OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gcc-4.2.2/] [gcc/] [regrename.c] - Diff between revs 38 and 154

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 38 Rev 154
/* Register renaming for the GNU compiler.
/* Register renaming for the GNU compiler.
   Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007
   Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
   This file is part of GCC.
   This file is part of GCC.
 
 
   GCC is free software; you can redistribute it and/or modify it
   GCC is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by
   under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3, or (at your option)
   the Free Software Foundation; either version 3, or (at your option)
   any later version.
   any later version.
 
 
   GCC is distributed in the hope that it will be useful, but WITHOUT
   GCC is distributed in the hope that it will be useful, but WITHOUT
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
   License for more details.
   License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with GCC; see the file COPYING3.  If not see
   along with GCC; see the file COPYING3.  If not see
   <http://www.gnu.org/licenses/>.  */
   <http://www.gnu.org/licenses/>.  */
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "rtl.h"
#include "rtl.h"
#include "tm_p.h"
#include "tm_p.h"
#include "insn-config.h"
#include "insn-config.h"
#include "regs.h"
#include "regs.h"
#include "addresses.h"
#include "addresses.h"
#include "hard-reg-set.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "basic-block.h"
#include "reload.h"
#include "reload.h"
#include "output.h"
#include "output.h"
#include "function.h"
#include "function.h"
#include "recog.h"
#include "recog.h"
#include "flags.h"
#include "flags.h"
#include "toplev.h"
#include "toplev.h"
#include "obstack.h"
#include "obstack.h"
#include "timevar.h"
#include "timevar.h"
#include "tree-pass.h"
#include "tree-pass.h"
 
 
struct du_chain
struct du_chain
{
{
  struct du_chain *next_chain;
  struct du_chain *next_chain;
  struct du_chain *next_use;
  struct du_chain *next_use;
 
 
  rtx insn;
  rtx insn;
  rtx *loc;
  rtx *loc;
  ENUM_BITFIELD(reg_class) cl : 16;
  ENUM_BITFIELD(reg_class) cl : 16;
  unsigned int need_caller_save_reg:1;
  unsigned int need_caller_save_reg:1;
  unsigned int earlyclobber:1;
  unsigned int earlyclobber:1;
};
};
 
 
enum scan_actions
enum scan_actions
{
{
  terminate_all_read,
  terminate_all_read,
  terminate_overlapping_read,
  terminate_overlapping_read,
  terminate_write,
  terminate_write,
  terminate_dead,
  terminate_dead,
  mark_read,
  mark_read,
  mark_write,
  mark_write,
  /* mark_access is for marking the destination regs in
  /* mark_access is for marking the destination regs in
     REG_FRAME_RELATED_EXPR notes (as if they were read) so that the
     REG_FRAME_RELATED_EXPR notes (as if they were read) so that the
     note is updated properly.  */
     note is updated properly.  */
  mark_access
  mark_access
};
};
 
 
static const char * const scan_actions_name[] =
static const char * const scan_actions_name[] =
{
{
  "terminate_all_read",
  "terminate_all_read",
  "terminate_overlapping_read",
  "terminate_overlapping_read",
  "terminate_write",
  "terminate_write",
  "terminate_dead",
  "terminate_dead",
  "mark_read",
  "mark_read",
  "mark_write",
  "mark_write",
  "mark_access"
  "mark_access"
};
};
 
 
static struct obstack rename_obstack;
static struct obstack rename_obstack;
 
 
static void do_replace (struct du_chain *, int);
static void do_replace (struct du_chain *, int);
static void scan_rtx_reg (rtx, rtx *, enum reg_class,
static void scan_rtx_reg (rtx, rtx *, enum reg_class,
                          enum scan_actions, enum op_type, int);
                          enum scan_actions, enum op_type, int);
static void scan_rtx_address (rtx, rtx *, enum reg_class,
static void scan_rtx_address (rtx, rtx *, enum reg_class,
                              enum scan_actions, enum machine_mode);
                              enum scan_actions, enum machine_mode);
static void scan_rtx (rtx, rtx *, enum reg_class, enum scan_actions,
static void scan_rtx (rtx, rtx *, enum reg_class, enum scan_actions,
                      enum op_type, int);
                      enum op_type, int);
static struct du_chain *build_def_use (basic_block);
static struct du_chain *build_def_use (basic_block);
static void dump_def_use_chain (struct du_chain *);
static void dump_def_use_chain (struct du_chain *);
static void note_sets (rtx, rtx, void *);
static void note_sets (rtx, rtx, void *);
static void clear_dead_regs (HARD_REG_SET *, enum machine_mode, rtx);
static void clear_dead_regs (HARD_REG_SET *, enum machine_mode, rtx);
static void merge_overlapping_regs (basic_block, HARD_REG_SET *,
static void merge_overlapping_regs (basic_block, HARD_REG_SET *,
                                    struct du_chain *);
                                    struct du_chain *);
 
 
/* Called through note_stores from update_life.  Find sets of registers, and
/* Called through note_stores from update_life.  Find sets of registers, and
   record them in *DATA (which is actually a HARD_REG_SET *).  */
   record them in *DATA (which is actually a HARD_REG_SET *).  */
 
 
static void
static void
note_sets (rtx x, rtx set ATTRIBUTE_UNUSED, void *data)
note_sets (rtx x, rtx set ATTRIBUTE_UNUSED, void *data)
{
{
  HARD_REG_SET *pset = (HARD_REG_SET *) data;
  HARD_REG_SET *pset = (HARD_REG_SET *) data;
  unsigned int regno;
  unsigned int regno;
  int nregs;
  int nregs;
 
 
  if (GET_CODE (x) == SUBREG)
  if (GET_CODE (x) == SUBREG)
    x = SUBREG_REG (x);
    x = SUBREG_REG (x);
  if (!REG_P (x))
  if (!REG_P (x))
    return;
    return;
  regno = REGNO (x);
  regno = REGNO (x);
  nregs = hard_regno_nregs[regno][GET_MODE (x)];
  nregs = hard_regno_nregs[regno][GET_MODE (x)];
 
 
  /* There must not be pseudos at this point.  */
  /* There must not be pseudos at this point.  */
  gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
  gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
 
 
  while (nregs-- > 0)
  while (nregs-- > 0)
    SET_HARD_REG_BIT (*pset, regno + nregs);
    SET_HARD_REG_BIT (*pset, regno + nregs);
}
}
 
 
/* Clear all registers from *PSET for which a note of kind KIND can be found
/* Clear all registers from *PSET for which a note of kind KIND can be found
   in the list NOTES.  */
   in the list NOTES.  */
 
 
static void
static void
clear_dead_regs (HARD_REG_SET *pset, enum machine_mode kind, rtx notes)
clear_dead_regs (HARD_REG_SET *pset, enum machine_mode kind, rtx notes)
{
{
  rtx note;
  rtx note;
  for (note = notes; note; note = XEXP (note, 1))
  for (note = notes; note; note = XEXP (note, 1))
    if (REG_NOTE_KIND (note) == kind && REG_P (XEXP (note, 0)))
    if (REG_NOTE_KIND (note) == kind && REG_P (XEXP (note, 0)))
      {
      {
        rtx reg = XEXP (note, 0);
        rtx reg = XEXP (note, 0);
        unsigned int regno = REGNO (reg);
        unsigned int regno = REGNO (reg);
        int nregs = hard_regno_nregs[regno][GET_MODE (reg)];
        int nregs = hard_regno_nregs[regno][GET_MODE (reg)];
 
 
        /* There must not be pseudos at this point.  */
        /* There must not be pseudos at this point.  */
        gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
        gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
 
 
        while (nregs-- > 0)
        while (nregs-- > 0)
          CLEAR_HARD_REG_BIT (*pset, regno + nregs);
          CLEAR_HARD_REG_BIT (*pset, regno + nregs);
      }
      }
}
}
 
 
/* For a def-use chain CHAIN in basic block B, find which registers overlap
/* For a def-use chain CHAIN in basic block B, find which registers overlap
   its lifetime and set the corresponding bits in *PSET.  */
   its lifetime and set the corresponding bits in *PSET.  */
 
 
static void
static void
merge_overlapping_regs (basic_block b, HARD_REG_SET *pset,
merge_overlapping_regs (basic_block b, HARD_REG_SET *pset,
                        struct du_chain *chain)
                        struct du_chain *chain)
{
{
  struct du_chain *t = chain;
  struct du_chain *t = chain;
  rtx insn;
  rtx insn;
  HARD_REG_SET live;
  HARD_REG_SET live;
 
 
  REG_SET_TO_HARD_REG_SET (live, b->il.rtl->global_live_at_start);
  REG_SET_TO_HARD_REG_SET (live, b->il.rtl->global_live_at_start);
  insn = BB_HEAD (b);
  insn = BB_HEAD (b);
  while (t)
  while (t)
    {
    {
      /* Search forward until the next reference to the register to be
      /* Search forward until the next reference to the register to be
         renamed.  */
         renamed.  */
      while (insn != t->insn)
      while (insn != t->insn)
        {
        {
          if (INSN_P (insn))
          if (INSN_P (insn))
            {
            {
              clear_dead_regs (&live, REG_DEAD, REG_NOTES (insn));
              clear_dead_regs (&live, REG_DEAD, REG_NOTES (insn));
              note_stores (PATTERN (insn), note_sets, (void *) &live);
              note_stores (PATTERN (insn), note_sets, (void *) &live);
              /* Only record currently live regs if we are inside the
              /* Only record currently live regs if we are inside the
                 reg's live range.  */
                 reg's live range.  */
              if (t != chain)
              if (t != chain)
                IOR_HARD_REG_SET (*pset, live);
                IOR_HARD_REG_SET (*pset, live);
              clear_dead_regs (&live, REG_UNUSED, REG_NOTES (insn));
              clear_dead_regs (&live, REG_UNUSED, REG_NOTES (insn));
            }
            }
          insn = NEXT_INSN (insn);
          insn = NEXT_INSN (insn);
        }
        }
 
 
      IOR_HARD_REG_SET (*pset, live);
      IOR_HARD_REG_SET (*pset, live);
 
 
      /* For the last reference, also merge in all registers set in the
      /* For the last reference, also merge in all registers set in the
         same insn.
         same insn.
         @@@ We only have take earlyclobbered sets into account.  */
         @@@ We only have take earlyclobbered sets into account.  */
      if (! t->next_use)
      if (! t->next_use)
        note_stores (PATTERN (insn), note_sets, (void *) pset);
        note_stores (PATTERN (insn), note_sets, (void *) pset);
 
 
      t = t->next_use;
      t = t->next_use;
    }
    }
}
}
 
 
/* Perform register renaming on the current function.  */
/* Perform register renaming on the current function.  */
 
 
static void
static void
regrename_optimize (void)
regrename_optimize (void)
{
{
  int tick[FIRST_PSEUDO_REGISTER];
  int tick[FIRST_PSEUDO_REGISTER];
  int this_tick = 0;
  int this_tick = 0;
  basic_block bb;
  basic_block bb;
  char *first_obj;
  char *first_obj;
 
 
  memset (tick, 0, sizeof tick);
  memset (tick, 0, sizeof tick);
 
 
  gcc_obstack_init (&rename_obstack);
  gcc_obstack_init (&rename_obstack);
  first_obj = obstack_alloc (&rename_obstack, 0);
  first_obj = obstack_alloc (&rename_obstack, 0);
 
 
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    {
    {
      struct du_chain *all_chains = 0;
      struct du_chain *all_chains = 0;
      HARD_REG_SET unavailable;
      HARD_REG_SET unavailable;
      HARD_REG_SET regs_seen;
      HARD_REG_SET regs_seen;
 
 
      CLEAR_HARD_REG_SET (unavailable);
      CLEAR_HARD_REG_SET (unavailable);
 
 
      if (dump_file)
      if (dump_file)
        fprintf (dump_file, "\nBasic block %d:\n", bb->index);
        fprintf (dump_file, "\nBasic block %d:\n", bb->index);
 
 
      all_chains = build_def_use (bb);
      all_chains = build_def_use (bb);
 
 
      if (dump_file)
      if (dump_file)
        dump_def_use_chain (all_chains);
        dump_def_use_chain (all_chains);
 
 
      CLEAR_HARD_REG_SET (unavailable);
      CLEAR_HARD_REG_SET (unavailable);
      /* Don't clobber traceback for noreturn functions.  */
      /* Don't clobber traceback for noreturn functions.  */
      if (frame_pointer_needed)
      if (frame_pointer_needed)
        {
        {
          int i;
          int i;
 
 
          for (i = hard_regno_nregs[FRAME_POINTER_REGNUM][Pmode]; i--;)
          for (i = hard_regno_nregs[FRAME_POINTER_REGNUM][Pmode]; i--;)
            SET_HARD_REG_BIT (unavailable, FRAME_POINTER_REGNUM + i);
            SET_HARD_REG_BIT (unavailable, FRAME_POINTER_REGNUM + i);
 
 
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
          for (i = hard_regno_nregs[HARD_FRAME_POINTER_REGNUM][Pmode]; i--;)
          for (i = hard_regno_nregs[HARD_FRAME_POINTER_REGNUM][Pmode]; i--;)
            SET_HARD_REG_BIT (unavailable, HARD_FRAME_POINTER_REGNUM + i);
            SET_HARD_REG_BIT (unavailable, HARD_FRAME_POINTER_REGNUM + i);
#endif
#endif
        }
        }
 
 
      CLEAR_HARD_REG_SET (regs_seen);
      CLEAR_HARD_REG_SET (regs_seen);
      while (all_chains)
      while (all_chains)
        {
        {
          int new_reg, best_new_reg;
          int new_reg, best_new_reg;
          int n_uses;
          int n_uses;
          struct du_chain *this = all_chains;
          struct du_chain *this = all_chains;
          struct du_chain *tmp, *last;
          struct du_chain *tmp, *last;
          HARD_REG_SET this_unavailable;
          HARD_REG_SET this_unavailable;
          int reg = REGNO (*this->loc);
          int reg = REGNO (*this->loc);
          int i;
          int i;
 
 
          all_chains = this->next_chain;
          all_chains = this->next_chain;
 
 
          best_new_reg = reg;
          best_new_reg = reg;
 
 
#if 0 /* This just disables optimization opportunities.  */
#if 0 /* This just disables optimization opportunities.  */
          /* Only rename once we've seen the reg more than once.  */
          /* Only rename once we've seen the reg more than once.  */
          if (! TEST_HARD_REG_BIT (regs_seen, reg))
          if (! TEST_HARD_REG_BIT (regs_seen, reg))
            {
            {
              SET_HARD_REG_BIT (regs_seen, reg);
              SET_HARD_REG_BIT (regs_seen, reg);
              continue;
              continue;
            }
            }
#endif
#endif
 
 
          if (fixed_regs[reg] || global_regs[reg]
          if (fixed_regs[reg] || global_regs[reg]
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
              || (frame_pointer_needed && reg == HARD_FRAME_POINTER_REGNUM)
              || (frame_pointer_needed && reg == HARD_FRAME_POINTER_REGNUM)
#else
#else
              || (frame_pointer_needed && reg == FRAME_POINTER_REGNUM)
              || (frame_pointer_needed && reg == FRAME_POINTER_REGNUM)
#endif
#endif
              )
              )
            continue;
            continue;
 
 
          COPY_HARD_REG_SET (this_unavailable, unavailable);
          COPY_HARD_REG_SET (this_unavailable, unavailable);
 
 
          /* Find last entry on chain (which has the need_caller_save bit),
          /* Find last entry on chain (which has the need_caller_save bit),
             count number of uses, and narrow the set of registers we can
             count number of uses, and narrow the set of registers we can
             use for renaming.  */
             use for renaming.  */
          n_uses = 0;
          n_uses = 0;
          for (last = this; last->next_use; last = last->next_use)
          for (last = this; last->next_use; last = last->next_use)
            {
            {
              n_uses++;
              n_uses++;
              IOR_COMPL_HARD_REG_SET (this_unavailable,
              IOR_COMPL_HARD_REG_SET (this_unavailable,
                                      reg_class_contents[last->cl]);
                                      reg_class_contents[last->cl]);
            }
            }
          if (n_uses < 1)
          if (n_uses < 1)
            continue;
            continue;
 
 
          IOR_COMPL_HARD_REG_SET (this_unavailable,
          IOR_COMPL_HARD_REG_SET (this_unavailable,
                                  reg_class_contents[last->cl]);
                                  reg_class_contents[last->cl]);
 
 
          if (this->need_caller_save_reg)
          if (this->need_caller_save_reg)
            IOR_HARD_REG_SET (this_unavailable, call_used_reg_set);
            IOR_HARD_REG_SET (this_unavailable, call_used_reg_set);
 
 
          merge_overlapping_regs (bb, &this_unavailable, this);
          merge_overlapping_regs (bb, &this_unavailable, this);
 
 
          /* Now potential_regs is a reasonable approximation, let's
          /* Now potential_regs is a reasonable approximation, let's
             have a closer look at each register still in there.  */
             have a closer look at each register still in there.  */
          for (new_reg = 0; new_reg < FIRST_PSEUDO_REGISTER; new_reg++)
          for (new_reg = 0; new_reg < FIRST_PSEUDO_REGISTER; new_reg++)
            {
            {
              int nregs = hard_regno_nregs[new_reg][GET_MODE (*this->loc)];
              int nregs = hard_regno_nregs[new_reg][GET_MODE (*this->loc)];
 
 
              for (i = nregs - 1; i >= 0; --i)
              for (i = nregs - 1; i >= 0; --i)
                if (TEST_HARD_REG_BIT (this_unavailable, new_reg + i)
                if (TEST_HARD_REG_BIT (this_unavailable, new_reg + i)
                    || fixed_regs[new_reg + i]
                    || fixed_regs[new_reg + i]
                    || global_regs[new_reg + i]
                    || global_regs[new_reg + i]
                    /* Can't use regs which aren't saved by the prologue.  */
                    /* Can't use regs which aren't saved by the prologue.  */
                    || (! regs_ever_live[new_reg + i]
                    || (! regs_ever_live[new_reg + i]
                        && ! call_used_regs[new_reg + i])
                        && ! call_used_regs[new_reg + i])
#ifdef LEAF_REGISTERS
#ifdef LEAF_REGISTERS
                    /* We can't use a non-leaf register if we're in a
                    /* We can't use a non-leaf register if we're in a
                       leaf function.  */
                       leaf function.  */
                    || (current_function_is_leaf
                    || (current_function_is_leaf
                        && !LEAF_REGISTERS[new_reg + i])
                        && !LEAF_REGISTERS[new_reg + i])
#endif
#endif
#ifdef HARD_REGNO_RENAME_OK
#ifdef HARD_REGNO_RENAME_OK
                    || ! HARD_REGNO_RENAME_OK (reg + i, new_reg + i)
                    || ! HARD_REGNO_RENAME_OK (reg + i, new_reg + i)
#endif
#endif
                    )
                    )
                  break;
                  break;
              if (i >= 0)
              if (i >= 0)
                continue;
                continue;
 
 
              /* See whether it accepts all modes that occur in
              /* See whether it accepts all modes that occur in
                 definition and uses.  */
                 definition and uses.  */
              for (tmp = this; tmp; tmp = tmp->next_use)
              for (tmp = this; tmp; tmp = tmp->next_use)
                if (! HARD_REGNO_MODE_OK (new_reg, GET_MODE (*tmp->loc))
                if (! HARD_REGNO_MODE_OK (new_reg, GET_MODE (*tmp->loc))
                    || (tmp->need_caller_save_reg
                    || (tmp->need_caller_save_reg
                        && ! (HARD_REGNO_CALL_PART_CLOBBERED
                        && ! (HARD_REGNO_CALL_PART_CLOBBERED
                              (reg, GET_MODE (*tmp->loc)))
                              (reg, GET_MODE (*tmp->loc)))
                        && (HARD_REGNO_CALL_PART_CLOBBERED
                        && (HARD_REGNO_CALL_PART_CLOBBERED
                            (new_reg, GET_MODE (*tmp->loc)))))
                            (new_reg, GET_MODE (*tmp->loc)))))
                  break;
                  break;
              if (! tmp)
              if (! tmp)
                {
                {
                  if (tick[best_new_reg] > tick[new_reg])
                  if (tick[best_new_reg] > tick[new_reg])
                    best_new_reg = new_reg;
                    best_new_reg = new_reg;
                }
                }
            }
            }
 
 
          if (dump_file)
          if (dump_file)
            {
            {
              fprintf (dump_file, "Register %s in insn %d",
              fprintf (dump_file, "Register %s in insn %d",
                       reg_names[reg], INSN_UID (last->insn));
                       reg_names[reg], INSN_UID (last->insn));
              if (last->need_caller_save_reg)
              if (last->need_caller_save_reg)
                fprintf (dump_file, " crosses a call");
                fprintf (dump_file, " crosses a call");
            }
            }
 
 
          if (best_new_reg == reg)
          if (best_new_reg == reg)
            {
            {
              tick[reg] = ++this_tick;
              tick[reg] = ++this_tick;
              if (dump_file)
              if (dump_file)
                fprintf (dump_file, "; no available better choice\n");
                fprintf (dump_file, "; no available better choice\n");
              continue;
              continue;
            }
            }
 
 
          do_replace (this, best_new_reg);
          do_replace (this, best_new_reg);
          tick[best_new_reg] = ++this_tick;
          tick[best_new_reg] = ++this_tick;
          regs_ever_live[best_new_reg] = 1;
          regs_ever_live[best_new_reg] = 1;
 
 
          if (dump_file)
          if (dump_file)
            fprintf (dump_file, ", renamed as %s\n", reg_names[best_new_reg]);
            fprintf (dump_file, ", renamed as %s\n", reg_names[best_new_reg]);
        }
        }
 
 
      obstack_free (&rename_obstack, first_obj);
      obstack_free (&rename_obstack, first_obj);
    }
    }
 
 
  obstack_free (&rename_obstack, NULL);
  obstack_free (&rename_obstack, NULL);
 
 
  if (dump_file)
  if (dump_file)
    fputc ('\n', dump_file);
    fputc ('\n', dump_file);
 
 
  count_or_remove_death_notes (NULL, 1);
  count_or_remove_death_notes (NULL, 1);
  update_life_info (NULL, UPDATE_LIFE_LOCAL,
  update_life_info (NULL, UPDATE_LIFE_LOCAL,
                    PROP_DEATH_NOTES);
                    PROP_DEATH_NOTES);
}
}
 
 
static void
static void
do_replace (struct du_chain *chain, int reg)
do_replace (struct du_chain *chain, int reg)
{
{
  while (chain)
  while (chain)
    {
    {
      unsigned int regno = ORIGINAL_REGNO (*chain->loc);
      unsigned int regno = ORIGINAL_REGNO (*chain->loc);
      struct reg_attrs * attr = REG_ATTRS (*chain->loc);
      struct reg_attrs * attr = REG_ATTRS (*chain->loc);
 
 
      *chain->loc = gen_raw_REG (GET_MODE (*chain->loc), reg);
      *chain->loc = gen_raw_REG (GET_MODE (*chain->loc), reg);
      if (regno >= FIRST_PSEUDO_REGISTER)
      if (regno >= FIRST_PSEUDO_REGISTER)
        ORIGINAL_REGNO (*chain->loc) = regno;
        ORIGINAL_REGNO (*chain->loc) = regno;
      REG_ATTRS (*chain->loc) = attr;
      REG_ATTRS (*chain->loc) = attr;
      chain = chain->next_use;
      chain = chain->next_use;
    }
    }
}
}
 
 
 
 
static struct du_chain *open_chains;
static struct du_chain *open_chains;
static struct du_chain *closed_chains;
static struct du_chain *closed_chains;
 
 
static void
static void
scan_rtx_reg (rtx insn, rtx *loc, enum reg_class cl,
scan_rtx_reg (rtx insn, rtx *loc, enum reg_class cl,
              enum scan_actions action, enum op_type type, int earlyclobber)
              enum scan_actions action, enum op_type type, int earlyclobber)
{
{
  struct du_chain **p;
  struct du_chain **p;
  rtx x = *loc;
  rtx x = *loc;
  enum machine_mode mode = GET_MODE (x);
  enum machine_mode mode = GET_MODE (x);
  int this_regno = REGNO (x);
  int this_regno = REGNO (x);
  int this_nregs = hard_regno_nregs[this_regno][mode];
  int this_nregs = hard_regno_nregs[this_regno][mode];
 
 
  if (action == mark_write)
  if (action == mark_write)
    {
    {
      if (type == OP_OUT)
      if (type == OP_OUT)
        {
        {
          struct du_chain *this
          struct du_chain *this
            = obstack_alloc (&rename_obstack, sizeof (struct du_chain));
            = obstack_alloc (&rename_obstack, sizeof (struct du_chain));
          this->next_use = 0;
          this->next_use = 0;
          this->next_chain = open_chains;
          this->next_chain = open_chains;
          this->loc = loc;
          this->loc = loc;
          this->insn = insn;
          this->insn = insn;
          this->cl = cl;
          this->cl = cl;
          this->need_caller_save_reg = 0;
          this->need_caller_save_reg = 0;
          this->earlyclobber = earlyclobber;
          this->earlyclobber = earlyclobber;
          open_chains = this;
          open_chains = this;
        }
        }
      return;
      return;
    }
    }
 
 
  if ((type == OP_OUT) != (action == terminate_write || action == mark_access))
  if ((type == OP_OUT) != (action == terminate_write || action == mark_access))
    return;
    return;
 
 
  for (p = &open_chains; *p;)
  for (p = &open_chains; *p;)
    {
    {
      struct du_chain *this = *p;
      struct du_chain *this = *p;
 
 
      /* Check if the chain has been terminated if it has then skip to
      /* Check if the chain has been terminated if it has then skip to
         the next chain.
         the next chain.
 
 
         This can happen when we've already appended the location to
         This can happen when we've already appended the location to
         the chain in Step 3, but are trying to hide in-out operands
         the chain in Step 3, but are trying to hide in-out operands
         from terminate_write in Step 5.  */
         from terminate_write in Step 5.  */
 
 
      if (*this->loc == cc0_rtx)
      if (*this->loc == cc0_rtx)
        p = &this->next_chain;
        p = &this->next_chain;
      else
      else
        {
        {
          int regno = REGNO (*this->loc);
          int regno = REGNO (*this->loc);
          int nregs = hard_regno_nregs[regno][GET_MODE (*this->loc)];
          int nregs = hard_regno_nregs[regno][GET_MODE (*this->loc)];
          int exact_match = (regno == this_regno && nregs == this_nregs);
          int exact_match = (regno == this_regno && nregs == this_nregs);
 
 
          if (regno + nregs <= this_regno
          if (regno + nregs <= this_regno
              || this_regno + this_nregs <= regno)
              || this_regno + this_nregs <= regno)
            {
            {
              p = &this->next_chain;
              p = &this->next_chain;
              continue;
              continue;
            }
            }
 
 
          if (action == mark_read || action == mark_access)
          if (action == mark_read || action == mark_access)
            {
            {
              gcc_assert (exact_match);
              gcc_assert (exact_match);
 
 
              /* ??? Class NO_REGS can happen if the md file makes use of
              /* ??? Class NO_REGS can happen if the md file makes use of
                 EXTRA_CONSTRAINTS to match registers.  Which is arguably
                 EXTRA_CONSTRAINTS to match registers.  Which is arguably
                 wrong, but there we are.  Since we know not what this may
                 wrong, but there we are.  Since we know not what this may
                 be replaced with, terminate the chain.  */
                 be replaced with, terminate the chain.  */
              if (cl != NO_REGS)
              if (cl != NO_REGS)
                {
                {
                  this = obstack_alloc (&rename_obstack, sizeof (struct du_chain));
                  this = obstack_alloc (&rename_obstack, sizeof (struct du_chain));
                  this->next_use = 0;
                  this->next_use = 0;
                  this->next_chain = (*p)->next_chain;
                  this->next_chain = (*p)->next_chain;
                  this->loc = loc;
                  this->loc = loc;
                  this->insn = insn;
                  this->insn = insn;
                  this->cl = cl;
                  this->cl = cl;
                  this->need_caller_save_reg = 0;
                  this->need_caller_save_reg = 0;
                  while (*p)
                  while (*p)
                    p = &(*p)->next_use;
                    p = &(*p)->next_use;
                  *p = this;
                  *p = this;
                  return;
                  return;
                }
                }
            }
            }
 
 
          if (action != terminate_overlapping_read || ! exact_match)
          if (action != terminate_overlapping_read || ! exact_match)
            {
            {
              struct du_chain *next = this->next_chain;
              struct du_chain *next = this->next_chain;
 
 
              /* Whether the terminated chain can be used for renaming
              /* Whether the terminated chain can be used for renaming
                 depends on the action and this being an exact match.
                 depends on the action and this being an exact match.
                 In either case, we remove this element from open_chains.  */
                 In either case, we remove this element from open_chains.  */
 
 
              if ((action == terminate_dead || action == terminate_write)
              if ((action == terminate_dead || action == terminate_write)
                  && exact_match)
                  && exact_match)
                {
                {
                  this->next_chain = closed_chains;
                  this->next_chain = closed_chains;
                  closed_chains = this;
                  closed_chains = this;
                  if (dump_file)
                  if (dump_file)
                    fprintf (dump_file,
                    fprintf (dump_file,
                             "Closing chain %s at insn %d (%s)\n",
                             "Closing chain %s at insn %d (%s)\n",
                             reg_names[REGNO (*this->loc)], INSN_UID (insn),
                             reg_names[REGNO (*this->loc)], INSN_UID (insn),
                             scan_actions_name[(int) action]);
                             scan_actions_name[(int) action]);
                }
                }
              else
              else
                {
                {
                  if (dump_file)
                  if (dump_file)
                    fprintf (dump_file,
                    fprintf (dump_file,
                             "Discarding chain %s at insn %d (%s)\n",
                             "Discarding chain %s at insn %d (%s)\n",
                             reg_names[REGNO (*this->loc)], INSN_UID (insn),
                             reg_names[REGNO (*this->loc)], INSN_UID (insn),
                             scan_actions_name[(int) action]);
                             scan_actions_name[(int) action]);
                }
                }
              *p = next;
              *p = next;
            }
            }
          else
          else
            p = &this->next_chain;
            p = &this->next_chain;
        }
        }
    }
    }
}
}
 
 
/* Adapted from find_reloads_address_1.  CL is INDEX_REG_CLASS or
/* Adapted from find_reloads_address_1.  CL is INDEX_REG_CLASS or
   BASE_REG_CLASS depending on how the register is being considered.  */
   BASE_REG_CLASS depending on how the register is being considered.  */
 
 
static void
static void
scan_rtx_address (rtx insn, rtx *loc, enum reg_class cl,
scan_rtx_address (rtx insn, rtx *loc, enum reg_class cl,
                  enum scan_actions action, enum machine_mode mode)
                  enum scan_actions action, enum machine_mode mode)
{
{
  rtx x = *loc;
  rtx x = *loc;
  RTX_CODE code = GET_CODE (x);
  RTX_CODE code = GET_CODE (x);
  const char *fmt;
  const char *fmt;
  int i, j;
  int i, j;
 
 
  if (action == mark_write || action == mark_access)
  if (action == mark_write || action == mark_access)
    return;
    return;
 
 
  switch (code)
  switch (code)
    {
    {
    case PLUS:
    case PLUS:
      {
      {
        rtx orig_op0 = XEXP (x, 0);
        rtx orig_op0 = XEXP (x, 0);
        rtx orig_op1 = XEXP (x, 1);
        rtx orig_op1 = XEXP (x, 1);
        RTX_CODE code0 = GET_CODE (orig_op0);
        RTX_CODE code0 = GET_CODE (orig_op0);
        RTX_CODE code1 = GET_CODE (orig_op1);
        RTX_CODE code1 = GET_CODE (orig_op1);
        rtx op0 = orig_op0;
        rtx op0 = orig_op0;
        rtx op1 = orig_op1;
        rtx op1 = orig_op1;
        rtx *locI = NULL;
        rtx *locI = NULL;
        rtx *locB = NULL;
        rtx *locB = NULL;
        enum rtx_code index_code = SCRATCH;
        enum rtx_code index_code = SCRATCH;
 
 
        if (GET_CODE (op0) == SUBREG)
        if (GET_CODE (op0) == SUBREG)
          {
          {
            op0 = SUBREG_REG (op0);
            op0 = SUBREG_REG (op0);
            code0 = GET_CODE (op0);
            code0 = GET_CODE (op0);
          }
          }
 
 
        if (GET_CODE (op1) == SUBREG)
        if (GET_CODE (op1) == SUBREG)
          {
          {
            op1 = SUBREG_REG (op1);
            op1 = SUBREG_REG (op1);
            code1 = GET_CODE (op1);
            code1 = GET_CODE (op1);
          }
          }
 
 
        if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
        if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
            || code0 == ZERO_EXTEND || code1 == MEM)
            || code0 == ZERO_EXTEND || code1 == MEM)
          {
          {
            locI = &XEXP (x, 0);
            locI = &XEXP (x, 0);
            locB = &XEXP (x, 1);
            locB = &XEXP (x, 1);
            index_code = GET_CODE (*locI);
            index_code = GET_CODE (*locI);
          }
          }
        else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
        else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
                 || code1 == ZERO_EXTEND || code0 == MEM)
                 || code1 == ZERO_EXTEND || code0 == MEM)
          {
          {
            locI = &XEXP (x, 1);
            locI = &XEXP (x, 1);
            locB = &XEXP (x, 0);
            locB = &XEXP (x, 0);
            index_code = GET_CODE (*locI);
            index_code = GET_CODE (*locI);
          }
          }
        else if (code0 == CONST_INT || code0 == CONST
        else if (code0 == CONST_INT || code0 == CONST
                 || code0 == SYMBOL_REF || code0 == LABEL_REF)
                 || code0 == SYMBOL_REF || code0 == LABEL_REF)
          {
          {
            locB = &XEXP (x, 1);
            locB = &XEXP (x, 1);
            index_code = GET_CODE (XEXP (x, 0));
            index_code = GET_CODE (XEXP (x, 0));
          }
          }
        else if (code1 == CONST_INT || code1 == CONST
        else if (code1 == CONST_INT || code1 == CONST
                 || code1 == SYMBOL_REF || code1 == LABEL_REF)
                 || code1 == SYMBOL_REF || code1 == LABEL_REF)
          {
          {
            locB = &XEXP (x, 0);
            locB = &XEXP (x, 0);
            index_code = GET_CODE (XEXP (x, 1));
            index_code = GET_CODE (XEXP (x, 1));
          }
          }
        else if (code0 == REG && code1 == REG)
        else if (code0 == REG && code1 == REG)
          {
          {
            int index_op;
            int index_op;
            unsigned regno0 = REGNO (op0), regno1 = REGNO (op1);
            unsigned regno0 = REGNO (op0), regno1 = REGNO (op1);
 
 
            if (REGNO_OK_FOR_INDEX_P (regno0)
            if (REGNO_OK_FOR_INDEX_P (regno0)
                && regno_ok_for_base_p (regno1, mode, PLUS, REG))
                && regno_ok_for_base_p (regno1, mode, PLUS, REG))
              index_op = 0;
              index_op = 0;
            else if (REGNO_OK_FOR_INDEX_P (regno1)
            else if (REGNO_OK_FOR_INDEX_P (regno1)
                     && regno_ok_for_base_p (regno0, mode, PLUS, REG))
                     && regno_ok_for_base_p (regno0, mode, PLUS, REG))
              index_op = 1;
              index_op = 1;
            else if (regno_ok_for_base_p (regno1, mode, PLUS, REG))
            else if (regno_ok_for_base_p (regno1, mode, PLUS, REG))
              index_op = 0;
              index_op = 0;
            else if (regno_ok_for_base_p (regno0, mode, PLUS, REG))
            else if (regno_ok_for_base_p (regno0, mode, PLUS, REG))
              index_op = 1;
              index_op = 1;
            else if (REGNO_OK_FOR_INDEX_P (regno1))
            else if (REGNO_OK_FOR_INDEX_P (regno1))
              index_op = 1;
              index_op = 1;
            else
            else
              index_op = 0;
              index_op = 0;
 
 
            locI = &XEXP (x, index_op);
            locI = &XEXP (x, index_op);
            locB = &XEXP (x, !index_op);
            locB = &XEXP (x, !index_op);
            index_code = GET_CODE (*locI);
            index_code = GET_CODE (*locI);
          }
          }
        else if (code0 == REG)
        else if (code0 == REG)
          {
          {
            locI = &XEXP (x, 0);
            locI = &XEXP (x, 0);
            locB = &XEXP (x, 1);
            locB = &XEXP (x, 1);
            index_code = GET_CODE (*locI);
            index_code = GET_CODE (*locI);
          }
          }
        else if (code1 == REG)
        else if (code1 == REG)
          {
          {
            locI = &XEXP (x, 1);
            locI = &XEXP (x, 1);
            locB = &XEXP (x, 0);
            locB = &XEXP (x, 0);
            index_code = GET_CODE (*locI);
            index_code = GET_CODE (*locI);
          }
          }
 
 
        if (locI)
        if (locI)
          scan_rtx_address (insn, locI, INDEX_REG_CLASS, action, mode);
          scan_rtx_address (insn, locI, INDEX_REG_CLASS, action, mode);
        if (locB)
        if (locB)
          scan_rtx_address (insn, locB, base_reg_class (mode, PLUS, index_code),
          scan_rtx_address (insn, locB, base_reg_class (mode, PLUS, index_code),
                            action, mode);
                            action, mode);
 
 
        return;
        return;
      }
      }
 
 
    case POST_INC:
    case POST_INC:
    case POST_DEC:
    case POST_DEC:
    case POST_MODIFY:
    case POST_MODIFY:
    case PRE_INC:
    case PRE_INC:
    case PRE_DEC:
    case PRE_DEC:
    case PRE_MODIFY:
    case PRE_MODIFY:
#ifndef AUTO_INC_DEC
#ifndef AUTO_INC_DEC
      /* If the target doesn't claim to handle autoinc, this must be
      /* If the target doesn't claim to handle autoinc, this must be
         something special, like a stack push.  Kill this chain.  */
         something special, like a stack push.  Kill this chain.  */
      action = terminate_all_read;
      action = terminate_all_read;
#endif
#endif
      break;
      break;
 
 
    case MEM:
    case MEM:
      scan_rtx_address (insn, &XEXP (x, 0),
      scan_rtx_address (insn, &XEXP (x, 0),
                        base_reg_class (GET_MODE (x), MEM, SCRATCH), action,
                        base_reg_class (GET_MODE (x), MEM, SCRATCH), action,
                        GET_MODE (x));
                        GET_MODE (x));
      return;
      return;
 
 
    case REG:
    case REG:
      scan_rtx_reg (insn, loc, cl, action, OP_IN, 0);
      scan_rtx_reg (insn, loc, cl, action, OP_IN, 0);
      return;
      return;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  fmt = GET_RTX_FORMAT (code);
  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
    {
      if (fmt[i] == 'e')
      if (fmt[i] == 'e')
        scan_rtx_address (insn, &XEXP (x, i), cl, action, mode);
        scan_rtx_address (insn, &XEXP (x, i), cl, action, mode);
      else if (fmt[i] == 'E')
      else if (fmt[i] == 'E')
        for (j = XVECLEN (x, i) - 1; j >= 0; j--)
        for (j = XVECLEN (x, i) - 1; j >= 0; j--)
          scan_rtx_address (insn, &XVECEXP (x, i, j), cl, action, mode);
          scan_rtx_address (insn, &XVECEXP (x, i, j), cl, action, mode);
    }
    }
}
}
 
 
static void
static void
scan_rtx (rtx insn, rtx *loc, enum reg_class cl,
scan_rtx (rtx insn, rtx *loc, enum reg_class cl,
          enum scan_actions action, enum op_type type, int earlyclobber)
          enum scan_actions action, enum op_type type, int earlyclobber)
{
{
  const char *fmt;
  const char *fmt;
  rtx x = *loc;
  rtx x = *loc;
  enum rtx_code code = GET_CODE (x);
  enum rtx_code code = GET_CODE (x);
  int i, j;
  int i, j;
 
 
  code = GET_CODE (x);
  code = GET_CODE (x);
  switch (code)
  switch (code)
    {
    {
    case CONST:
    case CONST:
    case CONST_INT:
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST_DOUBLE:
    case CONST_VECTOR:
    case CONST_VECTOR:
    case SYMBOL_REF:
    case SYMBOL_REF:
    case LABEL_REF:
    case LABEL_REF:
    case CC0:
    case CC0:
    case PC:
    case PC:
      return;
      return;
 
 
    case REG:
    case REG:
      scan_rtx_reg (insn, loc, cl, action, type, earlyclobber);
      scan_rtx_reg (insn, loc, cl, action, type, earlyclobber);
      return;
      return;
 
 
    case MEM:
    case MEM:
      scan_rtx_address (insn, &XEXP (x, 0),
      scan_rtx_address (insn, &XEXP (x, 0),
                        base_reg_class (GET_MODE (x), MEM, SCRATCH), action,
                        base_reg_class (GET_MODE (x), MEM, SCRATCH), action,
                        GET_MODE (x));
                        GET_MODE (x));
      return;
      return;
 
 
    case SET:
    case SET:
      scan_rtx (insn, &SET_SRC (x), cl, action, OP_IN, 0);
      scan_rtx (insn, &SET_SRC (x), cl, action, OP_IN, 0);
      scan_rtx (insn, &SET_DEST (x), cl, action,
      scan_rtx (insn, &SET_DEST (x), cl, action,
                GET_CODE (PATTERN (insn)) == COND_EXEC ? OP_INOUT : OP_OUT, 0);
                GET_CODE (PATTERN (insn)) == COND_EXEC ? OP_INOUT : OP_OUT, 0);
      return;
      return;
 
 
    case STRICT_LOW_PART:
    case STRICT_LOW_PART:
      scan_rtx (insn, &XEXP (x, 0), cl, action, OP_INOUT, earlyclobber);
      scan_rtx (insn, &XEXP (x, 0), cl, action, OP_INOUT, earlyclobber);
      return;
      return;
 
 
    case ZERO_EXTRACT:
    case ZERO_EXTRACT:
    case SIGN_EXTRACT:
    case SIGN_EXTRACT:
      scan_rtx (insn, &XEXP (x, 0), cl, action,
      scan_rtx (insn, &XEXP (x, 0), cl, action,
                type == OP_IN ? OP_IN : OP_INOUT, earlyclobber);
                type == OP_IN ? OP_IN : OP_INOUT, earlyclobber);
      scan_rtx (insn, &XEXP (x, 1), cl, action, OP_IN, 0);
      scan_rtx (insn, &XEXP (x, 1), cl, action, OP_IN, 0);
      scan_rtx (insn, &XEXP (x, 2), cl, action, OP_IN, 0);
      scan_rtx (insn, &XEXP (x, 2), cl, action, OP_IN, 0);
      return;
      return;
 
 
    case POST_INC:
    case POST_INC:
    case PRE_INC:
    case PRE_INC:
    case POST_DEC:
    case POST_DEC:
    case PRE_DEC:
    case PRE_DEC:
    case POST_MODIFY:
    case POST_MODIFY:
    case PRE_MODIFY:
    case PRE_MODIFY:
      /* Should only happen inside MEM.  */
      /* Should only happen inside MEM.  */
      gcc_unreachable ();
      gcc_unreachable ();
 
 
    case CLOBBER:
    case CLOBBER:
      scan_rtx (insn, &SET_DEST (x), cl, action,
      scan_rtx (insn, &SET_DEST (x), cl, action,
                GET_CODE (PATTERN (insn)) == COND_EXEC ? OP_INOUT : OP_OUT, 0);
                GET_CODE (PATTERN (insn)) == COND_EXEC ? OP_INOUT : OP_OUT, 0);
      return;
      return;
 
 
    case EXPR_LIST:
    case EXPR_LIST:
      scan_rtx (insn, &XEXP (x, 0), cl, action, type, 0);
      scan_rtx (insn, &XEXP (x, 0), cl, action, type, 0);
      if (XEXP (x, 1))
      if (XEXP (x, 1))
        scan_rtx (insn, &XEXP (x, 1), cl, action, type, 0);
        scan_rtx (insn, &XEXP (x, 1), cl, action, type, 0);
      return;
      return;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  fmt = GET_RTX_FORMAT (code);
  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
    {
      if (fmt[i] == 'e')
      if (fmt[i] == 'e')
        scan_rtx (insn, &XEXP (x, i), cl, action, type, 0);
        scan_rtx (insn, &XEXP (x, i), cl, action, type, 0);
      else if (fmt[i] == 'E')
      else if (fmt[i] == 'E')
        for (j = XVECLEN (x, i) - 1; j >= 0; j--)
        for (j = XVECLEN (x, i) - 1; j >= 0; j--)
          scan_rtx (insn, &XVECEXP (x, i, j), cl, action, type, 0);
          scan_rtx (insn, &XVECEXP (x, i, j), cl, action, type, 0);
    }
    }
}
}
 
 
/* Build def/use chain.  */
/* Build def/use chain.  */
 
 
static struct du_chain *
static struct du_chain *
build_def_use (basic_block bb)
build_def_use (basic_block bb)
{
{
  rtx insn;
  rtx insn;
 
 
  open_chains = closed_chains = NULL;
  open_chains = closed_chains = NULL;
 
 
  for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
  for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
    {
    {
      if (INSN_P (insn))
      if (INSN_P (insn))
        {
        {
          int n_ops;
          int n_ops;
          rtx note;
          rtx note;
          rtx old_operands[MAX_RECOG_OPERANDS];
          rtx old_operands[MAX_RECOG_OPERANDS];
          rtx old_dups[MAX_DUP_OPERANDS];
          rtx old_dups[MAX_DUP_OPERANDS];
          int i, icode;
          int i, icode;
          int alt;
          int alt;
          int predicated;
          int predicated;
 
 
          /* Process the insn, determining its effect on the def-use
          /* Process the insn, determining its effect on the def-use
             chains.  We perform the following steps with the register
             chains.  We perform the following steps with the register
             references in the insn:
             references in the insn:
             (1) Any read that overlaps an open chain, but doesn't exactly
             (1) Any read that overlaps an open chain, but doesn't exactly
                 match, causes that chain to be closed.  We can't deal
                 match, causes that chain to be closed.  We can't deal
                 with overlaps yet.
                 with overlaps yet.
             (2) Any read outside an operand causes any chain it overlaps
             (2) Any read outside an operand causes any chain it overlaps
                 with to be closed, since we can't replace it.
                 with to be closed, since we can't replace it.
             (3) Any read inside an operand is added if there's already
             (3) Any read inside an operand is added if there's already
                 an open chain for it.
                 an open chain for it.
             (4) For any REG_DEAD note we find, close open chains that
             (4) For any REG_DEAD note we find, close open chains that
                 overlap it.
                 overlap it.
             (5) For any write we find, close open chains that overlap it.
             (5) For any write we find, close open chains that overlap it.
             (6) For any write we find in an operand, make a new chain.
             (6) For any write we find in an operand, make a new chain.
             (7) For any REG_UNUSED, close any chains we just opened.  */
             (7) For any REG_UNUSED, close any chains we just opened.  */
 
 
          icode = recog_memoized (insn);
          icode = recog_memoized (insn);
          extract_insn (insn);
          extract_insn (insn);
          if (! constrain_operands (1))
          if (! constrain_operands (1))
            fatal_insn_not_found (insn);
            fatal_insn_not_found (insn);
          preprocess_constraints ();
          preprocess_constraints ();
          alt = which_alternative;
          alt = which_alternative;
          n_ops = recog_data.n_operands;
          n_ops = recog_data.n_operands;
 
 
          /* Simplify the code below by rewriting things to reflect
          /* Simplify the code below by rewriting things to reflect
             matching constraints.  Also promote OP_OUT to OP_INOUT
             matching constraints.  Also promote OP_OUT to OP_INOUT
             in predicated instructions.  */
             in predicated instructions.  */
 
 
          predicated = GET_CODE (PATTERN (insn)) == COND_EXEC;
          predicated = GET_CODE (PATTERN (insn)) == COND_EXEC;
          for (i = 0; i < n_ops; ++i)
          for (i = 0; i < n_ops; ++i)
            {
            {
              int matches = recog_op_alt[i][alt].matches;
              int matches = recog_op_alt[i][alt].matches;
              if (matches >= 0)
              if (matches >= 0)
                recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
                recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
              if (matches >= 0 || recog_op_alt[i][alt].matched >= 0
              if (matches >= 0 || recog_op_alt[i][alt].matched >= 0
                  || (predicated && recog_data.operand_type[i] == OP_OUT))
                  || (predicated && recog_data.operand_type[i] == OP_OUT))
                recog_data.operand_type[i] = OP_INOUT;
                recog_data.operand_type[i] = OP_INOUT;
            }
            }
 
 
          /* Step 1: Close chains for which we have overlapping reads.  */
          /* Step 1: Close chains for which we have overlapping reads.  */
          for (i = 0; i < n_ops; i++)
          for (i = 0; i < n_ops; i++)
            scan_rtx (insn, recog_data.operand_loc[i],
            scan_rtx (insn, recog_data.operand_loc[i],
                      NO_REGS, terminate_overlapping_read,
                      NO_REGS, terminate_overlapping_read,
                      recog_data.operand_type[i], 0);
                      recog_data.operand_type[i], 0);
 
 
          /* Step 2: Close chains for which we have reads outside operands.
          /* Step 2: Close chains for which we have reads outside operands.
             We do this by munging all operands into CC0, and closing
             We do this by munging all operands into CC0, and closing
             everything remaining.  */
             everything remaining.  */
 
 
          for (i = 0; i < n_ops; i++)
          for (i = 0; i < n_ops; i++)
            {
            {
              old_operands[i] = recog_data.operand[i];
              old_operands[i] = recog_data.operand[i];
              /* Don't squash match_operator or match_parallel here, since
              /* Don't squash match_operator or match_parallel here, since
                 we don't know that all of the contained registers are
                 we don't know that all of the contained registers are
                 reachable by proper operands.  */
                 reachable by proper operands.  */
              if (recog_data.constraints[i][0] == '\0')
              if (recog_data.constraints[i][0] == '\0')
                continue;
                continue;
              *recog_data.operand_loc[i] = cc0_rtx;
              *recog_data.operand_loc[i] = cc0_rtx;
            }
            }
          for (i = 0; i < recog_data.n_dups; i++)
          for (i = 0; i < recog_data.n_dups; i++)
            {
            {
              int dup_num = recog_data.dup_num[i];
              int dup_num = recog_data.dup_num[i];
 
 
              old_dups[i] = *recog_data.dup_loc[i];
              old_dups[i] = *recog_data.dup_loc[i];
              *recog_data.dup_loc[i] = cc0_rtx;
              *recog_data.dup_loc[i] = cc0_rtx;
 
 
              /* For match_dup of match_operator or match_parallel, share
              /* For match_dup of match_operator or match_parallel, share
                 them, so that we don't miss changes in the dup.  */
                 them, so that we don't miss changes in the dup.  */
              if (icode >= 0
              if (icode >= 0
                  && insn_data[icode].operand[dup_num].eliminable == 0)
                  && insn_data[icode].operand[dup_num].eliminable == 0)
                old_dups[i] = recog_data.operand[dup_num];
                old_dups[i] = recog_data.operand[dup_num];
            }
            }
 
 
          scan_rtx (insn, &PATTERN (insn), NO_REGS, terminate_all_read,
          scan_rtx (insn, &PATTERN (insn), NO_REGS, terminate_all_read,
                    OP_IN, 0);
                    OP_IN, 0);
 
 
          for (i = 0; i < recog_data.n_dups; i++)
          for (i = 0; i < recog_data.n_dups; i++)
            *recog_data.dup_loc[i] = old_dups[i];
            *recog_data.dup_loc[i] = old_dups[i];
          for (i = 0; i < n_ops; i++)
          for (i = 0; i < n_ops; i++)
            *recog_data.operand_loc[i] = old_operands[i];
            *recog_data.operand_loc[i] = old_operands[i];
 
 
          /* Step 2B: Can't rename function call argument registers.  */
          /* Step 2B: Can't rename function call argument registers.  */
          if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
          if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
            scan_rtx (insn, &CALL_INSN_FUNCTION_USAGE (insn),
            scan_rtx (insn, &CALL_INSN_FUNCTION_USAGE (insn),
                      NO_REGS, terminate_all_read, OP_IN, 0);
                      NO_REGS, terminate_all_read, OP_IN, 0);
 
 
          /* Step 2C: Can't rename asm operands that were originally
          /* Step 2C: Can't rename asm operands that were originally
             hard registers.  */
             hard registers.  */
          if (asm_noperands (PATTERN (insn)) > 0)
          if (asm_noperands (PATTERN (insn)) > 0)
            for (i = 0; i < n_ops; i++)
            for (i = 0; i < n_ops; i++)
              {
              {
                rtx *loc = recog_data.operand_loc[i];
                rtx *loc = recog_data.operand_loc[i];
                rtx op = *loc;
                rtx op = *loc;
 
 
                if (REG_P (op)
                if (REG_P (op)
                    && REGNO (op) == ORIGINAL_REGNO (op)
                    && REGNO (op) == ORIGINAL_REGNO (op)
                    && (recog_data.operand_type[i] == OP_IN
                    && (recog_data.operand_type[i] == OP_IN
                        || recog_data.operand_type[i] == OP_INOUT))
                        || recog_data.operand_type[i] == OP_INOUT))
                  scan_rtx (insn, loc, NO_REGS, terminate_all_read, OP_IN, 0);
                  scan_rtx (insn, loc, NO_REGS, terminate_all_read, OP_IN, 0);
              }
              }
 
 
          /* Step 3: Append to chains for reads inside operands.  */
          /* Step 3: Append to chains for reads inside operands.  */
          for (i = 0; i < n_ops + recog_data.n_dups; i++)
          for (i = 0; i < n_ops + recog_data.n_dups; i++)
            {
            {
              int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
              int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
              rtx *loc = (i < n_ops
              rtx *loc = (i < n_ops
                          ? recog_data.operand_loc[opn]
                          ? recog_data.operand_loc[opn]
                          : recog_data.dup_loc[i - n_ops]);
                          : recog_data.dup_loc[i - n_ops]);
              enum reg_class cl = recog_op_alt[opn][alt].cl;
              enum reg_class cl = recog_op_alt[opn][alt].cl;
              enum op_type type = recog_data.operand_type[opn];
              enum op_type type = recog_data.operand_type[opn];
 
 
              /* Don't scan match_operand here, since we've no reg class
              /* Don't scan match_operand here, since we've no reg class
                 information to pass down.  Any operands that we could
                 information to pass down.  Any operands that we could
                 substitute in will be represented elsewhere.  */
                 substitute in will be represented elsewhere.  */
              if (recog_data.constraints[opn][0] == '\0')
              if (recog_data.constraints[opn][0] == '\0')
                continue;
                continue;
 
 
              if (recog_op_alt[opn][alt].is_address)
              if (recog_op_alt[opn][alt].is_address)
                scan_rtx_address (insn, loc, cl, mark_read, VOIDmode);
                scan_rtx_address (insn, loc, cl, mark_read, VOIDmode);
              else
              else
                scan_rtx (insn, loc, cl, mark_read, type, 0);
                scan_rtx (insn, loc, cl, mark_read, type, 0);
            }
            }
 
 
          /* Step 3B: Record updates for regs in REG_INC notes, and
          /* Step 3B: Record updates for regs in REG_INC notes, and
             source regs in REG_FRAME_RELATED_EXPR notes.  */
             source regs in REG_FRAME_RELATED_EXPR notes.  */
          for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
          for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
            if (REG_NOTE_KIND (note) == REG_INC
            if (REG_NOTE_KIND (note) == REG_INC
                || REG_NOTE_KIND (note) == REG_FRAME_RELATED_EXPR)
                || REG_NOTE_KIND (note) == REG_FRAME_RELATED_EXPR)
              scan_rtx (insn, &XEXP (note, 0), ALL_REGS, mark_read,
              scan_rtx (insn, &XEXP (note, 0), ALL_REGS, mark_read,
                        OP_INOUT, 0);
                        OP_INOUT, 0);
 
 
          /* Step 4: Close chains for registers that die here.  */
          /* Step 4: Close chains for registers that die here.  */
          for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
          for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
            if (REG_NOTE_KIND (note) == REG_DEAD)
            if (REG_NOTE_KIND (note) == REG_DEAD)
              scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead,
              scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead,
                        OP_IN, 0);
                        OP_IN, 0);
 
 
          /* Step 4B: If this is a call, any chain live at this point
          /* Step 4B: If this is a call, any chain live at this point
             requires a caller-saved reg.  */
             requires a caller-saved reg.  */
          if (CALL_P (insn))
          if (CALL_P (insn))
            {
            {
              struct du_chain *p;
              struct du_chain *p;
              for (p = open_chains; p; p = p->next_chain)
              for (p = open_chains; p; p = p->next_chain)
                p->need_caller_save_reg = 1;
                p->need_caller_save_reg = 1;
            }
            }
 
 
          /* Step 5: Close open chains that overlap writes.  Similar to
          /* Step 5: Close open chains that overlap writes.  Similar to
             step 2, we hide in-out operands, since we do not want to
             step 2, we hide in-out operands, since we do not want to
             close these chains.  */
             close these chains.  */
 
 
          for (i = 0; i < n_ops; i++)
          for (i = 0; i < n_ops; i++)
            {
            {
              old_operands[i] = recog_data.operand[i];
              old_operands[i] = recog_data.operand[i];
              if (recog_data.operand_type[i] == OP_INOUT)
              if (recog_data.operand_type[i] == OP_INOUT)
                *recog_data.operand_loc[i] = cc0_rtx;
                *recog_data.operand_loc[i] = cc0_rtx;
            }
            }
          for (i = 0; i < recog_data.n_dups; i++)
          for (i = 0; i < recog_data.n_dups; i++)
            {
            {
              int opn = recog_data.dup_num[i];
              int opn = recog_data.dup_num[i];
              old_dups[i] = *recog_data.dup_loc[i];
              old_dups[i] = *recog_data.dup_loc[i];
              if (recog_data.operand_type[opn] == OP_INOUT)
              if (recog_data.operand_type[opn] == OP_INOUT)
                *recog_data.dup_loc[i] = cc0_rtx;
                *recog_data.dup_loc[i] = cc0_rtx;
            }
            }
 
 
          scan_rtx (insn, &PATTERN (insn), NO_REGS, terminate_write, OP_IN, 0);
          scan_rtx (insn, &PATTERN (insn), NO_REGS, terminate_write, OP_IN, 0);
 
 
          for (i = 0; i < recog_data.n_dups; i++)
          for (i = 0; i < recog_data.n_dups; i++)
            *recog_data.dup_loc[i] = old_dups[i];
            *recog_data.dup_loc[i] = old_dups[i];
          for (i = 0; i < n_ops; i++)
          for (i = 0; i < n_ops; i++)
            *recog_data.operand_loc[i] = old_operands[i];
            *recog_data.operand_loc[i] = old_operands[i];
 
 
          /* Step 6: Begin new chains for writes inside operands.  */
          /* Step 6: Begin new chains for writes inside operands.  */
          /* ??? Many targets have output constraints on the SET_DEST
          /* ??? Many targets have output constraints on the SET_DEST
             of a call insn, which is stupid, since these are certainly
             of a call insn, which is stupid, since these are certainly
             ABI defined hard registers.  Don't change calls at all.
             ABI defined hard registers.  Don't change calls at all.
             Similarly take special care for asm statement that originally
             Similarly take special care for asm statement that originally
             referenced hard registers.  */
             referenced hard registers.  */
          if (asm_noperands (PATTERN (insn)) > 0)
          if (asm_noperands (PATTERN (insn)) > 0)
            {
            {
              for (i = 0; i < n_ops; i++)
              for (i = 0; i < n_ops; i++)
                if (recog_data.operand_type[i] == OP_OUT)
                if (recog_data.operand_type[i] == OP_OUT)
                  {
                  {
                    rtx *loc = recog_data.operand_loc[i];
                    rtx *loc = recog_data.operand_loc[i];
                    rtx op = *loc;
                    rtx op = *loc;
                    enum reg_class cl = recog_op_alt[i][alt].cl;
                    enum reg_class cl = recog_op_alt[i][alt].cl;
 
 
                    if (REG_P (op)
                    if (REG_P (op)
                        && REGNO (op) == ORIGINAL_REGNO (op))
                        && REGNO (op) == ORIGINAL_REGNO (op))
                      continue;
                      continue;
 
 
                    scan_rtx (insn, loc, cl, mark_write, OP_OUT,
                    scan_rtx (insn, loc, cl, mark_write, OP_OUT,
                              recog_op_alt[i][alt].earlyclobber);
                              recog_op_alt[i][alt].earlyclobber);
                  }
                  }
            }
            }
          else if (!CALL_P (insn))
          else if (!CALL_P (insn))
            for (i = 0; i < n_ops + recog_data.n_dups; i++)
            for (i = 0; i < n_ops + recog_data.n_dups; i++)
              {
              {
                int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
                int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
                rtx *loc = (i < n_ops
                rtx *loc = (i < n_ops
                            ? recog_data.operand_loc[opn]
                            ? recog_data.operand_loc[opn]
                            : recog_data.dup_loc[i - n_ops]);
                            : recog_data.dup_loc[i - n_ops]);
                enum reg_class cl = recog_op_alt[opn][alt].cl;
                enum reg_class cl = recog_op_alt[opn][alt].cl;
 
 
                if (recog_data.operand_type[opn] == OP_OUT)
                if (recog_data.operand_type[opn] == OP_OUT)
                  scan_rtx (insn, loc, cl, mark_write, OP_OUT,
                  scan_rtx (insn, loc, cl, mark_write, OP_OUT,
                            recog_op_alt[opn][alt].earlyclobber);
                            recog_op_alt[opn][alt].earlyclobber);
              }
              }
 
 
          /* Step 6B: Record destination regs in REG_FRAME_RELATED_EXPR
          /* Step 6B: Record destination regs in REG_FRAME_RELATED_EXPR
             notes for update.  */
             notes for update.  */
          for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
          for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
            if (REG_NOTE_KIND (note) == REG_FRAME_RELATED_EXPR)
            if (REG_NOTE_KIND (note) == REG_FRAME_RELATED_EXPR)
              scan_rtx (insn, &XEXP (note, 0), ALL_REGS, mark_access,
              scan_rtx (insn, &XEXP (note, 0), ALL_REGS, mark_access,
                        OP_INOUT, 0);
                        OP_INOUT, 0);
 
 
          /* Step 7: Close chains for registers that were never
          /* Step 7: Close chains for registers that were never
             really used here.  */
             really used here.  */
          for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
          for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
            if (REG_NOTE_KIND (note) == REG_UNUSED)
            if (REG_NOTE_KIND (note) == REG_UNUSED)
              scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead,
              scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead,
                        OP_IN, 0);
                        OP_IN, 0);
        }
        }
      if (insn == BB_END (bb))
      if (insn == BB_END (bb))
        break;
        break;
    }
    }
 
 
  /* Since we close every chain when we find a REG_DEAD note, anything that
  /* Since we close every chain when we find a REG_DEAD note, anything that
     is still open lives past the basic block, so it can't be renamed.  */
     is still open lives past the basic block, so it can't be renamed.  */
  return closed_chains;
  return closed_chains;
}
}
 
 
/* Dump all def/use chains in CHAINS to DUMP_FILE.  They are
/* Dump all def/use chains in CHAINS to DUMP_FILE.  They are
   printed in reverse order as that's how we build them.  */
   printed in reverse order as that's how we build them.  */
 
 
static void
static void
dump_def_use_chain (struct du_chain *chains)
dump_def_use_chain (struct du_chain *chains)
{
{
  while (chains)
  while (chains)
    {
    {
      struct du_chain *this = chains;
      struct du_chain *this = chains;
      int r = REGNO (*this->loc);
      int r = REGNO (*this->loc);
      int nregs = hard_regno_nregs[r][GET_MODE (*this->loc)];
      int nregs = hard_regno_nregs[r][GET_MODE (*this->loc)];
      fprintf (dump_file, "Register %s (%d):", reg_names[r], nregs);
      fprintf (dump_file, "Register %s (%d):", reg_names[r], nregs);
      while (this)
      while (this)
        {
        {
          fprintf (dump_file, " %d [%s]", INSN_UID (this->insn),
          fprintf (dump_file, " %d [%s]", INSN_UID (this->insn),
                   reg_class_names[this->cl]);
                   reg_class_names[this->cl]);
          this = this->next_use;
          this = this->next_use;
        }
        }
      fprintf (dump_file, "\n");
      fprintf (dump_file, "\n");
      chains = chains->next_chain;
      chains = chains->next_chain;
    }
    }
}
}


/* The following code does forward propagation of hard register copies.
/* The following code does forward propagation of hard register copies.
   The object is to eliminate as many dependencies as possible, so that
   The object is to eliminate as many dependencies as possible, so that
   we have the most scheduling freedom.  As a side effect, we also clean
   we have the most scheduling freedom.  As a side effect, we also clean
   up some silly register allocation decisions made by reload.  This
   up some silly register allocation decisions made by reload.  This
   code may be obsoleted by a new register allocator.  */
   code may be obsoleted by a new register allocator.  */
 
 
/* For each register, we have a list of registers that contain the same
/* For each register, we have a list of registers that contain the same
   value.  The OLDEST_REGNO field points to the head of the list, and
   value.  The OLDEST_REGNO field points to the head of the list, and
   the NEXT_REGNO field runs through the list.  The MODE field indicates
   the NEXT_REGNO field runs through the list.  The MODE field indicates
   what mode the data is known to be in; this field is VOIDmode when the
   what mode the data is known to be in; this field is VOIDmode when the
   register is not known to contain valid data.  */
   register is not known to contain valid data.  */
 
 
struct value_data_entry
struct value_data_entry
{
{
  enum machine_mode mode;
  enum machine_mode mode;
  unsigned int oldest_regno;
  unsigned int oldest_regno;
  unsigned int next_regno;
  unsigned int next_regno;
};
};
 
 
struct value_data
struct value_data
{
{
  struct value_data_entry e[FIRST_PSEUDO_REGISTER];
  struct value_data_entry e[FIRST_PSEUDO_REGISTER];
  unsigned int max_value_regs;
  unsigned int max_value_regs;
};
};
 
 
static void kill_value_one_regno (unsigned, struct value_data *);
static void kill_value_one_regno (unsigned, struct value_data *);
static void kill_value_regno (unsigned, unsigned, struct value_data *);
static void kill_value_regno (unsigned, unsigned, struct value_data *);
static void kill_value (rtx, struct value_data *);
static void kill_value (rtx, struct value_data *);
static void set_value_regno (unsigned, enum machine_mode, struct value_data *);
static void set_value_regno (unsigned, enum machine_mode, struct value_data *);
static void init_value_data (struct value_data *);
static void init_value_data (struct value_data *);
static void kill_clobbered_value (rtx, rtx, void *);
static void kill_clobbered_value (rtx, rtx, void *);
static void kill_set_value (rtx, rtx, void *);
static void kill_set_value (rtx, rtx, void *);
static int kill_autoinc_value (rtx *, void *);
static int kill_autoinc_value (rtx *, void *);
static void copy_value (rtx, rtx, struct value_data *);
static void copy_value (rtx, rtx, struct value_data *);
static bool mode_change_ok (enum machine_mode, enum machine_mode,
static bool mode_change_ok (enum machine_mode, enum machine_mode,
                            unsigned int);
                            unsigned int);
static rtx maybe_mode_change (enum machine_mode, enum machine_mode,
static rtx maybe_mode_change (enum machine_mode, enum machine_mode,
                              enum machine_mode, unsigned int, unsigned int);
                              enum machine_mode, unsigned int, unsigned int);
static rtx find_oldest_value_reg (enum reg_class, rtx, struct value_data *);
static rtx find_oldest_value_reg (enum reg_class, rtx, struct value_data *);
static bool replace_oldest_value_reg (rtx *, enum reg_class, rtx,
static bool replace_oldest_value_reg (rtx *, enum reg_class, rtx,
                                      struct value_data *);
                                      struct value_data *);
static bool replace_oldest_value_addr (rtx *, enum reg_class,
static bool replace_oldest_value_addr (rtx *, enum reg_class,
                                       enum machine_mode, rtx,
                                       enum machine_mode, rtx,
                                       struct value_data *);
                                       struct value_data *);
static bool replace_oldest_value_mem (rtx, rtx, struct value_data *);
static bool replace_oldest_value_mem (rtx, rtx, struct value_data *);
static bool copyprop_hardreg_forward_1 (basic_block, struct value_data *);
static bool copyprop_hardreg_forward_1 (basic_block, struct value_data *);
extern void debug_value_data (struct value_data *);
extern void debug_value_data (struct value_data *);
#ifdef ENABLE_CHECKING
#ifdef ENABLE_CHECKING
static void validate_value_data (struct value_data *);
static void validate_value_data (struct value_data *);
#endif
#endif
 
 
/* Kill register REGNO.  This involves removing it from any value
/* Kill register REGNO.  This involves removing it from any value
   lists, and resetting the value mode to VOIDmode.  This is only a
   lists, and resetting the value mode to VOIDmode.  This is only a
   helper function; it does not handle any hard registers overlapping
   helper function; it does not handle any hard registers overlapping
   with REGNO.  */
   with REGNO.  */
 
 
static void
static void
kill_value_one_regno (unsigned int regno, struct value_data *vd)
kill_value_one_regno (unsigned int regno, struct value_data *vd)
{
{
  unsigned int i, next;
  unsigned int i, next;
 
 
  if (vd->e[regno].oldest_regno != regno)
  if (vd->e[regno].oldest_regno != regno)
    {
    {
      for (i = vd->e[regno].oldest_regno;
      for (i = vd->e[regno].oldest_regno;
           vd->e[i].next_regno != regno;
           vd->e[i].next_regno != regno;
           i = vd->e[i].next_regno)
           i = vd->e[i].next_regno)
        continue;
        continue;
      vd->e[i].next_regno = vd->e[regno].next_regno;
      vd->e[i].next_regno = vd->e[regno].next_regno;
    }
    }
  else if ((next = vd->e[regno].next_regno) != INVALID_REGNUM)
  else if ((next = vd->e[regno].next_regno) != INVALID_REGNUM)
    {
    {
      for (i = next; i != INVALID_REGNUM; i = vd->e[i].next_regno)
      for (i = next; i != INVALID_REGNUM; i = vd->e[i].next_regno)
        vd->e[i].oldest_regno = next;
        vd->e[i].oldest_regno = next;
    }
    }
 
 
  vd->e[regno].mode = VOIDmode;
  vd->e[regno].mode = VOIDmode;
  vd->e[regno].oldest_regno = regno;
  vd->e[regno].oldest_regno = regno;
  vd->e[regno].next_regno = INVALID_REGNUM;
  vd->e[regno].next_regno = INVALID_REGNUM;
 
 
#ifdef ENABLE_CHECKING
#ifdef ENABLE_CHECKING
  validate_value_data (vd);
  validate_value_data (vd);
#endif
#endif
}
}
 
 
/* Kill the value in register REGNO for NREGS, and any other registers
/* Kill the value in register REGNO for NREGS, and any other registers
   whose values overlap.  */
   whose values overlap.  */
 
 
static void
static void
kill_value_regno (unsigned int regno, unsigned int nregs,
kill_value_regno (unsigned int regno, unsigned int nregs,
                  struct value_data *vd)
                  struct value_data *vd)
{
{
  unsigned int j;
  unsigned int j;
 
 
  /* Kill the value we're told to kill.  */
  /* Kill the value we're told to kill.  */
  for (j = 0; j < nregs; ++j)
  for (j = 0; j < nregs; ++j)
    kill_value_one_regno (regno + j, vd);
    kill_value_one_regno (regno + j, vd);
 
 
  /* Kill everything that overlapped what we're told to kill.  */
  /* Kill everything that overlapped what we're told to kill.  */
  if (regno < vd->max_value_regs)
  if (regno < vd->max_value_regs)
    j = 0;
    j = 0;
  else
  else
    j = regno - vd->max_value_regs;
    j = regno - vd->max_value_regs;
  for (; j < regno; ++j)
  for (; j < regno; ++j)
    {
    {
      unsigned int i, n;
      unsigned int i, n;
      if (vd->e[j].mode == VOIDmode)
      if (vd->e[j].mode == VOIDmode)
        continue;
        continue;
      n = hard_regno_nregs[j][vd->e[j].mode];
      n = hard_regno_nregs[j][vd->e[j].mode];
      if (j + n > regno)
      if (j + n > regno)
        for (i = 0; i < n; ++i)
        for (i = 0; i < n; ++i)
          kill_value_one_regno (j + i, vd);
          kill_value_one_regno (j + i, vd);
    }
    }
}
}
 
 
/* Kill X.  This is a convenience function wrapping kill_value_regno
/* Kill X.  This is a convenience function wrapping kill_value_regno
   so that we mind the mode the register is in.  */
   so that we mind the mode the register is in.  */
 
 
static void
static void
kill_value (rtx x, struct value_data *vd)
kill_value (rtx x, struct value_data *vd)
{
{
  rtx orig_rtx = x;
  rtx orig_rtx = x;
 
 
  if (GET_CODE (x) == SUBREG)
  if (GET_CODE (x) == SUBREG)
    {
    {
      x = simplify_subreg (GET_MODE (x), SUBREG_REG (x),
      x = simplify_subreg (GET_MODE (x), SUBREG_REG (x),
                           GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
                           GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
      if (x == NULL_RTX)
      if (x == NULL_RTX)
        x = SUBREG_REG (orig_rtx);
        x = SUBREG_REG (orig_rtx);
    }
    }
  if (REG_P (x))
  if (REG_P (x))
    {
    {
      unsigned int regno = REGNO (x);
      unsigned int regno = REGNO (x);
      unsigned int n = hard_regno_nregs[regno][GET_MODE (x)];
      unsigned int n = hard_regno_nregs[regno][GET_MODE (x)];
 
 
      kill_value_regno (regno, n, vd);
      kill_value_regno (regno, n, vd);
    }
    }
}
}
 
 
/* Remember that REGNO is valid in MODE.  */
/* Remember that REGNO is valid in MODE.  */
 
 
static void
static void
set_value_regno (unsigned int regno, enum machine_mode mode,
set_value_regno (unsigned int regno, enum machine_mode mode,
                 struct value_data *vd)
                 struct value_data *vd)
{
{
  unsigned int nregs;
  unsigned int nregs;
 
 
  vd->e[regno].mode = mode;
  vd->e[regno].mode = mode;
 
 
  nregs = hard_regno_nregs[regno][mode];
  nregs = hard_regno_nregs[regno][mode];
  if (nregs > vd->max_value_regs)
  if (nregs > vd->max_value_regs)
    vd->max_value_regs = nregs;
    vd->max_value_regs = nregs;
}
}
 
 
/* Initialize VD such that there are no known relationships between regs.  */
/* Initialize VD such that there are no known relationships between regs.  */
 
 
static void
static void
init_value_data (struct value_data *vd)
init_value_data (struct value_data *vd)
{
{
  int i;
  int i;
  for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
  for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
    {
    {
      vd->e[i].mode = VOIDmode;
      vd->e[i].mode = VOIDmode;
      vd->e[i].oldest_regno = i;
      vd->e[i].oldest_regno = i;
      vd->e[i].next_regno = INVALID_REGNUM;
      vd->e[i].next_regno = INVALID_REGNUM;
    }
    }
  vd->max_value_regs = 0;
  vd->max_value_regs = 0;
}
}
 
 
/* Called through note_stores.  If X is clobbered, kill its value.  */
/* Called through note_stores.  If X is clobbered, kill its value.  */
 
 
static void
static void
kill_clobbered_value (rtx x, rtx set, void *data)
kill_clobbered_value (rtx x, rtx set, void *data)
{
{
  struct value_data *vd = data;
  struct value_data *vd = data;
  if (GET_CODE (set) == CLOBBER)
  if (GET_CODE (set) == CLOBBER)
    kill_value (x, vd);
    kill_value (x, vd);
}
}
 
 
/* Called through note_stores.  If X is set, not clobbered, kill its
/* Called through note_stores.  If X is set, not clobbered, kill its
   current value and install it as the root of its own value list.  */
   current value and install it as the root of its own value list.  */
 
 
static void
static void
kill_set_value (rtx x, rtx set, void *data)
kill_set_value (rtx x, rtx set, void *data)
{
{
  struct value_data *vd = data;
  struct value_data *vd = data;
  if (GET_CODE (set) != CLOBBER)
  if (GET_CODE (set) != CLOBBER)
    {
    {
      kill_value (x, vd);
      kill_value (x, vd);
      if (REG_P (x))
      if (REG_P (x))
        set_value_regno (REGNO (x), GET_MODE (x), vd);
        set_value_regno (REGNO (x), GET_MODE (x), vd);
    }
    }
}
}
 
 
/* Called through for_each_rtx.  Kill any register used as the base of an
/* Called through for_each_rtx.  Kill any register used as the base of an
   auto-increment expression, and install that register as the root of its
   auto-increment expression, and install that register as the root of its
   own value list.  */
   own value list.  */
 
 
static int
static int
kill_autoinc_value (rtx *px, void *data)
kill_autoinc_value (rtx *px, void *data)
{
{
  rtx x = *px;
  rtx x = *px;
  struct value_data *vd = data;
  struct value_data *vd = data;
 
 
  if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
  if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
    {
    {
      x = XEXP (x, 0);
      x = XEXP (x, 0);
      kill_value (x, vd);
      kill_value (x, vd);
      set_value_regno (REGNO (x), Pmode, vd);
      set_value_regno (REGNO (x), Pmode, vd);
      return -1;
      return -1;
    }
    }
 
 
  return 0;
  return 0;
}
}
 
 
/* Assert that SRC has been copied to DEST.  Adjust the data structures
/* Assert that SRC has been copied to DEST.  Adjust the data structures
   to reflect that SRC contains an older copy of the shared value.  */
   to reflect that SRC contains an older copy of the shared value.  */
 
 
static void
static void
copy_value (rtx dest, rtx src, struct value_data *vd)
copy_value (rtx dest, rtx src, struct value_data *vd)
{
{
  unsigned int dr = REGNO (dest);
  unsigned int dr = REGNO (dest);
  unsigned int sr = REGNO (src);
  unsigned int sr = REGNO (src);
  unsigned int dn, sn;
  unsigned int dn, sn;
  unsigned int i;
  unsigned int i;
 
 
  /* ??? At present, it's possible to see noop sets.  It'd be nice if
  /* ??? At present, it's possible to see noop sets.  It'd be nice if
     this were cleaned up beforehand...  */
     this were cleaned up beforehand...  */
  if (sr == dr)
  if (sr == dr)
    return;
    return;
 
 
  /* Do not propagate copies to the stack pointer, as that can leave
  /* Do not propagate copies to the stack pointer, as that can leave
     memory accesses with no scheduling dependency on the stack update.  */
     memory accesses with no scheduling dependency on the stack update.  */
  if (dr == STACK_POINTER_REGNUM)
  if (dr == STACK_POINTER_REGNUM)
    return;
    return;
 
 
  /* Likewise with the frame pointer, if we're using one.  */
  /* Likewise with the frame pointer, if we're using one.  */
  if (frame_pointer_needed && dr == HARD_FRAME_POINTER_REGNUM)
  if (frame_pointer_needed && dr == HARD_FRAME_POINTER_REGNUM)
    return;
    return;
 
 
  /* Do not propagate copies to fixed or global registers, patterns
  /* Do not propagate copies to fixed or global registers, patterns
     can be relying to see particular fixed register or users can
     can be relying to see particular fixed register or users can
     expect the chosen global register in asm.  */
     expect the chosen global register in asm.  */
  if (fixed_regs[dr] || global_regs[dr])
  if (fixed_regs[dr] || global_regs[dr])
    return;
    return;
 
 
  /* If SRC and DEST overlap, don't record anything.  */
  /* If SRC and DEST overlap, don't record anything.  */
  dn = hard_regno_nregs[dr][GET_MODE (dest)];
  dn = hard_regno_nregs[dr][GET_MODE (dest)];
  sn = hard_regno_nregs[sr][GET_MODE (dest)];
  sn = hard_regno_nregs[sr][GET_MODE (dest)];
  if ((dr > sr && dr < sr + sn)
  if ((dr > sr && dr < sr + sn)
      || (sr > dr && sr < dr + dn))
      || (sr > dr && sr < dr + dn))
    return;
    return;
 
 
  /* If SRC had no assigned mode (i.e. we didn't know it was live)
  /* If SRC had no assigned mode (i.e. we didn't know it was live)
     assign it now and assume the value came from an input argument
     assign it now and assume the value came from an input argument
     or somesuch.  */
     or somesuch.  */
  if (vd->e[sr].mode == VOIDmode)
  if (vd->e[sr].mode == VOIDmode)
    set_value_regno (sr, vd->e[dr].mode, vd);
    set_value_regno (sr, vd->e[dr].mode, vd);
 
 
  /* If we are narrowing the input to a smaller number of hard regs,
  /* If we are narrowing the input to a smaller number of hard regs,
     and it is in big endian, we are really extracting a high part.
     and it is in big endian, we are really extracting a high part.
     Since we generally associate a low part of a value with the value itself,
     Since we generally associate a low part of a value with the value itself,
     we must not do the same for the high part.
     we must not do the same for the high part.
     Note we can still get low parts for the same mode combination through
     Note we can still get low parts for the same mode combination through
     a two-step copy involving differently sized hard regs.
     a two-step copy involving differently sized hard regs.
     Assume hard regs fr* are 32 bits bits each, while r* are 64 bits each:
     Assume hard regs fr* are 32 bits bits each, while r* are 64 bits each:
     (set (reg:DI r0) (reg:DI fr0))
     (set (reg:DI r0) (reg:DI fr0))
     (set (reg:SI fr2) (reg:SI r0))
     (set (reg:SI fr2) (reg:SI r0))
     loads the low part of (reg:DI fr0) - i.e. fr1 - into fr2, while:
     loads the low part of (reg:DI fr0) - i.e. fr1 - into fr2, while:
     (set (reg:SI fr2) (reg:SI fr0))
     (set (reg:SI fr2) (reg:SI fr0))
     loads the high part of (reg:DI fr0) into fr2.
     loads the high part of (reg:DI fr0) into fr2.
 
 
     We can't properly represent the latter case in our tables, so don't
     We can't properly represent the latter case in our tables, so don't
     record anything then.  */
     record anything then.  */
  else if (sn < (unsigned int) hard_regno_nregs[sr][vd->e[sr].mode]
  else if (sn < (unsigned int) hard_regno_nregs[sr][vd->e[sr].mode]
           && (GET_MODE_SIZE (vd->e[sr].mode) > UNITS_PER_WORD
           && (GET_MODE_SIZE (vd->e[sr].mode) > UNITS_PER_WORD
               ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN))
               ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN))
    return;
    return;
 
 
  /* If SRC had been assigned a mode narrower than the copy, we can't
  /* If SRC had been assigned a mode narrower than the copy, we can't
     link DEST into the chain, because not all of the pieces of the
     link DEST into the chain, because not all of the pieces of the
     copy came from oldest_regno.  */
     copy came from oldest_regno.  */
  else if (sn > (unsigned int) hard_regno_nregs[sr][vd->e[sr].mode])
  else if (sn > (unsigned int) hard_regno_nregs[sr][vd->e[sr].mode])
    return;
    return;
 
 
  /* Link DR at the end of the value chain used by SR.  */
  /* Link DR at the end of the value chain used by SR.  */
 
 
  vd->e[dr].oldest_regno = vd->e[sr].oldest_regno;
  vd->e[dr].oldest_regno = vd->e[sr].oldest_regno;
 
 
  for (i = sr; vd->e[i].next_regno != INVALID_REGNUM; i = vd->e[i].next_regno)
  for (i = sr; vd->e[i].next_regno != INVALID_REGNUM; i = vd->e[i].next_regno)
    continue;
    continue;
  vd->e[i].next_regno = dr;
  vd->e[i].next_regno = dr;
 
 
#ifdef ENABLE_CHECKING
#ifdef ENABLE_CHECKING
  validate_value_data (vd);
  validate_value_data (vd);
#endif
#endif
}
}
 
 
/* Return true if a mode change from ORIG to NEW is allowed for REGNO.  */
/* Return true if a mode change from ORIG to NEW is allowed for REGNO.  */
 
 
static bool
static bool
mode_change_ok (enum machine_mode orig_mode, enum machine_mode new_mode,
mode_change_ok (enum machine_mode orig_mode, enum machine_mode new_mode,
                unsigned int regno ATTRIBUTE_UNUSED)
                unsigned int regno ATTRIBUTE_UNUSED)
{
{
  if (GET_MODE_SIZE (orig_mode) < GET_MODE_SIZE (new_mode))
  if (GET_MODE_SIZE (orig_mode) < GET_MODE_SIZE (new_mode))
    return false;
    return false;
 
 
#ifdef CANNOT_CHANGE_MODE_CLASS
#ifdef CANNOT_CHANGE_MODE_CLASS
  return !REG_CANNOT_CHANGE_MODE_P (regno, orig_mode, new_mode);
  return !REG_CANNOT_CHANGE_MODE_P (regno, orig_mode, new_mode);
#endif
#endif
 
 
  return true;
  return true;
}
}
 
 
/* Register REGNO was originally set in ORIG_MODE.  It - or a copy of it -
/* Register REGNO was originally set in ORIG_MODE.  It - or a copy of it -
   was copied in COPY_MODE to COPY_REGNO, and then COPY_REGNO was accessed
   was copied in COPY_MODE to COPY_REGNO, and then COPY_REGNO was accessed
   in NEW_MODE.
   in NEW_MODE.
   Return a NEW_MODE rtx for REGNO if that's OK, otherwise return NULL_RTX.  */
   Return a NEW_MODE rtx for REGNO if that's OK, otherwise return NULL_RTX.  */
 
 
static rtx
static rtx
maybe_mode_change (enum machine_mode orig_mode, enum machine_mode copy_mode,
maybe_mode_change (enum machine_mode orig_mode, enum machine_mode copy_mode,
                   enum machine_mode new_mode, unsigned int regno,
                   enum machine_mode new_mode, unsigned int regno,
                   unsigned int copy_regno ATTRIBUTE_UNUSED)
                   unsigned int copy_regno ATTRIBUTE_UNUSED)
{
{
  if (orig_mode == new_mode)
  if (orig_mode == new_mode)
    return gen_rtx_raw_REG (new_mode, regno);
    return gen_rtx_raw_REG (new_mode, regno);
  else if (mode_change_ok (orig_mode, new_mode, regno))
  else if (mode_change_ok (orig_mode, new_mode, regno))
    {
    {
      int copy_nregs = hard_regno_nregs[copy_regno][copy_mode];
      int copy_nregs = hard_regno_nregs[copy_regno][copy_mode];
      int use_nregs = hard_regno_nregs[copy_regno][new_mode];
      int use_nregs = hard_regno_nregs[copy_regno][new_mode];
      int copy_offset
      int copy_offset
        = GET_MODE_SIZE (copy_mode) / copy_nregs * (copy_nregs - use_nregs);
        = GET_MODE_SIZE (copy_mode) / copy_nregs * (copy_nregs - use_nregs);
      int offset
      int offset
        = GET_MODE_SIZE (orig_mode) - GET_MODE_SIZE (new_mode) - copy_offset;
        = GET_MODE_SIZE (orig_mode) - GET_MODE_SIZE (new_mode) - copy_offset;
      int byteoffset = offset % UNITS_PER_WORD;
      int byteoffset = offset % UNITS_PER_WORD;
      int wordoffset = offset - byteoffset;
      int wordoffset = offset - byteoffset;
 
 
      offset = ((WORDS_BIG_ENDIAN ? wordoffset : 0)
      offset = ((WORDS_BIG_ENDIAN ? wordoffset : 0)
                + (BYTES_BIG_ENDIAN ? byteoffset : 0));
                + (BYTES_BIG_ENDIAN ? byteoffset : 0));
      return gen_rtx_raw_REG (new_mode,
      return gen_rtx_raw_REG (new_mode,
                              regno + subreg_regno_offset (regno, orig_mode,
                              regno + subreg_regno_offset (regno, orig_mode,
                                                           offset,
                                                           offset,
                                                           new_mode));
                                                           new_mode));
    }
    }
  return NULL_RTX;
  return NULL_RTX;
}
}
 
 
/* Find the oldest copy of the value contained in REGNO that is in
/* Find the oldest copy of the value contained in REGNO that is in
   register class CL and has mode MODE.  If found, return an rtx
   register class CL and has mode MODE.  If found, return an rtx
   of that oldest register, otherwise return NULL.  */
   of that oldest register, otherwise return NULL.  */
 
 
static rtx
static rtx
find_oldest_value_reg (enum reg_class cl, rtx reg, struct value_data *vd)
find_oldest_value_reg (enum reg_class cl, rtx reg, struct value_data *vd)
{
{
  unsigned int regno = REGNO (reg);
  unsigned int regno = REGNO (reg);
  enum machine_mode mode = GET_MODE (reg);
  enum machine_mode mode = GET_MODE (reg);
  unsigned int i;
  unsigned int i;
 
 
  /* If we are accessing REG in some mode other that what we set it in,
  /* If we are accessing REG in some mode other that what we set it in,
     make sure that the replacement is valid.  In particular, consider
     make sure that the replacement is valid.  In particular, consider
        (set (reg:DI r11) (...))
        (set (reg:DI r11) (...))
        (set (reg:SI r9) (reg:SI r11))
        (set (reg:SI r9) (reg:SI r11))
        (set (reg:SI r10) (...))
        (set (reg:SI r10) (...))
        (set (...) (reg:DI r9))
        (set (...) (reg:DI r9))
     Replacing r9 with r11 is invalid.  */
     Replacing r9 with r11 is invalid.  */
  if (mode != vd->e[regno].mode)
  if (mode != vd->e[regno].mode)
    {
    {
      if (hard_regno_nregs[regno][mode]
      if (hard_regno_nregs[regno][mode]
          > hard_regno_nregs[regno][vd->e[regno].mode])
          > hard_regno_nregs[regno][vd->e[regno].mode])
        return NULL_RTX;
        return NULL_RTX;
    }
    }
 
 
  for (i = vd->e[regno].oldest_regno; i != regno; i = vd->e[i].next_regno)
  for (i = vd->e[regno].oldest_regno; i != regno; i = vd->e[i].next_regno)
    {
    {
      enum machine_mode oldmode = vd->e[i].mode;
      enum machine_mode oldmode = vd->e[i].mode;
      rtx new;
      rtx new;
      unsigned int last;
      unsigned int last;
 
 
      for (last = i; last < i + hard_regno_nregs[i][mode]; last++)
      for (last = i; last < i + hard_regno_nregs[i][mode]; last++)
        if (!TEST_HARD_REG_BIT (reg_class_contents[cl], last))
        if (!TEST_HARD_REG_BIT (reg_class_contents[cl], last))
          return NULL_RTX;
          return NULL_RTX;
 
 
      new = maybe_mode_change (oldmode, vd->e[regno].mode, mode, i, regno);
      new = maybe_mode_change (oldmode, vd->e[regno].mode, mode, i, regno);
      if (new)
      if (new)
        {
        {
          ORIGINAL_REGNO (new) = ORIGINAL_REGNO (reg);
          ORIGINAL_REGNO (new) = ORIGINAL_REGNO (reg);
          REG_ATTRS (new) = REG_ATTRS (reg);
          REG_ATTRS (new) = REG_ATTRS (reg);
          return new;
          return new;
        }
        }
    }
    }
 
 
  return NULL_RTX;
  return NULL_RTX;
}
}
 
 
/* If possible, replace the register at *LOC with the oldest register
/* If possible, replace the register at *LOC with the oldest register
   in register class CL.  Return true if successfully replaced.  */
   in register class CL.  Return true if successfully replaced.  */
 
 
static bool
static bool
replace_oldest_value_reg (rtx *loc, enum reg_class cl, rtx insn,
replace_oldest_value_reg (rtx *loc, enum reg_class cl, rtx insn,
                          struct value_data *vd)
                          struct value_data *vd)
{
{
  rtx new = find_oldest_value_reg (cl, *loc, vd);
  rtx new = find_oldest_value_reg (cl, *loc, vd);
  if (new)
  if (new)
    {
    {
      if (dump_file)
      if (dump_file)
        fprintf (dump_file, "insn %u: replaced reg %u with %u\n",
        fprintf (dump_file, "insn %u: replaced reg %u with %u\n",
                 INSN_UID (insn), REGNO (*loc), REGNO (new));
                 INSN_UID (insn), REGNO (*loc), REGNO (new));
 
 
      validate_change (insn, loc, new, 1);
      validate_change (insn, loc, new, 1);
      return true;
      return true;
    }
    }
  return false;
  return false;
}
}
 
 
/* Similar to replace_oldest_value_reg, but *LOC contains an address.
/* Similar to replace_oldest_value_reg, but *LOC contains an address.
   Adapted from find_reloads_address_1.  CL is INDEX_REG_CLASS or
   Adapted from find_reloads_address_1.  CL is INDEX_REG_CLASS or
   BASE_REG_CLASS depending on how the register is being considered.  */
   BASE_REG_CLASS depending on how the register is being considered.  */
 
 
static bool
static bool
replace_oldest_value_addr (rtx *loc, enum reg_class cl,
replace_oldest_value_addr (rtx *loc, enum reg_class cl,
                           enum machine_mode mode, rtx insn,
                           enum machine_mode mode, rtx insn,
                           struct value_data *vd)
                           struct value_data *vd)
{
{
  rtx x = *loc;
  rtx x = *loc;
  RTX_CODE code = GET_CODE (x);
  RTX_CODE code = GET_CODE (x);
  const char *fmt;
  const char *fmt;
  int i, j;
  int i, j;
  bool changed = false;
  bool changed = false;
 
 
  switch (code)
  switch (code)
    {
    {
    case PLUS:
    case PLUS:
      {
      {
        rtx orig_op0 = XEXP (x, 0);
        rtx orig_op0 = XEXP (x, 0);
        rtx orig_op1 = XEXP (x, 1);
        rtx orig_op1 = XEXP (x, 1);
        RTX_CODE code0 = GET_CODE (orig_op0);
        RTX_CODE code0 = GET_CODE (orig_op0);
        RTX_CODE code1 = GET_CODE (orig_op1);
        RTX_CODE code1 = GET_CODE (orig_op1);
        rtx op0 = orig_op0;
        rtx op0 = orig_op0;
        rtx op1 = orig_op1;
        rtx op1 = orig_op1;
        rtx *locI = NULL;
        rtx *locI = NULL;
        rtx *locB = NULL;
        rtx *locB = NULL;
        enum rtx_code index_code = SCRATCH;
        enum rtx_code index_code = SCRATCH;
 
 
        if (GET_CODE (op0) == SUBREG)
        if (GET_CODE (op0) == SUBREG)
          {
          {
            op0 = SUBREG_REG (op0);
            op0 = SUBREG_REG (op0);
            code0 = GET_CODE (op0);
            code0 = GET_CODE (op0);
          }
          }
 
 
        if (GET_CODE (op1) == SUBREG)
        if (GET_CODE (op1) == SUBREG)
          {
          {
            op1 = SUBREG_REG (op1);
            op1 = SUBREG_REG (op1);
            code1 = GET_CODE (op1);
            code1 = GET_CODE (op1);
          }
          }
 
 
        if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
        if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
            || code0 == ZERO_EXTEND || code1 == MEM)
            || code0 == ZERO_EXTEND || code1 == MEM)
          {
          {
            locI = &XEXP (x, 0);
            locI = &XEXP (x, 0);
            locB = &XEXP (x, 1);
            locB = &XEXP (x, 1);
            index_code = GET_CODE (*locI);
            index_code = GET_CODE (*locI);
          }
          }
        else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
        else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
                 || code1 == ZERO_EXTEND || code0 == MEM)
                 || code1 == ZERO_EXTEND || code0 == MEM)
          {
          {
            locI = &XEXP (x, 1);
            locI = &XEXP (x, 1);
            locB = &XEXP (x, 0);
            locB = &XEXP (x, 0);
            index_code = GET_CODE (*locI);
            index_code = GET_CODE (*locI);
          }
          }
        else if (code0 == CONST_INT || code0 == CONST
        else if (code0 == CONST_INT || code0 == CONST
                 || code0 == SYMBOL_REF || code0 == LABEL_REF)
                 || code0 == SYMBOL_REF || code0 == LABEL_REF)
          {
          {
            locB = &XEXP (x, 1);
            locB = &XEXP (x, 1);
            index_code = GET_CODE (XEXP (x, 0));
            index_code = GET_CODE (XEXP (x, 0));
          }
          }
        else if (code1 == CONST_INT || code1 == CONST
        else if (code1 == CONST_INT || code1 == CONST
                 || code1 == SYMBOL_REF || code1 == LABEL_REF)
                 || code1 == SYMBOL_REF || code1 == LABEL_REF)
          {
          {
            locB = &XEXP (x, 0);
            locB = &XEXP (x, 0);
            index_code = GET_CODE (XEXP (x, 1));
            index_code = GET_CODE (XEXP (x, 1));
          }
          }
        else if (code0 == REG && code1 == REG)
        else if (code0 == REG && code1 == REG)
          {
          {
            int index_op;
            int index_op;
            unsigned regno0 = REGNO (op0), regno1 = REGNO (op1);
            unsigned regno0 = REGNO (op0), regno1 = REGNO (op1);
 
 
            if (REGNO_OK_FOR_INDEX_P (regno0)
            if (REGNO_OK_FOR_INDEX_P (regno0)
                && regno_ok_for_base_p (regno1, mode, PLUS, REG))
                && regno_ok_for_base_p (regno1, mode, PLUS, REG))
              index_op = 0;
              index_op = 0;
            else if (REGNO_OK_FOR_INDEX_P (regno1)
            else if (REGNO_OK_FOR_INDEX_P (regno1)
                     && regno_ok_for_base_p (regno0, mode, PLUS, REG))
                     && regno_ok_for_base_p (regno0, mode, PLUS, REG))
              index_op = 1;
              index_op = 1;
            else if (regno_ok_for_base_p (regno1, mode, PLUS, REG))
            else if (regno_ok_for_base_p (regno1, mode, PLUS, REG))
              index_op = 0;
              index_op = 0;
            else if (regno_ok_for_base_p (regno0, mode, PLUS, REG))
            else if (regno_ok_for_base_p (regno0, mode, PLUS, REG))
              index_op = 1;
              index_op = 1;
            else if (REGNO_OK_FOR_INDEX_P (regno1))
            else if (REGNO_OK_FOR_INDEX_P (regno1))
              index_op = 1;
              index_op = 1;
            else
            else
              index_op = 0;
              index_op = 0;
 
 
            locI = &XEXP (x, index_op);
            locI = &XEXP (x, index_op);
            locB = &XEXP (x, !index_op);
            locB = &XEXP (x, !index_op);
            index_code = GET_CODE (*locI);
            index_code = GET_CODE (*locI);
          }
          }
        else if (code0 == REG)
        else if (code0 == REG)
          {
          {
            locI = &XEXP (x, 0);
            locI = &XEXP (x, 0);
            locB = &XEXP (x, 1);
            locB = &XEXP (x, 1);
            index_code = GET_CODE (*locI);
            index_code = GET_CODE (*locI);
          }
          }
        else if (code1 == REG)
        else if (code1 == REG)
          {
          {
            locI = &XEXP (x, 1);
            locI = &XEXP (x, 1);
            locB = &XEXP (x, 0);
            locB = &XEXP (x, 0);
            index_code = GET_CODE (*locI);
            index_code = GET_CODE (*locI);
          }
          }
 
 
        if (locI)
        if (locI)
          changed |= replace_oldest_value_addr (locI, INDEX_REG_CLASS, mode,
          changed |= replace_oldest_value_addr (locI, INDEX_REG_CLASS, mode,
                                                insn, vd);
                                                insn, vd);
        if (locB)
        if (locB)
          changed |= replace_oldest_value_addr (locB,
          changed |= replace_oldest_value_addr (locB,
                                                base_reg_class (mode, PLUS,
                                                base_reg_class (mode, PLUS,
                                                                index_code),
                                                                index_code),
                                                mode, insn, vd);
                                                mode, insn, vd);
        return changed;
        return changed;
      }
      }
 
 
    case POST_INC:
    case POST_INC:
    case POST_DEC:
    case POST_DEC:
    case POST_MODIFY:
    case POST_MODIFY:
    case PRE_INC:
    case PRE_INC:
    case PRE_DEC:
    case PRE_DEC:
    case PRE_MODIFY:
    case PRE_MODIFY:
      return false;
      return false;
 
 
    case MEM:
    case MEM:
      return replace_oldest_value_mem (x, insn, vd);
      return replace_oldest_value_mem (x, insn, vd);
 
 
    case REG:
    case REG:
      return replace_oldest_value_reg (loc, cl, insn, vd);
      return replace_oldest_value_reg (loc, cl, insn, vd);
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  fmt = GET_RTX_FORMAT (code);
  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
    {
      if (fmt[i] == 'e')
      if (fmt[i] == 'e')
        changed |= replace_oldest_value_addr (&XEXP (x, i), cl, mode,
        changed |= replace_oldest_value_addr (&XEXP (x, i), cl, mode,
                                              insn, vd);
                                              insn, vd);
      else if (fmt[i] == 'E')
      else if (fmt[i] == 'E')
        for (j = XVECLEN (x, i) - 1; j >= 0; j--)
        for (j = XVECLEN (x, i) - 1; j >= 0; j--)
          changed |= replace_oldest_value_addr (&XVECEXP (x, i, j), cl,
          changed |= replace_oldest_value_addr (&XVECEXP (x, i, j), cl,
                                                mode, insn, vd);
                                                mode, insn, vd);
    }
    }
 
 
  return changed;
  return changed;
}
}
 
 
/* Similar to replace_oldest_value_reg, but X contains a memory.  */
/* Similar to replace_oldest_value_reg, but X contains a memory.  */
 
 
static bool
static bool
replace_oldest_value_mem (rtx x, rtx insn, struct value_data *vd)
replace_oldest_value_mem (rtx x, rtx insn, struct value_data *vd)
{
{
  return replace_oldest_value_addr (&XEXP (x, 0),
  return replace_oldest_value_addr (&XEXP (x, 0),
                                    base_reg_class (GET_MODE (x), MEM,
                                    base_reg_class (GET_MODE (x), MEM,
                                                    SCRATCH),
                                                    SCRATCH),
                                    GET_MODE (x), insn, vd);
                                    GET_MODE (x), insn, vd);
}
}
 
 
/* Perform the forward copy propagation on basic block BB.  */
/* Perform the forward copy propagation on basic block BB.  */
 
 
static bool
static bool
copyprop_hardreg_forward_1 (basic_block bb, struct value_data *vd)
copyprop_hardreg_forward_1 (basic_block bb, struct value_data *vd)
{
{
  bool changed = false;
  bool changed = false;
  rtx insn;
  rtx insn;
 
 
  for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
  for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
    {
    {
      int n_ops, i, alt, predicated;
      int n_ops, i, alt, predicated;
      bool is_asm, any_replacements;
      bool is_asm, any_replacements;
      rtx set;
      rtx set;
      bool replaced[MAX_RECOG_OPERANDS];
      bool replaced[MAX_RECOG_OPERANDS];
 
 
      if (! INSN_P (insn))
      if (! INSN_P (insn))
        {
        {
          if (insn == BB_END (bb))
          if (insn == BB_END (bb))
            break;
            break;
          else
          else
            continue;
            continue;
        }
        }
 
 
      set = single_set (insn);
      set = single_set (insn);
      extract_insn (insn);
      extract_insn (insn);
      if (! constrain_operands (1))
      if (! constrain_operands (1))
        fatal_insn_not_found (insn);
        fatal_insn_not_found (insn);
      preprocess_constraints ();
      preprocess_constraints ();
      alt = which_alternative;
      alt = which_alternative;
      n_ops = recog_data.n_operands;
      n_ops = recog_data.n_operands;
      is_asm = asm_noperands (PATTERN (insn)) >= 0;
      is_asm = asm_noperands (PATTERN (insn)) >= 0;
 
 
      /* Simplify the code below by rewriting things to reflect
      /* Simplify the code below by rewriting things to reflect
         matching constraints.  Also promote OP_OUT to OP_INOUT
         matching constraints.  Also promote OP_OUT to OP_INOUT
         in predicated instructions.  */
         in predicated instructions.  */
 
 
      predicated = GET_CODE (PATTERN (insn)) == COND_EXEC;
      predicated = GET_CODE (PATTERN (insn)) == COND_EXEC;
      for (i = 0; i < n_ops; ++i)
      for (i = 0; i < n_ops; ++i)
        {
        {
          int matches = recog_op_alt[i][alt].matches;
          int matches = recog_op_alt[i][alt].matches;
          if (matches >= 0)
          if (matches >= 0)
            recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
            recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
          if (matches >= 0 || recog_op_alt[i][alt].matched >= 0
          if (matches >= 0 || recog_op_alt[i][alt].matched >= 0
              || (predicated && recog_data.operand_type[i] == OP_OUT))
              || (predicated && recog_data.operand_type[i] == OP_OUT))
            recog_data.operand_type[i] = OP_INOUT;
            recog_data.operand_type[i] = OP_INOUT;
        }
        }
 
 
      /* For each earlyclobber operand, zap the value data.  */
      /* For each earlyclobber operand, zap the value data.  */
      for (i = 0; i < n_ops; i++)
      for (i = 0; i < n_ops; i++)
        if (recog_op_alt[i][alt].earlyclobber)
        if (recog_op_alt[i][alt].earlyclobber)
          kill_value (recog_data.operand[i], vd);
          kill_value (recog_data.operand[i], vd);
 
 
      /* Within asms, a clobber cannot overlap inputs or outputs.
      /* Within asms, a clobber cannot overlap inputs or outputs.
         I wouldn't think this were true for regular insns, but
         I wouldn't think this were true for regular insns, but
         scan_rtx treats them like that...  */
         scan_rtx treats them like that...  */
      note_stores (PATTERN (insn), kill_clobbered_value, vd);
      note_stores (PATTERN (insn), kill_clobbered_value, vd);
 
 
      /* Kill all auto-incremented values.  */
      /* Kill all auto-incremented values.  */
      /* ??? REG_INC is useless, since stack pushes aren't done that way.  */
      /* ??? REG_INC is useless, since stack pushes aren't done that way.  */
      for_each_rtx (&PATTERN (insn), kill_autoinc_value, vd);
      for_each_rtx (&PATTERN (insn), kill_autoinc_value, vd);
 
 
      /* Kill all early-clobbered operands.  */
      /* Kill all early-clobbered operands.  */
      for (i = 0; i < n_ops; i++)
      for (i = 0; i < n_ops; i++)
        if (recog_op_alt[i][alt].earlyclobber)
        if (recog_op_alt[i][alt].earlyclobber)
          kill_value (recog_data.operand[i], vd);
          kill_value (recog_data.operand[i], vd);
 
 
      /* Special-case plain move instructions, since we may well
      /* Special-case plain move instructions, since we may well
         be able to do the move from a different register class.  */
         be able to do the move from a different register class.  */
      if (set && REG_P (SET_SRC (set)))
      if (set && REG_P (SET_SRC (set)))
        {
        {
          rtx src = SET_SRC (set);
          rtx src = SET_SRC (set);
          unsigned int regno = REGNO (src);
          unsigned int regno = REGNO (src);
          enum machine_mode mode = GET_MODE (src);
          enum machine_mode mode = GET_MODE (src);
          unsigned int i;
          unsigned int i;
          rtx new;
          rtx new;
 
 
          /* If we are accessing SRC in some mode other that what we
          /* If we are accessing SRC in some mode other that what we
             set it in, make sure that the replacement is valid.  */
             set it in, make sure that the replacement is valid.  */
          if (mode != vd->e[regno].mode)
          if (mode != vd->e[regno].mode)
            {
            {
              if (hard_regno_nregs[regno][mode]
              if (hard_regno_nregs[regno][mode]
                  > hard_regno_nregs[regno][vd->e[regno].mode])
                  > hard_regno_nregs[regno][vd->e[regno].mode])
                goto no_move_special_case;
                goto no_move_special_case;
            }
            }
 
 
          /* If the destination is also a register, try to find a source
          /* If the destination is also a register, try to find a source
             register in the same class.  */
             register in the same class.  */
          if (REG_P (SET_DEST (set)))
          if (REG_P (SET_DEST (set)))
            {
            {
              new = find_oldest_value_reg (REGNO_REG_CLASS (regno), src, vd);
              new = find_oldest_value_reg (REGNO_REG_CLASS (regno), src, vd);
              if (new && validate_change (insn, &SET_SRC (set), new, 0))
              if (new && validate_change (insn, &SET_SRC (set), new, 0))
                {
                {
                  if (dump_file)
                  if (dump_file)
                    fprintf (dump_file,
                    fprintf (dump_file,
                             "insn %u: replaced reg %u with %u\n",
                             "insn %u: replaced reg %u with %u\n",
                             INSN_UID (insn), regno, REGNO (new));
                             INSN_UID (insn), regno, REGNO (new));
                  changed = true;
                  changed = true;
                  goto did_replacement;
                  goto did_replacement;
                }
                }
            }
            }
 
 
          /* Otherwise, try all valid registers and see if its valid.  */
          /* Otherwise, try all valid registers and see if its valid.  */
          for (i = vd->e[regno].oldest_regno; i != regno;
          for (i = vd->e[regno].oldest_regno; i != regno;
               i = vd->e[i].next_regno)
               i = vd->e[i].next_regno)
            {
            {
              new = maybe_mode_change (vd->e[i].mode, vd->e[regno].mode,
              new = maybe_mode_change (vd->e[i].mode, vd->e[regno].mode,
                                       mode, i, regno);
                                       mode, i, regno);
              if (new != NULL_RTX)
              if (new != NULL_RTX)
                {
                {
                  if (validate_change (insn, &SET_SRC (set), new, 0))
                  if (validate_change (insn, &SET_SRC (set), new, 0))
                    {
                    {
                      ORIGINAL_REGNO (new) = ORIGINAL_REGNO (src);
                      ORIGINAL_REGNO (new) = ORIGINAL_REGNO (src);
                      REG_ATTRS (new) = REG_ATTRS (src);
                      REG_ATTRS (new) = REG_ATTRS (src);
                      if (dump_file)
                      if (dump_file)
                        fprintf (dump_file,
                        fprintf (dump_file,
                                 "insn %u: replaced reg %u with %u\n",
                                 "insn %u: replaced reg %u with %u\n",
                                 INSN_UID (insn), regno, REGNO (new));
                                 INSN_UID (insn), regno, REGNO (new));
                      changed = true;
                      changed = true;
                      goto did_replacement;
                      goto did_replacement;
                    }
                    }
                }
                }
            }
            }
        }
        }
      no_move_special_case:
      no_move_special_case:
 
 
      any_replacements = false;
      any_replacements = false;
 
 
      /* For each input operand, replace a hard register with the
      /* For each input operand, replace a hard register with the
         eldest live copy that's in an appropriate register class.  */
         eldest live copy that's in an appropriate register class.  */
      for (i = 0; i < n_ops; i++)
      for (i = 0; i < n_ops; i++)
        {
        {
          replaced[i] = false;
          replaced[i] = false;
 
 
          /* Don't scan match_operand here, since we've no reg class
          /* Don't scan match_operand here, since we've no reg class
             information to pass down.  Any operands that we could
             information to pass down.  Any operands that we could
             substitute in will be represented elsewhere.  */
             substitute in will be represented elsewhere.  */
          if (recog_data.constraints[i][0] == '\0')
          if (recog_data.constraints[i][0] == '\0')
            continue;
            continue;
 
 
          /* Don't replace in asms intentionally referencing hard regs.  */
          /* Don't replace in asms intentionally referencing hard regs.  */
          if (is_asm && REG_P (recog_data.operand[i])
          if (is_asm && REG_P (recog_data.operand[i])
              && (REGNO (recog_data.operand[i])
              && (REGNO (recog_data.operand[i])
                  == ORIGINAL_REGNO (recog_data.operand[i])))
                  == ORIGINAL_REGNO (recog_data.operand[i])))
            continue;
            continue;
 
 
          if (recog_data.operand_type[i] == OP_IN)
          if (recog_data.operand_type[i] == OP_IN)
            {
            {
              if (recog_op_alt[i][alt].is_address)
              if (recog_op_alt[i][alt].is_address)
                replaced[i]
                replaced[i]
                  = replace_oldest_value_addr (recog_data.operand_loc[i],
                  = replace_oldest_value_addr (recog_data.operand_loc[i],
                                               recog_op_alt[i][alt].cl,
                                               recog_op_alt[i][alt].cl,
                                               VOIDmode, insn, vd);
                                               VOIDmode, insn, vd);
              else if (REG_P (recog_data.operand[i]))
              else if (REG_P (recog_data.operand[i]))
                replaced[i]
                replaced[i]
                  = replace_oldest_value_reg (recog_data.operand_loc[i],
                  = replace_oldest_value_reg (recog_data.operand_loc[i],
                                              recog_op_alt[i][alt].cl,
                                              recog_op_alt[i][alt].cl,
                                              insn, vd);
                                              insn, vd);
              else if (MEM_P (recog_data.operand[i]))
              else if (MEM_P (recog_data.operand[i]))
                replaced[i] = replace_oldest_value_mem (recog_data.operand[i],
                replaced[i] = replace_oldest_value_mem (recog_data.operand[i],
                                                        insn, vd);
                                                        insn, vd);
            }
            }
          else if (MEM_P (recog_data.operand[i]))
          else if (MEM_P (recog_data.operand[i]))
            replaced[i] = replace_oldest_value_mem (recog_data.operand[i],
            replaced[i] = replace_oldest_value_mem (recog_data.operand[i],
                                                    insn, vd);
                                                    insn, vd);
 
 
          /* If we performed any replacement, update match_dups.  */
          /* If we performed any replacement, update match_dups.  */
          if (replaced[i])
          if (replaced[i])
            {
            {
              int j;
              int j;
              rtx new;
              rtx new;
 
 
              new = *recog_data.operand_loc[i];
              new = *recog_data.operand_loc[i];
              recog_data.operand[i] = new;
              recog_data.operand[i] = new;
              for (j = 0; j < recog_data.n_dups; j++)
              for (j = 0; j < recog_data.n_dups; j++)
                if (recog_data.dup_num[j] == i)
                if (recog_data.dup_num[j] == i)
                  validate_change (insn, recog_data.dup_loc[j], new, 1);
                  validate_change (insn, recog_data.dup_loc[j], new, 1);
 
 
              any_replacements = true;
              any_replacements = true;
            }
            }
        }
        }
 
 
      if (any_replacements)
      if (any_replacements)
        {
        {
          if (! apply_change_group ())
          if (! apply_change_group ())
            {
            {
              for (i = 0; i < n_ops; i++)
              for (i = 0; i < n_ops; i++)
                if (replaced[i])
                if (replaced[i])
                  {
                  {
                    rtx old = *recog_data.operand_loc[i];
                    rtx old = *recog_data.operand_loc[i];
                    recog_data.operand[i] = old;
                    recog_data.operand[i] = old;
                  }
                  }
 
 
              if (dump_file)
              if (dump_file)
                fprintf (dump_file,
                fprintf (dump_file,
                         "insn %u: reg replacements not verified\n",
                         "insn %u: reg replacements not verified\n",
                         INSN_UID (insn));
                         INSN_UID (insn));
            }
            }
          else
          else
            changed = true;
            changed = true;
        }
        }
 
 
    did_replacement:
    did_replacement:
      /* Clobber call-clobbered registers.  */
      /* Clobber call-clobbered registers.  */
      if (CALL_P (insn))
      if (CALL_P (insn))
        for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
        for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
          if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
          if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
            kill_value_regno (i, 1, vd);
            kill_value_regno (i, 1, vd);
 
 
      /* Notice stores.  */
      /* Notice stores.  */
      note_stores (PATTERN (insn), kill_set_value, vd);
      note_stores (PATTERN (insn), kill_set_value, vd);
 
 
      /* Notice copies.  */
      /* Notice copies.  */
      if (set && REG_P (SET_DEST (set)) && REG_P (SET_SRC (set)))
      if (set && REG_P (SET_DEST (set)) && REG_P (SET_SRC (set)))
        copy_value (SET_DEST (set), SET_SRC (set), vd);
        copy_value (SET_DEST (set), SET_SRC (set), vd);
 
 
      if (insn == BB_END (bb))
      if (insn == BB_END (bb))
        break;
        break;
    }
    }
 
 
  return changed;
  return changed;
}
}
 
 
/* Main entry point for the forward copy propagation optimization.  */
/* Main entry point for the forward copy propagation optimization.  */
 
 
static void
static void
copyprop_hardreg_forward (void)
copyprop_hardreg_forward (void)
{
{
  struct value_data *all_vd;
  struct value_data *all_vd;
  bool need_refresh;
  bool need_refresh;
  basic_block bb;
  basic_block bb;
  sbitmap visited;
  sbitmap visited;
 
 
  need_refresh = false;
  need_refresh = false;
 
 
  all_vd = XNEWVEC (struct value_data, last_basic_block);
  all_vd = XNEWVEC (struct value_data, last_basic_block);
 
 
  visited = sbitmap_alloc (last_basic_block);
  visited = sbitmap_alloc (last_basic_block);
  sbitmap_zero (visited);
  sbitmap_zero (visited);
 
 
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    {
    {
      SET_BIT (visited, bb->index);
      SET_BIT (visited, bb->index);
 
 
      /* If a block has a single predecessor, that we've already
      /* If a block has a single predecessor, that we've already
         processed, begin with the value data that was live at
         processed, begin with the value data that was live at
         the end of the predecessor block.  */
         the end of the predecessor block.  */
      /* ??? Ought to use more intelligent queuing of blocks.  */
      /* ??? Ought to use more intelligent queuing of blocks.  */
      if (single_pred_p (bb)
      if (single_pred_p (bb)
          && TEST_BIT (visited, single_pred (bb)->index)
          && TEST_BIT (visited, single_pred (bb)->index)
          && ! (single_pred_edge (bb)->flags & (EDGE_ABNORMAL_CALL | EDGE_EH)))
          && ! (single_pred_edge (bb)->flags & (EDGE_ABNORMAL_CALL | EDGE_EH)))
        all_vd[bb->index] = all_vd[single_pred (bb)->index];
        all_vd[bb->index] = all_vd[single_pred (bb)->index];
      else
      else
        init_value_data (all_vd + bb->index);
        init_value_data (all_vd + bb->index);
 
 
      if (copyprop_hardreg_forward_1 (bb, all_vd + bb->index))
      if (copyprop_hardreg_forward_1 (bb, all_vd + bb->index))
        need_refresh = true;
        need_refresh = true;
    }
    }
 
 
  sbitmap_free (visited);
  sbitmap_free (visited);
 
 
  if (need_refresh)
  if (need_refresh)
    {
    {
      if (dump_file)
      if (dump_file)
        fputs ("\n\n", dump_file);
        fputs ("\n\n", dump_file);
 
 
      /* ??? Irritatingly, delete_noop_moves does not take a set of blocks
      /* ??? Irritatingly, delete_noop_moves does not take a set of blocks
         to scan, so we have to do a life update with no initial set of
         to scan, so we have to do a life update with no initial set of
         blocks Just In Case.  */
         blocks Just In Case.  */
      delete_noop_moves ();
      delete_noop_moves ();
      update_life_info (NULL, UPDATE_LIFE_GLOBAL_RM_NOTES,
      update_life_info (NULL, UPDATE_LIFE_GLOBAL_RM_NOTES,
                        PROP_DEATH_NOTES
                        PROP_DEATH_NOTES
                        | PROP_SCAN_DEAD_CODE
                        | PROP_SCAN_DEAD_CODE
                        | PROP_KILL_DEAD_CODE);
                        | PROP_KILL_DEAD_CODE);
    }
    }
 
 
  free (all_vd);
  free (all_vd);
}
}
 
 
/* Dump the value chain data to stderr.  */
/* Dump the value chain data to stderr.  */
 
 
void
void
debug_value_data (struct value_data *vd)
debug_value_data (struct value_data *vd)
{
{
  HARD_REG_SET set;
  HARD_REG_SET set;
  unsigned int i, j;
  unsigned int i, j;
 
 
  CLEAR_HARD_REG_SET (set);
  CLEAR_HARD_REG_SET (set);
 
 
  for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
  for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
    if (vd->e[i].oldest_regno == i)
    if (vd->e[i].oldest_regno == i)
      {
      {
        if (vd->e[i].mode == VOIDmode)
        if (vd->e[i].mode == VOIDmode)
          {
          {
            if (vd->e[i].next_regno != INVALID_REGNUM)
            if (vd->e[i].next_regno != INVALID_REGNUM)
              fprintf (stderr, "[%u] Bad next_regno for empty chain (%u)\n",
              fprintf (stderr, "[%u] Bad next_regno for empty chain (%u)\n",
                       i, vd->e[i].next_regno);
                       i, vd->e[i].next_regno);
            continue;
            continue;
          }
          }
 
 
        SET_HARD_REG_BIT (set, i);
        SET_HARD_REG_BIT (set, i);
        fprintf (stderr, "[%u %s] ", i, GET_MODE_NAME (vd->e[i].mode));
        fprintf (stderr, "[%u %s] ", i, GET_MODE_NAME (vd->e[i].mode));
 
 
        for (j = vd->e[i].next_regno;
        for (j = vd->e[i].next_regno;
             j != INVALID_REGNUM;
             j != INVALID_REGNUM;
             j = vd->e[j].next_regno)
             j = vd->e[j].next_regno)
          {
          {
            if (TEST_HARD_REG_BIT (set, j))
            if (TEST_HARD_REG_BIT (set, j))
              {
              {
                fprintf (stderr, "[%u] Loop in regno chain\n", j);
                fprintf (stderr, "[%u] Loop in regno chain\n", j);
                return;
                return;
              }
              }
 
 
            if (vd->e[j].oldest_regno != i)
            if (vd->e[j].oldest_regno != i)
              {
              {
                fprintf (stderr, "[%u] Bad oldest_regno (%u)\n",
                fprintf (stderr, "[%u] Bad oldest_regno (%u)\n",
                         j, vd->e[j].oldest_regno);
                         j, vd->e[j].oldest_regno);
                return;
                return;
              }
              }
            SET_HARD_REG_BIT (set, j);
            SET_HARD_REG_BIT (set, j);
            fprintf (stderr, "[%u %s] ", j, GET_MODE_NAME (vd->e[j].mode));
            fprintf (stderr, "[%u %s] ", j, GET_MODE_NAME (vd->e[j].mode));
          }
          }
        fputc ('\n', stderr);
        fputc ('\n', stderr);
      }
      }
 
 
  for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
  for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
    if (! TEST_HARD_REG_BIT (set, i)
    if (! TEST_HARD_REG_BIT (set, i)
        && (vd->e[i].mode != VOIDmode
        && (vd->e[i].mode != VOIDmode
            || vd->e[i].oldest_regno != i
            || vd->e[i].oldest_regno != i
            || vd->e[i].next_regno != INVALID_REGNUM))
            || vd->e[i].next_regno != INVALID_REGNUM))
      fprintf (stderr, "[%u] Non-empty reg in chain (%s %u %i)\n",
      fprintf (stderr, "[%u] Non-empty reg in chain (%s %u %i)\n",
               i, GET_MODE_NAME (vd->e[i].mode), vd->e[i].oldest_regno,
               i, GET_MODE_NAME (vd->e[i].mode), vd->e[i].oldest_regno,
               vd->e[i].next_regno);
               vd->e[i].next_regno);
}
}
 
 
#ifdef ENABLE_CHECKING
#ifdef ENABLE_CHECKING
static void
static void
validate_value_data (struct value_data *vd)
validate_value_data (struct value_data *vd)
{
{
  HARD_REG_SET set;
  HARD_REG_SET set;
  unsigned int i, j;
  unsigned int i, j;
 
 
  CLEAR_HARD_REG_SET (set);
  CLEAR_HARD_REG_SET (set);
 
 
  for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
  for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
    if (vd->e[i].oldest_regno == i)
    if (vd->e[i].oldest_regno == i)
      {
      {
        if (vd->e[i].mode == VOIDmode)
        if (vd->e[i].mode == VOIDmode)
          {
          {
            if (vd->e[i].next_regno != INVALID_REGNUM)
            if (vd->e[i].next_regno != INVALID_REGNUM)
              internal_error ("validate_value_data: [%u] Bad next_regno for empty chain (%u)",
              internal_error ("validate_value_data: [%u] Bad next_regno for empty chain (%u)",
                              i, vd->e[i].next_regno);
                              i, vd->e[i].next_regno);
            continue;
            continue;
          }
          }
 
 
        SET_HARD_REG_BIT (set, i);
        SET_HARD_REG_BIT (set, i);
 
 
        for (j = vd->e[i].next_regno;
        for (j = vd->e[i].next_regno;
             j != INVALID_REGNUM;
             j != INVALID_REGNUM;
             j = vd->e[j].next_regno)
             j = vd->e[j].next_regno)
          {
          {
            if (TEST_HARD_REG_BIT (set, j))
            if (TEST_HARD_REG_BIT (set, j))
              internal_error ("validate_value_data: Loop in regno chain (%u)",
              internal_error ("validate_value_data: Loop in regno chain (%u)",
                              j);
                              j);
            if (vd->e[j].oldest_regno != i)
            if (vd->e[j].oldest_regno != i)
              internal_error ("validate_value_data: [%u] Bad oldest_regno (%u)",
              internal_error ("validate_value_data: [%u] Bad oldest_regno (%u)",
                              j, vd->e[j].oldest_regno);
                              j, vd->e[j].oldest_regno);
 
 
            SET_HARD_REG_BIT (set, j);
            SET_HARD_REG_BIT (set, j);
          }
          }
      }
      }
 
 
  for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
  for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
    if (! TEST_HARD_REG_BIT (set, i)
    if (! TEST_HARD_REG_BIT (set, i)
        && (vd->e[i].mode != VOIDmode
        && (vd->e[i].mode != VOIDmode
            || vd->e[i].oldest_regno != i
            || vd->e[i].oldest_regno != i
            || vd->e[i].next_regno != INVALID_REGNUM))
            || vd->e[i].next_regno != INVALID_REGNUM))
      internal_error ("validate_value_data: [%u] Non-empty reg in chain (%s %u %i)",
      internal_error ("validate_value_data: [%u] Non-empty reg in chain (%s %u %i)",
                      i, GET_MODE_NAME (vd->e[i].mode), vd->e[i].oldest_regno,
                      i, GET_MODE_NAME (vd->e[i].mode), vd->e[i].oldest_regno,
                      vd->e[i].next_regno);
                      vd->e[i].next_regno);
}
}
#endif
#endif


static bool
static bool
gate_handle_regrename (void)
gate_handle_regrename (void)
{
{
  return (optimize > 0 && (flag_rename_registers || flag_cprop_registers));
  return (optimize > 0 && (flag_rename_registers || flag_cprop_registers));
}
}
 
 
 
 
/* Run the regrename and cprop passes.  */
/* Run the regrename and cprop passes.  */
static unsigned int
static unsigned int
rest_of_handle_regrename (void)
rest_of_handle_regrename (void)
{
{
  if (flag_rename_registers)
  if (flag_rename_registers)
    regrename_optimize ();
    regrename_optimize ();
  if (flag_cprop_registers)
  if (flag_cprop_registers)
    copyprop_hardreg_forward ();
    copyprop_hardreg_forward ();
  return 0;
  return 0;
}
}
 
 
struct tree_opt_pass pass_regrename =
struct tree_opt_pass pass_regrename =
{
{
  "rnreg",                              /* name */
  "rnreg",                              /* name */
  gate_handle_regrename,                /* gate */
  gate_handle_regrename,                /* gate */
  rest_of_handle_regrename,             /* execute */
  rest_of_handle_regrename,             /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  NULL,                                 /* next */
  0,                                    /* static_pass_number */
  0,                                    /* static_pass_number */
  TV_RENAME_REGISTERS,                  /* tv_id */
  TV_RENAME_REGISTERS,                  /* tv_id */
  0,                                    /* properties_required */
  0,                                    /* properties_required */
  0,                                    /* properties_provided */
  0,                                    /* properties_provided */
  0,                                    /* properties_destroyed */
  0,                                    /* properties_destroyed */
  0,                                    /* todo_flags_start */
  0,                                    /* todo_flags_start */
  TODO_dump_func,                       /* todo_flags_finish */
  TODO_dump_func,                       /* todo_flags_finish */
  'n'                                   /* letter */
  'n'                                   /* letter */
};
};
 
 
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.