OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gdb-6.8/] [bfd/] [elf64-hppa.c] - Diff between revs 827 and 840

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 827 Rev 840
/* Support for HPPA 64-bit ELF
/* Support for HPPA 64-bit ELF
   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
   This file is part of BFD, the Binary File Descriptor library.
   This file is part of BFD, the Binary File Descriptor library.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   along with this program; if not, write to the Free Software
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
   MA 02110-1301, USA.  */
   MA 02110-1301, USA.  */
 
 
#include "alloca-conf.h"
#include "alloca-conf.h"
#include "sysdep.h"
#include "sysdep.h"
#include "bfd.h"
#include "bfd.h"
#include "libbfd.h"
#include "libbfd.h"
#include "elf-bfd.h"
#include "elf-bfd.h"
#include "elf/hppa.h"
#include "elf/hppa.h"
#include "libhppa.h"
#include "libhppa.h"
#include "elf64-hppa.h"
#include "elf64-hppa.h"
 
 
 
 
#define ARCH_SIZE              64
#define ARCH_SIZE              64
 
 
#define PLT_ENTRY_SIZE 0x10
#define PLT_ENTRY_SIZE 0x10
#define DLT_ENTRY_SIZE 0x8
#define DLT_ENTRY_SIZE 0x8
#define OPD_ENTRY_SIZE 0x20
#define OPD_ENTRY_SIZE 0x20
 
 
#define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
#define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
 
 
/* The stub is supposed to load the target address and target's DP
/* The stub is supposed to load the target address and target's DP
   value out of the PLT, then do an external branch to the target
   value out of the PLT, then do an external branch to the target
   address.
   address.
 
 
   LDD PLTOFF(%r27),%r1
   LDD PLTOFF(%r27),%r1
   BVE (%r1)
   BVE (%r1)
   LDD PLTOFF+8(%r27),%r27
   LDD PLTOFF+8(%r27),%r27
 
 
   Note that we must use the LDD with a 14 bit displacement, not the one
   Note that we must use the LDD with a 14 bit displacement, not the one
   with a 5 bit displacement.  */
   with a 5 bit displacement.  */
static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
                          0x53, 0x7b, 0x00, 0x00 };
                          0x53, 0x7b, 0x00, 0x00 };
 
 
struct elf64_hppa_link_hash_entry
struct elf64_hppa_link_hash_entry
{
{
  struct elf_link_hash_entry eh;
  struct elf_link_hash_entry eh;
 
 
  /* Offsets for this symbol in various linker sections.  */
  /* Offsets for this symbol in various linker sections.  */
  bfd_vma dlt_offset;
  bfd_vma dlt_offset;
  bfd_vma plt_offset;
  bfd_vma plt_offset;
  bfd_vma opd_offset;
  bfd_vma opd_offset;
  bfd_vma stub_offset;
  bfd_vma stub_offset;
 
 
  /* The index of the (possibly local) symbol in the input bfd and its
  /* The index of the (possibly local) symbol in the input bfd and its
     associated BFD.  Needed so that we can have relocs against local
     associated BFD.  Needed so that we can have relocs against local
     symbols in shared libraries.  */
     symbols in shared libraries.  */
  long sym_indx;
  long sym_indx;
  bfd *owner;
  bfd *owner;
 
 
  /* Dynamic symbols may need to have two different values.  One for
  /* Dynamic symbols may need to have two different values.  One for
     the dynamic symbol table, one for the normal symbol table.
     the dynamic symbol table, one for the normal symbol table.
 
 
     In such cases we store the symbol's real value and section
     In such cases we store the symbol's real value and section
     index here so we can restore the real value before we write
     index here so we can restore the real value before we write
     the normal symbol table.  */
     the normal symbol table.  */
  bfd_vma st_value;
  bfd_vma st_value;
  int st_shndx;
  int st_shndx;
 
 
  /* Used to count non-got, non-plt relocations for delayed sizing
  /* Used to count non-got, non-plt relocations for delayed sizing
     of relocation sections.  */
     of relocation sections.  */
  struct elf64_hppa_dyn_reloc_entry
  struct elf64_hppa_dyn_reloc_entry
  {
  {
    /* Next relocation in the chain.  */
    /* Next relocation in the chain.  */
    struct elf64_hppa_dyn_reloc_entry *next;
    struct elf64_hppa_dyn_reloc_entry *next;
 
 
    /* The type of the relocation.  */
    /* The type of the relocation.  */
    int type;
    int type;
 
 
    /* The input section of the relocation.  */
    /* The input section of the relocation.  */
    asection *sec;
    asection *sec;
 
 
    /* Number of relocs copied in this section.  */
    /* Number of relocs copied in this section.  */
    bfd_size_type count;
    bfd_size_type count;
 
 
    /* The index of the section symbol for the input section of
    /* The index of the section symbol for the input section of
       the relocation.  Only needed when building shared libraries.  */
       the relocation.  Only needed when building shared libraries.  */
    int sec_symndx;
    int sec_symndx;
 
 
    /* The offset within the input section of the relocation.  */
    /* The offset within the input section of the relocation.  */
    bfd_vma offset;
    bfd_vma offset;
 
 
    /* The addend for the relocation.  */
    /* The addend for the relocation.  */
    bfd_vma addend;
    bfd_vma addend;
 
 
  } *reloc_entries;
  } *reloc_entries;
 
 
  /* Nonzero if this symbol needs an entry in one of the linker
  /* Nonzero if this symbol needs an entry in one of the linker
     sections.  */
     sections.  */
  unsigned want_dlt;
  unsigned want_dlt;
  unsigned want_plt;
  unsigned want_plt;
  unsigned want_opd;
  unsigned want_opd;
  unsigned want_stub;
  unsigned want_stub;
};
};
 
 
struct elf64_hppa_link_hash_table
struct elf64_hppa_link_hash_table
{
{
  struct elf_link_hash_table root;
  struct elf_link_hash_table root;
 
 
  /* Shortcuts to get to the various linker defined sections.  */
  /* Shortcuts to get to the various linker defined sections.  */
  asection *dlt_sec;
  asection *dlt_sec;
  asection *dlt_rel_sec;
  asection *dlt_rel_sec;
  asection *plt_sec;
  asection *plt_sec;
  asection *plt_rel_sec;
  asection *plt_rel_sec;
  asection *opd_sec;
  asection *opd_sec;
  asection *opd_rel_sec;
  asection *opd_rel_sec;
  asection *other_rel_sec;
  asection *other_rel_sec;
 
 
  /* Offset of __gp within .plt section.  When the PLT gets large we want
  /* Offset of __gp within .plt section.  When the PLT gets large we want
     to slide __gp into the PLT section so that we can continue to use
     to slide __gp into the PLT section so that we can continue to use
     single DP relative instructions to load values out of the PLT.  */
     single DP relative instructions to load values out of the PLT.  */
  bfd_vma gp_offset;
  bfd_vma gp_offset;
 
 
  /* Note this is not strictly correct.  We should create a stub section for
  /* Note this is not strictly correct.  We should create a stub section for
     each input section with calls.  The stub section should be placed before
     each input section with calls.  The stub section should be placed before
     the section with the call.  */
     the section with the call.  */
  asection *stub_sec;
  asection *stub_sec;
 
 
  bfd_vma text_segment_base;
  bfd_vma text_segment_base;
  bfd_vma data_segment_base;
  bfd_vma data_segment_base;
 
 
  /* We build tables to map from an input section back to its
  /* We build tables to map from an input section back to its
     symbol index.  This is the BFD for which we currently have
     symbol index.  This is the BFD for which we currently have
     a map.  */
     a map.  */
  bfd *section_syms_bfd;
  bfd *section_syms_bfd;
 
 
  /* Array of symbol numbers for each input section attached to the
  /* Array of symbol numbers for each input section attached to the
     current BFD.  */
     current BFD.  */
  int *section_syms;
  int *section_syms;
};
};
 
 
#define hppa_link_hash_table(p) \
#define hppa_link_hash_table(p) \
  ((struct elf64_hppa_link_hash_table *) ((p)->hash))
  ((struct elf64_hppa_link_hash_table *) ((p)->hash))
 
 
#define hppa_elf_hash_entry(ent) \
#define hppa_elf_hash_entry(ent) \
  ((struct elf64_hppa_link_hash_entry *)(ent))
  ((struct elf64_hppa_link_hash_entry *)(ent))
 
 
#define eh_name(eh) \
#define eh_name(eh) \
  (eh ? eh->root.root.string : "<undef>")
  (eh ? eh->root.root.string : "<undef>")
 
 
typedef struct bfd_hash_entry *(*new_hash_entry_func)
typedef struct bfd_hash_entry *(*new_hash_entry_func)
  (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
  (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
 
 
static struct bfd_link_hash_table *elf64_hppa_hash_table_create
static struct bfd_link_hash_table *elf64_hppa_hash_table_create
  (bfd *abfd);
  (bfd *abfd);
 
 
/* This must follow the definitions of the various derived linker
/* This must follow the definitions of the various derived linker
   hash tables and shared functions.  */
   hash tables and shared functions.  */
#include "elf-hppa.h"
#include "elf-hppa.h"
 
 
static bfd_boolean elf64_hppa_object_p
static bfd_boolean elf64_hppa_object_p
  (bfd *);
  (bfd *);
 
 
static void elf64_hppa_post_process_headers
static void elf64_hppa_post_process_headers
  (bfd *, struct bfd_link_info *);
  (bfd *, struct bfd_link_info *);
 
 
static bfd_boolean elf64_hppa_create_dynamic_sections
static bfd_boolean elf64_hppa_create_dynamic_sections
  (bfd *, struct bfd_link_info *);
  (bfd *, struct bfd_link_info *);
 
 
static bfd_boolean elf64_hppa_adjust_dynamic_symbol
static bfd_boolean elf64_hppa_adjust_dynamic_symbol
  (struct bfd_link_info *, struct elf_link_hash_entry *);
  (struct bfd_link_info *, struct elf_link_hash_entry *);
 
 
static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
  (struct elf_link_hash_entry *, void *);
  (struct elf_link_hash_entry *, void *);
 
 
static bfd_boolean elf64_hppa_size_dynamic_sections
static bfd_boolean elf64_hppa_size_dynamic_sections
  (bfd *, struct bfd_link_info *);
  (bfd *, struct bfd_link_info *);
 
 
static int elf64_hppa_link_output_symbol_hook
static int elf64_hppa_link_output_symbol_hook
  (struct bfd_link_info *, const char *, Elf_Internal_Sym *,
  (struct bfd_link_info *, const char *, Elf_Internal_Sym *,
   asection *, struct elf_link_hash_entry *);
   asection *, struct elf_link_hash_entry *);
 
 
static bfd_boolean elf64_hppa_finish_dynamic_symbol
static bfd_boolean elf64_hppa_finish_dynamic_symbol
  (bfd *, struct bfd_link_info *,
  (bfd *, struct bfd_link_info *,
   struct elf_link_hash_entry *, Elf_Internal_Sym *);
   struct elf_link_hash_entry *, Elf_Internal_Sym *);
 
 
static enum elf_reloc_type_class elf64_hppa_reloc_type_class
static enum elf_reloc_type_class elf64_hppa_reloc_type_class
  (const Elf_Internal_Rela *);
  (const Elf_Internal_Rela *);
 
 
static bfd_boolean elf64_hppa_finish_dynamic_sections
static bfd_boolean elf64_hppa_finish_dynamic_sections
  (bfd *, struct bfd_link_info *);
  (bfd *, struct bfd_link_info *);
 
 
static bfd_boolean elf64_hppa_check_relocs
static bfd_boolean elf64_hppa_check_relocs
  (bfd *, struct bfd_link_info *,
  (bfd *, struct bfd_link_info *,
   asection *, const Elf_Internal_Rela *);
   asection *, const Elf_Internal_Rela *);
 
 
static bfd_boolean elf64_hppa_dynamic_symbol_p
static bfd_boolean elf64_hppa_dynamic_symbol_p
  (struct elf_link_hash_entry *, struct bfd_link_info *);
  (struct elf_link_hash_entry *, struct bfd_link_info *);
 
 
static bfd_boolean elf64_hppa_mark_exported_functions
static bfd_boolean elf64_hppa_mark_exported_functions
  (struct elf_link_hash_entry *, void *);
  (struct elf_link_hash_entry *, void *);
 
 
static bfd_boolean elf64_hppa_finalize_opd
static bfd_boolean elf64_hppa_finalize_opd
  (struct elf_link_hash_entry *, void *);
  (struct elf_link_hash_entry *, void *);
 
 
static bfd_boolean elf64_hppa_finalize_dlt
static bfd_boolean elf64_hppa_finalize_dlt
  (struct elf_link_hash_entry *, void *);
  (struct elf_link_hash_entry *, void *);
 
 
static bfd_boolean allocate_global_data_dlt
static bfd_boolean allocate_global_data_dlt
  (struct elf_link_hash_entry *, void *);
  (struct elf_link_hash_entry *, void *);
 
 
static bfd_boolean allocate_global_data_plt
static bfd_boolean allocate_global_data_plt
  (struct elf_link_hash_entry *, void *);
  (struct elf_link_hash_entry *, void *);
 
 
static bfd_boolean allocate_global_data_stub
static bfd_boolean allocate_global_data_stub
  (struct elf_link_hash_entry *, void *);
  (struct elf_link_hash_entry *, void *);
 
 
static bfd_boolean allocate_global_data_opd
static bfd_boolean allocate_global_data_opd
  (struct elf_link_hash_entry *, void *);
  (struct elf_link_hash_entry *, void *);
 
 
static bfd_boolean get_reloc_section
static bfd_boolean get_reloc_section
  (bfd *, struct elf64_hppa_link_hash_table *, asection *);
  (bfd *, struct elf64_hppa_link_hash_table *, asection *);
 
 
static bfd_boolean count_dyn_reloc
static bfd_boolean count_dyn_reloc
  (bfd *, struct elf64_hppa_link_hash_entry *,
  (bfd *, struct elf64_hppa_link_hash_entry *,
   int, asection *, int, bfd_vma, bfd_vma);
   int, asection *, int, bfd_vma, bfd_vma);
 
 
static bfd_boolean allocate_dynrel_entries
static bfd_boolean allocate_dynrel_entries
  (struct elf_link_hash_entry *, void *);
  (struct elf_link_hash_entry *, void *);
 
 
static bfd_boolean elf64_hppa_finalize_dynreloc
static bfd_boolean elf64_hppa_finalize_dynreloc
  (struct elf_link_hash_entry *, void *);
  (struct elf_link_hash_entry *, void *);
 
 
static bfd_boolean get_opd
static bfd_boolean get_opd
  (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
  (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
 
 
static bfd_boolean get_plt
static bfd_boolean get_plt
  (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
  (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
 
 
static bfd_boolean get_dlt
static bfd_boolean get_dlt
  (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
  (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
 
 
static bfd_boolean get_stub
static bfd_boolean get_stub
  (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
  (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
 
 
static int elf64_hppa_elf_get_symbol_type
static int elf64_hppa_elf_get_symbol_type
  (Elf_Internal_Sym *, int);
  (Elf_Internal_Sym *, int);
 
 
/* Initialize an entry in the link hash table.  */
/* Initialize an entry in the link hash table.  */
 
 
static struct bfd_hash_entry *
static struct bfd_hash_entry *
hppa64_link_hash_newfunc (struct bfd_hash_entry *entry,
hppa64_link_hash_newfunc (struct bfd_hash_entry *entry,
                          struct bfd_hash_table *table,
                          struct bfd_hash_table *table,
                          const char *string)
                          const char *string)
{
{
  /* Allocate the structure if it has not already been allocated by a
  /* Allocate the structure if it has not already been allocated by a
     subclass.  */
     subclass.  */
  if (entry == NULL)
  if (entry == NULL)
    {
    {
      entry = bfd_hash_allocate (table,
      entry = bfd_hash_allocate (table,
                                 sizeof (struct elf64_hppa_link_hash_entry));
                                 sizeof (struct elf64_hppa_link_hash_entry));
      if (entry == NULL)
      if (entry == NULL)
        return entry;
        return entry;
    }
    }
 
 
  /* Call the allocation method of the superclass.  */
  /* Call the allocation method of the superclass.  */
  entry = _bfd_elf_link_hash_newfunc (entry, table, string);
  entry = _bfd_elf_link_hash_newfunc (entry, table, string);
  if (entry != NULL)
  if (entry != NULL)
    {
    {
      struct elf64_hppa_link_hash_entry *hh;
      struct elf64_hppa_link_hash_entry *hh;
 
 
      /* Initialize our local data.  All zeros.  */
      /* Initialize our local data.  All zeros.  */
      hh = hppa_elf_hash_entry (entry);
      hh = hppa_elf_hash_entry (entry);
      memset (&hh->dlt_offset, 0,
      memset (&hh->dlt_offset, 0,
              (sizeof (struct elf64_hppa_link_hash_entry)
              (sizeof (struct elf64_hppa_link_hash_entry)
               - offsetof (struct elf64_hppa_link_hash_entry, dlt_offset)));
               - offsetof (struct elf64_hppa_link_hash_entry, dlt_offset)));
    }
    }
 
 
  return entry;
  return entry;
}
}
 
 
/* Create the derived linker hash table.  The PA64 ELF port uses this
/* Create the derived linker hash table.  The PA64 ELF port uses this
   derived hash table to keep information specific to the PA ElF
   derived hash table to keep information specific to the PA ElF
   linker (without using static variables).  */
   linker (without using static variables).  */
 
 
static struct bfd_link_hash_table*
static struct bfd_link_hash_table*
elf64_hppa_hash_table_create (bfd *abfd)
elf64_hppa_hash_table_create (bfd *abfd)
{
{
  struct elf64_hppa_link_hash_table *htab;
  struct elf64_hppa_link_hash_table *htab;
  bfd_size_type amt = sizeof (*htab);
  bfd_size_type amt = sizeof (*htab);
 
 
  htab = bfd_zalloc (abfd, amt);
  htab = bfd_zalloc (abfd, amt);
  if (htab == NULL)
  if (htab == NULL)
    return NULL;
    return NULL;
 
 
  if (!_bfd_elf_link_hash_table_init (&htab->root, abfd,
  if (!_bfd_elf_link_hash_table_init (&htab->root, abfd,
                                      hppa64_link_hash_newfunc,
                                      hppa64_link_hash_newfunc,
                                      sizeof (struct elf64_hppa_link_hash_entry)))
                                      sizeof (struct elf64_hppa_link_hash_entry)))
    {
    {
      bfd_release (abfd, htab);
      bfd_release (abfd, htab);
      return NULL;
      return NULL;
    }
    }
 
 
  htab->text_segment_base = (bfd_vma) -1;
  htab->text_segment_base = (bfd_vma) -1;
  htab->data_segment_base = (bfd_vma) -1;
  htab->data_segment_base = (bfd_vma) -1;
 
 
  return &htab->root.root;
  return &htab->root.root;
}
}


/* Return nonzero if ABFD represents a PA2.0 ELF64 file.
/* Return nonzero if ABFD represents a PA2.0 ELF64 file.
 
 
   Additionally we set the default architecture and machine.  */
   Additionally we set the default architecture and machine.  */
static bfd_boolean
static bfd_boolean
elf64_hppa_object_p (bfd *abfd)
elf64_hppa_object_p (bfd *abfd)
{
{
  Elf_Internal_Ehdr * i_ehdrp;
  Elf_Internal_Ehdr * i_ehdrp;
  unsigned int flags;
  unsigned int flags;
 
 
  i_ehdrp = elf_elfheader (abfd);
  i_ehdrp = elf_elfheader (abfd);
  if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
  if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
    {
    {
      /* GCC on hppa-linux produces binaries with OSABI=Linux,
      /* GCC on hppa-linux produces binaries with OSABI=Linux,
         but the kernel produces corefiles with OSABI=SysV.  */
         but the kernel produces corefiles with OSABI=SysV.  */
      if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX
      if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX
          && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
          && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
        return FALSE;
        return FALSE;
    }
    }
  else
  else
    {
    {
      /* HPUX produces binaries with OSABI=HPUX,
      /* HPUX produces binaries with OSABI=HPUX,
         but the kernel produces corefiles with OSABI=SysV.  */
         but the kernel produces corefiles with OSABI=SysV.  */
      if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX
      if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX
          && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
          && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
        return FALSE;
        return FALSE;
    }
    }
 
 
  flags = i_ehdrp->e_flags;
  flags = i_ehdrp->e_flags;
  switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
  switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
    {
    {
    case EFA_PARISC_1_0:
    case EFA_PARISC_1_0:
      return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
      return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
    case EFA_PARISC_1_1:
    case EFA_PARISC_1_1:
      return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
      return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
    case EFA_PARISC_2_0:
    case EFA_PARISC_2_0:
      if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
      if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
        return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
        return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
      else
      else
        return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
        return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
    case EFA_PARISC_2_0 | EF_PARISC_WIDE:
    case EFA_PARISC_2_0 | EF_PARISC_WIDE:
      return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
      return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
    }
    }
  /* Don't be fussy.  */
  /* Don't be fussy.  */
  return TRUE;
  return TRUE;
}
}
 
 
/* Given section type (hdr->sh_type), return a boolean indicating
/* Given section type (hdr->sh_type), return a boolean indicating
   whether or not the section is an elf64-hppa specific section.  */
   whether or not the section is an elf64-hppa specific section.  */
static bfd_boolean
static bfd_boolean
elf64_hppa_section_from_shdr (bfd *abfd,
elf64_hppa_section_from_shdr (bfd *abfd,
                              Elf_Internal_Shdr *hdr,
                              Elf_Internal_Shdr *hdr,
                              const char *name,
                              const char *name,
                              int shindex)
                              int shindex)
{
{
  asection *newsect;
  asection *newsect;
 
 
  switch (hdr->sh_type)
  switch (hdr->sh_type)
    {
    {
    case SHT_PARISC_EXT:
    case SHT_PARISC_EXT:
      if (strcmp (name, ".PARISC.archext") != 0)
      if (strcmp (name, ".PARISC.archext") != 0)
        return FALSE;
        return FALSE;
      break;
      break;
    case SHT_PARISC_UNWIND:
    case SHT_PARISC_UNWIND:
      if (strcmp (name, ".PARISC.unwind") != 0)
      if (strcmp (name, ".PARISC.unwind") != 0)
        return FALSE;
        return FALSE;
      break;
      break;
    case SHT_PARISC_DOC:
    case SHT_PARISC_DOC:
    case SHT_PARISC_ANNOT:
    case SHT_PARISC_ANNOT:
    default:
    default:
      return FALSE;
      return FALSE;
    }
    }
 
 
  if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
  if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
    return FALSE;
    return FALSE;
  newsect = hdr->bfd_section;
  newsect = hdr->bfd_section;
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* SEC is a section containing relocs for an input BFD when linking; return
/* SEC is a section containing relocs for an input BFD when linking; return
   a suitable section for holding relocs in the output BFD for a link.  */
   a suitable section for holding relocs in the output BFD for a link.  */
 
 
static bfd_boolean
static bfd_boolean
get_reloc_section (bfd *abfd,
get_reloc_section (bfd *abfd,
                   struct elf64_hppa_link_hash_table *hppa_info,
                   struct elf64_hppa_link_hash_table *hppa_info,
                   asection *sec)
                   asection *sec)
{
{
  const char *srel_name;
  const char *srel_name;
  asection *srel;
  asection *srel;
  bfd *dynobj;
  bfd *dynobj;
 
 
  srel_name = (bfd_elf_string_from_elf_section
  srel_name = (bfd_elf_string_from_elf_section
               (abfd, elf_elfheader(abfd)->e_shstrndx,
               (abfd, elf_elfheader(abfd)->e_shstrndx,
                elf_section_data(sec)->rel_hdr.sh_name));
                elf_section_data(sec)->rel_hdr.sh_name));
  if (srel_name == NULL)
  if (srel_name == NULL)
    return FALSE;
    return FALSE;
 
 
  BFD_ASSERT ((CONST_STRNEQ (srel_name, ".rela")
  BFD_ASSERT ((CONST_STRNEQ (srel_name, ".rela")
               && strcmp (bfd_get_section_name (abfd, sec),
               && strcmp (bfd_get_section_name (abfd, sec),
                          srel_name + 5) == 0)
                          srel_name + 5) == 0)
              || (CONST_STRNEQ (srel_name, ".rel")
              || (CONST_STRNEQ (srel_name, ".rel")
                  && strcmp (bfd_get_section_name (abfd, sec),
                  && strcmp (bfd_get_section_name (abfd, sec),
                             srel_name + 4) == 0));
                             srel_name + 4) == 0));
 
 
  dynobj = hppa_info->root.dynobj;
  dynobj = hppa_info->root.dynobj;
  if (!dynobj)
  if (!dynobj)
    hppa_info->root.dynobj = dynobj = abfd;
    hppa_info->root.dynobj = dynobj = abfd;
 
 
  srel = bfd_get_section_by_name (dynobj, srel_name);
  srel = bfd_get_section_by_name (dynobj, srel_name);
  if (srel == NULL)
  if (srel == NULL)
    {
    {
      srel = bfd_make_section_with_flags (dynobj, srel_name,
      srel = bfd_make_section_with_flags (dynobj, srel_name,
                                          (SEC_ALLOC
                                          (SEC_ALLOC
                                           | SEC_LOAD
                                           | SEC_LOAD
                                           | SEC_HAS_CONTENTS
                                           | SEC_HAS_CONTENTS
                                           | SEC_IN_MEMORY
                                           | SEC_IN_MEMORY
                                           | SEC_LINKER_CREATED
                                           | SEC_LINKER_CREATED
                                           | SEC_READONLY));
                                           | SEC_READONLY));
      if (srel == NULL
      if (srel == NULL
          || !bfd_set_section_alignment (dynobj, srel, 3))
          || !bfd_set_section_alignment (dynobj, srel, 3))
        return FALSE;
        return FALSE;
    }
    }
 
 
  hppa_info->other_rel_sec = srel;
  hppa_info->other_rel_sec = srel;
  return TRUE;
  return TRUE;
}
}
 
 
/* Add a new entry to the list of dynamic relocations against DYN_H.
/* Add a new entry to the list of dynamic relocations against DYN_H.
 
 
   We use this to keep a record of all the FPTR relocations against a
   We use this to keep a record of all the FPTR relocations against a
   particular symbol so that we can create FPTR relocations in the
   particular symbol so that we can create FPTR relocations in the
   output file.  */
   output file.  */
 
 
static bfd_boolean
static bfd_boolean
count_dyn_reloc (bfd *abfd,
count_dyn_reloc (bfd *abfd,
                 struct elf64_hppa_link_hash_entry *hh,
                 struct elf64_hppa_link_hash_entry *hh,
                 int type,
                 int type,
                 asection *sec,
                 asection *sec,
                 int sec_symndx,
                 int sec_symndx,
                 bfd_vma offset,
                 bfd_vma offset,
                 bfd_vma addend)
                 bfd_vma addend)
{
{
  struct elf64_hppa_dyn_reloc_entry *rent;
  struct elf64_hppa_dyn_reloc_entry *rent;
 
 
  rent = (struct elf64_hppa_dyn_reloc_entry *)
  rent = (struct elf64_hppa_dyn_reloc_entry *)
  bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
  bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
  if (!rent)
  if (!rent)
    return FALSE;
    return FALSE;
 
 
  rent->next = hh->reloc_entries;
  rent->next = hh->reloc_entries;
  rent->type = type;
  rent->type = type;
  rent->sec = sec;
  rent->sec = sec;
  rent->sec_symndx = sec_symndx;
  rent->sec_symndx = sec_symndx;
  rent->offset = offset;
  rent->offset = offset;
  rent->addend = addend;
  rent->addend = addend;
  hh->reloc_entries = rent;
  hh->reloc_entries = rent;
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Return a pointer to the local DLT, PLT and OPD reference counts
/* Return a pointer to the local DLT, PLT and OPD reference counts
   for ABFD.  Returns NULL if the storage allocation fails.  */
   for ABFD.  Returns NULL if the storage allocation fails.  */
 
 
static bfd_signed_vma *
static bfd_signed_vma *
hppa64_elf_local_refcounts (bfd *abfd)
hppa64_elf_local_refcounts (bfd *abfd)
{
{
  Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
  Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
  bfd_signed_vma *local_refcounts;
  bfd_signed_vma *local_refcounts;
 
 
  local_refcounts = elf_local_got_refcounts (abfd);
  local_refcounts = elf_local_got_refcounts (abfd);
  if (local_refcounts == NULL)
  if (local_refcounts == NULL)
    {
    {
      bfd_size_type size;
      bfd_size_type size;
 
 
      /* Allocate space for local DLT, PLT and OPD reference
      /* Allocate space for local DLT, PLT and OPD reference
         counts.  Done this way to save polluting elf_obj_tdata
         counts.  Done this way to save polluting elf_obj_tdata
         with another target specific pointer.  */
         with another target specific pointer.  */
      size = symtab_hdr->sh_info;
      size = symtab_hdr->sh_info;
      size *= 3 * sizeof (bfd_signed_vma);
      size *= 3 * sizeof (bfd_signed_vma);
      local_refcounts = bfd_zalloc (abfd, size);
      local_refcounts = bfd_zalloc (abfd, size);
      elf_local_got_refcounts (abfd) = local_refcounts;
      elf_local_got_refcounts (abfd) = local_refcounts;
    }
    }
  return local_refcounts;
  return local_refcounts;
}
}
 
 
/* Scan the RELOCS and record the type of dynamic entries that each
/* Scan the RELOCS and record the type of dynamic entries that each
   referenced symbol needs.  */
   referenced symbol needs.  */
 
 
static bfd_boolean
static bfd_boolean
elf64_hppa_check_relocs (bfd *abfd,
elf64_hppa_check_relocs (bfd *abfd,
                         struct bfd_link_info *info,
                         struct bfd_link_info *info,
                         asection *sec,
                         asection *sec,
                         const Elf_Internal_Rela *relocs)
                         const Elf_Internal_Rela *relocs)
{
{
  struct elf64_hppa_link_hash_table *hppa_info;
  struct elf64_hppa_link_hash_table *hppa_info;
  const Elf_Internal_Rela *relend;
  const Elf_Internal_Rela *relend;
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Shdr *symtab_hdr;
  const Elf_Internal_Rela *rel;
  const Elf_Internal_Rela *rel;
  asection *dlt, *plt, *stubs;
  asection *dlt, *plt, *stubs;
  char *buf;
  char *buf;
  size_t buf_len;
  size_t buf_len;
  unsigned int sec_symndx;
  unsigned int sec_symndx;
 
 
  if (info->relocatable)
  if (info->relocatable)
    return TRUE;
    return TRUE;
 
 
  /* If this is the first dynamic object found in the link, create
  /* If this is the first dynamic object found in the link, create
     the special sections required for dynamic linking.  */
     the special sections required for dynamic linking.  */
  if (! elf_hash_table (info)->dynamic_sections_created)
  if (! elf_hash_table (info)->dynamic_sections_created)
    {
    {
      if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
      if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
        return FALSE;
        return FALSE;
    }
    }
 
 
  hppa_info = hppa_link_hash_table (info);
  hppa_info = hppa_link_hash_table (info);
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
 
 
  /* If necessary, build a new table holding section symbols indices
  /* If necessary, build a new table holding section symbols indices
     for this BFD.  */
     for this BFD.  */
 
 
  if (info->shared && hppa_info->section_syms_bfd != abfd)
  if (info->shared && hppa_info->section_syms_bfd != abfd)
    {
    {
      unsigned long i;
      unsigned long i;
      unsigned int highest_shndx;
      unsigned int highest_shndx;
      Elf_Internal_Sym *local_syms = NULL;
      Elf_Internal_Sym *local_syms = NULL;
      Elf_Internal_Sym *isym, *isymend;
      Elf_Internal_Sym *isym, *isymend;
      bfd_size_type amt;
      bfd_size_type amt;
 
 
      /* We're done with the old cache of section index to section symbol
      /* We're done with the old cache of section index to section symbol
         index information.  Free it.
         index information.  Free it.
 
 
         ?!? Note we leak the last section_syms array.  Presumably we
         ?!? Note we leak the last section_syms array.  Presumably we
         could free it in one of the later routines in this file.  */
         could free it in one of the later routines in this file.  */
      if (hppa_info->section_syms)
      if (hppa_info->section_syms)
        free (hppa_info->section_syms);
        free (hppa_info->section_syms);
 
 
      /* Read this BFD's local symbols.  */
      /* Read this BFD's local symbols.  */
      if (symtab_hdr->sh_info != 0)
      if (symtab_hdr->sh_info != 0)
        {
        {
          local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
          local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
          if (local_syms == NULL)
          if (local_syms == NULL)
            local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
            local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
                                               symtab_hdr->sh_info, 0,
                                               symtab_hdr->sh_info, 0,
                                               NULL, NULL, NULL);
                                               NULL, NULL, NULL);
          if (local_syms == NULL)
          if (local_syms == NULL)
            return FALSE;
            return FALSE;
        }
        }
 
 
      /* Record the highest section index referenced by the local symbols.  */
      /* Record the highest section index referenced by the local symbols.  */
      highest_shndx = 0;
      highest_shndx = 0;
      isymend = local_syms + symtab_hdr->sh_info;
      isymend = local_syms + symtab_hdr->sh_info;
      for (isym = local_syms; isym < isymend; isym++)
      for (isym = local_syms; isym < isymend; isym++)
        {
        {
          if (isym->st_shndx > highest_shndx
          if (isym->st_shndx > highest_shndx
              && isym->st_shndx < SHN_LORESERVE)
              && isym->st_shndx < SHN_LORESERVE)
            highest_shndx = isym->st_shndx;
            highest_shndx = isym->st_shndx;
        }
        }
 
 
      /* Allocate an array to hold the section index to section symbol index
      /* Allocate an array to hold the section index to section symbol index
         mapping.  Bump by one since we start counting at zero.  */
         mapping.  Bump by one since we start counting at zero.  */
      highest_shndx++;
      highest_shndx++;
      amt = highest_shndx;
      amt = highest_shndx;
      amt *= sizeof (int);
      amt *= sizeof (int);
      hppa_info->section_syms = (int *) bfd_malloc (amt);
      hppa_info->section_syms = (int *) bfd_malloc (amt);
 
 
      /* Now walk the local symbols again.  If we find a section symbol,
      /* Now walk the local symbols again.  If we find a section symbol,
         record the index of the symbol into the section_syms array.  */
         record the index of the symbol into the section_syms array.  */
      for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
      for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
        {
        {
          if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
          if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
            hppa_info->section_syms[isym->st_shndx] = i;
            hppa_info->section_syms[isym->st_shndx] = i;
        }
        }
 
 
      /* We are finished with the local symbols.  */
      /* We are finished with the local symbols.  */
      if (local_syms != NULL
      if (local_syms != NULL
          && symtab_hdr->contents != (unsigned char *) local_syms)
          && symtab_hdr->contents != (unsigned char *) local_syms)
        {
        {
          if (! info->keep_memory)
          if (! info->keep_memory)
            free (local_syms);
            free (local_syms);
          else
          else
            {
            {
              /* Cache the symbols for elf_link_input_bfd.  */
              /* Cache the symbols for elf_link_input_bfd.  */
              symtab_hdr->contents = (unsigned char *) local_syms;
              symtab_hdr->contents = (unsigned char *) local_syms;
            }
            }
        }
        }
 
 
      /* Record which BFD we built the section_syms mapping for.  */
      /* Record which BFD we built the section_syms mapping for.  */
      hppa_info->section_syms_bfd = abfd;
      hppa_info->section_syms_bfd = abfd;
    }
    }
 
 
  /* Record the symbol index for this input section.  We may need it for
  /* Record the symbol index for this input section.  We may need it for
     relocations when building shared libraries.  When not building shared
     relocations when building shared libraries.  When not building shared
     libraries this value is never really used, but assign it to zero to
     libraries this value is never really used, but assign it to zero to
     prevent out of bounds memory accesses in other routines.  */
     prevent out of bounds memory accesses in other routines.  */
  if (info->shared)
  if (info->shared)
    {
    {
      sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
      sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
 
 
      /* If we did not find a section symbol for this section, then
      /* If we did not find a section symbol for this section, then
         something went terribly wrong above.  */
         something went terribly wrong above.  */
      if (sec_symndx == SHN_BAD)
      if (sec_symndx == SHN_BAD)
        return FALSE;
        return FALSE;
 
 
      if (sec_symndx < SHN_LORESERVE)
      if (sec_symndx < SHN_LORESERVE)
        sec_symndx = hppa_info->section_syms[sec_symndx];
        sec_symndx = hppa_info->section_syms[sec_symndx];
      else
      else
        sec_symndx = 0;
        sec_symndx = 0;
    }
    }
  else
  else
    sec_symndx = 0;
    sec_symndx = 0;
 
 
  dlt = plt = stubs = NULL;
  dlt = plt = stubs = NULL;
  buf = NULL;
  buf = NULL;
  buf_len = 0;
  buf_len = 0;
 
 
  relend = relocs + sec->reloc_count;
  relend = relocs + sec->reloc_count;
  for (rel = relocs; rel < relend; ++rel)
  for (rel = relocs; rel < relend; ++rel)
    {
    {
      enum
      enum
        {
        {
          NEED_DLT = 1,
          NEED_DLT = 1,
          NEED_PLT = 2,
          NEED_PLT = 2,
          NEED_STUB = 4,
          NEED_STUB = 4,
          NEED_OPD = 8,
          NEED_OPD = 8,
          NEED_DYNREL = 16,
          NEED_DYNREL = 16,
        };
        };
 
 
      unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
      unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
      struct elf64_hppa_link_hash_entry *hh;
      struct elf64_hppa_link_hash_entry *hh;
      int need_entry;
      int need_entry;
      bfd_boolean maybe_dynamic;
      bfd_boolean maybe_dynamic;
      int dynrel_type = R_PARISC_NONE;
      int dynrel_type = R_PARISC_NONE;
      static reloc_howto_type *howto;
      static reloc_howto_type *howto;
 
 
      if (r_symndx >= symtab_hdr->sh_info)
      if (r_symndx >= symtab_hdr->sh_info)
        {
        {
          /* We're dealing with a global symbol -- find its hash entry
          /* We're dealing with a global symbol -- find its hash entry
             and mark it as being referenced.  */
             and mark it as being referenced.  */
          long indx = r_symndx - symtab_hdr->sh_info;
          long indx = r_symndx - symtab_hdr->sh_info;
          hh = hppa_elf_hash_entry (elf_sym_hashes (abfd)[indx]);
          hh = hppa_elf_hash_entry (elf_sym_hashes (abfd)[indx]);
          while (hh->eh.root.type == bfd_link_hash_indirect
          while (hh->eh.root.type == bfd_link_hash_indirect
                 || hh->eh.root.type == bfd_link_hash_warning)
                 || hh->eh.root.type == bfd_link_hash_warning)
            hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
            hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
 
 
          hh->eh.ref_regular = 1;
          hh->eh.ref_regular = 1;
        }
        }
      else
      else
        hh = NULL;
        hh = NULL;
 
 
      /* We can only get preliminary data on whether a symbol is
      /* We can only get preliminary data on whether a symbol is
         locally or externally defined, as not all of the input files
         locally or externally defined, as not all of the input files
         have yet been processed.  Do something with what we know, as
         have yet been processed.  Do something with what we know, as
         this may help reduce memory usage and processing time later.  */
         this may help reduce memory usage and processing time later.  */
      maybe_dynamic = FALSE;
      maybe_dynamic = FALSE;
      if (hh && ((info->shared
      if (hh && ((info->shared
                 && (!info->symbolic
                 && (!info->symbolic
                     || info->unresolved_syms_in_shared_libs == RM_IGNORE))
                     || info->unresolved_syms_in_shared_libs == RM_IGNORE))
                || !hh->eh.def_regular
                || !hh->eh.def_regular
                || hh->eh.root.type == bfd_link_hash_defweak))
                || hh->eh.root.type == bfd_link_hash_defweak))
        maybe_dynamic = TRUE;
        maybe_dynamic = TRUE;
 
 
      howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
      howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
      need_entry = 0;
      need_entry = 0;
      switch (howto->type)
      switch (howto->type)
        {
        {
        /* These are simple indirect references to symbols through the
        /* These are simple indirect references to symbols through the
           DLT.  We need to create a DLT entry for any symbols which
           DLT.  We need to create a DLT entry for any symbols which
           appears in a DLTIND relocation.  */
           appears in a DLTIND relocation.  */
        case R_PARISC_DLTIND21L:
        case R_PARISC_DLTIND21L:
        case R_PARISC_DLTIND14R:
        case R_PARISC_DLTIND14R:
        case R_PARISC_DLTIND14F:
        case R_PARISC_DLTIND14F:
        case R_PARISC_DLTIND14WR:
        case R_PARISC_DLTIND14WR:
        case R_PARISC_DLTIND14DR:
        case R_PARISC_DLTIND14DR:
          need_entry = NEED_DLT;
          need_entry = NEED_DLT;
          break;
          break;
 
 
        /* ?!?  These need a DLT entry.  But I have no idea what to do with
        /* ?!?  These need a DLT entry.  But I have no idea what to do with
           the "link time TP value.  */
           the "link time TP value.  */
        case R_PARISC_LTOFF_TP21L:
        case R_PARISC_LTOFF_TP21L:
        case R_PARISC_LTOFF_TP14R:
        case R_PARISC_LTOFF_TP14R:
        case R_PARISC_LTOFF_TP14F:
        case R_PARISC_LTOFF_TP14F:
        case R_PARISC_LTOFF_TP64:
        case R_PARISC_LTOFF_TP64:
        case R_PARISC_LTOFF_TP14WR:
        case R_PARISC_LTOFF_TP14WR:
        case R_PARISC_LTOFF_TP14DR:
        case R_PARISC_LTOFF_TP14DR:
        case R_PARISC_LTOFF_TP16F:
        case R_PARISC_LTOFF_TP16F:
        case R_PARISC_LTOFF_TP16WF:
        case R_PARISC_LTOFF_TP16WF:
        case R_PARISC_LTOFF_TP16DF:
        case R_PARISC_LTOFF_TP16DF:
          need_entry = NEED_DLT;
          need_entry = NEED_DLT;
          break;
          break;
 
 
        /* These are function calls.  Depending on their precise target we
        /* These are function calls.  Depending on their precise target we
           may need to make a stub for them.  The stub uses the PLT, so we
           may need to make a stub for them.  The stub uses the PLT, so we
           need to create PLT entries for these symbols too.  */
           need to create PLT entries for these symbols too.  */
        case R_PARISC_PCREL12F:
        case R_PARISC_PCREL12F:
        case R_PARISC_PCREL17F:
        case R_PARISC_PCREL17F:
        case R_PARISC_PCREL22F:
        case R_PARISC_PCREL22F:
        case R_PARISC_PCREL32:
        case R_PARISC_PCREL32:
        case R_PARISC_PCREL64:
        case R_PARISC_PCREL64:
        case R_PARISC_PCREL21L:
        case R_PARISC_PCREL21L:
        case R_PARISC_PCREL17R:
        case R_PARISC_PCREL17R:
        case R_PARISC_PCREL17C:
        case R_PARISC_PCREL17C:
        case R_PARISC_PCREL14R:
        case R_PARISC_PCREL14R:
        case R_PARISC_PCREL14F:
        case R_PARISC_PCREL14F:
        case R_PARISC_PCREL22C:
        case R_PARISC_PCREL22C:
        case R_PARISC_PCREL14WR:
        case R_PARISC_PCREL14WR:
        case R_PARISC_PCREL14DR:
        case R_PARISC_PCREL14DR:
        case R_PARISC_PCREL16F:
        case R_PARISC_PCREL16F:
        case R_PARISC_PCREL16WF:
        case R_PARISC_PCREL16WF:
        case R_PARISC_PCREL16DF:
        case R_PARISC_PCREL16DF:
          /* Function calls might need to go through the .plt, and
          /* Function calls might need to go through the .plt, and
             might need a long branch stub.  */
             might need a long branch stub.  */
          if (hh != NULL && hh->eh.type != STT_PARISC_MILLI)
          if (hh != NULL && hh->eh.type != STT_PARISC_MILLI)
            need_entry = (NEED_PLT | NEED_STUB);
            need_entry = (NEED_PLT | NEED_STUB);
          else
          else
            need_entry = 0;
            need_entry = 0;
          break;
          break;
 
 
        case R_PARISC_PLTOFF21L:
        case R_PARISC_PLTOFF21L:
        case R_PARISC_PLTOFF14R:
        case R_PARISC_PLTOFF14R:
        case R_PARISC_PLTOFF14F:
        case R_PARISC_PLTOFF14F:
        case R_PARISC_PLTOFF14WR:
        case R_PARISC_PLTOFF14WR:
        case R_PARISC_PLTOFF14DR:
        case R_PARISC_PLTOFF14DR:
        case R_PARISC_PLTOFF16F:
        case R_PARISC_PLTOFF16F:
        case R_PARISC_PLTOFF16WF:
        case R_PARISC_PLTOFF16WF:
        case R_PARISC_PLTOFF16DF:
        case R_PARISC_PLTOFF16DF:
          need_entry = (NEED_PLT);
          need_entry = (NEED_PLT);
          break;
          break;
 
 
        case R_PARISC_DIR64:
        case R_PARISC_DIR64:
          if (info->shared || maybe_dynamic)
          if (info->shared || maybe_dynamic)
            need_entry = (NEED_DYNREL);
            need_entry = (NEED_DYNREL);
          dynrel_type = R_PARISC_DIR64;
          dynrel_type = R_PARISC_DIR64;
          break;
          break;
 
 
        /* This is an indirect reference through the DLT to get the address
        /* This is an indirect reference through the DLT to get the address
           of a OPD descriptor.  Thus we need to make a DLT entry that points
           of a OPD descriptor.  Thus we need to make a DLT entry that points
           to an OPD entry.  */
           to an OPD entry.  */
        case R_PARISC_LTOFF_FPTR21L:
        case R_PARISC_LTOFF_FPTR21L:
        case R_PARISC_LTOFF_FPTR14R:
        case R_PARISC_LTOFF_FPTR14R:
        case R_PARISC_LTOFF_FPTR14WR:
        case R_PARISC_LTOFF_FPTR14WR:
        case R_PARISC_LTOFF_FPTR14DR:
        case R_PARISC_LTOFF_FPTR14DR:
        case R_PARISC_LTOFF_FPTR32:
        case R_PARISC_LTOFF_FPTR32:
        case R_PARISC_LTOFF_FPTR64:
        case R_PARISC_LTOFF_FPTR64:
        case R_PARISC_LTOFF_FPTR16F:
        case R_PARISC_LTOFF_FPTR16F:
        case R_PARISC_LTOFF_FPTR16WF:
        case R_PARISC_LTOFF_FPTR16WF:
        case R_PARISC_LTOFF_FPTR16DF:
        case R_PARISC_LTOFF_FPTR16DF:
          if (info->shared || maybe_dynamic)
          if (info->shared || maybe_dynamic)
            need_entry = (NEED_DLT | NEED_OPD | NEED_PLT);
            need_entry = (NEED_DLT | NEED_OPD | NEED_PLT);
          else
          else
            need_entry = (NEED_DLT | NEED_OPD | NEED_PLT);
            need_entry = (NEED_DLT | NEED_OPD | NEED_PLT);
          dynrel_type = R_PARISC_FPTR64;
          dynrel_type = R_PARISC_FPTR64;
          break;
          break;
 
 
        /* This is a simple OPD entry.  */
        /* This is a simple OPD entry.  */
        case R_PARISC_FPTR64:
        case R_PARISC_FPTR64:
          if (info->shared || maybe_dynamic)
          if (info->shared || maybe_dynamic)
            need_entry = (NEED_OPD | NEED_PLT | NEED_DYNREL);
            need_entry = (NEED_OPD | NEED_PLT | NEED_DYNREL);
          else
          else
            need_entry = (NEED_OPD | NEED_PLT);
            need_entry = (NEED_OPD | NEED_PLT);
          dynrel_type = R_PARISC_FPTR64;
          dynrel_type = R_PARISC_FPTR64;
          break;
          break;
 
 
        /* Add more cases as needed.  */
        /* Add more cases as needed.  */
        }
        }
 
 
      if (!need_entry)
      if (!need_entry)
        continue;
        continue;
 
 
      if (hh)
      if (hh)
        {
        {
          /* Stash away enough information to be able to find this symbol
          /* Stash away enough information to be able to find this symbol
             regardless of whether or not it is local or global.  */
             regardless of whether or not it is local or global.  */
          hh->owner = abfd;
          hh->owner = abfd;
          hh->sym_indx = r_symndx;
          hh->sym_indx = r_symndx;
        }
        }
 
 
      /* Create what's needed.  */
      /* Create what's needed.  */
      if (need_entry & NEED_DLT)
      if (need_entry & NEED_DLT)
        {
        {
          /* Allocate space for a DLT entry, as well as a dynamic
          /* Allocate space for a DLT entry, as well as a dynamic
             relocation for this entry.  */
             relocation for this entry.  */
          if (! hppa_info->dlt_sec
          if (! hppa_info->dlt_sec
              && ! get_dlt (abfd, info, hppa_info))
              && ! get_dlt (abfd, info, hppa_info))
            goto err_out;
            goto err_out;
 
 
          if (hh != NULL)
          if (hh != NULL)
            {
            {
              hh->want_dlt = 1;
              hh->want_dlt = 1;
              hh->eh.got.refcount += 1;
              hh->eh.got.refcount += 1;
            }
            }
          else
          else
            {
            {
              bfd_signed_vma *local_dlt_refcounts;
              bfd_signed_vma *local_dlt_refcounts;
 
 
              /* This is a DLT entry for a local symbol.  */
              /* This is a DLT entry for a local symbol.  */
              local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
              local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
              if (local_dlt_refcounts == NULL)
              if (local_dlt_refcounts == NULL)
                return FALSE;
                return FALSE;
              local_dlt_refcounts[r_symndx] += 1;
              local_dlt_refcounts[r_symndx] += 1;
            }
            }
        }
        }
 
 
      if (need_entry & NEED_PLT)
      if (need_entry & NEED_PLT)
        {
        {
          if (! hppa_info->plt_sec
          if (! hppa_info->plt_sec
              && ! get_plt (abfd, info, hppa_info))
              && ! get_plt (abfd, info, hppa_info))
            goto err_out;
            goto err_out;
 
 
          if (hh != NULL)
          if (hh != NULL)
            {
            {
              hh->want_plt = 1;
              hh->want_plt = 1;
              hh->eh.needs_plt = 1;
              hh->eh.needs_plt = 1;
              hh->eh.plt.refcount += 1;
              hh->eh.plt.refcount += 1;
            }
            }
          else
          else
            {
            {
              bfd_signed_vma *local_dlt_refcounts;
              bfd_signed_vma *local_dlt_refcounts;
              bfd_signed_vma *local_plt_refcounts;
              bfd_signed_vma *local_plt_refcounts;
 
 
              /* This is a PLT entry for a local symbol.  */
              /* This is a PLT entry for a local symbol.  */
              local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
              local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
              if (local_dlt_refcounts == NULL)
              if (local_dlt_refcounts == NULL)
                return FALSE;
                return FALSE;
              local_plt_refcounts = local_dlt_refcounts + symtab_hdr->sh_info;
              local_plt_refcounts = local_dlt_refcounts + symtab_hdr->sh_info;
              local_plt_refcounts[r_symndx] += 1;
              local_plt_refcounts[r_symndx] += 1;
            }
            }
        }
        }
 
 
      if (need_entry & NEED_STUB)
      if (need_entry & NEED_STUB)
        {
        {
          if (! hppa_info->stub_sec
          if (! hppa_info->stub_sec
              && ! get_stub (abfd, info, hppa_info))
              && ! get_stub (abfd, info, hppa_info))
            goto err_out;
            goto err_out;
          if (hh)
          if (hh)
            hh->want_stub = 1;
            hh->want_stub = 1;
        }
        }
 
 
      if (need_entry & NEED_OPD)
      if (need_entry & NEED_OPD)
        {
        {
          if (! hppa_info->opd_sec
          if (! hppa_info->opd_sec
              && ! get_opd (abfd, info, hppa_info))
              && ! get_opd (abfd, info, hppa_info))
            goto err_out;
            goto err_out;
 
 
          /* FPTRs are not allocated by the dynamic linker for PA64,
          /* FPTRs are not allocated by the dynamic linker for PA64,
             though it is possible that will change in the future.  */
             though it is possible that will change in the future.  */
 
 
          if (hh != NULL)
          if (hh != NULL)
            hh->want_opd = 1;
            hh->want_opd = 1;
          else
          else
            {
            {
              bfd_signed_vma *local_dlt_refcounts;
              bfd_signed_vma *local_dlt_refcounts;
              bfd_signed_vma *local_opd_refcounts;
              bfd_signed_vma *local_opd_refcounts;
 
 
              /* This is a OPD for a local symbol.  */
              /* This is a OPD for a local symbol.  */
              local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
              local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
              if (local_dlt_refcounts == NULL)
              if (local_dlt_refcounts == NULL)
                return FALSE;
                return FALSE;
              local_opd_refcounts = (local_dlt_refcounts
              local_opd_refcounts = (local_dlt_refcounts
                                     + 2 * symtab_hdr->sh_info);
                                     + 2 * symtab_hdr->sh_info);
              local_opd_refcounts[r_symndx] += 1;
              local_opd_refcounts[r_symndx] += 1;
            }
            }
        }
        }
 
 
      /* Add a new dynamic relocation to the chain of dynamic
      /* Add a new dynamic relocation to the chain of dynamic
         relocations for this symbol.  */
         relocations for this symbol.  */
      if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
      if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
        {
        {
          if (! hppa_info->other_rel_sec
          if (! hppa_info->other_rel_sec
              && ! get_reloc_section (abfd, hppa_info, sec))
              && ! get_reloc_section (abfd, hppa_info, sec))
            goto err_out;
            goto err_out;
 
 
          /* Count dynamic relocations against global symbols.  */
          /* Count dynamic relocations against global symbols.  */
          if (hh != NULL
          if (hh != NULL
              && !count_dyn_reloc (abfd, hh, dynrel_type, sec,
              && !count_dyn_reloc (abfd, hh, dynrel_type, sec,
                                   sec_symndx, rel->r_offset, rel->r_addend))
                                   sec_symndx, rel->r_offset, rel->r_addend))
            goto err_out;
            goto err_out;
 
 
          /* If we are building a shared library and we just recorded
          /* If we are building a shared library and we just recorded
             a dynamic R_PARISC_FPTR64 relocation, then make sure the
             a dynamic R_PARISC_FPTR64 relocation, then make sure the
             section symbol for this section ends up in the dynamic
             section symbol for this section ends up in the dynamic
             symbol table.  */
             symbol table.  */
          if (info->shared && dynrel_type == R_PARISC_FPTR64
          if (info->shared && dynrel_type == R_PARISC_FPTR64
              && ! (bfd_elf_link_record_local_dynamic_symbol
              && ! (bfd_elf_link_record_local_dynamic_symbol
                    (info, abfd, sec_symndx)))
                    (info, abfd, sec_symndx)))
            return FALSE;
            return FALSE;
        }
        }
    }
    }
 
 
  if (buf)
  if (buf)
    free (buf);
    free (buf);
  return TRUE;
  return TRUE;
 
 
 err_out:
 err_out:
  if (buf)
  if (buf)
    free (buf);
    free (buf);
  return FALSE;
  return FALSE;
}
}
 
 
struct elf64_hppa_allocate_data
struct elf64_hppa_allocate_data
{
{
  struct bfd_link_info *info;
  struct bfd_link_info *info;
  bfd_size_type ofs;
  bfd_size_type ofs;
};
};
 
 
/* Should we do dynamic things to this symbol?  */
/* Should we do dynamic things to this symbol?  */
 
 
static bfd_boolean
static bfd_boolean
elf64_hppa_dynamic_symbol_p (struct elf_link_hash_entry *eh,
elf64_hppa_dynamic_symbol_p (struct elf_link_hash_entry *eh,
                             struct bfd_link_info *info)
                             struct bfd_link_info *info)
{
{
  /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
  /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
     and relocations that retrieve a function descriptor?  Assume the
     and relocations that retrieve a function descriptor?  Assume the
     worst for now.  */
     worst for now.  */
  if (_bfd_elf_dynamic_symbol_p (eh, info, 1))
  if (_bfd_elf_dynamic_symbol_p (eh, info, 1))
    {
    {
      /* ??? Why is this here and not elsewhere is_local_label_name.  */
      /* ??? Why is this here and not elsewhere is_local_label_name.  */
      if (eh->root.root.string[0] == '$' && eh->root.root.string[1] == '$')
      if (eh->root.root.string[0] == '$' && eh->root.root.string[1] == '$')
        return FALSE;
        return FALSE;
 
 
      return TRUE;
      return TRUE;
    }
    }
  else
  else
    return FALSE;
    return FALSE;
}
}
 
 
/* Mark all functions exported by this file so that we can later allocate
/* Mark all functions exported by this file so that we can later allocate
   entries in .opd for them.  */
   entries in .opd for them.  */
 
 
static bfd_boolean
static bfd_boolean
elf64_hppa_mark_exported_functions (struct elf_link_hash_entry *eh, void *data)
elf64_hppa_mark_exported_functions (struct elf_link_hash_entry *eh, void *data)
{
{
  struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
  struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
  struct bfd_link_info *info = (struct bfd_link_info *)data;
  struct bfd_link_info *info = (struct bfd_link_info *)data;
  struct elf64_hppa_link_hash_table *hppa_info;
  struct elf64_hppa_link_hash_table *hppa_info;
 
 
  hppa_info = hppa_link_hash_table (info);
  hppa_info = hppa_link_hash_table (info);
 
 
  if (eh->root.type == bfd_link_hash_warning)
  if (eh->root.type == bfd_link_hash_warning)
    eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
    eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
 
 
  if (eh
  if (eh
      && (eh->root.type == bfd_link_hash_defined
      && (eh->root.type == bfd_link_hash_defined
          || eh->root.type == bfd_link_hash_defweak)
          || eh->root.type == bfd_link_hash_defweak)
      && eh->root.u.def.section->output_section != NULL
      && eh->root.u.def.section->output_section != NULL
      && eh->type == STT_FUNC)
      && eh->type == STT_FUNC)
    {
    {
      if (! hppa_info->opd_sec
      if (! hppa_info->opd_sec
          && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
          && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
        return FALSE;
        return FALSE;
 
 
      hh->want_opd = 1;
      hh->want_opd = 1;
 
 
      /* Put a flag here for output_symbol_hook.  */
      /* Put a flag here for output_symbol_hook.  */
      hh->st_shndx = -1;
      hh->st_shndx = -1;
      eh->needs_plt = 1;
      eh->needs_plt = 1;
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Allocate space for a DLT entry.  */
/* Allocate space for a DLT entry.  */
 
 
static bfd_boolean
static bfd_boolean
allocate_global_data_dlt (struct elf_link_hash_entry *eh, void *data)
allocate_global_data_dlt (struct elf_link_hash_entry *eh, void *data)
{
{
  struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
  struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
  struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
  struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
 
 
  if (hh->want_dlt)
  if (hh->want_dlt)
    {
    {
      if (x->info->shared)
      if (x->info->shared)
        {
        {
          /* Possibly add the symbol to the local dynamic symbol
          /* Possibly add the symbol to the local dynamic symbol
             table since we might need to create a dynamic relocation
             table since we might need to create a dynamic relocation
             against it.  */
             against it.  */
          if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI)
          if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI)
            {
            {
              bfd *owner = eh->root.u.def.section->owner;
              bfd *owner = eh->root.u.def.section->owner;
 
 
              if (! (bfd_elf_link_record_local_dynamic_symbol
              if (! (bfd_elf_link_record_local_dynamic_symbol
                     (x->info, owner, hh->sym_indx)))
                     (x->info, owner, hh->sym_indx)))
                return FALSE;
                return FALSE;
            }
            }
        }
        }
 
 
      hh->dlt_offset = x->ofs;
      hh->dlt_offset = x->ofs;
      x->ofs += DLT_ENTRY_SIZE;
      x->ofs += DLT_ENTRY_SIZE;
    }
    }
  return TRUE;
  return TRUE;
}
}
 
 
/* Allocate space for a DLT.PLT entry.  */
/* Allocate space for a DLT.PLT entry.  */
 
 
static bfd_boolean
static bfd_boolean
allocate_global_data_plt (struct elf_link_hash_entry *eh, void *data)
allocate_global_data_plt (struct elf_link_hash_entry *eh, void *data)
{
{
  struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
  struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
  struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
  struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
 
 
  if (hh->want_plt
  if (hh->want_plt
      && elf64_hppa_dynamic_symbol_p (eh, x->info)
      && elf64_hppa_dynamic_symbol_p (eh, x->info)
      && !((eh->root.type == bfd_link_hash_defined
      && !((eh->root.type == bfd_link_hash_defined
            || eh->root.type == bfd_link_hash_defweak)
            || eh->root.type == bfd_link_hash_defweak)
           && eh->root.u.def.section->output_section != NULL))
           && eh->root.u.def.section->output_section != NULL))
    {
    {
      hh->plt_offset = x->ofs;
      hh->plt_offset = x->ofs;
      x->ofs += PLT_ENTRY_SIZE;
      x->ofs += PLT_ENTRY_SIZE;
      if (hh->plt_offset < 0x2000)
      if (hh->plt_offset < 0x2000)
        hppa_link_hash_table (x->info)->gp_offset = hh->plt_offset;
        hppa_link_hash_table (x->info)->gp_offset = hh->plt_offset;
    }
    }
  else
  else
    hh->want_plt = 0;
    hh->want_plt = 0;
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Allocate space for a STUB entry.  */
/* Allocate space for a STUB entry.  */
 
 
static bfd_boolean
static bfd_boolean
allocate_global_data_stub (struct elf_link_hash_entry *eh, void *data)
allocate_global_data_stub (struct elf_link_hash_entry *eh, void *data)
{
{
  struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
  struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
  struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
  struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
 
 
  if (hh->want_stub
  if (hh->want_stub
      && elf64_hppa_dynamic_symbol_p (eh, x->info)
      && elf64_hppa_dynamic_symbol_p (eh, x->info)
      && !((eh->root.type == bfd_link_hash_defined
      && !((eh->root.type == bfd_link_hash_defined
            || eh->root.type == bfd_link_hash_defweak)
            || eh->root.type == bfd_link_hash_defweak)
           && eh->root.u.def.section->output_section != NULL))
           && eh->root.u.def.section->output_section != NULL))
    {
    {
      hh->stub_offset = x->ofs;
      hh->stub_offset = x->ofs;
      x->ofs += sizeof (plt_stub);
      x->ofs += sizeof (plt_stub);
    }
    }
  else
  else
    hh->want_stub = 0;
    hh->want_stub = 0;
  return TRUE;
  return TRUE;
}
}
 
 
/* Allocate space for a FPTR entry.  */
/* Allocate space for a FPTR entry.  */
 
 
static bfd_boolean
static bfd_boolean
allocate_global_data_opd (struct elf_link_hash_entry *eh, void *data)
allocate_global_data_opd (struct elf_link_hash_entry *eh, void *data)
{
{
  struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
  struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
  struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
  struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
 
 
  if (hh && hh->want_opd)
  if (hh && hh->want_opd)
    {
    {
      while (hh->eh.root.type == bfd_link_hash_indirect
      while (hh->eh.root.type == bfd_link_hash_indirect
             || hh->eh.root.type == bfd_link_hash_warning)
             || hh->eh.root.type == bfd_link_hash_warning)
        hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
        hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
 
 
      /* We never need an opd entry for a symbol which is not
      /* We never need an opd entry for a symbol which is not
         defined by this output file.  */
         defined by this output file.  */
      if (hh && (hh->eh.root.type == bfd_link_hash_undefined
      if (hh && (hh->eh.root.type == bfd_link_hash_undefined
                 || hh->eh.root.type == bfd_link_hash_undefweak
                 || hh->eh.root.type == bfd_link_hash_undefweak
                 || hh->eh.root.u.def.section->output_section == NULL))
                 || hh->eh.root.u.def.section->output_section == NULL))
        hh->want_opd = 0;
        hh->want_opd = 0;
 
 
      /* If we are creating a shared library, took the address of a local
      /* If we are creating a shared library, took the address of a local
         function or might export this function from this object file, then
         function or might export this function from this object file, then
         we have to create an opd descriptor.  */
         we have to create an opd descriptor.  */
      else if (x->info->shared
      else if (x->info->shared
               || hh == NULL
               || hh == NULL
               || (hh->eh.dynindx == -1 && hh->eh.type != STT_PARISC_MILLI)
               || (hh->eh.dynindx == -1 && hh->eh.type != STT_PARISC_MILLI)
               || (hh->eh.root.type == bfd_link_hash_defined
               || (hh->eh.root.type == bfd_link_hash_defined
                   || hh->eh.root.type == bfd_link_hash_defweak))
                   || hh->eh.root.type == bfd_link_hash_defweak))
        {
        {
          /* If we are creating a shared library, then we will have to
          /* If we are creating a shared library, then we will have to
             create a runtime relocation for the symbol to properly
             create a runtime relocation for the symbol to properly
             initialize the .opd entry.  Make sure the symbol gets
             initialize the .opd entry.  Make sure the symbol gets
             added to the dynamic symbol table.  */
             added to the dynamic symbol table.  */
          if (x->info->shared
          if (x->info->shared
              && (hh == NULL || (hh->eh.dynindx == -1)))
              && (hh == NULL || (hh->eh.dynindx == -1)))
            {
            {
              bfd *owner;
              bfd *owner;
              /* PR 6511: Default to using the dynamic symbol table.  */
              /* PR 6511: Default to using the dynamic symbol table.  */
              owner = (hh->owner ? hh->owner: eh->root.u.def.section->owner);
              owner = (hh->owner ? hh->owner: eh->root.u.def.section->owner);
 
 
              if (!bfd_elf_link_record_local_dynamic_symbol
              if (!bfd_elf_link_record_local_dynamic_symbol
                    (x->info, owner, hh->sym_indx))
                    (x->info, owner, hh->sym_indx))
                return FALSE;
                return FALSE;
            }
            }
 
 
          /* This may not be necessary or desirable anymore now that
          /* This may not be necessary or desirable anymore now that
             we have some support for dealing with section symbols
             we have some support for dealing with section symbols
             in dynamic relocs.  But name munging does make the result
             in dynamic relocs.  But name munging does make the result
             much easier to debug.  ie, the EPLT reloc will reference
             much easier to debug.  ie, the EPLT reloc will reference
             a symbol like .foobar, instead of .text + offset.  */
             a symbol like .foobar, instead of .text + offset.  */
          if (x->info->shared && eh)
          if (x->info->shared && eh)
            {
            {
              char *new_name;
              char *new_name;
              struct elf_link_hash_entry *nh;
              struct elf_link_hash_entry *nh;
 
 
              new_name = alloca (strlen (eh->root.root.string) + 2);
              new_name = alloca (strlen (eh->root.root.string) + 2);
              new_name[0] = '.';
              new_name[0] = '.';
              strcpy (new_name + 1, eh->root.root.string);
              strcpy (new_name + 1, eh->root.root.string);
 
 
              nh = elf_link_hash_lookup (elf_hash_table (x->info),
              nh = elf_link_hash_lookup (elf_hash_table (x->info),
                                         new_name, TRUE, TRUE, TRUE);
                                         new_name, TRUE, TRUE, TRUE);
 
 
              nh->root.type = eh->root.type;
              nh->root.type = eh->root.type;
              nh->root.u.def.value = eh->root.u.def.value;
              nh->root.u.def.value = eh->root.u.def.value;
              nh->root.u.def.section = eh->root.u.def.section;
              nh->root.u.def.section = eh->root.u.def.section;
 
 
              if (! bfd_elf_link_record_dynamic_symbol (x->info, nh))
              if (! bfd_elf_link_record_dynamic_symbol (x->info, nh))
                return FALSE;
                return FALSE;
 
 
             }
             }
          hh->opd_offset = x->ofs;
          hh->opd_offset = x->ofs;
          x->ofs += OPD_ENTRY_SIZE;
          x->ofs += OPD_ENTRY_SIZE;
        }
        }
 
 
      /* Otherwise we do not need an opd entry.  */
      /* Otherwise we do not need an opd entry.  */
      else
      else
        hh->want_opd = 0;
        hh->want_opd = 0;
    }
    }
  return TRUE;
  return TRUE;
}
}
 
 
/* HP requires the EI_OSABI field to be filled in.  The assignment to
/* HP requires the EI_OSABI field to be filled in.  The assignment to
   EI_ABIVERSION may not be strictly necessary.  */
   EI_ABIVERSION may not be strictly necessary.  */
 
 
static void
static void
elf64_hppa_post_process_headers (bfd *abfd,
elf64_hppa_post_process_headers (bfd *abfd,
                         struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
                         struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
{
{
  Elf_Internal_Ehdr * i_ehdrp;
  Elf_Internal_Ehdr * i_ehdrp;
 
 
  i_ehdrp = elf_elfheader (abfd);
  i_ehdrp = elf_elfheader (abfd);
 
 
  i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
  i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
  i_ehdrp->e_ident[EI_ABIVERSION] = 1;
  i_ehdrp->e_ident[EI_ABIVERSION] = 1;
}
}
 
 
/* Create function descriptor section (.opd).  This section is called .opd
/* Create function descriptor section (.opd).  This section is called .opd
   because it contains "official procedure descriptors".  The "official"
   because it contains "official procedure descriptors".  The "official"
   refers to the fact that these descriptors are used when taking the address
   refers to the fact that these descriptors are used when taking the address
   of a procedure, thus ensuring a unique address for each procedure.  */
   of a procedure, thus ensuring a unique address for each procedure.  */
 
 
static bfd_boolean
static bfd_boolean
get_opd (bfd *abfd,
get_opd (bfd *abfd,
         struct bfd_link_info *info ATTRIBUTE_UNUSED,
         struct bfd_link_info *info ATTRIBUTE_UNUSED,
         struct elf64_hppa_link_hash_table *hppa_info)
         struct elf64_hppa_link_hash_table *hppa_info)
{
{
  asection *opd;
  asection *opd;
  bfd *dynobj;
  bfd *dynobj;
 
 
  opd = hppa_info->opd_sec;
  opd = hppa_info->opd_sec;
  if (!opd)
  if (!opd)
    {
    {
      dynobj = hppa_info->root.dynobj;
      dynobj = hppa_info->root.dynobj;
      if (!dynobj)
      if (!dynobj)
        hppa_info->root.dynobj = dynobj = abfd;
        hppa_info->root.dynobj = dynobj = abfd;
 
 
      opd = bfd_make_section_with_flags (dynobj, ".opd",
      opd = bfd_make_section_with_flags (dynobj, ".opd",
                                         (SEC_ALLOC
                                         (SEC_ALLOC
                                          | SEC_LOAD
                                          | SEC_LOAD
                                          | SEC_HAS_CONTENTS
                                          | SEC_HAS_CONTENTS
                                          | SEC_IN_MEMORY
                                          | SEC_IN_MEMORY
                                          | SEC_LINKER_CREATED));
                                          | SEC_LINKER_CREATED));
      if (!opd
      if (!opd
          || !bfd_set_section_alignment (abfd, opd, 3))
          || !bfd_set_section_alignment (abfd, opd, 3))
        {
        {
          BFD_ASSERT (0);
          BFD_ASSERT (0);
          return FALSE;
          return FALSE;
        }
        }
 
 
      hppa_info->opd_sec = opd;
      hppa_info->opd_sec = opd;
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Create the PLT section.  */
/* Create the PLT section.  */
 
 
static bfd_boolean
static bfd_boolean
get_plt (bfd *abfd,
get_plt (bfd *abfd,
         struct bfd_link_info *info ATTRIBUTE_UNUSED,
         struct bfd_link_info *info ATTRIBUTE_UNUSED,
         struct elf64_hppa_link_hash_table *hppa_info)
         struct elf64_hppa_link_hash_table *hppa_info)
{
{
  asection *plt;
  asection *plt;
  bfd *dynobj;
  bfd *dynobj;
 
 
  plt = hppa_info->plt_sec;
  plt = hppa_info->plt_sec;
  if (!plt)
  if (!plt)
    {
    {
      dynobj = hppa_info->root.dynobj;
      dynobj = hppa_info->root.dynobj;
      if (!dynobj)
      if (!dynobj)
        hppa_info->root.dynobj = dynobj = abfd;
        hppa_info->root.dynobj = dynobj = abfd;
 
 
      plt = bfd_make_section_with_flags (dynobj, ".plt",
      plt = bfd_make_section_with_flags (dynobj, ".plt",
                                         (SEC_ALLOC
                                         (SEC_ALLOC
                                          | SEC_LOAD
                                          | SEC_LOAD
                                          | SEC_HAS_CONTENTS
                                          | SEC_HAS_CONTENTS
                                          | SEC_IN_MEMORY
                                          | SEC_IN_MEMORY
                                          | SEC_LINKER_CREATED));
                                          | SEC_LINKER_CREATED));
      if (!plt
      if (!plt
          || !bfd_set_section_alignment (abfd, plt, 3))
          || !bfd_set_section_alignment (abfd, plt, 3))
        {
        {
          BFD_ASSERT (0);
          BFD_ASSERT (0);
          return FALSE;
          return FALSE;
        }
        }
 
 
      hppa_info->plt_sec = plt;
      hppa_info->plt_sec = plt;
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Create the DLT section.  */
/* Create the DLT section.  */
 
 
static bfd_boolean
static bfd_boolean
get_dlt (bfd *abfd,
get_dlt (bfd *abfd,
         struct bfd_link_info *info ATTRIBUTE_UNUSED,
         struct bfd_link_info *info ATTRIBUTE_UNUSED,
         struct elf64_hppa_link_hash_table *hppa_info)
         struct elf64_hppa_link_hash_table *hppa_info)
{
{
  asection *dlt;
  asection *dlt;
  bfd *dynobj;
  bfd *dynobj;
 
 
  dlt = hppa_info->dlt_sec;
  dlt = hppa_info->dlt_sec;
  if (!dlt)
  if (!dlt)
    {
    {
      dynobj = hppa_info->root.dynobj;
      dynobj = hppa_info->root.dynobj;
      if (!dynobj)
      if (!dynobj)
        hppa_info->root.dynobj = dynobj = abfd;
        hppa_info->root.dynobj = dynobj = abfd;
 
 
      dlt = bfd_make_section_with_flags (dynobj, ".dlt",
      dlt = bfd_make_section_with_flags (dynobj, ".dlt",
                                         (SEC_ALLOC
                                         (SEC_ALLOC
                                          | SEC_LOAD
                                          | SEC_LOAD
                                          | SEC_HAS_CONTENTS
                                          | SEC_HAS_CONTENTS
                                          | SEC_IN_MEMORY
                                          | SEC_IN_MEMORY
                                          | SEC_LINKER_CREATED));
                                          | SEC_LINKER_CREATED));
      if (!dlt
      if (!dlt
          || !bfd_set_section_alignment (abfd, dlt, 3))
          || !bfd_set_section_alignment (abfd, dlt, 3))
        {
        {
          BFD_ASSERT (0);
          BFD_ASSERT (0);
          return FALSE;
          return FALSE;
        }
        }
 
 
      hppa_info->dlt_sec = dlt;
      hppa_info->dlt_sec = dlt;
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Create the stubs section.  */
/* Create the stubs section.  */
 
 
static bfd_boolean
static bfd_boolean
get_stub (bfd *abfd,
get_stub (bfd *abfd,
          struct bfd_link_info *info ATTRIBUTE_UNUSED,
          struct bfd_link_info *info ATTRIBUTE_UNUSED,
          struct elf64_hppa_link_hash_table *hppa_info)
          struct elf64_hppa_link_hash_table *hppa_info)
{
{
  asection *stub;
  asection *stub;
  bfd *dynobj;
  bfd *dynobj;
 
 
  stub = hppa_info->stub_sec;
  stub = hppa_info->stub_sec;
  if (!stub)
  if (!stub)
    {
    {
      dynobj = hppa_info->root.dynobj;
      dynobj = hppa_info->root.dynobj;
      if (!dynobj)
      if (!dynobj)
        hppa_info->root.dynobj = dynobj = abfd;
        hppa_info->root.dynobj = dynobj = abfd;
 
 
      stub = bfd_make_section_with_flags (dynobj, ".stub",
      stub = bfd_make_section_with_flags (dynobj, ".stub",
                                          (SEC_ALLOC | SEC_LOAD
                                          (SEC_ALLOC | SEC_LOAD
                                           | SEC_HAS_CONTENTS
                                           | SEC_HAS_CONTENTS
                                           | SEC_IN_MEMORY
                                           | SEC_IN_MEMORY
                                           | SEC_READONLY
                                           | SEC_READONLY
                                           | SEC_LINKER_CREATED));
                                           | SEC_LINKER_CREATED));
      if (!stub
      if (!stub
          || !bfd_set_section_alignment (abfd, stub, 3))
          || !bfd_set_section_alignment (abfd, stub, 3))
        {
        {
          BFD_ASSERT (0);
          BFD_ASSERT (0);
          return FALSE;
          return FALSE;
        }
        }
 
 
      hppa_info->stub_sec = stub;
      hppa_info->stub_sec = stub;
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Create sections necessary for dynamic linking.  This is only a rough
/* Create sections necessary for dynamic linking.  This is only a rough
   cut and will likely change as we learn more about the somewhat
   cut and will likely change as we learn more about the somewhat
   unusual dynamic linking scheme HP uses.
   unusual dynamic linking scheme HP uses.
 
 
   .stub:
   .stub:
        Contains code to implement cross-space calls.  The first time one
        Contains code to implement cross-space calls.  The first time one
        of the stubs is used it will call into the dynamic linker, later
        of the stubs is used it will call into the dynamic linker, later
        calls will go straight to the target.
        calls will go straight to the target.
 
 
        The only stub we support right now looks like
        The only stub we support right now looks like
 
 
        ldd OFFSET(%dp),%r1
        ldd OFFSET(%dp),%r1
        bve %r0(%r1)
        bve %r0(%r1)
        ldd OFFSET+8(%dp),%dp
        ldd OFFSET+8(%dp),%dp
 
 
        Other stubs may be needed in the future.  We may want the remove
        Other stubs may be needed in the future.  We may want the remove
        the break/nop instruction.  It is only used right now to keep the
        the break/nop instruction.  It is only used right now to keep the
        offset of a .plt entry and a .stub entry in sync.
        offset of a .plt entry and a .stub entry in sync.
 
 
   .dlt:
   .dlt:
        This is what most people call the .got.  HP used a different name.
        This is what most people call the .got.  HP used a different name.
        Losers.
        Losers.
 
 
   .rela.dlt:
   .rela.dlt:
        Relocations for the DLT.
        Relocations for the DLT.
 
 
   .plt:
   .plt:
        Function pointers as address,gp pairs.
        Function pointers as address,gp pairs.
 
 
   .rela.plt:
   .rela.plt:
        Should contain dynamic IPLT (and EPLT?) relocations.
        Should contain dynamic IPLT (and EPLT?) relocations.
 
 
   .opd:
   .opd:
        FPTRS
        FPTRS
 
 
   .rela.opd:
   .rela.opd:
        EPLT relocations for symbols exported from shared libraries.  */
        EPLT relocations for symbols exported from shared libraries.  */
 
 
static bfd_boolean
static bfd_boolean
elf64_hppa_create_dynamic_sections (bfd *abfd,
elf64_hppa_create_dynamic_sections (bfd *abfd,
                                    struct bfd_link_info *info)
                                    struct bfd_link_info *info)
{
{
  asection *s;
  asection *s;
 
 
  if (! get_stub (abfd, info, hppa_link_hash_table (info)))
  if (! get_stub (abfd, info, hppa_link_hash_table (info)))
    return FALSE;
    return FALSE;
 
 
  if (! get_dlt (abfd, info, hppa_link_hash_table (info)))
  if (! get_dlt (abfd, info, hppa_link_hash_table (info)))
    return FALSE;
    return FALSE;
 
 
  if (! get_plt (abfd, info, hppa_link_hash_table (info)))
  if (! get_plt (abfd, info, hppa_link_hash_table (info)))
    return FALSE;
    return FALSE;
 
 
  if (! get_opd (abfd, info, hppa_link_hash_table (info)))
  if (! get_opd (abfd, info, hppa_link_hash_table (info)))
    return FALSE;
    return FALSE;
 
 
  s = bfd_make_section_with_flags (abfd, ".rela.dlt",
  s = bfd_make_section_with_flags (abfd, ".rela.dlt",
                                   (SEC_ALLOC | SEC_LOAD
                                   (SEC_ALLOC | SEC_LOAD
                                    | SEC_HAS_CONTENTS
                                    | SEC_HAS_CONTENTS
                                    | SEC_IN_MEMORY
                                    | SEC_IN_MEMORY
                                    | SEC_READONLY
                                    | SEC_READONLY
                                    | SEC_LINKER_CREATED));
                                    | SEC_LINKER_CREATED));
  if (s == NULL
  if (s == NULL
      || !bfd_set_section_alignment (abfd, s, 3))
      || !bfd_set_section_alignment (abfd, s, 3))
    return FALSE;
    return FALSE;
  hppa_link_hash_table (info)->dlt_rel_sec = s;
  hppa_link_hash_table (info)->dlt_rel_sec = s;
 
 
  s = bfd_make_section_with_flags (abfd, ".rela.plt",
  s = bfd_make_section_with_flags (abfd, ".rela.plt",
                                   (SEC_ALLOC | SEC_LOAD
                                   (SEC_ALLOC | SEC_LOAD
                                    | SEC_HAS_CONTENTS
                                    | SEC_HAS_CONTENTS
                                    | SEC_IN_MEMORY
                                    | SEC_IN_MEMORY
                                    | SEC_READONLY
                                    | SEC_READONLY
                                    | SEC_LINKER_CREATED));
                                    | SEC_LINKER_CREATED));
  if (s == NULL
  if (s == NULL
      || !bfd_set_section_alignment (abfd, s, 3))
      || !bfd_set_section_alignment (abfd, s, 3))
    return FALSE;
    return FALSE;
  hppa_link_hash_table (info)->plt_rel_sec = s;
  hppa_link_hash_table (info)->plt_rel_sec = s;
 
 
  s = bfd_make_section_with_flags (abfd, ".rela.data",
  s = bfd_make_section_with_flags (abfd, ".rela.data",
                                   (SEC_ALLOC | SEC_LOAD
                                   (SEC_ALLOC | SEC_LOAD
                                    | SEC_HAS_CONTENTS
                                    | SEC_HAS_CONTENTS
                                    | SEC_IN_MEMORY
                                    | SEC_IN_MEMORY
                                    | SEC_READONLY
                                    | SEC_READONLY
                                    | SEC_LINKER_CREATED));
                                    | SEC_LINKER_CREATED));
  if (s == NULL
  if (s == NULL
      || !bfd_set_section_alignment (abfd, s, 3))
      || !bfd_set_section_alignment (abfd, s, 3))
    return FALSE;
    return FALSE;
  hppa_link_hash_table (info)->other_rel_sec = s;
  hppa_link_hash_table (info)->other_rel_sec = s;
 
 
  s = bfd_make_section_with_flags (abfd, ".rela.opd",
  s = bfd_make_section_with_flags (abfd, ".rela.opd",
                                   (SEC_ALLOC | SEC_LOAD
                                   (SEC_ALLOC | SEC_LOAD
                                    | SEC_HAS_CONTENTS
                                    | SEC_HAS_CONTENTS
                                    | SEC_IN_MEMORY
                                    | SEC_IN_MEMORY
                                    | SEC_READONLY
                                    | SEC_READONLY
                                    | SEC_LINKER_CREATED));
                                    | SEC_LINKER_CREATED));
  if (s == NULL
  if (s == NULL
      || !bfd_set_section_alignment (abfd, s, 3))
      || !bfd_set_section_alignment (abfd, s, 3))
    return FALSE;
    return FALSE;
  hppa_link_hash_table (info)->opd_rel_sec = s;
  hppa_link_hash_table (info)->opd_rel_sec = s;
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Allocate dynamic relocations for those symbols that turned out
/* Allocate dynamic relocations for those symbols that turned out
   to be dynamic.  */
   to be dynamic.  */
 
 
static bfd_boolean
static bfd_boolean
allocate_dynrel_entries (struct elf_link_hash_entry *eh, void *data)
allocate_dynrel_entries (struct elf_link_hash_entry *eh, void *data)
{
{
  struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
  struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
  struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
  struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
  struct elf64_hppa_link_hash_table *hppa_info;
  struct elf64_hppa_link_hash_table *hppa_info;
  struct elf64_hppa_dyn_reloc_entry *rent;
  struct elf64_hppa_dyn_reloc_entry *rent;
  bfd_boolean dynamic_symbol, shared;
  bfd_boolean dynamic_symbol, shared;
 
 
  hppa_info = hppa_link_hash_table (x->info);
  hppa_info = hppa_link_hash_table (x->info);
  dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, x->info);
  dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, x->info);
  shared = x->info->shared;
  shared = x->info->shared;
 
 
  /* We may need to allocate relocations for a non-dynamic symbol
  /* We may need to allocate relocations for a non-dynamic symbol
     when creating a shared library.  */
     when creating a shared library.  */
  if (!dynamic_symbol && !shared)
  if (!dynamic_symbol && !shared)
    return TRUE;
    return TRUE;
 
 
  /* Take care of the normal data relocations.  */
  /* Take care of the normal data relocations.  */
 
 
  for (rent = hh->reloc_entries; rent; rent = rent->next)
  for (rent = hh->reloc_entries; rent; rent = rent->next)
    {
    {
      /* Allocate one iff we are building a shared library, the relocation
      /* Allocate one iff we are building a shared library, the relocation
         isn't a R_PARISC_FPTR64, or we don't want an opd entry.  */
         isn't a R_PARISC_FPTR64, or we don't want an opd entry.  */
      if (!shared && rent->type == R_PARISC_FPTR64 && hh->want_opd)
      if (!shared && rent->type == R_PARISC_FPTR64 && hh->want_opd)
        continue;
        continue;
 
 
      hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela);
      hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela);
 
 
      /* Make sure this symbol gets into the dynamic symbol table if it is
      /* Make sure this symbol gets into the dynamic symbol table if it is
         not already recorded.  ?!? This should not be in the loop since
         not already recorded.  ?!? This should not be in the loop since
         the symbol need only be added once.  */
         the symbol need only be added once.  */
      if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI)
      if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI)
        if (!bfd_elf_link_record_local_dynamic_symbol
        if (!bfd_elf_link_record_local_dynamic_symbol
            (x->info, rent->sec->owner, hh->sym_indx))
            (x->info, rent->sec->owner, hh->sym_indx))
          return FALSE;
          return FALSE;
    }
    }
 
 
  /* Take care of the GOT and PLT relocations.  */
  /* Take care of the GOT and PLT relocations.  */
 
 
  if ((dynamic_symbol || shared) && hh->want_dlt)
  if ((dynamic_symbol || shared) && hh->want_dlt)
    hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela);
    hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela);
 
 
  /* If we are building a shared library, then every symbol that has an
  /* If we are building a shared library, then every symbol that has an
     opd entry will need an EPLT relocation to relocate the symbol's address
     opd entry will need an EPLT relocation to relocate the symbol's address
     and __gp value based on the runtime load address.  */
     and __gp value based on the runtime load address.  */
  if (shared && hh->want_opd)
  if (shared && hh->want_opd)
    hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela);
    hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela);
 
 
  if (hh->want_plt && dynamic_symbol)
  if (hh->want_plt && dynamic_symbol)
    {
    {
      bfd_size_type t = 0;
      bfd_size_type t = 0;
 
 
      /* Dynamic symbols get one IPLT relocation.  Local symbols in
      /* Dynamic symbols get one IPLT relocation.  Local symbols in
         shared libraries get two REL relocations.  Local symbols in
         shared libraries get two REL relocations.  Local symbols in
         main applications get nothing.  */
         main applications get nothing.  */
      if (dynamic_symbol)
      if (dynamic_symbol)
        t = sizeof (Elf64_External_Rela);
        t = sizeof (Elf64_External_Rela);
      else if (shared)
      else if (shared)
        t = 2 * sizeof (Elf64_External_Rela);
        t = 2 * sizeof (Elf64_External_Rela);
 
 
      hppa_info->plt_rel_sec->size += t;
      hppa_info->plt_rel_sec->size += t;
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Adjust a symbol defined by a dynamic object and referenced by a
/* Adjust a symbol defined by a dynamic object and referenced by a
   regular object.  */
   regular object.  */
 
 
static bfd_boolean
static bfd_boolean
elf64_hppa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
elf64_hppa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
                                  struct elf_link_hash_entry *eh)
                                  struct elf_link_hash_entry *eh)
{
{
  /* ??? Undefined symbols with PLT entries should be re-defined
  /* ??? Undefined symbols with PLT entries should be re-defined
     to be the PLT entry.  */
     to be the PLT entry.  */
 
 
  /* If this is a weak symbol, and there is a real definition, the
  /* If this is a weak symbol, and there is a real definition, the
     processor independent code will have arranged for us to see the
     processor independent code will have arranged for us to see the
     real definition first, and we can just use the same value.  */
     real definition first, and we can just use the same value.  */
  if (eh->u.weakdef != NULL)
  if (eh->u.weakdef != NULL)
    {
    {
      BFD_ASSERT (eh->u.weakdef->root.type == bfd_link_hash_defined
      BFD_ASSERT (eh->u.weakdef->root.type == bfd_link_hash_defined
                  || eh->u.weakdef->root.type == bfd_link_hash_defweak);
                  || eh->u.weakdef->root.type == bfd_link_hash_defweak);
      eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
      eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
      eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
      eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
      return TRUE;
      return TRUE;
    }
    }
 
 
  /* If this is a reference to a symbol defined by a dynamic object which
  /* If this is a reference to a symbol defined by a dynamic object which
     is not a function, we might allocate the symbol in our .dynbss section
     is not a function, we might allocate the symbol in our .dynbss section
     and allocate a COPY dynamic relocation.
     and allocate a COPY dynamic relocation.
 
 
     But PA64 code is canonically PIC, so as a rule we can avoid this sort
     But PA64 code is canonically PIC, so as a rule we can avoid this sort
     of hackery.  */
     of hackery.  */
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* This function is called via elf_link_hash_traverse to mark millicode
/* This function is called via elf_link_hash_traverse to mark millicode
   symbols with a dynindx of -1 and to remove the string table reference
   symbols with a dynindx of -1 and to remove the string table reference
   from the dynamic symbol table.  If the symbol is not a millicode symbol,
   from the dynamic symbol table.  If the symbol is not a millicode symbol,
   elf64_hppa_mark_exported_functions is called.  */
   elf64_hppa_mark_exported_functions is called.  */
 
 
static bfd_boolean
static bfd_boolean
elf64_hppa_mark_milli_and_exported_functions (struct elf_link_hash_entry *eh,
elf64_hppa_mark_milli_and_exported_functions (struct elf_link_hash_entry *eh,
                                              void *data)
                                              void *data)
{
{
  struct elf_link_hash_entry *elf = eh;
  struct elf_link_hash_entry *elf = eh;
  struct bfd_link_info *info = (struct bfd_link_info *)data;
  struct bfd_link_info *info = (struct bfd_link_info *)data;
 
 
  if (elf->root.type == bfd_link_hash_warning)
  if (elf->root.type == bfd_link_hash_warning)
    elf = (struct elf_link_hash_entry *) elf->root.u.i.link;
    elf = (struct elf_link_hash_entry *) elf->root.u.i.link;
 
 
  if (elf->type == STT_PARISC_MILLI)
  if (elf->type == STT_PARISC_MILLI)
    {
    {
      if (elf->dynindx != -1)
      if (elf->dynindx != -1)
        {
        {
          elf->dynindx = -1;
          elf->dynindx = -1;
          _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
          _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
                                  elf->dynstr_index);
                                  elf->dynstr_index);
        }
        }
      return TRUE;
      return TRUE;
    }
    }
 
 
  return elf64_hppa_mark_exported_functions (eh, data);
  return elf64_hppa_mark_exported_functions (eh, data);
}
}
 
 
/* Set the final sizes of the dynamic sections and allocate memory for
/* Set the final sizes of the dynamic sections and allocate memory for
   the contents of our special sections.  */
   the contents of our special sections.  */
 
 
static bfd_boolean
static bfd_boolean
elf64_hppa_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
elf64_hppa_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
{
{
  struct elf64_hppa_link_hash_table *hppa_info;
  struct elf64_hppa_link_hash_table *hppa_info;
  struct elf64_hppa_allocate_data data;
  struct elf64_hppa_allocate_data data;
  bfd *dynobj;
  bfd *dynobj;
  bfd *ibfd;
  bfd *ibfd;
  asection *sec;
  asection *sec;
  bfd_boolean plt;
  bfd_boolean plt;
  bfd_boolean relocs;
  bfd_boolean relocs;
  bfd_boolean reltext;
  bfd_boolean reltext;
 
 
  hppa_info = hppa_link_hash_table (info);
  hppa_info = hppa_link_hash_table (info);
 
 
  dynobj = elf_hash_table (info)->dynobj;
  dynobj = elf_hash_table (info)->dynobj;
  BFD_ASSERT (dynobj != NULL);
  BFD_ASSERT (dynobj != NULL);
 
 
  /* Mark each function this program exports so that we will allocate
  /* Mark each function this program exports so that we will allocate
     space in the .opd section for each function's FPTR.  If we are
     space in the .opd section for each function's FPTR.  If we are
     creating dynamic sections, change the dynamic index of millicode
     creating dynamic sections, change the dynamic index of millicode
     symbols to -1 and remove them from the string table for .dynstr.
     symbols to -1 and remove them from the string table for .dynstr.
 
 
     We have to traverse the main linker hash table since we have to
     We have to traverse the main linker hash table since we have to
     find functions which may not have been mentioned in any relocs.  */
     find functions which may not have been mentioned in any relocs.  */
  elf_link_hash_traverse (elf_hash_table (info),
  elf_link_hash_traverse (elf_hash_table (info),
                          (elf_hash_table (info)->dynamic_sections_created
                          (elf_hash_table (info)->dynamic_sections_created
                           ? elf64_hppa_mark_milli_and_exported_functions
                           ? elf64_hppa_mark_milli_and_exported_functions
                           : elf64_hppa_mark_exported_functions),
                           : elf64_hppa_mark_exported_functions),
                          info);
                          info);
 
 
  if (elf_hash_table (info)->dynamic_sections_created)
  if (elf_hash_table (info)->dynamic_sections_created)
    {
    {
      /* Set the contents of the .interp section to the interpreter.  */
      /* Set the contents of the .interp section to the interpreter.  */
      if (info->executable)
      if (info->executable)
        {
        {
          sec = bfd_get_section_by_name (dynobj, ".interp");
          sec = bfd_get_section_by_name (dynobj, ".interp");
          BFD_ASSERT (sec != NULL);
          BFD_ASSERT (sec != NULL);
          sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
          sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
          sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
          sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
        }
        }
    }
    }
  else
  else
    {
    {
      /* We may have created entries in the .rela.got section.
      /* We may have created entries in the .rela.got section.
         However, if we are not creating the dynamic sections, we will
         However, if we are not creating the dynamic sections, we will
         not actually use these entries.  Reset the size of .rela.dlt,
         not actually use these entries.  Reset the size of .rela.dlt,
         which will cause it to get stripped from the output file
         which will cause it to get stripped from the output file
         below.  */
         below.  */
      sec = bfd_get_section_by_name (dynobj, ".rela.dlt");
      sec = bfd_get_section_by_name (dynobj, ".rela.dlt");
      if (sec != NULL)
      if (sec != NULL)
        sec->size = 0;
        sec->size = 0;
    }
    }
 
 
  /* Set up DLT, PLT and OPD offsets for local syms, and space for local
  /* Set up DLT, PLT and OPD offsets for local syms, and space for local
     dynamic relocs.  */
     dynamic relocs.  */
  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
    {
    {
      bfd_signed_vma *local_dlt;
      bfd_signed_vma *local_dlt;
      bfd_signed_vma *end_local_dlt;
      bfd_signed_vma *end_local_dlt;
      bfd_signed_vma *local_plt;
      bfd_signed_vma *local_plt;
      bfd_signed_vma *end_local_plt;
      bfd_signed_vma *end_local_plt;
      bfd_signed_vma *local_opd;
      bfd_signed_vma *local_opd;
      bfd_signed_vma *end_local_opd;
      bfd_signed_vma *end_local_opd;
      bfd_size_type locsymcount;
      bfd_size_type locsymcount;
      Elf_Internal_Shdr *symtab_hdr;
      Elf_Internal_Shdr *symtab_hdr;
      asection *srel;
      asection *srel;
 
 
      if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
      if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
        continue;
        continue;
 
 
      for (sec = ibfd->sections; sec != NULL; sec = sec->next)
      for (sec = ibfd->sections; sec != NULL; sec = sec->next)
        {
        {
          struct elf64_hppa_dyn_reloc_entry *hdh_p;
          struct elf64_hppa_dyn_reloc_entry *hdh_p;
 
 
          for (hdh_p = ((struct elf64_hppa_dyn_reloc_entry *)
          for (hdh_p = ((struct elf64_hppa_dyn_reloc_entry *)
                    elf_section_data (sec)->local_dynrel);
                    elf_section_data (sec)->local_dynrel);
               hdh_p != NULL;
               hdh_p != NULL;
               hdh_p = hdh_p->next)
               hdh_p = hdh_p->next)
            {
            {
              if (!bfd_is_abs_section (hdh_p->sec)
              if (!bfd_is_abs_section (hdh_p->sec)
                  && bfd_is_abs_section (hdh_p->sec->output_section))
                  && bfd_is_abs_section (hdh_p->sec->output_section))
                {
                {
                  /* Input section has been discarded, either because
                  /* Input section has been discarded, either because
                     it is a copy of a linkonce section or due to
                     it is a copy of a linkonce section or due to
                     linker script /DISCARD/, so we'll be discarding
                     linker script /DISCARD/, so we'll be discarding
                     the relocs too.  */
                     the relocs too.  */
                }
                }
              else if (hdh_p->count != 0)
              else if (hdh_p->count != 0)
                {
                {
                  srel = elf_section_data (hdh_p->sec)->sreloc;
                  srel = elf_section_data (hdh_p->sec)->sreloc;
                  srel->size += hdh_p->count * sizeof (Elf64_External_Rela);
                  srel->size += hdh_p->count * sizeof (Elf64_External_Rela);
                  if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
                  if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
                    info->flags |= DF_TEXTREL;
                    info->flags |= DF_TEXTREL;
                }
                }
            }
            }
        }
        }
 
 
      local_dlt = elf_local_got_refcounts (ibfd);
      local_dlt = elf_local_got_refcounts (ibfd);
      if (!local_dlt)
      if (!local_dlt)
        continue;
        continue;
 
 
      symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
      symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
      locsymcount = symtab_hdr->sh_info;
      locsymcount = symtab_hdr->sh_info;
      end_local_dlt = local_dlt + locsymcount;
      end_local_dlt = local_dlt + locsymcount;
      sec = hppa_info->dlt_sec;
      sec = hppa_info->dlt_sec;
      srel = hppa_info->dlt_rel_sec;
      srel = hppa_info->dlt_rel_sec;
      for (; local_dlt < end_local_dlt; ++local_dlt)
      for (; local_dlt < end_local_dlt; ++local_dlt)
        {
        {
          if (*local_dlt > 0)
          if (*local_dlt > 0)
            {
            {
              *local_dlt = sec->size;
              *local_dlt = sec->size;
              sec->size += DLT_ENTRY_SIZE;
              sec->size += DLT_ENTRY_SIZE;
              if (info->shared)
              if (info->shared)
                {
                {
                  srel->size += sizeof (Elf64_External_Rela);
                  srel->size += sizeof (Elf64_External_Rela);
                }
                }
            }
            }
          else
          else
            *local_dlt = (bfd_vma) -1;
            *local_dlt = (bfd_vma) -1;
        }
        }
 
 
      local_plt = end_local_dlt;
      local_plt = end_local_dlt;
      end_local_plt = local_plt + locsymcount;
      end_local_plt = local_plt + locsymcount;
      if (! hppa_info->root.dynamic_sections_created)
      if (! hppa_info->root.dynamic_sections_created)
        {
        {
          /* Won't be used, but be safe.  */
          /* Won't be used, but be safe.  */
          for (; local_plt < end_local_plt; ++local_plt)
          for (; local_plt < end_local_plt; ++local_plt)
            *local_plt = (bfd_vma) -1;
            *local_plt = (bfd_vma) -1;
        }
        }
      else
      else
        {
        {
          sec = hppa_info->plt_sec;
          sec = hppa_info->plt_sec;
          srel = hppa_info->plt_rel_sec;
          srel = hppa_info->plt_rel_sec;
          for (; local_plt < end_local_plt; ++local_plt)
          for (; local_plt < end_local_plt; ++local_plt)
            {
            {
              if (*local_plt > 0)
              if (*local_plt > 0)
                {
                {
                  *local_plt = sec->size;
                  *local_plt = sec->size;
                  sec->size += PLT_ENTRY_SIZE;
                  sec->size += PLT_ENTRY_SIZE;
                  if (info->shared)
                  if (info->shared)
                    srel->size += sizeof (Elf64_External_Rela);
                    srel->size += sizeof (Elf64_External_Rela);
                }
                }
              else
              else
                *local_plt = (bfd_vma) -1;
                *local_plt = (bfd_vma) -1;
            }
            }
        }
        }
 
 
      local_opd = end_local_plt;
      local_opd = end_local_plt;
      end_local_opd = local_opd + locsymcount;
      end_local_opd = local_opd + locsymcount;
      if (! hppa_info->root.dynamic_sections_created)
      if (! hppa_info->root.dynamic_sections_created)
        {
        {
          /* Won't be used, but be safe.  */
          /* Won't be used, but be safe.  */
          for (; local_opd < end_local_opd; ++local_opd)
          for (; local_opd < end_local_opd; ++local_opd)
            *local_opd = (bfd_vma) -1;
            *local_opd = (bfd_vma) -1;
        }
        }
      else
      else
        {
        {
          sec = hppa_info->opd_sec;
          sec = hppa_info->opd_sec;
          srel = hppa_info->opd_rel_sec;
          srel = hppa_info->opd_rel_sec;
          for (; local_opd < end_local_opd; ++local_opd)
          for (; local_opd < end_local_opd; ++local_opd)
            {
            {
              if (*local_opd > 0)
              if (*local_opd > 0)
                {
                {
                  *local_opd = sec->size;
                  *local_opd = sec->size;
                  sec->size += OPD_ENTRY_SIZE;
                  sec->size += OPD_ENTRY_SIZE;
                  if (info->shared)
                  if (info->shared)
                    srel->size += sizeof (Elf64_External_Rela);
                    srel->size += sizeof (Elf64_External_Rela);
                }
                }
              else
              else
                *local_opd = (bfd_vma) -1;
                *local_opd = (bfd_vma) -1;
            }
            }
        }
        }
    }
    }
 
 
  /* Allocate the GOT entries.  */
  /* Allocate the GOT entries.  */
 
 
  data.info = info;
  data.info = info;
  if (hppa_info->dlt_sec)
  if (hppa_info->dlt_sec)
    {
    {
      data.ofs = hppa_info->dlt_sec->size;
      data.ofs = hppa_info->dlt_sec->size;
      elf_link_hash_traverse (elf_hash_table (info),
      elf_link_hash_traverse (elf_hash_table (info),
                              allocate_global_data_dlt, &data);
                              allocate_global_data_dlt, &data);
      hppa_info->dlt_sec->size = data.ofs;
      hppa_info->dlt_sec->size = data.ofs;
    }
    }
 
 
  if (hppa_info->plt_sec)
  if (hppa_info->plt_sec)
    {
    {
      data.ofs = hppa_info->plt_sec->size;
      data.ofs = hppa_info->plt_sec->size;
      elf_link_hash_traverse (elf_hash_table (info),
      elf_link_hash_traverse (elf_hash_table (info),
                              allocate_global_data_plt, &data);
                              allocate_global_data_plt, &data);
      hppa_info->plt_sec->size = data.ofs;
      hppa_info->plt_sec->size = data.ofs;
    }
    }
 
 
  if (hppa_info->stub_sec)
  if (hppa_info->stub_sec)
    {
    {
      data.ofs = 0x0;
      data.ofs = 0x0;
      elf_link_hash_traverse (elf_hash_table (info),
      elf_link_hash_traverse (elf_hash_table (info),
                              allocate_global_data_stub, &data);
                              allocate_global_data_stub, &data);
      hppa_info->stub_sec->size = data.ofs;
      hppa_info->stub_sec->size = data.ofs;
    }
    }
 
 
  /* Allocate space for entries in the .opd section.  */
  /* Allocate space for entries in the .opd section.  */
  if (hppa_info->opd_sec)
  if (hppa_info->opd_sec)
    {
    {
      data.ofs = hppa_info->opd_sec->size;
      data.ofs = hppa_info->opd_sec->size;
      elf_link_hash_traverse (elf_hash_table (info),
      elf_link_hash_traverse (elf_hash_table (info),
                              allocate_global_data_opd, &data);
                              allocate_global_data_opd, &data);
      hppa_info->opd_sec->size = data.ofs;
      hppa_info->opd_sec->size = data.ofs;
    }
    }
 
 
  /* Now allocate space for dynamic relocations, if necessary.  */
  /* Now allocate space for dynamic relocations, if necessary.  */
  if (hppa_info->root.dynamic_sections_created)
  if (hppa_info->root.dynamic_sections_created)
    elf_link_hash_traverse (elf_hash_table (info),
    elf_link_hash_traverse (elf_hash_table (info),
                            allocate_dynrel_entries, &data);
                            allocate_dynrel_entries, &data);
 
 
  /* The sizes of all the sections are set.  Allocate memory for them.  */
  /* The sizes of all the sections are set.  Allocate memory for them.  */
  plt = FALSE;
  plt = FALSE;
  relocs = FALSE;
  relocs = FALSE;
  reltext = FALSE;
  reltext = FALSE;
  for (sec = dynobj->sections; sec != NULL; sec = sec->next)
  for (sec = dynobj->sections; sec != NULL; sec = sec->next)
    {
    {
      const char *name;
      const char *name;
 
 
      if ((sec->flags & SEC_LINKER_CREATED) == 0)
      if ((sec->flags & SEC_LINKER_CREATED) == 0)
        continue;
        continue;
 
 
      /* It's OK to base decisions on the section name, because none
      /* It's OK to base decisions on the section name, because none
         of the dynobj section names depend upon the input files.  */
         of the dynobj section names depend upon the input files.  */
      name = bfd_get_section_name (dynobj, sec);
      name = bfd_get_section_name (dynobj, sec);
 
 
      if (strcmp (name, ".plt") == 0)
      if (strcmp (name, ".plt") == 0)
        {
        {
          /* Remember whether there is a PLT.  */
          /* Remember whether there is a PLT.  */
          plt = sec->size != 0;
          plt = sec->size != 0;
        }
        }
      else if (strcmp (name, ".opd") == 0
      else if (strcmp (name, ".opd") == 0
               || CONST_STRNEQ (name, ".dlt")
               || CONST_STRNEQ (name, ".dlt")
               || strcmp (name, ".stub") == 0
               || strcmp (name, ".stub") == 0
               || strcmp (name, ".got") == 0)
               || strcmp (name, ".got") == 0)
        {
        {
          /* Strip this section if we don't need it; see the comment below.  */
          /* Strip this section if we don't need it; see the comment below.  */
        }
        }
      else if (CONST_STRNEQ (name, ".rela"))
      else if (CONST_STRNEQ (name, ".rela"))
        {
        {
          if (sec->size != 0)
          if (sec->size != 0)
            {
            {
              asection *target;
              asection *target;
 
 
              /* Remember whether there are any reloc sections other
              /* Remember whether there are any reloc sections other
                 than .rela.plt.  */
                 than .rela.plt.  */
              if (strcmp (name, ".rela.plt") != 0)
              if (strcmp (name, ".rela.plt") != 0)
                {
                {
                  const char *outname;
                  const char *outname;
 
 
                  relocs = TRUE;
                  relocs = TRUE;
 
 
                  /* If this relocation section applies to a read only
                  /* If this relocation section applies to a read only
                     section, then we probably need a DT_TEXTREL
                     section, then we probably need a DT_TEXTREL
                     entry.  The entries in the .rela.plt section
                     entry.  The entries in the .rela.plt section
                     really apply to the .got section, which we
                     really apply to the .got section, which we
                     created ourselves and so know is not readonly.  */
                     created ourselves and so know is not readonly.  */
                  outname = bfd_get_section_name (output_bfd,
                  outname = bfd_get_section_name (output_bfd,
                                                  sec->output_section);
                                                  sec->output_section);
                  target = bfd_get_section_by_name (output_bfd, outname + 4);
                  target = bfd_get_section_by_name (output_bfd, outname + 4);
                  if (target != NULL
                  if (target != NULL
                      && (target->flags & SEC_READONLY) != 0
                      && (target->flags & SEC_READONLY) != 0
                      && (target->flags & SEC_ALLOC) != 0)
                      && (target->flags & SEC_ALLOC) != 0)
                    reltext = TRUE;
                    reltext = TRUE;
                }
                }
 
 
              /* We use the reloc_count field as a counter if we need
              /* We use the reloc_count field as a counter if we need
                 to copy relocs into the output file.  */
                 to copy relocs into the output file.  */
              sec->reloc_count = 0;
              sec->reloc_count = 0;
            }
            }
        }
        }
      else
      else
        {
        {
          /* It's not one of our sections, so don't allocate space.  */
          /* It's not one of our sections, so don't allocate space.  */
          continue;
          continue;
        }
        }
 
 
      if (sec->size == 0)
      if (sec->size == 0)
        {
        {
          /* If we don't need this section, strip it from the
          /* If we don't need this section, strip it from the
             output file.  This is mostly to handle .rela.bss and
             output file.  This is mostly to handle .rela.bss and
             .rela.plt.  We must create both sections in
             .rela.plt.  We must create both sections in
             create_dynamic_sections, because they must be created
             create_dynamic_sections, because they must be created
             before the linker maps input sections to output
             before the linker maps input sections to output
             sections.  The linker does that before
             sections.  The linker does that before
             adjust_dynamic_symbol is called, and it is that
             adjust_dynamic_symbol is called, and it is that
             function which decides whether anything needs to go
             function which decides whether anything needs to go
             into these sections.  */
             into these sections.  */
          sec->flags |= SEC_EXCLUDE;
          sec->flags |= SEC_EXCLUDE;
          continue;
          continue;
        }
        }
 
 
      if ((sec->flags & SEC_HAS_CONTENTS) == 0)
      if ((sec->flags & SEC_HAS_CONTENTS) == 0)
        continue;
        continue;
 
 
      /* Allocate memory for the section contents if it has not
      /* Allocate memory for the section contents if it has not
         been allocated already.  We use bfd_zalloc here in case
         been allocated already.  We use bfd_zalloc here in case
         unused entries are not reclaimed before the section's
         unused entries are not reclaimed before the section's
         contents are written out.  This should not happen, but this
         contents are written out.  This should not happen, but this
         way if it does, we get a R_PARISC_NONE reloc instead of
         way if it does, we get a R_PARISC_NONE reloc instead of
         garbage.  */
         garbage.  */
      if (sec->contents == NULL)
      if (sec->contents == NULL)
        {
        {
          sec->contents = (bfd_byte *) bfd_zalloc (dynobj, sec->size);
          sec->contents = (bfd_byte *) bfd_zalloc (dynobj, sec->size);
          if (sec->contents == NULL)
          if (sec->contents == NULL)
            return FALSE;
            return FALSE;
        }
        }
    }
    }
 
 
  if (elf_hash_table (info)->dynamic_sections_created)
  if (elf_hash_table (info)->dynamic_sections_created)
    {
    {
      /* Always create a DT_PLTGOT.  It actually has nothing to do with
      /* Always create a DT_PLTGOT.  It actually has nothing to do with
         the PLT, it is how we communicate the __gp value of a load
         the PLT, it is how we communicate the __gp value of a load
         module to the dynamic linker.  */
         module to the dynamic linker.  */
#define add_dynamic_entry(TAG, VAL) \
#define add_dynamic_entry(TAG, VAL) \
  _bfd_elf_add_dynamic_entry (info, TAG, VAL)
  _bfd_elf_add_dynamic_entry (info, TAG, VAL)
 
 
      if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
      if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
          || !add_dynamic_entry (DT_PLTGOT, 0))
          || !add_dynamic_entry (DT_PLTGOT, 0))
        return FALSE;
        return FALSE;
 
 
      /* Add some entries to the .dynamic section.  We fill in the
      /* Add some entries to the .dynamic section.  We fill in the
         values later, in elf64_hppa_finish_dynamic_sections, but we
         values later, in elf64_hppa_finish_dynamic_sections, but we
         must add the entries now so that we get the correct size for
         must add the entries now so that we get the correct size for
         the .dynamic section.  The DT_DEBUG entry is filled in by the
         the .dynamic section.  The DT_DEBUG entry is filled in by the
         dynamic linker and used by the debugger.  */
         dynamic linker and used by the debugger.  */
      if (! info->shared)
      if (! info->shared)
        {
        {
          if (!add_dynamic_entry (DT_DEBUG, 0)
          if (!add_dynamic_entry (DT_DEBUG, 0)
              || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
              || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
              || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
              || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
            return FALSE;
            return FALSE;
        }
        }
 
 
      /* Force DT_FLAGS to always be set.
      /* Force DT_FLAGS to always be set.
         Required by HPUX 11.00 patch PHSS_26559.  */
         Required by HPUX 11.00 patch PHSS_26559.  */
      if (!add_dynamic_entry (DT_FLAGS, (info)->flags))
      if (!add_dynamic_entry (DT_FLAGS, (info)->flags))
        return FALSE;
        return FALSE;
 
 
      if (plt)
      if (plt)
        {
        {
          if (!add_dynamic_entry (DT_PLTRELSZ, 0)
          if (!add_dynamic_entry (DT_PLTRELSZ, 0)
              || !add_dynamic_entry (DT_PLTREL, DT_RELA)
              || !add_dynamic_entry (DT_PLTREL, DT_RELA)
              || !add_dynamic_entry (DT_JMPREL, 0))
              || !add_dynamic_entry (DT_JMPREL, 0))
            return FALSE;
            return FALSE;
        }
        }
 
 
      if (relocs)
      if (relocs)
        {
        {
          if (!add_dynamic_entry (DT_RELA, 0)
          if (!add_dynamic_entry (DT_RELA, 0)
              || !add_dynamic_entry (DT_RELASZ, 0)
              || !add_dynamic_entry (DT_RELASZ, 0)
              || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
              || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
            return FALSE;
            return FALSE;
        }
        }
 
 
      if (reltext)
      if (reltext)
        {
        {
          if (!add_dynamic_entry (DT_TEXTREL, 0))
          if (!add_dynamic_entry (DT_TEXTREL, 0))
            return FALSE;
            return FALSE;
          info->flags |= DF_TEXTREL;
          info->flags |= DF_TEXTREL;
        }
        }
    }
    }
#undef add_dynamic_entry
#undef add_dynamic_entry
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Called after we have output the symbol into the dynamic symbol
/* Called after we have output the symbol into the dynamic symbol
   table, but before we output the symbol into the normal symbol
   table, but before we output the symbol into the normal symbol
   table.
   table.
 
 
   For some symbols we had to change their address when outputting
   For some symbols we had to change their address when outputting
   the dynamic symbol table.  We undo that change here so that
   the dynamic symbol table.  We undo that change here so that
   the symbols have their expected value in the normal symbol
   the symbols have their expected value in the normal symbol
   table.  Ick.  */
   table.  Ick.  */
 
 
static int
static int
elf64_hppa_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED,
elf64_hppa_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED,
                                    const char *name,
                                    const char *name,
                                    Elf_Internal_Sym *sym,
                                    Elf_Internal_Sym *sym,
                                    asection *input_sec ATTRIBUTE_UNUSED,
                                    asection *input_sec ATTRIBUTE_UNUSED,
                                    struct elf_link_hash_entry *eh)
                                    struct elf_link_hash_entry *eh)
{
{
  struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
  struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
 
 
  /* We may be called with the file symbol or section symbols.
  /* We may be called with the file symbol or section symbols.
     They never need munging, so it is safe to ignore them.  */
     They never need munging, so it is safe to ignore them.  */
  if (!name || !eh)
  if (!name || !eh)
    return 1;
    return 1;
 
 
  /* Function symbols for which we created .opd entries *may* have been
  /* Function symbols for which we created .opd entries *may* have been
     munged by finish_dynamic_symbol and have to be un-munged here.
     munged by finish_dynamic_symbol and have to be un-munged here.
 
 
     Note that finish_dynamic_symbol sometimes turns dynamic symbols
     Note that finish_dynamic_symbol sometimes turns dynamic symbols
     into non-dynamic ones, so we initialize st_shndx to -1 in
     into non-dynamic ones, so we initialize st_shndx to -1 in
     mark_exported_functions and check to see if it was overwritten
     mark_exported_functions and check to see if it was overwritten
     here instead of just checking eh->dynindx.  */
     here instead of just checking eh->dynindx.  */
  if (hh->want_opd && hh->st_shndx != -1)
  if (hh->want_opd && hh->st_shndx != -1)
    {
    {
      /* Restore the saved value and section index.  */
      /* Restore the saved value and section index.  */
      sym->st_value = hh->st_value;
      sym->st_value = hh->st_value;
      sym->st_shndx = hh->st_shndx;
      sym->st_shndx = hh->st_shndx;
    }
    }
 
 
  return 1;
  return 1;
}
}
 
 
/* Finish up dynamic symbol handling.  We set the contents of various
/* Finish up dynamic symbol handling.  We set the contents of various
   dynamic sections here.  */
   dynamic sections here.  */
 
 
static bfd_boolean
static bfd_boolean
elf64_hppa_finish_dynamic_symbol (bfd *output_bfd,
elf64_hppa_finish_dynamic_symbol (bfd *output_bfd,
                                  struct bfd_link_info *info,
                                  struct bfd_link_info *info,
                                  struct elf_link_hash_entry *eh,
                                  struct elf_link_hash_entry *eh,
                                  Elf_Internal_Sym *sym)
                                  Elf_Internal_Sym *sym)
{
{
  struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
  struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
  asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
  asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
  struct elf64_hppa_link_hash_table *hppa_info;
  struct elf64_hppa_link_hash_table *hppa_info;
 
 
  hppa_info = hppa_link_hash_table (info);
  hppa_info = hppa_link_hash_table (info);
 
 
  stub = hppa_info->stub_sec;
  stub = hppa_info->stub_sec;
  splt = hppa_info->plt_sec;
  splt = hppa_info->plt_sec;
  sdlt = hppa_info->dlt_sec;
  sdlt = hppa_info->dlt_sec;
  sopd = hppa_info->opd_sec;
  sopd = hppa_info->opd_sec;
  spltrel = hppa_info->plt_rel_sec;
  spltrel = hppa_info->plt_rel_sec;
  sdltrel = hppa_info->dlt_rel_sec;
  sdltrel = hppa_info->dlt_rel_sec;
 
 
  /* Incredible.  It is actually necessary to NOT use the symbol's real
  /* Incredible.  It is actually necessary to NOT use the symbol's real
     value when building the dynamic symbol table for a shared library.
     value when building the dynamic symbol table for a shared library.
     At least for symbols that refer to functions.
     At least for symbols that refer to functions.
 
 
     We will store a new value and section index into the symbol long
     We will store a new value and section index into the symbol long
     enough to output it into the dynamic symbol table, then we restore
     enough to output it into the dynamic symbol table, then we restore
     the original values (in elf64_hppa_link_output_symbol_hook).  */
     the original values (in elf64_hppa_link_output_symbol_hook).  */
  if (hh->want_opd)
  if (hh->want_opd)
    {
    {
      BFD_ASSERT (sopd != NULL);
      BFD_ASSERT (sopd != NULL);
 
 
      /* Save away the original value and section index so that we
      /* Save away the original value and section index so that we
         can restore them later.  */
         can restore them later.  */
      hh->st_value = sym->st_value;
      hh->st_value = sym->st_value;
      hh->st_shndx = sym->st_shndx;
      hh->st_shndx = sym->st_shndx;
 
 
      /* For the dynamic symbol table entry, we want the value to be
      /* For the dynamic symbol table entry, we want the value to be
         address of this symbol's entry within the .opd section.  */
         address of this symbol's entry within the .opd section.  */
      sym->st_value = (hh->opd_offset
      sym->st_value = (hh->opd_offset
                       + sopd->output_offset
                       + sopd->output_offset
                       + sopd->output_section->vma);
                       + sopd->output_section->vma);
      sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
      sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
                                                         sopd->output_section);
                                                         sopd->output_section);
    }
    }
 
 
  /* Initialize a .plt entry if requested.  */
  /* Initialize a .plt entry if requested.  */
  if (hh->want_plt
  if (hh->want_plt
      && elf64_hppa_dynamic_symbol_p (eh, info))
      && elf64_hppa_dynamic_symbol_p (eh, info))
    {
    {
      bfd_vma value;
      bfd_vma value;
      Elf_Internal_Rela rel;
      Elf_Internal_Rela rel;
      bfd_byte *loc;
      bfd_byte *loc;
 
 
      BFD_ASSERT (splt != NULL && spltrel != NULL);
      BFD_ASSERT (splt != NULL && spltrel != NULL);
 
 
      /* We do not actually care about the value in the PLT entry
      /* We do not actually care about the value in the PLT entry
         if we are creating a shared library and the symbol is
         if we are creating a shared library and the symbol is
         still undefined, we create a dynamic relocation to fill
         still undefined, we create a dynamic relocation to fill
         in the correct value.  */
         in the correct value.  */
      if (info->shared && eh->root.type == bfd_link_hash_undefined)
      if (info->shared && eh->root.type == bfd_link_hash_undefined)
        value = 0;
        value = 0;
      else
      else
        value = (eh->root.u.def.value + eh->root.u.def.section->vma);
        value = (eh->root.u.def.value + eh->root.u.def.section->vma);
 
 
      /* Fill in the entry in the procedure linkage table.
      /* Fill in the entry in the procedure linkage table.
 
 
         The format of a plt entry is
         The format of a plt entry is
         <funcaddr> <__gp>.
         <funcaddr> <__gp>.
 
 
         plt_offset is the offset within the PLT section at which to
         plt_offset is the offset within the PLT section at which to
         install the PLT entry.
         install the PLT entry.
 
 
         We are modifying the in-memory PLT contents here, so we do not add
         We are modifying the in-memory PLT contents here, so we do not add
         in the output_offset of the PLT section.  */
         in the output_offset of the PLT section.  */
 
 
      bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset);
      bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset);
      value = _bfd_get_gp_value (splt->output_section->owner);
      value = _bfd_get_gp_value (splt->output_section->owner);
      bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset + 0x8);
      bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset + 0x8);
 
 
      /* Create a dynamic IPLT relocation for this entry.
      /* Create a dynamic IPLT relocation for this entry.
 
 
         We are creating a relocation in the output file's PLT section,
         We are creating a relocation in the output file's PLT section,
         which is included within the DLT secton.  So we do need to include
         which is included within the DLT secton.  So we do need to include
         the PLT's output_offset in the computation of the relocation's
         the PLT's output_offset in the computation of the relocation's
         address.  */
         address.  */
      rel.r_offset = (hh->plt_offset + splt->output_offset
      rel.r_offset = (hh->plt_offset + splt->output_offset
                      + splt->output_section->vma);
                      + splt->output_section->vma);
      rel.r_info = ELF64_R_INFO (hh->eh.dynindx, R_PARISC_IPLT);
      rel.r_info = ELF64_R_INFO (hh->eh.dynindx, R_PARISC_IPLT);
      rel.r_addend = 0;
      rel.r_addend = 0;
 
 
      loc = spltrel->contents;
      loc = spltrel->contents;
      loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
      loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
      bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc);
      bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc);
    }
    }
 
 
  /* Initialize an external call stub entry if requested.  */
  /* Initialize an external call stub entry if requested.  */
  if (hh->want_stub
  if (hh->want_stub
      && elf64_hppa_dynamic_symbol_p (eh, info))
      && elf64_hppa_dynamic_symbol_p (eh, info))
    {
    {
      bfd_vma value;
      bfd_vma value;
      int insn;
      int insn;
      unsigned int max_offset;
      unsigned int max_offset;
 
 
      BFD_ASSERT (stub != NULL);
      BFD_ASSERT (stub != NULL);
 
 
      /* Install the generic stub template.
      /* Install the generic stub template.
 
 
         We are modifying the contents of the stub section, so we do not
         We are modifying the contents of the stub section, so we do not
         need to include the stub section's output_offset here.  */
         need to include the stub section's output_offset here.  */
      memcpy (stub->contents + hh->stub_offset, plt_stub, sizeof (plt_stub));
      memcpy (stub->contents + hh->stub_offset, plt_stub, sizeof (plt_stub));
 
 
      /* Fix up the first ldd instruction.
      /* Fix up the first ldd instruction.
 
 
         We are modifying the contents of the STUB section in memory,
         We are modifying the contents of the STUB section in memory,
         so we do not need to include its output offset in this computation.
         so we do not need to include its output offset in this computation.
 
 
         Note the plt_offset value is the value of the PLT entry relative to
         Note the plt_offset value is the value of the PLT entry relative to
         the start of the PLT section.  These instructions will reference
         the start of the PLT section.  These instructions will reference
         data relative to the value of __gp, which may not necessarily have
         data relative to the value of __gp, which may not necessarily have
         the same address as the start of the PLT section.
         the same address as the start of the PLT section.
 
 
         gp_offset contains the offset of __gp within the PLT section.  */
         gp_offset contains the offset of __gp within the PLT section.  */
      value = hh->plt_offset - hppa_info->gp_offset;
      value = hh->plt_offset - hppa_info->gp_offset;
 
 
      insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset);
      insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset);
      if (output_bfd->arch_info->mach >= 25)
      if (output_bfd->arch_info->mach >= 25)
        {
        {
          /* Wide mode allows 16 bit offsets.  */
          /* Wide mode allows 16 bit offsets.  */
          max_offset = 32768;
          max_offset = 32768;
          insn &= ~ 0xfff1;
          insn &= ~ 0xfff1;
          insn |= re_assemble_16 ((int) value);
          insn |= re_assemble_16 ((int) value);
        }
        }
      else
      else
        {
        {
          max_offset = 8192;
          max_offset = 8192;
          insn &= ~ 0x3ff1;
          insn &= ~ 0x3ff1;
          insn |= re_assemble_14 ((int) value);
          insn |= re_assemble_14 ((int) value);
        }
        }
 
 
      if ((value & 7) || value + max_offset >= 2*max_offset - 8)
      if ((value & 7) || value + max_offset >= 2*max_offset - 8)
        {
        {
          (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
          (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
                                 hh->eh.root.root.string,
                                 hh->eh.root.root.string,
                                 (long) value);
                                 (long) value);
          return FALSE;
          return FALSE;
        }
        }
 
 
      bfd_put_32 (stub->owner, (bfd_vma) insn,
      bfd_put_32 (stub->owner, (bfd_vma) insn,
                  stub->contents + hh->stub_offset);
                  stub->contents + hh->stub_offset);
 
 
      /* Fix up the second ldd instruction.  */
      /* Fix up the second ldd instruction.  */
      value += 8;
      value += 8;
      insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset + 8);
      insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset + 8);
      if (output_bfd->arch_info->mach >= 25)
      if (output_bfd->arch_info->mach >= 25)
        {
        {
          insn &= ~ 0xfff1;
          insn &= ~ 0xfff1;
          insn |= re_assemble_16 ((int) value);
          insn |= re_assemble_16 ((int) value);
        }
        }
      else
      else
        {
        {
          insn &= ~ 0x3ff1;
          insn &= ~ 0x3ff1;
          insn |= re_assemble_14 ((int) value);
          insn |= re_assemble_14 ((int) value);
        }
        }
      bfd_put_32 (stub->owner, (bfd_vma) insn,
      bfd_put_32 (stub->owner, (bfd_vma) insn,
                  stub->contents + hh->stub_offset + 8);
                  stub->contents + hh->stub_offset + 8);
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* The .opd section contains FPTRs for each function this file
/* The .opd section contains FPTRs for each function this file
   exports.  Initialize the FPTR entries.  */
   exports.  Initialize the FPTR entries.  */
 
 
static bfd_boolean
static bfd_boolean
elf64_hppa_finalize_opd (struct elf_link_hash_entry *eh, void *data)
elf64_hppa_finalize_opd (struct elf_link_hash_entry *eh, void *data)
{
{
  struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
  struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
  struct bfd_link_info *info = (struct bfd_link_info *)data;
  struct bfd_link_info *info = (struct bfd_link_info *)data;
  struct elf64_hppa_link_hash_table *hppa_info;
  struct elf64_hppa_link_hash_table *hppa_info;
  asection *sopd;
  asection *sopd;
  asection *sopdrel;
  asection *sopdrel;
 
 
  hppa_info = hppa_link_hash_table (info);
  hppa_info = hppa_link_hash_table (info);
  sopd = hppa_info->opd_sec;
  sopd = hppa_info->opd_sec;
  sopdrel = hppa_info->opd_rel_sec;
  sopdrel = hppa_info->opd_rel_sec;
 
 
  if (hh->want_opd)
  if (hh->want_opd)
    {
    {
      bfd_vma value;
      bfd_vma value;
 
 
      /* The first two words of an .opd entry are zero.
      /* The first two words of an .opd entry are zero.
 
 
         We are modifying the contents of the OPD section in memory, so we
         We are modifying the contents of the OPD section in memory, so we
         do not need to include its output offset in this computation.  */
         do not need to include its output offset in this computation.  */
      memset (sopd->contents + hh->opd_offset, 0, 16);
      memset (sopd->contents + hh->opd_offset, 0, 16);
 
 
      value = (eh->root.u.def.value
      value = (eh->root.u.def.value
               + eh->root.u.def.section->output_section->vma
               + eh->root.u.def.section->output_section->vma
               + eh->root.u.def.section->output_offset);
               + eh->root.u.def.section->output_offset);
 
 
      /* The next word is the address of the function.  */
      /* The next word is the address of the function.  */
      bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 16);
      bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 16);
 
 
      /* The last word is our local __gp value.  */
      /* The last word is our local __gp value.  */
      value = _bfd_get_gp_value (sopd->output_section->owner);
      value = _bfd_get_gp_value (sopd->output_section->owner);
      bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 24);
      bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 24);
    }
    }
 
 
  /* If we are generating a shared library, we must generate EPLT relocations
  /* If we are generating a shared library, we must generate EPLT relocations
     for each entry in the .opd, even for static functions (they may have
     for each entry in the .opd, even for static functions (they may have
     had their address taken).  */
     had their address taken).  */
  if (info->shared && hh->want_opd)
  if (info->shared && hh->want_opd)
    {
    {
      Elf_Internal_Rela rel;
      Elf_Internal_Rela rel;
      bfd_byte *loc;
      bfd_byte *loc;
      int dynindx;
      int dynindx;
 
 
      /* We may need to do a relocation against a local symbol, in
      /* We may need to do a relocation against a local symbol, in
         which case we have to look up it's dynamic symbol index off
         which case we have to look up it's dynamic symbol index off
         the local symbol hash table.  */
         the local symbol hash table.  */
      if (eh->dynindx != -1)
      if (eh->dynindx != -1)
        dynindx = eh->dynindx;
        dynindx = eh->dynindx;
      else
      else
        dynindx
        dynindx
          = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
          = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
                                                hh->sym_indx);
                                                hh->sym_indx);
 
 
      /* The offset of this relocation is the absolute address of the
      /* The offset of this relocation is the absolute address of the
         .opd entry for this symbol.  */
         .opd entry for this symbol.  */
      rel.r_offset = (hh->opd_offset + sopd->output_offset
      rel.r_offset = (hh->opd_offset + sopd->output_offset
                      + sopd->output_section->vma);
                      + sopd->output_section->vma);
 
 
      /* If H is non-null, then we have an external symbol.
      /* If H is non-null, then we have an external symbol.
 
 
         It is imperative that we use a different dynamic symbol for the
         It is imperative that we use a different dynamic symbol for the
         EPLT relocation if the symbol has global scope.
         EPLT relocation if the symbol has global scope.
 
 
         In the dynamic symbol table, the function symbol will have a value
         In the dynamic symbol table, the function symbol will have a value
         which is address of the function's .opd entry.
         which is address of the function's .opd entry.
 
 
         Thus, we can not use that dynamic symbol for the EPLT relocation
         Thus, we can not use that dynamic symbol for the EPLT relocation
         (if we did, the data in the .opd would reference itself rather
         (if we did, the data in the .opd would reference itself rather
         than the actual address of the function).  Instead we have to use
         than the actual address of the function).  Instead we have to use
         a new dynamic symbol which has the same value as the original global
         a new dynamic symbol which has the same value as the original global
         function symbol.
         function symbol.
 
 
         We prefix the original symbol with a "." and use the new symbol in
         We prefix the original symbol with a "." and use the new symbol in
         the EPLT relocation.  This new symbol has already been recorded in
         the EPLT relocation.  This new symbol has already been recorded in
         the symbol table, we just have to look it up and use it.
         the symbol table, we just have to look it up and use it.
 
 
         We do not have such problems with static functions because we do
         We do not have such problems with static functions because we do
         not make their addresses in the dynamic symbol table point to
         not make their addresses in the dynamic symbol table point to
         the .opd entry.  Ultimately this should be safe since a static
         the .opd entry.  Ultimately this should be safe since a static
         function can not be directly referenced outside of its shared
         function can not be directly referenced outside of its shared
         library.
         library.
 
 
         We do have to play similar games for FPTR relocations in shared
         We do have to play similar games for FPTR relocations in shared
         libraries, including those for static symbols.  See the FPTR
         libraries, including those for static symbols.  See the FPTR
         handling in elf64_hppa_finalize_dynreloc.  */
         handling in elf64_hppa_finalize_dynreloc.  */
      if (eh)
      if (eh)
        {
        {
          char *new_name;
          char *new_name;
          struct elf_link_hash_entry *nh;
          struct elf_link_hash_entry *nh;
 
 
          new_name = alloca (strlen (eh->root.root.string) + 2);
          new_name = alloca (strlen (eh->root.root.string) + 2);
          new_name[0] = '.';
          new_name[0] = '.';
          strcpy (new_name + 1, eh->root.root.string);
          strcpy (new_name + 1, eh->root.root.string);
 
 
          nh = elf_link_hash_lookup (elf_hash_table (info),
          nh = elf_link_hash_lookup (elf_hash_table (info),
                                     new_name, TRUE, TRUE, FALSE);
                                     new_name, TRUE, TRUE, FALSE);
 
 
          /* All we really want from the new symbol is its dynamic
          /* All we really want from the new symbol is its dynamic
             symbol index.  */
             symbol index.  */
          if (nh)
          if (nh)
            dynindx = nh->dynindx;
            dynindx = nh->dynindx;
        }
        }
 
 
      rel.r_addend = 0;
      rel.r_addend = 0;
      rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
      rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
 
 
      loc = sopdrel->contents;
      loc = sopdrel->contents;
      loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela);
      loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela);
      bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc);
      bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc);
    }
    }
  return TRUE;
  return TRUE;
}
}
 
 
/* The .dlt section contains addresses for items referenced through the
/* The .dlt section contains addresses for items referenced through the
   dlt.  Note that we can have a DLTIND relocation for a local symbol, thus
   dlt.  Note that we can have a DLTIND relocation for a local symbol, thus
   we can not depend on finish_dynamic_symbol to initialize the .dlt.  */
   we can not depend on finish_dynamic_symbol to initialize the .dlt.  */
 
 
static bfd_boolean
static bfd_boolean
elf64_hppa_finalize_dlt (struct elf_link_hash_entry *eh, void *data)
elf64_hppa_finalize_dlt (struct elf_link_hash_entry *eh, void *data)
{
{
  struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
  struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
  struct bfd_link_info *info = (struct bfd_link_info *)data;
  struct bfd_link_info *info = (struct bfd_link_info *)data;
  struct elf64_hppa_link_hash_table *hppa_info;
  struct elf64_hppa_link_hash_table *hppa_info;
  asection *sdlt, *sdltrel;
  asection *sdlt, *sdltrel;
 
 
  hppa_info = hppa_link_hash_table (info);
  hppa_info = hppa_link_hash_table (info);
 
 
  sdlt = hppa_info->dlt_sec;
  sdlt = hppa_info->dlt_sec;
  sdltrel = hppa_info->dlt_rel_sec;
  sdltrel = hppa_info->dlt_rel_sec;
 
 
  /* H/DYN_H may refer to a local variable and we know it's
  /* H/DYN_H may refer to a local variable and we know it's
     address, so there is no need to create a relocation.  Just install
     address, so there is no need to create a relocation.  Just install
     the proper value into the DLT, note this shortcut can not be
     the proper value into the DLT, note this shortcut can not be
     skipped when building a shared library.  */
     skipped when building a shared library.  */
  if (! info->shared && hh && hh->want_dlt)
  if (! info->shared && hh && hh->want_dlt)
    {
    {
      bfd_vma value;
      bfd_vma value;
 
 
      /* If we had an LTOFF_FPTR style relocation we want the DLT entry
      /* If we had an LTOFF_FPTR style relocation we want the DLT entry
         to point to the FPTR entry in the .opd section.
         to point to the FPTR entry in the .opd section.
 
 
         We include the OPD's output offset in this computation as
         We include the OPD's output offset in this computation as
         we are referring to an absolute address in the resulting
         we are referring to an absolute address in the resulting
         object file.  */
         object file.  */
      if (hh->want_opd)
      if (hh->want_opd)
        {
        {
          value = (hh->opd_offset
          value = (hh->opd_offset
                   + hppa_info->opd_sec->output_offset
                   + hppa_info->opd_sec->output_offset
                   + hppa_info->opd_sec->output_section->vma);
                   + hppa_info->opd_sec->output_section->vma);
        }
        }
      else if ((eh->root.type == bfd_link_hash_defined
      else if ((eh->root.type == bfd_link_hash_defined
                || eh->root.type == bfd_link_hash_defweak)
                || eh->root.type == bfd_link_hash_defweak)
               && eh->root.u.def.section)
               && eh->root.u.def.section)
        {
        {
          value = eh->root.u.def.value + eh->root.u.def.section->output_offset;
          value = eh->root.u.def.value + eh->root.u.def.section->output_offset;
          if (eh->root.u.def.section->output_section)
          if (eh->root.u.def.section->output_section)
            value += eh->root.u.def.section->output_section->vma;
            value += eh->root.u.def.section->output_section->vma;
          else
          else
            value += eh->root.u.def.section->vma;
            value += eh->root.u.def.section->vma;
        }
        }
      else
      else
        /* We have an undefined function reference.  */
        /* We have an undefined function reference.  */
        value = 0;
        value = 0;
 
 
      /* We do not need to include the output offset of the DLT section
      /* We do not need to include the output offset of the DLT section
         here because we are modifying the in-memory contents.  */
         here because we are modifying the in-memory contents.  */
      bfd_put_64 (sdlt->owner, value, sdlt->contents + hh->dlt_offset);
      bfd_put_64 (sdlt->owner, value, sdlt->contents + hh->dlt_offset);
    }
    }
 
 
  /* Create a relocation for the DLT entry associated with this symbol.
  /* Create a relocation for the DLT entry associated with this symbol.
     When building a shared library the symbol does not have to be dynamic.  */
     When building a shared library the symbol does not have to be dynamic.  */
  if (hh->want_dlt
  if (hh->want_dlt
      && (elf64_hppa_dynamic_symbol_p (eh, info) || info->shared))
      && (elf64_hppa_dynamic_symbol_p (eh, info) || info->shared))
    {
    {
      Elf_Internal_Rela rel;
      Elf_Internal_Rela rel;
      bfd_byte *loc;
      bfd_byte *loc;
      int dynindx;
      int dynindx;
 
 
      /* We may need to do a relocation against a local symbol, in
      /* We may need to do a relocation against a local symbol, in
         which case we have to look up it's dynamic symbol index off
         which case we have to look up it's dynamic symbol index off
         the local symbol hash table.  */
         the local symbol hash table.  */
      if (eh && eh->dynindx != -1)
      if (eh && eh->dynindx != -1)
        dynindx = eh->dynindx;
        dynindx = eh->dynindx;
      else
      else
        dynindx
        dynindx
          = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
          = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
                                                hh->sym_indx);
                                                hh->sym_indx);
 
 
      /* Create a dynamic relocation for this entry.  Do include the output
      /* Create a dynamic relocation for this entry.  Do include the output
         offset of the DLT entry since we need an absolute address in the
         offset of the DLT entry since we need an absolute address in the
         resulting object file.  */
         resulting object file.  */
      rel.r_offset = (hh->dlt_offset + sdlt->output_offset
      rel.r_offset = (hh->dlt_offset + sdlt->output_offset
                      + sdlt->output_section->vma);
                      + sdlt->output_section->vma);
      if (eh && eh->type == STT_FUNC)
      if (eh && eh->type == STT_FUNC)
          rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
          rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
      else
      else
          rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
          rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
      rel.r_addend = 0;
      rel.r_addend = 0;
 
 
      loc = sdltrel->contents;
      loc = sdltrel->contents;
      loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela);
      loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela);
      bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc);
      bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc);
    }
    }
  return TRUE;
  return TRUE;
}
}
 
 
/* Finalize the dynamic relocations.  Specifically the FPTR relocations
/* Finalize the dynamic relocations.  Specifically the FPTR relocations
   for dynamic functions used to initialize static data.  */
   for dynamic functions used to initialize static data.  */
 
 
static bfd_boolean
static bfd_boolean
elf64_hppa_finalize_dynreloc (struct elf_link_hash_entry *eh,
elf64_hppa_finalize_dynreloc (struct elf_link_hash_entry *eh,
                              void *data)
                              void *data)
{
{
  struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
  struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
  struct bfd_link_info *info = (struct bfd_link_info *)data;
  struct bfd_link_info *info = (struct bfd_link_info *)data;
  struct elf64_hppa_link_hash_table *hppa_info;
  struct elf64_hppa_link_hash_table *hppa_info;
  int dynamic_symbol;
  int dynamic_symbol;
 
 
  dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, info);
  dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, info);
 
 
  if (!dynamic_symbol && !info->shared)
  if (!dynamic_symbol && !info->shared)
    return TRUE;
    return TRUE;
 
 
  if (hh->reloc_entries)
  if (hh->reloc_entries)
    {
    {
      struct elf64_hppa_dyn_reloc_entry *rent;
      struct elf64_hppa_dyn_reloc_entry *rent;
      int dynindx;
      int dynindx;
 
 
      hppa_info = hppa_link_hash_table (info);
      hppa_info = hppa_link_hash_table (info);
 
 
      /* We may need to do a relocation against a local symbol, in
      /* We may need to do a relocation against a local symbol, in
         which case we have to look up it's dynamic symbol index off
         which case we have to look up it's dynamic symbol index off
         the local symbol hash table.  */
         the local symbol hash table.  */
      if (eh->dynindx != -1)
      if (eh->dynindx != -1)
        dynindx = eh->dynindx;
        dynindx = eh->dynindx;
      else
      else
        dynindx
        dynindx
          = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
          = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
                                                hh->sym_indx);
                                                hh->sym_indx);
 
 
      for (rent = hh->reloc_entries; rent; rent = rent->next)
      for (rent = hh->reloc_entries; rent; rent = rent->next)
        {
        {
          Elf_Internal_Rela rel;
          Elf_Internal_Rela rel;
          bfd_byte *loc;
          bfd_byte *loc;
 
 
          /* Allocate one iff we are building a shared library, the relocation
          /* Allocate one iff we are building a shared library, the relocation
             isn't a R_PARISC_FPTR64, or we don't want an opd entry.  */
             isn't a R_PARISC_FPTR64, or we don't want an opd entry.  */
          if (!info->shared && rent->type == R_PARISC_FPTR64 && hh->want_opd)
          if (!info->shared && rent->type == R_PARISC_FPTR64 && hh->want_opd)
            continue;
            continue;
 
 
          /* Create a dynamic relocation for this entry.
          /* Create a dynamic relocation for this entry.
 
 
             We need the output offset for the reloc's section because
             We need the output offset for the reloc's section because
             we are creating an absolute address in the resulting object
             we are creating an absolute address in the resulting object
             file.  */
             file.  */
          rel.r_offset = (rent->offset + rent->sec->output_offset
          rel.r_offset = (rent->offset + rent->sec->output_offset
                          + rent->sec->output_section->vma);
                          + rent->sec->output_section->vma);
 
 
          /* An FPTR64 relocation implies that we took the address of
          /* An FPTR64 relocation implies that we took the address of
             a function and that the function has an entry in the .opd
             a function and that the function has an entry in the .opd
             section.  We want the FPTR64 relocation to reference the
             section.  We want the FPTR64 relocation to reference the
             entry in .opd.
             entry in .opd.
 
 
             We could munge the symbol value in the dynamic symbol table
             We could munge the symbol value in the dynamic symbol table
             (in fact we already do for functions with global scope) to point
             (in fact we already do for functions with global scope) to point
             to the .opd entry.  Then we could use that dynamic symbol in
             to the .opd entry.  Then we could use that dynamic symbol in
             this relocation.
             this relocation.
 
 
             Or we could do something sensible, not munge the symbol's
             Or we could do something sensible, not munge the symbol's
             address and instead just use a different symbol to reference
             address and instead just use a different symbol to reference
             the .opd entry.  At least that seems sensible until you
             the .opd entry.  At least that seems sensible until you
             realize there's no local dynamic symbols we can use for that
             realize there's no local dynamic symbols we can use for that
             purpose.  Thus the hair in the check_relocs routine.
             purpose.  Thus the hair in the check_relocs routine.
 
 
             We use a section symbol recorded by check_relocs as the
             We use a section symbol recorded by check_relocs as the
             base symbol for the relocation.  The addend is the difference
             base symbol for the relocation.  The addend is the difference
             between the section symbol and the address of the .opd entry.  */
             between the section symbol and the address of the .opd entry.  */
          if (info->shared && rent->type == R_PARISC_FPTR64 && hh->want_opd)
          if (info->shared && rent->type == R_PARISC_FPTR64 && hh->want_opd)
            {
            {
              bfd_vma value, value2;
              bfd_vma value, value2;
 
 
              /* First compute the address of the opd entry for this symbol.  */
              /* First compute the address of the opd entry for this symbol.  */
              value = (hh->opd_offset
              value = (hh->opd_offset
                       + hppa_info->opd_sec->output_section->vma
                       + hppa_info->opd_sec->output_section->vma
                       + hppa_info->opd_sec->output_offset);
                       + hppa_info->opd_sec->output_offset);
 
 
              /* Compute the value of the start of the section with
              /* Compute the value of the start of the section with
                 the relocation.  */
                 the relocation.  */
              value2 = (rent->sec->output_section->vma
              value2 = (rent->sec->output_section->vma
                        + rent->sec->output_offset);
                        + rent->sec->output_offset);
 
 
              /* Compute the difference between the start of the section
              /* Compute the difference between the start of the section
                 with the relocation and the opd entry.  */
                 with the relocation and the opd entry.  */
              value -= value2;
              value -= value2;
 
 
              /* The result becomes the addend of the relocation.  */
              /* The result becomes the addend of the relocation.  */
              rel.r_addend = value;
              rel.r_addend = value;
 
 
              /* The section symbol becomes the symbol for the dynamic
              /* The section symbol becomes the symbol for the dynamic
                 relocation.  */
                 relocation.  */
              dynindx
              dynindx
                = _bfd_elf_link_lookup_local_dynindx (info,
                = _bfd_elf_link_lookup_local_dynindx (info,
                                                      rent->sec->owner,
                                                      rent->sec->owner,
                                                      rent->sec_symndx);
                                                      rent->sec_symndx);
            }
            }
          else
          else
            rel.r_addend = rent->addend;
            rel.r_addend = rent->addend;
 
 
          rel.r_info = ELF64_R_INFO (dynindx, rent->type);
          rel.r_info = ELF64_R_INFO (dynindx, rent->type);
 
 
          loc = hppa_info->other_rel_sec->contents;
          loc = hppa_info->other_rel_sec->contents;
          loc += (hppa_info->other_rel_sec->reloc_count++
          loc += (hppa_info->other_rel_sec->reloc_count++
                  * sizeof (Elf64_External_Rela));
                  * sizeof (Elf64_External_Rela));
          bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
          bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
                                     &rel, loc);
                                     &rel, loc);
        }
        }
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Used to decide how to sort relocs in an optimal manner for the
/* Used to decide how to sort relocs in an optimal manner for the
   dynamic linker, before writing them out.  */
   dynamic linker, before writing them out.  */
 
 
static enum elf_reloc_type_class
static enum elf_reloc_type_class
elf64_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
elf64_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
{
{
  if (ELF64_R_SYM (rela->r_info) == 0)
  if (ELF64_R_SYM (rela->r_info) == 0)
    return reloc_class_relative;
    return reloc_class_relative;
 
 
  switch ((int) ELF64_R_TYPE (rela->r_info))
  switch ((int) ELF64_R_TYPE (rela->r_info))
    {
    {
    case R_PARISC_IPLT:
    case R_PARISC_IPLT:
      return reloc_class_plt;
      return reloc_class_plt;
    case R_PARISC_COPY:
    case R_PARISC_COPY:
      return reloc_class_copy;
      return reloc_class_copy;
    default:
    default:
      return reloc_class_normal;
      return reloc_class_normal;
    }
    }
}
}
 
 
/* Finish up the dynamic sections.  */
/* Finish up the dynamic sections.  */
 
 
static bfd_boolean
static bfd_boolean
elf64_hppa_finish_dynamic_sections (bfd *output_bfd,
elf64_hppa_finish_dynamic_sections (bfd *output_bfd,
                                    struct bfd_link_info *info)
                                    struct bfd_link_info *info)
{
{
  bfd *dynobj;
  bfd *dynobj;
  asection *sdyn;
  asection *sdyn;
  struct elf64_hppa_link_hash_table *hppa_info;
  struct elf64_hppa_link_hash_table *hppa_info;
 
 
  hppa_info = hppa_link_hash_table (info);
  hppa_info = hppa_link_hash_table (info);
 
 
  /* Finalize the contents of the .opd section.  */
  /* Finalize the contents of the .opd section.  */
  elf_link_hash_traverse (elf_hash_table (info),
  elf_link_hash_traverse (elf_hash_table (info),
                          elf64_hppa_finalize_opd,
                          elf64_hppa_finalize_opd,
                          info);
                          info);
 
 
  elf_link_hash_traverse (elf_hash_table (info),
  elf_link_hash_traverse (elf_hash_table (info),
                          elf64_hppa_finalize_dynreloc,
                          elf64_hppa_finalize_dynreloc,
                          info);
                          info);
 
 
  /* Finalize the contents of the .dlt section.  */
  /* Finalize the contents of the .dlt section.  */
  dynobj = elf_hash_table (info)->dynobj;
  dynobj = elf_hash_table (info)->dynobj;
  /* Finalize the contents of the .dlt section.  */
  /* Finalize the contents of the .dlt section.  */
  elf_link_hash_traverse (elf_hash_table (info),
  elf_link_hash_traverse (elf_hash_table (info),
                          elf64_hppa_finalize_dlt,
                          elf64_hppa_finalize_dlt,
                          info);
                          info);
 
 
  sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
  sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
 
 
  if (elf_hash_table (info)->dynamic_sections_created)
  if (elf_hash_table (info)->dynamic_sections_created)
    {
    {
      Elf64_External_Dyn *dyncon, *dynconend;
      Elf64_External_Dyn *dyncon, *dynconend;
 
 
      BFD_ASSERT (sdyn != NULL);
      BFD_ASSERT (sdyn != NULL);
 
 
      dyncon = (Elf64_External_Dyn *) sdyn->contents;
      dyncon = (Elf64_External_Dyn *) sdyn->contents;
      dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
      dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
      for (; dyncon < dynconend; dyncon++)
      for (; dyncon < dynconend; dyncon++)
        {
        {
          Elf_Internal_Dyn dyn;
          Elf_Internal_Dyn dyn;
          asection *s;
          asection *s;
 
 
          bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
          bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
 
 
          switch (dyn.d_tag)
          switch (dyn.d_tag)
            {
            {
            default:
            default:
              break;
              break;
 
 
            case DT_HP_LOAD_MAP:
            case DT_HP_LOAD_MAP:
              /* Compute the absolute address of 16byte scratchpad area
              /* Compute the absolute address of 16byte scratchpad area
                 for the dynamic linker.
                 for the dynamic linker.
 
 
                 By convention the linker script will allocate the scratchpad
                 By convention the linker script will allocate the scratchpad
                 area at the start of the .data section.  So all we have to
                 area at the start of the .data section.  So all we have to
                 to is find the start of the .data section.  */
                 to is find the start of the .data section.  */
              s = bfd_get_section_by_name (output_bfd, ".data");
              s = bfd_get_section_by_name (output_bfd, ".data");
              dyn.d_un.d_ptr = s->vma;
              dyn.d_un.d_ptr = s->vma;
              bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
              bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
              break;
              break;
 
 
            case DT_PLTGOT:
            case DT_PLTGOT:
              /* HP's use PLTGOT to set the GOT register.  */
              /* HP's use PLTGOT to set the GOT register.  */
              dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
              dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
              bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
              bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
              break;
              break;
 
 
            case DT_JMPREL:
            case DT_JMPREL:
              s = hppa_info->plt_rel_sec;
              s = hppa_info->plt_rel_sec;
              dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
              dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
              bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
              bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
              break;
              break;
 
 
            case DT_PLTRELSZ:
            case DT_PLTRELSZ:
              s = hppa_info->plt_rel_sec;
              s = hppa_info->plt_rel_sec;
              dyn.d_un.d_val = s->size;
              dyn.d_un.d_val = s->size;
              bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
              bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
              break;
              break;
 
 
            case DT_RELA:
            case DT_RELA:
              s = hppa_info->other_rel_sec;
              s = hppa_info->other_rel_sec;
              if (! s || ! s->size)
              if (! s || ! s->size)
                s = hppa_info->dlt_rel_sec;
                s = hppa_info->dlt_rel_sec;
              if (! s || ! s->size)
              if (! s || ! s->size)
                s = hppa_info->opd_rel_sec;
                s = hppa_info->opd_rel_sec;
              dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
              dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
              bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
              bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
              break;
              break;
 
 
            case DT_RELASZ:
            case DT_RELASZ:
              s = hppa_info->other_rel_sec;
              s = hppa_info->other_rel_sec;
              dyn.d_un.d_val = s->size;
              dyn.d_un.d_val = s->size;
              s = hppa_info->dlt_rel_sec;
              s = hppa_info->dlt_rel_sec;
              dyn.d_un.d_val += s->size;
              dyn.d_un.d_val += s->size;
              s = hppa_info->opd_rel_sec;
              s = hppa_info->opd_rel_sec;
              dyn.d_un.d_val += s->size;
              dyn.d_un.d_val += s->size;
              /* There is some question about whether or not the size of
              /* There is some question about whether or not the size of
                 the PLT relocs should be included here.  HP's tools do
                 the PLT relocs should be included here.  HP's tools do
                 it, so we'll emulate them.  */
                 it, so we'll emulate them.  */
              s = hppa_info->plt_rel_sec;
              s = hppa_info->plt_rel_sec;
              dyn.d_un.d_val += s->size;
              dyn.d_un.d_val += s->size;
              bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
              bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
              break;
              break;
 
 
            }
            }
        }
        }
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Support for core dump NOTE sections.  */
/* Support for core dump NOTE sections.  */
 
 
static bfd_boolean
static bfd_boolean
elf64_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
elf64_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
{
{
  int offset;
  int offset;
  size_t size;
  size_t size;
 
 
  switch (note->descsz)
  switch (note->descsz)
    {
    {
      default:
      default:
        return FALSE;
        return FALSE;
 
 
      case 760:         /* Linux/hppa */
      case 760:         /* Linux/hppa */
        /* pr_cursig */
        /* pr_cursig */
        elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
        elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
 
 
        /* pr_pid */
        /* pr_pid */
        elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 32);
        elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 32);
 
 
        /* pr_reg */
        /* pr_reg */
        offset = 112;
        offset = 112;
        size = 640;
        size = 640;
 
 
        break;
        break;
    }
    }
 
 
  /* Make a ".reg/999" section.  */
  /* Make a ".reg/999" section.  */
  return _bfd_elfcore_make_pseudosection (abfd, ".reg",
  return _bfd_elfcore_make_pseudosection (abfd, ".reg",
                                          size, note->descpos + offset);
                                          size, note->descpos + offset);
}
}
 
 
static bfd_boolean
static bfd_boolean
elf64_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
elf64_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
{
{
  char * command;
  char * command;
  int n;
  int n;
 
 
  switch (note->descsz)
  switch (note->descsz)
    {
    {
    default:
    default:
      return FALSE;
      return FALSE;
 
 
    case 136:           /* Linux/hppa elf_prpsinfo.  */
    case 136:           /* Linux/hppa elf_prpsinfo.  */
      elf_tdata (abfd)->core_program
      elf_tdata (abfd)->core_program
        = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
        = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
      elf_tdata (abfd)->core_command
      elf_tdata (abfd)->core_command
        = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
        = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
    }
    }
 
 
  /* Note that for some reason, a spurious space is tacked
  /* Note that for some reason, a spurious space is tacked
     onto the end of the args in some (at least one anyway)
     onto the end of the args in some (at least one anyway)
     implementations, so strip it off if it exists.  */
     implementations, so strip it off if it exists.  */
  command = elf_tdata (abfd)->core_command;
  command = elf_tdata (abfd)->core_command;
  n = strlen (command);
  n = strlen (command);
 
 
  if (0 < n && command[n - 1] == ' ')
  if (0 < n && command[n - 1] == ' ')
    command[n - 1] = '\0';
    command[n - 1] = '\0';
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Return the number of additional phdrs we will need.
/* Return the number of additional phdrs we will need.
 
 
   The generic ELF code only creates PT_PHDRs for executables.  The HP
   The generic ELF code only creates PT_PHDRs for executables.  The HP
   dynamic linker requires PT_PHDRs for dynamic libraries too.
   dynamic linker requires PT_PHDRs for dynamic libraries too.
 
 
   This routine indicates that the backend needs one additional program
   This routine indicates that the backend needs one additional program
   header for that case.
   header for that case.
 
 
   Note we do not have access to the link info structure here, so we have
   Note we do not have access to the link info structure here, so we have
   to guess whether or not we are building a shared library based on the
   to guess whether or not we are building a shared library based on the
   existence of a .interp section.  */
   existence of a .interp section.  */
 
 
static int
static int
elf64_hppa_additional_program_headers (bfd *abfd,
elf64_hppa_additional_program_headers (bfd *abfd,
                                struct bfd_link_info *info ATTRIBUTE_UNUSED)
                                struct bfd_link_info *info ATTRIBUTE_UNUSED)
{
{
  asection *s;
  asection *s;
 
 
  /* If we are creating a shared library, then we have to create a
  /* If we are creating a shared library, then we have to create a
     PT_PHDR segment.  HP's dynamic linker chokes without it.  */
     PT_PHDR segment.  HP's dynamic linker chokes without it.  */
  s = bfd_get_section_by_name (abfd, ".interp");
  s = bfd_get_section_by_name (abfd, ".interp");
  if (! s)
  if (! s)
    return 1;
    return 1;
  return 0;
  return 0;
}
}
 
 
/* Allocate and initialize any program headers required by this
/* Allocate and initialize any program headers required by this
   specific backend.
   specific backend.
 
 
   The generic ELF code only creates PT_PHDRs for executables.  The HP
   The generic ELF code only creates PT_PHDRs for executables.  The HP
   dynamic linker requires PT_PHDRs for dynamic libraries too.
   dynamic linker requires PT_PHDRs for dynamic libraries too.
 
 
   This allocates the PT_PHDR and initializes it in a manner suitable
   This allocates the PT_PHDR and initializes it in a manner suitable
   for the HP linker.
   for the HP linker.
 
 
   Note we do not have access to the link info structure here, so we have
   Note we do not have access to the link info structure here, so we have
   to guess whether or not we are building a shared library based on the
   to guess whether or not we are building a shared library based on the
   existence of a .interp section.  */
   existence of a .interp section.  */
 
 
static bfd_boolean
static bfd_boolean
elf64_hppa_modify_segment_map (bfd *abfd,
elf64_hppa_modify_segment_map (bfd *abfd,
                               struct bfd_link_info *info ATTRIBUTE_UNUSED)
                               struct bfd_link_info *info ATTRIBUTE_UNUSED)
{
{
  struct elf_segment_map *m;
  struct elf_segment_map *m;
  asection *s;
  asection *s;
 
 
  s = bfd_get_section_by_name (abfd, ".interp");
  s = bfd_get_section_by_name (abfd, ".interp");
  if (! s)
  if (! s)
    {
    {
      for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
      for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
        if (m->p_type == PT_PHDR)
        if (m->p_type == PT_PHDR)
          break;
          break;
      if (m == NULL)
      if (m == NULL)
        {
        {
          m = ((struct elf_segment_map *)
          m = ((struct elf_segment_map *)
               bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
               bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
          if (m == NULL)
          if (m == NULL)
            return FALSE;
            return FALSE;
 
 
          m->p_type = PT_PHDR;
          m->p_type = PT_PHDR;
          m->p_flags = PF_R | PF_X;
          m->p_flags = PF_R | PF_X;
          m->p_flags_valid = 1;
          m->p_flags_valid = 1;
          m->p_paddr_valid = 1;
          m->p_paddr_valid = 1;
          m->includes_phdrs = 1;
          m->includes_phdrs = 1;
 
 
          m->next = elf_tdata (abfd)->segment_map;
          m->next = elf_tdata (abfd)->segment_map;
          elf_tdata (abfd)->segment_map = m;
          elf_tdata (abfd)->segment_map = m;
        }
        }
    }
    }
 
 
  for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
  for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
    if (m->p_type == PT_LOAD)
    if (m->p_type == PT_LOAD)
      {
      {
        unsigned int i;
        unsigned int i;
 
 
        for (i = 0; i < m->count; i++)
        for (i = 0; i < m->count; i++)
          {
          {
            /* The code "hint" is not really a hint.  It is a requirement
            /* The code "hint" is not really a hint.  It is a requirement
               for certain versions of the HP dynamic linker.  Worse yet,
               for certain versions of the HP dynamic linker.  Worse yet,
               it must be set even if the shared library does not have
               it must be set even if the shared library does not have
               any code in its "text" segment (thus the check for .hash
               any code in its "text" segment (thus the check for .hash
               to catch this situation).  */
               to catch this situation).  */
            if (m->sections[i]->flags & SEC_CODE
            if (m->sections[i]->flags & SEC_CODE
                || (strcmp (m->sections[i]->name, ".hash") == 0))
                || (strcmp (m->sections[i]->name, ".hash") == 0))
              m->p_flags |= (PF_X | PF_HP_CODE);
              m->p_flags |= (PF_X | PF_HP_CODE);
          }
          }
      }
      }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Called when writing out an object file to decide the type of a
/* Called when writing out an object file to decide the type of a
   symbol.  */
   symbol.  */
static int
static int
elf64_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym,
elf64_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym,
                                int type)
                                int type)
{
{
  if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
  if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
    return STT_PARISC_MILLI;
    return STT_PARISC_MILLI;
  else
  else
    return type;
    return type;
}
}
 
 
/* Support HP specific sections for core files.  */
/* Support HP specific sections for core files.  */
static bfd_boolean
static bfd_boolean
elf64_hppa_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index,
elf64_hppa_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index,
                              const char *typename)
                              const char *typename)
{
{
  if (hdr->p_type == PT_HP_CORE_KERNEL)
  if (hdr->p_type == PT_HP_CORE_KERNEL)
    {
    {
      asection *sect;
      asection *sect;
 
 
      if (!_bfd_elf_make_section_from_phdr (abfd, hdr, index, typename))
      if (!_bfd_elf_make_section_from_phdr (abfd, hdr, index, typename))
        return FALSE;
        return FALSE;
 
 
      sect = bfd_make_section_anyway (abfd, ".kernel");
      sect = bfd_make_section_anyway (abfd, ".kernel");
      if (sect == NULL)
      if (sect == NULL)
        return FALSE;
        return FALSE;
      sect->size = hdr->p_filesz;
      sect->size = hdr->p_filesz;
      sect->filepos = hdr->p_offset;
      sect->filepos = hdr->p_offset;
      sect->flags = SEC_HAS_CONTENTS | SEC_READONLY;
      sect->flags = SEC_HAS_CONTENTS | SEC_READONLY;
      return TRUE;
      return TRUE;
    }
    }
 
 
  if (hdr->p_type == PT_HP_CORE_PROC)
  if (hdr->p_type == PT_HP_CORE_PROC)
    {
    {
      int sig;
      int sig;
 
 
      if (bfd_seek (abfd, hdr->p_offset, SEEK_SET) != 0)
      if (bfd_seek (abfd, hdr->p_offset, SEEK_SET) != 0)
        return FALSE;
        return FALSE;
      if (bfd_bread (&sig, 4, abfd) != 4)
      if (bfd_bread (&sig, 4, abfd) != 4)
        return FALSE;
        return FALSE;
 
 
      elf_tdata (abfd)->core_signal = sig;
      elf_tdata (abfd)->core_signal = sig;
 
 
      if (!_bfd_elf_make_section_from_phdr (abfd, hdr, index, typename))
      if (!_bfd_elf_make_section_from_phdr (abfd, hdr, index, typename))
        return FALSE;
        return FALSE;
 
 
      /* GDB uses the ".reg" section to read register contents.  */
      /* GDB uses the ".reg" section to read register contents.  */
      return _bfd_elfcore_make_pseudosection (abfd, ".reg", hdr->p_filesz,
      return _bfd_elfcore_make_pseudosection (abfd, ".reg", hdr->p_filesz,
                                              hdr->p_offset);
                                              hdr->p_offset);
    }
    }
 
 
  if (hdr->p_type == PT_HP_CORE_LOADABLE
  if (hdr->p_type == PT_HP_CORE_LOADABLE
      || hdr->p_type == PT_HP_CORE_STACK
      || hdr->p_type == PT_HP_CORE_STACK
      || hdr->p_type == PT_HP_CORE_MMF)
      || hdr->p_type == PT_HP_CORE_MMF)
    hdr->p_type = PT_LOAD;
    hdr->p_type = PT_LOAD;
 
 
  return _bfd_elf_make_section_from_phdr (abfd, hdr, index, typename);
  return _bfd_elf_make_section_from_phdr (abfd, hdr, index, typename);
}
}
 
 
/* Hook called by the linker routine which adds symbols from an object
/* Hook called by the linker routine which adds symbols from an object
   file.  HP's libraries define symbols with HP specific section
   file.  HP's libraries define symbols with HP specific section
   indices, which we have to handle.  */
   indices, which we have to handle.  */
 
 
static bfd_boolean
static bfd_boolean
elf_hppa_add_symbol_hook (bfd *abfd,
elf_hppa_add_symbol_hook (bfd *abfd,
                          struct bfd_link_info *info ATTRIBUTE_UNUSED,
                          struct bfd_link_info *info ATTRIBUTE_UNUSED,
                          Elf_Internal_Sym *sym,
                          Elf_Internal_Sym *sym,
                          const char **namep ATTRIBUTE_UNUSED,
                          const char **namep ATTRIBUTE_UNUSED,
                          flagword *flagsp ATTRIBUTE_UNUSED,
                          flagword *flagsp ATTRIBUTE_UNUSED,
                          asection **secp,
                          asection **secp,
                          bfd_vma *valp)
                          bfd_vma *valp)
{
{
  unsigned int index = sym->st_shndx;
  unsigned int index = sym->st_shndx;
 
 
  switch (index)
  switch (index)
    {
    {
    case SHN_PARISC_ANSI_COMMON:
    case SHN_PARISC_ANSI_COMMON:
      *secp = bfd_make_section_old_way (abfd, ".PARISC.ansi.common");
      *secp = bfd_make_section_old_way (abfd, ".PARISC.ansi.common");
      (*secp)->flags |= SEC_IS_COMMON;
      (*secp)->flags |= SEC_IS_COMMON;
      *valp = sym->st_size;
      *valp = sym->st_size;
      break;
      break;
 
 
    case SHN_PARISC_HUGE_COMMON:
    case SHN_PARISC_HUGE_COMMON:
      *secp = bfd_make_section_old_way (abfd, ".PARISC.huge.common");
      *secp = bfd_make_section_old_way (abfd, ".PARISC.huge.common");
      (*secp)->flags |= SEC_IS_COMMON;
      (*secp)->flags |= SEC_IS_COMMON;
      *valp = sym->st_size;
      *valp = sym->st_size;
      break;
      break;
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
static bfd_boolean
static bfd_boolean
elf_hppa_unmark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
elf_hppa_unmark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
                                         void *data)
                                         void *data)
{
{
  struct bfd_link_info *info = data;
  struct bfd_link_info *info = data;
 
 
  if (h->root.type == bfd_link_hash_warning)
  if (h->root.type == bfd_link_hash_warning)
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
 
 
  /* If we are not creating a shared library, and this symbol is
  /* If we are not creating a shared library, and this symbol is
     referenced by a shared library but is not defined anywhere, then
     referenced by a shared library but is not defined anywhere, then
     the generic code will warn that it is undefined.
     the generic code will warn that it is undefined.
 
 
     This behavior is undesirable on HPs since the standard shared
     This behavior is undesirable on HPs since the standard shared
     libraries contain references to undefined symbols.
     libraries contain references to undefined symbols.
 
 
     So we twiddle the flags associated with such symbols so that they
     So we twiddle the flags associated with such symbols so that they
     will not trigger the warning.  ?!? FIXME.  This is horribly fragile.
     will not trigger the warning.  ?!? FIXME.  This is horribly fragile.
 
 
     Ultimately we should have better controls over the generic ELF BFD
     Ultimately we should have better controls over the generic ELF BFD
     linker code.  */
     linker code.  */
  if (! info->relocatable
  if (! info->relocatable
      && info->unresolved_syms_in_shared_libs != RM_IGNORE
      && info->unresolved_syms_in_shared_libs != RM_IGNORE
      && h->root.type == bfd_link_hash_undefined
      && h->root.type == bfd_link_hash_undefined
      && h->ref_dynamic
      && h->ref_dynamic
      && !h->ref_regular)
      && !h->ref_regular)
    {
    {
      h->ref_dynamic = 0;
      h->ref_dynamic = 0;
      h->pointer_equality_needed = 1;
      h->pointer_equality_needed = 1;
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
static bfd_boolean
static bfd_boolean
elf_hppa_remark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
elf_hppa_remark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
                                         void *data)
                                         void *data)
{
{
  struct bfd_link_info *info = data;
  struct bfd_link_info *info = data;
 
 
  if (h->root.type == bfd_link_hash_warning)
  if (h->root.type == bfd_link_hash_warning)
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
 
 
  /* If we are not creating a shared library, and this symbol is
  /* If we are not creating a shared library, and this symbol is
     referenced by a shared library but is not defined anywhere, then
     referenced by a shared library but is not defined anywhere, then
     the generic code will warn that it is undefined.
     the generic code will warn that it is undefined.
 
 
     This behavior is undesirable on HPs since the standard shared
     This behavior is undesirable on HPs since the standard shared
     libraries contain references to undefined symbols.
     libraries contain references to undefined symbols.
 
 
     So we twiddle the flags associated with such symbols so that they
     So we twiddle the flags associated with such symbols so that they
     will not trigger the warning.  ?!? FIXME.  This is horribly fragile.
     will not trigger the warning.  ?!? FIXME.  This is horribly fragile.
 
 
     Ultimately we should have better controls over the generic ELF BFD
     Ultimately we should have better controls over the generic ELF BFD
     linker code.  */
     linker code.  */
  if (! info->relocatable
  if (! info->relocatable
      && info->unresolved_syms_in_shared_libs != RM_IGNORE
      && info->unresolved_syms_in_shared_libs != RM_IGNORE
      && h->root.type == bfd_link_hash_undefined
      && h->root.type == bfd_link_hash_undefined
      && !h->ref_dynamic
      && !h->ref_dynamic
      && !h->ref_regular
      && !h->ref_regular
      && h->pointer_equality_needed)
      && h->pointer_equality_needed)
    {
    {
      h->ref_dynamic = 1;
      h->ref_dynamic = 1;
      h->pointer_equality_needed = 0;
      h->pointer_equality_needed = 0;
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
static bfd_boolean
static bfd_boolean
elf_hppa_is_dynamic_loader_symbol (const char *name)
elf_hppa_is_dynamic_loader_symbol (const char *name)
{
{
  return (! strcmp (name, "__CPU_REVISION")
  return (! strcmp (name, "__CPU_REVISION")
          || ! strcmp (name, "__CPU_KEYBITS_1")
          || ! strcmp (name, "__CPU_KEYBITS_1")
          || ! strcmp (name, "__SYSTEM_ID_D")
          || ! strcmp (name, "__SYSTEM_ID_D")
          || ! strcmp (name, "__FPU_MODEL")
          || ! strcmp (name, "__FPU_MODEL")
          || ! strcmp (name, "__FPU_REVISION")
          || ! strcmp (name, "__FPU_REVISION")
          || ! strcmp (name, "__ARGC")
          || ! strcmp (name, "__ARGC")
          || ! strcmp (name, "__ARGV")
          || ! strcmp (name, "__ARGV")
          || ! strcmp (name, "__ENVP")
          || ! strcmp (name, "__ENVP")
          || ! strcmp (name, "__TLS_SIZE_D")
          || ! strcmp (name, "__TLS_SIZE_D")
          || ! strcmp (name, "__LOAD_INFO")
          || ! strcmp (name, "__LOAD_INFO")
          || ! strcmp (name, "__systab"));
          || ! strcmp (name, "__systab"));
}
}
 
 
/* Record the lowest address for the data and text segments.  */
/* Record the lowest address for the data and text segments.  */
static void
static void
elf_hppa_record_segment_addrs (bfd *abfd,
elf_hppa_record_segment_addrs (bfd *abfd,
                               asection *section,
                               asection *section,
                               void *data)
                               void *data)
{
{
  struct elf64_hppa_link_hash_table *hppa_info = data;
  struct elf64_hppa_link_hash_table *hppa_info = data;
 
 
  if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
  if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
    {
    {
      bfd_vma value;
      bfd_vma value;
      Elf_Internal_Phdr *p;
      Elf_Internal_Phdr *p;
 
 
      p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
      p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
      BFD_ASSERT (p != NULL);
      BFD_ASSERT (p != NULL);
      value = p->p_vaddr;
      value = p->p_vaddr;
 
 
      if (section->flags & SEC_READONLY)
      if (section->flags & SEC_READONLY)
        {
        {
          if (value < hppa_info->text_segment_base)
          if (value < hppa_info->text_segment_base)
            hppa_info->text_segment_base = value;
            hppa_info->text_segment_base = value;
        }
        }
      else
      else
        {
        {
          if (value < hppa_info->data_segment_base)
          if (value < hppa_info->data_segment_base)
            hppa_info->data_segment_base = value;
            hppa_info->data_segment_base = value;
        }
        }
    }
    }
}
}
 
 
/* Called after we have seen all the input files/sections, but before
/* Called after we have seen all the input files/sections, but before
   final symbol resolution and section placement has been determined.
   final symbol resolution and section placement has been determined.
 
 
   We use this hook to (possibly) provide a value for __gp, then we
   We use this hook to (possibly) provide a value for __gp, then we
   fall back to the generic ELF final link routine.  */
   fall back to the generic ELF final link routine.  */
 
 
static bfd_boolean
static bfd_boolean
elf_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
elf_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
{
{
  bfd_boolean retval;
  bfd_boolean retval;
  struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info);
  struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info);
 
 
  if (! info->relocatable)
  if (! info->relocatable)
    {
    {
      struct elf_link_hash_entry *gp;
      struct elf_link_hash_entry *gp;
      bfd_vma gp_val;
      bfd_vma gp_val;
 
 
      /* The linker script defines a value for __gp iff it was referenced
      /* The linker script defines a value for __gp iff it was referenced
         by one of the objects being linked.  First try to find the symbol
         by one of the objects being linked.  First try to find the symbol
         in the hash table.  If that fails, just compute the value __gp
         in the hash table.  If that fails, just compute the value __gp
         should have had.  */
         should have had.  */
      gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
      gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
                                 FALSE, FALSE);
                                 FALSE, FALSE);
 
 
      if (gp)
      if (gp)
        {
        {
 
 
          /* Adjust the value of __gp as we may want to slide it into the
          /* Adjust the value of __gp as we may want to slide it into the
             .plt section so that the stubs can access PLT entries without
             .plt section so that the stubs can access PLT entries without
             using an addil sequence.  */
             using an addil sequence.  */
          gp->root.u.def.value += hppa_info->gp_offset;
          gp->root.u.def.value += hppa_info->gp_offset;
 
 
          gp_val = (gp->root.u.def.section->output_section->vma
          gp_val = (gp->root.u.def.section->output_section->vma
                    + gp->root.u.def.section->output_offset
                    + gp->root.u.def.section->output_offset
                    + gp->root.u.def.value);
                    + gp->root.u.def.value);
        }
        }
      else
      else
        {
        {
          asection *sec;
          asection *sec;
 
 
          /* First look for a .plt section.  If found, then __gp is the
          /* First look for a .plt section.  If found, then __gp is the
             address of the .plt + gp_offset.
             address of the .plt + gp_offset.
 
 
             If no .plt is found, then look for .dlt, .opd and .data (in
             If no .plt is found, then look for .dlt, .opd and .data (in
             that order) and set __gp to the base address of whichever
             that order) and set __gp to the base address of whichever
             section is found first.  */
             section is found first.  */
 
 
          sec = hppa_info->plt_sec;
          sec = hppa_info->plt_sec;
          if (sec && ! (sec->flags & SEC_EXCLUDE))
          if (sec && ! (sec->flags & SEC_EXCLUDE))
            gp_val = (sec->output_offset
            gp_val = (sec->output_offset
                      + sec->output_section->vma
                      + sec->output_section->vma
                      + hppa_info->gp_offset);
                      + hppa_info->gp_offset);
          else
          else
            {
            {
              sec = hppa_info->dlt_sec;
              sec = hppa_info->dlt_sec;
              if (!sec || (sec->flags & SEC_EXCLUDE))
              if (!sec || (sec->flags & SEC_EXCLUDE))
                sec = hppa_info->opd_sec;
                sec = hppa_info->opd_sec;
              if (!sec || (sec->flags & SEC_EXCLUDE))
              if (!sec || (sec->flags & SEC_EXCLUDE))
                sec = bfd_get_section_by_name (abfd, ".data");
                sec = bfd_get_section_by_name (abfd, ".data");
              if (!sec || (sec->flags & SEC_EXCLUDE))
              if (!sec || (sec->flags & SEC_EXCLUDE))
                gp_val = 0;
                gp_val = 0;
              else
              else
                gp_val = sec->output_offset + sec->output_section->vma;
                gp_val = sec->output_offset + sec->output_section->vma;
            }
            }
        }
        }
 
 
      /* Install whatever value we found/computed for __gp.  */
      /* Install whatever value we found/computed for __gp.  */
      _bfd_set_gp_value (abfd, gp_val);
      _bfd_set_gp_value (abfd, gp_val);
    }
    }
 
 
  /* We need to know the base of the text and data segments so that we
  /* We need to know the base of the text and data segments so that we
     can perform SEGREL relocations.  We will record the base addresses
     can perform SEGREL relocations.  We will record the base addresses
     when we encounter the first SEGREL relocation.  */
     when we encounter the first SEGREL relocation.  */
  hppa_info->text_segment_base = (bfd_vma)-1;
  hppa_info->text_segment_base = (bfd_vma)-1;
  hppa_info->data_segment_base = (bfd_vma)-1;
  hppa_info->data_segment_base = (bfd_vma)-1;
 
 
  /* HP's shared libraries have references to symbols that are not
  /* HP's shared libraries have references to symbols that are not
     defined anywhere.  The generic ELF BFD linker code will complain
     defined anywhere.  The generic ELF BFD linker code will complain
     about such symbols.
     about such symbols.
 
 
     So we detect the losing case and arrange for the flags on the symbol
     So we detect the losing case and arrange for the flags on the symbol
     to indicate that it was never referenced.  This keeps the generic
     to indicate that it was never referenced.  This keeps the generic
     ELF BFD link code happy and appears to not create any secondary
     ELF BFD link code happy and appears to not create any secondary
     problems.  Ultimately we need a way to control the behavior of the
     problems.  Ultimately we need a way to control the behavior of the
     generic ELF BFD link code better.  */
     generic ELF BFD link code better.  */
  elf_link_hash_traverse (elf_hash_table (info),
  elf_link_hash_traverse (elf_hash_table (info),
                          elf_hppa_unmark_useless_dynamic_symbols,
                          elf_hppa_unmark_useless_dynamic_symbols,
                          info);
                          info);
 
 
  /* Invoke the regular ELF backend linker to do all the work.  */
  /* Invoke the regular ELF backend linker to do all the work.  */
  retval = bfd_elf_final_link (abfd, info);
  retval = bfd_elf_final_link (abfd, info);
 
 
  elf_link_hash_traverse (elf_hash_table (info),
  elf_link_hash_traverse (elf_hash_table (info),
                          elf_hppa_remark_useless_dynamic_symbols,
                          elf_hppa_remark_useless_dynamic_symbols,
                          info);
                          info);
 
 
  /* If we're producing a final executable, sort the contents of the
  /* If we're producing a final executable, sort the contents of the
     unwind section. */
     unwind section. */
  if (retval)
  if (retval)
    retval = elf_hppa_sort_unwind (abfd);
    retval = elf_hppa_sort_unwind (abfd);
 
 
  return retval;
  return retval;
}
}
 
 
/* Relocate the given INSN.  VALUE should be the actual value we want
/* Relocate the given INSN.  VALUE should be the actual value we want
   to insert into the instruction, ie by this point we should not be
   to insert into the instruction, ie by this point we should not be
   concerned with computing an offset relative to the DLT, PC, etc.
   concerned with computing an offset relative to the DLT, PC, etc.
   Instead this routine is meant to handle the bit manipulations needed
   Instead this routine is meant to handle the bit manipulations needed
   to insert the relocation into the given instruction.  */
   to insert the relocation into the given instruction.  */
 
 
static int
static int
elf_hppa_relocate_insn (int insn, int sym_value, unsigned int r_type)
elf_hppa_relocate_insn (int insn, int sym_value, unsigned int r_type)
{
{
  switch (r_type)
  switch (r_type)
    {
    {
    /* This is any 22 bit branch.  In PA2.0 syntax it corresponds to
    /* This is any 22 bit branch.  In PA2.0 syntax it corresponds to
       the "B" instruction.  */
       the "B" instruction.  */
    case R_PARISC_PCREL22F:
    case R_PARISC_PCREL22F:
    case R_PARISC_PCREL22C:
    case R_PARISC_PCREL22C:
      return (insn & ~0x3ff1ffd) | re_assemble_22 (sym_value);
      return (insn & ~0x3ff1ffd) | re_assemble_22 (sym_value);
 
 
      /* This is any 12 bit branch.  */
      /* This is any 12 bit branch.  */
    case R_PARISC_PCREL12F:
    case R_PARISC_PCREL12F:
      return (insn & ~0x1ffd) | re_assemble_12 (sym_value);
      return (insn & ~0x1ffd) | re_assemble_12 (sym_value);
 
 
    /* This is any 17 bit branch.  In PA2.0 syntax it also corresponds
    /* This is any 17 bit branch.  In PA2.0 syntax it also corresponds
       to the "B" instruction as well as BE.  */
       to the "B" instruction as well as BE.  */
    case R_PARISC_PCREL17F:
    case R_PARISC_PCREL17F:
    case R_PARISC_DIR17F:
    case R_PARISC_DIR17F:
    case R_PARISC_DIR17R:
    case R_PARISC_DIR17R:
    case R_PARISC_PCREL17C:
    case R_PARISC_PCREL17C:
    case R_PARISC_PCREL17R:
    case R_PARISC_PCREL17R:
      return (insn & ~0x1f1ffd) | re_assemble_17 (sym_value);
      return (insn & ~0x1f1ffd) | re_assemble_17 (sym_value);
 
 
    /* ADDIL or LDIL instructions.  */
    /* ADDIL or LDIL instructions.  */
    case R_PARISC_DLTREL21L:
    case R_PARISC_DLTREL21L:
    case R_PARISC_DLTIND21L:
    case R_PARISC_DLTIND21L:
    case R_PARISC_LTOFF_FPTR21L:
    case R_PARISC_LTOFF_FPTR21L:
    case R_PARISC_PCREL21L:
    case R_PARISC_PCREL21L:
    case R_PARISC_LTOFF_TP21L:
    case R_PARISC_LTOFF_TP21L:
    case R_PARISC_DPREL21L:
    case R_PARISC_DPREL21L:
    case R_PARISC_PLTOFF21L:
    case R_PARISC_PLTOFF21L:
    case R_PARISC_DIR21L:
    case R_PARISC_DIR21L:
      return (insn & ~0x1fffff) | re_assemble_21 (sym_value);
      return (insn & ~0x1fffff) | re_assemble_21 (sym_value);
 
 
    /* LDO and integer loads/stores with 14 bit displacements.  */
    /* LDO and integer loads/stores with 14 bit displacements.  */
    case R_PARISC_DLTREL14R:
    case R_PARISC_DLTREL14R:
    case R_PARISC_DLTREL14F:
    case R_PARISC_DLTREL14F:
    case R_PARISC_DLTIND14R:
    case R_PARISC_DLTIND14R:
    case R_PARISC_DLTIND14F:
    case R_PARISC_DLTIND14F:
    case R_PARISC_LTOFF_FPTR14R:
    case R_PARISC_LTOFF_FPTR14R:
    case R_PARISC_PCREL14R:
    case R_PARISC_PCREL14R:
    case R_PARISC_PCREL14F:
    case R_PARISC_PCREL14F:
    case R_PARISC_LTOFF_TP14R:
    case R_PARISC_LTOFF_TP14R:
    case R_PARISC_LTOFF_TP14F:
    case R_PARISC_LTOFF_TP14F:
    case R_PARISC_DPREL14R:
    case R_PARISC_DPREL14R:
    case R_PARISC_DPREL14F:
    case R_PARISC_DPREL14F:
    case R_PARISC_PLTOFF14R:
    case R_PARISC_PLTOFF14R:
    case R_PARISC_PLTOFF14F:
    case R_PARISC_PLTOFF14F:
    case R_PARISC_DIR14R:
    case R_PARISC_DIR14R:
    case R_PARISC_DIR14F:
    case R_PARISC_DIR14F:
      return (insn & ~0x3fff) | low_sign_unext (sym_value, 14);
      return (insn & ~0x3fff) | low_sign_unext (sym_value, 14);
 
 
    /* PA2.0W LDO and integer loads/stores with 16 bit displacements.  */
    /* PA2.0W LDO and integer loads/stores with 16 bit displacements.  */
    case R_PARISC_LTOFF_FPTR16F:
    case R_PARISC_LTOFF_FPTR16F:
    case R_PARISC_PCREL16F:
    case R_PARISC_PCREL16F:
    case R_PARISC_LTOFF_TP16F:
    case R_PARISC_LTOFF_TP16F:
    case R_PARISC_GPREL16F:
    case R_PARISC_GPREL16F:
    case R_PARISC_PLTOFF16F:
    case R_PARISC_PLTOFF16F:
    case R_PARISC_DIR16F:
    case R_PARISC_DIR16F:
    case R_PARISC_LTOFF16F:
    case R_PARISC_LTOFF16F:
      return (insn & ~0xffff) | re_assemble_16 (sym_value);
      return (insn & ~0xffff) | re_assemble_16 (sym_value);
 
 
    /* Doubleword loads and stores with a 14 bit displacement.  */
    /* Doubleword loads and stores with a 14 bit displacement.  */
    case R_PARISC_DLTREL14DR:
    case R_PARISC_DLTREL14DR:
    case R_PARISC_DLTIND14DR:
    case R_PARISC_DLTIND14DR:
    case R_PARISC_LTOFF_FPTR14DR:
    case R_PARISC_LTOFF_FPTR14DR:
    case R_PARISC_LTOFF_FPTR16DF:
    case R_PARISC_LTOFF_FPTR16DF:
    case R_PARISC_PCREL14DR:
    case R_PARISC_PCREL14DR:
    case R_PARISC_PCREL16DF:
    case R_PARISC_PCREL16DF:
    case R_PARISC_LTOFF_TP14DR:
    case R_PARISC_LTOFF_TP14DR:
    case R_PARISC_LTOFF_TP16DF:
    case R_PARISC_LTOFF_TP16DF:
    case R_PARISC_DPREL14DR:
    case R_PARISC_DPREL14DR:
    case R_PARISC_GPREL16DF:
    case R_PARISC_GPREL16DF:
    case R_PARISC_PLTOFF14DR:
    case R_PARISC_PLTOFF14DR:
    case R_PARISC_PLTOFF16DF:
    case R_PARISC_PLTOFF16DF:
    case R_PARISC_DIR14DR:
    case R_PARISC_DIR14DR:
    case R_PARISC_DIR16DF:
    case R_PARISC_DIR16DF:
    case R_PARISC_LTOFF16DF:
    case R_PARISC_LTOFF16DF:
      return (insn & ~0x3ff1) | (((sym_value & 0x2000) >> 13)
      return (insn & ~0x3ff1) | (((sym_value & 0x2000) >> 13)
                                 | ((sym_value & 0x1ff8) << 1));
                                 | ((sym_value & 0x1ff8) << 1));
 
 
    /* Floating point single word load/store instructions.  */
    /* Floating point single word load/store instructions.  */
    case R_PARISC_DLTREL14WR:
    case R_PARISC_DLTREL14WR:
    case R_PARISC_DLTIND14WR:
    case R_PARISC_DLTIND14WR:
    case R_PARISC_LTOFF_FPTR14WR:
    case R_PARISC_LTOFF_FPTR14WR:
    case R_PARISC_LTOFF_FPTR16WF:
    case R_PARISC_LTOFF_FPTR16WF:
    case R_PARISC_PCREL14WR:
    case R_PARISC_PCREL14WR:
    case R_PARISC_PCREL16WF:
    case R_PARISC_PCREL16WF:
    case R_PARISC_LTOFF_TP14WR:
    case R_PARISC_LTOFF_TP14WR:
    case R_PARISC_LTOFF_TP16WF:
    case R_PARISC_LTOFF_TP16WF:
    case R_PARISC_DPREL14WR:
    case R_PARISC_DPREL14WR:
    case R_PARISC_GPREL16WF:
    case R_PARISC_GPREL16WF:
    case R_PARISC_PLTOFF14WR:
    case R_PARISC_PLTOFF14WR:
    case R_PARISC_PLTOFF16WF:
    case R_PARISC_PLTOFF16WF:
    case R_PARISC_DIR16WF:
    case R_PARISC_DIR16WF:
    case R_PARISC_DIR14WR:
    case R_PARISC_DIR14WR:
    case R_PARISC_LTOFF16WF:
    case R_PARISC_LTOFF16WF:
      return (insn & ~0x3ff9) | (((sym_value & 0x2000) >> 13)
      return (insn & ~0x3ff9) | (((sym_value & 0x2000) >> 13)
                                 | ((sym_value & 0x1ffc) << 1));
                                 | ((sym_value & 0x1ffc) << 1));
 
 
    default:
    default:
      return insn;
      return insn;
    }
    }
}
}
 
 
/* Compute the value for a relocation (REL) during a final link stage,
/* Compute the value for a relocation (REL) during a final link stage,
   then insert the value into the proper location in CONTENTS.
   then insert the value into the proper location in CONTENTS.
 
 
   VALUE is a tentative value for the relocation and may be overridden
   VALUE is a tentative value for the relocation and may be overridden
   and modified here based on the specific relocation to be performed.
   and modified here based on the specific relocation to be performed.
 
 
   For example we do conversions for PC-relative branches in this routine
   For example we do conversions for PC-relative branches in this routine
   or redirection of calls to external routines to stubs.
   or redirection of calls to external routines to stubs.
 
 
   The work of actually applying the relocation is left to a helper
   The work of actually applying the relocation is left to a helper
   routine in an attempt to reduce the complexity and size of this
   routine in an attempt to reduce the complexity and size of this
   function.  */
   function.  */
 
 
static bfd_reloc_status_type
static bfd_reloc_status_type
elf_hppa_final_link_relocate (Elf_Internal_Rela *rel,
elf_hppa_final_link_relocate (Elf_Internal_Rela *rel,
                              bfd *input_bfd,
                              bfd *input_bfd,
                              bfd *output_bfd,
                              bfd *output_bfd,
                              asection *input_section,
                              asection *input_section,
                              bfd_byte *contents,
                              bfd_byte *contents,
                              bfd_vma value,
                              bfd_vma value,
                              struct bfd_link_info *info,
                              struct bfd_link_info *info,
                              asection *sym_sec,
                              asection *sym_sec,
                              struct elf_link_hash_entry *eh)
                              struct elf_link_hash_entry *eh)
{
{
  struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info);
  struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info);
  struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
  struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
  bfd_vma *local_offsets;
  bfd_vma *local_offsets;
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Shdr *symtab_hdr;
  int insn;
  int insn;
  bfd_vma max_branch_offset = 0;
  bfd_vma max_branch_offset = 0;
  bfd_vma offset = rel->r_offset;
  bfd_vma offset = rel->r_offset;
  bfd_signed_vma addend = rel->r_addend;
  bfd_signed_vma addend = rel->r_addend;
  reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
  reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
  unsigned int r_symndx = ELF_R_SYM (rel->r_info);
  unsigned int r_symndx = ELF_R_SYM (rel->r_info);
  unsigned int r_type = howto->type;
  unsigned int r_type = howto->type;
  bfd_byte *hit_data = contents + offset;
  bfd_byte *hit_data = contents + offset;
 
 
  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
  local_offsets = elf_local_got_offsets (input_bfd);
  local_offsets = elf_local_got_offsets (input_bfd);
  insn = bfd_get_32 (input_bfd, hit_data);
  insn = bfd_get_32 (input_bfd, hit_data);
 
 
  switch (r_type)
  switch (r_type)
    {
    {
    case R_PARISC_NONE:
    case R_PARISC_NONE:
      break;
      break;
 
 
    /* Basic function call support.
    /* Basic function call support.
 
 
       Note for a call to a function defined in another dynamic library
       Note for a call to a function defined in another dynamic library
       we want to redirect the call to a stub.  */
       we want to redirect the call to a stub.  */
 
 
    /* PC relative relocs without an implicit offset.  */
    /* PC relative relocs without an implicit offset.  */
    case R_PARISC_PCREL21L:
    case R_PARISC_PCREL21L:
    case R_PARISC_PCREL14R:
    case R_PARISC_PCREL14R:
    case R_PARISC_PCREL14F:
    case R_PARISC_PCREL14F:
    case R_PARISC_PCREL14WR:
    case R_PARISC_PCREL14WR:
    case R_PARISC_PCREL14DR:
    case R_PARISC_PCREL14DR:
    case R_PARISC_PCREL16F:
    case R_PARISC_PCREL16F:
    case R_PARISC_PCREL16WF:
    case R_PARISC_PCREL16WF:
    case R_PARISC_PCREL16DF:
    case R_PARISC_PCREL16DF:
      {
      {
        /* If this is a call to a function defined in another dynamic
        /* If this is a call to a function defined in another dynamic
           library, then redirect the call to the local stub for this
           library, then redirect the call to the local stub for this
           function.  */
           function.  */
        if (sym_sec == NULL || sym_sec->output_section == NULL)
        if (sym_sec == NULL || sym_sec->output_section == NULL)
          value = (hh->stub_offset + hppa_info->stub_sec->output_offset
          value = (hh->stub_offset + hppa_info->stub_sec->output_offset
                   + hppa_info->stub_sec->output_section->vma);
                   + hppa_info->stub_sec->output_section->vma);
 
 
        /* Turn VALUE into a proper PC relative address.  */
        /* Turn VALUE into a proper PC relative address.  */
        value -= (offset + input_section->output_offset
        value -= (offset + input_section->output_offset
                  + input_section->output_section->vma);
                  + input_section->output_section->vma);
 
 
        /* Adjust for any field selectors.  */
        /* Adjust for any field selectors.  */
        if (r_type == R_PARISC_PCREL21L)
        if (r_type == R_PARISC_PCREL21L)
          value = hppa_field_adjust (value, -8 + addend, e_lsel);
          value = hppa_field_adjust (value, -8 + addend, e_lsel);
        else if (r_type == R_PARISC_PCREL14F
        else if (r_type == R_PARISC_PCREL14F
                 || r_type == R_PARISC_PCREL16F
                 || r_type == R_PARISC_PCREL16F
                 || r_type == R_PARISC_PCREL16WF
                 || r_type == R_PARISC_PCREL16WF
                 || r_type == R_PARISC_PCREL16DF)
                 || r_type == R_PARISC_PCREL16DF)
          value = hppa_field_adjust (value, -8 + addend, e_fsel);
          value = hppa_field_adjust (value, -8 + addend, e_fsel);
        else
        else
          value = hppa_field_adjust (value, -8 + addend, e_rsel);
          value = hppa_field_adjust (value, -8 + addend, e_rsel);
 
 
        /* Apply the relocation to the given instruction.  */
        /* Apply the relocation to the given instruction.  */
        insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
        insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
        break;
        break;
      }
      }
 
 
    case R_PARISC_PCREL12F:
    case R_PARISC_PCREL12F:
    case R_PARISC_PCREL22F:
    case R_PARISC_PCREL22F:
    case R_PARISC_PCREL17F:
    case R_PARISC_PCREL17F:
    case R_PARISC_PCREL22C:
    case R_PARISC_PCREL22C:
    case R_PARISC_PCREL17C:
    case R_PARISC_PCREL17C:
    case R_PARISC_PCREL17R:
    case R_PARISC_PCREL17R:
      {
      {
        /* If this is a call to a function defined in another dynamic
        /* If this is a call to a function defined in another dynamic
           library, then redirect the call to the local stub for this
           library, then redirect the call to the local stub for this
           function.  */
           function.  */
        if (sym_sec == NULL || sym_sec->output_section == NULL)
        if (sym_sec == NULL || sym_sec->output_section == NULL)
          value = (hh->stub_offset + hppa_info->stub_sec->output_offset
          value = (hh->stub_offset + hppa_info->stub_sec->output_offset
                   + hppa_info->stub_sec->output_section->vma);
                   + hppa_info->stub_sec->output_section->vma);
 
 
        /* Turn VALUE into a proper PC relative address.  */
        /* Turn VALUE into a proper PC relative address.  */
        value -= (offset + input_section->output_offset
        value -= (offset + input_section->output_offset
                  + input_section->output_section->vma);
                  + input_section->output_section->vma);
        addend -= 8;
        addend -= 8;
 
 
        if (r_type == (unsigned int) R_PARISC_PCREL22F)
        if (r_type == (unsigned int) R_PARISC_PCREL22F)
          max_branch_offset = (1 << (22-1)) << 2;
          max_branch_offset = (1 << (22-1)) << 2;
        else if (r_type == (unsigned int) R_PARISC_PCREL17F)
        else if (r_type == (unsigned int) R_PARISC_PCREL17F)
          max_branch_offset = (1 << (17-1)) << 2;
          max_branch_offset = (1 << (17-1)) << 2;
        else if (r_type == (unsigned int) R_PARISC_PCREL12F)
        else if (r_type == (unsigned int) R_PARISC_PCREL12F)
          max_branch_offset = (1 << (12-1)) << 2;
          max_branch_offset = (1 << (12-1)) << 2;
 
 
        /* Make sure we can reach the branch target.  */
        /* Make sure we can reach the branch target.  */
        if (max_branch_offset != 0
        if (max_branch_offset != 0
            && value + addend + max_branch_offset >= 2*max_branch_offset)
            && value + addend + max_branch_offset >= 2*max_branch_offset)
          {
          {
            (*_bfd_error_handler)
            (*_bfd_error_handler)
              (_("%B(%A+0x%lx): cannot reach %s"),
              (_("%B(%A+0x%lx): cannot reach %s"),
              input_bfd,
              input_bfd,
              input_section,
              input_section,
              offset,
              offset,
              eh->root.root.string);
              eh->root.root.string);
            bfd_set_error (bfd_error_bad_value);
            bfd_set_error (bfd_error_bad_value);
            return bfd_reloc_notsupported;
            return bfd_reloc_notsupported;
          }
          }
 
 
        /* Adjust for any field selectors.  */
        /* Adjust for any field selectors.  */
        if (r_type == R_PARISC_PCREL17R)
        if (r_type == R_PARISC_PCREL17R)
          value = hppa_field_adjust (value, addend, e_rsel);
          value = hppa_field_adjust (value, addend, e_rsel);
        else
        else
          value = hppa_field_adjust (value, addend, e_fsel);
          value = hppa_field_adjust (value, addend, e_fsel);
 
 
        /* All branches are implicitly shifted by 2 places.  */
        /* All branches are implicitly shifted by 2 places.  */
        value >>= 2;
        value >>= 2;
 
 
        /* Apply the relocation to the given instruction.  */
        /* Apply the relocation to the given instruction.  */
        insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
        insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
        break;
        break;
      }
      }
 
 
    /* Indirect references to data through the DLT.  */
    /* Indirect references to data through the DLT.  */
    case R_PARISC_DLTIND14R:
    case R_PARISC_DLTIND14R:
    case R_PARISC_DLTIND14F:
    case R_PARISC_DLTIND14F:
    case R_PARISC_DLTIND14DR:
    case R_PARISC_DLTIND14DR:
    case R_PARISC_DLTIND14WR:
    case R_PARISC_DLTIND14WR:
    case R_PARISC_DLTIND21L:
    case R_PARISC_DLTIND21L:
    case R_PARISC_LTOFF_FPTR14R:
    case R_PARISC_LTOFF_FPTR14R:
    case R_PARISC_LTOFF_FPTR14DR:
    case R_PARISC_LTOFF_FPTR14DR:
    case R_PARISC_LTOFF_FPTR14WR:
    case R_PARISC_LTOFF_FPTR14WR:
    case R_PARISC_LTOFF_FPTR21L:
    case R_PARISC_LTOFF_FPTR21L:
    case R_PARISC_LTOFF_FPTR16F:
    case R_PARISC_LTOFF_FPTR16F:
    case R_PARISC_LTOFF_FPTR16WF:
    case R_PARISC_LTOFF_FPTR16WF:
    case R_PARISC_LTOFF_FPTR16DF:
    case R_PARISC_LTOFF_FPTR16DF:
    case R_PARISC_LTOFF_TP21L:
    case R_PARISC_LTOFF_TP21L:
    case R_PARISC_LTOFF_TP14R:
    case R_PARISC_LTOFF_TP14R:
    case R_PARISC_LTOFF_TP14F:
    case R_PARISC_LTOFF_TP14F:
    case R_PARISC_LTOFF_TP14WR:
    case R_PARISC_LTOFF_TP14WR:
    case R_PARISC_LTOFF_TP14DR:
    case R_PARISC_LTOFF_TP14DR:
    case R_PARISC_LTOFF_TP16F:
    case R_PARISC_LTOFF_TP16F:
    case R_PARISC_LTOFF_TP16WF:
    case R_PARISC_LTOFF_TP16WF:
    case R_PARISC_LTOFF_TP16DF:
    case R_PARISC_LTOFF_TP16DF:
    case R_PARISC_LTOFF16F:
    case R_PARISC_LTOFF16F:
    case R_PARISC_LTOFF16WF:
    case R_PARISC_LTOFF16WF:
    case R_PARISC_LTOFF16DF:
    case R_PARISC_LTOFF16DF:
      {
      {
        bfd_vma off;
        bfd_vma off;
 
 
        /* If this relocation was against a local symbol, then we still
        /* If this relocation was against a local symbol, then we still
           have not set up the DLT entry (it's not convenient to do so
           have not set up the DLT entry (it's not convenient to do so
           in the "finalize_dlt" routine because it is difficult to get
           in the "finalize_dlt" routine because it is difficult to get
           to the local symbol's value).
           to the local symbol's value).
 
 
           So, if this is a local symbol (h == NULL), then we need to
           So, if this is a local symbol (h == NULL), then we need to
           fill in its DLT entry.
           fill in its DLT entry.
 
 
           Similarly we may still need to set up an entry in .opd for
           Similarly we may still need to set up an entry in .opd for
           a local function which had its address taken.  */
           a local function which had its address taken.  */
        if (hh == NULL)
        if (hh == NULL)
          {
          {
            bfd_vma *local_opd_offsets, *local_dlt_offsets;
            bfd_vma *local_opd_offsets, *local_dlt_offsets;
 
 
            if (local_offsets == NULL)
            if (local_offsets == NULL)
              abort ();
              abort ();
 
 
            /* Now do .opd creation if needed.  */
            /* Now do .opd creation if needed.  */
            if (r_type == R_PARISC_LTOFF_FPTR14R
            if (r_type == R_PARISC_LTOFF_FPTR14R
                || r_type == R_PARISC_LTOFF_FPTR14DR
                || r_type == R_PARISC_LTOFF_FPTR14DR
                || r_type == R_PARISC_LTOFF_FPTR14WR
                || r_type == R_PARISC_LTOFF_FPTR14WR
                || r_type == R_PARISC_LTOFF_FPTR21L
                || r_type == R_PARISC_LTOFF_FPTR21L
                || r_type == R_PARISC_LTOFF_FPTR16F
                || r_type == R_PARISC_LTOFF_FPTR16F
                || r_type == R_PARISC_LTOFF_FPTR16WF
                || r_type == R_PARISC_LTOFF_FPTR16WF
                || r_type == R_PARISC_LTOFF_FPTR16DF)
                || r_type == R_PARISC_LTOFF_FPTR16DF)
              {
              {
                local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info;
                local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info;
                off = local_opd_offsets[r_symndx];
                off = local_opd_offsets[r_symndx];
 
 
                /* The last bit records whether we've already initialised
                /* The last bit records whether we've already initialised
                   this local .opd entry.  */
                   this local .opd entry.  */
                if ((off & 1) != 0)
                if ((off & 1) != 0)
                  {
                  {
                    BFD_ASSERT (off != (bfd_vma) -1);
                    BFD_ASSERT (off != (bfd_vma) -1);
                    off &= ~1;
                    off &= ~1;
                  }
                  }
                else
                else
                  {
                  {
                    local_opd_offsets[r_symndx] |= 1;
                    local_opd_offsets[r_symndx] |= 1;
 
 
                    /* The first two words of an .opd entry are zero.  */
                    /* The first two words of an .opd entry are zero.  */
                    memset (hppa_info->opd_sec->contents + off, 0, 16);
                    memset (hppa_info->opd_sec->contents + off, 0, 16);
 
 
                    /* The next word is the address of the function.  */
                    /* The next word is the address of the function.  */
                    bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
                    bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
                                (hppa_info->opd_sec->contents + off + 16));
                                (hppa_info->opd_sec->contents + off + 16));
 
 
                    /* The last word is our local __gp value.  */
                    /* The last word is our local __gp value.  */
                    value = _bfd_get_gp_value
                    value = _bfd_get_gp_value
                              (hppa_info->opd_sec->output_section->owner);
                              (hppa_info->opd_sec->output_section->owner);
                    bfd_put_64 (hppa_info->opd_sec->owner, value,
                    bfd_put_64 (hppa_info->opd_sec->owner, value,
                                (hppa_info->opd_sec->contents + off + 24));
                                (hppa_info->opd_sec->contents + off + 24));
                  }
                  }
 
 
                /* The DLT value is the address of the .opd entry.  */
                /* The DLT value is the address of the .opd entry.  */
                value = (off
                value = (off
                         + hppa_info->opd_sec->output_offset
                         + hppa_info->opd_sec->output_offset
                         + hppa_info->opd_sec->output_section->vma);
                         + hppa_info->opd_sec->output_section->vma);
                addend = 0;
                addend = 0;
              }
              }
 
 
            local_dlt_offsets = local_offsets;
            local_dlt_offsets = local_offsets;
            off = local_dlt_offsets[r_symndx];
            off = local_dlt_offsets[r_symndx];
 
 
            if ((off & 1) != 0)
            if ((off & 1) != 0)
              {
              {
                BFD_ASSERT (off != (bfd_vma) -1);
                BFD_ASSERT (off != (bfd_vma) -1);
                off &= ~1;
                off &= ~1;
              }
              }
            else
            else
              {
              {
                local_dlt_offsets[r_symndx] |= 1;
                local_dlt_offsets[r_symndx] |= 1;
                bfd_put_64 (hppa_info->dlt_sec->owner,
                bfd_put_64 (hppa_info->dlt_sec->owner,
                            value + addend,
                            value + addend,
                            hppa_info->dlt_sec->contents + off);
                            hppa_info->dlt_sec->contents + off);
              }
              }
          }
          }
        else
        else
          off = hh->dlt_offset;
          off = hh->dlt_offset;
 
 
        /* We want the value of the DLT offset for this symbol, not
        /* We want the value of the DLT offset for this symbol, not
           the symbol's actual address.  Note that __gp may not point
           the symbol's actual address.  Note that __gp may not point
           to the start of the DLT, so we have to compute the absolute
           to the start of the DLT, so we have to compute the absolute
           address, then subtract out the value of __gp.  */
           address, then subtract out the value of __gp.  */
        value = (off
        value = (off
                 + hppa_info->dlt_sec->output_offset
                 + hppa_info->dlt_sec->output_offset
                 + hppa_info->dlt_sec->output_section->vma);
                 + hppa_info->dlt_sec->output_section->vma);
        value -= _bfd_get_gp_value (output_bfd);
        value -= _bfd_get_gp_value (output_bfd);
 
 
        /* All DLTIND relocations are basically the same at this point,
        /* All DLTIND relocations are basically the same at this point,
           except that we need different field selectors for the 21bit
           except that we need different field selectors for the 21bit
           version vs the 14bit versions.  */
           version vs the 14bit versions.  */
        if (r_type == R_PARISC_DLTIND21L
        if (r_type == R_PARISC_DLTIND21L
            || r_type == R_PARISC_LTOFF_FPTR21L
            || r_type == R_PARISC_LTOFF_FPTR21L
            || r_type == R_PARISC_LTOFF_TP21L)
            || r_type == R_PARISC_LTOFF_TP21L)
          value = hppa_field_adjust (value, 0, e_lsel);
          value = hppa_field_adjust (value, 0, e_lsel);
        else if (r_type == R_PARISC_DLTIND14F
        else if (r_type == R_PARISC_DLTIND14F
                 || r_type == R_PARISC_LTOFF_FPTR16F
                 || r_type == R_PARISC_LTOFF_FPTR16F
                 || r_type == R_PARISC_LTOFF_FPTR16WF
                 || r_type == R_PARISC_LTOFF_FPTR16WF
                 || r_type == R_PARISC_LTOFF_FPTR16DF
                 || r_type == R_PARISC_LTOFF_FPTR16DF
                 || r_type == R_PARISC_LTOFF16F
                 || r_type == R_PARISC_LTOFF16F
                 || r_type == R_PARISC_LTOFF16DF
                 || r_type == R_PARISC_LTOFF16DF
                 || r_type == R_PARISC_LTOFF16WF
                 || r_type == R_PARISC_LTOFF16WF
                 || r_type == R_PARISC_LTOFF_TP16F
                 || r_type == R_PARISC_LTOFF_TP16F
                 || r_type == R_PARISC_LTOFF_TP16WF
                 || r_type == R_PARISC_LTOFF_TP16WF
                 || r_type == R_PARISC_LTOFF_TP16DF)
                 || r_type == R_PARISC_LTOFF_TP16DF)
          value = hppa_field_adjust (value, 0, e_fsel);
          value = hppa_field_adjust (value, 0, e_fsel);
        else
        else
          value = hppa_field_adjust (value, 0, e_rsel);
          value = hppa_field_adjust (value, 0, e_rsel);
 
 
        insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
        insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
        break;
        break;
      }
      }
 
 
    case R_PARISC_DLTREL14R:
    case R_PARISC_DLTREL14R:
    case R_PARISC_DLTREL14F:
    case R_PARISC_DLTREL14F:
    case R_PARISC_DLTREL14DR:
    case R_PARISC_DLTREL14DR:
    case R_PARISC_DLTREL14WR:
    case R_PARISC_DLTREL14WR:
    case R_PARISC_DLTREL21L:
    case R_PARISC_DLTREL21L:
    case R_PARISC_DPREL21L:
    case R_PARISC_DPREL21L:
    case R_PARISC_DPREL14WR:
    case R_PARISC_DPREL14WR:
    case R_PARISC_DPREL14DR:
    case R_PARISC_DPREL14DR:
    case R_PARISC_DPREL14R:
    case R_PARISC_DPREL14R:
    case R_PARISC_DPREL14F:
    case R_PARISC_DPREL14F:
    case R_PARISC_GPREL16F:
    case R_PARISC_GPREL16F:
    case R_PARISC_GPREL16WF:
    case R_PARISC_GPREL16WF:
    case R_PARISC_GPREL16DF:
    case R_PARISC_GPREL16DF:
      {
      {
        /* Subtract out the global pointer value to make value a DLT
        /* Subtract out the global pointer value to make value a DLT
           relative address.  */
           relative address.  */
        value -= _bfd_get_gp_value (output_bfd);
        value -= _bfd_get_gp_value (output_bfd);
 
 
        /* All DLTREL relocations are basically the same at this point,
        /* All DLTREL relocations are basically the same at this point,
           except that we need different field selectors for the 21bit
           except that we need different field selectors for the 21bit
           version vs the 14bit versions.  */
           version vs the 14bit versions.  */
        if (r_type == R_PARISC_DLTREL21L
        if (r_type == R_PARISC_DLTREL21L
            || r_type == R_PARISC_DPREL21L)
            || r_type == R_PARISC_DPREL21L)
          value = hppa_field_adjust (value, addend, e_lrsel);
          value = hppa_field_adjust (value, addend, e_lrsel);
        else if (r_type == R_PARISC_DLTREL14F
        else if (r_type == R_PARISC_DLTREL14F
                 || r_type == R_PARISC_DPREL14F
                 || r_type == R_PARISC_DPREL14F
                 || r_type == R_PARISC_GPREL16F
                 || r_type == R_PARISC_GPREL16F
                 || r_type == R_PARISC_GPREL16WF
                 || r_type == R_PARISC_GPREL16WF
                 || r_type == R_PARISC_GPREL16DF)
                 || r_type == R_PARISC_GPREL16DF)
          value = hppa_field_adjust (value, addend, e_fsel);
          value = hppa_field_adjust (value, addend, e_fsel);
        else
        else
          value = hppa_field_adjust (value, addend, e_rrsel);
          value = hppa_field_adjust (value, addend, e_rrsel);
 
 
        insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
        insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
        break;
        break;
      }
      }
 
 
    case R_PARISC_DIR21L:
    case R_PARISC_DIR21L:
    case R_PARISC_DIR17R:
    case R_PARISC_DIR17R:
    case R_PARISC_DIR17F:
    case R_PARISC_DIR17F:
    case R_PARISC_DIR14R:
    case R_PARISC_DIR14R:
    case R_PARISC_DIR14F:
    case R_PARISC_DIR14F:
    case R_PARISC_DIR14WR:
    case R_PARISC_DIR14WR:
    case R_PARISC_DIR14DR:
    case R_PARISC_DIR14DR:
    case R_PARISC_DIR16F:
    case R_PARISC_DIR16F:
    case R_PARISC_DIR16WF:
    case R_PARISC_DIR16WF:
    case R_PARISC_DIR16DF:
    case R_PARISC_DIR16DF:
      {
      {
        /* All DIR relocations are basically the same at this point,
        /* All DIR relocations are basically the same at this point,
           except that branch offsets need to be divided by four, and
           except that branch offsets need to be divided by four, and
           we need different field selectors.  Note that we don't
           we need different field selectors.  Note that we don't
           redirect absolute calls to local stubs.  */
           redirect absolute calls to local stubs.  */
 
 
        if (r_type == R_PARISC_DIR21L)
        if (r_type == R_PARISC_DIR21L)
          value = hppa_field_adjust (value, addend, e_lrsel);
          value = hppa_field_adjust (value, addend, e_lrsel);
        else if (r_type == R_PARISC_DIR17F
        else if (r_type == R_PARISC_DIR17F
                 || r_type == R_PARISC_DIR16F
                 || r_type == R_PARISC_DIR16F
                 || r_type == R_PARISC_DIR16WF
                 || r_type == R_PARISC_DIR16WF
                 || r_type == R_PARISC_DIR16DF
                 || r_type == R_PARISC_DIR16DF
                 || r_type == R_PARISC_DIR14F)
                 || r_type == R_PARISC_DIR14F)
          value = hppa_field_adjust (value, addend, e_fsel);
          value = hppa_field_adjust (value, addend, e_fsel);
        else
        else
          value = hppa_field_adjust (value, addend, e_rrsel);
          value = hppa_field_adjust (value, addend, e_rrsel);
 
 
        if (r_type == R_PARISC_DIR17R || r_type == R_PARISC_DIR17F)
        if (r_type == R_PARISC_DIR17R || r_type == R_PARISC_DIR17F)
          /* All branches are implicitly shifted by 2 places.  */
          /* All branches are implicitly shifted by 2 places.  */
          value >>= 2;
          value >>= 2;
 
 
        insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
        insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
        break;
        break;
      }
      }
 
 
    case R_PARISC_PLTOFF21L:
    case R_PARISC_PLTOFF21L:
    case R_PARISC_PLTOFF14R:
    case R_PARISC_PLTOFF14R:
    case R_PARISC_PLTOFF14F:
    case R_PARISC_PLTOFF14F:
    case R_PARISC_PLTOFF14WR:
    case R_PARISC_PLTOFF14WR:
    case R_PARISC_PLTOFF14DR:
    case R_PARISC_PLTOFF14DR:
    case R_PARISC_PLTOFF16F:
    case R_PARISC_PLTOFF16F:
    case R_PARISC_PLTOFF16WF:
    case R_PARISC_PLTOFF16WF:
    case R_PARISC_PLTOFF16DF:
    case R_PARISC_PLTOFF16DF:
      {
      {
        /* We want the value of the PLT offset for this symbol, not
        /* We want the value of the PLT offset for this symbol, not
           the symbol's actual address.  Note that __gp may not point
           the symbol's actual address.  Note that __gp may not point
           to the start of the DLT, so we have to compute the absolute
           to the start of the DLT, so we have to compute the absolute
           address, then subtract out the value of __gp.  */
           address, then subtract out the value of __gp.  */
        value = (hh->plt_offset
        value = (hh->plt_offset
                 + hppa_info->plt_sec->output_offset
                 + hppa_info->plt_sec->output_offset
                 + hppa_info->plt_sec->output_section->vma);
                 + hppa_info->plt_sec->output_section->vma);
        value -= _bfd_get_gp_value (output_bfd);
        value -= _bfd_get_gp_value (output_bfd);
 
 
        /* All PLTOFF relocations are basically the same at this point,
        /* All PLTOFF relocations are basically the same at this point,
           except that we need different field selectors for the 21bit
           except that we need different field selectors for the 21bit
           version vs the 14bit versions.  */
           version vs the 14bit versions.  */
        if (r_type == R_PARISC_PLTOFF21L)
        if (r_type == R_PARISC_PLTOFF21L)
          value = hppa_field_adjust (value, addend, e_lrsel);
          value = hppa_field_adjust (value, addend, e_lrsel);
        else if (r_type == R_PARISC_PLTOFF14F
        else if (r_type == R_PARISC_PLTOFF14F
                 || r_type == R_PARISC_PLTOFF16F
                 || r_type == R_PARISC_PLTOFF16F
                 || r_type == R_PARISC_PLTOFF16WF
                 || r_type == R_PARISC_PLTOFF16WF
                 || r_type == R_PARISC_PLTOFF16DF)
                 || r_type == R_PARISC_PLTOFF16DF)
          value = hppa_field_adjust (value, addend, e_fsel);
          value = hppa_field_adjust (value, addend, e_fsel);
        else
        else
          value = hppa_field_adjust (value, addend, e_rrsel);
          value = hppa_field_adjust (value, addend, e_rrsel);
 
 
        insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
        insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
        break;
        break;
      }
      }
 
 
    case R_PARISC_LTOFF_FPTR32:
    case R_PARISC_LTOFF_FPTR32:
      {
      {
        /* We may still need to create the FPTR itself if it was for
        /* We may still need to create the FPTR itself if it was for
           a local symbol.  */
           a local symbol.  */
        if (hh == NULL)
        if (hh == NULL)
          {
          {
            /* The first two words of an .opd entry are zero.  */
            /* The first two words of an .opd entry are zero.  */
            memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16);
            memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16);
 
 
            /* The next word is the address of the function.  */
            /* The next word is the address of the function.  */
            bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
            bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
                        (hppa_info->opd_sec->contents
                        (hppa_info->opd_sec->contents
                         + hh->opd_offset + 16));
                         + hh->opd_offset + 16));
 
 
            /* The last word is our local __gp value.  */
            /* The last word is our local __gp value.  */
            value = _bfd_get_gp_value
            value = _bfd_get_gp_value
                      (hppa_info->opd_sec->output_section->owner);
                      (hppa_info->opd_sec->output_section->owner);
            bfd_put_64 (hppa_info->opd_sec->owner, value,
            bfd_put_64 (hppa_info->opd_sec->owner, value,
                        hppa_info->opd_sec->contents + hh->opd_offset + 24);
                        hppa_info->opd_sec->contents + hh->opd_offset + 24);
 
 
            /* The DLT value is the address of the .opd entry.  */
            /* The DLT value is the address of the .opd entry.  */
            value = (hh->opd_offset
            value = (hh->opd_offset
                     + hppa_info->opd_sec->output_offset
                     + hppa_info->opd_sec->output_offset
                     + hppa_info->opd_sec->output_section->vma);
                     + hppa_info->opd_sec->output_section->vma);
 
 
            bfd_put_64 (hppa_info->dlt_sec->owner,
            bfd_put_64 (hppa_info->dlt_sec->owner,
                        value,
                        value,
                        hppa_info->dlt_sec->contents + hh->dlt_offset);
                        hppa_info->dlt_sec->contents + hh->dlt_offset);
          }
          }
 
 
        /* We want the value of the DLT offset for this symbol, not
        /* We want the value of the DLT offset for this symbol, not
           the symbol's actual address.  Note that __gp may not point
           the symbol's actual address.  Note that __gp may not point
           to the start of the DLT, so we have to compute the absolute
           to the start of the DLT, so we have to compute the absolute
           address, then subtract out the value of __gp.  */
           address, then subtract out the value of __gp.  */
        value = (hh->dlt_offset
        value = (hh->dlt_offset
                 + hppa_info->dlt_sec->output_offset
                 + hppa_info->dlt_sec->output_offset
                 + hppa_info->dlt_sec->output_section->vma);
                 + hppa_info->dlt_sec->output_section->vma);
        value -= _bfd_get_gp_value (output_bfd);
        value -= _bfd_get_gp_value (output_bfd);
        bfd_put_32 (input_bfd, value, hit_data);
        bfd_put_32 (input_bfd, value, hit_data);
        return bfd_reloc_ok;
        return bfd_reloc_ok;
      }
      }
 
 
    case R_PARISC_LTOFF_FPTR64:
    case R_PARISC_LTOFF_FPTR64:
    case R_PARISC_LTOFF_TP64:
    case R_PARISC_LTOFF_TP64:
      {
      {
        /* We may still need to create the FPTR itself if it was for
        /* We may still need to create the FPTR itself if it was for
           a local symbol.  */
           a local symbol.  */
        if (eh == NULL && r_type == R_PARISC_LTOFF_FPTR64)
        if (eh == NULL && r_type == R_PARISC_LTOFF_FPTR64)
          {
          {
            /* The first two words of an .opd entry are zero.  */
            /* The first two words of an .opd entry are zero.  */
            memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16);
            memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16);
 
 
            /* The next word is the address of the function.  */
            /* The next word is the address of the function.  */
            bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
            bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
                        (hppa_info->opd_sec->contents
                        (hppa_info->opd_sec->contents
                         + hh->opd_offset + 16));
                         + hh->opd_offset + 16));
 
 
            /* The last word is our local __gp value.  */
            /* The last word is our local __gp value.  */
            value = _bfd_get_gp_value
            value = _bfd_get_gp_value
                      (hppa_info->opd_sec->output_section->owner);
                      (hppa_info->opd_sec->output_section->owner);
            bfd_put_64 (hppa_info->opd_sec->owner, value,
            bfd_put_64 (hppa_info->opd_sec->owner, value,
                        hppa_info->opd_sec->contents + hh->opd_offset + 24);
                        hppa_info->opd_sec->contents + hh->opd_offset + 24);
 
 
            /* The DLT value is the address of the .opd entry.  */
            /* The DLT value is the address of the .opd entry.  */
            value = (hh->opd_offset
            value = (hh->opd_offset
                     + hppa_info->opd_sec->output_offset
                     + hppa_info->opd_sec->output_offset
                     + hppa_info->opd_sec->output_section->vma);
                     + hppa_info->opd_sec->output_section->vma);
 
 
            bfd_put_64 (hppa_info->dlt_sec->owner,
            bfd_put_64 (hppa_info->dlt_sec->owner,
                        value,
                        value,
                        hppa_info->dlt_sec->contents + hh->dlt_offset);
                        hppa_info->dlt_sec->contents + hh->dlt_offset);
          }
          }
 
 
        /* We want the value of the DLT offset for this symbol, not
        /* We want the value of the DLT offset for this symbol, not
           the symbol's actual address.  Note that __gp may not point
           the symbol's actual address.  Note that __gp may not point
           to the start of the DLT, so we have to compute the absolute
           to the start of the DLT, so we have to compute the absolute
           address, then subtract out the value of __gp.  */
           address, then subtract out the value of __gp.  */
        value = (hh->dlt_offset
        value = (hh->dlt_offset
                 + hppa_info->dlt_sec->output_offset
                 + hppa_info->dlt_sec->output_offset
                 + hppa_info->dlt_sec->output_section->vma);
                 + hppa_info->dlt_sec->output_section->vma);
        value -= _bfd_get_gp_value (output_bfd);
        value -= _bfd_get_gp_value (output_bfd);
        bfd_put_64 (input_bfd, value, hit_data);
        bfd_put_64 (input_bfd, value, hit_data);
        return bfd_reloc_ok;
        return bfd_reloc_ok;
      }
      }
 
 
    case R_PARISC_DIR32:
    case R_PARISC_DIR32:
      bfd_put_32 (input_bfd, value + addend, hit_data);
      bfd_put_32 (input_bfd, value + addend, hit_data);
      return bfd_reloc_ok;
      return bfd_reloc_ok;
 
 
    case R_PARISC_DIR64:
    case R_PARISC_DIR64:
      bfd_put_64 (input_bfd, value + addend, hit_data);
      bfd_put_64 (input_bfd, value + addend, hit_data);
      return bfd_reloc_ok;
      return bfd_reloc_ok;
 
 
    case R_PARISC_GPREL64:
    case R_PARISC_GPREL64:
      /* Subtract out the global pointer value to make value a DLT
      /* Subtract out the global pointer value to make value a DLT
         relative address.  */
         relative address.  */
      value -= _bfd_get_gp_value (output_bfd);
      value -= _bfd_get_gp_value (output_bfd);
 
 
      bfd_put_64 (input_bfd, value + addend, hit_data);
      bfd_put_64 (input_bfd, value + addend, hit_data);
      return bfd_reloc_ok;
      return bfd_reloc_ok;
 
 
    case R_PARISC_LTOFF64:
    case R_PARISC_LTOFF64:
        /* We want the value of the DLT offset for this symbol, not
        /* We want the value of the DLT offset for this symbol, not
           the symbol's actual address.  Note that __gp may not point
           the symbol's actual address.  Note that __gp may not point
           to the start of the DLT, so we have to compute the absolute
           to the start of the DLT, so we have to compute the absolute
           address, then subtract out the value of __gp.  */
           address, then subtract out the value of __gp.  */
      value = (hh->dlt_offset
      value = (hh->dlt_offset
               + hppa_info->dlt_sec->output_offset
               + hppa_info->dlt_sec->output_offset
               + hppa_info->dlt_sec->output_section->vma);
               + hppa_info->dlt_sec->output_section->vma);
      value -= _bfd_get_gp_value (output_bfd);
      value -= _bfd_get_gp_value (output_bfd);
 
 
      bfd_put_64 (input_bfd, value + addend, hit_data);
      bfd_put_64 (input_bfd, value + addend, hit_data);
      return bfd_reloc_ok;
      return bfd_reloc_ok;
 
 
    case R_PARISC_PCREL32:
    case R_PARISC_PCREL32:
      {
      {
        /* If this is a call to a function defined in another dynamic
        /* If this is a call to a function defined in another dynamic
           library, then redirect the call to the local stub for this
           library, then redirect the call to the local stub for this
           function.  */
           function.  */
        if (sym_sec == NULL || sym_sec->output_section == NULL)
        if (sym_sec == NULL || sym_sec->output_section == NULL)
          value = (hh->stub_offset + hppa_info->stub_sec->output_offset
          value = (hh->stub_offset + hppa_info->stub_sec->output_offset
                   + hppa_info->stub_sec->output_section->vma);
                   + hppa_info->stub_sec->output_section->vma);
 
 
        /* Turn VALUE into a proper PC relative address.  */
        /* Turn VALUE into a proper PC relative address.  */
        value -= (offset + input_section->output_offset
        value -= (offset + input_section->output_offset
                  + input_section->output_section->vma);
                  + input_section->output_section->vma);
 
 
        value += addend;
        value += addend;
        value -= 8;
        value -= 8;
        bfd_put_32 (input_bfd, value, hit_data);
        bfd_put_32 (input_bfd, value, hit_data);
        return bfd_reloc_ok;
        return bfd_reloc_ok;
      }
      }
 
 
    case R_PARISC_PCREL64:
    case R_PARISC_PCREL64:
      {
      {
        /* If this is a call to a function defined in another dynamic
        /* If this is a call to a function defined in another dynamic
           library, then redirect the call to the local stub for this
           library, then redirect the call to the local stub for this
           function.  */
           function.  */
        if (sym_sec == NULL || sym_sec->output_section == NULL)
        if (sym_sec == NULL || sym_sec->output_section == NULL)
          value = (hh->stub_offset + hppa_info->stub_sec->output_offset
          value = (hh->stub_offset + hppa_info->stub_sec->output_offset
                   + hppa_info->stub_sec->output_section->vma);
                   + hppa_info->stub_sec->output_section->vma);
 
 
        /* Turn VALUE into a proper PC relative address.  */
        /* Turn VALUE into a proper PC relative address.  */
        value -= (offset + input_section->output_offset
        value -= (offset + input_section->output_offset
                  + input_section->output_section->vma);
                  + input_section->output_section->vma);
 
 
        value += addend;
        value += addend;
        value -= 8;
        value -= 8;
        bfd_put_64 (input_bfd, value, hit_data);
        bfd_put_64 (input_bfd, value, hit_data);
        return bfd_reloc_ok;
        return bfd_reloc_ok;
      }
      }
 
 
    case R_PARISC_FPTR64:
    case R_PARISC_FPTR64:
      {
      {
        bfd_vma off;
        bfd_vma off;
 
 
        /* We may still need to create the FPTR itself if it was for
        /* We may still need to create the FPTR itself if it was for
           a local symbol.  */
           a local symbol.  */
        if (hh == NULL)
        if (hh == NULL)
          {
          {
            bfd_vma *local_opd_offsets;
            bfd_vma *local_opd_offsets;
 
 
            if (local_offsets == NULL)
            if (local_offsets == NULL)
              abort ();
              abort ();
 
 
            local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info;
            local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info;
            off = local_opd_offsets[r_symndx];
            off = local_opd_offsets[r_symndx];
 
 
            /* The last bit records whether we've already initialised
            /* The last bit records whether we've already initialised
               this local .opd entry.  */
               this local .opd entry.  */
            if ((off & 1) != 0)
            if ((off & 1) != 0)
              {
              {
                BFD_ASSERT (off != (bfd_vma) -1);
                BFD_ASSERT (off != (bfd_vma) -1);
                off &= ~1;
                off &= ~1;
              }
              }
            else
            else
              {
              {
                /* The first two words of an .opd entry are zero.  */
                /* The first two words of an .opd entry are zero.  */
                memset (hppa_info->opd_sec->contents + off, 0, 16);
                memset (hppa_info->opd_sec->contents + off, 0, 16);
 
 
                /* The next word is the address of the function.  */
                /* The next word is the address of the function.  */
                bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
                bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
                            (hppa_info->opd_sec->contents + off + 16));
                            (hppa_info->opd_sec->contents + off + 16));
 
 
                /* The last word is our local __gp value.  */
                /* The last word is our local __gp value.  */
                value = _bfd_get_gp_value
                value = _bfd_get_gp_value
                          (hppa_info->opd_sec->output_section->owner);
                          (hppa_info->opd_sec->output_section->owner);
                bfd_put_64 (hppa_info->opd_sec->owner, value,
                bfd_put_64 (hppa_info->opd_sec->owner, value,
                            hppa_info->opd_sec->contents + off + 24);
                            hppa_info->opd_sec->contents + off + 24);
              }
              }
          }
          }
        else
        else
          off = hh->opd_offset;
          off = hh->opd_offset;
 
 
        if (hh == NULL || hh->want_opd)
        if (hh == NULL || hh->want_opd)
          /* We want the value of the OPD offset for this symbol.  */
          /* We want the value of the OPD offset for this symbol.  */
          value = (off
          value = (off
                   + hppa_info->opd_sec->output_offset
                   + hppa_info->opd_sec->output_offset
                   + hppa_info->opd_sec->output_section->vma);
                   + hppa_info->opd_sec->output_section->vma);
        else
        else
          /* We want the address of the symbol.  */
          /* We want the address of the symbol.  */
          value += addend;
          value += addend;
 
 
        bfd_put_64 (input_bfd, value, hit_data);
        bfd_put_64 (input_bfd, value, hit_data);
        return bfd_reloc_ok;
        return bfd_reloc_ok;
      }
      }
 
 
    case R_PARISC_SECREL32:
    case R_PARISC_SECREL32:
      if (sym_sec)
      if (sym_sec)
        value -= sym_sec->output_section->vma;
        value -= sym_sec->output_section->vma;
      bfd_put_32 (input_bfd, value + addend, hit_data);
      bfd_put_32 (input_bfd, value + addend, hit_data);
      return bfd_reloc_ok;
      return bfd_reloc_ok;
 
 
    case R_PARISC_SEGREL32:
    case R_PARISC_SEGREL32:
    case R_PARISC_SEGREL64:
    case R_PARISC_SEGREL64:
      {
      {
        /* If this is the first SEGREL relocation, then initialize
        /* If this is the first SEGREL relocation, then initialize
           the segment base values.  */
           the segment base values.  */
        if (hppa_info->text_segment_base == (bfd_vma) -1)
        if (hppa_info->text_segment_base == (bfd_vma) -1)
          bfd_map_over_sections (output_bfd, elf_hppa_record_segment_addrs,
          bfd_map_over_sections (output_bfd, elf_hppa_record_segment_addrs,
                                 hppa_info);
                                 hppa_info);
 
 
        /* VALUE holds the absolute address.  We want to include the
        /* VALUE holds the absolute address.  We want to include the
           addend, then turn it into a segment relative address.
           addend, then turn it into a segment relative address.
 
 
           The segment is derived from SYM_SEC.  We assume that there are
           The segment is derived from SYM_SEC.  We assume that there are
           only two segments of note in the resulting executable/shlib.
           only two segments of note in the resulting executable/shlib.
           A readonly segment (.text) and a readwrite segment (.data).  */
           A readonly segment (.text) and a readwrite segment (.data).  */
        value += addend;
        value += addend;
 
 
        if (sym_sec->flags & SEC_CODE)
        if (sym_sec->flags & SEC_CODE)
          value -= hppa_info->text_segment_base;
          value -= hppa_info->text_segment_base;
        else
        else
          value -= hppa_info->data_segment_base;
          value -= hppa_info->data_segment_base;
 
 
        if (r_type == R_PARISC_SEGREL32)
        if (r_type == R_PARISC_SEGREL32)
          bfd_put_32 (input_bfd, value, hit_data);
          bfd_put_32 (input_bfd, value, hit_data);
        else
        else
          bfd_put_64 (input_bfd, value, hit_data);
          bfd_put_64 (input_bfd, value, hit_data);
        return bfd_reloc_ok;
        return bfd_reloc_ok;
      }
      }
 
 
    /* Something we don't know how to handle.  */
    /* Something we don't know how to handle.  */
    default:
    default:
      return bfd_reloc_notsupported;
      return bfd_reloc_notsupported;
    }
    }
 
 
  /* Update the instruction word.  */
  /* Update the instruction word.  */
  bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
  bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
  return bfd_reloc_ok;
  return bfd_reloc_ok;
}
}
 
 
/* Relocate an HPPA ELF section.  */
/* Relocate an HPPA ELF section.  */
 
 
static bfd_boolean
static bfd_boolean
elf64_hppa_relocate_section (bfd *output_bfd,
elf64_hppa_relocate_section (bfd *output_bfd,
                           struct bfd_link_info *info,
                           struct bfd_link_info *info,
                           bfd *input_bfd,
                           bfd *input_bfd,
                           asection *input_section,
                           asection *input_section,
                           bfd_byte *contents,
                           bfd_byte *contents,
                           Elf_Internal_Rela *relocs,
                           Elf_Internal_Rela *relocs,
                           Elf_Internal_Sym *local_syms,
                           Elf_Internal_Sym *local_syms,
                           asection **local_sections)
                           asection **local_sections)
{
{
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Rela *rel;
  Elf_Internal_Rela *rel;
  Elf_Internal_Rela *relend;
  Elf_Internal_Rela *relend;
  struct elf64_hppa_link_hash_table *hppa_info;
  struct elf64_hppa_link_hash_table *hppa_info;
 
 
  hppa_info = hppa_link_hash_table (info);
  hppa_info = hppa_link_hash_table (info);
  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
 
 
  rel = relocs;
  rel = relocs;
  relend = relocs + input_section->reloc_count;
  relend = relocs + input_section->reloc_count;
  for (; rel < relend; rel++)
  for (; rel < relend; rel++)
    {
    {
      int r_type;
      int r_type;
      reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
      reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
      unsigned long r_symndx;
      unsigned long r_symndx;
      struct elf_link_hash_entry *eh;
      struct elf_link_hash_entry *eh;
      Elf_Internal_Sym *sym;
      Elf_Internal_Sym *sym;
      asection *sym_sec;
      asection *sym_sec;
      bfd_vma relocation;
      bfd_vma relocation;
      bfd_reloc_status_type r;
      bfd_reloc_status_type r;
      bfd_boolean warned_undef;
      bfd_boolean warned_undef;
 
 
      r_type = ELF_R_TYPE (rel->r_info);
      r_type = ELF_R_TYPE (rel->r_info);
      if (r_type < 0 || r_type >= (int) R_PARISC_UNIMPLEMENTED)
      if (r_type < 0 || r_type >= (int) R_PARISC_UNIMPLEMENTED)
        {
        {
          bfd_set_error (bfd_error_bad_value);
          bfd_set_error (bfd_error_bad_value);
          return FALSE;
          return FALSE;
        }
        }
      if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
      if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
          || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
          || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
        continue;
        continue;
 
 
      /* This is a final link.  */
      /* This is a final link.  */
      r_symndx = ELF_R_SYM (rel->r_info);
      r_symndx = ELF_R_SYM (rel->r_info);
      eh = NULL;
      eh = NULL;
      sym = NULL;
      sym = NULL;
      sym_sec = NULL;
      sym_sec = NULL;
      warned_undef = FALSE;
      warned_undef = FALSE;
      if (r_symndx < symtab_hdr->sh_info)
      if (r_symndx < symtab_hdr->sh_info)
        {
        {
          /* This is a local symbol, hh defaults to NULL.  */
          /* This is a local symbol, hh defaults to NULL.  */
          sym = local_syms + r_symndx;
          sym = local_syms + r_symndx;
          sym_sec = local_sections[r_symndx];
          sym_sec = local_sections[r_symndx];
          relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rel);
          relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rel);
        }
        }
      else
      else
        {
        {
          /* This is not a local symbol.  */
          /* This is not a local symbol.  */
          bfd_boolean unresolved_reloc;
          bfd_boolean unresolved_reloc;
          struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
          struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
 
 
          /* It seems this can happen with erroneous or unsupported
          /* It seems this can happen with erroneous or unsupported
             input (mixing a.out and elf in an archive, for example.)  */
             input (mixing a.out and elf in an archive, for example.)  */
          if (sym_hashes == NULL)
          if (sym_hashes == NULL)
            return FALSE;
            return FALSE;
 
 
          eh = sym_hashes[r_symndx - symtab_hdr->sh_info];
          eh = sym_hashes[r_symndx - symtab_hdr->sh_info];
 
 
          while (eh->root.type == bfd_link_hash_indirect
          while (eh->root.type == bfd_link_hash_indirect
                 || eh->root.type == bfd_link_hash_warning)
                 || eh->root.type == bfd_link_hash_warning)
            eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
            eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
 
 
          warned_undef = FALSE;
          warned_undef = FALSE;
          unresolved_reloc = FALSE;
          unresolved_reloc = FALSE;
          relocation = 0;
          relocation = 0;
          if (eh->root.type == bfd_link_hash_defined
          if (eh->root.type == bfd_link_hash_defined
              || eh->root.type == bfd_link_hash_defweak)
              || eh->root.type == bfd_link_hash_defweak)
            {
            {
              sym_sec = eh->root.u.def.section;
              sym_sec = eh->root.u.def.section;
              if (sym_sec == NULL
              if (sym_sec == NULL
                  || sym_sec->output_section == NULL)
                  || sym_sec->output_section == NULL)
                /* Set a flag that will be cleared later if we find a
                /* Set a flag that will be cleared later if we find a
                   relocation value for this symbol.  output_section
                   relocation value for this symbol.  output_section
                   is typically NULL for symbols satisfied by a shared
                   is typically NULL for symbols satisfied by a shared
                   library.  */
                   library.  */
                unresolved_reloc = TRUE;
                unresolved_reloc = TRUE;
              else
              else
                relocation = (eh->root.u.def.value
                relocation = (eh->root.u.def.value
                              + sym_sec->output_section->vma
                              + sym_sec->output_section->vma
                              + sym_sec->output_offset);
                              + sym_sec->output_offset);
            }
            }
          else if (eh->root.type == bfd_link_hash_undefweak)
          else if (eh->root.type == bfd_link_hash_undefweak)
            ;
            ;
          else if (info->unresolved_syms_in_objects == RM_IGNORE
          else if (info->unresolved_syms_in_objects == RM_IGNORE
                   && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT)
                   && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT)
            ;
            ;
          else if (!info->relocatable
          else if (!info->relocatable
                   && elf_hppa_is_dynamic_loader_symbol (eh->root.root.string))
                   && elf_hppa_is_dynamic_loader_symbol (eh->root.root.string))
            continue;
            continue;
          else if (!info->relocatable)
          else if (!info->relocatable)
            {
            {
              bfd_boolean err;
              bfd_boolean err;
              err = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
              err = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
                     || ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT);
                     || ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT);
              if (!info->callbacks->undefined_symbol (info,
              if (!info->callbacks->undefined_symbol (info,
                                                      eh->root.root.string,
                                                      eh->root.root.string,
                                                      input_bfd,
                                                      input_bfd,
                                                      input_section,
                                                      input_section,
                                                      rel->r_offset, err))
                                                      rel->r_offset, err))
                return FALSE;
                return FALSE;
              warned_undef = TRUE;
              warned_undef = TRUE;
            }
            }
 
 
          if (!info->relocatable
          if (!info->relocatable
              && relocation == 0
              && relocation == 0
              && eh->root.type != bfd_link_hash_defined
              && eh->root.type != bfd_link_hash_defined
              && eh->root.type != bfd_link_hash_defweak
              && eh->root.type != bfd_link_hash_defweak
              && eh->root.type != bfd_link_hash_undefweak)
              && eh->root.type != bfd_link_hash_undefweak)
            {
            {
              if (info->unresolved_syms_in_objects == RM_IGNORE
              if (info->unresolved_syms_in_objects == RM_IGNORE
                  && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
                  && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
                  && eh->type == STT_PARISC_MILLI)
                  && eh->type == STT_PARISC_MILLI)
                {
                {
                  if (! info->callbacks->undefined_symbol
                  if (! info->callbacks->undefined_symbol
                      (info, eh_name (eh), input_bfd,
                      (info, eh_name (eh), input_bfd,
                       input_section, rel->r_offset, FALSE))
                       input_section, rel->r_offset, FALSE))
                    return FALSE;
                    return FALSE;
                  warned_undef = TRUE;
                  warned_undef = TRUE;
                }
                }
            }
            }
        }
        }
 
 
      if (sym_sec != NULL && elf_discarded_section (sym_sec))
      if (sym_sec != NULL && elf_discarded_section (sym_sec))
        {
        {
          /* For relocs against symbols from removed linkonce sections,
          /* For relocs against symbols from removed linkonce sections,
             or sections discarded by a linker script, we just want the
             or sections discarded by a linker script, we just want the
             section contents zeroed.  Avoid any special processing.  */
             section contents zeroed.  Avoid any special processing.  */
          _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
          _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
          rel->r_info = 0;
          rel->r_info = 0;
          rel->r_addend = 0;
          rel->r_addend = 0;
          continue;
          continue;
        }
        }
 
 
      if (info->relocatable)
      if (info->relocatable)
        continue;
        continue;
 
 
      r = elf_hppa_final_link_relocate (rel, input_bfd, output_bfd,
      r = elf_hppa_final_link_relocate (rel, input_bfd, output_bfd,
                                        input_section, contents,
                                        input_section, contents,
                                        relocation, info, sym_sec,
                                        relocation, info, sym_sec,
                                        eh);
                                        eh);
 
 
      if (r != bfd_reloc_ok)
      if (r != bfd_reloc_ok)
        {
        {
          switch (r)
          switch (r)
            {
            {
            default:
            default:
              abort ();
              abort ();
            case bfd_reloc_overflow:
            case bfd_reloc_overflow:
              {
              {
                const char *sym_name;
                const char *sym_name;
 
 
                if (eh != NULL)
                if (eh != NULL)
                  sym_name = NULL;
                  sym_name = NULL;
                else
                else
                  {
                  {
                    sym_name = bfd_elf_string_from_elf_section (input_bfd,
                    sym_name = bfd_elf_string_from_elf_section (input_bfd,
                                                                symtab_hdr->sh_link,
                                                                symtab_hdr->sh_link,
                                                                sym->st_name);
                                                                sym->st_name);
                    if (sym_name == NULL)
                    if (sym_name == NULL)
                      return FALSE;
                      return FALSE;
                    if (*sym_name == '\0')
                    if (*sym_name == '\0')
                      sym_name = bfd_section_name (input_bfd, sym_sec);
                      sym_name = bfd_section_name (input_bfd, sym_sec);
                  }
                  }
 
 
                if (!((*info->callbacks->reloc_overflow)
                if (!((*info->callbacks->reloc_overflow)
                      (info, (eh ? &eh->root : NULL), sym_name,
                      (info, (eh ? &eh->root : NULL), sym_name,
                       howto->name, (bfd_vma) 0, input_bfd,
                       howto->name, (bfd_vma) 0, input_bfd,
                       input_section, rel->r_offset)))
                       input_section, rel->r_offset)))
                  return FALSE;
                  return FALSE;
              }
              }
              break;
              break;
            }
            }
        }
        }
    }
    }
  return TRUE;
  return TRUE;
}
}
 
 
static const struct bfd_elf_special_section elf64_hppa_special_sections[] =
static const struct bfd_elf_special_section elf64_hppa_special_sections[] =
{
{
  { STRING_COMMA_LEN (".fini"),  0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
  { STRING_COMMA_LEN (".fini"),  0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
  { STRING_COMMA_LEN (".init"),  0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
  { STRING_COMMA_LEN (".init"),  0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
  { STRING_COMMA_LEN (".plt"),   0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
  { STRING_COMMA_LEN (".plt"),   0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
  { STRING_COMMA_LEN (".dlt"),   0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
  { STRING_COMMA_LEN (".dlt"),   0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
  { STRING_COMMA_LEN (".sdata"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
  { STRING_COMMA_LEN (".sdata"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
  { STRING_COMMA_LEN (".sbss"),  0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
  { STRING_COMMA_LEN (".sbss"),  0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
  { STRING_COMMA_LEN (".tbss"),  0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_HP_TLS },
  { STRING_COMMA_LEN (".tbss"),  0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_HP_TLS },
  { NULL,                    0,  0, 0,            0 }
  { NULL,                    0,  0, 0,            0 }
};
};
 
 
/* The hash bucket size is the standard one, namely 4.  */
/* The hash bucket size is the standard one, namely 4.  */
 
 
const struct elf_size_info hppa64_elf_size_info =
const struct elf_size_info hppa64_elf_size_info =
{
{
  sizeof (Elf64_External_Ehdr),
  sizeof (Elf64_External_Ehdr),
  sizeof (Elf64_External_Phdr),
  sizeof (Elf64_External_Phdr),
  sizeof (Elf64_External_Shdr),
  sizeof (Elf64_External_Shdr),
  sizeof (Elf64_External_Rel),
  sizeof (Elf64_External_Rel),
  sizeof (Elf64_External_Rela),
  sizeof (Elf64_External_Rela),
  sizeof (Elf64_External_Sym),
  sizeof (Elf64_External_Sym),
  sizeof (Elf64_External_Dyn),
  sizeof (Elf64_External_Dyn),
  sizeof (Elf_External_Note),
  sizeof (Elf_External_Note),
  4,
  4,
  1,
  1,
  64, 3,
  64, 3,
  ELFCLASS64, EV_CURRENT,
  ELFCLASS64, EV_CURRENT,
  bfd_elf64_write_out_phdrs,
  bfd_elf64_write_out_phdrs,
  bfd_elf64_write_shdrs_and_ehdr,
  bfd_elf64_write_shdrs_and_ehdr,
  bfd_elf64_checksum_contents,
  bfd_elf64_checksum_contents,
  bfd_elf64_write_relocs,
  bfd_elf64_write_relocs,
  bfd_elf64_swap_symbol_in,
  bfd_elf64_swap_symbol_in,
  bfd_elf64_swap_symbol_out,
  bfd_elf64_swap_symbol_out,
  bfd_elf64_slurp_reloc_table,
  bfd_elf64_slurp_reloc_table,
  bfd_elf64_slurp_symbol_table,
  bfd_elf64_slurp_symbol_table,
  bfd_elf64_swap_dyn_in,
  bfd_elf64_swap_dyn_in,
  bfd_elf64_swap_dyn_out,
  bfd_elf64_swap_dyn_out,
  bfd_elf64_swap_reloc_in,
  bfd_elf64_swap_reloc_in,
  bfd_elf64_swap_reloc_out,
  bfd_elf64_swap_reloc_out,
  bfd_elf64_swap_reloca_in,
  bfd_elf64_swap_reloca_in,
  bfd_elf64_swap_reloca_out
  bfd_elf64_swap_reloca_out
};
};
 
 
#define TARGET_BIG_SYM                  bfd_elf64_hppa_vec
#define TARGET_BIG_SYM                  bfd_elf64_hppa_vec
#define TARGET_BIG_NAME                 "elf64-hppa"
#define TARGET_BIG_NAME                 "elf64-hppa"
#define ELF_ARCH                        bfd_arch_hppa
#define ELF_ARCH                        bfd_arch_hppa
#define ELF_MACHINE_CODE                EM_PARISC
#define ELF_MACHINE_CODE                EM_PARISC
/* This is not strictly correct.  The maximum page size for PA2.0 is
/* This is not strictly correct.  The maximum page size for PA2.0 is
   64M.  But everything still uses 4k.  */
   64M.  But everything still uses 4k.  */
#define ELF_MAXPAGESIZE                 0x1000
#define ELF_MAXPAGESIZE                 0x1000
#define ELF_OSABI                       ELFOSABI_HPUX
#define ELF_OSABI                       ELFOSABI_HPUX
 
 
#define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
#define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
#define bfd_elf64_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
#define bfd_elf64_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
#define bfd_elf64_bfd_is_local_label_name       elf_hppa_is_local_label_name
#define bfd_elf64_bfd_is_local_label_name       elf_hppa_is_local_label_name
#define elf_info_to_howto               elf_hppa_info_to_howto
#define elf_info_to_howto               elf_hppa_info_to_howto
#define elf_info_to_howto_rel           elf_hppa_info_to_howto_rel
#define elf_info_to_howto_rel           elf_hppa_info_to_howto_rel
 
 
#define elf_backend_section_from_shdr   elf64_hppa_section_from_shdr
#define elf_backend_section_from_shdr   elf64_hppa_section_from_shdr
#define elf_backend_object_p            elf64_hppa_object_p
#define elf_backend_object_p            elf64_hppa_object_p
#define elf_backend_final_write_processing \
#define elf_backend_final_write_processing \
                                        elf_hppa_final_write_processing
                                        elf_hppa_final_write_processing
#define elf_backend_fake_sections       elf_hppa_fake_sections
#define elf_backend_fake_sections       elf_hppa_fake_sections
#define elf_backend_add_symbol_hook     elf_hppa_add_symbol_hook
#define elf_backend_add_symbol_hook     elf_hppa_add_symbol_hook
 
 
#define elf_backend_relocate_section    elf_hppa_relocate_section
#define elf_backend_relocate_section    elf_hppa_relocate_section
 
 
#define bfd_elf64_bfd_final_link        elf_hppa_final_link
#define bfd_elf64_bfd_final_link        elf_hppa_final_link
 
 
#define elf_backend_create_dynamic_sections \
#define elf_backend_create_dynamic_sections \
                                        elf64_hppa_create_dynamic_sections
                                        elf64_hppa_create_dynamic_sections
#define elf_backend_post_process_headers        elf64_hppa_post_process_headers
#define elf_backend_post_process_headers        elf64_hppa_post_process_headers
 
 
#define elf_backend_omit_section_dynsym \
#define elf_backend_omit_section_dynsym \
  ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
  ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
#define elf_backend_adjust_dynamic_symbol \
#define elf_backend_adjust_dynamic_symbol \
                                        elf64_hppa_adjust_dynamic_symbol
                                        elf64_hppa_adjust_dynamic_symbol
 
 
#define elf_backend_size_dynamic_sections \
#define elf_backend_size_dynamic_sections \
                                        elf64_hppa_size_dynamic_sections
                                        elf64_hppa_size_dynamic_sections
 
 
#define elf_backend_finish_dynamic_symbol \
#define elf_backend_finish_dynamic_symbol \
                                        elf64_hppa_finish_dynamic_symbol
                                        elf64_hppa_finish_dynamic_symbol
#define elf_backend_finish_dynamic_sections \
#define elf_backend_finish_dynamic_sections \
                                        elf64_hppa_finish_dynamic_sections
                                        elf64_hppa_finish_dynamic_sections
#define elf_backend_grok_prstatus       elf64_hppa_grok_prstatus
#define elf_backend_grok_prstatus       elf64_hppa_grok_prstatus
#define elf_backend_grok_psinfo         elf64_hppa_grok_psinfo
#define elf_backend_grok_psinfo         elf64_hppa_grok_psinfo
 
 
/* Stuff for the BFD linker: */
/* Stuff for the BFD linker: */
#define bfd_elf64_bfd_link_hash_table_create \
#define bfd_elf64_bfd_link_hash_table_create \
        elf64_hppa_hash_table_create
        elf64_hppa_hash_table_create
 
 
#define elf_backend_check_relocs \
#define elf_backend_check_relocs \
        elf64_hppa_check_relocs
        elf64_hppa_check_relocs
 
 
#define elf_backend_size_info \
#define elf_backend_size_info \
  hppa64_elf_size_info
  hppa64_elf_size_info
 
 
#define elf_backend_additional_program_headers \
#define elf_backend_additional_program_headers \
        elf64_hppa_additional_program_headers
        elf64_hppa_additional_program_headers
 
 
#define elf_backend_modify_segment_map \
#define elf_backend_modify_segment_map \
        elf64_hppa_modify_segment_map
        elf64_hppa_modify_segment_map
 
 
#define elf_backend_link_output_symbol_hook \
#define elf_backend_link_output_symbol_hook \
        elf64_hppa_link_output_symbol_hook
        elf64_hppa_link_output_symbol_hook
 
 
#define elf_backend_want_got_plt        0
#define elf_backend_want_got_plt        0
#define elf_backend_plt_readonly        0
#define elf_backend_plt_readonly        0
#define elf_backend_want_plt_sym        0
#define elf_backend_want_plt_sym        0
#define elf_backend_got_header_size     0
#define elf_backend_got_header_size     0
#define elf_backend_type_change_ok      TRUE
#define elf_backend_type_change_ok      TRUE
#define elf_backend_get_symbol_type     elf64_hppa_elf_get_symbol_type
#define elf_backend_get_symbol_type     elf64_hppa_elf_get_symbol_type
#define elf_backend_reloc_type_class    elf64_hppa_reloc_type_class
#define elf_backend_reloc_type_class    elf64_hppa_reloc_type_class
#define elf_backend_rela_normal         1
#define elf_backend_rela_normal         1
#define elf_backend_special_sections    elf64_hppa_special_sections
#define elf_backend_special_sections    elf64_hppa_special_sections
#define elf_backend_action_discarded    elf_hppa_action_discarded
#define elf_backend_action_discarded    elf_hppa_action_discarded
#define elf_backend_section_from_phdr   elf64_hppa_section_from_phdr
#define elf_backend_section_from_phdr   elf64_hppa_section_from_phdr
 
 
#define elf64_bed                       elf64_hppa_hpux_bed
#define elf64_bed                       elf64_hppa_hpux_bed
 
 
#include "elf64-target.h"
#include "elf64-target.h"
 
 
#undef TARGET_BIG_SYM
#undef TARGET_BIG_SYM
#define TARGET_BIG_SYM                  bfd_elf64_hppa_linux_vec
#define TARGET_BIG_SYM                  bfd_elf64_hppa_linux_vec
#undef TARGET_BIG_NAME
#undef TARGET_BIG_NAME
#define TARGET_BIG_NAME                 "elf64-hppa-linux"
#define TARGET_BIG_NAME                 "elf64-hppa-linux"
#undef ELF_OSABI
#undef ELF_OSABI
#define ELF_OSABI                       ELFOSABI_LINUX
#define ELF_OSABI                       ELFOSABI_LINUX
#undef elf_backend_post_process_headers
#undef elf_backend_post_process_headers
#define elf_backend_post_process_headers _bfd_elf_set_osabi
#define elf_backend_post_process_headers _bfd_elf_set_osabi
#undef elf64_bed
#undef elf64_bed
#define elf64_bed                       elf64_hppa_linux_bed
#define elf64_bed                       elf64_hppa_linux_bed
 
 
#include "elf64-target.h"
#include "elf64-target.h"
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.