OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gdb-6.8/] [gdb/] [linux-nat.c] - Diff between revs 827 and 840

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 827 Rev 840
/* GNU/Linux native-dependent code common to multiple platforms.
/* GNU/Linux native-dependent code common to multiple platforms.
 
 
   Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
   Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
 
 
#include "defs.h"
#include "defs.h"
#include "inferior.h"
#include "inferior.h"
#include "target.h"
#include "target.h"
#include "gdb_string.h"
#include "gdb_string.h"
#include "gdb_wait.h"
#include "gdb_wait.h"
#include "gdb_assert.h"
#include "gdb_assert.h"
#ifdef HAVE_TKILL_SYSCALL
#ifdef HAVE_TKILL_SYSCALL
#include <unistd.h>
#include <unistd.h>
#include <sys/syscall.h>
#include <sys/syscall.h>
#endif
#endif
#include <sys/ptrace.h>
#include <sys/ptrace.h>
#include "linux-nat.h"
#include "linux-nat.h"
#include "linux-fork.h"
#include "linux-fork.h"
#include "gdbthread.h"
#include "gdbthread.h"
#include "gdbcmd.h"
#include "gdbcmd.h"
#include "regcache.h"
#include "regcache.h"
#include "regset.h"
#include "regset.h"
#include "inf-ptrace.h"
#include "inf-ptrace.h"
#include "auxv.h"
#include "auxv.h"
#include <sys/param.h>          /* for MAXPATHLEN */
#include <sys/param.h>          /* for MAXPATHLEN */
#include <sys/procfs.h>         /* for elf_gregset etc. */
#include <sys/procfs.h>         /* for elf_gregset etc. */
#include "elf-bfd.h"            /* for elfcore_write_* */
#include "elf-bfd.h"            /* for elfcore_write_* */
#include "gregset.h"            /* for gregset */
#include "gregset.h"            /* for gregset */
#include "gdbcore.h"            /* for get_exec_file */
#include "gdbcore.h"            /* for get_exec_file */
#include <ctype.h>              /* for isdigit */
#include <ctype.h>              /* for isdigit */
#include "gdbthread.h"          /* for struct thread_info etc. */
#include "gdbthread.h"          /* for struct thread_info etc. */
#include "gdb_stat.h"           /* for struct stat */
#include "gdb_stat.h"           /* for struct stat */
#include <fcntl.h>              /* for O_RDONLY */
#include <fcntl.h>              /* for O_RDONLY */
 
 
#ifndef O_LARGEFILE
#ifndef O_LARGEFILE
#define O_LARGEFILE 0
#define O_LARGEFILE 0
#endif
#endif
 
 
/* If the system headers did not provide the constants, hard-code the normal
/* If the system headers did not provide the constants, hard-code the normal
   values.  */
   values.  */
#ifndef PTRACE_EVENT_FORK
#ifndef PTRACE_EVENT_FORK
 
 
#define PTRACE_SETOPTIONS       0x4200
#define PTRACE_SETOPTIONS       0x4200
#define PTRACE_GETEVENTMSG      0x4201
#define PTRACE_GETEVENTMSG      0x4201
 
 
/* options set using PTRACE_SETOPTIONS */
/* options set using PTRACE_SETOPTIONS */
#define PTRACE_O_TRACESYSGOOD   0x00000001
#define PTRACE_O_TRACESYSGOOD   0x00000001
#define PTRACE_O_TRACEFORK      0x00000002
#define PTRACE_O_TRACEFORK      0x00000002
#define PTRACE_O_TRACEVFORK     0x00000004
#define PTRACE_O_TRACEVFORK     0x00000004
#define PTRACE_O_TRACECLONE     0x00000008
#define PTRACE_O_TRACECLONE     0x00000008
#define PTRACE_O_TRACEEXEC      0x00000010
#define PTRACE_O_TRACEEXEC      0x00000010
#define PTRACE_O_TRACEVFORKDONE 0x00000020
#define PTRACE_O_TRACEVFORKDONE 0x00000020
#define PTRACE_O_TRACEEXIT      0x00000040
#define PTRACE_O_TRACEEXIT      0x00000040
 
 
/* Wait extended result codes for the above trace options.  */
/* Wait extended result codes for the above trace options.  */
#define PTRACE_EVENT_FORK       1
#define PTRACE_EVENT_FORK       1
#define PTRACE_EVENT_VFORK      2
#define PTRACE_EVENT_VFORK      2
#define PTRACE_EVENT_CLONE      3
#define PTRACE_EVENT_CLONE      3
#define PTRACE_EVENT_EXEC       4
#define PTRACE_EVENT_EXEC       4
#define PTRACE_EVENT_VFORK_DONE 5
#define PTRACE_EVENT_VFORK_DONE 5
#define PTRACE_EVENT_EXIT       6
#define PTRACE_EVENT_EXIT       6
 
 
#endif /* PTRACE_EVENT_FORK */
#endif /* PTRACE_EVENT_FORK */
 
 
/* We can't always assume that this flag is available, but all systems
/* We can't always assume that this flag is available, but all systems
   with the ptrace event handlers also have __WALL, so it's safe to use
   with the ptrace event handlers also have __WALL, so it's safe to use
   here.  */
   here.  */
#ifndef __WALL
#ifndef __WALL
#define __WALL          0x40000000 /* Wait for any child.  */
#define __WALL          0x40000000 /* Wait for any child.  */
#endif
#endif
 
 
#ifndef PTRACE_GETSIGINFO
#ifndef PTRACE_GETSIGINFO
#define PTRACE_GETSIGINFO    0x4202
#define PTRACE_GETSIGINFO    0x4202
#endif
#endif
 
 
/* The single-threaded native GNU/Linux target_ops.  We save a pointer for
/* The single-threaded native GNU/Linux target_ops.  We save a pointer for
   the use of the multi-threaded target.  */
   the use of the multi-threaded target.  */
static struct target_ops *linux_ops;
static struct target_ops *linux_ops;
static struct target_ops linux_ops_saved;
static struct target_ops linux_ops_saved;
 
 
/* The method to call, if any, when a new thread is attached.  */
/* The method to call, if any, when a new thread is attached.  */
static void (*linux_nat_new_thread) (ptid_t);
static void (*linux_nat_new_thread) (ptid_t);
 
 
/* The saved to_xfer_partial method, inherited from inf-ptrace.c.
/* The saved to_xfer_partial method, inherited from inf-ptrace.c.
   Called by our to_xfer_partial.  */
   Called by our to_xfer_partial.  */
static LONGEST (*super_xfer_partial) (struct target_ops *,
static LONGEST (*super_xfer_partial) (struct target_ops *,
                                      enum target_object,
                                      enum target_object,
                                      const char *, gdb_byte *,
                                      const char *, gdb_byte *,
                                      const gdb_byte *,
                                      const gdb_byte *,
                                      ULONGEST, LONGEST);
                                      ULONGEST, LONGEST);
 
 
static int debug_linux_nat;
static int debug_linux_nat;
static void
static void
show_debug_linux_nat (struct ui_file *file, int from_tty,
show_debug_linux_nat (struct ui_file *file, int from_tty,
                      struct cmd_list_element *c, const char *value)
                      struct cmd_list_element *c, const char *value)
{
{
  fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
  fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
                    value);
                    value);
}
}
 
 
static int linux_parent_pid;
static int linux_parent_pid;
 
 
struct simple_pid_list
struct simple_pid_list
{
{
  int pid;
  int pid;
  int status;
  int status;
  struct simple_pid_list *next;
  struct simple_pid_list *next;
};
};
struct simple_pid_list *stopped_pids;
struct simple_pid_list *stopped_pids;
 
 
/* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
/* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
   can not be used, 1 if it can.  */
   can not be used, 1 if it can.  */
 
 
static int linux_supports_tracefork_flag = -1;
static int linux_supports_tracefork_flag = -1;
 
 
/* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
/* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
   PTRACE_O_TRACEVFORKDONE.  */
   PTRACE_O_TRACEVFORKDONE.  */
 
 
static int linux_supports_tracevforkdone_flag = -1;
static int linux_supports_tracevforkdone_flag = -1;
 
 


/* Trivial list manipulation functions to keep track of a list of
/* Trivial list manipulation functions to keep track of a list of
   new stopped processes.  */
   new stopped processes.  */
static void
static void
add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
{
{
  struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
  struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
  new_pid->pid = pid;
  new_pid->pid = pid;
  new_pid->status = status;
  new_pid->status = status;
  new_pid->next = *listp;
  new_pid->next = *listp;
  *listp = new_pid;
  *listp = new_pid;
}
}
 
 
static int
static int
pull_pid_from_list (struct simple_pid_list **listp, int pid, int *status)
pull_pid_from_list (struct simple_pid_list **listp, int pid, int *status)
{
{
  struct simple_pid_list **p;
  struct simple_pid_list **p;
 
 
  for (p = listp; *p != NULL; p = &(*p)->next)
  for (p = listp; *p != NULL; p = &(*p)->next)
    if ((*p)->pid == pid)
    if ((*p)->pid == pid)
      {
      {
        struct simple_pid_list *next = (*p)->next;
        struct simple_pid_list *next = (*p)->next;
        *status = (*p)->status;
        *status = (*p)->status;
        xfree (*p);
        xfree (*p);
        *p = next;
        *p = next;
        return 1;
        return 1;
      }
      }
  return 0;
  return 0;
}
}
 
 
static void
static void
linux_record_stopped_pid (int pid, int status)
linux_record_stopped_pid (int pid, int status)
{
{
  add_to_pid_list (&stopped_pids, pid, status);
  add_to_pid_list (&stopped_pids, pid, status);
}
}
 
 


/* A helper function for linux_test_for_tracefork, called after fork ().  */
/* A helper function for linux_test_for_tracefork, called after fork ().  */
 
 
static void
static void
linux_tracefork_child (void)
linux_tracefork_child (void)
{
{
  int ret;
  int ret;
 
 
  ptrace (PTRACE_TRACEME, 0, 0, 0);
  ptrace (PTRACE_TRACEME, 0, 0, 0);
  kill (getpid (), SIGSTOP);
  kill (getpid (), SIGSTOP);
  fork ();
  fork ();
  _exit (0);
  _exit (0);
}
}
 
 
/* Wrapper function for waitpid which handles EINTR.  */
/* Wrapper function for waitpid which handles EINTR.  */
 
 
static int
static int
my_waitpid (int pid, int *status, int flags)
my_waitpid (int pid, int *status, int flags)
{
{
  int ret;
  int ret;
  do
  do
    {
    {
      ret = waitpid (pid, status, flags);
      ret = waitpid (pid, status, flags);
    }
    }
  while (ret == -1 && errno == EINTR);
  while (ret == -1 && errno == EINTR);
 
 
  return ret;
  return ret;
}
}
 
 
/* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
/* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
 
 
   First, we try to enable fork tracing on ORIGINAL_PID.  If this fails,
   First, we try to enable fork tracing on ORIGINAL_PID.  If this fails,
   we know that the feature is not available.  This may change the tracing
   we know that the feature is not available.  This may change the tracing
   options for ORIGINAL_PID, but we'll be setting them shortly anyway.
   options for ORIGINAL_PID, but we'll be setting them shortly anyway.
 
 
   However, if it succeeds, we don't know for sure that the feature is
   However, if it succeeds, we don't know for sure that the feature is
   available; old versions of PTRACE_SETOPTIONS ignored unknown options.  We
   available; old versions of PTRACE_SETOPTIONS ignored unknown options.  We
   create a child process, attach to it, use PTRACE_SETOPTIONS to enable
   create a child process, attach to it, use PTRACE_SETOPTIONS to enable
   fork tracing, and let it fork.  If the process exits, we assume that we
   fork tracing, and let it fork.  If the process exits, we assume that we
   can't use TRACEFORK; if we get the fork notification, and we can extract
   can't use TRACEFORK; if we get the fork notification, and we can extract
   the new child's PID, then we assume that we can.  */
   the new child's PID, then we assume that we can.  */
 
 
static void
static void
linux_test_for_tracefork (int original_pid)
linux_test_for_tracefork (int original_pid)
{
{
  int child_pid, ret, status;
  int child_pid, ret, status;
  long second_pid;
  long second_pid;
 
 
  linux_supports_tracefork_flag = 0;
  linux_supports_tracefork_flag = 0;
  linux_supports_tracevforkdone_flag = 0;
  linux_supports_tracevforkdone_flag = 0;
 
 
  ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
  ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
  if (ret != 0)
  if (ret != 0)
    return;
    return;
 
 
  child_pid = fork ();
  child_pid = fork ();
  if (child_pid == -1)
  if (child_pid == -1)
    perror_with_name (("fork"));
    perror_with_name (("fork"));
 
 
  if (child_pid == 0)
  if (child_pid == 0)
    linux_tracefork_child ();
    linux_tracefork_child ();
 
 
  ret = my_waitpid (child_pid, &status, 0);
  ret = my_waitpid (child_pid, &status, 0);
  if (ret == -1)
  if (ret == -1)
    perror_with_name (("waitpid"));
    perror_with_name (("waitpid"));
  else if (ret != child_pid)
  else if (ret != child_pid)
    error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
    error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
  if (! WIFSTOPPED (status))
  if (! WIFSTOPPED (status))
    error (_("linux_test_for_tracefork: waitpid: unexpected status %d."), status);
    error (_("linux_test_for_tracefork: waitpid: unexpected status %d."), status);
 
 
  ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
  ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
  if (ret != 0)
  if (ret != 0)
    {
    {
      ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
      ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
      if (ret != 0)
      if (ret != 0)
        {
        {
          warning (_("linux_test_for_tracefork: failed to kill child"));
          warning (_("linux_test_for_tracefork: failed to kill child"));
          return;
          return;
        }
        }
 
 
      ret = my_waitpid (child_pid, &status, 0);
      ret = my_waitpid (child_pid, &status, 0);
      if (ret != child_pid)
      if (ret != child_pid)
        warning (_("linux_test_for_tracefork: failed to wait for killed child"));
        warning (_("linux_test_for_tracefork: failed to wait for killed child"));
      else if (!WIFSIGNALED (status))
      else if (!WIFSIGNALED (status))
        warning (_("linux_test_for_tracefork: unexpected wait status 0x%x from "
        warning (_("linux_test_for_tracefork: unexpected wait status 0x%x from "
                 "killed child"), status);
                 "killed child"), status);
 
 
      return;
      return;
    }
    }
 
 
  /* Check whether PTRACE_O_TRACEVFORKDONE is available.  */
  /* Check whether PTRACE_O_TRACEVFORKDONE is available.  */
  ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
  ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
                PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
                PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
  linux_supports_tracevforkdone_flag = (ret == 0);
  linux_supports_tracevforkdone_flag = (ret == 0);
 
 
  ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
  ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
  if (ret != 0)
  if (ret != 0)
    warning (_("linux_test_for_tracefork: failed to resume child"));
    warning (_("linux_test_for_tracefork: failed to resume child"));
 
 
  ret = my_waitpid (child_pid, &status, 0);
  ret = my_waitpid (child_pid, &status, 0);
 
 
  if (ret == child_pid && WIFSTOPPED (status)
  if (ret == child_pid && WIFSTOPPED (status)
      && status >> 16 == PTRACE_EVENT_FORK)
      && status >> 16 == PTRACE_EVENT_FORK)
    {
    {
      second_pid = 0;
      second_pid = 0;
      ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
      ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
      if (ret == 0 && second_pid != 0)
      if (ret == 0 && second_pid != 0)
        {
        {
          int second_status;
          int second_status;
 
 
          linux_supports_tracefork_flag = 1;
          linux_supports_tracefork_flag = 1;
          my_waitpid (second_pid, &second_status, 0);
          my_waitpid (second_pid, &second_status, 0);
          ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
          ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
          if (ret != 0)
          if (ret != 0)
            warning (_("linux_test_for_tracefork: failed to kill second child"));
            warning (_("linux_test_for_tracefork: failed to kill second child"));
          my_waitpid (second_pid, &status, 0);
          my_waitpid (second_pid, &status, 0);
        }
        }
    }
    }
  else
  else
    warning (_("linux_test_for_tracefork: unexpected result from waitpid "
    warning (_("linux_test_for_tracefork: unexpected result from waitpid "
             "(%d, status 0x%x)"), ret, status);
             "(%d, status 0x%x)"), ret, status);
 
 
  ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
  ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
  if (ret != 0)
  if (ret != 0)
    warning (_("linux_test_for_tracefork: failed to kill child"));
    warning (_("linux_test_for_tracefork: failed to kill child"));
  my_waitpid (child_pid, &status, 0);
  my_waitpid (child_pid, &status, 0);
}
}
 
 
/* Return non-zero iff we have tracefork functionality available.
/* Return non-zero iff we have tracefork functionality available.
   This function also sets linux_supports_tracefork_flag.  */
   This function also sets linux_supports_tracefork_flag.  */
 
 
static int
static int
linux_supports_tracefork (int pid)
linux_supports_tracefork (int pid)
{
{
  if (linux_supports_tracefork_flag == -1)
  if (linux_supports_tracefork_flag == -1)
    linux_test_for_tracefork (pid);
    linux_test_for_tracefork (pid);
  return linux_supports_tracefork_flag;
  return linux_supports_tracefork_flag;
}
}
 
 
static int
static int
linux_supports_tracevforkdone (int pid)
linux_supports_tracevforkdone (int pid)
{
{
  if (linux_supports_tracefork_flag == -1)
  if (linux_supports_tracefork_flag == -1)
    linux_test_for_tracefork (pid);
    linux_test_for_tracefork (pid);
  return linux_supports_tracevforkdone_flag;
  return linux_supports_tracevforkdone_flag;
}
}
 
 


void
void
linux_enable_event_reporting (ptid_t ptid)
linux_enable_event_reporting (ptid_t ptid)
{
{
  int pid = ptid_get_lwp (ptid);
  int pid = ptid_get_lwp (ptid);
  int options;
  int options;
 
 
  if (pid == 0)
  if (pid == 0)
    pid = ptid_get_pid (ptid);
    pid = ptid_get_pid (ptid);
 
 
  if (! linux_supports_tracefork (pid))
  if (! linux_supports_tracefork (pid))
    return;
    return;
 
 
  options = PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK | PTRACE_O_TRACEEXEC
  options = PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK | PTRACE_O_TRACEEXEC
    | PTRACE_O_TRACECLONE;
    | PTRACE_O_TRACECLONE;
  if (linux_supports_tracevforkdone (pid))
  if (linux_supports_tracevforkdone (pid))
    options |= PTRACE_O_TRACEVFORKDONE;
    options |= PTRACE_O_TRACEVFORKDONE;
 
 
  /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
  /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
     read-only process state.  */
     read-only process state.  */
 
 
  ptrace (PTRACE_SETOPTIONS, pid, 0, options);
  ptrace (PTRACE_SETOPTIONS, pid, 0, options);
}
}
 
 
static void
static void
linux_child_post_attach (int pid)
linux_child_post_attach (int pid)
{
{
  linux_enable_event_reporting (pid_to_ptid (pid));
  linux_enable_event_reporting (pid_to_ptid (pid));
  check_for_thread_db ();
  check_for_thread_db ();
}
}
 
 
static void
static void
linux_child_post_startup_inferior (ptid_t ptid)
linux_child_post_startup_inferior (ptid_t ptid)
{
{
  linux_enable_event_reporting (ptid);
  linux_enable_event_reporting (ptid);
  check_for_thread_db ();
  check_for_thread_db ();
}
}
 
 
static int
static int
linux_child_follow_fork (struct target_ops *ops, int follow_child)
linux_child_follow_fork (struct target_ops *ops, int follow_child)
{
{
  ptid_t last_ptid;
  ptid_t last_ptid;
  struct target_waitstatus last_status;
  struct target_waitstatus last_status;
  int has_vforked;
  int has_vforked;
  int parent_pid, child_pid;
  int parent_pid, child_pid;
 
 
  get_last_target_status (&last_ptid, &last_status);
  get_last_target_status (&last_ptid, &last_status);
  has_vforked = (last_status.kind == TARGET_WAITKIND_VFORKED);
  has_vforked = (last_status.kind == TARGET_WAITKIND_VFORKED);
  parent_pid = ptid_get_lwp (last_ptid);
  parent_pid = ptid_get_lwp (last_ptid);
  if (parent_pid == 0)
  if (parent_pid == 0)
    parent_pid = ptid_get_pid (last_ptid);
    parent_pid = ptid_get_pid (last_ptid);
  child_pid = last_status.value.related_pid;
  child_pid = last_status.value.related_pid;
 
 
  if (! follow_child)
  if (! follow_child)
    {
    {
      /* We're already attached to the parent, by default. */
      /* We're already attached to the parent, by default. */
 
 
      /* Before detaching from the child, remove all breakpoints from
      /* Before detaching from the child, remove all breakpoints from
         it.  (This won't actually modify the breakpoint list, but will
         it.  (This won't actually modify the breakpoint list, but will
         physically remove the breakpoints from the child.) */
         physically remove the breakpoints from the child.) */
      /* If we vforked this will remove the breakpoints from the parent
      /* If we vforked this will remove the breakpoints from the parent
         also, but they'll be reinserted below.  */
         also, but they'll be reinserted below.  */
      detach_breakpoints (child_pid);
      detach_breakpoints (child_pid);
 
 
      /* Detach new forked process?  */
      /* Detach new forked process?  */
      if (detach_fork)
      if (detach_fork)
        {
        {
          if (info_verbose || debug_linux_nat)
          if (info_verbose || debug_linux_nat)
            {
            {
              target_terminal_ours ();
              target_terminal_ours ();
              fprintf_filtered (gdb_stdlog,
              fprintf_filtered (gdb_stdlog,
                                "Detaching after fork from child process %d.\n",
                                "Detaching after fork from child process %d.\n",
                                child_pid);
                                child_pid);
            }
            }
 
 
          ptrace (PTRACE_DETACH, child_pid, 0, 0);
          ptrace (PTRACE_DETACH, child_pid, 0, 0);
        }
        }
      else
      else
        {
        {
          struct fork_info *fp;
          struct fork_info *fp;
          /* Retain child fork in ptrace (stopped) state.  */
          /* Retain child fork in ptrace (stopped) state.  */
          fp = find_fork_pid (child_pid);
          fp = find_fork_pid (child_pid);
          if (!fp)
          if (!fp)
            fp = add_fork (child_pid);
            fp = add_fork (child_pid);
          fork_save_infrun_state (fp, 0);
          fork_save_infrun_state (fp, 0);
        }
        }
 
 
      if (has_vforked)
      if (has_vforked)
        {
        {
          gdb_assert (linux_supports_tracefork_flag >= 0);
          gdb_assert (linux_supports_tracefork_flag >= 0);
          if (linux_supports_tracevforkdone (0))
          if (linux_supports_tracevforkdone (0))
            {
            {
              int status;
              int status;
 
 
              ptrace (PTRACE_CONT, parent_pid, 0, 0);
              ptrace (PTRACE_CONT, parent_pid, 0, 0);
              my_waitpid (parent_pid, &status, __WALL);
              my_waitpid (parent_pid, &status, __WALL);
              if ((status >> 16) != PTRACE_EVENT_VFORK_DONE)
              if ((status >> 16) != PTRACE_EVENT_VFORK_DONE)
                warning (_("Unexpected waitpid result %06x when waiting for "
                warning (_("Unexpected waitpid result %06x when waiting for "
                         "vfork-done"), status);
                         "vfork-done"), status);
            }
            }
          else
          else
            {
            {
              /* We can't insert breakpoints until the child has
              /* We can't insert breakpoints until the child has
                 finished with the shared memory region.  We need to
                 finished with the shared memory region.  We need to
                 wait until that happens.  Ideal would be to just
                 wait until that happens.  Ideal would be to just
                 call:
                 call:
                 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
                 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
                 - waitpid (parent_pid, &status, __WALL);
                 - waitpid (parent_pid, &status, __WALL);
                 However, most architectures can't handle a syscall
                 However, most architectures can't handle a syscall
                 being traced on the way out if it wasn't traced on
                 being traced on the way out if it wasn't traced on
                 the way in.
                 the way in.
 
 
                 We might also think to loop, continuing the child
                 We might also think to loop, continuing the child
                 until it exits or gets a SIGTRAP.  One problem is
                 until it exits or gets a SIGTRAP.  One problem is
                 that the child might call ptrace with PTRACE_TRACEME.
                 that the child might call ptrace with PTRACE_TRACEME.
 
 
                 There's no simple and reliable way to figure out when
                 There's no simple and reliable way to figure out when
                 the vforked child will be done with its copy of the
                 the vforked child will be done with its copy of the
                 shared memory.  We could step it out of the syscall,
                 shared memory.  We could step it out of the syscall,
                 two instructions, let it go, and then single-step the
                 two instructions, let it go, and then single-step the
                 parent once.  When we have hardware single-step, this
                 parent once.  When we have hardware single-step, this
                 would work; with software single-step it could still
                 would work; with software single-step it could still
                 be made to work but we'd have to be able to insert
                 be made to work but we'd have to be able to insert
                 single-step breakpoints in the child, and we'd have
                 single-step breakpoints in the child, and we'd have
                 to insert -just- the single-step breakpoint in the
                 to insert -just- the single-step breakpoint in the
                 parent.  Very awkward.
                 parent.  Very awkward.
 
 
                 In the end, the best we can do is to make sure it
                 In the end, the best we can do is to make sure it
                 runs for a little while.  Hopefully it will be out of
                 runs for a little while.  Hopefully it will be out of
                 range of any breakpoints we reinsert.  Usually this
                 range of any breakpoints we reinsert.  Usually this
                 is only the single-step breakpoint at vfork's return
                 is only the single-step breakpoint at vfork's return
                 point.  */
                 point.  */
 
 
              usleep (10000);
              usleep (10000);
            }
            }
 
 
          /* Since we vforked, breakpoints were removed in the parent
          /* Since we vforked, breakpoints were removed in the parent
             too.  Put them back.  */
             too.  Put them back.  */
          reattach_breakpoints (parent_pid);
          reattach_breakpoints (parent_pid);
        }
        }
    }
    }
  else
  else
    {
    {
      char child_pid_spelling[40];
      char child_pid_spelling[40];
 
 
      /* Needed to keep the breakpoint lists in sync.  */
      /* Needed to keep the breakpoint lists in sync.  */
      if (! has_vforked)
      if (! has_vforked)
        detach_breakpoints (child_pid);
        detach_breakpoints (child_pid);
 
 
      /* Before detaching from the parent, remove all breakpoints from it. */
      /* Before detaching from the parent, remove all breakpoints from it. */
      remove_breakpoints ();
      remove_breakpoints ();
 
 
      if (info_verbose || debug_linux_nat)
      if (info_verbose || debug_linux_nat)
        {
        {
          target_terminal_ours ();
          target_terminal_ours ();
          fprintf_filtered (gdb_stdlog,
          fprintf_filtered (gdb_stdlog,
                            "Attaching after fork to child process %d.\n",
                            "Attaching after fork to child process %d.\n",
                            child_pid);
                            child_pid);
        }
        }
 
 
      /* If we're vforking, we may want to hold on to the parent until
      /* If we're vforking, we may want to hold on to the parent until
         the child exits or execs.  At exec time we can remove the old
         the child exits or execs.  At exec time we can remove the old
         breakpoints from the parent and detach it; at exit time we
         breakpoints from the parent and detach it; at exit time we
         could do the same (or even, sneakily, resume debugging it - the
         could do the same (or even, sneakily, resume debugging it - the
         child's exec has failed, or something similar).
         child's exec has failed, or something similar).
 
 
         This doesn't clean up "properly", because we can't call
         This doesn't clean up "properly", because we can't call
         target_detach, but that's OK; if the current target is "child",
         target_detach, but that's OK; if the current target is "child",
         then it doesn't need any further cleanups, and lin_lwp will
         then it doesn't need any further cleanups, and lin_lwp will
         generally not encounter vfork (vfork is defined to fork
         generally not encounter vfork (vfork is defined to fork
         in libpthread.so).
         in libpthread.so).
 
 
         The holding part is very easy if we have VFORKDONE events;
         The holding part is very easy if we have VFORKDONE events;
         but keeping track of both processes is beyond GDB at the
         but keeping track of both processes is beyond GDB at the
         moment.  So we don't expose the parent to the rest of GDB.
         moment.  So we don't expose the parent to the rest of GDB.
         Instead we quietly hold onto it until such time as we can
         Instead we quietly hold onto it until such time as we can
         safely resume it.  */
         safely resume it.  */
 
 
      if (has_vforked)
      if (has_vforked)
        linux_parent_pid = parent_pid;
        linux_parent_pid = parent_pid;
      else if (!detach_fork)
      else if (!detach_fork)
        {
        {
          struct fork_info *fp;
          struct fork_info *fp;
          /* Retain parent fork in ptrace (stopped) state.  */
          /* Retain parent fork in ptrace (stopped) state.  */
          fp = find_fork_pid (parent_pid);
          fp = find_fork_pid (parent_pid);
          if (!fp)
          if (!fp)
            fp = add_fork (parent_pid);
            fp = add_fork (parent_pid);
          fork_save_infrun_state (fp, 0);
          fork_save_infrun_state (fp, 0);
        }
        }
      else
      else
        {
        {
          target_detach (NULL, 0);
          target_detach (NULL, 0);
        }
        }
 
 
      inferior_ptid = ptid_build (child_pid, child_pid, 0);
      inferior_ptid = ptid_build (child_pid, child_pid, 0);
 
 
      /* Reinstall ourselves, since we might have been removed in
      /* Reinstall ourselves, since we might have been removed in
         target_detach (which does other necessary cleanup).  */
         target_detach (which does other necessary cleanup).  */
 
 
      push_target (ops);
      push_target (ops);
      linux_nat_switch_fork (inferior_ptid);
      linux_nat_switch_fork (inferior_ptid);
      check_for_thread_db ();
      check_for_thread_db ();
 
 
      /* Reset breakpoints in the child as appropriate.  */
      /* Reset breakpoints in the child as appropriate.  */
      follow_inferior_reset_breakpoints ();
      follow_inferior_reset_breakpoints ();
    }
    }
 
 
  return 0;
  return 0;
}
}
 
 


static void
static void
linux_child_insert_fork_catchpoint (int pid)
linux_child_insert_fork_catchpoint (int pid)
{
{
  if (! linux_supports_tracefork (pid))
  if (! linux_supports_tracefork (pid))
    error (_("Your system does not support fork catchpoints."));
    error (_("Your system does not support fork catchpoints."));
}
}
 
 
static void
static void
linux_child_insert_vfork_catchpoint (int pid)
linux_child_insert_vfork_catchpoint (int pid)
{
{
  if (!linux_supports_tracefork (pid))
  if (!linux_supports_tracefork (pid))
    error (_("Your system does not support vfork catchpoints."));
    error (_("Your system does not support vfork catchpoints."));
}
}
 
 
static void
static void
linux_child_insert_exec_catchpoint (int pid)
linux_child_insert_exec_catchpoint (int pid)
{
{
  if (!linux_supports_tracefork (pid))
  if (!linux_supports_tracefork (pid))
    error (_("Your system does not support exec catchpoints."));
    error (_("Your system does not support exec catchpoints."));
}
}
 
 
/* On GNU/Linux there are no real LWP's.  The closest thing to LWP's
/* On GNU/Linux there are no real LWP's.  The closest thing to LWP's
   are processes sharing the same VM space.  A multi-threaded process
   are processes sharing the same VM space.  A multi-threaded process
   is basically a group of such processes.  However, such a grouping
   is basically a group of such processes.  However, such a grouping
   is almost entirely a user-space issue; the kernel doesn't enforce
   is almost entirely a user-space issue; the kernel doesn't enforce
   such a grouping at all (this might change in the future).  In
   such a grouping at all (this might change in the future).  In
   general, we'll rely on the threads library (i.e. the GNU/Linux
   general, we'll rely on the threads library (i.e. the GNU/Linux
   Threads library) to provide such a grouping.
   Threads library) to provide such a grouping.
 
 
   It is perfectly well possible to write a multi-threaded application
   It is perfectly well possible to write a multi-threaded application
   without the assistance of a threads library, by using the clone
   without the assistance of a threads library, by using the clone
   system call directly.  This module should be able to give some
   system call directly.  This module should be able to give some
   rudimentary support for debugging such applications if developers
   rudimentary support for debugging such applications if developers
   specify the CLONE_PTRACE flag in the clone system call, and are
   specify the CLONE_PTRACE flag in the clone system call, and are
   using the Linux kernel 2.4 or above.
   using the Linux kernel 2.4 or above.
 
 
   Note that there are some peculiarities in GNU/Linux that affect
   Note that there are some peculiarities in GNU/Linux that affect
   this code:
   this code:
 
 
   - In general one should specify the __WCLONE flag to waitpid in
   - In general one should specify the __WCLONE flag to waitpid in
     order to make it report events for any of the cloned processes
     order to make it report events for any of the cloned processes
     (and leave it out for the initial process).  However, if a cloned
     (and leave it out for the initial process).  However, if a cloned
     process has exited the exit status is only reported if the
     process has exited the exit status is only reported if the
     __WCLONE flag is absent.  Linux kernel 2.4 has a __WALL flag, but
     __WCLONE flag is absent.  Linux kernel 2.4 has a __WALL flag, but
     we cannot use it since GDB must work on older systems too.
     we cannot use it since GDB must work on older systems too.
 
 
   - When a traced, cloned process exits and is waited for by the
   - When a traced, cloned process exits and is waited for by the
     debugger, the kernel reassigns it to the original parent and
     debugger, the kernel reassigns it to the original parent and
     keeps it around as a "zombie".  Somehow, the GNU/Linux Threads
     keeps it around as a "zombie".  Somehow, the GNU/Linux Threads
     library doesn't notice this, which leads to the "zombie problem":
     library doesn't notice this, which leads to the "zombie problem":
     When debugged a multi-threaded process that spawns a lot of
     When debugged a multi-threaded process that spawns a lot of
     threads will run out of processes, even if the threads exit,
     threads will run out of processes, even if the threads exit,
     because the "zombies" stay around.  */
     because the "zombies" stay around.  */
 
 
/* List of known LWPs.  */
/* List of known LWPs.  */
struct lwp_info *lwp_list;
struct lwp_info *lwp_list;
 
 
/* Number of LWPs in the list.  */
/* Number of LWPs in the list.  */
static int num_lwps;
static int num_lwps;


 
 
#define GET_LWP(ptid)           ptid_get_lwp (ptid)
#define GET_LWP(ptid)           ptid_get_lwp (ptid)
#define GET_PID(ptid)           ptid_get_pid (ptid)
#define GET_PID(ptid)           ptid_get_pid (ptid)
#define is_lwp(ptid)            (GET_LWP (ptid) != 0)
#define is_lwp(ptid)            (GET_LWP (ptid) != 0)
#define BUILD_LWP(lwp, pid)     ptid_build (pid, lwp, 0)
#define BUILD_LWP(lwp, pid)     ptid_build (pid, lwp, 0)
 
 
/* If the last reported event was a SIGTRAP, this variable is set to
/* If the last reported event was a SIGTRAP, this variable is set to
   the process id of the LWP/thread that got it.  */
   the process id of the LWP/thread that got it.  */
ptid_t trap_ptid;
ptid_t trap_ptid;


 
 
/* Since we cannot wait (in linux_nat_wait) for the initial process and
/* Since we cannot wait (in linux_nat_wait) for the initial process and
   any cloned processes with a single call to waitpid, we have to use
   any cloned processes with a single call to waitpid, we have to use
   the WNOHANG flag and call waitpid in a loop.  To optimize
   the WNOHANG flag and call waitpid in a loop.  To optimize
   things a bit we use `sigsuspend' to wake us up when a process has
   things a bit we use `sigsuspend' to wake us up when a process has
   something to report (it will send us a SIGCHLD if it has).  To make
   something to report (it will send us a SIGCHLD if it has).  To make
   this work we have to juggle with the signal mask.  We save the
   this work we have to juggle with the signal mask.  We save the
   original signal mask such that we can restore it before creating a
   original signal mask such that we can restore it before creating a
   new process in order to avoid blocking certain signals in the
   new process in order to avoid blocking certain signals in the
   inferior.  We then block SIGCHLD during the waitpid/sigsuspend
   inferior.  We then block SIGCHLD during the waitpid/sigsuspend
   loop.  */
   loop.  */
 
 
/* Original signal mask.  */
/* Original signal mask.  */
static sigset_t normal_mask;
static sigset_t normal_mask;
 
 
/* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
/* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
   _initialize_linux_nat.  */
   _initialize_linux_nat.  */
static sigset_t suspend_mask;
static sigset_t suspend_mask;
 
 
/* Signals to block to make that sigsuspend work.  */
/* Signals to block to make that sigsuspend work.  */
static sigset_t blocked_mask;
static sigset_t blocked_mask;


 
 
/* Prototypes for local functions.  */
/* Prototypes for local functions.  */
static int stop_wait_callback (struct lwp_info *lp, void *data);
static int stop_wait_callback (struct lwp_info *lp, void *data);
static int linux_nat_thread_alive (ptid_t ptid);
static int linux_nat_thread_alive (ptid_t ptid);
static char *linux_child_pid_to_exec_file (int pid);
static char *linux_child_pid_to_exec_file (int pid);


/* Convert wait status STATUS to a string.  Used for printing debug
/* Convert wait status STATUS to a string.  Used for printing debug
   messages only.  */
   messages only.  */
 
 
static char *
static char *
status_to_str (int status)
status_to_str (int status)
{
{
  static char buf[64];
  static char buf[64];
 
 
  if (WIFSTOPPED (status))
  if (WIFSTOPPED (status))
    snprintf (buf, sizeof (buf), "%s (stopped)",
    snprintf (buf, sizeof (buf), "%s (stopped)",
              strsignal (WSTOPSIG (status)));
              strsignal (WSTOPSIG (status)));
  else if (WIFSIGNALED (status))
  else if (WIFSIGNALED (status))
    snprintf (buf, sizeof (buf), "%s (terminated)",
    snprintf (buf, sizeof (buf), "%s (terminated)",
              strsignal (WSTOPSIG (status)));
              strsignal (WSTOPSIG (status)));
  else
  else
    snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
    snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
 
 
  return buf;
  return buf;
}
}
 
 
/* Initialize the list of LWPs.  Note that this module, contrary to
/* Initialize the list of LWPs.  Note that this module, contrary to
   what GDB's generic threads layer does for its thread list,
   what GDB's generic threads layer does for its thread list,
   re-initializes the LWP lists whenever we mourn or detach (which
   re-initializes the LWP lists whenever we mourn or detach (which
   doesn't involve mourning) the inferior.  */
   doesn't involve mourning) the inferior.  */
 
 
static void
static void
init_lwp_list (void)
init_lwp_list (void)
{
{
  struct lwp_info *lp, *lpnext;
  struct lwp_info *lp, *lpnext;
 
 
  for (lp = lwp_list; lp; lp = lpnext)
  for (lp = lwp_list; lp; lp = lpnext)
    {
    {
      lpnext = lp->next;
      lpnext = lp->next;
      xfree (lp);
      xfree (lp);
    }
    }
 
 
  lwp_list = NULL;
  lwp_list = NULL;
  num_lwps = 0;
  num_lwps = 0;
}
}
 
 
/* Add the LWP specified by PID to the list.  Return a pointer to the
/* Add the LWP specified by PID to the list.  Return a pointer to the
   structure describing the new LWP.  The LWP should already be stopped
   structure describing the new LWP.  The LWP should already be stopped
   (with an exception for the very first LWP).  */
   (with an exception for the very first LWP).  */
 
 
static struct lwp_info *
static struct lwp_info *
add_lwp (ptid_t ptid)
add_lwp (ptid_t ptid)
{
{
  struct lwp_info *lp;
  struct lwp_info *lp;
 
 
  gdb_assert (is_lwp (ptid));
  gdb_assert (is_lwp (ptid));
 
 
  lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
  lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
 
 
  memset (lp, 0, sizeof (struct lwp_info));
  memset (lp, 0, sizeof (struct lwp_info));
 
 
  lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
  lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
 
 
  lp->ptid = ptid;
  lp->ptid = ptid;
 
 
  lp->next = lwp_list;
  lp->next = lwp_list;
  lwp_list = lp;
  lwp_list = lp;
  ++num_lwps;
  ++num_lwps;
 
 
  if (num_lwps > 1 && linux_nat_new_thread != NULL)
  if (num_lwps > 1 && linux_nat_new_thread != NULL)
    linux_nat_new_thread (ptid);
    linux_nat_new_thread (ptid);
 
 
  return lp;
  return lp;
}
}
 
 
/* Remove the LWP specified by PID from the list.  */
/* Remove the LWP specified by PID from the list.  */
 
 
static void
static void
delete_lwp (ptid_t ptid)
delete_lwp (ptid_t ptid)
{
{
  struct lwp_info *lp, *lpprev;
  struct lwp_info *lp, *lpprev;
 
 
  lpprev = NULL;
  lpprev = NULL;
 
 
  for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
  for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
    if (ptid_equal (lp->ptid, ptid))
    if (ptid_equal (lp->ptid, ptid))
      break;
      break;
 
 
  if (!lp)
  if (!lp)
    return;
    return;
 
 
  num_lwps--;
  num_lwps--;
 
 
  if (lpprev)
  if (lpprev)
    lpprev->next = lp->next;
    lpprev->next = lp->next;
  else
  else
    lwp_list = lp->next;
    lwp_list = lp->next;
 
 
  xfree (lp);
  xfree (lp);
}
}
 
 
/* Return a pointer to the structure describing the LWP corresponding
/* Return a pointer to the structure describing the LWP corresponding
   to PID.  If no corresponding LWP could be found, return NULL.  */
   to PID.  If no corresponding LWP could be found, return NULL.  */
 
 
static struct lwp_info *
static struct lwp_info *
find_lwp_pid (ptid_t ptid)
find_lwp_pid (ptid_t ptid)
{
{
  struct lwp_info *lp;
  struct lwp_info *lp;
  int lwp;
  int lwp;
 
 
  if (is_lwp (ptid))
  if (is_lwp (ptid))
    lwp = GET_LWP (ptid);
    lwp = GET_LWP (ptid);
  else
  else
    lwp = GET_PID (ptid);
    lwp = GET_PID (ptid);
 
 
  for (lp = lwp_list; lp; lp = lp->next)
  for (lp = lwp_list; lp; lp = lp->next)
    if (lwp == GET_LWP (lp->ptid))
    if (lwp == GET_LWP (lp->ptid))
      return lp;
      return lp;
 
 
  return NULL;
  return NULL;
}
}
 
 
/* Call CALLBACK with its second argument set to DATA for every LWP in
/* Call CALLBACK with its second argument set to DATA for every LWP in
   the list.  If CALLBACK returns 1 for a particular LWP, return a
   the list.  If CALLBACK returns 1 for a particular LWP, return a
   pointer to the structure describing that LWP immediately.
   pointer to the structure describing that LWP immediately.
   Otherwise return NULL.  */
   Otherwise return NULL.  */
 
 
struct lwp_info *
struct lwp_info *
iterate_over_lwps (int (*callback) (struct lwp_info *, void *), void *data)
iterate_over_lwps (int (*callback) (struct lwp_info *, void *), void *data)
{
{
  struct lwp_info *lp, *lpnext;
  struct lwp_info *lp, *lpnext;
 
 
  for (lp = lwp_list; lp; lp = lpnext)
  for (lp = lwp_list; lp; lp = lpnext)
    {
    {
      lpnext = lp->next;
      lpnext = lp->next;
      if ((*callback) (lp, data))
      if ((*callback) (lp, data))
        return lp;
        return lp;
    }
    }
 
 
  return NULL;
  return NULL;
}
}
 
 
/* Update our internal state when changing from one fork (checkpoint,
/* Update our internal state when changing from one fork (checkpoint,
   et cetera) to another indicated by NEW_PTID.  We can only switch
   et cetera) to another indicated by NEW_PTID.  We can only switch
   single-threaded applications, so we only create one new LWP, and
   single-threaded applications, so we only create one new LWP, and
   the previous list is discarded.  */
   the previous list is discarded.  */
 
 
void
void
linux_nat_switch_fork (ptid_t new_ptid)
linux_nat_switch_fork (ptid_t new_ptid)
{
{
  struct lwp_info *lp;
  struct lwp_info *lp;
 
 
  init_lwp_list ();
  init_lwp_list ();
  lp = add_lwp (new_ptid);
  lp = add_lwp (new_ptid);
  lp->stopped = 1;
  lp->stopped = 1;
}
}
 
 
/* Record a PTID for later deletion.  */
/* Record a PTID for later deletion.  */
 
 
struct saved_ptids
struct saved_ptids
{
{
  ptid_t ptid;
  ptid_t ptid;
  struct saved_ptids *next;
  struct saved_ptids *next;
};
};
static struct saved_ptids *threads_to_delete;
static struct saved_ptids *threads_to_delete;
 
 
static void
static void
record_dead_thread (ptid_t ptid)
record_dead_thread (ptid_t ptid)
{
{
  struct saved_ptids *p = xmalloc (sizeof (struct saved_ptids));
  struct saved_ptids *p = xmalloc (sizeof (struct saved_ptids));
  p->ptid = ptid;
  p->ptid = ptid;
  p->next = threads_to_delete;
  p->next = threads_to_delete;
  threads_to_delete = p;
  threads_to_delete = p;
}
}
 
 
/* Delete any dead threads which are not the current thread.  */
/* Delete any dead threads which are not the current thread.  */
 
 
static void
static void
prune_lwps (void)
prune_lwps (void)
{
{
  struct saved_ptids **p = &threads_to_delete;
  struct saved_ptids **p = &threads_to_delete;
 
 
  while (*p)
  while (*p)
    if (! ptid_equal ((*p)->ptid, inferior_ptid))
    if (! ptid_equal ((*p)->ptid, inferior_ptid))
      {
      {
        struct saved_ptids *tmp = *p;
        struct saved_ptids *tmp = *p;
        delete_thread (tmp->ptid);
        delete_thread (tmp->ptid);
        *p = tmp->next;
        *p = tmp->next;
        xfree (tmp);
        xfree (tmp);
      }
      }
    else
    else
      p = &(*p)->next;
      p = &(*p)->next;
}
}
 
 
/* Callback for iterate_over_threads that finds a thread corresponding
/* Callback for iterate_over_threads that finds a thread corresponding
   to the given LWP.  */
   to the given LWP.  */
 
 
static int
static int
find_thread_from_lwp (struct thread_info *thr, void *dummy)
find_thread_from_lwp (struct thread_info *thr, void *dummy)
{
{
  ptid_t *ptid_p = dummy;
  ptid_t *ptid_p = dummy;
 
 
  if (GET_LWP (thr->ptid) && GET_LWP (thr->ptid) == GET_LWP (*ptid_p))
  if (GET_LWP (thr->ptid) && GET_LWP (thr->ptid) == GET_LWP (*ptid_p))
    return 1;
    return 1;
  else
  else
    return 0;
    return 0;
}
}
 
 
/* Handle the exit of a single thread LP.  */
/* Handle the exit of a single thread LP.  */
 
 
static void
static void
exit_lwp (struct lwp_info *lp)
exit_lwp (struct lwp_info *lp)
{
{
  if (in_thread_list (lp->ptid))
  if (in_thread_list (lp->ptid))
    {
    {
      /* Core GDB cannot deal with us deleting the current thread.  */
      /* Core GDB cannot deal with us deleting the current thread.  */
      if (!ptid_equal (lp->ptid, inferior_ptid))
      if (!ptid_equal (lp->ptid, inferior_ptid))
        delete_thread (lp->ptid);
        delete_thread (lp->ptid);
      else
      else
        record_dead_thread (lp->ptid);
        record_dead_thread (lp->ptid);
      printf_unfiltered (_("[%s exited]\n"),
      printf_unfiltered (_("[%s exited]\n"),
                         target_pid_to_str (lp->ptid));
                         target_pid_to_str (lp->ptid));
    }
    }
  else
  else
    {
    {
      /* Even if LP->PTID is not in the global GDB thread list, the
      /* Even if LP->PTID is not in the global GDB thread list, the
         LWP may be - with an additional thread ID.  We don't need
         LWP may be - with an additional thread ID.  We don't need
         to print anything in this case; thread_db is in use and
         to print anything in this case; thread_db is in use and
         already took care of that.  But it didn't delete the thread
         already took care of that.  But it didn't delete the thread
         in order to handle zombies correctly.  */
         in order to handle zombies correctly.  */
 
 
      struct thread_info *thr;
      struct thread_info *thr;
 
 
      thr = iterate_over_threads (find_thread_from_lwp, &lp->ptid);
      thr = iterate_over_threads (find_thread_from_lwp, &lp->ptid);
      if (thr)
      if (thr)
        {
        {
          if (!ptid_equal (thr->ptid, inferior_ptid))
          if (!ptid_equal (thr->ptid, inferior_ptid))
            delete_thread (thr->ptid);
            delete_thread (thr->ptid);
          else
          else
            record_dead_thread (thr->ptid);
            record_dead_thread (thr->ptid);
        }
        }
    }
    }
 
 
  delete_lwp (lp->ptid);
  delete_lwp (lp->ptid);
}
}
 
 
/* Attach to the LWP specified by PID.  If VERBOSE is non-zero, print
/* Attach to the LWP specified by PID.  If VERBOSE is non-zero, print
   a message telling the user that a new LWP has been added to the
   a message telling the user that a new LWP has been added to the
   process.  Return 0 if successful or -1 if the new LWP could not
   process.  Return 0 if successful or -1 if the new LWP could not
   be attached.  */
   be attached.  */
 
 
int
int
lin_lwp_attach_lwp (ptid_t ptid)
lin_lwp_attach_lwp (ptid_t ptid)
{
{
  struct lwp_info *lp;
  struct lwp_info *lp;
 
 
  gdb_assert (is_lwp (ptid));
  gdb_assert (is_lwp (ptid));
 
 
  /* Make sure SIGCHLD is blocked.  We don't want SIGCHLD events
  /* Make sure SIGCHLD is blocked.  We don't want SIGCHLD events
     to interrupt either the ptrace() or waitpid() calls below.  */
     to interrupt either the ptrace() or waitpid() calls below.  */
  if (!sigismember (&blocked_mask, SIGCHLD))
  if (!sigismember (&blocked_mask, SIGCHLD))
    {
    {
      sigaddset (&blocked_mask, SIGCHLD);
      sigaddset (&blocked_mask, SIGCHLD);
      sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
      sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
    }
    }
 
 
  lp = find_lwp_pid (ptid);
  lp = find_lwp_pid (ptid);
 
 
  /* We assume that we're already attached to any LWP that has an id
  /* We assume that we're already attached to any LWP that has an id
     equal to the overall process id, and to any LWP that is already
     equal to the overall process id, and to any LWP that is already
     in our list of LWPs.  If we're not seeing exit events from threads
     in our list of LWPs.  If we're not seeing exit events from threads
     and we've had PID wraparound since we last tried to stop all threads,
     and we've had PID wraparound since we last tried to stop all threads,
     this assumption might be wrong; fortunately, this is very unlikely
     this assumption might be wrong; fortunately, this is very unlikely
     to happen.  */
     to happen.  */
  if (GET_LWP (ptid) != GET_PID (ptid) && lp == NULL)
  if (GET_LWP (ptid) != GET_PID (ptid) && lp == NULL)
    {
    {
      pid_t pid;
      pid_t pid;
      int status;
      int status;
      int cloned = 0;
      int cloned = 0;
 
 
      if (ptrace (PTRACE_ATTACH, GET_LWP (ptid), 0, 0) < 0)
      if (ptrace (PTRACE_ATTACH, GET_LWP (ptid), 0, 0) < 0)
        {
        {
          /* If we fail to attach to the thread, issue a warning,
          /* If we fail to attach to the thread, issue a warning,
             but continue.  One way this can happen is if thread
             but continue.  One way this can happen is if thread
             creation is interrupted; as of Linux kernel 2.6.19, a
             creation is interrupted; as of Linux kernel 2.6.19, a
             bug may place threads in the thread list and then fail
             bug may place threads in the thread list and then fail
             to create them.  */
             to create them.  */
          warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
          warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
                   safe_strerror (errno));
                   safe_strerror (errno));
          return -1;
          return -1;
        }
        }
 
 
      if (debug_linux_nat)
      if (debug_linux_nat)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
                            "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
                            target_pid_to_str (ptid));
                            target_pid_to_str (ptid));
 
 
      pid = my_waitpid (GET_LWP (ptid), &status, 0);
      pid = my_waitpid (GET_LWP (ptid), &status, 0);
      if (pid == -1 && errno == ECHILD)
      if (pid == -1 && errno == ECHILD)
        {
        {
          /* Try again with __WCLONE to check cloned processes.  */
          /* Try again with __WCLONE to check cloned processes.  */
          pid = my_waitpid (GET_LWP (ptid), &status, __WCLONE);
          pid = my_waitpid (GET_LWP (ptid), &status, __WCLONE);
          cloned = 1;
          cloned = 1;
        }
        }
 
 
      gdb_assert (pid == GET_LWP (ptid)
      gdb_assert (pid == GET_LWP (ptid)
                  && WIFSTOPPED (status) && WSTOPSIG (status));
                  && WIFSTOPPED (status) && WSTOPSIG (status));
 
 
      if (lp == NULL)
      if (lp == NULL)
        lp = add_lwp (ptid);
        lp = add_lwp (ptid);
      lp->cloned = cloned;
      lp->cloned = cloned;
 
 
      target_post_attach (pid);
      target_post_attach (pid);
 
 
      lp->stopped = 1;
      lp->stopped = 1;
 
 
      if (debug_linux_nat)
      if (debug_linux_nat)
        {
        {
          fprintf_unfiltered (gdb_stdlog,
          fprintf_unfiltered (gdb_stdlog,
                              "LLAL: waitpid %s received %s\n",
                              "LLAL: waitpid %s received %s\n",
                              target_pid_to_str (ptid),
                              target_pid_to_str (ptid),
                              status_to_str (status));
                              status_to_str (status));
        }
        }
    }
    }
  else
  else
    {
    {
      /* We assume that the LWP representing the original process is
      /* We assume that the LWP representing the original process is
         already stopped.  Mark it as stopped in the data structure
         already stopped.  Mark it as stopped in the data structure
         that the GNU/linux ptrace layer uses to keep track of
         that the GNU/linux ptrace layer uses to keep track of
         threads.  Note that this won't have already been done since
         threads.  Note that this won't have already been done since
         the main thread will have, we assume, been stopped by an
         the main thread will have, we assume, been stopped by an
         attach from a different layer.  */
         attach from a different layer.  */
      if (lp == NULL)
      if (lp == NULL)
        lp = add_lwp (ptid);
        lp = add_lwp (ptid);
      lp->stopped = 1;
      lp->stopped = 1;
    }
    }
 
 
  return 0;
  return 0;
}
}
 
 
static void
static void
linux_nat_attach (char *args, int from_tty)
linux_nat_attach (char *args, int from_tty)
{
{
  struct lwp_info *lp;
  struct lwp_info *lp;
  pid_t pid;
  pid_t pid;
  int status;
  int status;
  int cloned = 0;
  int cloned = 0;
 
 
  /* FIXME: We should probably accept a list of process id's, and
  /* FIXME: We should probably accept a list of process id's, and
     attach all of them.  */
     attach all of them.  */
  linux_ops->to_attach (args, from_tty);
  linux_ops->to_attach (args, from_tty);
 
 
  /* Make sure the initial process is stopped.  The user-level threads
  /* Make sure the initial process is stopped.  The user-level threads
     layer might want to poke around in the inferior, and that won't
     layer might want to poke around in the inferior, and that won't
     work if things haven't stabilized yet.  */
     work if things haven't stabilized yet.  */
  pid = my_waitpid (GET_PID (inferior_ptid), &status, 0);
  pid = my_waitpid (GET_PID (inferior_ptid), &status, 0);
  if (pid == -1 && errno == ECHILD)
  if (pid == -1 && errno == ECHILD)
    {
    {
      warning (_("%s is a cloned process"), target_pid_to_str (inferior_ptid));
      warning (_("%s is a cloned process"), target_pid_to_str (inferior_ptid));
 
 
      /* Try again with __WCLONE to check cloned processes.  */
      /* Try again with __WCLONE to check cloned processes.  */
      pid = my_waitpid (GET_PID (inferior_ptid), &status, __WCLONE);
      pid = my_waitpid (GET_PID (inferior_ptid), &status, __WCLONE);
      cloned = 1;
      cloned = 1;
    }
    }
 
 
  gdb_assert (pid == GET_PID (inferior_ptid)
  gdb_assert (pid == GET_PID (inferior_ptid)
              && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP);
              && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP);
 
 
  /* Add the initial process as the first LWP to the list.  */
  /* Add the initial process as the first LWP to the list.  */
  inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
  inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
  lp = add_lwp (inferior_ptid);
  lp = add_lwp (inferior_ptid);
  lp->cloned = cloned;
  lp->cloned = cloned;
 
 
  lp->stopped = 1;
  lp->stopped = 1;
 
 
  /* Fake the SIGSTOP that core GDB expects.  */
  /* Fake the SIGSTOP that core GDB expects.  */
  lp->status = W_STOPCODE (SIGSTOP);
  lp->status = W_STOPCODE (SIGSTOP);
  lp->resumed = 1;
  lp->resumed = 1;
  if (debug_linux_nat)
  if (debug_linux_nat)
    {
    {
      fprintf_unfiltered (gdb_stdlog,
      fprintf_unfiltered (gdb_stdlog,
                          "LLA: waitpid %ld, faking SIGSTOP\n", (long) pid);
                          "LLA: waitpid %ld, faking SIGSTOP\n", (long) pid);
    }
    }
}
}
 
 
static int
static int
detach_callback (struct lwp_info *lp, void *data)
detach_callback (struct lwp_info *lp, void *data)
{
{
  gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
  gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
 
 
  if (debug_linux_nat && lp->status)
  if (debug_linux_nat && lp->status)
    fprintf_unfiltered (gdb_stdlog, "DC:  Pending %s for %s on detach.\n",
    fprintf_unfiltered (gdb_stdlog, "DC:  Pending %s for %s on detach.\n",
                        strsignal (WSTOPSIG (lp->status)),
                        strsignal (WSTOPSIG (lp->status)),
                        target_pid_to_str (lp->ptid));
                        target_pid_to_str (lp->ptid));
 
 
  while (lp->signalled && lp->stopped)
  while (lp->signalled && lp->stopped)
    {
    {
      errno = 0;
      errno = 0;
      if (ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0,
      if (ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0,
                  WSTOPSIG (lp->status)) < 0)
                  WSTOPSIG (lp->status)) < 0)
        error (_("Can't continue %s: %s"), target_pid_to_str (lp->ptid),
        error (_("Can't continue %s: %s"), target_pid_to_str (lp->ptid),
               safe_strerror (errno));
               safe_strerror (errno));
 
 
      if (debug_linux_nat)
      if (debug_linux_nat)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "DC:  PTRACE_CONTINUE (%s, 0, %s) (OK)\n",
                            "DC:  PTRACE_CONTINUE (%s, 0, %s) (OK)\n",
                            target_pid_to_str (lp->ptid),
                            target_pid_to_str (lp->ptid),
                            status_to_str (lp->status));
                            status_to_str (lp->status));
 
 
      lp->stopped = 0;
      lp->stopped = 0;
      lp->signalled = 0;
      lp->signalled = 0;
      lp->status = 0;
      lp->status = 0;
      /* FIXME drow/2003-08-26: There was a call to stop_wait_callback
      /* FIXME drow/2003-08-26: There was a call to stop_wait_callback
         here.  But since lp->signalled was cleared above,
         here.  But since lp->signalled was cleared above,
         stop_wait_callback didn't do anything; the process was left
         stop_wait_callback didn't do anything; the process was left
         running.  Shouldn't we be waiting for it to stop?
         running.  Shouldn't we be waiting for it to stop?
         I've removed the call, since stop_wait_callback now does do
         I've removed the call, since stop_wait_callback now does do
         something when called with lp->signalled == 0.  */
         something when called with lp->signalled == 0.  */
 
 
      gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
      gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
    }
    }
 
 
  /* We don't actually detach from the LWP that has an id equal to the
  /* We don't actually detach from the LWP that has an id equal to the
     overall process id just yet.  */
     overall process id just yet.  */
  if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
  if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
    {
    {
      errno = 0;
      errno = 0;
      if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
      if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
                  WSTOPSIG (lp->status)) < 0)
                  WSTOPSIG (lp->status)) < 0)
        error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
        error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
               safe_strerror (errno));
               safe_strerror (errno));
 
 
      if (debug_linux_nat)
      if (debug_linux_nat)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "PTRACE_DETACH (%s, %s, 0) (OK)\n",
                            "PTRACE_DETACH (%s, %s, 0) (OK)\n",
                            target_pid_to_str (lp->ptid),
                            target_pid_to_str (lp->ptid),
                            strsignal (WSTOPSIG (lp->status)));
                            strsignal (WSTOPSIG (lp->status)));
 
 
      delete_lwp (lp->ptid);
      delete_lwp (lp->ptid);
    }
    }
 
 
  return 0;
  return 0;
}
}
 
 
static void
static void
linux_nat_detach (char *args, int from_tty)
linux_nat_detach (char *args, int from_tty)
{
{
  iterate_over_lwps (detach_callback, NULL);
  iterate_over_lwps (detach_callback, NULL);
 
 
  /* Only the initial process should be left right now.  */
  /* Only the initial process should be left right now.  */
  gdb_assert (num_lwps == 1);
  gdb_assert (num_lwps == 1);
 
 
  trap_ptid = null_ptid;
  trap_ptid = null_ptid;
 
 
  /* Destroy LWP info; it's no longer valid.  */
  /* Destroy LWP info; it's no longer valid.  */
  init_lwp_list ();
  init_lwp_list ();
 
 
  /* Restore the original signal mask.  */
  /* Restore the original signal mask.  */
  sigprocmask (SIG_SETMASK, &normal_mask, NULL);
  sigprocmask (SIG_SETMASK, &normal_mask, NULL);
  sigemptyset (&blocked_mask);
  sigemptyset (&blocked_mask);
 
 
  inferior_ptid = pid_to_ptid (GET_PID (inferior_ptid));
  inferior_ptid = pid_to_ptid (GET_PID (inferior_ptid));
  linux_ops->to_detach (args, from_tty);
  linux_ops->to_detach (args, from_tty);
}
}
 
 
/* Resume LP.  */
/* Resume LP.  */
 
 
static int
static int
resume_callback (struct lwp_info *lp, void *data)
resume_callback (struct lwp_info *lp, void *data)
{
{
  if (lp->stopped && lp->status == 0)
  if (lp->stopped && lp->status == 0)
    {
    {
      linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)),
      linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)),
                            0, TARGET_SIGNAL_0);
                            0, TARGET_SIGNAL_0);
      if (debug_linux_nat)
      if (debug_linux_nat)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "RC:  PTRACE_CONT %s, 0, 0 (resume sibling)\n",
                            "RC:  PTRACE_CONT %s, 0, 0 (resume sibling)\n",
                            target_pid_to_str (lp->ptid));
                            target_pid_to_str (lp->ptid));
      lp->stopped = 0;
      lp->stopped = 0;
      lp->step = 0;
      lp->step = 0;
      memset (&lp->siginfo, 0, sizeof (lp->siginfo));
      memset (&lp->siginfo, 0, sizeof (lp->siginfo));
    }
    }
 
 
  return 0;
  return 0;
}
}
 
 
static int
static int
resume_clear_callback (struct lwp_info *lp, void *data)
resume_clear_callback (struct lwp_info *lp, void *data)
{
{
  lp->resumed = 0;
  lp->resumed = 0;
  return 0;
  return 0;
}
}
 
 
static int
static int
resume_set_callback (struct lwp_info *lp, void *data)
resume_set_callback (struct lwp_info *lp, void *data)
{
{
  lp->resumed = 1;
  lp->resumed = 1;
  return 0;
  return 0;
}
}
 
 
static void
static void
linux_nat_resume (ptid_t ptid, int step, enum target_signal signo)
linux_nat_resume (ptid_t ptid, int step, enum target_signal signo)
{
{
  struct lwp_info *lp;
  struct lwp_info *lp;
  int resume_all;
  int resume_all;
 
 
  if (debug_linux_nat)
  if (debug_linux_nat)
    fprintf_unfiltered (gdb_stdlog,
    fprintf_unfiltered (gdb_stdlog,
                        "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
                        "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
                        step ? "step" : "resume",
                        step ? "step" : "resume",
                        target_pid_to_str (ptid),
                        target_pid_to_str (ptid),
                        signo ? strsignal (signo) : "0",
                        signo ? strsignal (signo) : "0",
                        target_pid_to_str (inferior_ptid));
                        target_pid_to_str (inferior_ptid));
 
 
  prune_lwps ();
  prune_lwps ();
 
 
  /* A specific PTID means `step only this process id'.  */
  /* A specific PTID means `step only this process id'.  */
  resume_all = (PIDGET (ptid) == -1);
  resume_all = (PIDGET (ptid) == -1);
 
 
  if (resume_all)
  if (resume_all)
    iterate_over_lwps (resume_set_callback, NULL);
    iterate_over_lwps (resume_set_callback, NULL);
  else
  else
    iterate_over_lwps (resume_clear_callback, NULL);
    iterate_over_lwps (resume_clear_callback, NULL);
 
 
  /* If PID is -1, it's the current inferior that should be
  /* If PID is -1, it's the current inferior that should be
     handled specially.  */
     handled specially.  */
  if (PIDGET (ptid) == -1)
  if (PIDGET (ptid) == -1)
    ptid = inferior_ptid;
    ptid = inferior_ptid;
 
 
  lp = find_lwp_pid (ptid);
  lp = find_lwp_pid (ptid);
  gdb_assert (lp != NULL);
  gdb_assert (lp != NULL);
 
 
  ptid = pid_to_ptid (GET_LWP (lp->ptid));
  ptid = pid_to_ptid (GET_LWP (lp->ptid));
 
 
  /* Remember if we're stepping.  */
  /* Remember if we're stepping.  */
  lp->step = step;
  lp->step = step;
 
 
  /* Mark this LWP as resumed.  */
  /* Mark this LWP as resumed.  */
  lp->resumed = 1;
  lp->resumed = 1;
 
 
  /* If we have a pending wait status for this thread, there is no
  /* If we have a pending wait status for this thread, there is no
     point in resuming the process.  But first make sure that
     point in resuming the process.  But first make sure that
     linux_nat_wait won't preemptively handle the event - we
     linux_nat_wait won't preemptively handle the event - we
     should never take this short-circuit if we are going to
     should never take this short-circuit if we are going to
     leave LP running, since we have skipped resuming all the
     leave LP running, since we have skipped resuming all the
     other threads.  This bit of code needs to be synchronized
     other threads.  This bit of code needs to be synchronized
     with linux_nat_wait.  */
     with linux_nat_wait.  */
 
 
  if (lp->status && WIFSTOPPED (lp->status))
  if (lp->status && WIFSTOPPED (lp->status))
    {
    {
      int saved_signo = target_signal_from_host (WSTOPSIG (lp->status));
      int saved_signo = target_signal_from_host (WSTOPSIG (lp->status));
 
 
      if (signal_stop_state (saved_signo) == 0
      if (signal_stop_state (saved_signo) == 0
          && signal_print_state (saved_signo) == 0
          && signal_print_state (saved_signo) == 0
          && signal_pass_state (saved_signo) == 1)
          && signal_pass_state (saved_signo) == 1)
        {
        {
          if (debug_linux_nat)
          if (debug_linux_nat)
            fprintf_unfiltered (gdb_stdlog,
            fprintf_unfiltered (gdb_stdlog,
                                "LLR: Not short circuiting for ignored "
                                "LLR: Not short circuiting for ignored "
                                "status 0x%x\n", lp->status);
                                "status 0x%x\n", lp->status);
 
 
          /* FIXME: What should we do if we are supposed to continue
          /* FIXME: What should we do if we are supposed to continue
             this thread with a signal?  */
             this thread with a signal?  */
          gdb_assert (signo == TARGET_SIGNAL_0);
          gdb_assert (signo == TARGET_SIGNAL_0);
          signo = saved_signo;
          signo = saved_signo;
          lp->status = 0;
          lp->status = 0;
        }
        }
    }
    }
 
 
  if (lp->status)
  if (lp->status)
    {
    {
      /* FIXME: What should we do if we are supposed to continue
      /* FIXME: What should we do if we are supposed to continue
         this thread with a signal?  */
         this thread with a signal?  */
      gdb_assert (signo == TARGET_SIGNAL_0);
      gdb_assert (signo == TARGET_SIGNAL_0);
 
 
      if (debug_linux_nat)
      if (debug_linux_nat)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "LLR: Short circuiting for status 0x%x\n",
                            "LLR: Short circuiting for status 0x%x\n",
                            lp->status);
                            lp->status);
 
 
      return;
      return;
    }
    }
 
 
  /* Mark LWP as not stopped to prevent it from being continued by
  /* Mark LWP as not stopped to prevent it from being continued by
     resume_callback.  */
     resume_callback.  */
  lp->stopped = 0;
  lp->stopped = 0;
 
 
  if (resume_all)
  if (resume_all)
    iterate_over_lwps (resume_callback, NULL);
    iterate_over_lwps (resume_callback, NULL);
 
 
  linux_ops->to_resume (ptid, step, signo);
  linux_ops->to_resume (ptid, step, signo);
  memset (&lp->siginfo, 0, sizeof (lp->siginfo));
  memset (&lp->siginfo, 0, sizeof (lp->siginfo));
 
 
  if (debug_linux_nat)
  if (debug_linux_nat)
    fprintf_unfiltered (gdb_stdlog,
    fprintf_unfiltered (gdb_stdlog,
                        "LLR: %s %s, %s (resume event thread)\n",
                        "LLR: %s %s, %s (resume event thread)\n",
                        step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
                        step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
                        target_pid_to_str (ptid),
                        target_pid_to_str (ptid),
                        signo ? strsignal (signo) : "0");
                        signo ? strsignal (signo) : "0");
}
}
 
 
/* Issue kill to specified lwp.  */
/* Issue kill to specified lwp.  */
 
 
static int tkill_failed;
static int tkill_failed;
 
 
static int
static int
kill_lwp (int lwpid, int signo)
kill_lwp (int lwpid, int signo)
{
{
  errno = 0;
  errno = 0;
 
 
/* Use tkill, if possible, in case we are using nptl threads.  If tkill
/* Use tkill, if possible, in case we are using nptl threads.  If tkill
   fails, then we are not using nptl threads and we should be using kill.  */
   fails, then we are not using nptl threads and we should be using kill.  */
 
 
#ifdef HAVE_TKILL_SYSCALL
#ifdef HAVE_TKILL_SYSCALL
  if (!tkill_failed)
  if (!tkill_failed)
    {
    {
      int ret = syscall (__NR_tkill, lwpid, signo);
      int ret = syscall (__NR_tkill, lwpid, signo);
      if (errno != ENOSYS)
      if (errno != ENOSYS)
        return ret;
        return ret;
      errno = 0;
      errno = 0;
      tkill_failed = 1;
      tkill_failed = 1;
    }
    }
#endif
#endif
 
 
  return kill (lwpid, signo);
  return kill (lwpid, signo);
}
}
 
 
/* Handle a GNU/Linux extended wait response.  If we see a clone
/* Handle a GNU/Linux extended wait response.  If we see a clone
   event, we need to add the new LWP to our list (and not report the
   event, we need to add the new LWP to our list (and not report the
   trap to higher layers).  This function returns non-zero if the
   trap to higher layers).  This function returns non-zero if the
   event should be ignored and we should wait again.  If STOPPING is
   event should be ignored and we should wait again.  If STOPPING is
   true, the new LWP remains stopped, otherwise it is continued.  */
   true, the new LWP remains stopped, otherwise it is continued.  */
 
 
static int
static int
linux_handle_extended_wait (struct lwp_info *lp, int status,
linux_handle_extended_wait (struct lwp_info *lp, int status,
                            int stopping)
                            int stopping)
{
{
  int pid = GET_LWP (lp->ptid);
  int pid = GET_LWP (lp->ptid);
  struct target_waitstatus *ourstatus = &lp->waitstatus;
  struct target_waitstatus *ourstatus = &lp->waitstatus;
  struct lwp_info *new_lp = NULL;
  struct lwp_info *new_lp = NULL;
  int event = status >> 16;
  int event = status >> 16;
 
 
  if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
  if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
      || event == PTRACE_EVENT_CLONE)
      || event == PTRACE_EVENT_CLONE)
    {
    {
      unsigned long new_pid;
      unsigned long new_pid;
      int ret;
      int ret;
 
 
      ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
      ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
 
 
      /* If we haven't already seen the new PID stop, wait for it now.  */
      /* If we haven't already seen the new PID stop, wait for it now.  */
      if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
      if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
        {
        {
          /* The new child has a pending SIGSTOP.  We can't affect it until it
          /* The new child has a pending SIGSTOP.  We can't affect it until it
             hits the SIGSTOP, but we're already attached.  */
             hits the SIGSTOP, but we're already attached.  */
          ret = my_waitpid (new_pid, &status,
          ret = my_waitpid (new_pid, &status,
                            (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
                            (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
          if (ret == -1)
          if (ret == -1)
            perror_with_name (_("waiting for new child"));
            perror_with_name (_("waiting for new child"));
          else if (ret != new_pid)
          else if (ret != new_pid)
            internal_error (__FILE__, __LINE__,
            internal_error (__FILE__, __LINE__,
                            _("wait returned unexpected PID %d"), ret);
                            _("wait returned unexpected PID %d"), ret);
          else if (!WIFSTOPPED (status))
          else if (!WIFSTOPPED (status))
            internal_error (__FILE__, __LINE__,
            internal_error (__FILE__, __LINE__,
                            _("wait returned unexpected status 0x%x"), status);
                            _("wait returned unexpected status 0x%x"), status);
        }
        }
 
 
      ourstatus->value.related_pid = new_pid;
      ourstatus->value.related_pid = new_pid;
 
 
      if (event == PTRACE_EVENT_FORK)
      if (event == PTRACE_EVENT_FORK)
        ourstatus->kind = TARGET_WAITKIND_FORKED;
        ourstatus->kind = TARGET_WAITKIND_FORKED;
      else if (event == PTRACE_EVENT_VFORK)
      else if (event == PTRACE_EVENT_VFORK)
        ourstatus->kind = TARGET_WAITKIND_VFORKED;
        ourstatus->kind = TARGET_WAITKIND_VFORKED;
      else
      else
        {
        {
          ourstatus->kind = TARGET_WAITKIND_IGNORE;
          ourstatus->kind = TARGET_WAITKIND_IGNORE;
          new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (inferior_ptid)));
          new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (inferior_ptid)));
          new_lp->cloned = 1;
          new_lp->cloned = 1;
 
 
          if (WSTOPSIG (status) != SIGSTOP)
          if (WSTOPSIG (status) != SIGSTOP)
            {
            {
              /* This can happen if someone starts sending signals to
              /* This can happen if someone starts sending signals to
                 the new thread before it gets a chance to run, which
                 the new thread before it gets a chance to run, which
                 have a lower number than SIGSTOP (e.g. SIGUSR1).
                 have a lower number than SIGSTOP (e.g. SIGUSR1).
                 This is an unlikely case, and harder to handle for
                 This is an unlikely case, and harder to handle for
                 fork / vfork than for clone, so we do not try - but
                 fork / vfork than for clone, so we do not try - but
                 we handle it for clone events here.  We'll send
                 we handle it for clone events here.  We'll send
                 the other signal on to the thread below.  */
                 the other signal on to the thread below.  */
 
 
              new_lp->signalled = 1;
              new_lp->signalled = 1;
            }
            }
          else
          else
            status = 0;
            status = 0;
 
 
          if (stopping)
          if (stopping)
            new_lp->stopped = 1;
            new_lp->stopped = 1;
          else
          else
            {
            {
              new_lp->resumed = 1;
              new_lp->resumed = 1;
              ptrace (PTRACE_CONT, lp->waitstatus.value.related_pid, 0,
              ptrace (PTRACE_CONT, lp->waitstatus.value.related_pid, 0,
                      status ? WSTOPSIG (status) : 0);
                      status ? WSTOPSIG (status) : 0);
            }
            }
 
 
          if (debug_linux_nat)
          if (debug_linux_nat)
            fprintf_unfiltered (gdb_stdlog,
            fprintf_unfiltered (gdb_stdlog,
                                "LHEW: Got clone event from LWP %ld, resuming\n",
                                "LHEW: Got clone event from LWP %ld, resuming\n",
                                GET_LWP (lp->ptid));
                                GET_LWP (lp->ptid));
          ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
          ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
 
 
          return 1;
          return 1;
        }
        }
 
 
      return 0;
      return 0;
    }
    }
 
 
  if (event == PTRACE_EVENT_EXEC)
  if (event == PTRACE_EVENT_EXEC)
    {
    {
      ourstatus->kind = TARGET_WAITKIND_EXECD;
      ourstatus->kind = TARGET_WAITKIND_EXECD;
      ourstatus->value.execd_pathname
      ourstatus->value.execd_pathname
        = xstrdup (linux_child_pid_to_exec_file (pid));
        = xstrdup (linux_child_pid_to_exec_file (pid));
 
 
      if (linux_parent_pid)
      if (linux_parent_pid)
        {
        {
          detach_breakpoints (linux_parent_pid);
          detach_breakpoints (linux_parent_pid);
          ptrace (PTRACE_DETACH, linux_parent_pid, 0, 0);
          ptrace (PTRACE_DETACH, linux_parent_pid, 0, 0);
 
 
          linux_parent_pid = 0;
          linux_parent_pid = 0;
        }
        }
 
 
      return 0;
      return 0;
    }
    }
 
 
  internal_error (__FILE__, __LINE__,
  internal_error (__FILE__, __LINE__,
                  _("unknown ptrace event %d"), event);
                  _("unknown ptrace event %d"), event);
}
}
 
 
/* Wait for LP to stop.  Returns the wait status, or 0 if the LWP has
/* Wait for LP to stop.  Returns the wait status, or 0 if the LWP has
   exited.  */
   exited.  */
 
 
static int
static int
wait_lwp (struct lwp_info *lp)
wait_lwp (struct lwp_info *lp)
{
{
  pid_t pid;
  pid_t pid;
  int status;
  int status;
  int thread_dead = 0;
  int thread_dead = 0;
 
 
  gdb_assert (!lp->stopped);
  gdb_assert (!lp->stopped);
  gdb_assert (lp->status == 0);
  gdb_assert (lp->status == 0);
 
 
  pid = my_waitpid (GET_LWP (lp->ptid), &status, 0);
  pid = my_waitpid (GET_LWP (lp->ptid), &status, 0);
  if (pid == -1 && errno == ECHILD)
  if (pid == -1 && errno == ECHILD)
    {
    {
      pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE);
      pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE);
      if (pid == -1 && errno == ECHILD)
      if (pid == -1 && errno == ECHILD)
        {
        {
          /* The thread has previously exited.  We need to delete it
          /* The thread has previously exited.  We need to delete it
             now because, for some vendor 2.4 kernels with NPTL
             now because, for some vendor 2.4 kernels with NPTL
             support backported, there won't be an exit event unless
             support backported, there won't be an exit event unless
             it is the main thread.  2.6 kernels will report an exit
             it is the main thread.  2.6 kernels will report an exit
             event for each thread that exits, as expected.  */
             event for each thread that exits, as expected.  */
          thread_dead = 1;
          thread_dead = 1;
          if (debug_linux_nat)
          if (debug_linux_nat)
            fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
            fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
                                target_pid_to_str (lp->ptid));
                                target_pid_to_str (lp->ptid));
        }
        }
    }
    }
 
 
  if (!thread_dead)
  if (!thread_dead)
    {
    {
      gdb_assert (pid == GET_LWP (lp->ptid));
      gdb_assert (pid == GET_LWP (lp->ptid));
 
 
      if (debug_linux_nat)
      if (debug_linux_nat)
        {
        {
          fprintf_unfiltered (gdb_stdlog,
          fprintf_unfiltered (gdb_stdlog,
                              "WL: waitpid %s received %s\n",
                              "WL: waitpid %s received %s\n",
                              target_pid_to_str (lp->ptid),
                              target_pid_to_str (lp->ptid),
                              status_to_str (status));
                              status_to_str (status));
        }
        }
    }
    }
 
 
  /* Check if the thread has exited.  */
  /* Check if the thread has exited.  */
  if (WIFEXITED (status) || WIFSIGNALED (status))
  if (WIFEXITED (status) || WIFSIGNALED (status))
    {
    {
      thread_dead = 1;
      thread_dead = 1;
      if (debug_linux_nat)
      if (debug_linux_nat)
        fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
        fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
                            target_pid_to_str (lp->ptid));
                            target_pid_to_str (lp->ptid));
    }
    }
 
 
  if (thread_dead)
  if (thread_dead)
    {
    {
      exit_lwp (lp);
      exit_lwp (lp);
      return 0;
      return 0;
    }
    }
 
 
  gdb_assert (WIFSTOPPED (status));
  gdb_assert (WIFSTOPPED (status));
 
 
  /* Handle GNU/Linux's extended waitstatus for trace events.  */
  /* Handle GNU/Linux's extended waitstatus for trace events.  */
  if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
  if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
    {
    {
      if (debug_linux_nat)
      if (debug_linux_nat)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "WL: Handling extended status 0x%06x\n",
                            "WL: Handling extended status 0x%06x\n",
                            status);
                            status);
      if (linux_handle_extended_wait (lp, status, 1))
      if (linux_handle_extended_wait (lp, status, 1))
        return wait_lwp (lp);
        return wait_lwp (lp);
    }
    }
 
 
  return status;
  return status;
}
}
 
 
/* Save the most recent siginfo for LP.  This is currently only called
/* Save the most recent siginfo for LP.  This is currently only called
   for SIGTRAP; some ports use the si_addr field for
   for SIGTRAP; some ports use the si_addr field for
   target_stopped_data_address.  In the future, it may also be used to
   target_stopped_data_address.  In the future, it may also be used to
   restore the siginfo of requeued signals.  */
   restore the siginfo of requeued signals.  */
 
 
static void
static void
save_siginfo (struct lwp_info *lp)
save_siginfo (struct lwp_info *lp)
{
{
  errno = 0;
  errno = 0;
  ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
  ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
          (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
          (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
 
 
  if (errno != 0)
  if (errno != 0)
    memset (&lp->siginfo, 0, sizeof (lp->siginfo));
    memset (&lp->siginfo, 0, sizeof (lp->siginfo));
}
}
 
 
/* Send a SIGSTOP to LP.  */
/* Send a SIGSTOP to LP.  */
 
 
static int
static int
stop_callback (struct lwp_info *lp, void *data)
stop_callback (struct lwp_info *lp, void *data)
{
{
  if (!lp->stopped && !lp->signalled)
  if (!lp->stopped && !lp->signalled)
    {
    {
      int ret;
      int ret;
 
 
      if (debug_linux_nat)
      if (debug_linux_nat)
        {
        {
          fprintf_unfiltered (gdb_stdlog,
          fprintf_unfiltered (gdb_stdlog,
                              "SC:  kill %s **<SIGSTOP>**\n",
                              "SC:  kill %s **<SIGSTOP>**\n",
                              target_pid_to_str (lp->ptid));
                              target_pid_to_str (lp->ptid));
        }
        }
      errno = 0;
      errno = 0;
      ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
      ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
      if (debug_linux_nat)
      if (debug_linux_nat)
        {
        {
          fprintf_unfiltered (gdb_stdlog,
          fprintf_unfiltered (gdb_stdlog,
                              "SC:  lwp kill %d %s\n",
                              "SC:  lwp kill %d %s\n",
                              ret,
                              ret,
                              errno ? safe_strerror (errno) : "ERRNO-OK");
                              errno ? safe_strerror (errno) : "ERRNO-OK");
        }
        }
 
 
      lp->signalled = 1;
      lp->signalled = 1;
      gdb_assert (lp->status == 0);
      gdb_assert (lp->status == 0);
    }
    }
 
 
  return 0;
  return 0;
}
}
 
 
/* Wait until LP is stopped.  If DATA is non-null it is interpreted as
/* Wait until LP is stopped.  If DATA is non-null it is interpreted as
   a pointer to a set of signals to be flushed immediately.  */
   a pointer to a set of signals to be flushed immediately.  */
 
 
static int
static int
stop_wait_callback (struct lwp_info *lp, void *data)
stop_wait_callback (struct lwp_info *lp, void *data)
{
{
  sigset_t *flush_mask = data;
  sigset_t *flush_mask = data;
 
 
  if (!lp->stopped)
  if (!lp->stopped)
    {
    {
      int status;
      int status;
 
 
      status = wait_lwp (lp);
      status = wait_lwp (lp);
      if (status == 0)
      if (status == 0)
        return 0;
        return 0;
 
 
      /* Ignore any signals in FLUSH_MASK.  */
      /* Ignore any signals in FLUSH_MASK.  */
      if (flush_mask && sigismember (flush_mask, WSTOPSIG (status)))
      if (flush_mask && sigismember (flush_mask, WSTOPSIG (status)))
        {
        {
          if (!lp->signalled)
          if (!lp->signalled)
            {
            {
              lp->stopped = 1;
              lp->stopped = 1;
              return 0;
              return 0;
            }
            }
 
 
          errno = 0;
          errno = 0;
          ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
          ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
          if (debug_linux_nat)
          if (debug_linux_nat)
            fprintf_unfiltered (gdb_stdlog,
            fprintf_unfiltered (gdb_stdlog,
                                "PTRACE_CONT %s, 0, 0 (%s)\n",
                                "PTRACE_CONT %s, 0, 0 (%s)\n",
                                target_pid_to_str (lp->ptid),
                                target_pid_to_str (lp->ptid),
                                errno ? safe_strerror (errno) : "OK");
                                errno ? safe_strerror (errno) : "OK");
 
 
          return stop_wait_callback (lp, flush_mask);
          return stop_wait_callback (lp, flush_mask);
        }
        }
 
 
      if (WSTOPSIG (status) != SIGSTOP)
      if (WSTOPSIG (status) != SIGSTOP)
        {
        {
          if (WSTOPSIG (status) == SIGTRAP)
          if (WSTOPSIG (status) == SIGTRAP)
            {
            {
              /* If a LWP other than the LWP that we're reporting an
              /* If a LWP other than the LWP that we're reporting an
                 event for has hit a GDB breakpoint (as opposed to
                 event for has hit a GDB breakpoint (as opposed to
                 some random trap signal), then just arrange for it to
                 some random trap signal), then just arrange for it to
                 hit it again later.  We don't keep the SIGTRAP status
                 hit it again later.  We don't keep the SIGTRAP status
                 and don't forward the SIGTRAP signal to the LWP.  We
                 and don't forward the SIGTRAP signal to the LWP.  We
                 will handle the current event, eventually we will
                 will handle the current event, eventually we will
                 resume all LWPs, and this one will get its breakpoint
                 resume all LWPs, and this one will get its breakpoint
                 trap again.
                 trap again.
 
 
                 If we do not do this, then we run the risk that the
                 If we do not do this, then we run the risk that the
                 user will delete or disable the breakpoint, but the
                 user will delete or disable the breakpoint, but the
                 thread will have already tripped on it.  */
                 thread will have already tripped on it.  */
 
 
              /* Save the trap's siginfo in case we need it later.  */
              /* Save the trap's siginfo in case we need it later.  */
              save_siginfo (lp);
              save_siginfo (lp);
 
 
              /* Now resume this LWP and get the SIGSTOP event. */
              /* Now resume this LWP and get the SIGSTOP event. */
              errno = 0;
              errno = 0;
              ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
              ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
              if (debug_linux_nat)
              if (debug_linux_nat)
                {
                {
                  fprintf_unfiltered (gdb_stdlog,
                  fprintf_unfiltered (gdb_stdlog,
                                      "PTRACE_CONT %s, 0, 0 (%s)\n",
                                      "PTRACE_CONT %s, 0, 0 (%s)\n",
                                      target_pid_to_str (lp->ptid),
                                      target_pid_to_str (lp->ptid),
                                      errno ? safe_strerror (errno) : "OK");
                                      errno ? safe_strerror (errno) : "OK");
 
 
                  fprintf_unfiltered (gdb_stdlog,
                  fprintf_unfiltered (gdb_stdlog,
                                      "SWC: Candidate SIGTRAP event in %s\n",
                                      "SWC: Candidate SIGTRAP event in %s\n",
                                      target_pid_to_str (lp->ptid));
                                      target_pid_to_str (lp->ptid));
                }
                }
              /* Hold the SIGTRAP for handling by linux_nat_wait. */
              /* Hold the SIGTRAP for handling by linux_nat_wait. */
              stop_wait_callback (lp, data);
              stop_wait_callback (lp, data);
              /* If there's another event, throw it back into the queue. */
              /* If there's another event, throw it back into the queue. */
              if (lp->status)
              if (lp->status)
                {
                {
                  if (debug_linux_nat)
                  if (debug_linux_nat)
                    {
                    {
                      fprintf_unfiltered (gdb_stdlog,
                      fprintf_unfiltered (gdb_stdlog,
                                          "SWC: kill %s, %s\n",
                                          "SWC: kill %s, %s\n",
                                          target_pid_to_str (lp->ptid),
                                          target_pid_to_str (lp->ptid),
                                          status_to_str ((int) status));
                                          status_to_str ((int) status));
                    }
                    }
                  kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
                  kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
                }
                }
              /* Save the sigtrap event. */
              /* Save the sigtrap event. */
              lp->status = status;
              lp->status = status;
              return 0;
              return 0;
            }
            }
          else
          else
            {
            {
              /* The thread was stopped with a signal other than
              /* The thread was stopped with a signal other than
                 SIGSTOP, and didn't accidentally trip a breakpoint. */
                 SIGSTOP, and didn't accidentally trip a breakpoint. */
 
 
              if (debug_linux_nat)
              if (debug_linux_nat)
                {
                {
                  fprintf_unfiltered (gdb_stdlog,
                  fprintf_unfiltered (gdb_stdlog,
                                      "SWC: Pending event %s in %s\n",
                                      "SWC: Pending event %s in %s\n",
                                      status_to_str ((int) status),
                                      status_to_str ((int) status),
                                      target_pid_to_str (lp->ptid));
                                      target_pid_to_str (lp->ptid));
                }
                }
              /* Now resume this LWP and get the SIGSTOP event. */
              /* Now resume this LWP and get the SIGSTOP event. */
              errno = 0;
              errno = 0;
              ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
              ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
              if (debug_linux_nat)
              if (debug_linux_nat)
                fprintf_unfiltered (gdb_stdlog,
                fprintf_unfiltered (gdb_stdlog,
                                    "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
                                    "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
                                    target_pid_to_str (lp->ptid),
                                    target_pid_to_str (lp->ptid),
                                    errno ? safe_strerror (errno) : "OK");
                                    errno ? safe_strerror (errno) : "OK");
 
 
              /* Hold this event/waitstatus while we check to see if
              /* Hold this event/waitstatus while we check to see if
                 there are any more (we still want to get that SIGSTOP). */
                 there are any more (we still want to get that SIGSTOP). */
              stop_wait_callback (lp, data);
              stop_wait_callback (lp, data);
              /* If the lp->status field is still empty, use it to hold
              /* If the lp->status field is still empty, use it to hold
                 this event.  If not, then this event must be returned
                 this event.  If not, then this event must be returned
                 to the event queue of the LWP.  */
                 to the event queue of the LWP.  */
              if (lp->status == 0)
              if (lp->status == 0)
                lp->status = status;
                lp->status = status;
              else
              else
                {
                {
                  if (debug_linux_nat)
                  if (debug_linux_nat)
                    {
                    {
                      fprintf_unfiltered (gdb_stdlog,
                      fprintf_unfiltered (gdb_stdlog,
                                          "SWC: kill %s, %s\n",
                                          "SWC: kill %s, %s\n",
                                          target_pid_to_str (lp->ptid),
                                          target_pid_to_str (lp->ptid),
                                          status_to_str ((int) status));
                                          status_to_str ((int) status));
                    }
                    }
                  kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
                  kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
                }
                }
              return 0;
              return 0;
            }
            }
        }
        }
      else
      else
        {
        {
          /* We caught the SIGSTOP that we intended to catch, so
          /* We caught the SIGSTOP that we intended to catch, so
             there's no SIGSTOP pending.  */
             there's no SIGSTOP pending.  */
          lp->stopped = 1;
          lp->stopped = 1;
          lp->signalled = 0;
          lp->signalled = 0;
        }
        }
    }
    }
 
 
  return 0;
  return 0;
}
}
 
 
/* Check whether PID has any pending signals in FLUSH_MASK.  If so set
/* Check whether PID has any pending signals in FLUSH_MASK.  If so set
   the appropriate bits in PENDING, and return 1 - otherwise return 0.  */
   the appropriate bits in PENDING, and return 1 - otherwise return 0.  */
 
 
static int
static int
linux_nat_has_pending (int pid, sigset_t *pending, sigset_t *flush_mask)
linux_nat_has_pending (int pid, sigset_t *pending, sigset_t *flush_mask)
{
{
  sigset_t blocked, ignored;
  sigset_t blocked, ignored;
  int i;
  int i;
 
 
  linux_proc_pending_signals (pid, pending, &blocked, &ignored);
  linux_proc_pending_signals (pid, pending, &blocked, &ignored);
 
 
  if (!flush_mask)
  if (!flush_mask)
    return 0;
    return 0;
 
 
  for (i = 1; i < NSIG; i++)
  for (i = 1; i < NSIG; i++)
    if (sigismember (pending, i))
    if (sigismember (pending, i))
      if (!sigismember (flush_mask, i)
      if (!sigismember (flush_mask, i)
          || sigismember (&blocked, i)
          || sigismember (&blocked, i)
          || sigismember (&ignored, i))
          || sigismember (&ignored, i))
        sigdelset (pending, i);
        sigdelset (pending, i);
 
 
  if (sigisemptyset (pending))
  if (sigisemptyset (pending))
    return 0;
    return 0;
 
 
  return 1;
  return 1;
}
}
 
 
/* DATA is interpreted as a mask of signals to flush.  If LP has
/* DATA is interpreted as a mask of signals to flush.  If LP has
   signals pending, and they are all in the flush mask, then arrange
   signals pending, and they are all in the flush mask, then arrange
   to flush them.  LP should be stopped, as should all other threads
   to flush them.  LP should be stopped, as should all other threads
   it might share a signal queue with.  */
   it might share a signal queue with.  */
 
 
static int
static int
flush_callback (struct lwp_info *lp, void *data)
flush_callback (struct lwp_info *lp, void *data)
{
{
  sigset_t *flush_mask = data;
  sigset_t *flush_mask = data;
  sigset_t pending, intersection, blocked, ignored;
  sigset_t pending, intersection, blocked, ignored;
  int pid, status;
  int pid, status;
 
 
  /* Normally, when an LWP exits, it is removed from the LWP list.  The
  /* Normally, when an LWP exits, it is removed from the LWP list.  The
     last LWP isn't removed till later, however.  So if there is only
     last LWP isn't removed till later, however.  So if there is only
     one LWP on the list, make sure it's alive.  */
     one LWP on the list, make sure it's alive.  */
  if (lwp_list == lp && lp->next == NULL)
  if (lwp_list == lp && lp->next == NULL)
    if (!linux_nat_thread_alive (lp->ptid))
    if (!linux_nat_thread_alive (lp->ptid))
      return 0;
      return 0;
 
 
  /* Just because the LWP is stopped doesn't mean that new signals
  /* Just because the LWP is stopped doesn't mean that new signals
     can't arrive from outside, so this function must be careful of
     can't arrive from outside, so this function must be careful of
     race conditions.  However, because all threads are stopped, we
     race conditions.  However, because all threads are stopped, we
     can assume that the pending mask will not shrink unless we resume
     can assume that the pending mask will not shrink unless we resume
     the LWP, and that it will then get another signal.  We can't
     the LWP, and that it will then get another signal.  We can't
     control which one, however.  */
     control which one, however.  */
 
 
  if (lp->status)
  if (lp->status)
    {
    {
      if (debug_linux_nat)
      if (debug_linux_nat)
        printf_unfiltered (_("FC: LP has pending status %06x\n"), lp->status);
        printf_unfiltered (_("FC: LP has pending status %06x\n"), lp->status);
      if (WIFSTOPPED (lp->status) && sigismember (flush_mask, WSTOPSIG (lp->status)))
      if (WIFSTOPPED (lp->status) && sigismember (flush_mask, WSTOPSIG (lp->status)))
        lp->status = 0;
        lp->status = 0;
    }
    }
 
 
  /* While there is a pending signal we would like to flush, continue
  /* While there is a pending signal we would like to flush, continue
     the inferior and collect another signal.  But if there's already
     the inferior and collect another signal.  But if there's already
     a saved status that we don't want to flush, we can't resume the
     a saved status that we don't want to flush, we can't resume the
     inferior - if it stopped for some other reason we wouldn't have
     inferior - if it stopped for some other reason we wouldn't have
     anywhere to save the new status.  In that case, we must leave the
     anywhere to save the new status.  In that case, we must leave the
     signal unflushed (and possibly generate an extra SIGINT stop).
     signal unflushed (and possibly generate an extra SIGINT stop).
     That's much less bad than losing a signal.  */
     That's much less bad than losing a signal.  */
  while (lp->status == 0
  while (lp->status == 0
         && linux_nat_has_pending (GET_LWP (lp->ptid), &pending, flush_mask))
         && linux_nat_has_pending (GET_LWP (lp->ptid), &pending, flush_mask))
    {
    {
      int ret;
      int ret;
 
 
      errno = 0;
      errno = 0;
      ret = ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
      ret = ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
      if (debug_linux_nat)
      if (debug_linux_nat)
        fprintf_unfiltered (gdb_stderr,
        fprintf_unfiltered (gdb_stderr,
                            "FC: Sent PTRACE_CONT, ret %d %d\n", ret, errno);
                            "FC: Sent PTRACE_CONT, ret %d %d\n", ret, errno);
 
 
      lp->stopped = 0;
      lp->stopped = 0;
      stop_wait_callback (lp, flush_mask);
      stop_wait_callback (lp, flush_mask);
      if (debug_linux_nat)
      if (debug_linux_nat)
        fprintf_unfiltered (gdb_stderr,
        fprintf_unfiltered (gdb_stderr,
                            "FC: Wait finished; saved status is %d\n",
                            "FC: Wait finished; saved status is %d\n",
                            lp->status);
                            lp->status);
    }
    }
 
 
  return 0;
  return 0;
}
}
 
 
/* Return non-zero if LP has a wait status pending.  */
/* Return non-zero if LP has a wait status pending.  */
 
 
static int
static int
status_callback (struct lwp_info *lp, void *data)
status_callback (struct lwp_info *lp, void *data)
{
{
  /* Only report a pending wait status if we pretend that this has
  /* Only report a pending wait status if we pretend that this has
     indeed been resumed.  */
     indeed been resumed.  */
  return (lp->status != 0 && lp->resumed);
  return (lp->status != 0 && lp->resumed);
}
}
 
 
/* Return non-zero if LP isn't stopped.  */
/* Return non-zero if LP isn't stopped.  */
 
 
static int
static int
running_callback (struct lwp_info *lp, void *data)
running_callback (struct lwp_info *lp, void *data)
{
{
  return (lp->stopped == 0 || (lp->status != 0 && lp->resumed));
  return (lp->stopped == 0 || (lp->status != 0 && lp->resumed));
}
}
 
 
/* Count the LWP's that have had events.  */
/* Count the LWP's that have had events.  */
 
 
static int
static int
count_events_callback (struct lwp_info *lp, void *data)
count_events_callback (struct lwp_info *lp, void *data)
{
{
  int *count = data;
  int *count = data;
 
 
  gdb_assert (count != NULL);
  gdb_assert (count != NULL);
 
 
  /* Count only LWPs that have a SIGTRAP event pending.  */
  /* Count only LWPs that have a SIGTRAP event pending.  */
  if (lp->status != 0
  if (lp->status != 0
      && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
      && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
    (*count)++;
    (*count)++;
 
 
  return 0;
  return 0;
}
}
 
 
/* Select the LWP (if any) that is currently being single-stepped.  */
/* Select the LWP (if any) that is currently being single-stepped.  */
 
 
static int
static int
select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
{
{
  if (lp->step && lp->status != 0)
  if (lp->step && lp->status != 0)
    return 1;
    return 1;
  else
  else
    return 0;
    return 0;
}
}
 
 
/* Select the Nth LWP that has had a SIGTRAP event.  */
/* Select the Nth LWP that has had a SIGTRAP event.  */
 
 
static int
static int
select_event_lwp_callback (struct lwp_info *lp, void *data)
select_event_lwp_callback (struct lwp_info *lp, void *data)
{
{
  int *selector = data;
  int *selector = data;
 
 
  gdb_assert (selector != NULL);
  gdb_assert (selector != NULL);
 
 
  /* Select only LWPs that have a SIGTRAP event pending. */
  /* Select only LWPs that have a SIGTRAP event pending. */
  if (lp->status != 0
  if (lp->status != 0
      && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
      && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
    if ((*selector)-- == 0)
    if ((*selector)-- == 0)
      return 1;
      return 1;
 
 
  return 0;
  return 0;
}
}
 
 
static int
static int
cancel_breakpoints_callback (struct lwp_info *lp, void *data)
cancel_breakpoints_callback (struct lwp_info *lp, void *data)
{
{
  struct lwp_info *event_lp = data;
  struct lwp_info *event_lp = data;
 
 
  /* Leave the LWP that has been elected to receive a SIGTRAP alone.  */
  /* Leave the LWP that has been elected to receive a SIGTRAP alone.  */
  if (lp == event_lp)
  if (lp == event_lp)
    return 0;
    return 0;
 
 
  /* If a LWP other than the LWP that we're reporting an event for has
  /* If a LWP other than the LWP that we're reporting an event for has
     hit a GDB breakpoint (as opposed to some random trap signal),
     hit a GDB breakpoint (as opposed to some random trap signal),
     then just arrange for it to hit it again later.  We don't keep
     then just arrange for it to hit it again later.  We don't keep
     the SIGTRAP status and don't forward the SIGTRAP signal to the
     the SIGTRAP status and don't forward the SIGTRAP signal to the
     LWP.  We will handle the current event, eventually we will resume
     LWP.  We will handle the current event, eventually we will resume
     all LWPs, and this one will get its breakpoint trap again.
     all LWPs, and this one will get its breakpoint trap again.
 
 
     If we do not do this, then we run the risk that the user will
     If we do not do this, then we run the risk that the user will
     delete or disable the breakpoint, but the LWP will have already
     delete or disable the breakpoint, but the LWP will have already
     tripped on it.  */
     tripped on it.  */
 
 
  if (lp->status != 0
  if (lp->status != 0
      && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP
      && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP
      && breakpoint_inserted_here_p (read_pc_pid (lp->ptid) -
      && breakpoint_inserted_here_p (read_pc_pid (lp->ptid) -
                                     gdbarch_decr_pc_after_break
                                     gdbarch_decr_pc_after_break
                                       (current_gdbarch)))
                                       (current_gdbarch)))
    {
    {
      if (debug_linux_nat)
      if (debug_linux_nat)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "CBC: Push back breakpoint for %s\n",
                            "CBC: Push back breakpoint for %s\n",
                            target_pid_to_str (lp->ptid));
                            target_pid_to_str (lp->ptid));
 
 
      /* Back up the PC if necessary.  */
      /* Back up the PC if necessary.  */
      if (gdbarch_decr_pc_after_break (current_gdbarch))
      if (gdbarch_decr_pc_after_break (current_gdbarch))
        write_pc_pid (read_pc_pid (lp->ptid) - gdbarch_decr_pc_after_break
        write_pc_pid (read_pc_pid (lp->ptid) - gdbarch_decr_pc_after_break
                                                 (current_gdbarch),
                                                 (current_gdbarch),
                      lp->ptid);
                      lp->ptid);
 
 
      /* Throw away the SIGTRAP.  */
      /* Throw away the SIGTRAP.  */
      lp->status = 0;
      lp->status = 0;
    }
    }
 
 
  return 0;
  return 0;
}
}
 
 
/* Select one LWP out of those that have events pending.  */
/* Select one LWP out of those that have events pending.  */
 
 
static void
static void
select_event_lwp (struct lwp_info **orig_lp, int *status)
select_event_lwp (struct lwp_info **orig_lp, int *status)
{
{
  int num_events = 0;
  int num_events = 0;
  int random_selector;
  int random_selector;
  struct lwp_info *event_lp;
  struct lwp_info *event_lp;
 
 
  /* Record the wait status for the original LWP.  */
  /* Record the wait status for the original LWP.  */
  (*orig_lp)->status = *status;
  (*orig_lp)->status = *status;
 
 
  /* Give preference to any LWP that is being single-stepped.  */
  /* Give preference to any LWP that is being single-stepped.  */
  event_lp = iterate_over_lwps (select_singlestep_lwp_callback, NULL);
  event_lp = iterate_over_lwps (select_singlestep_lwp_callback, NULL);
  if (event_lp != NULL)
  if (event_lp != NULL)
    {
    {
      if (debug_linux_nat)
      if (debug_linux_nat)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "SEL: Select single-step %s\n",
                            "SEL: Select single-step %s\n",
                            target_pid_to_str (event_lp->ptid));
                            target_pid_to_str (event_lp->ptid));
    }
    }
  else
  else
    {
    {
      /* No single-stepping LWP.  Select one at random, out of those
      /* No single-stepping LWP.  Select one at random, out of those
         which have had SIGTRAP events.  */
         which have had SIGTRAP events.  */
 
 
      /* First see how many SIGTRAP events we have.  */
      /* First see how many SIGTRAP events we have.  */
      iterate_over_lwps (count_events_callback, &num_events);
      iterate_over_lwps (count_events_callback, &num_events);
 
 
      /* Now randomly pick a LWP out of those that have had a SIGTRAP.  */
      /* Now randomly pick a LWP out of those that have had a SIGTRAP.  */
      random_selector = (int)
      random_selector = (int)
        ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
        ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
 
 
      if (debug_linux_nat && num_events > 1)
      if (debug_linux_nat && num_events > 1)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "SEL: Found %d SIGTRAP events, selecting #%d\n",
                            "SEL: Found %d SIGTRAP events, selecting #%d\n",
                            num_events, random_selector);
                            num_events, random_selector);
 
 
      event_lp = iterate_over_lwps (select_event_lwp_callback,
      event_lp = iterate_over_lwps (select_event_lwp_callback,
                                    &random_selector);
                                    &random_selector);
    }
    }
 
 
  if (event_lp != NULL)
  if (event_lp != NULL)
    {
    {
      /* Switch the event LWP.  */
      /* Switch the event LWP.  */
      *orig_lp = event_lp;
      *orig_lp = event_lp;
      *status = event_lp->status;
      *status = event_lp->status;
    }
    }
 
 
  /* Flush the wait status for the event LWP.  */
  /* Flush the wait status for the event LWP.  */
  (*orig_lp)->status = 0;
  (*orig_lp)->status = 0;
}
}
 
 
/* Return non-zero if LP has been resumed.  */
/* Return non-zero if LP has been resumed.  */
 
 
static int
static int
resumed_callback (struct lwp_info *lp, void *data)
resumed_callback (struct lwp_info *lp, void *data)
{
{
  return lp->resumed;
  return lp->resumed;
}
}
 
 
/* Stop an active thread, verify it still exists, then resume it.  */
/* Stop an active thread, verify it still exists, then resume it.  */
 
 
static int
static int
stop_and_resume_callback (struct lwp_info *lp, void *data)
stop_and_resume_callback (struct lwp_info *lp, void *data)
{
{
  struct lwp_info *ptr;
  struct lwp_info *ptr;
 
 
  if (!lp->stopped && !lp->signalled)
  if (!lp->stopped && !lp->signalled)
    {
    {
      stop_callback (lp, NULL);
      stop_callback (lp, NULL);
      stop_wait_callback (lp, NULL);
      stop_wait_callback (lp, NULL);
      /* Resume if the lwp still exists.  */
      /* Resume if the lwp still exists.  */
      for (ptr = lwp_list; ptr; ptr = ptr->next)
      for (ptr = lwp_list; ptr; ptr = ptr->next)
        if (lp == ptr)
        if (lp == ptr)
          {
          {
            resume_callback (lp, NULL);
            resume_callback (lp, NULL);
            resume_set_callback (lp, NULL);
            resume_set_callback (lp, NULL);
          }
          }
    }
    }
  return 0;
  return 0;
}
}
 
 
static ptid_t
static ptid_t
linux_nat_wait (ptid_t ptid, struct target_waitstatus *ourstatus)
linux_nat_wait (ptid_t ptid, struct target_waitstatus *ourstatus)
{
{
  struct lwp_info *lp = NULL;
  struct lwp_info *lp = NULL;
  int options = 0;
  int options = 0;
  int status = 0;
  int status = 0;
  pid_t pid = PIDGET (ptid);
  pid_t pid = PIDGET (ptid);
  sigset_t flush_mask;
  sigset_t flush_mask;
 
 
  /* The first time we get here after starting a new inferior, we may
  /* The first time we get here after starting a new inferior, we may
     not have added it to the LWP list yet - this is the earliest
     not have added it to the LWP list yet - this is the earliest
     moment at which we know its PID.  */
     moment at which we know its PID.  */
  if (num_lwps == 0)
  if (num_lwps == 0)
    {
    {
      gdb_assert (!is_lwp (inferior_ptid));
      gdb_assert (!is_lwp (inferior_ptid));
 
 
      inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
      inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
                                 GET_PID (inferior_ptid));
                                 GET_PID (inferior_ptid));
      lp = add_lwp (inferior_ptid);
      lp = add_lwp (inferior_ptid);
      lp->resumed = 1;
      lp->resumed = 1;
    }
    }
 
 
  sigemptyset (&flush_mask);
  sigemptyset (&flush_mask);
 
 
  /* Make sure SIGCHLD is blocked.  */
  /* Make sure SIGCHLD is blocked.  */
  if (!sigismember (&blocked_mask, SIGCHLD))
  if (!sigismember (&blocked_mask, SIGCHLD))
    {
    {
      sigaddset (&blocked_mask, SIGCHLD);
      sigaddset (&blocked_mask, SIGCHLD);
      sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
      sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
    }
    }
 
 
retry:
retry:
 
 
  /* Make sure there is at least one LWP that has been resumed.  */
  /* Make sure there is at least one LWP that has been resumed.  */
  gdb_assert (iterate_over_lwps (resumed_callback, NULL));
  gdb_assert (iterate_over_lwps (resumed_callback, NULL));
 
 
  /* First check if there is a LWP with a wait status pending.  */
  /* First check if there is a LWP with a wait status pending.  */
  if (pid == -1)
  if (pid == -1)
    {
    {
      /* Any LWP that's been resumed will do.  */
      /* Any LWP that's been resumed will do.  */
      lp = iterate_over_lwps (status_callback, NULL);
      lp = iterate_over_lwps (status_callback, NULL);
      if (lp)
      if (lp)
        {
        {
          status = lp->status;
          status = lp->status;
          lp->status = 0;
          lp->status = 0;
 
 
          if (debug_linux_nat && status)
          if (debug_linux_nat && status)
            fprintf_unfiltered (gdb_stdlog,
            fprintf_unfiltered (gdb_stdlog,
                                "LLW: Using pending wait status %s for %s.\n",
                                "LLW: Using pending wait status %s for %s.\n",
                                status_to_str (status),
                                status_to_str (status),
                                target_pid_to_str (lp->ptid));
                                target_pid_to_str (lp->ptid));
        }
        }
 
 
      /* But if we don't fine one, we'll have to wait, and check both
      /* But if we don't fine one, we'll have to wait, and check both
         cloned and uncloned processes.  We start with the cloned
         cloned and uncloned processes.  We start with the cloned
         processes.  */
         processes.  */
      options = __WCLONE | WNOHANG;
      options = __WCLONE | WNOHANG;
    }
    }
  else if (is_lwp (ptid))
  else if (is_lwp (ptid))
    {
    {
      if (debug_linux_nat)
      if (debug_linux_nat)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "LLW: Waiting for specific LWP %s.\n",
                            "LLW: Waiting for specific LWP %s.\n",
                            target_pid_to_str (ptid));
                            target_pid_to_str (ptid));
 
 
      /* We have a specific LWP to check.  */
      /* We have a specific LWP to check.  */
      lp = find_lwp_pid (ptid);
      lp = find_lwp_pid (ptid);
      gdb_assert (lp);
      gdb_assert (lp);
      status = lp->status;
      status = lp->status;
      lp->status = 0;
      lp->status = 0;
 
 
      if (debug_linux_nat && status)
      if (debug_linux_nat && status)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "LLW: Using pending wait status %s for %s.\n",
                            "LLW: Using pending wait status %s for %s.\n",
                            status_to_str (status),
                            status_to_str (status),
                            target_pid_to_str (lp->ptid));
                            target_pid_to_str (lp->ptid));
 
 
      /* If we have to wait, take into account whether PID is a cloned
      /* If we have to wait, take into account whether PID is a cloned
         process or not.  And we have to convert it to something that
         process or not.  And we have to convert it to something that
         the layer beneath us can understand.  */
         the layer beneath us can understand.  */
      options = lp->cloned ? __WCLONE : 0;
      options = lp->cloned ? __WCLONE : 0;
      pid = GET_LWP (ptid);
      pid = GET_LWP (ptid);
    }
    }
 
 
  if (status && lp->signalled)
  if (status && lp->signalled)
    {
    {
      /* A pending SIGSTOP may interfere with the normal stream of
      /* A pending SIGSTOP may interfere with the normal stream of
         events.  In a typical case where interference is a problem,
         events.  In a typical case where interference is a problem,
         we have a SIGSTOP signal pending for LWP A while
         we have a SIGSTOP signal pending for LWP A while
         single-stepping it, encounter an event in LWP B, and take the
         single-stepping it, encounter an event in LWP B, and take the
         pending SIGSTOP while trying to stop LWP A.  After processing
         pending SIGSTOP while trying to stop LWP A.  After processing
         the event in LWP B, LWP A is continued, and we'll never see
         the event in LWP B, LWP A is continued, and we'll never see
         the SIGTRAP associated with the last time we were
         the SIGTRAP associated with the last time we were
         single-stepping LWP A.  */
         single-stepping LWP A.  */
 
 
      /* Resume the thread.  It should halt immediately returning the
      /* Resume the thread.  It should halt immediately returning the
         pending SIGSTOP.  */
         pending SIGSTOP.  */
      registers_changed ();
      registers_changed ();
      linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)),
      linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)),
                            lp->step, TARGET_SIGNAL_0);
                            lp->step, TARGET_SIGNAL_0);
      if (debug_linux_nat)
      if (debug_linux_nat)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
                            "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
                            lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
                            lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
                            target_pid_to_str (lp->ptid));
                            target_pid_to_str (lp->ptid));
      lp->stopped = 0;
      lp->stopped = 0;
      gdb_assert (lp->resumed);
      gdb_assert (lp->resumed);
 
 
      /* This should catch the pending SIGSTOP.  */
      /* This should catch the pending SIGSTOP.  */
      stop_wait_callback (lp, NULL);
      stop_wait_callback (lp, NULL);
    }
    }
 
 
  set_sigint_trap ();           /* Causes SIGINT to be passed on to the
  set_sigint_trap ();           /* Causes SIGINT to be passed on to the
                                   attached process. */
                                   attached process. */
  set_sigio_trap ();
  set_sigio_trap ();
 
 
  while (status == 0)
  while (status == 0)
    {
    {
      pid_t lwpid;
      pid_t lwpid;
 
 
      lwpid = my_waitpid (pid, &status, options);
      lwpid = my_waitpid (pid, &status, options);
      if (lwpid > 0)
      if (lwpid > 0)
        {
        {
          gdb_assert (pid == -1 || lwpid == pid);
          gdb_assert (pid == -1 || lwpid == pid);
 
 
          if (debug_linux_nat)
          if (debug_linux_nat)
            {
            {
              fprintf_unfiltered (gdb_stdlog,
              fprintf_unfiltered (gdb_stdlog,
                                  "LLW: waitpid %ld received %s\n",
                                  "LLW: waitpid %ld received %s\n",
                                  (long) lwpid, status_to_str (status));
                                  (long) lwpid, status_to_str (status));
            }
            }
 
 
          lp = find_lwp_pid (pid_to_ptid (lwpid));
          lp = find_lwp_pid (pid_to_ptid (lwpid));
 
 
          /* Check for stop events reported by a process we didn't
          /* Check for stop events reported by a process we didn't
             already know about - anything not already in our LWP
             already know about - anything not already in our LWP
             list.
             list.
 
 
             If we're expecting to receive stopped processes after
             If we're expecting to receive stopped processes after
             fork, vfork, and clone events, then we'll just add the
             fork, vfork, and clone events, then we'll just add the
             new one to our list and go back to waiting for the event
             new one to our list and go back to waiting for the event
             to be reported - the stopped process might be returned
             to be reported - the stopped process might be returned
             from waitpid before or after the event is.  */
             from waitpid before or after the event is.  */
          if (WIFSTOPPED (status) && !lp)
          if (WIFSTOPPED (status) && !lp)
            {
            {
              linux_record_stopped_pid (lwpid, status);
              linux_record_stopped_pid (lwpid, status);
              status = 0;
              status = 0;
              continue;
              continue;
            }
            }
 
 
          /* Make sure we don't report an event for the exit of an LWP not in
          /* Make sure we don't report an event for the exit of an LWP not in
             our list, i.e.  not part of the current process.  This can happen
             our list, i.e.  not part of the current process.  This can happen
             if we detach from a program we original forked and then it
             if we detach from a program we original forked and then it
             exits.  */
             exits.  */
          if (!WIFSTOPPED (status) && !lp)
          if (!WIFSTOPPED (status) && !lp)
            {
            {
              status = 0;
              status = 0;
              continue;
              continue;
            }
            }
 
 
          /* NOTE drow/2003-06-17: This code seems to be meant for debugging
          /* NOTE drow/2003-06-17: This code seems to be meant for debugging
             CLONE_PTRACE processes which do not use the thread library -
             CLONE_PTRACE processes which do not use the thread library -
             otherwise we wouldn't find the new LWP this way.  That doesn't
             otherwise we wouldn't find the new LWP this way.  That doesn't
             currently work, and the following code is currently unreachable
             currently work, and the following code is currently unreachable
             due to the two blocks above.  If it's fixed some day, this code
             due to the two blocks above.  If it's fixed some day, this code
             should be broken out into a function so that we can also pick up
             should be broken out into a function so that we can also pick up
             LWPs from the new interface.  */
             LWPs from the new interface.  */
          if (!lp)
          if (!lp)
            {
            {
              lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
              lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
              if (options & __WCLONE)
              if (options & __WCLONE)
                lp->cloned = 1;
                lp->cloned = 1;
 
 
              gdb_assert (WIFSTOPPED (status)
              gdb_assert (WIFSTOPPED (status)
                          && WSTOPSIG (status) == SIGSTOP);
                          && WSTOPSIG (status) == SIGSTOP);
              lp->signalled = 1;
              lp->signalled = 1;
 
 
              if (!in_thread_list (inferior_ptid))
              if (!in_thread_list (inferior_ptid))
                {
                {
                  inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
                  inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
                                             GET_PID (inferior_ptid));
                                             GET_PID (inferior_ptid));
                  add_thread (inferior_ptid);
                  add_thread (inferior_ptid);
                }
                }
 
 
              add_thread (lp->ptid);
              add_thread (lp->ptid);
            }
            }
 
 
          /* Save the trap's siginfo in case we need it later.  */
          /* Save the trap's siginfo in case we need it later.  */
          if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
          if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
            save_siginfo (lp);
            save_siginfo (lp);
 
 
          /* Handle GNU/Linux's extended waitstatus for trace events.  */
          /* Handle GNU/Linux's extended waitstatus for trace events.  */
          if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
          if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
            {
            {
              if (debug_linux_nat)
              if (debug_linux_nat)
                fprintf_unfiltered (gdb_stdlog,
                fprintf_unfiltered (gdb_stdlog,
                                    "LLW: Handling extended status 0x%06x\n",
                                    "LLW: Handling extended status 0x%06x\n",
                                    status);
                                    status);
              if (linux_handle_extended_wait (lp, status, 0))
              if (linux_handle_extended_wait (lp, status, 0))
                {
                {
                  status = 0;
                  status = 0;
                  continue;
                  continue;
                }
                }
            }
            }
 
 
          /* Check if the thread has exited.  */
          /* Check if the thread has exited.  */
          if ((WIFEXITED (status) || WIFSIGNALED (status)) && num_lwps > 1)
          if ((WIFEXITED (status) || WIFSIGNALED (status)) && num_lwps > 1)
            {
            {
              /* If this is the main thread, we must stop all threads and
              /* If this is the main thread, we must stop all threads and
                 verify if they are still alive.  This is because in the nptl
                 verify if they are still alive.  This is because in the nptl
                 thread model, there is no signal issued for exiting LWPs
                 thread model, there is no signal issued for exiting LWPs
                 other than the main thread.  We only get the main thread
                 other than the main thread.  We only get the main thread
                 exit signal once all child threads have already exited.
                 exit signal once all child threads have already exited.
                 If we stop all the threads and use the stop_wait_callback
                 If we stop all the threads and use the stop_wait_callback
                 to check if they have exited we can determine whether this
                 to check if they have exited we can determine whether this
                 signal should be ignored or whether it means the end of the
                 signal should be ignored or whether it means the end of the
                 debugged application, regardless of which threading model
                 debugged application, regardless of which threading model
                 is being used.  */
                 is being used.  */
              if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
              if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
                {
                {
                  lp->stopped = 1;
                  lp->stopped = 1;
                  iterate_over_lwps (stop_and_resume_callback, NULL);
                  iterate_over_lwps (stop_and_resume_callback, NULL);
                }
                }
 
 
              if (debug_linux_nat)
              if (debug_linux_nat)
                fprintf_unfiltered (gdb_stdlog,
                fprintf_unfiltered (gdb_stdlog,
                                    "LLW: %s exited.\n",
                                    "LLW: %s exited.\n",
                                    target_pid_to_str (lp->ptid));
                                    target_pid_to_str (lp->ptid));
 
 
              exit_lwp (lp);
              exit_lwp (lp);
 
 
              /* If there is at least one more LWP, then the exit signal
              /* If there is at least one more LWP, then the exit signal
                 was not the end of the debugged application and should be
                 was not the end of the debugged application and should be
                 ignored.  */
                 ignored.  */
              if (num_lwps > 0)
              if (num_lwps > 0)
                {
                {
                  /* Make sure there is at least one thread running.  */
                  /* Make sure there is at least one thread running.  */
                  gdb_assert (iterate_over_lwps (running_callback, NULL));
                  gdb_assert (iterate_over_lwps (running_callback, NULL));
 
 
                  /* Discard the event.  */
                  /* Discard the event.  */
                  status = 0;
                  status = 0;
                  continue;
                  continue;
                }
                }
            }
            }
 
 
          /* Check if the current LWP has previously exited.  In the nptl
          /* Check if the current LWP has previously exited.  In the nptl
             thread model, LWPs other than the main thread do not issue
             thread model, LWPs other than the main thread do not issue
             signals when they exit so we must check whenever the thread
             signals when they exit so we must check whenever the thread
             has stopped.  A similar check is made in stop_wait_callback().  */
             has stopped.  A similar check is made in stop_wait_callback().  */
          if (num_lwps > 1 && !linux_nat_thread_alive (lp->ptid))
          if (num_lwps > 1 && !linux_nat_thread_alive (lp->ptid))
            {
            {
              if (debug_linux_nat)
              if (debug_linux_nat)
                fprintf_unfiltered (gdb_stdlog,
                fprintf_unfiltered (gdb_stdlog,
                                    "LLW: %s exited.\n",
                                    "LLW: %s exited.\n",
                                    target_pid_to_str (lp->ptid));
                                    target_pid_to_str (lp->ptid));
 
 
              exit_lwp (lp);
              exit_lwp (lp);
 
 
              /* Make sure there is at least one thread running.  */
              /* Make sure there is at least one thread running.  */
              gdb_assert (iterate_over_lwps (running_callback, NULL));
              gdb_assert (iterate_over_lwps (running_callback, NULL));
 
 
              /* Discard the event.  */
              /* Discard the event.  */
              status = 0;
              status = 0;
              continue;
              continue;
            }
            }
 
 
          /* Make sure we don't report a SIGSTOP that we sent
          /* Make sure we don't report a SIGSTOP that we sent
             ourselves in an attempt to stop an LWP.  */
             ourselves in an attempt to stop an LWP.  */
          if (lp->signalled
          if (lp->signalled
              && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
              && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
            {
            {
              if (debug_linux_nat)
              if (debug_linux_nat)
                fprintf_unfiltered (gdb_stdlog,
                fprintf_unfiltered (gdb_stdlog,
                                    "LLW: Delayed SIGSTOP caught for %s.\n",
                                    "LLW: Delayed SIGSTOP caught for %s.\n",
                                    target_pid_to_str (lp->ptid));
                                    target_pid_to_str (lp->ptid));
 
 
              /* This is a delayed SIGSTOP.  */
              /* This is a delayed SIGSTOP.  */
              lp->signalled = 0;
              lp->signalled = 0;
 
 
              registers_changed ();
              registers_changed ();
              linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)),
              linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)),
                                    lp->step, TARGET_SIGNAL_0);
                                    lp->step, TARGET_SIGNAL_0);
              if (debug_linux_nat)
              if (debug_linux_nat)
                fprintf_unfiltered (gdb_stdlog,
                fprintf_unfiltered (gdb_stdlog,
                                    "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
                                    "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
                                    lp->step ?
                                    lp->step ?
                                    "PTRACE_SINGLESTEP" : "PTRACE_CONT",
                                    "PTRACE_SINGLESTEP" : "PTRACE_CONT",
                                    target_pid_to_str (lp->ptid));
                                    target_pid_to_str (lp->ptid));
 
 
              lp->stopped = 0;
              lp->stopped = 0;
              gdb_assert (lp->resumed);
              gdb_assert (lp->resumed);
 
 
              /* Discard the event.  */
              /* Discard the event.  */
              status = 0;
              status = 0;
              continue;
              continue;
            }
            }
 
 
          break;
          break;
        }
        }
 
 
      if (pid == -1)
      if (pid == -1)
        {
        {
          /* Alternate between checking cloned and uncloned processes.  */
          /* Alternate between checking cloned and uncloned processes.  */
          options ^= __WCLONE;
          options ^= __WCLONE;
 
 
          /* And suspend every time we have checked both.  */
          /* And suspend every time we have checked both.  */
          if (options & __WCLONE)
          if (options & __WCLONE)
            sigsuspend (&suspend_mask);
            sigsuspend (&suspend_mask);
        }
        }
 
 
      /* We shouldn't end up here unless we want to try again.  */
      /* We shouldn't end up here unless we want to try again.  */
      gdb_assert (status == 0);
      gdb_assert (status == 0);
    }
    }
 
 
  clear_sigio_trap ();
  clear_sigio_trap ();
  clear_sigint_trap ();
  clear_sigint_trap ();
 
 
  gdb_assert (lp);
  gdb_assert (lp);
 
 
  /* Don't report signals that GDB isn't interested in, such as
  /* Don't report signals that GDB isn't interested in, such as
     signals that are neither printed nor stopped upon.  Stopping all
     signals that are neither printed nor stopped upon.  Stopping all
     threads can be a bit time-consuming so if we want decent
     threads can be a bit time-consuming so if we want decent
     performance with heavily multi-threaded programs, especially when
     performance with heavily multi-threaded programs, especially when
     they're using a high frequency timer, we'd better avoid it if we
     they're using a high frequency timer, we'd better avoid it if we
     can.  */
     can.  */
 
 
  if (WIFSTOPPED (status))
  if (WIFSTOPPED (status))
    {
    {
      int signo = target_signal_from_host (WSTOPSIG (status));
      int signo = target_signal_from_host (WSTOPSIG (status));
 
 
      /* If we get a signal while single-stepping, we may need special
      /* If we get a signal while single-stepping, we may need special
         care, e.g. to skip the signal handler.  Defer to common code.  */
         care, e.g. to skip the signal handler.  Defer to common code.  */
      if (!lp->step
      if (!lp->step
          && signal_stop_state (signo) == 0
          && signal_stop_state (signo) == 0
          && signal_print_state (signo) == 0
          && signal_print_state (signo) == 0
          && signal_pass_state (signo) == 1)
          && signal_pass_state (signo) == 1)
        {
        {
          /* FIMXE: kettenis/2001-06-06: Should we resume all threads
          /* FIMXE: kettenis/2001-06-06: Should we resume all threads
             here?  It is not clear we should.  GDB may not expect
             here?  It is not clear we should.  GDB may not expect
             other threads to run.  On the other hand, not resuming
             other threads to run.  On the other hand, not resuming
             newly attached threads may cause an unwanted delay in
             newly attached threads may cause an unwanted delay in
             getting them running.  */
             getting them running.  */
          registers_changed ();
          registers_changed ();
          linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)),
          linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)),
                                lp->step, signo);
                                lp->step, signo);
          if (debug_linux_nat)
          if (debug_linux_nat)
            fprintf_unfiltered (gdb_stdlog,
            fprintf_unfiltered (gdb_stdlog,
                                "LLW: %s %s, %s (preempt 'handle')\n",
                                "LLW: %s %s, %s (preempt 'handle')\n",
                                lp->step ?
                                lp->step ?
                                "PTRACE_SINGLESTEP" : "PTRACE_CONT",
                                "PTRACE_SINGLESTEP" : "PTRACE_CONT",
                                target_pid_to_str (lp->ptid),
                                target_pid_to_str (lp->ptid),
                                signo ? strsignal (signo) : "0");
                                signo ? strsignal (signo) : "0");
          lp->stopped = 0;
          lp->stopped = 0;
          status = 0;
          status = 0;
          goto retry;
          goto retry;
        }
        }
 
 
      if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
      if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
        {
        {
          /* If ^C/BREAK is typed at the tty/console, SIGINT gets
          /* If ^C/BREAK is typed at the tty/console, SIGINT gets
             forwarded to the entire process group, that is, all LWP's
             forwarded to the entire process group, that is, all LWP's
             will receive it.  Since we only want to report it once,
             will receive it.  Since we only want to report it once,
             we try to flush it from all LWPs except this one.  */
             we try to flush it from all LWPs except this one.  */
          sigaddset (&flush_mask, SIGINT);
          sigaddset (&flush_mask, SIGINT);
        }
        }
    }
    }
 
 
  /* This LWP is stopped now.  */
  /* This LWP is stopped now.  */
  lp->stopped = 1;
  lp->stopped = 1;
 
 
  if (debug_linux_nat)
  if (debug_linux_nat)
    fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
    fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
                        status_to_str (status), target_pid_to_str (lp->ptid));
                        status_to_str (status), target_pid_to_str (lp->ptid));
 
 
  /* Now stop all other LWP's ...  */
  /* Now stop all other LWP's ...  */
  iterate_over_lwps (stop_callback, NULL);
  iterate_over_lwps (stop_callback, NULL);
 
 
  /* ... and wait until all of them have reported back that they're no
  /* ... and wait until all of them have reported back that they're no
     longer running.  */
     longer running.  */
  iterate_over_lwps (stop_wait_callback, &flush_mask);
  iterate_over_lwps (stop_wait_callback, &flush_mask);
  iterate_over_lwps (flush_callback, &flush_mask);
  iterate_over_lwps (flush_callback, &flush_mask);
 
 
  /* If we're not waiting for a specific LWP, choose an event LWP from
  /* If we're not waiting for a specific LWP, choose an event LWP from
     among those that have had events.  Giving equal priority to all
     among those that have had events.  Giving equal priority to all
     LWPs that have had events helps prevent starvation.  */
     LWPs that have had events helps prevent starvation.  */
  if (pid == -1)
  if (pid == -1)
    select_event_lwp (&lp, &status);
    select_event_lwp (&lp, &status);
 
 
  /* Now that we've selected our final event LWP, cancel any
  /* Now that we've selected our final event LWP, cancel any
     breakpoints in other LWPs that have hit a GDB breakpoint.  See
     breakpoints in other LWPs that have hit a GDB breakpoint.  See
     the comment in cancel_breakpoints_callback to find out why.  */
     the comment in cancel_breakpoints_callback to find out why.  */
  iterate_over_lwps (cancel_breakpoints_callback, lp);
  iterate_over_lwps (cancel_breakpoints_callback, lp);
 
 
  if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
  if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
    {
    {
      trap_ptid = lp->ptid;
      trap_ptid = lp->ptid;
      if (debug_linux_nat)
      if (debug_linux_nat)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "LLW: trap_ptid is %s.\n",
                            "LLW: trap_ptid is %s.\n",
                            target_pid_to_str (trap_ptid));
                            target_pid_to_str (trap_ptid));
    }
    }
  else
  else
    trap_ptid = null_ptid;
    trap_ptid = null_ptid;
 
 
  if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
  if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
    {
    {
      *ourstatus = lp->waitstatus;
      *ourstatus = lp->waitstatus;
      lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
      lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
    }
    }
  else
  else
    store_waitstatus (ourstatus, status);
    store_waitstatus (ourstatus, status);
 
 
  return lp->ptid;
  return lp->ptid;
}
}
 
 
static int
static int
kill_callback (struct lwp_info *lp, void *data)
kill_callback (struct lwp_info *lp, void *data)
{
{
  errno = 0;
  errno = 0;
  ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
  ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
  if (debug_linux_nat)
  if (debug_linux_nat)
    fprintf_unfiltered (gdb_stdlog,
    fprintf_unfiltered (gdb_stdlog,
                        "KC:  PTRACE_KILL %s, 0, 0 (%s)\n",
                        "KC:  PTRACE_KILL %s, 0, 0 (%s)\n",
                        target_pid_to_str (lp->ptid),
                        target_pid_to_str (lp->ptid),
                        errno ? safe_strerror (errno) : "OK");
                        errno ? safe_strerror (errno) : "OK");
 
 
  return 0;
  return 0;
}
}
 
 
static int
static int
kill_wait_callback (struct lwp_info *lp, void *data)
kill_wait_callback (struct lwp_info *lp, void *data)
{
{
  pid_t pid;
  pid_t pid;
 
 
  /* We must make sure that there are no pending events (delayed
  /* We must make sure that there are no pending events (delayed
     SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
     SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
     program doesn't interfere with any following debugging session.  */
     program doesn't interfere with any following debugging session.  */
 
 
  /* For cloned processes we must check both with __WCLONE and
  /* For cloned processes we must check both with __WCLONE and
     without, since the exit status of a cloned process isn't reported
     without, since the exit status of a cloned process isn't reported
     with __WCLONE.  */
     with __WCLONE.  */
  if (lp->cloned)
  if (lp->cloned)
    {
    {
      do
      do
        {
        {
          pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
          pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
          if (pid != (pid_t) -1)
          if (pid != (pid_t) -1)
            {
            {
              if (debug_linux_nat)
              if (debug_linux_nat)
                fprintf_unfiltered (gdb_stdlog,
                fprintf_unfiltered (gdb_stdlog,
                                    "KWC: wait %s received unknown.\n",
                                    "KWC: wait %s received unknown.\n",
                                    target_pid_to_str (lp->ptid));
                                    target_pid_to_str (lp->ptid));
              /* The Linux kernel sometimes fails to kill a thread
              /* The Linux kernel sometimes fails to kill a thread
                 completely after PTRACE_KILL; that goes from the stop
                 completely after PTRACE_KILL; that goes from the stop
                 point in do_fork out to the one in
                 point in do_fork out to the one in
                 get_signal_to_deliever and waits again.  So kill it
                 get_signal_to_deliever and waits again.  So kill it
                 again.  */
                 again.  */
              kill_callback (lp, NULL);
              kill_callback (lp, NULL);
            }
            }
        }
        }
      while (pid == GET_LWP (lp->ptid));
      while (pid == GET_LWP (lp->ptid));
 
 
      gdb_assert (pid == -1 && errno == ECHILD);
      gdb_assert (pid == -1 && errno == ECHILD);
    }
    }
 
 
  do
  do
    {
    {
      pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
      pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
      if (pid != (pid_t) -1)
      if (pid != (pid_t) -1)
        {
        {
          if (debug_linux_nat)
          if (debug_linux_nat)
            fprintf_unfiltered (gdb_stdlog,
            fprintf_unfiltered (gdb_stdlog,
                                "KWC: wait %s received unk.\n",
                                "KWC: wait %s received unk.\n",
                                target_pid_to_str (lp->ptid));
                                target_pid_to_str (lp->ptid));
          /* See the call to kill_callback above.  */
          /* See the call to kill_callback above.  */
          kill_callback (lp, NULL);
          kill_callback (lp, NULL);
        }
        }
    }
    }
  while (pid == GET_LWP (lp->ptid));
  while (pid == GET_LWP (lp->ptid));
 
 
  gdb_assert (pid == -1 && errno == ECHILD);
  gdb_assert (pid == -1 && errno == ECHILD);
  return 0;
  return 0;
}
}
 
 
static void
static void
linux_nat_kill (void)
linux_nat_kill (void)
{
{
  struct target_waitstatus last;
  struct target_waitstatus last;
  ptid_t last_ptid;
  ptid_t last_ptid;
  int status;
  int status;
 
 
  /* If we're stopped while forking and we haven't followed yet,
  /* If we're stopped while forking and we haven't followed yet,
     kill the other task.  We need to do this first because the
     kill the other task.  We need to do this first because the
     parent will be sleeping if this is a vfork.  */
     parent will be sleeping if this is a vfork.  */
 
 
  get_last_target_status (&last_ptid, &last);
  get_last_target_status (&last_ptid, &last);
 
 
  if (last.kind == TARGET_WAITKIND_FORKED
  if (last.kind == TARGET_WAITKIND_FORKED
      || last.kind == TARGET_WAITKIND_VFORKED)
      || last.kind == TARGET_WAITKIND_VFORKED)
    {
    {
      ptrace (PT_KILL, last.value.related_pid, 0, 0);
      ptrace (PT_KILL, last.value.related_pid, 0, 0);
      wait (&status);
      wait (&status);
    }
    }
 
 
  if (forks_exist_p ())
  if (forks_exist_p ())
    linux_fork_killall ();
    linux_fork_killall ();
  else
  else
    {
    {
      /* Kill all LWP's ...  */
      /* Kill all LWP's ...  */
      iterate_over_lwps (kill_callback, NULL);
      iterate_over_lwps (kill_callback, NULL);
 
 
      /* ... and wait until we've flushed all events.  */
      /* ... and wait until we've flushed all events.  */
      iterate_over_lwps (kill_wait_callback, NULL);
      iterate_over_lwps (kill_wait_callback, NULL);
    }
    }
 
 
  target_mourn_inferior ();
  target_mourn_inferior ();
}
}
 
 
static void
static void
linux_nat_mourn_inferior (void)
linux_nat_mourn_inferior (void)
{
{
  trap_ptid = null_ptid;
  trap_ptid = null_ptid;
 
 
  /* Destroy LWP info; it's no longer valid.  */
  /* Destroy LWP info; it's no longer valid.  */
  init_lwp_list ();
  init_lwp_list ();
 
 
  /* Restore the original signal mask.  */
  /* Restore the original signal mask.  */
  sigprocmask (SIG_SETMASK, &normal_mask, NULL);
  sigprocmask (SIG_SETMASK, &normal_mask, NULL);
  sigemptyset (&blocked_mask);
  sigemptyset (&blocked_mask);
 
 
  if (! forks_exist_p ())
  if (! forks_exist_p ())
    /* Normal case, no other forks available.  */
    /* Normal case, no other forks available.  */
    linux_ops->to_mourn_inferior ();
    linux_ops->to_mourn_inferior ();
  else
  else
    /* Multi-fork case.  The current inferior_ptid has exited, but
    /* Multi-fork case.  The current inferior_ptid has exited, but
       there are other viable forks to debug.  Delete the exiting
       there are other viable forks to debug.  Delete the exiting
       one and context-switch to the first available.  */
       one and context-switch to the first available.  */
    linux_fork_mourn_inferior ();
    linux_fork_mourn_inferior ();
}
}
 
 
static LONGEST
static LONGEST
linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
                        const char *annex, gdb_byte *readbuf,
                        const char *annex, gdb_byte *readbuf,
                        const gdb_byte *writebuf,
                        const gdb_byte *writebuf,
                        ULONGEST offset, LONGEST len)
                        ULONGEST offset, LONGEST len)
{
{
  struct cleanup *old_chain = save_inferior_ptid ();
  struct cleanup *old_chain = save_inferior_ptid ();
  LONGEST xfer;
  LONGEST xfer;
 
 
  if (is_lwp (inferior_ptid))
  if (is_lwp (inferior_ptid))
    inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
    inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
 
 
  xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
  xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
                                     offset, len);
                                     offset, len);
 
 
  do_cleanups (old_chain);
  do_cleanups (old_chain);
  return xfer;
  return xfer;
}
}
 
 
static int
static int
linux_nat_thread_alive (ptid_t ptid)
linux_nat_thread_alive (ptid_t ptid)
{
{
  gdb_assert (is_lwp (ptid));
  gdb_assert (is_lwp (ptid));
 
 
  errno = 0;
  errno = 0;
  ptrace (PTRACE_PEEKUSER, GET_LWP (ptid), 0, 0);
  ptrace (PTRACE_PEEKUSER, GET_LWP (ptid), 0, 0);
  if (debug_linux_nat)
  if (debug_linux_nat)
    fprintf_unfiltered (gdb_stdlog,
    fprintf_unfiltered (gdb_stdlog,
                        "LLTA: PTRACE_PEEKUSER %s, 0, 0 (%s)\n",
                        "LLTA: PTRACE_PEEKUSER %s, 0, 0 (%s)\n",
                        target_pid_to_str (ptid),
                        target_pid_to_str (ptid),
                        errno ? safe_strerror (errno) : "OK");
                        errno ? safe_strerror (errno) : "OK");
 
 
  /* Not every Linux kernel implements PTRACE_PEEKUSER.  But we can
  /* Not every Linux kernel implements PTRACE_PEEKUSER.  But we can
     handle that case gracefully since ptrace will first do a lookup
     handle that case gracefully since ptrace will first do a lookup
     for the process based upon the passed-in pid.  If that fails we
     for the process based upon the passed-in pid.  If that fails we
     will get either -ESRCH or -EPERM, otherwise the child exists and
     will get either -ESRCH or -EPERM, otherwise the child exists and
     is alive.  */
     is alive.  */
  if (errno == ESRCH || errno == EPERM)
  if (errno == ESRCH || errno == EPERM)
    return 0;
    return 0;
 
 
  return 1;
  return 1;
}
}
 
 
static char *
static char *
linux_nat_pid_to_str (ptid_t ptid)
linux_nat_pid_to_str (ptid_t ptid)
{
{
  static char buf[64];
  static char buf[64];
 
 
  if (lwp_list && lwp_list->next && is_lwp (ptid))
  if (lwp_list && lwp_list->next && is_lwp (ptid))
    {
    {
      snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
      snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
      return buf;
      return buf;
    }
    }
 
 
  return normal_pid_to_str (ptid);
  return normal_pid_to_str (ptid);
}
}
 
 
static void
static void
sigchld_handler (int signo)
sigchld_handler (int signo)
{
{
  /* Do nothing.  The only reason for this handler is that it allows
  /* Do nothing.  The only reason for this handler is that it allows
     us to use sigsuspend in linux_nat_wait above to wait for the
     us to use sigsuspend in linux_nat_wait above to wait for the
     arrival of a SIGCHLD.  */
     arrival of a SIGCHLD.  */
}
}
 
 
/* Accepts an integer PID; Returns a string representing a file that
/* Accepts an integer PID; Returns a string representing a file that
   can be opened to get the symbols for the child process.  */
   can be opened to get the symbols for the child process.  */
 
 
static char *
static char *
linux_child_pid_to_exec_file (int pid)
linux_child_pid_to_exec_file (int pid)
{
{
  char *name1, *name2;
  char *name1, *name2;
 
 
  name1 = xmalloc (MAXPATHLEN);
  name1 = xmalloc (MAXPATHLEN);
  name2 = xmalloc (MAXPATHLEN);
  name2 = xmalloc (MAXPATHLEN);
  make_cleanup (xfree, name1);
  make_cleanup (xfree, name1);
  make_cleanup (xfree, name2);
  make_cleanup (xfree, name2);
  memset (name2, 0, MAXPATHLEN);
  memset (name2, 0, MAXPATHLEN);
 
 
  sprintf (name1, "/proc/%d/exe", pid);
  sprintf (name1, "/proc/%d/exe", pid);
  if (readlink (name1, name2, MAXPATHLEN) > 0)
  if (readlink (name1, name2, MAXPATHLEN) > 0)
    return name2;
    return name2;
  else
  else
    return name1;
    return name1;
}
}
 
 
/* Service function for corefiles and info proc.  */
/* Service function for corefiles and info proc.  */
 
 
static int
static int
read_mapping (FILE *mapfile,
read_mapping (FILE *mapfile,
              long long *addr,
              long long *addr,
              long long *endaddr,
              long long *endaddr,
              char *permissions,
              char *permissions,
              long long *offset,
              long long *offset,
              char *device, long long *inode, char *filename)
              char *device, long long *inode, char *filename)
{
{
  int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
  int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
                    addr, endaddr, permissions, offset, device, inode);
                    addr, endaddr, permissions, offset, device, inode);
 
 
  filename[0] = '\0';
  filename[0] = '\0';
  if (ret > 0 && ret != EOF)
  if (ret > 0 && ret != EOF)
    {
    {
      /* Eat everything up to EOL for the filename.  This will prevent
      /* Eat everything up to EOL for the filename.  This will prevent
         weird filenames (such as one with embedded whitespace) from
         weird filenames (such as one with embedded whitespace) from
         confusing this code.  It also makes this code more robust in
         confusing this code.  It also makes this code more robust in
         respect to annotations the kernel may add after the filename.
         respect to annotations the kernel may add after the filename.
 
 
         Note the filename is used for informational purposes
         Note the filename is used for informational purposes
         only.  */
         only.  */
      ret += fscanf (mapfile, "%[^\n]\n", filename);
      ret += fscanf (mapfile, "%[^\n]\n", filename);
    }
    }
 
 
  return (ret != 0 && ret != EOF);
  return (ret != 0 && ret != EOF);
}
}
 
 
/* Fills the "to_find_memory_regions" target vector.  Lists the memory
/* Fills the "to_find_memory_regions" target vector.  Lists the memory
   regions in the inferior for a corefile.  */
   regions in the inferior for a corefile.  */
 
 
static int
static int
linux_nat_find_memory_regions (int (*func) (CORE_ADDR,
linux_nat_find_memory_regions (int (*func) (CORE_ADDR,
                                            unsigned long,
                                            unsigned long,
                                            int, int, int, void *), void *obfd)
                                            int, int, int, void *), void *obfd)
{
{
  long long pid = PIDGET (inferior_ptid);
  long long pid = PIDGET (inferior_ptid);
  char mapsfilename[MAXPATHLEN];
  char mapsfilename[MAXPATHLEN];
  FILE *mapsfile;
  FILE *mapsfile;
  long long addr, endaddr, size, offset, inode;
  long long addr, endaddr, size, offset, inode;
  char permissions[8], device[8], filename[MAXPATHLEN];
  char permissions[8], device[8], filename[MAXPATHLEN];
  int read, write, exec;
  int read, write, exec;
  int ret;
  int ret;
 
 
  /* Compose the filename for the /proc memory map, and open it.  */
  /* Compose the filename for the /proc memory map, and open it.  */
  sprintf (mapsfilename, "/proc/%lld/maps", pid);
  sprintf (mapsfilename, "/proc/%lld/maps", pid);
  if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
  if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
    error (_("Could not open %s."), mapsfilename);
    error (_("Could not open %s."), mapsfilename);
 
 
  if (info_verbose)
  if (info_verbose)
    fprintf_filtered (gdb_stdout,
    fprintf_filtered (gdb_stdout,
                      "Reading memory regions from %s\n", mapsfilename);
                      "Reading memory regions from %s\n", mapsfilename);
 
 
  /* Now iterate until end-of-file.  */
  /* Now iterate until end-of-file.  */
  while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
  while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
                       &offset, &device[0], &inode, &filename[0]))
                       &offset, &device[0], &inode, &filename[0]))
    {
    {
      size = endaddr - addr;
      size = endaddr - addr;
 
 
      /* Get the segment's permissions.  */
      /* Get the segment's permissions.  */
      read = (strchr (permissions, 'r') != 0);
      read = (strchr (permissions, 'r') != 0);
      write = (strchr (permissions, 'w') != 0);
      write = (strchr (permissions, 'w') != 0);
      exec = (strchr (permissions, 'x') != 0);
      exec = (strchr (permissions, 'x') != 0);
 
 
      if (info_verbose)
      if (info_verbose)
        {
        {
          fprintf_filtered (gdb_stdout,
          fprintf_filtered (gdb_stdout,
                            "Save segment, %lld bytes at 0x%s (%c%c%c)",
                            "Save segment, %lld bytes at 0x%s (%c%c%c)",
                            size, paddr_nz (addr),
                            size, paddr_nz (addr),
                            read ? 'r' : ' ',
                            read ? 'r' : ' ',
                            write ? 'w' : ' ', exec ? 'x' : ' ');
                            write ? 'w' : ' ', exec ? 'x' : ' ');
          if (filename[0])
          if (filename[0])
            fprintf_filtered (gdb_stdout, " for %s", filename);
            fprintf_filtered (gdb_stdout, " for %s", filename);
          fprintf_filtered (gdb_stdout, "\n");
          fprintf_filtered (gdb_stdout, "\n");
        }
        }
 
 
      /* Invoke the callback function to create the corefile
      /* Invoke the callback function to create the corefile
         segment.  */
         segment.  */
      func (addr, size, read, write, exec, obfd);
      func (addr, size, read, write, exec, obfd);
    }
    }
  fclose (mapsfile);
  fclose (mapsfile);
  return 0;
  return 0;
}
}
 
 
/* Records the thread's register state for the corefile note
/* Records the thread's register state for the corefile note
   section.  */
   section.  */
 
 
static char *
static char *
linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
                               char *note_data, int *note_size)
                               char *note_data, int *note_size)
{
{
  gdb_gregset_t gregs;
  gdb_gregset_t gregs;
  gdb_fpregset_t fpregs;
  gdb_fpregset_t fpregs;
#ifdef FILL_FPXREGSET
#ifdef FILL_FPXREGSET
  gdb_fpxregset_t fpxregs;
  gdb_fpxregset_t fpxregs;
#endif
#endif
  unsigned long lwp = ptid_get_lwp (ptid);
  unsigned long lwp = ptid_get_lwp (ptid);
  struct regcache *regcache = get_thread_regcache (ptid);
  struct regcache *regcache = get_thread_regcache (ptid);
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  const struct regset *regset;
  const struct regset *regset;
  int core_regset_p;
  int core_regset_p;
  struct cleanup *old_chain;
  struct cleanup *old_chain;
 
 
  old_chain = save_inferior_ptid ();
  old_chain = save_inferior_ptid ();
  inferior_ptid = ptid;
  inferior_ptid = ptid;
  target_fetch_registers (regcache, -1);
  target_fetch_registers (regcache, -1);
  do_cleanups (old_chain);
  do_cleanups (old_chain);
 
 
  core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
  core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
  if (core_regset_p
  if (core_regset_p
      && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
      && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
                                                     sizeof (gregs))) != NULL
                                                     sizeof (gregs))) != NULL
      && regset->collect_regset != NULL)
      && regset->collect_regset != NULL)
    regset->collect_regset (regset, regcache, -1,
    regset->collect_regset (regset, regcache, -1,
                            &gregs, sizeof (gregs));
                            &gregs, sizeof (gregs));
  else
  else
    fill_gregset (regcache, &gregs, -1);
    fill_gregset (regcache, &gregs, -1);
 
 
  note_data = (char *) elfcore_write_prstatus (obfd,
  note_data = (char *) elfcore_write_prstatus (obfd,
                                               note_data,
                                               note_data,
                                               note_size,
                                               note_size,
                                               lwp,
                                               lwp,
                                               stop_signal, &gregs);
                                               stop_signal, &gregs);
 
 
  if (core_regset_p
  if (core_regset_p
      && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
      && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
                                                     sizeof (fpregs))) != NULL
                                                     sizeof (fpregs))) != NULL
      && regset->collect_regset != NULL)
      && regset->collect_regset != NULL)
    regset->collect_regset (regset, regcache, -1,
    regset->collect_regset (regset, regcache, -1,
                            &fpregs, sizeof (fpregs));
                            &fpregs, sizeof (fpregs));
  else
  else
    fill_fpregset (regcache, &fpregs, -1);
    fill_fpregset (regcache, &fpregs, -1);
 
 
  note_data = (char *) elfcore_write_prfpreg (obfd,
  note_data = (char *) elfcore_write_prfpreg (obfd,
                                              note_data,
                                              note_data,
                                              note_size,
                                              note_size,
                                              &fpregs, sizeof (fpregs));
                                              &fpregs, sizeof (fpregs));
 
 
#ifdef FILL_FPXREGSET
#ifdef FILL_FPXREGSET
  if (core_regset_p
  if (core_regset_p
      && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg-xfp",
      && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg-xfp",
                                                     sizeof (fpxregs))) != NULL
                                                     sizeof (fpxregs))) != NULL
      && regset->collect_regset != NULL)
      && regset->collect_regset != NULL)
    regset->collect_regset (regset, regcache, -1,
    regset->collect_regset (regset, regcache, -1,
                            &fpxregs, sizeof (fpxregs));
                            &fpxregs, sizeof (fpxregs));
  else
  else
    fill_fpxregset (regcache, &fpxregs, -1);
    fill_fpxregset (regcache, &fpxregs, -1);
 
 
  note_data = (char *) elfcore_write_prxfpreg (obfd,
  note_data = (char *) elfcore_write_prxfpreg (obfd,
                                               note_data,
                                               note_data,
                                               note_size,
                                               note_size,
                                               &fpxregs, sizeof (fpxregs));
                                               &fpxregs, sizeof (fpxregs));
#endif
#endif
  return note_data;
  return note_data;
}
}
 
 
struct linux_nat_corefile_thread_data
struct linux_nat_corefile_thread_data
{
{
  bfd *obfd;
  bfd *obfd;
  char *note_data;
  char *note_data;
  int *note_size;
  int *note_size;
  int num_notes;
  int num_notes;
};
};
 
 
/* Called by gdbthread.c once per thread.  Records the thread's
/* Called by gdbthread.c once per thread.  Records the thread's
   register state for the corefile note section.  */
   register state for the corefile note section.  */
 
 
static int
static int
linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
{
{
  struct linux_nat_corefile_thread_data *args = data;
  struct linux_nat_corefile_thread_data *args = data;
 
 
  args->note_data = linux_nat_do_thread_registers (args->obfd,
  args->note_data = linux_nat_do_thread_registers (args->obfd,
                                                   ti->ptid,
                                                   ti->ptid,
                                                   args->note_data,
                                                   args->note_data,
                                                   args->note_size);
                                                   args->note_size);
  args->num_notes++;
  args->num_notes++;
 
 
  return 0;
  return 0;
}
}
 
 
/* Records the register state for the corefile note section.  */
/* Records the register state for the corefile note section.  */
 
 
static char *
static char *
linux_nat_do_registers (bfd *obfd, ptid_t ptid,
linux_nat_do_registers (bfd *obfd, ptid_t ptid,
                        char *note_data, int *note_size)
                        char *note_data, int *note_size)
{
{
  return linux_nat_do_thread_registers (obfd,
  return linux_nat_do_thread_registers (obfd,
                                        ptid_build (ptid_get_pid (inferior_ptid),
                                        ptid_build (ptid_get_pid (inferior_ptid),
                                                    ptid_get_pid (inferior_ptid),
                                                    ptid_get_pid (inferior_ptid),
                                                    0),
                                                    0),
                                        note_data, note_size);
                                        note_data, note_size);
}
}
 
 
/* Fills the "to_make_corefile_note" target vector.  Builds the note
/* Fills the "to_make_corefile_note" target vector.  Builds the note
   section for a corefile, and returns it in a malloc buffer.  */
   section for a corefile, and returns it in a malloc buffer.  */
 
 
static char *
static char *
linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
{
{
  struct linux_nat_corefile_thread_data thread_args;
  struct linux_nat_corefile_thread_data thread_args;
  struct cleanup *old_chain;
  struct cleanup *old_chain;
  /* The variable size must be >= sizeof (prpsinfo_t.pr_fname).  */
  /* The variable size must be >= sizeof (prpsinfo_t.pr_fname).  */
  char fname[16] = { '\0' };
  char fname[16] = { '\0' };
  /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs).  */
  /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs).  */
  char psargs[80] = { '\0' };
  char psargs[80] = { '\0' };
  char *note_data = NULL;
  char *note_data = NULL;
  ptid_t current_ptid = inferior_ptid;
  ptid_t current_ptid = inferior_ptid;
  gdb_byte *auxv;
  gdb_byte *auxv;
  int auxv_len;
  int auxv_len;
 
 
  if (get_exec_file (0))
  if (get_exec_file (0))
    {
    {
      strncpy (fname, strrchr (get_exec_file (0), '/') + 1, sizeof (fname));
      strncpy (fname, strrchr (get_exec_file (0), '/') + 1, sizeof (fname));
      strncpy (psargs, get_exec_file (0), sizeof (psargs));
      strncpy (psargs, get_exec_file (0), sizeof (psargs));
      if (get_inferior_args ())
      if (get_inferior_args ())
        {
        {
          char *string_end;
          char *string_end;
          char *psargs_end = psargs + sizeof (psargs);
          char *psargs_end = psargs + sizeof (psargs);
 
 
          /* linux_elfcore_write_prpsinfo () handles zero unterminated
          /* linux_elfcore_write_prpsinfo () handles zero unterminated
             strings fine.  */
             strings fine.  */
          string_end = memchr (psargs, 0, sizeof (psargs));
          string_end = memchr (psargs, 0, sizeof (psargs));
          if (string_end != NULL)
          if (string_end != NULL)
            {
            {
              *string_end++ = ' ';
              *string_end++ = ' ';
              strncpy (string_end, get_inferior_args (),
              strncpy (string_end, get_inferior_args (),
                       psargs_end - string_end);
                       psargs_end - string_end);
            }
            }
        }
        }
      note_data = (char *) elfcore_write_prpsinfo (obfd,
      note_data = (char *) elfcore_write_prpsinfo (obfd,
                                                   note_data,
                                                   note_data,
                                                   note_size, fname, psargs);
                                                   note_size, fname, psargs);
    }
    }
 
 
  /* Dump information for threads.  */
  /* Dump information for threads.  */
  thread_args.obfd = obfd;
  thread_args.obfd = obfd;
  thread_args.note_data = note_data;
  thread_args.note_data = note_data;
  thread_args.note_size = note_size;
  thread_args.note_size = note_size;
  thread_args.num_notes = 0;
  thread_args.num_notes = 0;
  iterate_over_lwps (linux_nat_corefile_thread_callback, &thread_args);
  iterate_over_lwps (linux_nat_corefile_thread_callback, &thread_args);
  if (thread_args.num_notes == 0)
  if (thread_args.num_notes == 0)
    {
    {
      /* iterate_over_threads didn't come up with any threads; just
      /* iterate_over_threads didn't come up with any threads; just
         use inferior_ptid.  */
         use inferior_ptid.  */
      note_data = linux_nat_do_registers (obfd, inferior_ptid,
      note_data = linux_nat_do_registers (obfd, inferior_ptid,
                                          note_data, note_size);
                                          note_data, note_size);
    }
    }
  else
  else
    {
    {
      note_data = thread_args.note_data;
      note_data = thread_args.note_data;
    }
    }
 
 
  auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
  auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
                                NULL, &auxv);
                                NULL, &auxv);
  if (auxv_len > 0)
  if (auxv_len > 0)
    {
    {
      note_data = elfcore_write_note (obfd, note_data, note_size,
      note_data = elfcore_write_note (obfd, note_data, note_size,
                                      "CORE", NT_AUXV, auxv, auxv_len);
                                      "CORE", NT_AUXV, auxv, auxv_len);
      xfree (auxv);
      xfree (auxv);
    }
    }
 
 
  make_cleanup (xfree, note_data);
  make_cleanup (xfree, note_data);
  return note_data;
  return note_data;
}
}
 
 
/* Implement the "info proc" command.  */
/* Implement the "info proc" command.  */
 
 
static void
static void
linux_nat_info_proc_cmd (char *args, int from_tty)
linux_nat_info_proc_cmd (char *args, int from_tty)
{
{
  long long pid = PIDGET (inferior_ptid);
  long long pid = PIDGET (inferior_ptid);
  FILE *procfile;
  FILE *procfile;
  char **argv = NULL;
  char **argv = NULL;
  char buffer[MAXPATHLEN];
  char buffer[MAXPATHLEN];
  char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
  char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
  int cmdline_f = 1;
  int cmdline_f = 1;
  int cwd_f = 1;
  int cwd_f = 1;
  int exe_f = 1;
  int exe_f = 1;
  int mappings_f = 0;
  int mappings_f = 0;
  int environ_f = 0;
  int environ_f = 0;
  int status_f = 0;
  int status_f = 0;
  int stat_f = 0;
  int stat_f = 0;
  int all = 0;
  int all = 0;
  struct stat dummy;
  struct stat dummy;
 
 
  if (args)
  if (args)
    {
    {
      /* Break up 'args' into an argv array.  */
      /* Break up 'args' into an argv array.  */
      if ((argv = buildargv (args)) == NULL)
      if ((argv = buildargv (args)) == NULL)
        nomem (0);
        nomem (0);
      else
      else
        make_cleanup_freeargv (argv);
        make_cleanup_freeargv (argv);
    }
    }
  while (argv != NULL && *argv != NULL)
  while (argv != NULL && *argv != NULL)
    {
    {
      if (isdigit (argv[0][0]))
      if (isdigit (argv[0][0]))
        {
        {
          pid = strtoul (argv[0], NULL, 10);
          pid = strtoul (argv[0], NULL, 10);
        }
        }
      else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
      else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
        {
        {
          mappings_f = 1;
          mappings_f = 1;
        }
        }
      else if (strcmp (argv[0], "status") == 0)
      else if (strcmp (argv[0], "status") == 0)
        {
        {
          status_f = 1;
          status_f = 1;
        }
        }
      else if (strcmp (argv[0], "stat") == 0)
      else if (strcmp (argv[0], "stat") == 0)
        {
        {
          stat_f = 1;
          stat_f = 1;
        }
        }
      else if (strcmp (argv[0], "cmd") == 0)
      else if (strcmp (argv[0], "cmd") == 0)
        {
        {
          cmdline_f = 1;
          cmdline_f = 1;
        }
        }
      else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
      else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
        {
        {
          exe_f = 1;
          exe_f = 1;
        }
        }
      else if (strcmp (argv[0], "cwd") == 0)
      else if (strcmp (argv[0], "cwd") == 0)
        {
        {
          cwd_f = 1;
          cwd_f = 1;
        }
        }
      else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
      else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
        {
        {
          all = 1;
          all = 1;
        }
        }
      else
      else
        {
        {
          /* [...] (future options here) */
          /* [...] (future options here) */
        }
        }
      argv++;
      argv++;
    }
    }
  if (pid == 0)
  if (pid == 0)
    error (_("No current process: you must name one."));
    error (_("No current process: you must name one."));
 
 
  sprintf (fname1, "/proc/%lld", pid);
  sprintf (fname1, "/proc/%lld", pid);
  if (stat (fname1, &dummy) != 0)
  if (stat (fname1, &dummy) != 0)
    error (_("No /proc directory: '%s'"), fname1);
    error (_("No /proc directory: '%s'"), fname1);
 
 
  printf_filtered (_("process %lld\n"), pid);
  printf_filtered (_("process %lld\n"), pid);
  if (cmdline_f || all)
  if (cmdline_f || all)
    {
    {
      sprintf (fname1, "/proc/%lld/cmdline", pid);
      sprintf (fname1, "/proc/%lld/cmdline", pid);
      if ((procfile = fopen (fname1, "r")) != NULL)
      if ((procfile = fopen (fname1, "r")) != NULL)
        {
        {
          fgets (buffer, sizeof (buffer), procfile);
          fgets (buffer, sizeof (buffer), procfile);
          printf_filtered ("cmdline = '%s'\n", buffer);
          printf_filtered ("cmdline = '%s'\n", buffer);
          fclose (procfile);
          fclose (procfile);
        }
        }
      else
      else
        warning (_("unable to open /proc file '%s'"), fname1);
        warning (_("unable to open /proc file '%s'"), fname1);
    }
    }
  if (cwd_f || all)
  if (cwd_f || all)
    {
    {
      sprintf (fname1, "/proc/%lld/cwd", pid);
      sprintf (fname1, "/proc/%lld/cwd", pid);
      memset (fname2, 0, sizeof (fname2));
      memset (fname2, 0, sizeof (fname2));
      if (readlink (fname1, fname2, sizeof (fname2)) > 0)
      if (readlink (fname1, fname2, sizeof (fname2)) > 0)
        printf_filtered ("cwd = '%s'\n", fname2);
        printf_filtered ("cwd = '%s'\n", fname2);
      else
      else
        warning (_("unable to read link '%s'"), fname1);
        warning (_("unable to read link '%s'"), fname1);
    }
    }
  if (exe_f || all)
  if (exe_f || all)
    {
    {
      sprintf (fname1, "/proc/%lld/exe", pid);
      sprintf (fname1, "/proc/%lld/exe", pid);
      memset (fname2, 0, sizeof (fname2));
      memset (fname2, 0, sizeof (fname2));
      if (readlink (fname1, fname2, sizeof (fname2)) > 0)
      if (readlink (fname1, fname2, sizeof (fname2)) > 0)
        printf_filtered ("exe = '%s'\n", fname2);
        printf_filtered ("exe = '%s'\n", fname2);
      else
      else
        warning (_("unable to read link '%s'"), fname1);
        warning (_("unable to read link '%s'"), fname1);
    }
    }
  if (mappings_f || all)
  if (mappings_f || all)
    {
    {
      sprintf (fname1, "/proc/%lld/maps", pid);
      sprintf (fname1, "/proc/%lld/maps", pid);
      if ((procfile = fopen (fname1, "r")) != NULL)
      if ((procfile = fopen (fname1, "r")) != NULL)
        {
        {
          long long addr, endaddr, size, offset, inode;
          long long addr, endaddr, size, offset, inode;
          char permissions[8], device[8], filename[MAXPATHLEN];
          char permissions[8], device[8], filename[MAXPATHLEN];
 
 
          printf_filtered (_("Mapped address spaces:\n\n"));
          printf_filtered (_("Mapped address spaces:\n\n"));
          if (gdbarch_addr_bit (current_gdbarch) == 32)
          if (gdbarch_addr_bit (current_gdbarch) == 32)
            {
            {
              printf_filtered ("\t%10s %10s %10s %10s %7s\n",
              printf_filtered ("\t%10s %10s %10s %10s %7s\n",
                           "Start Addr",
                           "Start Addr",
                           "  End Addr",
                           "  End Addr",
                           "      Size", "    Offset", "objfile");
                           "      Size", "    Offset", "objfile");
            }
            }
          else
          else
            {
            {
              printf_filtered ("  %18s %18s %10s %10s %7s\n",
              printf_filtered ("  %18s %18s %10s %10s %7s\n",
                           "Start Addr",
                           "Start Addr",
                           "  End Addr",
                           "  End Addr",
                           "      Size", "    Offset", "objfile");
                           "      Size", "    Offset", "objfile");
            }
            }
 
 
          while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
          while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
                               &offset, &device[0], &inode, &filename[0]))
                               &offset, &device[0], &inode, &filename[0]))
            {
            {
              size = endaddr - addr;
              size = endaddr - addr;
 
 
              /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
              /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
                 calls here (and possibly above) should be abstracted
                 calls here (and possibly above) should be abstracted
                 out into their own functions?  Andrew suggests using
                 out into their own functions?  Andrew suggests using
                 a generic local_address_string instead to print out
                 a generic local_address_string instead to print out
                 the addresses; that makes sense to me, too.  */
                 the addresses; that makes sense to me, too.  */
 
 
              if (gdbarch_addr_bit (current_gdbarch) == 32)
              if (gdbarch_addr_bit (current_gdbarch) == 32)
                {
                {
                  printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
                  printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
                               (unsigned long) addr,    /* FIXME: pr_addr */
                               (unsigned long) addr,    /* FIXME: pr_addr */
                               (unsigned long) endaddr,
                               (unsigned long) endaddr,
                               (int) size,
                               (int) size,
                               (unsigned int) offset,
                               (unsigned int) offset,
                               filename[0] ? filename : "");
                               filename[0] ? filename : "");
                }
                }
              else
              else
                {
                {
                  printf_filtered ("  %#18lx %#18lx %#10x %#10x %7s\n",
                  printf_filtered ("  %#18lx %#18lx %#10x %#10x %7s\n",
                               (unsigned long) addr,    /* FIXME: pr_addr */
                               (unsigned long) addr,    /* FIXME: pr_addr */
                               (unsigned long) endaddr,
                               (unsigned long) endaddr,
                               (int) size,
                               (int) size,
                               (unsigned int) offset,
                               (unsigned int) offset,
                               filename[0] ? filename : "");
                               filename[0] ? filename : "");
                }
                }
            }
            }
 
 
          fclose (procfile);
          fclose (procfile);
        }
        }
      else
      else
        warning (_("unable to open /proc file '%s'"), fname1);
        warning (_("unable to open /proc file '%s'"), fname1);
    }
    }
  if (status_f || all)
  if (status_f || all)
    {
    {
      sprintf (fname1, "/proc/%lld/status", pid);
      sprintf (fname1, "/proc/%lld/status", pid);
      if ((procfile = fopen (fname1, "r")) != NULL)
      if ((procfile = fopen (fname1, "r")) != NULL)
        {
        {
          while (fgets (buffer, sizeof (buffer), procfile) != NULL)
          while (fgets (buffer, sizeof (buffer), procfile) != NULL)
            puts_filtered (buffer);
            puts_filtered (buffer);
          fclose (procfile);
          fclose (procfile);
        }
        }
      else
      else
        warning (_("unable to open /proc file '%s'"), fname1);
        warning (_("unable to open /proc file '%s'"), fname1);
    }
    }
  if (stat_f || all)
  if (stat_f || all)
    {
    {
      sprintf (fname1, "/proc/%lld/stat", pid);
      sprintf (fname1, "/proc/%lld/stat", pid);
      if ((procfile = fopen (fname1, "r")) != NULL)
      if ((procfile = fopen (fname1, "r")) != NULL)
        {
        {
          int itmp;
          int itmp;
          char ctmp;
          char ctmp;
          long ltmp;
          long ltmp;
 
 
          if (fscanf (procfile, "%d ", &itmp) > 0)
          if (fscanf (procfile, "%d ", &itmp) > 0)
            printf_filtered (_("Process: %d\n"), itmp);
            printf_filtered (_("Process: %d\n"), itmp);
          if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
          if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
            printf_filtered (_("Exec file: %s\n"), buffer);
            printf_filtered (_("Exec file: %s\n"), buffer);
          if (fscanf (procfile, "%c ", &ctmp) > 0)
          if (fscanf (procfile, "%c ", &ctmp) > 0)
            printf_filtered (_("State: %c\n"), ctmp);
            printf_filtered (_("State: %c\n"), ctmp);
          if (fscanf (procfile, "%d ", &itmp) > 0)
          if (fscanf (procfile, "%d ", &itmp) > 0)
            printf_filtered (_("Parent process: %d\n"), itmp);
            printf_filtered (_("Parent process: %d\n"), itmp);
          if (fscanf (procfile, "%d ", &itmp) > 0)
          if (fscanf (procfile, "%d ", &itmp) > 0)
            printf_filtered (_("Process group: %d\n"), itmp);
            printf_filtered (_("Process group: %d\n"), itmp);
          if (fscanf (procfile, "%d ", &itmp) > 0)
          if (fscanf (procfile, "%d ", &itmp) > 0)
            printf_filtered (_("Session id: %d\n"), itmp);
            printf_filtered (_("Session id: %d\n"), itmp);
          if (fscanf (procfile, "%d ", &itmp) > 0)
          if (fscanf (procfile, "%d ", &itmp) > 0)
            printf_filtered (_("TTY: %d\n"), itmp);
            printf_filtered (_("TTY: %d\n"), itmp);
          if (fscanf (procfile, "%d ", &itmp) > 0)
          if (fscanf (procfile, "%d ", &itmp) > 0)
            printf_filtered (_("TTY owner process group: %d\n"), itmp);
            printf_filtered (_("TTY owner process group: %d\n"), itmp);
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
            printf_filtered (_("Flags: 0x%lx\n"), ltmp);
            printf_filtered (_("Flags: 0x%lx\n"), ltmp);
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
            printf_filtered (_("Minor faults (no memory page): %lu\n"),
            printf_filtered (_("Minor faults (no memory page): %lu\n"),
                             (unsigned long) ltmp);
                             (unsigned long) ltmp);
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
            printf_filtered (_("Minor faults, children: %lu\n"),
            printf_filtered (_("Minor faults, children: %lu\n"),
                             (unsigned long) ltmp);
                             (unsigned long) ltmp);
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
            printf_filtered (_("Major faults (memory page faults): %lu\n"),
            printf_filtered (_("Major faults (memory page faults): %lu\n"),
                             (unsigned long) ltmp);
                             (unsigned long) ltmp);
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
            printf_filtered (_("Major faults, children: %lu\n"),
            printf_filtered (_("Major faults, children: %lu\n"),
                             (unsigned long) ltmp);
                             (unsigned long) ltmp);
          if (fscanf (procfile, "%ld ", &ltmp) > 0)
          if (fscanf (procfile, "%ld ", &ltmp) > 0)
            printf_filtered (_("utime: %ld\n"), ltmp);
            printf_filtered (_("utime: %ld\n"), ltmp);
          if (fscanf (procfile, "%ld ", &ltmp) > 0)
          if (fscanf (procfile, "%ld ", &ltmp) > 0)
            printf_filtered (_("stime: %ld\n"), ltmp);
            printf_filtered (_("stime: %ld\n"), ltmp);
          if (fscanf (procfile, "%ld ", &ltmp) > 0)
          if (fscanf (procfile, "%ld ", &ltmp) > 0)
            printf_filtered (_("utime, children: %ld\n"), ltmp);
            printf_filtered (_("utime, children: %ld\n"), ltmp);
          if (fscanf (procfile, "%ld ", &ltmp) > 0)
          if (fscanf (procfile, "%ld ", &ltmp) > 0)
            printf_filtered (_("stime, children: %ld\n"), ltmp);
            printf_filtered (_("stime, children: %ld\n"), ltmp);
          if (fscanf (procfile, "%ld ", &ltmp) > 0)
          if (fscanf (procfile, "%ld ", &ltmp) > 0)
            printf_filtered (_("jiffies remaining in current time slice: %ld\n"),
            printf_filtered (_("jiffies remaining in current time slice: %ld\n"),
                             ltmp);
                             ltmp);
          if (fscanf (procfile, "%ld ", &ltmp) > 0)
          if (fscanf (procfile, "%ld ", &ltmp) > 0)
            printf_filtered (_("'nice' value: %ld\n"), ltmp);
            printf_filtered (_("'nice' value: %ld\n"), ltmp);
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
            printf_filtered (_("jiffies until next timeout: %lu\n"),
            printf_filtered (_("jiffies until next timeout: %lu\n"),
                             (unsigned long) ltmp);
                             (unsigned long) ltmp);
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
            printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
            printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
                             (unsigned long) ltmp);
                             (unsigned long) ltmp);
          if (fscanf (procfile, "%ld ", &ltmp) > 0)
          if (fscanf (procfile, "%ld ", &ltmp) > 0)
            printf_filtered (_("start time (jiffies since system boot): %ld\n"),
            printf_filtered (_("start time (jiffies since system boot): %ld\n"),
                             ltmp);
                             ltmp);
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
            printf_filtered (_("Virtual memory size: %lu\n"),
            printf_filtered (_("Virtual memory size: %lu\n"),
                             (unsigned long) ltmp);
                             (unsigned long) ltmp);
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
            printf_filtered (_("Resident set size: %lu\n"), (unsigned long) ltmp);
            printf_filtered (_("Resident set size: %lu\n"), (unsigned long) ltmp);
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
            printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
            printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
            printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
            printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
            printf_filtered (_("End of text: 0x%lx\n"), ltmp);
            printf_filtered (_("End of text: 0x%lx\n"), ltmp);
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
            printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
            printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
#if 0                           /* Don't know how architecture-dependent the rest is...
#if 0                           /* Don't know how architecture-dependent the rest is...
                                   Anyway the signal bitmap info is available from "status".  */
                                   Anyway the signal bitmap info is available from "status".  */
          if (fscanf (procfile, "%lu ", &ltmp) > 0)      /* FIXME arch? */
          if (fscanf (procfile, "%lu ", &ltmp) > 0)      /* FIXME arch? */
            printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
            printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
          if (fscanf (procfile, "%lu ", &ltmp) > 0)      /* FIXME arch? */
          if (fscanf (procfile, "%lu ", &ltmp) > 0)      /* FIXME arch? */
            printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
            printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
          if (fscanf (procfile, "%ld ", &ltmp) > 0)
          if (fscanf (procfile, "%ld ", &ltmp) > 0)
            printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
            printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
          if (fscanf (procfile, "%ld ", &ltmp) > 0)
          if (fscanf (procfile, "%ld ", &ltmp) > 0)
            printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
            printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
          if (fscanf (procfile, "%ld ", &ltmp) > 0)
          if (fscanf (procfile, "%ld ", &ltmp) > 0)
            printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
            printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
          if (fscanf (procfile, "%ld ", &ltmp) > 0)
          if (fscanf (procfile, "%ld ", &ltmp) > 0)
            printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
            printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
          if (fscanf (procfile, "%lu ", &ltmp) > 0)      /* FIXME arch? */
          if (fscanf (procfile, "%lu ", &ltmp) > 0)      /* FIXME arch? */
            printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
            printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
#endif
#endif
          fclose (procfile);
          fclose (procfile);
        }
        }
      else
      else
        warning (_("unable to open /proc file '%s'"), fname1);
        warning (_("unable to open /proc file '%s'"), fname1);
    }
    }
}
}
 
 
/* Implement the to_xfer_partial interface for memory reads using the /proc
/* Implement the to_xfer_partial interface for memory reads using the /proc
   filesystem.  Because we can use a single read() call for /proc, this
   filesystem.  Because we can use a single read() call for /proc, this
   can be much more efficient than banging away at PTRACE_PEEKTEXT,
   can be much more efficient than banging away at PTRACE_PEEKTEXT,
   but it doesn't support writes.  */
   but it doesn't support writes.  */
 
 
static LONGEST
static LONGEST
linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
                         const char *annex, gdb_byte *readbuf,
                         const char *annex, gdb_byte *readbuf,
                         const gdb_byte *writebuf,
                         const gdb_byte *writebuf,
                         ULONGEST offset, LONGEST len)
                         ULONGEST offset, LONGEST len)
{
{
  LONGEST ret;
  LONGEST ret;
  int fd;
  int fd;
  char filename[64];
  char filename[64];
 
 
  if (object != TARGET_OBJECT_MEMORY || !readbuf)
  if (object != TARGET_OBJECT_MEMORY || !readbuf)
    return 0;
    return 0;
 
 
  /* Don't bother for one word.  */
  /* Don't bother for one word.  */
  if (len < 3 * sizeof (long))
  if (len < 3 * sizeof (long))
    return 0;
    return 0;
 
 
  /* We could keep this file open and cache it - possibly one per
  /* We could keep this file open and cache it - possibly one per
     thread.  That requires some juggling, but is even faster.  */
     thread.  That requires some juggling, but is even faster.  */
  sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
  sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
  fd = open (filename, O_RDONLY | O_LARGEFILE);
  fd = open (filename, O_RDONLY | O_LARGEFILE);
  if (fd == -1)
  if (fd == -1)
    return 0;
    return 0;
 
 
  /* If pread64 is available, use it.  It's faster if the kernel
  /* If pread64 is available, use it.  It's faster if the kernel
     supports it (only one syscall), and it's 64-bit safe even on
     supports it (only one syscall), and it's 64-bit safe even on
     32-bit platforms (for instance, SPARC debugging a SPARC64
     32-bit platforms (for instance, SPARC debugging a SPARC64
     application).  */
     application).  */
#ifdef HAVE_PREAD64
#ifdef HAVE_PREAD64
  if (pread64 (fd, readbuf, len, offset) != len)
  if (pread64 (fd, readbuf, len, offset) != len)
#else
#else
  if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
  if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
#endif
#endif
    ret = 0;
    ret = 0;
  else
  else
    ret = len;
    ret = len;
 
 
  close (fd);
  close (fd);
  return ret;
  return ret;
}
}
 
 
/* Parse LINE as a signal set and add its set bits to SIGS.  */
/* Parse LINE as a signal set and add its set bits to SIGS.  */
 
 
static void
static void
add_line_to_sigset (const char *line, sigset_t *sigs)
add_line_to_sigset (const char *line, sigset_t *sigs)
{
{
  int len = strlen (line) - 1;
  int len = strlen (line) - 1;
  const char *p;
  const char *p;
  int signum;
  int signum;
 
 
  if (line[len] != '\n')
  if (line[len] != '\n')
    error (_("Could not parse signal set: %s"), line);
    error (_("Could not parse signal set: %s"), line);
 
 
  p = line;
  p = line;
  signum = len * 4;
  signum = len * 4;
  while (len-- > 0)
  while (len-- > 0)
    {
    {
      int digit;
      int digit;
 
 
      if (*p >= '0' && *p <= '9')
      if (*p >= '0' && *p <= '9')
        digit = *p - '0';
        digit = *p - '0';
      else if (*p >= 'a' && *p <= 'f')
      else if (*p >= 'a' && *p <= 'f')
        digit = *p - 'a' + 10;
        digit = *p - 'a' + 10;
      else
      else
        error (_("Could not parse signal set: %s"), line);
        error (_("Could not parse signal set: %s"), line);
 
 
      signum -= 4;
      signum -= 4;
 
 
      if (digit & 1)
      if (digit & 1)
        sigaddset (sigs, signum + 1);
        sigaddset (sigs, signum + 1);
      if (digit & 2)
      if (digit & 2)
        sigaddset (sigs, signum + 2);
        sigaddset (sigs, signum + 2);
      if (digit & 4)
      if (digit & 4)
        sigaddset (sigs, signum + 3);
        sigaddset (sigs, signum + 3);
      if (digit & 8)
      if (digit & 8)
        sigaddset (sigs, signum + 4);
        sigaddset (sigs, signum + 4);
 
 
      p++;
      p++;
    }
    }
}
}
 
 
/* Find process PID's pending signals from /proc/pid/status and set
/* Find process PID's pending signals from /proc/pid/status and set
   SIGS to match.  */
   SIGS to match.  */
 
 
void
void
linux_proc_pending_signals (int pid, sigset_t *pending, sigset_t *blocked, sigset_t *ignored)
linux_proc_pending_signals (int pid, sigset_t *pending, sigset_t *blocked, sigset_t *ignored)
{
{
  FILE *procfile;
  FILE *procfile;
  char buffer[MAXPATHLEN], fname[MAXPATHLEN];
  char buffer[MAXPATHLEN], fname[MAXPATHLEN];
  int signum;
  int signum;
 
 
  sigemptyset (pending);
  sigemptyset (pending);
  sigemptyset (blocked);
  sigemptyset (blocked);
  sigemptyset (ignored);
  sigemptyset (ignored);
  sprintf (fname, "/proc/%d/status", pid);
  sprintf (fname, "/proc/%d/status", pid);
  procfile = fopen (fname, "r");
  procfile = fopen (fname, "r");
  if (procfile == NULL)
  if (procfile == NULL)
    error (_("Could not open %s"), fname);
    error (_("Could not open %s"), fname);
 
 
  while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
  while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
    {
    {
      /* Normal queued signals are on the SigPnd line in the status
      /* Normal queued signals are on the SigPnd line in the status
         file.  However, 2.6 kernels also have a "shared" pending
         file.  However, 2.6 kernels also have a "shared" pending
         queue for delivering signals to a thread group, so check for
         queue for delivering signals to a thread group, so check for
         a ShdPnd line also.
         a ShdPnd line also.
 
 
         Unfortunately some Red Hat kernels include the shared pending
         Unfortunately some Red Hat kernels include the shared pending
         queue but not the ShdPnd status field.  */
         queue but not the ShdPnd status field.  */
 
 
      if (strncmp (buffer, "SigPnd:\t", 8) == 0)
      if (strncmp (buffer, "SigPnd:\t", 8) == 0)
        add_line_to_sigset (buffer + 8, pending);
        add_line_to_sigset (buffer + 8, pending);
      else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
      else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
        add_line_to_sigset (buffer + 8, pending);
        add_line_to_sigset (buffer + 8, pending);
      else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
      else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
        add_line_to_sigset (buffer + 8, blocked);
        add_line_to_sigset (buffer + 8, blocked);
      else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
      else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
        add_line_to_sigset (buffer + 8, ignored);
        add_line_to_sigset (buffer + 8, ignored);
    }
    }
 
 
  fclose (procfile);
  fclose (procfile);
}
}
 
 
static LONGEST
static LONGEST
linux_xfer_partial (struct target_ops *ops, enum target_object object,
linux_xfer_partial (struct target_ops *ops, enum target_object object,
                    const char *annex, gdb_byte *readbuf,
                    const char *annex, gdb_byte *readbuf,
                    const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
                    const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
{
{
  LONGEST xfer;
  LONGEST xfer;
 
 
  if (object == TARGET_OBJECT_AUXV)
  if (object == TARGET_OBJECT_AUXV)
    return procfs_xfer_auxv (ops, object, annex, readbuf, writebuf,
    return procfs_xfer_auxv (ops, object, annex, readbuf, writebuf,
                             offset, len);
                             offset, len);
 
 
  xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
  xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
                                  offset, len);
                                  offset, len);
  if (xfer != 0)
  if (xfer != 0)
    return xfer;
    return xfer;
 
 
  return super_xfer_partial (ops, object, annex, readbuf, writebuf,
  return super_xfer_partial (ops, object, annex, readbuf, writebuf,
                             offset, len);
                             offset, len);
}
}
 
 
/* Create a prototype generic GNU/Linux target.  The client can override
/* Create a prototype generic GNU/Linux target.  The client can override
   it with local methods.  */
   it with local methods.  */
 
 
static void
static void
linux_target_install_ops (struct target_ops *t)
linux_target_install_ops (struct target_ops *t)
{
{
  t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
  t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
  t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
  t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
  t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
  t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
  t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
  t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
  t->to_post_startup_inferior = linux_child_post_startup_inferior;
  t->to_post_startup_inferior = linux_child_post_startup_inferior;
  t->to_post_attach = linux_child_post_attach;
  t->to_post_attach = linux_child_post_attach;
  t->to_follow_fork = linux_child_follow_fork;
  t->to_follow_fork = linux_child_follow_fork;
  t->to_find_memory_regions = linux_nat_find_memory_regions;
  t->to_find_memory_regions = linux_nat_find_memory_regions;
  t->to_make_corefile_notes = linux_nat_make_corefile_notes;
  t->to_make_corefile_notes = linux_nat_make_corefile_notes;
 
 
  super_xfer_partial = t->to_xfer_partial;
  super_xfer_partial = t->to_xfer_partial;
  t->to_xfer_partial = linux_xfer_partial;
  t->to_xfer_partial = linux_xfer_partial;
}
}
 
 
struct target_ops *
struct target_ops *
linux_target (void)
linux_target (void)
{
{
  struct target_ops *t;
  struct target_ops *t;
 
 
  t = inf_ptrace_target ();
  t = inf_ptrace_target ();
  linux_target_install_ops (t);
  linux_target_install_ops (t);
 
 
  return t;
  return t;
}
}
 
 
struct target_ops *
struct target_ops *
linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
{
{
  struct target_ops *t;
  struct target_ops *t;
 
 
  t = inf_ptrace_trad_target (register_u_offset);
  t = inf_ptrace_trad_target (register_u_offset);
  linux_target_install_ops (t);
  linux_target_install_ops (t);
 
 
  return t;
  return t;
}
}
 
 
void
void
linux_nat_add_target (struct target_ops *t)
linux_nat_add_target (struct target_ops *t)
{
{
  /* Save the provided single-threaded target.  We save this in a separate
  /* Save the provided single-threaded target.  We save this in a separate
     variable because another target we've inherited from (e.g. inf-ptrace)
     variable because another target we've inherited from (e.g. inf-ptrace)
     may have saved a pointer to T; we want to use it for the final
     may have saved a pointer to T; we want to use it for the final
     process stratum target.  */
     process stratum target.  */
  linux_ops_saved = *t;
  linux_ops_saved = *t;
  linux_ops = &linux_ops_saved;
  linux_ops = &linux_ops_saved;
 
 
  /* Override some methods for multithreading.  */
  /* Override some methods for multithreading.  */
  t->to_attach = linux_nat_attach;
  t->to_attach = linux_nat_attach;
  t->to_detach = linux_nat_detach;
  t->to_detach = linux_nat_detach;
  t->to_resume = linux_nat_resume;
  t->to_resume = linux_nat_resume;
  t->to_wait = linux_nat_wait;
  t->to_wait = linux_nat_wait;
  t->to_xfer_partial = linux_nat_xfer_partial;
  t->to_xfer_partial = linux_nat_xfer_partial;
  t->to_kill = linux_nat_kill;
  t->to_kill = linux_nat_kill;
  t->to_mourn_inferior = linux_nat_mourn_inferior;
  t->to_mourn_inferior = linux_nat_mourn_inferior;
  t->to_thread_alive = linux_nat_thread_alive;
  t->to_thread_alive = linux_nat_thread_alive;
  t->to_pid_to_str = linux_nat_pid_to_str;
  t->to_pid_to_str = linux_nat_pid_to_str;
  t->to_has_thread_control = tc_schedlock;
  t->to_has_thread_control = tc_schedlock;
 
 
  /* We don't change the stratum; this target will sit at
  /* We don't change the stratum; this target will sit at
     process_stratum and thread_db will set at thread_stratum.  This
     process_stratum and thread_db will set at thread_stratum.  This
     is a little strange, since this is a multi-threaded-capable
     is a little strange, since this is a multi-threaded-capable
     target, but we want to be on the stack below thread_db, and we
     target, but we want to be on the stack below thread_db, and we
     also want to be used for single-threaded processes.  */
     also want to be used for single-threaded processes.  */
 
 
  add_target (t);
  add_target (t);
 
 
  /* TODO: Eliminate this and have libthread_db use
  /* TODO: Eliminate this and have libthread_db use
     find_target_beneath.  */
     find_target_beneath.  */
  thread_db_init (t);
  thread_db_init (t);
}
}
 
 
/* Register a method to call whenever a new thread is attached.  */
/* Register a method to call whenever a new thread is attached.  */
void
void
linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
{
{
  /* Save the pointer.  We only support a single registered instance
  /* Save the pointer.  We only support a single registered instance
     of the GNU/Linux native target, so we do not need to map this to
     of the GNU/Linux native target, so we do not need to map this to
     T.  */
     T.  */
  linux_nat_new_thread = new_thread;
  linux_nat_new_thread = new_thread;
}
}
 
 
/* Return the saved siginfo associated with PTID.  */
/* Return the saved siginfo associated with PTID.  */
struct siginfo *
struct siginfo *
linux_nat_get_siginfo (ptid_t ptid)
linux_nat_get_siginfo (ptid_t ptid)
{
{
  struct lwp_info *lp = find_lwp_pid (ptid);
  struct lwp_info *lp = find_lwp_pid (ptid);
 
 
  gdb_assert (lp != NULL);
  gdb_assert (lp != NULL);
 
 
  return &lp->siginfo;
  return &lp->siginfo;
}
}
 
 
void
void
_initialize_linux_nat (void)
_initialize_linux_nat (void)
{
{
  struct sigaction action;
  struct sigaction action;
 
 
  add_info ("proc", linux_nat_info_proc_cmd, _("\
  add_info ("proc", linux_nat_info_proc_cmd, _("\
Show /proc process information about any running process.\n\
Show /proc process information about any running process.\n\
Specify any process id, or use the program being debugged by default.\n\
Specify any process id, or use the program being debugged by default.\n\
Specify any of the following keywords for detailed info:\n\
Specify any of the following keywords for detailed info:\n\
  mappings -- list of mapped memory regions.\n\
  mappings -- list of mapped memory regions.\n\
  stat     -- list a bunch of random process info.\n\
  stat     -- list a bunch of random process info.\n\
  status   -- list a different bunch of random process info.\n\
  status   -- list a different bunch of random process info.\n\
  all      -- list all available /proc info."));
  all      -- list all available /proc info."));
 
 
  /* Save the original signal mask.  */
  /* Save the original signal mask.  */
  sigprocmask (SIG_SETMASK, NULL, &normal_mask);
  sigprocmask (SIG_SETMASK, NULL, &normal_mask);
 
 
  action.sa_handler = sigchld_handler;
  action.sa_handler = sigchld_handler;
  sigemptyset (&action.sa_mask);
  sigemptyset (&action.sa_mask);
  action.sa_flags = SA_RESTART;
  action.sa_flags = SA_RESTART;
  sigaction (SIGCHLD, &action, NULL);
  sigaction (SIGCHLD, &action, NULL);
 
 
  /* Make sure we don't block SIGCHLD during a sigsuspend.  */
  /* Make sure we don't block SIGCHLD during a sigsuspend.  */
  sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
  sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
  sigdelset (&suspend_mask, SIGCHLD);
  sigdelset (&suspend_mask, SIGCHLD);
 
 
  sigemptyset (&blocked_mask);
  sigemptyset (&blocked_mask);
 
 
  add_setshow_zinteger_cmd ("lin-lwp", no_class, &debug_linux_nat, _("\
  add_setshow_zinteger_cmd ("lin-lwp", no_class, &debug_linux_nat, _("\
Set debugging of GNU/Linux lwp module."), _("\
Set debugging of GNU/Linux lwp module."), _("\
Show debugging of GNU/Linux lwp module."), _("\
Show debugging of GNU/Linux lwp module."), _("\
Enables printf debugging output."),
Enables printf debugging output."),
                            NULL,
                            NULL,
                            show_debug_linux_nat,
                            show_debug_linux_nat,
                            &setdebuglist, &showdebuglist);
                            &setdebuglist, &showdebuglist);
}
}


 
 
/* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
/* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
   the GNU/Linux Threads library and therefore doesn't really belong
   the GNU/Linux Threads library and therefore doesn't really belong
   here.  */
   here.  */
 
 
/* Read variable NAME in the target and return its value if found.
/* Read variable NAME in the target and return its value if found.
   Otherwise return zero.  It is assumed that the type of the variable
   Otherwise return zero.  It is assumed that the type of the variable
   is `int'.  */
   is `int'.  */
 
 
static int
static int
get_signo (const char *name)
get_signo (const char *name)
{
{
  struct minimal_symbol *ms;
  struct minimal_symbol *ms;
  int signo;
  int signo;
 
 
  ms = lookup_minimal_symbol (name, NULL, NULL);
  ms = lookup_minimal_symbol (name, NULL, NULL);
  if (ms == NULL)
  if (ms == NULL)
    return 0;
    return 0;
 
 
  if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
  if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
                          sizeof (signo)) != 0)
                          sizeof (signo)) != 0)
    return 0;
    return 0;
 
 
  return signo;
  return signo;
}
}
 
 
/* Return the set of signals used by the threads library in *SET.  */
/* Return the set of signals used by the threads library in *SET.  */
 
 
void
void
lin_thread_get_thread_signals (sigset_t *set)
lin_thread_get_thread_signals (sigset_t *set)
{
{
  struct sigaction action;
  struct sigaction action;
  int restart, cancel;
  int restart, cancel;
 
 
  sigemptyset (set);
  sigemptyset (set);
 
 
  restart = get_signo ("__pthread_sig_restart");
  restart = get_signo ("__pthread_sig_restart");
  cancel = get_signo ("__pthread_sig_cancel");
  cancel = get_signo ("__pthread_sig_cancel");
 
 
  /* LinuxThreads normally uses the first two RT signals, but in some legacy
  /* LinuxThreads normally uses the first two RT signals, but in some legacy
     cases may use SIGUSR1/SIGUSR2.  NPTL always uses RT signals, but does
     cases may use SIGUSR1/SIGUSR2.  NPTL always uses RT signals, but does
     not provide any way for the debugger to query the signal numbers -
     not provide any way for the debugger to query the signal numbers -
     fortunately they don't change!  */
     fortunately they don't change!  */
 
 
  if (restart == 0)
  if (restart == 0)
    restart = __SIGRTMIN;
    restart = __SIGRTMIN;
 
 
  if (cancel == 0)
  if (cancel == 0)
    cancel = __SIGRTMIN + 1;
    cancel = __SIGRTMIN + 1;
 
 
  sigaddset (set, restart);
  sigaddset (set, restart);
  sigaddset (set, cancel);
  sigaddset (set, cancel);
 
 
  /* The GNU/Linux Threads library makes terminating threads send a
  /* The GNU/Linux Threads library makes terminating threads send a
     special "cancel" signal instead of SIGCHLD.  Make sure we catch
     special "cancel" signal instead of SIGCHLD.  Make sure we catch
     those (to prevent them from terminating GDB itself, which is
     those (to prevent them from terminating GDB itself, which is
     likely to be their default action) and treat them the same way as
     likely to be their default action) and treat them the same way as
     SIGCHLD.  */
     SIGCHLD.  */
 
 
  action.sa_handler = sigchld_handler;
  action.sa_handler = sigchld_handler;
  sigemptyset (&action.sa_mask);
  sigemptyset (&action.sa_mask);
  action.sa_flags = SA_RESTART;
  action.sa_flags = SA_RESTART;
  sigaction (cancel, &action, NULL);
  sigaction (cancel, &action, NULL);
 
 
  /* We block the "cancel" signal throughout this code ...  */
  /* We block the "cancel" signal throughout this code ...  */
  sigaddset (&blocked_mask, cancel);
  sigaddset (&blocked_mask, cancel);
  sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
  sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
 
 
  /* ... except during a sigsuspend.  */
  /* ... except during a sigsuspend.  */
  sigdelset (&suspend_mask, cancel);
  sigdelset (&suspend_mask, cancel);
}
}
 
 
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.