OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gdb-6.8/] [gdb/] [i386-nto-tdep.c] - Diff between revs 827 and 840

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 827 Rev 840
/* Target-dependent code for QNX Neutrino x86.
/* Target-dependent code for QNX Neutrino x86.
 
 
   Copyright (C) 2003, 2004, 2007, 2008 Free Software Foundation, Inc.
   Copyright (C) 2003, 2004, 2007, 2008 Free Software Foundation, Inc.
 
 
   Contributed by QNX Software Systems Ltd.
   Contributed by QNX Software Systems Ltd.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
 
 
#include "defs.h"
#include "defs.h"
#include "frame.h"
#include "frame.h"
#include "osabi.h"
#include "osabi.h"
#include "regcache.h"
#include "regcache.h"
#include "target.h"
#include "target.h"
 
 
#include "gdb_assert.h"
#include "gdb_assert.h"
#include "gdb_string.h"
#include "gdb_string.h"
 
 
#include "i386-tdep.h"
#include "i386-tdep.h"
#include "i387-tdep.h"
#include "i387-tdep.h"
#include "nto-tdep.h"
#include "nto-tdep.h"
#include "solib.h"
#include "solib.h"
#include "solib-svr4.h"
#include "solib-svr4.h"
 
 
/* Target vector for QNX NTO x86.  */
/* Target vector for QNX NTO x86.  */
static struct nto_target_ops i386_nto_target;
static struct nto_target_ops i386_nto_target;
 
 
#ifndef X86_CPU_FXSR
#ifndef X86_CPU_FXSR
#define X86_CPU_FXSR (1L << 12)
#define X86_CPU_FXSR (1L << 12)
#endif
#endif
 
 
/* Why 13?  Look in our /usr/include/x86/context.h header at the
/* Why 13?  Look in our /usr/include/x86/context.h header at the
   x86_cpu_registers structure and you'll see an 'exx' junk register
   x86_cpu_registers structure and you'll see an 'exx' junk register
   that is just filler.  Don't ask me, ask the kernel guys.  */
   that is just filler.  Don't ask me, ask the kernel guys.  */
#define NUM_GPREGS 13
#define NUM_GPREGS 13
 
 
/* Mapping between the general-purpose registers in `struct xxx'
/* Mapping between the general-purpose registers in `struct xxx'
   format and GDB's register cache layout.  */
   format and GDB's register cache layout.  */
 
 
/* From <x86/context.h>.  */
/* From <x86/context.h>.  */
static int i386nto_gregset_reg_offset[] =
static int i386nto_gregset_reg_offset[] =
{
{
  7 * 4,                        /* %eax */
  7 * 4,                        /* %eax */
  6 * 4,                        /* %ecx */
  6 * 4,                        /* %ecx */
  5 * 4,                        /* %edx */
  5 * 4,                        /* %edx */
  4 * 4,                        /* %ebx */
  4 * 4,                        /* %ebx */
  11 * 4,                       /* %esp */
  11 * 4,                       /* %esp */
  2 * 4,                        /* %epb */
  2 * 4,                        /* %epb */
  1 * 4,                        /* %esi */
  1 * 4,                        /* %esi */
  0 * 4,                 /* %edi */
  0 * 4,                 /* %edi */
  8 * 4,                        /* %eip */
  8 * 4,                        /* %eip */
  10 * 4,                       /* %eflags */
  10 * 4,                       /* %eflags */
  9 * 4,                        /* %cs */
  9 * 4,                        /* %cs */
  12 * 4,                       /* %ss */
  12 * 4,                       /* %ss */
  -1                            /* filler */
  -1                            /* filler */
};
};
 
 
/* Given a GDB register number REGNUM, return the offset into
/* Given a GDB register number REGNUM, return the offset into
   Neutrino's register structure or -1 if the register is unknown.  */
   Neutrino's register structure or -1 if the register is unknown.  */
 
 
static int
static int
nto_reg_offset (int regnum)
nto_reg_offset (int regnum)
{
{
  if (regnum >= 0 && regnum < ARRAY_SIZE (i386nto_gregset_reg_offset))
  if (regnum >= 0 && regnum < ARRAY_SIZE (i386nto_gregset_reg_offset))
    return i386nto_gregset_reg_offset[regnum];
    return i386nto_gregset_reg_offset[regnum];
 
 
  return -1;
  return -1;
}
}
 
 
static void
static void
i386nto_supply_gregset (struct regcache *regcache, char *gpregs)
i386nto_supply_gregset (struct regcache *regcache, char *gpregs)
{
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
 
 
  if(tdep->gregset == NULL)
  if(tdep->gregset == NULL)
    tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
    tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
                                  i386_collect_gregset);
                                  i386_collect_gregset);
 
 
  gdb_assert (tdep->gregset_reg_offset == i386nto_gregset_reg_offset);
  gdb_assert (tdep->gregset_reg_offset == i386nto_gregset_reg_offset);
  tdep->gregset->supply_regset (tdep->gregset, regcache, -1,
  tdep->gregset->supply_regset (tdep->gregset, regcache, -1,
                                gpregs, NUM_GPREGS * 4);
                                gpregs, NUM_GPREGS * 4);
}
}
 
 
static void
static void
i386nto_supply_fpregset (struct regcache *regcache, char *fpregs)
i386nto_supply_fpregset (struct regcache *regcache, char *fpregs)
{
{
  if (nto_cpuinfo_valid && nto_cpuinfo_flags | X86_CPU_FXSR)
  if (nto_cpuinfo_valid && nto_cpuinfo_flags | X86_CPU_FXSR)
    i387_supply_fxsave (regcache, -1, fpregs);
    i387_supply_fxsave (regcache, -1, fpregs);
  else
  else
    i387_supply_fsave (regcache, -1, fpregs);
    i387_supply_fsave (regcache, -1, fpregs);
}
}
 
 
static void
static void
i386nto_supply_regset (struct regcache *regcache, int regset, char *data)
i386nto_supply_regset (struct regcache *regcache, int regset, char *data)
{
{
  switch (regset)
  switch (regset)
    {
    {
    case NTO_REG_GENERAL:
    case NTO_REG_GENERAL:
      i386nto_supply_gregset (regcache, data);
      i386nto_supply_gregset (regcache, data);
      break;
      break;
    case NTO_REG_FLOAT:
    case NTO_REG_FLOAT:
      i386nto_supply_fpregset (regcache, data);
      i386nto_supply_fpregset (regcache, data);
      break;
      break;
    }
    }
}
}
 
 
static int
static int
i386nto_regset_id (int regno)
i386nto_regset_id (int regno)
{
{
  if (regno == -1)
  if (regno == -1)
    return NTO_REG_END;
    return NTO_REG_END;
  else if (regno < I386_NUM_GREGS)
  else if (regno < I386_NUM_GREGS)
    return NTO_REG_GENERAL;
    return NTO_REG_GENERAL;
  else if (regno < I386_NUM_GREGS + I386_NUM_FREGS)
  else if (regno < I386_NUM_GREGS + I386_NUM_FREGS)
    return NTO_REG_FLOAT;
    return NTO_REG_FLOAT;
 
 
  return -1;                    /* Error.  */
  return -1;                    /* Error.  */
}
}
 
 
static int
static int
i386nto_register_area (int regno, int regset, unsigned *off)
i386nto_register_area (int regno, int regset, unsigned *off)
{
{
  int len;
  int len;
 
 
  *off = 0;
  *off = 0;
  if (regset == NTO_REG_GENERAL)
  if (regset == NTO_REG_GENERAL)
    {
    {
      if (regno == -1)
      if (regno == -1)
        return NUM_GPREGS * 4;
        return NUM_GPREGS * 4;
 
 
      *off = nto_reg_offset (regno);
      *off = nto_reg_offset (regno);
      if (*off == -1)
      if (*off == -1)
        return 0;
        return 0;
      return 4;
      return 4;
    }
    }
  else if (regset == NTO_REG_FLOAT)
  else if (regset == NTO_REG_FLOAT)
    {
    {
      unsigned off_adjust, regsize, regset_size;
      unsigned off_adjust, regsize, regset_size;
 
 
      if (nto_cpuinfo_valid && nto_cpuinfo_flags | X86_CPU_FXSR)
      if (nto_cpuinfo_valid && nto_cpuinfo_flags | X86_CPU_FXSR)
        {
        {
          off_adjust = 32;
          off_adjust = 32;
          regsize = 16;
          regsize = 16;
          regset_size = 512;
          regset_size = 512;
        }
        }
      else
      else
        {
        {
          off_adjust = 28;
          off_adjust = 28;
          regsize = 10;
          regsize = 10;
          regset_size = 128;
          regset_size = 128;
        }
        }
 
 
      if (regno == -1)
      if (regno == -1)
        return regset_size;
        return regset_size;
 
 
      *off = (regno - gdbarch_fp0_regnum (current_gdbarch))
      *off = (regno - gdbarch_fp0_regnum (current_gdbarch))
             * regsize + off_adjust;
             * regsize + off_adjust;
      return 10;
      return 10;
      /* Why 10 instead of regsize?  GDB only stores 10 bytes per FP
      /* Why 10 instead of regsize?  GDB only stores 10 bytes per FP
         register so if we're sending a register back to the target,
         register so if we're sending a register back to the target,
         we only want pdebug to write 10 bytes so as not to clobber
         we only want pdebug to write 10 bytes so as not to clobber
         the reserved 6 bytes in the fxsave structure.  */
         the reserved 6 bytes in the fxsave structure.  */
    }
    }
  return -1;
  return -1;
}
}
 
 
static int
static int
i386nto_regset_fill (const struct regcache *regcache, int regset, char *data)
i386nto_regset_fill (const struct regcache *regcache, int regset, char *data)
{
{
  if (regset == NTO_REG_GENERAL)
  if (regset == NTO_REG_GENERAL)
    {
    {
      int regno;
      int regno;
 
 
      for (regno = 0; regno < NUM_GPREGS; regno++)
      for (regno = 0; regno < NUM_GPREGS; regno++)
        {
        {
          int offset = nto_reg_offset (regno);
          int offset = nto_reg_offset (regno);
          if (offset != -1)
          if (offset != -1)
            regcache_raw_collect (regcache, regno, data + offset);
            regcache_raw_collect (regcache, regno, data + offset);
        }
        }
    }
    }
  else if (regset == NTO_REG_FLOAT)
  else if (regset == NTO_REG_FLOAT)
    {
    {
      if (nto_cpuinfo_valid && nto_cpuinfo_flags | X86_CPU_FXSR)
      if (nto_cpuinfo_valid && nto_cpuinfo_flags | X86_CPU_FXSR)
        i387_collect_fxsave (regcache, -1, data);
        i387_collect_fxsave (regcache, -1, data);
      else
      else
        i387_collect_fsave (regcache, -1, data);
        i387_collect_fsave (regcache, -1, data);
    }
    }
  else
  else
    return -1;
    return -1;
 
 
  return 0;
  return 0;
}
}
 
 
/* Return whether the frame preceding NEXT_FRAME corresponds to a QNX
/* Return whether the frame preceding NEXT_FRAME corresponds to a QNX
   Neutrino sigtramp routine.  */
   Neutrino sigtramp routine.  */
 
 
static int
static int
i386nto_sigtramp_p (struct frame_info *next_frame)
i386nto_sigtramp_p (struct frame_info *next_frame)
{
{
  CORE_ADDR pc = frame_pc_unwind (next_frame);
  CORE_ADDR pc = frame_pc_unwind (next_frame);
  char *name;
  char *name;
 
 
  find_pc_partial_function (pc, &name, NULL, NULL);
  find_pc_partial_function (pc, &name, NULL, NULL);
  return name && strcmp ("__signalstub", name) == 0;
  return name && strcmp ("__signalstub", name) == 0;
}
}
 
 
#define I386_NTO_SIGCONTEXT_OFFSET 136
#define I386_NTO_SIGCONTEXT_OFFSET 136
 
 
/* Assuming NEXT_FRAME is a frame following a QNX Neutrino sigtramp
/* Assuming NEXT_FRAME is a frame following a QNX Neutrino sigtramp
   routine, return the address of the associated sigcontext structure.  */
   routine, return the address of the associated sigcontext structure.  */
 
 
static CORE_ADDR
static CORE_ADDR
i386nto_sigcontext_addr (struct frame_info *next_frame)
i386nto_sigcontext_addr (struct frame_info *next_frame)
{
{
  char buf[4];
  char buf[4];
  CORE_ADDR sp;
  CORE_ADDR sp;
 
 
  frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
  frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
  sp = extract_unsigned_integer (buf, 4);
  sp = extract_unsigned_integer (buf, 4);
 
 
  return sp + I386_NTO_SIGCONTEXT_OFFSET;
  return sp + I386_NTO_SIGCONTEXT_OFFSET;
}
}
 
 
static void
static void
init_i386nto_ops (void)
init_i386nto_ops (void)
{
{
  i386_nto_target.regset_id = i386nto_regset_id;
  i386_nto_target.regset_id = i386nto_regset_id;
  i386_nto_target.supply_gregset = i386nto_supply_gregset;
  i386_nto_target.supply_gregset = i386nto_supply_gregset;
  i386_nto_target.supply_fpregset = i386nto_supply_fpregset;
  i386_nto_target.supply_fpregset = i386nto_supply_fpregset;
  i386_nto_target.supply_altregset = nto_dummy_supply_regset;
  i386_nto_target.supply_altregset = nto_dummy_supply_regset;
  i386_nto_target.supply_regset = i386nto_supply_regset;
  i386_nto_target.supply_regset = i386nto_supply_regset;
  i386_nto_target.register_area = i386nto_register_area;
  i386_nto_target.register_area = i386nto_register_area;
  i386_nto_target.regset_fill = i386nto_regset_fill;
  i386_nto_target.regset_fill = i386nto_regset_fill;
  i386_nto_target.fetch_link_map_offsets =
  i386_nto_target.fetch_link_map_offsets =
    svr4_ilp32_fetch_link_map_offsets;
    svr4_ilp32_fetch_link_map_offsets;
}
}
 
 
static void
static void
i386nto_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
i386nto_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
{
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  static struct target_so_ops nto_svr4_so_ops;
  static struct target_so_ops nto_svr4_so_ops;
 
 
  /* Deal with our strange signals.  */
  /* Deal with our strange signals.  */
  nto_initialize_signals ();
  nto_initialize_signals ();
 
 
  /* NTO uses ELF.  */
  /* NTO uses ELF.  */
  i386_elf_init_abi (info, gdbarch);
  i386_elf_init_abi (info, gdbarch);
 
 
  /* Neutrino rewinds to look more normal.  Need to override the i386
  /* Neutrino rewinds to look more normal.  Need to override the i386
     default which is [unfortunately] to decrement the PC.  */
     default which is [unfortunately] to decrement the PC.  */
  set_gdbarch_decr_pc_after_break (gdbarch, 0);
  set_gdbarch_decr_pc_after_break (gdbarch, 0);
 
 
  tdep->gregset_reg_offset = i386nto_gregset_reg_offset;
  tdep->gregset_reg_offset = i386nto_gregset_reg_offset;
  tdep->gregset_num_regs = ARRAY_SIZE (i386nto_gregset_reg_offset);
  tdep->gregset_num_regs = ARRAY_SIZE (i386nto_gregset_reg_offset);
  tdep->sizeof_gregset = NUM_GPREGS * 4;
  tdep->sizeof_gregset = NUM_GPREGS * 4;
 
 
  tdep->sigtramp_p = i386nto_sigtramp_p;
  tdep->sigtramp_p = i386nto_sigtramp_p;
  tdep->sigcontext_addr = i386nto_sigcontext_addr;
  tdep->sigcontext_addr = i386nto_sigcontext_addr;
  tdep->sc_pc_offset = 56;
  tdep->sc_pc_offset = 56;
  tdep->sc_sp_offset = 68;
  tdep->sc_sp_offset = 68;
 
 
  /* Setjmp()'s return PC saved in EDX (5).  */
  /* Setjmp()'s return PC saved in EDX (5).  */
  tdep->jb_pc_offset = 20;      /* 5x32 bit ints in.  */
  tdep->jb_pc_offset = 20;      /* 5x32 bit ints in.  */
 
 
  set_solib_svr4_fetch_link_map_offsets
  set_solib_svr4_fetch_link_map_offsets
    (gdbarch, svr4_ilp32_fetch_link_map_offsets);
    (gdbarch, svr4_ilp32_fetch_link_map_offsets);
 
 
  /* Initialize this lazily, to avoid an initialization order
  /* Initialize this lazily, to avoid an initialization order
     dependency on solib-svr4.c's _initialize routine.  */
     dependency on solib-svr4.c's _initialize routine.  */
  if (nto_svr4_so_ops.in_dynsym_resolve_code == NULL)
  if (nto_svr4_so_ops.in_dynsym_resolve_code == NULL)
    {
    {
      nto_svr4_so_ops = svr4_so_ops;
      nto_svr4_so_ops = svr4_so_ops;
 
 
      /* Our loader handles solib relocations differently than svr4.  */
      /* Our loader handles solib relocations differently than svr4.  */
      nto_svr4_so_ops.relocate_section_addresses
      nto_svr4_so_ops.relocate_section_addresses
        = nto_relocate_section_addresses;
        = nto_relocate_section_addresses;
 
 
      /* Supply a nice function to find our solibs.  */
      /* Supply a nice function to find our solibs.  */
      nto_svr4_so_ops.find_and_open_solib
      nto_svr4_so_ops.find_and_open_solib
        = nto_find_and_open_solib;
        = nto_find_and_open_solib;
 
 
      /* Our linker code is in libc.  */
      /* Our linker code is in libc.  */
      nto_svr4_so_ops.in_dynsym_resolve_code
      nto_svr4_so_ops.in_dynsym_resolve_code
        = nto_in_dynsym_resolve_code;
        = nto_in_dynsym_resolve_code;
    }
    }
  set_solib_ops (gdbarch, &nto_svr4_so_ops);
  set_solib_ops (gdbarch, &nto_svr4_so_ops);
 
 
  nto_set_target (&i386_nto_target);
  nto_set_target (&i386_nto_target);
}
}
 
 
void
void
_initialize_i386nto_tdep (void)
_initialize_i386nto_tdep (void)
{
{
  init_i386nto_ops ();
  init_i386nto_ops ();
  gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_QNXNTO,
  gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_QNXNTO,
                          i386nto_init_abi);
                          i386nto_init_abi);
  gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_elf_flavour,
  gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_elf_flavour,
                                  nto_elf_osabi_sniffer);
                                  nto_elf_osabi_sniffer);
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.