OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gdb-6.8/] [bfd/] [coff-h8300.c] - Diff between revs 827 and 840

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 827 Rev 840
/* BFD back-end for Renesas H8/300 COFF binaries.
/* BFD back-end for Renesas H8/300 COFF binaries.
   Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
   Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
   2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
   2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
   Written by Steve Chamberlain, <sac@cygnus.com>.
   Written by Steve Chamberlain, <sac@cygnus.com>.
 
 
   This file is part of BFD, the Binary File Descriptor library.
   This file is part of BFD, the Binary File Descriptor library.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   along with this program; if not, write to the Free Software
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
   MA 02110-1301, USA.  */
   MA 02110-1301, USA.  */
 
 
#include "sysdep.h"
#include "sysdep.h"
#include "bfd.h"
#include "bfd.h"
#include "libbfd.h"
#include "libbfd.h"
#include "bfdlink.h"
#include "bfdlink.h"
#include "genlink.h"
#include "genlink.h"
#include "coff/h8300.h"
#include "coff/h8300.h"
#include "coff/internal.h"
#include "coff/internal.h"
#include "libcoff.h"
#include "libcoff.h"
#include "libiberty.h"
#include "libiberty.h"
 
 
#define COFF_DEFAULT_SECTION_ALIGNMENT_POWER (1)
#define COFF_DEFAULT_SECTION_ALIGNMENT_POWER (1)
 
 
/* We derive a hash table from the basic BFD hash table to
/* We derive a hash table from the basic BFD hash table to
   hold entries in the function vector.  Aside from the
   hold entries in the function vector.  Aside from the
   info stored by the basic hash table, we need the offset
   info stored by the basic hash table, we need the offset
   of a particular entry within the hash table as well as
   of a particular entry within the hash table as well as
   the offset where we'll add the next entry.  */
   the offset where we'll add the next entry.  */
 
 
struct funcvec_hash_entry
struct funcvec_hash_entry
  {
  {
    /* The basic hash table entry.  */
    /* The basic hash table entry.  */
    struct bfd_hash_entry root;
    struct bfd_hash_entry root;
 
 
    /* The offset within the vectors section where
    /* The offset within the vectors section where
       this entry lives.  */
       this entry lives.  */
    bfd_vma offset;
    bfd_vma offset;
  };
  };
 
 
struct funcvec_hash_table
struct funcvec_hash_table
  {
  {
    /* The basic hash table.  */
    /* The basic hash table.  */
    struct bfd_hash_table root;
    struct bfd_hash_table root;
 
 
    bfd *abfd;
    bfd *abfd;
 
 
    /* Offset at which we'll add the next entry.  */
    /* Offset at which we'll add the next entry.  */
    unsigned int offset;
    unsigned int offset;
  };
  };
 
 
static struct bfd_hash_entry *
static struct bfd_hash_entry *
funcvec_hash_newfunc
funcvec_hash_newfunc
  (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
  (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
 
 
static bfd_reloc_status_type special
static bfd_reloc_status_type special
  (bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **);
  (bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **);
static int select_reloc
static int select_reloc
  (reloc_howto_type *);
  (reloc_howto_type *);
static void rtype2howto
static void rtype2howto
  (arelent *, struct internal_reloc *);
  (arelent *, struct internal_reloc *);
static void reloc_processing
static void reloc_processing
  (arelent *, struct internal_reloc *, asymbol **, bfd *, asection *);
  (arelent *, struct internal_reloc *, asymbol **, bfd *, asection *);
static bfd_boolean h8300_symbol_address_p
static bfd_boolean h8300_symbol_address_p
  (bfd *, asection *, bfd_vma);
  (bfd *, asection *, bfd_vma);
static int h8300_reloc16_estimate
static int h8300_reloc16_estimate
  (bfd *, asection *, arelent *, unsigned int,
  (bfd *, asection *, arelent *, unsigned int,
   struct bfd_link_info *);
   struct bfd_link_info *);
static void h8300_reloc16_extra_cases
static void h8300_reloc16_extra_cases
  (bfd *, struct bfd_link_info *, struct bfd_link_order *, arelent *,
  (bfd *, struct bfd_link_info *, struct bfd_link_order *, arelent *,
   bfd_byte *, unsigned int *, unsigned int *);
   bfd_byte *, unsigned int *, unsigned int *);
static bfd_boolean h8300_bfd_link_add_symbols
static bfd_boolean h8300_bfd_link_add_symbols
  (bfd *, struct bfd_link_info *);
  (bfd *, struct bfd_link_info *);
 
 
/* To lookup a value in the function vector hash table.  */
/* To lookup a value in the function vector hash table.  */
#define funcvec_hash_lookup(table, string, create, copy) \
#define funcvec_hash_lookup(table, string, create, copy) \
  ((struct funcvec_hash_entry *) \
  ((struct funcvec_hash_entry *) \
   bfd_hash_lookup (&(table)->root, (string), (create), (copy)))
   bfd_hash_lookup (&(table)->root, (string), (create), (copy)))
 
 
/* The derived h8300 COFF linker table.  Note it's derived from
/* The derived h8300 COFF linker table.  Note it's derived from
   the generic linker hash table, not the COFF backend linker hash
   the generic linker hash table, not the COFF backend linker hash
   table!  We use this to attach additional data structures we
   table!  We use this to attach additional data structures we
   need while linking on the h8300.  */
   need while linking on the h8300.  */
struct h8300_coff_link_hash_table {
struct h8300_coff_link_hash_table {
  /* The main hash table.  */
  /* The main hash table.  */
  struct generic_link_hash_table root;
  struct generic_link_hash_table root;
 
 
  /* Section for the vectors table.  This gets attached to a
  /* Section for the vectors table.  This gets attached to a
     random input bfd, we keep it here for easy access.  */
     random input bfd, we keep it here for easy access.  */
  asection *vectors_sec;
  asection *vectors_sec;
 
 
  /* Hash table of the functions we need to enter into the function
  /* Hash table of the functions we need to enter into the function
     vector.  */
     vector.  */
  struct funcvec_hash_table *funcvec_hash_table;
  struct funcvec_hash_table *funcvec_hash_table;
};
};
 
 
static struct bfd_link_hash_table *h8300_coff_link_hash_table_create (bfd *);
static struct bfd_link_hash_table *h8300_coff_link_hash_table_create (bfd *);
 
 
/* Get the H8/300 COFF linker hash table from a link_info structure.  */
/* Get the H8/300 COFF linker hash table from a link_info structure.  */
 
 
#define h8300_coff_hash_table(p) \
#define h8300_coff_hash_table(p) \
  ((struct h8300_coff_link_hash_table *) ((coff_hash_table (p))))
  ((struct h8300_coff_link_hash_table *) ((coff_hash_table (p))))
 
 
/* Initialize fields within a funcvec hash table entry.  Called whenever
/* Initialize fields within a funcvec hash table entry.  Called whenever
   a new entry is added to the funcvec hash table.  */
   a new entry is added to the funcvec hash table.  */
 
 
static struct bfd_hash_entry *
static struct bfd_hash_entry *
funcvec_hash_newfunc (struct bfd_hash_entry *entry,
funcvec_hash_newfunc (struct bfd_hash_entry *entry,
                      struct bfd_hash_table *gen_table,
                      struct bfd_hash_table *gen_table,
                      const char *string)
                      const char *string)
{
{
  struct funcvec_hash_entry *ret;
  struct funcvec_hash_entry *ret;
  struct funcvec_hash_table *table;
  struct funcvec_hash_table *table;
 
 
  ret = (struct funcvec_hash_entry *) entry;
  ret = (struct funcvec_hash_entry *) entry;
  table = (struct funcvec_hash_table *) gen_table;
  table = (struct funcvec_hash_table *) gen_table;
 
 
  /* Allocate the structure if it has not already been allocated by a
  /* Allocate the structure if it has not already been allocated by a
     subclass.  */
     subclass.  */
  if (ret == NULL)
  if (ret == NULL)
    ret = ((struct funcvec_hash_entry *)
    ret = ((struct funcvec_hash_entry *)
           bfd_hash_allocate (gen_table,
           bfd_hash_allocate (gen_table,
                              sizeof (struct funcvec_hash_entry)));
                              sizeof (struct funcvec_hash_entry)));
  if (ret == NULL)
  if (ret == NULL)
    return NULL;
    return NULL;
 
 
  /* Call the allocation method of the superclass.  */
  /* Call the allocation method of the superclass.  */
  ret = ((struct funcvec_hash_entry *)
  ret = ((struct funcvec_hash_entry *)
         bfd_hash_newfunc ((struct bfd_hash_entry *) ret, gen_table, string));
         bfd_hash_newfunc ((struct bfd_hash_entry *) ret, gen_table, string));
 
 
  if (ret == NULL)
  if (ret == NULL)
    return NULL;
    return NULL;
 
 
  /* Note where this entry will reside in the function vector table.  */
  /* Note where this entry will reside in the function vector table.  */
  ret->offset = table->offset;
  ret->offset = table->offset;
 
 
  /* Bump the offset at which we store entries in the function
  /* Bump the offset at which we store entries in the function
     vector.  We'd like to bump up the size of the vectors section,
     vector.  We'd like to bump up the size of the vectors section,
     but it's not easily available here.  */
     but it's not easily available here.  */
 switch (bfd_get_mach (table->abfd))
 switch (bfd_get_mach (table->abfd))
   {
   {
   case bfd_mach_h8300:
   case bfd_mach_h8300:
   case bfd_mach_h8300hn:
   case bfd_mach_h8300hn:
   case bfd_mach_h8300sn:
   case bfd_mach_h8300sn:
     table->offset += 2;
     table->offset += 2;
     break;
     break;
   case bfd_mach_h8300h:
   case bfd_mach_h8300h:
   case bfd_mach_h8300s:
   case bfd_mach_h8300s:
     table->offset += 4;
     table->offset += 4;
     break;
     break;
   default:
   default:
     return NULL;
     return NULL;
   }
   }
 
 
  /* Everything went OK.  */
  /* Everything went OK.  */
  return (struct bfd_hash_entry *) ret;
  return (struct bfd_hash_entry *) ret;
}
}
 
 
/* Initialize the function vector hash table.  */
/* Initialize the function vector hash table.  */
 
 
static bfd_boolean
static bfd_boolean
funcvec_hash_table_init (struct funcvec_hash_table *table,
funcvec_hash_table_init (struct funcvec_hash_table *table,
                         bfd *abfd,
                         bfd *abfd,
                         struct bfd_hash_entry *(*newfunc)
                         struct bfd_hash_entry *(*newfunc)
                           (struct bfd_hash_entry *,
                           (struct bfd_hash_entry *,
                            struct bfd_hash_table *,
                            struct bfd_hash_table *,
                            const char *),
                            const char *),
                         unsigned int entsize)
                         unsigned int entsize)
{
{
  /* Initialize our local fields, then call the generic initialization
  /* Initialize our local fields, then call the generic initialization
     routine.  */
     routine.  */
  table->offset = 0;
  table->offset = 0;
  table->abfd = abfd;
  table->abfd = abfd;
  return (bfd_hash_table_init (&table->root, newfunc, entsize));
  return (bfd_hash_table_init (&table->root, newfunc, entsize));
}
}
 
 
/* Create the derived linker hash table.  We use a derived hash table
/* Create the derived linker hash table.  We use a derived hash table
   basically to hold "static" information during an H8/300 coff link
   basically to hold "static" information during an H8/300 coff link
   without using static variables.  */
   without using static variables.  */
 
 
static struct bfd_link_hash_table *
static struct bfd_link_hash_table *
h8300_coff_link_hash_table_create (bfd *abfd)
h8300_coff_link_hash_table_create (bfd *abfd)
{
{
  struct h8300_coff_link_hash_table *ret;
  struct h8300_coff_link_hash_table *ret;
  bfd_size_type amt = sizeof (struct h8300_coff_link_hash_table);
  bfd_size_type amt = sizeof (struct h8300_coff_link_hash_table);
 
 
  ret = (struct h8300_coff_link_hash_table *) bfd_malloc (amt);
  ret = (struct h8300_coff_link_hash_table *) bfd_malloc (amt);
  if (ret == NULL)
  if (ret == NULL)
    return NULL;
    return NULL;
  if (!_bfd_link_hash_table_init (&ret->root.root, abfd,
  if (!_bfd_link_hash_table_init (&ret->root.root, abfd,
                                  _bfd_generic_link_hash_newfunc,
                                  _bfd_generic_link_hash_newfunc,
                                  sizeof (struct generic_link_hash_entry)))
                                  sizeof (struct generic_link_hash_entry)))
    {
    {
      free (ret);
      free (ret);
      return NULL;
      return NULL;
    }
    }
 
 
  /* Initialize our data.  */
  /* Initialize our data.  */
  ret->vectors_sec = NULL;
  ret->vectors_sec = NULL;
  ret->funcvec_hash_table = NULL;
  ret->funcvec_hash_table = NULL;
 
 
  /* OK.  Everything's initialized, return the base pointer.  */
  /* OK.  Everything's initialized, return the base pointer.  */
  return &ret->root.root;
  return &ret->root.root;
}
}
 
 
/* Special handling for H8/300 relocs.
/* Special handling for H8/300 relocs.
   We only come here for pcrel stuff and return normally if not an -r link.
   We only come here for pcrel stuff and return normally if not an -r link.
   When doing -r, we can't do any arithmetic for the pcrel stuff, because
   When doing -r, we can't do any arithmetic for the pcrel stuff, because
   the code in reloc.c assumes that we can manipulate the targets of
   the code in reloc.c assumes that we can manipulate the targets of
   the pcrel branches.  This isn't so, since the H8/300 can do relaxing,
   the pcrel branches.  This isn't so, since the H8/300 can do relaxing,
   which means that the gap after the instruction may not be enough to
   which means that the gap after the instruction may not be enough to
   contain the offset required for the branch, so we have to use only
   contain the offset required for the branch, so we have to use only
   the addend until the final link.  */
   the addend until the final link.  */
 
 
static bfd_reloc_status_type
static bfd_reloc_status_type
special (bfd *abfd ATTRIBUTE_UNUSED,
special (bfd *abfd ATTRIBUTE_UNUSED,
         arelent *reloc_entry ATTRIBUTE_UNUSED,
         arelent *reloc_entry ATTRIBUTE_UNUSED,
         asymbol *symbol ATTRIBUTE_UNUSED,
         asymbol *symbol ATTRIBUTE_UNUSED,
         PTR data ATTRIBUTE_UNUSED,
         PTR data ATTRIBUTE_UNUSED,
         asection *input_section ATTRIBUTE_UNUSED,
         asection *input_section ATTRIBUTE_UNUSED,
         bfd *output_bfd,
         bfd *output_bfd,
         char **error_message ATTRIBUTE_UNUSED)
         char **error_message ATTRIBUTE_UNUSED)
{
{
  if (output_bfd == (bfd *) NULL)
  if (output_bfd == (bfd *) NULL)
    return bfd_reloc_continue;
    return bfd_reloc_continue;
 
 
  /* Adjust the reloc address to that in the output section.  */
  /* Adjust the reloc address to that in the output section.  */
  reloc_entry->address += input_section->output_offset;
  reloc_entry->address += input_section->output_offset;
  return bfd_reloc_ok;
  return bfd_reloc_ok;
}
}
 
 
static reloc_howto_type howto_table[] = {
static reloc_howto_type howto_table[] = {
  HOWTO (R_RELBYTE, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "8", FALSE, 0x000000ff, 0x000000ff, FALSE),
  HOWTO (R_RELBYTE, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "8", FALSE, 0x000000ff, 0x000000ff, FALSE),
  HOWTO (R_RELWORD, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "16", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
  HOWTO (R_RELWORD, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "16", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
  HOWTO (R_RELLONG, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, special, "32", FALSE, 0xffffffff, 0xffffffff, FALSE),
  HOWTO (R_RELLONG, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, special, "32", FALSE, 0xffffffff, 0xffffffff, FALSE),
  HOWTO (R_PCRBYTE, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "DISP8", FALSE, 0x000000ff, 0x000000ff, TRUE),
  HOWTO (R_PCRBYTE, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "DISP8", FALSE, 0x000000ff, 0x000000ff, TRUE),
  HOWTO (R_PCRWORD, 0, 1, 16, TRUE, 0, complain_overflow_signed, special, "DISP16", FALSE, 0x0000ffff, 0x0000ffff, TRUE),
  HOWTO (R_PCRWORD, 0, 1, 16, TRUE, 0, complain_overflow_signed, special, "DISP16", FALSE, 0x0000ffff, 0x0000ffff, TRUE),
  HOWTO (R_PCRLONG, 0, 2, 32, TRUE, 0, complain_overflow_signed, special, "DISP32", FALSE, 0xffffffff, 0xffffffff, TRUE),
  HOWTO (R_PCRLONG, 0, 2, 32, TRUE, 0, complain_overflow_signed, special, "DISP32", FALSE, 0xffffffff, 0xffffffff, TRUE),
  HOWTO (R_MOV16B1, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "relaxable mov.b:16", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
  HOWTO (R_MOV16B1, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "relaxable mov.b:16", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
  HOWTO (R_MOV16B2, 0, 1, 8, FALSE, 0, complain_overflow_bitfield, special, "relaxed mov.b:16", FALSE, 0x000000ff, 0x000000ff, FALSE),
  HOWTO (R_MOV16B2, 0, 1, 8, FALSE, 0, complain_overflow_bitfield, special, "relaxed mov.b:16", FALSE, 0x000000ff, 0x000000ff, FALSE),
  HOWTO (R_JMP1, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "16/pcrel", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
  HOWTO (R_JMP1, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "16/pcrel", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
  HOWTO (R_JMP2, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "pcrecl/16", FALSE, 0x000000ff, 0x000000ff, FALSE),
  HOWTO (R_JMP2, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "pcrecl/16", FALSE, 0x000000ff, 0x000000ff, FALSE),
  HOWTO (R_JMPL1, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, special, "24/pcrell", FALSE, 0x00ffffff, 0x00ffffff, FALSE),
  HOWTO (R_JMPL1, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, special, "24/pcrell", FALSE, 0x00ffffff, 0x00ffffff, FALSE),
  HOWTO (R_JMPL2, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "pc8/24", FALSE, 0x000000ff, 0x000000ff, FALSE),
  HOWTO (R_JMPL2, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "pc8/24", FALSE, 0x000000ff, 0x000000ff, FALSE),
  HOWTO (R_MOV24B1, 0, 1, 32, FALSE, 0, complain_overflow_bitfield, special, "relaxable mov.b:24", FALSE, 0xffffffff, 0xffffffff, FALSE),
  HOWTO (R_MOV24B1, 0, 1, 32, FALSE, 0, complain_overflow_bitfield, special, "relaxable mov.b:24", FALSE, 0xffffffff, 0xffffffff, FALSE),
  HOWTO (R_MOV24B2, 0, 1, 8, FALSE, 0, complain_overflow_bitfield, special, "relaxed mov.b:24", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
  HOWTO (R_MOV24B2, 0, 1, 8, FALSE, 0, complain_overflow_bitfield, special, "relaxed mov.b:24", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
 
 
  /* An indirect reference to a function.  This causes the function's address
  /* An indirect reference to a function.  This causes the function's address
     to be added to the function vector in lo-mem and puts the address of
     to be added to the function vector in lo-mem and puts the address of
     the function vector's entry in the jsr instruction.  */
     the function vector's entry in the jsr instruction.  */
  HOWTO (R_MEM_INDIRECT, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "8/indirect", FALSE, 0x000000ff, 0x000000ff, FALSE),
  HOWTO (R_MEM_INDIRECT, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "8/indirect", FALSE, 0x000000ff, 0x000000ff, FALSE),
 
 
  /* Internal reloc for relaxing.  This is created when a 16-bit pc-relative
  /* Internal reloc for relaxing.  This is created when a 16-bit pc-relative
     branch is turned into an 8-bit pc-relative branch.  */
     branch is turned into an 8-bit pc-relative branch.  */
  HOWTO (R_PCRWORD_B, 0, 0, 8, TRUE, 0, complain_overflow_bitfield, special, "relaxed bCC:16", FALSE, 0x000000ff, 0x000000ff, FALSE),
  HOWTO (R_PCRWORD_B, 0, 0, 8, TRUE, 0, complain_overflow_bitfield, special, "relaxed bCC:16", FALSE, 0x000000ff, 0x000000ff, FALSE),
 
 
  HOWTO (R_MOVL1, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,special, "32/24 relaxable move", FALSE, 0xffffffff, 0xffffffff, FALSE),
  HOWTO (R_MOVL1, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,special, "32/24 relaxable move", FALSE, 0xffffffff, 0xffffffff, FALSE),
 
 
  HOWTO (R_MOVL2, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "32/24 relaxed move", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
  HOWTO (R_MOVL2, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "32/24 relaxed move", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
 
 
  HOWTO (R_BCC_INV, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "DISP8 inverted", FALSE, 0x000000ff, 0x000000ff, TRUE),
  HOWTO (R_BCC_INV, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "DISP8 inverted", FALSE, 0x000000ff, 0x000000ff, TRUE),
 
 
  HOWTO (R_JMP_DEL, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "Deleted jump", FALSE, 0x000000ff, 0x000000ff, TRUE),
  HOWTO (R_JMP_DEL, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "Deleted jump", FALSE, 0x000000ff, 0x000000ff, TRUE),
};
};
 
 
/* Turn a howto into a reloc number.  */
/* Turn a howto into a reloc number.  */
 
 
#define SELECT_RELOC(x,howto) \
#define SELECT_RELOC(x,howto) \
  { x.r_type = select_reloc (howto); }
  { x.r_type = select_reloc (howto); }
 
 
#define BADMAG(x) (H8300BADMAG (x) && H8300HBADMAG (x) && H8300SBADMAG (x) \
#define BADMAG(x) (H8300BADMAG (x) && H8300HBADMAG (x) && H8300SBADMAG (x) \
                                   && H8300HNBADMAG(x) && H8300SNBADMAG(x))
                                   && H8300HNBADMAG(x) && H8300SNBADMAG(x))
#define H8300 1                 /* Customize coffcode.h  */
#define H8300 1                 /* Customize coffcode.h  */
#define __A_MAGIC_SET__
#define __A_MAGIC_SET__
 
 
/* Code to swap in the reloc.  */
/* Code to swap in the reloc.  */
#define SWAP_IN_RELOC_OFFSET    H_GET_32
#define SWAP_IN_RELOC_OFFSET    H_GET_32
#define SWAP_OUT_RELOC_OFFSET   H_PUT_32
#define SWAP_OUT_RELOC_OFFSET   H_PUT_32
#define SWAP_OUT_RELOC_EXTRA(abfd, src, dst) \
#define SWAP_OUT_RELOC_EXTRA(abfd, src, dst) \
  dst->r_stuff[0] = 'S'; \
  dst->r_stuff[0] = 'S'; \
  dst->r_stuff[1] = 'C';
  dst->r_stuff[1] = 'C';
 
 
static int
static int
select_reloc (reloc_howto_type *howto)
select_reloc (reloc_howto_type *howto)
{
{
  return howto->type;
  return howto->type;
}
}
 
 
/* Code to turn a r_type into a howto ptr, uses the above howto table.  */
/* Code to turn a r_type into a howto ptr, uses the above howto table.  */
 
 
static void
static void
rtype2howto (arelent *internal, struct internal_reloc *dst)
rtype2howto (arelent *internal, struct internal_reloc *dst)
{
{
  switch (dst->r_type)
  switch (dst->r_type)
    {
    {
    case R_RELBYTE:
    case R_RELBYTE:
      internal->howto = howto_table + 0;
      internal->howto = howto_table + 0;
      break;
      break;
    case R_RELWORD:
    case R_RELWORD:
      internal->howto = howto_table + 1;
      internal->howto = howto_table + 1;
      break;
      break;
    case R_RELLONG:
    case R_RELLONG:
      internal->howto = howto_table + 2;
      internal->howto = howto_table + 2;
      break;
      break;
    case R_PCRBYTE:
    case R_PCRBYTE:
      internal->howto = howto_table + 3;
      internal->howto = howto_table + 3;
      break;
      break;
    case R_PCRWORD:
    case R_PCRWORD:
      internal->howto = howto_table + 4;
      internal->howto = howto_table + 4;
      break;
      break;
    case R_PCRLONG:
    case R_PCRLONG:
      internal->howto = howto_table + 5;
      internal->howto = howto_table + 5;
      break;
      break;
    case R_MOV16B1:
    case R_MOV16B1:
      internal->howto = howto_table + 6;
      internal->howto = howto_table + 6;
      break;
      break;
    case R_MOV16B2:
    case R_MOV16B2:
      internal->howto = howto_table + 7;
      internal->howto = howto_table + 7;
      break;
      break;
    case R_JMP1:
    case R_JMP1:
      internal->howto = howto_table + 8;
      internal->howto = howto_table + 8;
      break;
      break;
    case R_JMP2:
    case R_JMP2:
      internal->howto = howto_table + 9;
      internal->howto = howto_table + 9;
      break;
      break;
    case R_JMPL1:
    case R_JMPL1:
      internal->howto = howto_table + 10;
      internal->howto = howto_table + 10;
      break;
      break;
    case R_JMPL2:
    case R_JMPL2:
      internal->howto = howto_table + 11;
      internal->howto = howto_table + 11;
      break;
      break;
    case R_MOV24B1:
    case R_MOV24B1:
      internal->howto = howto_table + 12;
      internal->howto = howto_table + 12;
      break;
      break;
    case R_MOV24B2:
    case R_MOV24B2:
      internal->howto = howto_table + 13;
      internal->howto = howto_table + 13;
      break;
      break;
    case R_MEM_INDIRECT:
    case R_MEM_INDIRECT:
      internal->howto = howto_table + 14;
      internal->howto = howto_table + 14;
      break;
      break;
    case R_PCRWORD_B:
    case R_PCRWORD_B:
      internal->howto = howto_table + 15;
      internal->howto = howto_table + 15;
      break;
      break;
    case R_MOVL1:
    case R_MOVL1:
      internal->howto = howto_table + 16;
      internal->howto = howto_table + 16;
      break;
      break;
    case R_MOVL2:
    case R_MOVL2:
      internal->howto = howto_table + 17;
      internal->howto = howto_table + 17;
      break;
      break;
    case R_BCC_INV:
    case R_BCC_INV:
      internal->howto = howto_table + 18;
      internal->howto = howto_table + 18;
      break;
      break;
    case R_JMP_DEL:
    case R_JMP_DEL:
      internal->howto = howto_table + 19;
      internal->howto = howto_table + 19;
      break;
      break;
    default:
    default:
      abort ();
      abort ();
      break;
      break;
    }
    }
}
}
 
 
#define RTYPE2HOWTO(internal, relocentry) rtype2howto (internal, relocentry)
#define RTYPE2HOWTO(internal, relocentry) rtype2howto (internal, relocentry)
 
 
/* Perform any necessary magic to the addend in a reloc entry.  */
/* Perform any necessary magic to the addend in a reloc entry.  */
 
 
#define CALC_ADDEND(abfd, symbol, ext_reloc, cache_ptr) \
#define CALC_ADDEND(abfd, symbol, ext_reloc, cache_ptr) \
 cache_ptr->addend = ext_reloc.r_offset;
 cache_ptr->addend = ext_reloc.r_offset;
 
 
#define RELOC_PROCESSING(relent,reloc,symbols,abfd,section) \
#define RELOC_PROCESSING(relent,reloc,symbols,abfd,section) \
 reloc_processing (relent, reloc, symbols, abfd, section)
 reloc_processing (relent, reloc, symbols, abfd, section)
 
 
static void
static void
reloc_processing (arelent *relent, struct internal_reloc *reloc,
reloc_processing (arelent *relent, struct internal_reloc *reloc,
                  asymbol **symbols, bfd *abfd, asection *section)
                  asymbol **symbols, bfd *abfd, asection *section)
{
{
  relent->address = reloc->r_vaddr;
  relent->address = reloc->r_vaddr;
  rtype2howto (relent, reloc);
  rtype2howto (relent, reloc);
 
 
  if (((int) reloc->r_symndx) > 0)
  if (((int) reloc->r_symndx) > 0)
    relent->sym_ptr_ptr = symbols + obj_convert (abfd)[reloc->r_symndx];
    relent->sym_ptr_ptr = symbols + obj_convert (abfd)[reloc->r_symndx];
  else
  else
    relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
    relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
 
 
  relent->addend = reloc->r_offset;
  relent->addend = reloc->r_offset;
  relent->address -= section->vma;
  relent->address -= section->vma;
}
}
 
 
static bfd_boolean
static bfd_boolean
h8300_symbol_address_p (bfd *abfd, asection *input_section, bfd_vma address)
h8300_symbol_address_p (bfd *abfd, asection *input_section, bfd_vma address)
{
{
  asymbol **s;
  asymbol **s;
 
 
  s = _bfd_generic_link_get_symbols (abfd);
  s = _bfd_generic_link_get_symbols (abfd);
  BFD_ASSERT (s != (asymbol **) NULL);
  BFD_ASSERT (s != (asymbol **) NULL);
 
 
  /* Search all the symbols for one in INPUT_SECTION with
  /* Search all the symbols for one in INPUT_SECTION with
     address ADDRESS.  */
     address ADDRESS.  */
  while (*s)
  while (*s)
    {
    {
      asymbol *p = *s;
      asymbol *p = *s;
 
 
      if (p->section == input_section
      if (p->section == input_section
          && (input_section->output_section->vma
          && (input_section->output_section->vma
              + input_section->output_offset
              + input_section->output_offset
              + p->value) == address)
              + p->value) == address)
        return TRUE;
        return TRUE;
      s++;
      s++;
    }
    }
  return FALSE;
  return FALSE;
}
}
 
 
/* If RELOC represents a relaxable instruction/reloc, change it into
/* If RELOC represents a relaxable instruction/reloc, change it into
   the relaxed reloc, notify the linker that symbol addresses
   the relaxed reloc, notify the linker that symbol addresses
   have changed (bfd_perform_slip) and return how much the current
   have changed (bfd_perform_slip) and return how much the current
   section has shrunk by.
   section has shrunk by.
 
 
   FIXME: Much of this code has knowledge of the ordering of entries
   FIXME: Much of this code has knowledge of the ordering of entries
   in the howto table.  This needs to be fixed.  */
   in the howto table.  This needs to be fixed.  */
 
 
static int
static int
h8300_reloc16_estimate (bfd *abfd, asection *input_section, arelent *reloc,
h8300_reloc16_estimate (bfd *abfd, asection *input_section, arelent *reloc,
                        unsigned int shrink, struct bfd_link_info *link_info)
                        unsigned int shrink, struct bfd_link_info *link_info)
{
{
  bfd_vma value;
  bfd_vma value;
  bfd_vma dot;
  bfd_vma dot;
  bfd_vma gap;
  bfd_vma gap;
  static asection *last_input_section = NULL;
  static asection *last_input_section = NULL;
  static arelent *last_reloc = NULL;
  static arelent *last_reloc = NULL;
 
 
  /* The address of the thing to be relocated will have moved back by
  /* The address of the thing to be relocated will have moved back by
     the size of the shrink - but we don't change reloc->address here,
     the size of the shrink - but we don't change reloc->address here,
     since we need it to know where the relocation lives in the source
     since we need it to know where the relocation lives in the source
     uncooked section.  */
     uncooked section.  */
  bfd_vma address = reloc->address - shrink;
  bfd_vma address = reloc->address - shrink;
 
 
  if (input_section != last_input_section)
  if (input_section != last_input_section)
    last_reloc = NULL;
    last_reloc = NULL;
 
 
  /* Only examine the relocs which might be relaxable.  */
  /* Only examine the relocs which might be relaxable.  */
  switch (reloc->howto->type)
  switch (reloc->howto->type)
    {
    {
      /* This is the 16-/24-bit absolute branch which could become an
      /* This is the 16-/24-bit absolute branch which could become an
         8-bit pc-relative branch.  */
         8-bit pc-relative branch.  */
    case R_JMP1:
    case R_JMP1:
    case R_JMPL1:
    case R_JMPL1:
      /* Get the address of the target of this branch.  */
      /* Get the address of the target of this branch.  */
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
 
 
      /* Get the address of the next instruction (not the reloc).  */
      /* Get the address of the next instruction (not the reloc).  */
      dot = (input_section->output_section->vma
      dot = (input_section->output_section->vma
             + input_section->output_offset + address);
             + input_section->output_offset + address);
 
 
      /* Adjust for R_JMP1 vs R_JMPL1.  */
      /* Adjust for R_JMP1 vs R_JMPL1.  */
      dot += (reloc->howto->type == R_JMP1 ? 1 : 2);
      dot += (reloc->howto->type == R_JMP1 ? 1 : 2);
 
 
      /* Compute the distance from this insn to the branch target.  */
      /* Compute the distance from this insn to the branch target.  */
      gap = value - dot;
      gap = value - dot;
 
 
      /* If the distance is within -128..+128 inclusive, then we can relax
      /* If the distance is within -128..+128 inclusive, then we can relax
         this jump.  +128 is valid since the target will move two bytes
         this jump.  +128 is valid since the target will move two bytes
         closer if we do relax this branch.  */
         closer if we do relax this branch.  */
      if ((int) gap >= -128 && (int) gap <= 128)
      if ((int) gap >= -128 && (int) gap <= 128)
        {
        {
          bfd_byte code;
          bfd_byte code;
 
 
          if (!bfd_get_section_contents (abfd, input_section, & code,
          if (!bfd_get_section_contents (abfd, input_section, & code,
                                         reloc->address, 1))
                                         reloc->address, 1))
            break;
            break;
          code = bfd_get_8 (abfd, & code);
          code = bfd_get_8 (abfd, & code);
 
 
          /* It's possible we may be able to eliminate this branch entirely;
          /* It's possible we may be able to eliminate this branch entirely;
             if the previous instruction is a branch around this instruction,
             if the previous instruction is a branch around this instruction,
             and there's no label at this instruction, then we can reverse
             and there's no label at this instruction, then we can reverse
             the condition on the previous branch and eliminate this jump.
             the condition on the previous branch and eliminate this jump.
 
 
               original:                        new:
               original:                        new:
                 bCC lab1                       bCC' lab2
                 bCC lab1                       bCC' lab2
                 jmp lab2
                 jmp lab2
                lab1:                           lab1:
                lab1:                           lab1:
 
 
             This saves 4 bytes instead of two, and should be relatively
             This saves 4 bytes instead of two, and should be relatively
             common.
             common.
 
 
             Only perform this optimisation for jumps (code 0x5a) not
             Only perform this optimisation for jumps (code 0x5a) not
             subroutine calls, as otherwise it could transform:
             subroutine calls, as otherwise it could transform:
 
 
                             mov.w   r0,r0
                             mov.w   r0,r0
                             beq     .L1
                             beq     .L1
                             jsr     @_bar
                             jsr     @_bar
                      .L1:   rts
                      .L1:   rts
                      _bar:  rts
                      _bar:  rts
             into:
             into:
                             mov.w   r0,r0
                             mov.w   r0,r0
                             bne     _bar
                             bne     _bar
                             rts
                             rts
                      _bar:  rts
                      _bar:  rts
 
 
             which changes the call (jsr) into a branch (bne).  */
             which changes the call (jsr) into a branch (bne).  */
          if (code == 0x5a
          if (code == 0x5a
              && gap <= 126
              && gap <= 126
              && last_reloc
              && last_reloc
              && last_reloc->howto->type == R_PCRBYTE)
              && last_reloc->howto->type == R_PCRBYTE)
            {
            {
              bfd_vma last_value;
              bfd_vma last_value;
              last_value = bfd_coff_reloc16_get_value (last_reloc, link_info,
              last_value = bfd_coff_reloc16_get_value (last_reloc, link_info,
                                                       input_section) + 1;
                                                       input_section) + 1;
 
 
              if (last_value == dot + 2
              if (last_value == dot + 2
                  && last_reloc->address + 1 == reloc->address
                  && last_reloc->address + 1 == reloc->address
                  && !h8300_symbol_address_p (abfd, input_section, dot - 2))
                  && !h8300_symbol_address_p (abfd, input_section, dot - 2))
                {
                {
                  reloc->howto = howto_table + 19;
                  reloc->howto = howto_table + 19;
                  last_reloc->howto = howto_table + 18;
                  last_reloc->howto = howto_table + 18;
                  last_reloc->sym_ptr_ptr = reloc->sym_ptr_ptr;
                  last_reloc->sym_ptr_ptr = reloc->sym_ptr_ptr;
                  last_reloc->addend = reloc->addend;
                  last_reloc->addend = reloc->addend;
                  shrink += 4;
                  shrink += 4;
                  bfd_perform_slip (abfd, 4, input_section, address);
                  bfd_perform_slip (abfd, 4, input_section, address);
                  break;
                  break;
                }
                }
            }
            }
 
 
          /* Change the reloc type.  */
          /* Change the reloc type.  */
          reloc->howto = reloc->howto + 1;
          reloc->howto = reloc->howto + 1;
 
 
          /* This shrinks this section by two bytes.  */
          /* This shrinks this section by two bytes.  */
          shrink += 2;
          shrink += 2;
          bfd_perform_slip (abfd, 2, input_section, address);
          bfd_perform_slip (abfd, 2, input_section, address);
        }
        }
      break;
      break;
 
 
    /* This is the 16-bit pc-relative branch which could become an 8-bit
    /* This is the 16-bit pc-relative branch which could become an 8-bit
       pc-relative branch.  */
       pc-relative branch.  */
    case R_PCRWORD:
    case R_PCRWORD:
      /* Get the address of the target of this branch, add one to the value
      /* Get the address of the target of this branch, add one to the value
         because the addend field in PCrel jumps is off by -1.  */
         because the addend field in PCrel jumps is off by -1.  */
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section) + 1;
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section) + 1;
 
 
      /* Get the address of the next instruction if we were to relax.  */
      /* Get the address of the next instruction if we were to relax.  */
      dot = input_section->output_section->vma +
      dot = input_section->output_section->vma +
        input_section->output_offset + address;
        input_section->output_offset + address;
 
 
      /* Compute the distance from this insn to the branch target.  */
      /* Compute the distance from this insn to the branch target.  */
      gap = value - dot;
      gap = value - dot;
 
 
      /* If the distance is within -128..+128 inclusive, then we can relax
      /* If the distance is within -128..+128 inclusive, then we can relax
         this jump.  +128 is valid since the target will move two bytes
         this jump.  +128 is valid since the target will move two bytes
         closer if we do relax this branch.  */
         closer if we do relax this branch.  */
      if ((int) gap >= -128 && (int) gap <= 128)
      if ((int) gap >= -128 && (int) gap <= 128)
        {
        {
          /* Change the reloc type.  */
          /* Change the reloc type.  */
          reloc->howto = howto_table + 15;
          reloc->howto = howto_table + 15;
 
 
          /* This shrinks this section by two bytes.  */
          /* This shrinks this section by two bytes.  */
          shrink += 2;
          shrink += 2;
          bfd_perform_slip (abfd, 2, input_section, address);
          bfd_perform_slip (abfd, 2, input_section, address);
        }
        }
      break;
      break;
 
 
    /* This is a 16-bit absolute address in a mov.b insn, which can
    /* This is a 16-bit absolute address in a mov.b insn, which can
       become an 8-bit absolute address if it's in the right range.  */
       become an 8-bit absolute address if it's in the right range.  */
    case R_MOV16B1:
    case R_MOV16B1:
      /* Get the address of the data referenced by this mov.b insn.  */
      /* Get the address of the data referenced by this mov.b insn.  */
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
      value = bfd_h8300_pad_address (abfd, value);
      value = bfd_h8300_pad_address (abfd, value);
 
 
      /* If the address is in the top 256 bytes of the address space
      /* If the address is in the top 256 bytes of the address space
         then we can relax this instruction.  */
         then we can relax this instruction.  */
      if (value >= 0xffffff00u)
      if (value >= 0xffffff00u)
        {
        {
          /* Change the reloc type.  */
          /* Change the reloc type.  */
          reloc->howto = reloc->howto + 1;
          reloc->howto = reloc->howto + 1;
 
 
          /* This shrinks this section by two bytes.  */
          /* This shrinks this section by two bytes.  */
          shrink += 2;
          shrink += 2;
          bfd_perform_slip (abfd, 2, input_section, address);
          bfd_perform_slip (abfd, 2, input_section, address);
        }
        }
      break;
      break;
 
 
    /* Similarly for a 24-bit absolute address in a mov.b.  Note that
    /* Similarly for a 24-bit absolute address in a mov.b.  Note that
       if we can't relax this into an 8-bit absolute, we'll fall through
       if we can't relax this into an 8-bit absolute, we'll fall through
       and try to relax it into a 16-bit absolute.  */
       and try to relax it into a 16-bit absolute.  */
    case R_MOV24B1:
    case R_MOV24B1:
      /* Get the address of the data referenced by this mov.b insn.  */
      /* Get the address of the data referenced by this mov.b insn.  */
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
      value = bfd_h8300_pad_address (abfd, value);
      value = bfd_h8300_pad_address (abfd, value);
 
 
      if (value >= 0xffffff00u)
      if (value >= 0xffffff00u)
        {
        {
          /* Change the reloc type.  */
          /* Change the reloc type.  */
          reloc->howto = reloc->howto + 1;
          reloc->howto = reloc->howto + 1;
 
 
          /* This shrinks this section by four bytes.  */
          /* This shrinks this section by four bytes.  */
          shrink += 4;
          shrink += 4;
          bfd_perform_slip (abfd, 4, input_section, address);
          bfd_perform_slip (abfd, 4, input_section, address);
 
 
          /* Done with this reloc.  */
          /* Done with this reloc.  */
          break;
          break;
        }
        }
 
 
      /* FALLTHROUGH and try to turn the 24-/32-bit reloc into a 16-bit
      /* FALLTHROUGH and try to turn the 24-/32-bit reloc into a 16-bit
         reloc.  */
         reloc.  */
 
 
    /* This is a 24-/32-bit absolute address in a mov insn, which can
    /* This is a 24-/32-bit absolute address in a mov insn, which can
       become an 16-bit absolute address if it's in the right range.  */
       become an 16-bit absolute address if it's in the right range.  */
    case R_MOVL1:
    case R_MOVL1:
      /* Get the address of the data referenced by this mov insn.  */
      /* Get the address of the data referenced by this mov insn.  */
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
      value = bfd_h8300_pad_address (abfd, value);
      value = bfd_h8300_pad_address (abfd, value);
 
 
      /* If the address is a sign-extended 16-bit value then we can
      /* If the address is a sign-extended 16-bit value then we can
         relax this instruction.  */
         relax this instruction.  */
      if (value <= 0x7fff || value >= 0xffff8000u)
      if (value <= 0x7fff || value >= 0xffff8000u)
        {
        {
          /* Change the reloc type.  */
          /* Change the reloc type.  */
          reloc->howto = howto_table + 17;
          reloc->howto = howto_table + 17;
 
 
          /* This shrinks this section by two bytes.  */
          /* This shrinks this section by two bytes.  */
          shrink += 2;
          shrink += 2;
          bfd_perform_slip (abfd, 2, input_section, address);
          bfd_perform_slip (abfd, 2, input_section, address);
        }
        }
      break;
      break;
 
 
      /* No other reloc types represent relaxing opportunities.  */
      /* No other reloc types represent relaxing opportunities.  */
    default:
    default:
      break;
      break;
    }
    }
 
 
  last_reloc = reloc;
  last_reloc = reloc;
  last_input_section = input_section;
  last_input_section = input_section;
  return shrink;
  return shrink;
}
}
 
 
/* Handle relocations for the H8/300, including relocs for relaxed
/* Handle relocations for the H8/300, including relocs for relaxed
   instructions.
   instructions.
 
 
   FIXME: Not all relocations check for overflow!  */
   FIXME: Not all relocations check for overflow!  */
 
 
static void
static void
h8300_reloc16_extra_cases (bfd *abfd, struct bfd_link_info *link_info,
h8300_reloc16_extra_cases (bfd *abfd, struct bfd_link_info *link_info,
                           struct bfd_link_order *link_order, arelent *reloc,
                           struct bfd_link_order *link_order, arelent *reloc,
                           bfd_byte *data, unsigned int *src_ptr,
                           bfd_byte *data, unsigned int *src_ptr,
                           unsigned int *dst_ptr)
                           unsigned int *dst_ptr)
{
{
  unsigned int src_address = *src_ptr;
  unsigned int src_address = *src_ptr;
  unsigned int dst_address = *dst_ptr;
  unsigned int dst_address = *dst_ptr;
  asection *input_section = link_order->u.indirect.section;
  asection *input_section = link_order->u.indirect.section;
  bfd_vma value;
  bfd_vma value;
  bfd_vma dot;
  bfd_vma dot;
  int gap, tmp;
  int gap, tmp;
  unsigned char temp_code;
  unsigned char temp_code;
 
 
  switch (reloc->howto->type)
  switch (reloc->howto->type)
    {
    {
    /* Generic 8-bit pc-relative relocation.  */
    /* Generic 8-bit pc-relative relocation.  */
    case R_PCRBYTE:
    case R_PCRBYTE:
      /* Get the address of the target of this branch.  */
      /* Get the address of the target of this branch.  */
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
 
 
      dot = (input_section->output_offset
      dot = (input_section->output_offset
             + dst_address
             + dst_address
             + link_order->u.indirect.section->output_section->vma);
             + link_order->u.indirect.section->output_section->vma);
 
 
      gap = value - dot;
      gap = value - dot;
 
 
      /* Sanity check.  */
      /* Sanity check.  */
      if (gap < -128 || gap > 126)
      if (gap < -128 || gap > 126)
        {
        {
          if (! ((*link_info->callbacks->reloc_overflow)
          if (! ((*link_info->callbacks->reloc_overflow)
                 (link_info, NULL,
                 (link_info, NULL,
                  bfd_asymbol_name (*reloc->sym_ptr_ptr),
                  bfd_asymbol_name (*reloc->sym_ptr_ptr),
                  reloc->howto->name, reloc->addend, input_section->owner,
                  reloc->howto->name, reloc->addend, input_section->owner,
                  input_section, reloc->address)))
                  input_section, reloc->address)))
            abort ();
            abort ();
        }
        }
 
 
      /* Everything looks OK.  Apply the relocation and update the
      /* Everything looks OK.  Apply the relocation and update the
         src/dst address appropriately.  */
         src/dst address appropriately.  */
      bfd_put_8 (abfd, gap, data + dst_address);
      bfd_put_8 (abfd, gap, data + dst_address);
      dst_address++;
      dst_address++;
      src_address++;
      src_address++;
 
 
      /* All done.  */
      /* All done.  */
      break;
      break;
 
 
    /* Generic 16-bit pc-relative relocation.  */
    /* Generic 16-bit pc-relative relocation.  */
    case R_PCRWORD:
    case R_PCRWORD:
      /* Get the address of the target of this branch.  */
      /* Get the address of the target of this branch.  */
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
 
 
      /* Get the address of the instruction (not the reloc).  */
      /* Get the address of the instruction (not the reloc).  */
      dot = (input_section->output_offset
      dot = (input_section->output_offset
             + dst_address
             + dst_address
             + link_order->u.indirect.section->output_section->vma + 1);
             + link_order->u.indirect.section->output_section->vma + 1);
 
 
      gap = value - dot;
      gap = value - dot;
 
 
      /* Sanity check.  */
      /* Sanity check.  */
      if (gap > 32766 || gap < -32768)
      if (gap > 32766 || gap < -32768)
        {
        {
          if (! ((*link_info->callbacks->reloc_overflow)
          if (! ((*link_info->callbacks->reloc_overflow)
                 (link_info, NULL,
                 (link_info, NULL,
                  bfd_asymbol_name (*reloc->sym_ptr_ptr),
                  bfd_asymbol_name (*reloc->sym_ptr_ptr),
                  reloc->howto->name, reloc->addend, input_section->owner,
                  reloc->howto->name, reloc->addend, input_section->owner,
                  input_section, reloc->address)))
                  input_section, reloc->address)))
            abort ();
            abort ();
        }
        }
 
 
      /* Everything looks OK.  Apply the relocation and update the
      /* Everything looks OK.  Apply the relocation and update the
         src/dst address appropriately.  */
         src/dst address appropriately.  */
      bfd_put_16 (abfd, (bfd_vma) gap, data + dst_address);
      bfd_put_16 (abfd, (bfd_vma) gap, data + dst_address);
      dst_address += 2;
      dst_address += 2;
      src_address += 2;
      src_address += 2;
 
 
      /* All done.  */
      /* All done.  */
      break;
      break;
 
 
    /* Generic 8-bit absolute relocation.  */
    /* Generic 8-bit absolute relocation.  */
    case R_RELBYTE:
    case R_RELBYTE:
      /* Get the address of the object referenced by this insn.  */
      /* Get the address of the object referenced by this insn.  */
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
 
 
      bfd_put_8 (abfd, value & 0xff, data + dst_address);
      bfd_put_8 (abfd, value & 0xff, data + dst_address);
      dst_address += 1;
      dst_address += 1;
      src_address += 1;
      src_address += 1;
 
 
      /* All done.  */
      /* All done.  */
      break;
      break;
 
 
    /* Various simple 16-bit absolute relocations.  */
    /* Various simple 16-bit absolute relocations.  */
    case R_MOV16B1:
    case R_MOV16B1:
    case R_JMP1:
    case R_JMP1:
    case R_RELWORD:
    case R_RELWORD:
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
      bfd_put_16 (abfd, value, data + dst_address);
      bfd_put_16 (abfd, value, data + dst_address);
      dst_address += 2;
      dst_address += 2;
      src_address += 2;
      src_address += 2;
      break;
      break;
 
 
    /* Various simple 24-/32-bit absolute relocations.  */
    /* Various simple 24-/32-bit absolute relocations.  */
    case R_MOV24B1:
    case R_MOV24B1:
    case R_MOVL1:
    case R_MOVL1:
    case R_RELLONG:
    case R_RELLONG:
      /* Get the address of the target of this branch.  */
      /* Get the address of the target of this branch.  */
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
      bfd_put_32 (abfd, value, data + dst_address);
      bfd_put_32 (abfd, value, data + dst_address);
      dst_address += 4;
      dst_address += 4;
      src_address += 4;
      src_address += 4;
      break;
      break;
 
 
    /* Another 24-/32-bit absolute relocation.  */
    /* Another 24-/32-bit absolute relocation.  */
    case R_JMPL1:
    case R_JMPL1:
      /* Get the address of the target of this branch.  */
      /* Get the address of the target of this branch.  */
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
 
 
      value = ((value & 0x00ffffff)
      value = ((value & 0x00ffffff)
               | (bfd_get_32 (abfd, data + src_address) & 0xff000000));
               | (bfd_get_32 (abfd, data + src_address) & 0xff000000));
      bfd_put_32 (abfd, value, data + dst_address);
      bfd_put_32 (abfd, value, data + dst_address);
      dst_address += 4;
      dst_address += 4;
      src_address += 4;
      src_address += 4;
      break;
      break;
 
 
      /* This is a 24-/32-bit absolute address in one of the following
      /* This is a 24-/32-bit absolute address in one of the following
         instructions:
         instructions:
 
 
           "band", "bclr", "biand", "bild", "bior", "bist", "bixor",
           "band", "bclr", "biand", "bild", "bior", "bist", "bixor",
           "bld", "bnot", "bor", "bset", "bst", "btst", "bxor", "ldc.w",
           "bld", "bnot", "bor", "bset", "bst", "btst", "bxor", "ldc.w",
           "stc.w" and "mov.[bwl]"
           "stc.w" and "mov.[bwl]"
 
 
         We may relax this into an 16-bit absolute address if it's in
         We may relax this into an 16-bit absolute address if it's in
         the right range.  */
         the right range.  */
    case R_MOVL2:
    case R_MOVL2:
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
      value = bfd_h8300_pad_address (abfd, value);
      value = bfd_h8300_pad_address (abfd, value);
 
 
      /* Sanity check.  */
      /* Sanity check.  */
      if (value <= 0x7fff || value >= 0xffff8000u)
      if (value <= 0x7fff || value >= 0xffff8000u)
        {
        {
          /* Insert the 16-bit value into the proper location.  */
          /* Insert the 16-bit value into the proper location.  */
          bfd_put_16 (abfd, value, data + dst_address);
          bfd_put_16 (abfd, value, data + dst_address);
 
 
          /* Fix the opcode.  For all the instructions that belong to
          /* Fix the opcode.  For all the instructions that belong to
             this relaxation, we simply need to turn off bit 0x20 in
             this relaxation, we simply need to turn off bit 0x20 in
             the previous byte.  */
             the previous byte.  */
          data[dst_address - 1] &= ~0x20;
          data[dst_address - 1] &= ~0x20;
          dst_address += 2;
          dst_address += 2;
          src_address += 4;
          src_address += 4;
        }
        }
      else
      else
        {
        {
          if (! ((*link_info->callbacks->reloc_overflow)
          if (! ((*link_info->callbacks->reloc_overflow)
                 (link_info, NULL,
                 (link_info, NULL,
                  bfd_asymbol_name (*reloc->sym_ptr_ptr),
                  bfd_asymbol_name (*reloc->sym_ptr_ptr),
                  reloc->howto->name, reloc->addend, input_section->owner,
                  reloc->howto->name, reloc->addend, input_section->owner,
                  input_section, reloc->address)))
                  input_section, reloc->address)))
            abort ();
            abort ();
        }
        }
      break;
      break;
 
 
    /* A 16-bit absolute branch that is now an 8-bit pc-relative branch.  */
    /* A 16-bit absolute branch that is now an 8-bit pc-relative branch.  */
    case R_JMP2:
    case R_JMP2:
      /* Get the address of the target of this branch.  */
      /* Get the address of the target of this branch.  */
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
 
 
      /* Get the address of the next instruction.  */
      /* Get the address of the next instruction.  */
      dot = (input_section->output_offset
      dot = (input_section->output_offset
             + dst_address
             + dst_address
             + link_order->u.indirect.section->output_section->vma + 1);
             + link_order->u.indirect.section->output_section->vma + 1);
 
 
      gap = value - dot;
      gap = value - dot;
 
 
      /* Sanity check.  */
      /* Sanity check.  */
      if (gap < -128 || gap > 126)
      if (gap < -128 || gap > 126)
        {
        {
          if (! ((*link_info->callbacks->reloc_overflow)
          if (! ((*link_info->callbacks->reloc_overflow)
                 (link_info, NULL,
                 (link_info, NULL,
                  bfd_asymbol_name (*reloc->sym_ptr_ptr),
                  bfd_asymbol_name (*reloc->sym_ptr_ptr),
                  reloc->howto->name, reloc->addend, input_section->owner,
                  reloc->howto->name, reloc->addend, input_section->owner,
                  input_section, reloc->address)))
                  input_section, reloc->address)))
            abort ();
            abort ();
        }
        }
 
 
      /* Now fix the instruction itself.  */
      /* Now fix the instruction itself.  */
      switch (data[dst_address - 1])
      switch (data[dst_address - 1])
        {
        {
        case 0x5e:
        case 0x5e:
          /* jsr -> bsr */
          /* jsr -> bsr */
          bfd_put_8 (abfd, 0x55, data + dst_address - 1);
          bfd_put_8 (abfd, 0x55, data + dst_address - 1);
          break;
          break;
        case 0x5a:
        case 0x5a:
          /* jmp -> bra */
          /* jmp -> bra */
          bfd_put_8 (abfd, 0x40, data + dst_address - 1);
          bfd_put_8 (abfd, 0x40, data + dst_address - 1);
          break;
          break;
 
 
        default:
        default:
          abort ();
          abort ();
        }
        }
 
 
      /* Write out the 8-bit value.  */
      /* Write out the 8-bit value.  */
      bfd_put_8 (abfd, gap, data + dst_address);
      bfd_put_8 (abfd, gap, data + dst_address);
 
 
      dst_address += 1;
      dst_address += 1;
      src_address += 3;
      src_address += 3;
 
 
      break;
      break;
 
 
    /* A 16-bit pc-relative branch that is now an 8-bit pc-relative branch.  */
    /* A 16-bit pc-relative branch that is now an 8-bit pc-relative branch.  */
    case R_PCRWORD_B:
    case R_PCRWORD_B:
      /* Get the address of the target of this branch.  */
      /* Get the address of the target of this branch.  */
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
 
 
      /* Get the address of the instruction (not the reloc).  */
      /* Get the address of the instruction (not the reloc).  */
      dot = (input_section->output_offset
      dot = (input_section->output_offset
             + dst_address
             + dst_address
             + link_order->u.indirect.section->output_section->vma - 1);
             + link_order->u.indirect.section->output_section->vma - 1);
 
 
      gap = value - dot;
      gap = value - dot;
 
 
      /* Sanity check.  */
      /* Sanity check.  */
      if (gap < -128 || gap > 126)
      if (gap < -128 || gap > 126)
        {
        {
          if (! ((*link_info->callbacks->reloc_overflow)
          if (! ((*link_info->callbacks->reloc_overflow)
                 (link_info, NULL,
                 (link_info, NULL,
                  bfd_asymbol_name (*reloc->sym_ptr_ptr),
                  bfd_asymbol_name (*reloc->sym_ptr_ptr),
                  reloc->howto->name, reloc->addend, input_section->owner,
                  reloc->howto->name, reloc->addend, input_section->owner,
                  input_section, reloc->address)))
                  input_section, reloc->address)))
            abort ();
            abort ();
        }
        }
 
 
      /* Now fix the instruction.  */
      /* Now fix the instruction.  */
      switch (data[dst_address - 2])
      switch (data[dst_address - 2])
        {
        {
        case 0x58:
        case 0x58:
          /* bCC:16 -> bCC:8 */
          /* bCC:16 -> bCC:8 */
          /* Get the second byte of the original insn, which contains
          /* Get the second byte of the original insn, which contains
             the condition code.  */
             the condition code.  */
          tmp = data[dst_address - 1];
          tmp = data[dst_address - 1];
 
 
          /* Compute the fisrt byte of the relaxed instruction.  The
          /* Compute the fisrt byte of the relaxed instruction.  The
             original sequence 0x58 0xX0 is relaxed to 0x4X, where X
             original sequence 0x58 0xX0 is relaxed to 0x4X, where X
             represents the condition code.  */
             represents the condition code.  */
          tmp &= 0xf0;
          tmp &= 0xf0;
          tmp >>= 4;
          tmp >>= 4;
          tmp |= 0x40;
          tmp |= 0x40;
 
 
          /* Write it.  */
          /* Write it.  */
          bfd_put_8 (abfd, tmp, data + dst_address - 2);
          bfd_put_8 (abfd, tmp, data + dst_address - 2);
          break;
          break;
 
 
        case 0x5c:
        case 0x5c:
          /* bsr:16 -> bsr:8 */
          /* bsr:16 -> bsr:8 */
          bfd_put_8 (abfd, 0x55, data + dst_address - 2);
          bfd_put_8 (abfd, 0x55, data + dst_address - 2);
          break;
          break;
 
 
        default:
        default:
          abort ();
          abort ();
        }
        }
 
 
      /* Output the target.  */
      /* Output the target.  */
      bfd_put_8 (abfd, gap, data + dst_address - 1);
      bfd_put_8 (abfd, gap, data + dst_address - 1);
 
 
      /* We don't advance dst_address -- the 8-bit reloc is applied at
      /* We don't advance dst_address -- the 8-bit reloc is applied at
         dst_address - 1, so the next insn should begin at dst_address.  */
         dst_address - 1, so the next insn should begin at dst_address.  */
      src_address += 2;
      src_address += 2;
 
 
      break;
      break;
 
 
    /* Similarly for a 24-bit absolute that is now 8 bits.  */
    /* Similarly for a 24-bit absolute that is now 8 bits.  */
    case R_JMPL2:
    case R_JMPL2:
      /* Get the address of the target of this branch.  */
      /* Get the address of the target of this branch.  */
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
 
 
      /* Get the address of the instruction (not the reloc).  */
      /* Get the address of the instruction (not the reloc).  */
      dot = (input_section->output_offset
      dot = (input_section->output_offset
             + dst_address
             + dst_address
             + link_order->u.indirect.section->output_section->vma + 2);
             + link_order->u.indirect.section->output_section->vma + 2);
 
 
      gap = value - dot;
      gap = value - dot;
 
 
      /* Fix the instruction.  */
      /* Fix the instruction.  */
      switch (data[src_address])
      switch (data[src_address])
        {
        {
        case 0x5e:
        case 0x5e:
          /* jsr -> bsr */
          /* jsr -> bsr */
          bfd_put_8 (abfd, 0x55, data + dst_address);
          bfd_put_8 (abfd, 0x55, data + dst_address);
          break;
          break;
        case 0x5a:
        case 0x5a:
          /* jmp ->bra */
          /* jmp ->bra */
          bfd_put_8 (abfd, 0x40, data + dst_address);
          bfd_put_8 (abfd, 0x40, data + dst_address);
          break;
          break;
        default:
        default:
          abort ();
          abort ();
        }
        }
 
 
      bfd_put_8 (abfd, gap, data + dst_address + 1);
      bfd_put_8 (abfd, gap, data + dst_address + 1);
      dst_address += 2;
      dst_address += 2;
      src_address += 4;
      src_address += 4;
 
 
      break;
      break;
 
 
      /* This is a 16-bit absolute address in one of the following
      /* This is a 16-bit absolute address in one of the following
         instructions:
         instructions:
 
 
           "band", "bclr", "biand", "bild", "bior", "bist", "bixor",
           "band", "bclr", "biand", "bild", "bior", "bist", "bixor",
           "bld", "bnot", "bor", "bset", "bst", "btst", "bxor", and
           "bld", "bnot", "bor", "bset", "bst", "btst", "bxor", and
           "mov.b"
           "mov.b"
 
 
         We may relax this into an 8-bit absolute address if it's in
         We may relax this into an 8-bit absolute address if it's in
         the right range.  */
         the right range.  */
    case R_MOV16B2:
    case R_MOV16B2:
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
 
 
      /* All instructions with R_H8_DIR16B2 start with 0x6a.  */
      /* All instructions with R_H8_DIR16B2 start with 0x6a.  */
      if (data[dst_address - 2] != 0x6a)
      if (data[dst_address - 2] != 0x6a)
        abort ();
        abort ();
 
 
      temp_code = data[src_address - 1];
      temp_code = data[src_address - 1];
 
 
      /* If this is a mov.b instruction, clear the lower nibble, which
      /* If this is a mov.b instruction, clear the lower nibble, which
         contains the source/destination register number.  */
         contains the source/destination register number.  */
      if ((temp_code & 0x10) != 0x10)
      if ((temp_code & 0x10) != 0x10)
        temp_code &= 0xf0;
        temp_code &= 0xf0;
 
 
      /* Fix up the opcode.  */
      /* Fix up the opcode.  */
      switch (temp_code)
      switch (temp_code)
        {
        {
        case 0x00:
        case 0x00:
          /* This is mov.b @aa:16,Rd.  */
          /* This is mov.b @aa:16,Rd.  */
          data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x20;
          data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x20;
          break;
          break;
        case 0x80:
        case 0x80:
          /* This is mov.b Rs,@aa:16.  */
          /* This is mov.b Rs,@aa:16.  */
          data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x30;
          data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x30;
          break;
          break;
        case 0x18:
        case 0x18:
          /* This is a bit-maniputation instruction that stores one
          /* This is a bit-maniputation instruction that stores one
             bit into memory, one of "bclr", "bist", "bnot", "bset",
             bit into memory, one of "bclr", "bist", "bnot", "bset",
             and "bst".  */
             and "bst".  */
          data[dst_address - 2] = 0x7f;
          data[dst_address - 2] = 0x7f;
          break;
          break;
        case 0x10:
        case 0x10:
          /* This is a bit-maniputation instruction that loads one bit
          /* This is a bit-maniputation instruction that loads one bit
             from memory, one of "band", "biand", "bild", "bior",
             from memory, one of "band", "biand", "bild", "bior",
             "bixor", "bld", "bor", "btst", and "bxor".  */
             "bixor", "bld", "bor", "btst", and "bxor".  */
          data[dst_address - 2] = 0x7e;
          data[dst_address - 2] = 0x7e;
          break;
          break;
        default:
        default:
          abort ();
          abort ();
        }
        }
 
 
      bfd_put_8 (abfd, value & 0xff, data + dst_address - 1);
      bfd_put_8 (abfd, value & 0xff, data + dst_address - 1);
      src_address += 2;
      src_address += 2;
      break;
      break;
 
 
      /* This is a 24-bit absolute address in one of the following
      /* This is a 24-bit absolute address in one of the following
         instructions:
         instructions:
 
 
           "band", "bclr", "biand", "bild", "bior", "bist", "bixor",
           "band", "bclr", "biand", "bild", "bior", "bist", "bixor",
           "bld", "bnot", "bor", "bset", "bst", "btst", "bxor", and
           "bld", "bnot", "bor", "bset", "bst", "btst", "bxor", and
           "mov.b"
           "mov.b"
 
 
         We may relax this into an 8-bit absolute address if it's in
         We may relax this into an 8-bit absolute address if it's in
         the right range.  */
         the right range.  */
    case R_MOV24B2:
    case R_MOV24B2:
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
 
 
      /* All instructions with R_MOV24B2 start with 0x6a.  */
      /* All instructions with R_MOV24B2 start with 0x6a.  */
      if (data[dst_address - 2] != 0x6a)
      if (data[dst_address - 2] != 0x6a)
        abort ();
        abort ();
 
 
      temp_code = data[src_address - 1];
      temp_code = data[src_address - 1];
 
 
      /* If this is a mov.b instruction, clear the lower nibble, which
      /* If this is a mov.b instruction, clear the lower nibble, which
         contains the source/destination register number.  */
         contains the source/destination register number.  */
      if ((temp_code & 0x30) != 0x30)
      if ((temp_code & 0x30) != 0x30)
        temp_code &= 0xf0;
        temp_code &= 0xf0;
 
 
      /* Fix up the opcode.  */
      /* Fix up the opcode.  */
      switch (temp_code)
      switch (temp_code)
        {
        {
        case 0x20:
        case 0x20:
          /* This is mov.b @aa:24/32,Rd.  */
          /* This is mov.b @aa:24/32,Rd.  */
          data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x20;
          data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x20;
          break;
          break;
        case 0xa0:
        case 0xa0:
          /* This is mov.b Rs,@aa:24/32.  */
          /* This is mov.b Rs,@aa:24/32.  */
          data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x30;
          data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x30;
          break;
          break;
        case 0x38:
        case 0x38:
          /* This is a bit-maniputation instruction that stores one
          /* This is a bit-maniputation instruction that stores one
             bit into memory, one of "bclr", "bist", "bnot", "bset",
             bit into memory, one of "bclr", "bist", "bnot", "bset",
             and "bst".  */
             and "bst".  */
          data[dst_address - 2] = 0x7f;
          data[dst_address - 2] = 0x7f;
          break;
          break;
        case 0x30:
        case 0x30:
          /* This is a bit-maniputation instruction that loads one bit
          /* This is a bit-maniputation instruction that loads one bit
             from memory, one of "band", "biand", "bild", "bior",
             from memory, one of "band", "biand", "bild", "bior",
             "bixor", "bld", "bor", "btst", and "bxor".  */
             "bixor", "bld", "bor", "btst", and "bxor".  */
          data[dst_address - 2] = 0x7e;
          data[dst_address - 2] = 0x7e;
          break;
          break;
        default:
        default:
          abort ();
          abort ();
        }
        }
 
 
      bfd_put_8 (abfd, value & 0xff, data + dst_address - 1);
      bfd_put_8 (abfd, value & 0xff, data + dst_address - 1);
      src_address += 4;
      src_address += 4;
      break;
      break;
 
 
    case R_BCC_INV:
    case R_BCC_INV:
      /* Get the address of the target of this branch.  */
      /* Get the address of the target of this branch.  */
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
 
 
      dot = (input_section->output_offset
      dot = (input_section->output_offset
             + dst_address
             + dst_address
             + link_order->u.indirect.section->output_section->vma) + 1;
             + link_order->u.indirect.section->output_section->vma) + 1;
 
 
      gap = value - dot;
      gap = value - dot;
 
 
      /* Sanity check.  */
      /* Sanity check.  */
      if (gap < -128 || gap > 126)
      if (gap < -128 || gap > 126)
        {
        {
          if (! ((*link_info->callbacks->reloc_overflow)
          if (! ((*link_info->callbacks->reloc_overflow)
                 (link_info, NULL,
                 (link_info, NULL,
                  bfd_asymbol_name (*reloc->sym_ptr_ptr),
                  bfd_asymbol_name (*reloc->sym_ptr_ptr),
                  reloc->howto->name, reloc->addend, input_section->owner,
                  reloc->howto->name, reloc->addend, input_section->owner,
                  input_section, reloc->address)))
                  input_section, reloc->address)))
            abort ();
            abort ();
        }
        }
 
 
      /* Everything looks OK.  Fix the condition in the instruction, apply
      /* Everything looks OK.  Fix the condition in the instruction, apply
         the relocation, and update the src/dst address appropriately.  */
         the relocation, and update the src/dst address appropriately.  */
 
 
      bfd_put_8 (abfd, bfd_get_8 (abfd, data + dst_address - 1) ^ 1,
      bfd_put_8 (abfd, bfd_get_8 (abfd, data + dst_address - 1) ^ 1,
                 data + dst_address - 1);
                 data + dst_address - 1);
      bfd_put_8 (abfd, gap, data + dst_address);
      bfd_put_8 (abfd, gap, data + dst_address);
      dst_address++;
      dst_address++;
      src_address++;
      src_address++;
 
 
      /* All done.  */
      /* All done.  */
      break;
      break;
 
 
    case R_JMP_DEL:
    case R_JMP_DEL:
      src_address += 4;
      src_address += 4;
      break;
      break;
 
 
    /* An 8-bit memory indirect instruction (jmp/jsr).
    /* An 8-bit memory indirect instruction (jmp/jsr).
 
 
       There's several things that need to be done to handle
       There's several things that need to be done to handle
       this relocation.
       this relocation.
 
 
       If this is a reloc against the absolute symbol, then
       If this is a reloc against the absolute symbol, then
       we should handle it just R_RELBYTE.  Likewise if it's
       we should handle it just R_RELBYTE.  Likewise if it's
       for a symbol with a value ge 0 and le 0xff.
       for a symbol with a value ge 0 and le 0xff.
 
 
       Otherwise it's a jump/call through the function vector,
       Otherwise it's a jump/call through the function vector,
       and the linker is expected to set up the function vector
       and the linker is expected to set up the function vector
       and put the right value into the jump/call instruction.  */
       and put the right value into the jump/call instruction.  */
    case R_MEM_INDIRECT:
    case R_MEM_INDIRECT:
      {
      {
        /* We need to find the symbol so we can determine it's
        /* We need to find the symbol so we can determine it's
           address in the function vector table.  */
           address in the function vector table.  */
        asymbol *symbol;
        asymbol *symbol;
        const char *name;
        const char *name;
        struct funcvec_hash_table *ftab;
        struct funcvec_hash_table *ftab;
        struct funcvec_hash_entry *h;
        struct funcvec_hash_entry *h;
        struct h8300_coff_link_hash_table *htab;
        struct h8300_coff_link_hash_table *htab;
        asection *vectors_sec;
        asection *vectors_sec;
 
 
        if (link_info->output_bfd->xvec != abfd->xvec)
        if (link_info->output_bfd->xvec != abfd->xvec)
          {
          {
            (*_bfd_error_handler)
            (*_bfd_error_handler)
              (_("cannot handle R_MEM_INDIRECT reloc when using %s output"),
              (_("cannot handle R_MEM_INDIRECT reloc when using %s output"),
               link_info->output_bfd->xvec->name);
               link_info->output_bfd->xvec->name);
 
 
            /* What else can we do?  This function doesn't allow return
            /* What else can we do?  This function doesn't allow return
               of an error, and we don't want to call abort as that
               of an error, and we don't want to call abort as that
               indicates an internal error.  */
               indicates an internal error.  */
#ifndef EXIT_FAILURE
#ifndef EXIT_FAILURE
#define EXIT_FAILURE 1
#define EXIT_FAILURE 1
#endif
#endif
            xexit (EXIT_FAILURE);
            xexit (EXIT_FAILURE);
          }
          }
        htab = h8300_coff_hash_table (link_info);
        htab = h8300_coff_hash_table (link_info);
        vectors_sec = htab->vectors_sec;
        vectors_sec = htab->vectors_sec;
 
 
        /* First see if this is a reloc against the absolute symbol
        /* First see if this is a reloc against the absolute symbol
           or against a symbol with a nonnegative value <= 0xff.  */
           or against a symbol with a nonnegative value <= 0xff.  */
        symbol = *(reloc->sym_ptr_ptr);
        symbol = *(reloc->sym_ptr_ptr);
        value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
        value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
        if (symbol == bfd_abs_section_ptr->symbol
        if (symbol == bfd_abs_section_ptr->symbol
            || value <= 0xff)
            || value <= 0xff)
          {
          {
            /* This should be handled in a manner very similar to
            /* This should be handled in a manner very similar to
               R_RELBYTES.   If the value is in range, then just slam
               R_RELBYTES.   If the value is in range, then just slam
               the value into the right location.  Else trigger a
               the value into the right location.  Else trigger a
               reloc overflow callback.  */
               reloc overflow callback.  */
            if (value <= 0xff)
            if (value <= 0xff)
              {
              {
                bfd_put_8 (abfd, value, data + dst_address);
                bfd_put_8 (abfd, value, data + dst_address);
                dst_address += 1;
                dst_address += 1;
                src_address += 1;
                src_address += 1;
              }
              }
            else
            else
              {
              {
                if (! ((*link_info->callbacks->reloc_overflow)
                if (! ((*link_info->callbacks->reloc_overflow)
                       (link_info, NULL,
                       (link_info, NULL,
                        bfd_asymbol_name (*reloc->sym_ptr_ptr),
                        bfd_asymbol_name (*reloc->sym_ptr_ptr),
                        reloc->howto->name, reloc->addend, input_section->owner,
                        reloc->howto->name, reloc->addend, input_section->owner,
                        input_section, reloc->address)))
                        input_section, reloc->address)))
                  abort ();
                  abort ();
              }
              }
            break;
            break;
          }
          }
 
 
        /* This is a jump/call through a function vector, and we're
        /* This is a jump/call through a function vector, and we're
           expected to create the function vector ourselves.
           expected to create the function vector ourselves.
 
 
           First look up this symbol in the linker hash table -- we need
           First look up this symbol in the linker hash table -- we need
           the derived linker symbol which holds this symbol's index
           the derived linker symbol which holds this symbol's index
           in the function vector.  */
           in the function vector.  */
        name = symbol->name;
        name = symbol->name;
        if (symbol->flags & BSF_LOCAL)
        if (symbol->flags & BSF_LOCAL)
          {
          {
            char *new_name = bfd_malloc ((bfd_size_type) strlen (name) + 10);
            char *new_name = bfd_malloc ((bfd_size_type) strlen (name) + 10);
 
 
            if (new_name == NULL)
            if (new_name == NULL)
              abort ();
              abort ();
 
 
            sprintf (new_name, "%s_%08x", name, symbol->section->id);
            sprintf (new_name, "%s_%08x", name, symbol->section->id);
            name = new_name;
            name = new_name;
          }
          }
 
 
        ftab = htab->funcvec_hash_table;
        ftab = htab->funcvec_hash_table;
        h = funcvec_hash_lookup (ftab, name, FALSE, FALSE);
        h = funcvec_hash_lookup (ftab, name, FALSE, FALSE);
 
 
        /* This shouldn't ever happen.  If it does that means we've got
        /* This shouldn't ever happen.  If it does that means we've got
           data corruption of some kind.  Aborting seems like a reasonable
           data corruption of some kind.  Aborting seems like a reasonable
           thing to do here.  */
           thing to do here.  */
        if (h == NULL || vectors_sec == NULL)
        if (h == NULL || vectors_sec == NULL)
          abort ();
          abort ();
 
 
        /* Place the address of the function vector entry into the
        /* Place the address of the function vector entry into the
           reloc's address.  */
           reloc's address.  */
        bfd_put_8 (abfd,
        bfd_put_8 (abfd,
                   vectors_sec->output_offset + h->offset,
                   vectors_sec->output_offset + h->offset,
                   data + dst_address);
                   data + dst_address);
 
 
        dst_address++;
        dst_address++;
        src_address++;
        src_address++;
 
 
        /* Now create an entry in the function vector itself.  */
        /* Now create an entry in the function vector itself.  */
        switch (bfd_get_mach (input_section->owner))
        switch (bfd_get_mach (input_section->owner))
          {
          {
          case bfd_mach_h8300:
          case bfd_mach_h8300:
          case bfd_mach_h8300hn:
          case bfd_mach_h8300hn:
          case bfd_mach_h8300sn:
          case bfd_mach_h8300sn:
            bfd_put_16 (abfd,
            bfd_put_16 (abfd,
                        bfd_coff_reloc16_get_value (reloc,
                        bfd_coff_reloc16_get_value (reloc,
                                                    link_info,
                                                    link_info,
                                                    input_section),
                                                    input_section),
                        vectors_sec->contents + h->offset);
                        vectors_sec->contents + h->offset);
            break;
            break;
          case bfd_mach_h8300h:
          case bfd_mach_h8300h:
          case bfd_mach_h8300s:
          case bfd_mach_h8300s:
            bfd_put_32 (abfd,
            bfd_put_32 (abfd,
                        bfd_coff_reloc16_get_value (reloc,
                        bfd_coff_reloc16_get_value (reloc,
                                                    link_info,
                                                    link_info,
                                                    input_section),
                                                    input_section),
                        vectors_sec->contents + h->offset);
                        vectors_sec->contents + h->offset);
            break;
            break;
          default:
          default:
            abort ();
            abort ();
          }
          }
 
 
        /* Gross.  We've already written the contents of the vector section
        /* Gross.  We've already written the contents of the vector section
           before we get here...  So we write it again with the new data.  */
           before we get here...  So we write it again with the new data.  */
        bfd_set_section_contents (vectors_sec->output_section->owner,
        bfd_set_section_contents (vectors_sec->output_section->owner,
                                  vectors_sec->output_section,
                                  vectors_sec->output_section,
                                  vectors_sec->contents,
                                  vectors_sec->contents,
                                  (file_ptr) vectors_sec->output_offset,
                                  (file_ptr) vectors_sec->output_offset,
                                  vectors_sec->size);
                                  vectors_sec->size);
        break;
        break;
      }
      }
 
 
    default:
    default:
      abort ();
      abort ();
      break;
      break;
 
 
    }
    }
 
 
  *src_ptr = src_address;
  *src_ptr = src_address;
  *dst_ptr = dst_address;
  *dst_ptr = dst_address;
}
}
 
 
/* Routine for the h8300 linker.
/* Routine for the h8300 linker.
 
 
   This routine is necessary to handle the special R_MEM_INDIRECT
   This routine is necessary to handle the special R_MEM_INDIRECT
   relocs on the h8300.  It's responsible for generating a vectors
   relocs on the h8300.  It's responsible for generating a vectors
   section and attaching it to an input bfd as well as sizing
   section and attaching it to an input bfd as well as sizing
   the vectors section.  It also creates our vectors hash table.
   the vectors section.  It also creates our vectors hash table.
 
 
   It uses the generic linker routines to actually add the symbols.
   It uses the generic linker routines to actually add the symbols.
   from this BFD to the bfd linker hash table.  It may add a few
   from this BFD to the bfd linker hash table.  It may add a few
   selected static symbols to the bfd linker hash table.  */
   selected static symbols to the bfd linker hash table.  */
 
 
static bfd_boolean
static bfd_boolean
h8300_bfd_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
h8300_bfd_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
{
{
  asection *sec;
  asection *sec;
  struct funcvec_hash_table *funcvec_hash_table;
  struct funcvec_hash_table *funcvec_hash_table;
  bfd_size_type amt;
  bfd_size_type amt;
  struct h8300_coff_link_hash_table *htab;
  struct h8300_coff_link_hash_table *htab;
 
 
  /* Add the symbols using the generic code.  */
  /* Add the symbols using the generic code.  */
  _bfd_generic_link_add_symbols (abfd, info);
  _bfd_generic_link_add_symbols (abfd, info);
 
 
  if (info->output_bfd->xvec != abfd->xvec)
  if (info->output_bfd->xvec != abfd->xvec)
    return TRUE;
    return TRUE;
 
 
  htab = h8300_coff_hash_table (info);
  htab = h8300_coff_hash_table (info);
 
 
  /* If we haven't created a vectors section, do so now.  */
  /* If we haven't created a vectors section, do so now.  */
  if (!htab->vectors_sec)
  if (!htab->vectors_sec)
    {
    {
      flagword flags;
      flagword flags;
 
 
      /* Make sure the appropriate flags are set, including SEC_IN_MEMORY.  */
      /* Make sure the appropriate flags are set, including SEC_IN_MEMORY.  */
      flags = (SEC_ALLOC | SEC_LOAD
      flags = (SEC_ALLOC | SEC_LOAD
               | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_READONLY);
               | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_READONLY);
      htab->vectors_sec = bfd_make_section_with_flags (abfd, ".vectors",
      htab->vectors_sec = bfd_make_section_with_flags (abfd, ".vectors",
                                                       flags);
                                                       flags);
 
 
      /* If the section wasn't created, or we couldn't set the flags,
      /* If the section wasn't created, or we couldn't set the flags,
         quit quickly now, rather than dying a painful death later.  */
         quit quickly now, rather than dying a painful death later.  */
      if (!htab->vectors_sec)
      if (!htab->vectors_sec)
        return FALSE;
        return FALSE;
 
 
      /* Also create the vector hash table.  */
      /* Also create the vector hash table.  */
      amt = sizeof (struct funcvec_hash_table);
      amt = sizeof (struct funcvec_hash_table);
      funcvec_hash_table = (struct funcvec_hash_table *) bfd_alloc (abfd, amt);
      funcvec_hash_table = (struct funcvec_hash_table *) bfd_alloc (abfd, amt);
 
 
      if (!funcvec_hash_table)
      if (!funcvec_hash_table)
        return FALSE;
        return FALSE;
 
 
      /* And initialize the funcvec hash table.  */
      /* And initialize the funcvec hash table.  */
      if (!funcvec_hash_table_init (funcvec_hash_table, abfd,
      if (!funcvec_hash_table_init (funcvec_hash_table, abfd,
                                    funcvec_hash_newfunc,
                                    funcvec_hash_newfunc,
                                    sizeof (struct funcvec_hash_entry)))
                                    sizeof (struct funcvec_hash_entry)))
        {
        {
          bfd_release (abfd, funcvec_hash_table);
          bfd_release (abfd, funcvec_hash_table);
          return FALSE;
          return FALSE;
        }
        }
 
 
      /* Store away a pointer to the funcvec hash table.  */
      /* Store away a pointer to the funcvec hash table.  */
      htab->funcvec_hash_table = funcvec_hash_table;
      htab->funcvec_hash_table = funcvec_hash_table;
    }
    }
 
 
  /* Load up the function vector hash table.  */
  /* Load up the function vector hash table.  */
  funcvec_hash_table = htab->funcvec_hash_table;
  funcvec_hash_table = htab->funcvec_hash_table;
 
 
  /* Now scan the relocs for all the sections in this bfd; create
  /* Now scan the relocs for all the sections in this bfd; create
     additional space in the .vectors section as needed.  */
     additional space in the .vectors section as needed.  */
  for (sec = abfd->sections; sec; sec = sec->next)
  for (sec = abfd->sections; sec; sec = sec->next)
    {
    {
      long reloc_size, reloc_count, i;
      long reloc_size, reloc_count, i;
      asymbol **symbols;
      asymbol **symbols;
      arelent **relocs;
      arelent **relocs;
 
 
      /* Suck in the relocs, symbols & canonicalize them.  */
      /* Suck in the relocs, symbols & canonicalize them.  */
      reloc_size = bfd_get_reloc_upper_bound (abfd, sec);
      reloc_size = bfd_get_reloc_upper_bound (abfd, sec);
      if (reloc_size <= 0)
      if (reloc_size <= 0)
        continue;
        continue;
 
 
      relocs = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
      relocs = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
      if (!relocs)
      if (!relocs)
        return FALSE;
        return FALSE;
 
 
      /* The symbols should have been read in by _bfd_generic link_add_symbols
      /* The symbols should have been read in by _bfd_generic link_add_symbols
         call abovec, so we can cheat and use the pointer to them that was
         call abovec, so we can cheat and use the pointer to them that was
         saved in the above call.  */
         saved in the above call.  */
      symbols = _bfd_generic_link_get_symbols(abfd);
      symbols = _bfd_generic_link_get_symbols(abfd);
      reloc_count = bfd_canonicalize_reloc (abfd, sec, relocs, symbols);
      reloc_count = bfd_canonicalize_reloc (abfd, sec, relocs, symbols);
      if (reloc_count <= 0)
      if (reloc_count <= 0)
        {
        {
          free (relocs);
          free (relocs);
          continue;
          continue;
        }
        }
 
 
      /* Now walk through all the relocations in this section.  */
      /* Now walk through all the relocations in this section.  */
      for (i = 0; i < reloc_count; i++)
      for (i = 0; i < reloc_count; i++)
        {
        {
          arelent *reloc = relocs[i];
          arelent *reloc = relocs[i];
          asymbol *symbol = *(reloc->sym_ptr_ptr);
          asymbol *symbol = *(reloc->sym_ptr_ptr);
          const char *name;
          const char *name;
 
 
          /* We've got an indirect reloc.  See if we need to add it
          /* We've got an indirect reloc.  See if we need to add it
             to the function vector table.   At this point, we have
             to the function vector table.   At this point, we have
             to add a new entry for each unique symbol referenced
             to add a new entry for each unique symbol referenced
             by an R_MEM_INDIRECT relocation except for a reloc
             by an R_MEM_INDIRECT relocation except for a reloc
             against the absolute section symbol.  */
             against the absolute section symbol.  */
          if (reloc->howto->type == R_MEM_INDIRECT
          if (reloc->howto->type == R_MEM_INDIRECT
              && symbol != bfd_abs_section_ptr->symbol)
              && symbol != bfd_abs_section_ptr->symbol)
 
 
            {
            {
              struct funcvec_hash_table *ftab;
              struct funcvec_hash_table *ftab;
              struct funcvec_hash_entry *h;
              struct funcvec_hash_entry *h;
 
 
              name = symbol->name;
              name = symbol->name;
              if (symbol->flags & BSF_LOCAL)
              if (symbol->flags & BSF_LOCAL)
                {
                {
                  char *new_name;
                  char *new_name;
 
 
                  new_name = bfd_malloc ((bfd_size_type) strlen (name) + 10);
                  new_name = bfd_malloc ((bfd_size_type) strlen (name) + 10);
                  if (new_name == NULL)
                  if (new_name == NULL)
                    abort ();
                    abort ();
 
 
                  sprintf (new_name, "%s_%08x", name, symbol->section->id);
                  sprintf (new_name, "%s_%08x", name, symbol->section->id);
                  name = new_name;
                  name = new_name;
                }
                }
 
 
              /* Look this symbol up in the function vector hash table.  */
              /* Look this symbol up in the function vector hash table.  */
              ftab = htab->funcvec_hash_table;
              ftab = htab->funcvec_hash_table;
              h = funcvec_hash_lookup (ftab, name, FALSE, FALSE);
              h = funcvec_hash_lookup (ftab, name, FALSE, FALSE);
 
 
              /* If this symbol isn't already in the hash table, add
              /* If this symbol isn't already in the hash table, add
                 it and bump up the size of the hash table.  */
                 it and bump up the size of the hash table.  */
              if (h == NULL)
              if (h == NULL)
                {
                {
                  h = funcvec_hash_lookup (ftab, name, TRUE, TRUE);
                  h = funcvec_hash_lookup (ftab, name, TRUE, TRUE);
                  if (h == NULL)
                  if (h == NULL)
                    {
                    {
                      free (relocs);
                      free (relocs);
                      return FALSE;
                      return FALSE;
                    }
                    }
 
 
                  /* Bump the size of the vectors section.  Each vector
                  /* Bump the size of the vectors section.  Each vector
                     takes 2 bytes on the h8300 and 4 bytes on the h8300h.  */
                     takes 2 bytes on the h8300 and 4 bytes on the h8300h.  */
                  switch (bfd_get_mach (abfd))
                  switch (bfd_get_mach (abfd))
                    {
                    {
                    case bfd_mach_h8300:
                    case bfd_mach_h8300:
                    case bfd_mach_h8300hn:
                    case bfd_mach_h8300hn:
                    case bfd_mach_h8300sn:
                    case bfd_mach_h8300sn:
                      htab->vectors_sec->size += 2;
                      htab->vectors_sec->size += 2;
                      break;
                      break;
                    case bfd_mach_h8300h:
                    case bfd_mach_h8300h:
                    case bfd_mach_h8300s:
                    case bfd_mach_h8300s:
                      htab->vectors_sec->size += 4;
                      htab->vectors_sec->size += 4;
                      break;
                      break;
                    default:
                    default:
                      abort ();
                      abort ();
                    }
                    }
                }
                }
            }
            }
        }
        }
 
 
      /* We're done with the relocations, release them.  */
      /* We're done with the relocations, release them.  */
      free (relocs);
      free (relocs);
    }
    }
 
 
  /* Now actually allocate some space for the function vector.  It's
  /* Now actually allocate some space for the function vector.  It's
     wasteful to do this more than once, but this is easier.  */
     wasteful to do this more than once, but this is easier.  */
  sec = htab->vectors_sec;
  sec = htab->vectors_sec;
  if (sec->size != 0)
  if (sec->size != 0)
    {
    {
      /* Free the old contents.  */
      /* Free the old contents.  */
      if (sec->contents)
      if (sec->contents)
        free (sec->contents);
        free (sec->contents);
 
 
      /* Allocate new contents.  */
      /* Allocate new contents.  */
      sec->contents = bfd_malloc (sec->size);
      sec->contents = bfd_malloc (sec->size);
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
#define coff_reloc16_extra_cases h8300_reloc16_extra_cases
#define coff_reloc16_extra_cases h8300_reloc16_extra_cases
#define coff_reloc16_estimate h8300_reloc16_estimate
#define coff_reloc16_estimate h8300_reloc16_estimate
#define coff_bfd_link_add_symbols h8300_bfd_link_add_symbols
#define coff_bfd_link_add_symbols h8300_bfd_link_add_symbols
#define coff_bfd_link_hash_table_create h8300_coff_link_hash_table_create
#define coff_bfd_link_hash_table_create h8300_coff_link_hash_table_create
 
 
#define COFF_LONG_FILENAMES
#define COFF_LONG_FILENAMES
 
 
#ifndef bfd_pe_print_pdata
#ifndef bfd_pe_print_pdata
#define bfd_pe_print_pdata      NULL
#define bfd_pe_print_pdata      NULL
#endif
#endif
 
 
#include "coffcode.h"
#include "coffcode.h"
 
 
#undef coff_bfd_get_relocated_section_contents
#undef coff_bfd_get_relocated_section_contents
#undef coff_bfd_relax_section
#undef coff_bfd_relax_section
#define coff_bfd_get_relocated_section_contents \
#define coff_bfd_get_relocated_section_contents \
  bfd_coff_reloc16_get_relocated_section_contents
  bfd_coff_reloc16_get_relocated_section_contents
#define coff_bfd_relax_section bfd_coff_reloc16_relax_section
#define coff_bfd_relax_section bfd_coff_reloc16_relax_section
 
 
CREATE_BIG_COFF_TARGET_VEC (h8300coff_vec, "coff-h8300", BFD_IS_RELAXABLE, 0, '_', NULL, COFF_SWAP_TABLE)
CREATE_BIG_COFF_TARGET_VEC (h8300coff_vec, "coff-h8300", BFD_IS_RELAXABLE, 0, '_', NULL, COFF_SWAP_TABLE)
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.