OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gdb-6.8/] [bfd/] [elf32-m68hc1x.c] - Diff between revs 827 and 840

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 827 Rev 840
/* Motorola 68HC11/HC12-specific support for 32-bit ELF
/* Motorola 68HC11/HC12-specific support for 32-bit ELF
   Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
   Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
   2009 Free Software Foundation, Inc.
   2009 Free Software Foundation, Inc.
   Contributed by Stephane Carrez (stcarrez@nerim.fr)
   Contributed by Stephane Carrez (stcarrez@nerim.fr)
 
 
   This file is part of BFD, the Binary File Descriptor library.
   This file is part of BFD, the Binary File Descriptor library.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   along with this program; if not, write to the Free Software
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
   MA 02110-1301, USA.  */
   MA 02110-1301, USA.  */
 
 
#include "alloca-conf.h"
#include "alloca-conf.h"
#include "sysdep.h"
#include "sysdep.h"
#include "bfd.h"
#include "bfd.h"
#include "bfdlink.h"
#include "bfdlink.h"
#include "libbfd.h"
#include "libbfd.h"
#include "elf-bfd.h"
#include "elf-bfd.h"
#include "elf32-m68hc1x.h"
#include "elf32-m68hc1x.h"
#include "elf/m68hc11.h"
#include "elf/m68hc11.h"
#include "opcode/m68hc11.h"
#include "opcode/m68hc11.h"
 
 
 
 
#define m68hc12_stub_hash_lookup(table, string, create, copy) \
#define m68hc12_stub_hash_lookup(table, string, create, copy) \
  ((struct elf32_m68hc11_stub_hash_entry *) \
  ((struct elf32_m68hc11_stub_hash_entry *) \
   bfd_hash_lookup ((table), (string), (create), (copy)))
   bfd_hash_lookup ((table), (string), (create), (copy)))
 
 
static struct elf32_m68hc11_stub_hash_entry* m68hc12_add_stub
static struct elf32_m68hc11_stub_hash_entry* m68hc12_add_stub
  (const char *stub_name,
  (const char *stub_name,
   asection *section,
   asection *section,
   struct m68hc11_elf_link_hash_table *htab);
   struct m68hc11_elf_link_hash_table *htab);
 
 
static struct bfd_hash_entry *stub_hash_newfunc
static struct bfd_hash_entry *stub_hash_newfunc
  (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
  (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
 
 
static void m68hc11_elf_set_symbol (bfd* abfd, struct bfd_link_info *info,
static void m68hc11_elf_set_symbol (bfd* abfd, struct bfd_link_info *info,
                                    const char* name, bfd_vma value,
                                    const char* name, bfd_vma value,
                                    asection* sec);
                                    asection* sec);
 
 
static bfd_boolean m68hc11_elf_export_one_stub
static bfd_boolean m68hc11_elf_export_one_stub
  (struct bfd_hash_entry *gen_entry, void *in_arg);
  (struct bfd_hash_entry *gen_entry, void *in_arg);
 
 
static void scan_sections_for_abi (bfd*, asection*, PTR);
static void scan_sections_for_abi (bfd*, asection*, PTR);
 
 
struct m68hc11_scan_param
struct m68hc11_scan_param
{
{
   struct m68hc11_page_info* pinfo;
   struct m68hc11_page_info* pinfo;
   bfd_boolean use_memory_banks;
   bfd_boolean use_memory_banks;
};
};
 
 
 
 
/* Create a 68HC11/68HC12 ELF linker hash table.  */
/* Create a 68HC11/68HC12 ELF linker hash table.  */
 
 
struct m68hc11_elf_link_hash_table*
struct m68hc11_elf_link_hash_table*
m68hc11_elf_hash_table_create (bfd *abfd)
m68hc11_elf_hash_table_create (bfd *abfd)
{
{
  struct m68hc11_elf_link_hash_table *ret;
  struct m68hc11_elf_link_hash_table *ret;
  bfd_size_type amt = sizeof (struct m68hc11_elf_link_hash_table);
  bfd_size_type amt = sizeof (struct m68hc11_elf_link_hash_table);
 
 
  ret = (struct m68hc11_elf_link_hash_table *) bfd_malloc (amt);
  ret = (struct m68hc11_elf_link_hash_table *) bfd_malloc (amt);
  if (ret == (struct m68hc11_elf_link_hash_table *) NULL)
  if (ret == (struct m68hc11_elf_link_hash_table *) NULL)
    return NULL;
    return NULL;
 
 
  memset (ret, 0, amt);
  memset (ret, 0, amt);
  if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
  if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
                                      _bfd_elf_link_hash_newfunc,
                                      _bfd_elf_link_hash_newfunc,
                                      sizeof (struct elf_link_hash_entry)))
                                      sizeof (struct elf_link_hash_entry)))
    {
    {
      free (ret);
      free (ret);
      return NULL;
      return NULL;
    }
    }
 
 
  /* Init the stub hash table too.  */
  /* Init the stub hash table too.  */
  amt = sizeof (struct bfd_hash_table);
  amt = sizeof (struct bfd_hash_table);
  ret->stub_hash_table = (struct bfd_hash_table*) bfd_malloc (amt);
  ret->stub_hash_table = (struct bfd_hash_table*) bfd_malloc (amt);
  if (ret->stub_hash_table == NULL)
  if (ret->stub_hash_table == NULL)
    {
    {
      free (ret);
      free (ret);
      return NULL;
      return NULL;
    }
    }
  if (!bfd_hash_table_init (ret->stub_hash_table, stub_hash_newfunc,
  if (!bfd_hash_table_init (ret->stub_hash_table, stub_hash_newfunc,
                            sizeof (struct elf32_m68hc11_stub_hash_entry)))
                            sizeof (struct elf32_m68hc11_stub_hash_entry)))
    return NULL;
    return NULL;
 
 
  ret->stub_bfd = NULL;
  ret->stub_bfd = NULL;
  ret->stub_section = 0;
  ret->stub_section = 0;
  ret->add_stub_section = NULL;
  ret->add_stub_section = NULL;
  ret->sym_cache.abfd = NULL;
  ret->sym_cache.abfd = NULL;
 
 
  return ret;
  return ret;
}
}
 
 
/* Free the derived linker hash table.  */
/* Free the derived linker hash table.  */
 
 
void
void
m68hc11_elf_bfd_link_hash_table_free (struct bfd_link_hash_table *hash)
m68hc11_elf_bfd_link_hash_table_free (struct bfd_link_hash_table *hash)
{
{
  struct m68hc11_elf_link_hash_table *ret
  struct m68hc11_elf_link_hash_table *ret
    = (struct m68hc11_elf_link_hash_table *) hash;
    = (struct m68hc11_elf_link_hash_table *) hash;
 
 
  bfd_hash_table_free (ret->stub_hash_table);
  bfd_hash_table_free (ret->stub_hash_table);
  free (ret->stub_hash_table);
  free (ret->stub_hash_table);
  _bfd_generic_link_hash_table_free (hash);
  _bfd_generic_link_hash_table_free (hash);
}
}
 
 
/* Assorted hash table functions.  */
/* Assorted hash table functions.  */
 
 
/* Initialize an entry in the stub hash table.  */
/* Initialize an entry in the stub hash table.  */
 
 
static struct bfd_hash_entry *
static struct bfd_hash_entry *
stub_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table,
stub_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table,
                   const char *string)
                   const char *string)
{
{
  /* Allocate the structure if it has not already been allocated by a
  /* Allocate the structure if it has not already been allocated by a
     subclass.  */
     subclass.  */
  if (entry == NULL)
  if (entry == NULL)
    {
    {
      entry = bfd_hash_allocate (table,
      entry = bfd_hash_allocate (table,
                                 sizeof (struct elf32_m68hc11_stub_hash_entry));
                                 sizeof (struct elf32_m68hc11_stub_hash_entry));
      if (entry == NULL)
      if (entry == NULL)
        return entry;
        return entry;
    }
    }
 
 
  /* Call the allocation method of the superclass.  */
  /* Call the allocation method of the superclass.  */
  entry = bfd_hash_newfunc (entry, table, string);
  entry = bfd_hash_newfunc (entry, table, string);
  if (entry != NULL)
  if (entry != NULL)
    {
    {
      struct elf32_m68hc11_stub_hash_entry *eh;
      struct elf32_m68hc11_stub_hash_entry *eh;
 
 
      /* Initialize the local fields.  */
      /* Initialize the local fields.  */
      eh = (struct elf32_m68hc11_stub_hash_entry *) entry;
      eh = (struct elf32_m68hc11_stub_hash_entry *) entry;
      eh->stub_sec = NULL;
      eh->stub_sec = NULL;
      eh->stub_offset = 0;
      eh->stub_offset = 0;
      eh->target_value = 0;
      eh->target_value = 0;
      eh->target_section = NULL;
      eh->target_section = NULL;
    }
    }
 
 
  return entry;
  return entry;
}
}
 
 
/* Add a new stub entry to the stub hash.  Not all fields of the new
/* Add a new stub entry to the stub hash.  Not all fields of the new
   stub entry are initialised.  */
   stub entry are initialised.  */
 
 
static struct elf32_m68hc11_stub_hash_entry *
static struct elf32_m68hc11_stub_hash_entry *
m68hc12_add_stub (const char *stub_name, asection *section,
m68hc12_add_stub (const char *stub_name, asection *section,
                  struct m68hc11_elf_link_hash_table *htab)
                  struct m68hc11_elf_link_hash_table *htab)
{
{
  struct elf32_m68hc11_stub_hash_entry *stub_entry;
  struct elf32_m68hc11_stub_hash_entry *stub_entry;
 
 
  /* Enter this entry into the linker stub hash table.  */
  /* Enter this entry into the linker stub hash table.  */
  stub_entry = m68hc12_stub_hash_lookup (htab->stub_hash_table, stub_name,
  stub_entry = m68hc12_stub_hash_lookup (htab->stub_hash_table, stub_name,
                                         TRUE, FALSE);
                                         TRUE, FALSE);
  if (stub_entry == NULL)
  if (stub_entry == NULL)
    {
    {
      (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
      (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
                             section->owner, stub_name);
                             section->owner, stub_name);
      return NULL;
      return NULL;
    }
    }
 
 
  if (htab->stub_section == 0)
  if (htab->stub_section == 0)
    {
    {
      htab->stub_section = (*htab->add_stub_section) (".tramp",
      htab->stub_section = (*htab->add_stub_section) (".tramp",
                                                      htab->tramp_section);
                                                      htab->tramp_section);
    }
    }
 
 
  stub_entry->stub_sec = htab->stub_section;
  stub_entry->stub_sec = htab->stub_section;
  stub_entry->stub_offset = 0;
  stub_entry->stub_offset = 0;
  return stub_entry;
  return stub_entry;
}
}
 
 
/* Hook called by the linker routine which adds symbols from an object
/* Hook called by the linker routine which adds symbols from an object
   file.  We use it for identify far symbols and force a loading of
   file.  We use it for identify far symbols and force a loading of
   the trampoline handler.  */
   the trampoline handler.  */
 
 
bfd_boolean
bfd_boolean
elf32_m68hc11_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
elf32_m68hc11_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
                               Elf_Internal_Sym *sym,
                               Elf_Internal_Sym *sym,
                               const char **namep ATTRIBUTE_UNUSED,
                               const char **namep ATTRIBUTE_UNUSED,
                               flagword *flagsp ATTRIBUTE_UNUSED,
                               flagword *flagsp ATTRIBUTE_UNUSED,
                               asection **secp ATTRIBUTE_UNUSED,
                               asection **secp ATTRIBUTE_UNUSED,
                               bfd_vma *valp ATTRIBUTE_UNUSED)
                               bfd_vma *valp ATTRIBUTE_UNUSED)
{
{
  if (sym->st_other & STO_M68HC12_FAR)
  if (sym->st_other & STO_M68HC12_FAR)
    {
    {
      struct elf_link_hash_entry *h;
      struct elf_link_hash_entry *h;
 
 
      h = (struct elf_link_hash_entry *)
      h = (struct elf_link_hash_entry *)
        bfd_link_hash_lookup (info->hash, "__far_trampoline",
        bfd_link_hash_lookup (info->hash, "__far_trampoline",
                              FALSE, FALSE, FALSE);
                              FALSE, FALSE, FALSE);
      if (h == NULL)
      if (h == NULL)
        {
        {
          struct bfd_link_hash_entry* entry = NULL;
          struct bfd_link_hash_entry* entry = NULL;
 
 
          _bfd_generic_link_add_one_symbol (info, abfd,
          _bfd_generic_link_add_one_symbol (info, abfd,
                                            "__far_trampoline",
                                            "__far_trampoline",
                                            BSF_GLOBAL,
                                            BSF_GLOBAL,
                                            bfd_und_section_ptr,
                                            bfd_und_section_ptr,
                                            (bfd_vma) 0, (const char*) NULL,
                                            (bfd_vma) 0, (const char*) NULL,
                                            FALSE, FALSE, &entry);
                                            FALSE, FALSE, &entry);
        }
        }
 
 
    }
    }
  return TRUE;
  return TRUE;
}
}
 
 
/* External entry points for sizing and building linker stubs.  */
/* External entry points for sizing and building linker stubs.  */
 
 
/* Set up various things so that we can make a list of input sections
/* Set up various things so that we can make a list of input sections
   for each output section included in the link.  Returns -1 on error,
   for each output section included in the link.  Returns -1 on error,
   0 when no stubs will be needed, and 1 on success.  */
   0 when no stubs will be needed, and 1 on success.  */
 
 
int
int
elf32_m68hc11_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
elf32_m68hc11_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
{
{
  bfd *input_bfd;
  bfd *input_bfd;
  unsigned int bfd_count;
  unsigned int bfd_count;
  int top_id, top_index;
  int top_id, top_index;
  asection *section;
  asection *section;
  asection **input_list, **list;
  asection **input_list, **list;
  bfd_size_type amt;
  bfd_size_type amt;
  asection *text_section;
  asection *text_section;
  struct m68hc11_elf_link_hash_table *htab;
  struct m68hc11_elf_link_hash_table *htab;
 
 
  htab = m68hc11_elf_hash_table (info);
  htab = m68hc11_elf_hash_table (info);
 
 
  if (bfd_get_flavour (info->output_bfd) != bfd_target_elf_flavour)
  if (bfd_get_flavour (info->output_bfd) != bfd_target_elf_flavour)
    return 0;
    return 0;
 
 
  /* Count the number of input BFDs and find the top input section id.
  /* Count the number of input BFDs and find the top input section id.
     Also search for an existing ".tramp" section so that we know
     Also search for an existing ".tramp" section so that we know
     where generated trampolines must go.  Default to ".text" if we
     where generated trampolines must go.  Default to ".text" if we
     can't find it.  */
     can't find it.  */
  htab->tramp_section = 0;
  htab->tramp_section = 0;
  text_section = 0;
  text_section = 0;
  for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
  for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
       input_bfd != NULL;
       input_bfd != NULL;
       input_bfd = input_bfd->link_next)
       input_bfd = input_bfd->link_next)
    {
    {
      bfd_count += 1;
      bfd_count += 1;
      for (section = input_bfd->sections;
      for (section = input_bfd->sections;
           section != NULL;
           section != NULL;
           section = section->next)
           section = section->next)
        {
        {
          const char* name = bfd_get_section_name (input_bfd, section);
          const char* name = bfd_get_section_name (input_bfd, section);
 
 
          if (!strcmp (name, ".tramp"))
          if (!strcmp (name, ".tramp"))
            htab->tramp_section = section;
            htab->tramp_section = section;
 
 
          if (!strcmp (name, ".text"))
          if (!strcmp (name, ".text"))
            text_section = section;
            text_section = section;
 
 
          if (top_id < section->id)
          if (top_id < section->id)
            top_id = section->id;
            top_id = section->id;
        }
        }
    }
    }
  htab->bfd_count = bfd_count;
  htab->bfd_count = bfd_count;
  if (htab->tramp_section == 0)
  if (htab->tramp_section == 0)
    htab->tramp_section = text_section;
    htab->tramp_section = text_section;
 
 
  /* We can't use output_bfd->section_count here to find the top output
  /* We can't use output_bfd->section_count here to find the top output
     section index as some sections may have been removed, and
     section index as some sections may have been removed, and
     strip_excluded_output_sections doesn't renumber the indices.  */
     strip_excluded_output_sections doesn't renumber the indices.  */
  for (section = output_bfd->sections, top_index = 0;
  for (section = output_bfd->sections, top_index = 0;
       section != NULL;
       section != NULL;
       section = section->next)
       section = section->next)
    {
    {
      if (top_index < section->index)
      if (top_index < section->index)
        top_index = section->index;
        top_index = section->index;
    }
    }
 
 
  htab->top_index = top_index;
  htab->top_index = top_index;
  amt = sizeof (asection *) * (top_index + 1);
  amt = sizeof (asection *) * (top_index + 1);
  input_list = (asection **) bfd_malloc (amt);
  input_list = (asection **) bfd_malloc (amt);
  htab->input_list = input_list;
  htab->input_list = input_list;
  if (input_list == NULL)
  if (input_list == NULL)
    return -1;
    return -1;
 
 
  /* For sections we aren't interested in, mark their entries with a
  /* For sections we aren't interested in, mark their entries with a
     value we can check later.  */
     value we can check later.  */
  list = input_list + top_index;
  list = input_list + top_index;
  do
  do
    *list = bfd_abs_section_ptr;
    *list = bfd_abs_section_ptr;
  while (list-- != input_list);
  while (list-- != input_list);
 
 
  for (section = output_bfd->sections;
  for (section = output_bfd->sections;
       section != NULL;
       section != NULL;
       section = section->next)
       section = section->next)
    {
    {
      if ((section->flags & SEC_CODE) != 0)
      if ((section->flags & SEC_CODE) != 0)
        input_list[section->index] = NULL;
        input_list[section->index] = NULL;
    }
    }
 
 
  return 1;
  return 1;
}
}
 
 
/* Determine and set the size of the stub section for a final link.
/* Determine and set the size of the stub section for a final link.
 
 
   The basic idea here is to examine all the relocations looking for
   The basic idea here is to examine all the relocations looking for
   PC-relative calls to a target that is unreachable with a "bl"
   PC-relative calls to a target that is unreachable with a "bl"
   instruction.  */
   instruction.  */
 
 
bfd_boolean
bfd_boolean
elf32_m68hc11_size_stubs (bfd *output_bfd, bfd *stub_bfd,
elf32_m68hc11_size_stubs (bfd *output_bfd, bfd *stub_bfd,
                          struct bfd_link_info *info,
                          struct bfd_link_info *info,
                          asection * (*add_stub_section) (const char*, asection*))
                          asection * (*add_stub_section) (const char*, asection*))
{
{
  bfd *input_bfd;
  bfd *input_bfd;
  asection *section;
  asection *section;
  Elf_Internal_Sym *local_syms, **all_local_syms;
  Elf_Internal_Sym *local_syms, **all_local_syms;
  unsigned int bfd_indx, bfd_count;
  unsigned int bfd_indx, bfd_count;
  bfd_size_type amt;
  bfd_size_type amt;
  asection *stub_sec;
  asection *stub_sec;
 
 
  struct m68hc11_elf_link_hash_table *htab = m68hc11_elf_hash_table (info);
  struct m68hc11_elf_link_hash_table *htab = m68hc11_elf_hash_table (info);
 
 
  /* Stash our params away.  */
  /* Stash our params away.  */
  htab->stub_bfd = stub_bfd;
  htab->stub_bfd = stub_bfd;
  htab->add_stub_section = add_stub_section;
  htab->add_stub_section = add_stub_section;
 
 
  /* Count the number of input BFDs and find the top input section id.  */
  /* Count the number of input BFDs and find the top input section id.  */
  for (input_bfd = info->input_bfds, bfd_count = 0;
  for (input_bfd = info->input_bfds, bfd_count = 0;
       input_bfd != NULL;
       input_bfd != NULL;
       input_bfd = input_bfd->link_next)
       input_bfd = input_bfd->link_next)
    {
    {
      bfd_count += 1;
      bfd_count += 1;
    }
    }
 
 
  /* We want to read in symbol extension records only once.  To do this
  /* We want to read in symbol extension records only once.  To do this
     we need to read in the local symbols in parallel and save them for
     we need to read in the local symbols in parallel and save them for
     later use; so hold pointers to the local symbols in an array.  */
     later use; so hold pointers to the local symbols in an array.  */
  amt = sizeof (Elf_Internal_Sym *) * bfd_count;
  amt = sizeof (Elf_Internal_Sym *) * bfd_count;
  all_local_syms = (Elf_Internal_Sym **) bfd_zmalloc (amt);
  all_local_syms = (Elf_Internal_Sym **) bfd_zmalloc (amt);
  if (all_local_syms == NULL)
  if (all_local_syms == NULL)
    return FALSE;
    return FALSE;
 
 
  /* Walk over all the input BFDs, swapping in local symbols.  */
  /* Walk over all the input BFDs, swapping in local symbols.  */
  for (input_bfd = info->input_bfds, bfd_indx = 0;
  for (input_bfd = info->input_bfds, bfd_indx = 0;
       input_bfd != NULL;
       input_bfd != NULL;
       input_bfd = input_bfd->link_next, bfd_indx++)
       input_bfd = input_bfd->link_next, bfd_indx++)
    {
    {
      Elf_Internal_Shdr *symtab_hdr;
      Elf_Internal_Shdr *symtab_hdr;
 
 
      /* We'll need the symbol table in a second.  */
      /* We'll need the symbol table in a second.  */
      symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
      symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
      if (symtab_hdr->sh_info == 0)
      if (symtab_hdr->sh_info == 0)
        continue;
        continue;
 
 
      /* We need an array of the local symbols attached to the input bfd.  */
      /* We need an array of the local symbols attached to the input bfd.  */
      local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
      local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
      if (local_syms == NULL)
      if (local_syms == NULL)
        {
        {
          local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
          local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
                                             symtab_hdr->sh_info, 0,
                                             symtab_hdr->sh_info, 0,
                                             NULL, NULL, NULL);
                                             NULL, NULL, NULL);
          /* Cache them for elf_link_input_bfd.  */
          /* Cache them for elf_link_input_bfd.  */
          symtab_hdr->contents = (unsigned char *) local_syms;
          symtab_hdr->contents = (unsigned char *) local_syms;
        }
        }
      if (local_syms == NULL)
      if (local_syms == NULL)
        {
        {
          free (all_local_syms);
          free (all_local_syms);
          return FALSE;
          return FALSE;
        }
        }
 
 
      all_local_syms[bfd_indx] = local_syms;
      all_local_syms[bfd_indx] = local_syms;
    }
    }
 
 
  for (input_bfd = info->input_bfds, bfd_indx = 0;
  for (input_bfd = info->input_bfds, bfd_indx = 0;
       input_bfd != NULL;
       input_bfd != NULL;
       input_bfd = input_bfd->link_next, bfd_indx++)
       input_bfd = input_bfd->link_next, bfd_indx++)
    {
    {
      Elf_Internal_Shdr *symtab_hdr;
      Elf_Internal_Shdr *symtab_hdr;
      Elf_Internal_Sym *local_syms;
      Elf_Internal_Sym *local_syms;
      struct elf_link_hash_entry ** sym_hashes;
      struct elf_link_hash_entry ** sym_hashes;
 
 
      sym_hashes = elf_sym_hashes (input_bfd);
      sym_hashes = elf_sym_hashes (input_bfd);
 
 
      /* We'll need the symbol table in a second.  */
      /* We'll need the symbol table in a second.  */
      symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
      symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
      if (symtab_hdr->sh_info == 0)
      if (symtab_hdr->sh_info == 0)
        continue;
        continue;
 
 
      local_syms = all_local_syms[bfd_indx];
      local_syms = all_local_syms[bfd_indx];
 
 
      /* Walk over each section attached to the input bfd.  */
      /* Walk over each section attached to the input bfd.  */
      for (section = input_bfd->sections;
      for (section = input_bfd->sections;
           section != NULL;
           section != NULL;
           section = section->next)
           section = section->next)
        {
        {
          Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
          Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
 
 
          /* If there aren't any relocs, then there's nothing more
          /* If there aren't any relocs, then there's nothing more
             to do.  */
             to do.  */
          if ((section->flags & SEC_RELOC) == 0
          if ((section->flags & SEC_RELOC) == 0
              || section->reloc_count == 0)
              || section->reloc_count == 0)
            continue;
            continue;
 
 
          /* If this section is a link-once section that will be
          /* If this section is a link-once section that will be
             discarded, then don't create any stubs.  */
             discarded, then don't create any stubs.  */
          if (section->output_section == NULL
          if (section->output_section == NULL
              || section->output_section->owner != output_bfd)
              || section->output_section->owner != output_bfd)
            continue;
            continue;
 
 
          /* Get the relocs.  */
          /* Get the relocs.  */
          internal_relocs
          internal_relocs
            = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
            = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
                                         (Elf_Internal_Rela *) NULL,
                                         (Elf_Internal_Rela *) NULL,
                                         info->keep_memory);
                                         info->keep_memory);
          if (internal_relocs == NULL)
          if (internal_relocs == NULL)
            goto error_ret_free_local;
            goto error_ret_free_local;
 
 
          /* Now examine each relocation.  */
          /* Now examine each relocation.  */
          irela = internal_relocs;
          irela = internal_relocs;
          irelaend = irela + section->reloc_count;
          irelaend = irela + section->reloc_count;
          for (; irela < irelaend; irela++)
          for (; irela < irelaend; irela++)
            {
            {
              unsigned int r_type, r_indx;
              unsigned int r_type, r_indx;
              struct elf32_m68hc11_stub_hash_entry *stub_entry;
              struct elf32_m68hc11_stub_hash_entry *stub_entry;
              asection *sym_sec;
              asection *sym_sec;
              bfd_vma sym_value;
              bfd_vma sym_value;
              struct elf_link_hash_entry *hash;
              struct elf_link_hash_entry *hash;
              const char *stub_name;
              const char *stub_name;
              Elf_Internal_Sym *sym;
              Elf_Internal_Sym *sym;
 
 
              r_type = ELF32_R_TYPE (irela->r_info);
              r_type = ELF32_R_TYPE (irela->r_info);
 
 
              /* Only look at 16-bit relocs.  */
              /* Only look at 16-bit relocs.  */
              if (r_type != (unsigned int) R_M68HC11_16)
              if (r_type != (unsigned int) R_M68HC11_16)
                continue;
                continue;
 
 
              /* Now determine the call target, its name, value,
              /* Now determine the call target, its name, value,
                 section.  */
                 section.  */
              r_indx = ELF32_R_SYM (irela->r_info);
              r_indx = ELF32_R_SYM (irela->r_info);
              if (r_indx < symtab_hdr->sh_info)
              if (r_indx < symtab_hdr->sh_info)
                {
                {
                  /* It's a local symbol.  */
                  /* It's a local symbol.  */
                  Elf_Internal_Shdr *hdr;
                  Elf_Internal_Shdr *hdr;
                  bfd_boolean is_far;
                  bfd_boolean is_far;
 
 
                  sym = local_syms + r_indx;
                  sym = local_syms + r_indx;
                  is_far = (sym && (sym->st_other & STO_M68HC12_FAR));
                  is_far = (sym && (sym->st_other & STO_M68HC12_FAR));
                  if (!is_far)
                  if (!is_far)
                    continue;
                    continue;
 
 
                  if (sym->st_shndx >= elf_numsections (input_bfd))
                  if (sym->st_shndx >= elf_numsections (input_bfd))
                    sym_sec = NULL;
                    sym_sec = NULL;
                  else
                  else
                    {
                    {
                      hdr = elf_elfsections (input_bfd)[sym->st_shndx];
                      hdr = elf_elfsections (input_bfd)[sym->st_shndx];
                      sym_sec = hdr->bfd_section;
                      sym_sec = hdr->bfd_section;
                    }
                    }
                  stub_name = (bfd_elf_string_from_elf_section
                  stub_name = (bfd_elf_string_from_elf_section
                               (input_bfd, symtab_hdr->sh_link,
                               (input_bfd, symtab_hdr->sh_link,
                                sym->st_name));
                                sym->st_name));
                  sym_value = sym->st_value;
                  sym_value = sym->st_value;
                  hash = NULL;
                  hash = NULL;
                }
                }
              else
              else
                {
                {
                  /* It's an external symbol.  */
                  /* It's an external symbol.  */
                  int e_indx;
                  int e_indx;
 
 
                  e_indx = r_indx - symtab_hdr->sh_info;
                  e_indx = r_indx - symtab_hdr->sh_info;
                  hash = (struct elf_link_hash_entry *)
                  hash = (struct elf_link_hash_entry *)
                    (sym_hashes[e_indx]);
                    (sym_hashes[e_indx]);
 
 
                  while (hash->root.type == bfd_link_hash_indirect
                  while (hash->root.type == bfd_link_hash_indirect
                         || hash->root.type == bfd_link_hash_warning)
                         || hash->root.type == bfd_link_hash_warning)
                    hash = ((struct elf_link_hash_entry *)
                    hash = ((struct elf_link_hash_entry *)
                            hash->root.u.i.link);
                            hash->root.u.i.link);
 
 
                  if (hash->root.type == bfd_link_hash_defined
                  if (hash->root.type == bfd_link_hash_defined
                      || hash->root.type == bfd_link_hash_defweak
                      || hash->root.type == bfd_link_hash_defweak
                      || hash->root.type == bfd_link_hash_new)
                      || hash->root.type == bfd_link_hash_new)
                    {
                    {
                      if (!(hash->other & STO_M68HC12_FAR))
                      if (!(hash->other & STO_M68HC12_FAR))
                        continue;
                        continue;
                    }
                    }
                  else if (hash->root.type == bfd_link_hash_undefweak)
                  else if (hash->root.type == bfd_link_hash_undefweak)
                    {
                    {
                      continue;
                      continue;
                    }
                    }
                  else if (hash->root.type == bfd_link_hash_undefined)
                  else if (hash->root.type == bfd_link_hash_undefined)
                    {
                    {
                      continue;
                      continue;
                    }
                    }
                  else
                  else
                    {
                    {
                      bfd_set_error (bfd_error_bad_value);
                      bfd_set_error (bfd_error_bad_value);
                      goto error_ret_free_internal;
                      goto error_ret_free_internal;
                    }
                    }
                  sym_sec = hash->root.u.def.section;
                  sym_sec = hash->root.u.def.section;
                  sym_value = hash->root.u.def.value;
                  sym_value = hash->root.u.def.value;
                  stub_name = hash->root.root.string;
                  stub_name = hash->root.root.string;
                }
                }
 
 
              if (!stub_name)
              if (!stub_name)
                goto error_ret_free_internal;
                goto error_ret_free_internal;
 
 
              stub_entry = m68hc12_stub_hash_lookup
              stub_entry = m68hc12_stub_hash_lookup
                (htab->stub_hash_table,
                (htab->stub_hash_table,
                 stub_name,
                 stub_name,
                 FALSE, FALSE);
                 FALSE, FALSE);
              if (stub_entry == NULL)
              if (stub_entry == NULL)
                {
                {
                  if (add_stub_section == 0)
                  if (add_stub_section == 0)
                    continue;
                    continue;
 
 
                  stub_entry = m68hc12_add_stub (stub_name, section, htab);
                  stub_entry = m68hc12_add_stub (stub_name, section, htab);
                  if (stub_entry == NULL)
                  if (stub_entry == NULL)
                    {
                    {
                    error_ret_free_internal:
                    error_ret_free_internal:
                      if (elf_section_data (section)->relocs == NULL)
                      if (elf_section_data (section)->relocs == NULL)
                        free (internal_relocs);
                        free (internal_relocs);
                      goto error_ret_free_local;
                      goto error_ret_free_local;
                    }
                    }
                }
                }
 
 
              stub_entry->target_value = sym_value;
              stub_entry->target_value = sym_value;
              stub_entry->target_section = sym_sec;
              stub_entry->target_section = sym_sec;
            }
            }
 
 
          /* We're done with the internal relocs, free them.  */
          /* We're done with the internal relocs, free them.  */
          if (elf_section_data (section)->relocs == NULL)
          if (elf_section_data (section)->relocs == NULL)
            free (internal_relocs);
            free (internal_relocs);
        }
        }
    }
    }
 
 
  if (add_stub_section)
  if (add_stub_section)
    {
    {
      /* OK, we've added some stubs.  Find out the new size of the
      /* OK, we've added some stubs.  Find out the new size of the
         stub sections.  */
         stub sections.  */
      for (stub_sec = htab->stub_bfd->sections;
      for (stub_sec = htab->stub_bfd->sections;
           stub_sec != NULL;
           stub_sec != NULL;
           stub_sec = stub_sec->next)
           stub_sec = stub_sec->next)
        {
        {
          stub_sec->size = 0;
          stub_sec->size = 0;
        }
        }
 
 
      bfd_hash_traverse (htab->stub_hash_table, htab->size_one_stub, htab);
      bfd_hash_traverse (htab->stub_hash_table, htab->size_one_stub, htab);
    }
    }
  free (all_local_syms);
  free (all_local_syms);
  return TRUE;
  return TRUE;
 
 
 error_ret_free_local:
 error_ret_free_local:
  free (all_local_syms);
  free (all_local_syms);
  return FALSE;
  return FALSE;
}
}
 
 
/* Export the trampoline addresses in the symbol table.  */
/* Export the trampoline addresses in the symbol table.  */
static bfd_boolean
static bfd_boolean
m68hc11_elf_export_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
m68hc11_elf_export_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
{
{
  struct bfd_link_info *info;
  struct bfd_link_info *info;
  struct m68hc11_elf_link_hash_table *htab;
  struct m68hc11_elf_link_hash_table *htab;
  struct elf32_m68hc11_stub_hash_entry *stub_entry;
  struct elf32_m68hc11_stub_hash_entry *stub_entry;
  char* name;
  char* name;
  bfd_boolean result;
  bfd_boolean result;
 
 
  info = (struct bfd_link_info *) in_arg;
  info = (struct bfd_link_info *) in_arg;
  htab = m68hc11_elf_hash_table (info);
  htab = m68hc11_elf_hash_table (info);
 
 
  /* Massage our args to the form they really have.  */
  /* Massage our args to the form they really have.  */
  stub_entry = (struct elf32_m68hc11_stub_hash_entry *) gen_entry;
  stub_entry = (struct elf32_m68hc11_stub_hash_entry *) gen_entry;
 
 
  /* Generate the trampoline according to HC11 or HC12.  */
  /* Generate the trampoline according to HC11 or HC12.  */
  result = (* htab->build_one_stub) (gen_entry, in_arg);
  result = (* htab->build_one_stub) (gen_entry, in_arg);
 
 
  /* Make a printable name that does not conflict with the real function.  */
  /* Make a printable name that does not conflict with the real function.  */
  name = alloca (strlen (stub_entry->root.string) + 16);
  name = alloca (strlen (stub_entry->root.string) + 16);
  sprintf (name, "tramp.%s", stub_entry->root.string);
  sprintf (name, "tramp.%s", stub_entry->root.string);
 
 
  /* Export the symbol for debugging/disassembling.  */
  /* Export the symbol for debugging/disassembling.  */
  m68hc11_elf_set_symbol (htab->stub_bfd, info, name,
  m68hc11_elf_set_symbol (htab->stub_bfd, info, name,
                          stub_entry->stub_offset,
                          stub_entry->stub_offset,
                          stub_entry->stub_sec);
                          stub_entry->stub_sec);
  return result;
  return result;
}
}
 
 
/* Export a symbol or set its value and section.  */
/* Export a symbol or set its value and section.  */
static void
static void
m68hc11_elf_set_symbol (bfd *abfd, struct bfd_link_info *info,
m68hc11_elf_set_symbol (bfd *abfd, struct bfd_link_info *info,
                        const char *name, bfd_vma value, asection *sec)
                        const char *name, bfd_vma value, asection *sec)
{
{
  struct elf_link_hash_entry *h;
  struct elf_link_hash_entry *h;
 
 
  h = (struct elf_link_hash_entry *)
  h = (struct elf_link_hash_entry *)
    bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
    bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
  if (h == NULL)
  if (h == NULL)
    {
    {
      _bfd_generic_link_add_one_symbol (info, abfd,
      _bfd_generic_link_add_one_symbol (info, abfd,
                                        name,
                                        name,
                                        BSF_GLOBAL,
                                        BSF_GLOBAL,
                                        sec,
                                        sec,
                                        value,
                                        value,
                                        (const char*) NULL,
                                        (const char*) NULL,
                                        TRUE, FALSE, NULL);
                                        TRUE, FALSE, NULL);
    }
    }
  else
  else
    {
    {
      h->root.type = bfd_link_hash_defined;
      h->root.type = bfd_link_hash_defined;
      h->root.u.def.value = value;
      h->root.u.def.value = value;
      h->root.u.def.section = sec;
      h->root.u.def.section = sec;
    }
    }
}
}
 
 
 
 
/* Build all the stubs associated with the current output file.  The
/* Build all the stubs associated with the current output file.  The
   stubs are kept in a hash table attached to the main linker hash
   stubs are kept in a hash table attached to the main linker hash
   table.  This function is called via m68hc12elf_finish in the
   table.  This function is called via m68hc12elf_finish in the
   linker.  */
   linker.  */
 
 
bfd_boolean
bfd_boolean
elf32_m68hc11_build_stubs (bfd *abfd, struct bfd_link_info *info)
elf32_m68hc11_build_stubs (bfd *abfd, struct bfd_link_info *info)
{
{
  asection *stub_sec;
  asection *stub_sec;
  struct bfd_hash_table *table;
  struct bfd_hash_table *table;
  struct m68hc11_elf_link_hash_table *htab;
  struct m68hc11_elf_link_hash_table *htab;
  struct m68hc11_scan_param param;
  struct m68hc11_scan_param param;
 
 
  m68hc11_elf_get_bank_parameters (info);
  m68hc11_elf_get_bank_parameters (info);
  htab = m68hc11_elf_hash_table (info);
  htab = m68hc11_elf_hash_table (info);
 
 
  for (stub_sec = htab->stub_bfd->sections;
  for (stub_sec = htab->stub_bfd->sections;
       stub_sec != NULL;
       stub_sec != NULL;
       stub_sec = stub_sec->next)
       stub_sec = stub_sec->next)
    {
    {
      bfd_size_type size;
      bfd_size_type size;
 
 
      /* Allocate memory to hold the linker stubs.  */
      /* Allocate memory to hold the linker stubs.  */
      size = stub_sec->size;
      size = stub_sec->size;
      stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
      stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
      if (stub_sec->contents == NULL && size != 0)
      if (stub_sec->contents == NULL && size != 0)
        return FALSE;
        return FALSE;
      stub_sec->size = 0;
      stub_sec->size = 0;
    }
    }
 
 
  /* Build the stubs as directed by the stub hash table.  */
  /* Build the stubs as directed by the stub hash table.  */
  table = htab->stub_hash_table;
  table = htab->stub_hash_table;
  bfd_hash_traverse (table, m68hc11_elf_export_one_stub, info);
  bfd_hash_traverse (table, m68hc11_elf_export_one_stub, info);
 
 
  /* Scan the output sections to see if we use the memory banks.
  /* Scan the output sections to see if we use the memory banks.
     If so, export the symbols that define how the memory banks
     If so, export the symbols that define how the memory banks
     are mapped.  This is used by gdb and the simulator to obtain
     are mapped.  This is used by gdb and the simulator to obtain
     the information.  It can be used by programs to burn the eprom
     the information.  It can be used by programs to burn the eprom
     at the good addresses.  */
     at the good addresses.  */
  param.use_memory_banks = FALSE;
  param.use_memory_banks = FALSE;
  param.pinfo = &htab->pinfo;
  param.pinfo = &htab->pinfo;
  bfd_map_over_sections (abfd, scan_sections_for_abi, &param);
  bfd_map_over_sections (abfd, scan_sections_for_abi, &param);
  if (param.use_memory_banks)
  if (param.use_memory_banks)
    {
    {
      m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_START_NAME,
      m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_START_NAME,
                              htab->pinfo.bank_physical,
                              htab->pinfo.bank_physical,
                              bfd_abs_section_ptr);
                              bfd_abs_section_ptr);
      m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_VIRTUAL_NAME,
      m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_VIRTUAL_NAME,
                              htab->pinfo.bank_virtual,
                              htab->pinfo.bank_virtual,
                              bfd_abs_section_ptr);
                              bfd_abs_section_ptr);
      m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_SIZE_NAME,
      m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_SIZE_NAME,
                              htab->pinfo.bank_size,
                              htab->pinfo.bank_size,
                              bfd_abs_section_ptr);
                              bfd_abs_section_ptr);
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
void
void
m68hc11_elf_get_bank_parameters (struct bfd_link_info *info)
m68hc11_elf_get_bank_parameters (struct bfd_link_info *info)
{
{
  unsigned i;
  unsigned i;
  struct m68hc11_page_info *pinfo;
  struct m68hc11_page_info *pinfo;
  struct bfd_link_hash_entry *h;
  struct bfd_link_hash_entry *h;
 
 
  pinfo = &m68hc11_elf_hash_table (info)->pinfo;
  pinfo = &m68hc11_elf_hash_table (info)->pinfo;
  if (pinfo->bank_param_initialized)
  if (pinfo->bank_param_initialized)
    return;
    return;
 
 
  pinfo->bank_virtual = M68HC12_BANK_VIRT;
  pinfo->bank_virtual = M68HC12_BANK_VIRT;
  pinfo->bank_mask = M68HC12_BANK_MASK;
  pinfo->bank_mask = M68HC12_BANK_MASK;
  pinfo->bank_physical = M68HC12_BANK_BASE;
  pinfo->bank_physical = M68HC12_BANK_BASE;
  pinfo->bank_shift = M68HC12_BANK_SHIFT;
  pinfo->bank_shift = M68HC12_BANK_SHIFT;
  pinfo->bank_size = 1 << M68HC12_BANK_SHIFT;
  pinfo->bank_size = 1 << M68HC12_BANK_SHIFT;
 
 
  h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_START_NAME,
  h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_START_NAME,
                            FALSE, FALSE, TRUE);
                            FALSE, FALSE, TRUE);
  if (h != (struct bfd_link_hash_entry*) NULL
  if (h != (struct bfd_link_hash_entry*) NULL
      && h->type == bfd_link_hash_defined)
      && h->type == bfd_link_hash_defined)
    pinfo->bank_physical = (h->u.def.value
    pinfo->bank_physical = (h->u.def.value
                            + h->u.def.section->output_section->vma
                            + h->u.def.section->output_section->vma
                            + h->u.def.section->output_offset);
                            + h->u.def.section->output_offset);
 
 
  h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_VIRTUAL_NAME,
  h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_VIRTUAL_NAME,
                            FALSE, FALSE, TRUE);
                            FALSE, FALSE, TRUE);
  if (h != (struct bfd_link_hash_entry*) NULL
  if (h != (struct bfd_link_hash_entry*) NULL
      && h->type == bfd_link_hash_defined)
      && h->type == bfd_link_hash_defined)
    pinfo->bank_virtual = (h->u.def.value
    pinfo->bank_virtual = (h->u.def.value
                           + h->u.def.section->output_section->vma
                           + h->u.def.section->output_section->vma
                           + h->u.def.section->output_offset);
                           + h->u.def.section->output_offset);
 
 
  h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_SIZE_NAME,
  h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_SIZE_NAME,
                            FALSE, FALSE, TRUE);
                            FALSE, FALSE, TRUE);
  if (h != (struct bfd_link_hash_entry*) NULL
  if (h != (struct bfd_link_hash_entry*) NULL
      && h->type == bfd_link_hash_defined)
      && h->type == bfd_link_hash_defined)
    pinfo->bank_size = (h->u.def.value
    pinfo->bank_size = (h->u.def.value
                        + h->u.def.section->output_section->vma
                        + h->u.def.section->output_section->vma
                        + h->u.def.section->output_offset);
                        + h->u.def.section->output_offset);
 
 
  pinfo->bank_shift = 0;
  pinfo->bank_shift = 0;
  for (i = pinfo->bank_size; i != 0; i >>= 1)
  for (i = pinfo->bank_size; i != 0; i >>= 1)
    pinfo->bank_shift++;
    pinfo->bank_shift++;
  pinfo->bank_shift--;
  pinfo->bank_shift--;
  pinfo->bank_mask = (1 << pinfo->bank_shift) - 1;
  pinfo->bank_mask = (1 << pinfo->bank_shift) - 1;
  pinfo->bank_physical_end = pinfo->bank_physical + pinfo->bank_size;
  pinfo->bank_physical_end = pinfo->bank_physical + pinfo->bank_size;
  pinfo->bank_param_initialized = 1;
  pinfo->bank_param_initialized = 1;
 
 
  h = bfd_link_hash_lookup (info->hash, "__far_trampoline", FALSE,
  h = bfd_link_hash_lookup (info->hash, "__far_trampoline", FALSE,
                            FALSE, TRUE);
                            FALSE, TRUE);
  if (h != (struct bfd_link_hash_entry*) NULL
  if (h != (struct bfd_link_hash_entry*) NULL
      && h->type == bfd_link_hash_defined)
      && h->type == bfd_link_hash_defined)
    pinfo->trampoline_addr = (h->u.def.value
    pinfo->trampoline_addr = (h->u.def.value
                              + h->u.def.section->output_section->vma
                              + h->u.def.section->output_section->vma
                              + h->u.def.section->output_offset);
                              + h->u.def.section->output_offset);
}
}
 
 
/* Return 1 if the address is in banked memory.
/* Return 1 if the address is in banked memory.
   This can be applied to a virtual address and to a physical address.  */
   This can be applied to a virtual address and to a physical address.  */
int
int
m68hc11_addr_is_banked (struct m68hc11_page_info *pinfo, bfd_vma addr)
m68hc11_addr_is_banked (struct m68hc11_page_info *pinfo, bfd_vma addr)
{
{
  if (addr >= pinfo->bank_virtual)
  if (addr >= pinfo->bank_virtual)
    return 1;
    return 1;
 
 
  if (addr >= pinfo->bank_physical && addr <= pinfo->bank_physical_end)
  if (addr >= pinfo->bank_physical && addr <= pinfo->bank_physical_end)
    return 1;
    return 1;
 
 
  return 0;
  return 0;
}
}
 
 
/* Return the physical address seen by the processor, taking
/* Return the physical address seen by the processor, taking
   into account banked memory.  */
   into account banked memory.  */
bfd_vma
bfd_vma
m68hc11_phys_addr (struct m68hc11_page_info *pinfo, bfd_vma addr)
m68hc11_phys_addr (struct m68hc11_page_info *pinfo, bfd_vma addr)
{
{
  if (addr < pinfo->bank_virtual)
  if (addr < pinfo->bank_virtual)
    return addr;
    return addr;
 
 
  /* Map the address to the memory bank.  */
  /* Map the address to the memory bank.  */
  addr -= pinfo->bank_virtual;
  addr -= pinfo->bank_virtual;
  addr &= pinfo->bank_mask;
  addr &= pinfo->bank_mask;
  addr += pinfo->bank_physical;
  addr += pinfo->bank_physical;
  return addr;
  return addr;
}
}
 
 
/* Return the page number corresponding to an address in banked memory.  */
/* Return the page number corresponding to an address in banked memory.  */
bfd_vma
bfd_vma
m68hc11_phys_page (struct m68hc11_page_info *pinfo, bfd_vma addr)
m68hc11_phys_page (struct m68hc11_page_info *pinfo, bfd_vma addr)
{
{
  if (addr < pinfo->bank_virtual)
  if (addr < pinfo->bank_virtual)
    return 0;
    return 0;
 
 
  /* Map the address to the memory bank.  */
  /* Map the address to the memory bank.  */
  addr -= pinfo->bank_virtual;
  addr -= pinfo->bank_virtual;
  addr >>= pinfo->bank_shift;
  addr >>= pinfo->bank_shift;
  addr &= 0x0ff;
  addr &= 0x0ff;
  return addr;
  return addr;
}
}
 
 
/* This function is used for relocs which are only used for relaxing,
/* This function is used for relocs which are only used for relaxing,
   which the linker should otherwise ignore.  */
   which the linker should otherwise ignore.  */
 
 
bfd_reloc_status_type
bfd_reloc_status_type
m68hc11_elf_ignore_reloc (bfd *abfd ATTRIBUTE_UNUSED,
m68hc11_elf_ignore_reloc (bfd *abfd ATTRIBUTE_UNUSED,
                          arelent *reloc_entry,
                          arelent *reloc_entry,
                          asymbol *symbol ATTRIBUTE_UNUSED,
                          asymbol *symbol ATTRIBUTE_UNUSED,
                          void *data ATTRIBUTE_UNUSED,
                          void *data ATTRIBUTE_UNUSED,
                          asection *input_section,
                          asection *input_section,
                          bfd *output_bfd,
                          bfd *output_bfd,
                          char **error_message ATTRIBUTE_UNUSED)
                          char **error_message ATTRIBUTE_UNUSED)
{
{
  if (output_bfd != NULL)
  if (output_bfd != NULL)
    reloc_entry->address += input_section->output_offset;
    reloc_entry->address += input_section->output_offset;
  return bfd_reloc_ok;
  return bfd_reloc_ok;
}
}
 
 
bfd_reloc_status_type
bfd_reloc_status_type
m68hc11_elf_special_reloc (bfd *abfd ATTRIBUTE_UNUSED,
m68hc11_elf_special_reloc (bfd *abfd ATTRIBUTE_UNUSED,
                           arelent *reloc_entry,
                           arelent *reloc_entry,
                           asymbol *symbol,
                           asymbol *symbol,
                           void *data ATTRIBUTE_UNUSED,
                           void *data ATTRIBUTE_UNUSED,
                           asection *input_section,
                           asection *input_section,
                           bfd *output_bfd,
                           bfd *output_bfd,
                           char **error_message ATTRIBUTE_UNUSED)
                           char **error_message ATTRIBUTE_UNUSED)
{
{
  if (output_bfd != (bfd *) NULL
  if (output_bfd != (bfd *) NULL
      && (symbol->flags & BSF_SECTION_SYM) == 0
      && (symbol->flags & BSF_SECTION_SYM) == 0
      && (! reloc_entry->howto->partial_inplace
      && (! reloc_entry->howto->partial_inplace
          || reloc_entry->addend == 0))
          || reloc_entry->addend == 0))
    {
    {
      reloc_entry->address += input_section->output_offset;
      reloc_entry->address += input_section->output_offset;
      return bfd_reloc_ok;
      return bfd_reloc_ok;
    }
    }
 
 
  if (output_bfd != NULL)
  if (output_bfd != NULL)
    return bfd_reloc_continue;
    return bfd_reloc_continue;
 
 
  if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
  if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
    return bfd_reloc_outofrange;
    return bfd_reloc_outofrange;
 
 
  abort();
  abort();
}
}
 
 
/* Look through the relocs for a section during the first phase.
/* Look through the relocs for a section during the first phase.
   Since we don't do .gots or .plts, we just need to consider the
   Since we don't do .gots or .plts, we just need to consider the
   virtual table relocs for gc.  */
   virtual table relocs for gc.  */
 
 
bfd_boolean
bfd_boolean
elf32_m68hc11_check_relocs (bfd *abfd, struct bfd_link_info *info,
elf32_m68hc11_check_relocs (bfd *abfd, struct bfd_link_info *info,
                            asection *sec, const Elf_Internal_Rela *relocs)
                            asection *sec, const Elf_Internal_Rela *relocs)
{
{
  Elf_Internal_Shdr *           symtab_hdr;
  Elf_Internal_Shdr *           symtab_hdr;
  struct elf_link_hash_entry ** sym_hashes;
  struct elf_link_hash_entry ** sym_hashes;
  const Elf_Internal_Rela *     rel;
  const Elf_Internal_Rela *     rel;
  const Elf_Internal_Rela *     rel_end;
  const Elf_Internal_Rela *     rel_end;
 
 
  if (info->relocatable)
  if (info->relocatable)
    return TRUE;
    return TRUE;
 
 
  symtab_hdr = & elf_tdata (abfd)->symtab_hdr;
  symtab_hdr = & elf_tdata (abfd)->symtab_hdr;
  sym_hashes = elf_sym_hashes (abfd);
  sym_hashes = elf_sym_hashes (abfd);
  rel_end = relocs + sec->reloc_count;
  rel_end = relocs + sec->reloc_count;
 
 
  for (rel = relocs; rel < rel_end; rel++)
  for (rel = relocs; rel < rel_end; rel++)
    {
    {
      struct elf_link_hash_entry * h;
      struct elf_link_hash_entry * h;
      unsigned long r_symndx;
      unsigned long r_symndx;
 
 
      r_symndx = ELF32_R_SYM (rel->r_info);
      r_symndx = ELF32_R_SYM (rel->r_info);
 
 
      if (r_symndx < symtab_hdr->sh_info)
      if (r_symndx < symtab_hdr->sh_info)
        h = NULL;
        h = NULL;
      else
      else
        {
        {
          h = sym_hashes [r_symndx - symtab_hdr->sh_info];
          h = sym_hashes [r_symndx - symtab_hdr->sh_info];
          while (h->root.type == bfd_link_hash_indirect
          while (h->root.type == bfd_link_hash_indirect
                 || h->root.type == bfd_link_hash_warning)
                 || h->root.type == bfd_link_hash_warning)
            h = (struct elf_link_hash_entry *) h->root.u.i.link;
            h = (struct elf_link_hash_entry *) h->root.u.i.link;
        }
        }
 
 
      switch (ELF32_R_TYPE (rel->r_info))
      switch (ELF32_R_TYPE (rel->r_info))
        {
        {
        /* This relocation describes the C++ object vtable hierarchy.
        /* This relocation describes the C++ object vtable hierarchy.
           Reconstruct it for later use during GC.  */
           Reconstruct it for later use during GC.  */
        case R_M68HC11_GNU_VTINHERIT:
        case R_M68HC11_GNU_VTINHERIT:
          if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
          if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
            return FALSE;
            return FALSE;
          break;
          break;
 
 
        /* This relocation describes which C++ vtable entries are actually
        /* This relocation describes which C++ vtable entries are actually
           used.  Record for later use during GC.  */
           used.  Record for later use during GC.  */
        case R_M68HC11_GNU_VTENTRY:
        case R_M68HC11_GNU_VTENTRY:
          BFD_ASSERT (h != NULL);
          BFD_ASSERT (h != NULL);
          if (h != NULL
          if (h != NULL
              && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
              && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
            return FALSE;
            return FALSE;
          break;
          break;
        }
        }
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Relocate a 68hc11/68hc12 ELF section.  */
/* Relocate a 68hc11/68hc12 ELF section.  */
bfd_boolean
bfd_boolean
elf32_m68hc11_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
elf32_m68hc11_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
                                struct bfd_link_info *info,
                                struct bfd_link_info *info,
                                bfd *input_bfd, asection *input_section,
                                bfd *input_bfd, asection *input_section,
                                bfd_byte *contents, Elf_Internal_Rela *relocs,
                                bfd_byte *contents, Elf_Internal_Rela *relocs,
                                Elf_Internal_Sym *local_syms,
                                Elf_Internal_Sym *local_syms,
                                asection **local_sections)
                                asection **local_sections)
{
{
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Shdr *symtab_hdr;
  struct elf_link_hash_entry **sym_hashes;
  struct elf_link_hash_entry **sym_hashes;
  Elf_Internal_Rela *rel, *relend;
  Elf_Internal_Rela *rel, *relend;
  const char *name = NULL;
  const char *name = NULL;
  struct m68hc11_page_info *pinfo;
  struct m68hc11_page_info *pinfo;
  const struct elf_backend_data * const ebd = get_elf_backend_data (input_bfd);
  const struct elf_backend_data * const ebd = get_elf_backend_data (input_bfd);
 
 
  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
  sym_hashes = elf_sym_hashes (input_bfd);
  sym_hashes = elf_sym_hashes (input_bfd);
 
 
  /* Get memory bank parameters.  */
  /* Get memory bank parameters.  */
  m68hc11_elf_get_bank_parameters (info);
  m68hc11_elf_get_bank_parameters (info);
  pinfo = &m68hc11_elf_hash_table (info)->pinfo;
  pinfo = &m68hc11_elf_hash_table (info)->pinfo;
 
 
  rel = relocs;
  rel = relocs;
  relend = relocs + input_section->reloc_count;
  relend = relocs + input_section->reloc_count;
  for (; rel < relend; rel++)
  for (; rel < relend; rel++)
    {
    {
      int r_type;
      int r_type;
      arelent arel;
      arelent arel;
      reloc_howto_type *howto;
      reloc_howto_type *howto;
      unsigned long r_symndx;
      unsigned long r_symndx;
      Elf_Internal_Sym *sym;
      Elf_Internal_Sym *sym;
      asection *sec;
      asection *sec;
      bfd_vma relocation = 0;
      bfd_vma relocation = 0;
      bfd_reloc_status_type r = bfd_reloc_undefined;
      bfd_reloc_status_type r = bfd_reloc_undefined;
      bfd_vma phys_page;
      bfd_vma phys_page;
      bfd_vma phys_addr;
      bfd_vma phys_addr;
      bfd_vma insn_addr;
      bfd_vma insn_addr;
      bfd_vma insn_page;
      bfd_vma insn_page;
      bfd_boolean is_far = FALSE;
      bfd_boolean is_far = FALSE;
      struct elf_link_hash_entry *h;
      struct elf_link_hash_entry *h;
      const char* stub_name = 0;
      const char* stub_name = 0;
 
 
      r_symndx = ELF32_R_SYM (rel->r_info);
      r_symndx = ELF32_R_SYM (rel->r_info);
      r_type = ELF32_R_TYPE (rel->r_info);
      r_type = ELF32_R_TYPE (rel->r_info);
 
 
      if (r_type == R_M68HC11_GNU_VTENTRY
      if (r_type == R_M68HC11_GNU_VTENTRY
          || r_type == R_M68HC11_GNU_VTINHERIT )
          || r_type == R_M68HC11_GNU_VTINHERIT )
        continue;
        continue;
 
 
      (*ebd->elf_info_to_howto_rel) (input_bfd, &arel, rel);
      (*ebd->elf_info_to_howto_rel) (input_bfd, &arel, rel);
      howto = arel.howto;
      howto = arel.howto;
 
 
      h = NULL;
      h = NULL;
      sym = NULL;
      sym = NULL;
      sec = NULL;
      sec = NULL;
      if (r_symndx < symtab_hdr->sh_info)
      if (r_symndx < symtab_hdr->sh_info)
        {
        {
          sym = local_syms + r_symndx;
          sym = local_syms + r_symndx;
          sec = local_sections[r_symndx];
          sec = local_sections[r_symndx];
          relocation = (sec->output_section->vma
          relocation = (sec->output_section->vma
                        + sec->output_offset
                        + sec->output_offset
                        + sym->st_value);
                        + sym->st_value);
          is_far = (sym && (sym->st_other & STO_M68HC12_FAR));
          is_far = (sym && (sym->st_other & STO_M68HC12_FAR));
          if (is_far)
          if (is_far)
            stub_name = (bfd_elf_string_from_elf_section
            stub_name = (bfd_elf_string_from_elf_section
                         (input_bfd, symtab_hdr->sh_link,
                         (input_bfd, symtab_hdr->sh_link,
                          sym->st_name));
                          sym->st_name));
        }
        }
      else
      else
        {
        {
          bfd_boolean unresolved_reloc, warned;
          bfd_boolean unresolved_reloc, warned;
 
 
          RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
          RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
                                   r_symndx, symtab_hdr, sym_hashes,
                                   r_symndx, symtab_hdr, sym_hashes,
                                   h, sec, relocation, unresolved_reloc,
                                   h, sec, relocation, unresolved_reloc,
                                   warned);
                                   warned);
 
 
          is_far = (h && (h->other & STO_M68HC12_FAR));
          is_far = (h && (h->other & STO_M68HC12_FAR));
          stub_name = h->root.root.string;
          stub_name = h->root.root.string;
        }
        }
 
 
      if (sec != NULL && elf_discarded_section (sec))
      if (sec != NULL && elf_discarded_section (sec))
        {
        {
          /* For relocs against symbols from removed linkonce sections,
          /* For relocs against symbols from removed linkonce sections,
             or sections discarded by a linker script, we just want the
             or sections discarded by a linker script, we just want the
             section contents zeroed.  Avoid any special processing.  */
             section contents zeroed.  Avoid any special processing.  */
          _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
          _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
          rel->r_info = 0;
          rel->r_info = 0;
          rel->r_addend = 0;
          rel->r_addend = 0;
          continue;
          continue;
        }
        }
 
 
      if (info->relocatable)
      if (info->relocatable)
        {
        {
          /* This is a relocatable link.  We don't have to change
          /* This is a relocatable link.  We don't have to change
             anything, unless the reloc is against a section symbol,
             anything, unless the reloc is against a section symbol,
             in which case we have to adjust according to where the
             in which case we have to adjust according to where the
             section symbol winds up in the output section.  */
             section symbol winds up in the output section.  */
          if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
          if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
            rel->r_addend += sec->output_offset;
            rel->r_addend += sec->output_offset;
          continue;
          continue;
        }
        }
 
 
      if (h != NULL)
      if (h != NULL)
        name = h->root.root.string;
        name = h->root.root.string;
      else
      else
        {
        {
          name = (bfd_elf_string_from_elf_section
          name = (bfd_elf_string_from_elf_section
                  (input_bfd, symtab_hdr->sh_link, sym->st_name));
                  (input_bfd, symtab_hdr->sh_link, sym->st_name));
          if (name == NULL || *name == '\0')
          if (name == NULL || *name == '\0')
            name = bfd_section_name (input_bfd, sec);
            name = bfd_section_name (input_bfd, sec);
        }
        }
 
 
      if (is_far && ELF32_R_TYPE (rel->r_info) == R_M68HC11_16)
      if (is_far && ELF32_R_TYPE (rel->r_info) == R_M68HC11_16)
        {
        {
          struct elf32_m68hc11_stub_hash_entry* stub;
          struct elf32_m68hc11_stub_hash_entry* stub;
          struct m68hc11_elf_link_hash_table *htab;
          struct m68hc11_elf_link_hash_table *htab;
 
 
          htab = m68hc11_elf_hash_table (info);
          htab = m68hc11_elf_hash_table (info);
          stub = m68hc12_stub_hash_lookup (htab->stub_hash_table,
          stub = m68hc12_stub_hash_lookup (htab->stub_hash_table,
                                           name, FALSE, FALSE);
                                           name, FALSE, FALSE);
          if (stub)
          if (stub)
            {
            {
              relocation = stub->stub_offset
              relocation = stub->stub_offset
                + stub->stub_sec->output_section->vma
                + stub->stub_sec->output_section->vma
                + stub->stub_sec->output_offset;
                + stub->stub_sec->output_offset;
              is_far = FALSE;
              is_far = FALSE;
            }
            }
        }
        }
 
 
      /* Do the memory bank mapping.  */
      /* Do the memory bank mapping.  */
      phys_addr = m68hc11_phys_addr (pinfo, relocation + rel->r_addend);
      phys_addr = m68hc11_phys_addr (pinfo, relocation + rel->r_addend);
      phys_page = m68hc11_phys_page (pinfo, relocation + rel->r_addend);
      phys_page = m68hc11_phys_page (pinfo, relocation + rel->r_addend);
      switch (r_type)
      switch (r_type)
        {
        {
        case R_M68HC11_24:
        case R_M68HC11_24:
          /* Reloc used by 68HC12 call instruction.  */
          /* Reloc used by 68HC12 call instruction.  */
          bfd_put_16 (input_bfd, phys_addr,
          bfd_put_16 (input_bfd, phys_addr,
                      (bfd_byte*) contents + rel->r_offset);
                      (bfd_byte*) contents + rel->r_offset);
          bfd_put_8 (input_bfd, phys_page,
          bfd_put_8 (input_bfd, phys_page,
                     (bfd_byte*) contents + rel->r_offset + 2);
                     (bfd_byte*) contents + rel->r_offset + 2);
          r = bfd_reloc_ok;
          r = bfd_reloc_ok;
          r_type = R_M68HC11_NONE;
          r_type = R_M68HC11_NONE;
          break;
          break;
 
 
        case R_M68HC11_NONE:
        case R_M68HC11_NONE:
          r = bfd_reloc_ok;
          r = bfd_reloc_ok;
          break;
          break;
 
 
        case R_M68HC11_LO16:
        case R_M68HC11_LO16:
          /* Reloc generated by %addr(expr) gas to obtain the
          /* Reloc generated by %addr(expr) gas to obtain the
             address as mapped in the memory bank window.  */
             address as mapped in the memory bank window.  */
          relocation = phys_addr;
          relocation = phys_addr;
          break;
          break;
 
 
        case R_M68HC11_PAGE:
        case R_M68HC11_PAGE:
          /* Reloc generated by %page(expr) gas to obtain the
          /* Reloc generated by %page(expr) gas to obtain the
             page number associated with the address.  */
             page number associated with the address.  */
          relocation = phys_page;
          relocation = phys_page;
          break;
          break;
 
 
        case R_M68HC11_16:
        case R_M68HC11_16:
          /* Get virtual address of instruction having the relocation.  */
          /* Get virtual address of instruction having the relocation.  */
          if (is_far)
          if (is_far)
            {
            {
              const char* msg;
              const char* msg;
              char* buf;
              char* buf;
              msg = _("Reference to the far symbol `%s' using a wrong "
              msg = _("Reference to the far symbol `%s' using a wrong "
                      "relocation may result in incorrect execution");
                      "relocation may result in incorrect execution");
              buf = alloca (strlen (msg) + strlen (name) + 10);
              buf = alloca (strlen (msg) + strlen (name) + 10);
              sprintf (buf, msg, name);
              sprintf (buf, msg, name);
 
 
              (* info->callbacks->warning)
              (* info->callbacks->warning)
                (info, buf, name, input_bfd, NULL, rel->r_offset);
                (info, buf, name, input_bfd, NULL, rel->r_offset);
            }
            }
 
 
          /* Get virtual address of instruction having the relocation.  */
          /* Get virtual address of instruction having the relocation.  */
          insn_addr = input_section->output_section->vma
          insn_addr = input_section->output_section->vma
            + input_section->output_offset
            + input_section->output_offset
            + rel->r_offset;
            + rel->r_offset;
 
 
          insn_page = m68hc11_phys_page (pinfo, insn_addr);
          insn_page = m68hc11_phys_page (pinfo, insn_addr);
 
 
          if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend)
          if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend)
              && m68hc11_addr_is_banked (pinfo, insn_addr)
              && m68hc11_addr_is_banked (pinfo, insn_addr)
              && phys_page != insn_page)
              && phys_page != insn_page)
            {
            {
              const char* msg;
              const char* msg;
              char* buf;
              char* buf;
 
 
              msg = _("banked address [%lx:%04lx] (%lx) is not in the same bank "
              msg = _("banked address [%lx:%04lx] (%lx) is not in the same bank "
                      "as current banked address [%lx:%04lx] (%lx)");
                      "as current banked address [%lx:%04lx] (%lx)");
 
 
              buf = alloca (strlen (msg) + 128);
              buf = alloca (strlen (msg) + 128);
              sprintf (buf, msg, phys_page, phys_addr,
              sprintf (buf, msg, phys_page, phys_addr,
                       (long) (relocation + rel->r_addend),
                       (long) (relocation + rel->r_addend),
                       insn_page, m68hc11_phys_addr (pinfo, insn_addr),
                       insn_page, m68hc11_phys_addr (pinfo, insn_addr),
                       (long) (insn_addr));
                       (long) (insn_addr));
              if (!((*info->callbacks->warning)
              if (!((*info->callbacks->warning)
                    (info, buf, name, input_bfd, input_section,
                    (info, buf, name, input_bfd, input_section,
                     rel->r_offset)))
                     rel->r_offset)))
                return FALSE;
                return FALSE;
              break;
              break;
            }
            }
          if (phys_page != 0 && insn_page == 0)
          if (phys_page != 0 && insn_page == 0)
            {
            {
              const char* msg;
              const char* msg;
              char* buf;
              char* buf;
 
 
              msg = _("reference to a banked address [%lx:%04lx] in the "
              msg = _("reference to a banked address [%lx:%04lx] in the "
                      "normal address space at %04lx");
                      "normal address space at %04lx");
 
 
              buf = alloca (strlen (msg) + 128);
              buf = alloca (strlen (msg) + 128);
              sprintf (buf, msg, phys_page, phys_addr, insn_addr);
              sprintf (buf, msg, phys_page, phys_addr, insn_addr);
              if (!((*info->callbacks->warning)
              if (!((*info->callbacks->warning)
                    (info, buf, name, input_bfd, input_section,
                    (info, buf, name, input_bfd, input_section,
                     insn_addr)))
                     insn_addr)))
                return FALSE;
                return FALSE;
 
 
              relocation = phys_addr;
              relocation = phys_addr;
              break;
              break;
            }
            }
 
 
          /* If this is a banked address use the phys_addr so that
          /* If this is a banked address use the phys_addr so that
             we stay in the banked window.  */
             we stay in the banked window.  */
          if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend))
          if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend))
            relocation = phys_addr;
            relocation = phys_addr;
          break;
          break;
        }
        }
      if (r_type != R_M68HC11_NONE)
      if (r_type != R_M68HC11_NONE)
        r = _bfd_final_link_relocate (howto, input_bfd, input_section,
        r = _bfd_final_link_relocate (howto, input_bfd, input_section,
                                      contents, rel->r_offset,
                                      contents, rel->r_offset,
                                      relocation, rel->r_addend);
                                      relocation, rel->r_addend);
 
 
      if (r != bfd_reloc_ok)
      if (r != bfd_reloc_ok)
        {
        {
          const char * msg = (const char *) 0;
          const char * msg = (const char *) 0;
 
 
          switch (r)
          switch (r)
            {
            {
            case bfd_reloc_overflow:
            case bfd_reloc_overflow:
              if (!((*info->callbacks->reloc_overflow)
              if (!((*info->callbacks->reloc_overflow)
                    (info, NULL, name, howto->name, (bfd_vma) 0,
                    (info, NULL, name, howto->name, (bfd_vma) 0,
                     input_bfd, input_section, rel->r_offset)))
                     input_bfd, input_section, rel->r_offset)))
                return FALSE;
                return FALSE;
              break;
              break;
 
 
            case bfd_reloc_undefined:
            case bfd_reloc_undefined:
              if (!((*info->callbacks->undefined_symbol)
              if (!((*info->callbacks->undefined_symbol)
                    (info, name, input_bfd, input_section,
                    (info, name, input_bfd, input_section,
                     rel->r_offset, TRUE)))
                     rel->r_offset, TRUE)))
                return FALSE;
                return FALSE;
              break;
              break;
 
 
            case bfd_reloc_outofrange:
            case bfd_reloc_outofrange:
              msg = _ ("internal error: out of range error");
              msg = _ ("internal error: out of range error");
              goto common_error;
              goto common_error;
 
 
            case bfd_reloc_notsupported:
            case bfd_reloc_notsupported:
              msg = _ ("internal error: unsupported relocation error");
              msg = _ ("internal error: unsupported relocation error");
              goto common_error;
              goto common_error;
 
 
            case bfd_reloc_dangerous:
            case bfd_reloc_dangerous:
              msg = _ ("internal error: dangerous error");
              msg = _ ("internal error: dangerous error");
              goto common_error;
              goto common_error;
 
 
            default:
            default:
              msg = _ ("internal error: unknown error");
              msg = _ ("internal error: unknown error");
              /* fall through */
              /* fall through */
 
 
            common_error:
            common_error:
              if (!((*info->callbacks->warning)
              if (!((*info->callbacks->warning)
                    (info, msg, name, input_bfd, input_section,
                    (info, msg, name, input_bfd, input_section,
                     rel->r_offset)))
                     rel->r_offset)))
                return FALSE;
                return FALSE;
              break;
              break;
            }
            }
        }
        }
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
 
 


/* Set and control ELF flags in ELF header.  */
/* Set and control ELF flags in ELF header.  */
 
 
bfd_boolean
bfd_boolean
_bfd_m68hc11_elf_set_private_flags (bfd *abfd, flagword flags)
_bfd_m68hc11_elf_set_private_flags (bfd *abfd, flagword flags)
{
{
  BFD_ASSERT (!elf_flags_init (abfd)
  BFD_ASSERT (!elf_flags_init (abfd)
              || elf_elfheader (abfd)->e_flags == flags);
              || elf_elfheader (abfd)->e_flags == flags);
 
 
  elf_elfheader (abfd)->e_flags = flags;
  elf_elfheader (abfd)->e_flags = flags;
  elf_flags_init (abfd) = TRUE;
  elf_flags_init (abfd) = TRUE;
  return TRUE;
  return TRUE;
}
}
 
 
/* Merge backend specific data from an object file to the output
/* Merge backend specific data from an object file to the output
   object file when linking.  */
   object file when linking.  */
 
 
bfd_boolean
bfd_boolean
_bfd_m68hc11_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
_bfd_m68hc11_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
{
{
  flagword old_flags;
  flagword old_flags;
  flagword new_flags;
  flagword new_flags;
  bfd_boolean ok = TRUE;
  bfd_boolean ok = TRUE;
 
 
  /* Check if we have the same endianess */
  /* Check if we have the same endianess */
  if (!_bfd_generic_verify_endian_match (ibfd, obfd))
  if (!_bfd_generic_verify_endian_match (ibfd, obfd))
    return FALSE;
    return FALSE;
 
 
  if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
  if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
      || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
      || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
    return TRUE;
    return TRUE;
 
 
  new_flags = elf_elfheader (ibfd)->e_flags;
  new_flags = elf_elfheader (ibfd)->e_flags;
  elf_elfheader (obfd)->e_flags |= new_flags & EF_M68HC11_ABI;
  elf_elfheader (obfd)->e_flags |= new_flags & EF_M68HC11_ABI;
  old_flags = elf_elfheader (obfd)->e_flags;
  old_flags = elf_elfheader (obfd)->e_flags;
 
 
  if (! elf_flags_init (obfd))
  if (! elf_flags_init (obfd))
    {
    {
      elf_flags_init (obfd) = TRUE;
      elf_flags_init (obfd) = TRUE;
      elf_elfheader (obfd)->e_flags = new_flags;
      elf_elfheader (obfd)->e_flags = new_flags;
      elf_elfheader (obfd)->e_ident[EI_CLASS]
      elf_elfheader (obfd)->e_ident[EI_CLASS]
        = elf_elfheader (ibfd)->e_ident[EI_CLASS];
        = elf_elfheader (ibfd)->e_ident[EI_CLASS];
 
 
      if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
      if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
          && bfd_get_arch_info (obfd)->the_default)
          && bfd_get_arch_info (obfd)->the_default)
        {
        {
          if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
          if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
                                   bfd_get_mach (ibfd)))
                                   bfd_get_mach (ibfd)))
            return FALSE;
            return FALSE;
        }
        }
 
 
      return TRUE;
      return TRUE;
    }
    }
 
 
  /* Check ABI compatibility.  */
  /* Check ABI compatibility.  */
  if ((new_flags & E_M68HC11_I32) != (old_flags & E_M68HC11_I32))
  if ((new_flags & E_M68HC11_I32) != (old_flags & E_M68HC11_I32))
    {
    {
      (*_bfd_error_handler)
      (*_bfd_error_handler)
        (_("%B: linking files compiled for 16-bit integers (-mshort) "
        (_("%B: linking files compiled for 16-bit integers (-mshort) "
           "and others for 32-bit integers"), ibfd);
           "and others for 32-bit integers"), ibfd);
      ok = FALSE;
      ok = FALSE;
    }
    }
  if ((new_flags & E_M68HC11_F64) != (old_flags & E_M68HC11_F64))
  if ((new_flags & E_M68HC11_F64) != (old_flags & E_M68HC11_F64))
    {
    {
      (*_bfd_error_handler)
      (*_bfd_error_handler)
        (_("%B: linking files compiled for 32-bit double (-fshort-double) "
        (_("%B: linking files compiled for 32-bit double (-fshort-double) "
           "and others for 64-bit double"), ibfd);
           "and others for 64-bit double"), ibfd);
      ok = FALSE;
      ok = FALSE;
    }
    }
 
 
  /* Processor compatibility.  */
  /* Processor compatibility.  */
  if (!EF_M68HC11_CAN_MERGE_MACH (new_flags, old_flags))
  if (!EF_M68HC11_CAN_MERGE_MACH (new_flags, old_flags))
    {
    {
      (*_bfd_error_handler)
      (*_bfd_error_handler)
        (_("%B: linking files compiled for HCS12 with "
        (_("%B: linking files compiled for HCS12 with "
           "others compiled for HC12"), ibfd);
           "others compiled for HC12"), ibfd);
      ok = FALSE;
      ok = FALSE;
    }
    }
  new_flags = ((new_flags & ~EF_M68HC11_MACH_MASK)
  new_flags = ((new_flags & ~EF_M68HC11_MACH_MASK)
               | (EF_M68HC11_MERGE_MACH (new_flags, old_flags)));
               | (EF_M68HC11_MERGE_MACH (new_flags, old_flags)));
 
 
  elf_elfheader (obfd)->e_flags = new_flags;
  elf_elfheader (obfd)->e_flags = new_flags;
 
 
  new_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK);
  new_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK);
  old_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK);
  old_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK);
 
 
  /* Warn about any other mismatches */
  /* Warn about any other mismatches */
  if (new_flags != old_flags)
  if (new_flags != old_flags)
    {
    {
      (*_bfd_error_handler)
      (*_bfd_error_handler)
        (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
        (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
         ibfd, (unsigned long) new_flags, (unsigned long) old_flags);
         ibfd, (unsigned long) new_flags, (unsigned long) old_flags);
      ok = FALSE;
      ok = FALSE;
    }
    }
 
 
  if (! ok)
  if (! ok)
    {
    {
      bfd_set_error (bfd_error_bad_value);
      bfd_set_error (bfd_error_bad_value);
      return FALSE;
      return FALSE;
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
bfd_boolean
bfd_boolean
_bfd_m68hc11_elf_print_private_bfd_data (bfd *abfd, void *ptr)
_bfd_m68hc11_elf_print_private_bfd_data (bfd *abfd, void *ptr)
{
{
  FILE *file = (FILE *) ptr;
  FILE *file = (FILE *) ptr;
 
 
  BFD_ASSERT (abfd != NULL && ptr != NULL);
  BFD_ASSERT (abfd != NULL && ptr != NULL);
 
 
  /* Print normal ELF private data.  */
  /* Print normal ELF private data.  */
  _bfd_elf_print_private_bfd_data (abfd, ptr);
  _bfd_elf_print_private_bfd_data (abfd, ptr);
 
 
  /* xgettext:c-format */
  /* xgettext:c-format */
  fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
  fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
 
 
  if (elf_elfheader (abfd)->e_flags & E_M68HC11_I32)
  if (elf_elfheader (abfd)->e_flags & E_M68HC11_I32)
    fprintf (file, _("[abi=32-bit int, "));
    fprintf (file, _("[abi=32-bit int, "));
  else
  else
    fprintf (file, _("[abi=16-bit int, "));
    fprintf (file, _("[abi=16-bit int, "));
 
 
  if (elf_elfheader (abfd)->e_flags & E_M68HC11_F64)
  if (elf_elfheader (abfd)->e_flags & E_M68HC11_F64)
    fprintf (file, _("64-bit double, "));
    fprintf (file, _("64-bit double, "));
  else
  else
    fprintf (file, _("32-bit double, "));
    fprintf (file, _("32-bit double, "));
 
 
  if (strcmp (bfd_get_target (abfd), "elf32-m68hc11") == 0)
  if (strcmp (bfd_get_target (abfd), "elf32-m68hc11") == 0)
    fprintf (file, _("cpu=HC11]"));
    fprintf (file, _("cpu=HC11]"));
  else if (elf_elfheader (abfd)->e_flags & EF_M68HCS12_MACH)
  else if (elf_elfheader (abfd)->e_flags & EF_M68HCS12_MACH)
    fprintf (file, _("cpu=HCS12]"));
    fprintf (file, _("cpu=HCS12]"));
  else
  else
    fprintf (file, _("cpu=HC12]"));
    fprintf (file, _("cpu=HC12]"));
 
 
  if (elf_elfheader (abfd)->e_flags & E_M68HC12_BANKS)
  if (elf_elfheader (abfd)->e_flags & E_M68HC12_BANKS)
    fprintf (file, _(" [memory=bank-model]"));
    fprintf (file, _(" [memory=bank-model]"));
  else
  else
    fprintf (file, _(" [memory=flat]"));
    fprintf (file, _(" [memory=flat]"));
 
 
  fputc ('\n', file);
  fputc ('\n', file);
 
 
  return TRUE;
  return TRUE;
}
}
 
 
static void scan_sections_for_abi (bfd *abfd ATTRIBUTE_UNUSED,
static void scan_sections_for_abi (bfd *abfd ATTRIBUTE_UNUSED,
                                   asection *asect, void *arg)
                                   asection *asect, void *arg)
{
{
  struct m68hc11_scan_param* p = (struct m68hc11_scan_param*) arg;
  struct m68hc11_scan_param* p = (struct m68hc11_scan_param*) arg;
 
 
  if (asect->vma >= p->pinfo->bank_virtual)
  if (asect->vma >= p->pinfo->bank_virtual)
    p->use_memory_banks = TRUE;
    p->use_memory_banks = TRUE;
}
}
 
 
/* Tweak the OSABI field of the elf header.  */
/* Tweak the OSABI field of the elf header.  */
 
 
void
void
elf32_m68hc11_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
elf32_m68hc11_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
{
{
  struct m68hc11_scan_param param;
  struct m68hc11_scan_param param;
 
 
  if (link_info == 0)
  if (link_info == 0)
    return;
    return;
 
 
  m68hc11_elf_get_bank_parameters (link_info);
  m68hc11_elf_get_bank_parameters (link_info);
 
 
  param.use_memory_banks = FALSE;
  param.use_memory_banks = FALSE;
  param.pinfo = &m68hc11_elf_hash_table (link_info)->pinfo;
  param.pinfo = &m68hc11_elf_hash_table (link_info)->pinfo;
  bfd_map_over_sections (abfd, scan_sections_for_abi, &param);
  bfd_map_over_sections (abfd, scan_sections_for_abi, &param);
  if (param.use_memory_banks)
  if (param.use_memory_banks)
    {
    {
      Elf_Internal_Ehdr * i_ehdrp;
      Elf_Internal_Ehdr * i_ehdrp;
 
 
      i_ehdrp = elf_elfheader (abfd);
      i_ehdrp = elf_elfheader (abfd);
      i_ehdrp->e_flags |= E_M68HC12_BANKS;
      i_ehdrp->e_flags |= E_M68HC12_BANKS;
    }
    }
}
}
 
 
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.