OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gcc-4.2.2/] [gcc/] [reload1.c] - Diff between revs 154 and 816

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 154 Rev 816
/* Reload pseudo regs into hard regs for insns that require hard regs.
/* Reload pseudo regs into hard regs for insns that require hard regs.
   Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
   Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify it under
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
Software Foundation; either version 3, or (at your option) any later
version.
version.
 
 
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
 
 
#include "machmode.h"
#include "machmode.h"
#include "hard-reg-set.h"
#include "hard-reg-set.h"
#include "rtl.h"
#include "rtl.h"
#include "tm_p.h"
#include "tm_p.h"
#include "obstack.h"
#include "obstack.h"
#include "insn-config.h"
#include "insn-config.h"
#include "flags.h"
#include "flags.h"
#include "function.h"
#include "function.h"
#include "expr.h"
#include "expr.h"
#include "optabs.h"
#include "optabs.h"
#include "regs.h"
#include "regs.h"
#include "addresses.h"
#include "addresses.h"
#include "basic-block.h"
#include "basic-block.h"
#include "reload.h"
#include "reload.h"
#include "recog.h"
#include "recog.h"
#include "output.h"
#include "output.h"
#include "real.h"
#include "real.h"
#include "toplev.h"
#include "toplev.h"
#include "except.h"
#include "except.h"
#include "tree.h"
#include "tree.h"
#include "target.h"
#include "target.h"
 
 
/* This file contains the reload pass of the compiler, which is
/* This file contains the reload pass of the compiler, which is
   run after register allocation has been done.  It checks that
   run after register allocation has been done.  It checks that
   each insn is valid (operands required to be in registers really
   each insn is valid (operands required to be in registers really
   are in registers of the proper class) and fixes up invalid ones
   are in registers of the proper class) and fixes up invalid ones
   by copying values temporarily into registers for the insns
   by copying values temporarily into registers for the insns
   that need them.
   that need them.
 
 
   The results of register allocation are described by the vector
   The results of register allocation are described by the vector
   reg_renumber; the insns still contain pseudo regs, but reg_renumber
   reg_renumber; the insns still contain pseudo regs, but reg_renumber
   can be used to find which hard reg, if any, a pseudo reg is in.
   can be used to find which hard reg, if any, a pseudo reg is in.
 
 
   The technique we always use is to free up a few hard regs that are
   The technique we always use is to free up a few hard regs that are
   called ``reload regs'', and for each place where a pseudo reg
   called ``reload regs'', and for each place where a pseudo reg
   must be in a hard reg, copy it temporarily into one of the reload regs.
   must be in a hard reg, copy it temporarily into one of the reload regs.
 
 
   Reload regs are allocated locally for every instruction that needs
   Reload regs are allocated locally for every instruction that needs
   reloads.  When there are pseudos which are allocated to a register that
   reloads.  When there are pseudos which are allocated to a register that
   has been chosen as a reload reg, such pseudos must be ``spilled''.
   has been chosen as a reload reg, such pseudos must be ``spilled''.
   This means that they go to other hard regs, or to stack slots if no other
   This means that they go to other hard regs, or to stack slots if no other
   available hard regs can be found.  Spilling can invalidate more
   available hard regs can be found.  Spilling can invalidate more
   insns, requiring additional need for reloads, so we must keep checking
   insns, requiring additional need for reloads, so we must keep checking
   until the process stabilizes.
   until the process stabilizes.
 
 
   For machines with different classes of registers, we must keep track
   For machines with different classes of registers, we must keep track
   of the register class needed for each reload, and make sure that
   of the register class needed for each reload, and make sure that
   we allocate enough reload registers of each class.
   we allocate enough reload registers of each class.
 
 
   The file reload.c contains the code that checks one insn for
   The file reload.c contains the code that checks one insn for
   validity and reports the reloads that it needs.  This file
   validity and reports the reloads that it needs.  This file
   is in charge of scanning the entire rtl code, accumulating the
   is in charge of scanning the entire rtl code, accumulating the
   reload needs, spilling, assigning reload registers to use for
   reload needs, spilling, assigning reload registers to use for
   fixing up each insn, and generating the new insns to copy values
   fixing up each insn, and generating the new insns to copy values
   into the reload registers.  */
   into the reload registers.  */


/* During reload_as_needed, element N contains a REG rtx for the hard reg
/* During reload_as_needed, element N contains a REG rtx for the hard reg
   into which reg N has been reloaded (perhaps for a previous insn).  */
   into which reg N has been reloaded (perhaps for a previous insn).  */
static rtx *reg_last_reload_reg;
static rtx *reg_last_reload_reg;
 
 
/* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
/* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
   for an output reload that stores into reg N.  */
   for an output reload that stores into reg N.  */
static regset_head reg_has_output_reload;
static regset_head reg_has_output_reload;
 
 
/* Indicates which hard regs are reload-registers for an output reload
/* Indicates which hard regs are reload-registers for an output reload
   in the current insn.  */
   in the current insn.  */
static HARD_REG_SET reg_is_output_reload;
static HARD_REG_SET reg_is_output_reload;
 
 
/* Element N is the constant value to which pseudo reg N is equivalent,
/* Element N is the constant value to which pseudo reg N is equivalent,
   or zero if pseudo reg N is not equivalent to a constant.
   or zero if pseudo reg N is not equivalent to a constant.
   find_reloads looks at this in order to replace pseudo reg N
   find_reloads looks at this in order to replace pseudo reg N
   with the constant it stands for.  */
   with the constant it stands for.  */
rtx *reg_equiv_constant;
rtx *reg_equiv_constant;
 
 
/* Element N is an invariant value to which pseudo reg N is equivalent.
/* Element N is an invariant value to which pseudo reg N is equivalent.
   eliminate_regs_in_insn uses this to replace pseudos in particular
   eliminate_regs_in_insn uses this to replace pseudos in particular
   contexts.  */
   contexts.  */
rtx *reg_equiv_invariant;
rtx *reg_equiv_invariant;
 
 
/* Element N is a memory location to which pseudo reg N is equivalent,
/* Element N is a memory location to which pseudo reg N is equivalent,
   prior to any register elimination (such as frame pointer to stack
   prior to any register elimination (such as frame pointer to stack
   pointer).  Depending on whether or not it is a valid address, this value
   pointer).  Depending on whether or not it is a valid address, this value
   is transferred to either reg_equiv_address or reg_equiv_mem.  */
   is transferred to either reg_equiv_address or reg_equiv_mem.  */
rtx *reg_equiv_memory_loc;
rtx *reg_equiv_memory_loc;
 
 
/* We allocate reg_equiv_memory_loc inside a varray so that the garbage
/* We allocate reg_equiv_memory_loc inside a varray so that the garbage
   collector can keep track of what is inside.  */
   collector can keep track of what is inside.  */
VEC(rtx,gc) *reg_equiv_memory_loc_vec;
VEC(rtx,gc) *reg_equiv_memory_loc_vec;
 
 
/* Element N is the address of stack slot to which pseudo reg N is equivalent.
/* Element N is the address of stack slot to which pseudo reg N is equivalent.
   This is used when the address is not valid as a memory address
   This is used when the address is not valid as a memory address
   (because its displacement is too big for the machine.)  */
   (because its displacement is too big for the machine.)  */
rtx *reg_equiv_address;
rtx *reg_equiv_address;
 
 
/* Element N is the memory slot to which pseudo reg N is equivalent,
/* Element N is the memory slot to which pseudo reg N is equivalent,
   or zero if pseudo reg N is not equivalent to a memory slot.  */
   or zero if pseudo reg N is not equivalent to a memory slot.  */
rtx *reg_equiv_mem;
rtx *reg_equiv_mem;
 
 
/* Element N is an EXPR_LIST of REG_EQUIVs containing MEMs with
/* Element N is an EXPR_LIST of REG_EQUIVs containing MEMs with
   alternate representations of the location of pseudo reg N.  */
   alternate representations of the location of pseudo reg N.  */
rtx *reg_equiv_alt_mem_list;
rtx *reg_equiv_alt_mem_list;
 
 
/* Widest width in which each pseudo reg is referred to (via subreg).  */
/* Widest width in which each pseudo reg is referred to (via subreg).  */
static unsigned int *reg_max_ref_width;
static unsigned int *reg_max_ref_width;
 
 
/* Element N is the list of insns that initialized reg N from its equivalent
/* Element N is the list of insns that initialized reg N from its equivalent
   constant or memory slot.  */
   constant or memory slot.  */
rtx *reg_equiv_init;
rtx *reg_equiv_init;
int reg_equiv_init_size;
int reg_equiv_init_size;
 
 
/* Vector to remember old contents of reg_renumber before spilling.  */
/* Vector to remember old contents of reg_renumber before spilling.  */
static short *reg_old_renumber;
static short *reg_old_renumber;
 
 
/* During reload_as_needed, element N contains the last pseudo regno reloaded
/* During reload_as_needed, element N contains the last pseudo regno reloaded
   into hard register N.  If that pseudo reg occupied more than one register,
   into hard register N.  If that pseudo reg occupied more than one register,
   reg_reloaded_contents points to that pseudo for each spill register in
   reg_reloaded_contents points to that pseudo for each spill register in
   use; all of these must remain set for an inheritance to occur.  */
   use; all of these must remain set for an inheritance to occur.  */
static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
 
 
/* During reload_as_needed, element N contains the insn for which
/* During reload_as_needed, element N contains the insn for which
   hard register N was last used.   Its contents are significant only
   hard register N was last used.   Its contents are significant only
   when reg_reloaded_valid is set for this register.  */
   when reg_reloaded_valid is set for this register.  */
static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
 
 
/* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid.  */
/* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid.  */
static HARD_REG_SET reg_reloaded_valid;
static HARD_REG_SET reg_reloaded_valid;
/* Indicate if the register was dead at the end of the reload.
/* Indicate if the register was dead at the end of the reload.
   This is only valid if reg_reloaded_contents is set and valid.  */
   This is only valid if reg_reloaded_contents is set and valid.  */
static HARD_REG_SET reg_reloaded_dead;
static HARD_REG_SET reg_reloaded_dead;
 
 
/* Indicate whether the register's current value is one that is not
/* Indicate whether the register's current value is one that is not
   safe to retain across a call, even for registers that are normally
   safe to retain across a call, even for registers that are normally
   call-saved.  */
   call-saved.  */
static HARD_REG_SET reg_reloaded_call_part_clobbered;
static HARD_REG_SET reg_reloaded_call_part_clobbered;
 
 
/* Number of spill-regs so far; number of valid elements of spill_regs.  */
/* Number of spill-regs so far; number of valid elements of spill_regs.  */
static int n_spills;
static int n_spills;
 
 
/* In parallel with spill_regs, contains REG rtx's for those regs.
/* In parallel with spill_regs, contains REG rtx's for those regs.
   Holds the last rtx used for any given reg, or 0 if it has never
   Holds the last rtx used for any given reg, or 0 if it has never
   been used for spilling yet.  This rtx is reused, provided it has
   been used for spilling yet.  This rtx is reused, provided it has
   the proper mode.  */
   the proper mode.  */
static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
 
 
/* In parallel with spill_regs, contains nonzero for a spill reg
/* In parallel with spill_regs, contains nonzero for a spill reg
   that was stored after the last time it was used.
   that was stored after the last time it was used.
   The precise value is the insn generated to do the store.  */
   The precise value is the insn generated to do the store.  */
static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
 
 
/* This is the register that was stored with spill_reg_store.  This is a
/* This is the register that was stored with spill_reg_store.  This is a
   copy of reload_out / reload_out_reg when the value was stored; if
   copy of reload_out / reload_out_reg when the value was stored; if
   reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg.  */
   reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg.  */
static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
 
 
/* This table is the inverse mapping of spill_regs:
/* This table is the inverse mapping of spill_regs:
   indexed by hard reg number,
   indexed by hard reg number,
   it contains the position of that reg in spill_regs,
   it contains the position of that reg in spill_regs,
   or -1 for something that is not in spill_regs.
   or -1 for something that is not in spill_regs.
 
 
   ?!?  This is no longer accurate.  */
   ?!?  This is no longer accurate.  */
static short spill_reg_order[FIRST_PSEUDO_REGISTER];
static short spill_reg_order[FIRST_PSEUDO_REGISTER];
 
 
/* This reg set indicates registers that can't be used as spill registers for
/* This reg set indicates registers that can't be used as spill registers for
   the currently processed insn.  These are the hard registers which are live
   the currently processed insn.  These are the hard registers which are live
   during the insn, but not allocated to pseudos, as well as fixed
   during the insn, but not allocated to pseudos, as well as fixed
   registers.  */
   registers.  */
static HARD_REG_SET bad_spill_regs;
static HARD_REG_SET bad_spill_regs;
 
 
/* These are the hard registers that can't be used as spill register for any
/* These are the hard registers that can't be used as spill register for any
   insn.  This includes registers used for user variables and registers that
   insn.  This includes registers used for user variables and registers that
   we can't eliminate.  A register that appears in this set also can't be used
   we can't eliminate.  A register that appears in this set also can't be used
   to retry register allocation.  */
   to retry register allocation.  */
static HARD_REG_SET bad_spill_regs_global;
static HARD_REG_SET bad_spill_regs_global;
 
 
/* Describes order of use of registers for reloading
/* Describes order of use of registers for reloading
   of spilled pseudo-registers.  `n_spills' is the number of
   of spilled pseudo-registers.  `n_spills' is the number of
   elements that are actually valid; new ones are added at the end.
   elements that are actually valid; new ones are added at the end.
 
 
   Both spill_regs and spill_reg_order are used on two occasions:
   Both spill_regs and spill_reg_order are used on two occasions:
   once during find_reload_regs, where they keep track of the spill registers
   once during find_reload_regs, where they keep track of the spill registers
   for a single insn, but also during reload_as_needed where they show all
   for a single insn, but also during reload_as_needed where they show all
   the registers ever used by reload.  For the latter case, the information
   the registers ever used by reload.  For the latter case, the information
   is calculated during finish_spills.  */
   is calculated during finish_spills.  */
static short spill_regs[FIRST_PSEUDO_REGISTER];
static short spill_regs[FIRST_PSEUDO_REGISTER];
 
 
/* This vector of reg sets indicates, for each pseudo, which hard registers
/* This vector of reg sets indicates, for each pseudo, which hard registers
   may not be used for retrying global allocation because the register was
   may not be used for retrying global allocation because the register was
   formerly spilled from one of them.  If we allowed reallocating a pseudo to
   formerly spilled from one of them.  If we allowed reallocating a pseudo to
   a register that it was already allocated to, reload might not
   a register that it was already allocated to, reload might not
   terminate.  */
   terminate.  */
static HARD_REG_SET *pseudo_previous_regs;
static HARD_REG_SET *pseudo_previous_regs;
 
 
/* This vector of reg sets indicates, for each pseudo, which hard
/* This vector of reg sets indicates, for each pseudo, which hard
   registers may not be used for retrying global allocation because they
   registers may not be used for retrying global allocation because they
   are used as spill registers during one of the insns in which the
   are used as spill registers during one of the insns in which the
   pseudo is live.  */
   pseudo is live.  */
static HARD_REG_SET *pseudo_forbidden_regs;
static HARD_REG_SET *pseudo_forbidden_regs;
 
 
/* All hard regs that have been used as spill registers for any insn are
/* All hard regs that have been used as spill registers for any insn are
   marked in this set.  */
   marked in this set.  */
static HARD_REG_SET used_spill_regs;
static HARD_REG_SET used_spill_regs;
 
 
/* Index of last register assigned as a spill register.  We allocate in
/* Index of last register assigned as a spill register.  We allocate in
   a round-robin fashion.  */
   a round-robin fashion.  */
static int last_spill_reg;
static int last_spill_reg;
 
 
/* Nonzero if indirect addressing is supported on the machine; this means
/* Nonzero if indirect addressing is supported on the machine; this means
   that spilling (REG n) does not require reloading it into a register in
   that spilling (REG n) does not require reloading it into a register in
   order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))).  The
   order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))).  The
   value indicates the level of indirect addressing supported, e.g., two
   value indicates the level of indirect addressing supported, e.g., two
   means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
   means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
   a hard register.  */
   a hard register.  */
static char spill_indirect_levels;
static char spill_indirect_levels;
 
 
/* Nonzero if indirect addressing is supported when the innermost MEM is
/* Nonzero if indirect addressing is supported when the innermost MEM is
   of the form (MEM (SYMBOL_REF sym)).  It is assumed that the level to
   of the form (MEM (SYMBOL_REF sym)).  It is assumed that the level to
   which these are valid is the same as spill_indirect_levels, above.  */
   which these are valid is the same as spill_indirect_levels, above.  */
char indirect_symref_ok;
char indirect_symref_ok;
 
 
/* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid.  */
/* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid.  */
char double_reg_address_ok;
char double_reg_address_ok;
 
 
/* Record the stack slot for each spilled hard register.  */
/* Record the stack slot for each spilled hard register.  */
static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
 
 
/* Width allocated so far for that stack slot.  */
/* Width allocated so far for that stack slot.  */
static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
 
 
/* Record which pseudos needed to be spilled.  */
/* Record which pseudos needed to be spilled.  */
static regset_head spilled_pseudos;
static regset_head spilled_pseudos;
 
 
/* Used for communication between order_regs_for_reload and count_pseudo.
/* Used for communication between order_regs_for_reload and count_pseudo.
   Used to avoid counting one pseudo twice.  */
   Used to avoid counting one pseudo twice.  */
static regset_head pseudos_counted;
static regset_head pseudos_counted;
 
 
/* First uid used by insns created by reload in this function.
/* First uid used by insns created by reload in this function.
   Used in find_equiv_reg.  */
   Used in find_equiv_reg.  */
int reload_first_uid;
int reload_first_uid;
 
 
/* Flag set by local-alloc or global-alloc if anything is live in
/* Flag set by local-alloc or global-alloc if anything is live in
   a call-clobbered reg across calls.  */
   a call-clobbered reg across calls.  */
int caller_save_needed;
int caller_save_needed;
 
 
/* Set to 1 while reload_as_needed is operating.
/* Set to 1 while reload_as_needed is operating.
   Required by some machines to handle any generated moves differently.  */
   Required by some machines to handle any generated moves differently.  */
int reload_in_progress = 0;
int reload_in_progress = 0;
 
 
/* These arrays record the insn_code of insns that may be needed to
/* These arrays record the insn_code of insns that may be needed to
   perform input and output reloads of special objects.  They provide a
   perform input and output reloads of special objects.  They provide a
   place to pass a scratch register.  */
   place to pass a scratch register.  */
enum insn_code reload_in_optab[NUM_MACHINE_MODES];
enum insn_code reload_in_optab[NUM_MACHINE_MODES];
enum insn_code reload_out_optab[NUM_MACHINE_MODES];
enum insn_code reload_out_optab[NUM_MACHINE_MODES];
 
 
/* This obstack is used for allocation of rtl during register elimination.
/* This obstack is used for allocation of rtl during register elimination.
   The allocated storage can be freed once find_reloads has processed the
   The allocated storage can be freed once find_reloads has processed the
   insn.  */
   insn.  */
static struct obstack reload_obstack;
static struct obstack reload_obstack;
 
 
/* Points to the beginning of the reload_obstack.  All insn_chain structures
/* Points to the beginning of the reload_obstack.  All insn_chain structures
   are allocated first.  */
   are allocated first.  */
static char *reload_startobj;
static char *reload_startobj;
 
 
/* The point after all insn_chain structures.  Used to quickly deallocate
/* The point after all insn_chain structures.  Used to quickly deallocate
   memory allocated in copy_reloads during calculate_needs_all_insns.  */
   memory allocated in copy_reloads during calculate_needs_all_insns.  */
static char *reload_firstobj;
static char *reload_firstobj;
 
 
/* This points before all local rtl generated by register elimination.
/* This points before all local rtl generated by register elimination.
   Used to quickly free all memory after processing one insn.  */
   Used to quickly free all memory after processing one insn.  */
static char *reload_insn_firstobj;
static char *reload_insn_firstobj;
 
 
/* List of insn_chain instructions, one for every insn that reload needs to
/* List of insn_chain instructions, one for every insn that reload needs to
   examine.  */
   examine.  */
struct insn_chain *reload_insn_chain;
struct insn_chain *reload_insn_chain;
 
 
/* List of all insns needing reloads.  */
/* List of all insns needing reloads.  */
static struct insn_chain *insns_need_reload;
static struct insn_chain *insns_need_reload;


/* This structure is used to record information about register eliminations.
/* This structure is used to record information about register eliminations.
   Each array entry describes one possible way of eliminating a register
   Each array entry describes one possible way of eliminating a register
   in favor of another.   If there is more than one way of eliminating a
   in favor of another.   If there is more than one way of eliminating a
   particular register, the most preferred should be specified first.  */
   particular register, the most preferred should be specified first.  */
 
 
struct elim_table
struct elim_table
{
{
  int from;                     /* Register number to be eliminated.  */
  int from;                     /* Register number to be eliminated.  */
  int to;                       /* Register number used as replacement.  */
  int to;                       /* Register number used as replacement.  */
  HOST_WIDE_INT initial_offset; /* Initial difference between values.  */
  HOST_WIDE_INT initial_offset; /* Initial difference between values.  */
  int can_eliminate;            /* Nonzero if this elimination can be done.  */
  int can_eliminate;            /* Nonzero if this elimination can be done.  */
  int can_eliminate_previous;   /* Value of CAN_ELIMINATE in previous scan over
  int can_eliminate_previous;   /* Value of CAN_ELIMINATE in previous scan over
                                   insns made by reload.  */
                                   insns made by reload.  */
  HOST_WIDE_INT offset;         /* Current offset between the two regs.  */
  HOST_WIDE_INT offset;         /* Current offset between the two regs.  */
  HOST_WIDE_INT previous_offset;/* Offset at end of previous insn.  */
  HOST_WIDE_INT previous_offset;/* Offset at end of previous insn.  */
  int ref_outside_mem;          /* "to" has been referenced outside a MEM.  */
  int ref_outside_mem;          /* "to" has been referenced outside a MEM.  */
  rtx from_rtx;                 /* REG rtx for the register to be eliminated.
  rtx from_rtx;                 /* REG rtx for the register to be eliminated.
                                   We cannot simply compare the number since
                                   We cannot simply compare the number since
                                   we might then spuriously replace a hard
                                   we might then spuriously replace a hard
                                   register corresponding to a pseudo
                                   register corresponding to a pseudo
                                   assigned to the reg to be eliminated.  */
                                   assigned to the reg to be eliminated.  */
  rtx to_rtx;                   /* REG rtx for the replacement.  */
  rtx to_rtx;                   /* REG rtx for the replacement.  */
};
};
 
 
static struct elim_table *reg_eliminate = 0;
static struct elim_table *reg_eliminate = 0;
 
 
/* This is an intermediate structure to initialize the table.  It has
/* This is an intermediate structure to initialize the table.  It has
   exactly the members provided by ELIMINABLE_REGS.  */
   exactly the members provided by ELIMINABLE_REGS.  */
static const struct elim_table_1
static const struct elim_table_1
{
{
  const int from;
  const int from;
  const int to;
  const int to;
} reg_eliminate_1[] =
} reg_eliminate_1[] =
 
 
/* If a set of eliminable registers was specified, define the table from it.
/* If a set of eliminable registers was specified, define the table from it.
   Otherwise, default to the normal case of the frame pointer being
   Otherwise, default to the normal case of the frame pointer being
   replaced by the stack pointer.  */
   replaced by the stack pointer.  */
 
 
#ifdef ELIMINABLE_REGS
#ifdef ELIMINABLE_REGS
  ELIMINABLE_REGS;
  ELIMINABLE_REGS;
#else
#else
  {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
  {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
#endif
#endif
 
 
#define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
#define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
 
 
/* Record the number of pending eliminations that have an offset not equal
/* Record the number of pending eliminations that have an offset not equal
   to their initial offset.  If nonzero, we use a new copy of each
   to their initial offset.  If nonzero, we use a new copy of each
   replacement result in any insns encountered.  */
   replacement result in any insns encountered.  */
int num_not_at_initial_offset;
int num_not_at_initial_offset;
 
 
/* Count the number of registers that we may be able to eliminate.  */
/* Count the number of registers that we may be able to eliminate.  */
static int num_eliminable;
static int num_eliminable;
/* And the number of registers that are equivalent to a constant that
/* And the number of registers that are equivalent to a constant that
   can be eliminated to frame_pointer / arg_pointer + constant.  */
   can be eliminated to frame_pointer / arg_pointer + constant.  */
static int num_eliminable_invariants;
static int num_eliminable_invariants;
 
 
/* For each label, we record the offset of each elimination.  If we reach
/* For each label, we record the offset of each elimination.  If we reach
   a label by more than one path and an offset differs, we cannot do the
   a label by more than one path and an offset differs, we cannot do the
   elimination.  This information is indexed by the difference of the
   elimination.  This information is indexed by the difference of the
   number of the label and the first label number.  We can't offset the
   number of the label and the first label number.  We can't offset the
   pointer itself as this can cause problems on machines with segmented
   pointer itself as this can cause problems on machines with segmented
   memory.  The first table is an array of flags that records whether we
   memory.  The first table is an array of flags that records whether we
   have yet encountered a label and the second table is an array of arrays,
   have yet encountered a label and the second table is an array of arrays,
   one entry in the latter array for each elimination.  */
   one entry in the latter array for each elimination.  */
 
 
static int first_label_num;
static int first_label_num;
static char *offsets_known_at;
static char *offsets_known_at;
static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
 
 
/* Number of labels in the current function.  */
/* Number of labels in the current function.  */
 
 
static int num_labels;
static int num_labels;


static void replace_pseudos_in (rtx *, enum machine_mode, rtx);
static void replace_pseudos_in (rtx *, enum machine_mode, rtx);
static void maybe_fix_stack_asms (void);
static void maybe_fix_stack_asms (void);
static void copy_reloads (struct insn_chain *);
static void copy_reloads (struct insn_chain *);
static void calculate_needs_all_insns (int);
static void calculate_needs_all_insns (int);
static int find_reg (struct insn_chain *, int);
static int find_reg (struct insn_chain *, int);
static void find_reload_regs (struct insn_chain *);
static void find_reload_regs (struct insn_chain *);
static void select_reload_regs (void);
static void select_reload_regs (void);
static void delete_caller_save_insns (void);
static void delete_caller_save_insns (void);
 
 
static void spill_failure (rtx, enum reg_class);
static void spill_failure (rtx, enum reg_class);
static void count_spilled_pseudo (int, int, int);
static void count_spilled_pseudo (int, int, int);
static void delete_dead_insn (rtx);
static void delete_dead_insn (rtx);
static void alter_reg (int, int);
static void alter_reg (int, int);
static void set_label_offsets (rtx, rtx, int);
static void set_label_offsets (rtx, rtx, int);
static void check_eliminable_occurrences (rtx);
static void check_eliminable_occurrences (rtx);
static void elimination_effects (rtx, enum machine_mode);
static void elimination_effects (rtx, enum machine_mode);
static int eliminate_regs_in_insn (rtx, int);
static int eliminate_regs_in_insn (rtx, int);
static void update_eliminable_offsets (void);
static void update_eliminable_offsets (void);
static void mark_not_eliminable (rtx, rtx, void *);
static void mark_not_eliminable (rtx, rtx, void *);
static void set_initial_elim_offsets (void);
static void set_initial_elim_offsets (void);
static bool verify_initial_elim_offsets (void);
static bool verify_initial_elim_offsets (void);
static void set_initial_label_offsets (void);
static void set_initial_label_offsets (void);
static void set_offsets_for_label (rtx);
static void set_offsets_for_label (rtx);
static void init_elim_table (void);
static void init_elim_table (void);
static void update_eliminables (HARD_REG_SET *);
static void update_eliminables (HARD_REG_SET *);
static void spill_hard_reg (unsigned int, int);
static void spill_hard_reg (unsigned int, int);
static int finish_spills (int);
static int finish_spills (int);
static void scan_paradoxical_subregs (rtx);
static void scan_paradoxical_subregs (rtx);
static void count_pseudo (int);
static void count_pseudo (int);
static void order_regs_for_reload (struct insn_chain *);
static void order_regs_for_reload (struct insn_chain *);
static void reload_as_needed (int);
static void reload_as_needed (int);
static void forget_old_reloads_1 (rtx, rtx, void *);
static void forget_old_reloads_1 (rtx, rtx, void *);
static void forget_marked_reloads (regset);
static void forget_marked_reloads (regset);
static int reload_reg_class_lower (const void *, const void *);
static int reload_reg_class_lower (const void *, const void *);
static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
                                    enum machine_mode);
                                    enum machine_mode);
static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
                                     enum machine_mode);
                                     enum machine_mode);
static int reload_reg_free_p (unsigned int, int, enum reload_type);
static int reload_reg_free_p (unsigned int, int, enum reload_type);
static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
                                        rtx, rtx, int, int);
                                        rtx, rtx, int, int);
static int free_for_value_p (int, enum machine_mode, int, enum reload_type,
static int free_for_value_p (int, enum machine_mode, int, enum reload_type,
                             rtx, rtx, int, int);
                             rtx, rtx, int, int);
static int reload_reg_reaches_end_p (unsigned int, int, enum reload_type);
static int reload_reg_reaches_end_p (unsigned int, int, enum reload_type);
static int allocate_reload_reg (struct insn_chain *, int, int);
static int allocate_reload_reg (struct insn_chain *, int, int);
static int conflicts_with_override (rtx);
static int conflicts_with_override (rtx);
static void failed_reload (rtx, int);
static void failed_reload (rtx, int);
static int set_reload_reg (int, int);
static int set_reload_reg (int, int);
static void choose_reload_regs_init (struct insn_chain *, rtx *);
static void choose_reload_regs_init (struct insn_chain *, rtx *);
static void choose_reload_regs (struct insn_chain *);
static void choose_reload_regs (struct insn_chain *);
static void merge_assigned_reloads (rtx);
static void merge_assigned_reloads (rtx);
static void emit_input_reload_insns (struct insn_chain *, struct reload *,
static void emit_input_reload_insns (struct insn_chain *, struct reload *,
                                     rtx, int);
                                     rtx, int);
static void emit_output_reload_insns (struct insn_chain *, struct reload *,
static void emit_output_reload_insns (struct insn_chain *, struct reload *,
                                      int);
                                      int);
static void do_input_reload (struct insn_chain *, struct reload *, int);
static void do_input_reload (struct insn_chain *, struct reload *, int);
static void do_output_reload (struct insn_chain *, struct reload *, int);
static void do_output_reload (struct insn_chain *, struct reload *, int);
static bool inherit_piecemeal_p (int, int);
static bool inherit_piecemeal_p (int, int);
static void emit_reload_insns (struct insn_chain *);
static void emit_reload_insns (struct insn_chain *);
static void delete_output_reload (rtx, int, int);
static void delete_output_reload (rtx, int, int);
static void delete_address_reloads (rtx, rtx);
static void delete_address_reloads (rtx, rtx);
static void delete_address_reloads_1 (rtx, rtx, rtx);
static void delete_address_reloads_1 (rtx, rtx, rtx);
static rtx inc_for_reload (rtx, rtx, rtx, int);
static rtx inc_for_reload (rtx, rtx, rtx, int);
#ifdef AUTO_INC_DEC
#ifdef AUTO_INC_DEC
static void add_auto_inc_notes (rtx, rtx);
static void add_auto_inc_notes (rtx, rtx);
#endif
#endif
static void copy_eh_notes (rtx, rtx);
static void copy_eh_notes (rtx, rtx);
static int reloads_conflict (int, int);
static int reloads_conflict (int, int);
static rtx gen_reload (rtx, rtx, int, enum reload_type);
static rtx gen_reload (rtx, rtx, int, enum reload_type);
static rtx emit_insn_if_valid_for_reload (rtx);
static rtx emit_insn_if_valid_for_reload (rtx);


/* Initialize the reload pass once per compilation.  */
/* Initialize the reload pass once per compilation.  */
 
 
void
void
init_reload (void)
init_reload (void)
{
{
  int i;
  int i;
 
 
  /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
  /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
     Set spill_indirect_levels to the number of levels such addressing is
     Set spill_indirect_levels to the number of levels such addressing is
     permitted, zero if it is not permitted at all.  */
     permitted, zero if it is not permitted at all.  */
 
 
  rtx tem
  rtx tem
    = gen_rtx_MEM (Pmode,
    = gen_rtx_MEM (Pmode,
                   gen_rtx_PLUS (Pmode,
                   gen_rtx_PLUS (Pmode,
                                 gen_rtx_REG (Pmode,
                                 gen_rtx_REG (Pmode,
                                              LAST_VIRTUAL_REGISTER + 1),
                                              LAST_VIRTUAL_REGISTER + 1),
                                 GEN_INT (4)));
                                 GEN_INT (4)));
  spill_indirect_levels = 0;
  spill_indirect_levels = 0;
 
 
  while (memory_address_p (QImode, tem))
  while (memory_address_p (QImode, tem))
    {
    {
      spill_indirect_levels++;
      spill_indirect_levels++;
      tem = gen_rtx_MEM (Pmode, tem);
      tem = gen_rtx_MEM (Pmode, tem);
    }
    }
 
 
  /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)).  */
  /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)).  */
 
 
  tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
  tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
  indirect_symref_ok = memory_address_p (QImode, tem);
  indirect_symref_ok = memory_address_p (QImode, tem);
 
 
  /* See if reg+reg is a valid (and offsettable) address.  */
  /* See if reg+reg is a valid (and offsettable) address.  */
 
 
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    {
    {
      tem = gen_rtx_PLUS (Pmode,
      tem = gen_rtx_PLUS (Pmode,
                          gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
                          gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
                          gen_rtx_REG (Pmode, i));
                          gen_rtx_REG (Pmode, i));
 
 
      /* This way, we make sure that reg+reg is an offsettable address.  */
      /* This way, we make sure that reg+reg is an offsettable address.  */
      tem = plus_constant (tem, 4);
      tem = plus_constant (tem, 4);
 
 
      if (memory_address_p (QImode, tem))
      if (memory_address_p (QImode, tem))
        {
        {
          double_reg_address_ok = 1;
          double_reg_address_ok = 1;
          break;
          break;
        }
        }
    }
    }
 
 
  /* Initialize obstack for our rtl allocation.  */
  /* Initialize obstack for our rtl allocation.  */
  gcc_obstack_init (&reload_obstack);
  gcc_obstack_init (&reload_obstack);
  reload_startobj = obstack_alloc (&reload_obstack, 0);
  reload_startobj = obstack_alloc (&reload_obstack, 0);
 
 
  INIT_REG_SET (&spilled_pseudos);
  INIT_REG_SET (&spilled_pseudos);
  INIT_REG_SET (&pseudos_counted);
  INIT_REG_SET (&pseudos_counted);
}
}
 
 
/* List of insn chains that are currently unused.  */
/* List of insn chains that are currently unused.  */
static struct insn_chain *unused_insn_chains = 0;
static struct insn_chain *unused_insn_chains = 0;
 
 
/* Allocate an empty insn_chain structure.  */
/* Allocate an empty insn_chain structure.  */
struct insn_chain *
struct insn_chain *
new_insn_chain (void)
new_insn_chain (void)
{
{
  struct insn_chain *c;
  struct insn_chain *c;
 
 
  if (unused_insn_chains == 0)
  if (unused_insn_chains == 0)
    {
    {
      c = obstack_alloc (&reload_obstack, sizeof (struct insn_chain));
      c = obstack_alloc (&reload_obstack, sizeof (struct insn_chain));
      INIT_REG_SET (&c->live_throughout);
      INIT_REG_SET (&c->live_throughout);
      INIT_REG_SET (&c->dead_or_set);
      INIT_REG_SET (&c->dead_or_set);
    }
    }
  else
  else
    {
    {
      c = unused_insn_chains;
      c = unused_insn_chains;
      unused_insn_chains = c->next;
      unused_insn_chains = c->next;
    }
    }
  c->is_caller_save_insn = 0;
  c->is_caller_save_insn = 0;
  c->need_operand_change = 0;
  c->need_operand_change = 0;
  c->need_reload = 0;
  c->need_reload = 0;
  c->need_elim = 0;
  c->need_elim = 0;
  return c;
  return c;
}
}
 
 
/* Small utility function to set all regs in hard reg set TO which are
/* Small utility function to set all regs in hard reg set TO which are
   allocated to pseudos in regset FROM.  */
   allocated to pseudos in regset FROM.  */
 
 
void
void
compute_use_by_pseudos (HARD_REG_SET *to, regset from)
compute_use_by_pseudos (HARD_REG_SET *to, regset from)
{
{
  unsigned int regno;
  unsigned int regno;
  reg_set_iterator rsi;
  reg_set_iterator rsi;
 
 
  EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
  EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
    {
    {
      int r = reg_renumber[regno];
      int r = reg_renumber[regno];
      int nregs;
      int nregs;
 
 
      if (r < 0)
      if (r < 0)
        {
        {
          /* reload_combine uses the information from
          /* reload_combine uses the information from
             BASIC_BLOCK->global_live_at_start, which might still
             BASIC_BLOCK->global_live_at_start, which might still
             contain registers that have not actually been allocated
             contain registers that have not actually been allocated
             since they have an equivalence.  */
             since they have an equivalence.  */
          gcc_assert (reload_completed);
          gcc_assert (reload_completed);
        }
        }
      else
      else
        {
        {
          nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
          nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
          while (nregs-- > 0)
          while (nregs-- > 0)
            SET_HARD_REG_BIT (*to, r + nregs);
            SET_HARD_REG_BIT (*to, r + nregs);
        }
        }
    }
    }
}
}
 
 
/* Replace all pseudos found in LOC with their corresponding
/* Replace all pseudos found in LOC with their corresponding
   equivalences.  */
   equivalences.  */
 
 
static void
static void
replace_pseudos_in (rtx *loc, enum machine_mode mem_mode, rtx usage)
replace_pseudos_in (rtx *loc, enum machine_mode mem_mode, rtx usage)
{
{
  rtx x = *loc;
  rtx x = *loc;
  enum rtx_code code;
  enum rtx_code code;
  const char *fmt;
  const char *fmt;
  int i, j;
  int i, j;
 
 
  if (! x)
  if (! x)
    return;
    return;
 
 
  code = GET_CODE (x);
  code = GET_CODE (x);
  if (code == REG)
  if (code == REG)
    {
    {
      unsigned int regno = REGNO (x);
      unsigned int regno = REGNO (x);
 
 
      if (regno < FIRST_PSEUDO_REGISTER)
      if (regno < FIRST_PSEUDO_REGISTER)
        return;
        return;
 
 
      x = eliminate_regs (x, mem_mode, usage);
      x = eliminate_regs (x, mem_mode, usage);
      if (x != *loc)
      if (x != *loc)
        {
        {
          *loc = x;
          *loc = x;
          replace_pseudos_in (loc, mem_mode, usage);
          replace_pseudos_in (loc, mem_mode, usage);
          return;
          return;
        }
        }
 
 
      if (reg_equiv_constant[regno])
      if (reg_equiv_constant[regno])
        *loc = reg_equiv_constant[regno];
        *loc = reg_equiv_constant[regno];
      else if (reg_equiv_mem[regno])
      else if (reg_equiv_mem[regno])
        *loc = reg_equiv_mem[regno];
        *loc = reg_equiv_mem[regno];
      else if (reg_equiv_address[regno])
      else if (reg_equiv_address[regno])
        *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address[regno]);
        *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address[regno]);
      else
      else
        {
        {
          gcc_assert (!REG_P (regno_reg_rtx[regno])
          gcc_assert (!REG_P (regno_reg_rtx[regno])
                      || REGNO (regno_reg_rtx[regno]) != regno);
                      || REGNO (regno_reg_rtx[regno]) != regno);
          *loc = regno_reg_rtx[regno];
          *loc = regno_reg_rtx[regno];
        }
        }
 
 
      return;
      return;
    }
    }
  else if (code == MEM)
  else if (code == MEM)
    {
    {
      replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
      replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
      return;
      return;
    }
    }
 
 
  /* Process each of our operands recursively.  */
  /* Process each of our operands recursively.  */
  fmt = GET_RTX_FORMAT (code);
  fmt = GET_RTX_FORMAT (code);
  for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
  for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
    if (*fmt == 'e')
    if (*fmt == 'e')
      replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
      replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
    else if (*fmt == 'E')
    else if (*fmt == 'E')
      for (j = 0; j < XVECLEN (x, i); j++)
      for (j = 0; j < XVECLEN (x, i); j++)
        replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
        replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
}
}
 
 


/* Global variables used by reload and its subroutines.  */
/* Global variables used by reload and its subroutines.  */
 
 
/* Set during calculate_needs if an insn needs register elimination.  */
/* Set during calculate_needs if an insn needs register elimination.  */
static int something_needs_elimination;
static int something_needs_elimination;
/* Set during calculate_needs if an insn needs an operand changed.  */
/* Set during calculate_needs if an insn needs an operand changed.  */
static int something_needs_operands_changed;
static int something_needs_operands_changed;
 
 
/* Nonzero means we couldn't get enough spill regs.  */
/* Nonzero means we couldn't get enough spill regs.  */
static int failure;
static int failure;
 
 
/* Main entry point for the reload pass.
/* Main entry point for the reload pass.
 
 
   FIRST is the first insn of the function being compiled.
   FIRST is the first insn of the function being compiled.
 
 
   GLOBAL nonzero means we were called from global_alloc
   GLOBAL nonzero means we were called from global_alloc
   and should attempt to reallocate any pseudoregs that we
   and should attempt to reallocate any pseudoregs that we
   displace from hard regs we will use for reloads.
   displace from hard regs we will use for reloads.
   If GLOBAL is zero, we do not have enough information to do that,
   If GLOBAL is zero, we do not have enough information to do that,
   so any pseudo reg that is spilled must go to the stack.
   so any pseudo reg that is spilled must go to the stack.
 
 
   Return value is nonzero if reload failed
   Return value is nonzero if reload failed
   and we must not do any more for this function.  */
   and we must not do any more for this function.  */
 
 
int
int
reload (rtx first, int global)
reload (rtx first, int global)
{
{
  int i;
  int i;
  rtx insn;
  rtx insn;
  struct elim_table *ep;
  struct elim_table *ep;
  basic_block bb;
  basic_block bb;
 
 
  /* Make sure even insns with volatile mem refs are recognizable.  */
  /* Make sure even insns with volatile mem refs are recognizable.  */
  init_recog ();
  init_recog ();
 
 
  failure = 0;
  failure = 0;
 
 
  reload_firstobj = obstack_alloc (&reload_obstack, 0);
  reload_firstobj = obstack_alloc (&reload_obstack, 0);
 
 
  /* Make sure that the last insn in the chain
  /* Make sure that the last insn in the chain
     is not something that needs reloading.  */
     is not something that needs reloading.  */
  emit_note (NOTE_INSN_DELETED);
  emit_note (NOTE_INSN_DELETED);
 
 
  /* Enable find_equiv_reg to distinguish insns made by reload.  */
  /* Enable find_equiv_reg to distinguish insns made by reload.  */
  reload_first_uid = get_max_uid ();
  reload_first_uid = get_max_uid ();
 
 
#ifdef SECONDARY_MEMORY_NEEDED
#ifdef SECONDARY_MEMORY_NEEDED
  /* Initialize the secondary memory table.  */
  /* Initialize the secondary memory table.  */
  clear_secondary_mem ();
  clear_secondary_mem ();
#endif
#endif
 
 
  /* We don't have a stack slot for any spill reg yet.  */
  /* We don't have a stack slot for any spill reg yet.  */
  memset (spill_stack_slot, 0, sizeof spill_stack_slot);
  memset (spill_stack_slot, 0, sizeof spill_stack_slot);
  memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
  memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
 
 
  /* Initialize the save area information for caller-save, in case some
  /* Initialize the save area information for caller-save, in case some
     are needed.  */
     are needed.  */
  init_save_areas ();
  init_save_areas ();
 
 
  /* Compute which hard registers are now in use
  /* Compute which hard registers are now in use
     as homes for pseudo registers.
     as homes for pseudo registers.
     This is done here rather than (eg) in global_alloc
     This is done here rather than (eg) in global_alloc
     because this point is reached even if not optimizing.  */
     because this point is reached even if not optimizing.  */
  for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
  for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
    mark_home_live (i);
    mark_home_live (i);
 
 
  /* A function that receives a nonlocal goto must save all call-saved
  /* A function that receives a nonlocal goto must save all call-saved
     registers.  */
     registers.  */
  if (current_function_has_nonlocal_label)
  if (current_function_has_nonlocal_label)
    for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
      if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
      if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
        regs_ever_live[i] = 1;
        regs_ever_live[i] = 1;
 
 
  /* Find all the pseudo registers that didn't get hard regs
  /* Find all the pseudo registers that didn't get hard regs
     but do have known equivalent constants or memory slots.
     but do have known equivalent constants or memory slots.
     These include parameters (known equivalent to parameter slots)
     These include parameters (known equivalent to parameter slots)
     and cse'd or loop-moved constant memory addresses.
     and cse'd or loop-moved constant memory addresses.
 
 
     Record constant equivalents in reg_equiv_constant
     Record constant equivalents in reg_equiv_constant
     so they will be substituted by find_reloads.
     so they will be substituted by find_reloads.
     Record memory equivalents in reg_mem_equiv so they can
     Record memory equivalents in reg_mem_equiv so they can
     be substituted eventually by altering the REG-rtx's.  */
     be substituted eventually by altering the REG-rtx's.  */
 
 
  reg_equiv_constant = XCNEWVEC (rtx, max_regno);
  reg_equiv_constant = XCNEWVEC (rtx, max_regno);
  reg_equiv_invariant = XCNEWVEC (rtx, max_regno);
  reg_equiv_invariant = XCNEWVEC (rtx, max_regno);
  reg_equiv_mem = XCNEWVEC (rtx, max_regno);
  reg_equiv_mem = XCNEWVEC (rtx, max_regno);
  reg_equiv_alt_mem_list = XCNEWVEC (rtx, max_regno);
  reg_equiv_alt_mem_list = XCNEWVEC (rtx, max_regno);
  reg_equiv_address = XCNEWVEC (rtx, max_regno);
  reg_equiv_address = XCNEWVEC (rtx, max_regno);
  reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
  reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
  reg_old_renumber = XCNEWVEC (short, max_regno);
  reg_old_renumber = XCNEWVEC (short, max_regno);
  memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
  memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
  pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
  pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
  pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
  pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
 
 
  CLEAR_HARD_REG_SET (bad_spill_regs_global);
  CLEAR_HARD_REG_SET (bad_spill_regs_global);
 
 
  /* Look for REG_EQUIV notes; record what each pseudo is equivalent
  /* Look for REG_EQUIV notes; record what each pseudo is equivalent
     to.  Also find all paradoxical subregs and find largest such for
     to.  Also find all paradoxical subregs and find largest such for
     each pseudo.  */
     each pseudo.  */
 
 
  num_eliminable_invariants = 0;
  num_eliminable_invariants = 0;
  for (insn = first; insn; insn = NEXT_INSN (insn))
  for (insn = first; insn; insn = NEXT_INSN (insn))
    {
    {
      rtx set = single_set (insn);
      rtx set = single_set (insn);
 
 
      /* We may introduce USEs that we want to remove at the end, so
      /* We may introduce USEs that we want to remove at the end, so
         we'll mark them with QImode.  Make sure there are no
         we'll mark them with QImode.  Make sure there are no
         previously-marked insns left by say regmove.  */
         previously-marked insns left by say regmove.  */
      if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
      if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
          && GET_MODE (insn) != VOIDmode)
          && GET_MODE (insn) != VOIDmode)
        PUT_MODE (insn, VOIDmode);
        PUT_MODE (insn, VOIDmode);
 
 
      if (INSN_P (insn))
      if (INSN_P (insn))
        scan_paradoxical_subregs (PATTERN (insn));
        scan_paradoxical_subregs (PATTERN (insn));
 
 
      if (set != 0 && REG_P (SET_DEST (set)))
      if (set != 0 && REG_P (SET_DEST (set)))
        {
        {
          rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
          rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
          rtx x;
          rtx x;
 
 
          if (! note)
          if (! note)
            continue;
            continue;
 
 
          i = REGNO (SET_DEST (set));
          i = REGNO (SET_DEST (set));
          x = XEXP (note, 0);
          x = XEXP (note, 0);
 
 
          if (i <= LAST_VIRTUAL_REGISTER)
          if (i <= LAST_VIRTUAL_REGISTER)
            continue;
            continue;
 
 
          if (! function_invariant_p (x)
          if (! function_invariant_p (x)
              || ! flag_pic
              || ! flag_pic
              /* A function invariant is often CONSTANT_P but may
              /* A function invariant is often CONSTANT_P but may
                 include a register.  We promise to only pass
                 include a register.  We promise to only pass
                 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P.  */
                 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P.  */
              || (CONSTANT_P (x)
              || (CONSTANT_P (x)
                  && LEGITIMATE_PIC_OPERAND_P (x)))
                  && LEGITIMATE_PIC_OPERAND_P (x)))
            {
            {
              /* It can happen that a REG_EQUIV note contains a MEM
              /* It can happen that a REG_EQUIV note contains a MEM
                 that is not a legitimate memory operand.  As later
                 that is not a legitimate memory operand.  As later
                 stages of reload assume that all addresses found
                 stages of reload assume that all addresses found
                 in the reg_equiv_* arrays were originally legitimate,
                 in the reg_equiv_* arrays were originally legitimate,
                 we ignore such REG_EQUIV notes.  */
                 we ignore such REG_EQUIV notes.  */
              if (memory_operand (x, VOIDmode))
              if (memory_operand (x, VOIDmode))
                {
                {
                  /* Always unshare the equivalence, so we can
                  /* Always unshare the equivalence, so we can
                     substitute into this insn without touching the
                     substitute into this insn without touching the
                       equivalence.  */
                       equivalence.  */
                  reg_equiv_memory_loc[i] = copy_rtx (x);
                  reg_equiv_memory_loc[i] = copy_rtx (x);
                }
                }
              else if (function_invariant_p (x))
              else if (function_invariant_p (x))
                {
                {
                  if (GET_CODE (x) == PLUS)
                  if (GET_CODE (x) == PLUS)
                    {
                    {
                      /* This is PLUS of frame pointer and a constant,
                      /* This is PLUS of frame pointer and a constant,
                         and might be shared.  Unshare it.  */
                         and might be shared.  Unshare it.  */
                      reg_equiv_invariant[i] = copy_rtx (x);
                      reg_equiv_invariant[i] = copy_rtx (x);
                      num_eliminable_invariants++;
                      num_eliminable_invariants++;
                    }
                    }
                  else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
                  else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
                    {
                    {
                      reg_equiv_invariant[i] = x;
                      reg_equiv_invariant[i] = x;
                      num_eliminable_invariants++;
                      num_eliminable_invariants++;
                    }
                    }
                  else if (LEGITIMATE_CONSTANT_P (x))
                  else if (LEGITIMATE_CONSTANT_P (x))
                    reg_equiv_constant[i] = x;
                    reg_equiv_constant[i] = x;
                  else
                  else
                    {
                    {
                      reg_equiv_memory_loc[i]
                      reg_equiv_memory_loc[i]
                        = force_const_mem (GET_MODE (SET_DEST (set)), x);
                        = force_const_mem (GET_MODE (SET_DEST (set)), x);
                      if (! reg_equiv_memory_loc[i])
                      if (! reg_equiv_memory_loc[i])
                        reg_equiv_init[i] = NULL_RTX;
                        reg_equiv_init[i] = NULL_RTX;
                    }
                    }
                }
                }
              else
              else
                {
                {
                  reg_equiv_init[i] = NULL_RTX;
                  reg_equiv_init[i] = NULL_RTX;
                  continue;
                  continue;
                }
                }
            }
            }
          else
          else
            reg_equiv_init[i] = NULL_RTX;
            reg_equiv_init[i] = NULL_RTX;
        }
        }
    }
    }
 
 
  if (dump_file)
  if (dump_file)
    for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
    for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
      if (reg_equiv_init[i])
      if (reg_equiv_init[i])
        {
        {
          fprintf (dump_file, "init_insns for %u: ", i);
          fprintf (dump_file, "init_insns for %u: ", i);
          print_inline_rtx (dump_file, reg_equiv_init[i], 20);
          print_inline_rtx (dump_file, reg_equiv_init[i], 20);
          fprintf (dump_file, "\n");
          fprintf (dump_file, "\n");
        }
        }
 
 
  init_elim_table ();
  init_elim_table ();
 
 
  first_label_num = get_first_label_num ();
  first_label_num = get_first_label_num ();
  num_labels = max_label_num () - first_label_num;
  num_labels = max_label_num () - first_label_num;
 
 
  /* Allocate the tables used to store offset information at labels.  */
  /* Allocate the tables used to store offset information at labels.  */
  /* We used to use alloca here, but the size of what it would try to
  /* We used to use alloca here, but the size of what it would try to
     allocate would occasionally cause it to exceed the stack limit and
     allocate would occasionally cause it to exceed the stack limit and
     cause a core dump.  */
     cause a core dump.  */
  offsets_known_at = XNEWVEC (char, num_labels);
  offsets_known_at = XNEWVEC (char, num_labels);
  offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
  offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
 
 
  /* Alter each pseudo-reg rtx to contain its hard reg number.
  /* Alter each pseudo-reg rtx to contain its hard reg number.
     Assign stack slots to the pseudos that lack hard regs or equivalents.
     Assign stack slots to the pseudos that lack hard regs or equivalents.
     Do not touch virtual registers.  */
     Do not touch virtual registers.  */
 
 
  for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
  for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
    alter_reg (i, -1);
    alter_reg (i, -1);
 
 
  /* If we have some registers we think can be eliminated, scan all insns to
  /* If we have some registers we think can be eliminated, scan all insns to
     see if there is an insn that sets one of these registers to something
     see if there is an insn that sets one of these registers to something
     other than itself plus a constant.  If so, the register cannot be
     other than itself plus a constant.  If so, the register cannot be
     eliminated.  Doing this scan here eliminates an extra pass through the
     eliminated.  Doing this scan here eliminates an extra pass through the
     main reload loop in the most common case where register elimination
     main reload loop in the most common case where register elimination
     cannot be done.  */
     cannot be done.  */
  for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
  for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
    if (INSN_P (insn))
    if (INSN_P (insn))
      note_stores (PATTERN (insn), mark_not_eliminable, NULL);
      note_stores (PATTERN (insn), mark_not_eliminable, NULL);
 
 
  maybe_fix_stack_asms ();
  maybe_fix_stack_asms ();
 
 
  insns_need_reload = 0;
  insns_need_reload = 0;
  something_needs_elimination = 0;
  something_needs_elimination = 0;
 
 
  /* Initialize to -1, which means take the first spill register.  */
  /* Initialize to -1, which means take the first spill register.  */
  last_spill_reg = -1;
  last_spill_reg = -1;
 
 
  /* Spill any hard regs that we know we can't eliminate.  */
  /* Spill any hard regs that we know we can't eliminate.  */
  CLEAR_HARD_REG_SET (used_spill_regs);
  CLEAR_HARD_REG_SET (used_spill_regs);
  /* There can be multiple ways to eliminate a register;
  /* There can be multiple ways to eliminate a register;
     they should be listed adjacently.
     they should be listed adjacently.
     Elimination for any register fails only if all possible ways fail.  */
     Elimination for any register fails only if all possible ways fail.  */
  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
    {
    {
      int from = ep->from;
      int from = ep->from;
      int can_eliminate = 0;
      int can_eliminate = 0;
      do
      do
        {
        {
          can_eliminate |= ep->can_eliminate;
          can_eliminate |= ep->can_eliminate;
          ep++;
          ep++;
        }
        }
      while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
      while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
      if (! can_eliminate)
      if (! can_eliminate)
        spill_hard_reg (from, 1);
        spill_hard_reg (from, 1);
    }
    }
 
 
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
  if (frame_pointer_needed)
  if (frame_pointer_needed)
    spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
    spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
#endif
#endif
  finish_spills (global);
  finish_spills (global);
 
 
  /* From now on, we may need to generate moves differently.  We may also
  /* From now on, we may need to generate moves differently.  We may also
     allow modifications of insns which cause them to not be recognized.
     allow modifications of insns which cause them to not be recognized.
     Any such modifications will be cleaned up during reload itself.  */
     Any such modifications will be cleaned up during reload itself.  */
  reload_in_progress = 1;
  reload_in_progress = 1;
 
 
  /* This loop scans the entire function each go-round
  /* This loop scans the entire function each go-round
     and repeats until one repetition spills no additional hard regs.  */
     and repeats until one repetition spills no additional hard regs.  */
  for (;;)
  for (;;)
    {
    {
      int something_changed;
      int something_changed;
      int did_spill;
      int did_spill;
 
 
      HOST_WIDE_INT starting_frame_size;
      HOST_WIDE_INT starting_frame_size;
 
 
      /* Round size of stack frame to stack_alignment_needed.  This must be done
      /* Round size of stack frame to stack_alignment_needed.  This must be done
         here because the stack size may be a part of the offset computation
         here because the stack size may be a part of the offset computation
         for register elimination, and there might have been new stack slots
         for register elimination, and there might have been new stack slots
         created in the last iteration of this loop.  */
         created in the last iteration of this loop.  */
      if (cfun->stack_alignment_needed)
      if (cfun->stack_alignment_needed)
        assign_stack_local (BLKmode, 0, cfun->stack_alignment_needed);
        assign_stack_local (BLKmode, 0, cfun->stack_alignment_needed);
 
 
      starting_frame_size = get_frame_size ();
      starting_frame_size = get_frame_size ();
 
 
      set_initial_elim_offsets ();
      set_initial_elim_offsets ();
      set_initial_label_offsets ();
      set_initial_label_offsets ();
 
 
      /* For each pseudo register that has an equivalent location defined,
      /* For each pseudo register that has an equivalent location defined,
         try to eliminate any eliminable registers (such as the frame pointer)
         try to eliminate any eliminable registers (such as the frame pointer)
         assuming initial offsets for the replacement register, which
         assuming initial offsets for the replacement register, which
         is the normal case.
         is the normal case.
 
 
         If the resulting location is directly addressable, substitute
         If the resulting location is directly addressable, substitute
         the MEM we just got directly for the old REG.
         the MEM we just got directly for the old REG.
 
 
         If it is not addressable but is a constant or the sum of a hard reg
         If it is not addressable but is a constant or the sum of a hard reg
         and constant, it is probably not addressable because the constant is
         and constant, it is probably not addressable because the constant is
         out of range, in that case record the address; we will generate
         out of range, in that case record the address; we will generate
         hairy code to compute the address in a register each time it is
         hairy code to compute the address in a register each time it is
         needed.  Similarly if it is a hard register, but one that is not
         needed.  Similarly if it is a hard register, but one that is not
         valid as an address register.
         valid as an address register.
 
 
         If the location is not addressable, but does not have one of the
         If the location is not addressable, but does not have one of the
         above forms, assign a stack slot.  We have to do this to avoid the
         above forms, assign a stack slot.  We have to do this to avoid the
         potential of producing lots of reloads if, e.g., a location involves
         potential of producing lots of reloads if, e.g., a location involves
         a pseudo that didn't get a hard register and has an equivalent memory
         a pseudo that didn't get a hard register and has an equivalent memory
         location that also involves a pseudo that didn't get a hard register.
         location that also involves a pseudo that didn't get a hard register.
 
 
         Perhaps at some point we will improve reload_when_needed handling
         Perhaps at some point we will improve reload_when_needed handling
         so this problem goes away.  But that's very hairy.  */
         so this problem goes away.  But that's very hairy.  */
 
 
      for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
      for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
        if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
        if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
          {
          {
            rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
            rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
 
 
            if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
            if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
                                         XEXP (x, 0)))
                                         XEXP (x, 0)))
              reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
              reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
            else if (CONSTANT_P (XEXP (x, 0))
            else if (CONSTANT_P (XEXP (x, 0))
                     || (REG_P (XEXP (x, 0))
                     || (REG_P (XEXP (x, 0))
                         && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
                         && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
                     || (GET_CODE (XEXP (x, 0)) == PLUS
                     || (GET_CODE (XEXP (x, 0)) == PLUS
                         && REG_P (XEXP (XEXP (x, 0), 0))
                         && REG_P (XEXP (XEXP (x, 0), 0))
                         && (REGNO (XEXP (XEXP (x, 0), 0))
                         && (REGNO (XEXP (XEXP (x, 0), 0))
                             < FIRST_PSEUDO_REGISTER)
                             < FIRST_PSEUDO_REGISTER)
                         && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
                         && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
              reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
              reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
            else
            else
              {
              {
                /* Make a new stack slot.  Then indicate that something
                /* Make a new stack slot.  Then indicate that something
                   changed so we go back and recompute offsets for
                   changed so we go back and recompute offsets for
                   eliminable registers because the allocation of memory
                   eliminable registers because the allocation of memory
                   below might change some offset.  reg_equiv_{mem,address}
                   below might change some offset.  reg_equiv_{mem,address}
                   will be set up for this pseudo on the next pass around
                   will be set up for this pseudo on the next pass around
                   the loop.  */
                   the loop.  */
                reg_equiv_memory_loc[i] = 0;
                reg_equiv_memory_loc[i] = 0;
                reg_equiv_init[i] = 0;
                reg_equiv_init[i] = 0;
                alter_reg (i, -1);
                alter_reg (i, -1);
              }
              }
          }
          }
 
 
      if (caller_save_needed)
      if (caller_save_needed)
        setup_save_areas ();
        setup_save_areas ();
 
 
      /* If we allocated another stack slot, redo elimination bookkeeping.  */
      /* If we allocated another stack slot, redo elimination bookkeeping.  */
      if (starting_frame_size != get_frame_size ())
      if (starting_frame_size != get_frame_size ())
        continue;
        continue;
 
 
      if (caller_save_needed)
      if (caller_save_needed)
        {
        {
          save_call_clobbered_regs ();
          save_call_clobbered_regs ();
          /* That might have allocated new insn_chain structures.  */
          /* That might have allocated new insn_chain structures.  */
          reload_firstobj = obstack_alloc (&reload_obstack, 0);
          reload_firstobj = obstack_alloc (&reload_obstack, 0);
        }
        }
 
 
      calculate_needs_all_insns (global);
      calculate_needs_all_insns (global);
 
 
      CLEAR_REG_SET (&spilled_pseudos);
      CLEAR_REG_SET (&spilled_pseudos);
      did_spill = 0;
      did_spill = 0;
 
 
      something_changed = 0;
      something_changed = 0;
 
 
      /* If we allocated any new memory locations, make another pass
      /* If we allocated any new memory locations, make another pass
         since it might have changed elimination offsets.  */
         since it might have changed elimination offsets.  */
      if (starting_frame_size != get_frame_size ())
      if (starting_frame_size != get_frame_size ())
        something_changed = 1;
        something_changed = 1;
 
 
      /* Even if the frame size remained the same, we might still have
      /* Even if the frame size remained the same, we might still have
         changed elimination offsets, e.g. if find_reloads called
         changed elimination offsets, e.g. if find_reloads called
         force_const_mem requiring the back end to allocate a constant
         force_const_mem requiring the back end to allocate a constant
         pool base register that needs to be saved on the stack.  */
         pool base register that needs to be saved on the stack.  */
      else if (!verify_initial_elim_offsets ())
      else if (!verify_initial_elim_offsets ())
        something_changed = 1;
        something_changed = 1;
 
 
      {
      {
        HARD_REG_SET to_spill;
        HARD_REG_SET to_spill;
        CLEAR_HARD_REG_SET (to_spill);
        CLEAR_HARD_REG_SET (to_spill);
        update_eliminables (&to_spill);
        update_eliminables (&to_spill);
        AND_COMPL_HARD_REG_SET(used_spill_regs, to_spill);
        AND_COMPL_HARD_REG_SET(used_spill_regs, to_spill);
 
 
        for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
        for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
          if (TEST_HARD_REG_BIT (to_spill, i))
          if (TEST_HARD_REG_BIT (to_spill, i))
            {
            {
              spill_hard_reg (i, 1);
              spill_hard_reg (i, 1);
              did_spill = 1;
              did_spill = 1;
 
 
              /* Regardless of the state of spills, if we previously had
              /* Regardless of the state of spills, if we previously had
                 a register that we thought we could eliminate, but now can
                 a register that we thought we could eliminate, but now can
                 not eliminate, we must run another pass.
                 not eliminate, we must run another pass.
 
 
                 Consider pseudos which have an entry in reg_equiv_* which
                 Consider pseudos which have an entry in reg_equiv_* which
                 reference an eliminable register.  We must make another pass
                 reference an eliminable register.  We must make another pass
                 to update reg_equiv_* so that we do not substitute in the
                 to update reg_equiv_* so that we do not substitute in the
                 old value from when we thought the elimination could be
                 old value from when we thought the elimination could be
                 performed.  */
                 performed.  */
              something_changed = 1;
              something_changed = 1;
            }
            }
      }
      }
 
 
      select_reload_regs ();
      select_reload_regs ();
      if (failure)
      if (failure)
        goto failed;
        goto failed;
 
 
      if (insns_need_reload != 0 || did_spill)
      if (insns_need_reload != 0 || did_spill)
        something_changed |= finish_spills (global);
        something_changed |= finish_spills (global);
 
 
      if (! something_changed)
      if (! something_changed)
        break;
        break;
 
 
      if (caller_save_needed)
      if (caller_save_needed)
        delete_caller_save_insns ();
        delete_caller_save_insns ();
 
 
      obstack_free (&reload_obstack, reload_firstobj);
      obstack_free (&reload_obstack, reload_firstobj);
    }
    }
 
 
  /* If global-alloc was run, notify it of any register eliminations we have
  /* If global-alloc was run, notify it of any register eliminations we have
     done.  */
     done.  */
  if (global)
  if (global)
    for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
    for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
      if (ep->can_eliminate)
      if (ep->can_eliminate)
        mark_elimination (ep->from, ep->to);
        mark_elimination (ep->from, ep->to);
 
 
  /* If a pseudo has no hard reg, delete the insns that made the equivalence.
  /* If a pseudo has no hard reg, delete the insns that made the equivalence.
     If that insn didn't set the register (i.e., it copied the register to
     If that insn didn't set the register (i.e., it copied the register to
     memory), just delete that insn instead of the equivalencing insn plus
     memory), just delete that insn instead of the equivalencing insn plus
     anything now dead.  If we call delete_dead_insn on that insn, we may
     anything now dead.  If we call delete_dead_insn on that insn, we may
     delete the insn that actually sets the register if the register dies
     delete the insn that actually sets the register if the register dies
     there and that is incorrect.  */
     there and that is incorrect.  */
 
 
  for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
  for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
    {
    {
      if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
      if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
        {
        {
          rtx list;
          rtx list;
          for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
          for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
            {
            {
              rtx equiv_insn = XEXP (list, 0);
              rtx equiv_insn = XEXP (list, 0);
 
 
              /* If we already deleted the insn or if it may trap, we can't
              /* If we already deleted the insn or if it may trap, we can't
                 delete it.  The latter case shouldn't happen, but can
                 delete it.  The latter case shouldn't happen, but can
                 if an insn has a variable address, gets a REG_EH_REGION
                 if an insn has a variable address, gets a REG_EH_REGION
                 note added to it, and then gets converted into a load
                 note added to it, and then gets converted into a load
                 from a constant address.  */
                 from a constant address.  */
              if (NOTE_P (equiv_insn)
              if (NOTE_P (equiv_insn)
                  || can_throw_internal (equiv_insn))
                  || can_throw_internal (equiv_insn))
                ;
                ;
              else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
              else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
                delete_dead_insn (equiv_insn);
                delete_dead_insn (equiv_insn);
              else
              else
                SET_INSN_DELETED (equiv_insn);
                SET_INSN_DELETED (equiv_insn);
            }
            }
        }
        }
    }
    }
 
 
  /* Use the reload registers where necessary
  /* Use the reload registers where necessary
     by generating move instructions to move the must-be-register
     by generating move instructions to move the must-be-register
     values into or out of the reload registers.  */
     values into or out of the reload registers.  */
 
 
  if (insns_need_reload != 0 || something_needs_elimination
  if (insns_need_reload != 0 || something_needs_elimination
      || something_needs_operands_changed)
      || something_needs_operands_changed)
    {
    {
      HOST_WIDE_INT old_frame_size = get_frame_size ();
      HOST_WIDE_INT old_frame_size = get_frame_size ();
 
 
      reload_as_needed (global);
      reload_as_needed (global);
 
 
      gcc_assert (old_frame_size == get_frame_size ());
      gcc_assert (old_frame_size == get_frame_size ());
 
 
      gcc_assert (verify_initial_elim_offsets ());
      gcc_assert (verify_initial_elim_offsets ());
    }
    }
 
 
  /* If we were able to eliminate the frame pointer, show that it is no
  /* If we were able to eliminate the frame pointer, show that it is no
     longer live at the start of any basic block.  If it ls live by
     longer live at the start of any basic block.  If it ls live by
     virtue of being in a pseudo, that pseudo will be marked live
     virtue of being in a pseudo, that pseudo will be marked live
     and hence the frame pointer will be known to be live via that
     and hence the frame pointer will be known to be live via that
     pseudo.  */
     pseudo.  */
 
 
  if (! frame_pointer_needed)
  if (! frame_pointer_needed)
    FOR_EACH_BB (bb)
    FOR_EACH_BB (bb)
      CLEAR_REGNO_REG_SET (bb->il.rtl->global_live_at_start,
      CLEAR_REGNO_REG_SET (bb->il.rtl->global_live_at_start,
                           HARD_FRAME_POINTER_REGNUM);
                           HARD_FRAME_POINTER_REGNUM);
 
 
  /* Come here (with failure set nonzero) if we can't get enough spill
  /* Come here (with failure set nonzero) if we can't get enough spill
     regs.  */
     regs.  */
 failed:
 failed:
 
 
  CLEAR_REG_SET (&spilled_pseudos);
  CLEAR_REG_SET (&spilled_pseudos);
  reload_in_progress = 0;
  reload_in_progress = 0;
 
 
  /* Now eliminate all pseudo regs by modifying them into
  /* Now eliminate all pseudo regs by modifying them into
     their equivalent memory references.
     their equivalent memory references.
     The REG-rtx's for the pseudos are modified in place,
     The REG-rtx's for the pseudos are modified in place,
     so all insns that used to refer to them now refer to memory.
     so all insns that used to refer to them now refer to memory.
 
 
     For a reg that has a reg_equiv_address, all those insns
     For a reg that has a reg_equiv_address, all those insns
     were changed by reloading so that no insns refer to it any longer;
     were changed by reloading so that no insns refer to it any longer;
     but the DECL_RTL of a variable decl may refer to it,
     but the DECL_RTL of a variable decl may refer to it,
     and if so this causes the debugging info to mention the variable.  */
     and if so this causes the debugging info to mention the variable.  */
 
 
  for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
  for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
    {
    {
      rtx addr = 0;
      rtx addr = 0;
 
 
      if (reg_equiv_mem[i])
      if (reg_equiv_mem[i])
        addr = XEXP (reg_equiv_mem[i], 0);
        addr = XEXP (reg_equiv_mem[i], 0);
 
 
      if (reg_equiv_address[i])
      if (reg_equiv_address[i])
        addr = reg_equiv_address[i];
        addr = reg_equiv_address[i];
 
 
      if (addr)
      if (addr)
        {
        {
          if (reg_renumber[i] < 0)
          if (reg_renumber[i] < 0)
            {
            {
              rtx reg = regno_reg_rtx[i];
              rtx reg = regno_reg_rtx[i];
 
 
              REG_USERVAR_P (reg) = 0;
              REG_USERVAR_P (reg) = 0;
              PUT_CODE (reg, MEM);
              PUT_CODE (reg, MEM);
              XEXP (reg, 0) = addr;
              XEXP (reg, 0) = addr;
              if (reg_equiv_memory_loc[i])
              if (reg_equiv_memory_loc[i])
                MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc[i]);
                MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc[i]);
              else
              else
                {
                {
                  MEM_IN_STRUCT_P (reg) = MEM_SCALAR_P (reg) = 0;
                  MEM_IN_STRUCT_P (reg) = MEM_SCALAR_P (reg) = 0;
                  MEM_ATTRS (reg) = 0;
                  MEM_ATTRS (reg) = 0;
                }
                }
              MEM_NOTRAP_P (reg) = 1;
              MEM_NOTRAP_P (reg) = 1;
            }
            }
          else if (reg_equiv_mem[i])
          else if (reg_equiv_mem[i])
            XEXP (reg_equiv_mem[i], 0) = addr;
            XEXP (reg_equiv_mem[i], 0) = addr;
        }
        }
    }
    }
 
 
  /* We must set reload_completed now since the cleanup_subreg_operands call
  /* We must set reload_completed now since the cleanup_subreg_operands call
     below will re-recognize each insn and reload may have generated insns
     below will re-recognize each insn and reload may have generated insns
     which are only valid during and after reload.  */
     which are only valid during and after reload.  */
  reload_completed = 1;
  reload_completed = 1;
 
 
  /* Make a pass over all the insns and delete all USEs which we inserted
  /* Make a pass over all the insns and delete all USEs which we inserted
     only to tag a REG_EQUAL note on them.  Remove all REG_DEAD and REG_UNUSED
     only to tag a REG_EQUAL note on them.  Remove all REG_DEAD and REG_UNUSED
     notes.  Delete all CLOBBER insns, except those that refer to the return
     notes.  Delete all CLOBBER insns, except those that refer to the return
     value and the special mem:BLK CLOBBERs added to prevent the scheduler
     value and the special mem:BLK CLOBBERs added to prevent the scheduler
     from misarranging variable-array code, and simplify (subreg (reg))
     from misarranging variable-array code, and simplify (subreg (reg))
     operands.  Also remove all REG_RETVAL and REG_LIBCALL notes since they
     operands.  Also remove all REG_RETVAL and REG_LIBCALL notes since they
     are no longer useful or accurate.  Strip and regenerate REG_INC notes
     are no longer useful or accurate.  Strip and regenerate REG_INC notes
     that may have been moved around.  */
     that may have been moved around.  */
 
 
  for (insn = first; insn; insn = NEXT_INSN (insn))
  for (insn = first; insn; insn = NEXT_INSN (insn))
    if (INSN_P (insn))
    if (INSN_P (insn))
      {
      {
        rtx *pnote;
        rtx *pnote;
 
 
        if (CALL_P (insn))
        if (CALL_P (insn))
          replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
          replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
                              VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
                              VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
 
 
        if ((GET_CODE (PATTERN (insn)) == USE
        if ((GET_CODE (PATTERN (insn)) == USE
             /* We mark with QImode USEs introduced by reload itself.  */
             /* We mark with QImode USEs introduced by reload itself.  */
             && (GET_MODE (insn) == QImode
             && (GET_MODE (insn) == QImode
                 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
                 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
            || (GET_CODE (PATTERN (insn)) == CLOBBER
            || (GET_CODE (PATTERN (insn)) == CLOBBER
                && (!MEM_P (XEXP (PATTERN (insn), 0))
                && (!MEM_P (XEXP (PATTERN (insn), 0))
                    || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
                    || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
                    || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
                    || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
                        && XEXP (XEXP (PATTERN (insn), 0), 0)
                        && XEXP (XEXP (PATTERN (insn), 0), 0)
                                != stack_pointer_rtx))
                                != stack_pointer_rtx))
                && (!REG_P (XEXP (PATTERN (insn), 0))
                && (!REG_P (XEXP (PATTERN (insn), 0))
                    || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
                    || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
          {
          {
            delete_insn (insn);
            delete_insn (insn);
            continue;
            continue;
          }
          }
 
 
        /* Some CLOBBERs may survive until here and still reference unassigned
        /* Some CLOBBERs may survive until here and still reference unassigned
           pseudos with const equivalent, which may in turn cause ICE in later
           pseudos with const equivalent, which may in turn cause ICE in later
           passes if the reference remains in place.  */
           passes if the reference remains in place.  */
        if (GET_CODE (PATTERN (insn)) == CLOBBER)
        if (GET_CODE (PATTERN (insn)) == CLOBBER)
          replace_pseudos_in (& XEXP (PATTERN (insn), 0),
          replace_pseudos_in (& XEXP (PATTERN (insn), 0),
                              VOIDmode, PATTERN (insn));
                              VOIDmode, PATTERN (insn));
 
 
        /* Discard obvious no-ops, even without -O.  This optimization
        /* Discard obvious no-ops, even without -O.  This optimization
           is fast and doesn't interfere with debugging.  */
           is fast and doesn't interfere with debugging.  */
        if (NONJUMP_INSN_P (insn)
        if (NONJUMP_INSN_P (insn)
            && GET_CODE (PATTERN (insn)) == SET
            && GET_CODE (PATTERN (insn)) == SET
            && REG_P (SET_SRC (PATTERN (insn)))
            && REG_P (SET_SRC (PATTERN (insn)))
            && REG_P (SET_DEST (PATTERN (insn)))
            && REG_P (SET_DEST (PATTERN (insn)))
            && (REGNO (SET_SRC (PATTERN (insn)))
            && (REGNO (SET_SRC (PATTERN (insn)))
                == REGNO (SET_DEST (PATTERN (insn)))))
                == REGNO (SET_DEST (PATTERN (insn)))))
          {
          {
            delete_insn (insn);
            delete_insn (insn);
            continue;
            continue;
          }
          }
 
 
        pnote = &REG_NOTES (insn);
        pnote = &REG_NOTES (insn);
        while (*pnote != 0)
        while (*pnote != 0)
          {
          {
            if (REG_NOTE_KIND (*pnote) == REG_DEAD
            if (REG_NOTE_KIND (*pnote) == REG_DEAD
                || REG_NOTE_KIND (*pnote) == REG_UNUSED
                || REG_NOTE_KIND (*pnote) == REG_UNUSED
                || REG_NOTE_KIND (*pnote) == REG_INC
                || REG_NOTE_KIND (*pnote) == REG_INC
                || REG_NOTE_KIND (*pnote) == REG_RETVAL
                || REG_NOTE_KIND (*pnote) == REG_RETVAL
                || REG_NOTE_KIND (*pnote) == REG_LIBCALL)
                || REG_NOTE_KIND (*pnote) == REG_LIBCALL)
              *pnote = XEXP (*pnote, 1);
              *pnote = XEXP (*pnote, 1);
            else
            else
              pnote = &XEXP (*pnote, 1);
              pnote = &XEXP (*pnote, 1);
          }
          }
 
 
#ifdef AUTO_INC_DEC
#ifdef AUTO_INC_DEC
        add_auto_inc_notes (insn, PATTERN (insn));
        add_auto_inc_notes (insn, PATTERN (insn));
#endif
#endif
 
 
        /* Simplify (subreg (reg)) if it appears as an operand.  */
        /* Simplify (subreg (reg)) if it appears as an operand.  */
        cleanup_subreg_operands (insn);
        cleanup_subreg_operands (insn);
 
 
        /* Clean up invalid ASMs so that they don't confuse later passes.
        /* Clean up invalid ASMs so that they don't confuse later passes.
           See PR 21299.  */
           See PR 21299.  */
        if (asm_noperands (PATTERN (insn)) >= 0)
        if (asm_noperands (PATTERN (insn)) >= 0)
          {
          {
            extract_insn (insn);
            extract_insn (insn);
            if (!constrain_operands (1))
            if (!constrain_operands (1))
              {
              {
                error_for_asm (insn,
                error_for_asm (insn,
                               "%<asm%> operand has impossible constraints");
                               "%<asm%> operand has impossible constraints");
                delete_insn (insn);
                delete_insn (insn);
                continue;
                continue;
              }
              }
          }
          }
      }
      }
 
 
  /* If we are doing stack checking, give a warning if this function's
  /* If we are doing stack checking, give a warning if this function's
     frame size is larger than we expect.  */
     frame size is larger than we expect.  */
  if (flag_stack_check && ! STACK_CHECK_BUILTIN)
  if (flag_stack_check && ! STACK_CHECK_BUILTIN)
    {
    {
      HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
      HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
      static int verbose_warned = 0;
      static int verbose_warned = 0;
 
 
      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
        if (regs_ever_live[i] && ! fixed_regs[i] && call_used_regs[i])
        if (regs_ever_live[i] && ! fixed_regs[i] && call_used_regs[i])
          size += UNITS_PER_WORD;
          size += UNITS_PER_WORD;
 
 
      if (size > STACK_CHECK_MAX_FRAME_SIZE)
      if (size > STACK_CHECK_MAX_FRAME_SIZE)
        {
        {
          warning (0, "frame size too large for reliable stack checking");
          warning (0, "frame size too large for reliable stack checking");
          if (! verbose_warned)
          if (! verbose_warned)
            {
            {
              warning (0, "try reducing the number of local variables");
              warning (0, "try reducing the number of local variables");
              verbose_warned = 1;
              verbose_warned = 1;
            }
            }
        }
        }
    }
    }
 
 
  /* Indicate that we no longer have known memory locations or constants.  */
  /* Indicate that we no longer have known memory locations or constants.  */
  if (reg_equiv_constant)
  if (reg_equiv_constant)
    free (reg_equiv_constant);
    free (reg_equiv_constant);
  if (reg_equiv_invariant)
  if (reg_equiv_invariant)
    free (reg_equiv_invariant);
    free (reg_equiv_invariant);
  reg_equiv_constant = 0;
  reg_equiv_constant = 0;
  reg_equiv_invariant = 0;
  reg_equiv_invariant = 0;
  VEC_free (rtx, gc, reg_equiv_memory_loc_vec);
  VEC_free (rtx, gc, reg_equiv_memory_loc_vec);
  reg_equiv_memory_loc = 0;
  reg_equiv_memory_loc = 0;
 
 
  if (offsets_known_at)
  if (offsets_known_at)
    free (offsets_known_at);
    free (offsets_known_at);
  if (offsets_at)
  if (offsets_at)
    free (offsets_at);
    free (offsets_at);
 
 
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    if (reg_equiv_alt_mem_list[i])
    if (reg_equiv_alt_mem_list[i])
      free_EXPR_LIST_list (&reg_equiv_alt_mem_list[i]);
      free_EXPR_LIST_list (&reg_equiv_alt_mem_list[i]);
  free (reg_equiv_alt_mem_list);
  free (reg_equiv_alt_mem_list);
 
 
  free (reg_equiv_mem);
  free (reg_equiv_mem);
  reg_equiv_init = 0;
  reg_equiv_init = 0;
  free (reg_equiv_address);
  free (reg_equiv_address);
  free (reg_max_ref_width);
  free (reg_max_ref_width);
  free (reg_old_renumber);
  free (reg_old_renumber);
  free (pseudo_previous_regs);
  free (pseudo_previous_regs);
  free (pseudo_forbidden_regs);
  free (pseudo_forbidden_regs);
 
 
  CLEAR_HARD_REG_SET (used_spill_regs);
  CLEAR_HARD_REG_SET (used_spill_regs);
  for (i = 0; i < n_spills; i++)
  for (i = 0; i < n_spills; i++)
    SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
    SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
 
 
  /* Free all the insn_chain structures at once.  */
  /* Free all the insn_chain structures at once.  */
  obstack_free (&reload_obstack, reload_startobj);
  obstack_free (&reload_obstack, reload_startobj);
  unused_insn_chains = 0;
  unused_insn_chains = 0;
  fixup_abnormal_edges ();
  fixup_abnormal_edges ();
 
 
  /* Replacing pseudos with their memory equivalents might have
  /* Replacing pseudos with their memory equivalents might have
     created shared rtx.  Subsequent passes would get confused
     created shared rtx.  Subsequent passes would get confused
     by this, so unshare everything here.  */
     by this, so unshare everything here.  */
  unshare_all_rtl_again (first);
  unshare_all_rtl_again (first);
 
 
#ifdef STACK_BOUNDARY
#ifdef STACK_BOUNDARY
  /* init_emit has set the alignment of the hard frame pointer
  /* init_emit has set the alignment of the hard frame pointer
     to STACK_BOUNDARY.  It is very likely no longer valid if
     to STACK_BOUNDARY.  It is very likely no longer valid if
     the hard frame pointer was used for register allocation.  */
     the hard frame pointer was used for register allocation.  */
  if (!frame_pointer_needed)
  if (!frame_pointer_needed)
    REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
    REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
#endif
#endif
 
 
  return failure;
  return failure;
}
}
 
 
/* Yet another special case.  Unfortunately, reg-stack forces people to
/* Yet another special case.  Unfortunately, reg-stack forces people to
   write incorrect clobbers in asm statements.  These clobbers must not
   write incorrect clobbers in asm statements.  These clobbers must not
   cause the register to appear in bad_spill_regs, otherwise we'll call
   cause the register to appear in bad_spill_regs, otherwise we'll call
   fatal_insn later.  We clear the corresponding regnos in the live
   fatal_insn later.  We clear the corresponding regnos in the live
   register sets to avoid this.
   register sets to avoid this.
   The whole thing is rather sick, I'm afraid.  */
   The whole thing is rather sick, I'm afraid.  */
 
 
static void
static void
maybe_fix_stack_asms (void)
maybe_fix_stack_asms (void)
{
{
#ifdef STACK_REGS
#ifdef STACK_REGS
  const char *constraints[MAX_RECOG_OPERANDS];
  const char *constraints[MAX_RECOG_OPERANDS];
  enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
  enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
  struct insn_chain *chain;
  struct insn_chain *chain;
 
 
  for (chain = reload_insn_chain; chain != 0; chain = chain->next)
  for (chain = reload_insn_chain; chain != 0; chain = chain->next)
    {
    {
      int i, noperands;
      int i, noperands;
      HARD_REG_SET clobbered, allowed;
      HARD_REG_SET clobbered, allowed;
      rtx pat;
      rtx pat;
 
 
      if (! INSN_P (chain->insn)
      if (! INSN_P (chain->insn)
          || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
          || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
        continue;
        continue;
      pat = PATTERN (chain->insn);
      pat = PATTERN (chain->insn);
      if (GET_CODE (pat) != PARALLEL)
      if (GET_CODE (pat) != PARALLEL)
        continue;
        continue;
 
 
      CLEAR_HARD_REG_SET (clobbered);
      CLEAR_HARD_REG_SET (clobbered);
      CLEAR_HARD_REG_SET (allowed);
      CLEAR_HARD_REG_SET (allowed);
 
 
      /* First, make a mask of all stack regs that are clobbered.  */
      /* First, make a mask of all stack regs that are clobbered.  */
      for (i = 0; i < XVECLEN (pat, 0); i++)
      for (i = 0; i < XVECLEN (pat, 0); i++)
        {
        {
          rtx t = XVECEXP (pat, 0, i);
          rtx t = XVECEXP (pat, 0, i);
          if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
          if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
            SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
            SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
        }
        }
 
 
      /* Get the operand values and constraints out of the insn.  */
      /* Get the operand values and constraints out of the insn.  */
      decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
      decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
                           constraints, operand_mode);
                           constraints, operand_mode);
 
 
      /* For every operand, see what registers are allowed.  */
      /* For every operand, see what registers are allowed.  */
      for (i = 0; i < noperands; i++)
      for (i = 0; i < noperands; i++)
        {
        {
          const char *p = constraints[i];
          const char *p = constraints[i];
          /* For every alternative, we compute the class of registers allowed
          /* For every alternative, we compute the class of registers allowed
             for reloading in CLS, and merge its contents into the reg set
             for reloading in CLS, and merge its contents into the reg set
             ALLOWED.  */
             ALLOWED.  */
          int cls = (int) NO_REGS;
          int cls = (int) NO_REGS;
 
 
          for (;;)
          for (;;)
            {
            {
              char c = *p;
              char c = *p;
 
 
              if (c == '\0' || c == ',' || c == '#')
              if (c == '\0' || c == ',' || c == '#')
                {
                {
                  /* End of one alternative - mark the regs in the current
                  /* End of one alternative - mark the regs in the current
                     class, and reset the class.  */
                     class, and reset the class.  */
                  IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
                  IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
                  cls = NO_REGS;
                  cls = NO_REGS;
                  p++;
                  p++;
                  if (c == '#')
                  if (c == '#')
                    do {
                    do {
                      c = *p++;
                      c = *p++;
                    } while (c != '\0' && c != ',');
                    } while (c != '\0' && c != ',');
                  if (c == '\0')
                  if (c == '\0')
                    break;
                    break;
                  continue;
                  continue;
                }
                }
 
 
              switch (c)
              switch (c)
                {
                {
                case '=': case '+': case '*': case '%': case '?': case '!':
                case '=': case '+': case '*': case '%': case '?': case '!':
                case '0': case '1': case '2': case '3': case '4': case 'm':
                case '0': case '1': case '2': case '3': case '4': case 'm':
                case '<': case '>': case 'V': case 'o': case '&': case 'E':
                case '<': case '>': case 'V': case 'o': case '&': case 'E':
                case 'F': case 's': case 'i': case 'n': case 'X': case 'I':
                case 'F': case 's': case 'i': case 'n': case 'X': case 'I':
                case 'J': case 'K': case 'L': case 'M': case 'N': case 'O':
                case 'J': case 'K': case 'L': case 'M': case 'N': case 'O':
                case 'P':
                case 'P':
                  break;
                  break;
 
 
                case 'p':
                case 'p':
                  cls = (int) reg_class_subunion[cls]
                  cls = (int) reg_class_subunion[cls]
                      [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
                      [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
                  break;
                  break;
 
 
                case 'g':
                case 'g':
                case 'r':
                case 'r':
                  cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
                  cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
                  break;
                  break;
 
 
                default:
                default:
                  if (EXTRA_ADDRESS_CONSTRAINT (c, p))
                  if (EXTRA_ADDRESS_CONSTRAINT (c, p))
                    cls = (int) reg_class_subunion[cls]
                    cls = (int) reg_class_subunion[cls]
                      [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
                      [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
                  else
                  else
                    cls = (int) reg_class_subunion[cls]
                    cls = (int) reg_class_subunion[cls]
                      [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
                      [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
                }
                }
              p += CONSTRAINT_LEN (c, p);
              p += CONSTRAINT_LEN (c, p);
            }
            }
        }
        }
      /* Those of the registers which are clobbered, but allowed by the
      /* Those of the registers which are clobbered, but allowed by the
         constraints, must be usable as reload registers.  So clear them
         constraints, must be usable as reload registers.  So clear them
         out of the life information.  */
         out of the life information.  */
      AND_HARD_REG_SET (allowed, clobbered);
      AND_HARD_REG_SET (allowed, clobbered);
      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
        if (TEST_HARD_REG_BIT (allowed, i))
        if (TEST_HARD_REG_BIT (allowed, i))
          {
          {
            CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
            CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
            CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
            CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
          }
          }
    }
    }
 
 
#endif
#endif
}
}


/* Copy the global variables n_reloads and rld into the corresponding elts
/* Copy the global variables n_reloads and rld into the corresponding elts
   of CHAIN.  */
   of CHAIN.  */
static void
static void
copy_reloads (struct insn_chain *chain)
copy_reloads (struct insn_chain *chain)
{
{
  chain->n_reloads = n_reloads;
  chain->n_reloads = n_reloads;
  chain->rld = obstack_alloc (&reload_obstack,
  chain->rld = obstack_alloc (&reload_obstack,
                              n_reloads * sizeof (struct reload));
                              n_reloads * sizeof (struct reload));
  memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
  memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
  reload_insn_firstobj = obstack_alloc (&reload_obstack, 0);
  reload_insn_firstobj = obstack_alloc (&reload_obstack, 0);
}
}
 
 
/* Walk the chain of insns, and determine for each whether it needs reloads
/* Walk the chain of insns, and determine for each whether it needs reloads
   and/or eliminations.  Build the corresponding insns_need_reload list, and
   and/or eliminations.  Build the corresponding insns_need_reload list, and
   set something_needs_elimination as appropriate.  */
   set something_needs_elimination as appropriate.  */
static void
static void
calculate_needs_all_insns (int global)
calculate_needs_all_insns (int global)
{
{
  struct insn_chain **pprev_reload = &insns_need_reload;
  struct insn_chain **pprev_reload = &insns_need_reload;
  struct insn_chain *chain, *next = 0;
  struct insn_chain *chain, *next = 0;
 
 
  something_needs_elimination = 0;
  something_needs_elimination = 0;
 
 
  reload_insn_firstobj = obstack_alloc (&reload_obstack, 0);
  reload_insn_firstobj = obstack_alloc (&reload_obstack, 0);
  for (chain = reload_insn_chain; chain != 0; chain = next)
  for (chain = reload_insn_chain; chain != 0; chain = next)
    {
    {
      rtx insn = chain->insn;
      rtx insn = chain->insn;
 
 
      next = chain->next;
      next = chain->next;
 
 
      /* Clear out the shortcuts.  */
      /* Clear out the shortcuts.  */
      chain->n_reloads = 0;
      chain->n_reloads = 0;
      chain->need_elim = 0;
      chain->need_elim = 0;
      chain->need_reload = 0;
      chain->need_reload = 0;
      chain->need_operand_change = 0;
      chain->need_operand_change = 0;
 
 
      /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
      /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
         include REG_LABEL), we need to see what effects this has on the
         include REG_LABEL), we need to see what effects this has on the
         known offsets at labels.  */
         known offsets at labels.  */
 
 
      if (LABEL_P (insn) || JUMP_P (insn)
      if (LABEL_P (insn) || JUMP_P (insn)
          || (INSN_P (insn) && REG_NOTES (insn) != 0))
          || (INSN_P (insn) && REG_NOTES (insn) != 0))
        set_label_offsets (insn, insn, 0);
        set_label_offsets (insn, insn, 0);
 
 
      if (INSN_P (insn))
      if (INSN_P (insn))
        {
        {
          rtx old_body = PATTERN (insn);
          rtx old_body = PATTERN (insn);
          int old_code = INSN_CODE (insn);
          int old_code = INSN_CODE (insn);
          rtx old_notes = REG_NOTES (insn);
          rtx old_notes = REG_NOTES (insn);
          int did_elimination = 0;
          int did_elimination = 0;
          int operands_changed = 0;
          int operands_changed = 0;
          rtx set = single_set (insn);
          rtx set = single_set (insn);
 
 
          /* Skip insns that only set an equivalence.  */
          /* Skip insns that only set an equivalence.  */
          if (set && REG_P (SET_DEST (set))
          if (set && REG_P (SET_DEST (set))
              && reg_renumber[REGNO (SET_DEST (set))] < 0
              && reg_renumber[REGNO (SET_DEST (set))] < 0
              && (reg_equiv_constant[REGNO (SET_DEST (set))]
              && (reg_equiv_constant[REGNO (SET_DEST (set))]
                  || (reg_equiv_invariant[REGNO (SET_DEST (set))]))
                  || (reg_equiv_invariant[REGNO (SET_DEST (set))]))
                      && reg_equiv_init[REGNO (SET_DEST (set))])
                      && reg_equiv_init[REGNO (SET_DEST (set))])
            continue;
            continue;
 
 
          /* If needed, eliminate any eliminable registers.  */
          /* If needed, eliminate any eliminable registers.  */
          if (num_eliminable || num_eliminable_invariants)
          if (num_eliminable || num_eliminable_invariants)
            did_elimination = eliminate_regs_in_insn (insn, 0);
            did_elimination = eliminate_regs_in_insn (insn, 0);
 
 
          /* Analyze the instruction.  */
          /* Analyze the instruction.  */
          operands_changed = find_reloads (insn, 0, spill_indirect_levels,
          operands_changed = find_reloads (insn, 0, spill_indirect_levels,
                                           global, spill_reg_order);
                                           global, spill_reg_order);
 
 
          /* If a no-op set needs more than one reload, this is likely
          /* If a no-op set needs more than one reload, this is likely
             to be something that needs input address reloads.  We
             to be something that needs input address reloads.  We
             can't get rid of this cleanly later, and it is of no use
             can't get rid of this cleanly later, and it is of no use
             anyway, so discard it now.
             anyway, so discard it now.
             We only do this when expensive_optimizations is enabled,
             We only do this when expensive_optimizations is enabled,
             since this complements reload inheritance / output
             since this complements reload inheritance / output
             reload deletion, and it can make debugging harder.  */
             reload deletion, and it can make debugging harder.  */
          if (flag_expensive_optimizations && n_reloads > 1)
          if (flag_expensive_optimizations && n_reloads > 1)
            {
            {
              rtx set = single_set (insn);
              rtx set = single_set (insn);
              if (set
              if (set
                  && SET_SRC (set) == SET_DEST (set)
                  && SET_SRC (set) == SET_DEST (set)
                  && REG_P (SET_SRC (set))
                  && REG_P (SET_SRC (set))
                  && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
                  && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
                {
                {
                  delete_insn (insn);
                  delete_insn (insn);
                  /* Delete it from the reload chain.  */
                  /* Delete it from the reload chain.  */
                  if (chain->prev)
                  if (chain->prev)
                    chain->prev->next = next;
                    chain->prev->next = next;
                  else
                  else
                    reload_insn_chain = next;
                    reload_insn_chain = next;
                  if (next)
                  if (next)
                    next->prev = chain->prev;
                    next->prev = chain->prev;
                  chain->next = unused_insn_chains;
                  chain->next = unused_insn_chains;
                  unused_insn_chains = chain;
                  unused_insn_chains = chain;
                  continue;
                  continue;
                }
                }
            }
            }
          if (num_eliminable)
          if (num_eliminable)
            update_eliminable_offsets ();
            update_eliminable_offsets ();
 
 
          /* Remember for later shortcuts which insns had any reloads or
          /* Remember for later shortcuts which insns had any reloads or
             register eliminations.  */
             register eliminations.  */
          chain->need_elim = did_elimination;
          chain->need_elim = did_elimination;
          chain->need_reload = n_reloads > 0;
          chain->need_reload = n_reloads > 0;
          chain->need_operand_change = operands_changed;
          chain->need_operand_change = operands_changed;
 
 
          /* Discard any register replacements done.  */
          /* Discard any register replacements done.  */
          if (did_elimination)
          if (did_elimination)
            {
            {
              obstack_free (&reload_obstack, reload_insn_firstobj);
              obstack_free (&reload_obstack, reload_insn_firstobj);
              PATTERN (insn) = old_body;
              PATTERN (insn) = old_body;
              INSN_CODE (insn) = old_code;
              INSN_CODE (insn) = old_code;
              REG_NOTES (insn) = old_notes;
              REG_NOTES (insn) = old_notes;
              something_needs_elimination = 1;
              something_needs_elimination = 1;
            }
            }
 
 
          something_needs_operands_changed |= operands_changed;
          something_needs_operands_changed |= operands_changed;
 
 
          if (n_reloads != 0)
          if (n_reloads != 0)
            {
            {
              copy_reloads (chain);
              copy_reloads (chain);
              *pprev_reload = chain;
              *pprev_reload = chain;
              pprev_reload = &chain->next_need_reload;
              pprev_reload = &chain->next_need_reload;
            }
            }
        }
        }
    }
    }
  *pprev_reload = 0;
  *pprev_reload = 0;
}
}


/* Comparison function for qsort to decide which of two reloads
/* Comparison function for qsort to decide which of two reloads
   should be handled first.  *P1 and *P2 are the reload numbers.  */
   should be handled first.  *P1 and *P2 are the reload numbers.  */
 
 
static int
static int
reload_reg_class_lower (const void *r1p, const void *r2p)
reload_reg_class_lower (const void *r1p, const void *r2p)
{
{
  int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
  int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
  int t;
  int t;
 
 
  /* Consider required reloads before optional ones.  */
  /* Consider required reloads before optional ones.  */
  t = rld[r1].optional - rld[r2].optional;
  t = rld[r1].optional - rld[r2].optional;
  if (t != 0)
  if (t != 0)
    return t;
    return t;
 
 
  /* Count all solitary classes before non-solitary ones.  */
  /* Count all solitary classes before non-solitary ones.  */
  t = ((reg_class_size[(int) rld[r2].class] == 1)
  t = ((reg_class_size[(int) rld[r2].class] == 1)
       - (reg_class_size[(int) rld[r1].class] == 1));
       - (reg_class_size[(int) rld[r1].class] == 1));
  if (t != 0)
  if (t != 0)
    return t;
    return t;
 
 
  /* Aside from solitaires, consider all multi-reg groups first.  */
  /* Aside from solitaires, consider all multi-reg groups first.  */
  t = rld[r2].nregs - rld[r1].nregs;
  t = rld[r2].nregs - rld[r1].nregs;
  if (t != 0)
  if (t != 0)
    return t;
    return t;
 
 
  /* Consider reloads in order of increasing reg-class number.  */
  /* Consider reloads in order of increasing reg-class number.  */
  t = (int) rld[r1].class - (int) rld[r2].class;
  t = (int) rld[r1].class - (int) rld[r2].class;
  if (t != 0)
  if (t != 0)
    return t;
    return t;
 
 
  /* If reloads are equally urgent, sort by reload number,
  /* If reloads are equally urgent, sort by reload number,
     so that the results of qsort leave nothing to chance.  */
     so that the results of qsort leave nothing to chance.  */
  return r1 - r2;
  return r1 - r2;
}
}


/* The cost of spilling each hard reg.  */
/* The cost of spilling each hard reg.  */
static int spill_cost[FIRST_PSEUDO_REGISTER];
static int spill_cost[FIRST_PSEUDO_REGISTER];
 
 
/* When spilling multiple hard registers, we use SPILL_COST for the first
/* When spilling multiple hard registers, we use SPILL_COST for the first
   spilled hard reg and SPILL_ADD_COST for subsequent regs.  SPILL_ADD_COST
   spilled hard reg and SPILL_ADD_COST for subsequent regs.  SPILL_ADD_COST
   only the first hard reg for a multi-reg pseudo.  */
   only the first hard reg for a multi-reg pseudo.  */
static int spill_add_cost[FIRST_PSEUDO_REGISTER];
static int spill_add_cost[FIRST_PSEUDO_REGISTER];
 
 
/* Update the spill cost arrays, considering that pseudo REG is live.  */
/* Update the spill cost arrays, considering that pseudo REG is live.  */
 
 
static void
static void
count_pseudo (int reg)
count_pseudo (int reg)
{
{
  int freq = REG_FREQ (reg);
  int freq = REG_FREQ (reg);
  int r = reg_renumber[reg];
  int r = reg_renumber[reg];
  int nregs;
  int nregs;
 
 
  if (REGNO_REG_SET_P (&pseudos_counted, reg)
  if (REGNO_REG_SET_P (&pseudos_counted, reg)
      || REGNO_REG_SET_P (&spilled_pseudos, reg))
      || REGNO_REG_SET_P (&spilled_pseudos, reg))
    return;
    return;
 
 
  SET_REGNO_REG_SET (&pseudos_counted, reg);
  SET_REGNO_REG_SET (&pseudos_counted, reg);
 
 
  gcc_assert (r >= 0);
  gcc_assert (r >= 0);
 
 
  spill_add_cost[r] += freq;
  spill_add_cost[r] += freq;
 
 
  nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
  nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
  while (nregs-- > 0)
  while (nregs-- > 0)
    spill_cost[r + nregs] += freq;
    spill_cost[r + nregs] += freq;
}
}
 
 
/* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
/* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
   contents of BAD_SPILL_REGS for the insn described by CHAIN.  */
   contents of BAD_SPILL_REGS for the insn described by CHAIN.  */
 
 
static void
static void
order_regs_for_reload (struct insn_chain *chain)
order_regs_for_reload (struct insn_chain *chain)
{
{
  unsigned i;
  unsigned i;
  HARD_REG_SET used_by_pseudos;
  HARD_REG_SET used_by_pseudos;
  HARD_REG_SET used_by_pseudos2;
  HARD_REG_SET used_by_pseudos2;
  reg_set_iterator rsi;
  reg_set_iterator rsi;
 
 
  COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
  COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
 
 
  memset (spill_cost, 0, sizeof spill_cost);
  memset (spill_cost, 0, sizeof spill_cost);
  memset (spill_add_cost, 0, sizeof spill_add_cost);
  memset (spill_add_cost, 0, sizeof spill_add_cost);
 
 
  /* Count number of uses of each hard reg by pseudo regs allocated to it
  /* Count number of uses of each hard reg by pseudo regs allocated to it
     and then order them by decreasing use.  First exclude hard registers
     and then order them by decreasing use.  First exclude hard registers
     that are live in or across this insn.  */
     that are live in or across this insn.  */
 
 
  REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
  REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
  REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
  REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
  IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
  IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
  IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
  IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
 
 
  /* Now find out which pseudos are allocated to it, and update
  /* Now find out which pseudos are allocated to it, and update
     hard_reg_n_uses.  */
     hard_reg_n_uses.  */
  CLEAR_REG_SET (&pseudos_counted);
  CLEAR_REG_SET (&pseudos_counted);
 
 
  EXECUTE_IF_SET_IN_REG_SET
  EXECUTE_IF_SET_IN_REG_SET
    (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
    (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
    {
    {
      count_pseudo (i);
      count_pseudo (i);
    }
    }
  EXECUTE_IF_SET_IN_REG_SET
  EXECUTE_IF_SET_IN_REG_SET
    (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
    (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
    {
    {
      count_pseudo (i);
      count_pseudo (i);
    }
    }
  CLEAR_REG_SET (&pseudos_counted);
  CLEAR_REG_SET (&pseudos_counted);
}
}


/* Vector of reload-numbers showing the order in which the reloads should
/* Vector of reload-numbers showing the order in which the reloads should
   be processed.  */
   be processed.  */
static short reload_order[MAX_RELOADS];
static short reload_order[MAX_RELOADS];
 
 
/* This is used to keep track of the spill regs used in one insn.  */
/* This is used to keep track of the spill regs used in one insn.  */
static HARD_REG_SET used_spill_regs_local;
static HARD_REG_SET used_spill_regs_local;
 
 
/* We decided to spill hard register SPILLED, which has a size of
/* We decided to spill hard register SPILLED, which has a size of
   SPILLED_NREGS.  Determine how pseudo REG, which is live during the insn,
   SPILLED_NREGS.  Determine how pseudo REG, which is live during the insn,
   is affected.  We will add it to SPILLED_PSEUDOS if necessary, and we will
   is affected.  We will add it to SPILLED_PSEUDOS if necessary, and we will
   update SPILL_COST/SPILL_ADD_COST.  */
   update SPILL_COST/SPILL_ADD_COST.  */
 
 
static void
static void
count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
{
{
  int r = reg_renumber[reg];
  int r = reg_renumber[reg];
  int nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
  int nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
 
 
  if (REGNO_REG_SET_P (&spilled_pseudos, reg)
  if (REGNO_REG_SET_P (&spilled_pseudos, reg)
      || spilled + spilled_nregs <= r || r + nregs <= spilled)
      || spilled + spilled_nregs <= r || r + nregs <= spilled)
    return;
    return;
 
 
  SET_REGNO_REG_SET (&spilled_pseudos, reg);
  SET_REGNO_REG_SET (&spilled_pseudos, reg);
 
 
  spill_add_cost[r] -= REG_FREQ (reg);
  spill_add_cost[r] -= REG_FREQ (reg);
  while (nregs-- > 0)
  while (nregs-- > 0)
    spill_cost[r + nregs] -= REG_FREQ (reg);
    spill_cost[r + nregs] -= REG_FREQ (reg);
}
}
 
 
/* Find reload register to use for reload number ORDER.  */
/* Find reload register to use for reload number ORDER.  */
 
 
static int
static int
find_reg (struct insn_chain *chain, int order)
find_reg (struct insn_chain *chain, int order)
{
{
  int rnum = reload_order[order];
  int rnum = reload_order[order];
  struct reload *rl = rld + rnum;
  struct reload *rl = rld + rnum;
  int best_cost = INT_MAX;
  int best_cost = INT_MAX;
  int best_reg = -1;
  int best_reg = -1;
  unsigned int i, j;
  unsigned int i, j;
  int k;
  int k;
  HARD_REG_SET not_usable;
  HARD_REG_SET not_usable;
  HARD_REG_SET used_by_other_reload;
  HARD_REG_SET used_by_other_reload;
  reg_set_iterator rsi;
  reg_set_iterator rsi;
 
 
  COPY_HARD_REG_SET (not_usable, bad_spill_regs);
  COPY_HARD_REG_SET (not_usable, bad_spill_regs);
  IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
  IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
  IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->class]);
  IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->class]);
 
 
  CLEAR_HARD_REG_SET (used_by_other_reload);
  CLEAR_HARD_REG_SET (used_by_other_reload);
  for (k = 0; k < order; k++)
  for (k = 0; k < order; k++)
    {
    {
      int other = reload_order[k];
      int other = reload_order[k];
 
 
      if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
      if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
        for (j = 0; j < rld[other].nregs; j++)
        for (j = 0; j < rld[other].nregs; j++)
          SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
          SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
    }
    }
 
 
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    {
    {
      unsigned int regno = i;
      unsigned int regno = i;
 
 
      if (! TEST_HARD_REG_BIT (not_usable, regno)
      if (! TEST_HARD_REG_BIT (not_usable, regno)
          && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
          && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
          && HARD_REGNO_MODE_OK (regno, rl->mode))
          && HARD_REGNO_MODE_OK (regno, rl->mode))
        {
        {
          int this_cost = spill_cost[regno];
          int this_cost = spill_cost[regno];
          int ok = 1;
          int ok = 1;
          unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
          unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
 
 
          for (j = 1; j < this_nregs; j++)
          for (j = 1; j < this_nregs; j++)
            {
            {
              this_cost += spill_add_cost[regno + j];
              this_cost += spill_add_cost[regno + j];
              if ((TEST_HARD_REG_BIT (not_usable, regno + j))
              if ((TEST_HARD_REG_BIT (not_usable, regno + j))
                  || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
                  || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
                ok = 0;
                ok = 0;
            }
            }
          if (! ok)
          if (! ok)
            continue;
            continue;
          if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
          if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
            this_cost--;
            this_cost--;
          if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
          if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
            this_cost--;
            this_cost--;
          if (this_cost < best_cost
          if (this_cost < best_cost
              /* Among registers with equal cost, prefer caller-saved ones, or
              /* Among registers with equal cost, prefer caller-saved ones, or
                 use REG_ALLOC_ORDER if it is defined.  */
                 use REG_ALLOC_ORDER if it is defined.  */
              || (this_cost == best_cost
              || (this_cost == best_cost
#ifdef REG_ALLOC_ORDER
#ifdef REG_ALLOC_ORDER
                  && (inv_reg_alloc_order[regno]
                  && (inv_reg_alloc_order[regno]
                      < inv_reg_alloc_order[best_reg])
                      < inv_reg_alloc_order[best_reg])
#else
#else
                  && call_used_regs[regno]
                  && call_used_regs[regno]
                  && ! call_used_regs[best_reg]
                  && ! call_used_regs[best_reg]
#endif
#endif
                  ))
                  ))
            {
            {
              best_reg = regno;
              best_reg = regno;
              best_cost = this_cost;
              best_cost = this_cost;
            }
            }
        }
        }
    }
    }
  if (best_reg == -1)
  if (best_reg == -1)
    return 0;
    return 0;
 
 
  if (dump_file)
  if (dump_file)
    fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
    fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
 
 
  rl->nregs = hard_regno_nregs[best_reg][rl->mode];
  rl->nregs = hard_regno_nregs[best_reg][rl->mode];
  rl->regno = best_reg;
  rl->regno = best_reg;
 
 
  EXECUTE_IF_SET_IN_REG_SET
  EXECUTE_IF_SET_IN_REG_SET
    (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
    (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
    {
    {
      count_spilled_pseudo (best_reg, rl->nregs, j);
      count_spilled_pseudo (best_reg, rl->nregs, j);
    }
    }
 
 
  EXECUTE_IF_SET_IN_REG_SET
  EXECUTE_IF_SET_IN_REG_SET
    (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
    (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
    {
    {
      count_spilled_pseudo (best_reg, rl->nregs, j);
      count_spilled_pseudo (best_reg, rl->nregs, j);
    }
    }
 
 
  for (i = 0; i < rl->nregs; i++)
  for (i = 0; i < rl->nregs; i++)
    {
    {
      gcc_assert (spill_cost[best_reg + i] == 0);
      gcc_assert (spill_cost[best_reg + i] == 0);
      gcc_assert (spill_add_cost[best_reg + i] == 0);
      gcc_assert (spill_add_cost[best_reg + i] == 0);
      SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
      SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
    }
    }
  return 1;
  return 1;
}
}
 
 
/* Find more reload regs to satisfy the remaining need of an insn, which
/* Find more reload regs to satisfy the remaining need of an insn, which
   is given by CHAIN.
   is given by CHAIN.
   Do it by ascending class number, since otherwise a reg
   Do it by ascending class number, since otherwise a reg
   might be spilled for a big class and might fail to count
   might be spilled for a big class and might fail to count
   for a smaller class even though it belongs to that class.  */
   for a smaller class even though it belongs to that class.  */
 
 
static void
static void
find_reload_regs (struct insn_chain *chain)
find_reload_regs (struct insn_chain *chain)
{
{
  int i;
  int i;
 
 
  /* In order to be certain of getting the registers we need,
  /* In order to be certain of getting the registers we need,
     we must sort the reloads into order of increasing register class.
     we must sort the reloads into order of increasing register class.
     Then our grabbing of reload registers will parallel the process
     Then our grabbing of reload registers will parallel the process
     that provided the reload registers.  */
     that provided the reload registers.  */
  for (i = 0; i < chain->n_reloads; i++)
  for (i = 0; i < chain->n_reloads; i++)
    {
    {
      /* Show whether this reload already has a hard reg.  */
      /* Show whether this reload already has a hard reg.  */
      if (chain->rld[i].reg_rtx)
      if (chain->rld[i].reg_rtx)
        {
        {
          int regno = REGNO (chain->rld[i].reg_rtx);
          int regno = REGNO (chain->rld[i].reg_rtx);
          chain->rld[i].regno = regno;
          chain->rld[i].regno = regno;
          chain->rld[i].nregs
          chain->rld[i].nregs
            = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
            = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
        }
        }
      else
      else
        chain->rld[i].regno = -1;
        chain->rld[i].regno = -1;
      reload_order[i] = i;
      reload_order[i] = i;
    }
    }
 
 
  n_reloads = chain->n_reloads;
  n_reloads = chain->n_reloads;
  memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
  memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
 
 
  CLEAR_HARD_REG_SET (used_spill_regs_local);
  CLEAR_HARD_REG_SET (used_spill_regs_local);
 
 
  if (dump_file)
  if (dump_file)
    fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
    fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
 
 
  qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
  qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
 
 
  /* Compute the order of preference for hard registers to spill.  */
  /* Compute the order of preference for hard registers to spill.  */
 
 
  order_regs_for_reload (chain);
  order_regs_for_reload (chain);
 
 
  for (i = 0; i < n_reloads; i++)
  for (i = 0; i < n_reloads; i++)
    {
    {
      int r = reload_order[i];
      int r = reload_order[i];
 
 
      /* Ignore reloads that got marked inoperative.  */
      /* Ignore reloads that got marked inoperative.  */
      if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
      if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
          && ! rld[r].optional
          && ! rld[r].optional
          && rld[r].regno == -1)
          && rld[r].regno == -1)
        if (! find_reg (chain, i))
        if (! find_reg (chain, i))
          {
          {
            if (dump_file)
            if (dump_file)
              fprintf(dump_file, "reload failure for reload %d\n", r);
              fprintf(dump_file, "reload failure for reload %d\n", r);
            spill_failure (chain->insn, rld[r].class);
            spill_failure (chain->insn, rld[r].class);
            failure = 1;
            failure = 1;
            return;
            return;
          }
          }
    }
    }
 
 
  COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
  COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
  IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
  IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
 
 
  memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
  memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
}
}
 
 
static void
static void
select_reload_regs (void)
select_reload_regs (void)
{
{
  struct insn_chain *chain;
  struct insn_chain *chain;
 
 
  /* Try to satisfy the needs for each insn.  */
  /* Try to satisfy the needs for each insn.  */
  for (chain = insns_need_reload; chain != 0;
  for (chain = insns_need_reload; chain != 0;
       chain = chain->next_need_reload)
       chain = chain->next_need_reload)
    find_reload_regs (chain);
    find_reload_regs (chain);
}
}


/* Delete all insns that were inserted by emit_caller_save_insns during
/* Delete all insns that were inserted by emit_caller_save_insns during
   this iteration.  */
   this iteration.  */
static void
static void
delete_caller_save_insns (void)
delete_caller_save_insns (void)
{
{
  struct insn_chain *c = reload_insn_chain;
  struct insn_chain *c = reload_insn_chain;
 
 
  while (c != 0)
  while (c != 0)
    {
    {
      while (c != 0 && c->is_caller_save_insn)
      while (c != 0 && c->is_caller_save_insn)
        {
        {
          struct insn_chain *next = c->next;
          struct insn_chain *next = c->next;
          rtx insn = c->insn;
          rtx insn = c->insn;
 
 
          if (c == reload_insn_chain)
          if (c == reload_insn_chain)
            reload_insn_chain = next;
            reload_insn_chain = next;
          delete_insn (insn);
          delete_insn (insn);
 
 
          if (next)
          if (next)
            next->prev = c->prev;
            next->prev = c->prev;
          if (c->prev)
          if (c->prev)
            c->prev->next = next;
            c->prev->next = next;
          c->next = unused_insn_chains;
          c->next = unused_insn_chains;
          unused_insn_chains = c;
          unused_insn_chains = c;
          c = next;
          c = next;
        }
        }
      if (c != 0)
      if (c != 0)
        c = c->next;
        c = c->next;
    }
    }
}
}


/* Handle the failure to find a register to spill.
/* Handle the failure to find a register to spill.
   INSN should be one of the insns which needed this particular spill reg.  */
   INSN should be one of the insns which needed this particular spill reg.  */
 
 
static void
static void
spill_failure (rtx insn, enum reg_class class)
spill_failure (rtx insn, enum reg_class class)
{
{
  if (asm_noperands (PATTERN (insn)) >= 0)
  if (asm_noperands (PATTERN (insn)) >= 0)
    error_for_asm (insn, "can't find a register in class %qs while "
    error_for_asm (insn, "can't find a register in class %qs while "
                   "reloading %<asm%>",
                   "reloading %<asm%>",
                   reg_class_names[class]);
                   reg_class_names[class]);
  else
  else
    {
    {
      error ("unable to find a register to spill in class %qs",
      error ("unable to find a register to spill in class %qs",
             reg_class_names[class]);
             reg_class_names[class]);
 
 
      if (dump_file)
      if (dump_file)
        {
        {
          fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
          fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
          debug_reload_to_stream (dump_file);
          debug_reload_to_stream (dump_file);
        }
        }
      fatal_insn ("this is the insn:", insn);
      fatal_insn ("this is the insn:", insn);
    }
    }
}
}


/* Delete an unneeded INSN and any previous insns who sole purpose is loading
/* Delete an unneeded INSN and any previous insns who sole purpose is loading
   data that is dead in INSN.  */
   data that is dead in INSN.  */
 
 
static void
static void
delete_dead_insn (rtx insn)
delete_dead_insn (rtx insn)
{
{
  rtx prev = prev_real_insn (insn);
  rtx prev = prev_real_insn (insn);
  rtx prev_dest;
  rtx prev_dest;
 
 
  /* If the previous insn sets a register that dies in our insn, delete it
  /* If the previous insn sets a register that dies in our insn, delete it
     too.  */
     too.  */
  if (prev && GET_CODE (PATTERN (prev)) == SET
  if (prev && GET_CODE (PATTERN (prev)) == SET
      && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
      && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
      && reg_mentioned_p (prev_dest, PATTERN (insn))
      && reg_mentioned_p (prev_dest, PATTERN (insn))
      && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
      && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
      && ! side_effects_p (SET_SRC (PATTERN (prev))))
      && ! side_effects_p (SET_SRC (PATTERN (prev))))
    delete_dead_insn (prev);
    delete_dead_insn (prev);
 
 
  SET_INSN_DELETED (insn);
  SET_INSN_DELETED (insn);
}
}
 
 
/* Modify the home of pseudo-reg I.
/* Modify the home of pseudo-reg I.
   The new home is present in reg_renumber[I].
   The new home is present in reg_renumber[I].
 
 
   FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
   FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
   or it may be -1, meaning there is none or it is not relevant.
   or it may be -1, meaning there is none or it is not relevant.
   This is used so that all pseudos spilled from a given hard reg
   This is used so that all pseudos spilled from a given hard reg
   can share one stack slot.  */
   can share one stack slot.  */
 
 
static void
static void
alter_reg (int i, int from_reg)
alter_reg (int i, int from_reg)
{
{
  /* When outputting an inline function, this can happen
  /* When outputting an inline function, this can happen
     for a reg that isn't actually used.  */
     for a reg that isn't actually used.  */
  if (regno_reg_rtx[i] == 0)
  if (regno_reg_rtx[i] == 0)
    return;
    return;
 
 
  /* If the reg got changed to a MEM at rtl-generation time,
  /* If the reg got changed to a MEM at rtl-generation time,
     ignore it.  */
     ignore it.  */
  if (!REG_P (regno_reg_rtx[i]))
  if (!REG_P (regno_reg_rtx[i]))
    return;
    return;
 
 
  /* Modify the reg-rtx to contain the new hard reg
  /* Modify the reg-rtx to contain the new hard reg
     number or else to contain its pseudo reg number.  */
     number or else to contain its pseudo reg number.  */
  REGNO (regno_reg_rtx[i])
  REGNO (regno_reg_rtx[i])
    = reg_renumber[i] >= 0 ? reg_renumber[i] : i;
    = reg_renumber[i] >= 0 ? reg_renumber[i] : i;
 
 
  /* If we have a pseudo that is needed but has no hard reg or equivalent,
  /* If we have a pseudo that is needed but has no hard reg or equivalent,
     allocate a stack slot for it.  */
     allocate a stack slot for it.  */
 
 
  if (reg_renumber[i] < 0
  if (reg_renumber[i] < 0
      && REG_N_REFS (i) > 0
      && REG_N_REFS (i) > 0
      && reg_equiv_constant[i] == 0
      && reg_equiv_constant[i] == 0
      && (reg_equiv_invariant[i] == 0 || reg_equiv_init[i] == 0)
      && (reg_equiv_invariant[i] == 0 || reg_equiv_init[i] == 0)
      && reg_equiv_memory_loc[i] == 0)
      && reg_equiv_memory_loc[i] == 0)
    {
    {
      rtx x;
      rtx x;
      enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
      enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
      unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
      unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
      unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
      unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
      unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
      unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
      unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
      unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
      int adjust = 0;
      int adjust = 0;
 
 
      /* Each pseudo reg has an inherent size which comes from its own mode,
      /* Each pseudo reg has an inherent size which comes from its own mode,
         and a total size which provides room for paradoxical subregs
         and a total size which provides room for paradoxical subregs
         which refer to the pseudo reg in wider modes.
         which refer to the pseudo reg in wider modes.
 
 
         We can use a slot already allocated if it provides both
         We can use a slot already allocated if it provides both
         enough inherent space and enough total space.
         enough inherent space and enough total space.
         Otherwise, we allocate a new slot, making sure that it has no less
         Otherwise, we allocate a new slot, making sure that it has no less
         inherent space, and no less total space, then the previous slot.  */
         inherent space, and no less total space, then the previous slot.  */
      if (from_reg == -1)
      if (from_reg == -1)
        {
        {
          /* No known place to spill from => no slot to reuse.  */
          /* No known place to spill from => no slot to reuse.  */
          x = assign_stack_local (mode, total_size,
          x = assign_stack_local (mode, total_size,
                                  min_align > inherent_align
                                  min_align > inherent_align
                                  || total_size > inherent_size ? -1 : 0);
                                  || total_size > inherent_size ? -1 : 0);
          if (BYTES_BIG_ENDIAN)
          if (BYTES_BIG_ENDIAN)
            /* Cancel the  big-endian correction done in assign_stack_local.
            /* Cancel the  big-endian correction done in assign_stack_local.
               Get the address of the beginning of the slot.
               Get the address of the beginning of the slot.
               This is so we can do a big-endian correction unconditionally
               This is so we can do a big-endian correction unconditionally
               below.  */
               below.  */
            adjust = inherent_size - total_size;
            adjust = inherent_size - total_size;
 
 
          /* Nothing can alias this slot except this pseudo.  */
          /* Nothing can alias this slot except this pseudo.  */
          set_mem_alias_set (x, new_alias_set ());
          set_mem_alias_set (x, new_alias_set ());
        }
        }
 
 
      /* Reuse a stack slot if possible.  */
      /* Reuse a stack slot if possible.  */
      else if (spill_stack_slot[from_reg] != 0
      else if (spill_stack_slot[from_reg] != 0
               && spill_stack_slot_width[from_reg] >= total_size
               && spill_stack_slot_width[from_reg] >= total_size
               && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
               && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
                   >= inherent_size)
                   >= inherent_size)
               && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
               && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
        x = spill_stack_slot[from_reg];
        x = spill_stack_slot[from_reg];
 
 
      /* Allocate a bigger slot.  */
      /* Allocate a bigger slot.  */
      else
      else
        {
        {
          /* Compute maximum size needed, both for inherent size
          /* Compute maximum size needed, both for inherent size
             and for total size.  */
             and for total size.  */
          rtx stack_slot;
          rtx stack_slot;
 
 
          if (spill_stack_slot[from_reg])
          if (spill_stack_slot[from_reg])
            {
            {
              if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
              if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
                  > inherent_size)
                  > inherent_size)
                mode = GET_MODE (spill_stack_slot[from_reg]);
                mode = GET_MODE (spill_stack_slot[from_reg]);
              if (spill_stack_slot_width[from_reg] > total_size)
              if (spill_stack_slot_width[from_reg] > total_size)
                total_size = spill_stack_slot_width[from_reg];
                total_size = spill_stack_slot_width[from_reg];
              if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
              if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
                min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
                min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
            }
            }
 
 
          /* Make a slot with that size.  */
          /* Make a slot with that size.  */
          x = assign_stack_local (mode, total_size,
          x = assign_stack_local (mode, total_size,
                                  min_align > inherent_align
                                  min_align > inherent_align
                                  || total_size > inherent_size ? -1 : 0);
                                  || total_size > inherent_size ? -1 : 0);
          stack_slot = x;
          stack_slot = x;
 
 
          /* All pseudos mapped to this slot can alias each other.  */
          /* All pseudos mapped to this slot can alias each other.  */
          if (spill_stack_slot[from_reg])
          if (spill_stack_slot[from_reg])
            set_mem_alias_set (x, MEM_ALIAS_SET (spill_stack_slot[from_reg]));
            set_mem_alias_set (x, MEM_ALIAS_SET (spill_stack_slot[from_reg]));
          else
          else
            set_mem_alias_set (x, new_alias_set ());
            set_mem_alias_set (x, new_alias_set ());
 
 
          if (BYTES_BIG_ENDIAN)
          if (BYTES_BIG_ENDIAN)
            {
            {
              /* Cancel the  big-endian correction done in assign_stack_local.
              /* Cancel the  big-endian correction done in assign_stack_local.
                 Get the address of the beginning of the slot.
                 Get the address of the beginning of the slot.
                 This is so we can do a big-endian correction unconditionally
                 This is so we can do a big-endian correction unconditionally
                 below.  */
                 below.  */
              adjust = GET_MODE_SIZE (mode) - total_size;
              adjust = GET_MODE_SIZE (mode) - total_size;
              if (adjust)
              if (adjust)
                stack_slot
                stack_slot
                  = adjust_address_nv (x, mode_for_size (total_size
                  = adjust_address_nv (x, mode_for_size (total_size
                                                         * BITS_PER_UNIT,
                                                         * BITS_PER_UNIT,
                                                         MODE_INT, 1),
                                                         MODE_INT, 1),
                                       adjust);
                                       adjust);
            }
            }
 
 
          spill_stack_slot[from_reg] = stack_slot;
          spill_stack_slot[from_reg] = stack_slot;
          spill_stack_slot_width[from_reg] = total_size;
          spill_stack_slot_width[from_reg] = total_size;
        }
        }
 
 
      /* On a big endian machine, the "address" of the slot
      /* On a big endian machine, the "address" of the slot
         is the address of the low part that fits its inherent mode.  */
         is the address of the low part that fits its inherent mode.  */
      if (BYTES_BIG_ENDIAN && inherent_size < total_size)
      if (BYTES_BIG_ENDIAN && inherent_size < total_size)
        adjust += (total_size - inherent_size);
        adjust += (total_size - inherent_size);
 
 
      /* If we have any adjustment to make, or if the stack slot is the
      /* If we have any adjustment to make, or if the stack slot is the
         wrong mode, make a new stack slot.  */
         wrong mode, make a new stack slot.  */
      x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
      x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
 
 
      /* If we have a decl for the original register, set it for the
      /* If we have a decl for the original register, set it for the
         memory.  If this is a shared MEM, make a copy.  */
         memory.  If this is a shared MEM, make a copy.  */
      if (REG_EXPR (regno_reg_rtx[i])
      if (REG_EXPR (regno_reg_rtx[i])
          && DECL_P (REG_EXPR (regno_reg_rtx[i])))
          && DECL_P (REG_EXPR (regno_reg_rtx[i])))
        {
        {
          rtx decl = DECL_RTL_IF_SET (REG_EXPR (regno_reg_rtx[i]));
          rtx decl = DECL_RTL_IF_SET (REG_EXPR (regno_reg_rtx[i]));
 
 
          /* We can do this only for the DECLs home pseudo, not for
          /* We can do this only for the DECLs home pseudo, not for
             any copies of it, since otherwise when the stack slot
             any copies of it, since otherwise when the stack slot
             is reused, nonoverlapping_memrefs_p might think they
             is reused, nonoverlapping_memrefs_p might think they
             cannot overlap.  */
             cannot overlap.  */
          if (decl && REG_P (decl) && REGNO (decl) == (unsigned) i)
          if (decl && REG_P (decl) && REGNO (decl) == (unsigned) i)
            {
            {
              if (from_reg != -1 && spill_stack_slot[from_reg] == x)
              if (from_reg != -1 && spill_stack_slot[from_reg] == x)
                x = copy_rtx (x);
                x = copy_rtx (x);
 
 
              set_mem_attrs_from_reg (x, regno_reg_rtx[i]);
              set_mem_attrs_from_reg (x, regno_reg_rtx[i]);
            }
            }
        }
        }
 
 
      /* Save the stack slot for later.  */
      /* Save the stack slot for later.  */
      reg_equiv_memory_loc[i] = x;
      reg_equiv_memory_loc[i] = x;
    }
    }
}
}
 
 
/* Mark the slots in regs_ever_live for the hard regs
/* Mark the slots in regs_ever_live for the hard regs
   used by pseudo-reg number REGNO.  */
   used by pseudo-reg number REGNO.  */
 
 
void
void
mark_home_live (int regno)
mark_home_live (int regno)
{
{
  int i, lim;
  int i, lim;
 
 
  i = reg_renumber[regno];
  i = reg_renumber[regno];
  if (i < 0)
  if (i < 0)
    return;
    return;
  lim = i + hard_regno_nregs[i][PSEUDO_REGNO_MODE (regno)];
  lim = i + hard_regno_nregs[i][PSEUDO_REGNO_MODE (regno)];
  while (i < lim)
  while (i < lim)
    regs_ever_live[i++] = 1;
    regs_ever_live[i++] = 1;
}
}


/* This function handles the tracking of elimination offsets around branches.
/* This function handles the tracking of elimination offsets around branches.
 
 
   X is a piece of RTL being scanned.
   X is a piece of RTL being scanned.
 
 
   INSN is the insn that it came from, if any.
   INSN is the insn that it came from, if any.
 
 
   INITIAL_P is nonzero if we are to set the offset to be the initial
   INITIAL_P is nonzero if we are to set the offset to be the initial
   offset and zero if we are setting the offset of the label to be the
   offset and zero if we are setting the offset of the label to be the
   current offset.  */
   current offset.  */
 
 
static void
static void
set_label_offsets (rtx x, rtx insn, int initial_p)
set_label_offsets (rtx x, rtx insn, int initial_p)
{
{
  enum rtx_code code = GET_CODE (x);
  enum rtx_code code = GET_CODE (x);
  rtx tem;
  rtx tem;
  unsigned int i;
  unsigned int i;
  struct elim_table *p;
  struct elim_table *p;
 
 
  switch (code)
  switch (code)
    {
    {
    case LABEL_REF:
    case LABEL_REF:
      if (LABEL_REF_NONLOCAL_P (x))
      if (LABEL_REF_NONLOCAL_P (x))
        return;
        return;
 
 
      x = XEXP (x, 0);
      x = XEXP (x, 0);
 
 
      /* ... fall through ...  */
      /* ... fall through ...  */
 
 
    case CODE_LABEL:
    case CODE_LABEL:
      /* If we know nothing about this label, set the desired offsets.  Note
      /* If we know nothing about this label, set the desired offsets.  Note
         that this sets the offset at a label to be the offset before a label
         that this sets the offset at a label to be the offset before a label
         if we don't know anything about the label.  This is not correct for
         if we don't know anything about the label.  This is not correct for
         the label after a BARRIER, but is the best guess we can make.  If
         the label after a BARRIER, but is the best guess we can make.  If
         we guessed wrong, we will suppress an elimination that might have
         we guessed wrong, we will suppress an elimination that might have
         been possible had we been able to guess correctly.  */
         been possible had we been able to guess correctly.  */
 
 
      if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
      if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
        {
        {
          for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
          for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
            offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
            offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
              = (initial_p ? reg_eliminate[i].initial_offset
              = (initial_p ? reg_eliminate[i].initial_offset
                 : reg_eliminate[i].offset);
                 : reg_eliminate[i].offset);
          offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
          offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
        }
        }
 
 
      /* Otherwise, if this is the definition of a label and it is
      /* Otherwise, if this is the definition of a label and it is
         preceded by a BARRIER, set our offsets to the known offset of
         preceded by a BARRIER, set our offsets to the known offset of
         that label.  */
         that label.  */
 
 
      else if (x == insn
      else if (x == insn
               && (tem = prev_nonnote_insn (insn)) != 0
               && (tem = prev_nonnote_insn (insn)) != 0
               && BARRIER_P (tem))
               && BARRIER_P (tem))
        set_offsets_for_label (insn);
        set_offsets_for_label (insn);
      else
      else
        /* If neither of the above cases is true, compare each offset
        /* If neither of the above cases is true, compare each offset
           with those previously recorded and suppress any eliminations
           with those previously recorded and suppress any eliminations
           where the offsets disagree.  */
           where the offsets disagree.  */
 
 
        for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
        for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
          if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
          if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
              != (initial_p ? reg_eliminate[i].initial_offset
              != (initial_p ? reg_eliminate[i].initial_offset
                  : reg_eliminate[i].offset))
                  : reg_eliminate[i].offset))
            reg_eliminate[i].can_eliminate = 0;
            reg_eliminate[i].can_eliminate = 0;
 
 
      return;
      return;
 
 
    case JUMP_INSN:
    case JUMP_INSN:
      set_label_offsets (PATTERN (insn), insn, initial_p);
      set_label_offsets (PATTERN (insn), insn, initial_p);
 
 
      /* ... fall through ...  */
      /* ... fall through ...  */
 
 
    case INSN:
    case INSN:
    case CALL_INSN:
    case CALL_INSN:
      /* Any labels mentioned in REG_LABEL notes can be branched to indirectly
      /* Any labels mentioned in REG_LABEL notes can be branched to indirectly
         and hence must have all eliminations at their initial offsets.  */
         and hence must have all eliminations at their initial offsets.  */
      for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
      for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
        if (REG_NOTE_KIND (tem) == REG_LABEL)
        if (REG_NOTE_KIND (tem) == REG_LABEL)
          set_label_offsets (XEXP (tem, 0), insn, 1);
          set_label_offsets (XEXP (tem, 0), insn, 1);
      return;
      return;
 
 
    case PARALLEL:
    case PARALLEL:
    case ADDR_VEC:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
    case ADDR_DIFF_VEC:
      /* Each of the labels in the parallel or address vector must be
      /* Each of the labels in the parallel or address vector must be
         at their initial offsets.  We want the first field for PARALLEL
         at their initial offsets.  We want the first field for PARALLEL
         and ADDR_VEC and the second field for ADDR_DIFF_VEC.  */
         and ADDR_VEC and the second field for ADDR_DIFF_VEC.  */
 
 
      for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
      for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
        set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
        set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
                           insn, initial_p);
                           insn, initial_p);
      return;
      return;
 
 
    case SET:
    case SET:
      /* We only care about setting PC.  If the source is not RETURN,
      /* We only care about setting PC.  If the source is not RETURN,
         IF_THEN_ELSE, or a label, disable any eliminations not at
         IF_THEN_ELSE, or a label, disable any eliminations not at
         their initial offsets.  Similarly if any arm of the IF_THEN_ELSE
         their initial offsets.  Similarly if any arm of the IF_THEN_ELSE
         isn't one of those possibilities.  For branches to a label,
         isn't one of those possibilities.  For branches to a label,
         call ourselves recursively.
         call ourselves recursively.
 
 
         Note that this can disable elimination unnecessarily when we have
         Note that this can disable elimination unnecessarily when we have
         a non-local goto since it will look like a non-constant jump to
         a non-local goto since it will look like a non-constant jump to
         someplace in the current function.  This isn't a significant
         someplace in the current function.  This isn't a significant
         problem since such jumps will normally be when all elimination
         problem since such jumps will normally be when all elimination
         pairs are back to their initial offsets.  */
         pairs are back to their initial offsets.  */
 
 
      if (SET_DEST (x) != pc_rtx)
      if (SET_DEST (x) != pc_rtx)
        return;
        return;
 
 
      switch (GET_CODE (SET_SRC (x)))
      switch (GET_CODE (SET_SRC (x)))
        {
        {
        case PC:
        case PC:
        case RETURN:
        case RETURN:
          return;
          return;
 
 
        case LABEL_REF:
        case LABEL_REF:
          set_label_offsets (SET_SRC (x), insn, initial_p);
          set_label_offsets (SET_SRC (x), insn, initial_p);
          return;
          return;
 
 
        case IF_THEN_ELSE:
        case IF_THEN_ELSE:
          tem = XEXP (SET_SRC (x), 1);
          tem = XEXP (SET_SRC (x), 1);
          if (GET_CODE (tem) == LABEL_REF)
          if (GET_CODE (tem) == LABEL_REF)
            set_label_offsets (XEXP (tem, 0), insn, initial_p);
            set_label_offsets (XEXP (tem, 0), insn, initial_p);
          else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
          else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
            break;
            break;
 
 
          tem = XEXP (SET_SRC (x), 2);
          tem = XEXP (SET_SRC (x), 2);
          if (GET_CODE (tem) == LABEL_REF)
          if (GET_CODE (tem) == LABEL_REF)
            set_label_offsets (XEXP (tem, 0), insn, initial_p);
            set_label_offsets (XEXP (tem, 0), insn, initial_p);
          else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
          else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
            break;
            break;
          return;
          return;
 
 
        default:
        default:
          break;
          break;
        }
        }
 
 
      /* If we reach here, all eliminations must be at their initial
      /* If we reach here, all eliminations must be at their initial
         offset because we are doing a jump to a variable address.  */
         offset because we are doing a jump to a variable address.  */
      for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
      for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
        if (p->offset != p->initial_offset)
        if (p->offset != p->initial_offset)
          p->can_eliminate = 0;
          p->can_eliminate = 0;
      break;
      break;
 
 
    default:
    default:
      break;
      break;
    }
    }
}
}


/* Scan X and replace any eliminable registers (such as fp) with a
/* Scan X and replace any eliminable registers (such as fp) with a
   replacement (such as sp), plus an offset.
   replacement (such as sp), plus an offset.
 
 
   MEM_MODE is the mode of an enclosing MEM.  We need this to know how
   MEM_MODE is the mode of an enclosing MEM.  We need this to know how
   much to adjust a register for, e.g., PRE_DEC.  Also, if we are inside a
   much to adjust a register for, e.g., PRE_DEC.  Also, if we are inside a
   MEM, we are allowed to replace a sum of a register and the constant zero
   MEM, we are allowed to replace a sum of a register and the constant zero
   with the register, which we cannot do outside a MEM.  In addition, we need
   with the register, which we cannot do outside a MEM.  In addition, we need
   to record the fact that a register is referenced outside a MEM.
   to record the fact that a register is referenced outside a MEM.
 
 
   If INSN is an insn, it is the insn containing X.  If we replace a REG
   If INSN is an insn, it is the insn containing X.  If we replace a REG
   in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
   in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
   CLOBBER of the pseudo after INSN so find_equiv_regs will know that
   CLOBBER of the pseudo after INSN so find_equiv_regs will know that
   the REG is being modified.
   the REG is being modified.
 
 
   Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
   Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
   That's used when we eliminate in expressions stored in notes.
   That's used when we eliminate in expressions stored in notes.
   This means, do not set ref_outside_mem even if the reference
   This means, do not set ref_outside_mem even if the reference
   is outside of MEMs.
   is outside of MEMs.
 
 
   REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
   REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
   replacements done assuming all offsets are at their initial values.  If
   replacements done assuming all offsets are at their initial values.  If
   they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
   they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
   encounter, return the actual location so that find_reloads will do
   encounter, return the actual location so that find_reloads will do
   the proper thing.  */
   the proper thing.  */
 
 
static rtx
static rtx
eliminate_regs_1 (rtx x, enum machine_mode mem_mode, rtx insn,
eliminate_regs_1 (rtx x, enum machine_mode mem_mode, rtx insn,
                  bool may_use_invariant)
                  bool may_use_invariant)
{
{
  enum rtx_code code = GET_CODE (x);
  enum rtx_code code = GET_CODE (x);
  struct elim_table *ep;
  struct elim_table *ep;
  int regno;
  int regno;
  rtx new;
  rtx new;
  int i, j;
  int i, j;
  const char *fmt;
  const char *fmt;
  int copied = 0;
  int copied = 0;
 
 
  if (! current_function_decl)
  if (! current_function_decl)
    return x;
    return x;
 
 
  switch (code)
  switch (code)
    {
    {
    case CONST_INT:
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST_DOUBLE:
    case CONST_VECTOR:
    case CONST_VECTOR:
    case CONST:
    case CONST:
    case SYMBOL_REF:
    case SYMBOL_REF:
    case CODE_LABEL:
    case CODE_LABEL:
    case PC:
    case PC:
    case CC0:
    case CC0:
    case ASM_INPUT:
    case ASM_INPUT:
    case ADDR_VEC:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
    case ADDR_DIFF_VEC:
    case RETURN:
    case RETURN:
      return x;
      return x;
 
 
    case REG:
    case REG:
      regno = REGNO (x);
      regno = REGNO (x);
 
 
      /* First handle the case where we encounter a bare register that
      /* First handle the case where we encounter a bare register that
         is eliminable.  Replace it with a PLUS.  */
         is eliminable.  Replace it with a PLUS.  */
      if (regno < FIRST_PSEUDO_REGISTER)
      if (regno < FIRST_PSEUDO_REGISTER)
        {
        {
          for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
          for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
               ep++)
               ep++)
            if (ep->from_rtx == x && ep->can_eliminate)
            if (ep->from_rtx == x && ep->can_eliminate)
              return plus_constant (ep->to_rtx, ep->previous_offset);
              return plus_constant (ep->to_rtx, ep->previous_offset);
 
 
        }
        }
      else if (reg_renumber && reg_renumber[regno] < 0
      else if (reg_renumber && reg_renumber[regno] < 0
               && reg_equiv_invariant && reg_equiv_invariant[regno])
               && reg_equiv_invariant && reg_equiv_invariant[regno])
        {
        {
          if (may_use_invariant)
          if (may_use_invariant)
            return eliminate_regs_1 (copy_rtx (reg_equiv_invariant[regno]),
            return eliminate_regs_1 (copy_rtx (reg_equiv_invariant[regno]),
                                     mem_mode, insn, true);
                                     mem_mode, insn, true);
          /* There exists at least one use of REGNO that cannot be
          /* There exists at least one use of REGNO that cannot be
             eliminated.  Prevent the defining insn from being deleted.  */
             eliminated.  Prevent the defining insn from being deleted.  */
          reg_equiv_init[regno] = NULL_RTX;
          reg_equiv_init[regno] = NULL_RTX;
          alter_reg (regno, -1);
          alter_reg (regno, -1);
        }
        }
      return x;
      return x;
 
 
    /* You might think handling MINUS in a manner similar to PLUS is a
    /* You might think handling MINUS in a manner similar to PLUS is a
       good idea.  It is not.  It has been tried multiple times and every
       good idea.  It is not.  It has been tried multiple times and every
       time the change has had to have been reverted.
       time the change has had to have been reverted.
 
 
       Other parts of reload know a PLUS is special (gen_reload for example)
       Other parts of reload know a PLUS is special (gen_reload for example)
       and require special code to handle code a reloaded PLUS operand.
       and require special code to handle code a reloaded PLUS operand.
 
 
       Also consider backends where the flags register is clobbered by a
       Also consider backends where the flags register is clobbered by a
       MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
       MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
       lea instruction comes to mind).  If we try to reload a MINUS, we
       lea instruction comes to mind).  If we try to reload a MINUS, we
       may kill the flags register that was holding a useful value.
       may kill the flags register that was holding a useful value.
 
 
       So, please before trying to handle MINUS, consider reload as a
       So, please before trying to handle MINUS, consider reload as a
       whole instead of this little section as well as the backend issues.  */
       whole instead of this little section as well as the backend issues.  */
    case PLUS:
    case PLUS:
      /* If this is the sum of an eliminable register and a constant, rework
      /* If this is the sum of an eliminable register and a constant, rework
         the sum.  */
         the sum.  */
      if (REG_P (XEXP (x, 0))
      if (REG_P (XEXP (x, 0))
          && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
          && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
          && CONSTANT_P (XEXP (x, 1)))
          && CONSTANT_P (XEXP (x, 1)))
        {
        {
          for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
          for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
               ep++)
               ep++)
            if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
            if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
              {
              {
                /* The only time we want to replace a PLUS with a REG (this
                /* The only time we want to replace a PLUS with a REG (this
                   occurs when the constant operand of the PLUS is the negative
                   occurs when the constant operand of the PLUS is the negative
                   of the offset) is when we are inside a MEM.  We won't want
                   of the offset) is when we are inside a MEM.  We won't want
                   to do so at other times because that would change the
                   to do so at other times because that would change the
                   structure of the insn in a way that reload can't handle.
                   structure of the insn in a way that reload can't handle.
                   We special-case the commonest situation in
                   We special-case the commonest situation in
                   eliminate_regs_in_insn, so just replace a PLUS with a
                   eliminate_regs_in_insn, so just replace a PLUS with a
                   PLUS here, unless inside a MEM.  */
                   PLUS here, unless inside a MEM.  */
                if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
                if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
                    && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
                    && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
                  return ep->to_rtx;
                  return ep->to_rtx;
                else
                else
                  return gen_rtx_PLUS (Pmode, ep->to_rtx,
                  return gen_rtx_PLUS (Pmode, ep->to_rtx,
                                       plus_constant (XEXP (x, 1),
                                       plus_constant (XEXP (x, 1),
                                                      ep->previous_offset));
                                                      ep->previous_offset));
              }
              }
 
 
          /* If the register is not eliminable, we are done since the other
          /* If the register is not eliminable, we are done since the other
             operand is a constant.  */
             operand is a constant.  */
          return x;
          return x;
        }
        }
 
 
      /* If this is part of an address, we want to bring any constant to the
      /* If this is part of an address, we want to bring any constant to the
         outermost PLUS.  We will do this by doing register replacement in
         outermost PLUS.  We will do this by doing register replacement in
         our operands and seeing if a constant shows up in one of them.
         our operands and seeing if a constant shows up in one of them.
 
 
         Note that there is no risk of modifying the structure of the insn,
         Note that there is no risk of modifying the structure of the insn,
         since we only get called for its operands, thus we are either
         since we only get called for its operands, thus we are either
         modifying the address inside a MEM, or something like an address
         modifying the address inside a MEM, or something like an address
         operand of a load-address insn.  */
         operand of a load-address insn.  */
 
 
      {
      {
        rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true);
        rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true);
        rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true);
        rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true);
 
 
        if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
        if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
          {
          {
            /* If one side is a PLUS and the other side is a pseudo that
            /* If one side is a PLUS and the other side is a pseudo that
               didn't get a hard register but has a reg_equiv_constant,
               didn't get a hard register but has a reg_equiv_constant,
               we must replace the constant here since it may no longer
               we must replace the constant here since it may no longer
               be in the position of any operand.  */
               be in the position of any operand.  */
            if (GET_CODE (new0) == PLUS && REG_P (new1)
            if (GET_CODE (new0) == PLUS && REG_P (new1)
                && REGNO (new1) >= FIRST_PSEUDO_REGISTER
                && REGNO (new1) >= FIRST_PSEUDO_REGISTER
                && reg_renumber[REGNO (new1)] < 0
                && reg_renumber[REGNO (new1)] < 0
                && reg_equiv_constant != 0
                && reg_equiv_constant != 0
                && reg_equiv_constant[REGNO (new1)] != 0)
                && reg_equiv_constant[REGNO (new1)] != 0)
              new1 = reg_equiv_constant[REGNO (new1)];
              new1 = reg_equiv_constant[REGNO (new1)];
            else if (GET_CODE (new1) == PLUS && REG_P (new0)
            else if (GET_CODE (new1) == PLUS && REG_P (new0)
                     && REGNO (new0) >= FIRST_PSEUDO_REGISTER
                     && REGNO (new0) >= FIRST_PSEUDO_REGISTER
                     && reg_renumber[REGNO (new0)] < 0
                     && reg_renumber[REGNO (new0)] < 0
                     && reg_equiv_constant[REGNO (new0)] != 0)
                     && reg_equiv_constant[REGNO (new0)] != 0)
              new0 = reg_equiv_constant[REGNO (new0)];
              new0 = reg_equiv_constant[REGNO (new0)];
 
 
            new = form_sum (new0, new1);
            new = form_sum (new0, new1);
 
 
            /* As above, if we are not inside a MEM we do not want to
            /* As above, if we are not inside a MEM we do not want to
               turn a PLUS into something else.  We might try to do so here
               turn a PLUS into something else.  We might try to do so here
               for an addition of 0 if we aren't optimizing.  */
               for an addition of 0 if we aren't optimizing.  */
            if (! mem_mode && GET_CODE (new) != PLUS)
            if (! mem_mode && GET_CODE (new) != PLUS)
              return gen_rtx_PLUS (GET_MODE (x), new, const0_rtx);
              return gen_rtx_PLUS (GET_MODE (x), new, const0_rtx);
            else
            else
              return new;
              return new;
          }
          }
      }
      }
      return x;
      return x;
 
 
    case MULT:
    case MULT:
      /* If this is the product of an eliminable register and a
      /* If this is the product of an eliminable register and a
         constant, apply the distribute law and move the constant out
         constant, apply the distribute law and move the constant out
         so that we have (plus (mult ..) ..).  This is needed in order
         so that we have (plus (mult ..) ..).  This is needed in order
         to keep load-address insns valid.   This case is pathological.
         to keep load-address insns valid.   This case is pathological.
         We ignore the possibility of overflow here.  */
         We ignore the possibility of overflow here.  */
      if (REG_P (XEXP (x, 0))
      if (REG_P (XEXP (x, 0))
          && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
          && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
          && GET_CODE (XEXP (x, 1)) == CONST_INT)
          && GET_CODE (XEXP (x, 1)) == CONST_INT)
        for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
        for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
             ep++)
             ep++)
          if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
          if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
            {
            {
              if (! mem_mode
              if (! mem_mode
                  /* Refs inside notes don't count for this purpose.  */
                  /* Refs inside notes don't count for this purpose.  */
                  && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
                  && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
                                      || GET_CODE (insn) == INSN_LIST)))
                                      || GET_CODE (insn) == INSN_LIST)))
                ep->ref_outside_mem = 1;
                ep->ref_outside_mem = 1;
 
 
              return
              return
                plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
                plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
                               ep->previous_offset * INTVAL (XEXP (x, 1)));
                               ep->previous_offset * INTVAL (XEXP (x, 1)));
            }
            }
 
 
      /* ... fall through ...  */
      /* ... fall through ...  */
 
 
    case CALL:
    case CALL:
    case COMPARE:
    case COMPARE:
    /* See comments before PLUS about handling MINUS.  */
    /* See comments before PLUS about handling MINUS.  */
    case MINUS:
    case MINUS:
    case DIV:      case UDIV:
    case DIV:      case UDIV:
    case MOD:      case UMOD:
    case MOD:      case UMOD:
    case AND:      case IOR:      case XOR:
    case AND:      case IOR:      case XOR:
    case ROTATERT: case ROTATE:
    case ROTATERT: case ROTATE:
    case ASHIFTRT: case LSHIFTRT: case ASHIFT:
    case ASHIFTRT: case LSHIFTRT: case ASHIFT:
    case NE:       case EQ:
    case NE:       case EQ:
    case GE:       case GT:       case GEU:    case GTU:
    case GE:       case GT:       case GEU:    case GTU:
    case LE:       case LT:       case LEU:    case LTU:
    case LE:       case LT:       case LEU:    case LTU:
      {
      {
        rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false);
        rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false);
        rtx new1 = XEXP (x, 1)
        rtx new1 = XEXP (x, 1)
                   ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false) : 0;
                   ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false) : 0;
 
 
        if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
        if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
          return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
          return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
      }
      }
      return x;
      return x;
 
 
    case EXPR_LIST:
    case EXPR_LIST:
      /* If we have something in XEXP (x, 0), the usual case, eliminate it.  */
      /* If we have something in XEXP (x, 0), the usual case, eliminate it.  */
      if (XEXP (x, 0))
      if (XEXP (x, 0))
        {
        {
          new = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true);
          new = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true);
          if (new != XEXP (x, 0))
          if (new != XEXP (x, 0))
            {
            {
              /* If this is a REG_DEAD note, it is not valid anymore.
              /* If this is a REG_DEAD note, it is not valid anymore.
                 Using the eliminated version could result in creating a
                 Using the eliminated version could result in creating a
                 REG_DEAD note for the stack or frame pointer.  */
                 REG_DEAD note for the stack or frame pointer.  */
              if (GET_MODE (x) == REG_DEAD)
              if (GET_MODE (x) == REG_DEAD)
                return (XEXP (x, 1)
                return (XEXP (x, 1)
                        ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true)
                        ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true)
                        : NULL_RTX);
                        : NULL_RTX);
 
 
              x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1));
              x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1));
            }
            }
        }
        }
 
 
      /* ... fall through ...  */
      /* ... fall through ...  */
 
 
    case INSN_LIST:
    case INSN_LIST:
      /* Now do eliminations in the rest of the chain.  If this was
      /* Now do eliminations in the rest of the chain.  If this was
         an EXPR_LIST, this might result in allocating more memory than is
         an EXPR_LIST, this might result in allocating more memory than is
         strictly needed, but it simplifies the code.  */
         strictly needed, but it simplifies the code.  */
      if (XEXP (x, 1))
      if (XEXP (x, 1))
        {
        {
          new = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true);
          new = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true);
          if (new != XEXP (x, 1))
          if (new != XEXP (x, 1))
            return
            return
              gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new);
              gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new);
        }
        }
      return x;
      return x;
 
 
    case PRE_INC:
    case PRE_INC:
    case POST_INC:
    case POST_INC:
    case PRE_DEC:
    case PRE_DEC:
    case POST_DEC:
    case POST_DEC:
    case STRICT_LOW_PART:
    case STRICT_LOW_PART:
    case NEG:          case NOT:
    case NEG:          case NOT:
    case SIGN_EXTEND:  case ZERO_EXTEND:
    case SIGN_EXTEND:  case ZERO_EXTEND:
    case TRUNCATE:     case FLOAT_EXTEND: case FLOAT_TRUNCATE:
    case TRUNCATE:     case FLOAT_EXTEND: case FLOAT_TRUNCATE:
    case FLOAT:        case FIX:
    case FLOAT:        case FIX:
    case UNSIGNED_FIX: case UNSIGNED_FLOAT:
    case UNSIGNED_FIX: case UNSIGNED_FLOAT:
    case ABS:
    case ABS:
    case SQRT:
    case SQRT:
    case FFS:
    case FFS:
    case CLZ:
    case CLZ:
    case CTZ:
    case CTZ:
    case POPCOUNT:
    case POPCOUNT:
    case PARITY:
    case PARITY:
      new = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false);
      new = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false);
      if (new != XEXP (x, 0))
      if (new != XEXP (x, 0))
        return gen_rtx_fmt_e (code, GET_MODE (x), new);
        return gen_rtx_fmt_e (code, GET_MODE (x), new);
      return x;
      return x;
 
 
    case SUBREG:
    case SUBREG:
      /* Similar to above processing, but preserve SUBREG_BYTE.
      /* Similar to above processing, but preserve SUBREG_BYTE.
         Convert (subreg (mem)) to (mem) if not paradoxical.
         Convert (subreg (mem)) to (mem) if not paradoxical.
         Also, if we have a non-paradoxical (subreg (pseudo)) and the
         Also, if we have a non-paradoxical (subreg (pseudo)) and the
         pseudo didn't get a hard reg, we must replace this with the
         pseudo didn't get a hard reg, we must replace this with the
         eliminated version of the memory location because push_reload
         eliminated version of the memory location because push_reload
         may do the replacement in certain circumstances.  */
         may do the replacement in certain circumstances.  */
      if (REG_P (SUBREG_REG (x))
      if (REG_P (SUBREG_REG (x))
          && (GET_MODE_SIZE (GET_MODE (x))
          && (GET_MODE_SIZE (GET_MODE (x))
              <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
              <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
          && reg_equiv_memory_loc != 0
          && reg_equiv_memory_loc != 0
          && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
          && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
        {
        {
          new = SUBREG_REG (x);
          new = SUBREG_REG (x);
        }
        }
      else
      else
        new = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false);
        new = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false);
 
 
      if (new != SUBREG_REG (x))
      if (new != SUBREG_REG (x))
        {
        {
          int x_size = GET_MODE_SIZE (GET_MODE (x));
          int x_size = GET_MODE_SIZE (GET_MODE (x));
          int new_size = GET_MODE_SIZE (GET_MODE (new));
          int new_size = GET_MODE_SIZE (GET_MODE (new));
 
 
          if (MEM_P (new)
          if (MEM_P (new)
              && ((x_size < new_size
              && ((x_size < new_size
#ifdef WORD_REGISTER_OPERATIONS
#ifdef WORD_REGISTER_OPERATIONS
                   /* On these machines, combine can create rtl of the form
                   /* On these machines, combine can create rtl of the form
                      (set (subreg:m1 (reg:m2 R) 0) ...)
                      (set (subreg:m1 (reg:m2 R) 0) ...)
                      where m1 < m2, and expects something interesting to
                      where m1 < m2, and expects something interesting to
                      happen to the entire word.  Moreover, it will use the
                      happen to the entire word.  Moreover, it will use the
                      (reg:m2 R) later, expecting all bits to be preserved.
                      (reg:m2 R) later, expecting all bits to be preserved.
                      So if the number of words is the same, preserve the
                      So if the number of words is the same, preserve the
                      subreg so that push_reload can see it.  */
                      subreg so that push_reload can see it.  */
                   && ! ((x_size - 1) / UNITS_PER_WORD
                   && ! ((x_size - 1) / UNITS_PER_WORD
                         == (new_size -1 ) / UNITS_PER_WORD)
                         == (new_size -1 ) / UNITS_PER_WORD)
#endif
#endif
                   )
                   )
                  || x_size == new_size)
                  || x_size == new_size)
              )
              )
            return adjust_address_nv (new, GET_MODE (x), SUBREG_BYTE (x));
            return adjust_address_nv (new, GET_MODE (x), SUBREG_BYTE (x));
          else
          else
            return gen_rtx_SUBREG (GET_MODE (x), new, SUBREG_BYTE (x));
            return gen_rtx_SUBREG (GET_MODE (x), new, SUBREG_BYTE (x));
        }
        }
 
 
      return x;
      return x;
 
 
    case MEM:
    case MEM:
      /* Our only special processing is to pass the mode of the MEM to our
      /* Our only special processing is to pass the mode of the MEM to our
         recursive call and copy the flags.  While we are here, handle this
         recursive call and copy the flags.  While we are here, handle this
         case more efficiently.  */
         case more efficiently.  */
      return
      return
        replace_equiv_address_nv (x,
        replace_equiv_address_nv (x,
                                  eliminate_regs_1 (XEXP (x, 0), GET_MODE (x),
                                  eliminate_regs_1 (XEXP (x, 0), GET_MODE (x),
                                                    insn, true));
                                                    insn, true));
 
 
    case USE:
    case USE:
      /* Handle insn_list USE that a call to a pure function may generate.  */
      /* Handle insn_list USE that a call to a pure function may generate.  */
      new = eliminate_regs_1 (XEXP (x, 0), 0, insn, false);
      new = eliminate_regs_1 (XEXP (x, 0), 0, insn, false);
      if (new != XEXP (x, 0))
      if (new != XEXP (x, 0))
        return gen_rtx_USE (GET_MODE (x), new);
        return gen_rtx_USE (GET_MODE (x), new);
      return x;
      return x;
 
 
    case CLOBBER:
    case CLOBBER:
    case ASM_OPERANDS:
    case ASM_OPERANDS:
    case SET:
    case SET:
      gcc_unreachable ();
      gcc_unreachable ();
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  /* Process each of our operands recursively.  If any have changed, make a
  /* Process each of our operands recursively.  If any have changed, make a
     copy of the rtx.  */
     copy of the rtx.  */
  fmt = GET_RTX_FORMAT (code);
  fmt = GET_RTX_FORMAT (code);
  for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
  for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
    {
    {
      if (*fmt == 'e')
      if (*fmt == 'e')
        {
        {
          new = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false);
          new = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false);
          if (new != XEXP (x, i) && ! copied)
          if (new != XEXP (x, i) && ! copied)
            {
            {
              x = shallow_copy_rtx (x);
              x = shallow_copy_rtx (x);
              copied = 1;
              copied = 1;
            }
            }
          XEXP (x, i) = new;
          XEXP (x, i) = new;
        }
        }
      else if (*fmt == 'E')
      else if (*fmt == 'E')
        {
        {
          int copied_vec = 0;
          int copied_vec = 0;
          for (j = 0; j < XVECLEN (x, i); j++)
          for (j = 0; j < XVECLEN (x, i); j++)
            {
            {
              new = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false);
              new = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false);
              if (new != XVECEXP (x, i, j) && ! copied_vec)
              if (new != XVECEXP (x, i, j) && ! copied_vec)
                {
                {
                  rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
                  rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
                                             XVEC (x, i)->elem);
                                             XVEC (x, i)->elem);
                  if (! copied)
                  if (! copied)
                    {
                    {
                      x = shallow_copy_rtx (x);
                      x = shallow_copy_rtx (x);
                      copied = 1;
                      copied = 1;
                    }
                    }
                  XVEC (x, i) = new_v;
                  XVEC (x, i) = new_v;
                  copied_vec = 1;
                  copied_vec = 1;
                }
                }
              XVECEXP (x, i, j) = new;
              XVECEXP (x, i, j) = new;
            }
            }
        }
        }
    }
    }
 
 
  return x;
  return x;
}
}
 
 
rtx
rtx
eliminate_regs (rtx x, enum machine_mode mem_mode, rtx insn)
eliminate_regs (rtx x, enum machine_mode mem_mode, rtx insn)
{
{
  return eliminate_regs_1 (x, mem_mode, insn, false);
  return eliminate_regs_1 (x, mem_mode, insn, false);
}
}
 
 
/* Scan rtx X for modifications of elimination target registers.  Update
/* Scan rtx X for modifications of elimination target registers.  Update
   the table of eliminables to reflect the changed state.  MEM_MODE is
   the table of eliminables to reflect the changed state.  MEM_MODE is
   the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM.  */
   the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM.  */
 
 
static void
static void
elimination_effects (rtx x, enum machine_mode mem_mode)
elimination_effects (rtx x, enum machine_mode mem_mode)
{
{
  enum rtx_code code = GET_CODE (x);
  enum rtx_code code = GET_CODE (x);
  struct elim_table *ep;
  struct elim_table *ep;
  int regno;
  int regno;
  int i, j;
  int i, j;
  const char *fmt;
  const char *fmt;
 
 
  switch (code)
  switch (code)
    {
    {
    case CONST_INT:
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST_DOUBLE:
    case CONST_VECTOR:
    case CONST_VECTOR:
    case CONST:
    case CONST:
    case SYMBOL_REF:
    case SYMBOL_REF:
    case CODE_LABEL:
    case CODE_LABEL:
    case PC:
    case PC:
    case CC0:
    case CC0:
    case ASM_INPUT:
    case ASM_INPUT:
    case ADDR_VEC:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
    case ADDR_DIFF_VEC:
    case RETURN:
    case RETURN:
      return;
      return;
 
 
    case REG:
    case REG:
      regno = REGNO (x);
      regno = REGNO (x);
 
 
      /* First handle the case where we encounter a bare register that
      /* First handle the case where we encounter a bare register that
         is eliminable.  Replace it with a PLUS.  */
         is eliminable.  Replace it with a PLUS.  */
      if (regno < FIRST_PSEUDO_REGISTER)
      if (regno < FIRST_PSEUDO_REGISTER)
        {
        {
          for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
          for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
               ep++)
               ep++)
            if (ep->from_rtx == x && ep->can_eliminate)
            if (ep->from_rtx == x && ep->can_eliminate)
              {
              {
                if (! mem_mode)
                if (! mem_mode)
                  ep->ref_outside_mem = 1;
                  ep->ref_outside_mem = 1;
                return;
                return;
              }
              }
 
 
        }
        }
      else if (reg_renumber[regno] < 0 && reg_equiv_constant
      else if (reg_renumber[regno] < 0 && reg_equiv_constant
               && reg_equiv_constant[regno]
               && reg_equiv_constant[regno]
               && ! function_invariant_p (reg_equiv_constant[regno]))
               && ! function_invariant_p (reg_equiv_constant[regno]))
        elimination_effects (reg_equiv_constant[regno], mem_mode);
        elimination_effects (reg_equiv_constant[regno], mem_mode);
      return;
      return;
 
 
    case PRE_INC:
    case PRE_INC:
    case POST_INC:
    case POST_INC:
    case PRE_DEC:
    case PRE_DEC:
    case POST_DEC:
    case POST_DEC:
    case POST_MODIFY:
    case POST_MODIFY:
    case PRE_MODIFY:
    case PRE_MODIFY:
      for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
      for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
        if (ep->to_rtx == XEXP (x, 0))
        if (ep->to_rtx == XEXP (x, 0))
          {
          {
            int size = GET_MODE_SIZE (mem_mode);
            int size = GET_MODE_SIZE (mem_mode);
 
 
            /* If more bytes than MEM_MODE are pushed, account for them.  */
            /* If more bytes than MEM_MODE are pushed, account for them.  */
#ifdef PUSH_ROUNDING
#ifdef PUSH_ROUNDING
            if (ep->to_rtx == stack_pointer_rtx)
            if (ep->to_rtx == stack_pointer_rtx)
              size = PUSH_ROUNDING (size);
              size = PUSH_ROUNDING (size);
#endif
#endif
            if (code == PRE_DEC || code == POST_DEC)
            if (code == PRE_DEC || code == POST_DEC)
              ep->offset += size;
              ep->offset += size;
            else if (code == PRE_INC || code == POST_INC)
            else if (code == PRE_INC || code == POST_INC)
              ep->offset -= size;
              ep->offset -= size;
            else if ((code == PRE_MODIFY || code == POST_MODIFY)
            else if ((code == PRE_MODIFY || code == POST_MODIFY)
                     && GET_CODE (XEXP (x, 1)) == PLUS
                     && GET_CODE (XEXP (x, 1)) == PLUS
                     && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
                     && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
                     && CONSTANT_P (XEXP (XEXP (x, 1), 1)))
                     && CONSTANT_P (XEXP (XEXP (x, 1), 1)))
              ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
              ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
          }
          }
 
 
      /* These two aren't unary operators.  */
      /* These two aren't unary operators.  */
      if (code == POST_MODIFY || code == PRE_MODIFY)
      if (code == POST_MODIFY || code == PRE_MODIFY)
        break;
        break;
 
 
      /* Fall through to generic unary operation case.  */
      /* Fall through to generic unary operation case.  */
    case STRICT_LOW_PART:
    case STRICT_LOW_PART:
    case NEG:          case NOT:
    case NEG:          case NOT:
    case SIGN_EXTEND:  case ZERO_EXTEND:
    case SIGN_EXTEND:  case ZERO_EXTEND:
    case TRUNCATE:     case FLOAT_EXTEND: case FLOAT_TRUNCATE:
    case TRUNCATE:     case FLOAT_EXTEND: case FLOAT_TRUNCATE:
    case FLOAT:        case FIX:
    case FLOAT:        case FIX:
    case UNSIGNED_FIX: case UNSIGNED_FLOAT:
    case UNSIGNED_FIX: case UNSIGNED_FLOAT:
    case ABS:
    case ABS:
    case SQRT:
    case SQRT:
    case FFS:
    case FFS:
    case CLZ:
    case CLZ:
    case CTZ:
    case CTZ:
    case POPCOUNT:
    case POPCOUNT:
    case PARITY:
    case PARITY:
      elimination_effects (XEXP (x, 0), mem_mode);
      elimination_effects (XEXP (x, 0), mem_mode);
      return;
      return;
 
 
    case SUBREG:
    case SUBREG:
      if (REG_P (SUBREG_REG (x))
      if (REG_P (SUBREG_REG (x))
          && (GET_MODE_SIZE (GET_MODE (x))
          && (GET_MODE_SIZE (GET_MODE (x))
              <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
              <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
          && reg_equiv_memory_loc != 0
          && reg_equiv_memory_loc != 0
          && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
          && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
        return;
        return;
 
 
      elimination_effects (SUBREG_REG (x), mem_mode);
      elimination_effects (SUBREG_REG (x), mem_mode);
      return;
      return;
 
 
    case USE:
    case USE:
      /* If using a register that is the source of an eliminate we still
      /* If using a register that is the source of an eliminate we still
         think can be performed, note it cannot be performed since we don't
         think can be performed, note it cannot be performed since we don't
         know how this register is used.  */
         know how this register is used.  */
      for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
      for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
        if (ep->from_rtx == XEXP (x, 0))
        if (ep->from_rtx == XEXP (x, 0))
          ep->can_eliminate = 0;
          ep->can_eliminate = 0;
 
 
      elimination_effects (XEXP (x, 0), mem_mode);
      elimination_effects (XEXP (x, 0), mem_mode);
      return;
      return;
 
 
    case CLOBBER:
    case CLOBBER:
      /* If clobbering a register that is the replacement register for an
      /* If clobbering a register that is the replacement register for an
         elimination we still think can be performed, note that it cannot
         elimination we still think can be performed, note that it cannot
         be performed.  Otherwise, we need not be concerned about it.  */
         be performed.  Otherwise, we need not be concerned about it.  */
      for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
      for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
        if (ep->to_rtx == XEXP (x, 0))
        if (ep->to_rtx == XEXP (x, 0))
          ep->can_eliminate = 0;
          ep->can_eliminate = 0;
 
 
      elimination_effects (XEXP (x, 0), mem_mode);
      elimination_effects (XEXP (x, 0), mem_mode);
      return;
      return;
 
 
    case SET:
    case SET:
      /* Check for setting a register that we know about.  */
      /* Check for setting a register that we know about.  */
      if (REG_P (SET_DEST (x)))
      if (REG_P (SET_DEST (x)))
        {
        {
          /* See if this is setting the replacement register for an
          /* See if this is setting the replacement register for an
             elimination.
             elimination.
 
 
             If DEST is the hard frame pointer, we do nothing because we
             If DEST is the hard frame pointer, we do nothing because we
             assume that all assignments to the frame pointer are for
             assume that all assignments to the frame pointer are for
             non-local gotos and are being done at a time when they are valid
             non-local gotos and are being done at a time when they are valid
             and do not disturb anything else.  Some machines want to
             and do not disturb anything else.  Some machines want to
             eliminate a fake argument pointer (or even a fake frame pointer)
             eliminate a fake argument pointer (or even a fake frame pointer)
             with either the real frame or the stack pointer.  Assignments to
             with either the real frame or the stack pointer.  Assignments to
             the hard frame pointer must not prevent this elimination.  */
             the hard frame pointer must not prevent this elimination.  */
 
 
          for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
          for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
               ep++)
               ep++)
            if (ep->to_rtx == SET_DEST (x)
            if (ep->to_rtx == SET_DEST (x)
                && SET_DEST (x) != hard_frame_pointer_rtx)
                && SET_DEST (x) != hard_frame_pointer_rtx)
              {
              {
                /* If it is being incremented, adjust the offset.  Otherwise,
                /* If it is being incremented, adjust the offset.  Otherwise,
                   this elimination can't be done.  */
                   this elimination can't be done.  */
                rtx src = SET_SRC (x);
                rtx src = SET_SRC (x);
 
 
                if (GET_CODE (src) == PLUS
                if (GET_CODE (src) == PLUS
                    && XEXP (src, 0) == SET_DEST (x)
                    && XEXP (src, 0) == SET_DEST (x)
                    && GET_CODE (XEXP (src, 1)) == CONST_INT)
                    && GET_CODE (XEXP (src, 1)) == CONST_INT)
                  ep->offset -= INTVAL (XEXP (src, 1));
                  ep->offset -= INTVAL (XEXP (src, 1));
                else
                else
                  ep->can_eliminate = 0;
                  ep->can_eliminate = 0;
              }
              }
        }
        }
 
 
      elimination_effects (SET_DEST (x), 0);
      elimination_effects (SET_DEST (x), 0);
      elimination_effects (SET_SRC (x), 0);
      elimination_effects (SET_SRC (x), 0);
      return;
      return;
 
 
    case MEM:
    case MEM:
      /* Our only special processing is to pass the mode of the MEM to our
      /* Our only special processing is to pass the mode of the MEM to our
         recursive call.  */
         recursive call.  */
      elimination_effects (XEXP (x, 0), GET_MODE (x));
      elimination_effects (XEXP (x, 0), GET_MODE (x));
      return;
      return;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  fmt = GET_RTX_FORMAT (code);
  fmt = GET_RTX_FORMAT (code);
  for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
  for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
    {
    {
      if (*fmt == 'e')
      if (*fmt == 'e')
        elimination_effects (XEXP (x, i), mem_mode);
        elimination_effects (XEXP (x, i), mem_mode);
      else if (*fmt == 'E')
      else if (*fmt == 'E')
        for (j = 0; j < XVECLEN (x, i); j++)
        for (j = 0; j < XVECLEN (x, i); j++)
          elimination_effects (XVECEXP (x, i, j), mem_mode);
          elimination_effects (XVECEXP (x, i, j), mem_mode);
    }
    }
}
}
 
 
/* Descend through rtx X and verify that no references to eliminable registers
/* Descend through rtx X and verify that no references to eliminable registers
   remain.  If any do remain, mark the involved register as not
   remain.  If any do remain, mark the involved register as not
   eliminable.  */
   eliminable.  */
 
 
static void
static void
check_eliminable_occurrences (rtx x)
check_eliminable_occurrences (rtx x)
{
{
  const char *fmt;
  const char *fmt;
  int i;
  int i;
  enum rtx_code code;
  enum rtx_code code;
 
 
  if (x == 0)
  if (x == 0)
    return;
    return;
 
 
  code = GET_CODE (x);
  code = GET_CODE (x);
 
 
  if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
  if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
    {
    {
      struct elim_table *ep;
      struct elim_table *ep;
 
 
      for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
      for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
        if (ep->from_rtx == x)
        if (ep->from_rtx == x)
          ep->can_eliminate = 0;
          ep->can_eliminate = 0;
      return;
      return;
    }
    }
 
 
  fmt = GET_RTX_FORMAT (code);
  fmt = GET_RTX_FORMAT (code);
  for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
  for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
    {
    {
      if (*fmt == 'e')
      if (*fmt == 'e')
        check_eliminable_occurrences (XEXP (x, i));
        check_eliminable_occurrences (XEXP (x, i));
      else if (*fmt == 'E')
      else if (*fmt == 'E')
        {
        {
          int j;
          int j;
          for (j = 0; j < XVECLEN (x, i); j++)
          for (j = 0; j < XVECLEN (x, i); j++)
            check_eliminable_occurrences (XVECEXP (x, i, j));
            check_eliminable_occurrences (XVECEXP (x, i, j));
        }
        }
    }
    }
}
}


/* Scan INSN and eliminate all eliminable registers in it.
/* Scan INSN and eliminate all eliminable registers in it.
 
 
   If REPLACE is nonzero, do the replacement destructively.  Also
   If REPLACE is nonzero, do the replacement destructively.  Also
   delete the insn as dead it if it is setting an eliminable register.
   delete the insn as dead it if it is setting an eliminable register.
 
 
   If REPLACE is zero, do all our allocations in reload_obstack.
   If REPLACE is zero, do all our allocations in reload_obstack.
 
 
   If no eliminations were done and this insn doesn't require any elimination
   If no eliminations were done and this insn doesn't require any elimination
   processing (these are not identical conditions: it might be updating sp,
   processing (these are not identical conditions: it might be updating sp,
   but not referencing fp; this needs to be seen during reload_as_needed so
   but not referencing fp; this needs to be seen during reload_as_needed so
   that the offset between fp and sp can be taken into consideration), zero
   that the offset between fp and sp can be taken into consideration), zero
   is returned.  Otherwise, 1 is returned.  */
   is returned.  Otherwise, 1 is returned.  */
 
 
static int
static int
eliminate_regs_in_insn (rtx insn, int replace)
eliminate_regs_in_insn (rtx insn, int replace)
{
{
  int icode = recog_memoized (insn);
  int icode = recog_memoized (insn);
  rtx old_body = PATTERN (insn);
  rtx old_body = PATTERN (insn);
  int insn_is_asm = asm_noperands (old_body) >= 0;
  int insn_is_asm = asm_noperands (old_body) >= 0;
  rtx old_set = single_set (insn);
  rtx old_set = single_set (insn);
  rtx new_body;
  rtx new_body;
  int val = 0;
  int val = 0;
  int i;
  int i;
  rtx substed_operand[MAX_RECOG_OPERANDS];
  rtx substed_operand[MAX_RECOG_OPERANDS];
  rtx orig_operand[MAX_RECOG_OPERANDS];
  rtx orig_operand[MAX_RECOG_OPERANDS];
  struct elim_table *ep;
  struct elim_table *ep;
  rtx plus_src, plus_cst_src;
  rtx plus_src, plus_cst_src;
 
 
  if (! insn_is_asm && icode < 0)
  if (! insn_is_asm && icode < 0)
    {
    {
      gcc_assert (GET_CODE (PATTERN (insn)) == USE
      gcc_assert (GET_CODE (PATTERN (insn)) == USE
                  || GET_CODE (PATTERN (insn)) == CLOBBER
                  || GET_CODE (PATTERN (insn)) == CLOBBER
                  || GET_CODE (PATTERN (insn)) == ADDR_VEC
                  || GET_CODE (PATTERN (insn)) == ADDR_VEC
                  || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
                  || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
                  || GET_CODE (PATTERN (insn)) == ASM_INPUT);
                  || GET_CODE (PATTERN (insn)) == ASM_INPUT);
      return 0;
      return 0;
    }
    }
 
 
  if (old_set != 0 && REG_P (SET_DEST (old_set))
  if (old_set != 0 && REG_P (SET_DEST (old_set))
      && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
      && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
    {
    {
      /* Check for setting an eliminable register.  */
      /* Check for setting an eliminable register.  */
      for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
      for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
        if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
        if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
          {
          {
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
            /* If this is setting the frame pointer register to the
            /* If this is setting the frame pointer register to the
               hardware frame pointer register and this is an elimination
               hardware frame pointer register and this is an elimination
               that will be done (tested above), this insn is really
               that will be done (tested above), this insn is really
               adjusting the frame pointer downward to compensate for
               adjusting the frame pointer downward to compensate for
               the adjustment done before a nonlocal goto.  */
               the adjustment done before a nonlocal goto.  */
            if (ep->from == FRAME_POINTER_REGNUM
            if (ep->from == FRAME_POINTER_REGNUM
                && ep->to == HARD_FRAME_POINTER_REGNUM)
                && ep->to == HARD_FRAME_POINTER_REGNUM)
              {
              {
                rtx base = SET_SRC (old_set);
                rtx base = SET_SRC (old_set);
                rtx base_insn = insn;
                rtx base_insn = insn;
                HOST_WIDE_INT offset = 0;
                HOST_WIDE_INT offset = 0;
 
 
                while (base != ep->to_rtx)
                while (base != ep->to_rtx)
                  {
                  {
                    rtx prev_insn, prev_set;
                    rtx prev_insn, prev_set;
 
 
                    if (GET_CODE (base) == PLUS
                    if (GET_CODE (base) == PLUS
                        && GET_CODE (XEXP (base, 1)) == CONST_INT)
                        && GET_CODE (XEXP (base, 1)) == CONST_INT)
                      {
                      {
                        offset += INTVAL (XEXP (base, 1));
                        offset += INTVAL (XEXP (base, 1));
                        base = XEXP (base, 0);
                        base = XEXP (base, 0);
                      }
                      }
                    else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
                    else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
                             && (prev_set = single_set (prev_insn)) != 0
                             && (prev_set = single_set (prev_insn)) != 0
                             && rtx_equal_p (SET_DEST (prev_set), base))
                             && rtx_equal_p (SET_DEST (prev_set), base))
                      {
                      {
                        base = SET_SRC (prev_set);
                        base = SET_SRC (prev_set);
                        base_insn = prev_insn;
                        base_insn = prev_insn;
                      }
                      }
                    else
                    else
                      break;
                      break;
                  }
                  }
 
 
                if (base == ep->to_rtx)
                if (base == ep->to_rtx)
                  {
                  {
                    rtx src
                    rtx src
                      = plus_constant (ep->to_rtx, offset - ep->offset);
                      = plus_constant (ep->to_rtx, offset - ep->offset);
 
 
                    new_body = old_body;
                    new_body = old_body;
                    if (! replace)
                    if (! replace)
                      {
                      {
                        new_body = copy_insn (old_body);
                        new_body = copy_insn (old_body);
                        if (REG_NOTES (insn))
                        if (REG_NOTES (insn))
                          REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
                          REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
                      }
                      }
                    PATTERN (insn) = new_body;
                    PATTERN (insn) = new_body;
                    old_set = single_set (insn);
                    old_set = single_set (insn);
 
 
                    /* First see if this insn remains valid when we
                    /* First see if this insn remains valid when we
                       make the change.  If not, keep the INSN_CODE
                       make the change.  If not, keep the INSN_CODE
                       the same and let reload fit it up.  */
                       the same and let reload fit it up.  */
                    validate_change (insn, &SET_SRC (old_set), src, 1);
                    validate_change (insn, &SET_SRC (old_set), src, 1);
                    validate_change (insn, &SET_DEST (old_set),
                    validate_change (insn, &SET_DEST (old_set),
                                     ep->to_rtx, 1);
                                     ep->to_rtx, 1);
                    if (! apply_change_group ())
                    if (! apply_change_group ())
                      {
                      {
                        SET_SRC (old_set) = src;
                        SET_SRC (old_set) = src;
                        SET_DEST (old_set) = ep->to_rtx;
                        SET_DEST (old_set) = ep->to_rtx;
                      }
                      }
 
 
                    val = 1;
                    val = 1;
                    goto done;
                    goto done;
                  }
                  }
              }
              }
#endif
#endif
 
 
            /* In this case this insn isn't serving a useful purpose.  We
            /* In this case this insn isn't serving a useful purpose.  We
               will delete it in reload_as_needed once we know that this
               will delete it in reload_as_needed once we know that this
               elimination is, in fact, being done.
               elimination is, in fact, being done.
 
 
               If REPLACE isn't set, we can't delete this insn, but needn't
               If REPLACE isn't set, we can't delete this insn, but needn't
               process it since it won't be used unless something changes.  */
               process it since it won't be used unless something changes.  */
            if (replace)
            if (replace)
              {
              {
                delete_dead_insn (insn);
                delete_dead_insn (insn);
                return 1;
                return 1;
              }
              }
            val = 1;
            val = 1;
            goto done;
            goto done;
          }
          }
    }
    }
 
 
  /* We allow one special case which happens to work on all machines we
  /* We allow one special case which happens to work on all machines we
     currently support: a single set with the source or a REG_EQUAL
     currently support: a single set with the source or a REG_EQUAL
     note being a PLUS of an eliminable register and a constant.  */
     note being a PLUS of an eliminable register and a constant.  */
  plus_src = plus_cst_src = 0;
  plus_src = plus_cst_src = 0;
  if (old_set && REG_P (SET_DEST (old_set)))
  if (old_set && REG_P (SET_DEST (old_set)))
    {
    {
      if (GET_CODE (SET_SRC (old_set)) == PLUS)
      if (GET_CODE (SET_SRC (old_set)) == PLUS)
        plus_src = SET_SRC (old_set);
        plus_src = SET_SRC (old_set);
      /* First see if the source is of the form (plus (...) CST).  */
      /* First see if the source is of the form (plus (...) CST).  */
      if (plus_src
      if (plus_src
          && GET_CODE (XEXP (plus_src, 1)) == CONST_INT)
          && GET_CODE (XEXP (plus_src, 1)) == CONST_INT)
        plus_cst_src = plus_src;
        plus_cst_src = plus_src;
      else if (REG_P (SET_SRC (old_set))
      else if (REG_P (SET_SRC (old_set))
               || plus_src)
               || plus_src)
        {
        {
          /* Otherwise, see if we have a REG_EQUAL note of the form
          /* Otherwise, see if we have a REG_EQUAL note of the form
             (plus (...) CST).  */
             (plus (...) CST).  */
          rtx links;
          rtx links;
          for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
          for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
            {
            {
              if (REG_NOTE_KIND (links) == REG_EQUAL
              if (REG_NOTE_KIND (links) == REG_EQUAL
                  && GET_CODE (XEXP (links, 0)) == PLUS
                  && GET_CODE (XEXP (links, 0)) == PLUS
                  && GET_CODE (XEXP (XEXP (links, 0), 1)) == CONST_INT)
                  && GET_CODE (XEXP (XEXP (links, 0), 1)) == CONST_INT)
                {
                {
                  plus_cst_src = XEXP (links, 0);
                  plus_cst_src = XEXP (links, 0);
                  break;
                  break;
                }
                }
            }
            }
        }
        }
 
 
      /* Check that the first operand of the PLUS is a hard reg or
      /* Check that the first operand of the PLUS is a hard reg or
         the lowpart subreg of one.  */
         the lowpart subreg of one.  */
      if (plus_cst_src)
      if (plus_cst_src)
        {
        {
          rtx reg = XEXP (plus_cst_src, 0);
          rtx reg = XEXP (plus_cst_src, 0);
          if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
          if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
            reg = SUBREG_REG (reg);
            reg = SUBREG_REG (reg);
 
 
          if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
          if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
            plus_cst_src = 0;
            plus_cst_src = 0;
        }
        }
    }
    }
  if (plus_cst_src)
  if (plus_cst_src)
    {
    {
      rtx reg = XEXP (plus_cst_src, 0);
      rtx reg = XEXP (plus_cst_src, 0);
      HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
      HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
 
 
      if (GET_CODE (reg) == SUBREG)
      if (GET_CODE (reg) == SUBREG)
        reg = SUBREG_REG (reg);
        reg = SUBREG_REG (reg);
 
 
      for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
      for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
        if (ep->from_rtx == reg && ep->can_eliminate)
        if (ep->from_rtx == reg && ep->can_eliminate)
          {
          {
            rtx to_rtx = ep->to_rtx;
            rtx to_rtx = ep->to_rtx;
            offset += ep->offset;
            offset += ep->offset;
            offset = trunc_int_for_mode (offset, GET_MODE (reg));
            offset = trunc_int_for_mode (offset, GET_MODE (reg));
 
 
            if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
            if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
              to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
              to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
                                    to_rtx);
                                    to_rtx);
            /* If we have a nonzero offset, and the source is already
            /* If we have a nonzero offset, and the source is already
               a simple REG, the following transformation would
               a simple REG, the following transformation would
               increase the cost of the insn by replacing a simple REG
               increase the cost of the insn by replacing a simple REG
               with (plus (reg sp) CST).  So try only when we already
               with (plus (reg sp) CST).  So try only when we already
               had a PLUS before.  */
               had a PLUS before.  */
            if (offset == 0 || plus_src)
            if (offset == 0 || plus_src)
              {
              {
                rtx new_src = plus_constant (to_rtx, offset);
                rtx new_src = plus_constant (to_rtx, offset);
 
 
                new_body = old_body;
                new_body = old_body;
                if (! replace)
                if (! replace)
                  {
                  {
                    new_body = copy_insn (old_body);
                    new_body = copy_insn (old_body);
                    if (REG_NOTES (insn))
                    if (REG_NOTES (insn))
                      REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
                      REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
                  }
                  }
                PATTERN (insn) = new_body;
                PATTERN (insn) = new_body;
                old_set = single_set (insn);
                old_set = single_set (insn);
 
 
                /* First see if this insn remains valid when we make the
                /* First see if this insn remains valid when we make the
                   change.  If not, try to replace the whole pattern with
                   change.  If not, try to replace the whole pattern with
                   a simple set (this may help if the original insn was a
                   a simple set (this may help if the original insn was a
                   PARALLEL that was only recognized as single_set due to
                   PARALLEL that was only recognized as single_set due to
                   REG_UNUSED notes).  If this isn't valid either, keep
                   REG_UNUSED notes).  If this isn't valid either, keep
                   the INSN_CODE the same and let reload fix it up.  */
                   the INSN_CODE the same and let reload fix it up.  */
                if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
                if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
                  {
                  {
                    rtx new_pat = gen_rtx_SET (VOIDmode,
                    rtx new_pat = gen_rtx_SET (VOIDmode,
                                               SET_DEST (old_set), new_src);
                                               SET_DEST (old_set), new_src);
 
 
                    if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
                    if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
                      SET_SRC (old_set) = new_src;
                      SET_SRC (old_set) = new_src;
                  }
                  }
              }
              }
            else
            else
              break;
              break;
 
 
            val = 1;
            val = 1;
            /* This can't have an effect on elimination offsets, so skip right
            /* This can't have an effect on elimination offsets, so skip right
               to the end.  */
               to the end.  */
            goto done;
            goto done;
          }
          }
    }
    }
 
 
  /* Determine the effects of this insn on elimination offsets.  */
  /* Determine the effects of this insn on elimination offsets.  */
  elimination_effects (old_body, 0);
  elimination_effects (old_body, 0);
 
 
  /* Eliminate all eliminable registers occurring in operands that
  /* Eliminate all eliminable registers occurring in operands that
     can be handled by reload.  */
     can be handled by reload.  */
  extract_insn (insn);
  extract_insn (insn);
  for (i = 0; i < recog_data.n_operands; i++)
  for (i = 0; i < recog_data.n_operands; i++)
    {
    {
      orig_operand[i] = recog_data.operand[i];
      orig_operand[i] = recog_data.operand[i];
      substed_operand[i] = recog_data.operand[i];
      substed_operand[i] = recog_data.operand[i];
 
 
      /* For an asm statement, every operand is eliminable.  */
      /* For an asm statement, every operand is eliminable.  */
      if (insn_is_asm || insn_data[icode].operand[i].eliminable)
      if (insn_is_asm || insn_data[icode].operand[i].eliminable)
        {
        {
          bool is_set_src, in_plus;
          bool is_set_src, in_plus;
 
 
          /* Check for setting a register that we know about.  */
          /* Check for setting a register that we know about.  */
          if (recog_data.operand_type[i] != OP_IN
          if (recog_data.operand_type[i] != OP_IN
              && REG_P (orig_operand[i]))
              && REG_P (orig_operand[i]))
            {
            {
              /* If we are assigning to a register that can be eliminated, it
              /* If we are assigning to a register that can be eliminated, it
                 must be as part of a PARALLEL, since the code above handles
                 must be as part of a PARALLEL, since the code above handles
                 single SETs.  We must indicate that we can no longer
                 single SETs.  We must indicate that we can no longer
                 eliminate this reg.  */
                 eliminate this reg.  */
              for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
              for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
                   ep++)
                   ep++)
                if (ep->from_rtx == orig_operand[i])
                if (ep->from_rtx == orig_operand[i])
                  ep->can_eliminate = 0;
                  ep->can_eliminate = 0;
            }
            }
 
 
          /* Companion to the above plus substitution, we can allow
          /* Companion to the above plus substitution, we can allow
             invariants as the source of a plain move.  */
             invariants as the source of a plain move.  */
          is_set_src = false;
          is_set_src = false;
          if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
          if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
            is_set_src = true;
            is_set_src = true;
          in_plus = false;
          in_plus = false;
          if (plus_src
          if (plus_src
              && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
              && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
                  || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
                  || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
            in_plus = true;
            in_plus = true;
 
 
          substed_operand[i]
          substed_operand[i]
            = eliminate_regs_1 (recog_data.operand[i], 0,
            = eliminate_regs_1 (recog_data.operand[i], 0,
                                replace ? insn : NULL_RTX,
                                replace ? insn : NULL_RTX,
                                is_set_src || in_plus);
                                is_set_src || in_plus);
          if (substed_operand[i] != orig_operand[i])
          if (substed_operand[i] != orig_operand[i])
            val = 1;
            val = 1;
          /* Terminate the search in check_eliminable_occurrences at
          /* Terminate the search in check_eliminable_occurrences at
             this point.  */
             this point.  */
          *recog_data.operand_loc[i] = 0;
          *recog_data.operand_loc[i] = 0;
 
 
        /* If an output operand changed from a REG to a MEM and INSN is an
        /* If an output operand changed from a REG to a MEM and INSN is an
           insn, write a CLOBBER insn.  */
           insn, write a CLOBBER insn.  */
          if (recog_data.operand_type[i] != OP_IN
          if (recog_data.operand_type[i] != OP_IN
              && REG_P (orig_operand[i])
              && REG_P (orig_operand[i])
              && MEM_P (substed_operand[i])
              && MEM_P (substed_operand[i])
              && replace)
              && replace)
            emit_insn_after (gen_rtx_CLOBBER (VOIDmode, orig_operand[i]),
            emit_insn_after (gen_rtx_CLOBBER (VOIDmode, orig_operand[i]),
                             insn);
                             insn);
        }
        }
    }
    }
 
 
  for (i = 0; i < recog_data.n_dups; i++)
  for (i = 0; i < recog_data.n_dups; i++)
    *recog_data.dup_loc[i]
    *recog_data.dup_loc[i]
      = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
      = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
 
 
  /* If any eliminable remain, they aren't eliminable anymore.  */
  /* If any eliminable remain, they aren't eliminable anymore.  */
  check_eliminable_occurrences (old_body);
  check_eliminable_occurrences (old_body);
 
 
  /* Substitute the operands; the new values are in the substed_operand
  /* Substitute the operands; the new values are in the substed_operand
     array.  */
     array.  */
  for (i = 0; i < recog_data.n_operands; i++)
  for (i = 0; i < recog_data.n_operands; i++)
    *recog_data.operand_loc[i] = substed_operand[i];
    *recog_data.operand_loc[i] = substed_operand[i];
  for (i = 0; i < recog_data.n_dups; i++)
  for (i = 0; i < recog_data.n_dups; i++)
    *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
    *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
 
 
  /* If we are replacing a body that was a (set X (plus Y Z)), try to
  /* If we are replacing a body that was a (set X (plus Y Z)), try to
     re-recognize the insn.  We do this in case we had a simple addition
     re-recognize the insn.  We do this in case we had a simple addition
     but now can do this as a load-address.  This saves an insn in this
     but now can do this as a load-address.  This saves an insn in this
     common case.
     common case.
     If re-recognition fails, the old insn code number will still be used,
     If re-recognition fails, the old insn code number will still be used,
     and some register operands may have changed into PLUS expressions.
     and some register operands may have changed into PLUS expressions.
     These will be handled by find_reloads by loading them into a register
     These will be handled by find_reloads by loading them into a register
     again.  */
     again.  */
 
 
  if (val)
  if (val)
    {
    {
      /* If we aren't replacing things permanently and we changed something,
      /* If we aren't replacing things permanently and we changed something,
         make another copy to ensure that all the RTL is new.  Otherwise
         make another copy to ensure that all the RTL is new.  Otherwise
         things can go wrong if find_reload swaps commutative operands
         things can go wrong if find_reload swaps commutative operands
         and one is inside RTL that has been copied while the other is not.  */
         and one is inside RTL that has been copied while the other is not.  */
      new_body = old_body;
      new_body = old_body;
      if (! replace)
      if (! replace)
        {
        {
          new_body = copy_insn (old_body);
          new_body = copy_insn (old_body);
          if (REG_NOTES (insn))
          if (REG_NOTES (insn))
            REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
            REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
        }
        }
      PATTERN (insn) = new_body;
      PATTERN (insn) = new_body;
 
 
      /* If we had a move insn but now we don't, rerecognize it.  This will
      /* If we had a move insn but now we don't, rerecognize it.  This will
         cause spurious re-recognition if the old move had a PARALLEL since
         cause spurious re-recognition if the old move had a PARALLEL since
         the new one still will, but we can't call single_set without
         the new one still will, but we can't call single_set without
         having put NEW_BODY into the insn and the re-recognition won't
         having put NEW_BODY into the insn and the re-recognition won't
         hurt in this rare case.  */
         hurt in this rare case.  */
      /* ??? Why this huge if statement - why don't we just rerecognize the
      /* ??? Why this huge if statement - why don't we just rerecognize the
         thing always?  */
         thing always?  */
      if (! insn_is_asm
      if (! insn_is_asm
          && old_set != 0
          && old_set != 0
          && ((REG_P (SET_SRC (old_set))
          && ((REG_P (SET_SRC (old_set))
               && (GET_CODE (new_body) != SET
               && (GET_CODE (new_body) != SET
                   || !REG_P (SET_SRC (new_body))))
                   || !REG_P (SET_SRC (new_body))))
              /* If this was a load from or store to memory, compare
              /* If this was a load from or store to memory, compare
                 the MEM in recog_data.operand to the one in the insn.
                 the MEM in recog_data.operand to the one in the insn.
                 If they are not equal, then rerecognize the insn.  */
                 If they are not equal, then rerecognize the insn.  */
              || (old_set != 0
              || (old_set != 0
                  && ((MEM_P (SET_SRC (old_set))
                  && ((MEM_P (SET_SRC (old_set))
                       && SET_SRC (old_set) != recog_data.operand[1])
                       && SET_SRC (old_set) != recog_data.operand[1])
                      || (MEM_P (SET_DEST (old_set))
                      || (MEM_P (SET_DEST (old_set))
                          && SET_DEST (old_set) != recog_data.operand[0])))
                          && SET_DEST (old_set) != recog_data.operand[0])))
              /* If this was an add insn before, rerecognize.  */
              /* If this was an add insn before, rerecognize.  */
              || GET_CODE (SET_SRC (old_set)) == PLUS))
              || GET_CODE (SET_SRC (old_set)) == PLUS))
        {
        {
          int new_icode = recog (PATTERN (insn), insn, 0);
          int new_icode = recog (PATTERN (insn), insn, 0);
          if (new_icode >= 0)
          if (new_icode >= 0)
            INSN_CODE (insn) = new_icode;
            INSN_CODE (insn) = new_icode;
        }
        }
    }
    }
 
 
  /* Restore the old body.  If there were any changes to it, we made a copy
  /* Restore the old body.  If there were any changes to it, we made a copy
     of it while the changes were still in place, so we'll correctly return
     of it while the changes were still in place, so we'll correctly return
     a modified insn below.  */
     a modified insn below.  */
  if (! replace)
  if (! replace)
    {
    {
      /* Restore the old body.  */
      /* Restore the old body.  */
      for (i = 0; i < recog_data.n_operands; i++)
      for (i = 0; i < recog_data.n_operands; i++)
        *recog_data.operand_loc[i] = orig_operand[i];
        *recog_data.operand_loc[i] = orig_operand[i];
      for (i = 0; i < recog_data.n_dups; i++)
      for (i = 0; i < recog_data.n_dups; i++)
        *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
        *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
    }
    }
 
 
  /* Update all elimination pairs to reflect the status after the current
  /* Update all elimination pairs to reflect the status after the current
     insn.  The changes we make were determined by the earlier call to
     insn.  The changes we make were determined by the earlier call to
     elimination_effects.
     elimination_effects.
 
 
     We also detect cases where register elimination cannot be done,
     We also detect cases where register elimination cannot be done,
     namely, if a register would be both changed and referenced outside a MEM
     namely, if a register would be both changed and referenced outside a MEM
     in the resulting insn since such an insn is often undefined and, even if
     in the resulting insn since such an insn is often undefined and, even if
     not, we cannot know what meaning will be given to it.  Note that it is
     not, we cannot know what meaning will be given to it.  Note that it is
     valid to have a register used in an address in an insn that changes it
     valid to have a register used in an address in an insn that changes it
     (presumably with a pre- or post-increment or decrement).
     (presumably with a pre- or post-increment or decrement).
 
 
     If anything changes, return nonzero.  */
     If anything changes, return nonzero.  */
 
 
  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
    {
    {
      if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
      if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
        ep->can_eliminate = 0;
        ep->can_eliminate = 0;
 
 
      ep->ref_outside_mem = 0;
      ep->ref_outside_mem = 0;
 
 
      if (ep->previous_offset != ep->offset)
      if (ep->previous_offset != ep->offset)
        val = 1;
        val = 1;
    }
    }
 
 
 done:
 done:
  /* If we changed something, perform elimination in REG_NOTES.  This is
  /* If we changed something, perform elimination in REG_NOTES.  This is
     needed even when REPLACE is zero because a REG_DEAD note might refer
     needed even when REPLACE is zero because a REG_DEAD note might refer
     to a register that we eliminate and could cause a different number
     to a register that we eliminate and could cause a different number
     of spill registers to be needed in the final reload pass than in
     of spill registers to be needed in the final reload pass than in
     the pre-passes.  */
     the pre-passes.  */
  if (val && REG_NOTES (insn) != 0)
  if (val && REG_NOTES (insn) != 0)
    REG_NOTES (insn)
    REG_NOTES (insn)
      = eliminate_regs_1 (REG_NOTES (insn), 0, REG_NOTES (insn), true);
      = eliminate_regs_1 (REG_NOTES (insn), 0, REG_NOTES (insn), true);
 
 
  return val;
  return val;
}
}
 
 
/* Loop through all elimination pairs.
/* Loop through all elimination pairs.
   Recalculate the number not at initial offset.
   Recalculate the number not at initial offset.
 
 
   Compute the maximum offset (minimum offset if the stack does not
   Compute the maximum offset (minimum offset if the stack does not
   grow downward) for each elimination pair.  */
   grow downward) for each elimination pair.  */
 
 
static void
static void
update_eliminable_offsets (void)
update_eliminable_offsets (void)
{
{
  struct elim_table *ep;
  struct elim_table *ep;
 
 
  num_not_at_initial_offset = 0;
  num_not_at_initial_offset = 0;
  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
    {
    {
      ep->previous_offset = ep->offset;
      ep->previous_offset = ep->offset;
      if (ep->can_eliminate && ep->offset != ep->initial_offset)
      if (ep->can_eliminate && ep->offset != ep->initial_offset)
        num_not_at_initial_offset++;
        num_not_at_initial_offset++;
    }
    }
}
}
 
 
/* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
/* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
   replacement we currently believe is valid, mark it as not eliminable if X
   replacement we currently believe is valid, mark it as not eliminable if X
   modifies DEST in any way other than by adding a constant integer to it.
   modifies DEST in any way other than by adding a constant integer to it.
 
 
   If DEST is the frame pointer, we do nothing because we assume that
   If DEST is the frame pointer, we do nothing because we assume that
   all assignments to the hard frame pointer are nonlocal gotos and are being
   all assignments to the hard frame pointer are nonlocal gotos and are being
   done at a time when they are valid and do not disturb anything else.
   done at a time when they are valid and do not disturb anything else.
   Some machines want to eliminate a fake argument pointer with either the
   Some machines want to eliminate a fake argument pointer with either the
   frame or stack pointer.  Assignments to the hard frame pointer must not
   frame or stack pointer.  Assignments to the hard frame pointer must not
   prevent this elimination.
   prevent this elimination.
 
 
   Called via note_stores from reload before starting its passes to scan
   Called via note_stores from reload before starting its passes to scan
   the insns of the function.  */
   the insns of the function.  */
 
 
static void
static void
mark_not_eliminable (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
mark_not_eliminable (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
{
{
  unsigned int i;
  unsigned int i;
 
 
  /* A SUBREG of a hard register here is just changing its mode.  We should
  /* A SUBREG of a hard register here is just changing its mode.  We should
     not see a SUBREG of an eliminable hard register, but check just in
     not see a SUBREG of an eliminable hard register, but check just in
     case.  */
     case.  */
  if (GET_CODE (dest) == SUBREG)
  if (GET_CODE (dest) == SUBREG)
    dest = SUBREG_REG (dest);
    dest = SUBREG_REG (dest);
 
 
  if (dest == hard_frame_pointer_rtx)
  if (dest == hard_frame_pointer_rtx)
    return;
    return;
 
 
  for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
  for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
    if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
    if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
        && (GET_CODE (x) != SET
        && (GET_CODE (x) != SET
            || GET_CODE (SET_SRC (x)) != PLUS
            || GET_CODE (SET_SRC (x)) != PLUS
            || XEXP (SET_SRC (x), 0) != dest
            || XEXP (SET_SRC (x), 0) != dest
            || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
            || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
      {
      {
        reg_eliminate[i].can_eliminate_previous
        reg_eliminate[i].can_eliminate_previous
          = reg_eliminate[i].can_eliminate = 0;
          = reg_eliminate[i].can_eliminate = 0;
        num_eliminable--;
        num_eliminable--;
      }
      }
}
}
 
 
/* Verify that the initial elimination offsets did not change since the
/* Verify that the initial elimination offsets did not change since the
   last call to set_initial_elim_offsets.  This is used to catch cases
   last call to set_initial_elim_offsets.  This is used to catch cases
   where something illegal happened during reload_as_needed that could
   where something illegal happened during reload_as_needed that could
   cause incorrect code to be generated if we did not check for it.  */
   cause incorrect code to be generated if we did not check for it.  */
 
 
static bool
static bool
verify_initial_elim_offsets (void)
verify_initial_elim_offsets (void)
{
{
  HOST_WIDE_INT t;
  HOST_WIDE_INT t;
 
 
  if (!num_eliminable)
  if (!num_eliminable)
    return true;
    return true;
 
 
#ifdef ELIMINABLE_REGS
#ifdef ELIMINABLE_REGS
  {
  {
   struct elim_table *ep;
   struct elim_table *ep;
 
 
   for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
   for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
     {
     {
       INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
       INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
       if (t != ep->initial_offset)
       if (t != ep->initial_offset)
         return false;
         return false;
     }
     }
  }
  }
#else
#else
  INITIAL_FRAME_POINTER_OFFSET (t);
  INITIAL_FRAME_POINTER_OFFSET (t);
  if (t != reg_eliminate[0].initial_offset)
  if (t != reg_eliminate[0].initial_offset)
    return false;
    return false;
#endif
#endif
 
 
  return true;
  return true;
}
}
 
 
/* Reset all offsets on eliminable registers to their initial values.  */
/* Reset all offsets on eliminable registers to their initial values.  */
 
 
static void
static void
set_initial_elim_offsets (void)
set_initial_elim_offsets (void)
{
{
  struct elim_table *ep = reg_eliminate;
  struct elim_table *ep = reg_eliminate;
 
 
#ifdef ELIMINABLE_REGS
#ifdef ELIMINABLE_REGS
  for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
  for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
    {
    {
      INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
      INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
      ep->previous_offset = ep->offset = ep->initial_offset;
      ep->previous_offset = ep->offset = ep->initial_offset;
    }
    }
#else
#else
  INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
  INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
  ep->previous_offset = ep->offset = ep->initial_offset;
  ep->previous_offset = ep->offset = ep->initial_offset;
#endif
#endif
 
 
  num_not_at_initial_offset = 0;
  num_not_at_initial_offset = 0;
}
}
 
 
/* Subroutine of set_initial_label_offsets called via for_each_eh_label.  */
/* Subroutine of set_initial_label_offsets called via for_each_eh_label.  */
 
 
static void
static void
set_initial_eh_label_offset (rtx label)
set_initial_eh_label_offset (rtx label)
{
{
  set_label_offsets (label, NULL_RTX, 1);
  set_label_offsets (label, NULL_RTX, 1);
}
}
 
 
/* Initialize the known label offsets.
/* Initialize the known label offsets.
   Set a known offset for each forced label to be at the initial offset
   Set a known offset for each forced label to be at the initial offset
   of each elimination.  We do this because we assume that all
   of each elimination.  We do this because we assume that all
   computed jumps occur from a location where each elimination is
   computed jumps occur from a location where each elimination is
   at its initial offset.
   at its initial offset.
   For all other labels, show that we don't know the offsets.  */
   For all other labels, show that we don't know the offsets.  */
 
 
static void
static void
set_initial_label_offsets (void)
set_initial_label_offsets (void)
{
{
  rtx x;
  rtx x;
  memset (offsets_known_at, 0, num_labels);
  memset (offsets_known_at, 0, num_labels);
 
 
  for (x = forced_labels; x; x = XEXP (x, 1))
  for (x = forced_labels; x; x = XEXP (x, 1))
    if (XEXP (x, 0))
    if (XEXP (x, 0))
      set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
      set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
 
 
  for_each_eh_label (set_initial_eh_label_offset);
  for_each_eh_label (set_initial_eh_label_offset);
}
}
 
 
/* Set all elimination offsets to the known values for the code label given
/* Set all elimination offsets to the known values for the code label given
   by INSN.  */
   by INSN.  */
 
 
static void
static void
set_offsets_for_label (rtx insn)
set_offsets_for_label (rtx insn)
{
{
  unsigned int i;
  unsigned int i;
  int label_nr = CODE_LABEL_NUMBER (insn);
  int label_nr = CODE_LABEL_NUMBER (insn);
  struct elim_table *ep;
  struct elim_table *ep;
 
 
  num_not_at_initial_offset = 0;
  num_not_at_initial_offset = 0;
  for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
  for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
    {
    {
      ep->offset = ep->previous_offset
      ep->offset = ep->previous_offset
                 = offsets_at[label_nr - first_label_num][i];
                 = offsets_at[label_nr - first_label_num][i];
      if (ep->can_eliminate && ep->offset != ep->initial_offset)
      if (ep->can_eliminate && ep->offset != ep->initial_offset)
        num_not_at_initial_offset++;
        num_not_at_initial_offset++;
    }
    }
}
}
 
 
/* See if anything that happened changes which eliminations are valid.
/* See if anything that happened changes which eliminations are valid.
   For example, on the SPARC, whether or not the frame pointer can
   For example, on the SPARC, whether or not the frame pointer can
   be eliminated can depend on what registers have been used.  We need
   be eliminated can depend on what registers have been used.  We need
   not check some conditions again (such as flag_omit_frame_pointer)
   not check some conditions again (such as flag_omit_frame_pointer)
   since they can't have changed.  */
   since they can't have changed.  */
 
 
static void
static void
update_eliminables (HARD_REG_SET *pset)
update_eliminables (HARD_REG_SET *pset)
{
{
  int previous_frame_pointer_needed = frame_pointer_needed;
  int previous_frame_pointer_needed = frame_pointer_needed;
  struct elim_table *ep;
  struct elim_table *ep;
 
 
  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
    if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
    if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
#ifdef ELIMINABLE_REGS
#ifdef ELIMINABLE_REGS
        || ! CAN_ELIMINATE (ep->from, ep->to)
        || ! CAN_ELIMINATE (ep->from, ep->to)
#endif
#endif
        )
        )
      ep->can_eliminate = 0;
      ep->can_eliminate = 0;
 
 
  /* Look for the case where we have discovered that we can't replace
  /* Look for the case where we have discovered that we can't replace
     register A with register B and that means that we will now be
     register A with register B and that means that we will now be
     trying to replace register A with register C.  This means we can
     trying to replace register A with register C.  This means we can
     no longer replace register C with register B and we need to disable
     no longer replace register C with register B and we need to disable
     such an elimination, if it exists.  This occurs often with A == ap,
     such an elimination, if it exists.  This occurs often with A == ap,
     B == sp, and C == fp.  */
     B == sp, and C == fp.  */
 
 
  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
    {
    {
      struct elim_table *op;
      struct elim_table *op;
      int new_to = -1;
      int new_to = -1;
 
 
      if (! ep->can_eliminate && ep->can_eliminate_previous)
      if (! ep->can_eliminate && ep->can_eliminate_previous)
        {
        {
          /* Find the current elimination for ep->from, if there is a
          /* Find the current elimination for ep->from, if there is a
             new one.  */
             new one.  */
          for (op = reg_eliminate;
          for (op = reg_eliminate;
               op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
               op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
            if (op->from == ep->from && op->can_eliminate)
            if (op->from == ep->from && op->can_eliminate)
              {
              {
                new_to = op->to;
                new_to = op->to;
                break;
                break;
              }
              }
 
 
          /* See if there is an elimination of NEW_TO -> EP->TO.  If so,
          /* See if there is an elimination of NEW_TO -> EP->TO.  If so,
             disable it.  */
             disable it.  */
          for (op = reg_eliminate;
          for (op = reg_eliminate;
               op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
               op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
            if (op->from == new_to && op->to == ep->to)
            if (op->from == new_to && op->to == ep->to)
              op->can_eliminate = 0;
              op->can_eliminate = 0;
        }
        }
    }
    }
 
 
  /* See if any registers that we thought we could eliminate the previous
  /* See if any registers that we thought we could eliminate the previous
     time are no longer eliminable.  If so, something has changed and we
     time are no longer eliminable.  If so, something has changed and we
     must spill the register.  Also, recompute the number of eliminable
     must spill the register.  Also, recompute the number of eliminable
     registers and see if the frame pointer is needed; it is if there is
     registers and see if the frame pointer is needed; it is if there is
     no elimination of the frame pointer that we can perform.  */
     no elimination of the frame pointer that we can perform.  */
 
 
  frame_pointer_needed = 1;
  frame_pointer_needed = 1;
  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
    {
    {
      if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM
      if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM
          && ep->to != HARD_FRAME_POINTER_REGNUM)
          && ep->to != HARD_FRAME_POINTER_REGNUM)
        frame_pointer_needed = 0;
        frame_pointer_needed = 0;
 
 
      if (! ep->can_eliminate && ep->can_eliminate_previous)
      if (! ep->can_eliminate && ep->can_eliminate_previous)
        {
        {
          ep->can_eliminate_previous = 0;
          ep->can_eliminate_previous = 0;
          SET_HARD_REG_BIT (*pset, ep->from);
          SET_HARD_REG_BIT (*pset, ep->from);
          num_eliminable--;
          num_eliminable--;
        }
        }
    }
    }
 
 
  /* If we didn't need a frame pointer last time, but we do now, spill
  /* If we didn't need a frame pointer last time, but we do now, spill
     the hard frame pointer.  */
     the hard frame pointer.  */
  if (frame_pointer_needed && ! previous_frame_pointer_needed)
  if (frame_pointer_needed && ! previous_frame_pointer_needed)
    SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
    SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
}
}
 
 
/* Initialize the table of registers to eliminate.  */
/* Initialize the table of registers to eliminate.  */
 
 
static void
static void
init_elim_table (void)
init_elim_table (void)
{
{
  struct elim_table *ep;
  struct elim_table *ep;
#ifdef ELIMINABLE_REGS
#ifdef ELIMINABLE_REGS
  const struct elim_table_1 *ep1;
  const struct elim_table_1 *ep1;
#endif
#endif
 
 
  if (!reg_eliminate)
  if (!reg_eliminate)
    reg_eliminate = xcalloc (sizeof (struct elim_table), NUM_ELIMINABLE_REGS);
    reg_eliminate = xcalloc (sizeof (struct elim_table), NUM_ELIMINABLE_REGS);
 
 
  /* Does this function require a frame pointer?  */
  /* Does this function require a frame pointer?  */
 
 
  frame_pointer_needed = (! flag_omit_frame_pointer
  frame_pointer_needed = (! flag_omit_frame_pointer
                          /* ?? If EXIT_IGNORE_STACK is set, we will not save
                          /* ?? If EXIT_IGNORE_STACK is set, we will not save
                             and restore sp for alloca.  So we can't eliminate
                             and restore sp for alloca.  So we can't eliminate
                             the frame pointer in that case.  At some point,
                             the frame pointer in that case.  At some point,
                             we should improve this by emitting the
                             we should improve this by emitting the
                             sp-adjusting insns for this case.  */
                             sp-adjusting insns for this case.  */
                          || (current_function_calls_alloca
                          || (current_function_calls_alloca
                              && EXIT_IGNORE_STACK)
                              && EXIT_IGNORE_STACK)
                          || current_function_accesses_prior_frames
                          || current_function_accesses_prior_frames
                          || FRAME_POINTER_REQUIRED);
                          || FRAME_POINTER_REQUIRED);
 
 
  num_eliminable = 0;
  num_eliminable = 0;
 
 
#ifdef ELIMINABLE_REGS
#ifdef ELIMINABLE_REGS
  for (ep = reg_eliminate, ep1 = reg_eliminate_1;
  for (ep = reg_eliminate, ep1 = reg_eliminate_1;
       ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
       ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
    {
    {
      ep->from = ep1->from;
      ep->from = ep1->from;
      ep->to = ep1->to;
      ep->to = ep1->to;
      ep->can_eliminate = ep->can_eliminate_previous
      ep->can_eliminate = ep->can_eliminate_previous
        = (CAN_ELIMINATE (ep->from, ep->to)
        = (CAN_ELIMINATE (ep->from, ep->to)
           && ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed));
           && ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed));
    }
    }
#else
#else
  reg_eliminate[0].from = reg_eliminate_1[0].from;
  reg_eliminate[0].from = reg_eliminate_1[0].from;
  reg_eliminate[0].to = reg_eliminate_1[0].to;
  reg_eliminate[0].to = reg_eliminate_1[0].to;
  reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
  reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
    = ! frame_pointer_needed;
    = ! frame_pointer_needed;
#endif
#endif
 
 
  /* Count the number of eliminable registers and build the FROM and TO
  /* Count the number of eliminable registers and build the FROM and TO
     REG rtx's.  Note that code in gen_rtx_REG will cause, e.g.,
     REG rtx's.  Note that code in gen_rtx_REG will cause, e.g.,
     gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
     gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
     We depend on this.  */
     We depend on this.  */
  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
    {
    {
      num_eliminable += ep->can_eliminate;
      num_eliminable += ep->can_eliminate;
      ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
      ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
      ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
      ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
    }
    }
}
}


/* Kick all pseudos out of hard register REGNO.
/* Kick all pseudos out of hard register REGNO.
 
 
   If CANT_ELIMINATE is nonzero, it means that we are doing this spill
   If CANT_ELIMINATE is nonzero, it means that we are doing this spill
   because we found we can't eliminate some register.  In the case, no pseudos
   because we found we can't eliminate some register.  In the case, no pseudos
   are allowed to be in the register, even if they are only in a block that
   are allowed to be in the register, even if they are only in a block that
   doesn't require spill registers, unlike the case when we are spilling this
   doesn't require spill registers, unlike the case when we are spilling this
   hard reg to produce another spill register.
   hard reg to produce another spill register.
 
 
   Return nonzero if any pseudos needed to be kicked out.  */
   Return nonzero if any pseudos needed to be kicked out.  */
 
 
static void
static void
spill_hard_reg (unsigned int regno, int cant_eliminate)
spill_hard_reg (unsigned int regno, int cant_eliminate)
{
{
  int i;
  int i;
 
 
  if (cant_eliminate)
  if (cant_eliminate)
    {
    {
      SET_HARD_REG_BIT (bad_spill_regs_global, regno);
      SET_HARD_REG_BIT (bad_spill_regs_global, regno);
      regs_ever_live[regno] = 1;
      regs_ever_live[regno] = 1;
    }
    }
 
 
  /* Spill every pseudo reg that was allocated to this reg
  /* Spill every pseudo reg that was allocated to this reg
     or to something that overlaps this reg.  */
     or to something that overlaps this reg.  */
 
 
  for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
  for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
    if (reg_renumber[i] >= 0
    if (reg_renumber[i] >= 0
        && (unsigned int) reg_renumber[i] <= regno
        && (unsigned int) reg_renumber[i] <= regno
        && ((unsigned int) reg_renumber[i]
        && ((unsigned int) reg_renumber[i]
            + hard_regno_nregs[(unsigned int) reg_renumber[i]]
            + hard_regno_nregs[(unsigned int) reg_renumber[i]]
                              [PSEUDO_REGNO_MODE (i)]
                              [PSEUDO_REGNO_MODE (i)]
            > regno))
            > regno))
      SET_REGNO_REG_SET (&spilled_pseudos, i);
      SET_REGNO_REG_SET (&spilled_pseudos, i);
}
}
 
 
/* After find_reload_regs has been run for all insn that need reloads,
/* After find_reload_regs has been run for all insn that need reloads,
   and/or spill_hard_regs was called, this function is used to actually
   and/or spill_hard_regs was called, this function is used to actually
   spill pseudo registers and try to reallocate them.  It also sets up the
   spill pseudo registers and try to reallocate them.  It also sets up the
   spill_regs array for use by choose_reload_regs.  */
   spill_regs array for use by choose_reload_regs.  */
 
 
static int
static int
finish_spills (int global)
finish_spills (int global)
{
{
  struct insn_chain *chain;
  struct insn_chain *chain;
  int something_changed = 0;
  int something_changed = 0;
  unsigned i;
  unsigned i;
  reg_set_iterator rsi;
  reg_set_iterator rsi;
 
 
  /* Build the spill_regs array for the function.  */
  /* Build the spill_regs array for the function.  */
  /* If there are some registers still to eliminate and one of the spill regs
  /* If there are some registers still to eliminate and one of the spill regs
     wasn't ever used before, additional stack space may have to be
     wasn't ever used before, additional stack space may have to be
     allocated to store this register.  Thus, we may have changed the offset
     allocated to store this register.  Thus, we may have changed the offset
     between the stack and frame pointers, so mark that something has changed.
     between the stack and frame pointers, so mark that something has changed.
 
 
     One might think that we need only set VAL to 1 if this is a call-used
     One might think that we need only set VAL to 1 if this is a call-used
     register.  However, the set of registers that must be saved by the
     register.  However, the set of registers that must be saved by the
     prologue is not identical to the call-used set.  For example, the
     prologue is not identical to the call-used set.  For example, the
     register used by the call insn for the return PC is a call-used register,
     register used by the call insn for the return PC is a call-used register,
     but must be saved by the prologue.  */
     but must be saved by the prologue.  */
 
 
  n_spills = 0;
  n_spills = 0;
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    if (TEST_HARD_REG_BIT (used_spill_regs, i))
    if (TEST_HARD_REG_BIT (used_spill_regs, i))
      {
      {
        spill_reg_order[i] = n_spills;
        spill_reg_order[i] = n_spills;
        spill_regs[n_spills++] = i;
        spill_regs[n_spills++] = i;
        if (num_eliminable && ! regs_ever_live[i])
        if (num_eliminable && ! regs_ever_live[i])
          something_changed = 1;
          something_changed = 1;
        regs_ever_live[i] = 1;
        regs_ever_live[i] = 1;
      }
      }
    else
    else
      spill_reg_order[i] = -1;
      spill_reg_order[i] = -1;
 
 
  EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
  EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
    {
    {
      /* Record the current hard register the pseudo is allocated to in
      /* Record the current hard register the pseudo is allocated to in
         pseudo_previous_regs so we avoid reallocating it to the same
         pseudo_previous_regs so we avoid reallocating it to the same
         hard reg in a later pass.  */
         hard reg in a later pass.  */
      gcc_assert (reg_renumber[i] >= 0);
      gcc_assert (reg_renumber[i] >= 0);
 
 
      SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
      SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
      /* Mark it as no longer having a hard register home.  */
      /* Mark it as no longer having a hard register home.  */
      reg_renumber[i] = -1;
      reg_renumber[i] = -1;
      /* We will need to scan everything again.  */
      /* We will need to scan everything again.  */
      something_changed = 1;
      something_changed = 1;
    }
    }
 
 
  /* Retry global register allocation if possible.  */
  /* Retry global register allocation if possible.  */
  if (global)
  if (global)
    {
    {
      memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
      memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
      /* For every insn that needs reloads, set the registers used as spill
      /* For every insn that needs reloads, set the registers used as spill
         regs in pseudo_forbidden_regs for every pseudo live across the
         regs in pseudo_forbidden_regs for every pseudo live across the
         insn.  */
         insn.  */
      for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
      for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
        {
        {
          EXECUTE_IF_SET_IN_REG_SET
          EXECUTE_IF_SET_IN_REG_SET
            (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
            (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
            {
            {
              IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
              IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
                                chain->used_spill_regs);
                                chain->used_spill_regs);
            }
            }
          EXECUTE_IF_SET_IN_REG_SET
          EXECUTE_IF_SET_IN_REG_SET
            (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
            (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
            {
            {
              IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
              IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
                                chain->used_spill_regs);
                                chain->used_spill_regs);
            }
            }
        }
        }
 
 
      /* Retry allocating the spilled pseudos.  For each reg, merge the
      /* Retry allocating the spilled pseudos.  For each reg, merge the
         various reg sets that indicate which hard regs can't be used,
         various reg sets that indicate which hard regs can't be used,
         and call retry_global_alloc.
         and call retry_global_alloc.
         We change spill_pseudos here to only contain pseudos that did not
         We change spill_pseudos here to only contain pseudos that did not
         get a new hard register.  */
         get a new hard register.  */
      for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
      for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
        if (reg_old_renumber[i] != reg_renumber[i])
        if (reg_old_renumber[i] != reg_renumber[i])
          {
          {
            HARD_REG_SET forbidden;
            HARD_REG_SET forbidden;
            COPY_HARD_REG_SET (forbidden, bad_spill_regs_global);
            COPY_HARD_REG_SET (forbidden, bad_spill_regs_global);
            IOR_HARD_REG_SET (forbidden, pseudo_forbidden_regs[i]);
            IOR_HARD_REG_SET (forbidden, pseudo_forbidden_regs[i]);
            IOR_HARD_REG_SET (forbidden, pseudo_previous_regs[i]);
            IOR_HARD_REG_SET (forbidden, pseudo_previous_regs[i]);
            retry_global_alloc (i, forbidden);
            retry_global_alloc (i, forbidden);
            if (reg_renumber[i] >= 0)
            if (reg_renumber[i] >= 0)
              CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
              CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
          }
          }
    }
    }
 
 
  /* Fix up the register information in the insn chain.
  /* Fix up the register information in the insn chain.
     This involves deleting those of the spilled pseudos which did not get
     This involves deleting those of the spilled pseudos which did not get
     a new hard register home from the live_{before,after} sets.  */
     a new hard register home from the live_{before,after} sets.  */
  for (chain = reload_insn_chain; chain; chain = chain->next)
  for (chain = reload_insn_chain; chain; chain = chain->next)
    {
    {
      HARD_REG_SET used_by_pseudos;
      HARD_REG_SET used_by_pseudos;
      HARD_REG_SET used_by_pseudos2;
      HARD_REG_SET used_by_pseudos2;
 
 
      AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
      AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
      AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
      AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
 
 
      /* Mark any unallocated hard regs as available for spills.  That
      /* Mark any unallocated hard regs as available for spills.  That
         makes inheritance work somewhat better.  */
         makes inheritance work somewhat better.  */
      if (chain->need_reload)
      if (chain->need_reload)
        {
        {
          REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
          REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
          REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
          REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
          IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
          IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
 
 
          /* Save the old value for the sanity test below.  */
          /* Save the old value for the sanity test below.  */
          COPY_HARD_REG_SET (used_by_pseudos2, chain->used_spill_regs);
          COPY_HARD_REG_SET (used_by_pseudos2, chain->used_spill_regs);
 
 
          compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
          compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
          compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
          compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
          COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
          COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
          AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
          AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
 
 
          /* Make sure we only enlarge the set.  */
          /* Make sure we only enlarge the set.  */
          GO_IF_HARD_REG_SUBSET (used_by_pseudos2, chain->used_spill_regs, ok);
          GO_IF_HARD_REG_SUBSET (used_by_pseudos2, chain->used_spill_regs, ok);
          gcc_unreachable ();
          gcc_unreachable ();
        ok:;
        ok:;
        }
        }
    }
    }
 
 
  /* Let alter_reg modify the reg rtx's for the modified pseudos.  */
  /* Let alter_reg modify the reg rtx's for the modified pseudos.  */
  for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
  for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
    {
    {
      int regno = reg_renumber[i];
      int regno = reg_renumber[i];
      if (reg_old_renumber[i] == regno)
      if (reg_old_renumber[i] == regno)
        continue;
        continue;
 
 
      alter_reg (i, reg_old_renumber[i]);
      alter_reg (i, reg_old_renumber[i]);
      reg_old_renumber[i] = regno;
      reg_old_renumber[i] = regno;
      if (dump_file)
      if (dump_file)
        {
        {
          if (regno == -1)
          if (regno == -1)
            fprintf (dump_file, " Register %d now on stack.\n\n", i);
            fprintf (dump_file, " Register %d now on stack.\n\n", i);
          else
          else
            fprintf (dump_file, " Register %d now in %d.\n\n",
            fprintf (dump_file, " Register %d now in %d.\n\n",
                     i, reg_renumber[i]);
                     i, reg_renumber[i]);
        }
        }
    }
    }
 
 
  return something_changed;
  return something_changed;
}
}


/* Find all paradoxical subregs within X and update reg_max_ref_width.  */
/* Find all paradoxical subregs within X and update reg_max_ref_width.  */
 
 
static void
static void
scan_paradoxical_subregs (rtx x)
scan_paradoxical_subregs (rtx x)
{
{
  int i;
  int i;
  const char *fmt;
  const char *fmt;
  enum rtx_code code = GET_CODE (x);
  enum rtx_code code = GET_CODE (x);
 
 
  switch (code)
  switch (code)
    {
    {
    case REG:
    case REG:
    case CONST_INT:
    case CONST_INT:
    case CONST:
    case CONST:
    case SYMBOL_REF:
    case SYMBOL_REF:
    case LABEL_REF:
    case LABEL_REF:
    case CONST_DOUBLE:
    case CONST_DOUBLE:
    case CONST_VECTOR: /* shouldn't happen, but just in case.  */
    case CONST_VECTOR: /* shouldn't happen, but just in case.  */
    case CC0:
    case CC0:
    case PC:
    case PC:
    case USE:
    case USE:
    case CLOBBER:
    case CLOBBER:
      return;
      return;
 
 
    case SUBREG:
    case SUBREG:
      if (REG_P (SUBREG_REG (x))
      if (REG_P (SUBREG_REG (x))
          && (GET_MODE_SIZE (GET_MODE (x))
          && (GET_MODE_SIZE (GET_MODE (x))
              > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
              > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
        reg_max_ref_width[REGNO (SUBREG_REG (x))]
        reg_max_ref_width[REGNO (SUBREG_REG (x))]
          = GET_MODE_SIZE (GET_MODE (x));
          = GET_MODE_SIZE (GET_MODE (x));
      return;
      return;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  fmt = GET_RTX_FORMAT (code);
  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
    {
      if (fmt[i] == 'e')
      if (fmt[i] == 'e')
        scan_paradoxical_subregs (XEXP (x, i));
        scan_paradoxical_subregs (XEXP (x, i));
      else if (fmt[i] == 'E')
      else if (fmt[i] == 'E')
        {
        {
          int j;
          int j;
          for (j = XVECLEN (x, i) - 1; j >= 0; j--)
          for (j = XVECLEN (x, i) - 1; j >= 0; j--)
            scan_paradoxical_subregs (XVECEXP (x, i, j));
            scan_paradoxical_subregs (XVECEXP (x, i, j));
        }
        }
    }
    }
}
}


/* A subroutine of reload_as_needed.  If INSN has a REG_EH_REGION note,
/* A subroutine of reload_as_needed.  If INSN has a REG_EH_REGION note,
   examine all of the reload insns between PREV and NEXT exclusive, and
   examine all of the reload insns between PREV and NEXT exclusive, and
   annotate all that may trap.  */
   annotate all that may trap.  */
 
 
static void
static void
fixup_eh_region_note (rtx insn, rtx prev, rtx next)
fixup_eh_region_note (rtx insn, rtx prev, rtx next)
{
{
  rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
  rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
  unsigned int trap_count;
  unsigned int trap_count;
  rtx i;
  rtx i;
 
 
  if (note == NULL)
  if (note == NULL)
    return;
    return;
 
 
  if (may_trap_p (PATTERN (insn)))
  if (may_trap_p (PATTERN (insn)))
    trap_count = 1;
    trap_count = 1;
  else
  else
    {
    {
      remove_note (insn, note);
      remove_note (insn, note);
      trap_count = 0;
      trap_count = 0;
    }
    }
 
 
  for (i = NEXT_INSN (prev); i != next; i = NEXT_INSN (i))
  for (i = NEXT_INSN (prev); i != next; i = NEXT_INSN (i))
    if (INSN_P (i) && i != insn && may_trap_p (PATTERN (i)))
    if (INSN_P (i) && i != insn && may_trap_p (PATTERN (i)))
      {
      {
        trap_count++;
        trap_count++;
        REG_NOTES (i)
        REG_NOTES (i)
          = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (note, 0), REG_NOTES (i));
          = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (note, 0), REG_NOTES (i));
      }
      }
}
}
 
 
/* Reload pseudo-registers into hard regs around each insn as needed.
/* Reload pseudo-registers into hard regs around each insn as needed.
   Additional register load insns are output before the insn that needs it
   Additional register load insns are output before the insn that needs it
   and perhaps store insns after insns that modify the reloaded pseudo reg.
   and perhaps store insns after insns that modify the reloaded pseudo reg.
 
 
   reg_last_reload_reg and reg_reloaded_contents keep track of
   reg_last_reload_reg and reg_reloaded_contents keep track of
   which registers are already available in reload registers.
   which registers are already available in reload registers.
   We update these for the reloads that we perform,
   We update these for the reloads that we perform,
   as the insns are scanned.  */
   as the insns are scanned.  */
 
 
static void
static void
reload_as_needed (int live_known)
reload_as_needed (int live_known)
{
{
  struct insn_chain *chain;
  struct insn_chain *chain;
#if defined (AUTO_INC_DEC)
#if defined (AUTO_INC_DEC)
  int i;
  int i;
#endif
#endif
  rtx x;
  rtx x;
 
 
  memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
  memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
  memset (spill_reg_store, 0, sizeof spill_reg_store);
  memset (spill_reg_store, 0, sizeof spill_reg_store);
  reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
  reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
  INIT_REG_SET (&reg_has_output_reload);
  INIT_REG_SET (&reg_has_output_reload);
  CLEAR_HARD_REG_SET (reg_reloaded_valid);
  CLEAR_HARD_REG_SET (reg_reloaded_valid);
  CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
  CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
 
 
  set_initial_elim_offsets ();
  set_initial_elim_offsets ();
 
 
  for (chain = reload_insn_chain; chain; chain = chain->next)
  for (chain = reload_insn_chain; chain; chain = chain->next)
    {
    {
      rtx prev = 0;
      rtx prev = 0;
      rtx insn = chain->insn;
      rtx insn = chain->insn;
      rtx old_next = NEXT_INSN (insn);
      rtx old_next = NEXT_INSN (insn);
 
 
      /* If we pass a label, copy the offsets from the label information
      /* If we pass a label, copy the offsets from the label information
         into the current offsets of each elimination.  */
         into the current offsets of each elimination.  */
      if (LABEL_P (insn))
      if (LABEL_P (insn))
        set_offsets_for_label (insn);
        set_offsets_for_label (insn);
 
 
      else if (INSN_P (insn))
      else if (INSN_P (insn))
        {
        {
          regset_head regs_to_forget;
          regset_head regs_to_forget;
          INIT_REG_SET (&regs_to_forget);
          INIT_REG_SET (&regs_to_forget);
          note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
          note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
 
 
          /* If this is a USE and CLOBBER of a MEM, ensure that any
          /* If this is a USE and CLOBBER of a MEM, ensure that any
             references to eliminable registers have been removed.  */
             references to eliminable registers have been removed.  */
 
 
          if ((GET_CODE (PATTERN (insn)) == USE
          if ((GET_CODE (PATTERN (insn)) == USE
               || GET_CODE (PATTERN (insn)) == CLOBBER)
               || GET_CODE (PATTERN (insn)) == CLOBBER)
              && MEM_P (XEXP (PATTERN (insn), 0)))
              && MEM_P (XEXP (PATTERN (insn), 0)))
            XEXP (XEXP (PATTERN (insn), 0), 0)
            XEXP (XEXP (PATTERN (insn), 0), 0)
              = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
              = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
                                GET_MODE (XEXP (PATTERN (insn), 0)),
                                GET_MODE (XEXP (PATTERN (insn), 0)),
                                NULL_RTX);
                                NULL_RTX);
 
 
          /* If we need to do register elimination processing, do so.
          /* If we need to do register elimination processing, do so.
             This might delete the insn, in which case we are done.  */
             This might delete the insn, in which case we are done.  */
          if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
          if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
            {
            {
              eliminate_regs_in_insn (insn, 1);
              eliminate_regs_in_insn (insn, 1);
              if (NOTE_P (insn))
              if (NOTE_P (insn))
                {
                {
                  update_eliminable_offsets ();
                  update_eliminable_offsets ();
                  CLEAR_REG_SET (&regs_to_forget);
                  CLEAR_REG_SET (&regs_to_forget);
                  continue;
                  continue;
                }
                }
            }
            }
 
 
          /* If need_elim is nonzero but need_reload is zero, one might think
          /* If need_elim is nonzero but need_reload is zero, one might think
             that we could simply set n_reloads to 0.  However, find_reloads
             that we could simply set n_reloads to 0.  However, find_reloads
             could have done some manipulation of the insn (such as swapping
             could have done some manipulation of the insn (such as swapping
             commutative operands), and these manipulations are lost during
             commutative operands), and these manipulations are lost during
             the first pass for every insn that needs register elimination.
             the first pass for every insn that needs register elimination.
             So the actions of find_reloads must be redone here.  */
             So the actions of find_reloads must be redone here.  */
 
 
          if (! chain->need_elim && ! chain->need_reload
          if (! chain->need_elim && ! chain->need_reload
              && ! chain->need_operand_change)
              && ! chain->need_operand_change)
            n_reloads = 0;
            n_reloads = 0;
          /* First find the pseudo regs that must be reloaded for this insn.
          /* First find the pseudo regs that must be reloaded for this insn.
             This info is returned in the tables reload_... (see reload.h).
             This info is returned in the tables reload_... (see reload.h).
             Also modify the body of INSN by substituting RELOAD
             Also modify the body of INSN by substituting RELOAD
             rtx's for those pseudo regs.  */
             rtx's for those pseudo regs.  */
          else
          else
            {
            {
              CLEAR_REG_SET (&reg_has_output_reload);
              CLEAR_REG_SET (&reg_has_output_reload);
              CLEAR_HARD_REG_SET (reg_is_output_reload);
              CLEAR_HARD_REG_SET (reg_is_output_reload);
 
 
              find_reloads (insn, 1, spill_indirect_levels, live_known,
              find_reloads (insn, 1, spill_indirect_levels, live_known,
                            spill_reg_order);
                            spill_reg_order);
            }
            }
 
 
          if (n_reloads > 0)
          if (n_reloads > 0)
            {
            {
              rtx next = NEXT_INSN (insn);
              rtx next = NEXT_INSN (insn);
              rtx p;
              rtx p;
 
 
              prev = PREV_INSN (insn);
              prev = PREV_INSN (insn);
 
 
              /* Now compute which reload regs to reload them into.  Perhaps
              /* Now compute which reload regs to reload them into.  Perhaps
                 reusing reload regs from previous insns, or else output
                 reusing reload regs from previous insns, or else output
                 load insns to reload them.  Maybe output store insns too.
                 load insns to reload them.  Maybe output store insns too.
                 Record the choices of reload reg in reload_reg_rtx.  */
                 Record the choices of reload reg in reload_reg_rtx.  */
              choose_reload_regs (chain);
              choose_reload_regs (chain);
 
 
              /* Merge any reloads that we didn't combine for fear of
              /* Merge any reloads that we didn't combine for fear of
                 increasing the number of spill registers needed but now
                 increasing the number of spill registers needed but now
                 discover can be safely merged.  */
                 discover can be safely merged.  */
              if (SMALL_REGISTER_CLASSES)
              if (SMALL_REGISTER_CLASSES)
                merge_assigned_reloads (insn);
                merge_assigned_reloads (insn);
 
 
              /* Generate the insns to reload operands into or out of
              /* Generate the insns to reload operands into or out of
                 their reload regs.  */
                 their reload regs.  */
              emit_reload_insns (chain);
              emit_reload_insns (chain);
 
 
              /* Substitute the chosen reload regs from reload_reg_rtx
              /* Substitute the chosen reload regs from reload_reg_rtx
                 into the insn's body (or perhaps into the bodies of other
                 into the insn's body (or perhaps into the bodies of other
                 load and store insn that we just made for reloading
                 load and store insn that we just made for reloading
                 and that we moved the structure into).  */
                 and that we moved the structure into).  */
              subst_reloads (insn);
              subst_reloads (insn);
 
 
              /* Adjust the exception region notes for loads and stores.  */
              /* Adjust the exception region notes for loads and stores.  */
              if (flag_non_call_exceptions && !CALL_P (insn))
              if (flag_non_call_exceptions && !CALL_P (insn))
                fixup_eh_region_note (insn, prev, next);
                fixup_eh_region_note (insn, prev, next);
 
 
              /* If this was an ASM, make sure that all the reload insns
              /* If this was an ASM, make sure that all the reload insns
                 we have generated are valid.  If not, give an error
                 we have generated are valid.  If not, give an error
                 and delete them.  */
                 and delete them.  */
              if (asm_noperands (PATTERN (insn)) >= 0)
              if (asm_noperands (PATTERN (insn)) >= 0)
                for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
                for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
                  if (p != insn && INSN_P (p)
                  if (p != insn && INSN_P (p)
                      && GET_CODE (PATTERN (p)) != USE
                      && GET_CODE (PATTERN (p)) != USE
                      && (recog_memoized (p) < 0
                      && (recog_memoized (p) < 0
                          || (extract_insn (p), ! constrain_operands (1))))
                          || (extract_insn (p), ! constrain_operands (1))))
                    {
                    {
                      error_for_asm (insn,
                      error_for_asm (insn,
                                     "%<asm%> operand requires "
                                     "%<asm%> operand requires "
                                     "impossible reload");
                                     "impossible reload");
                      delete_insn (p);
                      delete_insn (p);
                    }
                    }
            }
            }
 
 
          if (num_eliminable && chain->need_elim)
          if (num_eliminable && chain->need_elim)
            update_eliminable_offsets ();
            update_eliminable_offsets ();
 
 
          /* Any previously reloaded spilled pseudo reg, stored in this insn,
          /* Any previously reloaded spilled pseudo reg, stored in this insn,
             is no longer validly lying around to save a future reload.
             is no longer validly lying around to save a future reload.
             Note that this does not detect pseudos that were reloaded
             Note that this does not detect pseudos that were reloaded
             for this insn in order to be stored in
             for this insn in order to be stored in
             (obeying register constraints).  That is correct; such reload
             (obeying register constraints).  That is correct; such reload
             registers ARE still valid.  */
             registers ARE still valid.  */
          forget_marked_reloads (&regs_to_forget);
          forget_marked_reloads (&regs_to_forget);
          CLEAR_REG_SET (&regs_to_forget);
          CLEAR_REG_SET (&regs_to_forget);
 
 
          /* There may have been CLOBBER insns placed after INSN.  So scan
          /* There may have been CLOBBER insns placed after INSN.  So scan
             between INSN and NEXT and use them to forget old reloads.  */
             between INSN and NEXT and use them to forget old reloads.  */
          for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
          for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
            if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
            if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
              note_stores (PATTERN (x), forget_old_reloads_1, NULL);
              note_stores (PATTERN (x), forget_old_reloads_1, NULL);
 
 
#ifdef AUTO_INC_DEC
#ifdef AUTO_INC_DEC
          /* Likewise for regs altered by auto-increment in this insn.
          /* Likewise for regs altered by auto-increment in this insn.
             REG_INC notes have been changed by reloading:
             REG_INC notes have been changed by reloading:
             find_reloads_address_1 records substitutions for them,
             find_reloads_address_1 records substitutions for them,
             which have been performed by subst_reloads above.  */
             which have been performed by subst_reloads above.  */
          for (i = n_reloads - 1; i >= 0; i--)
          for (i = n_reloads - 1; i >= 0; i--)
            {
            {
              rtx in_reg = rld[i].in_reg;
              rtx in_reg = rld[i].in_reg;
              if (in_reg)
              if (in_reg)
                {
                {
                  enum rtx_code code = GET_CODE (in_reg);
                  enum rtx_code code = GET_CODE (in_reg);
                  /* PRE_INC / PRE_DEC will have the reload register ending up
                  /* PRE_INC / PRE_DEC will have the reload register ending up
                     with the same value as the stack slot, but that doesn't
                     with the same value as the stack slot, but that doesn't
                     hold true for POST_INC / POST_DEC.  Either we have to
                     hold true for POST_INC / POST_DEC.  Either we have to
                     convert the memory access to a true POST_INC / POST_DEC,
                     convert the memory access to a true POST_INC / POST_DEC,
                     or we can't use the reload register for inheritance.  */
                     or we can't use the reload register for inheritance.  */
                  if ((code == POST_INC || code == POST_DEC)
                  if ((code == POST_INC || code == POST_DEC)
                      && TEST_HARD_REG_BIT (reg_reloaded_valid,
                      && TEST_HARD_REG_BIT (reg_reloaded_valid,
                                            REGNO (rld[i].reg_rtx))
                                            REGNO (rld[i].reg_rtx))
                      /* Make sure it is the inc/dec pseudo, and not
                      /* Make sure it is the inc/dec pseudo, and not
                         some other (e.g. output operand) pseudo.  */
                         some other (e.g. output operand) pseudo.  */
                      && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
                      && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
                          == REGNO (XEXP (in_reg, 0))))
                          == REGNO (XEXP (in_reg, 0))))
 
 
                    {
                    {
                      rtx reload_reg = rld[i].reg_rtx;
                      rtx reload_reg = rld[i].reg_rtx;
                      enum machine_mode mode = GET_MODE (reload_reg);
                      enum machine_mode mode = GET_MODE (reload_reg);
                      int n = 0;
                      int n = 0;
                      rtx p;
                      rtx p;
 
 
                      for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
                      for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
                        {
                        {
                          /* We really want to ignore REG_INC notes here, so
                          /* We really want to ignore REG_INC notes here, so
                             use PATTERN (p) as argument to reg_set_p .  */
                             use PATTERN (p) as argument to reg_set_p .  */
                          if (reg_set_p (reload_reg, PATTERN (p)))
                          if (reg_set_p (reload_reg, PATTERN (p)))
                            break;
                            break;
                          n = count_occurrences (PATTERN (p), reload_reg, 0);
                          n = count_occurrences (PATTERN (p), reload_reg, 0);
                          if (! n)
                          if (! n)
                            continue;
                            continue;
                          if (n == 1)
                          if (n == 1)
                            {
                            {
                              n = validate_replace_rtx (reload_reg,
                              n = validate_replace_rtx (reload_reg,
                                                        gen_rtx_fmt_e (code,
                                                        gen_rtx_fmt_e (code,
                                                                       mode,
                                                                       mode,
                                                                       reload_reg),
                                                                       reload_reg),
                                                        p);
                                                        p);
 
 
                              /* We must also verify that the constraints
                              /* We must also verify that the constraints
                                 are met after the replacement.  */
                                 are met after the replacement.  */
                              extract_insn (p);
                              extract_insn (p);
                              if (n)
                              if (n)
                                n = constrain_operands (1);
                                n = constrain_operands (1);
                              else
                              else
                                break;
                                break;
 
 
                              /* If the constraints were not met, then
                              /* If the constraints were not met, then
                                 undo the replacement.  */
                                 undo the replacement.  */
                              if (!n)
                              if (!n)
                                {
                                {
                                  validate_replace_rtx (gen_rtx_fmt_e (code,
                                  validate_replace_rtx (gen_rtx_fmt_e (code,
                                                                       mode,
                                                                       mode,
                                                                       reload_reg),
                                                                       reload_reg),
                                                        reload_reg, p);
                                                        reload_reg, p);
                                  break;
                                  break;
                                }
                                }
 
 
                            }
                            }
                          break;
                          break;
                        }
                        }
                      if (n == 1)
                      if (n == 1)
                        {
                        {
                          REG_NOTES (p)
                          REG_NOTES (p)
                            = gen_rtx_EXPR_LIST (REG_INC, reload_reg,
                            = gen_rtx_EXPR_LIST (REG_INC, reload_reg,
                                                 REG_NOTES (p));
                                                 REG_NOTES (p));
                          /* Mark this as having an output reload so that the
                          /* Mark this as having an output reload so that the
                             REG_INC processing code below won't invalidate
                             REG_INC processing code below won't invalidate
                             the reload for inheritance.  */
                             the reload for inheritance.  */
                          SET_HARD_REG_BIT (reg_is_output_reload,
                          SET_HARD_REG_BIT (reg_is_output_reload,
                                            REGNO (reload_reg));
                                            REGNO (reload_reg));
                          SET_REGNO_REG_SET (&reg_has_output_reload,
                          SET_REGNO_REG_SET (&reg_has_output_reload,
                                             REGNO (XEXP (in_reg, 0)));
                                             REGNO (XEXP (in_reg, 0)));
                        }
                        }
                      else
                      else
                        forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
                        forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
                                              NULL);
                                              NULL);
                    }
                    }
                  else if ((code == PRE_INC || code == PRE_DEC)
                  else if ((code == PRE_INC || code == PRE_DEC)
                           && TEST_HARD_REG_BIT (reg_reloaded_valid,
                           && TEST_HARD_REG_BIT (reg_reloaded_valid,
                                                 REGNO (rld[i].reg_rtx))
                                                 REGNO (rld[i].reg_rtx))
                           /* Make sure it is the inc/dec pseudo, and not
                           /* Make sure it is the inc/dec pseudo, and not
                              some other (e.g. output operand) pseudo.  */
                              some other (e.g. output operand) pseudo.  */
                           && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
                           && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
                               == REGNO (XEXP (in_reg, 0))))
                               == REGNO (XEXP (in_reg, 0))))
                    {
                    {
                      SET_HARD_REG_BIT (reg_is_output_reload,
                      SET_HARD_REG_BIT (reg_is_output_reload,
                                        REGNO (rld[i].reg_rtx));
                                        REGNO (rld[i].reg_rtx));
                      SET_REGNO_REG_SET (&reg_has_output_reload,
                      SET_REGNO_REG_SET (&reg_has_output_reload,
                                         REGNO (XEXP (in_reg, 0)));
                                         REGNO (XEXP (in_reg, 0)));
                    }
                    }
                }
                }
            }
            }
          /* If a pseudo that got a hard register is auto-incremented,
          /* If a pseudo that got a hard register is auto-incremented,
             we must purge records of copying it into pseudos without
             we must purge records of copying it into pseudos without
             hard registers.  */
             hard registers.  */
          for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
          for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
            if (REG_NOTE_KIND (x) == REG_INC)
            if (REG_NOTE_KIND (x) == REG_INC)
              {
              {
                /* See if this pseudo reg was reloaded in this insn.
                /* See if this pseudo reg was reloaded in this insn.
                   If so, its last-reload info is still valid
                   If so, its last-reload info is still valid
                   because it is based on this insn's reload.  */
                   because it is based on this insn's reload.  */
                for (i = 0; i < n_reloads; i++)
                for (i = 0; i < n_reloads; i++)
                  if (rld[i].out == XEXP (x, 0))
                  if (rld[i].out == XEXP (x, 0))
                    break;
                    break;
 
 
                if (i == n_reloads)
                if (i == n_reloads)
                  forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
                  forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
              }
              }
#endif
#endif
        }
        }
      /* A reload reg's contents are unknown after a label.  */
      /* A reload reg's contents are unknown after a label.  */
      if (LABEL_P (insn))
      if (LABEL_P (insn))
        CLEAR_HARD_REG_SET (reg_reloaded_valid);
        CLEAR_HARD_REG_SET (reg_reloaded_valid);
 
 
      /* Don't assume a reload reg is still good after a call insn
      /* Don't assume a reload reg is still good after a call insn
         if it is a call-used reg, or if it contains a value that will
         if it is a call-used reg, or if it contains a value that will
         be partially clobbered by the call.  */
         be partially clobbered by the call.  */
      else if (CALL_P (insn))
      else if (CALL_P (insn))
        {
        {
        AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
        AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
        AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
        AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
        }
        }
    }
    }
 
 
  /* Clean up.  */
  /* Clean up.  */
  free (reg_last_reload_reg);
  free (reg_last_reload_reg);
  CLEAR_REG_SET (&reg_has_output_reload);
  CLEAR_REG_SET (&reg_has_output_reload);
}
}
 
 
/* Discard all record of any value reloaded from X,
/* Discard all record of any value reloaded from X,
   or reloaded in X from someplace else;
   or reloaded in X from someplace else;
   unless X is an output reload reg of the current insn.
   unless X is an output reload reg of the current insn.
 
 
   X may be a hard reg (the reload reg)
   X may be a hard reg (the reload reg)
   or it may be a pseudo reg that was reloaded from.
   or it may be a pseudo reg that was reloaded from.
 
 
   When DATA is non-NULL just mark the registers in regset
   When DATA is non-NULL just mark the registers in regset
   to be forgotten later.  */
   to be forgotten later.  */
 
 
static void
static void
forget_old_reloads_1 (rtx x, rtx ignored ATTRIBUTE_UNUSED,
forget_old_reloads_1 (rtx x, rtx ignored ATTRIBUTE_UNUSED,
                      void *data)
                      void *data)
{
{
  unsigned int regno;
  unsigned int regno;
  unsigned int nr;
  unsigned int nr;
  regset regs = (regset) data;
  regset regs = (regset) data;
 
 
  /* note_stores does give us subregs of hard regs,
  /* note_stores does give us subregs of hard regs,
     subreg_regno_offset requires a hard reg.  */
     subreg_regno_offset requires a hard reg.  */
  while (GET_CODE (x) == SUBREG)
  while (GET_CODE (x) == SUBREG)
    {
    {
      /* We ignore the subreg offset when calculating the regno,
      /* We ignore the subreg offset when calculating the regno,
         because we are using the entire underlying hard register
         because we are using the entire underlying hard register
         below.  */
         below.  */
      x = SUBREG_REG (x);
      x = SUBREG_REG (x);
    }
    }
 
 
  if (!REG_P (x))
  if (!REG_P (x))
    return;
    return;
 
 
  regno = REGNO (x);
  regno = REGNO (x);
 
 
  if (regno >= FIRST_PSEUDO_REGISTER)
  if (regno >= FIRST_PSEUDO_REGISTER)
    nr = 1;
    nr = 1;
  else
  else
    {
    {
      unsigned int i;
      unsigned int i;
 
 
      nr = hard_regno_nregs[regno][GET_MODE (x)];
      nr = hard_regno_nregs[regno][GET_MODE (x)];
      /* Storing into a spilled-reg invalidates its contents.
      /* Storing into a spilled-reg invalidates its contents.
         This can happen if a block-local pseudo is allocated to that reg
         This can happen if a block-local pseudo is allocated to that reg
         and it wasn't spilled because this block's total need is 0.
         and it wasn't spilled because this block's total need is 0.
         Then some insn might have an optional reload and use this reg.  */
         Then some insn might have an optional reload and use this reg.  */
      if (!regs)
      if (!regs)
        for (i = 0; i < nr; i++)
        for (i = 0; i < nr; i++)
          /* But don't do this if the reg actually serves as an output
          /* But don't do this if the reg actually serves as an output
             reload reg in the current instruction.  */
             reload reg in the current instruction.  */
          if (n_reloads == 0
          if (n_reloads == 0
              || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
              || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
            {
            {
              CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
              CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
              CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, regno + i);
              CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, regno + i);
              spill_reg_store[regno + i] = 0;
              spill_reg_store[regno + i] = 0;
            }
            }
    }
    }
 
 
  if (regs)
  if (regs)
    while (nr-- > 0)
    while (nr-- > 0)
      SET_REGNO_REG_SET (regs, regno + nr);
      SET_REGNO_REG_SET (regs, regno + nr);
  else
  else
    {
    {
      /* Since value of X has changed,
      /* Since value of X has changed,
         forget any value previously copied from it.  */
         forget any value previously copied from it.  */
 
 
      while (nr-- > 0)
      while (nr-- > 0)
        /* But don't forget a copy if this is the output reload
        /* But don't forget a copy if this is the output reload
           that establishes the copy's validity.  */
           that establishes the copy's validity.  */
        if (n_reloads == 0
        if (n_reloads == 0
            || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
            || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
          reg_last_reload_reg[regno + nr] = 0;
          reg_last_reload_reg[regno + nr] = 0;
     }
     }
}
}
 
 
/* Forget the reloads marked in regset by previous function.  */
/* Forget the reloads marked in regset by previous function.  */
static void
static void
forget_marked_reloads (regset regs)
forget_marked_reloads (regset regs)
{
{
  unsigned int reg;
  unsigned int reg;
  reg_set_iterator rsi;
  reg_set_iterator rsi;
  EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
  EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
    {
    {
      if (reg < FIRST_PSEUDO_REGISTER
      if (reg < FIRST_PSEUDO_REGISTER
          /* But don't do this if the reg actually serves as an output
          /* But don't do this if the reg actually serves as an output
             reload reg in the current instruction.  */
             reload reg in the current instruction.  */
          && (n_reloads == 0
          && (n_reloads == 0
              || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
              || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
          {
          {
            CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
            CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
            CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, reg);
            CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, reg);
            spill_reg_store[reg] = 0;
            spill_reg_store[reg] = 0;
          }
          }
      if (n_reloads == 0
      if (n_reloads == 0
          || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
          || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
        reg_last_reload_reg[reg] = 0;
        reg_last_reload_reg[reg] = 0;
    }
    }
}
}


/* The following HARD_REG_SETs indicate when each hard register is
/* The following HARD_REG_SETs indicate when each hard register is
   used for a reload of various parts of the current insn.  */
   used for a reload of various parts of the current insn.  */
 
 
/* If reg is unavailable for all reloads.  */
/* If reg is unavailable for all reloads.  */
static HARD_REG_SET reload_reg_unavailable;
static HARD_REG_SET reload_reg_unavailable;
/* If reg is in use as a reload reg for a RELOAD_OTHER reload.  */
/* If reg is in use as a reload reg for a RELOAD_OTHER reload.  */
static HARD_REG_SET reload_reg_used;
static HARD_REG_SET reload_reg_used;
/* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I.  */
/* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I.  */
static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
/* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I.  */
/* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I.  */
static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
/* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I.  */
/* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I.  */
static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
/* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I.  */
/* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I.  */
static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
/* If reg is in use for a RELOAD_FOR_INPUT reload for operand I.  */
/* If reg is in use for a RELOAD_FOR_INPUT reload for operand I.  */
static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
/* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I.  */
/* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I.  */
static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
/* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload.  */
/* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload.  */
static HARD_REG_SET reload_reg_used_in_op_addr;
static HARD_REG_SET reload_reg_used_in_op_addr;
/* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload.  */
/* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload.  */
static HARD_REG_SET reload_reg_used_in_op_addr_reload;
static HARD_REG_SET reload_reg_used_in_op_addr_reload;
/* If reg is in use for a RELOAD_FOR_INSN reload.  */
/* If reg is in use for a RELOAD_FOR_INSN reload.  */
static HARD_REG_SET reload_reg_used_in_insn;
static HARD_REG_SET reload_reg_used_in_insn;
/* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload.  */
/* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload.  */
static HARD_REG_SET reload_reg_used_in_other_addr;
static HARD_REG_SET reload_reg_used_in_other_addr;
 
 
/* If reg is in use as a reload reg for any sort of reload.  */
/* If reg is in use as a reload reg for any sort of reload.  */
static HARD_REG_SET reload_reg_used_at_all;
static HARD_REG_SET reload_reg_used_at_all;
 
 
/* If reg is use as an inherited reload.  We just mark the first register
/* If reg is use as an inherited reload.  We just mark the first register
   in the group.  */
   in the group.  */
static HARD_REG_SET reload_reg_used_for_inherit;
static HARD_REG_SET reload_reg_used_for_inherit;
 
 
/* Records which hard regs are used in any way, either as explicit use or
/* Records which hard regs are used in any way, either as explicit use or
   by being allocated to a pseudo during any point of the current insn.  */
   by being allocated to a pseudo during any point of the current insn.  */
static HARD_REG_SET reg_used_in_insn;
static HARD_REG_SET reg_used_in_insn;
 
 
/* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
/* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
   TYPE. MODE is used to indicate how many consecutive regs are
   TYPE. MODE is used to indicate how many consecutive regs are
   actually used.  */
   actually used.  */
 
 
static void
static void
mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
                        enum machine_mode mode)
                        enum machine_mode mode)
{
{
  unsigned int nregs = hard_regno_nregs[regno][mode];
  unsigned int nregs = hard_regno_nregs[regno][mode];
  unsigned int i;
  unsigned int i;
 
 
  for (i = regno; i < nregs + regno; i++)
  for (i = regno; i < nregs + regno; i++)
    {
    {
      switch (type)
      switch (type)
        {
        {
        case RELOAD_OTHER:
        case RELOAD_OTHER:
          SET_HARD_REG_BIT (reload_reg_used, i);
          SET_HARD_REG_BIT (reload_reg_used, i);
          break;
          break;
 
 
        case RELOAD_FOR_INPUT_ADDRESS:
        case RELOAD_FOR_INPUT_ADDRESS:
          SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
          SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
          break;
          break;
 
 
        case RELOAD_FOR_INPADDR_ADDRESS:
        case RELOAD_FOR_INPADDR_ADDRESS:
          SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
          SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
          break;
          break;
 
 
        case RELOAD_FOR_OUTPUT_ADDRESS:
        case RELOAD_FOR_OUTPUT_ADDRESS:
          SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
          SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
          break;
          break;
 
 
        case RELOAD_FOR_OUTADDR_ADDRESS:
        case RELOAD_FOR_OUTADDR_ADDRESS:
          SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
          SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
          break;
          break;
 
 
        case RELOAD_FOR_OPERAND_ADDRESS:
        case RELOAD_FOR_OPERAND_ADDRESS:
          SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
          SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
          break;
          break;
 
 
        case RELOAD_FOR_OPADDR_ADDR:
        case RELOAD_FOR_OPADDR_ADDR:
          SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
          SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
          break;
          break;
 
 
        case RELOAD_FOR_OTHER_ADDRESS:
        case RELOAD_FOR_OTHER_ADDRESS:
          SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
          SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
          break;
          break;
 
 
        case RELOAD_FOR_INPUT:
        case RELOAD_FOR_INPUT:
          SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
          SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
          break;
          break;
 
 
        case RELOAD_FOR_OUTPUT:
        case RELOAD_FOR_OUTPUT:
          SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
          SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
          break;
          break;
 
 
        case RELOAD_FOR_INSN:
        case RELOAD_FOR_INSN:
          SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
          SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
          break;
          break;
        }
        }
 
 
      SET_HARD_REG_BIT (reload_reg_used_at_all, i);
      SET_HARD_REG_BIT (reload_reg_used_at_all, i);
    }
    }
}
}
 
 
/* Similarly, but show REGNO is no longer in use for a reload.  */
/* Similarly, but show REGNO is no longer in use for a reload.  */
 
 
static void
static void
clear_reload_reg_in_use (unsigned int regno, int opnum,
clear_reload_reg_in_use (unsigned int regno, int opnum,
                         enum reload_type type, enum machine_mode mode)
                         enum reload_type type, enum machine_mode mode)
{
{
  unsigned int nregs = hard_regno_nregs[regno][mode];
  unsigned int nregs = hard_regno_nregs[regno][mode];
  unsigned int start_regno, end_regno, r;
  unsigned int start_regno, end_regno, r;
  int i;
  int i;
  /* A complication is that for some reload types, inheritance might
  /* A complication is that for some reload types, inheritance might
     allow multiple reloads of the same types to share a reload register.
     allow multiple reloads of the same types to share a reload register.
     We set check_opnum if we have to check only reloads with the same
     We set check_opnum if we have to check only reloads with the same
     operand number, and check_any if we have to check all reloads.  */
     operand number, and check_any if we have to check all reloads.  */
  int check_opnum = 0;
  int check_opnum = 0;
  int check_any = 0;
  int check_any = 0;
  HARD_REG_SET *used_in_set;
  HARD_REG_SET *used_in_set;
 
 
  switch (type)
  switch (type)
    {
    {
    case RELOAD_OTHER:
    case RELOAD_OTHER:
      used_in_set = &reload_reg_used;
      used_in_set = &reload_reg_used;
      break;
      break;
 
 
    case RELOAD_FOR_INPUT_ADDRESS:
    case RELOAD_FOR_INPUT_ADDRESS:
      used_in_set = &reload_reg_used_in_input_addr[opnum];
      used_in_set = &reload_reg_used_in_input_addr[opnum];
      break;
      break;
 
 
    case RELOAD_FOR_INPADDR_ADDRESS:
    case RELOAD_FOR_INPADDR_ADDRESS:
      check_opnum = 1;
      check_opnum = 1;
      used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
      used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
      break;
      break;
 
 
    case RELOAD_FOR_OUTPUT_ADDRESS:
    case RELOAD_FOR_OUTPUT_ADDRESS:
      used_in_set = &reload_reg_used_in_output_addr[opnum];
      used_in_set = &reload_reg_used_in_output_addr[opnum];
      break;
      break;
 
 
    case RELOAD_FOR_OUTADDR_ADDRESS:
    case RELOAD_FOR_OUTADDR_ADDRESS:
      check_opnum = 1;
      check_opnum = 1;
      used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
      used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
      break;
      break;
 
 
    case RELOAD_FOR_OPERAND_ADDRESS:
    case RELOAD_FOR_OPERAND_ADDRESS:
      used_in_set = &reload_reg_used_in_op_addr;
      used_in_set = &reload_reg_used_in_op_addr;
      break;
      break;
 
 
    case RELOAD_FOR_OPADDR_ADDR:
    case RELOAD_FOR_OPADDR_ADDR:
      check_any = 1;
      check_any = 1;
      used_in_set = &reload_reg_used_in_op_addr_reload;
      used_in_set = &reload_reg_used_in_op_addr_reload;
      break;
      break;
 
 
    case RELOAD_FOR_OTHER_ADDRESS:
    case RELOAD_FOR_OTHER_ADDRESS:
      used_in_set = &reload_reg_used_in_other_addr;
      used_in_set = &reload_reg_used_in_other_addr;
      check_any = 1;
      check_any = 1;
      break;
      break;
 
 
    case RELOAD_FOR_INPUT:
    case RELOAD_FOR_INPUT:
      used_in_set = &reload_reg_used_in_input[opnum];
      used_in_set = &reload_reg_used_in_input[opnum];
      break;
      break;
 
 
    case RELOAD_FOR_OUTPUT:
    case RELOAD_FOR_OUTPUT:
      used_in_set = &reload_reg_used_in_output[opnum];
      used_in_set = &reload_reg_used_in_output[opnum];
      break;
      break;
 
 
    case RELOAD_FOR_INSN:
    case RELOAD_FOR_INSN:
      used_in_set = &reload_reg_used_in_insn;
      used_in_set = &reload_reg_used_in_insn;
      break;
      break;
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
  /* We resolve conflicts with remaining reloads of the same type by
  /* We resolve conflicts with remaining reloads of the same type by
     excluding the intervals of reload registers by them from the
     excluding the intervals of reload registers by them from the
     interval of freed reload registers.  Since we only keep track of
     interval of freed reload registers.  Since we only keep track of
     one set of interval bounds, we might have to exclude somewhat
     one set of interval bounds, we might have to exclude somewhat
     more than what would be necessary if we used a HARD_REG_SET here.
     more than what would be necessary if we used a HARD_REG_SET here.
     But this should only happen very infrequently, so there should
     But this should only happen very infrequently, so there should
     be no reason to worry about it.  */
     be no reason to worry about it.  */
 
 
  start_regno = regno;
  start_regno = regno;
  end_regno = regno + nregs;
  end_regno = regno + nregs;
  if (check_opnum || check_any)
  if (check_opnum || check_any)
    {
    {
      for (i = n_reloads - 1; i >= 0; i--)
      for (i = n_reloads - 1; i >= 0; i--)
        {
        {
          if (rld[i].when_needed == type
          if (rld[i].when_needed == type
              && (check_any || rld[i].opnum == opnum)
              && (check_any || rld[i].opnum == opnum)
              && rld[i].reg_rtx)
              && rld[i].reg_rtx)
            {
            {
              unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
              unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
              unsigned int conflict_end
              unsigned int conflict_end
                = (conflict_start
                = (conflict_start
                   + hard_regno_nregs[conflict_start][rld[i].mode]);
                   + hard_regno_nregs[conflict_start][rld[i].mode]);
 
 
              /* If there is an overlap with the first to-be-freed register,
              /* If there is an overlap with the first to-be-freed register,
                 adjust the interval start.  */
                 adjust the interval start.  */
              if (conflict_start <= start_regno && conflict_end > start_regno)
              if (conflict_start <= start_regno && conflict_end > start_regno)
                start_regno = conflict_end;
                start_regno = conflict_end;
              /* Otherwise, if there is a conflict with one of the other
              /* Otherwise, if there is a conflict with one of the other
                 to-be-freed registers, adjust the interval end.  */
                 to-be-freed registers, adjust the interval end.  */
              if (conflict_start > start_regno && conflict_start < end_regno)
              if (conflict_start > start_regno && conflict_start < end_regno)
                end_regno = conflict_start;
                end_regno = conflict_start;
            }
            }
        }
        }
    }
    }
 
 
  for (r = start_regno; r < end_regno; r++)
  for (r = start_regno; r < end_regno; r++)
    CLEAR_HARD_REG_BIT (*used_in_set, r);
    CLEAR_HARD_REG_BIT (*used_in_set, r);
}
}
 
 
/* 1 if reg REGNO is free as a reload reg for a reload of the sort
/* 1 if reg REGNO is free as a reload reg for a reload of the sort
   specified by OPNUM and TYPE.  */
   specified by OPNUM and TYPE.  */
 
 
static int
static int
reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
{
{
  int i;
  int i;
 
 
  /* In use for a RELOAD_OTHER means it's not available for anything.  */
  /* In use for a RELOAD_OTHER means it's not available for anything.  */
  if (TEST_HARD_REG_BIT (reload_reg_used, regno)
  if (TEST_HARD_REG_BIT (reload_reg_used, regno)
      || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
      || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
    return 0;
    return 0;
 
 
  switch (type)
  switch (type)
    {
    {
    case RELOAD_OTHER:
    case RELOAD_OTHER:
      /* In use for anything means we can't use it for RELOAD_OTHER.  */
      /* In use for anything means we can't use it for RELOAD_OTHER.  */
      if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
      if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
          || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
          || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
          || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
          || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
          || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
          || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
        return 0;
        return 0;
 
 
      for (i = 0; i < reload_n_operands; i++)
      for (i = 0; i < reload_n_operands; i++)
        if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
        if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
            || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
            || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
            || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
            || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
            || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
            || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
            || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
            || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
            || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
            || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
          return 0;
          return 0;
 
 
      return 1;
      return 1;
 
 
    case RELOAD_FOR_INPUT:
    case RELOAD_FOR_INPUT:
      if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
      if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
          || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
          || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
        return 0;
        return 0;
 
 
      if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
      if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
        return 0;
        return 0;
 
 
      /* If it is used for some other input, can't use it.  */
      /* If it is used for some other input, can't use it.  */
      for (i = 0; i < reload_n_operands; i++)
      for (i = 0; i < reload_n_operands; i++)
        if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
        if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
          return 0;
          return 0;
 
 
      /* If it is used in a later operand's address, can't use it.  */
      /* If it is used in a later operand's address, can't use it.  */
      for (i = opnum + 1; i < reload_n_operands; i++)
      for (i = opnum + 1; i < reload_n_operands; i++)
        if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
        if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
            || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
            || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
          return 0;
          return 0;
 
 
      return 1;
      return 1;
 
 
    case RELOAD_FOR_INPUT_ADDRESS:
    case RELOAD_FOR_INPUT_ADDRESS:
      /* Can't use a register if it is used for an input address for this
      /* Can't use a register if it is used for an input address for this
         operand or used as an input in an earlier one.  */
         operand or used as an input in an earlier one.  */
      if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
      if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
          || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
          || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
        return 0;
        return 0;
 
 
      for (i = 0; i < opnum; i++)
      for (i = 0; i < opnum; i++)
        if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
        if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
          return 0;
          return 0;
 
 
      return 1;
      return 1;
 
 
    case RELOAD_FOR_INPADDR_ADDRESS:
    case RELOAD_FOR_INPADDR_ADDRESS:
      /* Can't use a register if it is used for an input address
      /* Can't use a register if it is used for an input address
         for this operand or used as an input in an earlier
         for this operand or used as an input in an earlier
         one.  */
         one.  */
      if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
      if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
        return 0;
        return 0;
 
 
      for (i = 0; i < opnum; i++)
      for (i = 0; i < opnum; i++)
        if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
        if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
          return 0;
          return 0;
 
 
      return 1;
      return 1;
 
 
    case RELOAD_FOR_OUTPUT_ADDRESS:
    case RELOAD_FOR_OUTPUT_ADDRESS:
      /* Can't use a register if it is used for an output address for this
      /* Can't use a register if it is used for an output address for this
         operand or used as an output in this or a later operand.  Note
         operand or used as an output in this or a later operand.  Note
         that multiple output operands are emitted in reverse order, so
         that multiple output operands are emitted in reverse order, so
         the conflicting ones are those with lower indices.  */
         the conflicting ones are those with lower indices.  */
      if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
      if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
        return 0;
        return 0;
 
 
      for (i = 0; i <= opnum; i++)
      for (i = 0; i <= opnum; i++)
        if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
        if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
          return 0;
          return 0;
 
 
      return 1;
      return 1;
 
 
    case RELOAD_FOR_OUTADDR_ADDRESS:
    case RELOAD_FOR_OUTADDR_ADDRESS:
      /* Can't use a register if it is used for an output address
      /* Can't use a register if it is used for an output address
         for this operand or used as an output in this or a
         for this operand or used as an output in this or a
         later operand.  Note that multiple output operands are
         later operand.  Note that multiple output operands are
         emitted in reverse order, so the conflicting ones are
         emitted in reverse order, so the conflicting ones are
         those with lower indices.  */
         those with lower indices.  */
      if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
      if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
        return 0;
        return 0;
 
 
      for (i = 0; i <= opnum; i++)
      for (i = 0; i <= opnum; i++)
        if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
        if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
          return 0;
          return 0;
 
 
      return 1;
      return 1;
 
 
    case RELOAD_FOR_OPERAND_ADDRESS:
    case RELOAD_FOR_OPERAND_ADDRESS:
      for (i = 0; i < reload_n_operands; i++)
      for (i = 0; i < reload_n_operands; i++)
        if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
        if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
          return 0;
          return 0;
 
 
      return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
      return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
              && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
              && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
 
 
    case RELOAD_FOR_OPADDR_ADDR:
    case RELOAD_FOR_OPADDR_ADDR:
      for (i = 0; i < reload_n_operands; i++)
      for (i = 0; i < reload_n_operands; i++)
        if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
        if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
          return 0;
          return 0;
 
 
      return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
      return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
 
 
    case RELOAD_FOR_OUTPUT:
    case RELOAD_FOR_OUTPUT:
      /* This cannot share a register with RELOAD_FOR_INSN reloads, other
      /* This cannot share a register with RELOAD_FOR_INSN reloads, other
         outputs, or an operand address for this or an earlier output.
         outputs, or an operand address for this or an earlier output.
         Note that multiple output operands are emitted in reverse order,
         Note that multiple output operands are emitted in reverse order,
         so the conflicting ones are those with higher indices.  */
         so the conflicting ones are those with higher indices.  */
      if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
      if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
        return 0;
        return 0;
 
 
      for (i = 0; i < reload_n_operands; i++)
      for (i = 0; i < reload_n_operands; i++)
        if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
        if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
          return 0;
          return 0;
 
 
      for (i = opnum; i < reload_n_operands; i++)
      for (i = opnum; i < reload_n_operands; i++)
        if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
        if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
            || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
            || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
          return 0;
          return 0;
 
 
      return 1;
      return 1;
 
 
    case RELOAD_FOR_INSN:
    case RELOAD_FOR_INSN:
      for (i = 0; i < reload_n_operands; i++)
      for (i = 0; i < reload_n_operands; i++)
        if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
        if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
            || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
            || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
          return 0;
          return 0;
 
 
      return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
      return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
              && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
              && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
 
 
    case RELOAD_FOR_OTHER_ADDRESS:
    case RELOAD_FOR_OTHER_ADDRESS:
      return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
      return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}
 
 
/* Return 1 if the value in reload reg REGNO, as used by a reload
/* Return 1 if the value in reload reg REGNO, as used by a reload
   needed for the part of the insn specified by OPNUM and TYPE,
   needed for the part of the insn specified by OPNUM and TYPE,
   is still available in REGNO at the end of the insn.
   is still available in REGNO at the end of the insn.
 
 
   We can assume that the reload reg was already tested for availability
   We can assume that the reload reg was already tested for availability
   at the time it is needed, and we should not check this again,
   at the time it is needed, and we should not check this again,
   in case the reg has already been marked in use.  */
   in case the reg has already been marked in use.  */
 
 
static int
static int
reload_reg_reaches_end_p (unsigned int regno, int opnum, enum reload_type type)
reload_reg_reaches_end_p (unsigned int regno, int opnum, enum reload_type type)
{
{
  int i;
  int i;
 
 
  switch (type)
  switch (type)
    {
    {
    case RELOAD_OTHER:
    case RELOAD_OTHER:
      /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
      /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
         its value must reach the end.  */
         its value must reach the end.  */
      return 1;
      return 1;
 
 
      /* If this use is for part of the insn,
      /* If this use is for part of the insn,
         its value reaches if no subsequent part uses the same register.
         its value reaches if no subsequent part uses the same register.
         Just like the above function, don't try to do this with lots
         Just like the above function, don't try to do this with lots
         of fallthroughs.  */
         of fallthroughs.  */
 
 
    case RELOAD_FOR_OTHER_ADDRESS:
    case RELOAD_FOR_OTHER_ADDRESS:
      /* Here we check for everything else, since these don't conflict
      /* Here we check for everything else, since these don't conflict
         with anything else and everything comes later.  */
         with anything else and everything comes later.  */
 
 
      for (i = 0; i < reload_n_operands; i++)
      for (i = 0; i < reload_n_operands; i++)
        if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
        if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
            || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
            || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
            || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
            || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
            || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
            || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
            || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
            || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
            || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
            || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
          return 0;
          return 0;
 
 
      return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
      return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
              && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
              && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
              && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
              && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
              && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
              && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
 
 
    case RELOAD_FOR_INPUT_ADDRESS:
    case RELOAD_FOR_INPUT_ADDRESS:
    case RELOAD_FOR_INPADDR_ADDRESS:
    case RELOAD_FOR_INPADDR_ADDRESS:
      /* Similar, except that we check only for this and subsequent inputs
      /* Similar, except that we check only for this and subsequent inputs
         and the address of only subsequent inputs and we do not need
         and the address of only subsequent inputs and we do not need
         to check for RELOAD_OTHER objects since they are known not to
         to check for RELOAD_OTHER objects since they are known not to
         conflict.  */
         conflict.  */
 
 
      for (i = opnum; i < reload_n_operands; i++)
      for (i = opnum; i < reload_n_operands; i++)
        if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
        if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
          return 0;
          return 0;
 
 
      for (i = opnum + 1; i < reload_n_operands; i++)
      for (i = opnum + 1; i < reload_n_operands; i++)
        if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
        if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
            || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
            || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
          return 0;
          return 0;
 
 
      for (i = 0; i < reload_n_operands; i++)
      for (i = 0; i < reload_n_operands; i++)
        if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
        if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
            || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
            || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
            || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
            || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
          return 0;
          return 0;
 
 
      if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
      if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
        return 0;
        return 0;
 
 
      return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
      return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
              && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
              && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
              && !TEST_HARD_REG_BIT (reload_reg_used, regno));
              && !TEST_HARD_REG_BIT (reload_reg_used, regno));
 
 
    case RELOAD_FOR_INPUT:
    case RELOAD_FOR_INPUT:
      /* Similar to input address, except we start at the next operand for
      /* Similar to input address, except we start at the next operand for
         both input and input address and we do not check for
         both input and input address and we do not check for
         RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
         RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
         would conflict.  */
         would conflict.  */
 
 
      for (i = opnum + 1; i < reload_n_operands; i++)
      for (i = opnum + 1; i < reload_n_operands; i++)
        if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
        if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
            || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
            || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
            || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
            || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
          return 0;
          return 0;
 
 
      /* ... fall through ...  */
      /* ... fall through ...  */
 
 
    case RELOAD_FOR_OPERAND_ADDRESS:
    case RELOAD_FOR_OPERAND_ADDRESS:
      /* Check outputs and their addresses.  */
      /* Check outputs and their addresses.  */
 
 
      for (i = 0; i < reload_n_operands; i++)
      for (i = 0; i < reload_n_operands; i++)
        if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
        if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
            || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
            || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
            || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
            || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
          return 0;
          return 0;
 
 
      return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
      return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
 
 
    case RELOAD_FOR_OPADDR_ADDR:
    case RELOAD_FOR_OPADDR_ADDR:
      for (i = 0; i < reload_n_operands; i++)
      for (i = 0; i < reload_n_operands; i++)
        if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
        if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
            || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
            || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
            || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
            || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
          return 0;
          return 0;
 
 
      return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
      return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
              && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
              && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
              && !TEST_HARD_REG_BIT (reload_reg_used, regno));
              && !TEST_HARD_REG_BIT (reload_reg_used, regno));
 
 
    case RELOAD_FOR_INSN:
    case RELOAD_FOR_INSN:
      /* These conflict with other outputs with RELOAD_OTHER.  So
      /* These conflict with other outputs with RELOAD_OTHER.  So
         we need only check for output addresses.  */
         we need only check for output addresses.  */
 
 
      opnum = reload_n_operands;
      opnum = reload_n_operands;
 
 
      /* ... fall through ...  */
      /* ... fall through ...  */
 
 
    case RELOAD_FOR_OUTPUT:
    case RELOAD_FOR_OUTPUT:
    case RELOAD_FOR_OUTPUT_ADDRESS:
    case RELOAD_FOR_OUTPUT_ADDRESS:
    case RELOAD_FOR_OUTADDR_ADDRESS:
    case RELOAD_FOR_OUTADDR_ADDRESS:
      /* We already know these can't conflict with a later output.  So the
      /* We already know these can't conflict with a later output.  So the
         only thing to check are later output addresses.
         only thing to check are later output addresses.
         Note that multiple output operands are emitted in reverse order,
         Note that multiple output operands are emitted in reverse order,
         so the conflicting ones are those with lower indices.  */
         so the conflicting ones are those with lower indices.  */
      for (i = 0; i < opnum; i++)
      for (i = 0; i < opnum; i++)
        if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
        if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
            || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
            || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
          return 0;
          return 0;
 
 
      return 1;
      return 1;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}


/* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
/* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
   Return 0 otherwise.
   Return 0 otherwise.
 
 
   This function uses the same algorithm as reload_reg_free_p above.  */
   This function uses the same algorithm as reload_reg_free_p above.  */
 
 
static int
static int
reloads_conflict (int r1, int r2)
reloads_conflict (int r1, int r2)
{
{
  enum reload_type r1_type = rld[r1].when_needed;
  enum reload_type r1_type = rld[r1].when_needed;
  enum reload_type r2_type = rld[r2].when_needed;
  enum reload_type r2_type = rld[r2].when_needed;
  int r1_opnum = rld[r1].opnum;
  int r1_opnum = rld[r1].opnum;
  int r2_opnum = rld[r2].opnum;
  int r2_opnum = rld[r2].opnum;
 
 
  /* RELOAD_OTHER conflicts with everything.  */
  /* RELOAD_OTHER conflicts with everything.  */
  if (r2_type == RELOAD_OTHER)
  if (r2_type == RELOAD_OTHER)
    return 1;
    return 1;
 
 
  /* Otherwise, check conflicts differently for each type.  */
  /* Otherwise, check conflicts differently for each type.  */
 
 
  switch (r1_type)
  switch (r1_type)
    {
    {
    case RELOAD_FOR_INPUT:
    case RELOAD_FOR_INPUT:
      return (r2_type == RELOAD_FOR_INSN
      return (r2_type == RELOAD_FOR_INSN
              || r2_type == RELOAD_FOR_OPERAND_ADDRESS
              || r2_type == RELOAD_FOR_OPERAND_ADDRESS
              || r2_type == RELOAD_FOR_OPADDR_ADDR
              || r2_type == RELOAD_FOR_OPADDR_ADDR
              || r2_type == RELOAD_FOR_INPUT
              || r2_type == RELOAD_FOR_INPUT
              || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
              || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
                   || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
                   || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
                  && r2_opnum > r1_opnum));
                  && r2_opnum > r1_opnum));
 
 
    case RELOAD_FOR_INPUT_ADDRESS:
    case RELOAD_FOR_INPUT_ADDRESS:
      return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
      return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
              || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
              || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
 
 
    case RELOAD_FOR_INPADDR_ADDRESS:
    case RELOAD_FOR_INPADDR_ADDRESS:
      return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
      return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
              || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
              || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
 
 
    case RELOAD_FOR_OUTPUT_ADDRESS:
    case RELOAD_FOR_OUTPUT_ADDRESS:
      return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
      return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
              || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
              || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
 
 
    case RELOAD_FOR_OUTADDR_ADDRESS:
    case RELOAD_FOR_OUTADDR_ADDRESS:
      return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
      return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
              || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
              || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
 
 
    case RELOAD_FOR_OPERAND_ADDRESS:
    case RELOAD_FOR_OPERAND_ADDRESS:
      return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
      return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
              || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
              || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
 
 
    case RELOAD_FOR_OPADDR_ADDR:
    case RELOAD_FOR_OPADDR_ADDR:
      return (r2_type == RELOAD_FOR_INPUT
      return (r2_type == RELOAD_FOR_INPUT
              || r2_type == RELOAD_FOR_OPADDR_ADDR);
              || r2_type == RELOAD_FOR_OPADDR_ADDR);
 
 
    case RELOAD_FOR_OUTPUT:
    case RELOAD_FOR_OUTPUT:
      return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
      return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
              || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
              || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
                   || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
                   || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
                  && r2_opnum >= r1_opnum));
                  && r2_opnum >= r1_opnum));
 
 
    case RELOAD_FOR_INSN:
    case RELOAD_FOR_INSN:
      return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
      return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
              || r2_type == RELOAD_FOR_INSN
              || r2_type == RELOAD_FOR_INSN
              || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
              || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
 
 
    case RELOAD_FOR_OTHER_ADDRESS:
    case RELOAD_FOR_OTHER_ADDRESS:
      return r2_type == RELOAD_FOR_OTHER_ADDRESS;
      return r2_type == RELOAD_FOR_OTHER_ADDRESS;
 
 
    case RELOAD_OTHER:
    case RELOAD_OTHER:
      return 1;
      return 1;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}


/* Indexed by reload number, 1 if incoming value
/* Indexed by reload number, 1 if incoming value
   inherited from previous insns.  */
   inherited from previous insns.  */
static char reload_inherited[MAX_RELOADS];
static char reload_inherited[MAX_RELOADS];
 
 
/* For an inherited reload, this is the insn the reload was inherited from,
/* For an inherited reload, this is the insn the reload was inherited from,
   if we know it.  Otherwise, this is 0.  */
   if we know it.  Otherwise, this is 0.  */
static rtx reload_inheritance_insn[MAX_RELOADS];
static rtx reload_inheritance_insn[MAX_RELOADS];
 
 
/* If nonzero, this is a place to get the value of the reload,
/* If nonzero, this is a place to get the value of the reload,
   rather than using reload_in.  */
   rather than using reload_in.  */
static rtx reload_override_in[MAX_RELOADS];
static rtx reload_override_in[MAX_RELOADS];
 
 
/* For each reload, the hard register number of the register used,
/* For each reload, the hard register number of the register used,
   or -1 if we did not need a register for this reload.  */
   or -1 if we did not need a register for this reload.  */
static int reload_spill_index[MAX_RELOADS];
static int reload_spill_index[MAX_RELOADS];
 
 
/* Subroutine of free_for_value_p, used to check a single register.
/* Subroutine of free_for_value_p, used to check a single register.
   START_REGNO is the starting regno of the full reload register
   START_REGNO is the starting regno of the full reload register
   (possibly comprising multiple hard registers) that we are considering.  */
   (possibly comprising multiple hard registers) that we are considering.  */
 
 
static int
static int
reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
                             enum reload_type type, rtx value, rtx out,
                             enum reload_type type, rtx value, rtx out,
                             int reloadnum, int ignore_address_reloads)
                             int reloadnum, int ignore_address_reloads)
{
{
  int time1;
  int time1;
  /* Set if we see an input reload that must not share its reload register
  /* Set if we see an input reload that must not share its reload register
     with any new earlyclobber, but might otherwise share the reload
     with any new earlyclobber, but might otherwise share the reload
     register with an output or input-output reload.  */
     register with an output or input-output reload.  */
  int check_earlyclobber = 0;
  int check_earlyclobber = 0;
  int i;
  int i;
  int copy = 0;
  int copy = 0;
 
 
  if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
  if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
    return 0;
    return 0;
 
 
  if (out == const0_rtx)
  if (out == const0_rtx)
    {
    {
      copy = 1;
      copy = 1;
      out = NULL_RTX;
      out = NULL_RTX;
    }
    }
 
 
  /* We use some pseudo 'time' value to check if the lifetimes of the
  /* We use some pseudo 'time' value to check if the lifetimes of the
     new register use would overlap with the one of a previous reload
     new register use would overlap with the one of a previous reload
     that is not read-only or uses a different value.
     that is not read-only or uses a different value.
     The 'time' used doesn't have to be linear in any shape or form, just
     The 'time' used doesn't have to be linear in any shape or form, just
     monotonic.
     monotonic.
     Some reload types use different 'buckets' for each operand.
     Some reload types use different 'buckets' for each operand.
     So there are MAX_RECOG_OPERANDS different time values for each
     So there are MAX_RECOG_OPERANDS different time values for each
     such reload type.
     such reload type.
     We compute TIME1 as the time when the register for the prospective
     We compute TIME1 as the time when the register for the prospective
     new reload ceases to be live, and TIME2 for each existing
     new reload ceases to be live, and TIME2 for each existing
     reload as the time when that the reload register of that reload
     reload as the time when that the reload register of that reload
     becomes live.
     becomes live.
     Where there is little to be gained by exact lifetime calculations,
     Where there is little to be gained by exact lifetime calculations,
     we just make conservative assumptions, i.e. a longer lifetime;
     we just make conservative assumptions, i.e. a longer lifetime;
     this is done in the 'default:' cases.  */
     this is done in the 'default:' cases.  */
  switch (type)
  switch (type)
    {
    {
    case RELOAD_FOR_OTHER_ADDRESS:
    case RELOAD_FOR_OTHER_ADDRESS:
      /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads.  */
      /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads.  */
      time1 = copy ? 0 : 1;
      time1 = copy ? 0 : 1;
      break;
      break;
    case RELOAD_OTHER:
    case RELOAD_OTHER:
      time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
      time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
      break;
      break;
      /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
      /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
         RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT.  By adding 0 / 1 / 2 ,
         RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT.  By adding 0 / 1 / 2 ,
         respectively, to the time values for these, we get distinct time
         respectively, to the time values for these, we get distinct time
         values.  To get distinct time values for each operand, we have to
         values.  To get distinct time values for each operand, we have to
         multiply opnum by at least three.  We round that up to four because
         multiply opnum by at least three.  We round that up to four because
         multiply by four is often cheaper.  */
         multiply by four is often cheaper.  */
    case RELOAD_FOR_INPADDR_ADDRESS:
    case RELOAD_FOR_INPADDR_ADDRESS:
      time1 = opnum * 4 + 2;
      time1 = opnum * 4 + 2;
      break;
      break;
    case RELOAD_FOR_INPUT_ADDRESS:
    case RELOAD_FOR_INPUT_ADDRESS:
      time1 = opnum * 4 + 3;
      time1 = opnum * 4 + 3;
      break;
      break;
    case RELOAD_FOR_INPUT:
    case RELOAD_FOR_INPUT:
      /* All RELOAD_FOR_INPUT reloads remain live till the instruction
      /* All RELOAD_FOR_INPUT reloads remain live till the instruction
         executes (inclusive).  */
         executes (inclusive).  */
      time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
      time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
      break;
      break;
    case RELOAD_FOR_OPADDR_ADDR:
    case RELOAD_FOR_OPADDR_ADDR:
      /* opnum * 4 + 4
      /* opnum * 4 + 4
         <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
         <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
      time1 = MAX_RECOG_OPERANDS * 4 + 1;
      time1 = MAX_RECOG_OPERANDS * 4 + 1;
      break;
      break;
    case RELOAD_FOR_OPERAND_ADDRESS:
    case RELOAD_FOR_OPERAND_ADDRESS:
      /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
      /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
         is executed.  */
         is executed.  */
      time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
      time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
      break;
      break;
    case RELOAD_FOR_OUTADDR_ADDRESS:
    case RELOAD_FOR_OUTADDR_ADDRESS:
      time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
      time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
      break;
      break;
    case RELOAD_FOR_OUTPUT_ADDRESS:
    case RELOAD_FOR_OUTPUT_ADDRESS:
      time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
      time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
      break;
      break;
    default:
    default:
      time1 = MAX_RECOG_OPERANDS * 5 + 5;
      time1 = MAX_RECOG_OPERANDS * 5 + 5;
    }
    }
 
 
  for (i = 0; i < n_reloads; i++)
  for (i = 0; i < n_reloads; i++)
    {
    {
      rtx reg = rld[i].reg_rtx;
      rtx reg = rld[i].reg_rtx;
      if (reg && REG_P (reg)
      if (reg && REG_P (reg)
          && ((unsigned) regno - true_regnum (reg)
          && ((unsigned) regno - true_regnum (reg)
              <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
              <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
          && i != reloadnum)
          && i != reloadnum)
        {
        {
          rtx other_input = rld[i].in;
          rtx other_input = rld[i].in;
 
 
          /* If the other reload loads the same input value, that
          /* If the other reload loads the same input value, that
             will not cause a conflict only if it's loading it into
             will not cause a conflict only if it's loading it into
             the same register.  */
             the same register.  */
          if (true_regnum (reg) != start_regno)
          if (true_regnum (reg) != start_regno)
            other_input = NULL_RTX;
            other_input = NULL_RTX;
          if (! other_input || ! rtx_equal_p (other_input, value)
          if (! other_input || ! rtx_equal_p (other_input, value)
              || rld[i].out || out)
              || rld[i].out || out)
            {
            {
              int time2;
              int time2;
              switch (rld[i].when_needed)
              switch (rld[i].when_needed)
                {
                {
                case RELOAD_FOR_OTHER_ADDRESS:
                case RELOAD_FOR_OTHER_ADDRESS:
                  time2 = 0;
                  time2 = 0;
                  break;
                  break;
                case RELOAD_FOR_INPADDR_ADDRESS:
                case RELOAD_FOR_INPADDR_ADDRESS:
                  /* find_reloads makes sure that a
                  /* find_reloads makes sure that a
                     RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
                     RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
                     by at most one - the first -
                     by at most one - the first -
                     RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS .  If the
                     RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS .  If the
                     address reload is inherited, the address address reload
                     address reload is inherited, the address address reload
                     goes away, so we can ignore this conflict.  */
                     goes away, so we can ignore this conflict.  */
                  if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
                  if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
                      && ignore_address_reloads
                      && ignore_address_reloads
                      /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
                      /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
                         Then the address address is still needed to store
                         Then the address address is still needed to store
                         back the new address.  */
                         back the new address.  */
                      && ! rld[reloadnum].out)
                      && ! rld[reloadnum].out)
                    continue;
                    continue;
                  /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
                  /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
                     RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
                     RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
                     reloads go away.  */
                     reloads go away.  */
                  if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
                  if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
                      && ignore_address_reloads
                      && ignore_address_reloads
                      /* Unless we are reloading an auto_inc expression.  */
                      /* Unless we are reloading an auto_inc expression.  */
                      && ! rld[reloadnum].out)
                      && ! rld[reloadnum].out)
                    continue;
                    continue;
                  time2 = rld[i].opnum * 4 + 2;
                  time2 = rld[i].opnum * 4 + 2;
                  break;
                  break;
                case RELOAD_FOR_INPUT_ADDRESS:
                case RELOAD_FOR_INPUT_ADDRESS:
                  if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
                  if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
                      && ignore_address_reloads
                      && ignore_address_reloads
                      && ! rld[reloadnum].out)
                      && ! rld[reloadnum].out)
                    continue;
                    continue;
                  time2 = rld[i].opnum * 4 + 3;
                  time2 = rld[i].opnum * 4 + 3;
                  break;
                  break;
                case RELOAD_FOR_INPUT:
                case RELOAD_FOR_INPUT:
                  time2 = rld[i].opnum * 4 + 4;
                  time2 = rld[i].opnum * 4 + 4;
                  check_earlyclobber = 1;
                  check_earlyclobber = 1;
                  break;
                  break;
                  /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
                  /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
                     == MAX_RECOG_OPERAND * 4  */
                     == MAX_RECOG_OPERAND * 4  */
                case RELOAD_FOR_OPADDR_ADDR:
                case RELOAD_FOR_OPADDR_ADDR:
                  if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
                  if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
                      && ignore_address_reloads
                      && ignore_address_reloads
                      && ! rld[reloadnum].out)
                      && ! rld[reloadnum].out)
                    continue;
                    continue;
                  time2 = MAX_RECOG_OPERANDS * 4 + 1;
                  time2 = MAX_RECOG_OPERANDS * 4 + 1;
                  break;
                  break;
                case RELOAD_FOR_OPERAND_ADDRESS:
                case RELOAD_FOR_OPERAND_ADDRESS:
                  time2 = MAX_RECOG_OPERANDS * 4 + 2;
                  time2 = MAX_RECOG_OPERANDS * 4 + 2;
                  check_earlyclobber = 1;
                  check_earlyclobber = 1;
                  break;
                  break;
                case RELOAD_FOR_INSN:
                case RELOAD_FOR_INSN:
                  time2 = MAX_RECOG_OPERANDS * 4 + 3;
                  time2 = MAX_RECOG_OPERANDS * 4 + 3;
                  break;
                  break;
                case RELOAD_FOR_OUTPUT:
                case RELOAD_FOR_OUTPUT:
                  /* All RELOAD_FOR_OUTPUT reloads become live just after the
                  /* All RELOAD_FOR_OUTPUT reloads become live just after the
                     instruction is executed.  */
                     instruction is executed.  */
                  time2 = MAX_RECOG_OPERANDS * 4 + 4;
                  time2 = MAX_RECOG_OPERANDS * 4 + 4;
                  break;
                  break;
                  /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
                  /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
                     the RELOAD_FOR_OUTPUT reloads, so assign it the same time
                     the RELOAD_FOR_OUTPUT reloads, so assign it the same time
                     value.  */
                     value.  */
                case RELOAD_FOR_OUTADDR_ADDRESS:
                case RELOAD_FOR_OUTADDR_ADDRESS:
                  if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
                  if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
                      && ignore_address_reloads
                      && ignore_address_reloads
                      && ! rld[reloadnum].out)
                      && ! rld[reloadnum].out)
                    continue;
                    continue;
                  time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
                  time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
                  break;
                  break;
                case RELOAD_FOR_OUTPUT_ADDRESS:
                case RELOAD_FOR_OUTPUT_ADDRESS:
                  time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
                  time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
                  break;
                  break;
                case RELOAD_OTHER:
                case RELOAD_OTHER:
                  /* If there is no conflict in the input part, handle this
                  /* If there is no conflict in the input part, handle this
                     like an output reload.  */
                     like an output reload.  */
                  if (! rld[i].in || rtx_equal_p (other_input, value))
                  if (! rld[i].in || rtx_equal_p (other_input, value))
                    {
                    {
                      time2 = MAX_RECOG_OPERANDS * 4 + 4;
                      time2 = MAX_RECOG_OPERANDS * 4 + 4;
                      /* Earlyclobbered outputs must conflict with inputs.  */
                      /* Earlyclobbered outputs must conflict with inputs.  */
                      if (earlyclobber_operand_p (rld[i].out))
                      if (earlyclobber_operand_p (rld[i].out))
                        time2 = MAX_RECOG_OPERANDS * 4 + 3;
                        time2 = MAX_RECOG_OPERANDS * 4 + 3;
 
 
                      break;
                      break;
                    }
                    }
                  time2 = 1;
                  time2 = 1;
                  /* RELOAD_OTHER might be live beyond instruction execution,
                  /* RELOAD_OTHER might be live beyond instruction execution,
                     but this is not obvious when we set time2 = 1.  So check
                     but this is not obvious when we set time2 = 1.  So check
                     here if there might be a problem with the new reload
                     here if there might be a problem with the new reload
                     clobbering the register used by the RELOAD_OTHER.  */
                     clobbering the register used by the RELOAD_OTHER.  */
                  if (out)
                  if (out)
                    return 0;
                    return 0;
                  break;
                  break;
                default:
                default:
                  return 0;
                  return 0;
                }
                }
              if ((time1 >= time2
              if ((time1 >= time2
                   && (! rld[i].in || rld[i].out
                   && (! rld[i].in || rld[i].out
                       || ! rtx_equal_p (other_input, value)))
                       || ! rtx_equal_p (other_input, value)))
                  || (out && rld[reloadnum].out_reg
                  || (out && rld[reloadnum].out_reg
                      && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
                      && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
                return 0;
                return 0;
            }
            }
        }
        }
    }
    }
 
 
  /* Earlyclobbered outputs must conflict with inputs.  */
  /* Earlyclobbered outputs must conflict with inputs.  */
  if (check_earlyclobber && out && earlyclobber_operand_p (out))
  if (check_earlyclobber && out && earlyclobber_operand_p (out))
    return 0;
    return 0;
 
 
  return 1;
  return 1;
}
}
 
 
/* Return 1 if the value in reload reg REGNO, as used by a reload
/* Return 1 if the value in reload reg REGNO, as used by a reload
   needed for the part of the insn specified by OPNUM and TYPE,
   needed for the part of the insn specified by OPNUM and TYPE,
   may be used to load VALUE into it.
   may be used to load VALUE into it.
 
 
   MODE is the mode in which the register is used, this is needed to
   MODE is the mode in which the register is used, this is needed to
   determine how many hard regs to test.
   determine how many hard regs to test.
 
 
   Other read-only reloads with the same value do not conflict
   Other read-only reloads with the same value do not conflict
   unless OUT is nonzero and these other reloads have to live while
   unless OUT is nonzero and these other reloads have to live while
   output reloads live.
   output reloads live.
   If OUT is CONST0_RTX, this is a special case: it means that the
   If OUT is CONST0_RTX, this is a special case: it means that the
   test should not be for using register REGNO as reload register, but
   test should not be for using register REGNO as reload register, but
   for copying from register REGNO into the reload register.
   for copying from register REGNO into the reload register.
 
 
   RELOADNUM is the number of the reload we want to load this value for;
   RELOADNUM is the number of the reload we want to load this value for;
   a reload does not conflict with itself.
   a reload does not conflict with itself.
 
 
   When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
   When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
   reloads that load an address for the very reload we are considering.
   reloads that load an address for the very reload we are considering.
 
 
   The caller has to make sure that there is no conflict with the return
   The caller has to make sure that there is no conflict with the return
   register.  */
   register.  */
 
 
static int
static int
free_for_value_p (int regno, enum machine_mode mode, int opnum,
free_for_value_p (int regno, enum machine_mode mode, int opnum,
                  enum reload_type type, rtx value, rtx out, int reloadnum,
                  enum reload_type type, rtx value, rtx out, int reloadnum,
                  int ignore_address_reloads)
                  int ignore_address_reloads)
{
{
  int nregs = hard_regno_nregs[regno][mode];
  int nregs = hard_regno_nregs[regno][mode];
  while (nregs-- > 0)
  while (nregs-- > 0)
    if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
    if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
                                       value, out, reloadnum,
                                       value, out, reloadnum,
                                       ignore_address_reloads))
                                       ignore_address_reloads))
      return 0;
      return 0;
  return 1;
  return 1;
}
}
 
 
/* Return nonzero if the rtx X is invariant over the current function.  */
/* Return nonzero if the rtx X is invariant over the current function.  */
/* ??? Actually, the places where we use this expect exactly what is
/* ??? Actually, the places where we use this expect exactly what is
   tested here, and not everything that is function invariant.  In
   tested here, and not everything that is function invariant.  In
   particular, the frame pointer and arg pointer are special cased;
   particular, the frame pointer and arg pointer are special cased;
   pic_offset_table_rtx is not, and we must not spill these things to
   pic_offset_table_rtx is not, and we must not spill these things to
   memory.  */
   memory.  */
 
 
int
int
function_invariant_p (rtx x)
function_invariant_p (rtx x)
{
{
  if (CONSTANT_P (x))
  if (CONSTANT_P (x))
    return 1;
    return 1;
  if (x == frame_pointer_rtx || x == arg_pointer_rtx)
  if (x == frame_pointer_rtx || x == arg_pointer_rtx)
    return 1;
    return 1;
  if (GET_CODE (x) == PLUS
  if (GET_CODE (x) == PLUS
      && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
      && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
      && CONSTANT_P (XEXP (x, 1)))
      && CONSTANT_P (XEXP (x, 1)))
    return 1;
    return 1;
  return 0;
  return 0;
}
}
 
 
/* Determine whether the reload reg X overlaps any rtx'es used for
/* Determine whether the reload reg X overlaps any rtx'es used for
   overriding inheritance.  Return nonzero if so.  */
   overriding inheritance.  Return nonzero if so.  */
 
 
static int
static int
conflicts_with_override (rtx x)
conflicts_with_override (rtx x)
{
{
  int i;
  int i;
  for (i = 0; i < n_reloads; i++)
  for (i = 0; i < n_reloads; i++)
    if (reload_override_in[i]
    if (reload_override_in[i]
        && reg_overlap_mentioned_p (x, reload_override_in[i]))
        && reg_overlap_mentioned_p (x, reload_override_in[i]))
      return 1;
      return 1;
  return 0;
  return 0;
}
}


/* Give an error message saying we failed to find a reload for INSN,
/* Give an error message saying we failed to find a reload for INSN,
   and clear out reload R.  */
   and clear out reload R.  */
static void
static void
failed_reload (rtx insn, int r)
failed_reload (rtx insn, int r)
{
{
  if (asm_noperands (PATTERN (insn)) < 0)
  if (asm_noperands (PATTERN (insn)) < 0)
    /* It's the compiler's fault.  */
    /* It's the compiler's fault.  */
    fatal_insn ("could not find a spill register", insn);
    fatal_insn ("could not find a spill register", insn);
 
 
  /* It's the user's fault; the operand's mode and constraint
  /* It's the user's fault; the operand's mode and constraint
     don't match.  Disable this reload so we don't crash in final.  */
     don't match.  Disable this reload so we don't crash in final.  */
  error_for_asm (insn,
  error_for_asm (insn,
                 "%<asm%> operand constraint incompatible with operand size");
                 "%<asm%> operand constraint incompatible with operand size");
  rld[r].in = 0;
  rld[r].in = 0;
  rld[r].out = 0;
  rld[r].out = 0;
  rld[r].reg_rtx = 0;
  rld[r].reg_rtx = 0;
  rld[r].optional = 1;
  rld[r].optional = 1;
  rld[r].secondary_p = 1;
  rld[r].secondary_p = 1;
}
}
 
 
/* I is the index in SPILL_REG_RTX of the reload register we are to allocate
/* I is the index in SPILL_REG_RTX of the reload register we are to allocate
   for reload R.  If it's valid, get an rtx for it.  Return nonzero if
   for reload R.  If it's valid, get an rtx for it.  Return nonzero if
   successful.  */
   successful.  */
static int
static int
set_reload_reg (int i, int r)
set_reload_reg (int i, int r)
{
{
  int regno;
  int regno;
  rtx reg = spill_reg_rtx[i];
  rtx reg = spill_reg_rtx[i];
 
 
  if (reg == 0 || GET_MODE (reg) != rld[r].mode)
  if (reg == 0 || GET_MODE (reg) != rld[r].mode)
    spill_reg_rtx[i] = reg
    spill_reg_rtx[i] = reg
      = gen_rtx_REG (rld[r].mode, spill_regs[i]);
      = gen_rtx_REG (rld[r].mode, spill_regs[i]);
 
 
  regno = true_regnum (reg);
  regno = true_regnum (reg);
 
 
  /* Detect when the reload reg can't hold the reload mode.
  /* Detect when the reload reg can't hold the reload mode.
     This used to be one `if', but Sequent compiler can't handle that.  */
     This used to be one `if', but Sequent compiler can't handle that.  */
  if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
  if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
    {
    {
      enum machine_mode test_mode = VOIDmode;
      enum machine_mode test_mode = VOIDmode;
      if (rld[r].in)
      if (rld[r].in)
        test_mode = GET_MODE (rld[r].in);
        test_mode = GET_MODE (rld[r].in);
      /* If rld[r].in has VOIDmode, it means we will load it
      /* If rld[r].in has VOIDmode, it means we will load it
         in whatever mode the reload reg has: to wit, rld[r].mode.
         in whatever mode the reload reg has: to wit, rld[r].mode.
         We have already tested that for validity.  */
         We have already tested that for validity.  */
      /* Aside from that, we need to test that the expressions
      /* Aside from that, we need to test that the expressions
         to reload from or into have modes which are valid for this
         to reload from or into have modes which are valid for this
         reload register.  Otherwise the reload insns would be invalid.  */
         reload register.  Otherwise the reload insns would be invalid.  */
      if (! (rld[r].in != 0 && test_mode != VOIDmode
      if (! (rld[r].in != 0 && test_mode != VOIDmode
             && ! HARD_REGNO_MODE_OK (regno, test_mode)))
             && ! HARD_REGNO_MODE_OK (regno, test_mode)))
        if (! (rld[r].out != 0
        if (! (rld[r].out != 0
               && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
               && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
          {
          {
            /* The reg is OK.  */
            /* The reg is OK.  */
            last_spill_reg = i;
            last_spill_reg = i;
 
 
            /* Mark as in use for this insn the reload regs we use
            /* Mark as in use for this insn the reload regs we use
               for this.  */
               for this.  */
            mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
            mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
                                    rld[r].when_needed, rld[r].mode);
                                    rld[r].when_needed, rld[r].mode);
 
 
            rld[r].reg_rtx = reg;
            rld[r].reg_rtx = reg;
            reload_spill_index[r] = spill_regs[i];
            reload_spill_index[r] = spill_regs[i];
            return 1;
            return 1;
          }
          }
    }
    }
  return 0;
  return 0;
}
}
 
 
/* Find a spill register to use as a reload register for reload R.
/* Find a spill register to use as a reload register for reload R.
   LAST_RELOAD is nonzero if this is the last reload for the insn being
   LAST_RELOAD is nonzero if this is the last reload for the insn being
   processed.
   processed.
 
 
   Set rld[R].reg_rtx to the register allocated.
   Set rld[R].reg_rtx to the register allocated.
 
 
   We return 1 if successful, or 0 if we couldn't find a spill reg and
   We return 1 if successful, or 0 if we couldn't find a spill reg and
   we didn't change anything.  */
   we didn't change anything.  */
 
 
static int
static int
allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
                     int last_reload)
                     int last_reload)
{
{
  int i, pass, count;
  int i, pass, count;
 
 
  /* If we put this reload ahead, thinking it is a group,
  /* If we put this reload ahead, thinking it is a group,
     then insist on finding a group.  Otherwise we can grab a
     then insist on finding a group.  Otherwise we can grab a
     reg that some other reload needs.
     reg that some other reload needs.
     (That can happen when we have a 68000 DATA_OR_FP_REG
     (That can happen when we have a 68000 DATA_OR_FP_REG
     which is a group of data regs or one fp reg.)
     which is a group of data regs or one fp reg.)
     We need not be so restrictive if there are no more reloads
     We need not be so restrictive if there are no more reloads
     for this insn.
     for this insn.
 
 
     ??? Really it would be nicer to have smarter handling
     ??? Really it would be nicer to have smarter handling
     for that kind of reg class, where a problem like this is normal.
     for that kind of reg class, where a problem like this is normal.
     Perhaps those classes should be avoided for reloading
     Perhaps those classes should be avoided for reloading
     by use of more alternatives.  */
     by use of more alternatives.  */
 
 
  int force_group = rld[r].nregs > 1 && ! last_reload;
  int force_group = rld[r].nregs > 1 && ! last_reload;
 
 
  /* If we want a single register and haven't yet found one,
  /* If we want a single register and haven't yet found one,
     take any reg in the right class and not in use.
     take any reg in the right class and not in use.
     If we want a consecutive group, here is where we look for it.
     If we want a consecutive group, here is where we look for it.
 
 
     We use two passes so we can first look for reload regs to
     We use two passes so we can first look for reload regs to
     reuse, which are already in use for other reloads in this insn,
     reuse, which are already in use for other reloads in this insn,
     and only then use additional registers.
     and only then use additional registers.
     I think that maximizing reuse is needed to make sure we don't
     I think that maximizing reuse is needed to make sure we don't
     run out of reload regs.  Suppose we have three reloads, and
     run out of reload regs.  Suppose we have three reloads, and
     reloads A and B can share regs.  These need two regs.
     reloads A and B can share regs.  These need two regs.
     Suppose A and B are given different regs.
     Suppose A and B are given different regs.
     That leaves none for C.  */
     That leaves none for C.  */
  for (pass = 0; pass < 2; pass++)
  for (pass = 0; pass < 2; pass++)
    {
    {
      /* I is the index in spill_regs.
      /* I is the index in spill_regs.
         We advance it round-robin between insns to use all spill regs
         We advance it round-robin between insns to use all spill regs
         equally, so that inherited reloads have a chance
         equally, so that inherited reloads have a chance
         of leapfrogging each other.  */
         of leapfrogging each other.  */
 
 
      i = last_spill_reg;
      i = last_spill_reg;
 
 
      for (count = 0; count < n_spills; count++)
      for (count = 0; count < n_spills; count++)
        {
        {
          int class = (int) rld[r].class;
          int class = (int) rld[r].class;
          int regnum;
          int regnum;
 
 
          i++;
          i++;
          if (i >= n_spills)
          if (i >= n_spills)
            i -= n_spills;
            i -= n_spills;
          regnum = spill_regs[i];
          regnum = spill_regs[i];
 
 
          if ((reload_reg_free_p (regnum, rld[r].opnum,
          if ((reload_reg_free_p (regnum, rld[r].opnum,
                                  rld[r].when_needed)
                                  rld[r].when_needed)
               || (rld[r].in
               || (rld[r].in
                   /* We check reload_reg_used to make sure we
                   /* We check reload_reg_used to make sure we
                      don't clobber the return register.  */
                      don't clobber the return register.  */
                   && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
                   && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
                   && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
                   && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
                                        rld[r].when_needed, rld[r].in,
                                        rld[r].when_needed, rld[r].in,
                                        rld[r].out, r, 1)))
                                        rld[r].out, r, 1)))
              && TEST_HARD_REG_BIT (reg_class_contents[class], regnum)
              && TEST_HARD_REG_BIT (reg_class_contents[class], regnum)
              && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
              && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
              /* Look first for regs to share, then for unshared.  But
              /* Look first for regs to share, then for unshared.  But
                 don't share regs used for inherited reloads; they are
                 don't share regs used for inherited reloads; they are
                 the ones we want to preserve.  */
                 the ones we want to preserve.  */
              && (pass
              && (pass
                  || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
                  || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
                                         regnum)
                                         regnum)
                      && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
                      && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
                                              regnum))))
                                              regnum))))
            {
            {
              int nr = hard_regno_nregs[regnum][rld[r].mode];
              int nr = hard_regno_nregs[regnum][rld[r].mode];
              /* Avoid the problem where spilling a GENERAL_OR_FP_REG
              /* Avoid the problem where spilling a GENERAL_OR_FP_REG
                 (on 68000) got us two FP regs.  If NR is 1,
                 (on 68000) got us two FP regs.  If NR is 1,
                 we would reject both of them.  */
                 we would reject both of them.  */
              if (force_group)
              if (force_group)
                nr = rld[r].nregs;
                nr = rld[r].nregs;
              /* If we need only one reg, we have already won.  */
              /* If we need only one reg, we have already won.  */
              if (nr == 1)
              if (nr == 1)
                {
                {
                  /* But reject a single reg if we demand a group.  */
                  /* But reject a single reg if we demand a group.  */
                  if (force_group)
                  if (force_group)
                    continue;
                    continue;
                  break;
                  break;
                }
                }
              /* Otherwise check that as many consecutive regs as we need
              /* Otherwise check that as many consecutive regs as we need
                 are available here.  */
                 are available here.  */
              while (nr > 1)
              while (nr > 1)
                {
                {
                  int regno = regnum + nr - 1;
                  int regno = regnum + nr - 1;
                  if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
                  if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
                        && spill_reg_order[regno] >= 0
                        && spill_reg_order[regno] >= 0
                        && reload_reg_free_p (regno, rld[r].opnum,
                        && reload_reg_free_p (regno, rld[r].opnum,
                                              rld[r].when_needed)))
                                              rld[r].when_needed)))
                    break;
                    break;
                  nr--;
                  nr--;
                }
                }
              if (nr == 1)
              if (nr == 1)
                break;
                break;
            }
            }
        }
        }
 
 
      /* If we found something on pass 1, omit pass 2.  */
      /* If we found something on pass 1, omit pass 2.  */
      if (count < n_spills)
      if (count < n_spills)
        break;
        break;
    }
    }
 
 
  /* We should have found a spill register by now.  */
  /* We should have found a spill register by now.  */
  if (count >= n_spills)
  if (count >= n_spills)
    return 0;
    return 0;
 
 
  /* I is the index in SPILL_REG_RTX of the reload register we are to
  /* I is the index in SPILL_REG_RTX of the reload register we are to
     allocate.  Get an rtx for it and find its register number.  */
     allocate.  Get an rtx for it and find its register number.  */
 
 
  return set_reload_reg (i, r);
  return set_reload_reg (i, r);
}
}


/* Initialize all the tables needed to allocate reload registers.
/* Initialize all the tables needed to allocate reload registers.
   CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
   CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
   is the array we use to restore the reg_rtx field for every reload.  */
   is the array we use to restore the reg_rtx field for every reload.  */
 
 
static void
static void
choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
{
{
  int i;
  int i;
 
 
  for (i = 0; i < n_reloads; i++)
  for (i = 0; i < n_reloads; i++)
    rld[i].reg_rtx = save_reload_reg_rtx[i];
    rld[i].reg_rtx = save_reload_reg_rtx[i];
 
 
  memset (reload_inherited, 0, MAX_RELOADS);
  memset (reload_inherited, 0, MAX_RELOADS);
  memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
  memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
  memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
  memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
 
 
  CLEAR_HARD_REG_SET (reload_reg_used);
  CLEAR_HARD_REG_SET (reload_reg_used);
  CLEAR_HARD_REG_SET (reload_reg_used_at_all);
  CLEAR_HARD_REG_SET (reload_reg_used_at_all);
  CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
  CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
  CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
  CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
  CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
  CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
  CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
  CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
 
 
  CLEAR_HARD_REG_SET (reg_used_in_insn);
  CLEAR_HARD_REG_SET (reg_used_in_insn);
  {
  {
    HARD_REG_SET tmp;
    HARD_REG_SET tmp;
    REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
    REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
    IOR_HARD_REG_SET (reg_used_in_insn, tmp);
    IOR_HARD_REG_SET (reg_used_in_insn, tmp);
    REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
    REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
    IOR_HARD_REG_SET (reg_used_in_insn, tmp);
    IOR_HARD_REG_SET (reg_used_in_insn, tmp);
    compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
    compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
    compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
    compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
  }
  }
 
 
  for (i = 0; i < reload_n_operands; i++)
  for (i = 0; i < reload_n_operands; i++)
    {
    {
      CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
      CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
      CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
      CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
      CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
      CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
      CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
      CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
      CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
      CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
      CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
      CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
    }
    }
 
 
  COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
  COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
 
 
  CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
  CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
 
 
  for (i = 0; i < n_reloads; i++)
  for (i = 0; i < n_reloads; i++)
    /* If we have already decided to use a certain register,
    /* If we have already decided to use a certain register,
       don't use it in another way.  */
       don't use it in another way.  */
    if (rld[i].reg_rtx)
    if (rld[i].reg_rtx)
      mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
      mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
                              rld[i].when_needed, rld[i].mode);
                              rld[i].when_needed, rld[i].mode);
}
}
 
 
/* Assign hard reg targets for the pseudo-registers we must reload
/* Assign hard reg targets for the pseudo-registers we must reload
   into hard regs for this insn.
   into hard regs for this insn.
   Also output the instructions to copy them in and out of the hard regs.
   Also output the instructions to copy them in and out of the hard regs.
 
 
   For machines with register classes, we are responsible for
   For machines with register classes, we are responsible for
   finding a reload reg in the proper class.  */
   finding a reload reg in the proper class.  */
 
 
static void
static void
choose_reload_regs (struct insn_chain *chain)
choose_reload_regs (struct insn_chain *chain)
{
{
  rtx insn = chain->insn;
  rtx insn = chain->insn;
  int i, j;
  int i, j;
  unsigned int max_group_size = 1;
  unsigned int max_group_size = 1;
  enum reg_class group_class = NO_REGS;
  enum reg_class group_class = NO_REGS;
  int pass, win, inheritance;
  int pass, win, inheritance;
 
 
  rtx save_reload_reg_rtx[MAX_RELOADS];
  rtx save_reload_reg_rtx[MAX_RELOADS];
 
 
  /* In order to be certain of getting the registers we need,
  /* In order to be certain of getting the registers we need,
     we must sort the reloads into order of increasing register class.
     we must sort the reloads into order of increasing register class.
     Then our grabbing of reload registers will parallel the process
     Then our grabbing of reload registers will parallel the process
     that provided the reload registers.
     that provided the reload registers.
 
 
     Also note whether any of the reloads wants a consecutive group of regs.
     Also note whether any of the reloads wants a consecutive group of regs.
     If so, record the maximum size of the group desired and what
     If so, record the maximum size of the group desired and what
     register class contains all the groups needed by this insn.  */
     register class contains all the groups needed by this insn.  */
 
 
  for (j = 0; j < n_reloads; j++)
  for (j = 0; j < n_reloads; j++)
    {
    {
      reload_order[j] = j;
      reload_order[j] = j;
      if (rld[j].reg_rtx != NULL_RTX)
      if (rld[j].reg_rtx != NULL_RTX)
        {
        {
          gcc_assert (REG_P (rld[j].reg_rtx)
          gcc_assert (REG_P (rld[j].reg_rtx)
                      && HARD_REGISTER_P (rld[j].reg_rtx));
                      && HARD_REGISTER_P (rld[j].reg_rtx));
          reload_spill_index[j] = REGNO (rld[j].reg_rtx);
          reload_spill_index[j] = REGNO (rld[j].reg_rtx);
        }
        }
      else
      else
        reload_spill_index[j] = -1;
        reload_spill_index[j] = -1;
 
 
      if (rld[j].nregs > 1)
      if (rld[j].nregs > 1)
        {
        {
          max_group_size = MAX (rld[j].nregs, max_group_size);
          max_group_size = MAX (rld[j].nregs, max_group_size);
          group_class
          group_class
            = reg_class_superunion[(int) rld[j].class][(int) group_class];
            = reg_class_superunion[(int) rld[j].class][(int) group_class];
        }
        }
 
 
      save_reload_reg_rtx[j] = rld[j].reg_rtx;
      save_reload_reg_rtx[j] = rld[j].reg_rtx;
    }
    }
 
 
  if (n_reloads > 1)
  if (n_reloads > 1)
    qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
    qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
 
 
  /* If -O, try first with inheritance, then turning it off.
  /* If -O, try first with inheritance, then turning it off.
     If not -O, don't do inheritance.
     If not -O, don't do inheritance.
     Using inheritance when not optimizing leads to paradoxes
     Using inheritance when not optimizing leads to paradoxes
     with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
     with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
     because one side of the comparison might be inherited.  */
     because one side of the comparison might be inherited.  */
  win = 0;
  win = 0;
  for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
  for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
    {
    {
      choose_reload_regs_init (chain, save_reload_reg_rtx);
      choose_reload_regs_init (chain, save_reload_reg_rtx);
 
 
      /* Process the reloads in order of preference just found.
      /* Process the reloads in order of preference just found.
         Beyond this point, subregs can be found in reload_reg_rtx.
         Beyond this point, subregs can be found in reload_reg_rtx.
 
 
         This used to look for an existing reloaded home for all of the
         This used to look for an existing reloaded home for all of the
         reloads, and only then perform any new reloads.  But that could lose
         reloads, and only then perform any new reloads.  But that could lose
         if the reloads were done out of reg-class order because a later
         if the reloads were done out of reg-class order because a later
         reload with a looser constraint might have an old home in a register
         reload with a looser constraint might have an old home in a register
         needed by an earlier reload with a tighter constraint.
         needed by an earlier reload with a tighter constraint.
 
 
         To solve this, we make two passes over the reloads, in the order
         To solve this, we make two passes over the reloads, in the order
         described above.  In the first pass we try to inherit a reload
         described above.  In the first pass we try to inherit a reload
         from a previous insn.  If there is a later reload that needs a
         from a previous insn.  If there is a later reload that needs a
         class that is a proper subset of the class being processed, we must
         class that is a proper subset of the class being processed, we must
         also allocate a spill register during the first pass.
         also allocate a spill register during the first pass.
 
 
         Then make a second pass over the reloads to allocate any reloads
         Then make a second pass over the reloads to allocate any reloads
         that haven't been given registers yet.  */
         that haven't been given registers yet.  */
 
 
      for (j = 0; j < n_reloads; j++)
      for (j = 0; j < n_reloads; j++)
        {
        {
          int r = reload_order[j];
          int r = reload_order[j];
          rtx search_equiv = NULL_RTX;
          rtx search_equiv = NULL_RTX;
 
 
          /* Ignore reloads that got marked inoperative.  */
          /* Ignore reloads that got marked inoperative.  */
          if (rld[r].out == 0 && rld[r].in == 0
          if (rld[r].out == 0 && rld[r].in == 0
              && ! rld[r].secondary_p)
              && ! rld[r].secondary_p)
            continue;
            continue;
 
 
          /* If find_reloads chose to use reload_in or reload_out as a reload
          /* If find_reloads chose to use reload_in or reload_out as a reload
             register, we don't need to chose one.  Otherwise, try even if it
             register, we don't need to chose one.  Otherwise, try even if it
             found one since we might save an insn if we find the value lying
             found one since we might save an insn if we find the value lying
             around.
             around.
             Try also when reload_in is a pseudo without a hard reg.  */
             Try also when reload_in is a pseudo without a hard reg.  */
          if (rld[r].in != 0 && rld[r].reg_rtx != 0
          if (rld[r].in != 0 && rld[r].reg_rtx != 0
              && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
              && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
                  || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
                  || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
                      && !MEM_P (rld[r].in)
                      && !MEM_P (rld[r].in)
                      && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
                      && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
            continue;
            continue;
 
 
#if 0 /* No longer needed for correct operation.
#if 0 /* No longer needed for correct operation.
         It might give better code, or might not; worth an experiment?  */
         It might give better code, or might not; worth an experiment?  */
          /* If this is an optional reload, we can't inherit from earlier insns
          /* If this is an optional reload, we can't inherit from earlier insns
             until we are sure that any non-optional reloads have been allocated.
             until we are sure that any non-optional reloads have been allocated.
             The following code takes advantage of the fact that optional reloads
             The following code takes advantage of the fact that optional reloads
             are at the end of reload_order.  */
             are at the end of reload_order.  */
          if (rld[r].optional != 0)
          if (rld[r].optional != 0)
            for (i = 0; i < j; i++)
            for (i = 0; i < j; i++)
              if ((rld[reload_order[i]].out != 0
              if ((rld[reload_order[i]].out != 0
                   || rld[reload_order[i]].in != 0
                   || rld[reload_order[i]].in != 0
                   || rld[reload_order[i]].secondary_p)
                   || rld[reload_order[i]].secondary_p)
                  && ! rld[reload_order[i]].optional
                  && ! rld[reload_order[i]].optional
                  && rld[reload_order[i]].reg_rtx == 0)
                  && rld[reload_order[i]].reg_rtx == 0)
                allocate_reload_reg (chain, reload_order[i], 0);
                allocate_reload_reg (chain, reload_order[i], 0);
#endif
#endif
 
 
          /* First see if this pseudo is already available as reloaded
          /* First see if this pseudo is already available as reloaded
             for a previous insn.  We cannot try to inherit for reloads
             for a previous insn.  We cannot try to inherit for reloads
             that are smaller than the maximum number of registers needed
             that are smaller than the maximum number of registers needed
             for groups unless the register we would allocate cannot be used
             for groups unless the register we would allocate cannot be used
             for the groups.
             for the groups.
 
 
             We could check here to see if this is a secondary reload for
             We could check here to see if this is a secondary reload for
             an object that is already in a register of the desired class.
             an object that is already in a register of the desired class.
             This would avoid the need for the secondary reload register.
             This would avoid the need for the secondary reload register.
             But this is complex because we can't easily determine what
             But this is complex because we can't easily determine what
             objects might want to be loaded via this reload.  So let a
             objects might want to be loaded via this reload.  So let a
             register be allocated here.  In `emit_reload_insns' we suppress
             register be allocated here.  In `emit_reload_insns' we suppress
             one of the loads in the case described above.  */
             one of the loads in the case described above.  */
 
 
          if (inheritance)
          if (inheritance)
            {
            {
              int byte = 0;
              int byte = 0;
              int regno = -1;
              int regno = -1;
              enum machine_mode mode = VOIDmode;
              enum machine_mode mode = VOIDmode;
 
 
              if (rld[r].in == 0)
              if (rld[r].in == 0)
                ;
                ;
              else if (REG_P (rld[r].in))
              else if (REG_P (rld[r].in))
                {
                {
                  regno = REGNO (rld[r].in);
                  regno = REGNO (rld[r].in);
                  mode = GET_MODE (rld[r].in);
                  mode = GET_MODE (rld[r].in);
                }
                }
              else if (REG_P (rld[r].in_reg))
              else if (REG_P (rld[r].in_reg))
                {
                {
                  regno = REGNO (rld[r].in_reg);
                  regno = REGNO (rld[r].in_reg);
                  mode = GET_MODE (rld[r].in_reg);
                  mode = GET_MODE (rld[r].in_reg);
                }
                }
              else if (GET_CODE (rld[r].in_reg) == SUBREG
              else if (GET_CODE (rld[r].in_reg) == SUBREG
                       && REG_P (SUBREG_REG (rld[r].in_reg)))
                       && REG_P (SUBREG_REG (rld[r].in_reg)))
                {
                {
                  byte = SUBREG_BYTE (rld[r].in_reg);
                  byte = SUBREG_BYTE (rld[r].in_reg);
                  regno = REGNO (SUBREG_REG (rld[r].in_reg));
                  regno = REGNO (SUBREG_REG (rld[r].in_reg));
                  if (regno < FIRST_PSEUDO_REGISTER)
                  if (regno < FIRST_PSEUDO_REGISTER)
                    regno = subreg_regno (rld[r].in_reg);
                    regno = subreg_regno (rld[r].in_reg);
                  mode = GET_MODE (rld[r].in_reg);
                  mode = GET_MODE (rld[r].in_reg);
                }
                }
#ifdef AUTO_INC_DEC
#ifdef AUTO_INC_DEC
              else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
              else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
                       && REG_P (XEXP (rld[r].in_reg, 0)))
                       && REG_P (XEXP (rld[r].in_reg, 0)))
                {
                {
                  regno = REGNO (XEXP (rld[r].in_reg, 0));
                  regno = REGNO (XEXP (rld[r].in_reg, 0));
                  mode = GET_MODE (XEXP (rld[r].in_reg, 0));
                  mode = GET_MODE (XEXP (rld[r].in_reg, 0));
                  rld[r].out = rld[r].in;
                  rld[r].out = rld[r].in;
                }
                }
#endif
#endif
#if 0
#if 0
              /* This won't work, since REGNO can be a pseudo reg number.
              /* This won't work, since REGNO can be a pseudo reg number.
                 Also, it takes much more hair to keep track of all the things
                 Also, it takes much more hair to keep track of all the things
                 that can invalidate an inherited reload of part of a pseudoreg.  */
                 that can invalidate an inherited reload of part of a pseudoreg.  */
              else if (GET_CODE (rld[r].in) == SUBREG
              else if (GET_CODE (rld[r].in) == SUBREG
                       && REG_P (SUBREG_REG (rld[r].in)))
                       && REG_P (SUBREG_REG (rld[r].in)))
                regno = subreg_regno (rld[r].in);
                regno = subreg_regno (rld[r].in);
#endif
#endif
 
 
              if (regno >= 0 && reg_last_reload_reg[regno] != 0)
              if (regno >= 0 && reg_last_reload_reg[regno] != 0)
                {
                {
                  enum reg_class class = rld[r].class, last_class;
                  enum reg_class class = rld[r].class, last_class;
                  rtx last_reg = reg_last_reload_reg[regno];
                  rtx last_reg = reg_last_reload_reg[regno];
                  enum machine_mode need_mode;
                  enum machine_mode need_mode;
 
 
                  i = REGNO (last_reg);
                  i = REGNO (last_reg);
                  i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
                  i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
                  last_class = REGNO_REG_CLASS (i);
                  last_class = REGNO_REG_CLASS (i);
 
 
                  if (byte == 0)
                  if (byte == 0)
                    need_mode = mode;
                    need_mode = mode;
                  else
                  else
                    need_mode
                    need_mode
                      = smallest_mode_for_size (GET_MODE_BITSIZE (mode)
                      = smallest_mode_for_size (GET_MODE_BITSIZE (mode)
                                                + byte * BITS_PER_UNIT,
                                                + byte * BITS_PER_UNIT,
                                                GET_MODE_CLASS (mode));
                                                GET_MODE_CLASS (mode));
 
 
                  if ((GET_MODE_SIZE (GET_MODE (last_reg))
                  if ((GET_MODE_SIZE (GET_MODE (last_reg))
                       >= GET_MODE_SIZE (need_mode))
                       >= GET_MODE_SIZE (need_mode))
#ifdef CANNOT_CHANGE_MODE_CLASS
#ifdef CANNOT_CHANGE_MODE_CLASS
                      /* Verify that the register in "i" can be obtained
                      /* Verify that the register in "i" can be obtained
                         from LAST_REG.  */
                         from LAST_REG.  */
                      && !REG_CANNOT_CHANGE_MODE_P (REGNO (last_reg),
                      && !REG_CANNOT_CHANGE_MODE_P (REGNO (last_reg),
                                                    GET_MODE (last_reg),
                                                    GET_MODE (last_reg),
                                                    mode)
                                                    mode)
#endif
#endif
                      && reg_reloaded_contents[i] == regno
                      && reg_reloaded_contents[i] == regno
                      && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
                      && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
                      && HARD_REGNO_MODE_OK (i, rld[r].mode)
                      && HARD_REGNO_MODE_OK (i, rld[r].mode)
                      && (TEST_HARD_REG_BIT (reg_class_contents[(int) class], i)
                      && (TEST_HARD_REG_BIT (reg_class_contents[(int) class], i)
                          /* Even if we can't use this register as a reload
                          /* Even if we can't use this register as a reload
                             register, we might use it for reload_override_in,
                             register, we might use it for reload_override_in,
                             if copying it to the desired class is cheap
                             if copying it to the desired class is cheap
                             enough.  */
                             enough.  */
                          || ((REGISTER_MOVE_COST (mode, last_class, class)
                          || ((REGISTER_MOVE_COST (mode, last_class, class)
                               < MEMORY_MOVE_COST (mode, class, 1))
                               < MEMORY_MOVE_COST (mode, class, 1))
                              && (secondary_reload_class (1, class, mode,
                              && (secondary_reload_class (1, class, mode,
                                                          last_reg)
                                                          last_reg)
                                  == NO_REGS)
                                  == NO_REGS)
#ifdef SECONDARY_MEMORY_NEEDED
#ifdef SECONDARY_MEMORY_NEEDED
                              && ! SECONDARY_MEMORY_NEEDED (last_class, class,
                              && ! SECONDARY_MEMORY_NEEDED (last_class, class,
                                                            mode)
                                                            mode)
#endif
#endif
                              ))
                              ))
 
 
                      && (rld[r].nregs == max_group_size
                      && (rld[r].nregs == max_group_size
                          || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
                          || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
                                                  i))
                                                  i))
                      && free_for_value_p (i, rld[r].mode, rld[r].opnum,
                      && free_for_value_p (i, rld[r].mode, rld[r].opnum,
                                           rld[r].when_needed, rld[r].in,
                                           rld[r].when_needed, rld[r].in,
                                           const0_rtx, r, 1))
                                           const0_rtx, r, 1))
                    {
                    {
                      /* If a group is needed, verify that all the subsequent
                      /* If a group is needed, verify that all the subsequent
                         registers still have their values intact.  */
                         registers still have their values intact.  */
                      int nr = hard_regno_nregs[i][rld[r].mode];
                      int nr = hard_regno_nregs[i][rld[r].mode];
                      int k;
                      int k;
 
 
                      for (k = 1; k < nr; k++)
                      for (k = 1; k < nr; k++)
                        if (reg_reloaded_contents[i + k] != regno
                        if (reg_reloaded_contents[i + k] != regno
                            || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
                            || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
                          break;
                          break;
 
 
                      if (k == nr)
                      if (k == nr)
                        {
                        {
                          int i1;
                          int i1;
                          int bad_for_class;
                          int bad_for_class;
 
 
                          last_reg = (GET_MODE (last_reg) == mode
                          last_reg = (GET_MODE (last_reg) == mode
                                      ? last_reg : gen_rtx_REG (mode, i));
                                      ? last_reg : gen_rtx_REG (mode, i));
 
 
                          bad_for_class = 0;
                          bad_for_class = 0;
                          for (k = 0; k < nr; k++)
                          for (k = 0; k < nr; k++)
                            bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
                            bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
                                                                  i+k);
                                                                  i+k);
 
 
                          /* We found a register that contains the
                          /* We found a register that contains the
                             value we need.  If this register is the
                             value we need.  If this register is the
                             same as an `earlyclobber' operand of the
                             same as an `earlyclobber' operand of the
                             current insn, just mark it as a place to
                             current insn, just mark it as a place to
                             reload from since we can't use it as the
                             reload from since we can't use it as the
                             reload register itself.  */
                             reload register itself.  */
 
 
                          for (i1 = 0; i1 < n_earlyclobbers; i1++)
                          for (i1 = 0; i1 < n_earlyclobbers; i1++)
                            if (reg_overlap_mentioned_for_reload_p
                            if (reg_overlap_mentioned_for_reload_p
                                (reg_last_reload_reg[regno],
                                (reg_last_reload_reg[regno],
                                 reload_earlyclobbers[i1]))
                                 reload_earlyclobbers[i1]))
                              break;
                              break;
 
 
                          if (i1 != n_earlyclobbers
                          if (i1 != n_earlyclobbers
                              || ! (free_for_value_p (i, rld[r].mode,
                              || ! (free_for_value_p (i, rld[r].mode,
                                                      rld[r].opnum,
                                                      rld[r].opnum,
                                                      rld[r].when_needed, rld[r].in,
                                                      rld[r].when_needed, rld[r].in,
                                                      rld[r].out, r, 1))
                                                      rld[r].out, r, 1))
                              /* Don't use it if we'd clobber a pseudo reg.  */
                              /* Don't use it if we'd clobber a pseudo reg.  */
                              || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
                              || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
                                  && rld[r].out
                                  && rld[r].out
                                  && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
                                  && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
                              /* Don't clobber the frame pointer.  */
                              /* Don't clobber the frame pointer.  */
                              || (i == HARD_FRAME_POINTER_REGNUM
                              || (i == HARD_FRAME_POINTER_REGNUM
                                  && frame_pointer_needed
                                  && frame_pointer_needed
                                  && rld[r].out)
                                  && rld[r].out)
                              /* Don't really use the inherited spill reg
                              /* Don't really use the inherited spill reg
                                 if we need it wider than we've got it.  */
                                 if we need it wider than we've got it.  */
                              || (GET_MODE_SIZE (rld[r].mode)
                              || (GET_MODE_SIZE (rld[r].mode)
                                  > GET_MODE_SIZE (mode))
                                  > GET_MODE_SIZE (mode))
                              || bad_for_class
                              || bad_for_class
 
 
                              /* If find_reloads chose reload_out as reload
                              /* If find_reloads chose reload_out as reload
                                 register, stay with it - that leaves the
                                 register, stay with it - that leaves the
                                 inherited register for subsequent reloads.  */
                                 inherited register for subsequent reloads.  */
                              || (rld[r].out && rld[r].reg_rtx
                              || (rld[r].out && rld[r].reg_rtx
                                  && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
                                  && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
                            {
                            {
                              if (! rld[r].optional)
                              if (! rld[r].optional)
                                {
                                {
                                  reload_override_in[r] = last_reg;
                                  reload_override_in[r] = last_reg;
                                  reload_inheritance_insn[r]
                                  reload_inheritance_insn[r]
                                    = reg_reloaded_insn[i];
                                    = reg_reloaded_insn[i];
                                }
                                }
                            }
                            }
                          else
                          else
                            {
                            {
                              int k;
                              int k;
                              /* We can use this as a reload reg.  */
                              /* We can use this as a reload reg.  */
                              /* Mark the register as in use for this part of
                              /* Mark the register as in use for this part of
                                 the insn.  */
                                 the insn.  */
                              mark_reload_reg_in_use (i,
                              mark_reload_reg_in_use (i,
                                                      rld[r].opnum,
                                                      rld[r].opnum,
                                                      rld[r].when_needed,
                                                      rld[r].when_needed,
                                                      rld[r].mode);
                                                      rld[r].mode);
                              rld[r].reg_rtx = last_reg;
                              rld[r].reg_rtx = last_reg;
                              reload_inherited[r] = 1;
                              reload_inherited[r] = 1;
                              reload_inheritance_insn[r]
                              reload_inheritance_insn[r]
                                = reg_reloaded_insn[i];
                                = reg_reloaded_insn[i];
                              reload_spill_index[r] = i;
                              reload_spill_index[r] = i;
                              for (k = 0; k < nr; k++)
                              for (k = 0; k < nr; k++)
                                SET_HARD_REG_BIT (reload_reg_used_for_inherit,
                                SET_HARD_REG_BIT (reload_reg_used_for_inherit,
                                                  i + k);
                                                  i + k);
                            }
                            }
                        }
                        }
                    }
                    }
                }
                }
            }
            }
 
 
          /* Here's another way to see if the value is already lying around.  */
          /* Here's another way to see if the value is already lying around.  */
          if (inheritance
          if (inheritance
              && rld[r].in != 0
              && rld[r].in != 0
              && ! reload_inherited[r]
              && ! reload_inherited[r]
              && rld[r].out == 0
              && rld[r].out == 0
              && (CONSTANT_P (rld[r].in)
              && (CONSTANT_P (rld[r].in)
                  || GET_CODE (rld[r].in) == PLUS
                  || GET_CODE (rld[r].in) == PLUS
                  || REG_P (rld[r].in)
                  || REG_P (rld[r].in)
                  || MEM_P (rld[r].in))
                  || MEM_P (rld[r].in))
              && (rld[r].nregs == max_group_size
              && (rld[r].nregs == max_group_size
                  || ! reg_classes_intersect_p (rld[r].class, group_class)))
                  || ! reg_classes_intersect_p (rld[r].class, group_class)))
            search_equiv = rld[r].in;
            search_equiv = rld[r].in;
          /* If this is an output reload from a simple move insn, look
          /* If this is an output reload from a simple move insn, look
             if an equivalence for the input is available.  */
             if an equivalence for the input is available.  */
          else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
          else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
            {
            {
              rtx set = single_set (insn);
              rtx set = single_set (insn);
 
 
              if (set
              if (set
                  && rtx_equal_p (rld[r].out, SET_DEST (set))
                  && rtx_equal_p (rld[r].out, SET_DEST (set))
                  && CONSTANT_P (SET_SRC (set)))
                  && CONSTANT_P (SET_SRC (set)))
                search_equiv = SET_SRC (set);
                search_equiv = SET_SRC (set);
            }
            }
 
 
          if (search_equiv)
          if (search_equiv)
            {
            {
              rtx equiv
              rtx equiv
                = find_equiv_reg (search_equiv, insn, rld[r].class,
                = find_equiv_reg (search_equiv, insn, rld[r].class,
                                  -1, NULL, 0, rld[r].mode);
                                  -1, NULL, 0, rld[r].mode);
              int regno = 0;
              int regno = 0;
 
 
              if (equiv != 0)
              if (equiv != 0)
                {
                {
                  if (REG_P (equiv))
                  if (REG_P (equiv))
                    regno = REGNO (equiv);
                    regno = REGNO (equiv);
                  else
                  else
                    {
                    {
                      /* This must be a SUBREG of a hard register.
                      /* This must be a SUBREG of a hard register.
                         Make a new REG since this might be used in an
                         Make a new REG since this might be used in an
                         address and not all machines support SUBREGs
                         address and not all machines support SUBREGs
                         there.  */
                         there.  */
                      gcc_assert (GET_CODE (equiv) == SUBREG);
                      gcc_assert (GET_CODE (equiv) == SUBREG);
                      regno = subreg_regno (equiv);
                      regno = subreg_regno (equiv);
                      equiv = gen_rtx_REG (rld[r].mode, regno);
                      equiv = gen_rtx_REG (rld[r].mode, regno);
                      /* If we choose EQUIV as the reload register, but the
                      /* If we choose EQUIV as the reload register, but the
                         loop below decides to cancel the inheritance, we'll
                         loop below decides to cancel the inheritance, we'll
                         end up reloading EQUIV in rld[r].mode, not the mode
                         end up reloading EQUIV in rld[r].mode, not the mode
                         it had originally.  That isn't safe when EQUIV isn't
                         it had originally.  That isn't safe when EQUIV isn't
                         available as a spill register since its value might
                         available as a spill register since its value might
                         still be live at this point.  */
                         still be live at this point.  */
                      for (i = regno; i < regno + (int) rld[r].nregs; i++)
                      for (i = regno; i < regno + (int) rld[r].nregs; i++)
                        if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
                        if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
                          equiv = 0;
                          equiv = 0;
                    }
                    }
                }
                }
 
 
              /* If we found a spill reg, reject it unless it is free
              /* If we found a spill reg, reject it unless it is free
                 and of the desired class.  */
                 and of the desired class.  */
              if (equiv != 0)
              if (equiv != 0)
                {
                {
                  int regs_used = 0;
                  int regs_used = 0;
                  int bad_for_class = 0;
                  int bad_for_class = 0;
                  int max_regno = regno + rld[r].nregs;
                  int max_regno = regno + rld[r].nregs;
 
 
                  for (i = regno; i < max_regno; i++)
                  for (i = regno; i < max_regno; i++)
                    {
                    {
                      regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
                      regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
                                                      i);
                                                      i);
                      bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
                      bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
                                                           i);
                                                           i);
                    }
                    }
 
 
                  if ((regs_used
                  if ((regs_used
                       && ! free_for_value_p (regno, rld[r].mode,
                       && ! free_for_value_p (regno, rld[r].mode,
                                              rld[r].opnum, rld[r].when_needed,
                                              rld[r].opnum, rld[r].when_needed,
                                              rld[r].in, rld[r].out, r, 1))
                                              rld[r].in, rld[r].out, r, 1))
                      || bad_for_class)
                      || bad_for_class)
                    equiv = 0;
                    equiv = 0;
                }
                }
 
 
              if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
              if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
                equiv = 0;
                equiv = 0;
 
 
              /* We found a register that contains the value we need.
              /* We found a register that contains the value we need.
                 If this register is the same as an `earlyclobber' operand
                 If this register is the same as an `earlyclobber' operand
                 of the current insn, just mark it as a place to reload from
                 of the current insn, just mark it as a place to reload from
                 since we can't use it as the reload register itself.  */
                 since we can't use it as the reload register itself.  */
 
 
              if (equiv != 0)
              if (equiv != 0)
                for (i = 0; i < n_earlyclobbers; i++)
                for (i = 0; i < n_earlyclobbers; i++)
                  if (reg_overlap_mentioned_for_reload_p (equiv,
                  if (reg_overlap_mentioned_for_reload_p (equiv,
                                                          reload_earlyclobbers[i]))
                                                          reload_earlyclobbers[i]))
                    {
                    {
                      if (! rld[r].optional)
                      if (! rld[r].optional)
                        reload_override_in[r] = equiv;
                        reload_override_in[r] = equiv;
                      equiv = 0;
                      equiv = 0;
                      break;
                      break;
                    }
                    }
 
 
              /* If the equiv register we have found is explicitly clobbered
              /* If the equiv register we have found is explicitly clobbered
                 in the current insn, it depends on the reload type if we
                 in the current insn, it depends on the reload type if we
                 can use it, use it for reload_override_in, or not at all.
                 can use it, use it for reload_override_in, or not at all.
                 In particular, we then can't use EQUIV for a
                 In particular, we then can't use EQUIV for a
                 RELOAD_FOR_OUTPUT_ADDRESS reload.  */
                 RELOAD_FOR_OUTPUT_ADDRESS reload.  */
 
 
              if (equiv != 0)
              if (equiv != 0)
                {
                {
                  if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
                  if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
                    switch (rld[r].when_needed)
                    switch (rld[r].when_needed)
                      {
                      {
                      case RELOAD_FOR_OTHER_ADDRESS:
                      case RELOAD_FOR_OTHER_ADDRESS:
                      case RELOAD_FOR_INPADDR_ADDRESS:
                      case RELOAD_FOR_INPADDR_ADDRESS:
                      case RELOAD_FOR_INPUT_ADDRESS:
                      case RELOAD_FOR_INPUT_ADDRESS:
                      case RELOAD_FOR_OPADDR_ADDR:
                      case RELOAD_FOR_OPADDR_ADDR:
                        break;
                        break;
                      case RELOAD_OTHER:
                      case RELOAD_OTHER:
                      case RELOAD_FOR_INPUT:
                      case RELOAD_FOR_INPUT:
                      case RELOAD_FOR_OPERAND_ADDRESS:
                      case RELOAD_FOR_OPERAND_ADDRESS:
                        if (! rld[r].optional)
                        if (! rld[r].optional)
                          reload_override_in[r] = equiv;
                          reload_override_in[r] = equiv;
                        /* Fall through.  */
                        /* Fall through.  */
                      default:
                      default:
                        equiv = 0;
                        equiv = 0;
                        break;
                        break;
                      }
                      }
                  else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
                  else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
                    switch (rld[r].when_needed)
                    switch (rld[r].when_needed)
                      {
                      {
                      case RELOAD_FOR_OTHER_ADDRESS:
                      case RELOAD_FOR_OTHER_ADDRESS:
                      case RELOAD_FOR_INPADDR_ADDRESS:
                      case RELOAD_FOR_INPADDR_ADDRESS:
                      case RELOAD_FOR_INPUT_ADDRESS:
                      case RELOAD_FOR_INPUT_ADDRESS:
                      case RELOAD_FOR_OPADDR_ADDR:
                      case RELOAD_FOR_OPADDR_ADDR:
                      case RELOAD_FOR_OPERAND_ADDRESS:
                      case RELOAD_FOR_OPERAND_ADDRESS:
                      case RELOAD_FOR_INPUT:
                      case RELOAD_FOR_INPUT:
                        break;
                        break;
                      case RELOAD_OTHER:
                      case RELOAD_OTHER:
                        if (! rld[r].optional)
                        if (! rld[r].optional)
                          reload_override_in[r] = equiv;
                          reload_override_in[r] = equiv;
                        /* Fall through.  */
                        /* Fall through.  */
                      default:
                      default:
                        equiv = 0;
                        equiv = 0;
                        break;
                        break;
                      }
                      }
                }
                }
 
 
              /* If we found an equivalent reg, say no code need be generated
              /* If we found an equivalent reg, say no code need be generated
                 to load it, and use it as our reload reg.  */
                 to load it, and use it as our reload reg.  */
              if (equiv != 0
              if (equiv != 0
                  && (regno != HARD_FRAME_POINTER_REGNUM
                  && (regno != HARD_FRAME_POINTER_REGNUM
                      || !frame_pointer_needed))
                      || !frame_pointer_needed))
                {
                {
                  int nr = hard_regno_nregs[regno][rld[r].mode];
                  int nr = hard_regno_nregs[regno][rld[r].mode];
                  int k;
                  int k;
                  rld[r].reg_rtx = equiv;
                  rld[r].reg_rtx = equiv;
                  reload_inherited[r] = 1;
                  reload_inherited[r] = 1;
 
 
                  /* If reg_reloaded_valid is not set for this register,
                  /* If reg_reloaded_valid is not set for this register,
                     there might be a stale spill_reg_store lying around.
                     there might be a stale spill_reg_store lying around.
                     We must clear it, since otherwise emit_reload_insns
                     We must clear it, since otherwise emit_reload_insns
                     might delete the store.  */
                     might delete the store.  */
                  if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
                  if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
                    spill_reg_store[regno] = NULL_RTX;
                    spill_reg_store[regno] = NULL_RTX;
                  /* If any of the hard registers in EQUIV are spill
                  /* If any of the hard registers in EQUIV are spill
                     registers, mark them as in use for this insn.  */
                     registers, mark them as in use for this insn.  */
                  for (k = 0; k < nr; k++)
                  for (k = 0; k < nr; k++)
                    {
                    {
                      i = spill_reg_order[regno + k];
                      i = spill_reg_order[regno + k];
                      if (i >= 0)
                      if (i >= 0)
                        {
                        {
                          mark_reload_reg_in_use (regno, rld[r].opnum,
                          mark_reload_reg_in_use (regno, rld[r].opnum,
                                                  rld[r].when_needed,
                                                  rld[r].when_needed,
                                                  rld[r].mode);
                                                  rld[r].mode);
                          SET_HARD_REG_BIT (reload_reg_used_for_inherit,
                          SET_HARD_REG_BIT (reload_reg_used_for_inherit,
                                            regno + k);
                                            regno + k);
                        }
                        }
                    }
                    }
                }
                }
            }
            }
 
 
          /* If we found a register to use already, or if this is an optional
          /* If we found a register to use already, or if this is an optional
             reload, we are done.  */
             reload, we are done.  */
          if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
          if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
            continue;
            continue;
 
 
#if 0
#if 0
          /* No longer needed for correct operation.  Might or might
          /* No longer needed for correct operation.  Might or might
             not give better code on the average.  Want to experiment?  */
             not give better code on the average.  Want to experiment?  */
 
 
          /* See if there is a later reload that has a class different from our
          /* See if there is a later reload that has a class different from our
             class that intersects our class or that requires less register
             class that intersects our class or that requires less register
             than our reload.  If so, we must allocate a register to this
             than our reload.  If so, we must allocate a register to this
             reload now, since that reload might inherit a previous reload
             reload now, since that reload might inherit a previous reload
             and take the only available register in our class.  Don't do this
             and take the only available register in our class.  Don't do this
             for optional reloads since they will force all previous reloads
             for optional reloads since they will force all previous reloads
             to be allocated.  Also don't do this for reloads that have been
             to be allocated.  Also don't do this for reloads that have been
             turned off.  */
             turned off.  */
 
 
          for (i = j + 1; i < n_reloads; i++)
          for (i = j + 1; i < n_reloads; i++)
            {
            {
              int s = reload_order[i];
              int s = reload_order[i];
 
 
              if ((rld[s].in == 0 && rld[s].out == 0
              if ((rld[s].in == 0 && rld[s].out == 0
                   && ! rld[s].secondary_p)
                   && ! rld[s].secondary_p)
                  || rld[s].optional)
                  || rld[s].optional)
                continue;
                continue;
 
 
              if ((rld[s].class != rld[r].class
              if ((rld[s].class != rld[r].class
                   && reg_classes_intersect_p (rld[r].class,
                   && reg_classes_intersect_p (rld[r].class,
                                               rld[s].class))
                                               rld[s].class))
                  || rld[s].nregs < rld[r].nregs)
                  || rld[s].nregs < rld[r].nregs)
                break;
                break;
            }
            }
 
 
          if (i == n_reloads)
          if (i == n_reloads)
            continue;
            continue;
 
 
          allocate_reload_reg (chain, r, j == n_reloads - 1);
          allocate_reload_reg (chain, r, j == n_reloads - 1);
#endif
#endif
        }
        }
 
 
      /* Now allocate reload registers for anything non-optional that
      /* Now allocate reload registers for anything non-optional that
         didn't get one yet.  */
         didn't get one yet.  */
      for (j = 0; j < n_reloads; j++)
      for (j = 0; j < n_reloads; j++)
        {
        {
          int r = reload_order[j];
          int r = reload_order[j];
 
 
          /* Ignore reloads that got marked inoperative.  */
          /* Ignore reloads that got marked inoperative.  */
          if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
          if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
            continue;
            continue;
 
 
          /* Skip reloads that already have a register allocated or are
          /* Skip reloads that already have a register allocated or are
             optional.  */
             optional.  */
          if (rld[r].reg_rtx != 0 || rld[r].optional)
          if (rld[r].reg_rtx != 0 || rld[r].optional)
            continue;
            continue;
 
 
          if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
          if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
            break;
            break;
        }
        }
 
 
      /* If that loop got all the way, we have won.  */
      /* If that loop got all the way, we have won.  */
      if (j == n_reloads)
      if (j == n_reloads)
        {
        {
          win = 1;
          win = 1;
          break;
          break;
        }
        }
 
 
      /* Loop around and try without any inheritance.  */
      /* Loop around and try without any inheritance.  */
    }
    }
 
 
  if (! win)
  if (! win)
    {
    {
      /* First undo everything done by the failed attempt
      /* First undo everything done by the failed attempt
         to allocate with inheritance.  */
         to allocate with inheritance.  */
      choose_reload_regs_init (chain, save_reload_reg_rtx);
      choose_reload_regs_init (chain, save_reload_reg_rtx);
 
 
      /* Some sanity tests to verify that the reloads found in the first
      /* Some sanity tests to verify that the reloads found in the first
         pass are identical to the ones we have now.  */
         pass are identical to the ones we have now.  */
      gcc_assert (chain->n_reloads == n_reloads);
      gcc_assert (chain->n_reloads == n_reloads);
 
 
      for (i = 0; i < n_reloads; i++)
      for (i = 0; i < n_reloads; i++)
        {
        {
          if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
          if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
            continue;
            continue;
          gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
          gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
          for (j = 0; j < n_spills; j++)
          for (j = 0; j < n_spills; j++)
            if (spill_regs[j] == chain->rld[i].regno)
            if (spill_regs[j] == chain->rld[i].regno)
              if (! set_reload_reg (j, i))
              if (! set_reload_reg (j, i))
                failed_reload (chain->insn, i);
                failed_reload (chain->insn, i);
        }
        }
    }
    }
 
 
  /* If we thought we could inherit a reload, because it seemed that
  /* If we thought we could inherit a reload, because it seemed that
     nothing else wanted the same reload register earlier in the insn,
     nothing else wanted the same reload register earlier in the insn,
     verify that assumption, now that all reloads have been assigned.
     verify that assumption, now that all reloads have been assigned.
     Likewise for reloads where reload_override_in has been set.  */
     Likewise for reloads where reload_override_in has been set.  */
 
 
  /* If doing expensive optimizations, do one preliminary pass that doesn't
  /* If doing expensive optimizations, do one preliminary pass that doesn't
     cancel any inheritance, but removes reloads that have been needed only
     cancel any inheritance, but removes reloads that have been needed only
     for reloads that we know can be inherited.  */
     for reloads that we know can be inherited.  */
  for (pass = flag_expensive_optimizations; pass >= 0; pass--)
  for (pass = flag_expensive_optimizations; pass >= 0; pass--)
    {
    {
      for (j = 0; j < n_reloads; j++)
      for (j = 0; j < n_reloads; j++)
        {
        {
          int r = reload_order[j];
          int r = reload_order[j];
          rtx check_reg;
          rtx check_reg;
          if (reload_inherited[r] && rld[r].reg_rtx)
          if (reload_inherited[r] && rld[r].reg_rtx)
            check_reg = rld[r].reg_rtx;
            check_reg = rld[r].reg_rtx;
          else if (reload_override_in[r]
          else if (reload_override_in[r]
                   && (REG_P (reload_override_in[r])
                   && (REG_P (reload_override_in[r])
                       || GET_CODE (reload_override_in[r]) == SUBREG))
                       || GET_CODE (reload_override_in[r]) == SUBREG))
            check_reg = reload_override_in[r];
            check_reg = reload_override_in[r];
          else
          else
            continue;
            continue;
          if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
          if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
                                  rld[r].opnum, rld[r].when_needed, rld[r].in,
                                  rld[r].opnum, rld[r].when_needed, rld[r].in,
                                  (reload_inherited[r]
                                  (reload_inherited[r]
                                   ? rld[r].out : const0_rtx),
                                   ? rld[r].out : const0_rtx),
                                  r, 1))
                                  r, 1))
            {
            {
              if (pass)
              if (pass)
                continue;
                continue;
              reload_inherited[r] = 0;
              reload_inherited[r] = 0;
              reload_override_in[r] = 0;
              reload_override_in[r] = 0;
            }
            }
          /* If we can inherit a RELOAD_FOR_INPUT, or can use a
          /* If we can inherit a RELOAD_FOR_INPUT, or can use a
             reload_override_in, then we do not need its related
             reload_override_in, then we do not need its related
             RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
             RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
             likewise for other reload types.
             likewise for other reload types.
             We handle this by removing a reload when its only replacement
             We handle this by removing a reload when its only replacement
             is mentioned in reload_in of the reload we are going to inherit.
             is mentioned in reload_in of the reload we are going to inherit.
             A special case are auto_inc expressions; even if the input is
             A special case are auto_inc expressions; even if the input is
             inherited, we still need the address for the output.  We can
             inherited, we still need the address for the output.  We can
             recognize them because they have RELOAD_OUT set to RELOAD_IN.
             recognize them because they have RELOAD_OUT set to RELOAD_IN.
             If we succeeded removing some reload and we are doing a preliminary
             If we succeeded removing some reload and we are doing a preliminary
             pass just to remove such reloads, make another pass, since the
             pass just to remove such reloads, make another pass, since the
             removal of one reload might allow us to inherit another one.  */
             removal of one reload might allow us to inherit another one.  */
          else if (rld[r].in
          else if (rld[r].in
                   && rld[r].out != rld[r].in
                   && rld[r].out != rld[r].in
                   && remove_address_replacements (rld[r].in) && pass)
                   && remove_address_replacements (rld[r].in) && pass)
            pass = 2;
            pass = 2;
        }
        }
    }
    }
 
 
  /* Now that reload_override_in is known valid,
  /* Now that reload_override_in is known valid,
     actually override reload_in.  */
     actually override reload_in.  */
  for (j = 0; j < n_reloads; j++)
  for (j = 0; j < n_reloads; j++)
    if (reload_override_in[j])
    if (reload_override_in[j])
      rld[j].in = reload_override_in[j];
      rld[j].in = reload_override_in[j];
 
 
  /* If this reload won't be done because it has been canceled or is
  /* If this reload won't be done because it has been canceled or is
     optional and not inherited, clear reload_reg_rtx so other
     optional and not inherited, clear reload_reg_rtx so other
     routines (such as subst_reloads) don't get confused.  */
     routines (such as subst_reloads) don't get confused.  */
  for (j = 0; j < n_reloads; j++)
  for (j = 0; j < n_reloads; j++)
    if (rld[j].reg_rtx != 0
    if (rld[j].reg_rtx != 0
        && ((rld[j].optional && ! reload_inherited[j])
        && ((rld[j].optional && ! reload_inherited[j])
            || (rld[j].in == 0 && rld[j].out == 0
            || (rld[j].in == 0 && rld[j].out == 0
                && ! rld[j].secondary_p)))
                && ! rld[j].secondary_p)))
      {
      {
        int regno = true_regnum (rld[j].reg_rtx);
        int regno = true_regnum (rld[j].reg_rtx);
 
 
        if (spill_reg_order[regno] >= 0)
        if (spill_reg_order[regno] >= 0)
          clear_reload_reg_in_use (regno, rld[j].opnum,
          clear_reload_reg_in_use (regno, rld[j].opnum,
                                   rld[j].when_needed, rld[j].mode);
                                   rld[j].when_needed, rld[j].mode);
        rld[j].reg_rtx = 0;
        rld[j].reg_rtx = 0;
        reload_spill_index[j] = -1;
        reload_spill_index[j] = -1;
      }
      }
 
 
  /* Record which pseudos and which spill regs have output reloads.  */
  /* Record which pseudos and which spill regs have output reloads.  */
  for (j = 0; j < n_reloads; j++)
  for (j = 0; j < n_reloads; j++)
    {
    {
      int r = reload_order[j];
      int r = reload_order[j];
 
 
      i = reload_spill_index[r];
      i = reload_spill_index[r];
 
 
      /* I is nonneg if this reload uses a register.
      /* I is nonneg if this reload uses a register.
         If rld[r].reg_rtx is 0, this is an optional reload
         If rld[r].reg_rtx is 0, this is an optional reload
         that we opted to ignore.  */
         that we opted to ignore.  */
      if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
      if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
          && rld[r].reg_rtx != 0)
          && rld[r].reg_rtx != 0)
        {
        {
          int nregno = REGNO (rld[r].out_reg);
          int nregno = REGNO (rld[r].out_reg);
          int nr = 1;
          int nr = 1;
 
 
          if (nregno < FIRST_PSEUDO_REGISTER)
          if (nregno < FIRST_PSEUDO_REGISTER)
            nr = hard_regno_nregs[nregno][rld[r].mode];
            nr = hard_regno_nregs[nregno][rld[r].mode];
 
 
          while (--nr >= 0)
          while (--nr >= 0)
            SET_REGNO_REG_SET (&reg_has_output_reload,
            SET_REGNO_REG_SET (&reg_has_output_reload,
                               nregno + nr);
                               nregno + nr);
 
 
          if (i >= 0)
          if (i >= 0)
            {
            {
              nr = hard_regno_nregs[i][rld[r].mode];
              nr = hard_regno_nregs[i][rld[r].mode];
              while (--nr >= 0)
              while (--nr >= 0)
                SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
                SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
            }
            }
 
 
          gcc_assert (rld[r].when_needed == RELOAD_OTHER
          gcc_assert (rld[r].when_needed == RELOAD_OTHER
                      || rld[r].when_needed == RELOAD_FOR_OUTPUT
                      || rld[r].when_needed == RELOAD_FOR_OUTPUT
                      || rld[r].when_needed == RELOAD_FOR_INSN);
                      || rld[r].when_needed == RELOAD_FOR_INSN);
        }
        }
    }
    }
}
}
 
 
/* Deallocate the reload register for reload R.  This is called from
/* Deallocate the reload register for reload R.  This is called from
   remove_address_replacements.  */
   remove_address_replacements.  */
 
 
void
void
deallocate_reload_reg (int r)
deallocate_reload_reg (int r)
{
{
  int regno;
  int regno;
 
 
  if (! rld[r].reg_rtx)
  if (! rld[r].reg_rtx)
    return;
    return;
  regno = true_regnum (rld[r].reg_rtx);
  regno = true_regnum (rld[r].reg_rtx);
  rld[r].reg_rtx = 0;
  rld[r].reg_rtx = 0;
  if (spill_reg_order[regno] >= 0)
  if (spill_reg_order[regno] >= 0)
    clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
    clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
                             rld[r].mode);
                             rld[r].mode);
  reload_spill_index[r] = -1;
  reload_spill_index[r] = -1;
}
}


/* If SMALL_REGISTER_CLASSES is nonzero, we may not have merged two
/* If SMALL_REGISTER_CLASSES is nonzero, we may not have merged two
   reloads of the same item for fear that we might not have enough reload
   reloads of the same item for fear that we might not have enough reload
   registers. However, normally they will get the same reload register
   registers. However, normally they will get the same reload register
   and hence actually need not be loaded twice.
   and hence actually need not be loaded twice.
 
 
   Here we check for the most common case of this phenomenon: when we have
   Here we check for the most common case of this phenomenon: when we have
   a number of reloads for the same object, each of which were allocated
   a number of reloads for the same object, each of which were allocated
   the same reload_reg_rtx, that reload_reg_rtx is not used for any other
   the same reload_reg_rtx, that reload_reg_rtx is not used for any other
   reload, and is not modified in the insn itself.  If we find such,
   reload, and is not modified in the insn itself.  If we find such,
   merge all the reloads and set the resulting reload to RELOAD_OTHER.
   merge all the reloads and set the resulting reload to RELOAD_OTHER.
   This will not increase the number of spill registers needed and will
   This will not increase the number of spill registers needed and will
   prevent redundant code.  */
   prevent redundant code.  */
 
 
static void
static void
merge_assigned_reloads (rtx insn)
merge_assigned_reloads (rtx insn)
{
{
  int i, j;
  int i, j;
 
 
  /* Scan all the reloads looking for ones that only load values and
  /* Scan all the reloads looking for ones that only load values and
     are not already RELOAD_OTHER and ones whose reload_reg_rtx are
     are not already RELOAD_OTHER and ones whose reload_reg_rtx are
     assigned and not modified by INSN.  */
     assigned and not modified by INSN.  */
 
 
  for (i = 0; i < n_reloads; i++)
  for (i = 0; i < n_reloads; i++)
    {
    {
      int conflicting_input = 0;
      int conflicting_input = 0;
      int max_input_address_opnum = -1;
      int max_input_address_opnum = -1;
      int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
      int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
 
 
      if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
      if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
          || rld[i].out != 0 || rld[i].reg_rtx == 0
          || rld[i].out != 0 || rld[i].reg_rtx == 0
          || reg_set_p (rld[i].reg_rtx, insn))
          || reg_set_p (rld[i].reg_rtx, insn))
        continue;
        continue;
 
 
      /* Look at all other reloads.  Ensure that the only use of this
      /* Look at all other reloads.  Ensure that the only use of this
         reload_reg_rtx is in a reload that just loads the same value
         reload_reg_rtx is in a reload that just loads the same value
         as we do.  Note that any secondary reloads must be of the identical
         as we do.  Note that any secondary reloads must be of the identical
         class since the values, modes, and result registers are the
         class since the values, modes, and result registers are the
         same, so we need not do anything with any secondary reloads.  */
         same, so we need not do anything with any secondary reloads.  */
 
 
      for (j = 0; j < n_reloads; j++)
      for (j = 0; j < n_reloads; j++)
        {
        {
          if (i == j || rld[j].reg_rtx == 0
          if (i == j || rld[j].reg_rtx == 0
              || ! reg_overlap_mentioned_p (rld[j].reg_rtx,
              || ! reg_overlap_mentioned_p (rld[j].reg_rtx,
                                            rld[i].reg_rtx))
                                            rld[i].reg_rtx))
            continue;
            continue;
 
 
          if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
          if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
              && rld[j].opnum > max_input_address_opnum)
              && rld[j].opnum > max_input_address_opnum)
            max_input_address_opnum = rld[j].opnum;
            max_input_address_opnum = rld[j].opnum;
 
 
          /* If the reload regs aren't exactly the same (e.g, different modes)
          /* If the reload regs aren't exactly the same (e.g, different modes)
             or if the values are different, we can't merge this reload.
             or if the values are different, we can't merge this reload.
             But if it is an input reload, we might still merge
             But if it is an input reload, we might still merge
             RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads.  */
             RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads.  */
 
 
          if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
          if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
              || rld[j].out != 0 || rld[j].in == 0
              || rld[j].out != 0 || rld[j].in == 0
              || ! rtx_equal_p (rld[i].in, rld[j].in))
              || ! rtx_equal_p (rld[i].in, rld[j].in))
            {
            {
              if (rld[j].when_needed != RELOAD_FOR_INPUT
              if (rld[j].when_needed != RELOAD_FOR_INPUT
                  || ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
                  || ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
                       || rld[i].opnum > rld[j].opnum)
                       || rld[i].opnum > rld[j].opnum)
                      && rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
                      && rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
                break;
                break;
              conflicting_input = 1;
              conflicting_input = 1;
              if (min_conflicting_input_opnum > rld[j].opnum)
              if (min_conflicting_input_opnum > rld[j].opnum)
                min_conflicting_input_opnum = rld[j].opnum;
                min_conflicting_input_opnum = rld[j].opnum;
            }
            }
        }
        }
 
 
      /* If all is OK, merge the reloads.  Only set this to RELOAD_OTHER if
      /* If all is OK, merge the reloads.  Only set this to RELOAD_OTHER if
         we, in fact, found any matching reloads.  */
         we, in fact, found any matching reloads.  */
 
 
      if (j == n_reloads
      if (j == n_reloads
          && max_input_address_opnum <= min_conflicting_input_opnum)
          && max_input_address_opnum <= min_conflicting_input_opnum)
        {
        {
          gcc_assert (rld[i].when_needed != RELOAD_FOR_OUTPUT);
          gcc_assert (rld[i].when_needed != RELOAD_FOR_OUTPUT);
 
 
          for (j = 0; j < n_reloads; j++)
          for (j = 0; j < n_reloads; j++)
            if (i != j && rld[j].reg_rtx != 0
            if (i != j && rld[j].reg_rtx != 0
                && rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
                && rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
                && (! conflicting_input
                && (! conflicting_input
                    || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
                    || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
                    || rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
                    || rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
              {
              {
                rld[i].when_needed = RELOAD_OTHER;
                rld[i].when_needed = RELOAD_OTHER;
                rld[j].in = 0;
                rld[j].in = 0;
                reload_spill_index[j] = -1;
                reload_spill_index[j] = -1;
                transfer_replacements (i, j);
                transfer_replacements (i, j);
              }
              }
 
 
          /* If this is now RELOAD_OTHER, look for any reloads that load
          /* If this is now RELOAD_OTHER, look for any reloads that load
             parts of this operand and set them to RELOAD_FOR_OTHER_ADDRESS
             parts of this operand and set them to RELOAD_FOR_OTHER_ADDRESS
             if they were for inputs, RELOAD_OTHER for outputs.  Note that
             if they were for inputs, RELOAD_OTHER for outputs.  Note that
             this test is equivalent to looking for reloads for this operand
             this test is equivalent to looking for reloads for this operand
             number.  */
             number.  */
          /* We must take special care with RELOAD_FOR_OUTPUT_ADDRESS; it may
          /* We must take special care with RELOAD_FOR_OUTPUT_ADDRESS; it may
             share registers with a RELOAD_FOR_INPUT, so we can not change it
             share registers with a RELOAD_FOR_INPUT, so we can not change it
             to RELOAD_FOR_OTHER_ADDRESS.  We should never need to, since we
             to RELOAD_FOR_OTHER_ADDRESS.  We should never need to, since we
             do not modify RELOAD_FOR_OUTPUT.  */
             do not modify RELOAD_FOR_OUTPUT.  */
 
 
          if (rld[i].when_needed == RELOAD_OTHER)
          if (rld[i].when_needed == RELOAD_OTHER)
            for (j = 0; j < n_reloads; j++)
            for (j = 0; j < n_reloads; j++)
              if (rld[j].in != 0
              if (rld[j].in != 0
                  && rld[j].when_needed != RELOAD_OTHER
                  && rld[j].when_needed != RELOAD_OTHER
                  && rld[j].when_needed != RELOAD_FOR_OTHER_ADDRESS
                  && rld[j].when_needed != RELOAD_FOR_OTHER_ADDRESS
                  && rld[j].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
                  && rld[j].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
                  && (! conflicting_input
                  && (! conflicting_input
                      || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
                      || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
                      || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
                      || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
                  && reg_overlap_mentioned_for_reload_p (rld[j].in,
                  && reg_overlap_mentioned_for_reload_p (rld[j].in,
                                                         rld[i].in))
                                                         rld[i].in))
                {
                {
                  int k;
                  int k;
 
 
                  rld[j].when_needed
                  rld[j].when_needed
                    = ((rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
                    = ((rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
                        || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
                        || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
                       ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
                       ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
 
 
                  /* Check to see if we accidentally converted two
                  /* Check to see if we accidentally converted two
                     reloads that use the same reload register with
                     reloads that use the same reload register with
                     different inputs to the same type.  If so, the
                     different inputs to the same type.  If so, the
                     resulting code won't work.  */
                     resulting code won't work.  */
                  if (rld[j].reg_rtx)
                  if (rld[j].reg_rtx)
                    for (k = 0; k < j; k++)
                    for (k = 0; k < j; k++)
                      gcc_assert (rld[k].in == 0 || rld[k].reg_rtx == 0
                      gcc_assert (rld[k].in == 0 || rld[k].reg_rtx == 0
                                  || rld[k].when_needed != rld[j].when_needed
                                  || rld[k].when_needed != rld[j].when_needed
                                  || !rtx_equal_p (rld[k].reg_rtx,
                                  || !rtx_equal_p (rld[k].reg_rtx,
                                                   rld[j].reg_rtx)
                                                   rld[j].reg_rtx)
                                  || rtx_equal_p (rld[k].in,
                                  || rtx_equal_p (rld[k].in,
                                                  rld[j].in));
                                                  rld[j].in));
                }
                }
        }
        }
    }
    }
}
}


/* These arrays are filled by emit_reload_insns and its subroutines.  */
/* These arrays are filled by emit_reload_insns and its subroutines.  */
static rtx input_reload_insns[MAX_RECOG_OPERANDS];
static rtx input_reload_insns[MAX_RECOG_OPERANDS];
static rtx other_input_address_reload_insns = 0;
static rtx other_input_address_reload_insns = 0;
static rtx other_input_reload_insns = 0;
static rtx other_input_reload_insns = 0;
static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
static rtx output_reload_insns[MAX_RECOG_OPERANDS];
static rtx output_reload_insns[MAX_RECOG_OPERANDS];
static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
static rtx operand_reload_insns = 0;
static rtx operand_reload_insns = 0;
static rtx other_operand_reload_insns = 0;
static rtx other_operand_reload_insns = 0;
static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
 
 
/* Values to be put in spill_reg_store are put here first.  */
/* Values to be put in spill_reg_store are put here first.  */
static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
static HARD_REG_SET reg_reloaded_died;
static HARD_REG_SET reg_reloaded_died;
 
 
/* Check if *RELOAD_REG is suitable as an intermediate or scratch register
/* Check if *RELOAD_REG is suitable as an intermediate or scratch register
   of class NEW_CLASS with mode NEW_MODE.  Or alternatively, if alt_reload_reg
   of class NEW_CLASS with mode NEW_MODE.  Or alternatively, if alt_reload_reg
   is nonzero, if that is suitable.  On success, change *RELOAD_REG to the
   is nonzero, if that is suitable.  On success, change *RELOAD_REG to the
   adjusted register, and return true.  Otherwise, return false.  */
   adjusted register, and return true.  Otherwise, return false.  */
static bool
static bool
reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
                            enum reg_class new_class,
                            enum reg_class new_class,
                            enum machine_mode new_mode)
                            enum machine_mode new_mode)
 
 
{
{
  rtx reg;
  rtx reg;
 
 
  for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
  for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
    {
    {
      unsigned regno = REGNO (reg);
      unsigned regno = REGNO (reg);
 
 
      if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
      if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
        continue;
        continue;
      if (GET_MODE (reg) != new_mode)
      if (GET_MODE (reg) != new_mode)
        {
        {
          if (!HARD_REGNO_MODE_OK (regno, new_mode))
          if (!HARD_REGNO_MODE_OK (regno, new_mode))
            continue;
            continue;
          if (hard_regno_nregs[regno][new_mode]
          if (hard_regno_nregs[regno][new_mode]
              > hard_regno_nregs[regno][GET_MODE (reg)])
              > hard_regno_nregs[regno][GET_MODE (reg)])
            continue;
            continue;
          reg = reload_adjust_reg_for_mode (reg, new_mode);
          reg = reload_adjust_reg_for_mode (reg, new_mode);
        }
        }
      *reload_reg = reg;
      *reload_reg = reg;
      return true;
      return true;
    }
    }
  return false;
  return false;
}
}
 
 
/* Check if *RELOAD_REG is suitable as a scratch register for the reload
/* Check if *RELOAD_REG is suitable as a scratch register for the reload
   pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
   pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
   nonzero, if that is suitable.  On success, change *RELOAD_REG to the
   nonzero, if that is suitable.  On success, change *RELOAD_REG to the
   adjusted register, and return true.  Otherwise, return false.  */
   adjusted register, and return true.  Otherwise, return false.  */
static bool
static bool
reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
                             enum insn_code icode)
                             enum insn_code icode)
 
 
{
{
  enum reg_class new_class = scratch_reload_class (icode);
  enum reg_class new_class = scratch_reload_class (icode);
  enum machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
  enum machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
 
 
  return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
  return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
                                     new_class, new_mode);
                                     new_class, new_mode);
}
}
 
 
/* Generate insns to perform reload RL, which is for the insn in CHAIN and
/* Generate insns to perform reload RL, which is for the insn in CHAIN and
   has the number J.  OLD contains the value to be used as input.  */
   has the number J.  OLD contains the value to be used as input.  */
 
 
static void
static void
emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
                         rtx old, int j)
                         rtx old, int j)
{
{
  rtx insn = chain->insn;
  rtx insn = chain->insn;
  rtx reloadreg = rl->reg_rtx;
  rtx reloadreg = rl->reg_rtx;
  rtx oldequiv_reg = 0;
  rtx oldequiv_reg = 0;
  rtx oldequiv = 0;
  rtx oldequiv = 0;
  int special = 0;
  int special = 0;
  enum machine_mode mode;
  enum machine_mode mode;
  rtx *where;
  rtx *where;
 
 
  /* Determine the mode to reload in.
  /* Determine the mode to reload in.
     This is very tricky because we have three to choose from.
     This is very tricky because we have three to choose from.
     There is the mode the insn operand wants (rl->inmode).
     There is the mode the insn operand wants (rl->inmode).
     There is the mode of the reload register RELOADREG.
     There is the mode of the reload register RELOADREG.
     There is the intrinsic mode of the operand, which we could find
     There is the intrinsic mode of the operand, which we could find
     by stripping some SUBREGs.
     by stripping some SUBREGs.
     It turns out that RELOADREG's mode is irrelevant:
     It turns out that RELOADREG's mode is irrelevant:
     we can change that arbitrarily.
     we can change that arbitrarily.
 
 
     Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
     Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
     then the reload reg may not support QImode moves, so use SImode.
     then the reload reg may not support QImode moves, so use SImode.
     If foo is in memory due to spilling a pseudo reg, this is safe,
     If foo is in memory due to spilling a pseudo reg, this is safe,
     because the QImode value is in the least significant part of a
     because the QImode value is in the least significant part of a
     slot big enough for a SImode.  If foo is some other sort of
     slot big enough for a SImode.  If foo is some other sort of
     memory reference, then it is impossible to reload this case,
     memory reference, then it is impossible to reload this case,
     so previous passes had better make sure this never happens.
     so previous passes had better make sure this never happens.
 
 
     Then consider a one-word union which has SImode and one of its
     Then consider a one-word union which has SImode and one of its
     members is a float, being fetched as (SUBREG:SF union:SI).
     members is a float, being fetched as (SUBREG:SF union:SI).
     We must fetch that as SFmode because we could be loading into
     We must fetch that as SFmode because we could be loading into
     a float-only register.  In this case OLD's mode is correct.
     a float-only register.  In this case OLD's mode is correct.
 
 
     Consider an immediate integer: it has VOIDmode.  Here we need
     Consider an immediate integer: it has VOIDmode.  Here we need
     to get a mode from something else.
     to get a mode from something else.
 
 
     In some cases, there is a fourth mode, the operand's
     In some cases, there is a fourth mode, the operand's
     containing mode.  If the insn specifies a containing mode for
     containing mode.  If the insn specifies a containing mode for
     this operand, it overrides all others.
     this operand, it overrides all others.
 
 
     I am not sure whether the algorithm here is always right,
     I am not sure whether the algorithm here is always right,
     but it does the right things in those cases.  */
     but it does the right things in those cases.  */
 
 
  mode = GET_MODE (old);
  mode = GET_MODE (old);
  if (mode == VOIDmode)
  if (mode == VOIDmode)
    mode = rl->inmode;
    mode = rl->inmode;
 
 
  /* delete_output_reload is only invoked properly if old contains
  /* delete_output_reload is only invoked properly if old contains
     the original pseudo register.  Since this is replaced with a
     the original pseudo register.  Since this is replaced with a
     hard reg when RELOAD_OVERRIDE_IN is set, see if we can
     hard reg when RELOAD_OVERRIDE_IN is set, see if we can
     find the pseudo in RELOAD_IN_REG.  */
     find the pseudo in RELOAD_IN_REG.  */
  if (reload_override_in[j]
  if (reload_override_in[j]
      && REG_P (rl->in_reg))
      && REG_P (rl->in_reg))
    {
    {
      oldequiv = old;
      oldequiv = old;
      old = rl->in_reg;
      old = rl->in_reg;
    }
    }
  if (oldequiv == 0)
  if (oldequiv == 0)
    oldequiv = old;
    oldequiv = old;
  else if (REG_P (oldequiv))
  else if (REG_P (oldequiv))
    oldequiv_reg = oldequiv;
    oldequiv_reg = oldequiv;
  else if (GET_CODE (oldequiv) == SUBREG)
  else if (GET_CODE (oldequiv) == SUBREG)
    oldequiv_reg = SUBREG_REG (oldequiv);
    oldequiv_reg = SUBREG_REG (oldequiv);
 
 
  /* If we are reloading from a register that was recently stored in
  /* If we are reloading from a register that was recently stored in
     with an output-reload, see if we can prove there was
     with an output-reload, see if we can prove there was
     actually no need to store the old value in it.  */
     actually no need to store the old value in it.  */
 
 
  if (optimize && REG_P (oldequiv)
  if (optimize && REG_P (oldequiv)
      && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
      && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
      && spill_reg_store[REGNO (oldequiv)]
      && spill_reg_store[REGNO (oldequiv)]
      && REG_P (old)
      && REG_P (old)
      && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
      && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
          || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
          || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
                          rl->out_reg)))
                          rl->out_reg)))
    delete_output_reload (insn, j, REGNO (oldequiv));
    delete_output_reload (insn, j, REGNO (oldequiv));
 
 
  /* Encapsulate both RELOADREG and OLDEQUIV into that mode,
  /* Encapsulate both RELOADREG and OLDEQUIV into that mode,
     then load RELOADREG from OLDEQUIV.  Note that we cannot use
     then load RELOADREG from OLDEQUIV.  Note that we cannot use
     gen_lowpart_common since it can do the wrong thing when
     gen_lowpart_common since it can do the wrong thing when
     RELOADREG has a multi-word mode.  Note that RELOADREG
     RELOADREG has a multi-word mode.  Note that RELOADREG
     must always be a REG here.  */
     must always be a REG here.  */
 
 
  if (GET_MODE (reloadreg) != mode)
  if (GET_MODE (reloadreg) != mode)
    reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
    reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
  while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
  while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
    oldequiv = SUBREG_REG (oldequiv);
    oldequiv = SUBREG_REG (oldequiv);
  if (GET_MODE (oldequiv) != VOIDmode
  if (GET_MODE (oldequiv) != VOIDmode
      && mode != GET_MODE (oldequiv))
      && mode != GET_MODE (oldequiv))
    oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
    oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
 
 
  /* Switch to the right place to emit the reload insns.  */
  /* Switch to the right place to emit the reload insns.  */
  switch (rl->when_needed)
  switch (rl->when_needed)
    {
    {
    case RELOAD_OTHER:
    case RELOAD_OTHER:
      where = &other_input_reload_insns;
      where = &other_input_reload_insns;
      break;
      break;
    case RELOAD_FOR_INPUT:
    case RELOAD_FOR_INPUT:
      where = &input_reload_insns[rl->opnum];
      where = &input_reload_insns[rl->opnum];
      break;
      break;
    case RELOAD_FOR_INPUT_ADDRESS:
    case RELOAD_FOR_INPUT_ADDRESS:
      where = &input_address_reload_insns[rl->opnum];
      where = &input_address_reload_insns[rl->opnum];
      break;
      break;
    case RELOAD_FOR_INPADDR_ADDRESS:
    case RELOAD_FOR_INPADDR_ADDRESS:
      where = &inpaddr_address_reload_insns[rl->opnum];
      where = &inpaddr_address_reload_insns[rl->opnum];
      break;
      break;
    case RELOAD_FOR_OUTPUT_ADDRESS:
    case RELOAD_FOR_OUTPUT_ADDRESS:
      where = &output_address_reload_insns[rl->opnum];
      where = &output_address_reload_insns[rl->opnum];
      break;
      break;
    case RELOAD_FOR_OUTADDR_ADDRESS:
    case RELOAD_FOR_OUTADDR_ADDRESS:
      where = &outaddr_address_reload_insns[rl->opnum];
      where = &outaddr_address_reload_insns[rl->opnum];
      break;
      break;
    case RELOAD_FOR_OPERAND_ADDRESS:
    case RELOAD_FOR_OPERAND_ADDRESS:
      where = &operand_reload_insns;
      where = &operand_reload_insns;
      break;
      break;
    case RELOAD_FOR_OPADDR_ADDR:
    case RELOAD_FOR_OPADDR_ADDR:
      where = &other_operand_reload_insns;
      where = &other_operand_reload_insns;
      break;
      break;
    case RELOAD_FOR_OTHER_ADDRESS:
    case RELOAD_FOR_OTHER_ADDRESS:
      where = &other_input_address_reload_insns;
      where = &other_input_address_reload_insns;
      break;
      break;
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  push_to_sequence (*where);
  push_to_sequence (*where);
 
 
  /* Auto-increment addresses must be reloaded in a special way.  */
  /* Auto-increment addresses must be reloaded in a special way.  */
  if (rl->out && ! rl->out_reg)
  if (rl->out && ! rl->out_reg)
    {
    {
      /* We are not going to bother supporting the case where a
      /* We are not going to bother supporting the case where a
         incremented register can't be copied directly from
         incremented register can't be copied directly from
         OLDEQUIV since this seems highly unlikely.  */
         OLDEQUIV since this seems highly unlikely.  */
      gcc_assert (rl->secondary_in_reload < 0);
      gcc_assert (rl->secondary_in_reload < 0);
 
 
      if (reload_inherited[j])
      if (reload_inherited[j])
        oldequiv = reloadreg;
        oldequiv = reloadreg;
 
 
      old = XEXP (rl->in_reg, 0);
      old = XEXP (rl->in_reg, 0);
 
 
      if (optimize && REG_P (oldequiv)
      if (optimize && REG_P (oldequiv)
          && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
          && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
          && spill_reg_store[REGNO (oldequiv)]
          && spill_reg_store[REGNO (oldequiv)]
          && REG_P (old)
          && REG_P (old)
          && (dead_or_set_p (insn,
          && (dead_or_set_p (insn,
                             spill_reg_stored_to[REGNO (oldequiv)])
                             spill_reg_stored_to[REGNO (oldequiv)])
              || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
              || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
                              old)))
                              old)))
        delete_output_reload (insn, j, REGNO (oldequiv));
        delete_output_reload (insn, j, REGNO (oldequiv));
 
 
      /* Prevent normal processing of this reload.  */
      /* Prevent normal processing of this reload.  */
      special = 1;
      special = 1;
      /* Output a special code sequence for this case.  */
      /* Output a special code sequence for this case.  */
      new_spill_reg_store[REGNO (reloadreg)]
      new_spill_reg_store[REGNO (reloadreg)]
        = inc_for_reload (reloadreg, oldequiv, rl->out,
        = inc_for_reload (reloadreg, oldequiv, rl->out,
                          rl->inc);
                          rl->inc);
    }
    }
 
 
  /* If we are reloading a pseudo-register that was set by the previous
  /* If we are reloading a pseudo-register that was set by the previous
     insn, see if we can get rid of that pseudo-register entirely
     insn, see if we can get rid of that pseudo-register entirely
     by redirecting the previous insn into our reload register.  */
     by redirecting the previous insn into our reload register.  */
 
 
  else if (optimize && REG_P (old)
  else if (optimize && REG_P (old)
           && REGNO (old) >= FIRST_PSEUDO_REGISTER
           && REGNO (old) >= FIRST_PSEUDO_REGISTER
           && dead_or_set_p (insn, old)
           && dead_or_set_p (insn, old)
           /* This is unsafe if some other reload
           /* This is unsafe if some other reload
              uses the same reg first.  */
              uses the same reg first.  */
           && ! conflicts_with_override (reloadreg)
           && ! conflicts_with_override (reloadreg)
           && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
           && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
                                rl->when_needed, old, rl->out, j, 0))
                                rl->when_needed, old, rl->out, j, 0))
    {
    {
      rtx temp = PREV_INSN (insn);
      rtx temp = PREV_INSN (insn);
      while (temp && NOTE_P (temp))
      while (temp && NOTE_P (temp))
        temp = PREV_INSN (temp);
        temp = PREV_INSN (temp);
      if (temp
      if (temp
          && NONJUMP_INSN_P (temp)
          && NONJUMP_INSN_P (temp)
          && GET_CODE (PATTERN (temp)) == SET
          && GET_CODE (PATTERN (temp)) == SET
          && SET_DEST (PATTERN (temp)) == old
          && SET_DEST (PATTERN (temp)) == old
          /* Make sure we can access insn_operand_constraint.  */
          /* Make sure we can access insn_operand_constraint.  */
          && asm_noperands (PATTERN (temp)) < 0
          && asm_noperands (PATTERN (temp)) < 0
          /* This is unsafe if operand occurs more than once in current
          /* This is unsafe if operand occurs more than once in current
             insn.  Perhaps some occurrences aren't reloaded.  */
             insn.  Perhaps some occurrences aren't reloaded.  */
          && count_occurrences (PATTERN (insn), old, 0) == 1)
          && count_occurrences (PATTERN (insn), old, 0) == 1)
        {
        {
          rtx old = SET_DEST (PATTERN (temp));
          rtx old = SET_DEST (PATTERN (temp));
          /* Store into the reload register instead of the pseudo.  */
          /* Store into the reload register instead of the pseudo.  */
          SET_DEST (PATTERN (temp)) = reloadreg;
          SET_DEST (PATTERN (temp)) = reloadreg;
 
 
          /* Verify that resulting insn is valid.  */
          /* Verify that resulting insn is valid.  */
          extract_insn (temp);
          extract_insn (temp);
          if (constrain_operands (1))
          if (constrain_operands (1))
            {
            {
              /* If the previous insn is an output reload, the source is
              /* If the previous insn is an output reload, the source is
                 a reload register, and its spill_reg_store entry will
                 a reload register, and its spill_reg_store entry will
                 contain the previous destination.  This is now
                 contain the previous destination.  This is now
                 invalid.  */
                 invalid.  */
              if (REG_P (SET_SRC (PATTERN (temp)))
              if (REG_P (SET_SRC (PATTERN (temp)))
                  && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
                  && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
                {
                {
                  spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
                  spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
                  spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
                  spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
                }
                }
 
 
              /* If these are the only uses of the pseudo reg,
              /* If these are the only uses of the pseudo reg,
                 pretend for GDB it lives in the reload reg we used.  */
                 pretend for GDB it lives in the reload reg we used.  */
              if (REG_N_DEATHS (REGNO (old)) == 1
              if (REG_N_DEATHS (REGNO (old)) == 1
                  && REG_N_SETS (REGNO (old)) == 1)
                  && REG_N_SETS (REGNO (old)) == 1)
                {
                {
                  reg_renumber[REGNO (old)] = REGNO (rl->reg_rtx);
                  reg_renumber[REGNO (old)] = REGNO (rl->reg_rtx);
                  alter_reg (REGNO (old), -1);
                  alter_reg (REGNO (old), -1);
                }
                }
              special = 1;
              special = 1;
            }
            }
          else
          else
            {
            {
              SET_DEST (PATTERN (temp)) = old;
              SET_DEST (PATTERN (temp)) = old;
            }
            }
        }
        }
    }
    }
 
 
  /* We can't do that, so output an insn to load RELOADREG.  */
  /* We can't do that, so output an insn to load RELOADREG.  */
 
 
  /* If we have a secondary reload, pick up the secondary register
  /* If we have a secondary reload, pick up the secondary register
     and icode, if any.  If OLDEQUIV and OLD are different or
     and icode, if any.  If OLDEQUIV and OLD are different or
     if this is an in-out reload, recompute whether or not we
     if this is an in-out reload, recompute whether or not we
     still need a secondary register and what the icode should
     still need a secondary register and what the icode should
     be.  If we still need a secondary register and the class or
     be.  If we still need a secondary register and the class or
     icode is different, go back to reloading from OLD if using
     icode is different, go back to reloading from OLD if using
     OLDEQUIV means that we got the wrong type of register.  We
     OLDEQUIV means that we got the wrong type of register.  We
     cannot have different class or icode due to an in-out reload
     cannot have different class or icode due to an in-out reload
     because we don't make such reloads when both the input and
     because we don't make such reloads when both the input and
     output need secondary reload registers.  */
     output need secondary reload registers.  */
 
 
  if (! special && rl->secondary_in_reload >= 0)
  if (! special && rl->secondary_in_reload >= 0)
    {
    {
      rtx second_reload_reg = 0;
      rtx second_reload_reg = 0;
      rtx third_reload_reg = 0;
      rtx third_reload_reg = 0;
      int secondary_reload = rl->secondary_in_reload;
      int secondary_reload = rl->secondary_in_reload;
      rtx real_oldequiv = oldequiv;
      rtx real_oldequiv = oldequiv;
      rtx real_old = old;
      rtx real_old = old;
      rtx tmp;
      rtx tmp;
      enum insn_code icode;
      enum insn_code icode;
      enum insn_code tertiary_icode = CODE_FOR_nothing;
      enum insn_code tertiary_icode = CODE_FOR_nothing;
 
 
      /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
      /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
         and similarly for OLD.
         and similarly for OLD.
         See comments in get_secondary_reload in reload.c.  */
         See comments in get_secondary_reload in reload.c.  */
      /* If it is a pseudo that cannot be replaced with its
      /* If it is a pseudo that cannot be replaced with its
         equivalent MEM, we must fall back to reload_in, which
         equivalent MEM, we must fall back to reload_in, which
         will have all the necessary substitutions registered.
         will have all the necessary substitutions registered.
         Likewise for a pseudo that can't be replaced with its
         Likewise for a pseudo that can't be replaced with its
         equivalent constant.
         equivalent constant.
 
 
         Take extra care for subregs of such pseudos.  Note that
         Take extra care for subregs of such pseudos.  Note that
         we cannot use reg_equiv_mem in this case because it is
         we cannot use reg_equiv_mem in this case because it is
         not in the right mode.  */
         not in the right mode.  */
 
 
      tmp = oldequiv;
      tmp = oldequiv;
      if (GET_CODE (tmp) == SUBREG)
      if (GET_CODE (tmp) == SUBREG)
        tmp = SUBREG_REG (tmp);
        tmp = SUBREG_REG (tmp);
      if (REG_P (tmp)
      if (REG_P (tmp)
          && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
          && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
          && (reg_equiv_memory_loc[REGNO (tmp)] != 0
          && (reg_equiv_memory_loc[REGNO (tmp)] != 0
              || reg_equiv_constant[REGNO (tmp)] != 0))
              || reg_equiv_constant[REGNO (tmp)] != 0))
        {
        {
          if (! reg_equiv_mem[REGNO (tmp)]
          if (! reg_equiv_mem[REGNO (tmp)]
              || num_not_at_initial_offset
              || num_not_at_initial_offset
              || GET_CODE (oldequiv) == SUBREG)
              || GET_CODE (oldequiv) == SUBREG)
            real_oldequiv = rl->in;
            real_oldequiv = rl->in;
          else
          else
            real_oldequiv = reg_equiv_mem[REGNO (tmp)];
            real_oldequiv = reg_equiv_mem[REGNO (tmp)];
        }
        }
 
 
      tmp = old;
      tmp = old;
      if (GET_CODE (tmp) == SUBREG)
      if (GET_CODE (tmp) == SUBREG)
        tmp = SUBREG_REG (tmp);
        tmp = SUBREG_REG (tmp);
      if (REG_P (tmp)
      if (REG_P (tmp)
          && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
          && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
          && (reg_equiv_memory_loc[REGNO (tmp)] != 0
          && (reg_equiv_memory_loc[REGNO (tmp)] != 0
              || reg_equiv_constant[REGNO (tmp)] != 0))
              || reg_equiv_constant[REGNO (tmp)] != 0))
        {
        {
          if (! reg_equiv_mem[REGNO (tmp)]
          if (! reg_equiv_mem[REGNO (tmp)]
              || num_not_at_initial_offset
              || num_not_at_initial_offset
              || GET_CODE (old) == SUBREG)
              || GET_CODE (old) == SUBREG)
            real_old = rl->in;
            real_old = rl->in;
          else
          else
            real_old = reg_equiv_mem[REGNO (tmp)];
            real_old = reg_equiv_mem[REGNO (tmp)];
        }
        }
 
 
      second_reload_reg = rld[secondary_reload].reg_rtx;
      second_reload_reg = rld[secondary_reload].reg_rtx;
      if (rld[secondary_reload].secondary_in_reload >= 0)
      if (rld[secondary_reload].secondary_in_reload >= 0)
        {
        {
          int tertiary_reload = rld[secondary_reload].secondary_in_reload;
          int tertiary_reload = rld[secondary_reload].secondary_in_reload;
 
 
          third_reload_reg = rld[tertiary_reload].reg_rtx;
          third_reload_reg = rld[tertiary_reload].reg_rtx;
          tertiary_icode = rld[secondary_reload].secondary_in_icode;
          tertiary_icode = rld[secondary_reload].secondary_in_icode;
          /* We'd have to add more code for quartary reloads.  */
          /* We'd have to add more code for quartary reloads.  */
          gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
          gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
        }
        }
      icode = rl->secondary_in_icode;
      icode = rl->secondary_in_icode;
 
 
      if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
      if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
          || (rl->in != 0 && rl->out != 0))
          || (rl->in != 0 && rl->out != 0))
        {
        {
          secondary_reload_info sri, sri2;
          secondary_reload_info sri, sri2;
          enum reg_class new_class, new_t_class;
          enum reg_class new_class, new_t_class;
 
 
          sri.icode = CODE_FOR_nothing;
          sri.icode = CODE_FOR_nothing;
          sri.prev_sri = NULL;
          sri.prev_sri = NULL;
          new_class = targetm.secondary_reload (1, real_oldequiv, rl->class,
          new_class = targetm.secondary_reload (1, real_oldequiv, rl->class,
                                                mode, &sri);
                                                mode, &sri);
 
 
          if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
          if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
            second_reload_reg = 0;
            second_reload_reg = 0;
          else if (new_class == NO_REGS)
          else if (new_class == NO_REGS)
            {
            {
              if (reload_adjust_reg_for_icode (&second_reload_reg,
              if (reload_adjust_reg_for_icode (&second_reload_reg,
                                               third_reload_reg, sri.icode))
                                               third_reload_reg, sri.icode))
                icode = sri.icode, third_reload_reg = 0;
                icode = sri.icode, third_reload_reg = 0;
              else
              else
                oldequiv = old, real_oldequiv = real_old;
                oldequiv = old, real_oldequiv = real_old;
            }
            }
          else if (sri.icode != CODE_FOR_nothing)
          else if (sri.icode != CODE_FOR_nothing)
            /* We currently lack a way to express this in reloads.  */
            /* We currently lack a way to express this in reloads.  */
            gcc_unreachable ();
            gcc_unreachable ();
          else
          else
            {
            {
              sri2.icode = CODE_FOR_nothing;
              sri2.icode = CODE_FOR_nothing;
              sri2.prev_sri = &sri;
              sri2.prev_sri = &sri;
              new_t_class = targetm.secondary_reload (1, real_oldequiv,
              new_t_class = targetm.secondary_reload (1, real_oldequiv,
                                                      new_class, mode, &sri);
                                                      new_class, mode, &sri);
              if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
              if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
                {
                {
                  if (reload_adjust_reg_for_temp (&second_reload_reg,
                  if (reload_adjust_reg_for_temp (&second_reload_reg,
                                                  third_reload_reg,
                                                  third_reload_reg,
                                                  new_class, mode))
                                                  new_class, mode))
                    third_reload_reg = 0, tertiary_icode = sri2.icode;
                    third_reload_reg = 0, tertiary_icode = sri2.icode;
                  else
                  else
                    oldequiv = old, real_oldequiv = real_old;
                    oldequiv = old, real_oldequiv = real_old;
                }
                }
              else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
              else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
                {
                {
                  rtx intermediate = second_reload_reg;
                  rtx intermediate = second_reload_reg;
 
 
                  if (reload_adjust_reg_for_temp (&intermediate, NULL,
                  if (reload_adjust_reg_for_temp (&intermediate, NULL,
                                                  new_class, mode)
                                                  new_class, mode)
                      && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
                      && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
                                                      sri2.icode))
                                                      sri2.icode))
                    {
                    {
                      second_reload_reg = intermediate;
                      second_reload_reg = intermediate;
                      tertiary_icode = sri2.icode;
                      tertiary_icode = sri2.icode;
                    }
                    }
                  else
                  else
                    oldequiv = old, real_oldequiv = real_old;
                    oldequiv = old, real_oldequiv = real_old;
                }
                }
              else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
              else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
                {
                {
                  rtx intermediate = second_reload_reg;
                  rtx intermediate = second_reload_reg;
 
 
                  if (reload_adjust_reg_for_temp (&intermediate, NULL,
                  if (reload_adjust_reg_for_temp (&intermediate, NULL,
                                                  new_class, mode)
                                                  new_class, mode)
                      && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
                      && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
                                                      new_t_class, mode))
                                                      new_t_class, mode))
                    {
                    {
                      second_reload_reg = intermediate;
                      second_reload_reg = intermediate;
                      tertiary_icode = sri2.icode;
                      tertiary_icode = sri2.icode;
                    }
                    }
                  else
                  else
                    oldequiv = old, real_oldequiv = real_old;
                    oldequiv = old, real_oldequiv = real_old;
                }
                }
              else
              else
                /* This could be handled more intelligently too.  */
                /* This could be handled more intelligently too.  */
                oldequiv = old, real_oldequiv = real_old;
                oldequiv = old, real_oldequiv = real_old;
            }
            }
        }
        }
 
 
      /* If we still need a secondary reload register, check
      /* If we still need a secondary reload register, check
         to see if it is being used as a scratch or intermediate
         to see if it is being used as a scratch or intermediate
         register and generate code appropriately.  If we need
         register and generate code appropriately.  If we need
         a scratch register, use REAL_OLDEQUIV since the form of
         a scratch register, use REAL_OLDEQUIV since the form of
         the insn may depend on the actual address if it is
         the insn may depend on the actual address if it is
         a MEM.  */
         a MEM.  */
 
 
      if (second_reload_reg)
      if (second_reload_reg)
        {
        {
          if (icode != CODE_FOR_nothing)
          if (icode != CODE_FOR_nothing)
            {
            {
              /* We'd have to add extra code to handle this case.  */
              /* We'd have to add extra code to handle this case.  */
              gcc_assert (!third_reload_reg);
              gcc_assert (!third_reload_reg);
 
 
              emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
              emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
                                          second_reload_reg));
                                          second_reload_reg));
              special = 1;
              special = 1;
            }
            }
          else
          else
            {
            {
              /* See if we need a scratch register to load the
              /* See if we need a scratch register to load the
                 intermediate register (a tertiary reload).  */
                 intermediate register (a tertiary reload).  */
              if (tertiary_icode != CODE_FOR_nothing)
              if (tertiary_icode != CODE_FOR_nothing)
                {
                {
                  emit_insn ((GEN_FCN (tertiary_icode)
                  emit_insn ((GEN_FCN (tertiary_icode)
                              (second_reload_reg, real_oldequiv,
                              (second_reload_reg, real_oldequiv,
                               third_reload_reg)));
                               third_reload_reg)));
                }
                }
              else if (third_reload_reg)
              else if (third_reload_reg)
                {
                {
                  gen_reload (third_reload_reg, real_oldequiv,
                  gen_reload (third_reload_reg, real_oldequiv,
                              rl->opnum,
                              rl->opnum,
                              rl->when_needed);
                              rl->when_needed);
                  gen_reload (second_reload_reg, third_reload_reg,
                  gen_reload (second_reload_reg, third_reload_reg,
                              rl->opnum,
                              rl->opnum,
                              rl->when_needed);
                              rl->when_needed);
                }
                }
              else
              else
                gen_reload (second_reload_reg, real_oldequiv,
                gen_reload (second_reload_reg, real_oldequiv,
                            rl->opnum,
                            rl->opnum,
                            rl->when_needed);
                            rl->when_needed);
 
 
              oldequiv = second_reload_reg;
              oldequiv = second_reload_reg;
            }
            }
        }
        }
    }
    }
 
 
  if (! special && ! rtx_equal_p (reloadreg, oldequiv))
  if (! special && ! rtx_equal_p (reloadreg, oldequiv))
    {
    {
      rtx real_oldequiv = oldequiv;
      rtx real_oldequiv = oldequiv;
 
 
      if ((REG_P (oldequiv)
      if ((REG_P (oldequiv)
           && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
           && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
           && (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
           && (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
               || reg_equiv_constant[REGNO (oldequiv)] != 0))
               || reg_equiv_constant[REGNO (oldequiv)] != 0))
          || (GET_CODE (oldequiv) == SUBREG
          || (GET_CODE (oldequiv) == SUBREG
              && REG_P (SUBREG_REG (oldequiv))
              && REG_P (SUBREG_REG (oldequiv))
              && (REGNO (SUBREG_REG (oldequiv))
              && (REGNO (SUBREG_REG (oldequiv))
                  >= FIRST_PSEUDO_REGISTER)
                  >= FIRST_PSEUDO_REGISTER)
              && ((reg_equiv_memory_loc
              && ((reg_equiv_memory_loc
                   [REGNO (SUBREG_REG (oldequiv))] != 0)
                   [REGNO (SUBREG_REG (oldequiv))] != 0)
                  || (reg_equiv_constant
                  || (reg_equiv_constant
                      [REGNO (SUBREG_REG (oldequiv))] != 0)))
                      [REGNO (SUBREG_REG (oldequiv))] != 0)))
          || (CONSTANT_P (oldequiv)
          || (CONSTANT_P (oldequiv)
              && (PREFERRED_RELOAD_CLASS (oldequiv,
              && (PREFERRED_RELOAD_CLASS (oldequiv,
                                          REGNO_REG_CLASS (REGNO (reloadreg)))
                                          REGNO_REG_CLASS (REGNO (reloadreg)))
                  == NO_REGS)))
                  == NO_REGS)))
        real_oldequiv = rl->in;
        real_oldequiv = rl->in;
      gen_reload (reloadreg, real_oldequiv, rl->opnum,
      gen_reload (reloadreg, real_oldequiv, rl->opnum,
                  rl->when_needed);
                  rl->when_needed);
    }
    }
 
 
  if (flag_non_call_exceptions)
  if (flag_non_call_exceptions)
    copy_eh_notes (insn, get_insns ());
    copy_eh_notes (insn, get_insns ());
 
 
  /* End this sequence.  */
  /* End this sequence.  */
  *where = get_insns ();
  *where = get_insns ();
  end_sequence ();
  end_sequence ();
 
 
  /* Update reload_override_in so that delete_address_reloads_1
  /* Update reload_override_in so that delete_address_reloads_1
     can see the actual register usage.  */
     can see the actual register usage.  */
  if (oldequiv_reg)
  if (oldequiv_reg)
    reload_override_in[j] = oldequiv;
    reload_override_in[j] = oldequiv;
}
}
 
 
/* Generate insns to for the output reload RL, which is for the insn described
/* Generate insns to for the output reload RL, which is for the insn described
   by CHAIN and has the number J.  */
   by CHAIN and has the number J.  */
static void
static void
emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
                          int j)
                          int j)
{
{
  rtx reloadreg = rl->reg_rtx;
  rtx reloadreg = rl->reg_rtx;
  rtx insn = chain->insn;
  rtx insn = chain->insn;
  int special = 0;
  int special = 0;
  rtx old = rl->out;
  rtx old = rl->out;
  enum machine_mode mode = GET_MODE (old);
  enum machine_mode mode = GET_MODE (old);
  rtx p;
  rtx p;
 
 
  if (rl->when_needed == RELOAD_OTHER)
  if (rl->when_needed == RELOAD_OTHER)
    start_sequence ();
    start_sequence ();
  else
  else
    push_to_sequence (output_reload_insns[rl->opnum]);
    push_to_sequence (output_reload_insns[rl->opnum]);
 
 
  /* Determine the mode to reload in.
  /* Determine the mode to reload in.
     See comments above (for input reloading).  */
     See comments above (for input reloading).  */
 
 
  if (mode == VOIDmode)
  if (mode == VOIDmode)
    {
    {
      /* VOIDmode should never happen for an output.  */
      /* VOIDmode should never happen for an output.  */
      if (asm_noperands (PATTERN (insn)) < 0)
      if (asm_noperands (PATTERN (insn)) < 0)
        /* It's the compiler's fault.  */
        /* It's the compiler's fault.  */
        fatal_insn ("VOIDmode on an output", insn);
        fatal_insn ("VOIDmode on an output", insn);
      error_for_asm (insn, "output operand is constant in %<asm%>");
      error_for_asm (insn, "output operand is constant in %<asm%>");
      /* Prevent crash--use something we know is valid.  */
      /* Prevent crash--use something we know is valid.  */
      mode = word_mode;
      mode = word_mode;
      old = gen_rtx_REG (mode, REGNO (reloadreg));
      old = gen_rtx_REG (mode, REGNO (reloadreg));
    }
    }
 
 
  if (GET_MODE (reloadreg) != mode)
  if (GET_MODE (reloadreg) != mode)
    reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
    reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
 
 
  /* If we need two reload regs, set RELOADREG to the intermediate
  /* If we need two reload regs, set RELOADREG to the intermediate
     one, since it will be stored into OLD.  We might need a secondary
     one, since it will be stored into OLD.  We might need a secondary
     register only for an input reload, so check again here.  */
     register only for an input reload, so check again here.  */
 
 
  if (rl->secondary_out_reload >= 0)
  if (rl->secondary_out_reload >= 0)
    {
    {
      rtx real_old = old;
      rtx real_old = old;
      int secondary_reload = rl->secondary_out_reload;
      int secondary_reload = rl->secondary_out_reload;
      int tertiary_reload = rld[secondary_reload].secondary_out_reload;
      int tertiary_reload = rld[secondary_reload].secondary_out_reload;
 
 
      if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
      if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
          && reg_equiv_mem[REGNO (old)] != 0)
          && reg_equiv_mem[REGNO (old)] != 0)
        real_old = reg_equiv_mem[REGNO (old)];
        real_old = reg_equiv_mem[REGNO (old)];
 
 
      if (secondary_reload_class (0, rl->class, mode, real_old) != NO_REGS)
      if (secondary_reload_class (0, rl->class, mode, real_old) != NO_REGS)
        {
        {
          rtx second_reloadreg = reloadreg;
          rtx second_reloadreg = reloadreg;
          reloadreg = rld[secondary_reload].reg_rtx;
          reloadreg = rld[secondary_reload].reg_rtx;
 
 
          /* See if RELOADREG is to be used as a scratch register
          /* See if RELOADREG is to be used as a scratch register
             or as an intermediate register.  */
             or as an intermediate register.  */
          if (rl->secondary_out_icode != CODE_FOR_nothing)
          if (rl->secondary_out_icode != CODE_FOR_nothing)
            {
            {
              /* We'd have to add extra code to handle this case.  */
              /* We'd have to add extra code to handle this case.  */
              gcc_assert (tertiary_reload < 0);
              gcc_assert (tertiary_reload < 0);
 
 
              emit_insn ((GEN_FCN (rl->secondary_out_icode)
              emit_insn ((GEN_FCN (rl->secondary_out_icode)
                          (real_old, second_reloadreg, reloadreg)));
                          (real_old, second_reloadreg, reloadreg)));
              special = 1;
              special = 1;
            }
            }
          else
          else
            {
            {
              /* See if we need both a scratch and intermediate reload
              /* See if we need both a scratch and intermediate reload
                 register.  */
                 register.  */
 
 
              enum insn_code tertiary_icode
              enum insn_code tertiary_icode
                = rld[secondary_reload].secondary_out_icode;
                = rld[secondary_reload].secondary_out_icode;
 
 
              /* We'd have to add more code for quartary reloads.  */
              /* We'd have to add more code for quartary reloads.  */
              gcc_assert (tertiary_reload < 0
              gcc_assert (tertiary_reload < 0
                          || rld[tertiary_reload].secondary_out_reload < 0);
                          || rld[tertiary_reload].secondary_out_reload < 0);
 
 
              if (GET_MODE (reloadreg) != mode)
              if (GET_MODE (reloadreg) != mode)
                reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
                reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
 
 
              if (tertiary_icode != CODE_FOR_nothing)
              if (tertiary_icode != CODE_FOR_nothing)
                {
                {
                  rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
                  rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
                  rtx tem;
                  rtx tem;
 
 
                  /* Copy primary reload reg to secondary reload reg.
                  /* Copy primary reload reg to secondary reload reg.
                     (Note that these have been swapped above, then
                     (Note that these have been swapped above, then
                     secondary reload reg to OLD using our insn.)  */
                     secondary reload reg to OLD using our insn.)  */
 
 
                  /* If REAL_OLD is a paradoxical SUBREG, remove it
                  /* If REAL_OLD is a paradoxical SUBREG, remove it
                     and try to put the opposite SUBREG on
                     and try to put the opposite SUBREG on
                     RELOADREG.  */
                     RELOADREG.  */
                  if (GET_CODE (real_old) == SUBREG
                  if (GET_CODE (real_old) == SUBREG
                      && (GET_MODE_SIZE (GET_MODE (real_old))
                      && (GET_MODE_SIZE (GET_MODE (real_old))
                          > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
                          > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
                      && 0 != (tem = gen_lowpart_common
                      && 0 != (tem = gen_lowpart_common
                               (GET_MODE (SUBREG_REG (real_old)),
                               (GET_MODE (SUBREG_REG (real_old)),
                                reloadreg)))
                                reloadreg)))
                    real_old = SUBREG_REG (real_old), reloadreg = tem;
                    real_old = SUBREG_REG (real_old), reloadreg = tem;
 
 
                  gen_reload (reloadreg, second_reloadreg,
                  gen_reload (reloadreg, second_reloadreg,
                              rl->opnum, rl->when_needed);
                              rl->opnum, rl->when_needed);
                  emit_insn ((GEN_FCN (tertiary_icode)
                  emit_insn ((GEN_FCN (tertiary_icode)
                              (real_old, reloadreg, third_reloadreg)));
                              (real_old, reloadreg, third_reloadreg)));
                  special = 1;
                  special = 1;
                }
                }
 
 
              else
              else
                {
                {
                  /* Copy between the reload regs here and then to
                  /* Copy between the reload regs here and then to
                     OUT later.  */
                     OUT later.  */
 
 
                  gen_reload (reloadreg, second_reloadreg,
                  gen_reload (reloadreg, second_reloadreg,
                              rl->opnum, rl->when_needed);
                              rl->opnum, rl->when_needed);
                  if (tertiary_reload >= 0)
                  if (tertiary_reload >= 0)
                    {
                    {
                      rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
                      rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
 
 
                      gen_reload (third_reloadreg, reloadreg,
                      gen_reload (third_reloadreg, reloadreg,
                                  rl->opnum, rl->when_needed);
                                  rl->opnum, rl->when_needed);
                      reloadreg = third_reloadreg;
                      reloadreg = third_reloadreg;
                    }
                    }
                }
                }
            }
            }
        }
        }
    }
    }
 
 
  /* Output the last reload insn.  */
  /* Output the last reload insn.  */
  if (! special)
  if (! special)
    {
    {
      rtx set;
      rtx set;
 
 
      /* Don't output the last reload if OLD is not the dest of
      /* Don't output the last reload if OLD is not the dest of
         INSN and is in the src and is clobbered by INSN.  */
         INSN and is in the src and is clobbered by INSN.  */
      if (! flag_expensive_optimizations
      if (! flag_expensive_optimizations
          || !REG_P (old)
          || !REG_P (old)
          || !(set = single_set (insn))
          || !(set = single_set (insn))
          || rtx_equal_p (old, SET_DEST (set))
          || rtx_equal_p (old, SET_DEST (set))
          || !reg_mentioned_p (old, SET_SRC (set))
          || !reg_mentioned_p (old, SET_SRC (set))
          || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
          || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
               && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
               && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
        gen_reload (old, reloadreg, rl->opnum,
        gen_reload (old, reloadreg, rl->opnum,
                    rl->when_needed);
                    rl->when_needed);
    }
    }
 
 
  /* Look at all insns we emitted, just to be safe.  */
  /* Look at all insns we emitted, just to be safe.  */
  for (p = get_insns (); p; p = NEXT_INSN (p))
  for (p = get_insns (); p; p = NEXT_INSN (p))
    if (INSN_P (p))
    if (INSN_P (p))
      {
      {
        rtx pat = PATTERN (p);
        rtx pat = PATTERN (p);
 
 
        /* If this output reload doesn't come from a spill reg,
        /* If this output reload doesn't come from a spill reg,
           clear any memory of reloaded copies of the pseudo reg.
           clear any memory of reloaded copies of the pseudo reg.
           If this output reload comes from a spill reg,
           If this output reload comes from a spill reg,
           reg_has_output_reload will make this do nothing.  */
           reg_has_output_reload will make this do nothing.  */
        note_stores (pat, forget_old_reloads_1, NULL);
        note_stores (pat, forget_old_reloads_1, NULL);
 
 
        if (reg_mentioned_p (rl->reg_rtx, pat))
        if (reg_mentioned_p (rl->reg_rtx, pat))
          {
          {
            rtx set = single_set (insn);
            rtx set = single_set (insn);
            if (reload_spill_index[j] < 0
            if (reload_spill_index[j] < 0
                && set
                && set
                && SET_SRC (set) == rl->reg_rtx)
                && SET_SRC (set) == rl->reg_rtx)
              {
              {
                int src = REGNO (SET_SRC (set));
                int src = REGNO (SET_SRC (set));
 
 
                reload_spill_index[j] = src;
                reload_spill_index[j] = src;
                SET_HARD_REG_BIT (reg_is_output_reload, src);
                SET_HARD_REG_BIT (reg_is_output_reload, src);
                if (find_regno_note (insn, REG_DEAD, src))
                if (find_regno_note (insn, REG_DEAD, src))
                  SET_HARD_REG_BIT (reg_reloaded_died, src);
                  SET_HARD_REG_BIT (reg_reloaded_died, src);
              }
              }
            if (REGNO (rl->reg_rtx) < FIRST_PSEUDO_REGISTER)
            if (REGNO (rl->reg_rtx) < FIRST_PSEUDO_REGISTER)
              {
              {
                int s = rl->secondary_out_reload;
                int s = rl->secondary_out_reload;
                set = single_set (p);
                set = single_set (p);
                /* If this reload copies only to the secondary reload
                /* If this reload copies only to the secondary reload
                   register, the secondary reload does the actual
                   register, the secondary reload does the actual
                   store.  */
                   store.  */
                if (s >= 0 && set == NULL_RTX)
                if (s >= 0 && set == NULL_RTX)
                  /* We can't tell what function the secondary reload
                  /* We can't tell what function the secondary reload
                     has and where the actual store to the pseudo is
                     has and where the actual store to the pseudo is
                     made; leave new_spill_reg_store alone.  */
                     made; leave new_spill_reg_store alone.  */
                  ;
                  ;
                else if (s >= 0
                else if (s >= 0
                         && SET_SRC (set) == rl->reg_rtx
                         && SET_SRC (set) == rl->reg_rtx
                         && SET_DEST (set) == rld[s].reg_rtx)
                         && SET_DEST (set) == rld[s].reg_rtx)
                  {
                  {
                    /* Usually the next instruction will be the
                    /* Usually the next instruction will be the
                       secondary reload insn;  if we can confirm
                       secondary reload insn;  if we can confirm
                       that it is, setting new_spill_reg_store to
                       that it is, setting new_spill_reg_store to
                       that insn will allow an extra optimization.  */
                       that insn will allow an extra optimization.  */
                    rtx s_reg = rld[s].reg_rtx;
                    rtx s_reg = rld[s].reg_rtx;
                    rtx next = NEXT_INSN (p);
                    rtx next = NEXT_INSN (p);
                    rld[s].out = rl->out;
                    rld[s].out = rl->out;
                    rld[s].out_reg = rl->out_reg;
                    rld[s].out_reg = rl->out_reg;
                    set = single_set (next);
                    set = single_set (next);
                    if (set && SET_SRC (set) == s_reg
                    if (set && SET_SRC (set) == s_reg
                        && ! new_spill_reg_store[REGNO (s_reg)])
                        && ! new_spill_reg_store[REGNO (s_reg)])
                      {
                      {
                        SET_HARD_REG_BIT (reg_is_output_reload,
                        SET_HARD_REG_BIT (reg_is_output_reload,
                                          REGNO (s_reg));
                                          REGNO (s_reg));
                        new_spill_reg_store[REGNO (s_reg)] = next;
                        new_spill_reg_store[REGNO (s_reg)] = next;
                      }
                      }
                  }
                  }
                else
                else
                  new_spill_reg_store[REGNO (rl->reg_rtx)] = p;
                  new_spill_reg_store[REGNO (rl->reg_rtx)] = p;
              }
              }
          }
          }
      }
      }
 
 
  if (rl->when_needed == RELOAD_OTHER)
  if (rl->when_needed == RELOAD_OTHER)
    {
    {
      emit_insn (other_output_reload_insns[rl->opnum]);
      emit_insn (other_output_reload_insns[rl->opnum]);
      other_output_reload_insns[rl->opnum] = get_insns ();
      other_output_reload_insns[rl->opnum] = get_insns ();
    }
    }
  else
  else
    output_reload_insns[rl->opnum] = get_insns ();
    output_reload_insns[rl->opnum] = get_insns ();
 
 
  if (flag_non_call_exceptions)
  if (flag_non_call_exceptions)
    copy_eh_notes (insn, get_insns ());
    copy_eh_notes (insn, get_insns ());
 
 
  end_sequence ();
  end_sequence ();
}
}
 
 
/* Do input reloading for reload RL, which is for the insn described by CHAIN
/* Do input reloading for reload RL, which is for the insn described by CHAIN
   and has the number J.  */
   and has the number J.  */
static void
static void
do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
{
{
  rtx insn = chain->insn;
  rtx insn = chain->insn;
  rtx old = (rl->in && MEM_P (rl->in)
  rtx old = (rl->in && MEM_P (rl->in)
             ? rl->in_reg : rl->in);
             ? rl->in_reg : rl->in);
 
 
  if (old != 0
  if (old != 0
      /* AUTO_INC reloads need to be handled even if inherited.  We got an
      /* AUTO_INC reloads need to be handled even if inherited.  We got an
         AUTO_INC reload if reload_out is set but reload_out_reg isn't.  */
         AUTO_INC reload if reload_out is set but reload_out_reg isn't.  */
      && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
      && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
      && ! rtx_equal_p (rl->reg_rtx, old)
      && ! rtx_equal_p (rl->reg_rtx, old)
      && rl->reg_rtx != 0)
      && rl->reg_rtx != 0)
    emit_input_reload_insns (chain, rld + j, old, j);
    emit_input_reload_insns (chain, rld + j, old, j);
 
 
  /* When inheriting a wider reload, we have a MEM in rl->in,
  /* When inheriting a wider reload, we have a MEM in rl->in,
     e.g. inheriting a SImode output reload for
     e.g. inheriting a SImode output reload for
     (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10)))  */
     (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10)))  */
  if (optimize && reload_inherited[j] && rl->in
  if (optimize && reload_inherited[j] && rl->in
      && MEM_P (rl->in)
      && MEM_P (rl->in)
      && MEM_P (rl->in_reg)
      && MEM_P (rl->in_reg)
      && reload_spill_index[j] >= 0
      && reload_spill_index[j] >= 0
      && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
      && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
    rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
    rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
 
 
  /* If we are reloading a register that was recently stored in with an
  /* If we are reloading a register that was recently stored in with an
     output-reload, see if we can prove there was
     output-reload, see if we can prove there was
     actually no need to store the old value in it.  */
     actually no need to store the old value in it.  */
 
 
  if (optimize
  if (optimize
      /* Only attempt this for input reloads; for RELOAD_OTHER we miss
      /* Only attempt this for input reloads; for RELOAD_OTHER we miss
         that there may be multiple uses of the previous output reload.
         that there may be multiple uses of the previous output reload.
         Restricting to RELOAD_FOR_INPUT is mostly paranoia.  */
         Restricting to RELOAD_FOR_INPUT is mostly paranoia.  */
      && rl->when_needed == RELOAD_FOR_INPUT
      && rl->when_needed == RELOAD_FOR_INPUT
      && (reload_inherited[j] || reload_override_in[j])
      && (reload_inherited[j] || reload_override_in[j])
      && rl->reg_rtx
      && rl->reg_rtx
      && REG_P (rl->reg_rtx)
      && REG_P (rl->reg_rtx)
      && spill_reg_store[REGNO (rl->reg_rtx)] != 0
      && spill_reg_store[REGNO (rl->reg_rtx)] != 0
#if 0
#if 0
      /* There doesn't seem to be any reason to restrict this to pseudos
      /* There doesn't seem to be any reason to restrict this to pseudos
         and doing so loses in the case where we are copying from a
         and doing so loses in the case where we are copying from a
         register of the wrong class.  */
         register of the wrong class.  */
      && (REGNO (spill_reg_stored_to[REGNO (rl->reg_rtx)])
      && (REGNO (spill_reg_stored_to[REGNO (rl->reg_rtx)])
          >= FIRST_PSEUDO_REGISTER)
          >= FIRST_PSEUDO_REGISTER)
#endif
#endif
      /* The insn might have already some references to stackslots
      /* The insn might have already some references to stackslots
         replaced by MEMs, while reload_out_reg still names the
         replaced by MEMs, while reload_out_reg still names the
         original pseudo.  */
         original pseudo.  */
      && (dead_or_set_p (insn,
      && (dead_or_set_p (insn,
                         spill_reg_stored_to[REGNO (rl->reg_rtx)])
                         spill_reg_stored_to[REGNO (rl->reg_rtx)])
          || rtx_equal_p (spill_reg_stored_to[REGNO (rl->reg_rtx)],
          || rtx_equal_p (spill_reg_stored_to[REGNO (rl->reg_rtx)],
                          rl->out_reg)))
                          rl->out_reg)))
    delete_output_reload (insn, j, REGNO (rl->reg_rtx));
    delete_output_reload (insn, j, REGNO (rl->reg_rtx));
}
}
 
 
/* Do output reloading for reload RL, which is for the insn described by
/* Do output reloading for reload RL, which is for the insn described by
   CHAIN and has the number J.
   CHAIN and has the number J.
   ??? At some point we need to support handling output reloads of
   ??? At some point we need to support handling output reloads of
   JUMP_INSNs or insns that set cc0.  */
   JUMP_INSNs or insns that set cc0.  */
static void
static void
do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
{
{
  rtx note, old;
  rtx note, old;
  rtx insn = chain->insn;
  rtx insn = chain->insn;
  /* If this is an output reload that stores something that is
  /* If this is an output reload that stores something that is
     not loaded in this same reload, see if we can eliminate a previous
     not loaded in this same reload, see if we can eliminate a previous
     store.  */
     store.  */
  rtx pseudo = rl->out_reg;
  rtx pseudo = rl->out_reg;
 
 
  if (pseudo
  if (pseudo
      && optimize
      && optimize
      && REG_P (pseudo)
      && REG_P (pseudo)
      && ! rtx_equal_p (rl->in_reg, pseudo)
      && ! rtx_equal_p (rl->in_reg, pseudo)
      && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
      && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
      && reg_last_reload_reg[REGNO (pseudo)])
      && reg_last_reload_reg[REGNO (pseudo)])
    {
    {
      int pseudo_no = REGNO (pseudo);
      int pseudo_no = REGNO (pseudo);
      int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
      int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
 
 
      /* We don't need to test full validity of last_regno for
      /* We don't need to test full validity of last_regno for
         inherit here; we only want to know if the store actually
         inherit here; we only want to know if the store actually
         matches the pseudo.  */
         matches the pseudo.  */
      if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
      if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
          && reg_reloaded_contents[last_regno] == pseudo_no
          && reg_reloaded_contents[last_regno] == pseudo_no
          && spill_reg_store[last_regno]
          && spill_reg_store[last_regno]
          && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
          && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
        delete_output_reload (insn, j, last_regno);
        delete_output_reload (insn, j, last_regno);
    }
    }
 
 
  old = rl->out_reg;
  old = rl->out_reg;
  if (old == 0
  if (old == 0
      || rl->reg_rtx == old
      || rl->reg_rtx == old
      || rl->reg_rtx == 0)
      || rl->reg_rtx == 0)
    return;
    return;
 
 
  /* An output operand that dies right away does need a reload,
  /* An output operand that dies right away does need a reload,
     but need not be copied from it.  Show the new location in the
     but need not be copied from it.  Show the new location in the
     REG_UNUSED note.  */
     REG_UNUSED note.  */
  if ((REG_P (old) || GET_CODE (old) == SCRATCH)
  if ((REG_P (old) || GET_CODE (old) == SCRATCH)
      && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
      && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
    {
    {
      XEXP (note, 0) = rl->reg_rtx;
      XEXP (note, 0) = rl->reg_rtx;
      return;
      return;
    }
    }
  /* Likewise for a SUBREG of an operand that dies.  */
  /* Likewise for a SUBREG of an operand that dies.  */
  else if (GET_CODE (old) == SUBREG
  else if (GET_CODE (old) == SUBREG
           && REG_P (SUBREG_REG (old))
           && REG_P (SUBREG_REG (old))
           && 0 != (note = find_reg_note (insn, REG_UNUSED,
           && 0 != (note = find_reg_note (insn, REG_UNUSED,
                                          SUBREG_REG (old))))
                                          SUBREG_REG (old))))
    {
    {
      XEXP (note, 0) = gen_lowpart_common (GET_MODE (old),
      XEXP (note, 0) = gen_lowpart_common (GET_MODE (old),
                                           rl->reg_rtx);
                                           rl->reg_rtx);
      return;
      return;
    }
    }
  else if (GET_CODE (old) == SCRATCH)
  else if (GET_CODE (old) == SCRATCH)
    /* If we aren't optimizing, there won't be a REG_UNUSED note,
    /* If we aren't optimizing, there won't be a REG_UNUSED note,
       but we don't want to make an output reload.  */
       but we don't want to make an output reload.  */
    return;
    return;
 
 
  /* If is a JUMP_INSN, we can't support output reloads yet.  */
  /* If is a JUMP_INSN, we can't support output reloads yet.  */
  gcc_assert (NONJUMP_INSN_P (insn));
  gcc_assert (NONJUMP_INSN_P (insn));
 
 
  emit_output_reload_insns (chain, rld + j, j);
  emit_output_reload_insns (chain, rld + j, j);
}
}
 
 
/* Reload number R reloads from or to a group of hard registers starting at
/* Reload number R reloads from or to a group of hard registers starting at
   register REGNO.  Return true if it can be treated for inheritance purposes
   register REGNO.  Return true if it can be treated for inheritance purposes
   like a group of reloads, each one reloading a single hard register.
   like a group of reloads, each one reloading a single hard register.
   The caller has already checked that the spill register and REGNO use
   The caller has already checked that the spill register and REGNO use
   the same number of registers to store the reload value.  */
   the same number of registers to store the reload value.  */
 
 
static bool
static bool
inherit_piecemeal_p (int r ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED)
inherit_piecemeal_p (int r ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED)
{
{
#ifdef CANNOT_CHANGE_MODE_CLASS
#ifdef CANNOT_CHANGE_MODE_CLASS
  return (!REG_CANNOT_CHANGE_MODE_P (reload_spill_index[r],
  return (!REG_CANNOT_CHANGE_MODE_P (reload_spill_index[r],
                                     GET_MODE (rld[r].reg_rtx),
                                     GET_MODE (rld[r].reg_rtx),
                                     reg_raw_mode[reload_spill_index[r]])
                                     reg_raw_mode[reload_spill_index[r]])
          && !REG_CANNOT_CHANGE_MODE_P (regno,
          && !REG_CANNOT_CHANGE_MODE_P (regno,
                                        GET_MODE (rld[r].reg_rtx),
                                        GET_MODE (rld[r].reg_rtx),
                                        reg_raw_mode[regno]));
                                        reg_raw_mode[regno]));
#else
#else
  return true;
  return true;
#endif
#endif
}
}
 
 
/* Output insns to reload values in and out of the chosen reload regs.  */
/* Output insns to reload values in and out of the chosen reload regs.  */
 
 
static void
static void
emit_reload_insns (struct insn_chain *chain)
emit_reload_insns (struct insn_chain *chain)
{
{
  rtx insn = chain->insn;
  rtx insn = chain->insn;
 
 
  int j;
  int j;
 
 
  CLEAR_HARD_REG_SET (reg_reloaded_died);
  CLEAR_HARD_REG_SET (reg_reloaded_died);
 
 
  for (j = 0; j < reload_n_operands; j++)
  for (j = 0; j < reload_n_operands; j++)
    input_reload_insns[j] = input_address_reload_insns[j]
    input_reload_insns[j] = input_address_reload_insns[j]
      = inpaddr_address_reload_insns[j]
      = inpaddr_address_reload_insns[j]
      = output_reload_insns[j] = output_address_reload_insns[j]
      = output_reload_insns[j] = output_address_reload_insns[j]
      = outaddr_address_reload_insns[j]
      = outaddr_address_reload_insns[j]
      = other_output_reload_insns[j] = 0;
      = other_output_reload_insns[j] = 0;
  other_input_address_reload_insns = 0;
  other_input_address_reload_insns = 0;
  other_input_reload_insns = 0;
  other_input_reload_insns = 0;
  operand_reload_insns = 0;
  operand_reload_insns = 0;
  other_operand_reload_insns = 0;
  other_operand_reload_insns = 0;
 
 
  /* Dump reloads into the dump file.  */
  /* Dump reloads into the dump file.  */
  if (dump_file)
  if (dump_file)
    {
    {
      fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
      fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
      debug_reload_to_stream (dump_file);
      debug_reload_to_stream (dump_file);
    }
    }
 
 
  /* Now output the instructions to copy the data into and out of the
  /* Now output the instructions to copy the data into and out of the
     reload registers.  Do these in the order that the reloads were reported,
     reload registers.  Do these in the order that the reloads were reported,
     since reloads of base and index registers precede reloads of operands
     since reloads of base and index registers precede reloads of operands
     and the operands may need the base and index registers reloaded.  */
     and the operands may need the base and index registers reloaded.  */
 
 
  for (j = 0; j < n_reloads; j++)
  for (j = 0; j < n_reloads; j++)
    {
    {
      if (rld[j].reg_rtx
      if (rld[j].reg_rtx
          && REGNO (rld[j].reg_rtx) < FIRST_PSEUDO_REGISTER)
          && REGNO (rld[j].reg_rtx) < FIRST_PSEUDO_REGISTER)
        new_spill_reg_store[REGNO (rld[j].reg_rtx)] = 0;
        new_spill_reg_store[REGNO (rld[j].reg_rtx)] = 0;
 
 
      do_input_reload (chain, rld + j, j);
      do_input_reload (chain, rld + j, j);
      do_output_reload (chain, rld + j, j);
      do_output_reload (chain, rld + j, j);
    }
    }
 
 
  /* Now write all the insns we made for reloads in the order expected by
  /* Now write all the insns we made for reloads in the order expected by
     the allocation functions.  Prior to the insn being reloaded, we write
     the allocation functions.  Prior to the insn being reloaded, we write
     the following reloads:
     the following reloads:
 
 
     RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
     RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
 
 
     RELOAD_OTHER reloads.
     RELOAD_OTHER reloads.
 
 
     For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
     For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
     by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
     by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
     RELOAD_FOR_INPUT reload for the operand.
     RELOAD_FOR_INPUT reload for the operand.
 
 
     RELOAD_FOR_OPADDR_ADDRS reloads.
     RELOAD_FOR_OPADDR_ADDRS reloads.
 
 
     RELOAD_FOR_OPERAND_ADDRESS reloads.
     RELOAD_FOR_OPERAND_ADDRESS reloads.
 
 
     After the insn being reloaded, we write the following:
     After the insn being reloaded, we write the following:
 
 
     For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
     For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
     by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
     by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
     RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
     RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
     reloads for the operand.  The RELOAD_OTHER output reloads are
     reloads for the operand.  The RELOAD_OTHER output reloads are
     output in descending order by reload number.  */
     output in descending order by reload number.  */
 
 
  emit_insn_before (other_input_address_reload_insns, insn);
  emit_insn_before (other_input_address_reload_insns, insn);
  emit_insn_before (other_input_reload_insns, insn);
  emit_insn_before (other_input_reload_insns, insn);
 
 
  for (j = 0; j < reload_n_operands; j++)
  for (j = 0; j < reload_n_operands; j++)
    {
    {
      emit_insn_before (inpaddr_address_reload_insns[j], insn);
      emit_insn_before (inpaddr_address_reload_insns[j], insn);
      emit_insn_before (input_address_reload_insns[j], insn);
      emit_insn_before (input_address_reload_insns[j], insn);
      emit_insn_before (input_reload_insns[j], insn);
      emit_insn_before (input_reload_insns[j], insn);
    }
    }
 
 
  emit_insn_before (other_operand_reload_insns, insn);
  emit_insn_before (other_operand_reload_insns, insn);
  emit_insn_before (operand_reload_insns, insn);
  emit_insn_before (operand_reload_insns, insn);
 
 
  for (j = 0; j < reload_n_operands; j++)
  for (j = 0; j < reload_n_operands; j++)
    {
    {
      rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
      rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
      x = emit_insn_after (output_address_reload_insns[j], x);
      x = emit_insn_after (output_address_reload_insns[j], x);
      x = emit_insn_after (output_reload_insns[j], x);
      x = emit_insn_after (output_reload_insns[j], x);
      emit_insn_after (other_output_reload_insns[j], x);
      emit_insn_after (other_output_reload_insns[j], x);
    }
    }
 
 
  /* For all the spill regs newly reloaded in this instruction,
  /* For all the spill regs newly reloaded in this instruction,
     record what they were reloaded from, so subsequent instructions
     record what they were reloaded from, so subsequent instructions
     can inherit the reloads.
     can inherit the reloads.
 
 
     Update spill_reg_store for the reloads of this insn.
     Update spill_reg_store for the reloads of this insn.
     Copy the elements that were updated in the loop above.  */
     Copy the elements that were updated in the loop above.  */
 
 
  for (j = 0; j < n_reloads; j++)
  for (j = 0; j < n_reloads; j++)
    {
    {
      int r = reload_order[j];
      int r = reload_order[j];
      int i = reload_spill_index[r];
      int i = reload_spill_index[r];
 
 
      /* If this is a non-inherited input reload from a pseudo, we must
      /* If this is a non-inherited input reload from a pseudo, we must
         clear any memory of a previous store to the same pseudo.  Only do
         clear any memory of a previous store to the same pseudo.  Only do
         something if there will not be an output reload for the pseudo
         something if there will not be an output reload for the pseudo
         being reloaded.  */
         being reloaded.  */
      if (rld[r].in_reg != 0
      if (rld[r].in_reg != 0
          && ! (reload_inherited[r] || reload_override_in[r]))
          && ! (reload_inherited[r] || reload_override_in[r]))
        {
        {
          rtx reg = rld[r].in_reg;
          rtx reg = rld[r].in_reg;
 
 
          if (GET_CODE (reg) == SUBREG)
          if (GET_CODE (reg) == SUBREG)
            reg = SUBREG_REG (reg);
            reg = SUBREG_REG (reg);
 
 
          if (REG_P (reg)
          if (REG_P (reg)
              && REGNO (reg) >= FIRST_PSEUDO_REGISTER
              && REGNO (reg) >= FIRST_PSEUDO_REGISTER
              && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
              && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
            {
            {
              int nregno = REGNO (reg);
              int nregno = REGNO (reg);
 
 
              if (reg_last_reload_reg[nregno])
              if (reg_last_reload_reg[nregno])
                {
                {
                  int last_regno = REGNO (reg_last_reload_reg[nregno]);
                  int last_regno = REGNO (reg_last_reload_reg[nregno]);
 
 
                  if (reg_reloaded_contents[last_regno] == nregno)
                  if (reg_reloaded_contents[last_regno] == nregno)
                    spill_reg_store[last_regno] = 0;
                    spill_reg_store[last_regno] = 0;
                }
                }
            }
            }
        }
        }
 
 
      /* I is nonneg if this reload used a register.
      /* I is nonneg if this reload used a register.
         If rld[r].reg_rtx is 0, this is an optional reload
         If rld[r].reg_rtx is 0, this is an optional reload
         that we opted to ignore.  */
         that we opted to ignore.  */
 
 
      if (i >= 0 && rld[r].reg_rtx != 0)
      if (i >= 0 && rld[r].reg_rtx != 0)
        {
        {
          int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
          int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
          int k;
          int k;
          int part_reaches_end = 0;
          int part_reaches_end = 0;
          int all_reaches_end = 1;
          int all_reaches_end = 1;
 
 
          /* For a multi register reload, we need to check if all or part
          /* For a multi register reload, we need to check if all or part
             of the value lives to the end.  */
             of the value lives to the end.  */
          for (k = 0; k < nr; k++)
          for (k = 0; k < nr; k++)
            {
            {
              if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
              if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
                                            rld[r].when_needed))
                                            rld[r].when_needed))
                part_reaches_end = 1;
                part_reaches_end = 1;
              else
              else
                all_reaches_end = 0;
                all_reaches_end = 0;
            }
            }
 
 
          /* Ignore reloads that don't reach the end of the insn in
          /* Ignore reloads that don't reach the end of the insn in
             entirety.  */
             entirety.  */
          if (all_reaches_end)
          if (all_reaches_end)
            {
            {
              /* First, clear out memory of what used to be in this spill reg.
              /* First, clear out memory of what used to be in this spill reg.
                 If consecutive registers are used, clear them all.  */
                 If consecutive registers are used, clear them all.  */
 
 
              for (k = 0; k < nr; k++)
              for (k = 0; k < nr; k++)
                {
                {
                CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
                CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
                  CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
                  CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
                }
                }
 
 
              /* Maybe the spill reg contains a copy of reload_out.  */
              /* Maybe the spill reg contains a copy of reload_out.  */
              if (rld[r].out != 0
              if (rld[r].out != 0
                  && (REG_P (rld[r].out)
                  && (REG_P (rld[r].out)
#ifdef AUTO_INC_DEC
#ifdef AUTO_INC_DEC
                      || ! rld[r].out_reg
                      || ! rld[r].out_reg
#endif
#endif
                      || REG_P (rld[r].out_reg)))
                      || REG_P (rld[r].out_reg)))
                {
                {
                  rtx out = (REG_P (rld[r].out)
                  rtx out = (REG_P (rld[r].out)
                             ? rld[r].out
                             ? rld[r].out
                             : rld[r].out_reg
                             : rld[r].out_reg
                             ? rld[r].out_reg
                             ? rld[r].out_reg
/* AUTO_INC */               : XEXP (rld[r].in_reg, 0));
/* AUTO_INC */               : XEXP (rld[r].in_reg, 0));
                  int nregno = REGNO (out);
                  int nregno = REGNO (out);
                  int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
                  int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
                             : hard_regno_nregs[nregno]
                             : hard_regno_nregs[nregno]
                                               [GET_MODE (rld[r].reg_rtx)]);
                                               [GET_MODE (rld[r].reg_rtx)]);
                  bool piecemeal;
                  bool piecemeal;
 
 
                  spill_reg_store[i] = new_spill_reg_store[i];
                  spill_reg_store[i] = new_spill_reg_store[i];
                  spill_reg_stored_to[i] = out;
                  spill_reg_stored_to[i] = out;
                  reg_last_reload_reg[nregno] = rld[r].reg_rtx;
                  reg_last_reload_reg[nregno] = rld[r].reg_rtx;
 
 
                  piecemeal = (nregno < FIRST_PSEUDO_REGISTER
                  piecemeal = (nregno < FIRST_PSEUDO_REGISTER
                               && nr == nnr
                               && nr == nnr
                               && inherit_piecemeal_p (r, nregno));
                               && inherit_piecemeal_p (r, nregno));
 
 
                  /* If NREGNO is a hard register, it may occupy more than
                  /* If NREGNO is a hard register, it may occupy more than
                     one register.  If it does, say what is in the
                     one register.  If it does, say what is in the
                     rest of the registers assuming that both registers
                     rest of the registers assuming that both registers
                     agree on how many words the object takes.  If not,
                     agree on how many words the object takes.  If not,
                     invalidate the subsequent registers.  */
                     invalidate the subsequent registers.  */
 
 
                  if (nregno < FIRST_PSEUDO_REGISTER)
                  if (nregno < FIRST_PSEUDO_REGISTER)
                    for (k = 1; k < nnr; k++)
                    for (k = 1; k < nnr; k++)
                      reg_last_reload_reg[nregno + k]
                      reg_last_reload_reg[nregno + k]
                        = (piecemeal
                        = (piecemeal
                           ? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
                           ? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
                           : 0);
                           : 0);
 
 
                  /* Now do the inverse operation.  */
                  /* Now do the inverse operation.  */
                  for (k = 0; k < nr; k++)
                  for (k = 0; k < nr; k++)
                    {
                    {
                      CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
                      CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
                      reg_reloaded_contents[i + k]
                      reg_reloaded_contents[i + k]
                        = (nregno >= FIRST_PSEUDO_REGISTER || !piecemeal
                        = (nregno >= FIRST_PSEUDO_REGISTER || !piecemeal
                           ? nregno
                           ? nregno
                           : nregno + k);
                           : nregno + k);
                      reg_reloaded_insn[i + k] = insn;
                      reg_reloaded_insn[i + k] = insn;
                      SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
                      SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
                      if (HARD_REGNO_CALL_PART_CLOBBERED (i + k, GET_MODE (out)))
                      if (HARD_REGNO_CALL_PART_CLOBBERED (i + k, GET_MODE (out)))
                        SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
                        SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
                    }
                    }
                }
                }
 
 
              /* Maybe the spill reg contains a copy of reload_in.  Only do
              /* Maybe the spill reg contains a copy of reload_in.  Only do
                 something if there will not be an output reload for
                 something if there will not be an output reload for
                 the register being reloaded.  */
                 the register being reloaded.  */
              else if (rld[r].out_reg == 0
              else if (rld[r].out_reg == 0
                       && rld[r].in != 0
                       && rld[r].in != 0
                       && ((REG_P (rld[r].in)
                       && ((REG_P (rld[r].in)
                            && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER
                            && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER
                            && !REGNO_REG_SET_P (&reg_has_output_reload,
                            && !REGNO_REG_SET_P (&reg_has_output_reload,
                                                 REGNO (rld[r].in)))
                                                 REGNO (rld[r].in)))
                           || (REG_P (rld[r].in_reg)
                           || (REG_P (rld[r].in_reg)
                               && !REGNO_REG_SET_P (&reg_has_output_reload,
                               && !REGNO_REG_SET_P (&reg_has_output_reload,
                                                    REGNO (rld[r].in_reg))))
                                                    REGNO (rld[r].in_reg))))
                       && ! reg_set_p (rld[r].reg_rtx, PATTERN (insn)))
                       && ! reg_set_p (rld[r].reg_rtx, PATTERN (insn)))
                {
                {
                  int nregno;
                  int nregno;
                  int nnr;
                  int nnr;
                  rtx in;
                  rtx in;
                  bool piecemeal;
                  bool piecemeal;
 
 
                  if (REG_P (rld[r].in)
                  if (REG_P (rld[r].in)
                      && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
                      && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
                    in = rld[r].in;
                    in = rld[r].in;
                  else if (REG_P (rld[r].in_reg))
                  else if (REG_P (rld[r].in_reg))
                    in = rld[r].in_reg;
                    in = rld[r].in_reg;
                  else
                  else
                    in = XEXP (rld[r].in_reg, 0);
                    in = XEXP (rld[r].in_reg, 0);
                  nregno = REGNO (in);
                  nregno = REGNO (in);
 
 
                  nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
                  nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
                         : hard_regno_nregs[nregno]
                         : hard_regno_nregs[nregno]
                                           [GET_MODE (rld[r].reg_rtx)]);
                                           [GET_MODE (rld[r].reg_rtx)]);
 
 
                  reg_last_reload_reg[nregno] = rld[r].reg_rtx;
                  reg_last_reload_reg[nregno] = rld[r].reg_rtx;
 
 
                  piecemeal = (nregno < FIRST_PSEUDO_REGISTER
                  piecemeal = (nregno < FIRST_PSEUDO_REGISTER
                               && nr == nnr
                               && nr == nnr
                               && inherit_piecemeal_p (r, nregno));
                               && inherit_piecemeal_p (r, nregno));
 
 
                  if (nregno < FIRST_PSEUDO_REGISTER)
                  if (nregno < FIRST_PSEUDO_REGISTER)
                    for (k = 1; k < nnr; k++)
                    for (k = 1; k < nnr; k++)
                      reg_last_reload_reg[nregno + k]
                      reg_last_reload_reg[nregno + k]
                        = (piecemeal
                        = (piecemeal
                           ? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
                           ? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
                           : 0);
                           : 0);
 
 
                  /* Unless we inherited this reload, show we haven't
                  /* Unless we inherited this reload, show we haven't
                     recently done a store.
                     recently done a store.
                     Previous stores of inherited auto_inc expressions
                     Previous stores of inherited auto_inc expressions
                     also have to be discarded.  */
                     also have to be discarded.  */
                  if (! reload_inherited[r]
                  if (! reload_inherited[r]
                      || (rld[r].out && ! rld[r].out_reg))
                      || (rld[r].out && ! rld[r].out_reg))
                    spill_reg_store[i] = 0;
                    spill_reg_store[i] = 0;
 
 
                  for (k = 0; k < nr; k++)
                  for (k = 0; k < nr; k++)
                    {
                    {
                      CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
                      CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
                      reg_reloaded_contents[i + k]
                      reg_reloaded_contents[i + k]
                        = (nregno >= FIRST_PSEUDO_REGISTER || !piecemeal
                        = (nregno >= FIRST_PSEUDO_REGISTER || !piecemeal
                           ? nregno
                           ? nregno
                           : nregno + k);
                           : nregno + k);
                      reg_reloaded_insn[i + k] = insn;
                      reg_reloaded_insn[i + k] = insn;
                      SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
                      SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
                      if (HARD_REGNO_CALL_PART_CLOBBERED (i + k, GET_MODE (in)))
                      if (HARD_REGNO_CALL_PART_CLOBBERED (i + k, GET_MODE (in)))
                        SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
                        SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
                    }
                    }
                }
                }
            }
            }
 
 
          /* However, if part of the reload reaches the end, then we must
          /* However, if part of the reload reaches the end, then we must
             invalidate the old info for the part that survives to the end.  */
             invalidate the old info for the part that survives to the end.  */
          else if (part_reaches_end)
          else if (part_reaches_end)
            {
            {
              for (k = 0; k < nr; k++)
              for (k = 0; k < nr; k++)
                if (reload_reg_reaches_end_p (i + k,
                if (reload_reg_reaches_end_p (i + k,
                                              rld[r].opnum,
                                              rld[r].opnum,
                                              rld[r].when_needed))
                                              rld[r].when_needed))
                  CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
                  CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
            }
            }
        }
        }
 
 
      /* The following if-statement was #if 0'd in 1.34 (or before...).
      /* The following if-statement was #if 0'd in 1.34 (or before...).
         It's reenabled in 1.35 because supposedly nothing else
         It's reenabled in 1.35 because supposedly nothing else
         deals with this problem.  */
         deals with this problem.  */
 
 
      /* If a register gets output-reloaded from a non-spill register,
      /* If a register gets output-reloaded from a non-spill register,
         that invalidates any previous reloaded copy of it.
         that invalidates any previous reloaded copy of it.
         But forget_old_reloads_1 won't get to see it, because
         But forget_old_reloads_1 won't get to see it, because
         it thinks only about the original insn.  So invalidate it here.
         it thinks only about the original insn.  So invalidate it here.
         Also do the same thing for RELOAD_OTHER constraints where the
         Also do the same thing for RELOAD_OTHER constraints where the
         output is discarded.  */
         output is discarded.  */
      if (i < 0
      if (i < 0
          && ((rld[r].out != 0
          && ((rld[r].out != 0
               && (REG_P (rld[r].out)
               && (REG_P (rld[r].out)
                   || (MEM_P (rld[r].out)
                   || (MEM_P (rld[r].out)
                       && REG_P (rld[r].out_reg))))
                       && REG_P (rld[r].out_reg))))
              || (rld[r].out == 0 && rld[r].out_reg
              || (rld[r].out == 0 && rld[r].out_reg
                  && REG_P (rld[r].out_reg))))
                  && REG_P (rld[r].out_reg))))
        {
        {
          rtx out = ((rld[r].out && REG_P (rld[r].out))
          rtx out = ((rld[r].out && REG_P (rld[r].out))
                     ? rld[r].out : rld[r].out_reg);
                     ? rld[r].out : rld[r].out_reg);
          int nregno = REGNO (out);
          int nregno = REGNO (out);
          if (nregno >= FIRST_PSEUDO_REGISTER)
          if (nregno >= FIRST_PSEUDO_REGISTER)
            {
            {
              rtx src_reg, store_insn = NULL_RTX;
              rtx src_reg, store_insn = NULL_RTX;
 
 
              reg_last_reload_reg[nregno] = 0;
              reg_last_reload_reg[nregno] = 0;
 
 
              /* If we can find a hard register that is stored, record
              /* If we can find a hard register that is stored, record
                 the storing insn so that we may delete this insn with
                 the storing insn so that we may delete this insn with
                 delete_output_reload.  */
                 delete_output_reload.  */
              src_reg = rld[r].reg_rtx;
              src_reg = rld[r].reg_rtx;
 
 
              /* If this is an optional reload, try to find the source reg
              /* If this is an optional reload, try to find the source reg
                 from an input reload.  */
                 from an input reload.  */
              if (! src_reg)
              if (! src_reg)
                {
                {
                  rtx set = single_set (insn);
                  rtx set = single_set (insn);
                  if (set && SET_DEST (set) == rld[r].out)
                  if (set && SET_DEST (set) == rld[r].out)
                    {
                    {
                      int k;
                      int k;
 
 
                      src_reg = SET_SRC (set);
                      src_reg = SET_SRC (set);
                      store_insn = insn;
                      store_insn = insn;
                      for (k = 0; k < n_reloads; k++)
                      for (k = 0; k < n_reloads; k++)
                        {
                        {
                          if (rld[k].in == src_reg)
                          if (rld[k].in == src_reg)
                            {
                            {
                              src_reg = rld[k].reg_rtx;
                              src_reg = rld[k].reg_rtx;
                              break;
                              break;
                            }
                            }
                        }
                        }
                    }
                    }
                }
                }
              else
              else
                store_insn = new_spill_reg_store[REGNO (src_reg)];
                store_insn = new_spill_reg_store[REGNO (src_reg)];
              if (src_reg && REG_P (src_reg)
              if (src_reg && REG_P (src_reg)
                  && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
                  && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
                {
                {
                  int src_regno = REGNO (src_reg);
                  int src_regno = REGNO (src_reg);
                  int nr = hard_regno_nregs[src_regno][rld[r].mode];
                  int nr = hard_regno_nregs[src_regno][rld[r].mode];
                  /* The place where to find a death note varies with
                  /* The place where to find a death note varies with
                     PRESERVE_DEATH_INFO_REGNO_P .  The condition is not
                     PRESERVE_DEATH_INFO_REGNO_P .  The condition is not
                     necessarily checked exactly in the code that moves
                     necessarily checked exactly in the code that moves
                     notes, so just check both locations.  */
                     notes, so just check both locations.  */
                  rtx note = find_regno_note (insn, REG_DEAD, src_regno);
                  rtx note = find_regno_note (insn, REG_DEAD, src_regno);
                  if (! note && store_insn)
                  if (! note && store_insn)
                    note = find_regno_note (store_insn, REG_DEAD, src_regno);
                    note = find_regno_note (store_insn, REG_DEAD, src_regno);
                  while (nr-- > 0)
                  while (nr-- > 0)
                    {
                    {
                      spill_reg_store[src_regno + nr] = store_insn;
                      spill_reg_store[src_regno + nr] = store_insn;
                      spill_reg_stored_to[src_regno + nr] = out;
                      spill_reg_stored_to[src_regno + nr] = out;
                      reg_reloaded_contents[src_regno + nr] = nregno;
                      reg_reloaded_contents[src_regno + nr] = nregno;
                      reg_reloaded_insn[src_regno + nr] = store_insn;
                      reg_reloaded_insn[src_regno + nr] = store_insn;
                      CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + nr);
                      CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + nr);
                      SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + nr);
                      SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + nr);
                      if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + nr,
                      if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + nr,
                                                          GET_MODE (src_reg)))
                                                          GET_MODE (src_reg)))
                        SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
                        SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
                                          src_regno + nr);
                                          src_regno + nr);
                      SET_HARD_REG_BIT (reg_is_output_reload, src_regno + nr);
                      SET_HARD_REG_BIT (reg_is_output_reload, src_regno + nr);
                      if (note)
                      if (note)
                        SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
                        SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
                      else
                      else
                        CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
                        CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
                    }
                    }
                  reg_last_reload_reg[nregno] = src_reg;
                  reg_last_reload_reg[nregno] = src_reg;
                  /* We have to set reg_has_output_reload here, or else
                  /* We have to set reg_has_output_reload here, or else
                     forget_old_reloads_1 will clear reg_last_reload_reg
                     forget_old_reloads_1 will clear reg_last_reload_reg
                     right away.  */
                     right away.  */
                  SET_REGNO_REG_SET (&reg_has_output_reload,
                  SET_REGNO_REG_SET (&reg_has_output_reload,
                                     nregno);
                                     nregno);
                }
                }
            }
            }
          else
          else
            {
            {
              int num_regs = hard_regno_nregs[nregno][GET_MODE (out)];
              int num_regs = hard_regno_nregs[nregno][GET_MODE (out)];
 
 
              while (num_regs-- > 0)
              while (num_regs-- > 0)
                reg_last_reload_reg[nregno + num_regs] = 0;
                reg_last_reload_reg[nregno + num_regs] = 0;
            }
            }
        }
        }
    }
    }
  IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
  IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
}
}


/* Go through the motions to emit INSN and test if it is strictly valid.
/* Go through the motions to emit INSN and test if it is strictly valid.
   Return the emitted insn if valid, else return NULL.  */
   Return the emitted insn if valid, else return NULL.  */
 
 
static rtx
static rtx
emit_insn_if_valid_for_reload (rtx insn)
emit_insn_if_valid_for_reload (rtx insn)
{
{
  rtx last = get_last_insn ();
  rtx last = get_last_insn ();
  int code;
  int code;
 
 
  insn = emit_insn (insn);
  insn = emit_insn (insn);
  code = recog_memoized (insn);
  code = recog_memoized (insn);
 
 
  if (code >= 0)
  if (code >= 0)
    {
    {
      extract_insn (insn);
      extract_insn (insn);
      /* We want constrain operands to treat this insn strictly in its
      /* We want constrain operands to treat this insn strictly in its
         validity determination, i.e., the way it would after reload has
         validity determination, i.e., the way it would after reload has
         completed.  */
         completed.  */
      if (constrain_operands (1))
      if (constrain_operands (1))
        return insn;
        return insn;
    }
    }
 
 
  delete_insns_since (last);
  delete_insns_since (last);
  return NULL;
  return NULL;
}
}
 
 
/* Emit code to perform a reload from IN (which may be a reload register) to
/* Emit code to perform a reload from IN (which may be a reload register) to
   OUT (which may also be a reload register).  IN or OUT is from operand
   OUT (which may also be a reload register).  IN or OUT is from operand
   OPNUM with reload type TYPE.
   OPNUM with reload type TYPE.
 
 
   Returns first insn emitted.  */
   Returns first insn emitted.  */
 
 
static rtx
static rtx
gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
{
{
  rtx last = get_last_insn ();
  rtx last = get_last_insn ();
  rtx tem;
  rtx tem;
 
 
  /* If IN is a paradoxical SUBREG, remove it and try to put the
  /* If IN is a paradoxical SUBREG, remove it and try to put the
     opposite SUBREG on OUT.  Likewise for a paradoxical SUBREG on OUT.  */
     opposite SUBREG on OUT.  Likewise for a paradoxical SUBREG on OUT.  */
  if (GET_CODE (in) == SUBREG
  if (GET_CODE (in) == SUBREG
      && (GET_MODE_SIZE (GET_MODE (in))
      && (GET_MODE_SIZE (GET_MODE (in))
          > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
          > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
      && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
      && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
    in = SUBREG_REG (in), out = tem;
    in = SUBREG_REG (in), out = tem;
  else if (GET_CODE (out) == SUBREG
  else if (GET_CODE (out) == SUBREG
           && (GET_MODE_SIZE (GET_MODE (out))
           && (GET_MODE_SIZE (GET_MODE (out))
               > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
               > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
           && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
           && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
    out = SUBREG_REG (out), in = tem;
    out = SUBREG_REG (out), in = tem;
 
 
  /* How to do this reload can get quite tricky.  Normally, we are being
  /* How to do this reload can get quite tricky.  Normally, we are being
     asked to reload a simple operand, such as a MEM, a constant, or a pseudo
     asked to reload a simple operand, such as a MEM, a constant, or a pseudo
     register that didn't get a hard register.  In that case we can just
     register that didn't get a hard register.  In that case we can just
     call emit_move_insn.
     call emit_move_insn.
 
 
     We can also be asked to reload a PLUS that adds a register or a MEM to
     We can also be asked to reload a PLUS that adds a register or a MEM to
     another register, constant or MEM.  This can occur during frame pointer
     another register, constant or MEM.  This can occur during frame pointer
     elimination and while reloading addresses.  This case is handled by
     elimination and while reloading addresses.  This case is handled by
     trying to emit a single insn to perform the add.  If it is not valid,
     trying to emit a single insn to perform the add.  If it is not valid,
     we use a two insn sequence.
     we use a two insn sequence.
 
 
     Or we can be asked to reload an unary operand that was a fragment of
     Or we can be asked to reload an unary operand that was a fragment of
     an addressing mode, into a register.  If it isn't recognized as-is,
     an addressing mode, into a register.  If it isn't recognized as-is,
     we try making the unop operand and the reload-register the same:
     we try making the unop operand and the reload-register the same:
     (set reg:X (unop:X expr:Y))
     (set reg:X (unop:X expr:Y))
     -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
     -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
 
 
     Finally, we could be called to handle an 'o' constraint by putting
     Finally, we could be called to handle an 'o' constraint by putting
     an address into a register.  In that case, we first try to do this
     an address into a register.  In that case, we first try to do this
     with a named pattern of "reload_load_address".  If no such pattern
     with a named pattern of "reload_load_address".  If no such pattern
     exists, we just emit a SET insn and hope for the best (it will normally
     exists, we just emit a SET insn and hope for the best (it will normally
     be valid on machines that use 'o').
     be valid on machines that use 'o').
 
 
     This entire process is made complex because reload will never
     This entire process is made complex because reload will never
     process the insns we generate here and so we must ensure that
     process the insns we generate here and so we must ensure that
     they will fit their constraints and also by the fact that parts of
     they will fit their constraints and also by the fact that parts of
     IN might be being reloaded separately and replaced with spill registers.
     IN might be being reloaded separately and replaced with spill registers.
     Because of this, we are, in some sense, just guessing the right approach
     Because of this, we are, in some sense, just guessing the right approach
     here.  The one listed above seems to work.
     here.  The one listed above seems to work.
 
 
     ??? At some point, this whole thing needs to be rethought.  */
     ??? At some point, this whole thing needs to be rethought.  */
 
 
  if (GET_CODE (in) == PLUS
  if (GET_CODE (in) == PLUS
      && (REG_P (XEXP (in, 0))
      && (REG_P (XEXP (in, 0))
          || GET_CODE (XEXP (in, 0)) == SUBREG
          || GET_CODE (XEXP (in, 0)) == SUBREG
          || MEM_P (XEXP (in, 0)))
          || MEM_P (XEXP (in, 0)))
      && (REG_P (XEXP (in, 1))
      && (REG_P (XEXP (in, 1))
          || GET_CODE (XEXP (in, 1)) == SUBREG
          || GET_CODE (XEXP (in, 1)) == SUBREG
          || CONSTANT_P (XEXP (in, 1))
          || CONSTANT_P (XEXP (in, 1))
          || MEM_P (XEXP (in, 1))))
          || MEM_P (XEXP (in, 1))))
    {
    {
      /* We need to compute the sum of a register or a MEM and another
      /* We need to compute the sum of a register or a MEM and another
         register, constant, or MEM, and put it into the reload
         register, constant, or MEM, and put it into the reload
         register.  The best possible way of doing this is if the machine
         register.  The best possible way of doing this is if the machine
         has a three-operand ADD insn that accepts the required operands.
         has a three-operand ADD insn that accepts the required operands.
 
 
         The simplest approach is to try to generate such an insn and see if it
         The simplest approach is to try to generate such an insn and see if it
         is recognized and matches its constraints.  If so, it can be used.
         is recognized and matches its constraints.  If so, it can be used.
 
 
         It might be better not to actually emit the insn unless it is valid,
         It might be better not to actually emit the insn unless it is valid,
         but we need to pass the insn as an operand to `recog' and
         but we need to pass the insn as an operand to `recog' and
         `extract_insn' and it is simpler to emit and then delete the insn if
         `extract_insn' and it is simpler to emit and then delete the insn if
         not valid than to dummy things up.  */
         not valid than to dummy things up.  */
 
 
      rtx op0, op1, tem, insn;
      rtx op0, op1, tem, insn;
      int code;
      int code;
 
 
      op0 = find_replacement (&XEXP (in, 0));
      op0 = find_replacement (&XEXP (in, 0));
      op1 = find_replacement (&XEXP (in, 1));
      op1 = find_replacement (&XEXP (in, 1));
 
 
      /* Since constraint checking is strict, commutativity won't be
      /* Since constraint checking is strict, commutativity won't be
         checked, so we need to do that here to avoid spurious failure
         checked, so we need to do that here to avoid spurious failure
         if the add instruction is two-address and the second operand
         if the add instruction is two-address and the second operand
         of the add is the same as the reload reg, which is frequently
         of the add is the same as the reload reg, which is frequently
         the case.  If the insn would be A = B + A, rearrange it so
         the case.  If the insn would be A = B + A, rearrange it so
         it will be A = A + B as constrain_operands expects.  */
         it will be A = A + B as constrain_operands expects.  */
 
 
      if (REG_P (XEXP (in, 1))
      if (REG_P (XEXP (in, 1))
          && REGNO (out) == REGNO (XEXP (in, 1)))
          && REGNO (out) == REGNO (XEXP (in, 1)))
        tem = op0, op0 = op1, op1 = tem;
        tem = op0, op0 = op1, op1 = tem;
 
 
      if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
      if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
        in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
        in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
 
 
      insn = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
      insn = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
      if (insn)
      if (insn)
        return insn;
        return insn;
 
 
      /* If that failed, we must use a conservative two-insn sequence.
      /* If that failed, we must use a conservative two-insn sequence.
 
 
         Use a move to copy one operand into the reload register.  Prefer
         Use a move to copy one operand into the reload register.  Prefer
         to reload a constant, MEM or pseudo since the move patterns can
         to reload a constant, MEM or pseudo since the move patterns can
         handle an arbitrary operand.  If OP1 is not a constant, MEM or
         handle an arbitrary operand.  If OP1 is not a constant, MEM or
         pseudo and OP1 is not a valid operand for an add instruction, then
         pseudo and OP1 is not a valid operand for an add instruction, then
         reload OP1.
         reload OP1.
 
 
         After reloading one of the operands into the reload register, add
         After reloading one of the operands into the reload register, add
         the reload register to the output register.
         the reload register to the output register.
 
 
         If there is another way to do this for a specific machine, a
         If there is another way to do this for a specific machine, a
         DEFINE_PEEPHOLE should be specified that recognizes the sequence
         DEFINE_PEEPHOLE should be specified that recognizes the sequence
         we emit below.  */
         we emit below.  */
 
 
      code = (int) add_optab->handlers[(int) GET_MODE (out)].insn_code;
      code = (int) add_optab->handlers[(int) GET_MODE (out)].insn_code;
 
 
      if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
      if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
          || (REG_P (op1)
          || (REG_P (op1)
              && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
              && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
          || (code != CODE_FOR_nothing
          || (code != CODE_FOR_nothing
              && ! ((*insn_data[code].operand[2].predicate)
              && ! ((*insn_data[code].operand[2].predicate)
                    (op1, insn_data[code].operand[2].mode))))
                    (op1, insn_data[code].operand[2].mode))))
        tem = op0, op0 = op1, op1 = tem;
        tem = op0, op0 = op1, op1 = tem;
 
 
      gen_reload (out, op0, opnum, type);
      gen_reload (out, op0, opnum, type);
 
 
      /* If OP0 and OP1 are the same, we can use OUT for OP1.
      /* If OP0 and OP1 are the same, we can use OUT for OP1.
         This fixes a problem on the 32K where the stack pointer cannot
         This fixes a problem on the 32K where the stack pointer cannot
         be used as an operand of an add insn.  */
         be used as an operand of an add insn.  */
 
 
      if (rtx_equal_p (op0, op1))
      if (rtx_equal_p (op0, op1))
        op1 = out;
        op1 = out;
 
 
      insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
      insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
      if (insn)
      if (insn)
        {
        {
          /* Add a REG_EQUIV note so that find_equiv_reg can find it.  */
          /* Add a REG_EQUIV note so that find_equiv_reg can find it.  */
          REG_NOTES (insn)
          REG_NOTES (insn)
            = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
            = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
          return insn;
          return insn;
        }
        }
 
 
      /* If that failed, copy the address register to the reload register.
      /* If that failed, copy the address register to the reload register.
         Then add the constant to the reload register.  */
         Then add the constant to the reload register.  */
 
 
      gen_reload (out, op1, opnum, type);
      gen_reload (out, op1, opnum, type);
      insn = emit_insn (gen_add2_insn (out, op0));
      insn = emit_insn (gen_add2_insn (out, op0));
      REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
      REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
    }
    }
 
 
#ifdef SECONDARY_MEMORY_NEEDED
#ifdef SECONDARY_MEMORY_NEEDED
  /* If we need a memory location to do the move, do it that way.  */
  /* If we need a memory location to do the move, do it that way.  */
  else if ((REG_P (in) || GET_CODE (in) == SUBREG)
  else if ((REG_P (in) || GET_CODE (in) == SUBREG)
           && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
           && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
           && (REG_P (out) || GET_CODE (out) == SUBREG)
           && (REG_P (out) || GET_CODE (out) == SUBREG)
           && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
           && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
           && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
           && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
                                       REGNO_REG_CLASS (reg_or_subregno (out)),
                                       REGNO_REG_CLASS (reg_or_subregno (out)),
                                       GET_MODE (out)))
                                       GET_MODE (out)))
    {
    {
      /* Get the memory to use and rewrite both registers to its mode.  */
      /* Get the memory to use and rewrite both registers to its mode.  */
      rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
      rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
 
 
      if (GET_MODE (loc) != GET_MODE (out))
      if (GET_MODE (loc) != GET_MODE (out))
        out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
        out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
 
 
      if (GET_MODE (loc) != GET_MODE (in))
      if (GET_MODE (loc) != GET_MODE (in))
        in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
        in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
 
 
      gen_reload (loc, in, opnum, type);
      gen_reload (loc, in, opnum, type);
      gen_reload (out, loc, opnum, type);
      gen_reload (out, loc, opnum, type);
    }
    }
#endif
#endif
  else if (REG_P (out) && UNARY_P (in))
  else if (REG_P (out) && UNARY_P (in))
    {
    {
      rtx insn;
      rtx insn;
      rtx op1;
      rtx op1;
      rtx out_moded;
      rtx out_moded;
      rtx set;
      rtx set;
 
 
      op1 = find_replacement (&XEXP (in, 0));
      op1 = find_replacement (&XEXP (in, 0));
      if (op1 != XEXP (in, 0))
      if (op1 != XEXP (in, 0))
        in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
        in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
 
 
      /* First, try a plain SET.  */
      /* First, try a plain SET.  */
      set = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
      set = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
      if (set)
      if (set)
        return set;
        return set;
 
 
      /* If that failed, move the inner operand to the reload
      /* If that failed, move the inner operand to the reload
         register, and try the same unop with the inner expression
         register, and try the same unop with the inner expression
         replaced with the reload register.  */
         replaced with the reload register.  */
 
 
      if (GET_MODE (op1) != GET_MODE (out))
      if (GET_MODE (op1) != GET_MODE (out))
        out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
        out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
      else
      else
        out_moded = out;
        out_moded = out;
 
 
      gen_reload (out_moded, op1, opnum, type);
      gen_reload (out_moded, op1, opnum, type);
 
 
      insn
      insn
        = gen_rtx_SET (VOIDmode, out,
        = gen_rtx_SET (VOIDmode, out,
                       gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
                       gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
                                      out_moded));
                                      out_moded));
      insn = emit_insn_if_valid_for_reload (insn);
      insn = emit_insn_if_valid_for_reload (insn);
      if (insn)
      if (insn)
        {
        {
          REG_NOTES (insn)
          REG_NOTES (insn)
            = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
            = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
          return insn;
          return insn;
        }
        }
 
 
      fatal_insn ("Failure trying to reload:", set);
      fatal_insn ("Failure trying to reload:", set);
    }
    }
  /* If IN is a simple operand, use gen_move_insn.  */
  /* If IN is a simple operand, use gen_move_insn.  */
  else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
  else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
    {
    {
      tem = emit_insn (gen_move_insn (out, in));
      tem = emit_insn (gen_move_insn (out, in));
      /* IN may contain a LABEL_REF, if so add a REG_LABEL note.  */
      /* IN may contain a LABEL_REF, if so add a REG_LABEL note.  */
      mark_jump_label (in, tem, 0);
      mark_jump_label (in, tem, 0);
    }
    }
 
 
#ifdef HAVE_reload_load_address
#ifdef HAVE_reload_load_address
  else if (HAVE_reload_load_address)
  else if (HAVE_reload_load_address)
    emit_insn (gen_reload_load_address (out, in));
    emit_insn (gen_reload_load_address (out, in));
#endif
#endif
 
 
  /* Otherwise, just write (set OUT IN) and hope for the best.  */
  /* Otherwise, just write (set OUT IN) and hope for the best.  */
  else
  else
    emit_insn (gen_rtx_SET (VOIDmode, out, in));
    emit_insn (gen_rtx_SET (VOIDmode, out, in));
 
 
  /* Return the first insn emitted.
  /* Return the first insn emitted.
     We can not just return get_last_insn, because there may have
     We can not just return get_last_insn, because there may have
     been multiple instructions emitted.  Also note that gen_move_insn may
     been multiple instructions emitted.  Also note that gen_move_insn may
     emit more than one insn itself, so we can not assume that there is one
     emit more than one insn itself, so we can not assume that there is one
     insn emitted per emit_insn_before call.  */
     insn emitted per emit_insn_before call.  */
 
 
  return last ? NEXT_INSN (last) : get_insns ();
  return last ? NEXT_INSN (last) : get_insns ();
}
}


/* Delete a previously made output-reload whose result we now believe
/* Delete a previously made output-reload whose result we now believe
   is not needed.  First we double-check.
   is not needed.  First we double-check.
 
 
   INSN is the insn now being processed.
   INSN is the insn now being processed.
   LAST_RELOAD_REG is the hard register number for which we want to delete
   LAST_RELOAD_REG is the hard register number for which we want to delete
   the last output reload.
   the last output reload.
   J is the reload-number that originally used REG.  The caller has made
   J is the reload-number that originally used REG.  The caller has made
   certain that reload J doesn't use REG any longer for input.  */
   certain that reload J doesn't use REG any longer for input.  */
 
 
static void
static void
delete_output_reload (rtx insn, int j, int last_reload_reg)
delete_output_reload (rtx insn, int j, int last_reload_reg)
{
{
  rtx output_reload_insn = spill_reg_store[last_reload_reg];
  rtx output_reload_insn = spill_reg_store[last_reload_reg];
  rtx reg = spill_reg_stored_to[last_reload_reg];
  rtx reg = spill_reg_stored_to[last_reload_reg];
  int k;
  int k;
  int n_occurrences;
  int n_occurrences;
  int n_inherited = 0;
  int n_inherited = 0;
  rtx i1;
  rtx i1;
  rtx substed;
  rtx substed;
 
 
  /* It is possible that this reload has been only used to set another reload
  /* It is possible that this reload has been only used to set another reload
     we eliminated earlier and thus deleted this instruction too.  */
     we eliminated earlier and thus deleted this instruction too.  */
  if (INSN_DELETED_P (output_reload_insn))
  if (INSN_DELETED_P (output_reload_insn))
    return;
    return;
 
 
  /* Get the raw pseudo-register referred to.  */
  /* Get the raw pseudo-register referred to.  */
 
 
  while (GET_CODE (reg) == SUBREG)
  while (GET_CODE (reg) == SUBREG)
    reg = SUBREG_REG (reg);
    reg = SUBREG_REG (reg);
  substed = reg_equiv_memory_loc[REGNO (reg)];
  substed = reg_equiv_memory_loc[REGNO (reg)];
 
 
  /* This is unsafe if the operand occurs more often in the current
  /* This is unsafe if the operand occurs more often in the current
     insn than it is inherited.  */
     insn than it is inherited.  */
  for (k = n_reloads - 1; k >= 0; k--)
  for (k = n_reloads - 1; k >= 0; k--)
    {
    {
      rtx reg2 = rld[k].in;
      rtx reg2 = rld[k].in;
      if (! reg2)
      if (! reg2)
        continue;
        continue;
      if (MEM_P (reg2) || reload_override_in[k])
      if (MEM_P (reg2) || reload_override_in[k])
        reg2 = rld[k].in_reg;
        reg2 = rld[k].in_reg;
#ifdef AUTO_INC_DEC
#ifdef AUTO_INC_DEC
      if (rld[k].out && ! rld[k].out_reg)
      if (rld[k].out && ! rld[k].out_reg)
        reg2 = XEXP (rld[k].in_reg, 0);
        reg2 = XEXP (rld[k].in_reg, 0);
#endif
#endif
      while (GET_CODE (reg2) == SUBREG)
      while (GET_CODE (reg2) == SUBREG)
        reg2 = SUBREG_REG (reg2);
        reg2 = SUBREG_REG (reg2);
      if (rtx_equal_p (reg2, reg))
      if (rtx_equal_p (reg2, reg))
        {
        {
          if (reload_inherited[k] || reload_override_in[k] || k == j)
          if (reload_inherited[k] || reload_override_in[k] || k == j)
            {
            {
              n_inherited++;
              n_inherited++;
              reg2 = rld[k].out_reg;
              reg2 = rld[k].out_reg;
              if (! reg2)
              if (! reg2)
                continue;
                continue;
              while (GET_CODE (reg2) == SUBREG)
              while (GET_CODE (reg2) == SUBREG)
                reg2 = XEXP (reg2, 0);
                reg2 = XEXP (reg2, 0);
              if (rtx_equal_p (reg2, reg))
              if (rtx_equal_p (reg2, reg))
                n_inherited++;
                n_inherited++;
            }
            }
          else
          else
            return;
            return;
        }
        }
    }
    }
  n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
  n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
  if (substed)
  if (substed)
    n_occurrences += count_occurrences (PATTERN (insn),
    n_occurrences += count_occurrences (PATTERN (insn),
                                        eliminate_regs (substed, 0,
                                        eliminate_regs (substed, 0,
                                                        NULL_RTX), 0);
                                                        NULL_RTX), 0);
  for (i1 = reg_equiv_alt_mem_list [REGNO (reg)]; i1; i1 = XEXP (i1, 1))
  for (i1 = reg_equiv_alt_mem_list [REGNO (reg)]; i1; i1 = XEXP (i1, 1))
    {
    {
      gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
      gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
      n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
      n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
    }
    }
  if (n_occurrences > n_inherited)
  if (n_occurrences > n_inherited)
    return;
    return;
 
 
  /* If the pseudo-reg we are reloading is no longer referenced
  /* If the pseudo-reg we are reloading is no longer referenced
     anywhere between the store into it and here,
     anywhere between the store into it and here,
     and we're within the same basic block, then the value can only
     and we're within the same basic block, then the value can only
     pass through the reload reg and end up here.
     pass through the reload reg and end up here.
     Otherwise, give up--return.  */
     Otherwise, give up--return.  */
  for (i1 = NEXT_INSN (output_reload_insn);
  for (i1 = NEXT_INSN (output_reload_insn);
       i1 != insn; i1 = NEXT_INSN (i1))
       i1 != insn; i1 = NEXT_INSN (i1))
    {
    {
      if (NOTE_INSN_BASIC_BLOCK_P (i1))
      if (NOTE_INSN_BASIC_BLOCK_P (i1))
        return;
        return;
      if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
      if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
          && reg_mentioned_p (reg, PATTERN (i1)))
          && reg_mentioned_p (reg, PATTERN (i1)))
        {
        {
          /* If this is USE in front of INSN, we only have to check that
          /* If this is USE in front of INSN, we only have to check that
             there are no more references than accounted for by inheritance.  */
             there are no more references than accounted for by inheritance.  */
          while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
          while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
            {
            {
              n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
              n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
              i1 = NEXT_INSN (i1);
              i1 = NEXT_INSN (i1);
            }
            }
          if (n_occurrences <= n_inherited && i1 == insn)
          if (n_occurrences <= n_inherited && i1 == insn)
            break;
            break;
          return;
          return;
        }
        }
    }
    }
 
 
  /* We will be deleting the insn.  Remove the spill reg information.  */
  /* We will be deleting the insn.  Remove the spill reg information.  */
  for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
  for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
    {
    {
      spill_reg_store[last_reload_reg + k] = 0;
      spill_reg_store[last_reload_reg + k] = 0;
      spill_reg_stored_to[last_reload_reg + k] = 0;
      spill_reg_stored_to[last_reload_reg + k] = 0;
    }
    }
 
 
  /* The caller has already checked that REG dies or is set in INSN.
  /* The caller has already checked that REG dies or is set in INSN.
     It has also checked that we are optimizing, and thus some
     It has also checked that we are optimizing, and thus some
     inaccuracies in the debugging information are acceptable.
     inaccuracies in the debugging information are acceptable.
     So we could just delete output_reload_insn.  But in some cases
     So we could just delete output_reload_insn.  But in some cases
     we can improve the debugging information without sacrificing
     we can improve the debugging information without sacrificing
     optimization - maybe even improving the code: See if the pseudo
     optimization - maybe even improving the code: See if the pseudo
     reg has been completely replaced with reload regs.  If so, delete
     reg has been completely replaced with reload regs.  If so, delete
     the store insn and forget we had a stack slot for the pseudo.  */
     the store insn and forget we had a stack slot for the pseudo.  */
  if (rld[j].out != rld[j].in
  if (rld[j].out != rld[j].in
      && REG_N_DEATHS (REGNO (reg)) == 1
      && REG_N_DEATHS (REGNO (reg)) == 1
      && REG_N_SETS (REGNO (reg)) == 1
      && REG_N_SETS (REGNO (reg)) == 1
      && REG_BASIC_BLOCK (REGNO (reg)) >= 0
      && REG_BASIC_BLOCK (REGNO (reg)) >= 0
      && find_regno_note (insn, REG_DEAD, REGNO (reg)))
      && find_regno_note (insn, REG_DEAD, REGNO (reg)))
    {
    {
      rtx i2;
      rtx i2;
 
 
      /* We know that it was used only between here and the beginning of
      /* We know that it was used only between here and the beginning of
         the current basic block.  (We also know that the last use before
         the current basic block.  (We also know that the last use before
         INSN was the output reload we are thinking of deleting, but never
         INSN was the output reload we are thinking of deleting, but never
         mind that.)  Search that range; see if any ref remains.  */
         mind that.)  Search that range; see if any ref remains.  */
      for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
      for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
        {
        {
          rtx set = single_set (i2);
          rtx set = single_set (i2);
 
 
          /* Uses which just store in the pseudo don't count,
          /* Uses which just store in the pseudo don't count,
             since if they are the only uses, they are dead.  */
             since if they are the only uses, they are dead.  */
          if (set != 0 && SET_DEST (set) == reg)
          if (set != 0 && SET_DEST (set) == reg)
            continue;
            continue;
          if (LABEL_P (i2)
          if (LABEL_P (i2)
              || JUMP_P (i2))
              || JUMP_P (i2))
            break;
            break;
          if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
          if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
              && reg_mentioned_p (reg, PATTERN (i2)))
              && reg_mentioned_p (reg, PATTERN (i2)))
            {
            {
              /* Some other ref remains; just delete the output reload we
              /* Some other ref remains; just delete the output reload we
                 know to be dead.  */
                 know to be dead.  */
              delete_address_reloads (output_reload_insn, insn);
              delete_address_reloads (output_reload_insn, insn);
              delete_insn (output_reload_insn);
              delete_insn (output_reload_insn);
              return;
              return;
            }
            }
        }
        }
 
 
      /* Delete the now-dead stores into this pseudo.  Note that this
      /* Delete the now-dead stores into this pseudo.  Note that this
         loop also takes care of deleting output_reload_insn.  */
         loop also takes care of deleting output_reload_insn.  */
      for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
      for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
        {
        {
          rtx set = single_set (i2);
          rtx set = single_set (i2);
 
 
          if (set != 0 && SET_DEST (set) == reg)
          if (set != 0 && SET_DEST (set) == reg)
            {
            {
              delete_address_reloads (i2, insn);
              delete_address_reloads (i2, insn);
              delete_insn (i2);
              delete_insn (i2);
            }
            }
          if (LABEL_P (i2)
          if (LABEL_P (i2)
              || JUMP_P (i2))
              || JUMP_P (i2))
            break;
            break;
        }
        }
 
 
      /* For the debugging info, say the pseudo lives in this reload reg.  */
      /* For the debugging info, say the pseudo lives in this reload reg.  */
      reg_renumber[REGNO (reg)] = REGNO (rld[j].reg_rtx);
      reg_renumber[REGNO (reg)] = REGNO (rld[j].reg_rtx);
      alter_reg (REGNO (reg), -1);
      alter_reg (REGNO (reg), -1);
    }
    }
  else
  else
    {
    {
      delete_address_reloads (output_reload_insn, insn);
      delete_address_reloads (output_reload_insn, insn);
      delete_insn (output_reload_insn);
      delete_insn (output_reload_insn);
    }
    }
}
}
 
 
/* We are going to delete DEAD_INSN.  Recursively delete loads of
/* We are going to delete DEAD_INSN.  Recursively delete loads of
   reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
   reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
   CURRENT_INSN is being reloaded, so we have to check its reloads too.  */
   CURRENT_INSN is being reloaded, so we have to check its reloads too.  */
static void
static void
delete_address_reloads (rtx dead_insn, rtx current_insn)
delete_address_reloads (rtx dead_insn, rtx current_insn)
{
{
  rtx set = single_set (dead_insn);
  rtx set = single_set (dead_insn);
  rtx set2, dst, prev, next;
  rtx set2, dst, prev, next;
  if (set)
  if (set)
    {
    {
      rtx dst = SET_DEST (set);
      rtx dst = SET_DEST (set);
      if (MEM_P (dst))
      if (MEM_P (dst))
        delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
        delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
    }
    }
  /* If we deleted the store from a reloaded post_{in,de}c expression,
  /* If we deleted the store from a reloaded post_{in,de}c expression,
     we can delete the matching adds.  */
     we can delete the matching adds.  */
  prev = PREV_INSN (dead_insn);
  prev = PREV_INSN (dead_insn);
  next = NEXT_INSN (dead_insn);
  next = NEXT_INSN (dead_insn);
  if (! prev || ! next)
  if (! prev || ! next)
    return;
    return;
  set = single_set (next);
  set = single_set (next);
  set2 = single_set (prev);
  set2 = single_set (prev);
  if (! set || ! set2
  if (! set || ! set2
      || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
      || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
      || GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
      || GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
      || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
      || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
    return;
    return;
  dst = SET_DEST (set);
  dst = SET_DEST (set);
  if (! rtx_equal_p (dst, SET_DEST (set2))
  if (! rtx_equal_p (dst, SET_DEST (set2))
      || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
      || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
      || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
      || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
      || (INTVAL (XEXP (SET_SRC (set), 1))
      || (INTVAL (XEXP (SET_SRC (set), 1))
          != -INTVAL (XEXP (SET_SRC (set2), 1))))
          != -INTVAL (XEXP (SET_SRC (set2), 1))))
    return;
    return;
  delete_related_insns (prev);
  delete_related_insns (prev);
  delete_related_insns (next);
  delete_related_insns (next);
}
}
 
 
/* Subfunction of delete_address_reloads: process registers found in X.  */
/* Subfunction of delete_address_reloads: process registers found in X.  */
static void
static void
delete_address_reloads_1 (rtx dead_insn, rtx x, rtx current_insn)
delete_address_reloads_1 (rtx dead_insn, rtx x, rtx current_insn)
{
{
  rtx prev, set, dst, i2;
  rtx prev, set, dst, i2;
  int i, j;
  int i, j;
  enum rtx_code code = GET_CODE (x);
  enum rtx_code code = GET_CODE (x);
 
 
  if (code != REG)
  if (code != REG)
    {
    {
      const char *fmt = GET_RTX_FORMAT (code);
      const char *fmt = GET_RTX_FORMAT (code);
      for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
      for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
        {
        {
          if (fmt[i] == 'e')
          if (fmt[i] == 'e')
            delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
            delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
          else if (fmt[i] == 'E')
          else if (fmt[i] == 'E')
            {
            {
              for (j = XVECLEN (x, i) - 1; j >= 0; j--)
              for (j = XVECLEN (x, i) - 1; j >= 0; j--)
                delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
                delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
                                          current_insn);
                                          current_insn);
            }
            }
        }
        }
      return;
      return;
    }
    }
 
 
  if (spill_reg_order[REGNO (x)] < 0)
  if (spill_reg_order[REGNO (x)] < 0)
    return;
    return;
 
 
  /* Scan backwards for the insn that sets x.  This might be a way back due
  /* Scan backwards for the insn that sets x.  This might be a way back due
     to inheritance.  */
     to inheritance.  */
  for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
  for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
    {
    {
      code = GET_CODE (prev);
      code = GET_CODE (prev);
      if (code == CODE_LABEL || code == JUMP_INSN)
      if (code == CODE_LABEL || code == JUMP_INSN)
        return;
        return;
      if (!INSN_P (prev))
      if (!INSN_P (prev))
        continue;
        continue;
      if (reg_set_p (x, PATTERN (prev)))
      if (reg_set_p (x, PATTERN (prev)))
        break;
        break;
      if (reg_referenced_p (x, PATTERN (prev)))
      if (reg_referenced_p (x, PATTERN (prev)))
        return;
        return;
    }
    }
  if (! prev || INSN_UID (prev) < reload_first_uid)
  if (! prev || INSN_UID (prev) < reload_first_uid)
    return;
    return;
  /* Check that PREV only sets the reload register.  */
  /* Check that PREV only sets the reload register.  */
  set = single_set (prev);
  set = single_set (prev);
  if (! set)
  if (! set)
    return;
    return;
  dst = SET_DEST (set);
  dst = SET_DEST (set);
  if (!REG_P (dst)
  if (!REG_P (dst)
      || ! rtx_equal_p (dst, x))
      || ! rtx_equal_p (dst, x))
    return;
    return;
  if (! reg_set_p (dst, PATTERN (dead_insn)))
  if (! reg_set_p (dst, PATTERN (dead_insn)))
    {
    {
      /* Check if DST was used in a later insn -
      /* Check if DST was used in a later insn -
         it might have been inherited.  */
         it might have been inherited.  */
      for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
      for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
        {
        {
          if (LABEL_P (i2))
          if (LABEL_P (i2))
            break;
            break;
          if (! INSN_P (i2))
          if (! INSN_P (i2))
            continue;
            continue;
          if (reg_referenced_p (dst, PATTERN (i2)))
          if (reg_referenced_p (dst, PATTERN (i2)))
            {
            {
              /* If there is a reference to the register in the current insn,
              /* If there is a reference to the register in the current insn,
                 it might be loaded in a non-inherited reload.  If no other
                 it might be loaded in a non-inherited reload.  If no other
                 reload uses it, that means the register is set before
                 reload uses it, that means the register is set before
                 referenced.  */
                 referenced.  */
              if (i2 == current_insn)
              if (i2 == current_insn)
                {
                {
                  for (j = n_reloads - 1; j >= 0; j--)
                  for (j = n_reloads - 1; j >= 0; j--)
                    if ((rld[j].reg_rtx == dst && reload_inherited[j])
                    if ((rld[j].reg_rtx == dst && reload_inherited[j])
                        || reload_override_in[j] == dst)
                        || reload_override_in[j] == dst)
                      return;
                      return;
                  for (j = n_reloads - 1; j >= 0; j--)
                  for (j = n_reloads - 1; j >= 0; j--)
                    if (rld[j].in && rld[j].reg_rtx == dst)
                    if (rld[j].in && rld[j].reg_rtx == dst)
                      break;
                      break;
                  if (j >= 0)
                  if (j >= 0)
                    break;
                    break;
                }
                }
              return;
              return;
            }
            }
          if (JUMP_P (i2))
          if (JUMP_P (i2))
            break;
            break;
          /* If DST is still live at CURRENT_INSN, check if it is used for
          /* If DST is still live at CURRENT_INSN, check if it is used for
             any reload.  Note that even if CURRENT_INSN sets DST, we still
             any reload.  Note that even if CURRENT_INSN sets DST, we still
             have to check the reloads.  */
             have to check the reloads.  */
          if (i2 == current_insn)
          if (i2 == current_insn)
            {
            {
              for (j = n_reloads - 1; j >= 0; j--)
              for (j = n_reloads - 1; j >= 0; j--)
                if ((rld[j].reg_rtx == dst && reload_inherited[j])
                if ((rld[j].reg_rtx == dst && reload_inherited[j])
                    || reload_override_in[j] == dst)
                    || reload_override_in[j] == dst)
                  return;
                  return;
              /* ??? We can't finish the loop here, because dst might be
              /* ??? We can't finish the loop here, because dst might be
                 allocated to a pseudo in this block if no reload in this
                 allocated to a pseudo in this block if no reload in this
                 block needs any of the classes containing DST - see
                 block needs any of the classes containing DST - see
                 spill_hard_reg.  There is no easy way to tell this, so we
                 spill_hard_reg.  There is no easy way to tell this, so we
                 have to scan till the end of the basic block.  */
                 have to scan till the end of the basic block.  */
            }
            }
          if (reg_set_p (dst, PATTERN (i2)))
          if (reg_set_p (dst, PATTERN (i2)))
            break;
            break;
        }
        }
    }
    }
  delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
  delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
  reg_reloaded_contents[REGNO (dst)] = -1;
  reg_reloaded_contents[REGNO (dst)] = -1;
  delete_insn (prev);
  delete_insn (prev);
}
}


/* Output reload-insns to reload VALUE into RELOADREG.
/* Output reload-insns to reload VALUE into RELOADREG.
   VALUE is an autoincrement or autodecrement RTX whose operand
   VALUE is an autoincrement or autodecrement RTX whose operand
   is a register or memory location;
   is a register or memory location;
   so reloading involves incrementing that location.
   so reloading involves incrementing that location.
   IN is either identical to VALUE, or some cheaper place to reload from.
   IN is either identical to VALUE, or some cheaper place to reload from.
 
 
   INC_AMOUNT is the number to increment or decrement by (always positive).
   INC_AMOUNT is the number to increment or decrement by (always positive).
   This cannot be deduced from VALUE.
   This cannot be deduced from VALUE.
 
 
   Return the instruction that stores into RELOADREG.  */
   Return the instruction that stores into RELOADREG.  */
 
 
static rtx
static rtx
inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
{
{
  /* REG or MEM to be copied and incremented.  */
  /* REG or MEM to be copied and incremented.  */
  rtx incloc = find_replacement (&XEXP (value, 0));
  rtx incloc = find_replacement (&XEXP (value, 0));
  /* Nonzero if increment after copying.  */
  /* Nonzero if increment after copying.  */
  int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
  int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
              || GET_CODE (value) == POST_MODIFY);
              || GET_CODE (value) == POST_MODIFY);
  rtx last;
  rtx last;
  rtx inc;
  rtx inc;
  rtx add_insn;
  rtx add_insn;
  int code;
  int code;
  rtx store;
  rtx store;
  rtx real_in = in == value ? incloc : in;
  rtx real_in = in == value ? incloc : in;
 
 
  /* No hard register is equivalent to this register after
  /* No hard register is equivalent to this register after
     inc/dec operation.  If REG_LAST_RELOAD_REG were nonzero,
     inc/dec operation.  If REG_LAST_RELOAD_REG were nonzero,
     we could inc/dec that register as well (maybe even using it for
     we could inc/dec that register as well (maybe even using it for
     the source), but I'm not sure it's worth worrying about.  */
     the source), but I'm not sure it's worth worrying about.  */
  if (REG_P (incloc))
  if (REG_P (incloc))
    reg_last_reload_reg[REGNO (incloc)] = 0;
    reg_last_reload_reg[REGNO (incloc)] = 0;
 
 
  if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
  if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
    {
    {
      gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
      gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
      inc = find_replacement (&XEXP (XEXP (value, 1), 1));
      inc = find_replacement (&XEXP (XEXP (value, 1), 1));
    }
    }
  else
  else
    {
    {
      if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
      if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
        inc_amount = -inc_amount;
        inc_amount = -inc_amount;
 
 
      inc = GEN_INT (inc_amount);
      inc = GEN_INT (inc_amount);
    }
    }
 
 
  /* If this is post-increment, first copy the location to the reload reg.  */
  /* If this is post-increment, first copy the location to the reload reg.  */
  if (post && real_in != reloadreg)
  if (post && real_in != reloadreg)
    emit_insn (gen_move_insn (reloadreg, real_in));
    emit_insn (gen_move_insn (reloadreg, real_in));
 
 
  if (in == value)
  if (in == value)
    {
    {
      /* See if we can directly increment INCLOC.  Use a method similar to
      /* See if we can directly increment INCLOC.  Use a method similar to
         that in gen_reload.  */
         that in gen_reload.  */
 
 
      last = get_last_insn ();
      last = get_last_insn ();
      add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
      add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
                                         gen_rtx_PLUS (GET_MODE (incloc),
                                         gen_rtx_PLUS (GET_MODE (incloc),
                                                       incloc, inc)));
                                                       incloc, inc)));
 
 
      code = recog_memoized (add_insn);
      code = recog_memoized (add_insn);
      if (code >= 0)
      if (code >= 0)
        {
        {
          extract_insn (add_insn);
          extract_insn (add_insn);
          if (constrain_operands (1))
          if (constrain_operands (1))
            {
            {
              /* If this is a pre-increment and we have incremented the value
              /* If this is a pre-increment and we have incremented the value
                 where it lives, copy the incremented value to RELOADREG to
                 where it lives, copy the incremented value to RELOADREG to
                 be used as an address.  */
                 be used as an address.  */
 
 
              if (! post)
              if (! post)
                emit_insn (gen_move_insn (reloadreg, incloc));
                emit_insn (gen_move_insn (reloadreg, incloc));
 
 
              return add_insn;
              return add_insn;
            }
            }
        }
        }
      delete_insns_since (last);
      delete_insns_since (last);
    }
    }
 
 
  /* If couldn't do the increment directly, must increment in RELOADREG.
  /* If couldn't do the increment directly, must increment in RELOADREG.
     The way we do this depends on whether this is pre- or post-increment.
     The way we do this depends on whether this is pre- or post-increment.
     For pre-increment, copy INCLOC to the reload register, increment it
     For pre-increment, copy INCLOC to the reload register, increment it
     there, then save back.  */
     there, then save back.  */
 
 
  if (! post)
  if (! post)
    {
    {
      if (in != reloadreg)
      if (in != reloadreg)
        emit_insn (gen_move_insn (reloadreg, real_in));
        emit_insn (gen_move_insn (reloadreg, real_in));
      emit_insn (gen_add2_insn (reloadreg, inc));
      emit_insn (gen_add2_insn (reloadreg, inc));
      store = emit_insn (gen_move_insn (incloc, reloadreg));
      store = emit_insn (gen_move_insn (incloc, reloadreg));
    }
    }
  else
  else
    {
    {
      /* Postincrement.
      /* Postincrement.
         Because this might be a jump insn or a compare, and because RELOADREG
         Because this might be a jump insn or a compare, and because RELOADREG
         may not be available after the insn in an input reload, we must do
         may not be available after the insn in an input reload, we must do
         the incrementation before the insn being reloaded for.
         the incrementation before the insn being reloaded for.
 
 
         We have already copied IN to RELOADREG.  Increment the copy in
         We have already copied IN to RELOADREG.  Increment the copy in
         RELOADREG, save that back, then decrement RELOADREG so it has
         RELOADREG, save that back, then decrement RELOADREG so it has
         the original value.  */
         the original value.  */
 
 
      emit_insn (gen_add2_insn (reloadreg, inc));
      emit_insn (gen_add2_insn (reloadreg, inc));
      store = emit_insn (gen_move_insn (incloc, reloadreg));
      store = emit_insn (gen_move_insn (incloc, reloadreg));
      if (GET_CODE (inc) == CONST_INT)
      if (GET_CODE (inc) == CONST_INT)
        emit_insn (gen_add2_insn (reloadreg, GEN_INT (-INTVAL(inc))));
        emit_insn (gen_add2_insn (reloadreg, GEN_INT (-INTVAL(inc))));
      else
      else
        emit_insn (gen_sub2_insn (reloadreg, inc));
        emit_insn (gen_sub2_insn (reloadreg, inc));
    }
    }
 
 
  return store;
  return store;
}
}


#ifdef AUTO_INC_DEC
#ifdef AUTO_INC_DEC
static void
static void
add_auto_inc_notes (rtx insn, rtx x)
add_auto_inc_notes (rtx insn, rtx x)
{
{
  enum rtx_code code = GET_CODE (x);
  enum rtx_code code = GET_CODE (x);
  const char *fmt;
  const char *fmt;
  int i, j;
  int i, j;
 
 
  if (code == MEM && auto_inc_p (XEXP (x, 0)))
  if (code == MEM && auto_inc_p (XEXP (x, 0)))
    {
    {
      REG_NOTES (insn)
      REG_NOTES (insn)
        = gen_rtx_EXPR_LIST (REG_INC, XEXP (XEXP (x, 0), 0), REG_NOTES (insn));
        = gen_rtx_EXPR_LIST (REG_INC, XEXP (XEXP (x, 0), 0), REG_NOTES (insn));
      return;
      return;
    }
    }
 
 
  /* Scan all the operand sub-expressions.  */
  /* Scan all the operand sub-expressions.  */
  fmt = GET_RTX_FORMAT (code);
  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
    {
      if (fmt[i] == 'e')
      if (fmt[i] == 'e')
        add_auto_inc_notes (insn, XEXP (x, i));
        add_auto_inc_notes (insn, XEXP (x, i));
      else if (fmt[i] == 'E')
      else if (fmt[i] == 'E')
        for (j = XVECLEN (x, i) - 1; j >= 0; j--)
        for (j = XVECLEN (x, i) - 1; j >= 0; j--)
          add_auto_inc_notes (insn, XVECEXP (x, i, j));
          add_auto_inc_notes (insn, XVECEXP (x, i, j));
    }
    }
}
}
#endif
#endif
 
 
/* Copy EH notes from an insn to its reloads.  */
/* Copy EH notes from an insn to its reloads.  */
static void
static void
copy_eh_notes (rtx insn, rtx x)
copy_eh_notes (rtx insn, rtx x)
{
{
  rtx eh_note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
  rtx eh_note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
  if (eh_note)
  if (eh_note)
    {
    {
      for (; x != 0; x = NEXT_INSN (x))
      for (; x != 0; x = NEXT_INSN (x))
        {
        {
          if (may_trap_p (PATTERN (x)))
          if (may_trap_p (PATTERN (x)))
            REG_NOTES (x)
            REG_NOTES (x)
              = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (eh_note, 0),
              = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (eh_note, 0),
                                   REG_NOTES (x));
                                   REG_NOTES (x));
        }
        }
    }
    }
}
}
 
 
/* This is used by reload pass, that does emit some instructions after
/* This is used by reload pass, that does emit some instructions after
   abnormal calls moving basic block end, but in fact it wants to emit
   abnormal calls moving basic block end, but in fact it wants to emit
   them on the edge.  Looks for abnormal call edges, find backward the
   them on the edge.  Looks for abnormal call edges, find backward the
   proper call and fix the damage.
   proper call and fix the damage.
 
 
   Similar handle instructions throwing exceptions internally.  */
   Similar handle instructions throwing exceptions internally.  */
void
void
fixup_abnormal_edges (void)
fixup_abnormal_edges (void)
{
{
  bool inserted = false;
  bool inserted = false;
  basic_block bb;
  basic_block bb;
 
 
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    {
    {
      edge e;
      edge e;
      edge_iterator ei;
      edge_iterator ei;
 
 
      /* Look for cases we are interested in - calls or instructions causing
      /* Look for cases we are interested in - calls or instructions causing
         exceptions.  */
         exceptions.  */
      FOR_EACH_EDGE (e, ei, bb->succs)
      FOR_EACH_EDGE (e, ei, bb->succs)
        {
        {
          if (e->flags & EDGE_ABNORMAL_CALL)
          if (e->flags & EDGE_ABNORMAL_CALL)
            break;
            break;
          if ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
          if ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
              == (EDGE_ABNORMAL | EDGE_EH))
              == (EDGE_ABNORMAL | EDGE_EH))
            break;
            break;
        }
        }
      if (e && !CALL_P (BB_END (bb))
      if (e && !CALL_P (BB_END (bb))
          && !can_throw_internal (BB_END (bb)))
          && !can_throw_internal (BB_END (bb)))
        {
        {
          rtx insn;
          rtx insn;
 
 
          /* Get past the new insns generated.  Allow notes, as the insns
          /* Get past the new insns generated.  Allow notes, as the insns
             may be already deleted.  */
             may be already deleted.  */
          insn = BB_END (bb);
          insn = BB_END (bb);
          while ((NONJUMP_INSN_P (insn) || NOTE_P (insn))
          while ((NONJUMP_INSN_P (insn) || NOTE_P (insn))
                 && !can_throw_internal (insn)
                 && !can_throw_internal (insn)
                 && insn != BB_HEAD (bb))
                 && insn != BB_HEAD (bb))
            insn = PREV_INSN (insn);
            insn = PREV_INSN (insn);
 
 
          if (CALL_P (insn) || can_throw_internal (insn))
          if (CALL_P (insn) || can_throw_internal (insn))
            {
            {
              rtx stop, next;
              rtx stop, next;
 
 
              stop = NEXT_INSN (BB_END (bb));
              stop = NEXT_INSN (BB_END (bb));
              BB_END (bb) = insn;
              BB_END (bb) = insn;
              insn = NEXT_INSN (insn);
              insn = NEXT_INSN (insn);
 
 
              FOR_EACH_EDGE (e, ei, bb->succs)
              FOR_EACH_EDGE (e, ei, bb->succs)
                if (e->flags & EDGE_FALLTHRU)
                if (e->flags & EDGE_FALLTHRU)
                  break;
                  break;
 
 
              while (insn && insn != stop)
              while (insn && insn != stop)
                {
                {
                  next = NEXT_INSN (insn);
                  next = NEXT_INSN (insn);
                  if (INSN_P (insn))
                  if (INSN_P (insn))
                    {
                    {
                      delete_insn (insn);
                      delete_insn (insn);
 
 
                      /* Sometimes there's still the return value USE.
                      /* Sometimes there's still the return value USE.
                         If it's placed after a trapping call (i.e. that
                         If it's placed after a trapping call (i.e. that
                         call is the last insn anyway), we have no fallthru
                         call is the last insn anyway), we have no fallthru
                         edge.  Simply delete this use and don't try to insert
                         edge.  Simply delete this use and don't try to insert
                         on the non-existent edge.  */
                         on the non-existent edge.  */
                      if (GET_CODE (PATTERN (insn)) != USE)
                      if (GET_CODE (PATTERN (insn)) != USE)
                        {
                        {
                          /* We're not deleting it, we're moving it.  */
                          /* We're not deleting it, we're moving it.  */
                          INSN_DELETED_P (insn) = 0;
                          INSN_DELETED_P (insn) = 0;
                          PREV_INSN (insn) = NULL_RTX;
                          PREV_INSN (insn) = NULL_RTX;
                          NEXT_INSN (insn) = NULL_RTX;
                          NEXT_INSN (insn) = NULL_RTX;
 
 
                          insert_insn_on_edge (insn, e);
                          insert_insn_on_edge (insn, e);
                          inserted = true;
                          inserted = true;
                        }
                        }
                    }
                    }
                  insn = next;
                  insn = next;
                }
                }
            }
            }
 
 
          /* It may be that we don't find any such trapping insn.  In this
          /* It may be that we don't find any such trapping insn.  In this
             case we discovered quite late that the insn that had been
             case we discovered quite late that the insn that had been
             marked as can_throw_internal in fact couldn't trap at all.
             marked as can_throw_internal in fact couldn't trap at all.
             So we should in fact delete the EH edges out of the block.  */
             So we should in fact delete the EH edges out of the block.  */
          else
          else
            purge_dead_edges (bb);
            purge_dead_edges (bb);
        }
        }
    }
    }
 
 
  /* We've possibly turned single trapping insn into multiple ones.  */
  /* We've possibly turned single trapping insn into multiple ones.  */
  if (flag_non_call_exceptions)
  if (flag_non_call_exceptions)
    {
    {
      sbitmap blocks;
      sbitmap blocks;
      blocks = sbitmap_alloc (last_basic_block);
      blocks = sbitmap_alloc (last_basic_block);
      sbitmap_ones (blocks);
      sbitmap_ones (blocks);
      find_many_sub_basic_blocks (blocks);
      find_many_sub_basic_blocks (blocks);
    }
    }
 
 
  if (inserted)
  if (inserted)
    commit_edge_insertions ();
    commit_edge_insertions ();
 
 
#ifdef ENABLE_CHECKING
#ifdef ENABLE_CHECKING
  /* Verify that we didn't turn one trapping insn into many, and that
  /* Verify that we didn't turn one trapping insn into many, and that
     we found and corrected all of the problems wrt fixups on the
     we found and corrected all of the problems wrt fixups on the
     fallthru edge.  */
     fallthru edge.  */
  verify_flow_info ();
  verify_flow_info ();
#endif
#endif
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.