OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gcc-4.2.2/] [gcc/] [tree-data-ref.c] - Diff between revs 154 and 816

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 154 Rev 816
 
 
/* Data references and dependences detectors.
/* Data references and dependences detectors.
   Copyright (C) 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
   Copyright (C) 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
   Contributed by Sebastian Pop <pop@cri.ensmp.fr>
   Contributed by Sebastian Pop <pop@cri.ensmp.fr>
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify it under
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
Software Foundation; either version 3, or (at your option) any later
version.
version.
 
 
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
/* This pass walks a given loop structure searching for array
/* This pass walks a given loop structure searching for array
   references.  The information about the array accesses is recorded
   references.  The information about the array accesses is recorded
   in DATA_REFERENCE structures.
   in DATA_REFERENCE structures.
 
 
   The basic test for determining the dependences is:
   The basic test for determining the dependences is:
   given two access functions chrec1 and chrec2 to a same array, and
   given two access functions chrec1 and chrec2 to a same array, and
   x and y two vectors from the iteration domain, the same element of
   x and y two vectors from the iteration domain, the same element of
   the array is accessed twice at iterations x and y if and only if:
   the array is accessed twice at iterations x and y if and only if:
   |             chrec1 (x) == chrec2 (y).
   |             chrec1 (x) == chrec2 (y).
 
 
   The goals of this analysis are:
   The goals of this analysis are:
 
 
   - to determine the independence: the relation between two
   - to determine the independence: the relation between two
     independent accesses is qualified with the chrec_known (this
     independent accesses is qualified with the chrec_known (this
     information allows a loop parallelization),
     information allows a loop parallelization),
 
 
   - when two data references access the same data, to qualify the
   - when two data references access the same data, to qualify the
     dependence relation with classic dependence representations:
     dependence relation with classic dependence representations:
 
 
       - distance vectors
       - distance vectors
       - direction vectors
       - direction vectors
       - loop carried level dependence
       - loop carried level dependence
       - polyhedron dependence
       - polyhedron dependence
     or with the chains of recurrences based representation,
     or with the chains of recurrences based representation,
 
 
   - to define a knowledge base for storing the data dependence
   - to define a knowledge base for storing the data dependence
     information,
     information,
 
 
   - to define an interface to access this data.
   - to define an interface to access this data.
 
 
 
 
   Definitions:
   Definitions:
 
 
   - subscript: given two array accesses a subscript is the tuple
   - subscript: given two array accesses a subscript is the tuple
   composed of the access functions for a given dimension.  Example:
   composed of the access functions for a given dimension.  Example:
   Given A[f1][f2][f3] and B[g1][g2][g3], there are three subscripts:
   Given A[f1][f2][f3] and B[g1][g2][g3], there are three subscripts:
   (f1, g1), (f2, g2), (f3, g3).
   (f1, g1), (f2, g2), (f3, g3).
 
 
   - Diophantine equation: an equation whose coefficients and
   - Diophantine equation: an equation whose coefficients and
   solutions are integer constants, for example the equation
   solutions are integer constants, for example the equation
   |   3*x + 2*y = 1
   |   3*x + 2*y = 1
   has an integer solution x = 1 and y = -1.
   has an integer solution x = 1 and y = -1.
 
 
   References:
   References:
 
 
   - "Advanced Compilation for High Performance Computing" by Randy
   - "Advanced Compilation for High Performance Computing" by Randy
   Allen and Ken Kennedy.
   Allen and Ken Kennedy.
   http://citeseer.ist.psu.edu/goff91practical.html
   http://citeseer.ist.psu.edu/goff91practical.html
 
 
   - "Loop Transformations for Restructuring Compilers - The Foundations"
   - "Loop Transformations for Restructuring Compilers - The Foundations"
   by Utpal Banerjee.
   by Utpal Banerjee.
 
 
 
 
*/
*/
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "ggc.h"
#include "ggc.h"
#include "tree.h"
#include "tree.h"
 
 
/* These RTL headers are needed for basic-block.h.  */
/* These RTL headers are needed for basic-block.h.  */
#include "rtl.h"
#include "rtl.h"
#include "basic-block.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "tree-flow.h"
#include "tree-dump.h"
#include "tree-dump.h"
#include "timevar.h"
#include "timevar.h"
#include "cfgloop.h"
#include "cfgloop.h"
#include "tree-chrec.h"
#include "tree-chrec.h"
#include "tree-data-ref.h"
#include "tree-data-ref.h"
#include "tree-scalar-evolution.h"
#include "tree-scalar-evolution.h"
#include "tree-pass.h"
#include "tree-pass.h"
 
 
static struct datadep_stats
static struct datadep_stats
{
{
  int num_dependence_tests;
  int num_dependence_tests;
  int num_dependence_dependent;
  int num_dependence_dependent;
  int num_dependence_independent;
  int num_dependence_independent;
  int num_dependence_undetermined;
  int num_dependence_undetermined;
 
 
  int num_subscript_tests;
  int num_subscript_tests;
  int num_subscript_undetermined;
  int num_subscript_undetermined;
  int num_same_subscript_function;
  int num_same_subscript_function;
 
 
  int num_ziv;
  int num_ziv;
  int num_ziv_independent;
  int num_ziv_independent;
  int num_ziv_dependent;
  int num_ziv_dependent;
  int num_ziv_unimplemented;
  int num_ziv_unimplemented;
 
 
  int num_siv;
  int num_siv;
  int num_siv_independent;
  int num_siv_independent;
  int num_siv_dependent;
  int num_siv_dependent;
  int num_siv_unimplemented;
  int num_siv_unimplemented;
 
 
  int num_miv;
  int num_miv;
  int num_miv_independent;
  int num_miv_independent;
  int num_miv_dependent;
  int num_miv_dependent;
  int num_miv_unimplemented;
  int num_miv_unimplemented;
} dependence_stats;
} dependence_stats;
 
 
static tree object_analysis (tree, tree, bool, struct data_reference **,
static tree object_analysis (tree, tree, bool, struct data_reference **,
                             tree *, tree *, tree *, tree *, tree *,
                             tree *, tree *, tree *, tree *, tree *,
                             struct ptr_info_def **, subvar_t *);
                             struct ptr_info_def **, subvar_t *);
static struct data_reference * init_data_ref (tree, tree, tree, tree, bool,
static struct data_reference * init_data_ref (tree, tree, tree, tree, bool,
                                              tree, tree, tree, tree, tree,
                                              tree, tree, tree, tree, tree,
                                              struct ptr_info_def *,
                                              struct ptr_info_def *,
                                              enum  data_ref_type);
                                              enum  data_ref_type);
static bool subscript_dependence_tester_1 (struct data_dependence_relation *,
static bool subscript_dependence_tester_1 (struct data_dependence_relation *,
                                           struct data_reference *,
                                           struct data_reference *,
                                           struct data_reference *);
                                           struct data_reference *);
 
 
/* Determine if PTR and DECL may alias, the result is put in ALIASED.
/* Determine if PTR and DECL may alias, the result is put in ALIASED.
   Return FALSE if there is no symbol memory tag for PTR.  */
   Return FALSE if there is no symbol memory tag for PTR.  */
 
 
static bool
static bool
ptr_decl_may_alias_p (tree ptr, tree decl,
ptr_decl_may_alias_p (tree ptr, tree decl,
                      struct data_reference *ptr_dr,
                      struct data_reference *ptr_dr,
                      bool *aliased)
                      bool *aliased)
{
{
  tree tag = NULL_TREE;
  tree tag = NULL_TREE;
  struct ptr_info_def *pi = DR_PTR_INFO (ptr_dr);
  struct ptr_info_def *pi = DR_PTR_INFO (ptr_dr);
 
 
  gcc_assert (TREE_CODE (ptr) == SSA_NAME && DECL_P (decl));
  gcc_assert (TREE_CODE (ptr) == SSA_NAME && DECL_P (decl));
 
 
  if (pi)
  if (pi)
    tag = pi->name_mem_tag;
    tag = pi->name_mem_tag;
  if (!tag)
  if (!tag)
    tag = get_var_ann (SSA_NAME_VAR (ptr))->symbol_mem_tag;
    tag = get_var_ann (SSA_NAME_VAR (ptr))->symbol_mem_tag;
  if (!tag)
  if (!tag)
    tag = DR_MEMTAG (ptr_dr);
    tag = DR_MEMTAG (ptr_dr);
  if (!tag)
  if (!tag)
    return false;
    return false;
 
 
  *aliased = is_aliased_with (tag, decl);
  *aliased = is_aliased_with (tag, decl);
  return true;
  return true;
}
}
 
 
 
 
/* Determine if two pointers may alias, the result is put in ALIASED.
/* Determine if two pointers may alias, the result is put in ALIASED.
   Return FALSE if there is no symbol memory tag for one of the pointers.  */
   Return FALSE if there is no symbol memory tag for one of the pointers.  */
 
 
static bool
static bool
ptr_ptr_may_alias_p (tree ptr_a, tree ptr_b,
ptr_ptr_may_alias_p (tree ptr_a, tree ptr_b,
                     struct data_reference *dra,
                     struct data_reference *dra,
                     struct data_reference *drb,
                     struct data_reference *drb,
                     bool *aliased)
                     bool *aliased)
{
{
  tree tag_a = NULL_TREE, tag_b = NULL_TREE;
  tree tag_a = NULL_TREE, tag_b = NULL_TREE;
  struct ptr_info_def *pi_a = DR_PTR_INFO (dra);
  struct ptr_info_def *pi_a = DR_PTR_INFO (dra);
  struct ptr_info_def *pi_b = DR_PTR_INFO (drb);
  struct ptr_info_def *pi_b = DR_PTR_INFO (drb);
 
 
  if (pi_a && pi_a->name_mem_tag && pi_b && pi_b->name_mem_tag)
  if (pi_a && pi_a->name_mem_tag && pi_b && pi_b->name_mem_tag)
    {
    {
      tag_a = pi_a->name_mem_tag;
      tag_a = pi_a->name_mem_tag;
      tag_b = pi_b->name_mem_tag;
      tag_b = pi_b->name_mem_tag;
    }
    }
  else
  else
    {
    {
      tag_a = get_var_ann (SSA_NAME_VAR (ptr_a))->symbol_mem_tag;
      tag_a = get_var_ann (SSA_NAME_VAR (ptr_a))->symbol_mem_tag;
      if (!tag_a)
      if (!tag_a)
        tag_a = DR_MEMTAG (dra);
        tag_a = DR_MEMTAG (dra);
      if (!tag_a)
      if (!tag_a)
        return false;
        return false;
 
 
      tag_b = get_var_ann (SSA_NAME_VAR (ptr_b))->symbol_mem_tag;
      tag_b = get_var_ann (SSA_NAME_VAR (ptr_b))->symbol_mem_tag;
      if (!tag_b)
      if (!tag_b)
        tag_b = DR_MEMTAG (drb);
        tag_b = DR_MEMTAG (drb);
      if (!tag_b)
      if (!tag_b)
        return false;
        return false;
    }
    }
 
 
  if (tag_a == tag_b)
  if (tag_a == tag_b)
    *aliased = true;
    *aliased = true;
  else
  else
    *aliased = may_aliases_intersect (tag_a, tag_b);
    *aliased = may_aliases_intersect (tag_a, tag_b);
 
 
  return true;
  return true;
}
}
 
 
 
 
/* Determine if BASE_A and BASE_B may alias, the result is put in ALIASED.
/* Determine if BASE_A and BASE_B may alias, the result is put in ALIASED.
   Return FALSE if there is no symbol memory tag for one of the symbols.  */
   Return FALSE if there is no symbol memory tag for one of the symbols.  */
 
 
static bool
static bool
may_alias_p (tree base_a, tree base_b,
may_alias_p (tree base_a, tree base_b,
             struct data_reference *dra,
             struct data_reference *dra,
             struct data_reference *drb,
             struct data_reference *drb,
             bool *aliased)
             bool *aliased)
{
{
  if (TREE_CODE (base_a) == ADDR_EXPR || TREE_CODE (base_b) == ADDR_EXPR)
  if (TREE_CODE (base_a) == ADDR_EXPR || TREE_CODE (base_b) == ADDR_EXPR)
    {
    {
      if (TREE_CODE (base_a) == ADDR_EXPR && TREE_CODE (base_b) == ADDR_EXPR)
      if (TREE_CODE (base_a) == ADDR_EXPR && TREE_CODE (base_b) == ADDR_EXPR)
        {
        {
         *aliased = (TREE_OPERAND (base_a, 0) == TREE_OPERAND (base_b, 0));
         *aliased = (TREE_OPERAND (base_a, 0) == TREE_OPERAND (base_b, 0));
         return true;
         return true;
        }
        }
      if (TREE_CODE (base_a) == ADDR_EXPR)
      if (TREE_CODE (base_a) == ADDR_EXPR)
        return ptr_decl_may_alias_p (base_b, TREE_OPERAND (base_a, 0), drb,
        return ptr_decl_may_alias_p (base_b, TREE_OPERAND (base_a, 0), drb,
                                     aliased);
                                     aliased);
      else
      else
        return ptr_decl_may_alias_p (base_a, TREE_OPERAND (base_b, 0), dra,
        return ptr_decl_may_alias_p (base_a, TREE_OPERAND (base_b, 0), dra,
                                     aliased);
                                     aliased);
    }
    }
 
 
  return ptr_ptr_may_alias_p (base_a, base_b, dra, drb, aliased);
  return ptr_ptr_may_alias_p (base_a, base_b, dra, drb, aliased);
}
}
 
 
 
 
/* Determine if a pointer (BASE_A) and a record/union access (BASE_B)
/* Determine if a pointer (BASE_A) and a record/union access (BASE_B)
   are not aliased. Return TRUE if they differ.  */
   are not aliased. Return TRUE if they differ.  */
static bool
static bool
record_ptr_differ_p (struct data_reference *dra,
record_ptr_differ_p (struct data_reference *dra,
                     struct data_reference *drb)
                     struct data_reference *drb)
{
{
  bool aliased;
  bool aliased;
  tree base_a = DR_BASE_OBJECT (dra);
  tree base_a = DR_BASE_OBJECT (dra);
  tree base_b = DR_BASE_OBJECT (drb);
  tree base_b = DR_BASE_OBJECT (drb);
 
 
  if (TREE_CODE (base_b) != COMPONENT_REF)
  if (TREE_CODE (base_b) != COMPONENT_REF)
    return false;
    return false;
 
 
  /* Peel COMPONENT_REFs to get to the base. Do not peel INDIRECT_REFs.
  /* Peel COMPONENT_REFs to get to the base. Do not peel INDIRECT_REFs.
     For a.b.c.d[i] we will get a, and for a.b->c.d[i] we will get a.b.
     For a.b.c.d[i] we will get a, and for a.b->c.d[i] we will get a.b.
     Probably will be unnecessary with struct alias analysis.  */
     Probably will be unnecessary with struct alias analysis.  */
  while (TREE_CODE (base_b) == COMPONENT_REF)
  while (TREE_CODE (base_b) == COMPONENT_REF)
     base_b = TREE_OPERAND (base_b, 0);
     base_b = TREE_OPERAND (base_b, 0);
  /* Compare a record/union access (b.c[i] or p->c[i]) and a pointer
  /* Compare a record/union access (b.c[i] or p->c[i]) and a pointer
     ((*q)[i]).  */
     ((*q)[i]).  */
  if (TREE_CODE (base_a) == INDIRECT_REF
  if (TREE_CODE (base_a) == INDIRECT_REF
      && ((TREE_CODE (base_b) == VAR_DECL
      && ((TREE_CODE (base_b) == VAR_DECL
           && (ptr_decl_may_alias_p (TREE_OPERAND (base_a, 0), base_b, dra,
           && (ptr_decl_may_alias_p (TREE_OPERAND (base_a, 0), base_b, dra,
                                     &aliased)
                                     &aliased)
               && !aliased))
               && !aliased))
          || (TREE_CODE (base_b) == INDIRECT_REF
          || (TREE_CODE (base_b) == INDIRECT_REF
              && (ptr_ptr_may_alias_p (TREE_OPERAND (base_a, 0),
              && (ptr_ptr_may_alias_p (TREE_OPERAND (base_a, 0),
                                       TREE_OPERAND (base_b, 0), dra, drb,
                                       TREE_OPERAND (base_b, 0), dra, drb,
                                       &aliased)
                                       &aliased)
                  && !aliased))))
                  && !aliased))))
    return true;
    return true;
  else
  else
    return false;
    return false;
}
}
 
 
/* Determine if two record/union accesses are aliased. Return TRUE if they
/* Determine if two record/union accesses are aliased. Return TRUE if they
   differ.  */
   differ.  */
static bool
static bool
record_record_differ_p (struct data_reference *dra,
record_record_differ_p (struct data_reference *dra,
                        struct data_reference *drb)
                        struct data_reference *drb)
{
{
  bool aliased;
  bool aliased;
  tree base_a = DR_BASE_OBJECT (dra);
  tree base_a = DR_BASE_OBJECT (dra);
  tree base_b = DR_BASE_OBJECT (drb);
  tree base_b = DR_BASE_OBJECT (drb);
 
 
  if (TREE_CODE (base_b) != COMPONENT_REF
  if (TREE_CODE (base_b) != COMPONENT_REF
      || TREE_CODE (base_a) != COMPONENT_REF)
      || TREE_CODE (base_a) != COMPONENT_REF)
    return false;
    return false;
 
 
  /* Peel COMPONENT_REFs to get to the base. Do not peel INDIRECT_REFs.
  /* Peel COMPONENT_REFs to get to the base. Do not peel INDIRECT_REFs.
     For a.b.c.d[i] we will get a, and for a.b->c.d[i] we will get a.b.
     For a.b.c.d[i] we will get a, and for a.b->c.d[i] we will get a.b.
     Probably will be unnecessary with struct alias analysis.  */
     Probably will be unnecessary with struct alias analysis.  */
  while (TREE_CODE (base_b) == COMPONENT_REF)
  while (TREE_CODE (base_b) == COMPONENT_REF)
    base_b = TREE_OPERAND (base_b, 0);
    base_b = TREE_OPERAND (base_b, 0);
  while (TREE_CODE (base_a) == COMPONENT_REF)
  while (TREE_CODE (base_a) == COMPONENT_REF)
    base_a = TREE_OPERAND (base_a, 0);
    base_a = TREE_OPERAND (base_a, 0);
 
 
  if (TREE_CODE (base_a) == INDIRECT_REF
  if (TREE_CODE (base_a) == INDIRECT_REF
      && TREE_CODE (base_b) == INDIRECT_REF
      && TREE_CODE (base_b) == INDIRECT_REF
      && ptr_ptr_may_alias_p (TREE_OPERAND (base_a, 0),
      && ptr_ptr_may_alias_p (TREE_OPERAND (base_a, 0),
                              TREE_OPERAND (base_b, 0),
                              TREE_OPERAND (base_b, 0),
                              dra, drb, &aliased)
                              dra, drb, &aliased)
      && !aliased)
      && !aliased)
    return true;
    return true;
  else
  else
    return false;
    return false;
}
}
 
 
/* Determine if an array access (BASE_A) and a record/union access (BASE_B)
/* Determine if an array access (BASE_A) and a record/union access (BASE_B)
   are not aliased. Return TRUE if they differ.  */
   are not aliased. Return TRUE if they differ.  */
static bool
static bool
record_array_differ_p (struct data_reference *dra,
record_array_differ_p (struct data_reference *dra,
                       struct data_reference *drb)
                       struct data_reference *drb)
{
{
  bool aliased;
  bool aliased;
  tree base_a = DR_BASE_OBJECT (dra);
  tree base_a = DR_BASE_OBJECT (dra);
  tree base_b = DR_BASE_OBJECT (drb);
  tree base_b = DR_BASE_OBJECT (drb);
 
 
  if (TREE_CODE (base_b) != COMPONENT_REF)
  if (TREE_CODE (base_b) != COMPONENT_REF)
    return false;
    return false;
 
 
  /* Peel COMPONENT_REFs to get to the base. Do not peel INDIRECT_REFs.
  /* Peel COMPONENT_REFs to get to the base. Do not peel INDIRECT_REFs.
     For a.b.c.d[i] we will get a, and for a.b->c.d[i] we will get a.b.
     For a.b.c.d[i] we will get a, and for a.b->c.d[i] we will get a.b.
     Probably will be unnecessary with struct alias analysis.  */
     Probably will be unnecessary with struct alias analysis.  */
  while (TREE_CODE (base_b) == COMPONENT_REF)
  while (TREE_CODE (base_b) == COMPONENT_REF)
     base_b = TREE_OPERAND (base_b, 0);
     base_b = TREE_OPERAND (base_b, 0);
 
 
  /* Compare a record/union access (b.c[i] or p->c[i]) and an array access
  /* Compare a record/union access (b.c[i] or p->c[i]) and an array access
     (a[i]). In case of p->c[i] use alias analysis to verify that p is not
     (a[i]). In case of p->c[i] use alias analysis to verify that p is not
     pointing to a.  */
     pointing to a.  */
  if (TREE_CODE (base_a) == VAR_DECL
  if (TREE_CODE (base_a) == VAR_DECL
      && (TREE_CODE (base_b) == VAR_DECL
      && (TREE_CODE (base_b) == VAR_DECL
          || (TREE_CODE (base_b) == INDIRECT_REF
          || (TREE_CODE (base_b) == INDIRECT_REF
              && (ptr_decl_may_alias_p (TREE_OPERAND (base_b, 0), base_a, drb,
              && (ptr_decl_may_alias_p (TREE_OPERAND (base_b, 0), base_a, drb,
                                        &aliased)
                                        &aliased)
                  && !aliased))))
                  && !aliased))))
    return true;
    return true;
  else
  else
    return false;
    return false;
}
}
 
 
 
 
/* Determine if an array access (BASE_A) and a pointer (BASE_B)
/* Determine if an array access (BASE_A) and a pointer (BASE_B)
   are not aliased. Return TRUE if they differ.  */
   are not aliased. Return TRUE if they differ.  */
static bool
static bool
array_ptr_differ_p (tree base_a, tree base_b,
array_ptr_differ_p (tree base_a, tree base_b,
                    struct data_reference *drb)
                    struct data_reference *drb)
{
{
  bool aliased;
  bool aliased;
 
 
  /* In case one of the bases is a pointer (a[i] and (*p)[i]), we check with the
  /* In case one of the bases is a pointer (a[i] and (*p)[i]), we check with the
     help of alias analysis that p is not pointing to a.  */
     help of alias analysis that p is not pointing to a.  */
  if (TREE_CODE (base_a) == VAR_DECL && TREE_CODE (base_b) == INDIRECT_REF
  if (TREE_CODE (base_a) == VAR_DECL && TREE_CODE (base_b) == INDIRECT_REF
      && (ptr_decl_may_alias_p (TREE_OPERAND (base_b, 0), base_a, drb, &aliased)
      && (ptr_decl_may_alias_p (TREE_OPERAND (base_b, 0), base_a, drb, &aliased)
          && !aliased))
          && !aliased))
    return true;
    return true;
  else
  else
    return false;
    return false;
}
}
 
 
 
 
/* This is the simplest data dependence test: determines whether the
/* This is the simplest data dependence test: determines whether the
   data references A and B access the same array/region.  Returns
   data references A and B access the same array/region.  Returns
   false when the property is not computable at compile time.
   false when the property is not computable at compile time.
   Otherwise return true, and DIFFER_P will record the result. This
   Otherwise return true, and DIFFER_P will record the result. This
   utility will not be necessary when alias_sets_conflict_p will be
   utility will not be necessary when alias_sets_conflict_p will be
   less conservative.  */
   less conservative.  */
 
 
static bool
static bool
base_object_differ_p (struct data_reference *a,
base_object_differ_p (struct data_reference *a,
                      struct data_reference *b,
                      struct data_reference *b,
                      bool *differ_p)
                      bool *differ_p)
{
{
  tree base_a = DR_BASE_OBJECT (a);
  tree base_a = DR_BASE_OBJECT (a);
  tree base_b = DR_BASE_OBJECT (b);
  tree base_b = DR_BASE_OBJECT (b);
  bool aliased;
  bool aliased;
 
 
  if (!base_a || !base_b)
  if (!base_a || !base_b)
    return false;
    return false;
 
 
  /* Determine if same base.  Example: for the array accesses
  /* Determine if same base.  Example: for the array accesses
     a[i], b[i] or pointer accesses *a, *b, bases are a, b.  */
     a[i], b[i] or pointer accesses *a, *b, bases are a, b.  */
  if (base_a == base_b)
  if (base_a == base_b)
    {
    {
      *differ_p = false;
      *differ_p = false;
      return true;
      return true;
    }
    }
 
 
  /* For pointer based accesses, (*p)[i], (*q)[j], the bases are (*p)
  /* For pointer based accesses, (*p)[i], (*q)[j], the bases are (*p)
     and (*q)  */
     and (*q)  */
  if (TREE_CODE (base_a) == INDIRECT_REF && TREE_CODE (base_b) == INDIRECT_REF
  if (TREE_CODE (base_a) == INDIRECT_REF && TREE_CODE (base_b) == INDIRECT_REF
      && TREE_OPERAND (base_a, 0) == TREE_OPERAND (base_b, 0))
      && TREE_OPERAND (base_a, 0) == TREE_OPERAND (base_b, 0))
    {
    {
      *differ_p = false;
      *differ_p = false;
      return true;
      return true;
    }
    }
 
 
  /* Record/union based accesses - s.a[i], t.b[j]. bases are s.a,t.b.  */
  /* Record/union based accesses - s.a[i], t.b[j]. bases are s.a,t.b.  */
  if (TREE_CODE (base_a) == COMPONENT_REF && TREE_CODE (base_b) == COMPONENT_REF
  if (TREE_CODE (base_a) == COMPONENT_REF && TREE_CODE (base_b) == COMPONENT_REF
      && TREE_OPERAND (base_a, 0) == TREE_OPERAND (base_b, 0)
      && TREE_OPERAND (base_a, 0) == TREE_OPERAND (base_b, 0)
      && TREE_OPERAND (base_a, 1) == TREE_OPERAND (base_b, 1))
      && TREE_OPERAND (base_a, 1) == TREE_OPERAND (base_b, 1))
    {
    {
      *differ_p = false;
      *differ_p = false;
      return true;
      return true;
    }
    }
 
 
 
 
  /* Determine if different bases.  */
  /* Determine if different bases.  */
 
 
  /* At this point we know that base_a != base_b.  However, pointer
  /* At this point we know that base_a != base_b.  However, pointer
     accesses of the form x=(*p) and y=(*q), whose bases are p and q,
     accesses of the form x=(*p) and y=(*q), whose bases are p and q,
     may still be pointing to the same base. In SSAed GIMPLE p and q will
     may still be pointing to the same base. In SSAed GIMPLE p and q will
     be SSA_NAMES in this case.  Therefore, here we check if they are
     be SSA_NAMES in this case.  Therefore, here we check if they are
     really two different declarations.  */
     really two different declarations.  */
  if (TREE_CODE (base_a) == VAR_DECL && TREE_CODE (base_b) == VAR_DECL)
  if (TREE_CODE (base_a) == VAR_DECL && TREE_CODE (base_b) == VAR_DECL)
    {
    {
      *differ_p = true;
      *differ_p = true;
      return true;
      return true;
    }
    }
 
 
  /* In case one of the bases is a pointer (a[i] and (*p)[i]), we check with the
  /* In case one of the bases is a pointer (a[i] and (*p)[i]), we check with the
     help of alias analysis that p is not pointing to a.  */
     help of alias analysis that p is not pointing to a.  */
  if (array_ptr_differ_p (base_a, base_b, b)
  if (array_ptr_differ_p (base_a, base_b, b)
      || array_ptr_differ_p (base_b, base_a, a))
      || array_ptr_differ_p (base_b, base_a, a))
    {
    {
      *differ_p = true;
      *differ_p = true;
      return true;
      return true;
    }
    }
 
 
  /* If the bases are pointers ((*q)[i] and (*p)[i]), we check with the
  /* If the bases are pointers ((*q)[i] and (*p)[i]), we check with the
     help of alias analysis they don't point to the same bases.  */
     help of alias analysis they don't point to the same bases.  */
  if (TREE_CODE (base_a) == INDIRECT_REF && TREE_CODE (base_b) == INDIRECT_REF
  if (TREE_CODE (base_a) == INDIRECT_REF && TREE_CODE (base_b) == INDIRECT_REF
      && (may_alias_p (TREE_OPERAND (base_a, 0), TREE_OPERAND (base_b, 0), a, b,
      && (may_alias_p (TREE_OPERAND (base_a, 0), TREE_OPERAND (base_b, 0), a, b,
                       &aliased)
                       &aliased)
          && !aliased))
          && !aliased))
    {
    {
      *differ_p = true;
      *differ_p = true;
      return true;
      return true;
    }
    }
 
 
  /* Compare two record/union bases s.a and t.b: s != t or (a != b and
  /* Compare two record/union bases s.a and t.b: s != t or (a != b and
     s and t are not unions).  */
     s and t are not unions).  */
  if (TREE_CODE (base_a) == COMPONENT_REF && TREE_CODE (base_b) == COMPONENT_REF
  if (TREE_CODE (base_a) == COMPONENT_REF && TREE_CODE (base_b) == COMPONENT_REF
      && ((TREE_CODE (TREE_OPERAND (base_a, 0)) == VAR_DECL
      && ((TREE_CODE (TREE_OPERAND (base_a, 0)) == VAR_DECL
           && TREE_CODE (TREE_OPERAND (base_b, 0)) == VAR_DECL
           && TREE_CODE (TREE_OPERAND (base_b, 0)) == VAR_DECL
           && TREE_OPERAND (base_a, 0) != TREE_OPERAND (base_b, 0))
           && TREE_OPERAND (base_a, 0) != TREE_OPERAND (base_b, 0))
          || (TREE_CODE (TREE_TYPE (TREE_OPERAND (base_a, 0))) == RECORD_TYPE
          || (TREE_CODE (TREE_TYPE (TREE_OPERAND (base_a, 0))) == RECORD_TYPE
              && TREE_CODE (TREE_TYPE (TREE_OPERAND (base_b, 0))) == RECORD_TYPE
              && TREE_CODE (TREE_TYPE (TREE_OPERAND (base_b, 0))) == RECORD_TYPE
              && TREE_OPERAND (base_a, 1) != TREE_OPERAND (base_b, 1))))
              && TREE_OPERAND (base_a, 1) != TREE_OPERAND (base_b, 1))))
    {
    {
      *differ_p = true;
      *differ_p = true;
      return true;
      return true;
    }
    }
 
 
  /* Compare a record/union access (b.c[i] or p->c[i]) and a pointer
  /* Compare a record/union access (b.c[i] or p->c[i]) and a pointer
     ((*q)[i]).  */
     ((*q)[i]).  */
  if (record_ptr_differ_p (a, b) || record_ptr_differ_p (b, a))
  if (record_ptr_differ_p (a, b) || record_ptr_differ_p (b, a))
    {
    {
      *differ_p = true;
      *differ_p = true;
      return true;
      return true;
    }
    }
 
 
  /* Compare a record/union access (b.c[i] or p->c[i]) and an array access
  /* Compare a record/union access (b.c[i] or p->c[i]) and an array access
     (a[i]). In case of p->c[i] use alias analysis to verify that p is not
     (a[i]). In case of p->c[i] use alias analysis to verify that p is not
     pointing to a.  */
     pointing to a.  */
  if (record_array_differ_p (a, b) || record_array_differ_p (b, a))
  if (record_array_differ_p (a, b) || record_array_differ_p (b, a))
    {
    {
      *differ_p = true;
      *differ_p = true;
      return true;
      return true;
    }
    }
 
 
  /* Compare two record/union accesses (b.c[i] or p->c[i]).  */
  /* Compare two record/union accesses (b.c[i] or p->c[i]).  */
  if (record_record_differ_p (a, b))
  if (record_record_differ_p (a, b))
    {
    {
      *differ_p = true;
      *differ_p = true;
      return true;
      return true;
    }
    }
 
 
  return false;
  return false;
}
}
 
 
/* Function base_addr_differ_p.
/* Function base_addr_differ_p.
 
 
   This is the simplest data dependence test: determines whether the
   This is the simplest data dependence test: determines whether the
   data references DRA and DRB access the same array/region.  Returns
   data references DRA and DRB access the same array/region.  Returns
   false when the property is not computable at compile time.
   false when the property is not computable at compile time.
   Otherwise return true, and DIFFER_P will record the result.
   Otherwise return true, and DIFFER_P will record the result.
 
 
   The algorithm:
   The algorithm:
   1. if (both DRA and DRB are represented as arrays)
   1. if (both DRA and DRB are represented as arrays)
          compare DRA.BASE_OBJECT and DRB.BASE_OBJECT
          compare DRA.BASE_OBJECT and DRB.BASE_OBJECT
   2. else if (both DRA and DRB are represented as pointers)
   2. else if (both DRA and DRB are represented as pointers)
          try to prove that DRA.FIRST_LOCATION == DRB.FIRST_LOCATION
          try to prove that DRA.FIRST_LOCATION == DRB.FIRST_LOCATION
   3. else if (DRA and DRB are represented differently or 2. fails)
   3. else if (DRA and DRB are represented differently or 2. fails)
          only try to prove that the bases are surely different
          only try to prove that the bases are surely different
*/
*/
 
 
static bool
static bool
base_addr_differ_p (struct data_reference *dra,
base_addr_differ_p (struct data_reference *dra,
                    struct data_reference *drb,
                    struct data_reference *drb,
                    bool *differ_p)
                    bool *differ_p)
{
{
  tree addr_a = DR_BASE_ADDRESS (dra);
  tree addr_a = DR_BASE_ADDRESS (dra);
  tree addr_b = DR_BASE_ADDRESS (drb);
  tree addr_b = DR_BASE_ADDRESS (drb);
  tree type_a, type_b;
  tree type_a, type_b;
  bool aliased;
  bool aliased;
 
 
  if (!addr_a || !addr_b)
  if (!addr_a || !addr_b)
    return false;
    return false;
 
 
  type_a = TREE_TYPE (addr_a);
  type_a = TREE_TYPE (addr_a);
  type_b = TREE_TYPE (addr_b);
  type_b = TREE_TYPE (addr_b);
 
 
  gcc_assert (POINTER_TYPE_P (type_a) &&  POINTER_TYPE_P (type_b));
  gcc_assert (POINTER_TYPE_P (type_a) &&  POINTER_TYPE_P (type_b));
 
 
  /* 1. if (both DRA and DRB are represented as arrays)
  /* 1. if (both DRA and DRB are represented as arrays)
            compare DRA.BASE_OBJECT and DRB.BASE_OBJECT.  */
            compare DRA.BASE_OBJECT and DRB.BASE_OBJECT.  */
  if (DR_TYPE (dra) == ARRAY_REF_TYPE && DR_TYPE (drb) == ARRAY_REF_TYPE)
  if (DR_TYPE (dra) == ARRAY_REF_TYPE && DR_TYPE (drb) == ARRAY_REF_TYPE)
    return base_object_differ_p (dra, drb, differ_p);
    return base_object_differ_p (dra, drb, differ_p);
 
 
  /* 2. else if (both DRA and DRB are represented as pointers)
  /* 2. else if (both DRA and DRB are represented as pointers)
            try to prove that DRA.FIRST_LOCATION == DRB.FIRST_LOCATION.  */
            try to prove that DRA.FIRST_LOCATION == DRB.FIRST_LOCATION.  */
  /* If base addresses are the same, we check the offsets, since the access of
  /* If base addresses are the same, we check the offsets, since the access of
     the data-ref is described by {base addr + offset} and its access function,
     the data-ref is described by {base addr + offset} and its access function,
     i.e., in order to decide whether the bases of data-refs are the same we
     i.e., in order to decide whether the bases of data-refs are the same we
     compare both base addresses and offsets.  */
     compare both base addresses and offsets.  */
  if (DR_TYPE (dra) == POINTER_REF_TYPE && DR_TYPE (drb) == POINTER_REF_TYPE
  if (DR_TYPE (dra) == POINTER_REF_TYPE && DR_TYPE (drb) == POINTER_REF_TYPE
      && (addr_a == addr_b
      && (addr_a == addr_b
          || (TREE_CODE (addr_a) == ADDR_EXPR && TREE_CODE (addr_b) == ADDR_EXPR
          || (TREE_CODE (addr_a) == ADDR_EXPR && TREE_CODE (addr_b) == ADDR_EXPR
              && TREE_OPERAND (addr_a, 0) == TREE_OPERAND (addr_b, 0))))
              && TREE_OPERAND (addr_a, 0) == TREE_OPERAND (addr_b, 0))))
    {
    {
      /* Compare offsets.  */
      /* Compare offsets.  */
      tree offset_a = DR_OFFSET (dra);
      tree offset_a = DR_OFFSET (dra);
      tree offset_b = DR_OFFSET (drb);
      tree offset_b = DR_OFFSET (drb);
 
 
      STRIP_NOPS (offset_a);
      STRIP_NOPS (offset_a);
      STRIP_NOPS (offset_b);
      STRIP_NOPS (offset_b);
 
 
      /* FORNOW: we only compare offsets that are MULT_EXPR, i.e., we don't handle
      /* FORNOW: we only compare offsets that are MULT_EXPR, i.e., we don't handle
         PLUS_EXPR.  */
         PLUS_EXPR.  */
      if (offset_a == offset_b
      if (offset_a == offset_b
          || (TREE_CODE (offset_a) == MULT_EXPR
          || (TREE_CODE (offset_a) == MULT_EXPR
              && TREE_CODE (offset_b) == MULT_EXPR
              && TREE_CODE (offset_b) == MULT_EXPR
              && TREE_OPERAND (offset_a, 0) == TREE_OPERAND (offset_b, 0)
              && TREE_OPERAND (offset_a, 0) == TREE_OPERAND (offset_b, 0)
              && TREE_OPERAND (offset_a, 1) == TREE_OPERAND (offset_b, 1)))
              && TREE_OPERAND (offset_a, 1) == TREE_OPERAND (offset_b, 1)))
        {
        {
          *differ_p = false;
          *differ_p = false;
          return true;
          return true;
        }
        }
    }
    }
 
 
  /*  3. else if (DRA and DRB are represented differently or 2. fails)
  /*  3. else if (DRA and DRB are represented differently or 2. fails)
              only try to prove that the bases are surely different.  */
              only try to prove that the bases are surely different.  */
 
 
  /* Apply alias analysis.  */
  /* Apply alias analysis.  */
  if (may_alias_p (addr_a, addr_b, dra, drb, &aliased) && !aliased)
  if (may_alias_p (addr_a, addr_b, dra, drb, &aliased) && !aliased)
    {
    {
      *differ_p = true;
      *differ_p = true;
      return true;
      return true;
    }
    }
 
 
  /* An instruction writing through a restricted pointer is "independent" of any
  /* An instruction writing through a restricted pointer is "independent" of any
     instruction reading or writing through a different pointer, in the same
     instruction reading or writing through a different pointer, in the same
     block/scope.  */
     block/scope.  */
  else if ((TYPE_RESTRICT (type_a) && !DR_IS_READ (dra))
  else if ((TYPE_RESTRICT (type_a) && !DR_IS_READ (dra))
      || (TYPE_RESTRICT (type_b) && !DR_IS_READ (drb)))
      || (TYPE_RESTRICT (type_b) && !DR_IS_READ (drb)))
    {
    {
      *differ_p = true;
      *differ_p = true;
      return true;
      return true;
    }
    }
  return false;
  return false;
}
}
 
 
/* Returns true iff A divides B.  */
/* Returns true iff A divides B.  */
 
 
static inline bool
static inline bool
tree_fold_divides_p (tree a,
tree_fold_divides_p (tree a,
                     tree b)
                     tree b)
{
{
  /* Determines whether (A == gcd (A, B)).  */
  /* Determines whether (A == gcd (A, B)).  */
  return tree_int_cst_equal (a, tree_fold_gcd (a, b));
  return tree_int_cst_equal (a, tree_fold_gcd (a, b));
}
}
 
 
/* Returns true iff A divides B.  */
/* Returns true iff A divides B.  */
 
 
static inline bool
static inline bool
int_divides_p (int a, int b)
int_divides_p (int a, int b)
{
{
  return ((b % a) == 0);
  return ((b % a) == 0);
}
}
 
 


 
 
/* Dump into FILE all the data references from DATAREFS.  */
/* Dump into FILE all the data references from DATAREFS.  */
 
 
void
void
dump_data_references (FILE *file, VEC (data_reference_p, heap) *datarefs)
dump_data_references (FILE *file, VEC (data_reference_p, heap) *datarefs)
{
{
  unsigned int i;
  unsigned int i;
  struct data_reference *dr;
  struct data_reference *dr;
 
 
  for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
  for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
    dump_data_reference (file, dr);
    dump_data_reference (file, dr);
}
}
 
 
/* Dump into FILE all the dependence relations from DDRS.  */
/* Dump into FILE all the dependence relations from DDRS.  */
 
 
void
void
dump_data_dependence_relations (FILE *file,
dump_data_dependence_relations (FILE *file,
                                VEC (ddr_p, heap) *ddrs)
                                VEC (ddr_p, heap) *ddrs)
{
{
  unsigned int i;
  unsigned int i;
  struct data_dependence_relation *ddr;
  struct data_dependence_relation *ddr;
 
 
  for (i = 0; VEC_iterate (ddr_p, ddrs, i, ddr); i++)
  for (i = 0; VEC_iterate (ddr_p, ddrs, i, ddr); i++)
    dump_data_dependence_relation (file, ddr);
    dump_data_dependence_relation (file, ddr);
}
}
 
 
/* Dump function for a DATA_REFERENCE structure.  */
/* Dump function for a DATA_REFERENCE structure.  */
 
 
void
void
dump_data_reference (FILE *outf,
dump_data_reference (FILE *outf,
                     struct data_reference *dr)
                     struct data_reference *dr)
{
{
  unsigned int i;
  unsigned int i;
 
 
  fprintf (outf, "(Data Ref: \n  stmt: ");
  fprintf (outf, "(Data Ref: \n  stmt: ");
  print_generic_stmt (outf, DR_STMT (dr), 0);
  print_generic_stmt (outf, DR_STMT (dr), 0);
  fprintf (outf, "  ref: ");
  fprintf (outf, "  ref: ");
  print_generic_stmt (outf, DR_REF (dr), 0);
  print_generic_stmt (outf, DR_REF (dr), 0);
  fprintf (outf, "  base_object: ");
  fprintf (outf, "  base_object: ");
  print_generic_stmt (outf, DR_BASE_OBJECT (dr), 0);
  print_generic_stmt (outf, DR_BASE_OBJECT (dr), 0);
 
 
  for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
  for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
    {
    {
      fprintf (outf, "  Access function %d: ", i);
      fprintf (outf, "  Access function %d: ", i);
      print_generic_stmt (outf, DR_ACCESS_FN (dr, i), 0);
      print_generic_stmt (outf, DR_ACCESS_FN (dr, i), 0);
    }
    }
  fprintf (outf, ")\n");
  fprintf (outf, ")\n");
}
}
 
 
/* Dump function for a SUBSCRIPT structure.  */
/* Dump function for a SUBSCRIPT structure.  */
 
 
void
void
dump_subscript (FILE *outf, struct subscript *subscript)
dump_subscript (FILE *outf, struct subscript *subscript)
{
{
  tree chrec = SUB_CONFLICTS_IN_A (subscript);
  tree chrec = SUB_CONFLICTS_IN_A (subscript);
 
 
  fprintf (outf, "\n (subscript \n");
  fprintf (outf, "\n (subscript \n");
  fprintf (outf, "  iterations_that_access_an_element_twice_in_A: ");
  fprintf (outf, "  iterations_that_access_an_element_twice_in_A: ");
  print_generic_stmt (outf, chrec, 0);
  print_generic_stmt (outf, chrec, 0);
  if (chrec == chrec_known)
  if (chrec == chrec_known)
    fprintf (outf, "    (no dependence)\n");
    fprintf (outf, "    (no dependence)\n");
  else if (chrec_contains_undetermined (chrec))
  else if (chrec_contains_undetermined (chrec))
    fprintf (outf, "    (don't know)\n");
    fprintf (outf, "    (don't know)\n");
  else
  else
    {
    {
      tree last_iteration = SUB_LAST_CONFLICT (subscript);
      tree last_iteration = SUB_LAST_CONFLICT (subscript);
      fprintf (outf, "  last_conflict: ");
      fprintf (outf, "  last_conflict: ");
      print_generic_stmt (outf, last_iteration, 0);
      print_generic_stmt (outf, last_iteration, 0);
    }
    }
 
 
  chrec = SUB_CONFLICTS_IN_B (subscript);
  chrec = SUB_CONFLICTS_IN_B (subscript);
  fprintf (outf, "  iterations_that_access_an_element_twice_in_B: ");
  fprintf (outf, "  iterations_that_access_an_element_twice_in_B: ");
  print_generic_stmt (outf, chrec, 0);
  print_generic_stmt (outf, chrec, 0);
  if (chrec == chrec_known)
  if (chrec == chrec_known)
    fprintf (outf, "    (no dependence)\n");
    fprintf (outf, "    (no dependence)\n");
  else if (chrec_contains_undetermined (chrec))
  else if (chrec_contains_undetermined (chrec))
    fprintf (outf, "    (don't know)\n");
    fprintf (outf, "    (don't know)\n");
  else
  else
    {
    {
      tree last_iteration = SUB_LAST_CONFLICT (subscript);
      tree last_iteration = SUB_LAST_CONFLICT (subscript);
      fprintf (outf, "  last_conflict: ");
      fprintf (outf, "  last_conflict: ");
      print_generic_stmt (outf, last_iteration, 0);
      print_generic_stmt (outf, last_iteration, 0);
    }
    }
 
 
  fprintf (outf, "  (Subscript distance: ");
  fprintf (outf, "  (Subscript distance: ");
  print_generic_stmt (outf, SUB_DISTANCE (subscript), 0);
  print_generic_stmt (outf, SUB_DISTANCE (subscript), 0);
  fprintf (outf, "  )\n");
  fprintf (outf, "  )\n");
  fprintf (outf, " )\n");
  fprintf (outf, " )\n");
}
}
 
 
/* Print the classic direction vector DIRV to OUTF.  */
/* Print the classic direction vector DIRV to OUTF.  */
 
 
void
void
print_direction_vector (FILE *outf,
print_direction_vector (FILE *outf,
                        lambda_vector dirv,
                        lambda_vector dirv,
                        int length)
                        int length)
{
{
  int eq;
  int eq;
 
 
  for (eq = 0; eq < length; eq++)
  for (eq = 0; eq < length; eq++)
    {
    {
      enum data_dependence_direction dir = dirv[eq];
      enum data_dependence_direction dir = dirv[eq];
 
 
      switch (dir)
      switch (dir)
        {
        {
        case dir_positive:
        case dir_positive:
          fprintf (outf, "    +");
          fprintf (outf, "    +");
          break;
          break;
        case dir_negative:
        case dir_negative:
          fprintf (outf, "    -");
          fprintf (outf, "    -");
          break;
          break;
        case dir_equal:
        case dir_equal:
          fprintf (outf, "    =");
          fprintf (outf, "    =");
          break;
          break;
        case dir_positive_or_equal:
        case dir_positive_or_equal:
          fprintf (outf, "   +=");
          fprintf (outf, "   +=");
          break;
          break;
        case dir_positive_or_negative:
        case dir_positive_or_negative:
          fprintf (outf, "   +-");
          fprintf (outf, "   +-");
          break;
          break;
        case dir_negative_or_equal:
        case dir_negative_or_equal:
          fprintf (outf, "   -=");
          fprintf (outf, "   -=");
          break;
          break;
        case dir_star:
        case dir_star:
          fprintf (outf, "    *");
          fprintf (outf, "    *");
          break;
          break;
        default:
        default:
          fprintf (outf, "indep");
          fprintf (outf, "indep");
          break;
          break;
        }
        }
    }
    }
  fprintf (outf, "\n");
  fprintf (outf, "\n");
}
}
 
 
/* Print a vector of direction vectors.  */
/* Print a vector of direction vectors.  */
 
 
void
void
print_dir_vectors (FILE *outf, VEC (lambda_vector, heap) *dir_vects,
print_dir_vectors (FILE *outf, VEC (lambda_vector, heap) *dir_vects,
                   int length)
                   int length)
{
{
  unsigned j;
  unsigned j;
  lambda_vector v;
  lambda_vector v;
 
 
  for (j = 0; VEC_iterate (lambda_vector, dir_vects, j, v); j++)
  for (j = 0; VEC_iterate (lambda_vector, dir_vects, j, v); j++)
    print_direction_vector (outf, v, length);
    print_direction_vector (outf, v, length);
}
}
 
 
/* Print a vector of distance vectors.  */
/* Print a vector of distance vectors.  */
 
 
void
void
print_dist_vectors  (FILE *outf, VEC (lambda_vector, heap) *dist_vects,
print_dist_vectors  (FILE *outf, VEC (lambda_vector, heap) *dist_vects,
                     int length)
                     int length)
{
{
  unsigned j;
  unsigned j;
  lambda_vector v;
  lambda_vector v;
 
 
  for (j = 0; VEC_iterate (lambda_vector, dist_vects, j, v); j++)
  for (j = 0; VEC_iterate (lambda_vector, dist_vects, j, v); j++)
    print_lambda_vector (outf, v, length);
    print_lambda_vector (outf, v, length);
}
}
 
 
/* Debug version.  */
/* Debug version.  */
 
 
void
void
debug_data_dependence_relation (struct data_dependence_relation *ddr)
debug_data_dependence_relation (struct data_dependence_relation *ddr)
{
{
  dump_data_dependence_relation (stderr, ddr);
  dump_data_dependence_relation (stderr, ddr);
}
}
 
 
/* Dump function for a DATA_DEPENDENCE_RELATION structure.  */
/* Dump function for a DATA_DEPENDENCE_RELATION structure.  */
 
 
void
void
dump_data_dependence_relation (FILE *outf,
dump_data_dependence_relation (FILE *outf,
                               struct data_dependence_relation *ddr)
                               struct data_dependence_relation *ddr)
{
{
  struct data_reference *dra, *drb;
  struct data_reference *dra, *drb;
 
 
  dra = DDR_A (ddr);
  dra = DDR_A (ddr);
  drb = DDR_B (ddr);
  drb = DDR_B (ddr);
  fprintf (outf, "(Data Dep: \n");
  fprintf (outf, "(Data Dep: \n");
  if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
  if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
    fprintf (outf, "    (don't know)\n");
    fprintf (outf, "    (don't know)\n");
 
 
  else if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
  else if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
    fprintf (outf, "    (no dependence)\n");
    fprintf (outf, "    (no dependence)\n");
 
 
  else if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
  else if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
    {
    {
      unsigned int i;
      unsigned int i;
      struct loop *loopi;
      struct loop *loopi;
 
 
      for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
      for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
        {
        {
          fprintf (outf, "  access_fn_A: ");
          fprintf (outf, "  access_fn_A: ");
          print_generic_stmt (outf, DR_ACCESS_FN (dra, i), 0);
          print_generic_stmt (outf, DR_ACCESS_FN (dra, i), 0);
          fprintf (outf, "  access_fn_B: ");
          fprintf (outf, "  access_fn_B: ");
          print_generic_stmt (outf, DR_ACCESS_FN (drb, i), 0);
          print_generic_stmt (outf, DR_ACCESS_FN (drb, i), 0);
          dump_subscript (outf, DDR_SUBSCRIPT (ddr, i));
          dump_subscript (outf, DDR_SUBSCRIPT (ddr, i));
        }
        }
 
 
      fprintf (outf, "  loop nest: (");
      fprintf (outf, "  loop nest: (");
      for (i = 0; VEC_iterate (loop_p, DDR_LOOP_NEST (ddr), i, loopi); i++)
      for (i = 0; VEC_iterate (loop_p, DDR_LOOP_NEST (ddr), i, loopi); i++)
        fprintf (outf, "%d ", loopi->num);
        fprintf (outf, "%d ", loopi->num);
      fprintf (outf, ")\n");
      fprintf (outf, ")\n");
 
 
      for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++)
      for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++)
        {
        {
          fprintf (outf, "  distance_vector: ");
          fprintf (outf, "  distance_vector: ");
          print_lambda_vector (outf, DDR_DIST_VECT (ddr, i),
          print_lambda_vector (outf, DDR_DIST_VECT (ddr, i),
                               DDR_NB_LOOPS (ddr));
                               DDR_NB_LOOPS (ddr));
        }
        }
 
 
      for (i = 0; i < DDR_NUM_DIR_VECTS (ddr); i++)
      for (i = 0; i < DDR_NUM_DIR_VECTS (ddr); i++)
        {
        {
          fprintf (outf, "  direction_vector: ");
          fprintf (outf, "  direction_vector: ");
          print_direction_vector (outf, DDR_DIR_VECT (ddr, i),
          print_direction_vector (outf, DDR_DIR_VECT (ddr, i),
                                  DDR_NB_LOOPS (ddr));
                                  DDR_NB_LOOPS (ddr));
        }
        }
    }
    }
 
 
  fprintf (outf, ")\n");
  fprintf (outf, ")\n");
}
}
 
 
/* Dump function for a DATA_DEPENDENCE_DIRECTION structure.  */
/* Dump function for a DATA_DEPENDENCE_DIRECTION structure.  */
 
 
void
void
dump_data_dependence_direction (FILE *file,
dump_data_dependence_direction (FILE *file,
                                enum data_dependence_direction dir)
                                enum data_dependence_direction dir)
{
{
  switch (dir)
  switch (dir)
    {
    {
    case dir_positive:
    case dir_positive:
      fprintf (file, "+");
      fprintf (file, "+");
      break;
      break;
 
 
    case dir_negative:
    case dir_negative:
      fprintf (file, "-");
      fprintf (file, "-");
      break;
      break;
 
 
    case dir_equal:
    case dir_equal:
      fprintf (file, "=");
      fprintf (file, "=");
      break;
      break;
 
 
    case dir_positive_or_negative:
    case dir_positive_or_negative:
      fprintf (file, "+-");
      fprintf (file, "+-");
      break;
      break;
 
 
    case dir_positive_or_equal:
    case dir_positive_or_equal:
      fprintf (file, "+=");
      fprintf (file, "+=");
      break;
      break;
 
 
    case dir_negative_or_equal:
    case dir_negative_or_equal:
      fprintf (file, "-=");
      fprintf (file, "-=");
      break;
      break;
 
 
    case dir_star:
    case dir_star:
      fprintf (file, "*");
      fprintf (file, "*");
      break;
      break;
 
 
    default:
    default:
      break;
      break;
    }
    }
}
}
 
 
/* Dumps the distance and direction vectors in FILE.  DDRS contains
/* Dumps the distance and direction vectors in FILE.  DDRS contains
   the dependence relations, and VECT_SIZE is the size of the
   the dependence relations, and VECT_SIZE is the size of the
   dependence vectors, or in other words the number of loops in the
   dependence vectors, or in other words the number of loops in the
   considered nest.  */
   considered nest.  */
 
 
void
void
dump_dist_dir_vectors (FILE *file, VEC (ddr_p, heap) *ddrs)
dump_dist_dir_vectors (FILE *file, VEC (ddr_p, heap) *ddrs)
{
{
  unsigned int i, j;
  unsigned int i, j;
  struct data_dependence_relation *ddr;
  struct data_dependence_relation *ddr;
  lambda_vector v;
  lambda_vector v;
 
 
  for (i = 0; VEC_iterate (ddr_p, ddrs, i, ddr); i++)
  for (i = 0; VEC_iterate (ddr_p, ddrs, i, ddr); i++)
    if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE && DDR_AFFINE_P (ddr))
    if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE && DDR_AFFINE_P (ddr))
      {
      {
        for (j = 0; VEC_iterate (lambda_vector, DDR_DIST_VECTS (ddr), j, v); j++)
        for (j = 0; VEC_iterate (lambda_vector, DDR_DIST_VECTS (ddr), j, v); j++)
          {
          {
            fprintf (file, "DISTANCE_V (");
            fprintf (file, "DISTANCE_V (");
            print_lambda_vector (file, v, DDR_NB_LOOPS (ddr));
            print_lambda_vector (file, v, DDR_NB_LOOPS (ddr));
            fprintf (file, ")\n");
            fprintf (file, ")\n");
          }
          }
 
 
        for (j = 0; VEC_iterate (lambda_vector, DDR_DIR_VECTS (ddr), j, v); j++)
        for (j = 0; VEC_iterate (lambda_vector, DDR_DIR_VECTS (ddr), j, v); j++)
          {
          {
            fprintf (file, "DIRECTION_V (");
            fprintf (file, "DIRECTION_V (");
            print_direction_vector (file, v, DDR_NB_LOOPS (ddr));
            print_direction_vector (file, v, DDR_NB_LOOPS (ddr));
            fprintf (file, ")\n");
            fprintf (file, ")\n");
          }
          }
      }
      }
 
 
  fprintf (file, "\n\n");
  fprintf (file, "\n\n");
}
}
 
 
/* Dumps the data dependence relations DDRS in FILE.  */
/* Dumps the data dependence relations DDRS in FILE.  */
 
 
void
void
dump_ddrs (FILE *file, VEC (ddr_p, heap) *ddrs)
dump_ddrs (FILE *file, VEC (ddr_p, heap) *ddrs)
{
{
  unsigned int i;
  unsigned int i;
  struct data_dependence_relation *ddr;
  struct data_dependence_relation *ddr;
 
 
  for (i = 0; VEC_iterate (ddr_p, ddrs, i, ddr); i++)
  for (i = 0; VEC_iterate (ddr_p, ddrs, i, ddr); i++)
    dump_data_dependence_relation (file, ddr);
    dump_data_dependence_relation (file, ddr);
 
 
  fprintf (file, "\n\n");
  fprintf (file, "\n\n");
}
}
 
 


 
 
/* Estimate the number of iterations from the size of the data and the
/* Estimate the number of iterations from the size of the data and the
   access functions.  */
   access functions.  */
 
 
static void
static void
estimate_niter_from_size_of_data (struct loop *loop,
estimate_niter_from_size_of_data (struct loop *loop,
                                  tree opnd0,
                                  tree opnd0,
                                  tree access_fn,
                                  tree access_fn,
                                  tree stmt)
                                  tree stmt)
{
{
  tree estimation = NULL_TREE;
  tree estimation = NULL_TREE;
  tree array_size, data_size, element_size;
  tree array_size, data_size, element_size;
  tree init, step;
  tree init, step;
 
 
  init = initial_condition (access_fn);
  init = initial_condition (access_fn);
  step = evolution_part_in_loop_num (access_fn, loop->num);
  step = evolution_part_in_loop_num (access_fn, loop->num);
 
 
  array_size = TYPE_SIZE (TREE_TYPE (opnd0));
  array_size = TYPE_SIZE (TREE_TYPE (opnd0));
  element_size = TYPE_SIZE (TREE_TYPE (TREE_TYPE (opnd0)));
  element_size = TYPE_SIZE (TREE_TYPE (TREE_TYPE (opnd0)));
  if (array_size == NULL_TREE
  if (array_size == NULL_TREE
      || TREE_CODE (array_size) != INTEGER_CST
      || TREE_CODE (array_size) != INTEGER_CST
      || TREE_CODE (element_size) != INTEGER_CST)
      || TREE_CODE (element_size) != INTEGER_CST)
    return;
    return;
 
 
  data_size = fold_build2 (EXACT_DIV_EXPR, integer_type_node,
  data_size = fold_build2 (EXACT_DIV_EXPR, integer_type_node,
                           array_size, element_size);
                           array_size, element_size);
 
 
  if (init != NULL_TREE
  if (init != NULL_TREE
      && step != NULL_TREE
      && step != NULL_TREE
      && TREE_CODE (init) == INTEGER_CST
      && TREE_CODE (init) == INTEGER_CST
      && TREE_CODE (step) == INTEGER_CST)
      && TREE_CODE (step) == INTEGER_CST)
    {
    {
      tree i_plus_s = fold_build2 (PLUS_EXPR, integer_type_node, init, step);
      tree i_plus_s = fold_build2 (PLUS_EXPR, integer_type_node, init, step);
      tree sign = fold_binary (GT_EXPR, boolean_type_node, i_plus_s, init);
      tree sign = fold_binary (GT_EXPR, boolean_type_node, i_plus_s, init);
 
 
      if (sign == boolean_true_node)
      if (sign == boolean_true_node)
        estimation = fold_build2 (CEIL_DIV_EXPR, integer_type_node,
        estimation = fold_build2 (CEIL_DIV_EXPR, integer_type_node,
                                  fold_build2 (MINUS_EXPR, integer_type_node,
                                  fold_build2 (MINUS_EXPR, integer_type_node,
                                               data_size, init), step);
                                               data_size, init), step);
 
 
      /* When the step is negative, as in PR23386: (init = 3, step =
      /* When the step is negative, as in PR23386: (init = 3, step =
         0ffffffff, data_size = 100), we have to compute the
         0ffffffff, data_size = 100), we have to compute the
         estimation as ceil_div (init, 0 - step) + 1.  */
         estimation as ceil_div (init, 0 - step) + 1.  */
      else if (sign == boolean_false_node)
      else if (sign == boolean_false_node)
        estimation =
        estimation =
          fold_build2 (PLUS_EXPR, integer_type_node,
          fold_build2 (PLUS_EXPR, integer_type_node,
                       fold_build2 (CEIL_DIV_EXPR, integer_type_node,
                       fold_build2 (CEIL_DIV_EXPR, integer_type_node,
                                    init,
                                    init,
                                    fold_build2 (MINUS_EXPR, unsigned_type_node,
                                    fold_build2 (MINUS_EXPR, unsigned_type_node,
                                                 integer_zero_node, step)),
                                                 integer_zero_node, step)),
                       integer_one_node);
                       integer_one_node);
 
 
      if (estimation)
      if (estimation)
        record_estimate (loop, estimation, boolean_true_node, stmt);
        record_estimate (loop, estimation, boolean_true_node, stmt);
    }
    }
}
}
 
 
/* Given an ARRAY_REF node REF, records its access functions.
/* Given an ARRAY_REF node REF, records its access functions.
   Example: given A[i][3], record in ACCESS_FNS the opnd1 function,
   Example: given A[i][3], record in ACCESS_FNS the opnd1 function,
   i.e. the constant "3", then recursively call the function on opnd0,
   i.e. the constant "3", then recursively call the function on opnd0,
   i.e. the ARRAY_REF "A[i]".
   i.e. the ARRAY_REF "A[i]".
   If ESTIMATE_ONLY is true, we just set the estimated number of loop
   If ESTIMATE_ONLY is true, we just set the estimated number of loop
   iterations, we don't store the access function.
   iterations, we don't store the access function.
   The function returns the base name: "A".  */
   The function returns the base name: "A".  */
 
 
static tree
static tree
analyze_array_indexes (struct loop *loop,
analyze_array_indexes (struct loop *loop,
                       VEC(tree,heap) **access_fns,
                       VEC(tree,heap) **access_fns,
                       tree ref, tree stmt,
                       tree ref, tree stmt,
                       bool estimate_only)
                       bool estimate_only)
{
{
  tree opnd0, opnd1;
  tree opnd0, opnd1;
  tree access_fn;
  tree access_fn;
 
 
  opnd0 = TREE_OPERAND (ref, 0);
  opnd0 = TREE_OPERAND (ref, 0);
  opnd1 = TREE_OPERAND (ref, 1);
  opnd1 = TREE_OPERAND (ref, 1);
 
 
  /* The detection of the evolution function for this data access is
  /* The detection of the evolution function for this data access is
     postponed until the dependence test.  This lazy strategy avoids
     postponed until the dependence test.  This lazy strategy avoids
     the computation of access functions that are of no interest for
     the computation of access functions that are of no interest for
     the optimizers.  */
     the optimizers.  */
  access_fn = instantiate_parameters
  access_fn = instantiate_parameters
    (loop, analyze_scalar_evolution (loop, opnd1));
    (loop, analyze_scalar_evolution (loop, opnd1));
 
 
  if (estimate_only
  if (estimate_only
      && chrec_contains_undetermined (loop->estimated_nb_iterations))
      && chrec_contains_undetermined (loop->estimated_nb_iterations))
    estimate_niter_from_size_of_data (loop, opnd0, access_fn, stmt);
    estimate_niter_from_size_of_data (loop, opnd0, access_fn, stmt);
 
 
  if (!estimate_only)
  if (!estimate_only)
    VEC_safe_push (tree, heap, *access_fns, access_fn);
    VEC_safe_push (tree, heap, *access_fns, access_fn);
 
 
  /* Recursively record other array access functions.  */
  /* Recursively record other array access functions.  */
  if (TREE_CODE (opnd0) == ARRAY_REF)
  if (TREE_CODE (opnd0) == ARRAY_REF)
    return analyze_array_indexes (loop, access_fns, opnd0, stmt, estimate_only);
    return analyze_array_indexes (loop, access_fns, opnd0, stmt, estimate_only);
 
 
  /* Return the base name of the data access.  */
  /* Return the base name of the data access.  */
  else
  else
    return opnd0;
    return opnd0;
}
}
 
 
/* For an array reference REF contained in STMT, attempt to bound the
/* For an array reference REF contained in STMT, attempt to bound the
   number of iterations in the loop containing STMT  */
   number of iterations in the loop containing STMT  */
 
 
void
void
estimate_iters_using_array (tree stmt, tree ref)
estimate_iters_using_array (tree stmt, tree ref)
{
{
  analyze_array_indexes (loop_containing_stmt (stmt), NULL, ref, stmt,
  analyze_array_indexes (loop_containing_stmt (stmt), NULL, ref, stmt,
                         true);
                         true);
}
}
 
 
/* For a data reference REF contained in the statement STMT, initialize
/* For a data reference REF contained in the statement STMT, initialize
   a DATA_REFERENCE structure, and return it.  IS_READ flag has to be
   a DATA_REFERENCE structure, and return it.  IS_READ flag has to be
   set to true when REF is in the right hand side of an
   set to true when REF is in the right hand side of an
   assignment.  */
   assignment.  */
 
 
struct data_reference *
struct data_reference *
analyze_array (tree stmt, tree ref, bool is_read)
analyze_array (tree stmt, tree ref, bool is_read)
{
{
  struct data_reference *res;
  struct data_reference *res;
  VEC(tree,heap) *acc_fns;
  VEC(tree,heap) *acc_fns;
 
 
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
    {
      fprintf (dump_file, "(analyze_array \n");
      fprintf (dump_file, "(analyze_array \n");
      fprintf (dump_file, "  (ref = ");
      fprintf (dump_file, "  (ref = ");
      print_generic_stmt (dump_file, ref, 0);
      print_generic_stmt (dump_file, ref, 0);
      fprintf (dump_file, ")\n");
      fprintf (dump_file, ")\n");
    }
    }
 
 
  res = XNEW (struct data_reference);
  res = XNEW (struct data_reference);
 
 
  DR_STMT (res) = stmt;
  DR_STMT (res) = stmt;
  DR_REF (res) = ref;
  DR_REF (res) = ref;
  acc_fns = VEC_alloc (tree, heap, 3);
  acc_fns = VEC_alloc (tree, heap, 3);
  DR_BASE_OBJECT (res) = analyze_array_indexes
  DR_BASE_OBJECT (res) = analyze_array_indexes
    (loop_containing_stmt (stmt), &acc_fns, ref, stmt, false);
    (loop_containing_stmt (stmt), &acc_fns, ref, stmt, false);
  DR_TYPE (res) = ARRAY_REF_TYPE;
  DR_TYPE (res) = ARRAY_REF_TYPE;
  DR_SET_ACCESS_FNS (res, acc_fns);
  DR_SET_ACCESS_FNS (res, acc_fns);
  DR_IS_READ (res) = is_read;
  DR_IS_READ (res) = is_read;
  DR_BASE_ADDRESS (res) = NULL_TREE;
  DR_BASE_ADDRESS (res) = NULL_TREE;
  DR_OFFSET (res) = NULL_TREE;
  DR_OFFSET (res) = NULL_TREE;
  DR_INIT (res) = NULL_TREE;
  DR_INIT (res) = NULL_TREE;
  DR_STEP (res) = NULL_TREE;
  DR_STEP (res) = NULL_TREE;
  DR_OFFSET_MISALIGNMENT (res) = NULL_TREE;
  DR_OFFSET_MISALIGNMENT (res) = NULL_TREE;
  DR_MEMTAG (res) = NULL_TREE;
  DR_MEMTAG (res) = NULL_TREE;
  DR_PTR_INFO (res) = NULL;
  DR_PTR_INFO (res) = NULL;
 
 
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, ")\n");
    fprintf (dump_file, ")\n");
 
 
  return res;
  return res;
}
}
 
 
/* Analyze an indirect memory reference, REF, that comes from STMT.
/* Analyze an indirect memory reference, REF, that comes from STMT.
   IS_READ is true if this is an indirect load, and false if it is
   IS_READ is true if this is an indirect load, and false if it is
   an indirect store.
   an indirect store.
   Return a new data reference structure representing the indirect_ref, or
   Return a new data reference structure representing the indirect_ref, or
   NULL if we cannot describe the access function.  */
   NULL if we cannot describe the access function.  */
 
 
static struct data_reference *
static struct data_reference *
analyze_indirect_ref (tree stmt, tree ref, bool is_read)
analyze_indirect_ref (tree stmt, tree ref, bool is_read)
{
{
  struct loop *loop = loop_containing_stmt (stmt);
  struct loop *loop = loop_containing_stmt (stmt);
  tree ptr_ref = TREE_OPERAND (ref, 0);
  tree ptr_ref = TREE_OPERAND (ref, 0);
  tree access_fn = analyze_scalar_evolution (loop, ptr_ref);
  tree access_fn = analyze_scalar_evolution (loop, ptr_ref);
  tree init = initial_condition_in_loop_num (access_fn, loop->num);
  tree init = initial_condition_in_loop_num (access_fn, loop->num);
  tree base_address = NULL_TREE, evolution, step = NULL_TREE;
  tree base_address = NULL_TREE, evolution, step = NULL_TREE;
  struct ptr_info_def *ptr_info = NULL;
  struct ptr_info_def *ptr_info = NULL;
 
 
  if (TREE_CODE (ptr_ref) == SSA_NAME)
  if (TREE_CODE (ptr_ref) == SSA_NAME)
    ptr_info = SSA_NAME_PTR_INFO (ptr_ref);
    ptr_info = SSA_NAME_PTR_INFO (ptr_ref);
 
 
  STRIP_NOPS (init);
  STRIP_NOPS (init);
  if (access_fn == chrec_dont_know || !init || init == chrec_dont_know)
  if (access_fn == chrec_dont_know || !init || init == chrec_dont_know)
    {
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
      if (dump_file && (dump_flags & TDF_DETAILS))
        {
        {
          fprintf (dump_file, "\nBad access function of ptr: ");
          fprintf (dump_file, "\nBad access function of ptr: ");
          print_generic_expr (dump_file, ref, TDF_SLIM);
          print_generic_expr (dump_file, ref, TDF_SLIM);
          fprintf (dump_file, "\n");
          fprintf (dump_file, "\n");
        }
        }
      return NULL;
      return NULL;
    }
    }
 
 
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
    {
      fprintf (dump_file, "\nAccess function of ptr: ");
      fprintf (dump_file, "\nAccess function of ptr: ");
      print_generic_expr (dump_file, access_fn, TDF_SLIM);
      print_generic_expr (dump_file, access_fn, TDF_SLIM);
      fprintf (dump_file, "\n");
      fprintf (dump_file, "\n");
    }
    }
 
 
  if (!expr_invariant_in_loop_p (loop, init))
  if (!expr_invariant_in_loop_p (loop, init))
    {
    {
    if (dump_file && (dump_flags & TDF_DETAILS))
    if (dump_file && (dump_flags & TDF_DETAILS))
        fprintf (dump_file, "\ninitial condition is not loop invariant.\n");
        fprintf (dump_file, "\ninitial condition is not loop invariant.\n");
    }
    }
  else
  else
    {
    {
      base_address = init;
      base_address = init;
      evolution = evolution_part_in_loop_num (access_fn, loop->num);
      evolution = evolution_part_in_loop_num (access_fn, loop->num);
      if (evolution != chrec_dont_know)
      if (evolution != chrec_dont_know)
        {
        {
          if (!evolution)
          if (!evolution)
            step = ssize_int (0);
            step = ssize_int (0);
          else
          else
            {
            {
              if (TREE_CODE (evolution) == INTEGER_CST)
              if (TREE_CODE (evolution) == INTEGER_CST)
                step = fold_convert (ssizetype, evolution);
                step = fold_convert (ssizetype, evolution);
              else
              else
                if (dump_file && (dump_flags & TDF_DETAILS))
                if (dump_file && (dump_flags & TDF_DETAILS))
                  fprintf (dump_file, "\nnon constant step for ptr access.\n");
                  fprintf (dump_file, "\nnon constant step for ptr access.\n");
            }
            }
        }
        }
      else
      else
        if (dump_file && (dump_flags & TDF_DETAILS))
        if (dump_file && (dump_flags & TDF_DETAILS))
          fprintf (dump_file, "\nunknown evolution of ptr.\n");
          fprintf (dump_file, "\nunknown evolution of ptr.\n");
    }
    }
  return init_data_ref (stmt, ref, NULL_TREE, access_fn, is_read, base_address,
  return init_data_ref (stmt, ref, NULL_TREE, access_fn, is_read, base_address,
                        NULL_TREE, step, NULL_TREE, NULL_TREE,
                        NULL_TREE, step, NULL_TREE, NULL_TREE,
                        ptr_info, POINTER_REF_TYPE);
                        ptr_info, POINTER_REF_TYPE);
}
}
 
 
/* For a data reference REF contained in the statement STMT, initialize
/* For a data reference REF contained in the statement STMT, initialize
   a DATA_REFERENCE structure, and return it.  */
   a DATA_REFERENCE structure, and return it.  */
 
 
struct data_reference *
struct data_reference *
init_data_ref (tree stmt,
init_data_ref (tree stmt,
               tree ref,
               tree ref,
               tree base,
               tree base,
               tree access_fn,
               tree access_fn,
               bool is_read,
               bool is_read,
               tree base_address,
               tree base_address,
               tree init_offset,
               tree init_offset,
               tree step,
               tree step,
               tree misalign,
               tree misalign,
               tree memtag,
               tree memtag,
               struct ptr_info_def *ptr_info,
               struct ptr_info_def *ptr_info,
               enum data_ref_type type)
               enum data_ref_type type)
{
{
  struct data_reference *res;
  struct data_reference *res;
  VEC(tree,heap) *acc_fns;
  VEC(tree,heap) *acc_fns;
 
 
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
    {
      fprintf (dump_file, "(init_data_ref \n");
      fprintf (dump_file, "(init_data_ref \n");
      fprintf (dump_file, "  (ref = ");
      fprintf (dump_file, "  (ref = ");
      print_generic_stmt (dump_file, ref, 0);
      print_generic_stmt (dump_file, ref, 0);
      fprintf (dump_file, ")\n");
      fprintf (dump_file, ")\n");
    }
    }
 
 
  res = XNEW (struct data_reference);
  res = XNEW (struct data_reference);
 
 
  DR_STMT (res) = stmt;
  DR_STMT (res) = stmt;
  DR_REF (res) = ref;
  DR_REF (res) = ref;
  DR_BASE_OBJECT (res) = base;
  DR_BASE_OBJECT (res) = base;
  DR_TYPE (res) = type;
  DR_TYPE (res) = type;
  acc_fns = VEC_alloc (tree, heap, 3);
  acc_fns = VEC_alloc (tree, heap, 3);
  DR_SET_ACCESS_FNS (res, acc_fns);
  DR_SET_ACCESS_FNS (res, acc_fns);
  VEC_quick_push (tree, DR_ACCESS_FNS (res), access_fn);
  VEC_quick_push (tree, DR_ACCESS_FNS (res), access_fn);
  DR_IS_READ (res) = is_read;
  DR_IS_READ (res) = is_read;
  DR_BASE_ADDRESS (res) = base_address;
  DR_BASE_ADDRESS (res) = base_address;
  DR_OFFSET (res) = init_offset;
  DR_OFFSET (res) = init_offset;
  DR_INIT (res) = NULL_TREE;
  DR_INIT (res) = NULL_TREE;
  DR_STEP (res) = step;
  DR_STEP (res) = step;
  DR_OFFSET_MISALIGNMENT (res) = misalign;
  DR_OFFSET_MISALIGNMENT (res) = misalign;
  DR_MEMTAG (res) = memtag;
  DR_MEMTAG (res) = memtag;
  DR_PTR_INFO (res) = ptr_info;
  DR_PTR_INFO (res) = ptr_info;
 
 
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, ")\n");
    fprintf (dump_file, ")\n");
 
 
  return res;
  return res;
}
}
 
 
/* Function strip_conversions
/* Function strip_conversions
 
 
   Strip conversions that don't narrow the mode.  */
   Strip conversions that don't narrow the mode.  */
 
 
static tree
static tree
strip_conversion (tree expr)
strip_conversion (tree expr)
{
{
  tree to, ti, oprnd0;
  tree to, ti, oprnd0;
 
 
  while (TREE_CODE (expr) == NOP_EXPR || TREE_CODE (expr) == CONVERT_EXPR)
  while (TREE_CODE (expr) == NOP_EXPR || TREE_CODE (expr) == CONVERT_EXPR)
    {
    {
      to = TREE_TYPE (expr);
      to = TREE_TYPE (expr);
      oprnd0 = TREE_OPERAND (expr, 0);
      oprnd0 = TREE_OPERAND (expr, 0);
      ti = TREE_TYPE (oprnd0);
      ti = TREE_TYPE (oprnd0);
 
 
      if (!INTEGRAL_TYPE_P (to) || !INTEGRAL_TYPE_P (ti))
      if (!INTEGRAL_TYPE_P (to) || !INTEGRAL_TYPE_P (ti))
        return NULL_TREE;
        return NULL_TREE;
      if (GET_MODE_SIZE (TYPE_MODE (to)) < GET_MODE_SIZE (TYPE_MODE (ti)))
      if (GET_MODE_SIZE (TYPE_MODE (to)) < GET_MODE_SIZE (TYPE_MODE (ti)))
        return NULL_TREE;
        return NULL_TREE;
 
 
      expr = oprnd0;
      expr = oprnd0;
    }
    }
  return expr;
  return expr;
}
}


 
 
/* Function analyze_offset_expr
/* Function analyze_offset_expr
 
 
   Given an offset expression EXPR received from get_inner_reference, analyze
   Given an offset expression EXPR received from get_inner_reference, analyze
   it and create an expression for INITIAL_OFFSET by substituting the variables
   it and create an expression for INITIAL_OFFSET by substituting the variables
   of EXPR with initial_condition of the corresponding access_fn in the loop.
   of EXPR with initial_condition of the corresponding access_fn in the loop.
   E.g.,
   E.g.,
      for i
      for i
         for (j = 3; j < N; j++)
         for (j = 3; j < N; j++)
            a[j].b[i][j] = 0;
            a[j].b[i][j] = 0;
 
 
   For a[j].b[i][j], EXPR will be 'i * C_i + j * C_j + C'. 'i' cannot be
   For a[j].b[i][j], EXPR will be 'i * C_i + j * C_j + C'. 'i' cannot be
   substituted, since its access_fn in the inner loop is i. 'j' will be
   substituted, since its access_fn in the inner loop is i. 'j' will be
   substituted with 3. An INITIAL_OFFSET will be 'i * C_i + C`', where
   substituted with 3. An INITIAL_OFFSET will be 'i * C_i + C`', where
   C` =  3 * C_j + C.
   C` =  3 * C_j + C.
 
 
   Compute MISALIGN (the misalignment of the data reference initial access from
   Compute MISALIGN (the misalignment of the data reference initial access from
   its base). Misalignment can be calculated only if all the variables can be
   its base). Misalignment can be calculated only if all the variables can be
   substituted with constants, otherwise, we record maximum possible alignment
   substituted with constants, otherwise, we record maximum possible alignment
   in ALIGNED_TO. In the above example, since 'i' cannot be substituted, MISALIGN
   in ALIGNED_TO. In the above example, since 'i' cannot be substituted, MISALIGN
   will be NULL_TREE, and the biggest divider of C_i (a power of 2) will be
   will be NULL_TREE, and the biggest divider of C_i (a power of 2) will be
   recorded in ALIGNED_TO.
   recorded in ALIGNED_TO.
 
 
   STEP is an evolution of the data reference in this loop in bytes.
   STEP is an evolution of the data reference in this loop in bytes.
   In the above example, STEP is C_j.
   In the above example, STEP is C_j.
 
 
   Return FALSE, if the analysis fails, e.g., there is no access_fn for a
   Return FALSE, if the analysis fails, e.g., there is no access_fn for a
   variable. In this case, all the outputs (INITIAL_OFFSET, MISALIGN, ALIGNED_TO
   variable. In this case, all the outputs (INITIAL_OFFSET, MISALIGN, ALIGNED_TO
   and STEP) are NULL_TREEs. Otherwise, return TRUE.
   and STEP) are NULL_TREEs. Otherwise, return TRUE.
 
 
*/
*/
 
 
static bool
static bool
analyze_offset_expr (tree expr,
analyze_offset_expr (tree expr,
                     struct loop *loop,
                     struct loop *loop,
                     tree *initial_offset,
                     tree *initial_offset,
                     tree *misalign,
                     tree *misalign,
                     tree *aligned_to,
                     tree *aligned_to,
                     tree *step)
                     tree *step)
{
{
  tree oprnd0;
  tree oprnd0;
  tree oprnd1;
  tree oprnd1;
  tree left_offset = ssize_int (0);
  tree left_offset = ssize_int (0);
  tree right_offset = ssize_int (0);
  tree right_offset = ssize_int (0);
  tree left_misalign = ssize_int (0);
  tree left_misalign = ssize_int (0);
  tree right_misalign = ssize_int (0);
  tree right_misalign = ssize_int (0);
  tree left_step = ssize_int (0);
  tree left_step = ssize_int (0);
  tree right_step = ssize_int (0);
  tree right_step = ssize_int (0);
  enum tree_code code;
  enum tree_code code;
  tree init, evolution;
  tree init, evolution;
  tree left_aligned_to = NULL_TREE, right_aligned_to = NULL_TREE;
  tree left_aligned_to = NULL_TREE, right_aligned_to = NULL_TREE;
 
 
  *step = NULL_TREE;
  *step = NULL_TREE;
  *misalign = NULL_TREE;
  *misalign = NULL_TREE;
  *aligned_to = NULL_TREE;
  *aligned_to = NULL_TREE;
  *initial_offset = NULL_TREE;
  *initial_offset = NULL_TREE;
 
 
  /* Strip conversions that don't narrow the mode.  */
  /* Strip conversions that don't narrow the mode.  */
  expr = strip_conversion (expr);
  expr = strip_conversion (expr);
  if (!expr)
  if (!expr)
    return false;
    return false;
 
 
  /* Stop conditions:
  /* Stop conditions:
     1. Constant.  */
     1. Constant.  */
  if (TREE_CODE (expr) == INTEGER_CST)
  if (TREE_CODE (expr) == INTEGER_CST)
    {
    {
      *initial_offset = fold_convert (ssizetype, expr);
      *initial_offset = fold_convert (ssizetype, expr);
      *misalign = fold_convert (ssizetype, expr);
      *misalign = fold_convert (ssizetype, expr);
      *step = ssize_int (0);
      *step = ssize_int (0);
      return true;
      return true;
    }
    }
 
 
  /* 2. Variable. Try to substitute with initial_condition of the corresponding
  /* 2. Variable. Try to substitute with initial_condition of the corresponding
     access_fn in the current loop.  */
     access_fn in the current loop.  */
  if (SSA_VAR_P (expr))
  if (SSA_VAR_P (expr))
    {
    {
      tree access_fn = analyze_scalar_evolution (loop, expr);
      tree access_fn = analyze_scalar_evolution (loop, expr);
 
 
      if (access_fn == chrec_dont_know)
      if (access_fn == chrec_dont_know)
        /* No access_fn.  */
        /* No access_fn.  */
        return false;
        return false;
 
 
      init = initial_condition_in_loop_num (access_fn, loop->num);
      init = initial_condition_in_loop_num (access_fn, loop->num);
      if (!expr_invariant_in_loop_p (loop, init))
      if (!expr_invariant_in_loop_p (loop, init))
        /* Not enough information: may be not loop invariant.
        /* Not enough information: may be not loop invariant.
           E.g., for a[b[i]], we get a[D], where D=b[i]. EXPR is D, its
           E.g., for a[b[i]], we get a[D], where D=b[i]. EXPR is D, its
           initial_condition is D, but it depends on i - loop's induction
           initial_condition is D, but it depends on i - loop's induction
           variable.  */
           variable.  */
        return false;
        return false;
 
 
      evolution = evolution_part_in_loop_num (access_fn, loop->num);
      evolution = evolution_part_in_loop_num (access_fn, loop->num);
      if (evolution && TREE_CODE (evolution) != INTEGER_CST)
      if (evolution && TREE_CODE (evolution) != INTEGER_CST)
        /* Evolution is not constant.  */
        /* Evolution is not constant.  */
        return false;
        return false;
 
 
      if (TREE_CODE (init) == INTEGER_CST)
      if (TREE_CODE (init) == INTEGER_CST)
        *misalign = fold_convert (ssizetype, init);
        *misalign = fold_convert (ssizetype, init);
      else
      else
        /* Not constant, misalignment cannot be calculated.  */
        /* Not constant, misalignment cannot be calculated.  */
        *misalign = NULL_TREE;
        *misalign = NULL_TREE;
 
 
      *initial_offset = fold_convert (ssizetype, init);
      *initial_offset = fold_convert (ssizetype, init);
 
 
      *step = evolution ? fold_convert (ssizetype, evolution) : ssize_int (0);
      *step = evolution ? fold_convert (ssizetype, evolution) : ssize_int (0);
      return true;
      return true;
    }
    }
 
 
  /* Recursive computation.  */
  /* Recursive computation.  */
  if (!BINARY_CLASS_P (expr))
  if (!BINARY_CLASS_P (expr))
    {
    {
      /* We expect to get binary expressions (PLUS/MINUS and MULT).  */
      /* We expect to get binary expressions (PLUS/MINUS and MULT).  */
      if (dump_file && (dump_flags & TDF_DETAILS))
      if (dump_file && (dump_flags & TDF_DETAILS))
        {
        {
          fprintf (dump_file, "\nNot binary expression ");
          fprintf (dump_file, "\nNot binary expression ");
          print_generic_expr (dump_file, expr, TDF_SLIM);
          print_generic_expr (dump_file, expr, TDF_SLIM);
          fprintf (dump_file, "\n");
          fprintf (dump_file, "\n");
        }
        }
      return false;
      return false;
    }
    }
  oprnd0 = TREE_OPERAND (expr, 0);
  oprnd0 = TREE_OPERAND (expr, 0);
  oprnd1 = TREE_OPERAND (expr, 1);
  oprnd1 = TREE_OPERAND (expr, 1);
 
 
  if (!analyze_offset_expr (oprnd0, loop, &left_offset, &left_misalign,
  if (!analyze_offset_expr (oprnd0, loop, &left_offset, &left_misalign,
                            &left_aligned_to, &left_step)
                            &left_aligned_to, &left_step)
      || !analyze_offset_expr (oprnd1, loop, &right_offset, &right_misalign,
      || !analyze_offset_expr (oprnd1, loop, &right_offset, &right_misalign,
                               &right_aligned_to, &right_step))
                               &right_aligned_to, &right_step))
    return false;
    return false;
 
 
  /* The type of the operation: plus, minus or mult.  */
  /* The type of the operation: plus, minus or mult.  */
  code = TREE_CODE (expr);
  code = TREE_CODE (expr);
  switch (code)
  switch (code)
    {
    {
    case MULT_EXPR:
    case MULT_EXPR:
      if (TREE_CODE (right_offset) != INTEGER_CST)
      if (TREE_CODE (right_offset) != INTEGER_CST)
        /* RIGHT_OFFSET can be not constant. For example, for arrays of variable
        /* RIGHT_OFFSET can be not constant. For example, for arrays of variable
           sized types.
           sized types.
           FORNOW: We don't support such cases.  */
           FORNOW: We don't support such cases.  */
        return false;
        return false;
 
 
      /* Strip conversions that don't narrow the mode.  */
      /* Strip conversions that don't narrow the mode.  */
      left_offset = strip_conversion (left_offset);
      left_offset = strip_conversion (left_offset);
      if (!left_offset)
      if (!left_offset)
        return false;
        return false;
      /* Misalignment computation.  */
      /* Misalignment computation.  */
      if (SSA_VAR_P (left_offset))
      if (SSA_VAR_P (left_offset))
        {
        {
          /* If the left side contains variables that can't be substituted with
          /* If the left side contains variables that can't be substituted with
             constants, the misalignment is unknown. However, if the right side
             constants, the misalignment is unknown. However, if the right side
             is a multiple of some alignment, we know that the expression is
             is a multiple of some alignment, we know that the expression is
             aligned to it. Therefore, we record such maximum possible value.
             aligned to it. Therefore, we record such maximum possible value.
           */
           */
          *misalign = NULL_TREE;
          *misalign = NULL_TREE;
          *aligned_to = ssize_int (highest_pow2_factor (right_offset));
          *aligned_to = ssize_int (highest_pow2_factor (right_offset));
        }
        }
      else
      else
        {
        {
          /* The left operand was successfully substituted with constant.  */
          /* The left operand was successfully substituted with constant.  */
          if (left_misalign)
          if (left_misalign)
            {
            {
              /* In case of EXPR '(i * C1 + j) * C2', LEFT_MISALIGN is
              /* In case of EXPR '(i * C1 + j) * C2', LEFT_MISALIGN is
                 NULL_TREE.  */
                 NULL_TREE.  */
              *misalign  = size_binop (code, left_misalign, right_misalign);
              *misalign  = size_binop (code, left_misalign, right_misalign);
              if (left_aligned_to && right_aligned_to)
              if (left_aligned_to && right_aligned_to)
                *aligned_to = size_binop (MIN_EXPR, left_aligned_to,
                *aligned_to = size_binop (MIN_EXPR, left_aligned_to,
                                          right_aligned_to);
                                          right_aligned_to);
              else
              else
                *aligned_to = left_aligned_to ?
                *aligned_to = left_aligned_to ?
                  left_aligned_to : right_aligned_to;
                  left_aligned_to : right_aligned_to;
            }
            }
          else
          else
            *misalign = NULL_TREE;
            *misalign = NULL_TREE;
        }
        }
 
 
      /* Step calculation.  */
      /* Step calculation.  */
      /* Multiply the step by the right operand.  */
      /* Multiply the step by the right operand.  */
      *step  = size_binop (MULT_EXPR, left_step, right_offset);
      *step  = size_binop (MULT_EXPR, left_step, right_offset);
      break;
      break;
 
 
    case PLUS_EXPR:
    case PLUS_EXPR:
    case MINUS_EXPR:
    case MINUS_EXPR:
      /* Combine the recursive calculations for step and misalignment.  */
      /* Combine the recursive calculations for step and misalignment.  */
      *step = size_binop (code, left_step, right_step);
      *step = size_binop (code, left_step, right_step);
 
 
      /* Unknown alignment.  */
      /* Unknown alignment.  */
      if ((!left_misalign && !left_aligned_to)
      if ((!left_misalign && !left_aligned_to)
          || (!right_misalign && !right_aligned_to))
          || (!right_misalign && !right_aligned_to))
        {
        {
          *misalign = NULL_TREE;
          *misalign = NULL_TREE;
          *aligned_to = NULL_TREE;
          *aligned_to = NULL_TREE;
          break;
          break;
        }
        }
 
 
      if (left_misalign && right_misalign)
      if (left_misalign && right_misalign)
        *misalign = size_binop (code, left_misalign, right_misalign);
        *misalign = size_binop (code, left_misalign, right_misalign);
      else
      else
        *misalign = left_misalign ? left_misalign : right_misalign;
        *misalign = left_misalign ? left_misalign : right_misalign;
 
 
      if (left_aligned_to && right_aligned_to)
      if (left_aligned_to && right_aligned_to)
        *aligned_to = size_binop (MIN_EXPR, left_aligned_to, right_aligned_to);
        *aligned_to = size_binop (MIN_EXPR, left_aligned_to, right_aligned_to);
      else
      else
        *aligned_to = left_aligned_to ? left_aligned_to : right_aligned_to;
        *aligned_to = left_aligned_to ? left_aligned_to : right_aligned_to;
 
 
      break;
      break;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  /* Compute offset.  */
  /* Compute offset.  */
  *initial_offset = fold_convert (ssizetype,
  *initial_offset = fold_convert (ssizetype,
                                  fold_build2 (code, TREE_TYPE (left_offset),
                                  fold_build2 (code, TREE_TYPE (left_offset),
                                               left_offset,
                                               left_offset,
                                               right_offset));
                                               right_offset));
  return true;
  return true;
}
}
 
 
/* Function address_analysis
/* Function address_analysis
 
 
   Return the BASE of the address expression EXPR.
   Return the BASE of the address expression EXPR.
   Also compute the OFFSET from BASE, MISALIGN and STEP.
   Also compute the OFFSET from BASE, MISALIGN and STEP.
 
 
   Input:
   Input:
   EXPR - the address expression that is being analyzed
   EXPR - the address expression that is being analyzed
   STMT - the statement that contains EXPR or its original memory reference
   STMT - the statement that contains EXPR or its original memory reference
   IS_READ - TRUE if STMT reads from EXPR, FALSE if writes to EXPR
   IS_READ - TRUE if STMT reads from EXPR, FALSE if writes to EXPR
   DR - data_reference struct for the original memory reference
   DR - data_reference struct for the original memory reference
 
 
   Output:
   Output:
   BASE (returned value) - the base of the data reference EXPR.
   BASE (returned value) - the base of the data reference EXPR.
   INITIAL_OFFSET - initial offset of EXPR from BASE (an expression)
   INITIAL_OFFSET - initial offset of EXPR from BASE (an expression)
   MISALIGN - offset of EXPR from BASE in bytes (a constant) or NULL_TREE if the
   MISALIGN - offset of EXPR from BASE in bytes (a constant) or NULL_TREE if the
              computation is impossible
              computation is impossible
   ALIGNED_TO - maximum alignment of EXPR or NULL_TREE if MISALIGN can be
   ALIGNED_TO - maximum alignment of EXPR or NULL_TREE if MISALIGN can be
                calculated (doesn't depend on variables)
                calculated (doesn't depend on variables)
   STEP - evolution of EXPR in the loop
   STEP - evolution of EXPR in the loop
 
 
   If something unexpected is encountered (an unsupported form of data-ref),
   If something unexpected is encountered (an unsupported form of data-ref),
   then NULL_TREE is returned.
   then NULL_TREE is returned.
 */
 */
 
 
static tree
static tree
address_analysis (tree expr, tree stmt, bool is_read, struct data_reference *dr,
address_analysis (tree expr, tree stmt, bool is_read, struct data_reference *dr,
                  tree *offset, tree *misalign, tree *aligned_to, tree *step)
                  tree *offset, tree *misalign, tree *aligned_to, tree *step)
{
{
  tree oprnd0, oprnd1, base_address, offset_expr, base_addr0, base_addr1;
  tree oprnd0, oprnd1, base_address, offset_expr, base_addr0, base_addr1;
  tree address_offset = ssize_int (0), address_misalign = ssize_int (0);
  tree address_offset = ssize_int (0), address_misalign = ssize_int (0);
  tree dummy, address_aligned_to = NULL_TREE;
  tree dummy, address_aligned_to = NULL_TREE;
  struct ptr_info_def *dummy1;
  struct ptr_info_def *dummy1;
  subvar_t dummy2;
  subvar_t dummy2;
 
 
  switch (TREE_CODE (expr))
  switch (TREE_CODE (expr))
    {
    {
    case PLUS_EXPR:
    case PLUS_EXPR:
    case MINUS_EXPR:
    case MINUS_EXPR:
      /* EXPR is of form {base +/- offset} (or {offset +/- base}).  */
      /* EXPR is of form {base +/- offset} (or {offset +/- base}).  */
      oprnd0 = TREE_OPERAND (expr, 0);
      oprnd0 = TREE_OPERAND (expr, 0);
      oprnd1 = TREE_OPERAND (expr, 1);
      oprnd1 = TREE_OPERAND (expr, 1);
 
 
      STRIP_NOPS (oprnd0);
      STRIP_NOPS (oprnd0);
      STRIP_NOPS (oprnd1);
      STRIP_NOPS (oprnd1);
 
 
      /* Recursively try to find the base of the address contained in EXPR.
      /* Recursively try to find the base of the address contained in EXPR.
         For offset, the returned base will be NULL.  */
         For offset, the returned base will be NULL.  */
      base_addr0 = address_analysis (oprnd0, stmt, is_read, dr, &address_offset,
      base_addr0 = address_analysis (oprnd0, stmt, is_read, dr, &address_offset,
                                     &address_misalign, &address_aligned_to,
                                     &address_misalign, &address_aligned_to,
                                     step);
                                     step);
 
 
      base_addr1 = address_analysis (oprnd1, stmt, is_read,  dr, &address_offset,
      base_addr1 = address_analysis (oprnd1, stmt, is_read,  dr, &address_offset,
                                     &address_misalign, &address_aligned_to,
                                     &address_misalign, &address_aligned_to,
                                     step);
                                     step);
 
 
      /* We support cases where only one of the operands contains an
      /* We support cases where only one of the operands contains an
         address.  */
         address.  */
      if ((base_addr0 && base_addr1) || (!base_addr0 && !base_addr1))
      if ((base_addr0 && base_addr1) || (!base_addr0 && !base_addr1))
        {
        {
          if (dump_file && (dump_flags & TDF_DETAILS))
          if (dump_file && (dump_flags & TDF_DETAILS))
            {
            {
              fprintf (dump_file,
              fprintf (dump_file,
                    "\neither more than one address or no addresses in expr ");
                    "\neither more than one address or no addresses in expr ");
              print_generic_expr (dump_file, expr, TDF_SLIM);
              print_generic_expr (dump_file, expr, TDF_SLIM);
              fprintf (dump_file, "\n");
              fprintf (dump_file, "\n");
            }
            }
          return NULL_TREE;
          return NULL_TREE;
        }
        }
 
 
      /* To revert STRIP_NOPS.  */
      /* To revert STRIP_NOPS.  */
      oprnd0 = TREE_OPERAND (expr, 0);
      oprnd0 = TREE_OPERAND (expr, 0);
      oprnd1 = TREE_OPERAND (expr, 1);
      oprnd1 = TREE_OPERAND (expr, 1);
 
 
      offset_expr = base_addr0 ?
      offset_expr = base_addr0 ?
        fold_convert (ssizetype, oprnd1) : fold_convert (ssizetype, oprnd0);
        fold_convert (ssizetype, oprnd1) : fold_convert (ssizetype, oprnd0);
 
 
      /* EXPR is of form {base +/- offset} (or {offset +/- base}). If offset is
      /* EXPR is of form {base +/- offset} (or {offset +/- base}). If offset is
         a number, we can add it to the misalignment value calculated for base,
         a number, we can add it to the misalignment value calculated for base,
         otherwise, misalignment is NULL.  */
         otherwise, misalignment is NULL.  */
      if (TREE_CODE (offset_expr) == INTEGER_CST && address_misalign)
      if (TREE_CODE (offset_expr) == INTEGER_CST && address_misalign)
        {
        {
          *misalign = size_binop (TREE_CODE (expr), address_misalign,
          *misalign = size_binop (TREE_CODE (expr), address_misalign,
                                  offset_expr);
                                  offset_expr);
          *aligned_to = address_aligned_to;
          *aligned_to = address_aligned_to;
        }
        }
      else
      else
        {
        {
          *misalign = NULL_TREE;
          *misalign = NULL_TREE;
          *aligned_to = NULL_TREE;
          *aligned_to = NULL_TREE;
        }
        }
 
 
      /* Combine offset (from EXPR {base + offset}) with the offset calculated
      /* Combine offset (from EXPR {base + offset}) with the offset calculated
         for base.  */
         for base.  */
      *offset = size_binop (TREE_CODE (expr), address_offset, offset_expr);
      *offset = size_binop (TREE_CODE (expr), address_offset, offset_expr);
      return base_addr0 ? base_addr0 : base_addr1;
      return base_addr0 ? base_addr0 : base_addr1;
 
 
    case ADDR_EXPR:
    case ADDR_EXPR:
      base_address = object_analysis (TREE_OPERAND (expr, 0), stmt, is_read,
      base_address = object_analysis (TREE_OPERAND (expr, 0), stmt, is_read,
                                      &dr, offset, misalign, aligned_to, step,
                                      &dr, offset, misalign, aligned_to, step,
                                      &dummy, &dummy1, &dummy2);
                                      &dummy, &dummy1, &dummy2);
      return base_address;
      return base_address;
 
 
    case SSA_NAME:
    case SSA_NAME:
      if (!POINTER_TYPE_P (TREE_TYPE (expr)))
      if (!POINTER_TYPE_P (TREE_TYPE (expr)))
        {
        {
          if (dump_file && (dump_flags & TDF_DETAILS))
          if (dump_file && (dump_flags & TDF_DETAILS))
            {
            {
              fprintf (dump_file, "\nnot pointer SSA_NAME ");
              fprintf (dump_file, "\nnot pointer SSA_NAME ");
              print_generic_expr (dump_file, expr, TDF_SLIM);
              print_generic_expr (dump_file, expr, TDF_SLIM);
              fprintf (dump_file, "\n");
              fprintf (dump_file, "\n");
            }
            }
          return NULL_TREE;
          return NULL_TREE;
        }
        }
      *aligned_to = ssize_int (TYPE_ALIGN_UNIT (TREE_TYPE (TREE_TYPE (expr))));
      *aligned_to = ssize_int (TYPE_ALIGN_UNIT (TREE_TYPE (TREE_TYPE (expr))));
      *misalign = ssize_int (0);
      *misalign = ssize_int (0);
      *offset = ssize_int (0);
      *offset = ssize_int (0);
      *step = ssize_int (0);
      *step = ssize_int (0);
      return expr;
      return expr;
 
 
    default:
    default:
      return NULL_TREE;
      return NULL_TREE;
    }
    }
}
}
 
 
 
 
/* Function object_analysis
/* Function object_analysis
 
 
   Create a data-reference structure DR for MEMREF.
   Create a data-reference structure DR for MEMREF.
   Return the BASE of the data reference MEMREF if the analysis is possible.
   Return the BASE of the data reference MEMREF if the analysis is possible.
   Also compute the INITIAL_OFFSET from BASE, MISALIGN and STEP.
   Also compute the INITIAL_OFFSET from BASE, MISALIGN and STEP.
   E.g., for EXPR a.b[i] + 4B, BASE is a, and OFFSET is the overall offset
   E.g., for EXPR a.b[i] + 4B, BASE is a, and OFFSET is the overall offset
   'a.b[i] + 4B' from a (can be an expression), MISALIGN is an OFFSET
   'a.b[i] + 4B' from a (can be an expression), MISALIGN is an OFFSET
   instantiated with initial_conditions of access_functions of variables,
   instantiated with initial_conditions of access_functions of variables,
   and STEP is the evolution of the DR_REF in this loop.
   and STEP is the evolution of the DR_REF in this loop.
 
 
   Function get_inner_reference is used for the above in case of ARRAY_REF and
   Function get_inner_reference is used for the above in case of ARRAY_REF and
   COMPONENT_REF.
   COMPONENT_REF.
 
 
   The structure of the function is as follows:
   The structure of the function is as follows:
   Part 1:
   Part 1:
   Case 1. For handled_component_p refs
   Case 1. For handled_component_p refs
          1.1 build data-reference structure for MEMREF
          1.1 build data-reference structure for MEMREF
          1.2 call get_inner_reference
          1.2 call get_inner_reference
            1.2.1 analyze offset expr received from get_inner_reference
            1.2.1 analyze offset expr received from get_inner_reference
          (fall through with BASE)
          (fall through with BASE)
   Case 2. For declarations
   Case 2. For declarations
          2.1 set MEMTAG
          2.1 set MEMTAG
   Case 3. For INDIRECT_REFs
   Case 3. For INDIRECT_REFs
          3.1 build data-reference structure for MEMREF
          3.1 build data-reference structure for MEMREF
          3.2 analyze evolution and initial condition of MEMREF
          3.2 analyze evolution and initial condition of MEMREF
          3.3 set data-reference structure for MEMREF
          3.3 set data-reference structure for MEMREF
          3.4 call address_analysis to analyze INIT of the access function
          3.4 call address_analysis to analyze INIT of the access function
          3.5 extract memory tag
          3.5 extract memory tag
 
 
   Part 2:
   Part 2:
   Combine the results of object and address analysis to calculate
   Combine the results of object and address analysis to calculate
   INITIAL_OFFSET, STEP and misalignment info.
   INITIAL_OFFSET, STEP and misalignment info.
 
 
   Input:
   Input:
   MEMREF - the memory reference that is being analyzed
   MEMREF - the memory reference that is being analyzed
   STMT - the statement that contains MEMREF
   STMT - the statement that contains MEMREF
   IS_READ - TRUE if STMT reads from MEMREF, FALSE if writes to MEMREF
   IS_READ - TRUE if STMT reads from MEMREF, FALSE if writes to MEMREF
 
 
   Output:
   Output:
   BASE_ADDRESS (returned value) - the base address of the data reference MEMREF
   BASE_ADDRESS (returned value) - the base address of the data reference MEMREF
                                   E.g, if MEMREF is a.b[k].c[i][j] the returned
                                   E.g, if MEMREF is a.b[k].c[i][j] the returned
                                   base is &a.
                                   base is &a.
   DR - data_reference struct for MEMREF
   DR - data_reference struct for MEMREF
   INITIAL_OFFSET - initial offset of MEMREF from BASE (an expression)
   INITIAL_OFFSET - initial offset of MEMREF from BASE (an expression)
   MISALIGN - offset of MEMREF from BASE in bytes (a constant) modulo alignment of
   MISALIGN - offset of MEMREF from BASE in bytes (a constant) modulo alignment of
              ALIGNMENT or NULL_TREE if the computation is impossible
              ALIGNMENT or NULL_TREE if the computation is impossible
   ALIGNED_TO - maximum alignment of EXPR or NULL_TREE if MISALIGN can be
   ALIGNED_TO - maximum alignment of EXPR or NULL_TREE if MISALIGN can be
                calculated (doesn't depend on variables)
                calculated (doesn't depend on variables)
   STEP - evolution of the DR_REF in the loop
   STEP - evolution of the DR_REF in the loop
   MEMTAG - memory tag for aliasing purposes
   MEMTAG - memory tag for aliasing purposes
   PTR_INFO - NULL or points-to aliasing info from a pointer SSA_NAME
   PTR_INFO - NULL or points-to aliasing info from a pointer SSA_NAME
   SUBVARS - Sub-variables of the variable
   SUBVARS - Sub-variables of the variable
 
 
   If the analysis of MEMREF evolution in the loop fails, NULL_TREE is returned,
   If the analysis of MEMREF evolution in the loop fails, NULL_TREE is returned,
   but DR can be created anyway.
   but DR can be created anyway.
 
 
*/
*/
 
 
static tree
static tree
object_analysis (tree memref, tree stmt, bool is_read,
object_analysis (tree memref, tree stmt, bool is_read,
                 struct data_reference **dr, tree *offset, tree *misalign,
                 struct data_reference **dr, tree *offset, tree *misalign,
                 tree *aligned_to, tree *step, tree *memtag,
                 tree *aligned_to, tree *step, tree *memtag,
                 struct ptr_info_def **ptr_info, subvar_t *subvars)
                 struct ptr_info_def **ptr_info, subvar_t *subvars)
{
{
  tree base = NULL_TREE, base_address = NULL_TREE;
  tree base = NULL_TREE, base_address = NULL_TREE;
  tree object_offset = ssize_int (0), object_misalign = ssize_int (0);
  tree object_offset = ssize_int (0), object_misalign = ssize_int (0);
  tree object_step = ssize_int (0), address_step = ssize_int (0);
  tree object_step = ssize_int (0), address_step = ssize_int (0);
  tree address_offset = ssize_int (0), address_misalign = ssize_int (0);
  tree address_offset = ssize_int (0), address_misalign = ssize_int (0);
  HOST_WIDE_INT pbitsize, pbitpos;
  HOST_WIDE_INT pbitsize, pbitpos;
  tree poffset, bit_pos_in_bytes;
  tree poffset, bit_pos_in_bytes;
  enum machine_mode pmode;
  enum machine_mode pmode;
  int punsignedp, pvolatilep;
  int punsignedp, pvolatilep;
  tree ptr_step = ssize_int (0), ptr_init = NULL_TREE;
  tree ptr_step = ssize_int (0), ptr_init = NULL_TREE;
  struct loop *loop = loop_containing_stmt (stmt);
  struct loop *loop = loop_containing_stmt (stmt);
  struct data_reference *ptr_dr = NULL;
  struct data_reference *ptr_dr = NULL;
  tree object_aligned_to = NULL_TREE, address_aligned_to = NULL_TREE;
  tree object_aligned_to = NULL_TREE, address_aligned_to = NULL_TREE;
  tree comp_ref = NULL_TREE;
  tree comp_ref = NULL_TREE;
 
 
 *ptr_info = NULL;
 *ptr_info = NULL;
 
 
  /* Part 1:  */
  /* Part 1:  */
  /* Case 1. handled_component_p refs.  */
  /* Case 1. handled_component_p refs.  */
  if (handled_component_p (memref))
  if (handled_component_p (memref))
    {
    {
      /* 1.1 build data-reference structure for MEMREF.  */
      /* 1.1 build data-reference structure for MEMREF.  */
      if (!(*dr))
      if (!(*dr))
        {
        {
          if (TREE_CODE (memref) == ARRAY_REF)
          if (TREE_CODE (memref) == ARRAY_REF)
            *dr = analyze_array (stmt, memref, is_read);
            *dr = analyze_array (stmt, memref, is_read);
          else if (TREE_CODE (memref) == COMPONENT_REF)
          else if (TREE_CODE (memref) == COMPONENT_REF)
            comp_ref = memref;
            comp_ref = memref;
          else
          else
            {
            {
              if (dump_file && (dump_flags & TDF_DETAILS))
              if (dump_file && (dump_flags & TDF_DETAILS))
                {
                {
                  fprintf (dump_file, "\ndata-ref of unsupported type ");
                  fprintf (dump_file, "\ndata-ref of unsupported type ");
                  print_generic_expr (dump_file, memref, TDF_SLIM);
                  print_generic_expr (dump_file, memref, TDF_SLIM);
                  fprintf (dump_file, "\n");
                  fprintf (dump_file, "\n");
                }
                }
              return NULL_TREE;
              return NULL_TREE;
            }
            }
        }
        }
 
 
      /* 1.2 call get_inner_reference.  */
      /* 1.2 call get_inner_reference.  */
      /* Find the base and the offset from it.  */
      /* Find the base and the offset from it.  */
      base = get_inner_reference (memref, &pbitsize, &pbitpos, &poffset,
      base = get_inner_reference (memref, &pbitsize, &pbitpos, &poffset,
                                  &pmode, &punsignedp, &pvolatilep, false);
                                  &pmode, &punsignedp, &pvolatilep, false);
      if (!base)
      if (!base)
        {
        {
          if (dump_file && (dump_flags & TDF_DETAILS))
          if (dump_file && (dump_flags & TDF_DETAILS))
            {
            {
              fprintf (dump_file, "\nfailed to get inner ref for ");
              fprintf (dump_file, "\nfailed to get inner ref for ");
              print_generic_expr (dump_file, memref, TDF_SLIM);
              print_generic_expr (dump_file, memref, TDF_SLIM);
              fprintf (dump_file, "\n");
              fprintf (dump_file, "\n");
            }
            }
          return NULL_TREE;
          return NULL_TREE;
        }
        }
 
 
      /* 1.2.1 analyze offset expr received from get_inner_reference.  */
      /* 1.2.1 analyze offset expr received from get_inner_reference.  */
      if (poffset
      if (poffset
          && !analyze_offset_expr (poffset, loop, &object_offset,
          && !analyze_offset_expr (poffset, loop, &object_offset,
                                   &object_misalign, &object_aligned_to,
                                   &object_misalign, &object_aligned_to,
                                   &object_step))
                                   &object_step))
        {
        {
          if (dump_file && (dump_flags & TDF_DETAILS))
          if (dump_file && (dump_flags & TDF_DETAILS))
            {
            {
              fprintf (dump_file, "\nfailed to compute offset or step for ");
              fprintf (dump_file, "\nfailed to compute offset or step for ");
              print_generic_expr (dump_file, memref, TDF_SLIM);
              print_generic_expr (dump_file, memref, TDF_SLIM);
              fprintf (dump_file, "\n");
              fprintf (dump_file, "\n");
            }
            }
          return NULL_TREE;
          return NULL_TREE;
        }
        }
 
 
      /* Add bit position to OFFSET and MISALIGN.  */
      /* Add bit position to OFFSET and MISALIGN.  */
 
 
      bit_pos_in_bytes = ssize_int (pbitpos/BITS_PER_UNIT);
      bit_pos_in_bytes = ssize_int (pbitpos/BITS_PER_UNIT);
      /* Check that there is no remainder in bits.  */
      /* Check that there is no remainder in bits.  */
      if (pbitpos%BITS_PER_UNIT)
      if (pbitpos%BITS_PER_UNIT)
        {
        {
          if (dump_file && (dump_flags & TDF_DETAILS))
          if (dump_file && (dump_flags & TDF_DETAILS))
            fprintf (dump_file, "\nbit offset alignment.\n");
            fprintf (dump_file, "\nbit offset alignment.\n");
          return NULL_TREE;
          return NULL_TREE;
        }
        }
      object_offset = size_binop (PLUS_EXPR, bit_pos_in_bytes, object_offset);
      object_offset = size_binop (PLUS_EXPR, bit_pos_in_bytes, object_offset);
      if (object_misalign)
      if (object_misalign)
        object_misalign = size_binop (PLUS_EXPR, object_misalign,
        object_misalign = size_binop (PLUS_EXPR, object_misalign,
                                      bit_pos_in_bytes);
                                      bit_pos_in_bytes);
 
 
      memref = base; /* To continue analysis of BASE.  */
      memref = base; /* To continue analysis of BASE.  */
      /* fall through  */
      /* fall through  */
    }
    }
 
 
  /*  Part 1: Case 2. Declarations.  */
  /*  Part 1: Case 2. Declarations.  */
  if (DECL_P (memref))
  if (DECL_P (memref))
    {
    {
      /* We expect to get a decl only if we already have a DR, or with
      /* We expect to get a decl only if we already have a DR, or with
         COMPONENT_REFs of type 'a[i].b'.  */
         COMPONENT_REFs of type 'a[i].b'.  */
      if (!(*dr))
      if (!(*dr))
        {
        {
          if (comp_ref && TREE_CODE (TREE_OPERAND (comp_ref, 0)) == ARRAY_REF)
          if (comp_ref && TREE_CODE (TREE_OPERAND (comp_ref, 0)) == ARRAY_REF)
            {
            {
              *dr = analyze_array (stmt, TREE_OPERAND (comp_ref, 0), is_read);
              *dr = analyze_array (stmt, TREE_OPERAND (comp_ref, 0), is_read);
              if (DR_NUM_DIMENSIONS (*dr) != 1)
              if (DR_NUM_DIMENSIONS (*dr) != 1)
                {
                {
                  if (dump_file && (dump_flags & TDF_DETAILS))
                  if (dump_file && (dump_flags & TDF_DETAILS))
                    {
                    {
                      fprintf (dump_file, "\n multidimensional component ref ");
                      fprintf (dump_file, "\n multidimensional component ref ");
                      print_generic_expr (dump_file, comp_ref, TDF_SLIM);
                      print_generic_expr (dump_file, comp_ref, TDF_SLIM);
                      fprintf (dump_file, "\n");
                      fprintf (dump_file, "\n");
                    }
                    }
                  return NULL_TREE;
                  return NULL_TREE;
                }
                }
            }
            }
          else
          else
            {
            {
              if (dump_file && (dump_flags & TDF_DETAILS))
              if (dump_file && (dump_flags & TDF_DETAILS))
                {
                {
                  fprintf (dump_file, "\nunhandled decl ");
                  fprintf (dump_file, "\nunhandled decl ");
                  print_generic_expr (dump_file, memref, TDF_SLIM);
                  print_generic_expr (dump_file, memref, TDF_SLIM);
                  fprintf (dump_file, "\n");
                  fprintf (dump_file, "\n");
                }
                }
              return NULL_TREE;
              return NULL_TREE;
            }
            }
        }
        }
 
 
      /* TODO: if during the analysis of INDIRECT_REF we get to an object, put
      /* TODO: if during the analysis of INDIRECT_REF we get to an object, put
         the object in BASE_OBJECT field if we can prove that this is O.K.,
         the object in BASE_OBJECT field if we can prove that this is O.K.,
         i.e., the data-ref access is bounded by the bounds of the BASE_OBJECT.
         i.e., the data-ref access is bounded by the bounds of the BASE_OBJECT.
         (e.g., if the object is an array base 'a', where 'a[N]', we must prove
         (e.g., if the object is an array base 'a', where 'a[N]', we must prove
         that every access with 'p' (the original INDIRECT_REF based on '&a')
         that every access with 'p' (the original INDIRECT_REF based on '&a')
         in the loop is within the array boundaries - from a[0] to a[N-1]).
         in the loop is within the array boundaries - from a[0] to a[N-1]).
         Otherwise, our alias analysis can be incorrect.
         Otherwise, our alias analysis can be incorrect.
         Even if an access function based on BASE_OBJECT can't be build, update
         Even if an access function based on BASE_OBJECT can't be build, update
         BASE_OBJECT field to enable us to prove that two data-refs are
         BASE_OBJECT field to enable us to prove that two data-refs are
         different (without access function, distance analysis is impossible).
         different (without access function, distance analysis is impossible).
      */
      */
     if (SSA_VAR_P (memref) && var_can_have_subvars (memref))
     if (SSA_VAR_P (memref) && var_can_have_subvars (memref))
        *subvars = get_subvars_for_var (memref);
        *subvars = get_subvars_for_var (memref);
      base_address = build_fold_addr_expr (memref);
      base_address = build_fold_addr_expr (memref);
      /* 2.1 set MEMTAG.  */
      /* 2.1 set MEMTAG.  */
      *memtag = memref;
      *memtag = memref;
    }
    }
 
 
  /* Part 1:  Case 3. INDIRECT_REFs.  */
  /* Part 1:  Case 3. INDIRECT_REFs.  */
  else if (TREE_CODE (memref) == INDIRECT_REF)
  else if (TREE_CODE (memref) == INDIRECT_REF)
    {
    {
      tree ptr_ref = TREE_OPERAND (memref, 0);
      tree ptr_ref = TREE_OPERAND (memref, 0);
      if (TREE_CODE (ptr_ref) == SSA_NAME)
      if (TREE_CODE (ptr_ref) == SSA_NAME)
        *ptr_info = SSA_NAME_PTR_INFO (ptr_ref);
        *ptr_info = SSA_NAME_PTR_INFO (ptr_ref);
 
 
      /* 3.1 build data-reference structure for MEMREF.  */
      /* 3.1 build data-reference structure for MEMREF.  */
      ptr_dr = analyze_indirect_ref (stmt, memref, is_read);
      ptr_dr = analyze_indirect_ref (stmt, memref, is_read);
      if (!ptr_dr)
      if (!ptr_dr)
        {
        {
          if (dump_file && (dump_flags & TDF_DETAILS))
          if (dump_file && (dump_flags & TDF_DETAILS))
            {
            {
              fprintf (dump_file, "\nfailed to create dr for ");
              fprintf (dump_file, "\nfailed to create dr for ");
              print_generic_expr (dump_file, memref, TDF_SLIM);
              print_generic_expr (dump_file, memref, TDF_SLIM);
              fprintf (dump_file, "\n");
              fprintf (dump_file, "\n");
            }
            }
          return NULL_TREE;
          return NULL_TREE;
        }
        }
 
 
      /* 3.2 analyze evolution and initial condition of MEMREF.  */
      /* 3.2 analyze evolution and initial condition of MEMREF.  */
      ptr_step = DR_STEP (ptr_dr);
      ptr_step = DR_STEP (ptr_dr);
      ptr_init = DR_BASE_ADDRESS (ptr_dr);
      ptr_init = DR_BASE_ADDRESS (ptr_dr);
      if (!ptr_init || !ptr_step || !POINTER_TYPE_P (TREE_TYPE (ptr_init)))
      if (!ptr_init || !ptr_step || !POINTER_TYPE_P (TREE_TYPE (ptr_init)))
        {
        {
          *dr = (*dr) ? *dr : ptr_dr;
          *dr = (*dr) ? *dr : ptr_dr;
          if (dump_file && (dump_flags & TDF_DETAILS))
          if (dump_file && (dump_flags & TDF_DETAILS))
            {
            {
              fprintf (dump_file, "\nbad pointer access ");
              fprintf (dump_file, "\nbad pointer access ");
              print_generic_expr (dump_file, memref, TDF_SLIM);
              print_generic_expr (dump_file, memref, TDF_SLIM);
              fprintf (dump_file, "\n");
              fprintf (dump_file, "\n");
            }
            }
          return NULL_TREE;
          return NULL_TREE;
        }
        }
 
 
      if (integer_zerop (ptr_step) && !(*dr))
      if (integer_zerop (ptr_step) && !(*dr))
        {
        {
          if (dump_file && (dump_flags & TDF_DETAILS))
          if (dump_file && (dump_flags & TDF_DETAILS))
            fprintf (dump_file, "\nptr is loop invariant.\n");
            fprintf (dump_file, "\nptr is loop invariant.\n");
          *dr = ptr_dr;
          *dr = ptr_dr;
          return NULL_TREE;
          return NULL_TREE;
 
 
          /* If there exists DR for MEMREF, we are analyzing the base of
          /* If there exists DR for MEMREF, we are analyzing the base of
             handled component (PTR_INIT), which not necessary has evolution in
             handled component (PTR_INIT), which not necessary has evolution in
             the loop.  */
             the loop.  */
        }
        }
      object_step = size_binop (PLUS_EXPR, object_step, ptr_step);
      object_step = size_binop (PLUS_EXPR, object_step, ptr_step);
 
 
      /* 3.3 set data-reference structure for MEMREF.  */
      /* 3.3 set data-reference structure for MEMREF.  */
      if (!*dr)
      if (!*dr)
        *dr = ptr_dr;
        *dr = ptr_dr;
 
 
      /* 3.4 call address_analysis to analyze INIT of the access
      /* 3.4 call address_analysis to analyze INIT of the access
         function.  */
         function.  */
      base_address = address_analysis (ptr_init, stmt, is_read, *dr,
      base_address = address_analysis (ptr_init, stmt, is_read, *dr,
                                       &address_offset, &address_misalign,
                                       &address_offset, &address_misalign,
                                       &address_aligned_to, &address_step);
                                       &address_aligned_to, &address_step);
      if (!base_address)
      if (!base_address)
        {
        {
          if (dump_file && (dump_flags & TDF_DETAILS))
          if (dump_file && (dump_flags & TDF_DETAILS))
            {
            {
              fprintf (dump_file, "\nfailed to analyze address ");
              fprintf (dump_file, "\nfailed to analyze address ");
              print_generic_expr (dump_file, ptr_init, TDF_SLIM);
              print_generic_expr (dump_file, ptr_init, TDF_SLIM);
              fprintf (dump_file, "\n");
              fprintf (dump_file, "\n");
            }
            }
          return NULL_TREE;
          return NULL_TREE;
        }
        }
 
 
      /* 3.5 extract memory tag.  */
      /* 3.5 extract memory tag.  */
      switch (TREE_CODE (base_address))
      switch (TREE_CODE (base_address))
        {
        {
        case SSA_NAME:
        case SSA_NAME:
          *memtag = get_var_ann (SSA_NAME_VAR (base_address))->symbol_mem_tag;
          *memtag = get_var_ann (SSA_NAME_VAR (base_address))->symbol_mem_tag;
          if (!(*memtag) && TREE_CODE (TREE_OPERAND (memref, 0)) == SSA_NAME)
          if (!(*memtag) && TREE_CODE (TREE_OPERAND (memref, 0)) == SSA_NAME)
            *memtag = get_var_ann (
            *memtag = get_var_ann (
                      SSA_NAME_VAR (TREE_OPERAND (memref, 0)))->symbol_mem_tag;
                      SSA_NAME_VAR (TREE_OPERAND (memref, 0)))->symbol_mem_tag;
          break;
          break;
        case ADDR_EXPR:
        case ADDR_EXPR:
          *memtag = TREE_OPERAND (base_address, 0);
          *memtag = TREE_OPERAND (base_address, 0);
          break;
          break;
        default:
        default:
          if (dump_file && (dump_flags & TDF_DETAILS))
          if (dump_file && (dump_flags & TDF_DETAILS))
            {
            {
              fprintf (dump_file, "\nno memtag for ");
              fprintf (dump_file, "\nno memtag for ");
              print_generic_expr (dump_file, memref, TDF_SLIM);
              print_generic_expr (dump_file, memref, TDF_SLIM);
              fprintf (dump_file, "\n");
              fprintf (dump_file, "\n");
            }
            }
          *memtag = NULL_TREE;
          *memtag = NULL_TREE;
          break;
          break;
        }
        }
    }
    }
 
 
  if (!base_address)
  if (!base_address)
    {
    {
      /* MEMREF cannot be analyzed.  */
      /* MEMREF cannot be analyzed.  */
      if (dump_file && (dump_flags & TDF_DETAILS))
      if (dump_file && (dump_flags & TDF_DETAILS))
        {
        {
          fprintf (dump_file, "\ndata-ref of unsupported type ");
          fprintf (dump_file, "\ndata-ref of unsupported type ");
          print_generic_expr (dump_file, memref, TDF_SLIM);
          print_generic_expr (dump_file, memref, TDF_SLIM);
          fprintf (dump_file, "\n");
          fprintf (dump_file, "\n");
        }
        }
      return NULL_TREE;
      return NULL_TREE;
    }
    }
 
 
  if (comp_ref)
  if (comp_ref)
    DR_REF (*dr) = comp_ref;
    DR_REF (*dr) = comp_ref;
 
 
  if (SSA_VAR_P (*memtag) && var_can_have_subvars (*memtag))
  if (SSA_VAR_P (*memtag) && var_can_have_subvars (*memtag))
    *subvars = get_subvars_for_var (*memtag);
    *subvars = get_subvars_for_var (*memtag);
 
 
  /* Part 2: Combine the results of object and address analysis to calculate
  /* Part 2: Combine the results of object and address analysis to calculate
     INITIAL_OFFSET, STEP and misalignment info.  */
     INITIAL_OFFSET, STEP and misalignment info.  */
  *offset = size_binop (PLUS_EXPR, object_offset, address_offset);
  *offset = size_binop (PLUS_EXPR, object_offset, address_offset);
 
 
  if ((!object_misalign && !object_aligned_to)
  if ((!object_misalign && !object_aligned_to)
      || (!address_misalign && !address_aligned_to))
      || (!address_misalign && !address_aligned_to))
    {
    {
      *misalign = NULL_TREE;
      *misalign = NULL_TREE;
      *aligned_to = NULL_TREE;
      *aligned_to = NULL_TREE;
    }
    }
  else
  else
    {
    {
      if (object_misalign && address_misalign)
      if (object_misalign && address_misalign)
        *misalign = size_binop (PLUS_EXPR, object_misalign, address_misalign);
        *misalign = size_binop (PLUS_EXPR, object_misalign, address_misalign);
      else
      else
        *misalign = object_misalign ? object_misalign : address_misalign;
        *misalign = object_misalign ? object_misalign : address_misalign;
      if (object_aligned_to && address_aligned_to)
      if (object_aligned_to && address_aligned_to)
        *aligned_to = size_binop (MIN_EXPR, object_aligned_to,
        *aligned_to = size_binop (MIN_EXPR, object_aligned_to,
                                  address_aligned_to);
                                  address_aligned_to);
      else
      else
        *aligned_to = object_aligned_to ?
        *aligned_to = object_aligned_to ?
          object_aligned_to : address_aligned_to;
          object_aligned_to : address_aligned_to;
    }
    }
  *step = size_binop (PLUS_EXPR, object_step, address_step);
  *step = size_binop (PLUS_EXPR, object_step, address_step);
 
 
  return base_address;
  return base_address;
}
}
 
 
/* Function analyze_offset.
/* Function analyze_offset.
 
 
   Extract INVARIANT and CONSTANT parts from OFFSET.
   Extract INVARIANT and CONSTANT parts from OFFSET.
 
 
*/
*/
static bool
static bool
analyze_offset (tree offset, tree *invariant, tree *constant)
analyze_offset (tree offset, tree *invariant, tree *constant)
{
{
  tree op0, op1, constant_0, constant_1, invariant_0, invariant_1;
  tree op0, op1, constant_0, constant_1, invariant_0, invariant_1;
  enum tree_code code = TREE_CODE (offset);
  enum tree_code code = TREE_CODE (offset);
 
 
  *invariant = NULL_TREE;
  *invariant = NULL_TREE;
  *constant = NULL_TREE;
  *constant = NULL_TREE;
 
 
  /* Not PLUS/MINUS expression - recursion stop condition.  */
  /* Not PLUS/MINUS expression - recursion stop condition.  */
  if (code != PLUS_EXPR && code != MINUS_EXPR)
  if (code != PLUS_EXPR && code != MINUS_EXPR)
    {
    {
      if (TREE_CODE (offset) == INTEGER_CST)
      if (TREE_CODE (offset) == INTEGER_CST)
        *constant = offset;
        *constant = offset;
      else
      else
        *invariant = offset;
        *invariant = offset;
      return true;
      return true;
    }
    }
 
 
  op0 = TREE_OPERAND (offset, 0);
  op0 = TREE_OPERAND (offset, 0);
  op1 = TREE_OPERAND (offset, 1);
  op1 = TREE_OPERAND (offset, 1);
 
 
  /* Recursive call with the operands.  */
  /* Recursive call with the operands.  */
  if (!analyze_offset (op0, &invariant_0, &constant_0)
  if (!analyze_offset (op0, &invariant_0, &constant_0)
      || !analyze_offset (op1, &invariant_1, &constant_1))
      || !analyze_offset (op1, &invariant_1, &constant_1))
    return false;
    return false;
 
 
  /* Combine the results. Add negation to the subtrahend in case of
  /* Combine the results. Add negation to the subtrahend in case of
     subtraction.  */
     subtraction.  */
  if (constant_0 && constant_1)
  if (constant_0 && constant_1)
    return false;
    return false;
  *constant = constant_0 ? constant_0 : constant_1;
  *constant = constant_0 ? constant_0 : constant_1;
  if (code == MINUS_EXPR && constant_1)
  if (code == MINUS_EXPR && constant_1)
    *constant = fold_build1 (NEGATE_EXPR, TREE_TYPE (*constant), *constant);
    *constant = fold_build1 (NEGATE_EXPR, TREE_TYPE (*constant), *constant);
 
 
  if (invariant_0 && invariant_1)
  if (invariant_0 && invariant_1)
    *invariant =
    *invariant =
      fold_build2 (code, TREE_TYPE (invariant_0), invariant_0, invariant_1);
      fold_build2 (code, TREE_TYPE (invariant_0), invariant_0, invariant_1);
  else
  else
    {
    {
      *invariant = invariant_0 ? invariant_0 : invariant_1;
      *invariant = invariant_0 ? invariant_0 : invariant_1;
      if (code == MINUS_EXPR && invariant_1)
      if (code == MINUS_EXPR && invariant_1)
        *invariant =
        *invariant =
           fold_build1 (NEGATE_EXPR, TREE_TYPE (*invariant), *invariant);
           fold_build1 (NEGATE_EXPR, TREE_TYPE (*invariant), *invariant);
    }
    }
  return true;
  return true;
}
}
 
 
/* Free the memory used by the data reference DR.  */
/* Free the memory used by the data reference DR.  */
 
 
static void
static void
free_data_ref (data_reference_p dr)
free_data_ref (data_reference_p dr)
{
{
  DR_FREE_ACCESS_FNS (dr);
  DR_FREE_ACCESS_FNS (dr);
  free (dr);
  free (dr);
}
}
 
 
/* Function create_data_ref.
/* Function create_data_ref.
 
 
   Create a data-reference structure for MEMREF. Set its DR_BASE_ADDRESS,
   Create a data-reference structure for MEMREF. Set its DR_BASE_ADDRESS,
   DR_OFFSET, DR_INIT, DR_STEP, DR_OFFSET_MISALIGNMENT, DR_ALIGNED_TO,
   DR_OFFSET, DR_INIT, DR_STEP, DR_OFFSET_MISALIGNMENT, DR_ALIGNED_TO,
   DR_MEMTAG, and DR_POINTSTO_INFO fields.
   DR_MEMTAG, and DR_POINTSTO_INFO fields.
 
 
   Input:
   Input:
   MEMREF - the memory reference that is being analyzed
   MEMREF - the memory reference that is being analyzed
   STMT - the statement that contains MEMREF
   STMT - the statement that contains MEMREF
   IS_READ - TRUE if STMT reads from MEMREF, FALSE if writes to MEMREF
   IS_READ - TRUE if STMT reads from MEMREF, FALSE if writes to MEMREF
 
 
   Output:
   Output:
   DR (returned value) - data_reference struct for MEMREF
   DR (returned value) - data_reference struct for MEMREF
*/
*/
 
 
static struct data_reference *
static struct data_reference *
create_data_ref (tree memref, tree stmt, bool is_read)
create_data_ref (tree memref, tree stmt, bool is_read)
{
{
  struct data_reference *dr = NULL;
  struct data_reference *dr = NULL;
  tree base_address, offset, step, misalign, memtag;
  tree base_address, offset, step, misalign, memtag;
  struct loop *loop = loop_containing_stmt (stmt);
  struct loop *loop = loop_containing_stmt (stmt);
  tree invariant = NULL_TREE, constant = NULL_TREE;
  tree invariant = NULL_TREE, constant = NULL_TREE;
  tree type_size, init_cond;
  tree type_size, init_cond;
  struct ptr_info_def *ptr_info;
  struct ptr_info_def *ptr_info;
  subvar_t subvars = NULL;
  subvar_t subvars = NULL;
  tree aligned_to, type = NULL_TREE, orig_offset;
  tree aligned_to, type = NULL_TREE, orig_offset;
 
 
  if (!memref)
  if (!memref)
    return NULL;
    return NULL;
 
 
  base_address = object_analysis (memref, stmt, is_read, &dr, &offset,
  base_address = object_analysis (memref, stmt, is_read, &dr, &offset,
                                  &misalign, &aligned_to, &step, &memtag,
                                  &misalign, &aligned_to, &step, &memtag,
                                  &ptr_info, &subvars);
                                  &ptr_info, &subvars);
  if (!dr || !base_address)
  if (!dr || !base_address)
    {
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
      if (dump_file && (dump_flags & TDF_DETAILS))
        {
        {
          fprintf (dump_file, "\ncreate_data_ref: failed to create a dr for ");
          fprintf (dump_file, "\ncreate_data_ref: failed to create a dr for ");
          print_generic_expr (dump_file, memref, TDF_SLIM);
          print_generic_expr (dump_file, memref, TDF_SLIM);
          fprintf (dump_file, "\n");
          fprintf (dump_file, "\n");
        }
        }
      return NULL;
      return NULL;
    }
    }
 
 
  DR_BASE_ADDRESS (dr) = base_address;
  DR_BASE_ADDRESS (dr) = base_address;
  DR_OFFSET (dr) = offset;
  DR_OFFSET (dr) = offset;
  DR_INIT (dr) = ssize_int (0);
  DR_INIT (dr) = ssize_int (0);
  DR_STEP (dr) = step;
  DR_STEP (dr) = step;
  DR_OFFSET_MISALIGNMENT (dr) = misalign;
  DR_OFFSET_MISALIGNMENT (dr) = misalign;
  DR_ALIGNED_TO (dr) = aligned_to;
  DR_ALIGNED_TO (dr) = aligned_to;
  DR_MEMTAG (dr) = memtag;
  DR_MEMTAG (dr) = memtag;
  DR_PTR_INFO (dr) = ptr_info;
  DR_PTR_INFO (dr) = ptr_info;
  DR_SUBVARS (dr) = subvars;
  DR_SUBVARS (dr) = subvars;
 
 
  type_size = fold_convert (ssizetype, TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr))));
  type_size = fold_convert (ssizetype, TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr))));
 
 
  /* Extract CONSTANT and INVARIANT from OFFSET.  */
  /* Extract CONSTANT and INVARIANT from OFFSET.  */
  /* Remove cast from OFFSET and restore it for INVARIANT part.  */
  /* Remove cast from OFFSET and restore it for INVARIANT part.  */
  orig_offset = offset;
  orig_offset = offset;
  STRIP_NOPS (offset);
  STRIP_NOPS (offset);
  if (offset != orig_offset)
  if (offset != orig_offset)
    type = TREE_TYPE (orig_offset);
    type = TREE_TYPE (orig_offset);
  if (!analyze_offset (offset, &invariant, &constant))
  if (!analyze_offset (offset, &invariant, &constant))
    {
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
      if (dump_file && (dump_flags & TDF_DETAILS))
        {
        {
          fprintf (dump_file, "\ncreate_data_ref: failed to analyze dr's");
          fprintf (dump_file, "\ncreate_data_ref: failed to analyze dr's");
          fprintf (dump_file, " offset for ");
          fprintf (dump_file, " offset for ");
          print_generic_expr (dump_file, memref, TDF_SLIM);
          print_generic_expr (dump_file, memref, TDF_SLIM);
          fprintf (dump_file, "\n");
          fprintf (dump_file, "\n");
        }
        }
      return NULL;
      return NULL;
    }
    }
  if (type && invariant)
  if (type && invariant)
    invariant = fold_convert (type, invariant);
    invariant = fold_convert (type, invariant);
 
 
  /* Put CONSTANT part of OFFSET in DR_INIT and INVARIANT in DR_OFFSET field
  /* Put CONSTANT part of OFFSET in DR_INIT and INVARIANT in DR_OFFSET field
     of DR.  */
     of DR.  */
  if (constant)
  if (constant)
    {
    {
      DR_INIT (dr) = fold_convert (ssizetype, constant);
      DR_INIT (dr) = fold_convert (ssizetype, constant);
      init_cond = fold_build2 (TRUNC_DIV_EXPR, TREE_TYPE (constant),
      init_cond = fold_build2 (TRUNC_DIV_EXPR, TREE_TYPE (constant),
                               constant, type_size);
                               constant, type_size);
    }
    }
  else
  else
    DR_INIT (dr) = init_cond = ssize_int (0);
    DR_INIT (dr) = init_cond = ssize_int (0);
 
 
  if (invariant)
  if (invariant)
    DR_OFFSET (dr) = invariant;
    DR_OFFSET (dr) = invariant;
  else
  else
    DR_OFFSET (dr) = ssize_int (0);
    DR_OFFSET (dr) = ssize_int (0);
 
 
  /* Change the access function for INIDIRECT_REFs, according to
  /* Change the access function for INIDIRECT_REFs, according to
     DR_BASE_ADDRESS.  Analyze OFFSET calculated in object_analysis. OFFSET is
     DR_BASE_ADDRESS.  Analyze OFFSET calculated in object_analysis. OFFSET is
     an expression that can contain loop invariant expressions and constants.
     an expression that can contain loop invariant expressions and constants.
     We put the constant part in the initial condition of the access function
     We put the constant part in the initial condition of the access function
     (for data dependence tests), and in DR_INIT of the data-ref. The loop
     (for data dependence tests), and in DR_INIT of the data-ref. The loop
     invariant part is put in DR_OFFSET.
     invariant part is put in DR_OFFSET.
     The evolution part of the access function is STEP calculated in
     The evolution part of the access function is STEP calculated in
     object_analysis divided by the size of data type.
     object_analysis divided by the size of data type.
  */
  */
  if (!DR_BASE_OBJECT (dr)
  if (!DR_BASE_OBJECT (dr)
      || (TREE_CODE (memref) == COMPONENT_REF && DR_NUM_DIMENSIONS (dr) == 1))
      || (TREE_CODE (memref) == COMPONENT_REF && DR_NUM_DIMENSIONS (dr) == 1))
    {
    {
      tree access_fn;
      tree access_fn;
      tree new_step;
      tree new_step;
 
 
      /* Update access function.  */
      /* Update access function.  */
      access_fn = DR_ACCESS_FN (dr, 0);
      access_fn = DR_ACCESS_FN (dr, 0);
      if (automatically_generated_chrec_p (access_fn))
      if (automatically_generated_chrec_p (access_fn))
        {
        {
          free_data_ref (dr);
          free_data_ref (dr);
          return NULL;
          return NULL;
        }
        }
 
 
      new_step = size_binop (TRUNC_DIV_EXPR,
      new_step = size_binop (TRUNC_DIV_EXPR,
                             fold_convert (ssizetype, step), type_size);
                             fold_convert (ssizetype, step), type_size);
 
 
      init_cond = chrec_convert (chrec_type (access_fn), init_cond, stmt);
      init_cond = chrec_convert (chrec_type (access_fn), init_cond, stmt);
      new_step = chrec_convert (chrec_type (access_fn), new_step, stmt);
      new_step = chrec_convert (chrec_type (access_fn), new_step, stmt);
      if (automatically_generated_chrec_p (init_cond)
      if (automatically_generated_chrec_p (init_cond)
          || automatically_generated_chrec_p (new_step))
          || automatically_generated_chrec_p (new_step))
        {
        {
          free_data_ref (dr);
          free_data_ref (dr);
          return NULL;
          return NULL;
        }
        }
      access_fn = chrec_replace_initial_condition (access_fn, init_cond);
      access_fn = chrec_replace_initial_condition (access_fn, init_cond);
      access_fn = reset_evolution_in_loop (loop->num, access_fn, new_step);
      access_fn = reset_evolution_in_loop (loop->num, access_fn, new_step);
 
 
      VEC_replace (tree, DR_ACCESS_FNS (dr), 0, access_fn);
      VEC_replace (tree, DR_ACCESS_FNS (dr), 0, access_fn);
    }
    }
 
 
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
    {
      struct ptr_info_def *pi = DR_PTR_INFO (dr);
      struct ptr_info_def *pi = DR_PTR_INFO (dr);
 
 
      fprintf (dump_file, "\nCreated dr for ");
      fprintf (dump_file, "\nCreated dr for ");
      print_generic_expr (dump_file, memref, TDF_SLIM);
      print_generic_expr (dump_file, memref, TDF_SLIM);
      fprintf (dump_file, "\n\tbase_address: ");
      fprintf (dump_file, "\n\tbase_address: ");
      print_generic_expr (dump_file, DR_BASE_ADDRESS (dr), TDF_SLIM);
      print_generic_expr (dump_file, DR_BASE_ADDRESS (dr), TDF_SLIM);
      fprintf (dump_file, "\n\toffset from base address: ");
      fprintf (dump_file, "\n\toffset from base address: ");
      print_generic_expr (dump_file, DR_OFFSET (dr), TDF_SLIM);
      print_generic_expr (dump_file, DR_OFFSET (dr), TDF_SLIM);
      fprintf (dump_file, "\n\tconstant offset from base address: ");
      fprintf (dump_file, "\n\tconstant offset from base address: ");
      print_generic_expr (dump_file, DR_INIT (dr), TDF_SLIM);
      print_generic_expr (dump_file, DR_INIT (dr), TDF_SLIM);
      fprintf (dump_file, "\n\tbase_object: ");
      fprintf (dump_file, "\n\tbase_object: ");
      print_generic_expr (dump_file, DR_BASE_OBJECT (dr), TDF_SLIM);
      print_generic_expr (dump_file, DR_BASE_OBJECT (dr), TDF_SLIM);
      fprintf (dump_file, "\n\tstep: ");
      fprintf (dump_file, "\n\tstep: ");
      print_generic_expr (dump_file, DR_STEP (dr), TDF_SLIM);
      print_generic_expr (dump_file, DR_STEP (dr), TDF_SLIM);
      fprintf (dump_file, "B\n\tmisalignment from base: ");
      fprintf (dump_file, "B\n\tmisalignment from base: ");
      print_generic_expr (dump_file, DR_OFFSET_MISALIGNMENT (dr), TDF_SLIM);
      print_generic_expr (dump_file, DR_OFFSET_MISALIGNMENT (dr), TDF_SLIM);
      if (DR_OFFSET_MISALIGNMENT (dr))
      if (DR_OFFSET_MISALIGNMENT (dr))
        fprintf (dump_file, "B");
        fprintf (dump_file, "B");
      if (DR_ALIGNED_TO (dr))
      if (DR_ALIGNED_TO (dr))
        {
        {
          fprintf (dump_file, "\n\taligned to: ");
          fprintf (dump_file, "\n\taligned to: ");
          print_generic_expr (dump_file, DR_ALIGNED_TO (dr), TDF_SLIM);
          print_generic_expr (dump_file, DR_ALIGNED_TO (dr), TDF_SLIM);
        }
        }
      fprintf (dump_file, "\n\tmemtag: ");
      fprintf (dump_file, "\n\tmemtag: ");
      print_generic_expr (dump_file, DR_MEMTAG (dr), TDF_SLIM);
      print_generic_expr (dump_file, DR_MEMTAG (dr), TDF_SLIM);
      fprintf (dump_file, "\n");
      fprintf (dump_file, "\n");
      if (pi && pi->name_mem_tag)
      if (pi && pi->name_mem_tag)
        {
        {
          fprintf (dump_file, "\n\tnametag: ");
          fprintf (dump_file, "\n\tnametag: ");
          print_generic_expr (dump_file, pi->name_mem_tag, TDF_SLIM);
          print_generic_expr (dump_file, pi->name_mem_tag, TDF_SLIM);
          fprintf (dump_file, "\n");
          fprintf (dump_file, "\n");
        }
        }
    }
    }
  return dr;
  return dr;
}
}
 
 
 
 
/* Returns true when all the functions of a tree_vec CHREC are the
/* Returns true when all the functions of a tree_vec CHREC are the
   same.  */
   same.  */
 
 
static bool
static bool
all_chrecs_equal_p (tree chrec)
all_chrecs_equal_p (tree chrec)
{
{
  int j;
  int j;
 
 
  for (j = 0; j < TREE_VEC_LENGTH (chrec) - 1; j++)
  for (j = 0; j < TREE_VEC_LENGTH (chrec) - 1; j++)
    if (!eq_evolutions_p (TREE_VEC_ELT (chrec, j),
    if (!eq_evolutions_p (TREE_VEC_ELT (chrec, j),
                          TREE_VEC_ELT (chrec, j + 1)))
                          TREE_VEC_ELT (chrec, j + 1)))
      return false;
      return false;
 
 
  return true;
  return true;
}
}
 
 
/* Determine for each subscript in the data dependence relation DDR
/* Determine for each subscript in the data dependence relation DDR
   the distance.  */
   the distance.  */
 
 
static void
static void
compute_subscript_distance (struct data_dependence_relation *ddr)
compute_subscript_distance (struct data_dependence_relation *ddr)
{
{
  if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
  if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
    {
    {
      unsigned int i;
      unsigned int i;
 
 
      for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
      for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
        {
        {
          tree conflicts_a, conflicts_b, difference;
          tree conflicts_a, conflicts_b, difference;
          struct subscript *subscript;
          struct subscript *subscript;
 
 
          subscript = DDR_SUBSCRIPT (ddr, i);
          subscript = DDR_SUBSCRIPT (ddr, i);
          conflicts_a = SUB_CONFLICTS_IN_A (subscript);
          conflicts_a = SUB_CONFLICTS_IN_A (subscript);
          conflicts_b = SUB_CONFLICTS_IN_B (subscript);
          conflicts_b = SUB_CONFLICTS_IN_B (subscript);
 
 
          if (TREE_CODE (conflicts_a) == TREE_VEC)
          if (TREE_CODE (conflicts_a) == TREE_VEC)
            {
            {
              if (!all_chrecs_equal_p (conflicts_a))
              if (!all_chrecs_equal_p (conflicts_a))
                {
                {
                  SUB_DISTANCE (subscript) = chrec_dont_know;
                  SUB_DISTANCE (subscript) = chrec_dont_know;
                  return;
                  return;
                }
                }
              else
              else
                conflicts_a = TREE_VEC_ELT (conflicts_a, 0);
                conflicts_a = TREE_VEC_ELT (conflicts_a, 0);
            }
            }
 
 
          if (TREE_CODE (conflicts_b) == TREE_VEC)
          if (TREE_CODE (conflicts_b) == TREE_VEC)
            {
            {
              if (!all_chrecs_equal_p (conflicts_b))
              if (!all_chrecs_equal_p (conflicts_b))
                {
                {
                  SUB_DISTANCE (subscript) = chrec_dont_know;
                  SUB_DISTANCE (subscript) = chrec_dont_know;
                  return;
                  return;
                }
                }
              else
              else
                conflicts_b = TREE_VEC_ELT (conflicts_b, 0);
                conflicts_b = TREE_VEC_ELT (conflicts_b, 0);
            }
            }
 
 
          conflicts_b = chrec_convert (integer_type_node, conflicts_b,
          conflicts_b = chrec_convert (integer_type_node, conflicts_b,
                                       NULL_TREE);
                                       NULL_TREE);
          conflicts_a = chrec_convert (integer_type_node, conflicts_a,
          conflicts_a = chrec_convert (integer_type_node, conflicts_a,
                                       NULL_TREE);
                                       NULL_TREE);
          difference = chrec_fold_minus
          difference = chrec_fold_minus
            (integer_type_node, conflicts_b, conflicts_a);
            (integer_type_node, conflicts_b, conflicts_a);
 
 
          if (evolution_function_is_constant_p (difference))
          if (evolution_function_is_constant_p (difference))
            SUB_DISTANCE (subscript) = difference;
            SUB_DISTANCE (subscript) = difference;
 
 
          else
          else
            SUB_DISTANCE (subscript) = chrec_dont_know;
            SUB_DISTANCE (subscript) = chrec_dont_know;
        }
        }
    }
    }
}
}
 
 
/* Initialize a data dependence relation between data accesses A and
/* Initialize a data dependence relation between data accesses A and
   B.  NB_LOOPS is the number of loops surrounding the references: the
   B.  NB_LOOPS is the number of loops surrounding the references: the
   size of the classic distance/direction vectors.  */
   size of the classic distance/direction vectors.  */
 
 
static struct data_dependence_relation *
static struct data_dependence_relation *
initialize_data_dependence_relation (struct data_reference *a,
initialize_data_dependence_relation (struct data_reference *a,
                                     struct data_reference *b,
                                     struct data_reference *b,
                                     VEC (loop_p, heap) *loop_nest)
                                     VEC (loop_p, heap) *loop_nest)
{
{
  struct data_dependence_relation *res;
  struct data_dependence_relation *res;
  bool differ_p, known_dependence;
  bool differ_p, known_dependence;
  unsigned int i;
  unsigned int i;
 
 
  res = XNEW (struct data_dependence_relation);
  res = XNEW (struct data_dependence_relation);
  DDR_A (res) = a;
  DDR_A (res) = a;
  DDR_B (res) = b;
  DDR_B (res) = b;
  DDR_LOOP_NEST (res) = NULL;
  DDR_LOOP_NEST (res) = NULL;
 
 
  if (a == NULL || b == NULL)
  if (a == NULL || b == NULL)
    {
    {
      DDR_ARE_DEPENDENT (res) = chrec_dont_know;
      DDR_ARE_DEPENDENT (res) = chrec_dont_know;
      return res;
      return res;
    }
    }
 
 
  /* When A and B are arrays and their dimensions differ, we directly
  /* When A and B are arrays and their dimensions differ, we directly
     initialize the relation to "there is no dependence": chrec_known.  */
     initialize the relation to "there is no dependence": chrec_known.  */
  if (DR_BASE_OBJECT (a) && DR_BASE_OBJECT (b)
  if (DR_BASE_OBJECT (a) && DR_BASE_OBJECT (b)
      && DR_NUM_DIMENSIONS (a) != DR_NUM_DIMENSIONS (b))
      && DR_NUM_DIMENSIONS (a) != DR_NUM_DIMENSIONS (b))
    {
    {
      DDR_ARE_DEPENDENT (res) = chrec_known;
      DDR_ARE_DEPENDENT (res) = chrec_known;
      return res;
      return res;
    }
    }
 
 
  if (DR_BASE_ADDRESS (a) && DR_BASE_ADDRESS (b))
  if (DR_BASE_ADDRESS (a) && DR_BASE_ADDRESS (b))
    known_dependence = base_addr_differ_p (a, b, &differ_p);
    known_dependence = base_addr_differ_p (a, b, &differ_p);
  else
  else
    known_dependence = base_object_differ_p (a, b, &differ_p);
    known_dependence = base_object_differ_p (a, b, &differ_p);
 
 
  if (!known_dependence)
  if (!known_dependence)
    {
    {
      /* Can't determine whether the data-refs access the same memory
      /* Can't determine whether the data-refs access the same memory
         region.  */
         region.  */
      DDR_ARE_DEPENDENT (res) = chrec_dont_know;
      DDR_ARE_DEPENDENT (res) = chrec_dont_know;
      return res;
      return res;
    }
    }
 
 
  if (differ_p)
  if (differ_p)
    {
    {
      DDR_ARE_DEPENDENT (res) = chrec_known;
      DDR_ARE_DEPENDENT (res) = chrec_known;
      return res;
      return res;
    }
    }
 
 
  DDR_AFFINE_P (res) = true;
  DDR_AFFINE_P (res) = true;
  DDR_ARE_DEPENDENT (res) = NULL_TREE;
  DDR_ARE_DEPENDENT (res) = NULL_TREE;
  DDR_SUBSCRIPTS (res) = VEC_alloc (subscript_p, heap, DR_NUM_DIMENSIONS (a));
  DDR_SUBSCRIPTS (res) = VEC_alloc (subscript_p, heap, DR_NUM_DIMENSIONS (a));
  DDR_LOOP_NEST (res) = loop_nest;
  DDR_LOOP_NEST (res) = loop_nest;
  DDR_DIR_VECTS (res) = NULL;
  DDR_DIR_VECTS (res) = NULL;
  DDR_DIST_VECTS (res) = NULL;
  DDR_DIST_VECTS (res) = NULL;
 
 
  for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
  for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
    {
    {
      struct subscript *subscript;
      struct subscript *subscript;
 
 
      subscript = XNEW (struct subscript);
      subscript = XNEW (struct subscript);
      SUB_CONFLICTS_IN_A (subscript) = chrec_dont_know;
      SUB_CONFLICTS_IN_A (subscript) = chrec_dont_know;
      SUB_CONFLICTS_IN_B (subscript) = chrec_dont_know;
      SUB_CONFLICTS_IN_B (subscript) = chrec_dont_know;
      SUB_LAST_CONFLICT (subscript) = chrec_dont_know;
      SUB_LAST_CONFLICT (subscript) = chrec_dont_know;
      SUB_DISTANCE (subscript) = chrec_dont_know;
      SUB_DISTANCE (subscript) = chrec_dont_know;
      VEC_safe_push (subscript_p, heap, DDR_SUBSCRIPTS (res), subscript);
      VEC_safe_push (subscript_p, heap, DDR_SUBSCRIPTS (res), subscript);
    }
    }
 
 
  return res;
  return res;
}
}
 
 
/* Set DDR_ARE_DEPENDENT to CHREC and finalize the subscript overlap
/* Set DDR_ARE_DEPENDENT to CHREC and finalize the subscript overlap
   description.  */
   description.  */
 
 
static inline void
static inline void
finalize_ddr_dependent (struct data_dependence_relation *ddr,
finalize_ddr_dependent (struct data_dependence_relation *ddr,
                        tree chrec)
                        tree chrec)
{
{
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
    {
      fprintf (dump_file, "(dependence classified: ");
      fprintf (dump_file, "(dependence classified: ");
      print_generic_expr (dump_file, chrec, 0);
      print_generic_expr (dump_file, chrec, 0);
      fprintf (dump_file, ")\n");
      fprintf (dump_file, ")\n");
    }
    }
 
 
  DDR_ARE_DEPENDENT (ddr) = chrec;
  DDR_ARE_DEPENDENT (ddr) = chrec;
  VEC_free (subscript_p, heap, DDR_SUBSCRIPTS (ddr));
  VEC_free (subscript_p, heap, DDR_SUBSCRIPTS (ddr));
}
}
 
 
/* The dependence relation DDR cannot be represented by a distance
/* The dependence relation DDR cannot be represented by a distance
   vector.  */
   vector.  */
 
 
static inline void
static inline void
non_affine_dependence_relation (struct data_dependence_relation *ddr)
non_affine_dependence_relation (struct data_dependence_relation *ddr)
{
{
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "(Dependence relation cannot be represented by distance vector.) \n");
    fprintf (dump_file, "(Dependence relation cannot be represented by distance vector.) \n");
 
 
  DDR_AFFINE_P (ddr) = false;
  DDR_AFFINE_P (ddr) = false;
}
}
 
 


 
 
/* This section contains the classic Banerjee tests.  */
/* This section contains the classic Banerjee tests.  */
 
 
/* Returns true iff CHREC_A and CHREC_B are not dependent on any index
/* Returns true iff CHREC_A and CHREC_B are not dependent on any index
   variables, i.e., if the ZIV (Zero Index Variable) test is true.  */
   variables, i.e., if the ZIV (Zero Index Variable) test is true.  */
 
 
static inline bool
static inline bool
ziv_subscript_p (tree chrec_a,
ziv_subscript_p (tree chrec_a,
                 tree chrec_b)
                 tree chrec_b)
{
{
  return (evolution_function_is_constant_p (chrec_a)
  return (evolution_function_is_constant_p (chrec_a)
          && evolution_function_is_constant_p (chrec_b));
          && evolution_function_is_constant_p (chrec_b));
}
}
 
 
/* Returns true iff CHREC_A and CHREC_B are dependent on an index
/* Returns true iff CHREC_A and CHREC_B are dependent on an index
   variable, i.e., if the SIV (Single Index Variable) test is true.  */
   variable, i.e., if the SIV (Single Index Variable) test is true.  */
 
 
static bool
static bool
siv_subscript_p (tree chrec_a,
siv_subscript_p (tree chrec_a,
                 tree chrec_b)
                 tree chrec_b)
{
{
  if ((evolution_function_is_constant_p (chrec_a)
  if ((evolution_function_is_constant_p (chrec_a)
       && evolution_function_is_univariate_p (chrec_b))
       && evolution_function_is_univariate_p (chrec_b))
      || (evolution_function_is_constant_p (chrec_b)
      || (evolution_function_is_constant_p (chrec_b)
          && evolution_function_is_univariate_p (chrec_a)))
          && evolution_function_is_univariate_p (chrec_a)))
    return true;
    return true;
 
 
  if (evolution_function_is_univariate_p (chrec_a)
  if (evolution_function_is_univariate_p (chrec_a)
      && evolution_function_is_univariate_p (chrec_b))
      && evolution_function_is_univariate_p (chrec_b))
    {
    {
      switch (TREE_CODE (chrec_a))
      switch (TREE_CODE (chrec_a))
        {
        {
        case POLYNOMIAL_CHREC:
        case POLYNOMIAL_CHREC:
          switch (TREE_CODE (chrec_b))
          switch (TREE_CODE (chrec_b))
            {
            {
            case POLYNOMIAL_CHREC:
            case POLYNOMIAL_CHREC:
              if (CHREC_VARIABLE (chrec_a) != CHREC_VARIABLE (chrec_b))
              if (CHREC_VARIABLE (chrec_a) != CHREC_VARIABLE (chrec_b))
                return false;
                return false;
 
 
            default:
            default:
              return true;
              return true;
            }
            }
 
 
        default:
        default:
          return true;
          return true;
        }
        }
    }
    }
 
 
  return false;
  return false;
}
}
 
 
/* Analyze a ZIV (Zero Index Variable) subscript.  *OVERLAPS_A and
/* Analyze a ZIV (Zero Index Variable) subscript.  *OVERLAPS_A and
   *OVERLAPS_B are initialized to the functions that describe the
   *OVERLAPS_B are initialized to the functions that describe the
   relation between the elements accessed twice by CHREC_A and
   relation between the elements accessed twice by CHREC_A and
   CHREC_B.  For k >= 0, the following property is verified:
   CHREC_B.  For k >= 0, the following property is verified:
 
 
   CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)).  */
   CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)).  */
 
 
static void
static void
analyze_ziv_subscript (tree chrec_a,
analyze_ziv_subscript (tree chrec_a,
                       tree chrec_b,
                       tree chrec_b,
                       tree *overlaps_a,
                       tree *overlaps_a,
                       tree *overlaps_b,
                       tree *overlaps_b,
                       tree *last_conflicts)
                       tree *last_conflicts)
{
{
  tree difference;
  tree difference;
  dependence_stats.num_ziv++;
  dependence_stats.num_ziv++;
 
 
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "(analyze_ziv_subscript \n");
    fprintf (dump_file, "(analyze_ziv_subscript \n");
 
 
  chrec_a = chrec_convert (integer_type_node, chrec_a, NULL_TREE);
  chrec_a = chrec_convert (integer_type_node, chrec_a, NULL_TREE);
  chrec_b = chrec_convert (integer_type_node, chrec_b, NULL_TREE);
  chrec_b = chrec_convert (integer_type_node, chrec_b, NULL_TREE);
  difference = chrec_fold_minus (integer_type_node, chrec_a, chrec_b);
  difference = chrec_fold_minus (integer_type_node, chrec_a, chrec_b);
 
 
  switch (TREE_CODE (difference))
  switch (TREE_CODE (difference))
    {
    {
    case INTEGER_CST:
    case INTEGER_CST:
      if (integer_zerop (difference))
      if (integer_zerop (difference))
        {
        {
          /* The difference is equal to zero: the accessed index
          /* The difference is equal to zero: the accessed index
             overlaps for each iteration in the loop.  */
             overlaps for each iteration in the loop.  */
          *overlaps_a = integer_zero_node;
          *overlaps_a = integer_zero_node;
          *overlaps_b = integer_zero_node;
          *overlaps_b = integer_zero_node;
          *last_conflicts = chrec_dont_know;
          *last_conflicts = chrec_dont_know;
          dependence_stats.num_ziv_dependent++;
          dependence_stats.num_ziv_dependent++;
        }
        }
      else
      else
        {
        {
          /* The accesses do not overlap.  */
          /* The accesses do not overlap.  */
          *overlaps_a = chrec_known;
          *overlaps_a = chrec_known;
          *overlaps_b = chrec_known;
          *overlaps_b = chrec_known;
          *last_conflicts = integer_zero_node;
          *last_conflicts = integer_zero_node;
          dependence_stats.num_ziv_independent++;
          dependence_stats.num_ziv_independent++;
        }
        }
      break;
      break;
 
 
    default:
    default:
      /* We're not sure whether the indexes overlap.  For the moment,
      /* We're not sure whether the indexes overlap.  For the moment,
         conservatively answer "don't know".  */
         conservatively answer "don't know".  */
      if (dump_file && (dump_flags & TDF_DETAILS))
      if (dump_file && (dump_flags & TDF_DETAILS))
        fprintf (dump_file, "ziv test failed: difference is non-integer.\n");
        fprintf (dump_file, "ziv test failed: difference is non-integer.\n");
 
 
      *overlaps_a = chrec_dont_know;
      *overlaps_a = chrec_dont_know;
      *overlaps_b = chrec_dont_know;
      *overlaps_b = chrec_dont_know;
      *last_conflicts = chrec_dont_know;
      *last_conflicts = chrec_dont_know;
      dependence_stats.num_ziv_unimplemented++;
      dependence_stats.num_ziv_unimplemented++;
      break;
      break;
    }
    }
 
 
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, ")\n");
    fprintf (dump_file, ")\n");
}
}
 
 
/* Get the real or estimated number of iterations for LOOPNUM, whichever is
/* Get the real or estimated number of iterations for LOOPNUM, whichever is
   available. Return the number of iterations as a tree, or NULL_TREE if
   available. Return the number of iterations as a tree, or NULL_TREE if
   we don't know.  */
   we don't know.  */
 
 
static tree
static tree
get_number_of_iters_for_loop (int loopnum)
get_number_of_iters_for_loop (int loopnum)
{
{
  tree numiter = number_of_iterations_in_loop (current_loops->parray[loopnum]);
  tree numiter = number_of_iterations_in_loop (current_loops->parray[loopnum]);
 
 
  if (TREE_CODE (numiter) != INTEGER_CST)
  if (TREE_CODE (numiter) != INTEGER_CST)
    numiter = current_loops->parray[loopnum]->estimated_nb_iterations;
    numiter = current_loops->parray[loopnum]->estimated_nb_iterations;
  if (chrec_contains_undetermined (numiter))
  if (chrec_contains_undetermined (numiter))
    return NULL_TREE;
    return NULL_TREE;
  return numiter;
  return numiter;
}
}
 
 
/* Analyze a SIV (Single Index Variable) subscript where CHREC_A is a
/* Analyze a SIV (Single Index Variable) subscript where CHREC_A is a
   constant, and CHREC_B is an affine function.  *OVERLAPS_A and
   constant, and CHREC_B is an affine function.  *OVERLAPS_A and
   *OVERLAPS_B are initialized to the functions that describe the
   *OVERLAPS_B are initialized to the functions that describe the
   relation between the elements accessed twice by CHREC_A and
   relation between the elements accessed twice by CHREC_A and
   CHREC_B.  For k >= 0, the following property is verified:
   CHREC_B.  For k >= 0, the following property is verified:
 
 
   CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)).  */
   CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)).  */
 
 
static void
static void
analyze_siv_subscript_cst_affine (tree chrec_a,
analyze_siv_subscript_cst_affine (tree chrec_a,
                                  tree chrec_b,
                                  tree chrec_b,
                                  tree *overlaps_a,
                                  tree *overlaps_a,
                                  tree *overlaps_b,
                                  tree *overlaps_b,
                                  tree *last_conflicts)
                                  tree *last_conflicts)
{
{
  bool value0, value1, value2;
  bool value0, value1, value2;
  tree difference;
  tree difference;
 
 
  chrec_a = chrec_convert (integer_type_node, chrec_a, NULL_TREE);
  chrec_a = chrec_convert (integer_type_node, chrec_a, NULL_TREE);
  chrec_b = chrec_convert (integer_type_node, chrec_b, NULL_TREE);
  chrec_b = chrec_convert (integer_type_node, chrec_b, NULL_TREE);
  difference = chrec_fold_minus
  difference = chrec_fold_minus
    (integer_type_node, initial_condition (chrec_b), chrec_a);
    (integer_type_node, initial_condition (chrec_b), chrec_a);
 
 
  if (!chrec_is_positive (initial_condition (difference), &value0))
  if (!chrec_is_positive (initial_condition (difference), &value0))
    {
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
      if (dump_file && (dump_flags & TDF_DETAILS))
        fprintf (dump_file, "siv test failed: chrec is not positive.\n");
        fprintf (dump_file, "siv test failed: chrec is not positive.\n");
 
 
      dependence_stats.num_siv_unimplemented++;
      dependence_stats.num_siv_unimplemented++;
      *overlaps_a = chrec_dont_know;
      *overlaps_a = chrec_dont_know;
      *overlaps_b = chrec_dont_know;
      *overlaps_b = chrec_dont_know;
      *last_conflicts = chrec_dont_know;
      *last_conflicts = chrec_dont_know;
      return;
      return;
    }
    }
  else
  else
    {
    {
      if (value0 == false)
      if (value0 == false)
        {
        {
          if (!chrec_is_positive (CHREC_RIGHT (chrec_b), &value1))
          if (!chrec_is_positive (CHREC_RIGHT (chrec_b), &value1))
            {
            {
              if (dump_file && (dump_flags & TDF_DETAILS))
              if (dump_file && (dump_flags & TDF_DETAILS))
                fprintf (dump_file, "siv test failed: chrec not positive.\n");
                fprintf (dump_file, "siv test failed: chrec not positive.\n");
 
 
              *overlaps_a = chrec_dont_know;
              *overlaps_a = chrec_dont_know;
              *overlaps_b = chrec_dont_know;
              *overlaps_b = chrec_dont_know;
              *last_conflicts = chrec_dont_know;
              *last_conflicts = chrec_dont_know;
              dependence_stats.num_siv_unimplemented++;
              dependence_stats.num_siv_unimplemented++;
              return;
              return;
            }
            }
          else
          else
            {
            {
              if (value1 == true)
              if (value1 == true)
                {
                {
                  /* Example:
                  /* Example:
                     chrec_a = 12
                     chrec_a = 12
                     chrec_b = {10, +, 1}
                     chrec_b = {10, +, 1}
                  */
                  */
 
 
                  if (tree_fold_divides_p (CHREC_RIGHT (chrec_b), difference))
                  if (tree_fold_divides_p (CHREC_RIGHT (chrec_b), difference))
                    {
                    {
                      tree numiter;
                      tree numiter;
                      int loopnum = CHREC_VARIABLE (chrec_b);
                      int loopnum = CHREC_VARIABLE (chrec_b);
 
 
                      *overlaps_a = integer_zero_node;
                      *overlaps_a = integer_zero_node;
                      *overlaps_b = fold_build2 (EXACT_DIV_EXPR, integer_type_node,
                      *overlaps_b = fold_build2 (EXACT_DIV_EXPR, integer_type_node,
                                                 fold_build1 (ABS_EXPR,
                                                 fold_build1 (ABS_EXPR,
                                                              integer_type_node,
                                                              integer_type_node,
                                                              difference),
                                                              difference),
                                                 CHREC_RIGHT (chrec_b));
                                                 CHREC_RIGHT (chrec_b));
                      *last_conflicts = integer_one_node;
                      *last_conflicts = integer_one_node;
 
 
 
 
                      /* Perform weak-zero siv test to see if overlap is
                      /* Perform weak-zero siv test to see if overlap is
                         outside the loop bounds.  */
                         outside the loop bounds.  */
                      numiter = get_number_of_iters_for_loop (loopnum);
                      numiter = get_number_of_iters_for_loop (loopnum);
 
 
                      if (numiter != NULL_TREE
                      if (numiter != NULL_TREE
                          && TREE_CODE (*overlaps_b) == INTEGER_CST
                          && TREE_CODE (*overlaps_b) == INTEGER_CST
                          && tree_int_cst_lt (numiter, *overlaps_b))
                          && tree_int_cst_lt (numiter, *overlaps_b))
                        {
                        {
                          *overlaps_a = chrec_known;
                          *overlaps_a = chrec_known;
                          *overlaps_b = chrec_known;
                          *overlaps_b = chrec_known;
                          *last_conflicts = integer_zero_node;
                          *last_conflicts = integer_zero_node;
                          dependence_stats.num_siv_independent++;
                          dependence_stats.num_siv_independent++;
                          return;
                          return;
                        }
                        }
                      dependence_stats.num_siv_dependent++;
                      dependence_stats.num_siv_dependent++;
                      return;
                      return;
                    }
                    }
 
 
                  /* When the step does not divide the difference, there are
                  /* When the step does not divide the difference, there are
                     no overlaps.  */
                     no overlaps.  */
                  else
                  else
                    {
                    {
                      *overlaps_a = chrec_known;
                      *overlaps_a = chrec_known;
                      *overlaps_b = chrec_known;
                      *overlaps_b = chrec_known;
                      *last_conflicts = integer_zero_node;
                      *last_conflicts = integer_zero_node;
                      dependence_stats.num_siv_independent++;
                      dependence_stats.num_siv_independent++;
                      return;
                      return;
                    }
                    }
                }
                }
 
 
              else
              else
                {
                {
                  /* Example:
                  /* Example:
                     chrec_a = 12
                     chrec_a = 12
                     chrec_b = {10, +, -1}
                     chrec_b = {10, +, -1}
 
 
                     In this case, chrec_a will not overlap with chrec_b.  */
                     In this case, chrec_a will not overlap with chrec_b.  */
                  *overlaps_a = chrec_known;
                  *overlaps_a = chrec_known;
                  *overlaps_b = chrec_known;
                  *overlaps_b = chrec_known;
                  *last_conflicts = integer_zero_node;
                  *last_conflicts = integer_zero_node;
                  dependence_stats.num_siv_independent++;
                  dependence_stats.num_siv_independent++;
                  return;
                  return;
                }
                }
            }
            }
        }
        }
      else
      else
        {
        {
          if (!chrec_is_positive (CHREC_RIGHT (chrec_b), &value2))
          if (!chrec_is_positive (CHREC_RIGHT (chrec_b), &value2))
            {
            {
              if (dump_file && (dump_flags & TDF_DETAILS))
              if (dump_file && (dump_flags & TDF_DETAILS))
                fprintf (dump_file, "siv test failed: chrec not positive.\n");
                fprintf (dump_file, "siv test failed: chrec not positive.\n");
 
 
              *overlaps_a = chrec_dont_know;
              *overlaps_a = chrec_dont_know;
              *overlaps_b = chrec_dont_know;
              *overlaps_b = chrec_dont_know;
              *last_conflicts = chrec_dont_know;
              *last_conflicts = chrec_dont_know;
              dependence_stats.num_siv_unimplemented++;
              dependence_stats.num_siv_unimplemented++;
              return;
              return;
            }
            }
          else
          else
            {
            {
              if (value2 == false)
              if (value2 == false)
                {
                {
                  /* Example:
                  /* Example:
                     chrec_a = 3
                     chrec_a = 3
                     chrec_b = {10, +, -1}
                     chrec_b = {10, +, -1}
                  */
                  */
                  if (tree_fold_divides_p (CHREC_RIGHT (chrec_b), difference))
                  if (tree_fold_divides_p (CHREC_RIGHT (chrec_b), difference))
                    {
                    {
                      tree numiter;
                      tree numiter;
                      int loopnum = CHREC_VARIABLE (chrec_b);
                      int loopnum = CHREC_VARIABLE (chrec_b);
 
 
                      *overlaps_a = integer_zero_node;
                      *overlaps_a = integer_zero_node;
                      *overlaps_b = fold_build2 (EXACT_DIV_EXPR,
                      *overlaps_b = fold_build2 (EXACT_DIV_EXPR,
                                                 integer_type_node, difference,
                                                 integer_type_node, difference,
                                                 CHREC_RIGHT (chrec_b));
                                                 CHREC_RIGHT (chrec_b));
                      *last_conflicts = integer_one_node;
                      *last_conflicts = integer_one_node;
 
 
                      /* Perform weak-zero siv test to see if overlap is
                      /* Perform weak-zero siv test to see if overlap is
                         outside the loop bounds.  */
                         outside the loop bounds.  */
                      numiter = get_number_of_iters_for_loop (loopnum);
                      numiter = get_number_of_iters_for_loop (loopnum);
 
 
                      if (numiter != NULL_TREE
                      if (numiter != NULL_TREE
                          && TREE_CODE (*overlaps_b) == INTEGER_CST
                          && TREE_CODE (*overlaps_b) == INTEGER_CST
                          && tree_int_cst_lt (numiter, *overlaps_b))
                          && tree_int_cst_lt (numiter, *overlaps_b))
                        {
                        {
                          *overlaps_a = chrec_known;
                          *overlaps_a = chrec_known;
                          *overlaps_b = chrec_known;
                          *overlaps_b = chrec_known;
                          *last_conflicts = integer_zero_node;
                          *last_conflicts = integer_zero_node;
                          dependence_stats.num_siv_independent++;
                          dependence_stats.num_siv_independent++;
                          return;
                          return;
                        }
                        }
                      dependence_stats.num_siv_dependent++;
                      dependence_stats.num_siv_dependent++;
                      return;
                      return;
                    }
                    }
 
 
                  /* When the step does not divide the difference, there
                  /* When the step does not divide the difference, there
                     are no overlaps.  */
                     are no overlaps.  */
                  else
                  else
                    {
                    {
                      *overlaps_a = chrec_known;
                      *overlaps_a = chrec_known;
                      *overlaps_b = chrec_known;
                      *overlaps_b = chrec_known;
                      *last_conflicts = integer_zero_node;
                      *last_conflicts = integer_zero_node;
                      dependence_stats.num_siv_independent++;
                      dependence_stats.num_siv_independent++;
                      return;
                      return;
                    }
                    }
                }
                }
              else
              else
                {
                {
                  /* Example:
                  /* Example:
                     chrec_a = 3
                     chrec_a = 3
                     chrec_b = {4, +, 1}
                     chrec_b = {4, +, 1}
 
 
                     In this case, chrec_a will not overlap with chrec_b.  */
                     In this case, chrec_a will not overlap with chrec_b.  */
                  *overlaps_a = chrec_known;
                  *overlaps_a = chrec_known;
                  *overlaps_b = chrec_known;
                  *overlaps_b = chrec_known;
                  *last_conflicts = integer_zero_node;
                  *last_conflicts = integer_zero_node;
                  dependence_stats.num_siv_independent++;
                  dependence_stats.num_siv_independent++;
                  return;
                  return;
                }
                }
            }
            }
        }
        }
    }
    }
}
}
 
 
/* Helper recursive function for initializing the matrix A.  Returns
/* Helper recursive function for initializing the matrix A.  Returns
   the initial value of CHREC.  */
   the initial value of CHREC.  */
 
 
static int
static int
initialize_matrix_A (lambda_matrix A, tree chrec, unsigned index, int mult)
initialize_matrix_A (lambda_matrix A, tree chrec, unsigned index, int mult)
{
{
  gcc_assert (chrec);
  gcc_assert (chrec);
 
 
  if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
  if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
    return int_cst_value (chrec);
    return int_cst_value (chrec);
 
 
  A[index][0] = mult * int_cst_value (CHREC_RIGHT (chrec));
  A[index][0] = mult * int_cst_value (CHREC_RIGHT (chrec));
  return initialize_matrix_A (A, CHREC_LEFT (chrec), index + 1, mult);
  return initialize_matrix_A (A, CHREC_LEFT (chrec), index + 1, mult);
}
}
 
 
#define FLOOR_DIV(x,y) ((x) / (y))
#define FLOOR_DIV(x,y) ((x) / (y))
 
 
/* Solves the special case of the Diophantine equation:
/* Solves the special case of the Diophantine equation:
   | {0, +, STEP_A}_x (OVERLAPS_A) = {0, +, STEP_B}_y (OVERLAPS_B)
   | {0, +, STEP_A}_x (OVERLAPS_A) = {0, +, STEP_B}_y (OVERLAPS_B)
 
 
   Computes the descriptions OVERLAPS_A and OVERLAPS_B.  NITER is the
   Computes the descriptions OVERLAPS_A and OVERLAPS_B.  NITER is the
   number of iterations that loops X and Y run.  The overlaps will be
   number of iterations that loops X and Y run.  The overlaps will be
   constructed as evolutions in dimension DIM.  */
   constructed as evolutions in dimension DIM.  */
 
 
static void
static void
compute_overlap_steps_for_affine_univar (int niter, int step_a, int step_b,
compute_overlap_steps_for_affine_univar (int niter, int step_a, int step_b,
                                         tree *overlaps_a, tree *overlaps_b,
                                         tree *overlaps_a, tree *overlaps_b,
                                         tree *last_conflicts, int dim)
                                         tree *last_conflicts, int dim)
{
{
  if (((step_a > 0 && step_b > 0)
  if (((step_a > 0 && step_b > 0)
       || (step_a < 0 && step_b < 0)))
       || (step_a < 0 && step_b < 0)))
    {
    {
      int step_overlaps_a, step_overlaps_b;
      int step_overlaps_a, step_overlaps_b;
      int gcd_steps_a_b, last_conflict, tau2;
      int gcd_steps_a_b, last_conflict, tau2;
 
 
      gcd_steps_a_b = gcd (step_a, step_b);
      gcd_steps_a_b = gcd (step_a, step_b);
      step_overlaps_a = step_b / gcd_steps_a_b;
      step_overlaps_a = step_b / gcd_steps_a_b;
      step_overlaps_b = step_a / gcd_steps_a_b;
      step_overlaps_b = step_a / gcd_steps_a_b;
 
 
      tau2 = FLOOR_DIV (niter, step_overlaps_a);
      tau2 = FLOOR_DIV (niter, step_overlaps_a);
      tau2 = MIN (tau2, FLOOR_DIV (niter, step_overlaps_b));
      tau2 = MIN (tau2, FLOOR_DIV (niter, step_overlaps_b));
      last_conflict = tau2;
      last_conflict = tau2;
 
 
      *overlaps_a = build_polynomial_chrec
      *overlaps_a = build_polynomial_chrec
        (dim, integer_zero_node,
        (dim, integer_zero_node,
         build_int_cst (NULL_TREE, step_overlaps_a));
         build_int_cst (NULL_TREE, step_overlaps_a));
      *overlaps_b = build_polynomial_chrec
      *overlaps_b = build_polynomial_chrec
        (dim, integer_zero_node,
        (dim, integer_zero_node,
         build_int_cst (NULL_TREE, step_overlaps_b));
         build_int_cst (NULL_TREE, step_overlaps_b));
      *last_conflicts = build_int_cst (NULL_TREE, last_conflict);
      *last_conflicts = build_int_cst (NULL_TREE, last_conflict);
    }
    }
 
 
  else
  else
    {
    {
      *overlaps_a = integer_zero_node;
      *overlaps_a = integer_zero_node;
      *overlaps_b = integer_zero_node;
      *overlaps_b = integer_zero_node;
      *last_conflicts = integer_zero_node;
      *last_conflicts = integer_zero_node;
    }
    }
}
}
 
 
 
 
/* Solves the special case of a Diophantine equation where CHREC_A is
/* Solves the special case of a Diophantine equation where CHREC_A is
   an affine bivariate function, and CHREC_B is an affine univariate
   an affine bivariate function, and CHREC_B is an affine univariate
   function.  For example,
   function.  For example,
 
 
   | {{0, +, 1}_x, +, 1335}_y = {0, +, 1336}_z
   | {{0, +, 1}_x, +, 1335}_y = {0, +, 1336}_z
 
 
   has the following overlapping functions:
   has the following overlapping functions:
 
 
   | x (t, u, v) = {{0, +, 1336}_t, +, 1}_v
   | x (t, u, v) = {{0, +, 1336}_t, +, 1}_v
   | y (t, u, v) = {{0, +, 1336}_u, +, 1}_v
   | y (t, u, v) = {{0, +, 1336}_u, +, 1}_v
   | z (t, u, v) = {{{0, +, 1}_t, +, 1335}_u, +, 1}_v
   | z (t, u, v) = {{{0, +, 1}_t, +, 1335}_u, +, 1}_v
 
 
   FORNOW: This is a specialized implementation for a case occurring in
   FORNOW: This is a specialized implementation for a case occurring in
   a common benchmark.  Implement the general algorithm.  */
   a common benchmark.  Implement the general algorithm.  */
 
 
static void
static void
compute_overlap_steps_for_affine_1_2 (tree chrec_a, tree chrec_b,
compute_overlap_steps_for_affine_1_2 (tree chrec_a, tree chrec_b,
                                      tree *overlaps_a, tree *overlaps_b,
                                      tree *overlaps_a, tree *overlaps_b,
                                      tree *last_conflicts)
                                      tree *last_conflicts)
{
{
  bool xz_p, yz_p, xyz_p;
  bool xz_p, yz_p, xyz_p;
  int step_x, step_y, step_z;
  int step_x, step_y, step_z;
  int niter_x, niter_y, niter_z, niter;
  int niter_x, niter_y, niter_z, niter;
  tree numiter_x, numiter_y, numiter_z;
  tree numiter_x, numiter_y, numiter_z;
  tree overlaps_a_xz, overlaps_b_xz, last_conflicts_xz;
  tree overlaps_a_xz, overlaps_b_xz, last_conflicts_xz;
  tree overlaps_a_yz, overlaps_b_yz, last_conflicts_yz;
  tree overlaps_a_yz, overlaps_b_yz, last_conflicts_yz;
  tree overlaps_a_xyz, overlaps_b_xyz, last_conflicts_xyz;
  tree overlaps_a_xyz, overlaps_b_xyz, last_conflicts_xyz;
 
 
  step_x = int_cst_value (CHREC_RIGHT (CHREC_LEFT (chrec_a)));
  step_x = int_cst_value (CHREC_RIGHT (CHREC_LEFT (chrec_a)));
  step_y = int_cst_value (CHREC_RIGHT (chrec_a));
  step_y = int_cst_value (CHREC_RIGHT (chrec_a));
  step_z = int_cst_value (CHREC_RIGHT (chrec_b));
  step_z = int_cst_value (CHREC_RIGHT (chrec_b));
 
 
  numiter_x = get_number_of_iters_for_loop (CHREC_VARIABLE (CHREC_LEFT (chrec_a)));
  numiter_x = get_number_of_iters_for_loop (CHREC_VARIABLE (CHREC_LEFT (chrec_a)));
  numiter_y = get_number_of_iters_for_loop (CHREC_VARIABLE (chrec_a));
  numiter_y = get_number_of_iters_for_loop (CHREC_VARIABLE (chrec_a));
  numiter_z = get_number_of_iters_for_loop (CHREC_VARIABLE (chrec_b));
  numiter_z = get_number_of_iters_for_loop (CHREC_VARIABLE (chrec_b));
 
 
  if (numiter_x == NULL_TREE || numiter_y == NULL_TREE
  if (numiter_x == NULL_TREE || numiter_y == NULL_TREE
      || numiter_z == NULL_TREE)
      || numiter_z == NULL_TREE)
    {
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
      if (dump_file && (dump_flags & TDF_DETAILS))
        fprintf (dump_file, "overlap steps test failed: no iteration counts.\n");
        fprintf (dump_file, "overlap steps test failed: no iteration counts.\n");
 
 
      *overlaps_a = chrec_dont_know;
      *overlaps_a = chrec_dont_know;
      *overlaps_b = chrec_dont_know;
      *overlaps_b = chrec_dont_know;
      *last_conflicts = chrec_dont_know;
      *last_conflicts = chrec_dont_know;
      return;
      return;
    }
    }
 
 
  niter_x = int_cst_value (numiter_x);
  niter_x = int_cst_value (numiter_x);
  niter_y = int_cst_value (numiter_y);
  niter_y = int_cst_value (numiter_y);
  niter_z = int_cst_value (numiter_z);
  niter_z = int_cst_value (numiter_z);
 
 
  niter = MIN (niter_x, niter_z);
  niter = MIN (niter_x, niter_z);
  compute_overlap_steps_for_affine_univar (niter, step_x, step_z,
  compute_overlap_steps_for_affine_univar (niter, step_x, step_z,
                                           &overlaps_a_xz,
                                           &overlaps_a_xz,
                                           &overlaps_b_xz,
                                           &overlaps_b_xz,
                                           &last_conflicts_xz, 1);
                                           &last_conflicts_xz, 1);
  niter = MIN (niter_y, niter_z);
  niter = MIN (niter_y, niter_z);
  compute_overlap_steps_for_affine_univar (niter, step_y, step_z,
  compute_overlap_steps_for_affine_univar (niter, step_y, step_z,
                                           &overlaps_a_yz,
                                           &overlaps_a_yz,
                                           &overlaps_b_yz,
                                           &overlaps_b_yz,
                                           &last_conflicts_yz, 2);
                                           &last_conflicts_yz, 2);
  niter = MIN (niter_x, niter_z);
  niter = MIN (niter_x, niter_z);
  niter = MIN (niter_y, niter);
  niter = MIN (niter_y, niter);
  compute_overlap_steps_for_affine_univar (niter, step_x + step_y, step_z,
  compute_overlap_steps_for_affine_univar (niter, step_x + step_y, step_z,
                                           &overlaps_a_xyz,
                                           &overlaps_a_xyz,
                                           &overlaps_b_xyz,
                                           &overlaps_b_xyz,
                                           &last_conflicts_xyz, 3);
                                           &last_conflicts_xyz, 3);
 
 
  xz_p = !integer_zerop (last_conflicts_xz);
  xz_p = !integer_zerop (last_conflicts_xz);
  yz_p = !integer_zerop (last_conflicts_yz);
  yz_p = !integer_zerop (last_conflicts_yz);
  xyz_p = !integer_zerop (last_conflicts_xyz);
  xyz_p = !integer_zerop (last_conflicts_xyz);
 
 
  if (xz_p || yz_p || xyz_p)
  if (xz_p || yz_p || xyz_p)
    {
    {
      *overlaps_a = make_tree_vec (2);
      *overlaps_a = make_tree_vec (2);
      TREE_VEC_ELT (*overlaps_a, 0) = integer_zero_node;
      TREE_VEC_ELT (*overlaps_a, 0) = integer_zero_node;
      TREE_VEC_ELT (*overlaps_a, 1) = integer_zero_node;
      TREE_VEC_ELT (*overlaps_a, 1) = integer_zero_node;
      *overlaps_b = integer_zero_node;
      *overlaps_b = integer_zero_node;
      if (xz_p)
      if (xz_p)
        {
        {
          tree t0 = chrec_convert (integer_type_node,
          tree t0 = chrec_convert (integer_type_node,
                                   TREE_VEC_ELT (*overlaps_a, 0), NULL_TREE);
                                   TREE_VEC_ELT (*overlaps_a, 0), NULL_TREE);
          tree t1 = chrec_convert (integer_type_node, overlaps_a_xz,
          tree t1 = chrec_convert (integer_type_node, overlaps_a_xz,
                                   NULL_TREE);
                                   NULL_TREE);
          tree t2 = chrec_convert (integer_type_node, *overlaps_b,
          tree t2 = chrec_convert (integer_type_node, *overlaps_b,
                                   NULL_TREE);
                                   NULL_TREE);
          tree t3 = chrec_convert (integer_type_node, overlaps_b_xz,
          tree t3 = chrec_convert (integer_type_node, overlaps_b_xz,
                                   NULL_TREE);
                                   NULL_TREE);
 
 
          TREE_VEC_ELT (*overlaps_a, 0) = chrec_fold_plus (integer_type_node,
          TREE_VEC_ELT (*overlaps_a, 0) = chrec_fold_plus (integer_type_node,
                                                           t0, t1);
                                                           t0, t1);
          *overlaps_b = chrec_fold_plus (integer_type_node, t2, t3);
          *overlaps_b = chrec_fold_plus (integer_type_node, t2, t3);
          *last_conflicts = last_conflicts_xz;
          *last_conflicts = last_conflicts_xz;
        }
        }
      if (yz_p)
      if (yz_p)
        {
        {
          tree t0 = chrec_convert (integer_type_node,
          tree t0 = chrec_convert (integer_type_node,
                                   TREE_VEC_ELT (*overlaps_a, 1), NULL_TREE);
                                   TREE_VEC_ELT (*overlaps_a, 1), NULL_TREE);
          tree t1 = chrec_convert (integer_type_node, overlaps_a_yz, NULL_TREE);
          tree t1 = chrec_convert (integer_type_node, overlaps_a_yz, NULL_TREE);
          tree t2 = chrec_convert (integer_type_node, *overlaps_b, NULL_TREE);
          tree t2 = chrec_convert (integer_type_node, *overlaps_b, NULL_TREE);
          tree t3 = chrec_convert (integer_type_node, overlaps_b_yz, NULL_TREE);
          tree t3 = chrec_convert (integer_type_node, overlaps_b_yz, NULL_TREE);
 
 
          TREE_VEC_ELT (*overlaps_a, 1) = chrec_fold_plus (integer_type_node,
          TREE_VEC_ELT (*overlaps_a, 1) = chrec_fold_plus (integer_type_node,
                                                           t0, t1);
                                                           t0, t1);
          *overlaps_b = chrec_fold_plus (integer_type_node, t2, t3);
          *overlaps_b = chrec_fold_plus (integer_type_node, t2, t3);
          *last_conflicts = last_conflicts_yz;
          *last_conflicts = last_conflicts_yz;
        }
        }
      if (xyz_p)
      if (xyz_p)
        {
        {
          tree t0 = chrec_convert (integer_type_node,
          tree t0 = chrec_convert (integer_type_node,
                                   TREE_VEC_ELT (*overlaps_a, 0), NULL_TREE);
                                   TREE_VEC_ELT (*overlaps_a, 0), NULL_TREE);
          tree t1 = chrec_convert (integer_type_node, overlaps_a_xyz,
          tree t1 = chrec_convert (integer_type_node, overlaps_a_xyz,
                                   NULL_TREE);
                                   NULL_TREE);
          tree t2 = chrec_convert (integer_type_node,
          tree t2 = chrec_convert (integer_type_node,
                                   TREE_VEC_ELT (*overlaps_a, 1), NULL_TREE);
                                   TREE_VEC_ELT (*overlaps_a, 1), NULL_TREE);
          tree t3 = chrec_convert (integer_type_node, overlaps_a_xyz,
          tree t3 = chrec_convert (integer_type_node, overlaps_a_xyz,
                                   NULL_TREE);
                                   NULL_TREE);
          tree t4 = chrec_convert (integer_type_node, *overlaps_b, NULL_TREE);
          tree t4 = chrec_convert (integer_type_node, *overlaps_b, NULL_TREE);
          tree t5 = chrec_convert (integer_type_node, overlaps_b_xyz,
          tree t5 = chrec_convert (integer_type_node, overlaps_b_xyz,
                                   NULL_TREE);
                                   NULL_TREE);
 
 
          TREE_VEC_ELT (*overlaps_a, 0) = chrec_fold_plus (integer_type_node,
          TREE_VEC_ELT (*overlaps_a, 0) = chrec_fold_plus (integer_type_node,
                                                           t0, t1);
                                                           t0, t1);
          TREE_VEC_ELT (*overlaps_a, 1) = chrec_fold_plus (integer_type_node,
          TREE_VEC_ELT (*overlaps_a, 1) = chrec_fold_plus (integer_type_node,
                                                           t2, t3);
                                                           t2, t3);
          *overlaps_b = chrec_fold_plus (integer_type_node, t4, t5);
          *overlaps_b = chrec_fold_plus (integer_type_node, t4, t5);
          *last_conflicts = last_conflicts_xyz;
          *last_conflicts = last_conflicts_xyz;
        }
        }
    }
    }
  else
  else
    {
    {
      *overlaps_a = integer_zero_node;
      *overlaps_a = integer_zero_node;
      *overlaps_b = integer_zero_node;
      *overlaps_b = integer_zero_node;
      *last_conflicts = integer_zero_node;
      *last_conflicts = integer_zero_node;
    }
    }
}
}
 
 
/* Determines the overlapping elements due to accesses CHREC_A and
/* Determines the overlapping elements due to accesses CHREC_A and
   CHREC_B, that are affine functions.  This function cannot handle
   CHREC_B, that are affine functions.  This function cannot handle
   symbolic evolution functions, ie. when initial conditions are
   symbolic evolution functions, ie. when initial conditions are
   parameters, because it uses lambda matrices of integers.  */
   parameters, because it uses lambda matrices of integers.  */
 
 
static void
static void
analyze_subscript_affine_affine (tree chrec_a,
analyze_subscript_affine_affine (tree chrec_a,
                                 tree chrec_b,
                                 tree chrec_b,
                                 tree *overlaps_a,
                                 tree *overlaps_a,
                                 tree *overlaps_b,
                                 tree *overlaps_b,
                                 tree *last_conflicts)
                                 tree *last_conflicts)
{
{
  unsigned nb_vars_a, nb_vars_b, dim;
  unsigned nb_vars_a, nb_vars_b, dim;
  int init_a, init_b, gamma, gcd_alpha_beta;
  int init_a, init_b, gamma, gcd_alpha_beta;
  int tau1, tau2;
  int tau1, tau2;
  lambda_matrix A, U, S;
  lambda_matrix A, U, S;
 
 
  if (eq_evolutions_p (chrec_a, chrec_b))
  if (eq_evolutions_p (chrec_a, chrec_b))
    {
    {
      /* The accessed index overlaps for each iteration in the
      /* The accessed index overlaps for each iteration in the
         loop.  */
         loop.  */
      *overlaps_a = integer_zero_node;
      *overlaps_a = integer_zero_node;
      *overlaps_b = integer_zero_node;
      *overlaps_b = integer_zero_node;
      *last_conflicts = chrec_dont_know;
      *last_conflicts = chrec_dont_know;
      return;
      return;
    }
    }
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "(analyze_subscript_affine_affine \n");
    fprintf (dump_file, "(analyze_subscript_affine_affine \n");
 
 
  /* For determining the initial intersection, we have to solve a
  /* For determining the initial intersection, we have to solve a
     Diophantine equation.  This is the most time consuming part.
     Diophantine equation.  This is the most time consuming part.
 
 
     For answering to the question: "Is there a dependence?" we have
     For answering to the question: "Is there a dependence?" we have
     to prove that there exists a solution to the Diophantine
     to prove that there exists a solution to the Diophantine
     equation, and that the solution is in the iteration domain,
     equation, and that the solution is in the iteration domain,
     i.e. the solution is positive or zero, and that the solution
     i.e. the solution is positive or zero, and that the solution
     happens before the upper bound loop.nb_iterations.  Otherwise
     happens before the upper bound loop.nb_iterations.  Otherwise
     there is no dependence.  This function outputs a description of
     there is no dependence.  This function outputs a description of
     the iterations that hold the intersections.  */
     the iterations that hold the intersections.  */
 
 
  nb_vars_a = nb_vars_in_chrec (chrec_a);
  nb_vars_a = nb_vars_in_chrec (chrec_a);
  nb_vars_b = nb_vars_in_chrec (chrec_b);
  nb_vars_b = nb_vars_in_chrec (chrec_b);
 
 
  dim = nb_vars_a + nb_vars_b;
  dim = nb_vars_a + nb_vars_b;
  U = lambda_matrix_new (dim, dim);
  U = lambda_matrix_new (dim, dim);
  A = lambda_matrix_new (dim, 1);
  A = lambda_matrix_new (dim, 1);
  S = lambda_matrix_new (dim, 1);
  S = lambda_matrix_new (dim, 1);
 
 
  init_a = initialize_matrix_A (A, chrec_a, 0, 1);
  init_a = initialize_matrix_A (A, chrec_a, 0, 1);
  init_b = initialize_matrix_A (A, chrec_b, nb_vars_a, -1);
  init_b = initialize_matrix_A (A, chrec_b, nb_vars_a, -1);
  gamma = init_b - init_a;
  gamma = init_b - init_a;
 
 
  /* Don't do all the hard work of solving the Diophantine equation
  /* Don't do all the hard work of solving the Diophantine equation
     when we already know the solution: for example,
     when we already know the solution: for example,
     | {3, +, 1}_1
     | {3, +, 1}_1
     | {3, +, 4}_2
     | {3, +, 4}_2
     | gamma = 3 - 3 = 0.
     | gamma = 3 - 3 = 0.
     Then the first overlap occurs during the first iterations:
     Then the first overlap occurs during the first iterations:
     | {3, +, 1}_1 ({0, +, 4}_x) = {3, +, 4}_2 ({0, +, 1}_x)
     | {3, +, 1}_1 ({0, +, 4}_x) = {3, +, 4}_2 ({0, +, 1}_x)
  */
  */
  if (gamma == 0)
  if (gamma == 0)
    {
    {
      if (nb_vars_a == 1 && nb_vars_b == 1)
      if (nb_vars_a == 1 && nb_vars_b == 1)
        {
        {
          int step_a, step_b;
          int step_a, step_b;
          int niter, niter_a, niter_b;
          int niter, niter_a, niter_b;
          tree numiter_a, numiter_b;
          tree numiter_a, numiter_b;
 
 
          numiter_a = get_number_of_iters_for_loop (CHREC_VARIABLE (chrec_a));
          numiter_a = get_number_of_iters_for_loop (CHREC_VARIABLE (chrec_a));
          numiter_b = get_number_of_iters_for_loop (CHREC_VARIABLE (chrec_b));
          numiter_b = get_number_of_iters_for_loop (CHREC_VARIABLE (chrec_b));
          if (numiter_a == NULL_TREE || numiter_b == NULL_TREE)
          if (numiter_a == NULL_TREE || numiter_b == NULL_TREE)
            {
            {
              if (dump_file && (dump_flags & TDF_DETAILS))
              if (dump_file && (dump_flags & TDF_DETAILS))
                fprintf (dump_file, "affine-affine test failed: missing iteration counts.\n");
                fprintf (dump_file, "affine-affine test failed: missing iteration counts.\n");
              *overlaps_a = chrec_dont_know;
              *overlaps_a = chrec_dont_know;
              *overlaps_b = chrec_dont_know;
              *overlaps_b = chrec_dont_know;
              *last_conflicts = chrec_dont_know;
              *last_conflicts = chrec_dont_know;
              goto end_analyze_subs_aa;
              goto end_analyze_subs_aa;
            }
            }
 
 
          niter_a = int_cst_value (numiter_a);
          niter_a = int_cst_value (numiter_a);
          niter_b = int_cst_value (numiter_b);
          niter_b = int_cst_value (numiter_b);
          niter = MIN (niter_a, niter_b);
          niter = MIN (niter_a, niter_b);
 
 
          step_a = int_cst_value (CHREC_RIGHT (chrec_a));
          step_a = int_cst_value (CHREC_RIGHT (chrec_a));
          step_b = int_cst_value (CHREC_RIGHT (chrec_b));
          step_b = int_cst_value (CHREC_RIGHT (chrec_b));
 
 
          compute_overlap_steps_for_affine_univar (niter, step_a, step_b,
          compute_overlap_steps_for_affine_univar (niter, step_a, step_b,
                                                   overlaps_a, overlaps_b,
                                                   overlaps_a, overlaps_b,
                                                   last_conflicts, 1);
                                                   last_conflicts, 1);
        }
        }
 
 
      else if (nb_vars_a == 2 && nb_vars_b == 1)
      else if (nb_vars_a == 2 && nb_vars_b == 1)
        compute_overlap_steps_for_affine_1_2
        compute_overlap_steps_for_affine_1_2
          (chrec_a, chrec_b, overlaps_a, overlaps_b, last_conflicts);
          (chrec_a, chrec_b, overlaps_a, overlaps_b, last_conflicts);
 
 
      else if (nb_vars_a == 1 && nb_vars_b == 2)
      else if (nb_vars_a == 1 && nb_vars_b == 2)
        compute_overlap_steps_for_affine_1_2
        compute_overlap_steps_for_affine_1_2
          (chrec_b, chrec_a, overlaps_b, overlaps_a, last_conflicts);
          (chrec_b, chrec_a, overlaps_b, overlaps_a, last_conflicts);
 
 
      else
      else
        {
        {
          if (dump_file && (dump_flags & TDF_DETAILS))
          if (dump_file && (dump_flags & TDF_DETAILS))
            fprintf (dump_file, "affine-affine test failed: too many variables.\n");
            fprintf (dump_file, "affine-affine test failed: too many variables.\n");
          *overlaps_a = chrec_dont_know;
          *overlaps_a = chrec_dont_know;
          *overlaps_b = chrec_dont_know;
          *overlaps_b = chrec_dont_know;
          *last_conflicts = chrec_dont_know;
          *last_conflicts = chrec_dont_know;
        }
        }
      goto end_analyze_subs_aa;
      goto end_analyze_subs_aa;
    }
    }
 
 
  /* U.A = S */
  /* U.A = S */
  lambda_matrix_right_hermite (A, dim, 1, S, U);
  lambda_matrix_right_hermite (A, dim, 1, S, U);
 
 
  if (S[0][0] < 0)
  if (S[0][0] < 0)
    {
    {
      S[0][0] *= -1;
      S[0][0] *= -1;
      lambda_matrix_row_negate (U, dim, 0);
      lambda_matrix_row_negate (U, dim, 0);
    }
    }
  gcd_alpha_beta = S[0][0];
  gcd_alpha_beta = S[0][0];
 
 
  /* Something went wrong: for example in {1, +, 0}_5 vs. {0, +, 0}_5,
  /* Something went wrong: for example in {1, +, 0}_5 vs. {0, +, 0}_5,
     but that is a quite strange case.  Instead of ICEing, answer
     but that is a quite strange case.  Instead of ICEing, answer
     don't know.  */
     don't know.  */
  if (gcd_alpha_beta == 0)
  if (gcd_alpha_beta == 0)
    {
    {
      *overlaps_a = chrec_dont_know;
      *overlaps_a = chrec_dont_know;
      *overlaps_b = chrec_dont_know;
      *overlaps_b = chrec_dont_know;
      *last_conflicts = chrec_dont_know;
      *last_conflicts = chrec_dont_know;
      goto end_analyze_subs_aa;
      goto end_analyze_subs_aa;
    }
    }
 
 
  /* The classic "gcd-test".  */
  /* The classic "gcd-test".  */
  if (!int_divides_p (gcd_alpha_beta, gamma))
  if (!int_divides_p (gcd_alpha_beta, gamma))
    {
    {
      /* The "gcd-test" has determined that there is no integer
      /* The "gcd-test" has determined that there is no integer
         solution, i.e. there is no dependence.  */
         solution, i.e. there is no dependence.  */
      *overlaps_a = chrec_known;
      *overlaps_a = chrec_known;
      *overlaps_b = chrec_known;
      *overlaps_b = chrec_known;
      *last_conflicts = integer_zero_node;
      *last_conflicts = integer_zero_node;
    }
    }
 
 
  /* Both access functions are univariate.  This includes SIV and MIV cases.  */
  /* Both access functions are univariate.  This includes SIV and MIV cases.  */
  else if (nb_vars_a == 1 && nb_vars_b == 1)
  else if (nb_vars_a == 1 && nb_vars_b == 1)
    {
    {
      /* Both functions should have the same evolution sign.  */
      /* Both functions should have the same evolution sign.  */
      if (((A[0][0] > 0 && -A[1][0] > 0)
      if (((A[0][0] > 0 && -A[1][0] > 0)
           || (A[0][0] < 0 && -A[1][0] < 0)))
           || (A[0][0] < 0 && -A[1][0] < 0)))
        {
        {
          /* The solutions are given by:
          /* The solutions are given by:
             |
             |
             | [GAMMA/GCD_ALPHA_BETA  t].[u11 u12]  = [x0]
             | [GAMMA/GCD_ALPHA_BETA  t].[u11 u12]  = [x0]
             |                           [u21 u22]    [y0]
             |                           [u21 u22]    [y0]
 
 
             For a given integer t.  Using the following variables,
             For a given integer t.  Using the following variables,
 
 
             | i0 = u11 * gamma / gcd_alpha_beta
             | i0 = u11 * gamma / gcd_alpha_beta
             | j0 = u12 * gamma / gcd_alpha_beta
             | j0 = u12 * gamma / gcd_alpha_beta
             | i1 = u21
             | i1 = u21
             | j1 = u22
             | j1 = u22
 
 
             the solutions are:
             the solutions are:
 
 
             | x0 = i0 + i1 * t,
             | x0 = i0 + i1 * t,
             | y0 = j0 + j1 * t.  */
             | y0 = j0 + j1 * t.  */
 
 
          int i0, j0, i1, j1;
          int i0, j0, i1, j1;
 
 
          /* X0 and Y0 are the first iterations for which there is a
          /* X0 and Y0 are the first iterations for which there is a
             dependence.  X0, Y0 are two solutions of the Diophantine
             dependence.  X0, Y0 are two solutions of the Diophantine
             equation: chrec_a (X0) = chrec_b (Y0).  */
             equation: chrec_a (X0) = chrec_b (Y0).  */
          int x0, y0;
          int x0, y0;
          int niter, niter_a, niter_b;
          int niter, niter_a, niter_b;
          tree numiter_a, numiter_b;
          tree numiter_a, numiter_b;
 
 
          numiter_a = get_number_of_iters_for_loop (CHREC_VARIABLE (chrec_a));
          numiter_a = get_number_of_iters_for_loop (CHREC_VARIABLE (chrec_a));
          numiter_b = get_number_of_iters_for_loop (CHREC_VARIABLE (chrec_b));
          numiter_b = get_number_of_iters_for_loop (CHREC_VARIABLE (chrec_b));
 
 
          if (numiter_a == NULL_TREE || numiter_b == NULL_TREE)
          if (numiter_a == NULL_TREE || numiter_b == NULL_TREE)
            {
            {
              if (dump_file && (dump_flags & TDF_DETAILS))
              if (dump_file && (dump_flags & TDF_DETAILS))
                fprintf (dump_file, "affine-affine test failed: missing iteration counts.\n");
                fprintf (dump_file, "affine-affine test failed: missing iteration counts.\n");
              *overlaps_a = chrec_dont_know;
              *overlaps_a = chrec_dont_know;
              *overlaps_b = chrec_dont_know;
              *overlaps_b = chrec_dont_know;
              *last_conflicts = chrec_dont_know;
              *last_conflicts = chrec_dont_know;
              goto end_analyze_subs_aa;
              goto end_analyze_subs_aa;
            }
            }
 
 
          niter_a = int_cst_value (numiter_a);
          niter_a = int_cst_value (numiter_a);
          niter_b = int_cst_value (numiter_b);
          niter_b = int_cst_value (numiter_b);
          niter = MIN (niter_a, niter_b);
          niter = MIN (niter_a, niter_b);
 
 
          i0 = U[0][0] * gamma / gcd_alpha_beta;
          i0 = U[0][0] * gamma / gcd_alpha_beta;
          j0 = U[0][1] * gamma / gcd_alpha_beta;
          j0 = U[0][1] * gamma / gcd_alpha_beta;
          i1 = U[1][0];
          i1 = U[1][0];
          j1 = U[1][1];
          j1 = U[1][1];
 
 
          if ((i1 == 0 && i0 < 0)
          if ((i1 == 0 && i0 < 0)
              || (j1 == 0 && j0 < 0))
              || (j1 == 0 && j0 < 0))
            {
            {
              /* There is no solution.
              /* There is no solution.
                 FIXME: The case "i0 > nb_iterations, j0 > nb_iterations"
                 FIXME: The case "i0 > nb_iterations, j0 > nb_iterations"
                 falls in here, but for the moment we don't look at the
                 falls in here, but for the moment we don't look at the
                 upper bound of the iteration domain.  */
                 upper bound of the iteration domain.  */
              *overlaps_a = chrec_known;
              *overlaps_a = chrec_known;
              *overlaps_b = chrec_known;
              *overlaps_b = chrec_known;
              *last_conflicts = integer_zero_node;
              *last_conflicts = integer_zero_node;
            }
            }
 
 
          else
          else
            {
            {
              if (i1 > 0)
              if (i1 > 0)
                {
                {
                  tau1 = CEIL (-i0, i1);
                  tau1 = CEIL (-i0, i1);
                  tau2 = FLOOR_DIV (niter - i0, i1);
                  tau2 = FLOOR_DIV (niter - i0, i1);
 
 
                  if (j1 > 0)
                  if (j1 > 0)
                    {
                    {
                      int last_conflict, min_multiple;
                      int last_conflict, min_multiple;
                      tau1 = MAX (tau1, CEIL (-j0, j1));
                      tau1 = MAX (tau1, CEIL (-j0, j1));
                      tau2 = MIN (tau2, FLOOR_DIV (niter - j0, j1));
                      tau2 = MIN (tau2, FLOOR_DIV (niter - j0, j1));
 
 
                      x0 = i1 * tau1 + i0;
                      x0 = i1 * tau1 + i0;
                      y0 = j1 * tau1 + j0;
                      y0 = j1 * tau1 + j0;
 
 
                      /* At this point (x0, y0) is one of the
                      /* At this point (x0, y0) is one of the
                         solutions to the Diophantine equation.  The
                         solutions to the Diophantine equation.  The
                         next step has to compute the smallest
                         next step has to compute the smallest
                         positive solution: the first conflicts.  */
                         positive solution: the first conflicts.  */
                      min_multiple = MIN (x0 / i1, y0 / j1);
                      min_multiple = MIN (x0 / i1, y0 / j1);
                      x0 -= i1 * min_multiple;
                      x0 -= i1 * min_multiple;
                      y0 -= j1 * min_multiple;
                      y0 -= j1 * min_multiple;
 
 
                      tau1 = (x0 - i0)/i1;
                      tau1 = (x0 - i0)/i1;
                      last_conflict = tau2 - tau1;
                      last_conflict = tau2 - tau1;
 
 
                      /* If the overlap occurs outside of the bounds of the
                      /* If the overlap occurs outside of the bounds of the
                         loop, there is no dependence.  */
                         loop, there is no dependence.  */
                      if (x0 > niter || y0  > niter)
                      if (x0 > niter || y0  > niter)
                        {
                        {
                          *overlaps_a = chrec_known;
                          *overlaps_a = chrec_known;
                          *overlaps_b = chrec_known;
                          *overlaps_b = chrec_known;
                          *last_conflicts = integer_zero_node;
                          *last_conflicts = integer_zero_node;
                        }
                        }
                      else
                      else
                        {
                        {
                          *overlaps_a = build_polynomial_chrec
                          *overlaps_a = build_polynomial_chrec
                            (1,
                            (1,
                             build_int_cst (NULL_TREE, x0),
                             build_int_cst (NULL_TREE, x0),
                             build_int_cst (NULL_TREE, i1));
                             build_int_cst (NULL_TREE, i1));
                          *overlaps_b = build_polynomial_chrec
                          *overlaps_b = build_polynomial_chrec
                            (1,
                            (1,
                             build_int_cst (NULL_TREE, y0),
                             build_int_cst (NULL_TREE, y0),
                             build_int_cst (NULL_TREE, j1));
                             build_int_cst (NULL_TREE, j1));
                          *last_conflicts = build_int_cst (NULL_TREE, last_conflict);
                          *last_conflicts = build_int_cst (NULL_TREE, last_conflict);
                        }
                        }
                    }
                    }
                  else
                  else
                    {
                    {
                      /* FIXME: For the moment, the upper bound of the
                      /* FIXME: For the moment, the upper bound of the
                         iteration domain for j is not checked.  */
                         iteration domain for j is not checked.  */
                      if (dump_file && (dump_flags & TDF_DETAILS))
                      if (dump_file && (dump_flags & TDF_DETAILS))
                        fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
                        fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
                      *overlaps_a = chrec_dont_know;
                      *overlaps_a = chrec_dont_know;
                      *overlaps_b = chrec_dont_know;
                      *overlaps_b = chrec_dont_know;
                      *last_conflicts = chrec_dont_know;
                      *last_conflicts = chrec_dont_know;
                    }
                    }
                }
                }
 
 
              else
              else
                {
                {
                  /* FIXME: For the moment, the upper bound of the
                  /* FIXME: For the moment, the upper bound of the
                     iteration domain for i is not checked.  */
                     iteration domain for i is not checked.  */
                  if (dump_file && (dump_flags & TDF_DETAILS))
                  if (dump_file && (dump_flags & TDF_DETAILS))
                    fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
                    fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
                  *overlaps_a = chrec_dont_know;
                  *overlaps_a = chrec_dont_know;
                  *overlaps_b = chrec_dont_know;
                  *overlaps_b = chrec_dont_know;
                  *last_conflicts = chrec_dont_know;
                  *last_conflicts = chrec_dont_know;
                }
                }
            }
            }
        }
        }
      else
      else
        {
        {
          if (dump_file && (dump_flags & TDF_DETAILS))
          if (dump_file && (dump_flags & TDF_DETAILS))
            fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
            fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
          *overlaps_a = chrec_dont_know;
          *overlaps_a = chrec_dont_know;
          *overlaps_b = chrec_dont_know;
          *overlaps_b = chrec_dont_know;
          *last_conflicts = chrec_dont_know;
          *last_conflicts = chrec_dont_know;
        }
        }
    }
    }
 
 
  else
  else
    {
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
      if (dump_file && (dump_flags & TDF_DETAILS))
        fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
        fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
      *overlaps_a = chrec_dont_know;
      *overlaps_a = chrec_dont_know;
      *overlaps_b = chrec_dont_know;
      *overlaps_b = chrec_dont_know;
      *last_conflicts = chrec_dont_know;
      *last_conflicts = chrec_dont_know;
    }
    }
 
 
end_analyze_subs_aa:
end_analyze_subs_aa:
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
    {
      fprintf (dump_file, "  (overlaps_a = ");
      fprintf (dump_file, "  (overlaps_a = ");
      print_generic_expr (dump_file, *overlaps_a, 0);
      print_generic_expr (dump_file, *overlaps_a, 0);
      fprintf (dump_file, ")\n  (overlaps_b = ");
      fprintf (dump_file, ")\n  (overlaps_b = ");
      print_generic_expr (dump_file, *overlaps_b, 0);
      print_generic_expr (dump_file, *overlaps_b, 0);
      fprintf (dump_file, ")\n");
      fprintf (dump_file, ")\n");
      fprintf (dump_file, ")\n");
      fprintf (dump_file, ")\n");
    }
    }
}
}
 
 
/* Returns true when analyze_subscript_affine_affine can be used for
/* Returns true when analyze_subscript_affine_affine can be used for
   determining the dependence relation between chrec_a and chrec_b,
   determining the dependence relation between chrec_a and chrec_b,
   that contain symbols.  This function modifies chrec_a and chrec_b
   that contain symbols.  This function modifies chrec_a and chrec_b
   such that the analysis result is the same, and such that they don't
   such that the analysis result is the same, and such that they don't
   contain symbols, and then can safely be passed to the analyzer.
   contain symbols, and then can safely be passed to the analyzer.
 
 
   Example: The analysis of the following tuples of evolutions produce
   Example: The analysis of the following tuples of evolutions produce
   the same results: {x+1, +, 1}_1 vs. {x+3, +, 1}_1, and {-2, +, 1}_1
   the same results: {x+1, +, 1}_1 vs. {x+3, +, 1}_1, and {-2, +, 1}_1
   vs. {0, +, 1}_1
   vs. {0, +, 1}_1
 
 
   {x+1, +, 1}_1 ({2, +, 1}_1) = {x+3, +, 1}_1 ({0, +, 1}_1)
   {x+1, +, 1}_1 ({2, +, 1}_1) = {x+3, +, 1}_1 ({0, +, 1}_1)
   {-2, +, 1}_1 ({2, +, 1}_1) = {0, +, 1}_1 ({0, +, 1}_1)
   {-2, +, 1}_1 ({2, +, 1}_1) = {0, +, 1}_1 ({0, +, 1}_1)
*/
*/
 
 
static bool
static bool
can_use_analyze_subscript_affine_affine (tree *chrec_a, tree *chrec_b)
can_use_analyze_subscript_affine_affine (tree *chrec_a, tree *chrec_b)
{
{
  tree diff, type, left_a, left_b, right_b;
  tree diff, type, left_a, left_b, right_b;
 
 
  if (chrec_contains_symbols (CHREC_RIGHT (*chrec_a))
  if (chrec_contains_symbols (CHREC_RIGHT (*chrec_a))
      || chrec_contains_symbols (CHREC_RIGHT (*chrec_b)))
      || chrec_contains_symbols (CHREC_RIGHT (*chrec_b)))
    /* FIXME: For the moment not handled.  Might be refined later.  */
    /* FIXME: For the moment not handled.  Might be refined later.  */
    return false;
    return false;
 
 
  type = chrec_type (*chrec_a);
  type = chrec_type (*chrec_a);
  left_a = CHREC_LEFT (*chrec_a);
  left_a = CHREC_LEFT (*chrec_a);
  left_b = chrec_convert (type, CHREC_LEFT (*chrec_b), NULL_TREE);
  left_b = chrec_convert (type, CHREC_LEFT (*chrec_b), NULL_TREE);
  diff = chrec_fold_minus (type, left_a, left_b);
  diff = chrec_fold_minus (type, left_a, left_b);
 
 
  if (!evolution_function_is_constant_p (diff))
  if (!evolution_function_is_constant_p (diff))
    return false;
    return false;
 
 
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "can_use_subscript_aff_aff_for_symbolic \n");
    fprintf (dump_file, "can_use_subscript_aff_aff_for_symbolic \n");
 
 
  *chrec_a = build_polynomial_chrec (CHREC_VARIABLE (*chrec_a),
  *chrec_a = build_polynomial_chrec (CHREC_VARIABLE (*chrec_a),
                                     diff, CHREC_RIGHT (*chrec_a));
                                     diff, CHREC_RIGHT (*chrec_a));
  right_b = chrec_convert (type, CHREC_RIGHT (*chrec_b), NULL_TREE);
  right_b = chrec_convert (type, CHREC_RIGHT (*chrec_b), NULL_TREE);
  *chrec_b = build_polynomial_chrec (CHREC_VARIABLE (*chrec_b),
  *chrec_b = build_polynomial_chrec (CHREC_VARIABLE (*chrec_b),
                                     build_int_cst (type, 0),
                                     build_int_cst (type, 0),
                                     right_b);
                                     right_b);
  return true;
  return true;
}
}
 
 
/* Analyze a SIV (Single Index Variable) subscript.  *OVERLAPS_A and
/* Analyze a SIV (Single Index Variable) subscript.  *OVERLAPS_A and
   *OVERLAPS_B are initialized to the functions that describe the
   *OVERLAPS_B are initialized to the functions that describe the
   relation between the elements accessed twice by CHREC_A and
   relation between the elements accessed twice by CHREC_A and
   CHREC_B.  For k >= 0, the following property is verified:
   CHREC_B.  For k >= 0, the following property is verified:
 
 
   CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)).  */
   CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)).  */
 
 
static void
static void
analyze_siv_subscript (tree chrec_a,
analyze_siv_subscript (tree chrec_a,
                       tree chrec_b,
                       tree chrec_b,
                       tree *overlaps_a,
                       tree *overlaps_a,
                       tree *overlaps_b,
                       tree *overlaps_b,
                       tree *last_conflicts)
                       tree *last_conflicts)
{
{
  dependence_stats.num_siv++;
  dependence_stats.num_siv++;
 
 
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "(analyze_siv_subscript \n");
    fprintf (dump_file, "(analyze_siv_subscript \n");
 
 
  if (evolution_function_is_constant_p (chrec_a)
  if (evolution_function_is_constant_p (chrec_a)
      && evolution_function_is_affine_p (chrec_b))
      && evolution_function_is_affine_p (chrec_b))
    analyze_siv_subscript_cst_affine (chrec_a, chrec_b,
    analyze_siv_subscript_cst_affine (chrec_a, chrec_b,
                                      overlaps_a, overlaps_b, last_conflicts);
                                      overlaps_a, overlaps_b, last_conflicts);
 
 
  else if (evolution_function_is_affine_p (chrec_a)
  else if (evolution_function_is_affine_p (chrec_a)
           && evolution_function_is_constant_p (chrec_b))
           && evolution_function_is_constant_p (chrec_b))
    analyze_siv_subscript_cst_affine (chrec_b, chrec_a,
    analyze_siv_subscript_cst_affine (chrec_b, chrec_a,
                                      overlaps_b, overlaps_a, last_conflicts);
                                      overlaps_b, overlaps_a, last_conflicts);
 
 
  else if (evolution_function_is_affine_p (chrec_a)
  else if (evolution_function_is_affine_p (chrec_a)
           && evolution_function_is_affine_p (chrec_b))
           && evolution_function_is_affine_p (chrec_b))
    {
    {
      if (!chrec_contains_symbols (chrec_a)
      if (!chrec_contains_symbols (chrec_a)
          && !chrec_contains_symbols (chrec_b))
          && !chrec_contains_symbols (chrec_b))
        {
        {
          analyze_subscript_affine_affine (chrec_a, chrec_b,
          analyze_subscript_affine_affine (chrec_a, chrec_b,
                                           overlaps_a, overlaps_b,
                                           overlaps_a, overlaps_b,
                                           last_conflicts);
                                           last_conflicts);
 
 
          if (*overlaps_a == chrec_dont_know
          if (*overlaps_a == chrec_dont_know
              || *overlaps_b == chrec_dont_know)
              || *overlaps_b == chrec_dont_know)
            dependence_stats.num_siv_unimplemented++;
            dependence_stats.num_siv_unimplemented++;
          else if (*overlaps_a == chrec_known
          else if (*overlaps_a == chrec_known
                   || *overlaps_b == chrec_known)
                   || *overlaps_b == chrec_known)
            dependence_stats.num_siv_independent++;
            dependence_stats.num_siv_independent++;
          else
          else
            dependence_stats.num_siv_dependent++;
            dependence_stats.num_siv_dependent++;
        }
        }
      else if (can_use_analyze_subscript_affine_affine (&chrec_a,
      else if (can_use_analyze_subscript_affine_affine (&chrec_a,
                                                        &chrec_b))
                                                        &chrec_b))
        {
        {
          analyze_subscript_affine_affine (chrec_a, chrec_b,
          analyze_subscript_affine_affine (chrec_a, chrec_b,
                                           overlaps_a, overlaps_b,
                                           overlaps_a, overlaps_b,
                                           last_conflicts);
                                           last_conflicts);
          /* FIXME: The number of iterations is a symbolic expression.
          /* FIXME: The number of iterations is a symbolic expression.
             Compute it properly.  */
             Compute it properly.  */
          *last_conflicts = chrec_dont_know;
          *last_conflicts = chrec_dont_know;
 
 
          if (*overlaps_a == chrec_dont_know
          if (*overlaps_a == chrec_dont_know
              || *overlaps_b == chrec_dont_know)
              || *overlaps_b == chrec_dont_know)
            dependence_stats.num_siv_unimplemented++;
            dependence_stats.num_siv_unimplemented++;
          else if (*overlaps_a == chrec_known
          else if (*overlaps_a == chrec_known
                   || *overlaps_b == chrec_known)
                   || *overlaps_b == chrec_known)
            dependence_stats.num_siv_independent++;
            dependence_stats.num_siv_independent++;
          else
          else
            dependence_stats.num_siv_dependent++;
            dependence_stats.num_siv_dependent++;
        }
        }
      else
      else
        goto siv_subscript_dontknow;
        goto siv_subscript_dontknow;
    }
    }
 
 
  else
  else
    {
    {
    siv_subscript_dontknow:;
    siv_subscript_dontknow:;
      if (dump_file && (dump_flags & TDF_DETAILS))
      if (dump_file && (dump_flags & TDF_DETAILS))
        fprintf (dump_file, "siv test failed: unimplemented.\n");
        fprintf (dump_file, "siv test failed: unimplemented.\n");
      *overlaps_a = chrec_dont_know;
      *overlaps_a = chrec_dont_know;
      *overlaps_b = chrec_dont_know;
      *overlaps_b = chrec_dont_know;
      *last_conflicts = chrec_dont_know;
      *last_conflicts = chrec_dont_know;
      dependence_stats.num_siv_unimplemented++;
      dependence_stats.num_siv_unimplemented++;
    }
    }
 
 
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, ")\n");
    fprintf (dump_file, ")\n");
}
}
 
 
/* Return true when the property can be computed.  RES should contain
/* Return true when the property can be computed.  RES should contain
   true when calling the first time this function, then it is set to
   true when calling the first time this function, then it is set to
   false when one of the evolution steps of an affine CHREC does not
   false when one of the evolution steps of an affine CHREC does not
   divide the constant CST.  */
   divide the constant CST.  */
 
 
static bool
static bool
chrec_steps_divide_constant_p (tree chrec,
chrec_steps_divide_constant_p (tree chrec,
                               tree cst,
                               tree cst,
                               bool *res)
                               bool *res)
{
{
  switch (TREE_CODE (chrec))
  switch (TREE_CODE (chrec))
    {
    {
    case POLYNOMIAL_CHREC:
    case POLYNOMIAL_CHREC:
      if (evolution_function_is_constant_p (CHREC_RIGHT (chrec)))
      if (evolution_function_is_constant_p (CHREC_RIGHT (chrec)))
        {
        {
          if (tree_fold_divides_p (CHREC_RIGHT (chrec), cst))
          if (tree_fold_divides_p (CHREC_RIGHT (chrec), cst))
            /* Keep RES to true, and iterate on other dimensions.  */
            /* Keep RES to true, and iterate on other dimensions.  */
            return chrec_steps_divide_constant_p (CHREC_LEFT (chrec), cst, res);
            return chrec_steps_divide_constant_p (CHREC_LEFT (chrec), cst, res);
 
 
          *res = false;
          *res = false;
          return true;
          return true;
        }
        }
      else
      else
        /* When the step is a parameter the result is undetermined.  */
        /* When the step is a parameter the result is undetermined.  */
        return false;
        return false;
 
 
    default:
    default:
      /* On the initial condition, return true.  */
      /* On the initial condition, return true.  */
      return true;
      return true;
    }
    }
}
}
 
 
/* Analyze a MIV (Multiple Index Variable) subscript.  *OVERLAPS_A and
/* Analyze a MIV (Multiple Index Variable) subscript.  *OVERLAPS_A and
   *OVERLAPS_B are initialized to the functions that describe the
   *OVERLAPS_B are initialized to the functions that describe the
   relation between the elements accessed twice by CHREC_A and
   relation between the elements accessed twice by CHREC_A and
   CHREC_B.  For k >= 0, the following property is verified:
   CHREC_B.  For k >= 0, the following property is verified:
 
 
   CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)).  */
   CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)).  */
 
 
static void
static void
analyze_miv_subscript (tree chrec_a,
analyze_miv_subscript (tree chrec_a,
                       tree chrec_b,
                       tree chrec_b,
                       tree *overlaps_a,
                       tree *overlaps_a,
                       tree *overlaps_b,
                       tree *overlaps_b,
                       tree *last_conflicts)
                       tree *last_conflicts)
{
{
  /* FIXME:  This is a MIV subscript, not yet handled.
  /* FIXME:  This is a MIV subscript, not yet handled.
     Example: (A[{1, +, 1}_1] vs. A[{1, +, 1}_2]) that comes from
     Example: (A[{1, +, 1}_1] vs. A[{1, +, 1}_2]) that comes from
     (A[i] vs. A[j]).
     (A[i] vs. A[j]).
 
 
     In the SIV test we had to solve a Diophantine equation with two
     In the SIV test we had to solve a Diophantine equation with two
     variables.  In the MIV case we have to solve a Diophantine
     variables.  In the MIV case we have to solve a Diophantine
     equation with 2*n variables (if the subscript uses n IVs).
     equation with 2*n variables (if the subscript uses n IVs).
  */
  */
  bool divide_p = true;
  bool divide_p = true;
  tree difference;
  tree difference;
  dependence_stats.num_miv++;
  dependence_stats.num_miv++;
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "(analyze_miv_subscript \n");
    fprintf (dump_file, "(analyze_miv_subscript \n");
 
 
  chrec_a = chrec_convert (integer_type_node, chrec_a, NULL_TREE);
  chrec_a = chrec_convert (integer_type_node, chrec_a, NULL_TREE);
  chrec_b = chrec_convert (integer_type_node, chrec_b, NULL_TREE);
  chrec_b = chrec_convert (integer_type_node, chrec_b, NULL_TREE);
  difference = chrec_fold_minus (integer_type_node, chrec_a, chrec_b);
  difference = chrec_fold_minus (integer_type_node, chrec_a, chrec_b);
 
 
  if (eq_evolutions_p (chrec_a, chrec_b))
  if (eq_evolutions_p (chrec_a, chrec_b))
    {
    {
      /* Access functions are the same: all the elements are accessed
      /* Access functions are the same: all the elements are accessed
         in the same order.  */
         in the same order.  */
      *overlaps_a = integer_zero_node;
      *overlaps_a = integer_zero_node;
      *overlaps_b = integer_zero_node;
      *overlaps_b = integer_zero_node;
      *last_conflicts = get_number_of_iters_for_loop (CHREC_VARIABLE (chrec_a));
      *last_conflicts = get_number_of_iters_for_loop (CHREC_VARIABLE (chrec_a));
      dependence_stats.num_miv_dependent++;
      dependence_stats.num_miv_dependent++;
    }
    }
 
 
  else if (evolution_function_is_constant_p (difference)
  else if (evolution_function_is_constant_p (difference)
           /* For the moment, the following is verified:
           /* For the moment, the following is verified:
              evolution_function_is_affine_multivariate_p (chrec_a) */
              evolution_function_is_affine_multivariate_p (chrec_a) */
           && chrec_steps_divide_constant_p (chrec_a, difference, &divide_p)
           && chrec_steps_divide_constant_p (chrec_a, difference, &divide_p)
           && !divide_p)
           && !divide_p)
    {
    {
      /* testsuite/.../ssa-chrec-33.c
      /* testsuite/.../ssa-chrec-33.c
         {{21, +, 2}_1, +, -2}_2  vs.  {{20, +, 2}_1, +, -2}_2
         {{21, +, 2}_1, +, -2}_2  vs.  {{20, +, 2}_1, +, -2}_2
 
 
         The difference is 1, and the evolution steps are equal to 2,
         The difference is 1, and the evolution steps are equal to 2,
         consequently there are no overlapping elements.  */
         consequently there are no overlapping elements.  */
      *overlaps_a = chrec_known;
      *overlaps_a = chrec_known;
      *overlaps_b = chrec_known;
      *overlaps_b = chrec_known;
      *last_conflicts = integer_zero_node;
      *last_conflicts = integer_zero_node;
      dependence_stats.num_miv_independent++;
      dependence_stats.num_miv_independent++;
    }
    }
 
 
  else if (evolution_function_is_affine_multivariate_p (chrec_a)
  else if (evolution_function_is_affine_multivariate_p (chrec_a)
           && !chrec_contains_symbols (chrec_a)
           && !chrec_contains_symbols (chrec_a)
           && evolution_function_is_affine_multivariate_p (chrec_b)
           && evolution_function_is_affine_multivariate_p (chrec_b)
           && !chrec_contains_symbols (chrec_b))
           && !chrec_contains_symbols (chrec_b))
    {
    {
      /* testsuite/.../ssa-chrec-35.c
      /* testsuite/.../ssa-chrec-35.c
         {0, +, 1}_2  vs.  {0, +, 1}_3
         {0, +, 1}_2  vs.  {0, +, 1}_3
         the overlapping elements are respectively located at iterations:
         the overlapping elements are respectively located at iterations:
         {0, +, 1}_x and {0, +, 1}_x,
         {0, +, 1}_x and {0, +, 1}_x,
         in other words, we have the equality:
         in other words, we have the equality:
         {0, +, 1}_2 ({0, +, 1}_x) = {0, +, 1}_3 ({0, +, 1}_x)
         {0, +, 1}_2 ({0, +, 1}_x) = {0, +, 1}_3 ({0, +, 1}_x)
 
 
         Other examples:
         Other examples:
         {{0, +, 1}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y) =
         {{0, +, 1}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y) =
         {0, +, 1}_1 ({{0, +, 1}_x, +, 2}_y)
         {0, +, 1}_1 ({{0, +, 1}_x, +, 2}_y)
 
 
         {{0, +, 2}_1, +, 3}_2 ({0, +, 1}_y, {0, +, 1}_x) =
         {{0, +, 2}_1, +, 3}_2 ({0, +, 1}_y, {0, +, 1}_x) =
         {{0, +, 3}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y)
         {{0, +, 3}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y)
      */
      */
      analyze_subscript_affine_affine (chrec_a, chrec_b,
      analyze_subscript_affine_affine (chrec_a, chrec_b,
                                       overlaps_a, overlaps_b, last_conflicts);
                                       overlaps_a, overlaps_b, last_conflicts);
 
 
      if (*overlaps_a == chrec_dont_know
      if (*overlaps_a == chrec_dont_know
          || *overlaps_b == chrec_dont_know)
          || *overlaps_b == chrec_dont_know)
        dependence_stats.num_miv_unimplemented++;
        dependence_stats.num_miv_unimplemented++;
      else if (*overlaps_a == chrec_known
      else if (*overlaps_a == chrec_known
               || *overlaps_b == chrec_known)
               || *overlaps_b == chrec_known)
        dependence_stats.num_miv_independent++;
        dependence_stats.num_miv_independent++;
      else
      else
        dependence_stats.num_miv_dependent++;
        dependence_stats.num_miv_dependent++;
    }
    }
 
 
  else
  else
    {
    {
      /* When the analysis is too difficult, answer "don't know".  */
      /* When the analysis is too difficult, answer "don't know".  */
      if (dump_file && (dump_flags & TDF_DETAILS))
      if (dump_file && (dump_flags & TDF_DETAILS))
        fprintf (dump_file, "analyze_miv_subscript test failed: unimplemented.\n");
        fprintf (dump_file, "analyze_miv_subscript test failed: unimplemented.\n");
 
 
      *overlaps_a = chrec_dont_know;
      *overlaps_a = chrec_dont_know;
      *overlaps_b = chrec_dont_know;
      *overlaps_b = chrec_dont_know;
      *last_conflicts = chrec_dont_know;
      *last_conflicts = chrec_dont_know;
      dependence_stats.num_miv_unimplemented++;
      dependence_stats.num_miv_unimplemented++;
    }
    }
 
 
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, ")\n");
    fprintf (dump_file, ")\n");
}
}
 
 
/* Determines the iterations for which CHREC_A is equal to CHREC_B.
/* Determines the iterations for which CHREC_A is equal to CHREC_B.
   OVERLAP_ITERATIONS_A and OVERLAP_ITERATIONS_B are initialized with
   OVERLAP_ITERATIONS_A and OVERLAP_ITERATIONS_B are initialized with
   two functions that describe the iterations that contain conflicting
   two functions that describe the iterations that contain conflicting
   elements.
   elements.
 
 
   Remark: For an integer k >= 0, the following equality is true:
   Remark: For an integer k >= 0, the following equality is true:
 
 
   CHREC_A (OVERLAP_ITERATIONS_A (k)) == CHREC_B (OVERLAP_ITERATIONS_B (k)).
   CHREC_A (OVERLAP_ITERATIONS_A (k)) == CHREC_B (OVERLAP_ITERATIONS_B (k)).
*/
*/
 
 
static void
static void
analyze_overlapping_iterations (tree chrec_a,
analyze_overlapping_iterations (tree chrec_a,
                                tree chrec_b,
                                tree chrec_b,
                                tree *overlap_iterations_a,
                                tree *overlap_iterations_a,
                                tree *overlap_iterations_b,
                                tree *overlap_iterations_b,
                                tree *last_conflicts)
                                tree *last_conflicts)
{
{
  dependence_stats.num_subscript_tests++;
  dependence_stats.num_subscript_tests++;
 
 
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
    {
      fprintf (dump_file, "(analyze_overlapping_iterations \n");
      fprintf (dump_file, "(analyze_overlapping_iterations \n");
      fprintf (dump_file, "  (chrec_a = ");
      fprintf (dump_file, "  (chrec_a = ");
      print_generic_expr (dump_file, chrec_a, 0);
      print_generic_expr (dump_file, chrec_a, 0);
      fprintf (dump_file, ")\n  (chrec_b = ");
      fprintf (dump_file, ")\n  (chrec_b = ");
      print_generic_expr (dump_file, chrec_b, 0);
      print_generic_expr (dump_file, chrec_b, 0);
      fprintf (dump_file, ")\n");
      fprintf (dump_file, ")\n");
    }
    }
 
 
  if (chrec_a == NULL_TREE
  if (chrec_a == NULL_TREE
      || chrec_b == NULL_TREE
      || chrec_b == NULL_TREE
      || chrec_contains_undetermined (chrec_a)
      || chrec_contains_undetermined (chrec_a)
      || chrec_contains_undetermined (chrec_b))
      || chrec_contains_undetermined (chrec_b))
    {
    {
      dependence_stats.num_subscript_undetermined++;
      dependence_stats.num_subscript_undetermined++;
 
 
      *overlap_iterations_a = chrec_dont_know;
      *overlap_iterations_a = chrec_dont_know;
      *overlap_iterations_b = chrec_dont_know;
      *overlap_iterations_b = chrec_dont_know;
    }
    }
 
 
  /* If they are the same chrec, and are affine, they overlap
  /* If they are the same chrec, and are affine, they overlap
     on every iteration.  */
     on every iteration.  */
  else if (eq_evolutions_p (chrec_a, chrec_b)
  else if (eq_evolutions_p (chrec_a, chrec_b)
           && evolution_function_is_affine_multivariate_p (chrec_a))
           && evolution_function_is_affine_multivariate_p (chrec_a))
    {
    {
      dependence_stats.num_same_subscript_function++;
      dependence_stats.num_same_subscript_function++;
      *overlap_iterations_a = integer_zero_node;
      *overlap_iterations_a = integer_zero_node;
      *overlap_iterations_b = integer_zero_node;
      *overlap_iterations_b = integer_zero_node;
      *last_conflicts = chrec_dont_know;
      *last_conflicts = chrec_dont_know;
    }
    }
 
 
  /* If they aren't the same, and aren't affine, we can't do anything
  /* If they aren't the same, and aren't affine, we can't do anything
     yet. */
     yet. */
  else if ((chrec_contains_symbols (chrec_a)
  else if ((chrec_contains_symbols (chrec_a)
            || chrec_contains_symbols (chrec_b))
            || chrec_contains_symbols (chrec_b))
           && (!evolution_function_is_affine_multivariate_p (chrec_a)
           && (!evolution_function_is_affine_multivariate_p (chrec_a)
               || !evolution_function_is_affine_multivariate_p (chrec_b)))
               || !evolution_function_is_affine_multivariate_p (chrec_b)))
    {
    {
      dependence_stats.num_subscript_undetermined++;
      dependence_stats.num_subscript_undetermined++;
      *overlap_iterations_a = chrec_dont_know;
      *overlap_iterations_a = chrec_dont_know;
      *overlap_iterations_b = chrec_dont_know;
      *overlap_iterations_b = chrec_dont_know;
    }
    }
 
 
  else if (ziv_subscript_p (chrec_a, chrec_b))
  else if (ziv_subscript_p (chrec_a, chrec_b))
    analyze_ziv_subscript (chrec_a, chrec_b,
    analyze_ziv_subscript (chrec_a, chrec_b,
                           overlap_iterations_a, overlap_iterations_b,
                           overlap_iterations_a, overlap_iterations_b,
                           last_conflicts);
                           last_conflicts);
 
 
  else if (siv_subscript_p (chrec_a, chrec_b))
  else if (siv_subscript_p (chrec_a, chrec_b))
    analyze_siv_subscript (chrec_a, chrec_b,
    analyze_siv_subscript (chrec_a, chrec_b,
                           overlap_iterations_a, overlap_iterations_b,
                           overlap_iterations_a, overlap_iterations_b,
                           last_conflicts);
                           last_conflicts);
 
 
  else
  else
    analyze_miv_subscript (chrec_a, chrec_b,
    analyze_miv_subscript (chrec_a, chrec_b,
                           overlap_iterations_a, overlap_iterations_b,
                           overlap_iterations_a, overlap_iterations_b,
                           last_conflicts);
                           last_conflicts);
 
 
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
    {
      fprintf (dump_file, "  (overlap_iterations_a = ");
      fprintf (dump_file, "  (overlap_iterations_a = ");
      print_generic_expr (dump_file, *overlap_iterations_a, 0);
      print_generic_expr (dump_file, *overlap_iterations_a, 0);
      fprintf (dump_file, ")\n  (overlap_iterations_b = ");
      fprintf (dump_file, ")\n  (overlap_iterations_b = ");
      print_generic_expr (dump_file, *overlap_iterations_b, 0);
      print_generic_expr (dump_file, *overlap_iterations_b, 0);
      fprintf (dump_file, ")\n");
      fprintf (dump_file, ")\n");
      fprintf (dump_file, ")\n");
      fprintf (dump_file, ")\n");
    }
    }
}
}
 
 
/* Helper function for uniquely inserting distance vectors.  */
/* Helper function for uniquely inserting distance vectors.  */
 
 
static void
static void
save_dist_v (struct data_dependence_relation *ddr, lambda_vector dist_v)
save_dist_v (struct data_dependence_relation *ddr, lambda_vector dist_v)
{
{
  unsigned i;
  unsigned i;
  lambda_vector v;
  lambda_vector v;
 
 
  for (i = 0; VEC_iterate (lambda_vector, DDR_DIST_VECTS (ddr), i, v); i++)
  for (i = 0; VEC_iterate (lambda_vector, DDR_DIST_VECTS (ddr), i, v); i++)
    if (lambda_vector_equal (v, dist_v, DDR_NB_LOOPS (ddr)))
    if (lambda_vector_equal (v, dist_v, DDR_NB_LOOPS (ddr)))
      return;
      return;
 
 
  VEC_safe_push (lambda_vector, heap, DDR_DIST_VECTS (ddr), dist_v);
  VEC_safe_push (lambda_vector, heap, DDR_DIST_VECTS (ddr), dist_v);
}
}
 
 
/* Helper function for uniquely inserting direction vectors.  */
/* Helper function for uniquely inserting direction vectors.  */
 
 
static void
static void
save_dir_v (struct data_dependence_relation *ddr, lambda_vector dir_v)
save_dir_v (struct data_dependence_relation *ddr, lambda_vector dir_v)
{
{
  unsigned i;
  unsigned i;
  lambda_vector v;
  lambda_vector v;
 
 
  for (i = 0; VEC_iterate (lambda_vector, DDR_DIR_VECTS (ddr), i, v); i++)
  for (i = 0; VEC_iterate (lambda_vector, DDR_DIR_VECTS (ddr), i, v); i++)
    if (lambda_vector_equal (v, dir_v, DDR_NB_LOOPS (ddr)))
    if (lambda_vector_equal (v, dir_v, DDR_NB_LOOPS (ddr)))
      return;
      return;
 
 
  VEC_safe_push (lambda_vector, heap, DDR_DIR_VECTS (ddr), dir_v);
  VEC_safe_push (lambda_vector, heap, DDR_DIR_VECTS (ddr), dir_v);
}
}
 
 
/* Add a distance of 1 on all the loops outer than INDEX.  If we
/* Add a distance of 1 on all the loops outer than INDEX.  If we
   haven't yet determined a distance for this outer loop, push a new
   haven't yet determined a distance for this outer loop, push a new
   distance vector composed of the previous distance, and a distance
   distance vector composed of the previous distance, and a distance
   of 1 for this outer loop.  Example:
   of 1 for this outer loop.  Example:
 
 
   | loop_1
   | loop_1
   |   loop_2
   |   loop_2
   |     A[10]
   |     A[10]
   |   endloop_2
   |   endloop_2
   | endloop_1
   | endloop_1
 
 
   Saved vectors are of the form (dist_in_1, dist_in_2).  First, we
   Saved vectors are of the form (dist_in_1, dist_in_2).  First, we
   save (0, 1), then we have to save (1, 0).  */
   save (0, 1), then we have to save (1, 0).  */
 
 
static void
static void
add_outer_distances (struct data_dependence_relation *ddr,
add_outer_distances (struct data_dependence_relation *ddr,
                     lambda_vector dist_v, int index)
                     lambda_vector dist_v, int index)
{
{
  /* For each outer loop where init_v is not set, the accesses are
  /* For each outer loop where init_v is not set, the accesses are
     in dependence of distance 1 in the loop.  */
     in dependence of distance 1 in the loop.  */
  while (--index >= 0)
  while (--index >= 0)
    {
    {
      lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
      lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
      lambda_vector_copy (dist_v, save_v, DDR_NB_LOOPS (ddr));
      lambda_vector_copy (dist_v, save_v, DDR_NB_LOOPS (ddr));
      save_v[index] = 1;
      save_v[index] = 1;
      save_dist_v (ddr, save_v);
      save_dist_v (ddr, save_v);
    }
    }
}
}
 
 
/* Return false when fail to represent the data dependence as a
/* Return false when fail to represent the data dependence as a
   distance vector.  INIT_B is set to true when a component has been
   distance vector.  INIT_B is set to true when a component has been
   added to the distance vector DIST_V.  INDEX_CARRY is then set to
   added to the distance vector DIST_V.  INDEX_CARRY is then set to
   the index in DIST_V that carries the dependence.  */
   the index in DIST_V that carries the dependence.  */
 
 
static bool
static bool
build_classic_dist_vector_1 (struct data_dependence_relation *ddr,
build_classic_dist_vector_1 (struct data_dependence_relation *ddr,
                             struct data_reference *ddr_a,
                             struct data_reference *ddr_a,
                             struct data_reference *ddr_b,
                             struct data_reference *ddr_b,
                             lambda_vector dist_v, bool *init_b,
                             lambda_vector dist_v, bool *init_b,
                             int *index_carry)
                             int *index_carry)
{
{
  unsigned i;
  unsigned i;
  lambda_vector init_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
  lambda_vector init_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
 
 
  for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
  for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
    {
    {
      tree access_fn_a, access_fn_b;
      tree access_fn_a, access_fn_b;
      struct subscript *subscript = DDR_SUBSCRIPT (ddr, i);
      struct subscript *subscript = DDR_SUBSCRIPT (ddr, i);
 
 
      if (chrec_contains_undetermined (SUB_DISTANCE (subscript)))
      if (chrec_contains_undetermined (SUB_DISTANCE (subscript)))
        {
        {
          non_affine_dependence_relation (ddr);
          non_affine_dependence_relation (ddr);
          return false;
          return false;
        }
        }
 
 
      access_fn_a = DR_ACCESS_FN (ddr_a, i);
      access_fn_a = DR_ACCESS_FN (ddr_a, i);
      access_fn_b = DR_ACCESS_FN (ddr_b, i);
      access_fn_b = DR_ACCESS_FN (ddr_b, i);
 
 
      if (TREE_CODE (access_fn_a) == POLYNOMIAL_CHREC
      if (TREE_CODE (access_fn_a) == POLYNOMIAL_CHREC
          && TREE_CODE (access_fn_b) == POLYNOMIAL_CHREC)
          && TREE_CODE (access_fn_b) == POLYNOMIAL_CHREC)
        {
        {
          int dist, index;
          int dist, index;
          int index_a = index_in_loop_nest (CHREC_VARIABLE (access_fn_a),
          int index_a = index_in_loop_nest (CHREC_VARIABLE (access_fn_a),
                                            DDR_LOOP_NEST (ddr));
                                            DDR_LOOP_NEST (ddr));
          int index_b = index_in_loop_nest (CHREC_VARIABLE (access_fn_b),
          int index_b = index_in_loop_nest (CHREC_VARIABLE (access_fn_b),
                                            DDR_LOOP_NEST (ddr));
                                            DDR_LOOP_NEST (ddr));
 
 
          /* The dependence is carried by the outermost loop.  Example:
          /* The dependence is carried by the outermost loop.  Example:
             | loop_1
             | loop_1
             |   A[{4, +, 1}_1]
             |   A[{4, +, 1}_1]
             |   loop_2
             |   loop_2
             |     A[{5, +, 1}_2]
             |     A[{5, +, 1}_2]
             |   endloop_2
             |   endloop_2
             | endloop_1
             | endloop_1
             In this case, the dependence is carried by loop_1.  */
             In this case, the dependence is carried by loop_1.  */
          index = index_a < index_b ? index_a : index_b;
          index = index_a < index_b ? index_a : index_b;
          *index_carry = MIN (index, *index_carry);
          *index_carry = MIN (index, *index_carry);
 
 
          if (chrec_contains_undetermined (SUB_DISTANCE (subscript)))
          if (chrec_contains_undetermined (SUB_DISTANCE (subscript)))
            {
            {
              non_affine_dependence_relation (ddr);
              non_affine_dependence_relation (ddr);
              return false;
              return false;
            }
            }
 
 
          dist = int_cst_value (SUB_DISTANCE (subscript));
          dist = int_cst_value (SUB_DISTANCE (subscript));
 
 
          /* This is the subscript coupling test.  If we have already
          /* This is the subscript coupling test.  If we have already
             recorded a distance for this loop (a distance coming from
             recorded a distance for this loop (a distance coming from
             another subscript), it should be the same.  For example,
             another subscript), it should be the same.  For example,
             in the following code, there is no dependence:
             in the following code, there is no dependence:
 
 
             | loop i = 0, N, 1
             | loop i = 0, N, 1
             |   T[i+1][i] = ...
             |   T[i+1][i] = ...
             |   ... = T[i][i]
             |   ... = T[i][i]
             | endloop
             | endloop
          */
          */
          if (init_v[index] != 0 && dist_v[index] != dist)
          if (init_v[index] != 0 && dist_v[index] != dist)
            {
            {
              finalize_ddr_dependent (ddr, chrec_known);
              finalize_ddr_dependent (ddr, chrec_known);
              return false;
              return false;
            }
            }
 
 
          dist_v[index] = dist;
          dist_v[index] = dist;
          init_v[index] = 1;
          init_v[index] = 1;
          *init_b = true;
          *init_b = true;
        }
        }
      else
      else
        {
        {
          /* This can be for example an affine vs. constant dependence
          /* This can be for example an affine vs. constant dependence
             (T[i] vs. T[3]) that is not an affine dependence and is
             (T[i] vs. T[3]) that is not an affine dependence and is
             not representable as a distance vector.  */
             not representable as a distance vector.  */
          non_affine_dependence_relation (ddr);
          non_affine_dependence_relation (ddr);
          return false;
          return false;
        }
        }
    }
    }
 
 
  return true;
  return true;
}
}
 
 
/* Return true when the DDR contains two data references that have the
/* Return true when the DDR contains two data references that have the
   same access functions.  */
   same access functions.  */
 
 
static bool
static bool
same_access_functions (struct data_dependence_relation *ddr)
same_access_functions (struct data_dependence_relation *ddr)
{
{
  unsigned i;
  unsigned i;
 
 
  for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
  for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
    if (!eq_evolutions_p (DR_ACCESS_FN (DDR_A (ddr), i),
    if (!eq_evolutions_p (DR_ACCESS_FN (DDR_A (ddr), i),
                          DR_ACCESS_FN (DDR_B (ddr), i)))
                          DR_ACCESS_FN (DDR_B (ddr), i)))
      return false;
      return false;
 
 
  return true;
  return true;
}
}
 
 
/* Helper function for the case where DDR_A and DDR_B are the same
/* Helper function for the case where DDR_A and DDR_B are the same
   multivariate access function.  */
   multivariate access function.  */
 
 
static void
static void
add_multivariate_self_dist (struct data_dependence_relation *ddr, tree c_2)
add_multivariate_self_dist (struct data_dependence_relation *ddr, tree c_2)
{
{
  int x_1, x_2;
  int x_1, x_2;
  tree c_1 = CHREC_LEFT (c_2);
  tree c_1 = CHREC_LEFT (c_2);
  tree c_0 = CHREC_LEFT (c_1);
  tree c_0 = CHREC_LEFT (c_1);
  lambda_vector dist_v;
  lambda_vector dist_v;
 
 
  /* Polynomials with more than 2 variables are not handled yet.  */
  /* Polynomials with more than 2 variables are not handled yet.  */
  if (TREE_CODE (c_0) != INTEGER_CST)
  if (TREE_CODE (c_0) != INTEGER_CST)
    {
    {
      DDR_ARE_DEPENDENT (ddr) = chrec_dont_know;
      DDR_ARE_DEPENDENT (ddr) = chrec_dont_know;
      return;
      return;
    }
    }
 
 
  x_2 = index_in_loop_nest (CHREC_VARIABLE (c_2), DDR_LOOP_NEST (ddr));
  x_2 = index_in_loop_nest (CHREC_VARIABLE (c_2), DDR_LOOP_NEST (ddr));
  x_1 = index_in_loop_nest (CHREC_VARIABLE (c_1), DDR_LOOP_NEST (ddr));
  x_1 = index_in_loop_nest (CHREC_VARIABLE (c_1), DDR_LOOP_NEST (ddr));
 
 
  /* For "{{0, +, 2}_1, +, 3}_2" the distance vector is (3, -2).  */
  /* For "{{0, +, 2}_1, +, 3}_2" the distance vector is (3, -2).  */
  dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
  dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
  dist_v[x_1] = int_cst_value (CHREC_RIGHT (c_2));
  dist_v[x_1] = int_cst_value (CHREC_RIGHT (c_2));
  dist_v[x_2] = -int_cst_value (CHREC_RIGHT (c_1));
  dist_v[x_2] = -int_cst_value (CHREC_RIGHT (c_1));
  save_dist_v (ddr, dist_v);
  save_dist_v (ddr, dist_v);
 
 
  add_outer_distances (ddr, dist_v, x_1);
  add_outer_distances (ddr, dist_v, x_1);
}
}
 
 
/* Helper function for the case where DDR_A and DDR_B are the same
/* Helper function for the case where DDR_A and DDR_B are the same
   access functions.  */
   access functions.  */
 
 
static void
static void
add_other_self_distances (struct data_dependence_relation *ddr)
add_other_self_distances (struct data_dependence_relation *ddr)
{
{
  lambda_vector dist_v;
  lambda_vector dist_v;
  unsigned i;
  unsigned i;
  int index_carry = DDR_NB_LOOPS (ddr);
  int index_carry = DDR_NB_LOOPS (ddr);
 
 
  for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
  for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
    {
    {
      tree access_fun = DR_ACCESS_FN (DDR_A (ddr), i);
      tree access_fun = DR_ACCESS_FN (DDR_A (ddr), i);
 
 
      if (TREE_CODE (access_fun) == POLYNOMIAL_CHREC)
      if (TREE_CODE (access_fun) == POLYNOMIAL_CHREC)
        {
        {
          if (!evolution_function_is_univariate_p (access_fun))
          if (!evolution_function_is_univariate_p (access_fun))
            {
            {
              if (DDR_NUM_SUBSCRIPTS (ddr) != 1)
              if (DDR_NUM_SUBSCRIPTS (ddr) != 1)
                {
                {
                  DDR_ARE_DEPENDENT (ddr) = chrec_dont_know;
                  DDR_ARE_DEPENDENT (ddr) = chrec_dont_know;
                  return;
                  return;
                }
                }
 
 
              add_multivariate_self_dist (ddr, DR_ACCESS_FN (DDR_A (ddr), 0));
              add_multivariate_self_dist (ddr, DR_ACCESS_FN (DDR_A (ddr), 0));
              return;
              return;
            }
            }
 
 
          index_carry = MIN (index_carry,
          index_carry = MIN (index_carry,
                             index_in_loop_nest (CHREC_VARIABLE (access_fun),
                             index_in_loop_nest (CHREC_VARIABLE (access_fun),
                                                 DDR_LOOP_NEST (ddr)));
                                                 DDR_LOOP_NEST (ddr)));
        }
        }
    }
    }
 
 
  dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
  dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
  add_outer_distances (ddr, dist_v, index_carry);
  add_outer_distances (ddr, dist_v, index_carry);
}
}
 
 
/* Compute the classic per loop distance vector.  DDR is the data
/* Compute the classic per loop distance vector.  DDR is the data
   dependence relation to build a vector from.  Return false when fail
   dependence relation to build a vector from.  Return false when fail
   to represent the data dependence as a distance vector.  */
   to represent the data dependence as a distance vector.  */
 
 
static bool
static bool
build_classic_dist_vector (struct data_dependence_relation *ddr)
build_classic_dist_vector (struct data_dependence_relation *ddr)
{
{
  bool init_b = false;
  bool init_b = false;
  int index_carry = DDR_NB_LOOPS (ddr);
  int index_carry = DDR_NB_LOOPS (ddr);
  lambda_vector dist_v;
  lambda_vector dist_v;
 
 
  if (DDR_ARE_DEPENDENT (ddr) != NULL_TREE)
  if (DDR_ARE_DEPENDENT (ddr) != NULL_TREE)
    return true;
    return true;
 
 
  if (same_access_functions (ddr))
  if (same_access_functions (ddr))
    {
    {
      /* Save the 0 vector.  */
      /* Save the 0 vector.  */
      dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
      dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
      save_dist_v (ddr, dist_v);
      save_dist_v (ddr, dist_v);
 
 
      if (DDR_NB_LOOPS (ddr) > 1)
      if (DDR_NB_LOOPS (ddr) > 1)
        add_other_self_distances (ddr);
        add_other_self_distances (ddr);
 
 
      return true;
      return true;
    }
    }
 
 
  dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
  dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
  if (!build_classic_dist_vector_1 (ddr, DDR_A (ddr), DDR_B (ddr),
  if (!build_classic_dist_vector_1 (ddr, DDR_A (ddr), DDR_B (ddr),
                                    dist_v, &init_b, &index_carry))
                                    dist_v, &init_b, &index_carry))
    return false;
    return false;
 
 
  /* Save the distance vector if we initialized one.  */
  /* Save the distance vector if we initialized one.  */
  if (init_b)
  if (init_b)
    {
    {
      /* Verify a basic constraint: classic distance vectors should
      /* Verify a basic constraint: classic distance vectors should
         always be lexicographically positive.
         always be lexicographically positive.
 
 
         Data references are collected in the order of execution of
         Data references are collected in the order of execution of
         the program, thus for the following loop
         the program, thus for the following loop
 
 
         | for (i = 1; i < 100; i++)
         | for (i = 1; i < 100; i++)
         |   for (j = 1; j < 100; j++)
         |   for (j = 1; j < 100; j++)
         |     {
         |     {
         |       t = T[j+1][i-1];  // A
         |       t = T[j+1][i-1];  // A
         |       T[j][i] = t + 2;  // B
         |       T[j][i] = t + 2;  // B
         |     }
         |     }
 
 
         references are collected following the direction of the wind:
         references are collected following the direction of the wind:
         A then B.  The data dependence tests are performed also
         A then B.  The data dependence tests are performed also
         following this order, such that we're looking at the distance
         following this order, such that we're looking at the distance
         separating the elements accessed by A from the elements later
         separating the elements accessed by A from the elements later
         accessed by B.  But in this example, the distance returned by
         accessed by B.  But in this example, the distance returned by
         test_dep (A, B) is lexicographically negative (-1, 1), that
         test_dep (A, B) is lexicographically negative (-1, 1), that
         means that the access A occurs later than B with respect to
         means that the access A occurs later than B with respect to
         the outer loop, ie. we're actually looking upwind.  In this
         the outer loop, ie. we're actually looking upwind.  In this
         case we solve test_dep (B, A) looking downwind to the
         case we solve test_dep (B, A) looking downwind to the
         lexicographically positive solution, that returns the
         lexicographically positive solution, that returns the
         distance vector (1, -1).  */
         distance vector (1, -1).  */
      if (!lambda_vector_lexico_pos (dist_v, DDR_NB_LOOPS (ddr)))
      if (!lambda_vector_lexico_pos (dist_v, DDR_NB_LOOPS (ddr)))
        {
        {
          lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
          lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
          subscript_dependence_tester_1 (ddr, DDR_B (ddr), DDR_A (ddr));
          subscript_dependence_tester_1 (ddr, DDR_B (ddr), DDR_A (ddr));
          compute_subscript_distance (ddr);
          compute_subscript_distance (ddr);
          build_classic_dist_vector_1 (ddr, DDR_B (ddr), DDR_A (ddr),
          build_classic_dist_vector_1 (ddr, DDR_B (ddr), DDR_A (ddr),
                                       save_v, &init_b, &index_carry);
                                       save_v, &init_b, &index_carry);
          save_dist_v (ddr, save_v);
          save_dist_v (ddr, save_v);
 
 
          /* In this case there is a dependence forward for all the
          /* In this case there is a dependence forward for all the
             outer loops:
             outer loops:
 
 
             | for (k = 1; k < 100; k++)
             | for (k = 1; k < 100; k++)
             |  for (i = 1; i < 100; i++)
             |  for (i = 1; i < 100; i++)
             |   for (j = 1; j < 100; j++)
             |   for (j = 1; j < 100; j++)
             |     {
             |     {
             |       t = T[j+1][i-1];  // A
             |       t = T[j+1][i-1];  // A
             |       T[j][i] = t + 2;  // B
             |       T[j][i] = t + 2;  // B
             |     }
             |     }
 
 
             the vectors are:
             the vectors are:
             (0,  1, -1)
             (0,  1, -1)
             (1,  1, -1)
             (1,  1, -1)
             (1, -1,  1)
             (1, -1,  1)
          */
          */
          if (DDR_NB_LOOPS (ddr) > 1)
          if (DDR_NB_LOOPS (ddr) > 1)
            {
            {
              add_outer_distances (ddr, save_v, index_carry);
              add_outer_distances (ddr, save_v, index_carry);
              add_outer_distances (ddr, dist_v, index_carry);
              add_outer_distances (ddr, dist_v, index_carry);
            }
            }
        }
        }
      else
      else
        {
        {
          lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
          lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
          lambda_vector_copy (dist_v, save_v, DDR_NB_LOOPS (ddr));
          lambda_vector_copy (dist_v, save_v, DDR_NB_LOOPS (ddr));
          save_dist_v (ddr, save_v);
          save_dist_v (ddr, save_v);
 
 
          if (DDR_NB_LOOPS (ddr) > 1)
          if (DDR_NB_LOOPS (ddr) > 1)
            {
            {
              lambda_vector opposite_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
              lambda_vector opposite_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
 
 
              subscript_dependence_tester_1 (ddr, DDR_B (ddr), DDR_A (ddr));
              subscript_dependence_tester_1 (ddr, DDR_B (ddr), DDR_A (ddr));
              compute_subscript_distance (ddr);
              compute_subscript_distance (ddr);
              build_classic_dist_vector_1 (ddr, DDR_B (ddr), DDR_A (ddr),
              build_classic_dist_vector_1 (ddr, DDR_B (ddr), DDR_A (ddr),
                                           opposite_v, &init_b, &index_carry);
                                           opposite_v, &init_b, &index_carry);
 
 
              add_outer_distances (ddr, dist_v, index_carry);
              add_outer_distances (ddr, dist_v, index_carry);
              add_outer_distances (ddr, opposite_v, index_carry);
              add_outer_distances (ddr, opposite_v, index_carry);
            }
            }
        }
        }
    }
    }
  else
  else
    {
    {
      /* There is a distance of 1 on all the outer loops: Example:
      /* There is a distance of 1 on all the outer loops: Example:
         there is a dependence of distance 1 on loop_1 for the array A.
         there is a dependence of distance 1 on loop_1 for the array A.
 
 
         | loop_1
         | loop_1
         |   A[5] = ...
         |   A[5] = ...
         | endloop
         | endloop
      */
      */
      add_outer_distances (ddr, dist_v,
      add_outer_distances (ddr, dist_v,
                           lambda_vector_first_nz (dist_v,
                           lambda_vector_first_nz (dist_v,
                                                   DDR_NB_LOOPS (ddr), 0));
                                                   DDR_NB_LOOPS (ddr), 0));
    }
    }
 
 
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
    {
      unsigned i;
      unsigned i;
 
 
      fprintf (dump_file, "(build_classic_dist_vector\n");
      fprintf (dump_file, "(build_classic_dist_vector\n");
      for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++)
      for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++)
        {
        {
          fprintf (dump_file, "  dist_vector = (");
          fprintf (dump_file, "  dist_vector = (");
          print_lambda_vector (dump_file, DDR_DIST_VECT (ddr, i),
          print_lambda_vector (dump_file, DDR_DIST_VECT (ddr, i),
                               DDR_NB_LOOPS (ddr));
                               DDR_NB_LOOPS (ddr));
          fprintf (dump_file, "  )\n");
          fprintf (dump_file, "  )\n");
        }
        }
      fprintf (dump_file, ")\n");
      fprintf (dump_file, ")\n");
    }
    }
 
 
  return true;
  return true;
}
}
 
 
/* Return the direction for a given distance.
/* Return the direction for a given distance.
   FIXME: Computing dir this way is suboptimal, since dir can catch
   FIXME: Computing dir this way is suboptimal, since dir can catch
   cases that dist is unable to represent.  */
   cases that dist is unable to represent.  */
 
 
static inline enum data_dependence_direction
static inline enum data_dependence_direction
dir_from_dist (int dist)
dir_from_dist (int dist)
{
{
  if (dist > 0)
  if (dist > 0)
    return dir_positive;
    return dir_positive;
  else if (dist < 0)
  else if (dist < 0)
    return dir_negative;
    return dir_negative;
  else
  else
    return dir_equal;
    return dir_equal;
}
}
 
 
/* Compute the classic per loop direction vector.  DDR is the data
/* Compute the classic per loop direction vector.  DDR is the data
   dependence relation to build a vector from.  */
   dependence relation to build a vector from.  */
 
 
static void
static void
build_classic_dir_vector (struct data_dependence_relation *ddr)
build_classic_dir_vector (struct data_dependence_relation *ddr)
{
{
  unsigned i, j;
  unsigned i, j;
  lambda_vector dist_v;
  lambda_vector dist_v;
 
 
  for (i = 0; VEC_iterate (lambda_vector, DDR_DIST_VECTS (ddr), i, dist_v); i++)
  for (i = 0; VEC_iterate (lambda_vector, DDR_DIST_VECTS (ddr), i, dist_v); i++)
    {
    {
      lambda_vector dir_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
      lambda_vector dir_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
 
 
      for (j = 0; j < DDR_NB_LOOPS (ddr); j++)
      for (j = 0; j < DDR_NB_LOOPS (ddr); j++)
        dir_v[j] = dir_from_dist (dist_v[j]);
        dir_v[j] = dir_from_dist (dist_v[j]);
 
 
      save_dir_v (ddr, dir_v);
      save_dir_v (ddr, dir_v);
    }
    }
}
}
 
 
/* Helper function.  Returns true when there is a dependence between
/* Helper function.  Returns true when there is a dependence between
   data references DRA and DRB.  */
   data references DRA and DRB.  */
 
 
static bool
static bool
subscript_dependence_tester_1 (struct data_dependence_relation *ddr,
subscript_dependence_tester_1 (struct data_dependence_relation *ddr,
                               struct data_reference *dra,
                               struct data_reference *dra,
                               struct data_reference *drb)
                               struct data_reference *drb)
{
{
  unsigned int i;
  unsigned int i;
  tree last_conflicts;
  tree last_conflicts;
  struct subscript *subscript;
  struct subscript *subscript;
 
 
  for (i = 0; VEC_iterate (subscript_p, DDR_SUBSCRIPTS (ddr), i, subscript);
  for (i = 0; VEC_iterate (subscript_p, DDR_SUBSCRIPTS (ddr), i, subscript);
       i++)
       i++)
    {
    {
      tree overlaps_a, overlaps_b;
      tree overlaps_a, overlaps_b;
 
 
      analyze_overlapping_iterations (DR_ACCESS_FN (dra, i),
      analyze_overlapping_iterations (DR_ACCESS_FN (dra, i),
                                      DR_ACCESS_FN (drb, i),
                                      DR_ACCESS_FN (drb, i),
                                      &overlaps_a, &overlaps_b,
                                      &overlaps_a, &overlaps_b,
                                      &last_conflicts);
                                      &last_conflicts);
 
 
      if (chrec_contains_undetermined (overlaps_a)
      if (chrec_contains_undetermined (overlaps_a)
          || chrec_contains_undetermined (overlaps_b))
          || chrec_contains_undetermined (overlaps_b))
        {
        {
          finalize_ddr_dependent (ddr, chrec_dont_know);
          finalize_ddr_dependent (ddr, chrec_dont_know);
          dependence_stats.num_dependence_undetermined++;
          dependence_stats.num_dependence_undetermined++;
          return false;
          return false;
        }
        }
 
 
      else if (overlaps_a == chrec_known
      else if (overlaps_a == chrec_known
               || overlaps_b == chrec_known)
               || overlaps_b == chrec_known)
        {
        {
          finalize_ddr_dependent (ddr, chrec_known);
          finalize_ddr_dependent (ddr, chrec_known);
          dependence_stats.num_dependence_independent++;
          dependence_stats.num_dependence_independent++;
          return false;
          return false;
        }
        }
 
 
      else
      else
        {
        {
          SUB_CONFLICTS_IN_A (subscript) = overlaps_a;
          SUB_CONFLICTS_IN_A (subscript) = overlaps_a;
          SUB_CONFLICTS_IN_B (subscript) = overlaps_b;
          SUB_CONFLICTS_IN_B (subscript) = overlaps_b;
          SUB_LAST_CONFLICT (subscript) = last_conflicts;
          SUB_LAST_CONFLICT (subscript) = last_conflicts;
        }
        }
    }
    }
 
 
  return true;
  return true;
}
}
 
 
/* Computes the conflicting iterations, and initialize DDR.  */
/* Computes the conflicting iterations, and initialize DDR.  */
 
 
static void
static void
subscript_dependence_tester (struct data_dependence_relation *ddr)
subscript_dependence_tester (struct data_dependence_relation *ddr)
{
{
 
 
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "(subscript_dependence_tester \n");
    fprintf (dump_file, "(subscript_dependence_tester \n");
 
 
  if (subscript_dependence_tester_1 (ddr, DDR_A (ddr), DDR_B (ddr)))
  if (subscript_dependence_tester_1 (ddr, DDR_A (ddr), DDR_B (ddr)))
    dependence_stats.num_dependence_dependent++;
    dependence_stats.num_dependence_dependent++;
 
 
  compute_subscript_distance (ddr);
  compute_subscript_distance (ddr);
  if (build_classic_dist_vector (ddr))
  if (build_classic_dist_vector (ddr))
    build_classic_dir_vector (ddr);
    build_classic_dir_vector (ddr);
 
 
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, ")\n");
    fprintf (dump_file, ")\n");
}
}
 
 
/* Returns true when all the access functions of A are affine or
/* Returns true when all the access functions of A are affine or
   constant.  */
   constant.  */
 
 
static bool
static bool
access_functions_are_affine_or_constant_p (struct data_reference *a)
access_functions_are_affine_or_constant_p (struct data_reference *a)
{
{
  unsigned int i;
  unsigned int i;
  VEC(tree,heap) **fns = DR_ACCESS_FNS_ADDR (a);
  VEC(tree,heap) **fns = DR_ACCESS_FNS_ADDR (a);
  tree t;
  tree t;
 
 
  for (i = 0; VEC_iterate (tree, *fns, i, t); i++)
  for (i = 0; VEC_iterate (tree, *fns, i, t); i++)
    if (!evolution_function_is_constant_p (t)
    if (!evolution_function_is_constant_p (t)
        && !evolution_function_is_affine_multivariate_p (t))
        && !evolution_function_is_affine_multivariate_p (t))
      return false;
      return false;
 
 
  return true;
  return true;
}
}
 
 
/* This computes the affine dependence relation between A and B.
/* This computes the affine dependence relation between A and B.
   CHREC_KNOWN is used for representing the independence between two
   CHREC_KNOWN is used for representing the independence between two
   accesses, while CHREC_DONT_KNOW is used for representing the unknown
   accesses, while CHREC_DONT_KNOW is used for representing the unknown
   relation.
   relation.
 
 
   Note that it is possible to stop the computation of the dependence
   Note that it is possible to stop the computation of the dependence
   relation the first time we detect a CHREC_KNOWN element for a given
   relation the first time we detect a CHREC_KNOWN element for a given
   subscript.  */
   subscript.  */
 
 
static void
static void
compute_affine_dependence (struct data_dependence_relation *ddr)
compute_affine_dependence (struct data_dependence_relation *ddr)
{
{
  struct data_reference *dra = DDR_A (ddr);
  struct data_reference *dra = DDR_A (ddr);
  struct data_reference *drb = DDR_B (ddr);
  struct data_reference *drb = DDR_B (ddr);
 
 
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
    {
      fprintf (dump_file, "(compute_affine_dependence\n");
      fprintf (dump_file, "(compute_affine_dependence\n");
      fprintf (dump_file, "  (stmt_a = \n");
      fprintf (dump_file, "  (stmt_a = \n");
      print_generic_expr (dump_file, DR_STMT (dra), 0);
      print_generic_expr (dump_file, DR_STMT (dra), 0);
      fprintf (dump_file, ")\n  (stmt_b = \n");
      fprintf (dump_file, ")\n  (stmt_b = \n");
      print_generic_expr (dump_file, DR_STMT (drb), 0);
      print_generic_expr (dump_file, DR_STMT (drb), 0);
      fprintf (dump_file, ")\n");
      fprintf (dump_file, ")\n");
    }
    }
 
 
  /* Analyze only when the dependence relation is not yet known.  */
  /* Analyze only when the dependence relation is not yet known.  */
  if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
  if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
    {
    {
      dependence_stats.num_dependence_tests++;
      dependence_stats.num_dependence_tests++;
 
 
      if (access_functions_are_affine_or_constant_p (dra)
      if (access_functions_are_affine_or_constant_p (dra)
          && access_functions_are_affine_or_constant_p (drb))
          && access_functions_are_affine_or_constant_p (drb))
        subscript_dependence_tester (ddr);
        subscript_dependence_tester (ddr);
 
 
      /* As a last case, if the dependence cannot be determined, or if
      /* As a last case, if the dependence cannot be determined, or if
         the dependence is considered too difficult to determine, answer
         the dependence is considered too difficult to determine, answer
         "don't know".  */
         "don't know".  */
      else
      else
        {
        {
          dependence_stats.num_dependence_undetermined++;
          dependence_stats.num_dependence_undetermined++;
 
 
          if (dump_file && (dump_flags & TDF_DETAILS))
          if (dump_file && (dump_flags & TDF_DETAILS))
            {
            {
              fprintf (dump_file, "Data ref a:\n");
              fprintf (dump_file, "Data ref a:\n");
              dump_data_reference (dump_file, dra);
              dump_data_reference (dump_file, dra);
              fprintf (dump_file, "Data ref b:\n");
              fprintf (dump_file, "Data ref b:\n");
              dump_data_reference (dump_file, drb);
              dump_data_reference (dump_file, drb);
              fprintf (dump_file, "affine dependence test not usable: access function not affine or constant.\n");
              fprintf (dump_file, "affine dependence test not usable: access function not affine or constant.\n");
            }
            }
          finalize_ddr_dependent (ddr, chrec_dont_know);
          finalize_ddr_dependent (ddr, chrec_dont_know);
        }
        }
    }
    }
 
 
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, ")\n");
    fprintf (dump_file, ")\n");
}
}
 
 
/* This computes the dependence relation for the same data
/* This computes the dependence relation for the same data
   reference into DDR.  */
   reference into DDR.  */
 
 
static void
static void
compute_self_dependence (struct data_dependence_relation *ddr)
compute_self_dependence (struct data_dependence_relation *ddr)
{
{
  unsigned int i;
  unsigned int i;
  struct subscript *subscript;
  struct subscript *subscript;
 
 
  for (i = 0; VEC_iterate (subscript_p, DDR_SUBSCRIPTS (ddr), i, subscript);
  for (i = 0; VEC_iterate (subscript_p, DDR_SUBSCRIPTS (ddr), i, subscript);
       i++)
       i++)
    {
    {
      /* The accessed index overlaps for each iteration.  */
      /* The accessed index overlaps for each iteration.  */
      SUB_CONFLICTS_IN_A (subscript) = integer_zero_node;
      SUB_CONFLICTS_IN_A (subscript) = integer_zero_node;
      SUB_CONFLICTS_IN_B (subscript) = integer_zero_node;
      SUB_CONFLICTS_IN_B (subscript) = integer_zero_node;
      SUB_LAST_CONFLICT (subscript) = chrec_dont_know;
      SUB_LAST_CONFLICT (subscript) = chrec_dont_know;
    }
    }
 
 
  /* The distance vector is the zero vector.  */
  /* The distance vector is the zero vector.  */
  save_dist_v (ddr, lambda_vector_new (DDR_NB_LOOPS (ddr)));
  save_dist_v (ddr, lambda_vector_new (DDR_NB_LOOPS (ddr)));
  save_dir_v (ddr, lambda_vector_new (DDR_NB_LOOPS (ddr)));
  save_dir_v (ddr, lambda_vector_new (DDR_NB_LOOPS (ddr)));
}
}
 
 
/* Compute in DEPENDENCE_RELATIONS the data dependence graph for all
/* Compute in DEPENDENCE_RELATIONS the data dependence graph for all
   the data references in DATAREFS, in the LOOP_NEST.  When
   the data references in DATAREFS, in the LOOP_NEST.  When
   COMPUTE_SELF_AND_RR is FALSE, don't compute read-read and self
   COMPUTE_SELF_AND_RR is FALSE, don't compute read-read and self
   relations.  */
   relations.  */
 
 
static void
static void
compute_all_dependences (VEC (data_reference_p, heap) *datarefs,
compute_all_dependences (VEC (data_reference_p, heap) *datarefs,
                         VEC (ddr_p, heap) **dependence_relations,
                         VEC (ddr_p, heap) **dependence_relations,
                         VEC (loop_p, heap) *loop_nest,
                         VEC (loop_p, heap) *loop_nest,
                         bool compute_self_and_rr)
                         bool compute_self_and_rr)
{
{
  struct data_dependence_relation *ddr;
  struct data_dependence_relation *ddr;
  struct data_reference *a, *b;
  struct data_reference *a, *b;
  unsigned int i, j;
  unsigned int i, j;
 
 
  for (i = 0; VEC_iterate (data_reference_p, datarefs, i, a); i++)
  for (i = 0; VEC_iterate (data_reference_p, datarefs, i, a); i++)
    for (j = i + 1; VEC_iterate (data_reference_p, datarefs, j, b); j++)
    for (j = i + 1; VEC_iterate (data_reference_p, datarefs, j, b); j++)
      if (!DR_IS_READ (a) || !DR_IS_READ (b) || compute_self_and_rr)
      if (!DR_IS_READ (a) || !DR_IS_READ (b) || compute_self_and_rr)
        {
        {
          ddr = initialize_data_dependence_relation (a, b, loop_nest);
          ddr = initialize_data_dependence_relation (a, b, loop_nest);
          VEC_safe_push (ddr_p, heap, *dependence_relations, ddr);
          VEC_safe_push (ddr_p, heap, *dependence_relations, ddr);
          compute_affine_dependence (ddr);
          compute_affine_dependence (ddr);
        }
        }
 
 
  if (compute_self_and_rr)
  if (compute_self_and_rr)
    for (i = 0; VEC_iterate (data_reference_p, datarefs, i, a); i++)
    for (i = 0; VEC_iterate (data_reference_p, datarefs, i, a); i++)
      {
      {
        ddr = initialize_data_dependence_relation (a, a, loop_nest);
        ddr = initialize_data_dependence_relation (a, a, loop_nest);
        VEC_safe_push (ddr_p, heap, *dependence_relations, ddr);
        VEC_safe_push (ddr_p, heap, *dependence_relations, ddr);
        compute_self_dependence (ddr);
        compute_self_dependence (ddr);
      }
      }
}
}
 
 
/* Search the data references in LOOP, and record the information into
/* Search the data references in LOOP, and record the information into
   DATAREFS.  Returns chrec_dont_know when failing to analyze a
   DATAREFS.  Returns chrec_dont_know when failing to analyze a
   difficult case, returns NULL_TREE otherwise.
   difficult case, returns NULL_TREE otherwise.
 
 
   TODO: This function should be made smarter so that it can handle address
   TODO: This function should be made smarter so that it can handle address
   arithmetic as if they were array accesses, etc.  */
   arithmetic as if they were array accesses, etc.  */
 
 
tree
tree
find_data_references_in_loop (struct loop *loop,
find_data_references_in_loop (struct loop *loop,
                              VEC (data_reference_p, heap) **datarefs)
                              VEC (data_reference_p, heap) **datarefs)
{
{
  basic_block bb, *bbs;
  basic_block bb, *bbs;
  unsigned int i;
  unsigned int i;
  block_stmt_iterator bsi;
  block_stmt_iterator bsi;
  struct data_reference *dr;
  struct data_reference *dr;
 
 
  bbs = get_loop_body (loop);
  bbs = get_loop_body (loop);
 
 
  for (i = 0; i < loop->num_nodes; i++)
  for (i = 0; i < loop->num_nodes; i++)
    {
    {
      bb = bbs[i];
      bb = bbs[i];
 
 
      for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
      for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
        {
        {
          tree stmt = bsi_stmt (bsi);
          tree stmt = bsi_stmt (bsi);
 
 
          /* ASM_EXPR and CALL_EXPR may embed arbitrary side effects.
          /* ASM_EXPR and CALL_EXPR may embed arbitrary side effects.
             Calls have side-effects, except those to const or pure
             Calls have side-effects, except those to const or pure
             functions.  */
             functions.  */
          if ((TREE_CODE (stmt) == CALL_EXPR
          if ((TREE_CODE (stmt) == CALL_EXPR
               && !(call_expr_flags (stmt) & (ECF_CONST | ECF_PURE)))
               && !(call_expr_flags (stmt) & (ECF_CONST | ECF_PURE)))
              || (TREE_CODE (stmt) == ASM_EXPR
              || (TREE_CODE (stmt) == ASM_EXPR
                  && ASM_VOLATILE_P (stmt)))
                  && ASM_VOLATILE_P (stmt)))
            goto insert_dont_know_node;
            goto insert_dont_know_node;
 
 
          if (ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
          if (ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
            continue;
            continue;
 
 
          switch (TREE_CODE (stmt))
          switch (TREE_CODE (stmt))
            {
            {
            case MODIFY_EXPR:
            case MODIFY_EXPR:
              {
              {
                bool one_inserted = false;
                bool one_inserted = false;
                tree opnd0 = TREE_OPERAND (stmt, 0);
                tree opnd0 = TREE_OPERAND (stmt, 0);
                tree opnd1 = TREE_OPERAND (stmt, 1);
                tree opnd1 = TREE_OPERAND (stmt, 1);
 
 
                if (TREE_CODE (opnd0) == ARRAY_REF
                if (TREE_CODE (opnd0) == ARRAY_REF
                    || TREE_CODE (opnd0) == INDIRECT_REF
                    || TREE_CODE (opnd0) == INDIRECT_REF
                    || TREE_CODE (opnd0) == COMPONENT_REF)
                    || TREE_CODE (opnd0) == COMPONENT_REF)
                  {
                  {
                    dr = create_data_ref (opnd0, stmt, false);
                    dr = create_data_ref (opnd0, stmt, false);
                    if (dr)
                    if (dr)
                      {
                      {
                        VEC_safe_push (data_reference_p, heap, *datarefs, dr);
                        VEC_safe_push (data_reference_p, heap, *datarefs, dr);
                        one_inserted = true;
                        one_inserted = true;
                      }
                      }
                  }
                  }
 
 
                if (TREE_CODE (opnd1) == ARRAY_REF
                if (TREE_CODE (opnd1) == ARRAY_REF
                    || TREE_CODE (opnd1) == INDIRECT_REF
                    || TREE_CODE (opnd1) == INDIRECT_REF
                    || TREE_CODE (opnd1) == COMPONENT_REF)
                    || TREE_CODE (opnd1) == COMPONENT_REF)
                  {
                  {
                    dr = create_data_ref (opnd1, stmt, true);
                    dr = create_data_ref (opnd1, stmt, true);
                    if (dr)
                    if (dr)
                      {
                      {
                        VEC_safe_push (data_reference_p, heap, *datarefs, dr);
                        VEC_safe_push (data_reference_p, heap, *datarefs, dr);
                        one_inserted = true;
                        one_inserted = true;
                      }
                      }
                  }
                  }
 
 
                if (!one_inserted)
                if (!one_inserted)
                  goto insert_dont_know_node;
                  goto insert_dont_know_node;
 
 
                break;
                break;
              }
              }
 
 
            case CALL_EXPR:
            case CALL_EXPR:
              {
              {
                tree args;
                tree args;
                bool one_inserted = false;
                bool one_inserted = false;
 
 
                for (args = TREE_OPERAND (stmt, 1); args;
                for (args = TREE_OPERAND (stmt, 1); args;
                     args = TREE_CHAIN (args))
                     args = TREE_CHAIN (args))
                  if (TREE_CODE (TREE_VALUE (args)) == ARRAY_REF
                  if (TREE_CODE (TREE_VALUE (args)) == ARRAY_REF
                      || TREE_CODE (TREE_VALUE (args)) == INDIRECT_REF
                      || TREE_CODE (TREE_VALUE (args)) == INDIRECT_REF
                      || TREE_CODE (TREE_VALUE (args)) == COMPONENT_REF)
                      || TREE_CODE (TREE_VALUE (args)) == COMPONENT_REF)
                    {
                    {
                      dr = create_data_ref (TREE_VALUE (args), stmt, true);
                      dr = create_data_ref (TREE_VALUE (args), stmt, true);
                      if (dr)
                      if (dr)
                        {
                        {
                          VEC_safe_push (data_reference_p, heap, *datarefs, dr);
                          VEC_safe_push (data_reference_p, heap, *datarefs, dr);
                          one_inserted = true;
                          one_inserted = true;
                        }
                        }
                    }
                    }
 
 
                if (!one_inserted)
                if (!one_inserted)
                  goto insert_dont_know_node;
                  goto insert_dont_know_node;
 
 
                break;
                break;
              }
              }
 
 
            default:
            default:
                {
                {
                  struct data_reference *res;
                  struct data_reference *res;
 
 
                insert_dont_know_node:;
                insert_dont_know_node:;
                  res = XNEW (struct data_reference);
                  res = XNEW (struct data_reference);
                  DR_STMT (res) = NULL_TREE;
                  DR_STMT (res) = NULL_TREE;
                  DR_REF (res) = NULL_TREE;
                  DR_REF (res) = NULL_TREE;
                  DR_BASE_OBJECT (res) = NULL;
                  DR_BASE_OBJECT (res) = NULL;
                  DR_TYPE (res) = ARRAY_REF_TYPE;
                  DR_TYPE (res) = ARRAY_REF_TYPE;
                  DR_SET_ACCESS_FNS (res, NULL);
                  DR_SET_ACCESS_FNS (res, NULL);
                  DR_BASE_OBJECT (res) = NULL;
                  DR_BASE_OBJECT (res) = NULL;
                  DR_IS_READ (res) = false;
                  DR_IS_READ (res) = false;
                  DR_BASE_ADDRESS (res) = NULL_TREE;
                  DR_BASE_ADDRESS (res) = NULL_TREE;
                  DR_OFFSET (res) = NULL_TREE;
                  DR_OFFSET (res) = NULL_TREE;
                  DR_INIT (res) = NULL_TREE;
                  DR_INIT (res) = NULL_TREE;
                  DR_STEP (res) = NULL_TREE;
                  DR_STEP (res) = NULL_TREE;
                  DR_OFFSET_MISALIGNMENT (res) = NULL_TREE;
                  DR_OFFSET_MISALIGNMENT (res) = NULL_TREE;
                  DR_MEMTAG (res) = NULL_TREE;
                  DR_MEMTAG (res) = NULL_TREE;
                  DR_PTR_INFO (res) = NULL;
                  DR_PTR_INFO (res) = NULL;
                  VEC_safe_push (data_reference_p, heap, *datarefs, res);
                  VEC_safe_push (data_reference_p, heap, *datarefs, res);
 
 
                  free (bbs);
                  free (bbs);
                  return chrec_dont_know;
                  return chrec_dont_know;
                }
                }
            }
            }
 
 
          /* When there are no defs in the loop, the loop is parallel.  */
          /* When there are no defs in the loop, the loop is parallel.  */
          if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_VIRTUAL_DEFS))
          if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_VIRTUAL_DEFS))
            loop->parallel_p = false;
            loop->parallel_p = false;
        }
        }
    }
    }
 
 
  free (bbs);
  free (bbs);
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Recursive helper function.  */
/* Recursive helper function.  */
 
 
static bool
static bool
find_loop_nest_1 (struct loop *loop, VEC (loop_p, heap) **loop_nest)
find_loop_nest_1 (struct loop *loop, VEC (loop_p, heap) **loop_nest)
{
{
  /* Inner loops of the nest should not contain siblings.  Example:
  /* Inner loops of the nest should not contain siblings.  Example:
     when there are two consecutive loops,
     when there are two consecutive loops,
 
 
     | loop_0
     | loop_0
     |   loop_1
     |   loop_1
     |     A[{0, +, 1}_1]
     |     A[{0, +, 1}_1]
     |   endloop_1
     |   endloop_1
     |   loop_2
     |   loop_2
     |     A[{0, +, 1}_2]
     |     A[{0, +, 1}_2]
     |   endloop_2
     |   endloop_2
     | endloop_0
     | endloop_0
 
 
     the dependence relation cannot be captured by the distance
     the dependence relation cannot be captured by the distance
     abstraction.  */
     abstraction.  */
  if (loop->next)
  if (loop->next)
    return false;
    return false;
 
 
  VEC_safe_push (loop_p, heap, *loop_nest, loop);
  VEC_safe_push (loop_p, heap, *loop_nest, loop);
  if (loop->inner)
  if (loop->inner)
    return find_loop_nest_1 (loop->inner, loop_nest);
    return find_loop_nest_1 (loop->inner, loop_nest);
  return true;
  return true;
}
}
 
 
/* Return false when the LOOP is not well nested.  Otherwise return
/* Return false when the LOOP is not well nested.  Otherwise return
   true and insert in LOOP_NEST the loops of the nest.  LOOP_NEST will
   true and insert in LOOP_NEST the loops of the nest.  LOOP_NEST will
   contain the loops from the outermost to the innermost, as they will
   contain the loops from the outermost to the innermost, as they will
   appear in the classic distance vector.  */
   appear in the classic distance vector.  */
 
 
static bool
static bool
find_loop_nest (struct loop *loop, VEC (loop_p, heap) **loop_nest)
find_loop_nest (struct loop *loop, VEC (loop_p, heap) **loop_nest)
{
{
  VEC_safe_push (loop_p, heap, *loop_nest, loop);
  VEC_safe_push (loop_p, heap, *loop_nest, loop);
  if (loop->inner)
  if (loop->inner)
    return find_loop_nest_1 (loop->inner, loop_nest);
    return find_loop_nest_1 (loop->inner, loop_nest);
  return true;
  return true;
}
}
 
 
/* Given a loop nest LOOP, the following vectors are returned:
/* Given a loop nest LOOP, the following vectors are returned:
   DATAREFS is initialized to all the array elements contained in this loop,
   DATAREFS is initialized to all the array elements contained in this loop,
   DEPENDENCE_RELATIONS contains the relations between the data references.
   DEPENDENCE_RELATIONS contains the relations between the data references.
   Compute read-read and self relations if
   Compute read-read and self relations if
   COMPUTE_SELF_AND_READ_READ_DEPENDENCES is TRUE.  */
   COMPUTE_SELF_AND_READ_READ_DEPENDENCES is TRUE.  */
 
 
void
void
compute_data_dependences_for_loop (struct loop *loop,
compute_data_dependences_for_loop (struct loop *loop,
                                   bool compute_self_and_read_read_dependences,
                                   bool compute_self_and_read_read_dependences,
                                   VEC (data_reference_p, heap) **datarefs,
                                   VEC (data_reference_p, heap) **datarefs,
                                   VEC (ddr_p, heap) **dependence_relations)
                                   VEC (ddr_p, heap) **dependence_relations)
{
{
  struct loop *loop_nest = loop;
  struct loop *loop_nest = loop;
  VEC (loop_p, heap) *vloops = VEC_alloc (loop_p, heap, 3);
  VEC (loop_p, heap) *vloops = VEC_alloc (loop_p, heap, 3);
 
 
  memset (&dependence_stats, 0, sizeof (dependence_stats));
  memset (&dependence_stats, 0, sizeof (dependence_stats));
 
 
  /* If the loop nest is not well formed, or one of the data references
  /* If the loop nest is not well formed, or one of the data references
     is not computable, give up without spending time to compute other
     is not computable, give up without spending time to compute other
     dependences.  */
     dependences.  */
  if (!loop_nest
  if (!loop_nest
      || !find_loop_nest (loop_nest, &vloops)
      || !find_loop_nest (loop_nest, &vloops)
      || find_data_references_in_loop (loop, datarefs) == chrec_dont_know)
      || find_data_references_in_loop (loop, datarefs) == chrec_dont_know)
    {
    {
      struct data_dependence_relation *ddr;
      struct data_dependence_relation *ddr;
 
 
      /* Insert a single relation into dependence_relations:
      /* Insert a single relation into dependence_relations:
         chrec_dont_know.  */
         chrec_dont_know.  */
      ddr = initialize_data_dependence_relation (NULL, NULL, vloops);
      ddr = initialize_data_dependence_relation (NULL, NULL, vloops);
      VEC_safe_push (ddr_p, heap, *dependence_relations, ddr);
      VEC_safe_push (ddr_p, heap, *dependence_relations, ddr);
    }
    }
  else
  else
    compute_all_dependences (*datarefs, dependence_relations, vloops,
    compute_all_dependences (*datarefs, dependence_relations, vloops,
                             compute_self_and_read_read_dependences);
                             compute_self_and_read_read_dependences);
 
 
  if (dump_file && (dump_flags & TDF_STATS))
  if (dump_file && (dump_flags & TDF_STATS))
    {
    {
      fprintf (dump_file, "Dependence tester statistics:\n");
      fprintf (dump_file, "Dependence tester statistics:\n");
 
 
      fprintf (dump_file, "Number of dependence tests: %d\n",
      fprintf (dump_file, "Number of dependence tests: %d\n",
               dependence_stats.num_dependence_tests);
               dependence_stats.num_dependence_tests);
      fprintf (dump_file, "Number of dependence tests classified dependent: %d\n",
      fprintf (dump_file, "Number of dependence tests classified dependent: %d\n",
               dependence_stats.num_dependence_dependent);
               dependence_stats.num_dependence_dependent);
      fprintf (dump_file, "Number of dependence tests classified independent: %d\n",
      fprintf (dump_file, "Number of dependence tests classified independent: %d\n",
               dependence_stats.num_dependence_independent);
               dependence_stats.num_dependence_independent);
      fprintf (dump_file, "Number of undetermined dependence tests: %d\n",
      fprintf (dump_file, "Number of undetermined dependence tests: %d\n",
               dependence_stats.num_dependence_undetermined);
               dependence_stats.num_dependence_undetermined);
 
 
      fprintf (dump_file, "Number of subscript tests: %d\n",
      fprintf (dump_file, "Number of subscript tests: %d\n",
               dependence_stats.num_subscript_tests);
               dependence_stats.num_subscript_tests);
      fprintf (dump_file, "Number of undetermined subscript tests: %d\n",
      fprintf (dump_file, "Number of undetermined subscript tests: %d\n",
               dependence_stats.num_subscript_undetermined);
               dependence_stats.num_subscript_undetermined);
      fprintf (dump_file, "Number of same subscript function: %d\n",
      fprintf (dump_file, "Number of same subscript function: %d\n",
               dependence_stats.num_same_subscript_function);
               dependence_stats.num_same_subscript_function);
 
 
      fprintf (dump_file, "Number of ziv tests: %d\n",
      fprintf (dump_file, "Number of ziv tests: %d\n",
               dependence_stats.num_ziv);
               dependence_stats.num_ziv);
      fprintf (dump_file, "Number of ziv tests returning dependent: %d\n",
      fprintf (dump_file, "Number of ziv tests returning dependent: %d\n",
               dependence_stats.num_ziv_dependent);
               dependence_stats.num_ziv_dependent);
      fprintf (dump_file, "Number of ziv tests returning independent: %d\n",
      fprintf (dump_file, "Number of ziv tests returning independent: %d\n",
               dependence_stats.num_ziv_independent);
               dependence_stats.num_ziv_independent);
      fprintf (dump_file, "Number of ziv tests unimplemented: %d\n",
      fprintf (dump_file, "Number of ziv tests unimplemented: %d\n",
               dependence_stats.num_ziv_unimplemented);
               dependence_stats.num_ziv_unimplemented);
 
 
      fprintf (dump_file, "Number of siv tests: %d\n",
      fprintf (dump_file, "Number of siv tests: %d\n",
               dependence_stats.num_siv);
               dependence_stats.num_siv);
      fprintf (dump_file, "Number of siv tests returning dependent: %d\n",
      fprintf (dump_file, "Number of siv tests returning dependent: %d\n",
               dependence_stats.num_siv_dependent);
               dependence_stats.num_siv_dependent);
      fprintf (dump_file, "Number of siv tests returning independent: %d\n",
      fprintf (dump_file, "Number of siv tests returning independent: %d\n",
               dependence_stats.num_siv_independent);
               dependence_stats.num_siv_independent);
      fprintf (dump_file, "Number of siv tests unimplemented: %d\n",
      fprintf (dump_file, "Number of siv tests unimplemented: %d\n",
               dependence_stats.num_siv_unimplemented);
               dependence_stats.num_siv_unimplemented);
 
 
      fprintf (dump_file, "Number of miv tests: %d\n",
      fprintf (dump_file, "Number of miv tests: %d\n",
               dependence_stats.num_miv);
               dependence_stats.num_miv);
      fprintf (dump_file, "Number of miv tests returning dependent: %d\n",
      fprintf (dump_file, "Number of miv tests returning dependent: %d\n",
               dependence_stats.num_miv_dependent);
               dependence_stats.num_miv_dependent);
      fprintf (dump_file, "Number of miv tests returning independent: %d\n",
      fprintf (dump_file, "Number of miv tests returning independent: %d\n",
               dependence_stats.num_miv_independent);
               dependence_stats.num_miv_independent);
      fprintf (dump_file, "Number of miv tests unimplemented: %d\n",
      fprintf (dump_file, "Number of miv tests unimplemented: %d\n",
               dependence_stats.num_miv_unimplemented);
               dependence_stats.num_miv_unimplemented);
    }
    }
}
}
 
 
/* Entry point (for testing only).  Analyze all the data references
/* Entry point (for testing only).  Analyze all the data references
   and the dependence relations.
   and the dependence relations.
 
 
   The data references are computed first.
   The data references are computed first.
 
 
   A relation on these nodes is represented by a complete graph.  Some
   A relation on these nodes is represented by a complete graph.  Some
   of the relations could be of no interest, thus the relations can be
   of the relations could be of no interest, thus the relations can be
   computed on demand.
   computed on demand.
 
 
   In the following function we compute all the relations.  This is
   In the following function we compute all the relations.  This is
   just a first implementation that is here for:
   just a first implementation that is here for:
   - for showing how to ask for the dependence relations,
   - for showing how to ask for the dependence relations,
   - for the debugging the whole dependence graph,
   - for the debugging the whole dependence graph,
   - for the dejagnu testcases and maintenance.
   - for the dejagnu testcases and maintenance.
 
 
   It is possible to ask only for a part of the graph, avoiding to
   It is possible to ask only for a part of the graph, avoiding to
   compute the whole dependence graph.  The computed dependences are
   compute the whole dependence graph.  The computed dependences are
   stored in a knowledge base (KB) such that later queries don't
   stored in a knowledge base (KB) such that later queries don't
   recompute the same information.  The implementation of this KB is
   recompute the same information.  The implementation of this KB is
   transparent to the optimizer, and thus the KB can be changed with a
   transparent to the optimizer, and thus the KB can be changed with a
   more efficient implementation, or the KB could be disabled.  */
   more efficient implementation, or the KB could be disabled.  */
#if 0
#if 0
static void
static void
analyze_all_data_dependences (struct loops *loops)
analyze_all_data_dependences (struct loops *loops)
{
{
  unsigned int i;
  unsigned int i;
  int nb_data_refs = 10;
  int nb_data_refs = 10;
  VEC (data_reference_p, heap) *datarefs =
  VEC (data_reference_p, heap) *datarefs =
    VEC_alloc (data_reference_p, heap, nb_data_refs);
    VEC_alloc (data_reference_p, heap, nb_data_refs);
  VEC (ddr_p, heap) *dependence_relations =
  VEC (ddr_p, heap) *dependence_relations =
    VEC_alloc (ddr_p, heap, nb_data_refs * nb_data_refs);
    VEC_alloc (ddr_p, heap, nb_data_refs * nb_data_refs);
 
 
  /* Compute DDs on the whole function.  */
  /* Compute DDs on the whole function.  */
  compute_data_dependences_for_loop (loops->parray[0], false,
  compute_data_dependences_for_loop (loops->parray[0], false,
                                     &datarefs, &dependence_relations);
                                     &datarefs, &dependence_relations);
 
 
  if (dump_file)
  if (dump_file)
    {
    {
      dump_data_dependence_relations (dump_file, dependence_relations);
      dump_data_dependence_relations (dump_file, dependence_relations);
      fprintf (dump_file, "\n\n");
      fprintf (dump_file, "\n\n");
 
 
      if (dump_flags & TDF_DETAILS)
      if (dump_flags & TDF_DETAILS)
        dump_dist_dir_vectors (dump_file, dependence_relations);
        dump_dist_dir_vectors (dump_file, dependence_relations);
 
 
      if (dump_flags & TDF_STATS)
      if (dump_flags & TDF_STATS)
        {
        {
          unsigned nb_top_relations = 0;
          unsigned nb_top_relations = 0;
          unsigned nb_bot_relations = 0;
          unsigned nb_bot_relations = 0;
          unsigned nb_basename_differ = 0;
          unsigned nb_basename_differ = 0;
          unsigned nb_chrec_relations = 0;
          unsigned nb_chrec_relations = 0;
          struct data_dependence_relation *ddr;
          struct data_dependence_relation *ddr;
 
 
          for (i = 0; VEC_iterate (ddr_p, dependence_relations, i, ddr); i++)
          for (i = 0; VEC_iterate (ddr_p, dependence_relations, i, ddr); i++)
            {
            {
              if (chrec_contains_undetermined (DDR_ARE_DEPENDENT (ddr)))
              if (chrec_contains_undetermined (DDR_ARE_DEPENDENT (ddr)))
                nb_top_relations++;
                nb_top_relations++;
 
 
              else if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
              else if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
                {
                {
                  struct data_reference *a = DDR_A (ddr);
                  struct data_reference *a = DDR_A (ddr);
                  struct data_reference *b = DDR_B (ddr);
                  struct data_reference *b = DDR_B (ddr);
                  bool differ_p;
                  bool differ_p;
 
 
                  if ((DR_BASE_OBJECT (a) && DR_BASE_OBJECT (b)
                  if ((DR_BASE_OBJECT (a) && DR_BASE_OBJECT (b)
                       && DR_NUM_DIMENSIONS (a) != DR_NUM_DIMENSIONS (b))
                       && DR_NUM_DIMENSIONS (a) != DR_NUM_DIMENSIONS (b))
                      || (base_object_differ_p (a, b, &differ_p)
                      || (base_object_differ_p (a, b, &differ_p)
                          && differ_p))
                          && differ_p))
                    nb_basename_differ++;
                    nb_basename_differ++;
                  else
                  else
                    nb_bot_relations++;
                    nb_bot_relations++;
                }
                }
 
 
              else
              else
                nb_chrec_relations++;
                nb_chrec_relations++;
            }
            }
 
 
          gather_stats_on_scev_database ();
          gather_stats_on_scev_database ();
        }
        }
    }
    }
 
 
  free_dependence_relations (dependence_relations);
  free_dependence_relations (dependence_relations);
  free_data_refs (datarefs);
  free_data_refs (datarefs);
}
}
#endif
#endif
 
 
/* Free the memory used by a data dependence relation DDR.  */
/* Free the memory used by a data dependence relation DDR.  */
 
 
void
void
free_dependence_relation (struct data_dependence_relation *ddr)
free_dependence_relation (struct data_dependence_relation *ddr)
{
{
  if (ddr == NULL)
  if (ddr == NULL)
    return;
    return;
 
 
  if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE && DDR_SUBSCRIPTS (ddr))
  if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE && DDR_SUBSCRIPTS (ddr))
    VEC_free (subscript_p, heap, DDR_SUBSCRIPTS (ddr));
    VEC_free (subscript_p, heap, DDR_SUBSCRIPTS (ddr));
 
 
  free (ddr);
  free (ddr);
}
}
 
 
/* Free the memory used by the data dependence relations from
/* Free the memory used by the data dependence relations from
   DEPENDENCE_RELATIONS.  */
   DEPENDENCE_RELATIONS.  */
 
 
void
void
free_dependence_relations (VEC (ddr_p, heap) *dependence_relations)
free_dependence_relations (VEC (ddr_p, heap) *dependence_relations)
{
{
  unsigned int i;
  unsigned int i;
  struct data_dependence_relation *ddr;
  struct data_dependence_relation *ddr;
  VEC (loop_p, heap) *loop_nest = NULL;
  VEC (loop_p, heap) *loop_nest = NULL;
 
 
  for (i = 0; VEC_iterate (ddr_p, dependence_relations, i, ddr); i++)
  for (i = 0; VEC_iterate (ddr_p, dependence_relations, i, ddr); i++)
    {
    {
      if (ddr == NULL)
      if (ddr == NULL)
        continue;
        continue;
      if (loop_nest == NULL)
      if (loop_nest == NULL)
        loop_nest = DDR_LOOP_NEST (ddr);
        loop_nest = DDR_LOOP_NEST (ddr);
      else
      else
        gcc_assert (DDR_LOOP_NEST (ddr) == NULL
        gcc_assert (DDR_LOOP_NEST (ddr) == NULL
                    || DDR_LOOP_NEST (ddr) == loop_nest);
                    || DDR_LOOP_NEST (ddr) == loop_nest);
      free_dependence_relation (ddr);
      free_dependence_relation (ddr);
    }
    }
 
 
  if (loop_nest)
  if (loop_nest)
    VEC_free (loop_p, heap, loop_nest);
    VEC_free (loop_p, heap, loop_nest);
  VEC_free (ddr_p, heap, dependence_relations);
  VEC_free (ddr_p, heap, dependence_relations);
}
}
 
 
/* Free the memory used by the data references from DATAREFS.  */
/* Free the memory used by the data references from DATAREFS.  */
 
 
void
void
free_data_refs (VEC (data_reference_p, heap) *datarefs)
free_data_refs (VEC (data_reference_p, heap) *datarefs)
{
{
  unsigned int i;
  unsigned int i;
  struct data_reference *dr;
  struct data_reference *dr;
 
 
  for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
  for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
    free_data_ref (dr);
    free_data_ref (dr);
  VEC_free (data_reference_p, heap, datarefs);
  VEC_free (data_reference_p, heap, datarefs);
}
}
 
 
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.