OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gcc-4.2.2/] [gcc/] [resource.c] - Diff between revs 154 and 816

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 154 Rev 816
/* Definitions for computing resource usage of specific insns.
/* Definitions for computing resource usage of specific insns.
   Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007
   Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify it under
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
Software Foundation; either version 3, or (at your option) any later
version.
version.
 
 
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "toplev.h"
#include "toplev.h"
#include "rtl.h"
#include "rtl.h"
#include "tm_p.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "hard-reg-set.h"
#include "function.h"
#include "function.h"
#include "regs.h"
#include "regs.h"
#include "flags.h"
#include "flags.h"
#include "output.h"
#include "output.h"
#include "resource.h"
#include "resource.h"
#include "except.h"
#include "except.h"
#include "insn-attr.h"
#include "insn-attr.h"
#include "params.h"
#include "params.h"
 
 
/* This structure is used to record liveness information at the targets or
/* This structure is used to record liveness information at the targets or
   fallthrough insns of branches.  We will most likely need the information
   fallthrough insns of branches.  We will most likely need the information
   at targets again, so save them in a hash table rather than recomputing them
   at targets again, so save them in a hash table rather than recomputing them
   each time.  */
   each time.  */
 
 
struct target_info
struct target_info
{
{
  int uid;                      /* INSN_UID of target.  */
  int uid;                      /* INSN_UID of target.  */
  struct target_info *next;     /* Next info for same hash bucket.  */
  struct target_info *next;     /* Next info for same hash bucket.  */
  HARD_REG_SET live_regs;       /* Registers live at target.  */
  HARD_REG_SET live_regs;       /* Registers live at target.  */
  int block;                    /* Basic block number containing target.  */
  int block;                    /* Basic block number containing target.  */
  int bb_tick;                  /* Generation count of basic block info.  */
  int bb_tick;                  /* Generation count of basic block info.  */
};
};
 
 
#define TARGET_HASH_PRIME 257
#define TARGET_HASH_PRIME 257
 
 
/* Indicates what resources are required at the beginning of the epilogue.  */
/* Indicates what resources are required at the beginning of the epilogue.  */
static struct resources start_of_epilogue_needs;
static struct resources start_of_epilogue_needs;
 
 
/* Indicates what resources are required at function end.  */
/* Indicates what resources are required at function end.  */
static struct resources end_of_function_needs;
static struct resources end_of_function_needs;
 
 
/* Define the hash table itself.  */
/* Define the hash table itself.  */
static struct target_info **target_hash_table = NULL;
static struct target_info **target_hash_table = NULL;
 
 
/* For each basic block, we maintain a generation number of its basic
/* For each basic block, we maintain a generation number of its basic
   block info, which is updated each time we move an insn from the
   block info, which is updated each time we move an insn from the
   target of a jump.  This is the generation number indexed by block
   target of a jump.  This is the generation number indexed by block
   number.  */
   number.  */
 
 
static int *bb_ticks;
static int *bb_ticks;
 
 
/* Marks registers possibly live at the current place being scanned by
/* Marks registers possibly live at the current place being scanned by
   mark_target_live_regs.  Also used by update_live_status.  */
   mark_target_live_regs.  Also used by update_live_status.  */
 
 
static HARD_REG_SET current_live_regs;
static HARD_REG_SET current_live_regs;
 
 
/* Marks registers for which we have seen a REG_DEAD note but no assignment.
/* Marks registers for which we have seen a REG_DEAD note but no assignment.
   Also only used by the next two functions.  */
   Also only used by the next two functions.  */
 
 
static HARD_REG_SET pending_dead_regs;
static HARD_REG_SET pending_dead_regs;


static void update_live_status (rtx, rtx, void *);
static void update_live_status (rtx, rtx, void *);
static int find_basic_block (rtx, int);
static int find_basic_block (rtx, int);
static rtx next_insn_no_annul (rtx);
static rtx next_insn_no_annul (rtx);
static rtx find_dead_or_set_registers (rtx, struct resources*,
static rtx find_dead_or_set_registers (rtx, struct resources*,
                                       rtx*, int, struct resources,
                                       rtx*, int, struct resources,
                                       struct resources);
                                       struct resources);


/* Utility function called from mark_target_live_regs via note_stores.
/* Utility function called from mark_target_live_regs via note_stores.
   It deadens any CLOBBERed registers and livens any SET registers.  */
   It deadens any CLOBBERed registers and livens any SET registers.  */
 
 
static void
static void
update_live_status (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
update_live_status (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
{
{
  int first_regno, last_regno;
  int first_regno, last_regno;
  int i;
  int i;
 
 
  if (!REG_P (dest)
  if (!REG_P (dest)
      && (GET_CODE (dest) != SUBREG || !REG_P (SUBREG_REG (dest))))
      && (GET_CODE (dest) != SUBREG || !REG_P (SUBREG_REG (dest))))
    return;
    return;
 
 
  if (GET_CODE (dest) == SUBREG)
  if (GET_CODE (dest) == SUBREG)
    first_regno = subreg_regno (dest);
    first_regno = subreg_regno (dest);
  else
  else
    first_regno = REGNO (dest);
    first_regno = REGNO (dest);
 
 
  last_regno = first_regno + hard_regno_nregs[first_regno][GET_MODE (dest)];
  last_regno = first_regno + hard_regno_nregs[first_regno][GET_MODE (dest)];
 
 
  if (GET_CODE (x) == CLOBBER)
  if (GET_CODE (x) == CLOBBER)
    for (i = first_regno; i < last_regno; i++)
    for (i = first_regno; i < last_regno; i++)
      CLEAR_HARD_REG_BIT (current_live_regs, i);
      CLEAR_HARD_REG_BIT (current_live_regs, i);
  else
  else
    for (i = first_regno; i < last_regno; i++)
    for (i = first_regno; i < last_regno; i++)
      {
      {
        SET_HARD_REG_BIT (current_live_regs, i);
        SET_HARD_REG_BIT (current_live_regs, i);
        CLEAR_HARD_REG_BIT (pending_dead_regs, i);
        CLEAR_HARD_REG_BIT (pending_dead_regs, i);
      }
      }
}
}
 
 
/* Find the number of the basic block with correct live register
/* Find the number of the basic block with correct live register
   information that starts closest to INSN.  Return -1 if we couldn't
   information that starts closest to INSN.  Return -1 if we couldn't
   find such a basic block or the beginning is more than
   find such a basic block or the beginning is more than
   SEARCH_LIMIT instructions before INSN.  Use SEARCH_LIMIT = -1 for
   SEARCH_LIMIT instructions before INSN.  Use SEARCH_LIMIT = -1 for
   an unlimited search.
   an unlimited search.
 
 
   The delay slot filling code destroys the control-flow graph so,
   The delay slot filling code destroys the control-flow graph so,
   instead of finding the basic block containing INSN, we search
   instead of finding the basic block containing INSN, we search
   backwards toward a BARRIER where the live register information is
   backwards toward a BARRIER where the live register information is
   correct.  */
   correct.  */
 
 
static int
static int
find_basic_block (rtx insn, int search_limit)
find_basic_block (rtx insn, int search_limit)
{
{
  basic_block bb;
  basic_block bb;
 
 
  /* Scan backwards to the previous BARRIER.  Then see if we can find a
  /* Scan backwards to the previous BARRIER.  Then see if we can find a
     label that starts a basic block.  Return the basic block number.  */
     label that starts a basic block.  Return the basic block number.  */
  for (insn = prev_nonnote_insn (insn);
  for (insn = prev_nonnote_insn (insn);
       insn && !BARRIER_P (insn) && search_limit != 0;
       insn && !BARRIER_P (insn) && search_limit != 0;
       insn = prev_nonnote_insn (insn), --search_limit)
       insn = prev_nonnote_insn (insn), --search_limit)
    ;
    ;
 
 
  /* The closest BARRIER is too far away.  */
  /* The closest BARRIER is too far away.  */
  if (search_limit == 0)
  if (search_limit == 0)
    return -1;
    return -1;
 
 
  /* The start of the function.  */
  /* The start of the function.  */
  else if (insn == 0)
  else if (insn == 0)
    return ENTRY_BLOCK_PTR->next_bb->index;
    return ENTRY_BLOCK_PTR->next_bb->index;
 
 
  /* See if any of the upcoming CODE_LABELs start a basic block.  If we reach
  /* See if any of the upcoming CODE_LABELs start a basic block.  If we reach
     anything other than a CODE_LABEL or note, we can't find this code.  */
     anything other than a CODE_LABEL or note, we can't find this code.  */
  for (insn = next_nonnote_insn (insn);
  for (insn = next_nonnote_insn (insn);
       insn && LABEL_P (insn);
       insn && LABEL_P (insn);
       insn = next_nonnote_insn (insn))
       insn = next_nonnote_insn (insn))
    {
    {
      FOR_EACH_BB (bb)
      FOR_EACH_BB (bb)
        if (insn == BB_HEAD (bb))
        if (insn == BB_HEAD (bb))
          return bb->index;
          return bb->index;
    }
    }
 
 
  return -1;
  return -1;
}
}


/* Similar to next_insn, but ignores insns in the delay slots of
/* Similar to next_insn, but ignores insns in the delay slots of
   an annulled branch.  */
   an annulled branch.  */
 
 
static rtx
static rtx
next_insn_no_annul (rtx insn)
next_insn_no_annul (rtx insn)
{
{
  if (insn)
  if (insn)
    {
    {
      /* If INSN is an annulled branch, skip any insns from the target
      /* If INSN is an annulled branch, skip any insns from the target
         of the branch.  */
         of the branch.  */
      if (INSN_P (insn)
      if (INSN_P (insn)
          && INSN_ANNULLED_BRANCH_P (insn)
          && INSN_ANNULLED_BRANCH_P (insn)
          && NEXT_INSN (PREV_INSN (insn)) != insn)
          && NEXT_INSN (PREV_INSN (insn)) != insn)
        {
        {
          rtx next = NEXT_INSN (insn);
          rtx next = NEXT_INSN (insn);
          enum rtx_code code = GET_CODE (next);
          enum rtx_code code = GET_CODE (next);
 
 
          while ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
          while ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
                 && INSN_FROM_TARGET_P (next))
                 && INSN_FROM_TARGET_P (next))
            {
            {
              insn = next;
              insn = next;
              next = NEXT_INSN (insn);
              next = NEXT_INSN (insn);
              code = GET_CODE (next);
              code = GET_CODE (next);
            }
            }
        }
        }
 
 
      insn = NEXT_INSN (insn);
      insn = NEXT_INSN (insn);
      if (insn && NONJUMP_INSN_P (insn)
      if (insn && NONJUMP_INSN_P (insn)
          && GET_CODE (PATTERN (insn)) == SEQUENCE)
          && GET_CODE (PATTERN (insn)) == SEQUENCE)
        insn = XVECEXP (PATTERN (insn), 0, 0);
        insn = XVECEXP (PATTERN (insn), 0, 0);
    }
    }
 
 
  return insn;
  return insn;
}
}


/* Given X, some rtl, and RES, a pointer to a `struct resource', mark
/* Given X, some rtl, and RES, a pointer to a `struct resource', mark
   which resources are referenced by the insn.  If INCLUDE_DELAYED_EFFECTS
   which resources are referenced by the insn.  If INCLUDE_DELAYED_EFFECTS
   is TRUE, resources used by the called routine will be included for
   is TRUE, resources used by the called routine will be included for
   CALL_INSNs.  */
   CALL_INSNs.  */
 
 
void
void
mark_referenced_resources (rtx x, struct resources *res,
mark_referenced_resources (rtx x, struct resources *res,
                           int include_delayed_effects)
                           int include_delayed_effects)
{
{
  enum rtx_code code = GET_CODE (x);
  enum rtx_code code = GET_CODE (x);
  int i, j;
  int i, j;
  unsigned int r;
  unsigned int r;
  const char *format_ptr;
  const char *format_ptr;
 
 
  /* Handle leaf items for which we set resource flags.  Also, special-case
  /* Handle leaf items for which we set resource flags.  Also, special-case
     CALL, SET and CLOBBER operators.  */
     CALL, SET and CLOBBER operators.  */
  switch (code)
  switch (code)
    {
    {
    case CONST:
    case CONST:
    case CONST_INT:
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST_DOUBLE:
    case CONST_VECTOR:
    case CONST_VECTOR:
    case PC:
    case PC:
    case SYMBOL_REF:
    case SYMBOL_REF:
    case LABEL_REF:
    case LABEL_REF:
      return;
      return;
 
 
    case SUBREG:
    case SUBREG:
      if (!REG_P (SUBREG_REG (x)))
      if (!REG_P (SUBREG_REG (x)))
        mark_referenced_resources (SUBREG_REG (x), res, 0);
        mark_referenced_resources (SUBREG_REG (x), res, 0);
      else
      else
        {
        {
          unsigned int regno = subreg_regno (x);
          unsigned int regno = subreg_regno (x);
          unsigned int last_regno
          unsigned int last_regno
            = regno + hard_regno_nregs[regno][GET_MODE (x)];
            = regno + hard_regno_nregs[regno][GET_MODE (x)];
 
 
          gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
          gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
          for (r = regno; r < last_regno; r++)
          for (r = regno; r < last_regno; r++)
            SET_HARD_REG_BIT (res->regs, r);
            SET_HARD_REG_BIT (res->regs, r);
        }
        }
      return;
      return;
 
 
    case REG:
    case REG:
        {
        {
          unsigned int regno = REGNO (x);
          unsigned int regno = REGNO (x);
          unsigned int last_regno
          unsigned int last_regno
            = regno + hard_regno_nregs[regno][GET_MODE (x)];
            = regno + hard_regno_nregs[regno][GET_MODE (x)];
 
 
          gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
          gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
          for (r = regno; r < last_regno; r++)
          for (r = regno; r < last_regno; r++)
            SET_HARD_REG_BIT (res->regs, r);
            SET_HARD_REG_BIT (res->regs, r);
        }
        }
      return;
      return;
 
 
    case MEM:
    case MEM:
      /* If this memory shouldn't change, it really isn't referencing
      /* If this memory shouldn't change, it really isn't referencing
         memory.  */
         memory.  */
      if (MEM_READONLY_P (x))
      if (MEM_READONLY_P (x))
        res->unch_memory = 1;
        res->unch_memory = 1;
      else
      else
        res->memory = 1;
        res->memory = 1;
      res->volatil |= MEM_VOLATILE_P (x);
      res->volatil |= MEM_VOLATILE_P (x);
 
 
      /* Mark registers used to access memory.  */
      /* Mark registers used to access memory.  */
      mark_referenced_resources (XEXP (x, 0), res, 0);
      mark_referenced_resources (XEXP (x, 0), res, 0);
      return;
      return;
 
 
    case CC0:
    case CC0:
      res->cc = 1;
      res->cc = 1;
      return;
      return;
 
 
    case UNSPEC_VOLATILE:
    case UNSPEC_VOLATILE:
    case ASM_INPUT:
    case ASM_INPUT:
      /* Traditional asm's are always volatile.  */
      /* Traditional asm's are always volatile.  */
      res->volatil = 1;
      res->volatil = 1;
      return;
      return;
 
 
    case TRAP_IF:
    case TRAP_IF:
      res->volatil = 1;
      res->volatil = 1;
      break;
      break;
 
 
    case ASM_OPERANDS:
    case ASM_OPERANDS:
      res->volatil |= MEM_VOLATILE_P (x);
      res->volatil |= MEM_VOLATILE_P (x);
 
 
      /* For all ASM_OPERANDS, we must traverse the vector of input operands.
      /* For all ASM_OPERANDS, we must traverse the vector of input operands.
         We can not just fall through here since then we would be confused
         We can not just fall through here since then we would be confused
         by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
         by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
         traditional asms unlike their normal usage.  */
         traditional asms unlike their normal usage.  */
 
 
      for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
      for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
        mark_referenced_resources (ASM_OPERANDS_INPUT (x, i), res, 0);
        mark_referenced_resources (ASM_OPERANDS_INPUT (x, i), res, 0);
      return;
      return;
 
 
    case CALL:
    case CALL:
      /* The first operand will be a (MEM (xxx)) but doesn't really reference
      /* The first operand will be a (MEM (xxx)) but doesn't really reference
         memory.  The second operand may be referenced, though.  */
         memory.  The second operand may be referenced, though.  */
      mark_referenced_resources (XEXP (XEXP (x, 0), 0), res, 0);
      mark_referenced_resources (XEXP (XEXP (x, 0), 0), res, 0);
      mark_referenced_resources (XEXP (x, 1), res, 0);
      mark_referenced_resources (XEXP (x, 1), res, 0);
      return;
      return;
 
 
    case SET:
    case SET:
      /* Usually, the first operand of SET is set, not referenced.  But
      /* Usually, the first operand of SET is set, not referenced.  But
         registers used to access memory are referenced.  SET_DEST is
         registers used to access memory are referenced.  SET_DEST is
         also referenced if it is a ZERO_EXTRACT.  */
         also referenced if it is a ZERO_EXTRACT.  */
 
 
      mark_referenced_resources (SET_SRC (x), res, 0);
      mark_referenced_resources (SET_SRC (x), res, 0);
 
 
      x = SET_DEST (x);
      x = SET_DEST (x);
      if (GET_CODE (x) == ZERO_EXTRACT
      if (GET_CODE (x) == ZERO_EXTRACT
          || GET_CODE (x) == STRICT_LOW_PART)
          || GET_CODE (x) == STRICT_LOW_PART)
        mark_referenced_resources (x, res, 0);
        mark_referenced_resources (x, res, 0);
      else if (GET_CODE (x) == SUBREG)
      else if (GET_CODE (x) == SUBREG)
        x = SUBREG_REG (x);
        x = SUBREG_REG (x);
      if (MEM_P (x))
      if (MEM_P (x))
        mark_referenced_resources (XEXP (x, 0), res, 0);
        mark_referenced_resources (XEXP (x, 0), res, 0);
      return;
      return;
 
 
    case CLOBBER:
    case CLOBBER:
      return;
      return;
 
 
    case CALL_INSN:
    case CALL_INSN:
      if (include_delayed_effects)
      if (include_delayed_effects)
        {
        {
          /* A CALL references memory, the frame pointer if it exists, the
          /* A CALL references memory, the frame pointer if it exists, the
             stack pointer, any global registers and any registers given in
             stack pointer, any global registers and any registers given in
             USE insns immediately in front of the CALL.
             USE insns immediately in front of the CALL.
 
 
             However, we may have moved some of the parameter loading insns
             However, we may have moved some of the parameter loading insns
             into the delay slot of this CALL.  If so, the USE's for them
             into the delay slot of this CALL.  If so, the USE's for them
             don't count and should be skipped.  */
             don't count and should be skipped.  */
          rtx insn = PREV_INSN (x);
          rtx insn = PREV_INSN (x);
          rtx sequence = 0;
          rtx sequence = 0;
          int seq_size = 0;
          int seq_size = 0;
          int i;
          int i;
 
 
          /* If we are part of a delay slot sequence, point at the SEQUENCE.  */
          /* If we are part of a delay slot sequence, point at the SEQUENCE.  */
          if (NEXT_INSN (insn) != x)
          if (NEXT_INSN (insn) != x)
            {
            {
              sequence = PATTERN (NEXT_INSN (insn));
              sequence = PATTERN (NEXT_INSN (insn));
              seq_size = XVECLEN (sequence, 0);
              seq_size = XVECLEN (sequence, 0);
              gcc_assert (GET_CODE (sequence) == SEQUENCE);
              gcc_assert (GET_CODE (sequence) == SEQUENCE);
            }
            }
 
 
          res->memory = 1;
          res->memory = 1;
          SET_HARD_REG_BIT (res->regs, STACK_POINTER_REGNUM);
          SET_HARD_REG_BIT (res->regs, STACK_POINTER_REGNUM);
          if (frame_pointer_needed)
          if (frame_pointer_needed)
            {
            {
              SET_HARD_REG_BIT (res->regs, FRAME_POINTER_REGNUM);
              SET_HARD_REG_BIT (res->regs, FRAME_POINTER_REGNUM);
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
              SET_HARD_REG_BIT (res->regs, HARD_FRAME_POINTER_REGNUM);
              SET_HARD_REG_BIT (res->regs, HARD_FRAME_POINTER_REGNUM);
#endif
#endif
            }
            }
 
 
          for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
          for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
            if (global_regs[i])
            if (global_regs[i])
              SET_HARD_REG_BIT (res->regs, i);
              SET_HARD_REG_BIT (res->regs, i);
 
 
          /* Check for a REG_SETJMP.  If it exists, then we must
          /* Check for a REG_SETJMP.  If it exists, then we must
             assume that this call can need any register.
             assume that this call can need any register.
 
 
             This is done to be more conservative about how we handle setjmp.
             This is done to be more conservative about how we handle setjmp.
             We assume that they both use and set all registers.  Using all
             We assume that they both use and set all registers.  Using all
             registers ensures that a register will not be considered dead
             registers ensures that a register will not be considered dead
             just because it crosses a setjmp call.  A register should be
             just because it crosses a setjmp call.  A register should be
             considered dead only if the setjmp call returns nonzero.  */
             considered dead only if the setjmp call returns nonzero.  */
          if (find_reg_note (x, REG_SETJMP, NULL))
          if (find_reg_note (x, REG_SETJMP, NULL))
            SET_HARD_REG_SET (res->regs);
            SET_HARD_REG_SET (res->regs);
 
 
          {
          {
            rtx link;
            rtx link;
 
 
            for (link = CALL_INSN_FUNCTION_USAGE (x);
            for (link = CALL_INSN_FUNCTION_USAGE (x);
                 link;
                 link;
                 link = XEXP (link, 1))
                 link = XEXP (link, 1))
              if (GET_CODE (XEXP (link, 0)) == USE)
              if (GET_CODE (XEXP (link, 0)) == USE)
                {
                {
                  for (i = 1; i < seq_size; i++)
                  for (i = 1; i < seq_size; i++)
                    {
                    {
                      rtx slot_pat = PATTERN (XVECEXP (sequence, 0, i));
                      rtx slot_pat = PATTERN (XVECEXP (sequence, 0, i));
                      if (GET_CODE (slot_pat) == SET
                      if (GET_CODE (slot_pat) == SET
                          && rtx_equal_p (SET_DEST (slot_pat),
                          && rtx_equal_p (SET_DEST (slot_pat),
                                          XEXP (XEXP (link, 0), 0)))
                                          XEXP (XEXP (link, 0), 0)))
                        break;
                        break;
                    }
                    }
                  if (i >= seq_size)
                  if (i >= seq_size)
                    mark_referenced_resources (XEXP (XEXP (link, 0), 0),
                    mark_referenced_resources (XEXP (XEXP (link, 0), 0),
                                               res, 0);
                                               res, 0);
                }
                }
          }
          }
        }
        }
 
 
      /* ... fall through to other INSN processing ...  */
      /* ... fall through to other INSN processing ...  */
 
 
    case INSN:
    case INSN:
    case JUMP_INSN:
    case JUMP_INSN:
 
 
#ifdef INSN_REFERENCES_ARE_DELAYED
#ifdef INSN_REFERENCES_ARE_DELAYED
      if (! include_delayed_effects
      if (! include_delayed_effects
          && INSN_REFERENCES_ARE_DELAYED (x))
          && INSN_REFERENCES_ARE_DELAYED (x))
        return;
        return;
#endif
#endif
 
 
      /* No special processing, just speed up.  */
      /* No special processing, just speed up.  */
      mark_referenced_resources (PATTERN (x), res, include_delayed_effects);
      mark_referenced_resources (PATTERN (x), res, include_delayed_effects);
      return;
      return;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  /* Process each sub-expression and flag what it needs.  */
  /* Process each sub-expression and flag what it needs.  */
  format_ptr = GET_RTX_FORMAT (code);
  format_ptr = GET_RTX_FORMAT (code);
  for (i = 0; i < GET_RTX_LENGTH (code); i++)
  for (i = 0; i < GET_RTX_LENGTH (code); i++)
    switch (*format_ptr++)
    switch (*format_ptr++)
      {
      {
      case 'e':
      case 'e':
        mark_referenced_resources (XEXP (x, i), res, include_delayed_effects);
        mark_referenced_resources (XEXP (x, i), res, include_delayed_effects);
        break;
        break;
 
 
      case 'E':
      case 'E':
        for (j = 0; j < XVECLEN (x, i); j++)
        for (j = 0; j < XVECLEN (x, i); j++)
          mark_referenced_resources (XVECEXP (x, i, j), res,
          mark_referenced_resources (XVECEXP (x, i, j), res,
                                     include_delayed_effects);
                                     include_delayed_effects);
        break;
        break;
      }
      }
}
}


/* A subroutine of mark_target_live_regs.  Search forward from TARGET
/* A subroutine of mark_target_live_regs.  Search forward from TARGET
   looking for registers that are set before they are used.  These are dead.
   looking for registers that are set before they are used.  These are dead.
   Stop after passing a few conditional jumps, and/or a small
   Stop after passing a few conditional jumps, and/or a small
   number of unconditional branches.  */
   number of unconditional branches.  */
 
 
static rtx
static rtx
find_dead_or_set_registers (rtx target, struct resources *res,
find_dead_or_set_registers (rtx target, struct resources *res,
                            rtx *jump_target, int jump_count,
                            rtx *jump_target, int jump_count,
                            struct resources set, struct resources needed)
                            struct resources set, struct resources needed)
{
{
  HARD_REG_SET scratch;
  HARD_REG_SET scratch;
  rtx insn, next;
  rtx insn, next;
  rtx jump_insn = 0;
  rtx jump_insn = 0;
  int i;
  int i;
 
 
  for (insn = target; insn; insn = next)
  for (insn = target; insn; insn = next)
    {
    {
      rtx this_jump_insn = insn;
      rtx this_jump_insn = insn;
 
 
      next = NEXT_INSN (insn);
      next = NEXT_INSN (insn);
 
 
      /* If this instruction can throw an exception, then we don't
      /* If this instruction can throw an exception, then we don't
         know where we might end up next.  That means that we have to
         know where we might end up next.  That means that we have to
         assume that whatever we have already marked as live really is
         assume that whatever we have already marked as live really is
         live.  */
         live.  */
      if (can_throw_internal (insn))
      if (can_throw_internal (insn))
        break;
        break;
 
 
      switch (GET_CODE (insn))
      switch (GET_CODE (insn))
        {
        {
        case CODE_LABEL:
        case CODE_LABEL:
          /* After a label, any pending dead registers that weren't yet
          /* After a label, any pending dead registers that weren't yet
             used can be made dead.  */
             used can be made dead.  */
          AND_COMPL_HARD_REG_SET (pending_dead_regs, needed.regs);
          AND_COMPL_HARD_REG_SET (pending_dead_regs, needed.regs);
          AND_COMPL_HARD_REG_SET (res->regs, pending_dead_regs);
          AND_COMPL_HARD_REG_SET (res->regs, pending_dead_regs);
          CLEAR_HARD_REG_SET (pending_dead_regs);
          CLEAR_HARD_REG_SET (pending_dead_regs);
 
 
          continue;
          continue;
 
 
        case BARRIER:
        case BARRIER:
        case NOTE:
        case NOTE:
          continue;
          continue;
 
 
        case INSN:
        case INSN:
          if (GET_CODE (PATTERN (insn)) == USE)
          if (GET_CODE (PATTERN (insn)) == USE)
            {
            {
              /* If INSN is a USE made by update_block, we care about the
              /* If INSN is a USE made by update_block, we care about the
                 underlying insn.  Any registers set by the underlying insn
                 underlying insn.  Any registers set by the underlying insn
                 are live since the insn is being done somewhere else.  */
                 are live since the insn is being done somewhere else.  */
              if (INSN_P (XEXP (PATTERN (insn), 0)))
              if (INSN_P (XEXP (PATTERN (insn), 0)))
                mark_set_resources (XEXP (PATTERN (insn), 0), res, 0,
                mark_set_resources (XEXP (PATTERN (insn), 0), res, 0,
                                    MARK_SRC_DEST_CALL);
                                    MARK_SRC_DEST_CALL);
 
 
              /* All other USE insns are to be ignored.  */
              /* All other USE insns are to be ignored.  */
              continue;
              continue;
            }
            }
          else if (GET_CODE (PATTERN (insn)) == CLOBBER)
          else if (GET_CODE (PATTERN (insn)) == CLOBBER)
            continue;
            continue;
          else if (GET_CODE (PATTERN (insn)) == SEQUENCE)
          else if (GET_CODE (PATTERN (insn)) == SEQUENCE)
            {
            {
              /* An unconditional jump can be used to fill the delay slot
              /* An unconditional jump can be used to fill the delay slot
                 of a call, so search for a JUMP_INSN in any position.  */
                 of a call, so search for a JUMP_INSN in any position.  */
              for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
              for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
                {
                {
                  this_jump_insn = XVECEXP (PATTERN (insn), 0, i);
                  this_jump_insn = XVECEXP (PATTERN (insn), 0, i);
                  if (JUMP_P (this_jump_insn))
                  if (JUMP_P (this_jump_insn))
                    break;
                    break;
                }
                }
            }
            }
 
 
        default:
        default:
          break;
          break;
        }
        }
 
 
      if (JUMP_P (this_jump_insn))
      if (JUMP_P (this_jump_insn))
        {
        {
          if (jump_count++ < 10)
          if (jump_count++ < 10)
            {
            {
              if (any_uncondjump_p (this_jump_insn)
              if (any_uncondjump_p (this_jump_insn)
                  || GET_CODE (PATTERN (this_jump_insn)) == RETURN)
                  || GET_CODE (PATTERN (this_jump_insn)) == RETURN)
                {
                {
                  next = JUMP_LABEL (this_jump_insn);
                  next = JUMP_LABEL (this_jump_insn);
                  if (jump_insn == 0)
                  if (jump_insn == 0)
                    {
                    {
                      jump_insn = insn;
                      jump_insn = insn;
                      if (jump_target)
                      if (jump_target)
                        *jump_target = JUMP_LABEL (this_jump_insn);
                        *jump_target = JUMP_LABEL (this_jump_insn);
                    }
                    }
                }
                }
              else if (any_condjump_p (this_jump_insn))
              else if (any_condjump_p (this_jump_insn))
                {
                {
                  struct resources target_set, target_res;
                  struct resources target_set, target_res;
                  struct resources fallthrough_res;
                  struct resources fallthrough_res;
 
 
                  /* We can handle conditional branches here by following
                  /* We can handle conditional branches here by following
                     both paths, and then IOR the results of the two paths
                     both paths, and then IOR the results of the two paths
                     together, which will give us registers that are dead
                     together, which will give us registers that are dead
                     on both paths.  Since this is expensive, we give it
                     on both paths.  Since this is expensive, we give it
                     a much higher cost than unconditional branches.  The
                     a much higher cost than unconditional branches.  The
                     cost was chosen so that we will follow at most 1
                     cost was chosen so that we will follow at most 1
                     conditional branch.  */
                     conditional branch.  */
 
 
                  jump_count += 4;
                  jump_count += 4;
                  if (jump_count >= 10)
                  if (jump_count >= 10)
                    break;
                    break;
 
 
                  mark_referenced_resources (insn, &needed, 1);
                  mark_referenced_resources (insn, &needed, 1);
 
 
                  /* For an annulled branch, mark_set_resources ignores slots
                  /* For an annulled branch, mark_set_resources ignores slots
                     filled by instructions from the target.  This is correct
                     filled by instructions from the target.  This is correct
                     if the branch is not taken.  Since we are following both
                     if the branch is not taken.  Since we are following both
                     paths from the branch, we must also compute correct info
                     paths from the branch, we must also compute correct info
                     if the branch is taken.  We do this by inverting all of
                     if the branch is taken.  We do this by inverting all of
                     the INSN_FROM_TARGET_P bits, calling mark_set_resources,
                     the INSN_FROM_TARGET_P bits, calling mark_set_resources,
                     and then inverting the INSN_FROM_TARGET_P bits again.  */
                     and then inverting the INSN_FROM_TARGET_P bits again.  */
 
 
                  if (GET_CODE (PATTERN (insn)) == SEQUENCE
                  if (GET_CODE (PATTERN (insn)) == SEQUENCE
                      && INSN_ANNULLED_BRANCH_P (this_jump_insn))
                      && INSN_ANNULLED_BRANCH_P (this_jump_insn))
                    {
                    {
                      for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
                      for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
                        INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
                        INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
                          = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
                          = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
 
 
                      target_set = set;
                      target_set = set;
                      mark_set_resources (insn, &target_set, 0,
                      mark_set_resources (insn, &target_set, 0,
                                          MARK_SRC_DEST_CALL);
                                          MARK_SRC_DEST_CALL);
 
 
                      for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
                      for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
                        INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
                        INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
                          = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
                          = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
 
 
                      mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
                      mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
                    }
                    }
                  else
                  else
                    {
                    {
                      mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
                      mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
                      target_set = set;
                      target_set = set;
                    }
                    }
 
 
                  target_res = *res;
                  target_res = *res;
                  COPY_HARD_REG_SET (scratch, target_set.regs);
                  COPY_HARD_REG_SET (scratch, target_set.regs);
                  AND_COMPL_HARD_REG_SET (scratch, needed.regs);
                  AND_COMPL_HARD_REG_SET (scratch, needed.regs);
                  AND_COMPL_HARD_REG_SET (target_res.regs, scratch);
                  AND_COMPL_HARD_REG_SET (target_res.regs, scratch);
 
 
                  fallthrough_res = *res;
                  fallthrough_res = *res;
                  COPY_HARD_REG_SET (scratch, set.regs);
                  COPY_HARD_REG_SET (scratch, set.regs);
                  AND_COMPL_HARD_REG_SET (scratch, needed.regs);
                  AND_COMPL_HARD_REG_SET (scratch, needed.regs);
                  AND_COMPL_HARD_REG_SET (fallthrough_res.regs, scratch);
                  AND_COMPL_HARD_REG_SET (fallthrough_res.regs, scratch);
 
 
                  find_dead_or_set_registers (JUMP_LABEL (this_jump_insn),
                  find_dead_or_set_registers (JUMP_LABEL (this_jump_insn),
                                              &target_res, 0, jump_count,
                                              &target_res, 0, jump_count,
                                              target_set, needed);
                                              target_set, needed);
                  find_dead_or_set_registers (next,
                  find_dead_or_set_registers (next,
                                              &fallthrough_res, 0, jump_count,
                                              &fallthrough_res, 0, jump_count,
                                              set, needed);
                                              set, needed);
                  IOR_HARD_REG_SET (fallthrough_res.regs, target_res.regs);
                  IOR_HARD_REG_SET (fallthrough_res.regs, target_res.regs);
                  AND_HARD_REG_SET (res->regs, fallthrough_res.regs);
                  AND_HARD_REG_SET (res->regs, fallthrough_res.regs);
                  break;
                  break;
                }
                }
              else
              else
                break;
                break;
            }
            }
          else
          else
            {
            {
              /* Don't try this optimization if we expired our jump count
              /* Don't try this optimization if we expired our jump count
                 above, since that would mean there may be an infinite loop
                 above, since that would mean there may be an infinite loop
                 in the function being compiled.  */
                 in the function being compiled.  */
              jump_insn = 0;
              jump_insn = 0;
              break;
              break;
            }
            }
        }
        }
 
 
      mark_referenced_resources (insn, &needed, 1);
      mark_referenced_resources (insn, &needed, 1);
      mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
      mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
 
 
      COPY_HARD_REG_SET (scratch, set.regs);
      COPY_HARD_REG_SET (scratch, set.regs);
      AND_COMPL_HARD_REG_SET (scratch, needed.regs);
      AND_COMPL_HARD_REG_SET (scratch, needed.regs);
      AND_COMPL_HARD_REG_SET (res->regs, scratch);
      AND_COMPL_HARD_REG_SET (res->regs, scratch);
    }
    }
 
 
  return jump_insn;
  return jump_insn;
}
}


/* Given X, a part of an insn, and a pointer to a `struct resource',
/* Given X, a part of an insn, and a pointer to a `struct resource',
   RES, indicate which resources are modified by the insn. If
   RES, indicate which resources are modified by the insn. If
   MARK_TYPE is MARK_SRC_DEST_CALL, also mark resources potentially
   MARK_TYPE is MARK_SRC_DEST_CALL, also mark resources potentially
   set by the called routine.
   set by the called routine.
 
 
   If IN_DEST is nonzero, it means we are inside a SET.  Otherwise,
   If IN_DEST is nonzero, it means we are inside a SET.  Otherwise,
   objects are being referenced instead of set.
   objects are being referenced instead of set.
 
 
   We never mark the insn as modifying the condition code unless it explicitly
   We never mark the insn as modifying the condition code unless it explicitly
   SETs CC0 even though this is not totally correct.  The reason for this is
   SETs CC0 even though this is not totally correct.  The reason for this is
   that we require a SET of CC0 to immediately precede the reference to CC0.
   that we require a SET of CC0 to immediately precede the reference to CC0.
   So if some other insn sets CC0 as a side-effect, we know it cannot affect
   So if some other insn sets CC0 as a side-effect, we know it cannot affect
   our computation and thus may be placed in a delay slot.  */
   our computation and thus may be placed in a delay slot.  */
 
 
void
void
mark_set_resources (rtx x, struct resources *res, int in_dest,
mark_set_resources (rtx x, struct resources *res, int in_dest,
                    enum mark_resource_type mark_type)
                    enum mark_resource_type mark_type)
{
{
  enum rtx_code code;
  enum rtx_code code;
  int i, j;
  int i, j;
  unsigned int r;
  unsigned int r;
  const char *format_ptr;
  const char *format_ptr;
 
 
 restart:
 restart:
 
 
  code = GET_CODE (x);
  code = GET_CODE (x);
 
 
  switch (code)
  switch (code)
    {
    {
    case NOTE:
    case NOTE:
    case BARRIER:
    case BARRIER:
    case CODE_LABEL:
    case CODE_LABEL:
    case USE:
    case USE:
    case CONST_INT:
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST_DOUBLE:
    case CONST_VECTOR:
    case CONST_VECTOR:
    case LABEL_REF:
    case LABEL_REF:
    case SYMBOL_REF:
    case SYMBOL_REF:
    case CONST:
    case CONST:
    case PC:
    case PC:
      /* These don't set any resources.  */
      /* These don't set any resources.  */
      return;
      return;
 
 
    case CC0:
    case CC0:
      if (in_dest)
      if (in_dest)
        res->cc = 1;
        res->cc = 1;
      return;
      return;
 
 
    case CALL_INSN:
    case CALL_INSN:
      /* Called routine modifies the condition code, memory, any registers
      /* Called routine modifies the condition code, memory, any registers
         that aren't saved across calls, global registers and anything
         that aren't saved across calls, global registers and anything
         explicitly CLOBBERed immediately after the CALL_INSN.  */
         explicitly CLOBBERed immediately after the CALL_INSN.  */
 
 
      if (mark_type == MARK_SRC_DEST_CALL)
      if (mark_type == MARK_SRC_DEST_CALL)
        {
        {
          rtx link;
          rtx link;
 
 
          res->cc = res->memory = 1;
          res->cc = res->memory = 1;
          for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
          for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
            if (call_used_regs[r] || global_regs[r])
            if (call_used_regs[r] || global_regs[r])
              SET_HARD_REG_BIT (res->regs, r);
              SET_HARD_REG_BIT (res->regs, r);
 
 
          for (link = CALL_INSN_FUNCTION_USAGE (x);
          for (link = CALL_INSN_FUNCTION_USAGE (x);
               link; link = XEXP (link, 1))
               link; link = XEXP (link, 1))
            if (GET_CODE (XEXP (link, 0)) == CLOBBER)
            if (GET_CODE (XEXP (link, 0)) == CLOBBER)
              mark_set_resources (SET_DEST (XEXP (link, 0)), res, 1,
              mark_set_resources (SET_DEST (XEXP (link, 0)), res, 1,
                                  MARK_SRC_DEST);
                                  MARK_SRC_DEST);
 
 
          /* Check for a REG_SETJMP.  If it exists, then we must
          /* Check for a REG_SETJMP.  If it exists, then we must
             assume that this call can clobber any register.  */
             assume that this call can clobber any register.  */
          if (find_reg_note (x, REG_SETJMP, NULL))
          if (find_reg_note (x, REG_SETJMP, NULL))
            SET_HARD_REG_SET (res->regs);
            SET_HARD_REG_SET (res->regs);
        }
        }
 
 
      /* ... and also what its RTL says it modifies, if anything.  */
      /* ... and also what its RTL says it modifies, if anything.  */
 
 
    case JUMP_INSN:
    case JUMP_INSN:
    case INSN:
    case INSN:
 
 
        /* An insn consisting of just a CLOBBER (or USE) is just for flow
        /* An insn consisting of just a CLOBBER (or USE) is just for flow
           and doesn't actually do anything, so we ignore it.  */
           and doesn't actually do anything, so we ignore it.  */
 
 
#ifdef INSN_SETS_ARE_DELAYED
#ifdef INSN_SETS_ARE_DELAYED
      if (mark_type != MARK_SRC_DEST_CALL
      if (mark_type != MARK_SRC_DEST_CALL
          && INSN_SETS_ARE_DELAYED (x))
          && INSN_SETS_ARE_DELAYED (x))
        return;
        return;
#endif
#endif
 
 
      x = PATTERN (x);
      x = PATTERN (x);
      if (GET_CODE (x) != USE && GET_CODE (x) != CLOBBER)
      if (GET_CODE (x) != USE && GET_CODE (x) != CLOBBER)
        goto restart;
        goto restart;
      return;
      return;
 
 
    case SET:
    case SET:
      /* If the source of a SET is a CALL, this is actually done by
      /* If the source of a SET is a CALL, this is actually done by
         the called routine.  So only include it if we are to include the
         the called routine.  So only include it if we are to include the
         effects of the calling routine.  */
         effects of the calling routine.  */
 
 
      mark_set_resources (SET_DEST (x), res,
      mark_set_resources (SET_DEST (x), res,
                          (mark_type == MARK_SRC_DEST_CALL
                          (mark_type == MARK_SRC_DEST_CALL
                           || GET_CODE (SET_SRC (x)) != CALL),
                           || GET_CODE (SET_SRC (x)) != CALL),
                          mark_type);
                          mark_type);
 
 
      mark_set_resources (SET_SRC (x), res, 0, MARK_SRC_DEST);
      mark_set_resources (SET_SRC (x), res, 0, MARK_SRC_DEST);
      return;
      return;
 
 
    case CLOBBER:
    case CLOBBER:
      mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
      mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
      return;
      return;
 
 
    case SEQUENCE:
    case SEQUENCE:
      for (i = 0; i < XVECLEN (x, 0); i++)
      for (i = 0; i < XVECLEN (x, 0); i++)
        if (! (INSN_ANNULLED_BRANCH_P (XVECEXP (x, 0, 0))
        if (! (INSN_ANNULLED_BRANCH_P (XVECEXP (x, 0, 0))
               && INSN_FROM_TARGET_P (XVECEXP (x, 0, i))))
               && INSN_FROM_TARGET_P (XVECEXP (x, 0, i))))
          mark_set_resources (XVECEXP (x, 0, i), res, 0, mark_type);
          mark_set_resources (XVECEXP (x, 0, i), res, 0, mark_type);
      return;
      return;
 
 
    case POST_INC:
    case POST_INC:
    case PRE_INC:
    case PRE_INC:
    case POST_DEC:
    case POST_DEC:
    case PRE_DEC:
    case PRE_DEC:
      mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
      mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
      return;
      return;
 
 
    case PRE_MODIFY:
    case PRE_MODIFY:
    case POST_MODIFY:
    case POST_MODIFY:
      mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
      mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
      mark_set_resources (XEXP (XEXP (x, 1), 0), res, 0, MARK_SRC_DEST);
      mark_set_resources (XEXP (XEXP (x, 1), 0), res, 0, MARK_SRC_DEST);
      mark_set_resources (XEXP (XEXP (x, 1), 1), res, 0, MARK_SRC_DEST);
      mark_set_resources (XEXP (XEXP (x, 1), 1), res, 0, MARK_SRC_DEST);
      return;
      return;
 
 
    case SIGN_EXTRACT:
    case SIGN_EXTRACT:
    case ZERO_EXTRACT:
    case ZERO_EXTRACT:
      mark_set_resources (XEXP (x, 0), res, in_dest, MARK_SRC_DEST);
      mark_set_resources (XEXP (x, 0), res, in_dest, MARK_SRC_DEST);
      mark_set_resources (XEXP (x, 1), res, 0, MARK_SRC_DEST);
      mark_set_resources (XEXP (x, 1), res, 0, MARK_SRC_DEST);
      mark_set_resources (XEXP (x, 2), res, 0, MARK_SRC_DEST);
      mark_set_resources (XEXP (x, 2), res, 0, MARK_SRC_DEST);
      return;
      return;
 
 
    case MEM:
    case MEM:
      if (in_dest)
      if (in_dest)
        {
        {
          res->memory = 1;
          res->memory = 1;
          res->unch_memory |= MEM_READONLY_P (x);
          res->unch_memory |= MEM_READONLY_P (x);
          res->volatil |= MEM_VOLATILE_P (x);
          res->volatil |= MEM_VOLATILE_P (x);
        }
        }
 
 
      mark_set_resources (XEXP (x, 0), res, 0, MARK_SRC_DEST);
      mark_set_resources (XEXP (x, 0), res, 0, MARK_SRC_DEST);
      return;
      return;
 
 
    case SUBREG:
    case SUBREG:
      if (in_dest)
      if (in_dest)
        {
        {
          if (!REG_P (SUBREG_REG (x)))
          if (!REG_P (SUBREG_REG (x)))
            mark_set_resources (SUBREG_REG (x), res, in_dest, mark_type);
            mark_set_resources (SUBREG_REG (x), res, in_dest, mark_type);
          else
          else
            {
            {
              unsigned int regno = subreg_regno (x);
              unsigned int regno = subreg_regno (x);
              unsigned int last_regno
              unsigned int last_regno
                = regno + hard_regno_nregs[regno][GET_MODE (x)];
                = regno + hard_regno_nregs[regno][GET_MODE (x)];
 
 
              gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
              gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
              for (r = regno; r < last_regno; r++)
              for (r = regno; r < last_regno; r++)
                SET_HARD_REG_BIT (res->regs, r);
                SET_HARD_REG_BIT (res->regs, r);
            }
            }
        }
        }
      return;
      return;
 
 
    case REG:
    case REG:
      if (in_dest)
      if (in_dest)
        {
        {
          unsigned int regno = REGNO (x);
          unsigned int regno = REGNO (x);
          unsigned int last_regno
          unsigned int last_regno
            = regno + hard_regno_nregs[regno][GET_MODE (x)];
            = regno + hard_regno_nregs[regno][GET_MODE (x)];
 
 
          gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
          gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
          for (r = regno; r < last_regno; r++)
          for (r = regno; r < last_regno; r++)
            SET_HARD_REG_BIT (res->regs, r);
            SET_HARD_REG_BIT (res->regs, r);
        }
        }
      return;
      return;
 
 
    case UNSPEC_VOLATILE:
    case UNSPEC_VOLATILE:
    case ASM_INPUT:
    case ASM_INPUT:
      /* Traditional asm's are always volatile.  */
      /* Traditional asm's are always volatile.  */
      res->volatil = 1;
      res->volatil = 1;
      return;
      return;
 
 
    case TRAP_IF:
    case TRAP_IF:
      res->volatil = 1;
      res->volatil = 1;
      break;
      break;
 
 
    case ASM_OPERANDS:
    case ASM_OPERANDS:
      res->volatil |= MEM_VOLATILE_P (x);
      res->volatil |= MEM_VOLATILE_P (x);
 
 
      /* For all ASM_OPERANDS, we must traverse the vector of input operands.
      /* For all ASM_OPERANDS, we must traverse the vector of input operands.
         We can not just fall through here since then we would be confused
         We can not just fall through here since then we would be confused
         by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
         by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
         traditional asms unlike their normal usage.  */
         traditional asms unlike their normal usage.  */
 
 
      for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
      for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
        mark_set_resources (ASM_OPERANDS_INPUT (x, i), res, in_dest,
        mark_set_resources (ASM_OPERANDS_INPUT (x, i), res, in_dest,
                            MARK_SRC_DEST);
                            MARK_SRC_DEST);
      return;
      return;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  /* Process each sub-expression and flag what it needs.  */
  /* Process each sub-expression and flag what it needs.  */
  format_ptr = GET_RTX_FORMAT (code);
  format_ptr = GET_RTX_FORMAT (code);
  for (i = 0; i < GET_RTX_LENGTH (code); i++)
  for (i = 0; i < GET_RTX_LENGTH (code); i++)
    switch (*format_ptr++)
    switch (*format_ptr++)
      {
      {
      case 'e':
      case 'e':
        mark_set_resources (XEXP (x, i), res, in_dest, mark_type);
        mark_set_resources (XEXP (x, i), res, in_dest, mark_type);
        break;
        break;
 
 
      case 'E':
      case 'E':
        for (j = 0; j < XVECLEN (x, i); j++)
        for (j = 0; j < XVECLEN (x, i); j++)
          mark_set_resources (XVECEXP (x, i, j), res, in_dest, mark_type);
          mark_set_resources (XVECEXP (x, i, j), res, in_dest, mark_type);
        break;
        break;
      }
      }
}
}


/* Return TRUE if INSN is a return, possibly with a filled delay slot.  */
/* Return TRUE if INSN is a return, possibly with a filled delay slot.  */
 
 
static bool
static bool
return_insn_p (rtx insn)
return_insn_p (rtx insn)
{
{
  if (JUMP_P (insn) && GET_CODE (PATTERN (insn)) == RETURN)
  if (JUMP_P (insn) && GET_CODE (PATTERN (insn)) == RETURN)
    return true;
    return true;
 
 
  if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
  if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
    return return_insn_p (XVECEXP (PATTERN (insn), 0, 0));
    return return_insn_p (XVECEXP (PATTERN (insn), 0, 0));
 
 
  return false;
  return false;
}
}
 
 
/* Set the resources that are live at TARGET.
/* Set the resources that are live at TARGET.
 
 
   If TARGET is zero, we refer to the end of the current function and can
   If TARGET is zero, we refer to the end of the current function and can
   return our precomputed value.
   return our precomputed value.
 
 
   Otherwise, we try to find out what is live by consulting the basic block
   Otherwise, we try to find out what is live by consulting the basic block
   information.  This is tricky, because we must consider the actions of
   information.  This is tricky, because we must consider the actions of
   reload and jump optimization, which occur after the basic block information
   reload and jump optimization, which occur after the basic block information
   has been computed.
   has been computed.
 
 
   Accordingly, we proceed as follows::
   Accordingly, we proceed as follows::
 
 
   We find the previous BARRIER and look at all immediately following labels
   We find the previous BARRIER and look at all immediately following labels
   (with no intervening active insns) to see if any of them start a basic
   (with no intervening active insns) to see if any of them start a basic
   block.  If we hit the start of the function first, we use block 0.
   block.  If we hit the start of the function first, we use block 0.
 
 
   Once we have found a basic block and a corresponding first insns, we can
   Once we have found a basic block and a corresponding first insns, we can
   accurately compute the live status from basic_block_live_regs and
   accurately compute the live status from basic_block_live_regs and
   reg_renumber.  (By starting at a label following a BARRIER, we are immune
   reg_renumber.  (By starting at a label following a BARRIER, we are immune
   to actions taken by reload and jump.)  Then we scan all insns between
   to actions taken by reload and jump.)  Then we scan all insns between
   that point and our target.  For each CLOBBER (or for call-clobbered regs
   that point and our target.  For each CLOBBER (or for call-clobbered regs
   when we pass a CALL_INSN), mark the appropriate registers are dead.  For
   when we pass a CALL_INSN), mark the appropriate registers are dead.  For
   a SET, mark them as live.
   a SET, mark them as live.
 
 
   We have to be careful when using REG_DEAD notes because they are not
   We have to be careful when using REG_DEAD notes because they are not
   updated by such things as find_equiv_reg.  So keep track of registers
   updated by such things as find_equiv_reg.  So keep track of registers
   marked as dead that haven't been assigned to, and mark them dead at the
   marked as dead that haven't been assigned to, and mark them dead at the
   next CODE_LABEL since reload and jump won't propagate values across labels.
   next CODE_LABEL since reload and jump won't propagate values across labels.
 
 
   If we cannot find the start of a basic block (should be a very rare
   If we cannot find the start of a basic block (should be a very rare
   case, if it can happen at all), mark everything as potentially live.
   case, if it can happen at all), mark everything as potentially live.
 
 
   Next, scan forward from TARGET looking for things set or clobbered
   Next, scan forward from TARGET looking for things set or clobbered
   before they are used.  These are not live.
   before they are used.  These are not live.
 
 
   Because we can be called many times on the same target, save our results
   Because we can be called many times on the same target, save our results
   in a hash table indexed by INSN_UID.  This is only done if the function
   in a hash table indexed by INSN_UID.  This is only done if the function
   init_resource_info () was invoked before we are called.  */
   init_resource_info () was invoked before we are called.  */
 
 
void
void
mark_target_live_regs (rtx insns, rtx target, struct resources *res)
mark_target_live_regs (rtx insns, rtx target, struct resources *res)
{
{
  int b = -1;
  int b = -1;
  unsigned int i;
  unsigned int i;
  struct target_info *tinfo = NULL;
  struct target_info *tinfo = NULL;
  rtx insn;
  rtx insn;
  rtx jump_insn = 0;
  rtx jump_insn = 0;
  rtx jump_target;
  rtx jump_target;
  HARD_REG_SET scratch;
  HARD_REG_SET scratch;
  struct resources set, needed;
  struct resources set, needed;
 
 
  /* Handle end of function.  */
  /* Handle end of function.  */
  if (target == 0)
  if (target == 0)
    {
    {
      *res = end_of_function_needs;
      *res = end_of_function_needs;
      return;
      return;
    }
    }
 
 
  /* Handle return insn.  */
  /* Handle return insn.  */
  else if (return_insn_p (target))
  else if (return_insn_p (target))
    {
    {
      *res = end_of_function_needs;
      *res = end_of_function_needs;
      mark_referenced_resources (target, res, 0);
      mark_referenced_resources (target, res, 0);
      return;
      return;
    }
    }
 
 
  /* We have to assume memory is needed, but the CC isn't.  */
  /* We have to assume memory is needed, but the CC isn't.  */
  res->memory = 1;
  res->memory = 1;
  res->volatil = res->unch_memory = 0;
  res->volatil = res->unch_memory = 0;
  res->cc = 0;
  res->cc = 0;
 
 
  /* See if we have computed this value already.  */
  /* See if we have computed this value already.  */
  if (target_hash_table != NULL)
  if (target_hash_table != NULL)
    {
    {
      for (tinfo = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
      for (tinfo = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
           tinfo; tinfo = tinfo->next)
           tinfo; tinfo = tinfo->next)
        if (tinfo->uid == INSN_UID (target))
        if (tinfo->uid == INSN_UID (target))
          break;
          break;
 
 
      /* Start by getting the basic block number.  If we have saved
      /* Start by getting the basic block number.  If we have saved
         information, we can get it from there unless the insn at the
         information, we can get it from there unless the insn at the
         start of the basic block has been deleted.  */
         start of the basic block has been deleted.  */
      if (tinfo && tinfo->block != -1
      if (tinfo && tinfo->block != -1
          && ! INSN_DELETED_P (BB_HEAD (BASIC_BLOCK (tinfo->block))))
          && ! INSN_DELETED_P (BB_HEAD (BASIC_BLOCK (tinfo->block))))
        b = tinfo->block;
        b = tinfo->block;
    }
    }
 
 
  if (b == -1)
  if (b == -1)
    b = find_basic_block (target, MAX_DELAY_SLOT_LIVE_SEARCH);
    b = find_basic_block (target, MAX_DELAY_SLOT_LIVE_SEARCH);
 
 
  if (target_hash_table != NULL)
  if (target_hash_table != NULL)
    {
    {
      if (tinfo)
      if (tinfo)
        {
        {
          /* If the information is up-to-date, use it.  Otherwise, we will
          /* If the information is up-to-date, use it.  Otherwise, we will
             update it below.  */
             update it below.  */
          if (b == tinfo->block && b != -1 && tinfo->bb_tick == bb_ticks[b])
          if (b == tinfo->block && b != -1 && tinfo->bb_tick == bb_ticks[b])
            {
            {
              COPY_HARD_REG_SET (res->regs, tinfo->live_regs);
              COPY_HARD_REG_SET (res->regs, tinfo->live_regs);
              return;
              return;
            }
            }
        }
        }
      else
      else
        {
        {
          /* Allocate a place to put our results and chain it into the
          /* Allocate a place to put our results and chain it into the
             hash table.  */
             hash table.  */
          tinfo = XNEW (struct target_info);
          tinfo = XNEW (struct target_info);
          tinfo->uid = INSN_UID (target);
          tinfo->uid = INSN_UID (target);
          tinfo->block = b;
          tinfo->block = b;
          tinfo->next
          tinfo->next
            = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
            = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
          target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME] = tinfo;
          target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME] = tinfo;
        }
        }
    }
    }
 
 
  CLEAR_HARD_REG_SET (pending_dead_regs);
  CLEAR_HARD_REG_SET (pending_dead_regs);
 
 
  /* If we found a basic block, get the live registers from it and update
  /* If we found a basic block, get the live registers from it and update
     them with anything set or killed between its start and the insn before
     them with anything set or killed between its start and the insn before
     TARGET.  Otherwise, we must assume everything is live.  */
     TARGET.  Otherwise, we must assume everything is live.  */
  if (b != -1)
  if (b != -1)
    {
    {
      regset regs_live = BASIC_BLOCK (b)->il.rtl->global_live_at_start;
      regset regs_live = BASIC_BLOCK (b)->il.rtl->global_live_at_start;
      unsigned int j;
      unsigned int j;
      unsigned int regno;
      unsigned int regno;
      rtx start_insn, stop_insn;
      rtx start_insn, stop_insn;
      reg_set_iterator rsi;
      reg_set_iterator rsi;
 
 
      /* Compute hard regs live at start of block -- this is the real hard regs
      /* Compute hard regs live at start of block -- this is the real hard regs
         marked live, plus live pseudo regs that have been renumbered to
         marked live, plus live pseudo regs that have been renumbered to
         hard regs.  */
         hard regs.  */
 
 
      REG_SET_TO_HARD_REG_SET (current_live_regs, regs_live);
      REG_SET_TO_HARD_REG_SET (current_live_regs, regs_live);
 
 
      EXECUTE_IF_SET_IN_REG_SET (regs_live, FIRST_PSEUDO_REGISTER, i, rsi)
      EXECUTE_IF_SET_IN_REG_SET (regs_live, FIRST_PSEUDO_REGISTER, i, rsi)
        {
        {
          if (reg_renumber[i] >= 0)
          if (reg_renumber[i] >= 0)
            {
            {
              regno = reg_renumber[i];
              regno = reg_renumber[i];
              for (j = regno;
              for (j = regno;
                   j < regno + hard_regno_nregs[regno][PSEUDO_REGNO_MODE (i)];
                   j < regno + hard_regno_nregs[regno][PSEUDO_REGNO_MODE (i)];
                   j++)
                   j++)
                SET_HARD_REG_BIT (current_live_regs, j);
                SET_HARD_REG_BIT (current_live_regs, j);
            }
            }
        }
        }
 
 
      /* Get starting and ending insn, handling the case where each might
      /* Get starting and ending insn, handling the case where each might
         be a SEQUENCE.  */
         be a SEQUENCE.  */
      start_insn = (b == 0 ? insns : BB_HEAD (BASIC_BLOCK (b)));
      start_insn = (b == 0 ? insns : BB_HEAD (BASIC_BLOCK (b)));
      stop_insn = target;
      stop_insn = target;
 
 
      if (NONJUMP_INSN_P (start_insn)
      if (NONJUMP_INSN_P (start_insn)
          && GET_CODE (PATTERN (start_insn)) == SEQUENCE)
          && GET_CODE (PATTERN (start_insn)) == SEQUENCE)
        start_insn = XVECEXP (PATTERN (start_insn), 0, 0);
        start_insn = XVECEXP (PATTERN (start_insn), 0, 0);
 
 
      if (NONJUMP_INSN_P (stop_insn)
      if (NONJUMP_INSN_P (stop_insn)
          && GET_CODE (PATTERN (stop_insn)) == SEQUENCE)
          && GET_CODE (PATTERN (stop_insn)) == SEQUENCE)
        stop_insn = next_insn (PREV_INSN (stop_insn));
        stop_insn = next_insn (PREV_INSN (stop_insn));
 
 
      for (insn = start_insn; insn != stop_insn;
      for (insn = start_insn; insn != stop_insn;
           insn = next_insn_no_annul (insn))
           insn = next_insn_no_annul (insn))
        {
        {
          rtx link;
          rtx link;
          rtx real_insn = insn;
          rtx real_insn = insn;
          enum rtx_code code = GET_CODE (insn);
          enum rtx_code code = GET_CODE (insn);
 
 
          /* If this insn is from the target of a branch, it isn't going to
          /* If this insn is from the target of a branch, it isn't going to
             be used in the sequel.  If it is used in both cases, this
             be used in the sequel.  If it is used in both cases, this
             test will not be true.  */
             test will not be true.  */
          if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
          if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
              && INSN_FROM_TARGET_P (insn))
              && INSN_FROM_TARGET_P (insn))
            continue;
            continue;
 
 
          /* If this insn is a USE made by update_block, we care about the
          /* If this insn is a USE made by update_block, we care about the
             underlying insn.  */
             underlying insn.  */
          if (code == INSN && GET_CODE (PATTERN (insn)) == USE
          if (code == INSN && GET_CODE (PATTERN (insn)) == USE
              && INSN_P (XEXP (PATTERN (insn), 0)))
              && INSN_P (XEXP (PATTERN (insn), 0)))
              real_insn = XEXP (PATTERN (insn), 0);
              real_insn = XEXP (PATTERN (insn), 0);
 
 
          if (CALL_P (real_insn))
          if (CALL_P (real_insn))
            {
            {
              /* CALL clobbers all call-used regs that aren't fixed except
              /* CALL clobbers all call-used regs that aren't fixed except
                 sp, ap, and fp.  Do this before setting the result of the
                 sp, ap, and fp.  Do this before setting the result of the
                 call live.  */
                 call live.  */
              AND_COMPL_HARD_REG_SET (current_live_regs,
              AND_COMPL_HARD_REG_SET (current_live_regs,
                                      regs_invalidated_by_call);
                                      regs_invalidated_by_call);
 
 
              /* A CALL_INSN sets any global register live, since it may
              /* A CALL_INSN sets any global register live, since it may
                 have been modified by the call.  */
                 have been modified by the call.  */
              for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
              for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
                if (global_regs[i])
                if (global_regs[i])
                  SET_HARD_REG_BIT (current_live_regs, i);
                  SET_HARD_REG_BIT (current_live_regs, i);
            }
            }
 
 
          /* Mark anything killed in an insn to be deadened at the next
          /* Mark anything killed in an insn to be deadened at the next
             label.  Ignore USE insns; the only REG_DEAD notes will be for
             label.  Ignore USE insns; the only REG_DEAD notes will be for
             parameters.  But they might be early.  A CALL_INSN will usually
             parameters.  But they might be early.  A CALL_INSN will usually
             clobber registers used for parameters.  It isn't worth bothering
             clobber registers used for parameters.  It isn't worth bothering
             with the unlikely case when it won't.  */
             with the unlikely case when it won't.  */
          if ((NONJUMP_INSN_P (real_insn)
          if ((NONJUMP_INSN_P (real_insn)
               && GET_CODE (PATTERN (real_insn)) != USE
               && GET_CODE (PATTERN (real_insn)) != USE
               && GET_CODE (PATTERN (real_insn)) != CLOBBER)
               && GET_CODE (PATTERN (real_insn)) != CLOBBER)
              || JUMP_P (real_insn)
              || JUMP_P (real_insn)
              || CALL_P (real_insn))
              || CALL_P (real_insn))
            {
            {
              for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
              for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
                if (REG_NOTE_KIND (link) == REG_DEAD
                if (REG_NOTE_KIND (link) == REG_DEAD
                    && REG_P (XEXP (link, 0))
                    && REG_P (XEXP (link, 0))
                    && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
                    && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
                  {
                  {
                    unsigned int first_regno = REGNO (XEXP (link, 0));
                    unsigned int first_regno = REGNO (XEXP (link, 0));
                    unsigned int last_regno
                    unsigned int last_regno
                      = (first_regno
                      = (first_regno
                         + hard_regno_nregs[first_regno]
                         + hard_regno_nregs[first_regno]
                                           [GET_MODE (XEXP (link, 0))]);
                                           [GET_MODE (XEXP (link, 0))]);
 
 
                    for (i = first_regno; i < last_regno; i++)
                    for (i = first_regno; i < last_regno; i++)
                      SET_HARD_REG_BIT (pending_dead_regs, i);
                      SET_HARD_REG_BIT (pending_dead_regs, i);
                  }
                  }
 
 
              note_stores (PATTERN (real_insn), update_live_status, NULL);
              note_stores (PATTERN (real_insn), update_live_status, NULL);
 
 
              /* If any registers were unused after this insn, kill them.
              /* If any registers were unused after this insn, kill them.
                 These notes will always be accurate.  */
                 These notes will always be accurate.  */
              for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
              for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
                if (REG_NOTE_KIND (link) == REG_UNUSED
                if (REG_NOTE_KIND (link) == REG_UNUSED
                    && REG_P (XEXP (link, 0))
                    && REG_P (XEXP (link, 0))
                    && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
                    && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
                  {
                  {
                    unsigned int first_regno = REGNO (XEXP (link, 0));
                    unsigned int first_regno = REGNO (XEXP (link, 0));
                    unsigned int last_regno
                    unsigned int last_regno
                      = (first_regno
                      = (first_regno
                         + hard_regno_nregs[first_regno]
                         + hard_regno_nregs[first_regno]
                                           [GET_MODE (XEXP (link, 0))]);
                                           [GET_MODE (XEXP (link, 0))]);
 
 
                    for (i = first_regno; i < last_regno; i++)
                    for (i = first_regno; i < last_regno; i++)
                      CLEAR_HARD_REG_BIT (current_live_regs, i);
                      CLEAR_HARD_REG_BIT (current_live_regs, i);
                  }
                  }
            }
            }
 
 
          else if (LABEL_P (real_insn))
          else if (LABEL_P (real_insn))
            {
            {
              /* A label clobbers the pending dead registers since neither
              /* A label clobbers the pending dead registers since neither
                 reload nor jump will propagate a value across a label.  */
                 reload nor jump will propagate a value across a label.  */
              AND_COMPL_HARD_REG_SET (current_live_regs, pending_dead_regs);
              AND_COMPL_HARD_REG_SET (current_live_regs, pending_dead_regs);
              CLEAR_HARD_REG_SET (pending_dead_regs);
              CLEAR_HARD_REG_SET (pending_dead_regs);
            }
            }
 
 
          /* The beginning of the epilogue corresponds to the end of the
          /* The beginning of the epilogue corresponds to the end of the
             RTL chain when there are no epilogue insns.  Certain resources
             RTL chain when there are no epilogue insns.  Certain resources
             are implicitly required at that point.  */
             are implicitly required at that point.  */
          else if (NOTE_P (real_insn)
          else if (NOTE_P (real_insn)
                   && NOTE_LINE_NUMBER (real_insn) == NOTE_INSN_EPILOGUE_BEG)
                   && NOTE_LINE_NUMBER (real_insn) == NOTE_INSN_EPILOGUE_BEG)
            IOR_HARD_REG_SET (current_live_regs, start_of_epilogue_needs.regs);
            IOR_HARD_REG_SET (current_live_regs, start_of_epilogue_needs.regs);
        }
        }
 
 
      COPY_HARD_REG_SET (res->regs, current_live_regs);
      COPY_HARD_REG_SET (res->regs, current_live_regs);
      if (tinfo != NULL)
      if (tinfo != NULL)
        {
        {
          tinfo->block = b;
          tinfo->block = b;
          tinfo->bb_tick = bb_ticks[b];
          tinfo->bb_tick = bb_ticks[b];
        }
        }
    }
    }
  else
  else
    /* We didn't find the start of a basic block.  Assume everything
    /* We didn't find the start of a basic block.  Assume everything
       in use.  This should happen only extremely rarely.  */
       in use.  This should happen only extremely rarely.  */
    SET_HARD_REG_SET (res->regs);
    SET_HARD_REG_SET (res->regs);
 
 
  CLEAR_RESOURCE (&set);
  CLEAR_RESOURCE (&set);
  CLEAR_RESOURCE (&needed);
  CLEAR_RESOURCE (&needed);
 
 
  jump_insn = find_dead_or_set_registers (target, res, &jump_target, 0,
  jump_insn = find_dead_or_set_registers (target, res, &jump_target, 0,
                                          set, needed);
                                          set, needed);
 
 
  /* If we hit an unconditional branch, we have another way of finding out
  /* If we hit an unconditional branch, we have another way of finding out
     what is live: we can see what is live at the branch target and include
     what is live: we can see what is live at the branch target and include
     anything used but not set before the branch.  We add the live
     anything used but not set before the branch.  We add the live
     resources found using the test below to those found until now.  */
     resources found using the test below to those found until now.  */
 
 
  if (jump_insn)
  if (jump_insn)
    {
    {
      struct resources new_resources;
      struct resources new_resources;
      rtx stop_insn = next_active_insn (jump_insn);
      rtx stop_insn = next_active_insn (jump_insn);
 
 
      mark_target_live_regs (insns, next_active_insn (jump_target),
      mark_target_live_regs (insns, next_active_insn (jump_target),
                             &new_resources);
                             &new_resources);
      CLEAR_RESOURCE (&set);
      CLEAR_RESOURCE (&set);
      CLEAR_RESOURCE (&needed);
      CLEAR_RESOURCE (&needed);
 
 
      /* Include JUMP_INSN in the needed registers.  */
      /* Include JUMP_INSN in the needed registers.  */
      for (insn = target; insn != stop_insn; insn = next_active_insn (insn))
      for (insn = target; insn != stop_insn; insn = next_active_insn (insn))
        {
        {
          mark_referenced_resources (insn, &needed, 1);
          mark_referenced_resources (insn, &needed, 1);
 
 
          COPY_HARD_REG_SET (scratch, needed.regs);
          COPY_HARD_REG_SET (scratch, needed.regs);
          AND_COMPL_HARD_REG_SET (scratch, set.regs);
          AND_COMPL_HARD_REG_SET (scratch, set.regs);
          IOR_HARD_REG_SET (new_resources.regs, scratch);
          IOR_HARD_REG_SET (new_resources.regs, scratch);
 
 
          mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
          mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
        }
        }
 
 
      IOR_HARD_REG_SET (res->regs, new_resources.regs);
      IOR_HARD_REG_SET (res->regs, new_resources.regs);
    }
    }
 
 
  if (tinfo != NULL)
  if (tinfo != NULL)
    {
    {
      COPY_HARD_REG_SET (tinfo->live_regs, res->regs);
      COPY_HARD_REG_SET (tinfo->live_regs, res->regs);
    }
    }
}
}


/* Initialize the resources required by mark_target_live_regs ().
/* Initialize the resources required by mark_target_live_regs ().
   This should be invoked before the first call to mark_target_live_regs.  */
   This should be invoked before the first call to mark_target_live_regs.  */
 
 
void
void
init_resource_info (rtx epilogue_insn)
init_resource_info (rtx epilogue_insn)
{
{
  int i;
  int i;
 
 
  /* Indicate what resources are required to be valid at the end of the current
  /* Indicate what resources are required to be valid at the end of the current
     function.  The condition code never is and memory always is.  If the
     function.  The condition code never is and memory always is.  If the
     frame pointer is needed, it is and so is the stack pointer unless
     frame pointer is needed, it is and so is the stack pointer unless
     EXIT_IGNORE_STACK is nonzero.  If the frame pointer is not needed, the
     EXIT_IGNORE_STACK is nonzero.  If the frame pointer is not needed, the
     stack pointer is.  Registers used to return the function value are
     stack pointer is.  Registers used to return the function value are
     needed.  Registers holding global variables are needed.  */
     needed.  Registers holding global variables are needed.  */
 
 
  end_of_function_needs.cc = 0;
  end_of_function_needs.cc = 0;
  end_of_function_needs.memory = 1;
  end_of_function_needs.memory = 1;
  end_of_function_needs.unch_memory = 0;
  end_of_function_needs.unch_memory = 0;
  CLEAR_HARD_REG_SET (end_of_function_needs.regs);
  CLEAR_HARD_REG_SET (end_of_function_needs.regs);
 
 
  if (frame_pointer_needed)
  if (frame_pointer_needed)
    {
    {
      SET_HARD_REG_BIT (end_of_function_needs.regs, FRAME_POINTER_REGNUM);
      SET_HARD_REG_BIT (end_of_function_needs.regs, FRAME_POINTER_REGNUM);
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
      SET_HARD_REG_BIT (end_of_function_needs.regs, HARD_FRAME_POINTER_REGNUM);
      SET_HARD_REG_BIT (end_of_function_needs.regs, HARD_FRAME_POINTER_REGNUM);
#endif
#endif
      if (! EXIT_IGNORE_STACK
      if (! EXIT_IGNORE_STACK
          || current_function_sp_is_unchanging)
          || current_function_sp_is_unchanging)
        SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
        SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
    }
    }
  else
  else
    SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
    SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
 
 
  if (current_function_return_rtx != 0)
  if (current_function_return_rtx != 0)
    mark_referenced_resources (current_function_return_rtx,
    mark_referenced_resources (current_function_return_rtx,
                               &end_of_function_needs, 1);
                               &end_of_function_needs, 1);
 
 
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    if (global_regs[i]
    if (global_regs[i]
#ifdef EPILOGUE_USES
#ifdef EPILOGUE_USES
        || EPILOGUE_USES (i)
        || EPILOGUE_USES (i)
#endif
#endif
        )
        )
      SET_HARD_REG_BIT (end_of_function_needs.regs, i);
      SET_HARD_REG_BIT (end_of_function_needs.regs, i);
 
 
  /* The registers required to be live at the end of the function are
  /* The registers required to be live at the end of the function are
     represented in the flow information as being dead just prior to
     represented in the flow information as being dead just prior to
     reaching the end of the function.  For example, the return of a value
     reaching the end of the function.  For example, the return of a value
     might be represented by a USE of the return register immediately
     might be represented by a USE of the return register immediately
     followed by an unconditional jump to the return label where the
     followed by an unconditional jump to the return label where the
     return label is the end of the RTL chain.  The end of the RTL chain
     return label is the end of the RTL chain.  The end of the RTL chain
     is then taken to mean that the return register is live.
     is then taken to mean that the return register is live.
 
 
     This sequence is no longer maintained when epilogue instructions are
     This sequence is no longer maintained when epilogue instructions are
     added to the RTL chain.  To reconstruct the original meaning, the
     added to the RTL chain.  To reconstruct the original meaning, the
     start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the
     start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the
     point where these registers become live (start_of_epilogue_needs).
     point where these registers become live (start_of_epilogue_needs).
     If epilogue instructions are present, the registers set by those
     If epilogue instructions are present, the registers set by those
     instructions won't have been processed by flow.  Thus, those
     instructions won't have been processed by flow.  Thus, those
     registers are additionally required at the end of the RTL chain
     registers are additionally required at the end of the RTL chain
     (end_of_function_needs).  */
     (end_of_function_needs).  */
 
 
  start_of_epilogue_needs = end_of_function_needs;
  start_of_epilogue_needs = end_of_function_needs;
 
 
  while ((epilogue_insn = next_nonnote_insn (epilogue_insn)))
  while ((epilogue_insn = next_nonnote_insn (epilogue_insn)))
    {
    {
      mark_set_resources (epilogue_insn, &end_of_function_needs, 0,
      mark_set_resources (epilogue_insn, &end_of_function_needs, 0,
                          MARK_SRC_DEST_CALL);
                          MARK_SRC_DEST_CALL);
      if (return_insn_p (epilogue_insn))
      if (return_insn_p (epilogue_insn))
        break;
        break;
    }
    }
 
 
  /* Allocate and initialize the tables used by mark_target_live_regs.  */
  /* Allocate and initialize the tables used by mark_target_live_regs.  */
  target_hash_table = XCNEWVEC (struct target_info *, TARGET_HASH_PRIME);
  target_hash_table = XCNEWVEC (struct target_info *, TARGET_HASH_PRIME);
  bb_ticks = XCNEWVEC (int, last_basic_block);
  bb_ticks = XCNEWVEC (int, last_basic_block);
}
}


/* Free up the resources allocated to mark_target_live_regs ().  This
/* Free up the resources allocated to mark_target_live_regs ().  This
   should be invoked after the last call to mark_target_live_regs ().  */
   should be invoked after the last call to mark_target_live_regs ().  */
 
 
void
void
free_resource_info (void)
free_resource_info (void)
{
{
  if (target_hash_table != NULL)
  if (target_hash_table != NULL)
    {
    {
      int i;
      int i;
 
 
      for (i = 0; i < TARGET_HASH_PRIME; ++i)
      for (i = 0; i < TARGET_HASH_PRIME; ++i)
        {
        {
          struct target_info *ti = target_hash_table[i];
          struct target_info *ti = target_hash_table[i];
 
 
          while (ti)
          while (ti)
            {
            {
              struct target_info *next = ti->next;
              struct target_info *next = ti->next;
              free (ti);
              free (ti);
              ti = next;
              ti = next;
            }
            }
        }
        }
 
 
      free (target_hash_table);
      free (target_hash_table);
      target_hash_table = NULL;
      target_hash_table = NULL;
    }
    }
 
 
  if (bb_ticks != NULL)
  if (bb_ticks != NULL)
    {
    {
      free (bb_ticks);
      free (bb_ticks);
      bb_ticks = NULL;
      bb_ticks = NULL;
    }
    }
}
}


/* Clear any hashed information that we have stored for INSN.  */
/* Clear any hashed information that we have stored for INSN.  */
 
 
void
void
clear_hashed_info_for_insn (rtx insn)
clear_hashed_info_for_insn (rtx insn)
{
{
  struct target_info *tinfo;
  struct target_info *tinfo;
 
 
  if (target_hash_table != NULL)
  if (target_hash_table != NULL)
    {
    {
      for (tinfo = target_hash_table[INSN_UID (insn) % TARGET_HASH_PRIME];
      for (tinfo = target_hash_table[INSN_UID (insn) % TARGET_HASH_PRIME];
           tinfo; tinfo = tinfo->next)
           tinfo; tinfo = tinfo->next)
        if (tinfo->uid == INSN_UID (insn))
        if (tinfo->uid == INSN_UID (insn))
          break;
          break;
 
 
      if (tinfo)
      if (tinfo)
        tinfo->block = -1;
        tinfo->block = -1;
    }
    }
}
}


/* Increment the tick count for the basic block that contains INSN.  */
/* Increment the tick count for the basic block that contains INSN.  */
 
 
void
void
incr_ticks_for_insn (rtx insn)
incr_ticks_for_insn (rtx insn)
{
{
  int b = find_basic_block (insn, MAX_DELAY_SLOT_LIVE_SEARCH);
  int b = find_basic_block (insn, MAX_DELAY_SLOT_LIVE_SEARCH);
 
 
  if (b != -1)
  if (b != -1)
    bb_ticks[b]++;
    bb_ticks[b]++;
}
}


/* Add TRIAL to the set of resources used at the end of the current
/* Add TRIAL to the set of resources used at the end of the current
   function.  */
   function.  */
void
void
mark_end_of_function_resources (rtx trial, int include_delayed_effects)
mark_end_of_function_resources (rtx trial, int include_delayed_effects)
{
{
  mark_referenced_resources (trial, &end_of_function_needs,
  mark_referenced_resources (trial, &end_of_function_needs,
                             include_delayed_effects);
                             include_delayed_effects);
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.