OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gcc-4.2.2/] [gcc/] [recog.c] - Diff between revs 154 and 816

Only display areas with differences | Details | Blame | View Log

Rev 154 Rev 816
/* Subroutines used by or related to instruction recognition.
/* Subroutines used by or related to instruction recognition.
   Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
   Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007
   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify it under
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
Software Foundation; either version 3, or (at your option) any later
version.
version.
 
 
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "rtl.h"
#include "rtl.h"
#include "tm_p.h"
#include "tm_p.h"
#include "insn-config.h"
#include "insn-config.h"
#include "insn-attr.h"
#include "insn-attr.h"
#include "hard-reg-set.h"
#include "hard-reg-set.h"
#include "recog.h"
#include "recog.h"
#include "regs.h"
#include "regs.h"
#include "addresses.h"
#include "addresses.h"
#include "expr.h"
#include "expr.h"
#include "function.h"
#include "function.h"
#include "flags.h"
#include "flags.h"
#include "real.h"
#include "real.h"
#include "toplev.h"
#include "toplev.h"
#include "basic-block.h"
#include "basic-block.h"
#include "output.h"
#include "output.h"
#include "reload.h"
#include "reload.h"
#include "timevar.h"
#include "timevar.h"
#include "tree-pass.h"
#include "tree-pass.h"
 
 
#ifndef STACK_PUSH_CODE
#ifndef STACK_PUSH_CODE
#ifdef STACK_GROWS_DOWNWARD
#ifdef STACK_GROWS_DOWNWARD
#define STACK_PUSH_CODE PRE_DEC
#define STACK_PUSH_CODE PRE_DEC
#else
#else
#define STACK_PUSH_CODE PRE_INC
#define STACK_PUSH_CODE PRE_INC
#endif
#endif
#endif
#endif
 
 
#ifndef STACK_POP_CODE
#ifndef STACK_POP_CODE
#ifdef STACK_GROWS_DOWNWARD
#ifdef STACK_GROWS_DOWNWARD
#define STACK_POP_CODE POST_INC
#define STACK_POP_CODE POST_INC
#else
#else
#define STACK_POP_CODE POST_DEC
#define STACK_POP_CODE POST_DEC
#endif
#endif
#endif
#endif
 
 
static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx);
static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx);
static rtx *find_single_use_1 (rtx, rtx *);
static rtx *find_single_use_1 (rtx, rtx *);
static void validate_replace_src_1 (rtx *, void *);
static void validate_replace_src_1 (rtx *, void *);
static rtx split_insn (rtx);
static rtx split_insn (rtx);
 
 
/* Nonzero means allow operands to be volatile.
/* Nonzero means allow operands to be volatile.
   This should be 0 if you are generating rtl, such as if you are calling
   This should be 0 if you are generating rtl, such as if you are calling
   the functions in optabs.c and expmed.c (most of the time).
   the functions in optabs.c and expmed.c (most of the time).
   This should be 1 if all valid insns need to be recognized,
   This should be 1 if all valid insns need to be recognized,
   such as in regclass.c and final.c and reload.c.
   such as in regclass.c and final.c and reload.c.
 
 
   init_recog and init_recog_no_volatile are responsible for setting this.  */
   init_recog and init_recog_no_volatile are responsible for setting this.  */
 
 
int volatile_ok;
int volatile_ok;
 
 
struct recog_data recog_data;
struct recog_data recog_data;
 
 
/* Contains a vector of operand_alternative structures for every operand.
/* Contains a vector of operand_alternative structures for every operand.
   Set up by preprocess_constraints.  */
   Set up by preprocess_constraints.  */
struct operand_alternative recog_op_alt[MAX_RECOG_OPERANDS][MAX_RECOG_ALTERNATIVES];
struct operand_alternative recog_op_alt[MAX_RECOG_OPERANDS][MAX_RECOG_ALTERNATIVES];
 
 
/* On return from `constrain_operands', indicate which alternative
/* On return from `constrain_operands', indicate which alternative
   was satisfied.  */
   was satisfied.  */
 
 
int which_alternative;
int which_alternative;
 
 
/* Nonzero after end of reload pass.
/* Nonzero after end of reload pass.
   Set to 1 or 0 by toplev.c.
   Set to 1 or 0 by toplev.c.
   Controls the significance of (SUBREG (MEM)).  */
   Controls the significance of (SUBREG (MEM)).  */
 
 
int reload_completed;
int reload_completed;
 
 
/* Nonzero after thread_prologue_and_epilogue_insns has run.  */
/* Nonzero after thread_prologue_and_epilogue_insns has run.  */
int epilogue_completed;
int epilogue_completed;
 
 
/* Initialize data used by the function `recog'.
/* Initialize data used by the function `recog'.
   This must be called once in the compilation of a function
   This must be called once in the compilation of a function
   before any insn recognition may be done in the function.  */
   before any insn recognition may be done in the function.  */
 
 
void
void
init_recog_no_volatile (void)
init_recog_no_volatile (void)
{
{
  volatile_ok = 0;
  volatile_ok = 0;
}
}
 
 
void
void
init_recog (void)
init_recog (void)
{
{
  volatile_ok = 1;
  volatile_ok = 1;
}
}
 
 


/* Check that X is an insn-body for an `asm' with operands
/* Check that X is an insn-body for an `asm' with operands
   and that the operands mentioned in it are legitimate.  */
   and that the operands mentioned in it are legitimate.  */
 
 
int
int
check_asm_operands (rtx x)
check_asm_operands (rtx x)
{
{
  int noperands;
  int noperands;
  rtx *operands;
  rtx *operands;
  const char **constraints;
  const char **constraints;
  int i;
  int i;
 
 
  /* Post-reload, be more strict with things.  */
  /* Post-reload, be more strict with things.  */
  if (reload_completed)
  if (reload_completed)
    {
    {
      /* ??? Doh!  We've not got the wrapping insn.  Cook one up.  */
      /* ??? Doh!  We've not got the wrapping insn.  Cook one up.  */
      extract_insn (make_insn_raw (x));
      extract_insn (make_insn_raw (x));
      constrain_operands (1);
      constrain_operands (1);
      return which_alternative >= 0;
      return which_alternative >= 0;
    }
    }
 
 
  noperands = asm_noperands (x);
  noperands = asm_noperands (x);
  if (noperands < 0)
  if (noperands < 0)
    return 0;
    return 0;
  if (noperands == 0)
  if (noperands == 0)
    return 1;
    return 1;
 
 
  operands = alloca (noperands * sizeof (rtx));
  operands = alloca (noperands * sizeof (rtx));
  constraints = alloca (noperands * sizeof (char *));
  constraints = alloca (noperands * sizeof (char *));
 
 
  decode_asm_operands (x, operands, NULL, constraints, NULL);
  decode_asm_operands (x, operands, NULL, constraints, NULL);
 
 
  for (i = 0; i < noperands; i++)
  for (i = 0; i < noperands; i++)
    {
    {
      const char *c = constraints[i];
      const char *c = constraints[i];
      if (c[0] == '%')
      if (c[0] == '%')
        c++;
        c++;
      if (ISDIGIT ((unsigned char) c[0]) && c[1] == '\0')
      if (ISDIGIT ((unsigned char) c[0]) && c[1] == '\0')
        c = constraints[c[0] - '0'];
        c = constraints[c[0] - '0'];
 
 
      if (! asm_operand_ok (operands[i], c))
      if (! asm_operand_ok (operands[i], c))
        return 0;
        return 0;
    }
    }
 
 
  return 1;
  return 1;
}
}


/* Static data for the next two routines.  */
/* Static data for the next two routines.  */
 
 
typedef struct change_t
typedef struct change_t
{
{
  rtx object;
  rtx object;
  int old_code;
  int old_code;
  rtx *loc;
  rtx *loc;
  rtx old;
  rtx old;
} change_t;
} change_t;
 
 
static change_t *changes;
static change_t *changes;
static int changes_allocated;
static int changes_allocated;
 
 
static int num_changes = 0;
static int num_changes = 0;
 
 
/* Validate a proposed change to OBJECT.  LOC is the location in the rtl
/* Validate a proposed change to OBJECT.  LOC is the location in the rtl
   at which NEW will be placed.  If OBJECT is zero, no validation is done,
   at which NEW will be placed.  If OBJECT is zero, no validation is done,
   the change is simply made.
   the change is simply made.
 
 
   Two types of objects are supported:  If OBJECT is a MEM, memory_address_p
   Two types of objects are supported:  If OBJECT is a MEM, memory_address_p
   will be called with the address and mode as parameters.  If OBJECT is
   will be called with the address and mode as parameters.  If OBJECT is
   an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
   an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
   the change in place.
   the change in place.
 
 
   IN_GROUP is nonzero if this is part of a group of changes that must be
   IN_GROUP is nonzero if this is part of a group of changes that must be
   performed as a group.  In that case, the changes will be stored.  The
   performed as a group.  In that case, the changes will be stored.  The
   function `apply_change_group' will validate and apply the changes.
   function `apply_change_group' will validate and apply the changes.
 
 
   If IN_GROUP is zero, this is a single change.  Try to recognize the insn
   If IN_GROUP is zero, this is a single change.  Try to recognize the insn
   or validate the memory reference with the change applied.  If the result
   or validate the memory reference with the change applied.  If the result
   is not valid for the machine, suppress the change and return zero.
   is not valid for the machine, suppress the change and return zero.
   Otherwise, perform the change and return 1.  */
   Otherwise, perform the change and return 1.  */
 
 
int
int
validate_change (rtx object, rtx *loc, rtx new, int in_group)
validate_change (rtx object, rtx *loc, rtx new, int in_group)
{
{
  rtx old = *loc;
  rtx old = *loc;
 
 
  if (old == new || rtx_equal_p (old, new))
  if (old == new || rtx_equal_p (old, new))
    return 1;
    return 1;
 
 
  gcc_assert (in_group != 0 || num_changes == 0);
  gcc_assert (in_group != 0 || num_changes == 0);
 
 
  *loc = new;
  *loc = new;
 
 
  /* Save the information describing this change.  */
  /* Save the information describing this change.  */
  if (num_changes >= changes_allocated)
  if (num_changes >= changes_allocated)
    {
    {
      if (changes_allocated == 0)
      if (changes_allocated == 0)
        /* This value allows for repeated substitutions inside complex
        /* This value allows for repeated substitutions inside complex
           indexed addresses, or changes in up to 5 insns.  */
           indexed addresses, or changes in up to 5 insns.  */
        changes_allocated = MAX_RECOG_OPERANDS * 5;
        changes_allocated = MAX_RECOG_OPERANDS * 5;
      else
      else
        changes_allocated *= 2;
        changes_allocated *= 2;
 
 
      changes = xrealloc (changes, sizeof (change_t) * changes_allocated);
      changes = xrealloc (changes, sizeof (change_t) * changes_allocated);
    }
    }
 
 
  changes[num_changes].object = object;
  changes[num_changes].object = object;
  changes[num_changes].loc = loc;
  changes[num_changes].loc = loc;
  changes[num_changes].old = old;
  changes[num_changes].old = old;
 
 
  if (object && !MEM_P (object))
  if (object && !MEM_P (object))
    {
    {
      /* Set INSN_CODE to force rerecognition of insn.  Save old code in
      /* Set INSN_CODE to force rerecognition of insn.  Save old code in
         case invalid.  */
         case invalid.  */
      changes[num_changes].old_code = INSN_CODE (object);
      changes[num_changes].old_code = INSN_CODE (object);
      INSN_CODE (object) = -1;
      INSN_CODE (object) = -1;
    }
    }
 
 
  num_changes++;
  num_changes++;
 
 
  /* If we are making a group of changes, return 1.  Otherwise, validate the
  /* If we are making a group of changes, return 1.  Otherwise, validate the
     change group we made.  */
     change group we made.  */
 
 
  if (in_group)
  if (in_group)
    return 1;
    return 1;
  else
  else
    return apply_change_group ();
    return apply_change_group ();
}
}
 
 
 
 
/* This subroutine of apply_change_group verifies whether the changes to INSN
/* This subroutine of apply_change_group verifies whether the changes to INSN
   were valid; i.e. whether INSN can still be recognized.  */
   were valid; i.e. whether INSN can still be recognized.  */
 
 
int
int
insn_invalid_p (rtx insn)
insn_invalid_p (rtx insn)
{
{
  rtx pat = PATTERN (insn);
  rtx pat = PATTERN (insn);
  int num_clobbers = 0;
  int num_clobbers = 0;
  /* If we are before reload and the pattern is a SET, see if we can add
  /* If we are before reload and the pattern is a SET, see if we can add
     clobbers.  */
     clobbers.  */
  int icode = recog (pat, insn,
  int icode = recog (pat, insn,
                     (GET_CODE (pat) == SET
                     (GET_CODE (pat) == SET
                      && ! reload_completed && ! reload_in_progress)
                      && ! reload_completed && ! reload_in_progress)
                     ? &num_clobbers : 0);
                     ? &num_clobbers : 0);
  int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
  int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
 
 
 
 
  /* If this is an asm and the operand aren't legal, then fail.  Likewise if
  /* If this is an asm and the operand aren't legal, then fail.  Likewise if
     this is not an asm and the insn wasn't recognized.  */
     this is not an asm and the insn wasn't recognized.  */
  if ((is_asm && ! check_asm_operands (PATTERN (insn)))
  if ((is_asm && ! check_asm_operands (PATTERN (insn)))
      || (!is_asm && icode < 0))
      || (!is_asm && icode < 0))
    return 1;
    return 1;
 
 
  /* If we have to add CLOBBERs, fail if we have to add ones that reference
  /* If we have to add CLOBBERs, fail if we have to add ones that reference
     hard registers since our callers can't know if they are live or not.
     hard registers since our callers can't know if they are live or not.
     Otherwise, add them.  */
     Otherwise, add them.  */
  if (num_clobbers > 0)
  if (num_clobbers > 0)
    {
    {
      rtx newpat;
      rtx newpat;
 
 
      if (added_clobbers_hard_reg_p (icode))
      if (added_clobbers_hard_reg_p (icode))
        return 1;
        return 1;
 
 
      newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
      newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
      XVECEXP (newpat, 0, 0) = pat;
      XVECEXP (newpat, 0, 0) = pat;
      add_clobbers (newpat, icode);
      add_clobbers (newpat, icode);
      PATTERN (insn) = pat = newpat;
      PATTERN (insn) = pat = newpat;
    }
    }
 
 
  /* After reload, verify that all constraints are satisfied.  */
  /* After reload, verify that all constraints are satisfied.  */
  if (reload_completed)
  if (reload_completed)
    {
    {
      extract_insn (insn);
      extract_insn (insn);
 
 
      if (! constrain_operands (1))
      if (! constrain_operands (1))
        return 1;
        return 1;
    }
    }
 
 
  INSN_CODE (insn) = icode;
  INSN_CODE (insn) = icode;
  return 0;
  return 0;
}
}
 
 
/* Return number of changes made and not validated yet.  */
/* Return number of changes made and not validated yet.  */
int
int
num_changes_pending (void)
num_changes_pending (void)
{
{
  return num_changes;
  return num_changes;
}
}
 
 
/* Tentatively apply the changes numbered NUM and up.
/* Tentatively apply the changes numbered NUM and up.
   Return 1 if all changes are valid, zero otherwise.  */
   Return 1 if all changes are valid, zero otherwise.  */
 
 
int
int
verify_changes (int num)
verify_changes (int num)
{
{
  int i;
  int i;
  rtx last_validated = NULL_RTX;
  rtx last_validated = NULL_RTX;
 
 
  /* The changes have been applied and all INSN_CODEs have been reset to force
  /* The changes have been applied and all INSN_CODEs have been reset to force
     rerecognition.
     rerecognition.
 
 
     The changes are valid if we aren't given an object, or if we are
     The changes are valid if we aren't given an object, or if we are
     given a MEM and it still is a valid address, or if this is in insn
     given a MEM and it still is a valid address, or if this is in insn
     and it is recognized.  In the latter case, if reload has completed,
     and it is recognized.  In the latter case, if reload has completed,
     we also require that the operands meet the constraints for
     we also require that the operands meet the constraints for
     the insn.  */
     the insn.  */
 
 
  for (i = num; i < num_changes; i++)
  for (i = num; i < num_changes; i++)
    {
    {
      rtx object = changes[i].object;
      rtx object = changes[i].object;
 
 
      /* If there is no object to test or if it is the same as the one we
      /* If there is no object to test or if it is the same as the one we
         already tested, ignore it.  */
         already tested, ignore it.  */
      if (object == 0 || object == last_validated)
      if (object == 0 || object == last_validated)
        continue;
        continue;
 
 
      if (MEM_P (object))
      if (MEM_P (object))
        {
        {
          if (! memory_address_p (GET_MODE (object), XEXP (object, 0)))
          if (! memory_address_p (GET_MODE (object), XEXP (object, 0)))
            break;
            break;
        }
        }
      else if (insn_invalid_p (object))
      else if (insn_invalid_p (object))
        {
        {
          rtx pat = PATTERN (object);
          rtx pat = PATTERN (object);
 
 
          /* Perhaps we couldn't recognize the insn because there were
          /* Perhaps we couldn't recognize the insn because there were
             extra CLOBBERs at the end.  If so, try to re-recognize
             extra CLOBBERs at the end.  If so, try to re-recognize
             without the last CLOBBER (later iterations will cause each of
             without the last CLOBBER (later iterations will cause each of
             them to be eliminated, in turn).  But don't do this if we
             them to be eliminated, in turn).  But don't do this if we
             have an ASM_OPERAND.  */
             have an ASM_OPERAND.  */
          if (GET_CODE (pat) == PARALLEL
          if (GET_CODE (pat) == PARALLEL
              && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
              && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
              && asm_noperands (PATTERN (object)) < 0)
              && asm_noperands (PATTERN (object)) < 0)
            {
            {
              rtx newpat;
              rtx newpat;
 
 
              if (XVECLEN (pat, 0) == 2)
              if (XVECLEN (pat, 0) == 2)
                newpat = XVECEXP (pat, 0, 0);
                newpat = XVECEXP (pat, 0, 0);
              else
              else
                {
                {
                  int j;
                  int j;
 
 
                  newpat
                  newpat
                    = gen_rtx_PARALLEL (VOIDmode,
                    = gen_rtx_PARALLEL (VOIDmode,
                                        rtvec_alloc (XVECLEN (pat, 0) - 1));
                                        rtvec_alloc (XVECLEN (pat, 0) - 1));
                  for (j = 0; j < XVECLEN (newpat, 0); j++)
                  for (j = 0; j < XVECLEN (newpat, 0); j++)
                    XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
                    XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
                }
                }
 
 
              /* Add a new change to this group to replace the pattern
              /* Add a new change to this group to replace the pattern
                 with this new pattern.  Then consider this change
                 with this new pattern.  Then consider this change
                 as having succeeded.  The change we added will
                 as having succeeded.  The change we added will
                 cause the entire call to fail if things remain invalid.
                 cause the entire call to fail if things remain invalid.
 
 
                 Note that this can lose if a later change than the one
                 Note that this can lose if a later change than the one
                 we are processing specified &XVECEXP (PATTERN (object), 0, X)
                 we are processing specified &XVECEXP (PATTERN (object), 0, X)
                 but this shouldn't occur.  */
                 but this shouldn't occur.  */
 
 
              validate_change (object, &PATTERN (object), newpat, 1);
              validate_change (object, &PATTERN (object), newpat, 1);
              continue;
              continue;
            }
            }
          else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
          else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
            /* If this insn is a CLOBBER or USE, it is always valid, but is
            /* If this insn is a CLOBBER or USE, it is always valid, but is
               never recognized.  */
               never recognized.  */
            continue;
            continue;
          else
          else
            break;
            break;
        }
        }
      last_validated = object;
      last_validated = object;
    }
    }
 
 
  return (i == num_changes);
  return (i == num_changes);
}
}
 
 
/* A group of changes has previously been issued with validate_change and
/* A group of changes has previously been issued with validate_change and
   verified with verify_changes.  Update the BB_DIRTY flags of the affected
   verified with verify_changes.  Update the BB_DIRTY flags of the affected
   blocks, and clear num_changes.  */
   blocks, and clear num_changes.  */
 
 
void
void
confirm_change_group (void)
confirm_change_group (void)
{
{
  int i;
  int i;
  basic_block bb;
  basic_block bb;
 
 
  for (i = 0; i < num_changes; i++)
  for (i = 0; i < num_changes; i++)
    if (changes[i].object
    if (changes[i].object
        && INSN_P (changes[i].object)
        && INSN_P (changes[i].object)
        && (bb = BLOCK_FOR_INSN (changes[i].object)))
        && (bb = BLOCK_FOR_INSN (changes[i].object)))
      bb->flags |= BB_DIRTY;
      bb->flags |= BB_DIRTY;
 
 
  num_changes = 0;
  num_changes = 0;
}
}
 
 
/* Apply a group of changes previously issued with `validate_change'.
/* Apply a group of changes previously issued with `validate_change'.
   If all changes are valid, call confirm_change_group and return 1,
   If all changes are valid, call confirm_change_group and return 1,
   otherwise, call cancel_changes and return 0.  */
   otherwise, call cancel_changes and return 0.  */
 
 
int
int
apply_change_group (void)
apply_change_group (void)
{
{
  if (verify_changes (0))
  if (verify_changes (0))
    {
    {
      confirm_change_group ();
      confirm_change_group ();
      return 1;
      return 1;
    }
    }
  else
  else
    {
    {
      cancel_changes (0);
      cancel_changes (0);
      return 0;
      return 0;
    }
    }
}
}
 
 
 
 
/* Return the number of changes so far in the current group.  */
/* Return the number of changes so far in the current group.  */
 
 
int
int
num_validated_changes (void)
num_validated_changes (void)
{
{
  return num_changes;
  return num_changes;
}
}
 
 
/* Retract the changes numbered NUM and up.  */
/* Retract the changes numbered NUM and up.  */
 
 
void
void
cancel_changes (int num)
cancel_changes (int num)
{
{
  int i;
  int i;
 
 
  /* Back out all the changes.  Do this in the opposite order in which
  /* Back out all the changes.  Do this in the opposite order in which
     they were made.  */
     they were made.  */
  for (i = num_changes - 1; i >= num; i--)
  for (i = num_changes - 1; i >= num; i--)
    {
    {
      *changes[i].loc = changes[i].old;
      *changes[i].loc = changes[i].old;
      if (changes[i].object && !MEM_P (changes[i].object))
      if (changes[i].object && !MEM_P (changes[i].object))
        INSN_CODE (changes[i].object) = changes[i].old_code;
        INSN_CODE (changes[i].object) = changes[i].old_code;
    }
    }
  num_changes = num;
  num_changes = num;
}
}
 
 
/* Replace every occurrence of FROM in X with TO.  Mark each change with
/* Replace every occurrence of FROM in X with TO.  Mark each change with
   validate_change passing OBJECT.  */
   validate_change passing OBJECT.  */
 
 
static void
static void
validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx object)
validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx object)
{
{
  int i, j;
  int i, j;
  const char *fmt;
  const char *fmt;
  rtx x = *loc;
  rtx x = *loc;
  enum rtx_code code;
  enum rtx_code code;
  enum machine_mode op0_mode = VOIDmode;
  enum machine_mode op0_mode = VOIDmode;
  int prev_changes = num_changes;
  int prev_changes = num_changes;
  rtx new;
  rtx new;
 
 
  if (!x)
  if (!x)
    return;
    return;
 
 
  code = GET_CODE (x);
  code = GET_CODE (x);
  fmt = GET_RTX_FORMAT (code);
  fmt = GET_RTX_FORMAT (code);
  if (fmt[0] == 'e')
  if (fmt[0] == 'e')
    op0_mode = GET_MODE (XEXP (x, 0));
    op0_mode = GET_MODE (XEXP (x, 0));
 
 
  /* X matches FROM if it is the same rtx or they are both referring to the
  /* X matches FROM if it is the same rtx or they are both referring to the
     same register in the same mode.  Avoid calling rtx_equal_p unless the
     same register in the same mode.  Avoid calling rtx_equal_p unless the
     operands look similar.  */
     operands look similar.  */
 
 
  if (x == from
  if (x == from
      || (REG_P (x) && REG_P (from)
      || (REG_P (x) && REG_P (from)
          && GET_MODE (x) == GET_MODE (from)
          && GET_MODE (x) == GET_MODE (from)
          && REGNO (x) == REGNO (from))
          && REGNO (x) == REGNO (from))
      || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
      || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
          && rtx_equal_p (x, from)))
          && rtx_equal_p (x, from)))
    {
    {
      validate_change (object, loc, to, 1);
      validate_change (object, loc, to, 1);
      return;
      return;
    }
    }
 
 
  /* Call ourself recursively to perform the replacements.
  /* Call ourself recursively to perform the replacements.
     We must not replace inside already replaced expression, otherwise we
     We must not replace inside already replaced expression, otherwise we
     get infinite recursion for replacements like (reg X)->(subreg (reg X))
     get infinite recursion for replacements like (reg X)->(subreg (reg X))
     done by regmove, so we must special case shared ASM_OPERANDS.  */
     done by regmove, so we must special case shared ASM_OPERANDS.  */
 
 
  if (GET_CODE (x) == PARALLEL)
  if (GET_CODE (x) == PARALLEL)
    {
    {
      for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
      for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
        {
        {
          if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
          if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
              && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
              && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
            {
            {
              /* Verify that operands are really shared.  */
              /* Verify that operands are really shared.  */
              gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0)))
              gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0)))
                          == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
                          == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
                                                              (x, 0, j))));
                                                              (x, 0, j))));
              validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
              validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
                                      from, to, object);
                                      from, to, object);
            }
            }
          else
          else
            validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object);
            validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object);
        }
        }
    }
    }
  else
  else
    for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
      {
      {
        if (fmt[i] == 'e')
        if (fmt[i] == 'e')
          validate_replace_rtx_1 (&XEXP (x, i), from, to, object);
          validate_replace_rtx_1 (&XEXP (x, i), from, to, object);
        else if (fmt[i] == 'E')
        else if (fmt[i] == 'E')
          for (j = XVECLEN (x, i) - 1; j >= 0; j--)
          for (j = XVECLEN (x, i) - 1; j >= 0; j--)
            validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object);
            validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object);
      }
      }
 
 
  /* If we didn't substitute, there is nothing more to do.  */
  /* If we didn't substitute, there is nothing more to do.  */
  if (num_changes == prev_changes)
  if (num_changes == prev_changes)
    return;
    return;
 
 
  /* Allow substituted expression to have different mode.  This is used by
  /* Allow substituted expression to have different mode.  This is used by
     regmove to change mode of pseudo register.  */
     regmove to change mode of pseudo register.  */
  if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
  if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
    op0_mode = GET_MODE (XEXP (x, 0));
    op0_mode = GET_MODE (XEXP (x, 0));
 
 
  /* Do changes needed to keep rtx consistent.  Don't do any other
  /* Do changes needed to keep rtx consistent.  Don't do any other
     simplifications, as it is not our job.  */
     simplifications, as it is not our job.  */
 
 
  if (SWAPPABLE_OPERANDS_P (x)
  if (SWAPPABLE_OPERANDS_P (x)
      && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
      && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
    {
    {
      validate_change (object, loc,
      validate_change (object, loc,
                       gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
                       gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
                                       : swap_condition (code),
                                       : swap_condition (code),
                                       GET_MODE (x), XEXP (x, 1),
                                       GET_MODE (x), XEXP (x, 1),
                                       XEXP (x, 0)), 1);
                                       XEXP (x, 0)), 1);
      x = *loc;
      x = *loc;
      code = GET_CODE (x);
      code = GET_CODE (x);
    }
    }
 
 
  switch (code)
  switch (code)
    {
    {
    case PLUS:
    case PLUS:
      /* If we have a PLUS whose second operand is now a CONST_INT, use
      /* If we have a PLUS whose second operand is now a CONST_INT, use
         simplify_gen_binary to try to simplify it.
         simplify_gen_binary to try to simplify it.
         ??? We may want later to remove this, once simplification is
         ??? We may want later to remove this, once simplification is
         separated from this function.  */
         separated from this function.  */
      if (GET_CODE (XEXP (x, 1)) == CONST_INT && XEXP (x, 1) == to)
      if (GET_CODE (XEXP (x, 1)) == CONST_INT && XEXP (x, 1) == to)
        validate_change (object, loc,
        validate_change (object, loc,
                         simplify_gen_binary
                         simplify_gen_binary
                         (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
                         (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
      break;
      break;
    case MINUS:
    case MINUS:
      if (GET_CODE (XEXP (x, 1)) == CONST_INT
      if (GET_CODE (XEXP (x, 1)) == CONST_INT
          || GET_CODE (XEXP (x, 1)) == CONST_DOUBLE)
          || GET_CODE (XEXP (x, 1)) == CONST_DOUBLE)
        validate_change (object, loc,
        validate_change (object, loc,
                         simplify_gen_binary
                         simplify_gen_binary
                         (PLUS, GET_MODE (x), XEXP (x, 0),
                         (PLUS, GET_MODE (x), XEXP (x, 0),
                          simplify_gen_unary (NEG,
                          simplify_gen_unary (NEG,
                                              GET_MODE (x), XEXP (x, 1),
                                              GET_MODE (x), XEXP (x, 1),
                                              GET_MODE (x))), 1);
                                              GET_MODE (x))), 1);
      break;
      break;
    case ZERO_EXTEND:
    case ZERO_EXTEND:
    case SIGN_EXTEND:
    case SIGN_EXTEND:
      if (GET_MODE (XEXP (x, 0)) == VOIDmode)
      if (GET_MODE (XEXP (x, 0)) == VOIDmode)
        {
        {
          new = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
          new = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
                                    op0_mode);
                                    op0_mode);
          /* If any of the above failed, substitute in something that
          /* If any of the above failed, substitute in something that
             we know won't be recognized.  */
             we know won't be recognized.  */
          if (!new)
          if (!new)
            new = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
            new = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
          validate_change (object, loc, new, 1);
          validate_change (object, loc, new, 1);
        }
        }
      break;
      break;
    case SUBREG:
    case SUBREG:
      /* All subregs possible to simplify should be simplified.  */
      /* All subregs possible to simplify should be simplified.  */
      new = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
      new = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
                             SUBREG_BYTE (x));
                             SUBREG_BYTE (x));
 
 
      /* Subregs of VOIDmode operands are incorrect.  */
      /* Subregs of VOIDmode operands are incorrect.  */
      if (!new && GET_MODE (SUBREG_REG (x)) == VOIDmode)
      if (!new && GET_MODE (SUBREG_REG (x)) == VOIDmode)
        new = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
        new = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
      if (new)
      if (new)
        validate_change (object, loc, new, 1);
        validate_change (object, loc, new, 1);
      break;
      break;
    case ZERO_EXTRACT:
    case ZERO_EXTRACT:
    case SIGN_EXTRACT:
    case SIGN_EXTRACT:
      /* If we are replacing a register with memory, try to change the memory
      /* If we are replacing a register with memory, try to change the memory
         to be the mode required for memory in extract operations (this isn't
         to be the mode required for memory in extract operations (this isn't
         likely to be an insertion operation; if it was, nothing bad will
         likely to be an insertion operation; if it was, nothing bad will
         happen, we might just fail in some cases).  */
         happen, we might just fail in some cases).  */
 
 
      if (MEM_P (XEXP (x, 0))
      if (MEM_P (XEXP (x, 0))
          && GET_CODE (XEXP (x, 1)) == CONST_INT
          && GET_CODE (XEXP (x, 1)) == CONST_INT
          && GET_CODE (XEXP (x, 2)) == CONST_INT
          && GET_CODE (XEXP (x, 2)) == CONST_INT
          && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0))
          && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0))
          && !MEM_VOLATILE_P (XEXP (x, 0)))
          && !MEM_VOLATILE_P (XEXP (x, 0)))
        {
        {
          enum machine_mode wanted_mode = VOIDmode;
          enum machine_mode wanted_mode = VOIDmode;
          enum machine_mode is_mode = GET_MODE (XEXP (x, 0));
          enum machine_mode is_mode = GET_MODE (XEXP (x, 0));
          int pos = INTVAL (XEXP (x, 2));
          int pos = INTVAL (XEXP (x, 2));
 
 
          if (GET_CODE (x) == ZERO_EXTRACT)
          if (GET_CODE (x) == ZERO_EXTRACT)
            {
            {
              enum machine_mode new_mode
              enum machine_mode new_mode
                = mode_for_extraction (EP_extzv, 1);
                = mode_for_extraction (EP_extzv, 1);
              if (new_mode != MAX_MACHINE_MODE)
              if (new_mode != MAX_MACHINE_MODE)
                wanted_mode = new_mode;
                wanted_mode = new_mode;
            }
            }
          else if (GET_CODE (x) == SIGN_EXTRACT)
          else if (GET_CODE (x) == SIGN_EXTRACT)
            {
            {
              enum machine_mode new_mode
              enum machine_mode new_mode
                = mode_for_extraction (EP_extv, 1);
                = mode_for_extraction (EP_extv, 1);
              if (new_mode != MAX_MACHINE_MODE)
              if (new_mode != MAX_MACHINE_MODE)
                wanted_mode = new_mode;
                wanted_mode = new_mode;
            }
            }
 
 
          /* If we have a narrower mode, we can do something.  */
          /* If we have a narrower mode, we can do something.  */
          if (wanted_mode != VOIDmode
          if (wanted_mode != VOIDmode
              && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
              && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
            {
            {
              int offset = pos / BITS_PER_UNIT;
              int offset = pos / BITS_PER_UNIT;
              rtx newmem;
              rtx newmem;
 
 
              /* If the bytes and bits are counted differently, we
              /* If the bytes and bits are counted differently, we
                 must adjust the offset.  */
                 must adjust the offset.  */
              if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
              if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
                offset =
                offset =
                  (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
                  (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
                   offset);
                   offset);
 
 
              pos %= GET_MODE_BITSIZE (wanted_mode);
              pos %= GET_MODE_BITSIZE (wanted_mode);
 
 
              newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
              newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
 
 
              validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
              validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
              validate_change (object, &XEXP (x, 0), newmem, 1);
              validate_change (object, &XEXP (x, 0), newmem, 1);
            }
            }
        }
        }
 
 
      break;
      break;
 
 
    default:
    default:
      break;
      break;
    }
    }
}
}
 
 
/* Try replacing every occurrence of FROM in INSN with TO.  After all
/* Try replacing every occurrence of FROM in INSN with TO.  After all
   changes have been made, validate by seeing if INSN is still valid.  */
   changes have been made, validate by seeing if INSN is still valid.  */
 
 
int
int
validate_replace_rtx (rtx from, rtx to, rtx insn)
validate_replace_rtx (rtx from, rtx to, rtx insn)
{
{
  validate_replace_rtx_1 (&PATTERN (insn), from, to, insn);
  validate_replace_rtx_1 (&PATTERN (insn), from, to, insn);
  return apply_change_group ();
  return apply_change_group ();
}
}
 
 
/* Try replacing every occurrence of FROM in INSN with TO.  */
/* Try replacing every occurrence of FROM in INSN with TO.  */
 
 
void
void
validate_replace_rtx_group (rtx from, rtx to, rtx insn)
validate_replace_rtx_group (rtx from, rtx to, rtx insn)
{
{
  validate_replace_rtx_1 (&PATTERN (insn), from, to, insn);
  validate_replace_rtx_1 (&PATTERN (insn), from, to, insn);
}
}
 
 
/* Function called by note_uses to replace used subexpressions.  */
/* Function called by note_uses to replace used subexpressions.  */
struct validate_replace_src_data
struct validate_replace_src_data
{
{
  rtx from;                     /* Old RTX */
  rtx from;                     /* Old RTX */
  rtx to;                       /* New RTX */
  rtx to;                       /* New RTX */
  rtx insn;                     /* Insn in which substitution is occurring.  */
  rtx insn;                     /* Insn in which substitution is occurring.  */
};
};
 
 
static void
static void
validate_replace_src_1 (rtx *x, void *data)
validate_replace_src_1 (rtx *x, void *data)
{
{
  struct validate_replace_src_data *d
  struct validate_replace_src_data *d
    = (struct validate_replace_src_data *) data;
    = (struct validate_replace_src_data *) data;
 
 
  validate_replace_rtx_1 (x, d->from, d->to, d->insn);
  validate_replace_rtx_1 (x, d->from, d->to, d->insn);
}
}
 
 
/* Try replacing every occurrence of FROM in INSN with TO, avoiding
/* Try replacing every occurrence of FROM in INSN with TO, avoiding
   SET_DESTs.  */
   SET_DESTs.  */
 
 
void
void
validate_replace_src_group (rtx from, rtx to, rtx insn)
validate_replace_src_group (rtx from, rtx to, rtx insn)
{
{
  struct validate_replace_src_data d;
  struct validate_replace_src_data d;
 
 
  d.from = from;
  d.from = from;
  d.to = to;
  d.to = to;
  d.insn = insn;
  d.insn = insn;
  note_uses (&PATTERN (insn), validate_replace_src_1, &d);
  note_uses (&PATTERN (insn), validate_replace_src_1, &d);
}
}
 
 
/* Try simplify INSN.
/* Try simplify INSN.
   Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
   Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
   pattern and return true if something was simplified.  */
   pattern and return true if something was simplified.  */
 
 
bool
bool
validate_simplify_insn (rtx insn)
validate_simplify_insn (rtx insn)
{
{
  int i;
  int i;
  rtx pat = NULL;
  rtx pat = NULL;
  rtx newpat = NULL;
  rtx newpat = NULL;
 
 
  pat = PATTERN (insn);
  pat = PATTERN (insn);
 
 
  if (GET_CODE (pat) == SET)
  if (GET_CODE (pat) == SET)
    {
    {
      newpat = simplify_rtx (SET_SRC (pat));
      newpat = simplify_rtx (SET_SRC (pat));
      if (newpat && !rtx_equal_p (SET_SRC (pat), newpat))
      if (newpat && !rtx_equal_p (SET_SRC (pat), newpat))
        validate_change (insn, &SET_SRC (pat), newpat, 1);
        validate_change (insn, &SET_SRC (pat), newpat, 1);
      newpat = simplify_rtx (SET_DEST (pat));
      newpat = simplify_rtx (SET_DEST (pat));
      if (newpat && !rtx_equal_p (SET_DEST (pat), newpat))
      if (newpat && !rtx_equal_p (SET_DEST (pat), newpat))
        validate_change (insn, &SET_DEST (pat), newpat, 1);
        validate_change (insn, &SET_DEST (pat), newpat, 1);
    }
    }
  else if (GET_CODE (pat) == PARALLEL)
  else if (GET_CODE (pat) == PARALLEL)
    for (i = 0; i < XVECLEN (pat, 0); i++)
    for (i = 0; i < XVECLEN (pat, 0); i++)
      {
      {
        rtx s = XVECEXP (pat, 0, i);
        rtx s = XVECEXP (pat, 0, i);
 
 
        if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
        if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
          {
          {
            newpat = simplify_rtx (SET_SRC (s));
            newpat = simplify_rtx (SET_SRC (s));
            if (newpat && !rtx_equal_p (SET_SRC (s), newpat))
            if (newpat && !rtx_equal_p (SET_SRC (s), newpat))
              validate_change (insn, &SET_SRC (s), newpat, 1);
              validate_change (insn, &SET_SRC (s), newpat, 1);
            newpat = simplify_rtx (SET_DEST (s));
            newpat = simplify_rtx (SET_DEST (s));
            if (newpat && !rtx_equal_p (SET_DEST (s), newpat))
            if (newpat && !rtx_equal_p (SET_DEST (s), newpat))
              validate_change (insn, &SET_DEST (s), newpat, 1);
              validate_change (insn, &SET_DEST (s), newpat, 1);
          }
          }
      }
      }
  return ((num_changes_pending () > 0) && (apply_change_group () > 0));
  return ((num_changes_pending () > 0) && (apply_change_group () > 0));
}
}


#ifdef HAVE_cc0
#ifdef HAVE_cc0
/* Return 1 if the insn using CC0 set by INSN does not contain
/* Return 1 if the insn using CC0 set by INSN does not contain
   any ordered tests applied to the condition codes.
   any ordered tests applied to the condition codes.
   EQ and NE tests do not count.  */
   EQ and NE tests do not count.  */
 
 
int
int
next_insn_tests_no_inequality (rtx insn)
next_insn_tests_no_inequality (rtx insn)
{
{
  rtx next = next_cc0_user (insn);
  rtx next = next_cc0_user (insn);
 
 
  /* If there is no next insn, we have to take the conservative choice.  */
  /* If there is no next insn, we have to take the conservative choice.  */
  if (next == 0)
  if (next == 0)
    return 0;
    return 0;
 
 
  return (INSN_P (next)
  return (INSN_P (next)
          && ! inequality_comparisons_p (PATTERN (next)));
          && ! inequality_comparisons_p (PATTERN (next)));
}
}
#endif
#endif


/* This is used by find_single_use to locate an rtx that contains exactly one
/* This is used by find_single_use to locate an rtx that contains exactly one
   use of DEST, which is typically either a REG or CC0.  It returns a
   use of DEST, which is typically either a REG or CC0.  It returns a
   pointer to the innermost rtx expression containing DEST.  Appearances of
   pointer to the innermost rtx expression containing DEST.  Appearances of
   DEST that are being used to totally replace it are not counted.  */
   DEST that are being used to totally replace it are not counted.  */
 
 
static rtx *
static rtx *
find_single_use_1 (rtx dest, rtx *loc)
find_single_use_1 (rtx dest, rtx *loc)
{
{
  rtx x = *loc;
  rtx x = *loc;
  enum rtx_code code = GET_CODE (x);
  enum rtx_code code = GET_CODE (x);
  rtx *result = 0;
  rtx *result = 0;
  rtx *this_result;
  rtx *this_result;
  int i;
  int i;
  const char *fmt;
  const char *fmt;
 
 
  switch (code)
  switch (code)
    {
    {
    case CONST_INT:
    case CONST_INT:
    case CONST:
    case CONST:
    case LABEL_REF:
    case LABEL_REF:
    case SYMBOL_REF:
    case SYMBOL_REF:
    case CONST_DOUBLE:
    case CONST_DOUBLE:
    case CONST_VECTOR:
    case CONST_VECTOR:
    case CLOBBER:
    case CLOBBER:
      return 0;
      return 0;
 
 
    case SET:
    case SET:
      /* If the destination is anything other than CC0, PC, a REG or a SUBREG
      /* If the destination is anything other than CC0, PC, a REG or a SUBREG
         of a REG that occupies all of the REG, the insn uses DEST if
         of a REG that occupies all of the REG, the insn uses DEST if
         it is mentioned in the destination or the source.  Otherwise, we
         it is mentioned in the destination or the source.  Otherwise, we
         need just check the source.  */
         need just check the source.  */
      if (GET_CODE (SET_DEST (x)) != CC0
      if (GET_CODE (SET_DEST (x)) != CC0
          && GET_CODE (SET_DEST (x)) != PC
          && GET_CODE (SET_DEST (x)) != PC
          && !REG_P (SET_DEST (x))
          && !REG_P (SET_DEST (x))
          && ! (GET_CODE (SET_DEST (x)) == SUBREG
          && ! (GET_CODE (SET_DEST (x)) == SUBREG
                && REG_P (SUBREG_REG (SET_DEST (x)))
                && REG_P (SUBREG_REG (SET_DEST (x)))
                && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
                && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
                      + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
                      + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
                    == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
                    == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
                         + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
                         + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
        break;
        break;
 
 
      return find_single_use_1 (dest, &SET_SRC (x));
      return find_single_use_1 (dest, &SET_SRC (x));
 
 
    case MEM:
    case MEM:
    case SUBREG:
    case SUBREG:
      return find_single_use_1 (dest, &XEXP (x, 0));
      return find_single_use_1 (dest, &XEXP (x, 0));
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  /* If it wasn't one of the common cases above, check each expression and
  /* If it wasn't one of the common cases above, check each expression and
     vector of this code.  Look for a unique usage of DEST.  */
     vector of this code.  Look for a unique usage of DEST.  */
 
 
  fmt = GET_RTX_FORMAT (code);
  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
    {
      if (fmt[i] == 'e')
      if (fmt[i] == 'e')
        {
        {
          if (dest == XEXP (x, i)
          if (dest == XEXP (x, i)
              || (REG_P (dest) && REG_P (XEXP (x, i))
              || (REG_P (dest) && REG_P (XEXP (x, i))
                  && REGNO (dest) == REGNO (XEXP (x, i))))
                  && REGNO (dest) == REGNO (XEXP (x, i))))
            this_result = loc;
            this_result = loc;
          else
          else
            this_result = find_single_use_1 (dest, &XEXP (x, i));
            this_result = find_single_use_1 (dest, &XEXP (x, i));
 
 
          if (result == 0)
          if (result == 0)
            result = this_result;
            result = this_result;
          else if (this_result)
          else if (this_result)
            /* Duplicate usage.  */
            /* Duplicate usage.  */
            return 0;
            return 0;
        }
        }
      else if (fmt[i] == 'E')
      else if (fmt[i] == 'E')
        {
        {
          int j;
          int j;
 
 
          for (j = XVECLEN (x, i) - 1; j >= 0; j--)
          for (j = XVECLEN (x, i) - 1; j >= 0; j--)
            {
            {
              if (XVECEXP (x, i, j) == dest
              if (XVECEXP (x, i, j) == dest
                  || (REG_P (dest)
                  || (REG_P (dest)
                      && REG_P (XVECEXP (x, i, j))
                      && REG_P (XVECEXP (x, i, j))
                      && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
                      && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
                this_result = loc;
                this_result = loc;
              else
              else
                this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
                this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
 
 
              if (result == 0)
              if (result == 0)
                result = this_result;
                result = this_result;
              else if (this_result)
              else if (this_result)
                return 0;
                return 0;
            }
            }
        }
        }
    }
    }
 
 
  return result;
  return result;
}
}


/* See if DEST, produced in INSN, is used only a single time in the
/* See if DEST, produced in INSN, is used only a single time in the
   sequel.  If so, return a pointer to the innermost rtx expression in which
   sequel.  If so, return a pointer to the innermost rtx expression in which
   it is used.
   it is used.
 
 
   If PLOC is nonzero, *PLOC is set to the insn containing the single use.
   If PLOC is nonzero, *PLOC is set to the insn containing the single use.
 
 
   This routine will return usually zero either before flow is called (because
   This routine will return usually zero either before flow is called (because
   there will be no LOG_LINKS notes) or after reload (because the REG_DEAD
   there will be no LOG_LINKS notes) or after reload (because the REG_DEAD
   note can't be trusted).
   note can't be trusted).
 
 
   If DEST is cc0_rtx, we look only at the next insn.  In that case, we don't
   If DEST is cc0_rtx, we look only at the next insn.  In that case, we don't
   care about REG_DEAD notes or LOG_LINKS.
   care about REG_DEAD notes or LOG_LINKS.
 
 
   Otherwise, we find the single use by finding an insn that has a
   Otherwise, we find the single use by finding an insn that has a
   LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST.  If DEST is
   LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST.  If DEST is
   only referenced once in that insn, we know that it must be the first
   only referenced once in that insn, we know that it must be the first
   and last insn referencing DEST.  */
   and last insn referencing DEST.  */
 
 
rtx *
rtx *
find_single_use (rtx dest, rtx insn, rtx *ploc)
find_single_use (rtx dest, rtx insn, rtx *ploc)
{
{
  rtx next;
  rtx next;
  rtx *result;
  rtx *result;
  rtx link;
  rtx link;
 
 
#ifdef HAVE_cc0
#ifdef HAVE_cc0
  if (dest == cc0_rtx)
  if (dest == cc0_rtx)
    {
    {
      next = NEXT_INSN (insn);
      next = NEXT_INSN (insn);
      if (next == 0
      if (next == 0
          || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
          || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
        return 0;
        return 0;
 
 
      result = find_single_use_1 (dest, &PATTERN (next));
      result = find_single_use_1 (dest, &PATTERN (next));
      if (result && ploc)
      if (result && ploc)
        *ploc = next;
        *ploc = next;
      return result;
      return result;
    }
    }
#endif
#endif
 
 
  if (reload_completed || reload_in_progress || !REG_P (dest))
  if (reload_completed || reload_in_progress || !REG_P (dest))
    return 0;
    return 0;
 
 
  for (next = next_nonnote_insn (insn);
  for (next = next_nonnote_insn (insn);
       next != 0 && !LABEL_P (next);
       next != 0 && !LABEL_P (next);
       next = next_nonnote_insn (next))
       next = next_nonnote_insn (next))
    if (INSN_P (next) && dead_or_set_p (next, dest))
    if (INSN_P (next) && dead_or_set_p (next, dest))
      {
      {
        for (link = LOG_LINKS (next); link; link = XEXP (link, 1))
        for (link = LOG_LINKS (next); link; link = XEXP (link, 1))
          if (XEXP (link, 0) == insn)
          if (XEXP (link, 0) == insn)
            break;
            break;
 
 
        if (link)
        if (link)
          {
          {
            result = find_single_use_1 (dest, &PATTERN (next));
            result = find_single_use_1 (dest, &PATTERN (next));
            if (ploc)
            if (ploc)
              *ploc = next;
              *ploc = next;
            return result;
            return result;
          }
          }
      }
      }
 
 
  return 0;
  return 0;
}
}


/* Return 1 if OP is a valid general operand for machine mode MODE.
/* Return 1 if OP is a valid general operand for machine mode MODE.
   This is either a register reference, a memory reference,
   This is either a register reference, a memory reference,
   or a constant.  In the case of a memory reference, the address
   or a constant.  In the case of a memory reference, the address
   is checked for general validity for the target machine.
   is checked for general validity for the target machine.
 
 
   Register and memory references must have mode MODE in order to be valid,
   Register and memory references must have mode MODE in order to be valid,
   but some constants have no machine mode and are valid for any mode.
   but some constants have no machine mode and are valid for any mode.
 
 
   If MODE is VOIDmode, OP is checked for validity for whatever mode
   If MODE is VOIDmode, OP is checked for validity for whatever mode
   it has.
   it has.
 
 
   The main use of this function is as a predicate in match_operand
   The main use of this function is as a predicate in match_operand
   expressions in the machine description.
   expressions in the machine description.
 
 
   For an explanation of this function's behavior for registers of
   For an explanation of this function's behavior for registers of
   class NO_REGS, see the comment for `register_operand'.  */
   class NO_REGS, see the comment for `register_operand'.  */
 
 
int
int
general_operand (rtx op, enum machine_mode mode)
general_operand (rtx op, enum machine_mode mode)
{
{
  enum rtx_code code = GET_CODE (op);
  enum rtx_code code = GET_CODE (op);
 
 
  if (mode == VOIDmode)
  if (mode == VOIDmode)
    mode = GET_MODE (op);
    mode = GET_MODE (op);
 
 
  /* Don't accept CONST_INT or anything similar
  /* Don't accept CONST_INT or anything similar
     if the caller wants something floating.  */
     if the caller wants something floating.  */
  if (GET_MODE (op) == VOIDmode && mode != VOIDmode
  if (GET_MODE (op) == VOIDmode && mode != VOIDmode
      && GET_MODE_CLASS (mode) != MODE_INT
      && GET_MODE_CLASS (mode) != MODE_INT
      && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
      && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
    return 0;
    return 0;
 
 
  if (GET_CODE (op) == CONST_INT
  if (GET_CODE (op) == CONST_INT
      && mode != VOIDmode
      && mode != VOIDmode
      && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
      && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
    return 0;
    return 0;
 
 
  if (CONSTANT_P (op))
  if (CONSTANT_P (op))
    return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
    return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
             || mode == VOIDmode)
             || mode == VOIDmode)
            && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
            && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
            && LEGITIMATE_CONSTANT_P (op));
            && LEGITIMATE_CONSTANT_P (op));
 
 
  /* Except for certain constants with VOIDmode, already checked for,
  /* Except for certain constants with VOIDmode, already checked for,
     OP's mode must match MODE if MODE specifies a mode.  */
     OP's mode must match MODE if MODE specifies a mode.  */
 
 
  if (GET_MODE (op) != mode)
  if (GET_MODE (op) != mode)
    return 0;
    return 0;
 
 
  if (code == SUBREG)
  if (code == SUBREG)
    {
    {
      rtx sub = SUBREG_REG (op);
      rtx sub = SUBREG_REG (op);
 
 
#ifdef INSN_SCHEDULING
#ifdef INSN_SCHEDULING
      /* On machines that have insn scheduling, we want all memory
      /* On machines that have insn scheduling, we want all memory
         reference to be explicit, so outlaw paradoxical SUBREGs.
         reference to be explicit, so outlaw paradoxical SUBREGs.
         However, we must allow them after reload so that they can
         However, we must allow them after reload so that they can
         get cleaned up by cleanup_subreg_operands.  */
         get cleaned up by cleanup_subreg_operands.  */
      if (!reload_completed && MEM_P (sub)
      if (!reload_completed && MEM_P (sub)
          && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (sub)))
          && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (sub)))
        return 0;
        return 0;
#endif
#endif
      /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
      /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
         may result in incorrect reference.  We should simplify all valid
         may result in incorrect reference.  We should simplify all valid
         subregs of MEM anyway.  But allow this after reload because we
         subregs of MEM anyway.  But allow this after reload because we
         might be called from cleanup_subreg_operands.
         might be called from cleanup_subreg_operands.
 
 
         ??? This is a kludge.  */
         ??? This is a kludge.  */
      if (!reload_completed && SUBREG_BYTE (op) != 0
      if (!reload_completed && SUBREG_BYTE (op) != 0
          && MEM_P (sub))
          && MEM_P (sub))
        return 0;
        return 0;
 
 
      /* FLOAT_MODE subregs can't be paradoxical.  Combine will occasionally
      /* FLOAT_MODE subregs can't be paradoxical.  Combine will occasionally
         create such rtl, and we must reject it.  */
         create such rtl, and we must reject it.  */
      if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
      if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
          && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
          && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
        return 0;
        return 0;
 
 
      op = sub;
      op = sub;
      code = GET_CODE (op);
      code = GET_CODE (op);
    }
    }
 
 
  if (code == REG)
  if (code == REG)
    /* A register whose class is NO_REGS is not a general operand.  */
    /* A register whose class is NO_REGS is not a general operand.  */
    return (REGNO (op) >= FIRST_PSEUDO_REGISTER
    return (REGNO (op) >= FIRST_PSEUDO_REGISTER
            || REGNO_REG_CLASS (REGNO (op)) != NO_REGS);
            || REGNO_REG_CLASS (REGNO (op)) != NO_REGS);
 
 
  if (code == MEM)
  if (code == MEM)
    {
    {
      rtx y = XEXP (op, 0);
      rtx y = XEXP (op, 0);
 
 
      if (! volatile_ok && MEM_VOLATILE_P (op))
      if (! volatile_ok && MEM_VOLATILE_P (op))
        return 0;
        return 0;
 
 
      /* Use the mem's mode, since it will be reloaded thus.  */
      /* Use the mem's mode, since it will be reloaded thus.  */
      if (memory_address_p (GET_MODE (op), y))
      if (memory_address_p (GET_MODE (op), y))
        return 1;
        return 1;
    }
    }
 
 
  return 0;
  return 0;
}
}


/* Return 1 if OP is a valid memory address for a memory reference
/* Return 1 if OP is a valid memory address for a memory reference
   of mode MODE.
   of mode MODE.
 
 
   The main use of this function is as a predicate in match_operand
   The main use of this function is as a predicate in match_operand
   expressions in the machine description.  */
   expressions in the machine description.  */
 
 
int
int
address_operand (rtx op, enum machine_mode mode)
address_operand (rtx op, enum machine_mode mode)
{
{
  return memory_address_p (mode, op);
  return memory_address_p (mode, op);
}
}
 
 
/* Return 1 if OP is a register reference of mode MODE.
/* Return 1 if OP is a register reference of mode MODE.
   If MODE is VOIDmode, accept a register in any mode.
   If MODE is VOIDmode, accept a register in any mode.
 
 
   The main use of this function is as a predicate in match_operand
   The main use of this function is as a predicate in match_operand
   expressions in the machine description.
   expressions in the machine description.
 
 
   As a special exception, registers whose class is NO_REGS are
   As a special exception, registers whose class is NO_REGS are
   not accepted by `register_operand'.  The reason for this change
   not accepted by `register_operand'.  The reason for this change
   is to allow the representation of special architecture artifacts
   is to allow the representation of special architecture artifacts
   (such as a condition code register) without extending the rtl
   (such as a condition code register) without extending the rtl
   definitions.  Since registers of class NO_REGS cannot be used
   definitions.  Since registers of class NO_REGS cannot be used
   as registers in any case where register classes are examined,
   as registers in any case where register classes are examined,
   it is most consistent to keep this function from accepting them.  */
   it is most consistent to keep this function from accepting them.  */
 
 
int
int
register_operand (rtx op, enum machine_mode mode)
register_operand (rtx op, enum machine_mode mode)
{
{
  if (GET_MODE (op) != mode && mode != VOIDmode)
  if (GET_MODE (op) != mode && mode != VOIDmode)
    return 0;
    return 0;
 
 
  if (GET_CODE (op) == SUBREG)
  if (GET_CODE (op) == SUBREG)
    {
    {
      rtx sub = SUBREG_REG (op);
      rtx sub = SUBREG_REG (op);
 
 
      /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
      /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
         because it is guaranteed to be reloaded into one.
         because it is guaranteed to be reloaded into one.
         Just make sure the MEM is valid in itself.
         Just make sure the MEM is valid in itself.
         (Ideally, (SUBREG (MEM)...) should not exist after reload,
         (Ideally, (SUBREG (MEM)...) should not exist after reload,
         but currently it does result from (SUBREG (REG)...) where the
         but currently it does result from (SUBREG (REG)...) where the
         reg went on the stack.)  */
         reg went on the stack.)  */
      if (! reload_completed && MEM_P (sub))
      if (! reload_completed && MEM_P (sub))
        return general_operand (op, mode);
        return general_operand (op, mode);
 
 
#ifdef CANNOT_CHANGE_MODE_CLASS
#ifdef CANNOT_CHANGE_MODE_CLASS
      if (REG_P (sub)
      if (REG_P (sub)
          && REGNO (sub) < FIRST_PSEUDO_REGISTER
          && REGNO (sub) < FIRST_PSEUDO_REGISTER
          && REG_CANNOT_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
          && REG_CANNOT_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
          && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
          && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
          && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT)
          && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT)
        return 0;
        return 0;
#endif
#endif
 
 
      /* FLOAT_MODE subregs can't be paradoxical.  Combine will occasionally
      /* FLOAT_MODE subregs can't be paradoxical.  Combine will occasionally
         create such rtl, and we must reject it.  */
         create such rtl, and we must reject it.  */
      if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
      if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
          && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
          && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
        return 0;
        return 0;
 
 
      op = sub;
      op = sub;
    }
    }
 
 
  /* We don't consider registers whose class is NO_REGS
  /* We don't consider registers whose class is NO_REGS
     to be a register operand.  */
     to be a register operand.  */
  return (REG_P (op)
  return (REG_P (op)
          && (REGNO (op) >= FIRST_PSEUDO_REGISTER
          && (REGNO (op) >= FIRST_PSEUDO_REGISTER
              || REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
              || REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
}
}
 
 
/* Return 1 for a register in Pmode; ignore the tested mode.  */
/* Return 1 for a register in Pmode; ignore the tested mode.  */
 
 
int
int
pmode_register_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
pmode_register_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
{
  return register_operand (op, Pmode);
  return register_operand (op, Pmode);
}
}
 
 
/* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
/* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
   or a hard register.  */
   or a hard register.  */
 
 
int
int
scratch_operand (rtx op, enum machine_mode mode)
scratch_operand (rtx op, enum machine_mode mode)
{
{
  if (GET_MODE (op) != mode && mode != VOIDmode)
  if (GET_MODE (op) != mode && mode != VOIDmode)
    return 0;
    return 0;
 
 
  return (GET_CODE (op) == SCRATCH
  return (GET_CODE (op) == SCRATCH
          || (REG_P (op)
          || (REG_P (op)
              && REGNO (op) < FIRST_PSEUDO_REGISTER));
              && REGNO (op) < FIRST_PSEUDO_REGISTER));
}
}
 
 
/* Return 1 if OP is a valid immediate operand for mode MODE.
/* Return 1 if OP is a valid immediate operand for mode MODE.
 
 
   The main use of this function is as a predicate in match_operand
   The main use of this function is as a predicate in match_operand
   expressions in the machine description.  */
   expressions in the machine description.  */
 
 
int
int
immediate_operand (rtx op, enum machine_mode mode)
immediate_operand (rtx op, enum machine_mode mode)
{
{
  /* Don't accept CONST_INT or anything similar
  /* Don't accept CONST_INT or anything similar
     if the caller wants something floating.  */
     if the caller wants something floating.  */
  if (GET_MODE (op) == VOIDmode && mode != VOIDmode
  if (GET_MODE (op) == VOIDmode && mode != VOIDmode
      && GET_MODE_CLASS (mode) != MODE_INT
      && GET_MODE_CLASS (mode) != MODE_INT
      && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
      && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
    return 0;
    return 0;
 
 
  if (GET_CODE (op) == CONST_INT
  if (GET_CODE (op) == CONST_INT
      && mode != VOIDmode
      && mode != VOIDmode
      && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
      && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
    return 0;
    return 0;
 
 
  return (CONSTANT_P (op)
  return (CONSTANT_P (op)
          && (GET_MODE (op) == mode || mode == VOIDmode
          && (GET_MODE (op) == mode || mode == VOIDmode
              || GET_MODE (op) == VOIDmode)
              || GET_MODE (op) == VOIDmode)
          && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
          && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
          && LEGITIMATE_CONSTANT_P (op));
          && LEGITIMATE_CONSTANT_P (op));
}
}
 
 
/* Returns 1 if OP is an operand that is a CONST_INT.  */
/* Returns 1 if OP is an operand that is a CONST_INT.  */
 
 
int
int
const_int_operand (rtx op, enum machine_mode mode)
const_int_operand (rtx op, enum machine_mode mode)
{
{
  if (GET_CODE (op) != CONST_INT)
  if (GET_CODE (op) != CONST_INT)
    return 0;
    return 0;
 
 
  if (mode != VOIDmode
  if (mode != VOIDmode
      && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
      && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
    return 0;
    return 0;
 
 
  return 1;
  return 1;
}
}
 
 
/* Returns 1 if OP is an operand that is a constant integer or constant
/* Returns 1 if OP is an operand that is a constant integer or constant
   floating-point number.  */
   floating-point number.  */
 
 
int
int
const_double_operand (rtx op, enum machine_mode mode)
const_double_operand (rtx op, enum machine_mode mode)
{
{
  /* Don't accept CONST_INT or anything similar
  /* Don't accept CONST_INT or anything similar
     if the caller wants something floating.  */
     if the caller wants something floating.  */
  if (GET_MODE (op) == VOIDmode && mode != VOIDmode
  if (GET_MODE (op) == VOIDmode && mode != VOIDmode
      && GET_MODE_CLASS (mode) != MODE_INT
      && GET_MODE_CLASS (mode) != MODE_INT
      && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
      && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
    return 0;
    return 0;
 
 
  return ((GET_CODE (op) == CONST_DOUBLE || GET_CODE (op) == CONST_INT)
  return ((GET_CODE (op) == CONST_DOUBLE || GET_CODE (op) == CONST_INT)
          && (mode == VOIDmode || GET_MODE (op) == mode
          && (mode == VOIDmode || GET_MODE (op) == mode
              || GET_MODE (op) == VOIDmode));
              || GET_MODE (op) == VOIDmode));
}
}
 
 
/* Return 1 if OP is a general operand that is not an immediate operand.  */
/* Return 1 if OP is a general operand that is not an immediate operand.  */
 
 
int
int
nonimmediate_operand (rtx op, enum machine_mode mode)
nonimmediate_operand (rtx op, enum machine_mode mode)
{
{
  return (general_operand (op, mode) && ! CONSTANT_P (op));
  return (general_operand (op, mode) && ! CONSTANT_P (op));
}
}
 
 
/* Return 1 if OP is a register reference or immediate value of mode MODE.  */
/* Return 1 if OP is a register reference or immediate value of mode MODE.  */
 
 
int
int
nonmemory_operand (rtx op, enum machine_mode mode)
nonmemory_operand (rtx op, enum machine_mode mode)
{
{
  if (CONSTANT_P (op))
  if (CONSTANT_P (op))
    {
    {
      /* Don't accept CONST_INT or anything similar
      /* Don't accept CONST_INT or anything similar
         if the caller wants something floating.  */
         if the caller wants something floating.  */
      if (GET_MODE (op) == VOIDmode && mode != VOIDmode
      if (GET_MODE (op) == VOIDmode && mode != VOIDmode
          && GET_MODE_CLASS (mode) != MODE_INT
          && GET_MODE_CLASS (mode) != MODE_INT
          && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
          && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
        return 0;
        return 0;
 
 
      if (GET_CODE (op) == CONST_INT
      if (GET_CODE (op) == CONST_INT
          && mode != VOIDmode
          && mode != VOIDmode
          && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
          && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
        return 0;
        return 0;
 
 
      return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
      return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
               || mode == VOIDmode)
               || mode == VOIDmode)
              && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
              && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
              && LEGITIMATE_CONSTANT_P (op));
              && LEGITIMATE_CONSTANT_P (op));
    }
    }
 
 
  if (GET_MODE (op) != mode && mode != VOIDmode)
  if (GET_MODE (op) != mode && mode != VOIDmode)
    return 0;
    return 0;
 
 
  if (GET_CODE (op) == SUBREG)
  if (GET_CODE (op) == SUBREG)
    {
    {
      /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
      /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
         because it is guaranteed to be reloaded into one.
         because it is guaranteed to be reloaded into one.
         Just make sure the MEM is valid in itself.
         Just make sure the MEM is valid in itself.
         (Ideally, (SUBREG (MEM)...) should not exist after reload,
         (Ideally, (SUBREG (MEM)...) should not exist after reload,
         but currently it does result from (SUBREG (REG)...) where the
         but currently it does result from (SUBREG (REG)...) where the
         reg went on the stack.)  */
         reg went on the stack.)  */
      if (! reload_completed && MEM_P (SUBREG_REG (op)))
      if (! reload_completed && MEM_P (SUBREG_REG (op)))
        return general_operand (op, mode);
        return general_operand (op, mode);
      op = SUBREG_REG (op);
      op = SUBREG_REG (op);
    }
    }
 
 
  /* We don't consider registers whose class is NO_REGS
  /* We don't consider registers whose class is NO_REGS
     to be a register operand.  */
     to be a register operand.  */
  return (REG_P (op)
  return (REG_P (op)
          && (REGNO (op) >= FIRST_PSEUDO_REGISTER
          && (REGNO (op) >= FIRST_PSEUDO_REGISTER
              || REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
              || REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
}
}
 
 
/* Return 1 if OP is a valid operand that stands for pushing a
/* Return 1 if OP is a valid operand that stands for pushing a
   value of mode MODE onto the stack.
   value of mode MODE onto the stack.
 
 
   The main use of this function is as a predicate in match_operand
   The main use of this function is as a predicate in match_operand
   expressions in the machine description.  */
   expressions in the machine description.  */
 
 
int
int
push_operand (rtx op, enum machine_mode mode)
push_operand (rtx op, enum machine_mode mode)
{
{
  unsigned int rounded_size = GET_MODE_SIZE (mode);
  unsigned int rounded_size = GET_MODE_SIZE (mode);
 
 
#ifdef PUSH_ROUNDING
#ifdef PUSH_ROUNDING
  rounded_size = PUSH_ROUNDING (rounded_size);
  rounded_size = PUSH_ROUNDING (rounded_size);
#endif
#endif
 
 
  if (!MEM_P (op))
  if (!MEM_P (op))
    return 0;
    return 0;
 
 
  if (mode != VOIDmode && GET_MODE (op) != mode)
  if (mode != VOIDmode && GET_MODE (op) != mode)
    return 0;
    return 0;
 
 
  op = XEXP (op, 0);
  op = XEXP (op, 0);
 
 
  if (rounded_size == GET_MODE_SIZE (mode))
  if (rounded_size == GET_MODE_SIZE (mode))
    {
    {
      if (GET_CODE (op) != STACK_PUSH_CODE)
      if (GET_CODE (op) != STACK_PUSH_CODE)
        return 0;
        return 0;
    }
    }
  else
  else
    {
    {
      if (GET_CODE (op) != PRE_MODIFY
      if (GET_CODE (op) != PRE_MODIFY
          || GET_CODE (XEXP (op, 1)) != PLUS
          || GET_CODE (XEXP (op, 1)) != PLUS
          || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
          || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
          || GET_CODE (XEXP (XEXP (op, 1), 1)) != CONST_INT
          || GET_CODE (XEXP (XEXP (op, 1), 1)) != CONST_INT
#ifdef STACK_GROWS_DOWNWARD
#ifdef STACK_GROWS_DOWNWARD
          || INTVAL (XEXP (XEXP (op, 1), 1)) != - (int) rounded_size
          || INTVAL (XEXP (XEXP (op, 1), 1)) != - (int) rounded_size
#else
#else
          || INTVAL (XEXP (XEXP (op, 1), 1)) != (int) rounded_size
          || INTVAL (XEXP (XEXP (op, 1), 1)) != (int) rounded_size
#endif
#endif
          )
          )
        return 0;
        return 0;
    }
    }
 
 
  return XEXP (op, 0) == stack_pointer_rtx;
  return XEXP (op, 0) == stack_pointer_rtx;
}
}
 
 
/* Return 1 if OP is a valid operand that stands for popping a
/* Return 1 if OP is a valid operand that stands for popping a
   value of mode MODE off the stack.
   value of mode MODE off the stack.
 
 
   The main use of this function is as a predicate in match_operand
   The main use of this function is as a predicate in match_operand
   expressions in the machine description.  */
   expressions in the machine description.  */
 
 
int
int
pop_operand (rtx op, enum machine_mode mode)
pop_operand (rtx op, enum machine_mode mode)
{
{
  if (!MEM_P (op))
  if (!MEM_P (op))
    return 0;
    return 0;
 
 
  if (mode != VOIDmode && GET_MODE (op) != mode)
  if (mode != VOIDmode && GET_MODE (op) != mode)
    return 0;
    return 0;
 
 
  op = XEXP (op, 0);
  op = XEXP (op, 0);
 
 
  if (GET_CODE (op) != STACK_POP_CODE)
  if (GET_CODE (op) != STACK_POP_CODE)
    return 0;
    return 0;
 
 
  return XEXP (op, 0) == stack_pointer_rtx;
  return XEXP (op, 0) == stack_pointer_rtx;
}
}
 
 
/* Return 1 if ADDR is a valid memory address for mode MODE.  */
/* Return 1 if ADDR is a valid memory address for mode MODE.  */
 
 
int
int
memory_address_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx addr)
memory_address_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx addr)
{
{
  GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
  GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
  return 0;
  return 0;
 
 
 win:
 win:
  return 1;
  return 1;
}
}
 
 
/* Return 1 if OP is a valid memory reference with mode MODE,
/* Return 1 if OP is a valid memory reference with mode MODE,
   including a valid address.
   including a valid address.
 
 
   The main use of this function is as a predicate in match_operand
   The main use of this function is as a predicate in match_operand
   expressions in the machine description.  */
   expressions in the machine description.  */
 
 
int
int
memory_operand (rtx op, enum machine_mode mode)
memory_operand (rtx op, enum machine_mode mode)
{
{
  rtx inner;
  rtx inner;
 
 
  if (! reload_completed)
  if (! reload_completed)
    /* Note that no SUBREG is a memory operand before end of reload pass,
    /* Note that no SUBREG is a memory operand before end of reload pass,
       because (SUBREG (MEM...)) forces reloading into a register.  */
       because (SUBREG (MEM...)) forces reloading into a register.  */
    return MEM_P (op) && general_operand (op, mode);
    return MEM_P (op) && general_operand (op, mode);
 
 
  if (mode != VOIDmode && GET_MODE (op) != mode)
  if (mode != VOIDmode && GET_MODE (op) != mode)
    return 0;
    return 0;
 
 
  inner = op;
  inner = op;
  if (GET_CODE (inner) == SUBREG)
  if (GET_CODE (inner) == SUBREG)
    inner = SUBREG_REG (inner);
    inner = SUBREG_REG (inner);
 
 
  return (MEM_P (inner) && general_operand (op, mode));
  return (MEM_P (inner) && general_operand (op, mode));
}
}
 
 
/* Return 1 if OP is a valid indirect memory reference with mode MODE;
/* Return 1 if OP is a valid indirect memory reference with mode MODE;
   that is, a memory reference whose address is a general_operand.  */
   that is, a memory reference whose address is a general_operand.  */
 
 
int
int
indirect_operand (rtx op, enum machine_mode mode)
indirect_operand (rtx op, enum machine_mode mode)
{
{
  /* Before reload, a SUBREG isn't in memory (see memory_operand, above).  */
  /* Before reload, a SUBREG isn't in memory (see memory_operand, above).  */
  if (! reload_completed
  if (! reload_completed
      && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
      && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
    {
    {
      int offset = SUBREG_BYTE (op);
      int offset = SUBREG_BYTE (op);
      rtx inner = SUBREG_REG (op);
      rtx inner = SUBREG_REG (op);
 
 
      if (mode != VOIDmode && GET_MODE (op) != mode)
      if (mode != VOIDmode && GET_MODE (op) != mode)
        return 0;
        return 0;
 
 
      /* The only way that we can have a general_operand as the resulting
      /* The only way that we can have a general_operand as the resulting
         address is if OFFSET is zero and the address already is an operand
         address is if OFFSET is zero and the address already is an operand
         or if the address is (plus Y (const_int -OFFSET)) and Y is an
         or if the address is (plus Y (const_int -OFFSET)) and Y is an
         operand.  */
         operand.  */
 
 
      return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
      return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
              || (GET_CODE (XEXP (inner, 0)) == PLUS
              || (GET_CODE (XEXP (inner, 0)) == PLUS
                  && GET_CODE (XEXP (XEXP (inner, 0), 1)) == CONST_INT
                  && GET_CODE (XEXP (XEXP (inner, 0), 1)) == CONST_INT
                  && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
                  && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
                  && general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
                  && general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
    }
    }
 
 
  return (MEM_P (op)
  return (MEM_P (op)
          && memory_operand (op, mode)
          && memory_operand (op, mode)
          && general_operand (XEXP (op, 0), Pmode));
          && general_operand (XEXP (op, 0), Pmode));
}
}
 
 
/* Return 1 if this is a comparison operator.  This allows the use of
/* Return 1 if this is a comparison operator.  This allows the use of
   MATCH_OPERATOR to recognize all the branch insns.  */
   MATCH_OPERATOR to recognize all the branch insns.  */
 
 
int
int
comparison_operator (rtx op, enum machine_mode mode)
comparison_operator (rtx op, enum machine_mode mode)
{
{
  return ((mode == VOIDmode || GET_MODE (op) == mode)
  return ((mode == VOIDmode || GET_MODE (op) == mode)
          && COMPARISON_P (op));
          && COMPARISON_P (op));
}
}


/* If BODY is an insn body that uses ASM_OPERANDS,
/* If BODY is an insn body that uses ASM_OPERANDS,
   return the number of operands (both input and output) in the insn.
   return the number of operands (both input and output) in the insn.
   Otherwise return -1.  */
   Otherwise return -1.  */
 
 
int
int
asm_noperands (rtx body)
asm_noperands (rtx body)
{
{
  switch (GET_CODE (body))
  switch (GET_CODE (body))
    {
    {
    case ASM_OPERANDS:
    case ASM_OPERANDS:
      /* No output operands: return number of input operands.  */
      /* No output operands: return number of input operands.  */
      return ASM_OPERANDS_INPUT_LENGTH (body);
      return ASM_OPERANDS_INPUT_LENGTH (body);
    case SET:
    case SET:
      if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
      if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
        /* Single output operand: BODY is (set OUTPUT (asm_operands ...)).  */
        /* Single output operand: BODY is (set OUTPUT (asm_operands ...)).  */
        return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body)) + 1;
        return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body)) + 1;
      else
      else
        return -1;
        return -1;
    case PARALLEL:
    case PARALLEL:
      if (GET_CODE (XVECEXP (body, 0, 0)) == SET
      if (GET_CODE (XVECEXP (body, 0, 0)) == SET
          && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
          && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
        {
        {
          /* Multiple output operands, or 1 output plus some clobbers:
          /* Multiple output operands, or 1 output plus some clobbers:
             body is [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...].  */
             body is [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...].  */
          int i;
          int i;
          int n_sets;
          int n_sets;
 
 
          /* Count backwards through CLOBBERs to determine number of SETs.  */
          /* Count backwards through CLOBBERs to determine number of SETs.  */
          for (i = XVECLEN (body, 0); i > 0; i--)
          for (i = XVECLEN (body, 0); i > 0; i--)
            {
            {
              if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
              if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
                break;
                break;
              if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
              if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
                return -1;
                return -1;
            }
            }
 
 
          /* N_SETS is now number of output operands.  */
          /* N_SETS is now number of output operands.  */
          n_sets = i;
          n_sets = i;
 
 
          /* Verify that all the SETs we have
          /* Verify that all the SETs we have
             came from a single original asm_operands insn
             came from a single original asm_operands insn
             (so that invalid combinations are blocked).  */
             (so that invalid combinations are blocked).  */
          for (i = 0; i < n_sets; i++)
          for (i = 0; i < n_sets; i++)
            {
            {
              rtx elt = XVECEXP (body, 0, i);
              rtx elt = XVECEXP (body, 0, i);
              if (GET_CODE (elt) != SET)
              if (GET_CODE (elt) != SET)
                return -1;
                return -1;
              if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
              if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
                return -1;
                return -1;
              /* If these ASM_OPERANDS rtx's came from different original insns
              /* If these ASM_OPERANDS rtx's came from different original insns
                 then they aren't allowed together.  */
                 then they aren't allowed together.  */
              if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
              if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
                  != ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (body, 0, 0))))
                  != ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (body, 0, 0))))
                return -1;
                return -1;
            }
            }
          return (ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body, 0, 0)))
          return (ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body, 0, 0)))
                  + n_sets);
                  + n_sets);
        }
        }
      else if (GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
      else if (GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
        {
        {
          /* 0 outputs, but some clobbers:
          /* 0 outputs, but some clobbers:
             body is [(asm_operands ...) (clobber (reg ...))...].  */
             body is [(asm_operands ...) (clobber (reg ...))...].  */
          int i;
          int i;
 
 
          /* Make sure all the other parallel things really are clobbers.  */
          /* Make sure all the other parallel things really are clobbers.  */
          for (i = XVECLEN (body, 0) - 1; i > 0; i--)
          for (i = XVECLEN (body, 0) - 1; i > 0; i--)
            if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
            if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
              return -1;
              return -1;
 
 
          return ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body, 0, 0));
          return ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body, 0, 0));
        }
        }
      else
      else
        return -1;
        return -1;
    default:
    default:
      return -1;
      return -1;
    }
    }
}
}
 
 
/* Assuming BODY is an insn body that uses ASM_OPERANDS,
/* Assuming BODY is an insn body that uses ASM_OPERANDS,
   copy its operands (both input and output) into the vector OPERANDS,
   copy its operands (both input and output) into the vector OPERANDS,
   the locations of the operands within the insn into the vector OPERAND_LOCS,
   the locations of the operands within the insn into the vector OPERAND_LOCS,
   and the constraints for the operands into CONSTRAINTS.
   and the constraints for the operands into CONSTRAINTS.
   Write the modes of the operands into MODES.
   Write the modes of the operands into MODES.
   Return the assembler-template.
   Return the assembler-template.
 
 
   If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
   If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
   we don't store that info.  */
   we don't store that info.  */
 
 
const char *
const char *
decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
                     const char **constraints, enum machine_mode *modes)
                     const char **constraints, enum machine_mode *modes)
{
{
  int i;
  int i;
  int noperands;
  int noperands;
  const char *template = 0;
  const char *template = 0;
 
 
  if (GET_CODE (body) == SET && GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
  if (GET_CODE (body) == SET && GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
    {
    {
      rtx asmop = SET_SRC (body);
      rtx asmop = SET_SRC (body);
      /* Single output operand: BODY is (set OUTPUT (asm_operands ....)).  */
      /* Single output operand: BODY is (set OUTPUT (asm_operands ....)).  */
 
 
      noperands = ASM_OPERANDS_INPUT_LENGTH (asmop) + 1;
      noperands = ASM_OPERANDS_INPUT_LENGTH (asmop) + 1;
 
 
      for (i = 1; i < noperands; i++)
      for (i = 1; i < noperands; i++)
        {
        {
          if (operand_locs)
          if (operand_locs)
            operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i - 1);
            operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i - 1);
          if (operands)
          if (operands)
            operands[i] = ASM_OPERANDS_INPUT (asmop, i - 1);
            operands[i] = ASM_OPERANDS_INPUT (asmop, i - 1);
          if (constraints)
          if (constraints)
            constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i - 1);
            constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i - 1);
          if (modes)
          if (modes)
            modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i - 1);
            modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i - 1);
        }
        }
 
 
      /* The output is in the SET.
      /* The output is in the SET.
         Its constraint is in the ASM_OPERANDS itself.  */
         Its constraint is in the ASM_OPERANDS itself.  */
      if (operands)
      if (operands)
        operands[0] = SET_DEST (body);
        operands[0] = SET_DEST (body);
      if (operand_locs)
      if (operand_locs)
        operand_locs[0] = &SET_DEST (body);
        operand_locs[0] = &SET_DEST (body);
      if (constraints)
      if (constraints)
        constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
        constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
      if (modes)
      if (modes)
        modes[0] = GET_MODE (SET_DEST (body));
        modes[0] = GET_MODE (SET_DEST (body));
      template = ASM_OPERANDS_TEMPLATE (asmop);
      template = ASM_OPERANDS_TEMPLATE (asmop);
    }
    }
  else if (GET_CODE (body) == ASM_OPERANDS)
  else if (GET_CODE (body) == ASM_OPERANDS)
    {
    {
      rtx asmop = body;
      rtx asmop = body;
      /* No output operands: BODY is (asm_operands ....).  */
      /* No output operands: BODY is (asm_operands ....).  */
 
 
      noperands = ASM_OPERANDS_INPUT_LENGTH (asmop);
      noperands = ASM_OPERANDS_INPUT_LENGTH (asmop);
 
 
      /* The input operands are found in the 1st element vector.  */
      /* The input operands are found in the 1st element vector.  */
      /* Constraints for inputs are in the 2nd element vector.  */
      /* Constraints for inputs are in the 2nd element vector.  */
      for (i = 0; i < noperands; i++)
      for (i = 0; i < noperands; i++)
        {
        {
          if (operand_locs)
          if (operand_locs)
            operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i);
            operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i);
          if (operands)
          if (operands)
            operands[i] = ASM_OPERANDS_INPUT (asmop, i);
            operands[i] = ASM_OPERANDS_INPUT (asmop, i);
          if (constraints)
          if (constraints)
            constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
            constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
          if (modes)
          if (modes)
            modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
            modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
        }
        }
      template = ASM_OPERANDS_TEMPLATE (asmop);
      template = ASM_OPERANDS_TEMPLATE (asmop);
    }
    }
  else if (GET_CODE (body) == PARALLEL
  else if (GET_CODE (body) == PARALLEL
           && GET_CODE (XVECEXP (body, 0, 0)) == SET
           && GET_CODE (XVECEXP (body, 0, 0)) == SET
           && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
           && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
    {
    {
      rtx asmop = SET_SRC (XVECEXP (body, 0, 0));
      rtx asmop = SET_SRC (XVECEXP (body, 0, 0));
      int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs.  */
      int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs.  */
      int nin = ASM_OPERANDS_INPUT_LENGTH (asmop);
      int nin = ASM_OPERANDS_INPUT_LENGTH (asmop);
      int nout = 0;              /* Does not include CLOBBERs.  */
      int nout = 0;              /* Does not include CLOBBERs.  */
 
 
      /* At least one output, plus some CLOBBERs.  */
      /* At least one output, plus some CLOBBERs.  */
 
 
      /* The outputs are in the SETs.
      /* The outputs are in the SETs.
         Their constraints are in the ASM_OPERANDS itself.  */
         Their constraints are in the ASM_OPERANDS itself.  */
      for (i = 0; i < nparallel; i++)
      for (i = 0; i < nparallel; i++)
        {
        {
          if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
          if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
            break;              /* Past last SET */
            break;              /* Past last SET */
 
 
          if (operands)
          if (operands)
            operands[i] = SET_DEST (XVECEXP (body, 0, i));
            operands[i] = SET_DEST (XVECEXP (body, 0, i));
          if (operand_locs)
          if (operand_locs)
            operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
            operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
          if (constraints)
          if (constraints)
            constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
            constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
          if (modes)
          if (modes)
            modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
            modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
          nout++;
          nout++;
        }
        }
 
 
      for (i = 0; i < nin; i++)
      for (i = 0; i < nin; i++)
        {
        {
          if (operand_locs)
          if (operand_locs)
            operand_locs[i + nout] = &ASM_OPERANDS_INPUT (asmop, i);
            operand_locs[i + nout] = &ASM_OPERANDS_INPUT (asmop, i);
          if (operands)
          if (operands)
            operands[i + nout] = ASM_OPERANDS_INPUT (asmop, i);
            operands[i + nout] = ASM_OPERANDS_INPUT (asmop, i);
          if (constraints)
          if (constraints)
            constraints[i + nout] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
            constraints[i + nout] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
          if (modes)
          if (modes)
            modes[i + nout] = ASM_OPERANDS_INPUT_MODE (asmop, i);
            modes[i + nout] = ASM_OPERANDS_INPUT_MODE (asmop, i);
        }
        }
 
 
      template = ASM_OPERANDS_TEMPLATE (asmop);
      template = ASM_OPERANDS_TEMPLATE (asmop);
    }
    }
  else if (GET_CODE (body) == PARALLEL
  else if (GET_CODE (body) == PARALLEL
           && GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
           && GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
    {
    {
      /* No outputs, but some CLOBBERs.  */
      /* No outputs, but some CLOBBERs.  */
 
 
      rtx asmop = XVECEXP (body, 0, 0);
      rtx asmop = XVECEXP (body, 0, 0);
      int nin = ASM_OPERANDS_INPUT_LENGTH (asmop);
      int nin = ASM_OPERANDS_INPUT_LENGTH (asmop);
 
 
      for (i = 0; i < nin; i++)
      for (i = 0; i < nin; i++)
        {
        {
          if (operand_locs)
          if (operand_locs)
            operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i);
            operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i);
          if (operands)
          if (operands)
            operands[i] = ASM_OPERANDS_INPUT (asmop, i);
            operands[i] = ASM_OPERANDS_INPUT (asmop, i);
          if (constraints)
          if (constraints)
            constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
            constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
          if (modes)
          if (modes)
            modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
            modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
        }
        }
 
 
      template = ASM_OPERANDS_TEMPLATE (asmop);
      template = ASM_OPERANDS_TEMPLATE (asmop);
    }
    }
 
 
  return template;
  return template;
}
}
 
 
/* Check if an asm_operand matches its constraints.
/* Check if an asm_operand matches its constraints.
   Return > 0 if ok, = 0 if bad, < 0 if inconclusive.  */
   Return > 0 if ok, = 0 if bad, < 0 if inconclusive.  */
 
 
int
int
asm_operand_ok (rtx op, const char *constraint)
asm_operand_ok (rtx op, const char *constraint)
{
{
  int result = 0;
  int result = 0;
 
 
  /* Use constrain_operands after reload.  */
  /* Use constrain_operands after reload.  */
  gcc_assert (!reload_completed);
  gcc_assert (!reload_completed);
 
 
  while (*constraint)
  while (*constraint)
    {
    {
      char c = *constraint;
      char c = *constraint;
      int len;
      int len;
      switch (c)
      switch (c)
        {
        {
        case ',':
        case ',':
          constraint++;
          constraint++;
          continue;
          continue;
        case '=':
        case '=':
        case '+':
        case '+':
        case '*':
        case '*':
        case '%':
        case '%':
        case '!':
        case '!':
        case '#':
        case '#':
        case '&':
        case '&':
        case '?':
        case '?':
          break;
          break;
 
 
        case '0': case '1': case '2': case '3': case '4':
        case '0': case '1': case '2': case '3': case '4':
        case '5': case '6': case '7': case '8': case '9':
        case '5': case '6': case '7': case '8': case '9':
          /* For best results, our caller should have given us the
          /* For best results, our caller should have given us the
             proper matching constraint, but we can't actually fail
             proper matching constraint, but we can't actually fail
             the check if they didn't.  Indicate that results are
             the check if they didn't.  Indicate that results are
             inconclusive.  */
             inconclusive.  */
          do
          do
            constraint++;
            constraint++;
          while (ISDIGIT (*constraint));
          while (ISDIGIT (*constraint));
          if (! result)
          if (! result)
            result = -1;
            result = -1;
          continue;
          continue;
 
 
        case 'p':
        case 'p':
          if (address_operand (op, VOIDmode))
          if (address_operand (op, VOIDmode))
            result = 1;
            result = 1;
          break;
          break;
 
 
        case 'm':
        case 'm':
        case 'V': /* non-offsettable */
        case 'V': /* non-offsettable */
          if (memory_operand (op, VOIDmode))
          if (memory_operand (op, VOIDmode))
            result = 1;
            result = 1;
          break;
          break;
 
 
        case 'o': /* offsettable */
        case 'o': /* offsettable */
          if (offsettable_nonstrict_memref_p (op))
          if (offsettable_nonstrict_memref_p (op))
            result = 1;
            result = 1;
          break;
          break;
 
 
        case '<':
        case '<':
          /* ??? Before flow, auto inc/dec insns are not supposed to exist,
          /* ??? Before flow, auto inc/dec insns are not supposed to exist,
             excepting those that expand_call created.  Further, on some
             excepting those that expand_call created.  Further, on some
             machines which do not have generalized auto inc/dec, an inc/dec
             machines which do not have generalized auto inc/dec, an inc/dec
             is not a memory_operand.
             is not a memory_operand.
 
 
             Match any memory and hope things are resolved after reload.  */
             Match any memory and hope things are resolved after reload.  */
 
 
          if (MEM_P (op)
          if (MEM_P (op)
              && (1
              && (1
                  || GET_CODE (XEXP (op, 0)) == PRE_DEC
                  || GET_CODE (XEXP (op, 0)) == PRE_DEC
                  || GET_CODE (XEXP (op, 0)) == POST_DEC))
                  || GET_CODE (XEXP (op, 0)) == POST_DEC))
            result = 1;
            result = 1;
          break;
          break;
 
 
        case '>':
        case '>':
          if (MEM_P (op)
          if (MEM_P (op)
              && (1
              && (1
                  || GET_CODE (XEXP (op, 0)) == PRE_INC
                  || GET_CODE (XEXP (op, 0)) == PRE_INC
                  || GET_CODE (XEXP (op, 0)) == POST_INC))
                  || GET_CODE (XEXP (op, 0)) == POST_INC))
            result = 1;
            result = 1;
          break;
          break;
 
 
        case 'E':
        case 'E':
        case 'F':
        case 'F':
          if (GET_CODE (op) == CONST_DOUBLE
          if (GET_CODE (op) == CONST_DOUBLE
              || (GET_CODE (op) == CONST_VECTOR
              || (GET_CODE (op) == CONST_VECTOR
                  && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
                  && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
            result = 1;
            result = 1;
          break;
          break;
 
 
        case 'G':
        case 'G':
          if (GET_CODE (op) == CONST_DOUBLE
          if (GET_CODE (op) == CONST_DOUBLE
              && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'G', constraint))
              && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'G', constraint))
            result = 1;
            result = 1;
          break;
          break;
        case 'H':
        case 'H':
          if (GET_CODE (op) == CONST_DOUBLE
          if (GET_CODE (op) == CONST_DOUBLE
              && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'H', constraint))
              && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'H', constraint))
            result = 1;
            result = 1;
          break;
          break;
 
 
        case 's':
        case 's':
          if (GET_CODE (op) == CONST_INT
          if (GET_CODE (op) == CONST_INT
              || (GET_CODE (op) == CONST_DOUBLE
              || (GET_CODE (op) == CONST_DOUBLE
                  && GET_MODE (op) == VOIDmode))
                  && GET_MODE (op) == VOIDmode))
            break;
            break;
          /* Fall through.  */
          /* Fall through.  */
 
 
        case 'i':
        case 'i':
          if (CONSTANT_P (op) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
          if (CONSTANT_P (op) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
            result = 1;
            result = 1;
          break;
          break;
 
 
        case 'n':
        case 'n':
          if (GET_CODE (op) == CONST_INT
          if (GET_CODE (op) == CONST_INT
              || (GET_CODE (op) == CONST_DOUBLE
              || (GET_CODE (op) == CONST_DOUBLE
                  && GET_MODE (op) == VOIDmode))
                  && GET_MODE (op) == VOIDmode))
            result = 1;
            result = 1;
          break;
          break;
 
 
        case 'I':
        case 'I':
          if (GET_CODE (op) == CONST_INT
          if (GET_CODE (op) == CONST_INT
              && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'I', constraint))
              && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'I', constraint))
            result = 1;
            result = 1;
          break;
          break;
        case 'J':
        case 'J':
          if (GET_CODE (op) == CONST_INT
          if (GET_CODE (op) == CONST_INT
              && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'J', constraint))
              && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'J', constraint))
            result = 1;
            result = 1;
          break;
          break;
        case 'K':
        case 'K':
          if (GET_CODE (op) == CONST_INT
          if (GET_CODE (op) == CONST_INT
              && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'K', constraint))
              && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'K', constraint))
            result = 1;
            result = 1;
          break;
          break;
        case 'L':
        case 'L':
          if (GET_CODE (op) == CONST_INT
          if (GET_CODE (op) == CONST_INT
              && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'L', constraint))
              && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'L', constraint))
            result = 1;
            result = 1;
          break;
          break;
        case 'M':
        case 'M':
          if (GET_CODE (op) == CONST_INT
          if (GET_CODE (op) == CONST_INT
              && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'M', constraint))
              && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'M', constraint))
            result = 1;
            result = 1;
          break;
          break;
        case 'N':
        case 'N':
          if (GET_CODE (op) == CONST_INT
          if (GET_CODE (op) == CONST_INT
              && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'N', constraint))
              && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'N', constraint))
            result = 1;
            result = 1;
          break;
          break;
        case 'O':
        case 'O':
          if (GET_CODE (op) == CONST_INT
          if (GET_CODE (op) == CONST_INT
              && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'O', constraint))
              && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'O', constraint))
            result = 1;
            result = 1;
          break;
          break;
        case 'P':
        case 'P':
          if (GET_CODE (op) == CONST_INT
          if (GET_CODE (op) == CONST_INT
              && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'P', constraint))
              && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'P', constraint))
            result = 1;
            result = 1;
          break;
          break;
 
 
        case 'X':
        case 'X':
          result = 1;
          result = 1;
          break;
          break;
 
 
        case 'g':
        case 'g':
          if (general_operand (op, VOIDmode))
          if (general_operand (op, VOIDmode))
            result = 1;
            result = 1;
          break;
          break;
 
 
        default:
        default:
          /* For all other letters, we first check for a register class,
          /* For all other letters, we first check for a register class,
             otherwise it is an EXTRA_CONSTRAINT.  */
             otherwise it is an EXTRA_CONSTRAINT.  */
          if (REG_CLASS_FROM_CONSTRAINT (c, constraint) != NO_REGS)
          if (REG_CLASS_FROM_CONSTRAINT (c, constraint) != NO_REGS)
            {
            {
            case 'r':
            case 'r':
              if (GET_MODE (op) == BLKmode)
              if (GET_MODE (op) == BLKmode)
                break;
                break;
              if (register_operand (op, VOIDmode))
              if (register_operand (op, VOIDmode))
                result = 1;
                result = 1;
            }
            }
#ifdef EXTRA_CONSTRAINT_STR
#ifdef EXTRA_CONSTRAINT_STR
          else if (EXTRA_CONSTRAINT_STR (op, c, constraint))
          else if (EXTRA_CONSTRAINT_STR (op, c, constraint))
            result = 1;
            result = 1;
          else if (EXTRA_MEMORY_CONSTRAINT (c, constraint)
          else if (EXTRA_MEMORY_CONSTRAINT (c, constraint)
                   /* Every memory operand can be reloaded to fit.  */
                   /* Every memory operand can be reloaded to fit.  */
                   && memory_operand (op, VOIDmode))
                   && memory_operand (op, VOIDmode))
            result = 1;
            result = 1;
          else if (EXTRA_ADDRESS_CONSTRAINT (c, constraint)
          else if (EXTRA_ADDRESS_CONSTRAINT (c, constraint)
                   /* Every address operand can be reloaded to fit.  */
                   /* Every address operand can be reloaded to fit.  */
                   && address_operand (op, VOIDmode))
                   && address_operand (op, VOIDmode))
            result = 1;
            result = 1;
#endif
#endif
          break;
          break;
        }
        }
      len = CONSTRAINT_LEN (c, constraint);
      len = CONSTRAINT_LEN (c, constraint);
      do
      do
        constraint++;
        constraint++;
      while (--len && *constraint);
      while (--len && *constraint);
      if (len)
      if (len)
        return 0;
        return 0;
    }
    }
 
 
  return result;
  return result;
}
}


/* Given an rtx *P, if it is a sum containing an integer constant term,
/* Given an rtx *P, if it is a sum containing an integer constant term,
   return the location (type rtx *) of the pointer to that constant term.
   return the location (type rtx *) of the pointer to that constant term.
   Otherwise, return a null pointer.  */
   Otherwise, return a null pointer.  */
 
 
rtx *
rtx *
find_constant_term_loc (rtx *p)
find_constant_term_loc (rtx *p)
{
{
  rtx *tem;
  rtx *tem;
  enum rtx_code code = GET_CODE (*p);
  enum rtx_code code = GET_CODE (*p);
 
 
  /* If *P IS such a constant term, P is its location.  */
  /* If *P IS such a constant term, P is its location.  */
 
 
  if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
  if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
      || code == CONST)
      || code == CONST)
    return p;
    return p;
 
 
  /* Otherwise, if not a sum, it has no constant term.  */
  /* Otherwise, if not a sum, it has no constant term.  */
 
 
  if (GET_CODE (*p) != PLUS)
  if (GET_CODE (*p) != PLUS)
    return 0;
    return 0;
 
 
  /* If one of the summands is constant, return its location.  */
  /* If one of the summands is constant, return its location.  */
 
 
  if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
  if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
      && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
      && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
    return p;
    return p;
 
 
  /* Otherwise, check each summand for containing a constant term.  */
  /* Otherwise, check each summand for containing a constant term.  */
 
 
  if (XEXP (*p, 0) != 0)
  if (XEXP (*p, 0) != 0)
    {
    {
      tem = find_constant_term_loc (&XEXP (*p, 0));
      tem = find_constant_term_loc (&XEXP (*p, 0));
      if (tem != 0)
      if (tem != 0)
        return tem;
        return tem;
    }
    }
 
 
  if (XEXP (*p, 1) != 0)
  if (XEXP (*p, 1) != 0)
    {
    {
      tem = find_constant_term_loc (&XEXP (*p, 1));
      tem = find_constant_term_loc (&XEXP (*p, 1));
      if (tem != 0)
      if (tem != 0)
        return tem;
        return tem;
    }
    }
 
 
  return 0;
  return 0;
}
}


/* Return 1 if OP is a memory reference
/* Return 1 if OP is a memory reference
   whose address contains no side effects
   whose address contains no side effects
   and remains valid after the addition
   and remains valid after the addition
   of a positive integer less than the
   of a positive integer less than the
   size of the object being referenced.
   size of the object being referenced.
 
 
   We assume that the original address is valid and do not check it.
   We assume that the original address is valid and do not check it.
 
 
   This uses strict_memory_address_p as a subroutine, so
   This uses strict_memory_address_p as a subroutine, so
   don't use it before reload.  */
   don't use it before reload.  */
 
 
int
int
offsettable_memref_p (rtx op)
offsettable_memref_p (rtx op)
{
{
  return ((MEM_P (op))
  return ((MEM_P (op))
          && offsettable_address_p (1, GET_MODE (op), XEXP (op, 0)));
          && offsettable_address_p (1, GET_MODE (op), XEXP (op, 0)));
}
}
 
 
/* Similar, but don't require a strictly valid mem ref:
/* Similar, but don't require a strictly valid mem ref:
   consider pseudo-regs valid as index or base regs.  */
   consider pseudo-regs valid as index or base regs.  */
 
 
int
int
offsettable_nonstrict_memref_p (rtx op)
offsettable_nonstrict_memref_p (rtx op)
{
{
  return ((MEM_P (op))
  return ((MEM_P (op))
          && offsettable_address_p (0, GET_MODE (op), XEXP (op, 0)));
          && offsettable_address_p (0, GET_MODE (op), XEXP (op, 0)));
}
}
 
 
/* Return 1 if Y is a memory address which contains no side effects
/* Return 1 if Y is a memory address which contains no side effects
   and would remain valid after the addition of a positive integer
   and would remain valid after the addition of a positive integer
   less than the size of that mode.
   less than the size of that mode.
 
 
   We assume that the original address is valid and do not check it.
   We assume that the original address is valid and do not check it.
   We do check that it is valid for narrower modes.
   We do check that it is valid for narrower modes.
 
 
   If STRICTP is nonzero, we require a strictly valid address,
   If STRICTP is nonzero, we require a strictly valid address,
   for the sake of use in reload.c.  */
   for the sake of use in reload.c.  */
 
 
int
int
offsettable_address_p (int strictp, enum machine_mode mode, rtx y)
offsettable_address_p (int strictp, enum machine_mode mode, rtx y)
{
{
  enum rtx_code ycode = GET_CODE (y);
  enum rtx_code ycode = GET_CODE (y);
  rtx z;
  rtx z;
  rtx y1 = y;
  rtx y1 = y;
  rtx *y2;
  rtx *y2;
  int (*addressp) (enum machine_mode, rtx) =
  int (*addressp) (enum machine_mode, rtx) =
    (strictp ? strict_memory_address_p : memory_address_p);
    (strictp ? strict_memory_address_p : memory_address_p);
  unsigned int mode_sz = GET_MODE_SIZE (mode);
  unsigned int mode_sz = GET_MODE_SIZE (mode);
 
 
  if (CONSTANT_ADDRESS_P (y))
  if (CONSTANT_ADDRESS_P (y))
    return 1;
    return 1;
 
 
  /* Adjusting an offsettable address involves changing to a narrower mode.
  /* Adjusting an offsettable address involves changing to a narrower mode.
     Make sure that's OK.  */
     Make sure that's OK.  */
 
 
  if (mode_dependent_address_p (y))
  if (mode_dependent_address_p (y))
    return 0;
    return 0;
 
 
  /* ??? How much offset does an offsettable BLKmode reference need?
  /* ??? How much offset does an offsettable BLKmode reference need?
     Clearly that depends on the situation in which it's being used.
     Clearly that depends on the situation in which it's being used.
     However, the current situation in which we test 0xffffffff is
     However, the current situation in which we test 0xffffffff is
     less than ideal.  Caveat user.  */
     less than ideal.  Caveat user.  */
  if (mode_sz == 0)
  if (mode_sz == 0)
    mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
    mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
 
 
  /* If the expression contains a constant term,
  /* If the expression contains a constant term,
     see if it remains valid when max possible offset is added.  */
     see if it remains valid when max possible offset is added.  */
 
 
  if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
  if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
    {
    {
      int good;
      int good;
 
 
      y1 = *y2;
      y1 = *y2;
      *y2 = plus_constant (*y2, mode_sz - 1);
      *y2 = plus_constant (*y2, mode_sz - 1);
      /* Use QImode because an odd displacement may be automatically invalid
      /* Use QImode because an odd displacement may be automatically invalid
         for any wider mode.  But it should be valid for a single byte.  */
         for any wider mode.  But it should be valid for a single byte.  */
      good = (*addressp) (QImode, y);
      good = (*addressp) (QImode, y);
 
 
      /* In any case, restore old contents of memory.  */
      /* In any case, restore old contents of memory.  */
      *y2 = y1;
      *y2 = y1;
      return good;
      return good;
    }
    }
 
 
  if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
  if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
    return 0;
    return 0;
 
 
  /* The offset added here is chosen as the maximum offset that
  /* The offset added here is chosen as the maximum offset that
     any instruction could need to add when operating on something
     any instruction could need to add when operating on something
     of the specified mode.  We assume that if Y and Y+c are
     of the specified mode.  We assume that if Y and Y+c are
     valid addresses then so is Y+d for all 0<d<c.  adjust_address will
     valid addresses then so is Y+d for all 0<d<c.  adjust_address will
     go inside a LO_SUM here, so we do so as well.  */
     go inside a LO_SUM here, so we do so as well.  */
  if (GET_CODE (y) == LO_SUM
  if (GET_CODE (y) == LO_SUM
      && mode != BLKmode
      && mode != BLKmode
      && mode_sz <= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT)
      && mode_sz <= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT)
    z = gen_rtx_LO_SUM (GET_MODE (y), XEXP (y, 0),
    z = gen_rtx_LO_SUM (GET_MODE (y), XEXP (y, 0),
                        plus_constant (XEXP (y, 1), mode_sz - 1));
                        plus_constant (XEXP (y, 1), mode_sz - 1));
  else
  else
    z = plus_constant (y, mode_sz - 1);
    z = plus_constant (y, mode_sz - 1);
 
 
  /* Use QImode because an odd displacement may be automatically invalid
  /* Use QImode because an odd displacement may be automatically invalid
     for any wider mode.  But it should be valid for a single byte.  */
     for any wider mode.  But it should be valid for a single byte.  */
  return (*addressp) (QImode, z);
  return (*addressp) (QImode, z);
}
}
 
 
/* Return 1 if ADDR is an address-expression whose effect depends
/* Return 1 if ADDR is an address-expression whose effect depends
   on the mode of the memory reference it is used in.
   on the mode of the memory reference it is used in.
 
 
   Autoincrement addressing is a typical example of mode-dependence
   Autoincrement addressing is a typical example of mode-dependence
   because the amount of the increment depends on the mode.  */
   because the amount of the increment depends on the mode.  */
 
 
int
int
mode_dependent_address_p (rtx addr ATTRIBUTE_UNUSED /* Maybe used in GO_IF_MODE_DEPENDENT_ADDRESS.  */)
mode_dependent_address_p (rtx addr ATTRIBUTE_UNUSED /* Maybe used in GO_IF_MODE_DEPENDENT_ADDRESS.  */)
{
{
  GO_IF_MODE_DEPENDENT_ADDRESS (addr, win);
  GO_IF_MODE_DEPENDENT_ADDRESS (addr, win);
  return 0;
  return 0;
  /* Label `win' might (not) be used via GO_IF_MODE_DEPENDENT_ADDRESS.  */
  /* Label `win' might (not) be used via GO_IF_MODE_DEPENDENT_ADDRESS.  */
 win: ATTRIBUTE_UNUSED_LABEL
 win: ATTRIBUTE_UNUSED_LABEL
  return 1;
  return 1;
}
}


/* Like extract_insn, but save insn extracted and don't extract again, when
/* Like extract_insn, but save insn extracted and don't extract again, when
   called again for the same insn expecting that recog_data still contain the
   called again for the same insn expecting that recog_data still contain the
   valid information.  This is used primary by gen_attr infrastructure that
   valid information.  This is used primary by gen_attr infrastructure that
   often does extract insn again and again.  */
   often does extract insn again and again.  */
void
void
extract_insn_cached (rtx insn)
extract_insn_cached (rtx insn)
{
{
  if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
  if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
    return;
    return;
  extract_insn (insn);
  extract_insn (insn);
  recog_data.insn = insn;
  recog_data.insn = insn;
}
}
 
 
/* Do cached extract_insn, constrain_operands and complain about failures.
/* Do cached extract_insn, constrain_operands and complain about failures.
   Used by insn_attrtab.  */
   Used by insn_attrtab.  */
void
void
extract_constrain_insn_cached (rtx insn)
extract_constrain_insn_cached (rtx insn)
{
{
  extract_insn_cached (insn);
  extract_insn_cached (insn);
  if (which_alternative == -1
  if (which_alternative == -1
      && !constrain_operands (reload_completed))
      && !constrain_operands (reload_completed))
    fatal_insn_not_found (insn);
    fatal_insn_not_found (insn);
}
}
 
 
/* Do cached constrain_operands and complain about failures.  */
/* Do cached constrain_operands and complain about failures.  */
int
int
constrain_operands_cached (int strict)
constrain_operands_cached (int strict)
{
{
  if (which_alternative == -1)
  if (which_alternative == -1)
    return constrain_operands (strict);
    return constrain_operands (strict);
  else
  else
    return 1;
    return 1;
}
}


/* Analyze INSN and fill in recog_data.  */
/* Analyze INSN and fill in recog_data.  */
 
 
void
void
extract_insn (rtx insn)
extract_insn (rtx insn)
{
{
  int i;
  int i;
  int icode;
  int icode;
  int noperands;
  int noperands;
  rtx body = PATTERN (insn);
  rtx body = PATTERN (insn);
 
 
  recog_data.insn = NULL;
  recog_data.insn = NULL;
  recog_data.n_operands = 0;
  recog_data.n_operands = 0;
  recog_data.n_alternatives = 0;
  recog_data.n_alternatives = 0;
  recog_data.n_dups = 0;
  recog_data.n_dups = 0;
  which_alternative = -1;
  which_alternative = -1;
 
 
  switch (GET_CODE (body))
  switch (GET_CODE (body))
    {
    {
    case USE:
    case USE:
    case CLOBBER:
    case CLOBBER:
    case ASM_INPUT:
    case ASM_INPUT:
    case ADDR_VEC:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
    case ADDR_DIFF_VEC:
      return;
      return;
 
 
    case SET:
    case SET:
      if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
      if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
        goto asm_insn;
        goto asm_insn;
      else
      else
        goto normal_insn;
        goto normal_insn;
    case PARALLEL:
    case PARALLEL:
      if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
      if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
           && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
           && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
          || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
          || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
        goto asm_insn;
        goto asm_insn;
      else
      else
        goto normal_insn;
        goto normal_insn;
    case ASM_OPERANDS:
    case ASM_OPERANDS:
    asm_insn:
    asm_insn:
      recog_data.n_operands = noperands = asm_noperands (body);
      recog_data.n_operands = noperands = asm_noperands (body);
      if (noperands >= 0)
      if (noperands >= 0)
        {
        {
          /* This insn is an `asm' with operands.  */
          /* This insn is an `asm' with operands.  */
 
 
          /* expand_asm_operands makes sure there aren't too many operands.  */
          /* expand_asm_operands makes sure there aren't too many operands.  */
          gcc_assert (noperands <= MAX_RECOG_OPERANDS);
          gcc_assert (noperands <= MAX_RECOG_OPERANDS);
 
 
          /* Now get the operand values and constraints out of the insn.  */
          /* Now get the operand values and constraints out of the insn.  */
          decode_asm_operands (body, recog_data.operand,
          decode_asm_operands (body, recog_data.operand,
                               recog_data.operand_loc,
                               recog_data.operand_loc,
                               recog_data.constraints,
                               recog_data.constraints,
                               recog_data.operand_mode);
                               recog_data.operand_mode);
          if (noperands > 0)
          if (noperands > 0)
            {
            {
              const char *p =  recog_data.constraints[0];
              const char *p =  recog_data.constraints[0];
              recog_data.n_alternatives = 1;
              recog_data.n_alternatives = 1;
              while (*p)
              while (*p)
                recog_data.n_alternatives += (*p++ == ',');
                recog_data.n_alternatives += (*p++ == ',');
            }
            }
          break;
          break;
        }
        }
      fatal_insn_not_found (insn);
      fatal_insn_not_found (insn);
 
 
    default:
    default:
    normal_insn:
    normal_insn:
      /* Ordinary insn: recognize it, get the operands via insn_extract
      /* Ordinary insn: recognize it, get the operands via insn_extract
         and get the constraints.  */
         and get the constraints.  */
 
 
      icode = recog_memoized (insn);
      icode = recog_memoized (insn);
      if (icode < 0)
      if (icode < 0)
        fatal_insn_not_found (insn);
        fatal_insn_not_found (insn);
 
 
      recog_data.n_operands = noperands = insn_data[icode].n_operands;
      recog_data.n_operands = noperands = insn_data[icode].n_operands;
      recog_data.n_alternatives = insn_data[icode].n_alternatives;
      recog_data.n_alternatives = insn_data[icode].n_alternatives;
      recog_data.n_dups = insn_data[icode].n_dups;
      recog_data.n_dups = insn_data[icode].n_dups;
 
 
      insn_extract (insn);
      insn_extract (insn);
 
 
      for (i = 0; i < noperands; i++)
      for (i = 0; i < noperands; i++)
        {
        {
          recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
          recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
          recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
          recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
          /* VOIDmode match_operands gets mode from their real operand.  */
          /* VOIDmode match_operands gets mode from their real operand.  */
          if (recog_data.operand_mode[i] == VOIDmode)
          if (recog_data.operand_mode[i] == VOIDmode)
            recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
            recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
        }
        }
    }
    }
  for (i = 0; i < noperands; i++)
  for (i = 0; i < noperands; i++)
    recog_data.operand_type[i]
    recog_data.operand_type[i]
      = (recog_data.constraints[i][0] == '=' ? OP_OUT
      = (recog_data.constraints[i][0] == '=' ? OP_OUT
         : recog_data.constraints[i][0] == '+' ? OP_INOUT
         : recog_data.constraints[i][0] == '+' ? OP_INOUT
         : OP_IN);
         : OP_IN);
 
 
  gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES);
  gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES);
}
}
 
 
/* After calling extract_insn, you can use this function to extract some
/* After calling extract_insn, you can use this function to extract some
   information from the constraint strings into a more usable form.
   information from the constraint strings into a more usable form.
   The collected data is stored in recog_op_alt.  */
   The collected data is stored in recog_op_alt.  */
void
void
preprocess_constraints (void)
preprocess_constraints (void)
{
{
  int i;
  int i;
 
 
  for (i = 0; i < recog_data.n_operands; i++)
  for (i = 0; i < recog_data.n_operands; i++)
    memset (recog_op_alt[i], 0, (recog_data.n_alternatives
    memset (recog_op_alt[i], 0, (recog_data.n_alternatives
                                 * sizeof (struct operand_alternative)));
                                 * sizeof (struct operand_alternative)));
 
 
  for (i = 0; i < recog_data.n_operands; i++)
  for (i = 0; i < recog_data.n_operands; i++)
    {
    {
      int j;
      int j;
      struct operand_alternative *op_alt;
      struct operand_alternative *op_alt;
      const char *p = recog_data.constraints[i];
      const char *p = recog_data.constraints[i];
 
 
      op_alt = recog_op_alt[i];
      op_alt = recog_op_alt[i];
 
 
      for (j = 0; j < recog_data.n_alternatives; j++)
      for (j = 0; j < recog_data.n_alternatives; j++)
        {
        {
          op_alt[j].cl = NO_REGS;
          op_alt[j].cl = NO_REGS;
          op_alt[j].constraint = p;
          op_alt[j].constraint = p;
          op_alt[j].matches = -1;
          op_alt[j].matches = -1;
          op_alt[j].matched = -1;
          op_alt[j].matched = -1;
 
 
          if (*p == '\0' || *p == ',')
          if (*p == '\0' || *p == ',')
            {
            {
              op_alt[j].anything_ok = 1;
              op_alt[j].anything_ok = 1;
              continue;
              continue;
            }
            }
 
 
          for (;;)
          for (;;)
            {
            {
              char c = *p;
              char c = *p;
              if (c == '#')
              if (c == '#')
                do
                do
                  c = *++p;
                  c = *++p;
                while (c != ',' && c != '\0');
                while (c != ',' && c != '\0');
              if (c == ',' || c == '\0')
              if (c == ',' || c == '\0')
                {
                {
                  p++;
                  p++;
                  break;
                  break;
                }
                }
 
 
              switch (c)
              switch (c)
                {
                {
                case '=': case '+': case '*': case '%':
                case '=': case '+': case '*': case '%':
                case 'E': case 'F': case 'G': case 'H':
                case 'E': case 'F': case 'G': case 'H':
                case 's': case 'i': case 'n':
                case 's': case 'i': case 'n':
                case 'I': case 'J': case 'K': case 'L':
                case 'I': case 'J': case 'K': case 'L':
                case 'M': case 'N': case 'O': case 'P':
                case 'M': case 'N': case 'O': case 'P':
                  /* These don't say anything we care about.  */
                  /* These don't say anything we care about.  */
                  break;
                  break;
 
 
                case '?':
                case '?':
                  op_alt[j].reject += 6;
                  op_alt[j].reject += 6;
                  break;
                  break;
                case '!':
                case '!':
                  op_alt[j].reject += 600;
                  op_alt[j].reject += 600;
                  break;
                  break;
                case '&':
                case '&':
                  op_alt[j].earlyclobber = 1;
                  op_alt[j].earlyclobber = 1;
                  break;
                  break;
 
 
                case '0': case '1': case '2': case '3': case '4':
                case '0': case '1': case '2': case '3': case '4':
                case '5': case '6': case '7': case '8': case '9':
                case '5': case '6': case '7': case '8': case '9':
                  {
                  {
                    char *end;
                    char *end;
                    op_alt[j].matches = strtoul (p, &end, 10);
                    op_alt[j].matches = strtoul (p, &end, 10);
                    recog_op_alt[op_alt[j].matches][j].matched = i;
                    recog_op_alt[op_alt[j].matches][j].matched = i;
                    p = end;
                    p = end;
                  }
                  }
                  continue;
                  continue;
 
 
                case 'm':
                case 'm':
                  op_alt[j].memory_ok = 1;
                  op_alt[j].memory_ok = 1;
                  break;
                  break;
                case '<':
                case '<':
                  op_alt[j].decmem_ok = 1;
                  op_alt[j].decmem_ok = 1;
                  break;
                  break;
                case '>':
                case '>':
                  op_alt[j].incmem_ok = 1;
                  op_alt[j].incmem_ok = 1;
                  break;
                  break;
                case 'V':
                case 'V':
                  op_alt[j].nonoffmem_ok = 1;
                  op_alt[j].nonoffmem_ok = 1;
                  break;
                  break;
                case 'o':
                case 'o':
                  op_alt[j].offmem_ok = 1;
                  op_alt[j].offmem_ok = 1;
                  break;
                  break;
                case 'X':
                case 'X':
                  op_alt[j].anything_ok = 1;
                  op_alt[j].anything_ok = 1;
                  break;
                  break;
 
 
                case 'p':
                case 'p':
                  op_alt[j].is_address = 1;
                  op_alt[j].is_address = 1;
                  op_alt[j].cl = reg_class_subunion[(int) op_alt[j].cl]
                  op_alt[j].cl = reg_class_subunion[(int) op_alt[j].cl]
                      [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
                      [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
                  break;
                  break;
 
 
                case 'g':
                case 'g':
                case 'r':
                case 'r':
                  op_alt[j].cl =
                  op_alt[j].cl =
                   reg_class_subunion[(int) op_alt[j].cl][(int) GENERAL_REGS];
                   reg_class_subunion[(int) op_alt[j].cl][(int) GENERAL_REGS];
                  break;
                  break;
 
 
                default:
                default:
                  if (EXTRA_MEMORY_CONSTRAINT (c, p))
                  if (EXTRA_MEMORY_CONSTRAINT (c, p))
                    {
                    {
                      op_alt[j].memory_ok = 1;
                      op_alt[j].memory_ok = 1;
                      break;
                      break;
                    }
                    }
                  if (EXTRA_ADDRESS_CONSTRAINT (c, p))
                  if (EXTRA_ADDRESS_CONSTRAINT (c, p))
                    {
                    {
                      op_alt[j].is_address = 1;
                      op_alt[j].is_address = 1;
                      op_alt[j].cl
                      op_alt[j].cl
                        = (reg_class_subunion
                        = (reg_class_subunion
                           [(int) op_alt[j].cl]
                           [(int) op_alt[j].cl]
                           [(int) base_reg_class (VOIDmode, ADDRESS,
                           [(int) base_reg_class (VOIDmode, ADDRESS,
                                                  SCRATCH)]);
                                                  SCRATCH)]);
                      break;
                      break;
                    }
                    }
 
 
                  op_alt[j].cl
                  op_alt[j].cl
                    = (reg_class_subunion
                    = (reg_class_subunion
                       [(int) op_alt[j].cl]
                       [(int) op_alt[j].cl]
                       [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
                       [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
                  break;
                  break;
                }
                }
              p += CONSTRAINT_LEN (c, p);
              p += CONSTRAINT_LEN (c, p);
            }
            }
        }
        }
    }
    }
}
}
 
 
/* Check the operands of an insn against the insn's operand constraints
/* Check the operands of an insn against the insn's operand constraints
   and return 1 if they are valid.
   and return 1 if they are valid.
   The information about the insn's operands, constraints, operand modes
   The information about the insn's operands, constraints, operand modes
   etc. is obtained from the global variables set up by extract_insn.
   etc. is obtained from the global variables set up by extract_insn.
 
 
   WHICH_ALTERNATIVE is set to a number which indicates which
   WHICH_ALTERNATIVE is set to a number which indicates which
   alternative of constraints was matched: 0 for the first alternative,
   alternative of constraints was matched: 0 for the first alternative,
   1 for the next, etc.
   1 for the next, etc.
 
 
   In addition, when two operands are required to match
   In addition, when two operands are required to match
   and it happens that the output operand is (reg) while the
   and it happens that the output operand is (reg) while the
   input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
   input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
   make the output operand look like the input.
   make the output operand look like the input.
   This is because the output operand is the one the template will print.
   This is because the output operand is the one the template will print.
 
 
   This is used in final, just before printing the assembler code and by
   This is used in final, just before printing the assembler code and by
   the routines that determine an insn's attribute.
   the routines that determine an insn's attribute.
 
 
   If STRICT is a positive nonzero value, it means that we have been
   If STRICT is a positive nonzero value, it means that we have been
   called after reload has been completed.  In that case, we must
   called after reload has been completed.  In that case, we must
   do all checks strictly.  If it is zero, it means that we have been called
   do all checks strictly.  If it is zero, it means that we have been called
   before reload has completed.  In that case, we first try to see if we can
   before reload has completed.  In that case, we first try to see if we can
   find an alternative that matches strictly.  If not, we try again, this
   find an alternative that matches strictly.  If not, we try again, this
   time assuming that reload will fix up the insn.  This provides a "best
   time assuming that reload will fix up the insn.  This provides a "best
   guess" for the alternative and is used to compute attributes of insns prior
   guess" for the alternative and is used to compute attributes of insns prior
   to reload.  A negative value of STRICT is used for this internal call.  */
   to reload.  A negative value of STRICT is used for this internal call.  */
 
 
struct funny_match
struct funny_match
{
{
  int this, other;
  int this, other;
};
};
 
 
int
int
constrain_operands (int strict)
constrain_operands (int strict)
{
{
  const char *constraints[MAX_RECOG_OPERANDS];
  const char *constraints[MAX_RECOG_OPERANDS];
  int matching_operands[MAX_RECOG_OPERANDS];
  int matching_operands[MAX_RECOG_OPERANDS];
  int earlyclobber[MAX_RECOG_OPERANDS];
  int earlyclobber[MAX_RECOG_OPERANDS];
  int c;
  int c;
 
 
  struct funny_match funny_match[MAX_RECOG_OPERANDS];
  struct funny_match funny_match[MAX_RECOG_OPERANDS];
  int funny_match_index;
  int funny_match_index;
 
 
  which_alternative = 0;
  which_alternative = 0;
  if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
  if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
    return 1;
    return 1;
 
 
  for (c = 0; c < recog_data.n_operands; c++)
  for (c = 0; c < recog_data.n_operands; c++)
    {
    {
      constraints[c] = recog_data.constraints[c];
      constraints[c] = recog_data.constraints[c];
      matching_operands[c] = -1;
      matching_operands[c] = -1;
    }
    }
 
 
  do
  do
    {
    {
      int seen_earlyclobber_at = -1;
      int seen_earlyclobber_at = -1;
      int opno;
      int opno;
      int lose = 0;
      int lose = 0;
      funny_match_index = 0;
      funny_match_index = 0;
 
 
      for (opno = 0; opno < recog_data.n_operands; opno++)
      for (opno = 0; opno < recog_data.n_operands; opno++)
        {
        {
          rtx op = recog_data.operand[opno];
          rtx op = recog_data.operand[opno];
          enum machine_mode mode = GET_MODE (op);
          enum machine_mode mode = GET_MODE (op);
          const char *p = constraints[opno];
          const char *p = constraints[opno];
          int offset = 0;
          int offset = 0;
          int win = 0;
          int win = 0;
          int val;
          int val;
          int len;
          int len;
 
 
          earlyclobber[opno] = 0;
          earlyclobber[opno] = 0;
 
 
          /* A unary operator may be accepted by the predicate, but it
          /* A unary operator may be accepted by the predicate, but it
             is irrelevant for matching constraints.  */
             is irrelevant for matching constraints.  */
          if (UNARY_P (op))
          if (UNARY_P (op))
            op = XEXP (op, 0);
            op = XEXP (op, 0);
 
 
          if (GET_CODE (op) == SUBREG)
          if (GET_CODE (op) == SUBREG)
            {
            {
              if (REG_P (SUBREG_REG (op))
              if (REG_P (SUBREG_REG (op))
                  && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
                  && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
                offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
                offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
                                              GET_MODE (SUBREG_REG (op)),
                                              GET_MODE (SUBREG_REG (op)),
                                              SUBREG_BYTE (op),
                                              SUBREG_BYTE (op),
                                              GET_MODE (op));
                                              GET_MODE (op));
              op = SUBREG_REG (op);
              op = SUBREG_REG (op);
            }
            }
 
 
          /* An empty constraint or empty alternative
          /* An empty constraint or empty alternative
             allows anything which matched the pattern.  */
             allows anything which matched the pattern.  */
          if (*p == 0 || *p == ',')
          if (*p == 0 || *p == ',')
            win = 1;
            win = 1;
 
 
          do
          do
            switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
            switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
              {
              {
              case '\0':
              case '\0':
                len = 0;
                len = 0;
                break;
                break;
              case ',':
              case ',':
                c = '\0';
                c = '\0';
                break;
                break;
 
 
              case '?':  case '!': case '*':  case '%':
              case '?':  case '!': case '*':  case '%':
              case '=':  case '+':
              case '=':  case '+':
                break;
                break;
 
 
              case '#':
              case '#':
                /* Ignore rest of this alternative as far as
                /* Ignore rest of this alternative as far as
                   constraint checking is concerned.  */
                   constraint checking is concerned.  */
                do
                do
                  p++;
                  p++;
                while (*p && *p != ',');
                while (*p && *p != ',');
                len = 0;
                len = 0;
                break;
                break;
 
 
              case '&':
              case '&':
                earlyclobber[opno] = 1;
                earlyclobber[opno] = 1;
                if (seen_earlyclobber_at < 0)
                if (seen_earlyclobber_at < 0)
                  seen_earlyclobber_at = opno;
                  seen_earlyclobber_at = opno;
                break;
                break;
 
 
              case '0':  case '1':  case '2':  case '3':  case '4':
              case '0':  case '1':  case '2':  case '3':  case '4':
              case '5':  case '6':  case '7':  case '8':  case '9':
              case '5':  case '6':  case '7':  case '8':  case '9':
                {
                {
                  /* This operand must be the same as a previous one.
                  /* This operand must be the same as a previous one.
                     This kind of constraint is used for instructions such
                     This kind of constraint is used for instructions such
                     as add when they take only two operands.
                     as add when they take only two operands.
 
 
                     Note that the lower-numbered operand is passed first.
                     Note that the lower-numbered operand is passed first.
 
 
                     If we are not testing strictly, assume that this
                     If we are not testing strictly, assume that this
                     constraint will be satisfied.  */
                     constraint will be satisfied.  */
 
 
                  char *end;
                  char *end;
                  int match;
                  int match;
 
 
                  match = strtoul (p, &end, 10);
                  match = strtoul (p, &end, 10);
                  p = end;
                  p = end;
 
 
                  if (strict < 0)
                  if (strict < 0)
                    val = 1;
                    val = 1;
                  else
                  else
                    {
                    {
                      rtx op1 = recog_data.operand[match];
                      rtx op1 = recog_data.operand[match];
                      rtx op2 = recog_data.operand[opno];
                      rtx op2 = recog_data.operand[opno];
 
 
                      /* A unary operator may be accepted by the predicate,
                      /* A unary operator may be accepted by the predicate,
                         but it is irrelevant for matching constraints.  */
                         but it is irrelevant for matching constraints.  */
                      if (UNARY_P (op1))
                      if (UNARY_P (op1))
                        op1 = XEXP (op1, 0);
                        op1 = XEXP (op1, 0);
                      if (UNARY_P (op2))
                      if (UNARY_P (op2))
                        op2 = XEXP (op2, 0);
                        op2 = XEXP (op2, 0);
 
 
                      val = operands_match_p (op1, op2);
                      val = operands_match_p (op1, op2);
                    }
                    }
 
 
                  matching_operands[opno] = match;
                  matching_operands[opno] = match;
                  matching_operands[match] = opno;
                  matching_operands[match] = opno;
 
 
                  if (val != 0)
                  if (val != 0)
                    win = 1;
                    win = 1;
 
 
                  /* If output is *x and input is *--x, arrange later
                  /* If output is *x and input is *--x, arrange later
                     to change the output to *--x as well, since the
                     to change the output to *--x as well, since the
                     output op is the one that will be printed.  */
                     output op is the one that will be printed.  */
                  if (val == 2 && strict > 0)
                  if (val == 2 && strict > 0)
                    {
                    {
                      funny_match[funny_match_index].this = opno;
                      funny_match[funny_match_index].this = opno;
                      funny_match[funny_match_index++].other = match;
                      funny_match[funny_match_index++].other = match;
                    }
                    }
                }
                }
                len = 0;
                len = 0;
                break;
                break;
 
 
              case 'p':
              case 'p':
                /* p is used for address_operands.  When we are called by
                /* p is used for address_operands.  When we are called by
                   gen_reload, no one will have checked that the address is
                   gen_reload, no one will have checked that the address is
                   strictly valid, i.e., that all pseudos requiring hard regs
                   strictly valid, i.e., that all pseudos requiring hard regs
                   have gotten them.  */
                   have gotten them.  */
                if (strict <= 0
                if (strict <= 0
                    || (strict_memory_address_p (recog_data.operand_mode[opno],
                    || (strict_memory_address_p (recog_data.operand_mode[opno],
                                                 op)))
                                                 op)))
                  win = 1;
                  win = 1;
                break;
                break;
 
 
                /* No need to check general_operand again;
                /* No need to check general_operand again;
                   it was done in insn-recog.c.  Well, except that reload
                   it was done in insn-recog.c.  Well, except that reload
                   doesn't check the validity of its replacements, but
                   doesn't check the validity of its replacements, but
                   that should only matter when there's a bug.  */
                   that should only matter when there's a bug.  */
              case 'g':
              case 'g':
                /* Anything goes unless it is a REG and really has a hard reg
                /* Anything goes unless it is a REG and really has a hard reg
                   but the hard reg is not in the class GENERAL_REGS.  */
                   but the hard reg is not in the class GENERAL_REGS.  */
                if (REG_P (op))
                if (REG_P (op))
                  {
                  {
                    if (strict < 0
                    if (strict < 0
                        || GENERAL_REGS == ALL_REGS
                        || GENERAL_REGS == ALL_REGS
                        || (reload_in_progress
                        || (reload_in_progress
                            && REGNO (op) >= FIRST_PSEUDO_REGISTER)
                            && REGNO (op) >= FIRST_PSEUDO_REGISTER)
                        || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
                        || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
                      win = 1;
                      win = 1;
                  }
                  }
                else if (strict < 0 || general_operand (op, mode))
                else if (strict < 0 || general_operand (op, mode))
                  win = 1;
                  win = 1;
                break;
                break;
 
 
              case 'X':
              case 'X':
                /* This is used for a MATCH_SCRATCH in the cases when
                /* This is used for a MATCH_SCRATCH in the cases when
                   we don't actually need anything.  So anything goes
                   we don't actually need anything.  So anything goes
                   any time.  */
                   any time.  */
                win = 1;
                win = 1;
                break;
                break;
 
 
              case 'm':
              case 'm':
                /* Memory operands must be valid, to the extent
                /* Memory operands must be valid, to the extent
                   required by STRICT.  */
                   required by STRICT.  */
                if (MEM_P (op))
                if (MEM_P (op))
                  {
                  {
                    if (strict > 0
                    if (strict > 0
                        && !strict_memory_address_p (GET_MODE (op),
                        && !strict_memory_address_p (GET_MODE (op),
                                                     XEXP (op, 0)))
                                                     XEXP (op, 0)))
                      break;
                      break;
                    if (strict == 0
                    if (strict == 0
                        && !memory_address_p (GET_MODE (op), XEXP (op, 0)))
                        && !memory_address_p (GET_MODE (op), XEXP (op, 0)))
                      break;
                      break;
                    win = 1;
                    win = 1;
                  }
                  }
                /* Before reload, accept what reload can turn into mem.  */
                /* Before reload, accept what reload can turn into mem.  */
                else if (strict < 0 && CONSTANT_P (op))
                else if (strict < 0 && CONSTANT_P (op))
                  win = 1;
                  win = 1;
                /* During reload, accept a pseudo  */
                /* During reload, accept a pseudo  */
                else if (reload_in_progress && REG_P (op)
                else if (reload_in_progress && REG_P (op)
                         && REGNO (op) >= FIRST_PSEUDO_REGISTER)
                         && REGNO (op) >= FIRST_PSEUDO_REGISTER)
                  win = 1;
                  win = 1;
                break;
                break;
 
 
              case '<':
              case '<':
                if (MEM_P (op)
                if (MEM_P (op)
                    && (GET_CODE (XEXP (op, 0)) == PRE_DEC
                    && (GET_CODE (XEXP (op, 0)) == PRE_DEC
                        || GET_CODE (XEXP (op, 0)) == POST_DEC))
                        || GET_CODE (XEXP (op, 0)) == POST_DEC))
                  win = 1;
                  win = 1;
                break;
                break;
 
 
              case '>':
              case '>':
                if (MEM_P (op)
                if (MEM_P (op)
                    && (GET_CODE (XEXP (op, 0)) == PRE_INC
                    && (GET_CODE (XEXP (op, 0)) == PRE_INC
                        || GET_CODE (XEXP (op, 0)) == POST_INC))
                        || GET_CODE (XEXP (op, 0)) == POST_INC))
                  win = 1;
                  win = 1;
                break;
                break;
 
 
              case 'E':
              case 'E':
              case 'F':
              case 'F':
                if (GET_CODE (op) == CONST_DOUBLE
                if (GET_CODE (op) == CONST_DOUBLE
                    || (GET_CODE (op) == CONST_VECTOR
                    || (GET_CODE (op) == CONST_VECTOR
                        && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
                        && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
                  win = 1;
                  win = 1;
                break;
                break;
 
 
              case 'G':
              case 'G':
              case 'H':
              case 'H':
                if (GET_CODE (op) == CONST_DOUBLE
                if (GET_CODE (op) == CONST_DOUBLE
                    && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
                    && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
                  win = 1;
                  win = 1;
                break;
                break;
 
 
              case 's':
              case 's':
                if (GET_CODE (op) == CONST_INT
                if (GET_CODE (op) == CONST_INT
                    || (GET_CODE (op) == CONST_DOUBLE
                    || (GET_CODE (op) == CONST_DOUBLE
                        && GET_MODE (op) == VOIDmode))
                        && GET_MODE (op) == VOIDmode))
                  break;
                  break;
              case 'i':
              case 'i':
                if (CONSTANT_P (op))
                if (CONSTANT_P (op))
                  win = 1;
                  win = 1;
                break;
                break;
 
 
              case 'n':
              case 'n':
                if (GET_CODE (op) == CONST_INT
                if (GET_CODE (op) == CONST_INT
                    || (GET_CODE (op) == CONST_DOUBLE
                    || (GET_CODE (op) == CONST_DOUBLE
                        && GET_MODE (op) == VOIDmode))
                        && GET_MODE (op) == VOIDmode))
                  win = 1;
                  win = 1;
                break;
                break;
 
 
              case 'I':
              case 'I':
              case 'J':
              case 'J':
              case 'K':
              case 'K':
              case 'L':
              case 'L':
              case 'M':
              case 'M':
              case 'N':
              case 'N':
              case 'O':
              case 'O':
              case 'P':
              case 'P':
                if (GET_CODE (op) == CONST_INT
                if (GET_CODE (op) == CONST_INT
                    && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
                    && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
                  win = 1;
                  win = 1;
                break;
                break;
 
 
              case 'V':
              case 'V':
                if (MEM_P (op)
                if (MEM_P (op)
                    && ((strict > 0 && ! offsettable_memref_p (op))
                    && ((strict > 0 && ! offsettable_memref_p (op))
                        || (strict < 0
                        || (strict < 0
                            && !(CONSTANT_P (op) || MEM_P (op)))
                            && !(CONSTANT_P (op) || MEM_P (op)))
                        || (reload_in_progress
                        || (reload_in_progress
                            && !(REG_P (op)
                            && !(REG_P (op)
                                 && REGNO (op) >= FIRST_PSEUDO_REGISTER))))
                                 && REGNO (op) >= FIRST_PSEUDO_REGISTER))))
                  win = 1;
                  win = 1;
                break;
                break;
 
 
              case 'o':
              case 'o':
                if ((strict > 0 && offsettable_memref_p (op))
                if ((strict > 0 && offsettable_memref_p (op))
                    || (strict == 0 && offsettable_nonstrict_memref_p (op))
                    || (strict == 0 && offsettable_nonstrict_memref_p (op))
                    /* Before reload, accept what reload can handle.  */
                    /* Before reload, accept what reload can handle.  */
                    || (strict < 0
                    || (strict < 0
                        && (CONSTANT_P (op) || MEM_P (op)))
                        && (CONSTANT_P (op) || MEM_P (op)))
                    /* During reload, accept a pseudo  */
                    /* During reload, accept a pseudo  */
                    || (reload_in_progress && REG_P (op)
                    || (reload_in_progress && REG_P (op)
                        && REGNO (op) >= FIRST_PSEUDO_REGISTER))
                        && REGNO (op) >= FIRST_PSEUDO_REGISTER))
                  win = 1;
                  win = 1;
                break;
                break;
 
 
              default:
              default:
                {
                {
                  enum reg_class cl;
                  enum reg_class cl;
 
 
                  cl = (c == 'r'
                  cl = (c == 'r'
                           ? GENERAL_REGS : REG_CLASS_FROM_CONSTRAINT (c, p));
                           ? GENERAL_REGS : REG_CLASS_FROM_CONSTRAINT (c, p));
                  if (cl != NO_REGS)
                  if (cl != NO_REGS)
                    {
                    {
                      if (strict < 0
                      if (strict < 0
                          || (strict == 0
                          || (strict == 0
                              && REG_P (op)
                              && REG_P (op)
                              && REGNO (op) >= FIRST_PSEUDO_REGISTER)
                              && REGNO (op) >= FIRST_PSEUDO_REGISTER)
                          || (strict == 0 && GET_CODE (op) == SCRATCH)
                          || (strict == 0 && GET_CODE (op) == SCRATCH)
                          || (REG_P (op)
                          || (REG_P (op)
                              && reg_fits_class_p (op, cl, offset, mode)))
                              && reg_fits_class_p (op, cl, offset, mode)))
                        win = 1;
                        win = 1;
                    }
                    }
#ifdef EXTRA_CONSTRAINT_STR
#ifdef EXTRA_CONSTRAINT_STR
                  else if (EXTRA_CONSTRAINT_STR (op, c, p))
                  else if (EXTRA_CONSTRAINT_STR (op, c, p))
                    win = 1;
                    win = 1;
 
 
                  else if (EXTRA_MEMORY_CONSTRAINT (c, p)
                  else if (EXTRA_MEMORY_CONSTRAINT (c, p)
                           /* Every memory operand can be reloaded to fit.  */
                           /* Every memory operand can be reloaded to fit.  */
                           && ((strict < 0 && MEM_P (op))
                           && ((strict < 0 && MEM_P (op))
                               /* Before reload, accept what reload can turn
                               /* Before reload, accept what reload can turn
                                  into mem.  */
                                  into mem.  */
                               || (strict < 0 && CONSTANT_P (op))
                               || (strict < 0 && CONSTANT_P (op))
                               /* During reload, accept a pseudo  */
                               /* During reload, accept a pseudo  */
                               || (reload_in_progress && REG_P (op)
                               || (reload_in_progress && REG_P (op)
                                   && REGNO (op) >= FIRST_PSEUDO_REGISTER)))
                                   && REGNO (op) >= FIRST_PSEUDO_REGISTER)))
                    win = 1;
                    win = 1;
                  else if (EXTRA_ADDRESS_CONSTRAINT (c, p)
                  else if (EXTRA_ADDRESS_CONSTRAINT (c, p)
                           /* Every address operand can be reloaded to fit.  */
                           /* Every address operand can be reloaded to fit.  */
                           && strict < 0)
                           && strict < 0)
                    win = 1;
                    win = 1;
#endif
#endif
                  break;
                  break;
                }
                }
              }
              }
          while (p += len, c);
          while (p += len, c);
 
 
          constraints[opno] = p;
          constraints[opno] = p;
          /* If this operand did not win somehow,
          /* If this operand did not win somehow,
             this alternative loses.  */
             this alternative loses.  */
          if (! win)
          if (! win)
            lose = 1;
            lose = 1;
        }
        }
      /* This alternative won; the operands are ok.
      /* This alternative won; the operands are ok.
         Change whichever operands this alternative says to change.  */
         Change whichever operands this alternative says to change.  */
      if (! lose)
      if (! lose)
        {
        {
          int opno, eopno;
          int opno, eopno;
 
 
          /* See if any earlyclobber operand conflicts with some other
          /* See if any earlyclobber operand conflicts with some other
             operand.  */
             operand.  */
 
 
          if (strict > 0  && seen_earlyclobber_at >= 0)
          if (strict > 0  && seen_earlyclobber_at >= 0)
            for (eopno = seen_earlyclobber_at;
            for (eopno = seen_earlyclobber_at;
                 eopno < recog_data.n_operands;
                 eopno < recog_data.n_operands;
                 eopno++)
                 eopno++)
              /* Ignore earlyclobber operands now in memory,
              /* Ignore earlyclobber operands now in memory,
                 because we would often report failure when we have
                 because we would often report failure when we have
                 two memory operands, one of which was formerly a REG.  */
                 two memory operands, one of which was formerly a REG.  */
              if (earlyclobber[eopno]
              if (earlyclobber[eopno]
                  && REG_P (recog_data.operand[eopno]))
                  && REG_P (recog_data.operand[eopno]))
                for (opno = 0; opno < recog_data.n_operands; opno++)
                for (opno = 0; opno < recog_data.n_operands; opno++)
                  if ((MEM_P (recog_data.operand[opno])
                  if ((MEM_P (recog_data.operand[opno])
                       || recog_data.operand_type[opno] != OP_OUT)
                       || recog_data.operand_type[opno] != OP_OUT)
                      && opno != eopno
                      && opno != eopno
                      /* Ignore things like match_operator operands.  */
                      /* Ignore things like match_operator operands.  */
                      && *recog_data.constraints[opno] != 0
                      && *recog_data.constraints[opno] != 0
                      && ! (matching_operands[opno] == eopno
                      && ! (matching_operands[opno] == eopno
                            && operands_match_p (recog_data.operand[opno],
                            && operands_match_p (recog_data.operand[opno],
                                                 recog_data.operand[eopno]))
                                                 recog_data.operand[eopno]))
                      && ! safe_from_earlyclobber (recog_data.operand[opno],
                      && ! safe_from_earlyclobber (recog_data.operand[opno],
                                                   recog_data.operand[eopno]))
                                                   recog_data.operand[eopno]))
                    lose = 1;
                    lose = 1;
 
 
          if (! lose)
          if (! lose)
            {
            {
              while (--funny_match_index >= 0)
              while (--funny_match_index >= 0)
                {
                {
                  recog_data.operand[funny_match[funny_match_index].other]
                  recog_data.operand[funny_match[funny_match_index].other]
                    = recog_data.operand[funny_match[funny_match_index].this];
                    = recog_data.operand[funny_match[funny_match_index].this];
                }
                }
 
 
              return 1;
              return 1;
            }
            }
        }
        }
 
 
      which_alternative++;
      which_alternative++;
    }
    }
  while (which_alternative < recog_data.n_alternatives);
  while (which_alternative < recog_data.n_alternatives);
 
 
  which_alternative = -1;
  which_alternative = -1;
  /* If we are about to reject this, but we are not to test strictly,
  /* If we are about to reject this, but we are not to test strictly,
     try a very loose test.  Only return failure if it fails also.  */
     try a very loose test.  Only return failure if it fails also.  */
  if (strict == 0)
  if (strict == 0)
    return constrain_operands (-1);
    return constrain_operands (-1);
  else
  else
    return 0;
    return 0;
}
}
 
 
/* Return 1 iff OPERAND (assumed to be a REG rtx)
/* Return 1 iff OPERAND (assumed to be a REG rtx)
   is a hard reg in class CLASS when its regno is offset by OFFSET
   is a hard reg in class CLASS when its regno is offset by OFFSET
   and changed to mode MODE.
   and changed to mode MODE.
   If REG occupies multiple hard regs, all of them must be in CLASS.  */
   If REG occupies multiple hard regs, all of them must be in CLASS.  */
 
 
int
int
reg_fits_class_p (rtx operand, enum reg_class cl, int offset,
reg_fits_class_p (rtx operand, enum reg_class cl, int offset,
                  enum machine_mode mode)
                  enum machine_mode mode)
{
{
  int regno = REGNO (operand);
  int regno = REGNO (operand);
 
 
  if (cl == NO_REGS)
  if (cl == NO_REGS)
    return 0;
    return 0;
 
 
  if (regno < FIRST_PSEUDO_REGISTER
  if (regno < FIRST_PSEUDO_REGISTER
      && TEST_HARD_REG_BIT (reg_class_contents[(int) cl],
      && TEST_HARD_REG_BIT (reg_class_contents[(int) cl],
                            regno + offset))
                            regno + offset))
    {
    {
      int sr;
      int sr;
      regno += offset;
      regno += offset;
      for (sr = hard_regno_nregs[regno][mode] - 1;
      for (sr = hard_regno_nregs[regno][mode] - 1;
           sr > 0; sr--)
           sr > 0; sr--)
        if (! TEST_HARD_REG_BIT (reg_class_contents[(int) cl],
        if (! TEST_HARD_REG_BIT (reg_class_contents[(int) cl],
                                 regno + sr))
                                 regno + sr))
          break;
          break;
      return sr == 0;
      return sr == 0;
    }
    }
 
 
  return 0;
  return 0;
}
}


/* Split single instruction.  Helper function for split_all_insns and
/* Split single instruction.  Helper function for split_all_insns and
   split_all_insns_noflow.  Return last insn in the sequence if successful,
   split_all_insns_noflow.  Return last insn in the sequence if successful,
   or NULL if unsuccessful.  */
   or NULL if unsuccessful.  */
 
 
static rtx
static rtx
split_insn (rtx insn)
split_insn (rtx insn)
{
{
  /* Split insns here to get max fine-grain parallelism.  */
  /* Split insns here to get max fine-grain parallelism.  */
  rtx first = PREV_INSN (insn);
  rtx first = PREV_INSN (insn);
  rtx last = try_split (PATTERN (insn), insn, 1);
  rtx last = try_split (PATTERN (insn), insn, 1);
 
 
  if (last == insn)
  if (last == insn)
    return NULL_RTX;
    return NULL_RTX;
 
 
  /* try_split returns the NOTE that INSN became.  */
  /* try_split returns the NOTE that INSN became.  */
  SET_INSN_DELETED (insn);
  SET_INSN_DELETED (insn);
 
 
  /* ??? Coddle to md files that generate subregs in post-reload
  /* ??? Coddle to md files that generate subregs in post-reload
     splitters instead of computing the proper hard register.  */
     splitters instead of computing the proper hard register.  */
  if (reload_completed && first != last)
  if (reload_completed && first != last)
    {
    {
      first = NEXT_INSN (first);
      first = NEXT_INSN (first);
      for (;;)
      for (;;)
        {
        {
          if (INSN_P (first))
          if (INSN_P (first))
            cleanup_subreg_operands (first);
            cleanup_subreg_operands (first);
          if (first == last)
          if (first == last)
            break;
            break;
          first = NEXT_INSN (first);
          first = NEXT_INSN (first);
        }
        }
    }
    }
  return last;
  return last;
}
}
 
 
/* Split all insns in the function.  If UPD_LIFE, update life info after.  */
/* Split all insns in the function.  If UPD_LIFE, update life info after.  */
 
 
void
void
split_all_insns (int upd_life)
split_all_insns (int upd_life)
{
{
  sbitmap blocks;
  sbitmap blocks;
  bool changed;
  bool changed;
  basic_block bb;
  basic_block bb;
 
 
  blocks = sbitmap_alloc (last_basic_block);
  blocks = sbitmap_alloc (last_basic_block);
  sbitmap_zero (blocks);
  sbitmap_zero (blocks);
  changed = false;
  changed = false;
 
 
  FOR_EACH_BB_REVERSE (bb)
  FOR_EACH_BB_REVERSE (bb)
    {
    {
      rtx insn, next;
      rtx insn, next;
      bool finish = false;
      bool finish = false;
 
 
      for (insn = BB_HEAD (bb); !finish ; insn = next)
      for (insn = BB_HEAD (bb); !finish ; insn = next)
        {
        {
          /* Can't use `next_real_insn' because that might go across
          /* Can't use `next_real_insn' because that might go across
             CODE_LABELS and short-out basic blocks.  */
             CODE_LABELS and short-out basic blocks.  */
          next = NEXT_INSN (insn);
          next = NEXT_INSN (insn);
          finish = (insn == BB_END (bb));
          finish = (insn == BB_END (bb));
          if (INSN_P (insn))
          if (INSN_P (insn))
            {
            {
              rtx set = single_set (insn);
              rtx set = single_set (insn);
 
 
              /* Don't split no-op move insns.  These should silently
              /* Don't split no-op move insns.  These should silently
                 disappear later in final.  Splitting such insns would
                 disappear later in final.  Splitting such insns would
                 break the code that handles REG_NO_CONFLICT blocks.  */
                 break the code that handles REG_NO_CONFLICT blocks.  */
              if (set && set_noop_p (set))
              if (set && set_noop_p (set))
                {
                {
                  /* Nops get in the way while scheduling, so delete them
                  /* Nops get in the way while scheduling, so delete them
                     now if register allocation has already been done.  It
                     now if register allocation has already been done.  It
                     is too risky to try to do this before register
                     is too risky to try to do this before register
                     allocation, and there are unlikely to be very many
                     allocation, and there are unlikely to be very many
                     nops then anyways.  */
                     nops then anyways.  */
                  if (reload_completed)
                  if (reload_completed)
                    {
                    {
                      /* If the no-op set has a REG_UNUSED note, we need
                      /* If the no-op set has a REG_UNUSED note, we need
                         to update liveness information.  */
                         to update liveness information.  */
                      if (find_reg_note (insn, REG_UNUSED, NULL_RTX))
                      if (find_reg_note (insn, REG_UNUSED, NULL_RTX))
                        {
                        {
                          SET_BIT (blocks, bb->index);
                          SET_BIT (blocks, bb->index);
                          changed = true;
                          changed = true;
                        }
                        }
                      /* ??? Is life info affected by deleting edges?  */
                      /* ??? Is life info affected by deleting edges?  */
                      delete_insn_and_edges (insn);
                      delete_insn_and_edges (insn);
                    }
                    }
                }
                }
              else
              else
                {
                {
                  rtx last = split_insn (insn);
                  rtx last = split_insn (insn);
                  if (last)
                  if (last)
                    {
                    {
                      /* The split sequence may include barrier, but the
                      /* The split sequence may include barrier, but the
                         BB boundary we are interested in will be set to
                         BB boundary we are interested in will be set to
                         previous one.  */
                         previous one.  */
 
 
                      while (BARRIER_P (last))
                      while (BARRIER_P (last))
                        last = PREV_INSN (last);
                        last = PREV_INSN (last);
                      SET_BIT (blocks, bb->index);
                      SET_BIT (blocks, bb->index);
                      changed = true;
                      changed = true;
                    }
                    }
                }
                }
            }
            }
        }
        }
    }
    }
 
 
  if (changed)
  if (changed)
    {
    {
      int old_last_basic_block = last_basic_block;
      int old_last_basic_block = last_basic_block;
 
 
      find_many_sub_basic_blocks (blocks);
      find_many_sub_basic_blocks (blocks);
 
 
      if (old_last_basic_block != last_basic_block && upd_life)
      if (old_last_basic_block != last_basic_block && upd_life)
        blocks = sbitmap_resize (blocks, last_basic_block, 1);
        blocks = sbitmap_resize (blocks, last_basic_block, 1);
    }
    }
 
 
  if (changed && upd_life)
  if (changed && upd_life)
    update_life_info (blocks, UPDATE_LIFE_GLOBAL_RM_NOTES,
    update_life_info (blocks, UPDATE_LIFE_GLOBAL_RM_NOTES,
                      PROP_DEATH_NOTES);
                      PROP_DEATH_NOTES);
 
 
#ifdef ENABLE_CHECKING
#ifdef ENABLE_CHECKING
  verify_flow_info ();
  verify_flow_info ();
#endif
#endif
 
 
  sbitmap_free (blocks);
  sbitmap_free (blocks);
}
}
 
 
/* Same as split_all_insns, but do not expect CFG to be available.
/* Same as split_all_insns, but do not expect CFG to be available.
   Used by machine dependent reorg passes.  */
   Used by machine dependent reorg passes.  */
 
 
unsigned int
unsigned int
split_all_insns_noflow (void)
split_all_insns_noflow (void)
{
{
  rtx next, insn;
  rtx next, insn;
 
 
  for (insn = get_insns (); insn; insn = next)
  for (insn = get_insns (); insn; insn = next)
    {
    {
      next = NEXT_INSN (insn);
      next = NEXT_INSN (insn);
      if (INSN_P (insn))
      if (INSN_P (insn))
        {
        {
          /* Don't split no-op move insns.  These should silently
          /* Don't split no-op move insns.  These should silently
             disappear later in final.  Splitting such insns would
             disappear later in final.  Splitting such insns would
             break the code that handles REG_NO_CONFLICT blocks.  */
             break the code that handles REG_NO_CONFLICT blocks.  */
          rtx set = single_set (insn);
          rtx set = single_set (insn);
          if (set && set_noop_p (set))
          if (set && set_noop_p (set))
            {
            {
              /* Nops get in the way while scheduling, so delete them
              /* Nops get in the way while scheduling, so delete them
                 now if register allocation has already been done.  It
                 now if register allocation has already been done.  It
                 is too risky to try to do this before register
                 is too risky to try to do this before register
                 allocation, and there are unlikely to be very many
                 allocation, and there are unlikely to be very many
                 nops then anyways.
                 nops then anyways.
 
 
                 ??? Should we use delete_insn when the CFG isn't valid?  */
                 ??? Should we use delete_insn when the CFG isn't valid?  */
              if (reload_completed)
              if (reload_completed)
                delete_insn_and_edges (insn);
                delete_insn_and_edges (insn);
            }
            }
          else
          else
            split_insn (insn);
            split_insn (insn);
        }
        }
    }
    }
  return 0;
  return 0;
}
}


#ifdef HAVE_peephole2
#ifdef HAVE_peephole2
struct peep2_insn_data
struct peep2_insn_data
{
{
  rtx insn;
  rtx insn;
  regset live_before;
  regset live_before;
};
};
 
 
static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
static int peep2_current;
static int peep2_current;
/* The number of instructions available to match a peep2.  */
/* The number of instructions available to match a peep2.  */
int peep2_current_count;
int peep2_current_count;
 
 
/* A non-insn marker indicating the last insn of the block.
/* A non-insn marker indicating the last insn of the block.
   The live_before regset for this element is correct, indicating
   The live_before regset for this element is correct, indicating
   global_live_at_end for the block.  */
   global_live_at_end for the block.  */
#define PEEP2_EOB       pc_rtx
#define PEEP2_EOB       pc_rtx
 
 
/* Return the Nth non-note insn after `current', or return NULL_RTX if it
/* Return the Nth non-note insn after `current', or return NULL_RTX if it
   does not exist.  Used by the recognizer to find the next insn to match
   does not exist.  Used by the recognizer to find the next insn to match
   in a multi-insn pattern.  */
   in a multi-insn pattern.  */
 
 
rtx
rtx
peep2_next_insn (int n)
peep2_next_insn (int n)
{
{
  gcc_assert (n <= peep2_current_count);
  gcc_assert (n <= peep2_current_count);
 
 
  n += peep2_current;
  n += peep2_current;
  if (n >= MAX_INSNS_PER_PEEP2 + 1)
  if (n >= MAX_INSNS_PER_PEEP2 + 1)
    n -= MAX_INSNS_PER_PEEP2 + 1;
    n -= MAX_INSNS_PER_PEEP2 + 1;
 
 
  return peep2_insn_data[n].insn;
  return peep2_insn_data[n].insn;
}
}
 
 
/* Return true if REGNO is dead before the Nth non-note insn
/* Return true if REGNO is dead before the Nth non-note insn
   after `current'.  */
   after `current'.  */
 
 
int
int
peep2_regno_dead_p (int ofs, int regno)
peep2_regno_dead_p (int ofs, int regno)
{
{
  gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
  gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
 
 
  ofs += peep2_current;
  ofs += peep2_current;
  if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
  if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
    ofs -= MAX_INSNS_PER_PEEP2 + 1;
    ofs -= MAX_INSNS_PER_PEEP2 + 1;
 
 
  gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
  gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
 
 
  return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
  return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
}
}
 
 
/* Similarly for a REG.  */
/* Similarly for a REG.  */
 
 
int
int
peep2_reg_dead_p (int ofs, rtx reg)
peep2_reg_dead_p (int ofs, rtx reg)
{
{
  int regno, n;
  int regno, n;
 
 
  gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
  gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
 
 
  ofs += peep2_current;
  ofs += peep2_current;
  if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
  if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
    ofs -= MAX_INSNS_PER_PEEP2 + 1;
    ofs -= MAX_INSNS_PER_PEEP2 + 1;
 
 
  gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
  gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
 
 
  regno = REGNO (reg);
  regno = REGNO (reg);
  n = hard_regno_nregs[regno][GET_MODE (reg)];
  n = hard_regno_nregs[regno][GET_MODE (reg)];
  while (--n >= 0)
  while (--n >= 0)
    if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno + n))
    if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno + n))
      return 0;
      return 0;
  return 1;
  return 1;
}
}
 
 
/* Try to find a hard register of mode MODE, matching the register class in
/* Try to find a hard register of mode MODE, matching the register class in
   CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
   CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
   remains available until the end of LAST_INSN.  LAST_INSN may be NULL_RTX,
   remains available until the end of LAST_INSN.  LAST_INSN may be NULL_RTX,
   in which case the only condition is that the register must be available
   in which case the only condition is that the register must be available
   before CURRENT_INSN.
   before CURRENT_INSN.
   Registers that already have bits set in REG_SET will not be considered.
   Registers that already have bits set in REG_SET will not be considered.
 
 
   If an appropriate register is available, it will be returned and the
   If an appropriate register is available, it will be returned and the
   corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
   corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
   returned.  */
   returned.  */
 
 
rtx
rtx
peep2_find_free_register (int from, int to, const char *class_str,
peep2_find_free_register (int from, int to, const char *class_str,
                          enum machine_mode mode, HARD_REG_SET *reg_set)
                          enum machine_mode mode, HARD_REG_SET *reg_set)
{
{
  static int search_ofs;
  static int search_ofs;
  enum reg_class cl;
  enum reg_class cl;
  HARD_REG_SET live;
  HARD_REG_SET live;
  int i;
  int i;
 
 
  gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1);
  gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1);
  gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1);
  gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1);
 
 
  from += peep2_current;
  from += peep2_current;
  if (from >= MAX_INSNS_PER_PEEP2 + 1)
  if (from >= MAX_INSNS_PER_PEEP2 + 1)
    from -= MAX_INSNS_PER_PEEP2 + 1;
    from -= MAX_INSNS_PER_PEEP2 + 1;
  to += peep2_current;
  to += peep2_current;
  if (to >= MAX_INSNS_PER_PEEP2 + 1)
  if (to >= MAX_INSNS_PER_PEEP2 + 1)
    to -= MAX_INSNS_PER_PEEP2 + 1;
    to -= MAX_INSNS_PER_PEEP2 + 1;
 
 
  gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
  gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
  REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
  REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
 
 
  while (from != to)
  while (from != to)
    {
    {
      HARD_REG_SET this_live;
      HARD_REG_SET this_live;
 
 
      if (++from >= MAX_INSNS_PER_PEEP2 + 1)
      if (++from >= MAX_INSNS_PER_PEEP2 + 1)
        from = 0;
        from = 0;
      gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
      gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
      REG_SET_TO_HARD_REG_SET (this_live, peep2_insn_data[from].live_before);
      REG_SET_TO_HARD_REG_SET (this_live, peep2_insn_data[from].live_before);
      IOR_HARD_REG_SET (live, this_live);
      IOR_HARD_REG_SET (live, this_live);
    }
    }
 
 
  cl = (class_str[0] == 'r' ? GENERAL_REGS
  cl = (class_str[0] == 'r' ? GENERAL_REGS
           : REG_CLASS_FROM_CONSTRAINT (class_str[0], class_str));
           : REG_CLASS_FROM_CONSTRAINT (class_str[0], class_str));
 
 
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    {
    {
      int raw_regno, regno, success, j;
      int raw_regno, regno, success, j;
 
 
      /* Distribute the free registers as much as possible.  */
      /* Distribute the free registers as much as possible.  */
      raw_regno = search_ofs + i;
      raw_regno = search_ofs + i;
      if (raw_regno >= FIRST_PSEUDO_REGISTER)
      if (raw_regno >= FIRST_PSEUDO_REGISTER)
        raw_regno -= FIRST_PSEUDO_REGISTER;
        raw_regno -= FIRST_PSEUDO_REGISTER;
#ifdef REG_ALLOC_ORDER
#ifdef REG_ALLOC_ORDER
      regno = reg_alloc_order[raw_regno];
      regno = reg_alloc_order[raw_regno];
#else
#else
      regno = raw_regno;
      regno = raw_regno;
#endif
#endif
 
 
      /* Don't allocate fixed registers.  */
      /* Don't allocate fixed registers.  */
      if (fixed_regs[regno])
      if (fixed_regs[regno])
        continue;
        continue;
      /* Make sure the register is of the right class.  */
      /* Make sure the register is of the right class.  */
      if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno))
      if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno))
        continue;
        continue;
      /* And can support the mode we need.  */
      /* And can support the mode we need.  */
      if (! HARD_REGNO_MODE_OK (regno, mode))
      if (! HARD_REGNO_MODE_OK (regno, mode))
        continue;
        continue;
      /* And that we don't create an extra save/restore.  */
      /* And that we don't create an extra save/restore.  */
      if (! call_used_regs[regno] && ! regs_ever_live[regno])
      if (! call_used_regs[regno] && ! regs_ever_live[regno])
        continue;
        continue;
      /* And we don't clobber traceback for noreturn functions.  */
      /* And we don't clobber traceback for noreturn functions.  */
      if ((regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM)
      if ((regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM)
          && (! reload_completed || frame_pointer_needed))
          && (! reload_completed || frame_pointer_needed))
        continue;
        continue;
 
 
      success = 1;
      success = 1;
      for (j = hard_regno_nregs[regno][mode] - 1; j >= 0; j--)
      for (j = hard_regno_nregs[regno][mode] - 1; j >= 0; j--)
        {
        {
          if (TEST_HARD_REG_BIT (*reg_set, regno + j)
          if (TEST_HARD_REG_BIT (*reg_set, regno + j)
              || TEST_HARD_REG_BIT (live, regno + j))
              || TEST_HARD_REG_BIT (live, regno + j))
            {
            {
              success = 0;
              success = 0;
              break;
              break;
            }
            }
        }
        }
      if (success)
      if (success)
        {
        {
          for (j = hard_regno_nregs[regno][mode] - 1; j >= 0; j--)
          for (j = hard_regno_nregs[regno][mode] - 1; j >= 0; j--)
            SET_HARD_REG_BIT (*reg_set, regno + j);
            SET_HARD_REG_BIT (*reg_set, regno + j);
 
 
          /* Start the next search with the next register.  */
          /* Start the next search with the next register.  */
          if (++raw_regno >= FIRST_PSEUDO_REGISTER)
          if (++raw_regno >= FIRST_PSEUDO_REGISTER)
            raw_regno = 0;
            raw_regno = 0;
          search_ofs = raw_regno;
          search_ofs = raw_regno;
 
 
          return gen_rtx_REG (mode, regno);
          return gen_rtx_REG (mode, regno);
        }
        }
    }
    }
 
 
  search_ofs = 0;
  search_ofs = 0;
  return NULL_RTX;
  return NULL_RTX;
}
}
 
 
/* Perform the peephole2 optimization pass.  */
/* Perform the peephole2 optimization pass.  */
 
 
static void
static void
peephole2_optimize (void)
peephole2_optimize (void)
{
{
  rtx insn, prev;
  rtx insn, prev;
  regset live;
  regset live;
  int i;
  int i;
  basic_block bb;
  basic_block bb;
#ifdef HAVE_conditional_execution
#ifdef HAVE_conditional_execution
  sbitmap blocks;
  sbitmap blocks;
  bool changed;
  bool changed;
#endif
#endif
  bool do_cleanup_cfg = false;
  bool do_cleanup_cfg = false;
  bool do_global_life_update = false;
  bool do_global_life_update = false;
  bool do_rebuild_jump_labels = false;
  bool do_rebuild_jump_labels = false;
 
 
  /* Initialize the regsets we're going to use.  */
  /* Initialize the regsets we're going to use.  */
  for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
  for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
    peep2_insn_data[i].live_before = ALLOC_REG_SET (&reg_obstack);
    peep2_insn_data[i].live_before = ALLOC_REG_SET (&reg_obstack);
  live = ALLOC_REG_SET (&reg_obstack);
  live = ALLOC_REG_SET (&reg_obstack);
 
 
#ifdef HAVE_conditional_execution
#ifdef HAVE_conditional_execution
  blocks = sbitmap_alloc (last_basic_block);
  blocks = sbitmap_alloc (last_basic_block);
  sbitmap_zero (blocks);
  sbitmap_zero (blocks);
  changed = false;
  changed = false;
#else
#else
  count_or_remove_death_notes (NULL, 1);
  count_or_remove_death_notes (NULL, 1);
#endif
#endif
 
 
  FOR_EACH_BB_REVERSE (bb)
  FOR_EACH_BB_REVERSE (bb)
    {
    {
      struct propagate_block_info *pbi;
      struct propagate_block_info *pbi;
      reg_set_iterator rsi;
      reg_set_iterator rsi;
      unsigned int j;
      unsigned int j;
 
 
      /* Indicate that all slots except the last holds invalid data.  */
      /* Indicate that all slots except the last holds invalid data.  */
      for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
      for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
        peep2_insn_data[i].insn = NULL_RTX;
        peep2_insn_data[i].insn = NULL_RTX;
      peep2_current_count = 0;
      peep2_current_count = 0;
 
 
      /* Indicate that the last slot contains live_after data.  */
      /* Indicate that the last slot contains live_after data.  */
      peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
      peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
      peep2_current = MAX_INSNS_PER_PEEP2;
      peep2_current = MAX_INSNS_PER_PEEP2;
 
 
      /* Start up propagation.  */
      /* Start up propagation.  */
      COPY_REG_SET (live, bb->il.rtl->global_live_at_end);
      COPY_REG_SET (live, bb->il.rtl->global_live_at_end);
      COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
      COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
 
 
#ifdef HAVE_conditional_execution
#ifdef HAVE_conditional_execution
      pbi = init_propagate_block_info (bb, live, NULL, NULL, 0);
      pbi = init_propagate_block_info (bb, live, NULL, NULL, 0);
#else
#else
      pbi = init_propagate_block_info (bb, live, NULL, NULL, PROP_DEATH_NOTES);
      pbi = init_propagate_block_info (bb, live, NULL, NULL, PROP_DEATH_NOTES);
#endif
#endif
 
 
      for (insn = BB_END (bb); ; insn = prev)
      for (insn = BB_END (bb); ; insn = prev)
        {
        {
          prev = PREV_INSN (insn);
          prev = PREV_INSN (insn);
          if (INSN_P (insn))
          if (INSN_P (insn))
            {
            {
              rtx try, before_try, x;
              rtx try, before_try, x;
              int match_len;
              int match_len;
              rtx note;
              rtx note;
              bool was_call = false;
              bool was_call = false;
 
 
              /* Record this insn.  */
              /* Record this insn.  */
              if (--peep2_current < 0)
              if (--peep2_current < 0)
                peep2_current = MAX_INSNS_PER_PEEP2;
                peep2_current = MAX_INSNS_PER_PEEP2;
              if (peep2_current_count < MAX_INSNS_PER_PEEP2
              if (peep2_current_count < MAX_INSNS_PER_PEEP2
                  && peep2_insn_data[peep2_current].insn == NULL_RTX)
                  && peep2_insn_data[peep2_current].insn == NULL_RTX)
                peep2_current_count++;
                peep2_current_count++;
              peep2_insn_data[peep2_current].insn = insn;
              peep2_insn_data[peep2_current].insn = insn;
              propagate_one_insn (pbi, insn);
              propagate_one_insn (pbi, insn);
              COPY_REG_SET (peep2_insn_data[peep2_current].live_before, live);
              COPY_REG_SET (peep2_insn_data[peep2_current].live_before, live);
 
 
              if (RTX_FRAME_RELATED_P (insn))
              if (RTX_FRAME_RELATED_P (insn))
                {
                {
                  /* If an insn has RTX_FRAME_RELATED_P set, peephole
                  /* If an insn has RTX_FRAME_RELATED_P set, peephole
                     substitution would lose the
                     substitution would lose the
                     REG_FRAME_RELATED_EXPR that is attached.  */
                     REG_FRAME_RELATED_EXPR that is attached.  */
                  peep2_current_count = 0;
                  peep2_current_count = 0;
                  try = NULL;
                  try = NULL;
                }
                }
              else
              else
                /* Match the peephole.  */
                /* Match the peephole.  */
                try = peephole2_insns (PATTERN (insn), insn, &match_len);
                try = peephole2_insns (PATTERN (insn), insn, &match_len);
 
 
              if (try != NULL)
              if (try != NULL)
                {
                {
                  /* If we are splitting a CALL_INSN, look for the CALL_INSN
                  /* If we are splitting a CALL_INSN, look for the CALL_INSN
                     in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
                     in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
                     cfg-related call notes.  */
                     cfg-related call notes.  */
                  for (i = 0; i <= match_len; ++i)
                  for (i = 0; i <= match_len; ++i)
                    {
                    {
                      int j;
                      int j;
                      rtx old_insn, new_insn, note;
                      rtx old_insn, new_insn, note;
 
 
                      j = i + peep2_current;
                      j = i + peep2_current;
                      if (j >= MAX_INSNS_PER_PEEP2 + 1)
                      if (j >= MAX_INSNS_PER_PEEP2 + 1)
                        j -= MAX_INSNS_PER_PEEP2 + 1;
                        j -= MAX_INSNS_PER_PEEP2 + 1;
                      old_insn = peep2_insn_data[j].insn;
                      old_insn = peep2_insn_data[j].insn;
                      if (!CALL_P (old_insn))
                      if (!CALL_P (old_insn))
                        continue;
                        continue;
                      was_call = true;
                      was_call = true;
 
 
                      new_insn = try;
                      new_insn = try;
                      while (new_insn != NULL_RTX)
                      while (new_insn != NULL_RTX)
                        {
                        {
                          if (CALL_P (new_insn))
                          if (CALL_P (new_insn))
                            break;
                            break;
                          new_insn = NEXT_INSN (new_insn);
                          new_insn = NEXT_INSN (new_insn);
                        }
                        }
 
 
                      gcc_assert (new_insn != NULL_RTX);
                      gcc_assert (new_insn != NULL_RTX);
 
 
                      CALL_INSN_FUNCTION_USAGE (new_insn)
                      CALL_INSN_FUNCTION_USAGE (new_insn)
                        = CALL_INSN_FUNCTION_USAGE (old_insn);
                        = CALL_INSN_FUNCTION_USAGE (old_insn);
 
 
                      for (note = REG_NOTES (old_insn);
                      for (note = REG_NOTES (old_insn);
                           note;
                           note;
                           note = XEXP (note, 1))
                           note = XEXP (note, 1))
                        switch (REG_NOTE_KIND (note))
                        switch (REG_NOTE_KIND (note))
                          {
                          {
                          case REG_NORETURN:
                          case REG_NORETURN:
                          case REG_SETJMP:
                          case REG_SETJMP:
                            REG_NOTES (new_insn)
                            REG_NOTES (new_insn)
                              = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
                              = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
                                                   XEXP (note, 0),
                                                   XEXP (note, 0),
                                                   REG_NOTES (new_insn));
                                                   REG_NOTES (new_insn));
                          default:
                          default:
                            /* Discard all other reg notes.  */
                            /* Discard all other reg notes.  */
                            break;
                            break;
                          }
                          }
 
 
                      /* Croak if there is another call in the sequence.  */
                      /* Croak if there is another call in the sequence.  */
                      while (++i <= match_len)
                      while (++i <= match_len)
                        {
                        {
                          j = i + peep2_current;
                          j = i + peep2_current;
                          if (j >= MAX_INSNS_PER_PEEP2 + 1)
                          if (j >= MAX_INSNS_PER_PEEP2 + 1)
                            j -= MAX_INSNS_PER_PEEP2 + 1;
                            j -= MAX_INSNS_PER_PEEP2 + 1;
                          old_insn = peep2_insn_data[j].insn;
                          old_insn = peep2_insn_data[j].insn;
                          gcc_assert (!CALL_P (old_insn));
                          gcc_assert (!CALL_P (old_insn));
                        }
                        }
                      break;
                      break;
                    }
                    }
 
 
                  i = match_len + peep2_current;
                  i = match_len + peep2_current;
                  if (i >= MAX_INSNS_PER_PEEP2 + 1)
                  if (i >= MAX_INSNS_PER_PEEP2 + 1)
                    i -= MAX_INSNS_PER_PEEP2 + 1;
                    i -= MAX_INSNS_PER_PEEP2 + 1;
 
 
                  note = find_reg_note (peep2_insn_data[i].insn,
                  note = find_reg_note (peep2_insn_data[i].insn,
                                        REG_EH_REGION, NULL_RTX);
                                        REG_EH_REGION, NULL_RTX);
 
 
                  /* Replace the old sequence with the new.  */
                  /* Replace the old sequence with the new.  */
                  try = emit_insn_after_setloc (try, peep2_insn_data[i].insn,
                  try = emit_insn_after_setloc (try, peep2_insn_data[i].insn,
                                                INSN_LOCATOR (peep2_insn_data[i].insn));
                                                INSN_LOCATOR (peep2_insn_data[i].insn));
                  before_try = PREV_INSN (insn);
                  before_try = PREV_INSN (insn);
                  delete_insn_chain (insn, peep2_insn_data[i].insn);
                  delete_insn_chain (insn, peep2_insn_data[i].insn);
 
 
                  /* Re-insert the EH_REGION notes.  */
                  /* Re-insert the EH_REGION notes.  */
                  if (note || (was_call && nonlocal_goto_handler_labels))
                  if (note || (was_call && nonlocal_goto_handler_labels))
                    {
                    {
                      edge eh_edge;
                      edge eh_edge;
                      edge_iterator ei;
                      edge_iterator ei;
 
 
                      FOR_EACH_EDGE (eh_edge, ei, bb->succs)
                      FOR_EACH_EDGE (eh_edge, ei, bb->succs)
                        if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
                        if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
                          break;
                          break;
 
 
                      for (x = try ; x != before_try ; x = PREV_INSN (x))
                      for (x = try ; x != before_try ; x = PREV_INSN (x))
                        if (CALL_P (x)
                        if (CALL_P (x)
                            || (flag_non_call_exceptions
                            || (flag_non_call_exceptions
                                && may_trap_p (PATTERN (x))
                                && may_trap_p (PATTERN (x))
                                && !find_reg_note (x, REG_EH_REGION, NULL)))
                                && !find_reg_note (x, REG_EH_REGION, NULL)))
                          {
                          {
                            if (note)
                            if (note)
                              REG_NOTES (x)
                              REG_NOTES (x)
                                = gen_rtx_EXPR_LIST (REG_EH_REGION,
                                = gen_rtx_EXPR_LIST (REG_EH_REGION,
                                                     XEXP (note, 0),
                                                     XEXP (note, 0),
                                                     REG_NOTES (x));
                                                     REG_NOTES (x));
 
 
                            if (x != BB_END (bb) && eh_edge)
                            if (x != BB_END (bb) && eh_edge)
                              {
                              {
                                edge nfte, nehe;
                                edge nfte, nehe;
                                int flags;
                                int flags;
 
 
                                nfte = split_block (bb, x);
                                nfte = split_block (bb, x);
                                flags = (eh_edge->flags
                                flags = (eh_edge->flags
                                         & (EDGE_EH | EDGE_ABNORMAL));
                                         & (EDGE_EH | EDGE_ABNORMAL));
                                if (CALL_P (x))
                                if (CALL_P (x))
                                  flags |= EDGE_ABNORMAL_CALL;
                                  flags |= EDGE_ABNORMAL_CALL;
                                nehe = make_edge (nfte->src, eh_edge->dest,
                                nehe = make_edge (nfte->src, eh_edge->dest,
                                                  flags);
                                                  flags);
 
 
                                nehe->probability = eh_edge->probability;
                                nehe->probability = eh_edge->probability;
                                nfte->probability
                                nfte->probability
                                  = REG_BR_PROB_BASE - nehe->probability;
                                  = REG_BR_PROB_BASE - nehe->probability;
 
 
                                do_cleanup_cfg |= purge_dead_edges (nfte->dest);
                                do_cleanup_cfg |= purge_dead_edges (nfte->dest);
#ifdef HAVE_conditional_execution
#ifdef HAVE_conditional_execution
                                SET_BIT (blocks, nfte->dest->index);
                                SET_BIT (blocks, nfte->dest->index);
                                changed = true;
                                changed = true;
#endif
#endif
                                bb = nfte->src;
                                bb = nfte->src;
                                eh_edge = nehe;
                                eh_edge = nehe;
                              }
                              }
                          }
                          }
 
 
                      /* Converting possibly trapping insn to non-trapping is
                      /* Converting possibly trapping insn to non-trapping is
                         possible.  Zap dummy outgoing edges.  */
                         possible.  Zap dummy outgoing edges.  */
                      do_cleanup_cfg |= purge_dead_edges (bb);
                      do_cleanup_cfg |= purge_dead_edges (bb);
                    }
                    }
 
 
#ifdef HAVE_conditional_execution
#ifdef HAVE_conditional_execution
                  /* With conditional execution, we cannot back up the
                  /* With conditional execution, we cannot back up the
                     live information so easily, since the conditional
                     live information so easily, since the conditional
                     death data structures are not so self-contained.
                     death data structures are not so self-contained.
                     So record that we've made a modification to this
                     So record that we've made a modification to this
                     block and update life information at the end.  */
                     block and update life information at the end.  */
                  SET_BIT (blocks, bb->index);
                  SET_BIT (blocks, bb->index);
                  changed = true;
                  changed = true;
 
 
                  for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
                  for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
                    peep2_insn_data[i].insn = NULL_RTX;
                    peep2_insn_data[i].insn = NULL_RTX;
                  peep2_insn_data[peep2_current].insn = PEEP2_EOB;
                  peep2_insn_data[peep2_current].insn = PEEP2_EOB;
                  peep2_current_count = 0;
                  peep2_current_count = 0;
#else
#else
                  /* Back up lifetime information past the end of the
                  /* Back up lifetime information past the end of the
                     newly created sequence.  */
                     newly created sequence.  */
                  if (++i >= MAX_INSNS_PER_PEEP2 + 1)
                  if (++i >= MAX_INSNS_PER_PEEP2 + 1)
                    i = 0;
                    i = 0;
                  COPY_REG_SET (live, peep2_insn_data[i].live_before);
                  COPY_REG_SET (live, peep2_insn_data[i].live_before);
 
 
                  /* Update life information for the new sequence.  */
                  /* Update life information for the new sequence.  */
                  x = try;
                  x = try;
                  do
                  do
                    {
                    {
                      if (INSN_P (x))
                      if (INSN_P (x))
                        {
                        {
                          if (--i < 0)
                          if (--i < 0)
                            i = MAX_INSNS_PER_PEEP2;
                            i = MAX_INSNS_PER_PEEP2;
                          if (peep2_current_count < MAX_INSNS_PER_PEEP2
                          if (peep2_current_count < MAX_INSNS_PER_PEEP2
                              && peep2_insn_data[i].insn == NULL_RTX)
                              && peep2_insn_data[i].insn == NULL_RTX)
                            peep2_current_count++;
                            peep2_current_count++;
                          peep2_insn_data[i].insn = x;
                          peep2_insn_data[i].insn = x;
                          propagate_one_insn (pbi, x);
                          propagate_one_insn (pbi, x);
                          COPY_REG_SET (peep2_insn_data[i].live_before, live);
                          COPY_REG_SET (peep2_insn_data[i].live_before, live);
                        }
                        }
                      x = PREV_INSN (x);
                      x = PREV_INSN (x);
                    }
                    }
                  while (x != prev);
                  while (x != prev);
 
 
                  /* ??? Should verify that LIVE now matches what we
                  /* ??? Should verify that LIVE now matches what we
                     had before the new sequence.  */
                     had before the new sequence.  */
 
 
                  peep2_current = i;
                  peep2_current = i;
#endif
#endif
 
 
                  /* If we generated a jump instruction, it won't have
                  /* If we generated a jump instruction, it won't have
                     JUMP_LABEL set.  Recompute after we're done.  */
                     JUMP_LABEL set.  Recompute after we're done.  */
                  for (x = try; x != before_try; x = PREV_INSN (x))
                  for (x = try; x != before_try; x = PREV_INSN (x))
                    if (JUMP_P (x))
                    if (JUMP_P (x))
                      {
                      {
                        do_rebuild_jump_labels = true;
                        do_rebuild_jump_labels = true;
                        break;
                        break;
                      }
                      }
                }
                }
            }
            }
 
 
          if (insn == BB_HEAD (bb))
          if (insn == BB_HEAD (bb))
            break;
            break;
        }
        }
 
 
      /* Some peepholes can decide the don't need one or more of their
      /* Some peepholes can decide the don't need one or more of their
         inputs.  If this happens, local life update is not enough.  */
         inputs.  If this happens, local life update is not enough.  */
      EXECUTE_IF_AND_COMPL_IN_BITMAP (bb->il.rtl->global_live_at_start, live,
      EXECUTE_IF_AND_COMPL_IN_BITMAP (bb->il.rtl->global_live_at_start, live,
                                      0, j, rsi)
                                      0, j, rsi)
        {
        {
          do_global_life_update = true;
          do_global_life_update = true;
          break;
          break;
        }
        }
 
 
      free_propagate_block_info (pbi);
      free_propagate_block_info (pbi);
    }
    }
 
 
  for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
  for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
    FREE_REG_SET (peep2_insn_data[i].live_before);
    FREE_REG_SET (peep2_insn_data[i].live_before);
  FREE_REG_SET (live);
  FREE_REG_SET (live);
 
 
  if (do_rebuild_jump_labels)
  if (do_rebuild_jump_labels)
    rebuild_jump_labels (get_insns ());
    rebuild_jump_labels (get_insns ());
 
 
  /* If we eliminated EH edges, we may be able to merge blocks.  Further,
  /* If we eliminated EH edges, we may be able to merge blocks.  Further,
     we've changed global life since exception handlers are no longer
     we've changed global life since exception handlers are no longer
     reachable.  */
     reachable.  */
  if (do_cleanup_cfg)
  if (do_cleanup_cfg)
    {
    {
      cleanup_cfg (0);
      cleanup_cfg (0);
      do_global_life_update = true;
      do_global_life_update = true;
    }
    }
  if (do_global_life_update)
  if (do_global_life_update)
    update_life_info (0, UPDATE_LIFE_GLOBAL_RM_NOTES, PROP_DEATH_NOTES);
    update_life_info (0, UPDATE_LIFE_GLOBAL_RM_NOTES, PROP_DEATH_NOTES);
#ifdef HAVE_conditional_execution
#ifdef HAVE_conditional_execution
  else
  else
    {
    {
      count_or_remove_death_notes (blocks, 1);
      count_or_remove_death_notes (blocks, 1);
      update_life_info (blocks, UPDATE_LIFE_LOCAL, PROP_DEATH_NOTES);
      update_life_info (blocks, UPDATE_LIFE_LOCAL, PROP_DEATH_NOTES);
    }
    }
  sbitmap_free (blocks);
  sbitmap_free (blocks);
#endif
#endif
}
}
#endif /* HAVE_peephole2 */
#endif /* HAVE_peephole2 */
 
 
/* Common predicates for use with define_bypass.  */
/* Common predicates for use with define_bypass.  */
 
 
/* True if the dependency between OUT_INSN and IN_INSN is on the store
/* True if the dependency between OUT_INSN and IN_INSN is on the store
   data not the address operand(s) of the store.  IN_INSN must be
   data not the address operand(s) of the store.  IN_INSN must be
   single_set.  OUT_INSN must be either a single_set or a PARALLEL with
   single_set.  OUT_INSN must be either a single_set or a PARALLEL with
   SETs inside.  */
   SETs inside.  */
 
 
int
int
store_data_bypass_p (rtx out_insn, rtx in_insn)
store_data_bypass_p (rtx out_insn, rtx in_insn)
{
{
  rtx out_set, in_set;
  rtx out_set, in_set;
 
 
  in_set = single_set (in_insn);
  in_set = single_set (in_insn);
  gcc_assert (in_set);
  gcc_assert (in_set);
 
 
  if (!MEM_P (SET_DEST (in_set)))
  if (!MEM_P (SET_DEST (in_set)))
    return false;
    return false;
 
 
  out_set = single_set (out_insn);
  out_set = single_set (out_insn);
  if (out_set)
  if (out_set)
    {
    {
      if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set)))
      if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set)))
        return false;
        return false;
    }
    }
  else
  else
    {
    {
      rtx out_pat;
      rtx out_pat;
      int i;
      int i;
 
 
      out_pat = PATTERN (out_insn);
      out_pat = PATTERN (out_insn);
      gcc_assert (GET_CODE (out_pat) == PARALLEL);
      gcc_assert (GET_CODE (out_pat) == PARALLEL);
 
 
      for (i = 0; i < XVECLEN (out_pat, 0); i++)
      for (i = 0; i < XVECLEN (out_pat, 0); i++)
        {
        {
          rtx exp = XVECEXP (out_pat, 0, i);
          rtx exp = XVECEXP (out_pat, 0, i);
 
 
          if (GET_CODE (exp) == CLOBBER)
          if (GET_CODE (exp) == CLOBBER)
            continue;
            continue;
 
 
          gcc_assert (GET_CODE (exp) == SET);
          gcc_assert (GET_CODE (exp) == SET);
 
 
          if (reg_mentioned_p (SET_DEST (exp), SET_DEST (in_set)))
          if (reg_mentioned_p (SET_DEST (exp), SET_DEST (in_set)))
            return false;
            return false;
        }
        }
    }
    }
 
 
  return true;
  return true;
}
}
 
 
/* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
/* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
   condition, and not the THEN or ELSE branch.  OUT_INSN may be either a single
   condition, and not the THEN or ELSE branch.  OUT_INSN may be either a single
   or multiple set; IN_INSN should be single_set for truth, but for convenience
   or multiple set; IN_INSN should be single_set for truth, but for convenience
   of insn categorization may be any JUMP or CALL insn.  */
   of insn categorization may be any JUMP or CALL insn.  */
 
 
int
int
if_test_bypass_p (rtx out_insn, rtx in_insn)
if_test_bypass_p (rtx out_insn, rtx in_insn)
{
{
  rtx out_set, in_set;
  rtx out_set, in_set;
 
 
  in_set = single_set (in_insn);
  in_set = single_set (in_insn);
  if (! in_set)
  if (! in_set)
    {
    {
      gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn));
      gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn));
      return false;
      return false;
    }
    }
 
 
  if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
  if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
    return false;
    return false;
  in_set = SET_SRC (in_set);
  in_set = SET_SRC (in_set);
 
 
  out_set = single_set (out_insn);
  out_set = single_set (out_insn);
  if (out_set)
  if (out_set)
    {
    {
      if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
      if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
          || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
          || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
        return false;
        return false;
    }
    }
  else
  else
    {
    {
      rtx out_pat;
      rtx out_pat;
      int i;
      int i;
 
 
      out_pat = PATTERN (out_insn);
      out_pat = PATTERN (out_insn);
      gcc_assert (GET_CODE (out_pat) == PARALLEL);
      gcc_assert (GET_CODE (out_pat) == PARALLEL);
 
 
      for (i = 0; i < XVECLEN (out_pat, 0); i++)
      for (i = 0; i < XVECLEN (out_pat, 0); i++)
        {
        {
          rtx exp = XVECEXP (out_pat, 0, i);
          rtx exp = XVECEXP (out_pat, 0, i);
 
 
          if (GET_CODE (exp) == CLOBBER)
          if (GET_CODE (exp) == CLOBBER)
            continue;
            continue;
 
 
          gcc_assert (GET_CODE (exp) == SET);
          gcc_assert (GET_CODE (exp) == SET);
 
 
          if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
          if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
              || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
              || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
            return false;
            return false;
        }
        }
    }
    }
 
 
  return true;
  return true;
}
}


static bool
static bool
gate_handle_peephole2 (void)
gate_handle_peephole2 (void)
{
{
  return (optimize > 0 && flag_peephole2);
  return (optimize > 0 && flag_peephole2);
}
}
 
 
static unsigned int
static unsigned int
rest_of_handle_peephole2 (void)
rest_of_handle_peephole2 (void)
{
{
#ifdef HAVE_peephole2
#ifdef HAVE_peephole2
  peephole2_optimize ();
  peephole2_optimize ();
#endif
#endif
  return 0;
  return 0;
}
}
 
 
struct tree_opt_pass pass_peephole2 =
struct tree_opt_pass pass_peephole2 =
{
{
  "peephole2",                          /* name */
  "peephole2",                          /* name */
  gate_handle_peephole2,                /* gate */
  gate_handle_peephole2,                /* gate */
  rest_of_handle_peephole2,             /* execute */
  rest_of_handle_peephole2,             /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  NULL,                                 /* next */
  0,                                    /* static_pass_number */
  0,                                    /* static_pass_number */
  TV_PEEPHOLE2,                         /* tv_id */
  TV_PEEPHOLE2,                         /* tv_id */
  0,                                    /* properties_required */
  0,                                    /* properties_required */
  0,                                    /* properties_provided */
  0,                                    /* properties_provided */
  0,                                    /* properties_destroyed */
  0,                                    /* properties_destroyed */
  0,                                    /* todo_flags_start */
  0,                                    /* todo_flags_start */
  TODO_dump_func,                       /* todo_flags_finish */
  TODO_dump_func,                       /* todo_flags_finish */
  'z'                                   /* letter */
  'z'                                   /* letter */
};
};
 
 
static unsigned int
static unsigned int
rest_of_handle_split_all_insns (void)
rest_of_handle_split_all_insns (void)
{
{
  split_all_insns (1);
  split_all_insns (1);
  return 0;
  return 0;
}
}
 
 
struct tree_opt_pass pass_split_all_insns =
struct tree_opt_pass pass_split_all_insns =
{
{
  "split1",                             /* name */
  "split1",                             /* name */
  NULL,                                 /* gate */
  NULL,                                 /* gate */
  rest_of_handle_split_all_insns,       /* execute */
  rest_of_handle_split_all_insns,       /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  NULL,                                 /* next */
  0,                                    /* static_pass_number */
  0,                                    /* static_pass_number */
  0,                                    /* tv_id */
  0,                                    /* tv_id */
  0,                                    /* properties_required */
  0,                                    /* properties_required */
  0,                                    /* properties_provided */
  0,                                    /* properties_provided */
  0,                                    /* properties_destroyed */
  0,                                    /* properties_destroyed */
  0,                                    /* todo_flags_start */
  0,                                    /* todo_flags_start */
  TODO_dump_func,                       /* todo_flags_finish */
  TODO_dump_func,                       /* todo_flags_finish */
  0                                     /* letter */
  0                                     /* letter */
};
};
 
 
/* The placement of the splitting that we do for shorten_branches
/* The placement of the splitting that we do for shorten_branches
   depends on whether regstack is used by the target or not.  */
   depends on whether regstack is used by the target or not.  */
static bool
static bool
gate_do_final_split (void)
gate_do_final_split (void)
{
{
#if defined (HAVE_ATTR_length) && !defined (STACK_REGS)
#if defined (HAVE_ATTR_length) && !defined (STACK_REGS)
  return 1;
  return 1;
#else
#else
  return 0;
  return 0;
#endif 
#endif 
}
}
 
 
struct tree_opt_pass pass_split_for_shorten_branches =
struct tree_opt_pass pass_split_for_shorten_branches =
{
{
  "split3",                             /* name */
  "split3",                             /* name */
  gate_do_final_split,                  /* gate */
  gate_do_final_split,                  /* gate */
  split_all_insns_noflow,               /* execute */
  split_all_insns_noflow,               /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  NULL,                                 /* next */
  0,                                    /* static_pass_number */
  0,                                    /* static_pass_number */
  TV_SHORTEN_BRANCH,                    /* tv_id */
  TV_SHORTEN_BRANCH,                    /* tv_id */
  0,                                    /* properties_required */
  0,                                    /* properties_required */
  0,                                    /* properties_provided */
  0,                                    /* properties_provided */
  0,                                    /* properties_destroyed */
  0,                                    /* properties_destroyed */
  0,                                    /* todo_flags_start */
  0,                                    /* todo_flags_start */
  TODO_dump_func,                       /* todo_flags_finish */
  TODO_dump_func,                       /* todo_flags_finish */
  0                                     /* letter */
  0                                     /* letter */
};
};
 
 
 
 
static bool
static bool
gate_handle_split_before_regstack (void)
gate_handle_split_before_regstack (void)
{
{
#if defined (HAVE_ATTR_length) && defined (STACK_REGS)
#if defined (HAVE_ATTR_length) && defined (STACK_REGS)
  /* If flow2 creates new instructions which need splitting
  /* If flow2 creates new instructions which need splitting
     and scheduling after reload is not done, they might not be
     and scheduling after reload is not done, they might not be
     split until final which doesn't allow splitting
     split until final which doesn't allow splitting
     if HAVE_ATTR_length.  */
     if HAVE_ATTR_length.  */
# ifdef INSN_SCHEDULING
# ifdef INSN_SCHEDULING
  return (optimize && !flag_schedule_insns_after_reload);
  return (optimize && !flag_schedule_insns_after_reload);
# else
# else
  return (optimize);
  return (optimize);
# endif
# endif
#else
#else
  return 0;
  return 0;
#endif
#endif
}
}
 
 
struct tree_opt_pass pass_split_before_regstack =
struct tree_opt_pass pass_split_before_regstack =
{
{
  "split2",                             /* name */
  "split2",                             /* name */
  gate_handle_split_before_regstack,    /* gate */
  gate_handle_split_before_regstack,    /* gate */
  rest_of_handle_split_all_insns,       /* execute */
  rest_of_handle_split_all_insns,       /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  NULL,                                 /* next */
  0,                                    /* static_pass_number */
  0,                                    /* static_pass_number */
  TV_SHORTEN_BRANCH,                    /* tv_id */
  TV_SHORTEN_BRANCH,                    /* tv_id */
  0,                                    /* properties_required */
  0,                                    /* properties_required */
  0,                                    /* properties_provided */
  0,                                    /* properties_provided */
  0,                                    /* properties_destroyed */
  0,                                    /* properties_destroyed */
  0,                                    /* todo_flags_start */
  0,                                    /* todo_flags_start */
  TODO_dump_func,                       /* todo_flags_finish */
  TODO_dump_func,                       /* todo_flags_finish */
  0                                     /* letter */
  0                                     /* letter */
};
};
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.