OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gdb-6.8/] [gdb/] [h8300-tdep.c] - Diff between revs 827 and 840

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 827 Rev 840
/* Target-machine dependent code for Renesas H8/300, for GDB.
/* Target-machine dependent code for Renesas H8/300, for GDB.
 
 
   Copyright (C) 1988, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999,
   Copyright (C) 1988, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999,
   2000, 2001, 2002, 2003, 2005, 2007, 2008 Free Software Foundation, Inc.
   2000, 2001, 2002, 2003, 2005, 2007, 2008 Free Software Foundation, Inc.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
 
 
/*
/*
   Contributed by Steve Chamberlain
   Contributed by Steve Chamberlain
   sac@cygnus.com
   sac@cygnus.com
 */
 */
 
 
#include "defs.h"
#include "defs.h"
#include "value.h"
#include "value.h"
#include "arch-utils.h"
#include "arch-utils.h"
#include "regcache.h"
#include "regcache.h"
#include "gdbcore.h"
#include "gdbcore.h"
#include "objfiles.h"
#include "objfiles.h"
#include "gdb_assert.h"
#include "gdb_assert.h"
#include "dis-asm.h"
#include "dis-asm.h"
#include "dwarf2-frame.h"
#include "dwarf2-frame.h"
#include "frame-base.h"
#include "frame-base.h"
#include "frame-unwind.h"
#include "frame-unwind.h"
 
 
enum gdb_regnum
enum gdb_regnum
{
{
  E_R0_REGNUM, E_ER0_REGNUM = E_R0_REGNUM, E_ARG0_REGNUM = E_R0_REGNUM,
  E_R0_REGNUM, E_ER0_REGNUM = E_R0_REGNUM, E_ARG0_REGNUM = E_R0_REGNUM,
  E_RET0_REGNUM = E_R0_REGNUM,
  E_RET0_REGNUM = E_R0_REGNUM,
  E_R1_REGNUM, E_ER1_REGNUM = E_R1_REGNUM, E_RET1_REGNUM = E_R1_REGNUM,
  E_R1_REGNUM, E_ER1_REGNUM = E_R1_REGNUM, E_RET1_REGNUM = E_R1_REGNUM,
  E_R2_REGNUM, E_ER2_REGNUM = E_R2_REGNUM, E_ARGLAST_REGNUM = E_R2_REGNUM,
  E_R2_REGNUM, E_ER2_REGNUM = E_R2_REGNUM, E_ARGLAST_REGNUM = E_R2_REGNUM,
  E_R3_REGNUM, E_ER3_REGNUM = E_R3_REGNUM,
  E_R3_REGNUM, E_ER3_REGNUM = E_R3_REGNUM,
  E_R4_REGNUM, E_ER4_REGNUM = E_R4_REGNUM,
  E_R4_REGNUM, E_ER4_REGNUM = E_R4_REGNUM,
  E_R5_REGNUM, E_ER5_REGNUM = E_R5_REGNUM,
  E_R5_REGNUM, E_ER5_REGNUM = E_R5_REGNUM,
  E_R6_REGNUM, E_ER6_REGNUM = E_R6_REGNUM, E_FP_REGNUM = E_R6_REGNUM,
  E_R6_REGNUM, E_ER6_REGNUM = E_R6_REGNUM, E_FP_REGNUM = E_R6_REGNUM,
  E_SP_REGNUM,
  E_SP_REGNUM,
  E_CCR_REGNUM,
  E_CCR_REGNUM,
  E_PC_REGNUM,
  E_PC_REGNUM,
  E_CYCLES_REGNUM,
  E_CYCLES_REGNUM,
  E_TICK_REGNUM, E_EXR_REGNUM = E_TICK_REGNUM,
  E_TICK_REGNUM, E_EXR_REGNUM = E_TICK_REGNUM,
  E_INST_REGNUM, E_TICKS_REGNUM = E_INST_REGNUM,
  E_INST_REGNUM, E_TICKS_REGNUM = E_INST_REGNUM,
  E_INSTS_REGNUM,
  E_INSTS_REGNUM,
  E_MACH_REGNUM,
  E_MACH_REGNUM,
  E_MACL_REGNUM,
  E_MACL_REGNUM,
  E_SBR_REGNUM,
  E_SBR_REGNUM,
  E_VBR_REGNUM
  E_VBR_REGNUM
};
};
 
 
#define H8300_MAX_NUM_REGS 18
#define H8300_MAX_NUM_REGS 18
 
 
#define E_PSEUDO_CCR_REGNUM(gdbarch) (gdbarch_num_regs (gdbarch))
#define E_PSEUDO_CCR_REGNUM(gdbarch) (gdbarch_num_regs (gdbarch))
#define E_PSEUDO_EXR_REGNUM(gdbarch) (gdbarch_num_regs (gdbarch)+1)
#define E_PSEUDO_EXR_REGNUM(gdbarch) (gdbarch_num_regs (gdbarch)+1)
 
 
struct h8300_frame_cache
struct h8300_frame_cache
{
{
  /* Base address.  */
  /* Base address.  */
  CORE_ADDR base;
  CORE_ADDR base;
  CORE_ADDR sp_offset;
  CORE_ADDR sp_offset;
  CORE_ADDR pc;
  CORE_ADDR pc;
 
 
  /* Flag showing that a frame has been created in the prologue code. */
  /* Flag showing that a frame has been created in the prologue code. */
  int uses_fp;
  int uses_fp;
 
 
  /* Saved registers.  */
  /* Saved registers.  */
  CORE_ADDR saved_regs[H8300_MAX_NUM_REGS];
  CORE_ADDR saved_regs[H8300_MAX_NUM_REGS];
  CORE_ADDR saved_sp;
  CORE_ADDR saved_sp;
};
};
 
 
enum
enum
{
{
  h8300_reg_size = 2,
  h8300_reg_size = 2,
  h8300h_reg_size = 4,
  h8300h_reg_size = 4,
  h8300_max_reg_size = 4,
  h8300_max_reg_size = 4,
};
};
 
 
static int is_h8300hmode (struct gdbarch *gdbarch);
static int is_h8300hmode (struct gdbarch *gdbarch);
static int is_h8300smode (struct gdbarch *gdbarch);
static int is_h8300smode (struct gdbarch *gdbarch);
static int is_h8300sxmode (struct gdbarch *gdbarch);
static int is_h8300sxmode (struct gdbarch *gdbarch);
static int is_h8300_normal_mode (struct gdbarch *gdbarch);
static int is_h8300_normal_mode (struct gdbarch *gdbarch);
 
 
#define BINWORD(gdbarch) ((is_h8300hmode (gdbarch) \
#define BINWORD(gdbarch) ((is_h8300hmode (gdbarch) \
                  && !is_h8300_normal_mode (gdbarch)) \
                  && !is_h8300_normal_mode (gdbarch)) \
                 ? h8300h_reg_size : h8300_reg_size)
                 ? h8300h_reg_size : h8300_reg_size)
 
 
static CORE_ADDR
static CORE_ADDR
h8300_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
h8300_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
{
  return frame_unwind_register_unsigned (next_frame, E_PC_REGNUM);
  return frame_unwind_register_unsigned (next_frame, E_PC_REGNUM);
}
}
 
 
static CORE_ADDR
static CORE_ADDR
h8300_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
h8300_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
{
  return frame_unwind_register_unsigned (next_frame, E_SP_REGNUM);
  return frame_unwind_register_unsigned (next_frame, E_SP_REGNUM);
}
}
 
 
static struct frame_id
static struct frame_id
h8300_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
h8300_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
{
  return frame_id_build (h8300_unwind_sp (gdbarch, next_frame),
  return frame_id_build (h8300_unwind_sp (gdbarch, next_frame),
                         frame_pc_unwind (next_frame));
                         frame_pc_unwind (next_frame));
}
}
 
 
/* Normal frames.  */
/* Normal frames.  */
 
 
/* Allocate and initialize a frame cache.  */
/* Allocate and initialize a frame cache.  */
 
 
static void
static void
h8300_init_frame_cache (struct gdbarch *gdbarch,
h8300_init_frame_cache (struct gdbarch *gdbarch,
                        struct h8300_frame_cache *cache)
                        struct h8300_frame_cache *cache)
{
{
  int i;
  int i;
 
 
  /* Base address.  */
  /* Base address.  */
  cache->base = 0;
  cache->base = 0;
  cache->sp_offset = 0;
  cache->sp_offset = 0;
  cache->pc = 0;
  cache->pc = 0;
 
 
  /* Frameless until proven otherwise.  */
  /* Frameless until proven otherwise.  */
  cache->uses_fp = 0;
  cache->uses_fp = 0;
 
 
  /* Saved registers.  We initialize these to -1 since zero is a valid
  /* Saved registers.  We initialize these to -1 since zero is a valid
     offset (that's where %fp is supposed to be stored).  */
     offset (that's where %fp is supposed to be stored).  */
  for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
  for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
    cache->saved_regs[i] = -1;
    cache->saved_regs[i] = -1;
}
}
 
 
#define IS_MOVB_RnRm(x)         (((x) & 0xff88) == 0x0c88)
#define IS_MOVB_RnRm(x)         (((x) & 0xff88) == 0x0c88)
#define IS_MOVW_RnRm(x)         (((x) & 0xff88) == 0x0d00)
#define IS_MOVW_RnRm(x)         (((x) & 0xff88) == 0x0d00)
#define IS_MOVL_RnRm(x)         (((x) & 0xff88) == 0x0f80)
#define IS_MOVL_RnRm(x)         (((x) & 0xff88) == 0x0f80)
#define IS_MOVB_Rn16_SP(x)      (((x) & 0xfff0) == 0x6ee0)
#define IS_MOVB_Rn16_SP(x)      (((x) & 0xfff0) == 0x6ee0)
#define IS_MOVB_EXT(x)          ((x) == 0x7860)
#define IS_MOVB_EXT(x)          ((x) == 0x7860)
#define IS_MOVB_Rn24_SP(x)      (((x) & 0xfff0) == 0x6aa0)
#define IS_MOVB_Rn24_SP(x)      (((x) & 0xfff0) == 0x6aa0)
#define IS_MOVW_Rn16_SP(x)      (((x) & 0xfff0) == 0x6fe0)
#define IS_MOVW_Rn16_SP(x)      (((x) & 0xfff0) == 0x6fe0)
#define IS_MOVW_EXT(x)          ((x) == 0x78e0)
#define IS_MOVW_EXT(x)          ((x) == 0x78e0)
#define IS_MOVW_Rn24_SP(x)      (((x) & 0xfff0) == 0x6ba0)
#define IS_MOVW_Rn24_SP(x)      (((x) & 0xfff0) == 0x6ba0)
/* Same instructions as mov.w, just prefixed with 0x0100 */
/* Same instructions as mov.w, just prefixed with 0x0100 */
#define IS_MOVL_PRE(x)          ((x) == 0x0100)
#define IS_MOVL_PRE(x)          ((x) == 0x0100)
#define IS_MOVL_Rn16_SP(x)      (((x) & 0xfff0) == 0x6fe0)
#define IS_MOVL_Rn16_SP(x)      (((x) & 0xfff0) == 0x6fe0)
#define IS_MOVL_EXT(x)          ((x) == 0x78e0)
#define IS_MOVL_EXT(x)          ((x) == 0x78e0)
#define IS_MOVL_Rn24_SP(x)      (((x) & 0xfff0) == 0x6ba0)
#define IS_MOVL_Rn24_SP(x)      (((x) & 0xfff0) == 0x6ba0)
 
 
#define IS_PUSHFP_MOVESPFP(x)   ((x) == 0x6df60d76)
#define IS_PUSHFP_MOVESPFP(x)   ((x) == 0x6df60d76)
#define IS_PUSH_FP(x)           ((x) == 0x01006df6)
#define IS_PUSH_FP(x)           ((x) == 0x01006df6)
#define IS_MOV_SP_FP(x)         ((x) == 0x0ff6)
#define IS_MOV_SP_FP(x)         ((x) == 0x0ff6)
#define IS_SUB2_SP(x)           ((x) == 0x1b87)
#define IS_SUB2_SP(x)           ((x) == 0x1b87)
#define IS_SUB4_SP(x)           ((x) == 0x1b97)
#define IS_SUB4_SP(x)           ((x) == 0x1b97)
#define IS_ADD_IMM_SP(x)        ((x) == 0x7a1f)
#define IS_ADD_IMM_SP(x)        ((x) == 0x7a1f)
#define IS_SUB_IMM_SP(x)        ((x) == 0x7a3f)
#define IS_SUB_IMM_SP(x)        ((x) == 0x7a3f)
#define IS_SUBL4_SP(x)          ((x) == 0x1acf)
#define IS_SUBL4_SP(x)          ((x) == 0x1acf)
#define IS_MOV_IMM_Rn(x)        (((x) & 0xfff0) == 0x7905)
#define IS_MOV_IMM_Rn(x)        (((x) & 0xfff0) == 0x7905)
#define IS_SUB_RnSP(x)          (((x) & 0xff0f) == 0x1907)
#define IS_SUB_RnSP(x)          (((x) & 0xff0f) == 0x1907)
#define IS_ADD_RnSP(x)          (((x) & 0xff0f) == 0x0907)
#define IS_ADD_RnSP(x)          (((x) & 0xff0f) == 0x0907)
#define IS_PUSH(x)              (((x) & 0xfff0) == 0x6df0)
#define IS_PUSH(x)              (((x) & 0xfff0) == 0x6df0)
 
 
/* If the instruction at PC is an argument register spill, return its
/* If the instruction at PC is an argument register spill, return its
   length.  Otherwise, return zero.
   length.  Otherwise, return zero.
 
 
   An argument register spill is an instruction that moves an argument
   An argument register spill is an instruction that moves an argument
   from the register in which it was passed to the stack slot in which
   from the register in which it was passed to the stack slot in which
   it really lives.  It is a byte, word, or longword move from an
   it really lives.  It is a byte, word, or longword move from an
   argument register to a negative offset from the frame pointer.
   argument register to a negative offset from the frame pointer.
 
 
   CV, 2003-06-16: Or, in optimized code or when the `register' qualifier
   CV, 2003-06-16: Or, in optimized code or when the `register' qualifier
   is used, it could be a byte, word or long move to registers r3-r5.  */
   is used, it could be a byte, word or long move to registers r3-r5.  */
 
 
static int
static int
h8300_is_argument_spill (CORE_ADDR pc)
h8300_is_argument_spill (CORE_ADDR pc)
{
{
  int w = read_memory_unsigned_integer (pc, 2);
  int w = read_memory_unsigned_integer (pc, 2);
 
 
  if ((IS_MOVB_RnRm (w) || IS_MOVW_RnRm (w) || IS_MOVL_RnRm (w))
  if ((IS_MOVB_RnRm (w) || IS_MOVW_RnRm (w) || IS_MOVL_RnRm (w))
      && (w & 0x70) <= 0x20     /* Rs is R0, R1 or R2 */
      && (w & 0x70) <= 0x20     /* Rs is R0, R1 or R2 */
      && (w & 0x7) >= 0x3 && (w & 0x7) <= 0x5)  /* Rd is R3, R4 or R5 */
      && (w & 0x7) >= 0x3 && (w & 0x7) <= 0x5)  /* Rd is R3, R4 or R5 */
    return 2;
    return 2;
 
 
  if (IS_MOVB_Rn16_SP (w)
  if (IS_MOVB_Rn16_SP (w)
      && 8 <= (w & 0xf) && (w & 0xf) <= 10)     /* Rs is R0L, R1L, or R2L  */
      && 8 <= (w & 0xf) && (w & 0xf) <= 10)     /* Rs is R0L, R1L, or R2L  */
    {
    {
      if (read_memory_integer (pc + 2, 2) < 0)   /* ... and d:16 is negative.  */
      if (read_memory_integer (pc + 2, 2) < 0)   /* ... and d:16 is negative.  */
        return 4;
        return 4;
    }
    }
  else if (IS_MOVB_EXT (w))
  else if (IS_MOVB_EXT (w))
    {
    {
      if (IS_MOVB_Rn24_SP (read_memory_unsigned_integer (pc + 2, 2)))
      if (IS_MOVB_Rn24_SP (read_memory_unsigned_integer (pc + 2, 2)))
        {
        {
          LONGEST disp = read_memory_integer (pc + 4, 4);
          LONGEST disp = read_memory_integer (pc + 4, 4);
 
 
          /* ... and d:24 is negative.  */
          /* ... and d:24 is negative.  */
          if (disp < 0 && disp > 0xffffff)
          if (disp < 0 && disp > 0xffffff)
            return 8;
            return 8;
        }
        }
    }
    }
  else if (IS_MOVW_Rn16_SP (w)
  else if (IS_MOVW_Rn16_SP (w)
           && (w & 0xf) <= 2)   /* Rs is R0, R1, or R2 */
           && (w & 0xf) <= 2)   /* Rs is R0, R1, or R2 */
    {
    {
      /* ... and d:16 is negative.  */
      /* ... and d:16 is negative.  */
      if (read_memory_integer (pc + 2, 2) < 0)
      if (read_memory_integer (pc + 2, 2) < 0)
        return 4;
        return 4;
    }
    }
  else if (IS_MOVW_EXT (w))
  else if (IS_MOVW_EXT (w))
    {
    {
      if (IS_MOVW_Rn24_SP (read_memory_unsigned_integer (pc + 2, 2)))
      if (IS_MOVW_Rn24_SP (read_memory_unsigned_integer (pc + 2, 2)))
        {
        {
          LONGEST disp = read_memory_integer (pc + 4, 4);
          LONGEST disp = read_memory_integer (pc + 4, 4);
 
 
          /* ... and d:24 is negative.  */
          /* ... and d:24 is negative.  */
          if (disp < 0 && disp > 0xffffff)
          if (disp < 0 && disp > 0xffffff)
            return 8;
            return 8;
        }
        }
    }
    }
  else if (IS_MOVL_PRE (w))
  else if (IS_MOVL_PRE (w))
    {
    {
      int w2 = read_memory_integer (pc + 2, 2);
      int w2 = read_memory_integer (pc + 2, 2);
 
 
      if (IS_MOVL_Rn16_SP (w2)
      if (IS_MOVL_Rn16_SP (w2)
          && (w2 & 0xf) <= 2)   /* Rs is ER0, ER1, or ER2 */
          && (w2 & 0xf) <= 2)   /* Rs is ER0, ER1, or ER2 */
        {
        {
          /* ... and d:16 is negative.  */
          /* ... and d:16 is negative.  */
          if (read_memory_integer (pc + 4, 2) < 0)
          if (read_memory_integer (pc + 4, 2) < 0)
            return 6;
            return 6;
        }
        }
      else if (IS_MOVL_EXT (w2))
      else if (IS_MOVL_EXT (w2))
        {
        {
          int w3 = read_memory_integer (pc + 4, 2);
          int w3 = read_memory_integer (pc + 4, 2);
 
 
          if (IS_MOVL_Rn24_SP (read_memory_integer (pc + 4, 2)))
          if (IS_MOVL_Rn24_SP (read_memory_integer (pc + 4, 2)))
            {
            {
              LONGEST disp = read_memory_integer (pc + 6, 4);
              LONGEST disp = read_memory_integer (pc + 6, 4);
 
 
              /* ... and d:24 is negative.  */
              /* ... and d:24 is negative.  */
              if (disp < 0 && disp > 0xffffff)
              if (disp < 0 && disp > 0xffffff)
                return 10;
                return 10;
            }
            }
        }
        }
    }
    }
 
 
  return 0;
  return 0;
}
}
 
 
/* Do a full analysis of the prologue at PC and update CACHE
/* Do a full analysis of the prologue at PC and update CACHE
   accordingly.  Bail out early if CURRENT_PC is reached.  Return the
   accordingly.  Bail out early if CURRENT_PC is reached.  Return the
   address where the analysis stopped.
   address where the analysis stopped.
 
 
   We handle all cases that can be generated by gcc.
   We handle all cases that can be generated by gcc.
 
 
   For allocating a stack frame:
   For allocating a stack frame:
 
 
   mov.w r6,@-sp
   mov.w r6,@-sp
   mov.w sp,r6
   mov.w sp,r6
   mov.w #-n,rN
   mov.w #-n,rN
   add.w rN,sp
   add.w rN,sp
 
 
   mov.w r6,@-sp
   mov.w r6,@-sp
   mov.w sp,r6
   mov.w sp,r6
   subs  #2,sp
   subs  #2,sp
   (repeat)
   (repeat)
 
 
   mov.l er6,@-sp
   mov.l er6,@-sp
   mov.l sp,er6
   mov.l sp,er6
   add.l #-n,sp
   add.l #-n,sp
 
 
   mov.w r6,@-sp
   mov.w r6,@-sp
   mov.w sp,r6
   mov.w sp,r6
   subs  #4,sp
   subs  #4,sp
   (repeat)
   (repeat)
 
 
   For saving registers:
   For saving registers:
 
 
   mov.w rN,@-sp
   mov.w rN,@-sp
   mov.l erN,@-sp
   mov.l erN,@-sp
   stm.l reglist,@-sp
   stm.l reglist,@-sp
 
 
   */
   */
 
 
static CORE_ADDR
static CORE_ADDR
h8300_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
h8300_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
                        struct h8300_frame_cache *cache)
                        struct h8300_frame_cache *cache)
{
{
  unsigned int op;
  unsigned int op;
  int regno, i, spill_size;
  int regno, i, spill_size;
 
 
  cache->sp_offset = 0;
  cache->sp_offset = 0;
 
 
  if (pc >= current_pc)
  if (pc >= current_pc)
    return current_pc;
    return current_pc;
 
 
  op = read_memory_unsigned_integer (pc, 4);
  op = read_memory_unsigned_integer (pc, 4);
 
 
  if (IS_PUSHFP_MOVESPFP (op))
  if (IS_PUSHFP_MOVESPFP (op))
    {
    {
      cache->saved_regs[E_FP_REGNUM] = 0;
      cache->saved_regs[E_FP_REGNUM] = 0;
      cache->uses_fp = 1;
      cache->uses_fp = 1;
      pc += 4;
      pc += 4;
    }
    }
  else if (IS_PUSH_FP (op))
  else if (IS_PUSH_FP (op))
    {
    {
      cache->saved_regs[E_FP_REGNUM] = 0;
      cache->saved_regs[E_FP_REGNUM] = 0;
      pc += 4;
      pc += 4;
      if (pc >= current_pc)
      if (pc >= current_pc)
        return current_pc;
        return current_pc;
      op = read_memory_unsigned_integer (pc, 2);
      op = read_memory_unsigned_integer (pc, 2);
      if (IS_MOV_SP_FP (op))
      if (IS_MOV_SP_FP (op))
        {
        {
          cache->uses_fp = 1;
          cache->uses_fp = 1;
          pc += 2;
          pc += 2;
        }
        }
    }
    }
 
 
  while (pc < current_pc)
  while (pc < current_pc)
    {
    {
      op = read_memory_unsigned_integer (pc, 2);
      op = read_memory_unsigned_integer (pc, 2);
      if (IS_SUB2_SP (op))
      if (IS_SUB2_SP (op))
        {
        {
          cache->sp_offset += 2;
          cache->sp_offset += 2;
          pc += 2;
          pc += 2;
        }
        }
      else if (IS_SUB4_SP (op))
      else if (IS_SUB4_SP (op))
        {
        {
          cache->sp_offset += 4;
          cache->sp_offset += 4;
          pc += 2;
          pc += 2;
        }
        }
      else if (IS_ADD_IMM_SP (op))
      else if (IS_ADD_IMM_SP (op))
        {
        {
          cache->sp_offset += -read_memory_integer (pc + 2, 2);
          cache->sp_offset += -read_memory_integer (pc + 2, 2);
          pc += 4;
          pc += 4;
        }
        }
      else if (IS_SUB_IMM_SP (op))
      else if (IS_SUB_IMM_SP (op))
        {
        {
          cache->sp_offset += read_memory_integer (pc + 2, 2);
          cache->sp_offset += read_memory_integer (pc + 2, 2);
          pc += 4;
          pc += 4;
        }
        }
      else if (IS_SUBL4_SP (op))
      else if (IS_SUBL4_SP (op))
        {
        {
          cache->sp_offset += 4;
          cache->sp_offset += 4;
          pc += 2;
          pc += 2;
        }
        }
      else if (IS_MOV_IMM_Rn (op))
      else if (IS_MOV_IMM_Rn (op))
        {
        {
          int offset = read_memory_integer (pc + 2, 2);
          int offset = read_memory_integer (pc + 2, 2);
          regno = op & 0x000f;
          regno = op & 0x000f;
          op = read_memory_unsigned_integer (pc + 4, 2);
          op = read_memory_unsigned_integer (pc + 4, 2);
          if (IS_ADD_RnSP (op) && (op & 0x00f0) == regno)
          if (IS_ADD_RnSP (op) && (op & 0x00f0) == regno)
            {
            {
              cache->sp_offset -= offset;
              cache->sp_offset -= offset;
              pc += 6;
              pc += 6;
            }
            }
          else if (IS_SUB_RnSP (op) && (op & 0x00f0) == regno)
          else if (IS_SUB_RnSP (op) && (op & 0x00f0) == regno)
            {
            {
              cache->sp_offset += offset;
              cache->sp_offset += offset;
              pc += 6;
              pc += 6;
            }
            }
          else
          else
            break;
            break;
        }
        }
      else if (IS_PUSH (op))
      else if (IS_PUSH (op))
        {
        {
          regno = op & 0x000f;
          regno = op & 0x000f;
          cache->sp_offset += 2;
          cache->sp_offset += 2;
          cache->saved_regs[regno] = cache->sp_offset;
          cache->saved_regs[regno] = cache->sp_offset;
          pc += 2;
          pc += 2;
        }
        }
      else if (op == 0x0100)
      else if (op == 0x0100)
        {
        {
          op = read_memory_unsigned_integer (pc + 2, 2);
          op = read_memory_unsigned_integer (pc + 2, 2);
          if (IS_PUSH (op))
          if (IS_PUSH (op))
            {
            {
              regno = op & 0x000f;
              regno = op & 0x000f;
              cache->sp_offset += 4;
              cache->sp_offset += 4;
              cache->saved_regs[regno] = cache->sp_offset;
              cache->saved_regs[regno] = cache->sp_offset;
              pc += 4;
              pc += 4;
            }
            }
          else
          else
            break;
            break;
        }
        }
      else if ((op & 0xffcf) == 0x0100)
      else if ((op & 0xffcf) == 0x0100)
        {
        {
          int op1;
          int op1;
          op1 = read_memory_unsigned_integer (pc + 2, 2);
          op1 = read_memory_unsigned_integer (pc + 2, 2);
          if (IS_PUSH (op1))
          if (IS_PUSH (op1))
            {
            {
              /* Since the prefix is 0x01x0, this is not a simple pushm but a
              /* Since the prefix is 0x01x0, this is not a simple pushm but a
                 stm.l reglist,@-sp */
                 stm.l reglist,@-sp */
              i = ((op & 0x0030) >> 4) + 1;
              i = ((op & 0x0030) >> 4) + 1;
              regno = op1 & 0x000f;
              regno = op1 & 0x000f;
              for (; i > 0; regno++, --i)
              for (; i > 0; regno++, --i)
                {
                {
                  cache->sp_offset += 4;
                  cache->sp_offset += 4;
                  cache->saved_regs[regno] = cache->sp_offset;
                  cache->saved_regs[regno] = cache->sp_offset;
                }
                }
              pc += 4;
              pc += 4;
            }
            }
          else
          else
            break;
            break;
        }
        }
      else
      else
        break;
        break;
    }
    }
 
 
  /* Check for spilling an argument register to the stack frame.
  /* Check for spilling an argument register to the stack frame.
     This could also be an initializing store from non-prologue code,
     This could also be an initializing store from non-prologue code,
     but I don't think there's any harm in skipping that.  */
     but I don't think there's any harm in skipping that.  */
  while ((spill_size = h8300_is_argument_spill (pc)) > 0
  while ((spill_size = h8300_is_argument_spill (pc)) > 0
         && pc + spill_size <= current_pc)
         && pc + spill_size <= current_pc)
    pc += spill_size;
    pc += spill_size;
 
 
  return pc;
  return pc;
}
}
 
 
static struct h8300_frame_cache *
static struct h8300_frame_cache *
h8300_frame_cache (struct frame_info *next_frame, void **this_cache)
h8300_frame_cache (struct frame_info *next_frame, void **this_cache)
{
{
  struct gdbarch *gdbarch = get_frame_arch (next_frame);
  struct gdbarch *gdbarch = get_frame_arch (next_frame);
  struct h8300_frame_cache *cache;
  struct h8300_frame_cache *cache;
  char buf[4];
  char buf[4];
  int i;
  int i;
  CORE_ADDR current_pc;
  CORE_ADDR current_pc;
 
 
  if (*this_cache)
  if (*this_cache)
    return *this_cache;
    return *this_cache;
 
 
  cache = FRAME_OBSTACK_ZALLOC (struct h8300_frame_cache);
  cache = FRAME_OBSTACK_ZALLOC (struct h8300_frame_cache);
  h8300_init_frame_cache (gdbarch, cache);
  h8300_init_frame_cache (gdbarch, cache);
  *this_cache = cache;
  *this_cache = cache;
 
 
  /* In principle, for normal frames, %fp holds the frame pointer,
  /* In principle, for normal frames, %fp holds the frame pointer,
     which holds the base address for the current stack frame.
     which holds the base address for the current stack frame.
     However, for functions that don't need it, the frame pointer is
     However, for functions that don't need it, the frame pointer is
     optional.  For these "frameless" functions the frame pointer is
     optional.  For these "frameless" functions the frame pointer is
     actually the frame pointer of the calling frame.  */
     actually the frame pointer of the calling frame.  */
 
 
  cache->base = frame_unwind_register_unsigned (next_frame, E_FP_REGNUM);
  cache->base = frame_unwind_register_unsigned (next_frame, E_FP_REGNUM);
  if (cache->base == 0)
  if (cache->base == 0)
    return cache;
    return cache;
 
 
  cache->saved_regs[E_PC_REGNUM] = -BINWORD (gdbarch);
  cache->saved_regs[E_PC_REGNUM] = -BINWORD (gdbarch);
 
 
  cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
  cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
  current_pc = frame_pc_unwind (next_frame);
  current_pc = frame_pc_unwind (next_frame);
  if (cache->pc != 0)
  if (cache->pc != 0)
    h8300_analyze_prologue (cache->pc, current_pc, cache);
    h8300_analyze_prologue (cache->pc, current_pc, cache);
 
 
  if (!cache->uses_fp)
  if (!cache->uses_fp)
    {
    {
      /* We didn't find a valid frame, which means that CACHE->base
      /* We didn't find a valid frame, which means that CACHE->base
         currently holds the frame pointer for our calling frame.  If
         currently holds the frame pointer for our calling frame.  If
         we're at the start of a function, or somewhere half-way its
         we're at the start of a function, or somewhere half-way its
         prologue, the function's frame probably hasn't been fully
         prologue, the function's frame probably hasn't been fully
         setup yet.  Try to reconstruct the base address for the stack
         setup yet.  Try to reconstruct the base address for the stack
         frame by looking at the stack pointer.  For truly "frameless"
         frame by looking at the stack pointer.  For truly "frameless"
         functions this might work too.  */
         functions this might work too.  */
 
 
      cache->base = frame_unwind_register_unsigned (next_frame, E_SP_REGNUM)
      cache->base = frame_unwind_register_unsigned (next_frame, E_SP_REGNUM)
                    + cache->sp_offset;
                    + cache->sp_offset;
      cache->saved_sp = cache->base + BINWORD (gdbarch);
      cache->saved_sp = cache->base + BINWORD (gdbarch);
      cache->saved_regs[E_PC_REGNUM] = 0;
      cache->saved_regs[E_PC_REGNUM] = 0;
    }
    }
  else
  else
    {
    {
      cache->saved_sp = cache->base + 2 * BINWORD (gdbarch);
      cache->saved_sp = cache->base + 2 * BINWORD (gdbarch);
      cache->saved_regs[E_PC_REGNUM] = -BINWORD (gdbarch);
      cache->saved_regs[E_PC_REGNUM] = -BINWORD (gdbarch);
    }
    }
 
 
  /* Adjust all the saved registers such that they contain addresses
  /* Adjust all the saved registers such that they contain addresses
     instead of offsets.  */
     instead of offsets.  */
  for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
  for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
    if (cache->saved_regs[i] != -1)
    if (cache->saved_regs[i] != -1)
      cache->saved_regs[i] = cache->base - cache->saved_regs[i];
      cache->saved_regs[i] = cache->base - cache->saved_regs[i];
 
 
  return cache;
  return cache;
}
}
 
 
static void
static void
h8300_frame_this_id (struct frame_info *next_frame, void **this_cache,
h8300_frame_this_id (struct frame_info *next_frame, void **this_cache,
                     struct frame_id *this_id)
                     struct frame_id *this_id)
{
{
  struct h8300_frame_cache *cache =
  struct h8300_frame_cache *cache =
    h8300_frame_cache (next_frame, this_cache);
    h8300_frame_cache (next_frame, this_cache);
 
 
  /* This marks the outermost frame.  */
  /* This marks the outermost frame.  */
  if (cache->base == 0)
  if (cache->base == 0)
    return;
    return;
 
 
  *this_id = frame_id_build (cache->saved_sp, cache->pc);
  *this_id = frame_id_build (cache->saved_sp, cache->pc);
}
}
 
 
static void
static void
h8300_frame_prev_register (struct frame_info *next_frame, void **this_cache,
h8300_frame_prev_register (struct frame_info *next_frame, void **this_cache,
                           int regnum, int *optimizedp,
                           int regnum, int *optimizedp,
                           enum lval_type *lvalp, CORE_ADDR *addrp,
                           enum lval_type *lvalp, CORE_ADDR *addrp,
                           int *realnump, gdb_byte *valuep)
                           int *realnump, gdb_byte *valuep)
{
{
  struct gdbarch *gdbarch = get_frame_arch (next_frame);
  struct gdbarch *gdbarch = get_frame_arch (next_frame);
  struct h8300_frame_cache *cache =
  struct h8300_frame_cache *cache =
    h8300_frame_cache (next_frame, this_cache);
    h8300_frame_cache (next_frame, this_cache);
 
 
  gdb_assert (regnum >= 0);
  gdb_assert (regnum >= 0);
 
 
  if (regnum == E_SP_REGNUM && cache->saved_sp)
  if (regnum == E_SP_REGNUM && cache->saved_sp)
    {
    {
      *optimizedp = 0;
      *optimizedp = 0;
      *lvalp = not_lval;
      *lvalp = not_lval;
      *addrp = 0;
      *addrp = 0;
      *realnump = -1;
      *realnump = -1;
      if (valuep)
      if (valuep)
        store_unsigned_integer (valuep, BINWORD (gdbarch), cache->saved_sp);
        store_unsigned_integer (valuep, BINWORD (gdbarch), cache->saved_sp);
      return;
      return;
    }
    }
 
 
  if (regnum < gdbarch_num_regs (gdbarch)
  if (regnum < gdbarch_num_regs (gdbarch)
      && cache->saved_regs[regnum] != -1)
      && cache->saved_regs[regnum] != -1)
    {
    {
      *optimizedp = 0;
      *optimizedp = 0;
      *lvalp = lval_memory;
      *lvalp = lval_memory;
      *addrp = cache->saved_regs[regnum];
      *addrp = cache->saved_regs[regnum];
      *realnump = -1;
      *realnump = -1;
      if (valuep)
      if (valuep)
        read_memory (*addrp, valuep, register_size (gdbarch, regnum));
        read_memory (*addrp, valuep, register_size (gdbarch, regnum));
      return;
      return;
    }
    }
 
 
  *optimizedp = 0;
  *optimizedp = 0;
  *lvalp = lval_register;
  *lvalp = lval_register;
  *addrp = 0;
  *addrp = 0;
  *realnump = regnum;
  *realnump = regnum;
  if (valuep)
  if (valuep)
    frame_unwind_register (next_frame, *realnump, valuep);
    frame_unwind_register (next_frame, *realnump, valuep);
}
}
 
 
static const struct frame_unwind h8300_frame_unwind = {
static const struct frame_unwind h8300_frame_unwind = {
  NORMAL_FRAME,
  NORMAL_FRAME,
  h8300_frame_this_id,
  h8300_frame_this_id,
  h8300_frame_prev_register
  h8300_frame_prev_register
};
};
 
 
static const struct frame_unwind *
static const struct frame_unwind *
h8300_frame_sniffer (struct frame_info *next_frame)
h8300_frame_sniffer (struct frame_info *next_frame)
{
{
  return &h8300_frame_unwind;
  return &h8300_frame_unwind;
}
}
 
 
static CORE_ADDR
static CORE_ADDR
h8300_frame_base_address (struct frame_info *next_frame, void **this_cache)
h8300_frame_base_address (struct frame_info *next_frame, void **this_cache)
{
{
  struct h8300_frame_cache *cache = h8300_frame_cache (next_frame, this_cache);
  struct h8300_frame_cache *cache = h8300_frame_cache (next_frame, this_cache);
  return cache->base;
  return cache->base;
}
}
 
 
static const struct frame_base h8300_frame_base = {
static const struct frame_base h8300_frame_base = {
  &h8300_frame_unwind,
  &h8300_frame_unwind,
  h8300_frame_base_address,
  h8300_frame_base_address,
  h8300_frame_base_address,
  h8300_frame_base_address,
  h8300_frame_base_address
  h8300_frame_base_address
};
};
 
 
static CORE_ADDR
static CORE_ADDR
h8300_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
h8300_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
{
  CORE_ADDR func_addr = 0 , func_end = 0;
  CORE_ADDR func_addr = 0 , func_end = 0;
 
 
  if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
  if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
    {
    {
      struct symtab_and_line sal;
      struct symtab_and_line sal;
      struct h8300_frame_cache cache;
      struct h8300_frame_cache cache;
 
 
      /* Found a function.  */
      /* Found a function.  */
      sal = find_pc_line (func_addr, 0);
      sal = find_pc_line (func_addr, 0);
      if (sal.end && sal.end < func_end)
      if (sal.end && sal.end < func_end)
        /* Found a line number, use it as end of prologue.  */
        /* Found a line number, use it as end of prologue.  */
        return sal.end;
        return sal.end;
 
 
      /* No useable line symbol.  Use prologue parsing method.  */
      /* No useable line symbol.  Use prologue parsing method.  */
      h8300_init_frame_cache (gdbarch, &cache);
      h8300_init_frame_cache (gdbarch, &cache);
      return h8300_analyze_prologue (func_addr, func_end, &cache);
      return h8300_analyze_prologue (func_addr, func_end, &cache);
    }
    }
 
 
  /* No function symbol -- just return the PC.  */
  /* No function symbol -- just return the PC.  */
  return (CORE_ADDR) pc;
  return (CORE_ADDR) pc;
}
}
 
 
/* Function: push_dummy_call
/* Function: push_dummy_call
   Setup the function arguments for calling a function in the inferior.
   Setup the function arguments for calling a function in the inferior.
   In this discussion, a `word' is 16 bits on the H8/300s, and 32 bits
   In this discussion, a `word' is 16 bits on the H8/300s, and 32 bits
   on the H8/300H.
   on the H8/300H.
 
 
   There are actually two ABI's here: -mquickcall (the default) and
   There are actually two ABI's here: -mquickcall (the default) and
   -mno-quickcall.  With -mno-quickcall, all arguments are passed on
   -mno-quickcall.  With -mno-quickcall, all arguments are passed on
   the stack after the return address, word-aligned.  With
   the stack after the return address, word-aligned.  With
   -mquickcall, GCC tries to use r0 -- r2 to pass registers.  Since
   -mquickcall, GCC tries to use r0 -- r2 to pass registers.  Since
   GCC doesn't indicate in the object file which ABI was used to
   GCC doesn't indicate in the object file which ABI was used to
   compile it, GDB only supports the default --- -mquickcall.
   compile it, GDB only supports the default --- -mquickcall.
 
 
   Here are the rules for -mquickcall, in detail:
   Here are the rules for -mquickcall, in detail:
 
 
   Each argument, whether scalar or aggregate, is padded to occupy a
   Each argument, whether scalar or aggregate, is padded to occupy a
   whole number of words.  Arguments smaller than a word are padded at
   whole number of words.  Arguments smaller than a word are padded at
   the most significant end; those larger than a word are padded at
   the most significant end; those larger than a word are padded at
   the least significant end.
   the least significant end.
 
 
   The initial arguments are passed in r0 -- r2.  Earlier arguments go in
   The initial arguments are passed in r0 -- r2.  Earlier arguments go in
   lower-numbered registers.  Multi-word arguments are passed in
   lower-numbered registers.  Multi-word arguments are passed in
   consecutive registers, with the most significant end in the
   consecutive registers, with the most significant end in the
   lower-numbered register.
   lower-numbered register.
 
 
   If an argument doesn't fit entirely in the remaining registers, it
   If an argument doesn't fit entirely in the remaining registers, it
   is passed entirely on the stack.  Stack arguments begin just after
   is passed entirely on the stack.  Stack arguments begin just after
   the return address.  Once an argument has overflowed onto the stack
   the return address.  Once an argument has overflowed onto the stack
   this way, all subsequent arguments are passed on the stack.
   this way, all subsequent arguments are passed on the stack.
 
 
   The above rule has odd consequences.  For example, on the h8/300s,
   The above rule has odd consequences.  For example, on the h8/300s,
   if a function takes two longs and an int as arguments:
   if a function takes two longs and an int as arguments:
   - the first long will be passed in r0/r1,
   - the first long will be passed in r0/r1,
   - the second long will be passed entirely on the stack, since it
   - the second long will be passed entirely on the stack, since it
     doesn't fit in r2,
     doesn't fit in r2,
   - and the int will be passed on the stack, even though it could fit
   - and the int will be passed on the stack, even though it could fit
     in r2.
     in r2.
 
 
   A weird exception: if an argument is larger than a word, but not a
   A weird exception: if an argument is larger than a word, but not a
   whole number of words in length (before padding), it is passed on
   whole number of words in length (before padding), it is passed on
   the stack following the rules for stack arguments above, even if
   the stack following the rules for stack arguments above, even if
   there are sufficient registers available to hold it.  Stranger
   there are sufficient registers available to hold it.  Stranger
   still, the argument registers are still `used up' --- even though
   still, the argument registers are still `used up' --- even though
   there's nothing in them.
   there's nothing in them.
 
 
   So, for example, on the h8/300s, if a function expects a three-byte
   So, for example, on the h8/300s, if a function expects a three-byte
   structure and an int, the structure will go on the stack, and the
   structure and an int, the structure will go on the stack, and the
   int will go in r2, not r0.
   int will go in r2, not r0.
 
 
   If the function returns an aggregate type (struct, union, or class)
   If the function returns an aggregate type (struct, union, or class)
   by value, the caller must allocate space to hold the return value,
   by value, the caller must allocate space to hold the return value,
   and pass the callee a pointer to this space as an invisible first
   and pass the callee a pointer to this space as an invisible first
   argument, in R0.
   argument, in R0.
 
 
   For varargs functions, the last fixed argument and all the variable
   For varargs functions, the last fixed argument and all the variable
   arguments are always passed on the stack.  This means that calls to
   arguments are always passed on the stack.  This means that calls to
   varargs functions don't work properly unless there is a prototype
   varargs functions don't work properly unless there is a prototype
   in scope.
   in scope.
 
 
   Basically, this ABI is not good, for the following reasons:
   Basically, this ABI is not good, for the following reasons:
   - You can't call vararg functions properly unless a prototype is in scope.
   - You can't call vararg functions properly unless a prototype is in scope.
   - Structure passing is inconsistent, to no purpose I can see.
   - Structure passing is inconsistent, to no purpose I can see.
   - It often wastes argument registers, of which there are only three
   - It often wastes argument registers, of which there are only three
     to begin with.  */
     to begin with.  */
 
 
static CORE_ADDR
static CORE_ADDR
h8300_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
h8300_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
                       struct regcache *regcache, CORE_ADDR bp_addr,
                       struct regcache *regcache, CORE_ADDR bp_addr,
                       int nargs, struct value **args, CORE_ADDR sp,
                       int nargs, struct value **args, CORE_ADDR sp,
                       int struct_return, CORE_ADDR struct_addr)
                       int struct_return, CORE_ADDR struct_addr)
{
{
  int stack_alloc = 0, stack_offset = 0;
  int stack_alloc = 0, stack_offset = 0;
  int wordsize = BINWORD (gdbarch);
  int wordsize = BINWORD (gdbarch);
  int reg = E_ARG0_REGNUM;
  int reg = E_ARG0_REGNUM;
  int argument;
  int argument;
 
 
  /* First, make sure the stack is properly aligned.  */
  /* First, make sure the stack is properly aligned.  */
  sp = align_down (sp, wordsize);
  sp = align_down (sp, wordsize);
 
 
  /* Now make sure there's space on the stack for the arguments.  We
  /* Now make sure there's space on the stack for the arguments.  We
     may over-allocate a little here, but that won't hurt anything.  */
     may over-allocate a little here, but that won't hurt anything.  */
  for (argument = 0; argument < nargs; argument++)
  for (argument = 0; argument < nargs; argument++)
    stack_alloc += align_up (TYPE_LENGTH (value_type (args[argument])),
    stack_alloc += align_up (TYPE_LENGTH (value_type (args[argument])),
                             wordsize);
                             wordsize);
  sp -= stack_alloc;
  sp -= stack_alloc;
 
 
  /* Now load as many arguments as possible into registers, and push
  /* Now load as many arguments as possible into registers, and push
     the rest onto the stack.
     the rest onto the stack.
     If we're returning a structure by value, then we must pass a
     If we're returning a structure by value, then we must pass a
     pointer to the buffer for the return value as an invisible first
     pointer to the buffer for the return value as an invisible first
     argument.  */
     argument.  */
  if (struct_return)
  if (struct_return)
    regcache_cooked_write_unsigned (regcache, reg++, struct_addr);
    regcache_cooked_write_unsigned (regcache, reg++, struct_addr);
 
 
  for (argument = 0; argument < nargs; argument++)
  for (argument = 0; argument < nargs; argument++)
    {
    {
      struct type *type = value_type (args[argument]);
      struct type *type = value_type (args[argument]);
      int len = TYPE_LENGTH (type);
      int len = TYPE_LENGTH (type);
      char *contents = (char *) value_contents (args[argument]);
      char *contents = (char *) value_contents (args[argument]);
 
 
      /* Pad the argument appropriately.  */
      /* Pad the argument appropriately.  */
      int padded_len = align_up (len, wordsize);
      int padded_len = align_up (len, wordsize);
      gdb_byte *padded = alloca (padded_len);
      gdb_byte *padded = alloca (padded_len);
 
 
      memset (padded, 0, padded_len);
      memset (padded, 0, padded_len);
      memcpy (len < wordsize ? padded + padded_len - len : padded,
      memcpy (len < wordsize ? padded + padded_len - len : padded,
              contents, len);
              contents, len);
 
 
      /* Could the argument fit in the remaining registers?  */
      /* Could the argument fit in the remaining registers?  */
      if (padded_len <= (E_ARGLAST_REGNUM - reg + 1) * wordsize)
      if (padded_len <= (E_ARGLAST_REGNUM - reg + 1) * wordsize)
        {
        {
          /* Are we going to pass it on the stack anyway, for no good
          /* Are we going to pass it on the stack anyway, for no good
             reason?  */
             reason?  */
          if (len > wordsize && len % wordsize)
          if (len > wordsize && len % wordsize)
            {
            {
              /* I feel so unclean.  */
              /* I feel so unclean.  */
              write_memory (sp + stack_offset, padded, padded_len);
              write_memory (sp + stack_offset, padded, padded_len);
              stack_offset += padded_len;
              stack_offset += padded_len;
 
 
              /* That's right --- even though we passed the argument
              /* That's right --- even though we passed the argument
                 on the stack, we consume the registers anyway!  Love
                 on the stack, we consume the registers anyway!  Love
                 me, love my dog.  */
                 me, love my dog.  */
              reg += padded_len / wordsize;
              reg += padded_len / wordsize;
            }
            }
          else
          else
            {
            {
              /* Heavens to Betsy --- it's really going in registers!
              /* Heavens to Betsy --- it's really going in registers!
                 It would be nice if we could use write_register_bytes
                 It would be nice if we could use write_register_bytes
                 here, but on the h8/300s, there are gaps between
                 here, but on the h8/300s, there are gaps between
                 the registers in the register file.  */
                 the registers in the register file.  */
              int offset;
              int offset;
 
 
              for (offset = 0; offset < padded_len; offset += wordsize)
              for (offset = 0; offset < padded_len; offset += wordsize)
                {
                {
                  ULONGEST word = extract_unsigned_integer (padded + offset,
                  ULONGEST word = extract_unsigned_integer (padded + offset,
                                                            wordsize);
                                                            wordsize);
                  regcache_cooked_write_unsigned (regcache, reg++, word);
                  regcache_cooked_write_unsigned (regcache, reg++, word);
                }
                }
            }
            }
        }
        }
      else
      else
        {
        {
          /* It doesn't fit in registers!  Onto the stack it goes.  */
          /* It doesn't fit in registers!  Onto the stack it goes.  */
          write_memory (sp + stack_offset, padded, padded_len);
          write_memory (sp + stack_offset, padded, padded_len);
          stack_offset += padded_len;
          stack_offset += padded_len;
 
 
          /* Once one argument has spilled onto the stack, all
          /* Once one argument has spilled onto the stack, all
             subsequent arguments go on the stack.  */
             subsequent arguments go on the stack.  */
          reg = E_ARGLAST_REGNUM + 1;
          reg = E_ARGLAST_REGNUM + 1;
        }
        }
    }
    }
 
 
  /* Store return address.  */
  /* Store return address.  */
  sp -= wordsize;
  sp -= wordsize;
  write_memory_unsigned_integer (sp, wordsize, bp_addr);
  write_memory_unsigned_integer (sp, wordsize, bp_addr);
 
 
  /* Update stack pointer.  */
  /* Update stack pointer.  */
  regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
  regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
 
 
  /* Return the new stack pointer minus the return address slot since
  /* Return the new stack pointer minus the return address slot since
     that's what DWARF2/GCC uses as the frame's CFA.  */
     that's what DWARF2/GCC uses as the frame's CFA.  */
  return sp + wordsize;
  return sp + wordsize;
}
}
 
 
/* Function: extract_return_value
/* Function: extract_return_value
   Figure out where in REGBUF the called function has left its return value.
   Figure out where in REGBUF the called function has left its return value.
   Copy that into VALBUF.  Be sure to account for CPU type.   */
   Copy that into VALBUF.  Be sure to account for CPU type.   */
 
 
static void
static void
h8300_extract_return_value (struct type *type, struct regcache *regcache,
h8300_extract_return_value (struct type *type, struct regcache *regcache,
                            void *valbuf)
                            void *valbuf)
{
{
  int len = TYPE_LENGTH (type);
  int len = TYPE_LENGTH (type);
  ULONGEST c, addr;
  ULONGEST c, addr;
 
 
  switch (len)
  switch (len)
    {
    {
    case 1:
    case 1:
    case 2:
    case 2:
      regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
      regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
      store_unsigned_integer (valbuf, len, c);
      store_unsigned_integer (valbuf, len, c);
      break;
      break;
    case 4:                     /* Needs two registers on plain H8/300 */
    case 4:                     /* Needs two registers on plain H8/300 */
      regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
      regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
      store_unsigned_integer (valbuf, 2, c);
      store_unsigned_integer (valbuf, 2, c);
      regcache_cooked_read_unsigned (regcache, E_RET1_REGNUM, &c);
      regcache_cooked_read_unsigned (regcache, E_RET1_REGNUM, &c);
      store_unsigned_integer ((void *) ((char *) valbuf + 2), 2, c);
      store_unsigned_integer ((void *) ((char *) valbuf + 2), 2, c);
      break;
      break;
    case 8:                     /* long long is now 8 bytes.  */
    case 8:                     /* long long is now 8 bytes.  */
      if (TYPE_CODE (type) == TYPE_CODE_INT)
      if (TYPE_CODE (type) == TYPE_CODE_INT)
        {
        {
          regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &addr);
          regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &addr);
          c = read_memory_unsigned_integer ((CORE_ADDR) addr, len);
          c = read_memory_unsigned_integer ((CORE_ADDR) addr, len);
          store_unsigned_integer (valbuf, len, c);
          store_unsigned_integer (valbuf, len, c);
        }
        }
      else
      else
        {
        {
          error ("I don't know how this 8 byte value is returned.");
          error ("I don't know how this 8 byte value is returned.");
        }
        }
      break;
      break;
    }
    }
}
}
 
 
static void
static void
h8300h_extract_return_value (struct type *type, struct regcache *regcache,
h8300h_extract_return_value (struct type *type, struct regcache *regcache,
                             void *valbuf)
                             void *valbuf)
{
{
  int len = TYPE_LENGTH (type);
  int len = TYPE_LENGTH (type);
  ULONGEST c, addr;
  ULONGEST c, addr;
 
 
  switch (len)
  switch (len)
    {
    {
    case 1:
    case 1:
    case 2:
    case 2:
    case 4:
    case 4:
      regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
      regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
      store_unsigned_integer (valbuf, len, c);
      store_unsigned_integer (valbuf, len, c);
      break;
      break;
    case 8:                     /* long long is now 8 bytes.  */
    case 8:                     /* long long is now 8 bytes.  */
      if (TYPE_CODE (type) == TYPE_CODE_INT)
      if (TYPE_CODE (type) == TYPE_CODE_INT)
        {
        {
          regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
          regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
          store_unsigned_integer (valbuf, 4, c);
          store_unsigned_integer (valbuf, 4, c);
          regcache_cooked_read_unsigned (regcache, E_RET1_REGNUM, &c);
          regcache_cooked_read_unsigned (regcache, E_RET1_REGNUM, &c);
          store_unsigned_integer ((void *) ((char *) valbuf + 4), 4, c);
          store_unsigned_integer ((void *) ((char *) valbuf + 4), 4, c);
        }
        }
      else
      else
        {
        {
          error ("I don't know how this 8 byte value is returned.");
          error ("I don't know how this 8 byte value is returned.");
        }
        }
      break;
      break;
    }
    }
}
}
 
 
int
int
h8300_use_struct_convention (struct type *value_type)
h8300_use_struct_convention (struct type *value_type)
{
{
  /* Types of 1, 2 or 4 bytes are returned in R0/R1, everything else on the
  /* Types of 1, 2 or 4 bytes are returned in R0/R1, everything else on the
     stack. */
     stack. */
 
 
  if (TYPE_CODE (value_type) == TYPE_CODE_STRUCT
  if (TYPE_CODE (value_type) == TYPE_CODE_STRUCT
      || TYPE_CODE (value_type) == TYPE_CODE_UNION)
      || TYPE_CODE (value_type) == TYPE_CODE_UNION)
    return 1;
    return 1;
  return !(TYPE_LENGTH (value_type) == 1
  return !(TYPE_LENGTH (value_type) == 1
           || TYPE_LENGTH (value_type) == 2
           || TYPE_LENGTH (value_type) == 2
           || TYPE_LENGTH (value_type) == 4);
           || TYPE_LENGTH (value_type) == 4);
}
}
 
 
int
int
h8300h_use_struct_convention (struct type *value_type)
h8300h_use_struct_convention (struct type *value_type)
{
{
  /* Types of 1, 2 or 4 bytes are returned in R0, INT types of 8 bytes are
  /* Types of 1, 2 or 4 bytes are returned in R0, INT types of 8 bytes are
     returned in R0/R1, everything else on the stack. */
     returned in R0/R1, everything else on the stack. */
  if (TYPE_CODE (value_type) == TYPE_CODE_STRUCT
  if (TYPE_CODE (value_type) == TYPE_CODE_STRUCT
      || TYPE_CODE (value_type) == TYPE_CODE_UNION)
      || TYPE_CODE (value_type) == TYPE_CODE_UNION)
    return 1;
    return 1;
  return !(TYPE_LENGTH (value_type) == 1
  return !(TYPE_LENGTH (value_type) == 1
           || TYPE_LENGTH (value_type) == 2
           || TYPE_LENGTH (value_type) == 2
           || TYPE_LENGTH (value_type) == 4
           || TYPE_LENGTH (value_type) == 4
           || (TYPE_LENGTH (value_type) == 8
           || (TYPE_LENGTH (value_type) == 8
               && TYPE_CODE (value_type) == TYPE_CODE_INT));
               && TYPE_CODE (value_type) == TYPE_CODE_INT));
}
}
 
 
/* Function: store_return_value
/* Function: store_return_value
   Place the appropriate value in the appropriate registers.
   Place the appropriate value in the appropriate registers.
   Primarily used by the RETURN command.  */
   Primarily used by the RETURN command.  */
 
 
static void
static void
h8300_store_return_value (struct type *type, struct regcache *regcache,
h8300_store_return_value (struct type *type, struct regcache *regcache,
                          const void *valbuf)
                          const void *valbuf)
{
{
  int len = TYPE_LENGTH (type);
  int len = TYPE_LENGTH (type);
  ULONGEST val;
  ULONGEST val;
 
 
  switch (len)
  switch (len)
    {
    {
    case 1:
    case 1:
    case 2:                     /* short... */
    case 2:                     /* short... */
      val = extract_unsigned_integer (valbuf, len);
      val = extract_unsigned_integer (valbuf, len);
      regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val);
      regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val);
      break;
      break;
    case 4:                     /* long, float */
    case 4:                     /* long, float */
      val = extract_unsigned_integer (valbuf, len);
      val = extract_unsigned_integer (valbuf, len);
      regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM,
      regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM,
                                      (val >> 16) & 0xffff);
                                      (val >> 16) & 0xffff);
      regcache_cooked_write_unsigned (regcache, E_RET1_REGNUM, val & 0xffff);
      regcache_cooked_write_unsigned (regcache, E_RET1_REGNUM, val & 0xffff);
      break;
      break;
    case 8:                     /* long long, double and long double are all defined
    case 8:                     /* long long, double and long double are all defined
                                   as 4 byte types so far so this shouldn't happen.  */
                                   as 4 byte types so far so this shouldn't happen.  */
      error ("I don't know how to return an 8 byte value.");
      error ("I don't know how to return an 8 byte value.");
      break;
      break;
    }
    }
}
}
 
 
static void
static void
h8300h_store_return_value (struct type *type, struct regcache *regcache,
h8300h_store_return_value (struct type *type, struct regcache *regcache,
                           const void *valbuf)
                           const void *valbuf)
{
{
  int len = TYPE_LENGTH (type);
  int len = TYPE_LENGTH (type);
  ULONGEST val;
  ULONGEST val;
 
 
  switch (len)
  switch (len)
    {
    {
    case 1:
    case 1:
    case 2:
    case 2:
    case 4:                     /* long, float */
    case 4:                     /* long, float */
      val = extract_unsigned_integer (valbuf, len);
      val = extract_unsigned_integer (valbuf, len);
      regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val);
      regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val);
      break;
      break;
    case 8:
    case 8:
      val = extract_unsigned_integer (valbuf, len);
      val = extract_unsigned_integer (valbuf, len);
      regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM,
      regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM,
                                      (val >> 32) & 0xffffffff);
                                      (val >> 32) & 0xffffffff);
      regcache_cooked_write_unsigned (regcache, E_RET1_REGNUM,
      regcache_cooked_write_unsigned (regcache, E_RET1_REGNUM,
                                      val & 0xffffffff);
                                      val & 0xffffffff);
      break;
      break;
    }
    }
}
}
 
 
static enum return_value_convention
static enum return_value_convention
h8300_return_value (struct gdbarch *gdbarch, struct type *type,
h8300_return_value (struct gdbarch *gdbarch, struct type *type,
                    struct regcache *regcache,
                    struct regcache *regcache,
                    gdb_byte *readbuf, const gdb_byte *writebuf)
                    gdb_byte *readbuf, const gdb_byte *writebuf)
{
{
  if (h8300_use_struct_convention (type))
  if (h8300_use_struct_convention (type))
    return RETURN_VALUE_STRUCT_CONVENTION;
    return RETURN_VALUE_STRUCT_CONVENTION;
  if (writebuf)
  if (writebuf)
    h8300_store_return_value (type, regcache, writebuf);
    h8300_store_return_value (type, regcache, writebuf);
  else if (readbuf)
  else if (readbuf)
    h8300_extract_return_value (type, regcache, readbuf);
    h8300_extract_return_value (type, regcache, readbuf);
  return RETURN_VALUE_REGISTER_CONVENTION;
  return RETURN_VALUE_REGISTER_CONVENTION;
}
}
 
 
static enum return_value_convention
static enum return_value_convention
h8300h_return_value (struct gdbarch *gdbarch, struct type *type,
h8300h_return_value (struct gdbarch *gdbarch, struct type *type,
                     struct regcache *regcache,
                     struct regcache *regcache,
                     gdb_byte *readbuf, const gdb_byte *writebuf)
                     gdb_byte *readbuf, const gdb_byte *writebuf)
{
{
  if (h8300h_use_struct_convention (type))
  if (h8300h_use_struct_convention (type))
    {
    {
      if (readbuf)
      if (readbuf)
        {
        {
          ULONGEST addr;
          ULONGEST addr;
 
 
          regcache_raw_read_unsigned (regcache, E_R0_REGNUM, &addr);
          regcache_raw_read_unsigned (regcache, E_R0_REGNUM, &addr);
          read_memory (addr, readbuf, TYPE_LENGTH (type));
          read_memory (addr, readbuf, TYPE_LENGTH (type));
        }
        }
 
 
      return RETURN_VALUE_ABI_RETURNS_ADDRESS;
      return RETURN_VALUE_ABI_RETURNS_ADDRESS;
    }
    }
  if (writebuf)
  if (writebuf)
    h8300h_store_return_value (type, regcache, writebuf);
    h8300h_store_return_value (type, regcache, writebuf);
  else if (readbuf)
  else if (readbuf)
    h8300h_extract_return_value (type, regcache, readbuf);
    h8300h_extract_return_value (type, regcache, readbuf);
  return RETURN_VALUE_REGISTER_CONVENTION;
  return RETURN_VALUE_REGISTER_CONVENTION;
}
}
 
 
static struct cmd_list_element *setmachinelist;
static struct cmd_list_element *setmachinelist;
 
 
static const char *
static const char *
h8300_register_name (struct gdbarch *gdbarch, int regno)
h8300_register_name (struct gdbarch *gdbarch, int regno)
{
{
  /* The register names change depending on which h8300 processor
  /* The register names change depending on which h8300 processor
     type is selected. */
     type is selected. */
  static char *register_names[] = {
  static char *register_names[] = {
    "r0", "r1", "r2", "r3", "r4", "r5", "r6",
    "r0", "r1", "r2", "r3", "r4", "r5", "r6",
    "sp", "", "pc", "cycles", "tick", "inst",
    "sp", "", "pc", "cycles", "tick", "inst",
    "ccr",                      /* pseudo register */
    "ccr",                      /* pseudo register */
  };
  };
  if (regno < 0
  if (regno < 0
      || regno >= (sizeof (register_names) / sizeof (*register_names)))
      || regno >= (sizeof (register_names) / sizeof (*register_names)))
    internal_error (__FILE__, __LINE__,
    internal_error (__FILE__, __LINE__,
                    "h8300_register_name: illegal register number %d", regno);
                    "h8300_register_name: illegal register number %d", regno);
  else
  else
    return register_names[regno];
    return register_names[regno];
}
}
 
 
static const char *
static const char *
h8300s_register_name (struct gdbarch *gdbarch, int regno)
h8300s_register_name (struct gdbarch *gdbarch, int regno)
{
{
  static char *register_names[] = {
  static char *register_names[] = {
    "er0", "er1", "er2", "er3", "er4", "er5", "er6",
    "er0", "er1", "er2", "er3", "er4", "er5", "er6",
    "sp", "", "pc", "cycles", "", "tick", "inst",
    "sp", "", "pc", "cycles", "", "tick", "inst",
    "mach", "macl",
    "mach", "macl",
    "ccr", "exr"                /* pseudo registers */
    "ccr", "exr"                /* pseudo registers */
  };
  };
  if (regno < 0
  if (regno < 0
      || regno >= (sizeof (register_names) / sizeof (*register_names)))
      || regno >= (sizeof (register_names) / sizeof (*register_names)))
    internal_error (__FILE__, __LINE__,
    internal_error (__FILE__, __LINE__,
                    "h8300s_register_name: illegal register number %d",
                    "h8300s_register_name: illegal register number %d",
                    regno);
                    regno);
  else
  else
    return register_names[regno];
    return register_names[regno];
}
}
 
 
static const char *
static const char *
h8300sx_register_name (struct gdbarch *gdbarch, int regno)
h8300sx_register_name (struct gdbarch *gdbarch, int regno)
{
{
  static char *register_names[] = {
  static char *register_names[] = {
    "er0", "er1", "er2", "er3", "er4", "er5", "er6",
    "er0", "er1", "er2", "er3", "er4", "er5", "er6",
    "sp", "", "pc", "cycles", "", "tick", "inst",
    "sp", "", "pc", "cycles", "", "tick", "inst",
    "mach", "macl", "sbr", "vbr",
    "mach", "macl", "sbr", "vbr",
    "ccr", "exr"                /* pseudo registers */
    "ccr", "exr"                /* pseudo registers */
  };
  };
  if (regno < 0
  if (regno < 0
      || regno >= (sizeof (register_names) / sizeof (*register_names)))
      || regno >= (sizeof (register_names) / sizeof (*register_names)))
    internal_error (__FILE__, __LINE__,
    internal_error (__FILE__, __LINE__,
                    "h8300sx_register_name: illegal register number %d",
                    "h8300sx_register_name: illegal register number %d",
                    regno);
                    regno);
  else
  else
    return register_names[regno];
    return register_names[regno];
}
}
 
 
static void
static void
h8300_print_register (struct gdbarch *gdbarch, struct ui_file *file,
h8300_print_register (struct gdbarch *gdbarch, struct ui_file *file,
                      struct frame_info *frame, int regno)
                      struct frame_info *frame, int regno)
{
{
  LONGEST rval;
  LONGEST rval;
  const char *name = gdbarch_register_name (gdbarch, regno);
  const char *name = gdbarch_register_name (gdbarch, regno);
 
 
  if (!name || !*name)
  if (!name || !*name)
    return;
    return;
 
 
  rval = get_frame_register_signed (frame, regno);
  rval = get_frame_register_signed (frame, regno);
 
 
  fprintf_filtered (file, "%-14s ", name);
  fprintf_filtered (file, "%-14s ", name);
  if ((regno == E_PSEUDO_CCR_REGNUM (gdbarch)) || \
  if ((regno == E_PSEUDO_CCR_REGNUM (gdbarch)) || \
      (regno == E_PSEUDO_EXR_REGNUM (gdbarch) && is_h8300smode (gdbarch)))
      (regno == E_PSEUDO_EXR_REGNUM (gdbarch) && is_h8300smode (gdbarch)))
    {
    {
      fprintf_filtered (file, "0x%02x        ", (unsigned char) rval);
      fprintf_filtered (file, "0x%02x        ", (unsigned char) rval);
      print_longest (file, 'u', 1, rval);
      print_longest (file, 'u', 1, rval);
    }
    }
  else
  else
    {
    {
      fprintf_filtered (file, "0x%s  ", phex ((ULONGEST) rval,
      fprintf_filtered (file, "0x%s  ", phex ((ULONGEST) rval,
                        BINWORD (gdbarch)));
                        BINWORD (gdbarch)));
      print_longest (file, 'd', 1, rval);
      print_longest (file, 'd', 1, rval);
    }
    }
  if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
  if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
    {
    {
      /* CCR register */
      /* CCR register */
      int C, Z, N, V;
      int C, Z, N, V;
      unsigned char l = rval & 0xff;
      unsigned char l = rval & 0xff;
      fprintf_filtered (file, "\t");
      fprintf_filtered (file, "\t");
      fprintf_filtered (file, "I-%d ", (l & 0x80) != 0);
      fprintf_filtered (file, "I-%d ", (l & 0x80) != 0);
      fprintf_filtered (file, "UI-%d ", (l & 0x40) != 0);
      fprintf_filtered (file, "UI-%d ", (l & 0x40) != 0);
      fprintf_filtered (file, "H-%d ", (l & 0x20) != 0);
      fprintf_filtered (file, "H-%d ", (l & 0x20) != 0);
      fprintf_filtered (file, "U-%d ", (l & 0x10) != 0);
      fprintf_filtered (file, "U-%d ", (l & 0x10) != 0);
      N = (l & 0x8) != 0;
      N = (l & 0x8) != 0;
      Z = (l & 0x4) != 0;
      Z = (l & 0x4) != 0;
      V = (l & 0x2) != 0;
      V = (l & 0x2) != 0;
      C = (l & 0x1) != 0;
      C = (l & 0x1) != 0;
      fprintf_filtered (file, "N-%d ", N);
      fprintf_filtered (file, "N-%d ", N);
      fprintf_filtered (file, "Z-%d ", Z);
      fprintf_filtered (file, "Z-%d ", Z);
      fprintf_filtered (file, "V-%d ", V);
      fprintf_filtered (file, "V-%d ", V);
      fprintf_filtered (file, "C-%d ", C);
      fprintf_filtered (file, "C-%d ", C);
      if ((C | Z) == 0)
      if ((C | Z) == 0)
        fprintf_filtered (file, "u> ");
        fprintf_filtered (file, "u> ");
      if ((C | Z) == 1)
      if ((C | Z) == 1)
        fprintf_filtered (file, "u<= ");
        fprintf_filtered (file, "u<= ");
      if ((C == 0))
      if ((C == 0))
        fprintf_filtered (file, "u>= ");
        fprintf_filtered (file, "u>= ");
      if (C == 1)
      if (C == 1)
        fprintf_filtered (file, "u< ");
        fprintf_filtered (file, "u< ");
      if (Z == 0)
      if (Z == 0)
        fprintf_filtered (file, "!= ");
        fprintf_filtered (file, "!= ");
      if (Z == 1)
      if (Z == 1)
        fprintf_filtered (file, "== ");
        fprintf_filtered (file, "== ");
      if ((N ^ V) == 0)
      if ((N ^ V) == 0)
        fprintf_filtered (file, ">= ");
        fprintf_filtered (file, ">= ");
      if ((N ^ V) == 1)
      if ((N ^ V) == 1)
        fprintf_filtered (file, "< ");
        fprintf_filtered (file, "< ");
      if ((Z | (N ^ V)) == 0)
      if ((Z | (N ^ V)) == 0)
        fprintf_filtered (file, "> ");
        fprintf_filtered (file, "> ");
      if ((Z | (N ^ V)) == 1)
      if ((Z | (N ^ V)) == 1)
        fprintf_filtered (file, "<= ");
        fprintf_filtered (file, "<= ");
    }
    }
  else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch) && is_h8300smode (gdbarch))
  else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch) && is_h8300smode (gdbarch))
    {
    {
      /* EXR register */
      /* EXR register */
      unsigned char l = rval & 0xff;
      unsigned char l = rval & 0xff;
      fprintf_filtered (file, "\t");
      fprintf_filtered (file, "\t");
      fprintf_filtered (file, "T-%d - - - ", (l & 0x80) != 0);
      fprintf_filtered (file, "T-%d - - - ", (l & 0x80) != 0);
      fprintf_filtered (file, "I2-%d ", (l & 4) != 0);
      fprintf_filtered (file, "I2-%d ", (l & 4) != 0);
      fprintf_filtered (file, "I1-%d ", (l & 2) != 0);
      fprintf_filtered (file, "I1-%d ", (l & 2) != 0);
      fprintf_filtered (file, "I0-%d", (l & 1) != 0);
      fprintf_filtered (file, "I0-%d", (l & 1) != 0);
    }
    }
  fprintf_filtered (file, "\n");
  fprintf_filtered (file, "\n");
}
}
 
 
static void
static void
h8300_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
h8300_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
                            struct frame_info *frame, int regno, int cpregs)
                            struct frame_info *frame, int regno, int cpregs)
{
{
  if (regno < 0)
  if (regno < 0)
    {
    {
      for (regno = E_R0_REGNUM; regno <= E_SP_REGNUM; ++regno)
      for (regno = E_R0_REGNUM; regno <= E_SP_REGNUM; ++regno)
        h8300_print_register (gdbarch, file, frame, regno);
        h8300_print_register (gdbarch, file, frame, regno);
      h8300_print_register (gdbarch, file, frame,
      h8300_print_register (gdbarch, file, frame,
                            E_PSEUDO_CCR_REGNUM (gdbarch));
                            E_PSEUDO_CCR_REGNUM (gdbarch));
      h8300_print_register (gdbarch, file, frame, E_PC_REGNUM);
      h8300_print_register (gdbarch, file, frame, E_PC_REGNUM);
      if (is_h8300smode (gdbarch))
      if (is_h8300smode (gdbarch))
        {
        {
          h8300_print_register (gdbarch, file, frame,
          h8300_print_register (gdbarch, file, frame,
                                E_PSEUDO_EXR_REGNUM (gdbarch));
                                E_PSEUDO_EXR_REGNUM (gdbarch));
          if (is_h8300sxmode (gdbarch))
          if (is_h8300sxmode (gdbarch))
            {
            {
              h8300_print_register (gdbarch, file, frame, E_SBR_REGNUM);
              h8300_print_register (gdbarch, file, frame, E_SBR_REGNUM);
              h8300_print_register (gdbarch, file, frame, E_VBR_REGNUM);
              h8300_print_register (gdbarch, file, frame, E_VBR_REGNUM);
            }
            }
          h8300_print_register (gdbarch, file, frame, E_MACH_REGNUM);
          h8300_print_register (gdbarch, file, frame, E_MACH_REGNUM);
          h8300_print_register (gdbarch, file, frame, E_MACL_REGNUM);
          h8300_print_register (gdbarch, file, frame, E_MACL_REGNUM);
          h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM);
          h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM);
          h8300_print_register (gdbarch, file, frame, E_TICKS_REGNUM);
          h8300_print_register (gdbarch, file, frame, E_TICKS_REGNUM);
          h8300_print_register (gdbarch, file, frame, E_INSTS_REGNUM);
          h8300_print_register (gdbarch, file, frame, E_INSTS_REGNUM);
        }
        }
      else
      else
        {
        {
          h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM);
          h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM);
          h8300_print_register (gdbarch, file, frame, E_TICK_REGNUM);
          h8300_print_register (gdbarch, file, frame, E_TICK_REGNUM);
          h8300_print_register (gdbarch, file, frame, E_INST_REGNUM);
          h8300_print_register (gdbarch, file, frame, E_INST_REGNUM);
        }
        }
    }
    }
  else
  else
    {
    {
      if (regno == E_CCR_REGNUM)
      if (regno == E_CCR_REGNUM)
        h8300_print_register (gdbarch, file, frame,
        h8300_print_register (gdbarch, file, frame,
                              E_PSEUDO_CCR_REGNUM (gdbarch));
                              E_PSEUDO_CCR_REGNUM (gdbarch));
      else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch)
      else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch)
               && is_h8300smode (gdbarch))
               && is_h8300smode (gdbarch))
        h8300_print_register (gdbarch, file, frame,
        h8300_print_register (gdbarch, file, frame,
                              E_PSEUDO_EXR_REGNUM (gdbarch));
                              E_PSEUDO_EXR_REGNUM (gdbarch));
      else
      else
        h8300_print_register (gdbarch, file, frame, regno);
        h8300_print_register (gdbarch, file, frame, regno);
    }
    }
}
}
 
 
static struct type *
static struct type *
h8300_register_type (struct gdbarch *gdbarch, int regno)
h8300_register_type (struct gdbarch *gdbarch, int regno)
{
{
  if (regno < 0 || regno >= gdbarch_num_regs (gdbarch)
  if (regno < 0 || regno >= gdbarch_num_regs (gdbarch)
                            + gdbarch_num_pseudo_regs (gdbarch))
                            + gdbarch_num_pseudo_regs (gdbarch))
    internal_error (__FILE__, __LINE__,
    internal_error (__FILE__, __LINE__,
                    "h8300_register_type: illegal register number %d", regno);
                    "h8300_register_type: illegal register number %d", regno);
  else
  else
    {
    {
      switch (regno)
      switch (regno)
        {
        {
        case E_PC_REGNUM:
        case E_PC_REGNUM:
          return builtin_type_void_func_ptr;
          return builtin_type_void_func_ptr;
        case E_SP_REGNUM:
        case E_SP_REGNUM:
        case E_FP_REGNUM:
        case E_FP_REGNUM:
          return builtin_type_void_data_ptr;
          return builtin_type_void_data_ptr;
        default:
        default:
          if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
          if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
            return builtin_type_uint8;
            return builtin_type_uint8;
          else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch))
          else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch))
            return builtin_type_uint8;
            return builtin_type_uint8;
          else if (is_h8300hmode (gdbarch))
          else if (is_h8300hmode (gdbarch))
            return builtin_type_int32;
            return builtin_type_int32;
          else
          else
            return builtin_type_int16;
            return builtin_type_int16;
        }
        }
    }
    }
}
}
 
 
static void
static void
h8300_pseudo_register_read (struct gdbarch *gdbarch,
h8300_pseudo_register_read (struct gdbarch *gdbarch,
                            struct regcache *regcache, int regno,
                            struct regcache *regcache, int regno,
                            gdb_byte *buf)
                            gdb_byte *buf)
{
{
  if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
  if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
    regcache_raw_read (regcache, E_CCR_REGNUM, buf);
    regcache_raw_read (regcache, E_CCR_REGNUM, buf);
  else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch))
  else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch))
    regcache_raw_read (regcache, E_EXR_REGNUM, buf);
    regcache_raw_read (regcache, E_EXR_REGNUM, buf);
  else
  else
    regcache_raw_read (regcache, regno, buf);
    regcache_raw_read (regcache, regno, buf);
}
}
 
 
static void
static void
h8300_pseudo_register_write (struct gdbarch *gdbarch,
h8300_pseudo_register_write (struct gdbarch *gdbarch,
                             struct regcache *regcache, int regno,
                             struct regcache *regcache, int regno,
                             const gdb_byte *buf)
                             const gdb_byte *buf)
{
{
  if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
  if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
    regcache_raw_write (regcache, E_CCR_REGNUM, buf);
    regcache_raw_write (regcache, E_CCR_REGNUM, buf);
  else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch))
  else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch))
    regcache_raw_write (regcache, E_EXR_REGNUM, buf);
    regcache_raw_write (regcache, E_EXR_REGNUM, buf);
  else
  else
    regcache_raw_write (regcache, regno, buf);
    regcache_raw_write (regcache, regno, buf);
}
}
 
 
static int
static int
h8300_dbg_reg_to_regnum (struct gdbarch *gdbarch, int regno)
h8300_dbg_reg_to_regnum (struct gdbarch *gdbarch, int regno)
{
{
  if (regno == E_CCR_REGNUM)
  if (regno == E_CCR_REGNUM)
    return E_PSEUDO_CCR_REGNUM (gdbarch);
    return E_PSEUDO_CCR_REGNUM (gdbarch);
  return regno;
  return regno;
}
}
 
 
static int
static int
h8300s_dbg_reg_to_regnum (struct gdbarch *gdbarch, int regno)
h8300s_dbg_reg_to_regnum (struct gdbarch *gdbarch, int regno)
{
{
  if (regno == E_CCR_REGNUM)
  if (regno == E_CCR_REGNUM)
    return E_PSEUDO_CCR_REGNUM (gdbarch);
    return E_PSEUDO_CCR_REGNUM (gdbarch);
  if (regno == E_EXR_REGNUM)
  if (regno == E_EXR_REGNUM)
    return E_PSEUDO_EXR_REGNUM (gdbarch);
    return E_PSEUDO_EXR_REGNUM (gdbarch);
  return regno;
  return regno;
}
}
 
 
const static unsigned char *
const static unsigned char *
h8300_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
h8300_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
                          int *lenptr)
                          int *lenptr)
{
{
  /*static unsigned char breakpoint[] = { 0x7A, 0xFF }; *//* ??? */
  /*static unsigned char breakpoint[] = { 0x7A, 0xFF }; *//* ??? */
  static unsigned char breakpoint[] = { 0x01, 0x80 };   /* Sleep */
  static unsigned char breakpoint[] = { 0x01, 0x80 };   /* Sleep */
 
 
  *lenptr = sizeof (breakpoint);
  *lenptr = sizeof (breakpoint);
  return breakpoint;
  return breakpoint;
}
}
 
 
static void
static void
h8300_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
h8300_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
                        struct frame_info *frame, const char *args)
                        struct frame_info *frame, const char *args)
{
{
  fprintf_filtered (file, "\
  fprintf_filtered (file, "\
No floating-point info available for this processor.\n");
No floating-point info available for this processor.\n");
}
}
 
 
static struct gdbarch *
static struct gdbarch *
h8300_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
h8300_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
{
  struct gdbarch_tdep *tdep = NULL;
  struct gdbarch_tdep *tdep = NULL;
  struct gdbarch *gdbarch;
  struct gdbarch *gdbarch;
 
 
  arches = gdbarch_list_lookup_by_info (arches, &info);
  arches = gdbarch_list_lookup_by_info (arches, &info);
  if (arches != NULL)
  if (arches != NULL)
    return arches->gdbarch;
    return arches->gdbarch;
 
 
#if 0
#if 0
  tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
  tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
#endif
#endif
 
 
  if (info.bfd_arch_info->arch != bfd_arch_h8300)
  if (info.bfd_arch_info->arch != bfd_arch_h8300)
    return NULL;
    return NULL;
 
 
  gdbarch = gdbarch_alloc (&info, 0);
  gdbarch = gdbarch_alloc (&info, 0);
 
 
  switch (info.bfd_arch_info->mach)
  switch (info.bfd_arch_info->mach)
    {
    {
    case bfd_mach_h8300:
    case bfd_mach_h8300:
      set_gdbarch_num_regs (gdbarch, 13);
      set_gdbarch_num_regs (gdbarch, 13);
      set_gdbarch_num_pseudo_regs (gdbarch, 1);
      set_gdbarch_num_pseudo_regs (gdbarch, 1);
      set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
      set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
      set_gdbarch_dwarf_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
      set_gdbarch_dwarf_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
      set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
      set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
      set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
      set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
      set_gdbarch_register_name (gdbarch, h8300_register_name);
      set_gdbarch_register_name (gdbarch, h8300_register_name);
      set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
      set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
      set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
      set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
      set_gdbarch_return_value (gdbarch, h8300_return_value);
      set_gdbarch_return_value (gdbarch, h8300_return_value);
      set_gdbarch_print_insn (gdbarch, print_insn_h8300);
      set_gdbarch_print_insn (gdbarch, print_insn_h8300);
      break;
      break;
    case bfd_mach_h8300h:
    case bfd_mach_h8300h:
    case bfd_mach_h8300hn:
    case bfd_mach_h8300hn:
      set_gdbarch_num_regs (gdbarch, 13);
      set_gdbarch_num_regs (gdbarch, 13);
      set_gdbarch_num_pseudo_regs (gdbarch, 1);
      set_gdbarch_num_pseudo_regs (gdbarch, 1);
      set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
      set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
      set_gdbarch_dwarf_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
      set_gdbarch_dwarf_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
      set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
      set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
      set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
      set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
      set_gdbarch_register_name (gdbarch, h8300_register_name);
      set_gdbarch_register_name (gdbarch, h8300_register_name);
      if (info.bfd_arch_info->mach != bfd_mach_h8300hn)
      if (info.bfd_arch_info->mach != bfd_mach_h8300hn)
        {
        {
          set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
          set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
          set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
          set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
        }
        }
      else
      else
        {
        {
          set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
          set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
          set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
          set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
        }
        }
      set_gdbarch_return_value (gdbarch, h8300h_return_value);
      set_gdbarch_return_value (gdbarch, h8300h_return_value);
      set_gdbarch_print_insn (gdbarch, print_insn_h8300h);
      set_gdbarch_print_insn (gdbarch, print_insn_h8300h);
      break;
      break;
    case bfd_mach_h8300s:
    case bfd_mach_h8300s:
    case bfd_mach_h8300sn:
    case bfd_mach_h8300sn:
      set_gdbarch_num_regs (gdbarch, 16);
      set_gdbarch_num_regs (gdbarch, 16);
      set_gdbarch_num_pseudo_regs (gdbarch, 2);
      set_gdbarch_num_pseudo_regs (gdbarch, 2);
      set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
      set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
      set_gdbarch_dwarf_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
      set_gdbarch_dwarf_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
      set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
      set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
      set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
      set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
      set_gdbarch_register_name (gdbarch, h8300s_register_name);
      set_gdbarch_register_name (gdbarch, h8300s_register_name);
      if (info.bfd_arch_info->mach != bfd_mach_h8300sn)
      if (info.bfd_arch_info->mach != bfd_mach_h8300sn)
        {
        {
          set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
          set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
          set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
          set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
        }
        }
      else
      else
        {
        {
          set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
          set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
          set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
          set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
        }
        }
      set_gdbarch_return_value (gdbarch, h8300h_return_value);
      set_gdbarch_return_value (gdbarch, h8300h_return_value);
      set_gdbarch_print_insn (gdbarch, print_insn_h8300s);
      set_gdbarch_print_insn (gdbarch, print_insn_h8300s);
      break;
      break;
    case bfd_mach_h8300sx:
    case bfd_mach_h8300sx:
    case bfd_mach_h8300sxn:
    case bfd_mach_h8300sxn:
      set_gdbarch_num_regs (gdbarch, 18);
      set_gdbarch_num_regs (gdbarch, 18);
      set_gdbarch_num_pseudo_regs (gdbarch, 2);
      set_gdbarch_num_pseudo_regs (gdbarch, 2);
      set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
      set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
      set_gdbarch_dwarf_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
      set_gdbarch_dwarf_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
      set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
      set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
      set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
      set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
      set_gdbarch_register_name (gdbarch, h8300sx_register_name);
      set_gdbarch_register_name (gdbarch, h8300sx_register_name);
      if (info.bfd_arch_info->mach != bfd_mach_h8300sxn)
      if (info.bfd_arch_info->mach != bfd_mach_h8300sxn)
        {
        {
          set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
          set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
          set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
          set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
        }
        }
      else
      else
        {
        {
          set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
          set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
          set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
          set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
        }
        }
      set_gdbarch_return_value (gdbarch, h8300h_return_value);
      set_gdbarch_return_value (gdbarch, h8300h_return_value);
      set_gdbarch_print_insn (gdbarch, print_insn_h8300s);
      set_gdbarch_print_insn (gdbarch, print_insn_h8300s);
      break;
      break;
    }
    }
 
 
  set_gdbarch_pseudo_register_read (gdbarch, h8300_pseudo_register_read);
  set_gdbarch_pseudo_register_read (gdbarch, h8300_pseudo_register_read);
  set_gdbarch_pseudo_register_write (gdbarch, h8300_pseudo_register_write);
  set_gdbarch_pseudo_register_write (gdbarch, h8300_pseudo_register_write);
 
 
  /*
  /*
   * Basic register fields and methods.
   * Basic register fields and methods.
   */
   */
 
 
  set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
  set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
  set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
  set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
  set_gdbarch_register_type (gdbarch, h8300_register_type);
  set_gdbarch_register_type (gdbarch, h8300_register_type);
  set_gdbarch_print_registers_info (gdbarch, h8300_print_registers_info);
  set_gdbarch_print_registers_info (gdbarch, h8300_print_registers_info);
  set_gdbarch_print_float_info (gdbarch, h8300_print_float_info);
  set_gdbarch_print_float_info (gdbarch, h8300_print_float_info);
 
 
  /*
  /*
   * Frame Info
   * Frame Info
   */
   */
  set_gdbarch_skip_prologue (gdbarch, h8300_skip_prologue);
  set_gdbarch_skip_prologue (gdbarch, h8300_skip_prologue);
 
 
  /* Frame unwinder.  */
  /* Frame unwinder.  */
  set_gdbarch_unwind_pc (gdbarch, h8300_unwind_pc);
  set_gdbarch_unwind_pc (gdbarch, h8300_unwind_pc);
  set_gdbarch_unwind_sp (gdbarch, h8300_unwind_sp);
  set_gdbarch_unwind_sp (gdbarch, h8300_unwind_sp);
  set_gdbarch_unwind_dummy_id (gdbarch, h8300_unwind_dummy_id);
  set_gdbarch_unwind_dummy_id (gdbarch, h8300_unwind_dummy_id);
  frame_base_set_default (gdbarch, &h8300_frame_base);
  frame_base_set_default (gdbarch, &h8300_frame_base);
 
 
  /*
  /*
   * Miscelany
   * Miscelany
   */
   */
  /* Stack grows up. */
  /* Stack grows up. */
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
 
 
  set_gdbarch_breakpoint_from_pc (gdbarch, h8300_breakpoint_from_pc);
  set_gdbarch_breakpoint_from_pc (gdbarch, h8300_breakpoint_from_pc);
  set_gdbarch_push_dummy_call (gdbarch, h8300_push_dummy_call);
  set_gdbarch_push_dummy_call (gdbarch, h8300_push_dummy_call);
 
 
  set_gdbarch_char_signed (gdbarch, 0);
  set_gdbarch_char_signed (gdbarch, 0);
  set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
  set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
  set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
  set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
  set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
 
 
  set_gdbarch_believe_pcc_promotion (gdbarch, 1);
  set_gdbarch_believe_pcc_promotion (gdbarch, 1);
 
 
  /* Hook in the DWARF CFI frame unwinder.  */
  /* Hook in the DWARF CFI frame unwinder.  */
  frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
  frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
  frame_unwind_append_sniffer (gdbarch, h8300_frame_sniffer);
  frame_unwind_append_sniffer (gdbarch, h8300_frame_sniffer);
 
 
  return gdbarch;
  return gdbarch;
 
 
}
}
 
 
extern initialize_file_ftype _initialize_h8300_tdep;    /* -Wmissing-prototypes */
extern initialize_file_ftype _initialize_h8300_tdep;    /* -Wmissing-prototypes */
 
 
void
void
_initialize_h8300_tdep (void)
_initialize_h8300_tdep (void)
{
{
  register_gdbarch_init (bfd_arch_h8300, h8300_gdbarch_init);
  register_gdbarch_init (bfd_arch_h8300, h8300_gdbarch_init);
}
}
 
 
static int
static int
is_h8300hmode (struct gdbarch *gdbarch)
is_h8300hmode (struct gdbarch *gdbarch)
{
{
  return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
  return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
    || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
    || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
    || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300s
    || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300s
    || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn
    || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn
    || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300h
    || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300h
    || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300hn;
    || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300hn;
}
}
 
 
static int
static int
is_h8300smode (struct gdbarch *gdbarch)
is_h8300smode (struct gdbarch *gdbarch)
{
{
  return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
  return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
    || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
    || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
    || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300s
    || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300s
    || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn;
    || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn;
}
}
 
 
static int
static int
is_h8300sxmode (struct gdbarch *gdbarch)
is_h8300sxmode (struct gdbarch *gdbarch)
{
{
  return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
  return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
    || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn;
    || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn;
}
}
 
 
static int
static int
is_h8300_normal_mode (struct gdbarch *gdbarch)
is_h8300_normal_mode (struct gdbarch *gdbarch)
{
{
  return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
  return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
    || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn
    || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn
    || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300hn;
    || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300hn;
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.