OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gcc-4.2.2/] [gcc/] [reload.c] - Diff between revs 154 and 816

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 154 Rev 816
/* Search an insn for pseudo regs that must be in hard regs and are not.
/* Search an insn for pseudo regs that must be in hard regs and are not.
   Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
   Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 , 2007
   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 , 2007
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify it under
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
Software Foundation; either version 3, or (at your option) any later
version.
version.
 
 
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
/* This file contains subroutines used only from the file reload1.c.
/* This file contains subroutines used only from the file reload1.c.
   It knows how to scan one insn for operands and values
   It knows how to scan one insn for operands and values
   that need to be copied into registers to make valid code.
   that need to be copied into registers to make valid code.
   It also finds other operands and values which are valid
   It also finds other operands and values which are valid
   but for which equivalent values in registers exist and
   but for which equivalent values in registers exist and
   ought to be used instead.
   ought to be used instead.
 
 
   Before processing the first insn of the function, call `init_reload'.
   Before processing the first insn of the function, call `init_reload'.
   init_reload actually has to be called earlier anyway.
   init_reload actually has to be called earlier anyway.
 
 
   To scan an insn, call `find_reloads'.  This does two things:
   To scan an insn, call `find_reloads'.  This does two things:
   1. sets up tables describing which values must be reloaded
   1. sets up tables describing which values must be reloaded
   for this insn, and what kind of hard regs they must be reloaded into;
   for this insn, and what kind of hard regs they must be reloaded into;
   2. optionally record the locations where those values appear in
   2. optionally record the locations where those values appear in
   the data, so they can be replaced properly later.
   the data, so they can be replaced properly later.
   This is done only if the second arg to `find_reloads' is nonzero.
   This is done only if the second arg to `find_reloads' is nonzero.
 
 
   The third arg to `find_reloads' specifies the number of levels
   The third arg to `find_reloads' specifies the number of levels
   of indirect addressing supported by the machine.  If it is zero,
   of indirect addressing supported by the machine.  If it is zero,
   indirect addressing is not valid.  If it is one, (MEM (REG n))
   indirect addressing is not valid.  If it is one, (MEM (REG n))
   is valid even if (REG n) did not get a hard register; if it is two,
   is valid even if (REG n) did not get a hard register; if it is two,
   (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
   (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
   hard register, and similarly for higher values.
   hard register, and similarly for higher values.
 
 
   Then you must choose the hard regs to reload those pseudo regs into,
   Then you must choose the hard regs to reload those pseudo regs into,
   and generate appropriate load insns before this insn and perhaps
   and generate appropriate load insns before this insn and perhaps
   also store insns after this insn.  Set up the array `reload_reg_rtx'
   also store insns after this insn.  Set up the array `reload_reg_rtx'
   to contain the REG rtx's for the registers you used.  In some
   to contain the REG rtx's for the registers you used.  In some
   cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
   cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
   for certain reloads.  Then that tells you which register to use,
   for certain reloads.  Then that tells you which register to use,
   so you do not need to allocate one.  But you still do need to add extra
   so you do not need to allocate one.  But you still do need to add extra
   instructions to copy the value into and out of that register.
   instructions to copy the value into and out of that register.
 
 
   Finally you must call `subst_reloads' to substitute the reload reg rtx's
   Finally you must call `subst_reloads' to substitute the reload reg rtx's
   into the locations already recorded.
   into the locations already recorded.
 
 
NOTE SIDE EFFECTS:
NOTE SIDE EFFECTS:
 
 
   find_reloads can alter the operands of the instruction it is called on.
   find_reloads can alter the operands of the instruction it is called on.
 
 
   1. Two operands of any sort may be interchanged, if they are in a
   1. Two operands of any sort may be interchanged, if they are in a
   commutative instruction.
   commutative instruction.
   This happens only if find_reloads thinks the instruction will compile
   This happens only if find_reloads thinks the instruction will compile
   better that way.
   better that way.
 
 
   2. Pseudo-registers that are equivalent to constants are replaced
   2. Pseudo-registers that are equivalent to constants are replaced
   with those constants if they are not in hard registers.
   with those constants if they are not in hard registers.
 
 
1 happens every time find_reloads is called.
1 happens every time find_reloads is called.
2 happens only when REPLACE is 1, which is only when
2 happens only when REPLACE is 1, which is only when
actually doing the reloads, not when just counting them.
actually doing the reloads, not when just counting them.
 
 
Using a reload register for several reloads in one insn:
Using a reload register for several reloads in one insn:
 
 
When an insn has reloads, it is considered as having three parts:
When an insn has reloads, it is considered as having three parts:
the input reloads, the insn itself after reloading, and the output reloads.
the input reloads, the insn itself after reloading, and the output reloads.
Reloads of values used in memory addresses are often needed for only one part.
Reloads of values used in memory addresses are often needed for only one part.
 
 
When this is so, reload_when_needed records which part needs the reload.
When this is so, reload_when_needed records which part needs the reload.
Two reloads for different parts of the insn can share the same reload
Two reloads for different parts of the insn can share the same reload
register.
register.
 
 
When a reload is used for addresses in multiple parts, or when it is
When a reload is used for addresses in multiple parts, or when it is
an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
a register with any other reload.  */
a register with any other reload.  */
 
 
#define REG_OK_STRICT
#define REG_OK_STRICT
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "rtl.h"
#include "rtl.h"
#include "tm_p.h"
#include "tm_p.h"
#include "insn-config.h"
#include "insn-config.h"
#include "expr.h"
#include "expr.h"
#include "optabs.h"
#include "optabs.h"
#include "recog.h"
#include "recog.h"
#include "reload.h"
#include "reload.h"
#include "regs.h"
#include "regs.h"
#include "addresses.h"
#include "addresses.h"
#include "hard-reg-set.h"
#include "hard-reg-set.h"
#include "flags.h"
#include "flags.h"
#include "real.h"
#include "real.h"
#include "output.h"
#include "output.h"
#include "function.h"
#include "function.h"
#include "toplev.h"
#include "toplev.h"
#include "params.h"
#include "params.h"
#include "target.h"
#include "target.h"
 
 
/* True if X is a constant that can be forced into the constant pool.  */
/* True if X is a constant that can be forced into the constant pool.  */
#define CONST_POOL_OK_P(X)                      \
#define CONST_POOL_OK_P(X)                      \
  (CONSTANT_P (X)                               \
  (CONSTANT_P (X)                               \
   && GET_CODE (X) != HIGH                      \
   && GET_CODE (X) != HIGH                      \
   && !targetm.cannot_force_const_mem (X))
   && !targetm.cannot_force_const_mem (X))
 
 
/* True if C is a non-empty register class that has too few registers
/* True if C is a non-empty register class that has too few registers
   to be safely used as a reload target class.  */
   to be safely used as a reload target class.  */
#define SMALL_REGISTER_CLASS_P(C) \
#define SMALL_REGISTER_CLASS_P(C) \
  (reg_class_size [(C)] == 1 \
  (reg_class_size [(C)] == 1 \
   || (reg_class_size [(C)] >= 1 && CLASS_LIKELY_SPILLED_P (C)))
   || (reg_class_size [(C)] >= 1 && CLASS_LIKELY_SPILLED_P (C)))
 
 


/* All reloads of the current insn are recorded here.  See reload.h for
/* All reloads of the current insn are recorded here.  See reload.h for
   comments.  */
   comments.  */
int n_reloads;
int n_reloads;
struct reload rld[MAX_RELOADS];
struct reload rld[MAX_RELOADS];
 
 
/* All the "earlyclobber" operands of the current insn
/* All the "earlyclobber" operands of the current insn
   are recorded here.  */
   are recorded here.  */
int n_earlyclobbers;
int n_earlyclobbers;
rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
 
 
int reload_n_operands;
int reload_n_operands;
 
 
/* Replacing reloads.
/* Replacing reloads.
 
 
   If `replace_reloads' is nonzero, then as each reload is recorded
   If `replace_reloads' is nonzero, then as each reload is recorded
   an entry is made for it in the table `replacements'.
   an entry is made for it in the table `replacements'.
   Then later `subst_reloads' can look through that table and
   Then later `subst_reloads' can look through that table and
   perform all the replacements needed.  */
   perform all the replacements needed.  */
 
 
/* Nonzero means record the places to replace.  */
/* Nonzero means record the places to replace.  */
static int replace_reloads;
static int replace_reloads;
 
 
/* Each replacement is recorded with a structure like this.  */
/* Each replacement is recorded with a structure like this.  */
struct replacement
struct replacement
{
{
  rtx *where;                   /* Location to store in */
  rtx *where;                   /* Location to store in */
  rtx *subreg_loc;              /* Location of SUBREG if WHERE is inside
  rtx *subreg_loc;              /* Location of SUBREG if WHERE is inside
                                   a SUBREG; 0 otherwise.  */
                                   a SUBREG; 0 otherwise.  */
  int what;                     /* which reload this is for */
  int what;                     /* which reload this is for */
  enum machine_mode mode;       /* mode it must have */
  enum machine_mode mode;       /* mode it must have */
};
};
 
 
static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
 
 
/* Number of replacements currently recorded.  */
/* Number of replacements currently recorded.  */
static int n_replacements;
static int n_replacements;
 
 
/* Used to track what is modified by an operand.  */
/* Used to track what is modified by an operand.  */
struct decomposition
struct decomposition
{
{
  int reg_flag;         /* Nonzero if referencing a register.  */
  int reg_flag;         /* Nonzero if referencing a register.  */
  int safe;             /* Nonzero if this can't conflict with anything.  */
  int safe;             /* Nonzero if this can't conflict with anything.  */
  rtx base;             /* Base address for MEM.  */
  rtx base;             /* Base address for MEM.  */
  HOST_WIDE_INT start;  /* Starting offset or register number.  */
  HOST_WIDE_INT start;  /* Starting offset or register number.  */
  HOST_WIDE_INT end;    /* Ending offset or register number.  */
  HOST_WIDE_INT end;    /* Ending offset or register number.  */
};
};
 
 
#ifdef SECONDARY_MEMORY_NEEDED
#ifdef SECONDARY_MEMORY_NEEDED
 
 
/* Save MEMs needed to copy from one class of registers to another.  One MEM
/* Save MEMs needed to copy from one class of registers to another.  One MEM
   is used per mode, but normally only one or two modes are ever used.
   is used per mode, but normally only one or two modes are ever used.
 
 
   We keep two versions, before and after register elimination.  The one
   We keep two versions, before and after register elimination.  The one
   after register elimination is record separately for each operand.  This
   after register elimination is record separately for each operand.  This
   is done in case the address is not valid to be sure that we separately
   is done in case the address is not valid to be sure that we separately
   reload each.  */
   reload each.  */
 
 
static rtx secondary_memlocs[NUM_MACHINE_MODES];
static rtx secondary_memlocs[NUM_MACHINE_MODES];
static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
static int secondary_memlocs_elim_used = 0;
static int secondary_memlocs_elim_used = 0;
#endif
#endif
 
 
/* The instruction we are doing reloads for;
/* The instruction we are doing reloads for;
   so we can test whether a register dies in it.  */
   so we can test whether a register dies in it.  */
static rtx this_insn;
static rtx this_insn;
 
 
/* Nonzero if this instruction is a user-specified asm with operands.  */
/* Nonzero if this instruction is a user-specified asm with operands.  */
static int this_insn_is_asm;
static int this_insn_is_asm;
 
 
/* If hard_regs_live_known is nonzero,
/* If hard_regs_live_known is nonzero,
   we can tell which hard regs are currently live,
   we can tell which hard regs are currently live,
   at least enough to succeed in choosing dummy reloads.  */
   at least enough to succeed in choosing dummy reloads.  */
static int hard_regs_live_known;
static int hard_regs_live_known;
 
 
/* Indexed by hard reg number,
/* Indexed by hard reg number,
   element is nonnegative if hard reg has been spilled.
   element is nonnegative if hard reg has been spilled.
   This vector is passed to `find_reloads' as an argument
   This vector is passed to `find_reloads' as an argument
   and is not changed here.  */
   and is not changed here.  */
static short *static_reload_reg_p;
static short *static_reload_reg_p;
 
 
/* Set to 1 in subst_reg_equivs if it changes anything.  */
/* Set to 1 in subst_reg_equivs if it changes anything.  */
static int subst_reg_equivs_changed;
static int subst_reg_equivs_changed;
 
 
/* On return from push_reload, holds the reload-number for the OUT
/* On return from push_reload, holds the reload-number for the OUT
   operand, which can be different for that from the input operand.  */
   operand, which can be different for that from the input operand.  */
static int output_reloadnum;
static int output_reloadnum;
 
 
  /* Compare two RTX's.  */
  /* Compare two RTX's.  */
#define MATCHES(x, y) \
#define MATCHES(x, y) \
 (x == y || (x != 0 && (REG_P (x)                                \
 (x == y || (x != 0 && (REG_P (x)                                \
                        ? REG_P (y) && REGNO (x) == REGNO (y)   \
                        ? REG_P (y) && REGNO (x) == REGNO (y)   \
                        : rtx_equal_p (x, y) && ! side_effects_p (x))))
                        : rtx_equal_p (x, y) && ! side_effects_p (x))))
 
 
  /* Indicates if two reloads purposes are for similar enough things that we
  /* Indicates if two reloads purposes are for similar enough things that we
     can merge their reloads.  */
     can merge their reloads.  */
#define MERGABLE_RELOADS(when1, when2, op1, op2) \
#define MERGABLE_RELOADS(when1, when2, op1, op2) \
  ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER   \
  ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER   \
   || ((when1) == (when2) && (op1) == (op2))            \
   || ((when1) == (when2) && (op1) == (op2))            \
   || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
   || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
   || ((when1) == RELOAD_FOR_OPERAND_ADDRESS            \
   || ((when1) == RELOAD_FOR_OPERAND_ADDRESS            \
       && (when2) == RELOAD_FOR_OPERAND_ADDRESS)        \
       && (when2) == RELOAD_FOR_OPERAND_ADDRESS)        \
   || ((when1) == RELOAD_FOR_OTHER_ADDRESS              \
   || ((when1) == RELOAD_FOR_OTHER_ADDRESS              \
       && (when2) == RELOAD_FOR_OTHER_ADDRESS))
       && (when2) == RELOAD_FOR_OTHER_ADDRESS))
 
 
  /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged.  */
  /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged.  */
#define MERGE_TO_OTHER(when1, when2, op1, op2) \
#define MERGE_TO_OTHER(when1, when2, op1, op2) \
  ((when1) != (when2)                                   \
  ((when1) != (when2)                                   \
   || ! ((op1) == (op2)                                 \
   || ! ((op1) == (op2)                                 \
         || (when1) == RELOAD_FOR_INPUT                 \
         || (when1) == RELOAD_FOR_INPUT                 \
         || (when1) == RELOAD_FOR_OPERAND_ADDRESS       \
         || (when1) == RELOAD_FOR_OPERAND_ADDRESS       \
         || (when1) == RELOAD_FOR_OTHER_ADDRESS))
         || (when1) == RELOAD_FOR_OTHER_ADDRESS))
 
 
  /* If we are going to reload an address, compute the reload type to
  /* If we are going to reload an address, compute the reload type to
     use.  */
     use.  */
#define ADDR_TYPE(type)                                 \
#define ADDR_TYPE(type)                                 \
  ((type) == RELOAD_FOR_INPUT_ADDRESS                   \
  ((type) == RELOAD_FOR_INPUT_ADDRESS                   \
   ? RELOAD_FOR_INPADDR_ADDRESS                         \
   ? RELOAD_FOR_INPADDR_ADDRESS                         \
   : ((type) == RELOAD_FOR_OUTPUT_ADDRESS               \
   : ((type) == RELOAD_FOR_OUTPUT_ADDRESS               \
      ? RELOAD_FOR_OUTADDR_ADDRESS                      \
      ? RELOAD_FOR_OUTADDR_ADDRESS                      \
      : (type)))
      : (type)))
 
 
static int push_secondary_reload (int, rtx, int, int, enum reg_class,
static int push_secondary_reload (int, rtx, int, int, enum reg_class,
                                  enum machine_mode, enum reload_type,
                                  enum machine_mode, enum reload_type,
                                  enum insn_code *, secondary_reload_info *);
                                  enum insn_code *, secondary_reload_info *);
static enum reg_class find_valid_class (enum machine_mode, enum machine_mode,
static enum reg_class find_valid_class (enum machine_mode, enum machine_mode,
                                        int, unsigned int);
                                        int, unsigned int);
static int reload_inner_reg_of_subreg (rtx, enum machine_mode, int);
static int reload_inner_reg_of_subreg (rtx, enum machine_mode, int);
static void push_replacement (rtx *, int, enum machine_mode);
static void push_replacement (rtx *, int, enum machine_mode);
static void dup_replacements (rtx *, rtx *);
static void dup_replacements (rtx *, rtx *);
static void combine_reloads (void);
static void combine_reloads (void);
static int find_reusable_reload (rtx *, rtx, enum reg_class,
static int find_reusable_reload (rtx *, rtx, enum reg_class,
                                 enum reload_type, int, int);
                                 enum reload_type, int, int);
static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, enum machine_mode,
static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, enum machine_mode,
                              enum machine_mode, enum reg_class, int, int);
                              enum machine_mode, enum reg_class, int, int);
static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
static struct decomposition decompose (rtx);
static struct decomposition decompose (rtx);
static int immune_p (rtx, rtx, struct decomposition);
static int immune_p (rtx, rtx, struct decomposition);
static int alternative_allows_memconst (const char *, int);
static int alternative_allows_memconst (const char *, int);
static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int, rtx,
static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int, rtx,
                                int *);
                                int *);
static rtx make_memloc (rtx, int);
static rtx make_memloc (rtx, int);
static int maybe_memory_address_p (enum machine_mode, rtx, rtx *);
static int maybe_memory_address_p (enum machine_mode, rtx, rtx *);
static int find_reloads_address (enum machine_mode, rtx *, rtx, rtx *,
static int find_reloads_address (enum machine_mode, rtx *, rtx, rtx *,
                                 int, enum reload_type, int, rtx);
                                 int, enum reload_type, int, rtx);
static rtx subst_reg_equivs (rtx, rtx);
static rtx subst_reg_equivs (rtx, rtx);
static rtx subst_indexed_address (rtx);
static rtx subst_indexed_address (rtx);
static void update_auto_inc_notes (rtx, int, int);
static void update_auto_inc_notes (rtx, int, int);
static int find_reloads_address_1 (enum machine_mode, rtx, int,
static int find_reloads_address_1 (enum machine_mode, rtx, int,
                                   enum rtx_code, enum rtx_code, rtx *,
                                   enum rtx_code, enum rtx_code, rtx *,
                                   int, enum reload_type,int, rtx);
                                   int, enum reload_type,int, rtx);
static void find_reloads_address_part (rtx, rtx *, enum reg_class,
static void find_reloads_address_part (rtx, rtx *, enum reg_class,
                                       enum machine_mode, int,
                                       enum machine_mode, int,
                                       enum reload_type, int);
                                       enum reload_type, int);
static rtx find_reloads_subreg_address (rtx, int, int, enum reload_type,
static rtx find_reloads_subreg_address (rtx, int, int, enum reload_type,
                                        int, rtx);
                                        int, rtx);
static void copy_replacements_1 (rtx *, rtx *, int);
static void copy_replacements_1 (rtx *, rtx *, int);
static int find_inc_amount (rtx, rtx);
static int find_inc_amount (rtx, rtx);
static int refers_to_mem_for_reload_p (rtx);
static int refers_to_mem_for_reload_p (rtx);
static int refers_to_regno_for_reload_p (unsigned int, unsigned int,
static int refers_to_regno_for_reload_p (unsigned int, unsigned int,
                                         rtx, rtx *);
                                         rtx, rtx *);
 
 
/* Add NEW to reg_equiv_alt_mem_list[REGNO] if it's not present in the
/* Add NEW to reg_equiv_alt_mem_list[REGNO] if it's not present in the
   list yet.  */
   list yet.  */
 
 
static void
static void
push_reg_equiv_alt_mem (int regno, rtx mem)
push_reg_equiv_alt_mem (int regno, rtx mem)
{
{
  rtx it;
  rtx it;
 
 
  for (it = reg_equiv_alt_mem_list [regno]; it; it = XEXP (it, 1))
  for (it = reg_equiv_alt_mem_list [regno]; it; it = XEXP (it, 1))
    if (rtx_equal_p (XEXP (it, 0), mem))
    if (rtx_equal_p (XEXP (it, 0), mem))
      return;
      return;
 
 
  reg_equiv_alt_mem_list [regno]
  reg_equiv_alt_mem_list [regno]
    = alloc_EXPR_LIST (REG_EQUIV, mem,
    = alloc_EXPR_LIST (REG_EQUIV, mem,
                       reg_equiv_alt_mem_list [regno]);
                       reg_equiv_alt_mem_list [regno]);
}
}


/* Determine if any secondary reloads are needed for loading (if IN_P is
/* Determine if any secondary reloads are needed for loading (if IN_P is
   nonzero) or storing (if IN_P is zero) X to or from a reload register of
   nonzero) or storing (if IN_P is zero) X to or from a reload register of
   register class RELOAD_CLASS in mode RELOAD_MODE.  If secondary reloads
   register class RELOAD_CLASS in mode RELOAD_MODE.  If secondary reloads
   are needed, push them.
   are needed, push them.
 
 
   Return the reload number of the secondary reload we made, or -1 if
   Return the reload number of the secondary reload we made, or -1 if
   we didn't need one.  *PICODE is set to the insn_code to use if we do
   we didn't need one.  *PICODE is set to the insn_code to use if we do
   need a secondary reload.  */
   need a secondary reload.  */
 
 
static int
static int
push_secondary_reload (int in_p, rtx x, int opnum, int optional,
push_secondary_reload (int in_p, rtx x, int opnum, int optional,
                       enum reg_class reload_class,
                       enum reg_class reload_class,
                       enum machine_mode reload_mode, enum reload_type type,
                       enum machine_mode reload_mode, enum reload_type type,
                       enum insn_code *picode, secondary_reload_info *prev_sri)
                       enum insn_code *picode, secondary_reload_info *prev_sri)
{
{
  enum reg_class class = NO_REGS;
  enum reg_class class = NO_REGS;
  enum reg_class scratch_class;
  enum reg_class scratch_class;
  enum machine_mode mode = reload_mode;
  enum machine_mode mode = reload_mode;
  enum insn_code icode = CODE_FOR_nothing;
  enum insn_code icode = CODE_FOR_nothing;
  enum insn_code t_icode = CODE_FOR_nothing;
  enum insn_code t_icode = CODE_FOR_nothing;
  enum reload_type secondary_type;
  enum reload_type secondary_type;
  int s_reload, t_reload = -1;
  int s_reload, t_reload = -1;
  const char *scratch_constraint;
  const char *scratch_constraint;
  char letter;
  char letter;
  secondary_reload_info sri;
  secondary_reload_info sri;
 
 
  if (type == RELOAD_FOR_INPUT_ADDRESS
  if (type == RELOAD_FOR_INPUT_ADDRESS
      || type == RELOAD_FOR_OUTPUT_ADDRESS
      || type == RELOAD_FOR_OUTPUT_ADDRESS
      || type == RELOAD_FOR_INPADDR_ADDRESS
      || type == RELOAD_FOR_INPADDR_ADDRESS
      || type == RELOAD_FOR_OUTADDR_ADDRESS)
      || type == RELOAD_FOR_OUTADDR_ADDRESS)
    secondary_type = type;
    secondary_type = type;
  else
  else
    secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
    secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
 
 
  *picode = CODE_FOR_nothing;
  *picode = CODE_FOR_nothing;
 
 
  /* If X is a paradoxical SUBREG, use the inner value to determine both the
  /* If X is a paradoxical SUBREG, use the inner value to determine both the
     mode and object being reloaded.  */
     mode and object being reloaded.  */
  if (GET_CODE (x) == SUBREG
  if (GET_CODE (x) == SUBREG
      && (GET_MODE_SIZE (GET_MODE (x))
      && (GET_MODE_SIZE (GET_MODE (x))
          > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
          > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
    {
    {
      x = SUBREG_REG (x);
      x = SUBREG_REG (x);
      reload_mode = GET_MODE (x);
      reload_mode = GET_MODE (x);
    }
    }
 
 
  /* If X is a pseudo-register that has an equivalent MEM (actually, if it
  /* If X is a pseudo-register that has an equivalent MEM (actually, if it
     is still a pseudo-register by now, it *must* have an equivalent MEM
     is still a pseudo-register by now, it *must* have an equivalent MEM
     but we don't want to assume that), use that equivalent when seeing if
     but we don't want to assume that), use that equivalent when seeing if
     a secondary reload is needed since whether or not a reload is needed
     a secondary reload is needed since whether or not a reload is needed
     might be sensitive to the form of the MEM.  */
     might be sensitive to the form of the MEM.  */
 
 
  if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
  if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
      && reg_equiv_mem[REGNO (x)] != 0)
      && reg_equiv_mem[REGNO (x)] != 0)
    x = reg_equiv_mem[REGNO (x)];
    x = reg_equiv_mem[REGNO (x)];
 
 
  sri.icode = CODE_FOR_nothing;
  sri.icode = CODE_FOR_nothing;
  sri.prev_sri = prev_sri;
  sri.prev_sri = prev_sri;
  class = targetm.secondary_reload (in_p, x, reload_class, reload_mode, &sri);
  class = targetm.secondary_reload (in_p, x, reload_class, reload_mode, &sri);
  icode = sri.icode;
  icode = sri.icode;
 
 
  /* If we don't need any secondary registers, done.  */
  /* If we don't need any secondary registers, done.  */
  if (class == NO_REGS && icode == CODE_FOR_nothing)
  if (class == NO_REGS && icode == CODE_FOR_nothing)
    return -1;
    return -1;
 
 
  if (class != NO_REGS)
  if (class != NO_REGS)
    t_reload = push_secondary_reload (in_p, x, opnum, optional, class,
    t_reload = push_secondary_reload (in_p, x, opnum, optional, class,
                                      reload_mode, type, &t_icode, &sri);
                                      reload_mode, type, &t_icode, &sri);
 
 
  /* If we will be using an insn, the secondary reload is for a
  /* If we will be using an insn, the secondary reload is for a
     scratch register.  */
     scratch register.  */
 
 
  if (icode != CODE_FOR_nothing)
  if (icode != CODE_FOR_nothing)
    {
    {
      /* If IN_P is nonzero, the reload register will be the output in
      /* If IN_P is nonzero, the reload register will be the output in
         operand 0.  If IN_P is zero, the reload register will be the input
         operand 0.  If IN_P is zero, the reload register will be the input
         in operand 1.  Outputs should have an initial "=", which we must
         in operand 1.  Outputs should have an initial "=", which we must
         skip.  */
         skip.  */
 
 
      /* ??? It would be useful to be able to handle only two, or more than
      /* ??? It would be useful to be able to handle only two, or more than
         three, operands, but for now we can only handle the case of having
         three, operands, but for now we can only handle the case of having
         exactly three: output, input and one temp/scratch.  */
         exactly three: output, input and one temp/scratch.  */
      gcc_assert (insn_data[(int) icode].n_operands == 3);
      gcc_assert (insn_data[(int) icode].n_operands == 3);
 
 
      /* ??? We currently have no way to represent a reload that needs
      /* ??? We currently have no way to represent a reload that needs
         an icode to reload from an intermediate tertiary reload register.
         an icode to reload from an intermediate tertiary reload register.
         We should probably have a new field in struct reload to tag a
         We should probably have a new field in struct reload to tag a
         chain of scratch operand reloads onto.   */
         chain of scratch operand reloads onto.   */
      gcc_assert (class == NO_REGS);
      gcc_assert (class == NO_REGS);
 
 
      scratch_constraint = insn_data[(int) icode].operand[2].constraint;
      scratch_constraint = insn_data[(int) icode].operand[2].constraint;
      gcc_assert (*scratch_constraint == '=');
      gcc_assert (*scratch_constraint == '=');
      scratch_constraint++;
      scratch_constraint++;
      if (*scratch_constraint == '&')
      if (*scratch_constraint == '&')
        scratch_constraint++;
        scratch_constraint++;
      letter = *scratch_constraint;
      letter = *scratch_constraint;
      scratch_class = (letter == 'r' ? GENERAL_REGS
      scratch_class = (letter == 'r' ? GENERAL_REGS
                       : REG_CLASS_FROM_CONSTRAINT ((unsigned char) letter,
                       : REG_CLASS_FROM_CONSTRAINT ((unsigned char) letter,
                                                   scratch_constraint));
                                                   scratch_constraint));
 
 
      class = scratch_class;
      class = scratch_class;
      mode = insn_data[(int) icode].operand[2].mode;
      mode = insn_data[(int) icode].operand[2].mode;
    }
    }
 
 
  /* This case isn't valid, so fail.  Reload is allowed to use the same
  /* This case isn't valid, so fail.  Reload is allowed to use the same
     register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
     register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
     in the case of a secondary register, we actually need two different
     in the case of a secondary register, we actually need two different
     registers for correct code.  We fail here to prevent the possibility of
     registers for correct code.  We fail here to prevent the possibility of
     silently generating incorrect code later.
     silently generating incorrect code later.
 
 
     The convention is that secondary input reloads are valid only if the
     The convention is that secondary input reloads are valid only if the
     secondary_class is different from class.  If you have such a case, you
     secondary_class is different from class.  If you have such a case, you
     can not use secondary reloads, you must work around the problem some
     can not use secondary reloads, you must work around the problem some
     other way.
     other way.
 
 
     Allow this when a reload_in/out pattern is being used.  I.e. assume
     Allow this when a reload_in/out pattern is being used.  I.e. assume
     that the generated code handles this case.  */
     that the generated code handles this case.  */
 
 
  gcc_assert (!in_p || class != reload_class || icode != CODE_FOR_nothing
  gcc_assert (!in_p || class != reload_class || icode != CODE_FOR_nothing
              || t_icode != CODE_FOR_nothing);
              || t_icode != CODE_FOR_nothing);
 
 
  /* See if we can reuse an existing secondary reload.  */
  /* See if we can reuse an existing secondary reload.  */
  for (s_reload = 0; s_reload < n_reloads; s_reload++)
  for (s_reload = 0; s_reload < n_reloads; s_reload++)
    if (rld[s_reload].secondary_p
    if (rld[s_reload].secondary_p
        && (reg_class_subset_p (class, rld[s_reload].class)
        && (reg_class_subset_p (class, rld[s_reload].class)
            || reg_class_subset_p (rld[s_reload].class, class))
            || reg_class_subset_p (rld[s_reload].class, class))
        && ((in_p && rld[s_reload].inmode == mode)
        && ((in_p && rld[s_reload].inmode == mode)
            || (! in_p && rld[s_reload].outmode == mode))
            || (! in_p && rld[s_reload].outmode == mode))
        && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
        && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
            || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
            || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
        && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
        && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
            || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
            || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
        && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
        && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
        && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
        && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
                             opnum, rld[s_reload].opnum))
                             opnum, rld[s_reload].opnum))
      {
      {
        if (in_p)
        if (in_p)
          rld[s_reload].inmode = mode;
          rld[s_reload].inmode = mode;
        if (! in_p)
        if (! in_p)
          rld[s_reload].outmode = mode;
          rld[s_reload].outmode = mode;
 
 
        if (reg_class_subset_p (class, rld[s_reload].class))
        if (reg_class_subset_p (class, rld[s_reload].class))
          rld[s_reload].class = class;
          rld[s_reload].class = class;
 
 
        rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
        rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
        rld[s_reload].optional &= optional;
        rld[s_reload].optional &= optional;
        rld[s_reload].secondary_p = 1;
        rld[s_reload].secondary_p = 1;
        if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
        if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
                            opnum, rld[s_reload].opnum))
                            opnum, rld[s_reload].opnum))
          rld[s_reload].when_needed = RELOAD_OTHER;
          rld[s_reload].when_needed = RELOAD_OTHER;
      }
      }
 
 
  if (s_reload == n_reloads)
  if (s_reload == n_reloads)
    {
    {
#ifdef SECONDARY_MEMORY_NEEDED
#ifdef SECONDARY_MEMORY_NEEDED
      /* If we need a memory location to copy between the two reload regs,
      /* If we need a memory location to copy between the two reload regs,
         set it up now.  Note that we do the input case before making
         set it up now.  Note that we do the input case before making
         the reload and the output case after.  This is due to the
         the reload and the output case after.  This is due to the
         way reloads are output.  */
         way reloads are output.  */
 
 
      if (in_p && icode == CODE_FOR_nothing
      if (in_p && icode == CODE_FOR_nothing
          && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
          && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
        {
        {
          get_secondary_mem (x, reload_mode, opnum, type);
          get_secondary_mem (x, reload_mode, opnum, type);
 
 
          /* We may have just added new reloads.  Make sure we add
          /* We may have just added new reloads.  Make sure we add
             the new reload at the end.  */
             the new reload at the end.  */
          s_reload = n_reloads;
          s_reload = n_reloads;
        }
        }
#endif
#endif
 
 
      /* We need to make a new secondary reload for this register class.  */
      /* We need to make a new secondary reload for this register class.  */
      rld[s_reload].in = rld[s_reload].out = 0;
      rld[s_reload].in = rld[s_reload].out = 0;
      rld[s_reload].class = class;
      rld[s_reload].class = class;
 
 
      rld[s_reload].inmode = in_p ? mode : VOIDmode;
      rld[s_reload].inmode = in_p ? mode : VOIDmode;
      rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
      rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
      rld[s_reload].reg_rtx = 0;
      rld[s_reload].reg_rtx = 0;
      rld[s_reload].optional = optional;
      rld[s_reload].optional = optional;
      rld[s_reload].inc = 0;
      rld[s_reload].inc = 0;
      /* Maybe we could combine these, but it seems too tricky.  */
      /* Maybe we could combine these, but it seems too tricky.  */
      rld[s_reload].nocombine = 1;
      rld[s_reload].nocombine = 1;
      rld[s_reload].in_reg = 0;
      rld[s_reload].in_reg = 0;
      rld[s_reload].out_reg = 0;
      rld[s_reload].out_reg = 0;
      rld[s_reload].opnum = opnum;
      rld[s_reload].opnum = opnum;
      rld[s_reload].when_needed = secondary_type;
      rld[s_reload].when_needed = secondary_type;
      rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
      rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
      rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
      rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
      rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
      rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
      rld[s_reload].secondary_out_icode
      rld[s_reload].secondary_out_icode
        = ! in_p ? t_icode : CODE_FOR_nothing;
        = ! in_p ? t_icode : CODE_FOR_nothing;
      rld[s_reload].secondary_p = 1;
      rld[s_reload].secondary_p = 1;
 
 
      n_reloads++;
      n_reloads++;
 
 
#ifdef SECONDARY_MEMORY_NEEDED
#ifdef SECONDARY_MEMORY_NEEDED
      if (! in_p && icode == CODE_FOR_nothing
      if (! in_p && icode == CODE_FOR_nothing
          && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
          && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
        get_secondary_mem (x, mode, opnum, type);
        get_secondary_mem (x, mode, opnum, type);
#endif
#endif
    }
    }
 
 
  *picode = icode;
  *picode = icode;
  return s_reload;
  return s_reload;
}
}
 
 
/* If a secondary reload is needed, return its class.  If both an intermediate
/* If a secondary reload is needed, return its class.  If both an intermediate
   register and a scratch register is needed, we return the class of the
   register and a scratch register is needed, we return the class of the
   intermediate register.  */
   intermediate register.  */
enum reg_class
enum reg_class
secondary_reload_class (bool in_p, enum reg_class class,
secondary_reload_class (bool in_p, enum reg_class class,
                        enum machine_mode mode, rtx x)
                        enum machine_mode mode, rtx x)
{
{
  enum insn_code icode;
  enum insn_code icode;
  secondary_reload_info sri;
  secondary_reload_info sri;
 
 
  sri.icode = CODE_FOR_nothing;
  sri.icode = CODE_FOR_nothing;
  sri.prev_sri = NULL;
  sri.prev_sri = NULL;
  class = targetm.secondary_reload (in_p, x, class, mode, &sri);
  class = targetm.secondary_reload (in_p, x, class, mode, &sri);
  icode = sri.icode;
  icode = sri.icode;
 
 
  /* If there are no secondary reloads at all, we return NO_REGS.
  /* If there are no secondary reloads at all, we return NO_REGS.
     If an intermediate register is needed, we return its class.  */
     If an intermediate register is needed, we return its class.  */
  if (icode == CODE_FOR_nothing || class != NO_REGS)
  if (icode == CODE_FOR_nothing || class != NO_REGS)
    return class;
    return class;
 
 
  /* No intermediate register is needed, but we have a special reload
  /* No intermediate register is needed, but we have a special reload
     pattern, which we assume for now needs a scratch register.  */
     pattern, which we assume for now needs a scratch register.  */
  return scratch_reload_class (icode);
  return scratch_reload_class (icode);
}
}
 
 
/* ICODE is the insn_code of a reload pattern.  Check that it has exactly
/* ICODE is the insn_code of a reload pattern.  Check that it has exactly
   three operands, verify that operand 2 is an output operand, and return
   three operands, verify that operand 2 is an output operand, and return
   its register class.
   its register class.
   ??? We'd like to be able to handle any pattern with at least 2 operands,
   ??? We'd like to be able to handle any pattern with at least 2 operands,
   for zero or more scratch registers, but that needs more infrastructure.  */
   for zero or more scratch registers, but that needs more infrastructure.  */
enum reg_class
enum reg_class
scratch_reload_class (enum insn_code icode)
scratch_reload_class (enum insn_code icode)
{
{
  const char *scratch_constraint;
  const char *scratch_constraint;
  char scratch_letter;
  char scratch_letter;
  enum reg_class class;
  enum reg_class class;
 
 
  gcc_assert (insn_data[(int) icode].n_operands == 3);
  gcc_assert (insn_data[(int) icode].n_operands == 3);
  scratch_constraint = insn_data[(int) icode].operand[2].constraint;
  scratch_constraint = insn_data[(int) icode].operand[2].constraint;
  gcc_assert (*scratch_constraint == '=');
  gcc_assert (*scratch_constraint == '=');
  scratch_constraint++;
  scratch_constraint++;
  if (*scratch_constraint == '&')
  if (*scratch_constraint == '&')
    scratch_constraint++;
    scratch_constraint++;
  scratch_letter = *scratch_constraint;
  scratch_letter = *scratch_constraint;
  if (scratch_letter == 'r')
  if (scratch_letter == 'r')
    return GENERAL_REGS;
    return GENERAL_REGS;
  class = REG_CLASS_FROM_CONSTRAINT ((unsigned char) scratch_letter,
  class = REG_CLASS_FROM_CONSTRAINT ((unsigned char) scratch_letter,
                                     scratch_constraint);
                                     scratch_constraint);
  gcc_assert (class != NO_REGS);
  gcc_assert (class != NO_REGS);
  return class;
  return class;
}
}


#ifdef SECONDARY_MEMORY_NEEDED
#ifdef SECONDARY_MEMORY_NEEDED
 
 
/* Return a memory location that will be used to copy X in mode MODE.
/* Return a memory location that will be used to copy X in mode MODE.
   If we haven't already made a location for this mode in this insn,
   If we haven't already made a location for this mode in this insn,
   call find_reloads_address on the location being returned.  */
   call find_reloads_address on the location being returned.  */
 
 
rtx
rtx
get_secondary_mem (rtx x ATTRIBUTE_UNUSED, enum machine_mode mode,
get_secondary_mem (rtx x ATTRIBUTE_UNUSED, enum machine_mode mode,
                   int opnum, enum reload_type type)
                   int opnum, enum reload_type type)
{
{
  rtx loc;
  rtx loc;
  int mem_valid;
  int mem_valid;
 
 
  /* By default, if MODE is narrower than a word, widen it to a word.
  /* By default, if MODE is narrower than a word, widen it to a word.
     This is required because most machines that require these memory
     This is required because most machines that require these memory
     locations do not support short load and stores from all registers
     locations do not support short load and stores from all registers
     (e.g., FP registers).  */
     (e.g., FP registers).  */
 
 
#ifdef SECONDARY_MEMORY_NEEDED_MODE
#ifdef SECONDARY_MEMORY_NEEDED_MODE
  mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
  mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
#else
#else
  if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
  if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
    mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
    mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
#endif
#endif
 
 
  /* If we already have made a MEM for this operand in MODE, return it.  */
  /* If we already have made a MEM for this operand in MODE, return it.  */
  if (secondary_memlocs_elim[(int) mode][opnum] != 0)
  if (secondary_memlocs_elim[(int) mode][opnum] != 0)
    return secondary_memlocs_elim[(int) mode][opnum];
    return secondary_memlocs_elim[(int) mode][opnum];
 
 
  /* If this is the first time we've tried to get a MEM for this mode,
  /* If this is the first time we've tried to get a MEM for this mode,
     allocate a new one.  `something_changed' in reload will get set
     allocate a new one.  `something_changed' in reload will get set
     by noticing that the frame size has changed.  */
     by noticing that the frame size has changed.  */
 
 
  if (secondary_memlocs[(int) mode] == 0)
  if (secondary_memlocs[(int) mode] == 0)
    {
    {
#ifdef SECONDARY_MEMORY_NEEDED_RTX
#ifdef SECONDARY_MEMORY_NEEDED_RTX
      secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
      secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
#else
#else
      secondary_memlocs[(int) mode]
      secondary_memlocs[(int) mode]
        = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
        = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
#endif
#endif
    }
    }
 
 
  /* Get a version of the address doing any eliminations needed.  If that
  /* Get a version of the address doing any eliminations needed.  If that
     didn't give us a new MEM, make a new one if it isn't valid.  */
     didn't give us a new MEM, make a new one if it isn't valid.  */
 
 
  loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
  loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
  mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
  mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
 
 
  if (! mem_valid && loc == secondary_memlocs[(int) mode])
  if (! mem_valid && loc == secondary_memlocs[(int) mode])
    loc = copy_rtx (loc);
    loc = copy_rtx (loc);
 
 
  /* The only time the call below will do anything is if the stack
  /* The only time the call below will do anything is if the stack
     offset is too large.  In that case IND_LEVELS doesn't matter, so we
     offset is too large.  In that case IND_LEVELS doesn't matter, so we
     can just pass a zero.  Adjust the type to be the address of the
     can just pass a zero.  Adjust the type to be the address of the
     corresponding object.  If the address was valid, save the eliminated
     corresponding object.  If the address was valid, save the eliminated
     address.  If it wasn't valid, we need to make a reload each time, so
     address.  If it wasn't valid, we need to make a reload each time, so
     don't save it.  */
     don't save it.  */
 
 
  if (! mem_valid)
  if (! mem_valid)
    {
    {
      type =  (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
      type =  (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
               : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
               : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
               : RELOAD_OTHER);
               : RELOAD_OTHER);
 
 
      find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
      find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
                            opnum, type, 0, 0);
                            opnum, type, 0, 0);
    }
    }
 
 
  secondary_memlocs_elim[(int) mode][opnum] = loc;
  secondary_memlocs_elim[(int) mode][opnum] = loc;
  if (secondary_memlocs_elim_used <= (int)mode)
  if (secondary_memlocs_elim_used <= (int)mode)
    secondary_memlocs_elim_used = (int)mode + 1;
    secondary_memlocs_elim_used = (int)mode + 1;
  return loc;
  return loc;
}
}
 
 
/* Clear any secondary memory locations we've made.  */
/* Clear any secondary memory locations we've made.  */
 
 
void
void
clear_secondary_mem (void)
clear_secondary_mem (void)
{
{
  memset (secondary_memlocs, 0, sizeof secondary_memlocs);
  memset (secondary_memlocs, 0, sizeof secondary_memlocs);
}
}
#endif /* SECONDARY_MEMORY_NEEDED */
#endif /* SECONDARY_MEMORY_NEEDED */


 
 
/* Find the largest class which has at least one register valid in
/* Find the largest class which has at least one register valid in
   mode INNER, and which for every such register, that register number
   mode INNER, and which for every such register, that register number
   plus N is also valid in OUTER (if in range) and is cheap to move
   plus N is also valid in OUTER (if in range) and is cheap to move
   into REGNO.  Such a class must exist.  */
   into REGNO.  Such a class must exist.  */
 
 
static enum reg_class
static enum reg_class
find_valid_class (enum machine_mode outer ATTRIBUTE_UNUSED,
find_valid_class (enum machine_mode outer ATTRIBUTE_UNUSED,
                  enum machine_mode inner ATTRIBUTE_UNUSED, int n,
                  enum machine_mode inner ATTRIBUTE_UNUSED, int n,
                  unsigned int dest_regno ATTRIBUTE_UNUSED)
                  unsigned int dest_regno ATTRIBUTE_UNUSED)
{
{
  int best_cost = -1;
  int best_cost = -1;
  int class;
  int class;
  int regno;
  int regno;
  enum reg_class best_class = NO_REGS;
  enum reg_class best_class = NO_REGS;
  enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
  enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
  unsigned int best_size = 0;
  unsigned int best_size = 0;
  int cost;
  int cost;
 
 
  for (class = 1; class < N_REG_CLASSES; class++)
  for (class = 1; class < N_REG_CLASSES; class++)
    {
    {
      int bad = 0;
      int bad = 0;
      int good = 0;
      int good = 0;
      for (regno = 0; regno < FIRST_PSEUDO_REGISTER - n && ! bad; regno++)
      for (regno = 0; regno < FIRST_PSEUDO_REGISTER - n && ! bad; regno++)
        if (TEST_HARD_REG_BIT (reg_class_contents[class], regno))
        if (TEST_HARD_REG_BIT (reg_class_contents[class], regno))
          {
          {
            if (HARD_REGNO_MODE_OK (regno, inner))
            if (HARD_REGNO_MODE_OK (regno, inner))
              {
              {
                good = 1;
                good = 1;
                if (! TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
                if (! TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
                    || ! HARD_REGNO_MODE_OK (regno + n, outer))
                    || ! HARD_REGNO_MODE_OK (regno + n, outer))
                  bad = 1;
                  bad = 1;
              }
              }
          }
          }
 
 
      if (bad || !good)
      if (bad || !good)
        continue;
        continue;
      cost = REGISTER_MOVE_COST (outer, class, dest_class);
      cost = REGISTER_MOVE_COST (outer, class, dest_class);
 
 
      if ((reg_class_size[class] > best_size
      if ((reg_class_size[class] > best_size
           && (best_cost < 0 || best_cost >= cost))
           && (best_cost < 0 || best_cost >= cost))
          || best_cost > cost)
          || best_cost > cost)
        {
        {
          best_class = class;
          best_class = class;
          best_size = reg_class_size[class];
          best_size = reg_class_size[class];
          best_cost = REGISTER_MOVE_COST (outer, class, dest_class);
          best_cost = REGISTER_MOVE_COST (outer, class, dest_class);
        }
        }
    }
    }
 
 
  gcc_assert (best_size != 0);
  gcc_assert (best_size != 0);
 
 
  return best_class;
  return best_class;
}
}


/* Return the number of a previously made reload that can be combined with
/* Return the number of a previously made reload that can be combined with
   a new one, or n_reloads if none of the existing reloads can be used.
   a new one, or n_reloads if none of the existing reloads can be used.
   OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
   OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
   push_reload, they determine the kind of the new reload that we try to
   push_reload, they determine the kind of the new reload that we try to
   combine.  P_IN points to the corresponding value of IN, which can be
   combine.  P_IN points to the corresponding value of IN, which can be
   modified by this function.
   modified by this function.
   DONT_SHARE is nonzero if we can't share any input-only reload for IN.  */
   DONT_SHARE is nonzero if we can't share any input-only reload for IN.  */
 
 
static int
static int
find_reusable_reload (rtx *p_in, rtx out, enum reg_class class,
find_reusable_reload (rtx *p_in, rtx out, enum reg_class class,
                      enum reload_type type, int opnum, int dont_share)
                      enum reload_type type, int opnum, int dont_share)
{
{
  rtx in = *p_in;
  rtx in = *p_in;
  int i;
  int i;
  /* We can't merge two reloads if the output of either one is
  /* We can't merge two reloads if the output of either one is
     earlyclobbered.  */
     earlyclobbered.  */
 
 
  if (earlyclobber_operand_p (out))
  if (earlyclobber_operand_p (out))
    return n_reloads;
    return n_reloads;
 
 
  /* We can use an existing reload if the class is right
  /* We can use an existing reload if the class is right
     and at least one of IN and OUT is a match
     and at least one of IN and OUT is a match
     and the other is at worst neutral.
     and the other is at worst neutral.
     (A zero compared against anything is neutral.)
     (A zero compared against anything is neutral.)
 
 
     If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
     If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
     for the same thing since that can cause us to need more reload registers
     for the same thing since that can cause us to need more reload registers
     than we otherwise would.  */
     than we otherwise would.  */
 
 
  for (i = 0; i < n_reloads; i++)
  for (i = 0; i < n_reloads; i++)
    if ((reg_class_subset_p (class, rld[i].class)
    if ((reg_class_subset_p (class, rld[i].class)
         || reg_class_subset_p (rld[i].class, class))
         || reg_class_subset_p (rld[i].class, class))
        /* If the existing reload has a register, it must fit our class.  */
        /* If the existing reload has a register, it must fit our class.  */
        && (rld[i].reg_rtx == 0
        && (rld[i].reg_rtx == 0
            || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
            || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
                                  true_regnum (rld[i].reg_rtx)))
                                  true_regnum (rld[i].reg_rtx)))
        && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
        && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
             && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
             && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
            || (out != 0 && MATCHES (rld[i].out, out)
            || (out != 0 && MATCHES (rld[i].out, out)
                && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
                && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
        && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
        && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
        && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
        && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
        && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
        && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
      return i;
      return i;
 
 
  /* Reloading a plain reg for input can match a reload to postincrement
  /* Reloading a plain reg for input can match a reload to postincrement
     that reg, since the postincrement's value is the right value.
     that reg, since the postincrement's value is the right value.
     Likewise, it can match a preincrement reload, since we regard
     Likewise, it can match a preincrement reload, since we regard
     the preincrementation as happening before any ref in this insn
     the preincrementation as happening before any ref in this insn
     to that register.  */
     to that register.  */
  for (i = 0; i < n_reloads; i++)
  for (i = 0; i < n_reloads; i++)
    if ((reg_class_subset_p (class, rld[i].class)
    if ((reg_class_subset_p (class, rld[i].class)
         || reg_class_subset_p (rld[i].class, class))
         || reg_class_subset_p (rld[i].class, class))
        /* If the existing reload has a register, it must fit our
        /* If the existing reload has a register, it must fit our
           class.  */
           class.  */
        && (rld[i].reg_rtx == 0
        && (rld[i].reg_rtx == 0
            || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
            || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
                                  true_regnum (rld[i].reg_rtx)))
                                  true_regnum (rld[i].reg_rtx)))
        && out == 0 && rld[i].out == 0 && rld[i].in != 0
        && out == 0 && rld[i].out == 0 && rld[i].in != 0
        && ((REG_P (in)
        && ((REG_P (in)
             && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
             && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
             && MATCHES (XEXP (rld[i].in, 0), in))
             && MATCHES (XEXP (rld[i].in, 0), in))
            || (REG_P (rld[i].in)
            || (REG_P (rld[i].in)
                && GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
                && GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
                && MATCHES (XEXP (in, 0), rld[i].in)))
                && MATCHES (XEXP (in, 0), rld[i].in)))
        && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
        && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
        && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
        && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
        && MERGABLE_RELOADS (type, rld[i].when_needed,
        && MERGABLE_RELOADS (type, rld[i].when_needed,
                             opnum, rld[i].opnum))
                             opnum, rld[i].opnum))
      {
      {
        /* Make sure reload_in ultimately has the increment,
        /* Make sure reload_in ultimately has the increment,
           not the plain register.  */
           not the plain register.  */
        if (REG_P (in))
        if (REG_P (in))
          *p_in = rld[i].in;
          *p_in = rld[i].in;
        return i;
        return i;
      }
      }
  return n_reloads;
  return n_reloads;
}
}
 
 
/* Return nonzero if X is a SUBREG which will require reloading of its
/* Return nonzero if X is a SUBREG which will require reloading of its
   SUBREG_REG expression.  */
   SUBREG_REG expression.  */
 
 
static int
static int
reload_inner_reg_of_subreg (rtx x, enum machine_mode mode, int output)
reload_inner_reg_of_subreg (rtx x, enum machine_mode mode, int output)
{
{
  rtx inner;
  rtx inner;
 
 
  /* Only SUBREGs are problematical.  */
  /* Only SUBREGs are problematical.  */
  if (GET_CODE (x) != SUBREG)
  if (GET_CODE (x) != SUBREG)
    return 0;
    return 0;
 
 
  inner = SUBREG_REG (x);
  inner = SUBREG_REG (x);
 
 
  /* If INNER is a constant or PLUS, then INNER must be reloaded.  */
  /* If INNER is a constant or PLUS, then INNER must be reloaded.  */
  if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
  if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
    return 1;
    return 1;
 
 
  /* If INNER is not a hard register, then INNER will not need to
  /* If INNER is not a hard register, then INNER will not need to
     be reloaded.  */
     be reloaded.  */
  if (!REG_P (inner)
  if (!REG_P (inner)
      || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
      || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
    return 0;
    return 0;
 
 
  /* If INNER is not ok for MODE, then INNER will need reloading.  */
  /* If INNER is not ok for MODE, then INNER will need reloading.  */
  if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
  if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
    return 1;
    return 1;
 
 
  /* If the outer part is a word or smaller, INNER larger than a
  /* If the outer part is a word or smaller, INNER larger than a
     word and the number of regs for INNER is not the same as the
     word and the number of regs for INNER is not the same as the
     number of words in INNER, then INNER will need reloading.  */
     number of words in INNER, then INNER will need reloading.  */
  return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
  return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
          && output
          && output
          && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
          && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
          && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
          && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
              != (int) hard_regno_nregs[REGNO (inner)][GET_MODE (inner)]));
              != (int) hard_regno_nregs[REGNO (inner)][GET_MODE (inner)]));
}
}
 
 
/* Return nonzero if IN can be reloaded into REGNO with mode MODE without
/* Return nonzero if IN can be reloaded into REGNO with mode MODE without
   requiring an extra reload register.  The caller has already found that
   requiring an extra reload register.  The caller has already found that
   IN contains some reference to REGNO, so check that we can produce the
   IN contains some reference to REGNO, so check that we can produce the
   new value in a single step.  E.g. if we have
   new value in a single step.  E.g. if we have
   (set (reg r13) (plus (reg r13) (const int 1))), and there is an
   (set (reg r13) (plus (reg r13) (const int 1))), and there is an
   instruction that adds one to a register, this should succeed.
   instruction that adds one to a register, this should succeed.
   However, if we have something like
   However, if we have something like
   (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
   (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
   needs to be loaded into a register first, we need a separate reload
   needs to be loaded into a register first, we need a separate reload
   register.
   register.
   Such PLUS reloads are generated by find_reload_address_part.
   Such PLUS reloads are generated by find_reload_address_part.
   The out-of-range PLUS expressions are usually introduced in the instruction
   The out-of-range PLUS expressions are usually introduced in the instruction
   patterns by register elimination and substituting pseudos without a home
   patterns by register elimination and substituting pseudos without a home
   by their function-invariant equivalences.  */
   by their function-invariant equivalences.  */
static int
static int
can_reload_into (rtx in, int regno, enum machine_mode mode)
can_reload_into (rtx in, int regno, enum machine_mode mode)
{
{
  rtx dst, test_insn;
  rtx dst, test_insn;
  int r = 0;
  int r = 0;
  struct recog_data save_recog_data;
  struct recog_data save_recog_data;
 
 
  /* For matching constraints, we often get notional input reloads where
  /* For matching constraints, we often get notional input reloads where
     we want to use the original register as the reload register.  I.e.
     we want to use the original register as the reload register.  I.e.
     technically this is a non-optional input-output reload, but IN is
     technically this is a non-optional input-output reload, but IN is
     already a valid register, and has been chosen as the reload register.
     already a valid register, and has been chosen as the reload register.
     Speed this up, since it trivially works.  */
     Speed this up, since it trivially works.  */
  if (REG_P (in))
  if (REG_P (in))
    return 1;
    return 1;
 
 
  /* To test MEMs properly, we'd have to take into account all the reloads
  /* To test MEMs properly, we'd have to take into account all the reloads
     that are already scheduled, which can become quite complicated.
     that are already scheduled, which can become quite complicated.
     And since we've already handled address reloads for this MEM, it
     And since we've already handled address reloads for this MEM, it
     should always succeed anyway.  */
     should always succeed anyway.  */
  if (MEM_P (in))
  if (MEM_P (in))
    return 1;
    return 1;
 
 
  /* If we can make a simple SET insn that does the job, everything should
  /* If we can make a simple SET insn that does the job, everything should
     be fine.  */
     be fine.  */
  dst =  gen_rtx_REG (mode, regno);
  dst =  gen_rtx_REG (mode, regno);
  test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
  test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
  save_recog_data = recog_data;
  save_recog_data = recog_data;
  if (recog_memoized (test_insn) >= 0)
  if (recog_memoized (test_insn) >= 0)
    {
    {
      extract_insn (test_insn);
      extract_insn (test_insn);
      r = constrain_operands (1);
      r = constrain_operands (1);
    }
    }
  recog_data = save_recog_data;
  recog_data = save_recog_data;
  return r;
  return r;
}
}
 
 
/* Record one reload that needs to be performed.
/* Record one reload that needs to be performed.
   IN is an rtx saying where the data are to be found before this instruction.
   IN is an rtx saying where the data are to be found before this instruction.
   OUT says where they must be stored after the instruction.
   OUT says where they must be stored after the instruction.
   (IN is zero for data not read, and OUT is zero for data not written.)
   (IN is zero for data not read, and OUT is zero for data not written.)
   INLOC and OUTLOC point to the places in the instructions where
   INLOC and OUTLOC point to the places in the instructions where
   IN and OUT were found.
   IN and OUT were found.
   If IN and OUT are both nonzero, it means the same register must be used
   If IN and OUT are both nonzero, it means the same register must be used
   to reload both IN and OUT.
   to reload both IN and OUT.
 
 
   CLASS is a register class required for the reloaded data.
   CLASS is a register class required for the reloaded data.
   INMODE is the machine mode that the instruction requires
   INMODE is the machine mode that the instruction requires
   for the reg that replaces IN and OUTMODE is likewise for OUT.
   for the reg that replaces IN and OUTMODE is likewise for OUT.
 
 
   If IN is zero, then OUT's location and mode should be passed as
   If IN is zero, then OUT's location and mode should be passed as
   INLOC and INMODE.
   INLOC and INMODE.
 
 
   STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
   STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
 
 
   OPTIONAL nonzero means this reload does not need to be performed:
   OPTIONAL nonzero means this reload does not need to be performed:
   it can be discarded if that is more convenient.
   it can be discarded if that is more convenient.
 
 
   OPNUM and TYPE say what the purpose of this reload is.
   OPNUM and TYPE say what the purpose of this reload is.
 
 
   The return value is the reload-number for this reload.
   The return value is the reload-number for this reload.
 
 
   If both IN and OUT are nonzero, in some rare cases we might
   If both IN and OUT are nonzero, in some rare cases we might
   want to make two separate reloads.  (Actually we never do this now.)
   want to make two separate reloads.  (Actually we never do this now.)
   Therefore, the reload-number for OUT is stored in
   Therefore, the reload-number for OUT is stored in
   output_reloadnum when we return; the return value applies to IN.
   output_reloadnum when we return; the return value applies to IN.
   Usually (presently always), when IN and OUT are nonzero,
   Usually (presently always), when IN and OUT are nonzero,
   the two reload-numbers are equal, but the caller should be careful to
   the two reload-numbers are equal, but the caller should be careful to
   distinguish them.  */
   distinguish them.  */
 
 
int
int
push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
             enum reg_class class, enum machine_mode inmode,
             enum reg_class class, enum machine_mode inmode,
             enum machine_mode outmode, int strict_low, int optional,
             enum machine_mode outmode, int strict_low, int optional,
             int opnum, enum reload_type type)
             int opnum, enum reload_type type)
{
{
  int i;
  int i;
  int dont_share = 0;
  int dont_share = 0;
  int dont_remove_subreg = 0;
  int dont_remove_subreg = 0;
  rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
  rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
  int secondary_in_reload = -1, secondary_out_reload = -1;
  int secondary_in_reload = -1, secondary_out_reload = -1;
  enum insn_code secondary_in_icode = CODE_FOR_nothing;
  enum insn_code secondary_in_icode = CODE_FOR_nothing;
  enum insn_code secondary_out_icode = CODE_FOR_nothing;
  enum insn_code secondary_out_icode = CODE_FOR_nothing;
 
 
  /* INMODE and/or OUTMODE could be VOIDmode if no mode
  /* INMODE and/or OUTMODE could be VOIDmode if no mode
     has been specified for the operand.  In that case,
     has been specified for the operand.  In that case,
     use the operand's mode as the mode to reload.  */
     use the operand's mode as the mode to reload.  */
  if (inmode == VOIDmode && in != 0)
  if (inmode == VOIDmode && in != 0)
    inmode = GET_MODE (in);
    inmode = GET_MODE (in);
  if (outmode == VOIDmode && out != 0)
  if (outmode == VOIDmode && out != 0)
    outmode = GET_MODE (out);
    outmode = GET_MODE (out);
 
 
  /* If IN is a pseudo register everywhere-equivalent to a constant, and
  /* If IN is a pseudo register everywhere-equivalent to a constant, and
     it is not in a hard register, reload straight from the constant,
     it is not in a hard register, reload straight from the constant,
     since we want to get rid of such pseudo registers.
     since we want to get rid of such pseudo registers.
     Often this is done earlier, but not always in find_reloads_address.  */
     Often this is done earlier, but not always in find_reloads_address.  */
  if (in != 0 && REG_P (in))
  if (in != 0 && REG_P (in))
    {
    {
      int regno = REGNO (in);
      int regno = REGNO (in);
 
 
      if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
      if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
          && reg_equiv_constant[regno] != 0)
          && reg_equiv_constant[regno] != 0)
        in = reg_equiv_constant[regno];
        in = reg_equiv_constant[regno];
    }
    }
 
 
  /* Likewise for OUT.  Of course, OUT will never be equivalent to
  /* Likewise for OUT.  Of course, OUT will never be equivalent to
     an actual constant, but it might be equivalent to a memory location
     an actual constant, but it might be equivalent to a memory location
     (in the case of a parameter).  */
     (in the case of a parameter).  */
  if (out != 0 && REG_P (out))
  if (out != 0 && REG_P (out))
    {
    {
      int regno = REGNO (out);
      int regno = REGNO (out);
 
 
      if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
      if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
          && reg_equiv_constant[regno] != 0)
          && reg_equiv_constant[regno] != 0)
        out = reg_equiv_constant[regno];
        out = reg_equiv_constant[regno];
    }
    }
 
 
  /* If we have a read-write operand with an address side-effect,
  /* If we have a read-write operand with an address side-effect,
     change either IN or OUT so the side-effect happens only once.  */
     change either IN or OUT so the side-effect happens only once.  */
  if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
  if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
    switch (GET_CODE (XEXP (in, 0)))
    switch (GET_CODE (XEXP (in, 0)))
      {
      {
      case POST_INC: case POST_DEC:   case POST_MODIFY:
      case POST_INC: case POST_DEC:   case POST_MODIFY:
        in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
        in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
        break;
        break;
 
 
      case PRE_INC: case PRE_DEC: case PRE_MODIFY:
      case PRE_INC: case PRE_DEC: case PRE_MODIFY:
        out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
        out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
        break;
        break;
 
 
      default:
      default:
        break;
        break;
      }
      }
 
 
  /* If we are reloading a (SUBREG constant ...), really reload just the
  /* If we are reloading a (SUBREG constant ...), really reload just the
     inside expression in its own mode.  Similarly for (SUBREG (PLUS ...)).
     inside expression in its own mode.  Similarly for (SUBREG (PLUS ...)).
     If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
     If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
     a pseudo and hence will become a MEM) with M1 wider than M2 and the
     a pseudo and hence will become a MEM) with M1 wider than M2 and the
     register is a pseudo, also reload the inside expression.
     register is a pseudo, also reload the inside expression.
     For machines that extend byte loads, do this for any SUBREG of a pseudo
     For machines that extend byte loads, do this for any SUBREG of a pseudo
     where both M1 and M2 are a word or smaller, M1 is wider than M2, and
     where both M1 and M2 are a word or smaller, M1 is wider than M2, and
     M2 is an integral mode that gets extended when loaded.
     M2 is an integral mode that gets extended when loaded.
     Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
     Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
     either M1 is not valid for R or M2 is wider than a word but we only
     either M1 is not valid for R or M2 is wider than a word but we only
     need one word to store an M2-sized quantity in R.
     need one word to store an M2-sized quantity in R.
     (However, if OUT is nonzero, we need to reload the reg *and*
     (However, if OUT is nonzero, we need to reload the reg *and*
     the subreg, so do nothing here, and let following statement handle it.)
     the subreg, so do nothing here, and let following statement handle it.)
 
 
     Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
     Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
     we can't handle it here because CONST_INT does not indicate a mode.
     we can't handle it here because CONST_INT does not indicate a mode.
 
 
     Similarly, we must reload the inside expression if we have a
     Similarly, we must reload the inside expression if we have a
     STRICT_LOW_PART (presumably, in == out in the cas).
     STRICT_LOW_PART (presumably, in == out in the cas).
 
 
     Also reload the inner expression if it does not require a secondary
     Also reload the inner expression if it does not require a secondary
     reload but the SUBREG does.
     reload but the SUBREG does.
 
 
     Finally, reload the inner expression if it is a register that is in
     Finally, reload the inner expression if it is a register that is in
     the class whose registers cannot be referenced in a different size
     the class whose registers cannot be referenced in a different size
     and M1 is not the same size as M2.  If subreg_lowpart_p is false, we
     and M1 is not the same size as M2.  If subreg_lowpart_p is false, we
     cannot reload just the inside since we might end up with the wrong
     cannot reload just the inside since we might end up with the wrong
     register class.  But if it is inside a STRICT_LOW_PART, we have
     register class.  But if it is inside a STRICT_LOW_PART, we have
     no choice, so we hope we do get the right register class there.  */
     no choice, so we hope we do get the right register class there.  */
 
 
  if (in != 0 && GET_CODE (in) == SUBREG
  if (in != 0 && GET_CODE (in) == SUBREG
      && (subreg_lowpart_p (in) || strict_low)
      && (subreg_lowpart_p (in) || strict_low)
#ifdef CANNOT_CHANGE_MODE_CLASS
#ifdef CANNOT_CHANGE_MODE_CLASS
      && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, class)
      && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, class)
#endif
#endif
      && (CONSTANT_P (SUBREG_REG (in))
      && (CONSTANT_P (SUBREG_REG (in))
          || GET_CODE (SUBREG_REG (in)) == PLUS
          || GET_CODE (SUBREG_REG (in)) == PLUS
          || strict_low
          || strict_low
          || (((REG_P (SUBREG_REG (in))
          || (((REG_P (SUBREG_REG (in))
                && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
                && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
               || MEM_P (SUBREG_REG (in)))
               || MEM_P (SUBREG_REG (in)))
              && ((GET_MODE_SIZE (inmode)
              && ((GET_MODE_SIZE (inmode)
                   > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
                   > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
#ifdef LOAD_EXTEND_OP
#ifdef LOAD_EXTEND_OP
                  || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
                  || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
                      && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
                      && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
                          <= UNITS_PER_WORD)
                          <= UNITS_PER_WORD)
                      && (GET_MODE_SIZE (inmode)
                      && (GET_MODE_SIZE (inmode)
                          > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
                          > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
                      && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
                      && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
                      && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != UNKNOWN)
                      && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != UNKNOWN)
#endif
#endif
#ifdef WORD_REGISTER_OPERATIONS
#ifdef WORD_REGISTER_OPERATIONS
                  || ((GET_MODE_SIZE (inmode)
                  || ((GET_MODE_SIZE (inmode)
                       < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
                       < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
                      && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
                      && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
                          ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
                          ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
                           / UNITS_PER_WORD)))
                           / UNITS_PER_WORD)))
#endif
#endif
                  ))
                  ))
          || (REG_P (SUBREG_REG (in))
          || (REG_P (SUBREG_REG (in))
              && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
              && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
              /* The case where out is nonzero
              /* The case where out is nonzero
                 is handled differently in the following statement.  */
                 is handled differently in the following statement.  */
              && (out == 0 || subreg_lowpart_p (in))
              && (out == 0 || subreg_lowpart_p (in))
              && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
              && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
                   && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
                   && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
                       > UNITS_PER_WORD)
                       > UNITS_PER_WORD)
                   && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
                   && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
                        / UNITS_PER_WORD)
                        / UNITS_PER_WORD)
                       != (int) hard_regno_nregs[REGNO (SUBREG_REG (in))]
                       != (int) hard_regno_nregs[REGNO (SUBREG_REG (in))]
                                                [GET_MODE (SUBREG_REG (in))]))
                                                [GET_MODE (SUBREG_REG (in))]))
                  || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
                  || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
          || (secondary_reload_class (1, class, inmode, in) != NO_REGS
          || (secondary_reload_class (1, class, inmode, in) != NO_REGS
              && (secondary_reload_class (1, class, GET_MODE (SUBREG_REG (in)),
              && (secondary_reload_class (1, class, GET_MODE (SUBREG_REG (in)),
                                          SUBREG_REG (in))
                                          SUBREG_REG (in))
                  == NO_REGS))
                  == NO_REGS))
#ifdef CANNOT_CHANGE_MODE_CLASS
#ifdef CANNOT_CHANGE_MODE_CLASS
          || (REG_P (SUBREG_REG (in))
          || (REG_P (SUBREG_REG (in))
              && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
              && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
              && REG_CANNOT_CHANGE_MODE_P
              && REG_CANNOT_CHANGE_MODE_P
              (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
              (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
#endif
#endif
          ))
          ))
    {
    {
      in_subreg_loc = inloc;
      in_subreg_loc = inloc;
      inloc = &SUBREG_REG (in);
      inloc = &SUBREG_REG (in);
      in = *inloc;
      in = *inloc;
#if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
#if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
      if (MEM_P (in))
      if (MEM_P (in))
        /* This is supposed to happen only for paradoxical subregs made by
        /* This is supposed to happen only for paradoxical subregs made by
           combine.c.  (SUBREG (MEM)) isn't supposed to occur other ways.  */
           combine.c.  (SUBREG (MEM)) isn't supposed to occur other ways.  */
        gcc_assert (GET_MODE_SIZE (GET_MODE (in)) <= GET_MODE_SIZE (inmode));
        gcc_assert (GET_MODE_SIZE (GET_MODE (in)) <= GET_MODE_SIZE (inmode));
#endif
#endif
      inmode = GET_MODE (in);
      inmode = GET_MODE (in);
    }
    }
 
 
  /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
  /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
     either M1 is not valid for R or M2 is wider than a word but we only
     either M1 is not valid for R or M2 is wider than a word but we only
     need one word to store an M2-sized quantity in R.
     need one word to store an M2-sized quantity in R.
 
 
     However, we must reload the inner reg *as well as* the subreg in
     However, we must reload the inner reg *as well as* the subreg in
     that case.  */
     that case.  */
 
 
  /* Similar issue for (SUBREG constant ...) if it was not handled by the
  /* Similar issue for (SUBREG constant ...) if it was not handled by the
     code above.  This can happen if SUBREG_BYTE != 0.  */
     code above.  This can happen if SUBREG_BYTE != 0.  */
 
 
  if (in != 0 && reload_inner_reg_of_subreg (in, inmode, 0))
  if (in != 0 && reload_inner_reg_of_subreg (in, inmode, 0))
    {
    {
      enum reg_class in_class = class;
      enum reg_class in_class = class;
 
 
      if (REG_P (SUBREG_REG (in)))
      if (REG_P (SUBREG_REG (in)))
        in_class
        in_class
          = find_valid_class (inmode, GET_MODE (SUBREG_REG (in)),
          = find_valid_class (inmode, GET_MODE (SUBREG_REG (in)),
                              subreg_regno_offset (REGNO (SUBREG_REG (in)),
                              subreg_regno_offset (REGNO (SUBREG_REG (in)),
                                                   GET_MODE (SUBREG_REG (in)),
                                                   GET_MODE (SUBREG_REG (in)),
                                                   SUBREG_BYTE (in),
                                                   SUBREG_BYTE (in),
                                                   GET_MODE (in)),
                                                   GET_MODE (in)),
                              REGNO (SUBREG_REG (in)));
                              REGNO (SUBREG_REG (in)));
 
 
      /* This relies on the fact that emit_reload_insns outputs the
      /* This relies on the fact that emit_reload_insns outputs the
         instructions for input reloads of type RELOAD_OTHER in the same
         instructions for input reloads of type RELOAD_OTHER in the same
         order as the reloads.  Thus if the outer reload is also of type
         order as the reloads.  Thus if the outer reload is also of type
         RELOAD_OTHER, we are guaranteed that this inner reload will be
         RELOAD_OTHER, we are guaranteed that this inner reload will be
         output before the outer reload.  */
         output before the outer reload.  */
      push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
      push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
                   in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
                   in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
      dont_remove_subreg = 1;
      dont_remove_subreg = 1;
    }
    }
 
 
  /* Similarly for paradoxical and problematical SUBREGs on the output.
  /* Similarly for paradoxical and problematical SUBREGs on the output.
     Note that there is no reason we need worry about the previous value
     Note that there is no reason we need worry about the previous value
     of SUBREG_REG (out); even if wider than out,
     of SUBREG_REG (out); even if wider than out,
     storing in a subreg is entitled to clobber it all
     storing in a subreg is entitled to clobber it all
     (except in the case of STRICT_LOW_PART,
     (except in the case of STRICT_LOW_PART,
     and in that case the constraint should label it input-output.)  */
     and in that case the constraint should label it input-output.)  */
  if (out != 0 && GET_CODE (out) == SUBREG
  if (out != 0 && GET_CODE (out) == SUBREG
      && (subreg_lowpart_p (out) || strict_low)
      && (subreg_lowpart_p (out) || strict_low)
#ifdef CANNOT_CHANGE_MODE_CLASS
#ifdef CANNOT_CHANGE_MODE_CLASS
      && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, class)
      && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, class)
#endif
#endif
      && (CONSTANT_P (SUBREG_REG (out))
      && (CONSTANT_P (SUBREG_REG (out))
          || strict_low
          || strict_low
          || (((REG_P (SUBREG_REG (out))
          || (((REG_P (SUBREG_REG (out))
                && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
                && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
               || MEM_P (SUBREG_REG (out)))
               || MEM_P (SUBREG_REG (out)))
              && ((GET_MODE_SIZE (outmode)
              && ((GET_MODE_SIZE (outmode)
                   > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
                   > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
#ifdef WORD_REGISTER_OPERATIONS
#ifdef WORD_REGISTER_OPERATIONS
                  || ((GET_MODE_SIZE (outmode)
                  || ((GET_MODE_SIZE (outmode)
                       < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
                       < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
                      && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
                      && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
                          ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
                          ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
                           / UNITS_PER_WORD)))
                           / UNITS_PER_WORD)))
#endif
#endif
                  ))
                  ))
          || (REG_P (SUBREG_REG (out))
          || (REG_P (SUBREG_REG (out))
              && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
              && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
              && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
              && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
                   && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
                   && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
                       > UNITS_PER_WORD)
                       > UNITS_PER_WORD)
                   && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
                   && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
                        / UNITS_PER_WORD)
                        / UNITS_PER_WORD)
                       != (int) hard_regno_nregs[REGNO (SUBREG_REG (out))]
                       != (int) hard_regno_nregs[REGNO (SUBREG_REG (out))]
                                                [GET_MODE (SUBREG_REG (out))]))
                                                [GET_MODE (SUBREG_REG (out))]))
                  || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
                  || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
          || (secondary_reload_class (0, class, outmode, out) != NO_REGS
          || (secondary_reload_class (0, class, outmode, out) != NO_REGS
              && (secondary_reload_class (0, class, GET_MODE (SUBREG_REG (out)),
              && (secondary_reload_class (0, class, GET_MODE (SUBREG_REG (out)),
                                          SUBREG_REG (out))
                                          SUBREG_REG (out))
                  == NO_REGS))
                  == NO_REGS))
#ifdef CANNOT_CHANGE_MODE_CLASS
#ifdef CANNOT_CHANGE_MODE_CLASS
          || (REG_P (SUBREG_REG (out))
          || (REG_P (SUBREG_REG (out))
              && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
              && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
              && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
              && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
                                           GET_MODE (SUBREG_REG (out)),
                                           GET_MODE (SUBREG_REG (out)),
                                           outmode))
                                           outmode))
#endif
#endif
          ))
          ))
    {
    {
      out_subreg_loc = outloc;
      out_subreg_loc = outloc;
      outloc = &SUBREG_REG (out);
      outloc = &SUBREG_REG (out);
      out = *outloc;
      out = *outloc;
#if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
#if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
      gcc_assert (!MEM_P (out)
      gcc_assert (!MEM_P (out)
                  || GET_MODE_SIZE (GET_MODE (out))
                  || GET_MODE_SIZE (GET_MODE (out))
                     <= GET_MODE_SIZE (outmode));
                     <= GET_MODE_SIZE (outmode));
#endif
#endif
      outmode = GET_MODE (out);
      outmode = GET_MODE (out);
    }
    }
 
 
  /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
  /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
     either M1 is not valid for R or M2 is wider than a word but we only
     either M1 is not valid for R or M2 is wider than a word but we only
     need one word to store an M2-sized quantity in R.
     need one word to store an M2-sized quantity in R.
 
 
     However, we must reload the inner reg *as well as* the subreg in
     However, we must reload the inner reg *as well as* the subreg in
     that case.  In this case, the inner reg is an in-out reload.  */
     that case.  In this case, the inner reg is an in-out reload.  */
 
 
  if (out != 0 && reload_inner_reg_of_subreg (out, outmode, 1))
  if (out != 0 && reload_inner_reg_of_subreg (out, outmode, 1))
    {
    {
      /* This relies on the fact that emit_reload_insns outputs the
      /* This relies on the fact that emit_reload_insns outputs the
         instructions for output reloads of type RELOAD_OTHER in reverse
         instructions for output reloads of type RELOAD_OTHER in reverse
         order of the reloads.  Thus if the outer reload is also of type
         order of the reloads.  Thus if the outer reload is also of type
         RELOAD_OTHER, we are guaranteed that this inner reload will be
         RELOAD_OTHER, we are guaranteed that this inner reload will be
         output after the outer reload.  */
         output after the outer reload.  */
      dont_remove_subreg = 1;
      dont_remove_subreg = 1;
      push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
      push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
                   &SUBREG_REG (out),
                   &SUBREG_REG (out),
                   find_valid_class (outmode, GET_MODE (SUBREG_REG (out)),
                   find_valid_class (outmode, GET_MODE (SUBREG_REG (out)),
                                     subreg_regno_offset (REGNO (SUBREG_REG (out)),
                                     subreg_regno_offset (REGNO (SUBREG_REG (out)),
                                                          GET_MODE (SUBREG_REG (out)),
                                                          GET_MODE (SUBREG_REG (out)),
                                                          SUBREG_BYTE (out),
                                                          SUBREG_BYTE (out),
                                                          GET_MODE (out)),
                                                          GET_MODE (out)),
                                     REGNO (SUBREG_REG (out))),
                                     REGNO (SUBREG_REG (out))),
                   VOIDmode, VOIDmode, 0, 0,
                   VOIDmode, VOIDmode, 0, 0,
                   opnum, RELOAD_OTHER);
                   opnum, RELOAD_OTHER);
    }
    }
 
 
  /* If IN appears in OUT, we can't share any input-only reload for IN.  */
  /* If IN appears in OUT, we can't share any input-only reload for IN.  */
  if (in != 0 && out != 0 && MEM_P (out)
  if (in != 0 && out != 0 && MEM_P (out)
      && (REG_P (in) || MEM_P (in) || GET_CODE (in) == PLUS)
      && (REG_P (in) || MEM_P (in) || GET_CODE (in) == PLUS)
      && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
      && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
    dont_share = 1;
    dont_share = 1;
 
 
  /* If IN is a SUBREG of a hard register, make a new REG.  This
  /* If IN is a SUBREG of a hard register, make a new REG.  This
     simplifies some of the cases below.  */
     simplifies some of the cases below.  */
 
 
  if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
  if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
      && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
      && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
      && ! dont_remove_subreg)
      && ! dont_remove_subreg)
    in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
    in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
 
 
  /* Similarly for OUT.  */
  /* Similarly for OUT.  */
  if (out != 0 && GET_CODE (out) == SUBREG
  if (out != 0 && GET_CODE (out) == SUBREG
      && REG_P (SUBREG_REG (out))
      && REG_P (SUBREG_REG (out))
      && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
      && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
      && ! dont_remove_subreg)
      && ! dont_remove_subreg)
    out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
    out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
 
 
  /* Narrow down the class of register wanted if that is
  /* Narrow down the class of register wanted if that is
     desirable on this machine for efficiency.  */
     desirable on this machine for efficiency.  */
  {
  {
    enum reg_class preferred_class = class;
    enum reg_class preferred_class = class;
 
 
    if (in != 0)
    if (in != 0)
      preferred_class = PREFERRED_RELOAD_CLASS (in, class);
      preferred_class = PREFERRED_RELOAD_CLASS (in, class);
 
 
  /* Output reloads may need analogous treatment, different in detail.  */
  /* Output reloads may need analogous treatment, different in detail.  */
#ifdef PREFERRED_OUTPUT_RELOAD_CLASS
#ifdef PREFERRED_OUTPUT_RELOAD_CLASS
    if (out != 0)
    if (out != 0)
      preferred_class = PREFERRED_OUTPUT_RELOAD_CLASS (out, preferred_class);
      preferred_class = PREFERRED_OUTPUT_RELOAD_CLASS (out, preferred_class);
#endif
#endif
 
 
    /* Discard what the target said if we cannot do it.  */
    /* Discard what the target said if we cannot do it.  */
    if (preferred_class != NO_REGS
    if (preferred_class != NO_REGS
        || (optional && type == RELOAD_FOR_OUTPUT))
        || (optional && type == RELOAD_FOR_OUTPUT))
      class = preferred_class;
      class = preferred_class;
  }
  }
 
 
  /* Make sure we use a class that can handle the actual pseudo
  /* Make sure we use a class that can handle the actual pseudo
     inside any subreg.  For example, on the 386, QImode regs
     inside any subreg.  For example, on the 386, QImode regs
     can appear within SImode subregs.  Although GENERAL_REGS
     can appear within SImode subregs.  Although GENERAL_REGS
     can handle SImode, QImode needs a smaller class.  */
     can handle SImode, QImode needs a smaller class.  */
#ifdef LIMIT_RELOAD_CLASS
#ifdef LIMIT_RELOAD_CLASS
  if (in_subreg_loc)
  if (in_subreg_loc)
    class = LIMIT_RELOAD_CLASS (inmode, class);
    class = LIMIT_RELOAD_CLASS (inmode, class);
  else if (in != 0 && GET_CODE (in) == SUBREG)
  else if (in != 0 && GET_CODE (in) == SUBREG)
    class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
    class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
 
 
  if (out_subreg_loc)
  if (out_subreg_loc)
    class = LIMIT_RELOAD_CLASS (outmode, class);
    class = LIMIT_RELOAD_CLASS (outmode, class);
  if (out != 0 && GET_CODE (out) == SUBREG)
  if (out != 0 && GET_CODE (out) == SUBREG)
    class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
    class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
#endif
#endif
 
 
  /* Verify that this class is at least possible for the mode that
  /* Verify that this class is at least possible for the mode that
     is specified.  */
     is specified.  */
  if (this_insn_is_asm)
  if (this_insn_is_asm)
    {
    {
      enum machine_mode mode;
      enum machine_mode mode;
      if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
      if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
        mode = inmode;
        mode = inmode;
      else
      else
        mode = outmode;
        mode = outmode;
      if (mode == VOIDmode)
      if (mode == VOIDmode)
        {
        {
          error_for_asm (this_insn, "cannot reload integer constant "
          error_for_asm (this_insn, "cannot reload integer constant "
                         "operand in %<asm%>");
                         "operand in %<asm%>");
          mode = word_mode;
          mode = word_mode;
          if (in != 0)
          if (in != 0)
            inmode = word_mode;
            inmode = word_mode;
          if (out != 0)
          if (out != 0)
            outmode = word_mode;
            outmode = word_mode;
        }
        }
      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
        if (HARD_REGNO_MODE_OK (i, mode)
        if (HARD_REGNO_MODE_OK (i, mode)
            && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
            && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
          {
          {
            int nregs = hard_regno_nregs[i][mode];
            int nregs = hard_regno_nregs[i][mode];
 
 
            int j;
            int j;
            for (j = 1; j < nregs; j++)
            for (j = 1; j < nregs; j++)
              if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
              if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
                break;
                break;
            if (j == nregs)
            if (j == nregs)
              break;
              break;
          }
          }
      if (i == FIRST_PSEUDO_REGISTER)
      if (i == FIRST_PSEUDO_REGISTER)
        {
        {
          error_for_asm (this_insn, "impossible register constraint "
          error_for_asm (this_insn, "impossible register constraint "
                         "in %<asm%>");
                         "in %<asm%>");
          /* Avoid further trouble with this insn.  */
          /* Avoid further trouble with this insn.  */
          PATTERN (this_insn) = gen_rtx_USE (VOIDmode, const0_rtx);
          PATTERN (this_insn) = gen_rtx_USE (VOIDmode, const0_rtx);
          /* We used to continue here setting class to ALL_REGS, but it triggers
          /* We used to continue here setting class to ALL_REGS, but it triggers
             sanity check on i386 for:
             sanity check on i386 for:
             void foo(long double d)
             void foo(long double d)
             {
             {
               asm("" :: "a" (d));
               asm("" :: "a" (d));
             }
             }
             Returning zero here ought to be safe as we take care in
             Returning zero here ought to be safe as we take care in
             find_reloads to not process the reloads when instruction was
             find_reloads to not process the reloads when instruction was
             replaced by USE.  */
             replaced by USE.  */
 
 
          return 0;
          return 0;
        }
        }
    }
    }
 
 
  /* Optional output reloads are always OK even if we have no register class,
  /* Optional output reloads are always OK even if we have no register class,
     since the function of these reloads is only to have spill_reg_store etc.
     since the function of these reloads is only to have spill_reg_store etc.
     set, so that the storing insn can be deleted later.  */
     set, so that the storing insn can be deleted later.  */
  gcc_assert (class != NO_REGS
  gcc_assert (class != NO_REGS
              || (optional != 0 && type == RELOAD_FOR_OUTPUT));
              || (optional != 0 && type == RELOAD_FOR_OUTPUT));
 
 
  i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
  i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
 
 
  if (i == n_reloads)
  if (i == n_reloads)
    {
    {
      /* See if we need a secondary reload register to move between CLASS
      /* See if we need a secondary reload register to move between CLASS
         and IN or CLASS and OUT.  Get the icode and push any required reloads
         and IN or CLASS and OUT.  Get the icode and push any required reloads
         needed for each of them if so.  */
         needed for each of them if so.  */
 
 
      if (in != 0)
      if (in != 0)
        secondary_in_reload
        secondary_in_reload
          = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
          = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
                                   &secondary_in_icode, NULL);
                                   &secondary_in_icode, NULL);
      if (out != 0 && GET_CODE (out) != SCRATCH)
      if (out != 0 && GET_CODE (out) != SCRATCH)
        secondary_out_reload
        secondary_out_reload
          = push_secondary_reload (0, out, opnum, optional, class, outmode,
          = push_secondary_reload (0, out, opnum, optional, class, outmode,
                                   type, &secondary_out_icode, NULL);
                                   type, &secondary_out_icode, NULL);
 
 
      /* We found no existing reload suitable for re-use.
      /* We found no existing reload suitable for re-use.
         So add an additional reload.  */
         So add an additional reload.  */
 
 
#ifdef SECONDARY_MEMORY_NEEDED
#ifdef SECONDARY_MEMORY_NEEDED
      /* If a memory location is needed for the copy, make one.  */
      /* If a memory location is needed for the copy, make one.  */
      if (in != 0
      if (in != 0
          && (REG_P (in)
          && (REG_P (in)
              || (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
              || (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
          && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
          && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
          && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
          && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
                                      class, inmode))
                                      class, inmode))
        get_secondary_mem (in, inmode, opnum, type);
        get_secondary_mem (in, inmode, opnum, type);
#endif
#endif
 
 
      i = n_reloads;
      i = n_reloads;
      rld[i].in = in;
      rld[i].in = in;
      rld[i].out = out;
      rld[i].out = out;
      rld[i].class = class;
      rld[i].class = class;
      rld[i].inmode = inmode;
      rld[i].inmode = inmode;
      rld[i].outmode = outmode;
      rld[i].outmode = outmode;
      rld[i].reg_rtx = 0;
      rld[i].reg_rtx = 0;
      rld[i].optional = optional;
      rld[i].optional = optional;
      rld[i].inc = 0;
      rld[i].inc = 0;
      rld[i].nocombine = 0;
      rld[i].nocombine = 0;
      rld[i].in_reg = inloc ? *inloc : 0;
      rld[i].in_reg = inloc ? *inloc : 0;
      rld[i].out_reg = outloc ? *outloc : 0;
      rld[i].out_reg = outloc ? *outloc : 0;
      rld[i].opnum = opnum;
      rld[i].opnum = opnum;
      rld[i].when_needed = type;
      rld[i].when_needed = type;
      rld[i].secondary_in_reload = secondary_in_reload;
      rld[i].secondary_in_reload = secondary_in_reload;
      rld[i].secondary_out_reload = secondary_out_reload;
      rld[i].secondary_out_reload = secondary_out_reload;
      rld[i].secondary_in_icode = secondary_in_icode;
      rld[i].secondary_in_icode = secondary_in_icode;
      rld[i].secondary_out_icode = secondary_out_icode;
      rld[i].secondary_out_icode = secondary_out_icode;
      rld[i].secondary_p = 0;
      rld[i].secondary_p = 0;
 
 
      n_reloads++;
      n_reloads++;
 
 
#ifdef SECONDARY_MEMORY_NEEDED
#ifdef SECONDARY_MEMORY_NEEDED
      if (out != 0
      if (out != 0
          && (REG_P (out)
          && (REG_P (out)
              || (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
              || (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
          && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
          && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
          && SECONDARY_MEMORY_NEEDED (class,
          && SECONDARY_MEMORY_NEEDED (class,
                                      REGNO_REG_CLASS (reg_or_subregno (out)),
                                      REGNO_REG_CLASS (reg_or_subregno (out)),
                                      outmode))
                                      outmode))
        get_secondary_mem (out, outmode, opnum, type);
        get_secondary_mem (out, outmode, opnum, type);
#endif
#endif
    }
    }
  else
  else
    {
    {
      /* We are reusing an existing reload,
      /* We are reusing an existing reload,
         but we may have additional information for it.
         but we may have additional information for it.
         For example, we may now have both IN and OUT
         For example, we may now have both IN and OUT
         while the old one may have just one of them.  */
         while the old one may have just one of them.  */
 
 
      /* The modes can be different.  If they are, we want to reload in
      /* The modes can be different.  If they are, we want to reload in
         the larger mode, so that the value is valid for both modes.  */
         the larger mode, so that the value is valid for both modes.  */
      if (inmode != VOIDmode
      if (inmode != VOIDmode
          && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
          && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
        rld[i].inmode = inmode;
        rld[i].inmode = inmode;
      if (outmode != VOIDmode
      if (outmode != VOIDmode
          && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
          && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
        rld[i].outmode = outmode;
        rld[i].outmode = outmode;
      if (in != 0)
      if (in != 0)
        {
        {
          rtx in_reg = inloc ? *inloc : 0;
          rtx in_reg = inloc ? *inloc : 0;
          /* If we merge reloads for two distinct rtl expressions that
          /* If we merge reloads for two distinct rtl expressions that
             are identical in content, there might be duplicate address
             are identical in content, there might be duplicate address
             reloads.  Remove the extra set now, so that if we later find
             reloads.  Remove the extra set now, so that if we later find
             that we can inherit this reload, we can get rid of the
             that we can inherit this reload, we can get rid of the
             address reloads altogether.
             address reloads altogether.
 
 
             Do not do this if both reloads are optional since the result
             Do not do this if both reloads are optional since the result
             would be an optional reload which could potentially leave
             would be an optional reload which could potentially leave
             unresolved address replacements.
             unresolved address replacements.
 
 
             It is not sufficient to call transfer_replacements since
             It is not sufficient to call transfer_replacements since
             choose_reload_regs will remove the replacements for address
             choose_reload_regs will remove the replacements for address
             reloads of inherited reloads which results in the same
             reloads of inherited reloads which results in the same
             problem.  */
             problem.  */
          if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
          if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
              && ! (rld[i].optional && optional))
              && ! (rld[i].optional && optional))
            {
            {
              /* We must keep the address reload with the lower operand
              /* We must keep the address reload with the lower operand
                 number alive.  */
                 number alive.  */
              if (opnum > rld[i].opnum)
              if (opnum > rld[i].opnum)
                {
                {
                  remove_address_replacements (in);
                  remove_address_replacements (in);
                  in = rld[i].in;
                  in = rld[i].in;
                  in_reg = rld[i].in_reg;
                  in_reg = rld[i].in_reg;
                }
                }
              else
              else
                remove_address_replacements (rld[i].in);
                remove_address_replacements (rld[i].in);
            }
            }
          rld[i].in = in;
          rld[i].in = in;
          rld[i].in_reg = in_reg;
          rld[i].in_reg = in_reg;
        }
        }
      if (out != 0)
      if (out != 0)
        {
        {
          rld[i].out = out;
          rld[i].out = out;
          rld[i].out_reg = outloc ? *outloc : 0;
          rld[i].out_reg = outloc ? *outloc : 0;
        }
        }
      if (reg_class_subset_p (class, rld[i].class))
      if (reg_class_subset_p (class, rld[i].class))
        rld[i].class = class;
        rld[i].class = class;
      rld[i].optional &= optional;
      rld[i].optional &= optional;
      if (MERGE_TO_OTHER (type, rld[i].when_needed,
      if (MERGE_TO_OTHER (type, rld[i].when_needed,
                          opnum, rld[i].opnum))
                          opnum, rld[i].opnum))
        rld[i].when_needed = RELOAD_OTHER;
        rld[i].when_needed = RELOAD_OTHER;
      rld[i].opnum = MIN (rld[i].opnum, opnum);
      rld[i].opnum = MIN (rld[i].opnum, opnum);
    }
    }
 
 
  /* If the ostensible rtx being reloaded differs from the rtx found
  /* If the ostensible rtx being reloaded differs from the rtx found
     in the location to substitute, this reload is not safe to combine
     in the location to substitute, this reload is not safe to combine
     because we cannot reliably tell whether it appears in the insn.  */
     because we cannot reliably tell whether it appears in the insn.  */
 
 
  if (in != 0 && in != *inloc)
  if (in != 0 && in != *inloc)
    rld[i].nocombine = 1;
    rld[i].nocombine = 1;
 
 
#if 0
#if 0
  /* This was replaced by changes in find_reloads_address_1 and the new
  /* This was replaced by changes in find_reloads_address_1 and the new
     function inc_for_reload, which go with a new meaning of reload_inc.  */
     function inc_for_reload, which go with a new meaning of reload_inc.  */
 
 
  /* If this is an IN/OUT reload in an insn that sets the CC,
  /* If this is an IN/OUT reload in an insn that sets the CC,
     it must be for an autoincrement.  It doesn't work to store
     it must be for an autoincrement.  It doesn't work to store
     the incremented value after the insn because that would clobber the CC.
     the incremented value after the insn because that would clobber the CC.
     So we must do the increment of the value reloaded from,
     So we must do the increment of the value reloaded from,
     increment it, store it back, then decrement again.  */
     increment it, store it back, then decrement again.  */
  if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
  if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
    {
    {
      out = 0;
      out = 0;
      rld[i].out = 0;
      rld[i].out = 0;
      rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
      rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
      /* If we did not find a nonzero amount-to-increment-by,
      /* If we did not find a nonzero amount-to-increment-by,
         that contradicts the belief that IN is being incremented
         that contradicts the belief that IN is being incremented
         in an address in this insn.  */
         in an address in this insn.  */
      gcc_assert (rld[i].inc != 0);
      gcc_assert (rld[i].inc != 0);
    }
    }
#endif
#endif
 
 
  /* If we will replace IN and OUT with the reload-reg,
  /* If we will replace IN and OUT with the reload-reg,
     record where they are located so that substitution need
     record where they are located so that substitution need
     not do a tree walk.  */
     not do a tree walk.  */
 
 
  if (replace_reloads)
  if (replace_reloads)
    {
    {
      if (inloc != 0)
      if (inloc != 0)
        {
        {
          struct replacement *r = &replacements[n_replacements++];
          struct replacement *r = &replacements[n_replacements++];
          r->what = i;
          r->what = i;
          r->subreg_loc = in_subreg_loc;
          r->subreg_loc = in_subreg_loc;
          r->where = inloc;
          r->where = inloc;
          r->mode = inmode;
          r->mode = inmode;
        }
        }
      if (outloc != 0 && outloc != inloc)
      if (outloc != 0 && outloc != inloc)
        {
        {
          struct replacement *r = &replacements[n_replacements++];
          struct replacement *r = &replacements[n_replacements++];
          r->what = i;
          r->what = i;
          r->where = outloc;
          r->where = outloc;
          r->subreg_loc = out_subreg_loc;
          r->subreg_loc = out_subreg_loc;
          r->mode = outmode;
          r->mode = outmode;
        }
        }
    }
    }
 
 
  /* If this reload is just being introduced and it has both
  /* If this reload is just being introduced and it has both
     an incoming quantity and an outgoing quantity that are
     an incoming quantity and an outgoing quantity that are
     supposed to be made to match, see if either one of the two
     supposed to be made to match, see if either one of the two
     can serve as the place to reload into.
     can serve as the place to reload into.
 
 
     If one of them is acceptable, set rld[i].reg_rtx
     If one of them is acceptable, set rld[i].reg_rtx
     to that one.  */
     to that one.  */
 
 
  if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
  if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
    {
    {
      rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
      rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
                                          inmode, outmode,
                                          inmode, outmode,
                                          rld[i].class, i,
                                          rld[i].class, i,
                                          earlyclobber_operand_p (out));
                                          earlyclobber_operand_p (out));
 
 
      /* If the outgoing register already contains the same value
      /* If the outgoing register already contains the same value
         as the incoming one, we can dispense with loading it.
         as the incoming one, we can dispense with loading it.
         The easiest way to tell the caller that is to give a phony
         The easiest way to tell the caller that is to give a phony
         value for the incoming operand (same as outgoing one).  */
         value for the incoming operand (same as outgoing one).  */
      if (rld[i].reg_rtx == out
      if (rld[i].reg_rtx == out
          && (REG_P (in) || CONSTANT_P (in))
          && (REG_P (in) || CONSTANT_P (in))
          && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
          && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
                                  static_reload_reg_p, i, inmode))
                                  static_reload_reg_p, i, inmode))
        rld[i].in = out;
        rld[i].in = out;
    }
    }
 
 
  /* If this is an input reload and the operand contains a register that
  /* If this is an input reload and the operand contains a register that
     dies in this insn and is used nowhere else, see if it is the right class
     dies in this insn and is used nowhere else, see if it is the right class
     to be used for this reload.  Use it if so.  (This occurs most commonly
     to be used for this reload.  Use it if so.  (This occurs most commonly
     in the case of paradoxical SUBREGs and in-out reloads).  We cannot do
     in the case of paradoxical SUBREGs and in-out reloads).  We cannot do
     this if it is also an output reload that mentions the register unless
     this if it is also an output reload that mentions the register unless
     the output is a SUBREG that clobbers an entire register.
     the output is a SUBREG that clobbers an entire register.
 
 
     Note that the operand might be one of the spill regs, if it is a
     Note that the operand might be one of the spill regs, if it is a
     pseudo reg and we are in a block where spilling has not taken place.
     pseudo reg and we are in a block where spilling has not taken place.
     But if there is no spilling in this block, that is OK.
     But if there is no spilling in this block, that is OK.
     An explicitly used hard reg cannot be a spill reg.  */
     An explicitly used hard reg cannot be a spill reg.  */
 
 
  if (rld[i].reg_rtx == 0 && in != 0 && hard_regs_live_known)
  if (rld[i].reg_rtx == 0 && in != 0 && hard_regs_live_known)
    {
    {
      rtx note;
      rtx note;
      int regno;
      int regno;
      enum machine_mode rel_mode = inmode;
      enum machine_mode rel_mode = inmode;
 
 
      if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
      if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
        rel_mode = outmode;
        rel_mode = outmode;
 
 
      for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
      for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
        if (REG_NOTE_KIND (note) == REG_DEAD
        if (REG_NOTE_KIND (note) == REG_DEAD
            && REG_P (XEXP (note, 0))
            && REG_P (XEXP (note, 0))
            && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
            && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
            && reg_mentioned_p (XEXP (note, 0), in)
            && reg_mentioned_p (XEXP (note, 0), in)
            /* Check that we don't use a hardreg for an uninitialized
            /* Check that we don't use a hardreg for an uninitialized
               pseudo.  See also find_dummy_reload().  */
               pseudo.  See also find_dummy_reload().  */
            && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
            && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
                || ! bitmap_bit_p (ENTRY_BLOCK_PTR->il.rtl->global_live_at_end,
                || ! bitmap_bit_p (ENTRY_BLOCK_PTR->il.rtl->global_live_at_end,
                                   ORIGINAL_REGNO (XEXP (note, 0))))
                                   ORIGINAL_REGNO (XEXP (note, 0))))
            && ! refers_to_regno_for_reload_p (regno,
            && ! refers_to_regno_for_reload_p (regno,
                                               (regno
                                               (regno
                                                + hard_regno_nregs[regno]
                                                + hard_regno_nregs[regno]
                                                                  [rel_mode]),
                                                                  [rel_mode]),
                                               PATTERN (this_insn), inloc)
                                               PATTERN (this_insn), inloc)
            /* If this is also an output reload, IN cannot be used as
            /* If this is also an output reload, IN cannot be used as
               the reload register if it is set in this insn unless IN
               the reload register if it is set in this insn unless IN
               is also OUT.  */
               is also OUT.  */
            && (out == 0 || in == out
            && (out == 0 || in == out
                || ! hard_reg_set_here_p (regno,
                || ! hard_reg_set_here_p (regno,
                                          (regno
                                          (regno
                                           + hard_regno_nregs[regno]
                                           + hard_regno_nregs[regno]
                                                             [rel_mode]),
                                                             [rel_mode]),
                                          PATTERN (this_insn)))
                                          PATTERN (this_insn)))
            /* ??? Why is this code so different from the previous?
            /* ??? Why is this code so different from the previous?
               Is there any simple coherent way to describe the two together?
               Is there any simple coherent way to describe the two together?
               What's going on here.  */
               What's going on here.  */
            && (in != out
            && (in != out
                || (GET_CODE (in) == SUBREG
                || (GET_CODE (in) == SUBREG
                    && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
                    && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
                         / UNITS_PER_WORD)
                         / UNITS_PER_WORD)
                        == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
                        == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
                             + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
                             + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
            /* Make sure the operand fits in the reg that dies.  */
            /* Make sure the operand fits in the reg that dies.  */
            && (GET_MODE_SIZE (rel_mode)
            && (GET_MODE_SIZE (rel_mode)
                <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
                <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
            && HARD_REGNO_MODE_OK (regno, inmode)
            && HARD_REGNO_MODE_OK (regno, inmode)
            && HARD_REGNO_MODE_OK (regno, outmode))
            && HARD_REGNO_MODE_OK (regno, outmode))
          {
          {
            unsigned int offs;
            unsigned int offs;
            unsigned int nregs = MAX (hard_regno_nregs[regno][inmode],
            unsigned int nregs = MAX (hard_regno_nregs[regno][inmode],
                                      hard_regno_nregs[regno][outmode]);
                                      hard_regno_nregs[regno][outmode]);
 
 
            for (offs = 0; offs < nregs; offs++)
            for (offs = 0; offs < nregs; offs++)
              if (fixed_regs[regno + offs]
              if (fixed_regs[regno + offs]
                  || ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
                  || ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
                                          regno + offs))
                                          regno + offs))
                break;
                break;
 
 
            if (offs == nregs
            if (offs == nregs
                && (! (refers_to_regno_for_reload_p
                && (! (refers_to_regno_for_reload_p
                       (regno, (regno + hard_regno_nregs[regno][inmode]),
                       (regno, (regno + hard_regno_nregs[regno][inmode]),
                                in, (rtx *)0))
                                in, (rtx *)0))
                    || can_reload_into (in, regno, inmode)))
                    || can_reload_into (in, regno, inmode)))
              {
              {
                rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
                rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
                break;
                break;
              }
              }
          }
          }
    }
    }
 
 
  if (out)
  if (out)
    output_reloadnum = i;
    output_reloadnum = i;
 
 
  return i;
  return i;
}
}
 
 
/* Record an additional place we must replace a value
/* Record an additional place we must replace a value
   for which we have already recorded a reload.
   for which we have already recorded a reload.
   RELOADNUM is the value returned by push_reload
   RELOADNUM is the value returned by push_reload
   when the reload was recorded.
   when the reload was recorded.
   This is used in insn patterns that use match_dup.  */
   This is used in insn patterns that use match_dup.  */
 
 
static void
static void
push_replacement (rtx *loc, int reloadnum, enum machine_mode mode)
push_replacement (rtx *loc, int reloadnum, enum machine_mode mode)
{
{
  if (replace_reloads)
  if (replace_reloads)
    {
    {
      struct replacement *r = &replacements[n_replacements++];
      struct replacement *r = &replacements[n_replacements++];
      r->what = reloadnum;
      r->what = reloadnum;
      r->where = loc;
      r->where = loc;
      r->subreg_loc = 0;
      r->subreg_loc = 0;
      r->mode = mode;
      r->mode = mode;
    }
    }
}
}
 
 
/* Duplicate any replacement we have recorded to apply at
/* Duplicate any replacement we have recorded to apply at
   location ORIG_LOC to also be performed at DUP_LOC.
   location ORIG_LOC to also be performed at DUP_LOC.
   This is used in insn patterns that use match_dup.  */
   This is used in insn patterns that use match_dup.  */
 
 
static void
static void
dup_replacements (rtx *dup_loc, rtx *orig_loc)
dup_replacements (rtx *dup_loc, rtx *orig_loc)
{
{
  int i, n = n_replacements;
  int i, n = n_replacements;
 
 
  for (i = 0; i < n; i++)
  for (i = 0; i < n; i++)
    {
    {
      struct replacement *r = &replacements[i];
      struct replacement *r = &replacements[i];
      if (r->where == orig_loc)
      if (r->where == orig_loc)
        push_replacement (dup_loc, r->what, r->mode);
        push_replacement (dup_loc, r->what, r->mode);
    }
    }
}
}


/* Transfer all replacements that used to be in reload FROM to be in
/* Transfer all replacements that used to be in reload FROM to be in
   reload TO.  */
   reload TO.  */
 
 
void
void
transfer_replacements (int to, int from)
transfer_replacements (int to, int from)
{
{
  int i;
  int i;
 
 
  for (i = 0; i < n_replacements; i++)
  for (i = 0; i < n_replacements; i++)
    if (replacements[i].what == from)
    if (replacements[i].what == from)
      replacements[i].what = to;
      replacements[i].what = to;
}
}


/* IN_RTX is the value loaded by a reload that we now decided to inherit,
/* IN_RTX is the value loaded by a reload that we now decided to inherit,
   or a subpart of it.  If we have any replacements registered for IN_RTX,
   or a subpart of it.  If we have any replacements registered for IN_RTX,
   cancel the reloads that were supposed to load them.
   cancel the reloads that were supposed to load them.
   Return nonzero if we canceled any reloads.  */
   Return nonzero if we canceled any reloads.  */
int
int
remove_address_replacements (rtx in_rtx)
remove_address_replacements (rtx in_rtx)
{
{
  int i, j;
  int i, j;
  char reload_flags[MAX_RELOADS];
  char reload_flags[MAX_RELOADS];
  int something_changed = 0;
  int something_changed = 0;
 
 
  memset (reload_flags, 0, sizeof reload_flags);
  memset (reload_flags, 0, sizeof reload_flags);
  for (i = 0, j = 0; i < n_replacements; i++)
  for (i = 0, j = 0; i < n_replacements; i++)
    {
    {
      if (loc_mentioned_in_p (replacements[i].where, in_rtx))
      if (loc_mentioned_in_p (replacements[i].where, in_rtx))
        reload_flags[replacements[i].what] |= 1;
        reload_flags[replacements[i].what] |= 1;
      else
      else
        {
        {
          replacements[j++] = replacements[i];
          replacements[j++] = replacements[i];
          reload_flags[replacements[i].what] |= 2;
          reload_flags[replacements[i].what] |= 2;
        }
        }
    }
    }
  /* Note that the following store must be done before the recursive calls.  */
  /* Note that the following store must be done before the recursive calls.  */
  n_replacements = j;
  n_replacements = j;
 
 
  for (i = n_reloads - 1; i >= 0; i--)
  for (i = n_reloads - 1; i >= 0; i--)
    {
    {
      if (reload_flags[i] == 1)
      if (reload_flags[i] == 1)
        {
        {
          deallocate_reload_reg (i);
          deallocate_reload_reg (i);
          remove_address_replacements (rld[i].in);
          remove_address_replacements (rld[i].in);
          rld[i].in = 0;
          rld[i].in = 0;
          something_changed = 1;
          something_changed = 1;
        }
        }
    }
    }
  return something_changed;
  return something_changed;
}
}


/* If there is only one output reload, and it is not for an earlyclobber
/* If there is only one output reload, and it is not for an earlyclobber
   operand, try to combine it with a (logically unrelated) input reload
   operand, try to combine it with a (logically unrelated) input reload
   to reduce the number of reload registers needed.
   to reduce the number of reload registers needed.
 
 
   This is safe if the input reload does not appear in
   This is safe if the input reload does not appear in
   the value being output-reloaded, because this implies
   the value being output-reloaded, because this implies
   it is not needed any more once the original insn completes.
   it is not needed any more once the original insn completes.
 
 
   If that doesn't work, see we can use any of the registers that
   If that doesn't work, see we can use any of the registers that
   die in this insn as a reload register.  We can if it is of the right
   die in this insn as a reload register.  We can if it is of the right
   class and does not appear in the value being output-reloaded.  */
   class and does not appear in the value being output-reloaded.  */
 
 
static void
static void
combine_reloads (void)
combine_reloads (void)
{
{
  int i;
  int i;
  int output_reload = -1;
  int output_reload = -1;
  int secondary_out = -1;
  int secondary_out = -1;
  rtx note;
  rtx note;
 
 
  /* Find the output reload; return unless there is exactly one
  /* Find the output reload; return unless there is exactly one
     and that one is mandatory.  */
     and that one is mandatory.  */
 
 
  for (i = 0; i < n_reloads; i++)
  for (i = 0; i < n_reloads; i++)
    if (rld[i].out != 0)
    if (rld[i].out != 0)
      {
      {
        if (output_reload >= 0)
        if (output_reload >= 0)
          return;
          return;
        output_reload = i;
        output_reload = i;
      }
      }
 
 
  if (output_reload < 0 || rld[output_reload].optional)
  if (output_reload < 0 || rld[output_reload].optional)
    return;
    return;
 
 
  /* An input-output reload isn't combinable.  */
  /* An input-output reload isn't combinable.  */
 
 
  if (rld[output_reload].in != 0)
  if (rld[output_reload].in != 0)
    return;
    return;
 
 
  /* If this reload is for an earlyclobber operand, we can't do anything.  */
  /* If this reload is for an earlyclobber operand, we can't do anything.  */
  if (earlyclobber_operand_p (rld[output_reload].out))
  if (earlyclobber_operand_p (rld[output_reload].out))
    return;
    return;
 
 
  /* If there is a reload for part of the address of this operand, we would
  /* If there is a reload for part of the address of this operand, we would
     need to chnage it to RELOAD_FOR_OTHER_ADDRESS.  But that would extend
     need to chnage it to RELOAD_FOR_OTHER_ADDRESS.  But that would extend
     its life to the point where doing this combine would not lower the
     its life to the point where doing this combine would not lower the
     number of spill registers needed.  */
     number of spill registers needed.  */
  for (i = 0; i < n_reloads; i++)
  for (i = 0; i < n_reloads; i++)
    if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
    if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
         || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
         || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
        && rld[i].opnum == rld[output_reload].opnum)
        && rld[i].opnum == rld[output_reload].opnum)
      return;
      return;
 
 
  /* Check each input reload; can we combine it?  */
  /* Check each input reload; can we combine it?  */
 
 
  for (i = 0; i < n_reloads; i++)
  for (i = 0; i < n_reloads; i++)
    if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
    if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
        /* Life span of this reload must not extend past main insn.  */
        /* Life span of this reload must not extend past main insn.  */
        && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
        && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
        && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
        && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
        && rld[i].when_needed != RELOAD_OTHER
        && rld[i].when_needed != RELOAD_OTHER
        && (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
        && (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
            == CLASS_MAX_NREGS (rld[output_reload].class,
            == CLASS_MAX_NREGS (rld[output_reload].class,
                                rld[output_reload].outmode))
                                rld[output_reload].outmode))
        && rld[i].inc == 0
        && rld[i].inc == 0
        && rld[i].reg_rtx == 0
        && rld[i].reg_rtx == 0
#ifdef SECONDARY_MEMORY_NEEDED
#ifdef SECONDARY_MEMORY_NEEDED
        /* Don't combine two reloads with different secondary
        /* Don't combine two reloads with different secondary
           memory locations.  */
           memory locations.  */
        && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
        && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
            || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
            || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
            || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
            || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
                            secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
                            secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
#endif
#endif
        && (SMALL_REGISTER_CLASSES
        && (SMALL_REGISTER_CLASSES
            ? (rld[i].class == rld[output_reload].class)
            ? (rld[i].class == rld[output_reload].class)
            : (reg_class_subset_p (rld[i].class,
            : (reg_class_subset_p (rld[i].class,
                                   rld[output_reload].class)
                                   rld[output_reload].class)
               || reg_class_subset_p (rld[output_reload].class,
               || reg_class_subset_p (rld[output_reload].class,
                                      rld[i].class)))
                                      rld[i].class)))
        && (MATCHES (rld[i].in, rld[output_reload].out)
        && (MATCHES (rld[i].in, rld[output_reload].out)
            /* Args reversed because the first arg seems to be
            /* Args reversed because the first arg seems to be
               the one that we imagine being modified
               the one that we imagine being modified
               while the second is the one that might be affected.  */
               while the second is the one that might be affected.  */
            || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
            || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
                                                      rld[i].in)
                                                      rld[i].in)
                /* However, if the input is a register that appears inside
                /* However, if the input is a register that appears inside
                   the output, then we also can't share.
                   the output, then we also can't share.
                   Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
                   Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
                   If the same reload reg is used for both reg 69 and the
                   If the same reload reg is used for both reg 69 and the
                   result to be stored in memory, then that result
                   result to be stored in memory, then that result
                   will clobber the address of the memory ref.  */
                   will clobber the address of the memory ref.  */
                && ! (REG_P (rld[i].in)
                && ! (REG_P (rld[i].in)
                      && reg_overlap_mentioned_for_reload_p (rld[i].in,
                      && reg_overlap_mentioned_for_reload_p (rld[i].in,
                                                             rld[output_reload].out))))
                                                             rld[output_reload].out))))
        && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
        && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
                                         rld[i].when_needed != RELOAD_FOR_INPUT)
                                         rld[i].when_needed != RELOAD_FOR_INPUT)
        && (reg_class_size[(int) rld[i].class]
        && (reg_class_size[(int) rld[i].class]
            || SMALL_REGISTER_CLASSES)
            || SMALL_REGISTER_CLASSES)
        /* We will allow making things slightly worse by combining an
        /* We will allow making things slightly worse by combining an
           input and an output, but no worse than that.  */
           input and an output, but no worse than that.  */
        && (rld[i].when_needed == RELOAD_FOR_INPUT
        && (rld[i].when_needed == RELOAD_FOR_INPUT
            || rld[i].when_needed == RELOAD_FOR_OUTPUT))
            || rld[i].when_needed == RELOAD_FOR_OUTPUT))
      {
      {
        int j;
        int j;
 
 
        /* We have found a reload to combine with!  */
        /* We have found a reload to combine with!  */
        rld[i].out = rld[output_reload].out;
        rld[i].out = rld[output_reload].out;
        rld[i].out_reg = rld[output_reload].out_reg;
        rld[i].out_reg = rld[output_reload].out_reg;
        rld[i].outmode = rld[output_reload].outmode;
        rld[i].outmode = rld[output_reload].outmode;
        /* Mark the old output reload as inoperative.  */
        /* Mark the old output reload as inoperative.  */
        rld[output_reload].out = 0;
        rld[output_reload].out = 0;
        /* The combined reload is needed for the entire insn.  */
        /* The combined reload is needed for the entire insn.  */
        rld[i].when_needed = RELOAD_OTHER;
        rld[i].when_needed = RELOAD_OTHER;
        /* If the output reload had a secondary reload, copy it.  */
        /* If the output reload had a secondary reload, copy it.  */
        if (rld[output_reload].secondary_out_reload != -1)
        if (rld[output_reload].secondary_out_reload != -1)
          {
          {
            rld[i].secondary_out_reload
            rld[i].secondary_out_reload
              = rld[output_reload].secondary_out_reload;
              = rld[output_reload].secondary_out_reload;
            rld[i].secondary_out_icode
            rld[i].secondary_out_icode
              = rld[output_reload].secondary_out_icode;
              = rld[output_reload].secondary_out_icode;
          }
          }
 
 
#ifdef SECONDARY_MEMORY_NEEDED
#ifdef SECONDARY_MEMORY_NEEDED
        /* Copy any secondary MEM.  */
        /* Copy any secondary MEM.  */
        if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
        if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
          secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
          secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
            = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
            = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
#endif
#endif
        /* If required, minimize the register class.  */
        /* If required, minimize the register class.  */
        if (reg_class_subset_p (rld[output_reload].class,
        if (reg_class_subset_p (rld[output_reload].class,
                                rld[i].class))
                                rld[i].class))
          rld[i].class = rld[output_reload].class;
          rld[i].class = rld[output_reload].class;
 
 
        /* Transfer all replacements from the old reload to the combined.  */
        /* Transfer all replacements from the old reload to the combined.  */
        for (j = 0; j < n_replacements; j++)
        for (j = 0; j < n_replacements; j++)
          if (replacements[j].what == output_reload)
          if (replacements[j].what == output_reload)
            replacements[j].what = i;
            replacements[j].what = i;
 
 
        return;
        return;
      }
      }
 
 
  /* If this insn has only one operand that is modified or written (assumed
  /* If this insn has only one operand that is modified or written (assumed
     to be the first),  it must be the one corresponding to this reload.  It
     to be the first),  it must be the one corresponding to this reload.  It
     is safe to use anything that dies in this insn for that output provided
     is safe to use anything that dies in this insn for that output provided
     that it does not occur in the output (we already know it isn't an
     that it does not occur in the output (we already know it isn't an
     earlyclobber.  If this is an asm insn, give up.  */
     earlyclobber.  If this is an asm insn, give up.  */
 
 
  if (INSN_CODE (this_insn) == -1)
  if (INSN_CODE (this_insn) == -1)
    return;
    return;
 
 
  for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
  for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
    if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
    if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
        || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
        || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
      return;
      return;
 
 
  /* See if some hard register that dies in this insn and is not used in
  /* See if some hard register that dies in this insn and is not used in
     the output is the right class.  Only works if the register we pick
     the output is the right class.  Only works if the register we pick
     up can fully hold our output reload.  */
     up can fully hold our output reload.  */
  for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
  for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
    if (REG_NOTE_KIND (note) == REG_DEAD
    if (REG_NOTE_KIND (note) == REG_DEAD
        && REG_P (XEXP (note, 0))
        && REG_P (XEXP (note, 0))
        && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
        && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
                                                 rld[output_reload].out)
                                                 rld[output_reload].out)
        && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
        && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
        && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
        && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
        && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
        && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
                              REGNO (XEXP (note, 0)))
                              REGNO (XEXP (note, 0)))
        && (hard_regno_nregs[REGNO (XEXP (note, 0))][rld[output_reload].outmode]
        && (hard_regno_nregs[REGNO (XEXP (note, 0))][rld[output_reload].outmode]
            <= hard_regno_nregs[REGNO (XEXP (note, 0))][GET_MODE (XEXP (note, 0))])
            <= hard_regno_nregs[REGNO (XEXP (note, 0))][GET_MODE (XEXP (note, 0))])
        /* Ensure that a secondary or tertiary reload for this output
        /* Ensure that a secondary or tertiary reload for this output
           won't want this register.  */
           won't want this register.  */
        && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
        && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
            || (! (TEST_HARD_REG_BIT
            || (! (TEST_HARD_REG_BIT
                   (reg_class_contents[(int) rld[secondary_out].class],
                   (reg_class_contents[(int) rld[secondary_out].class],
                    REGNO (XEXP (note, 0))))
                    REGNO (XEXP (note, 0))))
                && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
                && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
                    ||  ! (TEST_HARD_REG_BIT
                    ||  ! (TEST_HARD_REG_BIT
                           (reg_class_contents[(int) rld[secondary_out].class],
                           (reg_class_contents[(int) rld[secondary_out].class],
                            REGNO (XEXP (note, 0)))))))
                            REGNO (XEXP (note, 0)))))))
        && ! fixed_regs[REGNO (XEXP (note, 0))]
        && ! fixed_regs[REGNO (XEXP (note, 0))]
        /* Check that we don't use a hardreg for an uninitialized
        /* Check that we don't use a hardreg for an uninitialized
           pseudo.  See also find_dummy_reload().  */
           pseudo.  See also find_dummy_reload().  */
        && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
        && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
            || ! bitmap_bit_p (ENTRY_BLOCK_PTR->il.rtl->global_live_at_end,
            || ! bitmap_bit_p (ENTRY_BLOCK_PTR->il.rtl->global_live_at_end,
                               ORIGINAL_REGNO (XEXP (note, 0)))))
                               ORIGINAL_REGNO (XEXP (note, 0)))))
      {
      {
        rld[output_reload].reg_rtx
        rld[output_reload].reg_rtx
          = gen_rtx_REG (rld[output_reload].outmode,
          = gen_rtx_REG (rld[output_reload].outmode,
                         REGNO (XEXP (note, 0)));
                         REGNO (XEXP (note, 0)));
        return;
        return;
      }
      }
}
}


/* Try to find a reload register for an in-out reload (expressions IN and OUT).
/* Try to find a reload register for an in-out reload (expressions IN and OUT).
   See if one of IN and OUT is a register that may be used;
   See if one of IN and OUT is a register that may be used;
   this is desirable since a spill-register won't be needed.
   this is desirable since a spill-register won't be needed.
   If so, return the register rtx that proves acceptable.
   If so, return the register rtx that proves acceptable.
 
 
   INLOC and OUTLOC are locations where IN and OUT appear in the insn.
   INLOC and OUTLOC are locations where IN and OUT appear in the insn.
   CLASS is the register class required for the reload.
   CLASS is the register class required for the reload.
 
 
   If FOR_REAL is >= 0, it is the number of the reload,
   If FOR_REAL is >= 0, it is the number of the reload,
   and in some cases when it can be discovered that OUT doesn't need
   and in some cases when it can be discovered that OUT doesn't need
   to be computed, clear out rld[FOR_REAL].out.
   to be computed, clear out rld[FOR_REAL].out.
 
 
   If FOR_REAL is -1, this should not be done, because this call
   If FOR_REAL is -1, this should not be done, because this call
   is just to see if a register can be found, not to find and install it.
   is just to see if a register can be found, not to find and install it.
 
 
   EARLYCLOBBER is nonzero if OUT is an earlyclobber operand.  This
   EARLYCLOBBER is nonzero if OUT is an earlyclobber operand.  This
   puts an additional constraint on being able to use IN for OUT since
   puts an additional constraint on being able to use IN for OUT since
   IN must not appear elsewhere in the insn (it is assumed that IN itself
   IN must not appear elsewhere in the insn (it is assumed that IN itself
   is safe from the earlyclobber).  */
   is safe from the earlyclobber).  */
 
 
static rtx
static rtx
find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
                   enum machine_mode inmode, enum machine_mode outmode,
                   enum machine_mode inmode, enum machine_mode outmode,
                   enum reg_class class, int for_real, int earlyclobber)
                   enum reg_class class, int for_real, int earlyclobber)
{
{
  rtx in = real_in;
  rtx in = real_in;
  rtx out = real_out;
  rtx out = real_out;
  int in_offset = 0;
  int in_offset = 0;
  int out_offset = 0;
  int out_offset = 0;
  rtx value = 0;
  rtx value = 0;
 
 
  /* If operands exceed a word, we can't use either of them
  /* If operands exceed a word, we can't use either of them
     unless they have the same size.  */
     unless they have the same size.  */
  if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
  if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
      && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
      && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
          || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
          || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
    return 0;
    return 0;
 
 
  /* Note that {in,out}_offset are needed only when 'in' or 'out'
  /* Note that {in,out}_offset are needed only when 'in' or 'out'
     respectively refers to a hard register.  */
     respectively refers to a hard register.  */
 
 
  /* Find the inside of any subregs.  */
  /* Find the inside of any subregs.  */
  while (GET_CODE (out) == SUBREG)
  while (GET_CODE (out) == SUBREG)
    {
    {
      if (REG_P (SUBREG_REG (out))
      if (REG_P (SUBREG_REG (out))
          && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
          && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
        out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
        out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
                                           GET_MODE (SUBREG_REG (out)),
                                           GET_MODE (SUBREG_REG (out)),
                                           SUBREG_BYTE (out),
                                           SUBREG_BYTE (out),
                                           GET_MODE (out));
                                           GET_MODE (out));
      out = SUBREG_REG (out);
      out = SUBREG_REG (out);
    }
    }
  while (GET_CODE (in) == SUBREG)
  while (GET_CODE (in) == SUBREG)
    {
    {
      if (REG_P (SUBREG_REG (in))
      if (REG_P (SUBREG_REG (in))
          && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
          && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
        in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
        in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
                                          GET_MODE (SUBREG_REG (in)),
                                          GET_MODE (SUBREG_REG (in)),
                                          SUBREG_BYTE (in),
                                          SUBREG_BYTE (in),
                                          GET_MODE (in));
                                          GET_MODE (in));
      in = SUBREG_REG (in);
      in = SUBREG_REG (in);
    }
    }
 
 
  /* Narrow down the reg class, the same way push_reload will;
  /* Narrow down the reg class, the same way push_reload will;
     otherwise we might find a dummy now, but push_reload won't.  */
     otherwise we might find a dummy now, but push_reload won't.  */
  {
  {
    enum reg_class preferred_class = PREFERRED_RELOAD_CLASS (in, class);
    enum reg_class preferred_class = PREFERRED_RELOAD_CLASS (in, class);
    if (preferred_class != NO_REGS)
    if (preferred_class != NO_REGS)
      class = preferred_class;
      class = preferred_class;
  }
  }
 
 
  /* See if OUT will do.  */
  /* See if OUT will do.  */
  if (REG_P (out)
  if (REG_P (out)
      && REGNO (out) < FIRST_PSEUDO_REGISTER)
      && REGNO (out) < FIRST_PSEUDO_REGISTER)
    {
    {
      unsigned int regno = REGNO (out) + out_offset;
      unsigned int regno = REGNO (out) + out_offset;
      unsigned int nwords = hard_regno_nregs[regno][outmode];
      unsigned int nwords = hard_regno_nregs[regno][outmode];
      rtx saved_rtx;
      rtx saved_rtx;
 
 
      /* When we consider whether the insn uses OUT,
      /* When we consider whether the insn uses OUT,
         ignore references within IN.  They don't prevent us
         ignore references within IN.  They don't prevent us
         from copying IN into OUT, because those refs would
         from copying IN into OUT, because those refs would
         move into the insn that reloads IN.
         move into the insn that reloads IN.
 
 
         However, we only ignore IN in its role as this reload.
         However, we only ignore IN in its role as this reload.
         If the insn uses IN elsewhere and it contains OUT,
         If the insn uses IN elsewhere and it contains OUT,
         that counts.  We can't be sure it's the "same" operand
         that counts.  We can't be sure it's the "same" operand
         so it might not go through this reload.  */
         so it might not go through this reload.  */
      saved_rtx = *inloc;
      saved_rtx = *inloc;
      *inloc = const0_rtx;
      *inloc = const0_rtx;
 
 
      if (regno < FIRST_PSEUDO_REGISTER
      if (regno < FIRST_PSEUDO_REGISTER
          && HARD_REGNO_MODE_OK (regno, outmode)
          && HARD_REGNO_MODE_OK (regno, outmode)
          && ! refers_to_regno_for_reload_p (regno, regno + nwords,
          && ! refers_to_regno_for_reload_p (regno, regno + nwords,
                                             PATTERN (this_insn), outloc))
                                             PATTERN (this_insn), outloc))
        {
        {
          unsigned int i;
          unsigned int i;
 
 
          for (i = 0; i < nwords; i++)
          for (i = 0; i < nwords; i++)
            if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
            if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
                                     regno + i))
                                     regno + i))
              break;
              break;
 
 
          if (i == nwords)
          if (i == nwords)
            {
            {
              if (REG_P (real_out))
              if (REG_P (real_out))
                value = real_out;
                value = real_out;
              else
              else
                value = gen_rtx_REG (outmode, regno);
                value = gen_rtx_REG (outmode, regno);
            }
            }
        }
        }
 
 
      *inloc = saved_rtx;
      *inloc = saved_rtx;
    }
    }
 
 
  /* Consider using IN if OUT was not acceptable
  /* Consider using IN if OUT was not acceptable
     or if OUT dies in this insn (like the quotient in a divmod insn).
     or if OUT dies in this insn (like the quotient in a divmod insn).
     We can't use IN unless it is dies in this insn,
     We can't use IN unless it is dies in this insn,
     which means we must know accurately which hard regs are live.
     which means we must know accurately which hard regs are live.
     Also, the result can't go in IN if IN is used within OUT,
     Also, the result can't go in IN if IN is used within OUT,
     or if OUT is an earlyclobber and IN appears elsewhere in the insn.  */
     or if OUT is an earlyclobber and IN appears elsewhere in the insn.  */
  if (hard_regs_live_known
  if (hard_regs_live_known
      && REG_P (in)
      && REG_P (in)
      && REGNO (in) < FIRST_PSEUDO_REGISTER
      && REGNO (in) < FIRST_PSEUDO_REGISTER
      && (value == 0
      && (value == 0
          || find_reg_note (this_insn, REG_UNUSED, real_out))
          || find_reg_note (this_insn, REG_UNUSED, real_out))
      && find_reg_note (this_insn, REG_DEAD, real_in)
      && find_reg_note (this_insn, REG_DEAD, real_in)
      && !fixed_regs[REGNO (in)]
      && !fixed_regs[REGNO (in)]
      && HARD_REGNO_MODE_OK (REGNO (in),
      && HARD_REGNO_MODE_OK (REGNO (in),
                             /* The only case where out and real_out might
                             /* The only case where out and real_out might
                                have different modes is where real_out
                                have different modes is where real_out
                                is a subreg, and in that case, out
                                is a subreg, and in that case, out
                                has a real mode.  */
                                has a real mode.  */
                             (GET_MODE (out) != VOIDmode
                             (GET_MODE (out) != VOIDmode
                              ? GET_MODE (out) : outmode))
                              ? GET_MODE (out) : outmode))
        /* But only do all this if we can be sure, that this input
        /* But only do all this if we can be sure, that this input
           operand doesn't correspond with an uninitialized pseudoreg.
           operand doesn't correspond with an uninitialized pseudoreg.
           global can assign some hardreg to it, which is the same as
           global can assign some hardreg to it, which is the same as
           a different pseudo also currently live (as it can ignore the
           a different pseudo also currently live (as it can ignore the
           conflict).  So we never must introduce writes to such hardregs,
           conflict).  So we never must introduce writes to such hardregs,
           as they would clobber the other live pseudo using the same.
           as they would clobber the other live pseudo using the same.
           See also PR20973.  */
           See also PR20973.  */
      && (ORIGINAL_REGNO (in) < FIRST_PSEUDO_REGISTER
      && (ORIGINAL_REGNO (in) < FIRST_PSEUDO_REGISTER
          || ! bitmap_bit_p (ENTRY_BLOCK_PTR->il.rtl->global_live_at_end,
          || ! bitmap_bit_p (ENTRY_BLOCK_PTR->il.rtl->global_live_at_end,
                             ORIGINAL_REGNO (in))))
                             ORIGINAL_REGNO (in))))
    {
    {
      unsigned int regno = REGNO (in) + in_offset;
      unsigned int regno = REGNO (in) + in_offset;
      unsigned int nwords = hard_regno_nregs[regno][inmode];
      unsigned int nwords = hard_regno_nregs[regno][inmode];
 
 
      if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
      if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
          && ! hard_reg_set_here_p (regno, regno + nwords,
          && ! hard_reg_set_here_p (regno, regno + nwords,
                                    PATTERN (this_insn))
                                    PATTERN (this_insn))
          && (! earlyclobber
          && (! earlyclobber
              || ! refers_to_regno_for_reload_p (regno, regno + nwords,
              || ! refers_to_regno_for_reload_p (regno, regno + nwords,
                                                 PATTERN (this_insn), inloc)))
                                                 PATTERN (this_insn), inloc)))
        {
        {
          unsigned int i;
          unsigned int i;
 
 
          for (i = 0; i < nwords; i++)
          for (i = 0; i < nwords; i++)
            if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
            if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
                                     regno + i))
                                     regno + i))
              break;
              break;
 
 
          if (i == nwords)
          if (i == nwords)
            {
            {
              /* If we were going to use OUT as the reload reg
              /* If we were going to use OUT as the reload reg
                 and changed our mind, it means OUT is a dummy that
                 and changed our mind, it means OUT is a dummy that
                 dies here.  So don't bother copying value to it.  */
                 dies here.  So don't bother copying value to it.  */
              if (for_real >= 0 && value == real_out)
              if (for_real >= 0 && value == real_out)
                rld[for_real].out = 0;
                rld[for_real].out = 0;
              if (REG_P (real_in))
              if (REG_P (real_in))
                value = real_in;
                value = real_in;
              else
              else
                value = gen_rtx_REG (inmode, regno);
                value = gen_rtx_REG (inmode, regno);
            }
            }
        }
        }
    }
    }
 
 
  return value;
  return value;
}
}


/* This page contains subroutines used mainly for determining
/* This page contains subroutines used mainly for determining
   whether the IN or an OUT of a reload can serve as the
   whether the IN or an OUT of a reload can serve as the
   reload register.  */
   reload register.  */
 
 
/* Return 1 if X is an operand of an insn that is being earlyclobbered.  */
/* Return 1 if X is an operand of an insn that is being earlyclobbered.  */
 
 
int
int
earlyclobber_operand_p (rtx x)
earlyclobber_operand_p (rtx x)
{
{
  int i;
  int i;
 
 
  for (i = 0; i < n_earlyclobbers; i++)
  for (i = 0; i < n_earlyclobbers; i++)
    if (reload_earlyclobbers[i] == x)
    if (reload_earlyclobbers[i] == x)
      return 1;
      return 1;
 
 
  return 0;
  return 0;
}
}
 
 
/* Return 1 if expression X alters a hard reg in the range
/* Return 1 if expression X alters a hard reg in the range
   from BEG_REGNO (inclusive) to END_REGNO (exclusive),
   from BEG_REGNO (inclusive) to END_REGNO (exclusive),
   either explicitly or in the guise of a pseudo-reg allocated to REGNO.
   either explicitly or in the guise of a pseudo-reg allocated to REGNO.
   X should be the body of an instruction.  */
   X should be the body of an instruction.  */
 
 
static int
static int
hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
{
{
  if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
  if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
    {
    {
      rtx op0 = SET_DEST (x);
      rtx op0 = SET_DEST (x);
 
 
      while (GET_CODE (op0) == SUBREG)
      while (GET_CODE (op0) == SUBREG)
        op0 = SUBREG_REG (op0);
        op0 = SUBREG_REG (op0);
      if (REG_P (op0))
      if (REG_P (op0))
        {
        {
          unsigned int r = REGNO (op0);
          unsigned int r = REGNO (op0);
 
 
          /* See if this reg overlaps range under consideration.  */
          /* See if this reg overlaps range under consideration.  */
          if (r < end_regno
          if (r < end_regno
              && r + hard_regno_nregs[r][GET_MODE (op0)] > beg_regno)
              && r + hard_regno_nregs[r][GET_MODE (op0)] > beg_regno)
            return 1;
            return 1;
        }
        }
    }
    }
  else if (GET_CODE (x) == PARALLEL)
  else if (GET_CODE (x) == PARALLEL)
    {
    {
      int i = XVECLEN (x, 0) - 1;
      int i = XVECLEN (x, 0) - 1;
 
 
      for (; i >= 0; i--)
      for (; i >= 0; i--)
        if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
        if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
          return 1;
          return 1;
    }
    }
 
 
  return 0;
  return 0;
}
}
 
 
/* Return 1 if ADDR is a valid memory address for mode MODE,
/* Return 1 if ADDR is a valid memory address for mode MODE,
   and check that each pseudo reg has the proper kind of
   and check that each pseudo reg has the proper kind of
   hard reg.  */
   hard reg.  */
 
 
int
int
strict_memory_address_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx addr)
strict_memory_address_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx addr)
{
{
  GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
  GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
  return 0;
  return 0;
 
 
 win:
 win:
  return 1;
  return 1;
}
}


/* Like rtx_equal_p except that it allows a REG and a SUBREG to match
/* Like rtx_equal_p except that it allows a REG and a SUBREG to match
   if they are the same hard reg, and has special hacks for
   if they are the same hard reg, and has special hacks for
   autoincrement and autodecrement.
   autoincrement and autodecrement.
   This is specifically intended for find_reloads to use
   This is specifically intended for find_reloads to use
   in determining whether two operands match.
   in determining whether two operands match.
   X is the operand whose number is the lower of the two.
   X is the operand whose number is the lower of the two.
 
 
   The value is 2 if Y contains a pre-increment that matches
   The value is 2 if Y contains a pre-increment that matches
   a non-incrementing address in X.  */
   a non-incrementing address in X.  */
 
 
/* ??? To be completely correct, we should arrange to pass
/* ??? To be completely correct, we should arrange to pass
   for X the output operand and for Y the input operand.
   for X the output operand and for Y the input operand.
   For now, we assume that the output operand has the lower number
   For now, we assume that the output operand has the lower number
   because that is natural in (SET output (... input ...)).  */
   because that is natural in (SET output (... input ...)).  */
 
 
int
int
operands_match_p (rtx x, rtx y)
operands_match_p (rtx x, rtx y)
{
{
  int i;
  int i;
  RTX_CODE code = GET_CODE (x);
  RTX_CODE code = GET_CODE (x);
  const char *fmt;
  const char *fmt;
  int success_2;
  int success_2;
 
 
  if (x == y)
  if (x == y)
    return 1;
    return 1;
  if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
  if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
      && (REG_P (y) || (GET_CODE (y) == SUBREG
      && (REG_P (y) || (GET_CODE (y) == SUBREG
                                  && REG_P (SUBREG_REG (y)))))
                                  && REG_P (SUBREG_REG (y)))))
    {
    {
      int j;
      int j;
 
 
      if (code == SUBREG)
      if (code == SUBREG)
        {
        {
          i = REGNO (SUBREG_REG (x));
          i = REGNO (SUBREG_REG (x));
          if (i >= FIRST_PSEUDO_REGISTER)
          if (i >= FIRST_PSEUDO_REGISTER)
            goto slow;
            goto slow;
          i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
          i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
                                    GET_MODE (SUBREG_REG (x)),
                                    GET_MODE (SUBREG_REG (x)),
                                    SUBREG_BYTE (x),
                                    SUBREG_BYTE (x),
                                    GET_MODE (x));
                                    GET_MODE (x));
        }
        }
      else
      else
        i = REGNO (x);
        i = REGNO (x);
 
 
      if (GET_CODE (y) == SUBREG)
      if (GET_CODE (y) == SUBREG)
        {
        {
          j = REGNO (SUBREG_REG (y));
          j = REGNO (SUBREG_REG (y));
          if (j >= FIRST_PSEUDO_REGISTER)
          if (j >= FIRST_PSEUDO_REGISTER)
            goto slow;
            goto slow;
          j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
          j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
                                    GET_MODE (SUBREG_REG (y)),
                                    GET_MODE (SUBREG_REG (y)),
                                    SUBREG_BYTE (y),
                                    SUBREG_BYTE (y),
                                    GET_MODE (y));
                                    GET_MODE (y));
        }
        }
      else
      else
        j = REGNO (y);
        j = REGNO (y);
 
 
      /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
      /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
         multiple hard register group of scalar integer registers, so that
         multiple hard register group of scalar integer registers, so that
         for example (reg:DI 0) and (reg:SI 1) will be considered the same
         for example (reg:DI 0) and (reg:SI 1) will be considered the same
         register.  */
         register.  */
      if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
      if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
          && SCALAR_INT_MODE_P (GET_MODE (x))
          && SCALAR_INT_MODE_P (GET_MODE (x))
          && i < FIRST_PSEUDO_REGISTER)
          && i < FIRST_PSEUDO_REGISTER)
        i += hard_regno_nregs[i][GET_MODE (x)] - 1;
        i += hard_regno_nregs[i][GET_MODE (x)] - 1;
      if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
      if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
          && SCALAR_INT_MODE_P (GET_MODE (y))
          && SCALAR_INT_MODE_P (GET_MODE (y))
          && j < FIRST_PSEUDO_REGISTER)
          && j < FIRST_PSEUDO_REGISTER)
        j += hard_regno_nregs[j][GET_MODE (y)] - 1;
        j += hard_regno_nregs[j][GET_MODE (y)] - 1;
 
 
      return i == j;
      return i == j;
    }
    }
  /* If two operands must match, because they are really a single
  /* If two operands must match, because they are really a single
     operand of an assembler insn, then two postincrements are invalid
     operand of an assembler insn, then two postincrements are invalid
     because the assembler insn would increment only once.
     because the assembler insn would increment only once.
     On the other hand, a postincrement matches ordinary indexing
     On the other hand, a postincrement matches ordinary indexing
     if the postincrement is the output operand.  */
     if the postincrement is the output operand.  */
  if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
  if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
    return operands_match_p (XEXP (x, 0), y);
    return operands_match_p (XEXP (x, 0), y);
  /* Two preincrements are invalid
  /* Two preincrements are invalid
     because the assembler insn would increment only once.
     because the assembler insn would increment only once.
     On the other hand, a preincrement matches ordinary indexing
     On the other hand, a preincrement matches ordinary indexing
     if the preincrement is the input operand.
     if the preincrement is the input operand.
     In this case, return 2, since some callers need to do special
     In this case, return 2, since some callers need to do special
     things when this happens.  */
     things when this happens.  */
  if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
  if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
      || GET_CODE (y) == PRE_MODIFY)
      || GET_CODE (y) == PRE_MODIFY)
    return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
    return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
 
 
 slow:
 slow:
 
 
  /* Now we have disposed of all the cases in which different rtx codes
  /* Now we have disposed of all the cases in which different rtx codes
     can match.  */
     can match.  */
  if (code != GET_CODE (y))
  if (code != GET_CODE (y))
    return 0;
    return 0;
 
 
  /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.  */
  /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.  */
  if (GET_MODE (x) != GET_MODE (y))
  if (GET_MODE (x) != GET_MODE (y))
    return 0;
    return 0;
 
 
  switch (code)
  switch (code)
    {
    {
    case CONST_INT:
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST_DOUBLE:
      return 0;
      return 0;
 
 
    case LABEL_REF:
    case LABEL_REF:
      return XEXP (x, 0) == XEXP (y, 0);
      return XEXP (x, 0) == XEXP (y, 0);
    case SYMBOL_REF:
    case SYMBOL_REF:
      return XSTR (x, 0) == XSTR (y, 0);
      return XSTR (x, 0) == XSTR (y, 0);
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  /* Compare the elements.  If any pair of corresponding elements
  /* Compare the elements.  If any pair of corresponding elements
     fail to match, return 0 for the whole things.  */
     fail to match, return 0 for the whole things.  */
 
 
  success_2 = 0;
  success_2 = 0;
  fmt = GET_RTX_FORMAT (code);
  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
    {
      int val, j;
      int val, j;
      switch (fmt[i])
      switch (fmt[i])
        {
        {
        case 'w':
        case 'w':
          if (XWINT (x, i) != XWINT (y, i))
          if (XWINT (x, i) != XWINT (y, i))
            return 0;
            return 0;
          break;
          break;
 
 
        case 'i':
        case 'i':
          if (XINT (x, i) != XINT (y, i))
          if (XINT (x, i) != XINT (y, i))
            return 0;
            return 0;
          break;
          break;
 
 
        case 'e':
        case 'e':
          val = operands_match_p (XEXP (x, i), XEXP (y, i));
          val = operands_match_p (XEXP (x, i), XEXP (y, i));
          if (val == 0)
          if (val == 0)
            return 0;
            return 0;
          /* If any subexpression returns 2,
          /* If any subexpression returns 2,
             we should return 2 if we are successful.  */
             we should return 2 if we are successful.  */
          if (val == 2)
          if (val == 2)
            success_2 = 1;
            success_2 = 1;
          break;
          break;
 
 
        case '0':
        case '0':
          break;
          break;
 
 
        case 'E':
        case 'E':
          if (XVECLEN (x, i) != XVECLEN (y, i))
          if (XVECLEN (x, i) != XVECLEN (y, i))
            return 0;
            return 0;
          for (j = XVECLEN (x, i) - 1; j >= 0; --j)
          for (j = XVECLEN (x, i) - 1; j >= 0; --j)
            {
            {
              val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
              val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
              if (val == 0)
              if (val == 0)
                return 0;
                return 0;
              if (val == 2)
              if (val == 2)
                success_2 = 1;
                success_2 = 1;
            }
            }
          break;
          break;
 
 
          /* It is believed that rtx's at this level will never
          /* It is believed that rtx's at this level will never
             contain anything but integers and other rtx's,
             contain anything but integers and other rtx's,
             except for within LABEL_REFs and SYMBOL_REFs.  */
             except for within LABEL_REFs and SYMBOL_REFs.  */
        default:
        default:
          gcc_unreachable ();
          gcc_unreachable ();
        }
        }
    }
    }
  return 1 + success_2;
  return 1 + success_2;
}
}


/* Describe the range of registers or memory referenced by X.
/* Describe the range of registers or memory referenced by X.
   If X is a register, set REG_FLAG and put the first register
   If X is a register, set REG_FLAG and put the first register
   number into START and the last plus one into END.
   number into START and the last plus one into END.
   If X is a memory reference, put a base address into BASE
   If X is a memory reference, put a base address into BASE
   and a range of integer offsets into START and END.
   and a range of integer offsets into START and END.
   If X is pushing on the stack, we can assume it causes no trouble,
   If X is pushing on the stack, we can assume it causes no trouble,
   so we set the SAFE field.  */
   so we set the SAFE field.  */
 
 
static struct decomposition
static struct decomposition
decompose (rtx x)
decompose (rtx x)
{
{
  struct decomposition val;
  struct decomposition val;
  int all_const = 0;
  int all_const = 0;
 
 
  memset (&val, 0, sizeof (val));
  memset (&val, 0, sizeof (val));
 
 
  switch (GET_CODE (x))
  switch (GET_CODE (x))
    {
    {
    case MEM:
    case MEM:
      {
      {
        rtx base = NULL_RTX, offset = 0;
        rtx base = NULL_RTX, offset = 0;
        rtx addr = XEXP (x, 0);
        rtx addr = XEXP (x, 0);
 
 
        if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
        if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
            || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
            || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
          {
          {
            val.base = XEXP (addr, 0);
            val.base = XEXP (addr, 0);
            val.start = -GET_MODE_SIZE (GET_MODE (x));
            val.start = -GET_MODE_SIZE (GET_MODE (x));
            val.end = GET_MODE_SIZE (GET_MODE (x));
            val.end = GET_MODE_SIZE (GET_MODE (x));
            val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
            val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
            return val;
            return val;
          }
          }
 
 
        if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
        if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
          {
          {
            if (GET_CODE (XEXP (addr, 1)) == PLUS
            if (GET_CODE (XEXP (addr, 1)) == PLUS
                && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
                && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
                && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
                && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
              {
              {
                val.base  = XEXP (addr, 0);
                val.base  = XEXP (addr, 0);
                val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
                val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
                val.end   = INTVAL (XEXP (XEXP (addr, 1), 1));
                val.end   = INTVAL (XEXP (XEXP (addr, 1), 1));
                val.safe  = REGNO (val.base) == STACK_POINTER_REGNUM;
                val.safe  = REGNO (val.base) == STACK_POINTER_REGNUM;
                return val;
                return val;
              }
              }
          }
          }
 
 
        if (GET_CODE (addr) == CONST)
        if (GET_CODE (addr) == CONST)
          {
          {
            addr = XEXP (addr, 0);
            addr = XEXP (addr, 0);
            all_const = 1;
            all_const = 1;
          }
          }
        if (GET_CODE (addr) == PLUS)
        if (GET_CODE (addr) == PLUS)
          {
          {
            if (CONSTANT_P (XEXP (addr, 0)))
            if (CONSTANT_P (XEXP (addr, 0)))
              {
              {
                base = XEXP (addr, 1);
                base = XEXP (addr, 1);
                offset = XEXP (addr, 0);
                offset = XEXP (addr, 0);
              }
              }
            else if (CONSTANT_P (XEXP (addr, 1)))
            else if (CONSTANT_P (XEXP (addr, 1)))
              {
              {
                base = XEXP (addr, 0);
                base = XEXP (addr, 0);
                offset = XEXP (addr, 1);
                offset = XEXP (addr, 1);
              }
              }
          }
          }
 
 
        if (offset == 0)
        if (offset == 0)
          {
          {
            base = addr;
            base = addr;
            offset = const0_rtx;
            offset = const0_rtx;
          }
          }
        if (GET_CODE (offset) == CONST)
        if (GET_CODE (offset) == CONST)
          offset = XEXP (offset, 0);
          offset = XEXP (offset, 0);
        if (GET_CODE (offset) == PLUS)
        if (GET_CODE (offset) == PLUS)
          {
          {
            if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
            if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
              {
              {
                base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
                base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
                offset = XEXP (offset, 0);
                offset = XEXP (offset, 0);
              }
              }
            else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
            else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
              {
              {
                base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
                base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
                offset = XEXP (offset, 1);
                offset = XEXP (offset, 1);
              }
              }
            else
            else
              {
              {
                base = gen_rtx_PLUS (GET_MODE (base), base, offset);
                base = gen_rtx_PLUS (GET_MODE (base), base, offset);
                offset = const0_rtx;
                offset = const0_rtx;
              }
              }
          }
          }
        else if (GET_CODE (offset) != CONST_INT)
        else if (GET_CODE (offset) != CONST_INT)
          {
          {
            base = gen_rtx_PLUS (GET_MODE (base), base, offset);
            base = gen_rtx_PLUS (GET_MODE (base), base, offset);
            offset = const0_rtx;
            offset = const0_rtx;
          }
          }
 
 
        if (all_const && GET_CODE (base) == PLUS)
        if (all_const && GET_CODE (base) == PLUS)
          base = gen_rtx_CONST (GET_MODE (base), base);
          base = gen_rtx_CONST (GET_MODE (base), base);
 
 
        gcc_assert (GET_CODE (offset) == CONST_INT);
        gcc_assert (GET_CODE (offset) == CONST_INT);
 
 
        val.start = INTVAL (offset);
        val.start = INTVAL (offset);
        val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
        val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
        val.base = base;
        val.base = base;
      }
      }
      break;
      break;
 
 
    case REG:
    case REG:
      val.reg_flag = 1;
      val.reg_flag = 1;
      val.start = true_regnum (x);
      val.start = true_regnum (x);
      if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
      if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
        {
        {
          /* A pseudo with no hard reg.  */
          /* A pseudo with no hard reg.  */
          val.start = REGNO (x);
          val.start = REGNO (x);
          val.end = val.start + 1;
          val.end = val.start + 1;
        }
        }
      else
      else
        /* A hard reg.  */
        /* A hard reg.  */
        val.end = val.start + hard_regno_nregs[val.start][GET_MODE (x)];
        val.end = val.start + hard_regno_nregs[val.start][GET_MODE (x)];
      break;
      break;
 
 
    case SUBREG:
    case SUBREG:
      if (!REG_P (SUBREG_REG (x)))
      if (!REG_P (SUBREG_REG (x)))
        /* This could be more precise, but it's good enough.  */
        /* This could be more precise, but it's good enough.  */
        return decompose (SUBREG_REG (x));
        return decompose (SUBREG_REG (x));
      val.reg_flag = 1;
      val.reg_flag = 1;
      val.start = true_regnum (x);
      val.start = true_regnum (x);
      if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
      if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
        return decompose (SUBREG_REG (x));
        return decompose (SUBREG_REG (x));
      else
      else
        /* A hard reg.  */
        /* A hard reg.  */
        val.end = val.start + hard_regno_nregs[val.start][GET_MODE (x)];
        val.end = val.start + hard_regno_nregs[val.start][GET_MODE (x)];
      break;
      break;
 
 
    case SCRATCH:
    case SCRATCH:
      /* This hasn't been assigned yet, so it can't conflict yet.  */
      /* This hasn't been assigned yet, so it can't conflict yet.  */
      val.safe = 1;
      val.safe = 1;
      break;
      break;
 
 
    default:
    default:
      gcc_assert (CONSTANT_P (x));
      gcc_assert (CONSTANT_P (x));
      val.safe = 1;
      val.safe = 1;
      break;
      break;
    }
    }
  return val;
  return val;
}
}
 
 
/* Return 1 if altering Y will not modify the value of X.
/* Return 1 if altering Y will not modify the value of X.
   Y is also described by YDATA, which should be decompose (Y).  */
   Y is also described by YDATA, which should be decompose (Y).  */
 
 
static int
static int
immune_p (rtx x, rtx y, struct decomposition ydata)
immune_p (rtx x, rtx y, struct decomposition ydata)
{
{
  struct decomposition xdata;
  struct decomposition xdata;
 
 
  if (ydata.reg_flag)
  if (ydata.reg_flag)
    return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
    return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
  if (ydata.safe)
  if (ydata.safe)
    return 1;
    return 1;
 
 
  gcc_assert (MEM_P (y));
  gcc_assert (MEM_P (y));
  /* If Y is memory and X is not, Y can't affect X.  */
  /* If Y is memory and X is not, Y can't affect X.  */
  if (!MEM_P (x))
  if (!MEM_P (x))
    return 1;
    return 1;
 
 
  xdata = decompose (x);
  xdata = decompose (x);
 
 
  if (! rtx_equal_p (xdata.base, ydata.base))
  if (! rtx_equal_p (xdata.base, ydata.base))
    {
    {
      /* If bases are distinct symbolic constants, there is no overlap.  */
      /* If bases are distinct symbolic constants, there is no overlap.  */
      if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
      if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
        return 1;
        return 1;
      /* Constants and stack slots never overlap.  */
      /* Constants and stack slots never overlap.  */
      if (CONSTANT_P (xdata.base)
      if (CONSTANT_P (xdata.base)
          && (ydata.base == frame_pointer_rtx
          && (ydata.base == frame_pointer_rtx
              || ydata.base == hard_frame_pointer_rtx
              || ydata.base == hard_frame_pointer_rtx
              || ydata.base == stack_pointer_rtx))
              || ydata.base == stack_pointer_rtx))
        return 1;
        return 1;
      if (CONSTANT_P (ydata.base)
      if (CONSTANT_P (ydata.base)
          && (xdata.base == frame_pointer_rtx
          && (xdata.base == frame_pointer_rtx
              || xdata.base == hard_frame_pointer_rtx
              || xdata.base == hard_frame_pointer_rtx
              || xdata.base == stack_pointer_rtx))
              || xdata.base == stack_pointer_rtx))
        return 1;
        return 1;
      /* If either base is variable, we don't know anything.  */
      /* If either base is variable, we don't know anything.  */
      return 0;
      return 0;
    }
    }
 
 
  return (xdata.start >= ydata.end || ydata.start >= xdata.end);
  return (xdata.start >= ydata.end || ydata.start >= xdata.end);
}
}
 
 
/* Similar, but calls decompose.  */
/* Similar, but calls decompose.  */
 
 
int
int
safe_from_earlyclobber (rtx op, rtx clobber)
safe_from_earlyclobber (rtx op, rtx clobber)
{
{
  struct decomposition early_data;
  struct decomposition early_data;
 
 
  early_data = decompose (clobber);
  early_data = decompose (clobber);
  return immune_p (op, clobber, early_data);
  return immune_p (op, clobber, early_data);
}
}


/* Main entry point of this file: search the body of INSN
/* Main entry point of this file: search the body of INSN
   for values that need reloading and record them with push_reload.
   for values that need reloading and record them with push_reload.
   REPLACE nonzero means record also where the values occur
   REPLACE nonzero means record also where the values occur
   so that subst_reloads can be used.
   so that subst_reloads can be used.
 
 
   IND_LEVELS says how many levels of indirection are supported by this
   IND_LEVELS says how many levels of indirection are supported by this
   machine; a value of zero means that a memory reference is not a valid
   machine; a value of zero means that a memory reference is not a valid
   memory address.
   memory address.
 
 
   LIVE_KNOWN says we have valid information about which hard
   LIVE_KNOWN says we have valid information about which hard
   regs are live at each point in the program; this is true when
   regs are live at each point in the program; this is true when
   we are called from global_alloc but false when stupid register
   we are called from global_alloc but false when stupid register
   allocation has been done.
   allocation has been done.
 
 
   RELOAD_REG_P if nonzero is a vector indexed by hard reg number
   RELOAD_REG_P if nonzero is a vector indexed by hard reg number
   which is nonnegative if the reg has been commandeered for reloading into.
   which is nonnegative if the reg has been commandeered for reloading into.
   It is copied into STATIC_RELOAD_REG_P and referenced from there
   It is copied into STATIC_RELOAD_REG_P and referenced from there
   by various subroutines.
   by various subroutines.
 
 
   Return TRUE if some operands need to be changed, because of swapping
   Return TRUE if some operands need to be changed, because of swapping
   commutative operands, reg_equiv_address substitution, or whatever.  */
   commutative operands, reg_equiv_address substitution, or whatever.  */
 
 
int
int
find_reloads (rtx insn, int replace, int ind_levels, int live_known,
find_reloads (rtx insn, int replace, int ind_levels, int live_known,
              short *reload_reg_p)
              short *reload_reg_p)
{
{
  int insn_code_number;
  int insn_code_number;
  int i, j;
  int i, j;
  int noperands;
  int noperands;
  /* These start out as the constraints for the insn
  /* These start out as the constraints for the insn
     and they are chewed up as we consider alternatives.  */
     and they are chewed up as we consider alternatives.  */
  char *constraints[MAX_RECOG_OPERANDS];
  char *constraints[MAX_RECOG_OPERANDS];
  /* These are the preferred classes for an operand, or NO_REGS if it isn't
  /* These are the preferred classes for an operand, or NO_REGS if it isn't
     a register.  */
     a register.  */
  enum reg_class preferred_class[MAX_RECOG_OPERANDS];
  enum reg_class preferred_class[MAX_RECOG_OPERANDS];
  char pref_or_nothing[MAX_RECOG_OPERANDS];
  char pref_or_nothing[MAX_RECOG_OPERANDS];
  /* Nonzero for a MEM operand whose entire address needs a reload.
  /* Nonzero for a MEM operand whose entire address needs a reload.
     May be -1 to indicate the entire address may or may not need a reload.  */
     May be -1 to indicate the entire address may or may not need a reload.  */
  int address_reloaded[MAX_RECOG_OPERANDS];
  int address_reloaded[MAX_RECOG_OPERANDS];
  /* Nonzero for an address operand that needs to be completely reloaded.
  /* Nonzero for an address operand that needs to be completely reloaded.
     May be -1 to indicate the entire operand may or may not need a reload.  */
     May be -1 to indicate the entire operand may or may not need a reload.  */
  int address_operand_reloaded[MAX_RECOG_OPERANDS];
  int address_operand_reloaded[MAX_RECOG_OPERANDS];
  /* Value of enum reload_type to use for operand.  */
  /* Value of enum reload_type to use for operand.  */
  enum reload_type operand_type[MAX_RECOG_OPERANDS];
  enum reload_type operand_type[MAX_RECOG_OPERANDS];
  /* Value of enum reload_type to use within address of operand.  */
  /* Value of enum reload_type to use within address of operand.  */
  enum reload_type address_type[MAX_RECOG_OPERANDS];
  enum reload_type address_type[MAX_RECOG_OPERANDS];
  /* Save the usage of each operand.  */
  /* Save the usage of each operand.  */
  enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
  enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
  int no_input_reloads = 0, no_output_reloads = 0;
  int no_input_reloads = 0, no_output_reloads = 0;
  int n_alternatives;
  int n_alternatives;
  int this_alternative[MAX_RECOG_OPERANDS];
  int this_alternative[MAX_RECOG_OPERANDS];
  char this_alternative_match_win[MAX_RECOG_OPERANDS];
  char this_alternative_match_win[MAX_RECOG_OPERANDS];
  char this_alternative_win[MAX_RECOG_OPERANDS];
  char this_alternative_win[MAX_RECOG_OPERANDS];
  char this_alternative_offmemok[MAX_RECOG_OPERANDS];
  char this_alternative_offmemok[MAX_RECOG_OPERANDS];
  char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
  char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
  int this_alternative_matches[MAX_RECOG_OPERANDS];
  int this_alternative_matches[MAX_RECOG_OPERANDS];
  int swapped;
  int swapped;
  int goal_alternative[MAX_RECOG_OPERANDS];
  int goal_alternative[MAX_RECOG_OPERANDS];
  int this_alternative_number;
  int this_alternative_number;
  int goal_alternative_number = 0;
  int goal_alternative_number = 0;
  int operand_reloadnum[MAX_RECOG_OPERANDS];
  int operand_reloadnum[MAX_RECOG_OPERANDS];
  int goal_alternative_matches[MAX_RECOG_OPERANDS];
  int goal_alternative_matches[MAX_RECOG_OPERANDS];
  int goal_alternative_matched[MAX_RECOG_OPERANDS];
  int goal_alternative_matched[MAX_RECOG_OPERANDS];
  char goal_alternative_match_win[MAX_RECOG_OPERANDS];
  char goal_alternative_match_win[MAX_RECOG_OPERANDS];
  char goal_alternative_win[MAX_RECOG_OPERANDS];
  char goal_alternative_win[MAX_RECOG_OPERANDS];
  char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
  char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
  char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
  char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
  int goal_alternative_swapped;
  int goal_alternative_swapped;
  int best;
  int best;
  int commutative;
  int commutative;
  char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
  char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
  rtx substed_operand[MAX_RECOG_OPERANDS];
  rtx substed_operand[MAX_RECOG_OPERANDS];
  rtx body = PATTERN (insn);
  rtx body = PATTERN (insn);
  rtx set = single_set (insn);
  rtx set = single_set (insn);
  int goal_earlyclobber = 0, this_earlyclobber;
  int goal_earlyclobber = 0, this_earlyclobber;
  enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
  enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
  int retval = 0;
  int retval = 0;
 
 
  this_insn = insn;
  this_insn = insn;
  n_reloads = 0;
  n_reloads = 0;
  n_replacements = 0;
  n_replacements = 0;
  n_earlyclobbers = 0;
  n_earlyclobbers = 0;
  replace_reloads = replace;
  replace_reloads = replace;
  hard_regs_live_known = live_known;
  hard_regs_live_known = live_known;
  static_reload_reg_p = reload_reg_p;
  static_reload_reg_p = reload_reg_p;
 
 
  /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
  /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
     neither are insns that SET cc0.  Insns that use CC0 are not allowed
     neither are insns that SET cc0.  Insns that use CC0 are not allowed
     to have any input reloads.  */
     to have any input reloads.  */
  if (JUMP_P (insn) || CALL_P (insn))
  if (JUMP_P (insn) || CALL_P (insn))
    no_output_reloads = 1;
    no_output_reloads = 1;
 
 
#ifdef HAVE_cc0
#ifdef HAVE_cc0
  if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
  if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
    no_input_reloads = 1;
    no_input_reloads = 1;
  if (reg_set_p (cc0_rtx, PATTERN (insn)))
  if (reg_set_p (cc0_rtx, PATTERN (insn)))
    no_output_reloads = 1;
    no_output_reloads = 1;
#endif
#endif
 
 
#ifdef SECONDARY_MEMORY_NEEDED
#ifdef SECONDARY_MEMORY_NEEDED
  /* The eliminated forms of any secondary memory locations are per-insn, so
  /* The eliminated forms of any secondary memory locations are per-insn, so
     clear them out here.  */
     clear them out here.  */
 
 
  if (secondary_memlocs_elim_used)
  if (secondary_memlocs_elim_used)
    {
    {
      memset (secondary_memlocs_elim, 0,
      memset (secondary_memlocs_elim, 0,
              sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
              sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
      secondary_memlocs_elim_used = 0;
      secondary_memlocs_elim_used = 0;
    }
    }
#endif
#endif
 
 
  /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
  /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
     is cheap to move between them.  If it is not, there may not be an insn
     is cheap to move between them.  If it is not, there may not be an insn
     to do the copy, so we may need a reload.  */
     to do the copy, so we may need a reload.  */
  if (GET_CODE (body) == SET
  if (GET_CODE (body) == SET
      && REG_P (SET_DEST (body))
      && REG_P (SET_DEST (body))
      && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
      && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
      && REG_P (SET_SRC (body))
      && REG_P (SET_SRC (body))
      && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
      && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
      && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
      && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
                             REGNO_REG_CLASS (REGNO (SET_SRC (body))),
                             REGNO_REG_CLASS (REGNO (SET_SRC (body))),
                             REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
                             REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
    return 0;
    return 0;
 
 
  extract_insn (insn);
  extract_insn (insn);
 
 
  noperands = reload_n_operands = recog_data.n_operands;
  noperands = reload_n_operands = recog_data.n_operands;
  n_alternatives = recog_data.n_alternatives;
  n_alternatives = recog_data.n_alternatives;
 
 
  /* Just return "no reloads" if insn has no operands with constraints.  */
  /* Just return "no reloads" if insn has no operands with constraints.  */
  if (noperands == 0 || n_alternatives == 0)
  if (noperands == 0 || n_alternatives == 0)
    return 0;
    return 0;
 
 
  insn_code_number = INSN_CODE (insn);
  insn_code_number = INSN_CODE (insn);
  this_insn_is_asm = insn_code_number < 0;
  this_insn_is_asm = insn_code_number < 0;
 
 
  memcpy (operand_mode, recog_data.operand_mode,
  memcpy (operand_mode, recog_data.operand_mode,
          noperands * sizeof (enum machine_mode));
          noperands * sizeof (enum machine_mode));
  memcpy (constraints, recog_data.constraints, noperands * sizeof (char *));
  memcpy (constraints, recog_data.constraints, noperands * sizeof (char *));
 
 
  commutative = -1;
  commutative = -1;
 
 
  /* If we will need to know, later, whether some pair of operands
  /* If we will need to know, later, whether some pair of operands
     are the same, we must compare them now and save the result.
     are the same, we must compare them now and save the result.
     Reloading the base and index registers will clobber them
     Reloading the base and index registers will clobber them
     and afterward they will fail to match.  */
     and afterward they will fail to match.  */
 
 
  for (i = 0; i < noperands; i++)
  for (i = 0; i < noperands; i++)
    {
    {
      char *p;
      char *p;
      int c;
      int c;
 
 
      substed_operand[i] = recog_data.operand[i];
      substed_operand[i] = recog_data.operand[i];
      p = constraints[i];
      p = constraints[i];
 
 
      modified[i] = RELOAD_READ;
      modified[i] = RELOAD_READ;
 
 
      /* Scan this operand's constraint to see if it is an output operand,
      /* Scan this operand's constraint to see if it is an output operand,
         an in-out operand, is commutative, or should match another.  */
         an in-out operand, is commutative, or should match another.  */
 
 
      while ((c = *p))
      while ((c = *p))
        {
        {
          p += CONSTRAINT_LEN (c, p);
          p += CONSTRAINT_LEN (c, p);
          switch (c)
          switch (c)
            {
            {
            case '=':
            case '=':
              modified[i] = RELOAD_WRITE;
              modified[i] = RELOAD_WRITE;
              break;
              break;
            case '+':
            case '+':
              modified[i] = RELOAD_READ_WRITE;
              modified[i] = RELOAD_READ_WRITE;
              break;
              break;
            case '%':
            case '%':
              {
              {
                /* The last operand should not be marked commutative.  */
                /* The last operand should not be marked commutative.  */
                gcc_assert (i != noperands - 1);
                gcc_assert (i != noperands - 1);
 
 
                /* We currently only support one commutative pair of
                /* We currently only support one commutative pair of
                   operands.  Some existing asm code currently uses more
                   operands.  Some existing asm code currently uses more
                   than one pair.  Previously, that would usually work,
                   than one pair.  Previously, that would usually work,
                   but sometimes it would crash the compiler.  We
                   but sometimes it would crash the compiler.  We
                   continue supporting that case as well as we can by
                   continue supporting that case as well as we can by
                   silently ignoring all but the first pair.  In the
                   silently ignoring all but the first pair.  In the
                   future we may handle it correctly.  */
                   future we may handle it correctly.  */
                if (commutative < 0)
                if (commutative < 0)
                  commutative = i;
                  commutative = i;
                else
                else
                  gcc_assert (this_insn_is_asm);
                  gcc_assert (this_insn_is_asm);
              }
              }
              break;
              break;
            /* Use of ISDIGIT is tempting here, but it may get expensive because
            /* Use of ISDIGIT is tempting here, but it may get expensive because
               of locale support we don't want.  */
               of locale support we don't want.  */
            case '0': case '1': case '2': case '3': case '4':
            case '0': case '1': case '2': case '3': case '4':
            case '5': case '6': case '7': case '8': case '9':
            case '5': case '6': case '7': case '8': case '9':
              {
              {
                c = strtoul (p - 1, &p, 10);
                c = strtoul (p - 1, &p, 10);
 
 
                operands_match[c][i]
                operands_match[c][i]
                  = operands_match_p (recog_data.operand[c],
                  = operands_match_p (recog_data.operand[c],
                                      recog_data.operand[i]);
                                      recog_data.operand[i]);
 
 
                /* An operand may not match itself.  */
                /* An operand may not match itself.  */
                gcc_assert (c != i);
                gcc_assert (c != i);
 
 
                /* If C can be commuted with C+1, and C might need to match I,
                /* If C can be commuted with C+1, and C might need to match I,
                   then C+1 might also need to match I.  */
                   then C+1 might also need to match I.  */
                if (commutative >= 0)
                if (commutative >= 0)
                  {
                  {
                    if (c == commutative || c == commutative + 1)
                    if (c == commutative || c == commutative + 1)
                      {
                      {
                        int other = c + (c == commutative ? 1 : -1);
                        int other = c + (c == commutative ? 1 : -1);
                        operands_match[other][i]
                        operands_match[other][i]
                          = operands_match_p (recog_data.operand[other],
                          = operands_match_p (recog_data.operand[other],
                                              recog_data.operand[i]);
                                              recog_data.operand[i]);
                      }
                      }
                    if (i == commutative || i == commutative + 1)
                    if (i == commutative || i == commutative + 1)
                      {
                      {
                        int other = i + (i == commutative ? 1 : -1);
                        int other = i + (i == commutative ? 1 : -1);
                        operands_match[c][other]
                        operands_match[c][other]
                          = operands_match_p (recog_data.operand[c],
                          = operands_match_p (recog_data.operand[c],
                                              recog_data.operand[other]);
                                              recog_data.operand[other]);
                      }
                      }
                    /* Note that C is supposed to be less than I.
                    /* Note that C is supposed to be less than I.
                       No need to consider altering both C and I because in
                       No need to consider altering both C and I because in
                       that case we would alter one into the other.  */
                       that case we would alter one into the other.  */
                  }
                  }
              }
              }
            }
            }
        }
        }
    }
    }
 
 
  /* Examine each operand that is a memory reference or memory address
  /* Examine each operand that is a memory reference or memory address
     and reload parts of the addresses into index registers.
     and reload parts of the addresses into index registers.
     Also here any references to pseudo regs that didn't get hard regs
     Also here any references to pseudo regs that didn't get hard regs
     but are equivalent to constants get replaced in the insn itself
     but are equivalent to constants get replaced in the insn itself
     with those constants.  Nobody will ever see them again.
     with those constants.  Nobody will ever see them again.
 
 
     Finally, set up the preferred classes of each operand.  */
     Finally, set up the preferred classes of each operand.  */
 
 
  for (i = 0; i < noperands; i++)
  for (i = 0; i < noperands; i++)
    {
    {
      RTX_CODE code = GET_CODE (recog_data.operand[i]);
      RTX_CODE code = GET_CODE (recog_data.operand[i]);
 
 
      address_reloaded[i] = 0;
      address_reloaded[i] = 0;
      address_operand_reloaded[i] = 0;
      address_operand_reloaded[i] = 0;
      operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
      operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
                         : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
                         : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
                         : RELOAD_OTHER);
                         : RELOAD_OTHER);
      address_type[i]
      address_type[i]
        = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
        = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
           : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
           : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
           : RELOAD_OTHER);
           : RELOAD_OTHER);
 
 
      if (*constraints[i] == 0)
      if (*constraints[i] == 0)
        /* Ignore things like match_operator operands.  */
        /* Ignore things like match_operator operands.  */
        ;
        ;
      else if (constraints[i][0] == 'p'
      else if (constraints[i][0] == 'p'
               || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
               || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
        {
        {
          address_operand_reloaded[i]
          address_operand_reloaded[i]
            = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
            = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
                                    recog_data.operand[i],
                                    recog_data.operand[i],
                                    recog_data.operand_loc[i],
                                    recog_data.operand_loc[i],
                                    i, operand_type[i], ind_levels, insn);
                                    i, operand_type[i], ind_levels, insn);
 
 
          /* If we now have a simple operand where we used to have a
          /* If we now have a simple operand where we used to have a
             PLUS or MULT, re-recognize and try again.  */
             PLUS or MULT, re-recognize and try again.  */
          if ((OBJECT_P (*recog_data.operand_loc[i])
          if ((OBJECT_P (*recog_data.operand_loc[i])
               || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
               || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
              && (GET_CODE (recog_data.operand[i]) == MULT
              && (GET_CODE (recog_data.operand[i]) == MULT
                  || GET_CODE (recog_data.operand[i]) == PLUS))
                  || GET_CODE (recog_data.operand[i]) == PLUS))
            {
            {
              INSN_CODE (insn) = -1;
              INSN_CODE (insn) = -1;
              retval = find_reloads (insn, replace, ind_levels, live_known,
              retval = find_reloads (insn, replace, ind_levels, live_known,
                                     reload_reg_p);
                                     reload_reg_p);
              return retval;
              return retval;
            }
            }
 
 
          recog_data.operand[i] = *recog_data.operand_loc[i];
          recog_data.operand[i] = *recog_data.operand_loc[i];
          substed_operand[i] = recog_data.operand[i];
          substed_operand[i] = recog_data.operand[i];
 
 
          /* Address operands are reloaded in their existing mode,
          /* Address operands are reloaded in their existing mode,
             no matter what is specified in the machine description.  */
             no matter what is specified in the machine description.  */
          operand_mode[i] = GET_MODE (recog_data.operand[i]);
          operand_mode[i] = GET_MODE (recog_data.operand[i]);
        }
        }
      else if (code == MEM)
      else if (code == MEM)
        {
        {
          address_reloaded[i]
          address_reloaded[i]
            = find_reloads_address (GET_MODE (recog_data.operand[i]),
            = find_reloads_address (GET_MODE (recog_data.operand[i]),
                                    recog_data.operand_loc[i],
                                    recog_data.operand_loc[i],
                                    XEXP (recog_data.operand[i], 0),
                                    XEXP (recog_data.operand[i], 0),
                                    &XEXP (recog_data.operand[i], 0),
                                    &XEXP (recog_data.operand[i], 0),
                                    i, address_type[i], ind_levels, insn);
                                    i, address_type[i], ind_levels, insn);
          recog_data.operand[i] = *recog_data.operand_loc[i];
          recog_data.operand[i] = *recog_data.operand_loc[i];
          substed_operand[i] = recog_data.operand[i];
          substed_operand[i] = recog_data.operand[i];
        }
        }
      else if (code == SUBREG)
      else if (code == SUBREG)
        {
        {
          rtx reg = SUBREG_REG (recog_data.operand[i]);
          rtx reg = SUBREG_REG (recog_data.operand[i]);
          rtx op
          rtx op
            = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
            = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
                                   ind_levels,
                                   ind_levels,
                                   set != 0
                                   set != 0
                                   && &SET_DEST (set) == recog_data.operand_loc[i],
                                   && &SET_DEST (set) == recog_data.operand_loc[i],
                                   insn,
                                   insn,
                                   &address_reloaded[i]);
                                   &address_reloaded[i]);
 
 
          /* If we made a MEM to load (a part of) the stackslot of a pseudo
          /* If we made a MEM to load (a part of) the stackslot of a pseudo
             that didn't get a hard register, emit a USE with a REG_EQUAL
             that didn't get a hard register, emit a USE with a REG_EQUAL
             note in front so that we might inherit a previous, possibly
             note in front so that we might inherit a previous, possibly
             wider reload.  */
             wider reload.  */
 
 
          if (replace
          if (replace
              && MEM_P (op)
              && MEM_P (op)
              && REG_P (reg)
              && REG_P (reg)
              && (GET_MODE_SIZE (GET_MODE (reg))
              && (GET_MODE_SIZE (GET_MODE (reg))
                  >= GET_MODE_SIZE (GET_MODE (op))))
                  >= GET_MODE_SIZE (GET_MODE (op))))
            set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
            set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
                                                   insn),
                                                   insn),
                                 REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
                                 REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
 
 
          substed_operand[i] = recog_data.operand[i] = op;
          substed_operand[i] = recog_data.operand[i] = op;
        }
        }
      else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
      else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
        /* We can get a PLUS as an "operand" as a result of register
        /* We can get a PLUS as an "operand" as a result of register
           elimination.  See eliminate_regs and gen_reload.  We handle
           elimination.  See eliminate_regs and gen_reload.  We handle
           a unary operator by reloading the operand.  */
           a unary operator by reloading the operand.  */
        substed_operand[i] = recog_data.operand[i]
        substed_operand[i] = recog_data.operand[i]
          = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
          = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
                                 ind_levels, 0, insn,
                                 ind_levels, 0, insn,
                                 &address_reloaded[i]);
                                 &address_reloaded[i]);
      else if (code == REG)
      else if (code == REG)
        {
        {
          /* This is equivalent to calling find_reloads_toplev.
          /* This is equivalent to calling find_reloads_toplev.
             The code is duplicated for speed.
             The code is duplicated for speed.
             When we find a pseudo always equivalent to a constant,
             When we find a pseudo always equivalent to a constant,
             we replace it by the constant.  We must be sure, however,
             we replace it by the constant.  We must be sure, however,
             that we don't try to replace it in the insn in which it
             that we don't try to replace it in the insn in which it
             is being set.  */
             is being set.  */
          int regno = REGNO (recog_data.operand[i]);
          int regno = REGNO (recog_data.operand[i]);
          if (reg_equiv_constant[regno] != 0
          if (reg_equiv_constant[regno] != 0
              && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
              && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
            {
            {
              /* Record the existing mode so that the check if constants are
              /* Record the existing mode so that the check if constants are
                 allowed will work when operand_mode isn't specified.  */
                 allowed will work when operand_mode isn't specified.  */
 
 
              if (operand_mode[i] == VOIDmode)
              if (operand_mode[i] == VOIDmode)
                operand_mode[i] = GET_MODE (recog_data.operand[i]);
                operand_mode[i] = GET_MODE (recog_data.operand[i]);
 
 
              substed_operand[i] = recog_data.operand[i]
              substed_operand[i] = recog_data.operand[i]
                = reg_equiv_constant[regno];
                = reg_equiv_constant[regno];
            }
            }
          if (reg_equiv_memory_loc[regno] != 0
          if (reg_equiv_memory_loc[regno] != 0
              && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
              && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
            /* We need not give a valid is_set_dest argument since the case
            /* We need not give a valid is_set_dest argument since the case
               of a constant equivalence was checked above.  */
               of a constant equivalence was checked above.  */
            substed_operand[i] = recog_data.operand[i]
            substed_operand[i] = recog_data.operand[i]
              = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
              = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
                                     ind_levels, 0, insn,
                                     ind_levels, 0, insn,
                                     &address_reloaded[i]);
                                     &address_reloaded[i]);
        }
        }
      /* If the operand is still a register (we didn't replace it with an
      /* If the operand is still a register (we didn't replace it with an
         equivalent), get the preferred class to reload it into.  */
         equivalent), get the preferred class to reload it into.  */
      code = GET_CODE (recog_data.operand[i]);
      code = GET_CODE (recog_data.operand[i]);
      preferred_class[i]
      preferred_class[i]
        = ((code == REG && REGNO (recog_data.operand[i])
        = ((code == REG && REGNO (recog_data.operand[i])
            >= FIRST_PSEUDO_REGISTER)
            >= FIRST_PSEUDO_REGISTER)
           ? reg_preferred_class (REGNO (recog_data.operand[i]))
           ? reg_preferred_class (REGNO (recog_data.operand[i]))
           : NO_REGS);
           : NO_REGS);
      pref_or_nothing[i]
      pref_or_nothing[i]
        = (code == REG
        = (code == REG
           && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
           && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
           && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
           && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
    }
    }
 
 
  /* If this is simply a copy from operand 1 to operand 0, merge the
  /* If this is simply a copy from operand 1 to operand 0, merge the
     preferred classes for the operands.  */
     preferred classes for the operands.  */
  if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
  if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
      && recog_data.operand[1] == SET_SRC (set))
      && recog_data.operand[1] == SET_SRC (set))
    {
    {
      preferred_class[0] = preferred_class[1]
      preferred_class[0] = preferred_class[1]
        = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
        = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
      pref_or_nothing[0] |= pref_or_nothing[1];
      pref_or_nothing[0] |= pref_or_nothing[1];
      pref_or_nothing[1] |= pref_or_nothing[0];
      pref_or_nothing[1] |= pref_or_nothing[0];
    }
    }
 
 
  /* Now see what we need for pseudo-regs that didn't get hard regs
  /* Now see what we need for pseudo-regs that didn't get hard regs
     or got the wrong kind of hard reg.  For this, we must consider
     or got the wrong kind of hard reg.  For this, we must consider
     all the operands together against the register constraints.  */
     all the operands together against the register constraints.  */
 
 
  best = MAX_RECOG_OPERANDS * 2 + 600;
  best = MAX_RECOG_OPERANDS * 2 + 600;
 
 
  swapped = 0;
  swapped = 0;
  goal_alternative_swapped = 0;
  goal_alternative_swapped = 0;
 try_swapped:
 try_swapped:
 
 
  /* The constraints are made of several alternatives.
  /* The constraints are made of several alternatives.
     Each operand's constraint looks like foo,bar,... with commas
     Each operand's constraint looks like foo,bar,... with commas
     separating the alternatives.  The first alternatives for all
     separating the alternatives.  The first alternatives for all
     operands go together, the second alternatives go together, etc.
     operands go together, the second alternatives go together, etc.
 
 
     First loop over alternatives.  */
     First loop over alternatives.  */
 
 
  for (this_alternative_number = 0;
  for (this_alternative_number = 0;
       this_alternative_number < n_alternatives;
       this_alternative_number < n_alternatives;
       this_alternative_number++)
       this_alternative_number++)
    {
    {
      /* Loop over operands for one constraint alternative.  */
      /* Loop over operands for one constraint alternative.  */
      /* LOSERS counts those that don't fit this alternative
      /* LOSERS counts those that don't fit this alternative
         and would require loading.  */
         and would require loading.  */
      int losers = 0;
      int losers = 0;
      /* BAD is set to 1 if it some operand can't fit this alternative
      /* BAD is set to 1 if it some operand can't fit this alternative
         even after reloading.  */
         even after reloading.  */
      int bad = 0;
      int bad = 0;
      /* REJECT is a count of how undesirable this alternative says it is
      /* REJECT is a count of how undesirable this alternative says it is
         if any reloading is required.  If the alternative matches exactly
         if any reloading is required.  If the alternative matches exactly
         then REJECT is ignored, but otherwise it gets this much
         then REJECT is ignored, but otherwise it gets this much
         counted against it in addition to the reloading needed.  Each
         counted against it in addition to the reloading needed.  Each
         ? counts three times here since we want the disparaging caused by
         ? counts three times here since we want the disparaging caused by
         a bad register class to only count 1/3 as much.  */
         a bad register class to only count 1/3 as much.  */
      int reject = 0;
      int reject = 0;
 
 
      this_earlyclobber = 0;
      this_earlyclobber = 0;
 
 
      for (i = 0; i < noperands; i++)
      for (i = 0; i < noperands; i++)
        {
        {
          char *p = constraints[i];
          char *p = constraints[i];
          char *end;
          char *end;
          int len;
          int len;
          int win = 0;
          int win = 0;
          int did_match = 0;
          int did_match = 0;
          /* 0 => this operand can be reloaded somehow for this alternative.  */
          /* 0 => this operand can be reloaded somehow for this alternative.  */
          int badop = 1;
          int badop = 1;
          /* 0 => this operand can be reloaded if the alternative allows regs.  */
          /* 0 => this operand can be reloaded if the alternative allows regs.  */
          int winreg = 0;
          int winreg = 0;
          int c;
          int c;
          int m;
          int m;
          rtx operand = recog_data.operand[i];
          rtx operand = recog_data.operand[i];
          int offset = 0;
          int offset = 0;
          /* Nonzero means this is a MEM that must be reloaded into a reg
          /* Nonzero means this is a MEM that must be reloaded into a reg
             regardless of what the constraint says.  */
             regardless of what the constraint says.  */
          int force_reload = 0;
          int force_reload = 0;
          int offmemok = 0;
          int offmemok = 0;
          /* Nonzero if a constant forced into memory would be OK for this
          /* Nonzero if a constant forced into memory would be OK for this
             operand.  */
             operand.  */
          int constmemok = 0;
          int constmemok = 0;
          int earlyclobber = 0;
          int earlyclobber = 0;
 
 
          /* If the predicate accepts a unary operator, it means that
          /* If the predicate accepts a unary operator, it means that
             we need to reload the operand, but do not do this for
             we need to reload the operand, but do not do this for
             match_operator and friends.  */
             match_operator and friends.  */
          if (UNARY_P (operand) && *p != 0)
          if (UNARY_P (operand) && *p != 0)
            operand = XEXP (operand, 0);
            operand = XEXP (operand, 0);
 
 
          /* If the operand is a SUBREG, extract
          /* If the operand is a SUBREG, extract
             the REG or MEM (or maybe even a constant) within.
             the REG or MEM (or maybe even a constant) within.
             (Constants can occur as a result of reg_equiv_constant.)  */
             (Constants can occur as a result of reg_equiv_constant.)  */
 
 
          while (GET_CODE (operand) == SUBREG)
          while (GET_CODE (operand) == SUBREG)
            {
            {
              /* Offset only matters when operand is a REG and
              /* Offset only matters when operand is a REG and
                 it is a hard reg.  This is because it is passed
                 it is a hard reg.  This is because it is passed
                 to reg_fits_class_p if it is a REG and all pseudos
                 to reg_fits_class_p if it is a REG and all pseudos
                 return 0 from that function.  */
                 return 0 from that function.  */
              if (REG_P (SUBREG_REG (operand))
              if (REG_P (SUBREG_REG (operand))
                  && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
                  && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
                {
                {
                  if (!subreg_offset_representable_p
                  if (!subreg_offset_representable_p
                        (REGNO (SUBREG_REG (operand)),
                        (REGNO (SUBREG_REG (operand)),
                         GET_MODE (SUBREG_REG (operand)),
                         GET_MODE (SUBREG_REG (operand)),
                         SUBREG_BYTE (operand),
                         SUBREG_BYTE (operand),
                         GET_MODE (operand)))
                         GET_MODE (operand)))
                     force_reload = 1;
                     force_reload = 1;
                  offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
                  offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
                                                 GET_MODE (SUBREG_REG (operand)),
                                                 GET_MODE (SUBREG_REG (operand)),
                                                 SUBREG_BYTE (operand),
                                                 SUBREG_BYTE (operand),
                                                 GET_MODE (operand));
                                                 GET_MODE (operand));
                }
                }
              operand = SUBREG_REG (operand);
              operand = SUBREG_REG (operand);
              /* Force reload if this is a constant or PLUS or if there may
              /* Force reload if this is a constant or PLUS or if there may
                 be a problem accessing OPERAND in the outer mode.  */
                 be a problem accessing OPERAND in the outer mode.  */
              if (CONSTANT_P (operand)
              if (CONSTANT_P (operand)
                  || GET_CODE (operand) == PLUS
                  || GET_CODE (operand) == PLUS
                  /* We must force a reload of paradoxical SUBREGs
                  /* We must force a reload of paradoxical SUBREGs
                     of a MEM because the alignment of the inner value
                     of a MEM because the alignment of the inner value
                     may not be enough to do the outer reference.  On
                     may not be enough to do the outer reference.  On
                     big-endian machines, it may also reference outside
                     big-endian machines, it may also reference outside
                     the object.
                     the object.
 
 
                     On machines that extend byte operations and we have a
                     On machines that extend byte operations and we have a
                     SUBREG where both the inner and outer modes are no wider
                     SUBREG where both the inner and outer modes are no wider
                     than a word and the inner mode is narrower, is integral,
                     than a word and the inner mode is narrower, is integral,
                     and gets extended when loaded from memory, combine.c has
                     and gets extended when loaded from memory, combine.c has
                     made assumptions about the behavior of the machine in such
                     made assumptions about the behavior of the machine in such
                     register access.  If the data is, in fact, in memory we
                     register access.  If the data is, in fact, in memory we
                     must always load using the size assumed to be in the
                     must always load using the size assumed to be in the
                     register and let the insn do the different-sized
                     register and let the insn do the different-sized
                     accesses.
                     accesses.
 
 
                     This is doubly true if WORD_REGISTER_OPERATIONS.  In
                     This is doubly true if WORD_REGISTER_OPERATIONS.  In
                     this case eliminate_regs has left non-paradoxical
                     this case eliminate_regs has left non-paradoxical
                     subregs for push_reload to see.  Make sure it does
                     subregs for push_reload to see.  Make sure it does
                     by forcing the reload.
                     by forcing the reload.
 
 
                     ??? When is it right at this stage to have a subreg
                     ??? When is it right at this stage to have a subreg
                     of a mem that is _not_ to be handled specially?  IMO
                     of a mem that is _not_ to be handled specially?  IMO
                     those should have been reduced to just a mem.  */
                     those should have been reduced to just a mem.  */
                  || ((MEM_P (operand)
                  || ((MEM_P (operand)
                       || (REG_P (operand)
                       || (REG_P (operand)
                           && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
                           && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
#ifndef WORD_REGISTER_OPERATIONS
#ifndef WORD_REGISTER_OPERATIONS
                      && (((GET_MODE_BITSIZE (GET_MODE (operand))
                      && (((GET_MODE_BITSIZE (GET_MODE (operand))
                            < BIGGEST_ALIGNMENT)
                            < BIGGEST_ALIGNMENT)
                           && (GET_MODE_SIZE (operand_mode[i])
                           && (GET_MODE_SIZE (operand_mode[i])
                               > GET_MODE_SIZE (GET_MODE (operand))))
                               > GET_MODE_SIZE (GET_MODE (operand))))
                          || BYTES_BIG_ENDIAN
                          || BYTES_BIG_ENDIAN
#ifdef LOAD_EXTEND_OP
#ifdef LOAD_EXTEND_OP
                          || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
                          || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
                              && (GET_MODE_SIZE (GET_MODE (operand))
                              && (GET_MODE_SIZE (GET_MODE (operand))
                                  <= UNITS_PER_WORD)
                                  <= UNITS_PER_WORD)
                              && (GET_MODE_SIZE (operand_mode[i])
                              && (GET_MODE_SIZE (operand_mode[i])
                                  > GET_MODE_SIZE (GET_MODE (operand)))
                                  > GET_MODE_SIZE (GET_MODE (operand)))
                              && INTEGRAL_MODE_P (GET_MODE (operand))
                              && INTEGRAL_MODE_P (GET_MODE (operand))
                              && LOAD_EXTEND_OP (GET_MODE (operand)) != UNKNOWN)
                              && LOAD_EXTEND_OP (GET_MODE (operand)) != UNKNOWN)
#endif
#endif
                          )
                          )
#endif
#endif
                      )
                      )
                  )
                  )
                force_reload = 1;
                force_reload = 1;
            }
            }
 
 
          this_alternative[i] = (int) NO_REGS;
          this_alternative[i] = (int) NO_REGS;
          this_alternative_win[i] = 0;
          this_alternative_win[i] = 0;
          this_alternative_match_win[i] = 0;
          this_alternative_match_win[i] = 0;
          this_alternative_offmemok[i] = 0;
          this_alternative_offmemok[i] = 0;
          this_alternative_earlyclobber[i] = 0;
          this_alternative_earlyclobber[i] = 0;
          this_alternative_matches[i] = -1;
          this_alternative_matches[i] = -1;
 
 
          /* An empty constraint or empty alternative
          /* An empty constraint or empty alternative
             allows anything which matched the pattern.  */
             allows anything which matched the pattern.  */
          if (*p == 0 || *p == ',')
          if (*p == 0 || *p == ',')
            win = 1, badop = 0;
            win = 1, badop = 0;
 
 
          /* Scan this alternative's specs for this operand;
          /* Scan this alternative's specs for this operand;
             set WIN if the operand fits any letter in this alternative.
             set WIN if the operand fits any letter in this alternative.
             Otherwise, clear BADOP if this operand could
             Otherwise, clear BADOP if this operand could
             fit some letter after reloads,
             fit some letter after reloads,
             or set WINREG if this operand could fit after reloads
             or set WINREG if this operand could fit after reloads
             provided the constraint allows some registers.  */
             provided the constraint allows some registers.  */
 
 
          do
          do
            switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
            switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
              {
              {
              case '\0':
              case '\0':
                len = 0;
                len = 0;
                break;
                break;
              case ',':
              case ',':
                c = '\0';
                c = '\0';
                break;
                break;
 
 
              case '=':  case '+':  case '*':
              case '=':  case '+':  case '*':
                break;
                break;
 
 
              case '%':
              case '%':
                /* We only support one commutative marker, the first
                /* We only support one commutative marker, the first
                   one.  We already set commutative above.  */
                   one.  We already set commutative above.  */
                break;
                break;
 
 
              case '?':
              case '?':
                reject += 6;
                reject += 6;
                break;
                break;
 
 
              case '!':
              case '!':
                reject = 600;
                reject = 600;
                break;
                break;
 
 
              case '#':
              case '#':
                /* Ignore rest of this alternative as far as
                /* Ignore rest of this alternative as far as
                   reloading is concerned.  */
                   reloading is concerned.  */
                do
                do
                  p++;
                  p++;
                while (*p && *p != ',');
                while (*p && *p != ',');
                len = 0;
                len = 0;
                break;
                break;
 
 
              case '0':  case '1':  case '2':  case '3':  case '4':
              case '0':  case '1':  case '2':  case '3':  case '4':
              case '5':  case '6':  case '7':  case '8':  case '9':
              case '5':  case '6':  case '7':  case '8':  case '9':
                m = strtoul (p, &end, 10);
                m = strtoul (p, &end, 10);
                p = end;
                p = end;
                len = 0;
                len = 0;
 
 
                this_alternative_matches[i] = m;
                this_alternative_matches[i] = m;
                /* We are supposed to match a previous operand.
                /* We are supposed to match a previous operand.
                   If we do, we win if that one did.
                   If we do, we win if that one did.
                   If we do not, count both of the operands as losers.
                   If we do not, count both of the operands as losers.
                   (This is too conservative, since most of the time
                   (This is too conservative, since most of the time
                   only a single reload insn will be needed to make
                   only a single reload insn will be needed to make
                   the two operands win.  As a result, this alternative
                   the two operands win.  As a result, this alternative
                   may be rejected when it is actually desirable.)  */
                   may be rejected when it is actually desirable.)  */
                if ((swapped && (m != commutative || i != commutative + 1))
                if ((swapped && (m != commutative || i != commutative + 1))
                    /* If we are matching as if two operands were swapped,
                    /* If we are matching as if two operands were swapped,
                       also pretend that operands_match had been computed
                       also pretend that operands_match had been computed
                       with swapped.
                       with swapped.
                       But if I is the second of those and C is the first,
                       But if I is the second of those and C is the first,
                       don't exchange them, because operands_match is valid
                       don't exchange them, because operands_match is valid
                       only on one side of its diagonal.  */
                       only on one side of its diagonal.  */
                    ? (operands_match
                    ? (operands_match
                       [(m == commutative || m == commutative + 1)
                       [(m == commutative || m == commutative + 1)
                       ? 2 * commutative + 1 - m : m]
                       ? 2 * commutative + 1 - m : m]
                       [(i == commutative || i == commutative + 1)
                       [(i == commutative || i == commutative + 1)
                       ? 2 * commutative + 1 - i : i])
                       ? 2 * commutative + 1 - i : i])
                    : operands_match[m][i])
                    : operands_match[m][i])
                  {
                  {
                    /* If we are matching a non-offsettable address where an
                    /* If we are matching a non-offsettable address where an
                       offsettable address was expected, then we must reject
                       offsettable address was expected, then we must reject
                       this combination, because we can't reload it.  */
                       this combination, because we can't reload it.  */
                    if (this_alternative_offmemok[m]
                    if (this_alternative_offmemok[m]
                        && MEM_P (recog_data.operand[m])
                        && MEM_P (recog_data.operand[m])
                        && this_alternative[m] == (int) NO_REGS
                        && this_alternative[m] == (int) NO_REGS
                        && ! this_alternative_win[m])
                        && ! this_alternative_win[m])
                      bad = 1;
                      bad = 1;
 
 
                    did_match = this_alternative_win[m];
                    did_match = this_alternative_win[m];
                  }
                  }
                else
                else
                  {
                  {
                    /* Operands don't match.  */
                    /* Operands don't match.  */
                    rtx value;
                    rtx value;
                    int loc1, loc2;
                    int loc1, loc2;
                    /* Retroactively mark the operand we had to match
                    /* Retroactively mark the operand we had to match
                       as a loser, if it wasn't already.  */
                       as a loser, if it wasn't already.  */
                    if (this_alternative_win[m])
                    if (this_alternative_win[m])
                      losers++;
                      losers++;
                    this_alternative_win[m] = 0;
                    this_alternative_win[m] = 0;
                    if (this_alternative[m] == (int) NO_REGS)
                    if (this_alternative[m] == (int) NO_REGS)
                      bad = 1;
                      bad = 1;
                    /* But count the pair only once in the total badness of
                    /* But count the pair only once in the total badness of
                       this alternative, if the pair can be a dummy reload.
                       this alternative, if the pair can be a dummy reload.
                       The pointers in operand_loc are not swapped; swap
                       The pointers in operand_loc are not swapped; swap
                       them by hand if necessary.  */
                       them by hand if necessary.  */
                    if (swapped && i == commutative)
                    if (swapped && i == commutative)
                      loc1 = commutative + 1;
                      loc1 = commutative + 1;
                    else if (swapped && i == commutative + 1)
                    else if (swapped && i == commutative + 1)
                      loc1 = commutative;
                      loc1 = commutative;
                    else
                    else
                      loc1 = i;
                      loc1 = i;
                    if (swapped && m == commutative)
                    if (swapped && m == commutative)
                      loc2 = commutative + 1;
                      loc2 = commutative + 1;
                    else if (swapped && m == commutative + 1)
                    else if (swapped && m == commutative + 1)
                      loc2 = commutative;
                      loc2 = commutative;
                    else
                    else
                      loc2 = m;
                      loc2 = m;
                    value
                    value
                      = find_dummy_reload (recog_data.operand[i],
                      = find_dummy_reload (recog_data.operand[i],
                                           recog_data.operand[m],
                                           recog_data.operand[m],
                                           recog_data.operand_loc[loc1],
                                           recog_data.operand_loc[loc1],
                                           recog_data.operand_loc[loc2],
                                           recog_data.operand_loc[loc2],
                                           operand_mode[i], operand_mode[m],
                                           operand_mode[i], operand_mode[m],
                                           this_alternative[m], -1,
                                           this_alternative[m], -1,
                                           this_alternative_earlyclobber[m]);
                                           this_alternative_earlyclobber[m]);
 
 
                    if (value != 0)
                    if (value != 0)
                      losers--;
                      losers--;
                  }
                  }
                /* This can be fixed with reloads if the operand
                /* This can be fixed with reloads if the operand
                   we are supposed to match can be fixed with reloads.  */
                   we are supposed to match can be fixed with reloads.  */
                badop = 0;
                badop = 0;
                this_alternative[i] = this_alternative[m];
                this_alternative[i] = this_alternative[m];
 
 
                /* If we have to reload this operand and some previous
                /* If we have to reload this operand and some previous
                   operand also had to match the same thing as this
                   operand also had to match the same thing as this
                   operand, we don't know how to do that.  So reject this
                   operand, we don't know how to do that.  So reject this
                   alternative.  */
                   alternative.  */
                if (! did_match || force_reload)
                if (! did_match || force_reload)
                  for (j = 0; j < i; j++)
                  for (j = 0; j < i; j++)
                    if (this_alternative_matches[j]
                    if (this_alternative_matches[j]
                        == this_alternative_matches[i])
                        == this_alternative_matches[i])
                      badop = 1;
                      badop = 1;
                break;
                break;
 
 
              case 'p':
              case 'p':
                /* All necessary reloads for an address_operand
                /* All necessary reloads for an address_operand
                   were handled in find_reloads_address.  */
                   were handled in find_reloads_address.  */
                this_alternative[i]
                this_alternative[i]
                  = (int) base_reg_class (VOIDmode, ADDRESS, SCRATCH);
                  = (int) base_reg_class (VOIDmode, ADDRESS, SCRATCH);
                win = 1;
                win = 1;
                badop = 0;
                badop = 0;
                break;
                break;
 
 
              case 'm':
              case 'm':
                if (force_reload)
                if (force_reload)
                  break;
                  break;
                if (MEM_P (operand)
                if (MEM_P (operand)
                    || (REG_P (operand)
                    || (REG_P (operand)
                        && REGNO (operand) >= FIRST_PSEUDO_REGISTER
                        && REGNO (operand) >= FIRST_PSEUDO_REGISTER
                        && reg_renumber[REGNO (operand)] < 0))
                        && reg_renumber[REGNO (operand)] < 0))
                  win = 1;
                  win = 1;
                if (CONST_POOL_OK_P (operand))
                if (CONST_POOL_OK_P (operand))
                  badop = 0;
                  badop = 0;
                constmemok = 1;
                constmemok = 1;
                break;
                break;
 
 
              case '<':
              case '<':
                if (MEM_P (operand)
                if (MEM_P (operand)
                    && ! address_reloaded[i]
                    && ! address_reloaded[i]
                    && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
                    && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
                        || GET_CODE (XEXP (operand, 0)) == POST_DEC))
                        || GET_CODE (XEXP (operand, 0)) == POST_DEC))
                  win = 1;
                  win = 1;
                break;
                break;
 
 
              case '>':
              case '>':
                if (MEM_P (operand)
                if (MEM_P (operand)
                    && ! address_reloaded[i]
                    && ! address_reloaded[i]
                    && (GET_CODE (XEXP (operand, 0)) == PRE_INC
                    && (GET_CODE (XEXP (operand, 0)) == PRE_INC
                        || GET_CODE (XEXP (operand, 0)) == POST_INC))
                        || GET_CODE (XEXP (operand, 0)) == POST_INC))
                  win = 1;
                  win = 1;
                break;
                break;
 
 
                /* Memory operand whose address is not offsettable.  */
                /* Memory operand whose address is not offsettable.  */
              case 'V':
              case 'V':
                if (force_reload)
                if (force_reload)
                  break;
                  break;
                if (MEM_P (operand)
                if (MEM_P (operand)
                    && ! (ind_levels ? offsettable_memref_p (operand)
                    && ! (ind_levels ? offsettable_memref_p (operand)
                          : offsettable_nonstrict_memref_p (operand))
                          : offsettable_nonstrict_memref_p (operand))
                    /* Certain mem addresses will become offsettable
                    /* Certain mem addresses will become offsettable
                       after they themselves are reloaded.  This is important;
                       after they themselves are reloaded.  This is important;
                       we don't want our own handling of unoffsettables
                       we don't want our own handling of unoffsettables
                       to override the handling of reg_equiv_address.  */
                       to override the handling of reg_equiv_address.  */
                    && !(REG_P (XEXP (operand, 0))
                    && !(REG_P (XEXP (operand, 0))
                         && (ind_levels == 0
                         && (ind_levels == 0
                             || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
                             || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
                  win = 1;
                  win = 1;
                break;
                break;
 
 
                /* Memory operand whose address is offsettable.  */
                /* Memory operand whose address is offsettable.  */
              case 'o':
              case 'o':
                if (force_reload)
                if (force_reload)
                  break;
                  break;
                if ((MEM_P (operand)
                if ((MEM_P (operand)
                     /* If IND_LEVELS, find_reloads_address won't reload a
                     /* If IND_LEVELS, find_reloads_address won't reload a
                        pseudo that didn't get a hard reg, so we have to
                        pseudo that didn't get a hard reg, so we have to
                        reject that case.  */
                        reject that case.  */
                     && ((ind_levels ? offsettable_memref_p (operand)
                     && ((ind_levels ? offsettable_memref_p (operand)
                          : offsettable_nonstrict_memref_p (operand))
                          : offsettable_nonstrict_memref_p (operand))
                         /* A reloaded address is offsettable because it is now
                         /* A reloaded address is offsettable because it is now
                            just a simple register indirect.  */
                            just a simple register indirect.  */
                         || address_reloaded[i] == 1))
                         || address_reloaded[i] == 1))
                    || (REG_P (operand)
                    || (REG_P (operand)
                        && REGNO (operand) >= FIRST_PSEUDO_REGISTER
                        && REGNO (operand) >= FIRST_PSEUDO_REGISTER
                        && reg_renumber[REGNO (operand)] < 0
                        && reg_renumber[REGNO (operand)] < 0
                        /* If reg_equiv_address is nonzero, we will be
                        /* If reg_equiv_address is nonzero, we will be
                           loading it into a register; hence it will be
                           loading it into a register; hence it will be
                           offsettable, but we cannot say that reg_equiv_mem
                           offsettable, but we cannot say that reg_equiv_mem
                           is offsettable without checking.  */
                           is offsettable without checking.  */
                        && ((reg_equiv_mem[REGNO (operand)] != 0
                        && ((reg_equiv_mem[REGNO (operand)] != 0
                             && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
                             && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
                            || (reg_equiv_address[REGNO (operand)] != 0))))
                            || (reg_equiv_address[REGNO (operand)] != 0))))
                  win = 1;
                  win = 1;
                if (CONST_POOL_OK_P (operand)
                if (CONST_POOL_OK_P (operand)
                    || MEM_P (operand))
                    || MEM_P (operand))
                  badop = 0;
                  badop = 0;
                constmemok = 1;
                constmemok = 1;
                offmemok = 1;
                offmemok = 1;
                break;
                break;
 
 
              case '&':
              case '&':
                /* Output operand that is stored before the need for the
                /* Output operand that is stored before the need for the
                   input operands (and their index registers) is over.  */
                   input operands (and their index registers) is over.  */
                earlyclobber = 1, this_earlyclobber = 1;
                earlyclobber = 1, this_earlyclobber = 1;
                break;
                break;
 
 
              case 'E':
              case 'E':
              case 'F':
              case 'F':
                if (GET_CODE (operand) == CONST_DOUBLE
                if (GET_CODE (operand) == CONST_DOUBLE
                    || (GET_CODE (operand) == CONST_VECTOR
                    || (GET_CODE (operand) == CONST_VECTOR
                        && (GET_MODE_CLASS (GET_MODE (operand))
                        && (GET_MODE_CLASS (GET_MODE (operand))
                            == MODE_VECTOR_FLOAT)))
                            == MODE_VECTOR_FLOAT)))
                  win = 1;
                  win = 1;
                break;
                break;
 
 
              case 'G':
              case 'G':
              case 'H':
              case 'H':
                if (GET_CODE (operand) == CONST_DOUBLE
                if (GET_CODE (operand) == CONST_DOUBLE
                    && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
                    && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
                  win = 1;
                  win = 1;
                break;
                break;
 
 
              case 's':
              case 's':
                if (GET_CODE (operand) == CONST_INT
                if (GET_CODE (operand) == CONST_INT
                    || (GET_CODE (operand) == CONST_DOUBLE
                    || (GET_CODE (operand) == CONST_DOUBLE
                        && GET_MODE (operand) == VOIDmode))
                        && GET_MODE (operand) == VOIDmode))
                  break;
                  break;
              case 'i':
              case 'i':
                if (CONSTANT_P (operand)
                if (CONSTANT_P (operand)
                    && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand)))
                    && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand)))
                  win = 1;
                  win = 1;
                break;
                break;
 
 
              case 'n':
              case 'n':
                if (GET_CODE (operand) == CONST_INT
                if (GET_CODE (operand) == CONST_INT
                    || (GET_CODE (operand) == CONST_DOUBLE
                    || (GET_CODE (operand) == CONST_DOUBLE
                        && GET_MODE (operand) == VOIDmode))
                        && GET_MODE (operand) == VOIDmode))
                  win = 1;
                  win = 1;
                break;
                break;
 
 
              case 'I':
              case 'I':
              case 'J':
              case 'J':
              case 'K':
              case 'K':
              case 'L':
              case 'L':
              case 'M':
              case 'M':
              case 'N':
              case 'N':
              case 'O':
              case 'O':
              case 'P':
              case 'P':
                if (GET_CODE (operand) == CONST_INT
                if (GET_CODE (operand) == CONST_INT
                    && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
                    && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
                  win = 1;
                  win = 1;
                break;
                break;
 
 
              case 'X':
              case 'X':
                force_reload = 0;
                force_reload = 0;
                win = 1;
                win = 1;
                break;
                break;
 
 
              case 'g':
              case 'g':
                if (! force_reload
                if (! force_reload
                    /* A PLUS is never a valid operand, but reload can make
                    /* A PLUS is never a valid operand, but reload can make
                       it from a register when eliminating registers.  */
                       it from a register when eliminating registers.  */
                    && GET_CODE (operand) != PLUS
                    && GET_CODE (operand) != PLUS
                    /* A SCRATCH is not a valid operand.  */
                    /* A SCRATCH is not a valid operand.  */
                    && GET_CODE (operand) != SCRATCH
                    && GET_CODE (operand) != SCRATCH
                    && (! CONSTANT_P (operand)
                    && (! CONSTANT_P (operand)
                        || ! flag_pic
                        || ! flag_pic
                        || LEGITIMATE_PIC_OPERAND_P (operand))
                        || LEGITIMATE_PIC_OPERAND_P (operand))
                    && (GENERAL_REGS == ALL_REGS
                    && (GENERAL_REGS == ALL_REGS
                        || !REG_P (operand)
                        || !REG_P (operand)
                        || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
                        || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
                            && reg_renumber[REGNO (operand)] < 0)))
                            && reg_renumber[REGNO (operand)] < 0)))
                  win = 1;
                  win = 1;
                /* Drop through into 'r' case.  */
                /* Drop through into 'r' case.  */
 
 
              case 'r':
              case 'r':
                this_alternative[i]
                this_alternative[i]
                  = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
                  = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
                goto reg;
                goto reg;
 
 
              default:
              default:
                if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
                if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
                  {
                  {
#ifdef EXTRA_CONSTRAINT_STR
#ifdef EXTRA_CONSTRAINT_STR
                    if (EXTRA_MEMORY_CONSTRAINT (c, p))
                    if (EXTRA_MEMORY_CONSTRAINT (c, p))
                      {
                      {
                        if (force_reload)
                        if (force_reload)
                          break;
                          break;
                        if (EXTRA_CONSTRAINT_STR (operand, c, p))
                        if (EXTRA_CONSTRAINT_STR (operand, c, p))
                          win = 1;
                          win = 1;
                        /* If the address was already reloaded,
                        /* If the address was already reloaded,
                           we win as well.  */
                           we win as well.  */
                        else if (MEM_P (operand)
                        else if (MEM_P (operand)
                                 && address_reloaded[i] == 1)
                                 && address_reloaded[i] == 1)
                          win = 1;
                          win = 1;
                        /* Likewise if the address will be reloaded because
                        /* Likewise if the address will be reloaded because
                           reg_equiv_address is nonzero.  For reg_equiv_mem
                           reg_equiv_address is nonzero.  For reg_equiv_mem
                           we have to check.  */
                           we have to check.  */
                        else if (REG_P (operand)
                        else if (REG_P (operand)
                                 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
                                 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
                                 && reg_renumber[REGNO (operand)] < 0
                                 && reg_renumber[REGNO (operand)] < 0
                                 && ((reg_equiv_mem[REGNO (operand)] != 0
                                 && ((reg_equiv_mem[REGNO (operand)] != 0
                                      && EXTRA_CONSTRAINT_STR (reg_equiv_mem[REGNO (operand)], c, p))
                                      && EXTRA_CONSTRAINT_STR (reg_equiv_mem[REGNO (operand)], c, p))
                                     || (reg_equiv_address[REGNO (operand)] != 0)))
                                     || (reg_equiv_address[REGNO (operand)] != 0)))
                          win = 1;
                          win = 1;
 
 
                        /* If we didn't already win, we can reload
                        /* If we didn't already win, we can reload
                           constants via force_const_mem, and other
                           constants via force_const_mem, and other
                           MEMs by reloading the address like for 'o'.  */
                           MEMs by reloading the address like for 'o'.  */
                        if (CONST_POOL_OK_P (operand)
                        if (CONST_POOL_OK_P (operand)
                            || MEM_P (operand))
                            || MEM_P (operand))
                          badop = 0;
                          badop = 0;
                        constmemok = 1;
                        constmemok = 1;
                        offmemok = 1;
                        offmemok = 1;
                        break;
                        break;
                      }
                      }
                    if (EXTRA_ADDRESS_CONSTRAINT (c, p))
                    if (EXTRA_ADDRESS_CONSTRAINT (c, p))
                      {
                      {
                        if (EXTRA_CONSTRAINT_STR (operand, c, p))
                        if (EXTRA_CONSTRAINT_STR (operand, c, p))
                          win = 1;
                          win = 1;
 
 
                        /* If we didn't already win, we can reload
                        /* If we didn't already win, we can reload
                           the address into a base register.  */
                           the address into a base register.  */
                        this_alternative[i]
                        this_alternative[i]
                          = (int) base_reg_class (VOIDmode, ADDRESS, SCRATCH);
                          = (int) base_reg_class (VOIDmode, ADDRESS, SCRATCH);
                        badop = 0;
                        badop = 0;
                        break;
                        break;
                      }
                      }
 
 
                    if (EXTRA_CONSTRAINT_STR (operand, c, p))
                    if (EXTRA_CONSTRAINT_STR (operand, c, p))
                      win = 1;
                      win = 1;
#endif
#endif
                    break;
                    break;
                  }
                  }
 
 
                this_alternative[i]
                this_alternative[i]
                  = (int) (reg_class_subunion
                  = (int) (reg_class_subunion
                           [this_alternative[i]]
                           [this_alternative[i]]
                           [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
                           [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
              reg:
              reg:
                if (GET_MODE (operand) == BLKmode)
                if (GET_MODE (operand) == BLKmode)
                  break;
                  break;
                winreg = 1;
                winreg = 1;
                if (REG_P (operand)
                if (REG_P (operand)
                    && reg_fits_class_p (operand, this_alternative[i],
                    && reg_fits_class_p (operand, this_alternative[i],
                                         offset, GET_MODE (recog_data.operand[i])))
                                         offset, GET_MODE (recog_data.operand[i])))
                  win = 1;
                  win = 1;
                break;
                break;
              }
              }
          while ((p += len), c);
          while ((p += len), c);
 
 
          constraints[i] = p;
          constraints[i] = p;
 
 
          /* If this operand could be handled with a reg,
          /* If this operand could be handled with a reg,
             and some reg is allowed, then this operand can be handled.  */
             and some reg is allowed, then this operand can be handled.  */
          if (winreg && this_alternative[i] != (int) NO_REGS)
          if (winreg && this_alternative[i] != (int) NO_REGS)
            badop = 0;
            badop = 0;
 
 
          /* Record which operands fit this alternative.  */
          /* Record which operands fit this alternative.  */
          this_alternative_earlyclobber[i] = earlyclobber;
          this_alternative_earlyclobber[i] = earlyclobber;
          if (win && ! force_reload)
          if (win && ! force_reload)
            this_alternative_win[i] = 1;
            this_alternative_win[i] = 1;
          else if (did_match && ! force_reload)
          else if (did_match && ! force_reload)
            this_alternative_match_win[i] = 1;
            this_alternative_match_win[i] = 1;
          else
          else
            {
            {
              int const_to_mem = 0;
              int const_to_mem = 0;
 
 
              this_alternative_offmemok[i] = offmemok;
              this_alternative_offmemok[i] = offmemok;
              losers++;
              losers++;
              if (badop)
              if (badop)
                bad = 1;
                bad = 1;
              /* Alternative loses if it has no regs for a reg operand.  */
              /* Alternative loses if it has no regs for a reg operand.  */
              if (REG_P (operand)
              if (REG_P (operand)
                  && this_alternative[i] == (int) NO_REGS
                  && this_alternative[i] == (int) NO_REGS
                  && this_alternative_matches[i] < 0)
                  && this_alternative_matches[i] < 0)
                bad = 1;
                bad = 1;
 
 
              /* If this is a constant that is reloaded into the desired
              /* If this is a constant that is reloaded into the desired
                 class by copying it to memory first, count that as another
                 class by copying it to memory first, count that as another
                 reload.  This is consistent with other code and is
                 reload.  This is consistent with other code and is
                 required to avoid choosing another alternative when
                 required to avoid choosing another alternative when
                 the constant is moved into memory by this function on
                 the constant is moved into memory by this function on
                 an early reload pass.  Note that the test here is
                 an early reload pass.  Note that the test here is
                 precisely the same as in the code below that calls
                 precisely the same as in the code below that calls
                 force_const_mem.  */
                 force_const_mem.  */
              if (CONST_POOL_OK_P (operand)
              if (CONST_POOL_OK_P (operand)
                  && ((PREFERRED_RELOAD_CLASS (operand,
                  && ((PREFERRED_RELOAD_CLASS (operand,
                                               (enum reg_class) this_alternative[i])
                                               (enum reg_class) this_alternative[i])
                       == NO_REGS)
                       == NO_REGS)
                      || no_input_reloads)
                      || no_input_reloads)
                  && operand_mode[i] != VOIDmode)
                  && operand_mode[i] != VOIDmode)
                {
                {
                  const_to_mem = 1;
                  const_to_mem = 1;
                  if (this_alternative[i] != (int) NO_REGS)
                  if (this_alternative[i] != (int) NO_REGS)
                    losers++;
                    losers++;
                }
                }
 
 
              /* Alternative loses if it requires a type of reload not
              /* Alternative loses if it requires a type of reload not
                 permitted for this insn.  We can always reload SCRATCH
                 permitted for this insn.  We can always reload SCRATCH
                 and objects with a REG_UNUSED note.  */
                 and objects with a REG_UNUSED note.  */
              if (GET_CODE (operand) != SCRATCH
              if (GET_CODE (operand) != SCRATCH
                       && modified[i] != RELOAD_READ && no_output_reloads
                       && modified[i] != RELOAD_READ && no_output_reloads
                       && ! find_reg_note (insn, REG_UNUSED, operand))
                       && ! find_reg_note (insn, REG_UNUSED, operand))
                bad = 1;
                bad = 1;
              else if (modified[i] != RELOAD_WRITE && no_input_reloads
              else if (modified[i] != RELOAD_WRITE && no_input_reloads
                       && ! const_to_mem)
                       && ! const_to_mem)
                bad = 1;
                bad = 1;
 
 
              /* If we can't reload this value at all, reject this
              /* If we can't reload this value at all, reject this
                 alternative.  Note that we could also lose due to
                 alternative.  Note that we could also lose due to
                 LIMIT_RELOAD_CLASS, but we don't check that
                 LIMIT_RELOAD_CLASS, but we don't check that
                 here.  */
                 here.  */
 
 
              if (! CONSTANT_P (operand)
              if (! CONSTANT_P (operand)
                  && (enum reg_class) this_alternative[i] != NO_REGS)
                  && (enum reg_class) this_alternative[i] != NO_REGS)
                {
                {
                  if (PREFERRED_RELOAD_CLASS
                  if (PREFERRED_RELOAD_CLASS
                        (operand, (enum reg_class) this_alternative[i])
                        (operand, (enum reg_class) this_alternative[i])
                      == NO_REGS)
                      == NO_REGS)
                    reject = 600;
                    reject = 600;
 
 
#ifdef PREFERRED_OUTPUT_RELOAD_CLASS
#ifdef PREFERRED_OUTPUT_RELOAD_CLASS
                  if (operand_type[i] == RELOAD_FOR_OUTPUT
                  if (operand_type[i] == RELOAD_FOR_OUTPUT
                      && PREFERRED_OUTPUT_RELOAD_CLASS
                      && PREFERRED_OUTPUT_RELOAD_CLASS
                           (operand, (enum reg_class) this_alternative[i])
                           (operand, (enum reg_class) this_alternative[i])
                         == NO_REGS)
                         == NO_REGS)
                    reject = 600;
                    reject = 600;
#endif
#endif
                }
                }
 
 
              /* We prefer to reload pseudos over reloading other things,
              /* We prefer to reload pseudos over reloading other things,
                 since such reloads may be able to be eliminated later.
                 since such reloads may be able to be eliminated later.
                 If we are reloading a SCRATCH, we won't be generating any
                 If we are reloading a SCRATCH, we won't be generating any
                 insns, just using a register, so it is also preferred.
                 insns, just using a register, so it is also preferred.
                 So bump REJECT in other cases.  Don't do this in the
                 So bump REJECT in other cases.  Don't do this in the
                 case where we are forcing a constant into memory and
                 case where we are forcing a constant into memory and
                 it will then win since we don't want to have a different
                 it will then win since we don't want to have a different
                 alternative match then.  */
                 alternative match then.  */
              if (! (REG_P (operand)
              if (! (REG_P (operand)
                     && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
                     && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
                  && GET_CODE (operand) != SCRATCH
                  && GET_CODE (operand) != SCRATCH
                  && ! (const_to_mem && constmemok))
                  && ! (const_to_mem && constmemok))
                reject += 2;
                reject += 2;
 
 
              /* Input reloads can be inherited more often than output
              /* Input reloads can be inherited more often than output
                 reloads can be removed, so penalize output reloads.  */
                 reloads can be removed, so penalize output reloads.  */
              if (operand_type[i] != RELOAD_FOR_INPUT
              if (operand_type[i] != RELOAD_FOR_INPUT
                  && GET_CODE (operand) != SCRATCH)
                  && GET_CODE (operand) != SCRATCH)
                reject++;
                reject++;
            }
            }
 
 
          /* If this operand is a pseudo register that didn't get a hard
          /* If this operand is a pseudo register that didn't get a hard
             reg and this alternative accepts some register, see if the
             reg and this alternative accepts some register, see if the
             class that we want is a subset of the preferred class for this
             class that we want is a subset of the preferred class for this
             register.  If not, but it intersects that class, use the
             register.  If not, but it intersects that class, use the
             preferred class instead.  If it does not intersect the preferred
             preferred class instead.  If it does not intersect the preferred
             class, show that usage of this alternative should be discouraged;
             class, show that usage of this alternative should be discouraged;
             it will be discouraged more still if the register is `preferred
             it will be discouraged more still if the register is `preferred
             or nothing'.  We do this because it increases the chance of
             or nothing'.  We do this because it increases the chance of
             reusing our spill register in a later insn and avoiding a pair
             reusing our spill register in a later insn and avoiding a pair
             of memory stores and loads.
             of memory stores and loads.
 
 
             Don't bother with this if this alternative will accept this
             Don't bother with this if this alternative will accept this
             operand.
             operand.
 
 
             Don't do this for a multiword operand, since it is only a
             Don't do this for a multiword operand, since it is only a
             small win and has the risk of requiring more spill registers,
             small win and has the risk of requiring more spill registers,
             which could cause a large loss.
             which could cause a large loss.
 
 
             Don't do this if the preferred class has only one register
             Don't do this if the preferred class has only one register
             because we might otherwise exhaust the class.  */
             because we might otherwise exhaust the class.  */
 
 
          if (! win && ! did_match
          if (! win && ! did_match
              && this_alternative[i] != (int) NO_REGS
              && this_alternative[i] != (int) NO_REGS
              && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
              && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
              && reg_class_size [(int) preferred_class[i]] > 0
              && reg_class_size [(int) preferred_class[i]] > 0
              && ! SMALL_REGISTER_CLASS_P (preferred_class[i]))
              && ! SMALL_REGISTER_CLASS_P (preferred_class[i]))
            {
            {
              if (! reg_class_subset_p (this_alternative[i],
              if (! reg_class_subset_p (this_alternative[i],
                                        preferred_class[i]))
                                        preferred_class[i]))
                {
                {
                  /* Since we don't have a way of forming the intersection,
                  /* Since we don't have a way of forming the intersection,
                     we just do something special if the preferred class
                     we just do something special if the preferred class
                     is a subset of the class we have; that's the most
                     is a subset of the class we have; that's the most
                     common case anyway.  */
                     common case anyway.  */
                  if (reg_class_subset_p (preferred_class[i],
                  if (reg_class_subset_p (preferred_class[i],
                                          this_alternative[i]))
                                          this_alternative[i]))
                    this_alternative[i] = (int) preferred_class[i];
                    this_alternative[i] = (int) preferred_class[i];
                  else
                  else
                    reject += (2 + 2 * pref_or_nothing[i]);
                    reject += (2 + 2 * pref_or_nothing[i]);
                }
                }
            }
            }
        }
        }
 
 
      /* Now see if any output operands that are marked "earlyclobber"
      /* Now see if any output operands that are marked "earlyclobber"
         in this alternative conflict with any input operands
         in this alternative conflict with any input operands
         or any memory addresses.  */
         or any memory addresses.  */
 
 
      for (i = 0; i < noperands; i++)
      for (i = 0; i < noperands; i++)
        if (this_alternative_earlyclobber[i]
        if (this_alternative_earlyclobber[i]
            && (this_alternative_win[i] || this_alternative_match_win[i]))
            && (this_alternative_win[i] || this_alternative_match_win[i]))
          {
          {
            struct decomposition early_data;
            struct decomposition early_data;
 
 
            early_data = decompose (recog_data.operand[i]);
            early_data = decompose (recog_data.operand[i]);
 
 
            gcc_assert (modified[i] != RELOAD_READ);
            gcc_assert (modified[i] != RELOAD_READ);
 
 
            if (this_alternative[i] == NO_REGS)
            if (this_alternative[i] == NO_REGS)
              {
              {
                this_alternative_earlyclobber[i] = 0;
                this_alternative_earlyclobber[i] = 0;
                gcc_assert (this_insn_is_asm);
                gcc_assert (this_insn_is_asm);
                error_for_asm (this_insn,
                error_for_asm (this_insn,
                               "%<&%> constraint used with no register class");
                               "%<&%> constraint used with no register class");
              }
              }
 
 
            for (j = 0; j < noperands; j++)
            for (j = 0; j < noperands; j++)
              /* Is this an input operand or a memory ref?  */
              /* Is this an input operand or a memory ref?  */
              if ((MEM_P (recog_data.operand[j])
              if ((MEM_P (recog_data.operand[j])
                   || modified[j] != RELOAD_WRITE)
                   || modified[j] != RELOAD_WRITE)
                  && j != i
                  && j != i
                  /* Ignore things like match_operator operands.  */
                  /* Ignore things like match_operator operands.  */
                  && *recog_data.constraints[j] != 0
                  && *recog_data.constraints[j] != 0
                  /* Don't count an input operand that is constrained to match
                  /* Don't count an input operand that is constrained to match
                     the early clobber operand.  */
                     the early clobber operand.  */
                  && ! (this_alternative_matches[j] == i
                  && ! (this_alternative_matches[j] == i
                        && rtx_equal_p (recog_data.operand[i],
                        && rtx_equal_p (recog_data.operand[i],
                                        recog_data.operand[j]))
                                        recog_data.operand[j]))
                  /* Is it altered by storing the earlyclobber operand?  */
                  /* Is it altered by storing the earlyclobber operand?  */
                  && !immune_p (recog_data.operand[j], recog_data.operand[i],
                  && !immune_p (recog_data.operand[j], recog_data.operand[i],
                                early_data))
                                early_data))
                {
                {
                  /* If the output is in a non-empty few-regs class,
                  /* If the output is in a non-empty few-regs class,
                     it's costly to reload it, so reload the input instead.  */
                     it's costly to reload it, so reload the input instead.  */
                  if (SMALL_REGISTER_CLASS_P (this_alternative[i])
                  if (SMALL_REGISTER_CLASS_P (this_alternative[i])
                      && (REG_P (recog_data.operand[j])
                      && (REG_P (recog_data.operand[j])
                          || GET_CODE (recog_data.operand[j]) == SUBREG))
                          || GET_CODE (recog_data.operand[j]) == SUBREG))
                    {
                    {
                      losers++;
                      losers++;
                      this_alternative_win[j] = 0;
                      this_alternative_win[j] = 0;
                      this_alternative_match_win[j] = 0;
                      this_alternative_match_win[j] = 0;
                    }
                    }
                  else
                  else
                    break;
                    break;
                }
                }
            /* If an earlyclobber operand conflicts with something,
            /* If an earlyclobber operand conflicts with something,
               it must be reloaded, so request this and count the cost.  */
               it must be reloaded, so request this and count the cost.  */
            if (j != noperands)
            if (j != noperands)
              {
              {
                losers++;
                losers++;
                this_alternative_win[i] = 0;
                this_alternative_win[i] = 0;
                this_alternative_match_win[j] = 0;
                this_alternative_match_win[j] = 0;
                for (j = 0; j < noperands; j++)
                for (j = 0; j < noperands; j++)
                  if (this_alternative_matches[j] == i
                  if (this_alternative_matches[j] == i
                      && this_alternative_match_win[j])
                      && this_alternative_match_win[j])
                    {
                    {
                      this_alternative_win[j] = 0;
                      this_alternative_win[j] = 0;
                      this_alternative_match_win[j] = 0;
                      this_alternative_match_win[j] = 0;
                      losers++;
                      losers++;
                    }
                    }
              }
              }
          }
          }
 
 
      /* If one alternative accepts all the operands, no reload required,
      /* If one alternative accepts all the operands, no reload required,
         choose that alternative; don't consider the remaining ones.  */
         choose that alternative; don't consider the remaining ones.  */
      if (losers == 0)
      if (losers == 0)
        {
        {
          /* Unswap these so that they are never swapped at `finish'.  */
          /* Unswap these so that they are never swapped at `finish'.  */
          if (commutative >= 0)
          if (commutative >= 0)
            {
            {
              recog_data.operand[commutative] = substed_operand[commutative];
              recog_data.operand[commutative] = substed_operand[commutative];
              recog_data.operand[commutative + 1]
              recog_data.operand[commutative + 1]
                = substed_operand[commutative + 1];
                = substed_operand[commutative + 1];
            }
            }
          for (i = 0; i < noperands; i++)
          for (i = 0; i < noperands; i++)
            {
            {
              goal_alternative_win[i] = this_alternative_win[i];
              goal_alternative_win[i] = this_alternative_win[i];
              goal_alternative_match_win[i] = this_alternative_match_win[i];
              goal_alternative_match_win[i] = this_alternative_match_win[i];
              goal_alternative[i] = this_alternative[i];
              goal_alternative[i] = this_alternative[i];
              goal_alternative_offmemok[i] = this_alternative_offmemok[i];
              goal_alternative_offmemok[i] = this_alternative_offmemok[i];
              goal_alternative_matches[i] = this_alternative_matches[i];
              goal_alternative_matches[i] = this_alternative_matches[i];
              goal_alternative_earlyclobber[i]
              goal_alternative_earlyclobber[i]
                = this_alternative_earlyclobber[i];
                = this_alternative_earlyclobber[i];
            }
            }
          goal_alternative_number = this_alternative_number;
          goal_alternative_number = this_alternative_number;
          goal_alternative_swapped = swapped;
          goal_alternative_swapped = swapped;
          goal_earlyclobber = this_earlyclobber;
          goal_earlyclobber = this_earlyclobber;
          goto finish;
          goto finish;
        }
        }
 
 
      /* REJECT, set by the ! and ? constraint characters and when a register
      /* REJECT, set by the ! and ? constraint characters and when a register
         would be reloaded into a non-preferred class, discourages the use of
         would be reloaded into a non-preferred class, discourages the use of
         this alternative for a reload goal.  REJECT is incremented by six
         this alternative for a reload goal.  REJECT is incremented by six
         for each ? and two for each non-preferred class.  */
         for each ? and two for each non-preferred class.  */
      losers = losers * 6 + reject;
      losers = losers * 6 + reject;
 
 
      /* If this alternative can be made to work by reloading,
      /* If this alternative can be made to work by reloading,
         and it needs less reloading than the others checked so far,
         and it needs less reloading than the others checked so far,
         record it as the chosen goal for reloading.  */
         record it as the chosen goal for reloading.  */
      if (! bad && best > losers)
      if (! bad && best > losers)
        {
        {
          for (i = 0; i < noperands; i++)
          for (i = 0; i < noperands; i++)
            {
            {
              goal_alternative[i] = this_alternative[i];
              goal_alternative[i] = this_alternative[i];
              goal_alternative_win[i] = this_alternative_win[i];
              goal_alternative_win[i] = this_alternative_win[i];
              goal_alternative_match_win[i] = this_alternative_match_win[i];
              goal_alternative_match_win[i] = this_alternative_match_win[i];
              goal_alternative_offmemok[i] = this_alternative_offmemok[i];
              goal_alternative_offmemok[i] = this_alternative_offmemok[i];
              goal_alternative_matches[i] = this_alternative_matches[i];
              goal_alternative_matches[i] = this_alternative_matches[i];
              goal_alternative_earlyclobber[i]
              goal_alternative_earlyclobber[i]
                = this_alternative_earlyclobber[i];
                = this_alternative_earlyclobber[i];
            }
            }
          goal_alternative_swapped = swapped;
          goal_alternative_swapped = swapped;
          best = losers;
          best = losers;
          goal_alternative_number = this_alternative_number;
          goal_alternative_number = this_alternative_number;
          goal_earlyclobber = this_earlyclobber;
          goal_earlyclobber = this_earlyclobber;
        }
        }
    }
    }
 
 
  /* If insn is commutative (it's safe to exchange a certain pair of operands)
  /* If insn is commutative (it's safe to exchange a certain pair of operands)
     then we need to try each alternative twice,
     then we need to try each alternative twice,
     the second time matching those two operands
     the second time matching those two operands
     as if we had exchanged them.
     as if we had exchanged them.
     To do this, really exchange them in operands.
     To do this, really exchange them in operands.
 
 
     If we have just tried the alternatives the second time,
     If we have just tried the alternatives the second time,
     return operands to normal and drop through.  */
     return operands to normal and drop through.  */
 
 
  if (commutative >= 0)
  if (commutative >= 0)
    {
    {
      swapped = !swapped;
      swapped = !swapped;
      if (swapped)
      if (swapped)
        {
        {
          enum reg_class tclass;
          enum reg_class tclass;
          int t;
          int t;
 
 
          recog_data.operand[commutative] = substed_operand[commutative + 1];
          recog_data.operand[commutative] = substed_operand[commutative + 1];
          recog_data.operand[commutative + 1] = substed_operand[commutative];
          recog_data.operand[commutative + 1] = substed_operand[commutative];
          /* Swap the duplicates too.  */
          /* Swap the duplicates too.  */
          for (i = 0; i < recog_data.n_dups; i++)
          for (i = 0; i < recog_data.n_dups; i++)
            if (recog_data.dup_num[i] == commutative
            if (recog_data.dup_num[i] == commutative
                || recog_data.dup_num[i] == commutative + 1)
                || recog_data.dup_num[i] == commutative + 1)
              *recog_data.dup_loc[i]
              *recog_data.dup_loc[i]
                 = recog_data.operand[(int) recog_data.dup_num[i]];
                 = recog_data.operand[(int) recog_data.dup_num[i]];
 
 
          tclass = preferred_class[commutative];
          tclass = preferred_class[commutative];
          preferred_class[commutative] = preferred_class[commutative + 1];
          preferred_class[commutative] = preferred_class[commutative + 1];
          preferred_class[commutative + 1] = tclass;
          preferred_class[commutative + 1] = tclass;
 
 
          t = pref_or_nothing[commutative];
          t = pref_or_nothing[commutative];
          pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
          pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
          pref_or_nothing[commutative + 1] = t;
          pref_or_nothing[commutative + 1] = t;
 
 
          t = address_reloaded[commutative];
          t = address_reloaded[commutative];
          address_reloaded[commutative] = address_reloaded[commutative + 1];
          address_reloaded[commutative] = address_reloaded[commutative + 1];
          address_reloaded[commutative + 1] = t;
          address_reloaded[commutative + 1] = t;
 
 
          memcpy (constraints, recog_data.constraints,
          memcpy (constraints, recog_data.constraints,
                  noperands * sizeof (char *));
                  noperands * sizeof (char *));
          goto try_swapped;
          goto try_swapped;
        }
        }
      else
      else
        {
        {
          recog_data.operand[commutative] = substed_operand[commutative];
          recog_data.operand[commutative] = substed_operand[commutative];
          recog_data.operand[commutative + 1]
          recog_data.operand[commutative + 1]
            = substed_operand[commutative + 1];
            = substed_operand[commutative + 1];
          /* Unswap the duplicates too.  */
          /* Unswap the duplicates too.  */
          for (i = 0; i < recog_data.n_dups; i++)
          for (i = 0; i < recog_data.n_dups; i++)
            if (recog_data.dup_num[i] == commutative
            if (recog_data.dup_num[i] == commutative
                || recog_data.dup_num[i] == commutative + 1)
                || recog_data.dup_num[i] == commutative + 1)
              *recog_data.dup_loc[i]
              *recog_data.dup_loc[i]
                 = recog_data.operand[(int) recog_data.dup_num[i]];
                 = recog_data.operand[(int) recog_data.dup_num[i]];
        }
        }
    }
    }
 
 
  /* The operands don't meet the constraints.
  /* The operands don't meet the constraints.
     goal_alternative describes the alternative
     goal_alternative describes the alternative
     that we could reach by reloading the fewest operands.
     that we could reach by reloading the fewest operands.
     Reload so as to fit it.  */
     Reload so as to fit it.  */
 
 
  if (best == MAX_RECOG_OPERANDS * 2 + 600)
  if (best == MAX_RECOG_OPERANDS * 2 + 600)
    {
    {
      /* No alternative works with reloads??  */
      /* No alternative works with reloads??  */
      if (insn_code_number >= 0)
      if (insn_code_number >= 0)
        fatal_insn ("unable to generate reloads for:", insn);
        fatal_insn ("unable to generate reloads for:", insn);
      error_for_asm (insn, "inconsistent operand constraints in an %<asm%>");
      error_for_asm (insn, "inconsistent operand constraints in an %<asm%>");
      /* Avoid further trouble with this insn.  */
      /* Avoid further trouble with this insn.  */
      PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
      PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
      n_reloads = 0;
      n_reloads = 0;
      return 0;
      return 0;
    }
    }
 
 
  /* Jump to `finish' from above if all operands are valid already.
  /* Jump to `finish' from above if all operands are valid already.
     In that case, goal_alternative_win is all 1.  */
     In that case, goal_alternative_win is all 1.  */
 finish:
 finish:
 
 
  /* Right now, for any pair of operands I and J that are required to match,
  /* Right now, for any pair of operands I and J that are required to match,
     with I < J,
     with I < J,
     goal_alternative_matches[J] is I.
     goal_alternative_matches[J] is I.
     Set up goal_alternative_matched as the inverse function:
     Set up goal_alternative_matched as the inverse function:
     goal_alternative_matched[I] = J.  */
     goal_alternative_matched[I] = J.  */
 
 
  for (i = 0; i < noperands; i++)
  for (i = 0; i < noperands; i++)
    goal_alternative_matched[i] = -1;
    goal_alternative_matched[i] = -1;
 
 
  for (i = 0; i < noperands; i++)
  for (i = 0; i < noperands; i++)
    if (! goal_alternative_win[i]
    if (! goal_alternative_win[i]
        && goal_alternative_matches[i] >= 0)
        && goal_alternative_matches[i] >= 0)
      goal_alternative_matched[goal_alternative_matches[i]] = i;
      goal_alternative_matched[goal_alternative_matches[i]] = i;
 
 
  for (i = 0; i < noperands; i++)
  for (i = 0; i < noperands; i++)
    goal_alternative_win[i] |= goal_alternative_match_win[i];
    goal_alternative_win[i] |= goal_alternative_match_win[i];
 
 
  /* If the best alternative is with operands 1 and 2 swapped,
  /* If the best alternative is with operands 1 and 2 swapped,
     consider them swapped before reporting the reloads.  Update the
     consider them swapped before reporting the reloads.  Update the
     operand numbers of any reloads already pushed.  */
     operand numbers of any reloads already pushed.  */
 
 
  if (goal_alternative_swapped)
  if (goal_alternative_swapped)
    {
    {
      rtx tem;
      rtx tem;
 
 
      tem = substed_operand[commutative];
      tem = substed_operand[commutative];
      substed_operand[commutative] = substed_operand[commutative + 1];
      substed_operand[commutative] = substed_operand[commutative + 1];
      substed_operand[commutative + 1] = tem;
      substed_operand[commutative + 1] = tem;
      tem = recog_data.operand[commutative];
      tem = recog_data.operand[commutative];
      recog_data.operand[commutative] = recog_data.operand[commutative + 1];
      recog_data.operand[commutative] = recog_data.operand[commutative + 1];
      recog_data.operand[commutative + 1] = tem;
      recog_data.operand[commutative + 1] = tem;
      tem = *recog_data.operand_loc[commutative];
      tem = *recog_data.operand_loc[commutative];
      *recog_data.operand_loc[commutative]
      *recog_data.operand_loc[commutative]
        = *recog_data.operand_loc[commutative + 1];
        = *recog_data.operand_loc[commutative + 1];
      *recog_data.operand_loc[commutative + 1] = tem;
      *recog_data.operand_loc[commutative + 1] = tem;
 
 
      for (i = 0; i < n_reloads; i++)
      for (i = 0; i < n_reloads; i++)
        {
        {
          if (rld[i].opnum == commutative)
          if (rld[i].opnum == commutative)
            rld[i].opnum = commutative + 1;
            rld[i].opnum = commutative + 1;
          else if (rld[i].opnum == commutative + 1)
          else if (rld[i].opnum == commutative + 1)
            rld[i].opnum = commutative;
            rld[i].opnum = commutative;
        }
        }
    }
    }
 
 
  for (i = 0; i < noperands; i++)
  for (i = 0; i < noperands; i++)
    {
    {
      operand_reloadnum[i] = -1;
      operand_reloadnum[i] = -1;
 
 
      /* If this is an earlyclobber operand, we need to widen the scope.
      /* If this is an earlyclobber operand, we need to widen the scope.
         The reload must remain valid from the start of the insn being
         The reload must remain valid from the start of the insn being
         reloaded until after the operand is stored into its destination.
         reloaded until after the operand is stored into its destination.
         We approximate this with RELOAD_OTHER even though we know that we
         We approximate this with RELOAD_OTHER even though we know that we
         do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
         do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
 
 
         One special case that is worth checking is when we have an
         One special case that is worth checking is when we have an
         output that is earlyclobber but isn't used past the insn (typically
         output that is earlyclobber but isn't used past the insn (typically
         a SCRATCH).  In this case, we only need have the reload live
         a SCRATCH).  In this case, we only need have the reload live
         through the insn itself, but not for any of our input or output
         through the insn itself, but not for any of our input or output
         reloads.
         reloads.
         But we must not accidentally narrow the scope of an existing
         But we must not accidentally narrow the scope of an existing
         RELOAD_OTHER reload - leave these alone.
         RELOAD_OTHER reload - leave these alone.
 
 
         In any case, anything needed to address this operand can remain
         In any case, anything needed to address this operand can remain
         however they were previously categorized.  */
         however they were previously categorized.  */
 
 
      if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
      if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
        operand_type[i]
        operand_type[i]
          = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
          = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
             ? RELOAD_FOR_INSN : RELOAD_OTHER);
             ? RELOAD_FOR_INSN : RELOAD_OTHER);
    }
    }
 
 
  /* Any constants that aren't allowed and can't be reloaded
  /* Any constants that aren't allowed and can't be reloaded
     into registers are here changed into memory references.  */
     into registers are here changed into memory references.  */
  for (i = 0; i < noperands; i++)
  for (i = 0; i < noperands; i++)
    if (! goal_alternative_win[i]
    if (! goal_alternative_win[i]
        && CONST_POOL_OK_P (recog_data.operand[i])
        && CONST_POOL_OK_P (recog_data.operand[i])
        && ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
        && ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
                                     (enum reg_class) goal_alternative[i])
                                     (enum reg_class) goal_alternative[i])
             == NO_REGS)
             == NO_REGS)
            || no_input_reloads)
            || no_input_reloads)
        && operand_mode[i] != VOIDmode)
        && operand_mode[i] != VOIDmode)
      {
      {
        substed_operand[i] = recog_data.operand[i]
        substed_operand[i] = recog_data.operand[i]
          = find_reloads_toplev (force_const_mem (operand_mode[i],
          = find_reloads_toplev (force_const_mem (operand_mode[i],
                                                  recog_data.operand[i]),
                                                  recog_data.operand[i]),
                                 i, address_type[i], ind_levels, 0, insn,
                                 i, address_type[i], ind_levels, 0, insn,
                                 NULL);
                                 NULL);
        if (alternative_allows_memconst (recog_data.constraints[i],
        if (alternative_allows_memconst (recog_data.constraints[i],
                                         goal_alternative_number))
                                         goal_alternative_number))
          goal_alternative_win[i] = 1;
          goal_alternative_win[i] = 1;
      }
      }
 
 
  /* Likewise any invalid constants appearing as operand of a PLUS
  /* Likewise any invalid constants appearing as operand of a PLUS
     that is to be reloaded.  */
     that is to be reloaded.  */
  for (i = 0; i < noperands; i++)
  for (i = 0; i < noperands; i++)
    if (! goal_alternative_win[i]
    if (! goal_alternative_win[i]
        && GET_CODE (recog_data.operand[i]) == PLUS
        && GET_CODE (recog_data.operand[i]) == PLUS
        && CONST_POOL_OK_P (XEXP (recog_data.operand[i], 1))
        && CONST_POOL_OK_P (XEXP (recog_data.operand[i], 1))
        && (PREFERRED_RELOAD_CLASS (XEXP (recog_data.operand[i], 1),
        && (PREFERRED_RELOAD_CLASS (XEXP (recog_data.operand[i], 1),
                                    (enum reg_class) goal_alternative[i])
                                    (enum reg_class) goal_alternative[i])
             == NO_REGS)
             == NO_REGS)
        && operand_mode[i] != VOIDmode)
        && operand_mode[i] != VOIDmode)
      {
      {
        rtx tem = force_const_mem (operand_mode[i],
        rtx tem = force_const_mem (operand_mode[i],
                                   XEXP (recog_data.operand[i], 1));
                                   XEXP (recog_data.operand[i], 1));
        tem = gen_rtx_PLUS (operand_mode[i],
        tem = gen_rtx_PLUS (operand_mode[i],
                            XEXP (recog_data.operand[i], 0), tem);
                            XEXP (recog_data.operand[i], 0), tem);
 
 
        substed_operand[i] = recog_data.operand[i]
        substed_operand[i] = recog_data.operand[i]
          = find_reloads_toplev (tem, i, address_type[i],
          = find_reloads_toplev (tem, i, address_type[i],
                                 ind_levels, 0, insn, NULL);
                                 ind_levels, 0, insn, NULL);
      }
      }
 
 
  /* Record the values of the earlyclobber operands for the caller.  */
  /* Record the values of the earlyclobber operands for the caller.  */
  if (goal_earlyclobber)
  if (goal_earlyclobber)
    for (i = 0; i < noperands; i++)
    for (i = 0; i < noperands; i++)
      if (goal_alternative_earlyclobber[i])
      if (goal_alternative_earlyclobber[i])
        reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
        reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
 
 
  /* Now record reloads for all the operands that need them.  */
  /* Now record reloads for all the operands that need them.  */
  for (i = 0; i < noperands; i++)
  for (i = 0; i < noperands; i++)
    if (! goal_alternative_win[i])
    if (! goal_alternative_win[i])
      {
      {
        /* Operands that match previous ones have already been handled.  */
        /* Operands that match previous ones have already been handled.  */
        if (goal_alternative_matches[i] >= 0)
        if (goal_alternative_matches[i] >= 0)
          ;
          ;
        /* Handle an operand with a nonoffsettable address
        /* Handle an operand with a nonoffsettable address
           appearing where an offsettable address will do
           appearing where an offsettable address will do
           by reloading the address into a base register.
           by reloading the address into a base register.
 
 
           ??? We can also do this when the operand is a register and
           ??? We can also do this when the operand is a register and
           reg_equiv_mem is not offsettable, but this is a bit tricky,
           reg_equiv_mem is not offsettable, but this is a bit tricky,
           so we don't bother with it.  It may not be worth doing.  */
           so we don't bother with it.  It may not be worth doing.  */
        else if (goal_alternative_matched[i] == -1
        else if (goal_alternative_matched[i] == -1
                 && goal_alternative_offmemok[i]
                 && goal_alternative_offmemok[i]
                 && MEM_P (recog_data.operand[i]))
                 && MEM_P (recog_data.operand[i]))
          {
          {
            /* If the address to be reloaded is a VOIDmode constant,
            /* If the address to be reloaded is a VOIDmode constant,
               use Pmode as mode of the reload register, as would have
               use Pmode as mode of the reload register, as would have
               been done by find_reloads_address.  */
               been done by find_reloads_address.  */
            enum machine_mode address_mode;
            enum machine_mode address_mode;
            address_mode = GET_MODE (XEXP (recog_data.operand[i], 0));
            address_mode = GET_MODE (XEXP (recog_data.operand[i], 0));
            if (address_mode == VOIDmode)
            if (address_mode == VOIDmode)
              address_mode = Pmode;
              address_mode = Pmode;
 
 
            operand_reloadnum[i]
            operand_reloadnum[i]
              = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
              = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
                             &XEXP (recog_data.operand[i], 0), (rtx*) 0,
                             &XEXP (recog_data.operand[i], 0), (rtx*) 0,
                             base_reg_class (VOIDmode, MEM, SCRATCH),
                             base_reg_class (VOIDmode, MEM, SCRATCH),
                             address_mode,
                             address_mode,
                             VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
                             VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
            rld[operand_reloadnum[i]].inc
            rld[operand_reloadnum[i]].inc
              = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
              = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
 
 
            /* If this operand is an output, we will have made any
            /* If this operand is an output, we will have made any
               reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
               reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
               now we are treating part of the operand as an input, so
               now we are treating part of the operand as an input, so
               we must change these to RELOAD_FOR_INPUT_ADDRESS.  */
               we must change these to RELOAD_FOR_INPUT_ADDRESS.  */
 
 
            if (modified[i] == RELOAD_WRITE)
            if (modified[i] == RELOAD_WRITE)
              {
              {
                for (j = 0; j < n_reloads; j++)
                for (j = 0; j < n_reloads; j++)
                  {
                  {
                    if (rld[j].opnum == i)
                    if (rld[j].opnum == i)
                      {
                      {
                        if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
                        if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
                          rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
                          rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
                        else if (rld[j].when_needed
                        else if (rld[j].when_needed
                                 == RELOAD_FOR_OUTADDR_ADDRESS)
                                 == RELOAD_FOR_OUTADDR_ADDRESS)
                          rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
                          rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
                      }
                      }
                  }
                  }
              }
              }
          }
          }
        else if (goal_alternative_matched[i] == -1)
        else if (goal_alternative_matched[i] == -1)
          {
          {
            operand_reloadnum[i]
            operand_reloadnum[i]
              = push_reload ((modified[i] != RELOAD_WRITE
              = push_reload ((modified[i] != RELOAD_WRITE
                              ? recog_data.operand[i] : 0),
                              ? recog_data.operand[i] : 0),
                             (modified[i] != RELOAD_READ
                             (modified[i] != RELOAD_READ
                              ? recog_data.operand[i] : 0),
                              ? recog_data.operand[i] : 0),
                             (modified[i] != RELOAD_WRITE
                             (modified[i] != RELOAD_WRITE
                              ? recog_data.operand_loc[i] : 0),
                              ? recog_data.operand_loc[i] : 0),
                             (modified[i] != RELOAD_READ
                             (modified[i] != RELOAD_READ
                              ? recog_data.operand_loc[i] : 0),
                              ? recog_data.operand_loc[i] : 0),
                             (enum reg_class) goal_alternative[i],
                             (enum reg_class) goal_alternative[i],
                             (modified[i] == RELOAD_WRITE
                             (modified[i] == RELOAD_WRITE
                              ? VOIDmode : operand_mode[i]),
                              ? VOIDmode : operand_mode[i]),
                             (modified[i] == RELOAD_READ
                             (modified[i] == RELOAD_READ
                              ? VOIDmode : operand_mode[i]),
                              ? VOIDmode : operand_mode[i]),
                             (insn_code_number < 0 ? 0
                             (insn_code_number < 0 ? 0
                              : insn_data[insn_code_number].operand[i].strict_low),
                              : insn_data[insn_code_number].operand[i].strict_low),
                             0, i, operand_type[i]);
                             0, i, operand_type[i]);
          }
          }
        /* In a matching pair of operands, one must be input only
        /* In a matching pair of operands, one must be input only
           and the other must be output only.
           and the other must be output only.
           Pass the input operand as IN and the other as OUT.  */
           Pass the input operand as IN and the other as OUT.  */
        else if (modified[i] == RELOAD_READ
        else if (modified[i] == RELOAD_READ
                 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
                 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
          {
          {
            operand_reloadnum[i]
            operand_reloadnum[i]
              = push_reload (recog_data.operand[i],
              = push_reload (recog_data.operand[i],
                             recog_data.operand[goal_alternative_matched[i]],
                             recog_data.operand[goal_alternative_matched[i]],
                             recog_data.operand_loc[i],
                             recog_data.operand_loc[i],
                             recog_data.operand_loc[goal_alternative_matched[i]],
                             recog_data.operand_loc[goal_alternative_matched[i]],
                             (enum reg_class) goal_alternative[i],
                             (enum reg_class) goal_alternative[i],
                             operand_mode[i],
                             operand_mode[i],
                             operand_mode[goal_alternative_matched[i]],
                             operand_mode[goal_alternative_matched[i]],
                             0, 0, i, RELOAD_OTHER);
                             0, 0, i, RELOAD_OTHER);
            operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
            operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
          }
          }
        else if (modified[i] == RELOAD_WRITE
        else if (modified[i] == RELOAD_WRITE
                 && modified[goal_alternative_matched[i]] == RELOAD_READ)
                 && modified[goal_alternative_matched[i]] == RELOAD_READ)
          {
          {
            operand_reloadnum[goal_alternative_matched[i]]
            operand_reloadnum[goal_alternative_matched[i]]
              = push_reload (recog_data.operand[goal_alternative_matched[i]],
              = push_reload (recog_data.operand[goal_alternative_matched[i]],
                             recog_data.operand[i],
                             recog_data.operand[i],
                             recog_data.operand_loc[goal_alternative_matched[i]],
                             recog_data.operand_loc[goal_alternative_matched[i]],
                             recog_data.operand_loc[i],
                             recog_data.operand_loc[i],
                             (enum reg_class) goal_alternative[i],
                             (enum reg_class) goal_alternative[i],
                             operand_mode[goal_alternative_matched[i]],
                             operand_mode[goal_alternative_matched[i]],
                             operand_mode[i],
                             operand_mode[i],
                             0, 0, i, RELOAD_OTHER);
                             0, 0, i, RELOAD_OTHER);
            operand_reloadnum[i] = output_reloadnum;
            operand_reloadnum[i] = output_reloadnum;
          }
          }
        else
        else
          {
          {
            gcc_assert (insn_code_number < 0);
            gcc_assert (insn_code_number < 0);
            error_for_asm (insn, "inconsistent operand constraints "
            error_for_asm (insn, "inconsistent operand constraints "
                           "in an %<asm%>");
                           "in an %<asm%>");
            /* Avoid further trouble with this insn.  */
            /* Avoid further trouble with this insn.  */
            PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
            PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
            n_reloads = 0;
            n_reloads = 0;
            return 0;
            return 0;
          }
          }
      }
      }
    else if (goal_alternative_matched[i] < 0
    else if (goal_alternative_matched[i] < 0
             && goal_alternative_matches[i] < 0
             && goal_alternative_matches[i] < 0
             && address_operand_reloaded[i] != 1
             && address_operand_reloaded[i] != 1
             && optimize)
             && optimize)
      {
      {
        /* For each non-matching operand that's a MEM or a pseudo-register
        /* For each non-matching operand that's a MEM or a pseudo-register
           that didn't get a hard register, make an optional reload.
           that didn't get a hard register, make an optional reload.
           This may get done even if the insn needs no reloads otherwise.  */
           This may get done even if the insn needs no reloads otherwise.  */
 
 
        rtx operand = recog_data.operand[i];
        rtx operand = recog_data.operand[i];
 
 
        while (GET_CODE (operand) == SUBREG)
        while (GET_CODE (operand) == SUBREG)
          operand = SUBREG_REG (operand);
          operand = SUBREG_REG (operand);
        if ((MEM_P (operand)
        if ((MEM_P (operand)
             || (REG_P (operand)
             || (REG_P (operand)
                 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
                 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
            /* If this is only for an output, the optional reload would not
            /* If this is only for an output, the optional reload would not
               actually cause us to use a register now, just note that
               actually cause us to use a register now, just note that
               something is stored here.  */
               something is stored here.  */
            && ((enum reg_class) goal_alternative[i] != NO_REGS
            && ((enum reg_class) goal_alternative[i] != NO_REGS
                || modified[i] == RELOAD_WRITE)
                || modified[i] == RELOAD_WRITE)
            && ! no_input_reloads
            && ! no_input_reloads
            /* An optional output reload might allow to delete INSN later.
            /* An optional output reload might allow to delete INSN later.
               We mustn't make in-out reloads on insns that are not permitted
               We mustn't make in-out reloads on insns that are not permitted
               output reloads.
               output reloads.
               If this is an asm, we can't delete it; we must not even call
               If this is an asm, we can't delete it; we must not even call
               push_reload for an optional output reload in this case,
               push_reload for an optional output reload in this case,
               because we can't be sure that the constraint allows a register,
               because we can't be sure that the constraint allows a register,
               and push_reload verifies the constraints for asms.  */
               and push_reload verifies the constraints for asms.  */
            && (modified[i] == RELOAD_READ
            && (modified[i] == RELOAD_READ
                || (! no_output_reloads && ! this_insn_is_asm)))
                || (! no_output_reloads && ! this_insn_is_asm)))
          operand_reloadnum[i]
          operand_reloadnum[i]
            = push_reload ((modified[i] != RELOAD_WRITE
            = push_reload ((modified[i] != RELOAD_WRITE
                            ? recog_data.operand[i] : 0),
                            ? recog_data.operand[i] : 0),
                           (modified[i] != RELOAD_READ
                           (modified[i] != RELOAD_READ
                            ? recog_data.operand[i] : 0),
                            ? recog_data.operand[i] : 0),
                           (modified[i] != RELOAD_WRITE
                           (modified[i] != RELOAD_WRITE
                            ? recog_data.operand_loc[i] : 0),
                            ? recog_data.operand_loc[i] : 0),
                           (modified[i] != RELOAD_READ
                           (modified[i] != RELOAD_READ
                            ? recog_data.operand_loc[i] : 0),
                            ? recog_data.operand_loc[i] : 0),
                           (enum reg_class) goal_alternative[i],
                           (enum reg_class) goal_alternative[i],
                           (modified[i] == RELOAD_WRITE
                           (modified[i] == RELOAD_WRITE
                            ? VOIDmode : operand_mode[i]),
                            ? VOIDmode : operand_mode[i]),
                           (modified[i] == RELOAD_READ
                           (modified[i] == RELOAD_READ
                            ? VOIDmode : operand_mode[i]),
                            ? VOIDmode : operand_mode[i]),
                           (insn_code_number < 0 ? 0
                           (insn_code_number < 0 ? 0
                            : insn_data[insn_code_number].operand[i].strict_low),
                            : insn_data[insn_code_number].operand[i].strict_low),
                           1, i, operand_type[i]);
                           1, i, operand_type[i]);
        /* If a memory reference remains (either as a MEM or a pseudo that
        /* If a memory reference remains (either as a MEM or a pseudo that
           did not get a hard register), yet we can't make an optional
           did not get a hard register), yet we can't make an optional
           reload, check if this is actually a pseudo register reference;
           reload, check if this is actually a pseudo register reference;
           we then need to emit a USE and/or a CLOBBER so that reload
           we then need to emit a USE and/or a CLOBBER so that reload
           inheritance will do the right thing.  */
           inheritance will do the right thing.  */
        else if (replace
        else if (replace
                 && (MEM_P (operand)
                 && (MEM_P (operand)
                     || (REG_P (operand)
                     || (REG_P (operand)
                         && REGNO (operand) >= FIRST_PSEUDO_REGISTER
                         && REGNO (operand) >= FIRST_PSEUDO_REGISTER
                         && reg_renumber [REGNO (operand)] < 0)))
                         && reg_renumber [REGNO (operand)] < 0)))
          {
          {
            operand = *recog_data.operand_loc[i];
            operand = *recog_data.operand_loc[i];
 
 
            while (GET_CODE (operand) == SUBREG)
            while (GET_CODE (operand) == SUBREG)
              operand = SUBREG_REG (operand);
              operand = SUBREG_REG (operand);
            if (REG_P (operand))
            if (REG_P (operand))
              {
              {
                if (modified[i] != RELOAD_WRITE)
                if (modified[i] != RELOAD_WRITE)
                  /* We mark the USE with QImode so that we recognize
                  /* We mark the USE with QImode so that we recognize
                     it as one that can be safely deleted at the end
                     it as one that can be safely deleted at the end
                     of reload.  */
                     of reload.  */
                  PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
                  PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
                                              insn), QImode);
                                              insn), QImode);
                if (modified[i] != RELOAD_READ)
                if (modified[i] != RELOAD_READ)
                  emit_insn_after (gen_rtx_CLOBBER (VOIDmode, operand), insn);
                  emit_insn_after (gen_rtx_CLOBBER (VOIDmode, operand), insn);
              }
              }
          }
          }
      }
      }
    else if (goal_alternative_matches[i] >= 0
    else if (goal_alternative_matches[i] >= 0
             && goal_alternative_win[goal_alternative_matches[i]]
             && goal_alternative_win[goal_alternative_matches[i]]
             && modified[i] == RELOAD_READ
             && modified[i] == RELOAD_READ
             && modified[goal_alternative_matches[i]] == RELOAD_WRITE
             && modified[goal_alternative_matches[i]] == RELOAD_WRITE
             && ! no_input_reloads && ! no_output_reloads
             && ! no_input_reloads && ! no_output_reloads
             && optimize)
             && optimize)
      {
      {
        /* Similarly, make an optional reload for a pair of matching
        /* Similarly, make an optional reload for a pair of matching
           objects that are in MEM or a pseudo that didn't get a hard reg.  */
           objects that are in MEM or a pseudo that didn't get a hard reg.  */
 
 
        rtx operand = recog_data.operand[i];
        rtx operand = recog_data.operand[i];
 
 
        while (GET_CODE (operand) == SUBREG)
        while (GET_CODE (operand) == SUBREG)
          operand = SUBREG_REG (operand);
          operand = SUBREG_REG (operand);
        if ((MEM_P (operand)
        if ((MEM_P (operand)
             || (REG_P (operand)
             || (REG_P (operand)
                 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
                 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
            && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
            && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
                != NO_REGS))
                != NO_REGS))
          operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
          operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
            = push_reload (recog_data.operand[goal_alternative_matches[i]],
            = push_reload (recog_data.operand[goal_alternative_matches[i]],
                           recog_data.operand[i],
                           recog_data.operand[i],
                           recog_data.operand_loc[goal_alternative_matches[i]],
                           recog_data.operand_loc[goal_alternative_matches[i]],
                           recog_data.operand_loc[i],
                           recog_data.operand_loc[i],
                           (enum reg_class) goal_alternative[goal_alternative_matches[i]],
                           (enum reg_class) goal_alternative[goal_alternative_matches[i]],
                           operand_mode[goal_alternative_matches[i]],
                           operand_mode[goal_alternative_matches[i]],
                           operand_mode[i],
                           operand_mode[i],
                           0, 1, goal_alternative_matches[i], RELOAD_OTHER);
                           0, 1, goal_alternative_matches[i], RELOAD_OTHER);
      }
      }
 
 
  /* Perform whatever substitutions on the operands we are supposed
  /* Perform whatever substitutions on the operands we are supposed
     to make due to commutativity or replacement of registers
     to make due to commutativity or replacement of registers
     with equivalent constants or memory slots.  */
     with equivalent constants or memory slots.  */
 
 
  for (i = 0; i < noperands; i++)
  for (i = 0; i < noperands; i++)
    {
    {
      /* We only do this on the last pass through reload, because it is
      /* We only do this on the last pass through reload, because it is
         possible for some data (like reg_equiv_address) to be changed during
         possible for some data (like reg_equiv_address) to be changed during
         later passes.  Moreover, we lose the opportunity to get a useful
         later passes.  Moreover, we lose the opportunity to get a useful
         reload_{in,out}_reg when we do these replacements.  */
         reload_{in,out}_reg when we do these replacements.  */
 
 
      if (replace)
      if (replace)
        {
        {
          rtx substitution = substed_operand[i];
          rtx substitution = substed_operand[i];
 
 
          *recog_data.operand_loc[i] = substitution;
          *recog_data.operand_loc[i] = substitution;
 
 
          /* If we're replacing an operand with a LABEL_REF, we need
          /* If we're replacing an operand with a LABEL_REF, we need
             to make sure that there's a REG_LABEL note attached to
             to make sure that there's a REG_LABEL note attached to
             this instruction.  */
             this instruction.  */
          if (!JUMP_P (insn)
          if (!JUMP_P (insn)
              && GET_CODE (substitution) == LABEL_REF
              && GET_CODE (substitution) == LABEL_REF
              && !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
              && !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
            REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
            REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
                                                  XEXP (substitution, 0),
                                                  XEXP (substitution, 0),
                                                  REG_NOTES (insn));
                                                  REG_NOTES (insn));
        }
        }
      else
      else
        retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
        retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
    }
    }
 
 
  /* If this insn pattern contains any MATCH_DUP's, make sure that
  /* If this insn pattern contains any MATCH_DUP's, make sure that
     they will be substituted if the operands they match are substituted.
     they will be substituted if the operands they match are substituted.
     Also do now any substitutions we already did on the operands.
     Also do now any substitutions we already did on the operands.
 
 
     Don't do this if we aren't making replacements because we might be
     Don't do this if we aren't making replacements because we might be
     propagating things allocated by frame pointer elimination into places
     propagating things allocated by frame pointer elimination into places
     it doesn't expect.  */
     it doesn't expect.  */
 
 
  if (insn_code_number >= 0 && replace)
  if (insn_code_number >= 0 && replace)
    for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
    for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
      {
      {
        int opno = recog_data.dup_num[i];
        int opno = recog_data.dup_num[i];
        *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
        *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
        dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
        dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
      }
      }
 
 
#if 0
#if 0
  /* This loses because reloading of prior insns can invalidate the equivalence
  /* This loses because reloading of prior insns can invalidate the equivalence
     (or at least find_equiv_reg isn't smart enough to find it any more),
     (or at least find_equiv_reg isn't smart enough to find it any more),
     causing this insn to need more reload regs than it needed before.
     causing this insn to need more reload regs than it needed before.
     It may be too late to make the reload regs available.
     It may be too late to make the reload regs available.
     Now this optimization is done safely in choose_reload_regs.  */
     Now this optimization is done safely in choose_reload_regs.  */
 
 
  /* For each reload of a reg into some other class of reg,
  /* For each reload of a reg into some other class of reg,
     search for an existing equivalent reg (same value now) in the right class.
     search for an existing equivalent reg (same value now) in the right class.
     We can use it as long as we don't need to change its contents.  */
     We can use it as long as we don't need to change its contents.  */
  for (i = 0; i < n_reloads; i++)
  for (i = 0; i < n_reloads; i++)
    if (rld[i].reg_rtx == 0
    if (rld[i].reg_rtx == 0
        && rld[i].in != 0
        && rld[i].in != 0
        && REG_P (rld[i].in)
        && REG_P (rld[i].in)
        && rld[i].out == 0)
        && rld[i].out == 0)
      {
      {
        rld[i].reg_rtx
        rld[i].reg_rtx
          = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
          = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
                            static_reload_reg_p, 0, rld[i].inmode);
                            static_reload_reg_p, 0, rld[i].inmode);
        /* Prevent generation of insn to load the value
        /* Prevent generation of insn to load the value
           because the one we found already has the value.  */
           because the one we found already has the value.  */
        if (rld[i].reg_rtx)
        if (rld[i].reg_rtx)
          rld[i].in = rld[i].reg_rtx;
          rld[i].in = rld[i].reg_rtx;
      }
      }
#endif
#endif
 
 
  /* If we detected error and replaced asm instruction by USE, forget about the
  /* If we detected error and replaced asm instruction by USE, forget about the
     reloads.  */
     reloads.  */
  if (GET_CODE (PATTERN (insn)) == USE
  if (GET_CODE (PATTERN (insn)) == USE
      && GET_CODE (XEXP (PATTERN (insn), 0)) == CONST_INT)
      && GET_CODE (XEXP (PATTERN (insn), 0)) == CONST_INT)
    n_reloads = 0;
    n_reloads = 0;
 
 
  /* Perhaps an output reload can be combined with another
  /* Perhaps an output reload can be combined with another
     to reduce needs by one.  */
     to reduce needs by one.  */
  if (!goal_earlyclobber)
  if (!goal_earlyclobber)
    combine_reloads ();
    combine_reloads ();
 
 
  /* If we have a pair of reloads for parts of an address, they are reloading
  /* If we have a pair of reloads for parts of an address, they are reloading
     the same object, the operands themselves were not reloaded, and they
     the same object, the operands themselves were not reloaded, and they
     are for two operands that are supposed to match, merge the reloads and
     are for two operands that are supposed to match, merge the reloads and
     change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS.  */
     change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS.  */
 
 
  for (i = 0; i < n_reloads; i++)
  for (i = 0; i < n_reloads; i++)
    {
    {
      int k;
      int k;
 
 
      for (j = i + 1; j < n_reloads; j++)
      for (j = i + 1; j < n_reloads; j++)
        if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
        if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
             || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
             || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
             || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
             || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
             || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
             || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
            && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
            && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
                || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
                || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
                || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
                || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
                || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
                || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
            && rtx_equal_p (rld[i].in, rld[j].in)
            && rtx_equal_p (rld[i].in, rld[j].in)
            && (operand_reloadnum[rld[i].opnum] < 0
            && (operand_reloadnum[rld[i].opnum] < 0
                || rld[operand_reloadnum[rld[i].opnum]].optional)
                || rld[operand_reloadnum[rld[i].opnum]].optional)
            && (operand_reloadnum[rld[j].opnum] < 0
            && (operand_reloadnum[rld[j].opnum] < 0
                || rld[operand_reloadnum[rld[j].opnum]].optional)
                || rld[operand_reloadnum[rld[j].opnum]].optional)
            && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
            && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
                || (goal_alternative_matches[rld[j].opnum]
                || (goal_alternative_matches[rld[j].opnum]
                    == rld[i].opnum)))
                    == rld[i].opnum)))
          {
          {
            for (k = 0; k < n_replacements; k++)
            for (k = 0; k < n_replacements; k++)
              if (replacements[k].what == j)
              if (replacements[k].what == j)
                replacements[k].what = i;
                replacements[k].what = i;
 
 
            if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
            if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
                || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
                || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
              rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
              rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
            else
            else
              rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
              rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
            rld[j].in = 0;
            rld[j].in = 0;
          }
          }
    }
    }
 
 
  /* Scan all the reloads and update their type.
  /* Scan all the reloads and update their type.
     If a reload is for the address of an operand and we didn't reload
     If a reload is for the address of an operand and we didn't reload
     that operand, change the type.  Similarly, change the operand number
     that operand, change the type.  Similarly, change the operand number
     of a reload when two operands match.  If a reload is optional, treat it
     of a reload when two operands match.  If a reload is optional, treat it
     as though the operand isn't reloaded.
     as though the operand isn't reloaded.
 
 
     ??? This latter case is somewhat odd because if we do the optional
     ??? This latter case is somewhat odd because if we do the optional
     reload, it means the object is hanging around.  Thus we need only
     reload, it means the object is hanging around.  Thus we need only
     do the address reload if the optional reload was NOT done.
     do the address reload if the optional reload was NOT done.
 
 
     Change secondary reloads to be the address type of their operand, not
     Change secondary reloads to be the address type of their operand, not
     the normal type.
     the normal type.
 
 
     If an operand's reload is now RELOAD_OTHER, change any
     If an operand's reload is now RELOAD_OTHER, change any
     RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
     RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
     RELOAD_FOR_OTHER_ADDRESS.  */
     RELOAD_FOR_OTHER_ADDRESS.  */
 
 
  for (i = 0; i < n_reloads; i++)
  for (i = 0; i < n_reloads; i++)
    {
    {
      if (rld[i].secondary_p
      if (rld[i].secondary_p
          && rld[i].when_needed == operand_type[rld[i].opnum])
          && rld[i].when_needed == operand_type[rld[i].opnum])
        rld[i].when_needed = address_type[rld[i].opnum];
        rld[i].when_needed = address_type[rld[i].opnum];
 
 
      if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
      if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
           || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
           || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
           || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
           || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
           || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
           || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
          && (operand_reloadnum[rld[i].opnum] < 0
          && (operand_reloadnum[rld[i].opnum] < 0
              || rld[operand_reloadnum[rld[i].opnum]].optional))
              || rld[operand_reloadnum[rld[i].opnum]].optional))
        {
        {
          /* If we have a secondary reload to go along with this reload,
          /* If we have a secondary reload to go along with this reload,
             change its type to RELOAD_FOR_OPADDR_ADDR.  */
             change its type to RELOAD_FOR_OPADDR_ADDR.  */
 
 
          if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
          if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
               || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
               || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
              && rld[i].secondary_in_reload != -1)
              && rld[i].secondary_in_reload != -1)
            {
            {
              int secondary_in_reload = rld[i].secondary_in_reload;
              int secondary_in_reload = rld[i].secondary_in_reload;
 
 
              rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
              rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
 
 
              /* If there's a tertiary reload we have to change it also.  */
              /* If there's a tertiary reload we have to change it also.  */
              if (secondary_in_reload > 0
              if (secondary_in_reload > 0
                  && rld[secondary_in_reload].secondary_in_reload != -1)
                  && rld[secondary_in_reload].secondary_in_reload != -1)
                rld[rld[secondary_in_reload].secondary_in_reload].when_needed
                rld[rld[secondary_in_reload].secondary_in_reload].when_needed
                  = RELOAD_FOR_OPADDR_ADDR;
                  = RELOAD_FOR_OPADDR_ADDR;
            }
            }
 
 
          if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
          if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
               || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
               || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
              && rld[i].secondary_out_reload != -1)
              && rld[i].secondary_out_reload != -1)
            {
            {
              int secondary_out_reload = rld[i].secondary_out_reload;
              int secondary_out_reload = rld[i].secondary_out_reload;
 
 
              rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
              rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
 
 
              /* If there's a tertiary reload we have to change it also.  */
              /* If there's a tertiary reload we have to change it also.  */
              if (secondary_out_reload
              if (secondary_out_reload
                  && rld[secondary_out_reload].secondary_out_reload != -1)
                  && rld[secondary_out_reload].secondary_out_reload != -1)
                rld[rld[secondary_out_reload].secondary_out_reload].when_needed
                rld[rld[secondary_out_reload].secondary_out_reload].when_needed
                  = RELOAD_FOR_OPADDR_ADDR;
                  = RELOAD_FOR_OPADDR_ADDR;
            }
            }
 
 
          if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
          if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
              || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
              || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
            rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
            rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
          else
          else
            rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
            rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
        }
        }
 
 
      if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
      if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
           || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
           || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
          && operand_reloadnum[rld[i].opnum] >= 0
          && operand_reloadnum[rld[i].opnum] >= 0
          && (rld[operand_reloadnum[rld[i].opnum]].when_needed
          && (rld[operand_reloadnum[rld[i].opnum]].when_needed
              == RELOAD_OTHER))
              == RELOAD_OTHER))
        rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
        rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
 
 
      if (goal_alternative_matches[rld[i].opnum] >= 0)
      if (goal_alternative_matches[rld[i].opnum] >= 0)
        rld[i].opnum = goal_alternative_matches[rld[i].opnum];
        rld[i].opnum = goal_alternative_matches[rld[i].opnum];
    }
    }
 
 
  /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
  /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
     If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
     If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
     reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
     reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
 
 
     choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
     choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
     conflict with RELOAD_FOR_OPERAND_ADDRESS reloads.  This is true for a
     conflict with RELOAD_FOR_OPERAND_ADDRESS reloads.  This is true for a
     single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
     single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
     However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
     However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
     then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
     then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
     RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
     RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
     This is complicated by the fact that a single operand can have more
     This is complicated by the fact that a single operand can have more
     than one RELOAD_FOR_OPERAND_ADDRESS reload.  It is very difficult to fix
     than one RELOAD_FOR_OPERAND_ADDRESS reload.  It is very difficult to fix
     choose_reload_regs without affecting code quality, and cases that
     choose_reload_regs without affecting code quality, and cases that
     actually fail are extremely rare, so it turns out to be better to fix
     actually fail are extremely rare, so it turns out to be better to fix
     the problem here by not generating cases that choose_reload_regs will
     the problem here by not generating cases that choose_reload_regs will
     fail for.  */
     fail for.  */
  /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
  /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
     RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
     RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
     a single operand.
     a single operand.
     We can reduce the register pressure by exploiting that a
     We can reduce the register pressure by exploiting that a
     RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
     RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
     does not conflict with any of them, if it is only used for the first of
     does not conflict with any of them, if it is only used for the first of
     the RELOAD_FOR_X_ADDRESS reloads.  */
     the RELOAD_FOR_X_ADDRESS reloads.  */
  {
  {
    int first_op_addr_num = -2;
    int first_op_addr_num = -2;
    int first_inpaddr_num[MAX_RECOG_OPERANDS];
    int first_inpaddr_num[MAX_RECOG_OPERANDS];
    int first_outpaddr_num[MAX_RECOG_OPERANDS];
    int first_outpaddr_num[MAX_RECOG_OPERANDS];
    int need_change = 0;
    int need_change = 0;
    /* We use last_op_addr_reload and the contents of the above arrays
    /* We use last_op_addr_reload and the contents of the above arrays
       first as flags - -2 means no instance encountered, -1 means exactly
       first as flags - -2 means no instance encountered, -1 means exactly
       one instance encountered.
       one instance encountered.
       If more than one instance has been encountered, we store the reload
       If more than one instance has been encountered, we store the reload
       number of the first reload of the kind in question; reload numbers
       number of the first reload of the kind in question; reload numbers
       are known to be non-negative.  */
       are known to be non-negative.  */
    for (i = 0; i < noperands; i++)
    for (i = 0; i < noperands; i++)
      first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
      first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
    for (i = n_reloads - 1; i >= 0; i--)
    for (i = n_reloads - 1; i >= 0; i--)
      {
      {
        switch (rld[i].when_needed)
        switch (rld[i].when_needed)
          {
          {
          case RELOAD_FOR_OPERAND_ADDRESS:
          case RELOAD_FOR_OPERAND_ADDRESS:
            if (++first_op_addr_num >= 0)
            if (++first_op_addr_num >= 0)
              {
              {
                first_op_addr_num = i;
                first_op_addr_num = i;
                need_change = 1;
                need_change = 1;
              }
              }
            break;
            break;
          case RELOAD_FOR_INPUT_ADDRESS:
          case RELOAD_FOR_INPUT_ADDRESS:
            if (++first_inpaddr_num[rld[i].opnum] >= 0)
            if (++first_inpaddr_num[rld[i].opnum] >= 0)
              {
              {
                first_inpaddr_num[rld[i].opnum] = i;
                first_inpaddr_num[rld[i].opnum] = i;
                need_change = 1;
                need_change = 1;
              }
              }
            break;
            break;
          case RELOAD_FOR_OUTPUT_ADDRESS:
          case RELOAD_FOR_OUTPUT_ADDRESS:
            if (++first_outpaddr_num[rld[i].opnum] >= 0)
            if (++first_outpaddr_num[rld[i].opnum] >= 0)
              {
              {
                first_outpaddr_num[rld[i].opnum] = i;
                first_outpaddr_num[rld[i].opnum] = i;
                need_change = 1;
                need_change = 1;
              }
              }
            break;
            break;
          default:
          default:
            break;
            break;
          }
          }
      }
      }
 
 
    if (need_change)
    if (need_change)
      {
      {
        for (i = 0; i < n_reloads; i++)
        for (i = 0; i < n_reloads; i++)
          {
          {
            int first_num;
            int first_num;
            enum reload_type type;
            enum reload_type type;
 
 
            switch (rld[i].when_needed)
            switch (rld[i].when_needed)
              {
              {
              case RELOAD_FOR_OPADDR_ADDR:
              case RELOAD_FOR_OPADDR_ADDR:
                first_num = first_op_addr_num;
                first_num = first_op_addr_num;
                type = RELOAD_FOR_OPERAND_ADDRESS;
                type = RELOAD_FOR_OPERAND_ADDRESS;
                break;
                break;
              case RELOAD_FOR_INPADDR_ADDRESS:
              case RELOAD_FOR_INPADDR_ADDRESS:
                first_num = first_inpaddr_num[rld[i].opnum];
                first_num = first_inpaddr_num[rld[i].opnum];
                type = RELOAD_FOR_INPUT_ADDRESS;
                type = RELOAD_FOR_INPUT_ADDRESS;
                break;
                break;
              case RELOAD_FOR_OUTADDR_ADDRESS:
              case RELOAD_FOR_OUTADDR_ADDRESS:
                first_num = first_outpaddr_num[rld[i].opnum];
                first_num = first_outpaddr_num[rld[i].opnum];
                type = RELOAD_FOR_OUTPUT_ADDRESS;
                type = RELOAD_FOR_OUTPUT_ADDRESS;
                break;
                break;
              default:
              default:
                continue;
                continue;
              }
              }
            if (first_num < 0)
            if (first_num < 0)
              continue;
              continue;
            else if (i > first_num)
            else if (i > first_num)
              rld[i].when_needed = type;
              rld[i].when_needed = type;
            else
            else
              {
              {
                /* Check if the only TYPE reload that uses reload I is
                /* Check if the only TYPE reload that uses reload I is
                   reload FIRST_NUM.  */
                   reload FIRST_NUM.  */
                for (j = n_reloads - 1; j > first_num; j--)
                for (j = n_reloads - 1; j > first_num; j--)
                  {
                  {
                    if (rld[j].when_needed == type
                    if (rld[j].when_needed == type
                        && (rld[i].secondary_p
                        && (rld[i].secondary_p
                            ? rld[j].secondary_in_reload == i
                            ? rld[j].secondary_in_reload == i
                            : reg_mentioned_p (rld[i].in, rld[j].in)))
                            : reg_mentioned_p (rld[i].in, rld[j].in)))
                      {
                      {
                        rld[i].when_needed = type;
                        rld[i].when_needed = type;
                        break;
                        break;
                      }
                      }
                  }
                  }
              }
              }
          }
          }
      }
      }
  }
  }
 
 
  /* See if we have any reloads that are now allowed to be merged
  /* See if we have any reloads that are now allowed to be merged
     because we've changed when the reload is needed to
     because we've changed when the reload is needed to
     RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS.  Only
     RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS.  Only
     check for the most common cases.  */
     check for the most common cases.  */
 
 
  for (i = 0; i < n_reloads; i++)
  for (i = 0; i < n_reloads; i++)
    if (rld[i].in != 0 && rld[i].out == 0
    if (rld[i].in != 0 && rld[i].out == 0
        && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
        && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
            || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
            || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
            || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
            || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
      for (j = 0; j < n_reloads; j++)
      for (j = 0; j < n_reloads; j++)
        if (i != j && rld[j].in != 0 && rld[j].out == 0
        if (i != j && rld[j].in != 0 && rld[j].out == 0
            && rld[j].when_needed == rld[i].when_needed
            && rld[j].when_needed == rld[i].when_needed
            && MATCHES (rld[i].in, rld[j].in)
            && MATCHES (rld[i].in, rld[j].in)
            && rld[i].class == rld[j].class
            && rld[i].class == rld[j].class
            && !rld[i].nocombine && !rld[j].nocombine
            && !rld[i].nocombine && !rld[j].nocombine
            && rld[i].reg_rtx == rld[j].reg_rtx)
            && rld[i].reg_rtx == rld[j].reg_rtx)
          {
          {
            rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
            rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
            transfer_replacements (i, j);
            transfer_replacements (i, j);
            rld[j].in = 0;
            rld[j].in = 0;
          }
          }
 
 
#ifdef HAVE_cc0
#ifdef HAVE_cc0
  /* If we made any reloads for addresses, see if they violate a
  /* If we made any reloads for addresses, see if they violate a
     "no input reloads" requirement for this insn.  But loads that we
     "no input reloads" requirement for this insn.  But loads that we
     do after the insn (such as for output addresses) are fine.  */
     do after the insn (such as for output addresses) are fine.  */
  if (no_input_reloads)
  if (no_input_reloads)
    for (i = 0; i < n_reloads; i++)
    for (i = 0; i < n_reloads; i++)
      gcc_assert (rld[i].in == 0
      gcc_assert (rld[i].in == 0
                  || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS
                  || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS
                  || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS);
                  || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS);
#endif
#endif
 
 
  /* Compute reload_mode and reload_nregs.  */
  /* Compute reload_mode and reload_nregs.  */
  for (i = 0; i < n_reloads; i++)
  for (i = 0; i < n_reloads; i++)
    {
    {
      rld[i].mode
      rld[i].mode
        = (rld[i].inmode == VOIDmode
        = (rld[i].inmode == VOIDmode
           || (GET_MODE_SIZE (rld[i].outmode)
           || (GET_MODE_SIZE (rld[i].outmode)
               > GET_MODE_SIZE (rld[i].inmode)))
               > GET_MODE_SIZE (rld[i].inmode)))
          ? rld[i].outmode : rld[i].inmode;
          ? rld[i].outmode : rld[i].inmode;
 
 
      rld[i].nregs = CLASS_MAX_NREGS (rld[i].class, rld[i].mode);
      rld[i].nregs = CLASS_MAX_NREGS (rld[i].class, rld[i].mode);
    }
    }
 
 
  /* Special case a simple move with an input reload and a
  /* Special case a simple move with an input reload and a
     destination of a hard reg, if the hard reg is ok, use it.  */
     destination of a hard reg, if the hard reg is ok, use it.  */
  for (i = 0; i < n_reloads; i++)
  for (i = 0; i < n_reloads; i++)
    if (rld[i].when_needed == RELOAD_FOR_INPUT
    if (rld[i].when_needed == RELOAD_FOR_INPUT
        && GET_CODE (PATTERN (insn)) == SET
        && GET_CODE (PATTERN (insn)) == SET
        && REG_P (SET_DEST (PATTERN (insn)))
        && REG_P (SET_DEST (PATTERN (insn)))
        && SET_SRC (PATTERN (insn)) == rld[i].in)
        && SET_SRC (PATTERN (insn)) == rld[i].in)
      {
      {
        rtx dest = SET_DEST (PATTERN (insn));
        rtx dest = SET_DEST (PATTERN (insn));
        unsigned int regno = REGNO (dest);
        unsigned int regno = REGNO (dest);
 
 
        if (regno < FIRST_PSEUDO_REGISTER
        if (regno < FIRST_PSEUDO_REGISTER
            && TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno)
            && TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno)
            && HARD_REGNO_MODE_OK (regno, rld[i].mode))
            && HARD_REGNO_MODE_OK (regno, rld[i].mode))
          {
          {
            int nr = hard_regno_nregs[regno][rld[i].mode];
            int nr = hard_regno_nregs[regno][rld[i].mode];
            int ok = 1, nri;
            int ok = 1, nri;
 
 
            for (nri = 1; nri < nr; nri ++)
            for (nri = 1; nri < nr; nri ++)
              if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno + nri))
              if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno + nri))
                ok = 0;
                ok = 0;
 
 
            if (ok)
            if (ok)
              rld[i].reg_rtx = dest;
              rld[i].reg_rtx = dest;
          }
          }
      }
      }
 
 
  return retval;
  return retval;
}
}
 
 
/* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
/* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
   accepts a memory operand with constant address.  */
   accepts a memory operand with constant address.  */
 
 
static int
static int
alternative_allows_memconst (const char *constraint, int altnum)
alternative_allows_memconst (const char *constraint, int altnum)
{
{
  int c;
  int c;
  /* Skip alternatives before the one requested.  */
  /* Skip alternatives before the one requested.  */
  while (altnum > 0)
  while (altnum > 0)
    {
    {
      while (*constraint++ != ',');
      while (*constraint++ != ',');
      altnum--;
      altnum--;
    }
    }
  /* Scan the requested alternative for 'm' or 'o'.
  /* Scan the requested alternative for 'm' or 'o'.
     If one of them is present, this alternative accepts memory constants.  */
     If one of them is present, this alternative accepts memory constants.  */
  for (; (c = *constraint) && c != ',' && c != '#';
  for (; (c = *constraint) && c != ',' && c != '#';
       constraint += CONSTRAINT_LEN (c, constraint))
       constraint += CONSTRAINT_LEN (c, constraint))
    if (c == 'm' || c == 'o' || EXTRA_MEMORY_CONSTRAINT (c, constraint))
    if (c == 'm' || c == 'o' || EXTRA_MEMORY_CONSTRAINT (c, constraint))
      return 1;
      return 1;
  return 0;
  return 0;
}
}


/* Scan X for memory references and scan the addresses for reloading.
/* Scan X for memory references and scan the addresses for reloading.
   Also checks for references to "constant" regs that we want to eliminate
   Also checks for references to "constant" regs that we want to eliminate
   and replaces them with the values they stand for.
   and replaces them with the values they stand for.
   We may alter X destructively if it contains a reference to such.
   We may alter X destructively if it contains a reference to such.
   If X is just a constant reg, we return the equivalent value
   If X is just a constant reg, we return the equivalent value
   instead of X.
   instead of X.
 
 
   IND_LEVELS says how many levels of indirect addressing this machine
   IND_LEVELS says how many levels of indirect addressing this machine
   supports.
   supports.
 
 
   OPNUM and TYPE identify the purpose of the reload.
   OPNUM and TYPE identify the purpose of the reload.
 
 
   IS_SET_DEST is true if X is the destination of a SET, which is not
   IS_SET_DEST is true if X is the destination of a SET, which is not
   appropriate to be replaced by a constant.
   appropriate to be replaced by a constant.
 
 
   INSN, if nonzero, is the insn in which we do the reload.  It is used
   INSN, if nonzero, is the insn in which we do the reload.  It is used
   to determine if we may generate output reloads, and where to put USEs
   to determine if we may generate output reloads, and where to put USEs
   for pseudos that we have to replace with stack slots.
   for pseudos that we have to replace with stack slots.
 
 
   ADDRESS_RELOADED.  If nonzero, is a pointer to where we put the
   ADDRESS_RELOADED.  If nonzero, is a pointer to where we put the
   result of find_reloads_address.  */
   result of find_reloads_address.  */
 
 
static rtx
static rtx
find_reloads_toplev (rtx x, int opnum, enum reload_type type,
find_reloads_toplev (rtx x, int opnum, enum reload_type type,
                     int ind_levels, int is_set_dest, rtx insn,
                     int ind_levels, int is_set_dest, rtx insn,
                     int *address_reloaded)
                     int *address_reloaded)
{
{
  RTX_CODE code = GET_CODE (x);
  RTX_CODE code = GET_CODE (x);
 
 
  const char *fmt = GET_RTX_FORMAT (code);
  const char *fmt = GET_RTX_FORMAT (code);
  int i;
  int i;
  int copied;
  int copied;
 
 
  if (code == REG)
  if (code == REG)
    {
    {
      /* This code is duplicated for speed in find_reloads.  */
      /* This code is duplicated for speed in find_reloads.  */
      int regno = REGNO (x);
      int regno = REGNO (x);
      if (reg_equiv_constant[regno] != 0 && !is_set_dest)
      if (reg_equiv_constant[regno] != 0 && !is_set_dest)
        x = reg_equiv_constant[regno];
        x = reg_equiv_constant[regno];
#if 0
#if 0
      /*  This creates (subreg (mem...)) which would cause an unnecessary
      /*  This creates (subreg (mem...)) which would cause an unnecessary
          reload of the mem.  */
          reload of the mem.  */
      else if (reg_equiv_mem[regno] != 0)
      else if (reg_equiv_mem[regno] != 0)
        x = reg_equiv_mem[regno];
        x = reg_equiv_mem[regno];
#endif
#endif
      else if (reg_equiv_memory_loc[regno]
      else if (reg_equiv_memory_loc[regno]
               && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
               && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
        {
        {
          rtx mem = make_memloc (x, regno);
          rtx mem = make_memloc (x, regno);
          if (reg_equiv_address[regno]
          if (reg_equiv_address[regno]
              || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
              || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
            {
            {
              /* If this is not a toplevel operand, find_reloads doesn't see
              /* If this is not a toplevel operand, find_reloads doesn't see
                 this substitution.  We have to emit a USE of the pseudo so
                 this substitution.  We have to emit a USE of the pseudo so
                 that delete_output_reload can see it.  */
                 that delete_output_reload can see it.  */
              if (replace_reloads && recog_data.operand[opnum] != x)
              if (replace_reloads && recog_data.operand[opnum] != x)
                /* We mark the USE with QImode so that we recognize it
                /* We mark the USE with QImode so that we recognize it
                   as one that can be safely deleted at the end of
                   as one that can be safely deleted at the end of
                   reload.  */
                   reload.  */
                PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
                PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
                          QImode);
                          QImode);
              x = mem;
              x = mem;
              i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
              i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
                                        opnum, type, ind_levels, insn);
                                        opnum, type, ind_levels, insn);
              if (x != mem)
              if (x != mem)
                push_reg_equiv_alt_mem (regno, x);
                push_reg_equiv_alt_mem (regno, x);
              if (address_reloaded)
              if (address_reloaded)
                *address_reloaded = i;
                *address_reloaded = i;
            }
            }
        }
        }
      return x;
      return x;
    }
    }
  if (code == MEM)
  if (code == MEM)
    {
    {
      rtx tem = x;
      rtx tem = x;
 
 
      i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
      i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
                                opnum, type, ind_levels, insn);
                                opnum, type, ind_levels, insn);
      if (address_reloaded)
      if (address_reloaded)
        *address_reloaded = i;
        *address_reloaded = i;
 
 
      return tem;
      return tem;
    }
    }
 
 
  if (code == SUBREG && REG_P (SUBREG_REG (x)))
  if (code == SUBREG && REG_P (SUBREG_REG (x)))
    {
    {
      /* Check for SUBREG containing a REG that's equivalent to a
      /* Check for SUBREG containing a REG that's equivalent to a
         constant.  If the constant has a known value, truncate it
         constant.  If the constant has a known value, truncate it
         right now.  Similarly if we are extracting a single-word of a
         right now.  Similarly if we are extracting a single-word of a
         multi-word constant.  If the constant is symbolic, allow it
         multi-word constant.  If the constant is symbolic, allow it
         to be substituted normally.  push_reload will strip the
         to be substituted normally.  push_reload will strip the
         subreg later.  The constant must not be VOIDmode, because we
         subreg later.  The constant must not be VOIDmode, because we
         will lose the mode of the register (this should never happen
         will lose the mode of the register (this should never happen
         because one of the cases above should handle it).  */
         because one of the cases above should handle it).  */
 
 
      int regno = REGNO (SUBREG_REG (x));
      int regno = REGNO (SUBREG_REG (x));
      rtx tem;
      rtx tem;
 
 
      if (subreg_lowpart_p (x)
      if (subreg_lowpart_p (x)
          && regno >= FIRST_PSEUDO_REGISTER
          && regno >= FIRST_PSEUDO_REGISTER
          && reg_renumber[regno] < 0
          && reg_renumber[regno] < 0
          && reg_equiv_constant[regno] != 0
          && reg_equiv_constant[regno] != 0
          && (tem = gen_lowpart_common (GET_MODE (x),
          && (tem = gen_lowpart_common (GET_MODE (x),
                                        reg_equiv_constant[regno])) != 0)
                                        reg_equiv_constant[regno])) != 0)
        return tem;
        return tem;
 
 
      if (regno >= FIRST_PSEUDO_REGISTER
      if (regno >= FIRST_PSEUDO_REGISTER
          && reg_renumber[regno] < 0
          && reg_renumber[regno] < 0
          && reg_equiv_constant[regno] != 0)
          && reg_equiv_constant[regno] != 0)
        {
        {
          tem =
          tem =
            simplify_gen_subreg (GET_MODE (x), reg_equiv_constant[regno],
            simplify_gen_subreg (GET_MODE (x), reg_equiv_constant[regno],
                                 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
                                 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
          gcc_assert (tem);
          gcc_assert (tem);
          return tem;
          return tem;
        }
        }
 
 
      /* If the subreg contains a reg that will be converted to a mem,
      /* If the subreg contains a reg that will be converted to a mem,
         convert the subreg to a narrower memref now.
         convert the subreg to a narrower memref now.
         Otherwise, we would get (subreg (mem ...) ...),
         Otherwise, we would get (subreg (mem ...) ...),
         which would force reload of the mem.
         which would force reload of the mem.
 
 
         We also need to do this if there is an equivalent MEM that is
         We also need to do this if there is an equivalent MEM that is
         not offsettable.  In that case, alter_subreg would produce an
         not offsettable.  In that case, alter_subreg would produce an
         invalid address on big-endian machines.
         invalid address on big-endian machines.
 
 
         For machines that extend byte loads, we must not reload using
         For machines that extend byte loads, we must not reload using
         a wider mode if we have a paradoxical SUBREG.  find_reloads will
         a wider mode if we have a paradoxical SUBREG.  find_reloads will
         force a reload in that case.  So we should not do anything here.  */
         force a reload in that case.  So we should not do anything here.  */
 
 
      if (regno >= FIRST_PSEUDO_REGISTER
      if (regno >= FIRST_PSEUDO_REGISTER
#ifdef LOAD_EXTEND_OP
#ifdef LOAD_EXTEND_OP
               && (GET_MODE_SIZE (GET_MODE (x))
               && (GET_MODE_SIZE (GET_MODE (x))
                   <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
                   <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
#endif
#endif
               && (reg_equiv_address[regno] != 0
               && (reg_equiv_address[regno] != 0
                   || (reg_equiv_mem[regno] != 0
                   || (reg_equiv_mem[regno] != 0
                       && (! strict_memory_address_p (GET_MODE (x),
                       && (! strict_memory_address_p (GET_MODE (x),
                                                      XEXP (reg_equiv_mem[regno], 0))
                                                      XEXP (reg_equiv_mem[regno], 0))
                           || ! offsettable_memref_p (reg_equiv_mem[regno])
                           || ! offsettable_memref_p (reg_equiv_mem[regno])
                           || num_not_at_initial_offset))))
                           || num_not_at_initial_offset))))
        x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
        x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
                                         insn);
                                         insn);
    }
    }
 
 
  for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
  for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
    {
      if (fmt[i] == 'e')
      if (fmt[i] == 'e')
        {
        {
          rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
          rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
                                              ind_levels, is_set_dest, insn,
                                              ind_levels, is_set_dest, insn,
                                              address_reloaded);
                                              address_reloaded);
          /* If we have replaced a reg with it's equivalent memory loc -
          /* If we have replaced a reg with it's equivalent memory loc -
             that can still be handled here e.g. if it's in a paradoxical
             that can still be handled here e.g. if it's in a paradoxical
             subreg - we must make the change in a copy, rather than using
             subreg - we must make the change in a copy, rather than using
             a destructive change.  This way, find_reloads can still elect
             a destructive change.  This way, find_reloads can still elect
             not to do the change.  */
             not to do the change.  */
          if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
          if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
            {
            {
              x = shallow_copy_rtx (x);
              x = shallow_copy_rtx (x);
              copied = 1;
              copied = 1;
            }
            }
          XEXP (x, i) = new_part;
          XEXP (x, i) = new_part;
        }
        }
    }
    }
  return x;
  return x;
}
}
 
 
/* Return a mem ref for the memory equivalent of reg REGNO.
/* Return a mem ref for the memory equivalent of reg REGNO.
   This mem ref is not shared with anything.  */
   This mem ref is not shared with anything.  */
 
 
static rtx
static rtx
make_memloc (rtx ad, int regno)
make_memloc (rtx ad, int regno)
{
{
  /* We must rerun eliminate_regs, in case the elimination
  /* We must rerun eliminate_regs, in case the elimination
     offsets have changed.  */
     offsets have changed.  */
  rtx tem
  rtx tem
    = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
    = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
 
 
  /* If TEM might contain a pseudo, we must copy it to avoid
  /* If TEM might contain a pseudo, we must copy it to avoid
     modifying it when we do the substitution for the reload.  */
     modifying it when we do the substitution for the reload.  */
  if (rtx_varies_p (tem, 0))
  if (rtx_varies_p (tem, 0))
    tem = copy_rtx (tem);
    tem = copy_rtx (tem);
 
 
  tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
  tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
  tem = adjust_address_nv (tem, GET_MODE (ad), 0);
  tem = adjust_address_nv (tem, GET_MODE (ad), 0);
 
 
  /* Copy the result if it's still the same as the equivalence, to avoid
  /* Copy the result if it's still the same as the equivalence, to avoid
     modifying it when we do the substitution for the reload.  */
     modifying it when we do the substitution for the reload.  */
  if (tem == reg_equiv_memory_loc[regno])
  if (tem == reg_equiv_memory_loc[regno])
    tem = copy_rtx (tem);
    tem = copy_rtx (tem);
  return tem;
  return tem;
}
}
 
 
/* Returns true if AD could be turned into a valid memory reference
/* Returns true if AD could be turned into a valid memory reference
   to mode MODE by reloading the part pointed to by PART into a
   to mode MODE by reloading the part pointed to by PART into a
   register.  */
   register.  */
 
 
static int
static int
maybe_memory_address_p (enum machine_mode mode, rtx ad, rtx *part)
maybe_memory_address_p (enum machine_mode mode, rtx ad, rtx *part)
{
{
  int retv;
  int retv;
  rtx tem = *part;
  rtx tem = *part;
  rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
  rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
 
 
  *part = reg;
  *part = reg;
  retv = memory_address_p (mode, ad);
  retv = memory_address_p (mode, ad);
  *part = tem;
  *part = tem;
 
 
  return retv;
  return retv;
}
}
 
 
/* Record all reloads needed for handling memory address AD
/* Record all reloads needed for handling memory address AD
   which appears in *LOC in a memory reference to mode MODE
   which appears in *LOC in a memory reference to mode MODE
   which itself is found in location  *MEMREFLOC.
   which itself is found in location  *MEMREFLOC.
   Note that we take shortcuts assuming that no multi-reg machine mode
   Note that we take shortcuts assuming that no multi-reg machine mode
   occurs as part of an address.
   occurs as part of an address.
 
 
   OPNUM and TYPE specify the purpose of this reload.
   OPNUM and TYPE specify the purpose of this reload.
 
 
   IND_LEVELS says how many levels of indirect addressing this machine
   IND_LEVELS says how many levels of indirect addressing this machine
   supports.
   supports.
 
 
   INSN, if nonzero, is the insn in which we do the reload.  It is used
   INSN, if nonzero, is the insn in which we do the reload.  It is used
   to determine if we may generate output reloads, and where to put USEs
   to determine if we may generate output reloads, and where to put USEs
   for pseudos that we have to replace with stack slots.
   for pseudos that we have to replace with stack slots.
 
 
   Value is one if this address is reloaded or replaced as a whole; it is
   Value is one if this address is reloaded or replaced as a whole; it is
   zero if the top level of this address was not reloaded or replaced, and
   zero if the top level of this address was not reloaded or replaced, and
   it is -1 if it may or may not have been reloaded or replaced.
   it is -1 if it may or may not have been reloaded or replaced.
 
 
   Note that there is no verification that the address will be valid after
   Note that there is no verification that the address will be valid after
   this routine does its work.  Instead, we rely on the fact that the address
   this routine does its work.  Instead, we rely on the fact that the address
   was valid when reload started.  So we need only undo things that reload
   was valid when reload started.  So we need only undo things that reload
   could have broken.  These are wrong register types, pseudos not allocated
   could have broken.  These are wrong register types, pseudos not allocated
   to a hard register, and frame pointer elimination.  */
   to a hard register, and frame pointer elimination.  */
 
 
static int
static int
find_reloads_address (enum machine_mode mode, rtx *memrefloc, rtx ad,
find_reloads_address (enum machine_mode mode, rtx *memrefloc, rtx ad,
                      rtx *loc, int opnum, enum reload_type type,
                      rtx *loc, int opnum, enum reload_type type,
                      int ind_levels, rtx insn)
                      int ind_levels, rtx insn)
{
{
  int regno;
  int regno;
  int removed_and = 0;
  int removed_and = 0;
  int op_index;
  int op_index;
  rtx tem;
  rtx tem;
 
 
  /* If the address is a register, see if it is a legitimate address and
  /* If the address is a register, see if it is a legitimate address and
     reload if not.  We first handle the cases where we need not reload
     reload if not.  We first handle the cases where we need not reload
     or where we must reload in a non-standard way.  */
     or where we must reload in a non-standard way.  */
 
 
  if (REG_P (ad))
  if (REG_P (ad))
    {
    {
      regno = REGNO (ad);
      regno = REGNO (ad);
 
 
      /* If the register is equivalent to an invariant expression, substitute
      /* If the register is equivalent to an invariant expression, substitute
         the invariant, and eliminate any eliminable register references.  */
         the invariant, and eliminate any eliminable register references.  */
      tem = reg_equiv_constant[regno];
      tem = reg_equiv_constant[regno];
      if (tem != 0
      if (tem != 0
          && (tem = eliminate_regs (tem, mode, insn))
          && (tem = eliminate_regs (tem, mode, insn))
          && strict_memory_address_p (mode, tem))
          && strict_memory_address_p (mode, tem))
        {
        {
          *loc = ad = tem;
          *loc = ad = tem;
          return 0;
          return 0;
        }
        }
 
 
      tem = reg_equiv_memory_loc[regno];
      tem = reg_equiv_memory_loc[regno];
      if (tem != 0)
      if (tem != 0)
        {
        {
          if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
          if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
            {
            {
              tem = make_memloc (ad, regno);
              tem = make_memloc (ad, regno);
              if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
              if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
                {
                {
                  rtx orig = tem;
                  rtx orig = tem;
 
 
                  find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
                  find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
                                        &XEXP (tem, 0), opnum,
                                        &XEXP (tem, 0), opnum,
                                        ADDR_TYPE (type), ind_levels, insn);
                                        ADDR_TYPE (type), ind_levels, insn);
                  if (tem != orig)
                  if (tem != orig)
                    push_reg_equiv_alt_mem (regno, tem);
                    push_reg_equiv_alt_mem (regno, tem);
                }
                }
              /* We can avoid a reload if the register's equivalent memory
              /* We can avoid a reload if the register's equivalent memory
                 expression is valid as an indirect memory address.
                 expression is valid as an indirect memory address.
                 But not all addresses are valid in a mem used as an indirect
                 But not all addresses are valid in a mem used as an indirect
                 address: only reg or reg+constant.  */
                 address: only reg or reg+constant.  */
 
 
              if (ind_levels > 0
              if (ind_levels > 0
                  && strict_memory_address_p (mode, tem)
                  && strict_memory_address_p (mode, tem)
                  && (REG_P (XEXP (tem, 0))
                  && (REG_P (XEXP (tem, 0))
                      || (GET_CODE (XEXP (tem, 0)) == PLUS
                      || (GET_CODE (XEXP (tem, 0)) == PLUS
                          && REG_P (XEXP (XEXP (tem, 0), 0))
                          && REG_P (XEXP (XEXP (tem, 0), 0))
                          && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
                          && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
                {
                {
                  /* TEM is not the same as what we'll be replacing the
                  /* TEM is not the same as what we'll be replacing the
                     pseudo with after reload, put a USE in front of INSN
                     pseudo with after reload, put a USE in front of INSN
                     in the final reload pass.  */
                     in the final reload pass.  */
                  if (replace_reloads
                  if (replace_reloads
                      && num_not_at_initial_offset
                      && num_not_at_initial_offset
                      && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
                      && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
                    {
                    {
                      *loc = tem;
                      *loc = tem;
                      /* We mark the USE with QImode so that we
                      /* We mark the USE with QImode so that we
                         recognize it as one that can be safely
                         recognize it as one that can be safely
                         deleted at the end of reload.  */
                         deleted at the end of reload.  */
                      PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
                      PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
                                                  insn), QImode);
                                                  insn), QImode);
 
 
                      /* This doesn't really count as replacing the address
                      /* This doesn't really count as replacing the address
                         as a whole, since it is still a memory access.  */
                         as a whole, since it is still a memory access.  */
                    }
                    }
                  return 0;
                  return 0;
                }
                }
              ad = tem;
              ad = tem;
            }
            }
        }
        }
 
 
      /* The only remaining case where we can avoid a reload is if this is a
      /* The only remaining case where we can avoid a reload is if this is a
         hard register that is valid as a base register and which is not the
         hard register that is valid as a base register and which is not the
         subject of a CLOBBER in this insn.  */
         subject of a CLOBBER in this insn.  */
 
 
      else if (regno < FIRST_PSEUDO_REGISTER
      else if (regno < FIRST_PSEUDO_REGISTER
               && regno_ok_for_base_p (regno, mode, MEM, SCRATCH)
               && regno_ok_for_base_p (regno, mode, MEM, SCRATCH)
               && ! regno_clobbered_p (regno, this_insn, mode, 0))
               && ! regno_clobbered_p (regno, this_insn, mode, 0))
        return 0;
        return 0;
 
 
      /* If we do not have one of the cases above, we must do the reload.  */
      /* If we do not have one of the cases above, we must do the reload.  */
      push_reload (ad, NULL_RTX, loc, (rtx*) 0, base_reg_class (mode, MEM, SCRATCH),
      push_reload (ad, NULL_RTX, loc, (rtx*) 0, base_reg_class (mode, MEM, SCRATCH),
                   GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
                   GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
      return 1;
      return 1;
    }
    }
 
 
  if (strict_memory_address_p (mode, ad))
  if (strict_memory_address_p (mode, ad))
    {
    {
      /* The address appears valid, so reloads are not needed.
      /* The address appears valid, so reloads are not needed.
         But the address may contain an eliminable register.
         But the address may contain an eliminable register.
         This can happen because a machine with indirect addressing
         This can happen because a machine with indirect addressing
         may consider a pseudo register by itself a valid address even when
         may consider a pseudo register by itself a valid address even when
         it has failed to get a hard reg.
         it has failed to get a hard reg.
         So do a tree-walk to find and eliminate all such regs.  */
         So do a tree-walk to find and eliminate all such regs.  */
 
 
      /* But first quickly dispose of a common case.  */
      /* But first quickly dispose of a common case.  */
      if (GET_CODE (ad) == PLUS
      if (GET_CODE (ad) == PLUS
          && GET_CODE (XEXP (ad, 1)) == CONST_INT
          && GET_CODE (XEXP (ad, 1)) == CONST_INT
          && REG_P (XEXP (ad, 0))
          && REG_P (XEXP (ad, 0))
          && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
          && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
        return 0;
        return 0;
 
 
      subst_reg_equivs_changed = 0;
      subst_reg_equivs_changed = 0;
      *loc = subst_reg_equivs (ad, insn);
      *loc = subst_reg_equivs (ad, insn);
 
 
      if (! subst_reg_equivs_changed)
      if (! subst_reg_equivs_changed)
        return 0;
        return 0;
 
 
      /* Check result for validity after substitution.  */
      /* Check result for validity after substitution.  */
      if (strict_memory_address_p (mode, ad))
      if (strict_memory_address_p (mode, ad))
        return 0;
        return 0;
    }
    }
 
 
#ifdef LEGITIMIZE_RELOAD_ADDRESS
#ifdef LEGITIMIZE_RELOAD_ADDRESS
  do
  do
    {
    {
      if (memrefloc)
      if (memrefloc)
        {
        {
          LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
          LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
                                     ind_levels, win);
                                     ind_levels, win);
        }
        }
      break;
      break;
    win:
    win:
      *memrefloc = copy_rtx (*memrefloc);
      *memrefloc = copy_rtx (*memrefloc);
      XEXP (*memrefloc, 0) = ad;
      XEXP (*memrefloc, 0) = ad;
      move_replacements (&ad, &XEXP (*memrefloc, 0));
      move_replacements (&ad, &XEXP (*memrefloc, 0));
      return -1;
      return -1;
    }
    }
  while (0);
  while (0);
#endif
#endif
 
 
  /* The address is not valid.  We have to figure out why.  First see if
  /* The address is not valid.  We have to figure out why.  First see if
     we have an outer AND and remove it if so.  Then analyze what's inside.  */
     we have an outer AND and remove it if so.  Then analyze what's inside.  */
 
 
  if (GET_CODE (ad) == AND)
  if (GET_CODE (ad) == AND)
    {
    {
      removed_and = 1;
      removed_and = 1;
      loc = &XEXP (ad, 0);
      loc = &XEXP (ad, 0);
      ad = *loc;
      ad = *loc;
    }
    }
 
 
  /* One possibility for why the address is invalid is that it is itself
  /* One possibility for why the address is invalid is that it is itself
     a MEM.  This can happen when the frame pointer is being eliminated, a
     a MEM.  This can happen when the frame pointer is being eliminated, a
     pseudo is not allocated to a hard register, and the offset between the
     pseudo is not allocated to a hard register, and the offset between the
     frame and stack pointers is not its initial value.  In that case the
     frame and stack pointers is not its initial value.  In that case the
     pseudo will have been replaced by a MEM referring to the
     pseudo will have been replaced by a MEM referring to the
     stack pointer.  */
     stack pointer.  */
  if (MEM_P (ad))
  if (MEM_P (ad))
    {
    {
      /* First ensure that the address in this MEM is valid.  Then, unless
      /* First ensure that the address in this MEM is valid.  Then, unless
         indirect addresses are valid, reload the MEM into a register.  */
         indirect addresses are valid, reload the MEM into a register.  */
      tem = ad;
      tem = ad;
      find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
      find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
                            opnum, ADDR_TYPE (type),
                            opnum, ADDR_TYPE (type),
                            ind_levels == 0 ? 0 : ind_levels - 1, insn);
                            ind_levels == 0 ? 0 : ind_levels - 1, insn);
 
 
      /* If tem was changed, then we must create a new memory reference to
      /* If tem was changed, then we must create a new memory reference to
         hold it and store it back into memrefloc.  */
         hold it and store it back into memrefloc.  */
      if (tem != ad && memrefloc)
      if (tem != ad && memrefloc)
        {
        {
          *memrefloc = copy_rtx (*memrefloc);
          *memrefloc = copy_rtx (*memrefloc);
          copy_replacements (tem, XEXP (*memrefloc, 0));
          copy_replacements (tem, XEXP (*memrefloc, 0));
          loc = &XEXP (*memrefloc, 0);
          loc = &XEXP (*memrefloc, 0);
          if (removed_and)
          if (removed_and)
            loc = &XEXP (*loc, 0);
            loc = &XEXP (*loc, 0);
        }
        }
 
 
      /* Check similar cases as for indirect addresses as above except
      /* Check similar cases as for indirect addresses as above except
         that we can allow pseudos and a MEM since they should have been
         that we can allow pseudos and a MEM since they should have been
         taken care of above.  */
         taken care of above.  */
 
 
      if (ind_levels == 0
      if (ind_levels == 0
          || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
          || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
          || MEM_P (XEXP (tem, 0))
          || MEM_P (XEXP (tem, 0))
          || ! (REG_P (XEXP (tem, 0))
          || ! (REG_P (XEXP (tem, 0))
                || (GET_CODE (XEXP (tem, 0)) == PLUS
                || (GET_CODE (XEXP (tem, 0)) == PLUS
                    && REG_P (XEXP (XEXP (tem, 0), 0))
                    && REG_P (XEXP (XEXP (tem, 0), 0))
                    && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
                    && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
        {
        {
          /* Must use TEM here, not AD, since it is the one that will
          /* Must use TEM here, not AD, since it is the one that will
             have any subexpressions reloaded, if needed.  */
             have any subexpressions reloaded, if needed.  */
          push_reload (tem, NULL_RTX, loc, (rtx*) 0,
          push_reload (tem, NULL_RTX, loc, (rtx*) 0,
                       base_reg_class (mode, MEM, SCRATCH), GET_MODE (tem),
                       base_reg_class (mode, MEM, SCRATCH), GET_MODE (tem),
                       VOIDmode, 0,
                       VOIDmode, 0,
                       0, opnum, type);
                       0, opnum, type);
          return ! removed_and;
          return ! removed_and;
        }
        }
      else
      else
        return 0;
        return 0;
    }
    }
 
 
  /* If we have address of a stack slot but it's not valid because the
  /* If we have address of a stack slot but it's not valid because the
     displacement is too large, compute the sum in a register.
     displacement is too large, compute the sum in a register.
     Handle all base registers here, not just fp/ap/sp, because on some
     Handle all base registers here, not just fp/ap/sp, because on some
     targets (namely SH) we can also get too large displacements from
     targets (namely SH) we can also get too large displacements from
     big-endian corrections.  */
     big-endian corrections.  */
  else if (GET_CODE (ad) == PLUS
  else if (GET_CODE (ad) == PLUS
           && REG_P (XEXP (ad, 0))
           && REG_P (XEXP (ad, 0))
           && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
           && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
           && GET_CODE (XEXP (ad, 1)) == CONST_INT
           && GET_CODE (XEXP (ad, 1)) == CONST_INT
           && regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, PLUS,
           && regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, PLUS,
                                   CONST_INT))
                                   CONST_INT))
 
 
    {
    {
      /* Unshare the MEM rtx so we can safely alter it.  */
      /* Unshare the MEM rtx so we can safely alter it.  */
      if (memrefloc)
      if (memrefloc)
        {
        {
          *memrefloc = copy_rtx (*memrefloc);
          *memrefloc = copy_rtx (*memrefloc);
          loc = &XEXP (*memrefloc, 0);
          loc = &XEXP (*memrefloc, 0);
          if (removed_and)
          if (removed_and)
            loc = &XEXP (*loc, 0);
            loc = &XEXP (*loc, 0);
        }
        }
 
 
      if (double_reg_address_ok)
      if (double_reg_address_ok)
        {
        {
          /* Unshare the sum as well.  */
          /* Unshare the sum as well.  */
          *loc = ad = copy_rtx (ad);
          *loc = ad = copy_rtx (ad);
 
 
          /* Reload the displacement into an index reg.
          /* Reload the displacement into an index reg.
             We assume the frame pointer or arg pointer is a base reg.  */
             We assume the frame pointer or arg pointer is a base reg.  */
          find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
          find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
                                     INDEX_REG_CLASS, GET_MODE (ad), opnum,
                                     INDEX_REG_CLASS, GET_MODE (ad), opnum,
                                     type, ind_levels);
                                     type, ind_levels);
          return 0;
          return 0;
        }
        }
      else
      else
        {
        {
          /* If the sum of two regs is not necessarily valid,
          /* If the sum of two regs is not necessarily valid,
             reload the sum into a base reg.
             reload the sum into a base reg.
             That will at least work.  */
             That will at least work.  */
          find_reloads_address_part (ad, loc,
          find_reloads_address_part (ad, loc,
                                     base_reg_class (mode, MEM, SCRATCH),
                                     base_reg_class (mode, MEM, SCRATCH),
                                     Pmode, opnum, type, ind_levels);
                                     Pmode, opnum, type, ind_levels);
        }
        }
      return ! removed_and;
      return ! removed_and;
    }
    }
 
 
  /* If we have an indexed stack slot, there are three possible reasons why
  /* If we have an indexed stack slot, there are three possible reasons why
     it might be invalid: The index might need to be reloaded, the address
     it might be invalid: The index might need to be reloaded, the address
     might have been made by frame pointer elimination and hence have a
     might have been made by frame pointer elimination and hence have a
     constant out of range, or both reasons might apply.
     constant out of range, or both reasons might apply.
 
 
     We can easily check for an index needing reload, but even if that is the
     We can easily check for an index needing reload, but even if that is the
     case, we might also have an invalid constant.  To avoid making the
     case, we might also have an invalid constant.  To avoid making the
     conservative assumption and requiring two reloads, we see if this address
     conservative assumption and requiring two reloads, we see if this address
     is valid when not interpreted strictly.  If it is, the only problem is
     is valid when not interpreted strictly.  If it is, the only problem is
     that the index needs a reload and find_reloads_address_1 will take care
     that the index needs a reload and find_reloads_address_1 will take care
     of it.
     of it.
 
 
     Handle all base registers here, not just fp/ap/sp, because on some
     Handle all base registers here, not just fp/ap/sp, because on some
     targets (namely SPARC) we can also get invalid addresses from preventive
     targets (namely SPARC) we can also get invalid addresses from preventive
     subreg big-endian corrections made by find_reloads_toplev.  We
     subreg big-endian corrections made by find_reloads_toplev.  We
     can also get expressions involving LO_SUM (rather than PLUS) from
     can also get expressions involving LO_SUM (rather than PLUS) from
     find_reloads_subreg_address.
     find_reloads_subreg_address.
 
 
     If we decide to do something, it must be that `double_reg_address_ok'
     If we decide to do something, it must be that `double_reg_address_ok'
     is true.  We generate a reload of the base register + constant and
     is true.  We generate a reload of the base register + constant and
     rework the sum so that the reload register will be added to the index.
     rework the sum so that the reload register will be added to the index.
     This is safe because we know the address isn't shared.
     This is safe because we know the address isn't shared.
 
 
     We check for the base register as both the first and second operand of
     We check for the base register as both the first and second operand of
     the innermost PLUS and/or LO_SUM.  */
     the innermost PLUS and/or LO_SUM.  */
 
 
  for (op_index = 0; op_index < 2; ++op_index)
  for (op_index = 0; op_index < 2; ++op_index)
    {
    {
      rtx operand, addend;
      rtx operand, addend;
      enum rtx_code inner_code;
      enum rtx_code inner_code;
 
 
      if (GET_CODE (ad) != PLUS)
      if (GET_CODE (ad) != PLUS)
          continue;
          continue;
 
 
      inner_code = GET_CODE (XEXP (ad, 0));
      inner_code = GET_CODE (XEXP (ad, 0));
      if (!(GET_CODE (ad) == PLUS
      if (!(GET_CODE (ad) == PLUS
            && GET_CODE (XEXP (ad, 1)) == CONST_INT
            && GET_CODE (XEXP (ad, 1)) == CONST_INT
            && (inner_code == PLUS || inner_code == LO_SUM)))
            && (inner_code == PLUS || inner_code == LO_SUM)))
        continue;
        continue;
 
 
      operand = XEXP (XEXP (ad, 0), op_index);
      operand = XEXP (XEXP (ad, 0), op_index);
      if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
      if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
        continue;
        continue;
 
 
      addend = XEXP (XEXP (ad, 0), 1 - op_index);
      addend = XEXP (XEXP (ad, 0), 1 - op_index);
 
 
      if ((regno_ok_for_base_p (REGNO (operand), mode, inner_code,
      if ((regno_ok_for_base_p (REGNO (operand), mode, inner_code,
                                GET_CODE (addend))
                                GET_CODE (addend))
           || operand == frame_pointer_rtx
           || operand == frame_pointer_rtx
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
           || operand == hard_frame_pointer_rtx
           || operand == hard_frame_pointer_rtx
#endif
#endif
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
           || operand == arg_pointer_rtx
           || operand == arg_pointer_rtx
#endif
#endif
           || operand == stack_pointer_rtx)
           || operand == stack_pointer_rtx)
          && ! maybe_memory_address_p (mode, ad,
          && ! maybe_memory_address_p (mode, ad,
                                       &XEXP (XEXP (ad, 0), 1 - op_index)))
                                       &XEXP (XEXP (ad, 0), 1 - op_index)))
        {
        {
          rtx offset_reg;
          rtx offset_reg;
          enum reg_class cls;
          enum reg_class cls;
 
 
          offset_reg = plus_constant (operand, INTVAL (XEXP (ad, 1)));
          offset_reg = plus_constant (operand, INTVAL (XEXP (ad, 1)));
 
 
          /* Form the adjusted address.  */
          /* Form the adjusted address.  */
          if (GET_CODE (XEXP (ad, 0)) == PLUS)
          if (GET_CODE (XEXP (ad, 0)) == PLUS)
            ad = gen_rtx_PLUS (GET_MODE (ad),
            ad = gen_rtx_PLUS (GET_MODE (ad),
                               op_index == 0 ? offset_reg : addend,
                               op_index == 0 ? offset_reg : addend,
                               op_index == 0 ? addend : offset_reg);
                               op_index == 0 ? addend : offset_reg);
          else
          else
            ad = gen_rtx_LO_SUM (GET_MODE (ad),
            ad = gen_rtx_LO_SUM (GET_MODE (ad),
                                 op_index == 0 ? offset_reg : addend,
                                 op_index == 0 ? offset_reg : addend,
                                 op_index == 0 ? addend : offset_reg);
                                 op_index == 0 ? addend : offset_reg);
          *loc = ad;
          *loc = ad;
 
 
          cls = base_reg_class (mode, MEM, GET_CODE (addend));
          cls = base_reg_class (mode, MEM, GET_CODE (addend));
          find_reloads_address_part (XEXP (ad, op_index),
          find_reloads_address_part (XEXP (ad, op_index),
                                     &XEXP (ad, op_index), cls,
                                     &XEXP (ad, op_index), cls,
                                     GET_MODE (ad), opnum, type, ind_levels);
                                     GET_MODE (ad), opnum, type, ind_levels);
          find_reloads_address_1 (mode,
          find_reloads_address_1 (mode,
                                  XEXP (ad, 1 - op_index), 1, GET_CODE (ad),
                                  XEXP (ad, 1 - op_index), 1, GET_CODE (ad),
                                  GET_CODE (XEXP (ad, op_index)),
                                  GET_CODE (XEXP (ad, op_index)),
                                  &XEXP (ad, 1 - op_index), opnum,
                                  &XEXP (ad, 1 - op_index), opnum,
                                  type, 0, insn);
                                  type, 0, insn);
 
 
          return 0;
          return 0;
        }
        }
    }
    }
 
 
  /* See if address becomes valid when an eliminable register
  /* See if address becomes valid when an eliminable register
     in a sum is replaced.  */
     in a sum is replaced.  */
 
 
  tem = ad;
  tem = ad;
  if (GET_CODE (ad) == PLUS)
  if (GET_CODE (ad) == PLUS)
    tem = subst_indexed_address (ad);
    tem = subst_indexed_address (ad);
  if (tem != ad && strict_memory_address_p (mode, tem))
  if (tem != ad && strict_memory_address_p (mode, tem))
    {
    {
      /* Ok, we win that way.  Replace any additional eliminable
      /* Ok, we win that way.  Replace any additional eliminable
         registers.  */
         registers.  */
 
 
      subst_reg_equivs_changed = 0;
      subst_reg_equivs_changed = 0;
      tem = subst_reg_equivs (tem, insn);
      tem = subst_reg_equivs (tem, insn);
 
 
      /* Make sure that didn't make the address invalid again.  */
      /* Make sure that didn't make the address invalid again.  */
 
 
      if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
      if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
        {
        {
          *loc = tem;
          *loc = tem;
          return 0;
          return 0;
        }
        }
    }
    }
 
 
  /* If constants aren't valid addresses, reload the constant address
  /* If constants aren't valid addresses, reload the constant address
     into a register.  */
     into a register.  */
  if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
  if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
    {
    {
      /* If AD is an address in the constant pool, the MEM rtx may be shared.
      /* If AD is an address in the constant pool, the MEM rtx may be shared.
         Unshare it so we can safely alter it.  */
         Unshare it so we can safely alter it.  */
      if (memrefloc && GET_CODE (ad) == SYMBOL_REF
      if (memrefloc && GET_CODE (ad) == SYMBOL_REF
          && CONSTANT_POOL_ADDRESS_P (ad))
          && CONSTANT_POOL_ADDRESS_P (ad))
        {
        {
          *memrefloc = copy_rtx (*memrefloc);
          *memrefloc = copy_rtx (*memrefloc);
          loc = &XEXP (*memrefloc, 0);
          loc = &XEXP (*memrefloc, 0);
          if (removed_and)
          if (removed_and)
            loc = &XEXP (*loc, 0);
            loc = &XEXP (*loc, 0);
        }
        }
 
 
      find_reloads_address_part (ad, loc, base_reg_class (mode, MEM, SCRATCH),
      find_reloads_address_part (ad, loc, base_reg_class (mode, MEM, SCRATCH),
                                 Pmode, opnum, type, ind_levels);
                                 Pmode, opnum, type, ind_levels);
      return ! removed_and;
      return ! removed_and;
    }
    }
 
 
  return find_reloads_address_1 (mode, ad, 0, MEM, SCRATCH, loc, opnum, type,
  return find_reloads_address_1 (mode, ad, 0, MEM, SCRATCH, loc, opnum, type,
                                 ind_levels, insn);
                                 ind_levels, insn);
}
}


/* Find all pseudo regs appearing in AD
/* Find all pseudo regs appearing in AD
   that are eliminable in favor of equivalent values
   that are eliminable in favor of equivalent values
   and do not have hard regs; replace them by their equivalents.
   and do not have hard regs; replace them by their equivalents.
   INSN, if nonzero, is the insn in which we do the reload.  We put USEs in
   INSN, if nonzero, is the insn in which we do the reload.  We put USEs in
   front of it for pseudos that we have to replace with stack slots.  */
   front of it for pseudos that we have to replace with stack slots.  */
 
 
static rtx
static rtx
subst_reg_equivs (rtx ad, rtx insn)
subst_reg_equivs (rtx ad, rtx insn)
{
{
  RTX_CODE code = GET_CODE (ad);
  RTX_CODE code = GET_CODE (ad);
  int i;
  int i;
  const char *fmt;
  const char *fmt;
 
 
  switch (code)
  switch (code)
    {
    {
    case HIGH:
    case HIGH:
    case CONST_INT:
    case CONST_INT:
    case CONST:
    case CONST:
    case CONST_DOUBLE:
    case CONST_DOUBLE:
    case CONST_VECTOR:
    case CONST_VECTOR:
    case SYMBOL_REF:
    case SYMBOL_REF:
    case LABEL_REF:
    case LABEL_REF:
    case PC:
    case PC:
    case CC0:
    case CC0:
      return ad;
      return ad;
 
 
    case REG:
    case REG:
      {
      {
        int regno = REGNO (ad);
        int regno = REGNO (ad);
 
 
        if (reg_equiv_constant[regno] != 0)
        if (reg_equiv_constant[regno] != 0)
          {
          {
            subst_reg_equivs_changed = 1;
            subst_reg_equivs_changed = 1;
            return reg_equiv_constant[regno];
            return reg_equiv_constant[regno];
          }
          }
        if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
        if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
          {
          {
            rtx mem = make_memloc (ad, regno);
            rtx mem = make_memloc (ad, regno);
            if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
            if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
              {
              {
                subst_reg_equivs_changed = 1;
                subst_reg_equivs_changed = 1;
                /* We mark the USE with QImode so that we recognize it
                /* We mark the USE with QImode so that we recognize it
                   as one that can be safely deleted at the end of
                   as one that can be safely deleted at the end of
                   reload.  */
                   reload.  */
                PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
                PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
                          QImode);
                          QImode);
                return mem;
                return mem;
              }
              }
          }
          }
      }
      }
      return ad;
      return ad;
 
 
    case PLUS:
    case PLUS:
      /* Quickly dispose of a common case.  */
      /* Quickly dispose of a common case.  */
      if (XEXP (ad, 0) == frame_pointer_rtx
      if (XEXP (ad, 0) == frame_pointer_rtx
          && GET_CODE (XEXP (ad, 1)) == CONST_INT)
          && GET_CODE (XEXP (ad, 1)) == CONST_INT)
        return ad;
        return ad;
      break;
      break;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  fmt = GET_RTX_FORMAT (code);
  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    if (fmt[i] == 'e')
    if (fmt[i] == 'e')
      XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
      XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
  return ad;
  return ad;
}
}


/* Compute the sum of X and Y, making canonicalizations assumed in an
/* Compute the sum of X and Y, making canonicalizations assumed in an
   address, namely: sum constant integers, surround the sum of two
   address, namely: sum constant integers, surround the sum of two
   constants with a CONST, put the constant as the second operand, and
   constants with a CONST, put the constant as the second operand, and
   group the constant on the outermost sum.
   group the constant on the outermost sum.
 
 
   This routine assumes both inputs are already in canonical form.  */
   This routine assumes both inputs are already in canonical form.  */
 
 
rtx
rtx
form_sum (rtx x, rtx y)
form_sum (rtx x, rtx y)
{
{
  rtx tem;
  rtx tem;
  enum machine_mode mode = GET_MODE (x);
  enum machine_mode mode = GET_MODE (x);
 
 
  if (mode == VOIDmode)
  if (mode == VOIDmode)
    mode = GET_MODE (y);
    mode = GET_MODE (y);
 
 
  if (mode == VOIDmode)
  if (mode == VOIDmode)
    mode = Pmode;
    mode = Pmode;
 
 
  if (GET_CODE (x) == CONST_INT)
  if (GET_CODE (x) == CONST_INT)
    return plus_constant (y, INTVAL (x));
    return plus_constant (y, INTVAL (x));
  else if (GET_CODE (y) == CONST_INT)
  else if (GET_CODE (y) == CONST_INT)
    return plus_constant (x, INTVAL (y));
    return plus_constant (x, INTVAL (y));
  else if (CONSTANT_P (x))
  else if (CONSTANT_P (x))
    tem = x, x = y, y = tem;
    tem = x, x = y, y = tem;
 
 
  if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
  if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
    return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
    return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
 
 
  /* Note that if the operands of Y are specified in the opposite
  /* Note that if the operands of Y are specified in the opposite
     order in the recursive calls below, infinite recursion will occur.  */
     order in the recursive calls below, infinite recursion will occur.  */
  if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
  if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
    return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
    return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
 
 
  /* If both constant, encapsulate sum.  Otherwise, just form sum.  A
  /* If both constant, encapsulate sum.  Otherwise, just form sum.  A
     constant will have been placed second.  */
     constant will have been placed second.  */
  if (CONSTANT_P (x) && CONSTANT_P (y))
  if (CONSTANT_P (x) && CONSTANT_P (y))
    {
    {
      if (GET_CODE (x) == CONST)
      if (GET_CODE (x) == CONST)
        x = XEXP (x, 0);
        x = XEXP (x, 0);
      if (GET_CODE (y) == CONST)
      if (GET_CODE (y) == CONST)
        y = XEXP (y, 0);
        y = XEXP (y, 0);
 
 
      return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
      return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
    }
    }
 
 
  return gen_rtx_PLUS (mode, x, y);
  return gen_rtx_PLUS (mode, x, y);
}
}


/* If ADDR is a sum containing a pseudo register that should be
/* If ADDR is a sum containing a pseudo register that should be
   replaced with a constant (from reg_equiv_constant),
   replaced with a constant (from reg_equiv_constant),
   return the result of doing so, and also apply the associative
   return the result of doing so, and also apply the associative
   law so that the result is more likely to be a valid address.
   law so that the result is more likely to be a valid address.
   (But it is not guaranteed to be one.)
   (But it is not guaranteed to be one.)
 
 
   Note that at most one register is replaced, even if more are
   Note that at most one register is replaced, even if more are
   replaceable.  Also, we try to put the result into a canonical form
   replaceable.  Also, we try to put the result into a canonical form
   so it is more likely to be a valid address.
   so it is more likely to be a valid address.
 
 
   In all other cases, return ADDR.  */
   In all other cases, return ADDR.  */
 
 
static rtx
static rtx
subst_indexed_address (rtx addr)
subst_indexed_address (rtx addr)
{
{
  rtx op0 = 0, op1 = 0, op2 = 0;
  rtx op0 = 0, op1 = 0, op2 = 0;
  rtx tem;
  rtx tem;
  int regno;
  int regno;
 
 
  if (GET_CODE (addr) == PLUS)
  if (GET_CODE (addr) == PLUS)
    {
    {
      /* Try to find a register to replace.  */
      /* Try to find a register to replace.  */
      op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
      op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
      if (REG_P (op0)
      if (REG_P (op0)
          && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
          && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
          && reg_renumber[regno] < 0
          && reg_renumber[regno] < 0
          && reg_equiv_constant[regno] != 0)
          && reg_equiv_constant[regno] != 0)
        op0 = reg_equiv_constant[regno];
        op0 = reg_equiv_constant[regno];
      else if (REG_P (op1)
      else if (REG_P (op1)
               && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
               && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
               && reg_renumber[regno] < 0
               && reg_renumber[regno] < 0
               && reg_equiv_constant[regno] != 0)
               && reg_equiv_constant[regno] != 0)
        op1 = reg_equiv_constant[regno];
        op1 = reg_equiv_constant[regno];
      else if (GET_CODE (op0) == PLUS
      else if (GET_CODE (op0) == PLUS
               && (tem = subst_indexed_address (op0)) != op0)
               && (tem = subst_indexed_address (op0)) != op0)
        op0 = tem;
        op0 = tem;
      else if (GET_CODE (op1) == PLUS
      else if (GET_CODE (op1) == PLUS
               && (tem = subst_indexed_address (op1)) != op1)
               && (tem = subst_indexed_address (op1)) != op1)
        op1 = tem;
        op1 = tem;
      else
      else
        return addr;
        return addr;
 
 
      /* Pick out up to three things to add.  */
      /* Pick out up to three things to add.  */
      if (GET_CODE (op1) == PLUS)
      if (GET_CODE (op1) == PLUS)
        op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
        op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
      else if (GET_CODE (op0) == PLUS)
      else if (GET_CODE (op0) == PLUS)
        op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
        op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
 
 
      /* Compute the sum.  */
      /* Compute the sum.  */
      if (op2 != 0)
      if (op2 != 0)
        op1 = form_sum (op1, op2);
        op1 = form_sum (op1, op2);
      if (op1 != 0)
      if (op1 != 0)
        op0 = form_sum (op0, op1);
        op0 = form_sum (op0, op1);
 
 
      return op0;
      return op0;
    }
    }
  return addr;
  return addr;
}
}


/* Update the REG_INC notes for an insn.  It updates all REG_INC
/* Update the REG_INC notes for an insn.  It updates all REG_INC
   notes for the instruction which refer to REGNO the to refer
   notes for the instruction which refer to REGNO the to refer
   to the reload number.
   to the reload number.
 
 
   INSN is the insn for which any REG_INC notes need updating.
   INSN is the insn for which any REG_INC notes need updating.
 
 
   REGNO is the register number which has been reloaded.
   REGNO is the register number which has been reloaded.
 
 
   RELOADNUM is the reload number.  */
   RELOADNUM is the reload number.  */
 
 
static void
static void
update_auto_inc_notes (rtx insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
update_auto_inc_notes (rtx insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
                       int reloadnum ATTRIBUTE_UNUSED)
                       int reloadnum ATTRIBUTE_UNUSED)
{
{
#ifdef AUTO_INC_DEC
#ifdef AUTO_INC_DEC
  rtx link;
  rtx link;
 
 
  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
    if (REG_NOTE_KIND (link) == REG_INC
    if (REG_NOTE_KIND (link) == REG_INC
        && (int) REGNO (XEXP (link, 0)) == regno)
        && (int) REGNO (XEXP (link, 0)) == regno)
      push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
      push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
#endif
#endif
}
}


/* Record the pseudo registers we must reload into hard registers in a
/* Record the pseudo registers we must reload into hard registers in a
   subexpression of a would-be memory address, X referring to a value
   subexpression of a would-be memory address, X referring to a value
   in mode MODE.  (This function is not called if the address we find
   in mode MODE.  (This function is not called if the address we find
   is strictly valid.)
   is strictly valid.)
 
 
   CONTEXT = 1 means we are considering regs as index regs,
   CONTEXT = 1 means we are considering regs as index regs,
   = 0 means we are considering them as base regs.
   = 0 means we are considering them as base regs.
   OUTER_CODE is the code of the enclosing RTX, typically a MEM, a PLUS,
   OUTER_CODE is the code of the enclosing RTX, typically a MEM, a PLUS,
   or an autoinc code.
   or an autoinc code.
   If CONTEXT == 0 and OUTER_CODE is a PLUS or LO_SUM, then INDEX_CODE
   If CONTEXT == 0 and OUTER_CODE is a PLUS or LO_SUM, then INDEX_CODE
   is the code of the index part of the address.  Otherwise, pass SCRATCH
   is the code of the index part of the address.  Otherwise, pass SCRATCH
   for this argument.
   for this argument.
   OPNUM and TYPE specify the purpose of any reloads made.
   OPNUM and TYPE specify the purpose of any reloads made.
 
 
   IND_LEVELS says how many levels of indirect addressing are
   IND_LEVELS says how many levels of indirect addressing are
   supported at this point in the address.
   supported at this point in the address.
 
 
   INSN, if nonzero, is the insn in which we do the reload.  It is used
   INSN, if nonzero, is the insn in which we do the reload.  It is used
   to determine if we may generate output reloads.
   to determine if we may generate output reloads.
 
 
   We return nonzero if X, as a whole, is reloaded or replaced.  */
   We return nonzero if X, as a whole, is reloaded or replaced.  */
 
 
/* Note that we take shortcuts assuming that no multi-reg machine mode
/* Note that we take shortcuts assuming that no multi-reg machine mode
   occurs as part of an address.
   occurs as part of an address.
   Also, this is not fully machine-customizable; it works for machines
   Also, this is not fully machine-customizable; it works for machines
   such as VAXen and 68000's and 32000's, but other possible machines
   such as VAXen and 68000's and 32000's, but other possible machines
   could have addressing modes that this does not handle right.
   could have addressing modes that this does not handle right.
   If you add push_reload calls here, you need to make sure gen_reload
   If you add push_reload calls here, you need to make sure gen_reload
   handles those cases gracefully.  */
   handles those cases gracefully.  */
 
 
static int
static int
find_reloads_address_1 (enum machine_mode mode, rtx x, int context,
find_reloads_address_1 (enum machine_mode mode, rtx x, int context,
                        enum rtx_code outer_code, enum rtx_code index_code,
                        enum rtx_code outer_code, enum rtx_code index_code,
                        rtx *loc, int opnum, enum reload_type type,
                        rtx *loc, int opnum, enum reload_type type,
                        int ind_levels, rtx insn)
                        int ind_levels, rtx insn)
{
{
#define REG_OK_FOR_CONTEXT(CONTEXT, REGNO, MODE, OUTER, INDEX)          \
#define REG_OK_FOR_CONTEXT(CONTEXT, REGNO, MODE, OUTER, INDEX)          \
  ((CONTEXT) == 0                                                        \
  ((CONTEXT) == 0                                                        \
   ? regno_ok_for_base_p (REGNO, MODE, OUTER, INDEX)                    \
   ? regno_ok_for_base_p (REGNO, MODE, OUTER, INDEX)                    \
   : REGNO_OK_FOR_INDEX_P (REGNO))
   : REGNO_OK_FOR_INDEX_P (REGNO))
 
 
  enum reg_class context_reg_class;
  enum reg_class context_reg_class;
  RTX_CODE code = GET_CODE (x);
  RTX_CODE code = GET_CODE (x);
 
 
  if (context == 1)
  if (context == 1)
    context_reg_class = INDEX_REG_CLASS;
    context_reg_class = INDEX_REG_CLASS;
  else
  else
    context_reg_class = base_reg_class (mode, outer_code, index_code);
    context_reg_class = base_reg_class (mode, outer_code, index_code);
 
 
  switch (code)
  switch (code)
    {
    {
    case PLUS:
    case PLUS:
      {
      {
        rtx orig_op0 = XEXP (x, 0);
        rtx orig_op0 = XEXP (x, 0);
        rtx orig_op1 = XEXP (x, 1);
        rtx orig_op1 = XEXP (x, 1);
        RTX_CODE code0 = GET_CODE (orig_op0);
        RTX_CODE code0 = GET_CODE (orig_op0);
        RTX_CODE code1 = GET_CODE (orig_op1);
        RTX_CODE code1 = GET_CODE (orig_op1);
        rtx op0 = orig_op0;
        rtx op0 = orig_op0;
        rtx op1 = orig_op1;
        rtx op1 = orig_op1;
 
 
        if (GET_CODE (op0) == SUBREG)
        if (GET_CODE (op0) == SUBREG)
          {
          {
            op0 = SUBREG_REG (op0);
            op0 = SUBREG_REG (op0);
            code0 = GET_CODE (op0);
            code0 = GET_CODE (op0);
            if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
            if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
              op0 = gen_rtx_REG (word_mode,
              op0 = gen_rtx_REG (word_mode,
                                 (REGNO (op0) +
                                 (REGNO (op0) +
                                  subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
                                  subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
                                                       GET_MODE (SUBREG_REG (orig_op0)),
                                                       GET_MODE (SUBREG_REG (orig_op0)),
                                                       SUBREG_BYTE (orig_op0),
                                                       SUBREG_BYTE (orig_op0),
                                                       GET_MODE (orig_op0))));
                                                       GET_MODE (orig_op0))));
          }
          }
 
 
        if (GET_CODE (op1) == SUBREG)
        if (GET_CODE (op1) == SUBREG)
          {
          {
            op1 = SUBREG_REG (op1);
            op1 = SUBREG_REG (op1);
            code1 = GET_CODE (op1);
            code1 = GET_CODE (op1);
            if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
            if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
              /* ??? Why is this given op1's mode and above for
              /* ??? Why is this given op1's mode and above for
                 ??? op0 SUBREGs we use word_mode?  */
                 ??? op0 SUBREGs we use word_mode?  */
              op1 = gen_rtx_REG (GET_MODE (op1),
              op1 = gen_rtx_REG (GET_MODE (op1),
                                 (REGNO (op1) +
                                 (REGNO (op1) +
                                  subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
                                  subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
                                                       GET_MODE (SUBREG_REG (orig_op1)),
                                                       GET_MODE (SUBREG_REG (orig_op1)),
                                                       SUBREG_BYTE (orig_op1),
                                                       SUBREG_BYTE (orig_op1),
                                                       GET_MODE (orig_op1))));
                                                       GET_MODE (orig_op1))));
          }
          }
        /* Plus in the index register may be created only as a result of
        /* Plus in the index register may be created only as a result of
           register rematerialization for expression like &localvar*4.  Reload it.
           register rematerialization for expression like &localvar*4.  Reload it.
           It may be possible to combine the displacement on the outer level,
           It may be possible to combine the displacement on the outer level,
           but it is probably not worthwhile to do so.  */
           but it is probably not worthwhile to do so.  */
        if (context == 1)
        if (context == 1)
          {
          {
            find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
            find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
                                  opnum, ADDR_TYPE (type), ind_levels, insn);
                                  opnum, ADDR_TYPE (type), ind_levels, insn);
            push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
            push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
                         context_reg_class,
                         context_reg_class,
                         GET_MODE (x), VOIDmode, 0, 0, opnum, type);
                         GET_MODE (x), VOIDmode, 0, 0, opnum, type);
            return 1;
            return 1;
          }
          }
 
 
        if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
        if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
            || code0 == ZERO_EXTEND || code1 == MEM)
            || code0 == ZERO_EXTEND || code1 == MEM)
          {
          {
            find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
            find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
                                    &XEXP (x, 0), opnum, type, ind_levels,
                                    &XEXP (x, 0), opnum, type, ind_levels,
                                    insn);
                                    insn);
            find_reloads_address_1 (mode, orig_op1, 0, PLUS, code0,
            find_reloads_address_1 (mode, orig_op1, 0, PLUS, code0,
                                    &XEXP (x, 1), opnum, type, ind_levels,
                                    &XEXP (x, 1), opnum, type, ind_levels,
                                    insn);
                                    insn);
          }
          }
 
 
        else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
        else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
                 || code1 == ZERO_EXTEND || code0 == MEM)
                 || code1 == ZERO_EXTEND || code0 == MEM)
          {
          {
            find_reloads_address_1 (mode, orig_op0, 0, PLUS, code1,
            find_reloads_address_1 (mode, orig_op0, 0, PLUS, code1,
                                    &XEXP (x, 0), opnum, type, ind_levels,
                                    &XEXP (x, 0), opnum, type, ind_levels,
                                    insn);
                                    insn);
            find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
            find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
                                    &XEXP (x, 1), opnum, type, ind_levels,
                                    &XEXP (x, 1), opnum, type, ind_levels,
                                    insn);
                                    insn);
          }
          }
 
 
        else if (code0 == CONST_INT || code0 == CONST
        else if (code0 == CONST_INT || code0 == CONST
                 || code0 == SYMBOL_REF || code0 == LABEL_REF)
                 || code0 == SYMBOL_REF || code0 == LABEL_REF)
          find_reloads_address_1 (mode, orig_op1, 0, PLUS, code0,
          find_reloads_address_1 (mode, orig_op1, 0, PLUS, code0,
                                  &XEXP (x, 1), opnum, type, ind_levels,
                                  &XEXP (x, 1), opnum, type, ind_levels,
                                  insn);
                                  insn);
 
 
        else if (code1 == CONST_INT || code1 == CONST
        else if (code1 == CONST_INT || code1 == CONST
                 || code1 == SYMBOL_REF || code1 == LABEL_REF)
                 || code1 == SYMBOL_REF || code1 == LABEL_REF)
          find_reloads_address_1 (mode, orig_op0, 0, PLUS, code1,
          find_reloads_address_1 (mode, orig_op0, 0, PLUS, code1,
                                  &XEXP (x, 0), opnum, type, ind_levels,
                                  &XEXP (x, 0), opnum, type, ind_levels,
                                  insn);
                                  insn);
 
 
        else if (code0 == REG && code1 == REG)
        else if (code0 == REG && code1 == REG)
          {
          {
            if (REGNO_OK_FOR_INDEX_P (REGNO (op0))
            if (REGNO_OK_FOR_INDEX_P (REGNO (op0))
                && regno_ok_for_base_p (REGNO (op1), mode, PLUS, REG))
                && regno_ok_for_base_p (REGNO (op1), mode, PLUS, REG))
              return 0;
              return 0;
            else if (REGNO_OK_FOR_INDEX_P (REGNO (op1))
            else if (REGNO_OK_FOR_INDEX_P (REGNO (op1))
                     && regno_ok_for_base_p (REGNO (op0), mode, PLUS, REG))
                     && regno_ok_for_base_p (REGNO (op0), mode, PLUS, REG))
              return 0;
              return 0;
            else if (regno_ok_for_base_p (REGNO (op1), mode, PLUS, REG))
            else if (regno_ok_for_base_p (REGNO (op1), mode, PLUS, REG))
              find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
              find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
                                      &XEXP (x, 0), opnum, type, ind_levels,
                                      &XEXP (x, 0), opnum, type, ind_levels,
                                      insn);
                                      insn);
            else if (regno_ok_for_base_p (REGNO (op0), mode, PLUS, REG))
            else if (regno_ok_for_base_p (REGNO (op0), mode, PLUS, REG))
              find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
              find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
                                      &XEXP (x, 1), opnum, type, ind_levels,
                                      &XEXP (x, 1), opnum, type, ind_levels,
                                      insn);
                                      insn);
            else if (REGNO_OK_FOR_INDEX_P (REGNO (op1)))
            else if (REGNO_OK_FOR_INDEX_P (REGNO (op1)))
              find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
              find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
                                      &XEXP (x, 0), opnum, type, ind_levels,
                                      &XEXP (x, 0), opnum, type, ind_levels,
                                      insn);
                                      insn);
            else if (REGNO_OK_FOR_INDEX_P (REGNO (op0)))
            else if (REGNO_OK_FOR_INDEX_P (REGNO (op0)))
              find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
              find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
                                      &XEXP (x, 1), opnum, type, ind_levels,
                                      &XEXP (x, 1), opnum, type, ind_levels,
                                      insn);
                                      insn);
            else
            else
              {
              {
                find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
                find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
                                        &XEXP (x, 0), opnum, type, ind_levels,
                                        &XEXP (x, 0), opnum, type, ind_levels,
                                        insn);
                                        insn);
                find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
                find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
                                        &XEXP (x, 1), opnum, type, ind_levels,
                                        &XEXP (x, 1), opnum, type, ind_levels,
                                        insn);
                                        insn);
              }
              }
          }
          }
 
 
        else if (code0 == REG)
        else if (code0 == REG)
          {
          {
            find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
            find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
                                    &XEXP (x, 0), opnum, type, ind_levels,
                                    &XEXP (x, 0), opnum, type, ind_levels,
                                    insn);
                                    insn);
            find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
            find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
                                    &XEXP (x, 1), opnum, type, ind_levels,
                                    &XEXP (x, 1), opnum, type, ind_levels,
                                    insn);
                                    insn);
          }
          }
 
 
        else if (code1 == REG)
        else if (code1 == REG)
          {
          {
            find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
            find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
                                    &XEXP (x, 1), opnum, type, ind_levels,
                                    &XEXP (x, 1), opnum, type, ind_levels,
                                    insn);
                                    insn);
            find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
            find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
                                    &XEXP (x, 0), opnum, type, ind_levels,
                                    &XEXP (x, 0), opnum, type, ind_levels,
                                    insn);
                                    insn);
          }
          }
      }
      }
 
 
      return 0;
      return 0;
 
 
    case POST_MODIFY:
    case POST_MODIFY:
    case PRE_MODIFY:
    case PRE_MODIFY:
      {
      {
        rtx op0 = XEXP (x, 0);
        rtx op0 = XEXP (x, 0);
        rtx op1 = XEXP (x, 1);
        rtx op1 = XEXP (x, 1);
        enum rtx_code index_code;
        enum rtx_code index_code;
        int regno;
        int regno;
        int reloadnum;
        int reloadnum;
 
 
        if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
        if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
          return 0;
          return 0;
 
 
        /* Currently, we only support {PRE,POST}_MODIFY constructs
        /* Currently, we only support {PRE,POST}_MODIFY constructs
           where a base register is {inc,dec}remented by the contents
           where a base register is {inc,dec}remented by the contents
           of another register or by a constant value.  Thus, these
           of another register or by a constant value.  Thus, these
           operands must match.  */
           operands must match.  */
        gcc_assert (op0 == XEXP (op1, 0));
        gcc_assert (op0 == XEXP (op1, 0));
 
 
        /* Require index register (or constant).  Let's just handle the
        /* Require index register (or constant).  Let's just handle the
           register case in the meantime... If the target allows
           register case in the meantime... If the target allows
           auto-modify by a constant then we could try replacing a pseudo
           auto-modify by a constant then we could try replacing a pseudo
           register with its equivalent constant where applicable.
           register with its equivalent constant where applicable.
 
 
           If we later decide to reload the whole PRE_MODIFY or
           If we later decide to reload the whole PRE_MODIFY or
           POST_MODIFY, inc_for_reload might clobber the reload register
           POST_MODIFY, inc_for_reload might clobber the reload register
           before reading the index.  The index register might therefore
           before reading the index.  The index register might therefore
           need to live longer than a TYPE reload normally would, so be
           need to live longer than a TYPE reload normally would, so be
           conservative and class it as RELOAD_OTHER.  */
           conservative and class it as RELOAD_OTHER.  */
        if (REG_P (XEXP (op1, 1)))
        if (REG_P (XEXP (op1, 1)))
          if (!REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
          if (!REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
            find_reloads_address_1 (mode, XEXP (op1, 1), 1, code, SCRATCH,
            find_reloads_address_1 (mode, XEXP (op1, 1), 1, code, SCRATCH,
                                    &XEXP (op1, 1), opnum, RELOAD_OTHER,
                                    &XEXP (op1, 1), opnum, RELOAD_OTHER,
                                    ind_levels, insn);
                                    ind_levels, insn);
 
 
        gcc_assert (REG_P (XEXP (op1, 0)));
        gcc_assert (REG_P (XEXP (op1, 0)));
 
 
        regno = REGNO (XEXP (op1, 0));
        regno = REGNO (XEXP (op1, 0));
        index_code = GET_CODE (XEXP (op1, 1));
        index_code = GET_CODE (XEXP (op1, 1));
 
 
        /* A register that is incremented cannot be constant!  */
        /* A register that is incremented cannot be constant!  */
        gcc_assert (regno < FIRST_PSEUDO_REGISTER
        gcc_assert (regno < FIRST_PSEUDO_REGISTER
                    || reg_equiv_constant[regno] == 0);
                    || reg_equiv_constant[regno] == 0);
 
 
        /* Handle a register that is equivalent to a memory location
        /* Handle a register that is equivalent to a memory location
            which cannot be addressed directly.  */
            which cannot be addressed directly.  */
        if (reg_equiv_memory_loc[regno] != 0
        if (reg_equiv_memory_loc[regno] != 0
            && (reg_equiv_address[regno] != 0
            && (reg_equiv_address[regno] != 0
                || num_not_at_initial_offset))
                || num_not_at_initial_offset))
          {
          {
            rtx tem = make_memloc (XEXP (x, 0), regno);
            rtx tem = make_memloc (XEXP (x, 0), regno);
 
 
            if (reg_equiv_address[regno]
            if (reg_equiv_address[regno]
                || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
                || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
              {
              {
                rtx orig = tem;
                rtx orig = tem;
 
 
                /* First reload the memory location's address.
                /* First reload the memory location's address.
                    We can't use ADDR_TYPE (type) here, because we need to
                    We can't use ADDR_TYPE (type) here, because we need to
                    write back the value after reading it, hence we actually
                    write back the value after reading it, hence we actually
                    need two registers.  */
                    need two registers.  */
                find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
                find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
                                      &XEXP (tem, 0), opnum,
                                      &XEXP (tem, 0), opnum,
                                      RELOAD_OTHER,
                                      RELOAD_OTHER,
                                      ind_levels, insn);
                                      ind_levels, insn);
 
 
                if (tem != orig)
                if (tem != orig)
                  push_reg_equiv_alt_mem (regno, tem);
                  push_reg_equiv_alt_mem (regno, tem);
 
 
                /* Then reload the memory location into a base
                /* Then reload the memory location into a base
                   register.  */
                   register.  */
                reloadnum = push_reload (tem, tem, &XEXP (x, 0),
                reloadnum = push_reload (tem, tem, &XEXP (x, 0),
                                         &XEXP (op1, 0),
                                         &XEXP (op1, 0),
                                         base_reg_class (mode, code,
                                         base_reg_class (mode, code,
                                                         index_code),
                                                         index_code),
                                         GET_MODE (x), GET_MODE (x), 0,
                                         GET_MODE (x), GET_MODE (x), 0,
                                         0, opnum, RELOAD_OTHER);
                                         0, opnum, RELOAD_OTHER);
 
 
                update_auto_inc_notes (this_insn, regno, reloadnum);
                update_auto_inc_notes (this_insn, regno, reloadnum);
                return 0;
                return 0;
              }
              }
          }
          }
 
 
        if (reg_renumber[regno] >= 0)
        if (reg_renumber[regno] >= 0)
          regno = reg_renumber[regno];
          regno = reg_renumber[regno];
 
 
        /* We require a base register here...  */
        /* We require a base register here...  */
        if (!regno_ok_for_base_p (regno, GET_MODE (x), code, index_code))
        if (!regno_ok_for_base_p (regno, GET_MODE (x), code, index_code))
          {
          {
            reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
            reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
                                     &XEXP (op1, 0), &XEXP (x, 0),
                                     &XEXP (op1, 0), &XEXP (x, 0),
                                     base_reg_class (mode, code, index_code),
                                     base_reg_class (mode, code, index_code),
                                     GET_MODE (x), GET_MODE (x), 0, 0,
                                     GET_MODE (x), GET_MODE (x), 0, 0,
                                     opnum, RELOAD_OTHER);
                                     opnum, RELOAD_OTHER);
 
 
            update_auto_inc_notes (this_insn, regno, reloadnum);
            update_auto_inc_notes (this_insn, regno, reloadnum);
            return 0;
            return 0;
          }
          }
      }
      }
      return 0;
      return 0;
 
 
    case POST_INC:
    case POST_INC:
    case POST_DEC:
    case POST_DEC:
    case PRE_INC:
    case PRE_INC:
    case PRE_DEC:
    case PRE_DEC:
      if (REG_P (XEXP (x, 0)))
      if (REG_P (XEXP (x, 0)))
        {
        {
          int regno = REGNO (XEXP (x, 0));
          int regno = REGNO (XEXP (x, 0));
          int value = 0;
          int value = 0;
          rtx x_orig = x;
          rtx x_orig = x;
 
 
          /* A register that is incremented cannot be constant!  */
          /* A register that is incremented cannot be constant!  */
          gcc_assert (regno < FIRST_PSEUDO_REGISTER
          gcc_assert (regno < FIRST_PSEUDO_REGISTER
                      || reg_equiv_constant[regno] == 0);
                      || reg_equiv_constant[regno] == 0);
 
 
          /* Handle a register that is equivalent to a memory location
          /* Handle a register that is equivalent to a memory location
             which cannot be addressed directly.  */
             which cannot be addressed directly.  */
          if (reg_equiv_memory_loc[regno] != 0
          if (reg_equiv_memory_loc[regno] != 0
              && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
              && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
            {
            {
              rtx tem = make_memloc (XEXP (x, 0), regno);
              rtx tem = make_memloc (XEXP (x, 0), regno);
              if (reg_equiv_address[regno]
              if (reg_equiv_address[regno]
                  || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
                  || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
                {
                {
                  rtx orig = tem;
                  rtx orig = tem;
 
 
                  /* First reload the memory location's address.
                  /* First reload the memory location's address.
                     We can't use ADDR_TYPE (type) here, because we need to
                     We can't use ADDR_TYPE (type) here, because we need to
                     write back the value after reading it, hence we actually
                     write back the value after reading it, hence we actually
                     need two registers.  */
                     need two registers.  */
                  find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
                  find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
                                        &XEXP (tem, 0), opnum, type,
                                        &XEXP (tem, 0), opnum, type,
                                        ind_levels, insn);
                                        ind_levels, insn);
                  if (tem != orig)
                  if (tem != orig)
                    push_reg_equiv_alt_mem (regno, tem);
                    push_reg_equiv_alt_mem (regno, tem);
                  /* Put this inside a new increment-expression.  */
                  /* Put this inside a new increment-expression.  */
                  x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
                  x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
                  /* Proceed to reload that, as if it contained a register.  */
                  /* Proceed to reload that, as if it contained a register.  */
                }
                }
            }
            }
 
 
          /* If we have a hard register that is ok as an index,
          /* If we have a hard register that is ok as an index,
             don't make a reload.  If an autoincrement of a nice register
             don't make a reload.  If an autoincrement of a nice register
             isn't "valid", it must be that no autoincrement is "valid".
             isn't "valid", it must be that no autoincrement is "valid".
             If that is true and something made an autoincrement anyway,
             If that is true and something made an autoincrement anyway,
             this must be a special context where one is allowed.
             this must be a special context where one is allowed.
             (For example, a "push" instruction.)
             (For example, a "push" instruction.)
             We can't improve this address, so leave it alone.  */
             We can't improve this address, so leave it alone.  */
 
 
          /* Otherwise, reload the autoincrement into a suitable hard reg
          /* Otherwise, reload the autoincrement into a suitable hard reg
             and record how much to increment by.  */
             and record how much to increment by.  */
 
 
          if (reg_renumber[regno] >= 0)
          if (reg_renumber[regno] >= 0)
            regno = reg_renumber[regno];
            regno = reg_renumber[regno];
          if (regno >= FIRST_PSEUDO_REGISTER
          if (regno >= FIRST_PSEUDO_REGISTER
              || !REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
              || !REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
                                      index_code))
                                      index_code))
            {
            {
              int reloadnum;
              int reloadnum;
 
 
              /* If we can output the register afterwards, do so, this
              /* If we can output the register afterwards, do so, this
                 saves the extra update.
                 saves the extra update.
                 We can do so if we have an INSN - i.e. no JUMP_INSN nor
                 We can do so if we have an INSN - i.e. no JUMP_INSN nor
                 CALL_INSN - and it does not set CC0.
                 CALL_INSN - and it does not set CC0.
                 But don't do this if we cannot directly address the
                 But don't do this if we cannot directly address the
                 memory location, since this will make it harder to
                 memory location, since this will make it harder to
                 reuse address reloads, and increases register pressure.
                 reuse address reloads, and increases register pressure.
                 Also don't do this if we can probably update x directly.  */
                 Also don't do this if we can probably update x directly.  */
              rtx equiv = (MEM_P (XEXP (x, 0))
              rtx equiv = (MEM_P (XEXP (x, 0))
                           ? XEXP (x, 0)
                           ? XEXP (x, 0)
                           : reg_equiv_mem[regno]);
                           : reg_equiv_mem[regno]);
              int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
              int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
              if (insn && NONJUMP_INSN_P (insn) && equiv
              if (insn && NONJUMP_INSN_P (insn) && equiv
                  && memory_operand (equiv, GET_MODE (equiv))
                  && memory_operand (equiv, GET_MODE (equiv))
#ifdef HAVE_cc0
#ifdef HAVE_cc0
                  && ! sets_cc0_p (PATTERN (insn))
                  && ! sets_cc0_p (PATTERN (insn))
#endif
#endif
                  && ! (icode != CODE_FOR_nothing
                  && ! (icode != CODE_FOR_nothing
                        && ((*insn_data[icode].operand[0].predicate)
                        && ((*insn_data[icode].operand[0].predicate)
                            (equiv, Pmode))
                            (equiv, Pmode))
                        && ((*insn_data[icode].operand[1].predicate)
                        && ((*insn_data[icode].operand[1].predicate)
                            (equiv, Pmode))))
                            (equiv, Pmode))))
                {
                {
                  /* We use the original pseudo for loc, so that
                  /* We use the original pseudo for loc, so that
                     emit_reload_insns() knows which pseudo this
                     emit_reload_insns() knows which pseudo this
                     reload refers to and updates the pseudo rtx, not
                     reload refers to and updates the pseudo rtx, not
                     its equivalent memory location, as well as the
                     its equivalent memory location, as well as the
                     corresponding entry in reg_last_reload_reg.  */
                     corresponding entry in reg_last_reload_reg.  */
                  loc = &XEXP (x_orig, 0);
                  loc = &XEXP (x_orig, 0);
                  x = XEXP (x, 0);
                  x = XEXP (x, 0);
                  reloadnum
                  reloadnum
                    = push_reload (x, x, loc, loc,
                    = push_reload (x, x, loc, loc,
                                   context_reg_class,
                                   context_reg_class,
                                   GET_MODE (x), GET_MODE (x), 0, 0,
                                   GET_MODE (x), GET_MODE (x), 0, 0,
                                   opnum, RELOAD_OTHER);
                                   opnum, RELOAD_OTHER);
                }
                }
              else
              else
                {
                {
                  reloadnum
                  reloadnum
                    = push_reload (x, NULL_RTX, loc, (rtx*) 0,
                    = push_reload (x, NULL_RTX, loc, (rtx*) 0,
                                   context_reg_class,
                                   context_reg_class,
                                   GET_MODE (x), GET_MODE (x), 0, 0,
                                   GET_MODE (x), GET_MODE (x), 0, 0,
                                   opnum, type);
                                   opnum, type);
                  rld[reloadnum].inc
                  rld[reloadnum].inc
                    = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
                    = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
 
 
                  value = 1;
                  value = 1;
                }
                }
 
 
              update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
              update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
                                     reloadnum);
                                     reloadnum);
            }
            }
          return value;
          return value;
        }
        }
 
 
      else if (MEM_P (XEXP (x, 0)))
      else if (MEM_P (XEXP (x, 0)))
        {
        {
          /* This is probably the result of a substitution, by eliminate_regs,
          /* This is probably the result of a substitution, by eliminate_regs,
             of an equivalent address for a pseudo that was not allocated to a
             of an equivalent address for a pseudo that was not allocated to a
             hard register.  Verify that the specified address is valid and
             hard register.  Verify that the specified address is valid and
             reload it into a register.  */
             reload it into a register.  */
          /* Variable `tem' might or might not be used in FIND_REG_INC_NOTE.  */
          /* Variable `tem' might or might not be used in FIND_REG_INC_NOTE.  */
          rtx tem ATTRIBUTE_UNUSED = XEXP (x, 0);
          rtx tem ATTRIBUTE_UNUSED = XEXP (x, 0);
          rtx link;
          rtx link;
          int reloadnum;
          int reloadnum;
 
 
          /* Since we know we are going to reload this item, don't decrement
          /* Since we know we are going to reload this item, don't decrement
             for the indirection level.
             for the indirection level.
 
 
             Note that this is actually conservative:  it would be slightly
             Note that this is actually conservative:  it would be slightly
             more efficient to use the value of SPILL_INDIRECT_LEVELS from
             more efficient to use the value of SPILL_INDIRECT_LEVELS from
             reload1.c here.  */
             reload1.c here.  */
          /* We can't use ADDR_TYPE (type) here, because we need to
          /* We can't use ADDR_TYPE (type) here, because we need to
             write back the value after reading it, hence we actually
             write back the value after reading it, hence we actually
             need two registers.  */
             need two registers.  */
          find_reloads_address (GET_MODE (x), &XEXP (x, 0),
          find_reloads_address (GET_MODE (x), &XEXP (x, 0),
                                XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
                                XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
                                opnum, type, ind_levels, insn);
                                opnum, type, ind_levels, insn);
 
 
          reloadnum = push_reload (x, NULL_RTX, loc, (rtx*) 0,
          reloadnum = push_reload (x, NULL_RTX, loc, (rtx*) 0,
                                   context_reg_class,
                                   context_reg_class,
                                   GET_MODE (x), VOIDmode, 0, 0, opnum, type);
                                   GET_MODE (x), VOIDmode, 0, 0, opnum, type);
          rld[reloadnum].inc
          rld[reloadnum].inc
            = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
            = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
 
 
          link = FIND_REG_INC_NOTE (this_insn, tem);
          link = FIND_REG_INC_NOTE (this_insn, tem);
          if (link != 0)
          if (link != 0)
            push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
            push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
 
 
          return 1;
          return 1;
        }
        }
      return 0;
      return 0;
 
 
    case TRUNCATE:
    case TRUNCATE:
    case SIGN_EXTEND:
    case SIGN_EXTEND:
    case ZERO_EXTEND:
    case ZERO_EXTEND:
      /* Look for parts to reload in the inner expression and reload them
      /* Look for parts to reload in the inner expression and reload them
         too, in addition to this operation.  Reloading all inner parts in
         too, in addition to this operation.  Reloading all inner parts in
         addition to this one shouldn't be necessary, but at this point,
         addition to this one shouldn't be necessary, but at this point,
         we don't know if we can possibly omit any part that *can* be
         we don't know if we can possibly omit any part that *can* be
         reloaded.  Targets that are better off reloading just either part
         reloaded.  Targets that are better off reloading just either part
         (or perhaps even a different part of an outer expression), should
         (or perhaps even a different part of an outer expression), should
         define LEGITIMIZE_RELOAD_ADDRESS.  */
         define LEGITIMIZE_RELOAD_ADDRESS.  */
      find_reloads_address_1 (GET_MODE (XEXP (x, 0)), XEXP (x, 0),
      find_reloads_address_1 (GET_MODE (XEXP (x, 0)), XEXP (x, 0),
                              context, code, SCRATCH, &XEXP (x, 0), opnum,
                              context, code, SCRATCH, &XEXP (x, 0), opnum,
                              type, ind_levels, insn);
                              type, ind_levels, insn);
      push_reload (x, NULL_RTX, loc, (rtx*) 0,
      push_reload (x, NULL_RTX, loc, (rtx*) 0,
                   context_reg_class,
                   context_reg_class,
                   GET_MODE (x), VOIDmode, 0, 0, opnum, type);
                   GET_MODE (x), VOIDmode, 0, 0, opnum, type);
      return 1;
      return 1;
 
 
    case MEM:
    case MEM:
      /* This is probably the result of a substitution, by eliminate_regs, of
      /* This is probably the result of a substitution, by eliminate_regs, of
         an equivalent address for a pseudo that was not allocated to a hard
         an equivalent address for a pseudo that was not allocated to a hard
         register.  Verify that the specified address is valid and reload it
         register.  Verify that the specified address is valid and reload it
         into a register.
         into a register.
 
 
         Since we know we are going to reload this item, don't decrement for
         Since we know we are going to reload this item, don't decrement for
         the indirection level.
         the indirection level.
 
 
         Note that this is actually conservative:  it would be slightly more
         Note that this is actually conservative:  it would be slightly more
         efficient to use the value of SPILL_INDIRECT_LEVELS from
         efficient to use the value of SPILL_INDIRECT_LEVELS from
         reload1.c here.  */
         reload1.c here.  */
 
 
      find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
      find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
                            opnum, ADDR_TYPE (type), ind_levels, insn);
                            opnum, ADDR_TYPE (type), ind_levels, insn);
      push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
      push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
                   context_reg_class,
                   context_reg_class,
                   GET_MODE (x), VOIDmode, 0, 0, opnum, type);
                   GET_MODE (x), VOIDmode, 0, 0, opnum, type);
      return 1;
      return 1;
 
 
    case REG:
    case REG:
      {
      {
        int regno = REGNO (x);
        int regno = REGNO (x);
 
 
        if (reg_equiv_constant[regno] != 0)
        if (reg_equiv_constant[regno] != 0)
          {
          {
            find_reloads_address_part (reg_equiv_constant[regno], loc,
            find_reloads_address_part (reg_equiv_constant[regno], loc,
                                       context_reg_class,
                                       context_reg_class,
                                       GET_MODE (x), opnum, type, ind_levels);
                                       GET_MODE (x), opnum, type, ind_levels);
            return 1;
            return 1;
          }
          }
 
 
#if 0 /* This might screw code in reload1.c to delete prior output-reload
#if 0 /* This might screw code in reload1.c to delete prior output-reload
         that feeds this insn.  */
         that feeds this insn.  */
        if (reg_equiv_mem[regno] != 0)
        if (reg_equiv_mem[regno] != 0)
          {
          {
            push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*) 0,
            push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*) 0,
                         context_reg_class,
                         context_reg_class,
                         GET_MODE (x), VOIDmode, 0, 0, opnum, type);
                         GET_MODE (x), VOIDmode, 0, 0, opnum, type);
            return 1;
            return 1;
          }
          }
#endif
#endif
 
 
        if (reg_equiv_memory_loc[regno]
        if (reg_equiv_memory_loc[regno]
            && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
            && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
          {
          {
            rtx tem = make_memloc (x, regno);
            rtx tem = make_memloc (x, regno);
            if (reg_equiv_address[regno] != 0
            if (reg_equiv_address[regno] != 0
                || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
                || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
              {
              {
                x = tem;
                x = tem;
                find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
                find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
                                      &XEXP (x, 0), opnum, ADDR_TYPE (type),
                                      &XEXP (x, 0), opnum, ADDR_TYPE (type),
                                      ind_levels, insn);
                                      ind_levels, insn);
                if (x != tem)
                if (x != tem)
                  push_reg_equiv_alt_mem (regno, x);
                  push_reg_equiv_alt_mem (regno, x);
              }
              }
          }
          }
 
 
        if (reg_renumber[regno] >= 0)
        if (reg_renumber[regno] >= 0)
          regno = reg_renumber[regno];
          regno = reg_renumber[regno];
 
 
        if (regno >= FIRST_PSEUDO_REGISTER
        if (regno >= FIRST_PSEUDO_REGISTER
            || !REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
            || !REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
                                    index_code))
                                    index_code))
          {
          {
            push_reload (x, NULL_RTX, loc, (rtx*) 0,
            push_reload (x, NULL_RTX, loc, (rtx*) 0,
                         context_reg_class,
                         context_reg_class,
                         GET_MODE (x), VOIDmode, 0, 0, opnum, type);
                         GET_MODE (x), VOIDmode, 0, 0, opnum, type);
            return 1;
            return 1;
          }
          }
 
 
        /* If a register appearing in an address is the subject of a CLOBBER
        /* If a register appearing in an address is the subject of a CLOBBER
           in this insn, reload it into some other register to be safe.
           in this insn, reload it into some other register to be safe.
           The CLOBBER is supposed to make the register unavailable
           The CLOBBER is supposed to make the register unavailable
           from before this insn to after it.  */
           from before this insn to after it.  */
        if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
        if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
          {
          {
            push_reload (x, NULL_RTX, loc, (rtx*) 0,
            push_reload (x, NULL_RTX, loc, (rtx*) 0,
                         context_reg_class,
                         context_reg_class,
                         GET_MODE (x), VOIDmode, 0, 0, opnum, type);
                         GET_MODE (x), VOIDmode, 0, 0, opnum, type);
            return 1;
            return 1;
          }
          }
      }
      }
      return 0;
      return 0;
 
 
    case SUBREG:
    case SUBREG:
      if (REG_P (SUBREG_REG (x)))
      if (REG_P (SUBREG_REG (x)))
        {
        {
          /* If this is a SUBREG of a hard register and the resulting register
          /* If this is a SUBREG of a hard register and the resulting register
             is of the wrong class, reload the whole SUBREG.  This avoids
             is of the wrong class, reload the whole SUBREG.  This avoids
             needless copies if SUBREG_REG is multi-word.  */
             needless copies if SUBREG_REG is multi-word.  */
          if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
          if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
            {
            {
              int regno ATTRIBUTE_UNUSED = subreg_regno (x);
              int regno ATTRIBUTE_UNUSED = subreg_regno (x);
 
 
              if (!REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
              if (!REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
                                       index_code))
                                       index_code))
                {
                {
                  push_reload (x, NULL_RTX, loc, (rtx*) 0,
                  push_reload (x, NULL_RTX, loc, (rtx*) 0,
                               context_reg_class,
                               context_reg_class,
                               GET_MODE (x), VOIDmode, 0, 0, opnum, type);
                               GET_MODE (x), VOIDmode, 0, 0, opnum, type);
                  return 1;
                  return 1;
                }
                }
            }
            }
          /* If this is a SUBREG of a pseudo-register, and the pseudo-register
          /* If this is a SUBREG of a pseudo-register, and the pseudo-register
             is larger than the class size, then reload the whole SUBREG.  */
             is larger than the class size, then reload the whole SUBREG.  */
          else
          else
            {
            {
              enum reg_class class = context_reg_class;
              enum reg_class class = context_reg_class;
              if ((unsigned) CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
              if ((unsigned) CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
                  > reg_class_size[class])
                  > reg_class_size[class])
                {
                {
                  x = find_reloads_subreg_address (x, 0, opnum,
                  x = find_reloads_subreg_address (x, 0, opnum,
                                                   ADDR_TYPE (type),
                                                   ADDR_TYPE (type),
                                                   ind_levels, insn);
                                                   ind_levels, insn);
                  push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
                  push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
                               GET_MODE (x), VOIDmode, 0, 0, opnum, type);
                               GET_MODE (x), VOIDmode, 0, 0, opnum, type);
                  return 1;
                  return 1;
                }
                }
            }
            }
        }
        }
      break;
      break;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  {
  {
    const char *fmt = GET_RTX_FORMAT (code);
    const char *fmt = GET_RTX_FORMAT (code);
    int i;
    int i;
 
 
    for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
      {
      {
        if (fmt[i] == 'e')
        if (fmt[i] == 'e')
          /* Pass SCRATCH for INDEX_CODE, since CODE can never be a PLUS once
          /* Pass SCRATCH for INDEX_CODE, since CODE can never be a PLUS once
             we get here.  */
             we get here.  */
          find_reloads_address_1 (mode, XEXP (x, i), context, code, SCRATCH,
          find_reloads_address_1 (mode, XEXP (x, i), context, code, SCRATCH,
                                  &XEXP (x, i), opnum, type, ind_levels, insn);
                                  &XEXP (x, i), opnum, type, ind_levels, insn);
      }
      }
  }
  }
 
 
#undef REG_OK_FOR_CONTEXT
#undef REG_OK_FOR_CONTEXT
  return 0;
  return 0;
}
}


/* X, which is found at *LOC, is a part of an address that needs to be
/* X, which is found at *LOC, is a part of an address that needs to be
   reloaded into a register of class CLASS.  If X is a constant, or if
   reloaded into a register of class CLASS.  If X is a constant, or if
   X is a PLUS that contains a constant, check that the constant is a
   X is a PLUS that contains a constant, check that the constant is a
   legitimate operand and that we are supposed to be able to load
   legitimate operand and that we are supposed to be able to load
   it into the register.
   it into the register.
 
 
   If not, force the constant into memory and reload the MEM instead.
   If not, force the constant into memory and reload the MEM instead.
 
 
   MODE is the mode to use, in case X is an integer constant.
   MODE is the mode to use, in case X is an integer constant.
 
 
   OPNUM and TYPE describe the purpose of any reloads made.
   OPNUM and TYPE describe the purpose of any reloads made.
 
 
   IND_LEVELS says how many levels of indirect addressing this machine
   IND_LEVELS says how many levels of indirect addressing this machine
   supports.  */
   supports.  */
 
 
static void
static void
find_reloads_address_part (rtx x, rtx *loc, enum reg_class class,
find_reloads_address_part (rtx x, rtx *loc, enum reg_class class,
                           enum machine_mode mode, int opnum,
                           enum machine_mode mode, int opnum,
                           enum reload_type type, int ind_levels)
                           enum reload_type type, int ind_levels)
{
{
  if (CONSTANT_P (x)
  if (CONSTANT_P (x)
      && (! LEGITIMATE_CONSTANT_P (x)
      && (! LEGITIMATE_CONSTANT_P (x)
          || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
          || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
    {
    {
      rtx tem;
      rtx tem;
 
 
      tem = x = force_const_mem (mode, x);
      tem = x = force_const_mem (mode, x);
      find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
      find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
                            opnum, type, ind_levels, 0);
                            opnum, type, ind_levels, 0);
    }
    }
 
 
  else if (GET_CODE (x) == PLUS
  else if (GET_CODE (x) == PLUS
           && CONSTANT_P (XEXP (x, 1))
           && CONSTANT_P (XEXP (x, 1))
           && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
           && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
               || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
               || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
    {
    {
      rtx tem;
      rtx tem;
 
 
      tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
      tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
      x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
      x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
      find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
      find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
                            opnum, type, ind_levels, 0);
                            opnum, type, ind_levels, 0);
    }
    }
 
 
  push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
  push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
               mode, VOIDmode, 0, 0, opnum, type);
               mode, VOIDmode, 0, 0, opnum, type);
}
}


/* X, a subreg of a pseudo, is a part of an address that needs to be
/* X, a subreg of a pseudo, is a part of an address that needs to be
   reloaded.
   reloaded.
 
 
   If the pseudo is equivalent to a memory location that cannot be directly
   If the pseudo is equivalent to a memory location that cannot be directly
   addressed, make the necessary address reloads.
   addressed, make the necessary address reloads.
 
 
   If address reloads have been necessary, or if the address is changed
   If address reloads have been necessary, or if the address is changed
   by register elimination, return the rtx of the memory location;
   by register elimination, return the rtx of the memory location;
   otherwise, return X.
   otherwise, return X.
 
 
   If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
   If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
   memory location.
   memory location.
 
 
   OPNUM and TYPE identify the purpose of the reload.
   OPNUM and TYPE identify the purpose of the reload.
 
 
   IND_LEVELS says how many levels of indirect addressing are
   IND_LEVELS says how many levels of indirect addressing are
   supported at this point in the address.
   supported at this point in the address.
 
 
   INSN, if nonzero, is the insn in which we do the reload.  It is used
   INSN, if nonzero, is the insn in which we do the reload.  It is used
   to determine where to put USEs for pseudos that we have to replace with
   to determine where to put USEs for pseudos that we have to replace with
   stack slots.  */
   stack slots.  */
 
 
static rtx
static rtx
find_reloads_subreg_address (rtx x, int force_replace, int opnum,
find_reloads_subreg_address (rtx x, int force_replace, int opnum,
                             enum reload_type type, int ind_levels, rtx insn)
                             enum reload_type type, int ind_levels, rtx insn)
{
{
  int regno = REGNO (SUBREG_REG (x));
  int regno = REGNO (SUBREG_REG (x));
 
 
  if (reg_equiv_memory_loc[regno])
  if (reg_equiv_memory_loc[regno])
    {
    {
      /* If the address is not directly addressable, or if the address is not
      /* If the address is not directly addressable, or if the address is not
         offsettable, then it must be replaced.  */
         offsettable, then it must be replaced.  */
      if (! force_replace
      if (! force_replace
          && (reg_equiv_address[regno]
          && (reg_equiv_address[regno]
              || ! offsettable_memref_p (reg_equiv_mem[regno])))
              || ! offsettable_memref_p (reg_equiv_mem[regno])))
        force_replace = 1;
        force_replace = 1;
 
 
      if (force_replace || num_not_at_initial_offset)
      if (force_replace || num_not_at_initial_offset)
        {
        {
          rtx tem = make_memloc (SUBREG_REG (x), regno);
          rtx tem = make_memloc (SUBREG_REG (x), regno);
 
 
          /* If the address changes because of register elimination, then
          /* If the address changes because of register elimination, then
             it must be replaced.  */
             it must be replaced.  */
          if (force_replace
          if (force_replace
              || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
              || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
            {
            {
              unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
              unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
              unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
              unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
              int offset;
              int offset;
              rtx orig = tem;
              rtx orig = tem;
              enum machine_mode orig_mode = GET_MODE (orig);
              enum machine_mode orig_mode = GET_MODE (orig);
              int reloaded;
              int reloaded;
 
 
              /* For big-endian paradoxical subregs, SUBREG_BYTE does not
              /* For big-endian paradoxical subregs, SUBREG_BYTE does not
                 hold the correct (negative) byte offset.  */
                 hold the correct (negative) byte offset.  */
              if (BYTES_BIG_ENDIAN && outer_size > inner_size)
              if (BYTES_BIG_ENDIAN && outer_size > inner_size)
                offset = inner_size - outer_size;
                offset = inner_size - outer_size;
              else
              else
                offset = SUBREG_BYTE (x);
                offset = SUBREG_BYTE (x);
 
 
              XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
              XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
              PUT_MODE (tem, GET_MODE (x));
              PUT_MODE (tem, GET_MODE (x));
 
 
              /* If this was a paradoxical subreg that we replaced, the
              /* If this was a paradoxical subreg that we replaced, the
                 resulting memory must be sufficiently aligned to allow
                 resulting memory must be sufficiently aligned to allow
                 us to widen the mode of the memory.  */
                 us to widen the mode of the memory.  */
              if (outer_size > inner_size)
              if (outer_size > inner_size)
                {
                {
                  rtx base;
                  rtx base;
 
 
                  base = XEXP (tem, 0);
                  base = XEXP (tem, 0);
                  if (GET_CODE (base) == PLUS)
                  if (GET_CODE (base) == PLUS)
                    {
                    {
                      if (GET_CODE (XEXP (base, 1)) == CONST_INT
                      if (GET_CODE (XEXP (base, 1)) == CONST_INT
                          && INTVAL (XEXP (base, 1)) % outer_size != 0)
                          && INTVAL (XEXP (base, 1)) % outer_size != 0)
                        return x;
                        return x;
                      base = XEXP (base, 0);
                      base = XEXP (base, 0);
                    }
                    }
                  if (!REG_P (base)
                  if (!REG_P (base)
                      || (REGNO_POINTER_ALIGN (REGNO (base))
                      || (REGNO_POINTER_ALIGN (REGNO (base))
                          < outer_size * BITS_PER_UNIT))
                          < outer_size * BITS_PER_UNIT))
                    return x;
                    return x;
                }
                }
 
 
              reloaded = find_reloads_address (GET_MODE (tem), &tem,
              reloaded = find_reloads_address (GET_MODE (tem), &tem,
                                               XEXP (tem, 0), &XEXP (tem, 0),
                                               XEXP (tem, 0), &XEXP (tem, 0),
                                               opnum, type, ind_levels, insn);
                                               opnum, type, ind_levels, insn);
              /* ??? Do we need to handle nonzero offsets somehow?  */
              /* ??? Do we need to handle nonzero offsets somehow?  */
              if (!offset && tem != orig)
              if (!offset && tem != orig)
                push_reg_equiv_alt_mem (regno, tem);
                push_reg_equiv_alt_mem (regno, tem);
 
 
              /* For some processors an address may be valid in the
              /* For some processors an address may be valid in the
                 original mode but not in a smaller mode.  For
                 original mode but not in a smaller mode.  For
                 example, ARM accepts a scaled index register in
                 example, ARM accepts a scaled index register in
                 SImode but not in HImode.  find_reloads_address
                 SImode but not in HImode.  find_reloads_address
                 assumes that we pass it a valid address, and doesn't
                 assumes that we pass it a valid address, and doesn't
                 force a reload.  This will probably be fine if
                 force a reload.  This will probably be fine if
                 find_reloads_address finds some reloads.  But if it
                 find_reloads_address finds some reloads.  But if it
                 doesn't find any, then we may have just converted a
                 doesn't find any, then we may have just converted a
                 valid address into an invalid one.  Check for that
                 valid address into an invalid one.  Check for that
                 here.  */
                 here.  */
              if (reloaded != 1
              if (reloaded != 1
                  && strict_memory_address_p (orig_mode, XEXP (tem, 0))
                  && strict_memory_address_p (orig_mode, XEXP (tem, 0))
                  && !strict_memory_address_p (GET_MODE (tem),
                  && !strict_memory_address_p (GET_MODE (tem),
                                               XEXP (tem, 0)))
                                               XEXP (tem, 0)))
                push_reload (XEXP (tem, 0), NULL_RTX, &XEXP (tem, 0), (rtx*) 0,
                push_reload (XEXP (tem, 0), NULL_RTX, &XEXP (tem, 0), (rtx*) 0,
                             base_reg_class (GET_MODE (tem), MEM, SCRATCH),
                             base_reg_class (GET_MODE (tem), MEM, SCRATCH),
                             GET_MODE (XEXP (tem, 0)), VOIDmode, 0, 0,
                             GET_MODE (XEXP (tem, 0)), VOIDmode, 0, 0,
                             opnum, type);
                             opnum, type);
 
 
              /* If this is not a toplevel operand, find_reloads doesn't see
              /* If this is not a toplevel operand, find_reloads doesn't see
                 this substitution.  We have to emit a USE of the pseudo so
                 this substitution.  We have to emit a USE of the pseudo so
                 that delete_output_reload can see it.  */
                 that delete_output_reload can see it.  */
              if (replace_reloads && recog_data.operand[opnum] != x)
              if (replace_reloads && recog_data.operand[opnum] != x)
                /* We mark the USE with QImode so that we recognize it
                /* We mark the USE with QImode so that we recognize it
                   as one that can be safely deleted at the end of
                   as one that can be safely deleted at the end of
                   reload.  */
                   reload.  */
                PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
                PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
                                                         SUBREG_REG (x)),
                                                         SUBREG_REG (x)),
                                            insn), QImode);
                                            insn), QImode);
              x = tem;
              x = tem;
            }
            }
        }
        }
    }
    }
  return x;
  return x;
}
}


/* Substitute into the current INSN the registers into which we have reloaded
/* Substitute into the current INSN the registers into which we have reloaded
   the things that need reloading.  The array `replacements'
   the things that need reloading.  The array `replacements'
   contains the locations of all pointers that must be changed
   contains the locations of all pointers that must be changed
   and says what to replace them with.
   and says what to replace them with.
 
 
   Return the rtx that X translates into; usually X, but modified.  */
   Return the rtx that X translates into; usually X, but modified.  */
 
 
void
void
subst_reloads (rtx insn)
subst_reloads (rtx insn)
{
{
  int i;
  int i;
 
 
  for (i = 0; i < n_replacements; i++)
  for (i = 0; i < n_replacements; i++)
    {
    {
      struct replacement *r = &replacements[i];
      struct replacement *r = &replacements[i];
      rtx reloadreg = rld[r->what].reg_rtx;
      rtx reloadreg = rld[r->what].reg_rtx;
      if (reloadreg)
      if (reloadreg)
        {
        {
#ifdef ENABLE_CHECKING
#ifdef ENABLE_CHECKING
          /* Internal consistency test.  Check that we don't modify
          /* Internal consistency test.  Check that we don't modify
             anything in the equivalence arrays.  Whenever something from
             anything in the equivalence arrays.  Whenever something from
             those arrays needs to be reloaded, it must be unshared before
             those arrays needs to be reloaded, it must be unshared before
             being substituted into; the equivalence must not be modified.
             being substituted into; the equivalence must not be modified.
             Otherwise, if the equivalence is used after that, it will
             Otherwise, if the equivalence is used after that, it will
             have been modified, and the thing substituted (probably a
             have been modified, and the thing substituted (probably a
             register) is likely overwritten and not a usable equivalence.  */
             register) is likely overwritten and not a usable equivalence.  */
          int check_regno;
          int check_regno;
 
 
          for (check_regno = 0; check_regno < max_regno; check_regno++)
          for (check_regno = 0; check_regno < max_regno; check_regno++)
            {
            {
#define CHECK_MODF(ARRAY)                                               \
#define CHECK_MODF(ARRAY)                                               \
              gcc_assert (!ARRAY[check_regno]                           \
              gcc_assert (!ARRAY[check_regno]                           \
                          || !loc_mentioned_in_p (r->where,             \
                          || !loc_mentioned_in_p (r->where,             \
                                                  ARRAY[check_regno]))
                                                  ARRAY[check_regno]))
 
 
              CHECK_MODF (reg_equiv_constant);
              CHECK_MODF (reg_equiv_constant);
              CHECK_MODF (reg_equiv_memory_loc);
              CHECK_MODF (reg_equiv_memory_loc);
              CHECK_MODF (reg_equiv_address);
              CHECK_MODF (reg_equiv_address);
              CHECK_MODF (reg_equiv_mem);
              CHECK_MODF (reg_equiv_mem);
#undef CHECK_MODF
#undef CHECK_MODF
            }
            }
#endif /* ENABLE_CHECKING */
#endif /* ENABLE_CHECKING */
 
 
          /* If we're replacing a LABEL_REF with a register, add a
          /* If we're replacing a LABEL_REF with a register, add a
             REG_LABEL note to indicate to flow which label this
             REG_LABEL note to indicate to flow which label this
             register refers to.  */
             register refers to.  */
          if (GET_CODE (*r->where) == LABEL_REF
          if (GET_CODE (*r->where) == LABEL_REF
              && JUMP_P (insn))
              && JUMP_P (insn))
            {
            {
              REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
              REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
                                                    XEXP (*r->where, 0),
                                                    XEXP (*r->where, 0),
                                                    REG_NOTES (insn));
                                                    REG_NOTES (insn));
              JUMP_LABEL (insn) = XEXP (*r->where, 0);
              JUMP_LABEL (insn) = XEXP (*r->where, 0);
           }
           }
 
 
          /* Encapsulate RELOADREG so its machine mode matches what
          /* Encapsulate RELOADREG so its machine mode matches what
             used to be there.  Note that gen_lowpart_common will
             used to be there.  Note that gen_lowpart_common will
             do the wrong thing if RELOADREG is multi-word.  RELOADREG
             do the wrong thing if RELOADREG is multi-word.  RELOADREG
             will always be a REG here.  */
             will always be a REG here.  */
          if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
          if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
            reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
            reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
 
 
          /* If we are putting this into a SUBREG and RELOADREG is a
          /* If we are putting this into a SUBREG and RELOADREG is a
             SUBREG, we would be making nested SUBREGs, so we have to fix
             SUBREG, we would be making nested SUBREGs, so we have to fix
             this up.  Note that r->where == &SUBREG_REG (*r->subreg_loc).  */
             this up.  Note that r->where == &SUBREG_REG (*r->subreg_loc).  */
 
 
          if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
          if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
            {
            {
              if (GET_MODE (*r->subreg_loc)
              if (GET_MODE (*r->subreg_loc)
                  == GET_MODE (SUBREG_REG (reloadreg)))
                  == GET_MODE (SUBREG_REG (reloadreg)))
                *r->subreg_loc = SUBREG_REG (reloadreg);
                *r->subreg_loc = SUBREG_REG (reloadreg);
              else
              else
                {
                {
                  int final_offset =
                  int final_offset =
                    SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
                    SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
 
 
                  /* When working with SUBREGs the rule is that the byte
                  /* When working with SUBREGs the rule is that the byte
                     offset must be a multiple of the SUBREG's mode.  */
                     offset must be a multiple of the SUBREG's mode.  */
                  final_offset = (final_offset /
                  final_offset = (final_offset /
                                  GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
                                  GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
                  final_offset = (final_offset *
                  final_offset = (final_offset *
                                  GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
                                  GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
 
 
                  *r->where = SUBREG_REG (reloadreg);
                  *r->where = SUBREG_REG (reloadreg);
                  SUBREG_BYTE (*r->subreg_loc) = final_offset;
                  SUBREG_BYTE (*r->subreg_loc) = final_offset;
                }
                }
            }
            }
          else
          else
            *r->where = reloadreg;
            *r->where = reloadreg;
        }
        }
      /* If reload got no reg and isn't optional, something's wrong.  */
      /* If reload got no reg and isn't optional, something's wrong.  */
      else
      else
        gcc_assert (rld[r->what].optional);
        gcc_assert (rld[r->what].optional);
    }
    }
}
}


/* Make a copy of any replacements being done into X and move those
/* Make a copy of any replacements being done into X and move those
   copies to locations in Y, a copy of X.  */
   copies to locations in Y, a copy of X.  */
 
 
void
void
copy_replacements (rtx x, rtx y)
copy_replacements (rtx x, rtx y)
{
{
  /* We can't support X being a SUBREG because we might then need to know its
  /* We can't support X being a SUBREG because we might then need to know its
     location if something inside it was replaced.  */
     location if something inside it was replaced.  */
  gcc_assert (GET_CODE (x) != SUBREG);
  gcc_assert (GET_CODE (x) != SUBREG);
 
 
  copy_replacements_1 (&x, &y, n_replacements);
  copy_replacements_1 (&x, &y, n_replacements);
}
}
 
 
static void
static void
copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
{
{
  int i, j;
  int i, j;
  rtx x, y;
  rtx x, y;
  struct replacement *r;
  struct replacement *r;
  enum rtx_code code;
  enum rtx_code code;
  const char *fmt;
  const char *fmt;
 
 
  for (j = 0; j < orig_replacements; j++)
  for (j = 0; j < orig_replacements; j++)
    {
    {
      if (replacements[j].subreg_loc == px)
      if (replacements[j].subreg_loc == px)
        {
        {
          r = &replacements[n_replacements++];
          r = &replacements[n_replacements++];
          r->where = replacements[j].where;
          r->where = replacements[j].where;
          r->subreg_loc = py;
          r->subreg_loc = py;
          r->what = replacements[j].what;
          r->what = replacements[j].what;
          r->mode = replacements[j].mode;
          r->mode = replacements[j].mode;
        }
        }
      else if (replacements[j].where == px)
      else if (replacements[j].where == px)
        {
        {
          r = &replacements[n_replacements++];
          r = &replacements[n_replacements++];
          r->where = py;
          r->where = py;
          r->subreg_loc = 0;
          r->subreg_loc = 0;
          r->what = replacements[j].what;
          r->what = replacements[j].what;
          r->mode = replacements[j].mode;
          r->mode = replacements[j].mode;
        }
        }
    }
    }
 
 
  x = *px;
  x = *px;
  y = *py;
  y = *py;
  code = GET_CODE (x);
  code = GET_CODE (x);
  fmt = GET_RTX_FORMAT (code);
  fmt = GET_RTX_FORMAT (code);
 
 
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
    {
      if (fmt[i] == 'e')
      if (fmt[i] == 'e')
        copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
        copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
      else if (fmt[i] == 'E')
      else if (fmt[i] == 'E')
        for (j = XVECLEN (x, i); --j >= 0; )
        for (j = XVECLEN (x, i); --j >= 0; )
          copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
          copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
                               orig_replacements);
                               orig_replacements);
    }
    }
}
}
 
 
/* Change any replacements being done to *X to be done to *Y.  */
/* Change any replacements being done to *X to be done to *Y.  */
 
 
void
void
move_replacements (rtx *x, rtx *y)
move_replacements (rtx *x, rtx *y)
{
{
  int i;
  int i;
 
 
  for (i = 0; i < n_replacements; i++)
  for (i = 0; i < n_replacements; i++)
    if (replacements[i].subreg_loc == x)
    if (replacements[i].subreg_loc == x)
      replacements[i].subreg_loc = y;
      replacements[i].subreg_loc = y;
    else if (replacements[i].where == x)
    else if (replacements[i].where == x)
      {
      {
        replacements[i].where = y;
        replacements[i].where = y;
        replacements[i].subreg_loc = 0;
        replacements[i].subreg_loc = 0;
      }
      }
}
}


/* If LOC was scheduled to be replaced by something, return the replacement.
/* If LOC was scheduled to be replaced by something, return the replacement.
   Otherwise, return *LOC.  */
   Otherwise, return *LOC.  */
 
 
rtx
rtx
find_replacement (rtx *loc)
find_replacement (rtx *loc)
{
{
  struct replacement *r;
  struct replacement *r;
 
 
  for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
  for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
    {
    {
      rtx reloadreg = rld[r->what].reg_rtx;
      rtx reloadreg = rld[r->what].reg_rtx;
 
 
      if (reloadreg && r->where == loc)
      if (reloadreg && r->where == loc)
        {
        {
          if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
          if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
            reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
            reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
 
 
          return reloadreg;
          return reloadreg;
        }
        }
      else if (reloadreg && r->subreg_loc == loc)
      else if (reloadreg && r->subreg_loc == loc)
        {
        {
          /* RELOADREG must be either a REG or a SUBREG.
          /* RELOADREG must be either a REG or a SUBREG.
 
 
             ??? Is it actually still ever a SUBREG?  If so, why?  */
             ??? Is it actually still ever a SUBREG?  If so, why?  */
 
 
          if (REG_P (reloadreg))
          if (REG_P (reloadreg))
            return gen_rtx_REG (GET_MODE (*loc),
            return gen_rtx_REG (GET_MODE (*loc),
                                (REGNO (reloadreg) +
                                (REGNO (reloadreg) +
                                 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
                                 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
                                                      GET_MODE (SUBREG_REG (*loc)),
                                                      GET_MODE (SUBREG_REG (*loc)),
                                                      SUBREG_BYTE (*loc),
                                                      SUBREG_BYTE (*loc),
                                                      GET_MODE (*loc))));
                                                      GET_MODE (*loc))));
          else if (GET_MODE (reloadreg) == GET_MODE (*loc))
          else if (GET_MODE (reloadreg) == GET_MODE (*loc))
            return reloadreg;
            return reloadreg;
          else
          else
            {
            {
              int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
              int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
 
 
              /* When working with SUBREGs the rule is that the byte
              /* When working with SUBREGs the rule is that the byte
                 offset must be a multiple of the SUBREG's mode.  */
                 offset must be a multiple of the SUBREG's mode.  */
              final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
              final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
              final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
              final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
              return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
              return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
                                     final_offset);
                                     final_offset);
            }
            }
        }
        }
    }
    }
 
 
  /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
  /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
     what's inside and make a new rtl if so.  */
     what's inside and make a new rtl if so.  */
  if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
  if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
      || GET_CODE (*loc) == MULT)
      || GET_CODE (*loc) == MULT)
    {
    {
      rtx x = find_replacement (&XEXP (*loc, 0));
      rtx x = find_replacement (&XEXP (*loc, 0));
      rtx y = find_replacement (&XEXP (*loc, 1));
      rtx y = find_replacement (&XEXP (*loc, 1));
 
 
      if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
      if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
        return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
        return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
    }
    }
 
 
  return *loc;
  return *loc;
}
}


/* Return nonzero if register in range [REGNO, ENDREGNO)
/* Return nonzero if register in range [REGNO, ENDREGNO)
   appears either explicitly or implicitly in X
   appears either explicitly or implicitly in X
   other than being stored into (except for earlyclobber operands).
   other than being stored into (except for earlyclobber operands).
 
 
   References contained within the substructure at LOC do not count.
   References contained within the substructure at LOC do not count.
   LOC may be zero, meaning don't ignore anything.
   LOC may be zero, meaning don't ignore anything.
 
 
   This is similar to refers_to_regno_p in rtlanal.c except that we
   This is similar to refers_to_regno_p in rtlanal.c except that we
   look at equivalences for pseudos that didn't get hard registers.  */
   look at equivalences for pseudos that didn't get hard registers.  */
 
 
static int
static int
refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
                              rtx x, rtx *loc)
                              rtx x, rtx *loc)
{
{
  int i;
  int i;
  unsigned int r;
  unsigned int r;
  RTX_CODE code;
  RTX_CODE code;
  const char *fmt;
  const char *fmt;
 
 
  if (x == 0)
  if (x == 0)
    return 0;
    return 0;
 
 
 repeat:
 repeat:
  code = GET_CODE (x);
  code = GET_CODE (x);
 
 
  switch (code)
  switch (code)
    {
    {
    case REG:
    case REG:
      r = REGNO (x);
      r = REGNO (x);
 
 
      /* If this is a pseudo, a hard register must not have been allocated.
      /* If this is a pseudo, a hard register must not have been allocated.
         X must therefore either be a constant or be in memory.  */
         X must therefore either be a constant or be in memory.  */
      if (r >= FIRST_PSEUDO_REGISTER)
      if (r >= FIRST_PSEUDO_REGISTER)
        {
        {
          if (reg_equiv_memory_loc[r])
          if (reg_equiv_memory_loc[r])
            return refers_to_regno_for_reload_p (regno, endregno,
            return refers_to_regno_for_reload_p (regno, endregno,
                                                 reg_equiv_memory_loc[r],
                                                 reg_equiv_memory_loc[r],
                                                 (rtx*) 0);
                                                 (rtx*) 0);
 
 
          gcc_assert (reg_equiv_constant[r] || reg_equiv_invariant[r]);
          gcc_assert (reg_equiv_constant[r] || reg_equiv_invariant[r]);
          return 0;
          return 0;
        }
        }
 
 
      return (endregno > r
      return (endregno > r
              && regno < r + (r < FIRST_PSEUDO_REGISTER
              && regno < r + (r < FIRST_PSEUDO_REGISTER
                              ? hard_regno_nregs[r][GET_MODE (x)]
                              ? hard_regno_nregs[r][GET_MODE (x)]
                              : 1));
                              : 1));
 
 
    case SUBREG:
    case SUBREG:
      /* If this is a SUBREG of a hard reg, we can see exactly which
      /* If this is a SUBREG of a hard reg, we can see exactly which
         registers are being modified.  Otherwise, handle normally.  */
         registers are being modified.  Otherwise, handle normally.  */
      if (REG_P (SUBREG_REG (x))
      if (REG_P (SUBREG_REG (x))
          && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
          && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
        {
        {
          unsigned int inner_regno = subreg_regno (x);
          unsigned int inner_regno = subreg_regno (x);
          unsigned int inner_endregno
          unsigned int inner_endregno
            = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
            = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
                             ? hard_regno_nregs[inner_regno][GET_MODE (x)] : 1);
                             ? hard_regno_nregs[inner_regno][GET_MODE (x)] : 1);
 
 
          return endregno > inner_regno && regno < inner_endregno;
          return endregno > inner_regno && regno < inner_endregno;
        }
        }
      break;
      break;
 
 
    case CLOBBER:
    case CLOBBER:
    case SET:
    case SET:
      if (&SET_DEST (x) != loc
      if (&SET_DEST (x) != loc
          /* Note setting a SUBREG counts as referring to the REG it is in for
          /* Note setting a SUBREG counts as referring to the REG it is in for
             a pseudo but not for hard registers since we can
             a pseudo but not for hard registers since we can
             treat each word individually.  */
             treat each word individually.  */
          && ((GET_CODE (SET_DEST (x)) == SUBREG
          && ((GET_CODE (SET_DEST (x)) == SUBREG
               && loc != &SUBREG_REG (SET_DEST (x))
               && loc != &SUBREG_REG (SET_DEST (x))
               && REG_P (SUBREG_REG (SET_DEST (x)))
               && REG_P (SUBREG_REG (SET_DEST (x)))
               && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
               && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
               && refers_to_regno_for_reload_p (regno, endregno,
               && refers_to_regno_for_reload_p (regno, endregno,
                                                SUBREG_REG (SET_DEST (x)),
                                                SUBREG_REG (SET_DEST (x)),
                                                loc))
                                                loc))
              /* If the output is an earlyclobber operand, this is
              /* If the output is an earlyclobber operand, this is
                 a conflict.  */
                 a conflict.  */
              || ((!REG_P (SET_DEST (x))
              || ((!REG_P (SET_DEST (x))
                   || earlyclobber_operand_p (SET_DEST (x)))
                   || earlyclobber_operand_p (SET_DEST (x)))
                  && refers_to_regno_for_reload_p (regno, endregno,
                  && refers_to_regno_for_reload_p (regno, endregno,
                                                   SET_DEST (x), loc))))
                                                   SET_DEST (x), loc))))
        return 1;
        return 1;
 
 
      if (code == CLOBBER || loc == &SET_SRC (x))
      if (code == CLOBBER || loc == &SET_SRC (x))
        return 0;
        return 0;
      x = SET_SRC (x);
      x = SET_SRC (x);
      goto repeat;
      goto repeat;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  /* X does not match, so try its subexpressions.  */
  /* X does not match, so try its subexpressions.  */
 
 
  fmt = GET_RTX_FORMAT (code);
  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
    {
      if (fmt[i] == 'e' && loc != &XEXP (x, i))
      if (fmt[i] == 'e' && loc != &XEXP (x, i))
        {
        {
          if (i == 0)
          if (i == 0)
            {
            {
              x = XEXP (x, 0);
              x = XEXP (x, 0);
              goto repeat;
              goto repeat;
            }
            }
          else
          else
            if (refers_to_regno_for_reload_p (regno, endregno,
            if (refers_to_regno_for_reload_p (regno, endregno,
                                              XEXP (x, i), loc))
                                              XEXP (x, i), loc))
              return 1;
              return 1;
        }
        }
      else if (fmt[i] == 'E')
      else if (fmt[i] == 'E')
        {
        {
          int j;
          int j;
          for (j = XVECLEN (x, i) - 1; j >= 0; j--)
          for (j = XVECLEN (x, i) - 1; j >= 0; j--)
            if (loc != &XVECEXP (x, i, j)
            if (loc != &XVECEXP (x, i, j)
                && refers_to_regno_for_reload_p (regno, endregno,
                && refers_to_regno_for_reload_p (regno, endregno,
                                                 XVECEXP (x, i, j), loc))
                                                 XVECEXP (x, i, j), loc))
              return 1;
              return 1;
        }
        }
    }
    }
  return 0;
  return 0;
}
}
 
 
/* Nonzero if modifying X will affect IN.  If X is a register or a SUBREG,
/* Nonzero if modifying X will affect IN.  If X is a register or a SUBREG,
   we check if any register number in X conflicts with the relevant register
   we check if any register number in X conflicts with the relevant register
   numbers.  If X is a constant, return 0.  If X is a MEM, return 1 iff IN
   numbers.  If X is a constant, return 0.  If X is a MEM, return 1 iff IN
   contains a MEM (we don't bother checking for memory addresses that can't
   contains a MEM (we don't bother checking for memory addresses that can't
   conflict because we expect this to be a rare case.
   conflict because we expect this to be a rare case.
 
 
   This function is similar to reg_overlap_mentioned_p in rtlanal.c except
   This function is similar to reg_overlap_mentioned_p in rtlanal.c except
   that we look at equivalences for pseudos that didn't get hard registers.  */
   that we look at equivalences for pseudos that didn't get hard registers.  */
 
 
int
int
reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
{
{
  int regno, endregno;
  int regno, endregno;
 
 
  /* Overly conservative.  */
  /* Overly conservative.  */
  if (GET_CODE (x) == STRICT_LOW_PART
  if (GET_CODE (x) == STRICT_LOW_PART
      || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
      || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
    x = XEXP (x, 0);
    x = XEXP (x, 0);
 
 
  /* If either argument is a constant, then modifying X can not affect IN.  */
  /* If either argument is a constant, then modifying X can not affect IN.  */
  if (CONSTANT_P (x) || CONSTANT_P (in))
  if (CONSTANT_P (x) || CONSTANT_P (in))
    return 0;
    return 0;
  else if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
  else if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
    return refers_to_mem_for_reload_p (in);
    return refers_to_mem_for_reload_p (in);
  else if (GET_CODE (x) == SUBREG)
  else if (GET_CODE (x) == SUBREG)
    {
    {
      regno = REGNO (SUBREG_REG (x));
      regno = REGNO (SUBREG_REG (x));
      if (regno < FIRST_PSEUDO_REGISTER)
      if (regno < FIRST_PSEUDO_REGISTER)
        regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
        regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
                                      GET_MODE (SUBREG_REG (x)),
                                      GET_MODE (SUBREG_REG (x)),
                                      SUBREG_BYTE (x),
                                      SUBREG_BYTE (x),
                                      GET_MODE (x));
                                      GET_MODE (x));
    }
    }
  else if (REG_P (x))
  else if (REG_P (x))
    {
    {
      regno = REGNO (x);
      regno = REGNO (x);
 
 
      /* If this is a pseudo, it must not have been assigned a hard register.
      /* If this is a pseudo, it must not have been assigned a hard register.
         Therefore, it must either be in memory or be a constant.  */
         Therefore, it must either be in memory or be a constant.  */
 
 
      if (regno >= FIRST_PSEUDO_REGISTER)
      if (regno >= FIRST_PSEUDO_REGISTER)
        {
        {
          if (reg_equiv_memory_loc[regno])
          if (reg_equiv_memory_loc[regno])
            return refers_to_mem_for_reload_p (in);
            return refers_to_mem_for_reload_p (in);
          gcc_assert (reg_equiv_constant[regno]);
          gcc_assert (reg_equiv_constant[regno]);
          return 0;
          return 0;
        }
        }
    }
    }
  else if (MEM_P (x))
  else if (MEM_P (x))
    return refers_to_mem_for_reload_p (in);
    return refers_to_mem_for_reload_p (in);
  else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
  else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
           || GET_CODE (x) == CC0)
           || GET_CODE (x) == CC0)
    return reg_mentioned_p (x, in);
    return reg_mentioned_p (x, in);
  else
  else
    {
    {
      gcc_assert (GET_CODE (x) == PLUS);
      gcc_assert (GET_CODE (x) == PLUS);
 
 
      /* We actually want to know if X is mentioned somewhere inside IN.
      /* We actually want to know if X is mentioned somewhere inside IN.
         We must not say that (plus (sp) (const_int 124)) is in
         We must not say that (plus (sp) (const_int 124)) is in
         (plus (sp) (const_int 64)), since that can lead to incorrect reload
         (plus (sp) (const_int 64)), since that can lead to incorrect reload
         allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
         allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
         into a RELOAD_OTHER on behalf of another RELOAD_OTHER.  */
         into a RELOAD_OTHER on behalf of another RELOAD_OTHER.  */
      while (MEM_P (in))
      while (MEM_P (in))
        in = XEXP (in, 0);
        in = XEXP (in, 0);
      if (REG_P (in))
      if (REG_P (in))
        return 0;
        return 0;
      else if (GET_CODE (in) == PLUS)
      else if (GET_CODE (in) == PLUS)
        return (rtx_equal_p (x, in)
        return (rtx_equal_p (x, in)
                || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
                || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
                || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
                || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
      else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
      else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
                   || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
                   || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
    }
    }
 
 
  endregno = regno + (regno < FIRST_PSEUDO_REGISTER
  endregno = regno + (regno < FIRST_PSEUDO_REGISTER
                      ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
                      ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
 
 
  return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
  return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
}
}
 
 
/* Return nonzero if anything in X contains a MEM.  Look also for pseudo
/* Return nonzero if anything in X contains a MEM.  Look also for pseudo
   registers.  */
   registers.  */
 
 
static int
static int
refers_to_mem_for_reload_p (rtx x)
refers_to_mem_for_reload_p (rtx x)
{
{
  const char *fmt;
  const char *fmt;
  int i;
  int i;
 
 
  if (MEM_P (x))
  if (MEM_P (x))
    return 1;
    return 1;
 
 
  if (REG_P (x))
  if (REG_P (x))
    return (REGNO (x) >= FIRST_PSEUDO_REGISTER
    return (REGNO (x) >= FIRST_PSEUDO_REGISTER
            && reg_equiv_memory_loc[REGNO (x)]);
            && reg_equiv_memory_loc[REGNO (x)]);
 
 
  fmt = GET_RTX_FORMAT (GET_CODE (x));
  fmt = GET_RTX_FORMAT (GET_CODE (x));
  for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
  for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
    if (fmt[i] == 'e'
    if (fmt[i] == 'e'
        && (MEM_P (XEXP (x, i))
        && (MEM_P (XEXP (x, i))
            || refers_to_mem_for_reload_p (XEXP (x, i))))
            || refers_to_mem_for_reload_p (XEXP (x, i))))
      return 1;
      return 1;
 
 
  return 0;
  return 0;
}
}


/* Check the insns before INSN to see if there is a suitable register
/* Check the insns before INSN to see if there is a suitable register
   containing the same value as GOAL.
   containing the same value as GOAL.
   If OTHER is -1, look for a register in class CLASS.
   If OTHER is -1, look for a register in class CLASS.
   Otherwise, just see if register number OTHER shares GOAL's value.
   Otherwise, just see if register number OTHER shares GOAL's value.
 
 
   Return an rtx for the register found, or zero if none is found.
   Return an rtx for the register found, or zero if none is found.
 
 
   If RELOAD_REG_P is (short *)1,
   If RELOAD_REG_P is (short *)1,
   we reject any hard reg that appears in reload_reg_rtx
   we reject any hard reg that appears in reload_reg_rtx
   because such a hard reg is also needed coming into this insn.
   because such a hard reg is also needed coming into this insn.
 
 
   If RELOAD_REG_P is any other nonzero value,
   If RELOAD_REG_P is any other nonzero value,
   it is a vector indexed by hard reg number
   it is a vector indexed by hard reg number
   and we reject any hard reg whose element in the vector is nonnegative
   and we reject any hard reg whose element in the vector is nonnegative
   as well as any that appears in reload_reg_rtx.
   as well as any that appears in reload_reg_rtx.
 
 
   If GOAL is zero, then GOALREG is a register number; we look
   If GOAL is zero, then GOALREG is a register number; we look
   for an equivalent for that register.
   for an equivalent for that register.
 
 
   MODE is the machine mode of the value we want an equivalence for.
   MODE is the machine mode of the value we want an equivalence for.
   If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
   If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
 
 
   This function is used by jump.c as well as in the reload pass.
   This function is used by jump.c as well as in the reload pass.
 
 
   If GOAL is the sum of the stack pointer and a constant, we treat it
   If GOAL is the sum of the stack pointer and a constant, we treat it
   as if it were a constant except that sp is required to be unchanging.  */
   as if it were a constant except that sp is required to be unchanging.  */
 
 
rtx
rtx
find_equiv_reg (rtx goal, rtx insn, enum reg_class class, int other,
find_equiv_reg (rtx goal, rtx insn, enum reg_class class, int other,
                short *reload_reg_p, int goalreg, enum machine_mode mode)
                short *reload_reg_p, int goalreg, enum machine_mode mode)
{
{
  rtx p = insn;
  rtx p = insn;
  rtx goaltry, valtry, value, where;
  rtx goaltry, valtry, value, where;
  rtx pat;
  rtx pat;
  int regno = -1;
  int regno = -1;
  int valueno;
  int valueno;
  int goal_mem = 0;
  int goal_mem = 0;
  int goal_const = 0;
  int goal_const = 0;
  int goal_mem_addr_varies = 0;
  int goal_mem_addr_varies = 0;
  int need_stable_sp = 0;
  int need_stable_sp = 0;
  int nregs;
  int nregs;
  int valuenregs;
  int valuenregs;
  int num = 0;
  int num = 0;
 
 
  if (goal == 0)
  if (goal == 0)
    regno = goalreg;
    regno = goalreg;
  else if (REG_P (goal))
  else if (REG_P (goal))
    regno = REGNO (goal);
    regno = REGNO (goal);
  else if (MEM_P (goal))
  else if (MEM_P (goal))
    {
    {
      enum rtx_code code = GET_CODE (XEXP (goal, 0));
      enum rtx_code code = GET_CODE (XEXP (goal, 0));
      if (MEM_VOLATILE_P (goal))
      if (MEM_VOLATILE_P (goal))
        return 0;
        return 0;
      if (flag_float_store && SCALAR_FLOAT_MODE_P (GET_MODE (goal)))
      if (flag_float_store && SCALAR_FLOAT_MODE_P (GET_MODE (goal)))
        return 0;
        return 0;
      /* An address with side effects must be reexecuted.  */
      /* An address with side effects must be reexecuted.  */
      switch (code)
      switch (code)
        {
        {
        case POST_INC:
        case POST_INC:
        case PRE_INC:
        case PRE_INC:
        case POST_DEC:
        case POST_DEC:
        case PRE_DEC:
        case PRE_DEC:
        case POST_MODIFY:
        case POST_MODIFY:
        case PRE_MODIFY:
        case PRE_MODIFY:
          return 0;
          return 0;
        default:
        default:
          break;
          break;
        }
        }
      goal_mem = 1;
      goal_mem = 1;
    }
    }
  else if (CONSTANT_P (goal))
  else if (CONSTANT_P (goal))
    goal_const = 1;
    goal_const = 1;
  else if (GET_CODE (goal) == PLUS
  else if (GET_CODE (goal) == PLUS
           && XEXP (goal, 0) == stack_pointer_rtx
           && XEXP (goal, 0) == stack_pointer_rtx
           && CONSTANT_P (XEXP (goal, 1)))
           && CONSTANT_P (XEXP (goal, 1)))
    goal_const = need_stable_sp = 1;
    goal_const = need_stable_sp = 1;
  else if (GET_CODE (goal) == PLUS
  else if (GET_CODE (goal) == PLUS
           && XEXP (goal, 0) == frame_pointer_rtx
           && XEXP (goal, 0) == frame_pointer_rtx
           && CONSTANT_P (XEXP (goal, 1)))
           && CONSTANT_P (XEXP (goal, 1)))
    goal_const = 1;
    goal_const = 1;
  else
  else
    return 0;
    return 0;
 
 
  num = 0;
  num = 0;
  /* Scan insns back from INSN, looking for one that copies
  /* Scan insns back from INSN, looking for one that copies
     a value into or out of GOAL.
     a value into or out of GOAL.
     Stop and give up if we reach a label.  */
     Stop and give up if we reach a label.  */
 
 
  while (1)
  while (1)
    {
    {
      p = PREV_INSN (p);
      p = PREV_INSN (p);
      num++;
      num++;
      if (p == 0 || LABEL_P (p)
      if (p == 0 || LABEL_P (p)
          || num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
          || num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
        return 0;
        return 0;
 
 
      if (NONJUMP_INSN_P (p)
      if (NONJUMP_INSN_P (p)
          /* If we don't want spill regs ...  */
          /* If we don't want spill regs ...  */
          && (! (reload_reg_p != 0
          && (! (reload_reg_p != 0
                 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
                 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
              /* ... then ignore insns introduced by reload; they aren't
              /* ... then ignore insns introduced by reload; they aren't
                 useful and can cause results in reload_as_needed to be
                 useful and can cause results in reload_as_needed to be
                 different from what they were when calculating the need for
                 different from what they were when calculating the need for
                 spills.  If we notice an input-reload insn here, we will
                 spills.  If we notice an input-reload insn here, we will
                 reject it below, but it might hide a usable equivalent.
                 reject it below, but it might hide a usable equivalent.
                 That makes bad code.  It may even fail: perhaps no reg was
                 That makes bad code.  It may even fail: perhaps no reg was
                 spilled for this insn because it was assumed we would find
                 spilled for this insn because it was assumed we would find
                 that equivalent.  */
                 that equivalent.  */
              || INSN_UID (p) < reload_first_uid))
              || INSN_UID (p) < reload_first_uid))
        {
        {
          rtx tem;
          rtx tem;
          pat = single_set (p);
          pat = single_set (p);
 
 
          /* First check for something that sets some reg equal to GOAL.  */
          /* First check for something that sets some reg equal to GOAL.  */
          if (pat != 0
          if (pat != 0
              && ((regno >= 0
              && ((regno >= 0
                   && true_regnum (SET_SRC (pat)) == regno
                   && true_regnum (SET_SRC (pat)) == regno
                   && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
                   && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
                  ||
                  ||
                  (regno >= 0
                  (regno >= 0
                   && true_regnum (SET_DEST (pat)) == regno
                   && true_regnum (SET_DEST (pat)) == regno
                   && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
                   && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
                  ||
                  ||
                  (goal_const && rtx_equal_p (SET_SRC (pat), goal)
                  (goal_const && rtx_equal_p (SET_SRC (pat), goal)
                   /* When looking for stack pointer + const,
                   /* When looking for stack pointer + const,
                      make sure we don't use a stack adjust.  */
                      make sure we don't use a stack adjust.  */
                   && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
                   && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
                   && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
                   && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
                  || (goal_mem
                  || (goal_mem
                      && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
                      && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
                      && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
                      && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
                  || (goal_mem
                  || (goal_mem
                      && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
                      && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
                      && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
                      && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
                  /* If we are looking for a constant,
                  /* If we are looking for a constant,
                     and something equivalent to that constant was copied
                     and something equivalent to that constant was copied
                     into a reg, we can use that reg.  */
                     into a reg, we can use that reg.  */
                  || (goal_const && REG_NOTES (p) != 0
                  || (goal_const && REG_NOTES (p) != 0
                      && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
                      && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
                      && ((rtx_equal_p (XEXP (tem, 0), goal)
                      && ((rtx_equal_p (XEXP (tem, 0), goal)
                           && (valueno
                           && (valueno
                               = true_regnum (valtry = SET_DEST (pat))) >= 0)
                               = true_regnum (valtry = SET_DEST (pat))) >= 0)
                          || (REG_P (SET_DEST (pat))
                          || (REG_P (SET_DEST (pat))
                              && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
                              && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
                              && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
                              && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
                              && GET_CODE (goal) == CONST_INT
                              && GET_CODE (goal) == CONST_INT
                              && 0 != (goaltry
                              && 0 != (goaltry
                                       = operand_subword (XEXP (tem, 0), 0, 0,
                                       = operand_subword (XEXP (tem, 0), 0, 0,
                                                          VOIDmode))
                                                          VOIDmode))
                              && rtx_equal_p (goal, goaltry)
                              && rtx_equal_p (goal, goaltry)
                              && (valtry
                              && (valtry
                                  = operand_subword (SET_DEST (pat), 0, 0,
                                  = operand_subword (SET_DEST (pat), 0, 0,
                                                     VOIDmode))
                                                     VOIDmode))
                              && (valueno = true_regnum (valtry)) >= 0)))
                              && (valueno = true_regnum (valtry)) >= 0)))
                  || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
                  || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
                                                          NULL_RTX))
                                                          NULL_RTX))
                      && REG_P (SET_DEST (pat))
                      && REG_P (SET_DEST (pat))
                      && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
                      && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
                      && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
                      && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
                      && GET_CODE (goal) == CONST_INT
                      && GET_CODE (goal) == CONST_INT
                      && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
                      && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
                                                          VOIDmode))
                                                          VOIDmode))
                      && rtx_equal_p (goal, goaltry)
                      && rtx_equal_p (goal, goaltry)
                      && (valtry
                      && (valtry
                          = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
                          = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
                      && (valueno = true_regnum (valtry)) >= 0)))
                      && (valueno = true_regnum (valtry)) >= 0)))
            {
            {
              if (other >= 0)
              if (other >= 0)
                {
                {
                  if (valueno != other)
                  if (valueno != other)
                    continue;
                    continue;
                }
                }
              else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
              else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
                continue;
                continue;
              else
              else
                {
                {
                  int i;
                  int i;
 
 
                  for (i = hard_regno_nregs[valueno][mode] - 1; i >= 0; i--)
                  for (i = hard_regno_nregs[valueno][mode] - 1; i >= 0; i--)
                    if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
                    if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
                                             valueno + i))
                                             valueno + i))
                      break;
                      break;
                  if (i >= 0)
                  if (i >= 0)
                    continue;
                    continue;
                }
                }
              value = valtry;
              value = valtry;
              where = p;
              where = p;
              break;
              break;
            }
            }
        }
        }
    }
    }
 
 
  /* We found a previous insn copying GOAL into a suitable other reg VALUE
  /* We found a previous insn copying GOAL into a suitable other reg VALUE
     (or copying VALUE into GOAL, if GOAL is also a register).
     (or copying VALUE into GOAL, if GOAL is also a register).
     Now verify that VALUE is really valid.  */
     Now verify that VALUE is really valid.  */
 
 
  /* VALUENO is the register number of VALUE; a hard register.  */
  /* VALUENO is the register number of VALUE; a hard register.  */
 
 
  /* Don't try to re-use something that is killed in this insn.  We want
  /* Don't try to re-use something that is killed in this insn.  We want
     to be able to trust REG_UNUSED notes.  */
     to be able to trust REG_UNUSED notes.  */
  if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
  if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
    return 0;
    return 0;
 
 
  /* If we propose to get the value from the stack pointer or if GOAL is
  /* If we propose to get the value from the stack pointer or if GOAL is
     a MEM based on the stack pointer, we need a stable SP.  */
     a MEM based on the stack pointer, we need a stable SP.  */
  if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
  if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
      || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
      || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
                                                          goal)))
                                                          goal)))
    need_stable_sp = 1;
    need_stable_sp = 1;
 
 
  /* Reject VALUE if the copy-insn moved the wrong sort of datum.  */
  /* Reject VALUE if the copy-insn moved the wrong sort of datum.  */
  if (GET_MODE (value) != mode)
  if (GET_MODE (value) != mode)
    return 0;
    return 0;
 
 
  /* Reject VALUE if it was loaded from GOAL
  /* Reject VALUE if it was loaded from GOAL
     and is also a register that appears in the address of GOAL.  */
     and is also a register that appears in the address of GOAL.  */
 
 
  if (goal_mem && value == SET_DEST (single_set (where))
  if (goal_mem && value == SET_DEST (single_set (where))
      && refers_to_regno_for_reload_p (valueno,
      && refers_to_regno_for_reload_p (valueno,
                                       (valueno
                                       (valueno
                                        + hard_regno_nregs[valueno][mode]),
                                        + hard_regno_nregs[valueno][mode]),
                                       goal, (rtx*) 0))
                                       goal, (rtx*) 0))
    return 0;
    return 0;
 
 
  /* Reject registers that overlap GOAL.  */
  /* Reject registers that overlap GOAL.  */
 
 
  if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
  if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
    nregs = hard_regno_nregs[regno][mode];
    nregs = hard_regno_nregs[regno][mode];
  else
  else
    nregs = 1;
    nregs = 1;
  valuenregs = hard_regno_nregs[valueno][mode];
  valuenregs = hard_regno_nregs[valueno][mode];
 
 
  if (!goal_mem && !goal_const
  if (!goal_mem && !goal_const
      && regno + nregs > valueno && regno < valueno + valuenregs)
      && regno + nregs > valueno && regno < valueno + valuenregs)
    return 0;
    return 0;
 
 
  /* Reject VALUE if it is one of the regs reserved for reloads.
  /* Reject VALUE if it is one of the regs reserved for reloads.
     Reload1 knows how to reuse them anyway, and it would get
     Reload1 knows how to reuse them anyway, and it would get
     confused if we allocated one without its knowledge.
     confused if we allocated one without its knowledge.
     (Now that insns introduced by reload are ignored above,
     (Now that insns introduced by reload are ignored above,
     this case shouldn't happen, but I'm not positive.)  */
     this case shouldn't happen, but I'm not positive.)  */
 
 
  if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
  if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
    {
    {
      int i;
      int i;
      for (i = 0; i < valuenregs; ++i)
      for (i = 0; i < valuenregs; ++i)
        if (reload_reg_p[valueno + i] >= 0)
        if (reload_reg_p[valueno + i] >= 0)
          return 0;
          return 0;
    }
    }
 
 
  /* Reject VALUE if it is a register being used for an input reload
  /* Reject VALUE if it is a register being used for an input reload
     even if it is not one of those reserved.  */
     even if it is not one of those reserved.  */
 
 
  if (reload_reg_p != 0)
  if (reload_reg_p != 0)
    {
    {
      int i;
      int i;
      for (i = 0; i < n_reloads; i++)
      for (i = 0; i < n_reloads; i++)
        if (rld[i].reg_rtx != 0 && rld[i].in)
        if (rld[i].reg_rtx != 0 && rld[i].in)
          {
          {
            int regno1 = REGNO (rld[i].reg_rtx);
            int regno1 = REGNO (rld[i].reg_rtx);
            int nregs1 = hard_regno_nregs[regno1]
            int nregs1 = hard_regno_nregs[regno1]
                                         [GET_MODE (rld[i].reg_rtx)];
                                         [GET_MODE (rld[i].reg_rtx)];
            if (regno1 < valueno + valuenregs
            if (regno1 < valueno + valuenregs
                && regno1 + nregs1 > valueno)
                && regno1 + nregs1 > valueno)
              return 0;
              return 0;
          }
          }
    }
    }
 
 
  if (goal_mem)
  if (goal_mem)
    /* We must treat frame pointer as varying here,
    /* We must treat frame pointer as varying here,
       since it can vary--in a nonlocal goto as generated by expand_goto.  */
       since it can vary--in a nonlocal goto as generated by expand_goto.  */
    goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
    goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
 
 
  /* Now verify that the values of GOAL and VALUE remain unaltered
  /* Now verify that the values of GOAL and VALUE remain unaltered
     until INSN is reached.  */
     until INSN is reached.  */
 
 
  p = insn;
  p = insn;
  while (1)
  while (1)
    {
    {
      p = PREV_INSN (p);
      p = PREV_INSN (p);
      if (p == where)
      if (p == where)
        return value;
        return value;
 
 
      /* Don't trust the conversion past a function call
      /* Don't trust the conversion past a function call
         if either of the two is in a call-clobbered register, or memory.  */
         if either of the two is in a call-clobbered register, or memory.  */
      if (CALL_P (p))
      if (CALL_P (p))
        {
        {
          int i;
          int i;
 
 
          if (goal_mem || need_stable_sp)
          if (goal_mem || need_stable_sp)
            return 0;
            return 0;
 
 
          if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
          if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
            for (i = 0; i < nregs; ++i)
            for (i = 0; i < nregs; ++i)
              if (call_used_regs[regno + i]
              if (call_used_regs[regno + i]
                  || HARD_REGNO_CALL_PART_CLOBBERED (regno + i, mode))
                  || HARD_REGNO_CALL_PART_CLOBBERED (regno + i, mode))
                return 0;
                return 0;
 
 
          if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
          if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
            for (i = 0; i < valuenregs; ++i)
            for (i = 0; i < valuenregs; ++i)
              if (call_used_regs[valueno + i]
              if (call_used_regs[valueno + i]
                  || HARD_REGNO_CALL_PART_CLOBBERED (valueno + i, mode))
                  || HARD_REGNO_CALL_PART_CLOBBERED (valueno + i, mode))
                return 0;
                return 0;
        }
        }
 
 
      if (INSN_P (p))
      if (INSN_P (p))
        {
        {
          pat = PATTERN (p);
          pat = PATTERN (p);
 
 
          /* Watch out for unspec_volatile, and volatile asms.  */
          /* Watch out for unspec_volatile, and volatile asms.  */
          if (volatile_insn_p (pat))
          if (volatile_insn_p (pat))
            return 0;
            return 0;
 
 
          /* If this insn P stores in either GOAL or VALUE, return 0.
          /* If this insn P stores in either GOAL or VALUE, return 0.
             If GOAL is a memory ref and this insn writes memory, return 0.
             If GOAL is a memory ref and this insn writes memory, return 0.
             If GOAL is a memory ref and its address is not constant,
             If GOAL is a memory ref and its address is not constant,
             and this insn P changes a register used in GOAL, return 0.  */
             and this insn P changes a register used in GOAL, return 0.  */
 
 
          if (GET_CODE (pat) == COND_EXEC)
          if (GET_CODE (pat) == COND_EXEC)
            pat = COND_EXEC_CODE (pat);
            pat = COND_EXEC_CODE (pat);
          if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
          if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
            {
            {
              rtx dest = SET_DEST (pat);
              rtx dest = SET_DEST (pat);
              while (GET_CODE (dest) == SUBREG
              while (GET_CODE (dest) == SUBREG
                     || GET_CODE (dest) == ZERO_EXTRACT
                     || GET_CODE (dest) == ZERO_EXTRACT
                     || GET_CODE (dest) == STRICT_LOW_PART)
                     || GET_CODE (dest) == STRICT_LOW_PART)
                dest = XEXP (dest, 0);
                dest = XEXP (dest, 0);
              if (REG_P (dest))
              if (REG_P (dest))
                {
                {
                  int xregno = REGNO (dest);
                  int xregno = REGNO (dest);
                  int xnregs;
                  int xnregs;
                  if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
                  if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
                    xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
                    xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
                  else
                  else
                    xnregs = 1;
                    xnregs = 1;
                  if (xregno < regno + nregs && xregno + xnregs > regno)
                  if (xregno < regno + nregs && xregno + xnregs > regno)
                    return 0;
                    return 0;
                  if (xregno < valueno + valuenregs
                  if (xregno < valueno + valuenregs
                      && xregno + xnregs > valueno)
                      && xregno + xnregs > valueno)
                    return 0;
                    return 0;
                  if (goal_mem_addr_varies
                  if (goal_mem_addr_varies
                      && reg_overlap_mentioned_for_reload_p (dest, goal))
                      && reg_overlap_mentioned_for_reload_p (dest, goal))
                    return 0;
                    return 0;
                  if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
                  if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
                    return 0;
                    return 0;
                }
                }
              else if (goal_mem && MEM_P (dest)
              else if (goal_mem && MEM_P (dest)
                       && ! push_operand (dest, GET_MODE (dest)))
                       && ! push_operand (dest, GET_MODE (dest)))
                return 0;
                return 0;
              else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
              else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
                       && reg_equiv_memory_loc[regno] != 0)
                       && reg_equiv_memory_loc[regno] != 0)
                return 0;
                return 0;
              else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
              else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
                return 0;
                return 0;
            }
            }
          else if (GET_CODE (pat) == PARALLEL)
          else if (GET_CODE (pat) == PARALLEL)
            {
            {
              int i;
              int i;
              for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
              for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
                {
                {
                  rtx v1 = XVECEXP (pat, 0, i);
                  rtx v1 = XVECEXP (pat, 0, i);
                  if (GET_CODE (v1) == COND_EXEC)
                  if (GET_CODE (v1) == COND_EXEC)
                    v1 = COND_EXEC_CODE (v1);
                    v1 = COND_EXEC_CODE (v1);
                  if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
                  if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
                    {
                    {
                      rtx dest = SET_DEST (v1);
                      rtx dest = SET_DEST (v1);
                      while (GET_CODE (dest) == SUBREG
                      while (GET_CODE (dest) == SUBREG
                             || GET_CODE (dest) == ZERO_EXTRACT
                             || GET_CODE (dest) == ZERO_EXTRACT
                             || GET_CODE (dest) == STRICT_LOW_PART)
                             || GET_CODE (dest) == STRICT_LOW_PART)
                        dest = XEXP (dest, 0);
                        dest = XEXP (dest, 0);
                      if (REG_P (dest))
                      if (REG_P (dest))
                        {
                        {
                          int xregno = REGNO (dest);
                          int xregno = REGNO (dest);
                          int xnregs;
                          int xnregs;
                          if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
                          if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
                            xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
                            xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
                          else
                          else
                            xnregs = 1;
                            xnregs = 1;
                          if (xregno < regno + nregs
                          if (xregno < regno + nregs
                              && xregno + xnregs > regno)
                              && xregno + xnregs > regno)
                            return 0;
                            return 0;
                          if (xregno < valueno + valuenregs
                          if (xregno < valueno + valuenregs
                              && xregno + xnregs > valueno)
                              && xregno + xnregs > valueno)
                            return 0;
                            return 0;
                          if (goal_mem_addr_varies
                          if (goal_mem_addr_varies
                              && reg_overlap_mentioned_for_reload_p (dest,
                              && reg_overlap_mentioned_for_reload_p (dest,
                                                                     goal))
                                                                     goal))
                            return 0;
                            return 0;
                          if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
                          if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
                            return 0;
                            return 0;
                        }
                        }
                      else if (goal_mem && MEM_P (dest)
                      else if (goal_mem && MEM_P (dest)
                               && ! push_operand (dest, GET_MODE (dest)))
                               && ! push_operand (dest, GET_MODE (dest)))
                        return 0;
                        return 0;
                      else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
                      else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
                               && reg_equiv_memory_loc[regno] != 0)
                               && reg_equiv_memory_loc[regno] != 0)
                        return 0;
                        return 0;
                      else if (need_stable_sp
                      else if (need_stable_sp
                               && push_operand (dest, GET_MODE (dest)))
                               && push_operand (dest, GET_MODE (dest)))
                        return 0;
                        return 0;
                    }
                    }
                }
                }
            }
            }
 
 
          if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
          if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
            {
            {
              rtx link;
              rtx link;
 
 
              for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
              for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
                   link = XEXP (link, 1))
                   link = XEXP (link, 1))
                {
                {
                  pat = XEXP (link, 0);
                  pat = XEXP (link, 0);
                  if (GET_CODE (pat) == CLOBBER)
                  if (GET_CODE (pat) == CLOBBER)
                    {
                    {
                      rtx dest = SET_DEST (pat);
                      rtx dest = SET_DEST (pat);
 
 
                      if (REG_P (dest))
                      if (REG_P (dest))
                        {
                        {
                          int xregno = REGNO (dest);
                          int xregno = REGNO (dest);
                          int xnregs
                          int xnregs
                            = hard_regno_nregs[xregno][GET_MODE (dest)];
                            = hard_regno_nregs[xregno][GET_MODE (dest)];
 
 
                          if (xregno < regno + nregs
                          if (xregno < regno + nregs
                              && xregno + xnregs > regno)
                              && xregno + xnregs > regno)
                            return 0;
                            return 0;
                          else if (xregno < valueno + valuenregs
                          else if (xregno < valueno + valuenregs
                                   && xregno + xnregs > valueno)
                                   && xregno + xnregs > valueno)
                            return 0;
                            return 0;
                          else if (goal_mem_addr_varies
                          else if (goal_mem_addr_varies
                                   && reg_overlap_mentioned_for_reload_p (dest,
                                   && reg_overlap_mentioned_for_reload_p (dest,
                                                                     goal))
                                                                     goal))
                            return 0;
                            return 0;
                        }
                        }
 
 
                      else if (goal_mem && MEM_P (dest)
                      else if (goal_mem && MEM_P (dest)
                               && ! push_operand (dest, GET_MODE (dest)))
                               && ! push_operand (dest, GET_MODE (dest)))
                        return 0;
                        return 0;
                      else if (need_stable_sp
                      else if (need_stable_sp
                               && push_operand (dest, GET_MODE (dest)))
                               && push_operand (dest, GET_MODE (dest)))
                        return 0;
                        return 0;
                    }
                    }
                }
                }
            }
            }
 
 
#ifdef AUTO_INC_DEC
#ifdef AUTO_INC_DEC
          /* If this insn auto-increments or auto-decrements
          /* If this insn auto-increments or auto-decrements
             either regno or valueno, return 0 now.
             either regno or valueno, return 0 now.
             If GOAL is a memory ref and its address is not constant,
             If GOAL is a memory ref and its address is not constant,
             and this insn P increments a register used in GOAL, return 0.  */
             and this insn P increments a register used in GOAL, return 0.  */
          {
          {
            rtx link;
            rtx link;
 
 
            for (link = REG_NOTES (p); link; link = XEXP (link, 1))
            for (link = REG_NOTES (p); link; link = XEXP (link, 1))
              if (REG_NOTE_KIND (link) == REG_INC
              if (REG_NOTE_KIND (link) == REG_INC
                  && REG_P (XEXP (link, 0)))
                  && REG_P (XEXP (link, 0)))
                {
                {
                  int incno = REGNO (XEXP (link, 0));
                  int incno = REGNO (XEXP (link, 0));
                  if (incno < regno + nregs && incno >= regno)
                  if (incno < regno + nregs && incno >= regno)
                    return 0;
                    return 0;
                  if (incno < valueno + valuenregs && incno >= valueno)
                  if (incno < valueno + valuenregs && incno >= valueno)
                    return 0;
                    return 0;
                  if (goal_mem_addr_varies
                  if (goal_mem_addr_varies
                      && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
                      && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
                                                             goal))
                                                             goal))
                    return 0;
                    return 0;
                }
                }
          }
          }
#endif
#endif
        }
        }
    }
    }
}
}


/* Find a place where INCED appears in an increment or decrement operator
/* Find a place where INCED appears in an increment or decrement operator
   within X, and return the amount INCED is incremented or decremented by.
   within X, and return the amount INCED is incremented or decremented by.
   The value is always positive.  */
   The value is always positive.  */
 
 
static int
static int
find_inc_amount (rtx x, rtx inced)
find_inc_amount (rtx x, rtx inced)
{
{
  enum rtx_code code = GET_CODE (x);
  enum rtx_code code = GET_CODE (x);
  const char *fmt;
  const char *fmt;
  int i;
  int i;
 
 
  if (code == MEM)
  if (code == MEM)
    {
    {
      rtx addr = XEXP (x, 0);
      rtx addr = XEXP (x, 0);
      if ((GET_CODE (addr) == PRE_DEC
      if ((GET_CODE (addr) == PRE_DEC
           || GET_CODE (addr) == POST_DEC
           || GET_CODE (addr) == POST_DEC
           || GET_CODE (addr) == PRE_INC
           || GET_CODE (addr) == PRE_INC
           || GET_CODE (addr) == POST_INC)
           || GET_CODE (addr) == POST_INC)
          && XEXP (addr, 0) == inced)
          && XEXP (addr, 0) == inced)
        return GET_MODE_SIZE (GET_MODE (x));
        return GET_MODE_SIZE (GET_MODE (x));
      else if ((GET_CODE (addr) == PRE_MODIFY
      else if ((GET_CODE (addr) == PRE_MODIFY
                || GET_CODE (addr) == POST_MODIFY)
                || GET_CODE (addr) == POST_MODIFY)
               && GET_CODE (XEXP (addr, 1)) == PLUS
               && GET_CODE (XEXP (addr, 1)) == PLUS
               && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
               && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
               && XEXP (addr, 0) == inced
               && XEXP (addr, 0) == inced
               && GET_CODE (XEXP (XEXP (addr, 1), 1)) == CONST_INT)
               && GET_CODE (XEXP (XEXP (addr, 1), 1)) == CONST_INT)
        {
        {
          i = INTVAL (XEXP (XEXP (addr, 1), 1));
          i = INTVAL (XEXP (XEXP (addr, 1), 1));
          return i < 0 ? -i : i;
          return i < 0 ? -i : i;
        }
        }
    }
    }
 
 
  fmt = GET_RTX_FORMAT (code);
  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
    {
      if (fmt[i] == 'e')
      if (fmt[i] == 'e')
        {
        {
          int tem = find_inc_amount (XEXP (x, i), inced);
          int tem = find_inc_amount (XEXP (x, i), inced);
          if (tem != 0)
          if (tem != 0)
            return tem;
            return tem;
        }
        }
      if (fmt[i] == 'E')
      if (fmt[i] == 'E')
        {
        {
          int j;
          int j;
          for (j = XVECLEN (x, i) - 1; j >= 0; j--)
          for (j = XVECLEN (x, i) - 1; j >= 0; j--)
            {
            {
              int tem = find_inc_amount (XVECEXP (x, i, j), inced);
              int tem = find_inc_amount (XVECEXP (x, i, j), inced);
              if (tem != 0)
              if (tem != 0)
                return tem;
                return tem;
            }
            }
        }
        }
    }
    }
 
 
  return 0;
  return 0;
}
}


/* Return 1 if registers from REGNO to ENDREGNO are the subjects of a
/* Return 1 if registers from REGNO to ENDREGNO are the subjects of a
   REG_INC note in insn INSN.  REGNO must refer to a hard register.  */
   REG_INC note in insn INSN.  REGNO must refer to a hard register.  */
 
 
#ifdef AUTO_INC_DEC
#ifdef AUTO_INC_DEC
static int
static int
reg_inc_found_and_valid_p (unsigned int regno, unsigned int endregno,
reg_inc_found_and_valid_p (unsigned int regno, unsigned int endregno,
                           rtx insn)
                           rtx insn)
{
{
  rtx link;
  rtx link;
 
 
  gcc_assert (insn);
  gcc_assert (insn);
 
 
  if (! INSN_P (insn))
  if (! INSN_P (insn))
    return 0;
    return 0;
 
 
  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
    if (REG_NOTE_KIND (link) == REG_INC)
    if (REG_NOTE_KIND (link) == REG_INC)
      {
      {
        unsigned int test = (int) REGNO (XEXP (link, 0));
        unsigned int test = (int) REGNO (XEXP (link, 0));
        if (test >= regno && test < endregno)
        if (test >= regno && test < endregno)
          return 1;
          return 1;
      }
      }
  return 0;
  return 0;
}
}
#else
#else
 
 
#define reg_inc_found_and_valid_p(regno,endregno,insn) 0
#define reg_inc_found_and_valid_p(regno,endregno,insn) 0
 
 
#endif 
#endif 
 
 
/* Return 1 if register REGNO is the subject of a clobber in insn INSN.
/* Return 1 if register REGNO is the subject of a clobber in insn INSN.
   If SETS is 1, also consider SETs.  If SETS is 2, enable checking
   If SETS is 1, also consider SETs.  If SETS is 2, enable checking
   REG_INC.  REGNO must refer to a hard register.  */
   REG_INC.  REGNO must refer to a hard register.  */
 
 
int
int
regno_clobbered_p (unsigned int regno, rtx insn, enum machine_mode mode,
regno_clobbered_p (unsigned int regno, rtx insn, enum machine_mode mode,
                   int sets)
                   int sets)
{
{
  unsigned int nregs, endregno;
  unsigned int nregs, endregno;
 
 
  /* regno must be a hard register.  */
  /* regno must be a hard register.  */
  gcc_assert (regno < FIRST_PSEUDO_REGISTER);
  gcc_assert (regno < FIRST_PSEUDO_REGISTER);
 
 
  nregs = hard_regno_nregs[regno][mode];
  nregs = hard_regno_nregs[regno][mode];
  endregno = regno + nregs;
  endregno = regno + nregs;
 
 
  if ((GET_CODE (PATTERN (insn)) == CLOBBER
  if ((GET_CODE (PATTERN (insn)) == CLOBBER
       || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
       || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
      && REG_P (XEXP (PATTERN (insn), 0)))
      && REG_P (XEXP (PATTERN (insn), 0)))
    {
    {
      unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
      unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
 
 
      return test >= regno && test < endregno;
      return test >= regno && test < endregno;
    }
    }
 
 
  if (sets == 2 && reg_inc_found_and_valid_p (regno, endregno, insn))
  if (sets == 2 && reg_inc_found_and_valid_p (regno, endregno, insn))
    return 1;
    return 1;
 
 
  if (GET_CODE (PATTERN (insn)) == PARALLEL)
  if (GET_CODE (PATTERN (insn)) == PARALLEL)
    {
    {
      int i = XVECLEN (PATTERN (insn), 0) - 1;
      int i = XVECLEN (PATTERN (insn), 0) - 1;
 
 
      for (; i >= 0; i--)
      for (; i >= 0; i--)
        {
        {
          rtx elt = XVECEXP (PATTERN (insn), 0, i);
          rtx elt = XVECEXP (PATTERN (insn), 0, i);
          if ((GET_CODE (elt) == CLOBBER
          if ((GET_CODE (elt) == CLOBBER
               || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
               || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
              && REG_P (XEXP (elt, 0)))
              && REG_P (XEXP (elt, 0)))
            {
            {
              unsigned int test = REGNO (XEXP (elt, 0));
              unsigned int test = REGNO (XEXP (elt, 0));
 
 
              if (test >= regno && test < endregno)
              if (test >= regno && test < endregno)
                return 1;
                return 1;
            }
            }
          if (sets == 2
          if (sets == 2
              && reg_inc_found_and_valid_p (regno, endregno, elt))
              && reg_inc_found_and_valid_p (regno, endregno, elt))
            return 1;
            return 1;
        }
        }
    }
    }
 
 
  return 0;
  return 0;
}
}
 
 
/* Find the low part, with mode MODE, of a hard regno RELOADREG.  */
/* Find the low part, with mode MODE, of a hard regno RELOADREG.  */
rtx
rtx
reload_adjust_reg_for_mode (rtx reloadreg, enum machine_mode mode)
reload_adjust_reg_for_mode (rtx reloadreg, enum machine_mode mode)
{
{
  int regno;
  int regno;
 
 
  if (GET_MODE (reloadreg) == mode)
  if (GET_MODE (reloadreg) == mode)
    return reloadreg;
    return reloadreg;
 
 
  regno = REGNO (reloadreg);
  regno = REGNO (reloadreg);
 
 
  if (WORDS_BIG_ENDIAN)
  if (WORDS_BIG_ENDIAN)
    regno += (int) hard_regno_nregs[regno][GET_MODE (reloadreg)]
    regno += (int) hard_regno_nregs[regno][GET_MODE (reloadreg)]
      - (int) hard_regno_nregs[regno][mode];
      - (int) hard_regno_nregs[regno][mode];
 
 
  return gen_rtx_REG (mode, regno);
  return gen_rtx_REG (mode, regno);
}
}
 
 
static const char *const reload_when_needed_name[] =
static const char *const reload_when_needed_name[] =
{
{
  "RELOAD_FOR_INPUT",
  "RELOAD_FOR_INPUT",
  "RELOAD_FOR_OUTPUT",
  "RELOAD_FOR_OUTPUT",
  "RELOAD_FOR_INSN",
  "RELOAD_FOR_INSN",
  "RELOAD_FOR_INPUT_ADDRESS",
  "RELOAD_FOR_INPUT_ADDRESS",
  "RELOAD_FOR_INPADDR_ADDRESS",
  "RELOAD_FOR_INPADDR_ADDRESS",
  "RELOAD_FOR_OUTPUT_ADDRESS",
  "RELOAD_FOR_OUTPUT_ADDRESS",
  "RELOAD_FOR_OUTADDR_ADDRESS",
  "RELOAD_FOR_OUTADDR_ADDRESS",
  "RELOAD_FOR_OPERAND_ADDRESS",
  "RELOAD_FOR_OPERAND_ADDRESS",
  "RELOAD_FOR_OPADDR_ADDR",
  "RELOAD_FOR_OPADDR_ADDR",
  "RELOAD_OTHER",
  "RELOAD_OTHER",
  "RELOAD_FOR_OTHER_ADDRESS"
  "RELOAD_FOR_OTHER_ADDRESS"
};
};
 
 
/* These functions are used to print the variables set by 'find_reloads' */
/* These functions are used to print the variables set by 'find_reloads' */
 
 
void
void
debug_reload_to_stream (FILE *f)
debug_reload_to_stream (FILE *f)
{
{
  int r;
  int r;
  const char *prefix;
  const char *prefix;
 
 
  if (! f)
  if (! f)
    f = stderr;
    f = stderr;
  for (r = 0; r < n_reloads; r++)
  for (r = 0; r < n_reloads; r++)
    {
    {
      fprintf (f, "Reload %d: ", r);
      fprintf (f, "Reload %d: ", r);
 
 
      if (rld[r].in != 0)
      if (rld[r].in != 0)
        {
        {
          fprintf (f, "reload_in (%s) = ",
          fprintf (f, "reload_in (%s) = ",
                   GET_MODE_NAME (rld[r].inmode));
                   GET_MODE_NAME (rld[r].inmode));
          print_inline_rtx (f, rld[r].in, 24);
          print_inline_rtx (f, rld[r].in, 24);
          fprintf (f, "\n\t");
          fprintf (f, "\n\t");
        }
        }
 
 
      if (rld[r].out != 0)
      if (rld[r].out != 0)
        {
        {
          fprintf (f, "reload_out (%s) = ",
          fprintf (f, "reload_out (%s) = ",
                   GET_MODE_NAME (rld[r].outmode));
                   GET_MODE_NAME (rld[r].outmode));
          print_inline_rtx (f, rld[r].out, 24);
          print_inline_rtx (f, rld[r].out, 24);
          fprintf (f, "\n\t");
          fprintf (f, "\n\t");
        }
        }
 
 
      fprintf (f, "%s, ", reg_class_names[(int) rld[r].class]);
      fprintf (f, "%s, ", reg_class_names[(int) rld[r].class]);
 
 
      fprintf (f, "%s (opnum = %d)",
      fprintf (f, "%s (opnum = %d)",
               reload_when_needed_name[(int) rld[r].when_needed],
               reload_when_needed_name[(int) rld[r].when_needed],
               rld[r].opnum);
               rld[r].opnum);
 
 
      if (rld[r].optional)
      if (rld[r].optional)
        fprintf (f, ", optional");
        fprintf (f, ", optional");
 
 
      if (rld[r].nongroup)
      if (rld[r].nongroup)
        fprintf (f, ", nongroup");
        fprintf (f, ", nongroup");
 
 
      if (rld[r].inc != 0)
      if (rld[r].inc != 0)
        fprintf (f, ", inc by %d", rld[r].inc);
        fprintf (f, ", inc by %d", rld[r].inc);
 
 
      if (rld[r].nocombine)
      if (rld[r].nocombine)
        fprintf (f, ", can't combine");
        fprintf (f, ", can't combine");
 
 
      if (rld[r].secondary_p)
      if (rld[r].secondary_p)
        fprintf (f, ", secondary_reload_p");
        fprintf (f, ", secondary_reload_p");
 
 
      if (rld[r].in_reg != 0)
      if (rld[r].in_reg != 0)
        {
        {
          fprintf (f, "\n\treload_in_reg: ");
          fprintf (f, "\n\treload_in_reg: ");
          print_inline_rtx (f, rld[r].in_reg, 24);
          print_inline_rtx (f, rld[r].in_reg, 24);
        }
        }
 
 
      if (rld[r].out_reg != 0)
      if (rld[r].out_reg != 0)
        {
        {
          fprintf (f, "\n\treload_out_reg: ");
          fprintf (f, "\n\treload_out_reg: ");
          print_inline_rtx (f, rld[r].out_reg, 24);
          print_inline_rtx (f, rld[r].out_reg, 24);
        }
        }
 
 
      if (rld[r].reg_rtx != 0)
      if (rld[r].reg_rtx != 0)
        {
        {
          fprintf (f, "\n\treload_reg_rtx: ");
          fprintf (f, "\n\treload_reg_rtx: ");
          print_inline_rtx (f, rld[r].reg_rtx, 24);
          print_inline_rtx (f, rld[r].reg_rtx, 24);
        }
        }
 
 
      prefix = "\n\t";
      prefix = "\n\t";
      if (rld[r].secondary_in_reload != -1)
      if (rld[r].secondary_in_reload != -1)
        {
        {
          fprintf (f, "%ssecondary_in_reload = %d",
          fprintf (f, "%ssecondary_in_reload = %d",
                   prefix, rld[r].secondary_in_reload);
                   prefix, rld[r].secondary_in_reload);
          prefix = ", ";
          prefix = ", ";
        }
        }
 
 
      if (rld[r].secondary_out_reload != -1)
      if (rld[r].secondary_out_reload != -1)
        fprintf (f, "%ssecondary_out_reload = %d\n",
        fprintf (f, "%ssecondary_out_reload = %d\n",
                 prefix, rld[r].secondary_out_reload);
                 prefix, rld[r].secondary_out_reload);
 
 
      prefix = "\n\t";
      prefix = "\n\t";
      if (rld[r].secondary_in_icode != CODE_FOR_nothing)
      if (rld[r].secondary_in_icode != CODE_FOR_nothing)
        {
        {
          fprintf (f, "%ssecondary_in_icode = %s", prefix,
          fprintf (f, "%ssecondary_in_icode = %s", prefix,
                   insn_data[rld[r].secondary_in_icode].name);
                   insn_data[rld[r].secondary_in_icode].name);
          prefix = ", ";
          prefix = ", ";
        }
        }
 
 
      if (rld[r].secondary_out_icode != CODE_FOR_nothing)
      if (rld[r].secondary_out_icode != CODE_FOR_nothing)
        fprintf (f, "%ssecondary_out_icode = %s", prefix,
        fprintf (f, "%ssecondary_out_icode = %s", prefix,
                 insn_data[rld[r].secondary_out_icode].name);
                 insn_data[rld[r].secondary_out_icode].name);
 
 
      fprintf (f, "\n");
      fprintf (f, "\n");
    }
    }
}
}
 
 
void
void
debug_reload (void)
debug_reload (void)
{
{
  debug_reload_to_stream (stderr);
  debug_reload_to_stream (stderr);
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.