OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gdb-6.8/] [gdb/] [gdbtypes.c] - Diff between revs 827 and 840

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 827 Rev 840
/* Support routines for manipulating internal types for GDB.
/* Support routines for manipulating internal types for GDB.
 
 
   Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002,
   Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002,
   2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
   2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
 
 
   Contributed by Cygnus Support, using pieces from other GDB modules.
   Contributed by Cygnus Support, using pieces from other GDB modules.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
 
 
#include "defs.h"
#include "defs.h"
#include "gdb_string.h"
#include "gdb_string.h"
#include "bfd.h"
#include "bfd.h"
#include "symtab.h"
#include "symtab.h"
#include "symfile.h"
#include "symfile.h"
#include "objfiles.h"
#include "objfiles.h"
#include "gdbtypes.h"
#include "gdbtypes.h"
#include "expression.h"
#include "expression.h"
#include "language.h"
#include "language.h"
#include "target.h"
#include "target.h"
#include "value.h"
#include "value.h"
#include "demangle.h"
#include "demangle.h"
#include "complaints.h"
#include "complaints.h"
#include "gdbcmd.h"
#include "gdbcmd.h"
#include "wrapper.h"
#include "wrapper.h"
#include "cp-abi.h"
#include "cp-abi.h"
#include "gdb_assert.h"
#include "gdb_assert.h"
#include "hashtab.h"
#include "hashtab.h"
 
 
/* These variables point to the objects
/* These variables point to the objects
   representing the predefined C data types.  */
   representing the predefined C data types.  */
 
 
struct type *builtin_type_int0;
struct type *builtin_type_int0;
struct type *builtin_type_int8;
struct type *builtin_type_int8;
struct type *builtin_type_uint8;
struct type *builtin_type_uint8;
struct type *builtin_type_int16;
struct type *builtin_type_int16;
struct type *builtin_type_uint16;
struct type *builtin_type_uint16;
struct type *builtin_type_int32;
struct type *builtin_type_int32;
struct type *builtin_type_uint32;
struct type *builtin_type_uint32;
struct type *builtin_type_int64;
struct type *builtin_type_int64;
struct type *builtin_type_uint64;
struct type *builtin_type_uint64;
struct type *builtin_type_int128;
struct type *builtin_type_int128;
struct type *builtin_type_uint128;
struct type *builtin_type_uint128;
 
 
/* Floatformat pairs.  */
/* Floatformat pairs.  */
const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
  &floatformat_ieee_single_big,
  &floatformat_ieee_single_big,
  &floatformat_ieee_single_little
  &floatformat_ieee_single_little
};
};
const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
  &floatformat_ieee_double_big,
  &floatformat_ieee_double_big,
  &floatformat_ieee_double_little
  &floatformat_ieee_double_little
};
};
const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
  &floatformat_ieee_double_big,
  &floatformat_ieee_double_big,
  &floatformat_ieee_double_littlebyte_bigword
  &floatformat_ieee_double_littlebyte_bigword
};
};
const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
  &floatformat_i387_ext,
  &floatformat_i387_ext,
  &floatformat_i387_ext
  &floatformat_i387_ext
};
};
const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
  &floatformat_m68881_ext,
  &floatformat_m68881_ext,
  &floatformat_m68881_ext
  &floatformat_m68881_ext
};
};
const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
  &floatformat_arm_ext_big,
  &floatformat_arm_ext_big,
  &floatformat_arm_ext_littlebyte_bigword
  &floatformat_arm_ext_littlebyte_bigword
};
};
const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
  &floatformat_ia64_spill_big,
  &floatformat_ia64_spill_big,
  &floatformat_ia64_spill_little
  &floatformat_ia64_spill_little
};
};
const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
  &floatformat_ia64_quad_big,
  &floatformat_ia64_quad_big,
  &floatformat_ia64_quad_little
  &floatformat_ia64_quad_little
};
};
const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
  &floatformat_vax_f,
  &floatformat_vax_f,
  &floatformat_vax_f
  &floatformat_vax_f
};
};
const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
  &floatformat_vax_d,
  &floatformat_vax_d,
  &floatformat_vax_d
  &floatformat_vax_d
};
};
const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
  &floatformat_ibm_long_double,
  &floatformat_ibm_long_double,
  &floatformat_ibm_long_double
  &floatformat_ibm_long_double
};
};
 
 
struct type *builtin_type_ieee_single;
struct type *builtin_type_ieee_single;
struct type *builtin_type_ieee_double;
struct type *builtin_type_ieee_double;
struct type *builtin_type_i387_ext;
struct type *builtin_type_i387_ext;
struct type *builtin_type_m68881_ext;
struct type *builtin_type_m68881_ext;
struct type *builtin_type_arm_ext;
struct type *builtin_type_arm_ext;
struct type *builtin_type_ia64_spill;
struct type *builtin_type_ia64_spill;
struct type *builtin_type_ia64_quad;
struct type *builtin_type_ia64_quad;
 
 
 
 
int opaque_type_resolution = 1;
int opaque_type_resolution = 1;
static void
static void
show_opaque_type_resolution (struct ui_file *file, int from_tty,
show_opaque_type_resolution (struct ui_file *file, int from_tty,
                             struct cmd_list_element *c,
                             struct cmd_list_element *c,
                             const char *value)
                             const char *value)
{
{
  fprintf_filtered (file, _("\
  fprintf_filtered (file, _("\
Resolution of opaque struct/class/union types (if set before loading symbols) is %s.\n"),
Resolution of opaque struct/class/union types (if set before loading symbols) is %s.\n"),
                    value);
                    value);
}
}
 
 
int overload_debug = 0;
int overload_debug = 0;
static void
static void
show_overload_debug (struct ui_file *file, int from_tty,
show_overload_debug (struct ui_file *file, int from_tty,
                     struct cmd_list_element *c, const char *value)
                     struct cmd_list_element *c, const char *value)
{
{
  fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
  fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
                    value);
                    value);
}
}
 
 
struct extra
struct extra
  {
  {
    char str[128];
    char str[128];
    int len;
    int len;
  };                            /* Maximum extension is 128!  FIXME  */
  };                            /* Maximum extension is 128!  FIXME  */
 
 
static void print_bit_vector (B_TYPE *, int);
static void print_bit_vector (B_TYPE *, int);
static void print_arg_types (struct field *, int, int);
static void print_arg_types (struct field *, int, int);
static void dump_fn_fieldlists (struct type *, int);
static void dump_fn_fieldlists (struct type *, int);
static void print_cplus_stuff (struct type *, int);
static void print_cplus_stuff (struct type *, int);
 
 
 
 
/* Alloc a new type structure and fill it with some defaults.  If
/* Alloc a new type structure and fill it with some defaults.  If
   OBJFILE is non-NULL, then allocate the space for the type structure
   OBJFILE is non-NULL, then allocate the space for the type structure
   in that objfile's objfile_obstack.  Otherwise allocate the new type
   in that objfile's objfile_obstack.  Otherwise allocate the new type
   structure by xmalloc () (for permanent types).  */
   structure by xmalloc () (for permanent types).  */
 
 
struct type *
struct type *
alloc_type (struct objfile *objfile)
alloc_type (struct objfile *objfile)
{
{
  struct type *type;
  struct type *type;
 
 
  /* Alloc the structure and start off with all fields zeroed.  */
  /* Alloc the structure and start off with all fields zeroed.  */
 
 
  if (objfile == NULL)
  if (objfile == NULL)
    {
    {
      type = xmalloc (sizeof (struct type));
      type = xmalloc (sizeof (struct type));
      memset (type, 0, sizeof (struct type));
      memset (type, 0, sizeof (struct type));
      TYPE_MAIN_TYPE (type) = xmalloc (sizeof (struct main_type));
      TYPE_MAIN_TYPE (type) = xmalloc (sizeof (struct main_type));
    }
    }
  else
  else
    {
    {
      type = obstack_alloc (&objfile->objfile_obstack,
      type = obstack_alloc (&objfile->objfile_obstack,
                            sizeof (struct type));
                            sizeof (struct type));
      memset (type, 0, sizeof (struct type));
      memset (type, 0, sizeof (struct type));
      TYPE_MAIN_TYPE (type) = obstack_alloc (&objfile->objfile_obstack,
      TYPE_MAIN_TYPE (type) = obstack_alloc (&objfile->objfile_obstack,
                                             sizeof (struct main_type));
                                             sizeof (struct main_type));
      OBJSTAT (objfile, n_types++);
      OBJSTAT (objfile, n_types++);
    }
    }
  memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
  memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
 
 
  /* Initialize the fields that might not be zero.  */
  /* Initialize the fields that might not be zero.  */
 
 
  TYPE_CODE (type) = TYPE_CODE_UNDEF;
  TYPE_CODE (type) = TYPE_CODE_UNDEF;
  TYPE_OBJFILE (type) = objfile;
  TYPE_OBJFILE (type) = objfile;
  TYPE_VPTR_FIELDNO (type) = -1;
  TYPE_VPTR_FIELDNO (type) = -1;
  TYPE_CHAIN (type) = type;     /* Chain back to itself.  */
  TYPE_CHAIN (type) = type;     /* Chain back to itself.  */
 
 
  return (type);
  return (type);
}
}
 
 
/* Alloc a new type instance structure, fill it with some defaults,
/* Alloc a new type instance structure, fill it with some defaults,
   and point it at OLDTYPE.  Allocate the new type instance from the
   and point it at OLDTYPE.  Allocate the new type instance from the
   same place as OLDTYPE.  */
   same place as OLDTYPE.  */
 
 
static struct type *
static struct type *
alloc_type_instance (struct type *oldtype)
alloc_type_instance (struct type *oldtype)
{
{
  struct type *type;
  struct type *type;
 
 
  /* Allocate the structure.  */
  /* Allocate the structure.  */
 
 
  if (TYPE_OBJFILE (oldtype) == NULL)
  if (TYPE_OBJFILE (oldtype) == NULL)
    {
    {
      type = xmalloc (sizeof (struct type));
      type = xmalloc (sizeof (struct type));
      memset (type, 0, sizeof (struct type));
      memset (type, 0, sizeof (struct type));
    }
    }
  else
  else
    {
    {
      type = obstack_alloc (&TYPE_OBJFILE (oldtype)->objfile_obstack,
      type = obstack_alloc (&TYPE_OBJFILE (oldtype)->objfile_obstack,
                            sizeof (struct type));
                            sizeof (struct type));
      memset (type, 0, sizeof (struct type));
      memset (type, 0, sizeof (struct type));
    }
    }
  TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
  TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
 
 
  TYPE_CHAIN (type) = type;     /* Chain back to itself for now.  */
  TYPE_CHAIN (type) = type;     /* Chain back to itself for now.  */
 
 
  return (type);
  return (type);
}
}
 
 
/* Clear all remnants of the previous type at TYPE, in preparation for
/* Clear all remnants of the previous type at TYPE, in preparation for
   replacing it with something else.  */
   replacing it with something else.  */
static void
static void
smash_type (struct type *type)
smash_type (struct type *type)
{
{
  memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
  memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
 
 
  /* For now, delete the rings.  */
  /* For now, delete the rings.  */
  TYPE_CHAIN (type) = type;
  TYPE_CHAIN (type) = type;
 
 
  /* For now, leave the pointer/reference types alone.  */
  /* For now, leave the pointer/reference types alone.  */
}
}
 
 
/* Lookup a pointer to a type TYPE.  TYPEPTR, if nonzero, points
/* Lookup a pointer to a type TYPE.  TYPEPTR, if nonzero, points
   to a pointer to memory where the pointer type should be stored.
   to a pointer to memory where the pointer type should be stored.
   If *TYPEPTR is zero, update it to point to the pointer type we return.
   If *TYPEPTR is zero, update it to point to the pointer type we return.
   We allocate new memory if needed.  */
   We allocate new memory if needed.  */
 
 
struct type *
struct type *
make_pointer_type (struct type *type, struct type **typeptr)
make_pointer_type (struct type *type, struct type **typeptr)
{
{
  struct type *ntype;   /* New type */
  struct type *ntype;   /* New type */
  struct objfile *objfile;
  struct objfile *objfile;
  struct type *chain;
  struct type *chain;
 
 
  ntype = TYPE_POINTER_TYPE (type);
  ntype = TYPE_POINTER_TYPE (type);
 
 
  if (ntype)
  if (ntype)
    {
    {
      if (typeptr == 0)
      if (typeptr == 0)
        return ntype;           /* Don't care about alloc,
        return ntype;           /* Don't care about alloc,
                                   and have new type.  */
                                   and have new type.  */
      else if (*typeptr == 0)
      else if (*typeptr == 0)
        {
        {
          *typeptr = ntype;     /* Tracking alloc, and have new type.  */
          *typeptr = ntype;     /* Tracking alloc, and have new type.  */
          return ntype;
          return ntype;
        }
        }
    }
    }
 
 
  if (typeptr == 0 || *typeptr == 0)      /* We'll need to allocate one.  */
  if (typeptr == 0 || *typeptr == 0)      /* We'll need to allocate one.  */
    {
    {
      ntype = alloc_type (TYPE_OBJFILE (type));
      ntype = alloc_type (TYPE_OBJFILE (type));
      if (typeptr)
      if (typeptr)
        *typeptr = ntype;
        *typeptr = ntype;
    }
    }
  else                  /* We have storage, but need to reset it.  */
  else                  /* We have storage, but need to reset it.  */
    {
    {
      ntype = *typeptr;
      ntype = *typeptr;
      objfile = TYPE_OBJFILE (ntype);
      objfile = TYPE_OBJFILE (ntype);
      chain = TYPE_CHAIN (ntype);
      chain = TYPE_CHAIN (ntype);
      smash_type (ntype);
      smash_type (ntype);
      TYPE_CHAIN (ntype) = chain;
      TYPE_CHAIN (ntype) = chain;
      TYPE_OBJFILE (ntype) = objfile;
      TYPE_OBJFILE (ntype) = objfile;
    }
    }
 
 
  TYPE_TARGET_TYPE (ntype) = type;
  TYPE_TARGET_TYPE (ntype) = type;
  TYPE_POINTER_TYPE (type) = ntype;
  TYPE_POINTER_TYPE (type) = ntype;
 
 
  /* FIXME!  Assume the machine has only one representation for
  /* FIXME!  Assume the machine has only one representation for
     pointers!  */
     pointers!  */
 
 
  TYPE_LENGTH (ntype) =
  TYPE_LENGTH (ntype) =
    gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT;
    gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT;
  TYPE_CODE (ntype) = TYPE_CODE_PTR;
  TYPE_CODE (ntype) = TYPE_CODE_PTR;
 
 
  /* Mark pointers as unsigned.  The target converts between pointers
  /* Mark pointers as unsigned.  The target converts between pointers
     and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
     and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
     gdbarch_address_to_pointer.  */
     gdbarch_address_to_pointer.  */
  TYPE_FLAGS (ntype) |= TYPE_FLAG_UNSIGNED;
  TYPE_FLAGS (ntype) |= TYPE_FLAG_UNSIGNED;
 
 
  if (!TYPE_POINTER_TYPE (type))        /* Remember it, if don't have one.  */
  if (!TYPE_POINTER_TYPE (type))        /* Remember it, if don't have one.  */
    TYPE_POINTER_TYPE (type) = ntype;
    TYPE_POINTER_TYPE (type) = ntype;
 
 
  /* Update the length of all the other variants of this type.  */
  /* Update the length of all the other variants of this type.  */
  chain = TYPE_CHAIN (ntype);
  chain = TYPE_CHAIN (ntype);
  while (chain != ntype)
  while (chain != ntype)
    {
    {
      TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
      TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
      chain = TYPE_CHAIN (chain);
      chain = TYPE_CHAIN (chain);
    }
    }
 
 
  return ntype;
  return ntype;
}
}
 
 
/* Given a type TYPE, return a type of pointers to that type.
/* Given a type TYPE, return a type of pointers to that type.
   May need to construct such a type if this is the first use.  */
   May need to construct such a type if this is the first use.  */
 
 
struct type *
struct type *
lookup_pointer_type (struct type *type)
lookup_pointer_type (struct type *type)
{
{
  return make_pointer_type (type, (struct type **) 0);
  return make_pointer_type (type, (struct type **) 0);
}
}
 
 
/* Lookup a C++ `reference' to a type TYPE.  TYPEPTR, if nonzero,
/* Lookup a C++ `reference' to a type TYPE.  TYPEPTR, if nonzero,
   points to a pointer to memory where the reference type should be
   points to a pointer to memory where the reference type should be
   stored.  If *TYPEPTR is zero, update it to point to the reference
   stored.  If *TYPEPTR is zero, update it to point to the reference
   type we return.  We allocate new memory if needed.  */
   type we return.  We allocate new memory if needed.  */
 
 
struct type *
struct type *
make_reference_type (struct type *type, struct type **typeptr)
make_reference_type (struct type *type, struct type **typeptr)
{
{
  struct type *ntype;   /* New type */
  struct type *ntype;   /* New type */
  struct objfile *objfile;
  struct objfile *objfile;
  struct type *chain;
  struct type *chain;
 
 
  ntype = TYPE_REFERENCE_TYPE (type);
  ntype = TYPE_REFERENCE_TYPE (type);
 
 
  if (ntype)
  if (ntype)
    {
    {
      if (typeptr == 0)
      if (typeptr == 0)
        return ntype;           /* Don't care about alloc,
        return ntype;           /* Don't care about alloc,
                                   and have new type.  */
                                   and have new type.  */
      else if (*typeptr == 0)
      else if (*typeptr == 0)
        {
        {
          *typeptr = ntype;     /* Tracking alloc, and have new type.  */
          *typeptr = ntype;     /* Tracking alloc, and have new type.  */
          return ntype;
          return ntype;
        }
        }
    }
    }
 
 
  if (typeptr == 0 || *typeptr == 0)      /* We'll need to allocate one.  */
  if (typeptr == 0 || *typeptr == 0)      /* We'll need to allocate one.  */
    {
    {
      ntype = alloc_type (TYPE_OBJFILE (type));
      ntype = alloc_type (TYPE_OBJFILE (type));
      if (typeptr)
      if (typeptr)
        *typeptr = ntype;
        *typeptr = ntype;
    }
    }
  else                  /* We have storage, but need to reset it.  */
  else                  /* We have storage, but need to reset it.  */
    {
    {
      ntype = *typeptr;
      ntype = *typeptr;
      objfile = TYPE_OBJFILE (ntype);
      objfile = TYPE_OBJFILE (ntype);
      chain = TYPE_CHAIN (ntype);
      chain = TYPE_CHAIN (ntype);
      smash_type (ntype);
      smash_type (ntype);
      TYPE_CHAIN (ntype) = chain;
      TYPE_CHAIN (ntype) = chain;
      TYPE_OBJFILE (ntype) = objfile;
      TYPE_OBJFILE (ntype) = objfile;
    }
    }
 
 
  TYPE_TARGET_TYPE (ntype) = type;
  TYPE_TARGET_TYPE (ntype) = type;
  TYPE_REFERENCE_TYPE (type) = ntype;
  TYPE_REFERENCE_TYPE (type) = ntype;
 
 
  /* FIXME!  Assume the machine has only one representation for
  /* FIXME!  Assume the machine has only one representation for
     references, and that it matches the (only) representation for
     references, and that it matches the (only) representation for
     pointers!  */
     pointers!  */
 
 
  TYPE_LENGTH (ntype) = gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT;
  TYPE_LENGTH (ntype) = gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT;
  TYPE_CODE (ntype) = TYPE_CODE_REF;
  TYPE_CODE (ntype) = TYPE_CODE_REF;
 
 
  if (!TYPE_REFERENCE_TYPE (type))      /* Remember it, if don't have one.  */
  if (!TYPE_REFERENCE_TYPE (type))      /* Remember it, if don't have one.  */
    TYPE_REFERENCE_TYPE (type) = ntype;
    TYPE_REFERENCE_TYPE (type) = ntype;
 
 
  /* Update the length of all the other variants of this type.  */
  /* Update the length of all the other variants of this type.  */
  chain = TYPE_CHAIN (ntype);
  chain = TYPE_CHAIN (ntype);
  while (chain != ntype)
  while (chain != ntype)
    {
    {
      TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
      TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
      chain = TYPE_CHAIN (chain);
      chain = TYPE_CHAIN (chain);
    }
    }
 
 
  return ntype;
  return ntype;
}
}
 
 
/* Same as above, but caller doesn't care about memory allocation
/* Same as above, but caller doesn't care about memory allocation
   details.  */
   details.  */
 
 
struct type *
struct type *
lookup_reference_type (struct type *type)
lookup_reference_type (struct type *type)
{
{
  return make_reference_type (type, (struct type **) 0);
  return make_reference_type (type, (struct type **) 0);
}
}
 
 
/* Lookup a function type that returns type TYPE.  TYPEPTR, if
/* Lookup a function type that returns type TYPE.  TYPEPTR, if
   nonzero, points to a pointer to memory where the function type
   nonzero, points to a pointer to memory where the function type
   should be stored.  If *TYPEPTR is zero, update it to point to the
   should be stored.  If *TYPEPTR is zero, update it to point to the
   function type we return.  We allocate new memory if needed.  */
   function type we return.  We allocate new memory if needed.  */
 
 
struct type *
struct type *
make_function_type (struct type *type, struct type **typeptr)
make_function_type (struct type *type, struct type **typeptr)
{
{
  struct type *ntype;   /* New type */
  struct type *ntype;   /* New type */
  struct objfile *objfile;
  struct objfile *objfile;
 
 
  if (typeptr == 0 || *typeptr == 0)      /* We'll need to allocate one.  */
  if (typeptr == 0 || *typeptr == 0)      /* We'll need to allocate one.  */
    {
    {
      ntype = alloc_type (TYPE_OBJFILE (type));
      ntype = alloc_type (TYPE_OBJFILE (type));
      if (typeptr)
      if (typeptr)
        *typeptr = ntype;
        *typeptr = ntype;
    }
    }
  else                  /* We have storage, but need to reset it.  */
  else                  /* We have storage, but need to reset it.  */
    {
    {
      ntype = *typeptr;
      ntype = *typeptr;
      objfile = TYPE_OBJFILE (ntype);
      objfile = TYPE_OBJFILE (ntype);
      smash_type (ntype);
      smash_type (ntype);
      TYPE_OBJFILE (ntype) = objfile;
      TYPE_OBJFILE (ntype) = objfile;
    }
    }
 
 
  TYPE_TARGET_TYPE (ntype) = type;
  TYPE_TARGET_TYPE (ntype) = type;
 
 
  TYPE_LENGTH (ntype) = 1;
  TYPE_LENGTH (ntype) = 1;
  TYPE_CODE (ntype) = TYPE_CODE_FUNC;
  TYPE_CODE (ntype) = TYPE_CODE_FUNC;
 
 
  return ntype;
  return ntype;
}
}
 
 
 
 
/* Given a type TYPE, return a type of functions that return that type.
/* Given a type TYPE, return a type of functions that return that type.
   May need to construct such a type if this is the first use.  */
   May need to construct such a type if this is the first use.  */
 
 
struct type *
struct type *
lookup_function_type (struct type *type)
lookup_function_type (struct type *type)
{
{
  return make_function_type (type, (struct type **) 0);
  return make_function_type (type, (struct type **) 0);
}
}
 
 
/* Identify address space identifier by name --
/* Identify address space identifier by name --
   return the integer flag defined in gdbtypes.h.  */
   return the integer flag defined in gdbtypes.h.  */
extern int
extern int
address_space_name_to_int (char *space_identifier)
address_space_name_to_int (char *space_identifier)
{
{
  struct gdbarch *gdbarch = current_gdbarch;
  struct gdbarch *gdbarch = current_gdbarch;
  int type_flags;
  int type_flags;
  /* Check for known address space delimiters.  */
  /* Check for known address space delimiters.  */
  if (!strcmp (space_identifier, "code"))
  if (!strcmp (space_identifier, "code"))
    return TYPE_FLAG_CODE_SPACE;
    return TYPE_FLAG_CODE_SPACE;
  else if (!strcmp (space_identifier, "data"))
  else if (!strcmp (space_identifier, "data"))
    return TYPE_FLAG_DATA_SPACE;
    return TYPE_FLAG_DATA_SPACE;
  else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
  else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
           && gdbarch_address_class_name_to_type_flags (gdbarch,
           && gdbarch_address_class_name_to_type_flags (gdbarch,
                                                        space_identifier,
                                                        space_identifier,
                                                        &type_flags))
                                                        &type_flags))
    return type_flags;
    return type_flags;
  else
  else
    error (_("Unknown address space specifier: \"%s\""), space_identifier);
    error (_("Unknown address space specifier: \"%s\""), space_identifier);
}
}
 
 
/* Identify address space identifier by integer flag as defined in
/* Identify address space identifier by integer flag as defined in
   gdbtypes.h -- return the string version of the adress space name.  */
   gdbtypes.h -- return the string version of the adress space name.  */
 
 
const char *
const char *
address_space_int_to_name (int space_flag)
address_space_int_to_name (int space_flag)
{
{
  struct gdbarch *gdbarch = current_gdbarch;
  struct gdbarch *gdbarch = current_gdbarch;
  if (space_flag & TYPE_FLAG_CODE_SPACE)
  if (space_flag & TYPE_FLAG_CODE_SPACE)
    return "code";
    return "code";
  else if (space_flag & TYPE_FLAG_DATA_SPACE)
  else if (space_flag & TYPE_FLAG_DATA_SPACE)
    return "data";
    return "data";
  else if ((space_flag & TYPE_FLAG_ADDRESS_CLASS_ALL)
  else if ((space_flag & TYPE_FLAG_ADDRESS_CLASS_ALL)
           && gdbarch_address_class_type_flags_to_name_p (gdbarch))
           && gdbarch_address_class_type_flags_to_name_p (gdbarch))
    return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
    return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
  else
  else
    return NULL;
    return NULL;
}
}
 
 
/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
 
 
   If STORAGE is non-NULL, create the new type instance there.
   If STORAGE is non-NULL, create the new type instance there.
   STORAGE must be in the same obstack as TYPE.  */
   STORAGE must be in the same obstack as TYPE.  */
 
 
static struct type *
static struct type *
make_qualified_type (struct type *type, int new_flags,
make_qualified_type (struct type *type, int new_flags,
                     struct type *storage)
                     struct type *storage)
{
{
  struct type *ntype;
  struct type *ntype;
 
 
  ntype = type;
  ntype = type;
  do {
  do {
    if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
    if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
      return ntype;
      return ntype;
    ntype = TYPE_CHAIN (ntype);
    ntype = TYPE_CHAIN (ntype);
  } while (ntype != type);
  } while (ntype != type);
 
 
  /* Create a new type instance.  */
  /* Create a new type instance.  */
  if (storage == NULL)
  if (storage == NULL)
    ntype = alloc_type_instance (type);
    ntype = alloc_type_instance (type);
  else
  else
    {
    {
      /* If STORAGE was provided, it had better be in the same objfile
      /* If STORAGE was provided, it had better be in the same objfile
         as TYPE.  Otherwise, we can't link it into TYPE's cv chain:
         as TYPE.  Otherwise, we can't link it into TYPE's cv chain:
         if one objfile is freed and the other kept, we'd have
         if one objfile is freed and the other kept, we'd have
         dangling pointers.  */
         dangling pointers.  */
      gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
      gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
 
 
      ntype = storage;
      ntype = storage;
      TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
      TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
      TYPE_CHAIN (ntype) = ntype;
      TYPE_CHAIN (ntype) = ntype;
    }
    }
 
 
  /* Pointers or references to the original type are not relevant to
  /* Pointers or references to the original type are not relevant to
     the new type.  */
     the new type.  */
  TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
  TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
  TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
  TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
 
 
  /* Chain the new qualified type to the old type.  */
  /* Chain the new qualified type to the old type.  */
  TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
  TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
  TYPE_CHAIN (type) = ntype;
  TYPE_CHAIN (type) = ntype;
 
 
  /* Now set the instance flags and return the new type.  */
  /* Now set the instance flags and return the new type.  */
  TYPE_INSTANCE_FLAGS (ntype) = new_flags;
  TYPE_INSTANCE_FLAGS (ntype) = new_flags;
 
 
  /* Set length of new type to that of the original type.  */
  /* Set length of new type to that of the original type.  */
  TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
  TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
 
 
  return ntype;
  return ntype;
}
}
 
 
/* Make an address-space-delimited variant of a type -- a type that
/* Make an address-space-delimited variant of a type -- a type that
   is identical to the one supplied except that it has an address
   is identical to the one supplied except that it has an address
   space attribute attached to it (such as "code" or "data").
   space attribute attached to it (such as "code" or "data").
 
 
   The space attributes "code" and "data" are for Harvard
   The space attributes "code" and "data" are for Harvard
   architectures.  The address space attributes are for architectures
   architectures.  The address space attributes are for architectures
   which have alternately sized pointers or pointers with alternate
   which have alternately sized pointers or pointers with alternate
   representations.  */
   representations.  */
 
 
struct type *
struct type *
make_type_with_address_space (struct type *type, int space_flag)
make_type_with_address_space (struct type *type, int space_flag)
{
{
  struct type *ntype;
  struct type *ntype;
  int new_flags = ((TYPE_INSTANCE_FLAGS (type)
  int new_flags = ((TYPE_INSTANCE_FLAGS (type)
                    & ~(TYPE_FLAG_CODE_SPACE | TYPE_FLAG_DATA_SPACE
                    & ~(TYPE_FLAG_CODE_SPACE | TYPE_FLAG_DATA_SPACE
                        | TYPE_FLAG_ADDRESS_CLASS_ALL))
                        | TYPE_FLAG_ADDRESS_CLASS_ALL))
                   | space_flag);
                   | space_flag);
 
 
  return make_qualified_type (type, new_flags, NULL);
  return make_qualified_type (type, new_flags, NULL);
}
}
 
 
/* Make a "c-v" variant of a type -- a type that is identical to the
/* Make a "c-v" variant of a type -- a type that is identical to the
   one supplied except that it may have const or volatile attributes
   one supplied except that it may have const or volatile attributes
   CNST is a flag for setting the const attribute
   CNST is a flag for setting the const attribute
   VOLTL is a flag for setting the volatile attribute
   VOLTL is a flag for setting the volatile attribute
   TYPE is the base type whose variant we are creating.
   TYPE is the base type whose variant we are creating.
 
 
   If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
   If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
   storage to hold the new qualified type; *TYPEPTR and TYPE must be
   storage to hold the new qualified type; *TYPEPTR and TYPE must be
   in the same objfile.  Otherwise, allocate fresh memory for the new
   in the same objfile.  Otherwise, allocate fresh memory for the new
   type whereever TYPE lives.  If TYPEPTR is non-zero, set it to the
   type whereever TYPE lives.  If TYPEPTR is non-zero, set it to the
   new type we construct.  */
   new type we construct.  */
struct type *
struct type *
make_cv_type (int cnst, int voltl,
make_cv_type (int cnst, int voltl,
              struct type *type,
              struct type *type,
              struct type **typeptr)
              struct type **typeptr)
{
{
  struct type *ntype;   /* New type */
  struct type *ntype;   /* New type */
  struct type *tmp_type = type; /* tmp type */
  struct type *tmp_type = type; /* tmp type */
  struct objfile *objfile;
  struct objfile *objfile;
 
 
  int new_flags = (TYPE_INSTANCE_FLAGS (type)
  int new_flags = (TYPE_INSTANCE_FLAGS (type)
                   & ~(TYPE_FLAG_CONST | TYPE_FLAG_VOLATILE));
                   & ~(TYPE_FLAG_CONST | TYPE_FLAG_VOLATILE));
 
 
  if (cnst)
  if (cnst)
    new_flags |= TYPE_FLAG_CONST;
    new_flags |= TYPE_FLAG_CONST;
 
 
  if (voltl)
  if (voltl)
    new_flags |= TYPE_FLAG_VOLATILE;
    new_flags |= TYPE_FLAG_VOLATILE;
 
 
  if (typeptr && *typeptr != NULL)
  if (typeptr && *typeptr != NULL)
    {
    {
      /* TYPE and *TYPEPTR must be in the same objfile.  We can't have
      /* TYPE and *TYPEPTR must be in the same objfile.  We can't have
         a C-V variant chain that threads across objfiles: if one
         a C-V variant chain that threads across objfiles: if one
         objfile gets freed, then the other has a broken C-V chain.
         objfile gets freed, then the other has a broken C-V chain.
 
 
         This code used to try to copy over the main type from TYPE to
         This code used to try to copy over the main type from TYPE to
         *TYPEPTR if they were in different objfiles, but that's
         *TYPEPTR if they were in different objfiles, but that's
         wrong, too: TYPE may have a field list or member function
         wrong, too: TYPE may have a field list or member function
         lists, which refer to types of their own, etc. etc.  The
         lists, which refer to types of their own, etc. etc.  The
         whole shebang would need to be copied over recursively; you
         whole shebang would need to be copied over recursively; you
         can't have inter-objfile pointers.  The only thing to do is
         can't have inter-objfile pointers.  The only thing to do is
         to leave stub types as stub types, and look them up afresh by
         to leave stub types as stub types, and look them up afresh by
         name each time you encounter them.  */
         name each time you encounter them.  */
      gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
      gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
    }
    }
 
 
  ntype = make_qualified_type (type, new_flags,
  ntype = make_qualified_type (type, new_flags,
                               typeptr ? *typeptr : NULL);
                               typeptr ? *typeptr : NULL);
 
 
  if (typeptr != NULL)
  if (typeptr != NULL)
    *typeptr = ntype;
    *typeptr = ntype;
 
 
  return ntype;
  return ntype;
}
}
 
 
/* Replace the contents of ntype with the type *type.  This changes the
/* Replace the contents of ntype with the type *type.  This changes the
   contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
   contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
   the changes are propogated to all types in the TYPE_CHAIN.
   the changes are propogated to all types in the TYPE_CHAIN.
 
 
   In order to build recursive types, it's inevitable that we'll need
   In order to build recursive types, it's inevitable that we'll need
   to update types in place --- but this sort of indiscriminate
   to update types in place --- but this sort of indiscriminate
   smashing is ugly, and needs to be replaced with something more
   smashing is ugly, and needs to be replaced with something more
   controlled.  TYPE_MAIN_TYPE is a step in this direction; it's not
   controlled.  TYPE_MAIN_TYPE is a step in this direction; it's not
   clear if more steps are needed.  */
   clear if more steps are needed.  */
void
void
replace_type (struct type *ntype, struct type *type)
replace_type (struct type *ntype, struct type *type)
{
{
  struct type *chain;
  struct type *chain;
 
 
  /* These two types had better be in the same objfile.  Otherwise,
  /* These two types had better be in the same objfile.  Otherwise,
     the assignment of one type's main type structure to the other
     the assignment of one type's main type structure to the other
     will produce a type with references to objects (names; field
     will produce a type with references to objects (names; field
     lists; etc.) allocated on an objfile other than its own.  */
     lists; etc.) allocated on an objfile other than its own.  */
  gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
  gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
 
 
  *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
  *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
 
 
  /* The type length is not a part of the main type.  Update it for
  /* The type length is not a part of the main type.  Update it for
     each type on the variant chain.  */
     each type on the variant chain.  */
  chain = ntype;
  chain = ntype;
  do {
  do {
    /* Assert that this element of the chain has no address-class bits
    /* Assert that this element of the chain has no address-class bits
       set in its flags.  Such type variants might have type lengths
       set in its flags.  Such type variants might have type lengths
       which are supposed to be different from the non-address-class
       which are supposed to be different from the non-address-class
       variants.  This assertion shouldn't ever be triggered because
       variants.  This assertion shouldn't ever be triggered because
       symbol readers which do construct address-class variants don't
       symbol readers which do construct address-class variants don't
       call replace_type().  */
       call replace_type().  */
    gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
    gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
 
 
    TYPE_LENGTH (chain) = TYPE_LENGTH (type);
    TYPE_LENGTH (chain) = TYPE_LENGTH (type);
    chain = TYPE_CHAIN (chain);
    chain = TYPE_CHAIN (chain);
  } while (ntype != chain);
  } while (ntype != chain);
 
 
  /* Assert that the two types have equivalent instance qualifiers.
  /* Assert that the two types have equivalent instance qualifiers.
     This should be true for at least all of our debug readers.  */
     This should be true for at least all of our debug readers.  */
  gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
  gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
}
}
 
 
/* Implement direct support for MEMBER_TYPE in GNU C++.
/* Implement direct support for MEMBER_TYPE in GNU C++.
   May need to construct such a type if this is the first use.
   May need to construct such a type if this is the first use.
   The TYPE is the type of the member.  The DOMAIN is the type
   The TYPE is the type of the member.  The DOMAIN is the type
   of the aggregate that the member belongs to.  */
   of the aggregate that the member belongs to.  */
 
 
struct type *
struct type *
lookup_memberptr_type (struct type *type, struct type *domain)
lookup_memberptr_type (struct type *type, struct type *domain)
{
{
  struct type *mtype;
  struct type *mtype;
 
 
  mtype = alloc_type (TYPE_OBJFILE (type));
  mtype = alloc_type (TYPE_OBJFILE (type));
  smash_to_memberptr_type (mtype, domain, type);
  smash_to_memberptr_type (mtype, domain, type);
  return (mtype);
  return (mtype);
}
}
 
 
/* Return a pointer-to-method type, for a method of type TO_TYPE.  */
/* Return a pointer-to-method type, for a method of type TO_TYPE.  */
 
 
struct type *
struct type *
lookup_methodptr_type (struct type *to_type)
lookup_methodptr_type (struct type *to_type)
{
{
  struct type *mtype;
  struct type *mtype;
 
 
  mtype = alloc_type (TYPE_OBJFILE (to_type));
  mtype = alloc_type (TYPE_OBJFILE (to_type));
  TYPE_TARGET_TYPE (mtype) = to_type;
  TYPE_TARGET_TYPE (mtype) = to_type;
  TYPE_DOMAIN_TYPE (mtype) = TYPE_DOMAIN_TYPE (to_type);
  TYPE_DOMAIN_TYPE (mtype) = TYPE_DOMAIN_TYPE (to_type);
  TYPE_LENGTH (mtype) = cplus_method_ptr_size ();
  TYPE_LENGTH (mtype) = cplus_method_ptr_size ();
  TYPE_CODE (mtype) = TYPE_CODE_METHODPTR;
  TYPE_CODE (mtype) = TYPE_CODE_METHODPTR;
  return mtype;
  return mtype;
}
}
 
 
/* Allocate a stub method whose return type is TYPE.  This apparently
/* Allocate a stub method whose return type is TYPE.  This apparently
   happens for speed of symbol reading, since parsing out the
   happens for speed of symbol reading, since parsing out the
   arguments to the method is cpu-intensive, the way we are doing it.
   arguments to the method is cpu-intensive, the way we are doing it.
   So, we will fill in arguments later.  This always returns a fresh
   So, we will fill in arguments later.  This always returns a fresh
   type.  */
   type.  */
 
 
struct type *
struct type *
allocate_stub_method (struct type *type)
allocate_stub_method (struct type *type)
{
{
  struct type *mtype;
  struct type *mtype;
 
 
  mtype = init_type (TYPE_CODE_METHOD, 1, TYPE_FLAG_STUB, NULL,
  mtype = init_type (TYPE_CODE_METHOD, 1, TYPE_FLAG_STUB, NULL,
                     TYPE_OBJFILE (type));
                     TYPE_OBJFILE (type));
  TYPE_TARGET_TYPE (mtype) = type;
  TYPE_TARGET_TYPE (mtype) = type;
  /*  _DOMAIN_TYPE (mtype) = unknown yet */
  /*  _DOMAIN_TYPE (mtype) = unknown yet */
  return (mtype);
  return (mtype);
}
}
 
 
/* Create a range type using either a blank type supplied in
/* Create a range type using either a blank type supplied in
   RESULT_TYPE, or creating a new type, inheriting the objfile from
   RESULT_TYPE, or creating a new type, inheriting the objfile from
   INDEX_TYPE.
   INDEX_TYPE.
 
 
   Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
   Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
   to HIGH_BOUND, inclusive.
   to HIGH_BOUND, inclusive.
 
 
   FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
   FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
   sure it is TYPE_CODE_UNDEF before we bash it into a range type?  */
   sure it is TYPE_CODE_UNDEF before we bash it into a range type?  */
 
 
struct type *
struct type *
create_range_type (struct type *result_type, struct type *index_type,
create_range_type (struct type *result_type, struct type *index_type,
                   int low_bound, int high_bound)
                   int low_bound, int high_bound)
{
{
  if (result_type == NULL)
  if (result_type == NULL)
    {
    {
      result_type = alloc_type (TYPE_OBJFILE (index_type));
      result_type = alloc_type (TYPE_OBJFILE (index_type));
    }
    }
  TYPE_CODE (result_type) = TYPE_CODE_RANGE;
  TYPE_CODE (result_type) = TYPE_CODE_RANGE;
  TYPE_TARGET_TYPE (result_type) = index_type;
  TYPE_TARGET_TYPE (result_type) = index_type;
  if (TYPE_STUB (index_type))
  if (TYPE_STUB (index_type))
    TYPE_FLAGS (result_type) |= TYPE_FLAG_TARGET_STUB;
    TYPE_FLAGS (result_type) |= TYPE_FLAG_TARGET_STUB;
  else
  else
    TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
    TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
  TYPE_NFIELDS (result_type) = 2;
  TYPE_NFIELDS (result_type) = 2;
  TYPE_FIELDS (result_type) = (struct field *)
  TYPE_FIELDS (result_type) = (struct field *)
    TYPE_ALLOC (result_type, 2 * sizeof (struct field));
    TYPE_ALLOC (result_type, 2 * sizeof (struct field));
  memset (TYPE_FIELDS (result_type), 0, 2 * sizeof (struct field));
  memset (TYPE_FIELDS (result_type), 0, 2 * sizeof (struct field));
  TYPE_FIELD_BITPOS (result_type, 0) = low_bound;
  TYPE_FIELD_BITPOS (result_type, 0) = low_bound;
  TYPE_FIELD_BITPOS (result_type, 1) = high_bound;
  TYPE_FIELD_BITPOS (result_type, 1) = high_bound;
 
 
  if (low_bound >= 0)
  if (low_bound >= 0)
    TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
    TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
 
 
  return (result_type);
  return (result_type);
}
}
 
 
/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
   TYPE.  Return 1 if type is a range type, 0 if it is discrete (and
   TYPE.  Return 1 if type is a range type, 0 if it is discrete (and
   bounds will fit in LONGEST), or -1 otherwise.  */
   bounds will fit in LONGEST), or -1 otherwise.  */
 
 
int
int
get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
{
{
  CHECK_TYPEDEF (type);
  CHECK_TYPEDEF (type);
  switch (TYPE_CODE (type))
  switch (TYPE_CODE (type))
    {
    {
    case TYPE_CODE_RANGE:
    case TYPE_CODE_RANGE:
      *lowp = TYPE_LOW_BOUND (type);
      *lowp = TYPE_LOW_BOUND (type);
      *highp = TYPE_HIGH_BOUND (type);
      *highp = TYPE_HIGH_BOUND (type);
      return 1;
      return 1;
    case TYPE_CODE_ENUM:
    case TYPE_CODE_ENUM:
      if (TYPE_NFIELDS (type) > 0)
      if (TYPE_NFIELDS (type) > 0)
        {
        {
          /* The enums may not be sorted by value, so search all
          /* The enums may not be sorted by value, so search all
             entries */
             entries */
          int i;
          int i;
 
 
          *lowp = *highp = TYPE_FIELD_BITPOS (type, 0);
          *lowp = *highp = TYPE_FIELD_BITPOS (type, 0);
          for (i = 0; i < TYPE_NFIELDS (type); i++)
          for (i = 0; i < TYPE_NFIELDS (type); i++)
            {
            {
              if (TYPE_FIELD_BITPOS (type, i) < *lowp)
              if (TYPE_FIELD_BITPOS (type, i) < *lowp)
                *lowp = TYPE_FIELD_BITPOS (type, i);
                *lowp = TYPE_FIELD_BITPOS (type, i);
              if (TYPE_FIELD_BITPOS (type, i) > *highp)
              if (TYPE_FIELD_BITPOS (type, i) > *highp)
                *highp = TYPE_FIELD_BITPOS (type, i);
                *highp = TYPE_FIELD_BITPOS (type, i);
            }
            }
 
 
          /* Set unsigned indicator if warranted.  */
          /* Set unsigned indicator if warranted.  */
          if (*lowp >= 0)
          if (*lowp >= 0)
            {
            {
              TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
              TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
            }
            }
        }
        }
      else
      else
        {
        {
          *lowp = 0;
          *lowp = 0;
          *highp = -1;
          *highp = -1;
        }
        }
      return 0;
      return 0;
    case TYPE_CODE_BOOL:
    case TYPE_CODE_BOOL:
      *lowp = 0;
      *lowp = 0;
      *highp = 1;
      *highp = 1;
      return 0;
      return 0;
    case TYPE_CODE_INT:
    case TYPE_CODE_INT:
      if (TYPE_LENGTH (type) > sizeof (LONGEST))        /* Too big */
      if (TYPE_LENGTH (type) > sizeof (LONGEST))        /* Too big */
        return -1;
        return -1;
      if (!TYPE_UNSIGNED (type))
      if (!TYPE_UNSIGNED (type))
        {
        {
          *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
          *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
          *highp = -*lowp - 1;
          *highp = -*lowp - 1;
          return 0;
          return 0;
        }
        }
      /* ... fall through for unsigned ints ...  */
      /* ... fall through for unsigned ints ...  */
    case TYPE_CODE_CHAR:
    case TYPE_CODE_CHAR:
      *lowp = 0;
      *lowp = 0;
      /* This round-about calculation is to avoid shifting by
      /* This round-about calculation is to avoid shifting by
         TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
         TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
         if TYPE_LENGTH (type) == sizeof (LONGEST).  */
         if TYPE_LENGTH (type) == sizeof (LONGEST).  */
      *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
      *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
      *highp = (*highp - 1) | *highp;
      *highp = (*highp - 1) | *highp;
      return 0;
      return 0;
    default:
    default:
      return -1;
      return -1;
    }
    }
}
}
 
 
/* Create an array type using either a blank type supplied in
/* Create an array type using either a blank type supplied in
   RESULT_TYPE, or creating a new type, inheriting the objfile from
   RESULT_TYPE, or creating a new type, inheriting the objfile from
   RANGE_TYPE.
   RANGE_TYPE.
 
 
   Elements will be of type ELEMENT_TYPE, the indices will be of type
   Elements will be of type ELEMENT_TYPE, the indices will be of type
   RANGE_TYPE.
   RANGE_TYPE.
 
 
   FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
   FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
   sure it is TYPE_CODE_UNDEF before we bash it into an array
   sure it is TYPE_CODE_UNDEF before we bash it into an array
   type?  */
   type?  */
 
 
struct type *
struct type *
create_array_type (struct type *result_type,
create_array_type (struct type *result_type,
                   struct type *element_type,
                   struct type *element_type,
                   struct type *range_type)
                   struct type *range_type)
{
{
  LONGEST low_bound, high_bound;
  LONGEST low_bound, high_bound;
 
 
  if (result_type == NULL)
  if (result_type == NULL)
    {
    {
      result_type = alloc_type (TYPE_OBJFILE (range_type));
      result_type = alloc_type (TYPE_OBJFILE (range_type));
    }
    }
  TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
  TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
  TYPE_TARGET_TYPE (result_type) = element_type;
  TYPE_TARGET_TYPE (result_type) = element_type;
  if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
  if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
    low_bound = high_bound = 0;
    low_bound = high_bound = 0;
  CHECK_TYPEDEF (element_type);
  CHECK_TYPEDEF (element_type);
  /* Be careful when setting the array length.  Ada arrays can be
  /* Be careful when setting the array length.  Ada arrays can be
     empty arrays with the high_bound being smaller than the low_bound.
     empty arrays with the high_bound being smaller than the low_bound.
     In such cases, the array length should be zero.  */
     In such cases, the array length should be zero.  */
  if (high_bound < low_bound)
  if (high_bound < low_bound)
    TYPE_LENGTH (result_type) = 0;
    TYPE_LENGTH (result_type) = 0;
  else
  else
    TYPE_LENGTH (result_type) =
    TYPE_LENGTH (result_type) =
      TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
      TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
  TYPE_NFIELDS (result_type) = 1;
  TYPE_NFIELDS (result_type) = 1;
  TYPE_FIELDS (result_type) =
  TYPE_FIELDS (result_type) =
    (struct field *) TYPE_ALLOC (result_type, sizeof (struct field));
    (struct field *) TYPE_ALLOC (result_type, sizeof (struct field));
  memset (TYPE_FIELDS (result_type), 0, sizeof (struct field));
  memset (TYPE_FIELDS (result_type), 0, sizeof (struct field));
  TYPE_FIELD_TYPE (result_type, 0) = range_type;
  TYPE_FIELD_TYPE (result_type, 0) = range_type;
  TYPE_VPTR_FIELDNO (result_type) = -1;
  TYPE_VPTR_FIELDNO (result_type) = -1;
 
 
  /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays */
  /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays */
  if (TYPE_LENGTH (result_type) == 0)
  if (TYPE_LENGTH (result_type) == 0)
    TYPE_FLAGS (result_type) |= TYPE_FLAG_TARGET_STUB;
    TYPE_FLAGS (result_type) |= TYPE_FLAG_TARGET_STUB;
 
 
  return (result_type);
  return (result_type);
}
}
 
 
/* Create a string type using either a blank type supplied in
/* Create a string type using either a blank type supplied in
   RESULT_TYPE, or creating a new type.  String types are similar
   RESULT_TYPE, or creating a new type.  String types are similar
   enough to array of char types that we can use create_array_type to
   enough to array of char types that we can use create_array_type to
   build the basic type and then bash it into a string type.
   build the basic type and then bash it into a string type.
 
 
   For fixed length strings, the range type contains 0 as the lower
   For fixed length strings, the range type contains 0 as the lower
   bound and the length of the string minus one as the upper bound.
   bound and the length of the string minus one as the upper bound.
 
 
   FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
   FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
   sure it is TYPE_CODE_UNDEF before we bash it into a string
   sure it is TYPE_CODE_UNDEF before we bash it into a string
   type?  */
   type?  */
 
 
struct type *
struct type *
create_string_type (struct type *result_type,
create_string_type (struct type *result_type,
                    struct type *range_type)
                    struct type *range_type)
{
{
  struct type *string_char_type;
  struct type *string_char_type;
 
 
  string_char_type = language_string_char_type (current_language,
  string_char_type = language_string_char_type (current_language,
                                                current_gdbarch);
                                                current_gdbarch);
  result_type = create_array_type (result_type,
  result_type = create_array_type (result_type,
                                   string_char_type,
                                   string_char_type,
                                   range_type);
                                   range_type);
  TYPE_CODE (result_type) = TYPE_CODE_STRING;
  TYPE_CODE (result_type) = TYPE_CODE_STRING;
  return (result_type);
  return (result_type);
}
}
 
 
struct type *
struct type *
create_set_type (struct type *result_type, struct type *domain_type)
create_set_type (struct type *result_type, struct type *domain_type)
{
{
  if (result_type == NULL)
  if (result_type == NULL)
    {
    {
      result_type = alloc_type (TYPE_OBJFILE (domain_type));
      result_type = alloc_type (TYPE_OBJFILE (domain_type));
    }
    }
  TYPE_CODE (result_type) = TYPE_CODE_SET;
  TYPE_CODE (result_type) = TYPE_CODE_SET;
  TYPE_NFIELDS (result_type) = 1;
  TYPE_NFIELDS (result_type) = 1;
  TYPE_FIELDS (result_type) = (struct field *)
  TYPE_FIELDS (result_type) = (struct field *)
    TYPE_ALLOC (result_type, 1 * sizeof (struct field));
    TYPE_ALLOC (result_type, 1 * sizeof (struct field));
  memset (TYPE_FIELDS (result_type), 0, sizeof (struct field));
  memset (TYPE_FIELDS (result_type), 0, sizeof (struct field));
 
 
  if (!TYPE_STUB (domain_type))
  if (!TYPE_STUB (domain_type))
    {
    {
      LONGEST low_bound, high_bound, bit_length;
      LONGEST low_bound, high_bound, bit_length;
      if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
      if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
        low_bound = high_bound = 0;
        low_bound = high_bound = 0;
      bit_length = high_bound - low_bound + 1;
      bit_length = high_bound - low_bound + 1;
      TYPE_LENGTH (result_type)
      TYPE_LENGTH (result_type)
        = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
        = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
      if (low_bound >= 0)
      if (low_bound >= 0)
        TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
        TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
    }
    }
  TYPE_FIELD_TYPE (result_type, 0) = domain_type;
  TYPE_FIELD_TYPE (result_type, 0) = domain_type;
 
 
  return (result_type);
  return (result_type);
}
}
 
 
void
void
append_flags_type_flag (struct type *type, int bitpos, char *name)
append_flags_type_flag (struct type *type, int bitpos, char *name)
{
{
  gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
  gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
  gdb_assert (bitpos < TYPE_NFIELDS (type));
  gdb_assert (bitpos < TYPE_NFIELDS (type));
  gdb_assert (bitpos >= 0);
  gdb_assert (bitpos >= 0);
 
 
  if (name)
  if (name)
    {
    {
      TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
      TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
      TYPE_FIELD_BITPOS (type, bitpos) = bitpos;
      TYPE_FIELD_BITPOS (type, bitpos) = bitpos;
    }
    }
  else
  else
    {
    {
      /* Don't show this field to the user.  */
      /* Don't show this field to the user.  */
      TYPE_FIELD_BITPOS (type, bitpos) = -1;
      TYPE_FIELD_BITPOS (type, bitpos) = -1;
    }
    }
}
}
 
 
struct type *
struct type *
init_flags_type (char *name, int length)
init_flags_type (char *name, int length)
{
{
  int nfields = length * TARGET_CHAR_BIT;
  int nfields = length * TARGET_CHAR_BIT;
  struct type *type;
  struct type *type;
 
 
  type = init_type (TYPE_CODE_FLAGS, length,
  type = init_type (TYPE_CODE_FLAGS, length,
                    TYPE_FLAG_UNSIGNED, name, NULL);
                    TYPE_FLAG_UNSIGNED, name, NULL);
  TYPE_NFIELDS (type) = nfields;
  TYPE_NFIELDS (type) = nfields;
  TYPE_FIELDS (type) = TYPE_ALLOC (type,
  TYPE_FIELDS (type) = TYPE_ALLOC (type,
                                   nfields * sizeof (struct field));
                                   nfields * sizeof (struct field));
  memset (TYPE_FIELDS (type), 0, nfields * sizeof (struct field));
  memset (TYPE_FIELDS (type), 0, nfields * sizeof (struct field));
 
 
  return type;
  return type;
}
}
 
 
/* Convert ARRAY_TYPE to a vector type.  This may modify ARRAY_TYPE
/* Convert ARRAY_TYPE to a vector type.  This may modify ARRAY_TYPE
   and any array types nested inside it.  */
   and any array types nested inside it.  */
 
 
void
void
make_vector_type (struct type *array_type)
make_vector_type (struct type *array_type)
{
{
  struct type *inner_array, *elt_type;
  struct type *inner_array, *elt_type;
  int flags;
  int flags;
 
 
  /* Find the innermost array type, in case the array is
  /* Find the innermost array type, in case the array is
     multi-dimensional.  */
     multi-dimensional.  */
  inner_array = array_type;
  inner_array = array_type;
  while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
  while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
    inner_array = TYPE_TARGET_TYPE (inner_array);
    inner_array = TYPE_TARGET_TYPE (inner_array);
 
 
  elt_type = TYPE_TARGET_TYPE (inner_array);
  elt_type = TYPE_TARGET_TYPE (inner_array);
  if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
  if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
    {
    {
      flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_FLAG_NOTTEXT;
      flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_FLAG_NOTTEXT;
      elt_type = make_qualified_type (elt_type, flags, NULL);
      elt_type = make_qualified_type (elt_type, flags, NULL);
      TYPE_TARGET_TYPE (inner_array) = elt_type;
      TYPE_TARGET_TYPE (inner_array) = elt_type;
    }
    }
 
 
  TYPE_FLAGS (array_type) |= TYPE_FLAG_VECTOR;
  TYPE_FLAGS (array_type) |= TYPE_FLAG_VECTOR;
}
}
 
 
struct type *
struct type *
init_vector_type (struct type *elt_type, int n)
init_vector_type (struct type *elt_type, int n)
{
{
  struct type *array_type;
  struct type *array_type;
 
 
  array_type = create_array_type (0, elt_type,
  array_type = create_array_type (0, elt_type,
                                  create_range_type (0,
                                  create_range_type (0,
                                                     builtin_type_int32,
                                                     builtin_type_int32,
                                                     0, n-1));
                                                     0, n-1));
  make_vector_type (array_type);
  make_vector_type (array_type);
  return array_type;
  return array_type;
}
}
 
 
/* Smash TYPE to be a type of pointers to members of DOMAIN with type
/* Smash TYPE to be a type of pointers to members of DOMAIN with type
   TO_TYPE.  A member pointer is a wierd thing -- it amounts to a
   TO_TYPE.  A member pointer is a wierd thing -- it amounts to a
   typed offset into a struct, e.g. "an int at offset 8".  A MEMBER
   typed offset into a struct, e.g. "an int at offset 8".  A MEMBER
   TYPE doesn't include the offset (that's the value of the MEMBER
   TYPE doesn't include the offset (that's the value of the MEMBER
   itself), but does include the structure type into which it points
   itself), but does include the structure type into which it points
   (for some reason).
   (for some reason).
 
 
   When "smashing" the type, we preserve the objfile that the old type
   When "smashing" the type, we preserve the objfile that the old type
   pointed to, since we aren't changing where the type is actually
   pointed to, since we aren't changing where the type is actually
   allocated.  */
   allocated.  */
 
 
void
void
smash_to_memberptr_type (struct type *type, struct type *domain,
smash_to_memberptr_type (struct type *type, struct type *domain,
                         struct type *to_type)
                         struct type *to_type)
{
{
  struct objfile *objfile;
  struct objfile *objfile;
 
 
  objfile = TYPE_OBJFILE (type);
  objfile = TYPE_OBJFILE (type);
 
 
  smash_type (type);
  smash_type (type);
  TYPE_OBJFILE (type) = objfile;
  TYPE_OBJFILE (type) = objfile;
  TYPE_TARGET_TYPE (type) = to_type;
  TYPE_TARGET_TYPE (type) = to_type;
  TYPE_DOMAIN_TYPE (type) = domain;
  TYPE_DOMAIN_TYPE (type) = domain;
  /* Assume that a data member pointer is the same size as a normal
  /* Assume that a data member pointer is the same size as a normal
     pointer.  */
     pointer.  */
  TYPE_LENGTH (type) = gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT;
  TYPE_LENGTH (type) = gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT;
  TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
  TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
}
}
 
 
/* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
/* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
   METHOD just means `function that gets an extra "this" argument'.
   METHOD just means `function that gets an extra "this" argument'.
 
 
   When "smashing" the type, we preserve the objfile that the old type
   When "smashing" the type, we preserve the objfile that the old type
   pointed to, since we aren't changing where the type is actually
   pointed to, since we aren't changing where the type is actually
   allocated.  */
   allocated.  */
 
 
void
void
smash_to_method_type (struct type *type, struct type *domain,
smash_to_method_type (struct type *type, struct type *domain,
                      struct type *to_type, struct field *args,
                      struct type *to_type, struct field *args,
                      int nargs, int varargs)
                      int nargs, int varargs)
{
{
  struct objfile *objfile;
  struct objfile *objfile;
 
 
  objfile = TYPE_OBJFILE (type);
  objfile = TYPE_OBJFILE (type);
 
 
  smash_type (type);
  smash_type (type);
  TYPE_OBJFILE (type) = objfile;
  TYPE_OBJFILE (type) = objfile;
  TYPE_TARGET_TYPE (type) = to_type;
  TYPE_TARGET_TYPE (type) = to_type;
  TYPE_DOMAIN_TYPE (type) = domain;
  TYPE_DOMAIN_TYPE (type) = domain;
  TYPE_FIELDS (type) = args;
  TYPE_FIELDS (type) = args;
  TYPE_NFIELDS (type) = nargs;
  TYPE_NFIELDS (type) = nargs;
  if (varargs)
  if (varargs)
    TYPE_FLAGS (type) |= TYPE_FLAG_VARARGS;
    TYPE_FLAGS (type) |= TYPE_FLAG_VARARGS;
  TYPE_LENGTH (type) = 1;       /* In practice, this is never needed.  */
  TYPE_LENGTH (type) = 1;       /* In practice, this is never needed.  */
  TYPE_CODE (type) = TYPE_CODE_METHOD;
  TYPE_CODE (type) = TYPE_CODE_METHOD;
}
}
 
 
/* Return a typename for a struct/union/enum type without "struct ",
/* Return a typename for a struct/union/enum type without "struct ",
   "union ", or "enum ".  If the type has a NULL name, return NULL.  */
   "union ", or "enum ".  If the type has a NULL name, return NULL.  */
 
 
char *
char *
type_name_no_tag (const struct type *type)
type_name_no_tag (const struct type *type)
{
{
  if (TYPE_TAG_NAME (type) != NULL)
  if (TYPE_TAG_NAME (type) != NULL)
    return TYPE_TAG_NAME (type);
    return TYPE_TAG_NAME (type);
 
 
  /* Is there code which expects this to return the name if there is
  /* Is there code which expects this to return the name if there is
     no tag name?  My guess is that this is mainly used for C++ in
     no tag name?  My guess is that this is mainly used for C++ in
     cases where the two will always be the same.  */
     cases where the two will always be the same.  */
  return TYPE_NAME (type);
  return TYPE_NAME (type);
}
}
 
 
/* Lookup a typedef or primitive type named NAME, visible in lexical
/* Lookup a typedef or primitive type named NAME, visible in lexical
   block BLOCK.  If NOERR is nonzero, return zero if NAME is not
   block BLOCK.  If NOERR is nonzero, return zero if NAME is not
   suitably defined.  */
   suitably defined.  */
 
 
struct type *
struct type *
lookup_typename (char *name, struct block *block, int noerr)
lookup_typename (char *name, struct block *block, int noerr)
{
{
  struct symbol *sym;
  struct symbol *sym;
  struct type *tmp;
  struct type *tmp;
 
 
  sym = lookup_symbol (name, block, VAR_DOMAIN, 0,
  sym = lookup_symbol (name, block, VAR_DOMAIN, 0,
                       (struct symtab **) NULL);
                       (struct symtab **) NULL);
  if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
  if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
    {
    {
      tmp = language_lookup_primitive_type_by_name (current_language,
      tmp = language_lookup_primitive_type_by_name (current_language,
                                                    current_gdbarch,
                                                    current_gdbarch,
                                                    name);
                                                    name);
      if (tmp)
      if (tmp)
        {
        {
          return (tmp);
          return (tmp);
        }
        }
      else if (!tmp && noerr)
      else if (!tmp && noerr)
        {
        {
          return (NULL);
          return (NULL);
        }
        }
      else
      else
        {
        {
          error (_("No type named %s."), name);
          error (_("No type named %s."), name);
        }
        }
    }
    }
  return (SYMBOL_TYPE (sym));
  return (SYMBOL_TYPE (sym));
}
}
 
 
struct type *
struct type *
lookup_unsigned_typename (char *name)
lookup_unsigned_typename (char *name)
{
{
  char *uns = alloca (strlen (name) + 10);
  char *uns = alloca (strlen (name) + 10);
 
 
  strcpy (uns, "unsigned ");
  strcpy (uns, "unsigned ");
  strcpy (uns + 9, name);
  strcpy (uns + 9, name);
  return (lookup_typename (uns, (struct block *) NULL, 0));
  return (lookup_typename (uns, (struct block *) NULL, 0));
}
}
 
 
struct type *
struct type *
lookup_signed_typename (char *name)
lookup_signed_typename (char *name)
{
{
  struct type *t;
  struct type *t;
  char *uns = alloca (strlen (name) + 8);
  char *uns = alloca (strlen (name) + 8);
 
 
  strcpy (uns, "signed ");
  strcpy (uns, "signed ");
  strcpy (uns + 7, name);
  strcpy (uns + 7, name);
  t = lookup_typename (uns, (struct block *) NULL, 1);
  t = lookup_typename (uns, (struct block *) NULL, 1);
  /* If we don't find "signed FOO" just try again with plain "FOO".  */
  /* If we don't find "signed FOO" just try again with plain "FOO".  */
  if (t != NULL)
  if (t != NULL)
    return t;
    return t;
  return lookup_typename (name, (struct block *) NULL, 0);
  return lookup_typename (name, (struct block *) NULL, 0);
}
}
 
 
/* Lookup a structure type named "struct NAME",
/* Lookup a structure type named "struct NAME",
   visible in lexical block BLOCK.  */
   visible in lexical block BLOCK.  */
 
 
struct type *
struct type *
lookup_struct (char *name, struct block *block)
lookup_struct (char *name, struct block *block)
{
{
  struct symbol *sym;
  struct symbol *sym;
 
 
  sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0,
  sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0,
                       (struct symtab **) NULL);
                       (struct symtab **) NULL);
 
 
  if (sym == NULL)
  if (sym == NULL)
    {
    {
      error (_("No struct type named %s."), name);
      error (_("No struct type named %s."), name);
    }
    }
  if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
  if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
    {
    {
      error (_("This context has class, union or enum %s, not a struct."),
      error (_("This context has class, union or enum %s, not a struct."),
             name);
             name);
    }
    }
  return (SYMBOL_TYPE (sym));
  return (SYMBOL_TYPE (sym));
}
}
 
 
/* Lookup a union type named "union NAME",
/* Lookup a union type named "union NAME",
   visible in lexical block BLOCK.  */
   visible in lexical block BLOCK.  */
 
 
struct type *
struct type *
lookup_union (char *name, struct block *block)
lookup_union (char *name, struct block *block)
{
{
  struct symbol *sym;
  struct symbol *sym;
  struct type *t;
  struct type *t;
 
 
  sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0,
  sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0,
                       (struct symtab **) NULL);
                       (struct symtab **) NULL);
 
 
  if (sym == NULL)
  if (sym == NULL)
    error (_("No union type named %s."), name);
    error (_("No union type named %s."), name);
 
 
  t = SYMBOL_TYPE (sym);
  t = SYMBOL_TYPE (sym);
 
 
  if (TYPE_CODE (t) == TYPE_CODE_UNION)
  if (TYPE_CODE (t) == TYPE_CODE_UNION)
    return (t);
    return (t);
 
 
  /* C++ unions may come out with TYPE_CODE_CLASS, but we look at
  /* C++ unions may come out with TYPE_CODE_CLASS, but we look at
   * a further "declared_type" field to discover it is really a union.
   * a further "declared_type" field to discover it is really a union.
   */
   */
  if (HAVE_CPLUS_STRUCT (t))
  if (HAVE_CPLUS_STRUCT (t))
    if (TYPE_DECLARED_TYPE (t) == DECLARED_TYPE_UNION)
    if (TYPE_DECLARED_TYPE (t) == DECLARED_TYPE_UNION)
      return (t);
      return (t);
 
 
  /* If we get here, it's not a union.  */
  /* If we get here, it's not a union.  */
  error (_("This context has class, struct or enum %s, not a union."),
  error (_("This context has class, struct or enum %s, not a union."),
         name);
         name);
}
}
 
 
 
 
/* Lookup an enum type named "enum NAME",
/* Lookup an enum type named "enum NAME",
   visible in lexical block BLOCK.  */
   visible in lexical block BLOCK.  */
 
 
struct type *
struct type *
lookup_enum (char *name, struct block *block)
lookup_enum (char *name, struct block *block)
{
{
  struct symbol *sym;
  struct symbol *sym;
 
 
  sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0,
  sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0,
                       (struct symtab **) NULL);
                       (struct symtab **) NULL);
  if (sym == NULL)
  if (sym == NULL)
    {
    {
      error (_("No enum type named %s."), name);
      error (_("No enum type named %s."), name);
    }
    }
  if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
  if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
    {
    {
      error (_("This context has class, struct or union %s, not an enum."),
      error (_("This context has class, struct or union %s, not an enum."),
             name);
             name);
    }
    }
  return (SYMBOL_TYPE (sym));
  return (SYMBOL_TYPE (sym));
}
}
 
 
/* Lookup a template type named "template NAME<TYPE>",
/* Lookup a template type named "template NAME<TYPE>",
   visible in lexical block BLOCK.  */
   visible in lexical block BLOCK.  */
 
 
struct type *
struct type *
lookup_template_type (char *name, struct type *type,
lookup_template_type (char *name, struct type *type,
                      struct block *block)
                      struct block *block)
{
{
  struct symbol *sym;
  struct symbol *sym;
  char *nam = (char *)
  char *nam = (char *)
    alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
    alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
  strcpy (nam, name);
  strcpy (nam, name);
  strcat (nam, "<");
  strcat (nam, "<");
  strcat (nam, TYPE_NAME (type));
  strcat (nam, TYPE_NAME (type));
  strcat (nam, " >");   /* FIXME, extra space still introduced in gcc? */
  strcat (nam, " >");   /* FIXME, extra space still introduced in gcc? */
 
 
  sym = lookup_symbol (nam, block, VAR_DOMAIN, 0,
  sym = lookup_symbol (nam, block, VAR_DOMAIN, 0,
                       (struct symtab **) NULL);
                       (struct symtab **) NULL);
 
 
  if (sym == NULL)
  if (sym == NULL)
    {
    {
      error (_("No template type named %s."), name);
      error (_("No template type named %s."), name);
    }
    }
  if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
  if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
    {
    {
      error (_("This context has class, union or enum %s, not a struct."),
      error (_("This context has class, union or enum %s, not a struct."),
             name);
             name);
    }
    }
  return (SYMBOL_TYPE (sym));
  return (SYMBOL_TYPE (sym));
}
}
 
 
/* Given a type TYPE, lookup the type of the component of type named
/* Given a type TYPE, lookup the type of the component of type named
   NAME.
   NAME.
 
 
   TYPE can be either a struct or union, or a pointer or reference to
   TYPE can be either a struct or union, or a pointer or reference to
   a struct or union.  If it is a pointer or reference, its target
   a struct or union.  If it is a pointer or reference, its target
   type is automatically used.  Thus '.' and '->' are interchangable,
   type is automatically used.  Thus '.' and '->' are interchangable,
   as specified for the definitions of the expression element types
   as specified for the definitions of the expression element types
   STRUCTOP_STRUCT and STRUCTOP_PTR.
   STRUCTOP_STRUCT and STRUCTOP_PTR.
 
 
   If NOERR is nonzero, return zero if NAME is not suitably defined.
   If NOERR is nonzero, return zero if NAME is not suitably defined.
   If NAME is the name of a baseclass type, return that type.  */
   If NAME is the name of a baseclass type, return that type.  */
 
 
struct type *
struct type *
lookup_struct_elt_type (struct type *type, char *name, int noerr)
lookup_struct_elt_type (struct type *type, char *name, int noerr)
{
{
  int i;
  int i;
 
 
  for (;;)
  for (;;)
    {
    {
      CHECK_TYPEDEF (type);
      CHECK_TYPEDEF (type);
      if (TYPE_CODE (type) != TYPE_CODE_PTR
      if (TYPE_CODE (type) != TYPE_CODE_PTR
          && TYPE_CODE (type) != TYPE_CODE_REF)
          && TYPE_CODE (type) != TYPE_CODE_REF)
        break;
        break;
      type = TYPE_TARGET_TYPE (type);
      type = TYPE_TARGET_TYPE (type);
    }
    }
 
 
  if (TYPE_CODE (type) != TYPE_CODE_STRUCT
  if (TYPE_CODE (type) != TYPE_CODE_STRUCT
      && TYPE_CODE (type) != TYPE_CODE_UNION)
      && TYPE_CODE (type) != TYPE_CODE_UNION)
    {
    {
      target_terminal_ours ();
      target_terminal_ours ();
      gdb_flush (gdb_stdout);
      gdb_flush (gdb_stdout);
      fprintf_unfiltered (gdb_stderr, "Type ");
      fprintf_unfiltered (gdb_stderr, "Type ");
      type_print (type, "", gdb_stderr, -1);
      type_print (type, "", gdb_stderr, -1);
      error (_(" is not a structure or union type."));
      error (_(" is not a structure or union type."));
    }
    }
 
 
#if 0
#if 0
  /* FIXME: This change put in by Michael seems incorrect for the case
  /* FIXME: This change put in by Michael seems incorrect for the case
     where the structure tag name is the same as the member name.
     where the structure tag name is the same as the member name.
     I.E. when doing "ptype bell->bar" for "struct foo { int bar; int
     I.E. when doing "ptype bell->bar" for "struct foo { int bar; int
     foo; } bell;" Disabled by fnf.  */
     foo; } bell;" Disabled by fnf.  */
  {
  {
    char *typename;
    char *typename;
 
 
    typename = type_name_no_tag (type);
    typename = type_name_no_tag (type);
    if (typename != NULL && strcmp (typename, name) == 0)
    if (typename != NULL && strcmp (typename, name) == 0)
      return type;
      return type;
  }
  }
#endif
#endif
 
 
  for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
  for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
    {
    {
      char *t_field_name = TYPE_FIELD_NAME (type, i);
      char *t_field_name = TYPE_FIELD_NAME (type, i);
 
 
      if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
      if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
        {
        {
          return TYPE_FIELD_TYPE (type, i);
          return TYPE_FIELD_TYPE (type, i);
        }
        }
    }
    }
 
 
  /* OK, it's not in this class.  Recursively check the baseclasses.  */
  /* OK, it's not in this class.  Recursively check the baseclasses.  */
  for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
  for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
    {
    {
      struct type *t;
      struct type *t;
 
 
      t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
      t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
      if (t != NULL)
      if (t != NULL)
        {
        {
          return t;
          return t;
        }
        }
    }
    }
 
 
  if (noerr)
  if (noerr)
    {
    {
      return NULL;
      return NULL;
    }
    }
 
 
  target_terminal_ours ();
  target_terminal_ours ();
  gdb_flush (gdb_stdout);
  gdb_flush (gdb_stdout);
  fprintf_unfiltered (gdb_stderr, "Type ");
  fprintf_unfiltered (gdb_stderr, "Type ");
  type_print (type, "", gdb_stderr, -1);
  type_print (type, "", gdb_stderr, -1);
  fprintf_unfiltered (gdb_stderr, " has no component named ");
  fprintf_unfiltered (gdb_stderr, " has no component named ");
  fputs_filtered (name, gdb_stderr);
  fputs_filtered (name, gdb_stderr);
  error (("."));
  error (("."));
  return (struct type *) -1;    /* For lint */
  return (struct type *) -1;    /* For lint */
}
}
 
 
/* Lookup the vptr basetype/fieldno values for TYPE.
/* Lookup the vptr basetype/fieldno values for TYPE.
   If found store vptr_basetype in *BASETYPEP if non-NULL, and return
   If found store vptr_basetype in *BASETYPEP if non-NULL, and return
   vptr_fieldno.  Also, if found and basetype is from the same objfile,
   vptr_fieldno.  Also, if found and basetype is from the same objfile,
   cache the results.
   cache the results.
   If not found, return -1 and ignore BASETYPEP.
   If not found, return -1 and ignore BASETYPEP.
   Callers should be aware that in some cases (for example,
   Callers should be aware that in some cases (for example,
   the type or one of its baseclasses is a stub type and we are
   the type or one of its baseclasses is a stub type and we are
   debugging a .o file), this function will not be able to find the
   debugging a .o file), this function will not be able to find the
   virtual function table pointer, and vptr_fieldno will remain -1 and
   virtual function table pointer, and vptr_fieldno will remain -1 and
   vptr_basetype will remain NULL or incomplete.  */
   vptr_basetype will remain NULL or incomplete.  */
 
 
int
int
get_vptr_fieldno (struct type *type, struct type **basetypep)
get_vptr_fieldno (struct type *type, struct type **basetypep)
{
{
  CHECK_TYPEDEF (type);
  CHECK_TYPEDEF (type);
 
 
  if (TYPE_VPTR_FIELDNO (type) < 0)
  if (TYPE_VPTR_FIELDNO (type) < 0)
    {
    {
      int i;
      int i;
 
 
      /* We must start at zero in case the first (and only) baseclass
      /* We must start at zero in case the first (and only) baseclass
         is virtual (and hence we cannot share the table pointer).  */
         is virtual (and hence we cannot share the table pointer).  */
      for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
      for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
        {
        {
          struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
          struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
          int fieldno;
          int fieldno;
          struct type *basetype;
          struct type *basetype;
 
 
          fieldno = get_vptr_fieldno (baseclass, &basetype);
          fieldno = get_vptr_fieldno (baseclass, &basetype);
          if (fieldno >= 0)
          if (fieldno >= 0)
            {
            {
              /* If the type comes from a different objfile we can't cache
              /* If the type comes from a different objfile we can't cache
                 it, it may have a different lifetime. PR 2384 */
                 it, it may have a different lifetime. PR 2384 */
              if (TYPE_OBJFILE (type) == TYPE_OBJFILE (baseclass))
              if (TYPE_OBJFILE (type) == TYPE_OBJFILE (baseclass))
                {
                {
                  TYPE_VPTR_FIELDNO (type) = fieldno;
                  TYPE_VPTR_FIELDNO (type) = fieldno;
                  TYPE_VPTR_BASETYPE (type) = basetype;
                  TYPE_VPTR_BASETYPE (type) = basetype;
                }
                }
              if (basetypep)
              if (basetypep)
                *basetypep = basetype;
                *basetypep = basetype;
              return fieldno;
              return fieldno;
            }
            }
        }
        }
 
 
      /* Not found.  */
      /* Not found.  */
      return -1;
      return -1;
    }
    }
  else
  else
    {
    {
      if (basetypep)
      if (basetypep)
        *basetypep = TYPE_VPTR_BASETYPE (type);
        *basetypep = TYPE_VPTR_BASETYPE (type);
      return TYPE_VPTR_FIELDNO (type);
      return TYPE_VPTR_FIELDNO (type);
    }
    }
}
}
 
 
/* Find the method and field indices for the destructor in class type T.
/* Find the method and field indices for the destructor in class type T.
   Return 1 if the destructor was found, otherwise, return 0.  */
   Return 1 if the destructor was found, otherwise, return 0.  */
 
 
int
int
get_destructor_fn_field (struct type *t,
get_destructor_fn_field (struct type *t,
                         int *method_indexp,
                         int *method_indexp,
                         int *field_indexp)
                         int *field_indexp)
{
{
  int i;
  int i;
 
 
  for (i = 0; i < TYPE_NFN_FIELDS (t); i++)
  for (i = 0; i < TYPE_NFN_FIELDS (t); i++)
    {
    {
      int j;
      int j;
      struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
      struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
 
 
      for (j = 0; j < TYPE_FN_FIELDLIST_LENGTH (t, i); j++)
      for (j = 0; j < TYPE_FN_FIELDLIST_LENGTH (t, i); j++)
        {
        {
          if (is_destructor_name (TYPE_FN_FIELD_PHYSNAME (f, j)) != 0)
          if (is_destructor_name (TYPE_FN_FIELD_PHYSNAME (f, j)) != 0)
            {
            {
              *method_indexp = i;
              *method_indexp = i;
              *field_indexp = j;
              *field_indexp = j;
              return 1;
              return 1;
            }
            }
        }
        }
    }
    }
  return 0;
  return 0;
}
}
 
 
static void
static void
stub_noname_complaint (void)
stub_noname_complaint (void)
{
{
  complaint (&symfile_complaints, _("stub type has NULL name"));
  complaint (&symfile_complaints, _("stub type has NULL name"));
}
}
 
 
/* Added by Bryan Boreham, Kewill, Sun Sep 17 18:07:17 1989.
/* Added by Bryan Boreham, Kewill, Sun Sep 17 18:07:17 1989.
 
 
   If this is a stubbed struct (i.e. declared as struct foo *), see if
   If this is a stubbed struct (i.e. declared as struct foo *), see if
   we can find a full definition in some other file. If so, copy this
   we can find a full definition in some other file. If so, copy this
   definition, so we can use it in future.  There used to be a comment
   definition, so we can use it in future.  There used to be a comment
   (but not any code) that if we don't find a full definition, we'd
   (but not any code) that if we don't find a full definition, we'd
   set a flag so we don't spend time in the future checking the same
   set a flag so we don't spend time in the future checking the same
   type.  That would be a mistake, though--we might load in more
   type.  That would be a mistake, though--we might load in more
   symbols which contain a full definition for the type.
   symbols which contain a full definition for the type.
 
 
   This used to be coded as a macro, but I don't think it is called
   This used to be coded as a macro, but I don't think it is called
   often enough to merit such treatment.  */
   often enough to merit such treatment.  */
 
 
/* Find the real type of TYPE.  This function returns the real type,
/* Find the real type of TYPE.  This function returns the real type,
   after removing all layers of typedefs and completing opaque or stub
   after removing all layers of typedefs and completing opaque or stub
   types.  Completion changes the TYPE argument, but stripping of
   types.  Completion changes the TYPE argument, but stripping of
   typedefs does not.  */
   typedefs does not.  */
 
 
struct type *
struct type *
check_typedef (struct type *type)
check_typedef (struct type *type)
{
{
  struct type *orig_type = type;
  struct type *orig_type = type;
  int is_const, is_volatile;
  int is_const, is_volatile;
 
 
  gdb_assert (type);
  gdb_assert (type);
 
 
  while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
  while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
    {
    {
      if (!TYPE_TARGET_TYPE (type))
      if (!TYPE_TARGET_TYPE (type))
        {
        {
          char *name;
          char *name;
          struct symbol *sym;
          struct symbol *sym;
 
 
          /* It is dangerous to call lookup_symbol if we are currently
          /* It is dangerous to call lookup_symbol if we are currently
             reading a symtab.  Infinite recursion is one danger.  */
             reading a symtab.  Infinite recursion is one danger.  */
          if (currently_reading_symtab)
          if (currently_reading_symtab)
            return type;
            return type;
 
 
          name = type_name_no_tag (type);
          name = type_name_no_tag (type);
          /* FIXME: shouldn't we separately check the TYPE_NAME and
          /* FIXME: shouldn't we separately check the TYPE_NAME and
             the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
             the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
             VAR_DOMAIN as appropriate?  (this code was written before
             VAR_DOMAIN as appropriate?  (this code was written before
             TYPE_NAME and TYPE_TAG_NAME were separate).  */
             TYPE_NAME and TYPE_TAG_NAME were separate).  */
          if (name == NULL)
          if (name == NULL)
            {
            {
              stub_noname_complaint ();
              stub_noname_complaint ();
              return type;
              return type;
            }
            }
          sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0,
          sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0,
                               (struct symtab **) NULL);
                               (struct symtab **) NULL);
          if (sym)
          if (sym)
            TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
            TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
          else                                  /* TYPE_CODE_UNDEF */
          else                                  /* TYPE_CODE_UNDEF */
            TYPE_TARGET_TYPE (type) = alloc_type (NULL);
            TYPE_TARGET_TYPE (type) = alloc_type (NULL);
        }
        }
      type = TYPE_TARGET_TYPE (type);
      type = TYPE_TARGET_TYPE (type);
    }
    }
 
 
  is_const = TYPE_CONST (type);
  is_const = TYPE_CONST (type);
  is_volatile = TYPE_VOLATILE (type);
  is_volatile = TYPE_VOLATILE (type);
 
 
  /* If this is a struct/class/union with no fields, then check
  /* If this is a struct/class/union with no fields, then check
     whether a full definition exists somewhere else.  This is for
     whether a full definition exists somewhere else.  This is for
     systems where a type definition with no fields is issued for such
     systems where a type definition with no fields is issued for such
     types, instead of identifying them as stub types in the first
     types, instead of identifying them as stub types in the first
     place.  */
     place.  */
 
 
  if (TYPE_IS_OPAQUE (type)
  if (TYPE_IS_OPAQUE (type)
      && opaque_type_resolution
      && opaque_type_resolution
      && !currently_reading_symtab)
      && !currently_reading_symtab)
    {
    {
      char *name = type_name_no_tag (type);
      char *name = type_name_no_tag (type);
      struct type *newtype;
      struct type *newtype;
      if (name == NULL)
      if (name == NULL)
        {
        {
          stub_noname_complaint ();
          stub_noname_complaint ();
          return type;
          return type;
        }
        }
      newtype = lookup_transparent_type (name);
      newtype = lookup_transparent_type (name);
 
 
      if (newtype)
      if (newtype)
        {
        {
          /* If the resolved type and the stub are in the same
          /* If the resolved type and the stub are in the same
             objfile, then replace the stub type with the real deal.
             objfile, then replace the stub type with the real deal.
             But if they're in separate objfiles, leave the stub
             But if they're in separate objfiles, leave the stub
             alone; we'll just look up the transparent type every time
             alone; we'll just look up the transparent type every time
             we call check_typedef.  We can't create pointers between
             we call check_typedef.  We can't create pointers between
             types allocated to different objfiles, since they may
             types allocated to different objfiles, since they may
             have different lifetimes.  Trying to copy NEWTYPE over to
             have different lifetimes.  Trying to copy NEWTYPE over to
             TYPE's objfile is pointless, too, since you'll have to
             TYPE's objfile is pointless, too, since you'll have to
             move over any other types NEWTYPE refers to, which could
             move over any other types NEWTYPE refers to, which could
             be an unbounded amount of stuff.  */
             be an unbounded amount of stuff.  */
          if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
          if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
            make_cv_type (is_const, is_volatile, newtype, &type);
            make_cv_type (is_const, is_volatile, newtype, &type);
          else
          else
            type = newtype;
            type = newtype;
        }
        }
    }
    }
  /* Otherwise, rely on the stub flag being set for opaque/stubbed
  /* Otherwise, rely on the stub flag being set for opaque/stubbed
     types.  */
     types.  */
  else if (TYPE_STUB (type) && !currently_reading_symtab)
  else if (TYPE_STUB (type) && !currently_reading_symtab)
    {
    {
      char *name = type_name_no_tag (type);
      char *name = type_name_no_tag (type);
      /* FIXME: shouldn't we separately check the TYPE_NAME and the
      /* FIXME: shouldn't we separately check the TYPE_NAME and the
         TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
         TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
         as appropriate?  (this code was written before TYPE_NAME and
         as appropriate?  (this code was written before TYPE_NAME and
         TYPE_TAG_NAME were separate).  */
         TYPE_TAG_NAME were separate).  */
      struct symbol *sym;
      struct symbol *sym;
      if (name == NULL)
      if (name == NULL)
        {
        {
          stub_noname_complaint ();
          stub_noname_complaint ();
          return type;
          return type;
        }
        }
      sym = lookup_symbol (name, 0, STRUCT_DOMAIN,
      sym = lookup_symbol (name, 0, STRUCT_DOMAIN,
                           0, (struct symtab **) NULL);
                           0, (struct symtab **) NULL);
      if (sym)
      if (sym)
        {
        {
          /* Same as above for opaque types, we can replace the stub
          /* Same as above for opaque types, we can replace the stub
             with the complete type only if they are int the same
             with the complete type only if they are int the same
             objfile.  */
             objfile.  */
          if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
          if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
            make_cv_type (is_const, is_volatile,
            make_cv_type (is_const, is_volatile,
                          SYMBOL_TYPE (sym), &type);
                          SYMBOL_TYPE (sym), &type);
          else
          else
            type = SYMBOL_TYPE (sym);
            type = SYMBOL_TYPE (sym);
        }
        }
    }
    }
 
 
  if (TYPE_TARGET_STUB (type))
  if (TYPE_TARGET_STUB (type))
    {
    {
      struct type *range_type;
      struct type *range_type;
      struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
      struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
 
 
      if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
      if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
        {
        {
          /* Empty.  */
          /* Empty.  */
        }
        }
      else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
      else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
               && TYPE_NFIELDS (type) == 1
               && TYPE_NFIELDS (type) == 1
               && (TYPE_CODE (range_type = TYPE_FIELD_TYPE (type, 0))
               && (TYPE_CODE (range_type = TYPE_FIELD_TYPE (type, 0))
                   == TYPE_CODE_RANGE))
                   == TYPE_CODE_RANGE))
        {
        {
          /* Now recompute the length of the array type, based on its
          /* Now recompute the length of the array type, based on its
             number of elements and the target type's length.
             number of elements and the target type's length.
             Watch out for Ada null Ada arrays where the high bound
             Watch out for Ada null Ada arrays where the high bound
             is smaller than the low bound.  */
             is smaller than the low bound.  */
          const int low_bound = TYPE_FIELD_BITPOS (range_type, 0);
          const int low_bound = TYPE_FIELD_BITPOS (range_type, 0);
          const int high_bound = TYPE_FIELD_BITPOS (range_type, 1);
          const int high_bound = TYPE_FIELD_BITPOS (range_type, 1);
          int nb_elements;
          int nb_elements;
 
 
          if (high_bound < low_bound)
          if (high_bound < low_bound)
            nb_elements = 0;
            nb_elements = 0;
          else
          else
            nb_elements = high_bound - low_bound + 1;
            nb_elements = high_bound - low_bound + 1;
 
 
          TYPE_LENGTH (type) = nb_elements * TYPE_LENGTH (target_type);
          TYPE_LENGTH (type) = nb_elements * TYPE_LENGTH (target_type);
          TYPE_FLAGS (type) &= ~TYPE_FLAG_TARGET_STUB;
          TYPE_FLAGS (type) &= ~TYPE_FLAG_TARGET_STUB;
        }
        }
      else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
      else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
        {
        {
          TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
          TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
          TYPE_FLAGS (type) &= ~TYPE_FLAG_TARGET_STUB;
          TYPE_FLAGS (type) &= ~TYPE_FLAG_TARGET_STUB;
        }
        }
    }
    }
  /* Cache TYPE_LENGTH for future use.  */
  /* Cache TYPE_LENGTH for future use.  */
  TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
  TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
  return type;
  return type;
}
}
 
 
/* Parse a type expression in the string [P..P+LENGTH).  If an error
/* Parse a type expression in the string [P..P+LENGTH).  If an error
   occurs, silently return builtin_type_void.  */
   occurs, silently return builtin_type_void.  */
 
 
static struct type *
static struct type *
safe_parse_type (char *p, int length)
safe_parse_type (char *p, int length)
{
{
  struct ui_file *saved_gdb_stderr;
  struct ui_file *saved_gdb_stderr;
  struct type *type;
  struct type *type;
 
 
  /* Suppress error messages.  */
  /* Suppress error messages.  */
  saved_gdb_stderr = gdb_stderr;
  saved_gdb_stderr = gdb_stderr;
  gdb_stderr = ui_file_new ();
  gdb_stderr = ui_file_new ();
 
 
  /* Call parse_and_eval_type() without fear of longjmp()s.  */
  /* Call parse_and_eval_type() without fear of longjmp()s.  */
  if (!gdb_parse_and_eval_type (p, length, &type))
  if (!gdb_parse_and_eval_type (p, length, &type))
    type = builtin_type_void;
    type = builtin_type_void;
 
 
  /* Stop suppressing error messages.  */
  /* Stop suppressing error messages.  */
  ui_file_delete (gdb_stderr);
  ui_file_delete (gdb_stderr);
  gdb_stderr = saved_gdb_stderr;
  gdb_stderr = saved_gdb_stderr;
 
 
  return type;
  return type;
}
}
 
 
/* Ugly hack to convert method stubs into method types.
/* Ugly hack to convert method stubs into method types.
 
 
   He ain't kiddin'.  This demangles the name of the method into a
   He ain't kiddin'.  This demangles the name of the method into a
   string including argument types, parses out each argument type,
   string including argument types, parses out each argument type,
   generates a string casting a zero to that type, evaluates the
   generates a string casting a zero to that type, evaluates the
   string, and stuffs the resulting type into an argtype vector!!!
   string, and stuffs the resulting type into an argtype vector!!!
   Then it knows the type of the whole function (including argument
   Then it knows the type of the whole function (including argument
   types for overloading), which info used to be in the stab's but was
   types for overloading), which info used to be in the stab's but was
   removed to hack back the space required for them.  */
   removed to hack back the space required for them.  */
 
 
static void
static void
check_stub_method (struct type *type, int method_id, int signature_id)
check_stub_method (struct type *type, int method_id, int signature_id)
{
{
  struct fn_field *f;
  struct fn_field *f;
  char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
  char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
  char *demangled_name = cplus_demangle (mangled_name,
  char *demangled_name = cplus_demangle (mangled_name,
                                         DMGL_PARAMS | DMGL_ANSI);
                                         DMGL_PARAMS | DMGL_ANSI);
  char *argtypetext, *p;
  char *argtypetext, *p;
  int depth = 0, argcount = 1;
  int depth = 0, argcount = 1;
  struct field *argtypes;
  struct field *argtypes;
  struct type *mtype;
  struct type *mtype;
 
 
  /* Make sure we got back a function string that we can use.  */
  /* Make sure we got back a function string that we can use.  */
  if (demangled_name)
  if (demangled_name)
    p = strchr (demangled_name, '(');
    p = strchr (demangled_name, '(');
  else
  else
    p = NULL;
    p = NULL;
 
 
  if (demangled_name == NULL || p == NULL)
  if (demangled_name == NULL || p == NULL)
    error (_("Internal: Cannot demangle mangled name `%s'."),
    error (_("Internal: Cannot demangle mangled name `%s'."),
           mangled_name);
           mangled_name);
 
 
  /* Now, read in the parameters that define this type.  */
  /* Now, read in the parameters that define this type.  */
  p += 1;
  p += 1;
  argtypetext = p;
  argtypetext = p;
  while (*p)
  while (*p)
    {
    {
      if (*p == '(' || *p == '<')
      if (*p == '(' || *p == '<')
        {
        {
          depth += 1;
          depth += 1;
        }
        }
      else if (*p == ')' || *p == '>')
      else if (*p == ')' || *p == '>')
        {
        {
          depth -= 1;
          depth -= 1;
        }
        }
      else if (*p == ',' && depth == 0)
      else if (*p == ',' && depth == 0)
        {
        {
          argcount += 1;
          argcount += 1;
        }
        }
 
 
      p += 1;
      p += 1;
    }
    }
 
 
  /* If we read one argument and it was ``void'', don't count it.  */
  /* If we read one argument and it was ``void'', don't count it.  */
  if (strncmp (argtypetext, "(void)", 6) == 0)
  if (strncmp (argtypetext, "(void)", 6) == 0)
    argcount -= 1;
    argcount -= 1;
 
 
  /* We need one extra slot, for the THIS pointer.  */
  /* We need one extra slot, for the THIS pointer.  */
 
 
  argtypes = (struct field *)
  argtypes = (struct field *)
    TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
    TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
  p = argtypetext;
  p = argtypetext;
 
 
  /* Add THIS pointer for non-static methods.  */
  /* Add THIS pointer for non-static methods.  */
  f = TYPE_FN_FIELDLIST1 (type, method_id);
  f = TYPE_FN_FIELDLIST1 (type, method_id);
  if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
  if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
    argcount = 0;
    argcount = 0;
  else
  else
    {
    {
      argtypes[0].type = lookup_pointer_type (type);
      argtypes[0].type = lookup_pointer_type (type);
      argcount = 1;
      argcount = 1;
    }
    }
 
 
  if (*p != ')')                /* () means no args, skip while */
  if (*p != ')')                /* () means no args, skip while */
    {
    {
      depth = 0;
      depth = 0;
      while (*p)
      while (*p)
        {
        {
          if (depth <= 0 && (*p == ',' || *p == ')'))
          if (depth <= 0 && (*p == ',' || *p == ')'))
            {
            {
              /* Avoid parsing of ellipsis, they will be handled below.
              /* Avoid parsing of ellipsis, they will be handled below.
                 Also avoid ``void'' as above.  */
                 Also avoid ``void'' as above.  */
              if (strncmp (argtypetext, "...", p - argtypetext) != 0
              if (strncmp (argtypetext, "...", p - argtypetext) != 0
                  && strncmp (argtypetext, "void", p - argtypetext) != 0)
                  && strncmp (argtypetext, "void", p - argtypetext) != 0)
                {
                {
                  argtypes[argcount].type =
                  argtypes[argcount].type =
                    safe_parse_type (argtypetext, p - argtypetext);
                    safe_parse_type (argtypetext, p - argtypetext);
                  argcount += 1;
                  argcount += 1;
                }
                }
              argtypetext = p + 1;
              argtypetext = p + 1;
            }
            }
 
 
          if (*p == '(' || *p == '<')
          if (*p == '(' || *p == '<')
            {
            {
              depth += 1;
              depth += 1;
            }
            }
          else if (*p == ')' || *p == '>')
          else if (*p == ')' || *p == '>')
            {
            {
              depth -= 1;
              depth -= 1;
            }
            }
 
 
          p += 1;
          p += 1;
        }
        }
    }
    }
 
 
  TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
  TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
 
 
  /* Now update the old "stub" type into a real type.  */
  /* Now update the old "stub" type into a real type.  */
  mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
  mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
  TYPE_DOMAIN_TYPE (mtype) = type;
  TYPE_DOMAIN_TYPE (mtype) = type;
  TYPE_FIELDS (mtype) = argtypes;
  TYPE_FIELDS (mtype) = argtypes;
  TYPE_NFIELDS (mtype) = argcount;
  TYPE_NFIELDS (mtype) = argcount;
  TYPE_FLAGS (mtype) &= ~TYPE_FLAG_STUB;
  TYPE_FLAGS (mtype) &= ~TYPE_FLAG_STUB;
  TYPE_FN_FIELD_STUB (f, signature_id) = 0;
  TYPE_FN_FIELD_STUB (f, signature_id) = 0;
  if (p[-2] == '.')
  if (p[-2] == '.')
    TYPE_FLAGS (mtype) |= TYPE_FLAG_VARARGS;
    TYPE_FLAGS (mtype) |= TYPE_FLAG_VARARGS;
 
 
  xfree (demangled_name);
  xfree (demangled_name);
}
}
 
 
/* This is the external interface to check_stub_method, above.  This
/* This is the external interface to check_stub_method, above.  This
   function unstubs all of the signatures for TYPE's METHOD_ID method
   function unstubs all of the signatures for TYPE's METHOD_ID method
   name.  After calling this function TYPE_FN_FIELD_STUB will be
   name.  After calling this function TYPE_FN_FIELD_STUB will be
   cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
   cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
   correct.
   correct.
 
 
   This function unfortunately can not die until stabs do.  */
   This function unfortunately can not die until stabs do.  */
 
 
void
void
check_stub_method_group (struct type *type, int method_id)
check_stub_method_group (struct type *type, int method_id)
{
{
  int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
  int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
  struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
  struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
  int j, found_stub = 0;
  int j, found_stub = 0;
 
 
  for (j = 0; j < len; j++)
  for (j = 0; j < len; j++)
    if (TYPE_FN_FIELD_STUB (f, j))
    if (TYPE_FN_FIELD_STUB (f, j))
      {
      {
        found_stub = 1;
        found_stub = 1;
        check_stub_method (type, method_id, j);
        check_stub_method (type, method_id, j);
      }
      }
 
 
  /* GNU v3 methods with incorrect names were corrected when we read
  /* GNU v3 methods with incorrect names were corrected when we read
     in type information, because it was cheaper to do it then.  The
     in type information, because it was cheaper to do it then.  The
     only GNU v2 methods with incorrect method names are operators and
     only GNU v2 methods with incorrect method names are operators and
     destructors; destructors were also corrected when we read in type
     destructors; destructors were also corrected when we read in type
     information.
     information.
 
 
     Therefore the only thing we need to handle here are v2 operator
     Therefore the only thing we need to handle here are v2 operator
     names.  */
     names.  */
  if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
  if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
    {
    {
      int ret;
      int ret;
      char dem_opname[256];
      char dem_opname[256];
 
 
      ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
      ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
                                                           method_id),
                                                           method_id),
                                   dem_opname, DMGL_ANSI);
                                   dem_opname, DMGL_ANSI);
      if (!ret)
      if (!ret)
        ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
        ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
                                                             method_id),
                                                             method_id),
                                     dem_opname, 0);
                                     dem_opname, 0);
      if (ret)
      if (ret)
        TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
        TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
    }
    }
}
}
 
 
const struct cplus_struct_type cplus_struct_default;
const struct cplus_struct_type cplus_struct_default;
 
 
void
void
allocate_cplus_struct_type (struct type *type)
allocate_cplus_struct_type (struct type *type)
{
{
  if (!HAVE_CPLUS_STRUCT (type))
  if (!HAVE_CPLUS_STRUCT (type))
    {
    {
      TYPE_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
      TYPE_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
        TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
        TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
      *(TYPE_CPLUS_SPECIFIC (type)) = cplus_struct_default;
      *(TYPE_CPLUS_SPECIFIC (type)) = cplus_struct_default;
    }
    }
}
}
 
 
/* Helper function to initialize the standard scalar types.
/* Helper function to initialize the standard scalar types.
 
 
   If NAME is non-NULL and OBJFILE is non-NULL, then we make a copy of
   If NAME is non-NULL and OBJFILE is non-NULL, then we make a copy of
   the string pointed to by name in the objfile_obstack for that
   the string pointed to by name in the objfile_obstack for that
   objfile, and initialize the type name to that copy.  There are
   objfile, and initialize the type name to that copy.  There are
   places (mipsread.c in particular, where init_type is called with a
   places (mipsread.c in particular, where init_type is called with a
   NULL value for NAME).  */
   NULL value for NAME).  */
 
 
struct type *
struct type *
init_type (enum type_code code, int length, int flags,
init_type (enum type_code code, int length, int flags,
           char *name, struct objfile *objfile)
           char *name, struct objfile *objfile)
{
{
  struct type *type;
  struct type *type;
 
 
  type = alloc_type (objfile);
  type = alloc_type (objfile);
  TYPE_CODE (type) = code;
  TYPE_CODE (type) = code;
  TYPE_LENGTH (type) = length;
  TYPE_LENGTH (type) = length;
  TYPE_FLAGS (type) |= flags;
  TYPE_FLAGS (type) |= flags;
  if ((name != NULL) && (objfile != NULL))
  if ((name != NULL) && (objfile != NULL))
    {
    {
      TYPE_NAME (type) = obsavestring (name, strlen (name),
      TYPE_NAME (type) = obsavestring (name, strlen (name),
                                       &objfile->objfile_obstack);
                                       &objfile->objfile_obstack);
    }
    }
  else
  else
    {
    {
      TYPE_NAME (type) = name;
      TYPE_NAME (type) = name;
    }
    }
 
 
  /* C++ fancies.  */
  /* C++ fancies.  */
 
 
  if (name && strcmp (name, "char") == 0)
  if (name && strcmp (name, "char") == 0)
    TYPE_FLAGS (type) |= TYPE_FLAG_NOSIGN;
    TYPE_FLAGS (type) |= TYPE_FLAG_NOSIGN;
 
 
  if (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
  if (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
      || code == TYPE_CODE_NAMESPACE)
      || code == TYPE_CODE_NAMESPACE)
    {
    {
      INIT_CPLUS_SPECIFIC (type);
      INIT_CPLUS_SPECIFIC (type);
    }
    }
  return (type);
  return (type);
}
}
 
 
/* Helper function.  Create an empty composite type.  */
/* Helper function.  Create an empty composite type.  */
 
 
struct type *
struct type *
init_composite_type (char *name, enum type_code code)
init_composite_type (char *name, enum type_code code)
{
{
  struct type *t;
  struct type *t;
  gdb_assert (code == TYPE_CODE_STRUCT
  gdb_assert (code == TYPE_CODE_STRUCT
              || code == TYPE_CODE_UNION);
              || code == TYPE_CODE_UNION);
  t = init_type (code, 0, 0, NULL, NULL);
  t = init_type (code, 0, 0, NULL, NULL);
  TYPE_TAG_NAME (t) = name;
  TYPE_TAG_NAME (t) = name;
  return t;
  return t;
}
}
 
 
/* Helper function.  Append a field to a composite type.  */
/* Helper function.  Append a field to a composite type.  */
 
 
void
void
append_composite_type_field (struct type *t, char *name,
append_composite_type_field (struct type *t, char *name,
                             struct type *field)
                             struct type *field)
{
{
  struct field *f;
  struct field *f;
  TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
  TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
  TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
  TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
                              sizeof (struct field) * TYPE_NFIELDS (t));
                              sizeof (struct field) * TYPE_NFIELDS (t));
  f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
  f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
  memset (f, 0, sizeof f[0]);
  memset (f, 0, sizeof f[0]);
  FIELD_TYPE (f[0]) = field;
  FIELD_TYPE (f[0]) = field;
  FIELD_NAME (f[0]) = name;
  FIELD_NAME (f[0]) = name;
  if (TYPE_CODE (t) == TYPE_CODE_UNION)
  if (TYPE_CODE (t) == TYPE_CODE_UNION)
    {
    {
      if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
      if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
        TYPE_LENGTH (t) = TYPE_LENGTH (field);
        TYPE_LENGTH (t) = TYPE_LENGTH (field);
    }
    }
  else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
  else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
    {
    {
      TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
      TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
      if (TYPE_NFIELDS (t) > 1)
      if (TYPE_NFIELDS (t) > 1)
        {
        {
          FIELD_BITPOS (f[0]) = (FIELD_BITPOS (f[-1])
          FIELD_BITPOS (f[0]) = (FIELD_BITPOS (f[-1])
                                 + TYPE_LENGTH (field) * TARGET_CHAR_BIT);
                                 + TYPE_LENGTH (field) * TARGET_CHAR_BIT);
        }
        }
    }
    }
}
}
 
 
int
int
can_dereference (struct type *t)
can_dereference (struct type *t)
{
{
  /* FIXME: Should we return true for references as well as
  /* FIXME: Should we return true for references as well as
     pointers?  */
     pointers?  */
  CHECK_TYPEDEF (t);
  CHECK_TYPEDEF (t);
  return
  return
    (t != NULL
    (t != NULL
     && TYPE_CODE (t) == TYPE_CODE_PTR
     && TYPE_CODE (t) == TYPE_CODE_PTR
     && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
     && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
}
}
 
 
int
int
is_integral_type (struct type *t)
is_integral_type (struct type *t)
{
{
  CHECK_TYPEDEF (t);
  CHECK_TYPEDEF (t);
  return
  return
    ((t != NULL)
    ((t != NULL)
     && ((TYPE_CODE (t) == TYPE_CODE_INT)
     && ((TYPE_CODE (t) == TYPE_CODE_INT)
         || (TYPE_CODE (t) == TYPE_CODE_ENUM)
         || (TYPE_CODE (t) == TYPE_CODE_ENUM)
         || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
         || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
         || (TYPE_CODE (t) == TYPE_CODE_CHAR)
         || (TYPE_CODE (t) == TYPE_CODE_CHAR)
         || (TYPE_CODE (t) == TYPE_CODE_RANGE)
         || (TYPE_CODE (t) == TYPE_CODE_RANGE)
         || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
         || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
}
}
 
 
/* Check whether BASE is an ancestor or base class or DCLASS
/* Check whether BASE is an ancestor or base class or DCLASS
   Return 1 if so, and 0 if not.
   Return 1 if so, and 0 if not.
   Note: callers may want to check for identity of the types before
   Note: callers may want to check for identity of the types before
   calling this function -- identical types are considered to satisfy
   calling this function -- identical types are considered to satisfy
   the ancestor relationship even if they're identical.  */
   the ancestor relationship even if they're identical.  */
 
 
int
int
is_ancestor (struct type *base, struct type *dclass)
is_ancestor (struct type *base, struct type *dclass)
{
{
  int i;
  int i;
 
 
  CHECK_TYPEDEF (base);
  CHECK_TYPEDEF (base);
  CHECK_TYPEDEF (dclass);
  CHECK_TYPEDEF (dclass);
 
 
  if (base == dclass)
  if (base == dclass)
    return 1;
    return 1;
  if (TYPE_NAME (base) && TYPE_NAME (dclass)
  if (TYPE_NAME (base) && TYPE_NAME (dclass)
      && !strcmp (TYPE_NAME (base), TYPE_NAME (dclass)))
      && !strcmp (TYPE_NAME (base), TYPE_NAME (dclass)))
    return 1;
    return 1;
 
 
  for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
  for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
    if (is_ancestor (base, TYPE_BASECLASS (dclass, i)))
    if (is_ancestor (base, TYPE_BASECLASS (dclass, i)))
      return 1;
      return 1;
 
 
  return 0;
  return 0;
}
}


 
 
 
 
/* Functions for overload resolution begin here */
/* Functions for overload resolution begin here */
 
 
/* Compare two badness vectors A and B and return the result.
/* Compare two badness vectors A and B and return the result.
   0 => A and B are identical
   0 => A and B are identical
   1 => A and B are incomparable
   1 => A and B are incomparable
   2 => A is better than B
   2 => A is better than B
   3 => A is worse than B  */
   3 => A is worse than B  */
 
 
int
int
compare_badness (struct badness_vector *a, struct badness_vector *b)
compare_badness (struct badness_vector *a, struct badness_vector *b)
{
{
  int i;
  int i;
  int tmp;
  int tmp;
  short found_pos = 0;           /* any positives in c? */
  short found_pos = 0;           /* any positives in c? */
  short found_neg = 0;           /* any negatives in c? */
  short found_neg = 0;           /* any negatives in c? */
 
 
  /* differing lengths => incomparable */
  /* differing lengths => incomparable */
  if (a->length != b->length)
  if (a->length != b->length)
    return 1;
    return 1;
 
 
  /* Subtract b from a */
  /* Subtract b from a */
  for (i = 0; i < a->length; i++)
  for (i = 0; i < a->length; i++)
    {
    {
      tmp = a->rank[i] - b->rank[i];
      tmp = a->rank[i] - b->rank[i];
      if (tmp > 0)
      if (tmp > 0)
        found_pos = 1;
        found_pos = 1;
      else if (tmp < 0)
      else if (tmp < 0)
        found_neg = 1;
        found_neg = 1;
    }
    }
 
 
  if (found_pos)
  if (found_pos)
    {
    {
      if (found_neg)
      if (found_neg)
        return 1;               /* incomparable */
        return 1;               /* incomparable */
      else
      else
        return 3;               /* A > B */
        return 3;               /* A > B */
    }
    }
  else
  else
    /* no positives */
    /* no positives */
    {
    {
      if (found_neg)
      if (found_neg)
        return 2;               /* A < B */
        return 2;               /* A < B */
      else
      else
        return 0;                /* A == B */
        return 0;                /* A == B */
    }
    }
}
}
 
 
/* Rank a function by comparing its parameter types (PARMS, length
/* Rank a function by comparing its parameter types (PARMS, length
   NPARMS), to the types of an argument list (ARGS, length NARGS).
   NPARMS), to the types of an argument list (ARGS, length NARGS).
   Return a pointer to a badness vector.  This has NARGS + 1
   Return a pointer to a badness vector.  This has NARGS + 1
   entries.  */
   entries.  */
 
 
struct badness_vector *
struct badness_vector *
rank_function (struct type **parms, int nparms,
rank_function (struct type **parms, int nparms,
               struct type **args, int nargs)
               struct type **args, int nargs)
{
{
  int i;
  int i;
  struct badness_vector *bv;
  struct badness_vector *bv;
  int min_len = nparms < nargs ? nparms : nargs;
  int min_len = nparms < nargs ? nparms : nargs;
 
 
  bv = xmalloc (sizeof (struct badness_vector));
  bv = xmalloc (sizeof (struct badness_vector));
  bv->length = nargs + 1;       /* add 1 for the length-match rank */
  bv->length = nargs + 1;       /* add 1 for the length-match rank */
  bv->rank = xmalloc ((nargs + 1) * sizeof (int));
  bv->rank = xmalloc ((nargs + 1) * sizeof (int));
 
 
  /* First compare the lengths of the supplied lists.
  /* First compare the lengths of the supplied lists.
     If there is a mismatch, set it to a high value.  */
     If there is a mismatch, set it to a high value.  */
 
 
  /* pai/1997-06-03 FIXME: when we have debug info about default
  /* pai/1997-06-03 FIXME: when we have debug info about default
     arguments and ellipsis parameter lists, we should consider those
     arguments and ellipsis parameter lists, we should consider those
     and rank the length-match more finely.  */
     and rank the length-match more finely.  */
 
 
  LENGTH_MATCH (bv) = (nargs != nparms) ? LENGTH_MISMATCH_BADNESS : 0;
  LENGTH_MATCH (bv) = (nargs != nparms) ? LENGTH_MISMATCH_BADNESS : 0;
 
 
  /* Now rank all the parameters of the candidate function */
  /* Now rank all the parameters of the candidate function */
  for (i = 1; i <= min_len; i++)
  for (i = 1; i <= min_len; i++)
    bv->rank[i] = rank_one_type (parms[i-1], args[i-1]);
    bv->rank[i] = rank_one_type (parms[i-1], args[i-1]);
 
 
  /* If more arguments than parameters, add dummy entries */
  /* If more arguments than parameters, add dummy entries */
  for (i = min_len + 1; i <= nargs; i++)
  for (i = min_len + 1; i <= nargs; i++)
    bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
    bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
 
 
  return bv;
  return bv;
}
}
 
 
/* Compare the names of two integer types, assuming that any sign
/* Compare the names of two integer types, assuming that any sign
   qualifiers have been checked already.  We do it this way because
   qualifiers have been checked already.  We do it this way because
   there may be an "int" in the name of one of the types.  */
   there may be an "int" in the name of one of the types.  */
 
 
static int
static int
integer_types_same_name_p (const char *first, const char *second)
integer_types_same_name_p (const char *first, const char *second)
{
{
  int first_p, second_p;
  int first_p, second_p;
 
 
  /* If both are shorts, return 1; if neither is a short, keep
  /* If both are shorts, return 1; if neither is a short, keep
     checking.  */
     checking.  */
  first_p = (strstr (first, "short") != NULL);
  first_p = (strstr (first, "short") != NULL);
  second_p = (strstr (second, "short") != NULL);
  second_p = (strstr (second, "short") != NULL);
  if (first_p && second_p)
  if (first_p && second_p)
    return 1;
    return 1;
  if (first_p || second_p)
  if (first_p || second_p)
    return 0;
    return 0;
 
 
  /* Likewise for long.  */
  /* Likewise for long.  */
  first_p = (strstr (first, "long") != NULL);
  first_p = (strstr (first, "long") != NULL);
  second_p = (strstr (second, "long") != NULL);
  second_p = (strstr (second, "long") != NULL);
  if (first_p && second_p)
  if (first_p && second_p)
    return 1;
    return 1;
  if (first_p || second_p)
  if (first_p || second_p)
    return 0;
    return 0;
 
 
  /* Likewise for char.  */
  /* Likewise for char.  */
  first_p = (strstr (first, "char") != NULL);
  first_p = (strstr (first, "char") != NULL);
  second_p = (strstr (second, "char") != NULL);
  second_p = (strstr (second, "char") != NULL);
  if (first_p && second_p)
  if (first_p && second_p)
    return 1;
    return 1;
  if (first_p || second_p)
  if (first_p || second_p)
    return 0;
    return 0;
 
 
  /* They must both be ints.  */
  /* They must both be ints.  */
  return 1;
  return 1;
}
}
 
 
/* Compare one type (PARM) for compatibility with another (ARG).
/* Compare one type (PARM) for compatibility with another (ARG).
 * PARM is intended to be the parameter type of a function; and
 * PARM is intended to be the parameter type of a function; and
 * ARG is the supplied argument's type.  This function tests if
 * ARG is the supplied argument's type.  This function tests if
 * the latter can be converted to the former.
 * the latter can be converted to the former.
 *
 *
 * Return 0 if they are identical types;
 * Return 0 if they are identical types;
 * Otherwise, return an integer which corresponds to how compatible
 * Otherwise, return an integer which corresponds to how compatible
 * PARM is to ARG.  The higher the return value, the worse the match.
 * PARM is to ARG.  The higher the return value, the worse the match.
 * Generally the "bad" conversions are all uniformly assigned a 100.  */
 * Generally the "bad" conversions are all uniformly assigned a 100.  */
 
 
int
int
rank_one_type (struct type *parm, struct type *arg)
rank_one_type (struct type *parm, struct type *arg)
{
{
  /* Identical type pointers.  */
  /* Identical type pointers.  */
  /* However, this still doesn't catch all cases of same type for arg
  /* However, this still doesn't catch all cases of same type for arg
     and param.  The reason is that builtin types are different from
     and param.  The reason is that builtin types are different from
     the same ones constructed from the object.  */
     the same ones constructed from the object.  */
  if (parm == arg)
  if (parm == arg)
    return 0;
    return 0;
 
 
  /* Resolve typedefs */
  /* Resolve typedefs */
  if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
  if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
    parm = check_typedef (parm);
    parm = check_typedef (parm);
  if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
  if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
    arg = check_typedef (arg);
    arg = check_typedef (arg);
 
 
  /*
  /*
     Well, damnit, if the names are exactly the same, I'll say they
     Well, damnit, if the names are exactly the same, I'll say they
     are exactly the same.  This happens when we generate method
     are exactly the same.  This happens when we generate method
     stubs.  The types won't point to the same address, but they
     stubs.  The types won't point to the same address, but they
     really are the same.
     really are the same.
  */
  */
 
 
  if (TYPE_NAME (parm) && TYPE_NAME (arg)
  if (TYPE_NAME (parm) && TYPE_NAME (arg)
      && !strcmp (TYPE_NAME (parm), TYPE_NAME (arg)))
      && !strcmp (TYPE_NAME (parm), TYPE_NAME (arg)))
    return 0;
    return 0;
 
 
  /* Check if identical after resolving typedefs.  */
  /* Check if identical after resolving typedefs.  */
  if (parm == arg)
  if (parm == arg)
    return 0;
    return 0;
 
 
  /* See through references, since we can almost make non-references
  /* See through references, since we can almost make non-references
     references.  */
     references.  */
  if (TYPE_CODE (arg) == TYPE_CODE_REF)
  if (TYPE_CODE (arg) == TYPE_CODE_REF)
    return (rank_one_type (parm, TYPE_TARGET_TYPE (arg))
    return (rank_one_type (parm, TYPE_TARGET_TYPE (arg))
            + REFERENCE_CONVERSION_BADNESS);
            + REFERENCE_CONVERSION_BADNESS);
  if (TYPE_CODE (parm) == TYPE_CODE_REF)
  if (TYPE_CODE (parm) == TYPE_CODE_REF)
    return (rank_one_type (TYPE_TARGET_TYPE (parm), arg)
    return (rank_one_type (TYPE_TARGET_TYPE (parm), arg)
            + REFERENCE_CONVERSION_BADNESS);
            + REFERENCE_CONVERSION_BADNESS);
  if (overload_debug)
  if (overload_debug)
  /* Debugging only.  */
  /* Debugging only.  */
    fprintf_filtered (gdb_stderr,
    fprintf_filtered (gdb_stderr,
                      "------ Arg is %s [%d], parm is %s [%d]\n",
                      "------ Arg is %s [%d], parm is %s [%d]\n",
                      TYPE_NAME (arg), TYPE_CODE (arg),
                      TYPE_NAME (arg), TYPE_CODE (arg),
                      TYPE_NAME (parm), TYPE_CODE (parm));
                      TYPE_NAME (parm), TYPE_CODE (parm));
 
 
  /* x -> y means arg of type x being supplied for parameter of type y */
  /* x -> y means arg of type x being supplied for parameter of type y */
 
 
  switch (TYPE_CODE (parm))
  switch (TYPE_CODE (parm))
    {
    {
    case TYPE_CODE_PTR:
    case TYPE_CODE_PTR:
      switch (TYPE_CODE (arg))
      switch (TYPE_CODE (arg))
        {
        {
        case TYPE_CODE_PTR:
        case TYPE_CODE_PTR:
          if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
          if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
            return VOID_PTR_CONVERSION_BADNESS;
            return VOID_PTR_CONVERSION_BADNESS;
          else
          else
            return rank_one_type (TYPE_TARGET_TYPE (parm),
            return rank_one_type (TYPE_TARGET_TYPE (parm),
                                  TYPE_TARGET_TYPE (arg));
                                  TYPE_TARGET_TYPE (arg));
        case TYPE_CODE_ARRAY:
        case TYPE_CODE_ARRAY:
          return rank_one_type (TYPE_TARGET_TYPE (parm),
          return rank_one_type (TYPE_TARGET_TYPE (parm),
                                TYPE_TARGET_TYPE (arg));
                                TYPE_TARGET_TYPE (arg));
        case TYPE_CODE_FUNC:
        case TYPE_CODE_FUNC:
          return rank_one_type (TYPE_TARGET_TYPE (parm), arg);
          return rank_one_type (TYPE_TARGET_TYPE (parm), arg);
        case TYPE_CODE_INT:
        case TYPE_CODE_INT:
        case TYPE_CODE_ENUM:
        case TYPE_CODE_ENUM:
        case TYPE_CODE_FLAGS:
        case TYPE_CODE_FLAGS:
        case TYPE_CODE_CHAR:
        case TYPE_CODE_CHAR:
        case TYPE_CODE_RANGE:
        case TYPE_CODE_RANGE:
        case TYPE_CODE_BOOL:
        case TYPE_CODE_BOOL:
          return POINTER_CONVERSION_BADNESS;
          return POINTER_CONVERSION_BADNESS;
        default:
        default:
          return INCOMPATIBLE_TYPE_BADNESS;
          return INCOMPATIBLE_TYPE_BADNESS;
        }
        }
    case TYPE_CODE_ARRAY:
    case TYPE_CODE_ARRAY:
      switch (TYPE_CODE (arg))
      switch (TYPE_CODE (arg))
        {
        {
        case TYPE_CODE_PTR:
        case TYPE_CODE_PTR:
        case TYPE_CODE_ARRAY:
        case TYPE_CODE_ARRAY:
          return rank_one_type (TYPE_TARGET_TYPE (parm),
          return rank_one_type (TYPE_TARGET_TYPE (parm),
                                TYPE_TARGET_TYPE (arg));
                                TYPE_TARGET_TYPE (arg));
        default:
        default:
          return INCOMPATIBLE_TYPE_BADNESS;
          return INCOMPATIBLE_TYPE_BADNESS;
        }
        }
    case TYPE_CODE_FUNC:
    case TYPE_CODE_FUNC:
      switch (TYPE_CODE (arg))
      switch (TYPE_CODE (arg))
        {
        {
        case TYPE_CODE_PTR:     /* funcptr -> func */
        case TYPE_CODE_PTR:     /* funcptr -> func */
          return rank_one_type (parm, TYPE_TARGET_TYPE (arg));
          return rank_one_type (parm, TYPE_TARGET_TYPE (arg));
        default:
        default:
          return INCOMPATIBLE_TYPE_BADNESS;
          return INCOMPATIBLE_TYPE_BADNESS;
        }
        }
    case TYPE_CODE_INT:
    case TYPE_CODE_INT:
      switch (TYPE_CODE (arg))
      switch (TYPE_CODE (arg))
        {
        {
        case TYPE_CODE_INT:
        case TYPE_CODE_INT:
          if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
          if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
            {
            {
              /* Deal with signed, unsigned, and plain chars and
              /* Deal with signed, unsigned, and plain chars and
                 signed and unsigned ints.  */
                 signed and unsigned ints.  */
              if (TYPE_NOSIGN (parm))
              if (TYPE_NOSIGN (parm))
                {
                {
                  /* This case only for character types */
                  /* This case only for character types */
                  if (TYPE_NOSIGN (arg))
                  if (TYPE_NOSIGN (arg))
                    return 0;    /* plain char -> plain char */
                    return 0;    /* plain char -> plain char */
                  else          /* signed/unsigned char -> plain char */
                  else          /* signed/unsigned char -> plain char */
                    return INTEGER_CONVERSION_BADNESS;
                    return INTEGER_CONVERSION_BADNESS;
                }
                }
              else if (TYPE_UNSIGNED (parm))
              else if (TYPE_UNSIGNED (parm))
                {
                {
                  if (TYPE_UNSIGNED (arg))
                  if (TYPE_UNSIGNED (arg))
                    {
                    {
                      /* unsigned int -> unsigned int, or
                      /* unsigned int -> unsigned int, or
                         unsigned long -> unsigned long */
                         unsigned long -> unsigned long */
                      if (integer_types_same_name_p (TYPE_NAME (parm),
                      if (integer_types_same_name_p (TYPE_NAME (parm),
                                                     TYPE_NAME (arg)))
                                                     TYPE_NAME (arg)))
                        return 0;
                        return 0;
                      else if (integer_types_same_name_p (TYPE_NAME (arg),
                      else if (integer_types_same_name_p (TYPE_NAME (arg),
                                                          "int")
                                                          "int")
                               && integer_types_same_name_p (TYPE_NAME (parm),
                               && integer_types_same_name_p (TYPE_NAME (parm),
                                                             "long"))
                                                             "long"))
                        return INTEGER_PROMOTION_BADNESS;       /* unsigned int -> unsigned long */
                        return INTEGER_PROMOTION_BADNESS;       /* unsigned int -> unsigned long */
                      else
                      else
                        return INTEGER_CONVERSION_BADNESS;      /* unsigned long -> unsigned int */
                        return INTEGER_CONVERSION_BADNESS;      /* unsigned long -> unsigned int */
                    }
                    }
                  else
                  else
                    {
                    {
                      if (integer_types_same_name_p (TYPE_NAME (arg),
                      if (integer_types_same_name_p (TYPE_NAME (arg),
                                                     "long")
                                                     "long")
                          && integer_types_same_name_p (TYPE_NAME (parm),
                          && integer_types_same_name_p (TYPE_NAME (parm),
                                                        "int"))
                                                        "int"))
                        return INTEGER_CONVERSION_BADNESS;      /* signed long -> unsigned int */
                        return INTEGER_CONVERSION_BADNESS;      /* signed long -> unsigned int */
                      else
                      else
                        return INTEGER_CONVERSION_BADNESS;      /* signed int/long -> unsigned int/long */
                        return INTEGER_CONVERSION_BADNESS;      /* signed int/long -> unsigned int/long */
                    }
                    }
                }
                }
              else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
              else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
                {
                {
                  if (integer_types_same_name_p (TYPE_NAME (parm),
                  if (integer_types_same_name_p (TYPE_NAME (parm),
                                                 TYPE_NAME (arg)))
                                                 TYPE_NAME (arg)))
                    return 0;
                    return 0;
                  else if (integer_types_same_name_p (TYPE_NAME (arg),
                  else if (integer_types_same_name_p (TYPE_NAME (arg),
                                                      "int")
                                                      "int")
                           && integer_types_same_name_p (TYPE_NAME (parm),
                           && integer_types_same_name_p (TYPE_NAME (parm),
                                                         "long"))
                                                         "long"))
                    return INTEGER_PROMOTION_BADNESS;
                    return INTEGER_PROMOTION_BADNESS;
                  else
                  else
                    return INTEGER_CONVERSION_BADNESS;
                    return INTEGER_CONVERSION_BADNESS;
                }
                }
              else
              else
                return INTEGER_CONVERSION_BADNESS;
                return INTEGER_CONVERSION_BADNESS;
            }
            }
          else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
          else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
            return INTEGER_PROMOTION_BADNESS;
            return INTEGER_PROMOTION_BADNESS;
          else
          else
            return INTEGER_CONVERSION_BADNESS;
            return INTEGER_CONVERSION_BADNESS;
        case TYPE_CODE_ENUM:
        case TYPE_CODE_ENUM:
        case TYPE_CODE_FLAGS:
        case TYPE_CODE_FLAGS:
        case TYPE_CODE_CHAR:
        case TYPE_CODE_CHAR:
        case TYPE_CODE_RANGE:
        case TYPE_CODE_RANGE:
        case TYPE_CODE_BOOL:
        case TYPE_CODE_BOOL:
          return INTEGER_PROMOTION_BADNESS;
          return INTEGER_PROMOTION_BADNESS;
        case TYPE_CODE_FLT:
        case TYPE_CODE_FLT:
          return INT_FLOAT_CONVERSION_BADNESS;
          return INT_FLOAT_CONVERSION_BADNESS;
        case TYPE_CODE_PTR:
        case TYPE_CODE_PTR:
          return NS_POINTER_CONVERSION_BADNESS;
          return NS_POINTER_CONVERSION_BADNESS;
        default:
        default:
          return INCOMPATIBLE_TYPE_BADNESS;
          return INCOMPATIBLE_TYPE_BADNESS;
        }
        }
      break;
      break;
    case TYPE_CODE_ENUM:
    case TYPE_CODE_ENUM:
      switch (TYPE_CODE (arg))
      switch (TYPE_CODE (arg))
        {
        {
        case TYPE_CODE_INT:
        case TYPE_CODE_INT:
        case TYPE_CODE_CHAR:
        case TYPE_CODE_CHAR:
        case TYPE_CODE_RANGE:
        case TYPE_CODE_RANGE:
        case TYPE_CODE_BOOL:
        case TYPE_CODE_BOOL:
        case TYPE_CODE_ENUM:
        case TYPE_CODE_ENUM:
          return INTEGER_CONVERSION_BADNESS;
          return INTEGER_CONVERSION_BADNESS;
        case TYPE_CODE_FLT:
        case TYPE_CODE_FLT:
          return INT_FLOAT_CONVERSION_BADNESS;
          return INT_FLOAT_CONVERSION_BADNESS;
        default:
        default:
          return INCOMPATIBLE_TYPE_BADNESS;
          return INCOMPATIBLE_TYPE_BADNESS;
        }
        }
      break;
      break;
    case TYPE_CODE_CHAR:
    case TYPE_CODE_CHAR:
      switch (TYPE_CODE (arg))
      switch (TYPE_CODE (arg))
        {
        {
        case TYPE_CODE_RANGE:
        case TYPE_CODE_RANGE:
        case TYPE_CODE_BOOL:
        case TYPE_CODE_BOOL:
        case TYPE_CODE_ENUM:
        case TYPE_CODE_ENUM:
          return INTEGER_CONVERSION_BADNESS;
          return INTEGER_CONVERSION_BADNESS;
        case TYPE_CODE_FLT:
        case TYPE_CODE_FLT:
          return INT_FLOAT_CONVERSION_BADNESS;
          return INT_FLOAT_CONVERSION_BADNESS;
        case TYPE_CODE_INT:
        case TYPE_CODE_INT:
          if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
          if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
            return INTEGER_CONVERSION_BADNESS;
            return INTEGER_CONVERSION_BADNESS;
          else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
          else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
            return INTEGER_PROMOTION_BADNESS;
            return INTEGER_PROMOTION_BADNESS;
          /* >>> !! else fall through !! <<< */
          /* >>> !! else fall through !! <<< */
        case TYPE_CODE_CHAR:
        case TYPE_CODE_CHAR:
          /* Deal with signed, unsigned, and plain chars for C++ and
          /* Deal with signed, unsigned, and plain chars for C++ and
             with int cases falling through from previous case.  */
             with int cases falling through from previous case.  */
          if (TYPE_NOSIGN (parm))
          if (TYPE_NOSIGN (parm))
            {
            {
              if (TYPE_NOSIGN (arg))
              if (TYPE_NOSIGN (arg))
                return 0;
                return 0;
              else
              else
                return INTEGER_CONVERSION_BADNESS;
                return INTEGER_CONVERSION_BADNESS;
            }
            }
          else if (TYPE_UNSIGNED (parm))
          else if (TYPE_UNSIGNED (parm))
            {
            {
              if (TYPE_UNSIGNED (arg))
              if (TYPE_UNSIGNED (arg))
                return 0;
                return 0;
              else
              else
                return INTEGER_PROMOTION_BADNESS;
                return INTEGER_PROMOTION_BADNESS;
            }
            }
          else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
          else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
            return 0;
            return 0;
          else
          else
            return INTEGER_CONVERSION_BADNESS;
            return INTEGER_CONVERSION_BADNESS;
        default:
        default:
          return INCOMPATIBLE_TYPE_BADNESS;
          return INCOMPATIBLE_TYPE_BADNESS;
        }
        }
      break;
      break;
    case TYPE_CODE_RANGE:
    case TYPE_CODE_RANGE:
      switch (TYPE_CODE (arg))
      switch (TYPE_CODE (arg))
        {
        {
        case TYPE_CODE_INT:
        case TYPE_CODE_INT:
        case TYPE_CODE_CHAR:
        case TYPE_CODE_CHAR:
        case TYPE_CODE_RANGE:
        case TYPE_CODE_RANGE:
        case TYPE_CODE_BOOL:
        case TYPE_CODE_BOOL:
        case TYPE_CODE_ENUM:
        case TYPE_CODE_ENUM:
          return INTEGER_CONVERSION_BADNESS;
          return INTEGER_CONVERSION_BADNESS;
        case TYPE_CODE_FLT:
        case TYPE_CODE_FLT:
          return INT_FLOAT_CONVERSION_BADNESS;
          return INT_FLOAT_CONVERSION_BADNESS;
        default:
        default:
          return INCOMPATIBLE_TYPE_BADNESS;
          return INCOMPATIBLE_TYPE_BADNESS;
        }
        }
      break;
      break;
    case TYPE_CODE_BOOL:
    case TYPE_CODE_BOOL:
      switch (TYPE_CODE (arg))
      switch (TYPE_CODE (arg))
        {
        {
        case TYPE_CODE_INT:
        case TYPE_CODE_INT:
        case TYPE_CODE_CHAR:
        case TYPE_CODE_CHAR:
        case TYPE_CODE_RANGE:
        case TYPE_CODE_RANGE:
        case TYPE_CODE_ENUM:
        case TYPE_CODE_ENUM:
        case TYPE_CODE_FLT:
        case TYPE_CODE_FLT:
        case TYPE_CODE_PTR:
        case TYPE_CODE_PTR:
          return BOOLEAN_CONVERSION_BADNESS;
          return BOOLEAN_CONVERSION_BADNESS;
        case TYPE_CODE_BOOL:
        case TYPE_CODE_BOOL:
          return 0;
          return 0;
        default:
        default:
          return INCOMPATIBLE_TYPE_BADNESS;
          return INCOMPATIBLE_TYPE_BADNESS;
        }
        }
      break;
      break;
    case TYPE_CODE_FLT:
    case TYPE_CODE_FLT:
      switch (TYPE_CODE (arg))
      switch (TYPE_CODE (arg))
        {
        {
        case TYPE_CODE_FLT:
        case TYPE_CODE_FLT:
          if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
          if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
            return FLOAT_PROMOTION_BADNESS;
            return FLOAT_PROMOTION_BADNESS;
          else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
          else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
            return 0;
            return 0;
          else
          else
            return FLOAT_CONVERSION_BADNESS;
            return FLOAT_CONVERSION_BADNESS;
        case TYPE_CODE_INT:
        case TYPE_CODE_INT:
        case TYPE_CODE_BOOL:
        case TYPE_CODE_BOOL:
        case TYPE_CODE_ENUM:
        case TYPE_CODE_ENUM:
        case TYPE_CODE_RANGE:
        case TYPE_CODE_RANGE:
        case TYPE_CODE_CHAR:
        case TYPE_CODE_CHAR:
          return INT_FLOAT_CONVERSION_BADNESS;
          return INT_FLOAT_CONVERSION_BADNESS;
        default:
        default:
          return INCOMPATIBLE_TYPE_BADNESS;
          return INCOMPATIBLE_TYPE_BADNESS;
        }
        }
      break;
      break;
    case TYPE_CODE_COMPLEX:
    case TYPE_CODE_COMPLEX:
      switch (TYPE_CODE (arg))
      switch (TYPE_CODE (arg))
        {               /* Strictly not needed for C++, but...  */
        {               /* Strictly not needed for C++, but...  */
        case TYPE_CODE_FLT:
        case TYPE_CODE_FLT:
          return FLOAT_PROMOTION_BADNESS;
          return FLOAT_PROMOTION_BADNESS;
        case TYPE_CODE_COMPLEX:
        case TYPE_CODE_COMPLEX:
          return 0;
          return 0;
        default:
        default:
          return INCOMPATIBLE_TYPE_BADNESS;
          return INCOMPATIBLE_TYPE_BADNESS;
        }
        }
      break;
      break;
    case TYPE_CODE_STRUCT:
    case TYPE_CODE_STRUCT:
      /* currently same as TYPE_CODE_CLASS */
      /* currently same as TYPE_CODE_CLASS */
      switch (TYPE_CODE (arg))
      switch (TYPE_CODE (arg))
        {
        {
        case TYPE_CODE_STRUCT:
        case TYPE_CODE_STRUCT:
          /* Check for derivation */
          /* Check for derivation */
          if (is_ancestor (parm, arg))
          if (is_ancestor (parm, arg))
            return BASE_CONVERSION_BADNESS;
            return BASE_CONVERSION_BADNESS;
          /* else fall through */
          /* else fall through */
        default:
        default:
          return INCOMPATIBLE_TYPE_BADNESS;
          return INCOMPATIBLE_TYPE_BADNESS;
        }
        }
      break;
      break;
    case TYPE_CODE_UNION:
    case TYPE_CODE_UNION:
      switch (TYPE_CODE (arg))
      switch (TYPE_CODE (arg))
        {
        {
        case TYPE_CODE_UNION:
        case TYPE_CODE_UNION:
        default:
        default:
          return INCOMPATIBLE_TYPE_BADNESS;
          return INCOMPATIBLE_TYPE_BADNESS;
        }
        }
      break;
      break;
    case TYPE_CODE_MEMBERPTR:
    case TYPE_CODE_MEMBERPTR:
      switch (TYPE_CODE (arg))
      switch (TYPE_CODE (arg))
        {
        {
        default:
        default:
          return INCOMPATIBLE_TYPE_BADNESS;
          return INCOMPATIBLE_TYPE_BADNESS;
        }
        }
      break;
      break;
    case TYPE_CODE_METHOD:
    case TYPE_CODE_METHOD:
      switch (TYPE_CODE (arg))
      switch (TYPE_CODE (arg))
        {
        {
 
 
        default:
        default:
          return INCOMPATIBLE_TYPE_BADNESS;
          return INCOMPATIBLE_TYPE_BADNESS;
        }
        }
      break;
      break;
    case TYPE_CODE_REF:
    case TYPE_CODE_REF:
      switch (TYPE_CODE (arg))
      switch (TYPE_CODE (arg))
        {
        {
 
 
        default:
        default:
          return INCOMPATIBLE_TYPE_BADNESS;
          return INCOMPATIBLE_TYPE_BADNESS;
        }
        }
 
 
      break;
      break;
    case TYPE_CODE_SET:
    case TYPE_CODE_SET:
      switch (TYPE_CODE (arg))
      switch (TYPE_CODE (arg))
        {
        {
          /* Not in C++ */
          /* Not in C++ */
        case TYPE_CODE_SET:
        case TYPE_CODE_SET:
          return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
          return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
                                TYPE_FIELD_TYPE (arg, 0));
                                TYPE_FIELD_TYPE (arg, 0));
        default:
        default:
          return INCOMPATIBLE_TYPE_BADNESS;
          return INCOMPATIBLE_TYPE_BADNESS;
        }
        }
      break;
      break;
    case TYPE_CODE_VOID:
    case TYPE_CODE_VOID:
    default:
    default:
      return INCOMPATIBLE_TYPE_BADNESS;
      return INCOMPATIBLE_TYPE_BADNESS;
    }                           /* switch (TYPE_CODE (arg)) */
    }                           /* switch (TYPE_CODE (arg)) */
}
}
 
 
 
 
/* End of functions for overload resolution */
/* End of functions for overload resolution */
 
 
static void
static void
print_bit_vector (B_TYPE *bits, int nbits)
print_bit_vector (B_TYPE *bits, int nbits)
{
{
  int bitno;
  int bitno;
 
 
  for (bitno = 0; bitno < nbits; bitno++)
  for (bitno = 0; bitno < nbits; bitno++)
    {
    {
      if ((bitno % 8) == 0)
      if ((bitno % 8) == 0)
        {
        {
          puts_filtered (" ");
          puts_filtered (" ");
        }
        }
      if (B_TST (bits, bitno))
      if (B_TST (bits, bitno))
        printf_filtered (("1"));
        printf_filtered (("1"));
      else
      else
        printf_filtered (("0"));
        printf_filtered (("0"));
    }
    }
}
}
 
 
/* Note the first arg should be the "this" pointer, we may not want to
/* Note the first arg should be the "this" pointer, we may not want to
   include it since we may get into a infinitely recursive
   include it since we may get into a infinitely recursive
   situation.  */
   situation.  */
 
 
static void
static void
print_arg_types (struct field *args, int nargs, int spaces)
print_arg_types (struct field *args, int nargs, int spaces)
{
{
  if (args != NULL)
  if (args != NULL)
    {
    {
      int i;
      int i;
 
 
      for (i = 0; i < nargs; i++)
      for (i = 0; i < nargs; i++)
        recursive_dump_type (args[i].type, spaces + 2);
        recursive_dump_type (args[i].type, spaces + 2);
    }
    }
}
}
 
 
static void
static void
dump_fn_fieldlists (struct type *type, int spaces)
dump_fn_fieldlists (struct type *type, int spaces)
{
{
  int method_idx;
  int method_idx;
  int overload_idx;
  int overload_idx;
  struct fn_field *f;
  struct fn_field *f;
 
 
  printfi_filtered (spaces, "fn_fieldlists ");
  printfi_filtered (spaces, "fn_fieldlists ");
  gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
  gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
  printf_filtered ("\n");
  printf_filtered ("\n");
  for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
  for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
    {
    {
      f = TYPE_FN_FIELDLIST1 (type, method_idx);
      f = TYPE_FN_FIELDLIST1 (type, method_idx);
      printfi_filtered (spaces + 2, "[%d] name '%s' (",
      printfi_filtered (spaces + 2, "[%d] name '%s' (",
                        method_idx,
                        method_idx,
                        TYPE_FN_FIELDLIST_NAME (type, method_idx));
                        TYPE_FN_FIELDLIST_NAME (type, method_idx));
      gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
      gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
                              gdb_stdout);
                              gdb_stdout);
      printf_filtered (_(") length %d\n"),
      printf_filtered (_(") length %d\n"),
                       TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
                       TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
      for (overload_idx = 0;
      for (overload_idx = 0;
           overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
           overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
           overload_idx++)
           overload_idx++)
        {
        {
          printfi_filtered (spaces + 4, "[%d] physname '%s' (",
          printfi_filtered (spaces + 4, "[%d] physname '%s' (",
                            overload_idx,
                            overload_idx,
                            TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
                            TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
          gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
          gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
                                  gdb_stdout);
                                  gdb_stdout);
          printf_filtered (")\n");
          printf_filtered (")\n");
          printfi_filtered (spaces + 8, "type ");
          printfi_filtered (spaces + 8, "type ");
          gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
          gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
                                  gdb_stdout);
                                  gdb_stdout);
          printf_filtered ("\n");
          printf_filtered ("\n");
 
 
          recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
          recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
                               spaces + 8 + 2);
                               spaces + 8 + 2);
 
 
          printfi_filtered (spaces + 8, "args ");
          printfi_filtered (spaces + 8, "args ");
          gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
          gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
                                  gdb_stdout);
                                  gdb_stdout);
          printf_filtered ("\n");
          printf_filtered ("\n");
 
 
          print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
          print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
                           TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
                           TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
                                                             overload_idx)),
                                                             overload_idx)),
                           spaces);
                           spaces);
          printfi_filtered (spaces + 8, "fcontext ");
          printfi_filtered (spaces + 8, "fcontext ");
          gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
          gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
                                  gdb_stdout);
                                  gdb_stdout);
          printf_filtered ("\n");
          printf_filtered ("\n");
 
 
          printfi_filtered (spaces + 8, "is_const %d\n",
          printfi_filtered (spaces + 8, "is_const %d\n",
                            TYPE_FN_FIELD_CONST (f, overload_idx));
                            TYPE_FN_FIELD_CONST (f, overload_idx));
          printfi_filtered (spaces + 8, "is_volatile %d\n",
          printfi_filtered (spaces + 8, "is_volatile %d\n",
                            TYPE_FN_FIELD_VOLATILE (f, overload_idx));
                            TYPE_FN_FIELD_VOLATILE (f, overload_idx));
          printfi_filtered (spaces + 8, "is_private %d\n",
          printfi_filtered (spaces + 8, "is_private %d\n",
                            TYPE_FN_FIELD_PRIVATE (f, overload_idx));
                            TYPE_FN_FIELD_PRIVATE (f, overload_idx));
          printfi_filtered (spaces + 8, "is_protected %d\n",
          printfi_filtered (spaces + 8, "is_protected %d\n",
                            TYPE_FN_FIELD_PROTECTED (f, overload_idx));
                            TYPE_FN_FIELD_PROTECTED (f, overload_idx));
          printfi_filtered (spaces + 8, "is_stub %d\n",
          printfi_filtered (spaces + 8, "is_stub %d\n",
                            TYPE_FN_FIELD_STUB (f, overload_idx));
                            TYPE_FN_FIELD_STUB (f, overload_idx));
          printfi_filtered (spaces + 8, "voffset %u\n",
          printfi_filtered (spaces + 8, "voffset %u\n",
                            TYPE_FN_FIELD_VOFFSET (f, overload_idx));
                            TYPE_FN_FIELD_VOFFSET (f, overload_idx));
        }
        }
    }
    }
}
}
 
 
static void
static void
print_cplus_stuff (struct type *type, int spaces)
print_cplus_stuff (struct type *type, int spaces)
{
{
  printfi_filtered (spaces, "n_baseclasses %d\n",
  printfi_filtered (spaces, "n_baseclasses %d\n",
                    TYPE_N_BASECLASSES (type));
                    TYPE_N_BASECLASSES (type));
  printfi_filtered (spaces, "nfn_fields %d\n",
  printfi_filtered (spaces, "nfn_fields %d\n",
                    TYPE_NFN_FIELDS (type));
                    TYPE_NFN_FIELDS (type));
  printfi_filtered (spaces, "nfn_fields_total %d\n",
  printfi_filtered (spaces, "nfn_fields_total %d\n",
                    TYPE_NFN_FIELDS_TOTAL (type));
                    TYPE_NFN_FIELDS_TOTAL (type));
  if (TYPE_N_BASECLASSES (type) > 0)
  if (TYPE_N_BASECLASSES (type) > 0)
    {
    {
      printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
      printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
                        TYPE_N_BASECLASSES (type));
                        TYPE_N_BASECLASSES (type));
      gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
      gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
                              gdb_stdout);
                              gdb_stdout);
      printf_filtered (")");
      printf_filtered (")");
 
 
      print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
      print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
                        TYPE_N_BASECLASSES (type));
                        TYPE_N_BASECLASSES (type));
      puts_filtered ("\n");
      puts_filtered ("\n");
    }
    }
  if (TYPE_NFIELDS (type) > 0)
  if (TYPE_NFIELDS (type) > 0)
    {
    {
      if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
      if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
        {
        {
          printfi_filtered (spaces,
          printfi_filtered (spaces,
                            "private_field_bits (%d bits at *",
                            "private_field_bits (%d bits at *",
                            TYPE_NFIELDS (type));
                            TYPE_NFIELDS (type));
          gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
          gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
                                  gdb_stdout);
                                  gdb_stdout);
          printf_filtered (")");
          printf_filtered (")");
          print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
          print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
                            TYPE_NFIELDS (type));
                            TYPE_NFIELDS (type));
          puts_filtered ("\n");
          puts_filtered ("\n");
        }
        }
      if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
      if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
        {
        {
          printfi_filtered (spaces,
          printfi_filtered (spaces,
                            "protected_field_bits (%d bits at *",
                            "protected_field_bits (%d bits at *",
                            TYPE_NFIELDS (type));
                            TYPE_NFIELDS (type));
          gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
          gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
                                  gdb_stdout);
                                  gdb_stdout);
          printf_filtered (")");
          printf_filtered (")");
          print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
          print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
                            TYPE_NFIELDS (type));
                            TYPE_NFIELDS (type));
          puts_filtered ("\n");
          puts_filtered ("\n");
        }
        }
    }
    }
  if (TYPE_NFN_FIELDS (type) > 0)
  if (TYPE_NFN_FIELDS (type) > 0)
    {
    {
      dump_fn_fieldlists (type, spaces);
      dump_fn_fieldlists (type, spaces);
    }
    }
}
}
 
 
static void
static void
print_bound_type (int bt)
print_bound_type (int bt)
{
{
  switch (bt)
  switch (bt)
    {
    {
    case BOUND_CANNOT_BE_DETERMINED:
    case BOUND_CANNOT_BE_DETERMINED:
      printf_filtered ("(BOUND_CANNOT_BE_DETERMINED)");
      printf_filtered ("(BOUND_CANNOT_BE_DETERMINED)");
      break;
      break;
    case BOUND_BY_REF_ON_STACK:
    case BOUND_BY_REF_ON_STACK:
      printf_filtered ("(BOUND_BY_REF_ON_STACK)");
      printf_filtered ("(BOUND_BY_REF_ON_STACK)");
      break;
      break;
    case BOUND_BY_VALUE_ON_STACK:
    case BOUND_BY_VALUE_ON_STACK:
      printf_filtered ("(BOUND_BY_VALUE_ON_STACK)");
      printf_filtered ("(BOUND_BY_VALUE_ON_STACK)");
      break;
      break;
    case BOUND_BY_REF_IN_REG:
    case BOUND_BY_REF_IN_REG:
      printf_filtered ("(BOUND_BY_REF_IN_REG)");
      printf_filtered ("(BOUND_BY_REF_IN_REG)");
      break;
      break;
    case BOUND_BY_VALUE_IN_REG:
    case BOUND_BY_VALUE_IN_REG:
      printf_filtered ("(BOUND_BY_VALUE_IN_REG)");
      printf_filtered ("(BOUND_BY_VALUE_IN_REG)");
      break;
      break;
    case BOUND_SIMPLE:
    case BOUND_SIMPLE:
      printf_filtered ("(BOUND_SIMPLE)");
      printf_filtered ("(BOUND_SIMPLE)");
      break;
      break;
    default:
    default:
      printf_filtered (_("(unknown bound type)"));
      printf_filtered (_("(unknown bound type)"));
      break;
      break;
    }
    }
}
}
 
 
static struct obstack dont_print_type_obstack;
static struct obstack dont_print_type_obstack;
 
 
void
void
recursive_dump_type (struct type *type, int spaces)
recursive_dump_type (struct type *type, int spaces)
{
{
  int idx;
  int idx;
 
 
  if (spaces == 0)
  if (spaces == 0)
    obstack_begin (&dont_print_type_obstack, 0);
    obstack_begin (&dont_print_type_obstack, 0);
 
 
  if (TYPE_NFIELDS (type) > 0
  if (TYPE_NFIELDS (type) > 0
      || (TYPE_CPLUS_SPECIFIC (type) && TYPE_NFN_FIELDS (type) > 0))
      || (TYPE_CPLUS_SPECIFIC (type) && TYPE_NFN_FIELDS (type) > 0))
    {
    {
      struct type **first_dont_print
      struct type **first_dont_print
        = (struct type **) obstack_base (&dont_print_type_obstack);
        = (struct type **) obstack_base (&dont_print_type_obstack);
 
 
      int i = (struct type **)
      int i = (struct type **)
        obstack_next_free (&dont_print_type_obstack) - first_dont_print;
        obstack_next_free (&dont_print_type_obstack) - first_dont_print;
 
 
      while (--i >= 0)
      while (--i >= 0)
        {
        {
          if (type == first_dont_print[i])
          if (type == first_dont_print[i])
            {
            {
              printfi_filtered (spaces, "type node ");
              printfi_filtered (spaces, "type node ");
              gdb_print_host_address (type, gdb_stdout);
              gdb_print_host_address (type, gdb_stdout);
              printf_filtered (_(" <same as already seen type>\n"));
              printf_filtered (_(" <same as already seen type>\n"));
              return;
              return;
            }
            }
        }
        }
 
 
      obstack_ptr_grow (&dont_print_type_obstack, type);
      obstack_ptr_grow (&dont_print_type_obstack, type);
    }
    }
 
 
  printfi_filtered (spaces, "type node ");
  printfi_filtered (spaces, "type node ");
  gdb_print_host_address (type, gdb_stdout);
  gdb_print_host_address (type, gdb_stdout);
  printf_filtered ("\n");
  printf_filtered ("\n");
  printfi_filtered (spaces, "name '%s' (",
  printfi_filtered (spaces, "name '%s' (",
                    TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
                    TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
  gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
  gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
  printf_filtered (")\n");
  printf_filtered (")\n");
  printfi_filtered (spaces, "tagname '%s' (",
  printfi_filtered (spaces, "tagname '%s' (",
                    TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
                    TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
  gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
  gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
  printf_filtered (")\n");
  printf_filtered (")\n");
  printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
  printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
  switch (TYPE_CODE (type))
  switch (TYPE_CODE (type))
    {
    {
    case TYPE_CODE_UNDEF:
    case TYPE_CODE_UNDEF:
      printf_filtered ("(TYPE_CODE_UNDEF)");
      printf_filtered ("(TYPE_CODE_UNDEF)");
      break;
      break;
    case TYPE_CODE_PTR:
    case TYPE_CODE_PTR:
      printf_filtered ("(TYPE_CODE_PTR)");
      printf_filtered ("(TYPE_CODE_PTR)");
      break;
      break;
    case TYPE_CODE_ARRAY:
    case TYPE_CODE_ARRAY:
      printf_filtered ("(TYPE_CODE_ARRAY)");
      printf_filtered ("(TYPE_CODE_ARRAY)");
      break;
      break;
    case TYPE_CODE_STRUCT:
    case TYPE_CODE_STRUCT:
      printf_filtered ("(TYPE_CODE_STRUCT)");
      printf_filtered ("(TYPE_CODE_STRUCT)");
      break;
      break;
    case TYPE_CODE_UNION:
    case TYPE_CODE_UNION:
      printf_filtered ("(TYPE_CODE_UNION)");
      printf_filtered ("(TYPE_CODE_UNION)");
      break;
      break;
    case TYPE_CODE_ENUM:
    case TYPE_CODE_ENUM:
      printf_filtered ("(TYPE_CODE_ENUM)");
      printf_filtered ("(TYPE_CODE_ENUM)");
      break;
      break;
    case TYPE_CODE_FLAGS:
    case TYPE_CODE_FLAGS:
      printf_filtered ("(TYPE_CODE_FLAGS)");
      printf_filtered ("(TYPE_CODE_FLAGS)");
      break;
      break;
    case TYPE_CODE_FUNC:
    case TYPE_CODE_FUNC:
      printf_filtered ("(TYPE_CODE_FUNC)");
      printf_filtered ("(TYPE_CODE_FUNC)");
      break;
      break;
    case TYPE_CODE_INT:
    case TYPE_CODE_INT:
      printf_filtered ("(TYPE_CODE_INT)");
      printf_filtered ("(TYPE_CODE_INT)");
      break;
      break;
    case TYPE_CODE_FLT:
    case TYPE_CODE_FLT:
      printf_filtered ("(TYPE_CODE_FLT)");
      printf_filtered ("(TYPE_CODE_FLT)");
      break;
      break;
    case TYPE_CODE_VOID:
    case TYPE_CODE_VOID:
      printf_filtered ("(TYPE_CODE_VOID)");
      printf_filtered ("(TYPE_CODE_VOID)");
      break;
      break;
    case TYPE_CODE_SET:
    case TYPE_CODE_SET:
      printf_filtered ("(TYPE_CODE_SET)");
      printf_filtered ("(TYPE_CODE_SET)");
      break;
      break;
    case TYPE_CODE_RANGE:
    case TYPE_CODE_RANGE:
      printf_filtered ("(TYPE_CODE_RANGE)");
      printf_filtered ("(TYPE_CODE_RANGE)");
      break;
      break;
    case TYPE_CODE_STRING:
    case TYPE_CODE_STRING:
      printf_filtered ("(TYPE_CODE_STRING)");
      printf_filtered ("(TYPE_CODE_STRING)");
      break;
      break;
    case TYPE_CODE_BITSTRING:
    case TYPE_CODE_BITSTRING:
      printf_filtered ("(TYPE_CODE_BITSTRING)");
      printf_filtered ("(TYPE_CODE_BITSTRING)");
      break;
      break;
    case TYPE_CODE_ERROR:
    case TYPE_CODE_ERROR:
      printf_filtered ("(TYPE_CODE_ERROR)");
      printf_filtered ("(TYPE_CODE_ERROR)");
      break;
      break;
    case TYPE_CODE_MEMBERPTR:
    case TYPE_CODE_MEMBERPTR:
      printf_filtered ("(TYPE_CODE_MEMBERPTR)");
      printf_filtered ("(TYPE_CODE_MEMBERPTR)");
      break;
      break;
    case TYPE_CODE_METHODPTR:
    case TYPE_CODE_METHODPTR:
      printf_filtered ("(TYPE_CODE_METHODPTR)");
      printf_filtered ("(TYPE_CODE_METHODPTR)");
      break;
      break;
    case TYPE_CODE_METHOD:
    case TYPE_CODE_METHOD:
      printf_filtered ("(TYPE_CODE_METHOD)");
      printf_filtered ("(TYPE_CODE_METHOD)");
      break;
      break;
    case TYPE_CODE_REF:
    case TYPE_CODE_REF:
      printf_filtered ("(TYPE_CODE_REF)");
      printf_filtered ("(TYPE_CODE_REF)");
      break;
      break;
    case TYPE_CODE_CHAR:
    case TYPE_CODE_CHAR:
      printf_filtered ("(TYPE_CODE_CHAR)");
      printf_filtered ("(TYPE_CODE_CHAR)");
      break;
      break;
    case TYPE_CODE_BOOL:
    case TYPE_CODE_BOOL:
      printf_filtered ("(TYPE_CODE_BOOL)");
      printf_filtered ("(TYPE_CODE_BOOL)");
      break;
      break;
    case TYPE_CODE_COMPLEX:
    case TYPE_CODE_COMPLEX:
      printf_filtered ("(TYPE_CODE_COMPLEX)");
      printf_filtered ("(TYPE_CODE_COMPLEX)");
      break;
      break;
    case TYPE_CODE_TYPEDEF:
    case TYPE_CODE_TYPEDEF:
      printf_filtered ("(TYPE_CODE_TYPEDEF)");
      printf_filtered ("(TYPE_CODE_TYPEDEF)");
      break;
      break;
    case TYPE_CODE_TEMPLATE:
    case TYPE_CODE_TEMPLATE:
      printf_filtered ("(TYPE_CODE_TEMPLATE)");
      printf_filtered ("(TYPE_CODE_TEMPLATE)");
      break;
      break;
    case TYPE_CODE_TEMPLATE_ARG:
    case TYPE_CODE_TEMPLATE_ARG:
      printf_filtered ("(TYPE_CODE_TEMPLATE_ARG)");
      printf_filtered ("(TYPE_CODE_TEMPLATE_ARG)");
      break;
      break;
    case TYPE_CODE_NAMESPACE:
    case TYPE_CODE_NAMESPACE:
      printf_filtered ("(TYPE_CODE_NAMESPACE)");
      printf_filtered ("(TYPE_CODE_NAMESPACE)");
      break;
      break;
    default:
    default:
      printf_filtered ("(UNKNOWN TYPE CODE)");
      printf_filtered ("(UNKNOWN TYPE CODE)");
      break;
      break;
    }
    }
  puts_filtered ("\n");
  puts_filtered ("\n");
  printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
  printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
  printfi_filtered (spaces, "upper_bound_type 0x%x ",
  printfi_filtered (spaces, "upper_bound_type 0x%x ",
                    TYPE_ARRAY_UPPER_BOUND_TYPE (type));
                    TYPE_ARRAY_UPPER_BOUND_TYPE (type));
  print_bound_type (TYPE_ARRAY_UPPER_BOUND_TYPE (type));
  print_bound_type (TYPE_ARRAY_UPPER_BOUND_TYPE (type));
  puts_filtered ("\n");
  puts_filtered ("\n");
  printfi_filtered (spaces, "lower_bound_type 0x%x ",
  printfi_filtered (spaces, "lower_bound_type 0x%x ",
                    TYPE_ARRAY_LOWER_BOUND_TYPE (type));
                    TYPE_ARRAY_LOWER_BOUND_TYPE (type));
  print_bound_type (TYPE_ARRAY_LOWER_BOUND_TYPE (type));
  print_bound_type (TYPE_ARRAY_LOWER_BOUND_TYPE (type));
  puts_filtered ("\n");
  puts_filtered ("\n");
  printfi_filtered (spaces, "objfile ");
  printfi_filtered (spaces, "objfile ");
  gdb_print_host_address (TYPE_OBJFILE (type), gdb_stdout);
  gdb_print_host_address (TYPE_OBJFILE (type), gdb_stdout);
  printf_filtered ("\n");
  printf_filtered ("\n");
  printfi_filtered (spaces, "target_type ");
  printfi_filtered (spaces, "target_type ");
  gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
  gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
  printf_filtered ("\n");
  printf_filtered ("\n");
  if (TYPE_TARGET_TYPE (type) != NULL)
  if (TYPE_TARGET_TYPE (type) != NULL)
    {
    {
      recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
      recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
    }
    }
  printfi_filtered (spaces, "pointer_type ");
  printfi_filtered (spaces, "pointer_type ");
  gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
  gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
  printf_filtered ("\n");
  printf_filtered ("\n");
  printfi_filtered (spaces, "reference_type ");
  printfi_filtered (spaces, "reference_type ");
  gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
  gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
  printf_filtered ("\n");
  printf_filtered ("\n");
  printfi_filtered (spaces, "type_chain ");
  printfi_filtered (spaces, "type_chain ");
  gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
  gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
  printf_filtered ("\n");
  printf_filtered ("\n");
  printfi_filtered (spaces, "instance_flags 0x%x",
  printfi_filtered (spaces, "instance_flags 0x%x",
                    TYPE_INSTANCE_FLAGS (type));
                    TYPE_INSTANCE_FLAGS (type));
  if (TYPE_CONST (type))
  if (TYPE_CONST (type))
    {
    {
      puts_filtered (" TYPE_FLAG_CONST");
      puts_filtered (" TYPE_FLAG_CONST");
    }
    }
  if (TYPE_VOLATILE (type))
  if (TYPE_VOLATILE (type))
    {
    {
      puts_filtered (" TYPE_FLAG_VOLATILE");
      puts_filtered (" TYPE_FLAG_VOLATILE");
    }
    }
  if (TYPE_CODE_SPACE (type))
  if (TYPE_CODE_SPACE (type))
    {
    {
      puts_filtered (" TYPE_FLAG_CODE_SPACE");
      puts_filtered (" TYPE_FLAG_CODE_SPACE");
    }
    }
  if (TYPE_DATA_SPACE (type))
  if (TYPE_DATA_SPACE (type))
    {
    {
      puts_filtered (" TYPE_FLAG_DATA_SPACE");
      puts_filtered (" TYPE_FLAG_DATA_SPACE");
    }
    }
  if (TYPE_ADDRESS_CLASS_1 (type))
  if (TYPE_ADDRESS_CLASS_1 (type))
    {
    {
      puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
      puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
    }
    }
  if (TYPE_ADDRESS_CLASS_2 (type))
  if (TYPE_ADDRESS_CLASS_2 (type))
    {
    {
      puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
      puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
    }
    }
  puts_filtered ("\n");
  puts_filtered ("\n");
  printfi_filtered (spaces, "flags 0x%x", TYPE_FLAGS (type));
  printfi_filtered (spaces, "flags 0x%x", TYPE_FLAGS (type));
  if (TYPE_UNSIGNED (type))
  if (TYPE_UNSIGNED (type))
    {
    {
      puts_filtered (" TYPE_FLAG_UNSIGNED");
      puts_filtered (" TYPE_FLAG_UNSIGNED");
    }
    }
  if (TYPE_NOSIGN (type))
  if (TYPE_NOSIGN (type))
    {
    {
      puts_filtered (" TYPE_FLAG_NOSIGN");
      puts_filtered (" TYPE_FLAG_NOSIGN");
    }
    }
  if (TYPE_STUB (type))
  if (TYPE_STUB (type))
    {
    {
      puts_filtered (" TYPE_FLAG_STUB");
      puts_filtered (" TYPE_FLAG_STUB");
    }
    }
  if (TYPE_TARGET_STUB (type))
  if (TYPE_TARGET_STUB (type))
    {
    {
      puts_filtered (" TYPE_FLAG_TARGET_STUB");
      puts_filtered (" TYPE_FLAG_TARGET_STUB");
    }
    }
  if (TYPE_STATIC (type))
  if (TYPE_STATIC (type))
    {
    {
      puts_filtered (" TYPE_FLAG_STATIC");
      puts_filtered (" TYPE_FLAG_STATIC");
    }
    }
  if (TYPE_PROTOTYPED (type))
  if (TYPE_PROTOTYPED (type))
    {
    {
      puts_filtered (" TYPE_FLAG_PROTOTYPED");
      puts_filtered (" TYPE_FLAG_PROTOTYPED");
    }
    }
  if (TYPE_INCOMPLETE (type))
  if (TYPE_INCOMPLETE (type))
    {
    {
      puts_filtered (" TYPE_FLAG_INCOMPLETE");
      puts_filtered (" TYPE_FLAG_INCOMPLETE");
    }
    }
  if (TYPE_VARARGS (type))
  if (TYPE_VARARGS (type))
    {
    {
      puts_filtered (" TYPE_FLAG_VARARGS");
      puts_filtered (" TYPE_FLAG_VARARGS");
    }
    }
  /* This is used for things like AltiVec registers on ppc.  Gcc emits
  /* This is used for things like AltiVec registers on ppc.  Gcc emits
     an attribute for the array type, which tells whether or not we
     an attribute for the array type, which tells whether or not we
     have a vector, instead of a regular array.  */
     have a vector, instead of a regular array.  */
  if (TYPE_VECTOR (type))
  if (TYPE_VECTOR (type))
    {
    {
      puts_filtered (" TYPE_FLAG_VECTOR");
      puts_filtered (" TYPE_FLAG_VECTOR");
    }
    }
  puts_filtered ("\n");
  puts_filtered ("\n");
  printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
  printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
  gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
  gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
  puts_filtered ("\n");
  puts_filtered ("\n");
  for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
  for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
    {
    {
      printfi_filtered (spaces + 2,
      printfi_filtered (spaces + 2,
                        "[%d] bitpos %d bitsize %d type ",
                        "[%d] bitpos %d bitsize %d type ",
                        idx, TYPE_FIELD_BITPOS (type, idx),
                        idx, TYPE_FIELD_BITPOS (type, idx),
                        TYPE_FIELD_BITSIZE (type, idx));
                        TYPE_FIELD_BITSIZE (type, idx));
      gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
      gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
      printf_filtered (" name '%s' (",
      printf_filtered (" name '%s' (",
                       TYPE_FIELD_NAME (type, idx) != NULL
                       TYPE_FIELD_NAME (type, idx) != NULL
                       ? TYPE_FIELD_NAME (type, idx)
                       ? TYPE_FIELD_NAME (type, idx)
                       : "<NULL>");
                       : "<NULL>");
      gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
      gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
      printf_filtered (")\n");
      printf_filtered (")\n");
      if (TYPE_FIELD_TYPE (type, idx) != NULL)
      if (TYPE_FIELD_TYPE (type, idx) != NULL)
        {
        {
          recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
          recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
        }
        }
    }
    }
  printfi_filtered (spaces, "vptr_basetype ");
  printfi_filtered (spaces, "vptr_basetype ");
  gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
  gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
  puts_filtered ("\n");
  puts_filtered ("\n");
  if (TYPE_VPTR_BASETYPE (type) != NULL)
  if (TYPE_VPTR_BASETYPE (type) != NULL)
    {
    {
      recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
      recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
    }
    }
  printfi_filtered (spaces, "vptr_fieldno %d\n",
  printfi_filtered (spaces, "vptr_fieldno %d\n",
                    TYPE_VPTR_FIELDNO (type));
                    TYPE_VPTR_FIELDNO (type));
  switch (TYPE_CODE (type))
  switch (TYPE_CODE (type))
    {
    {
    case TYPE_CODE_STRUCT:
    case TYPE_CODE_STRUCT:
      printfi_filtered (spaces, "cplus_stuff ");
      printfi_filtered (spaces, "cplus_stuff ");
      gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
      gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
                              gdb_stdout);
                              gdb_stdout);
      puts_filtered ("\n");
      puts_filtered ("\n");
      print_cplus_stuff (type, spaces);
      print_cplus_stuff (type, spaces);
      break;
      break;
 
 
    case TYPE_CODE_FLT:
    case TYPE_CODE_FLT:
      printfi_filtered (spaces, "floatformat ");
      printfi_filtered (spaces, "floatformat ");
      if (TYPE_FLOATFORMAT (type) == NULL)
      if (TYPE_FLOATFORMAT (type) == NULL)
        puts_filtered ("(null)");
        puts_filtered ("(null)");
      else
      else
        {
        {
          puts_filtered ("{ ");
          puts_filtered ("{ ");
          if (TYPE_FLOATFORMAT (type)[0] == NULL
          if (TYPE_FLOATFORMAT (type)[0] == NULL
              || TYPE_FLOATFORMAT (type)[0]->name == NULL)
              || TYPE_FLOATFORMAT (type)[0]->name == NULL)
            puts_filtered ("(null)");
            puts_filtered ("(null)");
          else
          else
            puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
            puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
 
 
          puts_filtered (", ");
          puts_filtered (", ");
          if (TYPE_FLOATFORMAT (type)[1] == NULL
          if (TYPE_FLOATFORMAT (type)[1] == NULL
              || TYPE_FLOATFORMAT (type)[1]->name == NULL)
              || TYPE_FLOATFORMAT (type)[1]->name == NULL)
            puts_filtered ("(null)");
            puts_filtered ("(null)");
          else
          else
            puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
            puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
 
 
          puts_filtered (" }");
          puts_filtered (" }");
        }
        }
      puts_filtered ("\n");
      puts_filtered ("\n");
      break;
      break;
 
 
    default:
    default:
      /* We have to pick one of the union types to be able print and
      /* We have to pick one of the union types to be able print and
         test the value.  Pick cplus_struct_type, even though we know
         test the value.  Pick cplus_struct_type, even though we know
         it isn't any particular one.  */
         it isn't any particular one.  */
      printfi_filtered (spaces, "type_specific ");
      printfi_filtered (spaces, "type_specific ");
      gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type), gdb_stdout);
      gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type), gdb_stdout);
      if (TYPE_CPLUS_SPECIFIC (type) != NULL)
      if (TYPE_CPLUS_SPECIFIC (type) != NULL)
        {
        {
          printf_filtered (_(" (unknown data form)"));
          printf_filtered (_(" (unknown data form)"));
        }
        }
      printf_filtered ("\n");
      printf_filtered ("\n");
      break;
      break;
 
 
    }
    }
  if (spaces == 0)
  if (spaces == 0)
    obstack_free (&dont_print_type_obstack, NULL);
    obstack_free (&dont_print_type_obstack, NULL);
}
}
 
 
/* Trivial helpers for the libiberty hash table, for mapping one
/* Trivial helpers for the libiberty hash table, for mapping one
   type to another.  */
   type to another.  */
 
 
struct type_pair
struct type_pair
{
{
  struct type *old, *new;
  struct type *old, *new;
};
};
 
 
static hashval_t
static hashval_t
type_pair_hash (const void *item)
type_pair_hash (const void *item)
{
{
  const struct type_pair *pair = item;
  const struct type_pair *pair = item;
  return htab_hash_pointer (pair->old);
  return htab_hash_pointer (pair->old);
}
}
 
 
static int
static int
type_pair_eq (const void *item_lhs, const void *item_rhs)
type_pair_eq (const void *item_lhs, const void *item_rhs)
{
{
  const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
  const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
  return lhs->old == rhs->old;
  return lhs->old == rhs->old;
}
}
 
 
/* Allocate the hash table used by copy_type_recursive to walk
/* Allocate the hash table used by copy_type_recursive to walk
   types without duplicates.  We use OBJFILE's obstack, because
   types without duplicates.  We use OBJFILE's obstack, because
   OBJFILE is about to be deleted.  */
   OBJFILE is about to be deleted.  */
 
 
htab_t
htab_t
create_copied_types_hash (struct objfile *objfile)
create_copied_types_hash (struct objfile *objfile)
{
{
  return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
  return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
                               NULL, &objfile->objfile_obstack,
                               NULL, &objfile->objfile_obstack,
                               hashtab_obstack_allocate,
                               hashtab_obstack_allocate,
                               dummy_obstack_deallocate);
                               dummy_obstack_deallocate);
}
}
 
 
/* Recursively copy (deep copy) TYPE, if it is associated with
/* Recursively copy (deep copy) TYPE, if it is associated with
   OBJFILE.  Return a new type allocated using malloc, a saved type if
   OBJFILE.  Return a new type allocated using malloc, a saved type if
   we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
   we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
   not associated with OBJFILE.  */
   not associated with OBJFILE.  */
 
 
struct type *
struct type *
copy_type_recursive (struct objfile *objfile,
copy_type_recursive (struct objfile *objfile,
                     struct type *type,
                     struct type *type,
                     htab_t copied_types)
                     htab_t copied_types)
{
{
  struct type_pair *stored, pair;
  struct type_pair *stored, pair;
  void **slot;
  void **slot;
  struct type *new_type;
  struct type *new_type;
 
 
  if (TYPE_OBJFILE (type) == NULL)
  if (TYPE_OBJFILE (type) == NULL)
    return type;
    return type;
 
 
  /* This type shouldn't be pointing to any types in other objfiles;
  /* This type shouldn't be pointing to any types in other objfiles;
     if it did, the type might disappear unexpectedly.  */
     if it did, the type might disappear unexpectedly.  */
  gdb_assert (TYPE_OBJFILE (type) == objfile);
  gdb_assert (TYPE_OBJFILE (type) == objfile);
 
 
  pair.old = type;
  pair.old = type;
  slot = htab_find_slot (copied_types, &pair, INSERT);
  slot = htab_find_slot (copied_types, &pair, INSERT);
  if (*slot != NULL)
  if (*slot != NULL)
    return ((struct type_pair *) *slot)->new;
    return ((struct type_pair *) *slot)->new;
 
 
  new_type = alloc_type (NULL);
  new_type = alloc_type (NULL);
 
 
  /* We must add the new type to the hash table immediately, in case
  /* We must add the new type to the hash table immediately, in case
     we encounter this type again during a recursive call below.  */
     we encounter this type again during a recursive call below.  */
  stored = xmalloc (sizeof (struct type_pair));
  stored = xmalloc (sizeof (struct type_pair));
  stored->old = type;
  stored->old = type;
  stored->new = new_type;
  stored->new = new_type;
  *slot = stored;
  *slot = stored;
 
 
  /* Copy the common fields of types.  */
  /* Copy the common fields of types.  */
  TYPE_CODE (new_type) = TYPE_CODE (type);
  TYPE_CODE (new_type) = TYPE_CODE (type);
  TYPE_ARRAY_UPPER_BOUND_TYPE (new_type) =
  TYPE_ARRAY_UPPER_BOUND_TYPE (new_type) =
    TYPE_ARRAY_UPPER_BOUND_TYPE (type);
    TYPE_ARRAY_UPPER_BOUND_TYPE (type);
  TYPE_ARRAY_LOWER_BOUND_TYPE (new_type) =
  TYPE_ARRAY_LOWER_BOUND_TYPE (new_type) =
    TYPE_ARRAY_LOWER_BOUND_TYPE (type);
    TYPE_ARRAY_LOWER_BOUND_TYPE (type);
  if (TYPE_NAME (type))
  if (TYPE_NAME (type))
    TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
    TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
  if (TYPE_TAG_NAME (type))
  if (TYPE_TAG_NAME (type))
    TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
    TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
  TYPE_FLAGS (new_type) = TYPE_FLAGS (type);
  TYPE_FLAGS (new_type) = TYPE_FLAGS (type);
  TYPE_VPTR_FIELDNO (new_type) = TYPE_VPTR_FIELDNO (type);
  TYPE_VPTR_FIELDNO (new_type) = TYPE_VPTR_FIELDNO (type);
 
 
  TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
  TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
  TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
  TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
 
 
  /* Copy the fields.  */
  /* Copy the fields.  */
  TYPE_NFIELDS (new_type) = TYPE_NFIELDS (type);
  TYPE_NFIELDS (new_type) = TYPE_NFIELDS (type);
  if (TYPE_NFIELDS (type))
  if (TYPE_NFIELDS (type))
    {
    {
      int i, nfields;
      int i, nfields;
 
 
      nfields = TYPE_NFIELDS (type);
      nfields = TYPE_NFIELDS (type);
      TYPE_FIELDS (new_type) = xmalloc (sizeof (struct field) * nfields);
      TYPE_FIELDS (new_type) = xmalloc (sizeof (struct field) * nfields);
      for (i = 0; i < nfields; i++)
      for (i = 0; i < nfields; i++)
        {
        {
          TYPE_FIELD_ARTIFICIAL (new_type, i) =
          TYPE_FIELD_ARTIFICIAL (new_type, i) =
            TYPE_FIELD_ARTIFICIAL (type, i);
            TYPE_FIELD_ARTIFICIAL (type, i);
          TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
          TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
          if (TYPE_FIELD_TYPE (type, i))
          if (TYPE_FIELD_TYPE (type, i))
            TYPE_FIELD_TYPE (new_type, i)
            TYPE_FIELD_TYPE (new_type, i)
              = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
              = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
                                     copied_types);
                                     copied_types);
          if (TYPE_FIELD_NAME (type, i))
          if (TYPE_FIELD_NAME (type, i))
            TYPE_FIELD_NAME (new_type, i) =
            TYPE_FIELD_NAME (new_type, i) =
              xstrdup (TYPE_FIELD_NAME (type, i));
              xstrdup (TYPE_FIELD_NAME (type, i));
          if (TYPE_FIELD_STATIC_HAS_ADDR (type, i))
          if (TYPE_FIELD_STATIC_HAS_ADDR (type, i))
            SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
            SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
                                TYPE_FIELD_STATIC_PHYSADDR (type, i));
                                TYPE_FIELD_STATIC_PHYSADDR (type, i));
          else if (TYPE_FIELD_STATIC (type, i))
          else if (TYPE_FIELD_STATIC (type, i))
            SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
            SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
                                xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
                                xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
                                                                     i)));
                                                                     i)));
          else
          else
            {
            {
              TYPE_FIELD_BITPOS (new_type, i) =
              TYPE_FIELD_BITPOS (new_type, i) =
                TYPE_FIELD_BITPOS (type, i);
                TYPE_FIELD_BITPOS (type, i);
              TYPE_FIELD_STATIC_KIND (new_type, i) = 0;
              TYPE_FIELD_STATIC_KIND (new_type, i) = 0;
            }
            }
        }
        }
    }
    }
 
 
  /* Copy pointers to other types.  */
  /* Copy pointers to other types.  */
  if (TYPE_TARGET_TYPE (type))
  if (TYPE_TARGET_TYPE (type))
    TYPE_TARGET_TYPE (new_type) =
    TYPE_TARGET_TYPE (new_type) =
      copy_type_recursive (objfile,
      copy_type_recursive (objfile,
                           TYPE_TARGET_TYPE (type),
                           TYPE_TARGET_TYPE (type),
                           copied_types);
                           copied_types);
  if (TYPE_VPTR_BASETYPE (type))
  if (TYPE_VPTR_BASETYPE (type))
    TYPE_VPTR_BASETYPE (new_type) =
    TYPE_VPTR_BASETYPE (new_type) =
      copy_type_recursive (objfile,
      copy_type_recursive (objfile,
                           TYPE_VPTR_BASETYPE (type),
                           TYPE_VPTR_BASETYPE (type),
                           copied_types);
                           copied_types);
  /* Maybe copy the type_specific bits.
  /* Maybe copy the type_specific bits.
 
 
     NOTE drow/2005-12-09: We do not copy the C++-specific bits like
     NOTE drow/2005-12-09: We do not copy the C++-specific bits like
     base classes and methods.  There's no fundamental reason why we
     base classes and methods.  There's no fundamental reason why we
     can't, but at the moment it is not needed.  */
     can't, but at the moment it is not needed.  */
 
 
  if (TYPE_CODE (type) == TYPE_CODE_FLT)
  if (TYPE_CODE (type) == TYPE_CODE_FLT)
    TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
    TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
  else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
  else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
           || TYPE_CODE (type) == TYPE_CODE_UNION
           || TYPE_CODE (type) == TYPE_CODE_UNION
           || TYPE_CODE (type) == TYPE_CODE_TEMPLATE
           || TYPE_CODE (type) == TYPE_CODE_TEMPLATE
           || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
           || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
    INIT_CPLUS_SPECIFIC (new_type);
    INIT_CPLUS_SPECIFIC (new_type);
 
 
  return new_type;
  return new_type;
}
}
 
 
static struct type *
static struct type *
build_flt (int bit, char *name, const struct floatformat **floatformats)
build_flt (int bit, char *name, const struct floatformat **floatformats)
{
{
  struct type *t;
  struct type *t;
 
 
  if (bit == -1)
  if (bit == -1)
    {
    {
      gdb_assert (floatformats != NULL);
      gdb_assert (floatformats != NULL);
      gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
      gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
      bit = floatformats[0]->totalsize;
      bit = floatformats[0]->totalsize;
    }
    }
  gdb_assert (bit >= 0);
  gdb_assert (bit >= 0);
 
 
  t = init_type (TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, 0, name, NULL);
  t = init_type (TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, 0, name, NULL);
  TYPE_FLOATFORMAT (t) = floatformats;
  TYPE_FLOATFORMAT (t) = floatformats;
  return t;
  return t;
}
}
 
 
static struct gdbarch_data *gdbtypes_data;
static struct gdbarch_data *gdbtypes_data;
 
 
const struct builtin_type *
const struct builtin_type *
builtin_type (struct gdbarch *gdbarch)
builtin_type (struct gdbarch *gdbarch)
{
{
  return gdbarch_data (gdbarch, gdbtypes_data);
  return gdbarch_data (gdbarch, gdbtypes_data);
}
}
 
 
 
 
static struct type *
static struct type *
build_complex (int bit, char *name, struct type *target_type)
build_complex (int bit, char *name, struct type *target_type)
{
{
  struct type *t;
  struct type *t;
  if (bit <= 0 || target_type == builtin_type_error)
  if (bit <= 0 || target_type == builtin_type_error)
    {
    {
      gdb_assert (builtin_type_error != NULL);
      gdb_assert (builtin_type_error != NULL);
      return builtin_type_error;
      return builtin_type_error;
    }
    }
  t = init_type (TYPE_CODE_COMPLEX, 2 * bit / TARGET_CHAR_BIT,
  t = init_type (TYPE_CODE_COMPLEX, 2 * bit / TARGET_CHAR_BIT,
                 0, name, (struct objfile *) NULL);
                 0, name, (struct objfile *) NULL);
  TYPE_TARGET_TYPE (t) = target_type;
  TYPE_TARGET_TYPE (t) = target_type;
  return t;
  return t;
}
}
 
 
static void *
static void *
gdbtypes_post_init (struct gdbarch *gdbarch)
gdbtypes_post_init (struct gdbarch *gdbarch)
{
{
  struct builtin_type *builtin_type
  struct builtin_type *builtin_type
    = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
    = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
 
 
  builtin_type->builtin_void =
  builtin_type->builtin_void =
    init_type (TYPE_CODE_VOID, 1,
    init_type (TYPE_CODE_VOID, 1,
               0,
               0,
               "void", (struct objfile *) NULL);
               "void", (struct objfile *) NULL);
  builtin_type->builtin_char =
  builtin_type->builtin_char =
    init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
    init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
               (TYPE_FLAG_NOSIGN
               (TYPE_FLAG_NOSIGN
                | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
                | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
               "char", (struct objfile *) NULL);
               "char", (struct objfile *) NULL);
  builtin_type->builtin_true_char =
  builtin_type->builtin_true_char =
    init_type (TYPE_CODE_CHAR, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
    init_type (TYPE_CODE_CHAR, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
               0,
               0,
               "true character", (struct objfile *) NULL);
               "true character", (struct objfile *) NULL);
  builtin_type->builtin_true_unsigned_char =
  builtin_type->builtin_true_unsigned_char =
    init_type (TYPE_CODE_CHAR, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
    init_type (TYPE_CODE_CHAR, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
               TYPE_FLAG_UNSIGNED,
               TYPE_FLAG_UNSIGNED,
               "true character", (struct objfile *) NULL);
               "true character", (struct objfile *) NULL);
  builtin_type->builtin_signed_char =
  builtin_type->builtin_signed_char =
    init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
    init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
               0,
               0,
               "signed char", (struct objfile *) NULL);
               "signed char", (struct objfile *) NULL);
  builtin_type->builtin_unsigned_char =
  builtin_type->builtin_unsigned_char =
    init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
    init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
               TYPE_FLAG_UNSIGNED,
               TYPE_FLAG_UNSIGNED,
               "unsigned char", (struct objfile *) NULL);
               "unsigned char", (struct objfile *) NULL);
  builtin_type->builtin_short =
  builtin_type->builtin_short =
    init_type (TYPE_CODE_INT,
    init_type (TYPE_CODE_INT,
               gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
               gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
               0, "short", (struct objfile *) NULL);
               0, "short", (struct objfile *) NULL);
  builtin_type->builtin_unsigned_short =
  builtin_type->builtin_unsigned_short =
    init_type (TYPE_CODE_INT,
    init_type (TYPE_CODE_INT,
               gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
               gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
               TYPE_FLAG_UNSIGNED, "unsigned short",
               TYPE_FLAG_UNSIGNED, "unsigned short",
               (struct objfile *) NULL);
               (struct objfile *) NULL);
  builtin_type->builtin_int =
  builtin_type->builtin_int =
    init_type (TYPE_CODE_INT,
    init_type (TYPE_CODE_INT,
               gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
               gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
               0, "int", (struct objfile *) NULL);
               0, "int", (struct objfile *) NULL);
  builtin_type->builtin_unsigned_int =
  builtin_type->builtin_unsigned_int =
    init_type (TYPE_CODE_INT,
    init_type (TYPE_CODE_INT,
               gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
               gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
               TYPE_FLAG_UNSIGNED, "unsigned int",
               TYPE_FLAG_UNSIGNED, "unsigned int",
               (struct objfile *) NULL);
               (struct objfile *) NULL);
  builtin_type->builtin_long =
  builtin_type->builtin_long =
    init_type (TYPE_CODE_INT,
    init_type (TYPE_CODE_INT,
               gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
               gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
               0, "long", (struct objfile *) NULL);
               0, "long", (struct objfile *) NULL);
  builtin_type->builtin_unsigned_long =
  builtin_type->builtin_unsigned_long =
    init_type (TYPE_CODE_INT,
    init_type (TYPE_CODE_INT,
               gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
               gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
               TYPE_FLAG_UNSIGNED, "unsigned long",
               TYPE_FLAG_UNSIGNED, "unsigned long",
               (struct objfile *) NULL);
               (struct objfile *) NULL);
  builtin_type->builtin_long_long =
  builtin_type->builtin_long_long =
    init_type (TYPE_CODE_INT,
    init_type (TYPE_CODE_INT,
               gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
               gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
               0, "long long", (struct objfile *) NULL);
               0, "long long", (struct objfile *) NULL);
  builtin_type->builtin_unsigned_long_long =
  builtin_type->builtin_unsigned_long_long =
    init_type (TYPE_CODE_INT,
    init_type (TYPE_CODE_INT,
               gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
               gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
               TYPE_FLAG_UNSIGNED, "unsigned long long",
               TYPE_FLAG_UNSIGNED, "unsigned long long",
               (struct objfile *) NULL);
               (struct objfile *) NULL);
  builtin_type->builtin_float
  builtin_type->builtin_float
    = build_flt (gdbarch_float_bit (gdbarch), "float",
    = build_flt (gdbarch_float_bit (gdbarch), "float",
                 gdbarch_float_format (gdbarch));
                 gdbarch_float_format (gdbarch));
  builtin_type->builtin_double
  builtin_type->builtin_double
    = build_flt (gdbarch_double_bit (gdbarch), "double",
    = build_flt (gdbarch_double_bit (gdbarch), "double",
                 gdbarch_double_format (gdbarch));
                 gdbarch_double_format (gdbarch));
  builtin_type->builtin_long_double
  builtin_type->builtin_long_double
    = build_flt (gdbarch_long_double_bit (gdbarch), "long double",
    = build_flt (gdbarch_long_double_bit (gdbarch), "long double",
                 gdbarch_long_double_format (gdbarch));
                 gdbarch_long_double_format (gdbarch));
  builtin_type->builtin_complex
  builtin_type->builtin_complex
    = build_complex (gdbarch_float_bit (gdbarch), "complex",
    = build_complex (gdbarch_float_bit (gdbarch), "complex",
                     builtin_type->builtin_float);
                     builtin_type->builtin_float);
  builtin_type->builtin_double_complex
  builtin_type->builtin_double_complex
    = build_complex (gdbarch_double_bit (gdbarch), "double complex",
    = build_complex (gdbarch_double_bit (gdbarch), "double complex",
                     builtin_type->builtin_double);
                     builtin_type->builtin_double);
  builtin_type->builtin_string =
  builtin_type->builtin_string =
    init_type (TYPE_CODE_STRING, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
    init_type (TYPE_CODE_STRING, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
               0,
               0,
               "string", (struct objfile *) NULL);
               "string", (struct objfile *) NULL);
  builtin_type->builtin_bool =
  builtin_type->builtin_bool =
    init_type (TYPE_CODE_BOOL, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
    init_type (TYPE_CODE_BOOL, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
               0,
               0,
               "bool", (struct objfile *) NULL);
               "bool", (struct objfile *) NULL);
 
 
  /* The following three are about decimal floating point types, which
  /* The following three are about decimal floating point types, which
     are 32-bits, 64-bits and 128-bits respectively.  */
     are 32-bits, 64-bits and 128-bits respectively.  */
  builtin_type->builtin_decfloat
  builtin_type->builtin_decfloat
    = init_type (TYPE_CODE_DECFLOAT, 32 / 8,
    = init_type (TYPE_CODE_DECFLOAT, 32 / 8,
                0,
                0,
               "_Decimal32", (struct objfile *) NULL);
               "_Decimal32", (struct objfile *) NULL);
  builtin_type->builtin_decdouble
  builtin_type->builtin_decdouble
    = init_type (TYPE_CODE_DECFLOAT, 64 / 8,
    = init_type (TYPE_CODE_DECFLOAT, 64 / 8,
               0,
               0,
               "_Decimal64", (struct objfile *) NULL);
               "_Decimal64", (struct objfile *) NULL);
  builtin_type->builtin_declong
  builtin_type->builtin_declong
    = init_type (TYPE_CODE_DECFLOAT, 128 / 8,
    = init_type (TYPE_CODE_DECFLOAT, 128 / 8,
               0,
               0,
               "_Decimal128", (struct objfile *) NULL);
               "_Decimal128", (struct objfile *) NULL);
 
 
  /* Pointer/Address types.  */
  /* Pointer/Address types.  */
 
 
  /* NOTE: on some targets, addresses and pointers are not necessarily
  /* NOTE: on some targets, addresses and pointers are not necessarily
     the same --- for example, on the D10V, pointers are 16 bits long,
     the same --- for example, on the D10V, pointers are 16 bits long,
     but addresses are 32 bits long.  See doc/gdbint.texinfo,
     but addresses are 32 bits long.  See doc/gdbint.texinfo,
     ``Pointers Are Not Always Addresses''.
     ``Pointers Are Not Always Addresses''.
 
 
     The upshot is:
     The upshot is:
     - gdb's `struct type' always describes the target's
     - gdb's `struct type' always describes the target's
       representation.
       representation.
     - gdb's `struct value' objects should always hold values in
     - gdb's `struct value' objects should always hold values in
       target form.
       target form.
     - gdb's CORE_ADDR values are addresses in the unified virtual
     - gdb's CORE_ADDR values are addresses in the unified virtual
       address space that the assembler and linker work with.  Thus,
       address space that the assembler and linker work with.  Thus,
       since target_read_memory takes a CORE_ADDR as an argument, it
       since target_read_memory takes a CORE_ADDR as an argument, it
       can access any memory on the target, even if the processor has
       can access any memory on the target, even if the processor has
       separate code and data address spaces.
       separate code and data address spaces.
 
 
     So, for example:
     So, for example:
     - If v is a value holding a D10V code pointer, its contents are
     - If v is a value holding a D10V code pointer, its contents are
       in target form: a big-endian address left-shifted two bits.
       in target form: a big-endian address left-shifted two bits.
     - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
     - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
       sizeof (void *) == 2 on the target.
       sizeof (void *) == 2 on the target.
 
 
     In this context, builtin_type->CORE_ADDR is a bit odd: it's a
     In this context, builtin_type->CORE_ADDR is a bit odd: it's a
     target type for a value the target will never see.  It's only
     target type for a value the target will never see.  It's only
     used to hold the values of (typeless) linker symbols, which are
     used to hold the values of (typeless) linker symbols, which are
     indeed in the unified virtual address space.  */
     indeed in the unified virtual address space.  */
 
 
  builtin_type->builtin_data_ptr =
  builtin_type->builtin_data_ptr =
    make_pointer_type (builtin_type->builtin_void, NULL);
    make_pointer_type (builtin_type->builtin_void, NULL);
  builtin_type->builtin_func_ptr =
  builtin_type->builtin_func_ptr =
    lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
    lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
  builtin_type->builtin_core_addr =
  builtin_type->builtin_core_addr =
    init_type (TYPE_CODE_INT,
    init_type (TYPE_CODE_INT,
               gdbarch_addr_bit (gdbarch) / 8,
               gdbarch_addr_bit (gdbarch) / 8,
               TYPE_FLAG_UNSIGNED,
               TYPE_FLAG_UNSIGNED,
               "__CORE_ADDR", (struct objfile *) NULL);
               "__CORE_ADDR", (struct objfile *) NULL);
 
 
 
 
  /* The following set of types is used for symbols with no
  /* The following set of types is used for symbols with no
     debug information.  */
     debug information.  */
  builtin_type->nodebug_text_symbol =
  builtin_type->nodebug_text_symbol =
    init_type (TYPE_CODE_FUNC, 1, 0,
    init_type (TYPE_CODE_FUNC, 1, 0,
               "<text variable, no debug info>", NULL);
               "<text variable, no debug info>", NULL);
  TYPE_TARGET_TYPE (builtin_type->nodebug_text_symbol) =
  TYPE_TARGET_TYPE (builtin_type->nodebug_text_symbol) =
    builtin_type->builtin_int;
    builtin_type->builtin_int;
  builtin_type->nodebug_data_symbol =
  builtin_type->nodebug_data_symbol =
    init_type (TYPE_CODE_INT,
    init_type (TYPE_CODE_INT,
               gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
               gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
               "<data variable, no debug info>", NULL);
               "<data variable, no debug info>", NULL);
  builtin_type->nodebug_unknown_symbol =
  builtin_type->nodebug_unknown_symbol =
    init_type (TYPE_CODE_INT, 1, 0,
    init_type (TYPE_CODE_INT, 1, 0,
               "<variable (not text or data), no debug info>", NULL);
               "<variable (not text or data), no debug info>", NULL);
  builtin_type->nodebug_tls_symbol =
  builtin_type->nodebug_tls_symbol =
    init_type (TYPE_CODE_INT,
    init_type (TYPE_CODE_INT,
               gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
               gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
               "<thread local variable, no debug info>", NULL);
               "<thread local variable, no debug info>", NULL);
 
 
  return builtin_type;
  return builtin_type;
}
}
 
 
extern void _initialize_gdbtypes (void);
extern void _initialize_gdbtypes (void);
void
void
_initialize_gdbtypes (void)
_initialize_gdbtypes (void)
{
{
  gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
  gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
 
 
  /* FIXME: The following types are architecture-neutral.  However,
  /* FIXME: The following types are architecture-neutral.  However,
     they contain pointer_type and reference_type fields potentially
     they contain pointer_type and reference_type fields potentially
     caching pointer or reference types that *are* architecture
     caching pointer or reference types that *are* architecture
     dependent.  */
     dependent.  */
 
 
  builtin_type_int0 =
  builtin_type_int0 =
    init_type (TYPE_CODE_INT, 0 / 8,
    init_type (TYPE_CODE_INT, 0 / 8,
               0,
               0,
               "int0_t", (struct objfile *) NULL);
               "int0_t", (struct objfile *) NULL);
  builtin_type_int8 =
  builtin_type_int8 =
    init_type (TYPE_CODE_INT, 8 / 8,
    init_type (TYPE_CODE_INT, 8 / 8,
               TYPE_FLAG_NOTTEXT,
               TYPE_FLAG_NOTTEXT,
               "int8_t", (struct objfile *) NULL);
               "int8_t", (struct objfile *) NULL);
  builtin_type_uint8 =
  builtin_type_uint8 =
    init_type (TYPE_CODE_INT, 8 / 8,
    init_type (TYPE_CODE_INT, 8 / 8,
               TYPE_FLAG_UNSIGNED | TYPE_FLAG_NOTTEXT,
               TYPE_FLAG_UNSIGNED | TYPE_FLAG_NOTTEXT,
               "uint8_t", (struct objfile *) NULL);
               "uint8_t", (struct objfile *) NULL);
  builtin_type_int16 =
  builtin_type_int16 =
    init_type (TYPE_CODE_INT, 16 / 8,
    init_type (TYPE_CODE_INT, 16 / 8,
               0,
               0,
               "int16_t", (struct objfile *) NULL);
               "int16_t", (struct objfile *) NULL);
  builtin_type_uint16 =
  builtin_type_uint16 =
    init_type (TYPE_CODE_INT, 16 / 8,
    init_type (TYPE_CODE_INT, 16 / 8,
               TYPE_FLAG_UNSIGNED,
               TYPE_FLAG_UNSIGNED,
               "uint16_t", (struct objfile *) NULL);
               "uint16_t", (struct objfile *) NULL);
  builtin_type_int32 =
  builtin_type_int32 =
    init_type (TYPE_CODE_INT, 32 / 8,
    init_type (TYPE_CODE_INT, 32 / 8,
               0,
               0,
               "int32_t", (struct objfile *) NULL);
               "int32_t", (struct objfile *) NULL);
  builtin_type_uint32 =
  builtin_type_uint32 =
    init_type (TYPE_CODE_INT, 32 / 8,
    init_type (TYPE_CODE_INT, 32 / 8,
               TYPE_FLAG_UNSIGNED,
               TYPE_FLAG_UNSIGNED,
               "uint32_t", (struct objfile *) NULL);
               "uint32_t", (struct objfile *) NULL);
  builtin_type_int64 =
  builtin_type_int64 =
    init_type (TYPE_CODE_INT, 64 / 8,
    init_type (TYPE_CODE_INT, 64 / 8,
               0,
               0,
               "int64_t", (struct objfile *) NULL);
               "int64_t", (struct objfile *) NULL);
  builtin_type_uint64 =
  builtin_type_uint64 =
    init_type (TYPE_CODE_INT, 64 / 8,
    init_type (TYPE_CODE_INT, 64 / 8,
               TYPE_FLAG_UNSIGNED,
               TYPE_FLAG_UNSIGNED,
               "uint64_t", (struct objfile *) NULL);
               "uint64_t", (struct objfile *) NULL);
  builtin_type_int128 =
  builtin_type_int128 =
    init_type (TYPE_CODE_INT, 128 / 8,
    init_type (TYPE_CODE_INT, 128 / 8,
               0,
               0,
               "int128_t", (struct objfile *) NULL);
               "int128_t", (struct objfile *) NULL);
  builtin_type_uint128 =
  builtin_type_uint128 =
    init_type (TYPE_CODE_INT, 128 / 8,
    init_type (TYPE_CODE_INT, 128 / 8,
               TYPE_FLAG_UNSIGNED,
               TYPE_FLAG_UNSIGNED,
               "uint128_t", (struct objfile *) NULL);
               "uint128_t", (struct objfile *) NULL);
 
 
  builtin_type_ieee_single =
  builtin_type_ieee_single =
    build_flt (-1, "builtin_type_ieee_single", floatformats_ieee_single);
    build_flt (-1, "builtin_type_ieee_single", floatformats_ieee_single);
  builtin_type_ieee_double =
  builtin_type_ieee_double =
    build_flt (-1, "builtin_type_ieee_double", floatformats_ieee_double);
    build_flt (-1, "builtin_type_ieee_double", floatformats_ieee_double);
  builtin_type_i387_ext =
  builtin_type_i387_ext =
    build_flt (-1, "builtin_type_i387_ext", floatformats_i387_ext);
    build_flt (-1, "builtin_type_i387_ext", floatformats_i387_ext);
  builtin_type_m68881_ext =
  builtin_type_m68881_ext =
    build_flt (-1, "builtin_type_m68881_ext", floatformats_m68881_ext);
    build_flt (-1, "builtin_type_m68881_ext", floatformats_m68881_ext);
  builtin_type_arm_ext =
  builtin_type_arm_ext =
    build_flt (-1, "builtin_type_arm_ext", floatformats_arm_ext);
    build_flt (-1, "builtin_type_arm_ext", floatformats_arm_ext);
  builtin_type_ia64_spill =
  builtin_type_ia64_spill =
    build_flt (-1, "builtin_type_ia64_spill", floatformats_ia64_spill);
    build_flt (-1, "builtin_type_ia64_spill", floatformats_ia64_spill);
  builtin_type_ia64_quad =
  builtin_type_ia64_quad =
    build_flt (-1, "builtin_type_ia64_quad", floatformats_ia64_quad);
    build_flt (-1, "builtin_type_ia64_quad", floatformats_ia64_quad);
 
 
  add_setshow_zinteger_cmd ("overload", no_class, &overload_debug, _("\
  add_setshow_zinteger_cmd ("overload", no_class, &overload_debug, _("\
Set debugging of C++ overloading."), _("\
Set debugging of C++ overloading."), _("\
Show debugging of C++ overloading."), _("\
Show debugging of C++ overloading."), _("\
When enabled, ranking of the functions is displayed."),
When enabled, ranking of the functions is displayed."),
                            NULL,
                            NULL,
                            show_overload_debug,
                            show_overload_debug,
                            &setdebuglist, &showdebuglist);
                            &setdebuglist, &showdebuglist);
 
 
  /* Add user knob for controlling resolution of opaque types.  */
  /* Add user knob for controlling resolution of opaque types.  */
  add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
  add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
                           &opaque_type_resolution, _("\
                           &opaque_type_resolution, _("\
Set resolution of opaque struct/class/union types (if set before loading symbols)."), _("\
Set resolution of opaque struct/class/union types (if set before loading symbols)."), _("\
Show resolution of opaque struct/class/union types (if set before loading symbols)."), NULL,
Show resolution of opaque struct/class/union types (if set before loading symbols)."), NULL,
                           NULL,
                           NULL,
                           show_opaque_type_resolution,
                           show_opaque_type_resolution,
                           &setlist, &showlist);
                           &setlist, &showlist);
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.