/* Memory-access and commands for "inferior" process, for GDB.
|
/* Memory-access and commands for "inferior" process, for GDB.
|
|
|
Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
|
Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
|
1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
|
1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
|
2008 Free Software Foundation, Inc.
|
2008 Free Software Foundation, Inc.
|
|
|
This file is part of GDB.
|
This file is part of GDB.
|
|
|
This program is free software; you can redistribute it and/or modify
|
This program is free software; you can redistribute it and/or modify
|
it under the terms of the GNU General Public License as published by
|
it under the terms of the GNU General Public License as published by
|
the Free Software Foundation; either version 3 of the License, or
|
the Free Software Foundation; either version 3 of the License, or
|
(at your option) any later version.
|
(at your option) any later version.
|
|
|
This program is distributed in the hope that it will be useful,
|
This program is distributed in the hope that it will be useful,
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
GNU General Public License for more details.
|
GNU General Public License for more details.
|
|
|
You should have received a copy of the GNU General Public License
|
You should have received a copy of the GNU General Public License
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
#include "defs.h"
|
#include "defs.h"
|
#include <signal.h>
|
#include <signal.h>
|
#include "gdb_string.h"
|
#include "gdb_string.h"
|
#include "symtab.h"
|
#include "symtab.h"
|
#include "gdbtypes.h"
|
#include "gdbtypes.h"
|
#include "frame.h"
|
#include "frame.h"
|
#include "inferior.h"
|
#include "inferior.h"
|
#include "environ.h"
|
#include "environ.h"
|
#include "value.h"
|
#include "value.h"
|
#include "gdbcmd.h"
|
#include "gdbcmd.h"
|
#include "symfile.h"
|
#include "symfile.h"
|
#include "gdbcore.h"
|
#include "gdbcore.h"
|
#include "target.h"
|
#include "target.h"
|
#include "language.h"
|
#include "language.h"
|
#include "symfile.h"
|
#include "symfile.h"
|
#include "objfiles.h"
|
#include "objfiles.h"
|
#include "completer.h"
|
#include "completer.h"
|
#include "ui-out.h"
|
#include "ui-out.h"
|
#include "event-top.h"
|
#include "event-top.h"
|
#include "parser-defs.h"
|
#include "parser-defs.h"
|
#include "regcache.h"
|
#include "regcache.h"
|
#include "reggroups.h"
|
#include "reggroups.h"
|
#include "block.h"
|
#include "block.h"
|
#include "solib.h"
|
#include "solib.h"
|
#include <ctype.h>
|
#include <ctype.h>
|
#include "gdb_assert.h"
|
#include "gdb_assert.h"
|
#include "observer.h"
|
#include "observer.h"
|
#include "target-descriptions.h"
|
#include "target-descriptions.h"
|
#include "user-regs.h"
|
#include "user-regs.h"
|
|
|
/* Functions exported for general use, in inferior.h: */
|
/* Functions exported for general use, in inferior.h: */
|
|
|
void all_registers_info (char *, int);
|
void all_registers_info (char *, int);
|
|
|
void registers_info (char *, int);
|
void registers_info (char *, int);
|
|
|
void nexti_command (char *, int);
|
void nexti_command (char *, int);
|
|
|
void stepi_command (char *, int);
|
void stepi_command (char *, int);
|
|
|
void continue_command (char *, int);
|
void continue_command (char *, int);
|
|
|
void interrupt_target_command (char *args, int from_tty);
|
void interrupt_target_command (char *args, int from_tty);
|
|
|
/* Local functions: */
|
/* Local functions: */
|
|
|
static void nofp_registers_info (char *, int);
|
static void nofp_registers_info (char *, int);
|
|
|
static void print_return_value (struct type *value_type);
|
static void print_return_value (struct type *value_type);
|
|
|
static void finish_command_continuation (struct continuation_arg *);
|
static void finish_command_continuation (struct continuation_arg *);
|
|
|
static void until_next_command (int);
|
static void until_next_command (int);
|
|
|
static void until_command (char *, int);
|
static void until_command (char *, int);
|
|
|
static void path_info (char *, int);
|
static void path_info (char *, int);
|
|
|
static void path_command (char *, int);
|
static void path_command (char *, int);
|
|
|
static void unset_command (char *, int);
|
static void unset_command (char *, int);
|
|
|
static void float_info (char *, int);
|
static void float_info (char *, int);
|
|
|
static void detach_command (char *, int);
|
static void detach_command (char *, int);
|
|
|
static void disconnect_command (char *, int);
|
static void disconnect_command (char *, int);
|
|
|
static void unset_environment_command (char *, int);
|
static void unset_environment_command (char *, int);
|
|
|
static void set_environment_command (char *, int);
|
static void set_environment_command (char *, int);
|
|
|
static void environment_info (char *, int);
|
static void environment_info (char *, int);
|
|
|
static void program_info (char *, int);
|
static void program_info (char *, int);
|
|
|
static void finish_command (char *, int);
|
static void finish_command (char *, int);
|
|
|
static void signal_command (char *, int);
|
static void signal_command (char *, int);
|
|
|
static void jump_command (char *, int);
|
static void jump_command (char *, int);
|
|
|
static void step_1 (int, int, char *);
|
static void step_1 (int, int, char *);
|
static void step_once (int skip_subroutines, int single_inst, int count);
|
static void step_once (int skip_subroutines, int single_inst, int count);
|
static void step_1_continuation (struct continuation_arg *arg);
|
static void step_1_continuation (struct continuation_arg *arg);
|
|
|
static void next_command (char *, int);
|
static void next_command (char *, int);
|
|
|
static void step_command (char *, int);
|
static void step_command (char *, int);
|
|
|
static void run_command (char *, int);
|
static void run_command (char *, int);
|
|
|
static void run_no_args_command (char *args, int from_tty);
|
static void run_no_args_command (char *args, int from_tty);
|
|
|
static void go_command (char *line_no, int from_tty);
|
static void go_command (char *line_no, int from_tty);
|
|
|
static int strip_bg_char (char **);
|
static int strip_bg_char (char **);
|
|
|
void _initialize_infcmd (void);
|
void _initialize_infcmd (void);
|
|
|
#define GO_USAGE "Usage: go <location>\n"
|
#define GO_USAGE "Usage: go <location>\n"
|
|
|
#define ERROR_NO_INFERIOR \
|
#define ERROR_NO_INFERIOR \
|
if (!target_has_execution) error (_("The program is not being run."));
|
if (!target_has_execution) error (_("The program is not being run."));
|
|
|
/* String containing arguments to give to the program, separated by spaces.
|
/* String containing arguments to give to the program, separated by spaces.
|
Empty string (pointer to '\0') means no args. */
|
Empty string (pointer to '\0') means no args. */
|
|
|
static char *inferior_args;
|
static char *inferior_args;
|
|
|
/* The inferior arguments as a vector. If INFERIOR_ARGC is nonzero,
|
/* The inferior arguments as a vector. If INFERIOR_ARGC is nonzero,
|
then we must compute INFERIOR_ARGS from this (via the target). */
|
then we must compute INFERIOR_ARGS from this (via the target). */
|
|
|
static int inferior_argc;
|
static int inferior_argc;
|
static char **inferior_argv;
|
static char **inferior_argv;
|
|
|
/* File name for default use for standard in/out in the inferior. */
|
/* File name for default use for standard in/out in the inferior. */
|
|
|
static char *inferior_io_terminal;
|
static char *inferior_io_terminal;
|
|
|
/* Pid of our debugged inferior, or 0 if no inferior now.
|
/* Pid of our debugged inferior, or 0 if no inferior now.
|
Since various parts of infrun.c test this to see whether there is a program
|
Since various parts of infrun.c test this to see whether there is a program
|
being debugged it should be nonzero (currently 3 is used) for remote
|
being debugged it should be nonzero (currently 3 is used) for remote
|
debugging. */
|
debugging. */
|
|
|
ptid_t inferior_ptid;
|
ptid_t inferior_ptid;
|
|
|
/* Last signal that the inferior received (why it stopped). */
|
/* Last signal that the inferior received (why it stopped). */
|
|
|
enum target_signal stop_signal;
|
enum target_signal stop_signal;
|
|
|
/* Address at which inferior stopped. */
|
/* Address at which inferior stopped. */
|
|
|
CORE_ADDR stop_pc;
|
CORE_ADDR stop_pc;
|
|
|
/* Chain containing status of breakpoint(s) that we have stopped at. */
|
/* Chain containing status of breakpoint(s) that we have stopped at. */
|
|
|
bpstat stop_bpstat;
|
bpstat stop_bpstat;
|
|
|
/* Flag indicating that a command has proceeded the inferior past the
|
/* Flag indicating that a command has proceeded the inferior past the
|
current breakpoint. */
|
current breakpoint. */
|
|
|
int breakpoint_proceeded;
|
int breakpoint_proceeded;
|
|
|
/* Nonzero if stopped due to a step command. */
|
/* Nonzero if stopped due to a step command. */
|
|
|
int stop_step;
|
int stop_step;
|
|
|
/* Nonzero if stopped due to completion of a stack dummy routine. */
|
/* Nonzero if stopped due to completion of a stack dummy routine. */
|
|
|
int stop_stack_dummy;
|
int stop_stack_dummy;
|
|
|
/* Nonzero if stopped due to a random (unexpected) signal in inferior
|
/* Nonzero if stopped due to a random (unexpected) signal in inferior
|
process. */
|
process. */
|
|
|
int stopped_by_random_signal;
|
int stopped_by_random_signal;
|
|
|
/* Range to single step within.
|
/* Range to single step within.
|
If this is nonzero, respond to a single-step signal
|
If this is nonzero, respond to a single-step signal
|
by continuing to step if the pc is in this range. */
|
by continuing to step if the pc is in this range. */
|
|
|
CORE_ADDR step_range_start; /* Inclusive */
|
CORE_ADDR step_range_start; /* Inclusive */
|
CORE_ADDR step_range_end; /* Exclusive */
|
CORE_ADDR step_range_end; /* Exclusive */
|
|
|
/* Stack frame address as of when stepping command was issued.
|
/* Stack frame address as of when stepping command was issued.
|
This is how we know when we step into a subroutine call,
|
This is how we know when we step into a subroutine call,
|
and how to set the frame for the breakpoint used to step out. */
|
and how to set the frame for the breakpoint used to step out. */
|
|
|
struct frame_id step_frame_id;
|
struct frame_id step_frame_id;
|
|
|
enum step_over_calls_kind step_over_calls;
|
enum step_over_calls_kind step_over_calls;
|
|
|
/* If stepping, nonzero means step count is > 1
|
/* If stepping, nonzero means step count is > 1
|
so don't print frame next time inferior stops
|
so don't print frame next time inferior stops
|
if it stops due to stepping. */
|
if it stops due to stepping. */
|
|
|
int step_multi;
|
int step_multi;
|
|
|
/* Environment to use for running inferior,
|
/* Environment to use for running inferior,
|
in format described in environ.h. */
|
in format described in environ.h. */
|
|
|
struct gdb_environ *inferior_environ;
|
struct gdb_environ *inferior_environ;
|
|
|
/* Accessor routines. */
|
/* Accessor routines. */
|
|
|
void
|
void
|
set_inferior_io_terminal (const char *terminal_name)
|
set_inferior_io_terminal (const char *terminal_name)
|
{
|
{
|
if (inferior_io_terminal)
|
if (inferior_io_terminal)
|
xfree (inferior_io_terminal);
|
xfree (inferior_io_terminal);
|
|
|
if (!terminal_name)
|
if (!terminal_name)
|
inferior_io_terminal = NULL;
|
inferior_io_terminal = NULL;
|
else
|
else
|
inferior_io_terminal = savestring (terminal_name, strlen (terminal_name));
|
inferior_io_terminal = savestring (terminal_name, strlen (terminal_name));
|
}
|
}
|
|
|
const char *
|
const char *
|
get_inferior_io_terminal (void)
|
get_inferior_io_terminal (void)
|
{
|
{
|
return inferior_io_terminal;
|
return inferior_io_terminal;
|
}
|
}
|
|
|
char *
|
char *
|
get_inferior_args (void)
|
get_inferior_args (void)
|
{
|
{
|
if (inferior_argc != 0)
|
if (inferior_argc != 0)
|
{
|
{
|
char *n, *old;
|
char *n, *old;
|
|
|
n = gdbarch_construct_inferior_arguments (current_gdbarch,
|
n = gdbarch_construct_inferior_arguments (current_gdbarch,
|
inferior_argc, inferior_argv);
|
inferior_argc, inferior_argv);
|
old = set_inferior_args (n);
|
old = set_inferior_args (n);
|
xfree (old);
|
xfree (old);
|
}
|
}
|
|
|
if (inferior_args == NULL)
|
if (inferior_args == NULL)
|
inferior_args = xstrdup ("");
|
inferior_args = xstrdup ("");
|
|
|
return inferior_args;
|
return inferior_args;
|
}
|
}
|
|
|
char *
|
char *
|
set_inferior_args (char *newargs)
|
set_inferior_args (char *newargs)
|
{
|
{
|
char *saved_args = inferior_args;
|
char *saved_args = inferior_args;
|
|
|
inferior_args = newargs;
|
inferior_args = newargs;
|
inferior_argc = 0;
|
inferior_argc = 0;
|
inferior_argv = 0;
|
inferior_argv = 0;
|
|
|
return saved_args;
|
return saved_args;
|
}
|
}
|
|
|
void
|
void
|
set_inferior_args_vector (int argc, char **argv)
|
set_inferior_args_vector (int argc, char **argv)
|
{
|
{
|
inferior_argc = argc;
|
inferior_argc = argc;
|
inferior_argv = argv;
|
inferior_argv = argv;
|
}
|
}
|
|
|
/* Notice when `set args' is run. */
|
/* Notice when `set args' is run. */
|
static void
|
static void
|
notice_args_set (char *args, int from_tty, struct cmd_list_element *c)
|
notice_args_set (char *args, int from_tty, struct cmd_list_element *c)
|
{
|
{
|
inferior_argc = 0;
|
inferior_argc = 0;
|
inferior_argv = 0;
|
inferior_argv = 0;
|
}
|
}
|
|
|
/* Notice when `show args' is run. */
|
/* Notice when `show args' is run. */
|
static void
|
static void
|
notice_args_read (struct ui_file *file, int from_tty,
|
notice_args_read (struct ui_file *file, int from_tty,
|
struct cmd_list_element *c, const char *value)
|
struct cmd_list_element *c, const char *value)
|
{
|
{
|
deprecated_show_value_hack (file, from_tty, c, value);
|
deprecated_show_value_hack (file, from_tty, c, value);
|
/* Might compute the value. */
|
/* Might compute the value. */
|
get_inferior_args ();
|
get_inferior_args ();
|
}
|
}
|
|
|
|
|
/* Compute command-line string given argument vector. This does the
|
/* Compute command-line string given argument vector. This does the
|
same shell processing as fork_inferior. */
|
same shell processing as fork_inferior. */
|
char *
|
char *
|
construct_inferior_arguments (struct gdbarch *gdbarch, int argc, char **argv)
|
construct_inferior_arguments (struct gdbarch *gdbarch, int argc, char **argv)
|
{
|
{
|
char *result;
|
char *result;
|
|
|
if (STARTUP_WITH_SHELL)
|
if (STARTUP_WITH_SHELL)
|
{
|
{
|
/* This holds all the characters considered special to the
|
/* This holds all the characters considered special to the
|
typical Unix shells. We include `^' because the SunOS
|
typical Unix shells. We include `^' because the SunOS
|
/bin/sh treats it as a synonym for `|'. */
|
/bin/sh treats it as a synonym for `|'. */
|
char *special = "\"!#$&*()\\|[]{}<>?'\"`~^; \t\n";
|
char *special = "\"!#$&*()\\|[]{}<>?'\"`~^; \t\n";
|
int i;
|
int i;
|
int length = 0;
|
int length = 0;
|
char *out, *cp;
|
char *out, *cp;
|
|
|
/* We over-compute the size. It shouldn't matter. */
|
/* We over-compute the size. It shouldn't matter. */
|
for (i = 0; i < argc; ++i)
|
for (i = 0; i < argc; ++i)
|
length += 2 * strlen (argv[i]) + 1 + 2 * (argv[i][0] == '\0');
|
length += 2 * strlen (argv[i]) + 1 + 2 * (argv[i][0] == '\0');
|
|
|
result = (char *) xmalloc (length);
|
result = (char *) xmalloc (length);
|
out = result;
|
out = result;
|
|
|
for (i = 0; i < argc; ++i)
|
for (i = 0; i < argc; ++i)
|
{
|
{
|
if (i > 0)
|
if (i > 0)
|
*out++ = ' ';
|
*out++ = ' ';
|
|
|
/* Need to handle empty arguments specially. */
|
/* Need to handle empty arguments specially. */
|
if (argv[i][0] == '\0')
|
if (argv[i][0] == '\0')
|
{
|
{
|
*out++ = '\'';
|
*out++ = '\'';
|
*out++ = '\'';
|
*out++ = '\'';
|
}
|
}
|
else
|
else
|
{
|
{
|
for (cp = argv[i]; *cp; ++cp)
|
for (cp = argv[i]; *cp; ++cp)
|
{
|
{
|
if (strchr (special, *cp) != NULL)
|
if (strchr (special, *cp) != NULL)
|
*out++ = '\\';
|
*out++ = '\\';
|
*out++ = *cp;
|
*out++ = *cp;
|
}
|
}
|
}
|
}
|
}
|
}
|
*out = '\0';
|
*out = '\0';
|
}
|
}
|
else
|
else
|
{
|
{
|
/* In this case we can't handle arguments that contain spaces,
|
/* In this case we can't handle arguments that contain spaces,
|
tabs, or newlines -- see breakup_args(). */
|
tabs, or newlines -- see breakup_args(). */
|
int i;
|
int i;
|
int length = 0;
|
int length = 0;
|
|
|
for (i = 0; i < argc; ++i)
|
for (i = 0; i < argc; ++i)
|
{
|
{
|
char *cp = strchr (argv[i], ' ');
|
char *cp = strchr (argv[i], ' ');
|
if (cp == NULL)
|
if (cp == NULL)
|
cp = strchr (argv[i], '\t');
|
cp = strchr (argv[i], '\t');
|
if (cp == NULL)
|
if (cp == NULL)
|
cp = strchr (argv[i], '\n');
|
cp = strchr (argv[i], '\n');
|
if (cp != NULL)
|
if (cp != NULL)
|
error (_("can't handle command-line argument containing whitespace"));
|
error (_("can't handle command-line argument containing whitespace"));
|
length += strlen (argv[i]) + 1;
|
length += strlen (argv[i]) + 1;
|
}
|
}
|
|
|
result = (char *) xmalloc (length);
|
result = (char *) xmalloc (length);
|
result[0] = '\0';
|
result[0] = '\0';
|
for (i = 0; i < argc; ++i)
|
for (i = 0; i < argc; ++i)
|
{
|
{
|
if (i > 0)
|
if (i > 0)
|
strcat (result, " ");
|
strcat (result, " ");
|
strcat (result, argv[i]);
|
strcat (result, argv[i]);
|
}
|
}
|
}
|
}
|
|
|
return result;
|
return result;
|
}
|
}
|
|
|
|
|
/* This function detects whether or not a '&' character (indicating
|
/* This function detects whether or not a '&' character (indicating
|
background execution) has been added as *the last* of the arguments ARGS
|
background execution) has been added as *the last* of the arguments ARGS
|
of a command. If it has, it removes it and returns 1. Otherwise it
|
of a command. If it has, it removes it and returns 1. Otherwise it
|
does nothing and returns 0. */
|
does nothing and returns 0. */
|
static int
|
static int
|
strip_bg_char (char **args)
|
strip_bg_char (char **args)
|
{
|
{
|
char *p = NULL;
|
char *p = NULL;
|
|
|
p = strchr (*args, '&');
|
p = strchr (*args, '&');
|
|
|
if (p)
|
if (p)
|
{
|
{
|
if (p == (*args + strlen (*args) - 1))
|
if (p == (*args + strlen (*args) - 1))
|
{
|
{
|
if (strlen (*args) > 1)
|
if (strlen (*args) > 1)
|
{
|
{
|
do
|
do
|
p--;
|
p--;
|
while (*p == ' ' || *p == '\t');
|
while (*p == ' ' || *p == '\t');
|
*(p + 1) = '\0';
|
*(p + 1) = '\0';
|
}
|
}
|
else
|
else
|
*args = 0;
|
*args = 0;
|
return 1;
|
return 1;
|
}
|
}
|
}
|
}
|
return 0;
|
return 0;
|
}
|
}
|
|
|
void
|
void
|
tty_command (char *file, int from_tty)
|
tty_command (char *file, int from_tty)
|
{
|
{
|
if (file == 0)
|
if (file == 0)
|
error_no_arg (_("terminal name for running target process"));
|
error_no_arg (_("terminal name for running target process"));
|
|
|
set_inferior_io_terminal (file);
|
set_inferior_io_terminal (file);
|
}
|
}
|
|
|
/* Common actions to take after creating any sort of inferior, by any
|
/* Common actions to take after creating any sort of inferior, by any
|
means (running, attaching, connecting, et cetera). The target
|
means (running, attaching, connecting, et cetera). The target
|
should be stopped. */
|
should be stopped. */
|
|
|
void
|
void
|
post_create_inferior (struct target_ops *target, int from_tty)
|
post_create_inferior (struct target_ops *target, int from_tty)
|
{
|
{
|
/* Be sure we own the terminal in case write operations are performed. */
|
/* Be sure we own the terminal in case write operations are performed. */
|
target_terminal_ours ();
|
target_terminal_ours ();
|
|
|
/* If the target hasn't taken care of this already, do it now.
|
/* If the target hasn't taken care of this already, do it now.
|
Targets which need to access registers during to_open,
|
Targets which need to access registers during to_open,
|
to_create_inferior, or to_attach should do it earlier; but many
|
to_create_inferior, or to_attach should do it earlier; but many
|
don't need to. */
|
don't need to. */
|
target_find_description ();
|
target_find_description ();
|
|
|
if (exec_bfd)
|
if (exec_bfd)
|
{
|
{
|
/* Sometimes the platform-specific hook loads initial shared
|
/* Sometimes the platform-specific hook loads initial shared
|
libraries, and sometimes it doesn't. Try to do so first, so
|
libraries, and sometimes it doesn't. Try to do so first, so
|
that we can add them with the correct value for FROM_TTY.
|
that we can add them with the correct value for FROM_TTY.
|
If we made all the inferior hook methods consistent,
|
If we made all the inferior hook methods consistent,
|
this call could be removed. */
|
this call could be removed. */
|
#ifdef SOLIB_ADD
|
#ifdef SOLIB_ADD
|
SOLIB_ADD (NULL, from_tty, target, auto_solib_add);
|
SOLIB_ADD (NULL, from_tty, target, auto_solib_add);
|
#else
|
#else
|
solib_add (NULL, from_tty, target, auto_solib_add);
|
solib_add (NULL, from_tty, target, auto_solib_add);
|
#endif
|
#endif
|
|
|
/* Create the hooks to handle shared library load and unload
|
/* Create the hooks to handle shared library load and unload
|
events. */
|
events. */
|
#ifdef SOLIB_CREATE_INFERIOR_HOOK
|
#ifdef SOLIB_CREATE_INFERIOR_HOOK
|
SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
|
SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
|
#else
|
#else
|
solib_create_inferior_hook ();
|
solib_create_inferior_hook ();
|
#endif
|
#endif
|
}
|
}
|
|
|
observer_notify_inferior_created (target, from_tty);
|
observer_notify_inferior_created (target, from_tty);
|
}
|
}
|
|
|
/* Kill the inferior if already running. This function is designed
|
/* Kill the inferior if already running. This function is designed
|
to be called when we are about to start the execution of the program
|
to be called when we are about to start the execution of the program
|
from the beginning. Ask the user to confirm that he wants to restart
|
from the beginning. Ask the user to confirm that he wants to restart
|
the program being debugged when FROM_TTY is non-null. */
|
the program being debugged when FROM_TTY is non-null. */
|
|
|
void
|
void
|
kill_if_already_running (int from_tty)
|
kill_if_already_running (int from_tty)
|
{
|
{
|
if (! ptid_equal (inferior_ptid, null_ptid) && target_has_execution)
|
if (! ptid_equal (inferior_ptid, null_ptid) && target_has_execution)
|
{
|
{
|
if (from_tty
|
if (from_tty
|
&& !query ("The program being debugged has been started already.\n\
|
&& !query ("The program being debugged has been started already.\n\
|
Start it from the beginning? "))
|
Start it from the beginning? "))
|
error (_("Program not restarted."));
|
error (_("Program not restarted."));
|
target_kill ();
|
target_kill ();
|
no_shared_libraries (NULL, from_tty);
|
no_shared_libraries (NULL, from_tty);
|
init_wait_for_inferior ();
|
init_wait_for_inferior ();
|
}
|
}
|
}
|
}
|
|
|
/* Implement the "run" command. If TBREAK_AT_MAIN is set, then insert
|
/* Implement the "run" command. If TBREAK_AT_MAIN is set, then insert
|
a temporary breakpoint at the begining of the main program before
|
a temporary breakpoint at the begining of the main program before
|
running the program. */
|
running the program. */
|
|
|
static void
|
static void
|
run_command_1 (char *args, int from_tty, int tbreak_at_main)
|
run_command_1 (char *args, int from_tty, int tbreak_at_main)
|
{
|
{
|
char *exec_file;
|
char *exec_file;
|
|
|
dont_repeat ();
|
dont_repeat ();
|
|
|
kill_if_already_running (from_tty);
|
kill_if_already_running (from_tty);
|
clear_breakpoint_hit_counts ();
|
clear_breakpoint_hit_counts ();
|
|
|
/* Clean up any leftovers from other runs. Some other things from
|
/* Clean up any leftovers from other runs. Some other things from
|
this function should probably be moved into target_pre_inferior. */
|
this function should probably be moved into target_pre_inferior. */
|
target_pre_inferior (from_tty);
|
target_pre_inferior (from_tty);
|
|
|
/* Purge old solib objfiles. */
|
/* Purge old solib objfiles. */
|
objfile_purge_solibs ();
|
objfile_purge_solibs ();
|
|
|
clear_solib ();
|
clear_solib ();
|
|
|
/* The comment here used to read, "The exec file is re-read every
|
/* The comment here used to read, "The exec file is re-read every
|
time we do a generic_mourn_inferior, so we just have to worry
|
time we do a generic_mourn_inferior, so we just have to worry
|
about the symbol file." The `generic_mourn_inferior' function
|
about the symbol file." The `generic_mourn_inferior' function
|
gets called whenever the program exits. However, suppose the
|
gets called whenever the program exits. However, suppose the
|
program exits, and *then* the executable file changes? We need
|
program exits, and *then* the executable file changes? We need
|
to check again here. Since reopen_exec_file doesn't do anything
|
to check again here. Since reopen_exec_file doesn't do anything
|
if the timestamp hasn't changed, I don't see the harm. */
|
if the timestamp hasn't changed, I don't see the harm. */
|
reopen_exec_file ();
|
reopen_exec_file ();
|
reread_symbols ();
|
reread_symbols ();
|
|
|
/* Insert the temporary breakpoint if a location was specified. */
|
/* Insert the temporary breakpoint if a location was specified. */
|
if (tbreak_at_main)
|
if (tbreak_at_main)
|
tbreak_command (main_name (), 0);
|
tbreak_command (main_name (), 0);
|
|
|
exec_file = (char *) get_exec_file (0);
|
exec_file = (char *) get_exec_file (0);
|
|
|
/* We keep symbols from add-symbol-file, on the grounds that the
|
/* We keep symbols from add-symbol-file, on the grounds that the
|
user might want to add some symbols before running the program
|
user might want to add some symbols before running the program
|
(right?). But sometimes (dynamic loading where the user manually
|
(right?). But sometimes (dynamic loading where the user manually
|
introduces the new symbols with add-symbol-file), the code which
|
introduces the new symbols with add-symbol-file), the code which
|
the symbols describe does not persist between runs. Currently
|
the symbols describe does not persist between runs. Currently
|
the user has to manually nuke all symbols between runs if they
|
the user has to manually nuke all symbols between runs if they
|
want them to go away (PR 2207). This is probably reasonable. */
|
want them to go away (PR 2207). This is probably reasonable. */
|
|
|
if (!args)
|
if (!args)
|
{
|
{
|
if (target_can_async_p ())
|
if (target_can_async_p ())
|
async_disable_stdin ();
|
async_disable_stdin ();
|
}
|
}
|
else
|
else
|
{
|
{
|
int async_exec = strip_bg_char (&args);
|
int async_exec = strip_bg_char (&args);
|
|
|
/* If we get a request for running in the bg but the target
|
/* If we get a request for running in the bg but the target
|
doesn't support it, error out. */
|
doesn't support it, error out. */
|
if (async_exec && !target_can_async_p ())
|
if (async_exec && !target_can_async_p ())
|
error (_("Asynchronous execution not supported on this target."));
|
error (_("Asynchronous execution not supported on this target."));
|
|
|
/* If we don't get a request of running in the bg, then we need
|
/* If we don't get a request of running in the bg, then we need
|
to simulate synchronous (fg) execution. */
|
to simulate synchronous (fg) execution. */
|
if (!async_exec && target_can_async_p ())
|
if (!async_exec && target_can_async_p ())
|
{
|
{
|
/* Simulate synchronous execution */
|
/* Simulate synchronous execution */
|
async_disable_stdin ();
|
async_disable_stdin ();
|
}
|
}
|
|
|
/* If there were other args, beside '&', process them. */
|
/* If there were other args, beside '&', process them. */
|
if (args)
|
if (args)
|
{
|
{
|
char *old_args = set_inferior_args (xstrdup (args));
|
char *old_args = set_inferior_args (xstrdup (args));
|
xfree (old_args);
|
xfree (old_args);
|
}
|
}
|
}
|
}
|
|
|
if (from_tty)
|
if (from_tty)
|
{
|
{
|
ui_out_field_string (uiout, NULL, "Starting program");
|
ui_out_field_string (uiout, NULL, "Starting program");
|
ui_out_text (uiout, ": ");
|
ui_out_text (uiout, ": ");
|
if (exec_file)
|
if (exec_file)
|
ui_out_field_string (uiout, "execfile", exec_file);
|
ui_out_field_string (uiout, "execfile", exec_file);
|
ui_out_spaces (uiout, 1);
|
ui_out_spaces (uiout, 1);
|
/* We call get_inferior_args() because we might need to compute
|
/* We call get_inferior_args() because we might need to compute
|
the value now. */
|
the value now. */
|
ui_out_field_string (uiout, "infargs", get_inferior_args ());
|
ui_out_field_string (uiout, "infargs", get_inferior_args ());
|
ui_out_text (uiout, "\n");
|
ui_out_text (uiout, "\n");
|
ui_out_flush (uiout);
|
ui_out_flush (uiout);
|
}
|
}
|
|
|
/* We call get_inferior_args() because we might need to compute
|
/* We call get_inferior_args() because we might need to compute
|
the value now. */
|
the value now. */
|
target_create_inferior (exec_file, get_inferior_args (),
|
target_create_inferior (exec_file, get_inferior_args (),
|
environ_vector (inferior_environ), from_tty);
|
environ_vector (inferior_environ), from_tty);
|
|
|
/* Pass zero for FROM_TTY, because at this point the "run" command
|
/* Pass zero for FROM_TTY, because at this point the "run" command
|
has done its thing; now we are setting up the running program. */
|
has done its thing; now we are setting up the running program. */
|
post_create_inferior (¤t_target, 0);
|
post_create_inferior (¤t_target, 0);
|
|
|
/* Start the target running. */
|
/* Start the target running. */
|
proceed ((CORE_ADDR) -1, TARGET_SIGNAL_0, 0);
|
proceed ((CORE_ADDR) -1, TARGET_SIGNAL_0, 0);
|
}
|
}
|
|
|
|
|
static void
|
static void
|
run_command (char *args, int from_tty)
|
run_command (char *args, int from_tty)
|
{
|
{
|
run_command_1 (args, from_tty, 0);
|
run_command_1 (args, from_tty, 0);
|
}
|
}
|
|
|
static void
|
static void
|
run_no_args_command (char *args, int from_tty)
|
run_no_args_command (char *args, int from_tty)
|
{
|
{
|
char *old_args = set_inferior_args (xstrdup (""));
|
char *old_args = set_inferior_args (xstrdup (""));
|
xfree (old_args);
|
xfree (old_args);
|
}
|
}
|
|
|
|
|
/* Start the execution of the program up until the beginning of the main
|
/* Start the execution of the program up until the beginning of the main
|
program. */
|
program. */
|
|
|
static void
|
static void
|
start_command (char *args, int from_tty)
|
start_command (char *args, int from_tty)
|
{
|
{
|
/* Some languages such as Ada need to search inside the program
|
/* Some languages such as Ada need to search inside the program
|
minimal symbols for the location where to put the temporary
|
minimal symbols for the location where to put the temporary
|
breakpoint before starting. */
|
breakpoint before starting. */
|
if (!have_minimal_symbols ())
|
if (!have_minimal_symbols ())
|
error (_("No symbol table loaded. Use the \"file\" command."));
|
error (_("No symbol table loaded. Use the \"file\" command."));
|
|
|
/* Run the program until reaching the main procedure... */
|
/* Run the program until reaching the main procedure... */
|
run_command_1 (args, from_tty, 1);
|
run_command_1 (args, from_tty, 1);
|
}
|
}
|
|
|
void
|
void
|
continue_command (char *proc_count_exp, int from_tty)
|
continue_command (char *proc_count_exp, int from_tty)
|
{
|
{
|
int async_exec = 0;
|
int async_exec = 0;
|
ERROR_NO_INFERIOR;
|
ERROR_NO_INFERIOR;
|
|
|
/* Find out whether we must run in the background. */
|
/* Find out whether we must run in the background. */
|
if (proc_count_exp != NULL)
|
if (proc_count_exp != NULL)
|
async_exec = strip_bg_char (&proc_count_exp);
|
async_exec = strip_bg_char (&proc_count_exp);
|
|
|
/* If we must run in the background, but the target can't do it,
|
/* If we must run in the background, but the target can't do it,
|
error out. */
|
error out. */
|
if (async_exec && !target_can_async_p ())
|
if (async_exec && !target_can_async_p ())
|
error (_("Asynchronous execution not supported on this target."));
|
error (_("Asynchronous execution not supported on this target."));
|
|
|
/* If we are not asked to run in the bg, then prepare to run in the
|
/* If we are not asked to run in the bg, then prepare to run in the
|
foreground, synchronously. */
|
foreground, synchronously. */
|
if (!async_exec && target_can_async_p ())
|
if (!async_exec && target_can_async_p ())
|
{
|
{
|
/* Simulate synchronous execution */
|
/* Simulate synchronous execution */
|
async_disable_stdin ();
|
async_disable_stdin ();
|
}
|
}
|
|
|
/* If have argument (besides '&'), set proceed count of breakpoint
|
/* If have argument (besides '&'), set proceed count of breakpoint
|
we stopped at. */
|
we stopped at. */
|
if (proc_count_exp != NULL)
|
if (proc_count_exp != NULL)
|
{
|
{
|
bpstat bs = stop_bpstat;
|
bpstat bs = stop_bpstat;
|
int num, stat;
|
int num, stat;
|
int stopped = 0;
|
int stopped = 0;
|
|
|
while ((stat = bpstat_num (&bs, &num)) != 0)
|
while ((stat = bpstat_num (&bs, &num)) != 0)
|
if (stat > 0)
|
if (stat > 0)
|
{
|
{
|
set_ignore_count (num,
|
set_ignore_count (num,
|
parse_and_eval_long (proc_count_exp) - 1,
|
parse_and_eval_long (proc_count_exp) - 1,
|
from_tty);
|
from_tty);
|
/* set_ignore_count prints a message ending with a period.
|
/* set_ignore_count prints a message ending with a period.
|
So print two spaces before "Continuing.". */
|
So print two spaces before "Continuing.". */
|
if (from_tty)
|
if (from_tty)
|
printf_filtered (" ");
|
printf_filtered (" ");
|
stopped = 1;
|
stopped = 1;
|
}
|
}
|
|
|
if (!stopped && from_tty)
|
if (!stopped && from_tty)
|
{
|
{
|
printf_filtered
|
printf_filtered
|
("Not stopped at any breakpoint; argument ignored.\n");
|
("Not stopped at any breakpoint; argument ignored.\n");
|
}
|
}
|
}
|
}
|
|
|
if (from_tty)
|
if (from_tty)
|
printf_filtered (_("Continuing.\n"));
|
printf_filtered (_("Continuing.\n"));
|
|
|
clear_proceed_status ();
|
clear_proceed_status ();
|
|
|
proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
|
proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
|
}
|
}
|
|
|
/* Step until outside of current statement. */
|
/* Step until outside of current statement. */
|
|
|
static void
|
static void
|
step_command (char *count_string, int from_tty)
|
step_command (char *count_string, int from_tty)
|
{
|
{
|
step_1 (0, 0, count_string);
|
step_1 (0, 0, count_string);
|
}
|
}
|
|
|
/* Likewise, but skip over subroutine calls as if single instructions. */
|
/* Likewise, but skip over subroutine calls as if single instructions. */
|
|
|
static void
|
static void
|
next_command (char *count_string, int from_tty)
|
next_command (char *count_string, int from_tty)
|
{
|
{
|
step_1 (1, 0, count_string);
|
step_1 (1, 0, count_string);
|
}
|
}
|
|
|
/* Likewise, but step only one instruction. */
|
/* Likewise, but step only one instruction. */
|
|
|
void
|
void
|
stepi_command (char *count_string, int from_tty)
|
stepi_command (char *count_string, int from_tty)
|
{
|
{
|
step_1 (0, 1, count_string);
|
step_1 (0, 1, count_string);
|
}
|
}
|
|
|
void
|
void
|
nexti_command (char *count_string, int from_tty)
|
nexti_command (char *count_string, int from_tty)
|
{
|
{
|
step_1 (1, 1, count_string);
|
step_1 (1, 1, count_string);
|
}
|
}
|
|
|
static void
|
static void
|
disable_longjmp_breakpoint_cleanup (void *ignore)
|
disable_longjmp_breakpoint_cleanup (void *ignore)
|
{
|
{
|
disable_longjmp_breakpoint ();
|
disable_longjmp_breakpoint ();
|
}
|
}
|
|
|
static void
|
static void
|
step_1 (int skip_subroutines, int single_inst, char *count_string)
|
step_1 (int skip_subroutines, int single_inst, char *count_string)
|
{
|
{
|
int count = 1;
|
int count = 1;
|
struct frame_info *frame;
|
struct frame_info *frame;
|
struct cleanup *cleanups = 0;
|
struct cleanup *cleanups = 0;
|
int async_exec = 0;
|
int async_exec = 0;
|
|
|
ERROR_NO_INFERIOR;
|
ERROR_NO_INFERIOR;
|
|
|
if (count_string)
|
if (count_string)
|
async_exec = strip_bg_char (&count_string);
|
async_exec = strip_bg_char (&count_string);
|
|
|
/* If we get a request for running in the bg but the target
|
/* If we get a request for running in the bg but the target
|
doesn't support it, error out. */
|
doesn't support it, error out. */
|
if (async_exec && !target_can_async_p ())
|
if (async_exec && !target_can_async_p ())
|
error (_("Asynchronous execution not supported on this target."));
|
error (_("Asynchronous execution not supported on this target."));
|
|
|
/* If we don't get a request of running in the bg, then we need
|
/* If we don't get a request of running in the bg, then we need
|
to simulate synchronous (fg) execution. */
|
to simulate synchronous (fg) execution. */
|
if (!async_exec && target_can_async_p ())
|
if (!async_exec && target_can_async_p ())
|
{
|
{
|
/* Simulate synchronous execution */
|
/* Simulate synchronous execution */
|
async_disable_stdin ();
|
async_disable_stdin ();
|
}
|
}
|
|
|
count = count_string ? parse_and_eval_long (count_string) : 1;
|
count = count_string ? parse_and_eval_long (count_string) : 1;
|
|
|
if (!single_inst || skip_subroutines) /* leave si command alone */
|
if (!single_inst || skip_subroutines) /* leave si command alone */
|
{
|
{
|
enable_longjmp_breakpoint ();
|
enable_longjmp_breakpoint ();
|
if (!target_can_async_p ())
|
if (!target_can_async_p ())
|
cleanups = make_cleanup (disable_longjmp_breakpoint_cleanup, 0 /*ignore*/);
|
cleanups = make_cleanup (disable_longjmp_breakpoint_cleanup, 0 /*ignore*/);
|
else
|
else
|
make_exec_cleanup (disable_longjmp_breakpoint_cleanup, 0 /*ignore*/);
|
make_exec_cleanup (disable_longjmp_breakpoint_cleanup, 0 /*ignore*/);
|
}
|
}
|
|
|
/* In synchronous case, all is well, just use the regular for loop. */
|
/* In synchronous case, all is well, just use the regular for loop. */
|
if (!target_can_async_p ())
|
if (!target_can_async_p ())
|
{
|
{
|
for (; count > 0; count--)
|
for (; count > 0; count--)
|
{
|
{
|
clear_proceed_status ();
|
clear_proceed_status ();
|
|
|
frame = get_current_frame ();
|
frame = get_current_frame ();
|
if (!frame) /* Avoid coredump here. Why tho? */
|
if (!frame) /* Avoid coredump here. Why tho? */
|
error (_("No current frame"));
|
error (_("No current frame"));
|
step_frame_id = get_frame_id (frame);
|
step_frame_id = get_frame_id (frame);
|
|
|
if (!single_inst)
|
if (!single_inst)
|
{
|
{
|
find_pc_line_pc_range (stop_pc, &step_range_start, &step_range_end);
|
find_pc_line_pc_range (stop_pc, &step_range_start, &step_range_end);
|
if (step_range_end == 0)
|
if (step_range_end == 0)
|
{
|
{
|
char *name;
|
char *name;
|
if (find_pc_partial_function (stop_pc, &name, &step_range_start,
|
if (find_pc_partial_function (stop_pc, &name, &step_range_start,
|
&step_range_end) == 0)
|
&step_range_end) == 0)
|
error (_("Cannot find bounds of current function"));
|
error (_("Cannot find bounds of current function"));
|
|
|
target_terminal_ours ();
|
target_terminal_ours ();
|
printf_filtered (_("\
|
printf_filtered (_("\
|
Single stepping until exit from function %s, \n\
|
Single stepping until exit from function %s, \n\
|
which has no line number information.\n"), name);
|
which has no line number information.\n"), name);
|
}
|
}
|
}
|
}
|
else
|
else
|
{
|
{
|
/* Say we are stepping, but stop after one insn whatever it does. */
|
/* Say we are stepping, but stop after one insn whatever it does. */
|
step_range_start = step_range_end = 1;
|
step_range_start = step_range_end = 1;
|
if (!skip_subroutines)
|
if (!skip_subroutines)
|
/* It is stepi.
|
/* It is stepi.
|
Don't step over function calls, not even to functions lacking
|
Don't step over function calls, not even to functions lacking
|
line numbers. */
|
line numbers. */
|
step_over_calls = STEP_OVER_NONE;
|
step_over_calls = STEP_OVER_NONE;
|
}
|
}
|
|
|
if (skip_subroutines)
|
if (skip_subroutines)
|
step_over_calls = STEP_OVER_ALL;
|
step_over_calls = STEP_OVER_ALL;
|
|
|
step_multi = (count > 1);
|
step_multi = (count > 1);
|
proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 1);
|
proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 1);
|
|
|
if (!stop_step)
|
if (!stop_step)
|
break;
|
break;
|
}
|
}
|
|
|
if (!single_inst || skip_subroutines)
|
if (!single_inst || skip_subroutines)
|
do_cleanups (cleanups);
|
do_cleanups (cleanups);
|
return;
|
return;
|
}
|
}
|
/* In case of asynchronous target things get complicated, do only
|
/* In case of asynchronous target things get complicated, do only
|
one step for now, before returning control to the event loop. Let
|
one step for now, before returning control to the event loop. Let
|
the continuation figure out how many other steps we need to do,
|
the continuation figure out how many other steps we need to do,
|
and handle them one at the time, through step_once(). */
|
and handle them one at the time, through step_once(). */
|
else
|
else
|
{
|
{
|
if (target_can_async_p ())
|
if (target_can_async_p ())
|
step_once (skip_subroutines, single_inst, count);
|
step_once (skip_subroutines, single_inst, count);
|
}
|
}
|
}
|
}
|
|
|
/* Called after we are done with one step operation, to check whether
|
/* Called after we are done with one step operation, to check whether
|
we need to step again, before we print the prompt and return control
|
we need to step again, before we print the prompt and return control
|
to the user. If count is > 1, we will need to do one more call to
|
to the user. If count is > 1, we will need to do one more call to
|
proceed(), via step_once(). Basically it is like step_once and
|
proceed(), via step_once(). Basically it is like step_once and
|
step_1_continuation are co-recursive. */
|
step_1_continuation are co-recursive. */
|
static void
|
static void
|
step_1_continuation (struct continuation_arg *arg)
|
step_1_continuation (struct continuation_arg *arg)
|
{
|
{
|
int count;
|
int count;
|
int skip_subroutines;
|
int skip_subroutines;
|
int single_inst;
|
int single_inst;
|
|
|
skip_subroutines = arg->data.integer;
|
skip_subroutines = arg->data.integer;
|
single_inst = arg->next->data.integer;
|
single_inst = arg->next->data.integer;
|
count = arg->next->next->data.integer;
|
count = arg->next->next->data.integer;
|
|
|
if (stop_step)
|
if (stop_step)
|
step_once (skip_subroutines, single_inst, count - 1);
|
step_once (skip_subroutines, single_inst, count - 1);
|
else
|
else
|
if (!single_inst || skip_subroutines)
|
if (!single_inst || skip_subroutines)
|
do_exec_cleanups (ALL_CLEANUPS);
|
do_exec_cleanups (ALL_CLEANUPS);
|
}
|
}
|
|
|
/* Do just one step operation. If count >1 we will have to set up a
|
/* Do just one step operation. If count >1 we will have to set up a
|
continuation to be done after the target stops (after this one
|
continuation to be done after the target stops (after this one
|
step). This is useful to implement the 'step n' kind of commands, in
|
step). This is useful to implement the 'step n' kind of commands, in
|
case of asynchronous targets. We had to split step_1 into two parts,
|
case of asynchronous targets. We had to split step_1 into two parts,
|
one to be done before proceed() and one afterwards. This function is
|
one to be done before proceed() and one afterwards. This function is
|
called in case of step n with n>1, after the first step operation has
|
called in case of step n with n>1, after the first step operation has
|
been completed.*/
|
been completed.*/
|
static void
|
static void
|
step_once (int skip_subroutines, int single_inst, int count)
|
step_once (int skip_subroutines, int single_inst, int count)
|
{
|
{
|
struct continuation_arg *arg1;
|
struct continuation_arg *arg1;
|
struct continuation_arg *arg2;
|
struct continuation_arg *arg2;
|
struct continuation_arg *arg3;
|
struct continuation_arg *arg3;
|
struct frame_info *frame;
|
struct frame_info *frame;
|
|
|
if (count > 0)
|
if (count > 0)
|
{
|
{
|
clear_proceed_status ();
|
clear_proceed_status ();
|
|
|
frame = get_current_frame ();
|
frame = get_current_frame ();
|
if (!frame) /* Avoid coredump here. Why tho? */
|
if (!frame) /* Avoid coredump here. Why tho? */
|
error (_("No current frame"));
|
error (_("No current frame"));
|
step_frame_id = get_frame_id (frame);
|
step_frame_id = get_frame_id (frame);
|
|
|
if (!single_inst)
|
if (!single_inst)
|
{
|
{
|
find_pc_line_pc_range (stop_pc, &step_range_start, &step_range_end);
|
find_pc_line_pc_range (stop_pc, &step_range_start, &step_range_end);
|
|
|
/* If we have no line info, switch to stepi mode. */
|
/* If we have no line info, switch to stepi mode. */
|
if (step_range_end == 0 && step_stop_if_no_debug)
|
if (step_range_end == 0 && step_stop_if_no_debug)
|
{
|
{
|
step_range_start = step_range_end = 1;
|
step_range_start = step_range_end = 1;
|
}
|
}
|
else if (step_range_end == 0)
|
else if (step_range_end == 0)
|
{
|
{
|
char *name;
|
char *name;
|
if (find_pc_partial_function (stop_pc, &name, &step_range_start,
|
if (find_pc_partial_function (stop_pc, &name, &step_range_start,
|
&step_range_end) == 0)
|
&step_range_end) == 0)
|
error (_("Cannot find bounds of current function"));
|
error (_("Cannot find bounds of current function"));
|
|
|
target_terminal_ours ();
|
target_terminal_ours ();
|
printf_filtered (_("\
|
printf_filtered (_("\
|
Single stepping until exit from function %s, \n\
|
Single stepping until exit from function %s, \n\
|
which has no line number information.\n"), name);
|
which has no line number information.\n"), name);
|
}
|
}
|
}
|
}
|
else
|
else
|
{
|
{
|
/* Say we are stepping, but stop after one insn whatever it does. */
|
/* Say we are stepping, but stop after one insn whatever it does. */
|
step_range_start = step_range_end = 1;
|
step_range_start = step_range_end = 1;
|
if (!skip_subroutines)
|
if (!skip_subroutines)
|
/* It is stepi.
|
/* It is stepi.
|
Don't step over function calls, not even to functions lacking
|
Don't step over function calls, not even to functions lacking
|
line numbers. */
|
line numbers. */
|
step_over_calls = STEP_OVER_NONE;
|
step_over_calls = STEP_OVER_NONE;
|
}
|
}
|
|
|
if (skip_subroutines)
|
if (skip_subroutines)
|
step_over_calls = STEP_OVER_ALL;
|
step_over_calls = STEP_OVER_ALL;
|
|
|
step_multi = (count > 1);
|
step_multi = (count > 1);
|
arg1 =
|
arg1 =
|
(struct continuation_arg *) xmalloc (sizeof (struct continuation_arg));
|
(struct continuation_arg *) xmalloc (sizeof (struct continuation_arg));
|
arg2 =
|
arg2 =
|
(struct continuation_arg *) xmalloc (sizeof (struct continuation_arg));
|
(struct continuation_arg *) xmalloc (sizeof (struct continuation_arg));
|
arg3 =
|
arg3 =
|
(struct continuation_arg *) xmalloc (sizeof (struct continuation_arg));
|
(struct continuation_arg *) xmalloc (sizeof (struct continuation_arg));
|
arg1->next = arg2;
|
arg1->next = arg2;
|
arg1->data.integer = skip_subroutines;
|
arg1->data.integer = skip_subroutines;
|
arg2->next = arg3;
|
arg2->next = arg3;
|
arg2->data.integer = single_inst;
|
arg2->data.integer = single_inst;
|
arg3->next = NULL;
|
arg3->next = NULL;
|
arg3->data.integer = count;
|
arg3->data.integer = count;
|
add_intermediate_continuation (step_1_continuation, arg1);
|
add_intermediate_continuation (step_1_continuation, arg1);
|
proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 1);
|
proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 1);
|
}
|
}
|
}
|
}
|
|
|
|
|
/* Continue program at specified address. */
|
/* Continue program at specified address. */
|
|
|
static void
|
static void
|
jump_command (char *arg, int from_tty)
|
jump_command (char *arg, int from_tty)
|
{
|
{
|
CORE_ADDR addr;
|
CORE_ADDR addr;
|
struct symtabs_and_lines sals;
|
struct symtabs_and_lines sals;
|
struct symtab_and_line sal;
|
struct symtab_and_line sal;
|
struct symbol *fn;
|
struct symbol *fn;
|
struct symbol *sfn;
|
struct symbol *sfn;
|
int async_exec = 0;
|
int async_exec = 0;
|
|
|
ERROR_NO_INFERIOR;
|
ERROR_NO_INFERIOR;
|
|
|
/* Find out whether we must run in the background. */
|
/* Find out whether we must run in the background. */
|
if (arg != NULL)
|
if (arg != NULL)
|
async_exec = strip_bg_char (&arg);
|
async_exec = strip_bg_char (&arg);
|
|
|
/* If we must run in the background, but the target can't do it,
|
/* If we must run in the background, but the target can't do it,
|
error out. */
|
error out. */
|
if (async_exec && !target_can_async_p ())
|
if (async_exec && !target_can_async_p ())
|
error (_("Asynchronous execution not supported on this target."));
|
error (_("Asynchronous execution not supported on this target."));
|
|
|
/* If we are not asked to run in the bg, then prepare to run in the
|
/* If we are not asked to run in the bg, then prepare to run in the
|
foreground, synchronously. */
|
foreground, synchronously. */
|
if (!async_exec && target_can_async_p ())
|
if (!async_exec && target_can_async_p ())
|
{
|
{
|
/* Simulate synchronous execution */
|
/* Simulate synchronous execution */
|
async_disable_stdin ();
|
async_disable_stdin ();
|
}
|
}
|
|
|
if (!arg)
|
if (!arg)
|
error_no_arg (_("starting address"));
|
error_no_arg (_("starting address"));
|
|
|
sals = decode_line_spec_1 (arg, 1);
|
sals = decode_line_spec_1 (arg, 1);
|
if (sals.nelts != 1)
|
if (sals.nelts != 1)
|
{
|
{
|
error (_("Unreasonable jump request"));
|
error (_("Unreasonable jump request"));
|
}
|
}
|
|
|
sal = sals.sals[0];
|
sal = sals.sals[0];
|
xfree (sals.sals);
|
xfree (sals.sals);
|
|
|
if (sal.symtab == 0 && sal.pc == 0)
|
if (sal.symtab == 0 && sal.pc == 0)
|
error (_("No source file has been specified."));
|
error (_("No source file has been specified."));
|
|
|
resolve_sal_pc (&sal); /* May error out */
|
resolve_sal_pc (&sal); /* May error out */
|
|
|
/* See if we are trying to jump to another function. */
|
/* See if we are trying to jump to another function. */
|
fn = get_frame_function (get_current_frame ());
|
fn = get_frame_function (get_current_frame ());
|
sfn = find_pc_function (sal.pc);
|
sfn = find_pc_function (sal.pc);
|
if (fn != NULL && sfn != fn)
|
if (fn != NULL && sfn != fn)
|
{
|
{
|
if (!query ("Line %d is not in `%s'. Jump anyway? ", sal.line,
|
if (!query ("Line %d is not in `%s'. Jump anyway? ", sal.line,
|
SYMBOL_PRINT_NAME (fn)))
|
SYMBOL_PRINT_NAME (fn)))
|
{
|
{
|
error (_("Not confirmed."));
|
error (_("Not confirmed."));
|
/* NOTREACHED */
|
/* NOTREACHED */
|
}
|
}
|
}
|
}
|
|
|
if (sfn != NULL)
|
if (sfn != NULL)
|
{
|
{
|
fixup_symbol_section (sfn, 0);
|
fixup_symbol_section (sfn, 0);
|
if (section_is_overlay (SYMBOL_BFD_SECTION (sfn)) &&
|
if (section_is_overlay (SYMBOL_BFD_SECTION (sfn)) &&
|
!section_is_mapped (SYMBOL_BFD_SECTION (sfn)))
|
!section_is_mapped (SYMBOL_BFD_SECTION (sfn)))
|
{
|
{
|
if (!query ("WARNING!!! Destination is in unmapped overlay! Jump anyway? "))
|
if (!query ("WARNING!!! Destination is in unmapped overlay! Jump anyway? "))
|
{
|
{
|
error (_("Not confirmed."));
|
error (_("Not confirmed."));
|
/* NOTREACHED */
|
/* NOTREACHED */
|
}
|
}
|
}
|
}
|
}
|
}
|
|
|
addr = sal.pc;
|
addr = sal.pc;
|
|
|
if (from_tty)
|
if (from_tty)
|
{
|
{
|
printf_filtered (_("Continuing at "));
|
printf_filtered (_("Continuing at "));
|
fputs_filtered (paddress (addr), gdb_stdout);
|
fputs_filtered (paddress (addr), gdb_stdout);
|
printf_filtered (".\n");
|
printf_filtered (".\n");
|
}
|
}
|
|
|
clear_proceed_status ();
|
clear_proceed_status ();
|
proceed (addr, TARGET_SIGNAL_0, 0);
|
proceed (addr, TARGET_SIGNAL_0, 0);
|
}
|
}
|
|
|
|
|
/* Go to line or address in current procedure */
|
/* Go to line or address in current procedure */
|
static void
|
static void
|
go_command (char *line_no, int from_tty)
|
go_command (char *line_no, int from_tty)
|
{
|
{
|
if (line_no == (char *) NULL || !*line_no)
|
if (line_no == (char *) NULL || !*line_no)
|
printf_filtered (GO_USAGE);
|
printf_filtered (GO_USAGE);
|
else
|
else
|
{
|
{
|
tbreak_command (line_no, from_tty);
|
tbreak_command (line_no, from_tty);
|
jump_command (line_no, from_tty);
|
jump_command (line_no, from_tty);
|
}
|
}
|
}
|
}
|
|
|
|
|
/* Continue program giving it specified signal. */
|
/* Continue program giving it specified signal. */
|
|
|
static void
|
static void
|
signal_command (char *signum_exp, int from_tty)
|
signal_command (char *signum_exp, int from_tty)
|
{
|
{
|
enum target_signal oursig;
|
enum target_signal oursig;
|
|
|
dont_repeat (); /* Too dangerous. */
|
dont_repeat (); /* Too dangerous. */
|
ERROR_NO_INFERIOR;
|
ERROR_NO_INFERIOR;
|
|
|
if (!signum_exp)
|
if (!signum_exp)
|
error_no_arg (_("signal number"));
|
error_no_arg (_("signal number"));
|
|
|
/* It would be even slicker to make signal names be valid expressions,
|
/* It would be even slicker to make signal names be valid expressions,
|
(the type could be "enum $signal" or some such), then the user could
|
(the type could be "enum $signal" or some such), then the user could
|
assign them to convenience variables. */
|
assign them to convenience variables. */
|
oursig = target_signal_from_name (signum_exp);
|
oursig = target_signal_from_name (signum_exp);
|
|
|
if (oursig == TARGET_SIGNAL_UNKNOWN)
|
if (oursig == TARGET_SIGNAL_UNKNOWN)
|
{
|
{
|
/* No, try numeric. */
|
/* No, try numeric. */
|
int num = parse_and_eval_long (signum_exp);
|
int num = parse_and_eval_long (signum_exp);
|
|
|
if (num == 0)
|
if (num == 0)
|
oursig = TARGET_SIGNAL_0;
|
oursig = TARGET_SIGNAL_0;
|
else
|
else
|
oursig = target_signal_from_command (num);
|
oursig = target_signal_from_command (num);
|
}
|
}
|
|
|
if (from_tty)
|
if (from_tty)
|
{
|
{
|
if (oursig == TARGET_SIGNAL_0)
|
if (oursig == TARGET_SIGNAL_0)
|
printf_filtered (_("Continuing with no signal.\n"));
|
printf_filtered (_("Continuing with no signal.\n"));
|
else
|
else
|
printf_filtered (_("Continuing with signal %s.\n"),
|
printf_filtered (_("Continuing with signal %s.\n"),
|
target_signal_to_name (oursig));
|
target_signal_to_name (oursig));
|
}
|
}
|
|
|
clear_proceed_status ();
|
clear_proceed_status ();
|
/* "signal 0" should not get stuck if we are stopped at a breakpoint.
|
/* "signal 0" should not get stuck if we are stopped at a breakpoint.
|
FIXME: Neither should "signal foo" but when I tried passing
|
FIXME: Neither should "signal foo" but when I tried passing
|
(CORE_ADDR)-1 unconditionally I got a testsuite failure which I haven't
|
(CORE_ADDR)-1 unconditionally I got a testsuite failure which I haven't
|
tried to track down yet. */
|
tried to track down yet. */
|
proceed (oursig == TARGET_SIGNAL_0 ? (CORE_ADDR) -1 : stop_pc, oursig, 0);
|
proceed (oursig == TARGET_SIGNAL_0 ? (CORE_ADDR) -1 : stop_pc, oursig, 0);
|
}
|
}
|
|
|
/* Proceed until we reach a different source line with pc greater than
|
/* Proceed until we reach a different source line with pc greater than
|
our current one or exit the function. We skip calls in both cases.
|
our current one or exit the function. We skip calls in both cases.
|
|
|
Note that eventually this command should probably be changed so
|
Note that eventually this command should probably be changed so
|
that only source lines are printed out when we hit the breakpoint
|
that only source lines are printed out when we hit the breakpoint
|
we set. This may involve changes to wait_for_inferior and the
|
we set. This may involve changes to wait_for_inferior and the
|
proceed status code. */
|
proceed status code. */
|
|
|
static void
|
static void
|
until_next_command (int from_tty)
|
until_next_command (int from_tty)
|
{
|
{
|
struct frame_info *frame;
|
struct frame_info *frame;
|
CORE_ADDR pc;
|
CORE_ADDR pc;
|
struct symbol *func;
|
struct symbol *func;
|
struct symtab_and_line sal;
|
struct symtab_and_line sal;
|
|
|
clear_proceed_status ();
|
clear_proceed_status ();
|
|
|
frame = get_current_frame ();
|
frame = get_current_frame ();
|
|
|
/* Step until either exited from this function or greater
|
/* Step until either exited from this function or greater
|
than the current line (if in symbolic section) or pc (if
|
than the current line (if in symbolic section) or pc (if
|
not). */
|
not). */
|
|
|
pc = read_pc ();
|
pc = read_pc ();
|
func = find_pc_function (pc);
|
func = find_pc_function (pc);
|
|
|
if (!func)
|
if (!func)
|
{
|
{
|
struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (pc);
|
struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (pc);
|
|
|
if (msymbol == NULL)
|
if (msymbol == NULL)
|
error (_("Execution is not within a known function."));
|
error (_("Execution is not within a known function."));
|
|
|
step_range_start = SYMBOL_VALUE_ADDRESS (msymbol);
|
step_range_start = SYMBOL_VALUE_ADDRESS (msymbol);
|
step_range_end = pc;
|
step_range_end = pc;
|
}
|
}
|
else
|
else
|
{
|
{
|
sal = find_pc_line (pc, 0);
|
sal = find_pc_line (pc, 0);
|
|
|
step_range_start = BLOCK_START (SYMBOL_BLOCK_VALUE (func));
|
step_range_start = BLOCK_START (SYMBOL_BLOCK_VALUE (func));
|
step_range_end = sal.end;
|
step_range_end = sal.end;
|
}
|
}
|
|
|
step_over_calls = STEP_OVER_ALL;
|
step_over_calls = STEP_OVER_ALL;
|
step_frame_id = get_frame_id (frame);
|
step_frame_id = get_frame_id (frame);
|
|
|
step_multi = 0; /* Only one call to proceed */
|
step_multi = 0; /* Only one call to proceed */
|
|
|
proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 1);
|
proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 1);
|
}
|
}
|
|
|
static void
|
static void
|
until_command (char *arg, int from_tty)
|
until_command (char *arg, int from_tty)
|
{
|
{
|
int async_exec = 0;
|
int async_exec = 0;
|
|
|
if (!target_has_execution)
|
if (!target_has_execution)
|
error (_("The program is not running."));
|
error (_("The program is not running."));
|
|
|
/* Find out whether we must run in the background. */
|
/* Find out whether we must run in the background. */
|
if (arg != NULL)
|
if (arg != NULL)
|
async_exec = strip_bg_char (&arg);
|
async_exec = strip_bg_char (&arg);
|
|
|
/* If we must run in the background, but the target can't do it,
|
/* If we must run in the background, but the target can't do it,
|
error out. */
|
error out. */
|
if (async_exec && !target_can_async_p ())
|
if (async_exec && !target_can_async_p ())
|
error (_("Asynchronous execution not supported on this target."));
|
error (_("Asynchronous execution not supported on this target."));
|
|
|
/* If we are not asked to run in the bg, then prepare to run in the
|
/* If we are not asked to run in the bg, then prepare to run in the
|
foreground, synchronously. */
|
foreground, synchronously. */
|
if (!async_exec && target_can_async_p ())
|
if (!async_exec && target_can_async_p ())
|
{
|
{
|
/* Simulate synchronous execution */
|
/* Simulate synchronous execution */
|
async_disable_stdin ();
|
async_disable_stdin ();
|
}
|
}
|
|
|
if (arg)
|
if (arg)
|
until_break_command (arg, from_tty, 0);
|
until_break_command (arg, from_tty, 0);
|
else
|
else
|
until_next_command (from_tty);
|
until_next_command (from_tty);
|
}
|
}
|
|
|
static void
|
static void
|
advance_command (char *arg, int from_tty)
|
advance_command (char *arg, int from_tty)
|
{
|
{
|
int async_exec = 0;
|
int async_exec = 0;
|
|
|
if (!target_has_execution)
|
if (!target_has_execution)
|
error (_("The program is not running."));
|
error (_("The program is not running."));
|
|
|
if (arg == NULL)
|
if (arg == NULL)
|
error_no_arg (_("a location"));
|
error_no_arg (_("a location"));
|
|
|
/* Find out whether we must run in the background. */
|
/* Find out whether we must run in the background. */
|
if (arg != NULL)
|
if (arg != NULL)
|
async_exec = strip_bg_char (&arg);
|
async_exec = strip_bg_char (&arg);
|
|
|
/* If we must run in the background, but the target can't do it,
|
/* If we must run in the background, but the target can't do it,
|
error out. */
|
error out. */
|
if (async_exec && !target_can_async_p ())
|
if (async_exec && !target_can_async_p ())
|
error (_("Asynchronous execution not supported on this target."));
|
error (_("Asynchronous execution not supported on this target."));
|
|
|
/* If we are not asked to run in the bg, then prepare to run in the
|
/* If we are not asked to run in the bg, then prepare to run in the
|
foreground, synchronously. */
|
foreground, synchronously. */
|
if (!async_exec && target_can_async_p ())
|
if (!async_exec && target_can_async_p ())
|
{
|
{
|
/* Simulate synchronous execution. */
|
/* Simulate synchronous execution. */
|
async_disable_stdin ();
|
async_disable_stdin ();
|
}
|
}
|
|
|
until_break_command (arg, from_tty, 1);
|
until_break_command (arg, from_tty, 1);
|
}
|
}
|
|
|
/* Print the result of a function at the end of a 'finish' command. */
|
/* Print the result of a function at the end of a 'finish' command. */
|
|
|
static void
|
static void
|
print_return_value (struct type *value_type)
|
print_return_value (struct type *value_type)
|
{
|
{
|
struct gdbarch *gdbarch = current_gdbarch;
|
struct gdbarch *gdbarch = current_gdbarch;
|
struct cleanup *old_chain;
|
struct cleanup *old_chain;
|
struct ui_stream *stb;
|
struct ui_stream *stb;
|
struct value *value;
|
struct value *value;
|
|
|
CHECK_TYPEDEF (value_type);
|
CHECK_TYPEDEF (value_type);
|
gdb_assert (TYPE_CODE (value_type) != TYPE_CODE_VOID);
|
gdb_assert (TYPE_CODE (value_type) != TYPE_CODE_VOID);
|
|
|
/* FIXME: 2003-09-27: When returning from a nested inferior function
|
/* FIXME: 2003-09-27: When returning from a nested inferior function
|
call, it's possible (with no help from the architecture vector)
|
call, it's possible (with no help from the architecture vector)
|
to locate and return/print a "struct return" value. This is just
|
to locate and return/print a "struct return" value. This is just
|
a more complicated case of what is already being done in in the
|
a more complicated case of what is already being done in in the
|
inferior function call code. In fact, when inferior function
|
inferior function call code. In fact, when inferior function
|
calls are made async, this will likely be made the norm. */
|
calls are made async, this will likely be made the norm. */
|
|
|
switch (gdbarch_return_value (gdbarch, value_type, NULL, NULL, NULL))
|
switch (gdbarch_return_value (gdbarch, value_type, NULL, NULL, NULL))
|
{
|
{
|
case RETURN_VALUE_REGISTER_CONVENTION:
|
case RETURN_VALUE_REGISTER_CONVENTION:
|
case RETURN_VALUE_ABI_RETURNS_ADDRESS:
|
case RETURN_VALUE_ABI_RETURNS_ADDRESS:
|
case RETURN_VALUE_ABI_PRESERVES_ADDRESS:
|
case RETURN_VALUE_ABI_PRESERVES_ADDRESS:
|
value = allocate_value (value_type);
|
value = allocate_value (value_type);
|
gdbarch_return_value (gdbarch, value_type, stop_registers,
|
gdbarch_return_value (gdbarch, value_type, stop_registers,
|
value_contents_raw (value), NULL);
|
value_contents_raw (value), NULL);
|
break;
|
break;
|
case RETURN_VALUE_STRUCT_CONVENTION:
|
case RETURN_VALUE_STRUCT_CONVENTION:
|
value = NULL;
|
value = NULL;
|
break;
|
break;
|
default:
|
default:
|
internal_error (__FILE__, __LINE__, _("bad switch"));
|
internal_error (__FILE__, __LINE__, _("bad switch"));
|
}
|
}
|
|
|
if (value)
|
if (value)
|
{
|
{
|
/* Print it. */
|
/* Print it. */
|
stb = ui_out_stream_new (uiout);
|
stb = ui_out_stream_new (uiout);
|
old_chain = make_cleanup_ui_out_stream_delete (stb);
|
old_chain = make_cleanup_ui_out_stream_delete (stb);
|
ui_out_text (uiout, "Value returned is ");
|
ui_out_text (uiout, "Value returned is ");
|
ui_out_field_fmt (uiout, "gdb-result-var", "$%d",
|
ui_out_field_fmt (uiout, "gdb-result-var", "$%d",
|
record_latest_value (value));
|
record_latest_value (value));
|
ui_out_text (uiout, " = ");
|
ui_out_text (uiout, " = ");
|
value_print (value, stb->stream, 0, Val_no_prettyprint);
|
value_print (value, stb->stream, 0, Val_no_prettyprint);
|
ui_out_field_stream (uiout, "return-value", stb);
|
ui_out_field_stream (uiout, "return-value", stb);
|
ui_out_text (uiout, "\n");
|
ui_out_text (uiout, "\n");
|
do_cleanups (old_chain);
|
do_cleanups (old_chain);
|
}
|
}
|
else
|
else
|
{
|
{
|
ui_out_text (uiout, "Value returned has type: ");
|
ui_out_text (uiout, "Value returned has type: ");
|
ui_out_field_string (uiout, "return-type", TYPE_NAME (value_type));
|
ui_out_field_string (uiout, "return-type", TYPE_NAME (value_type));
|
ui_out_text (uiout, ".");
|
ui_out_text (uiout, ".");
|
ui_out_text (uiout, " Cannot determine contents\n");
|
ui_out_text (uiout, " Cannot determine contents\n");
|
}
|
}
|
}
|
}
|
|
|
/* Stuff that needs to be done by the finish command after the target
|
/* Stuff that needs to be done by the finish command after the target
|
has stopped. In asynchronous mode, we wait for the target to stop
|
has stopped. In asynchronous mode, we wait for the target to stop
|
in the call to poll or select in the event loop, so it is
|
in the call to poll or select in the event loop, so it is
|
impossible to do all the stuff as part of the finish_command
|
impossible to do all the stuff as part of the finish_command
|
function itself. The only chance we have to complete this command
|
function itself. The only chance we have to complete this command
|
is in fetch_inferior_event, which is called by the event loop as
|
is in fetch_inferior_event, which is called by the event loop as
|
soon as it detects that the target has stopped. This function is
|
soon as it detects that the target has stopped. This function is
|
called via the cmd_continuation pointer. */
|
called via the cmd_continuation pointer. */
|
|
|
static void
|
static void
|
finish_command_continuation (struct continuation_arg *arg)
|
finish_command_continuation (struct continuation_arg *arg)
|
{
|
{
|
struct symbol *function;
|
struct symbol *function;
|
struct breakpoint *breakpoint;
|
struct breakpoint *breakpoint;
|
struct cleanup *cleanups;
|
struct cleanup *cleanups;
|
|
|
breakpoint = (struct breakpoint *) arg->data.pointer;
|
breakpoint = (struct breakpoint *) arg->data.pointer;
|
function = (struct symbol *) arg->next->data.pointer;
|
function = (struct symbol *) arg->next->data.pointer;
|
cleanups = (struct cleanup *) arg->next->next->data.pointer;
|
cleanups = (struct cleanup *) arg->next->next->data.pointer;
|
|
|
if (bpstat_find_breakpoint (stop_bpstat, breakpoint) != NULL
|
if (bpstat_find_breakpoint (stop_bpstat, breakpoint) != NULL
|
&& function != NULL)
|
&& function != NULL)
|
{
|
{
|
struct type *value_type;
|
struct type *value_type;
|
|
|
value_type = TYPE_TARGET_TYPE (SYMBOL_TYPE (function));
|
value_type = TYPE_TARGET_TYPE (SYMBOL_TYPE (function));
|
if (!value_type)
|
if (!value_type)
|
internal_error (__FILE__, __LINE__,
|
internal_error (__FILE__, __LINE__,
|
_("finish_command: function has no target type"));
|
_("finish_command: function has no target type"));
|
|
|
if (TYPE_CODE (value_type) != TYPE_CODE_VOID)
|
if (TYPE_CODE (value_type) != TYPE_CODE_VOID)
|
print_return_value (value_type);
|
print_return_value (value_type);
|
}
|
}
|
|
|
do_exec_cleanups (cleanups);
|
do_exec_cleanups (cleanups);
|
}
|
}
|
|
|
/* "finish": Set a temporary breakpoint at the place the selected
|
/* "finish": Set a temporary breakpoint at the place the selected
|
frame will return to, then continue. */
|
frame will return to, then continue. */
|
|
|
static void
|
static void
|
finish_command (char *arg, int from_tty)
|
finish_command (char *arg, int from_tty)
|
{
|
{
|
struct symtab_and_line sal;
|
struct symtab_and_line sal;
|
struct frame_info *frame;
|
struct frame_info *frame;
|
struct symbol *function;
|
struct symbol *function;
|
struct breakpoint *breakpoint;
|
struct breakpoint *breakpoint;
|
struct cleanup *old_chain;
|
struct cleanup *old_chain;
|
struct continuation_arg *arg1, *arg2, *arg3;
|
struct continuation_arg *arg1, *arg2, *arg3;
|
|
|
int async_exec = 0;
|
int async_exec = 0;
|
|
|
/* Find out whether we must run in the background. */
|
/* Find out whether we must run in the background. */
|
if (arg != NULL)
|
if (arg != NULL)
|
async_exec = strip_bg_char (&arg);
|
async_exec = strip_bg_char (&arg);
|
|
|
/* If we must run in the background, but the target can't do it,
|
/* If we must run in the background, but the target can't do it,
|
error out. */
|
error out. */
|
if (async_exec && !target_can_async_p ())
|
if (async_exec && !target_can_async_p ())
|
error (_("Asynchronous execution not supported on this target."));
|
error (_("Asynchronous execution not supported on this target."));
|
|
|
/* If we are not asked to run in the bg, then prepare to run in the
|
/* If we are not asked to run in the bg, then prepare to run in the
|
foreground, synchronously. */
|
foreground, synchronously. */
|
if (!async_exec && target_can_async_p ())
|
if (!async_exec && target_can_async_p ())
|
{
|
{
|
/* Simulate synchronous execution. */
|
/* Simulate synchronous execution. */
|
async_disable_stdin ();
|
async_disable_stdin ();
|
}
|
}
|
|
|
if (arg)
|
if (arg)
|
error (_("The \"finish\" command does not take any arguments."));
|
error (_("The \"finish\" command does not take any arguments."));
|
if (!target_has_execution)
|
if (!target_has_execution)
|
error (_("The program is not running."));
|
error (_("The program is not running."));
|
|
|
frame = get_prev_frame (get_selected_frame (_("No selected frame.")));
|
frame = get_prev_frame (get_selected_frame (_("No selected frame.")));
|
if (frame == 0)
|
if (frame == 0)
|
error (_("\"finish\" not meaningful in the outermost frame."));
|
error (_("\"finish\" not meaningful in the outermost frame."));
|
|
|
clear_proceed_status ();
|
clear_proceed_status ();
|
|
|
sal = find_pc_line (get_frame_pc (frame), 0);
|
sal = find_pc_line (get_frame_pc (frame), 0);
|
sal.pc = get_frame_pc (frame);
|
sal.pc = get_frame_pc (frame);
|
|
|
breakpoint = set_momentary_breakpoint (sal, get_frame_id (frame), bp_finish);
|
breakpoint = set_momentary_breakpoint (sal, get_frame_id (frame), bp_finish);
|
|
|
if (!target_can_async_p ())
|
if (!target_can_async_p ())
|
old_chain = make_cleanup_delete_breakpoint (breakpoint);
|
old_chain = make_cleanup_delete_breakpoint (breakpoint);
|
else
|
else
|
old_chain = make_exec_cleanup_delete_breakpoint (breakpoint);
|
old_chain = make_exec_cleanup_delete_breakpoint (breakpoint);
|
|
|
/* Find the function we will return from. */
|
/* Find the function we will return from. */
|
|
|
function = find_pc_function (get_frame_pc (get_selected_frame (NULL)));
|
function = find_pc_function (get_frame_pc (get_selected_frame (NULL)));
|
|
|
/* Print info on the selected frame, including level number but not
|
/* Print info on the selected frame, including level number but not
|
source. */
|
source. */
|
if (from_tty)
|
if (from_tty)
|
{
|
{
|
printf_filtered (_("Run till exit from "));
|
printf_filtered (_("Run till exit from "));
|
print_stack_frame (get_selected_frame (NULL), 1, LOCATION);
|
print_stack_frame (get_selected_frame (NULL), 1, LOCATION);
|
}
|
}
|
|
|
/* If running asynchronously and the target support asynchronous
|
/* If running asynchronously and the target support asynchronous
|
execution, set things up for the rest of the finish command to be
|
execution, set things up for the rest of the finish command to be
|
completed later on, when gdb has detected that the target has
|
completed later on, when gdb has detected that the target has
|
stopped, in fetch_inferior_event. */
|
stopped, in fetch_inferior_event. */
|
if (target_can_async_p ())
|
if (target_can_async_p ())
|
{
|
{
|
arg1 =
|
arg1 =
|
(struct continuation_arg *) xmalloc (sizeof (struct continuation_arg));
|
(struct continuation_arg *) xmalloc (sizeof (struct continuation_arg));
|
arg2 =
|
arg2 =
|
(struct continuation_arg *) xmalloc (sizeof (struct continuation_arg));
|
(struct continuation_arg *) xmalloc (sizeof (struct continuation_arg));
|
arg3 =
|
arg3 =
|
(struct continuation_arg *) xmalloc (sizeof (struct continuation_arg));
|
(struct continuation_arg *) xmalloc (sizeof (struct continuation_arg));
|
arg1->next = arg2;
|
arg1->next = arg2;
|
arg2->next = arg3;
|
arg2->next = arg3;
|
arg3->next = NULL;
|
arg3->next = NULL;
|
arg1->data.pointer = breakpoint;
|
arg1->data.pointer = breakpoint;
|
arg2->data.pointer = function;
|
arg2->data.pointer = function;
|
arg3->data.pointer = old_chain;
|
arg3->data.pointer = old_chain;
|
add_continuation (finish_command_continuation, arg1);
|
add_continuation (finish_command_continuation, arg1);
|
}
|
}
|
|
|
proceed_to_finish = 1; /* We want stop_registers, please... */
|
proceed_to_finish = 1; /* We want stop_registers, please... */
|
proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
|
proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
|
|
|
/* Do this only if not running asynchronously or if the target
|
/* Do this only if not running asynchronously or if the target
|
cannot do async execution. Otherwise, complete this command when
|
cannot do async execution. Otherwise, complete this command when
|
the target actually stops, in fetch_inferior_event. */
|
the target actually stops, in fetch_inferior_event. */
|
if (!target_can_async_p ())
|
if (!target_can_async_p ())
|
{
|
{
|
/* Did we stop at our breakpoint? */
|
/* Did we stop at our breakpoint? */
|
if (bpstat_find_breakpoint (stop_bpstat, breakpoint) != NULL
|
if (bpstat_find_breakpoint (stop_bpstat, breakpoint) != NULL
|
&& function != NULL)
|
&& function != NULL)
|
{
|
{
|
struct type *value_type;
|
struct type *value_type;
|
|
|
value_type = TYPE_TARGET_TYPE (SYMBOL_TYPE (function));
|
value_type = TYPE_TARGET_TYPE (SYMBOL_TYPE (function));
|
if (!value_type)
|
if (!value_type)
|
internal_error (__FILE__, __LINE__,
|
internal_error (__FILE__, __LINE__,
|
_("finish_command: function has no target type"));
|
_("finish_command: function has no target type"));
|
|
|
if (TYPE_CODE (value_type) != TYPE_CODE_VOID)
|
if (TYPE_CODE (value_type) != TYPE_CODE_VOID)
|
print_return_value (value_type);
|
print_return_value (value_type);
|
}
|
}
|
|
|
do_cleanups (old_chain);
|
do_cleanups (old_chain);
|
}
|
}
|
}
|
}
|
|
|
|
|
static void
|
static void
|
program_info (char *args, int from_tty)
|
program_info (char *args, int from_tty)
|
{
|
{
|
bpstat bs = stop_bpstat;
|
bpstat bs = stop_bpstat;
|
int num;
|
int num;
|
int stat = bpstat_num (&bs, &num);
|
int stat = bpstat_num (&bs, &num);
|
|
|
if (!target_has_execution)
|
if (!target_has_execution)
|
{
|
{
|
printf_filtered (_("The program being debugged is not being run.\n"));
|
printf_filtered (_("The program being debugged is not being run.\n"));
|
return;
|
return;
|
}
|
}
|
|
|
target_files_info ();
|
target_files_info ();
|
printf_filtered (_("Program stopped at %s.\n"),
|
printf_filtered (_("Program stopped at %s.\n"),
|
hex_string ((unsigned long) stop_pc));
|
hex_string ((unsigned long) stop_pc));
|
if (stop_step)
|
if (stop_step)
|
printf_filtered (_("It stopped after being stepped.\n"));
|
printf_filtered (_("It stopped after being stepped.\n"));
|
else if (stat != 0)
|
else if (stat != 0)
|
{
|
{
|
/* There may be several breakpoints in the same place, so this
|
/* There may be several breakpoints in the same place, so this
|
isn't as strange as it seems. */
|
isn't as strange as it seems. */
|
while (stat != 0)
|
while (stat != 0)
|
{
|
{
|
if (stat < 0)
|
if (stat < 0)
|
{
|
{
|
printf_filtered (_("\
|
printf_filtered (_("\
|
It stopped at a breakpoint that has since been deleted.\n"));
|
It stopped at a breakpoint that has since been deleted.\n"));
|
}
|
}
|
else
|
else
|
printf_filtered (_("It stopped at breakpoint %d.\n"), num);
|
printf_filtered (_("It stopped at breakpoint %d.\n"), num);
|
stat = bpstat_num (&bs, &num);
|
stat = bpstat_num (&bs, &num);
|
}
|
}
|
}
|
}
|
else if (stop_signal != TARGET_SIGNAL_0)
|
else if (stop_signal != TARGET_SIGNAL_0)
|
{
|
{
|
printf_filtered (_("It stopped with signal %s, %s.\n"),
|
printf_filtered (_("It stopped with signal %s, %s.\n"),
|
target_signal_to_name (stop_signal),
|
target_signal_to_name (stop_signal),
|
target_signal_to_string (stop_signal));
|
target_signal_to_string (stop_signal));
|
}
|
}
|
|
|
if (!from_tty)
|
if (!from_tty)
|
{
|
{
|
printf_filtered (_("\
|
printf_filtered (_("\
|
Type \"info stack\" or \"info registers\" for more information.\n"));
|
Type \"info stack\" or \"info registers\" for more information.\n"));
|
}
|
}
|
}
|
}
|
|
|
static void
|
static void
|
environment_info (char *var, int from_tty)
|
environment_info (char *var, int from_tty)
|
{
|
{
|
if (var)
|
if (var)
|
{
|
{
|
char *val = get_in_environ (inferior_environ, var);
|
char *val = get_in_environ (inferior_environ, var);
|
if (val)
|
if (val)
|
{
|
{
|
puts_filtered (var);
|
puts_filtered (var);
|
puts_filtered (" = ");
|
puts_filtered (" = ");
|
puts_filtered (val);
|
puts_filtered (val);
|
puts_filtered ("\n");
|
puts_filtered ("\n");
|
}
|
}
|
else
|
else
|
{
|
{
|
puts_filtered ("Environment variable \"");
|
puts_filtered ("Environment variable \"");
|
puts_filtered (var);
|
puts_filtered (var);
|
puts_filtered ("\" not defined.\n");
|
puts_filtered ("\" not defined.\n");
|
}
|
}
|
}
|
}
|
else
|
else
|
{
|
{
|
char **vector = environ_vector (inferior_environ);
|
char **vector = environ_vector (inferior_environ);
|
while (*vector)
|
while (*vector)
|
{
|
{
|
puts_filtered (*vector++);
|
puts_filtered (*vector++);
|
puts_filtered ("\n");
|
puts_filtered ("\n");
|
}
|
}
|
}
|
}
|
}
|
}
|
|
|
static void
|
static void
|
set_environment_command (char *arg, int from_tty)
|
set_environment_command (char *arg, int from_tty)
|
{
|
{
|
char *p, *val, *var;
|
char *p, *val, *var;
|
int nullset = 0;
|
int nullset = 0;
|
|
|
if (arg == 0)
|
if (arg == 0)
|
error_no_arg (_("environment variable and value"));
|
error_no_arg (_("environment variable and value"));
|
|
|
/* Find seperation between variable name and value */
|
/* Find seperation between variable name and value */
|
p = (char *) strchr (arg, '=');
|
p = (char *) strchr (arg, '=');
|
val = (char *) strchr (arg, ' ');
|
val = (char *) strchr (arg, ' ');
|
|
|
if (p != 0 && val != 0)
|
if (p != 0 && val != 0)
|
{
|
{
|
/* We have both a space and an equals. If the space is before the
|
/* We have both a space and an equals. If the space is before the
|
equals, walk forward over the spaces til we see a nonspace
|
equals, walk forward over the spaces til we see a nonspace
|
(possibly the equals). */
|
(possibly the equals). */
|
if (p > val)
|
if (p > val)
|
while (*val == ' ')
|
while (*val == ' ')
|
val++;
|
val++;
|
|
|
/* Now if the = is after the char following the spaces,
|
/* Now if the = is after the char following the spaces,
|
take the char following the spaces. */
|
take the char following the spaces. */
|
if (p > val)
|
if (p > val)
|
p = val - 1;
|
p = val - 1;
|
}
|
}
|
else if (val != 0 && p == 0)
|
else if (val != 0 && p == 0)
|
p = val;
|
p = val;
|
|
|
if (p == arg)
|
if (p == arg)
|
error_no_arg (_("environment variable to set"));
|
error_no_arg (_("environment variable to set"));
|
|
|
if (p == 0 || p[1] == 0)
|
if (p == 0 || p[1] == 0)
|
{
|
{
|
nullset = 1;
|
nullset = 1;
|
if (p == 0)
|
if (p == 0)
|
p = arg + strlen (arg); /* So that savestring below will work */
|
p = arg + strlen (arg); /* So that savestring below will work */
|
}
|
}
|
else
|
else
|
{
|
{
|
/* Not setting variable value to null */
|
/* Not setting variable value to null */
|
val = p + 1;
|
val = p + 1;
|
while (*val == ' ' || *val == '\t')
|
while (*val == ' ' || *val == '\t')
|
val++;
|
val++;
|
}
|
}
|
|
|
while (p != arg && (p[-1] == ' ' || p[-1] == '\t'))
|
while (p != arg && (p[-1] == ' ' || p[-1] == '\t'))
|
p--;
|
p--;
|
|
|
var = savestring (arg, p - arg);
|
var = savestring (arg, p - arg);
|
if (nullset)
|
if (nullset)
|
{
|
{
|
printf_filtered (_("\
|
printf_filtered (_("\
|
Setting environment variable \"%s\" to null value.\n"),
|
Setting environment variable \"%s\" to null value.\n"),
|
var);
|
var);
|
set_in_environ (inferior_environ, var, "");
|
set_in_environ (inferior_environ, var, "");
|
}
|
}
|
else
|
else
|
set_in_environ (inferior_environ, var, val);
|
set_in_environ (inferior_environ, var, val);
|
xfree (var);
|
xfree (var);
|
}
|
}
|
|
|
static void
|
static void
|
unset_environment_command (char *var, int from_tty)
|
unset_environment_command (char *var, int from_tty)
|
{
|
{
|
if (var == 0)
|
if (var == 0)
|
{
|
{
|
/* If there is no argument, delete all environment variables.
|
/* If there is no argument, delete all environment variables.
|
Ask for confirmation if reading from the terminal. */
|
Ask for confirmation if reading from the terminal. */
|
if (!from_tty || query (_("Delete all environment variables? ")))
|
if (!from_tty || query (_("Delete all environment variables? ")))
|
{
|
{
|
free_environ (inferior_environ);
|
free_environ (inferior_environ);
|
inferior_environ = make_environ ();
|
inferior_environ = make_environ ();
|
}
|
}
|
}
|
}
|
else
|
else
|
unset_in_environ (inferior_environ, var);
|
unset_in_environ (inferior_environ, var);
|
}
|
}
|
|
|
/* Handle the execution path (PATH variable) */
|
/* Handle the execution path (PATH variable) */
|
|
|
static const char path_var_name[] = "PATH";
|
static const char path_var_name[] = "PATH";
|
|
|
static void
|
static void
|
path_info (char *args, int from_tty)
|
path_info (char *args, int from_tty)
|
{
|
{
|
puts_filtered ("Executable and object file path: ");
|
puts_filtered ("Executable and object file path: ");
|
puts_filtered (get_in_environ (inferior_environ, path_var_name));
|
puts_filtered (get_in_environ (inferior_environ, path_var_name));
|
puts_filtered ("\n");
|
puts_filtered ("\n");
|
}
|
}
|
|
|
/* Add zero or more directories to the front of the execution path. */
|
/* Add zero or more directories to the front of the execution path. */
|
|
|
static void
|
static void
|
path_command (char *dirname, int from_tty)
|
path_command (char *dirname, int from_tty)
|
{
|
{
|
char *exec_path;
|
char *exec_path;
|
char *env;
|
char *env;
|
dont_repeat ();
|
dont_repeat ();
|
env = get_in_environ (inferior_environ, path_var_name);
|
env = get_in_environ (inferior_environ, path_var_name);
|
/* Can be null if path is not set */
|
/* Can be null if path is not set */
|
if (!env)
|
if (!env)
|
env = "";
|
env = "";
|
exec_path = xstrdup (env);
|
exec_path = xstrdup (env);
|
mod_path (dirname, &exec_path);
|
mod_path (dirname, &exec_path);
|
set_in_environ (inferior_environ, path_var_name, exec_path);
|
set_in_environ (inferior_environ, path_var_name, exec_path);
|
xfree (exec_path);
|
xfree (exec_path);
|
if (from_tty)
|
if (from_tty)
|
path_info ((char *) NULL, from_tty);
|
path_info ((char *) NULL, from_tty);
|
}
|
}
|
|
|
|
|
/* Print out the machine register regnum. If regnum is -1, print all
|
/* Print out the machine register regnum. If regnum is -1, print all
|
registers (print_all == 1) or all non-float and non-vector
|
registers (print_all == 1) or all non-float and non-vector
|
registers (print_all == 0).
|
registers (print_all == 0).
|
|
|
For most machines, having all_registers_info() print the
|
For most machines, having all_registers_info() print the
|
register(s) one per line is good enough. If a different format is
|
register(s) one per line is good enough. If a different format is
|
required, (eg, for MIPS or Pyramid 90x, which both have lots of
|
required, (eg, for MIPS or Pyramid 90x, which both have lots of
|
regs), or there is an existing convention for showing all the
|
regs), or there is an existing convention for showing all the
|
registers, define the architecture method PRINT_REGISTERS_INFO to
|
registers, define the architecture method PRINT_REGISTERS_INFO to
|
provide that format. */
|
provide that format. */
|
|
|
void
|
void
|
default_print_registers_info (struct gdbarch *gdbarch,
|
default_print_registers_info (struct gdbarch *gdbarch,
|
struct ui_file *file,
|
struct ui_file *file,
|
struct frame_info *frame,
|
struct frame_info *frame,
|
int regnum, int print_all)
|
int regnum, int print_all)
|
{
|
{
|
int i;
|
int i;
|
const int numregs = gdbarch_num_regs (gdbarch)
|
const int numregs = gdbarch_num_regs (gdbarch)
|
+ gdbarch_num_pseudo_regs (gdbarch);
|
+ gdbarch_num_pseudo_regs (gdbarch);
|
gdb_byte buffer[MAX_REGISTER_SIZE];
|
gdb_byte buffer[MAX_REGISTER_SIZE];
|
|
|
for (i = 0; i < numregs; i++)
|
for (i = 0; i < numregs; i++)
|
{
|
{
|
/* Decide between printing all regs, non-float / vector regs, or
|
/* Decide between printing all regs, non-float / vector regs, or
|
specific reg. */
|
specific reg. */
|
if (regnum == -1)
|
if (regnum == -1)
|
{
|
{
|
if (print_all)
|
if (print_all)
|
{
|
{
|
if (!gdbarch_register_reggroup_p (gdbarch, i, all_reggroup))
|
if (!gdbarch_register_reggroup_p (gdbarch, i, all_reggroup))
|
continue;
|
continue;
|
}
|
}
|
else
|
else
|
{
|
{
|
if (!gdbarch_register_reggroup_p (gdbarch, i, general_reggroup))
|
if (!gdbarch_register_reggroup_p (gdbarch, i, general_reggroup))
|
continue;
|
continue;
|
}
|
}
|
}
|
}
|
else
|
else
|
{
|
{
|
if (i != regnum)
|
if (i != regnum)
|
continue;
|
continue;
|
}
|
}
|
|
|
/* If the register name is empty, it is undefined for this
|
/* If the register name is empty, it is undefined for this
|
processor, so don't display anything. */
|
processor, so don't display anything. */
|
if (gdbarch_register_name (gdbarch, i) == NULL
|
if (gdbarch_register_name (gdbarch, i) == NULL
|
|| *(gdbarch_register_name (gdbarch, i)) == '\0')
|
|| *(gdbarch_register_name (gdbarch, i)) == '\0')
|
continue;
|
continue;
|
|
|
fputs_filtered (gdbarch_register_name (gdbarch, i), file);
|
fputs_filtered (gdbarch_register_name (gdbarch, i), file);
|
print_spaces_filtered (15 - strlen (gdbarch_register_name
|
print_spaces_filtered (15 - strlen (gdbarch_register_name
|
(gdbarch, i)), file);
|
(gdbarch, i)), file);
|
|
|
/* Get the data in raw format. */
|
/* Get the data in raw format. */
|
if (! frame_register_read (frame, i, buffer))
|
if (! frame_register_read (frame, i, buffer))
|
{
|
{
|
fprintf_filtered (file, "*value not available*\n");
|
fprintf_filtered (file, "*value not available*\n");
|
continue;
|
continue;
|
}
|
}
|
|
|
/* If virtual format is floating, print it that way, and in raw
|
/* If virtual format is floating, print it that way, and in raw
|
hex. */
|
hex. */
|
if (TYPE_CODE (register_type (gdbarch, i)) == TYPE_CODE_FLT
|
if (TYPE_CODE (register_type (gdbarch, i)) == TYPE_CODE_FLT
|
|| TYPE_CODE (register_type (gdbarch, i)) == TYPE_CODE_DECFLOAT)
|
|| TYPE_CODE (register_type (gdbarch, i)) == TYPE_CODE_DECFLOAT)
|
{
|
{
|
int j;
|
int j;
|
|
|
val_print (register_type (gdbarch, i), buffer, 0, 0,
|
val_print (register_type (gdbarch, i), buffer, 0, 0,
|
file, 0, 1, 0, Val_pretty_default);
|
file, 0, 1, 0, Val_pretty_default);
|
|
|
fprintf_filtered (file, "\t(raw 0x");
|
fprintf_filtered (file, "\t(raw 0x");
|
for (j = 0; j < register_size (gdbarch, i); j++)
|
for (j = 0; j < register_size (gdbarch, i); j++)
|
{
|
{
|
int idx;
|
int idx;
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
idx = j;
|
idx = j;
|
else
|
else
|
idx = register_size (gdbarch, i) - 1 - j;
|
idx = register_size (gdbarch, i) - 1 - j;
|
fprintf_filtered (file, "%02x", (unsigned char) buffer[idx]);
|
fprintf_filtered (file, "%02x", (unsigned char) buffer[idx]);
|
}
|
}
|
fprintf_filtered (file, ")");
|
fprintf_filtered (file, ")");
|
}
|
}
|
else
|
else
|
{
|
{
|
/* Print the register in hex. */
|
/* Print the register in hex. */
|
val_print (register_type (gdbarch, i), buffer, 0, 0,
|
val_print (register_type (gdbarch, i), buffer, 0, 0,
|
file, 'x', 1, 0, Val_pretty_default);
|
file, 'x', 1, 0, Val_pretty_default);
|
/* If not a vector register, print it also according to its
|
/* If not a vector register, print it also according to its
|
natural format. */
|
natural format. */
|
if (TYPE_VECTOR (register_type (gdbarch, i)) == 0)
|
if (TYPE_VECTOR (register_type (gdbarch, i)) == 0)
|
{
|
{
|
fprintf_filtered (file, "\t");
|
fprintf_filtered (file, "\t");
|
val_print (register_type (gdbarch, i), buffer, 0, 0,
|
val_print (register_type (gdbarch, i), buffer, 0, 0,
|
file, 0, 1, 0, Val_pretty_default);
|
file, 0, 1, 0, Val_pretty_default);
|
}
|
}
|
}
|
}
|
|
|
fprintf_filtered (file, "\n");
|
fprintf_filtered (file, "\n");
|
}
|
}
|
}
|
}
|
|
|
void
|
void
|
registers_info (char *addr_exp, int fpregs)
|
registers_info (char *addr_exp, int fpregs)
|
{
|
{
|
struct frame_info *frame;
|
struct frame_info *frame;
|
struct gdbarch *gdbarch;
|
struct gdbarch *gdbarch;
|
int regnum, numregs;
|
int regnum, numregs;
|
char *end;
|
char *end;
|
|
|
if (!target_has_registers)
|
if (!target_has_registers)
|
error (_("The program has no registers now."));
|
error (_("The program has no registers now."));
|
frame = get_selected_frame (NULL);
|
frame = get_selected_frame (NULL);
|
gdbarch = get_frame_arch (frame);
|
gdbarch = get_frame_arch (frame);
|
|
|
if (!addr_exp)
|
if (!addr_exp)
|
{
|
{
|
gdbarch_print_registers_info (gdbarch, gdb_stdout,
|
gdbarch_print_registers_info (gdbarch, gdb_stdout,
|
frame, -1, fpregs);
|
frame, -1, fpregs);
|
return;
|
return;
|
}
|
}
|
|
|
while (*addr_exp != '\0')
|
while (*addr_exp != '\0')
|
{
|
{
|
char *start;
|
char *start;
|
const char *end;
|
const char *end;
|
|
|
/* Keep skipping leading white space. */
|
/* Keep skipping leading white space. */
|
if (isspace ((*addr_exp)))
|
if (isspace ((*addr_exp)))
|
{
|
{
|
addr_exp++;
|
addr_exp++;
|
continue;
|
continue;
|
}
|
}
|
|
|
/* Discard any leading ``$''. Check that there is something
|
/* Discard any leading ``$''. Check that there is something
|
resembling a register following it. */
|
resembling a register following it. */
|
if (addr_exp[0] == '$')
|
if (addr_exp[0] == '$')
|
addr_exp++;
|
addr_exp++;
|
if (isspace ((*addr_exp)) || (*addr_exp) == '\0')
|
if (isspace ((*addr_exp)) || (*addr_exp) == '\0')
|
error (_("Missing register name"));
|
error (_("Missing register name"));
|
|
|
/* Find the start/end of this register name/num/group. */
|
/* Find the start/end of this register name/num/group. */
|
start = addr_exp;
|
start = addr_exp;
|
while ((*addr_exp) != '\0' && !isspace ((*addr_exp)))
|
while ((*addr_exp) != '\0' && !isspace ((*addr_exp)))
|
addr_exp++;
|
addr_exp++;
|
end = addr_exp;
|
end = addr_exp;
|
|
|
/* Figure out what we've found and display it. */
|
/* Figure out what we've found and display it. */
|
|
|
/* A register name? */
|
/* A register name? */
|
{
|
{
|
int regnum = frame_map_name_to_regnum (frame, start, end - start);
|
int regnum = frame_map_name_to_regnum (frame, start, end - start);
|
if (regnum >= 0)
|
if (regnum >= 0)
|
{
|
{
|
/* User registers lie completely outside of the range of
|
/* User registers lie completely outside of the range of
|
normal registers. Catch them early so that the target
|
normal registers. Catch them early so that the target
|
never sees them. */
|
never sees them. */
|
if (regnum >= gdbarch_num_regs (gdbarch)
|
if (regnum >= gdbarch_num_regs (gdbarch)
|
+ gdbarch_num_pseudo_regs (gdbarch))
|
+ gdbarch_num_pseudo_regs (gdbarch))
|
{
|
{
|
struct value *val = value_of_user_reg (regnum, frame);
|
struct value *val = value_of_user_reg (regnum, frame);
|
|
|
printf_filtered ("%s: ", start);
|
printf_filtered ("%s: ", start);
|
print_scalar_formatted (value_contents (val),
|
print_scalar_formatted (value_contents (val),
|
check_typedef (value_type (val)),
|
check_typedef (value_type (val)),
|
'x', 0, gdb_stdout);
|
'x', 0, gdb_stdout);
|
printf_filtered ("\n");
|
printf_filtered ("\n");
|
}
|
}
|
else
|
else
|
gdbarch_print_registers_info (gdbarch, gdb_stdout,
|
gdbarch_print_registers_info (gdbarch, gdb_stdout,
|
frame, regnum, fpregs);
|
frame, regnum, fpregs);
|
continue;
|
continue;
|
}
|
}
|
}
|
}
|
|
|
/* A register number? (how portable is this one?). */
|
/* A register number? (how portable is this one?). */
|
{
|
{
|
char *endptr;
|
char *endptr;
|
int regnum = strtol (start, &endptr, 0);
|
int regnum = strtol (start, &endptr, 0);
|
if (endptr == end
|
if (endptr == end
|
&& regnum >= 0
|
&& regnum >= 0
|
&& regnum < gdbarch_num_regs (gdbarch)
|
&& regnum < gdbarch_num_regs (gdbarch)
|
+ gdbarch_num_pseudo_regs (gdbarch))
|
+ gdbarch_num_pseudo_regs (gdbarch))
|
{
|
{
|
gdbarch_print_registers_info (gdbarch, gdb_stdout,
|
gdbarch_print_registers_info (gdbarch, gdb_stdout,
|
frame, regnum, fpregs);
|
frame, regnum, fpregs);
|
continue;
|
continue;
|
}
|
}
|
}
|
}
|
|
|
/* A register group? */
|
/* A register group? */
|
{
|
{
|
struct reggroup *group;
|
struct reggroup *group;
|
for (group = reggroup_next (gdbarch, NULL);
|
for (group = reggroup_next (gdbarch, NULL);
|
group != NULL;
|
group != NULL;
|
group = reggroup_next (gdbarch, group))
|
group = reggroup_next (gdbarch, group))
|
{
|
{
|
/* Don't bother with a length check. Should the user
|
/* Don't bother with a length check. Should the user
|
enter a short register group name, go with the first
|
enter a short register group name, go with the first
|
group that matches. */
|
group that matches. */
|
if (strncmp (start, reggroup_name (group), end - start) == 0)
|
if (strncmp (start, reggroup_name (group), end - start) == 0)
|
break;
|
break;
|
}
|
}
|
if (group != NULL)
|
if (group != NULL)
|
{
|
{
|
int regnum;
|
int regnum;
|
for (regnum = 0;
|
for (regnum = 0;
|
regnum < gdbarch_num_regs (gdbarch)
|
regnum < gdbarch_num_regs (gdbarch)
|
+ gdbarch_num_pseudo_regs (gdbarch);
|
+ gdbarch_num_pseudo_regs (gdbarch);
|
regnum++)
|
regnum++)
|
{
|
{
|
if (gdbarch_register_reggroup_p (gdbarch, regnum, group))
|
if (gdbarch_register_reggroup_p (gdbarch, regnum, group))
|
gdbarch_print_registers_info (gdbarch,
|
gdbarch_print_registers_info (gdbarch,
|
gdb_stdout, frame,
|
gdb_stdout, frame,
|
regnum, fpregs);
|
regnum, fpregs);
|
}
|
}
|
continue;
|
continue;
|
}
|
}
|
}
|
}
|
|
|
/* Nothing matched. */
|
/* Nothing matched. */
|
error (_("Invalid register `%.*s'"), (int) (end - start), start);
|
error (_("Invalid register `%.*s'"), (int) (end - start), start);
|
}
|
}
|
}
|
}
|
|
|
void
|
void
|
all_registers_info (char *addr_exp, int from_tty)
|
all_registers_info (char *addr_exp, int from_tty)
|
{
|
{
|
registers_info (addr_exp, 1);
|
registers_info (addr_exp, 1);
|
}
|
}
|
|
|
static void
|
static void
|
nofp_registers_info (char *addr_exp, int from_tty)
|
nofp_registers_info (char *addr_exp, int from_tty)
|
{
|
{
|
registers_info (addr_exp, 0);
|
registers_info (addr_exp, 0);
|
}
|
}
|
|
|
static void
|
static void
|
print_vector_info (struct gdbarch *gdbarch, struct ui_file *file,
|
print_vector_info (struct gdbarch *gdbarch, struct ui_file *file,
|
struct frame_info *frame, const char *args)
|
struct frame_info *frame, const char *args)
|
{
|
{
|
if (gdbarch_print_vector_info_p (gdbarch))
|
if (gdbarch_print_vector_info_p (gdbarch))
|
gdbarch_print_vector_info (gdbarch, file, frame, args);
|
gdbarch_print_vector_info (gdbarch, file, frame, args);
|
else
|
else
|
{
|
{
|
int regnum;
|
int regnum;
|
int printed_something = 0;
|
int printed_something = 0;
|
|
|
for (regnum = 0;
|
for (regnum = 0;
|
regnum < gdbarch_num_regs (gdbarch)
|
regnum < gdbarch_num_regs (gdbarch)
|
+ gdbarch_num_pseudo_regs (gdbarch);
|
+ gdbarch_num_pseudo_regs (gdbarch);
|
regnum++)
|
regnum++)
|
{
|
{
|
if (gdbarch_register_reggroup_p (gdbarch, regnum, vector_reggroup))
|
if (gdbarch_register_reggroup_p (gdbarch, regnum, vector_reggroup))
|
{
|
{
|
printed_something = 1;
|
printed_something = 1;
|
gdbarch_print_registers_info (gdbarch, file, frame, regnum, 1);
|
gdbarch_print_registers_info (gdbarch, file, frame, regnum, 1);
|
}
|
}
|
}
|
}
|
if (!printed_something)
|
if (!printed_something)
|
fprintf_filtered (file, "No vector information\n");
|
fprintf_filtered (file, "No vector information\n");
|
}
|
}
|
}
|
}
|
|
|
static void
|
static void
|
vector_info (char *args, int from_tty)
|
vector_info (char *args, int from_tty)
|
{
|
{
|
if (!target_has_registers)
|
if (!target_has_registers)
|
error (_("The program has no registers now."));
|
error (_("The program has no registers now."));
|
|
|
print_vector_info (current_gdbarch, gdb_stdout,
|
print_vector_info (current_gdbarch, gdb_stdout,
|
get_selected_frame (NULL), args);
|
get_selected_frame (NULL), args);
|
}
|
}
|
|
|
|
|
/*
|
/*
|
* TODO:
|
* TODO:
|
* Should save/restore the tty state since it might be that the
|
* Should save/restore the tty state since it might be that the
|
* program to be debugged was started on this tty and it wants
|
* program to be debugged was started on this tty and it wants
|
* the tty in some state other than what we want. If it's running
|
* the tty in some state other than what we want. If it's running
|
* on another terminal or without a terminal, then saving and
|
* on another terminal or without a terminal, then saving and
|
* restoring the tty state is a harmless no-op.
|
* restoring the tty state is a harmless no-op.
|
* This only needs to be done if we are attaching to a process.
|
* This only needs to be done if we are attaching to a process.
|
*/
|
*/
|
|
|
/*
|
/*
|
attach_command --
|
attach_command --
|
takes a program started up outside of gdb and ``attaches'' to it.
|
takes a program started up outside of gdb and ``attaches'' to it.
|
This stops it cold in its tracks and allows us to start debugging it.
|
This stops it cold in its tracks and allows us to start debugging it.
|
and wait for the trace-trap that results from attaching. */
|
and wait for the trace-trap that results from attaching. */
|
|
|
void
|
void
|
attach_command (char *args, int from_tty)
|
attach_command (char *args, int from_tty)
|
{
|
{
|
char *exec_file;
|
char *exec_file;
|
char *full_exec_path = NULL;
|
char *full_exec_path = NULL;
|
|
|
dont_repeat (); /* Not for the faint of heart */
|
dont_repeat (); /* Not for the faint of heart */
|
|
|
if (target_has_execution)
|
if (target_has_execution)
|
{
|
{
|
if (query ("A program is being debugged already. Kill it? "))
|
if (query ("A program is being debugged already. Kill it? "))
|
target_kill ();
|
target_kill ();
|
else
|
else
|
error (_("Not killed."));
|
error (_("Not killed."));
|
}
|
}
|
|
|
/* Clean up any leftovers from other runs. Some other things from
|
/* Clean up any leftovers from other runs. Some other things from
|
this function should probably be moved into target_pre_inferior. */
|
this function should probably be moved into target_pre_inferior. */
|
target_pre_inferior (from_tty);
|
target_pre_inferior (from_tty);
|
|
|
/* Clear out solib state. Otherwise the solib state of the previous
|
/* Clear out solib state. Otherwise the solib state of the previous
|
inferior might have survived and is entirely wrong for the new
|
inferior might have survived and is entirely wrong for the new
|
target. This has been observed on GNU/Linux using glibc 2.3. How
|
target. This has been observed on GNU/Linux using glibc 2.3. How
|
to reproduce:
|
to reproduce:
|
|
|
bash$ ./foo&
|
bash$ ./foo&
|
[1] 4711
|
[1] 4711
|
bash$ ./foo&
|
bash$ ./foo&
|
[1] 4712
|
[1] 4712
|
bash$ gdb ./foo
|
bash$ gdb ./foo
|
[...]
|
[...]
|
(gdb) attach 4711
|
(gdb) attach 4711
|
(gdb) detach
|
(gdb) detach
|
(gdb) attach 4712
|
(gdb) attach 4712
|
Cannot access memory at address 0xdeadbeef
|
Cannot access memory at address 0xdeadbeef
|
*/
|
*/
|
clear_solib ();
|
clear_solib ();
|
|
|
target_attach (args, from_tty);
|
target_attach (args, from_tty);
|
|
|
/* Set up the "saved terminal modes" of the inferior
|
/* Set up the "saved terminal modes" of the inferior
|
based on what modes we are starting it with. */
|
based on what modes we are starting it with. */
|
target_terminal_init ();
|
target_terminal_init ();
|
|
|
/* Set up execution context to know that we should return from
|
/* Set up execution context to know that we should return from
|
wait_for_inferior as soon as the target reports a stop. */
|
wait_for_inferior as soon as the target reports a stop. */
|
init_wait_for_inferior ();
|
init_wait_for_inferior ();
|
clear_proceed_status ();
|
clear_proceed_status ();
|
|
|
/* No traps are generated when attaching to inferior under Mach 3
|
/* No traps are generated when attaching to inferior under Mach 3
|
or GNU hurd. */
|
or GNU hurd. */
|
#ifndef ATTACH_NO_WAIT
|
#ifndef ATTACH_NO_WAIT
|
/* Careful here. See comments in inferior.h. Basically some OSes
|
/* Careful here. See comments in inferior.h. Basically some OSes
|
don't ignore SIGSTOPs on continue requests anymore. We need a
|
don't ignore SIGSTOPs on continue requests anymore. We need a
|
way for handle_inferior_event to reset the stop_signal variable
|
way for handle_inferior_event to reset the stop_signal variable
|
after an attach, and this is what STOP_QUIETLY_NO_SIGSTOP is for. */
|
after an attach, and this is what STOP_QUIETLY_NO_SIGSTOP is for. */
|
stop_soon = STOP_QUIETLY_NO_SIGSTOP;
|
stop_soon = STOP_QUIETLY_NO_SIGSTOP;
|
wait_for_inferior (0);
|
wait_for_inferior (0);
|
stop_soon = NO_STOP_QUIETLY;
|
stop_soon = NO_STOP_QUIETLY;
|
#endif
|
#endif
|
|
|
/*
|
/*
|
* If no exec file is yet known, try to determine it from the
|
* If no exec file is yet known, try to determine it from the
|
* process itself.
|
* process itself.
|
*/
|
*/
|
exec_file = (char *) get_exec_file (0);
|
exec_file = (char *) get_exec_file (0);
|
if (!exec_file)
|
if (!exec_file)
|
{
|
{
|
exec_file = target_pid_to_exec_file (PIDGET (inferior_ptid));
|
exec_file = target_pid_to_exec_file (PIDGET (inferior_ptid));
|
if (exec_file)
|
if (exec_file)
|
{
|
{
|
/* It's possible we don't have a full path, but rather just a
|
/* It's possible we don't have a full path, but rather just a
|
filename. Some targets, such as HP-UX, don't provide the
|
filename. Some targets, such as HP-UX, don't provide the
|
full path, sigh.
|
full path, sigh.
|
|
|
Attempt to qualify the filename against the source path.
|
Attempt to qualify the filename against the source path.
|
(If that fails, we'll just fall back on the original
|
(If that fails, we'll just fall back on the original
|
filename. Not much more we can do...)
|
filename. Not much more we can do...)
|
*/
|
*/
|
if (!source_full_path_of (exec_file, &full_exec_path))
|
if (!source_full_path_of (exec_file, &full_exec_path))
|
full_exec_path = savestring (exec_file, strlen (exec_file));
|
full_exec_path = savestring (exec_file, strlen (exec_file));
|
|
|
exec_file_attach (full_exec_path, from_tty);
|
exec_file_attach (full_exec_path, from_tty);
|
symbol_file_add_main (full_exec_path, from_tty);
|
symbol_file_add_main (full_exec_path, from_tty);
|
}
|
}
|
}
|
}
|
else
|
else
|
{
|
{
|
reopen_exec_file ();
|
reopen_exec_file ();
|
reread_symbols ();
|
reread_symbols ();
|
}
|
}
|
|
|
/* Take any necessary post-attaching actions for this platform.
|
/* Take any necessary post-attaching actions for this platform.
|
*/
|
*/
|
target_post_attach (PIDGET (inferior_ptid));
|
target_post_attach (PIDGET (inferior_ptid));
|
|
|
post_create_inferior (¤t_target, from_tty);
|
post_create_inferior (¤t_target, from_tty);
|
|
|
/* Install inferior's terminal modes. */
|
/* Install inferior's terminal modes. */
|
target_terminal_inferior ();
|
target_terminal_inferior ();
|
|
|
normal_stop ();
|
normal_stop ();
|
|
|
if (deprecated_attach_hook)
|
if (deprecated_attach_hook)
|
deprecated_attach_hook ();
|
deprecated_attach_hook ();
|
}
|
}
|
|
|
/*
|
/*
|
* detach_command --
|
* detach_command --
|
* takes a program previously attached to and detaches it.
|
* takes a program previously attached to and detaches it.
|
* The program resumes execution and will no longer stop
|
* The program resumes execution and will no longer stop
|
* on signals, etc. We better not have left any breakpoints
|
* on signals, etc. We better not have left any breakpoints
|
* in the program or it'll die when it hits one. For this
|
* in the program or it'll die when it hits one. For this
|
* to work, it may be necessary for the process to have been
|
* to work, it may be necessary for the process to have been
|
* previously attached. It *might* work if the program was
|
* previously attached. It *might* work if the program was
|
* started via the normal ptrace (PTRACE_TRACEME).
|
* started via the normal ptrace (PTRACE_TRACEME).
|
*/
|
*/
|
|
|
static void
|
static void
|
detach_command (char *args, int from_tty)
|
detach_command (char *args, int from_tty)
|
{
|
{
|
dont_repeat (); /* Not for the faint of heart. */
|
dont_repeat (); /* Not for the faint of heart. */
|
target_detach (args, from_tty);
|
target_detach (args, from_tty);
|
no_shared_libraries (NULL, from_tty);
|
no_shared_libraries (NULL, from_tty);
|
if (deprecated_detach_hook)
|
if (deprecated_detach_hook)
|
deprecated_detach_hook ();
|
deprecated_detach_hook ();
|
}
|
}
|
|
|
/* Disconnect from the current target without resuming it (leaving it
|
/* Disconnect from the current target without resuming it (leaving it
|
waiting for a debugger).
|
waiting for a debugger).
|
|
|
We'd better not have left any breakpoints in the program or the
|
We'd better not have left any breakpoints in the program or the
|
next debugger will get confused. Currently only supported for some
|
next debugger will get confused. Currently only supported for some
|
remote targets, since the normal attach mechanisms don't work on
|
remote targets, since the normal attach mechanisms don't work on
|
stopped processes on some native platforms (e.g. GNU/Linux). */
|
stopped processes on some native platforms (e.g. GNU/Linux). */
|
|
|
static void
|
static void
|
disconnect_command (char *args, int from_tty)
|
disconnect_command (char *args, int from_tty)
|
{
|
{
|
dont_repeat (); /* Not for the faint of heart */
|
dont_repeat (); /* Not for the faint of heart */
|
target_disconnect (args, from_tty);
|
target_disconnect (args, from_tty);
|
no_shared_libraries (NULL, from_tty);
|
no_shared_libraries (NULL, from_tty);
|
if (deprecated_detach_hook)
|
if (deprecated_detach_hook)
|
deprecated_detach_hook ();
|
deprecated_detach_hook ();
|
}
|
}
|
|
|
/* Stop the execution of the target while running in async mode, in
|
/* Stop the execution of the target while running in async mode, in
|
the backgound. */
|
the backgound. */
|
void
|
void
|
interrupt_target_command (char *args, int from_tty)
|
interrupt_target_command (char *args, int from_tty)
|
{
|
{
|
if (target_can_async_p ())
|
if (target_can_async_p ())
|
{
|
{
|
dont_repeat (); /* Not for the faint of heart */
|
dont_repeat (); /* Not for the faint of heart */
|
target_stop ();
|
target_stop ();
|
}
|
}
|
}
|
}
|
|
|
static void
|
static void
|
print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
|
print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
|
struct frame_info *frame, const char *args)
|
struct frame_info *frame, const char *args)
|
{
|
{
|
if (gdbarch_print_float_info_p (gdbarch))
|
if (gdbarch_print_float_info_p (gdbarch))
|
gdbarch_print_float_info (gdbarch, file, frame, args);
|
gdbarch_print_float_info (gdbarch, file, frame, args);
|
else
|
else
|
{
|
{
|
int regnum;
|
int regnum;
|
int printed_something = 0;
|
int printed_something = 0;
|
|
|
for (regnum = 0;
|
for (regnum = 0;
|
regnum < gdbarch_num_regs (gdbarch)
|
regnum < gdbarch_num_regs (gdbarch)
|
+ gdbarch_num_pseudo_regs (gdbarch);
|
+ gdbarch_num_pseudo_regs (gdbarch);
|
regnum++)
|
regnum++)
|
{
|
{
|
if (gdbarch_register_reggroup_p (gdbarch, regnum, float_reggroup))
|
if (gdbarch_register_reggroup_p (gdbarch, regnum, float_reggroup))
|
{
|
{
|
printed_something = 1;
|
printed_something = 1;
|
gdbarch_print_registers_info (gdbarch, file, frame, regnum, 1);
|
gdbarch_print_registers_info (gdbarch, file, frame, regnum, 1);
|
}
|
}
|
}
|
}
|
if (!printed_something)
|
if (!printed_something)
|
fprintf_filtered (file, "\
|
fprintf_filtered (file, "\
|
No floating-point info available for this processor.\n");
|
No floating-point info available for this processor.\n");
|
}
|
}
|
}
|
}
|
|
|
static void
|
static void
|
float_info (char *args, int from_tty)
|
float_info (char *args, int from_tty)
|
{
|
{
|
if (!target_has_registers)
|
if (!target_has_registers)
|
error (_("The program has no registers now."));
|
error (_("The program has no registers now."));
|
|
|
print_float_info (current_gdbarch, gdb_stdout,
|
print_float_info (current_gdbarch, gdb_stdout,
|
get_selected_frame (NULL), args);
|
get_selected_frame (NULL), args);
|
}
|
}
|
|
|
static void
|
static void
|
unset_command (char *args, int from_tty)
|
unset_command (char *args, int from_tty)
|
{
|
{
|
printf_filtered (_("\
|
printf_filtered (_("\
|
\"unset\" must be followed by the name of an unset subcommand.\n"));
|
\"unset\" must be followed by the name of an unset subcommand.\n"));
|
help_list (unsetlist, "unset ", -1, gdb_stdout);
|
help_list (unsetlist, "unset ", -1, gdb_stdout);
|
}
|
}
|
|
|
void
|
void
|
_initialize_infcmd (void)
|
_initialize_infcmd (void)
|
{
|
{
|
struct cmd_list_element *c = NULL;
|
struct cmd_list_element *c = NULL;
|
|
|
/* add the filename of the terminal connected to inferior I/O */
|
/* add the filename of the terminal connected to inferior I/O */
|
add_setshow_filename_cmd ("inferior-tty", class_run,
|
add_setshow_filename_cmd ("inferior-tty", class_run,
|
&inferior_io_terminal, _("\
|
&inferior_io_terminal, _("\
|
Set terminal for future runs of program being debugged."), _("\
|
Set terminal for future runs of program being debugged."), _("\
|
Show terminal for future runs of program being debugged."), _("\
|
Show terminal for future runs of program being debugged."), _("\
|
Usage: set inferior-tty /dev/pts/1"), NULL, NULL, &setlist, &showlist);
|
Usage: set inferior-tty /dev/pts/1"), NULL, NULL, &setlist, &showlist);
|
add_com_alias ("tty", "set inferior-tty", class_alias, 0);
|
add_com_alias ("tty", "set inferior-tty", class_alias, 0);
|
|
|
add_setshow_optional_filename_cmd ("args", class_run,
|
add_setshow_optional_filename_cmd ("args", class_run,
|
&inferior_args, _("\
|
&inferior_args, _("\
|
Set argument list to give program being debugged when it is started."), _("\
|
Set argument list to give program being debugged when it is started."), _("\
|
Show argument list to give program being debugged when it is started."), _("\
|
Show argument list to give program being debugged when it is started."), _("\
|
Follow this command with any number of args, to be passed to the program."),
|
Follow this command with any number of args, to be passed to the program."),
|
notice_args_set,
|
notice_args_set,
|
notice_args_read,
|
notice_args_read,
|
&setlist, &showlist);
|
&setlist, &showlist);
|
|
|
c = add_cmd ("environment", no_class, environment_info, _("\
|
c = add_cmd ("environment", no_class, environment_info, _("\
|
The environment to give the program, or one variable's value.\n\
|
The environment to give the program, or one variable's value.\n\
|
With an argument VAR, prints the value of environment variable VAR to\n\
|
With an argument VAR, prints the value of environment variable VAR to\n\
|
give the program being debugged. With no arguments, prints the entire\n\
|
give the program being debugged. With no arguments, prints the entire\n\
|
environment to be given to the program."), &showlist);
|
environment to be given to the program."), &showlist);
|
set_cmd_completer (c, noop_completer);
|
set_cmd_completer (c, noop_completer);
|
|
|
add_prefix_cmd ("unset", no_class, unset_command,
|
add_prefix_cmd ("unset", no_class, unset_command,
|
_("Complement to certain \"set\" commands."),
|
_("Complement to certain \"set\" commands."),
|
&unsetlist, "unset ", 0, &cmdlist);
|
&unsetlist, "unset ", 0, &cmdlist);
|
|
|
c = add_cmd ("environment", class_run, unset_environment_command, _("\
|
c = add_cmd ("environment", class_run, unset_environment_command, _("\
|
Cancel environment variable VAR for the program.\n\
|
Cancel environment variable VAR for the program.\n\
|
This does not affect the program until the next \"run\" command."),
|
This does not affect the program until the next \"run\" command."),
|
&unsetlist);
|
&unsetlist);
|
set_cmd_completer (c, noop_completer);
|
set_cmd_completer (c, noop_completer);
|
|
|
c = add_cmd ("environment", class_run, set_environment_command, _("\
|
c = add_cmd ("environment", class_run, set_environment_command, _("\
|
Set environment variable value to give the program.\n\
|
Set environment variable value to give the program.\n\
|
Arguments are VAR VALUE where VAR is variable name and VALUE is value.\n\
|
Arguments are VAR VALUE where VAR is variable name and VALUE is value.\n\
|
VALUES of environment variables are uninterpreted strings.\n\
|
VALUES of environment variables are uninterpreted strings.\n\
|
This does not affect the program until the next \"run\" command."),
|
This does not affect the program until the next \"run\" command."),
|
&setlist);
|
&setlist);
|
set_cmd_completer (c, noop_completer);
|
set_cmd_completer (c, noop_completer);
|
|
|
c = add_com ("path", class_files, path_command, _("\
|
c = add_com ("path", class_files, path_command, _("\
|
Add directory DIR(s) to beginning of search path for object files.\n\
|
Add directory DIR(s) to beginning of search path for object files.\n\
|
$cwd in the path means the current working directory.\n\
|
$cwd in the path means the current working directory.\n\
|
This path is equivalent to the $PATH shell variable. It is a list of\n\
|
This path is equivalent to the $PATH shell variable. It is a list of\n\
|
directories, separated by colons. These directories are searched to find\n\
|
directories, separated by colons. These directories are searched to find\n\
|
fully linked executable files and separately compiled object files as needed."));
|
fully linked executable files and separately compiled object files as needed."));
|
set_cmd_completer (c, filename_completer);
|
set_cmd_completer (c, filename_completer);
|
|
|
c = add_cmd ("paths", no_class, path_info, _("\
|
c = add_cmd ("paths", no_class, path_info, _("\
|
Current search path for finding object files.\n\
|
Current search path for finding object files.\n\
|
$cwd in the path means the current working directory.\n\
|
$cwd in the path means the current working directory.\n\
|
This path is equivalent to the $PATH shell variable. It is a list of\n\
|
This path is equivalent to the $PATH shell variable. It is a list of\n\
|
directories, separated by colons. These directories are searched to find\n\
|
directories, separated by colons. These directories are searched to find\n\
|
fully linked executable files and separately compiled object files as needed."),
|
fully linked executable files and separately compiled object files as needed."),
|
&showlist);
|
&showlist);
|
set_cmd_completer (c, noop_completer);
|
set_cmd_completer (c, noop_completer);
|
|
|
add_com ("attach", class_run, attach_command, _("\
|
add_com ("attach", class_run, attach_command, _("\
|
Attach to a process or file outside of GDB.\n\
|
Attach to a process or file outside of GDB.\n\
|
This command attaches to another target, of the same type as your last\n\
|
This command attaches to another target, of the same type as your last\n\
|
\"target\" command (\"info files\" will show your target stack).\n\
|
\"target\" command (\"info files\" will show your target stack).\n\
|
The command may take as argument a process id or a device file.\n\
|
The command may take as argument a process id or a device file.\n\
|
For a process id, you must have permission to send the process a signal,\n\
|
For a process id, you must have permission to send the process a signal,\n\
|
and it must have the same effective uid as the debugger.\n\
|
and it must have the same effective uid as the debugger.\n\
|
When using \"attach\" with a process id, the debugger finds the\n\
|
When using \"attach\" with a process id, the debugger finds the\n\
|
program running in the process, looking first in the current working\n\
|
program running in the process, looking first in the current working\n\
|
directory, or (if not found there) using the source file search path\n\
|
directory, or (if not found there) using the source file search path\n\
|
(see the \"directory\" command). You can also use the \"file\" command\n\
|
(see the \"directory\" command). You can also use the \"file\" command\n\
|
to specify the program, and to load its symbol table."));
|
to specify the program, and to load its symbol table."));
|
|
|
add_prefix_cmd ("detach", class_run, detach_command, _("\
|
add_prefix_cmd ("detach", class_run, detach_command, _("\
|
Detach a process or file previously attached.\n\
|
Detach a process or file previously attached.\n\
|
If a process, it is no longer traced, and it continues its execution. If\n\
|
If a process, it is no longer traced, and it continues its execution. If\n\
|
you were debugging a file, the file is closed and gdb no longer accesses it."),
|
you were debugging a file, the file is closed and gdb no longer accesses it."),
|
&detachlist, "detach ", 0, &cmdlist);
|
&detachlist, "detach ", 0, &cmdlist);
|
|
|
add_com ("disconnect", class_run, disconnect_command, _("\
|
add_com ("disconnect", class_run, disconnect_command, _("\
|
Disconnect from a target.\n\
|
Disconnect from a target.\n\
|
The target will wait for another debugger to connect. Not available for\n\
|
The target will wait for another debugger to connect. Not available for\n\
|
all targets."));
|
all targets."));
|
|
|
add_com ("signal", class_run, signal_command, _("\
|
add_com ("signal", class_run, signal_command, _("\
|
Continue program giving it signal specified by the argument.\n\
|
Continue program giving it signal specified by the argument.\n\
|
An argument of \"0\" means continue program without giving it a signal."));
|
An argument of \"0\" means continue program without giving it a signal."));
|
|
|
add_com ("stepi", class_run, stepi_command, _("\
|
add_com ("stepi", class_run, stepi_command, _("\
|
Step one instruction exactly.\n\
|
Step one instruction exactly.\n\
|
Argument N means do this N times (or till program stops for another reason)."));
|
Argument N means do this N times (or till program stops for another reason)."));
|
add_com_alias ("si", "stepi", class_alias, 0);
|
add_com_alias ("si", "stepi", class_alias, 0);
|
|
|
add_com ("nexti", class_run, nexti_command, _("\
|
add_com ("nexti", class_run, nexti_command, _("\
|
Step one instruction, but proceed through subroutine calls.\n\
|
Step one instruction, but proceed through subroutine calls.\n\
|
Argument N means do this N times (or till program stops for another reason)."));
|
Argument N means do this N times (or till program stops for another reason)."));
|
add_com_alias ("ni", "nexti", class_alias, 0);
|
add_com_alias ("ni", "nexti", class_alias, 0);
|
|
|
add_com ("finish", class_run, finish_command, _("\
|
add_com ("finish", class_run, finish_command, _("\
|
Execute until selected stack frame returns.\n\
|
Execute until selected stack frame returns.\n\
|
Upon return, the value returned is printed and put in the value history."));
|
Upon return, the value returned is printed and put in the value history."));
|
|
|
add_com ("next", class_run, next_command, _("\
|
add_com ("next", class_run, next_command, _("\
|
Step program, proceeding through subroutine calls.\n\
|
Step program, proceeding through subroutine calls.\n\
|
Like the \"step\" command as long as subroutine calls do not happen;\n\
|
Like the \"step\" command as long as subroutine calls do not happen;\n\
|
when they do, the call is treated as one instruction.\n\
|
when they do, the call is treated as one instruction.\n\
|
Argument N means do this N times (or till program stops for another reason)."));
|
Argument N means do this N times (or till program stops for another reason)."));
|
add_com_alias ("n", "next", class_run, 1);
|
add_com_alias ("n", "next", class_run, 1);
|
if (xdb_commands)
|
if (xdb_commands)
|
add_com_alias ("S", "next", class_run, 1);
|
add_com_alias ("S", "next", class_run, 1);
|
|
|
add_com ("step", class_run, step_command, _("\
|
add_com ("step", class_run, step_command, _("\
|
Step program until it reaches a different source line.\n\
|
Step program until it reaches a different source line.\n\
|
Argument N means do this N times (or till program stops for another reason)."));
|
Argument N means do this N times (or till program stops for another reason)."));
|
add_com_alias ("s", "step", class_run, 1);
|
add_com_alias ("s", "step", class_run, 1);
|
|
|
c = add_com ("until", class_run, until_command, _("\
|
c = add_com ("until", class_run, until_command, _("\
|
Execute until the program reaches a source line greater than the current\n\
|
Execute until the program reaches a source line greater than the current\n\
|
or a specified location (same args as break command) within the current frame."));
|
or a specified location (same args as break command) within the current frame."));
|
set_cmd_completer (c, location_completer);
|
set_cmd_completer (c, location_completer);
|
add_com_alias ("u", "until", class_run, 1);
|
add_com_alias ("u", "until", class_run, 1);
|
|
|
c = add_com ("advance", class_run, advance_command, _("\
|
c = add_com ("advance", class_run, advance_command, _("\
|
Continue the program up to the given location (same form as args for break command).\n\
|
Continue the program up to the given location (same form as args for break command).\n\
|
Execution will also stop upon exit from the current stack frame."));
|
Execution will also stop upon exit from the current stack frame."));
|
set_cmd_completer (c, location_completer);
|
set_cmd_completer (c, location_completer);
|
|
|
c = add_com ("jump", class_run, jump_command, _("\
|
c = add_com ("jump", class_run, jump_command, _("\
|
Continue program being debugged at specified line or address.\n\
|
Continue program being debugged at specified line or address.\n\
|
Give as argument either LINENUM or *ADDR, where ADDR is an expression\n\
|
Give as argument either LINENUM or *ADDR, where ADDR is an expression\n\
|
for an address to start at."));
|
for an address to start at."));
|
set_cmd_completer (c, location_completer);
|
set_cmd_completer (c, location_completer);
|
|
|
if (xdb_commands)
|
if (xdb_commands)
|
{
|
{
|
c = add_com ("go", class_run, go_command, _("\
|
c = add_com ("go", class_run, go_command, _("\
|
Usage: go <location>\n\
|
Usage: go <location>\n\
|
Continue program being debugged, stopping at specified line or \n\
|
Continue program being debugged, stopping at specified line or \n\
|
address.\n\
|
address.\n\
|
Give as argument either LINENUM or *ADDR, where ADDR is an \n\
|
Give as argument either LINENUM or *ADDR, where ADDR is an \n\
|
expression for an address to start at.\n\
|
expression for an address to start at.\n\
|
This command is a combination of tbreak and jump."));
|
This command is a combination of tbreak and jump."));
|
set_cmd_completer (c, location_completer);
|
set_cmd_completer (c, location_completer);
|
}
|
}
|
|
|
if (xdb_commands)
|
if (xdb_commands)
|
add_com_alias ("g", "go", class_run, 1);
|
add_com_alias ("g", "go", class_run, 1);
|
|
|
add_com ("continue", class_run, continue_command, _("\
|
add_com ("continue", class_run, continue_command, _("\
|
Continue program being debugged, after signal or breakpoint.\n\
|
Continue program being debugged, after signal or breakpoint.\n\
|
If proceeding from breakpoint, a number N may be used as an argument,\n\
|
If proceeding from breakpoint, a number N may be used as an argument,\n\
|
which means to set the ignore count of that breakpoint to N - 1 (so that\n\
|
which means to set the ignore count of that breakpoint to N - 1 (so that\n\
|
the breakpoint won't break until the Nth time it is reached)."));
|
the breakpoint won't break until the Nth time it is reached)."));
|
add_com_alias ("c", "cont", class_run, 1);
|
add_com_alias ("c", "cont", class_run, 1);
|
add_com_alias ("fg", "cont", class_run, 1);
|
add_com_alias ("fg", "cont", class_run, 1);
|
|
|
c = add_com ("run", class_run, run_command, _("\
|
c = add_com ("run", class_run, run_command, _("\
|
Start debugged program. You may specify arguments to give it.\n\
|
Start debugged program. You may specify arguments to give it.\n\
|
Args may include \"*\", or \"[...]\"; they are expanded using \"sh\".\n\
|
Args may include \"*\", or \"[...]\"; they are expanded using \"sh\".\n\
|
Input and output redirection with \">\", \"<\", or \">>\" are also allowed.\n\n\
|
Input and output redirection with \">\", \"<\", or \">>\" are also allowed.\n\n\
|
With no arguments, uses arguments last specified (with \"run\" or \"set args\").\n\
|
With no arguments, uses arguments last specified (with \"run\" or \"set args\").\n\
|
To cancel previous arguments and run with no arguments,\n\
|
To cancel previous arguments and run with no arguments,\n\
|
use \"set args\" without arguments."));
|
use \"set args\" without arguments."));
|
set_cmd_completer (c, filename_completer);
|
set_cmd_completer (c, filename_completer);
|
add_com_alias ("r", "run", class_run, 1);
|
add_com_alias ("r", "run", class_run, 1);
|
if (xdb_commands)
|
if (xdb_commands)
|
add_com ("R", class_run, run_no_args_command,
|
add_com ("R", class_run, run_no_args_command,
|
_("Start debugged program with no arguments."));
|
_("Start debugged program with no arguments."));
|
|
|
c = add_com ("start", class_run, start_command, _("\
|
c = add_com ("start", class_run, start_command, _("\
|
Run the debugged program until the beginning of the main procedure.\n\
|
Run the debugged program until the beginning of the main procedure.\n\
|
You may specify arguments to give to your program, just as with the\n\
|
You may specify arguments to give to your program, just as with the\n\
|
\"run\" command."));
|
\"run\" command."));
|
set_cmd_completer (c, filename_completer);
|
set_cmd_completer (c, filename_completer);
|
|
|
add_com ("interrupt", class_run, interrupt_target_command,
|
add_com ("interrupt", class_run, interrupt_target_command,
|
_("Interrupt the execution of the debugged program."));
|
_("Interrupt the execution of the debugged program."));
|
|
|
add_info ("registers", nofp_registers_info, _("\
|
add_info ("registers", nofp_registers_info, _("\
|
List of integer registers and their contents, for selected stack frame.\n\
|
List of integer registers and their contents, for selected stack frame.\n\
|
Register name as argument means describe only that register."));
|
Register name as argument means describe only that register."));
|
add_info_alias ("r", "registers", 1);
|
add_info_alias ("r", "registers", 1);
|
|
|
if (xdb_commands)
|
if (xdb_commands)
|
add_com ("lr", class_info, nofp_registers_info, _("\
|
add_com ("lr", class_info, nofp_registers_info, _("\
|
List of integer registers and their contents, for selected stack frame.\n\
|
List of integer registers and their contents, for selected stack frame.\n\
|
Register name as argument means describe only that register."));
|
Register name as argument means describe only that register."));
|
add_info ("all-registers", all_registers_info, _("\
|
add_info ("all-registers", all_registers_info, _("\
|
List of all registers and their contents, for selected stack frame.\n\
|
List of all registers and their contents, for selected stack frame.\n\
|
Register name as argument means describe only that register."));
|
Register name as argument means describe only that register."));
|
|
|
add_info ("program", program_info,
|
add_info ("program", program_info,
|
_("Execution status of the program."));
|
_("Execution status of the program."));
|
|
|
add_info ("float", float_info,
|
add_info ("float", float_info,
|
_("Print the status of the floating point unit\n"));
|
_("Print the status of the floating point unit\n"));
|
|
|
add_info ("vector", vector_info,
|
add_info ("vector", vector_info,
|
_("Print the status of the vector unit\n"));
|
_("Print the status of the vector unit\n"));
|
|
|
inferior_environ = make_environ ();
|
inferior_environ = make_environ ();
|
init_environ (inferior_environ);
|
init_environ (inferior_environ);
|
}
|
}
|
|
|