OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gcc-4.2.2/] [gcc/] [tree-ssa-phiopt.c] - Diff between revs 154 and 816

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 154 Rev 816
/* Optimization of PHI nodes by converting them into straightline code.
/* Optimization of PHI nodes by converting them into straightline code.
   Copyright (C) 2004, 2005, 2007 Free Software Foundation, Inc.
   Copyright (C) 2004, 2005, 2007 Free Software Foundation, Inc.
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify it
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
Free Software Foundation; either version 3, or (at your option) any
later version.
later version.
 
 
GCC is distributed in the hope that it will be useful, but WITHOUT
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "ggc.h"
#include "ggc.h"
#include "tree.h"
#include "tree.h"
#include "rtl.h"
#include "rtl.h"
#include "flags.h"
#include "flags.h"
#include "tm_p.h"
#include "tm_p.h"
#include "basic-block.h"
#include "basic-block.h"
#include "timevar.h"
#include "timevar.h"
#include "diagnostic.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "tree-flow.h"
#include "tree-pass.h"
#include "tree-pass.h"
#include "tree-dump.h"
#include "tree-dump.h"
#include "langhooks.h"
#include "langhooks.h"
 
 
static unsigned int tree_ssa_phiopt (void);
static unsigned int tree_ssa_phiopt (void);
static bool conditional_replacement (basic_block, basic_block,
static bool conditional_replacement (basic_block, basic_block,
                                     edge, edge, tree, tree, tree);
                                     edge, edge, tree, tree, tree);
static bool value_replacement (basic_block, basic_block,
static bool value_replacement (basic_block, basic_block,
                               edge, edge, tree, tree, tree);
                               edge, edge, tree, tree, tree);
static bool minmax_replacement (basic_block, basic_block,
static bool minmax_replacement (basic_block, basic_block,
                                edge, edge, tree, tree, tree);
                                edge, edge, tree, tree, tree);
static bool abs_replacement (basic_block, basic_block,
static bool abs_replacement (basic_block, basic_block,
                             edge, edge, tree, tree, tree);
                             edge, edge, tree, tree, tree);
static void replace_phi_edge_with_variable (basic_block, edge, tree, tree);
static void replace_phi_edge_with_variable (basic_block, edge, tree, tree);
static basic_block *blocks_in_phiopt_order (void);
static basic_block *blocks_in_phiopt_order (void);
 
 
/* This pass tries to replaces an if-then-else block with an
/* This pass tries to replaces an if-then-else block with an
   assignment.  We have four kinds of transformations.  Some of these
   assignment.  We have four kinds of transformations.  Some of these
   transformations are also performed by the ifcvt RTL optimizer.
   transformations are also performed by the ifcvt RTL optimizer.
 
 
   Conditional Replacement
   Conditional Replacement
   -----------------------
   -----------------------
 
 
   This transformation, implemented in conditional_replacement,
   This transformation, implemented in conditional_replacement,
   replaces
   replaces
 
 
     bb0:
     bb0:
      if (cond) goto bb2; else goto bb1;
      if (cond) goto bb2; else goto bb1;
     bb1:
     bb1:
     bb2:
     bb2:
      x = PHI <0 (bb1), 1 (bb0), ...>;
      x = PHI <0 (bb1), 1 (bb0), ...>;
 
 
   with
   with
 
 
     bb0:
     bb0:
      x' = cond;
      x' = cond;
      goto bb2;
      goto bb2;
     bb2:
     bb2:
      x = PHI <x' (bb0), ...>;
      x = PHI <x' (bb0), ...>;
 
 
   We remove bb1 as it becomes unreachable.  This occurs often due to
   We remove bb1 as it becomes unreachable.  This occurs often due to
   gimplification of conditionals.
   gimplification of conditionals.
 
 
   Value Replacement
   Value Replacement
   -----------------
   -----------------
 
 
   This transformation, implemented in value_replacement, replaces
   This transformation, implemented in value_replacement, replaces
 
 
     bb0:
     bb0:
       if (a != b) goto bb2; else goto bb1;
       if (a != b) goto bb2; else goto bb1;
     bb1:
     bb1:
     bb2:
     bb2:
       x = PHI <a (bb1), b (bb0), ...>;
       x = PHI <a (bb1), b (bb0), ...>;
 
 
   with
   with
 
 
     bb0:
     bb0:
     bb2:
     bb2:
       x = PHI <b (bb0), ...>;
       x = PHI <b (bb0), ...>;
 
 
   This opportunity can sometimes occur as a result of other
   This opportunity can sometimes occur as a result of other
   optimizations.
   optimizations.
 
 
   ABS Replacement
   ABS Replacement
   ---------------
   ---------------
 
 
   This transformation, implemented in abs_replacement, replaces
   This transformation, implemented in abs_replacement, replaces
 
 
     bb0:
     bb0:
       if (a >= 0) goto bb2; else goto bb1;
       if (a >= 0) goto bb2; else goto bb1;
     bb1:
     bb1:
       x = -a;
       x = -a;
     bb2:
     bb2:
       x = PHI <x (bb1), a (bb0), ...>;
       x = PHI <x (bb1), a (bb0), ...>;
 
 
   with
   with
 
 
     bb0:
     bb0:
       x' = ABS_EXPR< a >;
       x' = ABS_EXPR< a >;
     bb2:
     bb2:
       x = PHI <x' (bb0), ...>;
       x = PHI <x' (bb0), ...>;
 
 
   MIN/MAX Replacement
   MIN/MAX Replacement
   -------------------
   -------------------
 
 
   This transformation, minmax_replacement replaces
   This transformation, minmax_replacement replaces
 
 
     bb0:
     bb0:
       if (a <= b) goto bb2; else goto bb1;
       if (a <= b) goto bb2; else goto bb1;
     bb1:
     bb1:
     bb2:
     bb2:
       x = PHI <b (bb1), a (bb0), ...>;
       x = PHI <b (bb1), a (bb0), ...>;
 
 
   with
   with
 
 
     bb0:
     bb0:
       x' = MIN_EXPR (a, b)
       x' = MIN_EXPR (a, b)
     bb2:
     bb2:
       x = PHI <x' (bb0), ...>;
       x = PHI <x' (bb0), ...>;
 
 
   A similar transformation is done for MAX_EXPR.  */
   A similar transformation is done for MAX_EXPR.  */
 
 
static unsigned int
static unsigned int
tree_ssa_phiopt (void)
tree_ssa_phiopt (void)
{
{
  basic_block bb;
  basic_block bb;
  basic_block *bb_order;
  basic_block *bb_order;
  unsigned n, i;
  unsigned n, i;
  bool cfgchanged = false;
  bool cfgchanged = false;
 
 
  /* Search every basic block for COND_EXPR we may be able to optimize.
  /* Search every basic block for COND_EXPR we may be able to optimize.
 
 
     We walk the blocks in order that guarantees that a block with
     We walk the blocks in order that guarantees that a block with
     a single predecessor is processed before the predecessor.
     a single predecessor is processed before the predecessor.
     This ensures that we collapse inner ifs before visiting the
     This ensures that we collapse inner ifs before visiting the
     outer ones, and also that we do not try to visit a removed
     outer ones, and also that we do not try to visit a removed
     block.  */
     block.  */
  bb_order = blocks_in_phiopt_order ();
  bb_order = blocks_in_phiopt_order ();
  n = n_basic_blocks - NUM_FIXED_BLOCKS;
  n = n_basic_blocks - NUM_FIXED_BLOCKS;
 
 
  for (i = 0; i < n; i++)
  for (i = 0; i < n; i++)
    {
    {
      tree cond_expr;
      tree cond_expr;
      tree phi;
      tree phi;
      basic_block bb1, bb2;
      basic_block bb1, bb2;
      edge e1, e2;
      edge e1, e2;
      tree arg0, arg1;
      tree arg0, arg1;
 
 
      bb = bb_order[i];
      bb = bb_order[i];
 
 
      cond_expr = last_stmt (bb);
      cond_expr = last_stmt (bb);
      /* Check to see if the last statement is a COND_EXPR.  */
      /* Check to see if the last statement is a COND_EXPR.  */
      if (!cond_expr
      if (!cond_expr
          || TREE_CODE (cond_expr) != COND_EXPR)
          || TREE_CODE (cond_expr) != COND_EXPR)
        continue;
        continue;
 
 
      e1 = EDGE_SUCC (bb, 0);
      e1 = EDGE_SUCC (bb, 0);
      bb1 = e1->dest;
      bb1 = e1->dest;
      e2 = EDGE_SUCC (bb, 1);
      e2 = EDGE_SUCC (bb, 1);
      bb2 = e2->dest;
      bb2 = e2->dest;
 
 
      /* We cannot do the optimization on abnormal edges.  */
      /* We cannot do the optimization on abnormal edges.  */
      if ((e1->flags & EDGE_ABNORMAL) != 0
      if ((e1->flags & EDGE_ABNORMAL) != 0
          || (e2->flags & EDGE_ABNORMAL) != 0)
          || (e2->flags & EDGE_ABNORMAL) != 0)
       continue;
       continue;
 
 
      /* If either bb1's succ or bb2 or bb2's succ is non NULL.  */
      /* If either bb1's succ or bb2 or bb2's succ is non NULL.  */
      if (EDGE_COUNT (bb1->succs) == 0
      if (EDGE_COUNT (bb1->succs) == 0
          || bb2 == NULL
          || bb2 == NULL
          || EDGE_COUNT (bb2->succs) == 0)
          || EDGE_COUNT (bb2->succs) == 0)
        continue;
        continue;
 
 
      /* Find the bb which is the fall through to the other.  */
      /* Find the bb which is the fall through to the other.  */
      if (EDGE_SUCC (bb1, 0)->dest == bb2)
      if (EDGE_SUCC (bb1, 0)->dest == bb2)
        ;
        ;
      else if (EDGE_SUCC (bb2, 0)->dest == bb1)
      else if (EDGE_SUCC (bb2, 0)->dest == bb1)
        {
        {
          basic_block bb_tmp = bb1;
          basic_block bb_tmp = bb1;
          edge e_tmp = e1;
          edge e_tmp = e1;
          bb1 = bb2;
          bb1 = bb2;
          bb2 = bb_tmp;
          bb2 = bb_tmp;
          e1 = e2;
          e1 = e2;
          e2 = e_tmp;
          e2 = e_tmp;
        }
        }
      else
      else
        continue;
        continue;
 
 
      e1 = EDGE_SUCC (bb1, 0);
      e1 = EDGE_SUCC (bb1, 0);
 
 
      /* Make sure that bb1 is just a fall through.  */
      /* Make sure that bb1 is just a fall through.  */
      if (!single_succ_p (bb1)
      if (!single_succ_p (bb1)
          || (e1->flags & EDGE_FALLTHRU) == 0)
          || (e1->flags & EDGE_FALLTHRU) == 0)
        continue;
        continue;
 
 
      /* Also make sure that bb1 only have one predecessor and that it
      /* Also make sure that bb1 only have one predecessor and that it
         is bb.  */
         is bb.  */
      if (!single_pred_p (bb1)
      if (!single_pred_p (bb1)
          || single_pred (bb1) != bb)
          || single_pred (bb1) != bb)
        continue;
        continue;
 
 
      phi = phi_nodes (bb2);
      phi = phi_nodes (bb2);
 
 
      /* Check to make sure that there is only one PHI node.
      /* Check to make sure that there is only one PHI node.
         TODO: we could do it with more than one iff the other PHI nodes
         TODO: we could do it with more than one iff the other PHI nodes
         have the same elements for these two edges.  */
         have the same elements for these two edges.  */
      if (!phi || PHI_CHAIN (phi) != NULL)
      if (!phi || PHI_CHAIN (phi) != NULL)
        continue;
        continue;
 
 
      arg0 = PHI_ARG_DEF_TREE (phi, e1->dest_idx);
      arg0 = PHI_ARG_DEF_TREE (phi, e1->dest_idx);
      arg1 = PHI_ARG_DEF_TREE (phi, e2->dest_idx);
      arg1 = PHI_ARG_DEF_TREE (phi, e2->dest_idx);
 
 
      /* Something is wrong if we cannot find the arguments in the PHI
      /* Something is wrong if we cannot find the arguments in the PHI
         node.  */
         node.  */
      gcc_assert (arg0 != NULL && arg1 != NULL);
      gcc_assert (arg0 != NULL && arg1 != NULL);
 
 
      /* Do the replacement of conditional if it can be done.  */
      /* Do the replacement of conditional if it can be done.  */
      if (conditional_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
      if (conditional_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
        cfgchanged = true;
        cfgchanged = true;
      else if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
      else if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
        cfgchanged = true;
        cfgchanged = true;
      else if (abs_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
      else if (abs_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
        cfgchanged = true;
        cfgchanged = true;
      else if (minmax_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
      else if (minmax_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
        cfgchanged = true;
        cfgchanged = true;
    }
    }
 
 
  free (bb_order);
  free (bb_order);
 
 
  /* If the CFG has changed, we should cleanup the CFG. */
  /* If the CFG has changed, we should cleanup the CFG. */
  return cfgchanged ? TODO_cleanup_cfg : 0;
  return cfgchanged ? TODO_cleanup_cfg : 0;
}
}
 
 
/* Returns the list of basic blocks in the function in an order that guarantees
/* Returns the list of basic blocks in the function in an order that guarantees
   that if a block X has just a single predecessor Y, then Y is after X in the
   that if a block X has just a single predecessor Y, then Y is after X in the
   ordering.  */
   ordering.  */
 
 
static basic_block *
static basic_block *
blocks_in_phiopt_order (void)
blocks_in_phiopt_order (void)
{
{
  basic_block x, y;
  basic_block x, y;
  basic_block *order = XNEWVEC (basic_block, n_basic_blocks);
  basic_block *order = XNEWVEC (basic_block, n_basic_blocks);
  unsigned n = n_basic_blocks - NUM_FIXED_BLOCKS;
  unsigned n = n_basic_blocks - NUM_FIXED_BLOCKS;
  unsigned np, i;
  unsigned np, i;
  sbitmap visited = sbitmap_alloc (last_basic_block);
  sbitmap visited = sbitmap_alloc (last_basic_block);
 
 
#define MARK_VISITED(BB) (SET_BIT (visited, (BB)->index)) 
#define MARK_VISITED(BB) (SET_BIT (visited, (BB)->index)) 
#define VISITED_P(BB) (TEST_BIT (visited, (BB)->index)) 
#define VISITED_P(BB) (TEST_BIT (visited, (BB)->index)) 
 
 
  sbitmap_zero (visited);
  sbitmap_zero (visited);
 
 
  MARK_VISITED (ENTRY_BLOCK_PTR);
  MARK_VISITED (ENTRY_BLOCK_PTR);
  FOR_EACH_BB (x)
  FOR_EACH_BB (x)
    {
    {
      if (VISITED_P (x))
      if (VISITED_P (x))
        continue;
        continue;
 
 
      /* Walk the predecessors of x as long as they have precisely one
      /* Walk the predecessors of x as long as they have precisely one
         predecessor and add them to the list, so that they get stored
         predecessor and add them to the list, so that they get stored
         after x.  */
         after x.  */
      for (y = x, np = 1;
      for (y = x, np = 1;
           single_pred_p (y) && !VISITED_P (single_pred (y));
           single_pred_p (y) && !VISITED_P (single_pred (y));
           y = single_pred (y))
           y = single_pred (y))
        np++;
        np++;
      for (y = x, i = n - np;
      for (y = x, i = n - np;
           single_pred_p (y) && !VISITED_P (single_pred (y));
           single_pred_p (y) && !VISITED_P (single_pred (y));
           y = single_pred (y), i++)
           y = single_pred (y), i++)
        {
        {
          order[i] = y;
          order[i] = y;
          MARK_VISITED (y);
          MARK_VISITED (y);
        }
        }
      order[i] = y;
      order[i] = y;
      MARK_VISITED (y);
      MARK_VISITED (y);
 
 
      gcc_assert (i == n - 1);
      gcc_assert (i == n - 1);
      n -= np;
      n -= np;
    }
    }
 
 
  sbitmap_free (visited);
  sbitmap_free (visited);
  gcc_assert (n == 0);
  gcc_assert (n == 0);
  return order;
  return order;
 
 
#undef MARK_VISITED
#undef MARK_VISITED
#undef VISITED_P
#undef VISITED_P
}
}
 
 
/* Return TRUE if block BB has no executable statements, otherwise return
/* Return TRUE if block BB has no executable statements, otherwise return
   FALSE.  */
   FALSE.  */
bool
bool
empty_block_p (basic_block bb)
empty_block_p (basic_block bb)
{
{
  block_stmt_iterator bsi;
  block_stmt_iterator bsi;
 
 
  /* BB must have no executable statements.  */
  /* BB must have no executable statements.  */
  bsi = bsi_start (bb);
  bsi = bsi_start (bb);
  while (!bsi_end_p (bsi)
  while (!bsi_end_p (bsi)
          && (TREE_CODE (bsi_stmt (bsi)) == LABEL_EXPR
          && (TREE_CODE (bsi_stmt (bsi)) == LABEL_EXPR
              || IS_EMPTY_STMT (bsi_stmt (bsi))))
              || IS_EMPTY_STMT (bsi_stmt (bsi))))
    bsi_next (&bsi);
    bsi_next (&bsi);
 
 
  if (!bsi_end_p (bsi))
  if (!bsi_end_p (bsi))
    return false;
    return false;
 
 
  return true;
  return true;
}
}
 
 
/* Replace PHI node element whose edge is E in block BB with variable NEW.
/* Replace PHI node element whose edge is E in block BB with variable NEW.
   Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
   Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
   is known to have two edges, one of which must reach BB).  */
   is known to have two edges, one of which must reach BB).  */
 
 
static void
static void
replace_phi_edge_with_variable (basic_block cond_block,
replace_phi_edge_with_variable (basic_block cond_block,
                                edge e, tree phi, tree new)
                                edge e, tree phi, tree new)
{
{
  basic_block bb = bb_for_stmt (phi);
  basic_block bb = bb_for_stmt (phi);
  basic_block block_to_remove;
  basic_block block_to_remove;
  block_stmt_iterator bsi;
  block_stmt_iterator bsi;
 
 
  /* Change the PHI argument to new.  */
  /* Change the PHI argument to new.  */
  SET_USE (PHI_ARG_DEF_PTR (phi, e->dest_idx), new);
  SET_USE (PHI_ARG_DEF_PTR (phi, e->dest_idx), new);
 
 
  /* Remove the empty basic block.  */
  /* Remove the empty basic block.  */
  if (EDGE_SUCC (cond_block, 0)->dest == bb)
  if (EDGE_SUCC (cond_block, 0)->dest == bb)
    {
    {
      EDGE_SUCC (cond_block, 0)->flags |= EDGE_FALLTHRU;
      EDGE_SUCC (cond_block, 0)->flags |= EDGE_FALLTHRU;
      EDGE_SUCC (cond_block, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
      EDGE_SUCC (cond_block, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
      EDGE_SUCC (cond_block, 0)->probability = REG_BR_PROB_BASE;
      EDGE_SUCC (cond_block, 0)->probability = REG_BR_PROB_BASE;
      EDGE_SUCC (cond_block, 0)->count += EDGE_SUCC (cond_block, 1)->count;
      EDGE_SUCC (cond_block, 0)->count += EDGE_SUCC (cond_block, 1)->count;
 
 
      block_to_remove = EDGE_SUCC (cond_block, 1)->dest;
      block_to_remove = EDGE_SUCC (cond_block, 1)->dest;
    }
    }
  else
  else
    {
    {
      EDGE_SUCC (cond_block, 1)->flags |= EDGE_FALLTHRU;
      EDGE_SUCC (cond_block, 1)->flags |= EDGE_FALLTHRU;
      EDGE_SUCC (cond_block, 1)->flags
      EDGE_SUCC (cond_block, 1)->flags
        &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
        &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
      EDGE_SUCC (cond_block, 1)->probability = REG_BR_PROB_BASE;
      EDGE_SUCC (cond_block, 1)->probability = REG_BR_PROB_BASE;
      EDGE_SUCC (cond_block, 1)->count += EDGE_SUCC (cond_block, 0)->count;
      EDGE_SUCC (cond_block, 1)->count += EDGE_SUCC (cond_block, 0)->count;
 
 
      block_to_remove = EDGE_SUCC (cond_block, 0)->dest;
      block_to_remove = EDGE_SUCC (cond_block, 0)->dest;
    }
    }
  delete_basic_block (block_to_remove);
  delete_basic_block (block_to_remove);
 
 
  /* Eliminate the COND_EXPR at the end of COND_BLOCK.  */
  /* Eliminate the COND_EXPR at the end of COND_BLOCK.  */
  bsi = bsi_last (cond_block);
  bsi = bsi_last (cond_block);
  bsi_remove (&bsi, true);
  bsi_remove (&bsi, true);
 
 
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file,
    fprintf (dump_file,
              "COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
              "COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
              cond_block->index,
              cond_block->index,
              bb->index);
              bb->index);
}
}
 
 
/*  The function conditional_replacement does the main work of doing the
/*  The function conditional_replacement does the main work of doing the
    conditional replacement.  Return true if the replacement is done.
    conditional replacement.  Return true if the replacement is done.
    Otherwise return false.
    Otherwise return false.
    BB is the basic block where the replacement is going to be done on.  ARG0
    BB is the basic block where the replacement is going to be done on.  ARG0
    is argument 0 from PHI.  Likewise for ARG1.  */
    is argument 0 from PHI.  Likewise for ARG1.  */
 
 
static bool
static bool
conditional_replacement (basic_block cond_bb, basic_block middle_bb,
conditional_replacement (basic_block cond_bb, basic_block middle_bb,
                         edge e0, edge e1, tree phi,
                         edge e0, edge e1, tree phi,
                         tree arg0, tree arg1)
                         tree arg0, tree arg1)
{
{
  tree result;
  tree result;
  tree old_result = NULL;
  tree old_result = NULL;
  tree new, cond;
  tree new, cond;
  block_stmt_iterator bsi;
  block_stmt_iterator bsi;
  edge true_edge, false_edge;
  edge true_edge, false_edge;
  tree new_var = NULL;
  tree new_var = NULL;
  tree new_var1;
  tree new_var1;
 
 
  /* The PHI arguments have the constants 0 and 1, then convert
  /* The PHI arguments have the constants 0 and 1, then convert
     it to the conditional.  */
     it to the conditional.  */
  if ((integer_zerop (arg0) && integer_onep (arg1))
  if ((integer_zerop (arg0) && integer_onep (arg1))
      || (integer_zerop (arg1) && integer_onep (arg0)))
      || (integer_zerop (arg1) && integer_onep (arg0)))
    ;
    ;
  else
  else
    return false;
    return false;
 
 
  if (!empty_block_p (middle_bb))
  if (!empty_block_p (middle_bb))
    return false;
    return false;
 
 
  /* If the condition is not a naked SSA_NAME and its type does not
  /* If the condition is not a naked SSA_NAME and its type does not
     match the type of the result, then we have to create a new
     match the type of the result, then we have to create a new
     variable to optimize this case as it would likely create
     variable to optimize this case as it would likely create
     non-gimple code when the condition was converted to the
     non-gimple code when the condition was converted to the
     result's type.  */
     result's type.  */
  cond = COND_EXPR_COND (last_stmt (cond_bb));
  cond = COND_EXPR_COND (last_stmt (cond_bb));
  result = PHI_RESULT (phi);
  result = PHI_RESULT (phi);
  if (TREE_CODE (cond) != SSA_NAME
  if (TREE_CODE (cond) != SSA_NAME
      && !lang_hooks.types_compatible_p (TREE_TYPE (cond), TREE_TYPE (result)))
      && !lang_hooks.types_compatible_p (TREE_TYPE (cond), TREE_TYPE (result)))
    {
    {
      tree tmp;
      tree tmp;
 
 
      if (!COMPARISON_CLASS_P (cond))
      if (!COMPARISON_CLASS_P (cond))
        return false;
        return false;
 
 
      tmp = create_tmp_var (TREE_TYPE (cond), NULL);
      tmp = create_tmp_var (TREE_TYPE (cond), NULL);
      add_referenced_var (tmp);
      add_referenced_var (tmp);
      new_var = make_ssa_name (tmp, NULL);
      new_var = make_ssa_name (tmp, NULL);
      old_result = cond;
      old_result = cond;
      cond = new_var;
      cond = new_var;
    }
    }
 
 
  /* If the condition was a naked SSA_NAME and the type is not the
  /* If the condition was a naked SSA_NAME and the type is not the
     same as the type of the result, then convert the type of the
     same as the type of the result, then convert the type of the
     condition.  */
     condition.  */
  if (!lang_hooks.types_compatible_p (TREE_TYPE (cond), TREE_TYPE (result)))
  if (!lang_hooks.types_compatible_p (TREE_TYPE (cond), TREE_TYPE (result)))
    cond = fold_convert (TREE_TYPE (result), cond);
    cond = fold_convert (TREE_TYPE (result), cond);
 
 
  /* We need to know which is the true edge and which is the false
  /* We need to know which is the true edge and which is the false
     edge so that we know when to invert the condition below.  */
     edge so that we know when to invert the condition below.  */
  extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
  extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
 
 
  /* Insert our new statement at the end of conditional block before the
  /* Insert our new statement at the end of conditional block before the
     COND_EXPR.  */
     COND_EXPR.  */
  bsi = bsi_last (cond_bb);
  bsi = bsi_last (cond_bb);
  bsi_insert_before (&bsi, build_empty_stmt (), BSI_NEW_STMT);
  bsi_insert_before (&bsi, build_empty_stmt (), BSI_NEW_STMT);
 
 
  if (old_result)
  if (old_result)
    {
    {
      tree new1;
      tree new1;
 
 
      new1 = build2 (TREE_CODE (old_result), TREE_TYPE (old_result),
      new1 = build2 (TREE_CODE (old_result), TREE_TYPE (old_result),
                     TREE_OPERAND (old_result, 0),
                     TREE_OPERAND (old_result, 0),
                     TREE_OPERAND (old_result, 1));
                     TREE_OPERAND (old_result, 1));
 
 
      new1 = build2 (MODIFY_EXPR, TREE_TYPE (old_result), new_var, new1);
      new1 = build2 (MODIFY_EXPR, TREE_TYPE (old_result), new_var, new1);
      SSA_NAME_DEF_STMT (new_var) = new1;
      SSA_NAME_DEF_STMT (new_var) = new1;
 
 
      bsi_insert_after (&bsi, new1, BSI_NEW_STMT);
      bsi_insert_after (&bsi, new1, BSI_NEW_STMT);
    }
    }
 
 
  new_var1 = duplicate_ssa_name (PHI_RESULT (phi), NULL);
  new_var1 = duplicate_ssa_name (PHI_RESULT (phi), NULL);
 
 
 
 
  /* At this point we know we have a COND_EXPR with two successors.
  /* At this point we know we have a COND_EXPR with two successors.
     One successor is BB, the other successor is an empty block which
     One successor is BB, the other successor is an empty block which
     falls through into BB.
     falls through into BB.
 
 
     There is a single PHI node at the join point (BB) and its arguments
     There is a single PHI node at the join point (BB) and its arguments
     are constants (0, 1).
     are constants (0, 1).
 
 
     So, given the condition COND, and the two PHI arguments, we can
     So, given the condition COND, and the two PHI arguments, we can
     rewrite this PHI into non-branching code:
     rewrite this PHI into non-branching code:
 
 
       dest = (COND) or dest = COND'
       dest = (COND) or dest = COND'
 
 
     We use the condition as-is if the argument associated with the
     We use the condition as-is if the argument associated with the
     true edge has the value one or the argument associated with the
     true edge has the value one or the argument associated with the
     false edge as the value zero.  Note that those conditions are not
     false edge as the value zero.  Note that those conditions are not
     the same since only one of the outgoing edges from the COND_EXPR
     the same since only one of the outgoing edges from the COND_EXPR
     will directly reach BB and thus be associated with an argument.  */
     will directly reach BB and thus be associated with an argument.  */
  if ((e0 == true_edge && integer_onep (arg0))
  if ((e0 == true_edge && integer_onep (arg0))
      || (e0 == false_edge && integer_zerop (arg0))
      || (e0 == false_edge && integer_zerop (arg0))
      || (e1 == true_edge && integer_onep (arg1))
      || (e1 == true_edge && integer_onep (arg1))
      || (e1 == false_edge && integer_zerop (arg1)))
      || (e1 == false_edge && integer_zerop (arg1)))
    {
    {
      new = build2 (MODIFY_EXPR, TREE_TYPE (new_var1), new_var1, cond);
      new = build2 (MODIFY_EXPR, TREE_TYPE (new_var1), new_var1, cond);
    }
    }
  else
  else
    {
    {
      tree cond1 = invert_truthvalue (cond);
      tree cond1 = invert_truthvalue (cond);
 
 
      cond = cond1;
      cond = cond1;
 
 
      /* If what we get back is a conditional expression, there is no
      /* If what we get back is a conditional expression, there is no
          way that it can be gimple.  */
          way that it can be gimple.  */
      if (TREE_CODE (cond) == COND_EXPR)
      if (TREE_CODE (cond) == COND_EXPR)
        {
        {
          release_ssa_name (new_var1);
          release_ssa_name (new_var1);
          return false;
          return false;
        }
        }
 
 
      /* If COND is not something we can expect to be reducible to a GIMPLE
      /* If COND is not something we can expect to be reducible to a GIMPLE
         condition, return early.  */
         condition, return early.  */
      if (is_gimple_cast (cond))
      if (is_gimple_cast (cond))
        cond1 = TREE_OPERAND (cond, 0);
        cond1 = TREE_OPERAND (cond, 0);
      if (TREE_CODE (cond1) == TRUTH_NOT_EXPR
      if (TREE_CODE (cond1) == TRUTH_NOT_EXPR
          && !is_gimple_val (TREE_OPERAND (cond1, 0)))
          && !is_gimple_val (TREE_OPERAND (cond1, 0)))
        {
        {
          release_ssa_name (new_var1);
          release_ssa_name (new_var1);
          return false;
          return false;
        }
        }
 
 
      /* If what we get back is not gimple try to create it as gimple by
      /* If what we get back is not gimple try to create it as gimple by
         using a temporary variable.  */
         using a temporary variable.  */
      if (is_gimple_cast (cond)
      if (is_gimple_cast (cond)
          && !is_gimple_val (TREE_OPERAND (cond, 0)))
          && !is_gimple_val (TREE_OPERAND (cond, 0)))
        {
        {
          tree op0, tmp, cond_tmp;
          tree op0, tmp, cond_tmp;
 
 
          /* Only "real" casts are OK here, not everything that is
          /* Only "real" casts are OK here, not everything that is
             acceptable to is_gimple_cast.  Make sure we don't do
             acceptable to is_gimple_cast.  Make sure we don't do
             anything stupid here.  */
             anything stupid here.  */
          gcc_assert (TREE_CODE (cond) == NOP_EXPR
          gcc_assert (TREE_CODE (cond) == NOP_EXPR
                      || TREE_CODE (cond) == CONVERT_EXPR);
                      || TREE_CODE (cond) == CONVERT_EXPR);
 
 
          op0 = TREE_OPERAND (cond, 0);
          op0 = TREE_OPERAND (cond, 0);
          tmp = create_tmp_var (TREE_TYPE (op0), NULL);
          tmp = create_tmp_var (TREE_TYPE (op0), NULL);
          add_referenced_var (tmp);
          add_referenced_var (tmp);
          cond_tmp = make_ssa_name (tmp, NULL);
          cond_tmp = make_ssa_name (tmp, NULL);
          new = build2 (MODIFY_EXPR, TREE_TYPE (cond_tmp), cond_tmp, op0);
          new = build2 (MODIFY_EXPR, TREE_TYPE (cond_tmp), cond_tmp, op0);
          SSA_NAME_DEF_STMT (cond_tmp) = new;
          SSA_NAME_DEF_STMT (cond_tmp) = new;
 
 
          bsi_insert_after (&bsi, new, BSI_NEW_STMT);
          bsi_insert_after (&bsi, new, BSI_NEW_STMT);
          cond = fold_convert (TREE_TYPE (result), cond_tmp);
          cond = fold_convert (TREE_TYPE (result), cond_tmp);
        }
        }
 
 
      new = build2 (MODIFY_EXPR, TREE_TYPE (new_var1), new_var1, cond);
      new = build2 (MODIFY_EXPR, TREE_TYPE (new_var1), new_var1, cond);
    }
    }
 
 
  bsi_insert_after (&bsi, new, BSI_NEW_STMT);
  bsi_insert_after (&bsi, new, BSI_NEW_STMT);
 
 
  SSA_NAME_DEF_STMT (new_var1) = new;
  SSA_NAME_DEF_STMT (new_var1) = new;
 
 
  replace_phi_edge_with_variable (cond_bb, e1, phi, new_var1);
  replace_phi_edge_with_variable (cond_bb, e1, phi, new_var1);
 
 
  /* Note that we optimized this PHI.  */
  /* Note that we optimized this PHI.  */
  return true;
  return true;
}
}
 
 
/*  The function value_replacement does the main work of doing the value
/*  The function value_replacement does the main work of doing the value
    replacement.  Return true if the replacement is done.  Otherwise return
    replacement.  Return true if the replacement is done.  Otherwise return
    false.
    false.
    BB is the basic block where the replacement is going to be done on.  ARG0
    BB is the basic block where the replacement is going to be done on.  ARG0
    is argument 0 from the PHI.  Likewise for ARG1.  */
    is argument 0 from the PHI.  Likewise for ARG1.  */
 
 
static bool
static bool
value_replacement (basic_block cond_bb, basic_block middle_bb,
value_replacement (basic_block cond_bb, basic_block middle_bb,
                   edge e0, edge e1, tree phi,
                   edge e0, edge e1, tree phi,
                   tree arg0, tree arg1)
                   tree arg0, tree arg1)
{
{
  tree cond;
  tree cond;
  edge true_edge, false_edge;
  edge true_edge, false_edge;
 
 
  /* If the type says honor signed zeros we cannot do this
  /* If the type says honor signed zeros we cannot do this
     optimization.  */
     optimization.  */
  if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
  if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
    return false;
    return false;
 
 
  if (!empty_block_p (middle_bb))
  if (!empty_block_p (middle_bb))
    return false;
    return false;
 
 
  cond = COND_EXPR_COND (last_stmt (cond_bb));
  cond = COND_EXPR_COND (last_stmt (cond_bb));
 
 
  /* This transformation is only valid for equality comparisons.  */
  /* This transformation is only valid for equality comparisons.  */
  if (TREE_CODE (cond) != NE_EXPR && TREE_CODE (cond) != EQ_EXPR)
  if (TREE_CODE (cond) != NE_EXPR && TREE_CODE (cond) != EQ_EXPR)
    return false;
    return false;
 
 
  /* We need to know which is the true edge and which is the false
  /* We need to know which is the true edge and which is the false
      edge so that we know if have abs or negative abs.  */
      edge so that we know if have abs or negative abs.  */
  extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
  extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
 
 
  /* At this point we know we have a COND_EXPR with two successors.
  /* At this point we know we have a COND_EXPR with two successors.
     One successor is BB, the other successor is an empty block which
     One successor is BB, the other successor is an empty block which
     falls through into BB.
     falls through into BB.
 
 
     The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.
     The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.
 
 
     There is a single PHI node at the join point (BB) with two arguments.
     There is a single PHI node at the join point (BB) with two arguments.
 
 
     We now need to verify that the two arguments in the PHI node match
     We now need to verify that the two arguments in the PHI node match
     the two arguments to the equality comparison.  */
     the two arguments to the equality comparison.  */
 
 
  if ((operand_equal_for_phi_arg_p (arg0, TREE_OPERAND (cond, 0))
  if ((operand_equal_for_phi_arg_p (arg0, TREE_OPERAND (cond, 0))
       && operand_equal_for_phi_arg_p (arg1, TREE_OPERAND (cond, 1)))
       && operand_equal_for_phi_arg_p (arg1, TREE_OPERAND (cond, 1)))
      || (operand_equal_for_phi_arg_p (arg1, TREE_OPERAND (cond, 0))
      || (operand_equal_for_phi_arg_p (arg1, TREE_OPERAND (cond, 0))
          && operand_equal_for_phi_arg_p (arg0, TREE_OPERAND (cond, 1))))
          && operand_equal_for_phi_arg_p (arg0, TREE_OPERAND (cond, 1))))
    {
    {
      edge e;
      edge e;
      tree arg;
      tree arg;
 
 
      /* For NE_EXPR, we want to build an assignment result = arg where
      /* For NE_EXPR, we want to build an assignment result = arg where
         arg is the PHI argument associated with the true edge.  For
         arg is the PHI argument associated with the true edge.  For
         EQ_EXPR we want the PHI argument associated with the false edge.  */
         EQ_EXPR we want the PHI argument associated with the false edge.  */
      e = (TREE_CODE (cond) == NE_EXPR ? true_edge : false_edge);
      e = (TREE_CODE (cond) == NE_EXPR ? true_edge : false_edge);
 
 
      /* Unfortunately, E may not reach BB (it may instead have gone to
      /* Unfortunately, E may not reach BB (it may instead have gone to
         OTHER_BLOCK).  If that is the case, then we want the single outgoing
         OTHER_BLOCK).  If that is the case, then we want the single outgoing
         edge from OTHER_BLOCK which reaches BB and represents the desired
         edge from OTHER_BLOCK which reaches BB and represents the desired
         path from COND_BLOCK.  */
         path from COND_BLOCK.  */
      if (e->dest == middle_bb)
      if (e->dest == middle_bb)
        e = single_succ_edge (e->dest);
        e = single_succ_edge (e->dest);
 
 
      /* Now we know the incoming edge to BB that has the argument for the
      /* Now we know the incoming edge to BB that has the argument for the
         RHS of our new assignment statement.  */
         RHS of our new assignment statement.  */
      if (e0 == e)
      if (e0 == e)
        arg = arg0;
        arg = arg0;
      else
      else
        arg = arg1;
        arg = arg1;
 
 
      replace_phi_edge_with_variable (cond_bb, e1, phi, arg);
      replace_phi_edge_with_variable (cond_bb, e1, phi, arg);
 
 
      /* Note that we optimized this PHI.  */
      /* Note that we optimized this PHI.  */
      return true;
      return true;
    }
    }
  return false;
  return false;
}
}
 
 
/*  The function minmax_replacement does the main work of doing the minmax
/*  The function minmax_replacement does the main work of doing the minmax
    replacement.  Return true if the replacement is done.  Otherwise return
    replacement.  Return true if the replacement is done.  Otherwise return
    false.
    false.
    BB is the basic block where the replacement is going to be done on.  ARG0
    BB is the basic block where the replacement is going to be done on.  ARG0
    is argument 0 from the PHI.  Likewise for ARG1.  */
    is argument 0 from the PHI.  Likewise for ARG1.  */
 
 
static bool
static bool
minmax_replacement (basic_block cond_bb, basic_block middle_bb,
minmax_replacement (basic_block cond_bb, basic_block middle_bb,
                    edge e0, edge e1, tree phi,
                    edge e0, edge e1, tree phi,
                    tree arg0, tree arg1)
                    tree arg0, tree arg1)
{
{
  tree result, type;
  tree result, type;
  tree cond, new;
  tree cond, new;
  edge true_edge, false_edge;
  edge true_edge, false_edge;
  enum tree_code cmp, minmax, ass_code;
  enum tree_code cmp, minmax, ass_code;
  tree smaller, larger, arg_true, arg_false;
  tree smaller, larger, arg_true, arg_false;
  block_stmt_iterator bsi, bsi_from;
  block_stmt_iterator bsi, bsi_from;
 
 
  type = TREE_TYPE (PHI_RESULT (phi));
  type = TREE_TYPE (PHI_RESULT (phi));
 
 
  /* The optimization may be unsafe due to NaNs.  */
  /* The optimization may be unsafe due to NaNs.  */
  if (HONOR_NANS (TYPE_MODE (type)))
  if (HONOR_NANS (TYPE_MODE (type)))
    return false;
    return false;
 
 
  cond = COND_EXPR_COND (last_stmt (cond_bb));
  cond = COND_EXPR_COND (last_stmt (cond_bb));
  cmp = TREE_CODE (cond);
  cmp = TREE_CODE (cond);
  result = PHI_RESULT (phi);
  result = PHI_RESULT (phi);
 
 
  /* This transformation is only valid for order comparisons.  Record which
  /* This transformation is only valid for order comparisons.  Record which
     operand is smaller/larger if the result of the comparison is true.  */
     operand is smaller/larger if the result of the comparison is true.  */
  if (cmp == LT_EXPR || cmp == LE_EXPR)
  if (cmp == LT_EXPR || cmp == LE_EXPR)
    {
    {
      smaller = TREE_OPERAND (cond, 0);
      smaller = TREE_OPERAND (cond, 0);
      larger = TREE_OPERAND (cond, 1);
      larger = TREE_OPERAND (cond, 1);
    }
    }
  else if (cmp == GT_EXPR || cmp == GE_EXPR)
  else if (cmp == GT_EXPR || cmp == GE_EXPR)
    {
    {
      smaller = TREE_OPERAND (cond, 1);
      smaller = TREE_OPERAND (cond, 1);
      larger = TREE_OPERAND (cond, 0);
      larger = TREE_OPERAND (cond, 0);
    }
    }
  else
  else
    return false;
    return false;
 
 
  /* We need to know which is the true edge and which is the false
  /* We need to know which is the true edge and which is the false
      edge so that we know if have abs or negative abs.  */
      edge so that we know if have abs or negative abs.  */
  extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
  extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
 
 
  /* Forward the edges over the middle basic block.  */
  /* Forward the edges over the middle basic block.  */
  if (true_edge->dest == middle_bb)
  if (true_edge->dest == middle_bb)
    true_edge = EDGE_SUCC (true_edge->dest, 0);
    true_edge = EDGE_SUCC (true_edge->dest, 0);
  if (false_edge->dest == middle_bb)
  if (false_edge->dest == middle_bb)
    false_edge = EDGE_SUCC (false_edge->dest, 0);
    false_edge = EDGE_SUCC (false_edge->dest, 0);
 
 
  if (true_edge == e0)
  if (true_edge == e0)
    {
    {
      gcc_assert (false_edge == e1);
      gcc_assert (false_edge == e1);
      arg_true = arg0;
      arg_true = arg0;
      arg_false = arg1;
      arg_false = arg1;
    }
    }
  else
  else
    {
    {
      gcc_assert (false_edge == e0);
      gcc_assert (false_edge == e0);
      gcc_assert (true_edge == e1);
      gcc_assert (true_edge == e1);
      arg_true = arg1;
      arg_true = arg1;
      arg_false = arg0;
      arg_false = arg0;
    }
    }
 
 
  if (empty_block_p (middle_bb))
  if (empty_block_p (middle_bb))
    {
    {
      if (operand_equal_for_phi_arg_p (arg_true, smaller)
      if (operand_equal_for_phi_arg_p (arg_true, smaller)
          && operand_equal_for_phi_arg_p (arg_false, larger))
          && operand_equal_for_phi_arg_p (arg_false, larger))
        {
        {
          /* Case
          /* Case
 
 
             if (smaller < larger)
             if (smaller < larger)
             rslt = smaller;
             rslt = smaller;
             else
             else
             rslt = larger;  */
             rslt = larger;  */
          minmax = MIN_EXPR;
          minmax = MIN_EXPR;
        }
        }
      else if (operand_equal_for_phi_arg_p (arg_false, smaller)
      else if (operand_equal_for_phi_arg_p (arg_false, smaller)
               && operand_equal_for_phi_arg_p (arg_true, larger))
               && operand_equal_for_phi_arg_p (arg_true, larger))
        minmax = MAX_EXPR;
        minmax = MAX_EXPR;
      else
      else
        return false;
        return false;
    }
    }
  else
  else
    {
    {
      /* Recognize the following case, assuming d <= u:
      /* Recognize the following case, assuming d <= u:
 
 
         if (a <= u)
         if (a <= u)
           b = MAX (a, d);
           b = MAX (a, d);
         x = PHI <b, u>
         x = PHI <b, u>
 
 
         This is equivalent to
         This is equivalent to
 
 
         b = MAX (a, d);
         b = MAX (a, d);
         x = MIN (b, u);  */
         x = MIN (b, u);  */
 
 
      tree assign = last_and_only_stmt (middle_bb);
      tree assign = last_and_only_stmt (middle_bb);
      tree lhs, rhs, op0, op1, bound;
      tree lhs, rhs, op0, op1, bound;
 
 
      if (!assign
      if (!assign
          || TREE_CODE (assign) != MODIFY_EXPR)
          || TREE_CODE (assign) != MODIFY_EXPR)
        return false;
        return false;
 
 
      lhs = TREE_OPERAND (assign, 0);
      lhs = TREE_OPERAND (assign, 0);
      rhs = TREE_OPERAND (assign, 1);
      rhs = TREE_OPERAND (assign, 1);
      ass_code = TREE_CODE (rhs);
      ass_code = TREE_CODE (rhs);
      if (ass_code != MAX_EXPR && ass_code != MIN_EXPR)
      if (ass_code != MAX_EXPR && ass_code != MIN_EXPR)
        return false;
        return false;
      op0 = TREE_OPERAND (rhs, 0);
      op0 = TREE_OPERAND (rhs, 0);
      op1 = TREE_OPERAND (rhs, 1);
      op1 = TREE_OPERAND (rhs, 1);
 
 
      if (true_edge->src == middle_bb)
      if (true_edge->src == middle_bb)
        {
        {
          /* We got here if the condition is true, i.e., SMALLER < LARGER.  */
          /* We got here if the condition is true, i.e., SMALLER < LARGER.  */
          if (!operand_equal_for_phi_arg_p (lhs, arg_true))
          if (!operand_equal_for_phi_arg_p (lhs, arg_true))
            return false;
            return false;
 
 
          if (operand_equal_for_phi_arg_p (arg_false, larger))
          if (operand_equal_for_phi_arg_p (arg_false, larger))
            {
            {
              /* Case
              /* Case
 
 
                 if (smaller < larger)
                 if (smaller < larger)
                   {
                   {
                     r' = MAX_EXPR (smaller, bound)
                     r' = MAX_EXPR (smaller, bound)
                   }
                   }
                 r = PHI <r', larger>  --> to be turned to MIN_EXPR.  */
                 r = PHI <r', larger>  --> to be turned to MIN_EXPR.  */
              if (ass_code != MAX_EXPR)
              if (ass_code != MAX_EXPR)
                return false;
                return false;
 
 
              minmax = MIN_EXPR;
              minmax = MIN_EXPR;
              if (operand_equal_for_phi_arg_p (op0, smaller))
              if (operand_equal_for_phi_arg_p (op0, smaller))
                bound = op1;
                bound = op1;
              else if (operand_equal_for_phi_arg_p (op1, smaller))
              else if (operand_equal_for_phi_arg_p (op1, smaller))
                bound = op0;
                bound = op0;
              else
              else
                return false;
                return false;
 
 
              /* We need BOUND <= LARGER.  */
              /* We need BOUND <= LARGER.  */
              if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
              if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
                                                  bound, larger)))
                                                  bound, larger)))
                return false;
                return false;
            }
            }
          else if (operand_equal_for_phi_arg_p (arg_false, smaller))
          else if (operand_equal_for_phi_arg_p (arg_false, smaller))
            {
            {
              /* Case
              /* Case
 
 
                 if (smaller < larger)
                 if (smaller < larger)
                   {
                   {
                     r' = MIN_EXPR (larger, bound)
                     r' = MIN_EXPR (larger, bound)
                   }
                   }
                 r = PHI <r', smaller>  --> to be turned to MAX_EXPR.  */
                 r = PHI <r', smaller>  --> to be turned to MAX_EXPR.  */
              if (ass_code != MIN_EXPR)
              if (ass_code != MIN_EXPR)
                return false;
                return false;
 
 
              minmax = MAX_EXPR;
              minmax = MAX_EXPR;
              if (operand_equal_for_phi_arg_p (op0, larger))
              if (operand_equal_for_phi_arg_p (op0, larger))
                bound = op1;
                bound = op1;
              else if (operand_equal_for_phi_arg_p (op1, larger))
              else if (operand_equal_for_phi_arg_p (op1, larger))
                bound = op0;
                bound = op0;
              else
              else
                return false;
                return false;
 
 
              /* We need BOUND >= SMALLER.  */
              /* We need BOUND >= SMALLER.  */
              if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
              if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
                                                  bound, smaller)))
                                                  bound, smaller)))
                return false;
                return false;
            }
            }
          else
          else
            return false;
            return false;
        }
        }
      else
      else
        {
        {
          /* We got here if the condition is false, i.e., SMALLER > LARGER.  */
          /* We got here if the condition is false, i.e., SMALLER > LARGER.  */
          if (!operand_equal_for_phi_arg_p (lhs, arg_false))
          if (!operand_equal_for_phi_arg_p (lhs, arg_false))
            return false;
            return false;
 
 
          if (operand_equal_for_phi_arg_p (arg_true, larger))
          if (operand_equal_for_phi_arg_p (arg_true, larger))
            {
            {
              /* Case
              /* Case
 
 
                 if (smaller > larger)
                 if (smaller > larger)
                   {
                   {
                     r' = MIN_EXPR (smaller, bound)
                     r' = MIN_EXPR (smaller, bound)
                   }
                   }
                 r = PHI <r', larger>  --> to be turned to MAX_EXPR.  */
                 r = PHI <r', larger>  --> to be turned to MAX_EXPR.  */
              if (ass_code != MIN_EXPR)
              if (ass_code != MIN_EXPR)
                return false;
                return false;
 
 
              minmax = MAX_EXPR;
              minmax = MAX_EXPR;
              if (operand_equal_for_phi_arg_p (op0, smaller))
              if (operand_equal_for_phi_arg_p (op0, smaller))
                bound = op1;
                bound = op1;
              else if (operand_equal_for_phi_arg_p (op1, smaller))
              else if (operand_equal_for_phi_arg_p (op1, smaller))
                bound = op0;
                bound = op0;
              else
              else
                return false;
                return false;
 
 
              /* We need BOUND >= LARGER.  */
              /* We need BOUND >= LARGER.  */
              if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
              if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
                                                  bound, larger)))
                                                  bound, larger)))
                return false;
                return false;
            }
            }
          else if (operand_equal_for_phi_arg_p (arg_true, smaller))
          else if (operand_equal_for_phi_arg_p (arg_true, smaller))
            {
            {
              /* Case
              /* Case
 
 
                 if (smaller > larger)
                 if (smaller > larger)
                   {
                   {
                     r' = MAX_EXPR (larger, bound)
                     r' = MAX_EXPR (larger, bound)
                   }
                   }
                 r = PHI <r', smaller>  --> to be turned to MIN_EXPR.  */
                 r = PHI <r', smaller>  --> to be turned to MIN_EXPR.  */
              if (ass_code != MAX_EXPR)
              if (ass_code != MAX_EXPR)
                return false;
                return false;
 
 
              minmax = MIN_EXPR;
              minmax = MIN_EXPR;
              if (operand_equal_for_phi_arg_p (op0, larger))
              if (operand_equal_for_phi_arg_p (op0, larger))
                bound = op1;
                bound = op1;
              else if (operand_equal_for_phi_arg_p (op1, larger))
              else if (operand_equal_for_phi_arg_p (op1, larger))
                bound = op0;
                bound = op0;
              else
              else
                return false;
                return false;
 
 
              /* We need BOUND <= SMALLER.  */
              /* We need BOUND <= SMALLER.  */
              if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
              if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
                                                  bound, smaller)))
                                                  bound, smaller)))
                return false;
                return false;
            }
            }
          else
          else
            return false;
            return false;
        }
        }
 
 
      /* Move the statement from the middle block.  */
      /* Move the statement from the middle block.  */
      bsi = bsi_last (cond_bb);
      bsi = bsi_last (cond_bb);
      bsi_from = bsi_last (middle_bb);
      bsi_from = bsi_last (middle_bb);
      bsi_move_before (&bsi_from, &bsi);
      bsi_move_before (&bsi_from, &bsi);
    }
    }
 
 
  /* Emit the statement to compute min/max.  */
  /* Emit the statement to compute min/max.  */
  result = duplicate_ssa_name (PHI_RESULT (phi), NULL);
  result = duplicate_ssa_name (PHI_RESULT (phi), NULL);
  new = build2 (MODIFY_EXPR, type, result,
  new = build2 (MODIFY_EXPR, type, result,
                build2 (minmax, type, arg0, arg1));
                build2 (minmax, type, arg0, arg1));
  SSA_NAME_DEF_STMT (result) = new;
  SSA_NAME_DEF_STMT (result) = new;
  bsi = bsi_last (cond_bb);
  bsi = bsi_last (cond_bb);
  bsi_insert_before (&bsi, new, BSI_NEW_STMT);
  bsi_insert_before (&bsi, new, BSI_NEW_STMT);
 
 
  replace_phi_edge_with_variable (cond_bb, e1, phi, result);
  replace_phi_edge_with_variable (cond_bb, e1, phi, result);
  return true;
  return true;
}
}
 
 
/*  The function absolute_replacement does the main work of doing the absolute
/*  The function absolute_replacement does the main work of doing the absolute
    replacement.  Return true if the replacement is done.  Otherwise return
    replacement.  Return true if the replacement is done.  Otherwise return
    false.
    false.
    bb is the basic block where the replacement is going to be done on.  arg0
    bb is the basic block where the replacement is going to be done on.  arg0
    is argument 0 from the phi.  Likewise for arg1.  */
    is argument 0 from the phi.  Likewise for arg1.  */
 
 
static bool
static bool
abs_replacement (basic_block cond_bb, basic_block middle_bb,
abs_replacement (basic_block cond_bb, basic_block middle_bb,
                 edge e0 ATTRIBUTE_UNUSED, edge e1,
                 edge e0 ATTRIBUTE_UNUSED, edge e1,
                 tree phi, tree arg0, tree arg1)
                 tree phi, tree arg0, tree arg1)
{
{
  tree result;
  tree result;
  tree new, cond;
  tree new, cond;
  block_stmt_iterator bsi;
  block_stmt_iterator bsi;
  edge true_edge, false_edge;
  edge true_edge, false_edge;
  tree assign;
  tree assign;
  edge e;
  edge e;
  tree rhs, lhs;
  tree rhs, lhs;
  bool negate;
  bool negate;
  enum tree_code cond_code;
  enum tree_code cond_code;
 
 
  /* If the type says honor signed zeros we cannot do this
  /* If the type says honor signed zeros we cannot do this
     optimization.  */
     optimization.  */
  if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
  if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
    return false;
    return false;
 
 
  /* OTHER_BLOCK must have only one executable statement which must have the
  /* OTHER_BLOCK must have only one executable statement which must have the
     form arg0 = -arg1 or arg1 = -arg0.  */
     form arg0 = -arg1 or arg1 = -arg0.  */
 
 
  assign = last_and_only_stmt (middle_bb);
  assign = last_and_only_stmt (middle_bb);
  /* If we did not find the proper negation assignment, then we can not
  /* If we did not find the proper negation assignment, then we can not
     optimize.  */
     optimize.  */
  if (assign == NULL)
  if (assign == NULL)
    return false;
    return false;
 
 
  /* If we got here, then we have found the only executable statement
  /* If we got here, then we have found the only executable statement
     in OTHER_BLOCK.  If it is anything other than arg = -arg1 or
     in OTHER_BLOCK.  If it is anything other than arg = -arg1 or
     arg1 = -arg0, then we can not optimize.  */
     arg1 = -arg0, then we can not optimize.  */
  if (TREE_CODE (assign) != MODIFY_EXPR)
  if (TREE_CODE (assign) != MODIFY_EXPR)
    return false;
    return false;
 
 
  lhs = TREE_OPERAND (assign, 0);
  lhs = TREE_OPERAND (assign, 0);
  rhs = TREE_OPERAND (assign, 1);
  rhs = TREE_OPERAND (assign, 1);
 
 
  if (TREE_CODE (rhs) != NEGATE_EXPR)
  if (TREE_CODE (rhs) != NEGATE_EXPR)
    return false;
    return false;
 
 
  rhs = TREE_OPERAND (rhs, 0);
  rhs = TREE_OPERAND (rhs, 0);
 
 
  /* The assignment has to be arg0 = -arg1 or arg1 = -arg0.  */
  /* The assignment has to be arg0 = -arg1 or arg1 = -arg0.  */
  if (!(lhs == arg0 && rhs == arg1)
  if (!(lhs == arg0 && rhs == arg1)
      && !(lhs == arg1 && rhs == arg0))
      && !(lhs == arg1 && rhs == arg0))
    return false;
    return false;
 
 
  cond = COND_EXPR_COND (last_stmt (cond_bb));
  cond = COND_EXPR_COND (last_stmt (cond_bb));
  result = PHI_RESULT (phi);
  result = PHI_RESULT (phi);
 
 
  /* Only relationals comparing arg[01] against zero are interesting.  */
  /* Only relationals comparing arg[01] against zero are interesting.  */
  cond_code = TREE_CODE (cond);
  cond_code = TREE_CODE (cond);
  if (cond_code != GT_EXPR && cond_code != GE_EXPR
  if (cond_code != GT_EXPR && cond_code != GE_EXPR
      && cond_code != LT_EXPR && cond_code != LE_EXPR)
      && cond_code != LT_EXPR && cond_code != LE_EXPR)
    return false;
    return false;
 
 
  /* Make sure the conditional is arg[01] OP y.  */
  /* Make sure the conditional is arg[01] OP y.  */
  if (TREE_OPERAND (cond, 0) != rhs)
  if (TREE_OPERAND (cond, 0) != rhs)
    return false;
    return false;
 
 
  if (FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 1)))
  if (FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 1)))
               ? real_zerop (TREE_OPERAND (cond, 1))
               ? real_zerop (TREE_OPERAND (cond, 1))
               : integer_zerop (TREE_OPERAND (cond, 1)))
               : integer_zerop (TREE_OPERAND (cond, 1)))
    ;
    ;
  else
  else
    return false;
    return false;
 
 
  /* We need to know which is the true edge and which is the false
  /* We need to know which is the true edge and which is the false
     edge so that we know if have abs or negative abs.  */
     edge so that we know if have abs or negative abs.  */
  extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
  extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
 
 
  /* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we
  /* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we
     will need to negate the result.  Similarly for LT_EXPR/LE_EXPR if
     will need to negate the result.  Similarly for LT_EXPR/LE_EXPR if
     the false edge goes to OTHER_BLOCK.  */
     the false edge goes to OTHER_BLOCK.  */
  if (cond_code == GT_EXPR || cond_code == GE_EXPR)
  if (cond_code == GT_EXPR || cond_code == GE_EXPR)
    e = true_edge;
    e = true_edge;
  else
  else
    e = false_edge;
    e = false_edge;
 
 
  if (e->dest == middle_bb)
  if (e->dest == middle_bb)
    negate = true;
    negate = true;
  else
  else
    negate = false;
    negate = false;
 
 
  result = duplicate_ssa_name (result, NULL);
  result = duplicate_ssa_name (result, NULL);
 
 
  if (negate)
  if (negate)
    {
    {
      tree tmp = create_tmp_var (TREE_TYPE (result), NULL);
      tree tmp = create_tmp_var (TREE_TYPE (result), NULL);
      add_referenced_var (tmp);
      add_referenced_var (tmp);
      lhs = make_ssa_name (tmp, NULL);
      lhs = make_ssa_name (tmp, NULL);
    }
    }
  else
  else
    lhs = result;
    lhs = result;
 
 
  /* Build the modify expression with abs expression.  */
  /* Build the modify expression with abs expression.  */
  new = build2 (MODIFY_EXPR, TREE_TYPE (lhs),
  new = build2 (MODIFY_EXPR, TREE_TYPE (lhs),
                lhs, build1 (ABS_EXPR, TREE_TYPE (lhs), rhs));
                lhs, build1 (ABS_EXPR, TREE_TYPE (lhs), rhs));
  SSA_NAME_DEF_STMT (lhs) = new;
  SSA_NAME_DEF_STMT (lhs) = new;
 
 
  bsi = bsi_last (cond_bb);
  bsi = bsi_last (cond_bb);
  bsi_insert_before (&bsi, new, BSI_NEW_STMT);
  bsi_insert_before (&bsi, new, BSI_NEW_STMT);
 
 
  if (negate)
  if (negate)
    {
    {
      /* Get the right BSI.  We want to insert after the recently
      /* Get the right BSI.  We want to insert after the recently
         added ABS_EXPR statement (which we know is the first statement
         added ABS_EXPR statement (which we know is the first statement
         in the block.  */
         in the block.  */
      new = build2 (MODIFY_EXPR, TREE_TYPE (result),
      new = build2 (MODIFY_EXPR, TREE_TYPE (result),
                    result, build1 (NEGATE_EXPR, TREE_TYPE (lhs), lhs));
                    result, build1 (NEGATE_EXPR, TREE_TYPE (lhs), lhs));
      SSA_NAME_DEF_STMT (result) = new;
      SSA_NAME_DEF_STMT (result) = new;
 
 
      bsi_insert_after (&bsi, new, BSI_NEW_STMT);
      bsi_insert_after (&bsi, new, BSI_NEW_STMT);
    }
    }
 
 
  replace_phi_edge_with_variable (cond_bb, e1, phi, result);
  replace_phi_edge_with_variable (cond_bb, e1, phi, result);
 
 
  /* Note that we optimized this PHI.  */
  /* Note that we optimized this PHI.  */
  return true;
  return true;
}
}
 
 
 
 
/* Always do these optimizations if we have SSA
/* Always do these optimizations if we have SSA
   trees to work on.  */
   trees to work on.  */
static bool
static bool
gate_phiopt (void)
gate_phiopt (void)
{
{
  return 1;
  return 1;
}
}
 
 
struct tree_opt_pass pass_phiopt =
struct tree_opt_pass pass_phiopt =
{
{
  "phiopt",                             /* name */
  "phiopt",                             /* name */
  gate_phiopt,                          /* gate */
  gate_phiopt,                          /* gate */
  tree_ssa_phiopt,                      /* execute */
  tree_ssa_phiopt,                      /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  NULL,                                 /* next */
  0,                                     /* static_pass_number */
  0,                                     /* static_pass_number */
  TV_TREE_PHIOPT,                       /* tv_id */
  TV_TREE_PHIOPT,                       /* tv_id */
  PROP_cfg | PROP_ssa | PROP_alias,     /* properties_required */
  PROP_cfg | PROP_ssa | PROP_alias,     /* properties_required */
  0,                                     /* properties_provided */
  0,                                     /* properties_provided */
  0,                                     /* properties_destroyed */
  0,                                     /* properties_destroyed */
  0,                                     /* todo_flags_start */
  0,                                     /* todo_flags_start */
  TODO_dump_func
  TODO_dump_func
    | TODO_ggc_collect
    | TODO_ggc_collect
    | TODO_verify_ssa
    | TODO_verify_ssa
    | TODO_verify_flow
    | TODO_verify_flow
    | TODO_verify_stmts,                /* todo_flags_finish */
    | TODO_verify_stmts,                /* todo_flags_finish */
  0                                      /* letter */
  0                                      /* letter */
};
};
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.