OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gcc-4.2.2/] [gcc/] [tree-sra.c] - Diff between revs 154 and 816

Only display areas with differences | Details | Blame | View Log

Rev 154 Rev 816
/* Scalar Replacement of Aggregates (SRA) converts some structure
/* Scalar Replacement of Aggregates (SRA) converts some structure
   references into scalar references, exposing them to the scalar
   references into scalar references, exposing them to the scalar
   optimizers.
   optimizers.
   Copyright (C) 2003, 2004, 2005, 2006, 2007
   Copyright (C) 2003, 2004, 2005, 2006, 2007
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
   Contributed by Diego Novillo <dnovillo@redhat.com>
   Contributed by Diego Novillo <dnovillo@redhat.com>
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify it
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
Free Software Foundation; either version 3, or (at your option) any
later version.
later version.
 
 
GCC is distributed in the hope that it will be useful, but WITHOUT
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "ggc.h"
#include "ggc.h"
#include "tree.h"
#include "tree.h"
 
 
/* These RTL headers are needed for basic-block.h.  */
/* These RTL headers are needed for basic-block.h.  */
#include "rtl.h"
#include "rtl.h"
#include "tm_p.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "diagnostic.h"
#include "langhooks.h"
#include "langhooks.h"
#include "tree-inline.h"
#include "tree-inline.h"
#include "tree-flow.h"
#include "tree-flow.h"
#include "tree-gimple.h"
#include "tree-gimple.h"
#include "tree-dump.h"
#include "tree-dump.h"
#include "tree-pass.h"
#include "tree-pass.h"
#include "timevar.h"
#include "timevar.h"
#include "flags.h"
#include "flags.h"
#include "bitmap.h"
#include "bitmap.h"
#include "obstack.h"
#include "obstack.h"
#include "target.h"
#include "target.h"
/* expr.h is needed for MOVE_RATIO.  */
/* expr.h is needed for MOVE_RATIO.  */
#include "expr.h"
#include "expr.h"
#include "params.h"
#include "params.h"
 
 
 
 
/* This object of this pass is to replace a non-addressable aggregate with a
/* This object of this pass is to replace a non-addressable aggregate with a
   set of independent variables.  Most of the time, all of these variables
   set of independent variables.  Most of the time, all of these variables
   will be scalars.  But a secondary objective is to break up larger
   will be scalars.  But a secondary objective is to break up larger
   aggregates into smaller aggregates.  In the process we may find that some
   aggregates into smaller aggregates.  In the process we may find that some
   bits of the larger aggregate can be deleted as unreferenced.
   bits of the larger aggregate can be deleted as unreferenced.
 
 
   This substitution is done globally.  More localized substitutions would
   This substitution is done globally.  More localized substitutions would
   be the purvey of a load-store motion pass.
   be the purvey of a load-store motion pass.
 
 
   The optimization proceeds in phases:
   The optimization proceeds in phases:
 
 
     (1) Identify variables that have types that are candidates for
     (1) Identify variables that have types that are candidates for
         decomposition.
         decomposition.
 
 
     (2) Scan the function looking for the ways these variables are used.
     (2) Scan the function looking for the ways these variables are used.
         In particular we're interested in the number of times a variable
         In particular we're interested in the number of times a variable
         (or member) is needed as a complete unit, and the number of times
         (or member) is needed as a complete unit, and the number of times
         a variable (or member) is copied.
         a variable (or member) is copied.
 
 
     (3) Based on the usage profile, instantiate substitution variables.
     (3) Based on the usage profile, instantiate substitution variables.
 
 
     (4) Scan the function making replacements.
     (4) Scan the function making replacements.
*/
*/
 
 
 
 
/* The set of todo flags to return from tree_sra.  */
/* The set of todo flags to return from tree_sra.  */
static unsigned int todoflags;
static unsigned int todoflags;
 
 
/* The set of aggregate variables that are candidates for scalarization.  */
/* The set of aggregate variables that are candidates for scalarization.  */
static bitmap sra_candidates;
static bitmap sra_candidates;
 
 
/* Set of scalarizable PARM_DECLs that need copy-in operations at the
/* Set of scalarizable PARM_DECLs that need copy-in operations at the
   beginning of the function.  */
   beginning of the function.  */
static bitmap needs_copy_in;
static bitmap needs_copy_in;
 
 
/* Sets of bit pairs that cache type decomposition and instantiation.  */
/* Sets of bit pairs that cache type decomposition and instantiation.  */
static bitmap sra_type_decomp_cache;
static bitmap sra_type_decomp_cache;
static bitmap sra_type_inst_cache;
static bitmap sra_type_inst_cache;
 
 
/* One of these structures is created for each candidate aggregate and
/* One of these structures is created for each candidate aggregate and
   each (accessed) member or group of members of such an aggregate.  */
   each (accessed) member or group of members of such an aggregate.  */
struct sra_elt
struct sra_elt
{
{
  /* A tree of the elements.  Used when we want to traverse everything.  */
  /* A tree of the elements.  Used when we want to traverse everything.  */
  struct sra_elt *parent;
  struct sra_elt *parent;
  struct sra_elt *groups;
  struct sra_elt *groups;
  struct sra_elt *children;
  struct sra_elt *children;
  struct sra_elt *sibling;
  struct sra_elt *sibling;
 
 
  /* If this element is a root, then this is the VAR_DECL.  If this is
  /* If this element is a root, then this is the VAR_DECL.  If this is
     a sub-element, this is some token used to identify the reference.
     a sub-element, this is some token used to identify the reference.
     In the case of COMPONENT_REF, this is the FIELD_DECL.  In the case
     In the case of COMPONENT_REF, this is the FIELD_DECL.  In the case
     of an ARRAY_REF, this is the (constant) index.  In the case of an
     of an ARRAY_REF, this is the (constant) index.  In the case of an
     ARRAY_RANGE_REF, this is the (constant) RANGE_EXPR.  In the case
     ARRAY_RANGE_REF, this is the (constant) RANGE_EXPR.  In the case
     of a complex number, this is a zero or one.  */
     of a complex number, this is a zero or one.  */
  tree element;
  tree element;
 
 
  /* The type of the element.  */
  /* The type of the element.  */
  tree type;
  tree type;
 
 
  /* A VAR_DECL, for any sub-element we've decided to replace.  */
  /* A VAR_DECL, for any sub-element we've decided to replace.  */
  tree replacement;
  tree replacement;
 
 
  /* The number of times the element is referenced as a whole.  I.e.
  /* The number of times the element is referenced as a whole.  I.e.
     given "a.b.c", this would be incremented for C, but not for A or B.  */
     given "a.b.c", this would be incremented for C, but not for A or B.  */
  unsigned int n_uses;
  unsigned int n_uses;
 
 
  /* The number of times the element is copied to or from another
  /* The number of times the element is copied to or from another
     scalarizable element.  */
     scalarizable element.  */
  unsigned int n_copies;
  unsigned int n_copies;
 
 
  /* True if TYPE is scalar.  */
  /* True if TYPE is scalar.  */
  bool is_scalar;
  bool is_scalar;
 
 
  /* True if this element is a group of members of its parent.  */
  /* True if this element is a group of members of its parent.  */
  bool is_group;
  bool is_group;
 
 
  /* True if we saw something about this element that prevents scalarization,
  /* True if we saw something about this element that prevents scalarization,
     such as non-constant indexing.  */
     such as non-constant indexing.  */
  bool cannot_scalarize;
  bool cannot_scalarize;
 
 
  /* True if we've decided that structure-to-structure assignment
  /* True if we've decided that structure-to-structure assignment
     should happen via memcpy and not per-element.  */
     should happen via memcpy and not per-element.  */
  bool use_block_copy;
  bool use_block_copy;
 
 
  /* True if everything under this element has been marked TREE_NO_WARNING.  */
  /* True if everything under this element has been marked TREE_NO_WARNING.  */
  bool all_no_warning;
  bool all_no_warning;
 
 
  /* A flag for use with/after random access traversals.  */
  /* A flag for use with/after random access traversals.  */
  bool visited;
  bool visited;
};
};
 
 
#define IS_ELEMENT_FOR_GROUP(ELEMENT) (TREE_CODE (ELEMENT) == RANGE_EXPR)
#define IS_ELEMENT_FOR_GROUP(ELEMENT) (TREE_CODE (ELEMENT) == RANGE_EXPR)
 
 
#define FOR_EACH_ACTUAL_CHILD(CHILD, ELT)                       \
#define FOR_EACH_ACTUAL_CHILD(CHILD, ELT)                       \
  for ((CHILD) = (ELT)->is_group                                \
  for ((CHILD) = (ELT)->is_group                                \
                 ? next_child_for_group (NULL, (ELT))           \
                 ? next_child_for_group (NULL, (ELT))           \
                 : (ELT)->children;                             \
                 : (ELT)->children;                             \
       (CHILD);                                                 \
       (CHILD);                                                 \
       (CHILD) = (ELT)->is_group                                \
       (CHILD) = (ELT)->is_group                                \
                 ? next_child_for_group ((CHILD), (ELT))        \
                 ? next_child_for_group ((CHILD), (ELT))        \
                 : (CHILD)->sibling)
                 : (CHILD)->sibling)
 
 
/* Helper function for above macro.  Return next child in group.  */
/* Helper function for above macro.  Return next child in group.  */
static struct sra_elt *
static struct sra_elt *
next_child_for_group (struct sra_elt *child, struct sra_elt *group)
next_child_for_group (struct sra_elt *child, struct sra_elt *group)
{
{
  gcc_assert (group->is_group);
  gcc_assert (group->is_group);
 
 
  /* Find the next child in the parent.  */
  /* Find the next child in the parent.  */
  if (child)
  if (child)
    child = child->sibling;
    child = child->sibling;
  else
  else
    child = group->parent->children;
    child = group->parent->children;
 
 
  /* Skip siblings that do not belong to the group.  */
  /* Skip siblings that do not belong to the group.  */
  while (child)
  while (child)
    {
    {
      tree g_elt = group->element;
      tree g_elt = group->element;
      if (TREE_CODE (g_elt) == RANGE_EXPR)
      if (TREE_CODE (g_elt) == RANGE_EXPR)
        {
        {
          if (!tree_int_cst_lt (child->element, TREE_OPERAND (g_elt, 0))
          if (!tree_int_cst_lt (child->element, TREE_OPERAND (g_elt, 0))
              && !tree_int_cst_lt (TREE_OPERAND (g_elt, 1), child->element))
              && !tree_int_cst_lt (TREE_OPERAND (g_elt, 1), child->element))
            break;
            break;
        }
        }
      else
      else
        gcc_unreachable ();
        gcc_unreachable ();
 
 
      child = child->sibling;
      child = child->sibling;
    }
    }
 
 
  return child;
  return child;
}
}
 
 
/* Random access to the child of a parent is performed by hashing.
/* Random access to the child of a parent is performed by hashing.
   This prevents quadratic behavior, and allows SRA to function
   This prevents quadratic behavior, and allows SRA to function
   reasonably on larger records.  */
   reasonably on larger records.  */
static htab_t sra_map;
static htab_t sra_map;
 
 
/* All structures are allocated out of the following obstack.  */
/* All structures are allocated out of the following obstack.  */
static struct obstack sra_obstack;
static struct obstack sra_obstack;
 
 
/* Debugging functions.  */
/* Debugging functions.  */
static void dump_sra_elt_name (FILE *, struct sra_elt *);
static void dump_sra_elt_name (FILE *, struct sra_elt *);
extern void debug_sra_elt_name (struct sra_elt *);
extern void debug_sra_elt_name (struct sra_elt *);
 
 
/* Forward declarations.  */
/* Forward declarations.  */
static tree generate_element_ref (struct sra_elt *);
static tree generate_element_ref (struct sra_elt *);


/* Return true if DECL is an SRA candidate.  */
/* Return true if DECL is an SRA candidate.  */
 
 
static bool
static bool
is_sra_candidate_decl (tree decl)
is_sra_candidate_decl (tree decl)
{
{
  return DECL_P (decl) && bitmap_bit_p (sra_candidates, DECL_UID (decl));
  return DECL_P (decl) && bitmap_bit_p (sra_candidates, DECL_UID (decl));
}
}
 
 
/* Return true if TYPE is a scalar type.  */
/* Return true if TYPE is a scalar type.  */
 
 
static bool
static bool
is_sra_scalar_type (tree type)
is_sra_scalar_type (tree type)
{
{
  enum tree_code code = TREE_CODE (type);
  enum tree_code code = TREE_CODE (type);
  return (code == INTEGER_TYPE || code == REAL_TYPE || code == VECTOR_TYPE
  return (code == INTEGER_TYPE || code == REAL_TYPE || code == VECTOR_TYPE
          || code == ENUMERAL_TYPE || code == BOOLEAN_TYPE
          || code == ENUMERAL_TYPE || code == BOOLEAN_TYPE
          || code == POINTER_TYPE || code == OFFSET_TYPE
          || code == POINTER_TYPE || code == OFFSET_TYPE
          || code == REFERENCE_TYPE);
          || code == REFERENCE_TYPE);
}
}
 
 
/* Return true if TYPE can be decomposed into a set of independent variables.
/* Return true if TYPE can be decomposed into a set of independent variables.
 
 
   Note that this doesn't imply that all elements of TYPE can be
   Note that this doesn't imply that all elements of TYPE can be
   instantiated, just that if we decide to break up the type into
   instantiated, just that if we decide to break up the type into
   separate pieces that it can be done.  */
   separate pieces that it can be done.  */
 
 
bool
bool
sra_type_can_be_decomposed_p (tree type)
sra_type_can_be_decomposed_p (tree type)
{
{
  unsigned int cache = TYPE_UID (TYPE_MAIN_VARIANT (type)) * 2;
  unsigned int cache = TYPE_UID (TYPE_MAIN_VARIANT (type)) * 2;
  tree t;
  tree t;
 
 
  /* Avoid searching the same type twice.  */
  /* Avoid searching the same type twice.  */
  if (bitmap_bit_p (sra_type_decomp_cache, cache+0))
  if (bitmap_bit_p (sra_type_decomp_cache, cache+0))
    return true;
    return true;
  if (bitmap_bit_p (sra_type_decomp_cache, cache+1))
  if (bitmap_bit_p (sra_type_decomp_cache, cache+1))
    return false;
    return false;
 
 
  /* The type must have a definite nonzero size.  */
  /* The type must have a definite nonzero size.  */
  if (TYPE_SIZE (type) == NULL || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
  if (TYPE_SIZE (type) == NULL || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
      || integer_zerop (TYPE_SIZE (type)))
      || integer_zerop (TYPE_SIZE (type)))
    goto fail;
    goto fail;
 
 
  /* The type must be a non-union aggregate.  */
  /* The type must be a non-union aggregate.  */
  switch (TREE_CODE (type))
  switch (TREE_CODE (type))
    {
    {
    case RECORD_TYPE:
    case RECORD_TYPE:
      {
      {
        bool saw_one_field = false;
        bool saw_one_field = false;
 
 
        for (t = TYPE_FIELDS (type); t ; t = TREE_CHAIN (t))
        for (t = TYPE_FIELDS (type); t ; t = TREE_CHAIN (t))
          if (TREE_CODE (t) == FIELD_DECL)
          if (TREE_CODE (t) == FIELD_DECL)
            {
            {
              /* Reject incorrectly represented bit fields.  */
              /* Reject incorrectly represented bit fields.  */
              if (DECL_BIT_FIELD (t)
              if (DECL_BIT_FIELD (t)
                  && (tree_low_cst (DECL_SIZE (t), 1)
                  && (tree_low_cst (DECL_SIZE (t), 1)
                      != TYPE_PRECISION (TREE_TYPE (t))))
                      != TYPE_PRECISION (TREE_TYPE (t))))
                goto fail;
                goto fail;
 
 
              saw_one_field = true;
              saw_one_field = true;
            }
            }
 
 
        /* Record types must have at least one field.  */
        /* Record types must have at least one field.  */
        if (!saw_one_field)
        if (!saw_one_field)
          goto fail;
          goto fail;
      }
      }
      break;
      break;
 
 
    case ARRAY_TYPE:
    case ARRAY_TYPE:
      /* Array types must have a fixed lower and upper bound.  */
      /* Array types must have a fixed lower and upper bound.  */
      t = TYPE_DOMAIN (type);
      t = TYPE_DOMAIN (type);
      if (t == NULL)
      if (t == NULL)
        goto fail;
        goto fail;
      if (TYPE_MIN_VALUE (t) == NULL || !TREE_CONSTANT (TYPE_MIN_VALUE (t)))
      if (TYPE_MIN_VALUE (t) == NULL || !TREE_CONSTANT (TYPE_MIN_VALUE (t)))
        goto fail;
        goto fail;
      if (TYPE_MAX_VALUE (t) == NULL || !TREE_CONSTANT (TYPE_MAX_VALUE (t)))
      if (TYPE_MAX_VALUE (t) == NULL || !TREE_CONSTANT (TYPE_MAX_VALUE (t)))
        goto fail;
        goto fail;
      break;
      break;
 
 
    case COMPLEX_TYPE:
    case COMPLEX_TYPE:
      break;
      break;
 
 
    default:
    default:
      goto fail;
      goto fail;
    }
    }
 
 
  bitmap_set_bit (sra_type_decomp_cache, cache+0);
  bitmap_set_bit (sra_type_decomp_cache, cache+0);
  return true;
  return true;
 
 
 fail:
 fail:
  bitmap_set_bit (sra_type_decomp_cache, cache+1);
  bitmap_set_bit (sra_type_decomp_cache, cache+1);
  return false;
  return false;
}
}
 
 
/* Return true if DECL can be decomposed into a set of independent
/* Return true if DECL can be decomposed into a set of independent
   (though not necessarily scalar) variables.  */
   (though not necessarily scalar) variables.  */
 
 
static bool
static bool
decl_can_be_decomposed_p (tree var)
decl_can_be_decomposed_p (tree var)
{
{
  /* Early out for scalars.  */
  /* Early out for scalars.  */
  if (is_sra_scalar_type (TREE_TYPE (var)))
  if (is_sra_scalar_type (TREE_TYPE (var)))
    return false;
    return false;
 
 
  /* The variable must not be aliased.  */
  /* The variable must not be aliased.  */
  if (!is_gimple_non_addressable (var))
  if (!is_gimple_non_addressable (var))
    {
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
      if (dump_file && (dump_flags & TDF_DETAILS))
        {
        {
          fprintf (dump_file, "Cannot scalarize variable ");
          fprintf (dump_file, "Cannot scalarize variable ");
          print_generic_expr (dump_file, var, dump_flags);
          print_generic_expr (dump_file, var, dump_flags);
          fprintf (dump_file, " because it must live in memory\n");
          fprintf (dump_file, " because it must live in memory\n");
        }
        }
      return false;
      return false;
    }
    }
 
 
  /* The variable must not be volatile.  */
  /* The variable must not be volatile.  */
  if (TREE_THIS_VOLATILE (var))
  if (TREE_THIS_VOLATILE (var))
    {
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
      if (dump_file && (dump_flags & TDF_DETAILS))
        {
        {
          fprintf (dump_file, "Cannot scalarize variable ");
          fprintf (dump_file, "Cannot scalarize variable ");
          print_generic_expr (dump_file, var, dump_flags);
          print_generic_expr (dump_file, var, dump_flags);
          fprintf (dump_file, " because it is declared volatile\n");
          fprintf (dump_file, " because it is declared volatile\n");
        }
        }
      return false;
      return false;
    }
    }
 
 
  /* We must be able to decompose the variable's type.  */
  /* We must be able to decompose the variable's type.  */
  if (!sra_type_can_be_decomposed_p (TREE_TYPE (var)))
  if (!sra_type_can_be_decomposed_p (TREE_TYPE (var)))
    {
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
      if (dump_file && (dump_flags & TDF_DETAILS))
        {
        {
          fprintf (dump_file, "Cannot scalarize variable ");
          fprintf (dump_file, "Cannot scalarize variable ");
          print_generic_expr (dump_file, var, dump_flags);
          print_generic_expr (dump_file, var, dump_flags);
          fprintf (dump_file, " because its type cannot be decomposed\n");
          fprintf (dump_file, " because its type cannot be decomposed\n");
        }
        }
      return false;
      return false;
    }
    }
 
 
  return true;
  return true;
}
}
 
 
/* Return true if TYPE can be *completely* decomposed into scalars.  */
/* Return true if TYPE can be *completely* decomposed into scalars.  */
 
 
static bool
static bool
type_can_instantiate_all_elements (tree type)
type_can_instantiate_all_elements (tree type)
{
{
  if (is_sra_scalar_type (type))
  if (is_sra_scalar_type (type))
    return true;
    return true;
  if (!sra_type_can_be_decomposed_p (type))
  if (!sra_type_can_be_decomposed_p (type))
    return false;
    return false;
 
 
  switch (TREE_CODE (type))
  switch (TREE_CODE (type))
    {
    {
    case RECORD_TYPE:
    case RECORD_TYPE:
      {
      {
        unsigned int cache = TYPE_UID (TYPE_MAIN_VARIANT (type)) * 2;
        unsigned int cache = TYPE_UID (TYPE_MAIN_VARIANT (type)) * 2;
        tree f;
        tree f;
 
 
        if (bitmap_bit_p (sra_type_inst_cache, cache+0))
        if (bitmap_bit_p (sra_type_inst_cache, cache+0))
          return true;
          return true;
        if (bitmap_bit_p (sra_type_inst_cache, cache+1))
        if (bitmap_bit_p (sra_type_inst_cache, cache+1))
          return false;
          return false;
 
 
        for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
        for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
          if (TREE_CODE (f) == FIELD_DECL)
          if (TREE_CODE (f) == FIELD_DECL)
            {
            {
              if (!type_can_instantiate_all_elements (TREE_TYPE (f)))
              if (!type_can_instantiate_all_elements (TREE_TYPE (f)))
                {
                {
                  bitmap_set_bit (sra_type_inst_cache, cache+1);
                  bitmap_set_bit (sra_type_inst_cache, cache+1);
                  return false;
                  return false;
                }
                }
            }
            }
 
 
        bitmap_set_bit (sra_type_inst_cache, cache+0);
        bitmap_set_bit (sra_type_inst_cache, cache+0);
        return true;
        return true;
      }
      }
 
 
    case ARRAY_TYPE:
    case ARRAY_TYPE:
      return type_can_instantiate_all_elements (TREE_TYPE (type));
      return type_can_instantiate_all_elements (TREE_TYPE (type));
 
 
    case COMPLEX_TYPE:
    case COMPLEX_TYPE:
      return true;
      return true;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}
 
 
/* Test whether ELT or some sub-element cannot be scalarized.  */
/* Test whether ELT or some sub-element cannot be scalarized.  */
 
 
static bool
static bool
can_completely_scalarize_p (struct sra_elt *elt)
can_completely_scalarize_p (struct sra_elt *elt)
{
{
  struct sra_elt *c;
  struct sra_elt *c;
 
 
  if (elt->cannot_scalarize)
  if (elt->cannot_scalarize)
    return false;
    return false;
 
 
  for (c = elt->children; c; c = c->sibling)
  for (c = elt->children; c; c = c->sibling)
    if (!can_completely_scalarize_p (c))
    if (!can_completely_scalarize_p (c))
      return false;
      return false;
 
 
  for (c = elt->groups; c; c = c->sibling)
  for (c = elt->groups; c; c = c->sibling)
    if (!can_completely_scalarize_p (c))
    if (!can_completely_scalarize_p (c))
      return false;
      return false;
 
 
  return true;
  return true;
}
}
 
 


/* A simplified tree hashing algorithm that only handles the types of
/* A simplified tree hashing algorithm that only handles the types of
   trees we expect to find in sra_elt->element.  */
   trees we expect to find in sra_elt->element.  */
 
 
static hashval_t
static hashval_t
sra_hash_tree (tree t)
sra_hash_tree (tree t)
{
{
  hashval_t h;
  hashval_t h;
 
 
  switch (TREE_CODE (t))
  switch (TREE_CODE (t))
    {
    {
    case VAR_DECL:
    case VAR_DECL:
    case PARM_DECL:
    case PARM_DECL:
    case RESULT_DECL:
    case RESULT_DECL:
      h = DECL_UID (t);
      h = DECL_UID (t);
      break;
      break;
 
 
    case INTEGER_CST:
    case INTEGER_CST:
      h = TREE_INT_CST_LOW (t) ^ TREE_INT_CST_HIGH (t);
      h = TREE_INT_CST_LOW (t) ^ TREE_INT_CST_HIGH (t);
      break;
      break;
 
 
    case RANGE_EXPR:
    case RANGE_EXPR:
      h = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
      h = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
      h = iterative_hash_expr (TREE_OPERAND (t, 1), h);
      h = iterative_hash_expr (TREE_OPERAND (t, 1), h);
      break;
      break;
 
 
    case FIELD_DECL:
    case FIELD_DECL:
      /* We can have types that are compatible, but have different member
      /* We can have types that are compatible, but have different member
         lists, so we can't hash fields by ID.  Use offsets instead.  */
         lists, so we can't hash fields by ID.  Use offsets instead.  */
      h = iterative_hash_expr (DECL_FIELD_OFFSET (t), 0);
      h = iterative_hash_expr (DECL_FIELD_OFFSET (t), 0);
      h = iterative_hash_expr (DECL_FIELD_BIT_OFFSET (t), h);
      h = iterative_hash_expr (DECL_FIELD_BIT_OFFSET (t), h);
      break;
      break;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  return h;
  return h;
}
}
 
 
/* Hash function for type SRA_PAIR.  */
/* Hash function for type SRA_PAIR.  */
 
 
static hashval_t
static hashval_t
sra_elt_hash (const void *x)
sra_elt_hash (const void *x)
{
{
  const struct sra_elt *e = x;
  const struct sra_elt *e = x;
  const struct sra_elt *p;
  const struct sra_elt *p;
  hashval_t h;
  hashval_t h;
 
 
  h = sra_hash_tree (e->element);
  h = sra_hash_tree (e->element);
 
 
  /* Take into account everything back up the chain.  Given that chain
  /* Take into account everything back up the chain.  Given that chain
     lengths are rarely very long, this should be acceptable.  If we
     lengths are rarely very long, this should be acceptable.  If we
     truly identify this as a performance problem, it should work to
     truly identify this as a performance problem, it should work to
     hash the pointer value "e->parent".  */
     hash the pointer value "e->parent".  */
  for (p = e->parent; p ; p = p->parent)
  for (p = e->parent; p ; p = p->parent)
    h = (h * 65521) ^ sra_hash_tree (p->element);
    h = (h * 65521) ^ sra_hash_tree (p->element);
 
 
  return h;
  return h;
}
}
 
 
/* Equality function for type SRA_PAIR.  */
/* Equality function for type SRA_PAIR.  */
 
 
static int
static int
sra_elt_eq (const void *x, const void *y)
sra_elt_eq (const void *x, const void *y)
{
{
  const struct sra_elt *a = x;
  const struct sra_elt *a = x;
  const struct sra_elt *b = y;
  const struct sra_elt *b = y;
  tree ae, be;
  tree ae, be;
 
 
  if (a->parent != b->parent)
  if (a->parent != b->parent)
    return false;
    return false;
 
 
  ae = a->element;
  ae = a->element;
  be = b->element;
  be = b->element;
 
 
  if (ae == be)
  if (ae == be)
    return true;
    return true;
  if (TREE_CODE (ae) != TREE_CODE (be))
  if (TREE_CODE (ae) != TREE_CODE (be))
    return false;
    return false;
 
 
  switch (TREE_CODE (ae))
  switch (TREE_CODE (ae))
    {
    {
    case VAR_DECL:
    case VAR_DECL:
    case PARM_DECL:
    case PARM_DECL:
    case RESULT_DECL:
    case RESULT_DECL:
      /* These are all pointer unique.  */
      /* These are all pointer unique.  */
      return false;
      return false;
 
 
    case INTEGER_CST:
    case INTEGER_CST:
      /* Integers are not pointer unique, so compare their values.  */
      /* Integers are not pointer unique, so compare their values.  */
      return tree_int_cst_equal (ae, be);
      return tree_int_cst_equal (ae, be);
 
 
    case RANGE_EXPR:
    case RANGE_EXPR:
      return
      return
        tree_int_cst_equal (TREE_OPERAND (ae, 0), TREE_OPERAND (be, 0))
        tree_int_cst_equal (TREE_OPERAND (ae, 0), TREE_OPERAND (be, 0))
        && tree_int_cst_equal (TREE_OPERAND (ae, 1), TREE_OPERAND (be, 1));
        && tree_int_cst_equal (TREE_OPERAND (ae, 1), TREE_OPERAND (be, 1));
 
 
    case FIELD_DECL:
    case FIELD_DECL:
      /* Fields are unique within a record, but not between
      /* Fields are unique within a record, but not between
         compatible records.  */
         compatible records.  */
      if (DECL_FIELD_CONTEXT (ae) == DECL_FIELD_CONTEXT (be))
      if (DECL_FIELD_CONTEXT (ae) == DECL_FIELD_CONTEXT (be))
        return false;
        return false;
      return fields_compatible_p (ae, be);
      return fields_compatible_p (ae, be);
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}
 
 
/* Create or return the SRA_ELT structure for CHILD in PARENT.  PARENT
/* Create or return the SRA_ELT structure for CHILD in PARENT.  PARENT
   may be null, in which case CHILD must be a DECL.  */
   may be null, in which case CHILD must be a DECL.  */
 
 
static struct sra_elt *
static struct sra_elt *
lookup_element (struct sra_elt *parent, tree child, tree type,
lookup_element (struct sra_elt *parent, tree child, tree type,
                enum insert_option insert)
                enum insert_option insert)
{
{
  struct sra_elt dummy;
  struct sra_elt dummy;
  struct sra_elt **slot;
  struct sra_elt **slot;
  struct sra_elt *elt;
  struct sra_elt *elt;
 
 
  if (parent)
  if (parent)
    dummy.parent = parent->is_group ? parent->parent : parent;
    dummy.parent = parent->is_group ? parent->parent : parent;
  else
  else
    dummy.parent = NULL;
    dummy.parent = NULL;
  dummy.element = child;
  dummy.element = child;
 
 
  slot = (struct sra_elt **) htab_find_slot (sra_map, &dummy, insert);
  slot = (struct sra_elt **) htab_find_slot (sra_map, &dummy, insert);
  if (!slot && insert == NO_INSERT)
  if (!slot && insert == NO_INSERT)
    return NULL;
    return NULL;
 
 
  elt = *slot;
  elt = *slot;
  if (!elt && insert == INSERT)
  if (!elt && insert == INSERT)
    {
    {
      *slot = elt = obstack_alloc (&sra_obstack, sizeof (*elt));
      *slot = elt = obstack_alloc (&sra_obstack, sizeof (*elt));
      memset (elt, 0, sizeof (*elt));
      memset (elt, 0, sizeof (*elt));
 
 
      elt->parent = parent;
      elt->parent = parent;
      elt->element = child;
      elt->element = child;
      elt->type = type;
      elt->type = type;
      elt->is_scalar = is_sra_scalar_type (type);
      elt->is_scalar = is_sra_scalar_type (type);
 
 
      if (parent)
      if (parent)
        {
        {
          if (IS_ELEMENT_FOR_GROUP (elt->element))
          if (IS_ELEMENT_FOR_GROUP (elt->element))
            {
            {
              elt->is_group = true;
              elt->is_group = true;
              elt->sibling = parent->groups;
              elt->sibling = parent->groups;
              parent->groups = elt;
              parent->groups = elt;
            }
            }
          else
          else
            {
            {
              elt->sibling = parent->children;
              elt->sibling = parent->children;
              parent->children = elt;
              parent->children = elt;
            }
            }
        }
        }
 
 
      /* If this is a parameter, then if we want to scalarize, we have
      /* If this is a parameter, then if we want to scalarize, we have
         one copy from the true function parameter.  Count it now.  */
         one copy from the true function parameter.  Count it now.  */
      if (TREE_CODE (child) == PARM_DECL)
      if (TREE_CODE (child) == PARM_DECL)
        {
        {
          elt->n_copies = 1;
          elt->n_copies = 1;
          bitmap_set_bit (needs_copy_in, DECL_UID (child));
          bitmap_set_bit (needs_copy_in, DECL_UID (child));
        }
        }
    }
    }
 
 
  return elt;
  return elt;
}
}
 
 
/* Create or return the SRA_ELT structure for EXPR if the expression
/* Create or return the SRA_ELT structure for EXPR if the expression
   refers to a scalarizable variable.  */
   refers to a scalarizable variable.  */
 
 
static struct sra_elt *
static struct sra_elt *
maybe_lookup_element_for_expr (tree expr)
maybe_lookup_element_for_expr (tree expr)
{
{
  struct sra_elt *elt;
  struct sra_elt *elt;
  tree child;
  tree child;
 
 
  switch (TREE_CODE (expr))
  switch (TREE_CODE (expr))
    {
    {
    case VAR_DECL:
    case VAR_DECL:
    case PARM_DECL:
    case PARM_DECL:
    case RESULT_DECL:
    case RESULT_DECL:
      if (is_sra_candidate_decl (expr))
      if (is_sra_candidate_decl (expr))
        return lookup_element (NULL, expr, TREE_TYPE (expr), INSERT);
        return lookup_element (NULL, expr, TREE_TYPE (expr), INSERT);
      return NULL;
      return NULL;
 
 
    case ARRAY_REF:
    case ARRAY_REF:
      /* We can't scalarize variable array indices.  */
      /* We can't scalarize variable array indices.  */
      if (in_array_bounds_p (expr))
      if (in_array_bounds_p (expr))
        child = TREE_OPERAND (expr, 1);
        child = TREE_OPERAND (expr, 1);
      else
      else
        return NULL;
        return NULL;
      break;
      break;
 
 
    case ARRAY_RANGE_REF:
    case ARRAY_RANGE_REF:
      /* We can't scalarize variable array indices.  */
      /* We can't scalarize variable array indices.  */
      if (range_in_array_bounds_p (expr))
      if (range_in_array_bounds_p (expr))
        {
        {
          tree domain = TYPE_DOMAIN (TREE_TYPE (expr));
          tree domain = TYPE_DOMAIN (TREE_TYPE (expr));
          child = build2 (RANGE_EXPR, integer_type_node,
          child = build2 (RANGE_EXPR, integer_type_node,
                          TYPE_MIN_VALUE (domain), TYPE_MAX_VALUE (domain));
                          TYPE_MIN_VALUE (domain), TYPE_MAX_VALUE (domain));
        }
        }
      else
      else
        return NULL;
        return NULL;
      break;
      break;
 
 
    case COMPONENT_REF:
    case COMPONENT_REF:
      /* Don't look through unions.  */
      /* Don't look through unions.  */
      if (TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) != RECORD_TYPE)
      if (TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) != RECORD_TYPE)
        return NULL;
        return NULL;
      child = TREE_OPERAND (expr, 1);
      child = TREE_OPERAND (expr, 1);
      break;
      break;
 
 
    case REALPART_EXPR:
    case REALPART_EXPR:
      child = integer_zero_node;
      child = integer_zero_node;
      break;
      break;
    case IMAGPART_EXPR:
    case IMAGPART_EXPR:
      child = integer_one_node;
      child = integer_one_node;
      break;
      break;
 
 
    default:
    default:
      return NULL;
      return NULL;
    }
    }
 
 
  elt = maybe_lookup_element_for_expr (TREE_OPERAND (expr, 0));
  elt = maybe_lookup_element_for_expr (TREE_OPERAND (expr, 0));
  if (elt)
  if (elt)
    return lookup_element (elt, child, TREE_TYPE (expr), INSERT);
    return lookup_element (elt, child, TREE_TYPE (expr), INSERT);
  return NULL;
  return NULL;
}
}
 
 


/* Functions to walk just enough of the tree to see all scalarizable
/* Functions to walk just enough of the tree to see all scalarizable
   references, and categorize them.  */
   references, and categorize them.  */
 
 
/* A set of callbacks for phases 2 and 4.  They'll be invoked for the
/* A set of callbacks for phases 2 and 4.  They'll be invoked for the
   various kinds of references seen.  In all cases, *BSI is an iterator
   various kinds of references seen.  In all cases, *BSI is an iterator
   pointing to the statement being processed.  */
   pointing to the statement being processed.  */
struct sra_walk_fns
struct sra_walk_fns
{
{
  /* Invoked when ELT is required as a unit.  Note that ELT might refer to
  /* Invoked when ELT is required as a unit.  Note that ELT might refer to
     a leaf node, in which case this is a simple scalar reference.  *EXPR_P
     a leaf node, in which case this is a simple scalar reference.  *EXPR_P
     points to the location of the expression.  IS_OUTPUT is true if this
     points to the location of the expression.  IS_OUTPUT is true if this
     is a left-hand-side reference.  USE_ALL is true if we saw something we
     is a left-hand-side reference.  USE_ALL is true if we saw something we
     couldn't quite identify and had to force the use of the entire object.  */
     couldn't quite identify and had to force the use of the entire object.  */
  void (*use) (struct sra_elt *elt, tree *expr_p,
  void (*use) (struct sra_elt *elt, tree *expr_p,
               block_stmt_iterator *bsi, bool is_output, bool use_all);
               block_stmt_iterator *bsi, bool is_output, bool use_all);
 
 
  /* Invoked when we have a copy between two scalarizable references.  */
  /* Invoked when we have a copy between two scalarizable references.  */
  void (*copy) (struct sra_elt *lhs_elt, struct sra_elt *rhs_elt,
  void (*copy) (struct sra_elt *lhs_elt, struct sra_elt *rhs_elt,
                block_stmt_iterator *bsi);
                block_stmt_iterator *bsi);
 
 
  /* Invoked when ELT is initialized from a constant.  VALUE may be NULL,
  /* Invoked when ELT is initialized from a constant.  VALUE may be NULL,
     in which case it should be treated as an empty CONSTRUCTOR.  */
     in which case it should be treated as an empty CONSTRUCTOR.  */
  void (*init) (struct sra_elt *elt, tree value, block_stmt_iterator *bsi);
  void (*init) (struct sra_elt *elt, tree value, block_stmt_iterator *bsi);
 
 
  /* Invoked when we have a copy between one scalarizable reference ELT
  /* Invoked when we have a copy between one scalarizable reference ELT
     and one non-scalarizable reference OTHER without side-effects.
     and one non-scalarizable reference OTHER without side-effects.
     IS_OUTPUT is true if ELT is on the left-hand side.  */
     IS_OUTPUT is true if ELT is on the left-hand side.  */
  void (*ldst) (struct sra_elt *elt, tree other,
  void (*ldst) (struct sra_elt *elt, tree other,
                block_stmt_iterator *bsi, bool is_output);
                block_stmt_iterator *bsi, bool is_output);
 
 
  /* True during phase 2, false during phase 4.  */
  /* True during phase 2, false during phase 4.  */
  /* ??? This is a hack.  */
  /* ??? This is a hack.  */
  bool initial_scan;
  bool initial_scan;
};
};
 
 
#ifdef ENABLE_CHECKING
#ifdef ENABLE_CHECKING
/* Invoked via walk_tree, if *TP contains a candidate decl, return it.  */
/* Invoked via walk_tree, if *TP contains a candidate decl, return it.  */
 
 
static tree
static tree
sra_find_candidate_decl (tree *tp, int *walk_subtrees,
sra_find_candidate_decl (tree *tp, int *walk_subtrees,
                         void *data ATTRIBUTE_UNUSED)
                         void *data ATTRIBUTE_UNUSED)
{
{
  tree t = *tp;
  tree t = *tp;
  enum tree_code code = TREE_CODE (t);
  enum tree_code code = TREE_CODE (t);
 
 
  if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
  if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
    {
    {
      *walk_subtrees = 0;
      *walk_subtrees = 0;
      if (is_sra_candidate_decl (t))
      if (is_sra_candidate_decl (t))
        return t;
        return t;
    }
    }
  else if (TYPE_P (t))
  else if (TYPE_P (t))
    *walk_subtrees = 0;
    *walk_subtrees = 0;
 
 
  return NULL;
  return NULL;
}
}
#endif
#endif
 
 
/* Walk most expressions looking for a scalarizable aggregate.
/* Walk most expressions looking for a scalarizable aggregate.
   If we find one, invoke FNS->USE.  */
   If we find one, invoke FNS->USE.  */
 
 
static void
static void
sra_walk_expr (tree *expr_p, block_stmt_iterator *bsi, bool is_output,
sra_walk_expr (tree *expr_p, block_stmt_iterator *bsi, bool is_output,
               const struct sra_walk_fns *fns)
               const struct sra_walk_fns *fns)
{
{
  tree expr = *expr_p;
  tree expr = *expr_p;
  tree inner = expr;
  tree inner = expr;
  bool disable_scalarization = false;
  bool disable_scalarization = false;
  bool use_all_p = false;
  bool use_all_p = false;
 
 
  /* We're looking to collect a reference expression between EXPR and INNER,
  /* We're looking to collect a reference expression between EXPR and INNER,
     such that INNER is a scalarizable decl and all other nodes through EXPR
     such that INNER is a scalarizable decl and all other nodes through EXPR
     are references that we can scalarize.  If we come across something that
     are references that we can scalarize.  If we come across something that
     we can't scalarize, we reset EXPR.  This has the effect of making it
     we can't scalarize, we reset EXPR.  This has the effect of making it
     appear that we're referring to the larger expression as a whole.  */
     appear that we're referring to the larger expression as a whole.  */
 
 
  while (1)
  while (1)
    switch (TREE_CODE (inner))
    switch (TREE_CODE (inner))
      {
      {
      case VAR_DECL:
      case VAR_DECL:
      case PARM_DECL:
      case PARM_DECL:
      case RESULT_DECL:
      case RESULT_DECL:
        /* If there is a scalarizable decl at the bottom, then process it.  */
        /* If there is a scalarizable decl at the bottom, then process it.  */
        if (is_sra_candidate_decl (inner))
        if (is_sra_candidate_decl (inner))
          {
          {
            struct sra_elt *elt = maybe_lookup_element_for_expr (expr);
            struct sra_elt *elt = maybe_lookup_element_for_expr (expr);
            if (disable_scalarization)
            if (disable_scalarization)
              elt->cannot_scalarize = true;
              elt->cannot_scalarize = true;
            else
            else
              fns->use (elt, expr_p, bsi, is_output, use_all_p);
              fns->use (elt, expr_p, bsi, is_output, use_all_p);
          }
          }
        return;
        return;
 
 
      case ARRAY_REF:
      case ARRAY_REF:
        /* Non-constant index means any member may be accessed.  Prevent the
        /* Non-constant index means any member may be accessed.  Prevent the
           expression from being scalarized.  If we were to treat this as a
           expression from being scalarized.  If we were to treat this as a
           reference to the whole array, we can wind up with a single dynamic
           reference to the whole array, we can wind up with a single dynamic
           index reference inside a loop being overridden by several constant
           index reference inside a loop being overridden by several constant
           index references during loop setup.  It's possible that this could
           index references during loop setup.  It's possible that this could
           be avoided by using dynamic usage counts based on BB trip counts
           be avoided by using dynamic usage counts based on BB trip counts
           (based on loop analysis or profiling), but that hardly seems worth
           (based on loop analysis or profiling), but that hardly seems worth
           the effort.  */
           the effort.  */
        /* ??? Hack.  Figure out how to push this into the scan routines
        /* ??? Hack.  Figure out how to push this into the scan routines
           without duplicating too much code.  */
           without duplicating too much code.  */
        if (!in_array_bounds_p (inner))
        if (!in_array_bounds_p (inner))
          {
          {
            disable_scalarization = true;
            disable_scalarization = true;
            goto use_all;
            goto use_all;
          }
          }
        /* ??? Are we assured that non-constant bounds and stride will have
        /* ??? Are we assured that non-constant bounds and stride will have
           the same value everywhere?  I don't think Fortran will...  */
           the same value everywhere?  I don't think Fortran will...  */
        if (TREE_OPERAND (inner, 2) || TREE_OPERAND (inner, 3))
        if (TREE_OPERAND (inner, 2) || TREE_OPERAND (inner, 3))
          goto use_all;
          goto use_all;
        inner = TREE_OPERAND (inner, 0);
        inner = TREE_OPERAND (inner, 0);
        break;
        break;
 
 
      case ARRAY_RANGE_REF:
      case ARRAY_RANGE_REF:
        if (!range_in_array_bounds_p (inner))
        if (!range_in_array_bounds_p (inner))
          {
          {
            disable_scalarization = true;
            disable_scalarization = true;
            goto use_all;
            goto use_all;
          }
          }
        /* ??? See above non-constant bounds and stride .  */
        /* ??? See above non-constant bounds and stride .  */
        if (TREE_OPERAND (inner, 2) || TREE_OPERAND (inner, 3))
        if (TREE_OPERAND (inner, 2) || TREE_OPERAND (inner, 3))
          goto use_all;
          goto use_all;
        inner = TREE_OPERAND (inner, 0);
        inner = TREE_OPERAND (inner, 0);
        break;
        break;
 
 
      case COMPONENT_REF:
      case COMPONENT_REF:
        /* A reference to a union member constitutes a reference to the
        /* A reference to a union member constitutes a reference to the
           entire union.  */
           entire union.  */
        if (TREE_CODE (TREE_TYPE (TREE_OPERAND (inner, 0))) != RECORD_TYPE)
        if (TREE_CODE (TREE_TYPE (TREE_OPERAND (inner, 0))) != RECORD_TYPE)
          goto use_all;
          goto use_all;
        /* ??? See above re non-constant stride.  */
        /* ??? See above re non-constant stride.  */
        if (TREE_OPERAND (inner, 2))
        if (TREE_OPERAND (inner, 2))
          goto use_all;
          goto use_all;
        inner = TREE_OPERAND (inner, 0);
        inner = TREE_OPERAND (inner, 0);
        break;
        break;
 
 
      case REALPART_EXPR:
      case REALPART_EXPR:
      case IMAGPART_EXPR:
      case IMAGPART_EXPR:
        inner = TREE_OPERAND (inner, 0);
        inner = TREE_OPERAND (inner, 0);
        break;
        break;
 
 
      case BIT_FIELD_REF:
      case BIT_FIELD_REF:
        /* A bit field reference (access to *multiple* fields simultaneously)
        /* A bit field reference (access to *multiple* fields simultaneously)
           is not currently scalarized.  Consider this an access to the
           is not currently scalarized.  Consider this an access to the
           complete outer element, to which walk_tree will bring us next.  */
           complete outer element, to which walk_tree will bring us next.  */
        goto use_all;
        goto use_all;
 
 
      case VIEW_CONVERT_EXPR:
      case VIEW_CONVERT_EXPR:
      case NOP_EXPR:
      case NOP_EXPR:
        /* Similarly, a view/nop explicitly wants to look at an object in a
        /* Similarly, a view/nop explicitly wants to look at an object in a
           type other than the one we've scalarized.  */
           type other than the one we've scalarized.  */
        goto use_all;
        goto use_all;
 
 
      case WITH_SIZE_EXPR:
      case WITH_SIZE_EXPR:
        /* This is a transparent wrapper.  The entire inner expression really
        /* This is a transparent wrapper.  The entire inner expression really
           is being used.  */
           is being used.  */
        goto use_all;
        goto use_all;
 
 
      use_all:
      use_all:
        expr_p = &TREE_OPERAND (inner, 0);
        expr_p = &TREE_OPERAND (inner, 0);
        inner = expr = *expr_p;
        inner = expr = *expr_p;
        use_all_p = true;
        use_all_p = true;
        break;
        break;
 
 
      default:
      default:
#ifdef ENABLE_CHECKING
#ifdef ENABLE_CHECKING
        /* Validate that we're not missing any references.  */
        /* Validate that we're not missing any references.  */
        gcc_assert (!walk_tree (&inner, sra_find_candidate_decl, NULL, NULL));
        gcc_assert (!walk_tree (&inner, sra_find_candidate_decl, NULL, NULL));
#endif
#endif
        return;
        return;
      }
      }
}
}
 
 
/* Walk a TREE_LIST of values looking for scalarizable aggregates.
/* Walk a TREE_LIST of values looking for scalarizable aggregates.
   If we find one, invoke FNS->USE.  */
   If we find one, invoke FNS->USE.  */
 
 
static void
static void
sra_walk_tree_list (tree list, block_stmt_iterator *bsi, bool is_output,
sra_walk_tree_list (tree list, block_stmt_iterator *bsi, bool is_output,
                    const struct sra_walk_fns *fns)
                    const struct sra_walk_fns *fns)
{
{
  tree op;
  tree op;
  for (op = list; op ; op = TREE_CHAIN (op))
  for (op = list; op ; op = TREE_CHAIN (op))
    sra_walk_expr (&TREE_VALUE (op), bsi, is_output, fns);
    sra_walk_expr (&TREE_VALUE (op), bsi, is_output, fns);
}
}
 
 
/* Walk the arguments of a CALL_EXPR looking for scalarizable aggregates.
/* Walk the arguments of a CALL_EXPR looking for scalarizable aggregates.
   If we find one, invoke FNS->USE.  */
   If we find one, invoke FNS->USE.  */
 
 
static void
static void
sra_walk_call_expr (tree expr, block_stmt_iterator *bsi,
sra_walk_call_expr (tree expr, block_stmt_iterator *bsi,
                    const struct sra_walk_fns *fns)
                    const struct sra_walk_fns *fns)
{
{
  sra_walk_tree_list (TREE_OPERAND (expr, 1), bsi, false, fns);
  sra_walk_tree_list (TREE_OPERAND (expr, 1), bsi, false, fns);
}
}
 
 
/* Walk the inputs and outputs of an ASM_EXPR looking for scalarizable
/* Walk the inputs and outputs of an ASM_EXPR looking for scalarizable
   aggregates.  If we find one, invoke FNS->USE.  */
   aggregates.  If we find one, invoke FNS->USE.  */
 
 
static void
static void
sra_walk_asm_expr (tree expr, block_stmt_iterator *bsi,
sra_walk_asm_expr (tree expr, block_stmt_iterator *bsi,
                   const struct sra_walk_fns *fns)
                   const struct sra_walk_fns *fns)
{
{
  sra_walk_tree_list (ASM_INPUTS (expr), bsi, false, fns);
  sra_walk_tree_list (ASM_INPUTS (expr), bsi, false, fns);
  sra_walk_tree_list (ASM_OUTPUTS (expr), bsi, true, fns);
  sra_walk_tree_list (ASM_OUTPUTS (expr), bsi, true, fns);
}
}
 
 
/* Walk a MODIFY_EXPR and categorize the assignment appropriately.  */
/* Walk a MODIFY_EXPR and categorize the assignment appropriately.  */
 
 
static void
static void
sra_walk_modify_expr (tree expr, block_stmt_iterator *bsi,
sra_walk_modify_expr (tree expr, block_stmt_iterator *bsi,
                      const struct sra_walk_fns *fns)
                      const struct sra_walk_fns *fns)
{
{
  struct sra_elt *lhs_elt, *rhs_elt;
  struct sra_elt *lhs_elt, *rhs_elt;
  tree lhs, rhs;
  tree lhs, rhs;
 
 
  lhs = TREE_OPERAND (expr, 0);
  lhs = TREE_OPERAND (expr, 0);
  rhs = TREE_OPERAND (expr, 1);
  rhs = TREE_OPERAND (expr, 1);
  lhs_elt = maybe_lookup_element_for_expr (lhs);
  lhs_elt = maybe_lookup_element_for_expr (lhs);
  rhs_elt = maybe_lookup_element_for_expr (rhs);
  rhs_elt = maybe_lookup_element_for_expr (rhs);
 
 
  /* If both sides are scalarizable, this is a COPY operation.  */
  /* If both sides are scalarizable, this is a COPY operation.  */
  if (lhs_elt && rhs_elt)
  if (lhs_elt && rhs_elt)
    {
    {
      fns->copy (lhs_elt, rhs_elt, bsi);
      fns->copy (lhs_elt, rhs_elt, bsi);
      return;
      return;
    }
    }
 
 
  /* If the RHS is scalarizable, handle it.  There are only two cases.  */
  /* If the RHS is scalarizable, handle it.  There are only two cases.  */
  if (rhs_elt)
  if (rhs_elt)
    {
    {
      if (!rhs_elt->is_scalar && !TREE_SIDE_EFFECTS (lhs))
      if (!rhs_elt->is_scalar && !TREE_SIDE_EFFECTS (lhs))
        fns->ldst (rhs_elt, lhs, bsi, false);
        fns->ldst (rhs_elt, lhs, bsi, false);
      else
      else
        fns->use (rhs_elt, &TREE_OPERAND (expr, 1), bsi, false, false);
        fns->use (rhs_elt, &TREE_OPERAND (expr, 1), bsi, false, false);
    }
    }
 
 
  /* If it isn't scalarizable, there may be scalarizable variables within, so
  /* If it isn't scalarizable, there may be scalarizable variables within, so
     check for a call or else walk the RHS to see if we need to do any
     check for a call or else walk the RHS to see if we need to do any
     copy-in operations.  We need to do it before the LHS is scalarized so
     copy-in operations.  We need to do it before the LHS is scalarized so
     that the statements get inserted in the proper place, before any
     that the statements get inserted in the proper place, before any
     copy-out operations.  */
     copy-out operations.  */
  else
  else
    {
    {
      tree call = get_call_expr_in (rhs);
      tree call = get_call_expr_in (rhs);
      if (call)
      if (call)
        sra_walk_call_expr (call, bsi, fns);
        sra_walk_call_expr (call, bsi, fns);
      else
      else
        sra_walk_expr (&TREE_OPERAND (expr, 1), bsi, false, fns);
        sra_walk_expr (&TREE_OPERAND (expr, 1), bsi, false, fns);
    }
    }
 
 
  /* Likewise, handle the LHS being scalarizable.  We have cases similar
  /* Likewise, handle the LHS being scalarizable.  We have cases similar
     to those above, but also want to handle RHS being constant.  */
     to those above, but also want to handle RHS being constant.  */
  if (lhs_elt)
  if (lhs_elt)
    {
    {
      /* If this is an assignment from a constant, or constructor, then
      /* If this is an assignment from a constant, or constructor, then
         we have access to all of the elements individually.  Invoke INIT.  */
         we have access to all of the elements individually.  Invoke INIT.  */
      if (TREE_CODE (rhs) == COMPLEX_EXPR
      if (TREE_CODE (rhs) == COMPLEX_EXPR
          || TREE_CODE (rhs) == COMPLEX_CST
          || TREE_CODE (rhs) == COMPLEX_CST
          || TREE_CODE (rhs) == CONSTRUCTOR)
          || TREE_CODE (rhs) == CONSTRUCTOR)
        fns->init (lhs_elt, rhs, bsi);
        fns->init (lhs_elt, rhs, bsi);
 
 
      /* If this is an assignment from read-only memory, treat this as if
      /* If this is an assignment from read-only memory, treat this as if
         we'd been passed the constructor directly.  Invoke INIT.  */
         we'd been passed the constructor directly.  Invoke INIT.  */
      else if (TREE_CODE (rhs) == VAR_DECL
      else if (TREE_CODE (rhs) == VAR_DECL
               && TREE_STATIC (rhs)
               && TREE_STATIC (rhs)
               && TREE_READONLY (rhs)
               && TREE_READONLY (rhs)
               && targetm.binds_local_p (rhs))
               && targetm.binds_local_p (rhs))
        fns->init (lhs_elt, DECL_INITIAL (rhs), bsi);
        fns->init (lhs_elt, DECL_INITIAL (rhs), bsi);
 
 
      /* If this is a copy from a non-scalarizable lvalue, invoke LDST.
      /* If this is a copy from a non-scalarizable lvalue, invoke LDST.
         The lvalue requirement prevents us from trying to directly scalarize
         The lvalue requirement prevents us from trying to directly scalarize
         the result of a function call.  Which would result in trying to call
         the result of a function call.  Which would result in trying to call
         the function multiple times, and other evil things.  */
         the function multiple times, and other evil things.  */
      else if (!lhs_elt->is_scalar
      else if (!lhs_elt->is_scalar
               && !TREE_SIDE_EFFECTS (rhs) && is_gimple_addressable (rhs))
               && !TREE_SIDE_EFFECTS (rhs) && is_gimple_addressable (rhs))
        fns->ldst (lhs_elt, rhs, bsi, true);
        fns->ldst (lhs_elt, rhs, bsi, true);
 
 
      /* Otherwise we're being used in some context that requires the
      /* Otherwise we're being used in some context that requires the
         aggregate to be seen as a whole.  Invoke USE.  */
         aggregate to be seen as a whole.  Invoke USE.  */
      else
      else
        fns->use (lhs_elt, &TREE_OPERAND (expr, 0), bsi, true, false);
        fns->use (lhs_elt, &TREE_OPERAND (expr, 0), bsi, true, false);
    }
    }
 
 
  /* Similarly to above, LHS_ELT being null only means that the LHS as a
  /* Similarly to above, LHS_ELT being null only means that the LHS as a
     whole is not a scalarizable reference.  There may be occurrences of
     whole is not a scalarizable reference.  There may be occurrences of
     scalarizable variables within, which implies a USE.  */
     scalarizable variables within, which implies a USE.  */
  else
  else
    sra_walk_expr (&TREE_OPERAND (expr, 0), bsi, true, fns);
    sra_walk_expr (&TREE_OPERAND (expr, 0), bsi, true, fns);
}
}
 
 
/* Entry point to the walk functions.  Search the entire function,
/* Entry point to the walk functions.  Search the entire function,
   invoking the callbacks in FNS on each of the references to
   invoking the callbacks in FNS on each of the references to
   scalarizable variables.  */
   scalarizable variables.  */
 
 
static void
static void
sra_walk_function (const struct sra_walk_fns *fns)
sra_walk_function (const struct sra_walk_fns *fns)
{
{
  basic_block bb;
  basic_block bb;
  block_stmt_iterator si, ni;
  block_stmt_iterator si, ni;
 
 
  /* ??? Phase 4 could derive some benefit to walking the function in
  /* ??? Phase 4 could derive some benefit to walking the function in
     dominator tree order.  */
     dominator tree order.  */
 
 
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    for (si = bsi_start (bb); !bsi_end_p (si); si = ni)
    for (si = bsi_start (bb); !bsi_end_p (si); si = ni)
      {
      {
        tree stmt, t;
        tree stmt, t;
        stmt_ann_t ann;
        stmt_ann_t ann;
 
 
        stmt = bsi_stmt (si);
        stmt = bsi_stmt (si);
        ann = stmt_ann (stmt);
        ann = stmt_ann (stmt);
 
 
        ni = si;
        ni = si;
        bsi_next (&ni);
        bsi_next (&ni);
 
 
        /* If the statement has no virtual operands, then it doesn't
        /* If the statement has no virtual operands, then it doesn't
           make any structure references that we care about.  */
           make any structure references that we care about.  */
        if (ZERO_SSA_OPERANDS (stmt, (SSA_OP_VIRTUAL_DEFS | SSA_OP_VUSE)))
        if (ZERO_SSA_OPERANDS (stmt, (SSA_OP_VIRTUAL_DEFS | SSA_OP_VUSE)))
          continue;
          continue;
 
 
        switch (TREE_CODE (stmt))
        switch (TREE_CODE (stmt))
          {
          {
          case RETURN_EXPR:
          case RETURN_EXPR:
            /* If we have "return <retval>" then the return value is
            /* If we have "return <retval>" then the return value is
               already exposed for our pleasure.  Walk it as a USE to
               already exposed for our pleasure.  Walk it as a USE to
               force all the components back in place for the return.
               force all the components back in place for the return.
 
 
               If we have an embedded assignment, then <retval> is of
               If we have an embedded assignment, then <retval> is of
               a type that gets returned in registers in this ABI, and
               a type that gets returned in registers in this ABI, and
               we do not wish to extend their lifetimes.  Treat this
               we do not wish to extend their lifetimes.  Treat this
               as a USE of the variable on the RHS of this assignment.  */
               as a USE of the variable on the RHS of this assignment.  */
 
 
            t = TREE_OPERAND (stmt, 0);
            t = TREE_OPERAND (stmt, 0);
            if (TREE_CODE (t) == MODIFY_EXPR)
            if (TREE_CODE (t) == MODIFY_EXPR)
              sra_walk_expr (&TREE_OPERAND (t, 1), &si, false, fns);
              sra_walk_expr (&TREE_OPERAND (t, 1), &si, false, fns);
            else
            else
              sra_walk_expr (&TREE_OPERAND (stmt, 0), &si, false, fns);
              sra_walk_expr (&TREE_OPERAND (stmt, 0), &si, false, fns);
            break;
            break;
 
 
          case MODIFY_EXPR:
          case MODIFY_EXPR:
            sra_walk_modify_expr (stmt, &si, fns);
            sra_walk_modify_expr (stmt, &si, fns);
            break;
            break;
          case CALL_EXPR:
          case CALL_EXPR:
            sra_walk_call_expr (stmt, &si, fns);
            sra_walk_call_expr (stmt, &si, fns);
            break;
            break;
          case ASM_EXPR:
          case ASM_EXPR:
            sra_walk_asm_expr (stmt, &si, fns);
            sra_walk_asm_expr (stmt, &si, fns);
            break;
            break;
 
 
          default:
          default:
            break;
            break;
          }
          }
      }
      }
}
}


/* Phase One: Scan all referenced variables in the program looking for
/* Phase One: Scan all referenced variables in the program looking for
   structures that could be decomposed.  */
   structures that could be decomposed.  */
 
 
static bool
static bool
find_candidates_for_sra (void)
find_candidates_for_sra (void)
{
{
  bool any_set = false;
  bool any_set = false;
  tree var;
  tree var;
  referenced_var_iterator rvi;
  referenced_var_iterator rvi;
 
 
  FOR_EACH_REFERENCED_VAR (var, rvi)
  FOR_EACH_REFERENCED_VAR (var, rvi)
    {
    {
      if (decl_can_be_decomposed_p (var))
      if (decl_can_be_decomposed_p (var))
        {
        {
          bitmap_set_bit (sra_candidates, DECL_UID (var));
          bitmap_set_bit (sra_candidates, DECL_UID (var));
          any_set = true;
          any_set = true;
        }
        }
    }
    }
 
 
  return any_set;
  return any_set;
}
}
 
 


/* Phase Two: Scan all references to scalarizable variables.  Count the
/* Phase Two: Scan all references to scalarizable variables.  Count the
   number of times they are used or copied respectively.  */
   number of times they are used or copied respectively.  */
 
 
/* Callbacks to fill in SRA_WALK_FNS.  Everything but USE is
/* Callbacks to fill in SRA_WALK_FNS.  Everything but USE is
   considered a copy, because we can decompose the reference such that
   considered a copy, because we can decompose the reference such that
   the sub-elements needn't be contiguous.  */
   the sub-elements needn't be contiguous.  */
 
 
static void
static void
scan_use (struct sra_elt *elt, tree *expr_p ATTRIBUTE_UNUSED,
scan_use (struct sra_elt *elt, tree *expr_p ATTRIBUTE_UNUSED,
          block_stmt_iterator *bsi ATTRIBUTE_UNUSED,
          block_stmt_iterator *bsi ATTRIBUTE_UNUSED,
          bool is_output ATTRIBUTE_UNUSED, bool use_all ATTRIBUTE_UNUSED)
          bool is_output ATTRIBUTE_UNUSED, bool use_all ATTRIBUTE_UNUSED)
{
{
  elt->n_uses += 1;
  elt->n_uses += 1;
}
}
 
 
static void
static void
scan_copy (struct sra_elt *lhs_elt, struct sra_elt *rhs_elt,
scan_copy (struct sra_elt *lhs_elt, struct sra_elt *rhs_elt,
           block_stmt_iterator *bsi ATTRIBUTE_UNUSED)
           block_stmt_iterator *bsi ATTRIBUTE_UNUSED)
{
{
  lhs_elt->n_copies += 1;
  lhs_elt->n_copies += 1;
  rhs_elt->n_copies += 1;
  rhs_elt->n_copies += 1;
}
}
 
 
static void
static void
scan_init (struct sra_elt *lhs_elt, tree rhs ATTRIBUTE_UNUSED,
scan_init (struct sra_elt *lhs_elt, tree rhs ATTRIBUTE_UNUSED,
           block_stmt_iterator *bsi ATTRIBUTE_UNUSED)
           block_stmt_iterator *bsi ATTRIBUTE_UNUSED)
{
{
  lhs_elt->n_copies += 1;
  lhs_elt->n_copies += 1;
}
}
 
 
static void
static void
scan_ldst (struct sra_elt *elt, tree other ATTRIBUTE_UNUSED,
scan_ldst (struct sra_elt *elt, tree other ATTRIBUTE_UNUSED,
           block_stmt_iterator *bsi ATTRIBUTE_UNUSED,
           block_stmt_iterator *bsi ATTRIBUTE_UNUSED,
           bool is_output ATTRIBUTE_UNUSED)
           bool is_output ATTRIBUTE_UNUSED)
{
{
  elt->n_copies += 1;
  elt->n_copies += 1;
}
}
 
 
/* Dump the values we collected during the scanning phase.  */
/* Dump the values we collected during the scanning phase.  */
 
 
static void
static void
scan_dump (struct sra_elt *elt)
scan_dump (struct sra_elt *elt)
{
{
  struct sra_elt *c;
  struct sra_elt *c;
 
 
  dump_sra_elt_name (dump_file, elt);
  dump_sra_elt_name (dump_file, elt);
  fprintf (dump_file, ": n_uses=%u n_copies=%u\n", elt->n_uses, elt->n_copies);
  fprintf (dump_file, ": n_uses=%u n_copies=%u\n", elt->n_uses, elt->n_copies);
 
 
  for (c = elt->children; c ; c = c->sibling)
  for (c = elt->children; c ; c = c->sibling)
    scan_dump (c);
    scan_dump (c);
 
 
  for (c = elt->groups; c ; c = c->sibling)
  for (c = elt->groups; c ; c = c->sibling)
    scan_dump (c);
    scan_dump (c);
}
}
 
 
/* Entry point to phase 2.  Scan the entire function, building up
/* Entry point to phase 2.  Scan the entire function, building up
   scalarization data structures, recording copies and uses.  */
   scalarization data structures, recording copies and uses.  */
 
 
static void
static void
scan_function (void)
scan_function (void)
{
{
  static const struct sra_walk_fns fns = {
  static const struct sra_walk_fns fns = {
    scan_use, scan_copy, scan_init, scan_ldst, true
    scan_use, scan_copy, scan_init, scan_ldst, true
  };
  };
  bitmap_iterator bi;
  bitmap_iterator bi;
 
 
  sra_walk_function (&fns);
  sra_walk_function (&fns);
 
 
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
    {
      unsigned i;
      unsigned i;
 
 
      fputs ("\nScan results:\n", dump_file);
      fputs ("\nScan results:\n", dump_file);
      EXECUTE_IF_SET_IN_BITMAP (sra_candidates, 0, i, bi)
      EXECUTE_IF_SET_IN_BITMAP (sra_candidates, 0, i, bi)
        {
        {
          tree var = referenced_var (i);
          tree var = referenced_var (i);
          struct sra_elt *elt = lookup_element (NULL, var, NULL, NO_INSERT);
          struct sra_elt *elt = lookup_element (NULL, var, NULL, NO_INSERT);
          if (elt)
          if (elt)
            scan_dump (elt);
            scan_dump (elt);
        }
        }
      fputc ('\n', dump_file);
      fputc ('\n', dump_file);
    }
    }
}
}


/* Phase Three: Make decisions about which variables to scalarize, if any.
/* Phase Three: Make decisions about which variables to scalarize, if any.
   All elements to be scalarized have replacement variables made for them.  */
   All elements to be scalarized have replacement variables made for them.  */
 
 
/* A subroutine of build_element_name.  Recursively build the element
/* A subroutine of build_element_name.  Recursively build the element
   name on the obstack.  */
   name on the obstack.  */
 
 
static void
static void
build_element_name_1 (struct sra_elt *elt)
build_element_name_1 (struct sra_elt *elt)
{
{
  tree t;
  tree t;
  char buffer[32];
  char buffer[32];
 
 
  if (elt->parent)
  if (elt->parent)
    {
    {
      build_element_name_1 (elt->parent);
      build_element_name_1 (elt->parent);
      obstack_1grow (&sra_obstack, '$');
      obstack_1grow (&sra_obstack, '$');
 
 
      if (TREE_CODE (elt->parent->type) == COMPLEX_TYPE)
      if (TREE_CODE (elt->parent->type) == COMPLEX_TYPE)
        {
        {
          if (elt->element == integer_zero_node)
          if (elt->element == integer_zero_node)
            obstack_grow (&sra_obstack, "real", 4);
            obstack_grow (&sra_obstack, "real", 4);
          else
          else
            obstack_grow (&sra_obstack, "imag", 4);
            obstack_grow (&sra_obstack, "imag", 4);
          return;
          return;
        }
        }
    }
    }
 
 
  t = elt->element;
  t = elt->element;
  if (TREE_CODE (t) == INTEGER_CST)
  if (TREE_CODE (t) == INTEGER_CST)
    {
    {
      /* ??? Eh.  Don't bother doing double-wide printing.  */
      /* ??? Eh.  Don't bother doing double-wide printing.  */
      sprintf (buffer, HOST_WIDE_INT_PRINT_DEC, TREE_INT_CST_LOW (t));
      sprintf (buffer, HOST_WIDE_INT_PRINT_DEC, TREE_INT_CST_LOW (t));
      obstack_grow (&sra_obstack, buffer, strlen (buffer));
      obstack_grow (&sra_obstack, buffer, strlen (buffer));
    }
    }
  else
  else
    {
    {
      tree name = DECL_NAME (t);
      tree name = DECL_NAME (t);
      if (name)
      if (name)
        obstack_grow (&sra_obstack, IDENTIFIER_POINTER (name),
        obstack_grow (&sra_obstack, IDENTIFIER_POINTER (name),
                      IDENTIFIER_LENGTH (name));
                      IDENTIFIER_LENGTH (name));
      else
      else
        {
        {
          sprintf (buffer, "D%u", DECL_UID (t));
          sprintf (buffer, "D%u", DECL_UID (t));
          obstack_grow (&sra_obstack, buffer, strlen (buffer));
          obstack_grow (&sra_obstack, buffer, strlen (buffer));
        }
        }
    }
    }
}
}
 
 
/* Construct a pretty variable name for an element's replacement variable.
/* Construct a pretty variable name for an element's replacement variable.
   The name is built on the obstack.  */
   The name is built on the obstack.  */
 
 
static char *
static char *
build_element_name (struct sra_elt *elt)
build_element_name (struct sra_elt *elt)
{
{
  build_element_name_1 (elt);
  build_element_name_1 (elt);
  obstack_1grow (&sra_obstack, '\0');
  obstack_1grow (&sra_obstack, '\0');
  return XOBFINISH (&sra_obstack, char *);
  return XOBFINISH (&sra_obstack, char *);
}
}
 
 
/* Instantiate an element as an independent variable.  */
/* Instantiate an element as an independent variable.  */
 
 
static void
static void
instantiate_element (struct sra_elt *elt)
instantiate_element (struct sra_elt *elt)
{
{
  struct sra_elt *base_elt;
  struct sra_elt *base_elt;
  tree var, base;
  tree var, base;
 
 
  for (base_elt = elt; base_elt->parent; base_elt = base_elt->parent)
  for (base_elt = elt; base_elt->parent; base_elt = base_elt->parent)
    continue;
    continue;
  base = base_elt->element;
  base = base_elt->element;
 
 
  elt->replacement = var = make_rename_temp (elt->type, "SR");
  elt->replacement = var = make_rename_temp (elt->type, "SR");
  DECL_SOURCE_LOCATION (var) = DECL_SOURCE_LOCATION (base);
  DECL_SOURCE_LOCATION (var) = DECL_SOURCE_LOCATION (base);
  DECL_ARTIFICIAL (var) = 1;
  DECL_ARTIFICIAL (var) = 1;
 
 
  if (TREE_THIS_VOLATILE (elt->type))
  if (TREE_THIS_VOLATILE (elt->type))
    {
    {
      TREE_THIS_VOLATILE (var) = 1;
      TREE_THIS_VOLATILE (var) = 1;
      TREE_SIDE_EFFECTS (var) = 1;
      TREE_SIDE_EFFECTS (var) = 1;
    }
    }
 
 
  if (DECL_NAME (base) && !DECL_IGNORED_P (base))
  if (DECL_NAME (base) && !DECL_IGNORED_P (base))
    {
    {
      char *pretty_name = build_element_name (elt);
      char *pretty_name = build_element_name (elt);
      DECL_NAME (var) = get_identifier (pretty_name);
      DECL_NAME (var) = get_identifier (pretty_name);
      obstack_free (&sra_obstack, pretty_name);
      obstack_free (&sra_obstack, pretty_name);
 
 
      SET_DECL_DEBUG_EXPR (var, generate_element_ref (elt));
      SET_DECL_DEBUG_EXPR (var, generate_element_ref (elt));
      DECL_DEBUG_EXPR_IS_FROM (var) = 1;
      DECL_DEBUG_EXPR_IS_FROM (var) = 1;
 
 
      DECL_IGNORED_P (var) = 0;
      DECL_IGNORED_P (var) = 0;
      TREE_NO_WARNING (var) = TREE_NO_WARNING (base);
      TREE_NO_WARNING (var) = TREE_NO_WARNING (base);
    }
    }
  else
  else
    {
    {
      DECL_IGNORED_P (var) = 1;
      DECL_IGNORED_P (var) = 1;
      /* ??? We can't generate any warning that would be meaningful.  */
      /* ??? We can't generate any warning that would be meaningful.  */
      TREE_NO_WARNING (var) = 1;
      TREE_NO_WARNING (var) = 1;
    }
    }
 
 
  if (dump_file)
  if (dump_file)
    {
    {
      fputs ("  ", dump_file);
      fputs ("  ", dump_file);
      dump_sra_elt_name (dump_file, elt);
      dump_sra_elt_name (dump_file, elt);
      fputs (" -> ", dump_file);
      fputs (" -> ", dump_file);
      print_generic_expr (dump_file, var, dump_flags);
      print_generic_expr (dump_file, var, dump_flags);
      fputc ('\n', dump_file);
      fputc ('\n', dump_file);
    }
    }
}
}
 
 
/* Make one pass across an element tree deciding whether or not it's
/* Make one pass across an element tree deciding whether or not it's
   profitable to instantiate individual leaf scalars.
   profitable to instantiate individual leaf scalars.
 
 
   PARENT_USES and PARENT_COPIES are the sum of the N_USES and N_COPIES
   PARENT_USES and PARENT_COPIES are the sum of the N_USES and N_COPIES
   fields all the way up the tree.  */
   fields all the way up the tree.  */
 
 
static void
static void
decide_instantiation_1 (struct sra_elt *elt, unsigned int parent_uses,
decide_instantiation_1 (struct sra_elt *elt, unsigned int parent_uses,
                        unsigned int parent_copies)
                        unsigned int parent_copies)
{
{
  if (dump_file && !elt->parent)
  if (dump_file && !elt->parent)
    {
    {
      fputs ("Initial instantiation for ", dump_file);
      fputs ("Initial instantiation for ", dump_file);
      dump_sra_elt_name (dump_file, elt);
      dump_sra_elt_name (dump_file, elt);
      fputc ('\n', dump_file);
      fputc ('\n', dump_file);
    }
    }
 
 
  if (elt->cannot_scalarize)
  if (elt->cannot_scalarize)
    return;
    return;
 
 
  if (elt->is_scalar)
  if (elt->is_scalar)
    {
    {
      /* The decision is simple: instantiate if we're used more frequently
      /* The decision is simple: instantiate if we're used more frequently
         than the parent needs to be seen as a complete unit.  */
         than the parent needs to be seen as a complete unit.  */
      if (elt->n_uses + elt->n_copies + parent_copies > parent_uses)
      if (elt->n_uses + elt->n_copies + parent_copies > parent_uses)
        instantiate_element (elt);
        instantiate_element (elt);
    }
    }
  else
  else
    {
    {
      struct sra_elt *c, *group;
      struct sra_elt *c, *group;
      unsigned int this_uses = elt->n_uses + parent_uses;
      unsigned int this_uses = elt->n_uses + parent_uses;
      unsigned int this_copies = elt->n_copies + parent_copies;
      unsigned int this_copies = elt->n_copies + parent_copies;
 
 
      /* Consider groups of sub-elements as weighing in favour of
      /* Consider groups of sub-elements as weighing in favour of
         instantiation whatever their size.  */
         instantiation whatever their size.  */
      for (group = elt->groups; group ; group = group->sibling)
      for (group = elt->groups; group ; group = group->sibling)
        FOR_EACH_ACTUAL_CHILD (c, group)
        FOR_EACH_ACTUAL_CHILD (c, group)
          {
          {
            c->n_uses += group->n_uses;
            c->n_uses += group->n_uses;
            c->n_copies += group->n_copies;
            c->n_copies += group->n_copies;
          }
          }
 
 
      for (c = elt->children; c ; c = c->sibling)
      for (c = elt->children; c ; c = c->sibling)
        decide_instantiation_1 (c, this_uses, this_copies);
        decide_instantiation_1 (c, this_uses, this_copies);
    }
    }
}
}
 
 
/* Compute the size and number of all instantiated elements below ELT.
/* Compute the size and number of all instantiated elements below ELT.
   We will only care about this if the size of the complete structure
   We will only care about this if the size of the complete structure
   fits in a HOST_WIDE_INT, so we don't have to worry about overflow.  */
   fits in a HOST_WIDE_INT, so we don't have to worry about overflow.  */
 
 
static unsigned int
static unsigned int
sum_instantiated_sizes (struct sra_elt *elt, unsigned HOST_WIDE_INT *sizep)
sum_instantiated_sizes (struct sra_elt *elt, unsigned HOST_WIDE_INT *sizep)
{
{
  if (elt->replacement)
  if (elt->replacement)
    {
    {
      *sizep += TREE_INT_CST_LOW (TYPE_SIZE_UNIT (elt->type));
      *sizep += TREE_INT_CST_LOW (TYPE_SIZE_UNIT (elt->type));
      return 1;
      return 1;
    }
    }
  else
  else
    {
    {
      struct sra_elt *c;
      struct sra_elt *c;
      unsigned int count = 0;
      unsigned int count = 0;
 
 
      for (c = elt->children; c ; c = c->sibling)
      for (c = elt->children; c ; c = c->sibling)
        count += sum_instantiated_sizes (c, sizep);
        count += sum_instantiated_sizes (c, sizep);
 
 
      return count;
      return count;
    }
    }
}
}
 
 
/* Instantiate fields in ELT->TYPE that are not currently present as
/* Instantiate fields in ELT->TYPE that are not currently present as
   children of ELT.  */
   children of ELT.  */
 
 
static void instantiate_missing_elements (struct sra_elt *elt);
static void instantiate_missing_elements (struct sra_elt *elt);
 
 
static void
static void
instantiate_missing_elements_1 (struct sra_elt *elt, tree child, tree type)
instantiate_missing_elements_1 (struct sra_elt *elt, tree child, tree type)
{
{
  struct sra_elt *sub = lookup_element (elt, child, type, INSERT);
  struct sra_elt *sub = lookup_element (elt, child, type, INSERT);
  if (sub->is_scalar)
  if (sub->is_scalar)
    {
    {
      if (sub->replacement == NULL)
      if (sub->replacement == NULL)
        instantiate_element (sub);
        instantiate_element (sub);
    }
    }
  else
  else
    instantiate_missing_elements (sub);
    instantiate_missing_elements (sub);
}
}
 
 
static void
static void
instantiate_missing_elements (struct sra_elt *elt)
instantiate_missing_elements (struct sra_elt *elt)
{
{
  tree type = elt->type;
  tree type = elt->type;
 
 
  switch (TREE_CODE (type))
  switch (TREE_CODE (type))
    {
    {
    case RECORD_TYPE:
    case RECORD_TYPE:
      {
      {
        tree f;
        tree f;
        for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
        for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
          if (TREE_CODE (f) == FIELD_DECL)
          if (TREE_CODE (f) == FIELD_DECL)
            {
            {
              tree field_type = TREE_TYPE (f);
              tree field_type = TREE_TYPE (f);
 
 
              /* canonicalize_component_ref() unwidens some bit-field
              /* canonicalize_component_ref() unwidens some bit-field
                 types (not marked as DECL_BIT_FIELD in C++), so we
                 types (not marked as DECL_BIT_FIELD in C++), so we
                 must do the same, lest we may introduce type
                 must do the same, lest we may introduce type
                 mismatches.  */
                 mismatches.  */
              if (INTEGRAL_TYPE_P (field_type)
              if (INTEGRAL_TYPE_P (field_type)
                  && DECL_MODE (f) != TYPE_MODE (field_type))
                  && DECL_MODE (f) != TYPE_MODE (field_type))
                field_type = TREE_TYPE (get_unwidened (build3 (COMPONENT_REF,
                field_type = TREE_TYPE (get_unwidened (build3 (COMPONENT_REF,
                                                               field_type,
                                                               field_type,
                                                               elt->element,
                                                               elt->element,
                                                               f, NULL_TREE),
                                                               f, NULL_TREE),
                                                       NULL_TREE));
                                                       NULL_TREE));
 
 
              instantiate_missing_elements_1 (elt, f, field_type);
              instantiate_missing_elements_1 (elt, f, field_type);
            }
            }
        break;
        break;
      }
      }
 
 
    case ARRAY_TYPE:
    case ARRAY_TYPE:
      {
      {
        tree i, max, subtype;
        tree i, max, subtype;
 
 
        i = TYPE_MIN_VALUE (TYPE_DOMAIN (type));
        i = TYPE_MIN_VALUE (TYPE_DOMAIN (type));
        max = TYPE_MAX_VALUE (TYPE_DOMAIN (type));
        max = TYPE_MAX_VALUE (TYPE_DOMAIN (type));
        subtype = TREE_TYPE (type);
        subtype = TREE_TYPE (type);
 
 
        while (1)
        while (1)
          {
          {
            instantiate_missing_elements_1 (elt, i, subtype);
            instantiate_missing_elements_1 (elt, i, subtype);
            if (tree_int_cst_equal (i, max))
            if (tree_int_cst_equal (i, max))
              break;
              break;
            i = int_const_binop (PLUS_EXPR, i, integer_one_node, true);
            i = int_const_binop (PLUS_EXPR, i, integer_one_node, true);
          }
          }
 
 
        break;
        break;
      }
      }
 
 
    case COMPLEX_TYPE:
    case COMPLEX_TYPE:
      type = TREE_TYPE (type);
      type = TREE_TYPE (type);
      instantiate_missing_elements_1 (elt, integer_zero_node, type);
      instantiate_missing_elements_1 (elt, integer_zero_node, type);
      instantiate_missing_elements_1 (elt, integer_one_node, type);
      instantiate_missing_elements_1 (elt, integer_one_node, type);
      break;
      break;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}
 
 
/* Make one pass across an element tree deciding whether to perform block
/* Make one pass across an element tree deciding whether to perform block
   or element copies.  If we decide on element copies, instantiate all
   or element copies.  If we decide on element copies, instantiate all
   elements.  Return true if there are any instantiated sub-elements.  */
   elements.  Return true if there are any instantiated sub-elements.  */
 
 
static bool
static bool
decide_block_copy (struct sra_elt *elt)
decide_block_copy (struct sra_elt *elt)
{
{
  struct sra_elt *c;
  struct sra_elt *c;
  bool any_inst;
  bool any_inst;
 
 
  /* We shouldn't be invoked on groups of sub-elements as they must
  /* We shouldn't be invoked on groups of sub-elements as they must
     behave like their parent as far as block copy is concerned.  */
     behave like their parent as far as block copy is concerned.  */
  gcc_assert (!elt->is_group);
  gcc_assert (!elt->is_group);
 
 
  /* If scalarization is disabled, respect it.  */
  /* If scalarization is disabled, respect it.  */
  if (elt->cannot_scalarize)
  if (elt->cannot_scalarize)
    {
    {
      elt->use_block_copy = 1;
      elt->use_block_copy = 1;
 
 
      if (dump_file)
      if (dump_file)
        {
        {
          fputs ("Scalarization disabled for ", dump_file);
          fputs ("Scalarization disabled for ", dump_file);
          dump_sra_elt_name (dump_file, elt);
          dump_sra_elt_name (dump_file, elt);
          fputc ('\n', dump_file);
          fputc ('\n', dump_file);
        }
        }
 
 
      /* Disable scalarization of sub-elements */
      /* Disable scalarization of sub-elements */
      for (c = elt->children; c; c = c->sibling)
      for (c = elt->children; c; c = c->sibling)
        {
        {
          c->cannot_scalarize = 1;
          c->cannot_scalarize = 1;
          decide_block_copy (c);
          decide_block_copy (c);
        }
        }
 
 
      /* Groups behave like their parent.  */
      /* Groups behave like their parent.  */
      for (c = elt->groups; c; c = c->sibling)
      for (c = elt->groups; c; c = c->sibling)
        {
        {
          c->cannot_scalarize = 1;
          c->cannot_scalarize = 1;
          c->use_block_copy = 1;
          c->use_block_copy = 1;
        }
        }
 
 
      return false;
      return false;
    }
    }
 
 
  /* Don't decide if we've no uses.  */
  /* Don't decide if we've no uses.  */
  if (elt->n_uses == 0 && elt->n_copies == 0)
  if (elt->n_uses == 0 && elt->n_copies == 0)
    ;
    ;
 
 
  else if (!elt->is_scalar)
  else if (!elt->is_scalar)
    {
    {
      tree size_tree = TYPE_SIZE_UNIT (elt->type);
      tree size_tree = TYPE_SIZE_UNIT (elt->type);
      bool use_block_copy = true;
      bool use_block_copy = true;
 
 
      /* Tradeoffs for COMPLEX types pretty much always make it better
      /* Tradeoffs for COMPLEX types pretty much always make it better
         to go ahead and split the components.  */
         to go ahead and split the components.  */
      if (TREE_CODE (elt->type) == COMPLEX_TYPE)
      if (TREE_CODE (elt->type) == COMPLEX_TYPE)
        use_block_copy = false;
        use_block_copy = false;
 
 
      /* Don't bother trying to figure out the rest if the structure is
      /* Don't bother trying to figure out the rest if the structure is
         so large we can't do easy arithmetic.  This also forces block
         so large we can't do easy arithmetic.  This also forces block
         copies for variable sized structures.  */
         copies for variable sized structures.  */
      else if (host_integerp (size_tree, 1))
      else if (host_integerp (size_tree, 1))
        {
        {
          unsigned HOST_WIDE_INT full_size, inst_size = 0;
          unsigned HOST_WIDE_INT full_size, inst_size = 0;
          unsigned int max_size, max_count, inst_count, full_count;
          unsigned int max_size, max_count, inst_count, full_count;
 
 
          /* If the sra-max-structure-size parameter is 0, then the
          /* If the sra-max-structure-size parameter is 0, then the
             user has not overridden the parameter and we can choose a
             user has not overridden the parameter and we can choose a
             sensible default.  */
             sensible default.  */
          max_size = SRA_MAX_STRUCTURE_SIZE
          max_size = SRA_MAX_STRUCTURE_SIZE
            ? SRA_MAX_STRUCTURE_SIZE
            ? SRA_MAX_STRUCTURE_SIZE
            : MOVE_RATIO * UNITS_PER_WORD;
            : MOVE_RATIO * UNITS_PER_WORD;
          max_count = SRA_MAX_STRUCTURE_COUNT
          max_count = SRA_MAX_STRUCTURE_COUNT
            ? SRA_MAX_STRUCTURE_COUNT
            ? SRA_MAX_STRUCTURE_COUNT
            : MOVE_RATIO;
            : MOVE_RATIO;
 
 
          full_size = tree_low_cst (size_tree, 1);
          full_size = tree_low_cst (size_tree, 1);
          full_count = count_type_elements (elt->type, false);
          full_count = count_type_elements (elt->type, false);
          inst_count = sum_instantiated_sizes (elt, &inst_size);
          inst_count = sum_instantiated_sizes (elt, &inst_size);
 
 
          /* ??? What to do here.  If there are two fields, and we've only
          /* ??? What to do here.  If there are two fields, and we've only
             instantiated one, then instantiating the other is clearly a win.
             instantiated one, then instantiating the other is clearly a win.
             If there are a large number of fields then the size of the copy
             If there are a large number of fields then the size of the copy
             is much more of a factor.  */
             is much more of a factor.  */
 
 
          /* If the structure is small, and we've made copies, go ahead
          /* If the structure is small, and we've made copies, go ahead
             and instantiate, hoping that the copies will go away.  */
             and instantiate, hoping that the copies will go away.  */
          if (full_size <= max_size
          if (full_size <= max_size
              && (full_count - inst_count) <= max_count
              && (full_count - inst_count) <= max_count
              && elt->n_copies > elt->n_uses)
              && elt->n_copies > elt->n_uses)
            use_block_copy = false;
            use_block_copy = false;
          else if (inst_count * 100 >= full_count * SRA_FIELD_STRUCTURE_RATIO
          else if (inst_count * 100 >= full_count * SRA_FIELD_STRUCTURE_RATIO
                   && inst_size * 100 >= full_size * SRA_FIELD_STRUCTURE_RATIO)
                   && inst_size * 100 >= full_size * SRA_FIELD_STRUCTURE_RATIO)
            use_block_copy = false;
            use_block_copy = false;
 
 
          /* In order to avoid block copy, we have to be able to instantiate
          /* In order to avoid block copy, we have to be able to instantiate
             all elements of the type.  See if this is possible.  */
             all elements of the type.  See if this is possible.  */
          if (!use_block_copy
          if (!use_block_copy
              && (!can_completely_scalarize_p (elt)
              && (!can_completely_scalarize_p (elt)
                  || !type_can_instantiate_all_elements (elt->type)))
                  || !type_can_instantiate_all_elements (elt->type)))
            use_block_copy = true;
            use_block_copy = true;
        }
        }
 
 
      elt->use_block_copy = use_block_copy;
      elt->use_block_copy = use_block_copy;
 
 
      /* Groups behave like their parent.  */
      /* Groups behave like their parent.  */
      for (c = elt->groups; c; c = c->sibling)
      for (c = elt->groups; c; c = c->sibling)
        c->use_block_copy = use_block_copy;
        c->use_block_copy = use_block_copy;
 
 
      if (dump_file)
      if (dump_file)
        {
        {
          fprintf (dump_file, "Using %s for ",
          fprintf (dump_file, "Using %s for ",
                   use_block_copy ? "block-copy" : "element-copy");
                   use_block_copy ? "block-copy" : "element-copy");
          dump_sra_elt_name (dump_file, elt);
          dump_sra_elt_name (dump_file, elt);
          fputc ('\n', dump_file);
          fputc ('\n', dump_file);
        }
        }
 
 
      if (!use_block_copy)
      if (!use_block_copy)
        {
        {
          instantiate_missing_elements (elt);
          instantiate_missing_elements (elt);
          return true;
          return true;
        }
        }
    }
    }
 
 
  any_inst = elt->replacement != NULL;
  any_inst = elt->replacement != NULL;
 
 
  for (c = elt->children; c ; c = c->sibling)
  for (c = elt->children; c ; c = c->sibling)
    any_inst |= decide_block_copy (c);
    any_inst |= decide_block_copy (c);
 
 
  return any_inst;
  return any_inst;
}
}
 
 
/* Entry point to phase 3.  Instantiate scalar replacement variables.  */
/* Entry point to phase 3.  Instantiate scalar replacement variables.  */
 
 
static void
static void
decide_instantiations (void)
decide_instantiations (void)
{
{
  unsigned int i;
  unsigned int i;
  bool cleared_any;
  bool cleared_any;
  bitmap_head done_head;
  bitmap_head done_head;
  bitmap_iterator bi;
  bitmap_iterator bi;
 
 
  /* We cannot clear bits from a bitmap we're iterating over,
  /* We cannot clear bits from a bitmap we're iterating over,
     so save up all the bits to clear until the end.  */
     so save up all the bits to clear until the end.  */
  bitmap_initialize (&done_head, &bitmap_default_obstack);
  bitmap_initialize (&done_head, &bitmap_default_obstack);
  cleared_any = false;
  cleared_any = false;
 
 
  EXECUTE_IF_SET_IN_BITMAP (sra_candidates, 0, i, bi)
  EXECUTE_IF_SET_IN_BITMAP (sra_candidates, 0, i, bi)
    {
    {
      tree var = referenced_var (i);
      tree var = referenced_var (i);
      struct sra_elt *elt = lookup_element (NULL, var, NULL, NO_INSERT);
      struct sra_elt *elt = lookup_element (NULL, var, NULL, NO_INSERT);
      if (elt)
      if (elt)
        {
        {
          decide_instantiation_1 (elt, 0, 0);
          decide_instantiation_1 (elt, 0, 0);
          if (!decide_block_copy (elt))
          if (!decide_block_copy (elt))
            elt = NULL;
            elt = NULL;
        }
        }
      if (!elt)
      if (!elt)
        {
        {
          bitmap_set_bit (&done_head, i);
          bitmap_set_bit (&done_head, i);
          cleared_any = true;
          cleared_any = true;
        }
        }
    }
    }
 
 
  if (cleared_any)
  if (cleared_any)
    {
    {
      bitmap_and_compl_into (sra_candidates, &done_head);
      bitmap_and_compl_into (sra_candidates, &done_head);
      bitmap_and_compl_into (needs_copy_in, &done_head);
      bitmap_and_compl_into (needs_copy_in, &done_head);
    }
    }
  bitmap_clear (&done_head);
  bitmap_clear (&done_head);
 
 
  if (!bitmap_empty_p (sra_candidates))
  if (!bitmap_empty_p (sra_candidates))
    todoflags |= TODO_update_smt_usage;
    todoflags |= TODO_update_smt_usage;
 
 
  mark_set_for_renaming (sra_candidates);
  mark_set_for_renaming (sra_candidates);
 
 
  if (dump_file)
  if (dump_file)
    fputc ('\n', dump_file);
    fputc ('\n', dump_file);
}
}
 
 


/* Phase Four: Update the function to match the replacements created.  */
/* Phase Four: Update the function to match the replacements created.  */
 
 
/* Mark all the variables in V_MAY_DEF or V_MUST_DEF operands for STMT for
/* Mark all the variables in V_MAY_DEF or V_MUST_DEF operands for STMT for
   renaming. This becomes necessary when we modify all of a non-scalar.  */
   renaming. This becomes necessary when we modify all of a non-scalar.  */
 
 
static void
static void
mark_all_v_defs_1 (tree stmt)
mark_all_v_defs_1 (tree stmt)
{
{
  tree sym;
  tree sym;
  ssa_op_iter iter;
  ssa_op_iter iter;
 
 
  update_stmt_if_modified (stmt);
  update_stmt_if_modified (stmt);
 
 
  FOR_EACH_SSA_TREE_OPERAND (sym, stmt, iter, SSA_OP_ALL_VIRTUALS)
  FOR_EACH_SSA_TREE_OPERAND (sym, stmt, iter, SSA_OP_ALL_VIRTUALS)
    {
    {
      if (TREE_CODE (sym) == SSA_NAME)
      if (TREE_CODE (sym) == SSA_NAME)
        sym = SSA_NAME_VAR (sym);
        sym = SSA_NAME_VAR (sym);
      mark_sym_for_renaming (sym);
      mark_sym_for_renaming (sym);
    }
    }
}
}
 
 
 
 
/* Mark all the variables in virtual operands in all the statements in
/* Mark all the variables in virtual operands in all the statements in
   LIST for renaming.  */
   LIST for renaming.  */
 
 
static void
static void
mark_all_v_defs (tree list)
mark_all_v_defs (tree list)
{
{
  if (TREE_CODE (list) != STATEMENT_LIST)
  if (TREE_CODE (list) != STATEMENT_LIST)
    mark_all_v_defs_1 (list);
    mark_all_v_defs_1 (list);
  else
  else
    {
    {
      tree_stmt_iterator i;
      tree_stmt_iterator i;
      for (i = tsi_start (list); !tsi_end_p (i); tsi_next (&i))
      for (i = tsi_start (list); !tsi_end_p (i); tsi_next (&i))
        mark_all_v_defs_1 (tsi_stmt (i));
        mark_all_v_defs_1 (tsi_stmt (i));
    }
    }
}
}
 
 
/* Mark every replacement under ELT with TREE_NO_WARNING.  */
/* Mark every replacement under ELT with TREE_NO_WARNING.  */
 
 
static void
static void
mark_no_warning (struct sra_elt *elt)
mark_no_warning (struct sra_elt *elt)
{
{
  if (!elt->all_no_warning)
  if (!elt->all_no_warning)
    {
    {
      if (elt->replacement)
      if (elt->replacement)
        TREE_NO_WARNING (elt->replacement) = 1;
        TREE_NO_WARNING (elt->replacement) = 1;
      else
      else
        {
        {
          struct sra_elt *c;
          struct sra_elt *c;
          FOR_EACH_ACTUAL_CHILD (c, elt)
          FOR_EACH_ACTUAL_CHILD (c, elt)
            mark_no_warning (c);
            mark_no_warning (c);
        }
        }
      elt->all_no_warning = true;
      elt->all_no_warning = true;
    }
    }
}
}
 
 
/* Build a single level component reference to ELT rooted at BASE.  */
/* Build a single level component reference to ELT rooted at BASE.  */
 
 
static tree
static tree
generate_one_element_ref (struct sra_elt *elt, tree base)
generate_one_element_ref (struct sra_elt *elt, tree base)
{
{
  switch (TREE_CODE (TREE_TYPE (base)))
  switch (TREE_CODE (TREE_TYPE (base)))
    {
    {
    case RECORD_TYPE:
    case RECORD_TYPE:
      {
      {
        tree field = elt->element;
        tree field = elt->element;
 
 
        /* Watch out for compatible records with differing field lists.  */
        /* Watch out for compatible records with differing field lists.  */
        if (DECL_FIELD_CONTEXT (field) != TYPE_MAIN_VARIANT (TREE_TYPE (base)))
        if (DECL_FIELD_CONTEXT (field) != TYPE_MAIN_VARIANT (TREE_TYPE (base)))
          field = find_compatible_field (TREE_TYPE (base), field);
          field = find_compatible_field (TREE_TYPE (base), field);
 
 
        return build3 (COMPONENT_REF, elt->type, base, field, NULL);
        return build3 (COMPONENT_REF, elt->type, base, field, NULL);
      }
      }
 
 
    case ARRAY_TYPE:
    case ARRAY_TYPE:
      todoflags |= TODO_update_smt_usage;
      todoflags |= TODO_update_smt_usage;
      if (TREE_CODE (elt->element) == RANGE_EXPR)
      if (TREE_CODE (elt->element) == RANGE_EXPR)
        return build4 (ARRAY_RANGE_REF, elt->type, base,
        return build4 (ARRAY_RANGE_REF, elt->type, base,
                       TREE_OPERAND (elt->element, 0), NULL, NULL);
                       TREE_OPERAND (elt->element, 0), NULL, NULL);
      else
      else
        return build4 (ARRAY_REF, elt->type, base, elt->element, NULL, NULL);
        return build4 (ARRAY_REF, elt->type, base, elt->element, NULL, NULL);
 
 
    case COMPLEX_TYPE:
    case COMPLEX_TYPE:
      if (elt->element == integer_zero_node)
      if (elt->element == integer_zero_node)
        return build1 (REALPART_EXPR, elt->type, base);
        return build1 (REALPART_EXPR, elt->type, base);
      else
      else
        return build1 (IMAGPART_EXPR, elt->type, base);
        return build1 (IMAGPART_EXPR, elt->type, base);
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}
 
 
/* Build a full component reference to ELT rooted at its native variable.  */
/* Build a full component reference to ELT rooted at its native variable.  */
 
 
static tree
static tree
generate_element_ref (struct sra_elt *elt)
generate_element_ref (struct sra_elt *elt)
{
{
  if (elt->parent)
  if (elt->parent)
    return generate_one_element_ref (elt, generate_element_ref (elt->parent));
    return generate_one_element_ref (elt, generate_element_ref (elt->parent));
  else
  else
    return elt->element;
    return elt->element;
}
}
 
 
static tree
static tree
sra_build_assignment (tree dst, tree src)
sra_build_assignment (tree dst, tree src)
{
{
  /* We need TYPE_CANONICAL to compare the types of dst and src
  /* We need TYPE_CANONICAL to compare the types of dst and src
     efficiently, but that's only introduced in GCC 4.3.  */
     efficiently, but that's only introduced in GCC 4.3.  */
  return build2 (MODIFY_EXPR, void_type_node, dst, src);
  return build2 (MODIFY_EXPR, void_type_node, dst, src);
}
}
 
 
/* Generate a set of assignment statements in *LIST_P to copy all
/* Generate a set of assignment statements in *LIST_P to copy all
   instantiated elements under ELT to or from the equivalent structure
   instantiated elements under ELT to or from the equivalent structure
   rooted at EXPR.  COPY_OUT controls the direction of the copy, with
   rooted at EXPR.  COPY_OUT controls the direction of the copy, with
   true meaning to copy out of EXPR into ELT.  */
   true meaning to copy out of EXPR into ELT.  */
 
 
static void
static void
generate_copy_inout (struct sra_elt *elt, bool copy_out, tree expr,
generate_copy_inout (struct sra_elt *elt, bool copy_out, tree expr,
                     tree *list_p)
                     tree *list_p)
{
{
  struct sra_elt *c;
  struct sra_elt *c;
  tree t;
  tree t;
 
 
  if (!copy_out && TREE_CODE (expr) == SSA_NAME
  if (!copy_out && TREE_CODE (expr) == SSA_NAME
      && TREE_CODE (TREE_TYPE (expr)) == COMPLEX_TYPE)
      && TREE_CODE (TREE_TYPE (expr)) == COMPLEX_TYPE)
    {
    {
      tree r, i;
      tree r, i;
 
 
      c = lookup_element (elt, integer_zero_node, NULL, NO_INSERT);
      c = lookup_element (elt, integer_zero_node, NULL, NO_INSERT);
      r = c->replacement;
      r = c->replacement;
      c = lookup_element (elt, integer_one_node, NULL, NO_INSERT);
      c = lookup_element (elt, integer_one_node, NULL, NO_INSERT);
      i = c->replacement;
      i = c->replacement;
 
 
      t = build2 (COMPLEX_EXPR, elt->type, r, i);
      t = build2 (COMPLEX_EXPR, elt->type, r, i);
      t = sra_build_assignment (expr, t);
      t = sra_build_assignment (expr, t);
      SSA_NAME_DEF_STMT (expr) = t;
      SSA_NAME_DEF_STMT (expr) = t;
      append_to_statement_list (t, list_p);
      append_to_statement_list (t, list_p);
    }
    }
  else if (elt->replacement)
  else if (elt->replacement)
    {
    {
      if (copy_out)
      if (copy_out)
        t = sra_build_assignment (elt->replacement, expr);
        t = sra_build_assignment (elt->replacement, expr);
      else
      else
        t = sra_build_assignment (expr, elt->replacement);
        t = sra_build_assignment (expr, elt->replacement);
      append_to_statement_list (t, list_p);
      append_to_statement_list (t, list_p);
    }
    }
  else
  else
    {
    {
      FOR_EACH_ACTUAL_CHILD (c, elt)
      FOR_EACH_ACTUAL_CHILD (c, elt)
        {
        {
          t = generate_one_element_ref (c, unshare_expr (expr));
          t = generate_one_element_ref (c, unshare_expr (expr));
          generate_copy_inout (c, copy_out, t, list_p);
          generate_copy_inout (c, copy_out, t, list_p);
        }
        }
    }
    }
}
}
 
 
/* Generate a set of assignment statements in *LIST_P to copy all instantiated
/* Generate a set of assignment statements in *LIST_P to copy all instantiated
   elements under SRC to their counterparts under DST.  There must be a 1-1
   elements under SRC to their counterparts under DST.  There must be a 1-1
   correspondence of instantiated elements.  */
   correspondence of instantiated elements.  */
 
 
static void
static void
generate_element_copy (struct sra_elt *dst, struct sra_elt *src, tree *list_p)
generate_element_copy (struct sra_elt *dst, struct sra_elt *src, tree *list_p)
{
{
  struct sra_elt *dc, *sc;
  struct sra_elt *dc, *sc;
 
 
  FOR_EACH_ACTUAL_CHILD (dc, dst)
  FOR_EACH_ACTUAL_CHILD (dc, dst)
    {
    {
      sc = lookup_element (src, dc->element, NULL, NO_INSERT);
      sc = lookup_element (src, dc->element, NULL, NO_INSERT);
      gcc_assert (sc);
      gcc_assert (sc);
      generate_element_copy (dc, sc, list_p);
      generate_element_copy (dc, sc, list_p);
    }
    }
 
 
  if (dst->replacement)
  if (dst->replacement)
    {
    {
      tree t;
      tree t;
 
 
      gcc_assert (src->replacement);
      gcc_assert (src->replacement);
 
 
      t = sra_build_assignment (dst->replacement, src->replacement);
      t = sra_build_assignment (dst->replacement, src->replacement);
      append_to_statement_list (t, list_p);
      append_to_statement_list (t, list_p);
    }
    }
}
}
 
 
/* Generate a set of assignment statements in *LIST_P to zero all instantiated
/* Generate a set of assignment statements in *LIST_P to zero all instantiated
   elements under ELT.  In addition, do not assign to elements that have been
   elements under ELT.  In addition, do not assign to elements that have been
   marked VISITED but do reset the visited flag; this allows easy coordination
   marked VISITED but do reset the visited flag; this allows easy coordination
   with generate_element_init.  */
   with generate_element_init.  */
 
 
static void
static void
generate_element_zero (struct sra_elt *elt, tree *list_p)
generate_element_zero (struct sra_elt *elt, tree *list_p)
{
{
  struct sra_elt *c;
  struct sra_elt *c;
 
 
  if (elt->visited)
  if (elt->visited)
    {
    {
      elt->visited = false;
      elt->visited = false;
      return;
      return;
    }
    }
 
 
  FOR_EACH_ACTUAL_CHILD (c, elt)
  FOR_EACH_ACTUAL_CHILD (c, elt)
    generate_element_zero (c, list_p);
    generate_element_zero (c, list_p);
 
 
  if (elt->replacement)
  if (elt->replacement)
    {
    {
      tree t;
      tree t;
 
 
      gcc_assert (elt->is_scalar);
      gcc_assert (elt->is_scalar);
      t = fold_convert (elt->type, integer_zero_node);
      t = fold_convert (elt->type, integer_zero_node);
 
 
      t = sra_build_assignment (elt->replacement, t);
      t = sra_build_assignment (elt->replacement, t);
      append_to_statement_list (t, list_p);
      append_to_statement_list (t, list_p);
    }
    }
}
}
 
 
/* Generate an assignment VAR = INIT, where INIT may need gimplification.
/* Generate an assignment VAR = INIT, where INIT may need gimplification.
   Add the result to *LIST_P.  */
   Add the result to *LIST_P.  */
 
 
static void
static void
generate_one_element_init (tree var, tree init, tree *list_p)
generate_one_element_init (tree var, tree init, tree *list_p)
{
{
  /* The replacement can be almost arbitrarily complex.  Gimplify.  */
  /* The replacement can be almost arbitrarily complex.  Gimplify.  */
  tree stmt = sra_build_assignment (var, init);
  tree stmt = sra_build_assignment (var, init);
  gimplify_and_add (stmt, list_p);
  gimplify_and_add (stmt, list_p);
}
}
 
 
/* Generate a set of assignment statements in *LIST_P to set all instantiated
/* Generate a set of assignment statements in *LIST_P to set all instantiated
   elements under ELT with the contents of the initializer INIT.  In addition,
   elements under ELT with the contents of the initializer INIT.  In addition,
   mark all assigned elements VISITED; this allows easy coordination with
   mark all assigned elements VISITED; this allows easy coordination with
   generate_element_zero.  Return false if we found a case we couldn't
   generate_element_zero.  Return false if we found a case we couldn't
   handle.  */
   handle.  */
 
 
static bool
static bool
generate_element_init_1 (struct sra_elt *elt, tree init, tree *list_p)
generate_element_init_1 (struct sra_elt *elt, tree init, tree *list_p)
{
{
  bool result = true;
  bool result = true;
  enum tree_code init_code;
  enum tree_code init_code;
  struct sra_elt *sub;
  struct sra_elt *sub;
  tree t;
  tree t;
  unsigned HOST_WIDE_INT idx;
  unsigned HOST_WIDE_INT idx;
  tree value, purpose;
  tree value, purpose;
 
 
  /* We can be passed DECL_INITIAL of a static variable.  It might have a
  /* We can be passed DECL_INITIAL of a static variable.  It might have a
     conversion, which we strip off here.  */
     conversion, which we strip off here.  */
  STRIP_USELESS_TYPE_CONVERSION (init);
  STRIP_USELESS_TYPE_CONVERSION (init);
  init_code = TREE_CODE (init);
  init_code = TREE_CODE (init);
 
 
  if (elt->is_scalar)
  if (elt->is_scalar)
    {
    {
      if (elt->replacement)
      if (elt->replacement)
        {
        {
          generate_one_element_init (elt->replacement, init, list_p);
          generate_one_element_init (elt->replacement, init, list_p);
          elt->visited = true;
          elt->visited = true;
        }
        }
      return result;
      return result;
    }
    }
 
 
  switch (init_code)
  switch (init_code)
    {
    {
    case COMPLEX_CST:
    case COMPLEX_CST:
    case COMPLEX_EXPR:
    case COMPLEX_EXPR:
      FOR_EACH_ACTUAL_CHILD (sub, elt)
      FOR_EACH_ACTUAL_CHILD (sub, elt)
        {
        {
          if (sub->element == integer_zero_node)
          if (sub->element == integer_zero_node)
            t = (init_code == COMPLEX_EXPR
            t = (init_code == COMPLEX_EXPR
                 ? TREE_OPERAND (init, 0) : TREE_REALPART (init));
                 ? TREE_OPERAND (init, 0) : TREE_REALPART (init));
          else
          else
            t = (init_code == COMPLEX_EXPR
            t = (init_code == COMPLEX_EXPR
                 ? TREE_OPERAND (init, 1) : TREE_IMAGPART (init));
                 ? TREE_OPERAND (init, 1) : TREE_IMAGPART (init));
          result &= generate_element_init_1 (sub, t, list_p);
          result &= generate_element_init_1 (sub, t, list_p);
        }
        }
      break;
      break;
 
 
    case CONSTRUCTOR:
    case CONSTRUCTOR:
      FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, purpose, value)
      FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, purpose, value)
        {
        {
          if (TREE_CODE (purpose) == RANGE_EXPR)
          if (TREE_CODE (purpose) == RANGE_EXPR)
            {
            {
              tree lower = TREE_OPERAND (purpose, 0);
              tree lower = TREE_OPERAND (purpose, 0);
              tree upper = TREE_OPERAND (purpose, 1);
              tree upper = TREE_OPERAND (purpose, 1);
 
 
              while (1)
              while (1)
                {
                {
                  sub = lookup_element (elt, lower, NULL, NO_INSERT);
                  sub = lookup_element (elt, lower, NULL, NO_INSERT);
                  if (sub != NULL)
                  if (sub != NULL)
                    result &= generate_element_init_1 (sub, value, list_p);
                    result &= generate_element_init_1 (sub, value, list_p);
                  if (tree_int_cst_equal (lower, upper))
                  if (tree_int_cst_equal (lower, upper))
                    break;
                    break;
                  lower = int_const_binop (PLUS_EXPR, lower,
                  lower = int_const_binop (PLUS_EXPR, lower,
                                           integer_one_node, true);
                                           integer_one_node, true);
                }
                }
            }
            }
          else
          else
            {
            {
              sub = lookup_element (elt, purpose, NULL, NO_INSERT);
              sub = lookup_element (elt, purpose, NULL, NO_INSERT);
              if (sub != NULL)
              if (sub != NULL)
                result &= generate_element_init_1 (sub, value, list_p);
                result &= generate_element_init_1 (sub, value, list_p);
            }
            }
        }
        }
      break;
      break;
 
 
    default:
    default:
      elt->visited = true;
      elt->visited = true;
      result = false;
      result = false;
    }
    }
 
 
  return result;
  return result;
}
}
 
 
/* A wrapper function for generate_element_init_1 that handles cleanup after
/* A wrapper function for generate_element_init_1 that handles cleanup after
   gimplification.  */
   gimplification.  */
 
 
static bool
static bool
generate_element_init (struct sra_elt *elt, tree init, tree *list_p)
generate_element_init (struct sra_elt *elt, tree init, tree *list_p)
{
{
  bool ret;
  bool ret;
 
 
  push_gimplify_context ();
  push_gimplify_context ();
  ret = generate_element_init_1 (elt, init, list_p);
  ret = generate_element_init_1 (elt, init, list_p);
  pop_gimplify_context (NULL);
  pop_gimplify_context (NULL);
 
 
  /* The replacement can expose previously unreferenced variables.  */
  /* The replacement can expose previously unreferenced variables.  */
  if (ret && *list_p)
  if (ret && *list_p)
    {
    {
      tree_stmt_iterator i;
      tree_stmt_iterator i;
 
 
      for (i = tsi_start (*list_p); !tsi_end_p (i); tsi_next (&i))
      for (i = tsi_start (*list_p); !tsi_end_p (i); tsi_next (&i))
        find_new_referenced_vars (tsi_stmt_ptr (i));
        find_new_referenced_vars (tsi_stmt_ptr (i));
    }
    }
 
 
  return ret;
  return ret;
}
}
 
 
/* Insert STMT on all the outgoing edges out of BB.  Note that if BB
/* Insert STMT on all the outgoing edges out of BB.  Note that if BB
   has more than one edge, STMT will be replicated for each edge.  Also,
   has more than one edge, STMT will be replicated for each edge.  Also,
   abnormal edges will be ignored.  */
   abnormal edges will be ignored.  */
 
 
void
void
insert_edge_copies (tree stmt, basic_block bb)
insert_edge_copies (tree stmt, basic_block bb)
{
{
  edge e;
  edge e;
  edge_iterator ei;
  edge_iterator ei;
  bool first_copy;
  bool first_copy;
 
 
  first_copy = true;
  first_copy = true;
  FOR_EACH_EDGE (e, ei, bb->succs)
  FOR_EACH_EDGE (e, ei, bb->succs)
    {
    {
      /* We don't need to insert copies on abnormal edges.  The
      /* We don't need to insert copies on abnormal edges.  The
         value of the scalar replacement is not guaranteed to
         value of the scalar replacement is not guaranteed to
         be valid through an abnormal edge.  */
         be valid through an abnormal edge.  */
      if (!(e->flags & EDGE_ABNORMAL))
      if (!(e->flags & EDGE_ABNORMAL))
        {
        {
          if (first_copy)
          if (first_copy)
            {
            {
              bsi_insert_on_edge (e, stmt);
              bsi_insert_on_edge (e, stmt);
              first_copy = false;
              first_copy = false;
            }
            }
          else
          else
            bsi_insert_on_edge (e, unsave_expr_now (stmt));
            bsi_insert_on_edge (e, unsave_expr_now (stmt));
        }
        }
    }
    }
}
}
 
 
/* Helper function to insert LIST before BSI, and set up line number info.  */
/* Helper function to insert LIST before BSI, and set up line number info.  */
 
 
void
void
sra_insert_before (block_stmt_iterator *bsi, tree list)
sra_insert_before (block_stmt_iterator *bsi, tree list)
{
{
  tree stmt = bsi_stmt (*bsi);
  tree stmt = bsi_stmt (*bsi);
 
 
  if (EXPR_HAS_LOCATION (stmt))
  if (EXPR_HAS_LOCATION (stmt))
    annotate_all_with_locus (&list, EXPR_LOCATION (stmt));
    annotate_all_with_locus (&list, EXPR_LOCATION (stmt));
  bsi_insert_before (bsi, list, BSI_SAME_STMT);
  bsi_insert_before (bsi, list, BSI_SAME_STMT);
}
}
 
 
/* Similarly, but insert after BSI.  Handles insertion onto edges as well.  */
/* Similarly, but insert after BSI.  Handles insertion onto edges as well.  */
 
 
void
void
sra_insert_after (block_stmt_iterator *bsi, tree list)
sra_insert_after (block_stmt_iterator *bsi, tree list)
{
{
  tree stmt = bsi_stmt (*bsi);
  tree stmt = bsi_stmt (*bsi);
 
 
  if (EXPR_HAS_LOCATION (stmt))
  if (EXPR_HAS_LOCATION (stmt))
    annotate_all_with_locus (&list, EXPR_LOCATION (stmt));
    annotate_all_with_locus (&list, EXPR_LOCATION (stmt));
 
 
  if (stmt_ends_bb_p (stmt))
  if (stmt_ends_bb_p (stmt))
    insert_edge_copies (list, bsi->bb);
    insert_edge_copies (list, bsi->bb);
  else
  else
    bsi_insert_after (bsi, list, BSI_SAME_STMT);
    bsi_insert_after (bsi, list, BSI_SAME_STMT);
}
}
 
 
/* Similarly, but replace the statement at BSI.  */
/* Similarly, but replace the statement at BSI.  */
 
 
static void
static void
sra_replace (block_stmt_iterator *bsi, tree list)
sra_replace (block_stmt_iterator *bsi, tree list)
{
{
  sra_insert_before (bsi, list);
  sra_insert_before (bsi, list);
  bsi_remove (bsi, false);
  bsi_remove (bsi, false);
  if (bsi_end_p (*bsi))
  if (bsi_end_p (*bsi))
    *bsi = bsi_last (bsi->bb);
    *bsi = bsi_last (bsi->bb);
  else
  else
    bsi_prev (bsi);
    bsi_prev (bsi);
}
}
 
 
/* Scalarize a USE.  To recap, this is either a simple reference to ELT,
/* Scalarize a USE.  To recap, this is either a simple reference to ELT,
   if elt is scalar, or some occurrence of ELT that requires a complete
   if elt is scalar, or some occurrence of ELT that requires a complete
   aggregate.  IS_OUTPUT is true if ELT is being modified.  */
   aggregate.  IS_OUTPUT is true if ELT is being modified.  */
 
 
static void
static void
scalarize_use (struct sra_elt *elt, tree *expr_p, block_stmt_iterator *bsi,
scalarize_use (struct sra_elt *elt, tree *expr_p, block_stmt_iterator *bsi,
               bool is_output, bool use_all)
               bool is_output, bool use_all)
{
{
  tree list = NULL, stmt = bsi_stmt (*bsi);
  tree list = NULL, stmt = bsi_stmt (*bsi);
 
 
  if (elt->replacement)
  if (elt->replacement)
    {
    {
      /* If we have a replacement, then updating the reference is as
      /* If we have a replacement, then updating the reference is as
         simple as modifying the existing statement in place.  */
         simple as modifying the existing statement in place.  */
      if (is_output)
      if (is_output)
        mark_all_v_defs (stmt);
        mark_all_v_defs (stmt);
      *expr_p = elt->replacement;
      *expr_p = elt->replacement;
      update_stmt (stmt);
      update_stmt (stmt);
    }
    }
  else
  else
    {
    {
      /* Otherwise we need some copies.  If ELT is being read, then we want
      /* Otherwise we need some copies.  If ELT is being read, then we want
         to store all (modified) sub-elements back into the structure before
         to store all (modified) sub-elements back into the structure before
         the reference takes place.  If ELT is being written, then we want to
         the reference takes place.  If ELT is being written, then we want to
         load the changed values back into our shadow variables.  */
         load the changed values back into our shadow variables.  */
      /* ??? We don't check modified for reads, we just always write all of
      /* ??? We don't check modified for reads, we just always write all of
         the values.  We should be able to record the SSA number of the VOP
         the values.  We should be able to record the SSA number of the VOP
         for which the values were last read.  If that number matches the
         for which the values were last read.  If that number matches the
         SSA number of the VOP in the current statement, then we needn't
         SSA number of the VOP in the current statement, then we needn't
         emit an assignment.  This would also eliminate double writes when
         emit an assignment.  This would also eliminate double writes when
         a structure is passed as more than one argument to a function call.
         a structure is passed as more than one argument to a function call.
         This optimization would be most effective if sra_walk_function
         This optimization would be most effective if sra_walk_function
         processed the blocks in dominator order.  */
         processed the blocks in dominator order.  */
 
 
      generate_copy_inout (elt, is_output, generate_element_ref (elt), &list);
      generate_copy_inout (elt, is_output, generate_element_ref (elt), &list);
      if (list == NULL)
      if (list == NULL)
        return;
        return;
      mark_all_v_defs (list);
      mark_all_v_defs (list);
      if (is_output)
      if (is_output)
        sra_insert_after (bsi, list);
        sra_insert_after (bsi, list);
      else
      else
        {
        {
          sra_insert_before (bsi, list);
          sra_insert_before (bsi, list);
          if (use_all)
          if (use_all)
            mark_no_warning (elt);
            mark_no_warning (elt);
        }
        }
    }
    }
}
}
 
 
/* Scalarize a COPY.  To recap, this is an assignment statement between
/* Scalarize a COPY.  To recap, this is an assignment statement between
   two scalarizable references, LHS_ELT and RHS_ELT.  */
   two scalarizable references, LHS_ELT and RHS_ELT.  */
 
 
static void
static void
scalarize_copy (struct sra_elt *lhs_elt, struct sra_elt *rhs_elt,
scalarize_copy (struct sra_elt *lhs_elt, struct sra_elt *rhs_elt,
                block_stmt_iterator *bsi)
                block_stmt_iterator *bsi)
{
{
  tree list, stmt;
  tree list, stmt;
 
 
  if (lhs_elt->replacement && rhs_elt->replacement)
  if (lhs_elt->replacement && rhs_elt->replacement)
    {
    {
      /* If we have two scalar operands, modify the existing statement.  */
      /* If we have two scalar operands, modify the existing statement.  */
      stmt = bsi_stmt (*bsi);
      stmt = bsi_stmt (*bsi);
 
 
      /* See the commentary in sra_walk_function concerning
      /* See the commentary in sra_walk_function concerning
         RETURN_EXPR, and why we should never see one here.  */
         RETURN_EXPR, and why we should never see one here.  */
      gcc_assert (TREE_CODE (stmt) == MODIFY_EXPR);
      gcc_assert (TREE_CODE (stmt) == MODIFY_EXPR);
 
 
      TREE_OPERAND (stmt, 0) = lhs_elt->replacement;
      TREE_OPERAND (stmt, 0) = lhs_elt->replacement;
      TREE_OPERAND (stmt, 1) = rhs_elt->replacement;
      TREE_OPERAND (stmt, 1) = rhs_elt->replacement;
      update_stmt (stmt);
      update_stmt (stmt);
    }
    }
  else if (lhs_elt->use_block_copy || rhs_elt->use_block_copy)
  else if (lhs_elt->use_block_copy || rhs_elt->use_block_copy)
    {
    {
      /* If either side requires a block copy, then sync the RHS back
      /* If either side requires a block copy, then sync the RHS back
         to the original structure, leave the original assignment
         to the original structure, leave the original assignment
         statement (which will perform the block copy), then load the
         statement (which will perform the block copy), then load the
         LHS values out of its now-updated original structure.  */
         LHS values out of its now-updated original structure.  */
      /* ??? Could perform a modified pair-wise element copy.  That
      /* ??? Could perform a modified pair-wise element copy.  That
         would at least allow those elements that are instantiated in
         would at least allow those elements that are instantiated in
         both structures to be optimized well.  */
         both structures to be optimized well.  */
 
 
      list = NULL;
      list = NULL;
      generate_copy_inout (rhs_elt, false,
      generate_copy_inout (rhs_elt, false,
                           generate_element_ref (rhs_elt), &list);
                           generate_element_ref (rhs_elt), &list);
      if (list)
      if (list)
        {
        {
          mark_all_v_defs (list);
          mark_all_v_defs (list);
          sra_insert_before (bsi, list);
          sra_insert_before (bsi, list);
        }
        }
 
 
      list = NULL;
      list = NULL;
      generate_copy_inout (lhs_elt, true,
      generate_copy_inout (lhs_elt, true,
                           generate_element_ref (lhs_elt), &list);
                           generate_element_ref (lhs_elt), &list);
      if (list)
      if (list)
        {
        {
          mark_all_v_defs (list);
          mark_all_v_defs (list);
          sra_insert_after (bsi, list);
          sra_insert_after (bsi, list);
        }
        }
    }
    }
  else
  else
    {
    {
      /* Otherwise both sides must be fully instantiated.  In which
      /* Otherwise both sides must be fully instantiated.  In which
         case perform pair-wise element assignments and replace the
         case perform pair-wise element assignments and replace the
         original block copy statement.  */
         original block copy statement.  */
 
 
      stmt = bsi_stmt (*bsi);
      stmt = bsi_stmt (*bsi);
      mark_all_v_defs (stmt);
      mark_all_v_defs (stmt);
 
 
      list = NULL;
      list = NULL;
      generate_element_copy (lhs_elt, rhs_elt, &list);
      generate_element_copy (lhs_elt, rhs_elt, &list);
      gcc_assert (list);
      gcc_assert (list);
      mark_all_v_defs (list);
      mark_all_v_defs (list);
      sra_replace (bsi, list);
      sra_replace (bsi, list);
    }
    }
}
}
 
 
/* Scalarize an INIT.  To recap, this is an assignment to a scalarizable
/* Scalarize an INIT.  To recap, this is an assignment to a scalarizable
   reference from some form of constructor: CONSTRUCTOR, COMPLEX_CST or
   reference from some form of constructor: CONSTRUCTOR, COMPLEX_CST or
   COMPLEX_EXPR.  If RHS is NULL, it should be treated as an empty
   COMPLEX_EXPR.  If RHS is NULL, it should be treated as an empty
   CONSTRUCTOR.  */
   CONSTRUCTOR.  */
 
 
static void
static void
scalarize_init (struct sra_elt *lhs_elt, tree rhs, block_stmt_iterator *bsi)
scalarize_init (struct sra_elt *lhs_elt, tree rhs, block_stmt_iterator *bsi)
{
{
  bool result = true;
  bool result = true;
  tree list = NULL;
  tree list = NULL;
 
 
  /* Generate initialization statements for all members extant in the RHS.  */
  /* Generate initialization statements for all members extant in the RHS.  */
  if (rhs)
  if (rhs)
    {
    {
      /* Unshare the expression just in case this is from a decl's initial.  */
      /* Unshare the expression just in case this is from a decl's initial.  */
      rhs = unshare_expr (rhs);
      rhs = unshare_expr (rhs);
      result = generate_element_init (lhs_elt, rhs, &list);
      result = generate_element_init (lhs_elt, rhs, &list);
    }
    }
 
 
  /* CONSTRUCTOR is defined such that any member not mentioned is assigned
  /* CONSTRUCTOR is defined such that any member not mentioned is assigned
     a zero value.  Initialize the rest of the instantiated elements.  */
     a zero value.  Initialize the rest of the instantiated elements.  */
  generate_element_zero (lhs_elt, &list);
  generate_element_zero (lhs_elt, &list);
 
 
  if (!result)
  if (!result)
    {
    {
      /* If we failed to convert the entire initializer, then we must
      /* If we failed to convert the entire initializer, then we must
         leave the structure assignment in place and must load values
         leave the structure assignment in place and must load values
         from the structure into the slots for which we did not find
         from the structure into the slots for which we did not find
         constants.  The easiest way to do this is to generate a complete
         constants.  The easiest way to do this is to generate a complete
         copy-out, and then follow that with the constant assignments
         copy-out, and then follow that with the constant assignments
         that we were able to build.  DCE will clean things up.  */
         that we were able to build.  DCE will clean things up.  */
      tree list0 = NULL;
      tree list0 = NULL;
      generate_copy_inout (lhs_elt, true, generate_element_ref (lhs_elt),
      generate_copy_inout (lhs_elt, true, generate_element_ref (lhs_elt),
                           &list0);
                           &list0);
      append_to_statement_list (list, &list0);
      append_to_statement_list (list, &list0);
      list = list0;
      list = list0;
    }
    }
 
 
  if (lhs_elt->use_block_copy || !result)
  if (lhs_elt->use_block_copy || !result)
    {
    {
      /* Since LHS is not fully instantiated, we must leave the structure
      /* Since LHS is not fully instantiated, we must leave the structure
         assignment in place.  Treating this case differently from a USE
         assignment in place.  Treating this case differently from a USE
         exposes constants to later optimizations.  */
         exposes constants to later optimizations.  */
      if (list)
      if (list)
        {
        {
          mark_all_v_defs (list);
          mark_all_v_defs (list);
          sra_insert_after (bsi, list);
          sra_insert_after (bsi, list);
        }
        }
    }
    }
  else
  else
    {
    {
      /* The LHS is fully instantiated.  The list of initializations
      /* The LHS is fully instantiated.  The list of initializations
         replaces the original structure assignment.  */
         replaces the original structure assignment.  */
      gcc_assert (list);
      gcc_assert (list);
      mark_all_v_defs (bsi_stmt (*bsi));
      mark_all_v_defs (bsi_stmt (*bsi));
      mark_all_v_defs (list);
      mark_all_v_defs (list);
      sra_replace (bsi, list);
      sra_replace (bsi, list);
    }
    }
}
}
 
 
/* A subroutine of scalarize_ldst called via walk_tree.  Set TREE_NO_TRAP
/* A subroutine of scalarize_ldst called via walk_tree.  Set TREE_NO_TRAP
   on all INDIRECT_REFs.  */
   on all INDIRECT_REFs.  */
 
 
static tree
static tree
mark_notrap (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
mark_notrap (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
{
{
  tree t = *tp;
  tree t = *tp;
 
 
  if (TREE_CODE (t) == INDIRECT_REF)
  if (TREE_CODE (t) == INDIRECT_REF)
    {
    {
      TREE_THIS_NOTRAP (t) = 1;
      TREE_THIS_NOTRAP (t) = 1;
      *walk_subtrees = 0;
      *walk_subtrees = 0;
    }
    }
  else if (IS_TYPE_OR_DECL_P (t))
  else if (IS_TYPE_OR_DECL_P (t))
    *walk_subtrees = 0;
    *walk_subtrees = 0;
 
 
  return NULL;
  return NULL;
}
}
 
 
/* Scalarize a LDST.  To recap, this is an assignment between one scalarizable
/* Scalarize a LDST.  To recap, this is an assignment between one scalarizable
   reference ELT and one non-scalarizable reference OTHER.  IS_OUTPUT is true
   reference ELT and one non-scalarizable reference OTHER.  IS_OUTPUT is true
   if ELT is on the left-hand side.  */
   if ELT is on the left-hand side.  */
 
 
static void
static void
scalarize_ldst (struct sra_elt *elt, tree other,
scalarize_ldst (struct sra_elt *elt, tree other,
                block_stmt_iterator *bsi, bool is_output)
                block_stmt_iterator *bsi, bool is_output)
{
{
  /* Shouldn't have gotten called for a scalar.  */
  /* Shouldn't have gotten called for a scalar.  */
  gcc_assert (!elt->replacement);
  gcc_assert (!elt->replacement);
 
 
  if (elt->use_block_copy)
  if (elt->use_block_copy)
    {
    {
      /* Since ELT is not fully instantiated, we have to leave the
      /* Since ELT is not fully instantiated, we have to leave the
         block copy in place.  Treat this as a USE.  */
         block copy in place.  Treat this as a USE.  */
      scalarize_use (elt, NULL, bsi, is_output, false);
      scalarize_use (elt, NULL, bsi, is_output, false);
    }
    }
  else
  else
    {
    {
      /* The interesting case is when ELT is fully instantiated.  In this
      /* The interesting case is when ELT is fully instantiated.  In this
         case we can have each element stored/loaded directly to/from the
         case we can have each element stored/loaded directly to/from the
         corresponding slot in OTHER.  This avoids a block copy.  */
         corresponding slot in OTHER.  This avoids a block copy.  */
 
 
      tree list = NULL, stmt = bsi_stmt (*bsi);
      tree list = NULL, stmt = bsi_stmt (*bsi);
 
 
      mark_all_v_defs (stmt);
      mark_all_v_defs (stmt);
      generate_copy_inout (elt, is_output, other, &list);
      generate_copy_inout (elt, is_output, other, &list);
      mark_all_v_defs (list);
      mark_all_v_defs (list);
      gcc_assert (list);
      gcc_assert (list);
 
 
      /* Preserve EH semantics.  */
      /* Preserve EH semantics.  */
      if (stmt_ends_bb_p (stmt))
      if (stmt_ends_bb_p (stmt))
        {
        {
          tree_stmt_iterator tsi;
          tree_stmt_iterator tsi;
          tree first;
          tree first;
 
 
          /* Extract the first statement from LIST.  */
          /* Extract the first statement from LIST.  */
          tsi = tsi_start (list);
          tsi = tsi_start (list);
          first = tsi_stmt (tsi);
          first = tsi_stmt (tsi);
          tsi_delink (&tsi);
          tsi_delink (&tsi);
 
 
          /* Replace the old statement with this new representative.  */
          /* Replace the old statement with this new representative.  */
          bsi_replace (bsi, first, true);
          bsi_replace (bsi, first, true);
 
 
          if (!tsi_end_p (tsi))
          if (!tsi_end_p (tsi))
            {
            {
              /* If any reference would trap, then they all would.  And more
              /* If any reference would trap, then they all would.  And more
                 to the point, the first would.  Therefore none of the rest
                 to the point, the first would.  Therefore none of the rest
                 will trap since the first didn't.  Indicate this by
                 will trap since the first didn't.  Indicate this by
                 iterating over the remaining statements and set
                 iterating over the remaining statements and set
                 TREE_THIS_NOTRAP in all INDIRECT_REFs.  */
                 TREE_THIS_NOTRAP in all INDIRECT_REFs.  */
              do
              do
                {
                {
                  walk_tree (tsi_stmt_ptr (tsi), mark_notrap, NULL, NULL);
                  walk_tree (tsi_stmt_ptr (tsi), mark_notrap, NULL, NULL);
                  tsi_next (&tsi);
                  tsi_next (&tsi);
                }
                }
              while (!tsi_end_p (tsi));
              while (!tsi_end_p (tsi));
 
 
              insert_edge_copies (list, bsi->bb);
              insert_edge_copies (list, bsi->bb);
            }
            }
        }
        }
      else
      else
        sra_replace (bsi, list);
        sra_replace (bsi, list);
    }
    }
}
}
 
 
/* Generate initializations for all scalarizable parameters.  */
/* Generate initializations for all scalarizable parameters.  */
 
 
static void
static void
scalarize_parms (void)
scalarize_parms (void)
{
{
  tree list = NULL;
  tree list = NULL;
  unsigned i;
  unsigned i;
  bitmap_iterator bi;
  bitmap_iterator bi;
 
 
  EXECUTE_IF_SET_IN_BITMAP (needs_copy_in, 0, i, bi)
  EXECUTE_IF_SET_IN_BITMAP (needs_copy_in, 0, i, bi)
    {
    {
      tree var = referenced_var (i);
      tree var = referenced_var (i);
      struct sra_elt *elt = lookup_element (NULL, var, NULL, NO_INSERT);
      struct sra_elt *elt = lookup_element (NULL, var, NULL, NO_INSERT);
      generate_copy_inout (elt, true, var, &list);
      generate_copy_inout (elt, true, var, &list);
    }
    }
 
 
  if (list)
  if (list)
    {
    {
      insert_edge_copies (list, ENTRY_BLOCK_PTR);
      insert_edge_copies (list, ENTRY_BLOCK_PTR);
      mark_all_v_defs (list);
      mark_all_v_defs (list);
    }
    }
}
}
 
 
/* Entry point to phase 4.  Update the function to match replacements.  */
/* Entry point to phase 4.  Update the function to match replacements.  */
 
 
static void
static void
scalarize_function (void)
scalarize_function (void)
{
{
  static const struct sra_walk_fns fns = {
  static const struct sra_walk_fns fns = {
    scalarize_use, scalarize_copy, scalarize_init, scalarize_ldst, false
    scalarize_use, scalarize_copy, scalarize_init, scalarize_ldst, false
  };
  };
 
 
  sra_walk_function (&fns);
  sra_walk_function (&fns);
  scalarize_parms ();
  scalarize_parms ();
  bsi_commit_edge_inserts ();
  bsi_commit_edge_inserts ();
}
}
 
 


/* Debug helper function.  Print ELT in a nice human-readable format.  */
/* Debug helper function.  Print ELT in a nice human-readable format.  */
 
 
static void
static void
dump_sra_elt_name (FILE *f, struct sra_elt *elt)
dump_sra_elt_name (FILE *f, struct sra_elt *elt)
{
{
  if (elt->parent && TREE_CODE (elt->parent->type) == COMPLEX_TYPE)
  if (elt->parent && TREE_CODE (elt->parent->type) == COMPLEX_TYPE)
    {
    {
      fputs (elt->element == integer_zero_node ? "__real__ " : "__imag__ ", f);
      fputs (elt->element == integer_zero_node ? "__real__ " : "__imag__ ", f);
      dump_sra_elt_name (f, elt->parent);
      dump_sra_elt_name (f, elt->parent);
    }
    }
  else
  else
    {
    {
      if (elt->parent)
      if (elt->parent)
        dump_sra_elt_name (f, elt->parent);
        dump_sra_elt_name (f, elt->parent);
      if (DECL_P (elt->element))
      if (DECL_P (elt->element))
        {
        {
          if (TREE_CODE (elt->element) == FIELD_DECL)
          if (TREE_CODE (elt->element) == FIELD_DECL)
            fputc ('.', f);
            fputc ('.', f);
          print_generic_expr (f, elt->element, dump_flags);
          print_generic_expr (f, elt->element, dump_flags);
        }
        }
      else if (TREE_CODE (elt->element) == RANGE_EXPR)
      else if (TREE_CODE (elt->element) == RANGE_EXPR)
        fprintf (f, "["HOST_WIDE_INT_PRINT_DEC".."HOST_WIDE_INT_PRINT_DEC"]",
        fprintf (f, "["HOST_WIDE_INT_PRINT_DEC".."HOST_WIDE_INT_PRINT_DEC"]",
                 TREE_INT_CST_LOW (TREE_OPERAND (elt->element, 0)),
                 TREE_INT_CST_LOW (TREE_OPERAND (elt->element, 0)),
                 TREE_INT_CST_LOW (TREE_OPERAND (elt->element, 1)));
                 TREE_INT_CST_LOW (TREE_OPERAND (elt->element, 1)));
      else
      else
        fprintf (f, "[" HOST_WIDE_INT_PRINT_DEC "]",
        fprintf (f, "[" HOST_WIDE_INT_PRINT_DEC "]",
                 TREE_INT_CST_LOW (elt->element));
                 TREE_INT_CST_LOW (elt->element));
    }
    }
}
}
 
 
/* Likewise, but callable from the debugger.  */
/* Likewise, but callable from the debugger.  */
 
 
void
void
debug_sra_elt_name (struct sra_elt *elt)
debug_sra_elt_name (struct sra_elt *elt)
{
{
  dump_sra_elt_name (stderr, elt);
  dump_sra_elt_name (stderr, elt);
  fputc ('\n', stderr);
  fputc ('\n', stderr);
}
}
 
 
void
void
sra_init_cache (void)
sra_init_cache (void)
{
{
  if (sra_type_decomp_cache)
  if (sra_type_decomp_cache)
    return;
    return;
 
 
  sra_type_decomp_cache = BITMAP_ALLOC (NULL);
  sra_type_decomp_cache = BITMAP_ALLOC (NULL);
  sra_type_inst_cache = BITMAP_ALLOC (NULL);
  sra_type_inst_cache = BITMAP_ALLOC (NULL);
}
}
 
 
/* Main entry point.  */
/* Main entry point.  */
 
 
static unsigned int
static unsigned int
tree_sra (void)
tree_sra (void)
{
{
  /* Initialize local variables.  */
  /* Initialize local variables.  */
  todoflags = 0;
  todoflags = 0;
  gcc_obstack_init (&sra_obstack);
  gcc_obstack_init (&sra_obstack);
  sra_candidates = BITMAP_ALLOC (NULL);
  sra_candidates = BITMAP_ALLOC (NULL);
  needs_copy_in = BITMAP_ALLOC (NULL);
  needs_copy_in = BITMAP_ALLOC (NULL);
  sra_init_cache ();
  sra_init_cache ();
  sra_map = htab_create (101, sra_elt_hash, sra_elt_eq, NULL);
  sra_map = htab_create (101, sra_elt_hash, sra_elt_eq, NULL);
 
 
  /* Scan.  If we find anything, instantiate and scalarize.  */
  /* Scan.  If we find anything, instantiate and scalarize.  */
  if (find_candidates_for_sra ())
  if (find_candidates_for_sra ())
    {
    {
      scan_function ();
      scan_function ();
      decide_instantiations ();
      decide_instantiations ();
      scalarize_function ();
      scalarize_function ();
    }
    }
 
 
  /* Free allocated memory.  */
  /* Free allocated memory.  */
  htab_delete (sra_map);
  htab_delete (sra_map);
  sra_map = NULL;
  sra_map = NULL;
  BITMAP_FREE (sra_candidates);
  BITMAP_FREE (sra_candidates);
  BITMAP_FREE (needs_copy_in);
  BITMAP_FREE (needs_copy_in);
  BITMAP_FREE (sra_type_decomp_cache);
  BITMAP_FREE (sra_type_decomp_cache);
  BITMAP_FREE (sra_type_inst_cache);
  BITMAP_FREE (sra_type_inst_cache);
  obstack_free (&sra_obstack, NULL);
  obstack_free (&sra_obstack, NULL);
  return todoflags;
  return todoflags;
}
}
 
 
static bool
static bool
gate_sra (void)
gate_sra (void)
{
{
  return flag_tree_sra != 0;
  return flag_tree_sra != 0;
}
}
 
 
struct tree_opt_pass pass_sra =
struct tree_opt_pass pass_sra =
{
{
  "sra",                                /* name */
  "sra",                                /* name */
  gate_sra,                             /* gate */
  gate_sra,                             /* gate */
  tree_sra,                             /* execute */
  tree_sra,                             /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  NULL,                                 /* next */
  0,                                     /* static_pass_number */
  0,                                     /* static_pass_number */
  TV_TREE_SRA,                          /* tv_id */
  TV_TREE_SRA,                          /* tv_id */
  PROP_cfg | PROP_ssa | PROP_alias,     /* properties_required */
  PROP_cfg | PROP_ssa | PROP_alias,     /* properties_required */
  0,                                     /* properties_provided */
  0,                                     /* properties_provided */
  PROP_smt_usage,                       /* properties_destroyed */
  PROP_smt_usage,                       /* properties_destroyed */
  0,                                     /* todo_flags_start */
  0,                                     /* todo_flags_start */
  TODO_dump_func /* todo_flags_finish */
  TODO_dump_func /* todo_flags_finish */
  | TODO_update_ssa
  | TODO_update_ssa
  | TODO_ggc_collect | TODO_verify_ssa,
  | TODO_ggc_collect | TODO_verify_ssa,
  0                                      /* letter */
  0                                      /* letter */
};
};
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.