OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gcc-4.2.2/] [gcc/] [tree-vect-transform.c] - Diff between revs 154 and 816

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 154 Rev 816
/* Transformation Utilities for Loop Vectorization.
/* Transformation Utilities for Loop Vectorization.
   Copyright (C) 2003,2004,2005,2006, 2007 Free Software Foundation, Inc.
   Copyright (C) 2003,2004,2005,2006, 2007 Free Software Foundation, Inc.
   Contributed by Dorit Naishlos <dorit@il.ibm.com>
   Contributed by Dorit Naishlos <dorit@il.ibm.com>
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify it under
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
Software Foundation; either version 3, or (at your option) any later
version.
version.
 
 
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "ggc.h"
#include "ggc.h"
#include "tree.h"
#include "tree.h"
#include "target.h"
#include "target.h"
#include "rtl.h"
#include "rtl.h"
#include "basic-block.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "tree-flow.h"
#include "tree-dump.h"
#include "tree-dump.h"
#include "timevar.h"
#include "timevar.h"
#include "cfgloop.h"
#include "cfgloop.h"
#include "expr.h"
#include "expr.h"
#include "optabs.h"
#include "optabs.h"
#include "recog.h"
#include "recog.h"
#include "tree-data-ref.h"
#include "tree-data-ref.h"
#include "tree-chrec.h"
#include "tree-chrec.h"
#include "tree-scalar-evolution.h"
#include "tree-scalar-evolution.h"
#include "tree-vectorizer.h"
#include "tree-vectorizer.h"
#include "langhooks.h"
#include "langhooks.h"
#include "tree-pass.h"
#include "tree-pass.h"
#include "toplev.h"
#include "toplev.h"
#include "real.h"
#include "real.h"
 
 
/* Utility functions for the code transformation.  */
/* Utility functions for the code transformation.  */
static bool vect_transform_stmt (tree, block_stmt_iterator *);
static bool vect_transform_stmt (tree, block_stmt_iterator *);
static void vect_align_data_ref (tree);
static void vect_align_data_ref (tree);
static tree vect_create_destination_var (tree, tree);
static tree vect_create_destination_var (tree, tree);
static tree vect_create_data_ref_ptr
static tree vect_create_data_ref_ptr
  (tree, block_stmt_iterator *, tree, tree *, bool);
  (tree, block_stmt_iterator *, tree, tree *, bool);
static tree vect_create_addr_base_for_vector_ref (tree, tree *, tree);
static tree vect_create_addr_base_for_vector_ref (tree, tree *, tree);
static tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
static tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
static tree vect_get_vec_def_for_operand (tree, tree, tree *);
static tree vect_get_vec_def_for_operand (tree, tree, tree *);
static tree vect_init_vector (tree, tree);
static tree vect_init_vector (tree, tree);
static void vect_finish_stmt_generation
static void vect_finish_stmt_generation
  (tree stmt, tree vec_stmt, block_stmt_iterator *bsi);
  (tree stmt, tree vec_stmt, block_stmt_iterator *bsi);
static bool vect_is_simple_cond (tree, loop_vec_info);
static bool vect_is_simple_cond (tree, loop_vec_info);
static void update_vuses_to_preheader (tree, struct loop*);
static void update_vuses_to_preheader (tree, struct loop*);
static void vect_create_epilog_for_reduction (tree, tree, enum tree_code, tree);
static void vect_create_epilog_for_reduction (tree, tree, enum tree_code, tree);
static tree get_initial_def_for_reduction (tree, tree, tree *);
static tree get_initial_def_for_reduction (tree, tree, tree *);
 
 
/* Utility function dealing with loop peeling (not peeling itself).  */
/* Utility function dealing with loop peeling (not peeling itself).  */
static void vect_generate_tmps_on_preheader
static void vect_generate_tmps_on_preheader
  (loop_vec_info, tree *, tree *, tree *);
  (loop_vec_info, tree *, tree *, tree *);
static tree vect_build_loop_niters (loop_vec_info);
static tree vect_build_loop_niters (loop_vec_info);
static void vect_update_ivs_after_vectorizer (loop_vec_info, tree, edge);
static void vect_update_ivs_after_vectorizer (loop_vec_info, tree, edge);
static tree vect_gen_niters_for_prolog_loop (loop_vec_info, tree);
static tree vect_gen_niters_for_prolog_loop (loop_vec_info, tree);
static void vect_update_init_of_dr (struct data_reference *, tree niters);
static void vect_update_init_of_dr (struct data_reference *, tree niters);
static void vect_update_inits_of_drs (loop_vec_info, tree);
static void vect_update_inits_of_drs (loop_vec_info, tree);
static void vect_do_peeling_for_alignment (loop_vec_info, struct loops *);
static void vect_do_peeling_for_alignment (loop_vec_info, struct loops *);
static void vect_do_peeling_for_loop_bound
static void vect_do_peeling_for_loop_bound
  (loop_vec_info, tree *, struct loops *);
  (loop_vec_info, tree *, struct loops *);
static int vect_min_worthwhile_factor (enum tree_code);
static int vect_min_worthwhile_factor (enum tree_code);
 
 
 
 
/* Function vect_get_new_vect_var.
/* Function vect_get_new_vect_var.
 
 
   Returns a name for a new variable. The current naming scheme appends the
   Returns a name for a new variable. The current naming scheme appends the
   prefix "vect_" or "vect_p" (depending on the value of VAR_KIND) to
   prefix "vect_" or "vect_p" (depending on the value of VAR_KIND) to
   the name of vectorizer generated variables, and appends that to NAME if
   the name of vectorizer generated variables, and appends that to NAME if
   provided.  */
   provided.  */
 
 
static tree
static tree
vect_get_new_vect_var (tree type, enum vect_var_kind var_kind, const char *name)
vect_get_new_vect_var (tree type, enum vect_var_kind var_kind, const char *name)
{
{
  const char *prefix;
  const char *prefix;
  tree new_vect_var;
  tree new_vect_var;
 
 
  switch (var_kind)
  switch (var_kind)
  {
  {
  case vect_simple_var:
  case vect_simple_var:
    prefix = "vect_";
    prefix = "vect_";
    break;
    break;
  case vect_scalar_var:
  case vect_scalar_var:
    prefix = "stmp_";
    prefix = "stmp_";
    break;
    break;
  case vect_pointer_var:
  case vect_pointer_var:
    prefix = "vect_p";
    prefix = "vect_p";
    break;
    break;
  default:
  default:
    gcc_unreachable ();
    gcc_unreachable ();
  }
  }
 
 
  if (name)
  if (name)
    new_vect_var = create_tmp_var (type, concat (prefix, name, NULL));
    new_vect_var = create_tmp_var (type, concat (prefix, name, NULL));
  else
  else
    new_vect_var = create_tmp_var (type, prefix);
    new_vect_var = create_tmp_var (type, prefix);
 
 
  return new_vect_var;
  return new_vect_var;
}
}
 
 
 
 
/* Function vect_create_addr_base_for_vector_ref.
/* Function vect_create_addr_base_for_vector_ref.
 
 
   Create an expression that computes the address of the first memory location
   Create an expression that computes the address of the first memory location
   that will be accessed for a data reference.
   that will be accessed for a data reference.
 
 
   Input:
   Input:
   STMT: The statement containing the data reference.
   STMT: The statement containing the data reference.
   NEW_STMT_LIST: Must be initialized to NULL_TREE or a statement list.
   NEW_STMT_LIST: Must be initialized to NULL_TREE or a statement list.
   OFFSET: Optional. If supplied, it is be added to the initial address.
   OFFSET: Optional. If supplied, it is be added to the initial address.
 
 
   Output:
   Output:
   1. Return an SSA_NAME whose value is the address of the memory location of
   1. Return an SSA_NAME whose value is the address of the memory location of
      the first vector of the data reference.
      the first vector of the data reference.
   2. If new_stmt_list is not NULL_TREE after return then the caller must insert
   2. If new_stmt_list is not NULL_TREE after return then the caller must insert
      these statement(s) which define the returned SSA_NAME.
      these statement(s) which define the returned SSA_NAME.
 
 
   FORNOW: We are only handling array accesses with step 1.  */
   FORNOW: We are only handling array accesses with step 1.  */
 
 
static tree
static tree
vect_create_addr_base_for_vector_ref (tree stmt,
vect_create_addr_base_for_vector_ref (tree stmt,
                                      tree *new_stmt_list,
                                      tree *new_stmt_list,
                                      tree offset)
                                      tree offset)
{
{
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
  struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
  tree data_ref_base = unshare_expr (DR_BASE_ADDRESS (dr));
  tree data_ref_base = unshare_expr (DR_BASE_ADDRESS (dr));
  tree base_name = build_fold_indirect_ref (data_ref_base);
  tree base_name = build_fold_indirect_ref (data_ref_base);
  tree ref = DR_REF (dr);
  tree ref = DR_REF (dr);
  tree scalar_type = TREE_TYPE (ref);
  tree scalar_type = TREE_TYPE (ref);
  tree scalar_ptr_type = build_pointer_type (scalar_type);
  tree scalar_ptr_type = build_pointer_type (scalar_type);
  tree vec_stmt;
  tree vec_stmt;
  tree new_temp;
  tree new_temp;
  tree addr_base, addr_expr;
  tree addr_base, addr_expr;
  tree dest, new_stmt;
  tree dest, new_stmt;
  tree base_offset = unshare_expr (DR_OFFSET (dr));
  tree base_offset = unshare_expr (DR_OFFSET (dr));
  tree init = unshare_expr (DR_INIT (dr));
  tree init = unshare_expr (DR_INIT (dr));
 
 
  /* Create base_offset */
  /* Create base_offset */
  base_offset = size_binop (PLUS_EXPR, base_offset, init);
  base_offset = size_binop (PLUS_EXPR, base_offset, init);
  dest = create_tmp_var (TREE_TYPE (base_offset), "base_off");
  dest = create_tmp_var (TREE_TYPE (base_offset), "base_off");
  add_referenced_var (dest);
  add_referenced_var (dest);
  base_offset = force_gimple_operand (base_offset, &new_stmt, false, dest);
  base_offset = force_gimple_operand (base_offset, &new_stmt, false, dest);
  append_to_statement_list_force (new_stmt, new_stmt_list);
  append_to_statement_list_force (new_stmt, new_stmt_list);
 
 
  if (offset)
  if (offset)
    {
    {
      tree tmp = create_tmp_var (TREE_TYPE (base_offset), "offset");
      tree tmp = create_tmp_var (TREE_TYPE (base_offset), "offset");
      add_referenced_var (tmp);
      add_referenced_var (tmp);
      offset = fold_build2 (MULT_EXPR, TREE_TYPE (offset), offset,
      offset = fold_build2 (MULT_EXPR, TREE_TYPE (offset), offset,
                            DR_STEP (dr));
                            DR_STEP (dr));
      base_offset = fold_build2 (PLUS_EXPR, TREE_TYPE (base_offset),
      base_offset = fold_build2 (PLUS_EXPR, TREE_TYPE (base_offset),
                                 base_offset, offset);
                                 base_offset, offset);
      base_offset = force_gimple_operand (base_offset, &new_stmt, false, tmp);
      base_offset = force_gimple_operand (base_offset, &new_stmt, false, tmp);
      append_to_statement_list_force (new_stmt, new_stmt_list);
      append_to_statement_list_force (new_stmt, new_stmt_list);
    }
    }
 
 
  /* base + base_offset */
  /* base + base_offset */
  addr_base = fold_build2 (PLUS_EXPR, TREE_TYPE (data_ref_base), data_ref_base,
  addr_base = fold_build2 (PLUS_EXPR, TREE_TYPE (data_ref_base), data_ref_base,
                           base_offset);
                           base_offset);
 
 
  /* addr_expr = addr_base */
  /* addr_expr = addr_base */
  addr_expr = vect_get_new_vect_var (scalar_ptr_type, vect_pointer_var,
  addr_expr = vect_get_new_vect_var (scalar_ptr_type, vect_pointer_var,
                                     get_name (base_name));
                                     get_name (base_name));
  add_referenced_var (addr_expr);
  add_referenced_var (addr_expr);
  vec_stmt = build2 (MODIFY_EXPR, void_type_node, addr_expr, addr_base);
  vec_stmt = build2 (MODIFY_EXPR, void_type_node, addr_expr, addr_base);
  new_temp = make_ssa_name (addr_expr, vec_stmt);
  new_temp = make_ssa_name (addr_expr, vec_stmt);
  TREE_OPERAND (vec_stmt, 0) = new_temp;
  TREE_OPERAND (vec_stmt, 0) = new_temp;
  append_to_statement_list_force (vec_stmt, new_stmt_list);
  append_to_statement_list_force (vec_stmt, new_stmt_list);
 
 
  if (vect_print_dump_info (REPORT_DETAILS))
  if (vect_print_dump_info (REPORT_DETAILS))
    {
    {
      fprintf (vect_dump, "created ");
      fprintf (vect_dump, "created ");
      print_generic_expr (vect_dump, vec_stmt, TDF_SLIM);
      print_generic_expr (vect_dump, vec_stmt, TDF_SLIM);
    }
    }
  return new_temp;
  return new_temp;
}
}
 
 
 
 
/* Function vect_align_data_ref.
/* Function vect_align_data_ref.
 
 
   Handle misalignment of a memory accesses.
   Handle misalignment of a memory accesses.
 
 
   FORNOW: Can't handle misaligned accesses.
   FORNOW: Can't handle misaligned accesses.
   Make sure that the dataref is aligned.  */
   Make sure that the dataref is aligned.  */
 
 
static void
static void
vect_align_data_ref (tree stmt)
vect_align_data_ref (tree stmt)
{
{
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
  struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
 
 
  /* FORNOW: can't handle misaligned accesses;
  /* FORNOW: can't handle misaligned accesses;
             all accesses expected to be aligned.  */
             all accesses expected to be aligned.  */
  gcc_assert (aligned_access_p (dr));
  gcc_assert (aligned_access_p (dr));
}
}
 
 
 
 
/* Function vect_create_data_ref_ptr.
/* Function vect_create_data_ref_ptr.
 
 
   Create a memory reference expression for vector access, to be used in a
   Create a memory reference expression for vector access, to be used in a
   vector load/store stmt. The reference is based on a new pointer to vector
   vector load/store stmt. The reference is based on a new pointer to vector
   type (vp).
   type (vp).
 
 
   Input:
   Input:
   1. STMT: a stmt that references memory. Expected to be of the form
   1. STMT: a stmt that references memory. Expected to be of the form
         MODIFY_EXPR <name, data-ref> or MODIFY_EXPR <data-ref, name>.
         MODIFY_EXPR <name, data-ref> or MODIFY_EXPR <data-ref, name>.
   2. BSI: block_stmt_iterator where new stmts can be added.
   2. BSI: block_stmt_iterator where new stmts can be added.
   3. OFFSET (optional): an offset to be added to the initial address accessed
   3. OFFSET (optional): an offset to be added to the initial address accessed
        by the data-ref in STMT.
        by the data-ref in STMT.
   4. ONLY_INIT: indicate if vp is to be updated in the loop, or remain
   4. ONLY_INIT: indicate if vp is to be updated in the loop, or remain
        pointing to the initial address.
        pointing to the initial address.
 
 
   Output:
   Output:
   1. Declare a new ptr to vector_type, and have it point to the base of the
   1. Declare a new ptr to vector_type, and have it point to the base of the
      data reference (initial addressed accessed by the data reference).
      data reference (initial addressed accessed by the data reference).
      For example, for vector of type V8HI, the following code is generated:
      For example, for vector of type V8HI, the following code is generated:
 
 
      v8hi *vp;
      v8hi *vp;
      vp = (v8hi *)initial_address;
      vp = (v8hi *)initial_address;
 
 
      if OFFSET is not supplied:
      if OFFSET is not supplied:
         initial_address = &a[init];
         initial_address = &a[init];
      if OFFSET is supplied:
      if OFFSET is supplied:
         initial_address = &a[init + OFFSET];
         initial_address = &a[init + OFFSET];
 
 
      Return the initial_address in INITIAL_ADDRESS.
      Return the initial_address in INITIAL_ADDRESS.
 
 
   2. If ONLY_INIT is true, return the initial pointer.  Otherwise, create
   2. If ONLY_INIT is true, return the initial pointer.  Otherwise, create
      a data-reference in the loop based on the new vector pointer vp.  This
      a data-reference in the loop based on the new vector pointer vp.  This
      new data reference will by some means be updated each iteration of
      new data reference will by some means be updated each iteration of
      the loop.  Return the pointer vp'.
      the loop.  Return the pointer vp'.
 
 
   FORNOW: handle only aligned and consecutive accesses.  */
   FORNOW: handle only aligned and consecutive accesses.  */
 
 
static tree
static tree
vect_create_data_ref_ptr (tree stmt,
vect_create_data_ref_ptr (tree stmt,
                          block_stmt_iterator *bsi ATTRIBUTE_UNUSED,
                          block_stmt_iterator *bsi ATTRIBUTE_UNUSED,
                          tree offset, tree *initial_address, bool only_init)
                          tree offset, tree *initial_address, bool only_init)
{
{
  tree base_name;
  tree base_name;
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
  tree vect_ptr_type;
  tree vect_ptr_type;
  tree vect_ptr;
  tree vect_ptr;
  tree tag;
  tree tag;
  tree new_temp;
  tree new_temp;
  tree vec_stmt;
  tree vec_stmt;
  tree new_stmt_list = NULL_TREE;
  tree new_stmt_list = NULL_TREE;
  edge pe = loop_preheader_edge (loop);
  edge pe = loop_preheader_edge (loop);
  basic_block new_bb;
  basic_block new_bb;
  tree vect_ptr_init;
  tree vect_ptr_init;
  struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
  struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
 
 
  base_name =  build_fold_indirect_ref (unshare_expr (DR_BASE_ADDRESS (dr)));
  base_name =  build_fold_indirect_ref (unshare_expr (DR_BASE_ADDRESS (dr)));
 
 
  if (vect_print_dump_info (REPORT_DETAILS))
  if (vect_print_dump_info (REPORT_DETAILS))
    {
    {
      tree data_ref_base = base_name;
      tree data_ref_base = base_name;
      fprintf (vect_dump, "create vector-pointer variable to type: ");
      fprintf (vect_dump, "create vector-pointer variable to type: ");
      print_generic_expr (vect_dump, vectype, TDF_SLIM);
      print_generic_expr (vect_dump, vectype, TDF_SLIM);
      if (TREE_CODE (data_ref_base) == VAR_DECL)
      if (TREE_CODE (data_ref_base) == VAR_DECL)
        fprintf (vect_dump, "  vectorizing a one dimensional array ref: ");
        fprintf (vect_dump, "  vectorizing a one dimensional array ref: ");
      else if (TREE_CODE (data_ref_base) == ARRAY_REF)
      else if (TREE_CODE (data_ref_base) == ARRAY_REF)
        fprintf (vect_dump, "  vectorizing a multidimensional array ref: ");
        fprintf (vect_dump, "  vectorizing a multidimensional array ref: ");
      else if (TREE_CODE (data_ref_base) == COMPONENT_REF)
      else if (TREE_CODE (data_ref_base) == COMPONENT_REF)
        fprintf (vect_dump, "  vectorizing a record based array ref: ");
        fprintf (vect_dump, "  vectorizing a record based array ref: ");
      else if (TREE_CODE (data_ref_base) == SSA_NAME)
      else if (TREE_CODE (data_ref_base) == SSA_NAME)
        fprintf (vect_dump, "  vectorizing a pointer ref: ");
        fprintf (vect_dump, "  vectorizing a pointer ref: ");
      print_generic_expr (vect_dump, base_name, TDF_SLIM);
      print_generic_expr (vect_dump, base_name, TDF_SLIM);
    }
    }
 
 
  /** (1) Create the new vector-pointer variable:  **/
  /** (1) Create the new vector-pointer variable:  **/
 
 
  vect_ptr_type = build_pointer_type (vectype);
  vect_ptr_type = build_pointer_type (vectype);
  vect_ptr = vect_get_new_vect_var (vect_ptr_type, vect_pointer_var,
  vect_ptr = vect_get_new_vect_var (vect_ptr_type, vect_pointer_var,
                                    get_name (base_name));
                                    get_name (base_name));
  add_referenced_var (vect_ptr);
  add_referenced_var (vect_ptr);
 
 
 
 
  /** (2) Add aliasing information to the new vector-pointer:
  /** (2) Add aliasing information to the new vector-pointer:
          (The points-to info (DR_PTR_INFO) may be defined later.)  **/
          (The points-to info (DR_PTR_INFO) may be defined later.)  **/
 
 
  tag = DR_MEMTAG (dr);
  tag = DR_MEMTAG (dr);
  gcc_assert (tag);
  gcc_assert (tag);
 
 
  /* If tag is a variable (and NOT_A_TAG) than a new symbol memory
  /* If tag is a variable (and NOT_A_TAG) than a new symbol memory
     tag must be created with tag added to its may alias list.  */
     tag must be created with tag added to its may alias list.  */
  if (!MTAG_P (tag))
  if (!MTAG_P (tag))
    new_type_alias (vect_ptr, tag, DR_REF (dr));
    new_type_alias (vect_ptr, tag, DR_REF (dr));
  else
  else
    var_ann (vect_ptr)->symbol_mem_tag = tag;
    var_ann (vect_ptr)->symbol_mem_tag = tag;
 
 
  var_ann (vect_ptr)->subvars = DR_SUBVARS (dr);
  var_ann (vect_ptr)->subvars = DR_SUBVARS (dr);
 
 
  /** (3) Calculate the initial address the vector-pointer, and set
  /** (3) Calculate the initial address the vector-pointer, and set
          the vector-pointer to point to it before the loop:  **/
          the vector-pointer to point to it before the loop:  **/
 
 
  /* Create: (&(base[init_val+offset]) in the loop preheader.  */
  /* Create: (&(base[init_val+offset]) in the loop preheader.  */
  new_temp = vect_create_addr_base_for_vector_ref (stmt, &new_stmt_list,
  new_temp = vect_create_addr_base_for_vector_ref (stmt, &new_stmt_list,
                                                   offset);
                                                   offset);
  pe = loop_preheader_edge (loop);
  pe = loop_preheader_edge (loop);
  new_bb = bsi_insert_on_edge_immediate (pe, new_stmt_list);
  new_bb = bsi_insert_on_edge_immediate (pe, new_stmt_list);
  gcc_assert (!new_bb);
  gcc_assert (!new_bb);
  *initial_address = new_temp;
  *initial_address = new_temp;
 
 
  /* Create: p = (vectype *) initial_base  */
  /* Create: p = (vectype *) initial_base  */
  vec_stmt = fold_convert (vect_ptr_type, new_temp);
  vec_stmt = fold_convert (vect_ptr_type, new_temp);
  vec_stmt = build2 (MODIFY_EXPR, void_type_node, vect_ptr, vec_stmt);
  vec_stmt = build2 (MODIFY_EXPR, void_type_node, vect_ptr, vec_stmt);
  vect_ptr_init = make_ssa_name (vect_ptr, vec_stmt);
  vect_ptr_init = make_ssa_name (vect_ptr, vec_stmt);
  TREE_OPERAND (vec_stmt, 0) = vect_ptr_init;
  TREE_OPERAND (vec_stmt, 0) = vect_ptr_init;
  new_bb = bsi_insert_on_edge_immediate (pe, vec_stmt);
  new_bb = bsi_insert_on_edge_immediate (pe, vec_stmt);
  gcc_assert (!new_bb);
  gcc_assert (!new_bb);
 
 
 
 
  /** (4) Handle the updating of the vector-pointer inside the loop: **/
  /** (4) Handle the updating of the vector-pointer inside the loop: **/
 
 
  if (only_init) /* No update in loop is required.  */
  if (only_init) /* No update in loop is required.  */
    {
    {
      /* Copy the points-to information if it exists. */
      /* Copy the points-to information if it exists. */
      if (DR_PTR_INFO (dr))
      if (DR_PTR_INFO (dr))
        duplicate_ssa_name_ptr_info (vect_ptr_init, DR_PTR_INFO (dr));
        duplicate_ssa_name_ptr_info (vect_ptr_init, DR_PTR_INFO (dr));
      return vect_ptr_init;
      return vect_ptr_init;
    }
    }
  else
  else
    {
    {
      block_stmt_iterator incr_bsi;
      block_stmt_iterator incr_bsi;
      bool insert_after;
      bool insert_after;
      tree indx_before_incr, indx_after_incr;
      tree indx_before_incr, indx_after_incr;
      tree incr;
      tree incr;
 
 
      standard_iv_increment_position (loop, &incr_bsi, &insert_after);
      standard_iv_increment_position (loop, &incr_bsi, &insert_after);
      create_iv (vect_ptr_init,
      create_iv (vect_ptr_init,
                 fold_convert (vect_ptr_type, TYPE_SIZE_UNIT (vectype)),
                 fold_convert (vect_ptr_type, TYPE_SIZE_UNIT (vectype)),
                 NULL_TREE, loop, &incr_bsi, insert_after,
                 NULL_TREE, loop, &incr_bsi, insert_after,
                 &indx_before_incr, &indx_after_incr);
                 &indx_before_incr, &indx_after_incr);
      incr = bsi_stmt (incr_bsi);
      incr = bsi_stmt (incr_bsi);
      set_stmt_info (stmt_ann (incr),
      set_stmt_info (stmt_ann (incr),
                     new_stmt_vec_info (incr, loop_vinfo));
                     new_stmt_vec_info (incr, loop_vinfo));
 
 
      /* Copy the points-to information if it exists. */
      /* Copy the points-to information if it exists. */
      if (DR_PTR_INFO (dr))
      if (DR_PTR_INFO (dr))
        {
        {
          duplicate_ssa_name_ptr_info (indx_before_incr, DR_PTR_INFO (dr));
          duplicate_ssa_name_ptr_info (indx_before_incr, DR_PTR_INFO (dr));
          duplicate_ssa_name_ptr_info (indx_after_incr, DR_PTR_INFO (dr));
          duplicate_ssa_name_ptr_info (indx_after_incr, DR_PTR_INFO (dr));
        }
        }
      merge_alias_info (vect_ptr_init, indx_before_incr);
      merge_alias_info (vect_ptr_init, indx_before_incr);
      merge_alias_info (vect_ptr_init, indx_after_incr);
      merge_alias_info (vect_ptr_init, indx_after_incr);
 
 
      return indx_before_incr;
      return indx_before_incr;
    }
    }
}
}
 
 
 
 
/* Function vect_create_destination_var.
/* Function vect_create_destination_var.
 
 
   Create a new temporary of type VECTYPE.  */
   Create a new temporary of type VECTYPE.  */
 
 
static tree
static tree
vect_create_destination_var (tree scalar_dest, tree vectype)
vect_create_destination_var (tree scalar_dest, tree vectype)
{
{
  tree vec_dest;
  tree vec_dest;
  const char *new_name;
  const char *new_name;
  tree type;
  tree type;
  enum vect_var_kind kind;
  enum vect_var_kind kind;
 
 
  kind = vectype ? vect_simple_var : vect_scalar_var;
  kind = vectype ? vect_simple_var : vect_scalar_var;
  type = vectype ? vectype : TREE_TYPE (scalar_dest);
  type = vectype ? vectype : TREE_TYPE (scalar_dest);
 
 
  gcc_assert (TREE_CODE (scalar_dest) == SSA_NAME);
  gcc_assert (TREE_CODE (scalar_dest) == SSA_NAME);
 
 
  new_name = get_name (scalar_dest);
  new_name = get_name (scalar_dest);
  if (!new_name)
  if (!new_name)
    new_name = "var_";
    new_name = "var_";
  vec_dest = vect_get_new_vect_var (type, vect_simple_var, new_name);
  vec_dest = vect_get_new_vect_var (type, vect_simple_var, new_name);
  add_referenced_var (vec_dest);
  add_referenced_var (vec_dest);
 
 
  return vec_dest;
  return vec_dest;
}
}
 
 
 
 
/* Function vect_init_vector.
/* Function vect_init_vector.
 
 
   Insert a new stmt (INIT_STMT) that initializes a new vector variable with
   Insert a new stmt (INIT_STMT) that initializes a new vector variable with
   the vector elements of VECTOR_VAR. Return the DEF of INIT_STMT. It will be
   the vector elements of VECTOR_VAR. Return the DEF of INIT_STMT. It will be
   used in the vectorization of STMT.  */
   used in the vectorization of STMT.  */
 
 
static tree
static tree
vect_init_vector (tree stmt, tree vector_var)
vect_init_vector (tree stmt, tree vector_var)
{
{
  stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
  stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  tree new_var;
  tree new_var;
  tree init_stmt;
  tree init_stmt;
  tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
  tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
  tree vec_oprnd;
  tree vec_oprnd;
  edge pe;
  edge pe;
  tree new_temp;
  tree new_temp;
  basic_block new_bb;
  basic_block new_bb;
 
 
  new_var = vect_get_new_vect_var (vectype, vect_simple_var, "cst_");
  new_var = vect_get_new_vect_var (vectype, vect_simple_var, "cst_");
  add_referenced_var (new_var);
  add_referenced_var (new_var);
 
 
  init_stmt = build2 (MODIFY_EXPR, vectype, new_var, vector_var);
  init_stmt = build2 (MODIFY_EXPR, vectype, new_var, vector_var);
  new_temp = make_ssa_name (new_var, init_stmt);
  new_temp = make_ssa_name (new_var, init_stmt);
  TREE_OPERAND (init_stmt, 0) = new_temp;
  TREE_OPERAND (init_stmt, 0) = new_temp;
 
 
  pe = loop_preheader_edge (loop);
  pe = loop_preheader_edge (loop);
  new_bb = bsi_insert_on_edge_immediate (pe, init_stmt);
  new_bb = bsi_insert_on_edge_immediate (pe, init_stmt);
  gcc_assert (!new_bb);
  gcc_assert (!new_bb);
 
 
  if (vect_print_dump_info (REPORT_DETAILS))
  if (vect_print_dump_info (REPORT_DETAILS))
    {
    {
      fprintf (vect_dump, "created new init_stmt: ");
      fprintf (vect_dump, "created new init_stmt: ");
      print_generic_expr (vect_dump, init_stmt, TDF_SLIM);
      print_generic_expr (vect_dump, init_stmt, TDF_SLIM);
    }
    }
 
 
  vec_oprnd = TREE_OPERAND (init_stmt, 0);
  vec_oprnd = TREE_OPERAND (init_stmt, 0);
  return vec_oprnd;
  return vec_oprnd;
}
}
 
 
 
 
/* Function vect_get_vec_def_for_operand.
/* Function vect_get_vec_def_for_operand.
 
 
   OP is an operand in STMT. This function returns a (vector) def that will be
   OP is an operand in STMT. This function returns a (vector) def that will be
   used in the vectorized stmt for STMT.
   used in the vectorized stmt for STMT.
 
 
   In the case that OP is an SSA_NAME which is defined in the loop, then
   In the case that OP is an SSA_NAME which is defined in the loop, then
   STMT_VINFO_VEC_STMT of the defining stmt holds the relevant def.
   STMT_VINFO_VEC_STMT of the defining stmt holds the relevant def.
 
 
   In case OP is an invariant or constant, a new stmt that creates a vector def
   In case OP is an invariant or constant, a new stmt that creates a vector def
   needs to be introduced.  */
   needs to be introduced.  */
 
 
static tree
static tree
vect_get_vec_def_for_operand (tree op, tree stmt, tree *scalar_def)
vect_get_vec_def_for_operand (tree op, tree stmt, tree *scalar_def)
{
{
  tree vec_oprnd;
  tree vec_oprnd;
  tree vec_stmt;
  tree vec_stmt;
  tree def_stmt;
  tree def_stmt;
  stmt_vec_info def_stmt_info = NULL;
  stmt_vec_info def_stmt_info = NULL;
  stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
  stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
  tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
  tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
  int nunits = TYPE_VECTOR_SUBPARTS (vectype);
  int nunits = TYPE_VECTOR_SUBPARTS (vectype);
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  tree vec_inv;
  tree vec_inv;
  tree vec_cst;
  tree vec_cst;
  tree t = NULL_TREE;
  tree t = NULL_TREE;
  tree def;
  tree def;
  int i;
  int i;
  enum vect_def_type dt;
  enum vect_def_type dt;
  bool is_simple_use;
  bool is_simple_use;
 
 
  if (vect_print_dump_info (REPORT_DETAILS))
  if (vect_print_dump_info (REPORT_DETAILS))
    {
    {
      fprintf (vect_dump, "vect_get_vec_def_for_operand: ");
      fprintf (vect_dump, "vect_get_vec_def_for_operand: ");
      print_generic_expr (vect_dump, op, TDF_SLIM);
      print_generic_expr (vect_dump, op, TDF_SLIM);
    }
    }
 
 
  is_simple_use = vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt);
  is_simple_use = vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt);
  gcc_assert (is_simple_use);
  gcc_assert (is_simple_use);
  if (vect_print_dump_info (REPORT_DETAILS))
  if (vect_print_dump_info (REPORT_DETAILS))
    {
    {
      if (def)
      if (def)
        {
        {
          fprintf (vect_dump, "def =  ");
          fprintf (vect_dump, "def =  ");
          print_generic_expr (vect_dump, def, TDF_SLIM);
          print_generic_expr (vect_dump, def, TDF_SLIM);
        }
        }
      if (def_stmt)
      if (def_stmt)
        {
        {
          fprintf (vect_dump, "  def_stmt =  ");
          fprintf (vect_dump, "  def_stmt =  ");
          print_generic_expr (vect_dump, def_stmt, TDF_SLIM);
          print_generic_expr (vect_dump, def_stmt, TDF_SLIM);
        }
        }
    }
    }
 
 
  switch (dt)
  switch (dt)
    {
    {
    /* Case 1: operand is a constant.  */
    /* Case 1: operand is a constant.  */
    case vect_constant_def:
    case vect_constant_def:
      {
      {
        if (scalar_def)
        if (scalar_def)
          *scalar_def = op;
          *scalar_def = op;
 
 
        /* Create 'vect_cst_ = {cst,cst,...,cst}'  */
        /* Create 'vect_cst_ = {cst,cst,...,cst}'  */
        if (vect_print_dump_info (REPORT_DETAILS))
        if (vect_print_dump_info (REPORT_DETAILS))
          fprintf (vect_dump, "Create vector_cst. nunits = %d", nunits);
          fprintf (vect_dump, "Create vector_cst. nunits = %d", nunits);
 
 
        for (i = nunits - 1; i >= 0; --i)
        for (i = nunits - 1; i >= 0; --i)
          {
          {
            t = tree_cons (NULL_TREE, op, t);
            t = tree_cons (NULL_TREE, op, t);
          }
          }
        vec_cst = build_vector (vectype, t);
        vec_cst = build_vector (vectype, t);
        return vect_init_vector (stmt, vec_cst);
        return vect_init_vector (stmt, vec_cst);
      }
      }
 
 
    /* Case 2: operand is defined outside the loop - loop invariant.  */
    /* Case 2: operand is defined outside the loop - loop invariant.  */
    case vect_invariant_def:
    case vect_invariant_def:
      {
      {
        if (scalar_def)
        if (scalar_def)
          *scalar_def = def;
          *scalar_def = def;
 
 
        /* Create 'vec_inv = {inv,inv,..,inv}'  */
        /* Create 'vec_inv = {inv,inv,..,inv}'  */
        if (vect_print_dump_info (REPORT_DETAILS))
        if (vect_print_dump_info (REPORT_DETAILS))
          fprintf (vect_dump, "Create vector_inv.");
          fprintf (vect_dump, "Create vector_inv.");
 
 
        for (i = nunits - 1; i >= 0; --i)
        for (i = nunits - 1; i >= 0; --i)
          {
          {
            t = tree_cons (NULL_TREE, def, t);
            t = tree_cons (NULL_TREE, def, t);
          }
          }
 
 
        /* FIXME: use build_constructor directly.  */
        /* FIXME: use build_constructor directly.  */
        vec_inv = build_constructor_from_list (vectype, t);
        vec_inv = build_constructor_from_list (vectype, t);
        return vect_init_vector (stmt, vec_inv);
        return vect_init_vector (stmt, vec_inv);
      }
      }
 
 
    /* Case 3: operand is defined inside the loop.  */
    /* Case 3: operand is defined inside the loop.  */
    case vect_loop_def:
    case vect_loop_def:
      {
      {
        if (scalar_def)
        if (scalar_def)
          *scalar_def = def_stmt;
          *scalar_def = def_stmt;
 
 
        /* Get the def from the vectorized stmt.  */
        /* Get the def from the vectorized stmt.  */
        def_stmt_info = vinfo_for_stmt (def_stmt);
        def_stmt_info = vinfo_for_stmt (def_stmt);
        vec_stmt = STMT_VINFO_VEC_STMT (def_stmt_info);
        vec_stmt = STMT_VINFO_VEC_STMT (def_stmt_info);
        gcc_assert (vec_stmt);
        gcc_assert (vec_stmt);
        vec_oprnd = TREE_OPERAND (vec_stmt, 0);
        vec_oprnd = TREE_OPERAND (vec_stmt, 0);
        return vec_oprnd;
        return vec_oprnd;
      }
      }
 
 
    /* Case 4: operand is defined by a loop header phi - reduction  */
    /* Case 4: operand is defined by a loop header phi - reduction  */
    case vect_reduction_def:
    case vect_reduction_def:
      {
      {
        gcc_assert (TREE_CODE (def_stmt) == PHI_NODE);
        gcc_assert (TREE_CODE (def_stmt) == PHI_NODE);
 
 
        /* Get the def before the loop  */
        /* Get the def before the loop  */
        op = PHI_ARG_DEF_FROM_EDGE (def_stmt, loop_preheader_edge (loop));
        op = PHI_ARG_DEF_FROM_EDGE (def_stmt, loop_preheader_edge (loop));
        return get_initial_def_for_reduction (stmt, op, scalar_def);
        return get_initial_def_for_reduction (stmt, op, scalar_def);
     }
     }
 
 
    /* Case 5: operand is defined by loop-header phi - induction.  */
    /* Case 5: operand is defined by loop-header phi - induction.  */
    case vect_induction_def:
    case vect_induction_def:
      {
      {
        if (vect_print_dump_info (REPORT_DETAILS))
        if (vect_print_dump_info (REPORT_DETAILS))
          fprintf (vect_dump, "induction - unsupported.");
          fprintf (vect_dump, "induction - unsupported.");
        internal_error ("no support for induction"); /* FORNOW */
        internal_error ("no support for induction"); /* FORNOW */
      }
      }
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}
 
 
 
 
/* Function vect_finish_stmt_generation.
/* Function vect_finish_stmt_generation.
 
 
   Insert a new stmt.  */
   Insert a new stmt.  */
 
 
static void
static void
vect_finish_stmt_generation (tree stmt, tree vec_stmt, block_stmt_iterator *bsi)
vect_finish_stmt_generation (tree stmt, tree vec_stmt, block_stmt_iterator *bsi)
{
{
  bsi_insert_before (bsi, vec_stmt, BSI_SAME_STMT);
  bsi_insert_before (bsi, vec_stmt, BSI_SAME_STMT);
 
 
  if (vect_print_dump_info (REPORT_DETAILS))
  if (vect_print_dump_info (REPORT_DETAILS))
    {
    {
      fprintf (vect_dump, "add new stmt: ");
      fprintf (vect_dump, "add new stmt: ");
      print_generic_expr (vect_dump, vec_stmt, TDF_SLIM);
      print_generic_expr (vect_dump, vec_stmt, TDF_SLIM);
    }
    }
 
 
  /* Make sure bsi points to the stmt that is being vectorized.  */
  /* Make sure bsi points to the stmt that is being vectorized.  */
  gcc_assert (stmt == bsi_stmt (*bsi));
  gcc_assert (stmt == bsi_stmt (*bsi));
 
 
#ifdef USE_MAPPED_LOCATION
#ifdef USE_MAPPED_LOCATION
  SET_EXPR_LOCATION (vec_stmt, EXPR_LOCATION (stmt));
  SET_EXPR_LOCATION (vec_stmt, EXPR_LOCATION (stmt));
#else
#else
  SET_EXPR_LOCUS (vec_stmt, EXPR_LOCUS (stmt));
  SET_EXPR_LOCUS (vec_stmt, EXPR_LOCUS (stmt));
#endif
#endif
}
}
 
 
 
 
#define ADJUST_IN_EPILOG 1
#define ADJUST_IN_EPILOG 1
 
 
/* Function get_initial_def_for_reduction
/* Function get_initial_def_for_reduction
 
 
   Input:
   Input:
   STMT - a stmt that performs a reduction operation in the loop.
   STMT - a stmt that performs a reduction operation in the loop.
   INIT_VAL - the initial value of the reduction variable
   INIT_VAL - the initial value of the reduction variable
 
 
   Output:
   Output:
   SCALAR_DEF - a tree that holds a value to be added to the final result
   SCALAR_DEF - a tree that holds a value to be added to the final result
        of the reduction (used for "ADJUST_IN_EPILOG" - see below).
        of the reduction (used for "ADJUST_IN_EPILOG" - see below).
   Return a vector variable, initialized according to the operation that STMT
   Return a vector variable, initialized according to the operation that STMT
        performs. This vector will be used as the initial value of the
        performs. This vector will be used as the initial value of the
        vector of partial results.
        vector of partial results.
 
 
   Option1 ("ADJUST_IN_EPILOG"): Initialize the vector as follows:
   Option1 ("ADJUST_IN_EPILOG"): Initialize the vector as follows:
     add:         [0,0,...,0,0]
     add:         [0,0,...,0,0]
     mult:        [1,1,...,1,1]
     mult:        [1,1,...,1,1]
     min/max:     [init_val,init_val,..,init_val,init_val]
     min/max:     [init_val,init_val,..,init_val,init_val]
     bit and/or:  [init_val,init_val,..,init_val,init_val]
     bit and/or:  [init_val,init_val,..,init_val,init_val]
   and when necessary (e.g. add/mult case) let the caller know
   and when necessary (e.g. add/mult case) let the caller know
   that it needs to adjust the result by init_val.
   that it needs to adjust the result by init_val.
 
 
   Option2: Initialize the vector as follows:
   Option2: Initialize the vector as follows:
     add:         [0,0,...,0,init_val]
     add:         [0,0,...,0,init_val]
     mult:        [1,1,...,1,init_val]
     mult:        [1,1,...,1,init_val]
     min/max:     [init_val,init_val,...,init_val]
     min/max:     [init_val,init_val,...,init_val]
     bit and/or:  [init_val,init_val,...,init_val]
     bit and/or:  [init_val,init_val,...,init_val]
   and no adjustments are needed.
   and no adjustments are needed.
 
 
   For example, for the following code:
   For example, for the following code:
 
 
   s = init_val;
   s = init_val;
   for (i=0;i<n;i++)
   for (i=0;i<n;i++)
     s = s + a[i];
     s = s + a[i];
 
 
   STMT is 's = s + a[i]', and the reduction variable is 's'.
   STMT is 's = s + a[i]', and the reduction variable is 's'.
   For a vector of 4 units, we want to return either [0,0,0,init_val],
   For a vector of 4 units, we want to return either [0,0,0,init_val],
   or [0,0,0,0] and let the caller know that it needs to adjust
   or [0,0,0,0] and let the caller know that it needs to adjust
   the result at the end by 'init_val'.
   the result at the end by 'init_val'.
 
 
   FORNOW: We use the "ADJUST_IN_EPILOG" scheme.
   FORNOW: We use the "ADJUST_IN_EPILOG" scheme.
   TODO: Use some cost-model to estimate which scheme is more profitable.
   TODO: Use some cost-model to estimate which scheme is more profitable.
*/
*/
 
 
static tree
static tree
get_initial_def_for_reduction (tree stmt, tree init_val, tree *scalar_def)
get_initial_def_for_reduction (tree stmt, tree init_val, tree *scalar_def)
{
{
  stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
  stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
  tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
  tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
  int nunits = GET_MODE_NUNITS (TYPE_MODE (vectype));
  int nunits = GET_MODE_NUNITS (TYPE_MODE (vectype));
  int nelements;
  int nelements;
  enum tree_code code = TREE_CODE (TREE_OPERAND (stmt, 1));
  enum tree_code code = TREE_CODE (TREE_OPERAND (stmt, 1));
  tree type = TREE_TYPE (init_val);
  tree type = TREE_TYPE (init_val);
  tree def;
  tree def;
  tree vec, t = NULL_TREE;
  tree vec, t = NULL_TREE;
  bool need_epilog_adjust;
  bool need_epilog_adjust;
  int i;
  int i;
 
 
  gcc_assert (INTEGRAL_TYPE_P (type) || SCALAR_FLOAT_TYPE_P (type));
  gcc_assert (INTEGRAL_TYPE_P (type) || SCALAR_FLOAT_TYPE_P (type));
 
 
  switch (code)
  switch (code)
  {
  {
  case WIDEN_SUM_EXPR:
  case WIDEN_SUM_EXPR:
  case DOT_PROD_EXPR:
  case DOT_PROD_EXPR:
  case PLUS_EXPR:
  case PLUS_EXPR:
    if (INTEGRAL_TYPE_P (type))
    if (INTEGRAL_TYPE_P (type))
      def = build_int_cst (type, 0);
      def = build_int_cst (type, 0);
    else
    else
      def = build_real (type, dconst0);
      def = build_real (type, dconst0);
 
 
#ifdef ADJUST_IN_EPILOG
#ifdef ADJUST_IN_EPILOG
    /* All the 'nunits' elements are set to 0. The final result will be
    /* All the 'nunits' elements are set to 0. The final result will be
       adjusted by 'init_val' at the loop epilog.  */
       adjusted by 'init_val' at the loop epilog.  */
    nelements = nunits;
    nelements = nunits;
    need_epilog_adjust = true;
    need_epilog_adjust = true;
#else
#else
    /* 'nunits - 1' elements are set to 0; The last element is set to
    /* 'nunits - 1' elements are set to 0; The last element is set to
        'init_val'.  No further adjustments at the epilog are needed.  */
        'init_val'.  No further adjustments at the epilog are needed.  */
    nelements = nunits - 1;
    nelements = nunits - 1;
    need_epilog_adjust = false;
    need_epilog_adjust = false;
#endif
#endif
    break;
    break;
 
 
  case MIN_EXPR:
  case MIN_EXPR:
  case MAX_EXPR:
  case MAX_EXPR:
    def = init_val;
    def = init_val;
    nelements = nunits;
    nelements = nunits;
    need_epilog_adjust = false;
    need_epilog_adjust = false;
    break;
    break;
 
 
  default:
  default:
    gcc_unreachable ();
    gcc_unreachable ();
  }
  }
 
 
  for (i = nelements - 1; i >= 0; --i)
  for (i = nelements - 1; i >= 0; --i)
    t = tree_cons (NULL_TREE, def, t);
    t = tree_cons (NULL_TREE, def, t);
 
 
  if (nelements == nunits - 1)
  if (nelements == nunits - 1)
    {
    {
      /* Set the last element of the vector.  */
      /* Set the last element of the vector.  */
      t = tree_cons (NULL_TREE, init_val, t);
      t = tree_cons (NULL_TREE, init_val, t);
      nelements += 1;
      nelements += 1;
    }
    }
  gcc_assert (nelements == nunits);
  gcc_assert (nelements == nunits);
 
 
  if (TREE_CODE (init_val) == INTEGER_CST || TREE_CODE (init_val) == REAL_CST)
  if (TREE_CODE (init_val) == INTEGER_CST || TREE_CODE (init_val) == REAL_CST)
    vec = build_vector (vectype, t);
    vec = build_vector (vectype, t);
  else
  else
    vec = build_constructor_from_list (vectype, t);
    vec = build_constructor_from_list (vectype, t);
 
 
  if (!need_epilog_adjust)
  if (!need_epilog_adjust)
    *scalar_def = NULL_TREE;
    *scalar_def = NULL_TREE;
  else
  else
    *scalar_def = init_val;
    *scalar_def = init_val;
 
 
  return vect_init_vector (stmt, vec);
  return vect_init_vector (stmt, vec);
}
}
 
 
 
 
/* Function vect_create_epilog_for_reduction
/* Function vect_create_epilog_for_reduction
 
 
   Create code at the loop-epilog to finalize the result of a reduction
   Create code at the loop-epilog to finalize the result of a reduction
   computation.
   computation.
 
 
   VECT_DEF is a vector of partial results.
   VECT_DEF is a vector of partial results.
   REDUC_CODE is the tree-code for the epilog reduction.
   REDUC_CODE is the tree-code for the epilog reduction.
   STMT is the scalar reduction stmt that is being vectorized.
   STMT is the scalar reduction stmt that is being vectorized.
   REDUCTION_PHI is the phi-node that carries the reduction computation.
   REDUCTION_PHI is the phi-node that carries the reduction computation.
 
 
   This function:
   This function:
   1. Creates the reduction def-use cycle: sets the the arguments for
   1. Creates the reduction def-use cycle: sets the the arguments for
      REDUCTION_PHI:
      REDUCTION_PHI:
      The loop-entry argument is the vectorized initial-value of the reduction.
      The loop-entry argument is the vectorized initial-value of the reduction.
      The loop-latch argument is VECT_DEF - the vector of partial sums.
      The loop-latch argument is VECT_DEF - the vector of partial sums.
   2. "Reduces" the vector of partial results VECT_DEF into a single result,
   2. "Reduces" the vector of partial results VECT_DEF into a single result,
      by applying the operation specified by REDUC_CODE if available, or by
      by applying the operation specified by REDUC_CODE if available, or by
      other means (whole-vector shifts or a scalar loop).
      other means (whole-vector shifts or a scalar loop).
      The function also creates a new phi node at the loop exit to preserve
      The function also creates a new phi node at the loop exit to preserve
      loop-closed form, as illustrated below.
      loop-closed form, as illustrated below.
 
 
     The flow at the entry to this function:
     The flow at the entry to this function:
 
 
        loop:
        loop:
          vec_def = phi <null, null>            # REDUCTION_PHI
          vec_def = phi <null, null>            # REDUCTION_PHI
          VECT_DEF = vector_stmt                # vectorized form of STMT
          VECT_DEF = vector_stmt                # vectorized form of STMT
          s_loop = scalar_stmt                  # (scalar) STMT
          s_loop = scalar_stmt                  # (scalar) STMT
        loop_exit:
        loop_exit:
          s_out0 = phi <s_loop>                 # (scalar) EXIT_PHI
          s_out0 = phi <s_loop>                 # (scalar) EXIT_PHI
          use <s_out0>
          use <s_out0>
          use <s_out0>
          use <s_out0>
 
 
     The above is transformed by this function into:
     The above is transformed by this function into:
 
 
        loop:
        loop:
          vec_def = phi <vec_init, VECT_DEF>    # REDUCTION_PHI
          vec_def = phi <vec_init, VECT_DEF>    # REDUCTION_PHI
          VECT_DEF = vector_stmt                # vectorized form of STMT
          VECT_DEF = vector_stmt                # vectorized form of STMT
          s_loop = scalar_stmt                  # (scalar) STMT
          s_loop = scalar_stmt                  # (scalar) STMT
        loop_exit:
        loop_exit:
          s_out0 = phi <s_loop>                 # (scalar) EXIT_PHI
          s_out0 = phi <s_loop>                 # (scalar) EXIT_PHI
          v_out1 = phi <VECT_DEF>               # NEW_EXIT_PHI
          v_out1 = phi <VECT_DEF>               # NEW_EXIT_PHI
          v_out2 = reduce <v_out1>
          v_out2 = reduce <v_out1>
          s_out3 = extract_field <v_out2, 0>
          s_out3 = extract_field <v_out2, 0>
          s_out4 = adjust_result <s_out3>
          s_out4 = adjust_result <s_out3>
          use <s_out4>
          use <s_out4>
          use <s_out4>
          use <s_out4>
*/
*/
 
 
static void
static void
vect_create_epilog_for_reduction (tree vect_def, tree stmt,
vect_create_epilog_for_reduction (tree vect_def, tree stmt,
                                  enum tree_code reduc_code, tree reduction_phi)
                                  enum tree_code reduc_code, tree reduction_phi)
{
{
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  tree vectype;
  tree vectype;
  enum machine_mode mode;
  enum machine_mode mode;
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  basic_block exit_bb;
  basic_block exit_bb;
  tree scalar_dest;
  tree scalar_dest;
  tree scalar_type;
  tree scalar_type;
  tree new_phi;
  tree new_phi;
  block_stmt_iterator exit_bsi;
  block_stmt_iterator exit_bsi;
  tree vec_dest;
  tree vec_dest;
  tree new_temp;
  tree new_temp;
  tree new_name;
  tree new_name;
  tree epilog_stmt;
  tree epilog_stmt;
  tree new_scalar_dest, exit_phi;
  tree new_scalar_dest, exit_phi;
  tree bitsize, bitpos, bytesize;
  tree bitsize, bitpos, bytesize;
  enum tree_code code = TREE_CODE (TREE_OPERAND (stmt, 1));
  enum tree_code code = TREE_CODE (TREE_OPERAND (stmt, 1));
  tree scalar_initial_def;
  tree scalar_initial_def;
  tree vec_initial_def;
  tree vec_initial_def;
  tree orig_name;
  tree orig_name;
  imm_use_iterator imm_iter;
  imm_use_iterator imm_iter;
  use_operand_p use_p;
  use_operand_p use_p;
  bool extract_scalar_result;
  bool extract_scalar_result;
  tree reduction_op;
  tree reduction_op;
  tree orig_stmt;
  tree orig_stmt;
  tree use_stmt;
  tree use_stmt;
  tree operation = TREE_OPERAND (stmt, 1);
  tree operation = TREE_OPERAND (stmt, 1);
  int op_type;
  int op_type;
 
 
  op_type = TREE_CODE_LENGTH (TREE_CODE (operation));
  op_type = TREE_CODE_LENGTH (TREE_CODE (operation));
  reduction_op = TREE_OPERAND (operation, op_type-1);
  reduction_op = TREE_OPERAND (operation, op_type-1);
  vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
  vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
  mode = TYPE_MODE (vectype);
  mode = TYPE_MODE (vectype);
 
 
  /*** 1. Create the reduction def-use cycle  ***/
  /*** 1. Create the reduction def-use cycle  ***/
 
 
  /* 1.1 set the loop-entry arg of the reduction-phi:  */
  /* 1.1 set the loop-entry arg of the reduction-phi:  */
  /* For the case of reduction, vect_get_vec_def_for_operand returns
  /* For the case of reduction, vect_get_vec_def_for_operand returns
     the scalar def before the loop, that defines the initial value
     the scalar def before the loop, that defines the initial value
     of the reduction variable.  */
     of the reduction variable.  */
  vec_initial_def = vect_get_vec_def_for_operand (reduction_op, stmt,
  vec_initial_def = vect_get_vec_def_for_operand (reduction_op, stmt,
                                                  &scalar_initial_def);
                                                  &scalar_initial_def);
  add_phi_arg (reduction_phi, vec_initial_def, loop_preheader_edge (loop));
  add_phi_arg (reduction_phi, vec_initial_def, loop_preheader_edge (loop));
 
 
  /* 1.2 set the loop-latch arg for the reduction-phi:  */
  /* 1.2 set the loop-latch arg for the reduction-phi:  */
  add_phi_arg (reduction_phi, vect_def, loop_latch_edge (loop));
  add_phi_arg (reduction_phi, vect_def, loop_latch_edge (loop));
 
 
  if (vect_print_dump_info (REPORT_DETAILS))
  if (vect_print_dump_info (REPORT_DETAILS))
    {
    {
      fprintf (vect_dump, "transform reduction: created def-use cycle:");
      fprintf (vect_dump, "transform reduction: created def-use cycle:");
      print_generic_expr (vect_dump, reduction_phi, TDF_SLIM);
      print_generic_expr (vect_dump, reduction_phi, TDF_SLIM);
      fprintf (vect_dump, "\n");
      fprintf (vect_dump, "\n");
      print_generic_expr (vect_dump, SSA_NAME_DEF_STMT (vect_def), TDF_SLIM);
      print_generic_expr (vect_dump, SSA_NAME_DEF_STMT (vect_def), TDF_SLIM);
    }
    }
 
 
 
 
  /*** 2. Create epilog code
  /*** 2. Create epilog code
          The reduction epilog code operates across the elements of the vector
          The reduction epilog code operates across the elements of the vector
          of partial results computed by the vectorized loop.
          of partial results computed by the vectorized loop.
          The reduction epilog code consists of:
          The reduction epilog code consists of:
          step 1: compute the scalar result in a vector (v_out2)
          step 1: compute the scalar result in a vector (v_out2)
          step 2: extract the scalar result (s_out3) from the vector (v_out2)
          step 2: extract the scalar result (s_out3) from the vector (v_out2)
          step 3: adjust the scalar result (s_out3) if needed.
          step 3: adjust the scalar result (s_out3) if needed.
 
 
          Step 1 can be accomplished using one the following three schemes:
          Step 1 can be accomplished using one the following three schemes:
          (scheme 1) using reduc_code, if available.
          (scheme 1) using reduc_code, if available.
          (scheme 2) using whole-vector shifts, if available.
          (scheme 2) using whole-vector shifts, if available.
          (scheme 3) using a scalar loop. In this case steps 1+2 above are
          (scheme 3) using a scalar loop. In this case steps 1+2 above are
                     combined.
                     combined.
 
 
          The overall epilog code looks like this:
          The overall epilog code looks like this:
 
 
          s_out0 = phi <s_loop>         # original EXIT_PHI
          s_out0 = phi <s_loop>         # original EXIT_PHI
          v_out1 = phi <VECT_DEF>       # NEW_EXIT_PHI
          v_out1 = phi <VECT_DEF>       # NEW_EXIT_PHI
          v_out2 = reduce <v_out1>              # step 1
          v_out2 = reduce <v_out1>              # step 1
          s_out3 = extract_field <v_out2, 0>    # step 2
          s_out3 = extract_field <v_out2, 0>    # step 2
          s_out4 = adjust_result <s_out3>       # step 3
          s_out4 = adjust_result <s_out3>       # step 3
 
 
          (step 3 is optional, and step2 1 and 2 may be combined).
          (step 3 is optional, and step2 1 and 2 may be combined).
          Lastly, the uses of s_out0 are replaced by s_out4.
          Lastly, the uses of s_out0 are replaced by s_out4.
 
 
          ***/
          ***/
 
 
  /* 2.1 Create new loop-exit-phi to preserve loop-closed form:
  /* 2.1 Create new loop-exit-phi to preserve loop-closed form:
        v_out1 = phi <v_loop>  */
        v_out1 = phi <v_loop>  */
 
 
  exit_bb = loop->single_exit->dest;
  exit_bb = loop->single_exit->dest;
  new_phi = create_phi_node (SSA_NAME_VAR (vect_def), exit_bb);
  new_phi = create_phi_node (SSA_NAME_VAR (vect_def), exit_bb);
  SET_PHI_ARG_DEF (new_phi, loop->single_exit->dest_idx, vect_def);
  SET_PHI_ARG_DEF (new_phi, loop->single_exit->dest_idx, vect_def);
  exit_bsi = bsi_start (exit_bb);
  exit_bsi = bsi_start (exit_bb);
 
 
  /* 2.2 Get the relevant tree-code to use in the epilog for schemes 2,3
  /* 2.2 Get the relevant tree-code to use in the epilog for schemes 2,3
         (i.e. when reduc_code is not available) and in the final adjustment code
         (i.e. when reduc_code is not available) and in the final adjustment code
         (if needed).  Also get the original scalar reduction variable as
         (if needed).  Also get the original scalar reduction variable as
         defined in the loop.  In case STMT is a "pattern-stmt" (i.e. - it
         defined in the loop.  In case STMT is a "pattern-stmt" (i.e. - it
         represents a reduction pattern), the tree-code and scalar-def are
         represents a reduction pattern), the tree-code and scalar-def are
         taken from the original stmt that the pattern-stmt (STMT) replaces.
         taken from the original stmt that the pattern-stmt (STMT) replaces.
         Otherwise (it is a regular reduction) - the tree-code and scalar-def
         Otherwise (it is a regular reduction) - the tree-code and scalar-def
         are taken from STMT.  */
         are taken from STMT.  */
 
 
  orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
  orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
  if (!orig_stmt)
  if (!orig_stmt)
    {
    {
      /* Regular reduction  */
      /* Regular reduction  */
      orig_stmt = stmt;
      orig_stmt = stmt;
    }
    }
  else
  else
    {
    {
      /* Reduction pattern  */
      /* Reduction pattern  */
      stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt);
      stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt);
      gcc_assert (STMT_VINFO_IN_PATTERN_P (stmt_vinfo));
      gcc_assert (STMT_VINFO_IN_PATTERN_P (stmt_vinfo));
      gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
      gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
    }
    }
  code = TREE_CODE (TREE_OPERAND (orig_stmt, 1));
  code = TREE_CODE (TREE_OPERAND (orig_stmt, 1));
  scalar_dest = TREE_OPERAND (orig_stmt, 0);
  scalar_dest = TREE_OPERAND (orig_stmt, 0);
  scalar_type = TREE_TYPE (scalar_dest);
  scalar_type = TREE_TYPE (scalar_dest);
  new_scalar_dest = vect_create_destination_var (scalar_dest, NULL);
  new_scalar_dest = vect_create_destination_var (scalar_dest, NULL);
  bitsize = TYPE_SIZE (scalar_type);
  bitsize = TYPE_SIZE (scalar_type);
  bytesize = TYPE_SIZE_UNIT (scalar_type);
  bytesize = TYPE_SIZE_UNIT (scalar_type);
 
 
  /* 2.3 Create the reduction code, using one of the three schemes described
  /* 2.3 Create the reduction code, using one of the three schemes described
         above.  */
         above.  */
 
 
  if (reduc_code < NUM_TREE_CODES)
  if (reduc_code < NUM_TREE_CODES)
    {
    {
      /*** Case 1:  Create:
      /*** Case 1:  Create:
           v_out2 = reduc_expr <v_out1>  */
           v_out2 = reduc_expr <v_out1>  */
 
 
      if (vect_print_dump_info (REPORT_DETAILS))
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "Reduce using direct vector reduction.");
        fprintf (vect_dump, "Reduce using direct vector reduction.");
 
 
      vec_dest = vect_create_destination_var (scalar_dest, vectype);
      vec_dest = vect_create_destination_var (scalar_dest, vectype);
      epilog_stmt = build2 (MODIFY_EXPR, vectype, vec_dest,
      epilog_stmt = build2 (MODIFY_EXPR, vectype, vec_dest,
                        build1 (reduc_code, vectype,  PHI_RESULT (new_phi)));
                        build1 (reduc_code, vectype,  PHI_RESULT (new_phi)));
      new_temp = make_ssa_name (vec_dest, epilog_stmt);
      new_temp = make_ssa_name (vec_dest, epilog_stmt);
      TREE_OPERAND (epilog_stmt, 0) = new_temp;
      TREE_OPERAND (epilog_stmt, 0) = new_temp;
      bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
      bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
 
 
      extract_scalar_result = true;
      extract_scalar_result = true;
    }
    }
  else
  else
    {
    {
      enum tree_code shift_code = 0;
      enum tree_code shift_code = 0;
      bool have_whole_vector_shift = true;
      bool have_whole_vector_shift = true;
      int bit_offset;
      int bit_offset;
      int element_bitsize = tree_low_cst (bitsize, 1);
      int element_bitsize = tree_low_cst (bitsize, 1);
      int vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
      int vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
      tree vec_temp;
      tree vec_temp;
 
 
      if (vec_shr_optab->handlers[mode].insn_code != CODE_FOR_nothing)
      if (vec_shr_optab->handlers[mode].insn_code != CODE_FOR_nothing)
        shift_code = VEC_RSHIFT_EXPR;
        shift_code = VEC_RSHIFT_EXPR;
      else
      else
        have_whole_vector_shift = false;
        have_whole_vector_shift = false;
 
 
      /* Regardless of whether we have a whole vector shift, if we're
      /* Regardless of whether we have a whole vector shift, if we're
         emulating the operation via tree-vect-generic, we don't want
         emulating the operation via tree-vect-generic, we don't want
         to use it.  Only the first round of the reduction is likely
         to use it.  Only the first round of the reduction is likely
         to still be profitable via emulation.  */
         to still be profitable via emulation.  */
      /* ??? It might be better to emit a reduction tree code here, so that
      /* ??? It might be better to emit a reduction tree code here, so that
         tree-vect-generic can expand the first round via bit tricks.  */
         tree-vect-generic can expand the first round via bit tricks.  */
      if (!VECTOR_MODE_P (mode))
      if (!VECTOR_MODE_P (mode))
        have_whole_vector_shift = false;
        have_whole_vector_shift = false;
      else
      else
        {
        {
          optab optab = optab_for_tree_code (code, vectype);
          optab optab = optab_for_tree_code (code, vectype);
          if (optab->handlers[mode].insn_code == CODE_FOR_nothing)
          if (optab->handlers[mode].insn_code == CODE_FOR_nothing)
            have_whole_vector_shift = false;
            have_whole_vector_shift = false;
        }
        }
 
 
      if (have_whole_vector_shift)
      if (have_whole_vector_shift)
        {
        {
          /*** Case 2: Create:
          /*** Case 2: Create:
             for (offset = VS/2; offset >= element_size; offset/=2)
             for (offset = VS/2; offset >= element_size; offset/=2)
                {
                {
                  Create:  va' = vec_shift <va, offset>
                  Create:  va' = vec_shift <va, offset>
                  Create:  va = vop <va, va'>
                  Create:  va = vop <va, va'>
                }  */
                }  */
 
 
          if (vect_print_dump_info (REPORT_DETAILS))
          if (vect_print_dump_info (REPORT_DETAILS))
            fprintf (vect_dump, "Reduce using vector shifts");
            fprintf (vect_dump, "Reduce using vector shifts");
 
 
          vec_dest = vect_create_destination_var (scalar_dest, vectype);
          vec_dest = vect_create_destination_var (scalar_dest, vectype);
          new_temp = PHI_RESULT (new_phi);
          new_temp = PHI_RESULT (new_phi);
 
 
          for (bit_offset = vec_size_in_bits/2;
          for (bit_offset = vec_size_in_bits/2;
               bit_offset >= element_bitsize;
               bit_offset >= element_bitsize;
               bit_offset /= 2)
               bit_offset /= 2)
            {
            {
              tree bitpos = size_int (bit_offset);
              tree bitpos = size_int (bit_offset);
 
 
              epilog_stmt = build2 (MODIFY_EXPR, vectype, vec_dest,
              epilog_stmt = build2 (MODIFY_EXPR, vectype, vec_dest,
              build2 (shift_code, vectype, new_temp, bitpos));
              build2 (shift_code, vectype, new_temp, bitpos));
              new_name = make_ssa_name (vec_dest, epilog_stmt);
              new_name = make_ssa_name (vec_dest, epilog_stmt);
              TREE_OPERAND (epilog_stmt, 0) = new_name;
              TREE_OPERAND (epilog_stmt, 0) = new_name;
              bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
              bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
 
 
              epilog_stmt = build2 (MODIFY_EXPR, vectype, vec_dest,
              epilog_stmt = build2 (MODIFY_EXPR, vectype, vec_dest,
              build2 (code, vectype, new_name, new_temp));
              build2 (code, vectype, new_name, new_temp));
              new_temp = make_ssa_name (vec_dest, epilog_stmt);
              new_temp = make_ssa_name (vec_dest, epilog_stmt);
              TREE_OPERAND (epilog_stmt, 0) = new_temp;
              TREE_OPERAND (epilog_stmt, 0) = new_temp;
              bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
              bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
            }
            }
 
 
          extract_scalar_result = true;
          extract_scalar_result = true;
        }
        }
      else
      else
        {
        {
          tree rhs;
          tree rhs;
 
 
          /*** Case 3: Create:
          /*** Case 3: Create:
             s = extract_field <v_out2, 0>
             s = extract_field <v_out2, 0>
             for (offset = element_size;
             for (offset = element_size;
                  offset < vector_size;
                  offset < vector_size;
                  offset += element_size;)
                  offset += element_size;)
               {
               {
                 Create:  s' = extract_field <v_out2, offset>
                 Create:  s' = extract_field <v_out2, offset>
                 Create:  s = op <s, s'>
                 Create:  s = op <s, s'>
               }  */
               }  */
 
 
          if (vect_print_dump_info (REPORT_DETAILS))
          if (vect_print_dump_info (REPORT_DETAILS))
            fprintf (vect_dump, "Reduce using scalar code. ");
            fprintf (vect_dump, "Reduce using scalar code. ");
 
 
          vec_temp = PHI_RESULT (new_phi);
          vec_temp = PHI_RESULT (new_phi);
          vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
          vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
          rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
          rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
                         bitsize_zero_node);
                         bitsize_zero_node);
          BIT_FIELD_REF_UNSIGNED (rhs) = TYPE_UNSIGNED (scalar_type);
          BIT_FIELD_REF_UNSIGNED (rhs) = TYPE_UNSIGNED (scalar_type);
          epilog_stmt = build2 (MODIFY_EXPR, scalar_type, new_scalar_dest, rhs);
          epilog_stmt = build2 (MODIFY_EXPR, scalar_type, new_scalar_dest, rhs);
          new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
          new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
          TREE_OPERAND (epilog_stmt, 0) = new_temp;
          TREE_OPERAND (epilog_stmt, 0) = new_temp;
          bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
          bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
 
 
          for (bit_offset = element_bitsize;
          for (bit_offset = element_bitsize;
               bit_offset < vec_size_in_bits;
               bit_offset < vec_size_in_bits;
               bit_offset += element_bitsize)
               bit_offset += element_bitsize)
            {
            {
              tree bitpos = bitsize_int (bit_offset);
              tree bitpos = bitsize_int (bit_offset);
              tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
              tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
                                 bitpos);
                                 bitpos);
 
 
              BIT_FIELD_REF_UNSIGNED (rhs) = TYPE_UNSIGNED (scalar_type);
              BIT_FIELD_REF_UNSIGNED (rhs) = TYPE_UNSIGNED (scalar_type);
              epilog_stmt = build2 (MODIFY_EXPR, scalar_type, new_scalar_dest,
              epilog_stmt = build2 (MODIFY_EXPR, scalar_type, new_scalar_dest,
                                    rhs);
                                    rhs);
              new_name = make_ssa_name (new_scalar_dest, epilog_stmt);
              new_name = make_ssa_name (new_scalar_dest, epilog_stmt);
              TREE_OPERAND (epilog_stmt, 0) = new_name;
              TREE_OPERAND (epilog_stmt, 0) = new_name;
              bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
              bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
 
 
              epilog_stmt = build2 (MODIFY_EXPR, scalar_type, new_scalar_dest,
              epilog_stmt = build2 (MODIFY_EXPR, scalar_type, new_scalar_dest,
                                build2 (code, scalar_type, new_name, new_temp));
                                build2 (code, scalar_type, new_name, new_temp));
              new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
              new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
              TREE_OPERAND (epilog_stmt, 0) = new_temp;
              TREE_OPERAND (epilog_stmt, 0) = new_temp;
              bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
              bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
            }
            }
 
 
          extract_scalar_result = false;
          extract_scalar_result = false;
        }
        }
    }
    }
 
 
  /* 2.4  Extract the final scalar result.  Create:
  /* 2.4  Extract the final scalar result.  Create:
         s_out3 = extract_field <v_out2, bitpos>  */
         s_out3 = extract_field <v_out2, bitpos>  */
 
 
  if (extract_scalar_result)
  if (extract_scalar_result)
    {
    {
      tree rhs;
      tree rhs;
 
 
      if (vect_print_dump_info (REPORT_DETAILS))
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "extract scalar result");
        fprintf (vect_dump, "extract scalar result");
 
 
      if (BYTES_BIG_ENDIAN)
      if (BYTES_BIG_ENDIAN)
        bitpos = size_binop (MULT_EXPR,
        bitpos = size_binop (MULT_EXPR,
                       bitsize_int (TYPE_VECTOR_SUBPARTS (vectype) - 1),
                       bitsize_int (TYPE_VECTOR_SUBPARTS (vectype) - 1),
                       TYPE_SIZE (scalar_type));
                       TYPE_SIZE (scalar_type));
      else
      else
        bitpos = bitsize_zero_node;
        bitpos = bitsize_zero_node;
 
 
      rhs = build3 (BIT_FIELD_REF, scalar_type, new_temp, bitsize, bitpos);
      rhs = build3 (BIT_FIELD_REF, scalar_type, new_temp, bitsize, bitpos);
      BIT_FIELD_REF_UNSIGNED (rhs) = TYPE_UNSIGNED (scalar_type);
      BIT_FIELD_REF_UNSIGNED (rhs) = TYPE_UNSIGNED (scalar_type);
      epilog_stmt = build2 (MODIFY_EXPR, scalar_type, new_scalar_dest, rhs);
      epilog_stmt = build2 (MODIFY_EXPR, scalar_type, new_scalar_dest, rhs);
      new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
      new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
      TREE_OPERAND (epilog_stmt, 0) = new_temp;
      TREE_OPERAND (epilog_stmt, 0) = new_temp;
      bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
      bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
    }
    }
 
 
  /* 2.4 Adjust the final result by the initial value of the reduction
  /* 2.4 Adjust the final result by the initial value of the reduction
         variable. (When such adjustment is not needed, then
         variable. (When such adjustment is not needed, then
         'scalar_initial_def' is zero).
         'scalar_initial_def' is zero).
 
 
         Create:
         Create:
         s_out4 = scalar_expr <s_out3, scalar_initial_def>  */
         s_out4 = scalar_expr <s_out3, scalar_initial_def>  */
 
 
  if (scalar_initial_def)
  if (scalar_initial_def)
    {
    {
      epilog_stmt = build2 (MODIFY_EXPR, scalar_type, new_scalar_dest,
      epilog_stmt = build2 (MODIFY_EXPR, scalar_type, new_scalar_dest,
                      build2 (code, scalar_type, new_temp, scalar_initial_def));
                      build2 (code, scalar_type, new_temp, scalar_initial_def));
      new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
      new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
      TREE_OPERAND (epilog_stmt, 0) = new_temp;
      TREE_OPERAND (epilog_stmt, 0) = new_temp;
      bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
      bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
    }
    }
 
 
  /* 2.6 Replace uses of s_out0 with uses of s_out3  */
  /* 2.6 Replace uses of s_out0 with uses of s_out3  */
 
 
  /* Find the loop-closed-use at the loop exit of the original scalar result.
  /* Find the loop-closed-use at the loop exit of the original scalar result.
     (The reduction result is expected to have two immediate uses - one at the
     (The reduction result is expected to have two immediate uses - one at the
     latch block, and one at the loop exit).  */
     latch block, and one at the loop exit).  */
  exit_phi = NULL;
  exit_phi = NULL;
  FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
  FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
    {
    {
      if (!flow_bb_inside_loop_p (loop, bb_for_stmt (USE_STMT (use_p))))
      if (!flow_bb_inside_loop_p (loop, bb_for_stmt (USE_STMT (use_p))))
        {
        {
          exit_phi = USE_STMT (use_p);
          exit_phi = USE_STMT (use_p);
          break;
          break;
        }
        }
    }
    }
  /* We expect to have found an exit_phi because of loop-closed-ssa form.  */
  /* We expect to have found an exit_phi because of loop-closed-ssa form.  */
  gcc_assert (exit_phi);
  gcc_assert (exit_phi);
  /* Replace the uses:  */
  /* Replace the uses:  */
  orig_name = PHI_RESULT (exit_phi);
  orig_name = PHI_RESULT (exit_phi);
  FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
  FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
    FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
    FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
      SET_USE (use_p, new_temp);
      SET_USE (use_p, new_temp);
}
}
 
 
 
 
/* Function vectorizable_reduction.
/* Function vectorizable_reduction.
 
 
   Check if STMT performs a reduction operation that can be vectorized.
   Check if STMT performs a reduction operation that can be vectorized.
   If VEC_STMT is also passed, vectorize the STMT: create a vectorized
   If VEC_STMT is also passed, vectorize the STMT: create a vectorized
   stmt to replace it, put it in VEC_STMT, and insert it at BSI.
   stmt to replace it, put it in VEC_STMT, and insert it at BSI.
   Return FALSE if not a vectorizable STMT, TRUE otherwise.
   Return FALSE if not a vectorizable STMT, TRUE otherwise.
 
 
   This function also handles reduction idioms (patterns) that have been
   This function also handles reduction idioms (patterns) that have been
   recognized in advance during vect_pattern_recog. In this case, STMT may be
   recognized in advance during vect_pattern_recog. In this case, STMT may be
   of this form:
   of this form:
     X = pattern_expr (arg0, arg1, ..., X)
     X = pattern_expr (arg0, arg1, ..., X)
   and it's STMT_VINFO_RELATED_STMT points to the last stmt in the original
   and it's STMT_VINFO_RELATED_STMT points to the last stmt in the original
   sequence that had been detected and replaced by the pattern-stmt (STMT).
   sequence that had been detected and replaced by the pattern-stmt (STMT).
 
 
   In some cases of reduction patterns, the type of the reduction variable X is
   In some cases of reduction patterns, the type of the reduction variable X is
   different than the type of the other arguments of STMT.
   different than the type of the other arguments of STMT.
   In such cases, the vectype that is used when transforming STMT into a vector
   In such cases, the vectype that is used when transforming STMT into a vector
   stmt is different than the vectype that is used to determine the
   stmt is different than the vectype that is used to determine the
   vectorization factor, because it consists of a different number of elements
   vectorization factor, because it consists of a different number of elements
   than the actual number of elements that are being operated upon in parallel.
   than the actual number of elements that are being operated upon in parallel.
 
 
   For example, consider an accumulation of shorts into an int accumulator.
   For example, consider an accumulation of shorts into an int accumulator.
   On some targets it's possible to vectorize this pattern operating on 8
   On some targets it's possible to vectorize this pattern operating on 8
   shorts at a time (hence, the vectype for purposes of determining the
   shorts at a time (hence, the vectype for purposes of determining the
   vectorization factor should be V8HI); on the other hand, the vectype that
   vectorization factor should be V8HI); on the other hand, the vectype that
   is used to create the vector form is actually V4SI (the type of the result).
   is used to create the vector form is actually V4SI (the type of the result).
 
 
   Upon entry to this function, STMT_VINFO_VECTYPE records the vectype that
   Upon entry to this function, STMT_VINFO_VECTYPE records the vectype that
   indicates what is the actual level of parallelism (V8HI in the example), so
   indicates what is the actual level of parallelism (V8HI in the example), so
   that the right vectorization factor would be derived. This vectype
   that the right vectorization factor would be derived. This vectype
   corresponds to the type of arguments to the reduction stmt, and should *NOT*
   corresponds to the type of arguments to the reduction stmt, and should *NOT*
   be used to create the vectorized stmt. The right vectype for the vectorized
   be used to create the vectorized stmt. The right vectype for the vectorized
   stmt is obtained from the type of the result X:
   stmt is obtained from the type of the result X:
        get_vectype_for_scalar_type (TREE_TYPE (X))
        get_vectype_for_scalar_type (TREE_TYPE (X))
 
 
   This means that, contrary to "regular" reductions (or "regular" stmts in
   This means that, contrary to "regular" reductions (or "regular" stmts in
   general), the following equation:
   general), the following equation:
      STMT_VINFO_VECTYPE == get_vectype_for_scalar_type (TREE_TYPE (X))
      STMT_VINFO_VECTYPE == get_vectype_for_scalar_type (TREE_TYPE (X))
   does *NOT* necessarily hold for reduction patterns.  */
   does *NOT* necessarily hold for reduction patterns.  */
 
 
bool
bool
vectorizable_reduction (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
vectorizable_reduction (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
{
{
  tree vec_dest;
  tree vec_dest;
  tree scalar_dest;
  tree scalar_dest;
  tree op;
  tree op;
  tree loop_vec_def0, loop_vec_def1;
  tree loop_vec_def0, loop_vec_def1;
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  tree operation;
  tree operation;
  enum tree_code code, orig_code, epilog_reduc_code = 0;
  enum tree_code code, orig_code, epilog_reduc_code = 0;
  enum machine_mode vec_mode;
  enum machine_mode vec_mode;
  int op_type;
  int op_type;
  optab optab, reduc_optab;
  optab optab, reduc_optab;
  tree new_temp;
  tree new_temp;
  tree def, def_stmt;
  tree def, def_stmt;
  enum vect_def_type dt;
  enum vect_def_type dt;
  tree new_phi;
  tree new_phi;
  tree scalar_type;
  tree scalar_type;
  bool is_simple_use;
  bool is_simple_use;
  tree orig_stmt;
  tree orig_stmt;
  stmt_vec_info orig_stmt_info;
  stmt_vec_info orig_stmt_info;
  tree expr = NULL_TREE;
  tree expr = NULL_TREE;
  int i;
  int i;
 
 
  /* 1. Is vectorizable reduction?  */
  /* 1. Is vectorizable reduction?  */
 
 
  /* Not supportable if the reduction variable is used in the loop.  */
  /* Not supportable if the reduction variable is used in the loop.  */
  if (STMT_VINFO_RELEVANT_P (stmt_info))
  if (STMT_VINFO_RELEVANT_P (stmt_info))
    return false;
    return false;
 
 
  if (!STMT_VINFO_LIVE_P (stmt_info))
  if (!STMT_VINFO_LIVE_P (stmt_info))
    return false;
    return false;
 
 
  /* Make sure it was already recognized as a reduction computation.  */
  /* Make sure it was already recognized as a reduction computation.  */
  if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def)
  if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def)
    return false;
    return false;
 
 
  /* 2. Has this been recognized as a reduction pattern?
  /* 2. Has this been recognized as a reduction pattern?
 
 
     Check if STMT represents a pattern that has been recognized
     Check if STMT represents a pattern that has been recognized
     in earlier analysis stages.  For stmts that represent a pattern,
     in earlier analysis stages.  For stmts that represent a pattern,
     the STMT_VINFO_RELATED_STMT field records the last stmt in
     the STMT_VINFO_RELATED_STMT field records the last stmt in
     the original sequence that constitutes the pattern.  */
     the original sequence that constitutes the pattern.  */
 
 
  orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
  orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
  if (orig_stmt)
  if (orig_stmt)
    {
    {
      orig_stmt_info = vinfo_for_stmt (orig_stmt);
      orig_stmt_info = vinfo_for_stmt (orig_stmt);
      gcc_assert (STMT_VINFO_RELATED_STMT (orig_stmt_info) == stmt);
      gcc_assert (STMT_VINFO_RELATED_STMT (orig_stmt_info) == stmt);
      gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
      gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
      gcc_assert (!STMT_VINFO_IN_PATTERN_P (stmt_info));
      gcc_assert (!STMT_VINFO_IN_PATTERN_P (stmt_info));
    }
    }
 
 
  /* 3. Check the operands of the operation. The first operands are defined
  /* 3. Check the operands of the operation. The first operands are defined
        inside the loop body. The last operand is the reduction variable,
        inside the loop body. The last operand is the reduction variable,
        which is defined by the loop-header-phi.  */
        which is defined by the loop-header-phi.  */
 
 
  gcc_assert (TREE_CODE (stmt) == MODIFY_EXPR);
  gcc_assert (TREE_CODE (stmt) == MODIFY_EXPR);
 
 
  operation = TREE_OPERAND (stmt, 1);
  operation = TREE_OPERAND (stmt, 1);
  code = TREE_CODE (operation);
  code = TREE_CODE (operation);
  op_type = TREE_CODE_LENGTH (code);
  op_type = TREE_CODE_LENGTH (code);
 
 
  if (op_type != binary_op && op_type != ternary_op)
  if (op_type != binary_op && op_type != ternary_op)
    return false;
    return false;
  scalar_dest = TREE_OPERAND (stmt, 0);
  scalar_dest = TREE_OPERAND (stmt, 0);
  scalar_type = TREE_TYPE (scalar_dest);
  scalar_type = TREE_TYPE (scalar_dest);
 
 
  /* All uses but the last are expected to be defined in the loop.
  /* All uses but the last are expected to be defined in the loop.
     The last use is the reduction variable.  */
     The last use is the reduction variable.  */
  for (i = 0; i < op_type-1; i++)
  for (i = 0; i < op_type-1; i++)
    {
    {
      op = TREE_OPERAND (operation, i);
      op = TREE_OPERAND (operation, i);
      is_simple_use = vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt);
      is_simple_use = vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt);
      gcc_assert (is_simple_use);
      gcc_assert (is_simple_use);
      gcc_assert (dt == vect_loop_def || dt == vect_invariant_def ||
      gcc_assert (dt == vect_loop_def || dt == vect_invariant_def ||
                  dt == vect_constant_def);
                  dt == vect_constant_def);
    }
    }
 
 
  op = TREE_OPERAND (operation, i);
  op = TREE_OPERAND (operation, i);
  is_simple_use = vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt);
  is_simple_use = vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt);
  gcc_assert (is_simple_use);
  gcc_assert (is_simple_use);
  gcc_assert (dt == vect_reduction_def);
  gcc_assert (dt == vect_reduction_def);
  gcc_assert (TREE_CODE (def_stmt) == PHI_NODE);
  gcc_assert (TREE_CODE (def_stmt) == PHI_NODE);
  if (orig_stmt)
  if (orig_stmt)
    gcc_assert (orig_stmt == vect_is_simple_reduction (loop, def_stmt));
    gcc_assert (orig_stmt == vect_is_simple_reduction (loop, def_stmt));
  else
  else
    gcc_assert (stmt == vect_is_simple_reduction (loop, def_stmt));
    gcc_assert (stmt == vect_is_simple_reduction (loop, def_stmt));
 
 
  if (STMT_VINFO_LIVE_P (vinfo_for_stmt (def_stmt)))
  if (STMT_VINFO_LIVE_P (vinfo_for_stmt (def_stmt)))
    return false;
    return false;
 
 
  /* 4. Supportable by target?  */
  /* 4. Supportable by target?  */
 
 
  /* 4.1. check support for the operation in the loop  */
  /* 4.1. check support for the operation in the loop  */
  optab = optab_for_tree_code (code, vectype);
  optab = optab_for_tree_code (code, vectype);
  if (!optab)
  if (!optab)
    {
    {
      if (vect_print_dump_info (REPORT_DETAILS))
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "no optab.");
        fprintf (vect_dump, "no optab.");
      return false;
      return false;
    }
    }
  vec_mode = TYPE_MODE (vectype);
  vec_mode = TYPE_MODE (vectype);
  if (optab->handlers[(int) vec_mode].insn_code == CODE_FOR_nothing)
  if (optab->handlers[(int) vec_mode].insn_code == CODE_FOR_nothing)
    {
    {
      if (vect_print_dump_info (REPORT_DETAILS))
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "op not supported by target.");
        fprintf (vect_dump, "op not supported by target.");
      if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
      if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
          || LOOP_VINFO_VECT_FACTOR (loop_vinfo)
          || LOOP_VINFO_VECT_FACTOR (loop_vinfo)
             < vect_min_worthwhile_factor (code))
             < vect_min_worthwhile_factor (code))
        return false;
        return false;
      if (vect_print_dump_info (REPORT_DETAILS))
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "proceeding using word mode.");
        fprintf (vect_dump, "proceeding using word mode.");
    }
    }
 
 
  /* Worthwhile without SIMD support?  */
  /* Worthwhile without SIMD support?  */
  if (!VECTOR_MODE_P (TYPE_MODE (vectype))
  if (!VECTOR_MODE_P (TYPE_MODE (vectype))
      && LOOP_VINFO_VECT_FACTOR (loop_vinfo)
      && LOOP_VINFO_VECT_FACTOR (loop_vinfo)
         < vect_min_worthwhile_factor (code))
         < vect_min_worthwhile_factor (code))
    {
    {
      if (vect_print_dump_info (REPORT_DETAILS))
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "not worthwhile without SIMD support.");
        fprintf (vect_dump, "not worthwhile without SIMD support.");
      return false;
      return false;
    }
    }
 
 
  /* 4.2. Check support for the epilog operation.
  /* 4.2. Check support for the epilog operation.
 
 
          If STMT represents a reduction pattern, then the type of the
          If STMT represents a reduction pattern, then the type of the
          reduction variable may be different than the type of the rest
          reduction variable may be different than the type of the rest
          of the arguments.  For example, consider the case of accumulation
          of the arguments.  For example, consider the case of accumulation
          of shorts into an int accumulator; The original code:
          of shorts into an int accumulator; The original code:
                        S1: int_a = (int) short_a;
                        S1: int_a = (int) short_a;
          orig_stmt->   S2: int_acc = plus <int_a ,int_acc>;
          orig_stmt->   S2: int_acc = plus <int_a ,int_acc>;
 
 
          was replaced with:
          was replaced with:
                        STMT: int_acc = widen_sum <short_a, int_acc>
                        STMT: int_acc = widen_sum <short_a, int_acc>
 
 
          This means that:
          This means that:
          1. The tree-code that is used to create the vector operation in the
          1. The tree-code that is used to create the vector operation in the
             epilog code (that reduces the partial results) is not the
             epilog code (that reduces the partial results) is not the
             tree-code of STMT, but is rather the tree-code of the original
             tree-code of STMT, but is rather the tree-code of the original
             stmt from the pattern that STMT is replacing. I.e, in the example
             stmt from the pattern that STMT is replacing. I.e, in the example
             above we want to use 'widen_sum' in the loop, but 'plus' in the
             above we want to use 'widen_sum' in the loop, but 'plus' in the
             epilog.
             epilog.
          2. The type (mode) we use to check available target support
          2. The type (mode) we use to check available target support
             for the vector operation to be created in the *epilog*, is
             for the vector operation to be created in the *epilog*, is
             determined by the type of the reduction variable (in the example
             determined by the type of the reduction variable (in the example
             above we'd check this: plus_optab[vect_int_mode]).
             above we'd check this: plus_optab[vect_int_mode]).
             However the type (mode) we use to check available target support
             However the type (mode) we use to check available target support
             for the vector operation to be created *inside the loop*, is
             for the vector operation to be created *inside the loop*, is
             determined by the type of the other arguments to STMT (in the
             determined by the type of the other arguments to STMT (in the
             example we'd check this: widen_sum_optab[vect_short_mode]).
             example we'd check this: widen_sum_optab[vect_short_mode]).
 
 
          This is contrary to "regular" reductions, in which the types of all
          This is contrary to "regular" reductions, in which the types of all
          the arguments are the same as the type of the reduction variable.
          the arguments are the same as the type of the reduction variable.
          For "regular" reductions we can therefore use the same vector type
          For "regular" reductions we can therefore use the same vector type
          (and also the same tree-code) when generating the epilog code and
          (and also the same tree-code) when generating the epilog code and
          when generating the code inside the loop.  */
          when generating the code inside the loop.  */
 
 
  if (orig_stmt)
  if (orig_stmt)
    {
    {
      /* This is a reduction pattern: get the vectype from the type of the
      /* This is a reduction pattern: get the vectype from the type of the
         reduction variable, and get the tree-code from orig_stmt.  */
         reduction variable, and get the tree-code from orig_stmt.  */
      orig_code = TREE_CODE (TREE_OPERAND (orig_stmt, 1));
      orig_code = TREE_CODE (TREE_OPERAND (orig_stmt, 1));
      vectype = get_vectype_for_scalar_type (TREE_TYPE (def));
      vectype = get_vectype_for_scalar_type (TREE_TYPE (def));
      vec_mode = TYPE_MODE (vectype);
      vec_mode = TYPE_MODE (vectype);
    }
    }
  else
  else
    {
    {
      /* Regular reduction: use the same vectype and tree-code as used for
      /* Regular reduction: use the same vectype and tree-code as used for
         the vector code inside the loop can be used for the epilog code. */
         the vector code inside the loop can be used for the epilog code. */
      orig_code = code;
      orig_code = code;
    }
    }
 
 
  if (!reduction_code_for_scalar_code (orig_code, &epilog_reduc_code))
  if (!reduction_code_for_scalar_code (orig_code, &epilog_reduc_code))
    return false;
    return false;
  reduc_optab = optab_for_tree_code (epilog_reduc_code, vectype);
  reduc_optab = optab_for_tree_code (epilog_reduc_code, vectype);
  if (!reduc_optab)
  if (!reduc_optab)
    {
    {
      if (vect_print_dump_info (REPORT_DETAILS))
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "no optab for reduction.");
        fprintf (vect_dump, "no optab for reduction.");
      epilog_reduc_code = NUM_TREE_CODES;
      epilog_reduc_code = NUM_TREE_CODES;
    }
    }
  if (reduc_optab->handlers[(int) vec_mode].insn_code == CODE_FOR_nothing)
  if (reduc_optab->handlers[(int) vec_mode].insn_code == CODE_FOR_nothing)
    {
    {
      if (vect_print_dump_info (REPORT_DETAILS))
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "reduc op not supported by target.");
        fprintf (vect_dump, "reduc op not supported by target.");
      epilog_reduc_code = NUM_TREE_CODES;
      epilog_reduc_code = NUM_TREE_CODES;
    }
    }
 
 
  if (!vec_stmt) /* transformation not required.  */
  if (!vec_stmt) /* transformation not required.  */
    {
    {
      STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
      STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
      return true;
      return true;
    }
    }
 
 
  /** Transform.  **/
  /** Transform.  **/
 
 
  if (vect_print_dump_info (REPORT_DETAILS))
  if (vect_print_dump_info (REPORT_DETAILS))
    fprintf (vect_dump, "transform reduction.");
    fprintf (vect_dump, "transform reduction.");
 
 
  /* Create the destination vector  */
  /* Create the destination vector  */
  vec_dest = vect_create_destination_var (scalar_dest, vectype);
  vec_dest = vect_create_destination_var (scalar_dest, vectype);
 
 
  /* Create the reduction-phi that defines the reduction-operand.  */
  /* Create the reduction-phi that defines the reduction-operand.  */
  new_phi = create_phi_node (vec_dest, loop->header);
  new_phi = create_phi_node (vec_dest, loop->header);
 
 
  /* Prepare the operand that is defined inside the loop body  */
  /* Prepare the operand that is defined inside the loop body  */
  op = TREE_OPERAND (operation, 0);
  op = TREE_OPERAND (operation, 0);
  loop_vec_def0 = vect_get_vec_def_for_operand (op, stmt, NULL);
  loop_vec_def0 = vect_get_vec_def_for_operand (op, stmt, NULL);
  if (op_type == binary_op)
  if (op_type == binary_op)
    expr = build2 (code, vectype, loop_vec_def0, PHI_RESULT (new_phi));
    expr = build2 (code, vectype, loop_vec_def0, PHI_RESULT (new_phi));
  else if (op_type == ternary_op)
  else if (op_type == ternary_op)
    {
    {
      op = TREE_OPERAND (operation, 1);
      op = TREE_OPERAND (operation, 1);
      loop_vec_def1 = vect_get_vec_def_for_operand (op, stmt, NULL);
      loop_vec_def1 = vect_get_vec_def_for_operand (op, stmt, NULL);
      expr = build3 (code, vectype, loop_vec_def0, loop_vec_def1,
      expr = build3 (code, vectype, loop_vec_def0, loop_vec_def1,
                     PHI_RESULT (new_phi));
                     PHI_RESULT (new_phi));
    }
    }
 
 
  /* Create the vectorized operation that computes the partial results  */
  /* Create the vectorized operation that computes the partial results  */
  *vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, expr);
  *vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, expr);
  new_temp = make_ssa_name (vec_dest, *vec_stmt);
  new_temp = make_ssa_name (vec_dest, *vec_stmt);
  TREE_OPERAND (*vec_stmt, 0) = new_temp;
  TREE_OPERAND (*vec_stmt, 0) = new_temp;
  vect_finish_stmt_generation (stmt, *vec_stmt, bsi);
  vect_finish_stmt_generation (stmt, *vec_stmt, bsi);
 
 
  /* Finalize the reduction-phi (set it's arguments) and create the
  /* Finalize the reduction-phi (set it's arguments) and create the
     epilog reduction code.  */
     epilog reduction code.  */
  vect_create_epilog_for_reduction (new_temp, stmt, epilog_reduc_code, new_phi);
  vect_create_epilog_for_reduction (new_temp, stmt, epilog_reduc_code, new_phi);
  return true;
  return true;
}
}
 
 
 
 
/* Function vectorizable_assignment.
/* Function vectorizable_assignment.
 
 
   Check if STMT performs an assignment (copy) that can be vectorized.
   Check if STMT performs an assignment (copy) that can be vectorized.
   If VEC_STMT is also passed, vectorize the STMT: create a vectorized
   If VEC_STMT is also passed, vectorize the STMT: create a vectorized
   stmt to replace it, put it in VEC_STMT, and insert it at BSI.
   stmt to replace it, put it in VEC_STMT, and insert it at BSI.
   Return FALSE if not a vectorizable STMT, TRUE otherwise.  */
   Return FALSE if not a vectorizable STMT, TRUE otherwise.  */
 
 
bool
bool
vectorizable_assignment (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
vectorizable_assignment (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
{
{
  tree vec_dest;
  tree vec_dest;
  tree scalar_dest;
  tree scalar_dest;
  tree op;
  tree op;
  tree vec_oprnd;
  tree vec_oprnd;
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
  tree new_temp;
  tree new_temp;
  tree def, def_stmt;
  tree def, def_stmt;
  enum vect_def_type dt;
  enum vect_def_type dt;
 
 
  /* Is vectorizable assignment?  */
  /* Is vectorizable assignment?  */
  if (!STMT_VINFO_RELEVANT_P (stmt_info))
  if (!STMT_VINFO_RELEVANT_P (stmt_info))
    return false;
    return false;
 
 
  gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_loop_def);
  gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_loop_def);
 
 
  if (TREE_CODE (stmt) != MODIFY_EXPR)
  if (TREE_CODE (stmt) != MODIFY_EXPR)
    return false;
    return false;
 
 
  scalar_dest = TREE_OPERAND (stmt, 0);
  scalar_dest = TREE_OPERAND (stmt, 0);
  if (TREE_CODE (scalar_dest) != SSA_NAME)
  if (TREE_CODE (scalar_dest) != SSA_NAME)
    return false;
    return false;
 
 
  op = TREE_OPERAND (stmt, 1);
  op = TREE_OPERAND (stmt, 1);
  if (!vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt))
  if (!vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt))
    {
    {
      if (vect_print_dump_info (REPORT_DETAILS))
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "use not simple.");
        fprintf (vect_dump, "use not simple.");
      return false;
      return false;
    }
    }
 
 
  if (!vec_stmt) /* transformation not required.  */
  if (!vec_stmt) /* transformation not required.  */
    {
    {
      STMT_VINFO_TYPE (stmt_info) = assignment_vec_info_type;
      STMT_VINFO_TYPE (stmt_info) = assignment_vec_info_type;
      return true;
      return true;
    }
    }
 
 
  /** Transform.  **/
  /** Transform.  **/
  if (vect_print_dump_info (REPORT_DETAILS))
  if (vect_print_dump_info (REPORT_DETAILS))
    fprintf (vect_dump, "transform assignment.");
    fprintf (vect_dump, "transform assignment.");
 
 
  /* Handle def.  */
  /* Handle def.  */
  vec_dest = vect_create_destination_var (scalar_dest, vectype);
  vec_dest = vect_create_destination_var (scalar_dest, vectype);
 
 
  /* Handle use.  */
  /* Handle use.  */
  op = TREE_OPERAND (stmt, 1);
  op = TREE_OPERAND (stmt, 1);
  vec_oprnd = vect_get_vec_def_for_operand (op, stmt, NULL);
  vec_oprnd = vect_get_vec_def_for_operand (op, stmt, NULL);
 
 
  /* Arguments are ready. create the new vector stmt.  */
  /* Arguments are ready. create the new vector stmt.  */
  *vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, vec_oprnd);
  *vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, vec_oprnd);
  new_temp = make_ssa_name (vec_dest, *vec_stmt);
  new_temp = make_ssa_name (vec_dest, *vec_stmt);
  TREE_OPERAND (*vec_stmt, 0) = new_temp;
  TREE_OPERAND (*vec_stmt, 0) = new_temp;
  vect_finish_stmt_generation (stmt, *vec_stmt, bsi);
  vect_finish_stmt_generation (stmt, *vec_stmt, bsi);
 
 
  return true;
  return true;
}
}
 
 
 
 
/* Function vect_min_worthwhile_factor.
/* Function vect_min_worthwhile_factor.
 
 
   For a loop where we could vectorize the operation indicated by CODE,
   For a loop where we could vectorize the operation indicated by CODE,
   return the minimum vectorization factor that makes it worthwhile
   return the minimum vectorization factor that makes it worthwhile
   to use generic vectors.  */
   to use generic vectors.  */
static int
static int
vect_min_worthwhile_factor (enum tree_code code)
vect_min_worthwhile_factor (enum tree_code code)
{
{
  switch (code)
  switch (code)
    {
    {
    case PLUS_EXPR:
    case PLUS_EXPR:
    case MINUS_EXPR:
    case MINUS_EXPR:
    case NEGATE_EXPR:
    case NEGATE_EXPR:
      return 4;
      return 4;
 
 
    case BIT_AND_EXPR:
    case BIT_AND_EXPR:
    case BIT_IOR_EXPR:
    case BIT_IOR_EXPR:
    case BIT_XOR_EXPR:
    case BIT_XOR_EXPR:
    case BIT_NOT_EXPR:
    case BIT_NOT_EXPR:
      return 2;
      return 2;
 
 
    default:
    default:
      return INT_MAX;
      return INT_MAX;
    }
    }
}
}
 
 
 
 
/* Function vectorizable_operation.
/* Function vectorizable_operation.
 
 
   Check if STMT performs a binary or unary operation that can be vectorized.
   Check if STMT performs a binary or unary operation that can be vectorized.
   If VEC_STMT is also passed, vectorize the STMT: create a vectorized
   If VEC_STMT is also passed, vectorize the STMT: create a vectorized
   stmt to replace it, put it in VEC_STMT, and insert it at BSI.
   stmt to replace it, put it in VEC_STMT, and insert it at BSI.
   Return FALSE if not a vectorizable STMT, TRUE otherwise.  */
   Return FALSE if not a vectorizable STMT, TRUE otherwise.  */
 
 
bool
bool
vectorizable_operation (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
vectorizable_operation (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
{
{
  tree vec_dest;
  tree vec_dest;
  tree scalar_dest;
  tree scalar_dest;
  tree operation;
  tree operation;
  tree op0, op1 = NULL;
  tree op0, op1 = NULL;
  tree vec_oprnd0, vec_oprnd1=NULL;
  tree vec_oprnd0, vec_oprnd1=NULL;
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
  int i;
  int i;
  enum tree_code code;
  enum tree_code code;
  enum machine_mode vec_mode;
  enum machine_mode vec_mode;
  tree new_temp;
  tree new_temp;
  int op_type;
  int op_type;
  tree op;
  tree op;
  optab optab;
  optab optab;
  int icode;
  int icode;
  enum machine_mode optab_op2_mode;
  enum machine_mode optab_op2_mode;
  tree def, def_stmt;
  tree def, def_stmt;
  enum vect_def_type dt;
  enum vect_def_type dt;
 
 
  /* Is STMT a vectorizable binary/unary operation?   */
  /* Is STMT a vectorizable binary/unary operation?   */
  if (!STMT_VINFO_RELEVANT_P (stmt_info))
  if (!STMT_VINFO_RELEVANT_P (stmt_info))
    return false;
    return false;
 
 
  gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_loop_def);
  gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_loop_def);
 
 
  if (STMT_VINFO_LIVE_P (stmt_info))
  if (STMT_VINFO_LIVE_P (stmt_info))
    {
    {
      /* FORNOW: not yet supported.  */
      /* FORNOW: not yet supported.  */
      if (vect_print_dump_info (REPORT_DETAILS))
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "value used after loop.");
        fprintf (vect_dump, "value used after loop.");
      return false;
      return false;
    }
    }
 
 
  if (TREE_CODE (stmt) != MODIFY_EXPR)
  if (TREE_CODE (stmt) != MODIFY_EXPR)
    return false;
    return false;
 
 
  if (TREE_CODE (TREE_OPERAND (stmt, 0)) != SSA_NAME)
  if (TREE_CODE (TREE_OPERAND (stmt, 0)) != SSA_NAME)
    return false;
    return false;
 
 
  operation = TREE_OPERAND (stmt, 1);
  operation = TREE_OPERAND (stmt, 1);
  code = TREE_CODE (operation);
  code = TREE_CODE (operation);
  optab = optab_for_tree_code (code, vectype);
  optab = optab_for_tree_code (code, vectype);
 
 
  /* Support only unary or binary operations.  */
  /* Support only unary or binary operations.  */
  op_type = TREE_CODE_LENGTH (code);
  op_type = TREE_CODE_LENGTH (code);
  if (op_type != unary_op && op_type != binary_op)
  if (op_type != unary_op && op_type != binary_op)
    {
    {
      if (vect_print_dump_info (REPORT_DETAILS))
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "num. args = %d (not unary/binary op).", op_type);
        fprintf (vect_dump, "num. args = %d (not unary/binary op).", op_type);
      return false;
      return false;
    }
    }
 
 
  for (i = 0; i < op_type; i++)
  for (i = 0; i < op_type; i++)
    {
    {
      op = TREE_OPERAND (operation, i);
      op = TREE_OPERAND (operation, i);
      if (!vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt))
      if (!vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt))
        {
        {
          if (vect_print_dump_info (REPORT_DETAILS))
          if (vect_print_dump_info (REPORT_DETAILS))
            fprintf (vect_dump, "use not simple.");
            fprintf (vect_dump, "use not simple.");
          return false;
          return false;
        }
        }
    }
    }
 
 
  /* Supportable by target?  */
  /* Supportable by target?  */
  if (!optab)
  if (!optab)
    {
    {
      if (vect_print_dump_info (REPORT_DETAILS))
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "no optab.");
        fprintf (vect_dump, "no optab.");
      return false;
      return false;
    }
    }
  vec_mode = TYPE_MODE (vectype);
  vec_mode = TYPE_MODE (vectype);
  icode = (int) optab->handlers[(int) vec_mode].insn_code;
  icode = (int) optab->handlers[(int) vec_mode].insn_code;
  if (icode == CODE_FOR_nothing)
  if (icode == CODE_FOR_nothing)
    {
    {
      if (vect_print_dump_info (REPORT_DETAILS))
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "op not supported by target.");
        fprintf (vect_dump, "op not supported by target.");
      if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
      if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
          || LOOP_VINFO_VECT_FACTOR (loop_vinfo)
          || LOOP_VINFO_VECT_FACTOR (loop_vinfo)
             < vect_min_worthwhile_factor (code))
             < vect_min_worthwhile_factor (code))
        return false;
        return false;
      if (vect_print_dump_info (REPORT_DETAILS))
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "proceeding using word mode.");
        fprintf (vect_dump, "proceeding using word mode.");
    }
    }
 
 
  /* Worthwhile without SIMD support?  */
  /* Worthwhile without SIMD support?  */
  if (!VECTOR_MODE_P (TYPE_MODE (vectype))
  if (!VECTOR_MODE_P (TYPE_MODE (vectype))
      && LOOP_VINFO_VECT_FACTOR (loop_vinfo)
      && LOOP_VINFO_VECT_FACTOR (loop_vinfo)
         < vect_min_worthwhile_factor (code))
         < vect_min_worthwhile_factor (code))
    {
    {
      if (vect_print_dump_info (REPORT_DETAILS))
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "not worthwhile without SIMD support.");
        fprintf (vect_dump, "not worthwhile without SIMD support.");
      return false;
      return false;
    }
    }
 
 
  if (code == LSHIFT_EXPR || code == RSHIFT_EXPR)
  if (code == LSHIFT_EXPR || code == RSHIFT_EXPR)
    {
    {
      /* FORNOW: not yet supported.  */
      /* FORNOW: not yet supported.  */
      if (!VECTOR_MODE_P (vec_mode))
      if (!VECTOR_MODE_P (vec_mode))
        return false;
        return false;
 
 
      /* Invariant argument is needed for a vector shift
      /* Invariant argument is needed for a vector shift
         by a scalar shift operand.  */
         by a scalar shift operand.  */
      optab_op2_mode = insn_data[icode].operand[2].mode;
      optab_op2_mode = insn_data[icode].operand[2].mode;
      if (! (VECTOR_MODE_P (optab_op2_mode)
      if (! (VECTOR_MODE_P (optab_op2_mode)
             || dt == vect_constant_def
             || dt == vect_constant_def
             || dt == vect_invariant_def))
             || dt == vect_invariant_def))
        {
        {
          if (vect_print_dump_info (REPORT_DETAILS))
          if (vect_print_dump_info (REPORT_DETAILS))
            fprintf (vect_dump, "operand mode requires invariant argument.");
            fprintf (vect_dump, "operand mode requires invariant argument.");
          return false;
          return false;
        }
        }
    }
    }
 
 
  if (!vec_stmt) /* transformation not required.  */
  if (!vec_stmt) /* transformation not required.  */
    {
    {
      STMT_VINFO_TYPE (stmt_info) = op_vec_info_type;
      STMT_VINFO_TYPE (stmt_info) = op_vec_info_type;
      return true;
      return true;
    }
    }
 
 
  /** Transform.  **/
  /** Transform.  **/
 
 
  if (vect_print_dump_info (REPORT_DETAILS))
  if (vect_print_dump_info (REPORT_DETAILS))
    fprintf (vect_dump, "transform binary/unary operation.");
    fprintf (vect_dump, "transform binary/unary operation.");
 
 
  /* Handle def.  */
  /* Handle def.  */
  scalar_dest = TREE_OPERAND (stmt, 0);
  scalar_dest = TREE_OPERAND (stmt, 0);
  vec_dest = vect_create_destination_var (scalar_dest, vectype);
  vec_dest = vect_create_destination_var (scalar_dest, vectype);
 
 
  /* Handle uses.  */
  /* Handle uses.  */
  op0 = TREE_OPERAND (operation, 0);
  op0 = TREE_OPERAND (operation, 0);
  vec_oprnd0 = vect_get_vec_def_for_operand (op0, stmt, NULL);
  vec_oprnd0 = vect_get_vec_def_for_operand (op0, stmt, NULL);
 
 
  if (op_type == binary_op)
  if (op_type == binary_op)
    {
    {
      op1 = TREE_OPERAND (operation, 1);
      op1 = TREE_OPERAND (operation, 1);
 
 
      if (code == LSHIFT_EXPR || code == RSHIFT_EXPR)
      if (code == LSHIFT_EXPR || code == RSHIFT_EXPR)
        {
        {
          /* Vector shl and shr insn patterns can be defined with
          /* Vector shl and shr insn patterns can be defined with
             scalar operand 2 (shift operand).  In this case, use
             scalar operand 2 (shift operand).  In this case, use
             constant or loop invariant op1 directly, without
             constant or loop invariant op1 directly, without
             extending it to vector mode first.  */
             extending it to vector mode first.  */
 
 
          optab_op2_mode = insn_data[icode].operand[2].mode;
          optab_op2_mode = insn_data[icode].operand[2].mode;
          if (!VECTOR_MODE_P (optab_op2_mode))
          if (!VECTOR_MODE_P (optab_op2_mode))
            {
            {
              if (vect_print_dump_info (REPORT_DETAILS))
              if (vect_print_dump_info (REPORT_DETAILS))
                fprintf (vect_dump, "operand 1 using scalar mode.");
                fprintf (vect_dump, "operand 1 using scalar mode.");
              vec_oprnd1 = op1;
              vec_oprnd1 = op1;
            }
            }
        }
        }
 
 
      if (!vec_oprnd1)
      if (!vec_oprnd1)
        vec_oprnd1 = vect_get_vec_def_for_operand (op1, stmt, NULL);
        vec_oprnd1 = vect_get_vec_def_for_operand (op1, stmt, NULL);
    }
    }
 
 
  /* Arguments are ready. create the new vector stmt.  */
  /* Arguments are ready. create the new vector stmt.  */
 
 
  if (op_type == binary_op)
  if (op_type == binary_op)
    *vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest,
    *vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest,
                build2 (code, vectype, vec_oprnd0, vec_oprnd1));
                build2 (code, vectype, vec_oprnd0, vec_oprnd1));
  else
  else
    *vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest,
    *vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest,
                build1 (code, vectype, vec_oprnd0));
                build1 (code, vectype, vec_oprnd0));
  new_temp = make_ssa_name (vec_dest, *vec_stmt);
  new_temp = make_ssa_name (vec_dest, *vec_stmt);
  TREE_OPERAND (*vec_stmt, 0) = new_temp;
  TREE_OPERAND (*vec_stmt, 0) = new_temp;
  vect_finish_stmt_generation (stmt, *vec_stmt, bsi);
  vect_finish_stmt_generation (stmt, *vec_stmt, bsi);
 
 
  return true;
  return true;
}
}
 
 
 
 
/* Function vectorizable_store.
/* Function vectorizable_store.
 
 
   Check if STMT defines a non scalar data-ref (array/pointer/structure) that
   Check if STMT defines a non scalar data-ref (array/pointer/structure) that
   can be vectorized.
   can be vectorized.
   If VEC_STMT is also passed, vectorize the STMT: create a vectorized
   If VEC_STMT is also passed, vectorize the STMT: create a vectorized
   stmt to replace it, put it in VEC_STMT, and insert it at BSI.
   stmt to replace it, put it in VEC_STMT, and insert it at BSI.
   Return FALSE if not a vectorizable STMT, TRUE otherwise.  */
   Return FALSE if not a vectorizable STMT, TRUE otherwise.  */
 
 
bool
bool
vectorizable_store (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
vectorizable_store (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
{
{
  tree scalar_dest;
  tree scalar_dest;
  tree data_ref;
  tree data_ref;
  tree op;
  tree op;
  tree vec_oprnd1;
  tree vec_oprnd1;
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
  struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
  enum machine_mode vec_mode;
  enum machine_mode vec_mode;
  tree dummy;
  tree dummy;
  enum dr_alignment_support alignment_support_cheme;
  enum dr_alignment_support alignment_support_cheme;
  ssa_op_iter iter;
  ssa_op_iter iter;
  tree def, def_stmt;
  tree def, def_stmt;
  enum vect_def_type dt;
  enum vect_def_type dt;
 
 
  /* Is vectorizable store? */
  /* Is vectorizable store? */
 
 
  if (TREE_CODE (stmt) != MODIFY_EXPR)
  if (TREE_CODE (stmt) != MODIFY_EXPR)
    return false;
    return false;
 
 
  scalar_dest = TREE_OPERAND (stmt, 0);
  scalar_dest = TREE_OPERAND (stmt, 0);
  if (TREE_CODE (scalar_dest) != ARRAY_REF
  if (TREE_CODE (scalar_dest) != ARRAY_REF
      && TREE_CODE (scalar_dest) != INDIRECT_REF)
      && TREE_CODE (scalar_dest) != INDIRECT_REF)
    return false;
    return false;
 
 
  op = TREE_OPERAND (stmt, 1);
  op = TREE_OPERAND (stmt, 1);
  if (!vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt))
  if (!vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt))
    {
    {
      if (vect_print_dump_info (REPORT_DETAILS))
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "use not simple.");
        fprintf (vect_dump, "use not simple.");
      return false;
      return false;
    }
    }
 
 
  vec_mode = TYPE_MODE (vectype);
  vec_mode = TYPE_MODE (vectype);
  /* FORNOW. In some cases can vectorize even if data-type not supported
  /* FORNOW. In some cases can vectorize even if data-type not supported
     (e.g. - array initialization with 0).  */
     (e.g. - array initialization with 0).  */
  if (mov_optab->handlers[(int)vec_mode].insn_code == CODE_FOR_nothing)
  if (mov_optab->handlers[(int)vec_mode].insn_code == CODE_FOR_nothing)
    return false;
    return false;
 
 
  if (!STMT_VINFO_DATA_REF (stmt_info))
  if (!STMT_VINFO_DATA_REF (stmt_info))
    return false;
    return false;
 
 
 
 
  if (!vec_stmt) /* transformation not required.  */
  if (!vec_stmt) /* transformation not required.  */
    {
    {
      STMT_VINFO_TYPE (stmt_info) = store_vec_info_type;
      STMT_VINFO_TYPE (stmt_info) = store_vec_info_type;
      return true;
      return true;
    }
    }
 
 
  /** Transform.  **/
  /** Transform.  **/
 
 
  if (vect_print_dump_info (REPORT_DETAILS))
  if (vect_print_dump_info (REPORT_DETAILS))
    fprintf (vect_dump, "transform store");
    fprintf (vect_dump, "transform store");
 
 
  alignment_support_cheme = vect_supportable_dr_alignment (dr);
  alignment_support_cheme = vect_supportable_dr_alignment (dr);
  gcc_assert (alignment_support_cheme);
  gcc_assert (alignment_support_cheme);
  gcc_assert (alignment_support_cheme == dr_aligned);  /* FORNOW */
  gcc_assert (alignment_support_cheme == dr_aligned);  /* FORNOW */
 
 
  /* Handle use - get the vectorized def from the defining stmt.  */
  /* Handle use - get the vectorized def from the defining stmt.  */
  vec_oprnd1 = vect_get_vec_def_for_operand (op, stmt, NULL);
  vec_oprnd1 = vect_get_vec_def_for_operand (op, stmt, NULL);
 
 
  /* Handle def.  */
  /* Handle def.  */
  /* FORNOW: make sure the data reference is aligned.  */
  /* FORNOW: make sure the data reference is aligned.  */
  vect_align_data_ref (stmt);
  vect_align_data_ref (stmt);
  data_ref = vect_create_data_ref_ptr (stmt, bsi, NULL_TREE, &dummy, false);
  data_ref = vect_create_data_ref_ptr (stmt, bsi, NULL_TREE, &dummy, false);
  data_ref = build_fold_indirect_ref (data_ref);
  data_ref = build_fold_indirect_ref (data_ref);
 
 
  /* Arguments are ready. create the new vector stmt.  */
  /* Arguments are ready. create the new vector stmt.  */
  *vec_stmt = build2 (MODIFY_EXPR, vectype, data_ref, vec_oprnd1);
  *vec_stmt = build2 (MODIFY_EXPR, vectype, data_ref, vec_oprnd1);
  vect_finish_stmt_generation (stmt, *vec_stmt, bsi);
  vect_finish_stmt_generation (stmt, *vec_stmt, bsi);
 
 
  /* Copy the V_MAY_DEFS representing the aliasing of the original array
  /* Copy the V_MAY_DEFS representing the aliasing of the original array
     element's definition to the vector's definition then update the
     element's definition to the vector's definition then update the
     defining statement.  The original is being deleted so the same
     defining statement.  The original is being deleted so the same
     SSA_NAMEs can be used.  */
     SSA_NAMEs can be used.  */
  copy_virtual_operands (*vec_stmt, stmt);
  copy_virtual_operands (*vec_stmt, stmt);
 
 
  FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_VMAYDEF)
  FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_VMAYDEF)
    {
    {
      SSA_NAME_DEF_STMT (def) = *vec_stmt;
      SSA_NAME_DEF_STMT (def) = *vec_stmt;
 
 
      /* If this virtual def has a use outside the loop and a loop peel is
      /* If this virtual def has a use outside the loop and a loop peel is
         performed then the def may be renamed by the peel.  Mark it for
         performed then the def may be renamed by the peel.  Mark it for
         renaming so the later use will also be renamed.  */
         renaming so the later use will also be renamed.  */
      mark_sym_for_renaming (SSA_NAME_VAR (def));
      mark_sym_for_renaming (SSA_NAME_VAR (def));
    }
    }
 
 
  return true;
  return true;
}
}
 
 
 
 
/* vectorizable_load.
/* vectorizable_load.
 
 
   Check if STMT reads a non scalar data-ref (array/pointer/structure) that
   Check if STMT reads a non scalar data-ref (array/pointer/structure) that
   can be vectorized.
   can be vectorized.
   If VEC_STMT is also passed, vectorize the STMT: create a vectorized
   If VEC_STMT is also passed, vectorize the STMT: create a vectorized
   stmt to replace it, put it in VEC_STMT, and insert it at BSI.
   stmt to replace it, put it in VEC_STMT, and insert it at BSI.
   Return FALSE if not a vectorizable STMT, TRUE otherwise.  */
   Return FALSE if not a vectorizable STMT, TRUE otherwise.  */
 
 
bool
bool
vectorizable_load (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
vectorizable_load (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
{
{
  tree scalar_dest;
  tree scalar_dest;
  tree vec_dest = NULL;
  tree vec_dest = NULL;
  tree data_ref = NULL;
  tree data_ref = NULL;
  tree op;
  tree op;
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
  struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
  tree new_temp;
  tree new_temp;
  int mode;
  int mode;
  tree init_addr;
  tree init_addr;
  tree new_stmt;
  tree new_stmt;
  tree dummy;
  tree dummy;
  basic_block new_bb;
  basic_block new_bb;
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  edge pe = loop_preheader_edge (loop);
  edge pe = loop_preheader_edge (loop);
  enum dr_alignment_support alignment_support_cheme;
  enum dr_alignment_support alignment_support_cheme;
 
 
  /* Is vectorizable load? */
  /* Is vectorizable load? */
  if (!STMT_VINFO_RELEVANT_P (stmt_info))
  if (!STMT_VINFO_RELEVANT_P (stmt_info))
    return false;
    return false;
 
 
  gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_loop_def);
  gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_loop_def);
 
 
  if (STMT_VINFO_LIVE_P (stmt_info))
  if (STMT_VINFO_LIVE_P (stmt_info))
    {
    {
      /* FORNOW: not yet supported.  */
      /* FORNOW: not yet supported.  */
      if (vect_print_dump_info (REPORT_DETAILS))
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "value used after loop.");
        fprintf (vect_dump, "value used after loop.");
      return false;
      return false;
    }
    }
 
 
  if (TREE_CODE (stmt) != MODIFY_EXPR)
  if (TREE_CODE (stmt) != MODIFY_EXPR)
    return false;
    return false;
 
 
  scalar_dest = TREE_OPERAND (stmt, 0);
  scalar_dest = TREE_OPERAND (stmt, 0);
  if (TREE_CODE (scalar_dest) != SSA_NAME)
  if (TREE_CODE (scalar_dest) != SSA_NAME)
    return false;
    return false;
 
 
  op = TREE_OPERAND (stmt, 1);
  op = TREE_OPERAND (stmt, 1);
  if (TREE_CODE (op) != ARRAY_REF && TREE_CODE (op) != INDIRECT_REF)
  if (TREE_CODE (op) != ARRAY_REF && TREE_CODE (op) != INDIRECT_REF)
    return false;
    return false;
 
 
  if (!STMT_VINFO_DATA_REF (stmt_info))
  if (!STMT_VINFO_DATA_REF (stmt_info))
    return false;
    return false;
 
 
  mode = (int) TYPE_MODE (vectype);
  mode = (int) TYPE_MODE (vectype);
 
 
  /* FORNOW. In some cases can vectorize even if data-type not supported
  /* FORNOW. In some cases can vectorize even if data-type not supported
    (e.g. - data copies).  */
    (e.g. - data copies).  */
  if (mov_optab->handlers[mode].insn_code == CODE_FOR_nothing)
  if (mov_optab->handlers[mode].insn_code == CODE_FOR_nothing)
    {
    {
      if (vect_print_dump_info (REPORT_DETAILS))
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "Aligned load, but unsupported type.");
        fprintf (vect_dump, "Aligned load, but unsupported type.");
      return false;
      return false;
    }
    }
 
 
  if (!vec_stmt) /* transformation not required.  */
  if (!vec_stmt) /* transformation not required.  */
    {
    {
      STMT_VINFO_TYPE (stmt_info) = load_vec_info_type;
      STMT_VINFO_TYPE (stmt_info) = load_vec_info_type;
      return true;
      return true;
    }
    }
 
 
  /** Transform.  **/
  /** Transform.  **/
 
 
  if (vect_print_dump_info (REPORT_DETAILS))
  if (vect_print_dump_info (REPORT_DETAILS))
    fprintf (vect_dump, "transform load.");
    fprintf (vect_dump, "transform load.");
 
 
  alignment_support_cheme = vect_supportable_dr_alignment (dr);
  alignment_support_cheme = vect_supportable_dr_alignment (dr);
  gcc_assert (alignment_support_cheme);
  gcc_assert (alignment_support_cheme);
 
 
  if (alignment_support_cheme == dr_aligned
  if (alignment_support_cheme == dr_aligned
      || alignment_support_cheme == dr_unaligned_supported)
      || alignment_support_cheme == dr_unaligned_supported)
    {
    {
      /* Create:
      /* Create:
         p = initial_addr;
         p = initial_addr;
         indx = 0;
         indx = 0;
         loop {
         loop {
           vec_dest = *(p);
           vec_dest = *(p);
           indx = indx + 1;
           indx = indx + 1;
         }
         }
      */
      */
 
 
      vec_dest = vect_create_destination_var (scalar_dest, vectype);
      vec_dest = vect_create_destination_var (scalar_dest, vectype);
      data_ref = vect_create_data_ref_ptr (stmt, bsi, NULL_TREE, &dummy, false);
      data_ref = vect_create_data_ref_ptr (stmt, bsi, NULL_TREE, &dummy, false);
      if (aligned_access_p (dr))
      if (aligned_access_p (dr))
        data_ref = build_fold_indirect_ref (data_ref);
        data_ref = build_fold_indirect_ref (data_ref);
      else
      else
        {
        {
          int mis = DR_MISALIGNMENT (dr);
          int mis = DR_MISALIGNMENT (dr);
          tree tmis = (mis == -1 ? size_zero_node : size_int (mis));
          tree tmis = (mis == -1 ? size_zero_node : size_int (mis));
          tmis = size_binop (MULT_EXPR, tmis, size_int(BITS_PER_UNIT));
          tmis = size_binop (MULT_EXPR, tmis, size_int(BITS_PER_UNIT));
          data_ref = build2 (MISALIGNED_INDIRECT_REF, vectype, data_ref, tmis);
          data_ref = build2 (MISALIGNED_INDIRECT_REF, vectype, data_ref, tmis);
        }
        }
      new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, data_ref);
      new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, data_ref);
      new_temp = make_ssa_name (vec_dest, new_stmt);
      new_temp = make_ssa_name (vec_dest, new_stmt);
      TREE_OPERAND (new_stmt, 0) = new_temp;
      TREE_OPERAND (new_stmt, 0) = new_temp;
      vect_finish_stmt_generation (stmt, new_stmt, bsi);
      vect_finish_stmt_generation (stmt, new_stmt, bsi);
      copy_virtual_operands (new_stmt, stmt);
      copy_virtual_operands (new_stmt, stmt);
    }
    }
  else if (alignment_support_cheme == dr_unaligned_software_pipeline)
  else if (alignment_support_cheme == dr_unaligned_software_pipeline)
    {
    {
      /* Create:
      /* Create:
         p1 = initial_addr;
         p1 = initial_addr;
         msq_init = *(floor(p1))
         msq_init = *(floor(p1))
         p2 = initial_addr + VS - 1;
         p2 = initial_addr + VS - 1;
         magic = have_builtin ? builtin_result : initial_address;
         magic = have_builtin ? builtin_result : initial_address;
         indx = 0;
         indx = 0;
         loop {
         loop {
           p2' = p2 + indx * vectype_size
           p2' = p2 + indx * vectype_size
           lsq = *(floor(p2'))
           lsq = *(floor(p2'))
           vec_dest = realign_load (msq, lsq, magic)
           vec_dest = realign_load (msq, lsq, magic)
           indx = indx + 1;
           indx = indx + 1;
           msq = lsq;
           msq = lsq;
         }
         }
      */
      */
 
 
      tree offset;
      tree offset;
      tree magic;
      tree magic;
      tree phi_stmt;
      tree phi_stmt;
      tree msq_init;
      tree msq_init;
      tree msq, lsq;
      tree msq, lsq;
      tree dataref_ptr;
      tree dataref_ptr;
      tree params;
      tree params;
 
 
      /* <1> Create msq_init = *(floor(p1)) in the loop preheader  */
      /* <1> Create msq_init = *(floor(p1)) in the loop preheader  */
      vec_dest = vect_create_destination_var (scalar_dest, vectype);
      vec_dest = vect_create_destination_var (scalar_dest, vectype);
      data_ref = vect_create_data_ref_ptr (stmt, bsi, NULL_TREE,
      data_ref = vect_create_data_ref_ptr (stmt, bsi, NULL_TREE,
                                           &init_addr, true);
                                           &init_addr, true);
      data_ref = build1 (ALIGN_INDIRECT_REF, vectype, data_ref);
      data_ref = build1 (ALIGN_INDIRECT_REF, vectype, data_ref);
      new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, data_ref);
      new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, data_ref);
      new_temp = make_ssa_name (vec_dest, new_stmt);
      new_temp = make_ssa_name (vec_dest, new_stmt);
      TREE_OPERAND (new_stmt, 0) = new_temp;
      TREE_OPERAND (new_stmt, 0) = new_temp;
      new_bb = bsi_insert_on_edge_immediate (pe, new_stmt);
      new_bb = bsi_insert_on_edge_immediate (pe, new_stmt);
      gcc_assert (!new_bb);
      gcc_assert (!new_bb);
      msq_init = TREE_OPERAND (new_stmt, 0);
      msq_init = TREE_OPERAND (new_stmt, 0);
      copy_virtual_operands (new_stmt, stmt);
      copy_virtual_operands (new_stmt, stmt);
      update_vuses_to_preheader (new_stmt, loop);
      update_vuses_to_preheader (new_stmt, loop);
 
 
 
 
      /* <2> Create lsq = *(floor(p2')) in the loop  */
      /* <2> Create lsq = *(floor(p2')) in the loop  */
      offset = size_int (TYPE_VECTOR_SUBPARTS (vectype) - 1);
      offset = size_int (TYPE_VECTOR_SUBPARTS (vectype) - 1);
      vec_dest = vect_create_destination_var (scalar_dest, vectype);
      vec_dest = vect_create_destination_var (scalar_dest, vectype);
      dataref_ptr = vect_create_data_ref_ptr (stmt, bsi, offset, &dummy, false);
      dataref_ptr = vect_create_data_ref_ptr (stmt, bsi, offset, &dummy, false);
      data_ref = build1 (ALIGN_INDIRECT_REF, vectype, dataref_ptr);
      data_ref = build1 (ALIGN_INDIRECT_REF, vectype, dataref_ptr);
      new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, data_ref);
      new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, data_ref);
      new_temp = make_ssa_name (vec_dest, new_stmt);
      new_temp = make_ssa_name (vec_dest, new_stmt);
      TREE_OPERAND (new_stmt, 0) = new_temp;
      TREE_OPERAND (new_stmt, 0) = new_temp;
      vect_finish_stmt_generation (stmt, new_stmt, bsi);
      vect_finish_stmt_generation (stmt, new_stmt, bsi);
      lsq = TREE_OPERAND (new_stmt, 0);
      lsq = TREE_OPERAND (new_stmt, 0);
      copy_virtual_operands (new_stmt, stmt);
      copy_virtual_operands (new_stmt, stmt);
 
 
 
 
      /* <3> */
      /* <3> */
      if (targetm.vectorize.builtin_mask_for_load)
      if (targetm.vectorize.builtin_mask_for_load)
        {
        {
          /* Create permutation mask, if required, in loop preheader.  */
          /* Create permutation mask, if required, in loop preheader.  */
          tree builtin_decl;
          tree builtin_decl;
          params = build_tree_list (NULL_TREE, init_addr);
          params = build_tree_list (NULL_TREE, init_addr);
          vec_dest = vect_create_destination_var (scalar_dest, vectype);
          vec_dest = vect_create_destination_var (scalar_dest, vectype);
          builtin_decl = targetm.vectorize.builtin_mask_for_load ();
          builtin_decl = targetm.vectorize.builtin_mask_for_load ();
          new_stmt = build_function_call_expr (builtin_decl, params);
          new_stmt = build_function_call_expr (builtin_decl, params);
          new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, new_stmt);
          new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, new_stmt);
          new_temp = make_ssa_name (vec_dest, new_stmt);
          new_temp = make_ssa_name (vec_dest, new_stmt);
          TREE_OPERAND (new_stmt, 0) = new_temp;
          TREE_OPERAND (new_stmt, 0) = new_temp;
          new_bb = bsi_insert_on_edge_immediate (pe, new_stmt);
          new_bb = bsi_insert_on_edge_immediate (pe, new_stmt);
          gcc_assert (!new_bb);
          gcc_assert (!new_bb);
          magic = TREE_OPERAND (new_stmt, 0);
          magic = TREE_OPERAND (new_stmt, 0);
 
 
          /* The result of the CALL_EXPR to this builtin is determined from
          /* The result of the CALL_EXPR to this builtin is determined from
             the value of the parameter and no global variables are touched
             the value of the parameter and no global variables are touched
             which makes the builtin a "const" function.  Requiring the
             which makes the builtin a "const" function.  Requiring the
             builtin to have the "const" attribute makes it unnecessary
             builtin to have the "const" attribute makes it unnecessary
             to call mark_call_clobbered.  */
             to call mark_call_clobbered.  */
          gcc_assert (TREE_READONLY (builtin_decl));
          gcc_assert (TREE_READONLY (builtin_decl));
        }
        }
      else
      else
        {
        {
          /* Use current address instead of init_addr for reduced reg pressure.
          /* Use current address instead of init_addr for reduced reg pressure.
           */
           */
          magic = dataref_ptr;
          magic = dataref_ptr;
        }
        }
 
 
 
 
      /* <4> Create msq = phi <msq_init, lsq> in loop  */
      /* <4> Create msq = phi <msq_init, lsq> in loop  */
      vec_dest = vect_create_destination_var (scalar_dest, vectype);
      vec_dest = vect_create_destination_var (scalar_dest, vectype);
      msq = make_ssa_name (vec_dest, NULL_TREE);
      msq = make_ssa_name (vec_dest, NULL_TREE);
      phi_stmt = create_phi_node (msq, loop->header); /* CHECKME */
      phi_stmt = create_phi_node (msq, loop->header); /* CHECKME */
      SSA_NAME_DEF_STMT (msq) = phi_stmt;
      SSA_NAME_DEF_STMT (msq) = phi_stmt;
      add_phi_arg (phi_stmt, msq_init, loop_preheader_edge (loop));
      add_phi_arg (phi_stmt, msq_init, loop_preheader_edge (loop));
      add_phi_arg (phi_stmt, lsq, loop_latch_edge (loop));
      add_phi_arg (phi_stmt, lsq, loop_latch_edge (loop));
 
 
 
 
      /* <5> Create <vec_dest = realign_load (msq, lsq, magic)> in loop  */
      /* <5> Create <vec_dest = realign_load (msq, lsq, magic)> in loop  */
      vec_dest = vect_create_destination_var (scalar_dest, vectype);
      vec_dest = vect_create_destination_var (scalar_dest, vectype);
      new_stmt = build3 (REALIGN_LOAD_EXPR, vectype, msq, lsq, magic);
      new_stmt = build3 (REALIGN_LOAD_EXPR, vectype, msq, lsq, magic);
      new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, new_stmt);
      new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, new_stmt);
      new_temp = make_ssa_name (vec_dest, new_stmt);
      new_temp = make_ssa_name (vec_dest, new_stmt);
      TREE_OPERAND (new_stmt, 0) = new_temp;
      TREE_OPERAND (new_stmt, 0) = new_temp;
      vect_finish_stmt_generation (stmt, new_stmt, bsi);
      vect_finish_stmt_generation (stmt, new_stmt, bsi);
    }
    }
  else
  else
    gcc_unreachable ();
    gcc_unreachable ();
 
 
  *vec_stmt = new_stmt;
  *vec_stmt = new_stmt;
  return true;
  return true;
}
}
 
 
 
 
/* Function vectorizable_live_operation.
/* Function vectorizable_live_operation.
 
 
   STMT computes a value that is used outside the loop. Check if
   STMT computes a value that is used outside the loop. Check if
   it can be supported.  */
   it can be supported.  */
 
 
bool
bool
vectorizable_live_operation (tree stmt,
vectorizable_live_operation (tree stmt,
                             block_stmt_iterator *bsi ATTRIBUTE_UNUSED,
                             block_stmt_iterator *bsi ATTRIBUTE_UNUSED,
                             tree *vec_stmt ATTRIBUTE_UNUSED)
                             tree *vec_stmt ATTRIBUTE_UNUSED)
{
{
  tree operation;
  tree operation;
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
  int i;
  int i;
  enum tree_code code;
  enum tree_code code;
  int op_type;
  int op_type;
  tree op;
  tree op;
  tree def, def_stmt;
  tree def, def_stmt;
  enum vect_def_type dt;
  enum vect_def_type dt;
 
 
  if (!STMT_VINFO_LIVE_P (stmt_info))
  if (!STMT_VINFO_LIVE_P (stmt_info))
    return false;
    return false;
 
 
  if (TREE_CODE (stmt) != MODIFY_EXPR)
  if (TREE_CODE (stmt) != MODIFY_EXPR)
    return false;
    return false;
 
 
  if (TREE_CODE (TREE_OPERAND (stmt, 0)) != SSA_NAME)
  if (TREE_CODE (TREE_OPERAND (stmt, 0)) != SSA_NAME)
    return false;
    return false;
 
 
  operation = TREE_OPERAND (stmt, 1);
  operation = TREE_OPERAND (stmt, 1);
  code = TREE_CODE (operation);
  code = TREE_CODE (operation);
 
 
  op_type = TREE_CODE_LENGTH (code);
  op_type = TREE_CODE_LENGTH (code);
 
 
  /* FORNOW: support only if all uses are invariant. This means
  /* FORNOW: support only if all uses are invariant. This means
     that the scalar operations can remain in place, unvectorized.
     that the scalar operations can remain in place, unvectorized.
     The original last scalar value that they compute will be used.  */
     The original last scalar value that they compute will be used.  */
 
 
  for (i = 0; i < op_type; i++)
  for (i = 0; i < op_type; i++)
    {
    {
      op = TREE_OPERAND (operation, i);
      op = TREE_OPERAND (operation, i);
      if (!vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt))
      if (!vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt))
        {
        {
          if (vect_print_dump_info (REPORT_DETAILS))
          if (vect_print_dump_info (REPORT_DETAILS))
            fprintf (vect_dump, "use not simple.");
            fprintf (vect_dump, "use not simple.");
          return false;
          return false;
        }
        }
 
 
      if (dt != vect_invariant_def && dt != vect_constant_def)
      if (dt != vect_invariant_def && dt != vect_constant_def)
        return false;
        return false;
    }
    }
 
 
  /* No transformation is required for the cases we currently support.  */
  /* No transformation is required for the cases we currently support.  */
  return true;
  return true;
}
}
 
 
 
 
/* Function vect_is_simple_cond.
/* Function vect_is_simple_cond.
 
 
   Input:
   Input:
   LOOP - the loop that is being vectorized.
   LOOP - the loop that is being vectorized.
   COND - Condition that is checked for simple use.
   COND - Condition that is checked for simple use.
 
 
   Returns whether a COND can be vectorized.  Checks whether
   Returns whether a COND can be vectorized.  Checks whether
   condition operands are supportable using vec_is_simple_use.  */
   condition operands are supportable using vec_is_simple_use.  */
 
 
static bool
static bool
vect_is_simple_cond (tree cond, loop_vec_info loop_vinfo)
vect_is_simple_cond (tree cond, loop_vec_info loop_vinfo)
{
{
  tree lhs, rhs;
  tree lhs, rhs;
  tree def;
  tree def;
  enum vect_def_type dt;
  enum vect_def_type dt;
 
 
  if (!COMPARISON_CLASS_P (cond))
  if (!COMPARISON_CLASS_P (cond))
    return false;
    return false;
 
 
  lhs = TREE_OPERAND (cond, 0);
  lhs = TREE_OPERAND (cond, 0);
  rhs = TREE_OPERAND (cond, 1);
  rhs = TREE_OPERAND (cond, 1);
 
 
  if (TREE_CODE (lhs) == SSA_NAME)
  if (TREE_CODE (lhs) == SSA_NAME)
    {
    {
      tree lhs_def_stmt = SSA_NAME_DEF_STMT (lhs);
      tree lhs_def_stmt = SSA_NAME_DEF_STMT (lhs);
      if (!vect_is_simple_use (lhs, loop_vinfo, &lhs_def_stmt, &def, &dt))
      if (!vect_is_simple_use (lhs, loop_vinfo, &lhs_def_stmt, &def, &dt))
        return false;
        return false;
    }
    }
  else if (TREE_CODE (lhs) != INTEGER_CST && TREE_CODE (lhs) != REAL_CST)
  else if (TREE_CODE (lhs) != INTEGER_CST && TREE_CODE (lhs) != REAL_CST)
    return false;
    return false;
 
 
  if (TREE_CODE (rhs) == SSA_NAME)
  if (TREE_CODE (rhs) == SSA_NAME)
    {
    {
      tree rhs_def_stmt = SSA_NAME_DEF_STMT (rhs);
      tree rhs_def_stmt = SSA_NAME_DEF_STMT (rhs);
      if (!vect_is_simple_use (rhs, loop_vinfo, &rhs_def_stmt, &def, &dt))
      if (!vect_is_simple_use (rhs, loop_vinfo, &rhs_def_stmt, &def, &dt))
        return false;
        return false;
    }
    }
  else if (TREE_CODE (rhs) != INTEGER_CST  && TREE_CODE (rhs) != REAL_CST)
  else if (TREE_CODE (rhs) != INTEGER_CST  && TREE_CODE (rhs) != REAL_CST)
    return false;
    return false;
 
 
  return true;
  return true;
}
}
 
 
/* vectorizable_condition.
/* vectorizable_condition.
 
 
   Check if STMT is conditional modify expression that can be vectorized.
   Check if STMT is conditional modify expression that can be vectorized.
   If VEC_STMT is also passed, vectorize the STMT: create a vectorized
   If VEC_STMT is also passed, vectorize the STMT: create a vectorized
   stmt using VEC_COND_EXPR  to replace it, put it in VEC_STMT, and insert it
   stmt using VEC_COND_EXPR  to replace it, put it in VEC_STMT, and insert it
   at BSI.
   at BSI.
 
 
   Return FALSE if not a vectorizable STMT, TRUE otherwise.  */
   Return FALSE if not a vectorizable STMT, TRUE otherwise.  */
 
 
bool
bool
vectorizable_condition (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
vectorizable_condition (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
{
{
  tree scalar_dest = NULL_TREE;
  tree scalar_dest = NULL_TREE;
  tree vec_dest = NULL_TREE;
  tree vec_dest = NULL_TREE;
  tree op = NULL_TREE;
  tree op = NULL_TREE;
  tree cond_expr, then_clause, else_clause;
  tree cond_expr, then_clause, else_clause;
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
  tree vec_cond_lhs, vec_cond_rhs, vec_then_clause, vec_else_clause;
  tree vec_cond_lhs, vec_cond_rhs, vec_then_clause, vec_else_clause;
  tree vec_compare, vec_cond_expr;
  tree vec_compare, vec_cond_expr;
  tree new_temp;
  tree new_temp;
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
  enum machine_mode vec_mode;
  enum machine_mode vec_mode;
  tree def;
  tree def;
  enum vect_def_type dt;
  enum vect_def_type dt;
 
 
  if (!STMT_VINFO_RELEVANT_P (stmt_info))
  if (!STMT_VINFO_RELEVANT_P (stmt_info))
    return false;
    return false;
 
 
  gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_loop_def);
  gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_loop_def);
 
 
  if (STMT_VINFO_LIVE_P (stmt_info))
  if (STMT_VINFO_LIVE_P (stmt_info))
    {
    {
      /* FORNOW: not yet supported.  */
      /* FORNOW: not yet supported.  */
      if (vect_print_dump_info (REPORT_DETAILS))
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "value used after loop.");
        fprintf (vect_dump, "value used after loop.");
      return false;
      return false;
    }
    }
 
 
  if (TREE_CODE (stmt) != MODIFY_EXPR)
  if (TREE_CODE (stmt) != MODIFY_EXPR)
    return false;
    return false;
 
 
  op = TREE_OPERAND (stmt, 1);
  op = TREE_OPERAND (stmt, 1);
 
 
  if (TREE_CODE (op) != COND_EXPR)
  if (TREE_CODE (op) != COND_EXPR)
    return false;
    return false;
 
 
  cond_expr = TREE_OPERAND (op, 0);
  cond_expr = TREE_OPERAND (op, 0);
  then_clause = TREE_OPERAND (op, 1);
  then_clause = TREE_OPERAND (op, 1);
  else_clause = TREE_OPERAND (op, 2);
  else_clause = TREE_OPERAND (op, 2);
 
 
  if (!vect_is_simple_cond (cond_expr, loop_vinfo))
  if (!vect_is_simple_cond (cond_expr, loop_vinfo))
    return false;
    return false;
 
 
  /* We do not handle two different vector types for the condition
  /* We do not handle two different vector types for the condition
     and the values.  */
     and the values.  */
  if (TREE_TYPE (TREE_OPERAND (cond_expr, 0)) != TREE_TYPE (vectype))
  if (TREE_TYPE (TREE_OPERAND (cond_expr, 0)) != TREE_TYPE (vectype))
    return false;
    return false;
 
 
  if (TREE_CODE (then_clause) == SSA_NAME)
  if (TREE_CODE (then_clause) == SSA_NAME)
    {
    {
      tree then_def_stmt = SSA_NAME_DEF_STMT (then_clause);
      tree then_def_stmt = SSA_NAME_DEF_STMT (then_clause);
      if (!vect_is_simple_use (then_clause, loop_vinfo,
      if (!vect_is_simple_use (then_clause, loop_vinfo,
                               &then_def_stmt, &def, &dt))
                               &then_def_stmt, &def, &dt))
        return false;
        return false;
    }
    }
  else if (TREE_CODE (then_clause) != INTEGER_CST
  else if (TREE_CODE (then_clause) != INTEGER_CST
           && TREE_CODE (then_clause) != REAL_CST)
           && TREE_CODE (then_clause) != REAL_CST)
    return false;
    return false;
 
 
  if (TREE_CODE (else_clause) == SSA_NAME)
  if (TREE_CODE (else_clause) == SSA_NAME)
    {
    {
      tree else_def_stmt = SSA_NAME_DEF_STMT (else_clause);
      tree else_def_stmt = SSA_NAME_DEF_STMT (else_clause);
      if (!vect_is_simple_use (else_clause, loop_vinfo,
      if (!vect_is_simple_use (else_clause, loop_vinfo,
                               &else_def_stmt, &def, &dt))
                               &else_def_stmt, &def, &dt))
        return false;
        return false;
    }
    }
  else if (TREE_CODE (else_clause) != INTEGER_CST
  else if (TREE_CODE (else_clause) != INTEGER_CST
           && TREE_CODE (else_clause) != REAL_CST)
           && TREE_CODE (else_clause) != REAL_CST)
    return false;
    return false;
 
 
 
 
  vec_mode = TYPE_MODE (vectype);
  vec_mode = TYPE_MODE (vectype);
 
 
  if (!vec_stmt)
  if (!vec_stmt)
    {
    {
      STMT_VINFO_TYPE (stmt_info) = condition_vec_info_type;
      STMT_VINFO_TYPE (stmt_info) = condition_vec_info_type;
      return expand_vec_cond_expr_p (op, vec_mode);
      return expand_vec_cond_expr_p (op, vec_mode);
    }
    }
 
 
  /* Transform */
  /* Transform */
 
 
  /* Handle def.  */
  /* Handle def.  */
  scalar_dest = TREE_OPERAND (stmt, 0);
  scalar_dest = TREE_OPERAND (stmt, 0);
  vec_dest = vect_create_destination_var (scalar_dest, vectype);
  vec_dest = vect_create_destination_var (scalar_dest, vectype);
 
 
  /* Handle cond expr.  */
  /* Handle cond expr.  */
  vec_cond_lhs =
  vec_cond_lhs =
    vect_get_vec_def_for_operand (TREE_OPERAND (cond_expr, 0), stmt, NULL);
    vect_get_vec_def_for_operand (TREE_OPERAND (cond_expr, 0), stmt, NULL);
  vec_cond_rhs =
  vec_cond_rhs =
    vect_get_vec_def_for_operand (TREE_OPERAND (cond_expr, 1), stmt, NULL);
    vect_get_vec_def_for_operand (TREE_OPERAND (cond_expr, 1), stmt, NULL);
  vec_then_clause = vect_get_vec_def_for_operand (then_clause, stmt, NULL);
  vec_then_clause = vect_get_vec_def_for_operand (then_clause, stmt, NULL);
  vec_else_clause = vect_get_vec_def_for_operand (else_clause, stmt, NULL);
  vec_else_clause = vect_get_vec_def_for_operand (else_clause, stmt, NULL);
 
 
  /* Arguments are ready. create the new vector stmt.  */
  /* Arguments are ready. create the new vector stmt.  */
  vec_compare = build2 (TREE_CODE (cond_expr), vectype,
  vec_compare = build2 (TREE_CODE (cond_expr), vectype,
                        vec_cond_lhs, vec_cond_rhs);
                        vec_cond_lhs, vec_cond_rhs);
  vec_cond_expr = build3 (VEC_COND_EXPR, vectype,
  vec_cond_expr = build3 (VEC_COND_EXPR, vectype,
                          vec_compare, vec_then_clause, vec_else_clause);
                          vec_compare, vec_then_clause, vec_else_clause);
 
 
  *vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, vec_cond_expr);
  *vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, vec_cond_expr);
  new_temp = make_ssa_name (vec_dest, *vec_stmt);
  new_temp = make_ssa_name (vec_dest, *vec_stmt);
  TREE_OPERAND (*vec_stmt, 0) = new_temp;
  TREE_OPERAND (*vec_stmt, 0) = new_temp;
  vect_finish_stmt_generation (stmt, *vec_stmt, bsi);
  vect_finish_stmt_generation (stmt, *vec_stmt, bsi);
 
 
  return true;
  return true;
}
}
 
 
/* Function vect_transform_stmt.
/* Function vect_transform_stmt.
 
 
   Create a vectorized stmt to replace STMT, and insert it at BSI.  */
   Create a vectorized stmt to replace STMT, and insert it at BSI.  */
 
 
bool
bool
vect_transform_stmt (tree stmt, block_stmt_iterator *bsi)
vect_transform_stmt (tree stmt, block_stmt_iterator *bsi)
{
{
  bool is_store = false;
  bool is_store = false;
  tree vec_stmt = NULL_TREE;
  tree vec_stmt = NULL_TREE;
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  tree orig_stmt_in_pattern;
  tree orig_stmt_in_pattern;
  bool done;
  bool done;
 
 
  if (STMT_VINFO_RELEVANT_P (stmt_info))
  if (STMT_VINFO_RELEVANT_P (stmt_info))
    {
    {
      switch (STMT_VINFO_TYPE (stmt_info))
      switch (STMT_VINFO_TYPE (stmt_info))
      {
      {
      case op_vec_info_type:
      case op_vec_info_type:
        done = vectorizable_operation (stmt, bsi, &vec_stmt);
        done = vectorizable_operation (stmt, bsi, &vec_stmt);
        gcc_assert (done);
        gcc_assert (done);
        break;
        break;
 
 
      case assignment_vec_info_type:
      case assignment_vec_info_type:
        done = vectorizable_assignment (stmt, bsi, &vec_stmt);
        done = vectorizable_assignment (stmt, bsi, &vec_stmt);
        gcc_assert (done);
        gcc_assert (done);
        break;
        break;
 
 
      case load_vec_info_type:
      case load_vec_info_type:
        done = vectorizable_load (stmt, bsi, &vec_stmt);
        done = vectorizable_load (stmt, bsi, &vec_stmt);
        gcc_assert (done);
        gcc_assert (done);
        break;
        break;
 
 
      case store_vec_info_type:
      case store_vec_info_type:
        done = vectorizable_store (stmt, bsi, &vec_stmt);
        done = vectorizable_store (stmt, bsi, &vec_stmt);
        gcc_assert (done);
        gcc_assert (done);
        is_store = true;
        is_store = true;
        break;
        break;
 
 
      case condition_vec_info_type:
      case condition_vec_info_type:
        done = vectorizable_condition (stmt, bsi, &vec_stmt);
        done = vectorizable_condition (stmt, bsi, &vec_stmt);
        gcc_assert (done);
        gcc_assert (done);
        break;
        break;
 
 
      default:
      default:
        if (vect_print_dump_info (REPORT_DETAILS))
        if (vect_print_dump_info (REPORT_DETAILS))
          fprintf (vect_dump, "stmt not supported.");
          fprintf (vect_dump, "stmt not supported.");
        gcc_unreachable ();
        gcc_unreachable ();
      }
      }
 
 
      gcc_assert (vec_stmt);
      gcc_assert (vec_stmt);
      STMT_VINFO_VEC_STMT (stmt_info) = vec_stmt;
      STMT_VINFO_VEC_STMT (stmt_info) = vec_stmt;
      orig_stmt_in_pattern = STMT_VINFO_RELATED_STMT (stmt_info);
      orig_stmt_in_pattern = STMT_VINFO_RELATED_STMT (stmt_info);
      if (orig_stmt_in_pattern)
      if (orig_stmt_in_pattern)
        {
        {
          stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt_in_pattern);
          stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt_in_pattern);
          if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
          if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
            {
            {
              gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
              gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
 
 
              /* STMT was inserted by the vectorizer to replace a computation
              /* STMT was inserted by the vectorizer to replace a computation
                 idiom.  ORIG_STMT_IN_PATTERN is a stmt in the original
                 idiom.  ORIG_STMT_IN_PATTERN is a stmt in the original
                 sequence that computed this idiom.  We need to record a pointer
                 sequence that computed this idiom.  We need to record a pointer
                 to VEC_STMT in the stmt_info of ORIG_STMT_IN_PATTERN.  See more
                 to VEC_STMT in the stmt_info of ORIG_STMT_IN_PATTERN.  See more
                 detail in the documentation of vect_pattern_recog.  */
                 detail in the documentation of vect_pattern_recog.  */
 
 
              STMT_VINFO_VEC_STMT (stmt_vinfo) = vec_stmt;
              STMT_VINFO_VEC_STMT (stmt_vinfo) = vec_stmt;
            }
            }
        }
        }
    }
    }
 
 
  if (STMT_VINFO_LIVE_P (stmt_info))
  if (STMT_VINFO_LIVE_P (stmt_info))
    {
    {
      switch (STMT_VINFO_TYPE (stmt_info))
      switch (STMT_VINFO_TYPE (stmt_info))
      {
      {
      case reduc_vec_info_type:
      case reduc_vec_info_type:
        done = vectorizable_reduction (stmt, bsi, &vec_stmt);
        done = vectorizable_reduction (stmt, bsi, &vec_stmt);
        gcc_assert (done);
        gcc_assert (done);
        break;
        break;
 
 
      default:
      default:
        done = vectorizable_live_operation (stmt, bsi, &vec_stmt);
        done = vectorizable_live_operation (stmt, bsi, &vec_stmt);
        gcc_assert (done);
        gcc_assert (done);
      }
      }
 
 
      if (vec_stmt)
      if (vec_stmt)
        {
        {
          gcc_assert (!STMT_VINFO_VEC_STMT (stmt_info));
          gcc_assert (!STMT_VINFO_VEC_STMT (stmt_info));
          STMT_VINFO_VEC_STMT (stmt_info) = vec_stmt;
          STMT_VINFO_VEC_STMT (stmt_info) = vec_stmt;
        }
        }
    }
    }
 
 
  return is_store;
  return is_store;
}
}
 
 
 
 
/* This function builds ni_name = number of iterations loop executes
/* This function builds ni_name = number of iterations loop executes
   on the loop preheader.  */
   on the loop preheader.  */
 
 
static tree
static tree
vect_build_loop_niters (loop_vec_info loop_vinfo)
vect_build_loop_niters (loop_vec_info loop_vinfo)
{
{
  tree ni_name, stmt, var;
  tree ni_name, stmt, var;
  edge pe;
  edge pe;
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
  tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
 
 
  var = create_tmp_var (TREE_TYPE (ni), "niters");
  var = create_tmp_var (TREE_TYPE (ni), "niters");
  add_referenced_var (var);
  add_referenced_var (var);
  ni_name = force_gimple_operand (ni, &stmt, false, var);
  ni_name = force_gimple_operand (ni, &stmt, false, var);
 
 
  pe = loop_preheader_edge (loop);
  pe = loop_preheader_edge (loop);
  if (stmt)
  if (stmt)
    {
    {
      basic_block new_bb = bsi_insert_on_edge_immediate (pe, stmt);
      basic_block new_bb = bsi_insert_on_edge_immediate (pe, stmt);
      gcc_assert (!new_bb);
      gcc_assert (!new_bb);
    }
    }
 
 
  return ni_name;
  return ni_name;
}
}
 
 
 
 
/* This function generates the following statements:
/* This function generates the following statements:
 
 
 ni_name = number of iterations loop executes
 ni_name = number of iterations loop executes
 ratio = ni_name / vf
 ratio = ni_name / vf
 ratio_mult_vf_name = ratio * vf
 ratio_mult_vf_name = ratio * vf
 
 
 and places them at the loop preheader edge.  */
 and places them at the loop preheader edge.  */
 
 
static void
static void
vect_generate_tmps_on_preheader (loop_vec_info loop_vinfo,
vect_generate_tmps_on_preheader (loop_vec_info loop_vinfo,
                                 tree *ni_name_ptr,
                                 tree *ni_name_ptr,
                                 tree *ratio_mult_vf_name_ptr,
                                 tree *ratio_mult_vf_name_ptr,
                                 tree *ratio_name_ptr)
                                 tree *ratio_name_ptr)
{
{
 
 
  edge pe;
  edge pe;
  basic_block new_bb;
  basic_block new_bb;
  tree stmt, ni_name;
  tree stmt, ni_name;
  tree var;
  tree var;
  tree ratio_name;
  tree ratio_name;
  tree ratio_mult_vf_name;
  tree ratio_mult_vf_name;
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  tree ni = LOOP_VINFO_NITERS (loop_vinfo);
  tree ni = LOOP_VINFO_NITERS (loop_vinfo);
  int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
  int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
  tree log_vf;
  tree log_vf;
 
 
  pe = loop_preheader_edge (loop);
  pe = loop_preheader_edge (loop);
 
 
  /* Generate temporary variable that contains
  /* Generate temporary variable that contains
     number of iterations loop executes.  */
     number of iterations loop executes.  */
 
 
  ni_name = vect_build_loop_niters (loop_vinfo);
  ni_name = vect_build_loop_niters (loop_vinfo);
  log_vf = build_int_cst (TREE_TYPE (ni), exact_log2 (vf));
  log_vf = build_int_cst (TREE_TYPE (ni), exact_log2 (vf));
 
 
  /* Create: ratio = ni >> log2(vf) */
  /* Create: ratio = ni >> log2(vf) */
 
 
  var = create_tmp_var (TREE_TYPE (ni), "bnd");
  var = create_tmp_var (TREE_TYPE (ni), "bnd");
  add_referenced_var (var);
  add_referenced_var (var);
  ratio_name = make_ssa_name (var, NULL_TREE);
  ratio_name = make_ssa_name (var, NULL_TREE);
  stmt = build2 (MODIFY_EXPR, void_type_node, ratio_name,
  stmt = build2 (MODIFY_EXPR, void_type_node, ratio_name,
           build2 (RSHIFT_EXPR, TREE_TYPE (ni_name), ni_name, log_vf));
           build2 (RSHIFT_EXPR, TREE_TYPE (ni_name), ni_name, log_vf));
  SSA_NAME_DEF_STMT (ratio_name) = stmt;
  SSA_NAME_DEF_STMT (ratio_name) = stmt;
 
 
  pe = loop_preheader_edge (loop);
  pe = loop_preheader_edge (loop);
  new_bb = bsi_insert_on_edge_immediate (pe, stmt);
  new_bb = bsi_insert_on_edge_immediate (pe, stmt);
  gcc_assert (!new_bb);
  gcc_assert (!new_bb);
 
 
  /* Create: ratio_mult_vf = ratio << log2 (vf).  */
  /* Create: ratio_mult_vf = ratio << log2 (vf).  */
 
 
  var = create_tmp_var (TREE_TYPE (ni), "ratio_mult_vf");
  var = create_tmp_var (TREE_TYPE (ni), "ratio_mult_vf");
  add_referenced_var (var);
  add_referenced_var (var);
  ratio_mult_vf_name = make_ssa_name (var, NULL_TREE);
  ratio_mult_vf_name = make_ssa_name (var, NULL_TREE);
  stmt = build2 (MODIFY_EXPR, void_type_node, ratio_mult_vf_name,
  stmt = build2 (MODIFY_EXPR, void_type_node, ratio_mult_vf_name,
           build2 (LSHIFT_EXPR, TREE_TYPE (ratio_name), ratio_name, log_vf));
           build2 (LSHIFT_EXPR, TREE_TYPE (ratio_name), ratio_name, log_vf));
  SSA_NAME_DEF_STMT (ratio_mult_vf_name) = stmt;
  SSA_NAME_DEF_STMT (ratio_mult_vf_name) = stmt;
 
 
  pe = loop_preheader_edge (loop);
  pe = loop_preheader_edge (loop);
  new_bb = bsi_insert_on_edge_immediate (pe, stmt);
  new_bb = bsi_insert_on_edge_immediate (pe, stmt);
  gcc_assert (!new_bb);
  gcc_assert (!new_bb);
 
 
  *ni_name_ptr = ni_name;
  *ni_name_ptr = ni_name;
  *ratio_mult_vf_name_ptr = ratio_mult_vf_name;
  *ratio_mult_vf_name_ptr = ratio_mult_vf_name;
  *ratio_name_ptr = ratio_name;
  *ratio_name_ptr = ratio_name;
 
 
  return;
  return;
}
}
 
 
 
 
/* Function update_vuses_to_preheader.
/* Function update_vuses_to_preheader.
 
 
   Input:
   Input:
   STMT - a statement with potential VUSEs.
   STMT - a statement with potential VUSEs.
   LOOP - the loop whose preheader will contain STMT.
   LOOP - the loop whose preheader will contain STMT.
 
 
   It's possible to vectorize a loop even though an SSA_NAME from a VUSE
   It's possible to vectorize a loop even though an SSA_NAME from a VUSE
   appears to be defined in a V_MAY_DEF in another statement in a loop.
   appears to be defined in a V_MAY_DEF in another statement in a loop.
   One such case is when the VUSE is at the dereference of a __restricted__
   One such case is when the VUSE is at the dereference of a __restricted__
   pointer in a load and the V_MAY_DEF is at the dereference of a different
   pointer in a load and the V_MAY_DEF is at the dereference of a different
   __restricted__ pointer in a store.  Vectorization may result in
   __restricted__ pointer in a store.  Vectorization may result in
   copy_virtual_uses being called to copy the problematic VUSE to a new
   copy_virtual_uses being called to copy the problematic VUSE to a new
   statement that is being inserted in the loop preheader.  This procedure
   statement that is being inserted in the loop preheader.  This procedure
   is called to change the SSA_NAME in the new statement's VUSE from the
   is called to change the SSA_NAME in the new statement's VUSE from the
   SSA_NAME updated in the loop to the related SSA_NAME available on the
   SSA_NAME updated in the loop to the related SSA_NAME available on the
   path entering the loop.
   path entering the loop.
 
 
   When this function is called, we have the following situation:
   When this function is called, we have the following situation:
 
 
        # vuse <name1>
        # vuse <name1>
        S1: vload
        S1: vload
    do {
    do {
        # name1 = phi < name0 , name2>
        # name1 = phi < name0 , name2>
 
 
        # vuse <name1>
        # vuse <name1>
        S2: vload
        S2: vload
 
 
        # name2 = vdef <name1>
        # name2 = vdef <name1>
        S3: vstore
        S3: vstore
 
 
    }while...
    }while...
 
 
   Stmt S1 was created in the loop preheader block as part of misaligned-load
   Stmt S1 was created in the loop preheader block as part of misaligned-load
   handling. This function fixes the name of the vuse of S1 from 'name1' to
   handling. This function fixes the name of the vuse of S1 from 'name1' to
   'name0'.  */
   'name0'.  */
 
 
static void
static void
update_vuses_to_preheader (tree stmt, struct loop *loop)
update_vuses_to_preheader (tree stmt, struct loop *loop)
{
{
  basic_block header_bb = loop->header;
  basic_block header_bb = loop->header;
  edge preheader_e = loop_preheader_edge (loop);
  edge preheader_e = loop_preheader_edge (loop);
  ssa_op_iter iter;
  ssa_op_iter iter;
  use_operand_p use_p;
  use_operand_p use_p;
 
 
  FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_VUSE)
  FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_VUSE)
    {
    {
      tree ssa_name = USE_FROM_PTR (use_p);
      tree ssa_name = USE_FROM_PTR (use_p);
      tree def_stmt = SSA_NAME_DEF_STMT (ssa_name);
      tree def_stmt = SSA_NAME_DEF_STMT (ssa_name);
      tree name_var = SSA_NAME_VAR (ssa_name);
      tree name_var = SSA_NAME_VAR (ssa_name);
      basic_block bb = bb_for_stmt (def_stmt);
      basic_block bb = bb_for_stmt (def_stmt);
 
 
      /* For a use before any definitions, def_stmt is a NOP_EXPR.  */
      /* For a use before any definitions, def_stmt is a NOP_EXPR.  */
      if (!IS_EMPTY_STMT (def_stmt)
      if (!IS_EMPTY_STMT (def_stmt)
          && flow_bb_inside_loop_p (loop, bb))
          && flow_bb_inside_loop_p (loop, bb))
        {
        {
          /* If the block containing the statement defining the SSA_NAME
          /* If the block containing the statement defining the SSA_NAME
             is in the loop then it's necessary to find the definition
             is in the loop then it's necessary to find the definition
             outside the loop using the PHI nodes of the header.  */
             outside the loop using the PHI nodes of the header.  */
          tree phi;
          tree phi;
          bool updated = false;
          bool updated = false;
 
 
          for (phi = phi_nodes (header_bb); phi; phi = TREE_CHAIN (phi))
          for (phi = phi_nodes (header_bb); phi; phi = TREE_CHAIN (phi))
            {
            {
              if (SSA_NAME_VAR (PHI_RESULT (phi)) == name_var)
              if (SSA_NAME_VAR (PHI_RESULT (phi)) == name_var)
                {
                {
                  SET_USE (use_p, PHI_ARG_DEF (phi, preheader_e->dest_idx));
                  SET_USE (use_p, PHI_ARG_DEF (phi, preheader_e->dest_idx));
                  updated = true;
                  updated = true;
                  break;
                  break;
                }
                }
            }
            }
          gcc_assert (updated);
          gcc_assert (updated);
        }
        }
    }
    }
}
}
 
 
 
 
/*   Function vect_update_ivs_after_vectorizer.
/*   Function vect_update_ivs_after_vectorizer.
 
 
     "Advance" the induction variables of LOOP to the value they should take
     "Advance" the induction variables of LOOP to the value they should take
     after the execution of LOOP.  This is currently necessary because the
     after the execution of LOOP.  This is currently necessary because the
     vectorizer does not handle induction variables that are used after the
     vectorizer does not handle induction variables that are used after the
     loop.  Such a situation occurs when the last iterations of LOOP are
     loop.  Such a situation occurs when the last iterations of LOOP are
     peeled, because:
     peeled, because:
     1. We introduced new uses after LOOP for IVs that were not originally used
     1. We introduced new uses after LOOP for IVs that were not originally used
        after LOOP: the IVs of LOOP are now used by an epilog loop.
        after LOOP: the IVs of LOOP are now used by an epilog loop.
     2. LOOP is going to be vectorized; this means that it will iterate N/VF
     2. LOOP is going to be vectorized; this means that it will iterate N/VF
        times, whereas the loop IVs should be bumped N times.
        times, whereas the loop IVs should be bumped N times.
 
 
     Input:
     Input:
     - LOOP - a loop that is going to be vectorized. The last few iterations
     - LOOP - a loop that is going to be vectorized. The last few iterations
              of LOOP were peeled.
              of LOOP were peeled.
     - NITERS - the number of iterations that LOOP executes (before it is
     - NITERS - the number of iterations that LOOP executes (before it is
                vectorized). i.e, the number of times the ivs should be bumped.
                vectorized). i.e, the number of times the ivs should be bumped.
     - UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
     - UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
                  coming out from LOOP on which there are uses of the LOOP ivs
                  coming out from LOOP on which there are uses of the LOOP ivs
                  (this is the path from LOOP->exit to epilog_loop->preheader).
                  (this is the path from LOOP->exit to epilog_loop->preheader).
 
 
                  The new definitions of the ivs are placed in LOOP->exit.
                  The new definitions of the ivs are placed in LOOP->exit.
                  The phi args associated with the edge UPDATE_E in the bb
                  The phi args associated with the edge UPDATE_E in the bb
                  UPDATE_E->dest are updated accordingly.
                  UPDATE_E->dest are updated accordingly.
 
 
     Assumption 1: Like the rest of the vectorizer, this function assumes
     Assumption 1: Like the rest of the vectorizer, this function assumes
     a single loop exit that has a single predecessor.
     a single loop exit that has a single predecessor.
 
 
     Assumption 2: The phi nodes in the LOOP header and in update_bb are
     Assumption 2: The phi nodes in the LOOP header and in update_bb are
     organized in the same order.
     organized in the same order.
 
 
     Assumption 3: The access function of the ivs is simple enough (see
     Assumption 3: The access function of the ivs is simple enough (see
     vect_can_advance_ivs_p).  This assumption will be relaxed in the future.
     vect_can_advance_ivs_p).  This assumption will be relaxed in the future.
 
 
     Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
     Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
     coming out of LOOP on which the ivs of LOOP are used (this is the path
     coming out of LOOP on which the ivs of LOOP are used (this is the path
     that leads to the epilog loop; other paths skip the epilog loop).  This
     that leads to the epilog loop; other paths skip the epilog loop).  This
     path starts with the edge UPDATE_E, and its destination (denoted update_bb)
     path starts with the edge UPDATE_E, and its destination (denoted update_bb)
     needs to have its phis updated.
     needs to have its phis updated.
 */
 */
 
 
static void
static void
vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo, tree niters,
vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo, tree niters,
                                  edge update_e)
                                  edge update_e)
{
{
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  basic_block exit_bb = loop->single_exit->dest;
  basic_block exit_bb = loop->single_exit->dest;
  tree phi, phi1;
  tree phi, phi1;
  basic_block update_bb = update_e->dest;
  basic_block update_bb = update_e->dest;
 
 
  /* gcc_assert (vect_can_advance_ivs_p (loop_vinfo)); */
  /* gcc_assert (vect_can_advance_ivs_p (loop_vinfo)); */
 
 
  /* Make sure there exists a single-predecessor exit bb:  */
  /* Make sure there exists a single-predecessor exit bb:  */
  gcc_assert (single_pred_p (exit_bb));
  gcc_assert (single_pred_p (exit_bb));
 
 
  for (phi = phi_nodes (loop->header), phi1 = phi_nodes (update_bb);
  for (phi = phi_nodes (loop->header), phi1 = phi_nodes (update_bb);
       phi && phi1;
       phi && phi1;
       phi = PHI_CHAIN (phi), phi1 = PHI_CHAIN (phi1))
       phi = PHI_CHAIN (phi), phi1 = PHI_CHAIN (phi1))
    {
    {
      tree access_fn = NULL;
      tree access_fn = NULL;
      tree evolution_part;
      tree evolution_part;
      tree init_expr;
      tree init_expr;
      tree step_expr;
      tree step_expr;
      tree var, stmt, ni, ni_name;
      tree var, stmt, ni, ni_name;
      block_stmt_iterator last_bsi;
      block_stmt_iterator last_bsi;
 
 
      if (vect_print_dump_info (REPORT_DETAILS))
      if (vect_print_dump_info (REPORT_DETAILS))
        {
        {
          fprintf (vect_dump, "vect_update_ivs_after_vectorizer: phi: ");
          fprintf (vect_dump, "vect_update_ivs_after_vectorizer: phi: ");
          print_generic_expr (vect_dump, phi, TDF_SLIM);
          print_generic_expr (vect_dump, phi, TDF_SLIM);
        }
        }
 
 
      /* Skip virtual phi's.  */
      /* Skip virtual phi's.  */
      if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
      if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
        {
        {
          if (vect_print_dump_info (REPORT_DETAILS))
          if (vect_print_dump_info (REPORT_DETAILS))
            fprintf (vect_dump, "virtual phi. skip.");
            fprintf (vect_dump, "virtual phi. skip.");
          continue;
          continue;
        }
        }
 
 
      /* Skip reduction phis.  */
      /* Skip reduction phis.  */
      if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (phi)) == vect_reduction_def)
      if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (phi)) == vect_reduction_def)
        {
        {
          if (vect_print_dump_info (REPORT_DETAILS))
          if (vect_print_dump_info (REPORT_DETAILS))
            fprintf (vect_dump, "reduc phi. skip.");
            fprintf (vect_dump, "reduc phi. skip.");
          continue;
          continue;
        }
        }
 
 
      access_fn = analyze_scalar_evolution (loop, PHI_RESULT (phi));
      access_fn = analyze_scalar_evolution (loop, PHI_RESULT (phi));
      gcc_assert (access_fn);
      gcc_assert (access_fn);
      evolution_part =
      evolution_part =
         unshare_expr (evolution_part_in_loop_num (access_fn, loop->num));
         unshare_expr (evolution_part_in_loop_num (access_fn, loop->num));
      gcc_assert (evolution_part != NULL_TREE);
      gcc_assert (evolution_part != NULL_TREE);
 
 
      /* FORNOW: We do not support IVs whose evolution function is a polynomial
      /* FORNOW: We do not support IVs whose evolution function is a polynomial
         of degree >= 2 or exponential.  */
         of degree >= 2 or exponential.  */
      gcc_assert (!tree_is_chrec (evolution_part));
      gcc_assert (!tree_is_chrec (evolution_part));
 
 
      step_expr = evolution_part;
      step_expr = evolution_part;
      init_expr = unshare_expr (initial_condition_in_loop_num (access_fn,
      init_expr = unshare_expr (initial_condition_in_loop_num (access_fn,
                                                               loop->num));
                                                               loop->num));
 
 
      ni = build2 (PLUS_EXPR, TREE_TYPE (init_expr),
      ni = build2 (PLUS_EXPR, TREE_TYPE (init_expr),
                  build2 (MULT_EXPR, TREE_TYPE (niters),
                  build2 (MULT_EXPR, TREE_TYPE (niters),
                       niters, step_expr), init_expr);
                       niters, step_expr), init_expr);
 
 
      var = create_tmp_var (TREE_TYPE (init_expr), "tmp");
      var = create_tmp_var (TREE_TYPE (init_expr), "tmp");
      add_referenced_var (var);
      add_referenced_var (var);
 
 
      ni_name = force_gimple_operand (ni, &stmt, false, var);
      ni_name = force_gimple_operand (ni, &stmt, false, var);
 
 
      /* Insert stmt into exit_bb.  */
      /* Insert stmt into exit_bb.  */
      last_bsi = bsi_last (exit_bb);
      last_bsi = bsi_last (exit_bb);
      if (stmt)
      if (stmt)
        bsi_insert_before (&last_bsi, stmt, BSI_SAME_STMT);
        bsi_insert_before (&last_bsi, stmt, BSI_SAME_STMT);
 
 
      /* Fix phi expressions in the successor bb.  */
      /* Fix phi expressions in the successor bb.  */
      SET_PHI_ARG_DEF (phi1, update_e->dest_idx, ni_name);
      SET_PHI_ARG_DEF (phi1, update_e->dest_idx, ni_name);
    }
    }
}
}
 
 
 
 
/* Function vect_do_peeling_for_loop_bound
/* Function vect_do_peeling_for_loop_bound
 
 
   Peel the last iterations of the loop represented by LOOP_VINFO.
   Peel the last iterations of the loop represented by LOOP_VINFO.
   The peeled iterations form a new epilog loop.  Given that the loop now
   The peeled iterations form a new epilog loop.  Given that the loop now
   iterates NITERS times, the new epilog loop iterates
   iterates NITERS times, the new epilog loop iterates
   NITERS % VECTORIZATION_FACTOR times.
   NITERS % VECTORIZATION_FACTOR times.
 
 
   The original loop will later be made to iterate
   The original loop will later be made to iterate
   NITERS / VECTORIZATION_FACTOR times (this value is placed into RATIO).  */
   NITERS / VECTORIZATION_FACTOR times (this value is placed into RATIO).  */
 
 
static void
static void
vect_do_peeling_for_loop_bound (loop_vec_info loop_vinfo, tree *ratio,
vect_do_peeling_for_loop_bound (loop_vec_info loop_vinfo, tree *ratio,
                                struct loops *loops)
                                struct loops *loops)
{
{
  tree ni_name, ratio_mult_vf_name;
  tree ni_name, ratio_mult_vf_name;
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  struct loop *new_loop;
  struct loop *new_loop;
  edge update_e;
  edge update_e;
  basic_block preheader;
  basic_block preheader;
  int loop_num;
  int loop_num;
 
 
  if (vect_print_dump_info (REPORT_DETAILS))
  if (vect_print_dump_info (REPORT_DETAILS))
    fprintf (vect_dump, "=== vect_do_peeling_for_loop_bound ===");
    fprintf (vect_dump, "=== vect_do_peeling_for_loop_bound ===");
 
 
  initialize_original_copy_tables ();
  initialize_original_copy_tables ();
 
 
  /* Generate the following variables on the preheader of original loop:
  /* Generate the following variables on the preheader of original loop:
 
 
     ni_name = number of iteration the original loop executes
     ni_name = number of iteration the original loop executes
     ratio = ni_name / vf
     ratio = ni_name / vf
     ratio_mult_vf_name = ratio * vf  */
     ratio_mult_vf_name = ratio * vf  */
  vect_generate_tmps_on_preheader (loop_vinfo, &ni_name,
  vect_generate_tmps_on_preheader (loop_vinfo, &ni_name,
                                   &ratio_mult_vf_name, ratio);
                                   &ratio_mult_vf_name, ratio);
 
 
  loop_num  = loop->num;
  loop_num  = loop->num;
  new_loop = slpeel_tree_peel_loop_to_edge (loop, loops, loop->single_exit,
  new_loop = slpeel_tree_peel_loop_to_edge (loop, loops, loop->single_exit,
                                            ratio_mult_vf_name, ni_name, false);
                                            ratio_mult_vf_name, ni_name, false);
  gcc_assert (new_loop);
  gcc_assert (new_loop);
  gcc_assert (loop_num == loop->num);
  gcc_assert (loop_num == loop->num);
#ifdef ENABLE_CHECKING
#ifdef ENABLE_CHECKING
  slpeel_verify_cfg_after_peeling (loop, new_loop);
  slpeel_verify_cfg_after_peeling (loop, new_loop);
#endif
#endif
 
 
  /* A guard that controls whether the new_loop is to be executed or skipped
  /* A guard that controls whether the new_loop is to be executed or skipped
     is placed in LOOP->exit.  LOOP->exit therefore has two successors - one
     is placed in LOOP->exit.  LOOP->exit therefore has two successors - one
     is the preheader of NEW_LOOP, where the IVs from LOOP are used.  The other
     is the preheader of NEW_LOOP, where the IVs from LOOP are used.  The other
     is a bb after NEW_LOOP, where these IVs are not used.  Find the edge that
     is a bb after NEW_LOOP, where these IVs are not used.  Find the edge that
     is on the path where the LOOP IVs are used and need to be updated.  */
     is on the path where the LOOP IVs are used and need to be updated.  */
 
 
  preheader = loop_preheader_edge (new_loop)->src;
  preheader = loop_preheader_edge (new_loop)->src;
  if (EDGE_PRED (preheader, 0)->src == loop->single_exit->dest)
  if (EDGE_PRED (preheader, 0)->src == loop->single_exit->dest)
    update_e = EDGE_PRED (preheader, 0);
    update_e = EDGE_PRED (preheader, 0);
  else
  else
    update_e = EDGE_PRED (preheader, 1);
    update_e = EDGE_PRED (preheader, 1);
 
 
  /* Update IVs of original loop as if they were advanced
  /* Update IVs of original loop as if they were advanced
     by ratio_mult_vf_name steps.  */
     by ratio_mult_vf_name steps.  */
  vect_update_ivs_after_vectorizer (loop_vinfo, ratio_mult_vf_name, update_e);
  vect_update_ivs_after_vectorizer (loop_vinfo, ratio_mult_vf_name, update_e);
 
 
  /* After peeling we have to reset scalar evolution analyzer.  */
  /* After peeling we have to reset scalar evolution analyzer.  */
  scev_reset ();
  scev_reset ();
 
 
  free_original_copy_tables ();
  free_original_copy_tables ();
}
}
 
 
 
 
/* Function vect_gen_niters_for_prolog_loop
/* Function vect_gen_niters_for_prolog_loop
 
 
   Set the number of iterations for the loop represented by LOOP_VINFO
   Set the number of iterations for the loop represented by LOOP_VINFO
   to the minimum between LOOP_NITERS (the original iteration count of the loop)
   to the minimum between LOOP_NITERS (the original iteration count of the loop)
   and the misalignment of DR - the data reference recorded in
   and the misalignment of DR - the data reference recorded in
   LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO).  As a result, after the execution of
   LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO).  As a result, after the execution of
   this loop, the data reference DR will refer to an aligned location.
   this loop, the data reference DR will refer to an aligned location.
 
 
   The following computation is generated:
   The following computation is generated:
 
 
   If the misalignment of DR is known at compile time:
   If the misalignment of DR is known at compile time:
     addr_mis = int mis = DR_MISALIGNMENT (dr);
     addr_mis = int mis = DR_MISALIGNMENT (dr);
   Else, compute address misalignment in bytes:
   Else, compute address misalignment in bytes:
     addr_mis = addr & (vectype_size - 1)
     addr_mis = addr & (vectype_size - 1)
 
 
   prolog_niters = min ( LOOP_NITERS , (VF - addr_mis/elem_size)&(VF-1) )
   prolog_niters = min ( LOOP_NITERS , (VF - addr_mis/elem_size)&(VF-1) )
 
 
   (elem_size = element type size; an element is the scalar element
   (elem_size = element type size; an element is the scalar element
        whose type is the inner type of the vectype)  */
        whose type is the inner type of the vectype)  */
 
 
static tree
static tree
vect_gen_niters_for_prolog_loop (loop_vec_info loop_vinfo, tree loop_niters)
vect_gen_niters_for_prolog_loop (loop_vec_info loop_vinfo, tree loop_niters)
{
{
  struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
  struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
  int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
  int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  tree var, stmt;
  tree var, stmt;
  tree iters, iters_name;
  tree iters, iters_name;
  edge pe;
  edge pe;
  basic_block new_bb;
  basic_block new_bb;
  tree dr_stmt = DR_STMT (dr);
  tree dr_stmt = DR_STMT (dr);
  stmt_vec_info stmt_info = vinfo_for_stmt (dr_stmt);
  stmt_vec_info stmt_info = vinfo_for_stmt (dr_stmt);
  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
  int vectype_align = TYPE_ALIGN (vectype) / BITS_PER_UNIT;
  int vectype_align = TYPE_ALIGN (vectype) / BITS_PER_UNIT;
  tree niters_type = TREE_TYPE (loop_niters);
  tree niters_type = TREE_TYPE (loop_niters);
 
 
  pe = loop_preheader_edge (loop);
  pe = loop_preheader_edge (loop);
 
 
  if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
  if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
    {
    {
      int byte_misalign = LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo);
      int byte_misalign = LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo);
      int element_size = vectype_align/vf;
      int element_size = vectype_align/vf;
      int elem_misalign = byte_misalign / element_size;
      int elem_misalign = byte_misalign / element_size;
 
 
      if (vect_print_dump_info (REPORT_DETAILS))
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "known alignment = %d.", byte_misalign);
        fprintf (vect_dump, "known alignment = %d.", byte_misalign);
      iters = build_int_cst (niters_type, (vf - elem_misalign)&(vf-1));
      iters = build_int_cst (niters_type, (vf - elem_misalign)&(vf-1));
    }
    }
  else
  else
    {
    {
      tree new_stmts = NULL_TREE;
      tree new_stmts = NULL_TREE;
      tree start_addr =
      tree start_addr =
        vect_create_addr_base_for_vector_ref (dr_stmt, &new_stmts, NULL_TREE);
        vect_create_addr_base_for_vector_ref (dr_stmt, &new_stmts, NULL_TREE);
      tree ptr_type = TREE_TYPE (start_addr);
      tree ptr_type = TREE_TYPE (start_addr);
      tree size = TYPE_SIZE (ptr_type);
      tree size = TYPE_SIZE (ptr_type);
      tree type = lang_hooks.types.type_for_size (tree_low_cst (size, 1), 1);
      tree type = lang_hooks.types.type_for_size (tree_low_cst (size, 1), 1);
      tree vectype_size_minus_1 = build_int_cst (type, vectype_align - 1);
      tree vectype_size_minus_1 = build_int_cst (type, vectype_align - 1);
      tree elem_size_log =
      tree elem_size_log =
        build_int_cst (type, exact_log2 (vectype_align/vf));
        build_int_cst (type, exact_log2 (vectype_align/vf));
      tree vf_minus_1 = build_int_cst (type, vf - 1);
      tree vf_minus_1 = build_int_cst (type, vf - 1);
      tree vf_tree = build_int_cst (type, vf);
      tree vf_tree = build_int_cst (type, vf);
      tree byte_misalign;
      tree byte_misalign;
      tree elem_misalign;
      tree elem_misalign;
 
 
      new_bb = bsi_insert_on_edge_immediate (pe, new_stmts);
      new_bb = bsi_insert_on_edge_immediate (pe, new_stmts);
      gcc_assert (!new_bb);
      gcc_assert (!new_bb);
 
 
      /* Create:  byte_misalign = addr & (vectype_size - 1)  */
      /* Create:  byte_misalign = addr & (vectype_size - 1)  */
      byte_misalign =
      byte_misalign =
        build2 (BIT_AND_EXPR, type, start_addr, vectype_size_minus_1);
        build2 (BIT_AND_EXPR, type, start_addr, vectype_size_minus_1);
 
 
      /* Create:  elem_misalign = byte_misalign / element_size  */
      /* Create:  elem_misalign = byte_misalign / element_size  */
      elem_misalign =
      elem_misalign =
        build2 (RSHIFT_EXPR, type, byte_misalign, elem_size_log);
        build2 (RSHIFT_EXPR, type, byte_misalign, elem_size_log);
 
 
      /* Create:  (niters_type) (VF - elem_misalign)&(VF - 1)  */
      /* Create:  (niters_type) (VF - elem_misalign)&(VF - 1)  */
      iters = build2 (MINUS_EXPR, type, vf_tree, elem_misalign);
      iters = build2 (MINUS_EXPR, type, vf_tree, elem_misalign);
      iters = build2 (BIT_AND_EXPR, type, iters, vf_minus_1);
      iters = build2 (BIT_AND_EXPR, type, iters, vf_minus_1);
      iters = fold_convert (niters_type, iters);
      iters = fold_convert (niters_type, iters);
    }
    }
 
 
  /* Create:  prolog_loop_niters = min (iters, loop_niters) */
  /* Create:  prolog_loop_niters = min (iters, loop_niters) */
  /* If the loop bound is known at compile time we already verified that it is
  /* If the loop bound is known at compile time we already verified that it is
     greater than vf; since the misalignment ('iters') is at most vf, there's
     greater than vf; since the misalignment ('iters') is at most vf, there's
     no need to generate the MIN_EXPR in this case.  */
     no need to generate the MIN_EXPR in this case.  */
  if (TREE_CODE (loop_niters) != INTEGER_CST)
  if (TREE_CODE (loop_niters) != INTEGER_CST)
    iters = build2 (MIN_EXPR, niters_type, iters, loop_niters);
    iters = build2 (MIN_EXPR, niters_type, iters, loop_niters);
 
 
  if (vect_print_dump_info (REPORT_DETAILS))
  if (vect_print_dump_info (REPORT_DETAILS))
    {
    {
      fprintf (vect_dump, "niters for prolog loop: ");
      fprintf (vect_dump, "niters for prolog loop: ");
      print_generic_expr (vect_dump, iters, TDF_SLIM);
      print_generic_expr (vect_dump, iters, TDF_SLIM);
    }
    }
 
 
  var = create_tmp_var (niters_type, "prolog_loop_niters");
  var = create_tmp_var (niters_type, "prolog_loop_niters");
  add_referenced_var (var);
  add_referenced_var (var);
  iters_name = force_gimple_operand (iters, &stmt, false, var);
  iters_name = force_gimple_operand (iters, &stmt, false, var);
 
 
  /* Insert stmt on loop preheader edge.  */
  /* Insert stmt on loop preheader edge.  */
  if (stmt)
  if (stmt)
    {
    {
      basic_block new_bb = bsi_insert_on_edge_immediate (pe, stmt);
      basic_block new_bb = bsi_insert_on_edge_immediate (pe, stmt);
      gcc_assert (!new_bb);
      gcc_assert (!new_bb);
    }
    }
 
 
  return iters_name;
  return iters_name;
}
}
 
 
 
 
/* Function vect_update_init_of_dr
/* Function vect_update_init_of_dr
 
 
   NITERS iterations were peeled from LOOP.  DR represents a data reference
   NITERS iterations were peeled from LOOP.  DR represents a data reference
   in LOOP.  This function updates the information recorded in DR to
   in LOOP.  This function updates the information recorded in DR to
   account for the fact that the first NITERS iterations had already been
   account for the fact that the first NITERS iterations had already been
   executed.  Specifically, it updates the OFFSET field of DR.  */
   executed.  Specifically, it updates the OFFSET field of DR.  */
 
 
static void
static void
vect_update_init_of_dr (struct data_reference *dr, tree niters)
vect_update_init_of_dr (struct data_reference *dr, tree niters)
{
{
  tree offset = DR_OFFSET (dr);
  tree offset = DR_OFFSET (dr);
 
 
  niters = fold_build2 (MULT_EXPR, TREE_TYPE (niters), niters, DR_STEP (dr));
  niters = fold_build2 (MULT_EXPR, TREE_TYPE (niters), niters, DR_STEP (dr));
  offset = fold_build2 (PLUS_EXPR, TREE_TYPE (offset), offset, niters);
  offset = fold_build2 (PLUS_EXPR, TREE_TYPE (offset), offset, niters);
  DR_OFFSET (dr) = offset;
  DR_OFFSET (dr) = offset;
}
}
 
 
 
 
/* Function vect_update_inits_of_drs
/* Function vect_update_inits_of_drs
 
 
   NITERS iterations were peeled from the loop represented by LOOP_VINFO.
   NITERS iterations were peeled from the loop represented by LOOP_VINFO.
   This function updates the information recorded for the data references in
   This function updates the information recorded for the data references in
   the loop to account for the fact that the first NITERS iterations had
   the loop to account for the fact that the first NITERS iterations had
   already been executed.  Specifically, it updates the initial_condition of the
   already been executed.  Specifically, it updates the initial_condition of the
   access_function of all the data_references in the loop.  */
   access_function of all the data_references in the loop.  */
 
 
static void
static void
vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters)
vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters)
{
{
  unsigned int i;
  unsigned int i;
  VEC (data_reference_p, heap) *datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
  VEC (data_reference_p, heap) *datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
  struct data_reference *dr;
  struct data_reference *dr;
 
 
  if (vect_dump && (dump_flags & TDF_DETAILS))
  if (vect_dump && (dump_flags & TDF_DETAILS))
    fprintf (vect_dump, "=== vect_update_inits_of_dr ===");
    fprintf (vect_dump, "=== vect_update_inits_of_dr ===");
 
 
  for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
  for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
    vect_update_init_of_dr (dr, niters);
    vect_update_init_of_dr (dr, niters);
}
}
 
 
 
 
/* Function vect_do_peeling_for_alignment
/* Function vect_do_peeling_for_alignment
 
 
   Peel the first 'niters' iterations of the loop represented by LOOP_VINFO.
   Peel the first 'niters' iterations of the loop represented by LOOP_VINFO.
   'niters' is set to the misalignment of one of the data references in the
   'niters' is set to the misalignment of one of the data references in the
   loop, thereby forcing it to refer to an aligned location at the beginning
   loop, thereby forcing it to refer to an aligned location at the beginning
   of the execution of this loop.  The data reference for which we are
   of the execution of this loop.  The data reference for which we are
   peeling is recorded in LOOP_VINFO_UNALIGNED_DR.  */
   peeling is recorded in LOOP_VINFO_UNALIGNED_DR.  */
 
 
static void
static void
vect_do_peeling_for_alignment (loop_vec_info loop_vinfo, struct loops *loops)
vect_do_peeling_for_alignment (loop_vec_info loop_vinfo, struct loops *loops)
{
{
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  tree niters_of_prolog_loop, ni_name;
  tree niters_of_prolog_loop, ni_name;
  tree n_iters;
  tree n_iters;
  struct loop *new_loop;
  struct loop *new_loop;
 
 
  if (vect_print_dump_info (REPORT_DETAILS))
  if (vect_print_dump_info (REPORT_DETAILS))
    fprintf (vect_dump, "=== vect_do_peeling_for_alignment ===");
    fprintf (vect_dump, "=== vect_do_peeling_for_alignment ===");
 
 
  initialize_original_copy_tables ();
  initialize_original_copy_tables ();
 
 
  ni_name = vect_build_loop_niters (loop_vinfo);
  ni_name = vect_build_loop_niters (loop_vinfo);
  niters_of_prolog_loop = vect_gen_niters_for_prolog_loop (loop_vinfo, ni_name);
  niters_of_prolog_loop = vect_gen_niters_for_prolog_loop (loop_vinfo, ni_name);
 
 
  /* Peel the prolog loop and iterate it niters_of_prolog_loop.  */
  /* Peel the prolog loop and iterate it niters_of_prolog_loop.  */
  new_loop =
  new_loop =
        slpeel_tree_peel_loop_to_edge (loop, loops, loop_preheader_edge (loop),
        slpeel_tree_peel_loop_to_edge (loop, loops, loop_preheader_edge (loop),
                                       niters_of_prolog_loop, ni_name, true);
                                       niters_of_prolog_loop, ni_name, true);
  gcc_assert (new_loop);
  gcc_assert (new_loop);
#ifdef ENABLE_CHECKING
#ifdef ENABLE_CHECKING
  slpeel_verify_cfg_after_peeling (new_loop, loop);
  slpeel_verify_cfg_after_peeling (new_loop, loop);
#endif
#endif
 
 
  /* Update number of times loop executes.  */
  /* Update number of times loop executes.  */
  n_iters = LOOP_VINFO_NITERS (loop_vinfo);
  n_iters = LOOP_VINFO_NITERS (loop_vinfo);
  LOOP_VINFO_NITERS (loop_vinfo) = fold_build2 (MINUS_EXPR,
  LOOP_VINFO_NITERS (loop_vinfo) = fold_build2 (MINUS_EXPR,
                TREE_TYPE (n_iters), n_iters, niters_of_prolog_loop);
                TREE_TYPE (n_iters), n_iters, niters_of_prolog_loop);
 
 
  /* Update the init conditions of the access functions of all data refs.  */
  /* Update the init conditions of the access functions of all data refs.  */
  vect_update_inits_of_drs (loop_vinfo, niters_of_prolog_loop);
  vect_update_inits_of_drs (loop_vinfo, niters_of_prolog_loop);
 
 
  /* After peeling we have to reset scalar evolution analyzer.  */
  /* After peeling we have to reset scalar evolution analyzer.  */
  scev_reset ();
  scev_reset ();
 
 
  free_original_copy_tables ();
  free_original_copy_tables ();
}
}
 
 
 
 
/* Function vect_create_cond_for_align_checks.
/* Function vect_create_cond_for_align_checks.
 
 
   Create a conditional expression that represents the alignment checks for
   Create a conditional expression that represents the alignment checks for
   all of data references (array element references) whose alignment must be
   all of data references (array element references) whose alignment must be
   checked at runtime.
   checked at runtime.
 
 
   Input:
   Input:
   LOOP_VINFO - two fields of the loop information are used.
   LOOP_VINFO - two fields of the loop information are used.
                LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
                LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
                LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.
                LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.
 
 
   Output:
   Output:
   COND_EXPR_STMT_LIST - statements needed to construct the conditional
   COND_EXPR_STMT_LIST - statements needed to construct the conditional
                         expression.
                         expression.
   The returned value is the conditional expression to be used in the if
   The returned value is the conditional expression to be used in the if
   statement that controls which version of the loop gets executed at runtime.
   statement that controls which version of the loop gets executed at runtime.
 
 
   The algorithm makes two assumptions:
   The algorithm makes two assumptions:
     1) The number of bytes "n" in a vector is a power of 2.
     1) The number of bytes "n" in a vector is a power of 2.
     2) An address "a" is aligned if a%n is zero and that this
     2) An address "a" is aligned if a%n is zero and that this
        test can be done as a&(n-1) == 0.  For example, for 16
        test can be done as a&(n-1) == 0.  For example, for 16
        byte vectors the test is a&0xf == 0.  */
        byte vectors the test is a&0xf == 0.  */
 
 
static tree
static tree
vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
                                   tree *cond_expr_stmt_list)
                                   tree *cond_expr_stmt_list)
{
{
  VEC(tree,heap) *may_misalign_stmts
  VEC(tree,heap) *may_misalign_stmts
    = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
    = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
  tree ref_stmt;
  tree ref_stmt;
  int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
  int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
  tree mask_cst;
  tree mask_cst;
  unsigned int i;
  unsigned int i;
  tree psize;
  tree psize;
  tree int_ptrsize_type;
  tree int_ptrsize_type;
  char tmp_name[20];
  char tmp_name[20];
  tree or_tmp_name = NULL_TREE;
  tree or_tmp_name = NULL_TREE;
  tree and_tmp, and_tmp_name, and_stmt;
  tree and_tmp, and_tmp_name, and_stmt;
  tree ptrsize_zero;
  tree ptrsize_zero;
 
 
  /* Check that mask is one less than a power of 2, i.e., mask is
  /* Check that mask is one less than a power of 2, i.e., mask is
     all zeros followed by all ones.  */
     all zeros followed by all ones.  */
  gcc_assert ((mask != 0) && ((mask & (mask+1)) == 0));
  gcc_assert ((mask != 0) && ((mask & (mask+1)) == 0));
 
 
  /* CHECKME: what is the best integer or unsigned type to use to hold a
  /* CHECKME: what is the best integer or unsigned type to use to hold a
     cast from a pointer value?  */
     cast from a pointer value?  */
  psize = TYPE_SIZE (ptr_type_node);
  psize = TYPE_SIZE (ptr_type_node);
  int_ptrsize_type
  int_ptrsize_type
    = lang_hooks.types.type_for_size (tree_low_cst (psize, 1), 0);
    = lang_hooks.types.type_for_size (tree_low_cst (psize, 1), 0);
 
 
  /* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
  /* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
     of the first vector of the i'th data reference. */
     of the first vector of the i'th data reference. */
 
 
  for (i = 0; VEC_iterate (tree, may_misalign_stmts, i, ref_stmt); i++)
  for (i = 0; VEC_iterate (tree, may_misalign_stmts, i, ref_stmt); i++)
    {
    {
      tree new_stmt_list = NULL_TREE;
      tree new_stmt_list = NULL_TREE;
      tree addr_base;
      tree addr_base;
      tree addr_tmp, addr_tmp_name, addr_stmt;
      tree addr_tmp, addr_tmp_name, addr_stmt;
      tree or_tmp, new_or_tmp_name, or_stmt;
      tree or_tmp, new_or_tmp_name, or_stmt;
 
 
      /* create: addr_tmp = (int)(address_of_first_vector) */
      /* create: addr_tmp = (int)(address_of_first_vector) */
      addr_base = vect_create_addr_base_for_vector_ref (ref_stmt,
      addr_base = vect_create_addr_base_for_vector_ref (ref_stmt,
                                                        &new_stmt_list,
                                                        &new_stmt_list,
                                                        NULL_TREE);
                                                        NULL_TREE);
 
 
      if (new_stmt_list != NULL_TREE)
      if (new_stmt_list != NULL_TREE)
        append_to_statement_list_force (new_stmt_list, cond_expr_stmt_list);
        append_to_statement_list_force (new_stmt_list, cond_expr_stmt_list);
 
 
      sprintf (tmp_name, "%s%d", "addr2int", i);
      sprintf (tmp_name, "%s%d", "addr2int", i);
      addr_tmp = create_tmp_var (int_ptrsize_type, tmp_name);
      addr_tmp = create_tmp_var (int_ptrsize_type, tmp_name);
      add_referenced_var (addr_tmp);
      add_referenced_var (addr_tmp);
      addr_tmp_name = make_ssa_name (addr_tmp, NULL_TREE);
      addr_tmp_name = make_ssa_name (addr_tmp, NULL_TREE);
      addr_stmt = fold_convert (int_ptrsize_type, addr_base);
      addr_stmt = fold_convert (int_ptrsize_type, addr_base);
      addr_stmt = build2 (MODIFY_EXPR, void_type_node,
      addr_stmt = build2 (MODIFY_EXPR, void_type_node,
                          addr_tmp_name, addr_stmt);
                          addr_tmp_name, addr_stmt);
      SSA_NAME_DEF_STMT (addr_tmp_name) = addr_stmt;
      SSA_NAME_DEF_STMT (addr_tmp_name) = addr_stmt;
      append_to_statement_list_force (addr_stmt, cond_expr_stmt_list);
      append_to_statement_list_force (addr_stmt, cond_expr_stmt_list);
 
 
      /* The addresses are OR together.  */
      /* The addresses are OR together.  */
 
 
      if (or_tmp_name != NULL_TREE)
      if (or_tmp_name != NULL_TREE)
        {
        {
          /* create: or_tmp = or_tmp | addr_tmp */
          /* create: or_tmp = or_tmp | addr_tmp */
          sprintf (tmp_name, "%s%d", "orptrs", i);
          sprintf (tmp_name, "%s%d", "orptrs", i);
          or_tmp = create_tmp_var (int_ptrsize_type, tmp_name);
          or_tmp = create_tmp_var (int_ptrsize_type, tmp_name);
          add_referenced_var (or_tmp);
          add_referenced_var (or_tmp);
          new_or_tmp_name = make_ssa_name (or_tmp, NULL_TREE);
          new_or_tmp_name = make_ssa_name (or_tmp, NULL_TREE);
          or_stmt = build2 (MODIFY_EXPR, void_type_node, new_or_tmp_name,
          or_stmt = build2 (MODIFY_EXPR, void_type_node, new_or_tmp_name,
                            build2 (BIT_IOR_EXPR, int_ptrsize_type,
                            build2 (BIT_IOR_EXPR, int_ptrsize_type,
                                    or_tmp_name,
                                    or_tmp_name,
                                    addr_tmp_name));
                                    addr_tmp_name));
          SSA_NAME_DEF_STMT (new_or_tmp_name) = or_stmt;
          SSA_NAME_DEF_STMT (new_or_tmp_name) = or_stmt;
          append_to_statement_list_force (or_stmt, cond_expr_stmt_list);
          append_to_statement_list_force (or_stmt, cond_expr_stmt_list);
          or_tmp_name = new_or_tmp_name;
          or_tmp_name = new_or_tmp_name;
        }
        }
      else
      else
        or_tmp_name = addr_tmp_name;
        or_tmp_name = addr_tmp_name;
 
 
    } /* end for i */
    } /* end for i */
 
 
  mask_cst = build_int_cst (int_ptrsize_type, mask);
  mask_cst = build_int_cst (int_ptrsize_type, mask);
 
 
  /* create: and_tmp = or_tmp & mask  */
  /* create: and_tmp = or_tmp & mask  */
  and_tmp = create_tmp_var (int_ptrsize_type, "andmask" );
  and_tmp = create_tmp_var (int_ptrsize_type, "andmask" );
  add_referenced_var (and_tmp);
  add_referenced_var (and_tmp);
  and_tmp_name = make_ssa_name (and_tmp, NULL_TREE);
  and_tmp_name = make_ssa_name (and_tmp, NULL_TREE);
 
 
  and_stmt = build2 (MODIFY_EXPR, void_type_node,
  and_stmt = build2 (MODIFY_EXPR, void_type_node,
                     and_tmp_name,
                     and_tmp_name,
                     build2 (BIT_AND_EXPR, int_ptrsize_type,
                     build2 (BIT_AND_EXPR, int_ptrsize_type,
                             or_tmp_name, mask_cst));
                             or_tmp_name, mask_cst));
  SSA_NAME_DEF_STMT (and_tmp_name) = and_stmt;
  SSA_NAME_DEF_STMT (and_tmp_name) = and_stmt;
  append_to_statement_list_force (and_stmt, cond_expr_stmt_list);
  append_to_statement_list_force (and_stmt, cond_expr_stmt_list);
 
 
  /* Make and_tmp the left operand of the conditional test against zero.
  /* Make and_tmp the left operand of the conditional test against zero.
     if and_tmp has a nonzero bit then some address is unaligned.  */
     if and_tmp has a nonzero bit then some address is unaligned.  */
  ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
  ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
  return build2 (EQ_EXPR, boolean_type_node,
  return build2 (EQ_EXPR, boolean_type_node,
                 and_tmp_name, ptrsize_zero);
                 and_tmp_name, ptrsize_zero);
}
}
 
 
 
 
/* Function vect_transform_loop.
/* Function vect_transform_loop.
 
 
   The analysis phase has determined that the loop is vectorizable.
   The analysis phase has determined that the loop is vectorizable.
   Vectorize the loop - created vectorized stmts to replace the scalar
   Vectorize the loop - created vectorized stmts to replace the scalar
   stmts in the loop, and update the loop exit condition.  */
   stmts in the loop, and update the loop exit condition.  */
 
 
void
void
vect_transform_loop (loop_vec_info loop_vinfo,
vect_transform_loop (loop_vec_info loop_vinfo,
                     struct loops *loops ATTRIBUTE_UNUSED)
                     struct loops *loops ATTRIBUTE_UNUSED)
{
{
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
  basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
  int nbbs = loop->num_nodes;
  int nbbs = loop->num_nodes;
  block_stmt_iterator si;
  block_stmt_iterator si;
  int i;
  int i;
  tree ratio = NULL;
  tree ratio = NULL;
  int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
  int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
  bitmap_iterator bi;
  bitmap_iterator bi;
  unsigned int j;
  unsigned int j;
 
 
  if (vect_print_dump_info (REPORT_DETAILS))
  if (vect_print_dump_info (REPORT_DETAILS))
    fprintf (vect_dump, "=== vec_transform_loop ===");
    fprintf (vect_dump, "=== vec_transform_loop ===");
 
 
  /* If the loop has data references that may or may not be aligned then
  /* If the loop has data references that may or may not be aligned then
     two versions of the loop need to be generated, one which is vectorized
     two versions of the loop need to be generated, one which is vectorized
     and one which isn't.  A test is then generated to control which of the
     and one which isn't.  A test is then generated to control which of the
     loops is executed.  The test checks for the alignment of all of the
     loops is executed.  The test checks for the alignment of all of the
     data references that may or may not be aligned. */
     data references that may or may not be aligned. */
 
 
  if (VEC_length (tree, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo)))
  if (VEC_length (tree, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo)))
    {
    {
      struct loop *nloop;
      struct loop *nloop;
      tree cond_expr;
      tree cond_expr;
      tree cond_expr_stmt_list = NULL_TREE;
      tree cond_expr_stmt_list = NULL_TREE;
      basic_block condition_bb;
      basic_block condition_bb;
      block_stmt_iterator cond_exp_bsi;
      block_stmt_iterator cond_exp_bsi;
      basic_block merge_bb;
      basic_block merge_bb;
      basic_block new_exit_bb;
      basic_block new_exit_bb;
      edge new_exit_e, e;
      edge new_exit_e, e;
      tree orig_phi, new_phi, arg;
      tree orig_phi, new_phi, arg;
 
 
      cond_expr = vect_create_cond_for_align_checks (loop_vinfo,
      cond_expr = vect_create_cond_for_align_checks (loop_vinfo,
                                                     &cond_expr_stmt_list);
                                                     &cond_expr_stmt_list);
      initialize_original_copy_tables ();
      initialize_original_copy_tables ();
      nloop = loop_version (loops, loop, cond_expr, &condition_bb, true);
      nloop = loop_version (loops, loop, cond_expr, &condition_bb, true);
      free_original_copy_tables();
      free_original_copy_tables();
 
 
      /** Loop versioning violates an assumption we try to maintain during
      /** Loop versioning violates an assumption we try to maintain during
         vectorization - that the loop exit block has a single predecessor.
         vectorization - that the loop exit block has a single predecessor.
         After versioning, the exit block of both loop versions is the same
         After versioning, the exit block of both loop versions is the same
         basic block (i.e. it has two predecessors). Just in order to simplify
         basic block (i.e. it has two predecessors). Just in order to simplify
         following transformations in the vectorizer, we fix this situation
         following transformations in the vectorizer, we fix this situation
         here by adding a new (empty) block on the exit-edge of the loop,
         here by adding a new (empty) block on the exit-edge of the loop,
         with the proper loop-exit phis to maintain loop-closed-form.  **/
         with the proper loop-exit phis to maintain loop-closed-form.  **/
 
 
      merge_bb = loop->single_exit->dest;
      merge_bb = loop->single_exit->dest;
      gcc_assert (EDGE_COUNT (merge_bb->preds) == 2);
      gcc_assert (EDGE_COUNT (merge_bb->preds) == 2);
      new_exit_bb = split_edge (loop->single_exit);
      new_exit_bb = split_edge (loop->single_exit);
      add_bb_to_loop (new_exit_bb, loop->outer);
      add_bb_to_loop (new_exit_bb, loop->outer);
      new_exit_e = loop->single_exit;
      new_exit_e = loop->single_exit;
      e = EDGE_SUCC (new_exit_bb, 0);
      e = EDGE_SUCC (new_exit_bb, 0);
 
 
      for (orig_phi = phi_nodes (merge_bb); orig_phi;
      for (orig_phi = phi_nodes (merge_bb); orig_phi;
           orig_phi = PHI_CHAIN (orig_phi))
           orig_phi = PHI_CHAIN (orig_phi))
        {
        {
          new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
          new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
                                     new_exit_bb);
                                     new_exit_bb);
          arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
          arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
          add_phi_arg (new_phi, arg, new_exit_e);
          add_phi_arg (new_phi, arg, new_exit_e);
          SET_PHI_ARG_DEF (orig_phi, e->dest_idx, PHI_RESULT (new_phi));
          SET_PHI_ARG_DEF (orig_phi, e->dest_idx, PHI_RESULT (new_phi));
        }
        }
 
 
      /** end loop-exit-fixes after versioning  **/
      /** end loop-exit-fixes after versioning  **/
 
 
      update_ssa (TODO_update_ssa);
      update_ssa (TODO_update_ssa);
      cond_exp_bsi = bsi_last (condition_bb);
      cond_exp_bsi = bsi_last (condition_bb);
      bsi_insert_before (&cond_exp_bsi, cond_expr_stmt_list, BSI_SAME_STMT);
      bsi_insert_before (&cond_exp_bsi, cond_expr_stmt_list, BSI_SAME_STMT);
    }
    }
 
 
  /* CHECKME: we wouldn't need this if we called update_ssa once
  /* CHECKME: we wouldn't need this if we called update_ssa once
     for all loops.  */
     for all loops.  */
  bitmap_zero (vect_vnames_to_rename);
  bitmap_zero (vect_vnames_to_rename);
 
 
  /* Peel the loop if there are data refs with unknown alignment.
  /* Peel the loop if there are data refs with unknown alignment.
     Only one data ref with unknown store is allowed.  */
     Only one data ref with unknown store is allowed.  */
 
 
  if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo))
  if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo))
    vect_do_peeling_for_alignment (loop_vinfo, loops);
    vect_do_peeling_for_alignment (loop_vinfo, loops);
 
 
  /* If the loop has a symbolic number of iterations 'n' (i.e. it's not a
  /* If the loop has a symbolic number of iterations 'n' (i.e. it's not a
     compile time constant), or it is a constant that doesn't divide by the
     compile time constant), or it is a constant that doesn't divide by the
     vectorization factor, then an epilog loop needs to be created.
     vectorization factor, then an epilog loop needs to be created.
     We therefore duplicate the loop: the original loop will be vectorized,
     We therefore duplicate the loop: the original loop will be vectorized,
     and will compute the first (n/VF) iterations. The second copy of the loop
     and will compute the first (n/VF) iterations. The second copy of the loop
     will remain scalar and will compute the remaining (n%VF) iterations.
     will remain scalar and will compute the remaining (n%VF) iterations.
     (VF is the vectorization factor).  */
     (VF is the vectorization factor).  */
 
 
  if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
  if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
      || (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
      || (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
          && LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0))
          && LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0))
    vect_do_peeling_for_loop_bound (loop_vinfo, &ratio, loops);
    vect_do_peeling_for_loop_bound (loop_vinfo, &ratio, loops);
  else
  else
    ratio = build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
    ratio = build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
                LOOP_VINFO_INT_NITERS (loop_vinfo) / vectorization_factor);
                LOOP_VINFO_INT_NITERS (loop_vinfo) / vectorization_factor);
 
 
  /* 1) Make sure the loop header has exactly two entries
  /* 1) Make sure the loop header has exactly two entries
     2) Make sure we have a preheader basic block.  */
     2) Make sure we have a preheader basic block.  */
 
 
  gcc_assert (EDGE_COUNT (loop->header->preds) == 2);
  gcc_assert (EDGE_COUNT (loop->header->preds) == 2);
 
 
  loop_split_edge_with (loop_preheader_edge (loop), NULL);
  loop_split_edge_with (loop_preheader_edge (loop), NULL);
 
 
 
 
  /* FORNOW: the vectorizer supports only loops which body consist
  /* FORNOW: the vectorizer supports only loops which body consist
     of one basic block (header + empty latch). When the vectorizer will
     of one basic block (header + empty latch). When the vectorizer will
     support more involved loop forms, the order by which the BBs are
     support more involved loop forms, the order by which the BBs are
     traversed need to be reconsidered.  */
     traversed need to be reconsidered.  */
 
 
  for (i = 0; i < nbbs; i++)
  for (i = 0; i < nbbs; i++)
    {
    {
      basic_block bb = bbs[i];
      basic_block bb = bbs[i];
 
 
      for (si = bsi_start (bb); !bsi_end_p (si);)
      for (si = bsi_start (bb); !bsi_end_p (si);)
        {
        {
          tree stmt = bsi_stmt (si);
          tree stmt = bsi_stmt (si);
          stmt_vec_info stmt_info;
          stmt_vec_info stmt_info;
          bool is_store;
          bool is_store;
 
 
          if (vect_print_dump_info (REPORT_DETAILS))
          if (vect_print_dump_info (REPORT_DETAILS))
            {
            {
              fprintf (vect_dump, "------>vectorizing statement: ");
              fprintf (vect_dump, "------>vectorizing statement: ");
              print_generic_expr (vect_dump, stmt, TDF_SLIM);
              print_generic_expr (vect_dump, stmt, TDF_SLIM);
            }
            }
          stmt_info = vinfo_for_stmt (stmt);
          stmt_info = vinfo_for_stmt (stmt);
          gcc_assert (stmt_info);
          gcc_assert (stmt_info);
          if (!STMT_VINFO_RELEVANT_P (stmt_info)
          if (!STMT_VINFO_RELEVANT_P (stmt_info)
              && !STMT_VINFO_LIVE_P (stmt_info))
              && !STMT_VINFO_LIVE_P (stmt_info))
            {
            {
              bsi_next (&si);
              bsi_next (&si);
              continue;
              continue;
            }
            }
          /* FORNOW: Verify that all stmts operate on the same number of
          /* FORNOW: Verify that all stmts operate on the same number of
                     units and no inner unrolling is necessary.  */
                     units and no inner unrolling is necessary.  */
          gcc_assert
          gcc_assert
                (TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info))
                (TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info))
                 == (unsigned HOST_WIDE_INT) vectorization_factor);
                 == (unsigned HOST_WIDE_INT) vectorization_factor);
 
 
          /* -------- vectorize statement ------------ */
          /* -------- vectorize statement ------------ */
          if (vect_print_dump_info (REPORT_DETAILS))
          if (vect_print_dump_info (REPORT_DETAILS))
            fprintf (vect_dump, "transform statement.");
            fprintf (vect_dump, "transform statement.");
 
 
          is_store = vect_transform_stmt (stmt, &si);
          is_store = vect_transform_stmt (stmt, &si);
          if (is_store)
          if (is_store)
            {
            {
              /* Free the attached stmt_vec_info and remove the stmt.  */
              /* Free the attached stmt_vec_info and remove the stmt.  */
              stmt_ann_t ann = stmt_ann (stmt);
              stmt_ann_t ann = stmt_ann (stmt);
              free (stmt_info);
              free (stmt_info);
              set_stmt_info (ann, NULL);
              set_stmt_info (ann, NULL);
              bsi_remove (&si, true);
              bsi_remove (&si, true);
              continue;
              continue;
            }
            }
 
 
          bsi_next (&si);
          bsi_next (&si);
        }                       /* stmts in BB */
        }                       /* stmts in BB */
    }                           /* BBs in loop */
    }                           /* BBs in loop */
 
 
  slpeel_make_loop_iterate_ntimes (loop, ratio);
  slpeel_make_loop_iterate_ntimes (loop, ratio);
 
 
  EXECUTE_IF_SET_IN_BITMAP (vect_vnames_to_rename, 0, j, bi)
  EXECUTE_IF_SET_IN_BITMAP (vect_vnames_to_rename, 0, j, bi)
    mark_sym_for_renaming (SSA_NAME_VAR (ssa_name (j)));
    mark_sym_for_renaming (SSA_NAME_VAR (ssa_name (j)));
 
 
  /* The memory tags and pointers in vectorized statements need to
  /* The memory tags and pointers in vectorized statements need to
     have their SSA forms updated.  FIXME, why can't this be delayed
     have their SSA forms updated.  FIXME, why can't this be delayed
     until all the loops have been transformed?  */
     until all the loops have been transformed?  */
  update_ssa (TODO_update_ssa);
  update_ssa (TODO_update_ssa);
 
 
  if (vect_print_dump_info (REPORT_VECTORIZED_LOOPS))
  if (vect_print_dump_info (REPORT_VECTORIZED_LOOPS))
    fprintf (vect_dump, "LOOP VECTORIZED.");
    fprintf (vect_dump, "LOOP VECTORIZED.");
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.