OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gdb-6.8/] [bfd/] [elf.c] - Diff between revs 827 and 840

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 827 Rev 840
/* ELF executable support for BFD.
/* ELF executable support for BFD.
 
 
   Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
   Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
   2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
   2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
   This file is part of BFD, the Binary File Descriptor library.
   This file is part of BFD, the Binary File Descriptor library.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   along with this program; if not, write to the Free Software
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
   MA 02110-1301, USA.  */
   MA 02110-1301, USA.  */
 
 
 
 
/*
/*
SECTION
SECTION
        ELF backends
        ELF backends
 
 
        BFD support for ELF formats is being worked on.
        BFD support for ELF formats is being worked on.
        Currently, the best supported back ends are for sparc and i386
        Currently, the best supported back ends are for sparc and i386
        (running svr4 or Solaris 2).
        (running svr4 or Solaris 2).
 
 
        Documentation of the internals of the support code still needs
        Documentation of the internals of the support code still needs
        to be written.  The code is changing quickly enough that we
        to be written.  The code is changing quickly enough that we
        haven't bothered yet.  */
        haven't bothered yet.  */
 
 
/* For sparc64-cross-sparc32.  */
/* For sparc64-cross-sparc32.  */
#define _SYSCALL32
#define _SYSCALL32
#include "sysdep.h"
#include "sysdep.h"
#include "bfd.h"
#include "bfd.h"
#include "bfdlink.h"
#include "bfdlink.h"
#include "libbfd.h"
#include "libbfd.h"
#define ARCH_SIZE 0
#define ARCH_SIZE 0
#include "elf-bfd.h"
#include "elf-bfd.h"
#include "libiberty.h"
#include "libiberty.h"
#include "safe-ctype.h"
#include "safe-ctype.h"
 
 
static int elf_sort_sections (const void *, const void *);
static int elf_sort_sections (const void *, const void *);
static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
static bfd_boolean prep_headers (bfd *);
static bfd_boolean prep_headers (bfd *);
static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
                                    file_ptr offset);
                                    file_ptr offset);
 
 
/* Swap version information in and out.  The version information is
/* Swap version information in and out.  The version information is
   currently size independent.  If that ever changes, this code will
   currently size independent.  If that ever changes, this code will
   need to move into elfcode.h.  */
   need to move into elfcode.h.  */
 
 
/* Swap in a Verdef structure.  */
/* Swap in a Verdef structure.  */
 
 
void
void
_bfd_elf_swap_verdef_in (bfd *abfd,
_bfd_elf_swap_verdef_in (bfd *abfd,
                         const Elf_External_Verdef *src,
                         const Elf_External_Verdef *src,
                         Elf_Internal_Verdef *dst)
                         Elf_Internal_Verdef *dst)
{
{
  dst->vd_version = H_GET_16 (abfd, src->vd_version);
  dst->vd_version = H_GET_16 (abfd, src->vd_version);
  dst->vd_flags   = H_GET_16 (abfd, src->vd_flags);
  dst->vd_flags   = H_GET_16 (abfd, src->vd_flags);
  dst->vd_ndx     = H_GET_16 (abfd, src->vd_ndx);
  dst->vd_ndx     = H_GET_16 (abfd, src->vd_ndx);
  dst->vd_cnt     = H_GET_16 (abfd, src->vd_cnt);
  dst->vd_cnt     = H_GET_16 (abfd, src->vd_cnt);
  dst->vd_hash    = H_GET_32 (abfd, src->vd_hash);
  dst->vd_hash    = H_GET_32 (abfd, src->vd_hash);
  dst->vd_aux     = H_GET_32 (abfd, src->vd_aux);
  dst->vd_aux     = H_GET_32 (abfd, src->vd_aux);
  dst->vd_next    = H_GET_32 (abfd, src->vd_next);
  dst->vd_next    = H_GET_32 (abfd, src->vd_next);
}
}
 
 
/* Swap out a Verdef structure.  */
/* Swap out a Verdef structure.  */
 
 
void
void
_bfd_elf_swap_verdef_out (bfd *abfd,
_bfd_elf_swap_verdef_out (bfd *abfd,
                          const Elf_Internal_Verdef *src,
                          const Elf_Internal_Verdef *src,
                          Elf_External_Verdef *dst)
                          Elf_External_Verdef *dst)
{
{
  H_PUT_16 (abfd, src->vd_version, dst->vd_version);
  H_PUT_16 (abfd, src->vd_version, dst->vd_version);
  H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
  H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
  H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
  H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
  H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
  H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
  H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
  H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
  H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
  H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
  H_PUT_32 (abfd, src->vd_next, dst->vd_next);
  H_PUT_32 (abfd, src->vd_next, dst->vd_next);
}
}
 
 
/* Swap in a Verdaux structure.  */
/* Swap in a Verdaux structure.  */
 
 
void
void
_bfd_elf_swap_verdaux_in (bfd *abfd,
_bfd_elf_swap_verdaux_in (bfd *abfd,
                          const Elf_External_Verdaux *src,
                          const Elf_External_Verdaux *src,
                          Elf_Internal_Verdaux *dst)
                          Elf_Internal_Verdaux *dst)
{
{
  dst->vda_name = H_GET_32 (abfd, src->vda_name);
  dst->vda_name = H_GET_32 (abfd, src->vda_name);
  dst->vda_next = H_GET_32 (abfd, src->vda_next);
  dst->vda_next = H_GET_32 (abfd, src->vda_next);
}
}
 
 
/* Swap out a Verdaux structure.  */
/* Swap out a Verdaux structure.  */
 
 
void
void
_bfd_elf_swap_verdaux_out (bfd *abfd,
_bfd_elf_swap_verdaux_out (bfd *abfd,
                           const Elf_Internal_Verdaux *src,
                           const Elf_Internal_Verdaux *src,
                           Elf_External_Verdaux *dst)
                           Elf_External_Verdaux *dst)
{
{
  H_PUT_32 (abfd, src->vda_name, dst->vda_name);
  H_PUT_32 (abfd, src->vda_name, dst->vda_name);
  H_PUT_32 (abfd, src->vda_next, dst->vda_next);
  H_PUT_32 (abfd, src->vda_next, dst->vda_next);
}
}
 
 
/* Swap in a Verneed structure.  */
/* Swap in a Verneed structure.  */
 
 
void
void
_bfd_elf_swap_verneed_in (bfd *abfd,
_bfd_elf_swap_verneed_in (bfd *abfd,
                          const Elf_External_Verneed *src,
                          const Elf_External_Verneed *src,
                          Elf_Internal_Verneed *dst)
                          Elf_Internal_Verneed *dst)
{
{
  dst->vn_version = H_GET_16 (abfd, src->vn_version);
  dst->vn_version = H_GET_16 (abfd, src->vn_version);
  dst->vn_cnt     = H_GET_16 (abfd, src->vn_cnt);
  dst->vn_cnt     = H_GET_16 (abfd, src->vn_cnt);
  dst->vn_file    = H_GET_32 (abfd, src->vn_file);
  dst->vn_file    = H_GET_32 (abfd, src->vn_file);
  dst->vn_aux     = H_GET_32 (abfd, src->vn_aux);
  dst->vn_aux     = H_GET_32 (abfd, src->vn_aux);
  dst->vn_next    = H_GET_32 (abfd, src->vn_next);
  dst->vn_next    = H_GET_32 (abfd, src->vn_next);
}
}
 
 
/* Swap out a Verneed structure.  */
/* Swap out a Verneed structure.  */
 
 
void
void
_bfd_elf_swap_verneed_out (bfd *abfd,
_bfd_elf_swap_verneed_out (bfd *abfd,
                           const Elf_Internal_Verneed *src,
                           const Elf_Internal_Verneed *src,
                           Elf_External_Verneed *dst)
                           Elf_External_Verneed *dst)
{
{
  H_PUT_16 (abfd, src->vn_version, dst->vn_version);
  H_PUT_16 (abfd, src->vn_version, dst->vn_version);
  H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
  H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
  H_PUT_32 (abfd, src->vn_file, dst->vn_file);
  H_PUT_32 (abfd, src->vn_file, dst->vn_file);
  H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
  H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
  H_PUT_32 (abfd, src->vn_next, dst->vn_next);
  H_PUT_32 (abfd, src->vn_next, dst->vn_next);
}
}
 
 
/* Swap in a Vernaux structure.  */
/* Swap in a Vernaux structure.  */
 
 
void
void
_bfd_elf_swap_vernaux_in (bfd *abfd,
_bfd_elf_swap_vernaux_in (bfd *abfd,
                          const Elf_External_Vernaux *src,
                          const Elf_External_Vernaux *src,
                          Elf_Internal_Vernaux *dst)
                          Elf_Internal_Vernaux *dst)
{
{
  dst->vna_hash  = H_GET_32 (abfd, src->vna_hash);
  dst->vna_hash  = H_GET_32 (abfd, src->vna_hash);
  dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
  dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
  dst->vna_other = H_GET_16 (abfd, src->vna_other);
  dst->vna_other = H_GET_16 (abfd, src->vna_other);
  dst->vna_name  = H_GET_32 (abfd, src->vna_name);
  dst->vna_name  = H_GET_32 (abfd, src->vna_name);
  dst->vna_next  = H_GET_32 (abfd, src->vna_next);
  dst->vna_next  = H_GET_32 (abfd, src->vna_next);
}
}
 
 
/* Swap out a Vernaux structure.  */
/* Swap out a Vernaux structure.  */
 
 
void
void
_bfd_elf_swap_vernaux_out (bfd *abfd,
_bfd_elf_swap_vernaux_out (bfd *abfd,
                           const Elf_Internal_Vernaux *src,
                           const Elf_Internal_Vernaux *src,
                           Elf_External_Vernaux *dst)
                           Elf_External_Vernaux *dst)
{
{
  H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
  H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
  H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
  H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
  H_PUT_16 (abfd, src->vna_other, dst->vna_other);
  H_PUT_16 (abfd, src->vna_other, dst->vna_other);
  H_PUT_32 (abfd, src->vna_name, dst->vna_name);
  H_PUT_32 (abfd, src->vna_name, dst->vna_name);
  H_PUT_32 (abfd, src->vna_next, dst->vna_next);
  H_PUT_32 (abfd, src->vna_next, dst->vna_next);
}
}
 
 
/* Swap in a Versym structure.  */
/* Swap in a Versym structure.  */
 
 
void
void
_bfd_elf_swap_versym_in (bfd *abfd,
_bfd_elf_swap_versym_in (bfd *abfd,
                         const Elf_External_Versym *src,
                         const Elf_External_Versym *src,
                         Elf_Internal_Versym *dst)
                         Elf_Internal_Versym *dst)
{
{
  dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
  dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
}
}
 
 
/* Swap out a Versym structure.  */
/* Swap out a Versym structure.  */
 
 
void
void
_bfd_elf_swap_versym_out (bfd *abfd,
_bfd_elf_swap_versym_out (bfd *abfd,
                          const Elf_Internal_Versym *src,
                          const Elf_Internal_Versym *src,
                          Elf_External_Versym *dst)
                          Elf_External_Versym *dst)
{
{
  H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
  H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
}
}
 
 
/* Standard ELF hash function.  Do not change this function; you will
/* Standard ELF hash function.  Do not change this function; you will
   cause invalid hash tables to be generated.  */
   cause invalid hash tables to be generated.  */
 
 
unsigned long
unsigned long
bfd_elf_hash (const char *namearg)
bfd_elf_hash (const char *namearg)
{
{
  const unsigned char *name = (const unsigned char *) namearg;
  const unsigned char *name = (const unsigned char *) namearg;
  unsigned long h = 0;
  unsigned long h = 0;
  unsigned long g;
  unsigned long g;
  int ch;
  int ch;
 
 
  while ((ch = *name++) != '\0')
  while ((ch = *name++) != '\0')
    {
    {
      h = (h << 4) + ch;
      h = (h << 4) + ch;
      if ((g = (h & 0xf0000000)) != 0)
      if ((g = (h & 0xf0000000)) != 0)
        {
        {
          h ^= g >> 24;
          h ^= g >> 24;
          /* The ELF ABI says `h &= ~g', but this is equivalent in
          /* The ELF ABI says `h &= ~g', but this is equivalent in
             this case and on some machines one insn instead of two.  */
             this case and on some machines one insn instead of two.  */
          h ^= g;
          h ^= g;
        }
        }
    }
    }
  return h & 0xffffffff;
  return h & 0xffffffff;
}
}
 
 
/* DT_GNU_HASH hash function.  Do not change this function; you will
/* DT_GNU_HASH hash function.  Do not change this function; you will
   cause invalid hash tables to be generated.  */
   cause invalid hash tables to be generated.  */
 
 
unsigned long
unsigned long
bfd_elf_gnu_hash (const char *namearg)
bfd_elf_gnu_hash (const char *namearg)
{
{
  const unsigned char *name = (const unsigned char *) namearg;
  const unsigned char *name = (const unsigned char *) namearg;
  unsigned long h = 5381;
  unsigned long h = 5381;
  unsigned char ch;
  unsigned char ch;
 
 
  while ((ch = *name++) != '\0')
  while ((ch = *name++) != '\0')
    h = (h << 5) + h + ch;
    h = (h << 5) + h + ch;
  return h & 0xffffffff;
  return h & 0xffffffff;
}
}
 
 
/* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
/* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
   the object_id field of an elf_obj_tdata field set to OBJECT_ID.  */
   the object_id field of an elf_obj_tdata field set to OBJECT_ID.  */
bfd_boolean
bfd_boolean
bfd_elf_allocate_object (bfd *abfd,
bfd_elf_allocate_object (bfd *abfd,
                         size_t object_size,
                         size_t object_size,
                         enum elf_object_id object_id)
                         enum elf_object_id object_id)
{
{
  BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
  BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
  abfd->tdata.any = bfd_zalloc (abfd, object_size);
  abfd->tdata.any = bfd_zalloc (abfd, object_size);
  if (abfd->tdata.any == NULL)
  if (abfd->tdata.any == NULL)
    return FALSE;
    return FALSE;
 
 
  elf_object_id (abfd) = object_id;
  elf_object_id (abfd) = object_id;
  elf_program_header_size (abfd) = (bfd_size_type) -1;
  elf_program_header_size (abfd) = (bfd_size_type) -1;
  return TRUE;
  return TRUE;
}
}
 
 
 
 
bfd_boolean
bfd_boolean
bfd_elf_make_generic_object (bfd *abfd)
bfd_elf_make_generic_object (bfd *abfd)
{
{
  return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
  return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
                                  GENERIC_ELF_TDATA);
                                  GENERIC_ELF_TDATA);
}
}
 
 
bfd_boolean
bfd_boolean
bfd_elf_mkcorefile (bfd *abfd)
bfd_elf_mkcorefile (bfd *abfd)
{
{
  /* I think this can be done just like an object file.  */
  /* I think this can be done just like an object file.  */
  return bfd_elf_make_generic_object (abfd);
  return bfd_elf_make_generic_object (abfd);
}
}
 
 
static char *
static char *
bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
{
{
  Elf_Internal_Shdr **i_shdrp;
  Elf_Internal_Shdr **i_shdrp;
  bfd_byte *shstrtab = NULL;
  bfd_byte *shstrtab = NULL;
  file_ptr offset;
  file_ptr offset;
  bfd_size_type shstrtabsize;
  bfd_size_type shstrtabsize;
 
 
  i_shdrp = elf_elfsections (abfd);
  i_shdrp = elf_elfsections (abfd);
  if (i_shdrp == 0
  if (i_shdrp == 0
      || shindex >= elf_numsections (abfd)
      || shindex >= elf_numsections (abfd)
      || i_shdrp[shindex] == 0)
      || i_shdrp[shindex] == 0)
    return NULL;
    return NULL;
 
 
  shstrtab = i_shdrp[shindex]->contents;
  shstrtab = i_shdrp[shindex]->contents;
  if (shstrtab == NULL)
  if (shstrtab == NULL)
    {
    {
      /* No cached one, attempt to read, and cache what we read.  */
      /* No cached one, attempt to read, and cache what we read.  */
      offset = i_shdrp[shindex]->sh_offset;
      offset = i_shdrp[shindex]->sh_offset;
      shstrtabsize = i_shdrp[shindex]->sh_size;
      shstrtabsize = i_shdrp[shindex]->sh_size;
 
 
      /* Allocate and clear an extra byte at the end, to prevent crashes
      /* Allocate and clear an extra byte at the end, to prevent crashes
         in case the string table is not terminated.  */
         in case the string table is not terminated.  */
      if (shstrtabsize + 1 <= 1
      if (shstrtabsize + 1 <= 1
          || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL
          || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL
          || bfd_seek (abfd, offset, SEEK_SET) != 0)
          || bfd_seek (abfd, offset, SEEK_SET) != 0)
        shstrtab = NULL;
        shstrtab = NULL;
      else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
      else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
        {
        {
          if (bfd_get_error () != bfd_error_system_call)
          if (bfd_get_error () != bfd_error_system_call)
            bfd_set_error (bfd_error_file_truncated);
            bfd_set_error (bfd_error_file_truncated);
          shstrtab = NULL;
          shstrtab = NULL;
          /* Once we've failed to read it, make sure we don't keep
          /* Once we've failed to read it, make sure we don't keep
             trying.  Otherwise, we'll keep allocating space for
             trying.  Otherwise, we'll keep allocating space for
             the string table over and over.  */
             the string table over and over.  */
          i_shdrp[shindex]->sh_size = 0;
          i_shdrp[shindex]->sh_size = 0;
        }
        }
      else
      else
        shstrtab[shstrtabsize] = '\0';
        shstrtab[shstrtabsize] = '\0';
      i_shdrp[shindex]->contents = shstrtab;
      i_shdrp[shindex]->contents = shstrtab;
    }
    }
  return (char *) shstrtab;
  return (char *) shstrtab;
}
}
 
 
char *
char *
bfd_elf_string_from_elf_section (bfd *abfd,
bfd_elf_string_from_elf_section (bfd *abfd,
                                 unsigned int shindex,
                                 unsigned int shindex,
                                 unsigned int strindex)
                                 unsigned int strindex)
{
{
  Elf_Internal_Shdr *hdr;
  Elf_Internal_Shdr *hdr;
 
 
  if (strindex == 0)
  if (strindex == 0)
    return "";
    return "";
 
 
  if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
  if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
    return NULL;
    return NULL;
 
 
  hdr = elf_elfsections (abfd)[shindex];
  hdr = elf_elfsections (abfd)[shindex];
 
 
  if (hdr->contents == NULL
  if (hdr->contents == NULL
      && bfd_elf_get_str_section (abfd, shindex) == NULL)
      && bfd_elf_get_str_section (abfd, shindex) == NULL)
    return NULL;
    return NULL;
 
 
  if (strindex >= hdr->sh_size)
  if (strindex >= hdr->sh_size)
    {
    {
      unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
      unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
      (*_bfd_error_handler)
      (*_bfd_error_handler)
        (_("%B: invalid string offset %u >= %lu for section `%s'"),
        (_("%B: invalid string offset %u >= %lu for section `%s'"),
         abfd, strindex, (unsigned long) hdr->sh_size,
         abfd, strindex, (unsigned long) hdr->sh_size,
         (shindex == shstrndx && strindex == hdr->sh_name
         (shindex == shstrndx && strindex == hdr->sh_name
          ? ".shstrtab"
          ? ".shstrtab"
          : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
          : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
      return NULL;
      return NULL;
    }
    }
 
 
  return ((char *) hdr->contents) + strindex;
  return ((char *) hdr->contents) + strindex;
}
}
 
 
/* Read and convert symbols to internal format.
/* Read and convert symbols to internal format.
   SYMCOUNT specifies the number of symbols to read, starting from
   SYMCOUNT specifies the number of symbols to read, starting from
   symbol SYMOFFSET.  If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
   symbol SYMOFFSET.  If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
   are non-NULL, they are used to store the internal symbols, external
   are non-NULL, they are used to store the internal symbols, external
   symbols, and symbol section index extensions, respectively.
   symbols, and symbol section index extensions, respectively.
   Returns a pointer to the internal symbol buffer (malloced if necessary)
   Returns a pointer to the internal symbol buffer (malloced if necessary)
   or NULL if there were no symbols or some kind of problem.  */
   or NULL if there were no symbols or some kind of problem.  */
 
 
Elf_Internal_Sym *
Elf_Internal_Sym *
bfd_elf_get_elf_syms (bfd *ibfd,
bfd_elf_get_elf_syms (bfd *ibfd,
                      Elf_Internal_Shdr *symtab_hdr,
                      Elf_Internal_Shdr *symtab_hdr,
                      size_t symcount,
                      size_t symcount,
                      size_t symoffset,
                      size_t symoffset,
                      Elf_Internal_Sym *intsym_buf,
                      Elf_Internal_Sym *intsym_buf,
                      void *extsym_buf,
                      void *extsym_buf,
                      Elf_External_Sym_Shndx *extshndx_buf)
                      Elf_External_Sym_Shndx *extshndx_buf)
{
{
  Elf_Internal_Shdr *shndx_hdr;
  Elf_Internal_Shdr *shndx_hdr;
  void *alloc_ext;
  void *alloc_ext;
  const bfd_byte *esym;
  const bfd_byte *esym;
  Elf_External_Sym_Shndx *alloc_extshndx;
  Elf_External_Sym_Shndx *alloc_extshndx;
  Elf_External_Sym_Shndx *shndx;
  Elf_External_Sym_Shndx *shndx;
  Elf_Internal_Sym *alloc_intsym;
  Elf_Internal_Sym *alloc_intsym;
  Elf_Internal_Sym *isym;
  Elf_Internal_Sym *isym;
  Elf_Internal_Sym *isymend;
  Elf_Internal_Sym *isymend;
  const struct elf_backend_data *bed;
  const struct elf_backend_data *bed;
  size_t extsym_size;
  size_t extsym_size;
  bfd_size_type amt;
  bfd_size_type amt;
  file_ptr pos;
  file_ptr pos;
 
 
  if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
  if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
    abort ();
    abort ();
 
 
  if (symcount == 0)
  if (symcount == 0)
    return intsym_buf;
    return intsym_buf;
 
 
  /* Normal syms might have section extension entries.  */
  /* Normal syms might have section extension entries.  */
  shndx_hdr = NULL;
  shndx_hdr = NULL;
  if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
  if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
    shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
    shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
 
 
  /* Read the symbols.  */
  /* Read the symbols.  */
  alloc_ext = NULL;
  alloc_ext = NULL;
  alloc_extshndx = NULL;
  alloc_extshndx = NULL;
  alloc_intsym = NULL;
  alloc_intsym = NULL;
  bed = get_elf_backend_data (ibfd);
  bed = get_elf_backend_data (ibfd);
  extsym_size = bed->s->sizeof_sym;
  extsym_size = bed->s->sizeof_sym;
  amt = symcount * extsym_size;
  amt = symcount * extsym_size;
  pos = symtab_hdr->sh_offset + symoffset * extsym_size;
  pos = symtab_hdr->sh_offset + symoffset * extsym_size;
  if (extsym_buf == NULL)
  if (extsym_buf == NULL)
    {
    {
      alloc_ext = bfd_malloc2 (symcount, extsym_size);
      alloc_ext = bfd_malloc2 (symcount, extsym_size);
      extsym_buf = alloc_ext;
      extsym_buf = alloc_ext;
    }
    }
  if (extsym_buf == NULL
  if (extsym_buf == NULL
      || bfd_seek (ibfd, pos, SEEK_SET) != 0
      || bfd_seek (ibfd, pos, SEEK_SET) != 0
      || bfd_bread (extsym_buf, amt, ibfd) != amt)
      || bfd_bread (extsym_buf, amt, ibfd) != amt)
    {
    {
      intsym_buf = NULL;
      intsym_buf = NULL;
      goto out;
      goto out;
    }
    }
 
 
  if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
  if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
    extshndx_buf = NULL;
    extshndx_buf = NULL;
  else
  else
    {
    {
      amt = symcount * sizeof (Elf_External_Sym_Shndx);
      amt = symcount * sizeof (Elf_External_Sym_Shndx);
      pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
      pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
      if (extshndx_buf == NULL)
      if (extshndx_buf == NULL)
        {
        {
          alloc_extshndx = (Elf_External_Sym_Shndx *)
          alloc_extshndx = (Elf_External_Sym_Shndx *)
              bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
              bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
          extshndx_buf = alloc_extshndx;
          extshndx_buf = alloc_extshndx;
        }
        }
      if (extshndx_buf == NULL
      if (extshndx_buf == NULL
          || bfd_seek (ibfd, pos, SEEK_SET) != 0
          || bfd_seek (ibfd, pos, SEEK_SET) != 0
          || bfd_bread (extshndx_buf, amt, ibfd) != amt)
          || bfd_bread (extshndx_buf, amt, ibfd) != amt)
        {
        {
          intsym_buf = NULL;
          intsym_buf = NULL;
          goto out;
          goto out;
        }
        }
    }
    }
 
 
  if (intsym_buf == NULL)
  if (intsym_buf == NULL)
    {
    {
      alloc_intsym = (Elf_Internal_Sym *)
      alloc_intsym = (Elf_Internal_Sym *)
          bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
          bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
      intsym_buf = alloc_intsym;
      intsym_buf = alloc_intsym;
      if (intsym_buf == NULL)
      if (intsym_buf == NULL)
        goto out;
        goto out;
    }
    }
 
 
  /* Convert the symbols to internal form.  */
  /* Convert the symbols to internal form.  */
  isymend = intsym_buf + symcount;
  isymend = intsym_buf + symcount;
  for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
  for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
           shndx = extshndx_buf;
           shndx = extshndx_buf;
       isym < isymend;
       isym < isymend;
       esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
       esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
    if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
    if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
      {
      {
        symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
        symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
        (*_bfd_error_handler) (_("%B symbol number %lu references "
        (*_bfd_error_handler) (_("%B symbol number %lu references "
                                 "nonexistent SHT_SYMTAB_SHNDX section"),
                                 "nonexistent SHT_SYMTAB_SHNDX section"),
                               ibfd, (unsigned long) symoffset);
                               ibfd, (unsigned long) symoffset);
        if (alloc_intsym != NULL)
        if (alloc_intsym != NULL)
          free (alloc_intsym);
          free (alloc_intsym);
        intsym_buf = NULL;
        intsym_buf = NULL;
        goto out;
        goto out;
      }
      }
 
 
 out:
 out:
  if (alloc_ext != NULL)
  if (alloc_ext != NULL)
    free (alloc_ext);
    free (alloc_ext);
  if (alloc_extshndx != NULL)
  if (alloc_extshndx != NULL)
    free (alloc_extshndx);
    free (alloc_extshndx);
 
 
  return intsym_buf;
  return intsym_buf;
}
}
 
 
/* Look up a symbol name.  */
/* Look up a symbol name.  */
const char *
const char *
bfd_elf_sym_name (bfd *abfd,
bfd_elf_sym_name (bfd *abfd,
                  Elf_Internal_Shdr *symtab_hdr,
                  Elf_Internal_Shdr *symtab_hdr,
                  Elf_Internal_Sym *isym,
                  Elf_Internal_Sym *isym,
                  asection *sym_sec)
                  asection *sym_sec)
{
{
  const char *name;
  const char *name;
  unsigned int iname = isym->st_name;
  unsigned int iname = isym->st_name;
  unsigned int shindex = symtab_hdr->sh_link;
  unsigned int shindex = symtab_hdr->sh_link;
 
 
  if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
  if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
      /* Check for a bogus st_shndx to avoid crashing.  */
      /* Check for a bogus st_shndx to avoid crashing.  */
      && isym->st_shndx < elf_numsections (abfd))
      && isym->st_shndx < elf_numsections (abfd))
    {
    {
      iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
      iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
      shindex = elf_elfheader (abfd)->e_shstrndx;
      shindex = elf_elfheader (abfd)->e_shstrndx;
    }
    }
 
 
  name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
  name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
  if (name == NULL)
  if (name == NULL)
    name = "(null)";
    name = "(null)";
  else if (sym_sec && *name == '\0')
  else if (sym_sec && *name == '\0')
    name = bfd_section_name (abfd, sym_sec);
    name = bfd_section_name (abfd, sym_sec);
 
 
  return name;
  return name;
}
}
 
 
/* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
/* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
   sections.  The first element is the flags, the rest are section
   sections.  The first element is the flags, the rest are section
   pointers.  */
   pointers.  */
 
 
typedef union elf_internal_group {
typedef union elf_internal_group {
  Elf_Internal_Shdr *shdr;
  Elf_Internal_Shdr *shdr;
  unsigned int flags;
  unsigned int flags;
} Elf_Internal_Group;
} Elf_Internal_Group;
 
 
/* Return the name of the group signature symbol.  Why isn't the
/* Return the name of the group signature symbol.  Why isn't the
   signature just a string?  */
   signature just a string?  */
 
 
static const char *
static const char *
group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
{
{
  Elf_Internal_Shdr *hdr;
  Elf_Internal_Shdr *hdr;
  unsigned char esym[sizeof (Elf64_External_Sym)];
  unsigned char esym[sizeof (Elf64_External_Sym)];
  Elf_External_Sym_Shndx eshndx;
  Elf_External_Sym_Shndx eshndx;
  Elf_Internal_Sym isym;
  Elf_Internal_Sym isym;
 
 
  /* First we need to ensure the symbol table is available.  Make sure
  /* First we need to ensure the symbol table is available.  Make sure
     that it is a symbol table section.  */
     that it is a symbol table section.  */
  if (ghdr->sh_link >= elf_numsections (abfd))
  if (ghdr->sh_link >= elf_numsections (abfd))
    return NULL;
    return NULL;
  hdr = elf_elfsections (abfd) [ghdr->sh_link];
  hdr = elf_elfsections (abfd) [ghdr->sh_link];
  if (hdr->sh_type != SHT_SYMTAB
  if (hdr->sh_type != SHT_SYMTAB
      || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
      || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
    return NULL;
    return NULL;
 
 
  /* Go read the symbol.  */
  /* Go read the symbol.  */
  hdr = &elf_tdata (abfd)->symtab_hdr;
  hdr = &elf_tdata (abfd)->symtab_hdr;
  if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
  if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
                            &isym, esym, &eshndx) == NULL)
                            &isym, esym, &eshndx) == NULL)
    return NULL;
    return NULL;
 
 
  return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
  return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
}
}
 
 
/* Set next_in_group list pointer, and group name for NEWSECT.  */
/* Set next_in_group list pointer, and group name for NEWSECT.  */
 
 
static bfd_boolean
static bfd_boolean
setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
{
{
  unsigned int num_group = elf_tdata (abfd)->num_group;
  unsigned int num_group = elf_tdata (abfd)->num_group;
 
 
  /* If num_group is zero, read in all SHT_GROUP sections.  The count
  /* If num_group is zero, read in all SHT_GROUP sections.  The count
     is set to -1 if there are no SHT_GROUP sections.  */
     is set to -1 if there are no SHT_GROUP sections.  */
  if (num_group == 0)
  if (num_group == 0)
    {
    {
      unsigned int i, shnum;
      unsigned int i, shnum;
 
 
      /* First count the number of groups.  If we have a SHT_GROUP
      /* First count the number of groups.  If we have a SHT_GROUP
         section with just a flag word (ie. sh_size is 4), ignore it.  */
         section with just a flag word (ie. sh_size is 4), ignore it.  */
      shnum = elf_numsections (abfd);
      shnum = elf_numsections (abfd);
      num_group = 0;
      num_group = 0;
 
 
#define IS_VALID_GROUP_SECTION_HEADER(shdr)             \
#define IS_VALID_GROUP_SECTION_HEADER(shdr)             \
        (   (shdr)->sh_type == SHT_GROUP                \
        (   (shdr)->sh_type == SHT_GROUP                \
         && (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE)     \
         && (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE)     \
         && (shdr)->sh_entsize == GRP_ENTRY_SIZE        \
         && (shdr)->sh_entsize == GRP_ENTRY_SIZE        \
         && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
         && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
 
 
      for (i = 0; i < shnum; i++)
      for (i = 0; i < shnum; i++)
        {
        {
          Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
          Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
 
 
          if (IS_VALID_GROUP_SECTION_HEADER (shdr))
          if (IS_VALID_GROUP_SECTION_HEADER (shdr))
            num_group += 1;
            num_group += 1;
        }
        }
 
 
      if (num_group == 0)
      if (num_group == 0)
        {
        {
          num_group = (unsigned) -1;
          num_group = (unsigned) -1;
          elf_tdata (abfd)->num_group = num_group;
          elf_tdata (abfd)->num_group = num_group;
        }
        }
      else
      else
        {
        {
          /* We keep a list of elf section headers for group sections,
          /* We keep a list of elf section headers for group sections,
             so we can find them quickly.  */
             so we can find them quickly.  */
          bfd_size_type amt;
          bfd_size_type amt;
 
 
          elf_tdata (abfd)->num_group = num_group;
          elf_tdata (abfd)->num_group = num_group;
          elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
          elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
              bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
              bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
          if (elf_tdata (abfd)->group_sect_ptr == NULL)
          if (elf_tdata (abfd)->group_sect_ptr == NULL)
            return FALSE;
            return FALSE;
 
 
          num_group = 0;
          num_group = 0;
          for (i = 0; i < shnum; i++)
          for (i = 0; i < shnum; i++)
            {
            {
              Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
              Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
 
 
              if (IS_VALID_GROUP_SECTION_HEADER (shdr))
              if (IS_VALID_GROUP_SECTION_HEADER (shdr))
                {
                {
                  unsigned char *src;
                  unsigned char *src;
                  Elf_Internal_Group *dest;
                  Elf_Internal_Group *dest;
 
 
                  /* Add to list of sections.  */
                  /* Add to list of sections.  */
                  elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
                  elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
                  num_group += 1;
                  num_group += 1;
 
 
                  /* Read the raw contents.  */
                  /* Read the raw contents.  */
                  BFD_ASSERT (sizeof (*dest) >= 4);
                  BFD_ASSERT (sizeof (*dest) >= 4);
                  amt = shdr->sh_size * sizeof (*dest) / 4;
                  amt = shdr->sh_size * sizeof (*dest) / 4;
                  shdr->contents = (unsigned char *)
                  shdr->contents = (unsigned char *)
                      bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
                      bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
                  /* PR binutils/4110: Handle corrupt group headers.  */
                  /* PR binutils/4110: Handle corrupt group headers.  */
                  if (shdr->contents == NULL)
                  if (shdr->contents == NULL)
                    {
                    {
                      _bfd_error_handler
                      _bfd_error_handler
                        (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
                        (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
                      bfd_set_error (bfd_error_bad_value);
                      bfd_set_error (bfd_error_bad_value);
                      return FALSE;
                      return FALSE;
                    }
                    }
 
 
                  memset (shdr->contents, 0, amt);
                  memset (shdr->contents, 0, amt);
 
 
                  if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
                  if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
                      || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
                      || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
                          != shdr->sh_size))
                          != shdr->sh_size))
                    return FALSE;
                    return FALSE;
 
 
                  /* Translate raw contents, a flag word followed by an
                  /* Translate raw contents, a flag word followed by an
                     array of elf section indices all in target byte order,
                     array of elf section indices all in target byte order,
                     to the flag word followed by an array of elf section
                     to the flag word followed by an array of elf section
                     pointers.  */
                     pointers.  */
                  src = shdr->contents + shdr->sh_size;
                  src = shdr->contents + shdr->sh_size;
                  dest = (Elf_Internal_Group *) (shdr->contents + amt);
                  dest = (Elf_Internal_Group *) (shdr->contents + amt);
                  while (1)
                  while (1)
                    {
                    {
                      unsigned int idx;
                      unsigned int idx;
 
 
                      src -= 4;
                      src -= 4;
                      --dest;
                      --dest;
                      idx = H_GET_32 (abfd, src);
                      idx = H_GET_32 (abfd, src);
                      if (src == shdr->contents)
                      if (src == shdr->contents)
                        {
                        {
                          dest->flags = idx;
                          dest->flags = idx;
                          if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
                          if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
                            shdr->bfd_section->flags
                            shdr->bfd_section->flags
                              |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
                              |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
                          break;
                          break;
                        }
                        }
                      if (idx >= shnum)
                      if (idx >= shnum)
                        {
                        {
                          ((*_bfd_error_handler)
                          ((*_bfd_error_handler)
                           (_("%B: invalid SHT_GROUP entry"), abfd));
                           (_("%B: invalid SHT_GROUP entry"), abfd));
                          idx = 0;
                          idx = 0;
                        }
                        }
                      dest->shdr = elf_elfsections (abfd)[idx];
                      dest->shdr = elf_elfsections (abfd)[idx];
                    }
                    }
                }
                }
            }
            }
        }
        }
    }
    }
 
 
  if (num_group != (unsigned) -1)
  if (num_group != (unsigned) -1)
    {
    {
      unsigned int i;
      unsigned int i;
 
 
      for (i = 0; i < num_group; i++)
      for (i = 0; i < num_group; i++)
        {
        {
          Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
          Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
          Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
          Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
          unsigned int n_elt = shdr->sh_size / 4;
          unsigned int n_elt = shdr->sh_size / 4;
 
 
          /* Look through this group's sections to see if current
          /* Look through this group's sections to see if current
             section is a member.  */
             section is a member.  */
          while (--n_elt != 0)
          while (--n_elt != 0)
            if ((++idx)->shdr == hdr)
            if ((++idx)->shdr == hdr)
              {
              {
                asection *s = NULL;
                asection *s = NULL;
 
 
                /* We are a member of this group.  Go looking through
                /* We are a member of this group.  Go looking through
                   other members to see if any others are linked via
                   other members to see if any others are linked via
                   next_in_group.  */
                   next_in_group.  */
                idx = (Elf_Internal_Group *) shdr->contents;
                idx = (Elf_Internal_Group *) shdr->contents;
                n_elt = shdr->sh_size / 4;
                n_elt = shdr->sh_size / 4;
                while (--n_elt != 0)
                while (--n_elt != 0)
                  if ((s = (++idx)->shdr->bfd_section) != NULL
                  if ((s = (++idx)->shdr->bfd_section) != NULL
                      && elf_next_in_group (s) != NULL)
                      && elf_next_in_group (s) != NULL)
                    break;
                    break;
                if (n_elt != 0)
                if (n_elt != 0)
                  {
                  {
                    /* Snarf the group name from other member, and
                    /* Snarf the group name from other member, and
                       insert current section in circular list.  */
                       insert current section in circular list.  */
                    elf_group_name (newsect) = elf_group_name (s);
                    elf_group_name (newsect) = elf_group_name (s);
                    elf_next_in_group (newsect) = elf_next_in_group (s);
                    elf_next_in_group (newsect) = elf_next_in_group (s);
                    elf_next_in_group (s) = newsect;
                    elf_next_in_group (s) = newsect;
                  }
                  }
                else
                else
                  {
                  {
                    const char *gname;
                    const char *gname;
 
 
                    gname = group_signature (abfd, shdr);
                    gname = group_signature (abfd, shdr);
                    if (gname == NULL)
                    if (gname == NULL)
                      return FALSE;
                      return FALSE;
                    elf_group_name (newsect) = gname;
                    elf_group_name (newsect) = gname;
 
 
                    /* Start a circular list with one element.  */
                    /* Start a circular list with one element.  */
                    elf_next_in_group (newsect) = newsect;
                    elf_next_in_group (newsect) = newsect;
                  }
                  }
 
 
                /* If the group section has been created, point to the
                /* If the group section has been created, point to the
                   new member.  */
                   new member.  */
                if (shdr->bfd_section != NULL)
                if (shdr->bfd_section != NULL)
                  elf_next_in_group (shdr->bfd_section) = newsect;
                  elf_next_in_group (shdr->bfd_section) = newsect;
 
 
                i = num_group - 1;
                i = num_group - 1;
                break;
                break;
              }
              }
        }
        }
    }
    }
 
 
  if (elf_group_name (newsect) == NULL)
  if (elf_group_name (newsect) == NULL)
    {
    {
      (*_bfd_error_handler) (_("%B: no group info for section %A"),
      (*_bfd_error_handler) (_("%B: no group info for section %A"),
                             abfd, newsect);
                             abfd, newsect);
    }
    }
  return TRUE;
  return TRUE;
}
}
 
 
bfd_boolean
bfd_boolean
_bfd_elf_setup_sections (bfd *abfd)
_bfd_elf_setup_sections (bfd *abfd)
{
{
  unsigned int i;
  unsigned int i;
  unsigned int num_group = elf_tdata (abfd)->num_group;
  unsigned int num_group = elf_tdata (abfd)->num_group;
  bfd_boolean result = TRUE;
  bfd_boolean result = TRUE;
  asection *s;
  asection *s;
 
 
  /* Process SHF_LINK_ORDER.  */
  /* Process SHF_LINK_ORDER.  */
  for (s = abfd->sections; s != NULL; s = s->next)
  for (s = abfd->sections; s != NULL; s = s->next)
    {
    {
      Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
      Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
      if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
      if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
        {
        {
          unsigned int elfsec = this_hdr->sh_link;
          unsigned int elfsec = this_hdr->sh_link;
          /* FIXME: The old Intel compiler and old strip/objcopy may
          /* FIXME: The old Intel compiler and old strip/objcopy may
             not set the sh_link or sh_info fields.  Hence we could
             not set the sh_link or sh_info fields.  Hence we could
             get the situation where elfsec is 0.  */
             get the situation where elfsec is 0.  */
          if (elfsec == 0)
          if (elfsec == 0)
            {
            {
              const struct elf_backend_data *bed = get_elf_backend_data (abfd);
              const struct elf_backend_data *bed = get_elf_backend_data (abfd);
              if (bed->link_order_error_handler)
              if (bed->link_order_error_handler)
                bed->link_order_error_handler
                bed->link_order_error_handler
                  (_("%B: warning: sh_link not set for section `%A'"),
                  (_("%B: warning: sh_link not set for section `%A'"),
                   abfd, s);
                   abfd, s);
            }
            }
          else
          else
            {
            {
              asection *link = NULL;
              asection *link = NULL;
 
 
              if (elfsec < elf_numsections (abfd))
              if (elfsec < elf_numsections (abfd))
                {
                {
                  this_hdr = elf_elfsections (abfd)[elfsec];
                  this_hdr = elf_elfsections (abfd)[elfsec];
                  link = this_hdr->bfd_section;
                  link = this_hdr->bfd_section;
                }
                }
 
 
              /* PR 1991, 2008:
              /* PR 1991, 2008:
                 Some strip/objcopy may leave an incorrect value in
                 Some strip/objcopy may leave an incorrect value in
                 sh_link.  We don't want to proceed.  */
                 sh_link.  We don't want to proceed.  */
              if (link == NULL)
              if (link == NULL)
                {
                {
                  (*_bfd_error_handler)
                  (*_bfd_error_handler)
                    (_("%B: sh_link [%d] in section `%A' is incorrect"),
                    (_("%B: sh_link [%d] in section `%A' is incorrect"),
                     s->owner, s, elfsec);
                     s->owner, s, elfsec);
                  result = FALSE;
                  result = FALSE;
                }
                }
 
 
              elf_linked_to_section (s) = link;
              elf_linked_to_section (s) = link;
            }
            }
        }
        }
    }
    }
 
 
  /* Process section groups.  */
  /* Process section groups.  */
  if (num_group == (unsigned) -1)
  if (num_group == (unsigned) -1)
    return result;
    return result;
 
 
  for (i = 0; i < num_group; i++)
  for (i = 0; i < num_group; i++)
    {
    {
      Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
      Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
      Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
      Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
      unsigned int n_elt = shdr->sh_size / 4;
      unsigned int n_elt = shdr->sh_size / 4;
 
 
      while (--n_elt != 0)
      while (--n_elt != 0)
        if ((++idx)->shdr->bfd_section)
        if ((++idx)->shdr->bfd_section)
          elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
          elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
        else if (idx->shdr->sh_type == SHT_RELA
        else if (idx->shdr->sh_type == SHT_RELA
                 || idx->shdr->sh_type == SHT_REL)
                 || idx->shdr->sh_type == SHT_REL)
          /* We won't include relocation sections in section groups in
          /* We won't include relocation sections in section groups in
             output object files. We adjust the group section size here
             output object files. We adjust the group section size here
             so that relocatable link will work correctly when
             so that relocatable link will work correctly when
             relocation sections are in section group in input object
             relocation sections are in section group in input object
             files.  */
             files.  */
          shdr->bfd_section->size -= 4;
          shdr->bfd_section->size -= 4;
        else
        else
          {
          {
            /* There are some unknown sections in the group.  */
            /* There are some unknown sections in the group.  */
            (*_bfd_error_handler)
            (*_bfd_error_handler)
              (_("%B: unknown [%d] section `%s' in group [%s]"),
              (_("%B: unknown [%d] section `%s' in group [%s]"),
               abfd,
               abfd,
               (unsigned int) idx->shdr->sh_type,
               (unsigned int) idx->shdr->sh_type,
               bfd_elf_string_from_elf_section (abfd,
               bfd_elf_string_from_elf_section (abfd,
                                                (elf_elfheader (abfd)
                                                (elf_elfheader (abfd)
                                                 ->e_shstrndx),
                                                 ->e_shstrndx),
                                                idx->shdr->sh_name),
                                                idx->shdr->sh_name),
               shdr->bfd_section->name);
               shdr->bfd_section->name);
            result = FALSE;
            result = FALSE;
          }
          }
    }
    }
  return result;
  return result;
}
}
 
 
bfd_boolean
bfd_boolean
bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
{
{
  return elf_next_in_group (sec) != NULL;
  return elf_next_in_group (sec) != NULL;
}
}
 
 
/* Make a BFD section from an ELF section.  We store a pointer to the
/* Make a BFD section from an ELF section.  We store a pointer to the
   BFD section in the bfd_section field of the header.  */
   BFD section in the bfd_section field of the header.  */
 
 
bfd_boolean
bfd_boolean
_bfd_elf_make_section_from_shdr (bfd *abfd,
_bfd_elf_make_section_from_shdr (bfd *abfd,
                                 Elf_Internal_Shdr *hdr,
                                 Elf_Internal_Shdr *hdr,
                                 const char *name,
                                 const char *name,
                                 int shindex)
                                 int shindex)
{
{
  asection *newsect;
  asection *newsect;
  flagword flags;
  flagword flags;
  const struct elf_backend_data *bed;
  const struct elf_backend_data *bed;
 
 
  if (hdr->bfd_section != NULL)
  if (hdr->bfd_section != NULL)
    {
    {
      BFD_ASSERT (strcmp (name,
      BFD_ASSERT (strcmp (name,
                          bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
                          bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
      return TRUE;
      return TRUE;
    }
    }
 
 
  newsect = bfd_make_section_anyway (abfd, name);
  newsect = bfd_make_section_anyway (abfd, name);
  if (newsect == NULL)
  if (newsect == NULL)
    return FALSE;
    return FALSE;
 
 
  hdr->bfd_section = newsect;
  hdr->bfd_section = newsect;
  elf_section_data (newsect)->this_hdr = *hdr;
  elf_section_data (newsect)->this_hdr = *hdr;
  elf_section_data (newsect)->this_idx = shindex;
  elf_section_data (newsect)->this_idx = shindex;
 
 
  /* Always use the real type/flags.  */
  /* Always use the real type/flags.  */
  elf_section_type (newsect) = hdr->sh_type;
  elf_section_type (newsect) = hdr->sh_type;
  elf_section_flags (newsect) = hdr->sh_flags;
  elf_section_flags (newsect) = hdr->sh_flags;
 
 
  newsect->filepos = hdr->sh_offset;
  newsect->filepos = hdr->sh_offset;
 
 
  if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
  if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
      || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
      || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
      || ! bfd_set_section_alignment (abfd, newsect,
      || ! bfd_set_section_alignment (abfd, newsect,
                                      bfd_log2 (hdr->sh_addralign)))
                                      bfd_log2 (hdr->sh_addralign)))
    return FALSE;
    return FALSE;
 
 
  flags = SEC_NO_FLAGS;
  flags = SEC_NO_FLAGS;
  if (hdr->sh_type != SHT_NOBITS)
  if (hdr->sh_type != SHT_NOBITS)
    flags |= SEC_HAS_CONTENTS;
    flags |= SEC_HAS_CONTENTS;
  if (hdr->sh_type == SHT_GROUP)
  if (hdr->sh_type == SHT_GROUP)
    flags |= SEC_GROUP | SEC_EXCLUDE;
    flags |= SEC_GROUP | SEC_EXCLUDE;
  if ((hdr->sh_flags & SHF_ALLOC) != 0)
  if ((hdr->sh_flags & SHF_ALLOC) != 0)
    {
    {
      flags |= SEC_ALLOC;
      flags |= SEC_ALLOC;
      if (hdr->sh_type != SHT_NOBITS)
      if (hdr->sh_type != SHT_NOBITS)
        flags |= SEC_LOAD;
        flags |= SEC_LOAD;
    }
    }
  if ((hdr->sh_flags & SHF_WRITE) == 0)
  if ((hdr->sh_flags & SHF_WRITE) == 0)
    flags |= SEC_READONLY;
    flags |= SEC_READONLY;
  if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
  if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
    flags |= SEC_CODE;
    flags |= SEC_CODE;
  else if ((flags & SEC_LOAD) != 0)
  else if ((flags & SEC_LOAD) != 0)
    flags |= SEC_DATA;
    flags |= SEC_DATA;
  if ((hdr->sh_flags & SHF_MERGE) != 0)
  if ((hdr->sh_flags & SHF_MERGE) != 0)
    {
    {
      flags |= SEC_MERGE;
      flags |= SEC_MERGE;
      newsect->entsize = hdr->sh_entsize;
      newsect->entsize = hdr->sh_entsize;
      if ((hdr->sh_flags & SHF_STRINGS) != 0)
      if ((hdr->sh_flags & SHF_STRINGS) != 0)
        flags |= SEC_STRINGS;
        flags |= SEC_STRINGS;
    }
    }
  if (hdr->sh_flags & SHF_GROUP)
  if (hdr->sh_flags & SHF_GROUP)
    if (!setup_group (abfd, hdr, newsect))
    if (!setup_group (abfd, hdr, newsect))
      return FALSE;
      return FALSE;
  if ((hdr->sh_flags & SHF_TLS) != 0)
  if ((hdr->sh_flags & SHF_TLS) != 0)
    flags |= SEC_THREAD_LOCAL;
    flags |= SEC_THREAD_LOCAL;
 
 
  if ((flags & SEC_ALLOC) == 0)
  if ((flags & SEC_ALLOC) == 0)
    {
    {
      /* The debugging sections appear to be recognized only by name,
      /* The debugging sections appear to be recognized only by name,
         not any sort of flag.  Their SEC_ALLOC bits are cleared.  */
         not any sort of flag.  Their SEC_ALLOC bits are cleared.  */
      static const struct
      static const struct
        {
        {
          const char *name;
          const char *name;
          int len;
          int len;
        } debug_sections [] =
        } debug_sections [] =
        {
        {
          { STRING_COMMA_LEN ("debug") },       /* 'd' */
          { STRING_COMMA_LEN ("debug") },       /* 'd' */
          { NULL,                0  },   /* 'e' */
          { NULL,                0  },   /* 'e' */
          { NULL,                0  },   /* 'f' */
          { NULL,                0  },   /* 'f' */
          { STRING_COMMA_LEN ("gnu.linkonce.wi.") },    /* 'g' */
          { STRING_COMMA_LEN ("gnu.linkonce.wi.") },    /* 'g' */
          { NULL,                0  },   /* 'h' */
          { NULL,                0  },   /* 'h' */
          { NULL,                0  },   /* 'i' */
          { NULL,                0  },   /* 'i' */
          { NULL,                0  },   /* 'j' */
          { NULL,                0  },   /* 'j' */
          { NULL,                0  },   /* 'k' */
          { NULL,                0  },   /* 'k' */
          { STRING_COMMA_LEN ("line") },        /* 'l' */
          { STRING_COMMA_LEN ("line") },        /* 'l' */
          { NULL,                0  },   /* 'm' */
          { NULL,                0  },   /* 'm' */
          { NULL,                0  },   /* 'n' */
          { NULL,                0  },   /* 'n' */
          { NULL,                0  },   /* 'o' */
          { NULL,                0  },   /* 'o' */
          { NULL,                0  },   /* 'p' */
          { NULL,                0  },   /* 'p' */
          { NULL,                0  },   /* 'q' */
          { NULL,                0  },   /* 'q' */
          { NULL,                0  },   /* 'r' */
          { NULL,                0  },   /* 'r' */
          { STRING_COMMA_LEN ("stab") },        /* 's' */
          { STRING_COMMA_LEN ("stab") },        /* 's' */
          { NULL,                0  },   /* 't' */
          { NULL,                0  },   /* 't' */
          { NULL,                0  },   /* 'u' */
          { NULL,                0  },   /* 'u' */
          { NULL,                0  },   /* 'v' */
          { NULL,                0  },   /* 'v' */
          { NULL,                0  },   /* 'w' */
          { NULL,                0  },   /* 'w' */
          { NULL,                0  },   /* 'x' */
          { NULL,                0  },   /* 'x' */
          { NULL,                0  },   /* 'y' */
          { NULL,                0  },   /* 'y' */
          { STRING_COMMA_LEN ("zdebug") }       /* 'z' */
          { STRING_COMMA_LEN ("zdebug") }       /* 'z' */
        };
        };
 
 
      if (name [0] == '.')
      if (name [0] == '.')
        {
        {
          int i = name [1] - 'd';
          int i = name [1] - 'd';
          if (i >= 0
          if (i >= 0
              && i < (int) ARRAY_SIZE (debug_sections)
              && i < (int) ARRAY_SIZE (debug_sections)
              && debug_sections [i].name != NULL
              && debug_sections [i].name != NULL
              && strncmp (&name [1], debug_sections [i].name,
              && strncmp (&name [1], debug_sections [i].name,
                          debug_sections [i].len) == 0)
                          debug_sections [i].len) == 0)
            flags |= SEC_DEBUGGING;
            flags |= SEC_DEBUGGING;
        }
        }
    }
    }
 
 
  /* As a GNU extension, if the name begins with .gnu.linkonce, we
  /* As a GNU extension, if the name begins with .gnu.linkonce, we
     only link a single copy of the section.  This is used to support
     only link a single copy of the section.  This is used to support
     g++.  g++ will emit each template expansion in its own section.
     g++.  g++ will emit each template expansion in its own section.
     The symbols will be defined as weak, so that multiple definitions
     The symbols will be defined as weak, so that multiple definitions
     are permitted.  The GNU linker extension is to actually discard
     are permitted.  The GNU linker extension is to actually discard
     all but one of the sections.  */
     all but one of the sections.  */
  if (CONST_STRNEQ (name, ".gnu.linkonce")
  if (CONST_STRNEQ (name, ".gnu.linkonce")
      && elf_next_in_group (newsect) == NULL)
      && elf_next_in_group (newsect) == NULL)
    flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
    flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
 
 
  bed = get_elf_backend_data (abfd);
  bed = get_elf_backend_data (abfd);
  if (bed->elf_backend_section_flags)
  if (bed->elf_backend_section_flags)
    if (! bed->elf_backend_section_flags (&flags, hdr))
    if (! bed->elf_backend_section_flags (&flags, hdr))
      return FALSE;
      return FALSE;
 
 
  if (! bfd_set_section_flags (abfd, newsect, flags))
  if (! bfd_set_section_flags (abfd, newsect, flags))
    return FALSE;
    return FALSE;
 
 
  /* We do not parse the PT_NOTE segments as we are interested even in the
  /* We do not parse the PT_NOTE segments as we are interested even in the
     separate debug info files which may have the segments offsets corrupted.
     separate debug info files which may have the segments offsets corrupted.
     PT_NOTEs from the core files are currently not parsed using BFD.  */
     PT_NOTEs from the core files are currently not parsed using BFD.  */
  if (hdr->sh_type == SHT_NOTE)
  if (hdr->sh_type == SHT_NOTE)
    {
    {
      bfd_byte *contents;
      bfd_byte *contents;
 
 
      if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
      if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
        return FALSE;
        return FALSE;
 
 
      elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
      elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
      free (contents);
      free (contents);
    }
    }
 
 
  if ((flags & SEC_ALLOC) != 0)
  if ((flags & SEC_ALLOC) != 0)
    {
    {
      Elf_Internal_Phdr *phdr;
      Elf_Internal_Phdr *phdr;
      unsigned int i, nload;
      unsigned int i, nload;
 
 
      /* Some ELF linkers produce binaries with all the program header
      /* Some ELF linkers produce binaries with all the program header
         p_paddr fields zero.  If we have such a binary with more than
         p_paddr fields zero.  If we have such a binary with more than
         one PT_LOAD header, then leave the section lma equal to vma
         one PT_LOAD header, then leave the section lma equal to vma
         so that we don't create sections with overlapping lma.  */
         so that we don't create sections with overlapping lma.  */
      phdr = elf_tdata (abfd)->phdr;
      phdr = elf_tdata (abfd)->phdr;
      for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
      for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
        if (phdr->p_paddr != 0)
        if (phdr->p_paddr != 0)
          break;
          break;
        else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
        else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
          ++nload;
          ++nload;
      if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
      if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
        return TRUE;
        return TRUE;
 
 
      phdr = elf_tdata (abfd)->phdr;
      phdr = elf_tdata (abfd)->phdr;
      for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
      for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
        {
        {
          if (phdr->p_type == PT_LOAD
          if (phdr->p_type == PT_LOAD
              && ELF_IS_SECTION_IN_SEGMENT (hdr, phdr))
              && ELF_IS_SECTION_IN_SEGMENT (hdr, phdr))
            {
            {
              if ((flags & SEC_LOAD) == 0)
              if ((flags & SEC_LOAD) == 0)
                newsect->lma = (phdr->p_paddr
                newsect->lma = (phdr->p_paddr
                                + hdr->sh_addr - phdr->p_vaddr);
                                + hdr->sh_addr - phdr->p_vaddr);
              else
              else
                /* We used to use the same adjustment for SEC_LOAD
                /* We used to use the same adjustment for SEC_LOAD
                   sections, but that doesn't work if the segment
                   sections, but that doesn't work if the segment
                   is packed with code from multiple VMAs.
                   is packed with code from multiple VMAs.
                   Instead we calculate the section LMA based on
                   Instead we calculate the section LMA based on
                   the segment LMA.  It is assumed that the
                   the segment LMA.  It is assumed that the
                   segment will contain sections with contiguous
                   segment will contain sections with contiguous
                   LMAs, even if the VMAs are not.  */
                   LMAs, even if the VMAs are not.  */
                newsect->lma = (phdr->p_paddr
                newsect->lma = (phdr->p_paddr
                                + hdr->sh_offset - phdr->p_offset);
                                + hdr->sh_offset - phdr->p_offset);
 
 
              /* With contiguous segments, we can't tell from file
              /* With contiguous segments, we can't tell from file
                 offsets whether a section with zero size should
                 offsets whether a section with zero size should
                 be placed at the end of one segment or the
                 be placed at the end of one segment or the
                 beginning of the next.  Decide based on vaddr.  */
                 beginning of the next.  Decide based on vaddr.  */
              if (hdr->sh_addr >= phdr->p_vaddr
              if (hdr->sh_addr >= phdr->p_vaddr
                  && (hdr->sh_addr + hdr->sh_size
                  && (hdr->sh_addr + hdr->sh_size
                      <= phdr->p_vaddr + phdr->p_memsz))
                      <= phdr->p_vaddr + phdr->p_memsz))
                break;
                break;
            }
            }
        }
        }
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
const char *const bfd_elf_section_type_names[] = {
const char *const bfd_elf_section_type_names[] = {
  "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
  "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
  "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
  "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
  "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
  "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
};
};
 
 
/* ELF relocs are against symbols.  If we are producing relocatable
/* ELF relocs are against symbols.  If we are producing relocatable
   output, and the reloc is against an external symbol, and nothing
   output, and the reloc is against an external symbol, and nothing
   has given us any additional addend, the resulting reloc will also
   has given us any additional addend, the resulting reloc will also
   be against the same symbol.  In such a case, we don't want to
   be against the same symbol.  In such a case, we don't want to
   change anything about the way the reloc is handled, since it will
   change anything about the way the reloc is handled, since it will
   all be done at final link time.  Rather than put special case code
   all be done at final link time.  Rather than put special case code
   into bfd_perform_relocation, all the reloc types use this howto
   into bfd_perform_relocation, all the reloc types use this howto
   function.  It just short circuits the reloc if producing
   function.  It just short circuits the reloc if producing
   relocatable output against an external symbol.  */
   relocatable output against an external symbol.  */
 
 
bfd_reloc_status_type
bfd_reloc_status_type
bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
                       arelent *reloc_entry,
                       arelent *reloc_entry,
                       asymbol *symbol,
                       asymbol *symbol,
                       void *data ATTRIBUTE_UNUSED,
                       void *data ATTRIBUTE_UNUSED,
                       asection *input_section,
                       asection *input_section,
                       bfd *output_bfd,
                       bfd *output_bfd,
                       char **error_message ATTRIBUTE_UNUSED)
                       char **error_message ATTRIBUTE_UNUSED)
{
{
  if (output_bfd != NULL
  if (output_bfd != NULL
      && (symbol->flags & BSF_SECTION_SYM) == 0
      && (symbol->flags & BSF_SECTION_SYM) == 0
      && (! reloc_entry->howto->partial_inplace
      && (! reloc_entry->howto->partial_inplace
          || reloc_entry->addend == 0))
          || reloc_entry->addend == 0))
    {
    {
      reloc_entry->address += input_section->output_offset;
      reloc_entry->address += input_section->output_offset;
      return bfd_reloc_ok;
      return bfd_reloc_ok;
    }
    }
 
 
  return bfd_reloc_continue;
  return bfd_reloc_continue;
}
}


/* Copy the program header and other data from one object module to
/* Copy the program header and other data from one object module to
   another.  */
   another.  */
 
 
bfd_boolean
bfd_boolean
_bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
_bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
{
{
  if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
  if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
      || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
      || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
    return TRUE;
    return TRUE;
 
 
  BFD_ASSERT (!elf_flags_init (obfd)
  BFD_ASSERT (!elf_flags_init (obfd)
              || (elf_elfheader (obfd)->e_flags
              || (elf_elfheader (obfd)->e_flags
                  == elf_elfheader (ibfd)->e_flags));
                  == elf_elfheader (ibfd)->e_flags));
 
 
  elf_gp (obfd) = elf_gp (ibfd);
  elf_gp (obfd) = elf_gp (ibfd);
  elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
  elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
  elf_flags_init (obfd) = TRUE;
  elf_flags_init (obfd) = TRUE;
 
 
  /* Copy object attributes.  */
  /* Copy object attributes.  */
  _bfd_elf_copy_obj_attributes (ibfd, obfd);
  _bfd_elf_copy_obj_attributes (ibfd, obfd);
 
 
  return TRUE;
  return TRUE;
}
}
 
 
static const char *
static const char *
get_segment_type (unsigned int p_type)
get_segment_type (unsigned int p_type)
{
{
  const char *pt;
  const char *pt;
  switch (p_type)
  switch (p_type)
    {
    {
    case PT_NULL: pt = "NULL"; break;
    case PT_NULL: pt = "NULL"; break;
    case PT_LOAD: pt = "LOAD"; break;
    case PT_LOAD: pt = "LOAD"; break;
    case PT_DYNAMIC: pt = "DYNAMIC"; break;
    case PT_DYNAMIC: pt = "DYNAMIC"; break;
    case PT_INTERP: pt = "INTERP"; break;
    case PT_INTERP: pt = "INTERP"; break;
    case PT_NOTE: pt = "NOTE"; break;
    case PT_NOTE: pt = "NOTE"; break;
    case PT_SHLIB: pt = "SHLIB"; break;
    case PT_SHLIB: pt = "SHLIB"; break;
    case PT_PHDR: pt = "PHDR"; break;
    case PT_PHDR: pt = "PHDR"; break;
    case PT_TLS: pt = "TLS"; break;
    case PT_TLS: pt = "TLS"; break;
    case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
    case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
    case PT_GNU_STACK: pt = "STACK"; break;
    case PT_GNU_STACK: pt = "STACK"; break;
    case PT_GNU_RELRO: pt = "RELRO"; break;
    case PT_GNU_RELRO: pt = "RELRO"; break;
    default: pt = NULL; break;
    default: pt = NULL; break;
    }
    }
  return pt;
  return pt;
}
}
 
 
/* Print out the program headers.  */
/* Print out the program headers.  */
 
 
bfd_boolean
bfd_boolean
_bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
_bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
{
{
  FILE *f = (FILE *) farg;
  FILE *f = (FILE *) farg;
  Elf_Internal_Phdr *p;
  Elf_Internal_Phdr *p;
  asection *s;
  asection *s;
  bfd_byte *dynbuf = NULL;
  bfd_byte *dynbuf = NULL;
 
 
  p = elf_tdata (abfd)->phdr;
  p = elf_tdata (abfd)->phdr;
  if (p != NULL)
  if (p != NULL)
    {
    {
      unsigned int i, c;
      unsigned int i, c;
 
 
      fprintf (f, _("\nProgram Header:\n"));
      fprintf (f, _("\nProgram Header:\n"));
      c = elf_elfheader (abfd)->e_phnum;
      c = elf_elfheader (abfd)->e_phnum;
      for (i = 0; i < c; i++, p++)
      for (i = 0; i < c; i++, p++)
        {
        {
          const char *pt = get_segment_type (p->p_type);
          const char *pt = get_segment_type (p->p_type);
          char buf[20];
          char buf[20];
 
 
          if (pt == NULL)
          if (pt == NULL)
            {
            {
              sprintf (buf, "0x%lx", p->p_type);
              sprintf (buf, "0x%lx", p->p_type);
              pt = buf;
              pt = buf;
            }
            }
          fprintf (f, "%8s off    0x", pt);
          fprintf (f, "%8s off    0x", pt);
          bfd_fprintf_vma (abfd, f, p->p_offset);
          bfd_fprintf_vma (abfd, f, p->p_offset);
          fprintf (f, " vaddr 0x");
          fprintf (f, " vaddr 0x");
          bfd_fprintf_vma (abfd, f, p->p_vaddr);
          bfd_fprintf_vma (abfd, f, p->p_vaddr);
          fprintf (f, " paddr 0x");
          fprintf (f, " paddr 0x");
          bfd_fprintf_vma (abfd, f, p->p_paddr);
          bfd_fprintf_vma (abfd, f, p->p_paddr);
          fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
          fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
          fprintf (f, "         filesz 0x");
          fprintf (f, "         filesz 0x");
          bfd_fprintf_vma (abfd, f, p->p_filesz);
          bfd_fprintf_vma (abfd, f, p->p_filesz);
          fprintf (f, " memsz 0x");
          fprintf (f, " memsz 0x");
          bfd_fprintf_vma (abfd, f, p->p_memsz);
          bfd_fprintf_vma (abfd, f, p->p_memsz);
          fprintf (f, " flags %c%c%c",
          fprintf (f, " flags %c%c%c",
                   (p->p_flags & PF_R) != 0 ? 'r' : '-',
                   (p->p_flags & PF_R) != 0 ? 'r' : '-',
                   (p->p_flags & PF_W) != 0 ? 'w' : '-',
                   (p->p_flags & PF_W) != 0 ? 'w' : '-',
                   (p->p_flags & PF_X) != 0 ? 'x' : '-');
                   (p->p_flags & PF_X) != 0 ? 'x' : '-');
          if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
          if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
            fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
            fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
          fprintf (f, "\n");
          fprintf (f, "\n");
        }
        }
    }
    }
 
 
  s = bfd_get_section_by_name (abfd, ".dynamic");
  s = bfd_get_section_by_name (abfd, ".dynamic");
  if (s != NULL)
  if (s != NULL)
    {
    {
      unsigned int elfsec;
      unsigned int elfsec;
      unsigned long shlink;
      unsigned long shlink;
      bfd_byte *extdyn, *extdynend;
      bfd_byte *extdyn, *extdynend;
      size_t extdynsize;
      size_t extdynsize;
      void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
      void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
 
 
      fprintf (f, _("\nDynamic Section:\n"));
      fprintf (f, _("\nDynamic Section:\n"));
 
 
      if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
      if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
        goto error_return;
        goto error_return;
 
 
      elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
      elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
      if (elfsec == SHN_BAD)
      if (elfsec == SHN_BAD)
        goto error_return;
        goto error_return;
      shlink = elf_elfsections (abfd)[elfsec]->sh_link;
      shlink = elf_elfsections (abfd)[elfsec]->sh_link;
 
 
      extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
      extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
      swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
      swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
 
 
      extdyn = dynbuf;
      extdyn = dynbuf;
      extdynend = extdyn + s->size;
      extdynend = extdyn + s->size;
      for (; extdyn < extdynend; extdyn += extdynsize)
      for (; extdyn < extdynend; extdyn += extdynsize)
        {
        {
          Elf_Internal_Dyn dyn;
          Elf_Internal_Dyn dyn;
          const char *name = "";
          const char *name = "";
          char ab[20];
          char ab[20];
          bfd_boolean stringp;
          bfd_boolean stringp;
          const struct elf_backend_data *bed = get_elf_backend_data (abfd);
          const struct elf_backend_data *bed = get_elf_backend_data (abfd);
 
 
          (*swap_dyn_in) (abfd, extdyn, &dyn);
          (*swap_dyn_in) (abfd, extdyn, &dyn);
 
 
          if (dyn.d_tag == DT_NULL)
          if (dyn.d_tag == DT_NULL)
            break;
            break;
 
 
          stringp = FALSE;
          stringp = FALSE;
          switch (dyn.d_tag)
          switch (dyn.d_tag)
            {
            {
            default:
            default:
              if (bed->elf_backend_get_target_dtag)
              if (bed->elf_backend_get_target_dtag)
                name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
                name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
 
 
              if (!strcmp (name, ""))
              if (!strcmp (name, ""))
                {
                {
                  sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
                  sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
                  name = ab;
                  name = ab;
                }
                }
              break;
              break;
 
 
            case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
            case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
            case DT_PLTRELSZ: name = "PLTRELSZ"; break;
            case DT_PLTRELSZ: name = "PLTRELSZ"; break;
            case DT_PLTGOT: name = "PLTGOT"; break;
            case DT_PLTGOT: name = "PLTGOT"; break;
            case DT_HASH: name = "HASH"; break;
            case DT_HASH: name = "HASH"; break;
            case DT_STRTAB: name = "STRTAB"; break;
            case DT_STRTAB: name = "STRTAB"; break;
            case DT_SYMTAB: name = "SYMTAB"; break;
            case DT_SYMTAB: name = "SYMTAB"; break;
            case DT_RELA: name = "RELA"; break;
            case DT_RELA: name = "RELA"; break;
            case DT_RELASZ: name = "RELASZ"; break;
            case DT_RELASZ: name = "RELASZ"; break;
            case DT_RELAENT: name = "RELAENT"; break;
            case DT_RELAENT: name = "RELAENT"; break;
            case DT_STRSZ: name = "STRSZ"; break;
            case DT_STRSZ: name = "STRSZ"; break;
            case DT_SYMENT: name = "SYMENT"; break;
            case DT_SYMENT: name = "SYMENT"; break;
            case DT_INIT: name = "INIT"; break;
            case DT_INIT: name = "INIT"; break;
            case DT_FINI: name = "FINI"; break;
            case DT_FINI: name = "FINI"; break;
            case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
            case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
            case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
            case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
            case DT_SYMBOLIC: name = "SYMBOLIC"; break;
            case DT_SYMBOLIC: name = "SYMBOLIC"; break;
            case DT_REL: name = "REL"; break;
            case DT_REL: name = "REL"; break;
            case DT_RELSZ: name = "RELSZ"; break;
            case DT_RELSZ: name = "RELSZ"; break;
            case DT_RELENT: name = "RELENT"; break;
            case DT_RELENT: name = "RELENT"; break;
            case DT_PLTREL: name = "PLTREL"; break;
            case DT_PLTREL: name = "PLTREL"; break;
            case DT_DEBUG: name = "DEBUG"; break;
            case DT_DEBUG: name = "DEBUG"; break;
            case DT_TEXTREL: name = "TEXTREL"; break;
            case DT_TEXTREL: name = "TEXTREL"; break;
            case DT_JMPREL: name = "JMPREL"; break;
            case DT_JMPREL: name = "JMPREL"; break;
            case DT_BIND_NOW: name = "BIND_NOW"; break;
            case DT_BIND_NOW: name = "BIND_NOW"; break;
            case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
            case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
            case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
            case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
            case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
            case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
            case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
            case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
            case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
            case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
            case DT_FLAGS: name = "FLAGS"; break;
            case DT_FLAGS: name = "FLAGS"; break;
            case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
            case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
            case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
            case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
            case DT_CHECKSUM: name = "CHECKSUM"; break;
            case DT_CHECKSUM: name = "CHECKSUM"; break;
            case DT_PLTPADSZ: name = "PLTPADSZ"; break;
            case DT_PLTPADSZ: name = "PLTPADSZ"; break;
            case DT_MOVEENT: name = "MOVEENT"; break;
            case DT_MOVEENT: name = "MOVEENT"; break;
            case DT_MOVESZ: name = "MOVESZ"; break;
            case DT_MOVESZ: name = "MOVESZ"; break;
            case DT_FEATURE: name = "FEATURE"; break;
            case DT_FEATURE: name = "FEATURE"; break;
            case DT_POSFLAG_1: name = "POSFLAG_1"; break;
            case DT_POSFLAG_1: name = "POSFLAG_1"; break;
            case DT_SYMINSZ: name = "SYMINSZ"; break;
            case DT_SYMINSZ: name = "SYMINSZ"; break;
            case DT_SYMINENT: name = "SYMINENT"; break;
            case DT_SYMINENT: name = "SYMINENT"; break;
            case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
            case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
            case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
            case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
            case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
            case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
            case DT_PLTPAD: name = "PLTPAD"; break;
            case DT_PLTPAD: name = "PLTPAD"; break;
            case DT_MOVETAB: name = "MOVETAB"; break;
            case DT_MOVETAB: name = "MOVETAB"; break;
            case DT_SYMINFO: name = "SYMINFO"; break;
            case DT_SYMINFO: name = "SYMINFO"; break;
            case DT_RELACOUNT: name = "RELACOUNT"; break;
            case DT_RELACOUNT: name = "RELACOUNT"; break;
            case DT_RELCOUNT: name = "RELCOUNT"; break;
            case DT_RELCOUNT: name = "RELCOUNT"; break;
            case DT_FLAGS_1: name = "FLAGS_1"; break;
            case DT_FLAGS_1: name = "FLAGS_1"; break;
            case DT_VERSYM: name = "VERSYM"; break;
            case DT_VERSYM: name = "VERSYM"; break;
            case DT_VERDEF: name = "VERDEF"; break;
            case DT_VERDEF: name = "VERDEF"; break;
            case DT_VERDEFNUM: name = "VERDEFNUM"; break;
            case DT_VERDEFNUM: name = "VERDEFNUM"; break;
            case DT_VERNEED: name = "VERNEED"; break;
            case DT_VERNEED: name = "VERNEED"; break;
            case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
            case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
            case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
            case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
            case DT_USED: name = "USED"; break;
            case DT_USED: name = "USED"; break;
            case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
            case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
            case DT_GNU_HASH: name = "GNU_HASH"; break;
            case DT_GNU_HASH: name = "GNU_HASH"; break;
            }
            }
 
 
          fprintf (f, "  %-20s ", name);
          fprintf (f, "  %-20s ", name);
          if (! stringp)
          if (! stringp)
            {
            {
              fprintf (f, "0x");
              fprintf (f, "0x");
              bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
              bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
            }
            }
          else
          else
            {
            {
              const char *string;
              const char *string;
              unsigned int tagv = dyn.d_un.d_val;
              unsigned int tagv = dyn.d_un.d_val;
 
 
              string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
              string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
              if (string == NULL)
              if (string == NULL)
                goto error_return;
                goto error_return;
              fprintf (f, "%s", string);
              fprintf (f, "%s", string);
            }
            }
          fprintf (f, "\n");
          fprintf (f, "\n");
        }
        }
 
 
      free (dynbuf);
      free (dynbuf);
      dynbuf = NULL;
      dynbuf = NULL;
    }
    }
 
 
  if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
  if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
      || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
      || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
    {
    {
      if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
      if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
        return FALSE;
        return FALSE;
    }
    }
 
 
  if (elf_dynverdef (abfd) != 0)
  if (elf_dynverdef (abfd) != 0)
    {
    {
      Elf_Internal_Verdef *t;
      Elf_Internal_Verdef *t;
 
 
      fprintf (f, _("\nVersion definitions:\n"));
      fprintf (f, _("\nVersion definitions:\n"));
      for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
      for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
        {
        {
          fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
          fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
                   t->vd_flags, t->vd_hash,
                   t->vd_flags, t->vd_hash,
                   t->vd_nodename ? t->vd_nodename : "<corrupt>");
                   t->vd_nodename ? t->vd_nodename : "<corrupt>");
          if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
          if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
            {
            {
              Elf_Internal_Verdaux *a;
              Elf_Internal_Verdaux *a;
 
 
              fprintf (f, "\t");
              fprintf (f, "\t");
              for (a = t->vd_auxptr->vda_nextptr;
              for (a = t->vd_auxptr->vda_nextptr;
                   a != NULL;
                   a != NULL;
                   a = a->vda_nextptr)
                   a = a->vda_nextptr)
                fprintf (f, "%s ",
                fprintf (f, "%s ",
                         a->vda_nodename ? a->vda_nodename : "<corrupt>");
                         a->vda_nodename ? a->vda_nodename : "<corrupt>");
              fprintf (f, "\n");
              fprintf (f, "\n");
            }
            }
        }
        }
    }
    }
 
 
  if (elf_dynverref (abfd) != 0)
  if (elf_dynverref (abfd) != 0)
    {
    {
      Elf_Internal_Verneed *t;
      Elf_Internal_Verneed *t;
 
 
      fprintf (f, _("\nVersion References:\n"));
      fprintf (f, _("\nVersion References:\n"));
      for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
      for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
        {
        {
          Elf_Internal_Vernaux *a;
          Elf_Internal_Vernaux *a;
 
 
          fprintf (f, _("  required from %s:\n"),
          fprintf (f, _("  required from %s:\n"),
                   t->vn_filename ? t->vn_filename : "<corrupt>");
                   t->vn_filename ? t->vn_filename : "<corrupt>");
          for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
          for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
            fprintf (f, "    0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
            fprintf (f, "    0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
                     a->vna_flags, a->vna_other,
                     a->vna_flags, a->vna_other,
                     a->vna_nodename ? a->vna_nodename : "<corrupt>");
                     a->vna_nodename ? a->vna_nodename : "<corrupt>");
        }
        }
    }
    }
 
 
  return TRUE;
  return TRUE;
 
 
 error_return:
 error_return:
  if (dynbuf != NULL)
  if (dynbuf != NULL)
    free (dynbuf);
    free (dynbuf);
  return FALSE;
  return FALSE;
}
}
 
 
/* Display ELF-specific fields of a symbol.  */
/* Display ELF-specific fields of a symbol.  */
 
 
void
void
bfd_elf_print_symbol (bfd *abfd,
bfd_elf_print_symbol (bfd *abfd,
                      void *filep,
                      void *filep,
                      asymbol *symbol,
                      asymbol *symbol,
                      bfd_print_symbol_type how)
                      bfd_print_symbol_type how)
{
{
  FILE *file = (FILE *) filep;
  FILE *file = (FILE *) filep;
  switch (how)
  switch (how)
    {
    {
    case bfd_print_symbol_name:
    case bfd_print_symbol_name:
      fprintf (file, "%s", symbol->name);
      fprintf (file, "%s", symbol->name);
      break;
      break;
    case bfd_print_symbol_more:
    case bfd_print_symbol_more:
      fprintf (file, "elf ");
      fprintf (file, "elf ");
      bfd_fprintf_vma (abfd, file, symbol->value);
      bfd_fprintf_vma (abfd, file, symbol->value);
      fprintf (file, " %lx", (unsigned long) symbol->flags);
      fprintf (file, " %lx", (unsigned long) symbol->flags);
      break;
      break;
    case bfd_print_symbol_all:
    case bfd_print_symbol_all:
      {
      {
        const char *section_name;
        const char *section_name;
        const char *name = NULL;
        const char *name = NULL;
        const struct elf_backend_data *bed;
        const struct elf_backend_data *bed;
        unsigned char st_other;
        unsigned char st_other;
        bfd_vma val;
        bfd_vma val;
 
 
        section_name = symbol->section ? symbol->section->name : "(*none*)";
        section_name = symbol->section ? symbol->section->name : "(*none*)";
 
 
        bed = get_elf_backend_data (abfd);
        bed = get_elf_backend_data (abfd);
        if (bed->elf_backend_print_symbol_all)
        if (bed->elf_backend_print_symbol_all)
          name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
          name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
 
 
        if (name == NULL)
        if (name == NULL)
          {
          {
            name = symbol->name;
            name = symbol->name;
            bfd_print_symbol_vandf (abfd, file, symbol);
            bfd_print_symbol_vandf (abfd, file, symbol);
          }
          }
 
 
        fprintf (file, " %s\t", section_name);
        fprintf (file, " %s\t", section_name);
        /* Print the "other" value for a symbol.  For common symbols,
        /* Print the "other" value for a symbol.  For common symbols,
           we've already printed the size; now print the alignment.
           we've already printed the size; now print the alignment.
           For other symbols, we have no specified alignment, and
           For other symbols, we have no specified alignment, and
           we've printed the address; now print the size.  */
           we've printed the address; now print the size.  */
        if (symbol->section && bfd_is_com_section (symbol->section))
        if (symbol->section && bfd_is_com_section (symbol->section))
          val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
          val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
        else
        else
          val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
          val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
        bfd_fprintf_vma (abfd, file, val);
        bfd_fprintf_vma (abfd, file, val);
 
 
        /* If we have version information, print it.  */
        /* If we have version information, print it.  */
        if (elf_tdata (abfd)->dynversym_section != 0
        if (elf_tdata (abfd)->dynversym_section != 0
            && (elf_tdata (abfd)->dynverdef_section != 0
            && (elf_tdata (abfd)->dynverdef_section != 0
                || elf_tdata (abfd)->dynverref_section != 0))
                || elf_tdata (abfd)->dynverref_section != 0))
          {
          {
            unsigned int vernum;
            unsigned int vernum;
            const char *version_string;
            const char *version_string;
 
 
            vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
            vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
 
 
            if (vernum == 0)
            if (vernum == 0)
              version_string = "";
              version_string = "";
            else if (vernum == 1)
            else if (vernum == 1)
              version_string = "Base";
              version_string = "Base";
            else if (vernum <= elf_tdata (abfd)->cverdefs)
            else if (vernum <= elf_tdata (abfd)->cverdefs)
              version_string =
              version_string =
                elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
                elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
            else
            else
              {
              {
                Elf_Internal_Verneed *t;
                Elf_Internal_Verneed *t;
 
 
                version_string = "";
                version_string = "";
                for (t = elf_tdata (abfd)->verref;
                for (t = elf_tdata (abfd)->verref;
                     t != NULL;
                     t != NULL;
                     t = t->vn_nextref)
                     t = t->vn_nextref)
                  {
                  {
                    Elf_Internal_Vernaux *a;
                    Elf_Internal_Vernaux *a;
 
 
                    for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
                    for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
                      {
                      {
                        if (a->vna_other == vernum)
                        if (a->vna_other == vernum)
                          {
                          {
                            version_string = a->vna_nodename;
                            version_string = a->vna_nodename;
                            break;
                            break;
                          }
                          }
                      }
                      }
                  }
                  }
              }
              }
 
 
            if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
            if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
              fprintf (file, "  %-11s", version_string);
              fprintf (file, "  %-11s", version_string);
            else
            else
              {
              {
                int i;
                int i;
 
 
                fprintf (file, " (%s)", version_string);
                fprintf (file, " (%s)", version_string);
                for (i = 10 - strlen (version_string); i > 0; --i)
                for (i = 10 - strlen (version_string); i > 0; --i)
                  putc (' ', file);
                  putc (' ', file);
              }
              }
          }
          }
 
 
        /* If the st_other field is not zero, print it.  */
        /* If the st_other field is not zero, print it.  */
        st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
        st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
 
 
        switch (st_other)
        switch (st_other)
          {
          {
          case 0: break;
          case 0: break;
          case STV_INTERNAL:  fprintf (file, " .internal");  break;
          case STV_INTERNAL:  fprintf (file, " .internal");  break;
          case STV_HIDDEN:    fprintf (file, " .hidden");    break;
          case STV_HIDDEN:    fprintf (file, " .hidden");    break;
          case STV_PROTECTED: fprintf (file, " .protected"); break;
          case STV_PROTECTED: fprintf (file, " .protected"); break;
          default:
          default:
            /* Some other non-defined flags are also present, so print
            /* Some other non-defined flags are also present, so print
               everything hex.  */
               everything hex.  */
            fprintf (file, " 0x%02x", (unsigned int) st_other);
            fprintf (file, " 0x%02x", (unsigned int) st_other);
          }
          }
 
 
        fprintf (file, " %s", name);
        fprintf (file, " %s", name);
      }
      }
      break;
      break;
    }
    }
}
}
 
 
/* Allocate an ELF string table--force the first byte to be zero.  */
/* Allocate an ELF string table--force the first byte to be zero.  */
 
 
struct bfd_strtab_hash *
struct bfd_strtab_hash *
_bfd_elf_stringtab_init (void)
_bfd_elf_stringtab_init (void)
{
{
  struct bfd_strtab_hash *ret;
  struct bfd_strtab_hash *ret;
 
 
  ret = _bfd_stringtab_init ();
  ret = _bfd_stringtab_init ();
  if (ret != NULL)
  if (ret != NULL)
    {
    {
      bfd_size_type loc;
      bfd_size_type loc;
 
 
      loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
      loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
      BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
      BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
      if (loc == (bfd_size_type) -1)
      if (loc == (bfd_size_type) -1)
        {
        {
          _bfd_stringtab_free (ret);
          _bfd_stringtab_free (ret);
          ret = NULL;
          ret = NULL;
        }
        }
    }
    }
  return ret;
  return ret;
}
}


/* ELF .o/exec file reading */
/* ELF .o/exec file reading */
 
 
/* Create a new bfd section from an ELF section header.  */
/* Create a new bfd section from an ELF section header.  */
 
 
bfd_boolean
bfd_boolean
bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
{
{
  Elf_Internal_Shdr *hdr;
  Elf_Internal_Shdr *hdr;
  Elf_Internal_Ehdr *ehdr;
  Elf_Internal_Ehdr *ehdr;
  const struct elf_backend_data *bed;
  const struct elf_backend_data *bed;
  const char *name;
  const char *name;
 
 
  if (shindex >= elf_numsections (abfd))
  if (shindex >= elf_numsections (abfd))
    return FALSE;
    return FALSE;
 
 
  hdr = elf_elfsections (abfd)[shindex];
  hdr = elf_elfsections (abfd)[shindex];
  ehdr = elf_elfheader (abfd);
  ehdr = elf_elfheader (abfd);
  name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
  name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
                                          hdr->sh_name);
                                          hdr->sh_name);
  if (name == NULL)
  if (name == NULL)
    return FALSE;
    return FALSE;
 
 
  bed = get_elf_backend_data (abfd);
  bed = get_elf_backend_data (abfd);
  switch (hdr->sh_type)
  switch (hdr->sh_type)
    {
    {
    case SHT_NULL:
    case SHT_NULL:
      /* Inactive section. Throw it away.  */
      /* Inactive section. Throw it away.  */
      return TRUE;
      return TRUE;
 
 
    case SHT_PROGBITS:  /* Normal section with contents.  */
    case SHT_PROGBITS:  /* Normal section with contents.  */
    case SHT_NOBITS:    /* .bss section.  */
    case SHT_NOBITS:    /* .bss section.  */
    case SHT_HASH:      /* .hash section.  */
    case SHT_HASH:      /* .hash section.  */
    case SHT_NOTE:      /* .note section.  */
    case SHT_NOTE:      /* .note section.  */
    case SHT_INIT_ARRAY:        /* .init_array section.  */
    case SHT_INIT_ARRAY:        /* .init_array section.  */
    case SHT_FINI_ARRAY:        /* .fini_array section.  */
    case SHT_FINI_ARRAY:        /* .fini_array section.  */
    case SHT_PREINIT_ARRAY:     /* .preinit_array section.  */
    case SHT_PREINIT_ARRAY:     /* .preinit_array section.  */
    case SHT_GNU_LIBLIST:       /* .gnu.liblist section.  */
    case SHT_GNU_LIBLIST:       /* .gnu.liblist section.  */
    case SHT_GNU_HASH:          /* .gnu.hash section.  */
    case SHT_GNU_HASH:          /* .gnu.hash section.  */
      return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
      return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
 
 
    case SHT_DYNAMIC:   /* Dynamic linking information.  */
    case SHT_DYNAMIC:   /* Dynamic linking information.  */
      if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
      if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
        return FALSE;
        return FALSE;
      if (hdr->sh_link > elf_numsections (abfd))
      if (hdr->sh_link > elf_numsections (abfd))
        {
        {
          /* PR 10478: Accept sparc binaries with a sh_link
          /* PR 10478: Accept sparc binaries with a sh_link
             field set to SHN_BEFORE or SHN_AFTER.  */
             field set to SHN_BEFORE or SHN_AFTER.  */
          switch (bfd_get_arch (abfd))
          switch (bfd_get_arch (abfd))
            {
            {
            case bfd_arch_sparc:
            case bfd_arch_sparc:
              if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
              if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
                  || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
                  || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
                break;
                break;
              /* Otherwise fall through.  */
              /* Otherwise fall through.  */
            default:
            default:
              return FALSE;
              return FALSE;
            }
            }
        }
        }
      else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
      else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
        return FALSE;
        return FALSE;
      else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
      else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
        {
        {
          Elf_Internal_Shdr *dynsymhdr;
          Elf_Internal_Shdr *dynsymhdr;
 
 
          /* The shared libraries distributed with hpux11 have a bogus
          /* The shared libraries distributed with hpux11 have a bogus
             sh_link field for the ".dynamic" section.  Find the
             sh_link field for the ".dynamic" section.  Find the
             string table for the ".dynsym" section instead.  */
             string table for the ".dynsym" section instead.  */
          if (elf_dynsymtab (abfd) != 0)
          if (elf_dynsymtab (abfd) != 0)
            {
            {
              dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
              dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
              hdr->sh_link = dynsymhdr->sh_link;
              hdr->sh_link = dynsymhdr->sh_link;
            }
            }
          else
          else
            {
            {
              unsigned int i, num_sec;
              unsigned int i, num_sec;
 
 
              num_sec = elf_numsections (abfd);
              num_sec = elf_numsections (abfd);
              for (i = 1; i < num_sec; i++)
              for (i = 1; i < num_sec; i++)
                {
                {
                  dynsymhdr = elf_elfsections (abfd)[i];
                  dynsymhdr = elf_elfsections (abfd)[i];
                  if (dynsymhdr->sh_type == SHT_DYNSYM)
                  if (dynsymhdr->sh_type == SHT_DYNSYM)
                    {
                    {
                      hdr->sh_link = dynsymhdr->sh_link;
                      hdr->sh_link = dynsymhdr->sh_link;
                      break;
                      break;
                    }
                    }
                }
                }
            }
            }
        }
        }
      break;
      break;
 
 
    case SHT_SYMTAB:            /* A symbol table */
    case SHT_SYMTAB:            /* A symbol table */
      if (elf_onesymtab (abfd) == shindex)
      if (elf_onesymtab (abfd) == shindex)
        return TRUE;
        return TRUE;
 
 
      if (hdr->sh_entsize != bed->s->sizeof_sym)
      if (hdr->sh_entsize != bed->s->sizeof_sym)
        return FALSE;
        return FALSE;
      if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
      if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
        return FALSE;
        return FALSE;
      BFD_ASSERT (elf_onesymtab (abfd) == 0);
      BFD_ASSERT (elf_onesymtab (abfd) == 0);
      elf_onesymtab (abfd) = shindex;
      elf_onesymtab (abfd) = shindex;
      elf_tdata (abfd)->symtab_hdr = *hdr;
      elf_tdata (abfd)->symtab_hdr = *hdr;
      elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
      elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
      abfd->flags |= HAS_SYMS;
      abfd->flags |= HAS_SYMS;
 
 
      /* Sometimes a shared object will map in the symbol table.  If
      /* Sometimes a shared object will map in the symbol table.  If
         SHF_ALLOC is set, and this is a shared object, then we also
         SHF_ALLOC is set, and this is a shared object, then we also
         treat this section as a BFD section.  We can not base the
         treat this section as a BFD section.  We can not base the
         decision purely on SHF_ALLOC, because that flag is sometimes
         decision purely on SHF_ALLOC, because that flag is sometimes
         set in a relocatable object file, which would confuse the
         set in a relocatable object file, which would confuse the
         linker.  */
         linker.  */
      if ((hdr->sh_flags & SHF_ALLOC) != 0
      if ((hdr->sh_flags & SHF_ALLOC) != 0
          && (abfd->flags & DYNAMIC) != 0
          && (abfd->flags & DYNAMIC) != 0
          && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
          && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
                                                shindex))
                                                shindex))
        return FALSE;
        return FALSE;
 
 
      /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
      /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
         can't read symbols without that section loaded as well.  It
         can't read symbols without that section loaded as well.  It
         is most likely specified by the next section header.  */
         is most likely specified by the next section header.  */
      if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
      if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
        {
        {
          unsigned int i, num_sec;
          unsigned int i, num_sec;
 
 
          num_sec = elf_numsections (abfd);
          num_sec = elf_numsections (abfd);
          for (i = shindex + 1; i < num_sec; i++)
          for (i = shindex + 1; i < num_sec; i++)
            {
            {
              Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
              Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
              if (hdr2->sh_type == SHT_SYMTAB_SHNDX
              if (hdr2->sh_type == SHT_SYMTAB_SHNDX
                  && hdr2->sh_link == shindex)
                  && hdr2->sh_link == shindex)
                break;
                break;
            }
            }
          if (i == num_sec)
          if (i == num_sec)
            for (i = 1; i < shindex; i++)
            for (i = 1; i < shindex; i++)
              {
              {
                Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
                Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
                if (hdr2->sh_type == SHT_SYMTAB_SHNDX
                if (hdr2->sh_type == SHT_SYMTAB_SHNDX
                    && hdr2->sh_link == shindex)
                    && hdr2->sh_link == shindex)
                  break;
                  break;
              }
              }
          if (i != shindex)
          if (i != shindex)
            return bfd_section_from_shdr (abfd, i);
            return bfd_section_from_shdr (abfd, i);
        }
        }
      return TRUE;
      return TRUE;
 
 
    case SHT_DYNSYM:            /* A dynamic symbol table */
    case SHT_DYNSYM:            /* A dynamic symbol table */
      if (elf_dynsymtab (abfd) == shindex)
      if (elf_dynsymtab (abfd) == shindex)
        return TRUE;
        return TRUE;
 
 
      if (hdr->sh_entsize != bed->s->sizeof_sym)
      if (hdr->sh_entsize != bed->s->sizeof_sym)
        return FALSE;
        return FALSE;
      BFD_ASSERT (elf_dynsymtab (abfd) == 0);
      BFD_ASSERT (elf_dynsymtab (abfd) == 0);
      elf_dynsymtab (abfd) = shindex;
      elf_dynsymtab (abfd) = shindex;
      elf_tdata (abfd)->dynsymtab_hdr = *hdr;
      elf_tdata (abfd)->dynsymtab_hdr = *hdr;
      elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
      elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
      abfd->flags |= HAS_SYMS;
      abfd->flags |= HAS_SYMS;
 
 
      /* Besides being a symbol table, we also treat this as a regular
      /* Besides being a symbol table, we also treat this as a regular
         section, so that objcopy can handle it.  */
         section, so that objcopy can handle it.  */
      return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
      return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
 
 
    case SHT_SYMTAB_SHNDX:      /* Symbol section indices when >64k sections */
    case SHT_SYMTAB_SHNDX:      /* Symbol section indices when >64k sections */
      if (elf_symtab_shndx (abfd) == shindex)
      if (elf_symtab_shndx (abfd) == shindex)
        return TRUE;
        return TRUE;
 
 
      BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
      BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
      elf_symtab_shndx (abfd) = shindex;
      elf_symtab_shndx (abfd) = shindex;
      elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
      elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
      elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
      elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
      return TRUE;
      return TRUE;
 
 
    case SHT_STRTAB:            /* A string table */
    case SHT_STRTAB:            /* A string table */
      if (hdr->bfd_section != NULL)
      if (hdr->bfd_section != NULL)
        return TRUE;
        return TRUE;
      if (ehdr->e_shstrndx == shindex)
      if (ehdr->e_shstrndx == shindex)
        {
        {
          elf_tdata (abfd)->shstrtab_hdr = *hdr;
          elf_tdata (abfd)->shstrtab_hdr = *hdr;
          elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
          elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
          return TRUE;
          return TRUE;
        }
        }
      if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
      if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
        {
        {
        symtab_strtab:
        symtab_strtab:
          elf_tdata (abfd)->strtab_hdr = *hdr;
          elf_tdata (abfd)->strtab_hdr = *hdr;
          elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
          elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
          return TRUE;
          return TRUE;
        }
        }
      if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
      if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
        {
        {
        dynsymtab_strtab:
        dynsymtab_strtab:
          elf_tdata (abfd)->dynstrtab_hdr = *hdr;
          elf_tdata (abfd)->dynstrtab_hdr = *hdr;
          hdr = &elf_tdata (abfd)->dynstrtab_hdr;
          hdr = &elf_tdata (abfd)->dynstrtab_hdr;
          elf_elfsections (abfd)[shindex] = hdr;
          elf_elfsections (abfd)[shindex] = hdr;
          /* We also treat this as a regular section, so that objcopy
          /* We also treat this as a regular section, so that objcopy
             can handle it.  */
             can handle it.  */
          return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
          return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
                                                  shindex);
                                                  shindex);
        }
        }
 
 
      /* If the string table isn't one of the above, then treat it as a
      /* If the string table isn't one of the above, then treat it as a
         regular section.  We need to scan all the headers to be sure,
         regular section.  We need to scan all the headers to be sure,
         just in case this strtab section appeared before the above.  */
         just in case this strtab section appeared before the above.  */
      if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
      if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
        {
        {
          unsigned int i, num_sec;
          unsigned int i, num_sec;
 
 
          num_sec = elf_numsections (abfd);
          num_sec = elf_numsections (abfd);
          for (i = 1; i < num_sec; i++)
          for (i = 1; i < num_sec; i++)
            {
            {
              Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
              Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
              if (hdr2->sh_link == shindex)
              if (hdr2->sh_link == shindex)
                {
                {
                  /* Prevent endless recursion on broken objects.  */
                  /* Prevent endless recursion on broken objects.  */
                  if (i == shindex)
                  if (i == shindex)
                    return FALSE;
                    return FALSE;
                  if (! bfd_section_from_shdr (abfd, i))
                  if (! bfd_section_from_shdr (abfd, i))
                    return FALSE;
                    return FALSE;
                  if (elf_onesymtab (abfd) == i)
                  if (elf_onesymtab (abfd) == i)
                    goto symtab_strtab;
                    goto symtab_strtab;
                  if (elf_dynsymtab (abfd) == i)
                  if (elf_dynsymtab (abfd) == i)
                    goto dynsymtab_strtab;
                    goto dynsymtab_strtab;
                }
                }
            }
            }
        }
        }
      return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
      return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
 
 
    case SHT_REL:
    case SHT_REL:
    case SHT_RELA:
    case SHT_RELA:
      /* *These* do a lot of work -- but build no sections!  */
      /* *These* do a lot of work -- but build no sections!  */
      {
      {
        asection *target_sect;
        asection *target_sect;
        Elf_Internal_Shdr *hdr2;
        Elf_Internal_Shdr *hdr2;
        unsigned int num_sec = elf_numsections (abfd);
        unsigned int num_sec = elf_numsections (abfd);
 
 
        if (hdr->sh_entsize
        if (hdr->sh_entsize
            != (bfd_size_type) (hdr->sh_type == SHT_REL
            != (bfd_size_type) (hdr->sh_type == SHT_REL
                                ? bed->s->sizeof_rel : bed->s->sizeof_rela))
                                ? bed->s->sizeof_rel : bed->s->sizeof_rela))
          return FALSE;
          return FALSE;
 
 
        /* Check for a bogus link to avoid crashing.  */
        /* Check for a bogus link to avoid crashing.  */
        if (hdr->sh_link >= num_sec)
        if (hdr->sh_link >= num_sec)
          {
          {
            ((*_bfd_error_handler)
            ((*_bfd_error_handler)
             (_("%B: invalid link %lu for reloc section %s (index %u)"),
             (_("%B: invalid link %lu for reloc section %s (index %u)"),
              abfd, hdr->sh_link, name, shindex));
              abfd, hdr->sh_link, name, shindex));
            return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
            return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
                                                    shindex);
                                                    shindex);
          }
          }
 
 
        /* For some incomprehensible reason Oracle distributes
        /* For some incomprehensible reason Oracle distributes
           libraries for Solaris in which some of the objects have
           libraries for Solaris in which some of the objects have
           bogus sh_link fields.  It would be nice if we could just
           bogus sh_link fields.  It would be nice if we could just
           reject them, but, unfortunately, some people need to use
           reject them, but, unfortunately, some people need to use
           them.  We scan through the section headers; if we find only
           them.  We scan through the section headers; if we find only
           one suitable symbol table, we clobber the sh_link to point
           one suitable symbol table, we clobber the sh_link to point
           to it.  I hope this doesn't break anything.
           to it.  I hope this doesn't break anything.
 
 
           Don't do it on executable nor shared library.  */
           Don't do it on executable nor shared library.  */
        if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
        if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
            && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
            && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
            && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
            && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
          {
          {
            unsigned int scan;
            unsigned int scan;
            int found;
            int found;
 
 
            found = 0;
            found = 0;
            for (scan = 1; scan < num_sec; scan++)
            for (scan = 1; scan < num_sec; scan++)
              {
              {
                if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
                if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
                    || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
                    || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
                  {
                  {
                    if (found != 0)
                    if (found != 0)
                      {
                      {
                        found = 0;
                        found = 0;
                        break;
                        break;
                      }
                      }
                    found = scan;
                    found = scan;
                  }
                  }
              }
              }
            if (found != 0)
            if (found != 0)
              hdr->sh_link = found;
              hdr->sh_link = found;
          }
          }
 
 
        /* Get the symbol table.  */
        /* Get the symbol table.  */
        if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
        if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
             || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
             || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
            && ! bfd_section_from_shdr (abfd, hdr->sh_link))
            && ! bfd_section_from_shdr (abfd, hdr->sh_link))
          return FALSE;
          return FALSE;
 
 
        /* If this reloc section does not use the main symbol table we
        /* If this reloc section does not use the main symbol table we
           don't treat it as a reloc section.  BFD can't adequately
           don't treat it as a reloc section.  BFD can't adequately
           represent such a section, so at least for now, we don't
           represent such a section, so at least for now, we don't
           try.  We just present it as a normal section.  We also
           try.  We just present it as a normal section.  We also
           can't use it as a reloc section if it points to the null
           can't use it as a reloc section if it points to the null
           section, an invalid section, another reloc section, or its
           section, an invalid section, another reloc section, or its
           sh_link points to the null section.  */
           sh_link points to the null section.  */
        if (hdr->sh_link != elf_onesymtab (abfd)
        if (hdr->sh_link != elf_onesymtab (abfd)
            || hdr->sh_link == SHN_UNDEF
            || hdr->sh_link == SHN_UNDEF
            || hdr->sh_info == SHN_UNDEF
            || hdr->sh_info == SHN_UNDEF
            || hdr->sh_info >= num_sec
            || hdr->sh_info >= num_sec
            || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
            || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
            || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
            || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
          return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
          return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
                                                  shindex);
                                                  shindex);
 
 
        if (! bfd_section_from_shdr (abfd, hdr->sh_info))
        if (! bfd_section_from_shdr (abfd, hdr->sh_info))
          return FALSE;
          return FALSE;
        target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
        target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
        if (target_sect == NULL)
        if (target_sect == NULL)
          return FALSE;
          return FALSE;
 
 
        if ((target_sect->flags & SEC_RELOC) == 0
        if ((target_sect->flags & SEC_RELOC) == 0
            || target_sect->reloc_count == 0)
            || target_sect->reloc_count == 0)
          hdr2 = &elf_section_data (target_sect)->rel_hdr;
          hdr2 = &elf_section_data (target_sect)->rel_hdr;
        else
        else
          {
          {
            bfd_size_type amt;
            bfd_size_type amt;
            BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
            BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
            amt = sizeof (*hdr2);
            amt = sizeof (*hdr2);
            hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
            hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
            if (hdr2 == NULL)
            if (hdr2 == NULL)
              return FALSE;
              return FALSE;
            elf_section_data (target_sect)->rel_hdr2 = hdr2;
            elf_section_data (target_sect)->rel_hdr2 = hdr2;
          }
          }
        *hdr2 = *hdr;
        *hdr2 = *hdr;
        elf_elfsections (abfd)[shindex] = hdr2;
        elf_elfsections (abfd)[shindex] = hdr2;
        target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
        target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
        target_sect->flags |= SEC_RELOC;
        target_sect->flags |= SEC_RELOC;
        target_sect->relocation = NULL;
        target_sect->relocation = NULL;
        target_sect->rel_filepos = hdr->sh_offset;
        target_sect->rel_filepos = hdr->sh_offset;
        /* In the section to which the relocations apply, mark whether
        /* In the section to which the relocations apply, mark whether
           its relocations are of the REL or RELA variety.  */
           its relocations are of the REL or RELA variety.  */
        if (hdr->sh_size != 0)
        if (hdr->sh_size != 0)
          target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
          target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
        abfd->flags |= HAS_RELOC;
        abfd->flags |= HAS_RELOC;
        return TRUE;
        return TRUE;
      }
      }
 
 
    case SHT_GNU_verdef:
    case SHT_GNU_verdef:
      elf_dynverdef (abfd) = shindex;
      elf_dynverdef (abfd) = shindex;
      elf_tdata (abfd)->dynverdef_hdr = *hdr;
      elf_tdata (abfd)->dynverdef_hdr = *hdr;
      return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
      return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
 
 
    case SHT_GNU_versym:
    case SHT_GNU_versym:
      if (hdr->sh_entsize != sizeof (Elf_External_Versym))
      if (hdr->sh_entsize != sizeof (Elf_External_Versym))
        return FALSE;
        return FALSE;
      elf_dynversym (abfd) = shindex;
      elf_dynversym (abfd) = shindex;
      elf_tdata (abfd)->dynversym_hdr = *hdr;
      elf_tdata (abfd)->dynversym_hdr = *hdr;
      return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
      return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
 
 
    case SHT_GNU_verneed:
    case SHT_GNU_verneed:
      elf_dynverref (abfd) = shindex;
      elf_dynverref (abfd) = shindex;
      elf_tdata (abfd)->dynverref_hdr = *hdr;
      elf_tdata (abfd)->dynverref_hdr = *hdr;
      return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
      return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
 
 
    case SHT_SHLIB:
    case SHT_SHLIB:
      return TRUE;
      return TRUE;
 
 
    case SHT_GROUP:
    case SHT_GROUP:
      if (! IS_VALID_GROUP_SECTION_HEADER (hdr))
      if (! IS_VALID_GROUP_SECTION_HEADER (hdr))
        return FALSE;
        return FALSE;
      if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
      if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
        return FALSE;
        return FALSE;
      if (hdr->contents != NULL)
      if (hdr->contents != NULL)
        {
        {
          Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
          Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
          unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
          unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
          asection *s;
          asection *s;
 
 
          if (idx->flags & GRP_COMDAT)
          if (idx->flags & GRP_COMDAT)
            hdr->bfd_section->flags
            hdr->bfd_section->flags
              |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
              |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
 
 
          /* We try to keep the same section order as it comes in.  */
          /* We try to keep the same section order as it comes in.  */
          idx += n_elt;
          idx += n_elt;
          while (--n_elt != 0)
          while (--n_elt != 0)
            {
            {
              --idx;
              --idx;
 
 
              if (idx->shdr != NULL
              if (idx->shdr != NULL
                  && (s = idx->shdr->bfd_section) != NULL
                  && (s = idx->shdr->bfd_section) != NULL
                  && elf_next_in_group (s) != NULL)
                  && elf_next_in_group (s) != NULL)
                {
                {
                  elf_next_in_group (hdr->bfd_section) = s;
                  elf_next_in_group (hdr->bfd_section) = s;
                  break;
                  break;
                }
                }
            }
            }
        }
        }
      break;
      break;
 
 
    default:
    default:
      /* Possibly an attributes section.  */
      /* Possibly an attributes section.  */
      if (hdr->sh_type == SHT_GNU_ATTRIBUTES
      if (hdr->sh_type == SHT_GNU_ATTRIBUTES
          || hdr->sh_type == bed->obj_attrs_section_type)
          || hdr->sh_type == bed->obj_attrs_section_type)
        {
        {
          if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
          if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
            return FALSE;
            return FALSE;
          _bfd_elf_parse_attributes (abfd, hdr);
          _bfd_elf_parse_attributes (abfd, hdr);
          return TRUE;
          return TRUE;
        }
        }
 
 
      /* Check for any processor-specific section types.  */
      /* Check for any processor-specific section types.  */
      if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
      if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
        return TRUE;
        return TRUE;
 
 
      if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
      if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
        {
        {
          if ((hdr->sh_flags & SHF_ALLOC) != 0)
          if ((hdr->sh_flags & SHF_ALLOC) != 0)
            /* FIXME: How to properly handle allocated section reserved
            /* FIXME: How to properly handle allocated section reserved
               for applications?  */
               for applications?  */
            (*_bfd_error_handler)
            (*_bfd_error_handler)
              (_("%B: don't know how to handle allocated, application "
              (_("%B: don't know how to handle allocated, application "
                 "specific section `%s' [0x%8x]"),
                 "specific section `%s' [0x%8x]"),
               abfd, name, hdr->sh_type);
               abfd, name, hdr->sh_type);
          else
          else
            /* Allow sections reserved for applications.  */
            /* Allow sections reserved for applications.  */
            return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
            return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
                                                    shindex);
                                                    shindex);
        }
        }
      else if (hdr->sh_type >= SHT_LOPROC
      else if (hdr->sh_type >= SHT_LOPROC
               && hdr->sh_type <= SHT_HIPROC)
               && hdr->sh_type <= SHT_HIPROC)
        /* FIXME: We should handle this section.  */
        /* FIXME: We should handle this section.  */
        (*_bfd_error_handler)
        (*_bfd_error_handler)
          (_("%B: don't know how to handle processor specific section "
          (_("%B: don't know how to handle processor specific section "
             "`%s' [0x%8x]"),
             "`%s' [0x%8x]"),
           abfd, name, hdr->sh_type);
           abfd, name, hdr->sh_type);
      else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
      else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
        {
        {
          /* Unrecognised OS-specific sections.  */
          /* Unrecognised OS-specific sections.  */
          if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
          if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
            /* SHF_OS_NONCONFORMING indicates that special knowledge is
            /* SHF_OS_NONCONFORMING indicates that special knowledge is
               required to correctly process the section and the file should
               required to correctly process the section and the file should
               be rejected with an error message.  */
               be rejected with an error message.  */
            (*_bfd_error_handler)
            (*_bfd_error_handler)
              (_("%B: don't know how to handle OS specific section "
              (_("%B: don't know how to handle OS specific section "
                 "`%s' [0x%8x]"),
                 "`%s' [0x%8x]"),
               abfd, name, hdr->sh_type);
               abfd, name, hdr->sh_type);
          else
          else
            /* Otherwise it should be processed.  */
            /* Otherwise it should be processed.  */
            return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
            return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
        }
        }
      else
      else
        /* FIXME: We should handle this section.  */
        /* FIXME: We should handle this section.  */
        (*_bfd_error_handler)
        (*_bfd_error_handler)
          (_("%B: don't know how to handle section `%s' [0x%8x]"),
          (_("%B: don't know how to handle section `%s' [0x%8x]"),
           abfd, name, hdr->sh_type);
           abfd, name, hdr->sh_type);
 
 
      return FALSE;
      return FALSE;
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Return the local symbol specified by ABFD, R_SYMNDX.  */
/* Return the local symbol specified by ABFD, R_SYMNDX.  */
 
 
Elf_Internal_Sym *
Elf_Internal_Sym *
bfd_sym_from_r_symndx (struct sym_cache *cache,
bfd_sym_from_r_symndx (struct sym_cache *cache,
                       bfd *abfd,
                       bfd *abfd,
                       unsigned long r_symndx)
                       unsigned long r_symndx)
{
{
  unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
  unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
 
 
  if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
  if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
    {
    {
      Elf_Internal_Shdr *symtab_hdr;
      Elf_Internal_Shdr *symtab_hdr;
      unsigned char esym[sizeof (Elf64_External_Sym)];
      unsigned char esym[sizeof (Elf64_External_Sym)];
      Elf_External_Sym_Shndx eshndx;
      Elf_External_Sym_Shndx eshndx;
 
 
      symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
      symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
      if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
      if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
                                &cache->sym[ent], esym, &eshndx) == NULL)
                                &cache->sym[ent], esym, &eshndx) == NULL)
        return NULL;
        return NULL;
 
 
      if (cache->abfd != abfd)
      if (cache->abfd != abfd)
        {
        {
          memset (cache->indx, -1, sizeof (cache->indx));
          memset (cache->indx, -1, sizeof (cache->indx));
          cache->abfd = abfd;
          cache->abfd = abfd;
        }
        }
      cache->indx[ent] = r_symndx;
      cache->indx[ent] = r_symndx;
    }
    }
 
 
  return &cache->sym[ent];
  return &cache->sym[ent];
}
}
 
 
/* Given an ELF section number, retrieve the corresponding BFD
/* Given an ELF section number, retrieve the corresponding BFD
   section.  */
   section.  */
 
 
asection *
asection *
bfd_section_from_elf_index (bfd *abfd, unsigned int index)
bfd_section_from_elf_index (bfd *abfd, unsigned int index)
{
{
  if (index >= elf_numsections (abfd))
  if (index >= elf_numsections (abfd))
    return NULL;
    return NULL;
  return elf_elfsections (abfd)[index]->bfd_section;
  return elf_elfsections (abfd)[index]->bfd_section;
}
}
 
 
static const struct bfd_elf_special_section special_sections_b[] =
static const struct bfd_elf_special_section special_sections_b[] =
{
{
  { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS,   SHF_ALLOC + SHF_WRITE },
  { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS,   SHF_ALLOC + SHF_WRITE },
  { NULL,                   0,  0, 0,            0 }
  { NULL,                   0,  0, 0,            0 }
};
};
 
 
static const struct bfd_elf_special_section special_sections_c[] =
static const struct bfd_elf_special_section special_sections_c[] =
{
{
  { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
  { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
  { NULL,                       0, 0, 0,            0 }
  { NULL,                       0, 0, 0,            0 }
};
};
 
 
static const struct bfd_elf_special_section special_sections_d[] =
static const struct bfd_elf_special_section special_sections_d[] =
{
{
  { STRING_COMMA_LEN (".data"),         -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
  { STRING_COMMA_LEN (".data"),         -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
  { STRING_COMMA_LEN (".data1"),         0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
  { STRING_COMMA_LEN (".data1"),         0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
  { STRING_COMMA_LEN (".debug"),         0, SHT_PROGBITS, 0 },
  { STRING_COMMA_LEN (".debug"),         0, SHT_PROGBITS, 0 },
  { STRING_COMMA_LEN (".debug_line"),    0, SHT_PROGBITS, 0 },
  { STRING_COMMA_LEN (".debug_line"),    0, SHT_PROGBITS, 0 },
  { STRING_COMMA_LEN (".debug_info"),    0, SHT_PROGBITS, 0 },
  { STRING_COMMA_LEN (".debug_info"),    0, SHT_PROGBITS, 0 },
  { STRING_COMMA_LEN (".debug_abbrev"),  0, SHT_PROGBITS, 0 },
  { STRING_COMMA_LEN (".debug_abbrev"),  0, SHT_PROGBITS, 0 },
  { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
  { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
  { STRING_COMMA_LEN (".dynamic"),       0, SHT_DYNAMIC,  SHF_ALLOC },
  { STRING_COMMA_LEN (".dynamic"),       0, SHT_DYNAMIC,  SHF_ALLOC },
  { STRING_COMMA_LEN (".dynstr"),        0, SHT_STRTAB,   SHF_ALLOC },
  { STRING_COMMA_LEN (".dynstr"),        0, SHT_STRTAB,   SHF_ALLOC },
  { STRING_COMMA_LEN (".dynsym"),        0, SHT_DYNSYM,   SHF_ALLOC },
  { STRING_COMMA_LEN (".dynsym"),        0, SHT_DYNSYM,   SHF_ALLOC },
  { NULL,                      0,        0, 0,            0 }
  { NULL,                      0,        0, 0,            0 }
};
};
 
 
static const struct bfd_elf_special_section special_sections_f[] =
static const struct bfd_elf_special_section special_sections_f[] =
{
{
  { STRING_COMMA_LEN (".fini"),       0, SHT_PROGBITS,   SHF_ALLOC + SHF_EXECINSTR },
  { STRING_COMMA_LEN (".fini"),       0, SHT_PROGBITS,   SHF_ALLOC + SHF_EXECINSTR },
  { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
  { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
  { NULL,                          0, 0, 0,              0 }
  { NULL,                          0, 0, 0,              0 }
};
};
 
 
static const struct bfd_elf_special_section special_sections_g[] =
static const struct bfd_elf_special_section special_sections_g[] =
{
{
  { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS,      SHF_ALLOC + SHF_WRITE },
  { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS,      SHF_ALLOC + SHF_WRITE },
  { STRING_COMMA_LEN (".got"),             0, SHT_PROGBITS,    SHF_ALLOC + SHF_WRITE },
  { STRING_COMMA_LEN (".got"),             0, SHT_PROGBITS,    SHF_ALLOC + SHF_WRITE },
  { STRING_COMMA_LEN (".gnu.version"),     0, SHT_GNU_versym,  0 },
  { STRING_COMMA_LEN (".gnu.version"),     0, SHT_GNU_versym,  0 },
  { STRING_COMMA_LEN (".gnu.version_d"),   0, SHT_GNU_verdef,  0 },
  { STRING_COMMA_LEN (".gnu.version_d"),   0, SHT_GNU_verdef,  0 },
  { STRING_COMMA_LEN (".gnu.version_r"),   0, SHT_GNU_verneed, 0 },
  { STRING_COMMA_LEN (".gnu.version_r"),   0, SHT_GNU_verneed, 0 },
  { STRING_COMMA_LEN (".gnu.liblist"),     0, SHT_GNU_LIBLIST, SHF_ALLOC },
  { STRING_COMMA_LEN (".gnu.liblist"),     0, SHT_GNU_LIBLIST, SHF_ALLOC },
  { STRING_COMMA_LEN (".gnu.conflict"),    0, SHT_RELA,        SHF_ALLOC },
  { STRING_COMMA_LEN (".gnu.conflict"),    0, SHT_RELA,        SHF_ALLOC },
  { STRING_COMMA_LEN (".gnu.hash"),        0, SHT_GNU_HASH,    SHF_ALLOC },
  { STRING_COMMA_LEN (".gnu.hash"),        0, SHT_GNU_HASH,    SHF_ALLOC },
  { NULL,                        0,        0, 0,               0 }
  { NULL,                        0,        0, 0,               0 }
};
};
 
 
static const struct bfd_elf_special_section special_sections_h[] =
static const struct bfd_elf_special_section special_sections_h[] =
{
{
  { STRING_COMMA_LEN (".hash"), 0, SHT_HASH,     SHF_ALLOC },
  { STRING_COMMA_LEN (".hash"), 0, SHT_HASH,     SHF_ALLOC },
  { NULL,                    0, 0, 0,            0 }
  { NULL,                    0, 0, 0,            0 }
};
};
 
 
static const struct bfd_elf_special_section special_sections_i[] =
static const struct bfd_elf_special_section special_sections_i[] =
{
{
  { STRING_COMMA_LEN (".init"),       0, SHT_PROGBITS,   SHF_ALLOC + SHF_EXECINSTR },
  { STRING_COMMA_LEN (".init"),       0, SHT_PROGBITS,   SHF_ALLOC + SHF_EXECINSTR },
  { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
  { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
  { STRING_COMMA_LEN (".interp"),     0, SHT_PROGBITS,   0 },
  { STRING_COMMA_LEN (".interp"),     0, SHT_PROGBITS,   0 },
  { NULL,                      0,     0, 0,              0 }
  { NULL,                      0,     0, 0,              0 }
};
};
 
 
static const struct bfd_elf_special_section special_sections_l[] =
static const struct bfd_elf_special_section special_sections_l[] =
{
{
  { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
  { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
  { NULL,                    0, 0, 0,            0 }
  { NULL,                    0, 0, 0,            0 }
};
};
 
 
static const struct bfd_elf_special_section special_sections_n[] =
static const struct bfd_elf_special_section special_sections_n[] =
{
{
  { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
  { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
  { STRING_COMMA_LEN (".note"),          -1, SHT_NOTE,     0 },
  { STRING_COMMA_LEN (".note"),          -1, SHT_NOTE,     0 },
  { NULL,                    0,           0, 0,            0 }
  { NULL,                    0,           0, 0,            0 }
};
};
 
 
static const struct bfd_elf_special_section special_sections_p[] =
static const struct bfd_elf_special_section special_sections_p[] =
{
{
  { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
  { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
  { STRING_COMMA_LEN (".plt"),           0, SHT_PROGBITS,      SHF_ALLOC + SHF_EXECINSTR },
  { STRING_COMMA_LEN (".plt"),           0, SHT_PROGBITS,      SHF_ALLOC + SHF_EXECINSTR },
  { NULL,                   0,           0, 0,                 0 }
  { NULL,                   0,           0, 0,                 0 }
};
};
 
 
static const struct bfd_elf_special_section special_sections_r[] =
static const struct bfd_elf_special_section special_sections_r[] =
{
{
  { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
  { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
  { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
  { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
  { STRING_COMMA_LEN (".rela"),   -1, SHT_RELA,     0 },
  { STRING_COMMA_LEN (".rela"),   -1, SHT_RELA,     0 },
  { STRING_COMMA_LEN (".rel"),    -1, SHT_REL,      0 },
  { STRING_COMMA_LEN (".rel"),    -1, SHT_REL,      0 },
  { NULL,                   0,     0, 0,            0 }
  { NULL,                   0,     0, 0,            0 }
};
};
 
 
static const struct bfd_elf_special_section special_sections_s[] =
static const struct bfd_elf_special_section special_sections_s[] =
{
{
  { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
  { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
  { STRING_COMMA_LEN (".strtab"),   0, SHT_STRTAB, 0 },
  { STRING_COMMA_LEN (".strtab"),   0, SHT_STRTAB, 0 },
  { STRING_COMMA_LEN (".symtab"),   0, SHT_SYMTAB, 0 },
  { STRING_COMMA_LEN (".symtab"),   0, SHT_SYMTAB, 0 },
  /* See struct bfd_elf_special_section declaration for the semantics of
  /* See struct bfd_elf_special_section declaration for the semantics of
     this special case where .prefix_length != strlen (.prefix).  */
     this special case where .prefix_length != strlen (.prefix).  */
  { ".stabstr",                 5,  3, SHT_STRTAB, 0 },
  { ".stabstr",                 5,  3, SHT_STRTAB, 0 },
  { NULL,                       0,  0, 0,          0 }
  { NULL,                       0,  0, 0,          0 }
};
};
 
 
static const struct bfd_elf_special_section special_sections_t[] =
static const struct bfd_elf_special_section special_sections_t[] =
{
{
  { STRING_COMMA_LEN (".text"),  -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
  { STRING_COMMA_LEN (".text"),  -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
  { STRING_COMMA_LEN (".tbss"),  -2, SHT_NOBITS,   SHF_ALLOC + SHF_WRITE + SHF_TLS },
  { STRING_COMMA_LEN (".tbss"),  -2, SHT_NOBITS,   SHF_ALLOC + SHF_WRITE + SHF_TLS },
  { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
  { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
  { NULL,                     0,  0, 0,            0 }
  { NULL,                     0,  0, 0,            0 }
};
};
 
 
static const struct bfd_elf_special_section special_sections_z[] =
static const struct bfd_elf_special_section special_sections_z[] =
{
{
  { STRING_COMMA_LEN (".zdebug_line"),    0, SHT_PROGBITS, 0 },
  { STRING_COMMA_LEN (".zdebug_line"),    0, SHT_PROGBITS, 0 },
  { STRING_COMMA_LEN (".zdebug_info"),    0, SHT_PROGBITS, 0 },
  { STRING_COMMA_LEN (".zdebug_info"),    0, SHT_PROGBITS, 0 },
  { STRING_COMMA_LEN (".zdebug_abbrev"),  0, SHT_PROGBITS, 0 },
  { STRING_COMMA_LEN (".zdebug_abbrev"),  0, SHT_PROGBITS, 0 },
  { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
  { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
  { NULL,                     0,  0, 0,            0 }
  { NULL,                     0,  0, 0,            0 }
};
};
 
 
static const struct bfd_elf_special_section *special_sections[] =
static const struct bfd_elf_special_section *special_sections[] =
{
{
  special_sections_b,           /* 'b' */
  special_sections_b,           /* 'b' */
  special_sections_c,           /* 'c' */
  special_sections_c,           /* 'c' */
  special_sections_d,           /* 'd' */
  special_sections_d,           /* 'd' */
  NULL,                         /* 'e' */
  NULL,                         /* 'e' */
  special_sections_f,           /* 'f' */
  special_sections_f,           /* 'f' */
  special_sections_g,           /* 'g' */
  special_sections_g,           /* 'g' */
  special_sections_h,           /* 'h' */
  special_sections_h,           /* 'h' */
  special_sections_i,           /* 'i' */
  special_sections_i,           /* 'i' */
  NULL,                         /* 'j' */
  NULL,                         /* 'j' */
  NULL,                         /* 'k' */
  NULL,                         /* 'k' */
  special_sections_l,           /* 'l' */
  special_sections_l,           /* 'l' */
  NULL,                         /* 'm' */
  NULL,                         /* 'm' */
  special_sections_n,           /* 'n' */
  special_sections_n,           /* 'n' */
  NULL,                         /* 'o' */
  NULL,                         /* 'o' */
  special_sections_p,           /* 'p' */
  special_sections_p,           /* 'p' */
  NULL,                         /* 'q' */
  NULL,                         /* 'q' */
  special_sections_r,           /* 'r' */
  special_sections_r,           /* 'r' */
  special_sections_s,           /* 's' */
  special_sections_s,           /* 's' */
  special_sections_t,           /* 't' */
  special_sections_t,           /* 't' */
  NULL,                         /* 'u' */
  NULL,                         /* 'u' */
  NULL,                         /* 'v' */
  NULL,                         /* 'v' */
  NULL,                         /* 'w' */
  NULL,                         /* 'w' */
  NULL,                         /* 'x' */
  NULL,                         /* 'x' */
  NULL,                         /* 'y' */
  NULL,                         /* 'y' */
  special_sections_z            /* 'z' */
  special_sections_z            /* 'z' */
};
};
 
 
const struct bfd_elf_special_section *
const struct bfd_elf_special_section *
_bfd_elf_get_special_section (const char *name,
_bfd_elf_get_special_section (const char *name,
                              const struct bfd_elf_special_section *spec,
                              const struct bfd_elf_special_section *spec,
                              unsigned int rela)
                              unsigned int rela)
{
{
  int i;
  int i;
  int len;
  int len;
 
 
  len = strlen (name);
  len = strlen (name);
 
 
  for (i = 0; spec[i].prefix != NULL; i++)
  for (i = 0; spec[i].prefix != NULL; i++)
    {
    {
      int suffix_len;
      int suffix_len;
      int prefix_len = spec[i].prefix_length;
      int prefix_len = spec[i].prefix_length;
 
 
      if (len < prefix_len)
      if (len < prefix_len)
        continue;
        continue;
      if (memcmp (name, spec[i].prefix, prefix_len) != 0)
      if (memcmp (name, spec[i].prefix, prefix_len) != 0)
        continue;
        continue;
 
 
      suffix_len = spec[i].suffix_length;
      suffix_len = spec[i].suffix_length;
      if (suffix_len <= 0)
      if (suffix_len <= 0)
        {
        {
          if (name[prefix_len] != 0)
          if (name[prefix_len] != 0)
            {
            {
              if (suffix_len == 0)
              if (suffix_len == 0)
                continue;
                continue;
              if (name[prefix_len] != '.'
              if (name[prefix_len] != '.'
                  && (suffix_len == -2
                  && (suffix_len == -2
                      || (rela && spec[i].type == SHT_REL)))
                      || (rela && spec[i].type == SHT_REL)))
                continue;
                continue;
            }
            }
        }
        }
      else
      else
        {
        {
          if (len < prefix_len + suffix_len)
          if (len < prefix_len + suffix_len)
            continue;
            continue;
          if (memcmp (name + len - suffix_len,
          if (memcmp (name + len - suffix_len,
                      spec[i].prefix + prefix_len,
                      spec[i].prefix + prefix_len,
                      suffix_len) != 0)
                      suffix_len) != 0)
            continue;
            continue;
        }
        }
      return &spec[i];
      return &spec[i];
    }
    }
 
 
  return NULL;
  return NULL;
}
}
 
 
const struct bfd_elf_special_section *
const struct bfd_elf_special_section *
_bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
_bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
{
{
  int i;
  int i;
  const struct bfd_elf_special_section *spec;
  const struct bfd_elf_special_section *spec;
  const struct elf_backend_data *bed;
  const struct elf_backend_data *bed;
 
 
  /* See if this is one of the special sections.  */
  /* See if this is one of the special sections.  */
  if (sec->name == NULL)
  if (sec->name == NULL)
    return NULL;
    return NULL;
 
 
  bed = get_elf_backend_data (abfd);
  bed = get_elf_backend_data (abfd);
  spec = bed->special_sections;
  spec = bed->special_sections;
  if (spec)
  if (spec)
    {
    {
      spec = _bfd_elf_get_special_section (sec->name,
      spec = _bfd_elf_get_special_section (sec->name,
                                           bed->special_sections,
                                           bed->special_sections,
                                           sec->use_rela_p);
                                           sec->use_rela_p);
      if (spec != NULL)
      if (spec != NULL)
        return spec;
        return spec;
    }
    }
 
 
  if (sec->name[0] != '.')
  if (sec->name[0] != '.')
    return NULL;
    return NULL;
 
 
  i = sec->name[1] - 'b';
  i = sec->name[1] - 'b';
  if (i < 0 || i > 'z' - 'b')
  if (i < 0 || i > 'z' - 'b')
    return NULL;
    return NULL;
 
 
  spec = special_sections[i];
  spec = special_sections[i];
 
 
  if (spec == NULL)
  if (spec == NULL)
    return NULL;
    return NULL;
 
 
  return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
  return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
}
}
 
 
bfd_boolean
bfd_boolean
_bfd_elf_new_section_hook (bfd *abfd, asection *sec)
_bfd_elf_new_section_hook (bfd *abfd, asection *sec)
{
{
  struct bfd_elf_section_data *sdata;
  struct bfd_elf_section_data *sdata;
  const struct elf_backend_data *bed;
  const struct elf_backend_data *bed;
  const struct bfd_elf_special_section *ssect;
  const struct bfd_elf_special_section *ssect;
 
 
  sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
  sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
  if (sdata == NULL)
  if (sdata == NULL)
    {
    {
      sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
      sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
                                                          sizeof (*sdata));
                                                          sizeof (*sdata));
      if (sdata == NULL)
      if (sdata == NULL)
        return FALSE;
        return FALSE;
      sec->used_by_bfd = sdata;
      sec->used_by_bfd = sdata;
    }
    }
 
 
  /* Indicate whether or not this section should use RELA relocations.  */
  /* Indicate whether or not this section should use RELA relocations.  */
  bed = get_elf_backend_data (abfd);
  bed = get_elf_backend_data (abfd);
  sec->use_rela_p = bed->default_use_rela_p;
  sec->use_rela_p = bed->default_use_rela_p;
 
 
  /* When we read a file, we don't need to set ELF section type and
  /* When we read a file, we don't need to set ELF section type and
     flags.  They will be overridden in _bfd_elf_make_section_from_shdr
     flags.  They will be overridden in _bfd_elf_make_section_from_shdr
     anyway.  We will set ELF section type and flags for all linker
     anyway.  We will set ELF section type and flags for all linker
     created sections.  If user specifies BFD section flags, we will
     created sections.  If user specifies BFD section flags, we will
     set ELF section type and flags based on BFD section flags in
     set ELF section type and flags based on BFD section flags in
     elf_fake_sections.  */
     elf_fake_sections.  */
  if ((!sec->flags && abfd->direction != read_direction)
  if ((!sec->flags && abfd->direction != read_direction)
      || (sec->flags & SEC_LINKER_CREATED) != 0)
      || (sec->flags & SEC_LINKER_CREATED) != 0)
    {
    {
      ssect = (*bed->get_sec_type_attr) (abfd, sec);
      ssect = (*bed->get_sec_type_attr) (abfd, sec);
      if (ssect != NULL)
      if (ssect != NULL)
        {
        {
          elf_section_type (sec) = ssect->type;
          elf_section_type (sec) = ssect->type;
          elf_section_flags (sec) = ssect->attr;
          elf_section_flags (sec) = ssect->attr;
        }
        }
    }
    }
 
 
  return _bfd_generic_new_section_hook (abfd, sec);
  return _bfd_generic_new_section_hook (abfd, sec);
}
}
 
 
/* Create a new bfd section from an ELF program header.
/* Create a new bfd section from an ELF program header.
 
 
   Since program segments have no names, we generate a synthetic name
   Since program segments have no names, we generate a synthetic name
   of the form segment<NUM>, where NUM is generally the index in the
   of the form segment<NUM>, where NUM is generally the index in the
   program header table.  For segments that are split (see below) we
   program header table.  For segments that are split (see below) we
   generate the names segment<NUM>a and segment<NUM>b.
   generate the names segment<NUM>a and segment<NUM>b.
 
 
   Note that some program segments may have a file size that is different than
   Note that some program segments may have a file size that is different than
   (less than) the memory size.  All this means is that at execution the
   (less than) the memory size.  All this means is that at execution the
   system must allocate the amount of memory specified by the memory size,
   system must allocate the amount of memory specified by the memory size,
   but only initialize it with the first "file size" bytes read from the
   but only initialize it with the first "file size" bytes read from the
   file.  This would occur for example, with program segments consisting
   file.  This would occur for example, with program segments consisting
   of combined data+bss.
   of combined data+bss.
 
 
   To handle the above situation, this routine generates TWO bfd sections
   To handle the above situation, this routine generates TWO bfd sections
   for the single program segment.  The first has the length specified by
   for the single program segment.  The first has the length specified by
   the file size of the segment, and the second has the length specified
   the file size of the segment, and the second has the length specified
   by the difference between the two sizes.  In effect, the segment is split
   by the difference between the two sizes.  In effect, the segment is split
   into its initialized and uninitialized parts.
   into its initialized and uninitialized parts.
 
 
 */
 */
 
 
bfd_boolean
bfd_boolean
_bfd_elf_make_section_from_phdr (bfd *abfd,
_bfd_elf_make_section_from_phdr (bfd *abfd,
                                 Elf_Internal_Phdr *hdr,
                                 Elf_Internal_Phdr *hdr,
                                 int index,
                                 int index,
                                 const char *type_name)
                                 const char *type_name)
{
{
  asection *newsect;
  asection *newsect;
  char *name;
  char *name;
  char namebuf[64];
  char namebuf[64];
  size_t len;
  size_t len;
  int split;
  int split;
 
 
  split = ((hdr->p_memsz > 0)
  split = ((hdr->p_memsz > 0)
            && (hdr->p_filesz > 0)
            && (hdr->p_filesz > 0)
            && (hdr->p_memsz > hdr->p_filesz));
            && (hdr->p_memsz > hdr->p_filesz));
 
 
  if (hdr->p_filesz > 0)
  if (hdr->p_filesz > 0)
    {
    {
      sprintf (namebuf, "%s%d%s", type_name, index, split ? "a" : "");
      sprintf (namebuf, "%s%d%s", type_name, index, split ? "a" : "");
      len = strlen (namebuf) + 1;
      len = strlen (namebuf) + 1;
      name = (char *) bfd_alloc (abfd, len);
      name = (char *) bfd_alloc (abfd, len);
      if (!name)
      if (!name)
        return FALSE;
        return FALSE;
      memcpy (name, namebuf, len);
      memcpy (name, namebuf, len);
      newsect = bfd_make_section (abfd, name);
      newsect = bfd_make_section (abfd, name);
      if (newsect == NULL)
      if (newsect == NULL)
        return FALSE;
        return FALSE;
      newsect->vma = hdr->p_vaddr;
      newsect->vma = hdr->p_vaddr;
      newsect->lma = hdr->p_paddr;
      newsect->lma = hdr->p_paddr;
      newsect->size = hdr->p_filesz;
      newsect->size = hdr->p_filesz;
      newsect->filepos = hdr->p_offset;
      newsect->filepos = hdr->p_offset;
      newsect->flags |= SEC_HAS_CONTENTS;
      newsect->flags |= SEC_HAS_CONTENTS;
      newsect->alignment_power = bfd_log2 (hdr->p_align);
      newsect->alignment_power = bfd_log2 (hdr->p_align);
      if (hdr->p_type == PT_LOAD)
      if (hdr->p_type == PT_LOAD)
        {
        {
          newsect->flags |= SEC_ALLOC;
          newsect->flags |= SEC_ALLOC;
          newsect->flags |= SEC_LOAD;
          newsect->flags |= SEC_LOAD;
          if (hdr->p_flags & PF_X)
          if (hdr->p_flags & PF_X)
            {
            {
              /* FIXME: all we known is that it has execute PERMISSION,
              /* FIXME: all we known is that it has execute PERMISSION,
                 may be data.  */
                 may be data.  */
              newsect->flags |= SEC_CODE;
              newsect->flags |= SEC_CODE;
            }
            }
        }
        }
      if (!(hdr->p_flags & PF_W))
      if (!(hdr->p_flags & PF_W))
        {
        {
          newsect->flags |= SEC_READONLY;
          newsect->flags |= SEC_READONLY;
        }
        }
    }
    }
 
 
  if (hdr->p_memsz > hdr->p_filesz)
  if (hdr->p_memsz > hdr->p_filesz)
    {
    {
      bfd_vma align;
      bfd_vma align;
 
 
      sprintf (namebuf, "%s%d%s", type_name, index, split ? "b" : "");
      sprintf (namebuf, "%s%d%s", type_name, index, split ? "b" : "");
      len = strlen (namebuf) + 1;
      len = strlen (namebuf) + 1;
      name = (char *) bfd_alloc (abfd, len);
      name = (char *) bfd_alloc (abfd, len);
      if (!name)
      if (!name)
        return FALSE;
        return FALSE;
      memcpy (name, namebuf, len);
      memcpy (name, namebuf, len);
      newsect = bfd_make_section (abfd, name);
      newsect = bfd_make_section (abfd, name);
      if (newsect == NULL)
      if (newsect == NULL)
        return FALSE;
        return FALSE;
      newsect->vma = hdr->p_vaddr + hdr->p_filesz;
      newsect->vma = hdr->p_vaddr + hdr->p_filesz;
      newsect->lma = hdr->p_paddr + hdr->p_filesz;
      newsect->lma = hdr->p_paddr + hdr->p_filesz;
      newsect->size = hdr->p_memsz - hdr->p_filesz;
      newsect->size = hdr->p_memsz - hdr->p_filesz;
      newsect->filepos = hdr->p_offset + hdr->p_filesz;
      newsect->filepos = hdr->p_offset + hdr->p_filesz;
      align = newsect->vma & -newsect->vma;
      align = newsect->vma & -newsect->vma;
      if (align == 0 || align > hdr->p_align)
      if (align == 0 || align > hdr->p_align)
        align = hdr->p_align;
        align = hdr->p_align;
      newsect->alignment_power = bfd_log2 (align);
      newsect->alignment_power = bfd_log2 (align);
      if (hdr->p_type == PT_LOAD)
      if (hdr->p_type == PT_LOAD)
        {
        {
          /* Hack for gdb.  Segments that have not been modified do
          /* Hack for gdb.  Segments that have not been modified do
             not have their contents written to a core file, on the
             not have their contents written to a core file, on the
             assumption that a debugger can find the contents in the
             assumption that a debugger can find the contents in the
             executable.  We flag this case by setting the fake
             executable.  We flag this case by setting the fake
             section size to zero.  Note that "real" bss sections will
             section size to zero.  Note that "real" bss sections will
             always have their contents dumped to the core file.  */
             always have their contents dumped to the core file.  */
          if (bfd_get_format (abfd) == bfd_core)
          if (bfd_get_format (abfd) == bfd_core)
            newsect->size = 0;
            newsect->size = 0;
          newsect->flags |= SEC_ALLOC;
          newsect->flags |= SEC_ALLOC;
          if (hdr->p_flags & PF_X)
          if (hdr->p_flags & PF_X)
            newsect->flags |= SEC_CODE;
            newsect->flags |= SEC_CODE;
        }
        }
      if (!(hdr->p_flags & PF_W))
      if (!(hdr->p_flags & PF_W))
        newsect->flags |= SEC_READONLY;
        newsect->flags |= SEC_READONLY;
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
bfd_boolean
bfd_boolean
bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
{
{
  const struct elf_backend_data *bed;
  const struct elf_backend_data *bed;
 
 
  switch (hdr->p_type)
  switch (hdr->p_type)
    {
    {
    case PT_NULL:
    case PT_NULL:
      return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
      return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
 
 
    case PT_LOAD:
    case PT_LOAD:
      return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
      return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
 
 
    case PT_DYNAMIC:
    case PT_DYNAMIC:
      return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
      return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
 
 
    case PT_INTERP:
    case PT_INTERP:
      return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
      return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
 
 
    case PT_NOTE:
    case PT_NOTE:
      if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
      if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
        return FALSE;
        return FALSE;
      if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
      if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
        return FALSE;
        return FALSE;
      return TRUE;
      return TRUE;
 
 
    case PT_SHLIB:
    case PT_SHLIB:
      return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
      return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
 
 
    case PT_PHDR:
    case PT_PHDR:
      return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
      return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
 
 
    case PT_GNU_EH_FRAME:
    case PT_GNU_EH_FRAME:
      return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
      return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
                                              "eh_frame_hdr");
                                              "eh_frame_hdr");
 
 
    case PT_GNU_STACK:
    case PT_GNU_STACK:
      return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
      return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
 
 
    case PT_GNU_RELRO:
    case PT_GNU_RELRO:
      return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
      return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
 
 
    default:
    default:
      /* Check for any processor-specific program segment types.  */
      /* Check for any processor-specific program segment types.  */
      bed = get_elf_backend_data (abfd);
      bed = get_elf_backend_data (abfd);
      return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
      return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
    }
    }
}
}
 
 
/* Initialize REL_HDR, the section-header for new section, containing
/* Initialize REL_HDR, the section-header for new section, containing
   relocations against ASECT.  If USE_RELA_P is TRUE, we use RELA
   relocations against ASECT.  If USE_RELA_P is TRUE, we use RELA
   relocations; otherwise, we use REL relocations.  */
   relocations; otherwise, we use REL relocations.  */
 
 
bfd_boolean
bfd_boolean
_bfd_elf_init_reloc_shdr (bfd *abfd,
_bfd_elf_init_reloc_shdr (bfd *abfd,
                          Elf_Internal_Shdr *rel_hdr,
                          Elf_Internal_Shdr *rel_hdr,
                          asection *asect,
                          asection *asect,
                          bfd_boolean use_rela_p)
                          bfd_boolean use_rela_p)
{
{
  char *name;
  char *name;
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
  bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
  bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
 
 
  name = (char *) bfd_alloc (abfd, amt);
  name = (char *) bfd_alloc (abfd, amt);
  if (name == NULL)
  if (name == NULL)
    return FALSE;
    return FALSE;
  sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
  sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
  rel_hdr->sh_name =
  rel_hdr->sh_name =
    (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
    (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
                                        FALSE);
                                        FALSE);
  if (rel_hdr->sh_name == (unsigned int) -1)
  if (rel_hdr->sh_name == (unsigned int) -1)
    return FALSE;
    return FALSE;
  rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
  rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
  rel_hdr->sh_entsize = (use_rela_p
  rel_hdr->sh_entsize = (use_rela_p
                         ? bed->s->sizeof_rela
                         ? bed->s->sizeof_rela
                         : bed->s->sizeof_rel);
                         : bed->s->sizeof_rel);
  rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
  rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
  rel_hdr->sh_flags = 0;
  rel_hdr->sh_flags = 0;
  rel_hdr->sh_addr = 0;
  rel_hdr->sh_addr = 0;
  rel_hdr->sh_size = 0;
  rel_hdr->sh_size = 0;
  rel_hdr->sh_offset = 0;
  rel_hdr->sh_offset = 0;
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Return the default section type based on the passed in section flags.  */
/* Return the default section type based on the passed in section flags.  */
 
 
int
int
bfd_elf_get_default_section_type (flagword flags)
bfd_elf_get_default_section_type (flagword flags)
{
{
  if ((flags & SEC_ALLOC) != 0
  if ((flags & SEC_ALLOC) != 0
      && ((flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0
      && ((flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0
          || (flags & SEC_NEVER_LOAD) != 0))
          || (flags & SEC_NEVER_LOAD) != 0))
    return SHT_NOBITS;
    return SHT_NOBITS;
  return SHT_PROGBITS;
  return SHT_PROGBITS;
}
}
 
 
/* Set up an ELF internal section header for a section.  */
/* Set up an ELF internal section header for a section.  */
 
 
static void
static void
elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
{
{
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
  bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
  bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
  Elf_Internal_Shdr *this_hdr;
  Elf_Internal_Shdr *this_hdr;
  unsigned int sh_type;
  unsigned int sh_type;
 
 
  if (*failedptr)
  if (*failedptr)
    {
    {
      /* We already failed; just get out of the bfd_map_over_sections
      /* We already failed; just get out of the bfd_map_over_sections
         loop.  */
         loop.  */
      return;
      return;
    }
    }
 
 
  this_hdr = &elf_section_data (asect)->this_hdr;
  this_hdr = &elf_section_data (asect)->this_hdr;
 
 
  this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
  this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
                                                          asect->name, FALSE);
                                                          asect->name, FALSE);
  if (this_hdr->sh_name == (unsigned int) -1)
  if (this_hdr->sh_name == (unsigned int) -1)
    {
    {
      *failedptr = TRUE;
      *failedptr = TRUE;
      return;
      return;
    }
    }
 
 
  /* Don't clear sh_flags. Assembler may set additional bits.  */
  /* Don't clear sh_flags. Assembler may set additional bits.  */
 
 
  if ((asect->flags & SEC_ALLOC) != 0
  if ((asect->flags & SEC_ALLOC) != 0
      || asect->user_set_vma)
      || asect->user_set_vma)
    this_hdr->sh_addr = asect->vma;
    this_hdr->sh_addr = asect->vma;
  else
  else
    this_hdr->sh_addr = 0;
    this_hdr->sh_addr = 0;
 
 
  this_hdr->sh_offset = 0;
  this_hdr->sh_offset = 0;
  this_hdr->sh_size = asect->size;
  this_hdr->sh_size = asect->size;
  this_hdr->sh_link = 0;
  this_hdr->sh_link = 0;
  this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
  this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
  /* The sh_entsize and sh_info fields may have been set already by
  /* The sh_entsize and sh_info fields may have been set already by
     copy_private_section_data.  */
     copy_private_section_data.  */
 
 
  this_hdr->bfd_section = asect;
  this_hdr->bfd_section = asect;
  this_hdr->contents = NULL;
  this_hdr->contents = NULL;
 
 
  /* If the section type is unspecified, we set it based on
  /* If the section type is unspecified, we set it based on
     asect->flags.  */
     asect->flags.  */
  if ((asect->flags & SEC_GROUP) != 0)
  if ((asect->flags & SEC_GROUP) != 0)
    sh_type = SHT_GROUP;
    sh_type = SHT_GROUP;
  else
  else
    sh_type = bfd_elf_get_default_section_type (asect->flags);
    sh_type = bfd_elf_get_default_section_type (asect->flags);
 
 
  if (this_hdr->sh_type == SHT_NULL)
  if (this_hdr->sh_type == SHT_NULL)
    this_hdr->sh_type = sh_type;
    this_hdr->sh_type = sh_type;
  else if (this_hdr->sh_type == SHT_NOBITS
  else if (this_hdr->sh_type == SHT_NOBITS
           && sh_type == SHT_PROGBITS
           && sh_type == SHT_PROGBITS
           && (asect->flags & SEC_ALLOC) != 0)
           && (asect->flags & SEC_ALLOC) != 0)
    {
    {
      /* Warn if we are changing a NOBITS section to PROGBITS, but
      /* Warn if we are changing a NOBITS section to PROGBITS, but
         allow the link to proceed.  This can happen when users link
         allow the link to proceed.  This can happen when users link
         non-bss input sections to bss output sections, or emit data
         non-bss input sections to bss output sections, or emit data
         to a bss output section via a linker script.  */
         to a bss output section via a linker script.  */
      (*_bfd_error_handler)
      (*_bfd_error_handler)
        (_("warning: section `%A' type changed to PROGBITS"), asect);
        (_("warning: section `%A' type changed to PROGBITS"), asect);
      this_hdr->sh_type = sh_type;
      this_hdr->sh_type = sh_type;
    }
    }
 
 
  switch (this_hdr->sh_type)
  switch (this_hdr->sh_type)
    {
    {
    default:
    default:
      break;
      break;
 
 
    case SHT_STRTAB:
    case SHT_STRTAB:
    case SHT_INIT_ARRAY:
    case SHT_INIT_ARRAY:
    case SHT_FINI_ARRAY:
    case SHT_FINI_ARRAY:
    case SHT_PREINIT_ARRAY:
    case SHT_PREINIT_ARRAY:
    case SHT_NOTE:
    case SHT_NOTE:
    case SHT_NOBITS:
    case SHT_NOBITS:
    case SHT_PROGBITS:
    case SHT_PROGBITS:
      break;
      break;
 
 
    case SHT_HASH:
    case SHT_HASH:
      this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
      this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
      break;
      break;
 
 
    case SHT_DYNSYM:
    case SHT_DYNSYM:
      this_hdr->sh_entsize = bed->s->sizeof_sym;
      this_hdr->sh_entsize = bed->s->sizeof_sym;
      break;
      break;
 
 
    case SHT_DYNAMIC:
    case SHT_DYNAMIC:
      this_hdr->sh_entsize = bed->s->sizeof_dyn;
      this_hdr->sh_entsize = bed->s->sizeof_dyn;
      break;
      break;
 
 
    case SHT_RELA:
    case SHT_RELA:
      if (get_elf_backend_data (abfd)->may_use_rela_p)
      if (get_elf_backend_data (abfd)->may_use_rela_p)
        this_hdr->sh_entsize = bed->s->sizeof_rela;
        this_hdr->sh_entsize = bed->s->sizeof_rela;
      break;
      break;
 
 
     case SHT_REL:
     case SHT_REL:
      if (get_elf_backend_data (abfd)->may_use_rel_p)
      if (get_elf_backend_data (abfd)->may_use_rel_p)
        this_hdr->sh_entsize = bed->s->sizeof_rel;
        this_hdr->sh_entsize = bed->s->sizeof_rel;
      break;
      break;
 
 
     case SHT_GNU_versym:
     case SHT_GNU_versym:
      this_hdr->sh_entsize = sizeof (Elf_External_Versym);
      this_hdr->sh_entsize = sizeof (Elf_External_Versym);
      break;
      break;
 
 
     case SHT_GNU_verdef:
     case SHT_GNU_verdef:
      this_hdr->sh_entsize = 0;
      this_hdr->sh_entsize = 0;
      /* objcopy or strip will copy over sh_info, but may not set
      /* objcopy or strip will copy over sh_info, but may not set
         cverdefs.  The linker will set cverdefs, but sh_info will be
         cverdefs.  The linker will set cverdefs, but sh_info will be
         zero.  */
         zero.  */
      if (this_hdr->sh_info == 0)
      if (this_hdr->sh_info == 0)
        this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
        this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
      else
      else
        BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
        BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
                    || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
                    || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
      break;
      break;
 
 
    case SHT_GNU_verneed:
    case SHT_GNU_verneed:
      this_hdr->sh_entsize = 0;
      this_hdr->sh_entsize = 0;
      /* objcopy or strip will copy over sh_info, but may not set
      /* objcopy or strip will copy over sh_info, but may not set
         cverrefs.  The linker will set cverrefs, but sh_info will be
         cverrefs.  The linker will set cverrefs, but sh_info will be
         zero.  */
         zero.  */
      if (this_hdr->sh_info == 0)
      if (this_hdr->sh_info == 0)
        this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
        this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
      else
      else
        BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
        BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
                    || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
                    || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
      break;
      break;
 
 
    case SHT_GROUP:
    case SHT_GROUP:
      this_hdr->sh_entsize = GRP_ENTRY_SIZE;
      this_hdr->sh_entsize = GRP_ENTRY_SIZE;
      break;
      break;
 
 
    case SHT_GNU_HASH:
    case SHT_GNU_HASH:
      this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
      this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
      break;
      break;
    }
    }
 
 
  if ((asect->flags & SEC_ALLOC) != 0)
  if ((asect->flags & SEC_ALLOC) != 0)
    this_hdr->sh_flags |= SHF_ALLOC;
    this_hdr->sh_flags |= SHF_ALLOC;
  if ((asect->flags & SEC_READONLY) == 0)
  if ((asect->flags & SEC_READONLY) == 0)
    this_hdr->sh_flags |= SHF_WRITE;
    this_hdr->sh_flags |= SHF_WRITE;
  if ((asect->flags & SEC_CODE) != 0)
  if ((asect->flags & SEC_CODE) != 0)
    this_hdr->sh_flags |= SHF_EXECINSTR;
    this_hdr->sh_flags |= SHF_EXECINSTR;
  if ((asect->flags & SEC_MERGE) != 0)
  if ((asect->flags & SEC_MERGE) != 0)
    {
    {
      this_hdr->sh_flags |= SHF_MERGE;
      this_hdr->sh_flags |= SHF_MERGE;
      this_hdr->sh_entsize = asect->entsize;
      this_hdr->sh_entsize = asect->entsize;
      if ((asect->flags & SEC_STRINGS) != 0)
      if ((asect->flags & SEC_STRINGS) != 0)
        this_hdr->sh_flags |= SHF_STRINGS;
        this_hdr->sh_flags |= SHF_STRINGS;
    }
    }
  if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
  if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
    this_hdr->sh_flags |= SHF_GROUP;
    this_hdr->sh_flags |= SHF_GROUP;
  if ((asect->flags & SEC_THREAD_LOCAL) != 0)
  if ((asect->flags & SEC_THREAD_LOCAL) != 0)
    {
    {
      this_hdr->sh_flags |= SHF_TLS;
      this_hdr->sh_flags |= SHF_TLS;
      if (asect->size == 0
      if (asect->size == 0
          && (asect->flags & SEC_HAS_CONTENTS) == 0)
          && (asect->flags & SEC_HAS_CONTENTS) == 0)
        {
        {
          struct bfd_link_order *o = asect->map_tail.link_order;
          struct bfd_link_order *o = asect->map_tail.link_order;
 
 
          this_hdr->sh_size = 0;
          this_hdr->sh_size = 0;
          if (o != NULL)
          if (o != NULL)
            {
            {
              this_hdr->sh_size = o->offset + o->size;
              this_hdr->sh_size = o->offset + o->size;
              if (this_hdr->sh_size != 0)
              if (this_hdr->sh_size != 0)
                this_hdr->sh_type = SHT_NOBITS;
                this_hdr->sh_type = SHT_NOBITS;
            }
            }
        }
        }
    }
    }
 
 
  /* Check for processor-specific section types.  */
  /* Check for processor-specific section types.  */
  sh_type = this_hdr->sh_type;
  sh_type = this_hdr->sh_type;
  if (bed->elf_backend_fake_sections
  if (bed->elf_backend_fake_sections
      && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
      && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
    *failedptr = TRUE;
    *failedptr = TRUE;
 
 
  if (sh_type == SHT_NOBITS && asect->size != 0)
  if (sh_type == SHT_NOBITS && asect->size != 0)
    {
    {
      /* Don't change the header type from NOBITS if we are being
      /* Don't change the header type from NOBITS if we are being
         called for objcopy --only-keep-debug.  */
         called for objcopy --only-keep-debug.  */
      this_hdr->sh_type = sh_type;
      this_hdr->sh_type = sh_type;
    }
    }
 
 
  /* If the section has relocs, set up a section header for the
  /* If the section has relocs, set up a section header for the
     SHT_REL[A] section.  If two relocation sections are required for
     SHT_REL[A] section.  If two relocation sections are required for
     this section, it is up to the processor-specific back-end to
     this section, it is up to the processor-specific back-end to
     create the other.  */
     create the other.  */
  if ((asect->flags & SEC_RELOC) != 0
  if ((asect->flags & SEC_RELOC) != 0
      && !_bfd_elf_init_reloc_shdr (abfd,
      && !_bfd_elf_init_reloc_shdr (abfd,
                                    &elf_section_data (asect)->rel_hdr,
                                    &elf_section_data (asect)->rel_hdr,
                                    asect,
                                    asect,
                                    asect->use_rela_p))
                                    asect->use_rela_p))
    *failedptr = TRUE;
    *failedptr = TRUE;
}
}
 
 
/* Fill in the contents of a SHT_GROUP section.  Called from
/* Fill in the contents of a SHT_GROUP section.  Called from
   _bfd_elf_compute_section_file_positions for gas, objcopy, and
   _bfd_elf_compute_section_file_positions for gas, objcopy, and
   when ELF targets use the generic linker, ld.  Called for ld -r
   when ELF targets use the generic linker, ld.  Called for ld -r
   from bfd_elf_final_link.  */
   from bfd_elf_final_link.  */
 
 
void
void
bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
{
{
  bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
  bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
  asection *elt, *first;
  asection *elt, *first;
  unsigned char *loc;
  unsigned char *loc;
  bfd_boolean gas;
  bfd_boolean gas;
 
 
  /* Ignore linker created group section.  See elfNN_ia64_object_p in
  /* Ignore linker created group section.  See elfNN_ia64_object_p in
     elfxx-ia64.c.  */
     elfxx-ia64.c.  */
  if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
  if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
      || *failedptr)
      || *failedptr)
    return;
    return;
 
 
  if (elf_section_data (sec)->this_hdr.sh_info == 0)
  if (elf_section_data (sec)->this_hdr.sh_info == 0)
    {
    {
      unsigned long symindx = 0;
      unsigned long symindx = 0;
 
 
      /* elf_group_id will have been set up by objcopy and the
      /* elf_group_id will have been set up by objcopy and the
         generic linker.  */
         generic linker.  */
      if (elf_group_id (sec) != NULL)
      if (elf_group_id (sec) != NULL)
        symindx = elf_group_id (sec)->udata.i;
        symindx = elf_group_id (sec)->udata.i;
 
 
      if (symindx == 0)
      if (symindx == 0)
        {
        {
          /* If called from the assembler, swap_out_syms will have set up
          /* If called from the assembler, swap_out_syms will have set up
             elf_section_syms.  */
             elf_section_syms.  */
          BFD_ASSERT (elf_section_syms (abfd) != NULL);
          BFD_ASSERT (elf_section_syms (abfd) != NULL);
          symindx = elf_section_syms (abfd)[sec->index]->udata.i;
          symindx = elf_section_syms (abfd)[sec->index]->udata.i;
        }
        }
      elf_section_data (sec)->this_hdr.sh_info = symindx;
      elf_section_data (sec)->this_hdr.sh_info = symindx;
    }
    }
  else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
  else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
    {
    {
      /* The ELF backend linker sets sh_info to -2 when the group
      /* The ELF backend linker sets sh_info to -2 when the group
         signature symbol is global, and thus the index can't be
         signature symbol is global, and thus the index can't be
         set until all local symbols are output.  */
         set until all local symbols are output.  */
      asection *igroup = elf_sec_group (elf_next_in_group (sec));
      asection *igroup = elf_sec_group (elf_next_in_group (sec));
      struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
      struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
      unsigned long symndx = sec_data->this_hdr.sh_info;
      unsigned long symndx = sec_data->this_hdr.sh_info;
      unsigned long extsymoff = 0;
      unsigned long extsymoff = 0;
      struct elf_link_hash_entry *h;
      struct elf_link_hash_entry *h;
 
 
      if (!elf_bad_symtab (igroup->owner))
      if (!elf_bad_symtab (igroup->owner))
        {
        {
          Elf_Internal_Shdr *symtab_hdr;
          Elf_Internal_Shdr *symtab_hdr;
 
 
          symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
          symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
          extsymoff = symtab_hdr->sh_info;
          extsymoff = symtab_hdr->sh_info;
        }
        }
      h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
      h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
      while (h->root.type == bfd_link_hash_indirect
      while (h->root.type == bfd_link_hash_indirect
             || h->root.type == bfd_link_hash_warning)
             || h->root.type == bfd_link_hash_warning)
        h = (struct elf_link_hash_entry *) h->root.u.i.link;
        h = (struct elf_link_hash_entry *) h->root.u.i.link;
 
 
      elf_section_data (sec)->this_hdr.sh_info = h->indx;
      elf_section_data (sec)->this_hdr.sh_info = h->indx;
    }
    }
 
 
  /* The contents won't be allocated for "ld -r" or objcopy.  */
  /* The contents won't be allocated for "ld -r" or objcopy.  */
  gas = TRUE;
  gas = TRUE;
  if (sec->contents == NULL)
  if (sec->contents == NULL)
    {
    {
      gas = FALSE;
      gas = FALSE;
      sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
      sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
 
 
      /* Arrange for the section to be written out.  */
      /* Arrange for the section to be written out.  */
      elf_section_data (sec)->this_hdr.contents = sec->contents;
      elf_section_data (sec)->this_hdr.contents = sec->contents;
      if (sec->contents == NULL)
      if (sec->contents == NULL)
        {
        {
          *failedptr = TRUE;
          *failedptr = TRUE;
          return;
          return;
        }
        }
    }
    }
 
 
  loc = sec->contents + sec->size;
  loc = sec->contents + sec->size;
 
 
  /* Get the pointer to the first section in the group that gas
  /* Get the pointer to the first section in the group that gas
     squirreled away here.  objcopy arranges for this to be set to the
     squirreled away here.  objcopy arranges for this to be set to the
     start of the input section group.  */
     start of the input section group.  */
  first = elt = elf_next_in_group (sec);
  first = elt = elf_next_in_group (sec);
 
 
  /* First element is a flag word.  Rest of section is elf section
  /* First element is a flag word.  Rest of section is elf section
     indices for all the sections of the group.  Write them backwards
     indices for all the sections of the group.  Write them backwards
     just to keep the group in the same order as given in .section
     just to keep the group in the same order as given in .section
     directives, not that it matters.  */
     directives, not that it matters.  */
  while (elt != NULL)
  while (elt != NULL)
    {
    {
      asection *s;
      asection *s;
      unsigned int idx;
      unsigned int idx;
 
 
      s = elt;
      s = elt;
      if (! elf_discarded_section (s))
      if (! elf_discarded_section (s))
        {
        {
          loc -= 4;
          loc -= 4;
          if (!gas)
          if (!gas)
            s = s->output_section;
            s = s->output_section;
          idx = 0;
          idx = 0;
          if (s != NULL)
          if (s != NULL)
            idx = elf_section_data (s)->this_idx;
            idx = elf_section_data (s)->this_idx;
          H_PUT_32 (abfd, idx, loc);
          H_PUT_32 (abfd, idx, loc);
        }
        }
      elt = elf_next_in_group (elt);
      elt = elf_next_in_group (elt);
      if (elt == first)
      if (elt == first)
        break;
        break;
    }
    }
 
 
  if ((loc -= 4) != sec->contents)
  if ((loc -= 4) != sec->contents)
    abort ();
    abort ();
 
 
  H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
  H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
}
}
 
 
/* Assign all ELF section numbers.  The dummy first section is handled here
/* Assign all ELF section numbers.  The dummy first section is handled here
   too.  The link/info pointers for the standard section types are filled
   too.  The link/info pointers for the standard section types are filled
   in here too, while we're at it.  */
   in here too, while we're at it.  */
 
 
static bfd_boolean
static bfd_boolean
assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
{
{
  struct elf_obj_tdata *t = elf_tdata (abfd);
  struct elf_obj_tdata *t = elf_tdata (abfd);
  asection *sec;
  asection *sec;
  unsigned int section_number, secn;
  unsigned int section_number, secn;
  Elf_Internal_Shdr **i_shdrp;
  Elf_Internal_Shdr **i_shdrp;
  struct bfd_elf_section_data *d;
  struct bfd_elf_section_data *d;
  bfd_boolean need_symtab;
  bfd_boolean need_symtab;
 
 
  section_number = 1;
  section_number = 1;
 
 
  _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
  _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
 
 
  /* SHT_GROUP sections are in relocatable files only.  */
  /* SHT_GROUP sections are in relocatable files only.  */
  if (link_info == NULL || link_info->relocatable)
  if (link_info == NULL || link_info->relocatable)
    {
    {
      /* Put SHT_GROUP sections first.  */
      /* Put SHT_GROUP sections first.  */
      for (sec = abfd->sections; sec != NULL; sec = sec->next)
      for (sec = abfd->sections; sec != NULL; sec = sec->next)
        {
        {
          d = elf_section_data (sec);
          d = elf_section_data (sec);
 
 
          if (d->this_hdr.sh_type == SHT_GROUP)
          if (d->this_hdr.sh_type == SHT_GROUP)
            {
            {
              if (sec->flags & SEC_LINKER_CREATED)
              if (sec->flags & SEC_LINKER_CREATED)
                {
                {
                  /* Remove the linker created SHT_GROUP sections.  */
                  /* Remove the linker created SHT_GROUP sections.  */
                  bfd_section_list_remove (abfd, sec);
                  bfd_section_list_remove (abfd, sec);
                  abfd->section_count--;
                  abfd->section_count--;
                }
                }
              else
              else
                d->this_idx = section_number++;
                d->this_idx = section_number++;
            }
            }
        }
        }
    }
    }
 
 
  for (sec = abfd->sections; sec; sec = sec->next)
  for (sec = abfd->sections; sec; sec = sec->next)
    {
    {
      d = elf_section_data (sec);
      d = elf_section_data (sec);
 
 
      if (d->this_hdr.sh_type != SHT_GROUP)
      if (d->this_hdr.sh_type != SHT_GROUP)
        d->this_idx = section_number++;
        d->this_idx = section_number++;
      _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
      _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
      if ((sec->flags & SEC_RELOC) == 0)
      if ((sec->flags & SEC_RELOC) == 0)
        d->rel_idx = 0;
        d->rel_idx = 0;
      else
      else
        {
        {
          d->rel_idx = section_number++;
          d->rel_idx = section_number++;
          _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
          _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
        }
        }
 
 
      if (d->rel_hdr2)
      if (d->rel_hdr2)
        {
        {
          d->rel_idx2 = section_number++;
          d->rel_idx2 = section_number++;
          _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
          _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
        }
        }
      else
      else
        d->rel_idx2 = 0;
        d->rel_idx2 = 0;
    }
    }
 
 
  t->shstrtab_section = section_number++;
  t->shstrtab_section = section_number++;
  _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
  _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
  elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
  elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
 
 
  need_symtab = (bfd_get_symcount (abfd) > 0
  need_symtab = (bfd_get_symcount (abfd) > 0
                || (link_info == NULL
                || (link_info == NULL
                    && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
                    && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
                        == HAS_RELOC)));
                        == HAS_RELOC)));
  if (need_symtab)
  if (need_symtab)
    {
    {
      t->symtab_section = section_number++;
      t->symtab_section = section_number++;
      _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
      _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
      if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
      if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
        {
        {
          t->symtab_shndx_section = section_number++;
          t->symtab_shndx_section = section_number++;
          t->symtab_shndx_hdr.sh_name
          t->symtab_shndx_hdr.sh_name
            = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
            = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
                                                  ".symtab_shndx", FALSE);
                                                  ".symtab_shndx", FALSE);
          if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
          if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
            return FALSE;
            return FALSE;
        }
        }
      t->strtab_section = section_number++;
      t->strtab_section = section_number++;
      _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
      _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
    }
    }
 
 
  _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
  _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
  t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
  t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
 
 
  elf_numsections (abfd) = section_number;
  elf_numsections (abfd) = section_number;
  elf_elfheader (abfd)->e_shnum = section_number;
  elf_elfheader (abfd)->e_shnum = section_number;
 
 
  /* Set up the list of section header pointers, in agreement with the
  /* Set up the list of section header pointers, in agreement with the
     indices.  */
     indices.  */
  i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
  i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
                                                sizeof (Elf_Internal_Shdr *));
                                                sizeof (Elf_Internal_Shdr *));
  if (i_shdrp == NULL)
  if (i_shdrp == NULL)
    return FALSE;
    return FALSE;
 
 
  i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
  i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
                                                 sizeof (Elf_Internal_Shdr));
                                                 sizeof (Elf_Internal_Shdr));
  if (i_shdrp[0] == NULL)
  if (i_shdrp[0] == NULL)
    {
    {
      bfd_release (abfd, i_shdrp);
      bfd_release (abfd, i_shdrp);
      return FALSE;
      return FALSE;
    }
    }
 
 
  elf_elfsections (abfd) = i_shdrp;
  elf_elfsections (abfd) = i_shdrp;
 
 
  i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
  i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
  if (need_symtab)
  if (need_symtab)
    {
    {
      i_shdrp[t->symtab_section] = &t->symtab_hdr;
      i_shdrp[t->symtab_section] = &t->symtab_hdr;
      if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
      if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
        {
        {
          i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
          i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
          t->symtab_shndx_hdr.sh_link = t->symtab_section;
          t->symtab_shndx_hdr.sh_link = t->symtab_section;
        }
        }
      i_shdrp[t->strtab_section] = &t->strtab_hdr;
      i_shdrp[t->strtab_section] = &t->strtab_hdr;
      t->symtab_hdr.sh_link = t->strtab_section;
      t->symtab_hdr.sh_link = t->strtab_section;
    }
    }
 
 
  for (sec = abfd->sections; sec; sec = sec->next)
  for (sec = abfd->sections; sec; sec = sec->next)
    {
    {
      struct bfd_elf_section_data *d = elf_section_data (sec);
      struct bfd_elf_section_data *d = elf_section_data (sec);
      asection *s;
      asection *s;
      const char *name;
      const char *name;
 
 
      i_shdrp[d->this_idx] = &d->this_hdr;
      i_shdrp[d->this_idx] = &d->this_hdr;
      if (d->rel_idx != 0)
      if (d->rel_idx != 0)
        i_shdrp[d->rel_idx] = &d->rel_hdr;
        i_shdrp[d->rel_idx] = &d->rel_hdr;
      if (d->rel_idx2 != 0)
      if (d->rel_idx2 != 0)
        i_shdrp[d->rel_idx2] = d->rel_hdr2;
        i_shdrp[d->rel_idx2] = d->rel_hdr2;
 
 
      /* Fill in the sh_link and sh_info fields while we're at it.  */
      /* Fill in the sh_link and sh_info fields while we're at it.  */
 
 
      /* sh_link of a reloc section is the section index of the symbol
      /* sh_link of a reloc section is the section index of the symbol
         table.  sh_info is the section index of the section to which
         table.  sh_info is the section index of the section to which
         the relocation entries apply.  */
         the relocation entries apply.  */
      if (d->rel_idx != 0)
      if (d->rel_idx != 0)
        {
        {
          d->rel_hdr.sh_link = t->symtab_section;
          d->rel_hdr.sh_link = t->symtab_section;
          d->rel_hdr.sh_info = d->this_idx;
          d->rel_hdr.sh_info = d->this_idx;
        }
        }
      if (d->rel_idx2 != 0)
      if (d->rel_idx2 != 0)
        {
        {
          d->rel_hdr2->sh_link = t->symtab_section;
          d->rel_hdr2->sh_link = t->symtab_section;
          d->rel_hdr2->sh_info = d->this_idx;
          d->rel_hdr2->sh_info = d->this_idx;
        }
        }
 
 
      /* We need to set up sh_link for SHF_LINK_ORDER.  */
      /* We need to set up sh_link for SHF_LINK_ORDER.  */
      if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
      if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
        {
        {
          s = elf_linked_to_section (sec);
          s = elf_linked_to_section (sec);
          if (s)
          if (s)
            {
            {
              /* elf_linked_to_section points to the input section.  */
              /* elf_linked_to_section points to the input section.  */
              if (link_info != NULL)
              if (link_info != NULL)
                {
                {
                  /* Check discarded linkonce section.  */
                  /* Check discarded linkonce section.  */
                  if (elf_discarded_section (s))
                  if (elf_discarded_section (s))
                    {
                    {
                      asection *kept;
                      asection *kept;
                      (*_bfd_error_handler)
                      (*_bfd_error_handler)
                        (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
                        (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
                         abfd, d->this_hdr.bfd_section,
                         abfd, d->this_hdr.bfd_section,
                         s, s->owner);
                         s, s->owner);
                      /* Point to the kept section if it has the same
                      /* Point to the kept section if it has the same
                         size as the discarded one.  */
                         size as the discarded one.  */
                      kept = _bfd_elf_check_kept_section (s, link_info);
                      kept = _bfd_elf_check_kept_section (s, link_info);
                      if (kept == NULL)
                      if (kept == NULL)
                        {
                        {
                          bfd_set_error (bfd_error_bad_value);
                          bfd_set_error (bfd_error_bad_value);
                          return FALSE;
                          return FALSE;
                        }
                        }
                      s = kept;
                      s = kept;
                    }
                    }
 
 
                  s = s->output_section;
                  s = s->output_section;
                  BFD_ASSERT (s != NULL);
                  BFD_ASSERT (s != NULL);
                }
                }
              else
              else
                {
                {
                  /* Handle objcopy. */
                  /* Handle objcopy. */
                  if (s->output_section == NULL)
                  if (s->output_section == NULL)
                    {
                    {
                      (*_bfd_error_handler)
                      (*_bfd_error_handler)
                        (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
                        (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
                         abfd, d->this_hdr.bfd_section, s, s->owner);
                         abfd, d->this_hdr.bfd_section, s, s->owner);
                      bfd_set_error (bfd_error_bad_value);
                      bfd_set_error (bfd_error_bad_value);
                      return FALSE;
                      return FALSE;
                    }
                    }
                  s = s->output_section;
                  s = s->output_section;
                }
                }
              d->this_hdr.sh_link = elf_section_data (s)->this_idx;
              d->this_hdr.sh_link = elf_section_data (s)->this_idx;
            }
            }
          else
          else
            {
            {
              /* PR 290:
              /* PR 290:
                 The Intel C compiler generates SHT_IA_64_UNWIND with
                 The Intel C compiler generates SHT_IA_64_UNWIND with
                 SHF_LINK_ORDER.  But it doesn't set the sh_link or
                 SHF_LINK_ORDER.  But it doesn't set the sh_link or
                 sh_info fields.  Hence we could get the situation
                 sh_info fields.  Hence we could get the situation
                 where s is NULL.  */
                 where s is NULL.  */
              const struct elf_backend_data *bed
              const struct elf_backend_data *bed
                = get_elf_backend_data (abfd);
                = get_elf_backend_data (abfd);
              if (bed->link_order_error_handler)
              if (bed->link_order_error_handler)
                bed->link_order_error_handler
                bed->link_order_error_handler
                  (_("%B: warning: sh_link not set for section `%A'"),
                  (_("%B: warning: sh_link not set for section `%A'"),
                   abfd, sec);
                   abfd, sec);
            }
            }
        }
        }
 
 
      switch (d->this_hdr.sh_type)
      switch (d->this_hdr.sh_type)
        {
        {
        case SHT_REL:
        case SHT_REL:
        case SHT_RELA:
        case SHT_RELA:
          /* A reloc section which we are treating as a normal BFD
          /* A reloc section which we are treating as a normal BFD
             section.  sh_link is the section index of the symbol
             section.  sh_link is the section index of the symbol
             table.  sh_info is the section index of the section to
             table.  sh_info is the section index of the section to
             which the relocation entries apply.  We assume that an
             which the relocation entries apply.  We assume that an
             allocated reloc section uses the dynamic symbol table.
             allocated reloc section uses the dynamic symbol table.
             FIXME: How can we be sure?  */
             FIXME: How can we be sure?  */
          s = bfd_get_section_by_name (abfd, ".dynsym");
          s = bfd_get_section_by_name (abfd, ".dynsym");
          if (s != NULL)
          if (s != NULL)
            d->this_hdr.sh_link = elf_section_data (s)->this_idx;
            d->this_hdr.sh_link = elf_section_data (s)->this_idx;
 
 
          /* We look up the section the relocs apply to by name.  */
          /* We look up the section the relocs apply to by name.  */
          name = sec->name;
          name = sec->name;
          if (d->this_hdr.sh_type == SHT_REL)
          if (d->this_hdr.sh_type == SHT_REL)
            name += 4;
            name += 4;
          else
          else
            name += 5;
            name += 5;
          s = bfd_get_section_by_name (abfd, name);
          s = bfd_get_section_by_name (abfd, name);
          if (s != NULL)
          if (s != NULL)
            d->this_hdr.sh_info = elf_section_data (s)->this_idx;
            d->this_hdr.sh_info = elf_section_data (s)->this_idx;
          break;
          break;
 
 
        case SHT_STRTAB:
        case SHT_STRTAB:
          /* We assume that a section named .stab*str is a stabs
          /* We assume that a section named .stab*str is a stabs
             string section.  We look for a section with the same name
             string section.  We look for a section with the same name
             but without the trailing ``str'', and set its sh_link
             but without the trailing ``str'', and set its sh_link
             field to point to this section.  */
             field to point to this section.  */
          if (CONST_STRNEQ (sec->name, ".stab")
          if (CONST_STRNEQ (sec->name, ".stab")
              && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
              && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
            {
            {
              size_t len;
              size_t len;
              char *alc;
              char *alc;
 
 
              len = strlen (sec->name);
              len = strlen (sec->name);
              alc = (char *) bfd_malloc (len - 2);
              alc = (char *) bfd_malloc (len - 2);
              if (alc == NULL)
              if (alc == NULL)
                return FALSE;
                return FALSE;
              memcpy (alc, sec->name, len - 3);
              memcpy (alc, sec->name, len - 3);
              alc[len - 3] = '\0';
              alc[len - 3] = '\0';
              s = bfd_get_section_by_name (abfd, alc);
              s = bfd_get_section_by_name (abfd, alc);
              free (alc);
              free (alc);
              if (s != NULL)
              if (s != NULL)
                {
                {
                  elf_section_data (s)->this_hdr.sh_link = d->this_idx;
                  elf_section_data (s)->this_hdr.sh_link = d->this_idx;
 
 
                  /* This is a .stab section.  */
                  /* This is a .stab section.  */
                  if (elf_section_data (s)->this_hdr.sh_entsize == 0)
                  if (elf_section_data (s)->this_hdr.sh_entsize == 0)
                    elf_section_data (s)->this_hdr.sh_entsize
                    elf_section_data (s)->this_hdr.sh_entsize
                      = 4 + 2 * bfd_get_arch_size (abfd) / 8;
                      = 4 + 2 * bfd_get_arch_size (abfd) / 8;
                }
                }
            }
            }
          break;
          break;
 
 
        case SHT_DYNAMIC:
        case SHT_DYNAMIC:
        case SHT_DYNSYM:
        case SHT_DYNSYM:
        case SHT_GNU_verneed:
        case SHT_GNU_verneed:
        case SHT_GNU_verdef:
        case SHT_GNU_verdef:
          /* sh_link is the section header index of the string table
          /* sh_link is the section header index of the string table
             used for the dynamic entries, or the symbol table, or the
             used for the dynamic entries, or the symbol table, or the
             version strings.  */
             version strings.  */
          s = bfd_get_section_by_name (abfd, ".dynstr");
          s = bfd_get_section_by_name (abfd, ".dynstr");
          if (s != NULL)
          if (s != NULL)
            d->this_hdr.sh_link = elf_section_data (s)->this_idx;
            d->this_hdr.sh_link = elf_section_data (s)->this_idx;
          break;
          break;
 
 
        case SHT_GNU_LIBLIST:
        case SHT_GNU_LIBLIST:
          /* sh_link is the section header index of the prelink library
          /* sh_link is the section header index of the prelink library
             list used for the dynamic entries, or the symbol table, or
             list used for the dynamic entries, or the symbol table, or
             the version strings.  */
             the version strings.  */
          s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
          s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
                                             ? ".dynstr" : ".gnu.libstr");
                                             ? ".dynstr" : ".gnu.libstr");
          if (s != NULL)
          if (s != NULL)
            d->this_hdr.sh_link = elf_section_data (s)->this_idx;
            d->this_hdr.sh_link = elf_section_data (s)->this_idx;
          break;
          break;
 
 
        case SHT_HASH:
        case SHT_HASH:
        case SHT_GNU_HASH:
        case SHT_GNU_HASH:
        case SHT_GNU_versym:
        case SHT_GNU_versym:
          /* sh_link is the section header index of the symbol table
          /* sh_link is the section header index of the symbol table
             this hash table or version table is for.  */
             this hash table or version table is for.  */
          s = bfd_get_section_by_name (abfd, ".dynsym");
          s = bfd_get_section_by_name (abfd, ".dynsym");
          if (s != NULL)
          if (s != NULL)
            d->this_hdr.sh_link = elf_section_data (s)->this_idx;
            d->this_hdr.sh_link = elf_section_data (s)->this_idx;
          break;
          break;
 
 
        case SHT_GROUP:
        case SHT_GROUP:
          d->this_hdr.sh_link = t->symtab_section;
          d->this_hdr.sh_link = t->symtab_section;
        }
        }
    }
    }
 
 
  for (secn = 1; secn < section_number; ++secn)
  for (secn = 1; secn < section_number; ++secn)
    if (i_shdrp[secn] == NULL)
    if (i_shdrp[secn] == NULL)
      i_shdrp[secn] = i_shdrp[0];
      i_shdrp[secn] = i_shdrp[0];
    else
    else
      i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
      i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
                                                       i_shdrp[secn]->sh_name);
                                                       i_shdrp[secn]->sh_name);
  return TRUE;
  return TRUE;
}
}
 
 
/* Map symbol from it's internal number to the external number, moving
/* Map symbol from it's internal number to the external number, moving
   all local symbols to be at the head of the list.  */
   all local symbols to be at the head of the list.  */
 
 
static bfd_boolean
static bfd_boolean
sym_is_global (bfd *abfd, asymbol *sym)
sym_is_global (bfd *abfd, asymbol *sym)
{
{
  /* If the backend has a special mapping, use it.  */
  /* If the backend has a special mapping, use it.  */
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
  if (bed->elf_backend_sym_is_global)
  if (bed->elf_backend_sym_is_global)
    return (*bed->elf_backend_sym_is_global) (abfd, sym);
    return (*bed->elf_backend_sym_is_global) (abfd, sym);
 
 
  return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
  return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
          || bfd_is_und_section (bfd_get_section (sym))
          || bfd_is_und_section (bfd_get_section (sym))
          || bfd_is_com_section (bfd_get_section (sym)));
          || bfd_is_com_section (bfd_get_section (sym)));
}
}
 
 
/* Don't output section symbols for sections that are not going to be
/* Don't output section symbols for sections that are not going to be
   output.  */
   output.  */
 
 
static bfd_boolean
static bfd_boolean
ignore_section_sym (bfd *abfd, asymbol *sym)
ignore_section_sym (bfd *abfd, asymbol *sym)
{
{
  return ((sym->flags & BSF_SECTION_SYM) != 0
  return ((sym->flags & BSF_SECTION_SYM) != 0
          && !(sym->section->owner == abfd
          && !(sym->section->owner == abfd
               || (sym->section->output_section->owner == abfd
               || (sym->section->output_section->owner == abfd
                   && sym->section->output_offset == 0)));
                   && sym->section->output_offset == 0)));
}
}
 
 
static bfd_boolean
static bfd_boolean
elf_map_symbols (bfd *abfd)
elf_map_symbols (bfd *abfd)
{
{
  unsigned int symcount = bfd_get_symcount (abfd);
  unsigned int symcount = bfd_get_symcount (abfd);
  asymbol **syms = bfd_get_outsymbols (abfd);
  asymbol **syms = bfd_get_outsymbols (abfd);
  asymbol **sect_syms;
  asymbol **sect_syms;
  unsigned int num_locals = 0;
  unsigned int num_locals = 0;
  unsigned int num_globals = 0;
  unsigned int num_globals = 0;
  unsigned int num_locals2 = 0;
  unsigned int num_locals2 = 0;
  unsigned int num_globals2 = 0;
  unsigned int num_globals2 = 0;
  int max_index = 0;
  int max_index = 0;
  unsigned int idx;
  unsigned int idx;
  asection *asect;
  asection *asect;
  asymbol **new_syms;
  asymbol **new_syms;
 
 
#ifdef DEBUG
#ifdef DEBUG
  fprintf (stderr, "elf_map_symbols\n");
  fprintf (stderr, "elf_map_symbols\n");
  fflush (stderr);
  fflush (stderr);
#endif
#endif
 
 
  for (asect = abfd->sections; asect; asect = asect->next)
  for (asect = abfd->sections; asect; asect = asect->next)
    {
    {
      if (max_index < asect->index)
      if (max_index < asect->index)
        max_index = asect->index;
        max_index = asect->index;
    }
    }
 
 
  max_index++;
  max_index++;
  sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
  sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
  if (sect_syms == NULL)
  if (sect_syms == NULL)
    return FALSE;
    return FALSE;
  elf_section_syms (abfd) = sect_syms;
  elf_section_syms (abfd) = sect_syms;
  elf_num_section_syms (abfd) = max_index;
  elf_num_section_syms (abfd) = max_index;
 
 
  /* Init sect_syms entries for any section symbols we have already
  /* Init sect_syms entries for any section symbols we have already
     decided to output.  */
     decided to output.  */
  for (idx = 0; idx < symcount; idx++)
  for (idx = 0; idx < symcount; idx++)
    {
    {
      asymbol *sym = syms[idx];
      asymbol *sym = syms[idx];
 
 
      if ((sym->flags & BSF_SECTION_SYM) != 0
      if ((sym->flags & BSF_SECTION_SYM) != 0
          && sym->value == 0
          && sym->value == 0
          && !ignore_section_sym (abfd, sym))
          && !ignore_section_sym (abfd, sym))
        {
        {
          asection *sec = sym->section;
          asection *sec = sym->section;
 
 
          if (sec->owner != abfd)
          if (sec->owner != abfd)
            sec = sec->output_section;
            sec = sec->output_section;
 
 
          sect_syms[sec->index] = syms[idx];
          sect_syms[sec->index] = syms[idx];
        }
        }
    }
    }
 
 
  /* Classify all of the symbols.  */
  /* Classify all of the symbols.  */
  for (idx = 0; idx < symcount; idx++)
  for (idx = 0; idx < symcount; idx++)
    {
    {
      if (ignore_section_sym (abfd, syms[idx]))
      if (ignore_section_sym (abfd, syms[idx]))
        continue;
        continue;
      if (!sym_is_global (abfd, syms[idx]))
      if (!sym_is_global (abfd, syms[idx]))
        num_locals++;
        num_locals++;
      else
      else
        num_globals++;
        num_globals++;
    }
    }
 
 
  /* We will be adding a section symbol for each normal BFD section.  Most
  /* We will be adding a section symbol for each normal BFD section.  Most
     sections will already have a section symbol in outsymbols, but
     sections will already have a section symbol in outsymbols, but
     eg. SHT_GROUP sections will not, and we need the section symbol mapped
     eg. SHT_GROUP sections will not, and we need the section symbol mapped
     at least in that case.  */
     at least in that case.  */
  for (asect = abfd->sections; asect; asect = asect->next)
  for (asect = abfd->sections; asect; asect = asect->next)
    {
    {
      if (sect_syms[asect->index] == NULL)
      if (sect_syms[asect->index] == NULL)
        {
        {
          if (!sym_is_global (abfd, asect->symbol))
          if (!sym_is_global (abfd, asect->symbol))
            num_locals++;
            num_locals++;
          else
          else
            num_globals++;
            num_globals++;
        }
        }
    }
    }
 
 
  /* Now sort the symbols so the local symbols are first.  */
  /* Now sort the symbols so the local symbols are first.  */
  new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
  new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
                                      sizeof (asymbol *));
                                      sizeof (asymbol *));
 
 
  if (new_syms == NULL)
  if (new_syms == NULL)
    return FALSE;
    return FALSE;
 
 
  for (idx = 0; idx < symcount; idx++)
  for (idx = 0; idx < symcount; idx++)
    {
    {
      asymbol *sym = syms[idx];
      asymbol *sym = syms[idx];
      unsigned int i;
      unsigned int i;
 
 
      if (ignore_section_sym (abfd, sym))
      if (ignore_section_sym (abfd, sym))
        continue;
        continue;
      if (!sym_is_global (abfd, sym))
      if (!sym_is_global (abfd, sym))
        i = num_locals2++;
        i = num_locals2++;
      else
      else
        i = num_locals + num_globals2++;
        i = num_locals + num_globals2++;
      new_syms[i] = sym;
      new_syms[i] = sym;
      sym->udata.i = i + 1;
      sym->udata.i = i + 1;
    }
    }
  for (asect = abfd->sections; asect; asect = asect->next)
  for (asect = abfd->sections; asect; asect = asect->next)
    {
    {
      if (sect_syms[asect->index] == NULL)
      if (sect_syms[asect->index] == NULL)
        {
        {
          asymbol *sym = asect->symbol;
          asymbol *sym = asect->symbol;
          unsigned int i;
          unsigned int i;
 
 
          sect_syms[asect->index] = sym;
          sect_syms[asect->index] = sym;
          if (!sym_is_global (abfd, sym))
          if (!sym_is_global (abfd, sym))
            i = num_locals2++;
            i = num_locals2++;
          else
          else
            i = num_locals + num_globals2++;
            i = num_locals + num_globals2++;
          new_syms[i] = sym;
          new_syms[i] = sym;
          sym->udata.i = i + 1;
          sym->udata.i = i + 1;
        }
        }
    }
    }
 
 
  bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
  bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
 
 
  elf_num_locals (abfd) = num_locals;
  elf_num_locals (abfd) = num_locals;
  elf_num_globals (abfd) = num_globals;
  elf_num_globals (abfd) = num_globals;
  return TRUE;
  return TRUE;
}
}
 
 
/* Align to the maximum file alignment that could be required for any
/* Align to the maximum file alignment that could be required for any
   ELF data structure.  */
   ELF data structure.  */
 
 
static inline file_ptr
static inline file_ptr
align_file_position (file_ptr off, int align)
align_file_position (file_ptr off, int align)
{
{
  return (off + align - 1) & ~(align - 1);
  return (off + align - 1) & ~(align - 1);
}
}
 
 
/* Assign a file position to a section, optionally aligning to the
/* Assign a file position to a section, optionally aligning to the
   required section alignment.  */
   required section alignment.  */
 
 
file_ptr
file_ptr
_bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
_bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
                                           file_ptr offset,
                                           file_ptr offset,
                                           bfd_boolean align)
                                           bfd_boolean align)
{
{
  if (align && i_shdrp->sh_addralign > 1)
  if (align && i_shdrp->sh_addralign > 1)
    offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
    offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
  i_shdrp->sh_offset = offset;
  i_shdrp->sh_offset = offset;
  if (i_shdrp->bfd_section != NULL)
  if (i_shdrp->bfd_section != NULL)
    i_shdrp->bfd_section->filepos = offset;
    i_shdrp->bfd_section->filepos = offset;
  if (i_shdrp->sh_type != SHT_NOBITS)
  if (i_shdrp->sh_type != SHT_NOBITS)
    offset += i_shdrp->sh_size;
    offset += i_shdrp->sh_size;
  return offset;
  return offset;
}
}
 
 
/* Compute the file positions we are going to put the sections at, and
/* Compute the file positions we are going to put the sections at, and
   otherwise prepare to begin writing out the ELF file.  If LINK_INFO
   otherwise prepare to begin writing out the ELF file.  If LINK_INFO
   is not NULL, this is being called by the ELF backend linker.  */
   is not NULL, this is being called by the ELF backend linker.  */
 
 
bfd_boolean
bfd_boolean
_bfd_elf_compute_section_file_positions (bfd *abfd,
_bfd_elf_compute_section_file_positions (bfd *abfd,
                                         struct bfd_link_info *link_info)
                                         struct bfd_link_info *link_info)
{
{
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
  bfd_boolean failed;
  bfd_boolean failed;
  struct bfd_strtab_hash *strtab = NULL;
  struct bfd_strtab_hash *strtab = NULL;
  Elf_Internal_Shdr *shstrtab_hdr;
  Elf_Internal_Shdr *shstrtab_hdr;
  bfd_boolean need_symtab;
  bfd_boolean need_symtab;
 
 
  if (abfd->output_has_begun)
  if (abfd->output_has_begun)
    return TRUE;
    return TRUE;
 
 
  /* Do any elf backend specific processing first.  */
  /* Do any elf backend specific processing first.  */
  if (bed->elf_backend_begin_write_processing)
  if (bed->elf_backend_begin_write_processing)
    (*bed->elf_backend_begin_write_processing) (abfd, link_info);
    (*bed->elf_backend_begin_write_processing) (abfd, link_info);
 
 
  if (! prep_headers (abfd))
  if (! prep_headers (abfd))
    return FALSE;
    return FALSE;
 
 
  /* Post process the headers if necessary.  */
  /* Post process the headers if necessary.  */
  if (bed->elf_backend_post_process_headers)
  if (bed->elf_backend_post_process_headers)
    (*bed->elf_backend_post_process_headers) (abfd, link_info);
    (*bed->elf_backend_post_process_headers) (abfd, link_info);
 
 
  failed = FALSE;
  failed = FALSE;
  bfd_map_over_sections (abfd, elf_fake_sections, &failed);
  bfd_map_over_sections (abfd, elf_fake_sections, &failed);
  if (failed)
  if (failed)
    return FALSE;
    return FALSE;
 
 
  if (!assign_section_numbers (abfd, link_info))
  if (!assign_section_numbers (abfd, link_info))
    return FALSE;
    return FALSE;
 
 
  /* The backend linker builds symbol table information itself.  */
  /* The backend linker builds symbol table information itself.  */
  need_symtab = (link_info == NULL
  need_symtab = (link_info == NULL
                 && (bfd_get_symcount (abfd) > 0
                 && (bfd_get_symcount (abfd) > 0
                     || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
                     || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
                         == HAS_RELOC)));
                         == HAS_RELOC)));
  if (need_symtab)
  if (need_symtab)
    {
    {
      /* Non-zero if doing a relocatable link.  */
      /* Non-zero if doing a relocatable link.  */
      int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
      int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
 
 
      if (! swap_out_syms (abfd, &strtab, relocatable_p))
      if (! swap_out_syms (abfd, &strtab, relocatable_p))
        return FALSE;
        return FALSE;
    }
    }
 
 
  if (link_info == NULL)
  if (link_info == NULL)
    {
    {
      bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
      bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
      if (failed)
      if (failed)
        return FALSE;
        return FALSE;
    }
    }
 
 
  shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
  shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
  /* sh_name was set in prep_headers.  */
  /* sh_name was set in prep_headers.  */
  shstrtab_hdr->sh_type = SHT_STRTAB;
  shstrtab_hdr->sh_type = SHT_STRTAB;
  shstrtab_hdr->sh_flags = 0;
  shstrtab_hdr->sh_flags = 0;
  shstrtab_hdr->sh_addr = 0;
  shstrtab_hdr->sh_addr = 0;
  shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
  shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
  shstrtab_hdr->sh_entsize = 0;
  shstrtab_hdr->sh_entsize = 0;
  shstrtab_hdr->sh_link = 0;
  shstrtab_hdr->sh_link = 0;
  shstrtab_hdr->sh_info = 0;
  shstrtab_hdr->sh_info = 0;
  /* sh_offset is set in assign_file_positions_except_relocs.  */
  /* sh_offset is set in assign_file_positions_except_relocs.  */
  shstrtab_hdr->sh_addralign = 1;
  shstrtab_hdr->sh_addralign = 1;
 
 
  if (!assign_file_positions_except_relocs (abfd, link_info))
  if (!assign_file_positions_except_relocs (abfd, link_info))
    return FALSE;
    return FALSE;
 
 
  if (need_symtab)
  if (need_symtab)
    {
    {
      file_ptr off;
      file_ptr off;
      Elf_Internal_Shdr *hdr;
      Elf_Internal_Shdr *hdr;
 
 
      off = elf_tdata (abfd)->next_file_pos;
      off = elf_tdata (abfd)->next_file_pos;
 
 
      hdr = &elf_tdata (abfd)->symtab_hdr;
      hdr = &elf_tdata (abfd)->symtab_hdr;
      off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
      off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
 
 
      hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
      hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
      if (hdr->sh_size != 0)
      if (hdr->sh_size != 0)
        off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
        off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
 
 
      hdr = &elf_tdata (abfd)->strtab_hdr;
      hdr = &elf_tdata (abfd)->strtab_hdr;
      off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
      off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
 
 
      elf_tdata (abfd)->next_file_pos = off;
      elf_tdata (abfd)->next_file_pos = off;
 
 
      /* Now that we know where the .strtab section goes, write it
      /* Now that we know where the .strtab section goes, write it
         out.  */
         out.  */
      if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
      if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
          || ! _bfd_stringtab_emit (abfd, strtab))
          || ! _bfd_stringtab_emit (abfd, strtab))
        return FALSE;
        return FALSE;
      _bfd_stringtab_free (strtab);
      _bfd_stringtab_free (strtab);
    }
    }
 
 
  abfd->output_has_begun = TRUE;
  abfd->output_has_begun = TRUE;
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Make an initial estimate of the size of the program header.  If we
/* Make an initial estimate of the size of the program header.  If we
   get the number wrong here, we'll redo section placement.  */
   get the number wrong here, we'll redo section placement.  */
 
 
static bfd_size_type
static bfd_size_type
get_program_header_size (bfd *abfd, struct bfd_link_info *info)
get_program_header_size (bfd *abfd, struct bfd_link_info *info)
{
{
  size_t segs;
  size_t segs;
  asection *s;
  asection *s;
  const struct elf_backend_data *bed;
  const struct elf_backend_data *bed;
 
 
  /* Assume we will need exactly two PT_LOAD segments: one for text
  /* Assume we will need exactly two PT_LOAD segments: one for text
     and one for data.  */
     and one for data.  */
  segs = 2;
  segs = 2;
 
 
  s = bfd_get_section_by_name (abfd, ".interp");
  s = bfd_get_section_by_name (abfd, ".interp");
  if (s != NULL && (s->flags & SEC_LOAD) != 0)
  if (s != NULL && (s->flags & SEC_LOAD) != 0)
    {
    {
      /* If we have a loadable interpreter section, we need a
      /* If we have a loadable interpreter section, we need a
         PT_INTERP segment.  In this case, assume we also need a
         PT_INTERP segment.  In this case, assume we also need a
         PT_PHDR segment, although that may not be true for all
         PT_PHDR segment, although that may not be true for all
         targets.  */
         targets.  */
      segs += 2;
      segs += 2;
    }
    }
 
 
  if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
  if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
    {
    {
      /* We need a PT_DYNAMIC segment.  */
      /* We need a PT_DYNAMIC segment.  */
      ++segs;
      ++segs;
    }
    }
 
 
  if (info != NULL && info->relro)
  if (info != NULL && info->relro)
    {
    {
      /* We need a PT_GNU_RELRO segment.  */
      /* We need a PT_GNU_RELRO segment.  */
      ++segs;
      ++segs;
    }
    }
 
 
  if (elf_tdata (abfd)->eh_frame_hdr)
  if (elf_tdata (abfd)->eh_frame_hdr)
    {
    {
      /* We need a PT_GNU_EH_FRAME segment.  */
      /* We need a PT_GNU_EH_FRAME segment.  */
      ++segs;
      ++segs;
    }
    }
 
 
  if (elf_tdata (abfd)->stack_flags)
  if (elf_tdata (abfd)->stack_flags)
    {
    {
      /* We need a PT_GNU_STACK segment.  */
      /* We need a PT_GNU_STACK segment.  */
      ++segs;
      ++segs;
    }
    }
 
 
  for (s = abfd->sections; s != NULL; s = s->next)
  for (s = abfd->sections; s != NULL; s = s->next)
    {
    {
      if ((s->flags & SEC_LOAD) != 0
      if ((s->flags & SEC_LOAD) != 0
          && CONST_STRNEQ (s->name, ".note"))
          && CONST_STRNEQ (s->name, ".note"))
        {
        {
          /* We need a PT_NOTE segment.  */
          /* We need a PT_NOTE segment.  */
          ++segs;
          ++segs;
          /* Try to create just one PT_NOTE segment
          /* Try to create just one PT_NOTE segment
             for all adjacent loadable .note* sections.
             for all adjacent loadable .note* sections.
             gABI requires that within a PT_NOTE segment
             gABI requires that within a PT_NOTE segment
             (and also inside of each SHT_NOTE section)
             (and also inside of each SHT_NOTE section)
             each note is padded to a multiple of 4 size,
             each note is padded to a multiple of 4 size,
             so we check whether the sections are correctly
             so we check whether the sections are correctly
             aligned.  */
             aligned.  */
          if (s->alignment_power == 2)
          if (s->alignment_power == 2)
            while (s->next != NULL
            while (s->next != NULL
                   && s->next->alignment_power == 2
                   && s->next->alignment_power == 2
                   && (s->next->flags & SEC_LOAD) != 0
                   && (s->next->flags & SEC_LOAD) != 0
                   && CONST_STRNEQ (s->next->name, ".note"))
                   && CONST_STRNEQ (s->next->name, ".note"))
              s = s->next;
              s = s->next;
        }
        }
    }
    }
 
 
  for (s = abfd->sections; s != NULL; s = s->next)
  for (s = abfd->sections; s != NULL; s = s->next)
    {
    {
      if (s->flags & SEC_THREAD_LOCAL)
      if (s->flags & SEC_THREAD_LOCAL)
        {
        {
          /* We need a PT_TLS segment.  */
          /* We need a PT_TLS segment.  */
          ++segs;
          ++segs;
          break;
          break;
        }
        }
    }
    }
 
 
  /* Let the backend count up any program headers it might need.  */
  /* Let the backend count up any program headers it might need.  */
  bed = get_elf_backend_data (abfd);
  bed = get_elf_backend_data (abfd);
  if (bed->elf_backend_additional_program_headers)
  if (bed->elf_backend_additional_program_headers)
    {
    {
      int a;
      int a;
 
 
      a = (*bed->elf_backend_additional_program_headers) (abfd, info);
      a = (*bed->elf_backend_additional_program_headers) (abfd, info);
      if (a == -1)
      if (a == -1)
        abort ();
        abort ();
      segs += a;
      segs += a;
    }
    }
 
 
  return segs * bed->s->sizeof_phdr;
  return segs * bed->s->sizeof_phdr;
}
}
 
 
/* Find the segment that contains the output_section of section.  */
/* Find the segment that contains the output_section of section.  */
 
 
Elf_Internal_Phdr *
Elf_Internal_Phdr *
_bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
_bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
{
{
  struct elf_segment_map *m;
  struct elf_segment_map *m;
  Elf_Internal_Phdr *p;
  Elf_Internal_Phdr *p;
 
 
  for (m = elf_tdata (abfd)->segment_map,
  for (m = elf_tdata (abfd)->segment_map,
         p = elf_tdata (abfd)->phdr;
         p = elf_tdata (abfd)->phdr;
       m != NULL;
       m != NULL;
       m = m->next, p++)
       m = m->next, p++)
    {
    {
      int i;
      int i;
 
 
      for (i = m->count - 1; i >= 0; i--)
      for (i = m->count - 1; i >= 0; i--)
        if (m->sections[i] == section)
        if (m->sections[i] == section)
          return p;
          return p;
    }
    }
 
 
  return NULL;
  return NULL;
}
}
 
 
/* Create a mapping from a set of sections to a program segment.  */
/* Create a mapping from a set of sections to a program segment.  */
 
 
static struct elf_segment_map *
static struct elf_segment_map *
make_mapping (bfd *abfd,
make_mapping (bfd *abfd,
              asection **sections,
              asection **sections,
              unsigned int from,
              unsigned int from,
              unsigned int to,
              unsigned int to,
              bfd_boolean phdr)
              bfd_boolean phdr)
{
{
  struct elf_segment_map *m;
  struct elf_segment_map *m;
  unsigned int i;
  unsigned int i;
  asection **hdrpp;
  asection **hdrpp;
  bfd_size_type amt;
  bfd_size_type amt;
 
 
  amt = sizeof (struct elf_segment_map);
  amt = sizeof (struct elf_segment_map);
  amt += (to - from - 1) * sizeof (asection *);
  amt += (to - from - 1) * sizeof (asection *);
  m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
  m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
  if (m == NULL)
  if (m == NULL)
    return NULL;
    return NULL;
  m->next = NULL;
  m->next = NULL;
  m->p_type = PT_LOAD;
  m->p_type = PT_LOAD;
  for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
  for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
    m->sections[i - from] = *hdrpp;
    m->sections[i - from] = *hdrpp;
  m->count = to - from;
  m->count = to - from;
 
 
  if (from == 0 && phdr)
  if (from == 0 && phdr)
    {
    {
      /* Include the headers in the first PT_LOAD segment.  */
      /* Include the headers in the first PT_LOAD segment.  */
      m->includes_filehdr = 1;
      m->includes_filehdr = 1;
      m->includes_phdrs = 1;
      m->includes_phdrs = 1;
    }
    }
 
 
  return m;
  return m;
}
}
 
 
/* Create the PT_DYNAMIC segment, which includes DYNSEC.  Returns NULL
/* Create the PT_DYNAMIC segment, which includes DYNSEC.  Returns NULL
   on failure.  */
   on failure.  */
 
 
struct elf_segment_map *
struct elf_segment_map *
_bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
_bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
{
{
  struct elf_segment_map *m;
  struct elf_segment_map *m;
 
 
  m = (struct elf_segment_map *) bfd_zalloc (abfd,
  m = (struct elf_segment_map *) bfd_zalloc (abfd,
                                             sizeof (struct elf_segment_map));
                                             sizeof (struct elf_segment_map));
  if (m == NULL)
  if (m == NULL)
    return NULL;
    return NULL;
  m->next = NULL;
  m->next = NULL;
  m->p_type = PT_DYNAMIC;
  m->p_type = PT_DYNAMIC;
  m->count = 1;
  m->count = 1;
  m->sections[0] = dynsec;
  m->sections[0] = dynsec;
 
 
  return m;
  return m;
}
}
 
 
/* Possibly add or remove segments from the segment map.  */
/* Possibly add or remove segments from the segment map.  */
 
 
static bfd_boolean
static bfd_boolean
elf_modify_segment_map (bfd *abfd,
elf_modify_segment_map (bfd *abfd,
                        struct bfd_link_info *info,
                        struct bfd_link_info *info,
                        bfd_boolean remove_empty_load)
                        bfd_boolean remove_empty_load)
{
{
  struct elf_segment_map **m;
  struct elf_segment_map **m;
  const struct elf_backend_data *bed;
  const struct elf_backend_data *bed;
 
 
  /* The placement algorithm assumes that non allocated sections are
  /* The placement algorithm assumes that non allocated sections are
     not in PT_LOAD segments.  We ensure this here by removing such
     not in PT_LOAD segments.  We ensure this here by removing such
     sections from the segment map.  We also remove excluded
     sections from the segment map.  We also remove excluded
     sections.  Finally, any PT_LOAD segment without sections is
     sections.  Finally, any PT_LOAD segment without sections is
     removed.  */
     removed.  */
  m = &elf_tdata (abfd)->segment_map;
  m = &elf_tdata (abfd)->segment_map;
  while (*m)
  while (*m)
    {
    {
      unsigned int i, new_count;
      unsigned int i, new_count;
 
 
      for (new_count = 0, i = 0; i < (*m)->count; i++)
      for (new_count = 0, i = 0; i < (*m)->count; i++)
        {
        {
          if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
          if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
              && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
              && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
                  || (*m)->p_type != PT_LOAD))
                  || (*m)->p_type != PT_LOAD))
            {
            {
              (*m)->sections[new_count] = (*m)->sections[i];
              (*m)->sections[new_count] = (*m)->sections[i];
              new_count++;
              new_count++;
            }
            }
        }
        }
      (*m)->count = new_count;
      (*m)->count = new_count;
 
 
      if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
      if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
        *m = (*m)->next;
        *m = (*m)->next;
      else
      else
        m = &(*m)->next;
        m = &(*m)->next;
    }
    }
 
 
  bed = get_elf_backend_data (abfd);
  bed = get_elf_backend_data (abfd);
  if (bed->elf_backend_modify_segment_map != NULL)
  if (bed->elf_backend_modify_segment_map != NULL)
    {
    {
      if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
      if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
        return FALSE;
        return FALSE;
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Set up a mapping from BFD sections to program segments.  */
/* Set up a mapping from BFD sections to program segments.  */
 
 
bfd_boolean
bfd_boolean
_bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
_bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
{
{
  unsigned int count;
  unsigned int count;
  struct elf_segment_map *m;
  struct elf_segment_map *m;
  asection **sections = NULL;
  asection **sections = NULL;
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
  bfd_boolean no_user_phdrs;
  bfd_boolean no_user_phdrs;
 
 
  no_user_phdrs = elf_tdata (abfd)->segment_map == NULL;
  no_user_phdrs = elf_tdata (abfd)->segment_map == NULL;
  if (no_user_phdrs && bfd_count_sections (abfd) != 0)
  if (no_user_phdrs && bfd_count_sections (abfd) != 0)
    {
    {
      asection *s;
      asection *s;
      unsigned int i;
      unsigned int i;
      struct elf_segment_map *mfirst;
      struct elf_segment_map *mfirst;
      struct elf_segment_map **pm;
      struct elf_segment_map **pm;
      asection *last_hdr;
      asection *last_hdr;
      bfd_vma last_size;
      bfd_vma last_size;
      unsigned int phdr_index;
      unsigned int phdr_index;
      bfd_vma maxpagesize;
      bfd_vma maxpagesize;
      asection **hdrpp;
      asection **hdrpp;
      bfd_boolean phdr_in_segment = TRUE;
      bfd_boolean phdr_in_segment = TRUE;
      bfd_boolean writable;
      bfd_boolean writable;
      int tls_count = 0;
      int tls_count = 0;
      asection *first_tls = NULL;
      asection *first_tls = NULL;
      asection *dynsec, *eh_frame_hdr;
      asection *dynsec, *eh_frame_hdr;
      bfd_size_type amt;
      bfd_size_type amt;
 
 
      /* Select the allocated sections, and sort them.  */
      /* Select the allocated sections, and sort them.  */
 
 
      sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
      sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
                                            sizeof (asection *));
                                            sizeof (asection *));
      if (sections == NULL)
      if (sections == NULL)
        goto error_return;
        goto error_return;
 
 
      i = 0;
      i = 0;
      for (s = abfd->sections; s != NULL; s = s->next)
      for (s = abfd->sections; s != NULL; s = s->next)
        {
        {
          if ((s->flags & SEC_ALLOC) != 0)
          if ((s->flags & SEC_ALLOC) != 0)
            {
            {
              sections[i] = s;
              sections[i] = s;
              ++i;
              ++i;
            }
            }
        }
        }
      BFD_ASSERT (i <= bfd_count_sections (abfd));
      BFD_ASSERT (i <= bfd_count_sections (abfd));
      count = i;
      count = i;
 
 
      qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
      qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
 
 
      /* Build the mapping.  */
      /* Build the mapping.  */
 
 
      mfirst = NULL;
      mfirst = NULL;
      pm = &mfirst;
      pm = &mfirst;
 
 
      /* If we have a .interp section, then create a PT_PHDR segment for
      /* If we have a .interp section, then create a PT_PHDR segment for
         the program headers and a PT_INTERP segment for the .interp
         the program headers and a PT_INTERP segment for the .interp
         section.  */
         section.  */
      s = bfd_get_section_by_name (abfd, ".interp");
      s = bfd_get_section_by_name (abfd, ".interp");
      if (s != NULL && (s->flags & SEC_LOAD) != 0)
      if (s != NULL && (s->flags & SEC_LOAD) != 0)
        {
        {
          amt = sizeof (struct elf_segment_map);
          amt = sizeof (struct elf_segment_map);
          m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
          m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
          if (m == NULL)
          if (m == NULL)
            goto error_return;
            goto error_return;
          m->next = NULL;
          m->next = NULL;
          m->p_type = PT_PHDR;
          m->p_type = PT_PHDR;
          /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not.  */
          /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not.  */
          m->p_flags = PF_R | PF_X;
          m->p_flags = PF_R | PF_X;
          m->p_flags_valid = 1;
          m->p_flags_valid = 1;
          m->includes_phdrs = 1;
          m->includes_phdrs = 1;
 
 
          *pm = m;
          *pm = m;
          pm = &m->next;
          pm = &m->next;
 
 
          amt = sizeof (struct elf_segment_map);
          amt = sizeof (struct elf_segment_map);
          m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
          m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
          if (m == NULL)
          if (m == NULL)
            goto error_return;
            goto error_return;
          m->next = NULL;
          m->next = NULL;
          m->p_type = PT_INTERP;
          m->p_type = PT_INTERP;
          m->count = 1;
          m->count = 1;
          m->sections[0] = s;
          m->sections[0] = s;
 
 
          *pm = m;
          *pm = m;
          pm = &m->next;
          pm = &m->next;
        }
        }
 
 
      /* Look through the sections.  We put sections in the same program
      /* Look through the sections.  We put sections in the same program
         segment when the start of the second section can be placed within
         segment when the start of the second section can be placed within
         a few bytes of the end of the first section.  */
         a few bytes of the end of the first section.  */
      last_hdr = NULL;
      last_hdr = NULL;
      last_size = 0;
      last_size = 0;
      phdr_index = 0;
      phdr_index = 0;
      maxpagesize = bed->maxpagesize;
      maxpagesize = bed->maxpagesize;
      writable = FALSE;
      writable = FALSE;
      dynsec = bfd_get_section_by_name (abfd, ".dynamic");
      dynsec = bfd_get_section_by_name (abfd, ".dynamic");
      if (dynsec != NULL
      if (dynsec != NULL
          && (dynsec->flags & SEC_LOAD) == 0)
          && (dynsec->flags & SEC_LOAD) == 0)
        dynsec = NULL;
        dynsec = NULL;
 
 
      /* Deal with -Ttext or something similar such that the first section
      /* Deal with -Ttext or something similar such that the first section
         is not adjacent to the program headers.  This is an
         is not adjacent to the program headers.  This is an
         approximation, since at this point we don't know exactly how many
         approximation, since at this point we don't know exactly how many
         program headers we will need.  */
         program headers we will need.  */
      if (count > 0)
      if (count > 0)
        {
        {
          bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
          bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
 
 
          if (phdr_size == (bfd_size_type) -1)
          if (phdr_size == (bfd_size_type) -1)
            phdr_size = get_program_header_size (abfd, info);
            phdr_size = get_program_header_size (abfd, info);
          if ((abfd->flags & D_PAGED) == 0
          if ((abfd->flags & D_PAGED) == 0
              || sections[0]->lma < phdr_size
              || sections[0]->lma < phdr_size
              || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
              || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
            phdr_in_segment = FALSE;
            phdr_in_segment = FALSE;
        }
        }
 
 
      for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
      for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
        {
        {
          asection *hdr;
          asection *hdr;
          bfd_boolean new_segment;
          bfd_boolean new_segment;
 
 
          hdr = *hdrpp;
          hdr = *hdrpp;
 
 
          /* See if this section and the last one will fit in the same
          /* See if this section and the last one will fit in the same
             segment.  */
             segment.  */
 
 
          if (last_hdr == NULL)
          if (last_hdr == NULL)
            {
            {
              /* If we don't have a segment yet, then we don't need a new
              /* If we don't have a segment yet, then we don't need a new
                 one (we build the last one after this loop).  */
                 one (we build the last one after this loop).  */
              new_segment = FALSE;
              new_segment = FALSE;
            }
            }
          else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
          else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
            {
            {
              /* If this section has a different relation between the
              /* If this section has a different relation between the
                 virtual address and the load address, then we need a new
                 virtual address and the load address, then we need a new
                 segment.  */
                 segment.  */
              new_segment = TRUE;
              new_segment = TRUE;
            }
            }
          /* In the next test we have to be careful when last_hdr->lma is close
          /* In the next test we have to be careful when last_hdr->lma is close
             to the end of the address space.  If the aligned address wraps
             to the end of the address space.  If the aligned address wraps
             around to the start of the address space, then there are no more
             around to the start of the address space, then there are no more
             pages left in memory and it is OK to assume that the current
             pages left in memory and it is OK to assume that the current
             section can be included in the current segment.  */
             section can be included in the current segment.  */
          else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
          else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
                    > last_hdr->lma)
                    > last_hdr->lma)
                   && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
                   && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
                       <= hdr->lma))
                       <= hdr->lma))
            {
            {
              /* If putting this section in this segment would force us to
              /* If putting this section in this segment would force us to
                 skip a page in the segment, then we need a new segment.  */
                 skip a page in the segment, then we need a new segment.  */
              new_segment = TRUE;
              new_segment = TRUE;
            }
            }
          else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
          else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
                   && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
                   && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
            {
            {
              /* We don't want to put a loadable section after a
              /* We don't want to put a loadable section after a
                 nonloadable section in the same segment.
                 nonloadable section in the same segment.
                 Consider .tbss sections as loadable for this purpose.  */
                 Consider .tbss sections as loadable for this purpose.  */
              new_segment = TRUE;
              new_segment = TRUE;
            }
            }
          else if ((abfd->flags & D_PAGED) == 0)
          else if ((abfd->flags & D_PAGED) == 0)
            {
            {
              /* If the file is not demand paged, which means that we
              /* If the file is not demand paged, which means that we
                 don't require the sections to be correctly aligned in the
                 don't require the sections to be correctly aligned in the
                 file, then there is no other reason for a new segment.  */
                 file, then there is no other reason for a new segment.  */
              new_segment = FALSE;
              new_segment = FALSE;
            }
            }
          else if (! writable
          else if (! writable
                   && (hdr->flags & SEC_READONLY) == 0
                   && (hdr->flags & SEC_READONLY) == 0
                   && (((last_hdr->lma + last_size - 1)
                   && (((last_hdr->lma + last_size - 1)
                        & ~(maxpagesize - 1))
                        & ~(maxpagesize - 1))
                       != (hdr->lma & ~(maxpagesize - 1))))
                       != (hdr->lma & ~(maxpagesize - 1))))
            {
            {
              /* We don't want to put a writable section in a read only
              /* We don't want to put a writable section in a read only
                 segment, unless they are on the same page in memory
                 segment, unless they are on the same page in memory
                 anyhow.  We already know that the last section does not
                 anyhow.  We already know that the last section does not
                 bring us past the current section on the page, so the
                 bring us past the current section on the page, so the
                 only case in which the new section is not on the same
                 only case in which the new section is not on the same
                 page as the previous section is when the previous section
                 page as the previous section is when the previous section
                 ends precisely on a page boundary.  */
                 ends precisely on a page boundary.  */
              new_segment = TRUE;
              new_segment = TRUE;
            }
            }
          else
          else
            {
            {
              /* Otherwise, we can use the same segment.  */
              /* Otherwise, we can use the same segment.  */
              new_segment = FALSE;
              new_segment = FALSE;
            }
            }
 
 
          /* Allow interested parties a chance to override our decision.  */
          /* Allow interested parties a chance to override our decision.  */
          if (last_hdr != NULL
          if (last_hdr != NULL
              && info != NULL
              && info != NULL
              && info->callbacks->override_segment_assignment != NULL)
              && info->callbacks->override_segment_assignment != NULL)
            new_segment
            new_segment
              = info->callbacks->override_segment_assignment (info, abfd, hdr,
              = info->callbacks->override_segment_assignment (info, abfd, hdr,
                                                              last_hdr,
                                                              last_hdr,
                                                              new_segment);
                                                              new_segment);
 
 
          if (! new_segment)
          if (! new_segment)
            {
            {
              if ((hdr->flags & SEC_READONLY) == 0)
              if ((hdr->flags & SEC_READONLY) == 0)
                writable = TRUE;
                writable = TRUE;
              last_hdr = hdr;
              last_hdr = hdr;
              /* .tbss sections effectively have zero size.  */
              /* .tbss sections effectively have zero size.  */
              if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
              if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
                  != SEC_THREAD_LOCAL)
                  != SEC_THREAD_LOCAL)
                last_size = hdr->size;
                last_size = hdr->size;
              else
              else
                last_size = 0;
                last_size = 0;
              continue;
              continue;
            }
            }
 
 
          /* We need a new program segment.  We must create a new program
          /* We need a new program segment.  We must create a new program
             header holding all the sections from phdr_index until hdr.  */
             header holding all the sections from phdr_index until hdr.  */
 
 
          m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
          m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
          if (m == NULL)
          if (m == NULL)
            goto error_return;
            goto error_return;
 
 
          *pm = m;
          *pm = m;
          pm = &m->next;
          pm = &m->next;
 
 
          if ((hdr->flags & SEC_READONLY) == 0)
          if ((hdr->flags & SEC_READONLY) == 0)
            writable = TRUE;
            writable = TRUE;
          else
          else
            writable = FALSE;
            writable = FALSE;
 
 
          last_hdr = hdr;
          last_hdr = hdr;
          /* .tbss sections effectively have zero size.  */
          /* .tbss sections effectively have zero size.  */
          if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
          if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
            last_size = hdr->size;
            last_size = hdr->size;
          else
          else
            last_size = 0;
            last_size = 0;
          phdr_index = i;
          phdr_index = i;
          phdr_in_segment = FALSE;
          phdr_in_segment = FALSE;
        }
        }
 
 
      /* Create a final PT_LOAD program segment.  */
      /* Create a final PT_LOAD program segment.  */
      if (last_hdr != NULL)
      if (last_hdr != NULL)
        {
        {
          m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
          m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
          if (m == NULL)
          if (m == NULL)
            goto error_return;
            goto error_return;
 
 
          *pm = m;
          *pm = m;
          pm = &m->next;
          pm = &m->next;
        }
        }
 
 
      /* If there is a .dynamic section, throw in a PT_DYNAMIC segment.  */
      /* If there is a .dynamic section, throw in a PT_DYNAMIC segment.  */
      if (dynsec != NULL)
      if (dynsec != NULL)
        {
        {
          m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
          m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
          if (m == NULL)
          if (m == NULL)
            goto error_return;
            goto error_return;
          *pm = m;
          *pm = m;
          pm = &m->next;
          pm = &m->next;
        }
        }
 
 
      /* For each batch of consecutive loadable .note sections,
      /* For each batch of consecutive loadable .note sections,
         add a PT_NOTE segment.  We don't use bfd_get_section_by_name,
         add a PT_NOTE segment.  We don't use bfd_get_section_by_name,
         because if we link together nonloadable .note sections and
         because if we link together nonloadable .note sections and
         loadable .note sections, we will generate two .note sections
         loadable .note sections, we will generate two .note sections
         in the output file.  FIXME: Using names for section types is
         in the output file.  FIXME: Using names for section types is
         bogus anyhow.  */
         bogus anyhow.  */
      for (s = abfd->sections; s != NULL; s = s->next)
      for (s = abfd->sections; s != NULL; s = s->next)
        {
        {
          if ((s->flags & SEC_LOAD) != 0
          if ((s->flags & SEC_LOAD) != 0
              && CONST_STRNEQ (s->name, ".note"))
              && CONST_STRNEQ (s->name, ".note"))
            {
            {
              asection *s2;
              asection *s2;
              unsigned count = 1;
              unsigned count = 1;
              amt = sizeof (struct elf_segment_map);
              amt = sizeof (struct elf_segment_map);
              if (s->alignment_power == 2)
              if (s->alignment_power == 2)
                for (s2 = s; s2->next != NULL; s2 = s2->next)
                for (s2 = s; s2->next != NULL; s2 = s2->next)
                  {
                  {
                    if (s2->next->alignment_power == 2
                    if (s2->next->alignment_power == 2
                        && (s2->next->flags & SEC_LOAD) != 0
                        && (s2->next->flags & SEC_LOAD) != 0
                        && CONST_STRNEQ (s2->next->name, ".note")
                        && CONST_STRNEQ (s2->next->name, ".note")
                        && align_power (s2->vma + s2->size, 2)
                        && align_power (s2->vma + s2->size, 2)
                           == s2->next->vma)
                           == s2->next->vma)
                      count++;
                      count++;
                    else
                    else
                      break;
                      break;
                  }
                  }
              amt += (count - 1) * sizeof (asection *);
              amt += (count - 1) * sizeof (asection *);
              m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
              m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
              if (m == NULL)
              if (m == NULL)
                goto error_return;
                goto error_return;
              m->next = NULL;
              m->next = NULL;
              m->p_type = PT_NOTE;
              m->p_type = PT_NOTE;
              m->count = count;
              m->count = count;
              while (count > 1)
              while (count > 1)
                {
                {
                  m->sections[m->count - count--] = s;
                  m->sections[m->count - count--] = s;
                  BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
                  BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
                  s = s->next;
                  s = s->next;
                }
                }
              m->sections[m->count - 1] = s;
              m->sections[m->count - 1] = s;
              BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
              BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
              *pm = m;
              *pm = m;
              pm = &m->next;
              pm = &m->next;
            }
            }
          if (s->flags & SEC_THREAD_LOCAL)
          if (s->flags & SEC_THREAD_LOCAL)
            {
            {
              if (! tls_count)
              if (! tls_count)
                first_tls = s;
                first_tls = s;
              tls_count++;
              tls_count++;
            }
            }
        }
        }
 
 
      /* If there are any SHF_TLS output sections, add PT_TLS segment.  */
      /* If there are any SHF_TLS output sections, add PT_TLS segment.  */
      if (tls_count > 0)
      if (tls_count > 0)
        {
        {
          int i;
          int i;
 
 
          amt = sizeof (struct elf_segment_map);
          amt = sizeof (struct elf_segment_map);
          amt += (tls_count - 1) * sizeof (asection *);
          amt += (tls_count - 1) * sizeof (asection *);
          m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
          m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
          if (m == NULL)
          if (m == NULL)
            goto error_return;
            goto error_return;
          m->next = NULL;
          m->next = NULL;
          m->p_type = PT_TLS;
          m->p_type = PT_TLS;
          m->count = tls_count;
          m->count = tls_count;
          /* Mandated PF_R.  */
          /* Mandated PF_R.  */
          m->p_flags = PF_R;
          m->p_flags = PF_R;
          m->p_flags_valid = 1;
          m->p_flags_valid = 1;
          for (i = 0; i < tls_count; ++i)
          for (i = 0; i < tls_count; ++i)
            {
            {
              BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
              BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
              m->sections[i] = first_tls;
              m->sections[i] = first_tls;
              first_tls = first_tls->next;
              first_tls = first_tls->next;
            }
            }
 
 
          *pm = m;
          *pm = m;
          pm = &m->next;
          pm = &m->next;
        }
        }
 
 
      /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
      /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
         segment.  */
         segment.  */
      eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
      eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
      if (eh_frame_hdr != NULL
      if (eh_frame_hdr != NULL
          && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
          && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
        {
        {
          amt = sizeof (struct elf_segment_map);
          amt = sizeof (struct elf_segment_map);
          m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
          m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
          if (m == NULL)
          if (m == NULL)
            goto error_return;
            goto error_return;
          m->next = NULL;
          m->next = NULL;
          m->p_type = PT_GNU_EH_FRAME;
          m->p_type = PT_GNU_EH_FRAME;
          m->count = 1;
          m->count = 1;
          m->sections[0] = eh_frame_hdr->output_section;
          m->sections[0] = eh_frame_hdr->output_section;
 
 
          *pm = m;
          *pm = m;
          pm = &m->next;
          pm = &m->next;
        }
        }
 
 
      if (elf_tdata (abfd)->stack_flags)
      if (elf_tdata (abfd)->stack_flags)
        {
        {
          amt = sizeof (struct elf_segment_map);
          amt = sizeof (struct elf_segment_map);
          m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
          m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
          if (m == NULL)
          if (m == NULL)
            goto error_return;
            goto error_return;
          m->next = NULL;
          m->next = NULL;
          m->p_type = PT_GNU_STACK;
          m->p_type = PT_GNU_STACK;
          m->p_flags = elf_tdata (abfd)->stack_flags;
          m->p_flags = elf_tdata (abfd)->stack_flags;
          m->p_flags_valid = 1;
          m->p_flags_valid = 1;
 
 
          *pm = m;
          *pm = m;
          pm = &m->next;
          pm = &m->next;
        }
        }
 
 
      if (info != NULL && info->relro)
      if (info != NULL && info->relro)
        {
        {
          for (m = mfirst; m != NULL; m = m->next)
          for (m = mfirst; m != NULL; m = m->next)
            {
            {
              if (m->p_type == PT_LOAD)
              if (m->p_type == PT_LOAD)
                {
                {
                  asection *last = m->sections[m->count - 1];
                  asection *last = m->sections[m->count - 1];
                  bfd_vma vaddr = m->sections[0]->vma;
                  bfd_vma vaddr = m->sections[0]->vma;
                  bfd_vma filesz = last->vma - vaddr + last->size;
                  bfd_vma filesz = last->vma - vaddr + last->size;
 
 
                  if (vaddr < info->relro_end
                  if (vaddr < info->relro_end
                      && vaddr >= info->relro_start
                      && vaddr >= info->relro_start
                      && (vaddr + filesz) >= info->relro_end)
                      && (vaddr + filesz) >= info->relro_end)
                    break;
                    break;
                }
                }
              }
              }
 
 
          /* Make a PT_GNU_RELRO segment only when it isn't empty.  */
          /* Make a PT_GNU_RELRO segment only when it isn't empty.  */
          if (m != NULL)
          if (m != NULL)
            {
            {
              amt = sizeof (struct elf_segment_map);
              amt = sizeof (struct elf_segment_map);
              m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
              m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
              if (m == NULL)
              if (m == NULL)
                goto error_return;
                goto error_return;
              m->next = NULL;
              m->next = NULL;
              m->p_type = PT_GNU_RELRO;
              m->p_type = PT_GNU_RELRO;
              m->p_flags = PF_R;
              m->p_flags = PF_R;
              m->p_flags_valid = 1;
              m->p_flags_valid = 1;
 
 
              *pm = m;
              *pm = m;
              pm = &m->next;
              pm = &m->next;
            }
            }
        }
        }
 
 
      free (sections);
      free (sections);
      elf_tdata (abfd)->segment_map = mfirst;
      elf_tdata (abfd)->segment_map = mfirst;
    }
    }
 
 
  if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
  if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
    return FALSE;
    return FALSE;
 
 
  for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
  for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
    ++count;
    ++count;
  elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
  elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
 
 
  return TRUE;
  return TRUE;
 
 
 error_return:
 error_return:
  if (sections != NULL)
  if (sections != NULL)
    free (sections);
    free (sections);
  return FALSE;
  return FALSE;
}
}
 
 
/* Sort sections by address.  */
/* Sort sections by address.  */
 
 
static int
static int
elf_sort_sections (const void *arg1, const void *arg2)
elf_sort_sections (const void *arg1, const void *arg2)
{
{
  const asection *sec1 = *(const asection **) arg1;
  const asection *sec1 = *(const asection **) arg1;
  const asection *sec2 = *(const asection **) arg2;
  const asection *sec2 = *(const asection **) arg2;
  bfd_size_type size1, size2;
  bfd_size_type size1, size2;
 
 
  /* Sort by LMA first, since this is the address used to
  /* Sort by LMA first, since this is the address used to
     place the section into a segment.  */
     place the section into a segment.  */
  if (sec1->lma < sec2->lma)
  if (sec1->lma < sec2->lma)
    return -1;
    return -1;
  else if (sec1->lma > sec2->lma)
  else if (sec1->lma > sec2->lma)
    return 1;
    return 1;
 
 
  /* Then sort by VMA.  Normally the LMA and the VMA will be
  /* Then sort by VMA.  Normally the LMA and the VMA will be
     the same, and this will do nothing.  */
     the same, and this will do nothing.  */
  if (sec1->vma < sec2->vma)
  if (sec1->vma < sec2->vma)
    return -1;
    return -1;
  else if (sec1->vma > sec2->vma)
  else if (sec1->vma > sec2->vma)
    return 1;
    return 1;
 
 
  /* Put !SEC_LOAD sections after SEC_LOAD ones.  */
  /* Put !SEC_LOAD sections after SEC_LOAD ones.  */
 
 
#define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
#define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
 
 
  if (TOEND (sec1))
  if (TOEND (sec1))
    {
    {
      if (TOEND (sec2))
      if (TOEND (sec2))
        {
        {
          /* If the indicies are the same, do not return 0
          /* If the indicies are the same, do not return 0
             here, but continue to try the next comparison.  */
             here, but continue to try the next comparison.  */
          if (sec1->target_index - sec2->target_index != 0)
          if (sec1->target_index - sec2->target_index != 0)
            return sec1->target_index - sec2->target_index;
            return sec1->target_index - sec2->target_index;
        }
        }
      else
      else
        return 1;
        return 1;
    }
    }
  else if (TOEND (sec2))
  else if (TOEND (sec2))
    return -1;
    return -1;
 
 
#undef TOEND
#undef TOEND
 
 
  /* Sort by size, to put zero sized sections
  /* Sort by size, to put zero sized sections
     before others at the same address.  */
     before others at the same address.  */
 
 
  size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
  size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
  size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
  size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
 
 
  if (size1 < size2)
  if (size1 < size2)
    return -1;
    return -1;
  if (size1 > size2)
  if (size1 > size2)
    return 1;
    return 1;
 
 
  return sec1->target_index - sec2->target_index;
  return sec1->target_index - sec2->target_index;
}
}
 
 
/* Ian Lance Taylor writes:
/* Ian Lance Taylor writes:
 
 
   We shouldn't be using % with a negative signed number.  That's just
   We shouldn't be using % with a negative signed number.  That's just
   not good.  We have to make sure either that the number is not
   not good.  We have to make sure either that the number is not
   negative, or that the number has an unsigned type.  When the types
   negative, or that the number has an unsigned type.  When the types
   are all the same size they wind up as unsigned.  When file_ptr is a
   are all the same size they wind up as unsigned.  When file_ptr is a
   larger signed type, the arithmetic winds up as signed long long,
   larger signed type, the arithmetic winds up as signed long long,
   which is wrong.
   which is wrong.
 
 
   What we're trying to say here is something like ``increase OFF by
   What we're trying to say here is something like ``increase OFF by
   the least amount that will cause it to be equal to the VMA modulo
   the least amount that will cause it to be equal to the VMA modulo
   the page size.''  */
   the page size.''  */
/* In other words, something like:
/* In other words, something like:
 
 
   vma_offset = m->sections[0]->vma % bed->maxpagesize;
   vma_offset = m->sections[0]->vma % bed->maxpagesize;
   off_offset = off % bed->maxpagesize;
   off_offset = off % bed->maxpagesize;
   if (vma_offset < off_offset)
   if (vma_offset < off_offset)
     adjustment = vma_offset + bed->maxpagesize - off_offset;
     adjustment = vma_offset + bed->maxpagesize - off_offset;
   else
   else
     adjustment = vma_offset - off_offset;
     adjustment = vma_offset - off_offset;
 
 
   which can can be collapsed into the expression below.  */
   which can can be collapsed into the expression below.  */
 
 
static file_ptr
static file_ptr
vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
{
{
  return ((vma - off) % maxpagesize);
  return ((vma - off) % maxpagesize);
}
}
 
 
static void
static void
print_segment_map (const struct elf_segment_map *m)
print_segment_map (const struct elf_segment_map *m)
{
{
  unsigned int j;
  unsigned int j;
  const char *pt = get_segment_type (m->p_type);
  const char *pt = get_segment_type (m->p_type);
  char buf[32];
  char buf[32];
 
 
  if (pt == NULL)
  if (pt == NULL)
    {
    {
      if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
      if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
        sprintf (buf, "LOPROC+%7.7x",
        sprintf (buf, "LOPROC+%7.7x",
                 (unsigned int) (m->p_type - PT_LOPROC));
                 (unsigned int) (m->p_type - PT_LOPROC));
      else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
      else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
        sprintf (buf, "LOOS+%7.7x",
        sprintf (buf, "LOOS+%7.7x",
                 (unsigned int) (m->p_type - PT_LOOS));
                 (unsigned int) (m->p_type - PT_LOOS));
      else
      else
        snprintf (buf, sizeof (buf), "%8.8x",
        snprintf (buf, sizeof (buf), "%8.8x",
                  (unsigned int) m->p_type);
                  (unsigned int) m->p_type);
      pt = buf;
      pt = buf;
    }
    }
  fprintf (stderr, "%s:", pt);
  fprintf (stderr, "%s:", pt);
  for (j = 0; j < m->count; j++)
  for (j = 0; j < m->count; j++)
    fprintf (stderr, " %s", m->sections [j]->name);
    fprintf (stderr, " %s", m->sections [j]->name);
  putc ('\n',stderr);
  putc ('\n',stderr);
}
}
 
 
/* Assign file positions to the sections based on the mapping from
/* Assign file positions to the sections based on the mapping from
   sections to segments.  This function also sets up some fields in
   sections to segments.  This function also sets up some fields in
   the file header.  */
   the file header.  */
 
 
static bfd_boolean
static bfd_boolean
assign_file_positions_for_load_sections (bfd *abfd,
assign_file_positions_for_load_sections (bfd *abfd,
                                         struct bfd_link_info *link_info)
                                         struct bfd_link_info *link_info)
{
{
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
  struct elf_segment_map *m;
  struct elf_segment_map *m;
  Elf_Internal_Phdr *phdrs;
  Elf_Internal_Phdr *phdrs;
  Elf_Internal_Phdr *p;
  Elf_Internal_Phdr *p;
  file_ptr off;
  file_ptr off;
  bfd_size_type maxpagesize;
  bfd_size_type maxpagesize;
  unsigned int alloc;
  unsigned int alloc;
  unsigned int i, j;
  unsigned int i, j;
  bfd_vma header_pad = 0;
  bfd_vma header_pad = 0;
 
 
  if (link_info == NULL
  if (link_info == NULL
      && !_bfd_elf_map_sections_to_segments (abfd, link_info))
      && !_bfd_elf_map_sections_to_segments (abfd, link_info))
    return FALSE;
    return FALSE;
 
 
  alloc = 0;
  alloc = 0;
  for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
  for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
    {
    {
      ++alloc;
      ++alloc;
      if (m->header_size)
      if (m->header_size)
        header_pad = m->header_size;
        header_pad = m->header_size;
    }
    }
 
 
  elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
  elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
  elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
  elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
  elf_elfheader (abfd)->e_phnum = alloc;
  elf_elfheader (abfd)->e_phnum = alloc;
 
 
  if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
  if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
    elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
    elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
  else
  else
    BFD_ASSERT (elf_tdata (abfd)->program_header_size
    BFD_ASSERT (elf_tdata (abfd)->program_header_size
                >= alloc * bed->s->sizeof_phdr);
                >= alloc * bed->s->sizeof_phdr);
 
 
  if (alloc == 0)
  if (alloc == 0)
    {
    {
      elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
      elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
      return TRUE;
      return TRUE;
    }
    }
 
 
  /* We're writing the size in elf_tdata (abfd)->program_header_size,
  /* We're writing the size in elf_tdata (abfd)->program_header_size,
     see assign_file_positions_except_relocs, so make sure we have
     see assign_file_positions_except_relocs, so make sure we have
     that amount allocated, with trailing space cleared.
     that amount allocated, with trailing space cleared.
     The variable alloc contains the computed need, while elf_tdata
     The variable alloc contains the computed need, while elf_tdata
     (abfd)->program_header_size contains the size used for the
     (abfd)->program_header_size contains the size used for the
     layout.
     layout.
     See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
     See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
     where the layout is forced to according to a larger size in the
     where the layout is forced to according to a larger size in the
     last iterations for the testcase ld-elf/header.  */
     last iterations for the testcase ld-elf/header.  */
  BFD_ASSERT (elf_tdata (abfd)->program_header_size % bed->s->sizeof_phdr
  BFD_ASSERT (elf_tdata (abfd)->program_header_size % bed->s->sizeof_phdr
              == 0);
              == 0);
  phdrs = (Elf_Internal_Phdr *)
  phdrs = (Elf_Internal_Phdr *)
     bfd_zalloc2 (abfd,
     bfd_zalloc2 (abfd,
                  (elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr),
                  (elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr),
                  sizeof (Elf_Internal_Phdr));
                  sizeof (Elf_Internal_Phdr));
  elf_tdata (abfd)->phdr = phdrs;
  elf_tdata (abfd)->phdr = phdrs;
  if (phdrs == NULL)
  if (phdrs == NULL)
    return FALSE;
    return FALSE;
 
 
  maxpagesize = 1;
  maxpagesize = 1;
  if ((abfd->flags & D_PAGED) != 0)
  if ((abfd->flags & D_PAGED) != 0)
    maxpagesize = bed->maxpagesize;
    maxpagesize = bed->maxpagesize;
 
 
  off = bed->s->sizeof_ehdr;
  off = bed->s->sizeof_ehdr;
  off += alloc * bed->s->sizeof_phdr;
  off += alloc * bed->s->sizeof_phdr;
  if (header_pad < (bfd_vma) off)
  if (header_pad < (bfd_vma) off)
    header_pad = 0;
    header_pad = 0;
  else
  else
    header_pad -= off;
    header_pad -= off;
  off += header_pad;
  off += header_pad;
 
 
  for (m = elf_tdata (abfd)->segment_map, p = phdrs, j = 0;
  for (m = elf_tdata (abfd)->segment_map, p = phdrs, j = 0;
       m != NULL;
       m != NULL;
       m = m->next, p++, j++)
       m = m->next, p++, j++)
    {
    {
      asection **secpp;
      asection **secpp;
      bfd_vma off_adjust;
      bfd_vma off_adjust;
      bfd_boolean no_contents;
      bfd_boolean no_contents;
 
 
      /* If elf_segment_map is not from map_sections_to_segments, the
      /* If elf_segment_map is not from map_sections_to_segments, the
         sections may not be correctly ordered.  NOTE: sorting should
         sections may not be correctly ordered.  NOTE: sorting should
         not be done to the PT_NOTE section of a corefile, which may
         not be done to the PT_NOTE section of a corefile, which may
         contain several pseudo-sections artificially created by bfd.
         contain several pseudo-sections artificially created by bfd.
         Sorting these pseudo-sections breaks things badly.  */
         Sorting these pseudo-sections breaks things badly.  */
      if (m->count > 1
      if (m->count > 1
          && !(elf_elfheader (abfd)->e_type == ET_CORE
          && !(elf_elfheader (abfd)->e_type == ET_CORE
               && m->p_type == PT_NOTE))
               && m->p_type == PT_NOTE))
        qsort (m->sections, (size_t) m->count, sizeof (asection *),
        qsort (m->sections, (size_t) m->count, sizeof (asection *),
               elf_sort_sections);
               elf_sort_sections);
 
 
      /* An ELF segment (described by Elf_Internal_Phdr) may contain a
      /* An ELF segment (described by Elf_Internal_Phdr) may contain a
         number of sections with contents contributing to both p_filesz
         number of sections with contents contributing to both p_filesz
         and p_memsz, followed by a number of sections with no contents
         and p_memsz, followed by a number of sections with no contents
         that just contribute to p_memsz.  In this loop, OFF tracks next
         that just contribute to p_memsz.  In this loop, OFF tracks next
         available file offset for PT_LOAD and PT_NOTE segments.  */
         available file offset for PT_LOAD and PT_NOTE segments.  */
      p->p_type = m->p_type;
      p->p_type = m->p_type;
      p->p_flags = m->p_flags;
      p->p_flags = m->p_flags;
 
 
      if (m->count == 0)
      if (m->count == 0)
        p->p_vaddr = 0;
        p->p_vaddr = 0;
      else
      else
        p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
        p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
 
 
      if (m->p_paddr_valid)
      if (m->p_paddr_valid)
        p->p_paddr = m->p_paddr;
        p->p_paddr = m->p_paddr;
      else if (m->count == 0)
      else if (m->count == 0)
        p->p_paddr = 0;
        p->p_paddr = 0;
      else
      else
        p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
        p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
 
 
      if (p->p_type == PT_LOAD
      if (p->p_type == PT_LOAD
          && (abfd->flags & D_PAGED) != 0)
          && (abfd->flags & D_PAGED) != 0)
        {
        {
          /* p_align in demand paged PT_LOAD segments effectively stores
          /* p_align in demand paged PT_LOAD segments effectively stores
             the maximum page size.  When copying an executable with
             the maximum page size.  When copying an executable with
             objcopy, we set m->p_align from the input file.  Use this
             objcopy, we set m->p_align from the input file.  Use this
             value for maxpagesize rather than bed->maxpagesize, which
             value for maxpagesize rather than bed->maxpagesize, which
             may be different.  Note that we use maxpagesize for PT_TLS
             may be different.  Note that we use maxpagesize for PT_TLS
             segment alignment later in this function, so we are relying
             segment alignment later in this function, so we are relying
             on at least one PT_LOAD segment appearing before a PT_TLS
             on at least one PT_LOAD segment appearing before a PT_TLS
             segment.  */
             segment.  */
          if (m->p_align_valid)
          if (m->p_align_valid)
            maxpagesize = m->p_align;
            maxpagesize = m->p_align;
 
 
          p->p_align = maxpagesize;
          p->p_align = maxpagesize;
        }
        }
      else if (m->p_align_valid)
      else if (m->p_align_valid)
        p->p_align = m->p_align;
        p->p_align = m->p_align;
      else if (m->count == 0)
      else if (m->count == 0)
        p->p_align = 1 << bed->s->log_file_align;
        p->p_align = 1 << bed->s->log_file_align;
      else
      else
        p->p_align = 0;
        p->p_align = 0;
 
 
      no_contents = FALSE;
      no_contents = FALSE;
      off_adjust = 0;
      off_adjust = 0;
      if (p->p_type == PT_LOAD
      if (p->p_type == PT_LOAD
          && m->count > 0)
          && m->count > 0)
        {
        {
          bfd_size_type align;
          bfd_size_type align;
          unsigned int align_power = 0;
          unsigned int align_power = 0;
 
 
          if (m->p_align_valid)
          if (m->p_align_valid)
            align = p->p_align;
            align = p->p_align;
          else
          else
            {
            {
              for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
              for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
                {
                {
                  unsigned int secalign;
                  unsigned int secalign;
 
 
                  secalign = bfd_get_section_alignment (abfd, *secpp);
                  secalign = bfd_get_section_alignment (abfd, *secpp);
                  if (secalign > align_power)
                  if (secalign > align_power)
                    align_power = secalign;
                    align_power = secalign;
                }
                }
              align = (bfd_size_type) 1 << align_power;
              align = (bfd_size_type) 1 << align_power;
              if (align < maxpagesize)
              if (align < maxpagesize)
                align = maxpagesize;
                align = maxpagesize;
            }
            }
 
 
          for (i = 0; i < m->count; i++)
          for (i = 0; i < m->count; i++)
            if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
            if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
              /* If we aren't making room for this section, then
              /* If we aren't making room for this section, then
                 it must be SHT_NOBITS regardless of what we've
                 it must be SHT_NOBITS regardless of what we've
                 set via struct bfd_elf_special_section.  */
                 set via struct bfd_elf_special_section.  */
              elf_section_type (m->sections[i]) = SHT_NOBITS;
              elf_section_type (m->sections[i]) = SHT_NOBITS;
 
 
          /* Find out whether this segment contains any loadable
          /* Find out whether this segment contains any loadable
             sections.  */
             sections.  */
          no_contents = TRUE;
          no_contents = TRUE;
          for (i = 0; i < m->count; i++)
          for (i = 0; i < m->count; i++)
            if (elf_section_type (m->sections[i]) != SHT_NOBITS)
            if (elf_section_type (m->sections[i]) != SHT_NOBITS)
              {
              {
                no_contents = FALSE;
                no_contents = FALSE;
                break;
                break;
              }
              }
 
 
          off_adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
          off_adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
          off += off_adjust;
          off += off_adjust;
          if (no_contents)
          if (no_contents)
            {
            {
              /* We shouldn't need to align the segment on disk since
              /* We shouldn't need to align the segment on disk since
                 the segment doesn't need file space, but the gABI
                 the segment doesn't need file space, but the gABI
                 arguably requires the alignment and glibc ld.so
                 arguably requires the alignment and glibc ld.so
                 checks it.  So to comply with the alignment
                 checks it.  So to comply with the alignment
                 requirement but not waste file space, we adjust
                 requirement but not waste file space, we adjust
                 p_offset for just this segment.  (OFF_ADJUST is
                 p_offset for just this segment.  (OFF_ADJUST is
                 subtracted from OFF later.)  This may put p_offset
                 subtracted from OFF later.)  This may put p_offset
                 past the end of file, but that shouldn't matter.  */
                 past the end of file, but that shouldn't matter.  */
            }
            }
          else
          else
            off_adjust = 0;
            off_adjust = 0;
        }
        }
      /* Make sure the .dynamic section is the first section in the
      /* Make sure the .dynamic section is the first section in the
         PT_DYNAMIC segment.  */
         PT_DYNAMIC segment.  */
      else if (p->p_type == PT_DYNAMIC
      else if (p->p_type == PT_DYNAMIC
               && m->count > 1
               && m->count > 1
               && strcmp (m->sections[0]->name, ".dynamic") != 0)
               && strcmp (m->sections[0]->name, ".dynamic") != 0)
        {
        {
          _bfd_error_handler
          _bfd_error_handler
            (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
            (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
             abfd);
             abfd);
          bfd_set_error (bfd_error_bad_value);
          bfd_set_error (bfd_error_bad_value);
          return FALSE;
          return FALSE;
        }
        }
      /* Set the note section type to SHT_NOTE.  */
      /* Set the note section type to SHT_NOTE.  */
      else if (p->p_type == PT_NOTE)
      else if (p->p_type == PT_NOTE)
        for (i = 0; i < m->count; i++)
        for (i = 0; i < m->count; i++)
          elf_section_type (m->sections[i]) = SHT_NOTE;
          elf_section_type (m->sections[i]) = SHT_NOTE;
 
 
      p->p_offset = 0;
      p->p_offset = 0;
      p->p_filesz = 0;
      p->p_filesz = 0;
      p->p_memsz = 0;
      p->p_memsz = 0;
 
 
      if (m->includes_filehdr)
      if (m->includes_filehdr)
        {
        {
          if (!m->p_flags_valid)
          if (!m->p_flags_valid)
            p->p_flags |= PF_R;
            p->p_flags |= PF_R;
          p->p_filesz = bed->s->sizeof_ehdr;
          p->p_filesz = bed->s->sizeof_ehdr;
          p->p_memsz = bed->s->sizeof_ehdr;
          p->p_memsz = bed->s->sizeof_ehdr;
          if (m->count > 0)
          if (m->count > 0)
            {
            {
              BFD_ASSERT (p->p_type == PT_LOAD);
              BFD_ASSERT (p->p_type == PT_LOAD);
 
 
              if (p->p_vaddr < (bfd_vma) off)
              if (p->p_vaddr < (bfd_vma) off)
                {
                {
                  (*_bfd_error_handler)
                  (*_bfd_error_handler)
                    (_("%B: Not enough room for program headers, try linking with -N"),
                    (_("%B: Not enough room for program headers, try linking with -N"),
                     abfd);
                     abfd);
                  bfd_set_error (bfd_error_bad_value);
                  bfd_set_error (bfd_error_bad_value);
                  return FALSE;
                  return FALSE;
                }
                }
 
 
              p->p_vaddr -= off;
              p->p_vaddr -= off;
              if (!m->p_paddr_valid)
              if (!m->p_paddr_valid)
                p->p_paddr -= off;
                p->p_paddr -= off;
            }
            }
        }
        }
 
 
      if (m->includes_phdrs)
      if (m->includes_phdrs)
        {
        {
          if (!m->p_flags_valid)
          if (!m->p_flags_valid)
            p->p_flags |= PF_R;
            p->p_flags |= PF_R;
 
 
          if (!m->includes_filehdr)
          if (!m->includes_filehdr)
            {
            {
              p->p_offset = bed->s->sizeof_ehdr;
              p->p_offset = bed->s->sizeof_ehdr;
 
 
              if (m->count > 0)
              if (m->count > 0)
                {
                {
                  BFD_ASSERT (p->p_type == PT_LOAD);
                  BFD_ASSERT (p->p_type == PT_LOAD);
                  p->p_vaddr -= off - p->p_offset;
                  p->p_vaddr -= off - p->p_offset;
                  if (!m->p_paddr_valid)
                  if (!m->p_paddr_valid)
                    p->p_paddr -= off - p->p_offset;
                    p->p_paddr -= off - p->p_offset;
                }
                }
            }
            }
 
 
          p->p_filesz += alloc * bed->s->sizeof_phdr;
          p->p_filesz += alloc * bed->s->sizeof_phdr;
          p->p_memsz += alloc * bed->s->sizeof_phdr;
          p->p_memsz += alloc * bed->s->sizeof_phdr;
          if (m->count)
          if (m->count)
            {
            {
              p->p_filesz += header_pad;
              p->p_filesz += header_pad;
              p->p_memsz += header_pad;
              p->p_memsz += header_pad;
            }
            }
        }
        }
 
 
      if (p->p_type == PT_LOAD
      if (p->p_type == PT_LOAD
          || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
          || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
        {
        {
          if (!m->includes_filehdr && !m->includes_phdrs)
          if (!m->includes_filehdr && !m->includes_phdrs)
            p->p_offset = off;
            p->p_offset = off;
          else
          else
            {
            {
              file_ptr adjust;
              file_ptr adjust;
 
 
              adjust = off - (p->p_offset + p->p_filesz);
              adjust = off - (p->p_offset + p->p_filesz);
              if (!no_contents)
              if (!no_contents)
                p->p_filesz += adjust;
                p->p_filesz += adjust;
              p->p_memsz += adjust;
              p->p_memsz += adjust;
            }
            }
        }
        }
 
 
      /* Set up p_filesz, p_memsz, p_align and p_flags from the section
      /* Set up p_filesz, p_memsz, p_align and p_flags from the section
         maps.  Set filepos for sections in PT_LOAD segments, and in
         maps.  Set filepos for sections in PT_LOAD segments, and in
         core files, for sections in PT_NOTE segments.
         core files, for sections in PT_NOTE segments.
         assign_file_positions_for_non_load_sections will set filepos
         assign_file_positions_for_non_load_sections will set filepos
         for other sections and update p_filesz for other segments.  */
         for other sections and update p_filesz for other segments.  */
      for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
      for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
        {
        {
          asection *sec;
          asection *sec;
          bfd_size_type align;
          bfd_size_type align;
          Elf_Internal_Shdr *this_hdr;
          Elf_Internal_Shdr *this_hdr;
 
 
          sec = *secpp;
          sec = *secpp;
          this_hdr = &elf_section_data (sec)->this_hdr;
          this_hdr = &elf_section_data (sec)->this_hdr;
          align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
          align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
 
 
          if ((p->p_type == PT_LOAD
          if ((p->p_type == PT_LOAD
               || p->p_type == PT_TLS)
               || p->p_type == PT_TLS)
              && (this_hdr->sh_type != SHT_NOBITS
              && (this_hdr->sh_type != SHT_NOBITS
                  || ((this_hdr->sh_flags & SHF_ALLOC) != 0
                  || ((this_hdr->sh_flags & SHF_ALLOC) != 0
                      && ((this_hdr->sh_flags & SHF_TLS) == 0
                      && ((this_hdr->sh_flags & SHF_TLS) == 0
                          || p->p_type == PT_TLS))))
                          || p->p_type == PT_TLS))))
            {
            {
              bfd_signed_vma adjust = sec->vma - (p->p_vaddr + p->p_memsz);
              bfd_signed_vma adjust = sec->vma - (p->p_vaddr + p->p_memsz);
 
 
              if (adjust < 0)
              if (adjust < 0)
                {
                {
                  (*_bfd_error_handler)
                  (*_bfd_error_handler)
                    (_("%B: section %A vma 0x%lx overlaps previous sections"),
                    (_("%B: section %A vma 0x%lx overlaps previous sections"),
                     abfd, sec, (unsigned long) sec->vma);
                     abfd, sec, (unsigned long) sec->vma);
                  adjust = 0;
                  adjust = 0;
                }
                }
              p->p_memsz += adjust;
              p->p_memsz += adjust;
 
 
              if (this_hdr->sh_type != SHT_NOBITS)
              if (this_hdr->sh_type != SHT_NOBITS)
                {
                {
                  off += adjust;
                  off += adjust;
                  p->p_filesz += adjust;
                  p->p_filesz += adjust;
                }
                }
            }
            }
 
 
          if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
          if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
            {
            {
              /* The section at i == 0 is the one that actually contains
              /* The section at i == 0 is the one that actually contains
                 everything.  */
                 everything.  */
              if (i == 0)
              if (i == 0)
                {
                {
                  this_hdr->sh_offset = sec->filepos = off;
                  this_hdr->sh_offset = sec->filepos = off;
                  off += this_hdr->sh_size;
                  off += this_hdr->sh_size;
                  p->p_filesz = this_hdr->sh_size;
                  p->p_filesz = this_hdr->sh_size;
                  p->p_memsz = 0;
                  p->p_memsz = 0;
                  p->p_align = 1;
                  p->p_align = 1;
                }
                }
              else
              else
                {
                {
                  /* The rest are fake sections that shouldn't be written.  */
                  /* The rest are fake sections that shouldn't be written.  */
                  sec->filepos = 0;
                  sec->filepos = 0;
                  sec->size = 0;
                  sec->size = 0;
                  sec->flags = 0;
                  sec->flags = 0;
                  continue;
                  continue;
                }
                }
            }
            }
          else
          else
            {
            {
              if (p->p_type == PT_LOAD)
              if (p->p_type == PT_LOAD)
                {
                {
                  this_hdr->sh_offset = sec->filepos = off;
                  this_hdr->sh_offset = sec->filepos = off;
                  if (this_hdr->sh_type != SHT_NOBITS)
                  if (this_hdr->sh_type != SHT_NOBITS)
                    off += this_hdr->sh_size;
                    off += this_hdr->sh_size;
                }
                }
 
 
              if (this_hdr->sh_type != SHT_NOBITS)
              if (this_hdr->sh_type != SHT_NOBITS)
                {
                {
                  p->p_filesz += this_hdr->sh_size;
                  p->p_filesz += this_hdr->sh_size;
                  /* A load section without SHF_ALLOC is something like
                  /* A load section without SHF_ALLOC is something like
                     a note section in a PT_NOTE segment.  These take
                     a note section in a PT_NOTE segment.  These take
                     file space but are not loaded into memory.  */
                     file space but are not loaded into memory.  */
                  if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
                  if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
                    p->p_memsz += this_hdr->sh_size;
                    p->p_memsz += this_hdr->sh_size;
                }
                }
              else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
              else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
                {
                {
                  if (p->p_type == PT_TLS)
                  if (p->p_type == PT_TLS)
                    p->p_memsz += this_hdr->sh_size;
                    p->p_memsz += this_hdr->sh_size;
 
 
                  /* .tbss is special.  It doesn't contribute to p_memsz of
                  /* .tbss is special.  It doesn't contribute to p_memsz of
                     normal segments.  */
                     normal segments.  */
                  else if ((this_hdr->sh_flags & SHF_TLS) == 0)
                  else if ((this_hdr->sh_flags & SHF_TLS) == 0)
                    p->p_memsz += this_hdr->sh_size;
                    p->p_memsz += this_hdr->sh_size;
                }
                }
 
 
              if (align > p->p_align
              if (align > p->p_align
                  && !m->p_align_valid
                  && !m->p_align_valid
                  && (p->p_type != PT_LOAD
                  && (p->p_type != PT_LOAD
                      || (abfd->flags & D_PAGED) == 0))
                      || (abfd->flags & D_PAGED) == 0))
                p->p_align = align;
                p->p_align = align;
            }
            }
 
 
          if (!m->p_flags_valid)
          if (!m->p_flags_valid)
            {
            {
              p->p_flags |= PF_R;
              p->p_flags |= PF_R;
              if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
              if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
                p->p_flags |= PF_X;
                p->p_flags |= PF_X;
              if ((this_hdr->sh_flags & SHF_WRITE) != 0)
              if ((this_hdr->sh_flags & SHF_WRITE) != 0)
                p->p_flags |= PF_W;
                p->p_flags |= PF_W;
            }
            }
        }
        }
      off -= off_adjust;
      off -= off_adjust;
 
 
      /* Check that all sections are in a PT_LOAD segment.
      /* Check that all sections are in a PT_LOAD segment.
         Don't check funky gdb generated core files.  */
         Don't check funky gdb generated core files.  */
      if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
      if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
        for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
        for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
          {
          {
            Elf_Internal_Shdr *this_hdr;
            Elf_Internal_Shdr *this_hdr;
            asection *sec;
            asection *sec;
 
 
            sec = *secpp;
            sec = *secpp;
            this_hdr = &(elf_section_data(sec)->this_hdr);
            this_hdr = &(elf_section_data(sec)->this_hdr);
            if (this_hdr->sh_size != 0
            if (this_hdr->sh_size != 0
                && !ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, p))
                && !ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, p))
              {
              {
                (*_bfd_error_handler)
                (*_bfd_error_handler)
                  (_("%B: section `%A' can't be allocated in segment %d"),
                  (_("%B: section `%A' can't be allocated in segment %d"),
                   abfd, sec, j);
                   abfd, sec, j);
                print_segment_map (m);
                print_segment_map (m);
                bfd_set_error (bfd_error_bad_value);
                bfd_set_error (bfd_error_bad_value);
                return FALSE;
                return FALSE;
              }
              }
          }
          }
    }
    }
 
 
  elf_tdata (abfd)->next_file_pos = off;
  elf_tdata (abfd)->next_file_pos = off;
  return TRUE;
  return TRUE;
}
}
 
 
/* Assign file positions for the other sections.  */
/* Assign file positions for the other sections.  */
 
 
static bfd_boolean
static bfd_boolean
assign_file_positions_for_non_load_sections (bfd *abfd,
assign_file_positions_for_non_load_sections (bfd *abfd,
                                             struct bfd_link_info *link_info)
                                             struct bfd_link_info *link_info)
{
{
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
  Elf_Internal_Shdr **i_shdrpp;
  Elf_Internal_Shdr **i_shdrpp;
  Elf_Internal_Shdr **hdrpp;
  Elf_Internal_Shdr **hdrpp;
  Elf_Internal_Phdr *phdrs;
  Elf_Internal_Phdr *phdrs;
  Elf_Internal_Phdr *p;
  Elf_Internal_Phdr *p;
  struct elf_segment_map *m;
  struct elf_segment_map *m;
  bfd_vma filehdr_vaddr, filehdr_paddr;
  bfd_vma filehdr_vaddr, filehdr_paddr;
  bfd_vma phdrs_vaddr, phdrs_paddr;
  bfd_vma phdrs_vaddr, phdrs_paddr;
  file_ptr off;
  file_ptr off;
  unsigned int num_sec;
  unsigned int num_sec;
  unsigned int i;
  unsigned int i;
  unsigned int count;
  unsigned int count;
 
 
  i_shdrpp = elf_elfsections (abfd);
  i_shdrpp = elf_elfsections (abfd);
  num_sec = elf_numsections (abfd);
  num_sec = elf_numsections (abfd);
  off = elf_tdata (abfd)->next_file_pos;
  off = elf_tdata (abfd)->next_file_pos;
  for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
  for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
    {
    {
      struct elf_obj_tdata *tdata = elf_tdata (abfd);
      struct elf_obj_tdata *tdata = elf_tdata (abfd);
      Elf_Internal_Shdr *hdr;
      Elf_Internal_Shdr *hdr;
 
 
      hdr = *hdrpp;
      hdr = *hdrpp;
      if (hdr->bfd_section != NULL
      if (hdr->bfd_section != NULL
          && (hdr->bfd_section->filepos != 0
          && (hdr->bfd_section->filepos != 0
              || (hdr->sh_type == SHT_NOBITS
              || (hdr->sh_type == SHT_NOBITS
                  && hdr->contents == NULL)))
                  && hdr->contents == NULL)))
        BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
        BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
      else if ((hdr->sh_flags & SHF_ALLOC) != 0)
      else if ((hdr->sh_flags & SHF_ALLOC) != 0)
        {
        {
          if (hdr->sh_size != 0)
          if (hdr->sh_size != 0)
            ((*_bfd_error_handler)
            ((*_bfd_error_handler)
             (_("%B: warning: allocated section `%s' not in segment"),
             (_("%B: warning: allocated section `%s' not in segment"),
              abfd,
              abfd,
              (hdr->bfd_section == NULL
              (hdr->bfd_section == NULL
               ? "*unknown*"
               ? "*unknown*"
               : hdr->bfd_section->name)));
               : hdr->bfd_section->name)));
          /* We don't need to page align empty sections.  */
          /* We don't need to page align empty sections.  */
          if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
          if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
            off += vma_page_aligned_bias (hdr->sh_addr, off,
            off += vma_page_aligned_bias (hdr->sh_addr, off,
                                          bed->maxpagesize);
                                          bed->maxpagesize);
          else
          else
            off += vma_page_aligned_bias (hdr->sh_addr, off,
            off += vma_page_aligned_bias (hdr->sh_addr, off,
                                          hdr->sh_addralign);
                                          hdr->sh_addralign);
          off = _bfd_elf_assign_file_position_for_section (hdr, off,
          off = _bfd_elf_assign_file_position_for_section (hdr, off,
                                                           FALSE);
                                                           FALSE);
        }
        }
      else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
      else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
                && hdr->bfd_section == NULL)
                && hdr->bfd_section == NULL)
               || hdr == i_shdrpp[tdata->symtab_section]
               || hdr == i_shdrpp[tdata->symtab_section]
               || hdr == i_shdrpp[tdata->symtab_shndx_section]
               || hdr == i_shdrpp[tdata->symtab_shndx_section]
               || hdr == i_shdrpp[tdata->strtab_section])
               || hdr == i_shdrpp[tdata->strtab_section])
        hdr->sh_offset = -1;
        hdr->sh_offset = -1;
      else
      else
        off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
        off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
    }
    }
 
 
  /* Now that we have set the section file positions, we can set up
  /* Now that we have set the section file positions, we can set up
     the file positions for the non PT_LOAD segments.  */
     the file positions for the non PT_LOAD segments.  */
  count = 0;
  count = 0;
  filehdr_vaddr = 0;
  filehdr_vaddr = 0;
  filehdr_paddr = 0;
  filehdr_paddr = 0;
  phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
  phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
  phdrs_paddr = 0;
  phdrs_paddr = 0;
  phdrs = elf_tdata (abfd)->phdr;
  phdrs = elf_tdata (abfd)->phdr;
  for (m = elf_tdata (abfd)->segment_map, p = phdrs;
  for (m = elf_tdata (abfd)->segment_map, p = phdrs;
       m != NULL;
       m != NULL;
       m = m->next, p++)
       m = m->next, p++)
    {
    {
      ++count;
      ++count;
      if (p->p_type != PT_LOAD)
      if (p->p_type != PT_LOAD)
        continue;
        continue;
 
 
      if (m->includes_filehdr)
      if (m->includes_filehdr)
        {
        {
          filehdr_vaddr = p->p_vaddr;
          filehdr_vaddr = p->p_vaddr;
          filehdr_paddr = p->p_paddr;
          filehdr_paddr = p->p_paddr;
        }
        }
      if (m->includes_phdrs)
      if (m->includes_phdrs)
        {
        {
          phdrs_vaddr = p->p_vaddr;
          phdrs_vaddr = p->p_vaddr;
          phdrs_paddr = p->p_paddr;
          phdrs_paddr = p->p_paddr;
          if (m->includes_filehdr)
          if (m->includes_filehdr)
            {
            {
              phdrs_vaddr += bed->s->sizeof_ehdr;
              phdrs_vaddr += bed->s->sizeof_ehdr;
              phdrs_paddr += bed->s->sizeof_ehdr;
              phdrs_paddr += bed->s->sizeof_ehdr;
            }
            }
        }
        }
    }
    }
 
 
  for (m = elf_tdata (abfd)->segment_map, p = phdrs;
  for (m = elf_tdata (abfd)->segment_map, p = phdrs;
       m != NULL;
       m != NULL;
       m = m->next, p++)
       m = m->next, p++)
    {
    {
      if (p->p_type == PT_GNU_RELRO)
      if (p->p_type == PT_GNU_RELRO)
        {
        {
          const Elf_Internal_Phdr *lp;
          const Elf_Internal_Phdr *lp;
 
 
          BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
          BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
 
 
          if (link_info != NULL)
          if (link_info != NULL)
            {
            {
              /* During linking the range of the RELRO segment is passed
              /* During linking the range of the RELRO segment is passed
                 in link_info.  */
                 in link_info.  */
              for (lp = phdrs; lp < phdrs + count; ++lp)
              for (lp = phdrs; lp < phdrs + count; ++lp)
                {
                {
                  if (lp->p_type == PT_LOAD
                  if (lp->p_type == PT_LOAD
                      && lp->p_vaddr >= link_info->relro_start
                      && lp->p_vaddr >= link_info->relro_start
                      && lp->p_vaddr < link_info->relro_end
                      && lp->p_vaddr < link_info->relro_end
                      && lp->p_vaddr + lp->p_filesz >= link_info->relro_end)
                      && lp->p_vaddr + lp->p_filesz >= link_info->relro_end)
                    break;
                    break;
                }
                }
            }
            }
          else
          else
            {
            {
              /* Otherwise we are copying an executable or shared
              /* Otherwise we are copying an executable or shared
                 library, but we need to use the same linker logic.  */
                 library, but we need to use the same linker logic.  */
              for (lp = phdrs; lp < phdrs + count; ++lp)
              for (lp = phdrs; lp < phdrs + count; ++lp)
                {
                {
                  if (lp->p_type == PT_LOAD
                  if (lp->p_type == PT_LOAD
                      && lp->p_paddr == p->p_paddr)
                      && lp->p_paddr == p->p_paddr)
                    break;
                    break;
                }
                }
            }
            }
 
 
          if (lp < phdrs + count)
          if (lp < phdrs + count)
            {
            {
              p->p_vaddr = lp->p_vaddr;
              p->p_vaddr = lp->p_vaddr;
              p->p_paddr = lp->p_paddr;
              p->p_paddr = lp->p_paddr;
              p->p_offset = lp->p_offset;
              p->p_offset = lp->p_offset;
              if (link_info != NULL)
              if (link_info != NULL)
                p->p_filesz = link_info->relro_end - lp->p_vaddr;
                p->p_filesz = link_info->relro_end - lp->p_vaddr;
              else if (m->p_size_valid)
              else if (m->p_size_valid)
                p->p_filesz = m->p_size;
                p->p_filesz = m->p_size;
              else
              else
                abort ();
                abort ();
              p->p_memsz = p->p_filesz;
              p->p_memsz = p->p_filesz;
              p->p_align = 1;
              p->p_align = 1;
              p->p_flags = (lp->p_flags & ~PF_W);
              p->p_flags = (lp->p_flags & ~PF_W);
            }
            }
          else
          else
            {
            {
              memset (p, 0, sizeof *p);
              memset (p, 0, sizeof *p);
              p->p_type = PT_NULL;
              p->p_type = PT_NULL;
            }
            }
        }
        }
      else if (m->count != 0)
      else if (m->count != 0)
        {
        {
          if (p->p_type != PT_LOAD
          if (p->p_type != PT_LOAD
              && (p->p_type != PT_NOTE
              && (p->p_type != PT_NOTE
                  || bfd_get_format (abfd) != bfd_core))
                  || bfd_get_format (abfd) != bfd_core))
            {
            {
              Elf_Internal_Shdr *hdr;
              Elf_Internal_Shdr *hdr;
              asection *sect;
              asection *sect;
 
 
              BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
              BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
 
 
              sect = m->sections[m->count - 1];
              sect = m->sections[m->count - 1];
              hdr = &elf_section_data (sect)->this_hdr;
              hdr = &elf_section_data (sect)->this_hdr;
              p->p_filesz = sect->filepos - m->sections[0]->filepos;
              p->p_filesz = sect->filepos - m->sections[0]->filepos;
              if (hdr->sh_type != SHT_NOBITS)
              if (hdr->sh_type != SHT_NOBITS)
                p->p_filesz += hdr->sh_size;
                p->p_filesz += hdr->sh_size;
              p->p_offset = m->sections[0]->filepos;
              p->p_offset = m->sections[0]->filepos;
            }
            }
        }
        }
      else if (m->includes_filehdr)
      else if (m->includes_filehdr)
        {
        {
          p->p_vaddr = filehdr_vaddr;
          p->p_vaddr = filehdr_vaddr;
          if (! m->p_paddr_valid)
          if (! m->p_paddr_valid)
            p->p_paddr = filehdr_paddr;
            p->p_paddr = filehdr_paddr;
        }
        }
      else if (m->includes_phdrs)
      else if (m->includes_phdrs)
        {
        {
          p->p_vaddr = phdrs_vaddr;
          p->p_vaddr = phdrs_vaddr;
          if (! m->p_paddr_valid)
          if (! m->p_paddr_valid)
            p->p_paddr = phdrs_paddr;
            p->p_paddr = phdrs_paddr;
        }
        }
    }
    }
 
 
  elf_tdata (abfd)->next_file_pos = off;
  elf_tdata (abfd)->next_file_pos = off;
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Work out the file positions of all the sections.  This is called by
/* Work out the file positions of all the sections.  This is called by
   _bfd_elf_compute_section_file_positions.  All the section sizes and
   _bfd_elf_compute_section_file_positions.  All the section sizes and
   VMAs must be known before this is called.
   VMAs must be known before this is called.
 
 
   Reloc sections come in two flavours: Those processed specially as
   Reloc sections come in two flavours: Those processed specially as
   "side-channel" data attached to a section to which they apply, and
   "side-channel" data attached to a section to which they apply, and
   those that bfd doesn't process as relocations.  The latter sort are
   those that bfd doesn't process as relocations.  The latter sort are
   stored in a normal bfd section by bfd_section_from_shdr.   We don't
   stored in a normal bfd section by bfd_section_from_shdr.   We don't
   consider the former sort here, unless they form part of the loadable
   consider the former sort here, unless they form part of the loadable
   image.  Reloc sections not assigned here will be handled later by
   image.  Reloc sections not assigned here will be handled later by
   assign_file_positions_for_relocs.
   assign_file_positions_for_relocs.
 
 
   We also don't set the positions of the .symtab and .strtab here.  */
   We also don't set the positions of the .symtab and .strtab here.  */
 
 
static bfd_boolean
static bfd_boolean
assign_file_positions_except_relocs (bfd *abfd,
assign_file_positions_except_relocs (bfd *abfd,
                                     struct bfd_link_info *link_info)
                                     struct bfd_link_info *link_info)
{
{
  struct elf_obj_tdata *tdata = elf_tdata (abfd);
  struct elf_obj_tdata *tdata = elf_tdata (abfd);
  Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
  Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
  file_ptr off;
  file_ptr off;
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
 
 
  if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
  if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
      && bfd_get_format (abfd) != bfd_core)
      && bfd_get_format (abfd) != bfd_core)
    {
    {
      Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
      Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
      unsigned int num_sec = elf_numsections (abfd);
      unsigned int num_sec = elf_numsections (abfd);
      Elf_Internal_Shdr **hdrpp;
      Elf_Internal_Shdr **hdrpp;
      unsigned int i;
      unsigned int i;
 
 
      /* Start after the ELF header.  */
      /* Start after the ELF header.  */
      off = i_ehdrp->e_ehsize;
      off = i_ehdrp->e_ehsize;
 
 
      /* We are not creating an executable, which means that we are
      /* We are not creating an executable, which means that we are
         not creating a program header, and that the actual order of
         not creating a program header, and that the actual order of
         the sections in the file is unimportant.  */
         the sections in the file is unimportant.  */
      for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
      for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
        {
        {
          Elf_Internal_Shdr *hdr;
          Elf_Internal_Shdr *hdr;
 
 
          hdr = *hdrpp;
          hdr = *hdrpp;
          if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
          if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
               && hdr->bfd_section == NULL)
               && hdr->bfd_section == NULL)
              || i == tdata->symtab_section
              || i == tdata->symtab_section
              || i == tdata->symtab_shndx_section
              || i == tdata->symtab_shndx_section
              || i == tdata->strtab_section)
              || i == tdata->strtab_section)
            {
            {
              hdr->sh_offset = -1;
              hdr->sh_offset = -1;
            }
            }
          else
          else
            off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
            off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
        }
        }
    }
    }
  else
  else
    {
    {
      unsigned int alloc;
      unsigned int alloc;
 
 
      /* Assign file positions for the loaded sections based on the
      /* Assign file positions for the loaded sections based on the
         assignment of sections to segments.  */
         assignment of sections to segments.  */
      if (!assign_file_positions_for_load_sections (abfd, link_info))
      if (!assign_file_positions_for_load_sections (abfd, link_info))
        return FALSE;
        return FALSE;
 
 
      /* And for non-load sections.  */
      /* And for non-load sections.  */
      if (!assign_file_positions_for_non_load_sections (abfd, link_info))
      if (!assign_file_positions_for_non_load_sections (abfd, link_info))
        return FALSE;
        return FALSE;
 
 
      if (bed->elf_backend_modify_program_headers != NULL)
      if (bed->elf_backend_modify_program_headers != NULL)
        {
        {
          if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
          if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
            return FALSE;
            return FALSE;
        }
        }
 
 
      /* Write out the program headers.  */
      /* Write out the program headers.  */
      alloc = tdata->program_header_size / bed->s->sizeof_phdr;
      alloc = tdata->program_header_size / bed->s->sizeof_phdr;
      if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
      if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
          || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
          || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
        return FALSE;
        return FALSE;
 
 
      off = tdata->next_file_pos;
      off = tdata->next_file_pos;
    }
    }
 
 
  /* Place the section headers.  */
  /* Place the section headers.  */
  off = align_file_position (off, 1 << bed->s->log_file_align);
  off = align_file_position (off, 1 << bed->s->log_file_align);
  i_ehdrp->e_shoff = off;
  i_ehdrp->e_shoff = off;
  off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
  off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
 
 
  tdata->next_file_pos = off;
  tdata->next_file_pos = off;
 
 
  return TRUE;
  return TRUE;
}
}
 
 
static bfd_boolean
static bfd_boolean
prep_headers (bfd *abfd)
prep_headers (bfd *abfd)
{
{
  Elf_Internal_Ehdr *i_ehdrp;   /* Elf file header, internal form */
  Elf_Internal_Ehdr *i_ehdrp;   /* Elf file header, internal form */
  Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
  Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
  struct elf_strtab_hash *shstrtab;
  struct elf_strtab_hash *shstrtab;
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
 
 
  i_ehdrp = elf_elfheader (abfd);
  i_ehdrp = elf_elfheader (abfd);
 
 
  shstrtab = _bfd_elf_strtab_init ();
  shstrtab = _bfd_elf_strtab_init ();
  if (shstrtab == NULL)
  if (shstrtab == NULL)
    return FALSE;
    return FALSE;
 
 
  elf_shstrtab (abfd) = shstrtab;
  elf_shstrtab (abfd) = shstrtab;
 
 
  i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
  i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
  i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
  i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
  i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
  i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
  i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
  i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
 
 
  i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
  i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
  i_ehdrp->e_ident[EI_DATA] =
  i_ehdrp->e_ident[EI_DATA] =
    bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
    bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
  i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
  i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
 
 
  if ((abfd->flags & DYNAMIC) != 0)
  if ((abfd->flags & DYNAMIC) != 0)
    i_ehdrp->e_type = ET_DYN;
    i_ehdrp->e_type = ET_DYN;
  else if ((abfd->flags & EXEC_P) != 0)
  else if ((abfd->flags & EXEC_P) != 0)
    i_ehdrp->e_type = ET_EXEC;
    i_ehdrp->e_type = ET_EXEC;
  else if (bfd_get_format (abfd) == bfd_core)
  else if (bfd_get_format (abfd) == bfd_core)
    i_ehdrp->e_type = ET_CORE;
    i_ehdrp->e_type = ET_CORE;
  else
  else
    i_ehdrp->e_type = ET_REL;
    i_ehdrp->e_type = ET_REL;
 
 
  switch (bfd_get_arch (abfd))
  switch (bfd_get_arch (abfd))
    {
    {
    case bfd_arch_unknown:
    case bfd_arch_unknown:
      i_ehdrp->e_machine = EM_NONE;
      i_ehdrp->e_machine = EM_NONE;
      break;
      break;
 
 
      /* There used to be a long list of cases here, each one setting
      /* There used to be a long list of cases here, each one setting
         e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
         e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
         in the corresponding bfd definition.  To avoid duplication,
         in the corresponding bfd definition.  To avoid duplication,
         the switch was removed.  Machines that need special handling
         the switch was removed.  Machines that need special handling
         can generally do it in elf_backend_final_write_processing(),
         can generally do it in elf_backend_final_write_processing(),
         unless they need the information earlier than the final write.
         unless they need the information earlier than the final write.
         Such need can generally be supplied by replacing the tests for
         Such need can generally be supplied by replacing the tests for
         e_machine with the conditions used to determine it.  */
         e_machine with the conditions used to determine it.  */
    default:
    default:
      i_ehdrp->e_machine = bed->elf_machine_code;
      i_ehdrp->e_machine = bed->elf_machine_code;
    }
    }
 
 
  i_ehdrp->e_version = bed->s->ev_current;
  i_ehdrp->e_version = bed->s->ev_current;
  i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
  i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
 
 
  /* No program header, for now.  */
  /* No program header, for now.  */
  i_ehdrp->e_phoff = 0;
  i_ehdrp->e_phoff = 0;
  i_ehdrp->e_phentsize = 0;
  i_ehdrp->e_phentsize = 0;
  i_ehdrp->e_phnum = 0;
  i_ehdrp->e_phnum = 0;
 
 
  /* Each bfd section is section header entry.  */
  /* Each bfd section is section header entry.  */
  i_ehdrp->e_entry = bfd_get_start_address (abfd);
  i_ehdrp->e_entry = bfd_get_start_address (abfd);
  i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
  i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
 
 
  /* If we're building an executable, we'll need a program header table.  */
  /* If we're building an executable, we'll need a program header table.  */
  if (abfd->flags & EXEC_P)
  if (abfd->flags & EXEC_P)
    /* It all happens later.  */
    /* It all happens later.  */
    ;
    ;
  else
  else
    {
    {
      i_ehdrp->e_phentsize = 0;
      i_ehdrp->e_phentsize = 0;
      i_phdrp = 0;
      i_phdrp = 0;
      i_ehdrp->e_phoff = 0;
      i_ehdrp->e_phoff = 0;
    }
    }
 
 
  elf_tdata (abfd)->symtab_hdr.sh_name =
  elf_tdata (abfd)->symtab_hdr.sh_name =
    (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
    (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
  elf_tdata (abfd)->strtab_hdr.sh_name =
  elf_tdata (abfd)->strtab_hdr.sh_name =
    (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
    (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
  elf_tdata (abfd)->shstrtab_hdr.sh_name =
  elf_tdata (abfd)->shstrtab_hdr.sh_name =
    (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
    (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
  if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
  if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
      || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
      || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
      || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
      || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
    return FALSE;
    return FALSE;
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Assign file positions for all the reloc sections which are not part
/* Assign file positions for all the reloc sections which are not part
   of the loadable file image.  */
   of the loadable file image.  */
 
 
void
void
_bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
_bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
{
{
  file_ptr off;
  file_ptr off;
  unsigned int i, num_sec;
  unsigned int i, num_sec;
  Elf_Internal_Shdr **shdrpp;
  Elf_Internal_Shdr **shdrpp;
 
 
  off = elf_tdata (abfd)->next_file_pos;
  off = elf_tdata (abfd)->next_file_pos;
 
 
  num_sec = elf_numsections (abfd);
  num_sec = elf_numsections (abfd);
  for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
  for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
    {
    {
      Elf_Internal_Shdr *shdrp;
      Elf_Internal_Shdr *shdrp;
 
 
      shdrp = *shdrpp;
      shdrp = *shdrpp;
      if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
      if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
          && shdrp->sh_offset == -1)
          && shdrp->sh_offset == -1)
        off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
        off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
    }
    }
 
 
  elf_tdata (abfd)->next_file_pos = off;
  elf_tdata (abfd)->next_file_pos = off;
}
}
 
 
bfd_boolean
bfd_boolean
_bfd_elf_write_object_contents (bfd *abfd)
_bfd_elf_write_object_contents (bfd *abfd)
{
{
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
  Elf_Internal_Ehdr *i_ehdrp;
  Elf_Internal_Ehdr *i_ehdrp;
  Elf_Internal_Shdr **i_shdrp;
  Elf_Internal_Shdr **i_shdrp;
  bfd_boolean failed;
  bfd_boolean failed;
  unsigned int count, num_sec;
  unsigned int count, num_sec;
 
 
  if (! abfd->output_has_begun
  if (! abfd->output_has_begun
      && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
      && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
    return FALSE;
    return FALSE;
 
 
  i_shdrp = elf_elfsections (abfd);
  i_shdrp = elf_elfsections (abfd);
  i_ehdrp = elf_elfheader (abfd);
  i_ehdrp = elf_elfheader (abfd);
 
 
  failed = FALSE;
  failed = FALSE;
  bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
  bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
  if (failed)
  if (failed)
    return FALSE;
    return FALSE;
 
 
  _bfd_elf_assign_file_positions_for_relocs (abfd);
  _bfd_elf_assign_file_positions_for_relocs (abfd);
 
 
  /* After writing the headers, we need to write the sections too...  */
  /* After writing the headers, we need to write the sections too...  */
  num_sec = elf_numsections (abfd);
  num_sec = elf_numsections (abfd);
  for (count = 1; count < num_sec; count++)
  for (count = 1; count < num_sec; count++)
    {
    {
      if (bed->elf_backend_section_processing)
      if (bed->elf_backend_section_processing)
        (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
        (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
      if (i_shdrp[count]->contents)
      if (i_shdrp[count]->contents)
        {
        {
          bfd_size_type amt = i_shdrp[count]->sh_size;
          bfd_size_type amt = i_shdrp[count]->sh_size;
 
 
          if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
          if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
              || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
              || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
            return FALSE;
            return FALSE;
        }
        }
    }
    }
 
 
  /* Write out the section header names.  */
  /* Write out the section header names.  */
  if (elf_shstrtab (abfd) != NULL
  if (elf_shstrtab (abfd) != NULL
      && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
      && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
          || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
          || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
    return FALSE;
    return FALSE;
 
 
  if (bed->elf_backend_final_write_processing)
  if (bed->elf_backend_final_write_processing)
    (*bed->elf_backend_final_write_processing) (abfd,
    (*bed->elf_backend_final_write_processing) (abfd,
                                                elf_tdata (abfd)->linker);
                                                elf_tdata (abfd)->linker);
 
 
  if (!bed->s->write_shdrs_and_ehdr (abfd))
  if (!bed->s->write_shdrs_and_ehdr (abfd))
    return FALSE;
    return FALSE;
 
 
  /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0].  */
  /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0].  */
  if (elf_tdata (abfd)->after_write_object_contents)
  if (elf_tdata (abfd)->after_write_object_contents)
    return (*elf_tdata (abfd)->after_write_object_contents) (abfd);
    return (*elf_tdata (abfd)->after_write_object_contents) (abfd);
 
 
  return TRUE;
  return TRUE;
}
}
 
 
bfd_boolean
bfd_boolean
_bfd_elf_write_corefile_contents (bfd *abfd)
_bfd_elf_write_corefile_contents (bfd *abfd)
{
{
  /* Hopefully this can be done just like an object file.  */
  /* Hopefully this can be done just like an object file.  */
  return _bfd_elf_write_object_contents (abfd);
  return _bfd_elf_write_object_contents (abfd);
}
}
 
 
/* Given a section, search the header to find them.  */
/* Given a section, search the header to find them.  */
 
 
unsigned int
unsigned int
_bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
_bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
{
{
  const struct elf_backend_data *bed;
  const struct elf_backend_data *bed;
  unsigned int index;
  unsigned int index;
 
 
  if (elf_section_data (asect) != NULL
  if (elf_section_data (asect) != NULL
      && elf_section_data (asect)->this_idx != 0)
      && elf_section_data (asect)->this_idx != 0)
    return elf_section_data (asect)->this_idx;
    return elf_section_data (asect)->this_idx;
 
 
  if (bfd_is_abs_section (asect))
  if (bfd_is_abs_section (asect))
    index = SHN_ABS;
    index = SHN_ABS;
  else if (bfd_is_com_section (asect))
  else if (bfd_is_com_section (asect))
    index = SHN_COMMON;
    index = SHN_COMMON;
  else if (bfd_is_und_section (asect))
  else if (bfd_is_und_section (asect))
    index = SHN_UNDEF;
    index = SHN_UNDEF;
  else
  else
    index = SHN_BAD;
    index = SHN_BAD;
 
 
  bed = get_elf_backend_data (abfd);
  bed = get_elf_backend_data (abfd);
  if (bed->elf_backend_section_from_bfd_section)
  if (bed->elf_backend_section_from_bfd_section)
    {
    {
      int retval = index;
      int retval = index;
 
 
      if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
      if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
        return retval;
        return retval;
    }
    }
 
 
  if (index == SHN_BAD)
  if (index == SHN_BAD)
    bfd_set_error (bfd_error_nonrepresentable_section);
    bfd_set_error (bfd_error_nonrepresentable_section);
 
 
  return index;
  return index;
}
}
 
 
/* Given a BFD symbol, return the index in the ELF symbol table, or -1
/* Given a BFD symbol, return the index in the ELF symbol table, or -1
   on error.  */
   on error.  */
 
 
int
int
_bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
_bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
{
{
  asymbol *asym_ptr = *asym_ptr_ptr;
  asymbol *asym_ptr = *asym_ptr_ptr;
  int idx;
  int idx;
  flagword flags = asym_ptr->flags;
  flagword flags = asym_ptr->flags;
 
 
  /* When gas creates relocations against local labels, it creates its
  /* When gas creates relocations against local labels, it creates its
     own symbol for the section, but does put the symbol into the
     own symbol for the section, but does put the symbol into the
     symbol chain, so udata is 0.  When the linker is generating
     symbol chain, so udata is 0.  When the linker is generating
     relocatable output, this section symbol may be for one of the
     relocatable output, this section symbol may be for one of the
     input sections rather than the output section.  */
     input sections rather than the output section.  */
  if (asym_ptr->udata.i == 0
  if (asym_ptr->udata.i == 0
      && (flags & BSF_SECTION_SYM)
      && (flags & BSF_SECTION_SYM)
      && asym_ptr->section)
      && asym_ptr->section)
    {
    {
      asection *sec;
      asection *sec;
      int indx;
      int indx;
 
 
      sec = asym_ptr->section;
      sec = asym_ptr->section;
      if (sec->owner != abfd && sec->output_section != NULL)
      if (sec->owner != abfd && sec->output_section != NULL)
        sec = sec->output_section;
        sec = sec->output_section;
      if (sec->owner == abfd
      if (sec->owner == abfd
          && (indx = sec->index) < elf_num_section_syms (abfd)
          && (indx = sec->index) < elf_num_section_syms (abfd)
          && elf_section_syms (abfd)[indx] != NULL)
          && elf_section_syms (abfd)[indx] != NULL)
        asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
        asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
    }
    }
 
 
  idx = asym_ptr->udata.i;
  idx = asym_ptr->udata.i;
 
 
  if (idx == 0)
  if (idx == 0)
    {
    {
      /* This case can occur when using --strip-symbol on a symbol
      /* This case can occur when using --strip-symbol on a symbol
         which is used in a relocation entry.  */
         which is used in a relocation entry.  */
      (*_bfd_error_handler)
      (*_bfd_error_handler)
        (_("%B: symbol `%s' required but not present"),
        (_("%B: symbol `%s' required but not present"),
         abfd, bfd_asymbol_name (asym_ptr));
         abfd, bfd_asymbol_name (asym_ptr));
      bfd_set_error (bfd_error_no_symbols);
      bfd_set_error (bfd_error_no_symbols);
      return -1;
      return -1;
    }
    }
 
 
#if DEBUG & 4
#if DEBUG & 4
  {
  {
    fprintf (stderr,
    fprintf (stderr,
             "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
             "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
             (long) asym_ptr, asym_ptr->name, idx, flags,
             (long) asym_ptr, asym_ptr->name, idx, flags,
             elf_symbol_flags (flags));
             elf_symbol_flags (flags));
    fflush (stderr);
    fflush (stderr);
  }
  }
#endif
#endif
 
 
  return idx;
  return idx;
}
}
 
 
/* Rewrite program header information.  */
/* Rewrite program header information.  */
 
 
static bfd_boolean
static bfd_boolean
rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
{
{
  Elf_Internal_Ehdr *iehdr;
  Elf_Internal_Ehdr *iehdr;
  struct elf_segment_map *map;
  struct elf_segment_map *map;
  struct elf_segment_map *map_first;
  struct elf_segment_map *map_first;
  struct elf_segment_map **pointer_to_map;
  struct elf_segment_map **pointer_to_map;
  Elf_Internal_Phdr *segment;
  Elf_Internal_Phdr *segment;
  asection *section;
  asection *section;
  unsigned int i;
  unsigned int i;
  unsigned int num_segments;
  unsigned int num_segments;
  bfd_boolean phdr_included = FALSE;
  bfd_boolean phdr_included = FALSE;
  bfd_boolean p_paddr_valid;
  bfd_boolean p_paddr_valid;
  bfd_vma maxpagesize;
  bfd_vma maxpagesize;
  struct elf_segment_map *phdr_adjust_seg = NULL;
  struct elf_segment_map *phdr_adjust_seg = NULL;
  unsigned int phdr_adjust_num = 0;
  unsigned int phdr_adjust_num = 0;
  const struct elf_backend_data *bed;
  const struct elf_backend_data *bed;
 
 
  bed = get_elf_backend_data (ibfd);
  bed = get_elf_backend_data (ibfd);
  iehdr = elf_elfheader (ibfd);
  iehdr = elf_elfheader (ibfd);
 
 
  map_first = NULL;
  map_first = NULL;
  pointer_to_map = &map_first;
  pointer_to_map = &map_first;
 
 
  num_segments = elf_elfheader (ibfd)->e_phnum;
  num_segments = elf_elfheader (ibfd)->e_phnum;
  maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
  maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
 
 
  /* Returns the end address of the segment + 1.  */
  /* Returns the end address of the segment + 1.  */
#define SEGMENT_END(segment, start)                                     \
#define SEGMENT_END(segment, start)                                     \
  (start + (segment->p_memsz > segment->p_filesz                        \
  (start + (segment->p_memsz > segment->p_filesz                        \
            ? segment->p_memsz : segment->p_filesz))
            ? segment->p_memsz : segment->p_filesz))
 
 
#define SECTION_SIZE(section, segment)                                  \
#define SECTION_SIZE(section, segment)                                  \
  (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL))            \
  (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL))            \
    != SEC_THREAD_LOCAL || segment->p_type == PT_TLS)                   \
    != SEC_THREAD_LOCAL || segment->p_type == PT_TLS)                   \
   ? section->size : 0)
   ? section->size : 0)
 
 
  /* Returns TRUE if the given section is contained within
  /* Returns TRUE if the given section is contained within
     the given segment.  VMA addresses are compared.  */
     the given segment.  VMA addresses are compared.  */
#define IS_CONTAINED_BY_VMA(section, segment)                           \
#define IS_CONTAINED_BY_VMA(section, segment)                           \
  (section->vma >= segment->p_vaddr                                     \
  (section->vma >= segment->p_vaddr                                     \
   && (section->vma + SECTION_SIZE (section, segment)                   \
   && (section->vma + SECTION_SIZE (section, segment)                   \
       <= (SEGMENT_END (segment, segment->p_vaddr))))
       <= (SEGMENT_END (segment, segment->p_vaddr))))
 
 
  /* Returns TRUE if the given section is contained within
  /* Returns TRUE if the given section is contained within
     the given segment.  LMA addresses are compared.  */
     the given segment.  LMA addresses are compared.  */
#define IS_CONTAINED_BY_LMA(section, segment, base)                     \
#define IS_CONTAINED_BY_LMA(section, segment, base)                     \
  (section->lma >= base                                                 \
  (section->lma >= base                                                 \
   && (section->lma + SECTION_SIZE (section, segment)                   \
   && (section->lma + SECTION_SIZE (section, segment)                   \
       <= SEGMENT_END (segment, base)))
       <= SEGMENT_END (segment, base)))
 
 
  /* Handle PT_NOTE segment.  */
  /* Handle PT_NOTE segment.  */
#define IS_NOTE(p, s)                                                   \
#define IS_NOTE(p, s)                                                   \
  (p->p_type == PT_NOTE                                                 \
  (p->p_type == PT_NOTE                                                 \
   && elf_section_type (s) == SHT_NOTE                                  \
   && elf_section_type (s) == SHT_NOTE                                  \
   && (bfd_vma) s->filepos >= p->p_offset                               \
   && (bfd_vma) s->filepos >= p->p_offset                               \
   && ((bfd_vma) s->filepos + s->size                                   \
   && ((bfd_vma) s->filepos + s->size                                   \
       <= p->p_offset + p->p_filesz))
       <= p->p_offset + p->p_filesz))
 
 
  /* Special case: corefile "NOTE" section containing regs, prpsinfo
  /* Special case: corefile "NOTE" section containing regs, prpsinfo
     etc.  */
     etc.  */
#define IS_COREFILE_NOTE(p, s)                                          \
#define IS_COREFILE_NOTE(p, s)                                          \
  (IS_NOTE (p, s)                                                       \
  (IS_NOTE (p, s)                                                       \
   && bfd_get_format (ibfd) == bfd_core                                 \
   && bfd_get_format (ibfd) == bfd_core                                 \
   && s->vma == 0                                                        \
   && s->vma == 0                                                        \
   && s->lma == 0)
   && s->lma == 0)
 
 
  /* The complicated case when p_vaddr is 0 is to handle the Solaris
  /* The complicated case when p_vaddr is 0 is to handle the Solaris
     linker, which generates a PT_INTERP section with p_vaddr and
     linker, which generates a PT_INTERP section with p_vaddr and
     p_memsz set to 0.  */
     p_memsz set to 0.  */
#define IS_SOLARIS_PT_INTERP(p, s)                                      \
#define IS_SOLARIS_PT_INTERP(p, s)                                      \
  (p->p_vaddr == 0                                                       \
  (p->p_vaddr == 0                                                       \
   && p->p_paddr == 0                                                    \
   && p->p_paddr == 0                                                    \
   && p->p_memsz == 0                                                    \
   && p->p_memsz == 0                                                    \
   && p->p_filesz > 0                                                    \
   && p->p_filesz > 0                                                    \
   && (s->flags & SEC_HAS_CONTENTS) != 0                         \
   && (s->flags & SEC_HAS_CONTENTS) != 0                         \
   && s->size > 0                                                        \
   && s->size > 0                                                        \
   && (bfd_vma) s->filepos >= p->p_offset                               \
   && (bfd_vma) s->filepos >= p->p_offset                               \
   && ((bfd_vma) s->filepos + s->size                                   \
   && ((bfd_vma) s->filepos + s->size                                   \
       <= p->p_offset + p->p_filesz))
       <= p->p_offset + p->p_filesz))
 
 
  /* Decide if the given section should be included in the given segment.
  /* Decide if the given section should be included in the given segment.
     A section will be included if:
     A section will be included if:
       1. It is within the address space of the segment -- we use the LMA
       1. It is within the address space of the segment -- we use the LMA
          if that is set for the segment and the VMA otherwise,
          if that is set for the segment and the VMA otherwise,
       2. It is an allocated section or a NOTE section in a PT_NOTE
       2. It is an allocated section or a NOTE section in a PT_NOTE
          segment.
          segment.
       3. There is an output section associated with it,
       3. There is an output section associated with it,
       4. The section has not already been allocated to a previous segment.
       4. The section has not already been allocated to a previous segment.
       5. PT_GNU_STACK segments do not include any sections.
       5. PT_GNU_STACK segments do not include any sections.
       6. PT_TLS segment includes only SHF_TLS sections.
       6. PT_TLS segment includes only SHF_TLS sections.
       7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
       7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
       8. PT_DYNAMIC should not contain empty sections at the beginning
       8. PT_DYNAMIC should not contain empty sections at the beginning
          (with the possible exception of .dynamic).  */
          (with the possible exception of .dynamic).  */
#define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed)              \
#define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed)              \
  ((((segment->p_paddr                                                  \
  ((((segment->p_paddr                                                  \
      ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr)        \
      ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr)        \
      : IS_CONTAINED_BY_VMA (section, segment))                         \
      : IS_CONTAINED_BY_VMA (section, segment))                         \
     && (section->flags & SEC_ALLOC) != 0)                               \
     && (section->flags & SEC_ALLOC) != 0)                               \
    || IS_NOTE (segment, section))                                      \
    || IS_NOTE (segment, section))                                      \
   && segment->p_type != PT_GNU_STACK                                   \
   && segment->p_type != PT_GNU_STACK                                   \
   && (segment->p_type != PT_TLS                                        \
   && (segment->p_type != PT_TLS                                        \
       || (section->flags & SEC_THREAD_LOCAL))                          \
       || (section->flags & SEC_THREAD_LOCAL))                          \
   && (segment->p_type == PT_LOAD                                       \
   && (segment->p_type == PT_LOAD                                       \
       || segment->p_type == PT_TLS                                     \
       || segment->p_type == PT_TLS                                     \
       || (section->flags & SEC_THREAD_LOCAL) == 0)                      \
       || (section->flags & SEC_THREAD_LOCAL) == 0)                      \
   && (segment->p_type != PT_DYNAMIC                                    \
   && (segment->p_type != PT_DYNAMIC                                    \
       || SECTION_SIZE (section, segment) > 0                            \
       || SECTION_SIZE (section, segment) > 0                            \
       || (segment->p_paddr                                             \
       || (segment->p_paddr                                             \
           ? segment->p_paddr != section->lma                           \
           ? segment->p_paddr != section->lma                           \
           : segment->p_vaddr != section->vma)                          \
           : segment->p_vaddr != section->vma)                          \
       || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic")    \
       || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic")    \
           == 0))                                                        \
           == 0))                                                        \
   && !section->segment_mark)
   && !section->segment_mark)
 
 
/* If the output section of a section in the input segment is NULL,
/* If the output section of a section in the input segment is NULL,
   it is removed from the corresponding output segment.   */
   it is removed from the corresponding output segment.   */
#define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed)               \
#define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed)               \
  (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed)          \
  (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed)          \
   && section->output_section != NULL)
   && section->output_section != NULL)
 
 
  /* Returns TRUE iff seg1 starts after the end of seg2.  */
  /* Returns TRUE iff seg1 starts after the end of seg2.  */
#define SEGMENT_AFTER_SEGMENT(seg1, seg2, field)                        \
#define SEGMENT_AFTER_SEGMENT(seg1, seg2, field)                        \
  (seg1->field >= SEGMENT_END (seg2, seg2->field))
  (seg1->field >= SEGMENT_END (seg2, seg2->field))
 
 
  /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
  /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
     their VMA address ranges and their LMA address ranges overlap.
     their VMA address ranges and their LMA address ranges overlap.
     It is possible to have overlapping VMA ranges without overlapping LMA
     It is possible to have overlapping VMA ranges without overlapping LMA
     ranges.  RedBoot images for example can have both .data and .bss mapped
     ranges.  RedBoot images for example can have both .data and .bss mapped
     to the same VMA range, but with the .data section mapped to a different
     to the same VMA range, but with the .data section mapped to a different
     LMA.  */
     LMA.  */
#define SEGMENT_OVERLAPS(seg1, seg2)                                    \
#define SEGMENT_OVERLAPS(seg1, seg2)                                    \
  (   !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr)                     \
  (   !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr)                     \
        || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr))                 \
        || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr))                 \
   && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr)                     \
   && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr)                     \
        || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
        || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
 
 
  /* Initialise the segment mark field.  */
  /* Initialise the segment mark field.  */
  for (section = ibfd->sections; section != NULL; section = section->next)
  for (section = ibfd->sections; section != NULL; section = section->next)
    section->segment_mark = FALSE;
    section->segment_mark = FALSE;
 
 
  /* The Solaris linker creates program headers in which all the
  /* The Solaris linker creates program headers in which all the
     p_paddr fields are zero.  When we try to objcopy or strip such a
     p_paddr fields are zero.  When we try to objcopy or strip such a
     file, we get confused.  Check for this case, and if we find it
     file, we get confused.  Check for this case, and if we find it
     don't set the p_paddr_valid fields.  */
     don't set the p_paddr_valid fields.  */
  p_paddr_valid = FALSE;
  p_paddr_valid = FALSE;
  for (i = 0, segment = elf_tdata (ibfd)->phdr;
  for (i = 0, segment = elf_tdata (ibfd)->phdr;
       i < num_segments;
       i < num_segments;
       i++, segment++)
       i++, segment++)
    if (segment->p_paddr != 0)
    if (segment->p_paddr != 0)
      {
      {
        p_paddr_valid = TRUE;
        p_paddr_valid = TRUE;
        break;
        break;
      }
      }
 
 
  /* Scan through the segments specified in the program header
  /* Scan through the segments specified in the program header
     of the input BFD.  For this first scan we look for overlaps
     of the input BFD.  For this first scan we look for overlaps
     in the loadable segments.  These can be created by weird
     in the loadable segments.  These can be created by weird
     parameters to objcopy.  Also, fix some solaris weirdness.  */
     parameters to objcopy.  Also, fix some solaris weirdness.  */
  for (i = 0, segment = elf_tdata (ibfd)->phdr;
  for (i = 0, segment = elf_tdata (ibfd)->phdr;
       i < num_segments;
       i < num_segments;
       i++, segment++)
       i++, segment++)
    {
    {
      unsigned int j;
      unsigned int j;
      Elf_Internal_Phdr *segment2;
      Elf_Internal_Phdr *segment2;
 
 
      if (segment->p_type == PT_INTERP)
      if (segment->p_type == PT_INTERP)
        for (section = ibfd->sections; section; section = section->next)
        for (section = ibfd->sections; section; section = section->next)
          if (IS_SOLARIS_PT_INTERP (segment, section))
          if (IS_SOLARIS_PT_INTERP (segment, section))
            {
            {
              /* Mininal change so that the normal section to segment
              /* Mininal change so that the normal section to segment
                 assignment code will work.  */
                 assignment code will work.  */
              segment->p_vaddr = section->vma;
              segment->p_vaddr = section->vma;
              break;
              break;
            }
            }
 
 
      if (segment->p_type != PT_LOAD)
      if (segment->p_type != PT_LOAD)
        {
        {
          /* Remove PT_GNU_RELRO segment.  */
          /* Remove PT_GNU_RELRO segment.  */
          if (segment->p_type == PT_GNU_RELRO)
          if (segment->p_type == PT_GNU_RELRO)
            segment->p_type = PT_NULL;
            segment->p_type = PT_NULL;
          continue;
          continue;
        }
        }
 
 
      /* Determine if this segment overlaps any previous segments.  */
      /* Determine if this segment overlaps any previous segments.  */
      for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
      for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
        {
        {
          bfd_signed_vma extra_length;
          bfd_signed_vma extra_length;
 
 
          if (segment2->p_type != PT_LOAD
          if (segment2->p_type != PT_LOAD
              || !SEGMENT_OVERLAPS (segment, segment2))
              || !SEGMENT_OVERLAPS (segment, segment2))
            continue;
            continue;
 
 
          /* Merge the two segments together.  */
          /* Merge the two segments together.  */
          if (segment2->p_vaddr < segment->p_vaddr)
          if (segment2->p_vaddr < segment->p_vaddr)
            {
            {
              /* Extend SEGMENT2 to include SEGMENT and then delete
              /* Extend SEGMENT2 to include SEGMENT and then delete
                 SEGMENT.  */
                 SEGMENT.  */
              extra_length = (SEGMENT_END (segment, segment->p_vaddr)
              extra_length = (SEGMENT_END (segment, segment->p_vaddr)
                              - SEGMENT_END (segment2, segment2->p_vaddr));
                              - SEGMENT_END (segment2, segment2->p_vaddr));
 
 
              if (extra_length > 0)
              if (extra_length > 0)
                {
                {
                  segment2->p_memsz += extra_length;
                  segment2->p_memsz += extra_length;
                  segment2->p_filesz += extra_length;
                  segment2->p_filesz += extra_length;
                }
                }
 
 
              segment->p_type = PT_NULL;
              segment->p_type = PT_NULL;
 
 
              /* Since we have deleted P we must restart the outer loop.  */
              /* Since we have deleted P we must restart the outer loop.  */
              i = 0;
              i = 0;
              segment = elf_tdata (ibfd)->phdr;
              segment = elf_tdata (ibfd)->phdr;
              break;
              break;
            }
            }
          else
          else
            {
            {
              /* Extend SEGMENT to include SEGMENT2 and then delete
              /* Extend SEGMENT to include SEGMENT2 and then delete
                 SEGMENT2.  */
                 SEGMENT2.  */
              extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
              extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
                              - SEGMENT_END (segment, segment->p_vaddr));
                              - SEGMENT_END (segment, segment->p_vaddr));
 
 
              if (extra_length > 0)
              if (extra_length > 0)
                {
                {
                  segment->p_memsz += extra_length;
                  segment->p_memsz += extra_length;
                  segment->p_filesz += extra_length;
                  segment->p_filesz += extra_length;
                }
                }
 
 
              segment2->p_type = PT_NULL;
              segment2->p_type = PT_NULL;
            }
            }
        }
        }
    }
    }
 
 
  /* The second scan attempts to assign sections to segments.  */
  /* The second scan attempts to assign sections to segments.  */
  for (i = 0, segment = elf_tdata (ibfd)->phdr;
  for (i = 0, segment = elf_tdata (ibfd)->phdr;
       i < num_segments;
       i < num_segments;
       i++, segment++)
       i++, segment++)
    {
    {
      unsigned int section_count;
      unsigned int section_count;
      asection **sections;
      asection **sections;
      asection *output_section;
      asection *output_section;
      unsigned int isec;
      unsigned int isec;
      bfd_vma matching_lma;
      bfd_vma matching_lma;
      bfd_vma suggested_lma;
      bfd_vma suggested_lma;
      unsigned int j;
      unsigned int j;
      bfd_size_type amt;
      bfd_size_type amt;
      asection *first_section;
      asection *first_section;
      bfd_boolean first_matching_lma;
      bfd_boolean first_matching_lma;
      bfd_boolean first_suggested_lma;
      bfd_boolean first_suggested_lma;
 
 
      if (segment->p_type == PT_NULL)
      if (segment->p_type == PT_NULL)
        continue;
        continue;
 
 
      first_section = NULL;
      first_section = NULL;
      /* Compute how many sections might be placed into this segment.  */
      /* Compute how many sections might be placed into this segment.  */
      for (section = ibfd->sections, section_count = 0;
      for (section = ibfd->sections, section_count = 0;
           section != NULL;
           section != NULL;
           section = section->next)
           section = section->next)
        {
        {
          /* Find the first section in the input segment, which may be
          /* Find the first section in the input segment, which may be
             removed from the corresponding output segment.   */
             removed from the corresponding output segment.   */
          if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
          if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
            {
            {
              if (first_section == NULL)
              if (first_section == NULL)
                first_section = section;
                first_section = section;
              if (section->output_section != NULL)
              if (section->output_section != NULL)
                ++section_count;
                ++section_count;
            }
            }
        }
        }
 
 
      /* Allocate a segment map big enough to contain
      /* Allocate a segment map big enough to contain
         all of the sections we have selected.  */
         all of the sections we have selected.  */
      amt = sizeof (struct elf_segment_map);
      amt = sizeof (struct elf_segment_map);
      amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
      amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
      map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
      map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
      if (map == NULL)
      if (map == NULL)
        return FALSE;
        return FALSE;
 
 
      /* Initialise the fields of the segment map.  Default to
      /* Initialise the fields of the segment map.  Default to
         using the physical address of the segment in the input BFD.  */
         using the physical address of the segment in the input BFD.  */
      map->next = NULL;
      map->next = NULL;
      map->p_type = segment->p_type;
      map->p_type = segment->p_type;
      map->p_flags = segment->p_flags;
      map->p_flags = segment->p_flags;
      map->p_flags_valid = 1;
      map->p_flags_valid = 1;
 
 
      /* If the first section in the input segment is removed, there is
      /* If the first section in the input segment is removed, there is
         no need to preserve segment physical address in the corresponding
         no need to preserve segment physical address in the corresponding
         output segment.  */
         output segment.  */
      if (!first_section || first_section->output_section != NULL)
      if (!first_section || first_section->output_section != NULL)
        {
        {
          map->p_paddr = segment->p_paddr;
          map->p_paddr = segment->p_paddr;
          map->p_paddr_valid = p_paddr_valid;
          map->p_paddr_valid = p_paddr_valid;
        }
        }
 
 
      /* Determine if this segment contains the ELF file header
      /* Determine if this segment contains the ELF file header
         and if it contains the program headers themselves.  */
         and if it contains the program headers themselves.  */
      map->includes_filehdr = (segment->p_offset == 0
      map->includes_filehdr = (segment->p_offset == 0
                               && segment->p_filesz >= iehdr->e_ehsize);
                               && segment->p_filesz >= iehdr->e_ehsize);
      map->includes_phdrs = 0;
      map->includes_phdrs = 0;
 
 
      if (!phdr_included || segment->p_type != PT_LOAD)
      if (!phdr_included || segment->p_type != PT_LOAD)
        {
        {
          map->includes_phdrs =
          map->includes_phdrs =
            (segment->p_offset <= (bfd_vma) iehdr->e_phoff
            (segment->p_offset <= (bfd_vma) iehdr->e_phoff
             && (segment->p_offset + segment->p_filesz
             && (segment->p_offset + segment->p_filesz
                 >= ((bfd_vma) iehdr->e_phoff
                 >= ((bfd_vma) iehdr->e_phoff
                     + iehdr->e_phnum * iehdr->e_phentsize)));
                     + iehdr->e_phnum * iehdr->e_phentsize)));
 
 
          if (segment->p_type == PT_LOAD && map->includes_phdrs)
          if (segment->p_type == PT_LOAD && map->includes_phdrs)
            phdr_included = TRUE;
            phdr_included = TRUE;
        }
        }
 
 
      if (section_count == 0)
      if (section_count == 0)
        {
        {
          /* Special segments, such as the PT_PHDR segment, may contain
          /* Special segments, such as the PT_PHDR segment, may contain
             no sections, but ordinary, loadable segments should contain
             no sections, but ordinary, loadable segments should contain
             something.  They are allowed by the ELF spec however, so only
             something.  They are allowed by the ELF spec however, so only
             a warning is produced.  */
             a warning is produced.  */
          if (segment->p_type == PT_LOAD)
          if (segment->p_type == PT_LOAD)
            (*_bfd_error_handler) (_("%B: warning: Empty loadable segment"
            (*_bfd_error_handler) (_("%B: warning: Empty loadable segment"
                                     " detected, is this intentional ?\n"),
                                     " detected, is this intentional ?\n"),
                                   ibfd);
                                   ibfd);
 
 
          map->count = 0;
          map->count = 0;
          *pointer_to_map = map;
          *pointer_to_map = map;
          pointer_to_map = &map->next;
          pointer_to_map = &map->next;
 
 
          continue;
          continue;
        }
        }
 
 
      /* Now scan the sections in the input BFD again and attempt
      /* Now scan the sections in the input BFD again and attempt
         to add their corresponding output sections to the segment map.
         to add their corresponding output sections to the segment map.
         The problem here is how to handle an output section which has
         The problem here is how to handle an output section which has
         been moved (ie had its LMA changed).  There are four possibilities:
         been moved (ie had its LMA changed).  There are four possibilities:
 
 
         1. None of the sections have been moved.
         1. None of the sections have been moved.
            In this case we can continue to use the segment LMA from the
            In this case we can continue to use the segment LMA from the
            input BFD.
            input BFD.
 
 
         2. All of the sections have been moved by the same amount.
         2. All of the sections have been moved by the same amount.
            In this case we can change the segment's LMA to match the LMA
            In this case we can change the segment's LMA to match the LMA
            of the first section.
            of the first section.
 
 
         3. Some of the sections have been moved, others have not.
         3. Some of the sections have been moved, others have not.
            In this case those sections which have not been moved can be
            In this case those sections which have not been moved can be
            placed in the current segment which will have to have its size,
            placed in the current segment which will have to have its size,
            and possibly its LMA changed, and a new segment or segments will
            and possibly its LMA changed, and a new segment or segments will
            have to be created to contain the other sections.
            have to be created to contain the other sections.
 
 
         4. The sections have been moved, but not by the same amount.
         4. The sections have been moved, but not by the same amount.
            In this case we can change the segment's LMA to match the LMA
            In this case we can change the segment's LMA to match the LMA
            of the first section and we will have to create a new segment
            of the first section and we will have to create a new segment
            or segments to contain the other sections.
            or segments to contain the other sections.
 
 
         In order to save time, we allocate an array to hold the section
         In order to save time, we allocate an array to hold the section
         pointers that we are interested in.  As these sections get assigned
         pointers that we are interested in.  As these sections get assigned
         to a segment, they are removed from this array.  */
         to a segment, they are removed from this array.  */
 
 
      sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
      sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
      if (sections == NULL)
      if (sections == NULL)
        return FALSE;
        return FALSE;
 
 
      /* Step One: Scan for segment vs section LMA conflicts.
      /* Step One: Scan for segment vs section LMA conflicts.
         Also add the sections to the section array allocated above.
         Also add the sections to the section array allocated above.
         Also add the sections to the current segment.  In the common
         Also add the sections to the current segment.  In the common
         case, where the sections have not been moved, this means that
         case, where the sections have not been moved, this means that
         we have completely filled the segment, and there is nothing
         we have completely filled the segment, and there is nothing
         more to do.  */
         more to do.  */
      isec = 0;
      isec = 0;
      matching_lma = 0;
      matching_lma = 0;
      suggested_lma = 0;
      suggested_lma = 0;
      first_matching_lma = TRUE;
      first_matching_lma = TRUE;
      first_suggested_lma = TRUE;
      first_suggested_lma = TRUE;
 
 
      for (section = ibfd->sections;
      for (section = ibfd->sections;
           section != NULL;
           section != NULL;
           section = section->next)
           section = section->next)
        if (section == first_section)
        if (section == first_section)
          break;
          break;
 
 
      for (j = 0; section != NULL; section = section->next)
      for (j = 0; section != NULL; section = section->next)
        {
        {
          if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
          if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
            {
            {
              output_section = section->output_section;
              output_section = section->output_section;
 
 
              sections[j++] = section;
              sections[j++] = section;
 
 
              /* The Solaris native linker always sets p_paddr to 0.
              /* The Solaris native linker always sets p_paddr to 0.
                 We try to catch that case here, and set it to the
                 We try to catch that case here, and set it to the
                 correct value.  Note - some backends require that
                 correct value.  Note - some backends require that
                 p_paddr be left as zero.  */
                 p_paddr be left as zero.  */
              if (!p_paddr_valid
              if (!p_paddr_valid
                  && segment->p_vaddr != 0
                  && segment->p_vaddr != 0
                  && !bed->want_p_paddr_set_to_zero
                  && !bed->want_p_paddr_set_to_zero
                  && isec == 0
                  && isec == 0
                  && output_section->lma != 0
                  && output_section->lma != 0
                  && output_section->vma == (segment->p_vaddr
                  && output_section->vma == (segment->p_vaddr
                                             + (map->includes_filehdr
                                             + (map->includes_filehdr
                                                ? iehdr->e_ehsize
                                                ? iehdr->e_ehsize
                                                : 0)
                                                : 0)
                                             + (map->includes_phdrs
                                             + (map->includes_phdrs
                                                ? (iehdr->e_phnum
                                                ? (iehdr->e_phnum
                                                   * iehdr->e_phentsize)
                                                   * iehdr->e_phentsize)
                                                : 0)))
                                                : 0)))
                map->p_paddr = segment->p_vaddr;
                map->p_paddr = segment->p_vaddr;
 
 
              /* Match up the physical address of the segment with the
              /* Match up the physical address of the segment with the
                 LMA address of the output section.  */
                 LMA address of the output section.  */
              if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
              if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
                  || IS_COREFILE_NOTE (segment, section)
                  || IS_COREFILE_NOTE (segment, section)
                  || (bed->want_p_paddr_set_to_zero
                  || (bed->want_p_paddr_set_to_zero
                      && IS_CONTAINED_BY_VMA (output_section, segment)))
                      && IS_CONTAINED_BY_VMA (output_section, segment)))
                {
                {
                  if (first_matching_lma || output_section->lma < matching_lma)
                  if (first_matching_lma || output_section->lma < matching_lma)
                    {
                    {
                      matching_lma = output_section->lma;
                      matching_lma = output_section->lma;
                      first_matching_lma = FALSE;
                      first_matching_lma = FALSE;
                    }
                    }
 
 
                  /* We assume that if the section fits within the segment
                  /* We assume that if the section fits within the segment
                     then it does not overlap any other section within that
                     then it does not overlap any other section within that
                     segment.  */
                     segment.  */
                  map->sections[isec++] = output_section;
                  map->sections[isec++] = output_section;
                }
                }
              else if (first_suggested_lma)
              else if (first_suggested_lma)
                {
                {
                  suggested_lma = output_section->lma;
                  suggested_lma = output_section->lma;
                  first_suggested_lma = FALSE;
                  first_suggested_lma = FALSE;
                }
                }
 
 
              if (j == section_count)
              if (j == section_count)
                break;
                break;
            }
            }
        }
        }
 
 
      BFD_ASSERT (j == section_count);
      BFD_ASSERT (j == section_count);
 
 
      /* Step Two: Adjust the physical address of the current segment,
      /* Step Two: Adjust the physical address of the current segment,
         if necessary.  */
         if necessary.  */
      if (isec == section_count)
      if (isec == section_count)
        {
        {
          /* All of the sections fitted within the segment as currently
          /* All of the sections fitted within the segment as currently
             specified.  This is the default case.  Add the segment to
             specified.  This is the default case.  Add the segment to
             the list of built segments and carry on to process the next
             the list of built segments and carry on to process the next
             program header in the input BFD.  */
             program header in the input BFD.  */
          map->count = section_count;
          map->count = section_count;
          *pointer_to_map = map;
          *pointer_to_map = map;
          pointer_to_map = &map->next;
          pointer_to_map = &map->next;
 
 
          if (p_paddr_valid
          if (p_paddr_valid
              && !bed->want_p_paddr_set_to_zero
              && !bed->want_p_paddr_set_to_zero
              && matching_lma != map->p_paddr
              && matching_lma != map->p_paddr
              && !map->includes_filehdr
              && !map->includes_filehdr
              && !map->includes_phdrs)
              && !map->includes_phdrs)
            /* There is some padding before the first section in the
            /* There is some padding before the first section in the
               segment.  So, we must account for that in the output
               segment.  So, we must account for that in the output
               segment's vma.  */
               segment's vma.  */
            map->p_vaddr_offset = matching_lma - map->p_paddr;
            map->p_vaddr_offset = matching_lma - map->p_paddr;
 
 
          free (sections);
          free (sections);
          continue;
          continue;
        }
        }
      else
      else
        {
        {
          if (!first_matching_lma)
          if (!first_matching_lma)
            {
            {
              /* At least one section fits inside the current segment.
              /* At least one section fits inside the current segment.
                 Keep it, but modify its physical address to match the
                 Keep it, but modify its physical address to match the
                 LMA of the first section that fitted.  */
                 LMA of the first section that fitted.  */
              map->p_paddr = matching_lma;
              map->p_paddr = matching_lma;
            }
            }
          else
          else
            {
            {
              /* None of the sections fitted inside the current segment.
              /* None of the sections fitted inside the current segment.
                 Change the current segment's physical address to match
                 Change the current segment's physical address to match
                 the LMA of the first section.  */
                 the LMA of the first section.  */
              map->p_paddr = suggested_lma;
              map->p_paddr = suggested_lma;
            }
            }
 
 
          /* Offset the segment physical address from the lma
          /* Offset the segment physical address from the lma
             to allow for space taken up by elf headers.  */
             to allow for space taken up by elf headers.  */
          if (map->includes_filehdr)
          if (map->includes_filehdr)
            {
            {
              if (map->p_paddr >= iehdr->e_ehsize)
              if (map->p_paddr >= iehdr->e_ehsize)
                map->p_paddr -= iehdr->e_ehsize;
                map->p_paddr -= iehdr->e_ehsize;
              else
              else
                {
                {
                  map->includes_filehdr = FALSE;
                  map->includes_filehdr = FALSE;
                  map->includes_phdrs = FALSE;
                  map->includes_phdrs = FALSE;
                }
                }
            }
            }
 
 
          if (map->includes_phdrs)
          if (map->includes_phdrs)
            {
            {
              if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
              if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
                {
                {
                  map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
                  map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
 
 
                  /* iehdr->e_phnum is just an estimate of the number
                  /* iehdr->e_phnum is just an estimate of the number
                     of program headers that we will need.  Make a note
                     of program headers that we will need.  Make a note
                     here of the number we used and the segment we chose
                     here of the number we used and the segment we chose
                     to hold these headers, so that we can adjust the
                     to hold these headers, so that we can adjust the
                     offset when we know the correct value.  */
                     offset when we know the correct value.  */
                  phdr_adjust_num = iehdr->e_phnum;
                  phdr_adjust_num = iehdr->e_phnum;
                  phdr_adjust_seg = map;
                  phdr_adjust_seg = map;
                }
                }
              else
              else
                map->includes_phdrs = FALSE;
                map->includes_phdrs = FALSE;
            }
            }
        }
        }
 
 
      /* Step Three: Loop over the sections again, this time assigning
      /* Step Three: Loop over the sections again, this time assigning
         those that fit to the current segment and removing them from the
         those that fit to the current segment and removing them from the
         sections array; but making sure not to leave large gaps.  Once all
         sections array; but making sure not to leave large gaps.  Once all
         possible sections have been assigned to the current segment it is
         possible sections have been assigned to the current segment it is
         added to the list of built segments and if sections still remain
         added to the list of built segments and if sections still remain
         to be assigned, a new segment is constructed before repeating
         to be assigned, a new segment is constructed before repeating
         the loop.  */
         the loop.  */
      isec = 0;
      isec = 0;
      do
      do
        {
        {
          map->count = 0;
          map->count = 0;
          suggested_lma = 0;
          suggested_lma = 0;
          first_suggested_lma = TRUE;
          first_suggested_lma = TRUE;
 
 
          /* Fill the current segment with sections that fit.  */
          /* Fill the current segment with sections that fit.  */
          for (j = 0; j < section_count; j++)
          for (j = 0; j < section_count; j++)
            {
            {
              section = sections[j];
              section = sections[j];
 
 
              if (section == NULL)
              if (section == NULL)
                continue;
                continue;
 
 
              output_section = section->output_section;
              output_section = section->output_section;
 
 
              BFD_ASSERT (output_section != NULL);
              BFD_ASSERT (output_section != NULL);
 
 
              if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
              if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
                  || IS_COREFILE_NOTE (segment, section))
                  || IS_COREFILE_NOTE (segment, section))
                {
                {
                  if (map->count == 0)
                  if (map->count == 0)
                    {
                    {
                      /* If the first section in a segment does not start at
                      /* If the first section in a segment does not start at
                         the beginning of the segment, then something is
                         the beginning of the segment, then something is
                         wrong.  */
                         wrong.  */
                      if (output_section->lma
                      if (output_section->lma
                          != (map->p_paddr
                          != (map->p_paddr
                              + (map->includes_filehdr ? iehdr->e_ehsize : 0)
                              + (map->includes_filehdr ? iehdr->e_ehsize : 0)
                              + (map->includes_phdrs
                              + (map->includes_phdrs
                                 ? iehdr->e_phnum * iehdr->e_phentsize
                                 ? iehdr->e_phnum * iehdr->e_phentsize
                                 : 0)))
                                 : 0)))
                        abort ();
                        abort ();
                    }
                    }
                  else
                  else
                    {
                    {
                      asection *prev_sec;
                      asection *prev_sec;
 
 
                      prev_sec = map->sections[map->count - 1];
                      prev_sec = map->sections[map->count - 1];
 
 
                      /* If the gap between the end of the previous section
                      /* If the gap between the end of the previous section
                         and the start of this section is more than
                         and the start of this section is more than
                         maxpagesize then we need to start a new segment.  */
                         maxpagesize then we need to start a new segment.  */
                      if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
                      if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
                                      maxpagesize)
                                      maxpagesize)
                           < BFD_ALIGN (output_section->lma, maxpagesize))
                           < BFD_ALIGN (output_section->lma, maxpagesize))
                          || (prev_sec->lma + prev_sec->size
                          || (prev_sec->lma + prev_sec->size
                              > output_section->lma))
                              > output_section->lma))
                        {
                        {
                          if (first_suggested_lma)
                          if (first_suggested_lma)
                            {
                            {
                              suggested_lma = output_section->lma;
                              suggested_lma = output_section->lma;
                              first_suggested_lma = FALSE;
                              first_suggested_lma = FALSE;
                            }
                            }
 
 
                          continue;
                          continue;
                        }
                        }
                    }
                    }
 
 
                  map->sections[map->count++] = output_section;
                  map->sections[map->count++] = output_section;
                  ++isec;
                  ++isec;
                  sections[j] = NULL;
                  sections[j] = NULL;
                  section->segment_mark = TRUE;
                  section->segment_mark = TRUE;
                }
                }
              else if (first_suggested_lma)
              else if (first_suggested_lma)
                {
                {
                  suggested_lma = output_section->lma;
                  suggested_lma = output_section->lma;
                  first_suggested_lma = FALSE;
                  first_suggested_lma = FALSE;
                }
                }
            }
            }
 
 
          BFD_ASSERT (map->count > 0);
          BFD_ASSERT (map->count > 0);
 
 
          /* Add the current segment to the list of built segments.  */
          /* Add the current segment to the list of built segments.  */
          *pointer_to_map = map;
          *pointer_to_map = map;
          pointer_to_map = &map->next;
          pointer_to_map = &map->next;
 
 
          if (isec < section_count)
          if (isec < section_count)
            {
            {
              /* We still have not allocated all of the sections to
              /* We still have not allocated all of the sections to
                 segments.  Create a new segment here, initialise it
                 segments.  Create a new segment here, initialise it
                 and carry on looping.  */
                 and carry on looping.  */
              amt = sizeof (struct elf_segment_map);
              amt = sizeof (struct elf_segment_map);
              amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
              amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
              map = (struct elf_segment_map *) bfd_alloc (obfd, amt);
              map = (struct elf_segment_map *) bfd_alloc (obfd, amt);
              if (map == NULL)
              if (map == NULL)
                {
                {
                  free (sections);
                  free (sections);
                  return FALSE;
                  return FALSE;
                }
                }
 
 
              /* Initialise the fields of the segment map.  Set the physical
              /* Initialise the fields of the segment map.  Set the physical
                 physical address to the LMA of the first section that has
                 physical address to the LMA of the first section that has
                 not yet been assigned.  */
                 not yet been assigned.  */
              map->next = NULL;
              map->next = NULL;
              map->p_type = segment->p_type;
              map->p_type = segment->p_type;
              map->p_flags = segment->p_flags;
              map->p_flags = segment->p_flags;
              map->p_flags_valid = 1;
              map->p_flags_valid = 1;
              map->p_paddr = suggested_lma;
              map->p_paddr = suggested_lma;
              map->p_paddr_valid = p_paddr_valid;
              map->p_paddr_valid = p_paddr_valid;
              map->includes_filehdr = 0;
              map->includes_filehdr = 0;
              map->includes_phdrs = 0;
              map->includes_phdrs = 0;
            }
            }
        }
        }
      while (isec < section_count);
      while (isec < section_count);
 
 
      free (sections);
      free (sections);
    }
    }
 
 
  elf_tdata (obfd)->segment_map = map_first;
  elf_tdata (obfd)->segment_map = map_first;
 
 
  /* If we had to estimate the number of program headers that were
  /* If we had to estimate the number of program headers that were
     going to be needed, then check our estimate now and adjust
     going to be needed, then check our estimate now and adjust
     the offset if necessary.  */
     the offset if necessary.  */
  if (phdr_adjust_seg != NULL)
  if (phdr_adjust_seg != NULL)
    {
    {
      unsigned int count;
      unsigned int count;
 
 
      for (count = 0, map = map_first; map != NULL; map = map->next)
      for (count = 0, map = map_first; map != NULL; map = map->next)
        count++;
        count++;
 
 
      if (count > phdr_adjust_num)
      if (count > phdr_adjust_num)
        phdr_adjust_seg->p_paddr
        phdr_adjust_seg->p_paddr
          -= (count - phdr_adjust_num) * iehdr->e_phentsize;
          -= (count - phdr_adjust_num) * iehdr->e_phentsize;
    }
    }
 
 
#undef SEGMENT_END
#undef SEGMENT_END
#undef SECTION_SIZE
#undef SECTION_SIZE
#undef IS_CONTAINED_BY_VMA
#undef IS_CONTAINED_BY_VMA
#undef IS_CONTAINED_BY_LMA
#undef IS_CONTAINED_BY_LMA
#undef IS_NOTE
#undef IS_NOTE
#undef IS_COREFILE_NOTE
#undef IS_COREFILE_NOTE
#undef IS_SOLARIS_PT_INTERP
#undef IS_SOLARIS_PT_INTERP
#undef IS_SECTION_IN_INPUT_SEGMENT
#undef IS_SECTION_IN_INPUT_SEGMENT
#undef INCLUDE_SECTION_IN_SEGMENT
#undef INCLUDE_SECTION_IN_SEGMENT
#undef SEGMENT_AFTER_SEGMENT
#undef SEGMENT_AFTER_SEGMENT
#undef SEGMENT_OVERLAPS
#undef SEGMENT_OVERLAPS
  return TRUE;
  return TRUE;
}
}
 
 
/* Copy ELF program header information.  */
/* Copy ELF program header information.  */
 
 
static bfd_boolean
static bfd_boolean
copy_elf_program_header (bfd *ibfd, bfd *obfd)
copy_elf_program_header (bfd *ibfd, bfd *obfd)
{
{
  Elf_Internal_Ehdr *iehdr;
  Elf_Internal_Ehdr *iehdr;
  struct elf_segment_map *map;
  struct elf_segment_map *map;
  struct elf_segment_map *map_first;
  struct elf_segment_map *map_first;
  struct elf_segment_map **pointer_to_map;
  struct elf_segment_map **pointer_to_map;
  Elf_Internal_Phdr *segment;
  Elf_Internal_Phdr *segment;
  unsigned int i;
  unsigned int i;
  unsigned int num_segments;
  unsigned int num_segments;
  bfd_boolean phdr_included = FALSE;
  bfd_boolean phdr_included = FALSE;
  bfd_boolean p_paddr_valid;
  bfd_boolean p_paddr_valid;
 
 
  iehdr = elf_elfheader (ibfd);
  iehdr = elf_elfheader (ibfd);
 
 
  map_first = NULL;
  map_first = NULL;
  pointer_to_map = &map_first;
  pointer_to_map = &map_first;
 
 
  /* If all the segment p_paddr fields are zero, don't set
  /* If all the segment p_paddr fields are zero, don't set
     map->p_paddr_valid.  */
     map->p_paddr_valid.  */
  p_paddr_valid = FALSE;
  p_paddr_valid = FALSE;
  num_segments = elf_elfheader (ibfd)->e_phnum;
  num_segments = elf_elfheader (ibfd)->e_phnum;
  for (i = 0, segment = elf_tdata (ibfd)->phdr;
  for (i = 0, segment = elf_tdata (ibfd)->phdr;
       i < num_segments;
       i < num_segments;
       i++, segment++)
       i++, segment++)
    if (segment->p_paddr != 0)
    if (segment->p_paddr != 0)
      {
      {
        p_paddr_valid = TRUE;
        p_paddr_valid = TRUE;
        break;
        break;
      }
      }
 
 
  for (i = 0, segment = elf_tdata (ibfd)->phdr;
  for (i = 0, segment = elf_tdata (ibfd)->phdr;
       i < num_segments;
       i < num_segments;
       i++, segment++)
       i++, segment++)
    {
    {
      asection *section;
      asection *section;
      unsigned int section_count;
      unsigned int section_count;
      bfd_size_type amt;
      bfd_size_type amt;
      Elf_Internal_Shdr *this_hdr;
      Elf_Internal_Shdr *this_hdr;
      asection *first_section = NULL;
      asection *first_section = NULL;
      asection *lowest_section = NULL;
      asection *lowest_section = NULL;
 
 
      /* Compute how many sections are in this segment.  */
      /* Compute how many sections are in this segment.  */
      for (section = ibfd->sections, section_count = 0;
      for (section = ibfd->sections, section_count = 0;
           section != NULL;
           section != NULL;
           section = section->next)
           section = section->next)
        {
        {
          this_hdr = &(elf_section_data(section)->this_hdr);
          this_hdr = &(elf_section_data(section)->this_hdr);
          if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
          if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
            {
            {
              if (!first_section)
              if (!first_section)
                first_section = lowest_section = section;
                first_section = lowest_section = section;
              if (section->lma < lowest_section->lma)
              if (section->lma < lowest_section->lma)
                lowest_section = section;
                lowest_section = section;
              section_count++;
              section_count++;
            }
            }
        }
        }
 
 
      /* Allocate a segment map big enough to contain
      /* Allocate a segment map big enough to contain
         all of the sections we have selected.  */
         all of the sections we have selected.  */
      amt = sizeof (struct elf_segment_map);
      amt = sizeof (struct elf_segment_map);
      if (section_count != 0)
      if (section_count != 0)
        amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
        amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
      map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
      map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
      if (map == NULL)
      if (map == NULL)
        return FALSE;
        return FALSE;
 
 
      /* Initialize the fields of the output segment map with the
      /* Initialize the fields of the output segment map with the
         input segment.  */
         input segment.  */
      map->next = NULL;
      map->next = NULL;
      map->p_type = segment->p_type;
      map->p_type = segment->p_type;
      map->p_flags = segment->p_flags;
      map->p_flags = segment->p_flags;
      map->p_flags_valid = 1;
      map->p_flags_valid = 1;
      map->p_paddr = segment->p_paddr;
      map->p_paddr = segment->p_paddr;
      map->p_paddr_valid = p_paddr_valid;
      map->p_paddr_valid = p_paddr_valid;
      map->p_align = segment->p_align;
      map->p_align = segment->p_align;
      map->p_align_valid = 1;
      map->p_align_valid = 1;
      map->p_vaddr_offset = 0;
      map->p_vaddr_offset = 0;
 
 
      if (map->p_type == PT_GNU_RELRO)
      if (map->p_type == PT_GNU_RELRO)
        {
        {
          /* The PT_GNU_RELRO segment may contain the first a few
          /* The PT_GNU_RELRO segment may contain the first a few
             bytes in the .got.plt section even if the whole .got.plt
             bytes in the .got.plt section even if the whole .got.plt
             section isn't in the PT_GNU_RELRO segment.  We won't
             section isn't in the PT_GNU_RELRO segment.  We won't
             change the size of the PT_GNU_RELRO segment.  */
             change the size of the PT_GNU_RELRO segment.  */
          map->p_size = segment->p_memsz;
          map->p_size = segment->p_memsz;
          map->p_size_valid = 1;
          map->p_size_valid = 1;
        }
        }
 
 
      /* Determine if this segment contains the ELF file header
      /* Determine if this segment contains the ELF file header
         and if it contains the program headers themselves.  */
         and if it contains the program headers themselves.  */
      map->includes_filehdr = (segment->p_offset == 0
      map->includes_filehdr = (segment->p_offset == 0
                               && segment->p_filesz >= iehdr->e_ehsize);
                               && segment->p_filesz >= iehdr->e_ehsize);
 
 
      map->includes_phdrs = 0;
      map->includes_phdrs = 0;
      if (! phdr_included || segment->p_type != PT_LOAD)
      if (! phdr_included || segment->p_type != PT_LOAD)
        {
        {
          map->includes_phdrs =
          map->includes_phdrs =
            (segment->p_offset <= (bfd_vma) iehdr->e_phoff
            (segment->p_offset <= (bfd_vma) iehdr->e_phoff
             && (segment->p_offset + segment->p_filesz
             && (segment->p_offset + segment->p_filesz
                 >= ((bfd_vma) iehdr->e_phoff
                 >= ((bfd_vma) iehdr->e_phoff
                     + iehdr->e_phnum * iehdr->e_phentsize)));
                     + iehdr->e_phnum * iehdr->e_phentsize)));
 
 
          if (segment->p_type == PT_LOAD && map->includes_phdrs)
          if (segment->p_type == PT_LOAD && map->includes_phdrs)
            phdr_included = TRUE;
            phdr_included = TRUE;
        }
        }
 
 
      if (map->includes_filehdr && first_section)
      if (map->includes_filehdr && first_section)
        /* We need to keep the space used by the headers fixed.  */
        /* We need to keep the space used by the headers fixed.  */
        map->header_size = first_section->vma - segment->p_vaddr;
        map->header_size = first_section->vma - segment->p_vaddr;
 
 
      if (!map->includes_phdrs
      if (!map->includes_phdrs
          && !map->includes_filehdr
          && !map->includes_filehdr
          && map->p_paddr_valid)
          && map->p_paddr_valid)
        /* There is some other padding before the first section.  */
        /* There is some other padding before the first section.  */
        map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
        map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
                               - segment->p_paddr);
                               - segment->p_paddr);
 
 
      if (section_count != 0)
      if (section_count != 0)
        {
        {
          unsigned int isec = 0;
          unsigned int isec = 0;
 
 
          for (section = first_section;
          for (section = first_section;
               section != NULL;
               section != NULL;
               section = section->next)
               section = section->next)
            {
            {
              this_hdr = &(elf_section_data(section)->this_hdr);
              this_hdr = &(elf_section_data(section)->this_hdr);
              if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
              if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
                {
                {
                  map->sections[isec++] = section->output_section;
                  map->sections[isec++] = section->output_section;
                  if (isec == section_count)
                  if (isec == section_count)
                    break;
                    break;
                }
                }
            }
            }
        }
        }
 
 
      map->count = section_count;
      map->count = section_count;
      *pointer_to_map = map;
      *pointer_to_map = map;
      pointer_to_map = &map->next;
      pointer_to_map = &map->next;
    }
    }
 
 
  elf_tdata (obfd)->segment_map = map_first;
  elf_tdata (obfd)->segment_map = map_first;
  return TRUE;
  return TRUE;
}
}
 
 
/* Copy private BFD data.  This copies or rewrites ELF program header
/* Copy private BFD data.  This copies or rewrites ELF program header
   information.  */
   information.  */
 
 
static bfd_boolean
static bfd_boolean
copy_private_bfd_data (bfd *ibfd, bfd *obfd)
copy_private_bfd_data (bfd *ibfd, bfd *obfd)
{
{
  if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
  if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
      || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
      || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
    return TRUE;
    return TRUE;
 
 
  if (elf_tdata (ibfd)->phdr == NULL)
  if (elf_tdata (ibfd)->phdr == NULL)
    return TRUE;
    return TRUE;
 
 
  if (ibfd->xvec == obfd->xvec)
  if (ibfd->xvec == obfd->xvec)
    {
    {
      /* Check to see if any sections in the input BFD
      /* Check to see if any sections in the input BFD
         covered by ELF program header have changed.  */
         covered by ELF program header have changed.  */
      Elf_Internal_Phdr *segment;
      Elf_Internal_Phdr *segment;
      asection *section, *osec;
      asection *section, *osec;
      unsigned int i, num_segments;
      unsigned int i, num_segments;
      Elf_Internal_Shdr *this_hdr;
      Elf_Internal_Shdr *this_hdr;
      const struct elf_backend_data *bed;
      const struct elf_backend_data *bed;
 
 
      bed = get_elf_backend_data (ibfd);
      bed = get_elf_backend_data (ibfd);
 
 
      /* Regenerate the segment map if p_paddr is set to 0.  */
      /* Regenerate the segment map if p_paddr is set to 0.  */
      if (bed->want_p_paddr_set_to_zero)
      if (bed->want_p_paddr_set_to_zero)
        goto rewrite;
        goto rewrite;
 
 
      /* Initialize the segment mark field.  */
      /* Initialize the segment mark field.  */
      for (section = obfd->sections; section != NULL;
      for (section = obfd->sections; section != NULL;
           section = section->next)
           section = section->next)
        section->segment_mark = FALSE;
        section->segment_mark = FALSE;
 
 
      num_segments = elf_elfheader (ibfd)->e_phnum;
      num_segments = elf_elfheader (ibfd)->e_phnum;
      for (i = 0, segment = elf_tdata (ibfd)->phdr;
      for (i = 0, segment = elf_tdata (ibfd)->phdr;
           i < num_segments;
           i < num_segments;
           i++, segment++)
           i++, segment++)
        {
        {
          /* PR binutils/3535.  The Solaris linker always sets the p_paddr
          /* PR binutils/3535.  The Solaris linker always sets the p_paddr
             and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
             and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
             which severly confuses things, so always regenerate the segment
             which severly confuses things, so always regenerate the segment
             map in this case.  */
             map in this case.  */
          if (segment->p_paddr == 0
          if (segment->p_paddr == 0
              && segment->p_memsz == 0
              && segment->p_memsz == 0
              && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
              && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
            goto rewrite;
            goto rewrite;
 
 
          for (section = ibfd->sections;
          for (section = ibfd->sections;
               section != NULL; section = section->next)
               section != NULL; section = section->next)
            {
            {
              /* We mark the output section so that we know it comes
              /* We mark the output section so that we know it comes
                 from the input BFD.  */
                 from the input BFD.  */
              osec = section->output_section;
              osec = section->output_section;
              if (osec)
              if (osec)
                osec->segment_mark = TRUE;
                osec->segment_mark = TRUE;
 
 
              /* Check if this section is covered by the segment.  */
              /* Check if this section is covered by the segment.  */
              this_hdr = &(elf_section_data(section)->this_hdr);
              this_hdr = &(elf_section_data(section)->this_hdr);
              if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
              if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
                {
                {
                  /* FIXME: Check if its output section is changed or
                  /* FIXME: Check if its output section is changed or
                     removed.  What else do we need to check?  */
                     removed.  What else do we need to check?  */
                  if (osec == NULL
                  if (osec == NULL
                      || section->flags != osec->flags
                      || section->flags != osec->flags
                      || section->lma != osec->lma
                      || section->lma != osec->lma
                      || section->vma != osec->vma
                      || section->vma != osec->vma
                      || section->size != osec->size
                      || section->size != osec->size
                      || section->rawsize != osec->rawsize
                      || section->rawsize != osec->rawsize
                      || section->alignment_power != osec->alignment_power)
                      || section->alignment_power != osec->alignment_power)
                    goto rewrite;
                    goto rewrite;
                }
                }
            }
            }
        }
        }
 
 
      /* Check to see if any output section do not come from the
      /* Check to see if any output section do not come from the
         input BFD.  */
         input BFD.  */
      for (section = obfd->sections; section != NULL;
      for (section = obfd->sections; section != NULL;
           section = section->next)
           section = section->next)
        {
        {
          if (section->segment_mark == FALSE)
          if (section->segment_mark == FALSE)
            goto rewrite;
            goto rewrite;
          else
          else
            section->segment_mark = FALSE;
            section->segment_mark = FALSE;
        }
        }
 
 
      return copy_elf_program_header (ibfd, obfd);
      return copy_elf_program_header (ibfd, obfd);
    }
    }
 
 
rewrite:
rewrite:
  return rewrite_elf_program_header (ibfd, obfd);
  return rewrite_elf_program_header (ibfd, obfd);
}
}
 
 
/* Initialize private output section information from input section.  */
/* Initialize private output section information from input section.  */
 
 
bfd_boolean
bfd_boolean
_bfd_elf_init_private_section_data (bfd *ibfd,
_bfd_elf_init_private_section_data (bfd *ibfd,
                                    asection *isec,
                                    asection *isec,
                                    bfd *obfd,
                                    bfd *obfd,
                                    asection *osec,
                                    asection *osec,
                                    struct bfd_link_info *link_info)
                                    struct bfd_link_info *link_info)
 
 
{
{
  Elf_Internal_Shdr *ihdr, *ohdr;
  Elf_Internal_Shdr *ihdr, *ohdr;
  bfd_boolean need_group = link_info == NULL || link_info->relocatable;
  bfd_boolean need_group = link_info == NULL || link_info->relocatable;
 
 
  if (ibfd->xvec->flavour != bfd_target_elf_flavour
  if (ibfd->xvec->flavour != bfd_target_elf_flavour
      || obfd->xvec->flavour != bfd_target_elf_flavour)
      || obfd->xvec->flavour != bfd_target_elf_flavour)
    return TRUE;
    return TRUE;
 
 
  /* Don't copy the output ELF section type from input if the
  /* Don't copy the output ELF section type from input if the
     output BFD section flags have been set to something different.
     output BFD section flags have been set to something different.
     elf_fake_sections will set ELF section type based on BFD
     elf_fake_sections will set ELF section type based on BFD
     section flags.  */
     section flags.  */
  if (elf_section_type (osec) == SHT_NULL
  if (elf_section_type (osec) == SHT_NULL
      && (osec->flags == isec->flags || !osec->flags))
      && (osec->flags == isec->flags || !osec->flags))
    elf_section_type (osec) = elf_section_type (isec);
    elf_section_type (osec) = elf_section_type (isec);
 
 
  /* FIXME: Is this correct for all OS/PROC specific flags?  */
  /* FIXME: Is this correct for all OS/PROC specific flags?  */
  elf_section_flags (osec) |= (elf_section_flags (isec)
  elf_section_flags (osec) |= (elf_section_flags (isec)
                               & (SHF_MASKOS | SHF_MASKPROC));
                               & (SHF_MASKOS | SHF_MASKPROC));
 
 
  /* Set things up for objcopy and relocatable link.  The output
  /* Set things up for objcopy and relocatable link.  The output
     SHT_GROUP section will have its elf_next_in_group pointing back
     SHT_GROUP section will have its elf_next_in_group pointing back
     to the input group members.  Ignore linker created group section.
     to the input group members.  Ignore linker created group section.
     See elfNN_ia64_object_p in elfxx-ia64.c.  */
     See elfNN_ia64_object_p in elfxx-ia64.c.  */
  if (need_group)
  if (need_group)
    {
    {
      if (elf_sec_group (isec) == NULL
      if (elf_sec_group (isec) == NULL
          || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
          || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
        {
        {
          if (elf_section_flags (isec) & SHF_GROUP)
          if (elf_section_flags (isec) & SHF_GROUP)
            elf_section_flags (osec) |= SHF_GROUP;
            elf_section_flags (osec) |= SHF_GROUP;
          elf_next_in_group (osec) = elf_next_in_group (isec);
          elf_next_in_group (osec) = elf_next_in_group (isec);
          elf_section_data (osec)->group = elf_section_data (isec)->group;
          elf_section_data (osec)->group = elf_section_data (isec)->group;
        }
        }
    }
    }
 
 
  ihdr = &elf_section_data (isec)->this_hdr;
  ihdr = &elf_section_data (isec)->this_hdr;
 
 
  /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
  /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
     don't use the output section of the linked-to section since it
     don't use the output section of the linked-to section since it
     may be NULL at this point.  */
     may be NULL at this point.  */
  if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
  if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
    {
    {
      ohdr = &elf_section_data (osec)->this_hdr;
      ohdr = &elf_section_data (osec)->this_hdr;
      ohdr->sh_flags |= SHF_LINK_ORDER;
      ohdr->sh_flags |= SHF_LINK_ORDER;
      elf_linked_to_section (osec) = elf_linked_to_section (isec);
      elf_linked_to_section (osec) = elf_linked_to_section (isec);
    }
    }
 
 
  osec->use_rela_p = isec->use_rela_p;
  osec->use_rela_p = isec->use_rela_p;
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Copy private section information.  This copies over the entsize
/* Copy private section information.  This copies over the entsize
   field, and sometimes the info field.  */
   field, and sometimes the info field.  */
 
 
bfd_boolean
bfd_boolean
_bfd_elf_copy_private_section_data (bfd *ibfd,
_bfd_elf_copy_private_section_data (bfd *ibfd,
                                    asection *isec,
                                    asection *isec,
                                    bfd *obfd,
                                    bfd *obfd,
                                    asection *osec)
                                    asection *osec)
{
{
  Elf_Internal_Shdr *ihdr, *ohdr;
  Elf_Internal_Shdr *ihdr, *ohdr;
 
 
  if (ibfd->xvec->flavour != bfd_target_elf_flavour
  if (ibfd->xvec->flavour != bfd_target_elf_flavour
      || obfd->xvec->flavour != bfd_target_elf_flavour)
      || obfd->xvec->flavour != bfd_target_elf_flavour)
    return TRUE;
    return TRUE;
 
 
  ihdr = &elf_section_data (isec)->this_hdr;
  ihdr = &elf_section_data (isec)->this_hdr;
  ohdr = &elf_section_data (osec)->this_hdr;
  ohdr = &elf_section_data (osec)->this_hdr;
 
 
  ohdr->sh_entsize = ihdr->sh_entsize;
  ohdr->sh_entsize = ihdr->sh_entsize;
 
 
  if (ihdr->sh_type == SHT_SYMTAB
  if (ihdr->sh_type == SHT_SYMTAB
      || ihdr->sh_type == SHT_DYNSYM
      || ihdr->sh_type == SHT_DYNSYM
      || ihdr->sh_type == SHT_GNU_verneed
      || ihdr->sh_type == SHT_GNU_verneed
      || ihdr->sh_type == SHT_GNU_verdef)
      || ihdr->sh_type == SHT_GNU_verdef)
    ohdr->sh_info = ihdr->sh_info;
    ohdr->sh_info = ihdr->sh_info;
 
 
  return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
  return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
                                             NULL);
                                             NULL);
}
}
 
 
/* Copy private header information.  */
/* Copy private header information.  */
 
 
bfd_boolean
bfd_boolean
_bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
_bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
{
{
  asection *isec;
  asection *isec;
 
 
  if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
  if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
      || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
      || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
    return TRUE;
    return TRUE;
 
 
  /* Copy over private BFD data if it has not already been copied.
  /* Copy over private BFD data if it has not already been copied.
     This must be done here, rather than in the copy_private_bfd_data
     This must be done here, rather than in the copy_private_bfd_data
     entry point, because the latter is called after the section
     entry point, because the latter is called after the section
     contents have been set, which means that the program headers have
     contents have been set, which means that the program headers have
     already been worked out.  */
     already been worked out.  */
  if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
  if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
    {
    {
      if (! copy_private_bfd_data (ibfd, obfd))
      if (! copy_private_bfd_data (ibfd, obfd))
        return FALSE;
        return FALSE;
    }
    }
 
 
  /* _bfd_elf_copy_private_section_data copied over the SHF_GROUP flag
  /* _bfd_elf_copy_private_section_data copied over the SHF_GROUP flag
     but this might be wrong if we deleted the group section.  */
     but this might be wrong if we deleted the group section.  */
  for (isec = ibfd->sections; isec != NULL; isec = isec->next)
  for (isec = ibfd->sections; isec != NULL; isec = isec->next)
    if (elf_section_type (isec) == SHT_GROUP
    if (elf_section_type (isec) == SHT_GROUP
        && isec->output_section == NULL)
        && isec->output_section == NULL)
      {
      {
        asection *first = elf_next_in_group (isec);
        asection *first = elf_next_in_group (isec);
        asection *s = first;
        asection *s = first;
        while (s != NULL)
        while (s != NULL)
          {
          {
            if (s->output_section != NULL)
            if (s->output_section != NULL)
              {
              {
                elf_section_flags (s->output_section) &= ~SHF_GROUP;
                elf_section_flags (s->output_section) &= ~SHF_GROUP;
                elf_group_name (s->output_section) = NULL;
                elf_group_name (s->output_section) = NULL;
              }
              }
            s = elf_next_in_group (s);
            s = elf_next_in_group (s);
            if (s == first)
            if (s == first)
              break;
              break;
          }
          }
      }
      }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Copy private symbol information.  If this symbol is in a section
/* Copy private symbol information.  If this symbol is in a section
   which we did not map into a BFD section, try to map the section
   which we did not map into a BFD section, try to map the section
   index correctly.  We use special macro definitions for the mapped
   index correctly.  We use special macro definitions for the mapped
   section indices; these definitions are interpreted by the
   section indices; these definitions are interpreted by the
   swap_out_syms function.  */
   swap_out_syms function.  */
 
 
#define MAP_ONESYMTAB (SHN_HIOS + 1)
#define MAP_ONESYMTAB (SHN_HIOS + 1)
#define MAP_DYNSYMTAB (SHN_HIOS + 2)
#define MAP_DYNSYMTAB (SHN_HIOS + 2)
#define MAP_STRTAB    (SHN_HIOS + 3)
#define MAP_STRTAB    (SHN_HIOS + 3)
#define MAP_SHSTRTAB  (SHN_HIOS + 4)
#define MAP_SHSTRTAB  (SHN_HIOS + 4)
#define MAP_SYM_SHNDX (SHN_HIOS + 5)
#define MAP_SYM_SHNDX (SHN_HIOS + 5)
 
 
bfd_boolean
bfd_boolean
_bfd_elf_copy_private_symbol_data (bfd *ibfd,
_bfd_elf_copy_private_symbol_data (bfd *ibfd,
                                   asymbol *isymarg,
                                   asymbol *isymarg,
                                   bfd *obfd,
                                   bfd *obfd,
                                   asymbol *osymarg)
                                   asymbol *osymarg)
{
{
  elf_symbol_type *isym, *osym;
  elf_symbol_type *isym, *osym;
 
 
  if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
  if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
      || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
      || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
    return TRUE;
    return TRUE;
 
 
  isym = elf_symbol_from (ibfd, isymarg);
  isym = elf_symbol_from (ibfd, isymarg);
  osym = elf_symbol_from (obfd, osymarg);
  osym = elf_symbol_from (obfd, osymarg);
 
 
  if (isym != NULL
  if (isym != NULL
      && isym->internal_elf_sym.st_shndx != 0
      && isym->internal_elf_sym.st_shndx != 0
      && osym != NULL
      && osym != NULL
      && bfd_is_abs_section (isym->symbol.section))
      && bfd_is_abs_section (isym->symbol.section))
    {
    {
      unsigned int shndx;
      unsigned int shndx;
 
 
      shndx = isym->internal_elf_sym.st_shndx;
      shndx = isym->internal_elf_sym.st_shndx;
      if (shndx == elf_onesymtab (ibfd))
      if (shndx == elf_onesymtab (ibfd))
        shndx = MAP_ONESYMTAB;
        shndx = MAP_ONESYMTAB;
      else if (shndx == elf_dynsymtab (ibfd))
      else if (shndx == elf_dynsymtab (ibfd))
        shndx = MAP_DYNSYMTAB;
        shndx = MAP_DYNSYMTAB;
      else if (shndx == elf_tdata (ibfd)->strtab_section)
      else if (shndx == elf_tdata (ibfd)->strtab_section)
        shndx = MAP_STRTAB;
        shndx = MAP_STRTAB;
      else if (shndx == elf_tdata (ibfd)->shstrtab_section)
      else if (shndx == elf_tdata (ibfd)->shstrtab_section)
        shndx = MAP_SHSTRTAB;
        shndx = MAP_SHSTRTAB;
      else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
      else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
        shndx = MAP_SYM_SHNDX;
        shndx = MAP_SYM_SHNDX;
      osym->internal_elf_sym.st_shndx = shndx;
      osym->internal_elf_sym.st_shndx = shndx;
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Swap out the symbols.  */
/* Swap out the symbols.  */
 
 
static bfd_boolean
static bfd_boolean
swap_out_syms (bfd *abfd,
swap_out_syms (bfd *abfd,
               struct bfd_strtab_hash **sttp,
               struct bfd_strtab_hash **sttp,
               int relocatable_p)
               int relocatable_p)
{
{
  const struct elf_backend_data *bed;
  const struct elf_backend_data *bed;
  int symcount;
  int symcount;
  asymbol **syms;
  asymbol **syms;
  struct bfd_strtab_hash *stt;
  struct bfd_strtab_hash *stt;
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Shdr *symtab_shndx_hdr;
  Elf_Internal_Shdr *symtab_shndx_hdr;
  Elf_Internal_Shdr *symstrtab_hdr;
  Elf_Internal_Shdr *symstrtab_hdr;
  bfd_byte *outbound_syms;
  bfd_byte *outbound_syms;
  bfd_byte *outbound_shndx;
  bfd_byte *outbound_shndx;
  int idx;
  int idx;
  bfd_size_type amt;
  bfd_size_type amt;
  bfd_boolean name_local_sections;
  bfd_boolean name_local_sections;
 
 
  if (!elf_map_symbols (abfd))
  if (!elf_map_symbols (abfd))
    return FALSE;
    return FALSE;
 
 
  /* Dump out the symtabs.  */
  /* Dump out the symtabs.  */
  stt = _bfd_elf_stringtab_init ();
  stt = _bfd_elf_stringtab_init ();
  if (stt == NULL)
  if (stt == NULL)
    return FALSE;
    return FALSE;
 
 
  bed = get_elf_backend_data (abfd);
  bed = get_elf_backend_data (abfd);
  symcount = bfd_get_symcount (abfd);
  symcount = bfd_get_symcount (abfd);
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
  symtab_hdr->sh_type = SHT_SYMTAB;
  symtab_hdr->sh_type = SHT_SYMTAB;
  symtab_hdr->sh_entsize = bed->s->sizeof_sym;
  symtab_hdr->sh_entsize = bed->s->sizeof_sym;
  symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
  symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
  symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
  symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
  symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
  symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
 
 
  symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
  symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
  symstrtab_hdr->sh_type = SHT_STRTAB;
  symstrtab_hdr->sh_type = SHT_STRTAB;
 
 
  outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
  outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
                                           bed->s->sizeof_sym);
                                           bed->s->sizeof_sym);
  if (outbound_syms == NULL)
  if (outbound_syms == NULL)
    {
    {
      _bfd_stringtab_free (stt);
      _bfd_stringtab_free (stt);
      return FALSE;
      return FALSE;
    }
    }
  symtab_hdr->contents = outbound_syms;
  symtab_hdr->contents = outbound_syms;
 
 
  outbound_shndx = NULL;
  outbound_shndx = NULL;
  symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
  symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
  if (symtab_shndx_hdr->sh_name != 0)
  if (symtab_shndx_hdr->sh_name != 0)
    {
    {
      amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
      amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
      outbound_shndx =  (bfd_byte *)
      outbound_shndx =  (bfd_byte *)
          bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
          bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
      if (outbound_shndx == NULL)
      if (outbound_shndx == NULL)
        {
        {
          _bfd_stringtab_free (stt);
          _bfd_stringtab_free (stt);
          return FALSE;
          return FALSE;
        }
        }
 
 
      symtab_shndx_hdr->contents = outbound_shndx;
      symtab_shndx_hdr->contents = outbound_shndx;
      symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
      symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
      symtab_shndx_hdr->sh_size = amt;
      symtab_shndx_hdr->sh_size = amt;
      symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
      symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
      symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
      symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
    }
    }
 
 
  /* Now generate the data (for "contents").  */
  /* Now generate the data (for "contents").  */
  {
  {
    /* Fill in zeroth symbol and swap it out.  */
    /* Fill in zeroth symbol and swap it out.  */
    Elf_Internal_Sym sym;
    Elf_Internal_Sym sym;
    sym.st_name = 0;
    sym.st_name = 0;
    sym.st_value = 0;
    sym.st_value = 0;
    sym.st_size = 0;
    sym.st_size = 0;
    sym.st_info = 0;
    sym.st_info = 0;
    sym.st_other = 0;
    sym.st_other = 0;
    sym.st_shndx = SHN_UNDEF;
    sym.st_shndx = SHN_UNDEF;
    bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
    bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
    outbound_syms += bed->s->sizeof_sym;
    outbound_syms += bed->s->sizeof_sym;
    if (outbound_shndx != NULL)
    if (outbound_shndx != NULL)
      outbound_shndx += sizeof (Elf_External_Sym_Shndx);
      outbound_shndx += sizeof (Elf_External_Sym_Shndx);
  }
  }
 
 
  name_local_sections
  name_local_sections
    = (bed->elf_backend_name_local_section_symbols
    = (bed->elf_backend_name_local_section_symbols
       && bed->elf_backend_name_local_section_symbols (abfd));
       && bed->elf_backend_name_local_section_symbols (abfd));
 
 
  syms = bfd_get_outsymbols (abfd);
  syms = bfd_get_outsymbols (abfd);
  for (idx = 0; idx < symcount; idx++)
  for (idx = 0; idx < symcount; idx++)
    {
    {
      Elf_Internal_Sym sym;
      Elf_Internal_Sym sym;
      bfd_vma value = syms[idx]->value;
      bfd_vma value = syms[idx]->value;
      elf_symbol_type *type_ptr;
      elf_symbol_type *type_ptr;
      flagword flags = syms[idx]->flags;
      flagword flags = syms[idx]->flags;
      int type;
      int type;
 
 
      if (!name_local_sections
      if (!name_local_sections
          && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
          && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
        {
        {
          /* Local section symbols have no name.  */
          /* Local section symbols have no name.  */
          sym.st_name = 0;
          sym.st_name = 0;
        }
        }
      else
      else
        {
        {
          sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
          sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
                                                            syms[idx]->name,
                                                            syms[idx]->name,
                                                            TRUE, FALSE);
                                                            TRUE, FALSE);
          if (sym.st_name == (unsigned long) -1)
          if (sym.st_name == (unsigned long) -1)
            {
            {
              _bfd_stringtab_free (stt);
              _bfd_stringtab_free (stt);
              return FALSE;
              return FALSE;
            }
            }
        }
        }
 
 
      type_ptr = elf_symbol_from (abfd, syms[idx]);
      type_ptr = elf_symbol_from (abfd, syms[idx]);
 
 
      if ((flags & BSF_SECTION_SYM) == 0
      if ((flags & BSF_SECTION_SYM) == 0
          && bfd_is_com_section (syms[idx]->section))
          && bfd_is_com_section (syms[idx]->section))
        {
        {
          /* ELF common symbols put the alignment into the `value' field,
          /* ELF common symbols put the alignment into the `value' field,
             and the size into the `size' field.  This is backwards from
             and the size into the `size' field.  This is backwards from
             how BFD handles it, so reverse it here.  */
             how BFD handles it, so reverse it here.  */
          sym.st_size = value;
          sym.st_size = value;
          if (type_ptr == NULL
          if (type_ptr == NULL
              || type_ptr->internal_elf_sym.st_value == 0)
              || type_ptr->internal_elf_sym.st_value == 0)
            sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
            sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
          else
          else
            sym.st_value = type_ptr->internal_elf_sym.st_value;
            sym.st_value = type_ptr->internal_elf_sym.st_value;
          sym.st_shndx = _bfd_elf_section_from_bfd_section
          sym.st_shndx = _bfd_elf_section_from_bfd_section
            (abfd, syms[idx]->section);
            (abfd, syms[idx]->section);
        }
        }
      else
      else
        {
        {
          asection *sec = syms[idx]->section;
          asection *sec = syms[idx]->section;
          unsigned int shndx;
          unsigned int shndx;
 
 
          if (sec->output_section)
          if (sec->output_section)
            {
            {
              value += sec->output_offset;
              value += sec->output_offset;
              sec = sec->output_section;
              sec = sec->output_section;
            }
            }
 
 
          /* Don't add in the section vma for relocatable output.  */
          /* Don't add in the section vma for relocatable output.  */
          if (! relocatable_p)
          if (! relocatable_p)
            value += sec->vma;
            value += sec->vma;
          sym.st_value = value;
          sym.st_value = value;
          sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
          sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
 
 
          if (bfd_is_abs_section (sec)
          if (bfd_is_abs_section (sec)
              && type_ptr != NULL
              && type_ptr != NULL
              && type_ptr->internal_elf_sym.st_shndx != 0)
              && type_ptr->internal_elf_sym.st_shndx != 0)
            {
            {
              /* This symbol is in a real ELF section which we did
              /* This symbol is in a real ELF section which we did
                 not create as a BFD section.  Undo the mapping done
                 not create as a BFD section.  Undo the mapping done
                 by copy_private_symbol_data.  */
                 by copy_private_symbol_data.  */
              shndx = type_ptr->internal_elf_sym.st_shndx;
              shndx = type_ptr->internal_elf_sym.st_shndx;
              switch (shndx)
              switch (shndx)
                {
                {
                case MAP_ONESYMTAB:
                case MAP_ONESYMTAB:
                  shndx = elf_onesymtab (abfd);
                  shndx = elf_onesymtab (abfd);
                  break;
                  break;
                case MAP_DYNSYMTAB:
                case MAP_DYNSYMTAB:
                  shndx = elf_dynsymtab (abfd);
                  shndx = elf_dynsymtab (abfd);
                  break;
                  break;
                case MAP_STRTAB:
                case MAP_STRTAB:
                  shndx = elf_tdata (abfd)->strtab_section;
                  shndx = elf_tdata (abfd)->strtab_section;
                  break;
                  break;
                case MAP_SHSTRTAB:
                case MAP_SHSTRTAB:
                  shndx = elf_tdata (abfd)->shstrtab_section;
                  shndx = elf_tdata (abfd)->shstrtab_section;
                  break;
                  break;
                case MAP_SYM_SHNDX:
                case MAP_SYM_SHNDX:
                  shndx = elf_tdata (abfd)->symtab_shndx_section;
                  shndx = elf_tdata (abfd)->symtab_shndx_section;
                  break;
                  break;
                default:
                default:
                  break;
                  break;
                }
                }
            }
            }
          else
          else
            {
            {
              shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
              shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
 
 
              if (shndx == SHN_BAD)
              if (shndx == SHN_BAD)
                {
                {
                  asection *sec2;
                  asection *sec2;
 
 
                  /* Writing this would be a hell of a lot easier if
                  /* Writing this would be a hell of a lot easier if
                     we had some decent documentation on bfd, and
                     we had some decent documentation on bfd, and
                     knew what to expect of the library, and what to
                     knew what to expect of the library, and what to
                     demand of applications.  For example, it
                     demand of applications.  For example, it
                     appears that `objcopy' might not set the
                     appears that `objcopy' might not set the
                     section of a symbol to be a section that is
                     section of a symbol to be a section that is
                     actually in the output file.  */
                     actually in the output file.  */
                  sec2 = bfd_get_section_by_name (abfd, sec->name);
                  sec2 = bfd_get_section_by_name (abfd, sec->name);
                  if (sec2 == NULL)
                  if (sec2 == NULL)
                    {
                    {
                      _bfd_error_handler (_("\
                      _bfd_error_handler (_("\
Unable to find equivalent output section for symbol '%s' from section '%s'"),
Unable to find equivalent output section for symbol '%s' from section '%s'"),
                                          syms[idx]->name ? syms[idx]->name : "<Local sym>",
                                          syms[idx]->name ? syms[idx]->name : "<Local sym>",
                                          sec->name);
                                          sec->name);
                      bfd_set_error (bfd_error_invalid_operation);
                      bfd_set_error (bfd_error_invalid_operation);
                      _bfd_stringtab_free (stt);
                      _bfd_stringtab_free (stt);
                      return FALSE;
                      return FALSE;
                    }
                    }
 
 
                  shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
                  shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
                  BFD_ASSERT (shndx != SHN_BAD);
                  BFD_ASSERT (shndx != SHN_BAD);
                }
                }
            }
            }
 
 
          sym.st_shndx = shndx;
          sym.st_shndx = shndx;
        }
        }
 
 
      if ((flags & BSF_THREAD_LOCAL) != 0)
      if ((flags & BSF_THREAD_LOCAL) != 0)
        type = STT_TLS;
        type = STT_TLS;
      else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
      else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
        type = STT_GNU_IFUNC;
        type = STT_GNU_IFUNC;
      else if ((flags & BSF_FUNCTION) != 0)
      else if ((flags & BSF_FUNCTION) != 0)
        type = STT_FUNC;
        type = STT_FUNC;
      else if ((flags & BSF_OBJECT) != 0)
      else if ((flags & BSF_OBJECT) != 0)
        type = STT_OBJECT;
        type = STT_OBJECT;
      else if ((flags & BSF_RELC) != 0)
      else if ((flags & BSF_RELC) != 0)
        type = STT_RELC;
        type = STT_RELC;
      else if ((flags & BSF_SRELC) != 0)
      else if ((flags & BSF_SRELC) != 0)
        type = STT_SRELC;
        type = STT_SRELC;
      else
      else
        type = STT_NOTYPE;
        type = STT_NOTYPE;
 
 
      if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
      if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
        type = STT_TLS;
        type = STT_TLS;
 
 
      /* Processor-specific types.  */
      /* Processor-specific types.  */
      if (type_ptr != NULL
      if (type_ptr != NULL
          && bed->elf_backend_get_symbol_type)
          && bed->elf_backend_get_symbol_type)
        type = ((*bed->elf_backend_get_symbol_type)
        type = ((*bed->elf_backend_get_symbol_type)
                (&type_ptr->internal_elf_sym, type));
                (&type_ptr->internal_elf_sym, type));
 
 
      if (flags & BSF_SECTION_SYM)
      if (flags & BSF_SECTION_SYM)
        {
        {
          if (flags & BSF_GLOBAL)
          if (flags & BSF_GLOBAL)
            sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
            sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
          else
          else
            sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
            sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
        }
        }
      else if (bfd_is_com_section (syms[idx]->section))
      else if (bfd_is_com_section (syms[idx]->section))
        {
        {
#ifdef USE_STT_COMMON
#ifdef USE_STT_COMMON
          if (type == STT_OBJECT)
          if (type == STT_OBJECT)
            sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
            sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
          else
          else
#endif
#endif
            sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
            sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
        }
        }
      else if (bfd_is_und_section (syms[idx]->section))
      else if (bfd_is_und_section (syms[idx]->section))
        sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
        sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
                                    ? STB_WEAK
                                    ? STB_WEAK
                                    : STB_GLOBAL),
                                    : STB_GLOBAL),
                                   type);
                                   type);
      else if (flags & BSF_FILE)
      else if (flags & BSF_FILE)
        sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
        sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
      else
      else
        {
        {
          int bind = STB_LOCAL;
          int bind = STB_LOCAL;
 
 
          if (flags & BSF_LOCAL)
          if (flags & BSF_LOCAL)
            bind = STB_LOCAL;
            bind = STB_LOCAL;
          else if (flags & BSF_GNU_UNIQUE)
          else if (flags & BSF_GNU_UNIQUE)
            bind = STB_GNU_UNIQUE;
            bind = STB_GNU_UNIQUE;
          else if (flags & BSF_WEAK)
          else if (flags & BSF_WEAK)
            bind = STB_WEAK;
            bind = STB_WEAK;
          else if (flags & BSF_GLOBAL)
          else if (flags & BSF_GLOBAL)
            bind = STB_GLOBAL;
            bind = STB_GLOBAL;
 
 
          sym.st_info = ELF_ST_INFO (bind, type);
          sym.st_info = ELF_ST_INFO (bind, type);
        }
        }
 
 
      if (type_ptr != NULL)
      if (type_ptr != NULL)
        sym.st_other = type_ptr->internal_elf_sym.st_other;
        sym.st_other = type_ptr->internal_elf_sym.st_other;
      else
      else
        sym.st_other = 0;
        sym.st_other = 0;
 
 
      bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
      bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
      outbound_syms += bed->s->sizeof_sym;
      outbound_syms += bed->s->sizeof_sym;
      if (outbound_shndx != NULL)
      if (outbound_shndx != NULL)
        outbound_shndx += sizeof (Elf_External_Sym_Shndx);
        outbound_shndx += sizeof (Elf_External_Sym_Shndx);
    }
    }
 
 
  *sttp = stt;
  *sttp = stt;
  symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
  symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
  symstrtab_hdr->sh_type = SHT_STRTAB;
  symstrtab_hdr->sh_type = SHT_STRTAB;
 
 
  symstrtab_hdr->sh_flags = 0;
  symstrtab_hdr->sh_flags = 0;
  symstrtab_hdr->sh_addr = 0;
  symstrtab_hdr->sh_addr = 0;
  symstrtab_hdr->sh_entsize = 0;
  symstrtab_hdr->sh_entsize = 0;
  symstrtab_hdr->sh_link = 0;
  symstrtab_hdr->sh_link = 0;
  symstrtab_hdr->sh_info = 0;
  symstrtab_hdr->sh_info = 0;
  symstrtab_hdr->sh_addralign = 1;
  symstrtab_hdr->sh_addralign = 1;
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Return the number of bytes required to hold the symtab vector.
/* Return the number of bytes required to hold the symtab vector.
 
 
   Note that we base it on the count plus 1, since we will null terminate
   Note that we base it on the count plus 1, since we will null terminate
   the vector allocated based on this size.  However, the ELF symbol table
   the vector allocated based on this size.  However, the ELF symbol table
   always has a dummy entry as symbol #0, so it ends up even.  */
   always has a dummy entry as symbol #0, so it ends up even.  */
 
 
long
long
_bfd_elf_get_symtab_upper_bound (bfd *abfd)
_bfd_elf_get_symtab_upper_bound (bfd *abfd)
{
{
  long symcount;
  long symcount;
  long symtab_size;
  long symtab_size;
  Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
  Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
 
 
  symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
  symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
  symtab_size = (symcount + 1) * (sizeof (asymbol *));
  symtab_size = (symcount + 1) * (sizeof (asymbol *));
  if (symcount > 0)
  if (symcount > 0)
    symtab_size -= sizeof (asymbol *);
    symtab_size -= sizeof (asymbol *);
 
 
  return symtab_size;
  return symtab_size;
}
}
 
 
long
long
_bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
_bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
{
{
  long symcount;
  long symcount;
  long symtab_size;
  long symtab_size;
  Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
  Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
 
 
  if (elf_dynsymtab (abfd) == 0)
  if (elf_dynsymtab (abfd) == 0)
    {
    {
      bfd_set_error (bfd_error_invalid_operation);
      bfd_set_error (bfd_error_invalid_operation);
      return -1;
      return -1;
    }
    }
 
 
  symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
  symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
  symtab_size = (symcount + 1) * (sizeof (asymbol *));
  symtab_size = (symcount + 1) * (sizeof (asymbol *));
  if (symcount > 0)
  if (symcount > 0)
    symtab_size -= sizeof (asymbol *);
    symtab_size -= sizeof (asymbol *);
 
 
  return symtab_size;
  return symtab_size;
}
}
 
 
long
long
_bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
_bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
                                sec_ptr asect)
                                sec_ptr asect)
{
{
  return (asect->reloc_count + 1) * sizeof (arelent *);
  return (asect->reloc_count + 1) * sizeof (arelent *);
}
}
 
 
/* Canonicalize the relocs.  */
/* Canonicalize the relocs.  */
 
 
long
long
_bfd_elf_canonicalize_reloc (bfd *abfd,
_bfd_elf_canonicalize_reloc (bfd *abfd,
                             sec_ptr section,
                             sec_ptr section,
                             arelent **relptr,
                             arelent **relptr,
                             asymbol **symbols)
                             asymbol **symbols)
{
{
  arelent *tblptr;
  arelent *tblptr;
  unsigned int i;
  unsigned int i;
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
 
 
  if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
  if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
    return -1;
    return -1;
 
 
  tblptr = section->relocation;
  tblptr = section->relocation;
  for (i = 0; i < section->reloc_count; i++)
  for (i = 0; i < section->reloc_count; i++)
    *relptr++ = tblptr++;
    *relptr++ = tblptr++;
 
 
  *relptr = NULL;
  *relptr = NULL;
 
 
  return section->reloc_count;
  return section->reloc_count;
}
}
 
 
long
long
_bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
_bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
{
{
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
  long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
  long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
 
 
  if (symcount >= 0)
  if (symcount >= 0)
    bfd_get_symcount (abfd) = symcount;
    bfd_get_symcount (abfd) = symcount;
  return symcount;
  return symcount;
}
}
 
 
long
long
_bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
_bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
                                      asymbol **allocation)
                                      asymbol **allocation)
{
{
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
  long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
  long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
 
 
  if (symcount >= 0)
  if (symcount >= 0)
    bfd_get_dynamic_symcount (abfd) = symcount;
    bfd_get_dynamic_symcount (abfd) = symcount;
  return symcount;
  return symcount;
}
}
 
 
/* Return the size required for the dynamic reloc entries.  Any loadable
/* Return the size required for the dynamic reloc entries.  Any loadable
   section that was actually installed in the BFD, and has type SHT_REL
   section that was actually installed in the BFD, and has type SHT_REL
   or SHT_RELA, and uses the dynamic symbol table, is considered to be a
   or SHT_RELA, and uses the dynamic symbol table, is considered to be a
   dynamic reloc section.  */
   dynamic reloc section.  */
 
 
long
long
_bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
_bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
{
{
  long ret;
  long ret;
  asection *s;
  asection *s;
 
 
  if (elf_dynsymtab (abfd) == 0)
  if (elf_dynsymtab (abfd) == 0)
    {
    {
      bfd_set_error (bfd_error_invalid_operation);
      bfd_set_error (bfd_error_invalid_operation);
      return -1;
      return -1;
    }
    }
 
 
  ret = sizeof (arelent *);
  ret = sizeof (arelent *);
  for (s = abfd->sections; s != NULL; s = s->next)
  for (s = abfd->sections; s != NULL; s = s->next)
    if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
    if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
        && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
        && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
            || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
            || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
      ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
      ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
              * sizeof (arelent *));
              * sizeof (arelent *));
 
 
  return ret;
  return ret;
}
}
 
 
/* Canonicalize the dynamic relocation entries.  Note that we return the
/* Canonicalize the dynamic relocation entries.  Note that we return the
   dynamic relocations as a single block, although they are actually
   dynamic relocations as a single block, although they are actually
   associated with particular sections; the interface, which was
   associated with particular sections; the interface, which was
   designed for SunOS style shared libraries, expects that there is only
   designed for SunOS style shared libraries, expects that there is only
   one set of dynamic relocs.  Any loadable section that was actually
   one set of dynamic relocs.  Any loadable section that was actually
   installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
   installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
   dynamic symbol table, is considered to be a dynamic reloc section.  */
   dynamic symbol table, is considered to be a dynamic reloc section.  */
 
 
long
long
_bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
_bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
                                     arelent **storage,
                                     arelent **storage,
                                     asymbol **syms)
                                     asymbol **syms)
{
{
  bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
  bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
  asection *s;
  asection *s;
  long ret;
  long ret;
 
 
  if (elf_dynsymtab (abfd) == 0)
  if (elf_dynsymtab (abfd) == 0)
    {
    {
      bfd_set_error (bfd_error_invalid_operation);
      bfd_set_error (bfd_error_invalid_operation);
      return -1;
      return -1;
    }
    }
 
 
  slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
  slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
  ret = 0;
  ret = 0;
  for (s = abfd->sections; s != NULL; s = s->next)
  for (s = abfd->sections; s != NULL; s = s->next)
    {
    {
      if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
      if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
          && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
          && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
              || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
              || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
        {
        {
          arelent *p;
          arelent *p;
          long count, i;
          long count, i;
 
 
          if (! (*slurp_relocs) (abfd, s, syms, TRUE))
          if (! (*slurp_relocs) (abfd, s, syms, TRUE))
            return -1;
            return -1;
          count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
          count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
          p = s->relocation;
          p = s->relocation;
          for (i = 0; i < count; i++)
          for (i = 0; i < count; i++)
            *storage++ = p++;
            *storage++ = p++;
          ret += count;
          ret += count;
        }
        }
    }
    }
 
 
  *storage = NULL;
  *storage = NULL;
 
 
  return ret;
  return ret;
}
}


/* Read in the version information.  */
/* Read in the version information.  */
 
 
bfd_boolean
bfd_boolean
_bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
_bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
{
{
  bfd_byte *contents = NULL;
  bfd_byte *contents = NULL;
  unsigned int freeidx = 0;
  unsigned int freeidx = 0;
 
 
  if (elf_dynverref (abfd) != 0)
  if (elf_dynverref (abfd) != 0)
    {
    {
      Elf_Internal_Shdr *hdr;
      Elf_Internal_Shdr *hdr;
      Elf_External_Verneed *everneed;
      Elf_External_Verneed *everneed;
      Elf_Internal_Verneed *iverneed;
      Elf_Internal_Verneed *iverneed;
      unsigned int i;
      unsigned int i;
      bfd_byte *contents_end;
      bfd_byte *contents_end;
 
 
      hdr = &elf_tdata (abfd)->dynverref_hdr;
      hdr = &elf_tdata (abfd)->dynverref_hdr;
 
 
      elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
      elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
          bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
          bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
      if (elf_tdata (abfd)->verref == NULL)
      if (elf_tdata (abfd)->verref == NULL)
        goto error_return;
        goto error_return;
 
 
      elf_tdata (abfd)->cverrefs = hdr->sh_info;
      elf_tdata (abfd)->cverrefs = hdr->sh_info;
 
 
      contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
      contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
      if (contents == NULL)
      if (contents == NULL)
        {
        {
error_return_verref:
error_return_verref:
          elf_tdata (abfd)->verref = NULL;
          elf_tdata (abfd)->verref = NULL;
          elf_tdata (abfd)->cverrefs = 0;
          elf_tdata (abfd)->cverrefs = 0;
          goto error_return;
          goto error_return;
        }
        }
      if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
      if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
          || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
          || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
        goto error_return_verref;
        goto error_return_verref;
 
 
      if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
      if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
        goto error_return_verref;
        goto error_return_verref;
 
 
      BFD_ASSERT (sizeof (Elf_External_Verneed)
      BFD_ASSERT (sizeof (Elf_External_Verneed)
                  == sizeof (Elf_External_Vernaux));
                  == sizeof (Elf_External_Vernaux));
      contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
      contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
      everneed = (Elf_External_Verneed *) contents;
      everneed = (Elf_External_Verneed *) contents;
      iverneed = elf_tdata (abfd)->verref;
      iverneed = elf_tdata (abfd)->verref;
      for (i = 0; i < hdr->sh_info; i++, iverneed++)
      for (i = 0; i < hdr->sh_info; i++, iverneed++)
        {
        {
          Elf_External_Vernaux *evernaux;
          Elf_External_Vernaux *evernaux;
          Elf_Internal_Vernaux *ivernaux;
          Elf_Internal_Vernaux *ivernaux;
          unsigned int j;
          unsigned int j;
 
 
          _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
          _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
 
 
          iverneed->vn_bfd = abfd;
          iverneed->vn_bfd = abfd;
 
 
          iverneed->vn_filename =
          iverneed->vn_filename =
            bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
            bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
                                             iverneed->vn_file);
                                             iverneed->vn_file);
          if (iverneed->vn_filename == NULL)
          if (iverneed->vn_filename == NULL)
            goto error_return_verref;
            goto error_return_verref;
 
 
          if (iverneed->vn_cnt == 0)
          if (iverneed->vn_cnt == 0)
            iverneed->vn_auxptr = NULL;
            iverneed->vn_auxptr = NULL;
          else
          else
            {
            {
              iverneed->vn_auxptr = (struct elf_internal_vernaux *)
              iverneed->vn_auxptr = (struct elf_internal_vernaux *)
                  bfd_alloc2 (abfd, iverneed->vn_cnt,
                  bfd_alloc2 (abfd, iverneed->vn_cnt,
                              sizeof (Elf_Internal_Vernaux));
                              sizeof (Elf_Internal_Vernaux));
              if (iverneed->vn_auxptr == NULL)
              if (iverneed->vn_auxptr == NULL)
                goto error_return_verref;
                goto error_return_verref;
            }
            }
 
 
          if (iverneed->vn_aux
          if (iverneed->vn_aux
              > (size_t) (contents_end - (bfd_byte *) everneed))
              > (size_t) (contents_end - (bfd_byte *) everneed))
            goto error_return_verref;
            goto error_return_verref;
 
 
          evernaux = ((Elf_External_Vernaux *)
          evernaux = ((Elf_External_Vernaux *)
                      ((bfd_byte *) everneed + iverneed->vn_aux));
                      ((bfd_byte *) everneed + iverneed->vn_aux));
          ivernaux = iverneed->vn_auxptr;
          ivernaux = iverneed->vn_auxptr;
          for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
          for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
            {
            {
              _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
              _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
 
 
              ivernaux->vna_nodename =
              ivernaux->vna_nodename =
                bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
                bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
                                                 ivernaux->vna_name);
                                                 ivernaux->vna_name);
              if (ivernaux->vna_nodename == NULL)
              if (ivernaux->vna_nodename == NULL)
                goto error_return_verref;
                goto error_return_verref;
 
 
              if (j + 1 < iverneed->vn_cnt)
              if (j + 1 < iverneed->vn_cnt)
                ivernaux->vna_nextptr = ivernaux + 1;
                ivernaux->vna_nextptr = ivernaux + 1;
              else
              else
                ivernaux->vna_nextptr = NULL;
                ivernaux->vna_nextptr = NULL;
 
 
              if (ivernaux->vna_next
              if (ivernaux->vna_next
                  > (size_t) (contents_end - (bfd_byte *) evernaux))
                  > (size_t) (contents_end - (bfd_byte *) evernaux))
                goto error_return_verref;
                goto error_return_verref;
 
 
              evernaux = ((Elf_External_Vernaux *)
              evernaux = ((Elf_External_Vernaux *)
                          ((bfd_byte *) evernaux + ivernaux->vna_next));
                          ((bfd_byte *) evernaux + ivernaux->vna_next));
 
 
              if (ivernaux->vna_other > freeidx)
              if (ivernaux->vna_other > freeidx)
                freeidx = ivernaux->vna_other;
                freeidx = ivernaux->vna_other;
            }
            }
 
 
          if (i + 1 < hdr->sh_info)
          if (i + 1 < hdr->sh_info)
            iverneed->vn_nextref = iverneed + 1;
            iverneed->vn_nextref = iverneed + 1;
          else
          else
            iverneed->vn_nextref = NULL;
            iverneed->vn_nextref = NULL;
 
 
          if (iverneed->vn_next
          if (iverneed->vn_next
              > (size_t) (contents_end - (bfd_byte *) everneed))
              > (size_t) (contents_end - (bfd_byte *) everneed))
            goto error_return_verref;
            goto error_return_verref;
 
 
          everneed = ((Elf_External_Verneed *)
          everneed = ((Elf_External_Verneed *)
                      ((bfd_byte *) everneed + iverneed->vn_next));
                      ((bfd_byte *) everneed + iverneed->vn_next));
        }
        }
 
 
      free (contents);
      free (contents);
      contents = NULL;
      contents = NULL;
    }
    }
 
 
  if (elf_dynverdef (abfd) != 0)
  if (elf_dynverdef (abfd) != 0)
    {
    {
      Elf_Internal_Shdr *hdr;
      Elf_Internal_Shdr *hdr;
      Elf_External_Verdef *everdef;
      Elf_External_Verdef *everdef;
      Elf_Internal_Verdef *iverdef;
      Elf_Internal_Verdef *iverdef;
      Elf_Internal_Verdef *iverdefarr;
      Elf_Internal_Verdef *iverdefarr;
      Elf_Internal_Verdef iverdefmem;
      Elf_Internal_Verdef iverdefmem;
      unsigned int i;
      unsigned int i;
      unsigned int maxidx;
      unsigned int maxidx;
      bfd_byte *contents_end_def, *contents_end_aux;
      bfd_byte *contents_end_def, *contents_end_aux;
 
 
      hdr = &elf_tdata (abfd)->dynverdef_hdr;
      hdr = &elf_tdata (abfd)->dynverdef_hdr;
 
 
      contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
      contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
      if (contents == NULL)
      if (contents == NULL)
        goto error_return;
        goto error_return;
      if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
      if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
          || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
          || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
        goto error_return;
        goto error_return;
 
 
      if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
      if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
        goto error_return;
        goto error_return;
 
 
      BFD_ASSERT (sizeof (Elf_External_Verdef)
      BFD_ASSERT (sizeof (Elf_External_Verdef)
                  >= sizeof (Elf_External_Verdaux));
                  >= sizeof (Elf_External_Verdaux));
      contents_end_def = contents + hdr->sh_size
      contents_end_def = contents + hdr->sh_size
                         - sizeof (Elf_External_Verdef);
                         - sizeof (Elf_External_Verdef);
      contents_end_aux = contents + hdr->sh_size
      contents_end_aux = contents + hdr->sh_size
                         - sizeof (Elf_External_Verdaux);
                         - sizeof (Elf_External_Verdaux);
 
 
      /* We know the number of entries in the section but not the maximum
      /* We know the number of entries in the section but not the maximum
         index.  Therefore we have to run through all entries and find
         index.  Therefore we have to run through all entries and find
         the maximum.  */
         the maximum.  */
      everdef = (Elf_External_Verdef *) contents;
      everdef = (Elf_External_Verdef *) contents;
      maxidx = 0;
      maxidx = 0;
      for (i = 0; i < hdr->sh_info; ++i)
      for (i = 0; i < hdr->sh_info; ++i)
        {
        {
          _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
          _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
 
 
          if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
          if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
            maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
            maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
 
 
          if (iverdefmem.vd_next
          if (iverdefmem.vd_next
              > (size_t) (contents_end_def - (bfd_byte *) everdef))
              > (size_t) (contents_end_def - (bfd_byte *) everdef))
            goto error_return;
            goto error_return;
 
 
          everdef = ((Elf_External_Verdef *)
          everdef = ((Elf_External_Verdef *)
                     ((bfd_byte *) everdef + iverdefmem.vd_next));
                     ((bfd_byte *) everdef + iverdefmem.vd_next));
        }
        }
 
 
      if (default_imported_symver)
      if (default_imported_symver)
        {
        {
          if (freeidx > maxidx)
          if (freeidx > maxidx)
            maxidx = ++freeidx;
            maxidx = ++freeidx;
          else
          else
            freeidx = ++maxidx;
            freeidx = ++maxidx;
        }
        }
      elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
      elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
          bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
          bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
      if (elf_tdata (abfd)->verdef == NULL)
      if (elf_tdata (abfd)->verdef == NULL)
        goto error_return;
        goto error_return;
 
 
      elf_tdata (abfd)->cverdefs = maxidx;
      elf_tdata (abfd)->cverdefs = maxidx;
 
 
      everdef = (Elf_External_Verdef *) contents;
      everdef = (Elf_External_Verdef *) contents;
      iverdefarr = elf_tdata (abfd)->verdef;
      iverdefarr = elf_tdata (abfd)->verdef;
      for (i = 0; i < hdr->sh_info; i++)
      for (i = 0; i < hdr->sh_info; i++)
        {
        {
          Elf_External_Verdaux *everdaux;
          Elf_External_Verdaux *everdaux;
          Elf_Internal_Verdaux *iverdaux;
          Elf_Internal_Verdaux *iverdaux;
          unsigned int j;
          unsigned int j;
 
 
          _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
          _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
 
 
          if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
          if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
            {
            {
error_return_verdef:
error_return_verdef:
              elf_tdata (abfd)->verdef = NULL;
              elf_tdata (abfd)->verdef = NULL;
              elf_tdata (abfd)->cverdefs = 0;
              elf_tdata (abfd)->cverdefs = 0;
              goto error_return;
              goto error_return;
            }
            }
 
 
          iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
          iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
          memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
          memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
 
 
          iverdef->vd_bfd = abfd;
          iverdef->vd_bfd = abfd;
 
 
          if (iverdef->vd_cnt == 0)
          if (iverdef->vd_cnt == 0)
            iverdef->vd_auxptr = NULL;
            iverdef->vd_auxptr = NULL;
          else
          else
            {
            {
              iverdef->vd_auxptr = (struct elf_internal_verdaux *)
              iverdef->vd_auxptr = (struct elf_internal_verdaux *)
                  bfd_alloc2 (abfd, iverdef->vd_cnt,
                  bfd_alloc2 (abfd, iverdef->vd_cnt,
                              sizeof (Elf_Internal_Verdaux));
                              sizeof (Elf_Internal_Verdaux));
              if (iverdef->vd_auxptr == NULL)
              if (iverdef->vd_auxptr == NULL)
                goto error_return_verdef;
                goto error_return_verdef;
            }
            }
 
 
          if (iverdef->vd_aux
          if (iverdef->vd_aux
              > (size_t) (contents_end_aux - (bfd_byte *) everdef))
              > (size_t) (contents_end_aux - (bfd_byte *) everdef))
            goto error_return_verdef;
            goto error_return_verdef;
 
 
          everdaux = ((Elf_External_Verdaux *)
          everdaux = ((Elf_External_Verdaux *)
                      ((bfd_byte *) everdef + iverdef->vd_aux));
                      ((bfd_byte *) everdef + iverdef->vd_aux));
          iverdaux = iverdef->vd_auxptr;
          iverdaux = iverdef->vd_auxptr;
          for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
          for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
            {
            {
              _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
              _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
 
 
              iverdaux->vda_nodename =
              iverdaux->vda_nodename =
                bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
                bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
                                                 iverdaux->vda_name);
                                                 iverdaux->vda_name);
              if (iverdaux->vda_nodename == NULL)
              if (iverdaux->vda_nodename == NULL)
                goto error_return_verdef;
                goto error_return_verdef;
 
 
              if (j + 1 < iverdef->vd_cnt)
              if (j + 1 < iverdef->vd_cnt)
                iverdaux->vda_nextptr = iverdaux + 1;
                iverdaux->vda_nextptr = iverdaux + 1;
              else
              else
                iverdaux->vda_nextptr = NULL;
                iverdaux->vda_nextptr = NULL;
 
 
              if (iverdaux->vda_next
              if (iverdaux->vda_next
                  > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
                  > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
                goto error_return_verdef;
                goto error_return_verdef;
 
 
              everdaux = ((Elf_External_Verdaux *)
              everdaux = ((Elf_External_Verdaux *)
                          ((bfd_byte *) everdaux + iverdaux->vda_next));
                          ((bfd_byte *) everdaux + iverdaux->vda_next));
            }
            }
 
 
          if (iverdef->vd_cnt)
          if (iverdef->vd_cnt)
            iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
            iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
 
 
          if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
          if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
            iverdef->vd_nextdef = iverdef + 1;
            iverdef->vd_nextdef = iverdef + 1;
          else
          else
            iverdef->vd_nextdef = NULL;
            iverdef->vd_nextdef = NULL;
 
 
          everdef = ((Elf_External_Verdef *)
          everdef = ((Elf_External_Verdef *)
                     ((bfd_byte *) everdef + iverdef->vd_next));
                     ((bfd_byte *) everdef + iverdef->vd_next));
        }
        }
 
 
      free (contents);
      free (contents);
      contents = NULL;
      contents = NULL;
    }
    }
  else if (default_imported_symver)
  else if (default_imported_symver)
    {
    {
      if (freeidx < 3)
      if (freeidx < 3)
        freeidx = 3;
        freeidx = 3;
      else
      else
        freeidx++;
        freeidx++;
 
 
      elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
      elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
          bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
          bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
      if (elf_tdata (abfd)->verdef == NULL)
      if (elf_tdata (abfd)->verdef == NULL)
        goto error_return;
        goto error_return;
 
 
      elf_tdata (abfd)->cverdefs = freeidx;
      elf_tdata (abfd)->cverdefs = freeidx;
    }
    }
 
 
  /* Create a default version based on the soname.  */
  /* Create a default version based on the soname.  */
  if (default_imported_symver)
  if (default_imported_symver)
    {
    {
      Elf_Internal_Verdef *iverdef;
      Elf_Internal_Verdef *iverdef;
      Elf_Internal_Verdaux *iverdaux;
      Elf_Internal_Verdaux *iverdaux;
 
 
      iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
      iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
 
 
      iverdef->vd_version = VER_DEF_CURRENT;
      iverdef->vd_version = VER_DEF_CURRENT;
      iverdef->vd_flags = 0;
      iverdef->vd_flags = 0;
      iverdef->vd_ndx = freeidx;
      iverdef->vd_ndx = freeidx;
      iverdef->vd_cnt = 1;
      iverdef->vd_cnt = 1;
 
 
      iverdef->vd_bfd = abfd;
      iverdef->vd_bfd = abfd;
 
 
      iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
      iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
      if (iverdef->vd_nodename == NULL)
      if (iverdef->vd_nodename == NULL)
        goto error_return_verdef;
        goto error_return_verdef;
      iverdef->vd_nextdef = NULL;
      iverdef->vd_nextdef = NULL;
      iverdef->vd_auxptr = (struct elf_internal_verdaux *)
      iverdef->vd_auxptr = (struct elf_internal_verdaux *)
          bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
          bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
      if (iverdef->vd_auxptr == NULL)
      if (iverdef->vd_auxptr == NULL)
        goto error_return_verdef;
        goto error_return_verdef;
 
 
      iverdaux = iverdef->vd_auxptr;
      iverdaux = iverdef->vd_auxptr;
      iverdaux->vda_nodename = iverdef->vd_nodename;
      iverdaux->vda_nodename = iverdef->vd_nodename;
      iverdaux->vda_nextptr = NULL;
      iverdaux->vda_nextptr = NULL;
    }
    }
 
 
  return TRUE;
  return TRUE;
 
 
 error_return:
 error_return:
  if (contents != NULL)
  if (contents != NULL)
    free (contents);
    free (contents);
  return FALSE;
  return FALSE;
}
}


asymbol *
asymbol *
_bfd_elf_make_empty_symbol (bfd *abfd)
_bfd_elf_make_empty_symbol (bfd *abfd)
{
{
  elf_symbol_type *newsym;
  elf_symbol_type *newsym;
  bfd_size_type amt = sizeof (elf_symbol_type);
  bfd_size_type amt = sizeof (elf_symbol_type);
 
 
  newsym = (elf_symbol_type *) bfd_zalloc (abfd, amt);
  newsym = (elf_symbol_type *) bfd_zalloc (abfd, amt);
  if (!newsym)
  if (!newsym)
    return NULL;
    return NULL;
  else
  else
    {
    {
      newsym->symbol.the_bfd = abfd;
      newsym->symbol.the_bfd = abfd;
      return &newsym->symbol;
      return &newsym->symbol;
    }
    }
}
}
 
 
void
void
_bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
_bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
                          asymbol *symbol,
                          asymbol *symbol,
                          symbol_info *ret)
                          symbol_info *ret)
{
{
  bfd_symbol_info (symbol, ret);
  bfd_symbol_info (symbol, ret);
}
}
 
 
/* Return whether a symbol name implies a local symbol.  Most targets
/* Return whether a symbol name implies a local symbol.  Most targets
   use this function for the is_local_label_name entry point, but some
   use this function for the is_local_label_name entry point, but some
   override it.  */
   override it.  */
 
 
bfd_boolean
bfd_boolean
_bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
_bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
                              const char *name)
                              const char *name)
{
{
  /* Normal local symbols start with ``.L''.  */
  /* Normal local symbols start with ``.L''.  */
  if (name[0] == '.' && name[1] == 'L')
  if (name[0] == '.' && name[1] == 'L')
    return TRUE;
    return TRUE;
 
 
  /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
  /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
     DWARF debugging symbols starting with ``..''.  */
     DWARF debugging symbols starting with ``..''.  */
  if (name[0] == '.' && name[1] == '.')
  if (name[0] == '.' && name[1] == '.')
    return TRUE;
    return TRUE;
 
 
  /* gcc will sometimes generate symbols beginning with ``_.L_'' when
  /* gcc will sometimes generate symbols beginning with ``_.L_'' when
     emitting DWARF debugging output.  I suspect this is actually a
     emitting DWARF debugging output.  I suspect this is actually a
     small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
     small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
     ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
     ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
     underscore to be emitted on some ELF targets).  For ease of use,
     underscore to be emitted on some ELF targets).  For ease of use,
     we treat such symbols as local.  */
     we treat such symbols as local.  */
  if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
  if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
    return TRUE;
    return TRUE;
 
 
  return FALSE;
  return FALSE;
}
}
 
 
alent *
alent *
_bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
_bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
                     asymbol *symbol ATTRIBUTE_UNUSED)
                     asymbol *symbol ATTRIBUTE_UNUSED)
{
{
  abort ();
  abort ();
  return NULL;
  return NULL;
}
}
 
 
bfd_boolean
bfd_boolean
_bfd_elf_set_arch_mach (bfd *abfd,
_bfd_elf_set_arch_mach (bfd *abfd,
                        enum bfd_architecture arch,
                        enum bfd_architecture arch,
                        unsigned long machine)
                        unsigned long machine)
{
{
  /* If this isn't the right architecture for this backend, and this
  /* If this isn't the right architecture for this backend, and this
     isn't the generic backend, fail.  */
     isn't the generic backend, fail.  */
  if (arch != get_elf_backend_data (abfd)->arch
  if (arch != get_elf_backend_data (abfd)->arch
      && arch != bfd_arch_unknown
      && arch != bfd_arch_unknown
      && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
      && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
    return FALSE;
    return FALSE;
 
 
  return bfd_default_set_arch_mach (abfd, arch, machine);
  return bfd_default_set_arch_mach (abfd, arch, machine);
}
}
 
 
/* Find the function to a particular section and offset,
/* Find the function to a particular section and offset,
   for error reporting.  */
   for error reporting.  */
 
 
static bfd_boolean
static bfd_boolean
elf_find_function (bfd *abfd,
elf_find_function (bfd *abfd,
                   asection *section,
                   asection *section,
                   asymbol **symbols,
                   asymbol **symbols,
                   bfd_vma offset,
                   bfd_vma offset,
                   const char **filename_ptr,
                   const char **filename_ptr,
                   const char **functionname_ptr)
                   const char **functionname_ptr)
{
{
  const char *filename;
  const char *filename;
  asymbol *func, *file;
  asymbol *func, *file;
  bfd_vma low_func;
  bfd_vma low_func;
  asymbol **p;
  asymbol **p;
  /* ??? Given multiple file symbols, it is impossible to reliably
  /* ??? Given multiple file symbols, it is impossible to reliably
     choose the right file name for global symbols.  File symbols are
     choose the right file name for global symbols.  File symbols are
     local symbols, and thus all file symbols must sort before any
     local symbols, and thus all file symbols must sort before any
     global symbols.  The ELF spec may be interpreted to say that a
     global symbols.  The ELF spec may be interpreted to say that a
     file symbol must sort before other local symbols, but currently
     file symbol must sort before other local symbols, but currently
     ld -r doesn't do this.  So, for ld -r output, it is possible to
     ld -r doesn't do this.  So, for ld -r output, it is possible to
     make a better choice of file name for local symbols by ignoring
     make a better choice of file name for local symbols by ignoring
     file symbols appearing after a given local symbol.  */
     file symbols appearing after a given local symbol.  */
  enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
  enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
 
 
  filename = NULL;
  filename = NULL;
  func = NULL;
  func = NULL;
  file = NULL;
  file = NULL;
  low_func = 0;
  low_func = 0;
  state = nothing_seen;
  state = nothing_seen;
 
 
  for (p = symbols; *p != NULL; p++)
  for (p = symbols; *p != NULL; p++)
    {
    {
      elf_symbol_type *q;
      elf_symbol_type *q;
      unsigned int type;
      unsigned int type;
 
 
      q = (elf_symbol_type *) *p;
      q = (elf_symbol_type *) *p;
 
 
      type = ELF_ST_TYPE (q->internal_elf_sym.st_info);
      type = ELF_ST_TYPE (q->internal_elf_sym.st_info);
      switch (type)
      switch (type)
        {
        {
        case STT_FILE:
        case STT_FILE:
          file = &q->symbol;
          file = &q->symbol;
          if (state == symbol_seen)
          if (state == symbol_seen)
            state = file_after_symbol_seen;
            state = file_after_symbol_seen;
          continue;
          continue;
        default:
        default:
          if (!bed->is_function_type (type))
          if (!bed->is_function_type (type))
            break;
            break;
        case STT_NOTYPE:
        case STT_NOTYPE:
          if (bfd_get_section (&q->symbol) == section
          if (bfd_get_section (&q->symbol) == section
              && q->symbol.value >= low_func
              && q->symbol.value >= low_func
              && q->symbol.value <= offset)
              && q->symbol.value <= offset)
            {
            {
              func = (asymbol *) q;
              func = (asymbol *) q;
              low_func = q->symbol.value;
              low_func = q->symbol.value;
              filename = NULL;
              filename = NULL;
              if (file != NULL
              if (file != NULL
                  && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
                  && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
                      || state != file_after_symbol_seen))
                      || state != file_after_symbol_seen))
                filename = bfd_asymbol_name (file);
                filename = bfd_asymbol_name (file);
            }
            }
          break;
          break;
        }
        }
      if (state == nothing_seen)
      if (state == nothing_seen)
        state = symbol_seen;
        state = symbol_seen;
    }
    }
 
 
  if (func == NULL)
  if (func == NULL)
    return FALSE;
    return FALSE;
 
 
  if (filename_ptr)
  if (filename_ptr)
    *filename_ptr = filename;
    *filename_ptr = filename;
  if (functionname_ptr)
  if (functionname_ptr)
    *functionname_ptr = bfd_asymbol_name (func);
    *functionname_ptr = bfd_asymbol_name (func);
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Find the nearest line to a particular section and offset,
/* Find the nearest line to a particular section and offset,
   for error reporting.  */
   for error reporting.  */
 
 
bfd_boolean
bfd_boolean
_bfd_elf_find_nearest_line (bfd *abfd,
_bfd_elf_find_nearest_line (bfd *abfd,
                            asection *section,
                            asection *section,
                            asymbol **symbols,
                            asymbol **symbols,
                            bfd_vma offset,
                            bfd_vma offset,
                            const char **filename_ptr,
                            const char **filename_ptr,
                            const char **functionname_ptr,
                            const char **functionname_ptr,
                            unsigned int *line_ptr)
                            unsigned int *line_ptr)
{
{
  bfd_boolean found;
  bfd_boolean found;
 
 
  if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
  if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
                                     filename_ptr, functionname_ptr,
                                     filename_ptr, functionname_ptr,
                                     line_ptr))
                                     line_ptr))
    {
    {
      if (!*functionname_ptr)
      if (!*functionname_ptr)
        elf_find_function (abfd, section, symbols, offset,
        elf_find_function (abfd, section, symbols, offset,
                           *filename_ptr ? NULL : filename_ptr,
                           *filename_ptr ? NULL : filename_ptr,
                           functionname_ptr);
                           functionname_ptr);
 
 
      return TRUE;
      return TRUE;
    }
    }
 
 
  if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
  if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
                                     filename_ptr, functionname_ptr,
                                     filename_ptr, functionname_ptr,
                                     line_ptr, 0,
                                     line_ptr, 0,
                                     &elf_tdata (abfd)->dwarf2_find_line_info))
                                     &elf_tdata (abfd)->dwarf2_find_line_info))
    {
    {
      if (!*functionname_ptr)
      if (!*functionname_ptr)
        elf_find_function (abfd, section, symbols, offset,
        elf_find_function (abfd, section, symbols, offset,
                           *filename_ptr ? NULL : filename_ptr,
                           *filename_ptr ? NULL : filename_ptr,
                           functionname_ptr);
                           functionname_ptr);
 
 
      return TRUE;
      return TRUE;
    }
    }
 
 
  if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
  if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
                                             &found, filename_ptr,
                                             &found, filename_ptr,
                                             functionname_ptr, line_ptr,
                                             functionname_ptr, line_ptr,
                                             &elf_tdata (abfd)->line_info))
                                             &elf_tdata (abfd)->line_info))
    return FALSE;
    return FALSE;
  if (found && (*functionname_ptr || *line_ptr))
  if (found && (*functionname_ptr || *line_ptr))
    return TRUE;
    return TRUE;
 
 
  if (symbols == NULL)
  if (symbols == NULL)
    return FALSE;
    return FALSE;
 
 
  if (! elf_find_function (abfd, section, symbols, offset,
  if (! elf_find_function (abfd, section, symbols, offset,
                           filename_ptr, functionname_ptr))
                           filename_ptr, functionname_ptr))
    return FALSE;
    return FALSE;
 
 
  *line_ptr = 0;
  *line_ptr = 0;
  return TRUE;
  return TRUE;
}
}
 
 
/* Find the line for a symbol.  */
/* Find the line for a symbol.  */
 
 
bfd_boolean
bfd_boolean
_bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
_bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
                    const char **filename_ptr, unsigned int *line_ptr)
                    const char **filename_ptr, unsigned int *line_ptr)
{
{
  return _bfd_dwarf2_find_line (abfd, symbols, symbol,
  return _bfd_dwarf2_find_line (abfd, symbols, symbol,
                                filename_ptr, line_ptr, 0,
                                filename_ptr, line_ptr, 0,
                                &elf_tdata (abfd)->dwarf2_find_line_info);
                                &elf_tdata (abfd)->dwarf2_find_line_info);
}
}
 
 
/* After a call to bfd_find_nearest_line, successive calls to
/* After a call to bfd_find_nearest_line, successive calls to
   bfd_find_inliner_info can be used to get source information about
   bfd_find_inliner_info can be used to get source information about
   each level of function inlining that terminated at the address
   each level of function inlining that terminated at the address
   passed to bfd_find_nearest_line.  Currently this is only supported
   passed to bfd_find_nearest_line.  Currently this is only supported
   for DWARF2 with appropriate DWARF3 extensions. */
   for DWARF2 with appropriate DWARF3 extensions. */
 
 
bfd_boolean
bfd_boolean
_bfd_elf_find_inliner_info (bfd *abfd,
_bfd_elf_find_inliner_info (bfd *abfd,
                            const char **filename_ptr,
                            const char **filename_ptr,
                            const char **functionname_ptr,
                            const char **functionname_ptr,
                            unsigned int *line_ptr)
                            unsigned int *line_ptr)
{
{
  bfd_boolean found;
  bfd_boolean found;
  found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
  found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
                                         functionname_ptr, line_ptr,
                                         functionname_ptr, line_ptr,
                                         & elf_tdata (abfd)->dwarf2_find_line_info);
                                         & elf_tdata (abfd)->dwarf2_find_line_info);
  return found;
  return found;
}
}
 
 
int
int
_bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
_bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
{
{
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
  int ret = bed->s->sizeof_ehdr;
  int ret = bed->s->sizeof_ehdr;
 
 
  if (!info->relocatable)
  if (!info->relocatable)
    {
    {
      bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
      bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
 
 
      if (phdr_size == (bfd_size_type) -1)
      if (phdr_size == (bfd_size_type) -1)
        {
        {
          struct elf_segment_map *m;
          struct elf_segment_map *m;
 
 
          phdr_size = 0;
          phdr_size = 0;
          for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
          for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
            phdr_size += bed->s->sizeof_phdr;
            phdr_size += bed->s->sizeof_phdr;
 
 
          if (phdr_size == 0)
          if (phdr_size == 0)
            phdr_size = get_program_header_size (abfd, info);
            phdr_size = get_program_header_size (abfd, info);
        }
        }
 
 
      elf_tdata (abfd)->program_header_size = phdr_size;
      elf_tdata (abfd)->program_header_size = phdr_size;
      ret += phdr_size;
      ret += phdr_size;
    }
    }
 
 
  return ret;
  return ret;
}
}
 
 
bfd_boolean
bfd_boolean
_bfd_elf_set_section_contents (bfd *abfd,
_bfd_elf_set_section_contents (bfd *abfd,
                               sec_ptr section,
                               sec_ptr section,
                               const void *location,
                               const void *location,
                               file_ptr offset,
                               file_ptr offset,
                               bfd_size_type count)
                               bfd_size_type count)
{
{
  Elf_Internal_Shdr *hdr;
  Elf_Internal_Shdr *hdr;
  bfd_signed_vma pos;
  bfd_signed_vma pos;
 
 
  if (! abfd->output_has_begun
  if (! abfd->output_has_begun
      && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
      && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
    return FALSE;
    return FALSE;
 
 
  hdr = &elf_section_data (section)->this_hdr;
  hdr = &elf_section_data (section)->this_hdr;
  pos = hdr->sh_offset + offset;
  pos = hdr->sh_offset + offset;
  if (bfd_seek (abfd, pos, SEEK_SET) != 0
  if (bfd_seek (abfd, pos, SEEK_SET) != 0
      || bfd_bwrite (location, count, abfd) != count)
      || bfd_bwrite (location, count, abfd) != count)
    return FALSE;
    return FALSE;
 
 
  return TRUE;
  return TRUE;
}
}
 
 
void
void
_bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
_bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
                           arelent *cache_ptr ATTRIBUTE_UNUSED,
                           arelent *cache_ptr ATTRIBUTE_UNUSED,
                           Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
                           Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
{
{
  abort ();
  abort ();
}
}
 
 
/* Try to convert a non-ELF reloc into an ELF one.  */
/* Try to convert a non-ELF reloc into an ELF one.  */
 
 
bfd_boolean
bfd_boolean
_bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
_bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
{
{
  /* Check whether we really have an ELF howto.  */
  /* Check whether we really have an ELF howto.  */
 
 
  if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
  if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
    {
    {
      bfd_reloc_code_real_type code;
      bfd_reloc_code_real_type code;
      reloc_howto_type *howto;
      reloc_howto_type *howto;
 
 
      /* Alien reloc: Try to determine its type to replace it with an
      /* Alien reloc: Try to determine its type to replace it with an
         equivalent ELF reloc.  */
         equivalent ELF reloc.  */
 
 
      if (areloc->howto->pc_relative)
      if (areloc->howto->pc_relative)
        {
        {
          switch (areloc->howto->bitsize)
          switch (areloc->howto->bitsize)
            {
            {
            case 8:
            case 8:
              code = BFD_RELOC_8_PCREL;
              code = BFD_RELOC_8_PCREL;
              break;
              break;
            case 12:
            case 12:
              code = BFD_RELOC_12_PCREL;
              code = BFD_RELOC_12_PCREL;
              break;
              break;
            case 16:
            case 16:
              code = BFD_RELOC_16_PCREL;
              code = BFD_RELOC_16_PCREL;
              break;
              break;
            case 24:
            case 24:
              code = BFD_RELOC_24_PCREL;
              code = BFD_RELOC_24_PCREL;
              break;
              break;
            case 32:
            case 32:
              code = BFD_RELOC_32_PCREL;
              code = BFD_RELOC_32_PCREL;
              break;
              break;
            case 64:
            case 64:
              code = BFD_RELOC_64_PCREL;
              code = BFD_RELOC_64_PCREL;
              break;
              break;
            default:
            default:
              goto fail;
              goto fail;
            }
            }
 
 
          howto = bfd_reloc_type_lookup (abfd, code);
          howto = bfd_reloc_type_lookup (abfd, code);
 
 
          if (areloc->howto->pcrel_offset != howto->pcrel_offset)
          if (areloc->howto->pcrel_offset != howto->pcrel_offset)
            {
            {
              if (howto->pcrel_offset)
              if (howto->pcrel_offset)
                areloc->addend += areloc->address;
                areloc->addend += areloc->address;
              else
              else
                areloc->addend -= areloc->address; /* addend is unsigned!! */
                areloc->addend -= areloc->address; /* addend is unsigned!! */
            }
            }
        }
        }
      else
      else
        {
        {
          switch (areloc->howto->bitsize)
          switch (areloc->howto->bitsize)
            {
            {
            case 8:
            case 8:
              code = BFD_RELOC_8;
              code = BFD_RELOC_8;
              break;
              break;
            case 14:
            case 14:
              code = BFD_RELOC_14;
              code = BFD_RELOC_14;
              break;
              break;
            case 16:
            case 16:
              code = BFD_RELOC_16;
              code = BFD_RELOC_16;
              break;
              break;
            case 26:
            case 26:
              code = BFD_RELOC_26;
              code = BFD_RELOC_26;
              break;
              break;
            case 32:
            case 32:
              code = BFD_RELOC_32;
              code = BFD_RELOC_32;
              break;
              break;
            case 64:
            case 64:
              code = BFD_RELOC_64;
              code = BFD_RELOC_64;
              break;
              break;
            default:
            default:
              goto fail;
              goto fail;
            }
            }
 
 
          howto = bfd_reloc_type_lookup (abfd, code);
          howto = bfd_reloc_type_lookup (abfd, code);
        }
        }
 
 
      if (howto)
      if (howto)
        areloc->howto = howto;
        areloc->howto = howto;
      else
      else
        goto fail;
        goto fail;
    }
    }
 
 
  return TRUE;
  return TRUE;
 
 
 fail:
 fail:
  (*_bfd_error_handler)
  (*_bfd_error_handler)
    (_("%B: unsupported relocation type %s"),
    (_("%B: unsupported relocation type %s"),
     abfd, areloc->howto->name);
     abfd, areloc->howto->name);
  bfd_set_error (bfd_error_bad_value);
  bfd_set_error (bfd_error_bad_value);
  return FALSE;
  return FALSE;
}
}
 
 
bfd_boolean
bfd_boolean
_bfd_elf_close_and_cleanup (bfd *abfd)
_bfd_elf_close_and_cleanup (bfd *abfd)
{
{
  if (bfd_get_format (abfd) == bfd_object)
  if (bfd_get_format (abfd) == bfd_object)
    {
    {
      if (elf_tdata (abfd) != NULL && elf_shstrtab (abfd) != NULL)
      if (elf_tdata (abfd) != NULL && elf_shstrtab (abfd) != NULL)
        _bfd_elf_strtab_free (elf_shstrtab (abfd));
        _bfd_elf_strtab_free (elf_shstrtab (abfd));
      _bfd_dwarf2_cleanup_debug_info (abfd);
      _bfd_dwarf2_cleanup_debug_info (abfd);
    }
    }
 
 
  return _bfd_generic_close_and_cleanup (abfd);
  return _bfd_generic_close_and_cleanup (abfd);
}
}
 
 
/* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
/* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
   in the relocation's offset.  Thus we cannot allow any sort of sanity
   in the relocation's offset.  Thus we cannot allow any sort of sanity
   range-checking to interfere.  There is nothing else to do in processing
   range-checking to interfere.  There is nothing else to do in processing
   this reloc.  */
   this reloc.  */
 
 
bfd_reloc_status_type
bfd_reloc_status_type
_bfd_elf_rel_vtable_reloc_fn
_bfd_elf_rel_vtable_reloc_fn
  (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
  (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
   struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
   struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
   void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
   void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
   bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
   bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
{
{
  return bfd_reloc_ok;
  return bfd_reloc_ok;
}
}


/* Elf core file support.  Much of this only works on native
/* Elf core file support.  Much of this only works on native
   toolchains, since we rely on knowing the
   toolchains, since we rely on knowing the
   machine-dependent procfs structure in order to pick
   machine-dependent procfs structure in order to pick
   out details about the corefile.  */
   out details about the corefile.  */
 
 
#ifdef HAVE_SYS_PROCFS_H
#ifdef HAVE_SYS_PROCFS_H
# include <sys/procfs.h>
# include <sys/procfs.h>
#endif
#endif
 
 
/* FIXME: this is kinda wrong, but it's what gdb wants.  */
/* FIXME: this is kinda wrong, but it's what gdb wants.  */
 
 
static int
static int
elfcore_make_pid (bfd *abfd)
elfcore_make_pid (bfd *abfd)
{
{
  return ((elf_tdata (abfd)->core_lwpid << 16)
  return ((elf_tdata (abfd)->core_lwpid << 16)
          + (elf_tdata (abfd)->core_pid));
          + (elf_tdata (abfd)->core_pid));
}
}
 
 
/* If there isn't a section called NAME, make one, using
/* If there isn't a section called NAME, make one, using
   data from SECT.  Note, this function will generate a
   data from SECT.  Note, this function will generate a
   reference to NAME, so you shouldn't deallocate or
   reference to NAME, so you shouldn't deallocate or
   overwrite it.  */
   overwrite it.  */
 
 
static bfd_boolean
static bfd_boolean
elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
{
{
  asection *sect2;
  asection *sect2;
 
 
  if (bfd_get_section_by_name (abfd, name) != NULL)
  if (bfd_get_section_by_name (abfd, name) != NULL)
    return TRUE;
    return TRUE;
 
 
  sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
  sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
  if (sect2 == NULL)
  if (sect2 == NULL)
    return FALSE;
    return FALSE;
 
 
  sect2->size = sect->size;
  sect2->size = sect->size;
  sect2->filepos = sect->filepos;
  sect2->filepos = sect->filepos;
  sect2->alignment_power = sect->alignment_power;
  sect2->alignment_power = sect->alignment_power;
  return TRUE;
  return TRUE;
}
}
 
 
/* Create a pseudosection containing SIZE bytes at FILEPOS.  This
/* Create a pseudosection containing SIZE bytes at FILEPOS.  This
   actually creates up to two pseudosections:
   actually creates up to two pseudosections:
   - For the single-threaded case, a section named NAME, unless
   - For the single-threaded case, a section named NAME, unless
     such a section already exists.
     such a section already exists.
   - For the multi-threaded case, a section named "NAME/PID", where
   - For the multi-threaded case, a section named "NAME/PID", where
     PID is elfcore_make_pid (abfd).
     PID is elfcore_make_pid (abfd).
   Both pseudosections have identical contents. */
   Both pseudosections have identical contents. */
bfd_boolean
bfd_boolean
_bfd_elfcore_make_pseudosection (bfd *abfd,
_bfd_elfcore_make_pseudosection (bfd *abfd,
                                 char *name,
                                 char *name,
                                 size_t size,
                                 size_t size,
                                 ufile_ptr filepos)
                                 ufile_ptr filepos)
{
{
  char buf[100];
  char buf[100];
  char *threaded_name;
  char *threaded_name;
  size_t len;
  size_t len;
  asection *sect;
  asection *sect;
 
 
  /* Build the section name.  */
  /* Build the section name.  */
 
 
  sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
  sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
  len = strlen (buf) + 1;
  len = strlen (buf) + 1;
  threaded_name = (char *) bfd_alloc (abfd, len);
  threaded_name = (char *) bfd_alloc (abfd, len);
  if (threaded_name == NULL)
  if (threaded_name == NULL)
    return FALSE;
    return FALSE;
  memcpy (threaded_name, buf, len);
  memcpy (threaded_name, buf, len);
 
 
  sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
  sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
                                             SEC_HAS_CONTENTS);
                                             SEC_HAS_CONTENTS);
  if (sect == NULL)
  if (sect == NULL)
    return FALSE;
    return FALSE;
  sect->size = size;
  sect->size = size;
  sect->filepos = filepos;
  sect->filepos = filepos;
  sect->alignment_power = 2;
  sect->alignment_power = 2;
 
 
  return elfcore_maybe_make_sect (abfd, name, sect);
  return elfcore_maybe_make_sect (abfd, name, sect);
}
}
 
 
/* prstatus_t exists on:
/* prstatus_t exists on:
     solaris 2.5+
     solaris 2.5+
     linux 2.[01] + glibc
     linux 2.[01] + glibc
     unixware 4.2
     unixware 4.2
*/
*/
 
 
#if defined (HAVE_PRSTATUS_T)
#if defined (HAVE_PRSTATUS_T)
 
 
static bfd_boolean
static bfd_boolean
elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
{
{
  size_t size;
  size_t size;
  int offset;
  int offset;
 
 
  if (note->descsz == sizeof (prstatus_t))
  if (note->descsz == sizeof (prstatus_t))
    {
    {
      prstatus_t prstat;
      prstatus_t prstat;
 
 
      size = sizeof (prstat.pr_reg);
      size = sizeof (prstat.pr_reg);
      offset   = offsetof (prstatus_t, pr_reg);
      offset   = offsetof (prstatus_t, pr_reg);
      memcpy (&prstat, note->descdata, sizeof (prstat));
      memcpy (&prstat, note->descdata, sizeof (prstat));
 
 
      /* Do not overwrite the core signal if it
      /* Do not overwrite the core signal if it
         has already been set by another thread.  */
         has already been set by another thread.  */
      if (elf_tdata (abfd)->core_signal == 0)
      if (elf_tdata (abfd)->core_signal == 0)
        elf_tdata (abfd)->core_signal = prstat.pr_cursig;
        elf_tdata (abfd)->core_signal = prstat.pr_cursig;
      elf_tdata (abfd)->core_pid = prstat.pr_pid;
      elf_tdata (abfd)->core_pid = prstat.pr_pid;
 
 
      /* pr_who exists on:
      /* pr_who exists on:
         solaris 2.5+
         solaris 2.5+
         unixware 4.2
         unixware 4.2
         pr_who doesn't exist on:
         pr_who doesn't exist on:
         linux 2.[01]
         linux 2.[01]
         */
         */
#if defined (HAVE_PRSTATUS_T_PR_WHO)
#if defined (HAVE_PRSTATUS_T_PR_WHO)
      elf_tdata (abfd)->core_lwpid = prstat.pr_who;
      elf_tdata (abfd)->core_lwpid = prstat.pr_who;
#endif
#endif
    }
    }
#if defined (HAVE_PRSTATUS32_T)
#if defined (HAVE_PRSTATUS32_T)
  else if (note->descsz == sizeof (prstatus32_t))
  else if (note->descsz == sizeof (prstatus32_t))
    {
    {
      /* 64-bit host, 32-bit corefile */
      /* 64-bit host, 32-bit corefile */
      prstatus32_t prstat;
      prstatus32_t prstat;
 
 
      size = sizeof (prstat.pr_reg);
      size = sizeof (prstat.pr_reg);
      offset   = offsetof (prstatus32_t, pr_reg);
      offset   = offsetof (prstatus32_t, pr_reg);
      memcpy (&prstat, note->descdata, sizeof (prstat));
      memcpy (&prstat, note->descdata, sizeof (prstat));
 
 
      /* Do not overwrite the core signal if it
      /* Do not overwrite the core signal if it
         has already been set by another thread.  */
         has already been set by another thread.  */
      if (elf_tdata (abfd)->core_signal == 0)
      if (elf_tdata (abfd)->core_signal == 0)
        elf_tdata (abfd)->core_signal = prstat.pr_cursig;
        elf_tdata (abfd)->core_signal = prstat.pr_cursig;
      elf_tdata (abfd)->core_pid = prstat.pr_pid;
      elf_tdata (abfd)->core_pid = prstat.pr_pid;
 
 
      /* pr_who exists on:
      /* pr_who exists on:
         solaris 2.5+
         solaris 2.5+
         unixware 4.2
         unixware 4.2
         pr_who doesn't exist on:
         pr_who doesn't exist on:
         linux 2.[01]
         linux 2.[01]
         */
         */
#if defined (HAVE_PRSTATUS32_T_PR_WHO)
#if defined (HAVE_PRSTATUS32_T_PR_WHO)
      elf_tdata (abfd)->core_lwpid = prstat.pr_who;
      elf_tdata (abfd)->core_lwpid = prstat.pr_who;
#endif
#endif
    }
    }
#endif /* HAVE_PRSTATUS32_T */
#endif /* HAVE_PRSTATUS32_T */
  else
  else
    {
    {
      /* Fail - we don't know how to handle any other
      /* Fail - we don't know how to handle any other
         note size (ie. data object type).  */
         note size (ie. data object type).  */
      return TRUE;
      return TRUE;
    }
    }
 
 
  /* Make a ".reg/999" section and a ".reg" section.  */
  /* Make a ".reg/999" section and a ".reg" section.  */
  return _bfd_elfcore_make_pseudosection (abfd, ".reg",
  return _bfd_elfcore_make_pseudosection (abfd, ".reg",
                                          size, note->descpos + offset);
                                          size, note->descpos + offset);
}
}
#endif /* defined (HAVE_PRSTATUS_T) */
#endif /* defined (HAVE_PRSTATUS_T) */
 
 
/* Create a pseudosection containing the exact contents of NOTE.  */
/* Create a pseudosection containing the exact contents of NOTE.  */
static bfd_boolean
static bfd_boolean
elfcore_make_note_pseudosection (bfd *abfd,
elfcore_make_note_pseudosection (bfd *abfd,
                                 char *name,
                                 char *name,
                                 Elf_Internal_Note *note)
                                 Elf_Internal_Note *note)
{
{
  return _bfd_elfcore_make_pseudosection (abfd, name,
  return _bfd_elfcore_make_pseudosection (abfd, name,
                                          note->descsz, note->descpos);
                                          note->descsz, note->descpos);
}
}
 
 
/* There isn't a consistent prfpregset_t across platforms,
/* There isn't a consistent prfpregset_t across platforms,
   but it doesn't matter, because we don't have to pick this
   but it doesn't matter, because we don't have to pick this
   data structure apart.  */
   data structure apart.  */
 
 
static bfd_boolean
static bfd_boolean
elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
{
{
  return elfcore_make_note_pseudosection (abfd, ".reg2", note);
  return elfcore_make_note_pseudosection (abfd, ".reg2", note);
}
}
 
 
/* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
/* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
   type of NT_PRXFPREG.  Just include the whole note's contents
   type of NT_PRXFPREG.  Just include the whole note's contents
   literally.  */
   literally.  */
 
 
static bfd_boolean
static bfd_boolean
elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
{
{
  return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
  return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
}
}
 
 
static bfd_boolean
static bfd_boolean
elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
{
{
  return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
  return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
}
}
 
 
static bfd_boolean
static bfd_boolean
elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
{
{
  return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
  return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
}
}
 
 
#if defined (HAVE_PRPSINFO_T)
#if defined (HAVE_PRPSINFO_T)
typedef prpsinfo_t   elfcore_psinfo_t;
typedef prpsinfo_t   elfcore_psinfo_t;
#if defined (HAVE_PRPSINFO32_T)         /* Sparc64 cross Sparc32 */
#if defined (HAVE_PRPSINFO32_T)         /* Sparc64 cross Sparc32 */
typedef prpsinfo32_t elfcore_psinfo32_t;
typedef prpsinfo32_t elfcore_psinfo32_t;
#endif
#endif
#endif
#endif
 
 
#if defined (HAVE_PSINFO_T)
#if defined (HAVE_PSINFO_T)
typedef psinfo_t   elfcore_psinfo_t;
typedef psinfo_t   elfcore_psinfo_t;
#if defined (HAVE_PSINFO32_T)           /* Sparc64 cross Sparc32 */
#if defined (HAVE_PSINFO32_T)           /* Sparc64 cross Sparc32 */
typedef psinfo32_t elfcore_psinfo32_t;
typedef psinfo32_t elfcore_psinfo32_t;
#endif
#endif
#endif
#endif
 
 
/* return a malloc'ed copy of a string at START which is at
/* return a malloc'ed copy of a string at START which is at
   most MAX bytes long, possibly without a terminating '\0'.
   most MAX bytes long, possibly without a terminating '\0'.
   the copy will always have a terminating '\0'.  */
   the copy will always have a terminating '\0'.  */
 
 
char *
char *
_bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
_bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
{
{
  char *dups;
  char *dups;
  char *end = (char *) memchr (start, '\0', max);
  char *end = (char *) memchr (start, '\0', max);
  size_t len;
  size_t len;
 
 
  if (end == NULL)
  if (end == NULL)
    len = max;
    len = max;
  else
  else
    len = end - start;
    len = end - start;
 
 
  dups = (char *) bfd_alloc (abfd, len + 1);
  dups = (char *) bfd_alloc (abfd, len + 1);
  if (dups == NULL)
  if (dups == NULL)
    return NULL;
    return NULL;
 
 
  memcpy (dups, start, len);
  memcpy (dups, start, len);
  dups[len] = '\0';
  dups[len] = '\0';
 
 
  return dups;
  return dups;
}
}
 
 
#if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
#if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
static bfd_boolean
static bfd_boolean
elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
{
{
  if (note->descsz == sizeof (elfcore_psinfo_t))
  if (note->descsz == sizeof (elfcore_psinfo_t))
    {
    {
      elfcore_psinfo_t psinfo;
      elfcore_psinfo_t psinfo;
 
 
      memcpy (&psinfo, note->descdata, sizeof (psinfo));
      memcpy (&psinfo, note->descdata, sizeof (psinfo));
 
 
      elf_tdata (abfd)->core_program
      elf_tdata (abfd)->core_program
        = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
        = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
                                sizeof (psinfo.pr_fname));
                                sizeof (psinfo.pr_fname));
 
 
      elf_tdata (abfd)->core_command
      elf_tdata (abfd)->core_command
        = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
        = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
                                sizeof (psinfo.pr_psargs));
                                sizeof (psinfo.pr_psargs));
    }
    }
#if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
#if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
  else if (note->descsz == sizeof (elfcore_psinfo32_t))
  else if (note->descsz == sizeof (elfcore_psinfo32_t))
    {
    {
      /* 64-bit host, 32-bit corefile */
      /* 64-bit host, 32-bit corefile */
      elfcore_psinfo32_t psinfo;
      elfcore_psinfo32_t psinfo;
 
 
      memcpy (&psinfo, note->descdata, sizeof (psinfo));
      memcpy (&psinfo, note->descdata, sizeof (psinfo));
 
 
      elf_tdata (abfd)->core_program
      elf_tdata (abfd)->core_program
        = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
        = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
                                sizeof (psinfo.pr_fname));
                                sizeof (psinfo.pr_fname));
 
 
      elf_tdata (abfd)->core_command
      elf_tdata (abfd)->core_command
        = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
        = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
                                sizeof (psinfo.pr_psargs));
                                sizeof (psinfo.pr_psargs));
    }
    }
#endif
#endif
 
 
  else
  else
    {
    {
      /* Fail - we don't know how to handle any other
      /* Fail - we don't know how to handle any other
         note size (ie. data object type).  */
         note size (ie. data object type).  */
      return TRUE;
      return TRUE;
    }
    }
 
 
  /* Note that for some reason, a spurious space is tacked
  /* Note that for some reason, a spurious space is tacked
     onto the end of the args in some (at least one anyway)
     onto the end of the args in some (at least one anyway)
     implementations, so strip it off if it exists.  */
     implementations, so strip it off if it exists.  */
 
 
  {
  {
    char *command = elf_tdata (abfd)->core_command;
    char *command = elf_tdata (abfd)->core_command;
    int n = strlen (command);
    int n = strlen (command);
 
 
    if (0 < n && command[n - 1] == ' ')
    if (0 < n && command[n - 1] == ' ')
      command[n - 1] = '\0';
      command[n - 1] = '\0';
  }
  }
 
 
  return TRUE;
  return TRUE;
}
}
#endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
#endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
 
 
#if defined (HAVE_PSTATUS_T)
#if defined (HAVE_PSTATUS_T)
static bfd_boolean
static bfd_boolean
elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
{
{
  if (note->descsz == sizeof (pstatus_t)
  if (note->descsz == sizeof (pstatus_t)
#if defined (HAVE_PXSTATUS_T)
#if defined (HAVE_PXSTATUS_T)
      || note->descsz == sizeof (pxstatus_t)
      || note->descsz == sizeof (pxstatus_t)
#endif
#endif
      )
      )
    {
    {
      pstatus_t pstat;
      pstatus_t pstat;
 
 
      memcpy (&pstat, note->descdata, sizeof (pstat));
      memcpy (&pstat, note->descdata, sizeof (pstat));
 
 
      elf_tdata (abfd)->core_pid = pstat.pr_pid;
      elf_tdata (abfd)->core_pid = pstat.pr_pid;
    }
    }
#if defined (HAVE_PSTATUS32_T)
#if defined (HAVE_PSTATUS32_T)
  else if (note->descsz == sizeof (pstatus32_t))
  else if (note->descsz == sizeof (pstatus32_t))
    {
    {
      /* 64-bit host, 32-bit corefile */
      /* 64-bit host, 32-bit corefile */
      pstatus32_t pstat;
      pstatus32_t pstat;
 
 
      memcpy (&pstat, note->descdata, sizeof (pstat));
      memcpy (&pstat, note->descdata, sizeof (pstat));
 
 
      elf_tdata (abfd)->core_pid = pstat.pr_pid;
      elf_tdata (abfd)->core_pid = pstat.pr_pid;
    }
    }
#endif
#endif
  /* Could grab some more details from the "representative"
  /* Could grab some more details from the "representative"
     lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
     lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
     NT_LWPSTATUS note, presumably.  */
     NT_LWPSTATUS note, presumably.  */
 
 
  return TRUE;
  return TRUE;
}
}
#endif /* defined (HAVE_PSTATUS_T) */
#endif /* defined (HAVE_PSTATUS_T) */
 
 
#if defined (HAVE_LWPSTATUS_T)
#if defined (HAVE_LWPSTATUS_T)
static bfd_boolean
static bfd_boolean
elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
{
{
  lwpstatus_t lwpstat;
  lwpstatus_t lwpstat;
  char buf[100];
  char buf[100];
  char *name;
  char *name;
  size_t len;
  size_t len;
  asection *sect;
  asection *sect;
 
 
  if (note->descsz != sizeof (lwpstat)
  if (note->descsz != sizeof (lwpstat)
#if defined (HAVE_LWPXSTATUS_T)
#if defined (HAVE_LWPXSTATUS_T)
      && note->descsz != sizeof (lwpxstatus_t)
      && note->descsz != sizeof (lwpxstatus_t)
#endif
#endif
      )
      )
    return TRUE;
    return TRUE;
 
 
  memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
  memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
 
 
  elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
  elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
  elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
  elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
 
 
  /* Make a ".reg/999" section.  */
  /* Make a ".reg/999" section.  */
 
 
  sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
  sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
  len = strlen (buf) + 1;
  len = strlen (buf) + 1;
  name = bfd_alloc (abfd, len);
  name = bfd_alloc (abfd, len);
  if (name == NULL)
  if (name == NULL)
    return FALSE;
    return FALSE;
  memcpy (name, buf, len);
  memcpy (name, buf, len);
 
 
  sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
  sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
  if (sect == NULL)
  if (sect == NULL)
    return FALSE;
    return FALSE;
 
 
#if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
#if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
  sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
  sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
  sect->filepos = note->descpos
  sect->filepos = note->descpos
    + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
    + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
#endif
#endif
 
 
#if defined (HAVE_LWPSTATUS_T_PR_REG)
#if defined (HAVE_LWPSTATUS_T_PR_REG)
  sect->size = sizeof (lwpstat.pr_reg);
  sect->size = sizeof (lwpstat.pr_reg);
  sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
  sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
#endif
#endif
 
 
  sect->alignment_power = 2;
  sect->alignment_power = 2;
 
 
  if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
  if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
    return FALSE;
    return FALSE;
 
 
  /* Make a ".reg2/999" section */
  /* Make a ".reg2/999" section */
 
 
  sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
  sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
  len = strlen (buf) + 1;
  len = strlen (buf) + 1;
  name = bfd_alloc (abfd, len);
  name = bfd_alloc (abfd, len);
  if (name == NULL)
  if (name == NULL)
    return FALSE;
    return FALSE;
  memcpy (name, buf, len);
  memcpy (name, buf, len);
 
 
  sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
  sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
  if (sect == NULL)
  if (sect == NULL)
    return FALSE;
    return FALSE;
 
 
#if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
#if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
  sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
  sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
  sect->filepos = note->descpos
  sect->filepos = note->descpos
    + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
    + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
#endif
#endif
 
 
#if defined (HAVE_LWPSTATUS_T_PR_FPREG)
#if defined (HAVE_LWPSTATUS_T_PR_FPREG)
  sect->size = sizeof (lwpstat.pr_fpreg);
  sect->size = sizeof (lwpstat.pr_fpreg);
  sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
  sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
#endif
#endif
 
 
  sect->alignment_power = 2;
  sect->alignment_power = 2;
 
 
  return elfcore_maybe_make_sect (abfd, ".reg2", sect);
  return elfcore_maybe_make_sect (abfd, ".reg2", sect);
}
}
#endif /* defined (HAVE_LWPSTATUS_T) */
#endif /* defined (HAVE_LWPSTATUS_T) */
 
 
static bfd_boolean
static bfd_boolean
elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
{
{
  char buf[30];
  char buf[30];
  char *name;
  char *name;
  size_t len;
  size_t len;
  asection *sect;
  asection *sect;
  int type;
  int type;
  int is_active_thread;
  int is_active_thread;
  bfd_vma base_addr;
  bfd_vma base_addr;
 
 
  if (note->descsz < 728)
  if (note->descsz < 728)
    return TRUE;
    return TRUE;
 
 
  if (! CONST_STRNEQ (note->namedata, "win32"))
  if (! CONST_STRNEQ (note->namedata, "win32"))
    return TRUE;
    return TRUE;
 
 
  type = bfd_get_32 (abfd, note->descdata);
  type = bfd_get_32 (abfd, note->descdata);
 
 
  switch (type)
  switch (type)
    {
    {
    case 1 /* NOTE_INFO_PROCESS */:
    case 1 /* NOTE_INFO_PROCESS */:
      /* FIXME: need to add ->core_command.  */
      /* FIXME: need to add ->core_command.  */
      /* process_info.pid */
      /* process_info.pid */
      elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 8);
      elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 8);
      /* process_info.signal */
      /* process_info.signal */
      elf_tdata (abfd)->core_signal = bfd_get_32 (abfd, note->descdata + 12);
      elf_tdata (abfd)->core_signal = bfd_get_32 (abfd, note->descdata + 12);
      break;
      break;
 
 
    case 2 /* NOTE_INFO_THREAD */:
    case 2 /* NOTE_INFO_THREAD */:
      /* Make a ".reg/999" section.  */
      /* Make a ".reg/999" section.  */
      /* thread_info.tid */
      /* thread_info.tid */
      sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
      sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
 
 
      len = strlen (buf) + 1;
      len = strlen (buf) + 1;
      name = (char *) bfd_alloc (abfd, len);
      name = (char *) bfd_alloc (abfd, len);
      if (name == NULL)
      if (name == NULL)
        return FALSE;
        return FALSE;
 
 
      memcpy (name, buf, len);
      memcpy (name, buf, len);
 
 
      sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
      sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
      if (sect == NULL)
      if (sect == NULL)
        return FALSE;
        return FALSE;
 
 
      /* sizeof (thread_info.thread_context) */
      /* sizeof (thread_info.thread_context) */
      sect->size = 716;
      sect->size = 716;
      /* offsetof (thread_info.thread_context) */
      /* offsetof (thread_info.thread_context) */
      sect->filepos = note->descpos + 12;
      sect->filepos = note->descpos + 12;
      sect->alignment_power = 2;
      sect->alignment_power = 2;
 
 
      /* thread_info.is_active_thread */
      /* thread_info.is_active_thread */
      is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
      is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
 
 
      if (is_active_thread)
      if (is_active_thread)
        if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
        if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
          return FALSE;
          return FALSE;
      break;
      break;
 
 
    case 3 /* NOTE_INFO_MODULE */:
    case 3 /* NOTE_INFO_MODULE */:
      /* Make a ".module/xxxxxxxx" section.  */
      /* Make a ".module/xxxxxxxx" section.  */
      /* module_info.base_address */
      /* module_info.base_address */
      base_addr = bfd_get_32 (abfd, note->descdata + 4);
      base_addr = bfd_get_32 (abfd, note->descdata + 4);
      sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
      sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
 
 
      len = strlen (buf) + 1;
      len = strlen (buf) + 1;
      name = (char *) bfd_alloc (abfd, len);
      name = (char *) bfd_alloc (abfd, len);
      if (name == NULL)
      if (name == NULL)
        return FALSE;
        return FALSE;
 
 
      memcpy (name, buf, len);
      memcpy (name, buf, len);
 
 
      sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
      sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
 
 
      if (sect == NULL)
      if (sect == NULL)
        return FALSE;
        return FALSE;
 
 
      sect->size = note->descsz;
      sect->size = note->descsz;
      sect->filepos = note->descpos;
      sect->filepos = note->descpos;
      sect->alignment_power = 2;
      sect->alignment_power = 2;
      break;
      break;
 
 
    default:
    default:
      return TRUE;
      return TRUE;
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
static bfd_boolean
static bfd_boolean
elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
{
{
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
 
 
  switch (note->type)
  switch (note->type)
    {
    {
    default:
    default:
      return TRUE;
      return TRUE;
 
 
    case NT_PRSTATUS:
    case NT_PRSTATUS:
      if (bed->elf_backend_grok_prstatus)
      if (bed->elf_backend_grok_prstatus)
        if ((*bed->elf_backend_grok_prstatus) (abfd, note))
        if ((*bed->elf_backend_grok_prstatus) (abfd, note))
          return TRUE;
          return TRUE;
#if defined (HAVE_PRSTATUS_T)
#if defined (HAVE_PRSTATUS_T)
      return elfcore_grok_prstatus (abfd, note);
      return elfcore_grok_prstatus (abfd, note);
#else
#else
      return TRUE;
      return TRUE;
#endif
#endif
 
 
#if defined (HAVE_PSTATUS_T)
#if defined (HAVE_PSTATUS_T)
    case NT_PSTATUS:
    case NT_PSTATUS:
      return elfcore_grok_pstatus (abfd, note);
      return elfcore_grok_pstatus (abfd, note);
#endif
#endif
 
 
#if defined (HAVE_LWPSTATUS_T)
#if defined (HAVE_LWPSTATUS_T)
    case NT_LWPSTATUS:
    case NT_LWPSTATUS:
      return elfcore_grok_lwpstatus (abfd, note);
      return elfcore_grok_lwpstatus (abfd, note);
#endif
#endif
 
 
    case NT_FPREGSET:           /* FIXME: rename to NT_PRFPREG */
    case NT_FPREGSET:           /* FIXME: rename to NT_PRFPREG */
      return elfcore_grok_prfpreg (abfd, note);
      return elfcore_grok_prfpreg (abfd, note);
 
 
    case NT_WIN32PSTATUS:
    case NT_WIN32PSTATUS:
      return elfcore_grok_win32pstatus (abfd, note);
      return elfcore_grok_win32pstatus (abfd, note);
 
 
    case NT_PRXFPREG:           /* Linux SSE extension */
    case NT_PRXFPREG:           /* Linux SSE extension */
      if (note->namesz == 6
      if (note->namesz == 6
          && strcmp (note->namedata, "LINUX") == 0)
          && strcmp (note->namedata, "LINUX") == 0)
        return elfcore_grok_prxfpreg (abfd, note);
        return elfcore_grok_prxfpreg (abfd, note);
      else
      else
        return TRUE;
        return TRUE;
 
 
    case NT_PPC_VMX:
    case NT_PPC_VMX:
      if (note->namesz == 6
      if (note->namesz == 6
          && strcmp (note->namedata, "LINUX") == 0)
          && strcmp (note->namedata, "LINUX") == 0)
        return elfcore_grok_ppc_vmx (abfd, note);
        return elfcore_grok_ppc_vmx (abfd, note);
      else
      else
        return TRUE;
        return TRUE;
 
 
    case NT_PPC_VSX:
    case NT_PPC_VSX:
      if (note->namesz == 6
      if (note->namesz == 6
          && strcmp (note->namedata, "LINUX") == 0)
          && strcmp (note->namedata, "LINUX") == 0)
        return elfcore_grok_ppc_vsx (abfd, note);
        return elfcore_grok_ppc_vsx (abfd, note);
      else
      else
        return TRUE;
        return TRUE;
 
 
    case NT_PRPSINFO:
    case NT_PRPSINFO:
    case NT_PSINFO:
    case NT_PSINFO:
      if (bed->elf_backend_grok_psinfo)
      if (bed->elf_backend_grok_psinfo)
        if ((*bed->elf_backend_grok_psinfo) (abfd, note))
        if ((*bed->elf_backend_grok_psinfo) (abfd, note))
          return TRUE;
          return TRUE;
#if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
#if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
      return elfcore_grok_psinfo (abfd, note);
      return elfcore_grok_psinfo (abfd, note);
#else
#else
      return TRUE;
      return TRUE;
#endif
#endif
 
 
    case NT_AUXV:
    case NT_AUXV:
      {
      {
        asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
        asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
                                                             SEC_HAS_CONTENTS);
                                                             SEC_HAS_CONTENTS);
 
 
        if (sect == NULL)
        if (sect == NULL)
          return FALSE;
          return FALSE;
        sect->size = note->descsz;
        sect->size = note->descsz;
        sect->filepos = note->descpos;
        sect->filepos = note->descpos;
        sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
        sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
 
 
        return TRUE;
        return TRUE;
      }
      }
    }
    }
}
}
 
 
static bfd_boolean
static bfd_boolean
elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
{
{
  elf_tdata (abfd)->build_id_size = note->descsz;
  elf_tdata (abfd)->build_id_size = note->descsz;
  elf_tdata (abfd)->build_id = (bfd_byte *) bfd_alloc (abfd, note->descsz);
  elf_tdata (abfd)->build_id = (bfd_byte *) bfd_alloc (abfd, note->descsz);
  if (elf_tdata (abfd)->build_id == NULL)
  if (elf_tdata (abfd)->build_id == NULL)
    return FALSE;
    return FALSE;
 
 
  memcpy (elf_tdata (abfd)->build_id, note->descdata, note->descsz);
  memcpy (elf_tdata (abfd)->build_id, note->descdata, note->descsz);
 
 
  return TRUE;
  return TRUE;
}
}
 
 
static bfd_boolean
static bfd_boolean
elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
{
{
  switch (note->type)
  switch (note->type)
    {
    {
    default:
    default:
      return TRUE;
      return TRUE;
 
 
    case NT_GNU_BUILD_ID:
    case NT_GNU_BUILD_ID:
      return elfobj_grok_gnu_build_id (abfd, note);
      return elfobj_grok_gnu_build_id (abfd, note);
    }
    }
}
}
 
 
static bfd_boolean
static bfd_boolean
elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
{
{
  char *cp;
  char *cp;
 
 
  cp = strchr (note->namedata, '@');
  cp = strchr (note->namedata, '@');
  if (cp != NULL)
  if (cp != NULL)
    {
    {
      *lwpidp = atoi(cp + 1);
      *lwpidp = atoi(cp + 1);
      return TRUE;
      return TRUE;
    }
    }
  return FALSE;
  return FALSE;
}
}
 
 
static bfd_boolean
static bfd_boolean
elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
{
{
  /* Signal number at offset 0x08. */
  /* Signal number at offset 0x08. */
  elf_tdata (abfd)->core_signal
  elf_tdata (abfd)->core_signal
    = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
    = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
 
 
  /* Process ID at offset 0x50. */
  /* Process ID at offset 0x50. */
  elf_tdata (abfd)->core_pid
  elf_tdata (abfd)->core_pid
    = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
    = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
 
 
  /* Command name at 0x7c (max 32 bytes, including nul). */
  /* Command name at 0x7c (max 32 bytes, including nul). */
  elf_tdata (abfd)->core_command
  elf_tdata (abfd)->core_command
    = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
    = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
 
 
  return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
  return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
                                          note);
                                          note);
}
}
 
 
static bfd_boolean
static bfd_boolean
elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
{
{
  int lwp;
  int lwp;
 
 
  if (elfcore_netbsd_get_lwpid (note, &lwp))
  if (elfcore_netbsd_get_lwpid (note, &lwp))
    elf_tdata (abfd)->core_lwpid = lwp;
    elf_tdata (abfd)->core_lwpid = lwp;
 
 
  if (note->type == NT_NETBSDCORE_PROCINFO)
  if (note->type == NT_NETBSDCORE_PROCINFO)
    {
    {
      /* NetBSD-specific core "procinfo".  Note that we expect to
      /* NetBSD-specific core "procinfo".  Note that we expect to
         find this note before any of the others, which is fine,
         find this note before any of the others, which is fine,
         since the kernel writes this note out first when it
         since the kernel writes this note out first when it
         creates a core file.  */
         creates a core file.  */
 
 
      return elfcore_grok_netbsd_procinfo (abfd, note);
      return elfcore_grok_netbsd_procinfo (abfd, note);
    }
    }
 
 
  /* As of Jan 2002 there are no other machine-independent notes
  /* As of Jan 2002 there are no other machine-independent notes
     defined for NetBSD core files.  If the note type is less
     defined for NetBSD core files.  If the note type is less
     than the start of the machine-dependent note types, we don't
     than the start of the machine-dependent note types, we don't
     understand it.  */
     understand it.  */
 
 
  if (note->type < NT_NETBSDCORE_FIRSTMACH)
  if (note->type < NT_NETBSDCORE_FIRSTMACH)
    return TRUE;
    return TRUE;
 
 
 
 
  switch (bfd_get_arch (abfd))
  switch (bfd_get_arch (abfd))
    {
    {
      /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
      /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
         PT_GETFPREGS == mach+2.  */
         PT_GETFPREGS == mach+2.  */
 
 
    case bfd_arch_alpha:
    case bfd_arch_alpha:
    case bfd_arch_sparc:
    case bfd_arch_sparc:
      switch (note->type)
      switch (note->type)
        {
        {
        case NT_NETBSDCORE_FIRSTMACH+0:
        case NT_NETBSDCORE_FIRSTMACH+0:
          return elfcore_make_note_pseudosection (abfd, ".reg", note);
          return elfcore_make_note_pseudosection (abfd, ".reg", note);
 
 
        case NT_NETBSDCORE_FIRSTMACH+2:
        case NT_NETBSDCORE_FIRSTMACH+2:
          return elfcore_make_note_pseudosection (abfd, ".reg2", note);
          return elfcore_make_note_pseudosection (abfd, ".reg2", note);
 
 
        default:
        default:
          return TRUE;
          return TRUE;
        }
        }
 
 
      /* On all other arch's, PT_GETREGS == mach+1 and
      /* On all other arch's, PT_GETREGS == mach+1 and
         PT_GETFPREGS == mach+3.  */
         PT_GETFPREGS == mach+3.  */
 
 
    default:
    default:
      switch (note->type)
      switch (note->type)
        {
        {
        case NT_NETBSDCORE_FIRSTMACH+1:
        case NT_NETBSDCORE_FIRSTMACH+1:
          return elfcore_make_note_pseudosection (abfd, ".reg", note);
          return elfcore_make_note_pseudosection (abfd, ".reg", note);
 
 
        case NT_NETBSDCORE_FIRSTMACH+3:
        case NT_NETBSDCORE_FIRSTMACH+3:
          return elfcore_make_note_pseudosection (abfd, ".reg2", note);
          return elfcore_make_note_pseudosection (abfd, ".reg2", note);
 
 
        default:
        default:
          return TRUE;
          return TRUE;
        }
        }
    }
    }
    /* NOTREACHED */
    /* NOTREACHED */
}
}
 
 
static bfd_boolean
static bfd_boolean
elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
{
{
  /* Signal number at offset 0x08. */
  /* Signal number at offset 0x08. */
  elf_tdata (abfd)->core_signal
  elf_tdata (abfd)->core_signal
    = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
    = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
 
 
  /* Process ID at offset 0x20. */
  /* Process ID at offset 0x20. */
  elf_tdata (abfd)->core_pid
  elf_tdata (abfd)->core_pid
    = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
    = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
 
 
  /* Command name at 0x48 (max 32 bytes, including nul). */
  /* Command name at 0x48 (max 32 bytes, including nul). */
  elf_tdata (abfd)->core_command
  elf_tdata (abfd)->core_command
    = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
    = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
 
 
  return TRUE;
  return TRUE;
}
}
 
 
static bfd_boolean
static bfd_boolean
elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
{
{
  if (note->type == NT_OPENBSD_PROCINFO)
  if (note->type == NT_OPENBSD_PROCINFO)
    return elfcore_grok_openbsd_procinfo (abfd, note);
    return elfcore_grok_openbsd_procinfo (abfd, note);
 
 
  if (note->type == NT_OPENBSD_REGS)
  if (note->type == NT_OPENBSD_REGS)
    return elfcore_make_note_pseudosection (abfd, ".reg", note);
    return elfcore_make_note_pseudosection (abfd, ".reg", note);
 
 
  if (note->type == NT_OPENBSD_FPREGS)
  if (note->type == NT_OPENBSD_FPREGS)
    return elfcore_make_note_pseudosection (abfd, ".reg2", note);
    return elfcore_make_note_pseudosection (abfd, ".reg2", note);
 
 
  if (note->type == NT_OPENBSD_XFPREGS)
  if (note->type == NT_OPENBSD_XFPREGS)
    return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
    return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
 
 
  if (note->type == NT_OPENBSD_AUXV)
  if (note->type == NT_OPENBSD_AUXV)
    {
    {
      asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
      asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
                                                           SEC_HAS_CONTENTS);
                                                           SEC_HAS_CONTENTS);
 
 
      if (sect == NULL)
      if (sect == NULL)
        return FALSE;
        return FALSE;
      sect->size = note->descsz;
      sect->size = note->descsz;
      sect->filepos = note->descpos;
      sect->filepos = note->descpos;
      sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
      sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
 
 
      return TRUE;
      return TRUE;
    }
    }
 
 
  if (note->type == NT_OPENBSD_WCOOKIE)
  if (note->type == NT_OPENBSD_WCOOKIE)
    {
    {
      asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
      asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
                                                           SEC_HAS_CONTENTS);
                                                           SEC_HAS_CONTENTS);
 
 
      if (sect == NULL)
      if (sect == NULL)
        return FALSE;
        return FALSE;
      sect->size = note->descsz;
      sect->size = note->descsz;
      sect->filepos = note->descpos;
      sect->filepos = note->descpos;
      sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
      sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
 
 
      return TRUE;
      return TRUE;
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
static bfd_boolean
static bfd_boolean
elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
{
{
  void *ddata = note->descdata;
  void *ddata = note->descdata;
  char buf[100];
  char buf[100];
  char *name;
  char *name;
  asection *sect;
  asection *sect;
  short sig;
  short sig;
  unsigned flags;
  unsigned flags;
 
 
  /* nto_procfs_status 'pid' field is at offset 0.  */
  /* nto_procfs_status 'pid' field is at offset 0.  */
  elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
  elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
 
 
  /* nto_procfs_status 'tid' field is at offset 4.  Pass it back.  */
  /* nto_procfs_status 'tid' field is at offset 4.  Pass it back.  */
  *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
  *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
 
 
  /* nto_procfs_status 'flags' field is at offset 8.  */
  /* nto_procfs_status 'flags' field is at offset 8.  */
  flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
  flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
 
 
  /* nto_procfs_status 'what' field is at offset 14.  */
  /* nto_procfs_status 'what' field is at offset 14.  */
  if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
  if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
    {
    {
      elf_tdata (abfd)->core_signal = sig;
      elf_tdata (abfd)->core_signal = sig;
      elf_tdata (abfd)->core_lwpid = *tid;
      elf_tdata (abfd)->core_lwpid = *tid;
    }
    }
 
 
  /* _DEBUG_FLAG_CURTID (current thread) is 0x80.  Some cores
  /* _DEBUG_FLAG_CURTID (current thread) is 0x80.  Some cores
     do not come from signals so we make sure we set the current
     do not come from signals so we make sure we set the current
     thread just in case.  */
     thread just in case.  */
  if (flags & 0x00000080)
  if (flags & 0x00000080)
    elf_tdata (abfd)->core_lwpid = *tid;
    elf_tdata (abfd)->core_lwpid = *tid;
 
 
  /* Make a ".qnx_core_status/%d" section.  */
  /* Make a ".qnx_core_status/%d" section.  */
  sprintf (buf, ".qnx_core_status/%ld", *tid);
  sprintf (buf, ".qnx_core_status/%ld", *tid);
 
 
  name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
  name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
  if (name == NULL)
  if (name == NULL)
    return FALSE;
    return FALSE;
  strcpy (name, buf);
  strcpy (name, buf);
 
 
  sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
  sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
  if (sect == NULL)
  if (sect == NULL)
    return FALSE;
    return FALSE;
 
 
  sect->size            = note->descsz;
  sect->size            = note->descsz;
  sect->filepos         = note->descpos;
  sect->filepos         = note->descpos;
  sect->alignment_power = 2;
  sect->alignment_power = 2;
 
 
  return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
  return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
}
}
 
 
static bfd_boolean
static bfd_boolean
elfcore_grok_nto_regs (bfd *abfd,
elfcore_grok_nto_regs (bfd *abfd,
                       Elf_Internal_Note *note,
                       Elf_Internal_Note *note,
                       long tid,
                       long tid,
                       char *base)
                       char *base)
{
{
  char buf[100];
  char buf[100];
  char *name;
  char *name;
  asection *sect;
  asection *sect;
 
 
  /* Make a "(base)/%d" section.  */
  /* Make a "(base)/%d" section.  */
  sprintf (buf, "%s/%ld", base, tid);
  sprintf (buf, "%s/%ld", base, tid);
 
 
  name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
  name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
  if (name == NULL)
  if (name == NULL)
    return FALSE;
    return FALSE;
  strcpy (name, buf);
  strcpy (name, buf);
 
 
  sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
  sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
  if (sect == NULL)
  if (sect == NULL)
    return FALSE;
    return FALSE;
 
 
  sect->size            = note->descsz;
  sect->size            = note->descsz;
  sect->filepos         = note->descpos;
  sect->filepos         = note->descpos;
  sect->alignment_power = 2;
  sect->alignment_power = 2;
 
 
  /* This is the current thread.  */
  /* This is the current thread.  */
  if (elf_tdata (abfd)->core_lwpid == tid)
  if (elf_tdata (abfd)->core_lwpid == tid)
    return elfcore_maybe_make_sect (abfd, base, sect);
    return elfcore_maybe_make_sect (abfd, base, sect);
 
 
  return TRUE;
  return TRUE;
}
}
 
 
#define BFD_QNT_CORE_INFO       7
#define BFD_QNT_CORE_INFO       7
#define BFD_QNT_CORE_STATUS     8
#define BFD_QNT_CORE_STATUS     8
#define BFD_QNT_CORE_GREG       9
#define BFD_QNT_CORE_GREG       9
#define BFD_QNT_CORE_FPREG      10
#define BFD_QNT_CORE_FPREG      10
 
 
static bfd_boolean
static bfd_boolean
elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
{
{
  /* Every GREG section has a STATUS section before it.  Store the
  /* Every GREG section has a STATUS section before it.  Store the
     tid from the previous call to pass down to the next gregs
     tid from the previous call to pass down to the next gregs
     function.  */
     function.  */
  static long tid = 1;
  static long tid = 1;
 
 
  switch (note->type)
  switch (note->type)
    {
    {
    case BFD_QNT_CORE_INFO:
    case BFD_QNT_CORE_INFO:
      return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
      return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
    case BFD_QNT_CORE_STATUS:
    case BFD_QNT_CORE_STATUS:
      return elfcore_grok_nto_status (abfd, note, &tid);
      return elfcore_grok_nto_status (abfd, note, &tid);
    case BFD_QNT_CORE_GREG:
    case BFD_QNT_CORE_GREG:
      return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
      return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
    case BFD_QNT_CORE_FPREG:
    case BFD_QNT_CORE_FPREG:
      return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
      return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
    default:
    default:
      return TRUE;
      return TRUE;
    }
    }
}
}
 
 
static bfd_boolean
static bfd_boolean
elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
{
{
  char *name;
  char *name;
  asection *sect;
  asection *sect;
  size_t len;
  size_t len;
 
 
  /* Use note name as section name.  */
  /* Use note name as section name.  */
  len = note->namesz;
  len = note->namesz;
  name = (char *) bfd_alloc (abfd, len);
  name = (char *) bfd_alloc (abfd, len);
  if (name == NULL)
  if (name == NULL)
    return FALSE;
    return FALSE;
  memcpy (name, note->namedata, len);
  memcpy (name, note->namedata, len);
  name[len - 1] = '\0';
  name[len - 1] = '\0';
 
 
  sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
  sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
  if (sect == NULL)
  if (sect == NULL)
    return FALSE;
    return FALSE;
 
 
  sect->size            = note->descsz;
  sect->size            = note->descsz;
  sect->filepos         = note->descpos;
  sect->filepos         = note->descpos;
  sect->alignment_power = 1;
  sect->alignment_power = 1;
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Function: elfcore_write_note
/* Function: elfcore_write_note
 
 
   Inputs:
   Inputs:
     buffer to hold note, and current size of buffer
     buffer to hold note, and current size of buffer
     name of note
     name of note
     type of note
     type of note
     data for note
     data for note
     size of data for note
     size of data for note
 
 
   Writes note to end of buffer.  ELF64 notes are written exactly as
   Writes note to end of buffer.  ELF64 notes are written exactly as
   for ELF32, despite the current (as of 2006) ELF gabi specifying
   for ELF32, despite the current (as of 2006) ELF gabi specifying
   that they ought to have 8-byte namesz and descsz field, and have
   that they ought to have 8-byte namesz and descsz field, and have
   8-byte alignment.  Other writers, eg. Linux kernel, do the same.
   8-byte alignment.  Other writers, eg. Linux kernel, do the same.
 
 
   Return:
   Return:
   Pointer to realloc'd buffer, *BUFSIZ updated.  */
   Pointer to realloc'd buffer, *BUFSIZ updated.  */
 
 
char *
char *
elfcore_write_note (bfd *abfd,
elfcore_write_note (bfd *abfd,
                    char *buf,
                    char *buf,
                    int *bufsiz,
                    int *bufsiz,
                    const char *name,
                    const char *name,
                    int type,
                    int type,
                    const void *input,
                    const void *input,
                    int size)
                    int size)
{
{
  Elf_External_Note *xnp;
  Elf_External_Note *xnp;
  size_t namesz;
  size_t namesz;
  size_t newspace;
  size_t newspace;
  char *dest;
  char *dest;
 
 
  namesz = 0;
  namesz = 0;
  if (name != NULL)
  if (name != NULL)
    namesz = strlen (name) + 1;
    namesz = strlen (name) + 1;
 
 
  newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
  newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
 
 
  buf = (char *) realloc (buf, *bufsiz + newspace);
  buf = (char *) realloc (buf, *bufsiz + newspace);
  if (buf == NULL)
  if (buf == NULL)
    return buf;
    return buf;
  dest = buf + *bufsiz;
  dest = buf + *bufsiz;
  *bufsiz += newspace;
  *bufsiz += newspace;
  xnp = (Elf_External_Note *) dest;
  xnp = (Elf_External_Note *) dest;
  H_PUT_32 (abfd, namesz, xnp->namesz);
  H_PUT_32 (abfd, namesz, xnp->namesz);
  H_PUT_32 (abfd, size, xnp->descsz);
  H_PUT_32 (abfd, size, xnp->descsz);
  H_PUT_32 (abfd, type, xnp->type);
  H_PUT_32 (abfd, type, xnp->type);
  dest = xnp->name;
  dest = xnp->name;
  if (name != NULL)
  if (name != NULL)
    {
    {
      memcpy (dest, name, namesz);
      memcpy (dest, name, namesz);
      dest += namesz;
      dest += namesz;
      while (namesz & 3)
      while (namesz & 3)
        {
        {
          *dest++ = '\0';
          *dest++ = '\0';
          ++namesz;
          ++namesz;
        }
        }
    }
    }
  memcpy (dest, input, size);
  memcpy (dest, input, size);
  dest += size;
  dest += size;
  while (size & 3)
  while (size & 3)
    {
    {
      *dest++ = '\0';
      *dest++ = '\0';
      ++size;
      ++size;
    }
    }
  return buf;
  return buf;
}
}
 
 
#if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
#if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
char *
char *
elfcore_write_prpsinfo (bfd  *abfd,
elfcore_write_prpsinfo (bfd  *abfd,
                        char *buf,
                        char *buf,
                        int  *bufsiz,
                        int  *bufsiz,
                        const char *fname,
                        const char *fname,
                        const char *psargs)
                        const char *psargs)
{
{
  const char *note_name = "CORE";
  const char *note_name = "CORE";
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
 
 
  if (bed->elf_backend_write_core_note != NULL)
  if (bed->elf_backend_write_core_note != NULL)
    {
    {
      char *ret;
      char *ret;
      ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
      ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
                                                 NT_PRPSINFO, fname, psargs);
                                                 NT_PRPSINFO, fname, psargs);
      if (ret != NULL)
      if (ret != NULL)
        return ret;
        return ret;
    }
    }
 
 
#if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
#if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
  if (bed->s->elfclass == ELFCLASS32)
  if (bed->s->elfclass == ELFCLASS32)
    {
    {
#if defined (HAVE_PSINFO32_T)
#if defined (HAVE_PSINFO32_T)
      psinfo32_t data;
      psinfo32_t data;
      int note_type = NT_PSINFO;
      int note_type = NT_PSINFO;
#else
#else
      prpsinfo32_t data;
      prpsinfo32_t data;
      int note_type = NT_PRPSINFO;
      int note_type = NT_PRPSINFO;
#endif
#endif
 
 
      memset (&data, 0, sizeof (data));
      memset (&data, 0, sizeof (data));
      strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
      strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
      strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
      strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
      return elfcore_write_note (abfd, buf, bufsiz,
      return elfcore_write_note (abfd, buf, bufsiz,
                                 note_name, note_type, &data, sizeof (data));
                                 note_name, note_type, &data, sizeof (data));
    }
    }
  else
  else
#endif
#endif
    {
    {
#if defined (HAVE_PSINFO_T)
#if defined (HAVE_PSINFO_T)
      psinfo_t data;
      psinfo_t data;
      int note_type = NT_PSINFO;
      int note_type = NT_PSINFO;
#else
#else
      prpsinfo_t data;
      prpsinfo_t data;
      int note_type = NT_PRPSINFO;
      int note_type = NT_PRPSINFO;
#endif
#endif
 
 
      memset (&data, 0, sizeof (data));
      memset (&data, 0, sizeof (data));
      strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
      strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
      strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
      strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
      return elfcore_write_note (abfd, buf, bufsiz,
      return elfcore_write_note (abfd, buf, bufsiz,
                                 note_name, note_type, &data, sizeof (data));
                                 note_name, note_type, &data, sizeof (data));
    }
    }
}
}
#endif  /* PSINFO_T or PRPSINFO_T */
#endif  /* PSINFO_T or PRPSINFO_T */
 
 
#if defined (HAVE_PRSTATUS_T)
#if defined (HAVE_PRSTATUS_T)
char *
char *
elfcore_write_prstatus (bfd *abfd,
elfcore_write_prstatus (bfd *abfd,
                        char *buf,
                        char *buf,
                        int *bufsiz,
                        int *bufsiz,
                        long pid,
                        long pid,
                        int cursig,
                        int cursig,
                        const void *gregs)
                        const void *gregs)
{
{
  const char *note_name = "CORE";
  const char *note_name = "CORE";
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
 
 
  if (bed->elf_backend_write_core_note != NULL)
  if (bed->elf_backend_write_core_note != NULL)
    {
    {
      char *ret;
      char *ret;
      ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
      ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
                                                 NT_PRSTATUS,
                                                 NT_PRSTATUS,
                                                 pid, cursig, gregs);
                                                 pid, cursig, gregs);
      if (ret != NULL)
      if (ret != NULL)
        return ret;
        return ret;
    }
    }
 
 
#if defined (HAVE_PRSTATUS32_T)
#if defined (HAVE_PRSTATUS32_T)
  if (bed->s->elfclass == ELFCLASS32)
  if (bed->s->elfclass == ELFCLASS32)
    {
    {
      prstatus32_t prstat;
      prstatus32_t prstat;
 
 
      memset (&prstat, 0, sizeof (prstat));
      memset (&prstat, 0, sizeof (prstat));
      prstat.pr_pid = pid;
      prstat.pr_pid = pid;
      prstat.pr_cursig = cursig;
      prstat.pr_cursig = cursig;
      memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
      memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
      return elfcore_write_note (abfd, buf, bufsiz, note_name,
      return elfcore_write_note (abfd, buf, bufsiz, note_name,
                                 NT_PRSTATUS, &prstat, sizeof (prstat));
                                 NT_PRSTATUS, &prstat, sizeof (prstat));
    }
    }
  else
  else
#endif
#endif
    {
    {
      prstatus_t prstat;
      prstatus_t prstat;
 
 
      memset (&prstat, 0, sizeof (prstat));
      memset (&prstat, 0, sizeof (prstat));
      prstat.pr_pid = pid;
      prstat.pr_pid = pid;
      prstat.pr_cursig = cursig;
      prstat.pr_cursig = cursig;
      memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
      memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
      return elfcore_write_note (abfd, buf, bufsiz, note_name,
      return elfcore_write_note (abfd, buf, bufsiz, note_name,
                                 NT_PRSTATUS, &prstat, sizeof (prstat));
                                 NT_PRSTATUS, &prstat, sizeof (prstat));
    }
    }
}
}
#endif /* HAVE_PRSTATUS_T */
#endif /* HAVE_PRSTATUS_T */
 
 
#if defined (HAVE_LWPSTATUS_T)
#if defined (HAVE_LWPSTATUS_T)
char *
char *
elfcore_write_lwpstatus (bfd *abfd,
elfcore_write_lwpstatus (bfd *abfd,
                         char *buf,
                         char *buf,
                         int *bufsiz,
                         int *bufsiz,
                         long pid,
                         long pid,
                         int cursig,
                         int cursig,
                         const void *gregs)
                         const void *gregs)
{
{
  lwpstatus_t lwpstat;
  lwpstatus_t lwpstat;
  const char *note_name = "CORE";
  const char *note_name = "CORE";
 
 
  memset (&lwpstat, 0, sizeof (lwpstat));
  memset (&lwpstat, 0, sizeof (lwpstat));
  lwpstat.pr_lwpid  = pid >> 16;
  lwpstat.pr_lwpid  = pid >> 16;
  lwpstat.pr_cursig = cursig;
  lwpstat.pr_cursig = cursig;
#if defined (HAVE_LWPSTATUS_T_PR_REG)
#if defined (HAVE_LWPSTATUS_T_PR_REG)
  memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
  memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
#elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
#elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
#if !defined(gregs)
#if !defined(gregs)
  memcpy (lwpstat.pr_context.uc_mcontext.gregs,
  memcpy (lwpstat.pr_context.uc_mcontext.gregs,
          gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
          gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
#else
#else
  memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
  memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
          gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
          gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
#endif
#endif
#endif
#endif
  return elfcore_write_note (abfd, buf, bufsiz, note_name,
  return elfcore_write_note (abfd, buf, bufsiz, note_name,
                             NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
                             NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
}
}
#endif /* HAVE_LWPSTATUS_T */
#endif /* HAVE_LWPSTATUS_T */
 
 
#if defined (HAVE_PSTATUS_T)
#if defined (HAVE_PSTATUS_T)
char *
char *
elfcore_write_pstatus (bfd *abfd,
elfcore_write_pstatus (bfd *abfd,
                       char *buf,
                       char *buf,
                       int *bufsiz,
                       int *bufsiz,
                       long pid,
                       long pid,
                       int cursig ATTRIBUTE_UNUSED,
                       int cursig ATTRIBUTE_UNUSED,
                       const void *gregs ATTRIBUTE_UNUSED)
                       const void *gregs ATTRIBUTE_UNUSED)
{
{
  const char *note_name = "CORE";
  const char *note_name = "CORE";
#if defined (HAVE_PSTATUS32_T)
#if defined (HAVE_PSTATUS32_T)
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
 
 
  if (bed->s->elfclass == ELFCLASS32)
  if (bed->s->elfclass == ELFCLASS32)
    {
    {
      pstatus32_t pstat;
      pstatus32_t pstat;
 
 
      memset (&pstat, 0, sizeof (pstat));
      memset (&pstat, 0, sizeof (pstat));
      pstat.pr_pid = pid & 0xffff;
      pstat.pr_pid = pid & 0xffff;
      buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
      buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
                                NT_PSTATUS, &pstat, sizeof (pstat));
                                NT_PSTATUS, &pstat, sizeof (pstat));
      return buf;
      return buf;
    }
    }
  else
  else
#endif
#endif
    {
    {
      pstatus_t pstat;
      pstatus_t pstat;
 
 
      memset (&pstat, 0, sizeof (pstat));
      memset (&pstat, 0, sizeof (pstat));
      pstat.pr_pid = pid & 0xffff;
      pstat.pr_pid = pid & 0xffff;
      buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
      buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
                                NT_PSTATUS, &pstat, sizeof (pstat));
                                NT_PSTATUS, &pstat, sizeof (pstat));
      return buf;
      return buf;
    }
    }
}
}
#endif /* HAVE_PSTATUS_T */
#endif /* HAVE_PSTATUS_T */
 
 
char *
char *
elfcore_write_prfpreg (bfd *abfd,
elfcore_write_prfpreg (bfd *abfd,
                       char *buf,
                       char *buf,
                       int *bufsiz,
                       int *bufsiz,
                       const void *fpregs,
                       const void *fpregs,
                       int size)
                       int size)
{
{
  const char *note_name = "CORE";
  const char *note_name = "CORE";
  return elfcore_write_note (abfd, buf, bufsiz,
  return elfcore_write_note (abfd, buf, bufsiz,
                             note_name, NT_FPREGSET, fpregs, size);
                             note_name, NT_FPREGSET, fpregs, size);
}
}
 
 
char *
char *
elfcore_write_prxfpreg (bfd *abfd,
elfcore_write_prxfpreg (bfd *abfd,
                        char *buf,
                        char *buf,
                        int *bufsiz,
                        int *bufsiz,
                        const void *xfpregs,
                        const void *xfpregs,
                        int size)
                        int size)
{
{
  char *note_name = "LINUX";
  char *note_name = "LINUX";
  return elfcore_write_note (abfd, buf, bufsiz,
  return elfcore_write_note (abfd, buf, bufsiz,
                             note_name, NT_PRXFPREG, xfpregs, size);
                             note_name, NT_PRXFPREG, xfpregs, size);
}
}
 
 
char *
char *
elfcore_write_ppc_vmx (bfd *abfd,
elfcore_write_ppc_vmx (bfd *abfd,
                       char *buf,
                       char *buf,
                       int *bufsiz,
                       int *bufsiz,
                       const void *ppc_vmx,
                       const void *ppc_vmx,
                       int size)
                       int size)
{
{
  char *note_name = "LINUX";
  char *note_name = "LINUX";
  return elfcore_write_note (abfd, buf, bufsiz,
  return elfcore_write_note (abfd, buf, bufsiz,
                             note_name, NT_PPC_VMX, ppc_vmx, size);
                             note_name, NT_PPC_VMX, ppc_vmx, size);
}
}
 
 
char *
char *
elfcore_write_ppc_vsx (bfd *abfd,
elfcore_write_ppc_vsx (bfd *abfd,
                       char *buf,
                       char *buf,
                       int *bufsiz,
                       int *bufsiz,
                       const void *ppc_vsx,
                       const void *ppc_vsx,
                       int size)
                       int size)
{
{
  char *note_name = "LINUX";
  char *note_name = "LINUX";
  return elfcore_write_note (abfd, buf, bufsiz,
  return elfcore_write_note (abfd, buf, bufsiz,
                             note_name, NT_PPC_VSX, ppc_vsx, size);
                             note_name, NT_PPC_VSX, ppc_vsx, size);
}
}
 
 
char *
char *
elfcore_write_register_note (bfd *abfd,
elfcore_write_register_note (bfd *abfd,
                             char *buf,
                             char *buf,
                             int *bufsiz,
                             int *bufsiz,
                             const char *section,
                             const char *section,
                             const void *data,
                             const void *data,
                             int size)
                             int size)
{
{
  if (strcmp (section, ".reg2") == 0)
  if (strcmp (section, ".reg2") == 0)
    return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
    return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
  if (strcmp (section, ".reg-xfp") == 0)
  if (strcmp (section, ".reg-xfp") == 0)
    return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
    return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
  if (strcmp (section, ".reg-ppc-vmx") == 0)
  if (strcmp (section, ".reg-ppc-vmx") == 0)
    return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
    return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
  if (strcmp (section, ".reg-ppc-vsx") == 0)
  if (strcmp (section, ".reg-ppc-vsx") == 0)
    return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
    return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
  return NULL;
  return NULL;
}
}
 
 
static bfd_boolean
static bfd_boolean
elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
{
{
  char *p;
  char *p;
 
 
  p = buf;
  p = buf;
  while (p < buf + size)
  while (p < buf + size)
    {
    {
      /* FIXME: bad alignment assumption.  */
      /* FIXME: bad alignment assumption.  */
      Elf_External_Note *xnp = (Elf_External_Note *) p;
      Elf_External_Note *xnp = (Elf_External_Note *) p;
      Elf_Internal_Note in;
      Elf_Internal_Note in;
 
 
      if (offsetof (Elf_External_Note, name) > buf - p + size)
      if (offsetof (Elf_External_Note, name) > buf - p + size)
        return FALSE;
        return FALSE;
 
 
      in.type = H_GET_32 (abfd, xnp->type);
      in.type = H_GET_32 (abfd, xnp->type);
 
 
      in.namesz = H_GET_32 (abfd, xnp->namesz);
      in.namesz = H_GET_32 (abfd, xnp->namesz);
      in.namedata = xnp->name;
      in.namedata = xnp->name;
      if (in.namesz > buf - in.namedata + size)
      if (in.namesz > buf - in.namedata + size)
        return FALSE;
        return FALSE;
 
 
      in.descsz = H_GET_32 (abfd, xnp->descsz);
      in.descsz = H_GET_32 (abfd, xnp->descsz);
      in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
      in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
      in.descpos = offset + (in.descdata - buf);
      in.descpos = offset + (in.descdata - buf);
      if (in.descsz != 0
      if (in.descsz != 0
          && (in.descdata >= buf + size
          && (in.descdata >= buf + size
              || in.descsz > buf - in.descdata + size))
              || in.descsz > buf - in.descdata + size))
        return FALSE;
        return FALSE;
 
 
      switch (bfd_get_format (abfd))
      switch (bfd_get_format (abfd))
        {
        {
        default:
        default:
          return TRUE;
          return TRUE;
 
 
        case bfd_core:
        case bfd_core:
          if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
          if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
            {
            {
              if (! elfcore_grok_netbsd_note (abfd, &in))
              if (! elfcore_grok_netbsd_note (abfd, &in))
                return FALSE;
                return FALSE;
            }
            }
          else if (CONST_STRNEQ (in.namedata, "OpenBSD"))
          else if (CONST_STRNEQ (in.namedata, "OpenBSD"))
            {
            {
              if (! elfcore_grok_openbsd_note (abfd, &in))
              if (! elfcore_grok_openbsd_note (abfd, &in))
                return FALSE;
                return FALSE;
            }
            }
          else if (CONST_STRNEQ (in.namedata, "QNX"))
          else if (CONST_STRNEQ (in.namedata, "QNX"))
            {
            {
              if (! elfcore_grok_nto_note (abfd, &in))
              if (! elfcore_grok_nto_note (abfd, &in))
                return FALSE;
                return FALSE;
            }
            }
          else if (CONST_STRNEQ (in.namedata, "SPU/"))
          else if (CONST_STRNEQ (in.namedata, "SPU/"))
            {
            {
              if (! elfcore_grok_spu_note (abfd, &in))
              if (! elfcore_grok_spu_note (abfd, &in))
                return FALSE;
                return FALSE;
            }
            }
          else
          else
            {
            {
              if (! elfcore_grok_note (abfd, &in))
              if (! elfcore_grok_note (abfd, &in))
                return FALSE;
                return FALSE;
            }
            }
          break;
          break;
 
 
        case bfd_object:
        case bfd_object:
          if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
          if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
            {
            {
              if (! elfobj_grok_gnu_note (abfd, &in))
              if (! elfobj_grok_gnu_note (abfd, &in))
                return FALSE;
                return FALSE;
            }
            }
          break;
          break;
        }
        }
 
 
      p = in.descdata + BFD_ALIGN (in.descsz, 4);
      p = in.descdata + BFD_ALIGN (in.descsz, 4);
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
static bfd_boolean
static bfd_boolean
elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
{
{
  char *buf;
  char *buf;
 
 
  if (size <= 0)
  if (size <= 0)
    return TRUE;
    return TRUE;
 
 
  if (bfd_seek (abfd, offset, SEEK_SET) != 0)
  if (bfd_seek (abfd, offset, SEEK_SET) != 0)
    return FALSE;
    return FALSE;
 
 
  buf = (char *) bfd_malloc (size);
  buf = (char *) bfd_malloc (size);
  if (buf == NULL)
  if (buf == NULL)
    return FALSE;
    return FALSE;
 
 
  if (bfd_bread (buf, size, abfd) != size
  if (bfd_bread (buf, size, abfd) != size
      || !elf_parse_notes (abfd, buf, size, offset))
      || !elf_parse_notes (abfd, buf, size, offset))
    {
    {
      free (buf);
      free (buf);
      return FALSE;
      return FALSE;
    }
    }
 
 
  free (buf);
  free (buf);
  return TRUE;
  return TRUE;
}
}


/* Providing external access to the ELF program header table.  */
/* Providing external access to the ELF program header table.  */
 
 
/* Return an upper bound on the number of bytes required to store a
/* Return an upper bound on the number of bytes required to store a
   copy of ABFD's program header table entries.  Return -1 if an error
   copy of ABFD's program header table entries.  Return -1 if an error
   occurs; bfd_get_error will return an appropriate code.  */
   occurs; bfd_get_error will return an appropriate code.  */
 
 
long
long
bfd_get_elf_phdr_upper_bound (bfd *abfd)
bfd_get_elf_phdr_upper_bound (bfd *abfd)
{
{
  if (abfd->xvec->flavour != bfd_target_elf_flavour)
  if (abfd->xvec->flavour != bfd_target_elf_flavour)
    {
    {
      bfd_set_error (bfd_error_wrong_format);
      bfd_set_error (bfd_error_wrong_format);
      return -1;
      return -1;
    }
    }
 
 
  return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
  return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
}
}
 
 
/* Copy ABFD's program header table entries to *PHDRS.  The entries
/* Copy ABFD's program header table entries to *PHDRS.  The entries
   will be stored as an array of Elf_Internal_Phdr structures, as
   will be stored as an array of Elf_Internal_Phdr structures, as
   defined in include/elf/internal.h.  To find out how large the
   defined in include/elf/internal.h.  To find out how large the
   buffer needs to be, call bfd_get_elf_phdr_upper_bound.
   buffer needs to be, call bfd_get_elf_phdr_upper_bound.
 
 
   Return the number of program header table entries read, or -1 if an
   Return the number of program header table entries read, or -1 if an
   error occurs; bfd_get_error will return an appropriate code.  */
   error occurs; bfd_get_error will return an appropriate code.  */
 
 
int
int
bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
{
{
  int num_phdrs;
  int num_phdrs;
 
 
  if (abfd->xvec->flavour != bfd_target_elf_flavour)
  if (abfd->xvec->flavour != bfd_target_elf_flavour)
    {
    {
      bfd_set_error (bfd_error_wrong_format);
      bfd_set_error (bfd_error_wrong_format);
      return -1;
      return -1;
    }
    }
 
 
  num_phdrs = elf_elfheader (abfd)->e_phnum;
  num_phdrs = elf_elfheader (abfd)->e_phnum;
  memcpy (phdrs, elf_tdata (abfd)->phdr,
  memcpy (phdrs, elf_tdata (abfd)->phdr,
          num_phdrs * sizeof (Elf_Internal_Phdr));
          num_phdrs * sizeof (Elf_Internal_Phdr));
 
 
  return num_phdrs;
  return num_phdrs;
}
}
 
 
enum elf_reloc_type_class
enum elf_reloc_type_class
_bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
_bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
{
{
  return reloc_class_normal;
  return reloc_class_normal;
}
}
 
 
/* For RELA architectures, return the relocation value for a
/* For RELA architectures, return the relocation value for a
   relocation against a local symbol.  */
   relocation against a local symbol.  */
 
 
bfd_vma
bfd_vma
_bfd_elf_rela_local_sym (bfd *abfd,
_bfd_elf_rela_local_sym (bfd *abfd,
                         Elf_Internal_Sym *sym,
                         Elf_Internal_Sym *sym,
                         asection **psec,
                         asection **psec,
                         Elf_Internal_Rela *rel)
                         Elf_Internal_Rela *rel)
{
{
  asection *sec = *psec;
  asection *sec = *psec;
  bfd_vma relocation;
  bfd_vma relocation;
 
 
  relocation = (sec->output_section->vma
  relocation = (sec->output_section->vma
                + sec->output_offset
                + sec->output_offset
                + sym->st_value);
                + sym->st_value);
  if ((sec->flags & SEC_MERGE)
  if ((sec->flags & SEC_MERGE)
      && ELF_ST_TYPE (sym->st_info) == STT_SECTION
      && ELF_ST_TYPE (sym->st_info) == STT_SECTION
      && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
      && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
    {
    {
      rel->r_addend =
      rel->r_addend =
        _bfd_merged_section_offset (abfd, psec,
        _bfd_merged_section_offset (abfd, psec,
                                    elf_section_data (sec)->sec_info,
                                    elf_section_data (sec)->sec_info,
                                    sym->st_value + rel->r_addend);
                                    sym->st_value + rel->r_addend);
      if (sec != *psec)
      if (sec != *psec)
        {
        {
          /* If we have changed the section, and our original section is
          /* If we have changed the section, and our original section is
             marked with SEC_EXCLUDE, it means that the original
             marked with SEC_EXCLUDE, it means that the original
             SEC_MERGE section has been completely subsumed in some
             SEC_MERGE section has been completely subsumed in some
             other SEC_MERGE section.  In this case, we need to leave
             other SEC_MERGE section.  In this case, we need to leave
             some info around for --emit-relocs.  */
             some info around for --emit-relocs.  */
          if ((sec->flags & SEC_EXCLUDE) != 0)
          if ((sec->flags & SEC_EXCLUDE) != 0)
            sec->kept_section = *psec;
            sec->kept_section = *psec;
          sec = *psec;
          sec = *psec;
        }
        }
      rel->r_addend -= relocation;
      rel->r_addend -= relocation;
      rel->r_addend += sec->output_section->vma + sec->output_offset;
      rel->r_addend += sec->output_section->vma + sec->output_offset;
    }
    }
  return relocation;
  return relocation;
}
}
 
 
bfd_vma
bfd_vma
_bfd_elf_rel_local_sym (bfd *abfd,
_bfd_elf_rel_local_sym (bfd *abfd,
                        Elf_Internal_Sym *sym,
                        Elf_Internal_Sym *sym,
                        asection **psec,
                        asection **psec,
                        bfd_vma addend)
                        bfd_vma addend)
{
{
  asection *sec = *psec;
  asection *sec = *psec;
 
 
  if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
  if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
    return sym->st_value + addend;
    return sym->st_value + addend;
 
 
  return _bfd_merged_section_offset (abfd, psec,
  return _bfd_merged_section_offset (abfd, psec,
                                     elf_section_data (sec)->sec_info,
                                     elf_section_data (sec)->sec_info,
                                     sym->st_value + addend);
                                     sym->st_value + addend);
}
}
 
 
bfd_vma
bfd_vma
_bfd_elf_section_offset (bfd *abfd,
_bfd_elf_section_offset (bfd *abfd,
                         struct bfd_link_info *info,
                         struct bfd_link_info *info,
                         asection *sec,
                         asection *sec,
                         bfd_vma offset)
                         bfd_vma offset)
{
{
  switch (sec->sec_info_type)
  switch (sec->sec_info_type)
    {
    {
    case ELF_INFO_TYPE_STABS:
    case ELF_INFO_TYPE_STABS:
      return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
      return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
                                       offset);
                                       offset);
    case ELF_INFO_TYPE_EH_FRAME:
    case ELF_INFO_TYPE_EH_FRAME:
      return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
      return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
    default:
    default:
      return offset;
      return offset;
    }
    }
}
}


/* Create a new BFD as if by bfd_openr.  Rather than opening a file,
/* Create a new BFD as if by bfd_openr.  Rather than opening a file,
   reconstruct an ELF file by reading the segments out of remote memory
   reconstruct an ELF file by reading the segments out of remote memory
   based on the ELF file header at EHDR_VMA and the ELF program headers it
   based on the ELF file header at EHDR_VMA and the ELF program headers it
   points to.  If not null, *LOADBASEP is filled in with the difference
   points to.  If not null, *LOADBASEP is filled in with the difference
   between the VMAs from which the segments were read, and the VMAs the
   between the VMAs from which the segments were read, and the VMAs the
   file headers (and hence BFD's idea of each section's VMA) put them at.
   file headers (and hence BFD's idea of each section's VMA) put them at.
 
 
   The function TARGET_READ_MEMORY is called to copy LEN bytes from the
   The function TARGET_READ_MEMORY is called to copy LEN bytes from the
   remote memory at target address VMA into the local buffer at MYADDR; it
   remote memory at target address VMA into the local buffer at MYADDR; it
   should return zero on success or an `errno' code on failure.  TEMPL must
   should return zero on success or an `errno' code on failure.  TEMPL must
   be a BFD for an ELF target with the word size and byte order found in
   be a BFD for an ELF target with the word size and byte order found in
   the remote memory.  */
   the remote memory.  */
 
 
bfd *
bfd *
bfd_elf_bfd_from_remote_memory
bfd_elf_bfd_from_remote_memory
  (bfd *templ,
  (bfd *templ,
   bfd_vma ehdr_vma,
   bfd_vma ehdr_vma,
   bfd_vma *loadbasep,
   bfd_vma *loadbasep,
   int (*target_read_memory) (bfd_vma, bfd_byte *, int))
   int (*target_read_memory) (bfd_vma, bfd_byte *, int))
{
{
  return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
  return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
    (templ, ehdr_vma, loadbasep, target_read_memory);
    (templ, ehdr_vma, loadbasep, target_read_memory);
}
}


long
long
_bfd_elf_get_synthetic_symtab (bfd *abfd,
_bfd_elf_get_synthetic_symtab (bfd *abfd,
                               long symcount ATTRIBUTE_UNUSED,
                               long symcount ATTRIBUTE_UNUSED,
                               asymbol **syms ATTRIBUTE_UNUSED,
                               asymbol **syms ATTRIBUTE_UNUSED,
                               long dynsymcount,
                               long dynsymcount,
                               asymbol **dynsyms,
                               asymbol **dynsyms,
                               asymbol **ret)
                               asymbol **ret)
{
{
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
  asection *relplt;
  asection *relplt;
  asymbol *s;
  asymbol *s;
  const char *relplt_name;
  const char *relplt_name;
  bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
  bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
  arelent *p;
  arelent *p;
  long count, i, n;
  long count, i, n;
  size_t size;
  size_t size;
  Elf_Internal_Shdr *hdr;
  Elf_Internal_Shdr *hdr;
  char *names;
  char *names;
  asection *plt;
  asection *plt;
 
 
  *ret = NULL;
  *ret = NULL;
 
 
  if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
  if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
    return 0;
    return 0;
 
 
  if (dynsymcount <= 0)
  if (dynsymcount <= 0)
    return 0;
    return 0;
 
 
  if (!bed->plt_sym_val)
  if (!bed->plt_sym_val)
    return 0;
    return 0;
 
 
  relplt_name = bed->relplt_name;
  relplt_name = bed->relplt_name;
  if (relplt_name == NULL)
  if (relplt_name == NULL)
    relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
    relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
  relplt = bfd_get_section_by_name (abfd, relplt_name);
  relplt = bfd_get_section_by_name (abfd, relplt_name);
  if (relplt == NULL)
  if (relplt == NULL)
    return 0;
    return 0;
 
 
  hdr = &elf_section_data (relplt)->this_hdr;
  hdr = &elf_section_data (relplt)->this_hdr;
  if (hdr->sh_link != elf_dynsymtab (abfd)
  if (hdr->sh_link != elf_dynsymtab (abfd)
      || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
      || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
    return 0;
    return 0;
 
 
  plt = bfd_get_section_by_name (abfd, ".plt");
  plt = bfd_get_section_by_name (abfd, ".plt");
  if (plt == NULL)
  if (plt == NULL)
    return 0;
    return 0;
 
 
  slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
  slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
  if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
  if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
    return -1;
    return -1;
 
 
  count = relplt->size / hdr->sh_entsize;
  count = relplt->size / hdr->sh_entsize;
  size = count * sizeof (asymbol);
  size = count * sizeof (asymbol);
  p = relplt->relocation;
  p = relplt->relocation;
  for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
  for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
    {
    {
      size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
      size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
      if (p->addend != 0)
      if (p->addend != 0)
        {
        {
#ifdef BFD64
#ifdef BFD64
          size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
          size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
#else
#else
          size += sizeof ("+0x") - 1 + 8;
          size += sizeof ("+0x") - 1 + 8;
#endif
#endif
        }
        }
    }
    }
 
 
  s = *ret = (asymbol *) bfd_malloc (size);
  s = *ret = (asymbol *) bfd_malloc (size);
  if (s == NULL)
  if (s == NULL)
    return -1;
    return -1;
 
 
  names = (char *) (s + count);
  names = (char *) (s + count);
  p = relplt->relocation;
  p = relplt->relocation;
  n = 0;
  n = 0;
  for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
  for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
    {
    {
      size_t len;
      size_t len;
      bfd_vma addr;
      bfd_vma addr;
 
 
      addr = bed->plt_sym_val (i, plt, p);
      addr = bed->plt_sym_val (i, plt, p);
      if (addr == (bfd_vma) -1)
      if (addr == (bfd_vma) -1)
        continue;
        continue;
 
 
      *s = **p->sym_ptr_ptr;
      *s = **p->sym_ptr_ptr;
      /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set.  Since
      /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set.  Since
         we are defining a symbol, ensure one of them is set.  */
         we are defining a symbol, ensure one of them is set.  */
      if ((s->flags & BSF_LOCAL) == 0)
      if ((s->flags & BSF_LOCAL) == 0)
        s->flags |= BSF_GLOBAL;
        s->flags |= BSF_GLOBAL;
      s->flags |= BSF_SYNTHETIC;
      s->flags |= BSF_SYNTHETIC;
      s->section = plt;
      s->section = plt;
      s->value = addr - plt->vma;
      s->value = addr - plt->vma;
      s->name = names;
      s->name = names;
      s->udata.p = NULL;
      s->udata.p = NULL;
      len = strlen ((*p->sym_ptr_ptr)->name);
      len = strlen ((*p->sym_ptr_ptr)->name);
      memcpy (names, (*p->sym_ptr_ptr)->name, len);
      memcpy (names, (*p->sym_ptr_ptr)->name, len);
      names += len;
      names += len;
      if (p->addend != 0)
      if (p->addend != 0)
        {
        {
          char buf[30], *a;
          char buf[30], *a;
          int len;
          int len;
          memcpy (names, "+0x", sizeof ("+0x") - 1);
          memcpy (names, "+0x", sizeof ("+0x") - 1);
          names += sizeof ("+0x") - 1;
          names += sizeof ("+0x") - 1;
          bfd_sprintf_vma (abfd, buf, p->addend);
          bfd_sprintf_vma (abfd, buf, p->addend);
          for (a = buf; *a == '0'; ++a)
          for (a = buf; *a == '0'; ++a)
            ;
            ;
          len = strlen (a);
          len = strlen (a);
          memcpy (names, a, len);
          memcpy (names, a, len);
          names += len;
          names += len;
        }
        }
      memcpy (names, "@plt", sizeof ("@plt"));
      memcpy (names, "@plt", sizeof ("@plt"));
      names += sizeof ("@plt");
      names += sizeof ("@plt");
      ++s, ++n;
      ++s, ++n;
    }
    }
 
 
  return n;
  return n;
}
}
 
 
/* It is only used by x86-64 so far.  */
/* It is only used by x86-64 so far.  */
asection _bfd_elf_large_com_section
asection _bfd_elf_large_com_section
  = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
  = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
                      SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
                      SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
 
 
void
void
_bfd_elf_set_osabi (bfd * abfd,
_bfd_elf_set_osabi (bfd * abfd,
                    struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
                    struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
{
{
  Elf_Internal_Ehdr * i_ehdrp;  /* ELF file header, internal form.  */
  Elf_Internal_Ehdr * i_ehdrp;  /* ELF file header, internal form.  */
 
 
  i_ehdrp = elf_elfheader (abfd);
  i_ehdrp = elf_elfheader (abfd);
 
 
  i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
  i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
 
 
  /* To make things simpler for the loader on Linux systems we set the
  /* To make things simpler for the loader on Linux systems we set the
     osabi field to ELFOSABI_LINUX if the binary contains symbols of
     osabi field to ELFOSABI_LINUX if the binary contains symbols of
     the STT_GNU_IFUNC type.  */
     the STT_GNU_IFUNC type.  */
  if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
  if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
      && elf_tdata (abfd)->has_ifunc_symbols)
      && elf_tdata (abfd)->has_ifunc_symbols)
    i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
    i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
}
}
 
 
 
 
/* Return TRUE for ELF symbol types that represent functions.
/* Return TRUE for ELF symbol types that represent functions.
   This is the default version of this function, which is sufficient for
   This is the default version of this function, which is sufficient for
   most targets.  It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC.  */
   most targets.  It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC.  */
 
 
bfd_boolean
bfd_boolean
_bfd_elf_is_function_type (unsigned int type)
_bfd_elf_is_function_type (unsigned int type)
{
{
  return (type == STT_FUNC
  return (type == STT_FUNC
          || type == STT_GNU_IFUNC);
          || type == STT_GNU_IFUNC);
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.