OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gdb-6.8/] [bfd/] [elf64-sparc.c] - Diff between revs 827 and 840

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 827 Rev 840
/* SPARC-specific support for 64-bit ELF
/* SPARC-specific support for 64-bit ELF
   Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
   Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
   2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
   2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
 
 
   This file is part of BFD, the Binary File Descriptor library.
   This file is part of BFD, the Binary File Descriptor library.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   along with this program; if not, write to the Free Software
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
   MA 02110-1301, USA.  */
   MA 02110-1301, USA.  */
 
 
#include "sysdep.h"
#include "sysdep.h"
#include "bfd.h"
#include "bfd.h"
#include "libbfd.h"
#include "libbfd.h"
#include "elf-bfd.h"
#include "elf-bfd.h"
#include "elf/sparc.h"
#include "elf/sparc.h"
#include "opcode/sparc.h"
#include "opcode/sparc.h"
#include "elfxx-sparc.h"
#include "elfxx-sparc.h"
 
 
/* In case we're on a 32-bit machine, construct a 64-bit "-1" value.  */
/* In case we're on a 32-bit machine, construct a 64-bit "-1" value.  */
#define MINUS_ONE (~ (bfd_vma) 0)
#define MINUS_ONE (~ (bfd_vma) 0)
 
 
/* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
/* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
   section can represent up to two relocs, we must tell the user to allocate
   section can represent up to two relocs, we must tell the user to allocate
   more space.  */
   more space.  */
 
 
static long
static long
elf64_sparc_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED, asection *sec)
elf64_sparc_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED, asection *sec)
{
{
  return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
  return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
}
}
 
 
static long
static long
elf64_sparc_get_dynamic_reloc_upper_bound (bfd *abfd)
elf64_sparc_get_dynamic_reloc_upper_bound (bfd *abfd)
{
{
  return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
  return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
}
}
 
 
/* Read  relocations for ASECT from REL_HDR.  There are RELOC_COUNT of
/* Read  relocations for ASECT from REL_HDR.  There are RELOC_COUNT of
   them.  We cannot use generic elf routines for this,  because R_SPARC_OLO10
   them.  We cannot use generic elf routines for this,  because R_SPARC_OLO10
   has secondary addend in ELF64_R_TYPE_DATA.  We handle it as two relocations
   has secondary addend in ELF64_R_TYPE_DATA.  We handle it as two relocations
   for the same location,  R_SPARC_LO10 and R_SPARC_13.  */
   for the same location,  R_SPARC_LO10 and R_SPARC_13.  */
 
 
static bfd_boolean
static bfd_boolean
elf64_sparc_slurp_one_reloc_table (bfd *abfd, asection *asect,
elf64_sparc_slurp_one_reloc_table (bfd *abfd, asection *asect,
                                   Elf_Internal_Shdr *rel_hdr,
                                   Elf_Internal_Shdr *rel_hdr,
                                   asymbol **symbols, bfd_boolean dynamic)
                                   asymbol **symbols, bfd_boolean dynamic)
{
{
  PTR allocated = NULL;
  PTR allocated = NULL;
  bfd_byte *native_relocs;
  bfd_byte *native_relocs;
  arelent *relent;
  arelent *relent;
  unsigned int i;
  unsigned int i;
  int entsize;
  int entsize;
  bfd_size_type count;
  bfd_size_type count;
  arelent *relents;
  arelent *relents;
 
 
  allocated = (PTR) bfd_malloc (rel_hdr->sh_size);
  allocated = (PTR) bfd_malloc (rel_hdr->sh_size);
  if (allocated == NULL)
  if (allocated == NULL)
    goto error_return;
    goto error_return;
 
 
  if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
  if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
      || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
      || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
    goto error_return;
    goto error_return;
 
 
  native_relocs = (bfd_byte *) allocated;
  native_relocs = (bfd_byte *) allocated;
 
 
  relents = asect->relocation + canon_reloc_count (asect);
  relents = asect->relocation + canon_reloc_count (asect);
 
 
  entsize = rel_hdr->sh_entsize;
  entsize = rel_hdr->sh_entsize;
  BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
  BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
 
 
  count = rel_hdr->sh_size / entsize;
  count = rel_hdr->sh_size / entsize;
 
 
  for (i = 0, relent = relents; i < count;
  for (i = 0, relent = relents; i < count;
       i++, relent++, native_relocs += entsize)
       i++, relent++, native_relocs += entsize)
    {
    {
      Elf_Internal_Rela rela;
      Elf_Internal_Rela rela;
      unsigned int r_type;
      unsigned int r_type;
 
 
      bfd_elf64_swap_reloca_in (abfd, native_relocs, &rela);
      bfd_elf64_swap_reloca_in (abfd, native_relocs, &rela);
 
 
      /* The address of an ELF reloc is section relative for an object
      /* The address of an ELF reloc is section relative for an object
         file, and absolute for an executable file or shared library.
         file, and absolute for an executable file or shared library.
         The address of a normal BFD reloc is always section relative,
         The address of a normal BFD reloc is always section relative,
         and the address of a dynamic reloc is absolute..  */
         and the address of a dynamic reloc is absolute..  */
      if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
      if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
        relent->address = rela.r_offset;
        relent->address = rela.r_offset;
      else
      else
        relent->address = rela.r_offset - asect->vma;
        relent->address = rela.r_offset - asect->vma;
 
 
      if (ELF64_R_SYM (rela.r_info) == 0)
      if (ELF64_R_SYM (rela.r_info) == 0)
        relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
        relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
      else
      else
        {
        {
          asymbol **ps, *s;
          asymbol **ps, *s;
 
 
          ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
          ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
          s = *ps;
          s = *ps;
 
 
          /* Canonicalize ELF section symbols.  FIXME: Why?  */
          /* Canonicalize ELF section symbols.  FIXME: Why?  */
          if ((s->flags & BSF_SECTION_SYM) == 0)
          if ((s->flags & BSF_SECTION_SYM) == 0)
            relent->sym_ptr_ptr = ps;
            relent->sym_ptr_ptr = ps;
          else
          else
            relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
            relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
        }
        }
 
 
      relent->addend = rela.r_addend;
      relent->addend = rela.r_addend;
 
 
      r_type = ELF64_R_TYPE_ID (rela.r_info);
      r_type = ELF64_R_TYPE_ID (rela.r_info);
      if (r_type == R_SPARC_OLO10)
      if (r_type == R_SPARC_OLO10)
        {
        {
          relent->howto = _bfd_sparc_elf_info_to_howto_ptr (R_SPARC_LO10);
          relent->howto = _bfd_sparc_elf_info_to_howto_ptr (R_SPARC_LO10);
          relent[1].address = relent->address;
          relent[1].address = relent->address;
          relent++;
          relent++;
          relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
          relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
          relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
          relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
          relent->howto = _bfd_sparc_elf_info_to_howto_ptr (R_SPARC_13);
          relent->howto = _bfd_sparc_elf_info_to_howto_ptr (R_SPARC_13);
        }
        }
      else
      else
        relent->howto = _bfd_sparc_elf_info_to_howto_ptr (r_type);
        relent->howto = _bfd_sparc_elf_info_to_howto_ptr (r_type);
    }
    }
 
 
  canon_reloc_count (asect) += relent - relents;
  canon_reloc_count (asect) += relent - relents;
 
 
  if (allocated != NULL)
  if (allocated != NULL)
    free (allocated);
    free (allocated);
 
 
  return TRUE;
  return TRUE;
 
 
 error_return:
 error_return:
  if (allocated != NULL)
  if (allocated != NULL)
    free (allocated);
    free (allocated);
  return FALSE;
  return FALSE;
}
}
 
 
/* Read in and swap the external relocs.  */
/* Read in and swap the external relocs.  */
 
 
static bfd_boolean
static bfd_boolean
elf64_sparc_slurp_reloc_table (bfd *abfd, asection *asect,
elf64_sparc_slurp_reloc_table (bfd *abfd, asection *asect,
                               asymbol **symbols, bfd_boolean dynamic)
                               asymbol **symbols, bfd_boolean dynamic)
{
{
  struct bfd_elf_section_data * const d = elf_section_data (asect);
  struct bfd_elf_section_data * const d = elf_section_data (asect);
  Elf_Internal_Shdr *rel_hdr;
  Elf_Internal_Shdr *rel_hdr;
  Elf_Internal_Shdr *rel_hdr2;
  Elf_Internal_Shdr *rel_hdr2;
  bfd_size_type amt;
  bfd_size_type amt;
 
 
  if (asect->relocation != NULL)
  if (asect->relocation != NULL)
    return TRUE;
    return TRUE;
 
 
  if (! dynamic)
  if (! dynamic)
    {
    {
      if ((asect->flags & SEC_RELOC) == 0
      if ((asect->flags & SEC_RELOC) == 0
          || asect->reloc_count == 0)
          || asect->reloc_count == 0)
        return TRUE;
        return TRUE;
 
 
      rel_hdr = &d->rel_hdr;
      rel_hdr = &d->rel_hdr;
      rel_hdr2 = d->rel_hdr2;
      rel_hdr2 = d->rel_hdr2;
 
 
      BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
      BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
                  || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
                  || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
    }
    }
  else
  else
    {
    {
      /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
      /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
         case because relocations against this section may use the
         case because relocations against this section may use the
         dynamic symbol table, and in that case bfd_section_from_shdr
         dynamic symbol table, and in that case bfd_section_from_shdr
         in elf.c does not update the RELOC_COUNT.  */
         in elf.c does not update the RELOC_COUNT.  */
      if (asect->size == 0)
      if (asect->size == 0)
        return TRUE;
        return TRUE;
 
 
      rel_hdr = &d->this_hdr;
      rel_hdr = &d->this_hdr;
      asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
      asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
      rel_hdr2 = NULL;
      rel_hdr2 = NULL;
    }
    }
 
 
  amt = asect->reloc_count;
  amt = asect->reloc_count;
  amt *= 2 * sizeof (arelent);
  amt *= 2 * sizeof (arelent);
  asect->relocation = (arelent *) bfd_alloc (abfd, amt);
  asect->relocation = (arelent *) bfd_alloc (abfd, amt);
  if (asect->relocation == NULL)
  if (asect->relocation == NULL)
    return FALSE;
    return FALSE;
 
 
  /* The elf64_sparc_slurp_one_reloc_table routine increments
  /* The elf64_sparc_slurp_one_reloc_table routine increments
     canon_reloc_count.  */
     canon_reloc_count.  */
  canon_reloc_count (asect) = 0;
  canon_reloc_count (asect) = 0;
 
 
  if (!elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
  if (!elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
                                          dynamic))
                                          dynamic))
    return FALSE;
    return FALSE;
 
 
  if (rel_hdr2
  if (rel_hdr2
      && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
      && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
                                             dynamic))
                                             dynamic))
    return FALSE;
    return FALSE;
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Canonicalize the relocs.  */
/* Canonicalize the relocs.  */
 
 
static long
static long
elf64_sparc_canonicalize_reloc (bfd *abfd, sec_ptr section,
elf64_sparc_canonicalize_reloc (bfd *abfd, sec_ptr section,
                                arelent **relptr, asymbol **symbols)
                                arelent **relptr, asymbol **symbols)
{
{
  arelent *tblptr;
  arelent *tblptr;
  unsigned int i;
  unsigned int i;
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
 
 
  if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
  if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
    return -1;
    return -1;
 
 
  tblptr = section->relocation;
  tblptr = section->relocation;
  for (i = 0; i < canon_reloc_count (section); i++)
  for (i = 0; i < canon_reloc_count (section); i++)
    *relptr++ = tblptr++;
    *relptr++ = tblptr++;
 
 
  *relptr = NULL;
  *relptr = NULL;
 
 
  return canon_reloc_count (section);
  return canon_reloc_count (section);
}
}
 
 
 
 
/* Canonicalize the dynamic relocation entries.  Note that we return
/* Canonicalize the dynamic relocation entries.  Note that we return
   the dynamic relocations as a single block, although they are
   the dynamic relocations as a single block, although they are
   actually associated with particular sections; the interface, which
   actually associated with particular sections; the interface, which
   was designed for SunOS style shared libraries, expects that there
   was designed for SunOS style shared libraries, expects that there
   is only one set of dynamic relocs.  Any section that was actually
   is only one set of dynamic relocs.  Any section that was actually
   installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
   installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
   the dynamic symbol table, is considered to be a dynamic reloc
   the dynamic symbol table, is considered to be a dynamic reloc
   section.  */
   section.  */
 
 
static long
static long
elf64_sparc_canonicalize_dynamic_reloc (bfd *abfd, arelent **storage,
elf64_sparc_canonicalize_dynamic_reloc (bfd *abfd, arelent **storage,
                                        asymbol **syms)
                                        asymbol **syms)
{
{
  asection *s;
  asection *s;
  long ret;
  long ret;
 
 
  if (elf_dynsymtab (abfd) == 0)
  if (elf_dynsymtab (abfd) == 0)
    {
    {
      bfd_set_error (bfd_error_invalid_operation);
      bfd_set_error (bfd_error_invalid_operation);
      return -1;
      return -1;
    }
    }
 
 
  ret = 0;
  ret = 0;
  for (s = abfd->sections; s != NULL; s = s->next)
  for (s = abfd->sections; s != NULL; s = s->next)
    {
    {
      if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
      if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
          && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
          && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
        {
        {
          arelent *p;
          arelent *p;
          long count, i;
          long count, i;
 
 
          if (! elf64_sparc_slurp_reloc_table (abfd, s, syms, TRUE))
          if (! elf64_sparc_slurp_reloc_table (abfd, s, syms, TRUE))
            return -1;
            return -1;
          count = canon_reloc_count (s);
          count = canon_reloc_count (s);
          p = s->relocation;
          p = s->relocation;
          for (i = 0; i < count; i++)
          for (i = 0; i < count; i++)
            *storage++ = p++;
            *storage++ = p++;
          ret += count;
          ret += count;
        }
        }
    }
    }
 
 
  *storage = NULL;
  *storage = NULL;
 
 
  return ret;
  return ret;
}
}
 
 
/* Write out the relocs.  */
/* Write out the relocs.  */
 
 
static void
static void
elf64_sparc_write_relocs (bfd *abfd, asection *sec, PTR data)
elf64_sparc_write_relocs (bfd *abfd, asection *sec, PTR data)
{
{
  bfd_boolean *failedp = (bfd_boolean *) data;
  bfd_boolean *failedp = (bfd_boolean *) data;
  Elf_Internal_Shdr *rela_hdr;
  Elf_Internal_Shdr *rela_hdr;
  bfd_vma addr_offset;
  bfd_vma addr_offset;
  Elf64_External_Rela *outbound_relocas, *src_rela;
  Elf64_External_Rela *outbound_relocas, *src_rela;
  unsigned int idx, count;
  unsigned int idx, count;
  asymbol *last_sym = 0;
  asymbol *last_sym = 0;
  int last_sym_idx = 0;
  int last_sym_idx = 0;
 
 
  /* If we have already failed, don't do anything.  */
  /* If we have already failed, don't do anything.  */
  if (*failedp)
  if (*failedp)
    return;
    return;
 
 
  if ((sec->flags & SEC_RELOC) == 0)
  if ((sec->flags & SEC_RELOC) == 0)
    return;
    return;
 
 
  /* The linker backend writes the relocs out itself, and sets the
  /* The linker backend writes the relocs out itself, and sets the
     reloc_count field to zero to inhibit writing them here.  Also,
     reloc_count field to zero to inhibit writing them here.  Also,
     sometimes the SEC_RELOC flag gets set even when there aren't any
     sometimes the SEC_RELOC flag gets set even when there aren't any
     relocs.  */
     relocs.  */
  if (sec->reloc_count == 0)
  if (sec->reloc_count == 0)
    return;
    return;
 
 
  /* We can combine two relocs that refer to the same address
  /* We can combine two relocs that refer to the same address
     into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
     into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
     latter is R_SPARC_13 with no associated symbol.  */
     latter is R_SPARC_13 with no associated symbol.  */
  count = 0;
  count = 0;
  for (idx = 0; idx < sec->reloc_count; idx++)
  for (idx = 0; idx < sec->reloc_count; idx++)
    {
    {
      bfd_vma addr;
      bfd_vma addr;
 
 
      ++count;
      ++count;
 
 
      addr = sec->orelocation[idx]->address;
      addr = sec->orelocation[idx]->address;
      if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
      if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
          && idx < sec->reloc_count - 1)
          && idx < sec->reloc_count - 1)
        {
        {
          arelent *r = sec->orelocation[idx + 1];
          arelent *r = sec->orelocation[idx + 1];
 
 
          if (r->howto->type == R_SPARC_13
          if (r->howto->type == R_SPARC_13
              && r->address == addr
              && r->address == addr
              && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
              && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
              && (*r->sym_ptr_ptr)->value == 0)
              && (*r->sym_ptr_ptr)->value == 0)
            ++idx;
            ++idx;
        }
        }
    }
    }
 
 
  rela_hdr = &elf_section_data (sec)->rel_hdr;
  rela_hdr = &elf_section_data (sec)->rel_hdr;
 
 
  rela_hdr->sh_size = rela_hdr->sh_entsize * count;
  rela_hdr->sh_size = rela_hdr->sh_entsize * count;
  rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
  rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
  if (rela_hdr->contents == NULL)
  if (rela_hdr->contents == NULL)
    {
    {
      *failedp = TRUE;
      *failedp = TRUE;
      return;
      return;
    }
    }
 
 
  /* Figure out whether the relocations are RELA or REL relocations.  */
  /* Figure out whether the relocations are RELA or REL relocations.  */
  if (rela_hdr->sh_type != SHT_RELA)
  if (rela_hdr->sh_type != SHT_RELA)
    abort ();
    abort ();
 
 
  /* The address of an ELF reloc is section relative for an object
  /* The address of an ELF reloc is section relative for an object
     file, and absolute for an executable file or shared library.
     file, and absolute for an executable file or shared library.
     The address of a BFD reloc is always section relative.  */
     The address of a BFD reloc is always section relative.  */
  addr_offset = 0;
  addr_offset = 0;
  if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
  if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
    addr_offset = sec->vma;
    addr_offset = sec->vma;
 
 
  /* orelocation has the data, reloc_count has the count...  */
  /* orelocation has the data, reloc_count has the count...  */
  outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
  outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
  src_rela = outbound_relocas;
  src_rela = outbound_relocas;
 
 
  for (idx = 0; idx < sec->reloc_count; idx++)
  for (idx = 0; idx < sec->reloc_count; idx++)
    {
    {
      Elf_Internal_Rela dst_rela;
      Elf_Internal_Rela dst_rela;
      arelent *ptr;
      arelent *ptr;
      asymbol *sym;
      asymbol *sym;
      int n;
      int n;
 
 
      ptr = sec->orelocation[idx];
      ptr = sec->orelocation[idx];
      sym = *ptr->sym_ptr_ptr;
      sym = *ptr->sym_ptr_ptr;
      if (sym == last_sym)
      if (sym == last_sym)
        n = last_sym_idx;
        n = last_sym_idx;
      else if (bfd_is_abs_section (sym->section) && sym->value == 0)
      else if (bfd_is_abs_section (sym->section) && sym->value == 0)
        n = STN_UNDEF;
        n = STN_UNDEF;
      else
      else
        {
        {
          last_sym = sym;
          last_sym = sym;
          n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
          n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
          if (n < 0)
          if (n < 0)
            {
            {
              *failedp = TRUE;
              *failedp = TRUE;
              return;
              return;
            }
            }
          last_sym_idx = n;
          last_sym_idx = n;
        }
        }
 
 
      if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
      if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
          && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
          && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
          && ! _bfd_elf_validate_reloc (abfd, ptr))
          && ! _bfd_elf_validate_reloc (abfd, ptr))
        {
        {
          *failedp = TRUE;
          *failedp = TRUE;
          return;
          return;
        }
        }
 
 
      if (ptr->howto->type == R_SPARC_LO10
      if (ptr->howto->type == R_SPARC_LO10
          && idx < sec->reloc_count - 1)
          && idx < sec->reloc_count - 1)
        {
        {
          arelent *r = sec->orelocation[idx + 1];
          arelent *r = sec->orelocation[idx + 1];
 
 
          if (r->howto->type == R_SPARC_13
          if (r->howto->type == R_SPARC_13
              && r->address == ptr->address
              && r->address == ptr->address
              && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
              && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
              && (*r->sym_ptr_ptr)->value == 0)
              && (*r->sym_ptr_ptr)->value == 0)
            {
            {
              idx++;
              idx++;
              dst_rela.r_info
              dst_rela.r_info
                = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
                = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
                                                      R_SPARC_OLO10));
                                                      R_SPARC_OLO10));
            }
            }
          else
          else
            dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
            dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
        }
        }
      else
      else
        dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
        dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
 
 
      dst_rela.r_offset = ptr->address + addr_offset;
      dst_rela.r_offset = ptr->address + addr_offset;
      dst_rela.r_addend = ptr->addend;
      dst_rela.r_addend = ptr->addend;
 
 
      bfd_elf64_swap_reloca_out (abfd, &dst_rela, (bfd_byte *) src_rela);
      bfd_elf64_swap_reloca_out (abfd, &dst_rela, (bfd_byte *) src_rela);
      ++src_rela;
      ++src_rela;
    }
    }
}
}


/* Hook called by the linker routine which adds symbols from an object
/* Hook called by the linker routine which adds symbols from an object
   file.  We use it for STT_REGISTER symbols.  */
   file.  We use it for STT_REGISTER symbols.  */
 
 
static bfd_boolean
static bfd_boolean
elf64_sparc_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
elf64_sparc_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
                             Elf_Internal_Sym *sym, const char **namep,
                             Elf_Internal_Sym *sym, const char **namep,
                             flagword *flagsp ATTRIBUTE_UNUSED,
                             flagword *flagsp ATTRIBUTE_UNUSED,
                             asection **secp ATTRIBUTE_UNUSED,
                             asection **secp ATTRIBUTE_UNUSED,
                             bfd_vma *valp ATTRIBUTE_UNUSED)
                             bfd_vma *valp ATTRIBUTE_UNUSED)
{
{
  static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
  static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
 
 
  if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
  if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
    {
    {
      int reg;
      int reg;
      struct _bfd_sparc_elf_app_reg *p;
      struct _bfd_sparc_elf_app_reg *p;
 
 
      reg = (int)sym->st_value;
      reg = (int)sym->st_value;
      switch (reg & ~1)
      switch (reg & ~1)
        {
        {
        case 2: reg -= 2; break;
        case 2: reg -= 2; break;
        case 6: reg -= 4; break;
        case 6: reg -= 4; break;
        default:
        default:
          (*_bfd_error_handler)
          (*_bfd_error_handler)
            (_("%B: Only registers %%g[2367] can be declared using STT_REGISTER"),
            (_("%B: Only registers %%g[2367] can be declared using STT_REGISTER"),
             abfd);
             abfd);
          return FALSE;
          return FALSE;
        }
        }
 
 
      if (info->output_bfd->xvec != abfd->xvec
      if (info->output_bfd->xvec != abfd->xvec
          || (abfd->flags & DYNAMIC) != 0)
          || (abfd->flags & DYNAMIC) != 0)
        {
        {
          /* STT_REGISTER only works when linking an elf64_sparc object.
          /* STT_REGISTER only works when linking an elf64_sparc object.
             If STT_REGISTER comes from a dynamic object, don't put it into
             If STT_REGISTER comes from a dynamic object, don't put it into
             the output bfd.  The dynamic linker will recheck it.  */
             the output bfd.  The dynamic linker will recheck it.  */
          *namep = NULL;
          *namep = NULL;
          return TRUE;
          return TRUE;
        }
        }
 
 
      p = _bfd_sparc_elf_hash_table(info)->app_regs + reg;
      p = _bfd_sparc_elf_hash_table(info)->app_regs + reg;
 
 
      if (p->name != NULL && strcmp (p->name, *namep))
      if (p->name != NULL && strcmp (p->name, *namep))
        {
        {
          (*_bfd_error_handler)
          (*_bfd_error_handler)
            (_("Register %%g%d used incompatibly: %s in %B, previously %s in %B"),
            (_("Register %%g%d used incompatibly: %s in %B, previously %s in %B"),
             abfd, p->abfd, (int) sym->st_value,
             abfd, p->abfd, (int) sym->st_value,
             **namep ? *namep : "#scratch",
             **namep ? *namep : "#scratch",
             *p->name ? p->name : "#scratch");
             *p->name ? p->name : "#scratch");
          return FALSE;
          return FALSE;
        }
        }
 
 
      if (p->name == NULL)
      if (p->name == NULL)
        {
        {
          if (**namep)
          if (**namep)
            {
            {
              struct elf_link_hash_entry *h;
              struct elf_link_hash_entry *h;
 
 
              h = (struct elf_link_hash_entry *)
              h = (struct elf_link_hash_entry *)
                bfd_link_hash_lookup (info->hash, *namep, FALSE, FALSE, FALSE);
                bfd_link_hash_lookup (info->hash, *namep, FALSE, FALSE, FALSE);
 
 
              if (h != NULL)
              if (h != NULL)
                {
                {
                  unsigned char type = h->type;
                  unsigned char type = h->type;
 
 
                  if (type > STT_FUNC)
                  if (type > STT_FUNC)
                    type = 0;
                    type = 0;
                  (*_bfd_error_handler)
                  (*_bfd_error_handler)
                    (_("Symbol `%s' has differing types: REGISTER in %B, previously %s in %B"),
                    (_("Symbol `%s' has differing types: REGISTER in %B, previously %s in %B"),
                     abfd, p->abfd, *namep, stt_types[type]);
                     abfd, p->abfd, *namep, stt_types[type]);
                  return FALSE;
                  return FALSE;
                }
                }
 
 
              p->name = bfd_hash_allocate (&info->hash->table,
              p->name = bfd_hash_allocate (&info->hash->table,
                                           strlen (*namep) + 1);
                                           strlen (*namep) + 1);
              if (!p->name)
              if (!p->name)
                return FALSE;
                return FALSE;
 
 
              strcpy (p->name, *namep);
              strcpy (p->name, *namep);
            }
            }
          else
          else
            p->name = "";
            p->name = "";
          p->bind = ELF_ST_BIND (sym->st_info);
          p->bind = ELF_ST_BIND (sym->st_info);
          p->abfd = abfd;
          p->abfd = abfd;
          p->shndx = sym->st_shndx;
          p->shndx = sym->st_shndx;
        }
        }
      else
      else
        {
        {
          if (p->bind == STB_WEAK
          if (p->bind == STB_WEAK
              && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
              && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
            {
            {
              p->bind = STB_GLOBAL;
              p->bind = STB_GLOBAL;
              p->abfd = abfd;
              p->abfd = abfd;
            }
            }
        }
        }
      *namep = NULL;
      *namep = NULL;
      return TRUE;
      return TRUE;
    }
    }
  else if (*namep && **namep
  else if (*namep && **namep
           && info->output_bfd->xvec == abfd->xvec)
           && info->output_bfd->xvec == abfd->xvec)
    {
    {
      int i;
      int i;
      struct _bfd_sparc_elf_app_reg *p;
      struct _bfd_sparc_elf_app_reg *p;
 
 
      p = _bfd_sparc_elf_hash_table(info)->app_regs;
      p = _bfd_sparc_elf_hash_table(info)->app_regs;
      for (i = 0; i < 4; i++, p++)
      for (i = 0; i < 4; i++, p++)
        if (p->name != NULL && ! strcmp (p->name, *namep))
        if (p->name != NULL && ! strcmp (p->name, *namep))
          {
          {
            unsigned char type = ELF_ST_TYPE (sym->st_info);
            unsigned char type = ELF_ST_TYPE (sym->st_info);
 
 
            if (type > STT_FUNC)
            if (type > STT_FUNC)
              type = 0;
              type = 0;
            (*_bfd_error_handler)
            (*_bfd_error_handler)
              (_("Symbol `%s' has differing types: %s in %B, previously REGISTER in %B"),
              (_("Symbol `%s' has differing types: %s in %B, previously REGISTER in %B"),
               abfd, p->abfd, *namep, stt_types[type]);
               abfd, p->abfd, *namep, stt_types[type]);
            return FALSE;
            return FALSE;
          }
          }
    }
    }
  return TRUE;
  return TRUE;
}
}
 
 
/* This function takes care of emitting STT_REGISTER symbols
/* This function takes care of emitting STT_REGISTER symbols
   which we cannot easily keep in the symbol hash table.  */
   which we cannot easily keep in the symbol hash table.  */
 
 
static bfd_boolean
static bfd_boolean
elf64_sparc_output_arch_syms (bfd *output_bfd ATTRIBUTE_UNUSED,
elf64_sparc_output_arch_syms (bfd *output_bfd ATTRIBUTE_UNUSED,
                              struct bfd_link_info *info,
                              struct bfd_link_info *info,
                              PTR finfo,
                              PTR finfo,
                              int (*func) (PTR, const char *,
                              int (*func) (PTR, const char *,
                                           Elf_Internal_Sym *,
                                           Elf_Internal_Sym *,
                                           asection *,
                                           asection *,
                                           struct elf_link_hash_entry *))
                                           struct elf_link_hash_entry *))
{
{
  int reg;
  int reg;
  struct _bfd_sparc_elf_app_reg *app_regs =
  struct _bfd_sparc_elf_app_reg *app_regs =
    _bfd_sparc_elf_hash_table(info)->app_regs;
    _bfd_sparc_elf_hash_table(info)->app_regs;
  Elf_Internal_Sym sym;
  Elf_Internal_Sym sym;
 
 
  /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
  /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
     at the end of the dynlocal list, so they came at the end of the local
     at the end of the dynlocal list, so they came at the end of the local
     symbols in the symtab.  Except that they aren't STB_LOCAL, so we need
     symbols in the symtab.  Except that they aren't STB_LOCAL, so we need
     to back up symtab->sh_info.  */
     to back up symtab->sh_info.  */
  if (elf_hash_table (info)->dynlocal)
  if (elf_hash_table (info)->dynlocal)
    {
    {
      bfd * dynobj = elf_hash_table (info)->dynobj;
      bfd * dynobj = elf_hash_table (info)->dynobj;
      asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
      asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
      struct elf_link_local_dynamic_entry *e;
      struct elf_link_local_dynamic_entry *e;
 
 
      for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
      for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
        if (e->input_indx == -1)
        if (e->input_indx == -1)
          break;
          break;
      if (e)
      if (e)
        {
        {
          elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
          elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
            = e->dynindx;
            = e->dynindx;
        }
        }
    }
    }
 
 
  if (info->strip == strip_all)
  if (info->strip == strip_all)
    return TRUE;
    return TRUE;
 
 
  for (reg = 0; reg < 4; reg++)
  for (reg = 0; reg < 4; reg++)
    if (app_regs [reg].name != NULL)
    if (app_regs [reg].name != NULL)
      {
      {
        if (info->strip == strip_some
        if (info->strip == strip_some
            && bfd_hash_lookup (info->keep_hash,
            && bfd_hash_lookup (info->keep_hash,
                                app_regs [reg].name,
                                app_regs [reg].name,
                                FALSE, FALSE) == NULL)
                                FALSE, FALSE) == NULL)
          continue;
          continue;
 
 
        sym.st_value = reg < 2 ? reg + 2 : reg + 4;
        sym.st_value = reg < 2 ? reg + 2 : reg + 4;
        sym.st_size = 0;
        sym.st_size = 0;
        sym.st_other = 0;
        sym.st_other = 0;
        sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
        sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
        sym.st_shndx = app_regs [reg].shndx;
        sym.st_shndx = app_regs [reg].shndx;
        if ((*func) (finfo, app_regs [reg].name, &sym,
        if ((*func) (finfo, app_regs [reg].name, &sym,
                     sym.st_shndx == SHN_ABS
                     sym.st_shndx == SHN_ABS
                     ? bfd_abs_section_ptr : bfd_und_section_ptr,
                     ? bfd_abs_section_ptr : bfd_und_section_ptr,
                     NULL) != 1)
                     NULL) != 1)
          return FALSE;
          return FALSE;
      }
      }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
static int
static int
elf64_sparc_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
elf64_sparc_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
{
{
  if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
  if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
    return STT_REGISTER;
    return STT_REGISTER;
  else
  else
    return type;
    return type;
}
}
 
 
/* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
/* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
   even in SHN_UNDEF section.  */
   even in SHN_UNDEF section.  */
 
 
static void
static void
elf64_sparc_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *asym)
elf64_sparc_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *asym)
{
{
  elf_symbol_type *elfsym;
  elf_symbol_type *elfsym;
 
 
  elfsym = (elf_symbol_type *) asym;
  elfsym = (elf_symbol_type *) asym;
  if (elfsym->internal_elf_sym.st_info
  if (elfsym->internal_elf_sym.st_info
      == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
      == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
    {
    {
      asym->flags |= BSF_GLOBAL;
      asym->flags |= BSF_GLOBAL;
    }
    }
}
}
 
 


/* Functions for dealing with the e_flags field.  */
/* Functions for dealing with the e_flags field.  */
 
 
/* Merge backend specific data from an object file to the output
/* Merge backend specific data from an object file to the output
   object file when linking.  */
   object file when linking.  */
 
 
static bfd_boolean
static bfd_boolean
elf64_sparc_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
elf64_sparc_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
{
{
  bfd_boolean error;
  bfd_boolean error;
  flagword new_flags, old_flags;
  flagword new_flags, old_flags;
  int new_mm, old_mm;
  int new_mm, old_mm;
 
 
  if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
  if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
      || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
      || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
    return TRUE;
    return TRUE;
 
 
  new_flags = elf_elfheader (ibfd)->e_flags;
  new_flags = elf_elfheader (ibfd)->e_flags;
  old_flags = elf_elfheader (obfd)->e_flags;
  old_flags = elf_elfheader (obfd)->e_flags;
 
 
  if (!elf_flags_init (obfd))   /* First call, no flags set */
  if (!elf_flags_init (obfd))   /* First call, no flags set */
    {
    {
      elf_flags_init (obfd) = TRUE;
      elf_flags_init (obfd) = TRUE;
      elf_elfheader (obfd)->e_flags = new_flags;
      elf_elfheader (obfd)->e_flags = new_flags;
    }
    }
 
 
  else if (new_flags == old_flags)      /* Compatible flags are ok */
  else if (new_flags == old_flags)      /* Compatible flags are ok */
    ;
    ;
 
 
  else                                  /* Incompatible flags */
  else                                  /* Incompatible flags */
    {
    {
      error = FALSE;
      error = FALSE;
 
 
#define EF_SPARC_ISA_EXTENSIONS \
#define EF_SPARC_ISA_EXTENSIONS \
  (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
  (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
 
 
      if ((ibfd->flags & DYNAMIC) != 0)
      if ((ibfd->flags & DYNAMIC) != 0)
        {
        {
          /* We don't want dynamic objects memory ordering and
          /* We don't want dynamic objects memory ordering and
             architecture to have any role. That's what dynamic linker
             architecture to have any role. That's what dynamic linker
             should do.  */
             should do.  */
          new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
          new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
          new_flags |= (old_flags
          new_flags |= (old_flags
                        & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
                        & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
        }
        }
      else
      else
        {
        {
          /* Choose the highest architecture requirements.  */
          /* Choose the highest architecture requirements.  */
          old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
          old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
          new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
          new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
          if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
          if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
              && (old_flags & EF_SPARC_HAL_R1))
              && (old_flags & EF_SPARC_HAL_R1))
            {
            {
              error = TRUE;
              error = TRUE;
              (*_bfd_error_handler)
              (*_bfd_error_handler)
                (_("%B: linking UltraSPARC specific with HAL specific code"),
                (_("%B: linking UltraSPARC specific with HAL specific code"),
                 ibfd);
                 ibfd);
            }
            }
          /* Choose the most restrictive memory ordering.  */
          /* Choose the most restrictive memory ordering.  */
          old_mm = (old_flags & EF_SPARCV9_MM);
          old_mm = (old_flags & EF_SPARCV9_MM);
          new_mm = (new_flags & EF_SPARCV9_MM);
          new_mm = (new_flags & EF_SPARCV9_MM);
          old_flags &= ~EF_SPARCV9_MM;
          old_flags &= ~EF_SPARCV9_MM;
          new_flags &= ~EF_SPARCV9_MM;
          new_flags &= ~EF_SPARCV9_MM;
          if (new_mm < old_mm)
          if (new_mm < old_mm)
            old_mm = new_mm;
            old_mm = new_mm;
          old_flags |= old_mm;
          old_flags |= old_mm;
          new_flags |= old_mm;
          new_flags |= old_mm;
        }
        }
 
 
      /* Warn about any other mismatches */
      /* Warn about any other mismatches */
      if (new_flags != old_flags)
      if (new_flags != old_flags)
        {
        {
          error = TRUE;
          error = TRUE;
          (*_bfd_error_handler)
          (*_bfd_error_handler)
            (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
            (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
             ibfd, (long) new_flags, (long) old_flags);
             ibfd, (long) new_flags, (long) old_flags);
        }
        }
 
 
      elf_elfheader (obfd)->e_flags = old_flags;
      elf_elfheader (obfd)->e_flags = old_flags;
 
 
      if (error)
      if (error)
        {
        {
          bfd_set_error (bfd_error_bad_value);
          bfd_set_error (bfd_error_bad_value);
          return FALSE;
          return FALSE;
        }
        }
    }
    }
  return TRUE;
  return TRUE;
}
}
 
 
/* MARCO: Set the correct entry size for the .stab section.  */
/* MARCO: Set the correct entry size for the .stab section.  */
 
 
static bfd_boolean
static bfd_boolean
elf64_sparc_fake_sections (bfd *abfd ATTRIBUTE_UNUSED,
elf64_sparc_fake_sections (bfd *abfd ATTRIBUTE_UNUSED,
                           Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED,
                           Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED,
                           asection *sec)
                           asection *sec)
{
{
  const char *name;
  const char *name;
 
 
  name = bfd_get_section_name (abfd, sec);
  name = bfd_get_section_name (abfd, sec);
 
 
  if (strcmp (name, ".stab") == 0)
  if (strcmp (name, ".stab") == 0)
    {
    {
      /* Even in the 64bit case the stab entries are only 12 bytes long.  */
      /* Even in the 64bit case the stab entries are only 12 bytes long.  */
      elf_section_data (sec)->this_hdr.sh_entsize = 12;
      elf_section_data (sec)->this_hdr.sh_entsize = 12;
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}


/* Print a STT_REGISTER symbol to file FILE.  */
/* Print a STT_REGISTER symbol to file FILE.  */
 
 
static const char *
static const char *
elf64_sparc_print_symbol_all (bfd *abfd ATTRIBUTE_UNUSED, PTR filep,
elf64_sparc_print_symbol_all (bfd *abfd ATTRIBUTE_UNUSED, PTR filep,
                              asymbol *symbol)
                              asymbol *symbol)
{
{
  FILE *file = (FILE *) filep;
  FILE *file = (FILE *) filep;
  int reg, type;
  int reg, type;
 
 
  if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
  if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
      != STT_REGISTER)
      != STT_REGISTER)
    return NULL;
    return NULL;
 
 
  reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
  reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
  type = symbol->flags;
  type = symbol->flags;
  fprintf (file, "REG_%c%c%11s%c%c    R", "GOLI" [reg / 8], '0' + (reg & 7), "",
  fprintf (file, "REG_%c%c%11s%c%c    R", "GOLI" [reg / 8], '0' + (reg & 7), "",
                 ((type & BSF_LOCAL)
                 ((type & BSF_LOCAL)
                  ? (type & BSF_GLOBAL) ? '!' : 'l'
                  ? (type & BSF_GLOBAL) ? '!' : 'l'
                  : (type & BSF_GLOBAL) ? 'g' : ' '),
                  : (type & BSF_GLOBAL) ? 'g' : ' '),
                 (type & BSF_WEAK) ? 'w' : ' ');
                 (type & BSF_WEAK) ? 'w' : ' ');
  if (symbol->name == NULL || symbol->name [0] == '\0')
  if (symbol->name == NULL || symbol->name [0] == '\0')
    return "#scratch";
    return "#scratch";
  else
  else
    return symbol->name;
    return symbol->name;
}
}


static enum elf_reloc_type_class
static enum elf_reloc_type_class
elf64_sparc_reloc_type_class (const Elf_Internal_Rela *rela)
elf64_sparc_reloc_type_class (const Elf_Internal_Rela *rela)
{
{
  switch ((int) ELF64_R_TYPE (rela->r_info))
  switch ((int) ELF64_R_TYPE (rela->r_info))
    {
    {
    case R_SPARC_RELATIVE:
    case R_SPARC_RELATIVE:
      return reloc_class_relative;
      return reloc_class_relative;
    case R_SPARC_JMP_SLOT:
    case R_SPARC_JMP_SLOT:
      return reloc_class_plt;
      return reloc_class_plt;
    case R_SPARC_COPY:
    case R_SPARC_COPY:
      return reloc_class_copy;
      return reloc_class_copy;
    default:
    default:
      return reloc_class_normal;
      return reloc_class_normal;
    }
    }
}
}
 
 
/* Relocations in the 64 bit SPARC ELF ABI are more complex than in
/* Relocations in the 64 bit SPARC ELF ABI are more complex than in
   standard ELF, because R_SPARC_OLO10 has secondary addend in
   standard ELF, because R_SPARC_OLO10 has secondary addend in
   ELF64_R_TYPE_DATA field.  This structure is used to redirect the
   ELF64_R_TYPE_DATA field.  This structure is used to redirect the
   relocation handling routines.  */
   relocation handling routines.  */
 
 
const struct elf_size_info elf64_sparc_size_info =
const struct elf_size_info elf64_sparc_size_info =
{
{
  sizeof (Elf64_External_Ehdr),
  sizeof (Elf64_External_Ehdr),
  sizeof (Elf64_External_Phdr),
  sizeof (Elf64_External_Phdr),
  sizeof (Elf64_External_Shdr),
  sizeof (Elf64_External_Shdr),
  sizeof (Elf64_External_Rel),
  sizeof (Elf64_External_Rel),
  sizeof (Elf64_External_Rela),
  sizeof (Elf64_External_Rela),
  sizeof (Elf64_External_Sym),
  sizeof (Elf64_External_Sym),
  sizeof (Elf64_External_Dyn),
  sizeof (Elf64_External_Dyn),
  sizeof (Elf_External_Note),
  sizeof (Elf_External_Note),
  4,            /* hash-table entry size.  */
  4,            /* hash-table entry size.  */
  /* Internal relocations per external relocations.
  /* Internal relocations per external relocations.
     For link purposes we use just 1 internal per
     For link purposes we use just 1 internal per
     1 external, for assembly and slurp symbol table
     1 external, for assembly and slurp symbol table
     we use 2.  */
     we use 2.  */
  1,
  1,
  64,           /* arch_size.  */
  64,           /* arch_size.  */
  3,            /* log_file_align.  */
  3,            /* log_file_align.  */
  ELFCLASS64,
  ELFCLASS64,
  EV_CURRENT,
  EV_CURRENT,
  bfd_elf64_write_out_phdrs,
  bfd_elf64_write_out_phdrs,
  bfd_elf64_write_shdrs_and_ehdr,
  bfd_elf64_write_shdrs_and_ehdr,
  bfd_elf64_checksum_contents,
  bfd_elf64_checksum_contents,
  elf64_sparc_write_relocs,
  elf64_sparc_write_relocs,
  bfd_elf64_swap_symbol_in,
  bfd_elf64_swap_symbol_in,
  bfd_elf64_swap_symbol_out,
  bfd_elf64_swap_symbol_out,
  elf64_sparc_slurp_reloc_table,
  elf64_sparc_slurp_reloc_table,
  bfd_elf64_slurp_symbol_table,
  bfd_elf64_slurp_symbol_table,
  bfd_elf64_swap_dyn_in,
  bfd_elf64_swap_dyn_in,
  bfd_elf64_swap_dyn_out,
  bfd_elf64_swap_dyn_out,
  bfd_elf64_swap_reloc_in,
  bfd_elf64_swap_reloc_in,
  bfd_elf64_swap_reloc_out,
  bfd_elf64_swap_reloc_out,
  bfd_elf64_swap_reloca_in,
  bfd_elf64_swap_reloca_in,
  bfd_elf64_swap_reloca_out
  bfd_elf64_swap_reloca_out
};
};
 
 
#define TARGET_BIG_SYM  bfd_elf64_sparc_vec
#define TARGET_BIG_SYM  bfd_elf64_sparc_vec
#define TARGET_BIG_NAME "elf64-sparc"
#define TARGET_BIG_NAME "elf64-sparc"
#define ELF_ARCH        bfd_arch_sparc
#define ELF_ARCH        bfd_arch_sparc
#define ELF_MAXPAGESIZE 0x100000
#define ELF_MAXPAGESIZE 0x100000
#define ELF_COMMONPAGESIZE 0x2000
#define ELF_COMMONPAGESIZE 0x2000
 
 
/* This is the official ABI value.  */
/* This is the official ABI value.  */
#define ELF_MACHINE_CODE EM_SPARCV9
#define ELF_MACHINE_CODE EM_SPARCV9
 
 
/* This is the value that we used before the ABI was released.  */
/* This is the value that we used before the ABI was released.  */
#define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
#define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
 
 
#define elf_backend_reloc_type_class \
#define elf_backend_reloc_type_class \
  elf64_sparc_reloc_type_class
  elf64_sparc_reloc_type_class
#define bfd_elf64_get_reloc_upper_bound \
#define bfd_elf64_get_reloc_upper_bound \
  elf64_sparc_get_reloc_upper_bound
  elf64_sparc_get_reloc_upper_bound
#define bfd_elf64_get_dynamic_reloc_upper_bound \
#define bfd_elf64_get_dynamic_reloc_upper_bound \
  elf64_sparc_get_dynamic_reloc_upper_bound
  elf64_sparc_get_dynamic_reloc_upper_bound
#define bfd_elf64_canonicalize_reloc \
#define bfd_elf64_canonicalize_reloc \
  elf64_sparc_canonicalize_reloc
  elf64_sparc_canonicalize_reloc
#define bfd_elf64_canonicalize_dynamic_reloc \
#define bfd_elf64_canonicalize_dynamic_reloc \
  elf64_sparc_canonicalize_dynamic_reloc
  elf64_sparc_canonicalize_dynamic_reloc
#define elf_backend_add_symbol_hook \
#define elf_backend_add_symbol_hook \
  elf64_sparc_add_symbol_hook
  elf64_sparc_add_symbol_hook
#define elf_backend_get_symbol_type \
#define elf_backend_get_symbol_type \
  elf64_sparc_get_symbol_type
  elf64_sparc_get_symbol_type
#define elf_backend_symbol_processing \
#define elf_backend_symbol_processing \
  elf64_sparc_symbol_processing
  elf64_sparc_symbol_processing
#define elf_backend_print_symbol_all \
#define elf_backend_print_symbol_all \
  elf64_sparc_print_symbol_all
  elf64_sparc_print_symbol_all
#define elf_backend_output_arch_syms \
#define elf_backend_output_arch_syms \
  elf64_sparc_output_arch_syms
  elf64_sparc_output_arch_syms
#define bfd_elf64_bfd_merge_private_bfd_data \
#define bfd_elf64_bfd_merge_private_bfd_data \
  elf64_sparc_merge_private_bfd_data
  elf64_sparc_merge_private_bfd_data
#define elf_backend_fake_sections \
#define elf_backend_fake_sections \
  elf64_sparc_fake_sections
  elf64_sparc_fake_sections
#define elf_backend_size_info \
#define elf_backend_size_info \
  elf64_sparc_size_info
  elf64_sparc_size_info
 
 
#define elf_backend_plt_sym_val \
#define elf_backend_plt_sym_val \
  _bfd_sparc_elf_plt_sym_val
  _bfd_sparc_elf_plt_sym_val
#define bfd_elf64_bfd_link_hash_table_create \
#define bfd_elf64_bfd_link_hash_table_create \
  _bfd_sparc_elf_link_hash_table_create
  _bfd_sparc_elf_link_hash_table_create
#define elf_info_to_howto \
#define elf_info_to_howto \
  _bfd_sparc_elf_info_to_howto
  _bfd_sparc_elf_info_to_howto
#define elf_backend_copy_indirect_symbol \
#define elf_backend_copy_indirect_symbol \
  _bfd_sparc_elf_copy_indirect_symbol
  _bfd_sparc_elf_copy_indirect_symbol
#define bfd_elf64_bfd_reloc_type_lookup \
#define bfd_elf64_bfd_reloc_type_lookup \
  _bfd_sparc_elf_reloc_type_lookup
  _bfd_sparc_elf_reloc_type_lookup
#define bfd_elf64_bfd_reloc_name_lookup \
#define bfd_elf64_bfd_reloc_name_lookup \
  _bfd_sparc_elf_reloc_name_lookup
  _bfd_sparc_elf_reloc_name_lookup
#define bfd_elf64_bfd_relax_section \
#define bfd_elf64_bfd_relax_section \
  _bfd_sparc_elf_relax_section
  _bfd_sparc_elf_relax_section
#define bfd_elf64_new_section_hook \
#define bfd_elf64_new_section_hook \
  _bfd_sparc_elf_new_section_hook
  _bfd_sparc_elf_new_section_hook
 
 
#define elf_backend_create_dynamic_sections \
#define elf_backend_create_dynamic_sections \
  _bfd_sparc_elf_create_dynamic_sections
  _bfd_sparc_elf_create_dynamic_sections
#define elf_backend_relocs_compatible \
#define elf_backend_relocs_compatible \
  _bfd_elf_relocs_compatible
  _bfd_elf_relocs_compatible
#define elf_backend_check_relocs \
#define elf_backend_check_relocs \
  _bfd_sparc_elf_check_relocs
  _bfd_sparc_elf_check_relocs
#define elf_backend_adjust_dynamic_symbol \
#define elf_backend_adjust_dynamic_symbol \
  _bfd_sparc_elf_adjust_dynamic_symbol
  _bfd_sparc_elf_adjust_dynamic_symbol
#define elf_backend_omit_section_dynsym \
#define elf_backend_omit_section_dynsym \
  _bfd_sparc_elf_omit_section_dynsym
  _bfd_sparc_elf_omit_section_dynsym
#define elf_backend_size_dynamic_sections \
#define elf_backend_size_dynamic_sections \
  _bfd_sparc_elf_size_dynamic_sections
  _bfd_sparc_elf_size_dynamic_sections
#define elf_backend_relocate_section \
#define elf_backend_relocate_section \
  _bfd_sparc_elf_relocate_section
  _bfd_sparc_elf_relocate_section
#define elf_backend_finish_dynamic_symbol \
#define elf_backend_finish_dynamic_symbol \
  _bfd_sparc_elf_finish_dynamic_symbol
  _bfd_sparc_elf_finish_dynamic_symbol
#define elf_backend_finish_dynamic_sections \
#define elf_backend_finish_dynamic_sections \
  _bfd_sparc_elf_finish_dynamic_sections
  _bfd_sparc_elf_finish_dynamic_sections
 
 
#define bfd_elf64_mkobject \
#define bfd_elf64_mkobject \
  _bfd_sparc_elf_mkobject
  _bfd_sparc_elf_mkobject
#define elf_backend_object_p \
#define elf_backend_object_p \
  _bfd_sparc_elf_object_p
  _bfd_sparc_elf_object_p
#define elf_backend_gc_mark_hook \
#define elf_backend_gc_mark_hook \
  _bfd_sparc_elf_gc_mark_hook
  _bfd_sparc_elf_gc_mark_hook
#define elf_backend_gc_sweep_hook \
#define elf_backend_gc_sweep_hook \
  _bfd_sparc_elf_gc_sweep_hook
  _bfd_sparc_elf_gc_sweep_hook
#define elf_backend_init_index_section \
#define elf_backend_init_index_section \
  _bfd_elf_init_1_index_section
  _bfd_elf_init_1_index_section
 
 
#define elf_backend_can_gc_sections 1
#define elf_backend_can_gc_sections 1
#define elf_backend_can_refcount 1
#define elf_backend_can_refcount 1
#define elf_backend_want_got_plt 0
#define elf_backend_want_got_plt 0
#define elf_backend_plt_readonly 0
#define elf_backend_plt_readonly 0
#define elf_backend_want_plt_sym 1
#define elf_backend_want_plt_sym 1
#define elf_backend_got_header_size 8
#define elf_backend_got_header_size 8
#define elf_backend_rela_normal 1
#define elf_backend_rela_normal 1
 
 
/* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table.  */
/* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table.  */
#define elf_backend_plt_alignment 8
#define elf_backend_plt_alignment 8
 
 
#include "elf64-target.h"
#include "elf64-target.h"
 
 
/* FreeBSD support */
/* FreeBSD support */
#undef  TARGET_BIG_SYM
#undef  TARGET_BIG_SYM
#define TARGET_BIG_SYM bfd_elf64_sparc_freebsd_vec
#define TARGET_BIG_SYM bfd_elf64_sparc_freebsd_vec
#undef  TARGET_BIG_NAME
#undef  TARGET_BIG_NAME
#define TARGET_BIG_NAME "elf64-sparc-freebsd"
#define TARGET_BIG_NAME "elf64-sparc-freebsd"
#undef  ELF_OSABI
#undef  ELF_OSABI
#define ELF_OSABI ELFOSABI_FREEBSD
#define ELF_OSABI ELFOSABI_FREEBSD
 
 
#undef  elf_backend_post_process_headers
#undef  elf_backend_post_process_headers
#define elf_backend_post_process_headers        _bfd_elf_set_osabi
#define elf_backend_post_process_headers        _bfd_elf_set_osabi
#undef  elf64_bed
#undef  elf64_bed
#define elf64_bed                               elf64_sparc_fbsd_bed
#define elf64_bed                               elf64_sparc_fbsd_bed
 
 
#include "elf64-target.h"
#include "elf64-target.h"
 
 
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.