OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gcc-4.2.2/] [gcc/] [tree-ssa-copyrename.c] - Diff between revs 154 and 816

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 154 Rev 816
/* Rename SSA copies.
/* Rename SSA copies.
   Copyright (C) 2004, 2007 Free Software Foundation, Inc.
   Copyright (C) 2004, 2007 Free Software Foundation, Inc.
   Contributed by Andrew MacLeod <amacleod@redhat.com>
   Contributed by Andrew MacLeod <amacleod@redhat.com>
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
the Free Software Foundation; either version 3, or (at your option)
any later version.
any later version.
 
 
GCC is distributed in the hope that it will be useful,
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.
GNU General Public License for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "tree.h"
#include "tree.h"
#include "flags.h"
#include "flags.h"
#include "basic-block.h"
#include "basic-block.h"
#include "function.h"
#include "function.h"
#include "diagnostic.h"
#include "diagnostic.h"
#include "bitmap.h"
#include "bitmap.h"
#include "tree-flow.h"
#include "tree-flow.h"
#include "tree-gimple.h"
#include "tree-gimple.h"
#include "tree-inline.h"
#include "tree-inline.h"
#include "timevar.h"
#include "timevar.h"
#include "hashtab.h"
#include "hashtab.h"
#include "tree-dump.h"
#include "tree-dump.h"
#include "tree-ssa-live.h"
#include "tree-ssa-live.h"
#include "tree-pass.h"
#include "tree-pass.h"
#include "langhooks.h"
#include "langhooks.h"
 
 
/* The following routines implement the SSA copy renaming phase.
/* The following routines implement the SSA copy renaming phase.
 
 
   This optimization looks for copies between 2 SSA_NAMES, either through a
   This optimization looks for copies between 2 SSA_NAMES, either through a
   direct copy, or an implicit one via a PHI node result and its arguments.
   direct copy, or an implicit one via a PHI node result and its arguments.
 
 
   Each copy is examined to determine if it is possible to rename the base
   Each copy is examined to determine if it is possible to rename the base
   variable of one of the operands to the same variable as the other operand.
   variable of one of the operands to the same variable as the other operand.
   i.e.
   i.e.
   T.3_5 = <blah>
   T.3_5 = <blah>
   a_1 = T.3_5
   a_1 = T.3_5
 
 
   If this copy couldn't be copy propagated, it could possibly remain in the
   If this copy couldn't be copy propagated, it could possibly remain in the
   program throughout the optimization phases.   After SSA->normal, it would
   program throughout the optimization phases.   After SSA->normal, it would
   become:
   become:
 
 
   T.3 = <blah>
   T.3 = <blah>
   a = T.3
   a = T.3
 
 
   Since T.3_5 is distinct from all other SSA versions of T.3, there is no
   Since T.3_5 is distinct from all other SSA versions of T.3, there is no
   fundamental reason why the base variable needs to be T.3, subject to
   fundamental reason why the base variable needs to be T.3, subject to
   certain restrictions.  This optimization attempts to determine if we can
   certain restrictions.  This optimization attempts to determine if we can
   change the base variable on copies like this, and result in code such as:
   change the base variable on copies like this, and result in code such as:
 
 
   a_5 = <blah>
   a_5 = <blah>
   a_1 = a_5
   a_1 = a_5
 
 
   This gives the SSA->normal pass a shot at coalescing a_1 and a_5. If it is
   This gives the SSA->normal pass a shot at coalescing a_1 and a_5. If it is
   possible, the copy goes away completely. If it isn't possible, a new temp
   possible, the copy goes away completely. If it isn't possible, a new temp
   will be created for a_5, and you will end up with the exact same code:
   will be created for a_5, and you will end up with the exact same code:
 
 
   a.8 = <blah>
   a.8 = <blah>
   a = a.8
   a = a.8
 
 
   The other benefit of performing this optimization relates to what variables
   The other benefit of performing this optimization relates to what variables
   are chosen in copies.  Gimplification of the program uses temporaries for
   are chosen in copies.  Gimplification of the program uses temporaries for
   a lot of things. expressions like
   a lot of things. expressions like
 
 
   a_1 = <blah>
   a_1 = <blah>
   <blah2> = a_1
   <blah2> = a_1
 
 
   get turned into
   get turned into
 
 
   T.3_5 = <blah>
   T.3_5 = <blah>
   a_1 = T.3_5
   a_1 = T.3_5
   <blah2> = a_1
   <blah2> = a_1
 
 
   Copy propagation is done in a forward direction, and if we can propagate
   Copy propagation is done in a forward direction, and if we can propagate
   through the copy, we end up with:
   through the copy, we end up with:
 
 
   T.3_5 = <blah>
   T.3_5 = <blah>
   <blah2> = T.3_5
   <blah2> = T.3_5
 
 
   The copy is gone, but so is all reference to the user variable 'a'. By
   The copy is gone, but so is all reference to the user variable 'a'. By
   performing this optimization, we would see the sequence:
   performing this optimization, we would see the sequence:
 
 
   a_5 = <blah>
   a_5 = <blah>
   a_1 = a_5
   a_1 = a_5
   <blah2> = a_1
   <blah2> = a_1
 
 
   which copy propagation would then turn into:
   which copy propagation would then turn into:
 
 
   a_5 = <blah>
   a_5 = <blah>
   <blah2> = a_5
   <blah2> = a_5
 
 
   and so we still retain the user variable whenever possible.  */
   and so we still retain the user variable whenever possible.  */
 
 
 
 
/* Coalesce the partitions in MAP representing VAR1 and VAR2 if it is valid.
/* Coalesce the partitions in MAP representing VAR1 and VAR2 if it is valid.
   Choose a representative for the partition, and send debug info to DEBUG.  */
   Choose a representative for the partition, and send debug info to DEBUG.  */
 
 
static void
static void
copy_rename_partition_coalesce (var_map map, tree var1, tree var2, FILE *debug)
copy_rename_partition_coalesce (var_map map, tree var1, tree var2, FILE *debug)
{
{
  int p1, p2, p3;
  int p1, p2, p3;
  tree root1, root2;
  tree root1, root2;
  tree rep1, rep2;
  tree rep1, rep2;
  var_ann_t ann1, ann2, ann3;
  var_ann_t ann1, ann2, ann3;
  bool ign1, ign2, abnorm;
  bool ign1, ign2, abnorm;
 
 
  gcc_assert (TREE_CODE (var1) == SSA_NAME);
  gcc_assert (TREE_CODE (var1) == SSA_NAME);
  gcc_assert (TREE_CODE (var2) == SSA_NAME);
  gcc_assert (TREE_CODE (var2) == SSA_NAME);
 
 
  register_ssa_partition (map, var1, false);
  register_ssa_partition (map, var1, false);
  register_ssa_partition (map, var2, true);
  register_ssa_partition (map, var2, true);
 
 
  p1 = partition_find (map->var_partition, SSA_NAME_VERSION (var1));
  p1 = partition_find (map->var_partition, SSA_NAME_VERSION (var1));
  p2 = partition_find (map->var_partition, SSA_NAME_VERSION (var2));
  p2 = partition_find (map->var_partition, SSA_NAME_VERSION (var2));
 
 
  if (debug)
  if (debug)
    {
    {
      fprintf (debug, "Try : ");
      fprintf (debug, "Try : ");
      print_generic_expr (debug, var1, TDF_SLIM);
      print_generic_expr (debug, var1, TDF_SLIM);
      fprintf (debug, "(P%d) & ", p1);
      fprintf (debug, "(P%d) & ", p1);
      print_generic_expr (debug, var2, TDF_SLIM);
      print_generic_expr (debug, var2, TDF_SLIM);
      fprintf (debug, "(P%d)", p2);
      fprintf (debug, "(P%d)", p2);
    }
    }
 
 
  gcc_assert (p1 != NO_PARTITION);
  gcc_assert (p1 != NO_PARTITION);
  gcc_assert (p2 != NO_PARTITION);
  gcc_assert (p2 != NO_PARTITION);
 
 
  rep1 = partition_to_var (map, p1);
  rep1 = partition_to_var (map, p1);
  rep2 = partition_to_var (map, p2);
  rep2 = partition_to_var (map, p2);
  root1 = SSA_NAME_VAR (rep1);
  root1 = SSA_NAME_VAR (rep1);
  root2 = SSA_NAME_VAR (rep2);
  root2 = SSA_NAME_VAR (rep2);
 
 
  ann1 = var_ann (root1);
  ann1 = var_ann (root1);
  ann2 = var_ann (root2);
  ann2 = var_ann (root2);
 
 
  if (p1 == p2)
  if (p1 == p2)
    {
    {
      if (debug)
      if (debug)
        fprintf (debug, " : Already coalesced.\n");
        fprintf (debug, " : Already coalesced.\n");
      return;
      return;
    }
    }
 
 
  /* Don't coalesce if one of the variables occurs in an abnormal PHI.  */
  /* Don't coalesce if one of the variables occurs in an abnormal PHI.  */
  abnorm = (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rep1)
  abnorm = (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rep1)
            || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rep2));
            || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rep2));
  if (abnorm)
  if (abnorm)
    {
    {
      if (debug)
      if (debug)
        fprintf (debug, " : Abnormal PHI barrier.  No coalesce.\n");
        fprintf (debug, " : Abnormal PHI barrier.  No coalesce.\n");
      return;
      return;
    }
    }
 
 
  /* Partitions already have the same root, simply merge them.  */
  /* Partitions already have the same root, simply merge them.  */
  if (root1 == root2)
  if (root1 == root2)
    {
    {
      p1 = partition_union (map->var_partition, p1, p2);
      p1 = partition_union (map->var_partition, p1, p2);
      if (debug)
      if (debug)
        fprintf (debug, " : Same root, coalesced --> P%d.\n", p1);
        fprintf (debug, " : Same root, coalesced --> P%d.\n", p1);
      return;
      return;
    }
    }
 
 
  /* Never attempt to coalesce 2 difference parameters.  */
  /* Never attempt to coalesce 2 difference parameters.  */
  if (TREE_CODE (root1) == PARM_DECL && TREE_CODE (root2) == PARM_DECL)
  if (TREE_CODE (root1) == PARM_DECL && TREE_CODE (root2) == PARM_DECL)
    {
    {
      if (debug)
      if (debug)
        fprintf (debug, " : 2 different PARM_DECLS. No coalesce.\n");
        fprintf (debug, " : 2 different PARM_DECLS. No coalesce.\n");
      return;
      return;
    }
    }
 
 
  if ((TREE_CODE (root1) == RESULT_DECL) != (TREE_CODE (root2) == RESULT_DECL))
  if ((TREE_CODE (root1) == RESULT_DECL) != (TREE_CODE (root2) == RESULT_DECL))
    {
    {
      if (debug)
      if (debug)
        fprintf (debug, " : One root a RESULT_DECL. No coalesce.\n");
        fprintf (debug, " : One root a RESULT_DECL. No coalesce.\n");
      return;
      return;
    }
    }
 
 
  ign1 = TREE_CODE (root1) == VAR_DECL && DECL_IGNORED_P (root1);
  ign1 = TREE_CODE (root1) == VAR_DECL && DECL_IGNORED_P (root1);
  ign2 = TREE_CODE (root2) == VAR_DECL && DECL_IGNORED_P (root2);
  ign2 = TREE_CODE (root2) == VAR_DECL && DECL_IGNORED_P (root2);
 
 
  /* Never attempt to coalesce 2 user variables unless one is an inline
  /* Never attempt to coalesce 2 user variables unless one is an inline
     variable.  */
     variable.  */
  if (!ign1 && !ign2)
  if (!ign1 && !ign2)
    {
    {
      if (DECL_FROM_INLINE (root2))
      if (DECL_FROM_INLINE (root2))
        ign2 = true;
        ign2 = true;
      else if (DECL_FROM_INLINE (root1))
      else if (DECL_FROM_INLINE (root1))
        ign1 = true;
        ign1 = true;
      else
      else
        {
        {
          if (debug)
          if (debug)
            fprintf (debug, " : 2 different USER vars. No coalesce.\n");
            fprintf (debug, " : 2 different USER vars. No coalesce.\n");
          return;
          return;
        }
        }
    }
    }
 
 
  /* Don't coalesce if there are two different memory tags.  */
  /* Don't coalesce if there are two different memory tags.  */
  if (ann1->symbol_mem_tag
  if (ann1->symbol_mem_tag
      && ann2->symbol_mem_tag
      && ann2->symbol_mem_tag
      && ann1->symbol_mem_tag != ann2->symbol_mem_tag)
      && ann1->symbol_mem_tag != ann2->symbol_mem_tag)
    {
    {
      if (debug)
      if (debug)
        fprintf (debug, " : 2 memory tags. No coalesce.\n");
        fprintf (debug, " : 2 memory tags. No coalesce.\n");
      return;
      return;
    }
    }
 
 
  /* If both values have default defs, we can't coalesce.  If only one has a
  /* If both values have default defs, we can't coalesce.  If only one has a
     tag, make sure that variable is the new root partition.  */
     tag, make sure that variable is the new root partition.  */
  if (default_def (root1))
  if (default_def (root1))
    {
    {
      if (default_def (root2))
      if (default_def (root2))
        {
        {
          if (debug)
          if (debug)
            fprintf (debug, " : 2 default defs. No coalesce.\n");
            fprintf (debug, " : 2 default defs. No coalesce.\n");
          return;
          return;
        }
        }
      else
      else
        {
        {
          ign2 = true;
          ign2 = true;
          ign1 = false;
          ign1 = false;
        }
        }
    }
    }
  else if (default_def (root2))
  else if (default_def (root2))
    {
    {
      ign1 = true;
      ign1 = true;
      ign2 = false;
      ign2 = false;
    }
    }
 
 
  /* Don't coalesce if the two variables aren't type compatible.  */
  /* Don't coalesce if the two variables aren't type compatible.  */
  if (!lang_hooks.types_compatible_p (TREE_TYPE (root1), TREE_TYPE (root2)))
  if (!lang_hooks.types_compatible_p (TREE_TYPE (root1), TREE_TYPE (root2)))
    {
    {
      if (debug)
      if (debug)
        fprintf (debug, " : Incompatible types.  No coalesce.\n");
        fprintf (debug, " : Incompatible types.  No coalesce.\n");
      return;
      return;
    }
    }
 
 
  /* Don't coalesce if the aliasing sets of the types are different.  */
  /* Don't coalesce if the aliasing sets of the types are different.  */
  if (POINTER_TYPE_P (TREE_TYPE (root1))
  if (POINTER_TYPE_P (TREE_TYPE (root1))
      && POINTER_TYPE_P (TREE_TYPE (root2))
      && POINTER_TYPE_P (TREE_TYPE (root2))
      && get_alias_set (TREE_TYPE (TREE_TYPE (root1)))
      && get_alias_set (TREE_TYPE (TREE_TYPE (root1)))
          != get_alias_set (TREE_TYPE (TREE_TYPE (root2))))
          != get_alias_set (TREE_TYPE (TREE_TYPE (root2))))
    {
    {
      if (debug)
      if (debug)
        fprintf (debug, " : 2 different aliasing sets. No coalesce.\n");
        fprintf (debug, " : 2 different aliasing sets. No coalesce.\n");
      return;
      return;
    }
    }
 
 
 
 
  /* Merge the two partitions.  */
  /* Merge the two partitions.  */
  p3 = partition_union (map->var_partition, p1, p2);
  p3 = partition_union (map->var_partition, p1, p2);
 
 
  /* Set the root variable of the partition to the better choice, if there is
  /* Set the root variable of the partition to the better choice, if there is
     one.  */
     one.  */
  if (!ign2)
  if (!ign2)
    replace_ssa_name_symbol (partition_to_var (map, p3), root2);
    replace_ssa_name_symbol (partition_to_var (map, p3), root2);
  else if (!ign1)
  else if (!ign1)
    replace_ssa_name_symbol (partition_to_var (map, p3), root1);
    replace_ssa_name_symbol (partition_to_var (map, p3), root1);
 
 
  /* Update the various flag widgitry of the current base representative.  */
  /* Update the various flag widgitry of the current base representative.  */
  ann3 = var_ann (SSA_NAME_VAR (partition_to_var (map, p3)));
  ann3 = var_ann (SSA_NAME_VAR (partition_to_var (map, p3)));
  if (ann1->symbol_mem_tag)
  if (ann1->symbol_mem_tag)
    ann3->symbol_mem_tag = ann1->symbol_mem_tag;
    ann3->symbol_mem_tag = ann1->symbol_mem_tag;
  else
  else
    ann3->symbol_mem_tag = ann2->symbol_mem_tag;
    ann3->symbol_mem_tag = ann2->symbol_mem_tag;
 
 
  if (debug)
  if (debug)
    {
    {
      fprintf (debug, " --> P%d ", p3);
      fprintf (debug, " --> P%d ", p3);
      print_generic_expr (debug, SSA_NAME_VAR (partition_to_var (map, p3)),
      print_generic_expr (debug, SSA_NAME_VAR (partition_to_var (map, p3)),
                          TDF_SLIM);
                          TDF_SLIM);
      fprintf (debug, "\n");
      fprintf (debug, "\n");
    }
    }
}
}
 
 
 
 
/* This function will make a pass through the IL, and attempt to coalesce any
/* This function will make a pass through the IL, and attempt to coalesce any
   SSA versions which occur in PHI's or copies.  Coalescing is accomplished by
   SSA versions which occur in PHI's or copies.  Coalescing is accomplished by
   changing the underlying root variable of all coalesced version.  This will
   changing the underlying root variable of all coalesced version.  This will
   then cause the SSA->normal pass to attempt to coalesce them all to the same
   then cause the SSA->normal pass to attempt to coalesce them all to the same
   variable.  */
   variable.  */
 
 
static unsigned int
static unsigned int
rename_ssa_copies (void)
rename_ssa_copies (void)
{
{
  var_map map;
  var_map map;
  basic_block bb;
  basic_block bb;
  block_stmt_iterator bsi;
  block_stmt_iterator bsi;
  tree phi, stmt, var, part_var;
  tree phi, stmt, var, part_var;
  unsigned x;
  unsigned x;
  FILE *debug;
  FILE *debug;
 
 
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    debug = dump_file;
    debug = dump_file;
  else
  else
    debug = NULL;
    debug = NULL;
 
 
  map = init_var_map (num_ssa_names + 1);
  map = init_var_map (num_ssa_names + 1);
 
 
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    {
    {
      /* Scan for real copies.  */
      /* Scan for real copies.  */
      for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
      for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
        {
        {
          stmt = bsi_stmt (bsi);
          stmt = bsi_stmt (bsi);
          if (TREE_CODE (stmt) == MODIFY_EXPR)
          if (TREE_CODE (stmt) == MODIFY_EXPR)
            {
            {
              tree lhs = TREE_OPERAND (stmt, 0);
              tree lhs = TREE_OPERAND (stmt, 0);
              tree rhs = TREE_OPERAND (stmt, 1);
              tree rhs = TREE_OPERAND (stmt, 1);
 
 
              if (TREE_CODE (lhs) == SSA_NAME && TREE_CODE (rhs) == SSA_NAME)
              if (TREE_CODE (lhs) == SSA_NAME && TREE_CODE (rhs) == SSA_NAME)
                copy_rename_partition_coalesce (map, lhs, rhs, debug);
                copy_rename_partition_coalesce (map, lhs, rhs, debug);
            }
            }
        }
        }
    }
    }
 
 
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    {
    {
      /* Treat PHI nodes as copies between the result and each argument.  */
      /* Treat PHI nodes as copies between the result and each argument.  */
      for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
      for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
        {
        {
          int i;
          int i;
          tree res = PHI_RESULT (phi);
          tree res = PHI_RESULT (phi);
 
 
          /* Do not process virtual SSA_NAMES.  */
          /* Do not process virtual SSA_NAMES.  */
          if (!is_gimple_reg (SSA_NAME_VAR (res)))
          if (!is_gimple_reg (SSA_NAME_VAR (res)))
            continue;
            continue;
 
 
          for (i = 0; i < PHI_NUM_ARGS (phi); i++)
          for (i = 0; i < PHI_NUM_ARGS (phi); i++)
            {
            {
              tree arg = PHI_ARG_DEF (phi, i);
              tree arg = PHI_ARG_DEF (phi, i);
              if (TREE_CODE (arg) == SSA_NAME)
              if (TREE_CODE (arg) == SSA_NAME)
                copy_rename_partition_coalesce (map, res, arg, debug);
                copy_rename_partition_coalesce (map, res, arg, debug);
            }
            }
        }
        }
    }
    }
 
 
  if (debug)
  if (debug)
    dump_var_map (debug, map);
    dump_var_map (debug, map);
 
 
  /* Now one more pass to make all elements of a partition share the same
  /* Now one more pass to make all elements of a partition share the same
     root variable.  */
     root variable.  */
 
 
  for (x = 1; x <= num_ssa_names; x++)
  for (x = 1; x <= num_ssa_names; x++)
    {
    {
      part_var = partition_to_var (map, x);
      part_var = partition_to_var (map, x);
      if (!part_var)
      if (!part_var)
        continue;
        continue;
      var = map->partition_to_var[x];
      var = map->partition_to_var[x];
      if (debug)
      if (debug)
        {
        {
          if (SSA_NAME_VAR (var) != SSA_NAME_VAR (part_var))
          if (SSA_NAME_VAR (var) != SSA_NAME_VAR (part_var))
            {
            {
              fprintf (debug, "Coalesced ");
              fprintf (debug, "Coalesced ");
              print_generic_expr (debug, var, TDF_SLIM);
              print_generic_expr (debug, var, TDF_SLIM);
              fprintf (debug, " to ");
              fprintf (debug, " to ");
              print_generic_expr (debug, part_var, TDF_SLIM);
              print_generic_expr (debug, part_var, TDF_SLIM);
              fprintf (debug, "\n");
              fprintf (debug, "\n");
            }
            }
        }
        }
      replace_ssa_name_symbol (var, SSA_NAME_VAR (part_var));
      replace_ssa_name_symbol (var, SSA_NAME_VAR (part_var));
    }
    }
 
 
  delete_var_map (map);
  delete_var_map (map);
  return 0;
  return 0;
}
}
 
 
/* Return true if copy rename is to be performed.  */
/* Return true if copy rename is to be performed.  */
 
 
static bool
static bool
gate_copyrename (void)
gate_copyrename (void)
{
{
  return flag_tree_copyrename != 0;
  return flag_tree_copyrename != 0;
}
}
 
 
struct tree_opt_pass pass_rename_ssa_copies =
struct tree_opt_pass pass_rename_ssa_copies =
{
{
  "copyrename",                         /* name */
  "copyrename",                         /* name */
  gate_copyrename,                      /* gate */
  gate_copyrename,                      /* gate */
  rename_ssa_copies,                    /* execute */
  rename_ssa_copies,                    /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  NULL,                                 /* next */
  0,                                     /* static_pass_number */
  0,                                     /* static_pass_number */
  TV_TREE_COPY_RENAME,                  /* tv_id */
  TV_TREE_COPY_RENAME,                  /* tv_id */
  PROP_cfg | PROP_ssa | PROP_alias,     /* properties_required */
  PROP_cfg | PROP_ssa | PROP_alias,     /* properties_required */
  0,                                     /* properties_provided */
  0,                                     /* properties_provided */
  0,                                     /* properties_destroyed */
  0,                                     /* properties_destroyed */
  0,                                     /* todo_flags_start */
  0,                                     /* todo_flags_start */
  TODO_dump_func | TODO_verify_ssa,     /* todo_flags_finish */
  TODO_dump_func | TODO_verify_ssa,     /* todo_flags_finish */
  0                                      /* letter */
  0                                      /* letter */
};
};
 
 
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.