OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gcc-4.2.2/] [gcc/] [tree-if-conv.c] - Diff between revs 154 and 816

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 154 Rev 816
/* If-conversion for vectorizer.
/* If-conversion for vectorizer.
   Copyright (C) 2004, 2005, 2007 Free Software Foundation, Inc.
   Copyright (C) 2004, 2005, 2007 Free Software Foundation, Inc.
   Contributed by Devang Patel <dpatel@apple.com>
   Contributed by Devang Patel <dpatel@apple.com>
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify it under
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
Software Foundation; either version 3, or (at your option) any later
version.
version.
 
 
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
/* This pass implements tree level if-conversion transformation of loops.
/* This pass implements tree level if-conversion transformation of loops.
   Initial goal is to help vectorizer vectorize loops with conditions.
   Initial goal is to help vectorizer vectorize loops with conditions.
 
 
   A short description of if-conversion:
   A short description of if-conversion:
 
 
     o Decide if a loop is if-convertible or not.
     o Decide if a loop is if-convertible or not.
     o Walk all loop basic blocks in breadth first order (BFS order).
     o Walk all loop basic blocks in breadth first order (BFS order).
       o Remove conditional statements (at the end of basic block)
       o Remove conditional statements (at the end of basic block)
         and propagate condition into destination basic blocks'
         and propagate condition into destination basic blocks'
         predicate list.
         predicate list.
       o Replace modify expression with conditional modify expression
       o Replace modify expression with conditional modify expression
         using current basic block's condition.
         using current basic block's condition.
     o Merge all basic blocks
     o Merge all basic blocks
       o Replace phi nodes with conditional modify expr
       o Replace phi nodes with conditional modify expr
       o Merge all basic blocks into header
       o Merge all basic blocks into header
 
 
     Sample transformation:
     Sample transformation:
 
 
     INPUT
     INPUT
     -----
     -----
 
 
     # i_23 = PHI <0(0), i_18(10)>;
     # i_23 = PHI <0(0), i_18(10)>;
     <L0>:;
     <L0>:;
     j_15 = A[i_23];
     j_15 = A[i_23];
     if (j_15 > 41) goto <L1>; else goto <L17>;
     if (j_15 > 41) goto <L1>; else goto <L17>;
 
 
     <L17>:;
     <L17>:;
     goto <bb 3> (<L3>);
     goto <bb 3> (<L3>);
 
 
     <L1>:;
     <L1>:;
 
 
     # iftmp.2_4 = PHI <0(8), 42(2)>;
     # iftmp.2_4 = PHI <0(8), 42(2)>;
     <L3>:;
     <L3>:;
     A[i_23] = iftmp.2_4;
     A[i_23] = iftmp.2_4;
     i_18 = i_23 + 1;
     i_18 = i_23 + 1;
     if (i_18 <= 15) goto <L19>; else goto <L18>;
     if (i_18 <= 15) goto <L19>; else goto <L18>;
 
 
     <L19>:;
     <L19>:;
     goto <bb 1> (<L0>);
     goto <bb 1> (<L0>);
 
 
     <L18>:;
     <L18>:;
 
 
     OUTPUT
     OUTPUT
     ------
     ------
 
 
     # i_23 = PHI <0(0), i_18(10)>;
     # i_23 = PHI <0(0), i_18(10)>;
     <L0>:;
     <L0>:;
     j_15 = A[i_23];
     j_15 = A[i_23];
 
 
     <L3>:;
     <L3>:;
     iftmp.2_4 = j_15 > 41 ? 42 : 0;
     iftmp.2_4 = j_15 > 41 ? 42 : 0;
     A[i_23] = iftmp.2_4;
     A[i_23] = iftmp.2_4;
     i_18 = i_23 + 1;
     i_18 = i_23 + 1;
     if (i_18 <= 15) goto <L19>; else goto <L18>;
     if (i_18 <= 15) goto <L19>; else goto <L18>;
 
 
     <L19>:;
     <L19>:;
     goto <bb 1> (<L0>);
     goto <bb 1> (<L0>);
 
 
     <L18>:;
     <L18>:;
*/
*/
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "tree.h"
#include "tree.h"
#include "c-common.h"
#include "c-common.h"
#include "flags.h"
#include "flags.h"
#include "timevar.h"
#include "timevar.h"
#include "varray.h"
#include "varray.h"
#include "rtl.h"
#include "rtl.h"
#include "basic-block.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "tree-flow.h"
#include "tree-dump.h"
#include "tree-dump.h"
#include "cfgloop.h"
#include "cfgloop.h"
#include "tree-chrec.h"
#include "tree-chrec.h"
#include "tree-data-ref.h"
#include "tree-data-ref.h"
#include "tree-scalar-evolution.h"
#include "tree-scalar-evolution.h"
#include "tree-pass.h"
#include "tree-pass.h"
#include "target.h"
#include "target.h"
 
 
/* local function prototypes */
/* local function prototypes */
static unsigned int main_tree_if_conversion (void);
static unsigned int main_tree_if_conversion (void);
static tree tree_if_convert_stmt (struct loop *loop, tree, tree,
static tree tree_if_convert_stmt (struct loop *loop, tree, tree,
                                  block_stmt_iterator *);
                                  block_stmt_iterator *);
static void tree_if_convert_cond_expr (struct loop *, tree, tree,
static void tree_if_convert_cond_expr (struct loop *, tree, tree,
                                       block_stmt_iterator *);
                                       block_stmt_iterator *);
static bool if_convertible_phi_p (struct loop *, basic_block, tree);
static bool if_convertible_phi_p (struct loop *, basic_block, tree);
static bool if_convertible_modify_expr_p (struct loop *, basic_block, tree);
static bool if_convertible_modify_expr_p (struct loop *, basic_block, tree);
static bool if_convertible_stmt_p (struct loop *, basic_block, tree);
static bool if_convertible_stmt_p (struct loop *, basic_block, tree);
static bool if_convertible_bb_p (struct loop *, basic_block, basic_block);
static bool if_convertible_bb_p (struct loop *, basic_block, basic_block);
static bool if_convertible_loop_p (struct loop *, bool);
static bool if_convertible_loop_p (struct loop *, bool);
static void add_to_predicate_list (basic_block, tree);
static void add_to_predicate_list (basic_block, tree);
static tree add_to_dst_predicate_list (struct loop * loop, edge,
static tree add_to_dst_predicate_list (struct loop * loop, edge,
                                       tree, tree,
                                       tree, tree,
                                       block_stmt_iterator *);
                                       block_stmt_iterator *);
static void clean_predicate_lists (struct loop *loop);
static void clean_predicate_lists (struct loop *loop);
static basic_block find_phi_replacement_condition (struct loop *loop,
static basic_block find_phi_replacement_condition (struct loop *loop,
                                                   basic_block, tree *,
                                                   basic_block, tree *,
                                                   block_stmt_iterator *);
                                                   block_stmt_iterator *);
static void replace_phi_with_cond_modify_expr (tree, tree, basic_block,
static void replace_phi_with_cond_modify_expr (tree, tree, basic_block,
                                               block_stmt_iterator *);
                                               block_stmt_iterator *);
static void process_phi_nodes (struct loop *);
static void process_phi_nodes (struct loop *);
static void combine_blocks (struct loop *);
static void combine_blocks (struct loop *);
static tree ifc_temp_var (tree, tree);
static tree ifc_temp_var (tree, tree);
static bool pred_blocks_visited_p (basic_block, bitmap *);
static bool pred_blocks_visited_p (basic_block, bitmap *);
static basic_block * get_loop_body_in_if_conv_order (const struct loop *loop);
static basic_block * get_loop_body_in_if_conv_order (const struct loop *loop);
static bool bb_with_exit_edge_p (struct loop *, basic_block);
static bool bb_with_exit_edge_p (struct loop *, basic_block);
 
 
/* List of basic blocks in if-conversion-suitable order.  */
/* List of basic blocks in if-conversion-suitable order.  */
static basic_block *ifc_bbs;
static basic_block *ifc_bbs;
 
 
/* Main entry point.
/* Main entry point.
   Apply if-conversion to the LOOP. Return true if successful otherwise return
   Apply if-conversion to the LOOP. Return true if successful otherwise return
   false. If false is returned then loop remains unchanged.
   false. If false is returned then loop remains unchanged.
   FOR_VECTORIZER is a boolean flag. It indicates whether if-conversion is used
   FOR_VECTORIZER is a boolean flag. It indicates whether if-conversion is used
   for vectorizer or not. If it is used for vectorizer, additional checks are
   for vectorizer or not. If it is used for vectorizer, additional checks are
   used. (Vectorization checks are not yet implemented).  */
   used. (Vectorization checks are not yet implemented).  */
 
 
static bool
static bool
tree_if_conversion (struct loop *loop, bool for_vectorizer)
tree_if_conversion (struct loop *loop, bool for_vectorizer)
{
{
  basic_block bb;
  basic_block bb;
  block_stmt_iterator itr;
  block_stmt_iterator itr;
  unsigned int i;
  unsigned int i;
 
 
  ifc_bbs = NULL;
  ifc_bbs = NULL;
 
 
  /* if-conversion is not appropriate for all loops. First, check if loop  is
  /* if-conversion is not appropriate for all loops. First, check if loop  is
     if-convertible or not.  */
     if-convertible or not.  */
  if (!if_convertible_loop_p (loop, for_vectorizer))
  if (!if_convertible_loop_p (loop, for_vectorizer))
    {
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
      if (dump_file && (dump_flags & TDF_DETAILS))
        fprintf (dump_file,"-------------------------\n");
        fprintf (dump_file,"-------------------------\n");
      if (ifc_bbs)
      if (ifc_bbs)
        {
        {
          free (ifc_bbs);
          free (ifc_bbs);
          ifc_bbs = NULL;
          ifc_bbs = NULL;
        }
        }
      free_dominance_info (CDI_POST_DOMINATORS);
      free_dominance_info (CDI_POST_DOMINATORS);
      return false;
      return false;
    }
    }
 
 
  /* Do actual work now.  */
  /* Do actual work now.  */
  for (i = 0; i < loop->num_nodes; i++)
  for (i = 0; i < loop->num_nodes; i++)
    {
    {
      tree cond;
      tree cond;
 
 
      bb = ifc_bbs [i];
      bb = ifc_bbs [i];
 
 
      /* Update condition using predicate list.  */
      /* Update condition using predicate list.  */
      cond = bb->aux;
      cond = bb->aux;
 
 
      /* Process all statements in this basic block.
      /* Process all statements in this basic block.
         Remove conditional expression, if any, and annotate
         Remove conditional expression, if any, and annotate
         destination basic block(s) appropriately.  */
         destination basic block(s) appropriately.  */
      for (itr = bsi_start (bb); !bsi_end_p (itr); /* empty */)
      for (itr = bsi_start (bb); !bsi_end_p (itr); /* empty */)
        {
        {
          tree t = bsi_stmt (itr);
          tree t = bsi_stmt (itr);
          cond = tree_if_convert_stmt (loop, t, cond, &itr);
          cond = tree_if_convert_stmt (loop, t, cond, &itr);
          if (!bsi_end_p (itr))
          if (!bsi_end_p (itr))
            bsi_next (&itr);
            bsi_next (&itr);
        }
        }
 
 
      /* If current bb has only one successor, then consider it as an
      /* If current bb has only one successor, then consider it as an
         unconditional goto.  */
         unconditional goto.  */
      if (single_succ_p (bb))
      if (single_succ_p (bb))
        {
        {
          basic_block bb_n = single_succ (bb);
          basic_block bb_n = single_succ (bb);
          if (cond != NULL_TREE)
          if (cond != NULL_TREE)
            add_to_predicate_list (bb_n, cond);
            add_to_predicate_list (bb_n, cond);
        }
        }
    }
    }
 
 
  /* Now, all statements are if-converted and basic blocks are
  /* Now, all statements are if-converted and basic blocks are
     annotated appropriately. Combine all basic block into one huge
     annotated appropriately. Combine all basic block into one huge
     basic block.  */
     basic block.  */
  combine_blocks (loop);
  combine_blocks (loop);
 
 
  /* clean up */
  /* clean up */
  clean_predicate_lists (loop);
  clean_predicate_lists (loop);
  free (ifc_bbs);
  free (ifc_bbs);
  ifc_bbs = NULL;
  ifc_bbs = NULL;
 
 
  return true;
  return true;
}
}
 
 
/* if-convert stmt T which is part of LOOP.
/* if-convert stmt T which is part of LOOP.
   If T is a MODIFY_EXPR than it is converted into conditional modify
   If T is a MODIFY_EXPR than it is converted into conditional modify
   expression using COND.  For conditional expressions, add condition in the
   expression using COND.  For conditional expressions, add condition in the
   destination basic block's predicate list and remove conditional
   destination basic block's predicate list and remove conditional
   expression itself. BSI is the iterator used to traverse statements of
   expression itself. BSI is the iterator used to traverse statements of
   loop. It is used here when it is required to delete current statement.  */
   loop. It is used here when it is required to delete current statement.  */
 
 
static tree
static tree
tree_if_convert_stmt (struct loop *  loop, tree t, tree cond,
tree_if_convert_stmt (struct loop *  loop, tree t, tree cond,
                      block_stmt_iterator *bsi)
                      block_stmt_iterator *bsi)
{
{
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
    {
      fprintf (dump_file, "------if-convert stmt\n");
      fprintf (dump_file, "------if-convert stmt\n");
      print_generic_stmt (dump_file, t, TDF_SLIM);
      print_generic_stmt (dump_file, t, TDF_SLIM);
      print_generic_stmt (dump_file, cond, TDF_SLIM);
      print_generic_stmt (dump_file, cond, TDF_SLIM);
    }
    }
 
 
  switch (TREE_CODE (t))
  switch (TREE_CODE (t))
    {
    {
      /* Labels are harmless here.  */
      /* Labels are harmless here.  */
    case LABEL_EXPR:
    case LABEL_EXPR:
      break;
      break;
 
 
    case MODIFY_EXPR:
    case MODIFY_EXPR:
      /* This modify_expr is killing previous value of LHS. Appropriate value will
      /* This modify_expr is killing previous value of LHS. Appropriate value will
         be selected by PHI node based on condition. It is possible that before
         be selected by PHI node based on condition. It is possible that before
         this transformation, PHI nodes was selecting default value and now it will
         this transformation, PHI nodes was selecting default value and now it will
         use this new value. This is OK because it does not change validity the
         use this new value. This is OK because it does not change validity the
         program.  */
         program.  */
      break;
      break;
 
 
    case COND_EXPR:
    case COND_EXPR:
      /* Update destination blocks' predicate list and remove this
      /* Update destination blocks' predicate list and remove this
         condition expression.  */
         condition expression.  */
      tree_if_convert_cond_expr (loop, t, cond, bsi);
      tree_if_convert_cond_expr (loop, t, cond, bsi);
      cond = NULL_TREE;
      cond = NULL_TREE;
      break;
      break;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
  return cond;
  return cond;
}
}
 
 
/* STMT is COND_EXPR. Update two destination's predicate list.
/* STMT is COND_EXPR. Update two destination's predicate list.
   Remove COND_EXPR, if it is not the loop exit condition. Otherwise
   Remove COND_EXPR, if it is not the loop exit condition. Otherwise
   update loop exit condition appropriately.  BSI is the iterator
   update loop exit condition appropriately.  BSI is the iterator
   used to traverse statement list. STMT is part of loop LOOP.  */
   used to traverse statement list. STMT is part of loop LOOP.  */
 
 
static void
static void
tree_if_convert_cond_expr (struct loop *loop, tree stmt, tree cond,
tree_if_convert_cond_expr (struct loop *loop, tree stmt, tree cond,
                           block_stmt_iterator *bsi)
                           block_stmt_iterator *bsi)
{
{
  tree c, c2;
  tree c, c2;
  edge true_edge, false_edge;
  edge true_edge, false_edge;
 
 
  gcc_assert (TREE_CODE (stmt) == COND_EXPR);
  gcc_assert (TREE_CODE (stmt) == COND_EXPR);
 
 
  c = COND_EXPR_COND (stmt);
  c = COND_EXPR_COND (stmt);
 
 
  extract_true_false_edges_from_block (bb_for_stmt (stmt),
  extract_true_false_edges_from_block (bb_for_stmt (stmt),
                                       &true_edge, &false_edge);
                                       &true_edge, &false_edge);
 
 
  /* Add new condition into destination's predicate list.  */
  /* Add new condition into destination's predicate list.  */
 
 
  /* If 'c' is true then TRUE_EDGE is taken.  */
  /* If 'c' is true then TRUE_EDGE is taken.  */
  add_to_dst_predicate_list (loop, true_edge, cond,
  add_to_dst_predicate_list (loop, true_edge, cond,
                             unshare_expr (c), bsi);
                             unshare_expr (c), bsi);
 
 
  /* If 'c' is false then FALSE_EDGE is taken.  */
  /* If 'c' is false then FALSE_EDGE is taken.  */
  c2 = invert_truthvalue (unshare_expr (c));
  c2 = invert_truthvalue (unshare_expr (c));
  add_to_dst_predicate_list (loop, false_edge, cond, c2, bsi);
  add_to_dst_predicate_list (loop, false_edge, cond, c2, bsi);
 
 
  /* Now this conditional statement is redundant. Remove it.
  /* Now this conditional statement is redundant. Remove it.
     But, do not remove exit condition! Update exit condition
     But, do not remove exit condition! Update exit condition
     using new condition.  */
     using new condition.  */
  if (!bb_with_exit_edge_p (loop, bb_for_stmt (stmt)))
  if (!bb_with_exit_edge_p (loop, bb_for_stmt (stmt)))
    {
    {
      bsi_remove (bsi, true);
      bsi_remove (bsi, true);
      cond = NULL_TREE;
      cond = NULL_TREE;
    }
    }
  return;
  return;
}
}
 
 
/* Return true, iff PHI is if-convertible. PHI is part of loop LOOP
/* Return true, iff PHI is if-convertible. PHI is part of loop LOOP
   and it belongs to basic block BB.
   and it belongs to basic block BB.
   PHI is not if-convertible
   PHI is not if-convertible
   - if it has more than 2 arguments.
   - if it has more than 2 arguments.
   - Virtual PHI is immediately used in another PHI node.  */
   - Virtual PHI is immediately used in another PHI node.  */
 
 
static bool
static bool
if_convertible_phi_p (struct loop *loop, basic_block bb, tree phi)
if_convertible_phi_p (struct loop *loop, basic_block bb, tree phi)
{
{
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
    {
      fprintf (dump_file, "-------------------------\n");
      fprintf (dump_file, "-------------------------\n");
      print_generic_stmt (dump_file, phi, TDF_SLIM);
      print_generic_stmt (dump_file, phi, TDF_SLIM);
    }
    }
 
 
  if (bb != loop->header && PHI_NUM_ARGS (phi) != 2)
  if (bb != loop->header && PHI_NUM_ARGS (phi) != 2)
    {
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
      if (dump_file && (dump_flags & TDF_DETAILS))
        fprintf (dump_file, "More than two phi node args.\n");
        fprintf (dump_file, "More than two phi node args.\n");
      return false;
      return false;
    }
    }
 
 
  if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
  if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
    {
    {
      imm_use_iterator imm_iter;
      imm_use_iterator imm_iter;
      use_operand_p use_p;
      use_operand_p use_p;
      FOR_EACH_IMM_USE_FAST (use_p, imm_iter, PHI_RESULT (phi))
      FOR_EACH_IMM_USE_FAST (use_p, imm_iter, PHI_RESULT (phi))
        {
        {
          if (TREE_CODE (USE_STMT (use_p)) == PHI_NODE)
          if (TREE_CODE (USE_STMT (use_p)) == PHI_NODE)
            {
            {
              if (dump_file && (dump_flags & TDF_DETAILS))
              if (dump_file && (dump_flags & TDF_DETAILS))
                fprintf (dump_file, "Difficult to handle this virtual phi.\n");
                fprintf (dump_file, "Difficult to handle this virtual phi.\n");
              return false;
              return false;
            }
            }
        }
        }
    }
    }
 
 
  return true;
  return true;
}
}
 
 
/* Return true, if M_EXPR is if-convertible.
/* Return true, if M_EXPR is if-convertible.
   MODIFY_EXPR is not if-convertible if,
   MODIFY_EXPR is not if-convertible if,
   - It is not movable.
   - It is not movable.
   - It could trap.
   - It could trap.
   - LHS is not var decl.
   - LHS is not var decl.
  MODIFY_EXPR is part of block BB, which is inside loop LOOP.
  MODIFY_EXPR is part of block BB, which is inside loop LOOP.
*/
*/
 
 
static bool
static bool
if_convertible_modify_expr_p (struct loop *loop, basic_block bb, tree m_expr)
if_convertible_modify_expr_p (struct loop *loop, basic_block bb, tree m_expr)
{
{
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
    {
      fprintf (dump_file, "-------------------------\n");
      fprintf (dump_file, "-------------------------\n");
      print_generic_stmt (dump_file, m_expr, TDF_SLIM);
      print_generic_stmt (dump_file, m_expr, TDF_SLIM);
    }
    }
 
 
  /* Be conservative and do not handle immovable expressions.  */
  /* Be conservative and do not handle immovable expressions.  */
  if (movement_possibility (m_expr) == MOVE_IMPOSSIBLE)
  if (movement_possibility (m_expr) == MOVE_IMPOSSIBLE)
    {
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
      if (dump_file && (dump_flags & TDF_DETAILS))
        fprintf (dump_file, "stmt is movable. Don't take risk\n");
        fprintf (dump_file, "stmt is movable. Don't take risk\n");
      return false;
      return false;
    }
    }
 
 
  /* See if it needs speculative loading or not.  */
  /* See if it needs speculative loading or not.  */
  if (bb != loop->header
  if (bb != loop->header
      && tree_could_trap_p (TREE_OPERAND (m_expr, 1)))
      && tree_could_trap_p (TREE_OPERAND (m_expr, 1)))
    {
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
      if (dump_file && (dump_flags & TDF_DETAILS))
        fprintf (dump_file, "tree could trap...\n");
        fprintf (dump_file, "tree could trap...\n");
      return false;
      return false;
    }
    }
 
 
  if (TREE_CODE (TREE_OPERAND (m_expr, 1)) == CALL_EXPR)
  if (TREE_CODE (TREE_OPERAND (m_expr, 1)) == CALL_EXPR)
    {
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
      if (dump_file && (dump_flags & TDF_DETAILS))
        fprintf (dump_file, "CALL_EXPR \n");
        fprintf (dump_file, "CALL_EXPR \n");
      return false;
      return false;
    }
    }
 
 
  if (TREE_CODE (TREE_OPERAND (m_expr, 0)) != SSA_NAME
  if (TREE_CODE (TREE_OPERAND (m_expr, 0)) != SSA_NAME
      && bb != loop->header
      && bb != loop->header
      && !bb_with_exit_edge_p (loop, bb))
      && !bb_with_exit_edge_p (loop, bb))
    {
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
      if (dump_file && (dump_flags & TDF_DETAILS))
        {
        {
          fprintf (dump_file, "LHS is not var\n");
          fprintf (dump_file, "LHS is not var\n");
          print_generic_stmt (dump_file, m_expr, TDF_SLIM);
          print_generic_stmt (dump_file, m_expr, TDF_SLIM);
        }
        }
      return false;
      return false;
    }
    }
 
 
 
 
  return true;
  return true;
}
}
 
 
/* Return true, iff STMT is if-convertible.
/* Return true, iff STMT is if-convertible.
   Statement is if-convertible if,
   Statement is if-convertible if,
   - It is if-convertible MODIFY_EXPR
   - It is if-convertible MODIFY_EXPR
   - IT is LABEL_EXPR or COND_EXPR.
   - IT is LABEL_EXPR or COND_EXPR.
   STMT is inside block BB, which is inside loop LOOP.  */
   STMT is inside block BB, which is inside loop LOOP.  */
 
 
static bool
static bool
if_convertible_stmt_p (struct loop *loop, basic_block bb, tree stmt)
if_convertible_stmt_p (struct loop *loop, basic_block bb, tree stmt)
{
{
  switch (TREE_CODE (stmt))
  switch (TREE_CODE (stmt))
    {
    {
    case LABEL_EXPR:
    case LABEL_EXPR:
      break;
      break;
 
 
    case MODIFY_EXPR:
    case MODIFY_EXPR:
 
 
      if (!if_convertible_modify_expr_p (loop, bb, stmt))
      if (!if_convertible_modify_expr_p (loop, bb, stmt))
        return false;
        return false;
      break;
      break;
 
 
    case COND_EXPR:
    case COND_EXPR:
      break;
      break;
 
 
    default:
    default:
      /* Don't know what to do with 'em so don't do anything.  */
      /* Don't know what to do with 'em so don't do anything.  */
      if (dump_file && (dump_flags & TDF_DETAILS))
      if (dump_file && (dump_flags & TDF_DETAILS))
        {
        {
          fprintf (dump_file, "don't know what to do\n");
          fprintf (dump_file, "don't know what to do\n");
          print_generic_stmt (dump_file, stmt, TDF_SLIM);
          print_generic_stmt (dump_file, stmt, TDF_SLIM);
        }
        }
      return false;
      return false;
      break;
      break;
    }
    }
 
 
  return true;
  return true;
}
}
 
 
/* Return true, iff BB is if-convertible.
/* Return true, iff BB is if-convertible.
   Note: This routine does _not_ check basic block statements and phis.
   Note: This routine does _not_ check basic block statements and phis.
   Basic block is not if-convertible if,
   Basic block is not if-convertible if,
   - Basic block is non-empty and it is after exit block (in BFS order).
   - Basic block is non-empty and it is after exit block (in BFS order).
   - Basic block is after exit block but before latch.
   - Basic block is after exit block but before latch.
   - Basic block edge(s) is not normal.
   - Basic block edge(s) is not normal.
   EXIT_BB_SEEN is true if basic block with exit edge is already seen.
   EXIT_BB_SEEN is true if basic block with exit edge is already seen.
   BB is inside loop LOOP.  */
   BB is inside loop LOOP.  */
 
 
static bool
static bool
if_convertible_bb_p (struct loop *loop, basic_block bb, basic_block exit_bb)
if_convertible_bb_p (struct loop *loop, basic_block bb, basic_block exit_bb)
{
{
  edge e;
  edge e;
  edge_iterator ei;
  edge_iterator ei;
 
 
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "----------[%d]-------------\n", bb->index);
    fprintf (dump_file, "----------[%d]-------------\n", bb->index);
 
 
  if (exit_bb)
  if (exit_bb)
    {
    {
      if (bb != loop->latch)
      if (bb != loop->latch)
        {
        {
          if (dump_file && (dump_flags & TDF_DETAILS))
          if (dump_file && (dump_flags & TDF_DETAILS))
            fprintf (dump_file, "basic block after exit bb but before latch\n");
            fprintf (dump_file, "basic block after exit bb but before latch\n");
          return false;
          return false;
        }
        }
      else if (!empty_block_p (bb))
      else if (!empty_block_p (bb))
        {
        {
          if (dump_file && (dump_flags & TDF_DETAILS))
          if (dump_file && (dump_flags & TDF_DETAILS))
            fprintf (dump_file, "non empty basic block after exit bb\n");
            fprintf (dump_file, "non empty basic block after exit bb\n");
          return false;
          return false;
        }
        }
      else if (bb == loop->latch
      else if (bb == loop->latch
               && bb != exit_bb
               && bb != exit_bb
               && !dominated_by_p (CDI_DOMINATORS, bb, exit_bb))
               && !dominated_by_p (CDI_DOMINATORS, bb, exit_bb))
          {
          {
            if (dump_file && (dump_flags & TDF_DETAILS))
            if (dump_file && (dump_flags & TDF_DETAILS))
              fprintf (dump_file, "latch is not dominated by exit_block\n");
              fprintf (dump_file, "latch is not dominated by exit_block\n");
            return false;
            return false;
          }
          }
    }
    }
 
 
  /* Be less adventurous and handle only normal edges.  */
  /* Be less adventurous and handle only normal edges.  */
  FOR_EACH_EDGE (e, ei, bb->succs)
  FOR_EACH_EDGE (e, ei, bb->succs)
    if (e->flags &
    if (e->flags &
        (EDGE_ABNORMAL_CALL | EDGE_EH | EDGE_ABNORMAL | EDGE_IRREDUCIBLE_LOOP))
        (EDGE_ABNORMAL_CALL | EDGE_EH | EDGE_ABNORMAL | EDGE_IRREDUCIBLE_LOOP))
      {
      {
        if (dump_file && (dump_flags & TDF_DETAILS))
        if (dump_file && (dump_flags & TDF_DETAILS))
          fprintf (dump_file,"Difficult to handle edges\n");
          fprintf (dump_file,"Difficult to handle edges\n");
        return false;
        return false;
      }
      }
 
 
  return true;
  return true;
}
}
 
 
/* Return true, iff LOOP is if-convertible.
/* Return true, iff LOOP is if-convertible.
   LOOP is if-convertible if,
   LOOP is if-convertible if,
   - It is innermost.
   - It is innermost.
   - It has two or more basic blocks.
   - It has two or more basic blocks.
   - It has only one exit.
   - It has only one exit.
   - Loop header is not the exit edge.
   - Loop header is not the exit edge.
   - If its basic blocks and phi nodes are if convertible. See above for
   - If its basic blocks and phi nodes are if convertible. See above for
     more info.
     more info.
   FOR_VECTORIZER enables vectorizer specific checks. For example, support
   FOR_VECTORIZER enables vectorizer specific checks. For example, support
   for vector conditions, data dependency checks etc.. (Not implemented yet).  */
   for vector conditions, data dependency checks etc.. (Not implemented yet).  */
 
 
static bool
static bool
if_convertible_loop_p (struct loop *loop, bool for_vectorizer ATTRIBUTE_UNUSED)
if_convertible_loop_p (struct loop *loop, bool for_vectorizer ATTRIBUTE_UNUSED)
{
{
  tree phi;
  tree phi;
  basic_block bb;
  basic_block bb;
  block_stmt_iterator itr;
  block_stmt_iterator itr;
  unsigned int i;
  unsigned int i;
  edge e;
  edge e;
  edge_iterator ei;
  edge_iterator ei;
  basic_block exit_bb = NULL;
  basic_block exit_bb = NULL;
 
 
  /* Handle only inner most loop.  */
  /* Handle only inner most loop.  */
  if (!loop || loop->inner)
  if (!loop || loop->inner)
    {
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
      if (dump_file && (dump_flags & TDF_DETAILS))
        fprintf (dump_file, "not inner most loop\n");
        fprintf (dump_file, "not inner most loop\n");
      return false;
      return false;
    }
    }
 
 
  /* If only one block, no need for if-conversion.  */
  /* If only one block, no need for if-conversion.  */
  if (loop->num_nodes <= 2)
  if (loop->num_nodes <= 2)
    {
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
      if (dump_file && (dump_flags & TDF_DETAILS))
        fprintf (dump_file, "less than 2 basic blocks\n");
        fprintf (dump_file, "less than 2 basic blocks\n");
      return false;
      return false;
    }
    }
 
 
  /* More than one loop exit is too much to handle.  */
  /* More than one loop exit is too much to handle.  */
  if (!loop->single_exit)
  if (!loop->single_exit)
    {
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
      if (dump_file && (dump_flags & TDF_DETAILS))
        fprintf (dump_file, "multiple exits\n");
        fprintf (dump_file, "multiple exits\n");
      return false;
      return false;
    }
    }
 
 
  /* ??? Check target's vector conditional operation support for vectorizer.  */
  /* ??? Check target's vector conditional operation support for vectorizer.  */
 
 
  /* If one of the loop header's edge is exit edge then do not apply
  /* If one of the loop header's edge is exit edge then do not apply
     if-conversion.  */
     if-conversion.  */
  FOR_EACH_EDGE (e, ei, loop->header->succs)
  FOR_EACH_EDGE (e, ei, loop->header->succs)
    {
    {
      if (loop_exit_edge_p (loop, e))
      if (loop_exit_edge_p (loop, e))
        return false;
        return false;
    }
    }
 
 
  calculate_dominance_info (CDI_DOMINATORS);
  calculate_dominance_info (CDI_DOMINATORS);
  calculate_dominance_info (CDI_POST_DOMINATORS);
  calculate_dominance_info (CDI_POST_DOMINATORS);
 
 
  /* Allow statements that can be handled during if-conversion.  */
  /* Allow statements that can be handled during if-conversion.  */
  ifc_bbs = get_loop_body_in_if_conv_order (loop);
  ifc_bbs = get_loop_body_in_if_conv_order (loop);
  if (!ifc_bbs)
  if (!ifc_bbs)
    {
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
      if (dump_file && (dump_flags & TDF_DETAILS))
        fprintf (dump_file,"Irreducible loop\n");
        fprintf (dump_file,"Irreducible loop\n");
      free_dominance_info (CDI_POST_DOMINATORS);
      free_dominance_info (CDI_POST_DOMINATORS);
      return false;
      return false;
    }
    }
 
 
  for (i = 0; i < loop->num_nodes; i++)
  for (i = 0; i < loop->num_nodes; i++)
    {
    {
      bb = ifc_bbs[i];
      bb = ifc_bbs[i];
 
 
      if (!if_convertible_bb_p (loop, bb, exit_bb))
      if (!if_convertible_bb_p (loop, bb, exit_bb))
        return false;
        return false;
 
 
      /* Check statements.  */
      /* Check statements.  */
      for (itr = bsi_start (bb); !bsi_end_p (itr); bsi_next (&itr))
      for (itr = bsi_start (bb); !bsi_end_p (itr); bsi_next (&itr))
        if (!if_convertible_stmt_p (loop, bb, bsi_stmt (itr)))
        if (!if_convertible_stmt_p (loop, bb, bsi_stmt (itr)))
          return false;
          return false;
      /* ??? Check data dependency for vectorizer.  */
      /* ??? Check data dependency for vectorizer.  */
 
 
      /* What about phi nodes ? */
      /* What about phi nodes ? */
      phi = phi_nodes (bb);
      phi = phi_nodes (bb);
 
 
      /* Clear aux field of incoming edges to a bb with a phi node.  */
      /* Clear aux field of incoming edges to a bb with a phi node.  */
      if (phi)
      if (phi)
        FOR_EACH_EDGE (e, ei, bb->preds)
        FOR_EACH_EDGE (e, ei, bb->preds)
          e->aux = NULL;
          e->aux = NULL;
 
 
      /* Check statements.  */
      /* Check statements.  */
      for (; phi; phi = PHI_CHAIN (phi))
      for (; phi; phi = PHI_CHAIN (phi))
        if (!if_convertible_phi_p (loop, bb, phi))
        if (!if_convertible_phi_p (loop, bb, phi))
          return false;
          return false;
 
 
      if (bb_with_exit_edge_p (loop, bb))
      if (bb_with_exit_edge_p (loop, bb))
        exit_bb = bb;
        exit_bb = bb;
    }
    }
 
 
  /* OK. Did not find any potential issues so go ahead in if-convert
  /* OK. Did not find any potential issues so go ahead in if-convert
     this loop. Now there is no looking back.  */
     this loop. Now there is no looking back.  */
  if (dump_file)
  if (dump_file)
    fprintf (dump_file,"Applying if-conversion\n");
    fprintf (dump_file,"Applying if-conversion\n");
 
 
  free_dominance_info (CDI_POST_DOMINATORS);
  free_dominance_info (CDI_POST_DOMINATORS);
  return true;
  return true;
}
}
 
 
/* Add condition COND into predicate list of basic block BB.  */
/* Add condition COND into predicate list of basic block BB.  */
 
 
static void
static void
add_to_predicate_list (basic_block bb, tree new_cond)
add_to_predicate_list (basic_block bb, tree new_cond)
{
{
  tree cond = bb->aux;
  tree cond = bb->aux;
 
 
  if (cond)
  if (cond)
    cond = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
    cond = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
                        unshare_expr (cond), new_cond);
                        unshare_expr (cond), new_cond);
  else
  else
    cond = new_cond;
    cond = new_cond;
 
 
  bb->aux = cond;
  bb->aux = cond;
}
}
 
 
/* Add condition COND into BB's predicate list.  PREV_COND is
/* Add condition COND into BB's predicate list.  PREV_COND is
   existing condition.  */
   existing condition.  */
 
 
static tree
static tree
add_to_dst_predicate_list (struct loop * loop, edge e,
add_to_dst_predicate_list (struct loop * loop, edge e,
                           tree prev_cond, tree cond,
                           tree prev_cond, tree cond,
                           block_stmt_iterator *bsi)
                           block_stmt_iterator *bsi)
{
{
  tree new_cond = NULL_TREE;
  tree new_cond = NULL_TREE;
 
 
  if (!flow_bb_inside_loop_p (loop, e->dest))
  if (!flow_bb_inside_loop_p (loop, e->dest))
    return NULL_TREE;
    return NULL_TREE;
 
 
  if (prev_cond == boolean_true_node || !prev_cond)
  if (prev_cond == boolean_true_node || !prev_cond)
    new_cond = unshare_expr (cond);
    new_cond = unshare_expr (cond);
  else
  else
    {
    {
      tree tmp;
      tree tmp;
      tree tmp_stmt = NULL_TREE;
      tree tmp_stmt = NULL_TREE;
      tree tmp_stmts1 = NULL_TREE;
      tree tmp_stmts1 = NULL_TREE;
      tree tmp_stmts2 = NULL_TREE;
      tree tmp_stmts2 = NULL_TREE;
      prev_cond = force_gimple_operand (unshare_expr (prev_cond),
      prev_cond = force_gimple_operand (unshare_expr (prev_cond),
                                        &tmp_stmts1, true, NULL);
                                        &tmp_stmts1, true, NULL);
      if (tmp_stmts1)
      if (tmp_stmts1)
        bsi_insert_before (bsi, tmp_stmts1, BSI_SAME_STMT);
        bsi_insert_before (bsi, tmp_stmts1, BSI_SAME_STMT);
 
 
      cond = force_gimple_operand (unshare_expr (cond),
      cond = force_gimple_operand (unshare_expr (cond),
                                   &tmp_stmts2, true, NULL);
                                   &tmp_stmts2, true, NULL);
      if (tmp_stmts2)
      if (tmp_stmts2)
        bsi_insert_before (bsi, tmp_stmts2, BSI_SAME_STMT);
        bsi_insert_before (bsi, tmp_stmts2, BSI_SAME_STMT);
 
 
      /* Add the condition to aux field of the edge.  In case edge
      /* Add the condition to aux field of the edge.  In case edge
         destination is a PHI node, this condition will be ANDed with
         destination is a PHI node, this condition will be ANDed with
         block predicate to construct complete condition.  */
         block predicate to construct complete condition.  */
      e->aux = cond;
      e->aux = cond;
 
 
      /* new_cond == prev_cond AND cond */
      /* new_cond == prev_cond AND cond */
      tmp = build2 (TRUTH_AND_EXPR, boolean_type_node,
      tmp = build2 (TRUTH_AND_EXPR, boolean_type_node,
                    unshare_expr (prev_cond), cond);
                    unshare_expr (prev_cond), cond);
      tmp_stmt = ifc_temp_var (boolean_type_node, tmp);
      tmp_stmt = ifc_temp_var (boolean_type_node, tmp);
      bsi_insert_before (bsi, tmp_stmt, BSI_SAME_STMT);
      bsi_insert_before (bsi, tmp_stmt, BSI_SAME_STMT);
      new_cond = TREE_OPERAND (tmp_stmt, 0);
      new_cond = TREE_OPERAND (tmp_stmt, 0);
    }
    }
  add_to_predicate_list (e->dest, new_cond);
  add_to_predicate_list (e->dest, new_cond);
  return new_cond;
  return new_cond;
}
}
 
 
/* During if-conversion aux field from basic block structure is used to hold
/* During if-conversion aux field from basic block structure is used to hold
   predicate list. Clean each basic block's predicate list for the given LOOP.
   predicate list. Clean each basic block's predicate list for the given LOOP.
   Also clean aux field of succesor edges, used to hold true and false
   Also clean aux field of succesor edges, used to hold true and false
   condition from conditional expression.  */
   condition from conditional expression.  */
 
 
static void
static void
clean_predicate_lists (struct loop *loop)
clean_predicate_lists (struct loop *loop)
{
{
  basic_block *bb;
  basic_block *bb;
  unsigned int i;
  unsigned int i;
  edge e;
  edge e;
  edge_iterator ei;
  edge_iterator ei;
 
 
  bb = get_loop_body (loop);
  bb = get_loop_body (loop);
  for (i = 0; i < loop->num_nodes; i++)
  for (i = 0; i < loop->num_nodes; i++)
    {
    {
      bb[i]->aux = NULL;
      bb[i]->aux = NULL;
      FOR_EACH_EDGE (e, ei, bb[i]->succs)
      FOR_EACH_EDGE (e, ei, bb[i]->succs)
        e->aux = NULL;
        e->aux = NULL;
    }
    }
  free (bb);
  free (bb);
}
}
 
 
/* Basic block BB has two predecessors. Using predecessor's aux field, set
/* Basic block BB has two predecessors. Using predecessor's aux field, set
   appropriate condition COND for the PHI node replacement. Return true block
   appropriate condition COND for the PHI node replacement. Return true block
   whose phi arguments are selected when cond is true.  */
   whose phi arguments are selected when cond is true.  */
 
 
static basic_block
static basic_block
find_phi_replacement_condition (struct loop *loop,
find_phi_replacement_condition (struct loop *loop,
                                basic_block bb, tree *cond,
                                basic_block bb, tree *cond,
                                block_stmt_iterator *bsi)
                                block_stmt_iterator *bsi)
{
{
  edge first_edge, second_edge;
  edge first_edge, second_edge;
  tree tmp_cond, new_stmts;
  tree tmp_cond, new_stmts;
 
 
  gcc_assert (EDGE_COUNT (bb->preds) == 2);
  gcc_assert (EDGE_COUNT (bb->preds) == 2);
  first_edge = EDGE_PRED (bb, 0);
  first_edge = EDGE_PRED (bb, 0);
  second_edge = EDGE_PRED (bb, 1);
  second_edge = EDGE_PRED (bb, 1);
 
 
  /* Use condition based on following criteria:
  /* Use condition based on following criteria:
     1)
     1)
       S1: x = !c ? a : b;
       S1: x = !c ? a : b;
 
 
       S2: x = c ? b : a;
       S2: x = c ? b : a;
 
 
       S2 is preferred over S1. Make 'b' first_bb and use its condition.
       S2 is preferred over S1. Make 'b' first_bb and use its condition.
 
 
     2) Do not make loop header first_bb.
     2) Do not make loop header first_bb.
 
 
     3)
     3)
       S1: x = !(c == d)? a : b;
       S1: x = !(c == d)? a : b;
 
 
       S21: t1 = c == d;
       S21: t1 = c == d;
       S22: x = t1 ? b : a;
       S22: x = t1 ? b : a;
 
 
       S3: x = (c == d) ? b : a;
       S3: x = (c == d) ? b : a;
 
 
       S3 is preferred over S1 and S2*, Make 'b' first_bb and use
       S3 is preferred over S1 and S2*, Make 'b' first_bb and use
       its condition.
       its condition.
 
 
     4) If  pred B is dominated by pred A then use pred B's condition.
     4) If  pred B is dominated by pred A then use pred B's condition.
        See PR23115.  */
        See PR23115.  */
 
 
  /* Select condition that is not TRUTH_NOT_EXPR.  */
  /* Select condition that is not TRUTH_NOT_EXPR.  */
  tmp_cond = (first_edge->src)->aux;
  tmp_cond = (first_edge->src)->aux;
  if (TREE_CODE (tmp_cond) == TRUTH_NOT_EXPR)
  if (TREE_CODE (tmp_cond) == TRUTH_NOT_EXPR)
    {
    {
      edge tmp_edge;
      edge tmp_edge;
 
 
      tmp_edge = first_edge;
      tmp_edge = first_edge;
      first_edge = second_edge;
      first_edge = second_edge;
      second_edge = tmp_edge;
      second_edge = tmp_edge;
    }
    }
 
 
  /* Check if FIRST_BB is loop header or not and make sure that
  /* Check if FIRST_BB is loop header or not and make sure that
     FIRST_BB does not dominate SECOND_BB.  */
     FIRST_BB does not dominate SECOND_BB.  */
  if (first_edge->src == loop->header
  if (first_edge->src == loop->header
      || dominated_by_p (CDI_DOMINATORS,
      || dominated_by_p (CDI_DOMINATORS,
                         second_edge->src, first_edge->src))
                         second_edge->src, first_edge->src))
    {
    {
      *cond = (second_edge->src)->aux;
      *cond = (second_edge->src)->aux;
 
 
      /* If there is a condition on an incoming edge,
      /* If there is a condition on an incoming edge,
         AND it with the incoming bb predicate.  */
         AND it with the incoming bb predicate.  */
      if (second_edge->aux)
      if (second_edge->aux)
        *cond = build2 (TRUTH_AND_EXPR, boolean_type_node,
        *cond = build2 (TRUTH_AND_EXPR, boolean_type_node,
                        *cond, second_edge->aux);
                        *cond, second_edge->aux);
 
 
      if (TREE_CODE (*cond) == TRUTH_NOT_EXPR)
      if (TREE_CODE (*cond) == TRUTH_NOT_EXPR)
        /* We can be smart here and choose inverted
        /* We can be smart here and choose inverted
           condition without switching bbs.  */
           condition without switching bbs.  */
        *cond = invert_truthvalue (*cond);
        *cond = invert_truthvalue (*cond);
      else
      else
        /* Select non loop header bb.  */
        /* Select non loop header bb.  */
        first_edge = second_edge;
        first_edge = second_edge;
    }
    }
  else
  else
    {
    {
      /* FIRST_BB is not loop header */
      /* FIRST_BB is not loop header */
      *cond = (first_edge->src)->aux;
      *cond = (first_edge->src)->aux;
 
 
      /* If there is a condition on an incoming edge,
      /* If there is a condition on an incoming edge,
         AND it with the incoming bb predicate.  */
         AND it with the incoming bb predicate.  */
      if (first_edge->aux)
      if (first_edge->aux)
        *cond = build2 (TRUTH_AND_EXPR, boolean_type_node,
        *cond = build2 (TRUTH_AND_EXPR, boolean_type_node,
                        *cond, first_edge->aux);
                        *cond, first_edge->aux);
    }
    }
 
 
  /* Create temp. for the condition. Vectorizer prefers to have gimple
  /* Create temp. for the condition. Vectorizer prefers to have gimple
     value as condition. Various targets use different means to communicate
     value as condition. Various targets use different means to communicate
     condition in vector compare operation. Using gimple value allows
     condition in vector compare operation. Using gimple value allows
     compiler to emit vector compare and select RTL without exposing
     compiler to emit vector compare and select RTL without exposing
     compare's result.  */
     compare's result.  */
  *cond = force_gimple_operand (unshare_expr (*cond), &new_stmts,
  *cond = force_gimple_operand (unshare_expr (*cond), &new_stmts,
                                false, NULL_TREE);
                                false, NULL_TREE);
  if (new_stmts)
  if (new_stmts)
    bsi_insert_before (bsi, new_stmts, BSI_SAME_STMT);
    bsi_insert_before (bsi, new_stmts, BSI_SAME_STMT);
  if (!is_gimple_reg (*cond) && !is_gimple_condexpr (*cond))
  if (!is_gimple_reg (*cond) && !is_gimple_condexpr (*cond))
    {
    {
      tree new_stmt;
      tree new_stmt;
 
 
      new_stmt = ifc_temp_var (TREE_TYPE (*cond), unshare_expr (*cond));
      new_stmt = ifc_temp_var (TREE_TYPE (*cond), unshare_expr (*cond));
      bsi_insert_before (bsi, new_stmt, BSI_SAME_STMT);
      bsi_insert_before (bsi, new_stmt, BSI_SAME_STMT);
      *cond = TREE_OPERAND (new_stmt, 0);
      *cond = TREE_OPERAND (new_stmt, 0);
    }
    }
 
 
  gcc_assert (*cond);
  gcc_assert (*cond);
 
 
  return first_edge->src;
  return first_edge->src;
}
}
 
 
 
 
/* Replace PHI node with conditional modify expr using COND.
/* Replace PHI node with conditional modify expr using COND.
   This routine does not handle PHI nodes with more than two arguments.
   This routine does not handle PHI nodes with more than two arguments.
   For example,
   For example,
     S1: A = PHI <x1(1), x2(5)
     S1: A = PHI <x1(1), x2(5)
   is converted into,
   is converted into,
     S2: A = cond ? x1 : x2;
     S2: A = cond ? x1 : x2;
   S2 is inserted at the top of basic block's statement list.
   S2 is inserted at the top of basic block's statement list.
   When COND is true, phi arg from TRUE_BB is selected.
   When COND is true, phi arg from TRUE_BB is selected.
*/
*/
 
 
static void
static void
replace_phi_with_cond_modify_expr (tree phi, tree cond, basic_block true_bb,
replace_phi_with_cond_modify_expr (tree phi, tree cond, basic_block true_bb,
                                   block_stmt_iterator *bsi)
                                   block_stmt_iterator *bsi)
{
{
  tree new_stmt;
  tree new_stmt;
  basic_block bb;
  basic_block bb;
  tree rhs;
  tree rhs;
  tree arg_0, arg_1;
  tree arg_0, arg_1;
 
 
  gcc_assert (TREE_CODE (phi) == PHI_NODE);
  gcc_assert (TREE_CODE (phi) == PHI_NODE);
 
 
  /* If this is not filtered earlier, then now it is too late.  */
  /* If this is not filtered earlier, then now it is too late.  */
  gcc_assert (PHI_NUM_ARGS (phi) == 2);
  gcc_assert (PHI_NUM_ARGS (phi) == 2);
 
 
  /* Find basic block and initialize iterator.  */
  /* Find basic block and initialize iterator.  */
  bb = bb_for_stmt (phi);
  bb = bb_for_stmt (phi);
 
 
  /* Use condition that is not TRUTH_NOT_EXPR in conditional modify expr.  */
  /* Use condition that is not TRUTH_NOT_EXPR in conditional modify expr.  */
  if (EDGE_PRED (bb, 1)->src == true_bb)
  if (EDGE_PRED (bb, 1)->src == true_bb)
    {
    {
      arg_0 = PHI_ARG_DEF (phi, 1);
      arg_0 = PHI_ARG_DEF (phi, 1);
      arg_1 = PHI_ARG_DEF (phi, 0);
      arg_1 = PHI_ARG_DEF (phi, 0);
    }
    }
  else
  else
    {
    {
      arg_0 = PHI_ARG_DEF (phi, 0);
      arg_0 = PHI_ARG_DEF (phi, 0);
      arg_1 = PHI_ARG_DEF (phi, 1);
      arg_1 = PHI_ARG_DEF (phi, 1);
    }
    }
 
 
  /* Build new RHS using selected condition and arguments.  */
  /* Build new RHS using selected condition and arguments.  */
  rhs = build3 (COND_EXPR, TREE_TYPE (PHI_RESULT (phi)),
  rhs = build3 (COND_EXPR, TREE_TYPE (PHI_RESULT (phi)),
                unshare_expr (cond), unshare_expr (arg_0),
                unshare_expr (cond), unshare_expr (arg_0),
                unshare_expr (arg_1));
                unshare_expr (arg_1));
 
 
  /* Create new MODIFY expression using RHS.  */
  /* Create new MODIFY expression using RHS.  */
  new_stmt = build2 (MODIFY_EXPR, TREE_TYPE (PHI_RESULT (phi)),
  new_stmt = build2 (MODIFY_EXPR, TREE_TYPE (PHI_RESULT (phi)),
                     unshare_expr (PHI_RESULT (phi)), rhs);
                     unshare_expr (PHI_RESULT (phi)), rhs);
 
 
  /* Make new statement definition of the original phi result.  */
  /* Make new statement definition of the original phi result.  */
  SSA_NAME_DEF_STMT (PHI_RESULT (phi)) = new_stmt;
  SSA_NAME_DEF_STMT (PHI_RESULT (phi)) = new_stmt;
 
 
  /* Insert using iterator.  */
  /* Insert using iterator.  */
  bsi_insert_before (bsi, new_stmt, BSI_SAME_STMT);
  bsi_insert_before (bsi, new_stmt, BSI_SAME_STMT);
  update_stmt (new_stmt);
  update_stmt (new_stmt);
 
 
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
    {
      fprintf (dump_file, "new phi replacement stmt\n");
      fprintf (dump_file, "new phi replacement stmt\n");
      print_generic_stmt (dump_file, new_stmt, TDF_SLIM);
      print_generic_stmt (dump_file, new_stmt, TDF_SLIM);
    }
    }
}
}
 
 
/* Process phi nodes for the given  LOOP.  Replace phi nodes with cond
/* Process phi nodes for the given  LOOP.  Replace phi nodes with cond
   modify expr.  */
   modify expr.  */
 
 
static void
static void
process_phi_nodes (struct loop *loop)
process_phi_nodes (struct loop *loop)
{
{
  basic_block bb;
  basic_block bb;
  unsigned int orig_loop_num_nodes = loop->num_nodes;
  unsigned int orig_loop_num_nodes = loop->num_nodes;
  unsigned int i;
  unsigned int i;
 
 
  /* Replace phi nodes with cond. modify expr.  */
  /* Replace phi nodes with cond. modify expr.  */
  for (i = 1; i < orig_loop_num_nodes; i++)
  for (i = 1; i < orig_loop_num_nodes; i++)
    {
    {
      tree phi, cond;
      tree phi, cond;
      block_stmt_iterator bsi;
      block_stmt_iterator bsi;
      basic_block true_bb = NULL;
      basic_block true_bb = NULL;
      bb = ifc_bbs[i];
      bb = ifc_bbs[i];
 
 
      if (bb == loop->header)
      if (bb == loop->header)
        continue;
        continue;
 
 
      phi = phi_nodes (bb);
      phi = phi_nodes (bb);
      bsi = bsi_after_labels (bb);
      bsi = bsi_after_labels (bb);
 
 
      /* BB has two predecessors. Using predecessor's aux field, set
      /* BB has two predecessors. Using predecessor's aux field, set
         appropriate condition for the PHI node replacement.  */
         appropriate condition for the PHI node replacement.  */
      if (phi)
      if (phi)
        true_bb = find_phi_replacement_condition (loop, bb, &cond, &bsi);
        true_bb = find_phi_replacement_condition (loop, bb, &cond, &bsi);
 
 
      while (phi)
      while (phi)
        {
        {
          tree next = PHI_CHAIN (phi);
          tree next = PHI_CHAIN (phi);
          replace_phi_with_cond_modify_expr (phi, cond, true_bb, &bsi);
          replace_phi_with_cond_modify_expr (phi, cond, true_bb, &bsi);
          release_phi_node (phi);
          release_phi_node (phi);
          phi = next;
          phi = next;
        }
        }
      bb->phi_nodes = NULL;
      bb->phi_nodes = NULL;
    }
    }
  return;
  return;
}
}
 
 
/* Combine all basic block from the given LOOP into one or two super
/* Combine all basic block from the given LOOP into one or two super
   basic block.  Replace PHI nodes with conditional modify expression.  */
   basic block.  Replace PHI nodes with conditional modify expression.  */
 
 
static void
static void
combine_blocks (struct loop *loop)
combine_blocks (struct loop *loop)
{
{
  basic_block bb, exit_bb, merge_target_bb;
  basic_block bb, exit_bb, merge_target_bb;
  unsigned int orig_loop_num_nodes = loop->num_nodes;
  unsigned int orig_loop_num_nodes = loop->num_nodes;
  unsigned int i;
  unsigned int i;
  edge e;
  edge e;
  edge_iterator ei;
  edge_iterator ei;
 
 
  /* Process phi nodes to prepare blocks for merge.  */
  /* Process phi nodes to prepare blocks for merge.  */
  process_phi_nodes (loop);
  process_phi_nodes (loop);
 
 
  /* Merge basic blocks.  First remove all the edges in the loop, except
  /* Merge basic blocks.  First remove all the edges in the loop, except
     for those from the exit block.  */
     for those from the exit block.  */
  exit_bb = NULL;
  exit_bb = NULL;
  for (i = 0; i < orig_loop_num_nodes; i++)
  for (i = 0; i < orig_loop_num_nodes; i++)
    {
    {
      bb = ifc_bbs[i];
      bb = ifc_bbs[i];
      if (bb_with_exit_edge_p (loop, bb))
      if (bb_with_exit_edge_p (loop, bb))
        {
        {
          exit_bb = bb;
          exit_bb = bb;
          break;
          break;
        }
        }
    }
    }
  gcc_assert (exit_bb != loop->latch);
  gcc_assert (exit_bb != loop->latch);
 
 
  for (i = 1; i < orig_loop_num_nodes; i++)
  for (i = 1; i < orig_loop_num_nodes; i++)
    {
    {
      bb = ifc_bbs[i];
      bb = ifc_bbs[i];
 
 
      for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei));)
      for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei));)
        {
        {
          if (e->src == exit_bb)
          if (e->src == exit_bb)
            ei_next (&ei);
            ei_next (&ei);
          else
          else
            remove_edge (e);
            remove_edge (e);
        }
        }
    }
    }
 
 
  if (exit_bb != NULL)
  if (exit_bb != NULL)
    {
    {
      if (exit_bb != loop->header)
      if (exit_bb != loop->header)
        {
        {
          /* Connect this node with loop header.  */
          /* Connect this node with loop header.  */
          make_edge (loop->header, exit_bb, EDGE_FALLTHRU);
          make_edge (loop->header, exit_bb, EDGE_FALLTHRU);
          set_immediate_dominator (CDI_DOMINATORS, exit_bb, loop->header);
          set_immediate_dominator (CDI_DOMINATORS, exit_bb, loop->header);
        }
        }
 
 
      /* Redirect non-exit edges to loop->latch.  */
      /* Redirect non-exit edges to loop->latch.  */
      FOR_EACH_EDGE (e, ei, exit_bb->succs)
      FOR_EACH_EDGE (e, ei, exit_bb->succs)
        {
        {
          if (!loop_exit_edge_p (loop, e))
          if (!loop_exit_edge_p (loop, e))
            redirect_edge_and_branch (e, loop->latch);
            redirect_edge_and_branch (e, loop->latch);
        }
        }
      set_immediate_dominator (CDI_DOMINATORS, loop->latch, exit_bb);
      set_immediate_dominator (CDI_DOMINATORS, loop->latch, exit_bb);
    }
    }
  else
  else
    {
    {
      /* If the loop does not have exit then reconnect header and latch.  */
      /* If the loop does not have exit then reconnect header and latch.  */
      make_edge (loop->header, loop->latch, EDGE_FALLTHRU);
      make_edge (loop->header, loop->latch, EDGE_FALLTHRU);
      set_immediate_dominator (CDI_DOMINATORS, loop->latch, loop->header);
      set_immediate_dominator (CDI_DOMINATORS, loop->latch, loop->header);
    }
    }
 
 
  merge_target_bb = loop->header;
  merge_target_bb = loop->header;
  for (i = 1; i < orig_loop_num_nodes; i++)
  for (i = 1; i < orig_loop_num_nodes; i++)
    {
    {
      block_stmt_iterator bsi;
      block_stmt_iterator bsi;
      tree_stmt_iterator last;
      tree_stmt_iterator last;
 
 
      bb = ifc_bbs[i];
      bb = ifc_bbs[i];
 
 
      if (bb == exit_bb || bb == loop->latch)
      if (bb == exit_bb || bb == loop->latch)
        continue;
        continue;
 
 
      /* Remove labels and make stmts member of loop->header.  */
      /* Remove labels and make stmts member of loop->header.  */
      for (bsi = bsi_start (bb); !bsi_end_p (bsi); )
      for (bsi = bsi_start (bb); !bsi_end_p (bsi); )
        {
        {
          if (TREE_CODE (bsi_stmt (bsi)) == LABEL_EXPR)
          if (TREE_CODE (bsi_stmt (bsi)) == LABEL_EXPR)
            bsi_remove (&bsi, true);
            bsi_remove (&bsi, true);
          else
          else
            {
            {
              set_bb_for_stmt (bsi_stmt (bsi), merge_target_bb);
              set_bb_for_stmt (bsi_stmt (bsi), merge_target_bb);
              bsi_next (&bsi);
              bsi_next (&bsi);
            }
            }
        }
        }
 
 
      /* Update stmt list.  */
      /* Update stmt list.  */
      last = tsi_last (merge_target_bb->stmt_list);
      last = tsi_last (merge_target_bb->stmt_list);
      tsi_link_after (&last, bb->stmt_list, TSI_NEW_STMT);
      tsi_link_after (&last, bb->stmt_list, TSI_NEW_STMT);
      bb->stmt_list = NULL;
      bb->stmt_list = NULL;
 
 
      /* Update dominator info.  */
      /* Update dominator info.  */
      if (dom_computed[CDI_DOMINATORS])
      if (dom_computed[CDI_DOMINATORS])
        delete_from_dominance_info (CDI_DOMINATORS, bb);
        delete_from_dominance_info (CDI_DOMINATORS, bb);
      if (dom_computed[CDI_POST_DOMINATORS])
      if (dom_computed[CDI_POST_DOMINATORS])
        delete_from_dominance_info (CDI_POST_DOMINATORS, bb);
        delete_from_dominance_info (CDI_POST_DOMINATORS, bb);
 
 
      /* Remove basic block.  */
      /* Remove basic block.  */
      remove_bb_from_loops (bb);
      remove_bb_from_loops (bb);
      expunge_block (bb);
      expunge_block (bb);
    }
    }
 
 
  /* Now if possible, merge loop header and block with exit edge.
  /* Now if possible, merge loop header and block with exit edge.
     This reduces number of basic blocks to 2. Auto vectorizer addresses
     This reduces number of basic blocks to 2. Auto vectorizer addresses
     loops with two nodes only.  FIXME: Use cleanup_tree_cfg().  */
     loops with two nodes only.  FIXME: Use cleanup_tree_cfg().  */
  if (exit_bb
  if (exit_bb
      && exit_bb != loop->header
      && exit_bb != loop->header
      && can_merge_blocks_p (loop->header, exit_bb))
      && can_merge_blocks_p (loop->header, exit_bb))
    {
    {
      remove_bb_from_loops (exit_bb);
      remove_bb_from_loops (exit_bb);
      merge_blocks (loop->header, exit_bb);
      merge_blocks (loop->header, exit_bb);
    }
    }
}
}
 
 
/* Make new  temp variable of type TYPE. Add MODIFY_EXPR to assign EXP
/* Make new  temp variable of type TYPE. Add MODIFY_EXPR to assign EXP
   to the new variable.  */
   to the new variable.  */
 
 
static tree
static tree
ifc_temp_var (tree type, tree exp)
ifc_temp_var (tree type, tree exp)
{
{
  const char *name = "_ifc_";
  const char *name = "_ifc_";
  tree var, stmt, new_name;
  tree var, stmt, new_name;
 
 
  if (is_gimple_reg (exp))
  if (is_gimple_reg (exp))
    return exp;
    return exp;
 
 
  /* Create new temporary variable.  */
  /* Create new temporary variable.  */
  var = create_tmp_var (type, name);
  var = create_tmp_var (type, name);
  add_referenced_var (var);
  add_referenced_var (var);
 
 
  /* Build new statement to assign EXP to new variable.  */
  /* Build new statement to assign EXP to new variable.  */
  stmt = build2 (MODIFY_EXPR, type, var, exp);
  stmt = build2 (MODIFY_EXPR, type, var, exp);
 
 
  /* Get SSA name for the new variable and set make new statement
  /* Get SSA name for the new variable and set make new statement
     its definition statement.  */
     its definition statement.  */
  new_name = make_ssa_name (var, stmt);
  new_name = make_ssa_name (var, stmt);
  TREE_OPERAND (stmt, 0) = new_name;
  TREE_OPERAND (stmt, 0) = new_name;
  SSA_NAME_DEF_STMT (new_name) = stmt;
  SSA_NAME_DEF_STMT (new_name) = stmt;
 
 
  return stmt;
  return stmt;
}
}
 
 
 
 
/* Return TRUE iff, all pred blocks of BB are visited.
/* Return TRUE iff, all pred blocks of BB are visited.
   Bitmap VISITED keeps history of visited blocks.  */
   Bitmap VISITED keeps history of visited blocks.  */
 
 
static bool
static bool
pred_blocks_visited_p (basic_block bb, bitmap *visited)
pred_blocks_visited_p (basic_block bb, bitmap *visited)
{
{
  edge e;
  edge e;
  edge_iterator ei;
  edge_iterator ei;
  FOR_EACH_EDGE (e, ei, bb->preds)
  FOR_EACH_EDGE (e, ei, bb->preds)
    if (!bitmap_bit_p (*visited, e->src->index))
    if (!bitmap_bit_p (*visited, e->src->index))
      return false;
      return false;
 
 
  return true;
  return true;
}
}
 
 
/* Get body of a LOOP in suitable order for if-conversion.
/* Get body of a LOOP in suitable order for if-conversion.
   It is caller's responsibility to deallocate basic block
   It is caller's responsibility to deallocate basic block
   list.  If-conversion suitable order is, BFS order with one
   list.  If-conversion suitable order is, BFS order with one
   additional constraint. Select block in BFS block, if all
   additional constraint. Select block in BFS block, if all
   pred are already selected.  */
   pred are already selected.  */
 
 
static basic_block *
static basic_block *
get_loop_body_in_if_conv_order (const struct loop *loop)
get_loop_body_in_if_conv_order (const struct loop *loop)
{
{
  basic_block *blocks, *blocks_in_bfs_order;
  basic_block *blocks, *blocks_in_bfs_order;
  basic_block bb;
  basic_block bb;
  bitmap visited;
  bitmap visited;
  unsigned int index = 0;
  unsigned int index = 0;
  unsigned int visited_count = 0;
  unsigned int visited_count = 0;
 
 
  gcc_assert (loop->num_nodes);
  gcc_assert (loop->num_nodes);
  gcc_assert (loop->latch != EXIT_BLOCK_PTR);
  gcc_assert (loop->latch != EXIT_BLOCK_PTR);
 
 
  blocks = XCNEWVEC (basic_block, loop->num_nodes);
  blocks = XCNEWVEC (basic_block, loop->num_nodes);
  visited = BITMAP_ALLOC (NULL);
  visited = BITMAP_ALLOC (NULL);
 
 
  blocks_in_bfs_order = get_loop_body_in_bfs_order (loop);
  blocks_in_bfs_order = get_loop_body_in_bfs_order (loop);
 
 
  index = 0;
  index = 0;
  while (index < loop->num_nodes)
  while (index < loop->num_nodes)
    {
    {
      bb = blocks_in_bfs_order [index];
      bb = blocks_in_bfs_order [index];
 
 
      if (bb->flags & BB_IRREDUCIBLE_LOOP)
      if (bb->flags & BB_IRREDUCIBLE_LOOP)
        {
        {
          free (blocks_in_bfs_order);
          free (blocks_in_bfs_order);
          BITMAP_FREE (visited);
          BITMAP_FREE (visited);
          free (blocks);
          free (blocks);
          return NULL;
          return NULL;
        }
        }
      if (!bitmap_bit_p (visited, bb->index))
      if (!bitmap_bit_p (visited, bb->index))
        {
        {
          if (pred_blocks_visited_p (bb, &visited)
          if (pred_blocks_visited_p (bb, &visited)
              || bb == loop->header)
              || bb == loop->header)
            {
            {
              /* This block is now visited.  */
              /* This block is now visited.  */
              bitmap_set_bit (visited, bb->index);
              bitmap_set_bit (visited, bb->index);
              blocks[visited_count++] = bb;
              blocks[visited_count++] = bb;
            }
            }
        }
        }
      index++;
      index++;
      if (index == loop->num_nodes
      if (index == loop->num_nodes
          && visited_count != loop->num_nodes)
          && visited_count != loop->num_nodes)
        {
        {
          /* Not done yet.  */
          /* Not done yet.  */
          index = 0;
          index = 0;
        }
        }
    }
    }
  free (blocks_in_bfs_order);
  free (blocks_in_bfs_order);
  BITMAP_FREE (visited);
  BITMAP_FREE (visited);
  return blocks;
  return blocks;
}
}
 
 
/* Return true if one of the basic block BB edge is exit of LOOP.  */
/* Return true if one of the basic block BB edge is exit of LOOP.  */
 
 
static bool
static bool
bb_with_exit_edge_p (struct loop *loop, basic_block bb)
bb_with_exit_edge_p (struct loop *loop, basic_block bb)
{
{
  edge e;
  edge e;
  edge_iterator ei;
  edge_iterator ei;
  bool exit_edge_found = false;
  bool exit_edge_found = false;
 
 
  FOR_EACH_EDGE (e, ei, bb->succs)
  FOR_EACH_EDGE (e, ei, bb->succs)
    if (loop_exit_edge_p (loop, e))
    if (loop_exit_edge_p (loop, e))
      {
      {
        exit_edge_found = true;
        exit_edge_found = true;
        break;
        break;
      }
      }
 
 
  return exit_edge_found;
  return exit_edge_found;
}
}
 
 
/* Tree if-conversion pass management.  */
/* Tree if-conversion pass management.  */
 
 
static unsigned int
static unsigned int
main_tree_if_conversion (void)
main_tree_if_conversion (void)
{
{
  unsigned i, loop_num;
  unsigned i, loop_num;
  struct loop *loop;
  struct loop *loop;
 
 
  if (!current_loops)
  if (!current_loops)
    return 0;
    return 0;
 
 
  loop_num = current_loops->num;
  loop_num = current_loops->num;
  for (i = 0; i < loop_num; i++)
  for (i = 0; i < loop_num; i++)
    {
    {
      loop =  current_loops->parray[i];
      loop =  current_loops->parray[i];
      if (!loop)
      if (!loop)
      continue;
      continue;
 
 
      tree_if_conversion (loop, true);
      tree_if_conversion (loop, true);
    }
    }
  return 0;
  return 0;
}
}
 
 
static bool
static bool
gate_tree_if_conversion (void)
gate_tree_if_conversion (void)
{
{
  return flag_tree_vectorize != 0;
  return flag_tree_vectorize != 0;
}
}
 
 
struct tree_opt_pass pass_if_conversion =
struct tree_opt_pass pass_if_conversion =
{
{
  "ifcvt",                              /* name */
  "ifcvt",                              /* name */
  gate_tree_if_conversion,              /* gate */
  gate_tree_if_conversion,              /* gate */
  main_tree_if_conversion,              /* execute */
  main_tree_if_conversion,              /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  NULL,                                 /* next */
  0,                                     /* static_pass_number */
  0,                                     /* static_pass_number */
  0,                                     /* tv_id */
  0,                                     /* tv_id */
  PROP_cfg | PROP_ssa | PROP_alias,     /* properties_required */
  PROP_cfg | PROP_ssa | PROP_alias,     /* properties_required */
  0,                                     /* properties_provided */
  0,                                     /* properties_provided */
  0,                                     /* properties_destroyed */
  0,                                     /* properties_destroyed */
  0,                                     /* todo_flags_start */
  0,                                     /* todo_flags_start */
  TODO_dump_func | TODO_verify_loops | TODO_verify_stmts | TODO_verify_flow,
  TODO_dump_func | TODO_verify_loops | TODO_verify_stmts | TODO_verify_flow,
                                        /* todo_flags_finish */
                                        /* todo_flags_finish */
  0                                      /* letter */
  0                                      /* letter */
};
};
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.