLE) from mode FMODE to mode TMODE to NAME, which should be
   (OPTABLE) from mode FMODE to mode TMODE to NAME, which should be
   either 0 or a string constant.  */
   either 0 or a string constant.  */
void
void
set_conv_libfunc (convert_optab optable, enum machine_mode tmode,
set_conv_libfunc (convert_optab optable, enum machine_mode tmode,
                  enum machine_mode fmode, const char *name)
                  enum machine_mode fmode, const char *name)
{
{
  if (name)
  if (name)
    optable->handlers[tmode][fmode].libfunc = init_one_libfunc (name);
    optable->handlers[tmode][fmode].libfunc = init_one_libfunc (name);
  else
  else
    optable->handlers[tmode][fmode].libfunc = 0;
    optable->handlers[tmode][fmode].libfunc = 0;
}
}
 
 
/* Call this once to initialize the contents of the optabs
/* Call this once to initialize the contents of the optabs
   appropriately for the current target machine.  */
   appropriately for the current target machine.  */
 
 
void
void
init_optabs (void)
init_optabs (void)
{
{
  unsigned int i;
  unsigned int i;
 
 
  /* Start by initializing all tables to contain CODE_FOR_nothing.  */
  /* Start by initializing all tables to contain CODE_FOR_nothing.  */
 
 
  for (i = 0; i < NUM_RTX_CODE; i++)
  for (i = 0; i < NUM_RTX_CODE; i++)
    setcc_gen_code[i] = CODE_FOR_nothing;
    setcc_gen_code[i] = CODE_FOR_nothing;
 
 
#ifdef HAVE_conditional_move
#ifdef HAVE_conditional_move
  for (i = 0; i < NUM_MACHINE_MODES; i++)
  for (i = 0; i < NUM_MACHINE_MODES; i++)
    movcc_gen_code[i] = CODE_FOR_nothing;
    movcc_gen_code[i] = CODE_FOR_nothing;
#endif
#endif
 
 
  for (i = 0; i < NUM_MACHINE_MODES; i++)
  for (i = 0; i < NUM_MACHINE_MODES; i++)
    {
    {
      vcond_gen_code[i] = CODE_FOR_nothing;
      vcond_gen_code[i] = CODE_FOR_nothing;
      vcondu_gen_code[i] = CODE_FOR_nothing;
      vcondu_gen_code[i] = CODE_FOR_nothing;
    }
    }
 
 
  add_optab = init_optab (PLUS);
  add_optab = init_optab (PLUS);
  addv_optab = init_optabv (PLUS);
  addv_optab = init_optabv (PLUS);
  sub_optab = init_optab (MINUS);
  sub_optab = init_optab (MINUS);
  subv_optab = init_optabv (MINUS);
  subv_optab = init_optabv (MINUS);
  smul_optab = init_optab (MULT);
  smul_optab = init_optab (MULT);
  smulv_optab = init_optabv (MULT);
  smulv_optab = init_optabv (MULT);
  smul_highpart_optab = init_optab (UNKNOWN);
  smul_highpart_optab = init_optab (UNKNOWN);
  umul_highpart_optab = init_optab (UNKNOWN);
  umul_highpart_optab = init_optab (UNKNOWN);
  smul_widen_optab = init_optab (UNKNOWN);
  smul_widen_optab = init_optab (UNKNOWN);
  umul_widen_optab = init_optab (UNKNOWN);
  umul_widen_optab = init_optab (UNKNOWN);
  usmul_widen_optab = init_optab (UNKNOWN);
  usmul_widen_optab = init_optab (UNKNOWN);
  sdiv_optab = init_optab (DIV);
  sdiv_optab = init_optab (DIV);
  sdivv_optab = init_optabv (DIV);
  sdivv_optab = init_optabv (DIV);
  sdivmod_optab = init_optab (UNKNOWN);
  sdivmod_optab = init_optab (UNKNOWN);
  udiv_optab = init_optab (UDIV);
  udiv_optab = init_optab (UDIV);
  udivmod_optab = init_optab (UNKNOWN);
  udivmod_optab = init_optab (UNKNOWN);
  smod_optab = init_optab (MOD);
  smod_optab = init_optab (MOD);
  umod_optab = init_optab (UMOD);
  umod_optab = init_optab (UMOD);
  fmod_optab = init_optab (UNKNOWN);
  fmod_optab = init_optab (UNKNOWN);
  drem_optab = init_optab (UNKNOWN);
  drem_optab = init_optab (UNKNOWN);
  ftrunc_optab = init_optab (UNKNOWN);
  ftrunc_optab = init_optab (UNKNOWN);
  and_optab = init_optab (AND);
  and_optab = init_optab (AND);
  ior_optab = init_optab (IOR);
  ior_optab = init_optab (IOR);
  xor_optab = init_optab (XOR);
  xor_optab = init_optab (XOR);
  ashl_optab = init_optab (ASHIFT);
  ashl_optab = init_optab (ASHIFT);
  ashr_optab = init_optab (ASHIFTRT);
  ashr_optab = init_optab (ASHIFTRT);
  lshr_optab = init_optab (LSHIFTRT);
  lshr_optab = init_optab (LSHIFTRT);
  rotl_optab = init_optab (ROTATE);
  rotl_optab = init_optab (ROTATE);
  rotr_optab = init_optab (ROTATERT);
  rotr_optab = init_optab (ROTATERT);
  smin_optab = init_optab (SMIN);
  smin_optab = init_optab (SMIN);
  smax_optab = init_optab (SMAX);
  smax_optab = init_optab (SMAX);
  umin_optab = init_optab (UMIN);
  umin_optab = init_optab (UMIN);
  umax_optab = init_optab (UMAX);
  umax_optab = init_optab (UMAX);
  pow_optab = init_optab (UNKNOWN);
  pow_optab = init_optab (UNKNOWN);
  atan2_optab = init_optab (UNKNOWN);
  atan2_optab = init_optab (UNKNOWN);
 
 
  /* These three have codes assigned exclusively for the sake of
  /* These three have codes assigned exclusively for the sake of
     have_insn_for.  */
     have_insn_for.  */
  mov_optab = init_optab (SET);
  mov_optab = init_optab (SET);
  movstrict_optab = init_optab (STRICT_LOW_PART);
  movstrict_optab = init_optab (STRICT_LOW_PART);
  cmp_optab = init_optab (COMPARE);
  cmp_optab = init_optab (COMPARE);
 
 
  ucmp_optab = init_optab (UNKNOWN);
  ucmp_optab = init_optab (UNKNOWN);
  tst_optab = init_optab (UNKNOWN);
  tst_optab = init_optab (UNKNOWN);
 
 
  eq_optab = init_optab (EQ);
  eq_optab = init_optab (EQ);
  ne_optab = init_optab (NE);
  ne_optab = init_optab (NE);
  gt_optab = init_optab (GT);
  gt_optab = init_optab (GT);
  ge_optab = init_optab (GE);
  ge_optab = init_optab (GE);
  lt_optab = init_optab (LT);
  lt_optab = init_optab (LT);
  le_optab = init_optab (LE);
  le_optab = init_optab (LE);
  unord_optab = init_optab (UNORDERED);
  unord_optab = init_optab (UNORDERED);
 
 
  neg_optab = init_optab (NEG);
  neg_optab = init_optab (NEG);
  negv_optab = init_optabv (NEG);
  negv_optab = init_optabv (NEG);
  abs_optab = init_optab (ABS);
  abs_optab = init_optab (ABS);
  absv_optab = init_optabv (ABS);
  absv_optab = init_optabv (ABS);
  addcc_optab = init_optab (UNKNOWN);
  addcc_optab = init_optab (UNKNOWN);
  one_cmpl_optab = init_optab (NOT);
  one_cmpl_optab = init_optab (NOT);
  ffs_optab = init_optab (FFS);
  ffs_optab = init_optab (FFS);
  clz_optab = init_optab (CLZ);
  clz_optab = init_optab (CLZ);
  ctz_optab = init_optab (CTZ);
  ctz_optab = init_optab (CTZ);
  popcount_optab = init_optab (POPCOUNT);
  popcount_optab = init_optab (POPCOUNT);
  parity_optab = init_optab (PARITY);
  parity_optab = init_optab (PARITY);
  sqrt_optab = init_optab (SQRT);
  sqrt_optab = init_optab (SQRT);
  floor_optab = init_optab (UNKNOWN);
  floor_optab = init_optab (UNKNOWN);
  lfloor_optab = init_optab (UNKNOWN);
  lfloor_optab = init_optab (UNKNOWN);
  ceil_optab = init_optab (UNKNOWN);
  ceil_optab = init_optab (UNKNOWN);
  lceil_optab = init_optab (UNKNOWN);
  lceil_optab = init_optab (UNKNOWN);
  round_optab = init_optab (UNKNOWN);
  round_optab = init_optab (UNKNOWN);
  btrunc_optab = init_optab (UNKNOWN);
  btrunc_optab = init_optab (UNKNOWN);
  nearbyint_optab = init_optab (UNKNOWN);
  nearbyint_optab = init_optab (UNKNOWN);
  rint_optab = init_optab (UNKNOWN);
  rint_optab = init_optab (UNKNOWN);
  lrint_optab = init_optab (UNKNOWN);
  lrint_optab = init_optab (UNKNOWN);
  sincos_optab = init_optab (UNKNOWN);
  sincos_optab = init_optab (UNKNOWN);
  sin_optab = init_optab (UNKNOWN);
  sin_optab = init_optab (UNKNOWN);
  asin_optab = init_optab (UNKNOWN);
  asin_optab = init_optab (UNKNOWN);
  cos_optab = init_optab (UNKNOWN);
  cos_optab = init_optab (UNKNOWN);
  acos_optab = init_optab (UNKNOWN);
  acos_optab = init_optab (UNKNOWN);
  exp_optab = init_optab (UNKNOWN);
  exp_optab = init_optab (UNKNOWN);
  exp10_optab = init_optab (UNKNOWN);
  exp10_optab = init_optab (UNKNOWN);
  exp2_optab = init_optab (UNKNOWN);
  exp2_optab = init_optab (UNKNOWN);
  expm1_optab = init_optab (UNKNOWN);
  expm1_optab = init_optab (UNKNOWN);
  ldexp_optab = init_optab (UNKNOWN);
  ldexp_optab = init_optab (UNKNOWN);
  logb_optab = init_optab (UNKNOWN);
  logb_optab = init_optab (UNKNOWN);
  ilogb_optab = init_optab (UNKNOWN);
  ilogb_optab = init_optab (UNKNOWN);
  log_optab = init_optab (UNKNOWN);
  log_optab = init_optab (UNKNOWN);
  log10_optab = init_optab (UNKNOWN);
  log10_optab = init_optab (UNKNOWN);
  log2_optab = init_optab (UNKNOWN);
  log2_optab = init_optab (UNKNOWN);
  log1p_optab = init_optab (UNKNOWN);
  log1p_optab = init_optab (UNKNOWN);
  tan_optab = init_optab (UNKNOWN);
  tan_optab = init_optab (UNKNOWN);
  atan_optab = init_optab (UNKNOWN);
  atan_optab = init_optab (UNKNOWN);
  copysign_optab = init_optab (UNKNOWN);
  copysign_optab = init_optab (UNKNOWN);
 
 
  strlen_optab = init_optab (UNKNOWN);
  strlen_optab = init_optab (UNKNOWN);
  cbranch_optab = init_optab (UNKNOWN);
  cbranch_optab = init_optab (UNKNOWN);
  cmov_optab = init_optab (UNKNOWN);
  cmov_optab = init_optab (UNKNOWN);
  cstore_optab = init_optab (UNKNOWN);
  cstore_optab = init_optab (UNKNOWN);
  push_optab = init_optab (UNKNOWN);
  push_optab = init_optab (UNKNOWN);
 
 
  reduc_smax_optab = init_optab (UNKNOWN);
  reduc_smax_optab = init_optab (UNKNOWN);
  reduc_umax_optab = init_optab (UNKNOWN);
  reduc_umax_optab = init_optab (UNKNOWN);
  reduc_smin_optab = init_optab (UNKNOWN);
  reduc_smin_optab = init_optab (UNKNOWN);
  reduc_umin_optab = init_optab (UNKNOWN);
  reduc_umin_optab = init_optab (UNKNOWN);
  reduc_splus_optab = init_optab (UNKNOWN);
  reduc_splus_optab = init_optab (UNKNOWN);
  reduc_uplus_optab = init_optab (UNKNOWN);
  reduc_uplus_optab = init_optab (UNKNOWN);
 
 
  ssum_widen_optab = init_optab (UNKNOWN);
  ssum_widen_optab = init_optab (UNKNOWN);
  usum_widen_optab = init_optab (UNKNOWN);
  usum_widen_optab = init_optab (UNKNOWN);
  sdot_prod_optab = init_optab (UNKNOWN);
  sdot_prod_optab = init_optab (UNKNOWN);
  udot_prod_optab = init_optab (UNKNOWN);
  udot_prod_optab = init_optab (UNKNOWN);
 
 
  vec_extract_optab = init_optab (UNKNOWN);
  vec_extract_optab = init_optab (UNKNOWN);
  vec_set_optab = init_optab (UNKNOWN);
  vec_set_optab = init_optab (UNKNOWN);
  vec_init_optab = init_optab (UNKNOWN);
  vec_init_optab = init_optab (UNKNOWN);
  vec_shl_optab = init_optab (UNKNOWN);
  vec_shl_optab = init_optab (UNKNOWN);
  vec_shr_optab = init_optab (UNKNOWN);
  vec_shr_optab = init_optab (UNKNOWN);
  vec_realign_load_optab = init_optab (UNKNOWN);
  vec_realign_load_optab = init_optab (UNKNOWN);
  movmisalign_optab = init_optab (UNKNOWN);
  movmisalign_optab = init_optab (UNKNOWN);
 
 
  powi_optab = init_optab (UNKNOWN);
  powi_optab = init_optab (UNKNOWN);
 
 
  /* Conversions.  */
  /* Conversions.  */
  sext_optab = init_convert_optab (SIGN_EXTEND);
  sext_optab = init_convert_optab (SIGN_EXTEND);
  zext_optab = init_convert_optab (ZERO_EXTEND);
  zext_optab = init_convert_optab (ZERO_EXTEND);
  trunc_optab = init_convert_optab (TRUNCATE);
  trunc_optab = init_convert_optab (TRUNCATE);
  sfix_optab = init_convert_optab (FIX);
  sfix_optab = init_convert_optab (FIX);
  ufix_optab = init_convert_optab (UNSIGNED_FIX);
  ufix_optab = init_convert_optab (UNSIGNED_FIX);
  sfixtrunc_optab = init_convert_optab (UNKNOWN);
  sfixtrunc_optab = init_convert_optab (UNKNOWN);
  ufixtrunc_optab = init_convert_optab (UNKNOWN);
  ufixtrunc_optab = init_convert_optab (UNKNOWN);
  sfloat_optab = init_convert_optab (FLOAT);
  sfloat_optab = init_convert_optab (FLOAT);
  ufloat_optab = init_convert_optab (UNSIGNED_FLOAT);
  ufloat_optab = init_convert_optab (UNSIGNED_FLOAT);
 
 
  for (i = 0; i < NUM_MACHINE_MODES; i++)
  for (i = 0; i < NUM_MACHINE_MODES; i++)
    {
    {
      movmem_optab[i] = CODE_FOR_nothing;
      movmem_optab[i] = CODE_FOR_nothing;
      cmpstr_optab[i] = CODE_FOR_nothing;
      cmpstr_optab[i] = CODE_FOR_nothing;
      cmpstrn_optab[i] = CODE_FOR_nothing;
      cmpstrn_optab[i] = CODE_FOR_nothing;
      cmpmem_optab[i] = CODE_FOR_nothing;
      cmpmem_optab[i] = CODE_FOR_nothing;
      setmem_optab[i] = CODE_FOR_nothing;
      setmem_optab[i] = CODE_FOR_nothing;
 
 
      sync_add_optab[i] = CODE_FOR_nothing;
      sync_add_optab[i] = CODE_FOR_nothing;
      sync_sub_optab[i] = CODE_FOR_nothing;
      sync_sub_optab[i] = CODE_FOR_nothing;
      sync_ior_optab[i] = CODE_FOR_nothing;
      sync_ior_optab[i] = CODE_FOR_nothing;
      sync_and_optab[i] = CODE_FOR_nothing;
      sync_and_optab[i] = CODE_FOR_nothing;
      sync_xor_optab[i] = CODE_FOR_nothing;
      sync_xor_optab[i] = CODE_FOR_nothing;
      sync_nand_optab[i] = CODE_FOR_nothing;
      sync_nand_optab[i] = CODE_FOR_nothing;
      sync_old_add_optab[i] = CODE_FOR_nothing;
      sync_old_add_optab[i] = CODE_FOR_nothing;
      sync_old_sub_optab[i] = CODE_FOR_nothing;
      sync_old_sub_optab[i] = CODE_FOR_nothing;
      sync_old_ior_optab[i] = CODE_FOR_nothing;
      sync_old_ior_optab[i] = CODE_FOR_nothing;
      sync_old_and_optab[i] = CODE_FOR_nothing;
      sync_old_and_optab[i] = CODE_FOR_nothing;
      sync_old_xor_optab[i] = CODE_FOR_nothing;
      sync_old_xor_optab[i] = CODE_FOR_nothing;
      sync_old_nand_optab[i] = CODE_FOR_nothing;
      sync_old_nand_optab[i] = CODE_FOR_nothing;
      sync_new_add_optab[i] = CODE_FOR_nothing;
      sync_new_add_optab[i] = CODE_FOR_nothing;
      sync_new_sub_optab[i] = CODE_FOR_nothing;
      sync_new_sub_optab[i] = CODE_FOR_nothing;
      sync_new_ior_optab[i] = CODE_FOR_nothing;
      sync_new_ior_optab[i] = CODE_FOR_nothing;
      sync_new_and_optab[i] = CODE_FOR_nothing;
      sync_new_and_optab[i] = CODE_FOR_nothing;
      sync_new_xor_optab[i] = CODE_FOR_nothing;
      sync_new_xor_optab[i] = CODE_FOR_nothing;
      sync_new_nand_optab[i] = CODE_FOR_nothing;
      sync_new_nand_optab[i] = CODE_FOR_nothing;
      sync_compare_and_swap[i] = CODE_FOR_nothing;
      sync_compare_and_swap[i] = CODE_FOR_nothing;
      sync_compare_and_swap_cc[i] = CODE_FOR_nothing;
      sync_compare_and_swap_cc[i] = CODE_FOR_nothing;
      sync_lock_test_and_set[i] = CODE_FOR_nothing;
      sync_lock_test_and_set[i] = CODE_FOR_nothing;
      sync_lock_release[i] = CODE_FOR_nothing;
      sync_lock_release[i] = CODE_FOR_nothing;
 
 
      reload_in_optab[i] = reload_out_optab[i] = CODE_FOR_nothing;
      reload_in_optab[i] = reload_out_optab[i] = CODE_FOR_nothing;
    }
    }
 
 
  /* Fill in the optabs with the insns we support.  */
  /* Fill in the optabs with the insns we support.  */
  init_all_optabs ();
  init_all_optabs ();
 
 
  /* Initialize the optabs with the names of the library functions.  */
  /* Initialize the optabs with the names of the library functions.  */
  init_integral_libfuncs (add_optab, "add", '3');
  init_integral_libfuncs (add_optab, "add", '3');
  init_floating_libfuncs (add_optab, "add", '3');
  init_floating_libfuncs (add_optab, "add", '3');
  init_integral_libfuncs (addv_optab, "addv", '3');
  init_integral_libfuncs (addv_optab, "addv", '3');
  init_floating_libfuncs (addv_optab, "add", '3');
  init_floating_libfuncs (addv_optab, "add", '3');
  init_integral_libfuncs (sub_optab, "sub", '3');
  init_integral_libfuncs (sub_optab, "sub", '3');
  init_floating_libfuncs (sub_optab, "sub", '3');
  init_floating_libfuncs (sub_optab, "sub", '3');
  init_integral_libfuncs (subv_optab, "subv", '3');
  init_integral_libfuncs (subv_optab, "subv", '3');
  init_floating_libfuncs (subv_optab, "sub", '3');
  init_floating_libfuncs (subv_optab, "sub", '3');
  init_integral_libfuncs (smul_optab, "mul", '3');
  init_integral_libfuncs (smul_optab, "mul", '3');
  init_floating_libfuncs (smul_optab, "mul", '3');
  init_floating_libfuncs (smul_optab, "mul", '3');
  init_integral_libfuncs (smulv_optab, "mulv", '3');
  init_integral_libfuncs (smulv_optab, "mulv", '3');
  init_floating_libfuncs (smulv_optab, "mul", '3');
  init_floating_libfuncs (smulv_optab, "mul", '3');
  init_integral_libfuncs (sdiv_optab, "div", '3');
  init_integral_libfuncs (sdiv_optab, "div", '3');
  init_floating_libfuncs (sdiv_optab, "div", '3');
  init_floating_libfuncs (sdiv_optab, "div", '3');
  init_integral_libfuncs (sdivv_optab, "divv", '3');
  init_integral_libfuncs (sdivv_optab, "divv", '3');
  init_integral_libfuncs (udiv_optab, "udiv", '3');
  init_integral_libfuncs (udiv_optab, "udiv", '3');
  init_integral_libfuncs (sdivmod_optab, "divmod", '4');
  init_integral_libfuncs (sdivmod_optab, "divmod", '4');
  init_integral_libfuncs (udivmod_optab, "udivmod", '4');
  init_integral_libfuncs (udivmod_optab, "udivmod", '4');
  init_integral_libfuncs (smod_optab, "mod", '3');
  init_integral_libfuncs (smod_optab, "mod", '3');
  init_integral_libfuncs (umod_optab, "umod", '3');
  init_integral_libfuncs (umod_optab, "umod", '3');
  init_floating_libfuncs (ftrunc_optab, "ftrunc", '2');
  init_floating_libfuncs (ftrunc_optab, "ftrunc", '2');
  init_integral_libfuncs (and_optab, "and", '3');
  init_integral_libfuncs (and_optab, "and", '3');
  init_integral_libfuncs (ior_optab, "ior", '3');
  init_integral_libfuncs (ior_optab, "ior", '3');
  init_integral_libfuncs (xor_optab, "xor", '3');
  init_integral_libfuncs (xor_optab, "xor", '3');
  init_integral_libfuncs (ashl_optab, "ashl", '3');
  init_integral_libfuncs (ashl_optab, "ashl", '3');
  init_integral_libfuncs (ashr_optab, "ashr", '3');
  init_integral_libfuncs (ashr_optab, "ashr", '3');
  init_integral_libfuncs (lshr_optab, "lshr", '3');
  init_integral_libfuncs (lshr_optab, "lshr", '3');
  init_integral_libfuncs (smin_optab, "min", '3');
  init_integral_libfuncs (smin_optab, "min", '3');
  init_floating_libfuncs (smin_optab, "min", '3');
  init_floating_libfuncs (smin_optab, "min", '3');
  init_integral_libfuncs (smax_optab, "max", '3');
  init_integral_libfuncs (smax_optab, "max", '3');
  init_floating_libfuncs (smax_optab, "max", '3');
  init_floating_libfuncs (smax_optab, "max", '3');
  init_integral_libfuncs (umin_optab, "umin", '3');
  init_integral_libfuncs (umin_optab, "umin", '3');
  init_integral_libfuncs (umax_optab, "umax", '3');
  init_integral_libfuncs (umax_optab, "umax", '3');
  init_integral_libfuncs (neg_optab, "neg", '2');
  init_integral_libfuncs (neg_optab, "neg", '2');
  init_floating_libfuncs (neg_optab, "neg", '2');
  init_floating_libfuncs (neg_optab, "neg", '2');
  init_integral_libfuncs (negv_optab, "negv", '2');
  init_integral_libfuncs (negv_optab, "negv", '2');
  init_floating_libfuncs (negv_optab, "neg", '2');
  init_floating_libfuncs (negv_optab, "neg", '2');
  init_integral_libfuncs (one_cmpl_optab, "one_cmpl", '2');
  init_integral_libfuncs (one_cmpl_optab, "one_cmpl", '2');
  init_integral_libfuncs (ffs_optab, "ffs", '2');
  init_integral_libfuncs (ffs_optab, "ffs", '2');
  init_integral_libfuncs (clz_optab, "clz", '2');
  init_integral_libfuncs (clz_optab, "clz", '2');
  init_integral_libfuncs (ctz_optab, "ctz", '2');
  init_integral_libfuncs (ctz_optab, "ctz", '2');
  init_integral_libfuncs (popcount_optab, "popcount", '2');
  init_integral_libfuncs (popcount_optab, "popcount", '2');
  init_integral_libfuncs (parity_optab, "parity", '2');
  init_integral_libfuncs (parity_optab, "parity", '2');
 
 
  /* Comparison libcalls for integers MUST come in pairs,
  /* Comparison libcalls for integers MUST come in pairs,
     signed/unsigned.  */
     signed/unsigned.  */
  init_integral_libfuncs (cmp_optab, "cmp", '2');
  init_integral_libfuncs (cmp_optab, "cmp", '2');
  init_integral_libfuncs (ucmp_optab, "ucmp", '2');
  init_integral_libfuncs (ucmp_optab, "ucmp", '2');
  init_floating_libfuncs (cmp_optab, "cmp", '2');
  init_floating_libfuncs (cmp_optab, "cmp", '2');
 
 
  /* EQ etc are floating point only.  */
  /* EQ etc are floating point only.  */
  init_floating_libfuncs (eq_optab, "eq", '2');
  init_floating_libfuncs (eq_optab, "eq", '2');
  init_floating_libfuncs (ne_optab, "ne", '2');
  init_floating_libfuncs (ne_optab, "ne", '2');
  init_floating_libfuncs (gt_optab, "gt", '2');
  init_floating_libfuncs (gt_optab, "gt", '2');
  init_floating_libfuncs (ge_optab, "ge", '2');
  init_floating_libfuncs (ge_optab, "ge", '2');
  init_floating_libfuncs (lt_optab, "lt", '2');
  init_floating_libfuncs (lt_optab, "lt", '2');
  init_floating_libfuncs (le_optab, "le", '2');
  init_floating_libfuncs (le_optab, "le", '2');
  init_floating_libfuncs (unord_optab, "unord", '2');
  init_floating_libfuncs (unord_optab, "unord", '2');
 
 
  init_floating_libfuncs (powi_optab, "powi", '2');
  init_floating_libfuncs (powi_optab, "powi", '2');
 
 
  /* Conversions.  */
  /* Conversions.  */
  init_interclass_conv_libfuncs (sfloat_optab, "float",
  init_interclass_conv_libfuncs (sfloat_optab, "float",
                                 MODE_INT, MODE_FLOAT);
                                 MODE_INT, MODE_FLOAT);
  init_interclass_conv_libfuncs (sfloat_optab, "float",
  init_interclass_conv_libfuncs (sfloat_optab, "float",
                                 MODE_INT, MODE_DECIMAL_FLOAT);
                                 MODE_INT, MODE_DECIMAL_FLOAT);
  init_interclass_conv_libfuncs (ufloat_optab, "floatun",
  init_interclass_conv_libfuncs (ufloat_optab, "floatun",
                                 MODE_INT, MODE_FLOAT);
                                 MODE_INT, MODE_FLOAT);
  init_interclass_conv_libfuncs (ufloat_optab, "floatun",
  init_interclass_conv_libfuncs (ufloat_optab, "floatun",
                                 MODE_INT, MODE_DECIMAL_FLOAT);
                                 MODE_INT, MODE_DECIMAL_FLOAT);
  init_interclass_conv_libfuncs (sfix_optab, "fix",
  init_interclass_conv_libfuncs (sfix_optab, "fix",
                                 MODE_FLOAT, MODE_INT);
                                 MODE_FLOAT, MODE_INT);
  init_interclass_conv_libfuncs (sfix_optab, "fix",
  init_interclass_conv_libfuncs (sfix_optab, "fix",
                                 MODE_DECIMAL_FLOAT, MODE_INT);
                                 MODE_DECIMAL_FLOAT, MODE_INT);
  init_interclass_conv_libfuncs (ufix_optab, "fixuns",
  init_interclass_conv_libfuncs (ufix_optab, "fixuns",
                                 MODE_FLOAT, MODE_INT);
                                 MODE_FLOAT, MODE_INT);
  init_interclass_conv_libfuncs (ufix_optab, "fixuns",
  init_interclass_conv_libfuncs (ufix_optab, "fixuns",
                                 MODE_DECIMAL_FLOAT, MODE_INT);
                                 MODE_DECIMAL_FLOAT, MODE_INT);
  init_interclass_conv_libfuncs (ufloat_optab, "floatuns",
  init_interclass_conv_libfuncs (ufloat_optab, "floatuns",
                                 MODE_INT, MODE_DECIMAL_FLOAT);
                                 MODE_INT, MODE_DECIMAL_FLOAT);
 
 
  /* sext_optab is also used for FLOAT_EXTEND.  */
  /* sext_optab is also used for FLOAT_EXTEND.  */
  init_intraclass_conv_libfuncs (sext_optab, "extend", MODE_FLOAT, true);
  init_intraclass_conv_libfuncs (sext_optab, "extend", MODE_FLOAT, true);
  init_intraclass_conv_libfuncs (sext_optab, "extend", MODE_DECIMAL_FLOAT, true);
  init_intraclass_conv_libfuncs (sext_optab, "extend", MODE_DECIMAL_FLOAT, true);
  init_interclass_conv_libfuncs (sext_optab, "extend", MODE_FLOAT, MODE_DECIMAL_FLOAT);
  init_interclass_conv_libfuncs (sext_optab, "extend", MODE_FLOAT, MODE_DECIMAL_FLOAT);
  init_interclass_conv_libfuncs (sext_optab, "extend", MODE_DECIMAL_FLOAT, MODE_FLOAT);
  init_interclass_conv_libfuncs (sext_optab, "extend", MODE_DECIMAL_FLOAT, MODE_FLOAT);
  init_intraclass_conv_libfuncs (trunc_optab, "trunc", MODE_FLOAT, false);
  init_intraclass_conv_libfuncs (trunc_optab, "trunc", MODE_FLOAT, false);
  init_intraclass_conv_libfuncs (trunc_optab, "trunc", MODE_DECIMAL_FLOAT, false);
  init_intraclass_conv_libfuncs (trunc_optab, "trunc", MODE_DECIMAL_FLOAT, false);
  init_interclass_conv_libfuncs (trunc_optab, "trunc", MODE_FLOAT, MODE_DECIMAL_FLOAT);
  init_interclass_conv_libfuncs (trunc_optab, "trunc", MODE_FLOAT, MODE_DECIMAL_FLOAT);
  init_interclass_conv_libfuncs (trunc_optab, "trunc", MODE_DECIMAL_FLOAT, MODE_FLOAT);
  init_interclass_conv_libfuncs (trunc_optab, "trunc", MODE_DECIMAL_FLOAT, MODE_FLOAT);
 
 
  /* Use cabs for double complex abs, since systems generally have cabs.
  /* Use cabs for double complex abs, since systems generally have cabs.
     Don't define any libcall for float complex, so that cabs will be used.  */
     Don't define any libcall for float complex, so that cabs will be used.  */
  if (complex_double_type_node)
  if (complex_double_type_node)
    abs_optab->handlers[TYPE_MODE (complex_double_type_node)].libfunc
    abs_optab->handlers[TYPE_MODE (complex_double_type_node)].libfunc
      = init_one_libfunc ("cabs");
      = init_one_libfunc ("cabs");
 
 
  /* The ffs function operates on `int'.  */
  /* The ffs function operates on `int'.  */
  ffs_optab->handlers[(int) mode_for_size (INT_TYPE_SIZE, MODE_INT, 0)].libfunc
  ffs_optab->handlers[(int) mode_for_size (INT_TYPE_SIZE, MODE_INT, 0)].libfunc
    = init_one_libfunc ("ffs");
    = init_one_libfunc ("ffs");
 
 
  abort_libfunc = init_one_libfunc ("abort");
  abort_libfunc = init_one_libfunc ("abort");
  memcpy_libfunc = init_one_libfunc ("memcpy");
  memcpy_libfunc = init_one_libfunc ("memcpy");
  memmove_libfunc = init_one_libfunc ("memmove");
  memmove_libfunc = init_one_libfunc ("memmove");
  memcmp_libfunc = init_one_libfunc ("memcmp");
  memcmp_libfunc = init_one_libfunc ("memcmp");
  memset_libfunc = init_one_libfunc ("memset");
  memset_libfunc = init_one_libfunc ("memset");
  setbits_libfunc = init_one_libfunc ("__setbits");
  setbits_libfunc = init_one_libfunc ("__setbits");
 
 
#ifndef DONT_USE_BUILTIN_SETJMP
#ifndef DONT_USE_BUILTIN_SETJMP
  setjmp_libfunc = init_one_libfunc ("__builtin_setjmp");
  setjmp_libfunc = init_one_libfunc ("__builtin_setjmp");
  longjmp_libfunc = init_one_libfunc ("__builtin_longjmp");
  longjmp_libfunc = init_one_libfunc ("__builtin_longjmp");
#else
#else
  setjmp_libfunc = init_one_libfunc ("setjmp");
  setjmp_libfunc = init_one_libfunc ("setjmp");
  longjmp_libfunc = init_one_libfunc ("longjmp");
  longjmp_libfunc = init_one_libfunc ("longjmp");
#endif
#endif
  unwind_sjlj_register_libfunc = init_one_libfunc ("_Unwind_SjLj_Register");
  unwind_sjlj_register_libfunc = init_one_libfunc ("_Unwind_SjLj_Register");
  unwind_sjlj_unregister_libfunc
  unwind_sjlj_unregister_libfunc
    = init_one_libfunc ("_Unwind_SjLj_Unregister");
    = init_one_libfunc ("_Unwind_SjLj_Unregister");
 
 
  /* For function entry/exit instrumentation.  */
  /* For function entry/exit instrumentation.  */
  profile_function_entry_libfunc
  profile_function_entry_libfunc
    = init_one_libfunc ("__cyg_profile_func_enter");
    = init_one_libfunc ("__cyg_profile_func_enter");
  profile_function_exit_libfunc
  profile_function_exit_libfunc
    = init_one_libfunc ("__cyg_profile_func_exit");
    = init_one_libfunc ("__cyg_profile_func_exit");
 
 
  gcov_flush_libfunc = init_one_libfunc ("__gcov_flush");
  gcov_flush_libfunc = init_one_libfunc ("__gcov_flush");
 
 
  if (HAVE_conditional_trap)
  if (HAVE_conditional_trap)
    trap_rtx = gen_rtx_fmt_ee (EQ, VOIDmode, NULL_RTX, NULL_RTX);
    trap_rtx = gen_rtx_fmt_ee (EQ, VOIDmode, NULL_RTX, NULL_RTX);
 
 
  /* Allow the target to add more libcalls or rename some, etc.  */
  /* Allow the target to add more libcalls or rename some, etc.  */
  targetm.init_libfuncs ();
  targetm.init_libfuncs ();
}
}
 
 
#ifdef DEBUG
#ifdef DEBUG
 
 
/* Print information about the current contents of the optabs on
/* Print information about the current contents of the optabs on
   STDERR.  */
   STDERR.  */
 
 
static void
static void
debug_optab_libfuncs (void)
debug_optab_libfuncs (void)
{
{
  int i;
  int i;
  int j;
  int j;
  int k;
  int k;
 
 
  /* Dump the arithmetic optabs.  */
  /* Dump the arithmetic optabs.  */
  for (i = 0; i != (int) OTI_MAX; i++)
  for (i = 0; i != (int) OTI_MAX; i++)
    for (j = 0; j < NUM_MACHINE_MODES; ++j)
    for (j = 0; j < NUM_MACHINE_MODES; ++j)
      {
      {
        optab o;
        optab o;
        struct optab_handlers *h;
        struct optab_handlers *h;
 
 
        o = optab_table[i];
        o = optab_table[i];
        h = &o->handlers[j];
        h = &o->handlers[j];
        if (h->libfunc)
        if (h->libfunc)
          {
          {
            gcc_assert (GET_CODE (h->libfunc) = SYMBOL_REF);
            gcc_assert (GET_CODE (h->libfunc) = SYMBOL_REF);
            fprintf (stderr, "%s\t%s:\t%s\n",
            fprintf (stderr, "%s\t%s:\t%s\n",
                     GET_RTX_NAME (o->code),
                     GET_RTX_NAME (o->code),
                     GET_MODE_NAME (j),
                     GET_MODE_NAME (j),
                     XSTR (h->libfunc, 0));
                     XSTR (h->libfunc, 0));
          }
          }
      }
      }
 
 
  /* Dump the conversion optabs.  */
  /* Dump the conversion optabs.  */
  for (i = 0; i < (int) COI_MAX; ++i)
  for (i = 0; i < (int) COI_MAX; ++i)
    for (j = 0; j < NUM_MACHINE_MODES; ++j)
    for (j = 0; j < NUM_MACHINE_MODES; ++j)
      for (k = 0; k < NUM_MACHINE_MODES; ++k)
      for (k = 0; k < NUM_MACHINE_MODES; ++k)
        {
        {
          convert_optab o;
          convert_optab o;
          struct optab_handlers *h;
          struct optab_handlers *h;
 
 
          o = &convert_optab_table[i];
          o = &convert_optab_table[i];
          h = &o->handlers[j][k];
          h = &o->handlers[j][k];
          if (h->libfunc)
          if (h->libfunc)
            {
            {
              gcc_assert (GET_CODE (h->libfunc) = SYMBOL_REF);
              gcc_assert (GET_CODE (h->libfunc) = SYMBOL_REF);
              fprintf (stderr, "%s\t%s\t%s:\t%s\n",
              fprintf (stderr, "%s\t%s\t%s:\t%s\n",
                       GET_RTX_NAME (o->code),
                       GET_RTX_NAME (o->code),
                       GET_MODE_NAME (j),
                       GET_MODE_NAME (j),
                       GET_MODE_NAME (k),
                       GET_MODE_NAME (k),
                       XSTR (h->libfunc, 0));
                       XSTR (h->libfunc, 0));
            }
            }
        }
        }
}
}
 
 
#endif /* DEBUG */
#endif /* DEBUG */
 
 


/* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
/* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
   CODE.  Return 0 on failure.  */
   CODE.  Return 0 on failure.  */
 
 
rtx
rtx
gen_cond_trap (enum rtx_code code ATTRIBUTE_UNUSED, rtx op1,
gen_cond_trap (enum rtx_code code ATTRIBUTE_UNUSED, rtx op1,
               rtx op2 ATTRIBUTE_UNUSED, rtx tcode ATTRIBUTE_UNUSED)
               rtx op2 ATTRIBUTE_UNUSED, rtx tcode ATTRIBUTE_UNUSED)
{
{
  enum machine_mode mode = GET_MODE (op1);
  enum machine_mode mode = GET_MODE (op1);
  enum insn_code icode;
  enum insn_code icode;
  rtx insn;
  rtx insn;
 
 
  if (!HAVE_conditional_trap)
  if (!HAVE_conditional_trap)
    return 0;
    return 0;
 
 
  if (mode == VOIDmode)
  if (mode == VOIDmode)
    return 0;
    return 0;
 
 
  icode = cmp_optab->handlers[(int) mode].insn_code;
  icode = cmp_optab->handlers[(int) mode].insn_code;
  if (icode == CODE_FOR_nothing)
  if (icode == CODE_FOR_nothing)
    return 0;
    return 0;
 
 
  start_sequence ();
  start_sequence ();
  op1 = prepare_operand (icode, op1, 0, mode, mode, 0);
  op1 = prepare_operand (icode, op1, 0, mode, mode, 0);
  op2 = prepare_operand (icode, op2, 1, mode, mode, 0);
  op2 = prepare_operand (icode, op2, 1, mode, mode, 0);
  if (!op1 || !op2)
  if (!op1 || !op2)
    {
    {
      end_sequence ();
      end_sequence ();
      return 0;
      return 0;
    }
    }
  emit_insn (GEN_FCN (icode) (op1, op2));
  emit_insn (GEN_FCN (icode) (op1, op2));
 
 
  PUT_CODE (trap_rtx, code);
  PUT_CODE (trap_rtx, code);
  gcc_assert (HAVE_conditional_trap);
  gcc_assert (HAVE_conditional_trap);
  insn = gen_conditional_trap (trap_rtx, tcode);
  insn = gen_conditional_trap (trap_rtx, tcode);
  if (insn)
  if (insn)
    {
    {
      emit_insn (insn);
      emit_insn (insn);
      insn = get_insns ();
      insn = get_insns ();
    }
    }
  end_sequence ();
  end_sequence ();
 
 
  return insn;
  return insn;
}
}
 
 
/* Return rtx code for TCODE. Use UNSIGNEDP to select signed
/* Return rtx code for TCODE. Use UNSIGNEDP to select signed
   or unsigned operation code.  */
   or unsigned operation code.  */
 
 
static enum rtx_code
static enum rtx_code
get_rtx_code (enum tree_code tcode, bool unsignedp)
get_rtx_code (enum tree_code tcode, bool unsignedp)
{
{
  enum rtx_code code;
  enum rtx_code code;
  switch (tcode)
  switch (tcode)
    {
    {
    case EQ_EXPR:
    case EQ_EXPR:
      code = EQ;
      code = EQ;
      break;
      break;
    case NE_EXPR:
    case NE_EXPR:
      code = NE;
      code = NE;
      break;
      break;
    case LT_EXPR:
    case LT_EXPR:
      code = unsignedp ? LTU : LT;
      code = unsignedp ? LTU : LT;
      break;
      break;
    case LE_EXPR:
    case LE_EXPR:
      code = unsignedp ? LEU : LE;
      code = unsignedp ? LEU : LE;
      break;
      break;
    case GT_EXPR:
    case GT_EXPR:
      code = unsignedp ? GTU : GT;
      code = unsignedp ? GTU : GT;
      break;
      break;
    case GE_EXPR:
    case GE_EXPR:
      code = unsignedp ? GEU : GE;
      code = unsignedp ? GEU : GE;
      break;
      break;
 
 
    case UNORDERED_EXPR:
    case UNORDERED_EXPR:
      code = UNORDERED;
      code = UNORDERED;
      break;
      break;
    case ORDERED_EXPR:
    case ORDERED_EXPR:
      code = ORDERED;
      code = ORDERED;
      break;
      break;
    case UNLT_EXPR:
    case UNLT_EXPR:
      code = UNLT;
      code = UNLT;
      break;
      break;
    case UNLE_EXPR:
    case UNLE_EXPR:
      code = UNLE;
      code = UNLE;
      break;
      break;
    case UNGT_EXPR:
    case UNGT_EXPR:
      code = UNGT;
      code = UNGT;
      break;
      break;
    case UNGE_EXPR:
    case UNGE_EXPR:
      code = UNGE;
      code = UNGE;
      break;
      break;
    case UNEQ_EXPR:
    case UNEQ_EXPR:
      code = UNEQ;
      code = UNEQ;
      break;
      break;
    case LTGT_EXPR:
    case LTGT_EXPR:
      code = LTGT;
      code = LTGT;
      break;
      break;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
  return code;
  return code;
}
}
 
 
/* Return comparison rtx for COND. Use UNSIGNEDP to select signed or
/* Return comparison rtx for COND. Use UNSIGNEDP to select signed or
   unsigned operators. Do not generate compare instruction.  */
   unsigned operators. Do not generate compare instruction.  */
 
 
static rtx
static rtx
vector_compare_rtx (tree cond, bool unsignedp, enum insn_code icode)
vector_compare_rtx (tree cond, bool unsignedp, enum insn_code icode)
{
{
  enum rtx_code rcode;
  enum rtx_code rcode;
  tree t_op0, t_op1;
  tree t_op0, t_op1;
  rtx rtx_op0, rtx_op1;
  rtx rtx_op0, rtx_op1;
 
 
  /* This is unlikely. While generating VEC_COND_EXPR, auto vectorizer
  /* This is unlikely. While generating VEC_COND_EXPR, auto vectorizer
     ensures that condition is a relational operation.  */
     ensures that condition is a relational operation.  */
  gcc_assert (COMPARISON_CLASS_P (cond));
  gcc_assert (COMPARISON_CLASS_P (cond));
 
 
  rcode = get_rtx_code (TREE_CODE (cond), unsignedp);
  rcode = get_rtx_code (TREE_CODE (cond), unsignedp);
  t_op0 = TREE_OPERAND (cond, 0);
  t_op0 = TREE_OPERAND (cond, 0);
  t_op1 = TREE_OPERAND (cond, 1);
  t_op1 = TREE_OPERAND (cond, 1);
 
 
  /* Expand operands.  */
  /* Expand operands.  */
  rtx_op0 = expand_expr (t_op0, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op0)), 1);
  rtx_op0 = expand_expr (t_op0, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op0)), 1);
  rtx_op1 = expand_expr (t_op1, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op1)), 1);
  rtx_op1 = expand_expr (t_op1, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op1)), 1);
 
 
  if (!insn_data[icode].operand[4].predicate (rtx_op0, GET_MODE (rtx_op0))
  if (!insn_data[icode].operand[4].predicate (rtx_op0, GET_MODE (rtx_op0))
      && GET_MODE (rtx_op0) != VOIDmode)
      && GET_MODE (rtx_op0) != VOIDmode)
    rtx_op0 = force_reg (GET_MODE (rtx_op0), rtx_op0);
    rtx_op0 = force_reg (GET_MODE (rtx_op0), rtx_op0);
 
 
  if (!insn_data[icode].operand[5].predicate (rtx_op1, GET_MODE (rtx_op1))
  if (!insn_data[icode].operand[5].predicate (rtx_op1, GET_MODE (rtx_op1))
      && GET_MODE (rtx_op1) != VOIDmode)
      && GET_MODE (rtx_op1) != VOIDmode)
    rtx_op1 = force_reg (GET_MODE (rtx_op1), rtx_op1);
    rtx_op1 = force_reg (GET_MODE (rtx_op1), rtx_op1);
 
 
  return gen_rtx_fmt_ee (rcode, VOIDmode, rtx_op0, rtx_op1);
  return gen_rtx_fmt_ee (rcode, VOIDmode, rtx_op0, rtx_op1);
}
}
 
 
/* Return insn code for VEC_COND_EXPR EXPR.  */
/* Return insn code for VEC_COND_EXPR EXPR.  */
 
 
static inline enum insn_code
static inline enum insn_code
get_vcond_icode (tree expr, enum machine_mode mode)
get_vcond_icode (tree expr, enum machine_mode mode)
{
{
  enum insn_code icode = CODE_FOR_nothing;
  enum insn_code icode = CODE_FOR_nothing;
 
 
  if (TYPE_UNSIGNED (TREE_TYPE (expr)))
  if (TYPE_UNSIGNED (TREE_TYPE (expr)))
    icode = vcondu_gen_code[mode];
    icode = vcondu_gen_code[mode];
  else
  else
    icode = vcond_gen_code[mode];
    icode = vcond_gen_code[mode];
  return icode;
  return icode;
}
}
 
 
/* Return TRUE iff, appropriate vector insns are available
/* Return TRUE iff, appropriate vector insns are available
   for vector cond expr expr in VMODE mode.  */
   for vector cond expr expr in VMODE mode.  */
 
 
bool
bool
expand_vec_cond_expr_p (tree expr, enum machine_mode vmode)
expand_vec_cond_expr_p (tree expr, enum machine_mode vmode)
{
{
  if (get_vcond_icode (expr, vmode) == CODE_FOR_nothing)
  if (get_vcond_icode (expr, vmode) == CODE_FOR_nothing)
    return false;
    return false;
  return true;
  return true;
}
}
 
 
/* Generate insns for VEC_COND_EXPR.  */
/* Generate insns for VEC_COND_EXPR.  */
 
 
rtx
rtx
expand_vec_cond_expr (tree vec_cond_expr, rtx target)
expand_vec_cond_expr (tree vec_cond_expr, rtx target)
{
{
  enum insn_code icode;
  enum insn_code icode;
  rtx comparison, rtx_op1, rtx_op2, cc_op0, cc_op1;
  rtx comparison, rtx_op1, rtx_op2, cc_op0, cc_op1;
  enum machine_mode mode = TYPE_MODE (TREE_TYPE (vec_cond_expr));
  enum machine_mode mode = TYPE_MODE (TREE_TYPE (vec_cond_expr));
  bool unsignedp = TYPE_UNSIGNED (TREE_TYPE (vec_cond_expr));
  bool unsignedp = TYPE_UNSIGNED (TREE_TYPE (vec_cond_expr));
 
 
  icode = get_vcond_icode (vec_cond_expr, mode);
  icode = get_vcond_icode (vec_cond_expr, mode);
  if (icode == CODE_FOR_nothing)
  if (icode == CODE_FOR_nothing)
    return 0;
    return 0;
 
 
  if (!target || !insn_data[icode].operand[0].predicate (target, mode))
  if (!target || !insn_data[icode].operand[0].predicate (target, mode))
    target = gen_reg_rtx (mode);
    target = gen_reg_rtx (mode);
 
 
  /* Get comparison rtx.  First expand both cond expr operands.  */
  /* Get comparison rtx.  First expand both cond expr operands.  */
  comparison = vector_compare_rtx (TREE_OPERAND (vec_cond_expr, 0),
  comparison = vector_compare_rtx (TREE_OPERAND (vec_cond_expr, 0),
                                   unsignedp, icode);
                                   unsignedp, icode);
  cc_op0 = XEXP (comparison, 0);
  cc_op0 = XEXP (comparison, 0);
  cc_op1 = XEXP (comparison, 1);
  cc_op1 = XEXP (comparison, 1);
  /* Expand both operands and force them in reg, if required.  */
  /* Expand both operands and force them in reg, if required.  */
  rtx_op1 = expand_expr (TREE_OPERAND (vec_cond_expr, 1),
  rtx_op1 = expand_expr (TREE_OPERAND (vec_cond_expr, 1),
                         NULL_RTX, VOIDmode, EXPAND_NORMAL);
                         NULL_RTX, VOIDmode, EXPAND_NORMAL);
  if (!insn_data[icode].operand[1].predicate (rtx_op1, mode)
  if (!insn_data[icode].operand[1].predicate (rtx_op1, mode)
      && mode != VOIDmode)
      && mode != VOIDmode)
    rtx_op1 = force_reg (mode, rtx_op1);
    rtx_op1 = force_reg (mode, rtx_op1);
 
 
  rtx_op2 = expand_expr (TREE_OPERAND (vec_cond_expr, 2),
  rtx_op2 = expand_expr (TREE_OPERAND (vec_cond_expr, 2),
                         NULL_RTX, VOIDmode, EXPAND_NORMAL);
                         NULL_RTX, VOIDmode, EXPAND_NORMAL);
  if (!insn_data[icode].operand[2].predicate (rtx_op2, mode)
  if (!insn_data[icode].operand[2].predicate (rtx_op2, mode)
      && mode != VOIDmode)
      && mode != VOIDmode)
    rtx_op2 = force_reg (mode, rtx_op2);
    rtx_op2 = force_reg (mode, rtx_op2);
 
 
  /* Emit instruction! */
  /* Emit instruction! */
  emit_insn (GEN_FCN (icode) (target, rtx_op1, rtx_op2,
  emit_insn (GEN_FCN (icode) (target, rtx_op1, rtx_op2,
                              comparison, cc_op0,  cc_op1));
                              comparison, cc_op0,  cc_op1));
 
 
  return target;
  return target;
}
}
 
 


/* This is an internal subroutine of the other compare_and_swap expanders.
/* This is an internal subroutine of the other compare_and_swap expanders.
   MEM, OLD_VAL and NEW_VAL are as you'd expect for a compare-and-swap
   MEM, OLD_VAL and NEW_VAL are as you'd expect for a compare-and-swap
   operation.  TARGET is an optional place to store the value result of
   operation.  TARGET is an optional place to store the value result of
   the operation.  ICODE is the particular instruction to expand.  Return
   the operation.  ICODE is the particular instruction to expand.  Return
   the result of the operation.  */
   the result of the operation.  */
 
 
static rtx
static rtx
expand_val_compare_and_swap_1 (rtx mem, rtx old_val, rtx new_val,
expand_val_compare_and_swap_1 (rtx mem, rtx old_val, rtx new_val,
                               rtx target, enum insn_code icode)
                               rtx target, enum insn_code icode)
{
{
  enum machine_mode mode = GET_MODE (mem);
  enum machine_mode mode = GET_MODE (mem);
  rtx insn;
  rtx insn;
 
 
  if (!target || !insn_data[icode].operand[0].predicate (target, mode))
  if (!target || !insn_data[icode].operand[0].predicate (target, mode))
    target = gen_reg_rtx (mode);
    target = gen_reg_rtx (mode);
 
 
  if (GET_MODE (old_val) != VOIDmode && GET_MODE (old_val) != mode)
  if (GET_MODE (old_val) != VOIDmode && GET_MODE (old_val) != mode)
    old_val = convert_modes (mode, GET_MODE (old_val), old_val, 1);
    old_val = convert_modes (mode, GET_MODE (old_val), old_val, 1);
  if (!insn_data[icode].operand[2].predicate (old_val, mode))
  if (!insn_data[icode].operand[2].predicate (old_val, mode))
    old_val = force_reg (mode, old_val);
    old_val = force_reg (mode, old_val);
 
 
  if (GET_MODE (new_val) != VOIDmode && GET_MODE (new_val) != mode)
  if (GET_MODE (new_val) != VOIDmode && GET_MODE (new_val) != mode)
    new_val = convert_modes (mode, GET_MODE (new_val), new_val, 1);
    new_val = convert_modes (mode, GET_MODE (new_val), new_val, 1);
  if (!insn_data[icode].operand[3].predicate (new_val, mode))
  if (!insn_data[icode].operand[3].predicate (new_val, mode))
    new_val = force_reg (mode, new_val);
    new_val = force_reg (mode, new_val);
 
 
  insn = GEN_FCN (icode) (target, mem, old_val, new_val);
  insn = GEN_FCN (icode) (target, mem, old_val, new_val);
  if (insn == NULL_RTX)
  if (insn == NULL_RTX)
    return NULL_RTX;
    return NULL_RTX;
  emit_insn (insn);
  emit_insn (insn);
 
 
  return target;
  return target;
}
}
 
 
/* Expand a compare-and-swap operation and return its value.  */
/* Expand a compare-and-swap operation and return its value.  */
 
 
rtx
rtx
expand_val_compare_and_swap (rtx mem, rtx old_val, rtx new_val, rtx target)
expand_val_compare_and_swap (rtx mem, rtx old_val, rtx new_val, rtx target)
{
{
  enum machine_mode mode = GET_MODE (mem);
  enum machine_mode mode = GET_MODE (mem);
  enum insn_code icode = sync_compare_and_swap[mode];
  enum insn_code icode = sync_compare_and_swap[mode];
 
 
  if (icode == CODE_FOR_nothing)
  if (icode == CODE_FOR_nothing)
    return NULL_RTX;
    return NULL_RTX;
 
 
  return expand_val_compare_and_swap_1 (mem, old_val, new_val, target, icode);
  return expand_val_compare_and_swap_1 (mem, old_val, new_val, target, icode);
}
}
 
 
/* Expand a compare-and-swap operation and store true into the result if
/* Expand a compare-and-swap operation and store true into the result if
   the operation was successful and false otherwise.  Return the result.
   the operation was successful and false otherwise.  Return the result.
   Unlike other routines, TARGET is not optional.  */
   Unlike other routines, TARGET is not optional.  */
 
 
rtx
rtx
expand_bool_compare_and_swap (rtx mem, rtx old_val, rtx new_val, rtx target)
expand_bool_compare_and_swap (rtx mem, rtx old_val, rtx new_val, rtx target)
{
{
  enum machine_mode mode = GET_MODE (mem);
  enum machine_mode mode = GET_MODE (mem);
  enum insn_code icode;
  enum insn_code icode;
  rtx subtarget, label0, label1;
  rtx subtarget, label0, label1;
 
 
  /* If the target supports a compare-and-swap pattern that simultaneously
  /* If the target supports a compare-and-swap pattern that simultaneously
     sets some flag for success, then use it.  Otherwise use the regular
     sets some flag for success, then use it.  Otherwise use the regular
     compare-and-swap and follow that immediately with a compare insn.  */
     compare-and-swap and follow that immediately with a compare insn.  */
  icode = sync_compare_and_swap_cc[mode];
  icode = sync_compare_and_swap_cc[mode];
  switch (icode)
  switch (icode)
    {
    {
    default:
    default:
      subtarget = expand_val_compare_and_swap_1 (mem, old_val, new_val,
      subtarget = expand_val_compare_and_swap_1 (mem, old_val, new_val,
                                                 NULL_RTX, icode);
                                                 NULL_RTX, icode);
      if (subtarget != NULL_RTX)
      if (subtarget != NULL_RTX)
        break;
        break;
 
 
      /* FALLTHRU */
      /* FALLTHRU */
    case CODE_FOR_nothing:
    case CODE_FOR_nothing:
      icode = sync_compare_and_swap[mode];
      icode = sync_compare_and_swap[mode];
      if (icode == CODE_FOR_nothing)
      if (icode == CODE_FOR_nothing)
        return NULL_RTX;
        return NULL_RTX;
 
 
      /* Ensure that if old_val == mem, that we're not comparing
      /* Ensure that if old_val == mem, that we're not comparing
         against an old value.  */
         against an old value.  */
      if (MEM_P (old_val))
      if (MEM_P (old_val))
        old_val = force_reg (mode, old_val);
        old_val = force_reg (mode, old_val);
 
 
      subtarget = expand_val_compare_and_swap_1 (mem, old_val, new_val,
      subtarget = expand_val_compare_and_swap_1 (mem, old_val, new_val,
                                                 NULL_RTX, icode);
                                                 NULL_RTX, icode);
      if (subtarget == NULL_RTX)
      if (subtarget == NULL_RTX)
        return NULL_RTX;
        return NULL_RTX;
 
 
      emit_cmp_insn (subtarget, old_val, EQ, const0_rtx, mode, true);
      emit_cmp_insn (subtarget, old_val, EQ, const0_rtx, mode, true);
    }
    }
 
 
  /* If the target has a sane STORE_FLAG_VALUE, then go ahead and use a
  /* If the target has a sane STORE_FLAG_VALUE, then go ahead and use a
     setcc instruction from the beginning.  We don't work too hard here,
     setcc instruction from the beginning.  We don't work too hard here,
     but it's nice to not be stupid about initial code gen either.  */
     but it's nice to not be stupid about initial code gen either.  */
  if (STORE_FLAG_VALUE == 1)
  if (STORE_FLAG_VALUE == 1)
    {
    {
      icode = setcc_gen_code[EQ];
      icode = setcc_gen_code[EQ];
      if (icode != CODE_FOR_nothing)
      if (icode != CODE_FOR_nothing)
        {
        {
          enum machine_mode cmode = insn_data[icode].operand[0].mode;
          enum machine_mode cmode = insn_data[icode].operand[0].mode;
          rtx insn;
          rtx insn;
 
 
          subtarget = target;
          subtarget = target;
          if (!insn_data[icode].operand[0].predicate (target, cmode))
          if (!insn_data[icode].operand[0].predicate (target, cmode))
            subtarget = gen_reg_rtx (cmode);
            subtarget = gen_reg_rtx (cmode);
 
 
          insn = GEN_FCN (icode) (subtarget);
          insn = GEN_FCN (icode) (subtarget);
          if (insn)
          if (insn)
            {
            {
              emit_insn (insn);
              emit_insn (insn);
              if (GET_MODE (target) != GET_MODE (subtarget))
              if (GET_MODE (target) != GET_MODE (subtarget))
                {
                {
                  convert_move (target, subtarget, 1);
                  convert_move (target, subtarget, 1);
                  subtarget = target;
                  subtarget = target;
                }
                }
              return subtarget;
              return subtarget;
            }
            }
        }
        }
    }
    }
 
 
  /* Without an appropriate setcc instruction, use a set of branches to
  /* Without an appropriate setcc instruction, use a set of branches to
     get 1 and 0 stored into target.  Presumably if the target has a
     get 1 and 0 stored into target.  Presumably if the target has a
     STORE_FLAG_VALUE that isn't 1, then this will get cleaned up by ifcvt.  */
     STORE_FLAG_VALUE that isn't 1, then this will get cleaned up by ifcvt.  */
 
 
  label0 = gen_label_rtx ();
  label0 = gen_label_rtx ();
  label1 = gen_label_rtx ();
  label1 = gen_label_rtx ();
 
 
  emit_jump_insn (bcc_gen_fctn[EQ] (label0));
  emit_jump_insn (bcc_gen_fctn[EQ] (label0));
  emit_move_insn (target, const0_rtx);
  emit_move_insn (target, const0_rtx);
  emit_jump_insn (gen_jump (label1));
  emit_jump_insn (gen_jump (label1));
  emit_barrier ();
  emit_barrier ();
  emit_label (label0);
  emit_label (label0);
  emit_move_insn (target, const1_rtx);
  emit_move_insn (target, const1_rtx);
  emit_label (label1);
  emit_label (label1);
 
 
  return target;
  return target;
}
}
 
 
/* This is a helper function for the other atomic operations.  This function
/* This is a helper function for the other atomic operations.  This function
   emits a loop that contains SEQ that iterates until a compare-and-swap
   emits a loop that contains SEQ that iterates until a compare-and-swap
   operation at the end succeeds.  MEM is the memory to be modified.  SEQ is
   operation at the end succeeds.  MEM is the memory to be modified.  SEQ is
   a set of instructions that takes a value from OLD_REG as an input and
   a set of instructions that takes a value from OLD_REG as an input and
   produces a value in NEW_REG as an output.  Before SEQ, OLD_REG will be
   produces a value in NEW_REG as an output.  Before SEQ, OLD_REG will be
   set to the current contents of MEM.  After SEQ, a compare-and-swap will
   set to the current contents of MEM.  After SEQ, a compare-and-swap will
   attempt to update MEM with NEW_REG.  The function returns true when the
   attempt to update MEM with NEW_REG.  The function returns true when the
   loop was generated successfully.  */
   loop was generated successfully.  */
 
 
static bool
static bool
expand_compare_and_swap_loop (rtx mem, rtx old_reg, rtx new_reg, rtx seq)
expand_compare_and_swap_loop (rtx mem, rtx old_reg, rtx new_reg, rtx seq)
{
{
  enum machine_mode mode = GET_MODE (mem);
  enum machine_mode mode = GET_MODE (mem);
  enum insn_code icode;
  enum insn_code icode;
  rtx label, cmp_reg, subtarget;
  rtx label, cmp_reg, subtarget;
 
 
  /* The loop we want to generate looks like
  /* The loop we want to generate looks like
 
 
        cmp_reg = mem;
        cmp_reg = mem;
      label:
      label:
        old_reg = cmp_reg;
        old_reg = cmp_reg;
        seq;
        seq;
        cmp_reg = compare-and-swap(mem, old_reg, new_reg)
        cmp_reg = compare-and-swap(mem, old_reg, new_reg)
        if (cmp_reg != old_reg)
        if (cmp_reg != old_reg)
          goto label;
          goto label;
 
 
     Note that we only do the plain load from memory once.  Subsequent
     Note that we only do the plain load from memory once.  Subsequent
     iterations use the value loaded by the compare-and-swap pattern.  */
     iterations use the value loaded by the compare-and-swap pattern.  */
 
 
  label = gen_label_rtx ();
  label = gen_label_rtx ();
  cmp_reg = gen_reg_rtx (mode);
  cmp_reg = gen_reg_rtx (mode);
 
 
  emit_move_insn (cmp_reg, mem);
  emit_move_insn (cmp_reg, mem);
  emit_label (label);
  emit_label (label);
  emit_move_insn (old_reg, cmp_reg);
  emit_move_insn (old_reg, cmp_reg);
  if (seq)
  if (seq)
    emit_insn (seq);
    emit_insn (seq);
 
 
  /* If the target supports a compare-and-swap pattern that simultaneously
  /* If the target supports a compare-and-swap pattern that simultaneously
     sets some flag for success, then use it.  Otherwise use the regular
     sets some flag for success, then use it.  Otherwise use the regular
     compare-and-swap and follow that immediately with a compare insn.  */
     compare-and-swap and follow that immediately with a compare insn.  */
  icode = sync_compare_and_swap_cc[mode];
  icode = sync_compare_and_swap_cc[mode];
  switch (icode)
  switch (icode)
    {
    {
    default:
    default:
      subtarget = expand_val_compare_and_swap_1 (mem, old_reg, new_reg,
      subtarget = expand_val_compare_and_swap_1 (mem, old_reg, new_reg,
                                                 cmp_reg, icode);
                                                 cmp_reg, icode);
      if (subtarget != NULL_RTX)
      if (subtarget != NULL_RTX)
        {
        {
          gcc_assert (subtarget == cmp_reg);
          gcc_assert (subtarget == cmp_reg);
          break;
          break;
        }
        }
 
 
      /* FALLTHRU */
      /* FALLTHRU */
    case CODE_FOR_nothing:
    case CODE_FOR_nothing:
      icode = sync_compare_and_swap[mode];
      icode = sync_compare_and_swap[mode];
      if (icode == CODE_FOR_nothing)
      if (icode == CODE_FOR_nothing)
        return false;
        return false;
 
 
      subtarget = expand_val_compare_and_swap_1 (mem, old_reg, new_reg,
      subtarget = expand_val_compare_and_swap_1 (mem, old_reg, new_reg,
                                                 cmp_reg, icode);
                                                 cmp_reg, icode);
      if (subtarget == NULL_RTX)
      if (subtarget == NULL_RTX)
        return false;
        return false;
      if (subtarget != cmp_reg)
      if (subtarget != cmp_reg)
        emit_move_insn (cmp_reg, subtarget);
        emit_move_insn (cmp_reg, subtarget);
 
 
      emit_cmp_insn (cmp_reg, old_reg, EQ, const0_rtx, mode, true);
      emit_cmp_insn (cmp_reg, old_reg, EQ, const0_rtx, mode, true);
    }
    }
 
 
  /* ??? Mark this jump predicted not taken?  */
  /* ??? Mark this jump predicted not taken?  */
  emit_jump_insn (bcc_gen_fctn[NE] (label));
  emit_jump_insn (bcc_gen_fctn[NE] (label));
 
 
  return true;
  return true;
}
}
 
 
/* This function generates the atomic operation MEM CODE= VAL.  In this
/* This function generates the atomic operation MEM CODE= VAL.  In this
   case, we do not care about any resulting value.  Returns NULL if we
   case, we do not care about any resulting value.  Returns NULL if we
   cannot generate the operation.  */
   cannot generate the operation.  */
 
 
rtx
rtx
expand_sync_operation (rtx mem, rtx val, enum rtx_code code)
expand_sync_operation (rtx mem, rtx val, enum rtx_code code)
{
{
  enum machine_mode mode = GET_MODE (mem);
  enum machine_mode mode = GET_MODE (mem);
  enum insn_code icode;
  enum insn_code icode;
  rtx insn;
  rtx insn;
 
 
  /* Look to see if the target supports the operation directly.  */
  /* Look to see if the target supports the operation directly.  */
  switch (code)
  switch (code)
    {
    {
    case PLUS:
    case PLUS:
      icode = sync_add_optab[mode];
      icode = sync_add_optab[mode];
      break;
      break;
    case IOR:
    case IOR:
      icode = sync_ior_optab[mode];
      icode = sync_ior_optab[mode];
      break;
      break;
    case XOR:
    case XOR:
      icode = sync_xor_optab[mode];
      icode = sync_xor_optab[mode];
      break;
      break;
    case AND:
    case AND:
      icode = sync_and_optab[mode];
      icode = sync_and_optab[mode];
      break;
      break;
    case NOT:
    case NOT:
      icode = sync_nand_optab[mode];
      icode = sync_nand_optab[mode];
      break;
      break;
 
 
    case MINUS:
    case MINUS:
      icode = sync_sub_optab[mode];
      icode = sync_sub_optab[mode];
      if (icode == CODE_FOR_nothing)
      if (icode == CODE_FOR_nothing)
        {
        {
          icode = sync_add_optab[mode];
          icode = sync_add_optab[mode];
          if (icode != CODE_FOR_nothing)
          if (icode != CODE_FOR_nothing)
            {
            {
              val = expand_simple_unop (mode, NEG, val, NULL_RTX, 1);
              val = expand_simple_unop (mode, NEG, val, NULL_RTX, 1);
              code = PLUS;
              code = PLUS;
            }
            }
        }
        }
      break;
      break;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  /* Generate the direct operation, if present.  */
  /* Generate the direct operation, if present.  */
  if (icode != CODE_FOR_nothing)
  if (icode != CODE_FOR_nothing)
    {
    {
      if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
      if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
        val = convert_modes (mode, GET_MODE (val), val, 1);
        val = convert_modes (mode, GET_MODE (val), val, 1);
      if (!insn_data[icode].operand[1].predicate (val, mode))
      if (!insn_data[icode].operand[1].predicate (val, mode))
        val = force_reg (mode, val);
        val = force_reg (mode, val);
 
 
      insn = GEN_FCN (icode) (mem, val);
      insn = GEN_FCN (icode) (mem, val);
      if (insn)
      if (insn)
        {
        {
          emit_insn (insn);
          emit_insn (insn);
          return const0_rtx;
          return const0_rtx;
        }
        }
    }
    }
 
 
  /* Failing that, generate a compare-and-swap loop in which we perform the
  /* Failing that, generate a compare-and-swap loop in which we perform the
     operation with normal arithmetic instructions.  */
     operation with normal arithmetic instructions.  */
  if (sync_compare_and_swap[mode] != CODE_FOR_nothing)
  if (sync_compare_and_swap[mode] != CODE_FOR_nothing)
    {
    {
      rtx t0 = gen_reg_rtx (mode), t1;
      rtx t0 = gen_reg_rtx (mode), t1;
 
 
      start_sequence ();
      start_sequence ();
 
 
      t1 = t0;
      t1 = t0;
      if (code == NOT)
      if (code == NOT)
        {
        {
          t1 = expand_simple_unop (mode, NOT, t1, NULL_RTX, true);
          t1 = expand_simple_unop (mode, NOT, t1, NULL_RTX, true);
          code = AND;
          code = AND;
        }
        }
      t1 = expand_simple_binop (mode, code, t1, val, NULL_RTX,
      t1 = expand_simple_binop (mode, code, t1, val, NULL_RTX,
                                true, OPTAB_LIB_WIDEN);
                                true, OPTAB_LIB_WIDEN);
 
 
      insn = get_insns ();
      insn = get_insns ();
      end_sequence ();
      end_sequence ();
 
 
      if (t1 != NULL && expand_compare_and_swap_loop (mem, t0, t1, insn))
      if (t1 != NULL && expand_compare_and_swap_loop (mem, t0, t1, insn))
        return const0_rtx;
        return const0_rtx;
    }
    }
 
 
  return NULL_RTX;
  return NULL_RTX;
}
}
 
 
/* This function generates the atomic operation MEM CODE= VAL.  In this
/* This function generates the atomic operation MEM CODE= VAL.  In this
   case, we do care about the resulting value: if AFTER is true then
   case, we do care about the resulting value: if AFTER is true then
   return the value MEM holds after the operation, if AFTER is false
   return the value MEM holds after the operation, if AFTER is false
   then return the value MEM holds before the operation.  TARGET is an
   then return the value MEM holds before the operation.  TARGET is an
   optional place for the result value to be stored.  */
   optional place for the result value to be stored.  */
 
 
rtx
rtx
expand_sync_fetch_operation (rtx mem, rtx val, enum rtx_code code,
expand_sync_fetch_operation (rtx mem, rtx val, enum rtx_code code,
                             bool after, rtx target)
                             bool after, rtx target)
{
{
  enum machine_mode mode = GET_MODE (mem);
  enum machine_mode mode = GET_MODE (mem);
  enum insn_code old_code, new_code, icode;
  enum insn_code old_code, new_code, icode;
  bool compensate;
  bool compensate;
  rtx insn;
  rtx insn;
 
 
  /* Look to see if the target supports the operation directly.  */
  /* Look to see if the target supports the operation directly.  */
  switch (code)
  switch (code)
    {
    {
    case PLUS:
    case PLUS:
      old_code = sync_old_add_optab[mode];
      old_code = sync_old_add_optab[mode];
      new_code = sync_new_add_optab[mode];
      new_code = sync_new_add_optab[mode];
      break;
      break;
    case IOR:
    case IOR:
      old_code = sync_old_ior_optab[mode];
      old_code = sync_old_ior_optab[mode];
      new_code = sync_new_ior_optab[mode];
      new_code = sync_new_ior_optab[mode];
      break;
      break;
    case XOR:
    case XOR:
      old_code = sync_old_xor_optab[mode];
      old_code = sync_old_xor_optab[mode];
      new_code = sync_new_xor_optab[mode];
      new_code = sync_new_xor_optab[mode];
      break;
      break;
    case AND:
    case AND:
      old_code = sync_old_and_optab[mode];
      old_code = sync_old_and_optab[mode];
      new_code = sync_new_and_optab[mode];
      new_code = sync_new_and_optab[mode];
      break;
      break;
    case NOT:
    case NOT:
      old_code = sync_old_nand_optab[mode];
      old_code = sync_old_nand_optab[mode];
      new_code = sync_new_nand_optab[mode];
      new_code = sync_new_nand_optab[mode];
      break;
      break;
 
 
    case MINUS:
    case MINUS:
      old_code = sync_old_sub_optab[mode];
      old_code = sync_old_sub_optab[mode];
      new_code = sync_new_sub_optab[mode];
      new_code = sync_new_sub_optab[mode];
      if (old_code == CODE_FOR_nothing && new_code == CODE_FOR_nothing)
      if (old_code == CODE_FOR_nothing && new_code == CODE_FOR_nothing)
        {
        {
          old_code = sync_old_add_optab[mode];
          old_code = sync_old_add_optab[mode];
          new_code = sync_new_add_optab[mode];
          new_code = sync_new_add_optab[mode];
          if (old_code != CODE_FOR_nothing || new_code != CODE_FOR_nothing)
          if (old_code != CODE_FOR_nothing || new_code != CODE_FOR_nothing)
            {
            {
              val = expand_simple_unop (mode, NEG, val, NULL_RTX, 1);
              val = expand_simple_unop (mode, NEG, val, NULL_RTX, 1);
              code = PLUS;
              code = PLUS;
            }
            }
        }
        }
      break;
      break;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  /* If the target does supports the proper new/old operation, great.  But
  /* If the target does supports the proper new/old operation, great.  But
     if we only support the opposite old/new operation, check to see if we
     if we only support the opposite old/new operation, check to see if we
     can compensate.  In the case in which the old value is supported, then
     can compensate.  In the case in which the old value is supported, then
     we can always perform the operation again with normal arithmetic.  In
     we can always perform the operation again with normal arithmetic.  In
     the case in which the new value is supported, then we can only handle
     the case in which the new value is supported, then we can only handle
     this in the case the operation is reversible.  */
     this in the case the operation is reversible.  */
  compensate = false;
  compensate = false;
  if (after)
  if (after)
    {
    {
      icode = new_code;
      icode = new_code;
      if (icode == CODE_FOR_nothing)
      if (icode == CODE_FOR_nothing)
        {
        {
          icode = old_code;
          icode = old_code;
          if (icode != CODE_FOR_nothing)
          if (icode != CODE_FOR_nothing)
            compensate = true;
            compensate = true;
        }
        }
    }
    }
  else
  else
    {
    {
      icode = old_code;
      icode = old_code;
      if (icode == CODE_FOR_nothing
      if (icode == CODE_FOR_nothing
          && (code == PLUS || code == MINUS || code == XOR))
          && (code == PLUS || code == MINUS || code == XOR))
        {
        {
          icode = new_code;
          icode = new_code;
          if (icode != CODE_FOR_nothing)
          if (icode != CODE_FOR_nothing)
            compensate = true;
            compensate = true;
        }
        }
    }
    }
 
 
  /* If we found something supported, great.  */
  /* If we found something supported, great.  */
  if (icode != CODE_FOR_nothing)
  if (icode != CODE_FOR_nothing)
    {
    {
      if (!target || !insn_data[icode].operand[0].predicate (target, mode))
      if (!target || !insn_data[icode].operand[0].predicate (target, mode))
        target = gen_reg_rtx (mode);
        target = gen_reg_rtx (mode);
 
 
      if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
      if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
        val = convert_modes (mode, GET_MODE (val), val, 1);
        val = convert_modes (mode, GET_MODE (val), val, 1);
      if (!insn_data[icode].operand[2].predicate (val, mode))
      if (!insn_data[icode].operand[2].predicate (val, mode))
        val = force_reg (mode, val);
        val = force_reg (mode, val);
 
 
      insn = GEN_FCN (icode) (target, mem, val);
      insn = GEN_FCN (icode) (target, mem, val);
      if (insn)
      if (insn)
        {
        {
          emit_insn (insn);
          emit_insn (insn);
 
 
          /* If we need to compensate for using an operation with the
          /* If we need to compensate for using an operation with the
             wrong return value, do so now.  */
             wrong return value, do so now.  */
          if (compensate)
          if (compensate)
            {
            {
              if (!after)
              if (!after)
                {
                {
                  if (code == PLUS)
                  if (code == PLUS)
                    code = MINUS;
                    code = MINUS;
                  else if (code == MINUS)
                  else if (code == MINUS)
                    code = PLUS;
                    code = PLUS;
                }
                }
 
 
              if (code == NOT)
              if (code == NOT)
                target = expand_simple_unop (mode, NOT, target, NULL_RTX, true);
                target = expand_simple_unop (mode, NOT, target, NULL_RTX, true);
              target = expand_simple_binop (mode, code, target, val, NULL_RTX,
              target = expand_simple_binop (mode, code, target, val, NULL_RTX,
                                            true, OPTAB_LIB_WIDEN);
                                            true, OPTAB_LIB_WIDEN);
            }
            }
 
 
          return target;
          return target;
        }
        }
    }
    }
 
 
  /* Failing that, generate a compare-and-swap loop in which we perform the
  /* Failing that, generate a compare-and-swap loop in which we perform the
     operation with normal arithmetic instructions.  */
     operation with normal arithmetic instructions.  */
  if (sync_compare_and_swap[mode] != CODE_FOR_nothing)
  if (sync_compare_and_swap[mode] != CODE_FOR_nothing)
    {
    {
      rtx t0 = gen_reg_rtx (mode), t1;
      rtx t0 = gen_reg_rtx (mode), t1;
 
 
      if (!target || !register_operand (target, mode))
      if (!target || !register_operand (target, mode))
        target = gen_reg_rtx (mode);
        target = gen_reg_rtx (mode);
 
 
      start_sequence ();
      start_sequence ();
 
 
      if (!after)
      if (!after)
        emit_move_insn (target, t0);
        emit_move_insn (target, t0);
      t1 = t0;
      t1 = t0;
      if (code == NOT)
      if (code == NOT)
        {
        {
          t1 = expand_simple_unop (mode, NOT, t1, NULL_RTX, true);
          t1 = expand_simple_unop (mode, NOT, t1, NULL_RTX, true);
          code = AND;
          code = AND;
        }
        }
      t1 = expand_simple_binop (mode, code, t1, val, NULL_RTX,
      t1 = expand_simple_binop (mode, code, t1, val, NULL_RTX,
                                true, OPTAB_LIB_WIDEN);
                                true, OPTAB_LIB_WIDEN);
      if (after)
      if (after)
        emit_move_insn (target, t1);
        emit_move_insn (target, t1);
 
 
      insn = get_insns ();
      insn = get_insns ();
      end_sequence ();
      end_sequence ();
 
 
      if (t1 != NULL && expand_compare_and_swap_loop (mem, t0, t1, insn))
      if (t1 != NULL && expand_compare_and_swap_loop (mem, t0, t1, insn))
        return target;
        return target;
    }
    }
 
 
  return NULL_RTX;
  return NULL_RTX;
}
}
 
 
/* This function expands a test-and-set operation.  Ideally we atomically
/* This function expands a test-and-set operation.  Ideally we atomically
   store VAL in MEM and return the previous value in MEM.  Some targets
   store VAL in MEM and return the previous value in MEM.  Some targets
   may not support this operation and only support VAL with the constant 1;
   may not support this operation and only support VAL with the constant 1;
   in this case while the return value will be 0/1, but the exact value
   in this case while the return value will be 0/1, but the exact value
   stored in MEM is target defined.  TARGET is an option place to stick
   stored in MEM is target defined.  TARGET is an option place to stick
   the return value.  */
   the return value.  */
 
 
rtx
rtx
expand_sync_lock_test_and_set (rtx mem, rtx val, rtx target)
expand_sync_lock_test_and_set (rtx mem, rtx val, rtx target)
{
{
  enum machine_mode mode = GET_MODE (mem);
  enum machine_mode mode = GET_MODE (mem);
  enum insn_code icode;
  enum insn_code icode;
  rtx insn;
  rtx insn;
 
 
  /* If the target supports the test-and-set directly, great.  */
  /* If the target supports the test-and-set directly, great.  */
  icode = sync_lock_test_and_set[mode];
  icode = sync_lock_test_and_set[mode];
  if (icode != CODE_FOR_nothing)
  if (icode != CODE_FOR_nothing)
    {
    {
      if (!target || !insn_data[icode].operand[0].predicate (target, mode))
      if (!target || !insn_data[icode].operand[0].predicate (target, mode))
        target = gen_reg_rtx (mode);
        target = gen_reg_rtx (mode);
 
 
      if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
      if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
        val = convert_modes (mode, GET_MODE (val), val, 1);
        val = convert_modes (mode, GET_MODE (val), val, 1);
      if (!insn_data[icode].operand[2].predicate (val, mode))
      if (!insn_data[icode].operand[2].predicate (val, mode))
        val = force_reg (mode, val);
        val = force_reg (mode, val);
 
 
      insn = GEN_FCN (icode) (target, mem, val);
      insn = GEN_FCN (icode) (target, mem, val);
      if (insn)
      if (insn)
        {
        {
          emit_insn (insn);
          emit_insn (insn);
          return target;
          return target;
        }
        }
    }
    }
 
 
  /* Otherwise, use a compare-and-swap loop for the exchange.  */
  /* Otherwise, use a compare-and-swap loop for the exchange.  */
  if (sync_compare_and_swap[mode] != CODE_FOR_nothing)
  if (sync_compare_and_swap[mode] != CODE_FOR_nothing)
    {
    {
      if (!target || !register_operand (target, mode))
      if (!target || !register_operand (target, mode))
        target = gen_reg_rtx (mode);
        target = gen_reg_rtx (mode);
      if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
      if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
        val = convert_modes (mode, GET_MODE (val), val, 1);
        val = convert_modes (mode, GET_MODE (val), val, 1);
      if (expand_compare_and_swap_loop (mem, target, val, NULL_RTX))
      if (expand_compare_and_swap_loop (mem, target, val, NULL_RTX))
        return target;
        return target;
    }
    }
 
 
  return NULL_RTX;
  return NULL_RTX;
}
}
 
 
#include "gt-optabs.h"
#include "gt-optabs.h"
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.