OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gdb-6.8/] [bfd/] [elf32-sh.c] - Diff between revs 827 and 840

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 827 Rev 840
/* Renesas / SuperH SH specific support for 32-bit ELF
/* Renesas / SuperH SH specific support for 32-bit ELF
   Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
   Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
   2006, 2007, 2008, 2009 Free Software Foundation, Inc.
   2006, 2007, 2008, 2009 Free Software Foundation, Inc.
   Contributed by Ian Lance Taylor, Cygnus Support.
   Contributed by Ian Lance Taylor, Cygnus Support.
 
 
   This file is part of BFD, the Binary File Descriptor library.
   This file is part of BFD, the Binary File Descriptor library.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   along with this program; if not, write to the Free Software
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
   MA 02110-1301, USA.  */
   MA 02110-1301, USA.  */
 
 
#include "sysdep.h"
#include "sysdep.h"
#include "bfd.h"
#include "bfd.h"
#include "bfdlink.h"
#include "bfdlink.h"
#include "libbfd.h"
#include "libbfd.h"
#include "elf-bfd.h"
#include "elf-bfd.h"
#include "elf-vxworks.h"
#include "elf-vxworks.h"
#include "elf/sh.h"
#include "elf/sh.h"
#include "libiberty.h"
#include "libiberty.h"
#include "../opcodes/sh-opc.h"
#include "../opcodes/sh-opc.h"
 
 
static bfd_reloc_status_type sh_elf_reloc
static bfd_reloc_status_type sh_elf_reloc
  (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
  (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
static bfd_reloc_status_type sh_elf_ignore_reloc
static bfd_reloc_status_type sh_elf_ignore_reloc
  (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
  (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
static bfd_boolean sh_elf_relax_delete_bytes
static bfd_boolean sh_elf_relax_delete_bytes
  (bfd *, asection *, bfd_vma, int);
  (bfd *, asection *, bfd_vma, int);
static bfd_boolean sh_elf_align_loads
static bfd_boolean sh_elf_align_loads
  (bfd *, asection *, Elf_Internal_Rela *, bfd_byte *, bfd_boolean *);
  (bfd *, asection *, Elf_Internal_Rela *, bfd_byte *, bfd_boolean *);
#ifndef SH64_ELF
#ifndef SH64_ELF
static bfd_boolean sh_elf_swap_insns
static bfd_boolean sh_elf_swap_insns
  (bfd *, asection *, void *, bfd_byte *, bfd_vma);
  (bfd *, asection *, void *, bfd_byte *, bfd_vma);
#endif
#endif
static int sh_elf_optimized_tls_reloc
static int sh_elf_optimized_tls_reloc
  (struct bfd_link_info *, int, int);
  (struct bfd_link_info *, int, int);
static bfd_vma dtpoff_base
static bfd_vma dtpoff_base
  (struct bfd_link_info *);
  (struct bfd_link_info *);
static bfd_vma tpoff
static bfd_vma tpoff
  (struct bfd_link_info *, bfd_vma);
  (struct bfd_link_info *, bfd_vma);
 
 
/* The name of the dynamic interpreter.  This is put in the .interp
/* The name of the dynamic interpreter.  This is put in the .interp
   section.  */
   section.  */
 
 
#define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
#define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
 
 
#define MINUS_ONE ((bfd_vma) 0 - 1)
#define MINUS_ONE ((bfd_vma) 0 - 1)


#define SH_PARTIAL32 TRUE
#define SH_PARTIAL32 TRUE
#define SH_SRC_MASK32 0xffffffff
#define SH_SRC_MASK32 0xffffffff
#define SH_ELF_RELOC sh_elf_reloc
#define SH_ELF_RELOC sh_elf_reloc
static reloc_howto_type sh_elf_howto_table[] =
static reloc_howto_type sh_elf_howto_table[] =
{
{
#include "elf32-sh-relocs.h"
#include "elf32-sh-relocs.h"
};
};
 
 
#define SH_PARTIAL32 FALSE
#define SH_PARTIAL32 FALSE
#define SH_SRC_MASK32 0
#define SH_SRC_MASK32 0
#define SH_ELF_RELOC bfd_elf_generic_reloc
#define SH_ELF_RELOC bfd_elf_generic_reloc
static reloc_howto_type sh_vxworks_howto_table[] =
static reloc_howto_type sh_vxworks_howto_table[] =
{
{
#include "elf32-sh-relocs.h"
#include "elf32-sh-relocs.h"
};
};


/* Return true if OUTPUT_BFD is a VxWorks object.  */
/* Return true if OUTPUT_BFD is a VxWorks object.  */
 
 
static bfd_boolean
static bfd_boolean
vxworks_object_p (bfd *abfd ATTRIBUTE_UNUSED)
vxworks_object_p (bfd *abfd ATTRIBUTE_UNUSED)
{
{
#if !defined INCLUDE_SHMEDIA && !defined SH_TARGET_ALREADY_DEFINED
#if !defined INCLUDE_SHMEDIA && !defined SH_TARGET_ALREADY_DEFINED
  extern const bfd_target bfd_elf32_shlvxworks_vec;
  extern const bfd_target bfd_elf32_shlvxworks_vec;
  extern const bfd_target bfd_elf32_shvxworks_vec;
  extern const bfd_target bfd_elf32_shvxworks_vec;
 
 
  return (abfd->xvec == &bfd_elf32_shlvxworks_vec
  return (abfd->xvec == &bfd_elf32_shlvxworks_vec
          || abfd->xvec == &bfd_elf32_shvxworks_vec);
          || abfd->xvec == &bfd_elf32_shvxworks_vec);
#else
#else
  return FALSE;
  return FALSE;
#endif
#endif
}
}
 
 
/* Return the howto table for ABFD.  */
/* Return the howto table for ABFD.  */
 
 
static reloc_howto_type *
static reloc_howto_type *
get_howto_table (bfd *abfd)
get_howto_table (bfd *abfd)
{
{
  if (vxworks_object_p (abfd))
  if (vxworks_object_p (abfd))
    return sh_vxworks_howto_table;
    return sh_vxworks_howto_table;
  return sh_elf_howto_table;
  return sh_elf_howto_table;
}
}
 
 
static bfd_reloc_status_type
static bfd_reloc_status_type
sh_elf_reloc_loop (int r_type ATTRIBUTE_UNUSED, bfd *input_bfd,
sh_elf_reloc_loop (int r_type ATTRIBUTE_UNUSED, bfd *input_bfd,
                   asection *input_section, bfd_byte *contents,
                   asection *input_section, bfd_byte *contents,
                   bfd_vma addr, asection *symbol_section,
                   bfd_vma addr, asection *symbol_section,
                   bfd_vma start, bfd_vma end)
                   bfd_vma start, bfd_vma end)
{
{
  static bfd_vma last_addr;
  static bfd_vma last_addr;
  static asection *last_symbol_section;
  static asection *last_symbol_section;
  bfd_byte *start_ptr, *ptr, *last_ptr;
  bfd_byte *start_ptr, *ptr, *last_ptr;
  int diff, cum_diff;
  int diff, cum_diff;
  bfd_signed_vma x;
  bfd_signed_vma x;
  int insn;
  int insn;
 
 
  /* Sanity check the address.  */
  /* Sanity check the address.  */
  if (addr > bfd_get_section_limit (input_bfd, input_section))
  if (addr > bfd_get_section_limit (input_bfd, input_section))
    return bfd_reloc_outofrange;
    return bfd_reloc_outofrange;
 
 
  /* We require the start and end relocations to be processed consecutively -
  /* We require the start and end relocations to be processed consecutively -
     although we allow then to be processed forwards or backwards.  */
     although we allow then to be processed forwards or backwards.  */
  if (! last_addr)
  if (! last_addr)
    {
    {
      last_addr = addr;
      last_addr = addr;
      last_symbol_section = symbol_section;
      last_symbol_section = symbol_section;
      return bfd_reloc_ok;
      return bfd_reloc_ok;
    }
    }
  if (last_addr != addr)
  if (last_addr != addr)
    abort ();
    abort ();
  last_addr = 0;
  last_addr = 0;
 
 
  if (! symbol_section || last_symbol_section != symbol_section || end < start)
  if (! symbol_section || last_symbol_section != symbol_section || end < start)
    return bfd_reloc_outofrange;
    return bfd_reloc_outofrange;
 
 
  /* Get the symbol_section contents.  */
  /* Get the symbol_section contents.  */
  if (symbol_section != input_section)
  if (symbol_section != input_section)
    {
    {
      if (elf_section_data (symbol_section)->this_hdr.contents != NULL)
      if (elf_section_data (symbol_section)->this_hdr.contents != NULL)
        contents = elf_section_data (symbol_section)->this_hdr.contents;
        contents = elf_section_data (symbol_section)->this_hdr.contents;
      else
      else
        {
        {
          if (!bfd_malloc_and_get_section (input_bfd, symbol_section,
          if (!bfd_malloc_and_get_section (input_bfd, symbol_section,
                                           &contents))
                                           &contents))
            {
            {
              if (contents != NULL)
              if (contents != NULL)
                free (contents);
                free (contents);
              return bfd_reloc_outofrange;
              return bfd_reloc_outofrange;
            }
            }
        }
        }
    }
    }
#define IS_PPI(PTR) ((bfd_get_16 (input_bfd, (PTR)) & 0xfc00) == 0xf800)
#define IS_PPI(PTR) ((bfd_get_16 (input_bfd, (PTR)) & 0xfc00) == 0xf800)
  start_ptr = contents + start;
  start_ptr = contents + start;
  for (cum_diff = -6, ptr = contents + end; cum_diff < 0 && ptr > start_ptr;)
  for (cum_diff = -6, ptr = contents + end; cum_diff < 0 && ptr > start_ptr;)
    {
    {
      for (last_ptr = ptr, ptr -= 4; ptr >= start_ptr && IS_PPI (ptr);)
      for (last_ptr = ptr, ptr -= 4; ptr >= start_ptr && IS_PPI (ptr);)
        ptr -= 2;
        ptr -= 2;
      ptr += 2;
      ptr += 2;
      diff = (last_ptr - ptr) >> 1;
      diff = (last_ptr - ptr) >> 1;
      cum_diff += diff & 1;
      cum_diff += diff & 1;
      cum_diff += diff;
      cum_diff += diff;
    }
    }
  /* Calculate the start / end values to load into rs / re minus four -
  /* Calculate the start / end values to load into rs / re minus four -
     so that will cancel out the four we would otherwise have to add to
     so that will cancel out the four we would otherwise have to add to
     addr to get the value to subtract in order to get relative addressing.  */
     addr to get the value to subtract in order to get relative addressing.  */
  if (cum_diff >= 0)
  if (cum_diff >= 0)
    {
    {
      start -= 4;
      start -= 4;
      end = (ptr + cum_diff * 2) - contents;
      end = (ptr + cum_diff * 2) - contents;
    }
    }
  else
  else
    {
    {
      bfd_vma start0 = start - 4;
      bfd_vma start0 = start - 4;
 
 
      while (start0 && IS_PPI (contents + start0))
      while (start0 && IS_PPI (contents + start0))
        start0 -= 2;
        start0 -= 2;
      start0 = start - 2 - ((start - start0) & 2);
      start0 = start - 2 - ((start - start0) & 2);
      start = start0 - cum_diff - 2;
      start = start0 - cum_diff - 2;
      end = start0;
      end = start0;
    }
    }
 
 
  if (contents != NULL
  if (contents != NULL
      && elf_section_data (symbol_section)->this_hdr.contents != contents)
      && elf_section_data (symbol_section)->this_hdr.contents != contents)
    free (contents);
    free (contents);
 
 
  insn = bfd_get_16 (input_bfd, contents + addr);
  insn = bfd_get_16 (input_bfd, contents + addr);
 
 
  x = (insn & 0x200 ? end : start) - addr;
  x = (insn & 0x200 ? end : start) - addr;
  if (input_section != symbol_section)
  if (input_section != symbol_section)
    x += ((symbol_section->output_section->vma + symbol_section->output_offset)
    x += ((symbol_section->output_section->vma + symbol_section->output_offset)
          - (input_section->output_section->vma
          - (input_section->output_section->vma
             + input_section->output_offset));
             + input_section->output_offset));
  x >>= 1;
  x >>= 1;
  if (x < -128 || x > 127)
  if (x < -128 || x > 127)
    return bfd_reloc_overflow;
    return bfd_reloc_overflow;
 
 
  x = (insn & ~0xff) | (x & 0xff);
  x = (insn & ~0xff) | (x & 0xff);
  bfd_put_16 (input_bfd, (bfd_vma) x, contents + addr);
  bfd_put_16 (input_bfd, (bfd_vma) x, contents + addr);
 
 
  return bfd_reloc_ok;
  return bfd_reloc_ok;
}
}
 
 
/* This function is used for normal relocs.  This used to be like the COFF
/* This function is used for normal relocs.  This used to be like the COFF
   function, and is almost certainly incorrect for other ELF targets.  */
   function, and is almost certainly incorrect for other ELF targets.  */
 
 
static bfd_reloc_status_type
static bfd_reloc_status_type
sh_elf_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol_in,
sh_elf_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol_in,
              void *data, asection *input_section, bfd *output_bfd,
              void *data, asection *input_section, bfd *output_bfd,
              char **error_message ATTRIBUTE_UNUSED)
              char **error_message ATTRIBUTE_UNUSED)
{
{
  unsigned long insn;
  unsigned long insn;
  bfd_vma sym_value;
  bfd_vma sym_value;
  enum elf_sh_reloc_type r_type;
  enum elf_sh_reloc_type r_type;
  bfd_vma addr = reloc_entry->address;
  bfd_vma addr = reloc_entry->address;
  bfd_byte *hit_data = addr + (bfd_byte *) data;
  bfd_byte *hit_data = addr + (bfd_byte *) data;
 
 
  r_type = (enum elf_sh_reloc_type) reloc_entry->howto->type;
  r_type = (enum elf_sh_reloc_type) reloc_entry->howto->type;
 
 
  if (output_bfd != NULL)
  if (output_bfd != NULL)
    {
    {
      /* Partial linking--do nothing.  */
      /* Partial linking--do nothing.  */
      reloc_entry->address += input_section->output_offset;
      reloc_entry->address += input_section->output_offset;
      return bfd_reloc_ok;
      return bfd_reloc_ok;
    }
    }
 
 
  /* Almost all relocs have to do with relaxing.  If any work must be
  /* Almost all relocs have to do with relaxing.  If any work must be
     done for them, it has been done in sh_relax_section.  */
     done for them, it has been done in sh_relax_section.  */
  if (r_type == R_SH_IND12W && (symbol_in->flags & BSF_LOCAL) != 0)
  if (r_type == R_SH_IND12W && (symbol_in->flags & BSF_LOCAL) != 0)
    return bfd_reloc_ok;
    return bfd_reloc_ok;
 
 
  if (symbol_in != NULL
  if (symbol_in != NULL
      && bfd_is_und_section (symbol_in->section))
      && bfd_is_und_section (symbol_in->section))
    return bfd_reloc_undefined;
    return bfd_reloc_undefined;
 
 
  if (bfd_is_com_section (symbol_in->section))
  if (bfd_is_com_section (symbol_in->section))
    sym_value = 0;
    sym_value = 0;
  else
  else
    sym_value = (symbol_in->value +
    sym_value = (symbol_in->value +
                 symbol_in->section->output_section->vma +
                 symbol_in->section->output_section->vma +
                 symbol_in->section->output_offset);
                 symbol_in->section->output_offset);
 
 
  switch (r_type)
  switch (r_type)
    {
    {
    case R_SH_DIR32:
    case R_SH_DIR32:
      insn = bfd_get_32 (abfd, hit_data);
      insn = bfd_get_32 (abfd, hit_data);
      insn += sym_value + reloc_entry->addend;
      insn += sym_value + reloc_entry->addend;
      bfd_put_32 (abfd, (bfd_vma) insn, hit_data);
      bfd_put_32 (abfd, (bfd_vma) insn, hit_data);
      break;
      break;
    case R_SH_IND12W:
    case R_SH_IND12W:
      insn = bfd_get_16 (abfd, hit_data);
      insn = bfd_get_16 (abfd, hit_data);
      sym_value += reloc_entry->addend;
      sym_value += reloc_entry->addend;
      sym_value -= (input_section->output_section->vma
      sym_value -= (input_section->output_section->vma
                    + input_section->output_offset
                    + input_section->output_offset
                    + addr
                    + addr
                    + 4);
                    + 4);
      sym_value += (insn & 0xfff) << 1;
      sym_value += (insn & 0xfff) << 1;
      if (insn & 0x800)
      if (insn & 0x800)
        sym_value -= 0x1000;
        sym_value -= 0x1000;
      insn = (insn & 0xf000) | (sym_value & 0xfff);
      insn = (insn & 0xf000) | (sym_value & 0xfff);
      bfd_put_16 (abfd, (bfd_vma) insn, hit_data);
      bfd_put_16 (abfd, (bfd_vma) insn, hit_data);
      if (sym_value < (bfd_vma) -0x1000 || sym_value >= 0x1000)
      if (sym_value < (bfd_vma) -0x1000 || sym_value >= 0x1000)
        return bfd_reloc_overflow;
        return bfd_reloc_overflow;
      break;
      break;
    default:
    default:
      abort ();
      abort ();
      break;
      break;
    }
    }
 
 
  return bfd_reloc_ok;
  return bfd_reloc_ok;
}
}
 
 
/* This function is used for relocs which are only used for relaxing,
/* This function is used for relocs which are only used for relaxing,
   which the linker should otherwise ignore.  */
   which the linker should otherwise ignore.  */
 
 
static bfd_reloc_status_type
static bfd_reloc_status_type
sh_elf_ignore_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
sh_elf_ignore_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
                     asymbol *symbol ATTRIBUTE_UNUSED,
                     asymbol *symbol ATTRIBUTE_UNUSED,
                     void *data ATTRIBUTE_UNUSED, asection *input_section,
                     void *data ATTRIBUTE_UNUSED, asection *input_section,
                     bfd *output_bfd,
                     bfd *output_bfd,
                     char **error_message ATTRIBUTE_UNUSED)
                     char **error_message ATTRIBUTE_UNUSED)
{
{
  if (output_bfd != NULL)
  if (output_bfd != NULL)
    reloc_entry->address += input_section->output_offset;
    reloc_entry->address += input_section->output_offset;
  return bfd_reloc_ok;
  return bfd_reloc_ok;
}
}
 
 
/* This structure is used to map BFD reloc codes to SH ELF relocs.  */
/* This structure is used to map BFD reloc codes to SH ELF relocs.  */
 
 
struct elf_reloc_map
struct elf_reloc_map
{
{
  bfd_reloc_code_real_type bfd_reloc_val;
  bfd_reloc_code_real_type bfd_reloc_val;
  unsigned char elf_reloc_val;
  unsigned char elf_reloc_val;
};
};
 
 
/* An array mapping BFD reloc codes to SH ELF relocs.  */
/* An array mapping BFD reloc codes to SH ELF relocs.  */
 
 
static const struct elf_reloc_map sh_reloc_map[] =
static const struct elf_reloc_map sh_reloc_map[] =
{
{
  { BFD_RELOC_NONE, R_SH_NONE },
  { BFD_RELOC_NONE, R_SH_NONE },
  { BFD_RELOC_32, R_SH_DIR32 },
  { BFD_RELOC_32, R_SH_DIR32 },
  { BFD_RELOC_16, R_SH_DIR16 },
  { BFD_RELOC_16, R_SH_DIR16 },
  { BFD_RELOC_8, R_SH_DIR8 },
  { BFD_RELOC_8, R_SH_DIR8 },
  { BFD_RELOC_CTOR, R_SH_DIR32 },
  { BFD_RELOC_CTOR, R_SH_DIR32 },
  { BFD_RELOC_32_PCREL, R_SH_REL32 },
  { BFD_RELOC_32_PCREL, R_SH_REL32 },
  { BFD_RELOC_SH_PCDISP8BY2, R_SH_DIR8WPN },
  { BFD_RELOC_SH_PCDISP8BY2, R_SH_DIR8WPN },
  { BFD_RELOC_SH_PCDISP12BY2, R_SH_IND12W },
  { BFD_RELOC_SH_PCDISP12BY2, R_SH_IND12W },
  { BFD_RELOC_SH_PCRELIMM8BY2, R_SH_DIR8WPZ },
  { BFD_RELOC_SH_PCRELIMM8BY2, R_SH_DIR8WPZ },
  { BFD_RELOC_SH_PCRELIMM8BY4, R_SH_DIR8WPL },
  { BFD_RELOC_SH_PCRELIMM8BY4, R_SH_DIR8WPL },
  { BFD_RELOC_8_PCREL, R_SH_SWITCH8 },
  { BFD_RELOC_8_PCREL, R_SH_SWITCH8 },
  { BFD_RELOC_SH_SWITCH16, R_SH_SWITCH16 },
  { BFD_RELOC_SH_SWITCH16, R_SH_SWITCH16 },
  { BFD_RELOC_SH_SWITCH32, R_SH_SWITCH32 },
  { BFD_RELOC_SH_SWITCH32, R_SH_SWITCH32 },
  { BFD_RELOC_SH_USES, R_SH_USES },
  { BFD_RELOC_SH_USES, R_SH_USES },
  { BFD_RELOC_SH_COUNT, R_SH_COUNT },
  { BFD_RELOC_SH_COUNT, R_SH_COUNT },
  { BFD_RELOC_SH_ALIGN, R_SH_ALIGN },
  { BFD_RELOC_SH_ALIGN, R_SH_ALIGN },
  { BFD_RELOC_SH_CODE, R_SH_CODE },
  { BFD_RELOC_SH_CODE, R_SH_CODE },
  { BFD_RELOC_SH_DATA, R_SH_DATA },
  { BFD_RELOC_SH_DATA, R_SH_DATA },
  { BFD_RELOC_SH_LABEL, R_SH_LABEL },
  { BFD_RELOC_SH_LABEL, R_SH_LABEL },
  { BFD_RELOC_VTABLE_INHERIT, R_SH_GNU_VTINHERIT },
  { BFD_RELOC_VTABLE_INHERIT, R_SH_GNU_VTINHERIT },
  { BFD_RELOC_VTABLE_ENTRY, R_SH_GNU_VTENTRY },
  { BFD_RELOC_VTABLE_ENTRY, R_SH_GNU_VTENTRY },
  { BFD_RELOC_SH_LOOP_START, R_SH_LOOP_START },
  { BFD_RELOC_SH_LOOP_START, R_SH_LOOP_START },
  { BFD_RELOC_SH_LOOP_END, R_SH_LOOP_END },
  { BFD_RELOC_SH_LOOP_END, R_SH_LOOP_END },
  { BFD_RELOC_SH_TLS_GD_32, R_SH_TLS_GD_32 },
  { BFD_RELOC_SH_TLS_GD_32, R_SH_TLS_GD_32 },
  { BFD_RELOC_SH_TLS_LD_32, R_SH_TLS_LD_32 },
  { BFD_RELOC_SH_TLS_LD_32, R_SH_TLS_LD_32 },
  { BFD_RELOC_SH_TLS_LDO_32, R_SH_TLS_LDO_32 },
  { BFD_RELOC_SH_TLS_LDO_32, R_SH_TLS_LDO_32 },
  { BFD_RELOC_SH_TLS_IE_32, R_SH_TLS_IE_32 },
  { BFD_RELOC_SH_TLS_IE_32, R_SH_TLS_IE_32 },
  { BFD_RELOC_SH_TLS_LE_32, R_SH_TLS_LE_32 },
  { BFD_RELOC_SH_TLS_LE_32, R_SH_TLS_LE_32 },
  { BFD_RELOC_SH_TLS_DTPMOD32, R_SH_TLS_DTPMOD32 },
  { BFD_RELOC_SH_TLS_DTPMOD32, R_SH_TLS_DTPMOD32 },
  { BFD_RELOC_SH_TLS_DTPOFF32, R_SH_TLS_DTPOFF32 },
  { BFD_RELOC_SH_TLS_DTPOFF32, R_SH_TLS_DTPOFF32 },
  { BFD_RELOC_SH_TLS_TPOFF32, R_SH_TLS_TPOFF32 },
  { BFD_RELOC_SH_TLS_TPOFF32, R_SH_TLS_TPOFF32 },
  { BFD_RELOC_32_GOT_PCREL, R_SH_GOT32 },
  { BFD_RELOC_32_GOT_PCREL, R_SH_GOT32 },
  { BFD_RELOC_32_PLT_PCREL, R_SH_PLT32 },
  { BFD_RELOC_32_PLT_PCREL, R_SH_PLT32 },
  { BFD_RELOC_SH_COPY, R_SH_COPY },
  { BFD_RELOC_SH_COPY, R_SH_COPY },
  { BFD_RELOC_SH_GLOB_DAT, R_SH_GLOB_DAT },
  { BFD_RELOC_SH_GLOB_DAT, R_SH_GLOB_DAT },
  { BFD_RELOC_SH_JMP_SLOT, R_SH_JMP_SLOT },
  { BFD_RELOC_SH_JMP_SLOT, R_SH_JMP_SLOT },
  { BFD_RELOC_SH_RELATIVE, R_SH_RELATIVE },
  { BFD_RELOC_SH_RELATIVE, R_SH_RELATIVE },
  { BFD_RELOC_32_GOTOFF, R_SH_GOTOFF },
  { BFD_RELOC_32_GOTOFF, R_SH_GOTOFF },
  { BFD_RELOC_SH_GOTPC, R_SH_GOTPC },
  { BFD_RELOC_SH_GOTPC, R_SH_GOTPC },
  { BFD_RELOC_SH_GOTPLT32, R_SH_GOTPLT32 },
  { BFD_RELOC_SH_GOTPLT32, R_SH_GOTPLT32 },
#ifdef INCLUDE_SHMEDIA
#ifdef INCLUDE_SHMEDIA
  { BFD_RELOC_SH_GOT_LOW16, R_SH_GOT_LOW16 },
  { BFD_RELOC_SH_GOT_LOW16, R_SH_GOT_LOW16 },
  { BFD_RELOC_SH_GOT_MEDLOW16, R_SH_GOT_MEDLOW16 },
  { BFD_RELOC_SH_GOT_MEDLOW16, R_SH_GOT_MEDLOW16 },
  { BFD_RELOC_SH_GOT_MEDHI16, R_SH_GOT_MEDHI16 },
  { BFD_RELOC_SH_GOT_MEDHI16, R_SH_GOT_MEDHI16 },
  { BFD_RELOC_SH_GOT_HI16, R_SH_GOT_HI16 },
  { BFD_RELOC_SH_GOT_HI16, R_SH_GOT_HI16 },
  { BFD_RELOC_SH_GOTPLT_LOW16, R_SH_GOTPLT_LOW16 },
  { BFD_RELOC_SH_GOTPLT_LOW16, R_SH_GOTPLT_LOW16 },
  { BFD_RELOC_SH_GOTPLT_MEDLOW16, R_SH_GOTPLT_MEDLOW16 },
  { BFD_RELOC_SH_GOTPLT_MEDLOW16, R_SH_GOTPLT_MEDLOW16 },
  { BFD_RELOC_SH_GOTPLT_MEDHI16, R_SH_GOTPLT_MEDHI16 },
  { BFD_RELOC_SH_GOTPLT_MEDHI16, R_SH_GOTPLT_MEDHI16 },
  { BFD_RELOC_SH_GOTPLT_HI16, R_SH_GOTPLT_HI16 },
  { BFD_RELOC_SH_GOTPLT_HI16, R_SH_GOTPLT_HI16 },
  { BFD_RELOC_SH_PLT_LOW16, R_SH_PLT_LOW16 },
  { BFD_RELOC_SH_PLT_LOW16, R_SH_PLT_LOW16 },
  { BFD_RELOC_SH_PLT_MEDLOW16, R_SH_PLT_MEDLOW16 },
  { BFD_RELOC_SH_PLT_MEDLOW16, R_SH_PLT_MEDLOW16 },
  { BFD_RELOC_SH_PLT_MEDHI16, R_SH_PLT_MEDHI16 },
  { BFD_RELOC_SH_PLT_MEDHI16, R_SH_PLT_MEDHI16 },
  { BFD_RELOC_SH_PLT_HI16, R_SH_PLT_HI16 },
  { BFD_RELOC_SH_PLT_HI16, R_SH_PLT_HI16 },
  { BFD_RELOC_SH_GOTOFF_LOW16, R_SH_GOTOFF_LOW16 },
  { BFD_RELOC_SH_GOTOFF_LOW16, R_SH_GOTOFF_LOW16 },
  { BFD_RELOC_SH_GOTOFF_MEDLOW16, R_SH_GOTOFF_MEDLOW16 },
  { BFD_RELOC_SH_GOTOFF_MEDLOW16, R_SH_GOTOFF_MEDLOW16 },
  { BFD_RELOC_SH_GOTOFF_MEDHI16, R_SH_GOTOFF_MEDHI16 },
  { BFD_RELOC_SH_GOTOFF_MEDHI16, R_SH_GOTOFF_MEDHI16 },
  { BFD_RELOC_SH_GOTOFF_HI16, R_SH_GOTOFF_HI16 },
  { BFD_RELOC_SH_GOTOFF_HI16, R_SH_GOTOFF_HI16 },
  { BFD_RELOC_SH_GOTPC_LOW16, R_SH_GOTPC_LOW16 },
  { BFD_RELOC_SH_GOTPC_LOW16, R_SH_GOTPC_LOW16 },
  { BFD_RELOC_SH_GOTPC_MEDLOW16, R_SH_GOTPC_MEDLOW16 },
  { BFD_RELOC_SH_GOTPC_MEDLOW16, R_SH_GOTPC_MEDLOW16 },
  { BFD_RELOC_SH_GOTPC_MEDHI16, R_SH_GOTPC_MEDHI16 },
  { BFD_RELOC_SH_GOTPC_MEDHI16, R_SH_GOTPC_MEDHI16 },
  { BFD_RELOC_SH_GOTPC_HI16, R_SH_GOTPC_HI16 },
  { BFD_RELOC_SH_GOTPC_HI16, R_SH_GOTPC_HI16 },
  { BFD_RELOC_SH_COPY64, R_SH_COPY64 },
  { BFD_RELOC_SH_COPY64, R_SH_COPY64 },
  { BFD_RELOC_SH_GLOB_DAT64, R_SH_GLOB_DAT64 },
  { BFD_RELOC_SH_GLOB_DAT64, R_SH_GLOB_DAT64 },
  { BFD_RELOC_SH_JMP_SLOT64, R_SH_JMP_SLOT64 },
  { BFD_RELOC_SH_JMP_SLOT64, R_SH_JMP_SLOT64 },
  { BFD_RELOC_SH_RELATIVE64, R_SH_RELATIVE64 },
  { BFD_RELOC_SH_RELATIVE64, R_SH_RELATIVE64 },
  { BFD_RELOC_SH_GOT10BY4, R_SH_GOT10BY4 },
  { BFD_RELOC_SH_GOT10BY4, R_SH_GOT10BY4 },
  { BFD_RELOC_SH_GOT10BY8, R_SH_GOT10BY8 },
  { BFD_RELOC_SH_GOT10BY8, R_SH_GOT10BY8 },
  { BFD_RELOC_SH_GOTPLT10BY4, R_SH_GOTPLT10BY4 },
  { BFD_RELOC_SH_GOTPLT10BY4, R_SH_GOTPLT10BY4 },
  { BFD_RELOC_SH_GOTPLT10BY8, R_SH_GOTPLT10BY8 },
  { BFD_RELOC_SH_GOTPLT10BY8, R_SH_GOTPLT10BY8 },
  { BFD_RELOC_SH_PT_16, R_SH_PT_16 },
  { BFD_RELOC_SH_PT_16, R_SH_PT_16 },
  { BFD_RELOC_SH_SHMEDIA_CODE, R_SH_SHMEDIA_CODE },
  { BFD_RELOC_SH_SHMEDIA_CODE, R_SH_SHMEDIA_CODE },
  { BFD_RELOC_SH_IMMU5, R_SH_DIR5U },
  { BFD_RELOC_SH_IMMU5, R_SH_DIR5U },
  { BFD_RELOC_SH_IMMS6, R_SH_DIR6S },
  { BFD_RELOC_SH_IMMS6, R_SH_DIR6S },
  { BFD_RELOC_SH_IMMU6, R_SH_DIR6U },
  { BFD_RELOC_SH_IMMU6, R_SH_DIR6U },
  { BFD_RELOC_SH_IMMS10, R_SH_DIR10S },
  { BFD_RELOC_SH_IMMS10, R_SH_DIR10S },
  { BFD_RELOC_SH_IMMS10BY2, R_SH_DIR10SW },
  { BFD_RELOC_SH_IMMS10BY2, R_SH_DIR10SW },
  { BFD_RELOC_SH_IMMS10BY4, R_SH_DIR10SL },
  { BFD_RELOC_SH_IMMS10BY4, R_SH_DIR10SL },
  { BFD_RELOC_SH_IMMS10BY8, R_SH_DIR10SQ },
  { BFD_RELOC_SH_IMMS10BY8, R_SH_DIR10SQ },
  { BFD_RELOC_SH_IMMS16, R_SH_IMMS16 },
  { BFD_RELOC_SH_IMMS16, R_SH_IMMS16 },
  { BFD_RELOC_SH_IMMU16, R_SH_IMMU16 },
  { BFD_RELOC_SH_IMMU16, R_SH_IMMU16 },
  { BFD_RELOC_SH_IMM_LOW16, R_SH_IMM_LOW16 },
  { BFD_RELOC_SH_IMM_LOW16, R_SH_IMM_LOW16 },
  { BFD_RELOC_SH_IMM_LOW16_PCREL, R_SH_IMM_LOW16_PCREL },
  { BFD_RELOC_SH_IMM_LOW16_PCREL, R_SH_IMM_LOW16_PCREL },
  { BFD_RELOC_SH_IMM_MEDLOW16, R_SH_IMM_MEDLOW16 },
  { BFD_RELOC_SH_IMM_MEDLOW16, R_SH_IMM_MEDLOW16 },
  { BFD_RELOC_SH_IMM_MEDLOW16_PCREL, R_SH_IMM_MEDLOW16_PCREL },
  { BFD_RELOC_SH_IMM_MEDLOW16_PCREL, R_SH_IMM_MEDLOW16_PCREL },
  { BFD_RELOC_SH_IMM_MEDHI16, R_SH_IMM_MEDHI16 },
  { BFD_RELOC_SH_IMM_MEDHI16, R_SH_IMM_MEDHI16 },
  { BFD_RELOC_SH_IMM_MEDHI16_PCREL, R_SH_IMM_MEDHI16_PCREL },
  { BFD_RELOC_SH_IMM_MEDHI16_PCREL, R_SH_IMM_MEDHI16_PCREL },
  { BFD_RELOC_SH_IMM_HI16, R_SH_IMM_HI16 },
  { BFD_RELOC_SH_IMM_HI16, R_SH_IMM_HI16 },
  { BFD_RELOC_SH_IMM_HI16_PCREL, R_SH_IMM_HI16_PCREL },
  { BFD_RELOC_SH_IMM_HI16_PCREL, R_SH_IMM_HI16_PCREL },
  { BFD_RELOC_64, R_SH_64 },
  { BFD_RELOC_64, R_SH_64 },
  { BFD_RELOC_64_PCREL, R_SH_64_PCREL },
  { BFD_RELOC_64_PCREL, R_SH_64_PCREL },
#endif /* not INCLUDE_SHMEDIA */
#endif /* not INCLUDE_SHMEDIA */
};
};
 
 
/* Given a BFD reloc code, return the howto structure for the
/* Given a BFD reloc code, return the howto structure for the
   corresponding SH ELF reloc.  */
   corresponding SH ELF reloc.  */
 
 
static reloc_howto_type *
static reloc_howto_type *
sh_elf_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code)
sh_elf_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code)
{
{
  unsigned int i;
  unsigned int i;
 
 
  for (i = 0; i < sizeof (sh_reloc_map) / sizeof (struct elf_reloc_map); i++)
  for (i = 0; i < sizeof (sh_reloc_map) / sizeof (struct elf_reloc_map); i++)
    {
    {
      if (sh_reloc_map[i].bfd_reloc_val == code)
      if (sh_reloc_map[i].bfd_reloc_val == code)
        return get_howto_table (abfd) + (int) sh_reloc_map[i].elf_reloc_val;
        return get_howto_table (abfd) + (int) sh_reloc_map[i].elf_reloc_val;
    }
    }
 
 
  return NULL;
  return NULL;
}
}
 
 
static reloc_howto_type *
static reloc_howto_type *
sh_elf_reloc_name_lookup (bfd *abfd, const char *r_name)
sh_elf_reloc_name_lookup (bfd *abfd, const char *r_name)
{
{
  unsigned int i;
  unsigned int i;
 
 
  if (vxworks_object_p (abfd))
  if (vxworks_object_p (abfd))
    {
    {
      for (i = 0;
      for (i = 0;
           i < (sizeof (sh_vxworks_howto_table)
           i < (sizeof (sh_vxworks_howto_table)
                / sizeof (sh_vxworks_howto_table[0]));
                / sizeof (sh_vxworks_howto_table[0]));
           i++)
           i++)
        if (sh_vxworks_howto_table[i].name != NULL
        if (sh_vxworks_howto_table[i].name != NULL
            && strcasecmp (sh_vxworks_howto_table[i].name, r_name) == 0)
            && strcasecmp (sh_vxworks_howto_table[i].name, r_name) == 0)
          return &sh_vxworks_howto_table[i];
          return &sh_vxworks_howto_table[i];
    }
    }
  else
  else
    {
    {
      for (i = 0;
      for (i = 0;
           i < (sizeof (sh_elf_howto_table)
           i < (sizeof (sh_elf_howto_table)
                / sizeof (sh_elf_howto_table[0]));
                / sizeof (sh_elf_howto_table[0]));
           i++)
           i++)
        if (sh_elf_howto_table[i].name != NULL
        if (sh_elf_howto_table[i].name != NULL
            && strcasecmp (sh_elf_howto_table[i].name, r_name) == 0)
            && strcasecmp (sh_elf_howto_table[i].name, r_name) == 0)
          return &sh_elf_howto_table[i];
          return &sh_elf_howto_table[i];
    }
    }
 
 
  return NULL;
  return NULL;
}
}
 
 
/* Given an ELF reloc, fill in the howto field of a relent.  */
/* Given an ELF reloc, fill in the howto field of a relent.  */
 
 
static void
static void
sh_elf_info_to_howto (bfd *abfd, arelent *cache_ptr, Elf_Internal_Rela *dst)
sh_elf_info_to_howto (bfd *abfd, arelent *cache_ptr, Elf_Internal_Rela *dst)
{
{
  unsigned int r;
  unsigned int r;
 
 
  r = ELF32_R_TYPE (dst->r_info);
  r = ELF32_R_TYPE (dst->r_info);
 
 
  BFD_ASSERT (r < (unsigned int) R_SH_max);
  BFD_ASSERT (r < (unsigned int) R_SH_max);
  BFD_ASSERT (r < R_SH_FIRST_INVALID_RELOC || r > R_SH_LAST_INVALID_RELOC);
  BFD_ASSERT (r < R_SH_FIRST_INVALID_RELOC || r > R_SH_LAST_INVALID_RELOC);
  BFD_ASSERT (r < R_SH_FIRST_INVALID_RELOC_2 || r > R_SH_LAST_INVALID_RELOC_2);
  BFD_ASSERT (r < R_SH_FIRST_INVALID_RELOC_2 || r > R_SH_LAST_INVALID_RELOC_2);
  BFD_ASSERT (r < R_SH_FIRST_INVALID_RELOC_3 || r > R_SH_LAST_INVALID_RELOC_3);
  BFD_ASSERT (r < R_SH_FIRST_INVALID_RELOC_3 || r > R_SH_LAST_INVALID_RELOC_3);
  BFD_ASSERT (r < R_SH_FIRST_INVALID_RELOC_4 || r > R_SH_LAST_INVALID_RELOC_4);
  BFD_ASSERT (r < R_SH_FIRST_INVALID_RELOC_4 || r > R_SH_LAST_INVALID_RELOC_4);
  BFD_ASSERT (r < R_SH_FIRST_INVALID_RELOC_5 || r > R_SH_LAST_INVALID_RELOC_5);
  BFD_ASSERT (r < R_SH_FIRST_INVALID_RELOC_5 || r > R_SH_LAST_INVALID_RELOC_5);
 
 
  cache_ptr->howto = get_howto_table (abfd) + r;
  cache_ptr->howto = get_howto_table (abfd) + r;
}
}


/* This function handles relaxing for SH ELF.  See the corresponding
/* This function handles relaxing for SH ELF.  See the corresponding
   function in coff-sh.c for a description of what this does.  FIXME:
   function in coff-sh.c for a description of what this does.  FIXME:
   There is a lot of duplication here between this code and the COFF
   There is a lot of duplication here between this code and the COFF
   specific code.  The format of relocs and symbols is wound deeply
   specific code.  The format of relocs and symbols is wound deeply
   into this code, but it would still be better if the duplication
   into this code, but it would still be better if the duplication
   could be eliminated somehow.  Note in particular that although both
   could be eliminated somehow.  Note in particular that although both
   functions use symbols like R_SH_CODE, those symbols have different
   functions use symbols like R_SH_CODE, those symbols have different
   values; in coff-sh.c they come from include/coff/sh.h, whereas here
   values; in coff-sh.c they come from include/coff/sh.h, whereas here
   they come from enum elf_sh_reloc_type in include/elf/sh.h.  */
   they come from enum elf_sh_reloc_type in include/elf/sh.h.  */
 
 
static bfd_boolean
static bfd_boolean
sh_elf_relax_section (bfd *abfd, asection *sec,
sh_elf_relax_section (bfd *abfd, asection *sec,
                      struct bfd_link_info *link_info, bfd_boolean *again)
                      struct bfd_link_info *link_info, bfd_boolean *again)
{
{
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Rela *internal_relocs;
  Elf_Internal_Rela *internal_relocs;
  bfd_boolean have_code;
  bfd_boolean have_code;
  Elf_Internal_Rela *irel, *irelend;
  Elf_Internal_Rela *irel, *irelend;
  bfd_byte *contents = NULL;
  bfd_byte *contents = NULL;
  Elf_Internal_Sym *isymbuf = NULL;
  Elf_Internal_Sym *isymbuf = NULL;
 
 
  *again = FALSE;
  *again = FALSE;
 
 
  if (link_info->relocatable
  if (link_info->relocatable
      || (sec->flags & SEC_RELOC) == 0
      || (sec->flags & SEC_RELOC) == 0
      || sec->reloc_count == 0)
      || sec->reloc_count == 0)
    return TRUE;
    return TRUE;
 
 
#ifdef INCLUDE_SHMEDIA
#ifdef INCLUDE_SHMEDIA
  if (elf_section_data (sec)->this_hdr.sh_flags
  if (elf_section_data (sec)->this_hdr.sh_flags
      & (SHF_SH5_ISA32 | SHF_SH5_ISA32_MIXED))
      & (SHF_SH5_ISA32 | SHF_SH5_ISA32_MIXED))
    {
    {
      return TRUE;
      return TRUE;
    }
    }
#endif
#endif
 
 
  symtab_hdr = &elf_symtab_hdr (abfd);
  symtab_hdr = &elf_symtab_hdr (abfd);
 
 
  internal_relocs = (_bfd_elf_link_read_relocs
  internal_relocs = (_bfd_elf_link_read_relocs
                     (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
                     (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
                      link_info->keep_memory));
                      link_info->keep_memory));
  if (internal_relocs == NULL)
  if (internal_relocs == NULL)
    goto error_return;
    goto error_return;
 
 
  have_code = FALSE;
  have_code = FALSE;
 
 
  irelend = internal_relocs + sec->reloc_count;
  irelend = internal_relocs + sec->reloc_count;
  for (irel = internal_relocs; irel < irelend; irel++)
  for (irel = internal_relocs; irel < irelend; irel++)
    {
    {
      bfd_vma laddr, paddr, symval;
      bfd_vma laddr, paddr, symval;
      unsigned short insn;
      unsigned short insn;
      Elf_Internal_Rela *irelfn, *irelscan, *irelcount;
      Elf_Internal_Rela *irelfn, *irelscan, *irelcount;
      bfd_signed_vma foff;
      bfd_signed_vma foff;
 
 
      if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_CODE)
      if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_CODE)
        have_code = TRUE;
        have_code = TRUE;
 
 
      if (ELF32_R_TYPE (irel->r_info) != (int) R_SH_USES)
      if (ELF32_R_TYPE (irel->r_info) != (int) R_SH_USES)
        continue;
        continue;
 
 
      /* Get the section contents.  */
      /* Get the section contents.  */
      if (contents == NULL)
      if (contents == NULL)
        {
        {
          if (elf_section_data (sec)->this_hdr.contents != NULL)
          if (elf_section_data (sec)->this_hdr.contents != NULL)
            contents = elf_section_data (sec)->this_hdr.contents;
            contents = elf_section_data (sec)->this_hdr.contents;
          else
          else
            {
            {
              if (!bfd_malloc_and_get_section (abfd, sec, &contents))
              if (!bfd_malloc_and_get_section (abfd, sec, &contents))
                goto error_return;
                goto error_return;
            }
            }
        }
        }
 
 
      /* The r_addend field of the R_SH_USES reloc will point us to
      /* The r_addend field of the R_SH_USES reloc will point us to
         the register load.  The 4 is because the r_addend field is
         the register load.  The 4 is because the r_addend field is
         computed as though it were a jump offset, which are based
         computed as though it were a jump offset, which are based
         from 4 bytes after the jump instruction.  */
         from 4 bytes after the jump instruction.  */
      laddr = irel->r_offset + 4 + irel->r_addend;
      laddr = irel->r_offset + 4 + irel->r_addend;
      if (laddr >= sec->size)
      if (laddr >= sec->size)
        {
        {
          (*_bfd_error_handler) (_("%B: 0x%lx: warning: bad R_SH_USES offset"),
          (*_bfd_error_handler) (_("%B: 0x%lx: warning: bad R_SH_USES offset"),
                                 abfd,
                                 abfd,
                                 (unsigned long) irel->r_offset);
                                 (unsigned long) irel->r_offset);
          continue;
          continue;
        }
        }
      insn = bfd_get_16 (abfd, contents + laddr);
      insn = bfd_get_16 (abfd, contents + laddr);
 
 
      /* If the instruction is not mov.l NN,rN, we don't know what to
      /* If the instruction is not mov.l NN,rN, we don't know what to
         do.  */
         do.  */
      if ((insn & 0xf000) != 0xd000)
      if ((insn & 0xf000) != 0xd000)
        {
        {
          ((*_bfd_error_handler)
          ((*_bfd_error_handler)
           (_("%B: 0x%lx: warning: R_SH_USES points to unrecognized insn 0x%x"),
           (_("%B: 0x%lx: warning: R_SH_USES points to unrecognized insn 0x%x"),
            abfd, (unsigned long) irel->r_offset, insn));
            abfd, (unsigned long) irel->r_offset, insn));
          continue;
          continue;
        }
        }
 
 
      /* Get the address from which the register is being loaded.  The
      /* Get the address from which the register is being loaded.  The
         displacement in the mov.l instruction is quadrupled.  It is a
         displacement in the mov.l instruction is quadrupled.  It is a
         displacement from four bytes after the movl instruction, but,
         displacement from four bytes after the movl instruction, but,
         before adding in the PC address, two least significant bits
         before adding in the PC address, two least significant bits
         of the PC are cleared.  We assume that the section is aligned
         of the PC are cleared.  We assume that the section is aligned
         on a four byte boundary.  */
         on a four byte boundary.  */
      paddr = insn & 0xff;
      paddr = insn & 0xff;
      paddr *= 4;
      paddr *= 4;
      paddr += (laddr + 4) &~ (bfd_vma) 3;
      paddr += (laddr + 4) &~ (bfd_vma) 3;
      if (paddr >= sec->size)
      if (paddr >= sec->size)
        {
        {
          ((*_bfd_error_handler)
          ((*_bfd_error_handler)
           (_("%B: 0x%lx: warning: bad R_SH_USES load offset"),
           (_("%B: 0x%lx: warning: bad R_SH_USES load offset"),
            abfd, (unsigned long) irel->r_offset));
            abfd, (unsigned long) irel->r_offset));
          continue;
          continue;
        }
        }
 
 
      /* Get the reloc for the address from which the register is
      /* Get the reloc for the address from which the register is
         being loaded.  This reloc will tell us which function is
         being loaded.  This reloc will tell us which function is
         actually being called.  */
         actually being called.  */
      for (irelfn = internal_relocs; irelfn < irelend; irelfn++)
      for (irelfn = internal_relocs; irelfn < irelend; irelfn++)
        if (irelfn->r_offset == paddr
        if (irelfn->r_offset == paddr
            && ELF32_R_TYPE (irelfn->r_info) == (int) R_SH_DIR32)
            && ELF32_R_TYPE (irelfn->r_info) == (int) R_SH_DIR32)
          break;
          break;
      if (irelfn >= irelend)
      if (irelfn >= irelend)
        {
        {
          ((*_bfd_error_handler)
          ((*_bfd_error_handler)
           (_("%B: 0x%lx: warning: could not find expected reloc"),
           (_("%B: 0x%lx: warning: could not find expected reloc"),
            abfd, (unsigned long) paddr));
            abfd, (unsigned long) paddr));
          continue;
          continue;
        }
        }
 
 
      /* Read this BFD's symbols if we haven't done so already.  */
      /* Read this BFD's symbols if we haven't done so already.  */
      if (isymbuf == NULL && symtab_hdr->sh_info != 0)
      if (isymbuf == NULL && symtab_hdr->sh_info != 0)
        {
        {
          isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
          isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
          if (isymbuf == NULL)
          if (isymbuf == NULL)
            isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
            isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
                                            symtab_hdr->sh_info, 0,
                                            symtab_hdr->sh_info, 0,
                                            NULL, NULL, NULL);
                                            NULL, NULL, NULL);
          if (isymbuf == NULL)
          if (isymbuf == NULL)
            goto error_return;
            goto error_return;
        }
        }
 
 
      /* Get the value of the symbol referred to by the reloc.  */
      /* Get the value of the symbol referred to by the reloc.  */
      if (ELF32_R_SYM (irelfn->r_info) < symtab_hdr->sh_info)
      if (ELF32_R_SYM (irelfn->r_info) < symtab_hdr->sh_info)
        {
        {
          /* A local symbol.  */
          /* A local symbol.  */
          Elf_Internal_Sym *isym;
          Elf_Internal_Sym *isym;
 
 
          isym = isymbuf + ELF32_R_SYM (irelfn->r_info);
          isym = isymbuf + ELF32_R_SYM (irelfn->r_info);
          if (isym->st_shndx
          if (isym->st_shndx
              != (unsigned int) _bfd_elf_section_from_bfd_section (abfd, sec))
              != (unsigned int) _bfd_elf_section_from_bfd_section (abfd, sec))
            {
            {
              ((*_bfd_error_handler)
              ((*_bfd_error_handler)
               (_("%B: 0x%lx: warning: symbol in unexpected section"),
               (_("%B: 0x%lx: warning: symbol in unexpected section"),
                abfd, (unsigned long) paddr));
                abfd, (unsigned long) paddr));
              continue;
              continue;
            }
            }
 
 
          symval = (isym->st_value
          symval = (isym->st_value
                    + sec->output_section->vma
                    + sec->output_section->vma
                    + sec->output_offset);
                    + sec->output_offset);
        }
        }
      else
      else
        {
        {
          unsigned long indx;
          unsigned long indx;
          struct elf_link_hash_entry *h;
          struct elf_link_hash_entry *h;
 
 
          indx = ELF32_R_SYM (irelfn->r_info) - symtab_hdr->sh_info;
          indx = ELF32_R_SYM (irelfn->r_info) - symtab_hdr->sh_info;
          h = elf_sym_hashes (abfd)[indx];
          h = elf_sym_hashes (abfd)[indx];
          BFD_ASSERT (h != NULL);
          BFD_ASSERT (h != NULL);
          if (h->root.type != bfd_link_hash_defined
          if (h->root.type != bfd_link_hash_defined
              && h->root.type != bfd_link_hash_defweak)
              && h->root.type != bfd_link_hash_defweak)
            {
            {
              /* This appears to be a reference to an undefined
              /* This appears to be a reference to an undefined
                 symbol.  Just ignore it--it will be caught by the
                 symbol.  Just ignore it--it will be caught by the
                 regular reloc processing.  */
                 regular reloc processing.  */
              continue;
              continue;
            }
            }
 
 
          symval = (h->root.u.def.value
          symval = (h->root.u.def.value
                    + h->root.u.def.section->output_section->vma
                    + h->root.u.def.section->output_section->vma
                    + h->root.u.def.section->output_offset);
                    + h->root.u.def.section->output_offset);
        }
        }
 
 
      if (get_howto_table (abfd)[R_SH_DIR32].partial_inplace)
      if (get_howto_table (abfd)[R_SH_DIR32].partial_inplace)
        symval += bfd_get_32 (abfd, contents + paddr);
        symval += bfd_get_32 (abfd, contents + paddr);
      else
      else
        symval += irelfn->r_addend;
        symval += irelfn->r_addend;
 
 
      /* See if this function call can be shortened.  */
      /* See if this function call can be shortened.  */
      foff = (symval
      foff = (symval
              - (irel->r_offset
              - (irel->r_offset
                 + sec->output_section->vma
                 + sec->output_section->vma
                 + sec->output_offset
                 + sec->output_offset
                 + 4));
                 + 4));
      /* A branch to an address beyond ours might be increased by an
      /* A branch to an address beyond ours might be increased by an
         .align that doesn't move when bytes behind us are deleted.
         .align that doesn't move when bytes behind us are deleted.
         So, we add some slop in this calculation to allow for
         So, we add some slop in this calculation to allow for
         that.  */
         that.  */
      if (foff < -0x1000 || foff >= 0x1000 - 8)
      if (foff < -0x1000 || foff >= 0x1000 - 8)
        {
        {
          /* After all that work, we can't shorten this function call.  */
          /* After all that work, we can't shorten this function call.  */
          continue;
          continue;
        }
        }
 
 
      /* Shorten the function call.  */
      /* Shorten the function call.  */
 
 
      /* For simplicity of coding, we are going to modify the section
      /* For simplicity of coding, we are going to modify the section
         contents, the section relocs, and the BFD symbol table.  We
         contents, the section relocs, and the BFD symbol table.  We
         must tell the rest of the code not to free up this
         must tell the rest of the code not to free up this
         information.  It would be possible to instead create a table
         information.  It would be possible to instead create a table
         of changes which have to be made, as is done in coff-mips.c;
         of changes which have to be made, as is done in coff-mips.c;
         that would be more work, but would require less memory when
         that would be more work, but would require less memory when
         the linker is run.  */
         the linker is run.  */
 
 
      elf_section_data (sec)->relocs = internal_relocs;
      elf_section_data (sec)->relocs = internal_relocs;
      elf_section_data (sec)->this_hdr.contents = contents;
      elf_section_data (sec)->this_hdr.contents = contents;
      symtab_hdr->contents = (unsigned char *) isymbuf;
      symtab_hdr->contents = (unsigned char *) isymbuf;
 
 
      /* Replace the jsr with a bsr.  */
      /* Replace the jsr with a bsr.  */
 
 
      /* Change the R_SH_USES reloc into an R_SH_IND12W reloc, and
      /* Change the R_SH_USES reloc into an R_SH_IND12W reloc, and
         replace the jsr with a bsr.  */
         replace the jsr with a bsr.  */
      irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irelfn->r_info), R_SH_IND12W);
      irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irelfn->r_info), R_SH_IND12W);
      /* We used to test (ELF32_R_SYM (irelfn->r_info) < symtab_hdr->sh_info)
      /* We used to test (ELF32_R_SYM (irelfn->r_info) < symtab_hdr->sh_info)
         here, but that only checks if the symbol is an external symbol,
         here, but that only checks if the symbol is an external symbol,
         not if the symbol is in a different section.  Besides, we need
         not if the symbol is in a different section.  Besides, we need
         a consistent meaning for the relocation, so we just assume here that
         a consistent meaning for the relocation, so we just assume here that
         the value of the symbol is not available.  */
         the value of the symbol is not available.  */
 
 
      /* We can't fully resolve this yet, because the external
      /* We can't fully resolve this yet, because the external
         symbol value may be changed by future relaxing.  We let
         symbol value may be changed by future relaxing.  We let
         the final link phase handle it.  */
         the final link phase handle it.  */
      bfd_put_16 (abfd, (bfd_vma) 0xb000, contents + irel->r_offset);
      bfd_put_16 (abfd, (bfd_vma) 0xb000, contents + irel->r_offset);
 
 
      irel->r_addend = -4;
      irel->r_addend = -4;
 
 
      /* When we calculated the symbol "value" we had an offset in the
      /* When we calculated the symbol "value" we had an offset in the
         DIR32's word in memory (we read and add it above).  However,
         DIR32's word in memory (we read and add it above).  However,
         the jsr we create does NOT have this offset encoded, so we
         the jsr we create does NOT have this offset encoded, so we
         have to add it to the addend to preserve it.  */
         have to add it to the addend to preserve it.  */
      irel->r_addend += bfd_get_32 (abfd, contents + paddr);
      irel->r_addend += bfd_get_32 (abfd, contents + paddr);
 
 
      /* See if there is another R_SH_USES reloc referring to the same
      /* See if there is another R_SH_USES reloc referring to the same
         register load.  */
         register load.  */
      for (irelscan = internal_relocs; irelscan < irelend; irelscan++)
      for (irelscan = internal_relocs; irelscan < irelend; irelscan++)
        if (ELF32_R_TYPE (irelscan->r_info) == (int) R_SH_USES
        if (ELF32_R_TYPE (irelscan->r_info) == (int) R_SH_USES
            && laddr == irelscan->r_offset + 4 + irelscan->r_addend)
            && laddr == irelscan->r_offset + 4 + irelscan->r_addend)
          break;
          break;
      if (irelscan < irelend)
      if (irelscan < irelend)
        {
        {
          /* Some other function call depends upon this register load,
          /* Some other function call depends upon this register load,
             and we have not yet converted that function call.
             and we have not yet converted that function call.
             Indeed, we may never be able to convert it.  There is
             Indeed, we may never be able to convert it.  There is
             nothing else we can do at this point.  */
             nothing else we can do at this point.  */
          continue;
          continue;
        }
        }
 
 
      /* Look for a R_SH_COUNT reloc on the location where the
      /* Look for a R_SH_COUNT reloc on the location where the
         function address is stored.  Do this before deleting any
         function address is stored.  Do this before deleting any
         bytes, to avoid confusion about the address.  */
         bytes, to avoid confusion about the address.  */
      for (irelcount = internal_relocs; irelcount < irelend; irelcount++)
      for (irelcount = internal_relocs; irelcount < irelend; irelcount++)
        if (irelcount->r_offset == paddr
        if (irelcount->r_offset == paddr
            && ELF32_R_TYPE (irelcount->r_info) == (int) R_SH_COUNT)
            && ELF32_R_TYPE (irelcount->r_info) == (int) R_SH_COUNT)
          break;
          break;
 
 
      /* Delete the register load.  */
      /* Delete the register load.  */
      if (! sh_elf_relax_delete_bytes (abfd, sec, laddr, 2))
      if (! sh_elf_relax_delete_bytes (abfd, sec, laddr, 2))
        goto error_return;
        goto error_return;
 
 
      /* That will change things, so, just in case it permits some
      /* That will change things, so, just in case it permits some
         other function call to come within range, we should relax
         other function call to come within range, we should relax
         again.  Note that this is not required, and it may be slow.  */
         again.  Note that this is not required, and it may be slow.  */
      *again = TRUE;
      *again = TRUE;
 
 
      /* Now check whether we got a COUNT reloc.  */
      /* Now check whether we got a COUNT reloc.  */
      if (irelcount >= irelend)
      if (irelcount >= irelend)
        {
        {
          ((*_bfd_error_handler)
          ((*_bfd_error_handler)
           (_("%B: 0x%lx: warning: could not find expected COUNT reloc"),
           (_("%B: 0x%lx: warning: could not find expected COUNT reloc"),
            abfd, (unsigned long) paddr));
            abfd, (unsigned long) paddr));
          continue;
          continue;
        }
        }
 
 
      /* The number of uses is stored in the r_addend field.  We've
      /* The number of uses is stored in the r_addend field.  We've
         just deleted one.  */
         just deleted one.  */
      if (irelcount->r_addend == 0)
      if (irelcount->r_addend == 0)
        {
        {
          ((*_bfd_error_handler) (_("%B: 0x%lx: warning: bad count"),
          ((*_bfd_error_handler) (_("%B: 0x%lx: warning: bad count"),
                                  abfd,
                                  abfd,
                                  (unsigned long) paddr));
                                  (unsigned long) paddr));
          continue;
          continue;
        }
        }
 
 
      --irelcount->r_addend;
      --irelcount->r_addend;
 
 
      /* If there are no more uses, we can delete the address.  Reload
      /* If there are no more uses, we can delete the address.  Reload
         the address from irelfn, in case it was changed by the
         the address from irelfn, in case it was changed by the
         previous call to sh_elf_relax_delete_bytes.  */
         previous call to sh_elf_relax_delete_bytes.  */
      if (irelcount->r_addend == 0)
      if (irelcount->r_addend == 0)
        {
        {
          if (! sh_elf_relax_delete_bytes (abfd, sec, irelfn->r_offset, 4))
          if (! sh_elf_relax_delete_bytes (abfd, sec, irelfn->r_offset, 4))
            goto error_return;
            goto error_return;
        }
        }
 
 
      /* We've done all we can with that function call.  */
      /* We've done all we can with that function call.  */
    }
    }
 
 
  /* Look for load and store instructions that we can align on four
  /* Look for load and store instructions that we can align on four
     byte boundaries.  */
     byte boundaries.  */
  if ((elf_elfheader (abfd)->e_flags & EF_SH_MACH_MASK) != EF_SH4
  if ((elf_elfheader (abfd)->e_flags & EF_SH_MACH_MASK) != EF_SH4
      && have_code)
      && have_code)
    {
    {
      bfd_boolean swapped;
      bfd_boolean swapped;
 
 
      /* Get the section contents.  */
      /* Get the section contents.  */
      if (contents == NULL)
      if (contents == NULL)
        {
        {
          if (elf_section_data (sec)->this_hdr.contents != NULL)
          if (elf_section_data (sec)->this_hdr.contents != NULL)
            contents = elf_section_data (sec)->this_hdr.contents;
            contents = elf_section_data (sec)->this_hdr.contents;
          else
          else
            {
            {
              if (!bfd_malloc_and_get_section (abfd, sec, &contents))
              if (!bfd_malloc_and_get_section (abfd, sec, &contents))
                goto error_return;
                goto error_return;
            }
            }
        }
        }
 
 
      if (! sh_elf_align_loads (abfd, sec, internal_relocs, contents,
      if (! sh_elf_align_loads (abfd, sec, internal_relocs, contents,
                                &swapped))
                                &swapped))
        goto error_return;
        goto error_return;
 
 
      if (swapped)
      if (swapped)
        {
        {
          elf_section_data (sec)->relocs = internal_relocs;
          elf_section_data (sec)->relocs = internal_relocs;
          elf_section_data (sec)->this_hdr.contents = contents;
          elf_section_data (sec)->this_hdr.contents = contents;
          symtab_hdr->contents = (unsigned char *) isymbuf;
          symtab_hdr->contents = (unsigned char *) isymbuf;
        }
        }
    }
    }
 
 
  if (isymbuf != NULL
  if (isymbuf != NULL
      && symtab_hdr->contents != (unsigned char *) isymbuf)
      && symtab_hdr->contents != (unsigned char *) isymbuf)
    {
    {
      if (! link_info->keep_memory)
      if (! link_info->keep_memory)
        free (isymbuf);
        free (isymbuf);
      else
      else
        {
        {
          /* Cache the symbols for elf_link_input_bfd.  */
          /* Cache the symbols for elf_link_input_bfd.  */
          symtab_hdr->contents = (unsigned char *) isymbuf;
          symtab_hdr->contents = (unsigned char *) isymbuf;
        }
        }
    }
    }
 
 
  if (contents != NULL
  if (contents != NULL
      && elf_section_data (sec)->this_hdr.contents != contents)
      && elf_section_data (sec)->this_hdr.contents != contents)
    {
    {
      if (! link_info->keep_memory)
      if (! link_info->keep_memory)
        free (contents);
        free (contents);
      else
      else
        {
        {
          /* Cache the section contents for elf_link_input_bfd.  */
          /* Cache the section contents for elf_link_input_bfd.  */
          elf_section_data (sec)->this_hdr.contents = contents;
          elf_section_data (sec)->this_hdr.contents = contents;
        }
        }
    }
    }
 
 
  if (internal_relocs != NULL
  if (internal_relocs != NULL
      && elf_section_data (sec)->relocs != internal_relocs)
      && elf_section_data (sec)->relocs != internal_relocs)
    free (internal_relocs);
    free (internal_relocs);
 
 
  return TRUE;
  return TRUE;
 
 
 error_return:
 error_return:
  if (isymbuf != NULL
  if (isymbuf != NULL
      && symtab_hdr->contents != (unsigned char *) isymbuf)
      && symtab_hdr->contents != (unsigned char *) isymbuf)
    free (isymbuf);
    free (isymbuf);
  if (contents != NULL
  if (contents != NULL
      && elf_section_data (sec)->this_hdr.contents != contents)
      && elf_section_data (sec)->this_hdr.contents != contents)
    free (contents);
    free (contents);
  if (internal_relocs != NULL
  if (internal_relocs != NULL
      && elf_section_data (sec)->relocs != internal_relocs)
      && elf_section_data (sec)->relocs != internal_relocs)
    free (internal_relocs);
    free (internal_relocs);
 
 
  return FALSE;
  return FALSE;
}
}
 
 
/* Delete some bytes from a section while relaxing.  FIXME: There is a
/* Delete some bytes from a section while relaxing.  FIXME: There is a
   lot of duplication between this function and sh_relax_delete_bytes
   lot of duplication between this function and sh_relax_delete_bytes
   in coff-sh.c.  */
   in coff-sh.c.  */
 
 
static bfd_boolean
static bfd_boolean
sh_elf_relax_delete_bytes (bfd *abfd, asection *sec, bfd_vma addr,
sh_elf_relax_delete_bytes (bfd *abfd, asection *sec, bfd_vma addr,
                           int count)
                           int count)
{
{
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Shdr *symtab_hdr;
  unsigned int sec_shndx;
  unsigned int sec_shndx;
  bfd_byte *contents;
  bfd_byte *contents;
  Elf_Internal_Rela *irel, *irelend;
  Elf_Internal_Rela *irel, *irelend;
  Elf_Internal_Rela *irelalign;
  Elf_Internal_Rela *irelalign;
  bfd_vma toaddr;
  bfd_vma toaddr;
  Elf_Internal_Sym *isymbuf, *isym, *isymend;
  Elf_Internal_Sym *isymbuf, *isym, *isymend;
  struct elf_link_hash_entry **sym_hashes;
  struct elf_link_hash_entry **sym_hashes;
  struct elf_link_hash_entry **end_hashes;
  struct elf_link_hash_entry **end_hashes;
  unsigned int symcount;
  unsigned int symcount;
  asection *o;
  asection *o;
 
 
  symtab_hdr = &elf_symtab_hdr (abfd);
  symtab_hdr = &elf_symtab_hdr (abfd);
  isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
  isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
 
 
  sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
  sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
 
 
  contents = elf_section_data (sec)->this_hdr.contents;
  contents = elf_section_data (sec)->this_hdr.contents;
 
 
  /* The deletion must stop at the next ALIGN reloc for an aligment
  /* The deletion must stop at the next ALIGN reloc for an aligment
     power larger than the number of bytes we are deleting.  */
     power larger than the number of bytes we are deleting.  */
 
 
  irelalign = NULL;
  irelalign = NULL;
  toaddr = sec->size;
  toaddr = sec->size;
 
 
  irel = elf_section_data (sec)->relocs;
  irel = elf_section_data (sec)->relocs;
  irelend = irel + sec->reloc_count;
  irelend = irel + sec->reloc_count;
  for (; irel < irelend; irel++)
  for (; irel < irelend; irel++)
    {
    {
      if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_ALIGN
      if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_ALIGN
          && irel->r_offset > addr
          && irel->r_offset > addr
          && count < (1 << irel->r_addend))
          && count < (1 << irel->r_addend))
        {
        {
          irelalign = irel;
          irelalign = irel;
          toaddr = irel->r_offset;
          toaddr = irel->r_offset;
          break;
          break;
        }
        }
    }
    }
 
 
  /* Actually delete the bytes.  */
  /* Actually delete the bytes.  */
  memmove (contents + addr, contents + addr + count,
  memmove (contents + addr, contents + addr + count,
           (size_t) (toaddr - addr - count));
           (size_t) (toaddr - addr - count));
  if (irelalign == NULL)
  if (irelalign == NULL)
    sec->size -= count;
    sec->size -= count;
  else
  else
    {
    {
      int i;
      int i;
 
 
#define NOP_OPCODE (0x0009)
#define NOP_OPCODE (0x0009)
 
 
      BFD_ASSERT ((count & 1) == 0);
      BFD_ASSERT ((count & 1) == 0);
      for (i = 0; i < count; i += 2)
      for (i = 0; i < count; i += 2)
        bfd_put_16 (abfd, (bfd_vma) NOP_OPCODE, contents + toaddr - count + i);
        bfd_put_16 (abfd, (bfd_vma) NOP_OPCODE, contents + toaddr - count + i);
    }
    }
 
 
  /* Adjust all the relocs.  */
  /* Adjust all the relocs.  */
  for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
  for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
    {
    {
      bfd_vma nraddr, stop;
      bfd_vma nraddr, stop;
      bfd_vma start = 0;
      bfd_vma start = 0;
      int insn = 0;
      int insn = 0;
      int off, adjust, oinsn;
      int off, adjust, oinsn;
      bfd_signed_vma voff = 0;
      bfd_signed_vma voff = 0;
      bfd_boolean overflow;
      bfd_boolean overflow;
 
 
      /* Get the new reloc address.  */
      /* Get the new reloc address.  */
      nraddr = irel->r_offset;
      nraddr = irel->r_offset;
      if ((irel->r_offset > addr
      if ((irel->r_offset > addr
           && irel->r_offset < toaddr)
           && irel->r_offset < toaddr)
          || (ELF32_R_TYPE (irel->r_info) == (int) R_SH_ALIGN
          || (ELF32_R_TYPE (irel->r_info) == (int) R_SH_ALIGN
              && irel->r_offset == toaddr))
              && irel->r_offset == toaddr))
        nraddr -= count;
        nraddr -= count;
 
 
      /* See if this reloc was for the bytes we have deleted, in which
      /* See if this reloc was for the bytes we have deleted, in which
         case we no longer care about it.  Don't delete relocs which
         case we no longer care about it.  Don't delete relocs which
         represent addresses, though.  */
         represent addresses, though.  */
      if (irel->r_offset >= addr
      if (irel->r_offset >= addr
          && irel->r_offset < addr + count
          && irel->r_offset < addr + count
          && ELF32_R_TYPE (irel->r_info) != (int) R_SH_ALIGN
          && ELF32_R_TYPE (irel->r_info) != (int) R_SH_ALIGN
          && ELF32_R_TYPE (irel->r_info) != (int) R_SH_CODE
          && ELF32_R_TYPE (irel->r_info) != (int) R_SH_CODE
          && ELF32_R_TYPE (irel->r_info) != (int) R_SH_DATA
          && ELF32_R_TYPE (irel->r_info) != (int) R_SH_DATA
          && ELF32_R_TYPE (irel->r_info) != (int) R_SH_LABEL)
          && ELF32_R_TYPE (irel->r_info) != (int) R_SH_LABEL)
        irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
        irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
                                     (int) R_SH_NONE);
                                     (int) R_SH_NONE);
 
 
      /* If this is a PC relative reloc, see if the range it covers
      /* If this is a PC relative reloc, see if the range it covers
         includes the bytes we have deleted.  */
         includes the bytes we have deleted.  */
      switch ((enum elf_sh_reloc_type) ELF32_R_TYPE (irel->r_info))
      switch ((enum elf_sh_reloc_type) ELF32_R_TYPE (irel->r_info))
        {
        {
        default:
        default:
          break;
          break;
 
 
        case R_SH_DIR8WPN:
        case R_SH_DIR8WPN:
        case R_SH_IND12W:
        case R_SH_IND12W:
        case R_SH_DIR8WPZ:
        case R_SH_DIR8WPZ:
        case R_SH_DIR8WPL:
        case R_SH_DIR8WPL:
          start = irel->r_offset;
          start = irel->r_offset;
          insn = bfd_get_16 (abfd, contents + nraddr);
          insn = bfd_get_16 (abfd, contents + nraddr);
          break;
          break;
        }
        }
 
 
      switch ((enum elf_sh_reloc_type) ELF32_R_TYPE (irel->r_info))
      switch ((enum elf_sh_reloc_type) ELF32_R_TYPE (irel->r_info))
        {
        {
        default:
        default:
          start = stop = addr;
          start = stop = addr;
          break;
          break;
 
 
        case R_SH_DIR32:
        case R_SH_DIR32:
          /* If this reloc is against a symbol defined in this
          /* If this reloc is against a symbol defined in this
             section, and the symbol will not be adjusted below, we
             section, and the symbol will not be adjusted below, we
             must check the addend to see it will put the value in
             must check the addend to see it will put the value in
             range to be adjusted, and hence must be changed.  */
             range to be adjusted, and hence must be changed.  */
          if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
          if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
            {
            {
              isym = isymbuf + ELF32_R_SYM (irel->r_info);
              isym = isymbuf + ELF32_R_SYM (irel->r_info);
              if (isym->st_shndx == sec_shndx
              if (isym->st_shndx == sec_shndx
                  && (isym->st_value <= addr
                  && (isym->st_value <= addr
                      || isym->st_value >= toaddr))
                      || isym->st_value >= toaddr))
                {
                {
                  bfd_vma val;
                  bfd_vma val;
 
 
                  if (get_howto_table (abfd)[R_SH_DIR32].partial_inplace)
                  if (get_howto_table (abfd)[R_SH_DIR32].partial_inplace)
                    {
                    {
                      val = bfd_get_32 (abfd, contents + nraddr);
                      val = bfd_get_32 (abfd, contents + nraddr);
                      val += isym->st_value;
                      val += isym->st_value;
                      if (val > addr && val < toaddr)
                      if (val > addr && val < toaddr)
                        bfd_put_32 (abfd, val - count, contents + nraddr);
                        bfd_put_32 (abfd, val - count, contents + nraddr);
                    }
                    }
                  else
                  else
                    {
                    {
                      val = isym->st_value + irel->r_addend;
                      val = isym->st_value + irel->r_addend;
                      if (val > addr && val < toaddr)
                      if (val > addr && val < toaddr)
                        irel->r_addend -= count;
                        irel->r_addend -= count;
                    }
                    }
                }
                }
            }
            }
          start = stop = addr;
          start = stop = addr;
          break;
          break;
 
 
        case R_SH_DIR8WPN:
        case R_SH_DIR8WPN:
          off = insn & 0xff;
          off = insn & 0xff;
          if (off & 0x80)
          if (off & 0x80)
            off -= 0x100;
            off -= 0x100;
          stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
          stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
          break;
          break;
 
 
        case R_SH_IND12W:
        case R_SH_IND12W:
          off = insn & 0xfff;
          off = insn & 0xfff;
          if (! off)
          if (! off)
            {
            {
              /* This has been made by previous relaxation.  Since the
              /* This has been made by previous relaxation.  Since the
                 relocation will be against an external symbol, the
                 relocation will be against an external symbol, the
                 final relocation will just do the right thing.  */
                 final relocation will just do the right thing.  */
              start = stop = addr;
              start = stop = addr;
            }
            }
          else
          else
            {
            {
              if (off & 0x800)
              if (off & 0x800)
                off -= 0x1000;
                off -= 0x1000;
              stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
              stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
 
 
              /* The addend will be against the section symbol, thus
              /* The addend will be against the section symbol, thus
                 for adjusting the addend, the relevant start is the
                 for adjusting the addend, the relevant start is the
                 start of the section.
                 start of the section.
                 N.B. If we want to abandon in-place changes here and
                 N.B. If we want to abandon in-place changes here and
                 test directly using symbol + addend, we have to take into
                 test directly using symbol + addend, we have to take into
                 account that the addend has already been adjusted by -4.  */
                 account that the addend has already been adjusted by -4.  */
              if (stop > addr && stop < toaddr)
              if (stop > addr && stop < toaddr)
                irel->r_addend -= count;
                irel->r_addend -= count;
            }
            }
          break;
          break;
 
 
        case R_SH_DIR8WPZ:
        case R_SH_DIR8WPZ:
          off = insn & 0xff;
          off = insn & 0xff;
          stop = start + 4 + off * 2;
          stop = start + 4 + off * 2;
          break;
          break;
 
 
        case R_SH_DIR8WPL:
        case R_SH_DIR8WPL:
          off = insn & 0xff;
          off = insn & 0xff;
          stop = (start & ~(bfd_vma) 3) + 4 + off * 4;
          stop = (start & ~(bfd_vma) 3) + 4 + off * 4;
          break;
          break;
 
 
        case R_SH_SWITCH8:
        case R_SH_SWITCH8:
        case R_SH_SWITCH16:
        case R_SH_SWITCH16:
        case R_SH_SWITCH32:
        case R_SH_SWITCH32:
          /* These relocs types represent
          /* These relocs types represent
               .word L2-L1
               .word L2-L1
             The r_addend field holds the difference between the reloc
             The r_addend field holds the difference between the reloc
             address and L1.  That is the start of the reloc, and
             address and L1.  That is the start of the reloc, and
             adding in the contents gives us the top.  We must adjust
             adding in the contents gives us the top.  We must adjust
             both the r_offset field and the section contents.
             both the r_offset field and the section contents.
             N.B. in gas / coff bfd, the elf bfd r_addend is called r_offset,
             N.B. in gas / coff bfd, the elf bfd r_addend is called r_offset,
             and the elf bfd r_offset is called r_vaddr.  */
             and the elf bfd r_offset is called r_vaddr.  */
 
 
          stop = irel->r_offset;
          stop = irel->r_offset;
          start = (bfd_vma) ((bfd_signed_vma) stop - (long) irel->r_addend);
          start = (bfd_vma) ((bfd_signed_vma) stop - (long) irel->r_addend);
 
 
          if (start > addr
          if (start > addr
              && start < toaddr
              && start < toaddr
              && (stop <= addr || stop >= toaddr))
              && (stop <= addr || stop >= toaddr))
            irel->r_addend += count;
            irel->r_addend += count;
          else if (stop > addr
          else if (stop > addr
                   && stop < toaddr
                   && stop < toaddr
                   && (start <= addr || start >= toaddr))
                   && (start <= addr || start >= toaddr))
            irel->r_addend -= count;
            irel->r_addend -= count;
 
 
          if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_SWITCH16)
          if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_SWITCH16)
            voff = bfd_get_signed_16 (abfd, contents + nraddr);
            voff = bfd_get_signed_16 (abfd, contents + nraddr);
          else if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_SWITCH8)
          else if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_SWITCH8)
            voff = bfd_get_8 (abfd, contents + nraddr);
            voff = bfd_get_8 (abfd, contents + nraddr);
          else
          else
            voff = bfd_get_signed_32 (abfd, contents + nraddr);
            voff = bfd_get_signed_32 (abfd, contents + nraddr);
          stop = (bfd_vma) ((bfd_signed_vma) start + voff);
          stop = (bfd_vma) ((bfd_signed_vma) start + voff);
 
 
          break;
          break;
 
 
        case R_SH_USES:
        case R_SH_USES:
          start = irel->r_offset;
          start = irel->r_offset;
          stop = (bfd_vma) ((bfd_signed_vma) start
          stop = (bfd_vma) ((bfd_signed_vma) start
                            + (long) irel->r_addend
                            + (long) irel->r_addend
                            + 4);
                            + 4);
          break;
          break;
        }
        }
 
 
      if (start > addr
      if (start > addr
          && start < toaddr
          && start < toaddr
          && (stop <= addr || stop >= toaddr))
          && (stop <= addr || stop >= toaddr))
        adjust = count;
        adjust = count;
      else if (stop > addr
      else if (stop > addr
               && stop < toaddr
               && stop < toaddr
               && (start <= addr || start >= toaddr))
               && (start <= addr || start >= toaddr))
        adjust = - count;
        adjust = - count;
      else
      else
        adjust = 0;
        adjust = 0;
 
 
      if (adjust != 0)
      if (adjust != 0)
        {
        {
          oinsn = insn;
          oinsn = insn;
          overflow = FALSE;
          overflow = FALSE;
          switch ((enum elf_sh_reloc_type) ELF32_R_TYPE (irel->r_info))
          switch ((enum elf_sh_reloc_type) ELF32_R_TYPE (irel->r_info))
            {
            {
            default:
            default:
              abort ();
              abort ();
              break;
              break;
 
 
            case R_SH_DIR8WPN:
            case R_SH_DIR8WPN:
            case R_SH_DIR8WPZ:
            case R_SH_DIR8WPZ:
              insn += adjust / 2;
              insn += adjust / 2;
              if ((oinsn & 0xff00) != (insn & 0xff00))
              if ((oinsn & 0xff00) != (insn & 0xff00))
                overflow = TRUE;
                overflow = TRUE;
              bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
              bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
              break;
              break;
 
 
            case R_SH_IND12W:
            case R_SH_IND12W:
              insn += adjust / 2;
              insn += adjust / 2;
              if ((oinsn & 0xf000) != (insn & 0xf000))
              if ((oinsn & 0xf000) != (insn & 0xf000))
                overflow = TRUE;
                overflow = TRUE;
              bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
              bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
              break;
              break;
 
 
            case R_SH_DIR8WPL:
            case R_SH_DIR8WPL:
              BFD_ASSERT (adjust == count || count >= 4);
              BFD_ASSERT (adjust == count || count >= 4);
              if (count >= 4)
              if (count >= 4)
                insn += adjust / 4;
                insn += adjust / 4;
              else
              else
                {
                {
                  if ((irel->r_offset & 3) == 0)
                  if ((irel->r_offset & 3) == 0)
                    ++insn;
                    ++insn;
                }
                }
              if ((oinsn & 0xff00) != (insn & 0xff00))
              if ((oinsn & 0xff00) != (insn & 0xff00))
                overflow = TRUE;
                overflow = TRUE;
              bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
              bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
              break;
              break;
 
 
            case R_SH_SWITCH8:
            case R_SH_SWITCH8:
              voff += adjust;
              voff += adjust;
              if (voff < 0 || voff >= 0xff)
              if (voff < 0 || voff >= 0xff)
                overflow = TRUE;
                overflow = TRUE;
              bfd_put_8 (abfd, voff, contents + nraddr);
              bfd_put_8 (abfd, voff, contents + nraddr);
              break;
              break;
 
 
            case R_SH_SWITCH16:
            case R_SH_SWITCH16:
              voff += adjust;
              voff += adjust;
              if (voff < - 0x8000 || voff >= 0x8000)
              if (voff < - 0x8000 || voff >= 0x8000)
                overflow = TRUE;
                overflow = TRUE;
              bfd_put_signed_16 (abfd, (bfd_vma) voff, contents + nraddr);
              bfd_put_signed_16 (abfd, (bfd_vma) voff, contents + nraddr);
              break;
              break;
 
 
            case R_SH_SWITCH32:
            case R_SH_SWITCH32:
              voff += adjust;
              voff += adjust;
              bfd_put_signed_32 (abfd, (bfd_vma) voff, contents + nraddr);
              bfd_put_signed_32 (abfd, (bfd_vma) voff, contents + nraddr);
              break;
              break;
 
 
            case R_SH_USES:
            case R_SH_USES:
              irel->r_addend += adjust;
              irel->r_addend += adjust;
              break;
              break;
            }
            }
 
 
          if (overflow)
          if (overflow)
            {
            {
              ((*_bfd_error_handler)
              ((*_bfd_error_handler)
               (_("%B: 0x%lx: fatal: reloc overflow while relaxing"),
               (_("%B: 0x%lx: fatal: reloc overflow while relaxing"),
                abfd, (unsigned long) irel->r_offset));
                abfd, (unsigned long) irel->r_offset));
              bfd_set_error (bfd_error_bad_value);
              bfd_set_error (bfd_error_bad_value);
              return FALSE;
              return FALSE;
            }
            }
        }
        }
 
 
      irel->r_offset = nraddr;
      irel->r_offset = nraddr;
    }
    }
 
 
  /* Look through all the other sections.  If there contain any IMM32
  /* Look through all the other sections.  If there contain any IMM32
     relocs against internal symbols which we are not going to adjust
     relocs against internal symbols which we are not going to adjust
     below, we may need to adjust the addends.  */
     below, we may need to adjust the addends.  */
  for (o = abfd->sections; o != NULL; o = o->next)
  for (o = abfd->sections; o != NULL; o = o->next)
    {
    {
      Elf_Internal_Rela *internal_relocs;
      Elf_Internal_Rela *internal_relocs;
      Elf_Internal_Rela *irelscan, *irelscanend;
      Elf_Internal_Rela *irelscan, *irelscanend;
      bfd_byte *ocontents;
      bfd_byte *ocontents;
 
 
      if (o == sec
      if (o == sec
          || (o->flags & SEC_RELOC) == 0
          || (o->flags & SEC_RELOC) == 0
          || o->reloc_count == 0)
          || o->reloc_count == 0)
        continue;
        continue;
 
 
      /* We always cache the relocs.  Perhaps, if info->keep_memory is
      /* We always cache the relocs.  Perhaps, if info->keep_memory is
         FALSE, we should free them, if we are permitted to, when we
         FALSE, we should free them, if we are permitted to, when we
         leave sh_coff_relax_section.  */
         leave sh_coff_relax_section.  */
      internal_relocs = (_bfd_elf_link_read_relocs
      internal_relocs = (_bfd_elf_link_read_relocs
                         (abfd, o, NULL, (Elf_Internal_Rela *) NULL, TRUE));
                         (abfd, o, NULL, (Elf_Internal_Rela *) NULL, TRUE));
      if (internal_relocs == NULL)
      if (internal_relocs == NULL)
        return FALSE;
        return FALSE;
 
 
      ocontents = NULL;
      ocontents = NULL;
      irelscanend = internal_relocs + o->reloc_count;
      irelscanend = internal_relocs + o->reloc_count;
      for (irelscan = internal_relocs; irelscan < irelscanend; irelscan++)
      for (irelscan = internal_relocs; irelscan < irelscanend; irelscan++)
        {
        {
          /* Dwarf line numbers use R_SH_SWITCH32 relocs.  */
          /* Dwarf line numbers use R_SH_SWITCH32 relocs.  */
          if (ELF32_R_TYPE (irelscan->r_info) == (int) R_SH_SWITCH32)
          if (ELF32_R_TYPE (irelscan->r_info) == (int) R_SH_SWITCH32)
            {
            {
              bfd_vma start, stop;
              bfd_vma start, stop;
              bfd_signed_vma voff;
              bfd_signed_vma voff;
 
 
              if (ocontents == NULL)
              if (ocontents == NULL)
                {
                {
                  if (elf_section_data (o)->this_hdr.contents != NULL)
                  if (elf_section_data (o)->this_hdr.contents != NULL)
                    ocontents = elf_section_data (o)->this_hdr.contents;
                    ocontents = elf_section_data (o)->this_hdr.contents;
                  else
                  else
                    {
                    {
                      /* We always cache the section contents.
                      /* We always cache the section contents.
                         Perhaps, if info->keep_memory is FALSE, we
                         Perhaps, if info->keep_memory is FALSE, we
                         should free them, if we are permitted to,
                         should free them, if we are permitted to,
                         when we leave sh_coff_relax_section.  */
                         when we leave sh_coff_relax_section.  */
                      if (!bfd_malloc_and_get_section (abfd, o, &ocontents))
                      if (!bfd_malloc_and_get_section (abfd, o, &ocontents))
                        {
                        {
                          if (ocontents != NULL)
                          if (ocontents != NULL)
                            free (ocontents);
                            free (ocontents);
                          return FALSE;
                          return FALSE;
                        }
                        }
 
 
                      elf_section_data (o)->this_hdr.contents = ocontents;
                      elf_section_data (o)->this_hdr.contents = ocontents;
                    }
                    }
                }
                }
 
 
              stop = irelscan->r_offset;
              stop = irelscan->r_offset;
              start
              start
                = (bfd_vma) ((bfd_signed_vma) stop - (long) irelscan->r_addend);
                = (bfd_vma) ((bfd_signed_vma) stop - (long) irelscan->r_addend);
 
 
              /* STOP is in a different section, so it won't change.  */
              /* STOP is in a different section, so it won't change.  */
              if (start > addr && start < toaddr)
              if (start > addr && start < toaddr)
                irelscan->r_addend += count;
                irelscan->r_addend += count;
 
 
              voff = bfd_get_signed_32 (abfd, ocontents + irelscan->r_offset);
              voff = bfd_get_signed_32 (abfd, ocontents + irelscan->r_offset);
              stop = (bfd_vma) ((bfd_signed_vma) start + voff);
              stop = (bfd_vma) ((bfd_signed_vma) start + voff);
 
 
              if (start > addr
              if (start > addr
                  && start < toaddr
                  && start < toaddr
                  && (stop <= addr || stop >= toaddr))
                  && (stop <= addr || stop >= toaddr))
                bfd_put_signed_32 (abfd, (bfd_vma) voff + count,
                bfd_put_signed_32 (abfd, (bfd_vma) voff + count,
                                   ocontents + irelscan->r_offset);
                                   ocontents + irelscan->r_offset);
              else if (stop > addr
              else if (stop > addr
                       && stop < toaddr
                       && stop < toaddr
                       && (start <= addr || start >= toaddr))
                       && (start <= addr || start >= toaddr))
                bfd_put_signed_32 (abfd, (bfd_vma) voff - count,
                bfd_put_signed_32 (abfd, (bfd_vma) voff - count,
                                   ocontents + irelscan->r_offset);
                                   ocontents + irelscan->r_offset);
            }
            }
 
 
          if (ELF32_R_TYPE (irelscan->r_info) != (int) R_SH_DIR32)
          if (ELF32_R_TYPE (irelscan->r_info) != (int) R_SH_DIR32)
            continue;
            continue;
 
 
          if (ELF32_R_SYM (irelscan->r_info) >= symtab_hdr->sh_info)
          if (ELF32_R_SYM (irelscan->r_info) >= symtab_hdr->sh_info)
            continue;
            continue;
 
 
 
 
          isym = isymbuf + ELF32_R_SYM (irelscan->r_info);
          isym = isymbuf + ELF32_R_SYM (irelscan->r_info);
          if (isym->st_shndx == sec_shndx
          if (isym->st_shndx == sec_shndx
              && (isym->st_value <= addr
              && (isym->st_value <= addr
                  || isym->st_value >= toaddr))
                  || isym->st_value >= toaddr))
            {
            {
              bfd_vma val;
              bfd_vma val;
 
 
              if (ocontents == NULL)
              if (ocontents == NULL)
                {
                {
                  if (elf_section_data (o)->this_hdr.contents != NULL)
                  if (elf_section_data (o)->this_hdr.contents != NULL)
                    ocontents = elf_section_data (o)->this_hdr.contents;
                    ocontents = elf_section_data (o)->this_hdr.contents;
                  else
                  else
                    {
                    {
                      /* We always cache the section contents.
                      /* We always cache the section contents.
                         Perhaps, if info->keep_memory is FALSE, we
                         Perhaps, if info->keep_memory is FALSE, we
                         should free them, if we are permitted to,
                         should free them, if we are permitted to,
                         when we leave sh_coff_relax_section.  */
                         when we leave sh_coff_relax_section.  */
                      if (!bfd_malloc_and_get_section (abfd, o, &ocontents))
                      if (!bfd_malloc_and_get_section (abfd, o, &ocontents))
                        {
                        {
                          if (ocontents != NULL)
                          if (ocontents != NULL)
                            free (ocontents);
                            free (ocontents);
                          return FALSE;
                          return FALSE;
                        }
                        }
 
 
                      elf_section_data (o)->this_hdr.contents = ocontents;
                      elf_section_data (o)->this_hdr.contents = ocontents;
                    }
                    }
                }
                }
 
 
              val = bfd_get_32 (abfd, ocontents + irelscan->r_offset);
              val = bfd_get_32 (abfd, ocontents + irelscan->r_offset);
              val += isym->st_value;
              val += isym->st_value;
              if (val > addr && val < toaddr)
              if (val > addr && val < toaddr)
                bfd_put_32 (abfd, val - count,
                bfd_put_32 (abfd, val - count,
                            ocontents + irelscan->r_offset);
                            ocontents + irelscan->r_offset);
            }
            }
        }
        }
    }
    }
 
 
  /* Adjust the local symbols defined in this section.  */
  /* Adjust the local symbols defined in this section.  */
  isymend = isymbuf + symtab_hdr->sh_info;
  isymend = isymbuf + symtab_hdr->sh_info;
  for (isym = isymbuf; isym < isymend; isym++)
  for (isym = isymbuf; isym < isymend; isym++)
    {
    {
      if (isym->st_shndx == sec_shndx
      if (isym->st_shndx == sec_shndx
          && isym->st_value > addr
          && isym->st_value > addr
          && isym->st_value < toaddr)
          && isym->st_value < toaddr)
        isym->st_value -= count;
        isym->st_value -= count;
    }
    }
 
 
  /* Now adjust the global symbols defined in this section.  */
  /* Now adjust the global symbols defined in this section.  */
  symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
  symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
              - symtab_hdr->sh_info);
              - symtab_hdr->sh_info);
  sym_hashes = elf_sym_hashes (abfd);
  sym_hashes = elf_sym_hashes (abfd);
  end_hashes = sym_hashes + symcount;
  end_hashes = sym_hashes + symcount;
  for (; sym_hashes < end_hashes; sym_hashes++)
  for (; sym_hashes < end_hashes; sym_hashes++)
    {
    {
      struct elf_link_hash_entry *sym_hash = *sym_hashes;
      struct elf_link_hash_entry *sym_hash = *sym_hashes;
      if ((sym_hash->root.type == bfd_link_hash_defined
      if ((sym_hash->root.type == bfd_link_hash_defined
           || sym_hash->root.type == bfd_link_hash_defweak)
           || sym_hash->root.type == bfd_link_hash_defweak)
          && sym_hash->root.u.def.section == sec
          && sym_hash->root.u.def.section == sec
          && sym_hash->root.u.def.value > addr
          && sym_hash->root.u.def.value > addr
          && sym_hash->root.u.def.value < toaddr)
          && sym_hash->root.u.def.value < toaddr)
        {
        {
          sym_hash->root.u.def.value -= count;
          sym_hash->root.u.def.value -= count;
        }
        }
    }
    }
 
 
  /* See if we can move the ALIGN reloc forward.  We have adjusted
  /* See if we can move the ALIGN reloc forward.  We have adjusted
     r_offset for it already.  */
     r_offset for it already.  */
  if (irelalign != NULL)
  if (irelalign != NULL)
    {
    {
      bfd_vma alignto, alignaddr;
      bfd_vma alignto, alignaddr;
 
 
      alignto = BFD_ALIGN (toaddr, 1 << irelalign->r_addend);
      alignto = BFD_ALIGN (toaddr, 1 << irelalign->r_addend);
      alignaddr = BFD_ALIGN (irelalign->r_offset,
      alignaddr = BFD_ALIGN (irelalign->r_offset,
                             1 << irelalign->r_addend);
                             1 << irelalign->r_addend);
      if (alignto != alignaddr)
      if (alignto != alignaddr)
        {
        {
          /* Tail recursion.  */
          /* Tail recursion.  */
          return sh_elf_relax_delete_bytes (abfd, sec, alignaddr,
          return sh_elf_relax_delete_bytes (abfd, sec, alignaddr,
                                            (int) (alignto - alignaddr));
                                            (int) (alignto - alignaddr));
        }
        }
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Look for loads and stores which we can align to four byte
/* Look for loads and stores which we can align to four byte
   boundaries.  This is like sh_align_loads in coff-sh.c.  */
   boundaries.  This is like sh_align_loads in coff-sh.c.  */
 
 
static bfd_boolean
static bfd_boolean
sh_elf_align_loads (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
sh_elf_align_loads (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
                    Elf_Internal_Rela *internal_relocs,
                    Elf_Internal_Rela *internal_relocs,
                    bfd_byte *contents ATTRIBUTE_UNUSED,
                    bfd_byte *contents ATTRIBUTE_UNUSED,
                    bfd_boolean *pswapped)
                    bfd_boolean *pswapped)
{
{
  Elf_Internal_Rela *irel, *irelend;
  Elf_Internal_Rela *irel, *irelend;
  bfd_vma *labels = NULL;
  bfd_vma *labels = NULL;
  bfd_vma *label, *label_end;
  bfd_vma *label, *label_end;
  bfd_size_type amt;
  bfd_size_type amt;
 
 
  *pswapped = FALSE;
  *pswapped = FALSE;
 
 
  irelend = internal_relocs + sec->reloc_count;
  irelend = internal_relocs + sec->reloc_count;
 
 
  /* Get all the addresses with labels on them.  */
  /* Get all the addresses with labels on them.  */
  amt = sec->reloc_count;
  amt = sec->reloc_count;
  amt *= sizeof (bfd_vma);
  amt *= sizeof (bfd_vma);
  labels = (bfd_vma *) bfd_malloc (amt);
  labels = (bfd_vma *) bfd_malloc (amt);
  if (labels == NULL)
  if (labels == NULL)
    goto error_return;
    goto error_return;
  label_end = labels;
  label_end = labels;
  for (irel = internal_relocs; irel < irelend; irel++)
  for (irel = internal_relocs; irel < irelend; irel++)
    {
    {
      if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_LABEL)
      if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_LABEL)
        {
        {
          *label_end = irel->r_offset;
          *label_end = irel->r_offset;
          ++label_end;
          ++label_end;
        }
        }
    }
    }
 
 
  /* Note that the assembler currently always outputs relocs in
  /* Note that the assembler currently always outputs relocs in
     address order.  If that ever changes, this code will need to sort
     address order.  If that ever changes, this code will need to sort
     the label values and the relocs.  */
     the label values and the relocs.  */
 
 
  label = labels;
  label = labels;
 
 
  for (irel = internal_relocs; irel < irelend; irel++)
  for (irel = internal_relocs; irel < irelend; irel++)
    {
    {
      bfd_vma start, stop;
      bfd_vma start, stop;
 
 
      if (ELF32_R_TYPE (irel->r_info) != (int) R_SH_CODE)
      if (ELF32_R_TYPE (irel->r_info) != (int) R_SH_CODE)
        continue;
        continue;
 
 
      start = irel->r_offset;
      start = irel->r_offset;
 
 
      for (irel++; irel < irelend; irel++)
      for (irel++; irel < irelend; irel++)
        if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_DATA)
        if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_DATA)
          break;
          break;
      if (irel < irelend)
      if (irel < irelend)
        stop = irel->r_offset;
        stop = irel->r_offset;
      else
      else
        stop = sec->size;
        stop = sec->size;
 
 
      if (! _bfd_sh_align_load_span (abfd, sec, contents, sh_elf_swap_insns,
      if (! _bfd_sh_align_load_span (abfd, sec, contents, sh_elf_swap_insns,
                                     internal_relocs, &label,
                                     internal_relocs, &label,
                                     label_end, start, stop, pswapped))
                                     label_end, start, stop, pswapped))
        goto error_return;
        goto error_return;
    }
    }
 
 
  free (labels);
  free (labels);
 
 
  return TRUE;
  return TRUE;
 
 
 error_return:
 error_return:
  if (labels != NULL)
  if (labels != NULL)
    free (labels);
    free (labels);
  return FALSE;
  return FALSE;
}
}
 
 
#ifndef SH64_ELF
#ifndef SH64_ELF
/* Swap two SH instructions.  This is like sh_swap_insns in coff-sh.c.  */
/* Swap two SH instructions.  This is like sh_swap_insns in coff-sh.c.  */
 
 
static bfd_boolean
static bfd_boolean
sh_elf_swap_insns (bfd *abfd, asection *sec, void *relocs,
sh_elf_swap_insns (bfd *abfd, asection *sec, void *relocs,
                   bfd_byte *contents, bfd_vma addr)
                   bfd_byte *contents, bfd_vma addr)
{
{
  Elf_Internal_Rela *internal_relocs = (Elf_Internal_Rela *) relocs;
  Elf_Internal_Rela *internal_relocs = (Elf_Internal_Rela *) relocs;
  unsigned short i1, i2;
  unsigned short i1, i2;
  Elf_Internal_Rela *irel, *irelend;
  Elf_Internal_Rela *irel, *irelend;
 
 
  /* Swap the instructions themselves.  */
  /* Swap the instructions themselves.  */
  i1 = bfd_get_16 (abfd, contents + addr);
  i1 = bfd_get_16 (abfd, contents + addr);
  i2 = bfd_get_16 (abfd, contents + addr + 2);
  i2 = bfd_get_16 (abfd, contents + addr + 2);
  bfd_put_16 (abfd, (bfd_vma) i2, contents + addr);
  bfd_put_16 (abfd, (bfd_vma) i2, contents + addr);
  bfd_put_16 (abfd, (bfd_vma) i1, contents + addr + 2);
  bfd_put_16 (abfd, (bfd_vma) i1, contents + addr + 2);
 
 
  /* Adjust all reloc addresses.  */
  /* Adjust all reloc addresses.  */
  irelend = internal_relocs + sec->reloc_count;
  irelend = internal_relocs + sec->reloc_count;
  for (irel = internal_relocs; irel < irelend; irel++)
  for (irel = internal_relocs; irel < irelend; irel++)
    {
    {
      enum elf_sh_reloc_type type;
      enum elf_sh_reloc_type type;
      int add;
      int add;
 
 
      /* There are a few special types of relocs that we don't want to
      /* There are a few special types of relocs that we don't want to
         adjust.  These relocs do not apply to the instruction itself,
         adjust.  These relocs do not apply to the instruction itself,
         but are only associated with the address.  */
         but are only associated with the address.  */
      type = (enum elf_sh_reloc_type) ELF32_R_TYPE (irel->r_info);
      type = (enum elf_sh_reloc_type) ELF32_R_TYPE (irel->r_info);
      if (type == R_SH_ALIGN
      if (type == R_SH_ALIGN
          || type == R_SH_CODE
          || type == R_SH_CODE
          || type == R_SH_DATA
          || type == R_SH_DATA
          || type == R_SH_LABEL)
          || type == R_SH_LABEL)
        continue;
        continue;
 
 
      /* If an R_SH_USES reloc points to one of the addresses being
      /* If an R_SH_USES reloc points to one of the addresses being
         swapped, we must adjust it.  It would be incorrect to do this
         swapped, we must adjust it.  It would be incorrect to do this
         for a jump, though, since we want to execute both
         for a jump, though, since we want to execute both
         instructions after the jump.  (We have avoided swapping
         instructions after the jump.  (We have avoided swapping
         around a label, so the jump will not wind up executing an
         around a label, so the jump will not wind up executing an
         instruction it shouldn't).  */
         instruction it shouldn't).  */
      if (type == R_SH_USES)
      if (type == R_SH_USES)
        {
        {
          bfd_vma off;
          bfd_vma off;
 
 
          off = irel->r_offset + 4 + irel->r_addend;
          off = irel->r_offset + 4 + irel->r_addend;
          if (off == addr)
          if (off == addr)
            irel->r_offset += 2;
            irel->r_offset += 2;
          else if (off == addr + 2)
          else if (off == addr + 2)
            irel->r_offset -= 2;
            irel->r_offset -= 2;
        }
        }
 
 
      if (irel->r_offset == addr)
      if (irel->r_offset == addr)
        {
        {
          irel->r_offset += 2;
          irel->r_offset += 2;
          add = -2;
          add = -2;
        }
        }
      else if (irel->r_offset == addr + 2)
      else if (irel->r_offset == addr + 2)
        {
        {
          irel->r_offset -= 2;
          irel->r_offset -= 2;
          add = 2;
          add = 2;
        }
        }
      else
      else
        add = 0;
        add = 0;
 
 
      if (add != 0)
      if (add != 0)
        {
        {
          bfd_byte *loc;
          bfd_byte *loc;
          unsigned short insn, oinsn;
          unsigned short insn, oinsn;
          bfd_boolean overflow;
          bfd_boolean overflow;
 
 
          loc = contents + irel->r_offset;
          loc = contents + irel->r_offset;
          overflow = FALSE;
          overflow = FALSE;
          switch (type)
          switch (type)
            {
            {
            default:
            default:
              break;
              break;
 
 
            case R_SH_DIR8WPN:
            case R_SH_DIR8WPN:
            case R_SH_DIR8WPZ:
            case R_SH_DIR8WPZ:
              insn = bfd_get_16 (abfd, loc);
              insn = bfd_get_16 (abfd, loc);
              oinsn = insn;
              oinsn = insn;
              insn += add / 2;
              insn += add / 2;
              if ((oinsn & 0xff00) != (insn & 0xff00))
              if ((oinsn & 0xff00) != (insn & 0xff00))
                overflow = TRUE;
                overflow = TRUE;
              bfd_put_16 (abfd, (bfd_vma) insn, loc);
              bfd_put_16 (abfd, (bfd_vma) insn, loc);
              break;
              break;
 
 
            case R_SH_IND12W:
            case R_SH_IND12W:
              insn = bfd_get_16 (abfd, loc);
              insn = bfd_get_16 (abfd, loc);
              oinsn = insn;
              oinsn = insn;
              insn += add / 2;
              insn += add / 2;
              if ((oinsn & 0xf000) != (insn & 0xf000))
              if ((oinsn & 0xf000) != (insn & 0xf000))
                overflow = TRUE;
                overflow = TRUE;
              bfd_put_16 (abfd, (bfd_vma) insn, loc);
              bfd_put_16 (abfd, (bfd_vma) insn, loc);
              break;
              break;
 
 
            case R_SH_DIR8WPL:
            case R_SH_DIR8WPL:
              /* This reloc ignores the least significant 3 bits of
              /* This reloc ignores the least significant 3 bits of
                 the program counter before adding in the offset.
                 the program counter before adding in the offset.
                 This means that if ADDR is at an even address, the
                 This means that if ADDR is at an even address, the
                 swap will not affect the offset.  If ADDR is an at an
                 swap will not affect the offset.  If ADDR is an at an
                 odd address, then the instruction will be crossing a
                 odd address, then the instruction will be crossing a
                 four byte boundary, and must be adjusted.  */
                 four byte boundary, and must be adjusted.  */
              if ((addr & 3) != 0)
              if ((addr & 3) != 0)
                {
                {
                  insn = bfd_get_16 (abfd, loc);
                  insn = bfd_get_16 (abfd, loc);
                  oinsn = insn;
                  oinsn = insn;
                  insn += add / 2;
                  insn += add / 2;
                  if ((oinsn & 0xff00) != (insn & 0xff00))
                  if ((oinsn & 0xff00) != (insn & 0xff00))
                    overflow = TRUE;
                    overflow = TRUE;
                  bfd_put_16 (abfd, (bfd_vma) insn, loc);
                  bfd_put_16 (abfd, (bfd_vma) insn, loc);
                }
                }
 
 
              break;
              break;
            }
            }
 
 
          if (overflow)
          if (overflow)
            {
            {
              ((*_bfd_error_handler)
              ((*_bfd_error_handler)
               (_("%B: 0x%lx: fatal: reloc overflow while relaxing"),
               (_("%B: 0x%lx: fatal: reloc overflow while relaxing"),
                abfd, (unsigned long) irel->r_offset));
                abfd, (unsigned long) irel->r_offset));
              bfd_set_error (bfd_error_bad_value);
              bfd_set_error (bfd_error_bad_value);
              return FALSE;
              return FALSE;
            }
            }
        }
        }
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
#endif /* defined SH64_ELF */
#endif /* defined SH64_ELF */


/* Describes one of the various PLT styles.  */
/* Describes one of the various PLT styles.  */
 
 
struct elf_sh_plt_info
struct elf_sh_plt_info
{
{
  /* The template for the first PLT entry, or NULL if there is no special
  /* The template for the first PLT entry, or NULL if there is no special
     first entry.  */
     first entry.  */
  const bfd_byte *plt0_entry;
  const bfd_byte *plt0_entry;
 
 
  /* The size of PLT0_ENTRY in bytes, or 0 if PLT0_ENTRY is NULL.  */
  /* The size of PLT0_ENTRY in bytes, or 0 if PLT0_ENTRY is NULL.  */
  bfd_vma plt0_entry_size;
  bfd_vma plt0_entry_size;
 
 
  /* Index I is the offset into PLT0_ENTRY of a pointer to
  /* Index I is the offset into PLT0_ENTRY of a pointer to
     _GLOBAL_OFFSET_TABLE_ + I * 4.  The value is MINUS_ONE
     _GLOBAL_OFFSET_TABLE_ + I * 4.  The value is MINUS_ONE
     if there is no such pointer.  */
     if there is no such pointer.  */
  bfd_vma plt0_got_fields[3];
  bfd_vma plt0_got_fields[3];
 
 
  /* The template for a symbol's PLT entry.  */
  /* The template for a symbol's PLT entry.  */
  const bfd_byte *symbol_entry;
  const bfd_byte *symbol_entry;
 
 
  /* The size of SYMBOL_ENTRY in bytes.  */
  /* The size of SYMBOL_ENTRY in bytes.  */
  bfd_vma symbol_entry_size;
  bfd_vma symbol_entry_size;
 
 
  /* Byte offsets of fields in SYMBOL_ENTRY.  Not all fields are used
  /* Byte offsets of fields in SYMBOL_ENTRY.  Not all fields are used
     on all targets.  The comments by each member indicate the value
     on all targets.  The comments by each member indicate the value
     that the field must hold.  */
     that the field must hold.  */
  struct {
  struct {
    bfd_vma got_entry; /* the address of the symbol's .got.plt entry */
    bfd_vma got_entry; /* the address of the symbol's .got.plt entry */
    bfd_vma plt; /* .plt (or a branch to .plt on VxWorks) */
    bfd_vma plt; /* .plt (or a branch to .plt on VxWorks) */
    bfd_vma reloc_offset; /* the offset of the symbol's JMP_SLOT reloc */
    bfd_vma reloc_offset; /* the offset of the symbol's JMP_SLOT reloc */
  } symbol_fields;
  } symbol_fields;
 
 
  /* The offset of the resolver stub from the start of SYMBOL_ENTRY.  */
  /* The offset of the resolver stub from the start of SYMBOL_ENTRY.  */
  bfd_vma symbol_resolve_offset;
  bfd_vma symbol_resolve_offset;
};
};
 
 
#ifdef INCLUDE_SHMEDIA
#ifdef INCLUDE_SHMEDIA
 
 
/* The size in bytes of an entry in the procedure linkage table.  */
/* The size in bytes of an entry in the procedure linkage table.  */
 
 
#define ELF_PLT_ENTRY_SIZE 64
#define ELF_PLT_ENTRY_SIZE 64
 
 
/* First entry in an absolute procedure linkage table look like this.  */
/* First entry in an absolute procedure linkage table look like this.  */
 
 
static const bfd_byte elf_sh_plt0_entry_be[ELF_PLT_ENTRY_SIZE] =
static const bfd_byte elf_sh_plt0_entry_be[ELF_PLT_ENTRY_SIZE] =
{
{
  0xcc, 0x00, 0x01, 0x10, /* movi  .got.plt >> 16, r17 */
  0xcc, 0x00, 0x01, 0x10, /* movi  .got.plt >> 16, r17 */
  0xc8, 0x00, 0x01, 0x10, /* shori .got.plt & 65535, r17 */
  0xc8, 0x00, 0x01, 0x10, /* shori .got.plt & 65535, r17 */
  0x89, 0x10, 0x09, 0x90, /* ld.l  r17, 8, r25 */
  0x89, 0x10, 0x09, 0x90, /* ld.l  r17, 8, r25 */
  0x6b, 0xf1, 0x66, 0x00, /* ptabs r25, tr0 */
  0x6b, 0xf1, 0x66, 0x00, /* ptabs r25, tr0 */
  0x89, 0x10, 0x05, 0x10, /* ld.l  r17, 4, r17 */
  0x89, 0x10, 0x05, 0x10, /* ld.l  r17, 4, r17 */
  0x44, 0x01, 0xff, 0xf0, /* blink tr0, r63 */
  0x44, 0x01, 0xff, 0xf0, /* blink tr0, r63 */
  0x6f, 0xf0, 0xff, 0xf0, /* nop */
  0x6f, 0xf0, 0xff, 0xf0, /* nop */
  0x6f, 0xf0, 0xff, 0xf0, /* nop */
  0x6f, 0xf0, 0xff, 0xf0, /* nop */
  0x6f, 0xf0, 0xff, 0xf0, /* nop */
  0x6f, 0xf0, 0xff, 0xf0, /* nop */
  0x6f, 0xf0, 0xff, 0xf0, /* nop */
  0x6f, 0xf0, 0xff, 0xf0, /* nop */
  0x6f, 0xf0, 0xff, 0xf0, /* nop */
  0x6f, 0xf0, 0xff, 0xf0, /* nop */
  0x6f, 0xf0, 0xff, 0xf0, /* nop */
  0x6f, 0xf0, 0xff, 0xf0, /* nop */
  0x6f, 0xf0, 0xff, 0xf0, /* nop */
  0x6f, 0xf0, 0xff, 0xf0, /* nop */
  0x6f, 0xf0, 0xff, 0xf0, /* nop */
  0x6f, 0xf0, 0xff, 0xf0, /* nop */
  0x6f, 0xf0, 0xff, 0xf0, /* nop */
  0x6f, 0xf0, 0xff, 0xf0, /* nop */
  0x6f, 0xf0, 0xff, 0xf0, /* nop */
  0x6f, 0xf0, 0xff, 0xf0, /* nop */
};
};
 
 
static const bfd_byte elf_sh_plt0_entry_le[ELF_PLT_ENTRY_SIZE] =
static const bfd_byte elf_sh_plt0_entry_le[ELF_PLT_ENTRY_SIZE] =
{
{
  0x10, 0x01, 0x00, 0xcc, /* movi  .got.plt >> 16, r17 */
  0x10, 0x01, 0x00, 0xcc, /* movi  .got.plt >> 16, r17 */
  0x10, 0x01, 0x00, 0xc8, /* shori .got.plt & 65535, r17 */
  0x10, 0x01, 0x00, 0xc8, /* shori .got.plt & 65535, r17 */
  0x90, 0x09, 0x10, 0x89, /* ld.l  r17, 8, r25 */
  0x90, 0x09, 0x10, 0x89, /* ld.l  r17, 8, r25 */
  0x00, 0x66, 0xf1, 0x6b, /* ptabs r25, tr0 */
  0x00, 0x66, 0xf1, 0x6b, /* ptabs r25, tr0 */
  0x10, 0x05, 0x10, 0x89, /* ld.l  r17, 4, r17 */
  0x10, 0x05, 0x10, 0x89, /* ld.l  r17, 4, r17 */
  0xf0, 0xff, 0x01, 0x44, /* blink tr0, r63 */
  0xf0, 0xff, 0x01, 0x44, /* blink tr0, r63 */
  0xf0, 0xff, 0xf0, 0x6f, /* nop */
  0xf0, 0xff, 0xf0, 0x6f, /* nop */
  0xf0, 0xff, 0xf0, 0x6f, /* nop */
  0xf0, 0xff, 0xf0, 0x6f, /* nop */
  0xf0, 0xff, 0xf0, 0x6f, /* nop */
  0xf0, 0xff, 0xf0, 0x6f, /* nop */
  0xf0, 0xff, 0xf0, 0x6f, /* nop */
  0xf0, 0xff, 0xf0, 0x6f, /* nop */
  0xf0, 0xff, 0xf0, 0x6f, /* nop */
  0xf0, 0xff, 0xf0, 0x6f, /* nop */
  0xf0, 0xff, 0xf0, 0x6f, /* nop */
  0xf0, 0xff, 0xf0, 0x6f, /* nop */
  0xf0, 0xff, 0xf0, 0x6f, /* nop */
  0xf0, 0xff, 0xf0, 0x6f, /* nop */
  0xf0, 0xff, 0xf0, 0x6f, /* nop */
  0xf0, 0xff, 0xf0, 0x6f, /* nop */
  0xf0, 0xff, 0xf0, 0x6f, /* nop */
  0xf0, 0xff, 0xf0, 0x6f, /* nop */
  0xf0, 0xff, 0xf0, 0x6f, /* nop */
  0xf0, 0xff, 0xf0, 0x6f, /* nop */
};
};
 
 
/* Sebsequent entries in an absolute procedure linkage table look like
/* Sebsequent entries in an absolute procedure linkage table look like
   this.  */
   this.  */
 
 
static const bfd_byte elf_sh_plt_entry_be[ELF_PLT_ENTRY_SIZE] =
static const bfd_byte elf_sh_plt_entry_be[ELF_PLT_ENTRY_SIZE] =
{
{
  0xcc, 0x00, 0x01, 0x90, /* movi  nameN-in-GOT >> 16, r25 */
  0xcc, 0x00, 0x01, 0x90, /* movi  nameN-in-GOT >> 16, r25 */
  0xc8, 0x00, 0x01, 0x90, /* shori nameN-in-GOT & 65535, r25 */
  0xc8, 0x00, 0x01, 0x90, /* shori nameN-in-GOT & 65535, r25 */
  0x89, 0x90, 0x01, 0x90, /* ld.l  r25, 0, r25 */
  0x89, 0x90, 0x01, 0x90, /* ld.l  r25, 0, r25 */
  0x6b, 0xf1, 0x66, 0x00, /* ptabs r25, tr0 */
  0x6b, 0xf1, 0x66, 0x00, /* ptabs r25, tr0 */
  0x44, 0x01, 0xff, 0xf0, /* blink tr0, r63 */
  0x44, 0x01, 0xff, 0xf0, /* blink tr0, r63 */
  0x6f, 0xf0, 0xff, 0xf0, /* nop */
  0x6f, 0xf0, 0xff, 0xf0, /* nop */
  0x6f, 0xf0, 0xff, 0xf0, /* nop */
  0x6f, 0xf0, 0xff, 0xf0, /* nop */
  0x6f, 0xf0, 0xff, 0xf0, /* nop */
  0x6f, 0xf0, 0xff, 0xf0, /* nop */
  0xcc, 0x00, 0x01, 0x90, /* movi  .PLT0 >> 16, r25 */
  0xcc, 0x00, 0x01, 0x90, /* movi  .PLT0 >> 16, r25 */
  0xc8, 0x00, 0x01, 0x90, /* shori .PLT0 & 65535, r25 */
  0xc8, 0x00, 0x01, 0x90, /* shori .PLT0 & 65535, r25 */
  0x6b, 0xf1, 0x66, 0x00, /* ptabs r25, tr0 */
  0x6b, 0xf1, 0x66, 0x00, /* ptabs r25, tr0 */
  0xcc, 0x00, 0x01, 0x50, /* movi  reloc-offset >> 16, r21 */
  0xcc, 0x00, 0x01, 0x50, /* movi  reloc-offset >> 16, r21 */
  0xc8, 0x00, 0x01, 0x50, /* shori reloc-offset & 65535, r21 */
  0xc8, 0x00, 0x01, 0x50, /* shori reloc-offset & 65535, r21 */
  0x44, 0x01, 0xff, 0xf0, /* blink tr0, r63 */
  0x44, 0x01, 0xff, 0xf0, /* blink tr0, r63 */
  0x6f, 0xf0, 0xff, 0xf0, /* nop */
  0x6f, 0xf0, 0xff, 0xf0, /* nop */
  0x6f, 0xf0, 0xff, 0xf0, /* nop */
  0x6f, 0xf0, 0xff, 0xf0, /* nop */
};
};
 
 
static const bfd_byte elf_sh_plt_entry_le[ELF_PLT_ENTRY_SIZE] =
static const bfd_byte elf_sh_plt_entry_le[ELF_PLT_ENTRY_SIZE] =
{
{
  0x90, 0x01, 0x00, 0xcc, /* movi  nameN-in-GOT >> 16, r25 */
  0x90, 0x01, 0x00, 0xcc, /* movi  nameN-in-GOT >> 16, r25 */
  0x90, 0x01, 0x00, 0xc8, /* shori nameN-in-GOT & 65535, r25 */
  0x90, 0x01, 0x00, 0xc8, /* shori nameN-in-GOT & 65535, r25 */
  0x90, 0x01, 0x90, 0x89, /* ld.l  r25, 0, r25 */
  0x90, 0x01, 0x90, 0x89, /* ld.l  r25, 0, r25 */
  0x00, 0x66, 0xf1, 0x6b, /* ptabs r25, tr0 */
  0x00, 0x66, 0xf1, 0x6b, /* ptabs r25, tr0 */
  0xf0, 0xff, 0x01, 0x44, /* blink tr0, r63 */
  0xf0, 0xff, 0x01, 0x44, /* blink tr0, r63 */
  0xf0, 0xff, 0xf0, 0x6f, /* nop */
  0xf0, 0xff, 0xf0, 0x6f, /* nop */
  0xf0, 0xff, 0xf0, 0x6f, /* nop */
  0xf0, 0xff, 0xf0, 0x6f, /* nop */
  0xf0, 0xff, 0xf0, 0x6f, /* nop */
  0xf0, 0xff, 0xf0, 0x6f, /* nop */
  0x90, 0x01, 0x00, 0xcc, /* movi  .PLT0 >> 16, r25 */
  0x90, 0x01, 0x00, 0xcc, /* movi  .PLT0 >> 16, r25 */
  0x90, 0x01, 0x00, 0xc8, /* shori .PLT0 & 65535, r25 */
  0x90, 0x01, 0x00, 0xc8, /* shori .PLT0 & 65535, r25 */
  0x00, 0x66, 0xf1, 0x6b, /* ptabs r25, tr0 */
  0x00, 0x66, 0xf1, 0x6b, /* ptabs r25, tr0 */
  0x50, 0x01, 0x00, 0xcc, /* movi  reloc-offset >> 16, r21 */
  0x50, 0x01, 0x00, 0xcc, /* movi  reloc-offset >> 16, r21 */
  0x50, 0x01, 0x00, 0xc8, /* shori reloc-offset & 65535, r21 */
  0x50, 0x01, 0x00, 0xc8, /* shori reloc-offset & 65535, r21 */
  0xf0, 0xff, 0x01, 0x44, /* blink tr0, r63 */
  0xf0, 0xff, 0x01, 0x44, /* blink tr0, r63 */
  0xf0, 0xff, 0xf0, 0x6f, /* nop */
  0xf0, 0xff, 0xf0, 0x6f, /* nop */
  0xf0, 0xff, 0xf0, 0x6f, /* nop */
  0xf0, 0xff, 0xf0, 0x6f, /* nop */
};
};
 
 
/* Entries in a PIC procedure linkage table look like this.  */
/* Entries in a PIC procedure linkage table look like this.  */
 
 
static const bfd_byte elf_sh_pic_plt_entry_be[ELF_PLT_ENTRY_SIZE] =
static const bfd_byte elf_sh_pic_plt_entry_be[ELF_PLT_ENTRY_SIZE] =
{
{
  0xcc, 0x00, 0x01, 0x90, /* movi  nameN@GOT >> 16, r25 */
  0xcc, 0x00, 0x01, 0x90, /* movi  nameN@GOT >> 16, r25 */
  0xc8, 0x00, 0x01, 0x90, /* shori nameN@GOT & 65535, r25 */
  0xc8, 0x00, 0x01, 0x90, /* shori nameN@GOT & 65535, r25 */
  0x40, 0xc2, 0x65, 0x90, /* ldx.l r12, r25, r25 */
  0x40, 0xc2, 0x65, 0x90, /* ldx.l r12, r25, r25 */
  0x6b, 0xf1, 0x66, 0x00, /* ptabs r25, tr0 */
  0x6b, 0xf1, 0x66, 0x00, /* ptabs r25, tr0 */
  0x44, 0x01, 0xff, 0xf0, /* blink tr0, r63 */
  0x44, 0x01, 0xff, 0xf0, /* blink tr0, r63 */
  0x6f, 0xf0, 0xff, 0xf0, /* nop */
  0x6f, 0xf0, 0xff, 0xf0, /* nop */
  0x6f, 0xf0, 0xff, 0xf0, /* nop */
  0x6f, 0xf0, 0xff, 0xf0, /* nop */
  0x6f, 0xf0, 0xff, 0xf0, /* nop */
  0x6f, 0xf0, 0xff, 0xf0, /* nop */
  0xce, 0x00, 0x01, 0x10, /* movi  -GOT_BIAS, r17 */
  0xce, 0x00, 0x01, 0x10, /* movi  -GOT_BIAS, r17 */
  0x00, 0xc8, 0x45, 0x10, /* add.l r12, r17, r17 */
  0x00, 0xc8, 0x45, 0x10, /* add.l r12, r17, r17 */
  0x89, 0x10, 0x09, 0x90, /* ld.l  r17, 8, r25 */
  0x89, 0x10, 0x09, 0x90, /* ld.l  r17, 8, r25 */
  0x6b, 0xf1, 0x66, 0x00, /* ptabs r25, tr0 */
  0x6b, 0xf1, 0x66, 0x00, /* ptabs r25, tr0 */
  0x89, 0x10, 0x05, 0x10, /* ld.l  r17, 4, r17 */
  0x89, 0x10, 0x05, 0x10, /* ld.l  r17, 4, r17 */
  0xcc, 0x00, 0x01, 0x50, /* movi  reloc-offset >> 16, r21 */
  0xcc, 0x00, 0x01, 0x50, /* movi  reloc-offset >> 16, r21 */
  0xc8, 0x00, 0x01, 0x50, /* shori reloc-offset & 65535, r21 */
  0xc8, 0x00, 0x01, 0x50, /* shori reloc-offset & 65535, r21 */
  0x44, 0x01, 0xff, 0xf0, /* blink tr0, r63 */
  0x44, 0x01, 0xff, 0xf0, /* blink tr0, r63 */
};
};
 
 
static const bfd_byte elf_sh_pic_plt_entry_le[ELF_PLT_ENTRY_SIZE] =
static const bfd_byte elf_sh_pic_plt_entry_le[ELF_PLT_ENTRY_SIZE] =
{
{
  0x90, 0x01, 0x00, 0xcc, /* movi  nameN@GOT >> 16, r25 */
  0x90, 0x01, 0x00, 0xcc, /* movi  nameN@GOT >> 16, r25 */
  0x90, 0x01, 0x00, 0xc8, /* shori nameN@GOT & 65535, r25 */
  0x90, 0x01, 0x00, 0xc8, /* shori nameN@GOT & 65535, r25 */
  0x90, 0x65, 0xc2, 0x40, /* ldx.l r12, r25, r25 */
  0x90, 0x65, 0xc2, 0x40, /* ldx.l r12, r25, r25 */
  0x00, 0x66, 0xf1, 0x6b, /* ptabs r25, tr0 */
  0x00, 0x66, 0xf1, 0x6b, /* ptabs r25, tr0 */
  0xf0, 0xff, 0x01, 0x44, /* blink tr0, r63 */
  0xf0, 0xff, 0x01, 0x44, /* blink tr0, r63 */
  0xf0, 0xff, 0xf0, 0x6f, /* nop */
  0xf0, 0xff, 0xf0, 0x6f, /* nop */
  0xf0, 0xff, 0xf0, 0x6f, /* nop */
  0xf0, 0xff, 0xf0, 0x6f, /* nop */
  0xf0, 0xff, 0xf0, 0x6f, /* nop */
  0xf0, 0xff, 0xf0, 0x6f, /* nop */
  0x10, 0x01, 0x00, 0xce, /* movi  -GOT_BIAS, r17 */
  0x10, 0x01, 0x00, 0xce, /* movi  -GOT_BIAS, r17 */
  0x10, 0x45, 0xc8, 0x00, /* add.l r12, r17, r17 */
  0x10, 0x45, 0xc8, 0x00, /* add.l r12, r17, r17 */
  0x90, 0x09, 0x10, 0x89, /* ld.l  r17, 8, r25 */
  0x90, 0x09, 0x10, 0x89, /* ld.l  r17, 8, r25 */
  0x00, 0x66, 0xf1, 0x6b, /* ptabs r25, tr0 */
  0x00, 0x66, 0xf1, 0x6b, /* ptabs r25, tr0 */
  0x10, 0x05, 0x10, 0x89, /* ld.l  r17, 4, r17 */
  0x10, 0x05, 0x10, 0x89, /* ld.l  r17, 4, r17 */
  0x50, 0x01, 0x00, 0xcc, /* movi  reloc-offset >> 16, r21 */
  0x50, 0x01, 0x00, 0xcc, /* movi  reloc-offset >> 16, r21 */
  0x50, 0x01, 0x00, 0xc8, /* shori reloc-offset & 65535, r21 */
  0x50, 0x01, 0x00, 0xc8, /* shori reloc-offset & 65535, r21 */
  0xf0, 0xff, 0x01, 0x44, /* blink tr0, r63 */
  0xf0, 0xff, 0x01, 0x44, /* blink tr0, r63 */
};
};
 
 
static const struct elf_sh_plt_info elf_sh_plts[2][2] = {
static const struct elf_sh_plt_info elf_sh_plts[2][2] = {
  {
  {
    {
    {
      /* Big-endian non-PIC.  */
      /* Big-endian non-PIC.  */
      elf_sh_plt0_entry_be,
      elf_sh_plt0_entry_be,
      ELF_PLT_ENTRY_SIZE,
      ELF_PLT_ENTRY_SIZE,
      { 0, MINUS_ONE, MINUS_ONE },
      { 0, MINUS_ONE, MINUS_ONE },
      elf_sh_plt_entry_be,
      elf_sh_plt_entry_be,
      ELF_PLT_ENTRY_SIZE,
      ELF_PLT_ENTRY_SIZE,
      { 0, 32, 48 },
      { 0, 32, 48 },
      33 /* includes ISA encoding */
      33 /* includes ISA encoding */
    },
    },
    {
    {
      /* Little-endian non-PIC.  */
      /* Little-endian non-PIC.  */
      elf_sh_plt0_entry_le,
      elf_sh_plt0_entry_le,
      ELF_PLT_ENTRY_SIZE,
      ELF_PLT_ENTRY_SIZE,
      { 0, MINUS_ONE, MINUS_ONE },
      { 0, MINUS_ONE, MINUS_ONE },
      elf_sh_plt_entry_le,
      elf_sh_plt_entry_le,
      ELF_PLT_ENTRY_SIZE,
      ELF_PLT_ENTRY_SIZE,
      { 0, 32, 48 },
      { 0, 32, 48 },
      33 /* includes ISA encoding */
      33 /* includes ISA encoding */
    },
    },
  },
  },
  {
  {
    {
    {
      /* Big-endian PIC.  */
      /* Big-endian PIC.  */
      elf_sh_plt0_entry_be,
      elf_sh_plt0_entry_be,
      ELF_PLT_ENTRY_SIZE,
      ELF_PLT_ENTRY_SIZE,
      { MINUS_ONE, MINUS_ONE, MINUS_ONE },
      { MINUS_ONE, MINUS_ONE, MINUS_ONE },
      elf_sh_pic_plt_entry_be,
      elf_sh_pic_plt_entry_be,
      ELF_PLT_ENTRY_SIZE,
      ELF_PLT_ENTRY_SIZE,
      { 0, MINUS_ONE, 52 },
      { 0, MINUS_ONE, 52 },
      33 /* includes ISA encoding */
      33 /* includes ISA encoding */
    },
    },
    {
    {
      /* Little-endian PIC.  */
      /* Little-endian PIC.  */
      elf_sh_plt0_entry_le,
      elf_sh_plt0_entry_le,
      ELF_PLT_ENTRY_SIZE,
      ELF_PLT_ENTRY_SIZE,
      { MINUS_ONE, MINUS_ONE, MINUS_ONE },
      { MINUS_ONE, MINUS_ONE, MINUS_ONE },
      elf_sh_pic_plt_entry_le,
      elf_sh_pic_plt_entry_le,
      ELF_PLT_ENTRY_SIZE,
      ELF_PLT_ENTRY_SIZE,
      { 0, MINUS_ONE, 52 },
      { 0, MINUS_ONE, 52 },
      33 /* includes ISA encoding */
      33 /* includes ISA encoding */
    },
    },
  }
  }
};
};
 
 
/* Return offset of the linker in PLT0 entry.  */
/* Return offset of the linker in PLT0 entry.  */
#define elf_sh_plt0_gotplt_offset(info) 0
#define elf_sh_plt0_gotplt_offset(info) 0
 
 
/* Install a 32-bit PLT field starting at ADDR, which occurs in OUTPUT_BFD.
/* Install a 32-bit PLT field starting at ADDR, which occurs in OUTPUT_BFD.
   VALUE is the field's value and CODE_P is true if VALUE refers to code,
   VALUE is the field's value and CODE_P is true if VALUE refers to code,
   not data.
   not data.
 
 
   On SH64, each 32-bit field is loaded by a movi/shori pair.  */
   On SH64, each 32-bit field is loaded by a movi/shori pair.  */
 
 
inline static void
inline static void
install_plt_field (bfd *output_bfd, bfd_boolean code_p,
install_plt_field (bfd *output_bfd, bfd_boolean code_p,
                   unsigned long value, bfd_byte *addr)
                   unsigned long value, bfd_byte *addr)
{
{
  value |= code_p;
  value |= code_p;
  bfd_put_32 (output_bfd,
  bfd_put_32 (output_bfd,
              bfd_get_32 (output_bfd, addr)
              bfd_get_32 (output_bfd, addr)
              | ((value >> 6) & 0x3fffc00),
              | ((value >> 6) & 0x3fffc00),
              addr);
              addr);
  bfd_put_32 (output_bfd,
  bfd_put_32 (output_bfd,
              bfd_get_32 (output_bfd, addr + 4)
              bfd_get_32 (output_bfd, addr + 4)
              | ((value << 10) & 0x3fffc00),
              | ((value << 10) & 0x3fffc00),
              addr + 4);
              addr + 4);
}
}
 
 
/* Return the type of PLT associated with ABFD.  PIC_P is true if
/* Return the type of PLT associated with ABFD.  PIC_P is true if
   the object is position-independent.  */
   the object is position-independent.  */
 
 
static const struct elf_sh_plt_info *
static const struct elf_sh_plt_info *
get_plt_info (bfd *abfd ATTRIBUTE_UNUSED, bfd_boolean pic_p)
get_plt_info (bfd *abfd ATTRIBUTE_UNUSED, bfd_boolean pic_p)
{
{
  return &elf_sh_plts[pic_p][!bfd_big_endian (abfd)];
  return &elf_sh_plts[pic_p][!bfd_big_endian (abfd)];
}
}
#else
#else
/* The size in bytes of an entry in the procedure linkage table.  */
/* The size in bytes of an entry in the procedure linkage table.  */
 
 
#define ELF_PLT_ENTRY_SIZE 28
#define ELF_PLT_ENTRY_SIZE 28
 
 
/* First entry in an absolute procedure linkage table look like this.  */
/* First entry in an absolute procedure linkage table look like this.  */
 
 
/* Note - this code has been "optimised" not to use r2.  r2 is used by
/* Note - this code has been "optimised" not to use r2.  r2 is used by
   GCC to return the address of large structures, so it should not be
   GCC to return the address of large structures, so it should not be
   corrupted here.  This does mean however, that this PLT does not conform
   corrupted here.  This does mean however, that this PLT does not conform
   to the SH PIC ABI.  That spec says that r0 contains the type of the PLT
   to the SH PIC ABI.  That spec says that r0 contains the type of the PLT
   and r2 contains the GOT id.  This version stores the GOT id in r0 and
   and r2 contains the GOT id.  This version stores the GOT id in r0 and
   ignores the type.  Loaders can easily detect this difference however,
   ignores the type.  Loaders can easily detect this difference however,
   since the type will always be 0 or 8, and the GOT ids will always be
   since the type will always be 0 or 8, and the GOT ids will always be
   greater than or equal to 12.  */
   greater than or equal to 12.  */
static const bfd_byte elf_sh_plt0_entry_be[ELF_PLT_ENTRY_SIZE] =
static const bfd_byte elf_sh_plt0_entry_be[ELF_PLT_ENTRY_SIZE] =
{
{
  0xd0, 0x05,   /* mov.l 2f,r0 */
  0xd0, 0x05,   /* mov.l 2f,r0 */
  0x60, 0x02,   /* mov.l @r0,r0 */
  0x60, 0x02,   /* mov.l @r0,r0 */
  0x2f, 0x06,   /* mov.l r0,@-r15 */
  0x2f, 0x06,   /* mov.l r0,@-r15 */
  0xd0, 0x03,   /* mov.l 1f,r0 */
  0xd0, 0x03,   /* mov.l 1f,r0 */
  0x60, 0x02,   /* mov.l @r0,r0 */
  0x60, 0x02,   /* mov.l @r0,r0 */
  0x40, 0x2b,   /* jmp @r0 */
  0x40, 0x2b,   /* jmp @r0 */
  0x60, 0xf6,   /*  mov.l @r15+,r0 */
  0x60, 0xf6,   /*  mov.l @r15+,r0 */
  0x00, 0x09,   /* nop */
  0x00, 0x09,   /* nop */
  0x00, 0x09,   /* nop */
  0x00, 0x09,   /* nop */
  0x00, 0x09,   /* nop */
  0x00, 0x09,   /* nop */
  0, 0, 0, 0,       /* 1: replaced with address of .got.plt + 8.  */
  0, 0, 0, 0,       /* 1: replaced with address of .got.plt + 8.  */
  0, 0, 0, 0,       /* 2: replaced with address of .got.plt + 4.  */
  0, 0, 0, 0,       /* 2: replaced with address of .got.plt + 4.  */
};
};
 
 
static const bfd_byte elf_sh_plt0_entry_le[ELF_PLT_ENTRY_SIZE] =
static const bfd_byte elf_sh_plt0_entry_le[ELF_PLT_ENTRY_SIZE] =
{
{
  0x05, 0xd0,   /* mov.l 2f,r0 */
  0x05, 0xd0,   /* mov.l 2f,r0 */
  0x02, 0x60,   /* mov.l @r0,r0 */
  0x02, 0x60,   /* mov.l @r0,r0 */
  0x06, 0x2f,   /* mov.l r0,@-r15 */
  0x06, 0x2f,   /* mov.l r0,@-r15 */
  0x03, 0xd0,   /* mov.l 1f,r0 */
  0x03, 0xd0,   /* mov.l 1f,r0 */
  0x02, 0x60,   /* mov.l @r0,r0 */
  0x02, 0x60,   /* mov.l @r0,r0 */
  0x2b, 0x40,   /* jmp @r0 */
  0x2b, 0x40,   /* jmp @r0 */
  0xf6, 0x60,   /*  mov.l @r15+,r0 */
  0xf6, 0x60,   /*  mov.l @r15+,r0 */
  0x09, 0x00,   /* nop */
  0x09, 0x00,   /* nop */
  0x09, 0x00,   /* nop */
  0x09, 0x00,   /* nop */
  0x09, 0x00,   /* nop */
  0x09, 0x00,   /* nop */
  0, 0, 0, 0,       /* 1: replaced with address of .got.plt + 8.  */
  0, 0, 0, 0,       /* 1: replaced with address of .got.plt + 8.  */
  0, 0, 0, 0,       /* 2: replaced with address of .got.plt + 4.  */
  0, 0, 0, 0,       /* 2: replaced with address of .got.plt + 4.  */
};
};
 
 
/* Sebsequent entries in an absolute procedure linkage table look like
/* Sebsequent entries in an absolute procedure linkage table look like
   this.  */
   this.  */
 
 
static const bfd_byte elf_sh_plt_entry_be[ELF_PLT_ENTRY_SIZE] =
static const bfd_byte elf_sh_plt_entry_be[ELF_PLT_ENTRY_SIZE] =
{
{
  0xd0, 0x04,   /* mov.l 1f,r0 */
  0xd0, 0x04,   /* mov.l 1f,r0 */
  0x60, 0x02,   /* mov.l @(r0,r12),r0 */
  0x60, 0x02,   /* mov.l @(r0,r12),r0 */
  0xd1, 0x02,   /* mov.l 0f,r1 */
  0xd1, 0x02,   /* mov.l 0f,r1 */
  0x40, 0x2b,   /* jmp @r0 */
  0x40, 0x2b,   /* jmp @r0 */
  0x60, 0x13,   /*  mov r1,r0 */
  0x60, 0x13,   /*  mov r1,r0 */
  0xd1, 0x03,   /* mov.l 2f,r1 */
  0xd1, 0x03,   /* mov.l 2f,r1 */
  0x40, 0x2b,   /* jmp @r0 */
  0x40, 0x2b,   /* jmp @r0 */
  0x00, 0x09,   /* nop */
  0x00, 0x09,   /* nop */
  0, 0, 0, 0,       /* 0: replaced with address of .PLT0.  */
  0, 0, 0, 0,       /* 0: replaced with address of .PLT0.  */
  0, 0, 0, 0,       /* 1: replaced with address of this symbol in .got.  */
  0, 0, 0, 0,       /* 1: replaced with address of this symbol in .got.  */
  0, 0, 0, 0,       /* 2: replaced with offset into relocation table.  */
  0, 0, 0, 0,       /* 2: replaced with offset into relocation table.  */
};
};
 
 
static const bfd_byte elf_sh_plt_entry_le[ELF_PLT_ENTRY_SIZE] =
static const bfd_byte elf_sh_plt_entry_le[ELF_PLT_ENTRY_SIZE] =
{
{
  0x04, 0xd0,   /* mov.l 1f,r0 */
  0x04, 0xd0,   /* mov.l 1f,r0 */
  0x02, 0x60,   /* mov.l @r0,r0 */
  0x02, 0x60,   /* mov.l @r0,r0 */
  0x02, 0xd1,   /* mov.l 0f,r1 */
  0x02, 0xd1,   /* mov.l 0f,r1 */
  0x2b, 0x40,   /* jmp @r0 */
  0x2b, 0x40,   /* jmp @r0 */
  0x13, 0x60,   /*  mov r1,r0 */
  0x13, 0x60,   /*  mov r1,r0 */
  0x03, 0xd1,   /* mov.l 2f,r1 */
  0x03, 0xd1,   /* mov.l 2f,r1 */
  0x2b, 0x40,   /* jmp @r0 */
  0x2b, 0x40,   /* jmp @r0 */
  0x09, 0x00,   /*  nop */
  0x09, 0x00,   /*  nop */
  0, 0, 0, 0,       /* 0: replaced with address of .PLT0.  */
  0, 0, 0, 0,       /* 0: replaced with address of .PLT0.  */
  0, 0, 0, 0,       /* 1: replaced with address of this symbol in .got.  */
  0, 0, 0, 0,       /* 1: replaced with address of this symbol in .got.  */
  0, 0, 0, 0,       /* 2: replaced with offset into relocation table.  */
  0, 0, 0, 0,       /* 2: replaced with offset into relocation table.  */
};
};
 
 
/* Entries in a PIC procedure linkage table look like this.  */
/* Entries in a PIC procedure linkage table look like this.  */
 
 
static const bfd_byte elf_sh_pic_plt_entry_be[ELF_PLT_ENTRY_SIZE] =
static const bfd_byte elf_sh_pic_plt_entry_be[ELF_PLT_ENTRY_SIZE] =
{
{
  0xd0, 0x04,   /* mov.l 1f,r0 */
  0xd0, 0x04,   /* mov.l 1f,r0 */
  0x00, 0xce,   /* mov.l @(r0,r12),r0 */
  0x00, 0xce,   /* mov.l @(r0,r12),r0 */
  0x40, 0x2b,   /* jmp @r0 */
  0x40, 0x2b,   /* jmp @r0 */
  0x00, 0x09,   /*  nop */
  0x00, 0x09,   /*  nop */
  0x50, 0xc2,   /* mov.l @(8,r12),r0 */
  0x50, 0xc2,   /* mov.l @(8,r12),r0 */
  0xd1, 0x03,   /* mov.l 2f,r1 */
  0xd1, 0x03,   /* mov.l 2f,r1 */
  0x40, 0x2b,   /* jmp @r0 */
  0x40, 0x2b,   /* jmp @r0 */
  0x50, 0xc1,   /*  mov.l @(4,r12),r0 */
  0x50, 0xc1,   /*  mov.l @(4,r12),r0 */
  0x00, 0x09,   /* nop */
  0x00, 0x09,   /* nop */
  0x00, 0x09,   /* nop */
  0x00, 0x09,   /* nop */
  0, 0, 0, 0,       /* 1: replaced with address of this symbol in .got.  */
  0, 0, 0, 0,       /* 1: replaced with address of this symbol in .got.  */
  0, 0, 0, 0    /* 2: replaced with offset into relocation table.  */
  0, 0, 0, 0    /* 2: replaced with offset into relocation table.  */
};
};
 
 
static const bfd_byte elf_sh_pic_plt_entry_le[ELF_PLT_ENTRY_SIZE] =
static const bfd_byte elf_sh_pic_plt_entry_le[ELF_PLT_ENTRY_SIZE] =
{
{
  0x04, 0xd0,   /* mov.l 1f,r0 */
  0x04, 0xd0,   /* mov.l 1f,r0 */
  0xce, 0x00,   /* mov.l @(r0,r12),r0 */
  0xce, 0x00,   /* mov.l @(r0,r12),r0 */
  0x2b, 0x40,   /* jmp @r0 */
  0x2b, 0x40,   /* jmp @r0 */
  0x09, 0x00,   /*  nop */
  0x09, 0x00,   /*  nop */
  0xc2, 0x50,   /* mov.l @(8,r12),r0 */
  0xc2, 0x50,   /* mov.l @(8,r12),r0 */
  0x03, 0xd1,   /* mov.l 2f,r1 */
  0x03, 0xd1,   /* mov.l 2f,r1 */
  0x2b, 0x40,   /* jmp @r0 */
  0x2b, 0x40,   /* jmp @r0 */
  0xc1, 0x50,   /*  mov.l @(4,r12),r0 */
  0xc1, 0x50,   /*  mov.l @(4,r12),r0 */
  0x09, 0x00,   /*  nop */
  0x09, 0x00,   /*  nop */
  0x09, 0x00,   /* nop */
  0x09, 0x00,   /* nop */
  0, 0, 0, 0,       /* 1: replaced with address of this symbol in .got.  */
  0, 0, 0, 0,       /* 1: replaced with address of this symbol in .got.  */
  0, 0, 0, 0    /* 2: replaced with offset into relocation table.  */
  0, 0, 0, 0    /* 2: replaced with offset into relocation table.  */
};
};
 
 
static const struct elf_sh_plt_info elf_sh_plts[2][2] = {
static const struct elf_sh_plt_info elf_sh_plts[2][2] = {
  {
  {
    {
    {
      /* Big-endian non-PIC.  */
      /* Big-endian non-PIC.  */
      elf_sh_plt0_entry_be,
      elf_sh_plt0_entry_be,
      ELF_PLT_ENTRY_SIZE,
      ELF_PLT_ENTRY_SIZE,
      { MINUS_ONE, 24, 20 },
      { MINUS_ONE, 24, 20 },
      elf_sh_plt_entry_be,
      elf_sh_plt_entry_be,
      ELF_PLT_ENTRY_SIZE,
      ELF_PLT_ENTRY_SIZE,
      { 20, 16, 24 },
      { 20, 16, 24 },
      8
      8
    },
    },
    {
    {
      /* Little-endian non-PIC.  */
      /* Little-endian non-PIC.  */
      elf_sh_plt0_entry_le,
      elf_sh_plt0_entry_le,
      ELF_PLT_ENTRY_SIZE,
      ELF_PLT_ENTRY_SIZE,
      { MINUS_ONE, 24, 20 },
      { MINUS_ONE, 24, 20 },
      elf_sh_plt_entry_le,
      elf_sh_plt_entry_le,
      ELF_PLT_ENTRY_SIZE,
      ELF_PLT_ENTRY_SIZE,
      { 20, 16, 24 },
      { 20, 16, 24 },
      8
      8
    },
    },
  },
  },
  {
  {
    {
    {
      /* Big-endian PIC.  */
      /* Big-endian PIC.  */
      elf_sh_plt0_entry_be,
      elf_sh_plt0_entry_be,
      ELF_PLT_ENTRY_SIZE,
      ELF_PLT_ENTRY_SIZE,
      { MINUS_ONE, MINUS_ONE, MINUS_ONE },
      { MINUS_ONE, MINUS_ONE, MINUS_ONE },
      elf_sh_pic_plt_entry_be,
      elf_sh_pic_plt_entry_be,
      ELF_PLT_ENTRY_SIZE,
      ELF_PLT_ENTRY_SIZE,
      { 20, MINUS_ONE, 24 },
      { 20, MINUS_ONE, 24 },
      8
      8
    },
    },
    {
    {
      /* Little-endian PIC.  */
      /* Little-endian PIC.  */
      elf_sh_plt0_entry_le,
      elf_sh_plt0_entry_le,
      ELF_PLT_ENTRY_SIZE,
      ELF_PLT_ENTRY_SIZE,
      { MINUS_ONE, MINUS_ONE, MINUS_ONE },
      { MINUS_ONE, MINUS_ONE, MINUS_ONE },
      elf_sh_pic_plt_entry_le,
      elf_sh_pic_plt_entry_le,
      ELF_PLT_ENTRY_SIZE,
      ELF_PLT_ENTRY_SIZE,
      { 20, MINUS_ONE, 24 },
      { 20, MINUS_ONE, 24 },
      8
      8
    },
    },
  }
  }
};
};
 
 
#define VXWORKS_PLT_HEADER_SIZE 12
#define VXWORKS_PLT_HEADER_SIZE 12
#define VXWORKS_PLT_ENTRY_SIZE 24
#define VXWORKS_PLT_ENTRY_SIZE 24
 
 
static const bfd_byte vxworks_sh_plt0_entry_be[VXWORKS_PLT_HEADER_SIZE] =
static const bfd_byte vxworks_sh_plt0_entry_be[VXWORKS_PLT_HEADER_SIZE] =
{
{
  0xd1, 0x01,   /* mov.l @(8,pc),r1 */
  0xd1, 0x01,   /* mov.l @(8,pc),r1 */
  0x61, 0x12,   /* mov.l @r1,r1 */
  0x61, 0x12,   /* mov.l @r1,r1 */
  0x41, 0x2b,   /* jmp @r1 */
  0x41, 0x2b,   /* jmp @r1 */
  0x00, 0x09,   /* nop */
  0x00, 0x09,   /* nop */
  0, 0, 0, 0        /* 0: replaced with _GLOBAL_OFFSET_TABLE+8.  */
  0, 0, 0, 0        /* 0: replaced with _GLOBAL_OFFSET_TABLE+8.  */
};
};
 
 
static const bfd_byte vxworks_sh_plt0_entry_le[VXWORKS_PLT_HEADER_SIZE] =
static const bfd_byte vxworks_sh_plt0_entry_le[VXWORKS_PLT_HEADER_SIZE] =
{
{
  0x01, 0xd1,   /* mov.l @(8,pc),r1 */
  0x01, 0xd1,   /* mov.l @(8,pc),r1 */
  0x12, 0x61,   /* mov.l @r1,r1 */
  0x12, 0x61,   /* mov.l @r1,r1 */
  0x2b, 0x41,   /* jmp @r1 */
  0x2b, 0x41,   /* jmp @r1 */
  0x09, 0x00,   /* nop */
  0x09, 0x00,   /* nop */
  0, 0, 0, 0        /* 0: replaced with _GLOBAL_OFFSET_TABLE+8.  */
  0, 0, 0, 0        /* 0: replaced with _GLOBAL_OFFSET_TABLE+8.  */
};
};
 
 
static const bfd_byte vxworks_sh_plt_entry_be[VXWORKS_PLT_ENTRY_SIZE] =
static const bfd_byte vxworks_sh_plt_entry_be[VXWORKS_PLT_ENTRY_SIZE] =
{
{
  0xd0, 0x01,   /* mov.l @(8,pc),r0 */
  0xd0, 0x01,   /* mov.l @(8,pc),r0 */
  0x60, 0x02,   /* mov.l @r0,r0 */
  0x60, 0x02,   /* mov.l @r0,r0 */
  0x40, 0x2b,   /* jmp @r0 */
  0x40, 0x2b,   /* jmp @r0 */
  0x00, 0x09,   /* nop */
  0x00, 0x09,   /* nop */
  0, 0, 0, 0,       /* 0: replaced with address of this symbol in .got.  */
  0, 0, 0, 0,       /* 0: replaced with address of this symbol in .got.  */
  0xd0, 0x01,   /* mov.l @(8,pc),r0 */
  0xd0, 0x01,   /* mov.l @(8,pc),r0 */
  0xa0, 0x00,   /* bra PLT (We need to fix the offset.)  */
  0xa0, 0x00,   /* bra PLT (We need to fix the offset.)  */
  0x00, 0x09,   /* nop */
  0x00, 0x09,   /* nop */
  0x00, 0x09,   /* nop */
  0x00, 0x09,   /* nop */
  0, 0, 0, 0,       /* 1: replaced with offset into relocation table.  */
  0, 0, 0, 0,       /* 1: replaced with offset into relocation table.  */
};
};
 
 
static const bfd_byte vxworks_sh_plt_entry_le[VXWORKS_PLT_ENTRY_SIZE] =
static const bfd_byte vxworks_sh_plt_entry_le[VXWORKS_PLT_ENTRY_SIZE] =
{
{
  0x01, 0xd0,   /* mov.l @(8,pc),r0 */
  0x01, 0xd0,   /* mov.l @(8,pc),r0 */
  0x02, 0x60,   /* mov.l @r0,r0 */
  0x02, 0x60,   /* mov.l @r0,r0 */
  0x2b, 0x40,   /* jmp @r0 */
  0x2b, 0x40,   /* jmp @r0 */
  0x09, 0x00,   /* nop */
  0x09, 0x00,   /* nop */
  0, 0, 0, 0,       /* 0: replaced with address of this symbol in .got.  */
  0, 0, 0, 0,       /* 0: replaced with address of this symbol in .got.  */
  0x01, 0xd0,   /* mov.l @(8,pc),r0 */
  0x01, 0xd0,   /* mov.l @(8,pc),r0 */
  0x00, 0xa0,   /* bra PLT (We need to fix the offset.)  */
  0x00, 0xa0,   /* bra PLT (We need to fix the offset.)  */
  0x09, 0x00,   /* nop */
  0x09, 0x00,   /* nop */
  0x09, 0x00,   /* nop */
  0x09, 0x00,   /* nop */
  0, 0, 0, 0,       /* 1: replaced with offset into relocation table.  */
  0, 0, 0, 0,       /* 1: replaced with offset into relocation table.  */
};
};
 
 
static const bfd_byte vxworks_sh_pic_plt_entry_be[VXWORKS_PLT_ENTRY_SIZE] =
static const bfd_byte vxworks_sh_pic_plt_entry_be[VXWORKS_PLT_ENTRY_SIZE] =
{
{
  0xd0, 0x01,   /* mov.l @(8,pc),r0 */
  0xd0, 0x01,   /* mov.l @(8,pc),r0 */
  0x00, 0xce,   /* mov.l @(r0,r12),r0 */
  0x00, 0xce,   /* mov.l @(r0,r12),r0 */
  0x40, 0x2b,   /* jmp @r0 */
  0x40, 0x2b,   /* jmp @r0 */
  0x00, 0x09,   /* nop */
  0x00, 0x09,   /* nop */
  0, 0, 0, 0,       /* 0: replaced with offset of this symbol in .got.  */
  0, 0, 0, 0,       /* 0: replaced with offset of this symbol in .got.  */
  0xd0, 0x01,   /* mov.l @(8,pc),r0 */
  0xd0, 0x01,   /* mov.l @(8,pc),r0 */
  0x51, 0xc2,   /* mov.l @(8,r12),r1 */
  0x51, 0xc2,   /* mov.l @(8,r12),r1 */
  0x41, 0x2b,   /* jmp @r1 */
  0x41, 0x2b,   /* jmp @r1 */
  0x00, 0x09,   /* nop */
  0x00, 0x09,   /* nop */
  0, 0, 0, 0,       /* 1: replaced with offset into relocation table.  */
  0, 0, 0, 0,       /* 1: replaced with offset into relocation table.  */
};
};
 
 
static const bfd_byte vxworks_sh_pic_plt_entry_le[VXWORKS_PLT_ENTRY_SIZE] =
static const bfd_byte vxworks_sh_pic_plt_entry_le[VXWORKS_PLT_ENTRY_SIZE] =
{
{
  0x01, 0xd0,   /* mov.l @(8,pc),r0 */
  0x01, 0xd0,   /* mov.l @(8,pc),r0 */
  0xce, 0x00,   /* mov.l @(r0,r12),r0 */
  0xce, 0x00,   /* mov.l @(r0,r12),r0 */
  0x2b, 0x40,   /* jmp @r0 */
  0x2b, 0x40,   /* jmp @r0 */
  0x09, 0x00,   /* nop */
  0x09, 0x00,   /* nop */
  0, 0, 0, 0,       /* 0: replaced with offset of this symbol in .got.  */
  0, 0, 0, 0,       /* 0: replaced with offset of this symbol in .got.  */
  0x01, 0xd0,   /* mov.l @(8,pc),r0 */
  0x01, 0xd0,   /* mov.l @(8,pc),r0 */
  0xc2, 0x51,   /* mov.l @(8,r12),r1 */
  0xc2, 0x51,   /* mov.l @(8,r12),r1 */
  0x2b, 0x41,   /* jmp @r1 */
  0x2b, 0x41,   /* jmp @r1 */
  0x09, 0x00,   /* nop */
  0x09, 0x00,   /* nop */
  0, 0, 0, 0,       /* 1: replaced with offset into relocation table.  */
  0, 0, 0, 0,       /* 1: replaced with offset into relocation table.  */
};
};
 
 
static const struct elf_sh_plt_info vxworks_sh_plts[2][2] = {
static const struct elf_sh_plt_info vxworks_sh_plts[2][2] = {
  {
  {
    {
    {
      /* Big-endian non-PIC.  */
      /* Big-endian non-PIC.  */
      vxworks_sh_plt0_entry_be,
      vxworks_sh_plt0_entry_be,
      VXWORKS_PLT_HEADER_SIZE,
      VXWORKS_PLT_HEADER_SIZE,
      { MINUS_ONE, MINUS_ONE, 8 },
      { MINUS_ONE, MINUS_ONE, 8 },
      vxworks_sh_plt_entry_be,
      vxworks_sh_plt_entry_be,
      VXWORKS_PLT_ENTRY_SIZE,
      VXWORKS_PLT_ENTRY_SIZE,
      { 8, 14, 20 },
      { 8, 14, 20 },
      12
      12
    },
    },
    {
    {
      /* Little-endian non-PIC.  */
      /* Little-endian non-PIC.  */
      vxworks_sh_plt0_entry_le,
      vxworks_sh_plt0_entry_le,
      VXWORKS_PLT_HEADER_SIZE,
      VXWORKS_PLT_HEADER_SIZE,
      { MINUS_ONE, MINUS_ONE, 8 },
      { MINUS_ONE, MINUS_ONE, 8 },
      vxworks_sh_plt_entry_le,
      vxworks_sh_plt_entry_le,
      VXWORKS_PLT_ENTRY_SIZE,
      VXWORKS_PLT_ENTRY_SIZE,
      { 8, 14, 20 },
      { 8, 14, 20 },
      12
      12
    },
    },
  },
  },
  {
  {
    {
    {
      /* Big-endian PIC.  */
      /* Big-endian PIC.  */
      NULL,
      NULL,
      0,
      0,
      { MINUS_ONE, MINUS_ONE, MINUS_ONE },
      { MINUS_ONE, MINUS_ONE, MINUS_ONE },
      vxworks_sh_pic_plt_entry_be,
      vxworks_sh_pic_plt_entry_be,
      VXWORKS_PLT_ENTRY_SIZE,
      VXWORKS_PLT_ENTRY_SIZE,
      { 8, MINUS_ONE, 20 },
      { 8, MINUS_ONE, 20 },
      12
      12
    },
    },
    {
    {
      /* Little-endian PIC.  */
      /* Little-endian PIC.  */
      NULL,
      NULL,
      0,
      0,
      { MINUS_ONE, MINUS_ONE, MINUS_ONE },
      { MINUS_ONE, MINUS_ONE, MINUS_ONE },
      vxworks_sh_pic_plt_entry_le,
      vxworks_sh_pic_plt_entry_le,
      VXWORKS_PLT_ENTRY_SIZE,
      VXWORKS_PLT_ENTRY_SIZE,
      { 8, MINUS_ONE, 20 },
      { 8, MINUS_ONE, 20 },
      12
      12
    },
    },
  }
  }
};
};
 
 
/* Return the type of PLT associated with ABFD.  PIC_P is true if
/* Return the type of PLT associated with ABFD.  PIC_P is true if
   the object is position-independent.  */
   the object is position-independent.  */
 
 
static const struct elf_sh_plt_info *
static const struct elf_sh_plt_info *
get_plt_info (bfd *abfd ATTRIBUTE_UNUSED, bfd_boolean pic_p)
get_plt_info (bfd *abfd ATTRIBUTE_UNUSED, bfd_boolean pic_p)
{
{
  if (vxworks_object_p (abfd))
  if (vxworks_object_p (abfd))
    return &vxworks_sh_plts[pic_p][!bfd_big_endian (abfd)];
    return &vxworks_sh_plts[pic_p][!bfd_big_endian (abfd)];
  return &elf_sh_plts[pic_p][!bfd_big_endian (abfd)];
  return &elf_sh_plts[pic_p][!bfd_big_endian (abfd)];
}
}
 
 
/* Install a 32-bit PLT field starting at ADDR, which occurs in OUTPUT_BFD.
/* Install a 32-bit PLT field starting at ADDR, which occurs in OUTPUT_BFD.
   VALUE is the field's value and CODE_P is true if VALUE refers to code,
   VALUE is the field's value and CODE_P is true if VALUE refers to code,
   not data.  */
   not data.  */
 
 
inline static void
inline static void
install_plt_field (bfd *output_bfd, bfd_boolean code_p ATTRIBUTE_UNUSED,
install_plt_field (bfd *output_bfd, bfd_boolean code_p ATTRIBUTE_UNUSED,
                   unsigned long value, bfd_byte *addr)
                   unsigned long value, bfd_byte *addr)
{
{
  bfd_put_32 (output_bfd, value, addr);
  bfd_put_32 (output_bfd, value, addr);
}
}
#endif
#endif
 
 
/* Return the index of the PLT entry at byte offset OFFSET.  */
/* Return the index of the PLT entry at byte offset OFFSET.  */
 
 
static bfd_vma
static bfd_vma
get_plt_index (const struct elf_sh_plt_info *info, bfd_vma offset)
get_plt_index (const struct elf_sh_plt_info *info, bfd_vma offset)
{
{
  return (offset - info->plt0_entry_size) / info->symbol_entry_size;
  return (offset - info->plt0_entry_size) / info->symbol_entry_size;
}
}
 
 
/* Do the inverse operation.  */
/* Do the inverse operation.  */
 
 
static bfd_vma
static bfd_vma
get_plt_offset (const struct elf_sh_plt_info *info, bfd_vma index)
get_plt_offset (const struct elf_sh_plt_info *info, bfd_vma index)
{
{
  return info->plt0_entry_size + (index * info->symbol_entry_size);
  return info->plt0_entry_size + (index * info->symbol_entry_size);
}
}
 
 
/* The sh linker needs to keep track of the number of relocs that it
/* The sh linker needs to keep track of the number of relocs that it
   decides to copy as dynamic relocs in check_relocs for each symbol.
   decides to copy as dynamic relocs in check_relocs for each symbol.
   This is so that it can later discard them if they are found to be
   This is so that it can later discard them if they are found to be
   unnecessary.  We store the information in a field extending the
   unnecessary.  We store the information in a field extending the
   regular ELF linker hash table.  */
   regular ELF linker hash table.  */
 
 
struct elf_sh_dyn_relocs
struct elf_sh_dyn_relocs
{
{
  struct elf_sh_dyn_relocs *next;
  struct elf_sh_dyn_relocs *next;
 
 
  /* The input section of the reloc.  */
  /* The input section of the reloc.  */
  asection *sec;
  asection *sec;
 
 
  /* Total number of relocs copied for the input section.  */
  /* Total number of relocs copied for the input section.  */
  bfd_size_type count;
  bfd_size_type count;
 
 
  /* Number of pc-relative relocs copied for the input section.  */
  /* Number of pc-relative relocs copied for the input section.  */
  bfd_size_type pc_count;
  bfd_size_type pc_count;
};
};
 
 
/* sh ELF linker hash entry.  */
/* sh ELF linker hash entry.  */
 
 
struct elf_sh_link_hash_entry
struct elf_sh_link_hash_entry
{
{
  struct elf_link_hash_entry root;
  struct elf_link_hash_entry root;
 
 
#ifdef INCLUDE_SHMEDIA
#ifdef INCLUDE_SHMEDIA
  union
  union
  {
  {
    bfd_signed_vma refcount;
    bfd_signed_vma refcount;
    bfd_vma offset;
    bfd_vma offset;
  } datalabel_got;
  } datalabel_got;
#endif
#endif
 
 
  /* Track dynamic relocs copied for this symbol.  */
  /* Track dynamic relocs copied for this symbol.  */
  struct elf_sh_dyn_relocs *dyn_relocs;
  struct elf_sh_dyn_relocs *dyn_relocs;
 
 
  bfd_signed_vma gotplt_refcount;
  bfd_signed_vma gotplt_refcount;
 
 
  enum {
  enum {
    GOT_UNKNOWN = 0, GOT_NORMAL, GOT_TLS_GD, GOT_TLS_IE
    GOT_UNKNOWN = 0, GOT_NORMAL, GOT_TLS_GD, GOT_TLS_IE
  } tls_type;
  } tls_type;
};
};
 
 
#define sh_elf_hash_entry(ent) ((struct elf_sh_link_hash_entry *)(ent))
#define sh_elf_hash_entry(ent) ((struct elf_sh_link_hash_entry *)(ent))
 
 
struct sh_elf_obj_tdata
struct sh_elf_obj_tdata
{
{
  struct elf_obj_tdata root;
  struct elf_obj_tdata root;
 
 
  /* tls_type for each local got entry.  */
  /* tls_type for each local got entry.  */
  char *local_got_tls_type;
  char *local_got_tls_type;
};
};
 
 
#define sh_elf_tdata(abfd) \
#define sh_elf_tdata(abfd) \
  ((struct sh_elf_obj_tdata *) (abfd)->tdata.any)
  ((struct sh_elf_obj_tdata *) (abfd)->tdata.any)
 
 
#define sh_elf_local_got_tls_type(abfd) \
#define sh_elf_local_got_tls_type(abfd) \
  (sh_elf_tdata (abfd)->local_got_tls_type)
  (sh_elf_tdata (abfd)->local_got_tls_type)
 
 
#define is_sh_elf(bfd) \
#define is_sh_elf(bfd) \
  (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
  (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
   && elf_tdata (bfd) != NULL \
   && elf_tdata (bfd) != NULL \
   && elf_object_id (bfd) == SH_ELF_TDATA)
   && elf_object_id (bfd) == SH_ELF_TDATA)
 
 
/* Override the generic function because we need to store sh_elf_obj_tdata
/* Override the generic function because we need to store sh_elf_obj_tdata
   as the specific tdata.  */
   as the specific tdata.  */
 
 
static bfd_boolean
static bfd_boolean
sh_elf_mkobject (bfd *abfd)
sh_elf_mkobject (bfd *abfd)
{
{
  return bfd_elf_allocate_object (abfd, sizeof (struct sh_elf_obj_tdata),
  return bfd_elf_allocate_object (abfd, sizeof (struct sh_elf_obj_tdata),
                                  SH_ELF_TDATA);
                                  SH_ELF_TDATA);
}
}
 
 
/* sh ELF linker hash table.  */
/* sh ELF linker hash table.  */
 
 
struct elf_sh_link_hash_table
struct elf_sh_link_hash_table
{
{
  struct elf_link_hash_table root;
  struct elf_link_hash_table root;
 
 
  /* Short-cuts to get to dynamic linker sections.  */
  /* Short-cuts to get to dynamic linker sections.  */
  asection *sgot;
  asection *sgot;
  asection *sgotplt;
  asection *sgotplt;
  asection *srelgot;
  asection *srelgot;
  asection *splt;
  asection *splt;
  asection *srelplt;
  asection *srelplt;
  asection *sdynbss;
  asection *sdynbss;
  asection *srelbss;
  asection *srelbss;
 
 
  /* The (unloaded but important) VxWorks .rela.plt.unloaded section.  */
  /* The (unloaded but important) VxWorks .rela.plt.unloaded section.  */
  asection *srelplt2;
  asection *srelplt2;
 
 
  /* Small local sym cache.  */
  /* Small local sym cache.  */
  struct sym_cache sym_cache;
  struct sym_cache sym_cache;
 
 
  /* A counter or offset to track a TLS got entry.  */
  /* A counter or offset to track a TLS got entry.  */
  union
  union
    {
    {
      bfd_signed_vma refcount;
      bfd_signed_vma refcount;
      bfd_vma offset;
      bfd_vma offset;
    } tls_ldm_got;
    } tls_ldm_got;
 
 
  /* The type of PLT to use.  */
  /* The type of PLT to use.  */
  const struct elf_sh_plt_info *plt_info;
  const struct elf_sh_plt_info *plt_info;
 
 
  /* True if the target system is VxWorks.  */
  /* True if the target system is VxWorks.  */
  bfd_boolean vxworks_p;
  bfd_boolean vxworks_p;
};
};
 
 
/* Traverse an sh ELF linker hash table.  */
/* Traverse an sh ELF linker hash table.  */
 
 
#define sh_elf_link_hash_traverse(table, func, info)                    \
#define sh_elf_link_hash_traverse(table, func, info)                    \
  (elf_link_hash_traverse                                               \
  (elf_link_hash_traverse                                               \
   (&(table)->root,                                                     \
   (&(table)->root,                                                     \
    (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
    (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
    (info)))
    (info)))
 
 
/* Get the sh ELF linker hash table from a link_info structure.  */
/* Get the sh ELF linker hash table from a link_info structure.  */
 
 
#define sh_elf_hash_table(p) \
#define sh_elf_hash_table(p) \
  ((struct elf_sh_link_hash_table *) ((p)->hash))
  ((struct elf_sh_link_hash_table *) ((p)->hash))
 
 
/* Create an entry in an sh ELF linker hash table.  */
/* Create an entry in an sh ELF linker hash table.  */
 
 
static struct bfd_hash_entry *
static struct bfd_hash_entry *
sh_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
sh_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
                          struct bfd_hash_table *table,
                          struct bfd_hash_table *table,
                          const char *string)
                          const char *string)
{
{
  struct elf_sh_link_hash_entry *ret =
  struct elf_sh_link_hash_entry *ret =
    (struct elf_sh_link_hash_entry *) entry;
    (struct elf_sh_link_hash_entry *) entry;
 
 
  /* Allocate the structure if it has not already been allocated by a
  /* Allocate the structure if it has not already been allocated by a
     subclass.  */
     subclass.  */
  if (ret == (struct elf_sh_link_hash_entry *) NULL)
  if (ret == (struct elf_sh_link_hash_entry *) NULL)
    ret = ((struct elf_sh_link_hash_entry *)
    ret = ((struct elf_sh_link_hash_entry *)
           bfd_hash_allocate (table,
           bfd_hash_allocate (table,
                              sizeof (struct elf_sh_link_hash_entry)));
                              sizeof (struct elf_sh_link_hash_entry)));
  if (ret == (struct elf_sh_link_hash_entry *) NULL)
  if (ret == (struct elf_sh_link_hash_entry *) NULL)
    return (struct bfd_hash_entry *) ret;
    return (struct bfd_hash_entry *) ret;
 
 
  /* Call the allocation method of the superclass.  */
  /* Call the allocation method of the superclass.  */
  ret = ((struct elf_sh_link_hash_entry *)
  ret = ((struct elf_sh_link_hash_entry *)
         _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
         _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
                                     table, string));
                                     table, string));
  if (ret != (struct elf_sh_link_hash_entry *) NULL)
  if (ret != (struct elf_sh_link_hash_entry *) NULL)
    {
    {
      ret->dyn_relocs = NULL;
      ret->dyn_relocs = NULL;
      ret->gotplt_refcount = 0;
      ret->gotplt_refcount = 0;
#ifdef INCLUDE_SHMEDIA
#ifdef INCLUDE_SHMEDIA
      ret->datalabel_got.refcount = ret->root.got.refcount;
      ret->datalabel_got.refcount = ret->root.got.refcount;
#endif
#endif
      ret->tls_type = GOT_UNKNOWN;
      ret->tls_type = GOT_UNKNOWN;
    }
    }
 
 
  return (struct bfd_hash_entry *) ret;
  return (struct bfd_hash_entry *) ret;
}
}
 
 
/* Create an sh ELF linker hash table.  */
/* Create an sh ELF linker hash table.  */
 
 
static struct bfd_link_hash_table *
static struct bfd_link_hash_table *
sh_elf_link_hash_table_create (bfd *abfd)
sh_elf_link_hash_table_create (bfd *abfd)
{
{
  struct elf_sh_link_hash_table *ret;
  struct elf_sh_link_hash_table *ret;
  bfd_size_type amt = sizeof (struct elf_sh_link_hash_table);
  bfd_size_type amt = sizeof (struct elf_sh_link_hash_table);
 
 
  ret = (struct elf_sh_link_hash_table *) bfd_malloc (amt);
  ret = (struct elf_sh_link_hash_table *) bfd_malloc (amt);
  if (ret == (struct elf_sh_link_hash_table *) NULL)
  if (ret == (struct elf_sh_link_hash_table *) NULL)
    return NULL;
    return NULL;
 
 
  if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
  if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
                                      sh_elf_link_hash_newfunc,
                                      sh_elf_link_hash_newfunc,
                                      sizeof (struct elf_sh_link_hash_entry)))
                                      sizeof (struct elf_sh_link_hash_entry)))
    {
    {
      free (ret);
      free (ret);
      return NULL;
      return NULL;
    }
    }
 
 
  ret->sgot = NULL;
  ret->sgot = NULL;
  ret->sgotplt = NULL;
  ret->sgotplt = NULL;
  ret->srelgot = NULL;
  ret->srelgot = NULL;
  ret->splt = NULL;
  ret->splt = NULL;
  ret->srelplt = NULL;
  ret->srelplt = NULL;
  ret->sdynbss = NULL;
  ret->sdynbss = NULL;
  ret->srelbss = NULL;
  ret->srelbss = NULL;
  ret->srelplt2 = NULL;
  ret->srelplt2 = NULL;
  ret->sym_cache.abfd = NULL;
  ret->sym_cache.abfd = NULL;
  ret->tls_ldm_got.refcount = 0;
  ret->tls_ldm_got.refcount = 0;
  ret->plt_info = NULL;
  ret->plt_info = NULL;
  ret->vxworks_p = vxworks_object_p (abfd);
  ret->vxworks_p = vxworks_object_p (abfd);
 
 
  return &ret->root.root;
  return &ret->root.root;
}
}
 
 
/* Create .got, .gotplt, and .rela.got sections in DYNOBJ, and set up
/* Create .got, .gotplt, and .rela.got sections in DYNOBJ, and set up
   shortcuts to them in our hash table.  */
   shortcuts to them in our hash table.  */
 
 
static bfd_boolean
static bfd_boolean
create_got_section (bfd *dynobj, struct bfd_link_info *info)
create_got_section (bfd *dynobj, struct bfd_link_info *info)
{
{
  struct elf_sh_link_hash_table *htab;
  struct elf_sh_link_hash_table *htab;
 
 
  if (! _bfd_elf_create_got_section (dynobj, info))
  if (! _bfd_elf_create_got_section (dynobj, info))
    return FALSE;
    return FALSE;
 
 
  htab = sh_elf_hash_table (info);
  htab = sh_elf_hash_table (info);
  htab->sgot = bfd_get_section_by_name (dynobj, ".got");
  htab->sgot = bfd_get_section_by_name (dynobj, ".got");
  htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
  htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
  htab->srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
  htab->srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
  if (! htab->sgot || ! htab->sgotplt || ! htab->srelgot)
  if (! htab->sgot || ! htab->sgotplt || ! htab->srelgot)
    abort ();
    abort ();
  return TRUE;
  return TRUE;
}
}
 
 
/* Create dynamic sections when linking against a dynamic object.  */
/* Create dynamic sections when linking against a dynamic object.  */
 
 
static bfd_boolean
static bfd_boolean
sh_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
sh_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
{
{
  struct elf_sh_link_hash_table *htab;
  struct elf_sh_link_hash_table *htab;
  flagword flags, pltflags;
  flagword flags, pltflags;
  register asection *s;
  register asection *s;
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
  int ptralign = 0;
  int ptralign = 0;
 
 
  switch (bed->s->arch_size)
  switch (bed->s->arch_size)
    {
    {
    case 32:
    case 32:
      ptralign = 2;
      ptralign = 2;
      break;
      break;
 
 
    case 64:
    case 64:
      ptralign = 3;
      ptralign = 3;
      break;
      break;
 
 
    default:
    default:
      bfd_set_error (bfd_error_bad_value);
      bfd_set_error (bfd_error_bad_value);
      return FALSE;
      return FALSE;
    }
    }
 
 
  htab = sh_elf_hash_table (info);
  htab = sh_elf_hash_table (info);
  if (htab->root.dynamic_sections_created)
  if (htab->root.dynamic_sections_created)
    return TRUE;
    return TRUE;
 
 
  /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
  /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
     .rel[a].bss sections.  */
     .rel[a].bss sections.  */
 
 
  flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
  flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
           | SEC_LINKER_CREATED);
           | SEC_LINKER_CREATED);
 
 
  pltflags = flags;
  pltflags = flags;
  pltflags |= SEC_CODE;
  pltflags |= SEC_CODE;
  if (bed->plt_not_loaded)
  if (bed->plt_not_loaded)
    pltflags &= ~ (SEC_LOAD | SEC_HAS_CONTENTS);
    pltflags &= ~ (SEC_LOAD | SEC_HAS_CONTENTS);
  if (bed->plt_readonly)
  if (bed->plt_readonly)
    pltflags |= SEC_READONLY;
    pltflags |= SEC_READONLY;
 
 
  s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
  s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
  htab->splt = s;
  htab->splt = s;
  if (s == NULL
  if (s == NULL
      || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
      || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
    return FALSE;
    return FALSE;
 
 
  if (bed->want_plt_sym)
  if (bed->want_plt_sym)
    {
    {
      /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
      /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
         .plt section.  */
         .plt section.  */
      struct elf_link_hash_entry *h;
      struct elf_link_hash_entry *h;
      struct bfd_link_hash_entry *bh = NULL;
      struct bfd_link_hash_entry *bh = NULL;
 
 
      if (! (_bfd_generic_link_add_one_symbol
      if (! (_bfd_generic_link_add_one_symbol
             (info, abfd, "_PROCEDURE_LINKAGE_TABLE_", BSF_GLOBAL, s,
             (info, abfd, "_PROCEDURE_LINKAGE_TABLE_", BSF_GLOBAL, s,
              (bfd_vma) 0, (const char *) NULL, FALSE,
              (bfd_vma) 0, (const char *) NULL, FALSE,
              get_elf_backend_data (abfd)->collect, &bh)))
              get_elf_backend_data (abfd)->collect, &bh)))
        return FALSE;
        return FALSE;
 
 
      h = (struct elf_link_hash_entry *) bh;
      h = (struct elf_link_hash_entry *) bh;
      h->def_regular = 1;
      h->def_regular = 1;
      h->type = STT_OBJECT;
      h->type = STT_OBJECT;
      htab->root.hplt = h;
      htab->root.hplt = h;
 
 
      if (info->shared
      if (info->shared
          && ! bfd_elf_link_record_dynamic_symbol (info, h))
          && ! bfd_elf_link_record_dynamic_symbol (info, h))
        return FALSE;
        return FALSE;
    }
    }
 
 
  s = bfd_make_section_with_flags (abfd,
  s = bfd_make_section_with_flags (abfd,
                                   bed->default_use_rela_p ? ".rela.plt" : ".rel.plt",
                                   bed->default_use_rela_p ? ".rela.plt" : ".rel.plt",
                                   flags | SEC_READONLY);
                                   flags | SEC_READONLY);
  htab->srelplt = s;
  htab->srelplt = s;
  if (s == NULL
  if (s == NULL
      || ! bfd_set_section_alignment (abfd, s, ptralign))
      || ! bfd_set_section_alignment (abfd, s, ptralign))
    return FALSE;
    return FALSE;
 
 
  if (htab->sgot == NULL
  if (htab->sgot == NULL
      && !create_got_section (abfd, info))
      && !create_got_section (abfd, info))
    return FALSE;
    return FALSE;
 
 
  {
  {
    const char *secname;
    const char *secname;
    char *relname;
    char *relname;
    flagword secflags;
    flagword secflags;
    asection *sec;
    asection *sec;
 
 
    for (sec = abfd->sections; sec; sec = sec->next)
    for (sec = abfd->sections; sec; sec = sec->next)
      {
      {
        secflags = bfd_get_section_flags (abfd, sec);
        secflags = bfd_get_section_flags (abfd, sec);
        if ((secflags & (SEC_DATA | SEC_LINKER_CREATED))
        if ((secflags & (SEC_DATA | SEC_LINKER_CREATED))
            || ((secflags & SEC_HAS_CONTENTS) != SEC_HAS_CONTENTS))
            || ((secflags & SEC_HAS_CONTENTS) != SEC_HAS_CONTENTS))
          continue;
          continue;
        secname = bfd_get_section_name (abfd, sec);
        secname = bfd_get_section_name (abfd, sec);
        relname = (char *) bfd_malloc ((bfd_size_type) strlen (secname) + 6);
        relname = (char *) bfd_malloc ((bfd_size_type) strlen (secname) + 6);
        strcpy (relname, ".rela");
        strcpy (relname, ".rela");
        strcat (relname, secname);
        strcat (relname, secname);
        if (bfd_get_section_by_name (abfd, secname))
        if (bfd_get_section_by_name (abfd, secname))
          continue;
          continue;
        s = bfd_make_section_with_flags (abfd, relname,
        s = bfd_make_section_with_flags (abfd, relname,
                                         flags | SEC_READONLY);
                                         flags | SEC_READONLY);
        if (s == NULL
        if (s == NULL
            || ! bfd_set_section_alignment (abfd, s, ptralign))
            || ! bfd_set_section_alignment (abfd, s, ptralign))
          return FALSE;
          return FALSE;
      }
      }
  }
  }
 
 
  if (bed->want_dynbss)
  if (bed->want_dynbss)
    {
    {
      /* The .dynbss section is a place to put symbols which are defined
      /* The .dynbss section is a place to put symbols which are defined
         by dynamic objects, are referenced by regular objects, and are
         by dynamic objects, are referenced by regular objects, and are
         not functions.  We must allocate space for them in the process
         not functions.  We must allocate space for them in the process
         image and use a R_*_COPY reloc to tell the dynamic linker to
         image and use a R_*_COPY reloc to tell the dynamic linker to
         initialize them at run time.  The linker script puts the .dynbss
         initialize them at run time.  The linker script puts the .dynbss
         section into the .bss section of the final image.  */
         section into the .bss section of the final image.  */
      s = bfd_make_section_with_flags (abfd, ".dynbss",
      s = bfd_make_section_with_flags (abfd, ".dynbss",
                                       SEC_ALLOC | SEC_LINKER_CREATED);
                                       SEC_ALLOC | SEC_LINKER_CREATED);
      htab->sdynbss = s;
      htab->sdynbss = s;
      if (s == NULL)
      if (s == NULL)
        return FALSE;
        return FALSE;
 
 
      /* The .rel[a].bss section holds copy relocs.  This section is not
      /* The .rel[a].bss section holds copy relocs.  This section is not
         normally needed.  We need to create it here, though, so that the
         normally needed.  We need to create it here, though, so that the
         linker will map it to an output section.  We can't just create it
         linker will map it to an output section.  We can't just create it
         only if we need it, because we will not know whether we need it
         only if we need it, because we will not know whether we need it
         until we have seen all the input files, and the first time the
         until we have seen all the input files, and the first time the
         main linker code calls BFD after examining all the input files
         main linker code calls BFD after examining all the input files
         (size_dynamic_sections) the input sections have already been
         (size_dynamic_sections) the input sections have already been
         mapped to the output sections.  If the section turns out not to
         mapped to the output sections.  If the section turns out not to
         be needed, we can discard it later.  We will never need this
         be needed, we can discard it later.  We will never need this
         section when generating a shared object, since they do not use
         section when generating a shared object, since they do not use
         copy relocs.  */
         copy relocs.  */
      if (! info->shared)
      if (! info->shared)
        {
        {
          s = bfd_make_section_with_flags (abfd,
          s = bfd_make_section_with_flags (abfd,
                                           (bed->default_use_rela_p
                                           (bed->default_use_rela_p
                                            ? ".rela.bss" : ".rel.bss"),
                                            ? ".rela.bss" : ".rel.bss"),
                                           flags | SEC_READONLY);
                                           flags | SEC_READONLY);
          htab->srelbss = s;
          htab->srelbss = s;
          if (s == NULL
          if (s == NULL
              || ! bfd_set_section_alignment (abfd, s, ptralign))
              || ! bfd_set_section_alignment (abfd, s, ptralign))
            return FALSE;
            return FALSE;
        }
        }
    }
    }
 
 
  if (htab->vxworks_p)
  if (htab->vxworks_p)
    {
    {
      if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
      if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
        return FALSE;
        return FALSE;
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}


/* Adjust a symbol defined by a dynamic object and referenced by a
/* Adjust a symbol defined by a dynamic object and referenced by a
   regular object.  The current definition is in some section of the
   regular object.  The current definition is in some section of the
   dynamic object, but we're not including those sections.  We have to
   dynamic object, but we're not including those sections.  We have to
   change the definition to something the rest of the link can
   change the definition to something the rest of the link can
   understand.  */
   understand.  */
 
 
static bfd_boolean
static bfd_boolean
sh_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
sh_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
                              struct elf_link_hash_entry *h)
                              struct elf_link_hash_entry *h)
{
{
  struct elf_sh_link_hash_table *htab;
  struct elf_sh_link_hash_table *htab;
  struct elf_sh_link_hash_entry *eh;
  struct elf_sh_link_hash_entry *eh;
  struct elf_sh_dyn_relocs *p;
  struct elf_sh_dyn_relocs *p;
  asection *s;
  asection *s;
 
 
  htab = sh_elf_hash_table (info);
  htab = sh_elf_hash_table (info);
 
 
  /* Make sure we know what is going on here.  */
  /* Make sure we know what is going on here.  */
  BFD_ASSERT (htab->root.dynobj != NULL
  BFD_ASSERT (htab->root.dynobj != NULL
              && (h->needs_plt
              && (h->needs_plt
                  || h->u.weakdef != NULL
                  || h->u.weakdef != NULL
                  || (h->def_dynamic
                  || (h->def_dynamic
                      && h->ref_regular
                      && h->ref_regular
                      && !h->def_regular)));
                      && !h->def_regular)));
 
 
  /* If this is a function, put it in the procedure linkage table.  We
  /* If this is a function, put it in the procedure linkage table.  We
     will fill in the contents of the procedure linkage table later,
     will fill in the contents of the procedure linkage table later,
     when we know the address of the .got section.  */
     when we know the address of the .got section.  */
  if (h->type == STT_FUNC
  if (h->type == STT_FUNC
      || h->needs_plt)
      || h->needs_plt)
    {
    {
      if (h->plt.refcount <= 0
      if (h->plt.refcount <= 0
          || SYMBOL_CALLS_LOCAL (info, h)
          || SYMBOL_CALLS_LOCAL (info, h)
          || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
          || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
              && h->root.type == bfd_link_hash_undefweak))
              && h->root.type == bfd_link_hash_undefweak))
        {
        {
          /* This case can occur if we saw a PLT reloc in an input
          /* This case can occur if we saw a PLT reloc in an input
             file, but the symbol was never referred to by a dynamic
             file, but the symbol was never referred to by a dynamic
             object.  In such a case, we don't actually need to build
             object.  In such a case, we don't actually need to build
             a procedure linkage table, and we can just do a REL32
             a procedure linkage table, and we can just do a REL32
             reloc instead.  */
             reloc instead.  */
          h->plt.offset = (bfd_vma) -1;
          h->plt.offset = (bfd_vma) -1;
          h->needs_plt = 0;
          h->needs_plt = 0;
        }
        }
 
 
      return TRUE;
      return TRUE;
    }
    }
  else
  else
    h->plt.offset = (bfd_vma) -1;
    h->plt.offset = (bfd_vma) -1;
 
 
  /* If this is a weak symbol, and there is a real definition, the
  /* If this is a weak symbol, and there is a real definition, the
     processor independent code will have arranged for us to see the
     processor independent code will have arranged for us to see the
     real definition first, and we can just use the same value.  */
     real definition first, and we can just use the same value.  */
  if (h->u.weakdef != NULL)
  if (h->u.weakdef != NULL)
    {
    {
      BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
      BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
                  || h->u.weakdef->root.type == bfd_link_hash_defweak);
                  || h->u.weakdef->root.type == bfd_link_hash_defweak);
      h->root.u.def.section = h->u.weakdef->root.u.def.section;
      h->root.u.def.section = h->u.weakdef->root.u.def.section;
      h->root.u.def.value = h->u.weakdef->root.u.def.value;
      h->root.u.def.value = h->u.weakdef->root.u.def.value;
      if (info->nocopyreloc)
      if (info->nocopyreloc)
        h->non_got_ref = h->u.weakdef->non_got_ref;
        h->non_got_ref = h->u.weakdef->non_got_ref;
      return TRUE;
      return TRUE;
    }
    }
 
 
  /* This is a reference to a symbol defined by a dynamic object which
  /* This is a reference to a symbol defined by a dynamic object which
     is not a function.  */
     is not a function.  */
 
 
  /* If we are creating a shared library, we must presume that the
  /* If we are creating a shared library, we must presume that the
     only references to the symbol are via the global offset table.
     only references to the symbol are via the global offset table.
     For such cases we need not do anything here; the relocations will
     For such cases we need not do anything here; the relocations will
     be handled correctly by relocate_section.  */
     be handled correctly by relocate_section.  */
  if (info->shared)
  if (info->shared)
    return TRUE;
    return TRUE;
 
 
  /* If there are no references to this symbol that do not use the
  /* If there are no references to this symbol that do not use the
     GOT, we don't need to generate a copy reloc.  */
     GOT, we don't need to generate a copy reloc.  */
  if (!h->non_got_ref)
  if (!h->non_got_ref)
    return TRUE;
    return TRUE;
 
 
  /* If -z nocopyreloc was given, we won't generate them either.  */
  /* If -z nocopyreloc was given, we won't generate them either.  */
  if (info->nocopyreloc)
  if (info->nocopyreloc)
    {
    {
      h->non_got_ref = 0;
      h->non_got_ref = 0;
      return TRUE;
      return TRUE;
    }
    }
 
 
  eh = (struct elf_sh_link_hash_entry *) h;
  eh = (struct elf_sh_link_hash_entry *) h;
  for (p = eh->dyn_relocs; p != NULL; p = p->next)
  for (p = eh->dyn_relocs; p != NULL; p = p->next)
    {
    {
      s = p->sec->output_section;
      s = p->sec->output_section;
      if (s != NULL && (s->flags & (SEC_READONLY | SEC_HAS_CONTENTS)) != 0)
      if (s != NULL && (s->flags & (SEC_READONLY | SEC_HAS_CONTENTS)) != 0)
        break;
        break;
    }
    }
 
 
  /* If we didn't find any dynamic relocs in sections which needs the
  /* If we didn't find any dynamic relocs in sections which needs the
     copy reloc, then we'll be keeping the dynamic relocs and avoiding
     copy reloc, then we'll be keeping the dynamic relocs and avoiding
     the copy reloc.  */
     the copy reloc.  */
  if (p == NULL)
  if (p == NULL)
    {
    {
      h->non_got_ref = 0;
      h->non_got_ref = 0;
      return TRUE;
      return TRUE;
    }
    }
 
 
  if (h->size == 0)
  if (h->size == 0)
    {
    {
      (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
      (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
                             h->root.root.string);
                             h->root.root.string);
      return TRUE;
      return TRUE;
    }
    }
 
 
  /* We must allocate the symbol in our .dynbss section, which will
  /* We must allocate the symbol in our .dynbss section, which will
     become part of the .bss section of the executable.  There will be
     become part of the .bss section of the executable.  There will be
     an entry for this symbol in the .dynsym section.  The dynamic
     an entry for this symbol in the .dynsym section.  The dynamic
     object will contain position independent code, so all references
     object will contain position independent code, so all references
     from the dynamic object to this symbol will go through the global
     from the dynamic object to this symbol will go through the global
     offset table.  The dynamic linker will use the .dynsym entry to
     offset table.  The dynamic linker will use the .dynsym entry to
     determine the address it must put in the global offset table, so
     determine the address it must put in the global offset table, so
     both the dynamic object and the regular object will refer to the
     both the dynamic object and the regular object will refer to the
     same memory location for the variable.  */
     same memory location for the variable.  */
 
 
  s = htab->sdynbss;
  s = htab->sdynbss;
  BFD_ASSERT (s != NULL);
  BFD_ASSERT (s != NULL);
 
 
  /* We must generate a R_SH_COPY reloc to tell the dynamic linker to
  /* We must generate a R_SH_COPY reloc to tell the dynamic linker to
     copy the initial value out of the dynamic object and into the
     copy the initial value out of the dynamic object and into the
     runtime process image.  We need to remember the offset into the
     runtime process image.  We need to remember the offset into the
     .rela.bss section we are going to use.  */
     .rela.bss section we are going to use.  */
  if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
  if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
    {
    {
      asection *srel;
      asection *srel;
 
 
      srel = htab->srelbss;
      srel = htab->srelbss;
      BFD_ASSERT (srel != NULL);
      BFD_ASSERT (srel != NULL);
      srel->size += sizeof (Elf32_External_Rela);
      srel->size += sizeof (Elf32_External_Rela);
      h->needs_copy = 1;
      h->needs_copy = 1;
    }
    }
 
 
  return _bfd_elf_adjust_dynamic_copy (h, s);
  return _bfd_elf_adjust_dynamic_copy (h, s);
}
}
 
 
/* Allocate space in .plt, .got and associated reloc sections for
/* Allocate space in .plt, .got and associated reloc sections for
   dynamic relocs.  */
   dynamic relocs.  */
 
 
static bfd_boolean
static bfd_boolean
allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
{
{
  struct bfd_link_info *info;
  struct bfd_link_info *info;
  struct elf_sh_link_hash_table *htab;
  struct elf_sh_link_hash_table *htab;
  struct elf_sh_link_hash_entry *eh;
  struct elf_sh_link_hash_entry *eh;
  struct elf_sh_dyn_relocs *p;
  struct elf_sh_dyn_relocs *p;
 
 
  if (h->root.type == bfd_link_hash_indirect)
  if (h->root.type == bfd_link_hash_indirect)
    return TRUE;
    return TRUE;
 
 
  if (h->root.type == bfd_link_hash_warning)
  if (h->root.type == bfd_link_hash_warning)
    /* When warning symbols are created, they **replace** the "real"
    /* When warning symbols are created, they **replace** the "real"
       entry in the hash table, thus we never get to see the real
       entry in the hash table, thus we never get to see the real
       symbol in a hash traversal.  So look at it now.  */
       symbol in a hash traversal.  So look at it now.  */
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
 
 
  info = (struct bfd_link_info *) inf;
  info = (struct bfd_link_info *) inf;
  htab = sh_elf_hash_table (info);
  htab = sh_elf_hash_table (info);
 
 
  eh = (struct elf_sh_link_hash_entry *) h;
  eh = (struct elf_sh_link_hash_entry *) h;
  if ((h->got.refcount > 0
  if ((h->got.refcount > 0
       || h->forced_local)
       || h->forced_local)
      && eh->gotplt_refcount > 0)
      && eh->gotplt_refcount > 0)
    {
    {
      /* The symbol has been forced local, or we have some direct got refs,
      /* The symbol has been forced local, or we have some direct got refs,
         so treat all the gotplt refs as got refs. */
         so treat all the gotplt refs as got refs. */
      h->got.refcount += eh->gotplt_refcount;
      h->got.refcount += eh->gotplt_refcount;
      if (h->plt.refcount >= eh->gotplt_refcount)
      if (h->plt.refcount >= eh->gotplt_refcount)
        h->plt.refcount -= eh->gotplt_refcount;
        h->plt.refcount -= eh->gotplt_refcount;
    }
    }
 
 
  if (htab->root.dynamic_sections_created
  if (htab->root.dynamic_sections_created
      && h->plt.refcount > 0
      && h->plt.refcount > 0
      && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
      && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
          || h->root.type != bfd_link_hash_undefweak))
          || h->root.type != bfd_link_hash_undefweak))
    {
    {
      /* Make sure this symbol is output as a dynamic symbol.
      /* Make sure this symbol is output as a dynamic symbol.
         Undefined weak syms won't yet be marked as dynamic.  */
         Undefined weak syms won't yet be marked as dynamic.  */
      if (h->dynindx == -1
      if (h->dynindx == -1
          && !h->forced_local)
          && !h->forced_local)
        {
        {
          if (! bfd_elf_link_record_dynamic_symbol (info, h))
          if (! bfd_elf_link_record_dynamic_symbol (info, h))
            return FALSE;
            return FALSE;
        }
        }
 
 
      if (info->shared
      if (info->shared
          || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
          || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
        {
        {
          asection *s = htab->splt;
          asection *s = htab->splt;
 
 
          /* If this is the first .plt entry, make room for the special
          /* If this is the first .plt entry, make room for the special
             first entry.  */
             first entry.  */
          if (s->size == 0)
          if (s->size == 0)
            s->size += htab->plt_info->plt0_entry_size;
            s->size += htab->plt_info->plt0_entry_size;
 
 
          h->plt.offset = s->size;
          h->plt.offset = s->size;
 
 
          /* If this symbol is not defined in a regular file, and we are
          /* If this symbol is not defined in a regular file, and we are
             not generating a shared library, then set the symbol to this
             not generating a shared library, then set the symbol to this
             location in the .plt.  This is required to make function
             location in the .plt.  This is required to make function
             pointers compare as equal between the normal executable and
             pointers compare as equal between the normal executable and
             the shared library.  */
             the shared library.  */
          if (! info->shared
          if (! info->shared
              && !h->def_regular)
              && !h->def_regular)
            {
            {
              h->root.u.def.section = s;
              h->root.u.def.section = s;
              h->root.u.def.value = h->plt.offset;
              h->root.u.def.value = h->plt.offset;
            }
            }
 
 
          /* Make room for this entry.  */
          /* Make room for this entry.  */
          s->size += htab->plt_info->symbol_entry_size;
          s->size += htab->plt_info->symbol_entry_size;
 
 
          /* We also need to make an entry in the .got.plt section, which
          /* We also need to make an entry in the .got.plt section, which
             will be placed in the .got section by the linker script.  */
             will be placed in the .got section by the linker script.  */
          htab->sgotplt->size += 4;
          htab->sgotplt->size += 4;
 
 
          /* We also need to make an entry in the .rel.plt section.  */
          /* We also need to make an entry in the .rel.plt section.  */
          htab->srelplt->size += sizeof (Elf32_External_Rela);
          htab->srelplt->size += sizeof (Elf32_External_Rela);
 
 
          if (htab->vxworks_p && !info->shared)
          if (htab->vxworks_p && !info->shared)
            {
            {
              /* VxWorks executables have a second set of relocations
              /* VxWorks executables have a second set of relocations
                 for each PLT entry.  They go in a separate relocation
                 for each PLT entry.  They go in a separate relocation
                 section, which is processed by the kernel loader.  */
                 section, which is processed by the kernel loader.  */
 
 
              /* There is a relocation for the initial PLT entry:
              /* There is a relocation for the initial PLT entry:
                 an R_SH_DIR32 relocation for _GLOBAL_OFFSET_TABLE_.  */
                 an R_SH_DIR32 relocation for _GLOBAL_OFFSET_TABLE_.  */
              if (h->plt.offset == htab->plt_info->plt0_entry_size)
              if (h->plt.offset == htab->plt_info->plt0_entry_size)
                htab->srelplt2->size += sizeof (Elf32_External_Rela);
                htab->srelplt2->size += sizeof (Elf32_External_Rela);
 
 
              /* There are two extra relocations for each subsequent
              /* There are two extra relocations for each subsequent
                 PLT entry: an R_SH_DIR32 relocation for the GOT entry,
                 PLT entry: an R_SH_DIR32 relocation for the GOT entry,
                 and an R_SH_DIR32 relocation for the PLT entry.  */
                 and an R_SH_DIR32 relocation for the PLT entry.  */
              htab->srelplt2->size += sizeof (Elf32_External_Rela) * 2;
              htab->srelplt2->size += sizeof (Elf32_External_Rela) * 2;
            }
            }
        }
        }
      else
      else
        {
        {
          h->plt.offset = (bfd_vma) -1;
          h->plt.offset = (bfd_vma) -1;
          h->needs_plt = 0;
          h->needs_plt = 0;
        }
        }
    }
    }
  else
  else
    {
    {
      h->plt.offset = (bfd_vma) -1;
      h->plt.offset = (bfd_vma) -1;
      h->needs_plt = 0;
      h->needs_plt = 0;
    }
    }
 
 
  if (h->got.refcount > 0)
  if (h->got.refcount > 0)
    {
    {
      asection *s;
      asection *s;
      bfd_boolean dyn;
      bfd_boolean dyn;
      int tls_type = sh_elf_hash_entry (h)->tls_type;
      int tls_type = sh_elf_hash_entry (h)->tls_type;
 
 
      /* Make sure this symbol is output as a dynamic symbol.
      /* Make sure this symbol is output as a dynamic symbol.
         Undefined weak syms won't yet be marked as dynamic.  */
         Undefined weak syms won't yet be marked as dynamic.  */
      if (h->dynindx == -1
      if (h->dynindx == -1
          && !h->forced_local)
          && !h->forced_local)
        {
        {
          if (! bfd_elf_link_record_dynamic_symbol (info, h))
          if (! bfd_elf_link_record_dynamic_symbol (info, h))
            return FALSE;
            return FALSE;
        }
        }
 
 
      s = htab->sgot;
      s = htab->sgot;
      h->got.offset = s->size;
      h->got.offset = s->size;
      s->size += 4;
      s->size += 4;
      /* R_SH_TLS_GD needs 2 consecutive GOT slots.  */
      /* R_SH_TLS_GD needs 2 consecutive GOT slots.  */
      if (tls_type == GOT_TLS_GD)
      if (tls_type == GOT_TLS_GD)
        s->size += 4;
        s->size += 4;
      dyn = htab->root.dynamic_sections_created;
      dyn = htab->root.dynamic_sections_created;
      /* R_SH_TLS_IE_32 needs one dynamic relocation if dynamic,
      /* R_SH_TLS_IE_32 needs one dynamic relocation if dynamic,
         R_SH_TLS_GD needs one if local symbol and two if global.  */
         R_SH_TLS_GD needs one if local symbol and two if global.  */
      if ((tls_type == GOT_TLS_GD && h->dynindx == -1)
      if ((tls_type == GOT_TLS_GD && h->dynindx == -1)
          || (tls_type == GOT_TLS_IE && dyn))
          || (tls_type == GOT_TLS_IE && dyn))
        htab->srelgot->size += sizeof (Elf32_External_Rela);
        htab->srelgot->size += sizeof (Elf32_External_Rela);
      else if (tls_type == GOT_TLS_GD)
      else if (tls_type == GOT_TLS_GD)
        htab->srelgot->size += 2 * sizeof (Elf32_External_Rela);
        htab->srelgot->size += 2 * sizeof (Elf32_External_Rela);
      else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
      else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
                || h->root.type != bfd_link_hash_undefweak)
                || h->root.type != bfd_link_hash_undefweak)
               && (info->shared
               && (info->shared
                   || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
                   || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
        htab->srelgot->size += sizeof (Elf32_External_Rela);
        htab->srelgot->size += sizeof (Elf32_External_Rela);
    }
    }
  else
  else
    h->got.offset = (bfd_vma) -1;
    h->got.offset = (bfd_vma) -1;
 
 
#ifdef INCLUDE_SHMEDIA
#ifdef INCLUDE_SHMEDIA
  if (eh->datalabel_got.refcount > 0)
  if (eh->datalabel_got.refcount > 0)
    {
    {
      asection *s;
      asection *s;
      bfd_boolean dyn;
      bfd_boolean dyn;
 
 
      /* Make sure this symbol is output as a dynamic symbol.
      /* Make sure this symbol is output as a dynamic symbol.
         Undefined weak syms won't yet be marked as dynamic.  */
         Undefined weak syms won't yet be marked as dynamic.  */
      if (h->dynindx == -1
      if (h->dynindx == -1
          && !h->forced_local)
          && !h->forced_local)
        {
        {
          if (! bfd_elf_link_record_dynamic_symbol (info, h))
          if (! bfd_elf_link_record_dynamic_symbol (info, h))
            return FALSE;
            return FALSE;
        }
        }
 
 
      s = htab->sgot;
      s = htab->sgot;
      eh->datalabel_got.offset = s->size;
      eh->datalabel_got.offset = s->size;
      s->size += 4;
      s->size += 4;
      dyn = htab->root.dynamic_sections_created;
      dyn = htab->root.dynamic_sections_created;
      if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h))
      if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h))
        htab->srelgot->size += sizeof (Elf32_External_Rela);
        htab->srelgot->size += sizeof (Elf32_External_Rela);
    }
    }
  else
  else
    eh->datalabel_got.offset = (bfd_vma) -1;
    eh->datalabel_got.offset = (bfd_vma) -1;
#endif
#endif
 
 
  if (eh->dyn_relocs == NULL)
  if (eh->dyn_relocs == NULL)
    return TRUE;
    return TRUE;
 
 
  /* In the shared -Bsymbolic case, discard space allocated for
  /* In the shared -Bsymbolic case, discard space allocated for
     dynamic pc-relative relocs against symbols which turn out to be
     dynamic pc-relative relocs against symbols which turn out to be
     defined in regular objects.  For the normal shared case, discard
     defined in regular objects.  For the normal shared case, discard
     space for pc-relative relocs that have become local due to symbol
     space for pc-relative relocs that have become local due to symbol
     visibility changes.  */
     visibility changes.  */
 
 
  if (info->shared)
  if (info->shared)
    {
    {
      if (SYMBOL_CALLS_LOCAL (info, h))
      if (SYMBOL_CALLS_LOCAL (info, h))
        {
        {
          struct elf_sh_dyn_relocs **pp;
          struct elf_sh_dyn_relocs **pp;
 
 
          for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
          for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
            {
            {
              p->count -= p->pc_count;
              p->count -= p->pc_count;
              p->pc_count = 0;
              p->pc_count = 0;
              if (p->count == 0)
              if (p->count == 0)
                *pp = p->next;
                *pp = p->next;
              else
              else
                pp = &p->next;
                pp = &p->next;
            }
            }
        }
        }
 
 
      if (htab->vxworks_p)
      if (htab->vxworks_p)
        {
        {
          struct elf_sh_dyn_relocs **pp;
          struct elf_sh_dyn_relocs **pp;
 
 
          for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
          for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
            {
            {
              if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
              if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
                *pp = p->next;
                *pp = p->next;
              else
              else
                pp = &p->next;
                pp = &p->next;
            }
            }
        }
        }
 
 
      /* Also discard relocs on undefined weak syms with non-default
      /* Also discard relocs on undefined weak syms with non-default
         visibility.  */
         visibility.  */
      if (eh->dyn_relocs != NULL
      if (eh->dyn_relocs != NULL
          && h->root.type == bfd_link_hash_undefweak)
          && h->root.type == bfd_link_hash_undefweak)
        {
        {
          if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
          if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
            eh->dyn_relocs = NULL;
            eh->dyn_relocs = NULL;
 
 
          /* Make sure undefined weak symbols are output as a dynamic
          /* Make sure undefined weak symbols are output as a dynamic
             symbol in PIEs.  */
             symbol in PIEs.  */
          else if (h->dynindx == -1
          else if (h->dynindx == -1
                   && !h->forced_local)
                   && !h->forced_local)
            {
            {
              if (! bfd_elf_link_record_dynamic_symbol (info, h))
              if (! bfd_elf_link_record_dynamic_symbol (info, h))
                return FALSE;
                return FALSE;
            }
            }
        }
        }
    }
    }
  else
  else
    {
    {
      /* For the non-shared case, discard space for relocs against
      /* For the non-shared case, discard space for relocs against
         symbols which turn out to need copy relocs or are not
         symbols which turn out to need copy relocs or are not
         dynamic.  */
         dynamic.  */
 
 
      if (!h->non_got_ref
      if (!h->non_got_ref
          && ((h->def_dynamic
          && ((h->def_dynamic
               && !h->def_regular)
               && !h->def_regular)
              || (htab->root.dynamic_sections_created
              || (htab->root.dynamic_sections_created
                  && (h->root.type == bfd_link_hash_undefweak
                  && (h->root.type == bfd_link_hash_undefweak
                      || h->root.type == bfd_link_hash_undefined))))
                      || h->root.type == bfd_link_hash_undefined))))
        {
        {
          /* Make sure this symbol is output as a dynamic symbol.
          /* Make sure this symbol is output as a dynamic symbol.
             Undefined weak syms won't yet be marked as dynamic.  */
             Undefined weak syms won't yet be marked as dynamic.  */
          if (h->dynindx == -1
          if (h->dynindx == -1
              && !h->forced_local)
              && !h->forced_local)
            {
            {
              if (! bfd_elf_link_record_dynamic_symbol (info, h))
              if (! bfd_elf_link_record_dynamic_symbol (info, h))
                return FALSE;
                return FALSE;
            }
            }
 
 
          /* If that succeeded, we know we'll be keeping all the
          /* If that succeeded, we know we'll be keeping all the
             relocs.  */
             relocs.  */
          if (h->dynindx != -1)
          if (h->dynindx != -1)
            goto keep;
            goto keep;
        }
        }
 
 
      eh->dyn_relocs = NULL;
      eh->dyn_relocs = NULL;
 
 
    keep: ;
    keep: ;
    }
    }
 
 
  /* Finally, allocate space.  */
  /* Finally, allocate space.  */
  for (p = eh->dyn_relocs; p != NULL; p = p->next)
  for (p = eh->dyn_relocs; p != NULL; p = p->next)
    {
    {
      asection *sreloc = elf_section_data (p->sec)->sreloc;
      asection *sreloc = elf_section_data (p->sec)->sreloc;
      sreloc->size += p->count * sizeof (Elf32_External_Rela);
      sreloc->size += p->count * sizeof (Elf32_External_Rela);
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Find any dynamic relocs that apply to read-only sections.  */
/* Find any dynamic relocs that apply to read-only sections.  */
 
 
static bfd_boolean
static bfd_boolean
readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf)
readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf)
{
{
  struct elf_sh_link_hash_entry *eh;
  struct elf_sh_link_hash_entry *eh;
  struct elf_sh_dyn_relocs *p;
  struct elf_sh_dyn_relocs *p;
 
 
  if (h->root.type == bfd_link_hash_warning)
  if (h->root.type == bfd_link_hash_warning)
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
 
 
  eh = (struct elf_sh_link_hash_entry *) h;
  eh = (struct elf_sh_link_hash_entry *) h;
  for (p = eh->dyn_relocs; p != NULL; p = p->next)
  for (p = eh->dyn_relocs; p != NULL; p = p->next)
    {
    {
      asection *s = p->sec->output_section;
      asection *s = p->sec->output_section;
 
 
      if (s != NULL && (s->flags & SEC_READONLY) != 0)
      if (s != NULL && (s->flags & SEC_READONLY) != 0)
        {
        {
          struct bfd_link_info *info = (struct bfd_link_info *) inf;
          struct bfd_link_info *info = (struct bfd_link_info *) inf;
 
 
          info->flags |= DF_TEXTREL;
          info->flags |= DF_TEXTREL;
 
 
          /* Not an error, just cut short the traversal.  */
          /* Not an error, just cut short the traversal.  */
          return FALSE;
          return FALSE;
        }
        }
    }
    }
  return TRUE;
  return TRUE;
}
}
 
 
/* This function is called after all the input files have been read,
/* This function is called after all the input files have been read,
   and the input sections have been assigned to output sections.
   and the input sections have been assigned to output sections.
   It's a convenient place to determine the PLT style.  */
   It's a convenient place to determine the PLT style.  */
 
 
static bfd_boolean
static bfd_boolean
sh_elf_always_size_sections (bfd *output_bfd, struct bfd_link_info *info)
sh_elf_always_size_sections (bfd *output_bfd, struct bfd_link_info *info)
{
{
  sh_elf_hash_table (info)->plt_info = get_plt_info (output_bfd, info->shared);
  sh_elf_hash_table (info)->plt_info = get_plt_info (output_bfd, info->shared);
  return TRUE;
  return TRUE;
}
}
 
 
/* Set the sizes of the dynamic sections.  */
/* Set the sizes of the dynamic sections.  */
 
 
static bfd_boolean
static bfd_boolean
sh_elf_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
sh_elf_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
                              struct bfd_link_info *info)
                              struct bfd_link_info *info)
{
{
  struct elf_sh_link_hash_table *htab;
  struct elf_sh_link_hash_table *htab;
  bfd *dynobj;
  bfd *dynobj;
  asection *s;
  asection *s;
  bfd_boolean relocs;
  bfd_boolean relocs;
  bfd *ibfd;
  bfd *ibfd;
 
 
  htab = sh_elf_hash_table (info);
  htab = sh_elf_hash_table (info);
  dynobj = htab->root.dynobj;
  dynobj = htab->root.dynobj;
  BFD_ASSERT (dynobj != NULL);
  BFD_ASSERT (dynobj != NULL);
 
 
  if (htab->root.dynamic_sections_created)
  if (htab->root.dynamic_sections_created)
    {
    {
      /* Set the contents of the .interp section to the interpreter.  */
      /* Set the contents of the .interp section to the interpreter.  */
      if (info->executable)
      if (info->executable)
        {
        {
          s = bfd_get_section_by_name (dynobj, ".interp");
          s = bfd_get_section_by_name (dynobj, ".interp");
          BFD_ASSERT (s != NULL);
          BFD_ASSERT (s != NULL);
          s->size = sizeof ELF_DYNAMIC_INTERPRETER;
          s->size = sizeof ELF_DYNAMIC_INTERPRETER;
          s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
          s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
        }
        }
    }
    }
 
 
  /* Set up .got offsets for local syms, and space for local dynamic
  /* Set up .got offsets for local syms, and space for local dynamic
     relocs.  */
     relocs.  */
  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
    {
    {
      bfd_signed_vma *local_got;
      bfd_signed_vma *local_got;
      bfd_signed_vma *end_local_got;
      bfd_signed_vma *end_local_got;
      char *local_tls_type;
      char *local_tls_type;
      bfd_size_type locsymcount;
      bfd_size_type locsymcount;
      Elf_Internal_Shdr *symtab_hdr;
      Elf_Internal_Shdr *symtab_hdr;
      asection *srel;
      asection *srel;
 
 
      if (! is_sh_elf (ibfd))
      if (! is_sh_elf (ibfd))
        continue;
        continue;
 
 
      for (s = ibfd->sections; s != NULL; s = s->next)
      for (s = ibfd->sections; s != NULL; s = s->next)
        {
        {
          struct elf_sh_dyn_relocs *p;
          struct elf_sh_dyn_relocs *p;
 
 
          for (p = ((struct elf_sh_dyn_relocs *)
          for (p = ((struct elf_sh_dyn_relocs *)
                    elf_section_data (s)->local_dynrel);
                    elf_section_data (s)->local_dynrel);
               p != NULL;
               p != NULL;
               p = p->next)
               p = p->next)
            {
            {
              if (! bfd_is_abs_section (p->sec)
              if (! bfd_is_abs_section (p->sec)
                  && bfd_is_abs_section (p->sec->output_section))
                  && bfd_is_abs_section (p->sec->output_section))
                {
                {
                  /* Input section has been discarded, either because
                  /* Input section has been discarded, either because
                     it is a copy of a linkonce section or due to
                     it is a copy of a linkonce section or due to
                     linker script /DISCARD/, so we'll be discarding
                     linker script /DISCARD/, so we'll be discarding
                     the relocs too.  */
                     the relocs too.  */
                }
                }
              else if (htab->vxworks_p
              else if (htab->vxworks_p
                       && strcmp (p->sec->output_section->name,
                       && strcmp (p->sec->output_section->name,
                                  ".tls_vars") == 0)
                                  ".tls_vars") == 0)
                {
                {
                  /* Relocations in vxworks .tls_vars sections are
                  /* Relocations in vxworks .tls_vars sections are
                     handled specially by the loader.  */
                     handled specially by the loader.  */
                }
                }
              else if (p->count != 0)
              else if (p->count != 0)
                {
                {
                  srel = elf_section_data (p->sec)->sreloc;
                  srel = elf_section_data (p->sec)->sreloc;
                  srel->size += p->count * sizeof (Elf32_External_Rela);
                  srel->size += p->count * sizeof (Elf32_External_Rela);
                  if ((p->sec->output_section->flags & SEC_READONLY) != 0)
                  if ((p->sec->output_section->flags & SEC_READONLY) != 0)
                    info->flags |= DF_TEXTREL;
                    info->flags |= DF_TEXTREL;
                }
                }
            }
            }
        }
        }
 
 
      local_got = elf_local_got_refcounts (ibfd);
      local_got = elf_local_got_refcounts (ibfd);
      if (!local_got)
      if (!local_got)
        continue;
        continue;
 
 
      symtab_hdr = &elf_symtab_hdr (ibfd);
      symtab_hdr = &elf_symtab_hdr (ibfd);
      locsymcount = symtab_hdr->sh_info;
      locsymcount = symtab_hdr->sh_info;
#ifdef INCLUDE_SHMEDIA
#ifdef INCLUDE_SHMEDIA
      /* Count datalabel local GOT.  */
      /* Count datalabel local GOT.  */
      locsymcount *= 2;
      locsymcount *= 2;
#endif
#endif
      end_local_got = local_got + locsymcount;
      end_local_got = local_got + locsymcount;
      local_tls_type = sh_elf_local_got_tls_type (ibfd);
      local_tls_type = sh_elf_local_got_tls_type (ibfd);
      s = htab->sgot;
      s = htab->sgot;
      srel = htab->srelgot;
      srel = htab->srelgot;
      for (; local_got < end_local_got; ++local_got)
      for (; local_got < end_local_got; ++local_got)
        {
        {
          if (*local_got > 0)
          if (*local_got > 0)
            {
            {
              *local_got = s->size;
              *local_got = s->size;
              s->size += 4;
              s->size += 4;
              if (*local_tls_type == GOT_TLS_GD)
              if (*local_tls_type == GOT_TLS_GD)
                s->size += 4;
                s->size += 4;
              if (info->shared)
              if (info->shared)
                srel->size += sizeof (Elf32_External_Rela);
                srel->size += sizeof (Elf32_External_Rela);
            }
            }
          else
          else
            *local_got = (bfd_vma) -1;
            *local_got = (bfd_vma) -1;
          ++local_tls_type;
          ++local_tls_type;
        }
        }
    }
    }
 
 
  if (htab->tls_ldm_got.refcount > 0)
  if (htab->tls_ldm_got.refcount > 0)
    {
    {
      /* Allocate 2 got entries and 1 dynamic reloc for R_SH_TLS_LD_32
      /* Allocate 2 got entries and 1 dynamic reloc for R_SH_TLS_LD_32
         relocs.  */
         relocs.  */
      htab->tls_ldm_got.offset = htab->sgot->size;
      htab->tls_ldm_got.offset = htab->sgot->size;
      htab->sgot->size += 8;
      htab->sgot->size += 8;
      htab->srelgot->size += sizeof (Elf32_External_Rela);
      htab->srelgot->size += sizeof (Elf32_External_Rela);
    }
    }
  else
  else
    htab->tls_ldm_got.offset = -1;
    htab->tls_ldm_got.offset = -1;
 
 
  /* Allocate global sym .plt and .got entries, and space for global
  /* Allocate global sym .plt and .got entries, and space for global
     sym dynamic relocs.  */
     sym dynamic relocs.  */
  elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
  elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
 
 
  /* We now have determined the sizes of the various dynamic sections.
  /* We now have determined the sizes of the various dynamic sections.
     Allocate memory for them.  */
     Allocate memory for them.  */
  relocs = FALSE;
  relocs = FALSE;
  for (s = dynobj->sections; s != NULL; s = s->next)
  for (s = dynobj->sections; s != NULL; s = s->next)
    {
    {
      if ((s->flags & SEC_LINKER_CREATED) == 0)
      if ((s->flags & SEC_LINKER_CREATED) == 0)
        continue;
        continue;
 
 
      if (s == htab->splt
      if (s == htab->splt
          || s == htab->sgot
          || s == htab->sgot
          || s == htab->sgotplt
          || s == htab->sgotplt
          || s == htab->sdynbss)
          || s == htab->sdynbss)
        {
        {
          /* Strip this section if we don't need it; see the
          /* Strip this section if we don't need it; see the
             comment below.  */
             comment below.  */
        }
        }
      else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
      else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
        {
        {
          if (s->size != 0 && s != htab->srelplt && s != htab->srelplt2)
          if (s->size != 0 && s != htab->srelplt && s != htab->srelplt2)
            relocs = TRUE;
            relocs = TRUE;
 
 
          /* We use the reloc_count field as a counter if we need
          /* We use the reloc_count field as a counter if we need
             to copy relocs into the output file.  */
             to copy relocs into the output file.  */
          s->reloc_count = 0;
          s->reloc_count = 0;
        }
        }
      else
      else
        {
        {
          /* It's not one of our sections, so don't allocate space.  */
          /* It's not one of our sections, so don't allocate space.  */
          continue;
          continue;
        }
        }
 
 
      if (s->size == 0)
      if (s->size == 0)
        {
        {
          /* If we don't need this section, strip it from the
          /* If we don't need this section, strip it from the
             output file.  This is mostly to handle .rela.bss and
             output file.  This is mostly to handle .rela.bss and
             .rela.plt.  We must create both sections in
             .rela.plt.  We must create both sections in
             create_dynamic_sections, because they must be created
             create_dynamic_sections, because they must be created
             before the linker maps input sections to output
             before the linker maps input sections to output
             sections.  The linker does that before
             sections.  The linker does that before
             adjust_dynamic_symbol is called, and it is that
             adjust_dynamic_symbol is called, and it is that
             function which decides whether anything needs to go
             function which decides whether anything needs to go
             into these sections.  */
             into these sections.  */
 
 
          s->flags |= SEC_EXCLUDE;
          s->flags |= SEC_EXCLUDE;
          continue;
          continue;
        }
        }
 
 
      if ((s->flags & SEC_HAS_CONTENTS) == 0)
      if ((s->flags & SEC_HAS_CONTENTS) == 0)
        continue;
        continue;
 
 
      /* Allocate memory for the section contents.  We use bfd_zalloc
      /* Allocate memory for the section contents.  We use bfd_zalloc
         here in case unused entries are not reclaimed before the
         here in case unused entries are not reclaimed before the
         section's contents are written out.  This should not happen,
         section's contents are written out.  This should not happen,
         but this way if it does, we get a R_SH_NONE reloc instead
         but this way if it does, we get a R_SH_NONE reloc instead
         of garbage.  */
         of garbage.  */
      s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
      s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
      if (s->contents == NULL)
      if (s->contents == NULL)
        return FALSE;
        return FALSE;
    }
    }
 
 
  if (htab->root.dynamic_sections_created)
  if (htab->root.dynamic_sections_created)
    {
    {
      /* Add some entries to the .dynamic section.  We fill in the
      /* Add some entries to the .dynamic section.  We fill in the
         values later, in sh_elf_finish_dynamic_sections, but we
         values later, in sh_elf_finish_dynamic_sections, but we
         must add the entries now so that we get the correct size for
         must add the entries now so that we get the correct size for
         the .dynamic section.  The DT_DEBUG entry is filled in by the
         the .dynamic section.  The DT_DEBUG entry is filled in by the
         dynamic linker and used by the debugger.  */
         dynamic linker and used by the debugger.  */
#define add_dynamic_entry(TAG, VAL) \
#define add_dynamic_entry(TAG, VAL) \
  _bfd_elf_add_dynamic_entry (info, TAG, VAL)
  _bfd_elf_add_dynamic_entry (info, TAG, VAL)
 
 
      if (info->executable)
      if (info->executable)
        {
        {
          if (! add_dynamic_entry (DT_DEBUG, 0))
          if (! add_dynamic_entry (DT_DEBUG, 0))
            return FALSE;
            return FALSE;
        }
        }
 
 
      if (htab->splt->size != 0)
      if (htab->splt->size != 0)
        {
        {
          if (! add_dynamic_entry (DT_PLTGOT, 0)
          if (! add_dynamic_entry (DT_PLTGOT, 0)
              || ! add_dynamic_entry (DT_PLTRELSZ, 0)
              || ! add_dynamic_entry (DT_PLTRELSZ, 0)
              || ! add_dynamic_entry (DT_PLTREL, DT_RELA)
              || ! add_dynamic_entry (DT_PLTREL, DT_RELA)
              || ! add_dynamic_entry (DT_JMPREL, 0))
              || ! add_dynamic_entry (DT_JMPREL, 0))
            return FALSE;
            return FALSE;
        }
        }
 
 
      if (relocs)
      if (relocs)
        {
        {
          if (! add_dynamic_entry (DT_RELA, 0)
          if (! add_dynamic_entry (DT_RELA, 0)
              || ! add_dynamic_entry (DT_RELASZ, 0)
              || ! add_dynamic_entry (DT_RELASZ, 0)
              || ! add_dynamic_entry (DT_RELAENT,
              || ! add_dynamic_entry (DT_RELAENT,
                                      sizeof (Elf32_External_Rela)))
                                      sizeof (Elf32_External_Rela)))
            return FALSE;
            return FALSE;
 
 
          /* If any dynamic relocs apply to a read-only section,
          /* If any dynamic relocs apply to a read-only section,
             then we need a DT_TEXTREL entry.  */
             then we need a DT_TEXTREL entry.  */
          if ((info->flags & DF_TEXTREL) == 0)
          if ((info->flags & DF_TEXTREL) == 0)
            elf_link_hash_traverse (&htab->root, readonly_dynrelocs, info);
            elf_link_hash_traverse (&htab->root, readonly_dynrelocs, info);
 
 
          if ((info->flags & DF_TEXTREL) != 0)
          if ((info->flags & DF_TEXTREL) != 0)
            {
            {
              if (! add_dynamic_entry (DT_TEXTREL, 0))
              if (! add_dynamic_entry (DT_TEXTREL, 0))
                return FALSE;
                return FALSE;
            }
            }
        }
        }
      if (htab->vxworks_p
      if (htab->vxworks_p
          && !elf_vxworks_add_dynamic_entries (output_bfd, info))
          && !elf_vxworks_add_dynamic_entries (output_bfd, info))
        return FALSE;
        return FALSE;
    }
    }
#undef add_dynamic_entry
#undef add_dynamic_entry
 
 
  return TRUE;
  return TRUE;
}
}


/* Relocate an SH ELF section.  */
/* Relocate an SH ELF section.  */
 
 
static bfd_boolean
static bfd_boolean
sh_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
sh_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
                         bfd *input_bfd, asection *input_section,
                         bfd *input_bfd, asection *input_section,
                         bfd_byte *contents, Elf_Internal_Rela *relocs,
                         bfd_byte *contents, Elf_Internal_Rela *relocs,
                         Elf_Internal_Sym *local_syms,
                         Elf_Internal_Sym *local_syms,
                         asection **local_sections)
                         asection **local_sections)
{
{
  struct elf_sh_link_hash_table *htab;
  struct elf_sh_link_hash_table *htab;
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Shdr *symtab_hdr;
  struct elf_link_hash_entry **sym_hashes;
  struct elf_link_hash_entry **sym_hashes;
  Elf_Internal_Rela *rel, *relend;
  Elf_Internal_Rela *rel, *relend;
  bfd *dynobj;
  bfd *dynobj;
  bfd_vma *local_got_offsets;
  bfd_vma *local_got_offsets;
  asection *sgot;
  asection *sgot;
  asection *sgotplt;
  asection *sgotplt;
  asection *splt;
  asection *splt;
  asection *sreloc;
  asection *sreloc;
  asection *srelgot;
  asection *srelgot;
  bfd_boolean is_vxworks_tls;
  bfd_boolean is_vxworks_tls;
 
 
  BFD_ASSERT (is_sh_elf (input_bfd));
  BFD_ASSERT (is_sh_elf (input_bfd));
 
 
  htab = sh_elf_hash_table (info);
  htab = sh_elf_hash_table (info);
  symtab_hdr = &elf_symtab_hdr (input_bfd);
  symtab_hdr = &elf_symtab_hdr (input_bfd);
  sym_hashes = elf_sym_hashes (input_bfd);
  sym_hashes = elf_sym_hashes (input_bfd);
  dynobj = htab->root.dynobj;
  dynobj = htab->root.dynobj;
  local_got_offsets = elf_local_got_offsets (input_bfd);
  local_got_offsets = elf_local_got_offsets (input_bfd);
 
 
  sgot = htab->sgot;
  sgot = htab->sgot;
  sgotplt = htab->sgotplt;
  sgotplt = htab->sgotplt;
  splt = htab->splt;
  splt = htab->splt;
  sreloc = NULL;
  sreloc = NULL;
  srelgot = NULL;
  srelgot = NULL;
  /* We have to handle relocations in vxworks .tls_vars sections
  /* We have to handle relocations in vxworks .tls_vars sections
     specially, because the dynamic loader is 'weird'.  */
     specially, because the dynamic loader is 'weird'.  */
  is_vxworks_tls = (htab->vxworks_p && info->shared
  is_vxworks_tls = (htab->vxworks_p && info->shared
                    && !strcmp (input_section->output_section->name,
                    && !strcmp (input_section->output_section->name,
                                ".tls_vars"));
                                ".tls_vars"));
 
 
  rel = relocs;
  rel = relocs;
  relend = relocs + input_section->reloc_count;
  relend = relocs + input_section->reloc_count;
  for (; rel < relend; rel++)
  for (; rel < relend; rel++)
    {
    {
      int r_type;
      int r_type;
      reloc_howto_type *howto;
      reloc_howto_type *howto;
      unsigned long r_symndx;
      unsigned long r_symndx;
      Elf_Internal_Sym *sym;
      Elf_Internal_Sym *sym;
      asection *sec;
      asection *sec;
      struct elf_link_hash_entry *h;
      struct elf_link_hash_entry *h;
      bfd_vma relocation;
      bfd_vma relocation;
      bfd_vma addend = (bfd_vma) 0;
      bfd_vma addend = (bfd_vma) 0;
      bfd_reloc_status_type r;
      bfd_reloc_status_type r;
      int seen_stt_datalabel = 0;
      int seen_stt_datalabel = 0;
      bfd_vma off;
      bfd_vma off;
      int tls_type;
      int tls_type;
 
 
      r_symndx = ELF32_R_SYM (rel->r_info);
      r_symndx = ELF32_R_SYM (rel->r_info);
 
 
      r_type = ELF32_R_TYPE (rel->r_info);
      r_type = ELF32_R_TYPE (rel->r_info);
 
 
      /* Many of the relocs are only used for relaxing, and are
      /* Many of the relocs are only used for relaxing, and are
         handled entirely by the relaxation code.  */
         handled entirely by the relaxation code.  */
      if (r_type >= (int) R_SH_GNU_VTINHERIT
      if (r_type >= (int) R_SH_GNU_VTINHERIT
          && r_type <= (int) R_SH_LABEL)
          && r_type <= (int) R_SH_LABEL)
        continue;
        continue;
      if (r_type == (int) R_SH_NONE)
      if (r_type == (int) R_SH_NONE)
        continue;
        continue;
 
 
      if (r_type < 0
      if (r_type < 0
          || r_type >= R_SH_max
          || r_type >= R_SH_max
          || (r_type >= (int) R_SH_FIRST_INVALID_RELOC
          || (r_type >= (int) R_SH_FIRST_INVALID_RELOC
              && r_type <= (int) R_SH_LAST_INVALID_RELOC)
              && r_type <= (int) R_SH_LAST_INVALID_RELOC)
          || (   r_type >= (int) R_SH_FIRST_INVALID_RELOC_3
          || (   r_type >= (int) R_SH_FIRST_INVALID_RELOC_3
              && r_type <= (int) R_SH_LAST_INVALID_RELOC_3)
              && r_type <= (int) R_SH_LAST_INVALID_RELOC_3)
          || (   r_type >= (int) R_SH_FIRST_INVALID_RELOC_4
          || (   r_type >= (int) R_SH_FIRST_INVALID_RELOC_4
              && r_type <= (int) R_SH_LAST_INVALID_RELOC_4)
              && r_type <= (int) R_SH_LAST_INVALID_RELOC_4)
          || (   r_type >= (int) R_SH_FIRST_INVALID_RELOC_5
          || (   r_type >= (int) R_SH_FIRST_INVALID_RELOC_5
              && r_type <= (int) R_SH_LAST_INVALID_RELOC_5)
              && r_type <= (int) R_SH_LAST_INVALID_RELOC_5)
          || (r_type >= (int) R_SH_FIRST_INVALID_RELOC_2
          || (r_type >= (int) R_SH_FIRST_INVALID_RELOC_2
              && r_type <= (int) R_SH_LAST_INVALID_RELOC_2))
              && r_type <= (int) R_SH_LAST_INVALID_RELOC_2))
        {
        {
          bfd_set_error (bfd_error_bad_value);
          bfd_set_error (bfd_error_bad_value);
          return FALSE;
          return FALSE;
        }
        }
 
 
      howto = get_howto_table (output_bfd) + r_type;
      howto = get_howto_table (output_bfd) + r_type;
 
 
      /* For relocs that aren't partial_inplace, we get the addend from
      /* For relocs that aren't partial_inplace, we get the addend from
         the relocation.  */
         the relocation.  */
      if (! howto->partial_inplace)
      if (! howto->partial_inplace)
        addend = rel->r_addend;
        addend = rel->r_addend;
 
 
      h = NULL;
      h = NULL;
      sym = NULL;
      sym = NULL;
      sec = NULL;
      sec = NULL;
      if (r_symndx < symtab_hdr->sh_info)
      if (r_symndx < symtab_hdr->sh_info)
        {
        {
          sym = local_syms + r_symndx;
          sym = local_syms + r_symndx;
          sec = local_sections[r_symndx];
          sec = local_sections[r_symndx];
          relocation = (sec->output_section->vma
          relocation = (sec->output_section->vma
                        + sec->output_offset
                        + sec->output_offset
                        + sym->st_value);
                        + sym->st_value);
          /* A local symbol never has STO_SH5_ISA32, so we don't need
          /* A local symbol never has STO_SH5_ISA32, so we don't need
             datalabel processing here.  Make sure this does not change
             datalabel processing here.  Make sure this does not change
             without notice.  */
             without notice.  */
          if ((sym->st_other & STO_SH5_ISA32) != 0)
          if ((sym->st_other & STO_SH5_ISA32) != 0)
            ((*info->callbacks->reloc_dangerous)
            ((*info->callbacks->reloc_dangerous)
             (info,
             (info,
              _("Unexpected STO_SH5_ISA32 on local symbol is not handled"),
              _("Unexpected STO_SH5_ISA32 on local symbol is not handled"),
              input_bfd, input_section, rel->r_offset));
              input_bfd, input_section, rel->r_offset));
 
 
          if (sec != NULL && elf_discarded_section (sec))
          if (sec != NULL && elf_discarded_section (sec))
            /* Handled below.  */
            /* Handled below.  */
            ;
            ;
          else if (info->relocatable)
          else if (info->relocatable)
            {
            {
              /* This is a relocatable link.  We don't have to change
              /* This is a relocatable link.  We don't have to change
                 anything, unless the reloc is against a section symbol,
                 anything, unless the reloc is against a section symbol,
                 in which case we have to adjust according to where the
                 in which case we have to adjust according to where the
                 section symbol winds up in the output section.  */
                 section symbol winds up in the output section.  */
              if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
              if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
                {
                {
                  if (! howto->partial_inplace)
                  if (! howto->partial_inplace)
                    {
                    {
                      /* For relocations with the addend in the
                      /* For relocations with the addend in the
                         relocation, we need just to update the addend.
                         relocation, we need just to update the addend.
                         All real relocs are of type partial_inplace; this
                         All real relocs are of type partial_inplace; this
                         code is mostly for completeness.  */
                         code is mostly for completeness.  */
                      rel->r_addend += sec->output_offset;
                      rel->r_addend += sec->output_offset;
 
 
                      continue;
                      continue;
                    }
                    }
 
 
                  /* Relocs of type partial_inplace need to pick up the
                  /* Relocs of type partial_inplace need to pick up the
                     contents in the contents and add the offset resulting
                     contents in the contents and add the offset resulting
                     from the changed location of the section symbol.
                     from the changed location of the section symbol.
                     Using _bfd_final_link_relocate (e.g. goto
                     Using _bfd_final_link_relocate (e.g. goto
                     final_link_relocate) here would be wrong, because
                     final_link_relocate) here would be wrong, because
                     relocations marked pc_relative would get the current
                     relocations marked pc_relative would get the current
                     location subtracted, and we must only do that at the
                     location subtracted, and we must only do that at the
                     final link.  */
                     final link.  */
                  r = _bfd_relocate_contents (howto, input_bfd,
                  r = _bfd_relocate_contents (howto, input_bfd,
                                              sec->output_offset
                                              sec->output_offset
                                              + sym->st_value,
                                              + sym->st_value,
                                              contents + rel->r_offset);
                                              contents + rel->r_offset);
                  goto relocation_done;
                  goto relocation_done;
                }
                }
 
 
              continue;
              continue;
            }
            }
          else if (! howto->partial_inplace)
          else if (! howto->partial_inplace)
            {
            {
              relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
              relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
              addend = rel->r_addend;
              addend = rel->r_addend;
            }
            }
          else if ((sec->flags & SEC_MERGE)
          else if ((sec->flags & SEC_MERGE)
                   && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
                   && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
            {
            {
              asection *msec;
              asection *msec;
 
 
              if (howto->rightshift || howto->src_mask != 0xffffffff)
              if (howto->rightshift || howto->src_mask != 0xffffffff)
                {
                {
                  (*_bfd_error_handler)
                  (*_bfd_error_handler)
                    (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
                    (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
                     input_bfd, input_section,
                     input_bfd, input_section,
                     (long) rel->r_offset, howto->name);
                     (long) rel->r_offset, howto->name);
                  return FALSE;
                  return FALSE;
                }
                }
 
 
              addend = bfd_get_32 (input_bfd, contents + rel->r_offset);
              addend = bfd_get_32 (input_bfd, contents + rel->r_offset);
              msec = sec;
              msec = sec;
              addend =
              addend =
                _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
                _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
                - relocation;
                - relocation;
              addend += msec->output_section->vma + msec->output_offset;
              addend += msec->output_section->vma + msec->output_offset;
              bfd_put_32 (input_bfd, addend, contents + rel->r_offset);
              bfd_put_32 (input_bfd, addend, contents + rel->r_offset);
              addend = 0;
              addend = 0;
            }
            }
        }
        }
      else
      else
        {
        {
          /* FIXME: Ought to make use of the RELOC_FOR_GLOBAL_SYMBOL macro.  */
          /* FIXME: Ought to make use of the RELOC_FOR_GLOBAL_SYMBOL macro.  */
 
 
          relocation = 0;
          relocation = 0;
          h = sym_hashes[r_symndx - symtab_hdr->sh_info];
          h = sym_hashes[r_symndx - symtab_hdr->sh_info];
          while (h->root.type == bfd_link_hash_indirect
          while (h->root.type == bfd_link_hash_indirect
                 || h->root.type == bfd_link_hash_warning)
                 || h->root.type == bfd_link_hash_warning)
            {
            {
#ifdef INCLUDE_SHMEDIA
#ifdef INCLUDE_SHMEDIA
              /* If the reference passes a symbol marked with
              /* If the reference passes a symbol marked with
                 STT_DATALABEL, then any STO_SH5_ISA32 on the final value
                 STT_DATALABEL, then any STO_SH5_ISA32 on the final value
                 doesn't count.  */
                 doesn't count.  */
              seen_stt_datalabel |= h->type == STT_DATALABEL;
              seen_stt_datalabel |= h->type == STT_DATALABEL;
#endif
#endif
              h = (struct elf_link_hash_entry *) h->root.u.i.link;
              h = (struct elf_link_hash_entry *) h->root.u.i.link;
            }
            }
          if (h->root.type == bfd_link_hash_defined
          if (h->root.type == bfd_link_hash_defined
              || h->root.type == bfd_link_hash_defweak)
              || h->root.type == bfd_link_hash_defweak)
            {
            {
              bfd_boolean dyn;
              bfd_boolean dyn;
 
 
              dyn = htab->root.dynamic_sections_created;
              dyn = htab->root.dynamic_sections_created;
              sec = h->root.u.def.section;
              sec = h->root.u.def.section;
              /* In these cases, we don't need the relocation value.
              /* In these cases, we don't need the relocation value.
                 We check specially because in some obscure cases
                 We check specially because in some obscure cases
                 sec->output_section will be NULL.  */
                 sec->output_section will be NULL.  */
              if (r_type == R_SH_GOTPC
              if (r_type == R_SH_GOTPC
                  || r_type == R_SH_GOTPC_LOW16
                  || r_type == R_SH_GOTPC_LOW16
                  || r_type == R_SH_GOTPC_MEDLOW16
                  || r_type == R_SH_GOTPC_MEDLOW16
                  || r_type == R_SH_GOTPC_MEDHI16
                  || r_type == R_SH_GOTPC_MEDHI16
                  || r_type == R_SH_GOTPC_HI16
                  || r_type == R_SH_GOTPC_HI16
                  || ((r_type == R_SH_PLT32
                  || ((r_type == R_SH_PLT32
                       || r_type == R_SH_PLT_LOW16
                       || r_type == R_SH_PLT_LOW16
                       || r_type == R_SH_PLT_MEDLOW16
                       || r_type == R_SH_PLT_MEDLOW16
                       || r_type == R_SH_PLT_MEDHI16
                       || r_type == R_SH_PLT_MEDHI16
                       || r_type == R_SH_PLT_HI16)
                       || r_type == R_SH_PLT_HI16)
                      && h->plt.offset != (bfd_vma) -1)
                      && h->plt.offset != (bfd_vma) -1)
                  || ((r_type == R_SH_GOT32
                  || ((r_type == R_SH_GOT32
                       || r_type == R_SH_GOT_LOW16
                       || r_type == R_SH_GOT_LOW16
                       || r_type == R_SH_GOT_MEDLOW16
                       || r_type == R_SH_GOT_MEDLOW16
                       || r_type == R_SH_GOT_MEDHI16
                       || r_type == R_SH_GOT_MEDHI16
                       || r_type == R_SH_GOT_HI16)
                       || r_type == R_SH_GOT_HI16)
                      && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
                      && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
                      && (! info->shared
                      && (! info->shared
                          || (! info->symbolic && h->dynindx != -1)
                          || (! info->symbolic && h->dynindx != -1)
                          || !h->def_regular))
                          || !h->def_regular))
                  /* The cases above are those in which relocation is
                  /* The cases above are those in which relocation is
                     overwritten in the switch block below.  The cases
                     overwritten in the switch block below.  The cases
                     below are those in which we must defer relocation
                     below are those in which we must defer relocation
                     to run-time, because we can't resolve absolute
                     to run-time, because we can't resolve absolute
                     addresses when creating a shared library.  */
                     addresses when creating a shared library.  */
                  || (info->shared
                  || (info->shared
                      && ((! info->symbolic && h->dynindx != -1)
                      && ((! info->symbolic && h->dynindx != -1)
                          || !h->def_regular)
                          || !h->def_regular)
                      && ((r_type == R_SH_DIR32
                      && ((r_type == R_SH_DIR32
                           && !h->forced_local)
                           && !h->forced_local)
                          || (r_type == R_SH_REL32
                          || (r_type == R_SH_REL32
                              && !SYMBOL_CALLS_LOCAL (info, h)))
                              && !SYMBOL_CALLS_LOCAL (info, h)))
                      && ((input_section->flags & SEC_ALLOC) != 0
                      && ((input_section->flags & SEC_ALLOC) != 0
                          /* DWARF will emit R_SH_DIR32 relocations in its
                          /* DWARF will emit R_SH_DIR32 relocations in its
                             sections against symbols defined externally
                             sections against symbols defined externally
                             in shared libraries.  We can't do anything
                             in shared libraries.  We can't do anything
                             with them here.  */
                             with them here.  */
                          || ((input_section->flags & SEC_DEBUGGING) != 0
                          || ((input_section->flags & SEC_DEBUGGING) != 0
                              && h->def_dynamic)))
                              && h->def_dynamic)))
                  /* Dynamic relocs are not propagated for SEC_DEBUGGING
                  /* Dynamic relocs are not propagated for SEC_DEBUGGING
                     sections because such sections are not SEC_ALLOC and
                     sections because such sections are not SEC_ALLOC and
                     thus ld.so will not process them.  */
                     thus ld.so will not process them.  */
                  || (sec->output_section == NULL
                  || (sec->output_section == NULL
                      && ((input_section->flags & SEC_DEBUGGING) != 0
                      && ((input_section->flags & SEC_DEBUGGING) != 0
                          && h->def_dynamic))
                          && h->def_dynamic))
                  || (sec->output_section == NULL
                  || (sec->output_section == NULL
                      && (sh_elf_hash_entry (h)->tls_type == GOT_TLS_IE
                      && (sh_elf_hash_entry (h)->tls_type == GOT_TLS_IE
                          || sh_elf_hash_entry (h)->tls_type == GOT_TLS_GD)))
                          || sh_elf_hash_entry (h)->tls_type == GOT_TLS_GD)))
                ;
                ;
              else if (sec->output_section != NULL)
              else if (sec->output_section != NULL)
                relocation = ((h->root.u.def.value
                relocation = ((h->root.u.def.value
                              + sec->output_section->vma
                              + sec->output_section->vma
                              + sec->output_offset)
                              + sec->output_offset)
                              /* A STO_SH5_ISA32 causes a "bitor 1" to the
                              /* A STO_SH5_ISA32 causes a "bitor 1" to the
                                 symbol value, unless we've seen
                                 symbol value, unless we've seen
                                 STT_DATALABEL on the way to it.  */
                                 STT_DATALABEL on the way to it.  */
                              | ((h->other & STO_SH5_ISA32) != 0
                              | ((h->other & STO_SH5_ISA32) != 0
                                 && ! seen_stt_datalabel));
                                 && ! seen_stt_datalabel));
              else if (!info->relocatable)
              else if (!info->relocatable)
                {
                {
                  (*_bfd_error_handler)
                  (*_bfd_error_handler)
                    (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
                    (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
                     input_bfd,
                     input_bfd,
                     input_section,
                     input_section,
                     (long) rel->r_offset,
                     (long) rel->r_offset,
                     howto->name,
                     howto->name,
                     h->root.root.string);
                     h->root.root.string);
                  return FALSE;
                  return FALSE;
                }
                }
            }
            }
          else if (h->root.type == bfd_link_hash_undefweak)
          else if (h->root.type == bfd_link_hash_undefweak)
            ;
            ;
          else if (info->unresolved_syms_in_objects == RM_IGNORE
          else if (info->unresolved_syms_in_objects == RM_IGNORE
                   && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
                   && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
            ;
            ;
          else if (!info->relocatable)
          else if (!info->relocatable)
            {
            {
              if (! info->callbacks->undefined_symbol
              if (! info->callbacks->undefined_symbol
                  (info, h->root.root.string, input_bfd,
                  (info, h->root.root.string, input_bfd,
                   input_section, rel->r_offset,
                   input_section, rel->r_offset,
                   (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
                   (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
                    || ELF_ST_VISIBILITY (h->other))))
                    || ELF_ST_VISIBILITY (h->other))))
                return FALSE;
                return FALSE;
            }
            }
        }
        }
 
 
      if (sec != NULL && elf_discarded_section (sec))
      if (sec != NULL && elf_discarded_section (sec))
        {
        {
          /* For relocs against symbols from removed linkonce sections,
          /* For relocs against symbols from removed linkonce sections,
             or sections discarded by a linker script, we just want the
             or sections discarded by a linker script, we just want the
             section contents zeroed.  Avoid any special processing.  */
             section contents zeroed.  Avoid any special processing.  */
          _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
          _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
          rel->r_info = 0;
          rel->r_info = 0;
          rel->r_addend = 0;
          rel->r_addend = 0;
          continue;
          continue;
        }
        }
 
 
      if (info->relocatable)
      if (info->relocatable)
        continue;
        continue;
 
 
      switch ((int) r_type)
      switch ((int) r_type)
        {
        {
        final_link_relocate:
        final_link_relocate:
          /* COFF relocs don't use the addend. The addend is used for
          /* COFF relocs don't use the addend. The addend is used for
             R_SH_DIR32 to be compatible with other compilers.  */
             R_SH_DIR32 to be compatible with other compilers.  */
          r = _bfd_final_link_relocate (howto, input_bfd, input_section,
          r = _bfd_final_link_relocate (howto, input_bfd, input_section,
                                        contents, rel->r_offset,
                                        contents, rel->r_offset,
                                        relocation, addend);
                                        relocation, addend);
          break;
          break;
 
 
        case R_SH_IND12W:
        case R_SH_IND12W:
          goto final_link_relocate;
          goto final_link_relocate;
 
 
        case R_SH_DIR8WPN:
        case R_SH_DIR8WPN:
        case R_SH_DIR8WPZ:
        case R_SH_DIR8WPZ:
        case R_SH_DIR8WPL:
        case R_SH_DIR8WPL:
          /* If the reloc is against the start of this section, then
          /* If the reloc is against the start of this section, then
             the assembler has already taken care of it and the reloc
             the assembler has already taken care of it and the reloc
             is here only to assist in relaxing.  If the reloc is not
             is here only to assist in relaxing.  If the reloc is not
             against the start of this section, then it's against an
             against the start of this section, then it's against an
             external symbol and we must deal with it ourselves.  */
             external symbol and we must deal with it ourselves.  */
          if (input_section->output_section->vma + input_section->output_offset
          if (input_section->output_section->vma + input_section->output_offset
              != relocation)
              != relocation)
            {
            {
              int disp = (relocation
              int disp = (relocation
                          - input_section->output_section->vma
                          - input_section->output_section->vma
                          - input_section->output_offset
                          - input_section->output_offset
                          - rel->r_offset);
                          - rel->r_offset);
              int mask = 0;
              int mask = 0;
              switch (r_type)
              switch (r_type)
                {
                {
                case R_SH_DIR8WPN:
                case R_SH_DIR8WPN:
                case R_SH_DIR8WPZ: mask = 1; break;
                case R_SH_DIR8WPZ: mask = 1; break;
                case R_SH_DIR8WPL: mask = 3; break;
                case R_SH_DIR8WPL: mask = 3; break;
                default: mask = 0; break;
                default: mask = 0; break;
                }
                }
              if (disp & mask)
              if (disp & mask)
                {
                {
                  ((*_bfd_error_handler)
                  ((*_bfd_error_handler)
                   (_("%B: 0x%lx: fatal: unaligned branch target for relax-support relocation"),
                   (_("%B: 0x%lx: fatal: unaligned branch target for relax-support relocation"),
                    input_section->owner,
                    input_section->owner,
                    (unsigned long) rel->r_offset));
                    (unsigned long) rel->r_offset));
                  bfd_set_error (bfd_error_bad_value);
                  bfd_set_error (bfd_error_bad_value);
                  return FALSE;
                  return FALSE;
                }
                }
              relocation -= 4;
              relocation -= 4;
              goto final_link_relocate;
              goto final_link_relocate;
            }
            }
          r = bfd_reloc_ok;
          r = bfd_reloc_ok;
          break;
          break;
 
 
        default:
        default:
#ifdef INCLUDE_SHMEDIA
#ifdef INCLUDE_SHMEDIA
          if (shmedia_prepare_reloc (info, input_bfd, input_section,
          if (shmedia_prepare_reloc (info, input_bfd, input_section,
                                     contents, rel, &relocation))
                                     contents, rel, &relocation))
            goto final_link_relocate;
            goto final_link_relocate;
#endif
#endif
          bfd_set_error (bfd_error_bad_value);
          bfd_set_error (bfd_error_bad_value);
          return FALSE;
          return FALSE;
 
 
        case R_SH_DIR16:
        case R_SH_DIR16:
        case R_SH_DIR8:
        case R_SH_DIR8:
        case R_SH_DIR8U:
        case R_SH_DIR8U:
        case R_SH_DIR8S:
        case R_SH_DIR8S:
        case R_SH_DIR4U:
        case R_SH_DIR4U:
          goto final_link_relocate;
          goto final_link_relocate;
 
 
        case R_SH_DIR8UL:
        case R_SH_DIR8UL:
        case R_SH_DIR4UL:
        case R_SH_DIR4UL:
          if (relocation & 3)
          if (relocation & 3)
            {
            {
              ((*_bfd_error_handler)
              ((*_bfd_error_handler)
               (_("%B: 0x%lx: fatal: unaligned %s relocation 0x%lx"),
               (_("%B: 0x%lx: fatal: unaligned %s relocation 0x%lx"),
                input_section->owner,
                input_section->owner,
                (unsigned long) rel->r_offset, howto->name,
                (unsigned long) rel->r_offset, howto->name,
                (unsigned long) relocation));
                (unsigned long) relocation));
              bfd_set_error (bfd_error_bad_value);
              bfd_set_error (bfd_error_bad_value);
              return FALSE;
              return FALSE;
            }
            }
          goto final_link_relocate;
          goto final_link_relocate;
 
 
        case R_SH_DIR8UW:
        case R_SH_DIR8UW:
        case R_SH_DIR8SW:
        case R_SH_DIR8SW:
        case R_SH_DIR4UW:
        case R_SH_DIR4UW:
          if (relocation & 1)
          if (relocation & 1)
            {
            {
              ((*_bfd_error_handler)
              ((*_bfd_error_handler)
               (_("%B: 0x%lx: fatal: unaligned %s relocation 0x%lx"),
               (_("%B: 0x%lx: fatal: unaligned %s relocation 0x%lx"),
                input_section->owner,
                input_section->owner,
                (unsigned long) rel->r_offset, howto->name,
                (unsigned long) rel->r_offset, howto->name,
                (unsigned long) relocation));
                (unsigned long) relocation));
              bfd_set_error (bfd_error_bad_value);
              bfd_set_error (bfd_error_bad_value);
              return FALSE;
              return FALSE;
            }
            }
          goto final_link_relocate;
          goto final_link_relocate;
 
 
        case R_SH_PSHA:
        case R_SH_PSHA:
          if ((signed int)relocation < -32
          if ((signed int)relocation < -32
              || (signed int)relocation > 32)
              || (signed int)relocation > 32)
            {
            {
              ((*_bfd_error_handler)
              ((*_bfd_error_handler)
               (_("%B: 0x%lx: fatal: R_SH_PSHA relocation %d not in range -32..32"),
               (_("%B: 0x%lx: fatal: R_SH_PSHA relocation %d not in range -32..32"),
                input_section->owner,
                input_section->owner,
                (unsigned long) rel->r_offset,
                (unsigned long) rel->r_offset,
                (unsigned long) relocation));
                (unsigned long) relocation));
              bfd_set_error (bfd_error_bad_value);
              bfd_set_error (bfd_error_bad_value);
              return FALSE;
              return FALSE;
            }
            }
          goto final_link_relocate;
          goto final_link_relocate;
 
 
        case R_SH_PSHL:
        case R_SH_PSHL:
          if ((signed int)relocation < -16
          if ((signed int)relocation < -16
              || (signed int)relocation > 16)
              || (signed int)relocation > 16)
            {
            {
              ((*_bfd_error_handler)
              ((*_bfd_error_handler)
               (_("%B: 0x%lx: fatal: R_SH_PSHL relocation %d not in range -32..32"),
               (_("%B: 0x%lx: fatal: R_SH_PSHL relocation %d not in range -32..32"),
                input_section->owner,
                input_section->owner,
                (unsigned long) rel->r_offset,
                (unsigned long) rel->r_offset,
                (unsigned long) relocation));
                (unsigned long) relocation));
              bfd_set_error (bfd_error_bad_value);
              bfd_set_error (bfd_error_bad_value);
              return FALSE;
              return FALSE;
            }
            }
          goto final_link_relocate;
          goto final_link_relocate;
 
 
        case R_SH_DIR32:
        case R_SH_DIR32:
        case R_SH_REL32:
        case R_SH_REL32:
#ifdef INCLUDE_SHMEDIA
#ifdef INCLUDE_SHMEDIA
        case R_SH_IMM_LOW16_PCREL:
        case R_SH_IMM_LOW16_PCREL:
        case R_SH_IMM_MEDLOW16_PCREL:
        case R_SH_IMM_MEDLOW16_PCREL:
        case R_SH_IMM_MEDHI16_PCREL:
        case R_SH_IMM_MEDHI16_PCREL:
        case R_SH_IMM_HI16_PCREL:
        case R_SH_IMM_HI16_PCREL:
#endif
#endif
          if (info->shared
          if (info->shared
              && (h == NULL
              && (h == NULL
                  || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
                  || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
                  || h->root.type != bfd_link_hash_undefweak)
                  || h->root.type != bfd_link_hash_undefweak)
              && r_symndx != 0
              && r_symndx != 0
              && (input_section->flags & SEC_ALLOC) != 0
              && (input_section->flags & SEC_ALLOC) != 0
              && !is_vxworks_tls
              && !is_vxworks_tls
              && (r_type == R_SH_DIR32
              && (r_type == R_SH_DIR32
                  || !SYMBOL_CALLS_LOCAL (info, h)))
                  || !SYMBOL_CALLS_LOCAL (info, h)))
            {
            {
              Elf_Internal_Rela outrel;
              Elf_Internal_Rela outrel;
              bfd_byte *loc;
              bfd_byte *loc;
              bfd_boolean skip, relocate;
              bfd_boolean skip, relocate;
 
 
              /* When generating a shared object, these relocations
              /* When generating a shared object, these relocations
                 are copied into the output file to be resolved at run
                 are copied into the output file to be resolved at run
                 time.  */
                 time.  */
 
 
              if (sreloc == NULL)
              if (sreloc == NULL)
                {
                {
                  sreloc = _bfd_elf_get_dynamic_reloc_section
                  sreloc = _bfd_elf_get_dynamic_reloc_section
                    (input_bfd, input_section, /*rela?*/ TRUE);
                    (input_bfd, input_section, /*rela?*/ TRUE);
                  if (sreloc == NULL)
                  if (sreloc == NULL)
                    return FALSE;
                    return FALSE;
                }
                }
 
 
              skip = FALSE;
              skip = FALSE;
              relocate = FALSE;
              relocate = FALSE;
 
 
              outrel.r_offset =
              outrel.r_offset =
                _bfd_elf_section_offset (output_bfd, info, input_section,
                _bfd_elf_section_offset (output_bfd, info, input_section,
                                         rel->r_offset);
                                         rel->r_offset);
              if (outrel.r_offset == (bfd_vma) -1)
              if (outrel.r_offset == (bfd_vma) -1)
                skip = TRUE;
                skip = TRUE;
              else if (outrel.r_offset == (bfd_vma) -2)
              else if (outrel.r_offset == (bfd_vma) -2)
                skip = TRUE, relocate = TRUE;
                skip = TRUE, relocate = TRUE;
              outrel.r_offset += (input_section->output_section->vma
              outrel.r_offset += (input_section->output_section->vma
                                  + input_section->output_offset);
                                  + input_section->output_offset);
 
 
              if (skip)
              if (skip)
                memset (&outrel, 0, sizeof outrel);
                memset (&outrel, 0, sizeof outrel);
              else if (r_type == R_SH_REL32)
              else if (r_type == R_SH_REL32)
                {
                {
                  BFD_ASSERT (h != NULL && h->dynindx != -1);
                  BFD_ASSERT (h != NULL && h->dynindx != -1);
                  outrel.r_info = ELF32_R_INFO (h->dynindx, R_SH_REL32);
                  outrel.r_info = ELF32_R_INFO (h->dynindx, R_SH_REL32);
                  outrel.r_addend
                  outrel.r_addend
                    = (howto->partial_inplace
                    = (howto->partial_inplace
                       ? bfd_get_32 (input_bfd, contents + rel->r_offset)
                       ? bfd_get_32 (input_bfd, contents + rel->r_offset)
                       : addend);
                       : addend);
                }
                }
#ifdef INCLUDE_SHMEDIA
#ifdef INCLUDE_SHMEDIA
              else if (r_type == R_SH_IMM_LOW16_PCREL
              else if (r_type == R_SH_IMM_LOW16_PCREL
                       || r_type == R_SH_IMM_MEDLOW16_PCREL
                       || r_type == R_SH_IMM_MEDLOW16_PCREL
                       || r_type == R_SH_IMM_MEDHI16_PCREL
                       || r_type == R_SH_IMM_MEDHI16_PCREL
                       || r_type == R_SH_IMM_HI16_PCREL)
                       || r_type == R_SH_IMM_HI16_PCREL)
                {
                {
                  BFD_ASSERT (h != NULL && h->dynindx != -1);
                  BFD_ASSERT (h != NULL && h->dynindx != -1);
                  outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
                  outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
                  outrel.r_addend = addend;
                  outrel.r_addend = addend;
                }
                }
#endif
#endif
              else
              else
                {
                {
                  /* h->dynindx may be -1 if this symbol was marked to
                  /* h->dynindx may be -1 if this symbol was marked to
                     become local.  */
                     become local.  */
                  if (h == NULL
                  if (h == NULL
                      || ((info->symbolic || h->dynindx == -1)
                      || ((info->symbolic || h->dynindx == -1)
                          && h->def_regular))
                          && h->def_regular))
                    {
                    {
                      relocate = howto->partial_inplace;
                      relocate = howto->partial_inplace;
                      outrel.r_info = ELF32_R_INFO (0, R_SH_RELATIVE);
                      outrel.r_info = ELF32_R_INFO (0, R_SH_RELATIVE);
                    }
                    }
                  else
                  else
                    {
                    {
                      BFD_ASSERT (h->dynindx != -1);
                      BFD_ASSERT (h->dynindx != -1);
                      outrel.r_info = ELF32_R_INFO (h->dynindx, R_SH_DIR32);
                      outrel.r_info = ELF32_R_INFO (h->dynindx, R_SH_DIR32);
                    }
                    }
                  outrel.r_addend = relocation;
                  outrel.r_addend = relocation;
                  outrel.r_addend
                  outrel.r_addend
                    += (howto->partial_inplace
                    += (howto->partial_inplace
                        ? bfd_get_32 (input_bfd, contents + rel->r_offset)
                        ? bfd_get_32 (input_bfd, contents + rel->r_offset)
                        : addend);
                        : addend);
                }
                }
 
 
              loc = sreloc->contents;
              loc = sreloc->contents;
              loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
              loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
              bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
              bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
 
 
              /* If this reloc is against an external symbol, we do
              /* If this reloc is against an external symbol, we do
                 not want to fiddle with the addend.  Otherwise, we
                 not want to fiddle with the addend.  Otherwise, we
                 need to include the symbol value so that it becomes
                 need to include the symbol value so that it becomes
                 an addend for the dynamic reloc.  */
                 an addend for the dynamic reloc.  */
              if (! relocate)
              if (! relocate)
                continue;
                continue;
            }
            }
          goto final_link_relocate;
          goto final_link_relocate;
 
 
        case R_SH_GOTPLT32:
        case R_SH_GOTPLT32:
#ifdef INCLUDE_SHMEDIA
#ifdef INCLUDE_SHMEDIA
        case R_SH_GOTPLT_LOW16:
        case R_SH_GOTPLT_LOW16:
        case R_SH_GOTPLT_MEDLOW16:
        case R_SH_GOTPLT_MEDLOW16:
        case R_SH_GOTPLT_MEDHI16:
        case R_SH_GOTPLT_MEDHI16:
        case R_SH_GOTPLT_HI16:
        case R_SH_GOTPLT_HI16:
        case R_SH_GOTPLT10BY4:
        case R_SH_GOTPLT10BY4:
        case R_SH_GOTPLT10BY8:
        case R_SH_GOTPLT10BY8:
#endif
#endif
          /* Relocation is to the entry for this symbol in the
          /* Relocation is to the entry for this symbol in the
             procedure linkage table.  */
             procedure linkage table.  */
 
 
          if (h == NULL
          if (h == NULL
              || h->forced_local
              || h->forced_local
              || ! info->shared
              || ! info->shared
              || info->symbolic
              || info->symbolic
              || h->dynindx == -1
              || h->dynindx == -1
              || h->plt.offset == (bfd_vma) -1
              || h->plt.offset == (bfd_vma) -1
              || h->got.offset != (bfd_vma) -1)
              || h->got.offset != (bfd_vma) -1)
            goto force_got;
            goto force_got;
 
 
          /* Relocation is to the entry for this symbol in the global
          /* Relocation is to the entry for this symbol in the global
             offset table extension for the procedure linkage table.  */
             offset table extension for the procedure linkage table.  */
 
 
          BFD_ASSERT (sgotplt != NULL);
          BFD_ASSERT (sgotplt != NULL);
          relocation = (sgotplt->output_offset
          relocation = (sgotplt->output_offset
                        + (get_plt_index (htab->plt_info, h->plt.offset)
                        + (get_plt_index (htab->plt_info, h->plt.offset)
                           + 3) * 4);
                           + 3) * 4);
 
 
#ifdef GOT_BIAS
#ifdef GOT_BIAS
          relocation -= GOT_BIAS;
          relocation -= GOT_BIAS;
#endif
#endif
 
 
          goto final_link_relocate;
          goto final_link_relocate;
 
 
        force_got:
        force_got:
        case R_SH_GOT32:
        case R_SH_GOT32:
#ifdef INCLUDE_SHMEDIA
#ifdef INCLUDE_SHMEDIA
        case R_SH_GOT_LOW16:
        case R_SH_GOT_LOW16:
        case R_SH_GOT_MEDLOW16:
        case R_SH_GOT_MEDLOW16:
        case R_SH_GOT_MEDHI16:
        case R_SH_GOT_MEDHI16:
        case R_SH_GOT_HI16:
        case R_SH_GOT_HI16:
        case R_SH_GOT10BY4:
        case R_SH_GOT10BY4:
        case R_SH_GOT10BY8:
        case R_SH_GOT10BY8:
#endif
#endif
          /* Relocation is to the entry for this symbol in the global
          /* Relocation is to the entry for this symbol in the global
             offset table.  */
             offset table.  */
 
 
          BFD_ASSERT (sgot != NULL);
          BFD_ASSERT (sgot != NULL);
 
 
          if (h != NULL)
          if (h != NULL)
            {
            {
              bfd_boolean dyn;
              bfd_boolean dyn;
 
 
              off = h->got.offset;
              off = h->got.offset;
#ifdef INCLUDE_SHMEDIA
#ifdef INCLUDE_SHMEDIA
              if (seen_stt_datalabel)
              if (seen_stt_datalabel)
                {
                {
                  struct elf_sh_link_hash_entry *hsh;
                  struct elf_sh_link_hash_entry *hsh;
 
 
                  hsh = (struct elf_sh_link_hash_entry *)h;
                  hsh = (struct elf_sh_link_hash_entry *)h;
                  off = hsh->datalabel_got.offset;
                  off = hsh->datalabel_got.offset;
                }
                }
#endif
#endif
              BFD_ASSERT (off != (bfd_vma) -1);
              BFD_ASSERT (off != (bfd_vma) -1);
 
 
              dyn = htab->root.dynamic_sections_created;
              dyn = htab->root.dynamic_sections_created;
              if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
              if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
                  || (info->shared
                  || (info->shared
                      && SYMBOL_REFERENCES_LOCAL (info, h))
                      && SYMBOL_REFERENCES_LOCAL (info, h))
                  || (ELF_ST_VISIBILITY (h->other)
                  || (ELF_ST_VISIBILITY (h->other)
                      && h->root.type == bfd_link_hash_undefweak))
                      && h->root.type == bfd_link_hash_undefweak))
                {
                {
                  /* This is actually a static link, or it is a
                  /* This is actually a static link, or it is a
                     -Bsymbolic link and the symbol is defined
                     -Bsymbolic link and the symbol is defined
                     locally, or the symbol was forced to be local
                     locally, or the symbol was forced to be local
                     because of a version file.  We must initialize
                     because of a version file.  We must initialize
                     this entry in the global offset table.  Since the
                     this entry in the global offset table.  Since the
                     offset must always be a multiple of 4, we use the
                     offset must always be a multiple of 4, we use the
                     least significant bit to record whether we have
                     least significant bit to record whether we have
                     initialized it already.
                     initialized it already.
 
 
                     When doing a dynamic link, we create a .rela.got
                     When doing a dynamic link, we create a .rela.got
                     relocation entry to initialize the value.  This
                     relocation entry to initialize the value.  This
                     is done in the finish_dynamic_symbol routine.  */
                     is done in the finish_dynamic_symbol routine.  */
                  if ((off & 1) != 0)
                  if ((off & 1) != 0)
                    off &= ~1;
                    off &= ~1;
                  else
                  else
                    {
                    {
                      bfd_put_32 (output_bfd, relocation,
                      bfd_put_32 (output_bfd, relocation,
                                  sgot->contents + off);
                                  sgot->contents + off);
#ifdef INCLUDE_SHMEDIA
#ifdef INCLUDE_SHMEDIA
                      if (seen_stt_datalabel)
                      if (seen_stt_datalabel)
                        {
                        {
                          struct elf_sh_link_hash_entry *hsh;
                          struct elf_sh_link_hash_entry *hsh;
 
 
                          hsh = (struct elf_sh_link_hash_entry *)h;
                          hsh = (struct elf_sh_link_hash_entry *)h;
                          hsh->datalabel_got.offset |= 1;
                          hsh->datalabel_got.offset |= 1;
                        }
                        }
                      else
                      else
#endif
#endif
                        h->got.offset |= 1;
                        h->got.offset |= 1;
                    }
                    }
                }
                }
 
 
              relocation = sgot->output_offset + off;
              relocation = sgot->output_offset + off;
            }
            }
          else
          else
            {
            {
#ifdef INCLUDE_SHMEDIA
#ifdef INCLUDE_SHMEDIA
              if (rel->r_addend)
              if (rel->r_addend)
                {
                {
                  BFD_ASSERT (local_got_offsets != NULL
                  BFD_ASSERT (local_got_offsets != NULL
                              && (local_got_offsets[symtab_hdr->sh_info
                              && (local_got_offsets[symtab_hdr->sh_info
                                                    + r_symndx]
                                                    + r_symndx]
                                  != (bfd_vma) -1));
                                  != (bfd_vma) -1));
 
 
                  off = local_got_offsets[symtab_hdr->sh_info
                  off = local_got_offsets[symtab_hdr->sh_info
                                          + r_symndx];
                                          + r_symndx];
                }
                }
              else
              else
                {
                {
#endif
#endif
              BFD_ASSERT (local_got_offsets != NULL
              BFD_ASSERT (local_got_offsets != NULL
                          && local_got_offsets[r_symndx] != (bfd_vma) -1);
                          && local_got_offsets[r_symndx] != (bfd_vma) -1);
 
 
              off = local_got_offsets[r_symndx];
              off = local_got_offsets[r_symndx];
#ifdef INCLUDE_SHMEDIA
#ifdef INCLUDE_SHMEDIA
                }
                }
#endif
#endif
 
 
              /* The offset must always be a multiple of 4.  We use
              /* The offset must always be a multiple of 4.  We use
                 the least significant bit to record whether we have
                 the least significant bit to record whether we have
                 already generated the necessary reloc.  */
                 already generated the necessary reloc.  */
              if ((off & 1) != 0)
              if ((off & 1) != 0)
                off &= ~1;
                off &= ~1;
              else
              else
                {
                {
                  bfd_put_32 (output_bfd, relocation, sgot->contents + off);
                  bfd_put_32 (output_bfd, relocation, sgot->contents + off);
 
 
                  if (info->shared)
                  if (info->shared)
                    {
                    {
                      Elf_Internal_Rela outrel;
                      Elf_Internal_Rela outrel;
                      bfd_byte *loc;
                      bfd_byte *loc;
 
 
                      if (srelgot == NULL)
                      if (srelgot == NULL)
                        {
                        {
                          srelgot = bfd_get_section_by_name (dynobj,
                          srelgot = bfd_get_section_by_name (dynobj,
                                                             ".rela.got");
                                                             ".rela.got");
                          BFD_ASSERT (srelgot != NULL);
                          BFD_ASSERT (srelgot != NULL);
                        }
                        }
 
 
                      outrel.r_offset = (sgot->output_section->vma
                      outrel.r_offset = (sgot->output_section->vma
                                         + sgot->output_offset
                                         + sgot->output_offset
                                         + off);
                                         + off);
                      outrel.r_info = ELF32_R_INFO (0, R_SH_RELATIVE);
                      outrel.r_info = ELF32_R_INFO (0, R_SH_RELATIVE);
                      outrel.r_addend = relocation;
                      outrel.r_addend = relocation;
                      loc = srelgot->contents;
                      loc = srelgot->contents;
                      loc += srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
                      loc += srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
                      bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
                      bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
                    }
                    }
 
 
#ifdef INCLUDE_SHMEDIA
#ifdef INCLUDE_SHMEDIA
                  if (rel->r_addend)
                  if (rel->r_addend)
                    local_got_offsets[symtab_hdr->sh_info + r_symndx] |= 1;
                    local_got_offsets[symtab_hdr->sh_info + r_symndx] |= 1;
                  else
                  else
#endif
#endif
                    local_got_offsets[r_symndx] |= 1;
                    local_got_offsets[r_symndx] |= 1;
                }
                }
 
 
              relocation = sgot->output_offset + off;
              relocation = sgot->output_offset + off;
            }
            }
 
 
#ifdef GOT_BIAS
#ifdef GOT_BIAS
          relocation -= GOT_BIAS;
          relocation -= GOT_BIAS;
#endif
#endif
 
 
          goto final_link_relocate;
          goto final_link_relocate;
 
 
        case R_SH_GOTOFF:
        case R_SH_GOTOFF:
#ifdef INCLUDE_SHMEDIA
#ifdef INCLUDE_SHMEDIA
        case R_SH_GOTOFF_LOW16:
        case R_SH_GOTOFF_LOW16:
        case R_SH_GOTOFF_MEDLOW16:
        case R_SH_GOTOFF_MEDLOW16:
        case R_SH_GOTOFF_MEDHI16:
        case R_SH_GOTOFF_MEDHI16:
        case R_SH_GOTOFF_HI16:
        case R_SH_GOTOFF_HI16:
#endif
#endif
          /* Relocation is relative to the start of the global offset
          /* Relocation is relative to the start of the global offset
             table.  */
             table.  */
 
 
          BFD_ASSERT (sgot != NULL);
          BFD_ASSERT (sgot != NULL);
 
 
          /* Note that sgot->output_offset is not involved in this
          /* Note that sgot->output_offset is not involved in this
             calculation.  We always want the start of .got.  If we
             calculation.  We always want the start of .got.  If we
             defined _GLOBAL_OFFSET_TABLE in a different way, as is
             defined _GLOBAL_OFFSET_TABLE in a different way, as is
             permitted by the ABI, we might have to change this
             permitted by the ABI, we might have to change this
             calculation.  */
             calculation.  */
          relocation -= sgot->output_section->vma;
          relocation -= sgot->output_section->vma;
 
 
#ifdef GOT_BIAS
#ifdef GOT_BIAS
          relocation -= GOT_BIAS;
          relocation -= GOT_BIAS;
#endif
#endif
 
 
          addend = rel->r_addend;
          addend = rel->r_addend;
 
 
          goto final_link_relocate;
          goto final_link_relocate;
 
 
        case R_SH_GOTPC:
        case R_SH_GOTPC:
#ifdef INCLUDE_SHMEDIA
#ifdef INCLUDE_SHMEDIA
        case R_SH_GOTPC_LOW16:
        case R_SH_GOTPC_LOW16:
        case R_SH_GOTPC_MEDLOW16:
        case R_SH_GOTPC_MEDLOW16:
        case R_SH_GOTPC_MEDHI16:
        case R_SH_GOTPC_MEDHI16:
        case R_SH_GOTPC_HI16:
        case R_SH_GOTPC_HI16:
#endif
#endif
          /* Use global offset table as symbol value.  */
          /* Use global offset table as symbol value.  */
 
 
          BFD_ASSERT (sgot != NULL);
          BFD_ASSERT (sgot != NULL);
          relocation = sgot->output_section->vma;
          relocation = sgot->output_section->vma;
 
 
#ifdef GOT_BIAS
#ifdef GOT_BIAS
          relocation += GOT_BIAS;
          relocation += GOT_BIAS;
#endif
#endif
 
 
          addend = rel->r_addend;
          addend = rel->r_addend;
 
 
          goto final_link_relocate;
          goto final_link_relocate;
 
 
        case R_SH_PLT32:
        case R_SH_PLT32:
#ifdef INCLUDE_SHMEDIA
#ifdef INCLUDE_SHMEDIA
        case R_SH_PLT_LOW16:
        case R_SH_PLT_LOW16:
        case R_SH_PLT_MEDLOW16:
        case R_SH_PLT_MEDLOW16:
        case R_SH_PLT_MEDHI16:
        case R_SH_PLT_MEDHI16:
        case R_SH_PLT_HI16:
        case R_SH_PLT_HI16:
#endif
#endif
          /* Relocation is to the entry for this symbol in the
          /* Relocation is to the entry for this symbol in the
             procedure linkage table.  */
             procedure linkage table.  */
 
 
          /* Resolve a PLT reloc against a local symbol directly,
          /* Resolve a PLT reloc against a local symbol directly,
             without using the procedure linkage table.  */
             without using the procedure linkage table.  */
          if (h == NULL)
          if (h == NULL)
            goto final_link_relocate;
            goto final_link_relocate;
 
 
          if (h->forced_local)
          if (h->forced_local)
            goto final_link_relocate;
            goto final_link_relocate;
 
 
          if (h->plt.offset == (bfd_vma) -1)
          if (h->plt.offset == (bfd_vma) -1)
            {
            {
              /* We didn't make a PLT entry for this symbol.  This
              /* We didn't make a PLT entry for this symbol.  This
                 happens when statically linking PIC code, or when
                 happens when statically linking PIC code, or when
                 using -Bsymbolic.  */
                 using -Bsymbolic.  */
              goto final_link_relocate;
              goto final_link_relocate;
            }
            }
 
 
          BFD_ASSERT (splt != NULL);
          BFD_ASSERT (splt != NULL);
          relocation = (splt->output_section->vma
          relocation = (splt->output_section->vma
                        + splt->output_offset
                        + splt->output_offset
                        + h->plt.offset);
                        + h->plt.offset);
 
 
#ifdef INCLUDE_SHMEDIA
#ifdef INCLUDE_SHMEDIA
          relocation++;
          relocation++;
#endif
#endif
 
 
          addend = rel->r_addend;
          addend = rel->r_addend;
 
 
          goto final_link_relocate;
          goto final_link_relocate;
 
 
        case R_SH_LOOP_START:
        case R_SH_LOOP_START:
          {
          {
            static bfd_vma start, end;
            static bfd_vma start, end;
 
 
            start = (relocation + rel->r_addend
            start = (relocation + rel->r_addend
                     - (sec->output_section->vma + sec->output_offset));
                     - (sec->output_section->vma + sec->output_offset));
            r = sh_elf_reloc_loop (r_type, input_bfd, input_section, contents,
            r = sh_elf_reloc_loop (r_type, input_bfd, input_section, contents,
                                   rel->r_offset, sec, start, end);
                                   rel->r_offset, sec, start, end);
            break;
            break;
 
 
        case R_SH_LOOP_END:
        case R_SH_LOOP_END:
            end = (relocation + rel->r_addend
            end = (relocation + rel->r_addend
                   - (sec->output_section->vma + sec->output_offset));
                   - (sec->output_section->vma + sec->output_offset));
            r = sh_elf_reloc_loop (r_type, input_bfd, input_section, contents,
            r = sh_elf_reloc_loop (r_type, input_bfd, input_section, contents,
                                   rel->r_offset, sec, start, end);
                                   rel->r_offset, sec, start, end);
            break;
            break;
          }
          }
 
 
        case R_SH_TLS_GD_32:
        case R_SH_TLS_GD_32:
        case R_SH_TLS_IE_32:
        case R_SH_TLS_IE_32:
          r_type = sh_elf_optimized_tls_reloc (info, r_type, h == NULL);
          r_type = sh_elf_optimized_tls_reloc (info, r_type, h == NULL);
          tls_type = GOT_UNKNOWN;
          tls_type = GOT_UNKNOWN;
          if (h == NULL && local_got_offsets)
          if (h == NULL && local_got_offsets)
            tls_type = sh_elf_local_got_tls_type (input_bfd) [r_symndx];
            tls_type = sh_elf_local_got_tls_type (input_bfd) [r_symndx];
          else if (h != NULL)
          else if (h != NULL)
            {
            {
              tls_type = sh_elf_hash_entry (h)->tls_type;
              tls_type = sh_elf_hash_entry (h)->tls_type;
              if (! info->shared
              if (! info->shared
                  && (h->dynindx == -1
                  && (h->dynindx == -1
                      || h->def_regular))
                      || h->def_regular))
                r_type = R_SH_TLS_LE_32;
                r_type = R_SH_TLS_LE_32;
            }
            }
 
 
          if (r_type == R_SH_TLS_GD_32 && tls_type == GOT_TLS_IE)
          if (r_type == R_SH_TLS_GD_32 && tls_type == GOT_TLS_IE)
            r_type = R_SH_TLS_IE_32;
            r_type = R_SH_TLS_IE_32;
 
 
          if (r_type == R_SH_TLS_LE_32)
          if (r_type == R_SH_TLS_LE_32)
            {
            {
              bfd_vma offset;
              bfd_vma offset;
              unsigned short insn;
              unsigned short insn;
 
 
              if (ELF32_R_TYPE (rel->r_info) == R_SH_TLS_GD_32)
              if (ELF32_R_TYPE (rel->r_info) == R_SH_TLS_GD_32)
                {
                {
                  /* GD->LE transition:
                  /* GD->LE transition:
                       mov.l 1f,r4; mova 2f,r0; mov.l 2f,r1; add r0,r1;
                       mov.l 1f,r4; mova 2f,r0; mov.l 2f,r1; add r0,r1;
                       jsr @r1; add r12,r4; bra 3f; nop; .align 2;
                       jsr @r1; add r12,r4; bra 3f; nop; .align 2;
                       1: .long x$TLSGD; 2: .long __tls_get_addr@PLT; 3:
                       1: .long x$TLSGD; 2: .long __tls_get_addr@PLT; 3:
                     We change it into:
                     We change it into:
                       mov.l 1f,r4; stc gbr,r0; add r4,r0; nop;
                       mov.l 1f,r4; stc gbr,r0; add r4,r0; nop;
                       nop; nop; ...
                       nop; nop; ...
                       1: .long x@TPOFF; 2: .long __tls_get_addr@PLT; 3:.  */
                       1: .long x@TPOFF; 2: .long __tls_get_addr@PLT; 3:.  */
 
 
                  offset = rel->r_offset;
                  offset = rel->r_offset;
                  BFD_ASSERT (offset >= 16);
                  BFD_ASSERT (offset >= 16);
                  /* Size of GD instructions is 16 or 18.  */
                  /* Size of GD instructions is 16 or 18.  */
                  offset -= 16;
                  offset -= 16;
                  insn = bfd_get_16 (input_bfd, contents + offset + 0);
                  insn = bfd_get_16 (input_bfd, contents + offset + 0);
                  if ((insn & 0xff00) == 0xc700)
                  if ((insn & 0xff00) == 0xc700)
                    {
                    {
                      BFD_ASSERT (offset >= 2);
                      BFD_ASSERT (offset >= 2);
                      offset -= 2;
                      offset -= 2;
                      insn = bfd_get_16 (input_bfd, contents + offset + 0);
                      insn = bfd_get_16 (input_bfd, contents + offset + 0);
                    }
                    }
 
 
                  BFD_ASSERT ((insn & 0xff00) == 0xd400);
                  BFD_ASSERT ((insn & 0xff00) == 0xd400);
                  insn = bfd_get_16 (input_bfd, contents + offset + 2);
                  insn = bfd_get_16 (input_bfd, contents + offset + 2);
                  BFD_ASSERT ((insn & 0xff00) == 0xc700);
                  BFD_ASSERT ((insn & 0xff00) == 0xc700);
                  insn = bfd_get_16 (input_bfd, contents + offset + 4);
                  insn = bfd_get_16 (input_bfd, contents + offset + 4);
                  BFD_ASSERT ((insn & 0xff00) == 0xd100);
                  BFD_ASSERT ((insn & 0xff00) == 0xd100);
                  insn = bfd_get_16 (input_bfd, contents + offset + 6);
                  insn = bfd_get_16 (input_bfd, contents + offset + 6);
                  BFD_ASSERT (insn == 0x310c);
                  BFD_ASSERT (insn == 0x310c);
                  insn = bfd_get_16 (input_bfd, contents + offset + 8);
                  insn = bfd_get_16 (input_bfd, contents + offset + 8);
                  BFD_ASSERT (insn == 0x410b);
                  BFD_ASSERT (insn == 0x410b);
                  insn = bfd_get_16 (input_bfd, contents + offset + 10);
                  insn = bfd_get_16 (input_bfd, contents + offset + 10);
                  BFD_ASSERT (insn == 0x34cc);
                  BFD_ASSERT (insn == 0x34cc);
 
 
                  bfd_put_16 (output_bfd, 0x0012, contents + offset + 2);
                  bfd_put_16 (output_bfd, 0x0012, contents + offset + 2);
                  bfd_put_16 (output_bfd, 0x304c, contents + offset + 4);
                  bfd_put_16 (output_bfd, 0x304c, contents + offset + 4);
                  bfd_put_16 (output_bfd, 0x0009, contents + offset + 6);
                  bfd_put_16 (output_bfd, 0x0009, contents + offset + 6);
                  bfd_put_16 (output_bfd, 0x0009, contents + offset + 8);
                  bfd_put_16 (output_bfd, 0x0009, contents + offset + 8);
                  bfd_put_16 (output_bfd, 0x0009, contents + offset + 10);
                  bfd_put_16 (output_bfd, 0x0009, contents + offset + 10);
                }
                }
              else
              else
                {
                {
                  int index;
                  int index;
 
 
                  /* IE->LE transition:
                  /* IE->LE transition:
                     mov.l 1f,r0; stc gbr,rN; mov.l @(r0,r12),rM;
                     mov.l 1f,r0; stc gbr,rN; mov.l @(r0,r12),rM;
                     bra 2f; add ...; .align 2; 1: x@GOTTPOFF; 2:
                     bra 2f; add ...; .align 2; 1: x@GOTTPOFF; 2:
                     We change it into:
                     We change it into:
                     mov.l .Ln,rM; stc gbr,rN; nop; ...;
                     mov.l .Ln,rM; stc gbr,rN; nop; ...;
                     1: x@TPOFF; 2:.  */
                     1: x@TPOFF; 2:.  */
 
 
                  offset = rel->r_offset;
                  offset = rel->r_offset;
                  BFD_ASSERT (offset >= 16);
                  BFD_ASSERT (offset >= 16);
                  /* Size of IE instructions is 10 or 12.  */
                  /* Size of IE instructions is 10 or 12.  */
                  offset -= 10;
                  offset -= 10;
                  insn = bfd_get_16 (input_bfd, contents + offset + 0);
                  insn = bfd_get_16 (input_bfd, contents + offset + 0);
                  if ((insn & 0xf0ff) == 0x0012)
                  if ((insn & 0xf0ff) == 0x0012)
                    {
                    {
                      BFD_ASSERT (offset >= 2);
                      BFD_ASSERT (offset >= 2);
                      offset -= 2;
                      offset -= 2;
                      insn = bfd_get_16 (input_bfd, contents + offset + 0);
                      insn = bfd_get_16 (input_bfd, contents + offset + 0);
                    }
                    }
 
 
                  BFD_ASSERT ((insn & 0xff00) == 0xd000);
                  BFD_ASSERT ((insn & 0xff00) == 0xd000);
                  index = insn & 0x00ff;
                  index = insn & 0x00ff;
                  insn = bfd_get_16 (input_bfd, contents + offset + 2);
                  insn = bfd_get_16 (input_bfd, contents + offset + 2);
                  BFD_ASSERT ((insn & 0xf0ff) == 0x0012);
                  BFD_ASSERT ((insn & 0xf0ff) == 0x0012);
                  insn = bfd_get_16 (input_bfd, contents + offset + 4);
                  insn = bfd_get_16 (input_bfd, contents + offset + 4);
                  BFD_ASSERT ((insn & 0xf0ff) == 0x00ce);
                  BFD_ASSERT ((insn & 0xf0ff) == 0x00ce);
                  insn = 0xd000 | (insn & 0x0f00) | index;
                  insn = 0xd000 | (insn & 0x0f00) | index;
                  bfd_put_16 (output_bfd, insn, contents + offset + 0);
                  bfd_put_16 (output_bfd, insn, contents + offset + 0);
                  bfd_put_16 (output_bfd, 0x0009, contents + offset + 4);
                  bfd_put_16 (output_bfd, 0x0009, contents + offset + 4);
                }
                }
 
 
              bfd_put_32 (output_bfd, tpoff (info, relocation),
              bfd_put_32 (output_bfd, tpoff (info, relocation),
                          contents + rel->r_offset);
                          contents + rel->r_offset);
              continue;
              continue;
            }
            }
 
 
          sgot = htab->sgot;
          sgot = htab->sgot;
          if (sgot == NULL)
          if (sgot == NULL)
            abort ();
            abort ();
 
 
          if (h != NULL)
          if (h != NULL)
            off = h->got.offset;
            off = h->got.offset;
          else
          else
            {
            {
              if (local_got_offsets == NULL)
              if (local_got_offsets == NULL)
                abort ();
                abort ();
 
 
              off = local_got_offsets[r_symndx];
              off = local_got_offsets[r_symndx];
            }
            }
 
 
          /* Relocate R_SH_TLS_IE_32 directly when statically linking.  */
          /* Relocate R_SH_TLS_IE_32 directly when statically linking.  */
          if (r_type == R_SH_TLS_IE_32
          if (r_type == R_SH_TLS_IE_32
              && ! htab->root.dynamic_sections_created)
              && ! htab->root.dynamic_sections_created)
            {
            {
              off &= ~1;
              off &= ~1;
              bfd_put_32 (output_bfd, tpoff (info, relocation),
              bfd_put_32 (output_bfd, tpoff (info, relocation),
                          sgot->contents + off);
                          sgot->contents + off);
              bfd_put_32 (output_bfd, sgot->output_offset + off,
              bfd_put_32 (output_bfd, sgot->output_offset + off,
                          contents + rel->r_offset);
                          contents + rel->r_offset);
              continue;
              continue;
            }
            }
 
 
          if ((off & 1) != 0)
          if ((off & 1) != 0)
            off &= ~1;
            off &= ~1;
          else
          else
            {
            {
              Elf_Internal_Rela outrel;
              Elf_Internal_Rela outrel;
              bfd_byte *loc;
              bfd_byte *loc;
              int dr_type, indx;
              int dr_type, indx;
 
 
              if (srelgot == NULL)
              if (srelgot == NULL)
                {
                {
                  srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
                  srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
                  BFD_ASSERT (srelgot != NULL);
                  BFD_ASSERT (srelgot != NULL);
                }
                }
 
 
              outrel.r_offset = (sgot->output_section->vma
              outrel.r_offset = (sgot->output_section->vma
                                 + sgot->output_offset + off);
                                 + sgot->output_offset + off);
 
 
              if (h == NULL || h->dynindx == -1)
              if (h == NULL || h->dynindx == -1)
                indx = 0;
                indx = 0;
              else
              else
                indx = h->dynindx;
                indx = h->dynindx;
 
 
              dr_type = (r_type == R_SH_TLS_GD_32 ? R_SH_TLS_DTPMOD32 :
              dr_type = (r_type == R_SH_TLS_GD_32 ? R_SH_TLS_DTPMOD32 :
                         R_SH_TLS_TPOFF32);
                         R_SH_TLS_TPOFF32);
              if (dr_type == R_SH_TLS_TPOFF32 && indx == 0)
              if (dr_type == R_SH_TLS_TPOFF32 && indx == 0)
                outrel.r_addend = relocation - dtpoff_base (info);
                outrel.r_addend = relocation - dtpoff_base (info);
              else
              else
                outrel.r_addend = 0;
                outrel.r_addend = 0;
              outrel.r_info = ELF32_R_INFO (indx, dr_type);
              outrel.r_info = ELF32_R_INFO (indx, dr_type);
              loc = srelgot->contents;
              loc = srelgot->contents;
              loc += srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
              loc += srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
              bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
              bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
 
 
              if (r_type == R_SH_TLS_GD_32)
              if (r_type == R_SH_TLS_GD_32)
                {
                {
                  if (indx == 0)
                  if (indx == 0)
                    {
                    {
                      bfd_put_32 (output_bfd,
                      bfd_put_32 (output_bfd,
                                  relocation - dtpoff_base (info),
                                  relocation - dtpoff_base (info),
                                  sgot->contents + off + 4);
                                  sgot->contents + off + 4);
                    }
                    }
                  else
                  else
                    {
                    {
                      outrel.r_info = ELF32_R_INFO (indx,
                      outrel.r_info = ELF32_R_INFO (indx,
                                                    R_SH_TLS_DTPOFF32);
                                                    R_SH_TLS_DTPOFF32);
                      outrel.r_offset += 4;
                      outrel.r_offset += 4;
                      outrel.r_addend = 0;
                      outrel.r_addend = 0;
                      srelgot->reloc_count++;
                      srelgot->reloc_count++;
                      loc += sizeof (Elf32_External_Rela);
                      loc += sizeof (Elf32_External_Rela);
                      bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
                      bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
                    }
                    }
                }
                }
 
 
              if (h != NULL)
              if (h != NULL)
                h->got.offset |= 1;
                h->got.offset |= 1;
              else
              else
                local_got_offsets[r_symndx] |= 1;
                local_got_offsets[r_symndx] |= 1;
            }
            }
 
 
          if (off >= (bfd_vma) -2)
          if (off >= (bfd_vma) -2)
            abort ();
            abort ();
 
 
          if (r_type == (int) ELF32_R_TYPE (rel->r_info))
          if (r_type == (int) ELF32_R_TYPE (rel->r_info))
            relocation = sgot->output_offset + off;
            relocation = sgot->output_offset + off;
          else
          else
            {
            {
              bfd_vma offset;
              bfd_vma offset;
              unsigned short insn;
              unsigned short insn;
 
 
              /* GD->IE transition:
              /* GD->IE transition:
                   mov.l 1f,r4; mova 2f,r0; mov.l 2f,r1; add r0,r1;
                   mov.l 1f,r4; mova 2f,r0; mov.l 2f,r1; add r0,r1;
                   jsr @r1; add r12,r4; bra 3f; nop; .align 2;
                   jsr @r1; add r12,r4; bra 3f; nop; .align 2;
                   1: .long x$TLSGD; 2: .long __tls_get_addr@PLT; 3:
                   1: .long x$TLSGD; 2: .long __tls_get_addr@PLT; 3:
                 We change it into:
                 We change it into:
                   mov.l 1f,r0; stc gbr,r4; mov.l @(r0,r12),r0; add r4,r0;
                   mov.l 1f,r0; stc gbr,r4; mov.l @(r0,r12),r0; add r4,r0;
                   nop; nop; bra 3f; nop; .align 2;
                   nop; nop; bra 3f; nop; .align 2;
                   1: .long x@TPOFF; 2:...; 3:.  */
                   1: .long x@TPOFF; 2:...; 3:.  */
 
 
              offset = rel->r_offset;
              offset = rel->r_offset;
              BFD_ASSERT (offset >= 16);
              BFD_ASSERT (offset >= 16);
              /* Size of GD instructions is 16 or 18.  */
              /* Size of GD instructions is 16 or 18.  */
              offset -= 16;
              offset -= 16;
              insn = bfd_get_16 (input_bfd, contents + offset + 0);
              insn = bfd_get_16 (input_bfd, contents + offset + 0);
              if ((insn & 0xff00) == 0xc700)
              if ((insn & 0xff00) == 0xc700)
                {
                {
                  BFD_ASSERT (offset >= 2);
                  BFD_ASSERT (offset >= 2);
                  offset -= 2;
                  offset -= 2;
                  insn = bfd_get_16 (input_bfd, contents + offset + 0);
                  insn = bfd_get_16 (input_bfd, contents + offset + 0);
                }
                }
 
 
              BFD_ASSERT ((insn & 0xff00) == 0xd400);
              BFD_ASSERT ((insn & 0xff00) == 0xd400);
 
 
              /* Replace mov.l 1f,R4 with mov.l 1f,r0.  */
              /* Replace mov.l 1f,R4 with mov.l 1f,r0.  */
              bfd_put_16 (output_bfd, insn & 0xf0ff, contents + offset);
              bfd_put_16 (output_bfd, insn & 0xf0ff, contents + offset);
 
 
              insn = bfd_get_16 (input_bfd, contents + offset + 2);
              insn = bfd_get_16 (input_bfd, contents + offset + 2);
              BFD_ASSERT ((insn & 0xff00) == 0xc700);
              BFD_ASSERT ((insn & 0xff00) == 0xc700);
              insn = bfd_get_16 (input_bfd, contents + offset + 4);
              insn = bfd_get_16 (input_bfd, contents + offset + 4);
              BFD_ASSERT ((insn & 0xff00) == 0xd100);
              BFD_ASSERT ((insn & 0xff00) == 0xd100);
              insn = bfd_get_16 (input_bfd, contents + offset + 6);
              insn = bfd_get_16 (input_bfd, contents + offset + 6);
              BFD_ASSERT (insn == 0x310c);
              BFD_ASSERT (insn == 0x310c);
              insn = bfd_get_16 (input_bfd, contents + offset + 8);
              insn = bfd_get_16 (input_bfd, contents + offset + 8);
              BFD_ASSERT (insn == 0x410b);
              BFD_ASSERT (insn == 0x410b);
              insn = bfd_get_16 (input_bfd, contents + offset + 10);
              insn = bfd_get_16 (input_bfd, contents + offset + 10);
              BFD_ASSERT (insn == 0x34cc);
              BFD_ASSERT (insn == 0x34cc);
 
 
              bfd_put_16 (output_bfd, 0x0412, contents + offset + 2);
              bfd_put_16 (output_bfd, 0x0412, contents + offset + 2);
              bfd_put_16 (output_bfd, 0x00ce, contents + offset + 4);
              bfd_put_16 (output_bfd, 0x00ce, contents + offset + 4);
              bfd_put_16 (output_bfd, 0x304c, contents + offset + 6);
              bfd_put_16 (output_bfd, 0x304c, contents + offset + 6);
              bfd_put_16 (output_bfd, 0x0009, contents + offset + 8);
              bfd_put_16 (output_bfd, 0x0009, contents + offset + 8);
              bfd_put_16 (output_bfd, 0x0009, contents + offset + 10);
              bfd_put_16 (output_bfd, 0x0009, contents + offset + 10);
 
 
              bfd_put_32 (output_bfd, sgot->output_offset + off,
              bfd_put_32 (output_bfd, sgot->output_offset + off,
                          contents + rel->r_offset);
                          contents + rel->r_offset);
 
 
              continue;
              continue;
          }
          }
 
 
          addend = rel->r_addend;
          addend = rel->r_addend;
 
 
          goto final_link_relocate;
          goto final_link_relocate;
 
 
        case R_SH_TLS_LD_32:
        case R_SH_TLS_LD_32:
          if (! info->shared)
          if (! info->shared)
            {
            {
              bfd_vma offset;
              bfd_vma offset;
              unsigned short insn;
              unsigned short insn;
 
 
              /* LD->LE transition:
              /* LD->LE transition:
                   mov.l 1f,r4; mova 2f,r0; mov.l 2f,r1; add r0,r1;
                   mov.l 1f,r4; mova 2f,r0; mov.l 2f,r1; add r0,r1;
                   jsr @r1; add r12,r4; bra 3f; nop; .align 2;
                   jsr @r1; add r12,r4; bra 3f; nop; .align 2;
                   1: .long x$TLSLD; 2: .long __tls_get_addr@PLT; 3:
                   1: .long x$TLSLD; 2: .long __tls_get_addr@PLT; 3:
                 We change it into:
                 We change it into:
                   stc gbr,r0; nop; nop; nop;
                   stc gbr,r0; nop; nop; nop;
                   nop; nop; bra 3f; ...; 3:.  */
                   nop; nop; bra 3f; ...; 3:.  */
 
 
              offset = rel->r_offset;
              offset = rel->r_offset;
              BFD_ASSERT (offset >= 16);
              BFD_ASSERT (offset >= 16);
              /* Size of LD instructions is 16 or 18.  */
              /* Size of LD instructions is 16 or 18.  */
              offset -= 16;
              offset -= 16;
              insn = bfd_get_16 (input_bfd, contents + offset + 0);
              insn = bfd_get_16 (input_bfd, contents + offset + 0);
              if ((insn & 0xff00) == 0xc700)
              if ((insn & 0xff00) == 0xc700)
                {
                {
                  BFD_ASSERT (offset >= 2);
                  BFD_ASSERT (offset >= 2);
                  offset -= 2;
                  offset -= 2;
                  insn = bfd_get_16 (input_bfd, contents + offset + 0);
                  insn = bfd_get_16 (input_bfd, contents + offset + 0);
                }
                }
 
 
              BFD_ASSERT ((insn & 0xff00) == 0xd400);
              BFD_ASSERT ((insn & 0xff00) == 0xd400);
              insn = bfd_get_16 (input_bfd, contents + offset + 2);
              insn = bfd_get_16 (input_bfd, contents + offset + 2);
              BFD_ASSERT ((insn & 0xff00) == 0xc700);
              BFD_ASSERT ((insn & 0xff00) == 0xc700);
              insn = bfd_get_16 (input_bfd, contents + offset + 4);
              insn = bfd_get_16 (input_bfd, contents + offset + 4);
              BFD_ASSERT ((insn & 0xff00) == 0xd100);
              BFD_ASSERT ((insn & 0xff00) == 0xd100);
              insn = bfd_get_16 (input_bfd, contents + offset + 6);
              insn = bfd_get_16 (input_bfd, contents + offset + 6);
              BFD_ASSERT (insn == 0x310c);
              BFD_ASSERT (insn == 0x310c);
              insn = bfd_get_16 (input_bfd, contents + offset + 8);
              insn = bfd_get_16 (input_bfd, contents + offset + 8);
              BFD_ASSERT (insn == 0x410b);
              BFD_ASSERT (insn == 0x410b);
              insn = bfd_get_16 (input_bfd, contents + offset + 10);
              insn = bfd_get_16 (input_bfd, contents + offset + 10);
              BFD_ASSERT (insn == 0x34cc);
              BFD_ASSERT (insn == 0x34cc);
 
 
              bfd_put_16 (output_bfd, 0x0012, contents + offset + 0);
              bfd_put_16 (output_bfd, 0x0012, contents + offset + 0);
              bfd_put_16 (output_bfd, 0x0009, contents + offset + 2);
              bfd_put_16 (output_bfd, 0x0009, contents + offset + 2);
              bfd_put_16 (output_bfd, 0x0009, contents + offset + 4);
              bfd_put_16 (output_bfd, 0x0009, contents + offset + 4);
              bfd_put_16 (output_bfd, 0x0009, contents + offset + 6);
              bfd_put_16 (output_bfd, 0x0009, contents + offset + 6);
              bfd_put_16 (output_bfd, 0x0009, contents + offset + 8);
              bfd_put_16 (output_bfd, 0x0009, contents + offset + 8);
              bfd_put_16 (output_bfd, 0x0009, contents + offset + 10);
              bfd_put_16 (output_bfd, 0x0009, contents + offset + 10);
 
 
              continue;
              continue;
            }
            }
 
 
          sgot = htab->sgot;
          sgot = htab->sgot;
          if (sgot == NULL)
          if (sgot == NULL)
            abort ();
            abort ();
 
 
          off = htab->tls_ldm_got.offset;
          off = htab->tls_ldm_got.offset;
          if (off & 1)
          if (off & 1)
            off &= ~1;
            off &= ~1;
          else
          else
            {
            {
              Elf_Internal_Rela outrel;
              Elf_Internal_Rela outrel;
              bfd_byte *loc;
              bfd_byte *loc;
 
 
              srelgot = htab->srelgot;
              srelgot = htab->srelgot;
              if (srelgot == NULL)
              if (srelgot == NULL)
                abort ();
                abort ();
 
 
              outrel.r_offset = (sgot->output_section->vma
              outrel.r_offset = (sgot->output_section->vma
                                 + sgot->output_offset + off);
                                 + sgot->output_offset + off);
              outrel.r_addend = 0;
              outrel.r_addend = 0;
              outrel.r_info = ELF32_R_INFO (0, R_SH_TLS_DTPMOD32);
              outrel.r_info = ELF32_R_INFO (0, R_SH_TLS_DTPMOD32);
              loc = srelgot->contents;
              loc = srelgot->contents;
              loc += srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
              loc += srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
              bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
              bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
              htab->tls_ldm_got.offset |= 1;
              htab->tls_ldm_got.offset |= 1;
            }
            }
 
 
          relocation = sgot->output_offset + off;
          relocation = sgot->output_offset + off;
          addend = rel->r_addend;
          addend = rel->r_addend;
 
 
          goto final_link_relocate;
          goto final_link_relocate;
 
 
        case R_SH_TLS_LDO_32:
        case R_SH_TLS_LDO_32:
          if (! info->shared)
          if (! info->shared)
            relocation = tpoff (info, relocation);
            relocation = tpoff (info, relocation);
          else
          else
            relocation -= dtpoff_base (info);
            relocation -= dtpoff_base (info);
 
 
          addend = rel->r_addend;
          addend = rel->r_addend;
          goto final_link_relocate;
          goto final_link_relocate;
 
 
        case R_SH_TLS_LE_32:
        case R_SH_TLS_LE_32:
          {
          {
            int indx;
            int indx;
            Elf_Internal_Rela outrel;
            Elf_Internal_Rela outrel;
            bfd_byte *loc;
            bfd_byte *loc;
 
 
            if (! info->shared)
            if (! info->shared)
              {
              {
                relocation = tpoff (info, relocation);
                relocation = tpoff (info, relocation);
                addend = rel->r_addend;
                addend = rel->r_addend;
                goto final_link_relocate;
                goto final_link_relocate;
              }
              }
 
 
            if (sreloc == NULL)
            if (sreloc == NULL)
              {
              {
                sreloc = _bfd_elf_get_dynamic_reloc_section
                sreloc = _bfd_elf_get_dynamic_reloc_section
                  (input_bfd, input_section, /*rela?*/ TRUE);
                  (input_bfd, input_section, /*rela?*/ TRUE);
                if (sreloc == NULL)
                if (sreloc == NULL)
                  return FALSE;
                  return FALSE;
              }
              }
 
 
            if (h == NULL || h->dynindx == -1)
            if (h == NULL || h->dynindx == -1)
              indx = 0;
              indx = 0;
            else
            else
              indx = h->dynindx;
              indx = h->dynindx;
 
 
            outrel.r_offset = (input_section->output_section->vma
            outrel.r_offset = (input_section->output_section->vma
                               + input_section->output_offset
                               + input_section->output_offset
                               + rel->r_offset);
                               + rel->r_offset);
            outrel.r_info = ELF32_R_INFO (indx, R_SH_TLS_TPOFF32);
            outrel.r_info = ELF32_R_INFO (indx, R_SH_TLS_TPOFF32);
            if (indx == 0)
            if (indx == 0)
              outrel.r_addend = relocation - dtpoff_base (info);
              outrel.r_addend = relocation - dtpoff_base (info);
            else
            else
              outrel.r_addend = 0;
              outrel.r_addend = 0;
 
 
            loc = sreloc->contents;
            loc = sreloc->contents;
            loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
            loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
            bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
            bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
            continue;
            continue;
          }
          }
        }
        }
 
 
    relocation_done:
    relocation_done:
      if (r != bfd_reloc_ok)
      if (r != bfd_reloc_ok)
        {
        {
          switch (r)
          switch (r)
            {
            {
            default:
            default:
            case bfd_reloc_outofrange:
            case bfd_reloc_outofrange:
              abort ();
              abort ();
            case bfd_reloc_overflow:
            case bfd_reloc_overflow:
              {
              {
                const char *name;
                const char *name;
 
 
                if (h != NULL)
                if (h != NULL)
                  name = NULL;
                  name = NULL;
                else
                else
                  {
                  {
                    name = (bfd_elf_string_from_elf_section
                    name = (bfd_elf_string_from_elf_section
                            (input_bfd, symtab_hdr->sh_link, sym->st_name));
                            (input_bfd, symtab_hdr->sh_link, sym->st_name));
                    if (name == NULL)
                    if (name == NULL)
                      return FALSE;
                      return FALSE;
                    if (*name == '\0')
                    if (*name == '\0')
                      name = bfd_section_name (input_bfd, sec);
                      name = bfd_section_name (input_bfd, sec);
                  }
                  }
                if (! ((*info->callbacks->reloc_overflow)
                if (! ((*info->callbacks->reloc_overflow)
                       (info, (h ? &h->root : NULL), name, howto->name,
                       (info, (h ? &h->root : NULL), name, howto->name,
                        (bfd_vma) 0, input_bfd, input_section,
                        (bfd_vma) 0, input_bfd, input_section,
                        rel->r_offset)))
                        rel->r_offset)))
                  return FALSE;
                  return FALSE;
              }
              }
              break;
              break;
            }
            }
        }
        }
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* This is a version of bfd_generic_get_relocated_section_contents
/* This is a version of bfd_generic_get_relocated_section_contents
   which uses sh_elf_relocate_section.  */
   which uses sh_elf_relocate_section.  */
 
 
static bfd_byte *
static bfd_byte *
sh_elf_get_relocated_section_contents (bfd *output_bfd,
sh_elf_get_relocated_section_contents (bfd *output_bfd,
                                       struct bfd_link_info *link_info,
                                       struct bfd_link_info *link_info,
                                       struct bfd_link_order *link_order,
                                       struct bfd_link_order *link_order,
                                       bfd_byte *data,
                                       bfd_byte *data,
                                       bfd_boolean relocatable,
                                       bfd_boolean relocatable,
                                       asymbol **symbols)
                                       asymbol **symbols)
{
{
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Shdr *symtab_hdr;
  asection *input_section = link_order->u.indirect.section;
  asection *input_section = link_order->u.indirect.section;
  bfd *input_bfd = input_section->owner;
  bfd *input_bfd = input_section->owner;
  asection **sections = NULL;
  asection **sections = NULL;
  Elf_Internal_Rela *internal_relocs = NULL;
  Elf_Internal_Rela *internal_relocs = NULL;
  Elf_Internal_Sym *isymbuf = NULL;
  Elf_Internal_Sym *isymbuf = NULL;
 
 
  /* We only need to handle the case of relaxing, or of having a
  /* We only need to handle the case of relaxing, or of having a
     particular set of section contents, specially.  */
     particular set of section contents, specially.  */
  if (relocatable
  if (relocatable
      || elf_section_data (input_section)->this_hdr.contents == NULL)
      || elf_section_data (input_section)->this_hdr.contents == NULL)
    return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
    return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
                                                       link_order, data,
                                                       link_order, data,
                                                       relocatable,
                                                       relocatable,
                                                       symbols);
                                                       symbols);
 
 
  symtab_hdr = &elf_symtab_hdr (input_bfd);
  symtab_hdr = &elf_symtab_hdr (input_bfd);
 
 
  memcpy (data, elf_section_data (input_section)->this_hdr.contents,
  memcpy (data, elf_section_data (input_section)->this_hdr.contents,
          (size_t) input_section->size);
          (size_t) input_section->size);
 
 
  if ((input_section->flags & SEC_RELOC) != 0
  if ((input_section->flags & SEC_RELOC) != 0
      && input_section->reloc_count > 0)
      && input_section->reloc_count > 0)
    {
    {
      asection **secpp;
      asection **secpp;
      Elf_Internal_Sym *isym, *isymend;
      Elf_Internal_Sym *isym, *isymend;
      bfd_size_type amt;
      bfd_size_type amt;
 
 
      internal_relocs = (_bfd_elf_link_read_relocs
      internal_relocs = (_bfd_elf_link_read_relocs
                         (input_bfd, input_section, NULL,
                         (input_bfd, input_section, NULL,
                          (Elf_Internal_Rela *) NULL, FALSE));
                          (Elf_Internal_Rela *) NULL, FALSE));
      if (internal_relocs == NULL)
      if (internal_relocs == NULL)
        goto error_return;
        goto error_return;
 
 
      if (symtab_hdr->sh_info != 0)
      if (symtab_hdr->sh_info != 0)
        {
        {
          isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
          isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
          if (isymbuf == NULL)
          if (isymbuf == NULL)
            isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
            isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
                                            symtab_hdr->sh_info, 0,
                                            symtab_hdr->sh_info, 0,
                                            NULL, NULL, NULL);
                                            NULL, NULL, NULL);
          if (isymbuf == NULL)
          if (isymbuf == NULL)
            goto error_return;
            goto error_return;
        }
        }
 
 
      amt = symtab_hdr->sh_info;
      amt = symtab_hdr->sh_info;
      amt *= sizeof (asection *);
      amt *= sizeof (asection *);
      sections = (asection **) bfd_malloc (amt);
      sections = (asection **) bfd_malloc (amt);
      if (sections == NULL && amt != 0)
      if (sections == NULL && amt != 0)
        goto error_return;
        goto error_return;
 
 
      isymend = isymbuf + symtab_hdr->sh_info;
      isymend = isymbuf + symtab_hdr->sh_info;
      for (isym = isymbuf, secpp = sections; isym < isymend; ++isym, ++secpp)
      for (isym = isymbuf, secpp = sections; isym < isymend; ++isym, ++secpp)
        {
        {
          asection *isec;
          asection *isec;
 
 
          if (isym->st_shndx == SHN_UNDEF)
          if (isym->st_shndx == SHN_UNDEF)
            isec = bfd_und_section_ptr;
            isec = bfd_und_section_ptr;
          else if (isym->st_shndx == SHN_ABS)
          else if (isym->st_shndx == SHN_ABS)
            isec = bfd_abs_section_ptr;
            isec = bfd_abs_section_ptr;
          else if (isym->st_shndx == SHN_COMMON)
          else if (isym->st_shndx == SHN_COMMON)
            isec = bfd_com_section_ptr;
            isec = bfd_com_section_ptr;
          else
          else
            isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
            isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
 
 
          *secpp = isec;
          *secpp = isec;
        }
        }
 
 
      if (! sh_elf_relocate_section (output_bfd, link_info, input_bfd,
      if (! sh_elf_relocate_section (output_bfd, link_info, input_bfd,
                                     input_section, data, internal_relocs,
                                     input_section, data, internal_relocs,
                                     isymbuf, sections))
                                     isymbuf, sections))
        goto error_return;
        goto error_return;
 
 
      if (sections != NULL)
      if (sections != NULL)
        free (sections);
        free (sections);
      if (isymbuf != NULL
      if (isymbuf != NULL
          && symtab_hdr->contents != (unsigned char *) isymbuf)
          && symtab_hdr->contents != (unsigned char *) isymbuf)
        free (isymbuf);
        free (isymbuf);
      if (elf_section_data (input_section)->relocs != internal_relocs)
      if (elf_section_data (input_section)->relocs != internal_relocs)
        free (internal_relocs);
        free (internal_relocs);
    }
    }
 
 
  return data;
  return data;
 
 
 error_return:
 error_return:
  if (sections != NULL)
  if (sections != NULL)
    free (sections);
    free (sections);
  if (isymbuf != NULL
  if (isymbuf != NULL
      && symtab_hdr->contents != (unsigned char *) isymbuf)
      && symtab_hdr->contents != (unsigned char *) isymbuf)
    free (isymbuf);
    free (isymbuf);
  if (internal_relocs != NULL
  if (internal_relocs != NULL
      && elf_section_data (input_section)->relocs != internal_relocs)
      && elf_section_data (input_section)->relocs != internal_relocs)
    free (internal_relocs);
    free (internal_relocs);
  return NULL;
  return NULL;
}
}
 
 
/* Return the base VMA address which should be subtracted from real addresses
/* Return the base VMA address which should be subtracted from real addresses
   when resolving @dtpoff relocation.
   when resolving @dtpoff relocation.
   This is PT_TLS segment p_vaddr.  */
   This is PT_TLS segment p_vaddr.  */
 
 
static bfd_vma
static bfd_vma
dtpoff_base (struct bfd_link_info *info)
dtpoff_base (struct bfd_link_info *info)
{
{
  /* If tls_sec is NULL, we should have signalled an error already.  */
  /* If tls_sec is NULL, we should have signalled an error already.  */
  if (elf_hash_table (info)->tls_sec == NULL)
  if (elf_hash_table (info)->tls_sec == NULL)
    return 0;
    return 0;
  return elf_hash_table (info)->tls_sec->vma;
  return elf_hash_table (info)->tls_sec->vma;
}
}
 
 
/* Return the relocation value for R_SH_TLS_TPOFF32..  */
/* Return the relocation value for R_SH_TLS_TPOFF32..  */
 
 
static bfd_vma
static bfd_vma
tpoff (struct bfd_link_info *info, bfd_vma address)
tpoff (struct bfd_link_info *info, bfd_vma address)
{
{
  /* If tls_sec is NULL, we should have signalled an error already.  */
  /* If tls_sec is NULL, we should have signalled an error already.  */
  if (elf_hash_table (info)->tls_sec == NULL)
  if (elf_hash_table (info)->tls_sec == NULL)
    return 0;
    return 0;
  /* SH TLS ABI is variant I and static TLS block start just after tcbhead
  /* SH TLS ABI is variant I and static TLS block start just after tcbhead
     structure which has 2 pointer fields.  */
     structure which has 2 pointer fields.  */
  return (address - elf_hash_table (info)->tls_sec->vma
  return (address - elf_hash_table (info)->tls_sec->vma
          + align_power ((bfd_vma) 8,
          + align_power ((bfd_vma) 8,
                         elf_hash_table (info)->tls_sec->alignment_power));
                         elf_hash_table (info)->tls_sec->alignment_power));
}
}
 
 
static asection *
static asection *
sh_elf_gc_mark_hook (asection *sec,
sh_elf_gc_mark_hook (asection *sec,
                     struct bfd_link_info *info,
                     struct bfd_link_info *info,
                     Elf_Internal_Rela *rel,
                     Elf_Internal_Rela *rel,
                     struct elf_link_hash_entry *h,
                     struct elf_link_hash_entry *h,
                     Elf_Internal_Sym *sym)
                     Elf_Internal_Sym *sym)
{
{
  if (h != NULL)
  if (h != NULL)
    switch (ELF32_R_TYPE (rel->r_info))
    switch (ELF32_R_TYPE (rel->r_info))
      {
      {
      case R_SH_GNU_VTINHERIT:
      case R_SH_GNU_VTINHERIT:
      case R_SH_GNU_VTENTRY:
      case R_SH_GNU_VTENTRY:
        return NULL;
        return NULL;
      }
      }
 
 
  return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
  return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
}
}
 
 
/* Update the got entry reference counts for the section being removed.  */
/* Update the got entry reference counts for the section being removed.  */
 
 
static bfd_boolean
static bfd_boolean
sh_elf_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
sh_elf_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
                      asection *sec, const Elf_Internal_Rela *relocs)
                      asection *sec, const Elf_Internal_Rela *relocs)
{
{
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Shdr *symtab_hdr;
  struct elf_link_hash_entry **sym_hashes;
  struct elf_link_hash_entry **sym_hashes;
  bfd_signed_vma *local_got_refcounts;
  bfd_signed_vma *local_got_refcounts;
  const Elf_Internal_Rela *rel, *relend;
  const Elf_Internal_Rela *rel, *relend;
 
 
  if (info->relocatable)
  if (info->relocatable)
    return TRUE;
    return TRUE;
 
 
  elf_section_data (sec)->local_dynrel = NULL;
  elf_section_data (sec)->local_dynrel = NULL;
 
 
  symtab_hdr = &elf_symtab_hdr (abfd);
  symtab_hdr = &elf_symtab_hdr (abfd);
  sym_hashes = elf_sym_hashes (abfd);
  sym_hashes = elf_sym_hashes (abfd);
  local_got_refcounts = elf_local_got_refcounts (abfd);
  local_got_refcounts = elf_local_got_refcounts (abfd);
 
 
  relend = relocs + sec->reloc_count;
  relend = relocs + sec->reloc_count;
  for (rel = relocs; rel < relend; rel++)
  for (rel = relocs; rel < relend; rel++)
    {
    {
      unsigned long r_symndx;
      unsigned long r_symndx;
      unsigned int r_type;
      unsigned int r_type;
      struct elf_link_hash_entry *h = NULL;
      struct elf_link_hash_entry *h = NULL;
#ifdef INCLUDE_SHMEDIA
#ifdef INCLUDE_SHMEDIA
      int seen_stt_datalabel = 0;
      int seen_stt_datalabel = 0;
#endif
#endif
 
 
      r_symndx = ELF32_R_SYM (rel->r_info);
      r_symndx = ELF32_R_SYM (rel->r_info);
      if (r_symndx >= symtab_hdr->sh_info)
      if (r_symndx >= symtab_hdr->sh_info)
        {
        {
          struct elf_sh_link_hash_entry *eh;
          struct elf_sh_link_hash_entry *eh;
          struct elf_sh_dyn_relocs **pp;
          struct elf_sh_dyn_relocs **pp;
          struct elf_sh_dyn_relocs *p;
          struct elf_sh_dyn_relocs *p;
 
 
          h = sym_hashes[r_symndx - symtab_hdr->sh_info];
          h = sym_hashes[r_symndx - symtab_hdr->sh_info];
          while (h->root.type == bfd_link_hash_indirect
          while (h->root.type == bfd_link_hash_indirect
                 || h->root.type == bfd_link_hash_warning)
                 || h->root.type == bfd_link_hash_warning)
            {
            {
#ifdef INCLUDE_SHMEDIA
#ifdef INCLUDE_SHMEDIA
              seen_stt_datalabel |= h->type == STT_DATALABEL;
              seen_stt_datalabel |= h->type == STT_DATALABEL;
#endif
#endif
              h = (struct elf_link_hash_entry *) h->root.u.i.link;
              h = (struct elf_link_hash_entry *) h->root.u.i.link;
            }
            }
          eh = (struct elf_sh_link_hash_entry *) h;
          eh = (struct elf_sh_link_hash_entry *) h;
          for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
          for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
            if (p->sec == sec)
            if (p->sec == sec)
              {
              {
                /* Everything must go for SEC.  */
                /* Everything must go for SEC.  */
                *pp = p->next;
                *pp = p->next;
                break;
                break;
              }
              }
        }
        }
 
 
      r_type = ELF32_R_TYPE (rel->r_info);
      r_type = ELF32_R_TYPE (rel->r_info);
      switch (sh_elf_optimized_tls_reloc (info, r_type, h != NULL))
      switch (sh_elf_optimized_tls_reloc (info, r_type, h != NULL))
        {
        {
        case R_SH_TLS_LD_32:
        case R_SH_TLS_LD_32:
          if (sh_elf_hash_table (info)->tls_ldm_got.refcount > 0)
          if (sh_elf_hash_table (info)->tls_ldm_got.refcount > 0)
            sh_elf_hash_table (info)->tls_ldm_got.refcount -= 1;
            sh_elf_hash_table (info)->tls_ldm_got.refcount -= 1;
          break;
          break;
 
 
        case R_SH_GOT32:
        case R_SH_GOT32:
        case R_SH_GOTOFF:
        case R_SH_GOTOFF:
        case R_SH_GOTPC:
        case R_SH_GOTPC:
#ifdef INCLUDE_SHMEDIA
#ifdef INCLUDE_SHMEDIA
        case R_SH_GOT_LOW16:
        case R_SH_GOT_LOW16:
        case R_SH_GOT_MEDLOW16:
        case R_SH_GOT_MEDLOW16:
        case R_SH_GOT_MEDHI16:
        case R_SH_GOT_MEDHI16:
        case R_SH_GOT_HI16:
        case R_SH_GOT_HI16:
        case R_SH_GOT10BY4:
        case R_SH_GOT10BY4:
        case R_SH_GOT10BY8:
        case R_SH_GOT10BY8:
        case R_SH_GOTOFF_LOW16:
        case R_SH_GOTOFF_LOW16:
        case R_SH_GOTOFF_MEDLOW16:
        case R_SH_GOTOFF_MEDLOW16:
        case R_SH_GOTOFF_MEDHI16:
        case R_SH_GOTOFF_MEDHI16:
        case R_SH_GOTOFF_HI16:
        case R_SH_GOTOFF_HI16:
        case R_SH_GOTPC_LOW16:
        case R_SH_GOTPC_LOW16:
        case R_SH_GOTPC_MEDLOW16:
        case R_SH_GOTPC_MEDLOW16:
        case R_SH_GOTPC_MEDHI16:
        case R_SH_GOTPC_MEDHI16:
        case R_SH_GOTPC_HI16:
        case R_SH_GOTPC_HI16:
#endif
#endif
        case R_SH_TLS_GD_32:
        case R_SH_TLS_GD_32:
        case R_SH_TLS_IE_32:
        case R_SH_TLS_IE_32:
          if (h != NULL)
          if (h != NULL)
            {
            {
#ifdef INCLUDE_SHMEDIA
#ifdef INCLUDE_SHMEDIA
              if (seen_stt_datalabel)
              if (seen_stt_datalabel)
                {
                {
                  struct elf_sh_link_hash_entry *eh;
                  struct elf_sh_link_hash_entry *eh;
                  eh = (struct elf_sh_link_hash_entry *) h;
                  eh = (struct elf_sh_link_hash_entry *) h;
                  if (eh->datalabel_got.refcount > 0)
                  if (eh->datalabel_got.refcount > 0)
                    eh->datalabel_got.refcount -= 1;
                    eh->datalabel_got.refcount -= 1;
                }
                }
              else
              else
#endif
#endif
                if (h->got.refcount > 0)
                if (h->got.refcount > 0)
                  h->got.refcount -= 1;
                  h->got.refcount -= 1;
            }
            }
          else if (local_got_refcounts != NULL)
          else if (local_got_refcounts != NULL)
            {
            {
#ifdef INCLUDE_SHMEDIA
#ifdef INCLUDE_SHMEDIA
              if (rel->r_addend & 1)
              if (rel->r_addend & 1)
                {
                {
                  if (local_got_refcounts[symtab_hdr->sh_info + r_symndx] > 0)
                  if (local_got_refcounts[symtab_hdr->sh_info + r_symndx] > 0)
                    local_got_refcounts[symtab_hdr->sh_info + r_symndx] -= 1;
                    local_got_refcounts[symtab_hdr->sh_info + r_symndx] -= 1;
                }
                }
              else
              else
#endif
#endif
                if (local_got_refcounts[r_symndx] > 0)
                if (local_got_refcounts[r_symndx] > 0)
                  local_got_refcounts[r_symndx] -= 1;
                  local_got_refcounts[r_symndx] -= 1;
            }
            }
          break;
          break;
 
 
        case R_SH_DIR32:
        case R_SH_DIR32:
        case R_SH_REL32:
        case R_SH_REL32:
          if (info->shared)
          if (info->shared)
            break;
            break;
          /* Fall thru */
          /* Fall thru */
 
 
        case R_SH_PLT32:
        case R_SH_PLT32:
#ifdef INCLUDE_SHMEDIA
#ifdef INCLUDE_SHMEDIA
        case R_SH_PLT_LOW16:
        case R_SH_PLT_LOW16:
        case R_SH_PLT_MEDLOW16:
        case R_SH_PLT_MEDLOW16:
        case R_SH_PLT_MEDHI16:
        case R_SH_PLT_MEDHI16:
        case R_SH_PLT_HI16:
        case R_SH_PLT_HI16:
#endif
#endif
          if (h != NULL)
          if (h != NULL)
            {
            {
              if (h->plt.refcount > 0)
              if (h->plt.refcount > 0)
                h->plt.refcount -= 1;
                h->plt.refcount -= 1;
            }
            }
          break;
          break;
 
 
        case R_SH_GOTPLT32:
        case R_SH_GOTPLT32:
#ifdef INCLUDE_SHMEDIA
#ifdef INCLUDE_SHMEDIA
        case R_SH_GOTPLT_LOW16:
        case R_SH_GOTPLT_LOW16:
        case R_SH_GOTPLT_MEDLOW16:
        case R_SH_GOTPLT_MEDLOW16:
        case R_SH_GOTPLT_MEDHI16:
        case R_SH_GOTPLT_MEDHI16:
        case R_SH_GOTPLT_HI16:
        case R_SH_GOTPLT_HI16:
        case R_SH_GOTPLT10BY4:
        case R_SH_GOTPLT10BY4:
        case R_SH_GOTPLT10BY8:
        case R_SH_GOTPLT10BY8:
#endif
#endif
          if (h != NULL)
          if (h != NULL)
            {
            {
              struct elf_sh_link_hash_entry *eh;
              struct elf_sh_link_hash_entry *eh;
              eh = (struct elf_sh_link_hash_entry *) h;
              eh = (struct elf_sh_link_hash_entry *) h;
              if (eh->gotplt_refcount > 0)
              if (eh->gotplt_refcount > 0)
                {
                {
                  eh->gotplt_refcount -= 1;
                  eh->gotplt_refcount -= 1;
                  if (h->plt.refcount > 0)
                  if (h->plt.refcount > 0)
                    h->plt.refcount -= 1;
                    h->plt.refcount -= 1;
                }
                }
#ifdef INCLUDE_SHMEDIA
#ifdef INCLUDE_SHMEDIA
              else if (seen_stt_datalabel)
              else if (seen_stt_datalabel)
                {
                {
                  if (eh->datalabel_got.refcount > 0)
                  if (eh->datalabel_got.refcount > 0)
                    eh->datalabel_got.refcount -= 1;
                    eh->datalabel_got.refcount -= 1;
                }
                }
#endif
#endif
              else if (h->got.refcount > 0)
              else if (h->got.refcount > 0)
                h->got.refcount -= 1;
                h->got.refcount -= 1;
            }
            }
          else if (local_got_refcounts != NULL)
          else if (local_got_refcounts != NULL)
            {
            {
#ifdef INCLUDE_SHMEDIA
#ifdef INCLUDE_SHMEDIA
              if (rel->r_addend & 1)
              if (rel->r_addend & 1)
                {
                {
                  if (local_got_refcounts[symtab_hdr->sh_info + r_symndx] > 0)
                  if (local_got_refcounts[symtab_hdr->sh_info + r_symndx] > 0)
                    local_got_refcounts[symtab_hdr->sh_info + r_symndx] -= 1;
                    local_got_refcounts[symtab_hdr->sh_info + r_symndx] -= 1;
                }
                }
              else
              else
#endif
#endif
                if (local_got_refcounts[r_symndx] > 0)
                if (local_got_refcounts[r_symndx] > 0)
                  local_got_refcounts[r_symndx] -= 1;
                  local_got_refcounts[r_symndx] -= 1;
            }
            }
          break;
          break;
 
 
        default:
        default:
          break;
          break;
        }
        }
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Copy the extra info we tack onto an elf_link_hash_entry.  */
/* Copy the extra info we tack onto an elf_link_hash_entry.  */
 
 
static void
static void
sh_elf_copy_indirect_symbol (struct bfd_link_info *info,
sh_elf_copy_indirect_symbol (struct bfd_link_info *info,
                             struct elf_link_hash_entry *dir,
                             struct elf_link_hash_entry *dir,
                             struct elf_link_hash_entry *ind)
                             struct elf_link_hash_entry *ind)
{
{
  struct elf_sh_link_hash_entry *edir, *eind;
  struct elf_sh_link_hash_entry *edir, *eind;
 
 
  edir = (struct elf_sh_link_hash_entry *) dir;
  edir = (struct elf_sh_link_hash_entry *) dir;
  eind = (struct elf_sh_link_hash_entry *) ind;
  eind = (struct elf_sh_link_hash_entry *) ind;
 
 
  if (eind->dyn_relocs != NULL)
  if (eind->dyn_relocs != NULL)
    {
    {
      if (edir->dyn_relocs != NULL)
      if (edir->dyn_relocs != NULL)
        {
        {
          struct elf_sh_dyn_relocs **pp;
          struct elf_sh_dyn_relocs **pp;
          struct elf_sh_dyn_relocs *p;
          struct elf_sh_dyn_relocs *p;
 
 
          /* Add reloc counts against the indirect sym to the direct sym
          /* Add reloc counts against the indirect sym to the direct sym
             list.  Merge any entries against the same section.  */
             list.  Merge any entries against the same section.  */
          for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
          for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
            {
            {
              struct elf_sh_dyn_relocs *q;
              struct elf_sh_dyn_relocs *q;
 
 
              for (q = edir->dyn_relocs; q != NULL; q = q->next)
              for (q = edir->dyn_relocs; q != NULL; q = q->next)
                if (q->sec == p->sec)
                if (q->sec == p->sec)
                  {
                  {
                    q->pc_count += p->pc_count;
                    q->pc_count += p->pc_count;
                    q->count += p->count;
                    q->count += p->count;
                    *pp = p->next;
                    *pp = p->next;
                    break;
                    break;
                  }
                  }
              if (q == NULL)
              if (q == NULL)
                pp = &p->next;
                pp = &p->next;
            }
            }
          *pp = edir->dyn_relocs;
          *pp = edir->dyn_relocs;
        }
        }
 
 
      edir->dyn_relocs = eind->dyn_relocs;
      edir->dyn_relocs = eind->dyn_relocs;
      eind->dyn_relocs = NULL;
      eind->dyn_relocs = NULL;
    }
    }
  edir->gotplt_refcount = eind->gotplt_refcount;
  edir->gotplt_refcount = eind->gotplt_refcount;
  eind->gotplt_refcount = 0;
  eind->gotplt_refcount = 0;
#ifdef INCLUDE_SHMEDIA
#ifdef INCLUDE_SHMEDIA
  edir->datalabel_got.refcount += eind->datalabel_got.refcount;
  edir->datalabel_got.refcount += eind->datalabel_got.refcount;
  eind->datalabel_got.refcount = 0;
  eind->datalabel_got.refcount = 0;
#endif
#endif
 
 
  if (ind->root.type == bfd_link_hash_indirect
  if (ind->root.type == bfd_link_hash_indirect
      && dir->got.refcount <= 0)
      && dir->got.refcount <= 0)
    {
    {
      edir->tls_type = eind->tls_type;
      edir->tls_type = eind->tls_type;
      eind->tls_type = GOT_UNKNOWN;
      eind->tls_type = GOT_UNKNOWN;
    }
    }
 
 
  if (ind->root.type != bfd_link_hash_indirect
  if (ind->root.type != bfd_link_hash_indirect
      && dir->dynamic_adjusted)
      && dir->dynamic_adjusted)
    {
    {
      /* If called to transfer flags for a weakdef during processing
      /* If called to transfer flags for a weakdef during processing
         of elf_adjust_dynamic_symbol, don't copy non_got_ref.
         of elf_adjust_dynamic_symbol, don't copy non_got_ref.
         We clear it ourselves for ELIMINATE_COPY_RELOCS.  */
         We clear it ourselves for ELIMINATE_COPY_RELOCS.  */
      dir->ref_dynamic |= ind->ref_dynamic;
      dir->ref_dynamic |= ind->ref_dynamic;
      dir->ref_regular |= ind->ref_regular;
      dir->ref_regular |= ind->ref_regular;
      dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
      dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
      dir->needs_plt |= ind->needs_plt;
      dir->needs_plt |= ind->needs_plt;
    }
    }
  else
  else
    _bfd_elf_link_hash_copy_indirect (info, dir, ind);
    _bfd_elf_link_hash_copy_indirect (info, dir, ind);
}
}
 
 
static int
static int
sh_elf_optimized_tls_reloc (struct bfd_link_info *info, int r_type,
sh_elf_optimized_tls_reloc (struct bfd_link_info *info, int r_type,
                            int is_local)
                            int is_local)
{
{
  if (info->shared)
  if (info->shared)
    return r_type;
    return r_type;
 
 
  switch (r_type)
  switch (r_type)
    {
    {
    case R_SH_TLS_GD_32:
    case R_SH_TLS_GD_32:
    case R_SH_TLS_IE_32:
    case R_SH_TLS_IE_32:
      if (is_local)
      if (is_local)
        return R_SH_TLS_LE_32;
        return R_SH_TLS_LE_32;
      return R_SH_TLS_IE_32;
      return R_SH_TLS_IE_32;
    case R_SH_TLS_LD_32:
    case R_SH_TLS_LD_32:
      return R_SH_TLS_LE_32;
      return R_SH_TLS_LE_32;
    }
    }
 
 
  return r_type;
  return r_type;
}
}
 
 
/* Look through the relocs for a section during the first phase.
/* Look through the relocs for a section during the first phase.
   Since we don't do .gots or .plts, we just need to consider the
   Since we don't do .gots or .plts, we just need to consider the
   virtual table relocs for gc.  */
   virtual table relocs for gc.  */
 
 
static bfd_boolean
static bfd_boolean
sh_elf_check_relocs (bfd *abfd, struct bfd_link_info *info, asection *sec,
sh_elf_check_relocs (bfd *abfd, struct bfd_link_info *info, asection *sec,
                     const Elf_Internal_Rela *relocs)
                     const Elf_Internal_Rela *relocs)
{
{
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Shdr *symtab_hdr;
  struct elf_link_hash_entry **sym_hashes;
  struct elf_link_hash_entry **sym_hashes;
  struct elf_sh_link_hash_table *htab;
  struct elf_sh_link_hash_table *htab;
  const Elf_Internal_Rela *rel;
  const Elf_Internal_Rela *rel;
  const Elf_Internal_Rela *rel_end;
  const Elf_Internal_Rela *rel_end;
  bfd_vma *local_got_offsets;
  bfd_vma *local_got_offsets;
  asection *sgot;
  asection *sgot;
  asection *srelgot;
  asection *srelgot;
  asection *sreloc;
  asection *sreloc;
  unsigned int r_type;
  unsigned int r_type;
  int tls_type, old_tls_type;
  int tls_type, old_tls_type;
 
 
  sgot = NULL;
  sgot = NULL;
  srelgot = NULL;
  srelgot = NULL;
  sreloc = NULL;
  sreloc = NULL;
 
 
  if (info->relocatable)
  if (info->relocatable)
    return TRUE;
    return TRUE;
 
 
  BFD_ASSERT (is_sh_elf (abfd));
  BFD_ASSERT (is_sh_elf (abfd));
 
 
  symtab_hdr = &elf_symtab_hdr (abfd);
  symtab_hdr = &elf_symtab_hdr (abfd);
  sym_hashes = elf_sym_hashes (abfd);
  sym_hashes = elf_sym_hashes (abfd);
 
 
  htab = sh_elf_hash_table (info);
  htab = sh_elf_hash_table (info);
  local_got_offsets = elf_local_got_offsets (abfd);
  local_got_offsets = elf_local_got_offsets (abfd);
 
 
  rel_end = relocs + sec->reloc_count;
  rel_end = relocs + sec->reloc_count;
  for (rel = relocs; rel < rel_end; rel++)
  for (rel = relocs; rel < rel_end; rel++)
    {
    {
      struct elf_link_hash_entry *h;
      struct elf_link_hash_entry *h;
      unsigned long r_symndx;
      unsigned long r_symndx;
#ifdef INCLUDE_SHMEDIA
#ifdef INCLUDE_SHMEDIA
      int seen_stt_datalabel = 0;
      int seen_stt_datalabel = 0;
#endif
#endif
 
 
      r_symndx = ELF32_R_SYM (rel->r_info);
      r_symndx = ELF32_R_SYM (rel->r_info);
      r_type = ELF32_R_TYPE (rel->r_info);
      r_type = ELF32_R_TYPE (rel->r_info);
 
 
      if (r_symndx < symtab_hdr->sh_info)
      if (r_symndx < symtab_hdr->sh_info)
        h = NULL;
        h = NULL;
      else
      else
        {
        {
          h = sym_hashes[r_symndx - symtab_hdr->sh_info];
          h = sym_hashes[r_symndx - symtab_hdr->sh_info];
          while (h->root.type == bfd_link_hash_indirect
          while (h->root.type == bfd_link_hash_indirect
                 || h->root.type == bfd_link_hash_warning)
                 || h->root.type == bfd_link_hash_warning)
            {
            {
#ifdef INCLUDE_SHMEDIA
#ifdef INCLUDE_SHMEDIA
              seen_stt_datalabel |= h->type == STT_DATALABEL;
              seen_stt_datalabel |= h->type == STT_DATALABEL;
#endif
#endif
              h = (struct elf_link_hash_entry *) h->root.u.i.link;
              h = (struct elf_link_hash_entry *) h->root.u.i.link;
            }
            }
        }
        }
 
 
      r_type = sh_elf_optimized_tls_reloc (info, r_type, h == NULL);
      r_type = sh_elf_optimized_tls_reloc (info, r_type, h == NULL);
      if (! info->shared
      if (! info->shared
          && r_type == R_SH_TLS_IE_32
          && r_type == R_SH_TLS_IE_32
          && h != NULL
          && h != NULL
          && h->root.type != bfd_link_hash_undefined
          && h->root.type != bfd_link_hash_undefined
          && h->root.type != bfd_link_hash_undefweak
          && h->root.type != bfd_link_hash_undefweak
          && (h->dynindx == -1
          && (h->dynindx == -1
              || h->def_regular))
              || h->def_regular))
        r_type = R_SH_TLS_LE_32;
        r_type = R_SH_TLS_LE_32;
 
 
      /* Some relocs require a global offset table.  */
      /* Some relocs require a global offset table.  */
      if (htab->sgot == NULL)
      if (htab->sgot == NULL)
        {
        {
          switch (r_type)
          switch (r_type)
            {
            {
            case R_SH_GOTPLT32:
            case R_SH_GOTPLT32:
            case R_SH_GOT32:
            case R_SH_GOT32:
            case R_SH_GOTOFF:
            case R_SH_GOTOFF:
            case R_SH_GOTPC:
            case R_SH_GOTPC:
#ifdef INCLUDE_SHMEDIA
#ifdef INCLUDE_SHMEDIA
            case R_SH_GOTPLT_LOW16:
            case R_SH_GOTPLT_LOW16:
            case R_SH_GOTPLT_MEDLOW16:
            case R_SH_GOTPLT_MEDLOW16:
            case R_SH_GOTPLT_MEDHI16:
            case R_SH_GOTPLT_MEDHI16:
            case R_SH_GOTPLT_HI16:
            case R_SH_GOTPLT_HI16:
            case R_SH_GOTPLT10BY4:
            case R_SH_GOTPLT10BY4:
            case R_SH_GOTPLT10BY8:
            case R_SH_GOTPLT10BY8:
            case R_SH_GOT_LOW16:
            case R_SH_GOT_LOW16:
            case R_SH_GOT_MEDLOW16:
            case R_SH_GOT_MEDLOW16:
            case R_SH_GOT_MEDHI16:
            case R_SH_GOT_MEDHI16:
            case R_SH_GOT_HI16:
            case R_SH_GOT_HI16:
            case R_SH_GOT10BY4:
            case R_SH_GOT10BY4:
            case R_SH_GOT10BY8:
            case R_SH_GOT10BY8:
            case R_SH_GOTOFF_LOW16:
            case R_SH_GOTOFF_LOW16:
            case R_SH_GOTOFF_MEDLOW16:
            case R_SH_GOTOFF_MEDLOW16:
            case R_SH_GOTOFF_MEDHI16:
            case R_SH_GOTOFF_MEDHI16:
            case R_SH_GOTOFF_HI16:
            case R_SH_GOTOFF_HI16:
            case R_SH_GOTPC_LOW16:
            case R_SH_GOTPC_LOW16:
            case R_SH_GOTPC_MEDLOW16:
            case R_SH_GOTPC_MEDLOW16:
            case R_SH_GOTPC_MEDHI16:
            case R_SH_GOTPC_MEDHI16:
            case R_SH_GOTPC_HI16:
            case R_SH_GOTPC_HI16:
#endif
#endif
            case R_SH_TLS_GD_32:
            case R_SH_TLS_GD_32:
            case R_SH_TLS_LD_32:
            case R_SH_TLS_LD_32:
            case R_SH_TLS_IE_32:
            case R_SH_TLS_IE_32:
              if (htab->sgot == NULL)
              if (htab->sgot == NULL)
                {
                {
                  if (htab->root.dynobj == NULL)
                  if (htab->root.dynobj == NULL)
                    htab->root.dynobj = abfd;
                    htab->root.dynobj = abfd;
                  if (!create_got_section (htab->root.dynobj, info))
                  if (!create_got_section (htab->root.dynobj, info))
                    return FALSE;
                    return FALSE;
                }
                }
              break;
              break;
 
 
            default:
            default:
              break;
              break;
            }
            }
        }
        }
 
 
      switch (r_type)
      switch (r_type)
        {
        {
          /* This relocation describes the C++ object vtable hierarchy.
          /* This relocation describes the C++ object vtable hierarchy.
             Reconstruct it for later use during GC.  */
             Reconstruct it for later use during GC.  */
        case R_SH_GNU_VTINHERIT:
        case R_SH_GNU_VTINHERIT:
          if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
          if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
            return FALSE;
            return FALSE;
          break;
          break;
 
 
          /* This relocation describes which C++ vtable entries are actually
          /* This relocation describes which C++ vtable entries are actually
             used.  Record for later use during GC.  */
             used.  Record for later use during GC.  */
        case R_SH_GNU_VTENTRY:
        case R_SH_GNU_VTENTRY:
          BFD_ASSERT (h != NULL);
          BFD_ASSERT (h != NULL);
          if (h != NULL
          if (h != NULL
              && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
              && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
            return FALSE;
            return FALSE;
          break;
          break;
 
 
        case R_SH_TLS_IE_32:
        case R_SH_TLS_IE_32:
          if (info->shared)
          if (info->shared)
            info->flags |= DF_STATIC_TLS;
            info->flags |= DF_STATIC_TLS;
 
 
          /* FALLTHROUGH */
          /* FALLTHROUGH */
        force_got:
        force_got:
        case R_SH_TLS_GD_32:
        case R_SH_TLS_GD_32:
        case R_SH_GOT32:
        case R_SH_GOT32:
#ifdef INCLUDE_SHMEDIA
#ifdef INCLUDE_SHMEDIA
        case R_SH_GOT_LOW16:
        case R_SH_GOT_LOW16:
        case R_SH_GOT_MEDLOW16:
        case R_SH_GOT_MEDLOW16:
        case R_SH_GOT_MEDHI16:
        case R_SH_GOT_MEDHI16:
        case R_SH_GOT_HI16:
        case R_SH_GOT_HI16:
        case R_SH_GOT10BY4:
        case R_SH_GOT10BY4:
        case R_SH_GOT10BY8:
        case R_SH_GOT10BY8:
#endif
#endif
          switch (r_type)
          switch (r_type)
            {
            {
            default:
            default:
              tls_type = GOT_NORMAL;
              tls_type = GOT_NORMAL;
              break;
              break;
            case R_SH_TLS_GD_32:
            case R_SH_TLS_GD_32:
              tls_type = GOT_TLS_GD;
              tls_type = GOT_TLS_GD;
              break;
              break;
            case R_SH_TLS_IE_32:
            case R_SH_TLS_IE_32:
              tls_type = GOT_TLS_IE;
              tls_type = GOT_TLS_IE;
              break;
              break;
            }
            }
 
 
          if (h != NULL)
          if (h != NULL)
            {
            {
#ifdef INCLUDE_SHMEDIA
#ifdef INCLUDE_SHMEDIA
              if (seen_stt_datalabel)
              if (seen_stt_datalabel)
                {
                {
                  struct elf_sh_link_hash_entry *eh
                  struct elf_sh_link_hash_entry *eh
                    = (struct elf_sh_link_hash_entry *) h;
                    = (struct elf_sh_link_hash_entry *) h;
 
 
                  eh->datalabel_got.refcount += 1;
                  eh->datalabel_got.refcount += 1;
                }
                }
              else
              else
#endif
#endif
                h->got.refcount += 1;
                h->got.refcount += 1;
              old_tls_type = sh_elf_hash_entry (h)->tls_type;
              old_tls_type = sh_elf_hash_entry (h)->tls_type;
            }
            }
          else
          else
            {
            {
              bfd_signed_vma *local_got_refcounts;
              bfd_signed_vma *local_got_refcounts;
 
 
              /* This is a global offset table entry for a local
              /* This is a global offset table entry for a local
                 symbol.  */
                 symbol.  */
              local_got_refcounts = elf_local_got_refcounts (abfd);
              local_got_refcounts = elf_local_got_refcounts (abfd);
              if (local_got_refcounts == NULL)
              if (local_got_refcounts == NULL)
                {
                {
                  bfd_size_type size;
                  bfd_size_type size;
 
 
                  size = symtab_hdr->sh_info;
                  size = symtab_hdr->sh_info;
                  size *= sizeof (bfd_signed_vma);
                  size *= sizeof (bfd_signed_vma);
#ifdef INCLUDE_SHMEDIA
#ifdef INCLUDE_SHMEDIA
                  /* Reserve space for both the datalabel and
                  /* Reserve space for both the datalabel and
                     codelabel local GOT offsets.  */
                     codelabel local GOT offsets.  */
                  size *= 2;
                  size *= 2;
#endif
#endif
                  size += symtab_hdr->sh_info;
                  size += symtab_hdr->sh_info;
                  local_got_refcounts = ((bfd_signed_vma *)
                  local_got_refcounts = ((bfd_signed_vma *)
                                         bfd_zalloc (abfd, size));
                                         bfd_zalloc (abfd, size));
                  if (local_got_refcounts == NULL)
                  if (local_got_refcounts == NULL)
                    return FALSE;
                    return FALSE;
                  elf_local_got_refcounts (abfd) = local_got_refcounts;
                  elf_local_got_refcounts (abfd) = local_got_refcounts;
#ifdef  INCLUDE_SHMEDIA
#ifdef  INCLUDE_SHMEDIA
                  /* Take care of both the datalabel and codelabel local
                  /* Take care of both the datalabel and codelabel local
                     GOT offsets.  */
                     GOT offsets.  */
                  sh_elf_local_got_tls_type (abfd)
                  sh_elf_local_got_tls_type (abfd)
                    = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
                    = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
#else
#else
                  sh_elf_local_got_tls_type (abfd)
                  sh_elf_local_got_tls_type (abfd)
                    = (char *) (local_got_refcounts + symtab_hdr->sh_info);
                    = (char *) (local_got_refcounts + symtab_hdr->sh_info);
#endif
#endif
                }
                }
#ifdef INCLUDE_SHMEDIA
#ifdef INCLUDE_SHMEDIA
              if (rel->r_addend & 1)
              if (rel->r_addend & 1)
                local_got_refcounts[symtab_hdr->sh_info + r_symndx] += 1;
                local_got_refcounts[symtab_hdr->sh_info + r_symndx] += 1;
              else
              else
#endif
#endif
                local_got_refcounts[r_symndx] += 1;
                local_got_refcounts[r_symndx] += 1;
              old_tls_type = sh_elf_local_got_tls_type (abfd) [r_symndx];
              old_tls_type = sh_elf_local_got_tls_type (abfd) [r_symndx];
            }
            }
 
 
          /* If a TLS symbol is accessed using IE at least once,
          /* If a TLS symbol is accessed using IE at least once,
             there is no point to use dynamic model for it.  */
             there is no point to use dynamic model for it.  */
          if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
          if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
              && (old_tls_type != GOT_TLS_GD || tls_type != GOT_TLS_IE))
              && (old_tls_type != GOT_TLS_GD || tls_type != GOT_TLS_IE))
            {
            {
              if (old_tls_type == GOT_TLS_IE && tls_type == GOT_TLS_GD)
              if (old_tls_type == GOT_TLS_IE && tls_type == GOT_TLS_GD)
                tls_type = GOT_TLS_IE;
                tls_type = GOT_TLS_IE;
              else
              else
                {
                {
                  (*_bfd_error_handler)
                  (*_bfd_error_handler)
                    (_("%B: `%s' accessed both as normal and thread local symbol"),
                    (_("%B: `%s' accessed both as normal and thread local symbol"),
                     abfd, h->root.root.string);
                     abfd, h->root.root.string);
                  return FALSE;
                  return FALSE;
                }
                }
            }
            }
 
 
          if (old_tls_type != tls_type)
          if (old_tls_type != tls_type)
            {
            {
              if (h != NULL)
              if (h != NULL)
                sh_elf_hash_entry (h)->tls_type = tls_type;
                sh_elf_hash_entry (h)->tls_type = tls_type;
              else
              else
                sh_elf_local_got_tls_type (abfd) [r_symndx] = tls_type;
                sh_elf_local_got_tls_type (abfd) [r_symndx] = tls_type;
            }
            }
 
 
          break;
          break;
 
 
        case R_SH_TLS_LD_32:
        case R_SH_TLS_LD_32:
          sh_elf_hash_table(info)->tls_ldm_got.refcount += 1;
          sh_elf_hash_table(info)->tls_ldm_got.refcount += 1;
          break;
          break;
 
 
        case R_SH_GOTPLT32:
        case R_SH_GOTPLT32:
#ifdef INCLUDE_SHMEDIA
#ifdef INCLUDE_SHMEDIA
        case R_SH_GOTPLT_LOW16:
        case R_SH_GOTPLT_LOW16:
        case R_SH_GOTPLT_MEDLOW16:
        case R_SH_GOTPLT_MEDLOW16:
        case R_SH_GOTPLT_MEDHI16:
        case R_SH_GOTPLT_MEDHI16:
        case R_SH_GOTPLT_HI16:
        case R_SH_GOTPLT_HI16:
        case R_SH_GOTPLT10BY4:
        case R_SH_GOTPLT10BY4:
        case R_SH_GOTPLT10BY8:
        case R_SH_GOTPLT10BY8:
#endif
#endif
          /* If this is a local symbol, we resolve it directly without
          /* If this is a local symbol, we resolve it directly without
             creating a procedure linkage table entry.  */
             creating a procedure linkage table entry.  */
 
 
          if (h == NULL
          if (h == NULL
              || h->forced_local
              || h->forced_local
              || ! info->shared
              || ! info->shared
              || info->symbolic
              || info->symbolic
              || h->dynindx == -1)
              || h->dynindx == -1)
            goto force_got;
            goto force_got;
 
 
          h->needs_plt = 1;
          h->needs_plt = 1;
          h->plt.refcount += 1;
          h->plt.refcount += 1;
          ((struct elf_sh_link_hash_entry *) h)->gotplt_refcount += 1;
          ((struct elf_sh_link_hash_entry *) h)->gotplt_refcount += 1;
 
 
          break;
          break;
 
 
        case R_SH_PLT32:
        case R_SH_PLT32:
#ifdef INCLUDE_SHMEDIA
#ifdef INCLUDE_SHMEDIA
        case R_SH_PLT_LOW16:
        case R_SH_PLT_LOW16:
        case R_SH_PLT_MEDLOW16:
        case R_SH_PLT_MEDLOW16:
        case R_SH_PLT_MEDHI16:
        case R_SH_PLT_MEDHI16:
        case R_SH_PLT_HI16:
        case R_SH_PLT_HI16:
#endif
#endif
          /* This symbol requires a procedure linkage table entry.  We
          /* This symbol requires a procedure linkage table entry.  We
             actually build the entry in adjust_dynamic_symbol,
             actually build the entry in adjust_dynamic_symbol,
             because this might be a case of linking PIC code which is
             because this might be a case of linking PIC code which is
             never referenced by a dynamic object, in which case we
             never referenced by a dynamic object, in which case we
             don't need to generate a procedure linkage table entry
             don't need to generate a procedure linkage table entry
             after all.  */
             after all.  */
 
 
          /* If this is a local symbol, we resolve it directly without
          /* If this is a local symbol, we resolve it directly without
             creating a procedure linkage table entry.  */
             creating a procedure linkage table entry.  */
          if (h == NULL)
          if (h == NULL)
            continue;
            continue;
 
 
          if (h->forced_local)
          if (h->forced_local)
            break;
            break;
 
 
          h->needs_plt = 1;
          h->needs_plt = 1;
          h->plt.refcount += 1;
          h->plt.refcount += 1;
          break;
          break;
 
 
        case R_SH_DIR32:
        case R_SH_DIR32:
        case R_SH_REL32:
        case R_SH_REL32:
#ifdef INCLUDE_SHMEDIA
#ifdef INCLUDE_SHMEDIA
        case R_SH_IMM_LOW16_PCREL:
        case R_SH_IMM_LOW16_PCREL:
        case R_SH_IMM_MEDLOW16_PCREL:
        case R_SH_IMM_MEDLOW16_PCREL:
        case R_SH_IMM_MEDHI16_PCREL:
        case R_SH_IMM_MEDHI16_PCREL:
        case R_SH_IMM_HI16_PCREL:
        case R_SH_IMM_HI16_PCREL:
#endif
#endif
          if (h != NULL && ! info->shared)
          if (h != NULL && ! info->shared)
            {
            {
              h->non_got_ref = 1;
              h->non_got_ref = 1;
              h->plt.refcount += 1;
              h->plt.refcount += 1;
            }
            }
 
 
          /* If we are creating a shared library, and this is a reloc
          /* If we are creating a shared library, and this is a reloc
             against a global symbol, or a non PC relative reloc
             against a global symbol, or a non PC relative reloc
             against a local symbol, then we need to copy the reloc
             against a local symbol, then we need to copy the reloc
             into the shared library.  However, if we are linking with
             into the shared library.  However, if we are linking with
             -Bsymbolic, we do not need to copy a reloc against a
             -Bsymbolic, we do not need to copy a reloc against a
             global symbol which is defined in an object we are
             global symbol which is defined in an object we are
             including in the link (i.e., DEF_REGULAR is set).  At
             including in the link (i.e., DEF_REGULAR is set).  At
             this point we have not seen all the input files, so it is
             this point we have not seen all the input files, so it is
             possible that DEF_REGULAR is not set now but will be set
             possible that DEF_REGULAR is not set now but will be set
             later (it is never cleared).  We account for that
             later (it is never cleared).  We account for that
             possibility below by storing information in the
             possibility below by storing information in the
             dyn_relocs field of the hash table entry. A similar
             dyn_relocs field of the hash table entry. A similar
             situation occurs when creating shared libraries and symbol
             situation occurs when creating shared libraries and symbol
             visibility changes render the symbol local.
             visibility changes render the symbol local.
 
 
             If on the other hand, we are creating an executable, we
             If on the other hand, we are creating an executable, we
             may need to keep relocations for symbols satisfied by a
             may need to keep relocations for symbols satisfied by a
             dynamic library if we manage to avoid copy relocs for the
             dynamic library if we manage to avoid copy relocs for the
             symbol.  */
             symbol.  */
          if ((info->shared
          if ((info->shared
               && (sec->flags & SEC_ALLOC) != 0
               && (sec->flags & SEC_ALLOC) != 0
               && (r_type != R_SH_REL32
               && (r_type != R_SH_REL32
                   || (h != NULL
                   || (h != NULL
                       && (! info->symbolic
                       && (! info->symbolic
                           || h->root.type == bfd_link_hash_defweak
                           || h->root.type == bfd_link_hash_defweak
                           || !h->def_regular))))
                           || !h->def_regular))))
              || (! info->shared
              || (! info->shared
                  && (sec->flags & SEC_ALLOC) != 0
                  && (sec->flags & SEC_ALLOC) != 0
                  && h != NULL
                  && h != NULL
                  && (h->root.type == bfd_link_hash_defweak
                  && (h->root.type == bfd_link_hash_defweak
                      || !h->def_regular)))
                      || !h->def_regular)))
            {
            {
              struct elf_sh_dyn_relocs *p;
              struct elf_sh_dyn_relocs *p;
              struct elf_sh_dyn_relocs **head;
              struct elf_sh_dyn_relocs **head;
 
 
              if (htab->root.dynobj == NULL)
              if (htab->root.dynobj == NULL)
                htab->root.dynobj = abfd;
                htab->root.dynobj = abfd;
 
 
              /* When creating a shared object, we must copy these
              /* When creating a shared object, we must copy these
                 reloc types into the output file.  We create a reloc
                 reloc types into the output file.  We create a reloc
                 section in dynobj and make room for this reloc.  */
                 section in dynobj and make room for this reloc.  */
              if (sreloc == NULL)
              if (sreloc == NULL)
                {
                {
                  sreloc = _bfd_elf_make_dynamic_reloc_section
                  sreloc = _bfd_elf_make_dynamic_reloc_section
                    (sec, htab->root.dynobj, 2, abfd, /*rela?*/ TRUE);
                    (sec, htab->root.dynobj, 2, abfd, /*rela?*/ TRUE);
 
 
                  if (sreloc == NULL)
                  if (sreloc == NULL)
                    return FALSE;
                    return FALSE;
                }
                }
 
 
              /* If this is a global symbol, we count the number of
              /* If this is a global symbol, we count the number of
                 relocations we need for this symbol.  */
                 relocations we need for this symbol.  */
              if (h != NULL)
              if (h != NULL)
                head = &((struct elf_sh_link_hash_entry *) h)->dyn_relocs;
                head = &((struct elf_sh_link_hash_entry *) h)->dyn_relocs;
              else
              else
                {
                {
                  /* Track dynamic relocs needed for local syms too.  */
                  /* Track dynamic relocs needed for local syms too.  */
                  asection *s;
                  asection *s;
                  void *vpp;
                  void *vpp;
                  Elf_Internal_Sym *isym;
                  Elf_Internal_Sym *isym;
 
 
                  isym = bfd_sym_from_r_symndx (&htab->sym_cache,
                  isym = bfd_sym_from_r_symndx (&htab->sym_cache,
                                                abfd, r_symndx);
                                                abfd, r_symndx);
                  if (isym == NULL)
                  if (isym == NULL)
                    return FALSE;
                    return FALSE;
 
 
                  s = bfd_section_from_elf_index (abfd, isym->st_shndx);
                  s = bfd_section_from_elf_index (abfd, isym->st_shndx);
                  if (s == NULL)
                  if (s == NULL)
                    s = sec;
                    s = sec;
 
 
                  vpp = &elf_section_data (s)->local_dynrel;
                  vpp = &elf_section_data (s)->local_dynrel;
                  head = (struct elf_sh_dyn_relocs **) vpp;
                  head = (struct elf_sh_dyn_relocs **) vpp;
                }
                }
 
 
              p = *head;
              p = *head;
              if (p == NULL || p->sec != sec)
              if (p == NULL || p->sec != sec)
                {
                {
                  bfd_size_type amt = sizeof (*p);
                  bfd_size_type amt = sizeof (*p);
                  p = bfd_alloc (htab->root.dynobj, amt);
                  p = bfd_alloc (htab->root.dynobj, amt);
                  if (p == NULL)
                  if (p == NULL)
                    return FALSE;
                    return FALSE;
                  p->next = *head;
                  p->next = *head;
                  *head = p;
                  *head = p;
                  p->sec = sec;
                  p->sec = sec;
                  p->count = 0;
                  p->count = 0;
                  p->pc_count = 0;
                  p->pc_count = 0;
                }
                }
 
 
              p->count += 1;
              p->count += 1;
              if (r_type == R_SH_REL32
              if (r_type == R_SH_REL32
#ifdef INCLUDE_SHMEDIA
#ifdef INCLUDE_SHMEDIA
                  || r_type == R_SH_IMM_LOW16_PCREL
                  || r_type == R_SH_IMM_LOW16_PCREL
                  || r_type == R_SH_IMM_MEDLOW16_PCREL
                  || r_type == R_SH_IMM_MEDLOW16_PCREL
                  || r_type == R_SH_IMM_MEDHI16_PCREL
                  || r_type == R_SH_IMM_MEDHI16_PCREL
                  || r_type == R_SH_IMM_HI16_PCREL
                  || r_type == R_SH_IMM_HI16_PCREL
#endif
#endif
                  )
                  )
                p->pc_count += 1;
                p->pc_count += 1;
            }
            }
 
 
          break;
          break;
 
 
        case R_SH_TLS_LE_32:
        case R_SH_TLS_LE_32:
          if (info->shared)
          if (info->shared)
            {
            {
              (*_bfd_error_handler)
              (*_bfd_error_handler)
                (_("%B: TLS local exec code cannot be linked into shared objects"),
                (_("%B: TLS local exec code cannot be linked into shared objects"),
                 abfd);
                 abfd);
              return FALSE;
              return FALSE;
            }
            }
 
 
          break;
          break;
 
 
        case R_SH_TLS_LDO_32:
        case R_SH_TLS_LDO_32:
          /* Nothing to do.  */
          /* Nothing to do.  */
          break;
          break;
 
 
        default:
        default:
          break;
          break;
        }
        }
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
#ifndef sh_elf_set_mach_from_flags
#ifndef sh_elf_set_mach_from_flags
static unsigned int sh_ef_bfd_table[] = { EF_SH_BFD_TABLE };
static unsigned int sh_ef_bfd_table[] = { EF_SH_BFD_TABLE };
 
 
static bfd_boolean
static bfd_boolean
sh_elf_set_mach_from_flags (bfd *abfd)
sh_elf_set_mach_from_flags (bfd *abfd)
{
{
  flagword flags = elf_elfheader (abfd)->e_flags & EF_SH_MACH_MASK;
  flagword flags = elf_elfheader (abfd)->e_flags & EF_SH_MACH_MASK;
 
 
  if (flags >= sizeof(sh_ef_bfd_table))
  if (flags >= sizeof(sh_ef_bfd_table))
    return FALSE;
    return FALSE;
 
 
  if (sh_ef_bfd_table[flags] == 0)
  if (sh_ef_bfd_table[flags] == 0)
    return FALSE;
    return FALSE;
 
 
  bfd_default_set_arch_mach (abfd, bfd_arch_sh, sh_ef_bfd_table[flags]);
  bfd_default_set_arch_mach (abfd, bfd_arch_sh, sh_ef_bfd_table[flags]);
 
 
  return TRUE;
  return TRUE;
}
}
 
 
 
 
/* Reverse table lookup for sh_ef_bfd_table[].
/* Reverse table lookup for sh_ef_bfd_table[].
   Given a bfd MACH value from archures.c
   Given a bfd MACH value from archures.c
   return the equivalent ELF flags from the table.
   return the equivalent ELF flags from the table.
   Return -1 if no match is found.  */
   Return -1 if no match is found.  */
 
 
int
int
sh_elf_get_flags_from_mach (unsigned long mach)
sh_elf_get_flags_from_mach (unsigned long mach)
{
{
  int i = ARRAY_SIZE (sh_ef_bfd_table) - 1;
  int i = ARRAY_SIZE (sh_ef_bfd_table) - 1;
 
 
  for (; i>0; i--)
  for (; i>0; i--)
    if (sh_ef_bfd_table[i] == mach)
    if (sh_ef_bfd_table[i] == mach)
      return i;
      return i;
 
 
  /* shouldn't get here */
  /* shouldn't get here */
  BFD_FAIL();
  BFD_FAIL();
 
 
  return -1;
  return -1;
}
}
#endif /* not sh_elf_set_mach_from_flags */
#endif /* not sh_elf_set_mach_from_flags */
 
 
#ifndef sh_elf_set_private_flags
#ifndef sh_elf_set_private_flags
/* Function to keep SH specific file flags.  */
/* Function to keep SH specific file flags.  */
 
 
static bfd_boolean
static bfd_boolean
sh_elf_set_private_flags (bfd *abfd, flagword flags)
sh_elf_set_private_flags (bfd *abfd, flagword flags)
{
{
  BFD_ASSERT (! elf_flags_init (abfd)
  BFD_ASSERT (! elf_flags_init (abfd)
              || elf_elfheader (abfd)->e_flags == flags);
              || elf_elfheader (abfd)->e_flags == flags);
 
 
  elf_elfheader (abfd)->e_flags = flags;
  elf_elfheader (abfd)->e_flags = flags;
  elf_flags_init (abfd) = TRUE;
  elf_flags_init (abfd) = TRUE;
  return sh_elf_set_mach_from_flags (abfd);
  return sh_elf_set_mach_from_flags (abfd);
}
}
#endif /* not sh_elf_set_private_flags */
#endif /* not sh_elf_set_private_flags */
 
 
#ifndef sh_elf_copy_private_data
#ifndef sh_elf_copy_private_data
/* Copy backend specific data from one object module to another */
/* Copy backend specific data from one object module to another */
 
 
static bfd_boolean
static bfd_boolean
sh_elf_copy_private_data (bfd * ibfd, bfd * obfd)
sh_elf_copy_private_data (bfd * ibfd, bfd * obfd)
{
{
  /* Copy object attributes.  */
  /* Copy object attributes.  */
  _bfd_elf_copy_obj_attributes (ibfd, obfd);
  _bfd_elf_copy_obj_attributes (ibfd, obfd);
 
 
  if (! is_sh_elf (ibfd) || ! is_sh_elf (obfd))
  if (! is_sh_elf (ibfd) || ! is_sh_elf (obfd))
    return TRUE;
    return TRUE;
 
 
  return sh_elf_set_private_flags (obfd, elf_elfheader (ibfd)->e_flags);
  return sh_elf_set_private_flags (obfd, elf_elfheader (ibfd)->e_flags);
}
}
#endif /* not sh_elf_copy_private_data */
#endif /* not sh_elf_copy_private_data */
 
 
#ifndef sh_elf_merge_private_data
#ifndef sh_elf_merge_private_data
 
 
/* This function returns the ELF architecture number that
/* This function returns the ELF architecture number that
   corresponds to the given arch_sh* flags.  */
   corresponds to the given arch_sh* flags.  */
 
 
int
int
sh_find_elf_flags (unsigned int arch_set)
sh_find_elf_flags (unsigned int arch_set)
{
{
  extern unsigned long sh_get_bfd_mach_from_arch_set (unsigned int);
  extern unsigned long sh_get_bfd_mach_from_arch_set (unsigned int);
  unsigned long bfd_mach = sh_get_bfd_mach_from_arch_set (arch_set);
  unsigned long bfd_mach = sh_get_bfd_mach_from_arch_set (arch_set);
 
 
  return sh_elf_get_flags_from_mach (bfd_mach);
  return sh_elf_get_flags_from_mach (bfd_mach);
}
}
 
 
/* This routine initialises the elf flags when required and
/* This routine initialises the elf flags when required and
   calls sh_merge_bfd_arch() to check dsp/fpu compatibility.  */
   calls sh_merge_bfd_arch() to check dsp/fpu compatibility.  */
 
 
static bfd_boolean
static bfd_boolean
sh_elf_merge_private_data (bfd *ibfd, bfd *obfd)
sh_elf_merge_private_data (bfd *ibfd, bfd *obfd)
{
{
  extern bfd_boolean sh_merge_bfd_arch (bfd *, bfd *);
  extern bfd_boolean sh_merge_bfd_arch (bfd *, bfd *);
 
 
  if (! is_sh_elf (ibfd) || ! is_sh_elf (obfd))
  if (! is_sh_elf (ibfd) || ! is_sh_elf (obfd))
    return TRUE;
    return TRUE;
 
 
  if (! elf_flags_init (obfd))
  if (! elf_flags_init (obfd))
    {
    {
      /* This happens when ld starts out with a 'blank' output file.  */
      /* This happens when ld starts out with a 'blank' output file.  */
      elf_flags_init (obfd) = TRUE;
      elf_flags_init (obfd) = TRUE;
      elf_elfheader (obfd)->e_flags = EF_SH1;
      elf_elfheader (obfd)->e_flags = EF_SH1;
      sh_elf_set_mach_from_flags (obfd);
      sh_elf_set_mach_from_flags (obfd);
    }
    }
 
 
  if (! sh_merge_bfd_arch (ibfd, obfd))
  if (! sh_merge_bfd_arch (ibfd, obfd))
    {
    {
      _bfd_error_handler ("%B: uses instructions which are incompatible "
      _bfd_error_handler ("%B: uses instructions which are incompatible "
                          "with instructions used in previous modules",
                          "with instructions used in previous modules",
                          ibfd);
                          ibfd);
      bfd_set_error (bfd_error_bad_value);
      bfd_set_error (bfd_error_bad_value);
      return FALSE;
      return FALSE;
    }
    }
 
 
  elf_elfheader (obfd)->e_flags =
  elf_elfheader (obfd)->e_flags =
    sh_elf_get_flags_from_mach (bfd_get_mach (obfd));
    sh_elf_get_flags_from_mach (bfd_get_mach (obfd));
 
 
  return TRUE;
  return TRUE;
}
}
#endif /* not sh_elf_merge_private_data */
#endif /* not sh_elf_merge_private_data */
 
 
/* Override the generic function because we need to store sh_elf_obj_tdata
/* Override the generic function because we need to store sh_elf_obj_tdata
   as the specific tdata.  We set also the machine architecture from flags
   as the specific tdata.  We set also the machine architecture from flags
   here.  */
   here.  */
 
 
static bfd_boolean
static bfd_boolean
sh_elf_object_p (bfd *abfd)
sh_elf_object_p (bfd *abfd)
{
{
  return sh_elf_set_mach_from_flags (abfd);
  return sh_elf_set_mach_from_flags (abfd);
}
}
 
 
/* Finish up dynamic symbol handling.  We set the contents of various
/* Finish up dynamic symbol handling.  We set the contents of various
   dynamic sections here.  */
   dynamic sections here.  */
 
 
static bfd_boolean
static bfd_boolean
sh_elf_finish_dynamic_symbol (bfd *output_bfd, struct bfd_link_info *info,
sh_elf_finish_dynamic_symbol (bfd *output_bfd, struct bfd_link_info *info,
                              struct elf_link_hash_entry *h,
                              struct elf_link_hash_entry *h,
                              Elf_Internal_Sym *sym)
                              Elf_Internal_Sym *sym)
{
{
  struct elf_sh_link_hash_table *htab;
  struct elf_sh_link_hash_table *htab;
 
 
  htab = sh_elf_hash_table (info);
  htab = sh_elf_hash_table (info);
 
 
  if (h->plt.offset != (bfd_vma) -1)
  if (h->plt.offset != (bfd_vma) -1)
    {
    {
      asection *splt;
      asection *splt;
      asection *sgot;
      asection *sgot;
      asection *srel;
      asection *srel;
 
 
      bfd_vma plt_index;
      bfd_vma plt_index;
      bfd_vma got_offset;
      bfd_vma got_offset;
      Elf_Internal_Rela rel;
      Elf_Internal_Rela rel;
      bfd_byte *loc;
      bfd_byte *loc;
 
 
      /* This symbol has an entry in the procedure linkage table.  Set
      /* This symbol has an entry in the procedure linkage table.  Set
         it up.  */
         it up.  */
 
 
      BFD_ASSERT (h->dynindx != -1);
      BFD_ASSERT (h->dynindx != -1);
 
 
      splt = htab->splt;
      splt = htab->splt;
      sgot = htab->sgotplt;
      sgot = htab->sgotplt;
      srel = htab->srelplt;
      srel = htab->srelplt;
      BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
      BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
 
 
      /* Get the index in the procedure linkage table which
      /* Get the index in the procedure linkage table which
         corresponds to this symbol.  This is the index of this symbol
         corresponds to this symbol.  This is the index of this symbol
         in all the symbols for which we are making plt entries.  The
         in all the symbols for which we are making plt entries.  The
         first entry in the procedure linkage table is reserved.  */
         first entry in the procedure linkage table is reserved.  */
      plt_index = get_plt_index (htab->plt_info, h->plt.offset);
      plt_index = get_plt_index (htab->plt_info, h->plt.offset);
 
 
      /* Get the offset into the .got table of the entry that
      /* Get the offset into the .got table of the entry that
         corresponds to this function.  Each .got entry is 4 bytes.
         corresponds to this function.  Each .got entry is 4 bytes.
         The first three are reserved.  */
         The first three are reserved.  */
      got_offset = (plt_index + 3) * 4;
      got_offset = (plt_index + 3) * 4;
 
 
#ifdef GOT_BIAS
#ifdef GOT_BIAS
      if (info->shared)
      if (info->shared)
        got_offset -= GOT_BIAS;
        got_offset -= GOT_BIAS;
#endif
#endif
 
 
      /* Fill in the entry in the procedure linkage table.  */
      /* Fill in the entry in the procedure linkage table.  */
      memcpy (splt->contents + h->plt.offset,
      memcpy (splt->contents + h->plt.offset,
              htab->plt_info->symbol_entry,
              htab->plt_info->symbol_entry,
              htab->plt_info->symbol_entry_size);
              htab->plt_info->symbol_entry_size);
 
 
      if (info->shared)
      if (info->shared)
        install_plt_field (output_bfd, FALSE, got_offset,
        install_plt_field (output_bfd, FALSE, got_offset,
                           (splt->contents
                           (splt->contents
                            + h->plt.offset
                            + h->plt.offset
                            + htab->plt_info->symbol_fields.got_entry));
                            + htab->plt_info->symbol_fields.got_entry));
      else
      else
        {
        {
          install_plt_field (output_bfd, FALSE,
          install_plt_field (output_bfd, FALSE,
                             (sgot->output_section->vma
                             (sgot->output_section->vma
                              + sgot->output_offset
                              + sgot->output_offset
                              + got_offset),
                              + got_offset),
                             (splt->contents
                             (splt->contents
                              + h->plt.offset
                              + h->plt.offset
                              + htab->plt_info->symbol_fields.got_entry));
                              + htab->plt_info->symbol_fields.got_entry));
          if (htab->vxworks_p)
          if (htab->vxworks_p)
            {
            {
              unsigned int reachable_plts, plts_per_4k;
              unsigned int reachable_plts, plts_per_4k;
              int distance;
              int distance;
 
 
              /* Divide the PLT into groups.  The first group contains
              /* Divide the PLT into groups.  The first group contains
                 REACHABLE_PLTS entries and the other groups contain
                 REACHABLE_PLTS entries and the other groups contain
                 PLTS_PER_4K entries.  Entries in the first group can
                 PLTS_PER_4K entries.  Entries in the first group can
                 branch directly to .plt; those in later groups branch
                 branch directly to .plt; those in later groups branch
                 to the last element of the previous group.  */
                 to the last element of the previous group.  */
              /* ??? It would be better to create multiple copies of
              /* ??? It would be better to create multiple copies of
                 the common resolver stub.  */
                 the common resolver stub.  */
              reachable_plts = ((4096
              reachable_plts = ((4096
                                 - htab->plt_info->plt0_entry_size
                                 - htab->plt_info->plt0_entry_size
                                 - (htab->plt_info->symbol_fields.plt + 4))
                                 - (htab->plt_info->symbol_fields.plt + 4))
                                / htab->plt_info->symbol_entry_size) + 1;
                                / htab->plt_info->symbol_entry_size) + 1;
              plts_per_4k = (4096 / htab->plt_info->symbol_entry_size);
              plts_per_4k = (4096 / htab->plt_info->symbol_entry_size);
              if (plt_index < reachable_plts)
              if (plt_index < reachable_plts)
                distance = -(h->plt.offset
                distance = -(h->plt.offset
                             + htab->plt_info->symbol_fields.plt);
                             + htab->plt_info->symbol_fields.plt);
              else
              else
                distance = -(((plt_index - reachable_plts) % plts_per_4k + 1)
                distance = -(((plt_index - reachable_plts) % plts_per_4k + 1)
                             * htab->plt_info->symbol_entry_size);
                             * htab->plt_info->symbol_entry_size);
 
 
              /* Install the 'bra' with this offset.  */
              /* Install the 'bra' with this offset.  */
              bfd_put_16 (output_bfd,
              bfd_put_16 (output_bfd,
                          0xa000 | (0x0fff & ((distance - 4) / 2)),
                          0xa000 | (0x0fff & ((distance - 4) / 2)),
                          (splt->contents
                          (splt->contents
                           + h->plt.offset
                           + h->plt.offset
                           + htab->plt_info->symbol_fields.plt));
                           + htab->plt_info->symbol_fields.plt));
            }
            }
          else
          else
            install_plt_field (output_bfd, TRUE,
            install_plt_field (output_bfd, TRUE,
                               splt->output_section->vma + splt->output_offset,
                               splt->output_section->vma + splt->output_offset,
                               (splt->contents
                               (splt->contents
                                + h->plt.offset
                                + h->plt.offset
                                + htab->plt_info->symbol_fields.plt));
                                + htab->plt_info->symbol_fields.plt));
        }
        }
 
 
#ifdef GOT_BIAS
#ifdef GOT_BIAS
      if (info->shared)
      if (info->shared)
        got_offset += GOT_BIAS;
        got_offset += GOT_BIAS;
#endif
#endif
 
 
      install_plt_field (output_bfd, FALSE,
      install_plt_field (output_bfd, FALSE,
                         plt_index * sizeof (Elf32_External_Rela),
                         plt_index * sizeof (Elf32_External_Rela),
                         (splt->contents
                         (splt->contents
                          + h->plt.offset
                          + h->plt.offset
                          + htab->plt_info->symbol_fields.reloc_offset));
                          + htab->plt_info->symbol_fields.reloc_offset));
 
 
      /* Fill in the entry in the global offset table.  */
      /* Fill in the entry in the global offset table.  */
      bfd_put_32 (output_bfd,
      bfd_put_32 (output_bfd,
                  (splt->output_section->vma
                  (splt->output_section->vma
                   + splt->output_offset
                   + splt->output_offset
                   + h->plt.offset
                   + h->plt.offset
                   + htab->plt_info->symbol_resolve_offset),
                   + htab->plt_info->symbol_resolve_offset),
                  sgot->contents + got_offset);
                  sgot->contents + got_offset);
 
 
      /* Fill in the entry in the .rela.plt section.  */
      /* Fill in the entry in the .rela.plt section.  */
      rel.r_offset = (sgot->output_section->vma
      rel.r_offset = (sgot->output_section->vma
                      + sgot->output_offset
                      + sgot->output_offset
                      + got_offset);
                      + got_offset);
      rel.r_info = ELF32_R_INFO (h->dynindx, R_SH_JMP_SLOT);
      rel.r_info = ELF32_R_INFO (h->dynindx, R_SH_JMP_SLOT);
      rel.r_addend = 0;
      rel.r_addend = 0;
#ifdef GOT_BIAS
#ifdef GOT_BIAS
      rel.r_addend = GOT_BIAS;
      rel.r_addend = GOT_BIAS;
#endif
#endif
      loc = srel->contents + plt_index * sizeof (Elf32_External_Rela);
      loc = srel->contents + plt_index * sizeof (Elf32_External_Rela);
      bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
      bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
 
 
      if (htab->vxworks_p && !info->shared)
      if (htab->vxworks_p && !info->shared)
        {
        {
          /* Create the .rela.plt.unloaded relocations for this PLT entry.
          /* Create the .rela.plt.unloaded relocations for this PLT entry.
             Begin by pointing LOC to the first such relocation.  */
             Begin by pointing LOC to the first such relocation.  */
          loc = (htab->srelplt2->contents
          loc = (htab->srelplt2->contents
                 + (plt_index * 2 + 1) * sizeof (Elf32_External_Rela));
                 + (plt_index * 2 + 1) * sizeof (Elf32_External_Rela));
 
 
          /* Create a .rela.plt.unloaded R_SH_DIR32 relocation
          /* Create a .rela.plt.unloaded R_SH_DIR32 relocation
             for the PLT entry's pointer to the .got.plt entry.  */
             for the PLT entry's pointer to the .got.plt entry.  */
          rel.r_offset = (htab->splt->output_section->vma
          rel.r_offset = (htab->splt->output_section->vma
                          + htab->splt->output_offset
                          + htab->splt->output_offset
                          + h->plt.offset
                          + h->plt.offset
                          + htab->plt_info->symbol_fields.got_entry);
                          + htab->plt_info->symbol_fields.got_entry);
          rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_SH_DIR32);
          rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_SH_DIR32);
          rel.r_addend = got_offset;
          rel.r_addend = got_offset;
          bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
          bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
          loc += sizeof (Elf32_External_Rela);
          loc += sizeof (Elf32_External_Rela);
 
 
          /* Create a .rela.plt.unloaded R_SH_DIR32 relocation for
          /* Create a .rela.plt.unloaded R_SH_DIR32 relocation for
             the .got.plt entry, which initially points to .plt.  */
             the .got.plt entry, which initially points to .plt.  */
          rel.r_offset = (htab->sgotplt->output_section->vma
          rel.r_offset = (htab->sgotplt->output_section->vma
                          + htab->sgotplt->output_offset
                          + htab->sgotplt->output_offset
                          + got_offset);
                          + got_offset);
          rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_SH_DIR32);
          rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_SH_DIR32);
          rel.r_addend = 0;
          rel.r_addend = 0;
          bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
          bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
        }
        }
 
 
      if (!h->def_regular)
      if (!h->def_regular)
        {
        {
          /* Mark the symbol as undefined, rather than as defined in
          /* Mark the symbol as undefined, rather than as defined in
             the .plt section.  Leave the value alone.  */
             the .plt section.  Leave the value alone.  */
          sym->st_shndx = SHN_UNDEF;
          sym->st_shndx = SHN_UNDEF;
        }
        }
    }
    }
 
 
  if (h->got.offset != (bfd_vma) -1
  if (h->got.offset != (bfd_vma) -1
      && sh_elf_hash_entry (h)->tls_type != GOT_TLS_GD
      && sh_elf_hash_entry (h)->tls_type != GOT_TLS_GD
      && sh_elf_hash_entry (h)->tls_type != GOT_TLS_IE)
      && sh_elf_hash_entry (h)->tls_type != GOT_TLS_IE)
    {
    {
      asection *sgot;
      asection *sgot;
      asection *srel;
      asection *srel;
      Elf_Internal_Rela rel;
      Elf_Internal_Rela rel;
      bfd_byte *loc;
      bfd_byte *loc;
 
 
      /* This symbol has an entry in the global offset table.  Set it
      /* This symbol has an entry in the global offset table.  Set it
         up.  */
         up.  */
 
 
      sgot = htab->sgot;
      sgot = htab->sgot;
      srel = htab->srelgot;
      srel = htab->srelgot;
      BFD_ASSERT (sgot != NULL && srel != NULL);
      BFD_ASSERT (sgot != NULL && srel != NULL);
 
 
      rel.r_offset = (sgot->output_section->vma
      rel.r_offset = (sgot->output_section->vma
                      + sgot->output_offset
                      + sgot->output_offset
                      + (h->got.offset &~ (bfd_vma) 1));
                      + (h->got.offset &~ (bfd_vma) 1));
 
 
      /* If this is a static link, or it is a -Bsymbolic link and the
      /* If this is a static link, or it is a -Bsymbolic link and the
         symbol is defined locally or was forced to be local because
         symbol is defined locally or was forced to be local because
         of a version file, we just want to emit a RELATIVE reloc.
         of a version file, we just want to emit a RELATIVE reloc.
         The entry in the global offset table will already have been
         The entry in the global offset table will already have been
         initialized in the relocate_section function.  */
         initialized in the relocate_section function.  */
      if (info->shared
      if (info->shared
          && SYMBOL_REFERENCES_LOCAL (info, h))
          && SYMBOL_REFERENCES_LOCAL (info, h))
        {
        {
          rel.r_info = ELF32_R_INFO (0, R_SH_RELATIVE);
          rel.r_info = ELF32_R_INFO (0, R_SH_RELATIVE);
          rel.r_addend = (h->root.u.def.value
          rel.r_addend = (h->root.u.def.value
                          + h->root.u.def.section->output_section->vma
                          + h->root.u.def.section->output_section->vma
                          + h->root.u.def.section->output_offset);
                          + h->root.u.def.section->output_offset);
        }
        }
      else
      else
        {
        {
          bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
          bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
          rel.r_info = ELF32_R_INFO (h->dynindx, R_SH_GLOB_DAT);
          rel.r_info = ELF32_R_INFO (h->dynindx, R_SH_GLOB_DAT);
          rel.r_addend = 0;
          rel.r_addend = 0;
        }
        }
 
 
      loc = srel->contents;
      loc = srel->contents;
      loc += srel->reloc_count++ * sizeof (Elf32_External_Rela);
      loc += srel->reloc_count++ * sizeof (Elf32_External_Rela);
      bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
      bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
    }
    }
 
 
#ifdef INCLUDE_SHMEDIA
#ifdef INCLUDE_SHMEDIA
  {
  {
    struct elf_sh_link_hash_entry *eh;
    struct elf_sh_link_hash_entry *eh;
 
 
    eh = (struct elf_sh_link_hash_entry *) h;
    eh = (struct elf_sh_link_hash_entry *) h;
    if (eh->datalabel_got.offset != (bfd_vma) -1)
    if (eh->datalabel_got.offset != (bfd_vma) -1)
      {
      {
        asection *sgot;
        asection *sgot;
        asection *srel;
        asection *srel;
        Elf_Internal_Rela rel;
        Elf_Internal_Rela rel;
        bfd_byte *loc;
        bfd_byte *loc;
 
 
        /* This symbol has a datalabel entry in the global offset table.
        /* This symbol has a datalabel entry in the global offset table.
           Set it up.  */
           Set it up.  */
 
 
        sgot = htab->sgot;
        sgot = htab->sgot;
        srel = htab->srelgot;
        srel = htab->srelgot;
        BFD_ASSERT (sgot != NULL && srel != NULL);
        BFD_ASSERT (sgot != NULL && srel != NULL);
 
 
        rel.r_offset = (sgot->output_section->vma
        rel.r_offset = (sgot->output_section->vma
                        + sgot->output_offset
                        + sgot->output_offset
                        + (eh->datalabel_got.offset &~ (bfd_vma) 1));
                        + (eh->datalabel_got.offset &~ (bfd_vma) 1));
 
 
        /* If this is a static link, or it is a -Bsymbolic link and the
        /* If this is a static link, or it is a -Bsymbolic link and the
           symbol is defined locally or was forced to be local because
           symbol is defined locally or was forced to be local because
           of a version file, we just want to emit a RELATIVE reloc.
           of a version file, we just want to emit a RELATIVE reloc.
           The entry in the global offset table will already have been
           The entry in the global offset table will already have been
           initialized in the relocate_section function.  */
           initialized in the relocate_section function.  */
        if (info->shared
        if (info->shared
            && SYMBOL_REFERENCES_LOCAL (info, h))
            && SYMBOL_REFERENCES_LOCAL (info, h))
          {
          {
            rel.r_info = ELF32_R_INFO (0, R_SH_RELATIVE);
            rel.r_info = ELF32_R_INFO (0, R_SH_RELATIVE);
            rel.r_addend = (h->root.u.def.value
            rel.r_addend = (h->root.u.def.value
                            + h->root.u.def.section->output_section->vma
                            + h->root.u.def.section->output_section->vma
                            + h->root.u.def.section->output_offset);
                            + h->root.u.def.section->output_offset);
          }
          }
        else
        else
          {
          {
            bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents
            bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents
                        + eh->datalabel_got.offset);
                        + eh->datalabel_got.offset);
            rel.r_info = ELF32_R_INFO (h->dynindx, R_SH_GLOB_DAT);
            rel.r_info = ELF32_R_INFO (h->dynindx, R_SH_GLOB_DAT);
            rel.r_addend = 0;
            rel.r_addend = 0;
          }
          }
 
 
        loc = srel->contents;
        loc = srel->contents;
        loc += srel->reloc_count++ * sizeof (Elf32_External_Rela);
        loc += srel->reloc_count++ * sizeof (Elf32_External_Rela);
        bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
        bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
      }
      }
  }
  }
#endif
#endif
 
 
  if (h->needs_copy)
  if (h->needs_copy)
    {
    {
      asection *s;
      asection *s;
      Elf_Internal_Rela rel;
      Elf_Internal_Rela rel;
      bfd_byte *loc;
      bfd_byte *loc;
 
 
      /* This symbol needs a copy reloc.  Set it up.  */
      /* This symbol needs a copy reloc.  Set it up.  */
 
 
      BFD_ASSERT (h->dynindx != -1
      BFD_ASSERT (h->dynindx != -1
                  && (h->root.type == bfd_link_hash_defined
                  && (h->root.type == bfd_link_hash_defined
                      || h->root.type == bfd_link_hash_defweak));
                      || h->root.type == bfd_link_hash_defweak));
 
 
      s = bfd_get_section_by_name (h->root.u.def.section->owner,
      s = bfd_get_section_by_name (h->root.u.def.section->owner,
                                   ".rela.bss");
                                   ".rela.bss");
      BFD_ASSERT (s != NULL);
      BFD_ASSERT (s != NULL);
 
 
      rel.r_offset = (h->root.u.def.value
      rel.r_offset = (h->root.u.def.value
                      + h->root.u.def.section->output_section->vma
                      + h->root.u.def.section->output_section->vma
                      + h->root.u.def.section->output_offset);
                      + h->root.u.def.section->output_offset);
      rel.r_info = ELF32_R_INFO (h->dynindx, R_SH_COPY);
      rel.r_info = ELF32_R_INFO (h->dynindx, R_SH_COPY);
      rel.r_addend = 0;
      rel.r_addend = 0;
      loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
      loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
      bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
      bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
    }
    }
 
 
  /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  On VxWorks,
  /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  On VxWorks,
     _GLOBAL_OFFSET_TABLE_ is not absolute: it is relative to the
     _GLOBAL_OFFSET_TABLE_ is not absolute: it is relative to the
     ".got" section.  */
     ".got" section.  */
  if (strcmp (h->root.root.string, "_DYNAMIC") == 0
  if (strcmp (h->root.root.string, "_DYNAMIC") == 0
      || (!htab->vxworks_p && h == htab->root.hgot))
      || (!htab->vxworks_p && h == htab->root.hgot))
    sym->st_shndx = SHN_ABS;
    sym->st_shndx = SHN_ABS;
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Finish up the dynamic sections.  */
/* Finish up the dynamic sections.  */
 
 
static bfd_boolean
static bfd_boolean
sh_elf_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
sh_elf_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
{
{
  struct elf_sh_link_hash_table *htab;
  struct elf_sh_link_hash_table *htab;
  asection *sgot;
  asection *sgot;
  asection *sdyn;
  asection *sdyn;
 
 
  htab = sh_elf_hash_table (info);
  htab = sh_elf_hash_table (info);
  sgot = htab->sgotplt;
  sgot = htab->sgotplt;
  sdyn = bfd_get_section_by_name (htab->root.dynobj, ".dynamic");
  sdyn = bfd_get_section_by_name (htab->root.dynobj, ".dynamic");
 
 
  if (htab->root.dynamic_sections_created)
  if (htab->root.dynamic_sections_created)
    {
    {
      asection *splt;
      asection *splt;
      Elf32_External_Dyn *dyncon, *dynconend;
      Elf32_External_Dyn *dyncon, *dynconend;
 
 
      BFD_ASSERT (sgot != NULL && sdyn != NULL);
      BFD_ASSERT (sgot != NULL && sdyn != NULL);
 
 
      dyncon = (Elf32_External_Dyn *) sdyn->contents;
      dyncon = (Elf32_External_Dyn *) sdyn->contents;
      dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
      dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
      for (; dyncon < dynconend; dyncon++)
      for (; dyncon < dynconend; dyncon++)
        {
        {
          Elf_Internal_Dyn dyn;
          Elf_Internal_Dyn dyn;
          asection *s;
          asection *s;
#ifdef INCLUDE_SHMEDIA
#ifdef INCLUDE_SHMEDIA
          const char *name;
          const char *name;
#endif
#endif
 
 
          bfd_elf32_swap_dyn_in (htab->root.dynobj, dyncon, &dyn);
          bfd_elf32_swap_dyn_in (htab->root.dynobj, dyncon, &dyn);
 
 
          switch (dyn.d_tag)
          switch (dyn.d_tag)
            {
            {
            default:
            default:
              if (htab->vxworks_p
              if (htab->vxworks_p
                  && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
                  && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
                bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
                bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
              break;
              break;
 
 
#ifdef INCLUDE_SHMEDIA
#ifdef INCLUDE_SHMEDIA
            case DT_INIT:
            case DT_INIT:
              name = info->init_function;
              name = info->init_function;
              goto get_sym;
              goto get_sym;
 
 
            case DT_FINI:
            case DT_FINI:
              name = info->fini_function;
              name = info->fini_function;
            get_sym:
            get_sym:
              if (dyn.d_un.d_val != 0)
              if (dyn.d_un.d_val != 0)
                {
                {
                  struct elf_link_hash_entry *h;
                  struct elf_link_hash_entry *h;
 
 
                  h = elf_link_hash_lookup (&htab->root, name,
                  h = elf_link_hash_lookup (&htab->root, name,
                                            FALSE, FALSE, TRUE);
                                            FALSE, FALSE, TRUE);
                  if (h != NULL && (h->other & STO_SH5_ISA32))
                  if (h != NULL && (h->other & STO_SH5_ISA32))
                    {
                    {
                      dyn.d_un.d_val |= 1;
                      dyn.d_un.d_val |= 1;
                      bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
                      bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
                    }
                    }
                }
                }
              break;
              break;
#endif
#endif
 
 
            case DT_PLTGOT:
            case DT_PLTGOT:
              s = htab->sgot->output_section;
              s = htab->sgot->output_section;
              goto get_vma;
              goto get_vma;
 
 
            case DT_JMPREL:
            case DT_JMPREL:
              s = htab->srelplt->output_section;
              s = htab->srelplt->output_section;
            get_vma:
            get_vma:
              BFD_ASSERT (s != NULL);
              BFD_ASSERT (s != NULL);
              dyn.d_un.d_ptr = s->vma;
              dyn.d_un.d_ptr = s->vma;
              bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
              bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
              break;
              break;
 
 
            case DT_PLTRELSZ:
            case DT_PLTRELSZ:
              s = htab->srelplt->output_section;
              s = htab->srelplt->output_section;
              BFD_ASSERT (s != NULL);
              BFD_ASSERT (s != NULL);
              dyn.d_un.d_val = s->size;
              dyn.d_un.d_val = s->size;
              bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
              bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
              break;
              break;
 
 
            case DT_RELASZ:
            case DT_RELASZ:
              /* My reading of the SVR4 ABI indicates that the
              /* My reading of the SVR4 ABI indicates that the
                 procedure linkage table relocs (DT_JMPREL) should be
                 procedure linkage table relocs (DT_JMPREL) should be
                 included in the overall relocs (DT_RELA).  This is
                 included in the overall relocs (DT_RELA).  This is
                 what Solaris does.  However, UnixWare can not handle
                 what Solaris does.  However, UnixWare can not handle
                 that case.  Therefore, we override the DT_RELASZ entry
                 that case.  Therefore, we override the DT_RELASZ entry
                 here to make it not include the JMPREL relocs.  Since
                 here to make it not include the JMPREL relocs.  Since
                 the linker script arranges for .rela.plt to follow all
                 the linker script arranges for .rela.plt to follow all
                 other relocation sections, we don't have to worry
                 other relocation sections, we don't have to worry
                 about changing the DT_RELA entry.  */
                 about changing the DT_RELA entry.  */
              if (htab->srelplt != NULL)
              if (htab->srelplt != NULL)
                {
                {
                  s = htab->srelplt->output_section;
                  s = htab->srelplt->output_section;
                  dyn.d_un.d_val -= s->size;
                  dyn.d_un.d_val -= s->size;
                }
                }
              bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
              bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
              break;
              break;
            }
            }
        }
        }
 
 
      /* Fill in the first entry in the procedure linkage table.  */
      /* Fill in the first entry in the procedure linkage table.  */
      splt = htab->splt;
      splt = htab->splt;
      if (splt && splt->size > 0 && htab->plt_info->plt0_entry)
      if (splt && splt->size > 0 && htab->plt_info->plt0_entry)
        {
        {
          unsigned int i;
          unsigned int i;
 
 
          memcpy (splt->contents,
          memcpy (splt->contents,
                  htab->plt_info->plt0_entry,
                  htab->plt_info->plt0_entry,
                  htab->plt_info->plt0_entry_size);
                  htab->plt_info->plt0_entry_size);
          for (i = 0; i < ARRAY_SIZE (htab->plt_info->plt0_got_fields); i++)
          for (i = 0; i < ARRAY_SIZE (htab->plt_info->plt0_got_fields); i++)
            if (htab->plt_info->plt0_got_fields[i] != MINUS_ONE)
            if (htab->plt_info->plt0_got_fields[i] != MINUS_ONE)
              install_plt_field (output_bfd, FALSE,
              install_plt_field (output_bfd, FALSE,
                                 (sgot->output_section->vma
                                 (sgot->output_section->vma
                                  + sgot->output_offset
                                  + sgot->output_offset
                                  + (i * 4)),
                                  + (i * 4)),
                                 (splt->contents
                                 (splt->contents
                                  + htab->plt_info->plt0_got_fields[i]));
                                  + htab->plt_info->plt0_got_fields[i]));
 
 
          if (htab->vxworks_p)
          if (htab->vxworks_p)
            {
            {
              /* Finalize the .rela.plt.unloaded contents.  */
              /* Finalize the .rela.plt.unloaded contents.  */
              Elf_Internal_Rela rel;
              Elf_Internal_Rela rel;
              bfd_byte *loc;
              bfd_byte *loc;
 
 
              /* Create a .rela.plt.unloaded R_SH_DIR32 relocation for the
              /* Create a .rela.plt.unloaded R_SH_DIR32 relocation for the
                 first PLT entry's pointer to _GLOBAL_OFFSET_TABLE_ + 8.  */
                 first PLT entry's pointer to _GLOBAL_OFFSET_TABLE_ + 8.  */
              loc = htab->srelplt2->contents;
              loc = htab->srelplt2->contents;
              rel.r_offset = (splt->output_section->vma
              rel.r_offset = (splt->output_section->vma
                              + splt->output_offset
                              + splt->output_offset
                              + htab->plt_info->plt0_got_fields[2]);
                              + htab->plt_info->plt0_got_fields[2]);
              rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_SH_DIR32);
              rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_SH_DIR32);
              rel.r_addend = 8;
              rel.r_addend = 8;
              bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
              bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
              loc += sizeof (Elf32_External_Rela);
              loc += sizeof (Elf32_External_Rela);
 
 
              /* Fix up the remaining .rela.plt.unloaded relocations.
              /* Fix up the remaining .rela.plt.unloaded relocations.
                 They may have the wrong symbol index for _G_O_T_ or
                 They may have the wrong symbol index for _G_O_T_ or
                 _P_L_T_ depending on the order in which symbols were
                 _P_L_T_ depending on the order in which symbols were
                 output.  */
                 output.  */
              while (loc < htab->srelplt2->contents + htab->srelplt2->size)
              while (loc < htab->srelplt2->contents + htab->srelplt2->size)
                {
                {
                  /* The PLT entry's pointer to the .got.plt slot.  */
                  /* The PLT entry's pointer to the .got.plt slot.  */
                  bfd_elf32_swap_reloc_in (output_bfd, loc, &rel);
                  bfd_elf32_swap_reloc_in (output_bfd, loc, &rel);
                  rel.r_info = ELF32_R_INFO (htab->root.hgot->indx,
                  rel.r_info = ELF32_R_INFO (htab->root.hgot->indx,
                                             R_SH_DIR32);
                                             R_SH_DIR32);
                  bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
                  bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
                  loc += sizeof (Elf32_External_Rela);
                  loc += sizeof (Elf32_External_Rela);
 
 
                  /* The .got.plt slot's pointer to .plt.  */
                  /* The .got.plt slot's pointer to .plt.  */
                  bfd_elf32_swap_reloc_in (output_bfd, loc, &rel);
                  bfd_elf32_swap_reloc_in (output_bfd, loc, &rel);
                  rel.r_info = ELF32_R_INFO (htab->root.hplt->indx,
                  rel.r_info = ELF32_R_INFO (htab->root.hplt->indx,
                                             R_SH_DIR32);
                                             R_SH_DIR32);
                  bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
                  bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
                  loc += sizeof (Elf32_External_Rela);
                  loc += sizeof (Elf32_External_Rela);
                }
                }
            }
            }
 
 
          /* UnixWare sets the entsize of .plt to 4, although that doesn't
          /* UnixWare sets the entsize of .plt to 4, although that doesn't
             really seem like the right value.  */
             really seem like the right value.  */
          elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
          elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
        }
        }
    }
    }
 
 
  /* Fill in the first three entries in the global offset table.  */
  /* Fill in the first three entries in the global offset table.  */
  if (sgot && sgot->size > 0)
  if (sgot && sgot->size > 0)
    {
    {
      if (sdyn == NULL)
      if (sdyn == NULL)
        bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
        bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
      else
      else
        bfd_put_32 (output_bfd,
        bfd_put_32 (output_bfd,
                    sdyn->output_section->vma + sdyn->output_offset,
                    sdyn->output_section->vma + sdyn->output_offset,
                    sgot->contents);
                    sgot->contents);
      bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
      bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
      bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
      bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
 
 
      elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
      elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
static enum elf_reloc_type_class
static enum elf_reloc_type_class
sh_elf_reloc_type_class (const Elf_Internal_Rela *rela)
sh_elf_reloc_type_class (const Elf_Internal_Rela *rela)
{
{
  switch ((int) ELF32_R_TYPE (rela->r_info))
  switch ((int) ELF32_R_TYPE (rela->r_info))
    {
    {
    case R_SH_RELATIVE:
    case R_SH_RELATIVE:
      return reloc_class_relative;
      return reloc_class_relative;
    case R_SH_JMP_SLOT:
    case R_SH_JMP_SLOT:
      return reloc_class_plt;
      return reloc_class_plt;
    case R_SH_COPY:
    case R_SH_COPY:
      return reloc_class_copy;
      return reloc_class_copy;
    default:
    default:
      return reloc_class_normal;
      return reloc_class_normal;
    }
    }
}
}
 
 
#if !defined SH_TARGET_ALREADY_DEFINED
#if !defined SH_TARGET_ALREADY_DEFINED
/* Support for Linux core dump NOTE sections.  */
/* Support for Linux core dump NOTE sections.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_shlin_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
elf32_shlin_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
{
{
  int offset;
  int offset;
  unsigned int size;
  unsigned int size;
 
 
  switch (note->descsz)
  switch (note->descsz)
    {
    {
      default:
      default:
        return FALSE;
        return FALSE;
 
 
      case 168:         /* Linux/SH */
      case 168:         /* Linux/SH */
        /* pr_cursig */
        /* pr_cursig */
        elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
        elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
 
 
        /* pr_pid */
        /* pr_pid */
        elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
        elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
 
 
        /* pr_reg */
        /* pr_reg */
        offset = 72;
        offset = 72;
        size = 92;
        size = 92;
 
 
        break;
        break;
    }
    }
 
 
  /* Make a ".reg/999" section.  */
  /* Make a ".reg/999" section.  */
  return _bfd_elfcore_make_pseudosection (abfd, ".reg",
  return _bfd_elfcore_make_pseudosection (abfd, ".reg",
                                          size, note->descpos + offset);
                                          size, note->descpos + offset);
}
}
 
 
static bfd_boolean
static bfd_boolean
elf32_shlin_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
elf32_shlin_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
{
{
  switch (note->descsz)
  switch (note->descsz)
    {
    {
      default:
      default:
        return FALSE;
        return FALSE;
 
 
      case 124:         /* Linux/SH elf_prpsinfo */
      case 124:         /* Linux/SH elf_prpsinfo */
        elf_tdata (abfd)->core_program
        elf_tdata (abfd)->core_program
         = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
         = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
        elf_tdata (abfd)->core_command
        elf_tdata (abfd)->core_command
         = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
         = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
    }
    }
 
 
  /* Note that for some reason, a spurious space is tacked
  /* Note that for some reason, a spurious space is tacked
     onto the end of the args in some (at least one anyway)
     onto the end of the args in some (at least one anyway)
     implementations, so strip it off if it exists.  */
     implementations, so strip it off if it exists.  */
 
 
  {
  {
    char *command = elf_tdata (abfd)->core_command;
    char *command = elf_tdata (abfd)->core_command;
    int n = strlen (command);
    int n = strlen (command);
 
 
    if (0 < n && command[n - 1] == ' ')
    if (0 < n && command[n - 1] == ' ')
      command[n - 1] = '\0';
      command[n - 1] = '\0';
  }
  }
 
 
  return TRUE;
  return TRUE;
}
}
#endif /* not SH_TARGET_ALREADY_DEFINED */
#endif /* not SH_TARGET_ALREADY_DEFINED */
 
 
 
 
/* Return address for Ith PLT stub in section PLT, for relocation REL
/* Return address for Ith PLT stub in section PLT, for relocation REL
   or (bfd_vma) -1 if it should not be included.  */
   or (bfd_vma) -1 if it should not be included.  */
 
 
static bfd_vma
static bfd_vma
sh_elf_plt_sym_val (bfd_vma i, const asection *plt,
sh_elf_plt_sym_val (bfd_vma i, const asection *plt,
                    const arelent *rel ATTRIBUTE_UNUSED)
                    const arelent *rel ATTRIBUTE_UNUSED)
{
{
  const struct elf_sh_plt_info *plt_info;
  const struct elf_sh_plt_info *plt_info;
 
 
  plt_info = get_plt_info (plt->owner, (plt->owner->flags & DYNAMIC) != 0);
  plt_info = get_plt_info (plt->owner, (plt->owner->flags & DYNAMIC) != 0);
  return plt->vma + get_plt_offset (plt_info, i);
  return plt->vma + get_plt_offset (plt_info, i);
}
}
 
 
#if !defined SH_TARGET_ALREADY_DEFINED
#if !defined SH_TARGET_ALREADY_DEFINED
#define TARGET_BIG_SYM          bfd_elf32_sh_vec
#define TARGET_BIG_SYM          bfd_elf32_sh_vec
#define TARGET_BIG_NAME         "elf32-sh"
#define TARGET_BIG_NAME         "elf32-sh"
#define TARGET_LITTLE_SYM       bfd_elf32_shl_vec
#define TARGET_LITTLE_SYM       bfd_elf32_shl_vec
#define TARGET_LITTLE_NAME      "elf32-shl"
#define TARGET_LITTLE_NAME      "elf32-shl"
#endif
#endif
 
 
#define ELF_ARCH                bfd_arch_sh
#define ELF_ARCH                bfd_arch_sh
#define ELF_MACHINE_CODE        EM_SH
#define ELF_MACHINE_CODE        EM_SH
#ifdef __QNXTARGET__
#ifdef __QNXTARGET__
#define ELF_MAXPAGESIZE         0x1000
#define ELF_MAXPAGESIZE         0x1000
#else
#else
#define ELF_MAXPAGESIZE         0x80
#define ELF_MAXPAGESIZE         0x80
#endif
#endif
 
 
#define elf_symbol_leading_char '_'
#define elf_symbol_leading_char '_'
 
 
#define bfd_elf32_bfd_reloc_type_lookup sh_elf_reloc_type_lookup
#define bfd_elf32_bfd_reloc_type_lookup sh_elf_reloc_type_lookup
#define bfd_elf32_bfd_reloc_name_lookup \
#define bfd_elf32_bfd_reloc_name_lookup \
                                        sh_elf_reloc_name_lookup
                                        sh_elf_reloc_name_lookup
#define elf_info_to_howto               sh_elf_info_to_howto
#define elf_info_to_howto               sh_elf_info_to_howto
#define bfd_elf32_bfd_relax_section     sh_elf_relax_section
#define bfd_elf32_bfd_relax_section     sh_elf_relax_section
#define elf_backend_relocate_section    sh_elf_relocate_section
#define elf_backend_relocate_section    sh_elf_relocate_section
#define bfd_elf32_bfd_get_relocated_section_contents \
#define bfd_elf32_bfd_get_relocated_section_contents \
                                        sh_elf_get_relocated_section_contents
                                        sh_elf_get_relocated_section_contents
#define bfd_elf32_mkobject              sh_elf_mkobject
#define bfd_elf32_mkobject              sh_elf_mkobject
#define elf_backend_object_p            sh_elf_object_p
#define elf_backend_object_p            sh_elf_object_p
#define bfd_elf32_bfd_set_private_bfd_flags \
#define bfd_elf32_bfd_set_private_bfd_flags \
                                        sh_elf_set_private_flags
                                        sh_elf_set_private_flags
#define bfd_elf32_bfd_copy_private_bfd_data \
#define bfd_elf32_bfd_copy_private_bfd_data \
                                        sh_elf_copy_private_data
                                        sh_elf_copy_private_data
#define bfd_elf32_bfd_merge_private_bfd_data \
#define bfd_elf32_bfd_merge_private_bfd_data \
                                        sh_elf_merge_private_data
                                        sh_elf_merge_private_data
 
 
#define elf_backend_gc_mark_hook        sh_elf_gc_mark_hook
#define elf_backend_gc_mark_hook        sh_elf_gc_mark_hook
#define elf_backend_gc_sweep_hook       sh_elf_gc_sweep_hook
#define elf_backend_gc_sweep_hook       sh_elf_gc_sweep_hook
#define elf_backend_check_relocs        sh_elf_check_relocs
#define elf_backend_check_relocs        sh_elf_check_relocs
#define elf_backend_copy_indirect_symbol \
#define elf_backend_copy_indirect_symbol \
                                        sh_elf_copy_indirect_symbol
                                        sh_elf_copy_indirect_symbol
#define elf_backend_create_dynamic_sections \
#define elf_backend_create_dynamic_sections \
                                        sh_elf_create_dynamic_sections
                                        sh_elf_create_dynamic_sections
#define bfd_elf32_bfd_link_hash_table_create \
#define bfd_elf32_bfd_link_hash_table_create \
                                        sh_elf_link_hash_table_create
                                        sh_elf_link_hash_table_create
#define elf_backend_adjust_dynamic_symbol \
#define elf_backend_adjust_dynamic_symbol \
                                        sh_elf_adjust_dynamic_symbol
                                        sh_elf_adjust_dynamic_symbol
#define elf_backend_always_size_sections \
#define elf_backend_always_size_sections \
                                        sh_elf_always_size_sections
                                        sh_elf_always_size_sections
#define elf_backend_size_dynamic_sections \
#define elf_backend_size_dynamic_sections \
                                        sh_elf_size_dynamic_sections
                                        sh_elf_size_dynamic_sections
#define elf_backend_omit_section_dynsym \
#define elf_backend_omit_section_dynsym \
  ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
  ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
#define elf_backend_finish_dynamic_symbol \
#define elf_backend_finish_dynamic_symbol \
                                        sh_elf_finish_dynamic_symbol
                                        sh_elf_finish_dynamic_symbol
#define elf_backend_finish_dynamic_sections \
#define elf_backend_finish_dynamic_sections \
                                        sh_elf_finish_dynamic_sections
                                        sh_elf_finish_dynamic_sections
#define elf_backend_reloc_type_class    sh_elf_reloc_type_class
#define elf_backend_reloc_type_class    sh_elf_reloc_type_class
#define elf_backend_plt_sym_val         sh_elf_plt_sym_val
#define elf_backend_plt_sym_val         sh_elf_plt_sym_val
 
 
#define elf_backend_can_gc_sections     1
#define elf_backend_can_gc_sections     1
#define elf_backend_can_refcount        1
#define elf_backend_can_refcount        1
#define elf_backend_want_got_plt        1
#define elf_backend_want_got_plt        1
#define elf_backend_plt_readonly        1
#define elf_backend_plt_readonly        1
#define elf_backend_want_plt_sym        0
#define elf_backend_want_plt_sym        0
#define elf_backend_got_header_size     12
#define elf_backend_got_header_size     12
 
 
#if !defined INCLUDE_SHMEDIA && !defined SH_TARGET_ALREADY_DEFINED
#if !defined INCLUDE_SHMEDIA && !defined SH_TARGET_ALREADY_DEFINED
 
 
#include "elf32-target.h"
#include "elf32-target.h"
 
 
/* NetBSD support.  */
/* NetBSD support.  */
#undef  TARGET_BIG_SYM
#undef  TARGET_BIG_SYM
#define TARGET_BIG_SYM                  bfd_elf32_shnbsd_vec
#define TARGET_BIG_SYM                  bfd_elf32_shnbsd_vec
#undef  TARGET_BIG_NAME
#undef  TARGET_BIG_NAME
#define TARGET_BIG_NAME                 "elf32-sh-nbsd"
#define TARGET_BIG_NAME                 "elf32-sh-nbsd"
#undef  TARGET_LITTLE_SYM
#undef  TARGET_LITTLE_SYM
#define TARGET_LITTLE_SYM               bfd_elf32_shlnbsd_vec
#define TARGET_LITTLE_SYM               bfd_elf32_shlnbsd_vec
#undef  TARGET_LITTLE_NAME
#undef  TARGET_LITTLE_NAME
#define TARGET_LITTLE_NAME              "elf32-shl-nbsd"
#define TARGET_LITTLE_NAME              "elf32-shl-nbsd"
#undef  ELF_MAXPAGESIZE
#undef  ELF_MAXPAGESIZE
#define ELF_MAXPAGESIZE                 0x10000
#define ELF_MAXPAGESIZE                 0x10000
#undef  ELF_COMMONPAGESIZE
#undef  ELF_COMMONPAGESIZE
#undef  elf_symbol_leading_char
#undef  elf_symbol_leading_char
#define elf_symbol_leading_char         0
#define elf_symbol_leading_char         0
#undef  elf32_bed
#undef  elf32_bed
#define elf32_bed                       elf32_sh_nbsd_bed
#define elf32_bed                       elf32_sh_nbsd_bed
 
 
#include "elf32-target.h"
#include "elf32-target.h"
 
 
 
 
/* Linux support.  */
/* Linux support.  */
#undef  TARGET_BIG_SYM
#undef  TARGET_BIG_SYM
#define TARGET_BIG_SYM                  bfd_elf32_shblin_vec
#define TARGET_BIG_SYM                  bfd_elf32_shblin_vec
#undef  TARGET_BIG_NAME
#undef  TARGET_BIG_NAME
#define TARGET_BIG_NAME                 "elf32-shbig-linux"
#define TARGET_BIG_NAME                 "elf32-shbig-linux"
#undef  TARGET_LITTLE_SYM
#undef  TARGET_LITTLE_SYM
#define TARGET_LITTLE_SYM               bfd_elf32_shlin_vec
#define TARGET_LITTLE_SYM               bfd_elf32_shlin_vec
#undef  TARGET_LITTLE_NAME
#undef  TARGET_LITTLE_NAME
#define TARGET_LITTLE_NAME              "elf32-sh-linux"
#define TARGET_LITTLE_NAME              "elf32-sh-linux"
#undef  ELF_COMMONPAGESIZE
#undef  ELF_COMMONPAGESIZE
#define ELF_COMMONPAGESIZE              0x1000
#define ELF_COMMONPAGESIZE              0x1000
 
 
#undef  elf_backend_grok_prstatus
#undef  elf_backend_grok_prstatus
#define elf_backend_grok_prstatus       elf32_shlin_grok_prstatus
#define elf_backend_grok_prstatus       elf32_shlin_grok_prstatus
#undef  elf_backend_grok_psinfo
#undef  elf_backend_grok_psinfo
#define elf_backend_grok_psinfo         elf32_shlin_grok_psinfo
#define elf_backend_grok_psinfo         elf32_shlin_grok_psinfo
#undef  elf32_bed
#undef  elf32_bed
#define elf32_bed                       elf32_sh_lin_bed
#define elf32_bed                       elf32_sh_lin_bed
 
 
#include "elf32-target.h"
#include "elf32-target.h"
 
 
#undef  TARGET_BIG_SYM
#undef  TARGET_BIG_SYM
#define TARGET_BIG_SYM                  bfd_elf32_shvxworks_vec
#define TARGET_BIG_SYM                  bfd_elf32_shvxworks_vec
#undef  TARGET_BIG_NAME
#undef  TARGET_BIG_NAME
#define TARGET_BIG_NAME                 "elf32-sh-vxworks"
#define TARGET_BIG_NAME                 "elf32-sh-vxworks"
#undef  TARGET_LITTLE_SYM
#undef  TARGET_LITTLE_SYM
#define TARGET_LITTLE_SYM               bfd_elf32_shlvxworks_vec
#define TARGET_LITTLE_SYM               bfd_elf32_shlvxworks_vec
#undef  TARGET_LITTLE_NAME
#undef  TARGET_LITTLE_NAME
#define TARGET_LITTLE_NAME              "elf32-shl-vxworks"
#define TARGET_LITTLE_NAME              "elf32-shl-vxworks"
#undef  elf32_bed
#undef  elf32_bed
#define elf32_bed                       elf32_sh_vxworks_bed
#define elf32_bed                       elf32_sh_vxworks_bed
 
 
#undef  elf_backend_want_plt_sym
#undef  elf_backend_want_plt_sym
#define elf_backend_want_plt_sym        1
#define elf_backend_want_plt_sym        1
#undef  elf_symbol_leading_char
#undef  elf_symbol_leading_char
#define elf_symbol_leading_char         '_'
#define elf_symbol_leading_char         '_'
#define elf_backend_want_got_underscore 1
#define elf_backend_want_got_underscore 1
#undef  elf_backend_grok_prstatus
#undef  elf_backend_grok_prstatus
#undef  elf_backend_grok_psinfo
#undef  elf_backend_grok_psinfo
#undef  elf_backend_add_symbol_hook
#undef  elf_backend_add_symbol_hook
#define elf_backend_add_symbol_hook     elf_vxworks_add_symbol_hook
#define elf_backend_add_symbol_hook     elf_vxworks_add_symbol_hook
#undef  elf_backend_link_output_symbol_hook
#undef  elf_backend_link_output_symbol_hook
#define elf_backend_link_output_symbol_hook \
#define elf_backend_link_output_symbol_hook \
                                        elf_vxworks_link_output_symbol_hook
                                        elf_vxworks_link_output_symbol_hook
#undef  elf_backend_emit_relocs
#undef  elf_backend_emit_relocs
#define elf_backend_emit_relocs         elf_vxworks_emit_relocs
#define elf_backend_emit_relocs         elf_vxworks_emit_relocs
#undef  elf_backend_final_write_processing
#undef  elf_backend_final_write_processing
#define elf_backend_final_write_processing \
#define elf_backend_final_write_processing \
                                        elf_vxworks_final_write_processing
                                        elf_vxworks_final_write_processing
#undef  ELF_MAXPAGESIZE
#undef  ELF_MAXPAGESIZE
#define ELF_MAXPAGESIZE                 0x1000
#define ELF_MAXPAGESIZE                 0x1000
#undef  ELF_COMMONPAGESIZE
#undef  ELF_COMMONPAGESIZE
 
 
#include "elf32-target.h"
#include "elf32-target.h"
 
 
#endif /* neither INCLUDE_SHMEDIA nor SH_TARGET_ALREADY_DEFINED */
#endif /* neither INCLUDE_SHMEDIA nor SH_TARGET_ALREADY_DEFINED */
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.