OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gdb-6.8/] [gdb/] [m32r-tdep.c] - Diff between revs 827 and 840

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 827 Rev 840
/* Target-dependent code for Renesas M32R, for GDB.
/* Target-dependent code for Renesas M32R, for GDB.
 
 
   Copyright (C) 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007,
   Copyright (C) 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007,
   2008 Free Software Foundation, Inc.
   2008 Free Software Foundation, Inc.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
 
 
#include "defs.h"
#include "defs.h"
#include "frame.h"
#include "frame.h"
#include "frame-unwind.h"
#include "frame-unwind.h"
#include "frame-base.h"
#include "frame-base.h"
#include "symtab.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "gdbtypes.h"
#include "gdbcmd.h"
#include "gdbcmd.h"
#include "gdbcore.h"
#include "gdbcore.h"
#include "gdb_string.h"
#include "gdb_string.h"
#include "value.h"
#include "value.h"
#include "inferior.h"
#include "inferior.h"
#include "symfile.h"
#include "symfile.h"
#include "objfiles.h"
#include "objfiles.h"
#include "osabi.h"
#include "osabi.h"
#include "language.h"
#include "language.h"
#include "arch-utils.h"
#include "arch-utils.h"
#include "regcache.h"
#include "regcache.h"
#include "trad-frame.h"
#include "trad-frame.h"
#include "dis-asm.h"
#include "dis-asm.h"
 
 
#include "gdb_assert.h"
#include "gdb_assert.h"
 
 
#include "m32r-tdep.h"
#include "m32r-tdep.h"
 
 
/* Local functions */
/* Local functions */
 
 
extern void _initialize_m32r_tdep (void);
extern void _initialize_m32r_tdep (void);
 
 
static CORE_ADDR
static CORE_ADDR
m32r_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
m32r_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
{
{
  /* Align to the size of an instruction (so that they can safely be
  /* Align to the size of an instruction (so that they can safely be
     pushed onto the stack.  */
     pushed onto the stack.  */
  return sp & ~3;
  return sp & ~3;
}
}
 
 
 
 
/* Breakpoints
/* Breakpoints
 
 
   The little endian mode of M32R is unique. In most of architectures,
   The little endian mode of M32R is unique. In most of architectures,
   two 16-bit instructions, A and B, are placed as the following:
   two 16-bit instructions, A and B, are placed as the following:
 
 
   Big endian:
   Big endian:
   A0 A1 B0 B1
   A0 A1 B0 B1
 
 
   Little endian:
   Little endian:
   A1 A0 B1 B0
   A1 A0 B1 B0
 
 
   In M32R, they are placed like this:
   In M32R, they are placed like this:
 
 
   Big endian:
   Big endian:
   A0 A1 B0 B1
   A0 A1 B0 B1
 
 
   Little endian:
   Little endian:
   B1 B0 A1 A0
   B1 B0 A1 A0
 
 
   This is because M32R always fetches instructions in 32-bit.
   This is because M32R always fetches instructions in 32-bit.
 
 
   The following functions take care of this behavior. */
   The following functions take care of this behavior. */
 
 
static int
static int
m32r_memory_insert_breakpoint (struct gdbarch *gdbarch,
m32r_memory_insert_breakpoint (struct gdbarch *gdbarch,
                               struct bp_target_info *bp_tgt)
                               struct bp_target_info *bp_tgt)
{
{
  CORE_ADDR addr = bp_tgt->placed_address;
  CORE_ADDR addr = bp_tgt->placed_address;
  int val;
  int val;
  gdb_byte buf[4];
  gdb_byte buf[4];
  gdb_byte *contents_cache = bp_tgt->shadow_contents;
  gdb_byte *contents_cache = bp_tgt->shadow_contents;
  gdb_byte bp_entry[] = { 0x10, 0xf1 }; /* dpt */
  gdb_byte bp_entry[] = { 0x10, 0xf1 }; /* dpt */
 
 
  /* Save the memory contents.  */
  /* Save the memory contents.  */
  val = target_read_memory (addr & 0xfffffffc, contents_cache, 4);
  val = target_read_memory (addr & 0xfffffffc, contents_cache, 4);
  if (val != 0)
  if (val != 0)
    return val;                 /* return error */
    return val;                 /* return error */
 
 
  bp_tgt->placed_size = bp_tgt->shadow_len = 4;
  bp_tgt->placed_size = bp_tgt->shadow_len = 4;
 
 
  /* Determine appropriate breakpoint contents and size for this address.  */
  /* Determine appropriate breakpoint contents and size for this address.  */
  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
    {
    {
      if ((addr & 3) == 0)
      if ((addr & 3) == 0)
        {
        {
          buf[0] = bp_entry[0];
          buf[0] = bp_entry[0];
          buf[1] = bp_entry[1];
          buf[1] = bp_entry[1];
          buf[2] = contents_cache[2] & 0x7f;
          buf[2] = contents_cache[2] & 0x7f;
          buf[3] = contents_cache[3];
          buf[3] = contents_cache[3];
        }
        }
      else
      else
        {
        {
          buf[0] = contents_cache[0];
          buf[0] = contents_cache[0];
          buf[1] = contents_cache[1];
          buf[1] = contents_cache[1];
          buf[2] = bp_entry[0];
          buf[2] = bp_entry[0];
          buf[3] = bp_entry[1];
          buf[3] = bp_entry[1];
        }
        }
    }
    }
  else                          /* little-endian */
  else                          /* little-endian */
    {
    {
      if ((addr & 3) == 0)
      if ((addr & 3) == 0)
        {
        {
          buf[0] = contents_cache[0];
          buf[0] = contents_cache[0];
          buf[1] = contents_cache[1] & 0x7f;
          buf[1] = contents_cache[1] & 0x7f;
          buf[2] = bp_entry[1];
          buf[2] = bp_entry[1];
          buf[3] = bp_entry[0];
          buf[3] = bp_entry[0];
        }
        }
      else
      else
        {
        {
          buf[0] = bp_entry[1];
          buf[0] = bp_entry[1];
          buf[1] = bp_entry[0];
          buf[1] = bp_entry[0];
          buf[2] = contents_cache[2];
          buf[2] = contents_cache[2];
          buf[3] = contents_cache[3];
          buf[3] = contents_cache[3];
        }
        }
    }
    }
 
 
  /* Write the breakpoint.  */
  /* Write the breakpoint.  */
  val = target_write_memory (addr & 0xfffffffc, buf, 4);
  val = target_write_memory (addr & 0xfffffffc, buf, 4);
  return val;
  return val;
}
}
 
 
static int
static int
m32r_memory_remove_breakpoint (struct gdbarch *gdbarch,
m32r_memory_remove_breakpoint (struct gdbarch *gdbarch,
                               struct bp_target_info *bp_tgt)
                               struct bp_target_info *bp_tgt)
{
{
  CORE_ADDR addr = bp_tgt->placed_address;
  CORE_ADDR addr = bp_tgt->placed_address;
  int val;
  int val;
  gdb_byte buf[4];
  gdb_byte buf[4];
  gdb_byte *contents_cache = bp_tgt->shadow_contents;
  gdb_byte *contents_cache = bp_tgt->shadow_contents;
 
 
  buf[0] = contents_cache[0];
  buf[0] = contents_cache[0];
  buf[1] = contents_cache[1];
  buf[1] = contents_cache[1];
  buf[2] = contents_cache[2];
  buf[2] = contents_cache[2];
  buf[3] = contents_cache[3];
  buf[3] = contents_cache[3];
 
 
  /* Remove parallel bit.  */
  /* Remove parallel bit.  */
  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
    {
    {
      if ((buf[0] & 0x80) == 0 && (buf[2] & 0x80) != 0)
      if ((buf[0] & 0x80) == 0 && (buf[2] & 0x80) != 0)
        buf[2] &= 0x7f;
        buf[2] &= 0x7f;
    }
    }
  else                          /* little-endian */
  else                          /* little-endian */
    {
    {
      if ((buf[3] & 0x80) == 0 && (buf[1] & 0x80) != 0)
      if ((buf[3] & 0x80) == 0 && (buf[1] & 0x80) != 0)
        buf[1] &= 0x7f;
        buf[1] &= 0x7f;
    }
    }
 
 
  /* Write contents.  */
  /* Write contents.  */
  val = target_write_memory (addr & 0xfffffffc, buf, 4);
  val = target_write_memory (addr & 0xfffffffc, buf, 4);
  return val;
  return val;
}
}
 
 
static const gdb_byte *
static const gdb_byte *
m32r_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
m32r_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
{
{
  static gdb_byte be_bp_entry[] = { 0x10, 0xf1, 0x70, 0x00 };   /* dpt -> nop */
  static gdb_byte be_bp_entry[] = { 0x10, 0xf1, 0x70, 0x00 };   /* dpt -> nop */
  static gdb_byte le_bp_entry[] = { 0x00, 0x70, 0xf1, 0x10 };   /* dpt -> nop */
  static gdb_byte le_bp_entry[] = { 0x00, 0x70, 0xf1, 0x10 };   /* dpt -> nop */
  gdb_byte *bp;
  gdb_byte *bp;
 
 
  /* Determine appropriate breakpoint.  */
  /* Determine appropriate breakpoint.  */
  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
    {
    {
      if ((*pcptr & 3) == 0)
      if ((*pcptr & 3) == 0)
        {
        {
          bp = be_bp_entry;
          bp = be_bp_entry;
          *lenptr = 4;
          *lenptr = 4;
        }
        }
      else
      else
        {
        {
          bp = be_bp_entry;
          bp = be_bp_entry;
          *lenptr = 2;
          *lenptr = 2;
        }
        }
    }
    }
  else
  else
    {
    {
      if ((*pcptr & 3) == 0)
      if ((*pcptr & 3) == 0)
        {
        {
          bp = le_bp_entry;
          bp = le_bp_entry;
          *lenptr = 4;
          *lenptr = 4;
        }
        }
      else
      else
        {
        {
          bp = le_bp_entry + 2;
          bp = le_bp_entry + 2;
          *lenptr = 2;
          *lenptr = 2;
        }
        }
    }
    }
 
 
  return bp;
  return bp;
}
}
 
 
 
 
char *m32r_register_names[] = {
char *m32r_register_names[] = {
  "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
  "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
  "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp",
  "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp",
  "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch",
  "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch",
  "evb"
  "evb"
};
};
 
 
static const char *
static const char *
m32r_register_name (struct gdbarch *gdbarch, int reg_nr)
m32r_register_name (struct gdbarch *gdbarch, int reg_nr)
{
{
  if (reg_nr < 0)
  if (reg_nr < 0)
    return NULL;
    return NULL;
  if (reg_nr >= M32R_NUM_REGS)
  if (reg_nr >= M32R_NUM_REGS)
    return NULL;
    return NULL;
  return m32r_register_names[reg_nr];
  return m32r_register_names[reg_nr];
}
}
 
 
 
 
/* Return the GDB type object for the "standard" data type
/* Return the GDB type object for the "standard" data type
   of data in register N.  */
   of data in register N.  */
 
 
static struct type *
static struct type *
m32r_register_type (struct gdbarch *gdbarch, int reg_nr)
m32r_register_type (struct gdbarch *gdbarch, int reg_nr)
{
{
  if (reg_nr == M32R_PC_REGNUM)
  if (reg_nr == M32R_PC_REGNUM)
    return builtin_type_void_func_ptr;
    return builtin_type_void_func_ptr;
  else if (reg_nr == M32R_SP_REGNUM || reg_nr == M32R_FP_REGNUM)
  else if (reg_nr == M32R_SP_REGNUM || reg_nr == M32R_FP_REGNUM)
    return builtin_type_void_data_ptr;
    return builtin_type_void_data_ptr;
  else
  else
    return builtin_type_int32;
    return builtin_type_int32;
}
}
 
 
 
 
/* Write into appropriate registers a function return value
/* Write into appropriate registers a function return value
   of type TYPE, given in virtual format.
   of type TYPE, given in virtual format.
 
 
   Things always get returned in RET1_REGNUM, RET2_REGNUM. */
   Things always get returned in RET1_REGNUM, RET2_REGNUM. */
 
 
static void
static void
m32r_store_return_value (struct type *type, struct regcache *regcache,
m32r_store_return_value (struct type *type, struct regcache *regcache,
                         const void *valbuf)
                         const void *valbuf)
{
{
  CORE_ADDR regval;
  CORE_ADDR regval;
  int len = TYPE_LENGTH (type);
  int len = TYPE_LENGTH (type);
 
 
  regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len);
  regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len);
  regcache_cooked_write_unsigned (regcache, RET1_REGNUM, regval);
  regcache_cooked_write_unsigned (regcache, RET1_REGNUM, regval);
 
 
  if (len > 4)
  if (len > 4)
    {
    {
      regval = extract_unsigned_integer ((gdb_byte *) valbuf + 4, len - 4);
      regval = extract_unsigned_integer ((gdb_byte *) valbuf + 4, len - 4);
      regcache_cooked_write_unsigned (regcache, RET1_REGNUM + 1, regval);
      regcache_cooked_write_unsigned (regcache, RET1_REGNUM + 1, regval);
    }
    }
}
}
 
 
/* This is required by skip_prologue. The results of decoding a prologue
/* This is required by skip_prologue. The results of decoding a prologue
   should be cached because this thrashing is getting nuts.  */
   should be cached because this thrashing is getting nuts.  */
 
 
static int
static int
decode_prologue (CORE_ADDR start_pc, CORE_ADDR scan_limit,
decode_prologue (CORE_ADDR start_pc, CORE_ADDR scan_limit,
                 CORE_ADDR *pl_endptr, unsigned long *framelength)
                 CORE_ADDR *pl_endptr, unsigned long *framelength)
{
{
  unsigned long framesize;
  unsigned long framesize;
  int insn;
  int insn;
  int op1;
  int op1;
  CORE_ADDR after_prologue = 0;
  CORE_ADDR after_prologue = 0;
  CORE_ADDR after_push = 0;
  CORE_ADDR after_push = 0;
  CORE_ADDR after_stack_adjust = 0;
  CORE_ADDR after_stack_adjust = 0;
  CORE_ADDR current_pc;
  CORE_ADDR current_pc;
  LONGEST return_value;
  LONGEST return_value;
 
 
  framesize = 0;
  framesize = 0;
  after_prologue = 0;
  after_prologue = 0;
 
 
  for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2)
  for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2)
    {
    {
      /* Check if current pc's location is readable. */
      /* Check if current pc's location is readable. */
      if (!safe_read_memory_integer (current_pc, 2, &return_value))
      if (!safe_read_memory_integer (current_pc, 2, &return_value))
        return -1;
        return -1;
 
 
      insn = read_memory_unsigned_integer (current_pc, 2);
      insn = read_memory_unsigned_integer (current_pc, 2);
 
 
      if (insn == 0x0000)
      if (insn == 0x0000)
        break;
        break;
 
 
      /* If this is a 32 bit instruction, we dont want to examine its
      /* If this is a 32 bit instruction, we dont want to examine its
         immediate data as though it were an instruction */
         immediate data as though it were an instruction */
      if (current_pc & 0x02)
      if (current_pc & 0x02)
        {
        {
          /* decode this instruction further */
          /* decode this instruction further */
          insn &= 0x7fff;
          insn &= 0x7fff;
        }
        }
      else
      else
        {
        {
          if (insn & 0x8000)
          if (insn & 0x8000)
            {
            {
              if (current_pc == scan_limit)
              if (current_pc == scan_limit)
                scan_limit += 2;        /* extend the search */
                scan_limit += 2;        /* extend the search */
 
 
              current_pc += 2;  /* skip the immediate data */
              current_pc += 2;  /* skip the immediate data */
 
 
              /* Check if current pc's location is readable. */
              /* Check if current pc's location is readable. */
              if (!safe_read_memory_integer (current_pc, 2, &return_value))
              if (!safe_read_memory_integer (current_pc, 2, &return_value))
                return -1;
                return -1;
 
 
              if (insn == 0x8faf)       /* add3 sp, sp, xxxx */
              if (insn == 0x8faf)       /* add3 sp, sp, xxxx */
                /* add 16 bit sign-extended offset */
                /* add 16 bit sign-extended offset */
                {
                {
                  framesize +=
                  framesize +=
                    -((short) read_memory_unsigned_integer (current_pc, 2));
                    -((short) read_memory_unsigned_integer (current_pc, 2));
                }
                }
              else
              else
                {
                {
                  if (((insn >> 8) == 0xe4)     /* ld24 r4, xxxxxx; sub sp, r4 */
                  if (((insn >> 8) == 0xe4)     /* ld24 r4, xxxxxx; sub sp, r4 */
                      && safe_read_memory_integer (current_pc + 2, 2,
                      && safe_read_memory_integer (current_pc + 2, 2,
                                                   &return_value)
                                                   &return_value)
                      && read_memory_unsigned_integer (current_pc + 2,
                      && read_memory_unsigned_integer (current_pc + 2,
                                                       2) == 0x0f24)
                                                       2) == 0x0f24)
                    /* subtract 24 bit sign-extended negative-offset */
                    /* subtract 24 bit sign-extended negative-offset */
                    {
                    {
                      insn = read_memory_unsigned_integer (current_pc - 2, 4);
                      insn = read_memory_unsigned_integer (current_pc - 2, 4);
                      if (insn & 0x00800000)    /* sign extend */
                      if (insn & 0x00800000)    /* sign extend */
                        insn |= 0xff000000;     /* negative */
                        insn |= 0xff000000;     /* negative */
                      else
                      else
                        insn &= 0x00ffffff;     /* positive */
                        insn &= 0x00ffffff;     /* positive */
                      framesize += insn;
                      framesize += insn;
                    }
                    }
                }
                }
              after_push = current_pc + 2;
              after_push = current_pc + 2;
              continue;
              continue;
            }
            }
        }
        }
      op1 = insn & 0xf000;      /* isolate just the first nibble */
      op1 = insn & 0xf000;      /* isolate just the first nibble */
 
 
      if ((insn & 0xf0ff) == 0x207f)
      if ((insn & 0xf0ff) == 0x207f)
        {                       /* st reg, @-sp */
        {                       /* st reg, @-sp */
          int regno;
          int regno;
          framesize += 4;
          framesize += 4;
          regno = ((insn >> 8) & 0xf);
          regno = ((insn >> 8) & 0xf);
          after_prologue = 0;
          after_prologue = 0;
          continue;
          continue;
        }
        }
      if ((insn >> 8) == 0x4f)  /* addi sp, xx */
      if ((insn >> 8) == 0x4f)  /* addi sp, xx */
        /* add 8 bit sign-extended offset */
        /* add 8 bit sign-extended offset */
        {
        {
          int stack_adjust = (signed char) (insn & 0xff);
          int stack_adjust = (signed char) (insn & 0xff);
 
 
          /* there are probably two of these stack adjustments:
          /* there are probably two of these stack adjustments:
             1) A negative one in the prologue, and
             1) A negative one in the prologue, and
             2) A positive one in the epilogue.
             2) A positive one in the epilogue.
             We are only interested in the first one.  */
             We are only interested in the first one.  */
 
 
          if (stack_adjust < 0)
          if (stack_adjust < 0)
            {
            {
              framesize -= stack_adjust;
              framesize -= stack_adjust;
              after_prologue = 0;
              after_prologue = 0;
              /* A frameless function may have no "mv fp, sp".
              /* A frameless function may have no "mv fp, sp".
                 In that case, this is the end of the prologue.  */
                 In that case, this is the end of the prologue.  */
              after_stack_adjust = current_pc + 2;
              after_stack_adjust = current_pc + 2;
            }
            }
          continue;
          continue;
        }
        }
      if (insn == 0x1d8f)
      if (insn == 0x1d8f)
        {                       /* mv fp, sp */
        {                       /* mv fp, sp */
          after_prologue = current_pc + 2;
          after_prologue = current_pc + 2;
          break;                /* end of stack adjustments */
          break;                /* end of stack adjustments */
        }
        }
 
 
      /* Nop looks like a branch, continue explicitly */
      /* Nop looks like a branch, continue explicitly */
      if (insn == 0x7000)
      if (insn == 0x7000)
        {
        {
          after_prologue = current_pc + 2;
          after_prologue = current_pc + 2;
          continue;             /* nop occurs between pushes */
          continue;             /* nop occurs between pushes */
        }
        }
      /* End of prolog if any of these are trap instructions */
      /* End of prolog if any of these are trap instructions */
      if ((insn & 0xfff0) == 0x10f0)
      if ((insn & 0xfff0) == 0x10f0)
        {
        {
          after_prologue = current_pc;
          after_prologue = current_pc;
          break;
          break;
        }
        }
      /* End of prolog if any of these are branch instructions */
      /* End of prolog if any of these are branch instructions */
      if ((op1 == 0x7000) || (op1 == 0xb000) || (op1 == 0xf000))
      if ((op1 == 0x7000) || (op1 == 0xb000) || (op1 == 0xf000))
        {
        {
          after_prologue = current_pc;
          after_prologue = current_pc;
          continue;
          continue;
        }
        }
      /* Some of the branch instructions are mixed with other types */
      /* Some of the branch instructions are mixed with other types */
      if (op1 == 0x1000)
      if (op1 == 0x1000)
        {
        {
          int subop = insn & 0x0ff0;
          int subop = insn & 0x0ff0;
          if ((subop == 0x0ec0) || (subop == 0x0fc0))
          if ((subop == 0x0ec0) || (subop == 0x0fc0))
            {
            {
              after_prologue = current_pc;
              after_prologue = current_pc;
              continue;         /* jmp , jl */
              continue;         /* jmp , jl */
            }
            }
        }
        }
    }
    }
 
 
  if (framelength)
  if (framelength)
    *framelength = framesize;
    *framelength = framesize;
 
 
  if (current_pc >= scan_limit)
  if (current_pc >= scan_limit)
    {
    {
      if (pl_endptr)
      if (pl_endptr)
        {
        {
          if (after_stack_adjust != 0)
          if (after_stack_adjust != 0)
            /* We did not find a "mv fp,sp", but we DID find
            /* We did not find a "mv fp,sp", but we DID find
               a stack_adjust.  Is it safe to use that as the
               a stack_adjust.  Is it safe to use that as the
               end of the prologue?  I just don't know. */
               end of the prologue?  I just don't know. */
            {
            {
              *pl_endptr = after_stack_adjust;
              *pl_endptr = after_stack_adjust;
            }
            }
          else if (after_push != 0)
          else if (after_push != 0)
            /* We did not find a "mv fp,sp", but we DID find
            /* We did not find a "mv fp,sp", but we DID find
               a push.  Is it safe to use that as the
               a push.  Is it safe to use that as the
               end of the prologue?  I just don't know. */
               end of the prologue?  I just don't know. */
            {
            {
              *pl_endptr = after_push;
              *pl_endptr = after_push;
            }
            }
          else
          else
            /* We reached the end of the loop without finding the end
            /* We reached the end of the loop without finding the end
               of the prologue.  No way to win -- we should report failure.
               of the prologue.  No way to win -- we should report failure.
               The way we do that is to return the original start_pc.
               The way we do that is to return the original start_pc.
               GDB will set a breakpoint at the start of the function (etc.) */
               GDB will set a breakpoint at the start of the function (etc.) */
            *pl_endptr = start_pc;
            *pl_endptr = start_pc;
        }
        }
      return 0;
      return 0;
    }
    }
 
 
  if (after_prologue == 0)
  if (after_prologue == 0)
    after_prologue = current_pc;
    after_prologue = current_pc;
 
 
  if (pl_endptr)
  if (pl_endptr)
    *pl_endptr = after_prologue;
    *pl_endptr = after_prologue;
 
 
  return 0;
  return 0;
}                               /*  decode_prologue */
}                               /*  decode_prologue */
 
 
/* Function: skip_prologue
/* Function: skip_prologue
   Find end of function prologue */
   Find end of function prologue */
 
 
#define DEFAULT_SEARCH_LIMIT 128
#define DEFAULT_SEARCH_LIMIT 128
 
 
CORE_ADDR
CORE_ADDR
m32r_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
m32r_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
{
  CORE_ADDR func_addr, func_end;
  CORE_ADDR func_addr, func_end;
  struct symtab_and_line sal;
  struct symtab_and_line sal;
  LONGEST return_value;
  LONGEST return_value;
 
 
  /* See what the symbol table says */
  /* See what the symbol table says */
 
 
  if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
  if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
    {
    {
      sal = find_pc_line (func_addr, 0);
      sal = find_pc_line (func_addr, 0);
 
 
      if (sal.line != 0 && sal.end <= func_end)
      if (sal.line != 0 && sal.end <= func_end)
        {
        {
          func_end = sal.end;
          func_end = sal.end;
        }
        }
      else
      else
        /* Either there's no line info, or the line after the prologue is after
        /* Either there's no line info, or the line after the prologue is after
           the end of the function.  In this case, there probably isn't a
           the end of the function.  In this case, there probably isn't a
           prologue.  */
           prologue.  */
        {
        {
          func_end = min (func_end, func_addr + DEFAULT_SEARCH_LIMIT);
          func_end = min (func_end, func_addr + DEFAULT_SEARCH_LIMIT);
        }
        }
    }
    }
  else
  else
    func_end = pc + DEFAULT_SEARCH_LIMIT;
    func_end = pc + DEFAULT_SEARCH_LIMIT;
 
 
  /* If pc's location is not readable, just quit. */
  /* If pc's location is not readable, just quit. */
  if (!safe_read_memory_integer (pc, 4, &return_value))
  if (!safe_read_memory_integer (pc, 4, &return_value))
    return pc;
    return pc;
 
 
  /* Find the end of prologue.  */
  /* Find the end of prologue.  */
  if (decode_prologue (pc, func_end, &sal.end, NULL) < 0)
  if (decode_prologue (pc, func_end, &sal.end, NULL) < 0)
    return pc;
    return pc;
 
 
  return sal.end;
  return sal.end;
}
}
 
 
struct m32r_unwind_cache
struct m32r_unwind_cache
{
{
  /* The previous frame's inner most stack address.  Used as this
  /* The previous frame's inner most stack address.  Used as this
     frame ID's stack_addr.  */
     frame ID's stack_addr.  */
  CORE_ADDR prev_sp;
  CORE_ADDR prev_sp;
  /* The frame's base, optionally used by the high-level debug info.  */
  /* The frame's base, optionally used by the high-level debug info.  */
  CORE_ADDR base;
  CORE_ADDR base;
  int size;
  int size;
  /* How far the SP and r13 (FP) have been offset from the start of
  /* How far the SP and r13 (FP) have been offset from the start of
     the stack frame (as defined by the previous frame's stack
     the stack frame (as defined by the previous frame's stack
     pointer).  */
     pointer).  */
  LONGEST sp_offset;
  LONGEST sp_offset;
  LONGEST r13_offset;
  LONGEST r13_offset;
  int uses_frame;
  int uses_frame;
  /* Table indicating the location of each and every register.  */
  /* Table indicating the location of each and every register.  */
  struct trad_frame_saved_reg *saved_regs;
  struct trad_frame_saved_reg *saved_regs;
};
};
 
 
/* Put here the code to store, into fi->saved_regs, the addresses of
/* Put here the code to store, into fi->saved_regs, the addresses of
   the saved registers of frame described by FRAME_INFO.  This
   the saved registers of frame described by FRAME_INFO.  This
   includes special registers such as pc and fp saved in special ways
   includes special registers such as pc and fp saved in special ways
   in the stack frame.  sp is even more special: the address we return
   in the stack frame.  sp is even more special: the address we return
   for it IS the sp for the next frame. */
   for it IS the sp for the next frame. */
 
 
static struct m32r_unwind_cache *
static struct m32r_unwind_cache *
m32r_frame_unwind_cache (struct frame_info *next_frame,
m32r_frame_unwind_cache (struct frame_info *next_frame,
                         void **this_prologue_cache)
                         void **this_prologue_cache)
{
{
  CORE_ADDR pc, scan_limit;
  CORE_ADDR pc, scan_limit;
  ULONGEST prev_sp;
  ULONGEST prev_sp;
  ULONGEST this_base;
  ULONGEST this_base;
  unsigned long op, op2;
  unsigned long op, op2;
  int i;
  int i;
  struct m32r_unwind_cache *info;
  struct m32r_unwind_cache *info;
 
 
 
 
  if ((*this_prologue_cache))
  if ((*this_prologue_cache))
    return (*this_prologue_cache);
    return (*this_prologue_cache);
 
 
  info = FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache);
  info = FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache);
  (*this_prologue_cache) = info;
  (*this_prologue_cache) = info;
  info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
  info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
 
 
  info->size = 0;
  info->size = 0;
  info->sp_offset = 0;
  info->sp_offset = 0;
  info->uses_frame = 0;
  info->uses_frame = 0;
 
 
  scan_limit = frame_pc_unwind (next_frame);
  scan_limit = frame_pc_unwind (next_frame);
  for (pc = frame_func_unwind (next_frame, NORMAL_FRAME);
  for (pc = frame_func_unwind (next_frame, NORMAL_FRAME);
       pc > 0 && pc < scan_limit; pc += 2)
       pc > 0 && pc < scan_limit; pc += 2)
    {
    {
      if ((pc & 2) == 0)
      if ((pc & 2) == 0)
        {
        {
          op = get_frame_memory_unsigned (next_frame, pc, 4);
          op = get_frame_memory_unsigned (next_frame, pc, 4);
          if ((op & 0x80000000) == 0x80000000)
          if ((op & 0x80000000) == 0x80000000)
            {
            {
              /* 32-bit instruction */
              /* 32-bit instruction */
              if ((op & 0xffff0000) == 0x8faf0000)
              if ((op & 0xffff0000) == 0x8faf0000)
                {
                {
                  /* add3 sp,sp,xxxx */
                  /* add3 sp,sp,xxxx */
                  short n = op & 0xffff;
                  short n = op & 0xffff;
                  info->sp_offset += n;
                  info->sp_offset += n;
                }
                }
              else if (((op >> 8) == 0xe4)
              else if (((op >> 8) == 0xe4)
                       && get_frame_memory_unsigned (next_frame, pc + 2,
                       && get_frame_memory_unsigned (next_frame, pc + 2,
                                                     2) == 0x0f24)
                                                     2) == 0x0f24)
                {
                {
                  /* ld24 r4, xxxxxx; sub sp, r4 */
                  /* ld24 r4, xxxxxx; sub sp, r4 */
                  unsigned long n = op & 0xffffff;
                  unsigned long n = op & 0xffffff;
                  info->sp_offset += n;
                  info->sp_offset += n;
                  pc += 2;      /* skip sub instruction */
                  pc += 2;      /* skip sub instruction */
                }
                }
 
 
              if (pc == scan_limit)
              if (pc == scan_limit)
                scan_limit += 2;        /* extend the search */
                scan_limit += 2;        /* extend the search */
              pc += 2;          /* skip the immediate data */
              pc += 2;          /* skip the immediate data */
              continue;
              continue;
            }
            }
        }
        }
 
 
      /* 16-bit instructions */
      /* 16-bit instructions */
      op = get_frame_memory_unsigned (next_frame, pc, 2) & 0x7fff;
      op = get_frame_memory_unsigned (next_frame, pc, 2) & 0x7fff;
      if ((op & 0xf0ff) == 0x207f)
      if ((op & 0xf0ff) == 0x207f)
        {
        {
          /* st rn, @-sp */
          /* st rn, @-sp */
          int regno = ((op >> 8) & 0xf);
          int regno = ((op >> 8) & 0xf);
          info->sp_offset -= 4;
          info->sp_offset -= 4;
          info->saved_regs[regno].addr = info->sp_offset;
          info->saved_regs[regno].addr = info->sp_offset;
        }
        }
      else if ((op & 0xff00) == 0x4f00)
      else if ((op & 0xff00) == 0x4f00)
        {
        {
          /* addi sp, xx */
          /* addi sp, xx */
          int n = (signed char) (op & 0xff);
          int n = (signed char) (op & 0xff);
          info->sp_offset += n;
          info->sp_offset += n;
        }
        }
      else if (op == 0x1d8f)
      else if (op == 0x1d8f)
        {
        {
          /* mv fp, sp */
          /* mv fp, sp */
          info->uses_frame = 1;
          info->uses_frame = 1;
          info->r13_offset = info->sp_offset;
          info->r13_offset = info->sp_offset;
          break;                /* end of stack adjustments */
          break;                /* end of stack adjustments */
        }
        }
      else if ((op & 0xfff0) == 0x10f0)
      else if ((op & 0xfff0) == 0x10f0)
        {
        {
          /* end of prologue if this is a trap instruction */
          /* end of prologue if this is a trap instruction */
          break;                /* end of stack adjustments */
          break;                /* end of stack adjustments */
        }
        }
    }
    }
 
 
  info->size = -info->sp_offset;
  info->size = -info->sp_offset;
 
 
  /* Compute the previous frame's stack pointer (which is also the
  /* Compute the previous frame's stack pointer (which is also the
     frame's ID's stack address), and this frame's base pointer.  */
     frame's ID's stack address), and this frame's base pointer.  */
  if (info->uses_frame)
  if (info->uses_frame)
    {
    {
      /* The SP was moved to the FP.  This indicates that a new frame
      /* The SP was moved to the FP.  This indicates that a new frame
         was created.  Get THIS frame's FP value by unwinding it from
         was created.  Get THIS frame's FP value by unwinding it from
         the next frame.  */
         the next frame.  */
      this_base = frame_unwind_register_unsigned (next_frame, M32R_FP_REGNUM);
      this_base = frame_unwind_register_unsigned (next_frame, M32R_FP_REGNUM);
      /* The FP points at the last saved register.  Adjust the FP back
      /* The FP points at the last saved register.  Adjust the FP back
         to before the first saved register giving the SP.  */
         to before the first saved register giving the SP.  */
      prev_sp = this_base + info->size;
      prev_sp = this_base + info->size;
    }
    }
  else
  else
    {
    {
      /* Assume that the FP is this frame's SP but with that pushed
      /* Assume that the FP is this frame's SP but with that pushed
         stack space added back.  */
         stack space added back.  */
      this_base = frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM);
      this_base = frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM);
      prev_sp = this_base + info->size;
      prev_sp = this_base + info->size;
    }
    }
 
 
  /* Convert that SP/BASE into real addresses.  */
  /* Convert that SP/BASE into real addresses.  */
  info->prev_sp = prev_sp;
  info->prev_sp = prev_sp;
  info->base = this_base;
  info->base = this_base;
 
 
  /* Adjust all the saved registers so that they contain addresses and
  /* Adjust all the saved registers so that they contain addresses and
     not offsets.  */
     not offsets.  */
  for (i = 0; i < gdbarch_num_regs (get_frame_arch (next_frame)) - 1; i++)
  for (i = 0; i < gdbarch_num_regs (get_frame_arch (next_frame)) - 1; i++)
    if (trad_frame_addr_p (info->saved_regs, i))
    if (trad_frame_addr_p (info->saved_regs, i))
      info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr);
      info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr);
 
 
  /* The call instruction moves the caller's PC in the callee's LR.
  /* The call instruction moves the caller's PC in the callee's LR.
     Since this is an unwind, do the reverse.  Copy the location of LR
     Since this is an unwind, do the reverse.  Copy the location of LR
     into PC (the address / regnum) so that a request for PC will be
     into PC (the address / regnum) so that a request for PC will be
     converted into a request for the LR.  */
     converted into a request for the LR.  */
  info->saved_regs[M32R_PC_REGNUM] = info->saved_regs[LR_REGNUM];
  info->saved_regs[M32R_PC_REGNUM] = info->saved_regs[LR_REGNUM];
 
 
  /* The previous frame's SP needed to be computed.  Save the computed
  /* The previous frame's SP needed to be computed.  Save the computed
     value.  */
     value.  */
  trad_frame_set_value (info->saved_regs, M32R_SP_REGNUM, prev_sp);
  trad_frame_set_value (info->saved_regs, M32R_SP_REGNUM, prev_sp);
 
 
  return info;
  return info;
}
}
 
 
static CORE_ADDR
static CORE_ADDR
m32r_read_pc (struct regcache *regcache)
m32r_read_pc (struct regcache *regcache)
{
{
  ULONGEST pc;
  ULONGEST pc;
  regcache_cooked_read_unsigned (regcache, M32R_PC_REGNUM, &pc);
  regcache_cooked_read_unsigned (regcache, M32R_PC_REGNUM, &pc);
  return pc;
  return pc;
}
}
 
 
static void
static void
m32r_write_pc (struct regcache *regcache, CORE_ADDR val)
m32r_write_pc (struct regcache *regcache, CORE_ADDR val)
{
{
  regcache_cooked_write_unsigned (regcache, M32R_PC_REGNUM, val);
  regcache_cooked_write_unsigned (regcache, M32R_PC_REGNUM, val);
}
}
 
 
static CORE_ADDR
static CORE_ADDR
m32r_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
m32r_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
{
  return frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM);
  return frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM);
}
}
 
 
 
 
static CORE_ADDR
static CORE_ADDR
m32r_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
m32r_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
                      struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
                      struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
                      struct value **args, CORE_ADDR sp, int struct_return,
                      struct value **args, CORE_ADDR sp, int struct_return,
                      CORE_ADDR struct_addr)
                      CORE_ADDR struct_addr)
{
{
  int stack_offset, stack_alloc;
  int stack_offset, stack_alloc;
  int argreg = ARG1_REGNUM;
  int argreg = ARG1_REGNUM;
  int argnum;
  int argnum;
  struct type *type;
  struct type *type;
  enum type_code typecode;
  enum type_code typecode;
  CORE_ADDR regval;
  CORE_ADDR regval;
  gdb_byte *val;
  gdb_byte *val;
  gdb_byte valbuf[MAX_REGISTER_SIZE];
  gdb_byte valbuf[MAX_REGISTER_SIZE];
  int len;
  int len;
  int odd_sized_struct;
  int odd_sized_struct;
 
 
  /* first force sp to a 4-byte alignment */
  /* first force sp to a 4-byte alignment */
  sp = sp & ~3;
  sp = sp & ~3;
 
 
  /* Set the return address.  For the m32r, the return breakpoint is
  /* Set the return address.  For the m32r, the return breakpoint is
     always at BP_ADDR.  */
     always at BP_ADDR.  */
  regcache_cooked_write_unsigned (regcache, LR_REGNUM, bp_addr);
  regcache_cooked_write_unsigned (regcache, LR_REGNUM, bp_addr);
 
 
  /* If STRUCT_RETURN is true, then the struct return address (in
  /* If STRUCT_RETURN is true, then the struct return address (in
     STRUCT_ADDR) will consume the first argument-passing register.
     STRUCT_ADDR) will consume the first argument-passing register.
     Both adjust the register count and store that value.  */
     Both adjust the register count and store that value.  */
  if (struct_return)
  if (struct_return)
    {
    {
      regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
      regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
      argreg++;
      argreg++;
    }
    }
 
 
  /* Now make sure there's space on the stack */
  /* Now make sure there's space on the stack */
  for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
  for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
    stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3);
    stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3);
  sp -= stack_alloc;            /* make room on stack for args */
  sp -= stack_alloc;            /* make room on stack for args */
 
 
  for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
  for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
    {
    {
      type = value_type (args[argnum]);
      type = value_type (args[argnum]);
      typecode = TYPE_CODE (type);
      typecode = TYPE_CODE (type);
      len = TYPE_LENGTH (type);
      len = TYPE_LENGTH (type);
 
 
      memset (valbuf, 0, sizeof (valbuf));
      memset (valbuf, 0, sizeof (valbuf));
 
 
      /* Passes structures that do not fit in 2 registers by reference.  */
      /* Passes structures that do not fit in 2 registers by reference.  */
      if (len > 8
      if (len > 8
          && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
          && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
        {
        {
          store_unsigned_integer (valbuf, 4, VALUE_ADDRESS (args[argnum]));
          store_unsigned_integer (valbuf, 4, VALUE_ADDRESS (args[argnum]));
          typecode = TYPE_CODE_PTR;
          typecode = TYPE_CODE_PTR;
          len = 4;
          len = 4;
          val = valbuf;
          val = valbuf;
        }
        }
      else if (len < 4)
      else if (len < 4)
        {
        {
          /* value gets right-justified in the register or stack word */
          /* value gets right-justified in the register or stack word */
          memcpy (valbuf + (register_size (gdbarch, argreg) - len),
          memcpy (valbuf + (register_size (gdbarch, argreg) - len),
                  (gdb_byte *) value_contents (args[argnum]), len);
                  (gdb_byte *) value_contents (args[argnum]), len);
          val = valbuf;
          val = valbuf;
        }
        }
      else
      else
        val = (gdb_byte *) value_contents (args[argnum]);
        val = (gdb_byte *) value_contents (args[argnum]);
 
 
      while (len > 0)
      while (len > 0)
        {
        {
          if (argreg > ARGN_REGNUM)
          if (argreg > ARGN_REGNUM)
            {
            {
              /* must go on the stack */
              /* must go on the stack */
              write_memory (sp + stack_offset, val, 4);
              write_memory (sp + stack_offset, val, 4);
              stack_offset += 4;
              stack_offset += 4;
            }
            }
          else if (argreg <= ARGN_REGNUM)
          else if (argreg <= ARGN_REGNUM)
            {
            {
              /* there's room in a register */
              /* there's room in a register */
              regval =
              regval =
                extract_unsigned_integer (val,
                extract_unsigned_integer (val,
                                          register_size (gdbarch, argreg));
                                          register_size (gdbarch, argreg));
              regcache_cooked_write_unsigned (regcache, argreg++, regval);
              regcache_cooked_write_unsigned (regcache, argreg++, regval);
            }
            }
 
 
          /* Store the value 4 bytes at a time.  This means that things
          /* Store the value 4 bytes at a time.  This means that things
             larger than 4 bytes may go partly in registers and partly
             larger than 4 bytes may go partly in registers and partly
             on the stack.  */
             on the stack.  */
          len -= register_size (gdbarch, argreg);
          len -= register_size (gdbarch, argreg);
          val += register_size (gdbarch, argreg);
          val += register_size (gdbarch, argreg);
        }
        }
    }
    }
 
 
  /* Finally, update the SP register.  */
  /* Finally, update the SP register.  */
  regcache_cooked_write_unsigned (regcache, M32R_SP_REGNUM, sp);
  regcache_cooked_write_unsigned (regcache, M32R_SP_REGNUM, sp);
 
 
  return sp;
  return sp;
}
}
 
 
 
 
/* Given a return value in `regbuf' with a type `valtype',
/* Given a return value in `regbuf' with a type `valtype',
   extract and copy its value into `valbuf'.  */
   extract and copy its value into `valbuf'.  */
 
 
static void
static void
m32r_extract_return_value (struct type *type, struct regcache *regcache,
m32r_extract_return_value (struct type *type, struct regcache *regcache,
                           void *dst)
                           void *dst)
{
{
  bfd_byte *valbuf = dst;
  bfd_byte *valbuf = dst;
  int len = TYPE_LENGTH (type);
  int len = TYPE_LENGTH (type);
  ULONGEST tmp;
  ULONGEST tmp;
 
 
  /* By using store_unsigned_integer we avoid having to do
  /* By using store_unsigned_integer we avoid having to do
     anything special for small big-endian values.  */
     anything special for small big-endian values.  */
  regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &tmp);
  regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &tmp);
  store_unsigned_integer (valbuf, (len > 4 ? len - 4 : len), tmp);
  store_unsigned_integer (valbuf, (len > 4 ? len - 4 : len), tmp);
 
 
  /* Ignore return values more than 8 bytes in size because the m32r
  /* Ignore return values more than 8 bytes in size because the m32r
     returns anything more than 8 bytes in the stack. */
     returns anything more than 8 bytes in the stack. */
  if (len > 4)
  if (len > 4)
    {
    {
      regcache_cooked_read_unsigned (regcache, RET1_REGNUM + 1, &tmp);
      regcache_cooked_read_unsigned (regcache, RET1_REGNUM + 1, &tmp);
      store_unsigned_integer (valbuf + len - 4, 4, tmp);
      store_unsigned_integer (valbuf + len - 4, 4, tmp);
    }
    }
}
}
 
 
enum return_value_convention
enum return_value_convention
m32r_return_value (struct gdbarch *gdbarch, struct type *valtype,
m32r_return_value (struct gdbarch *gdbarch, struct type *valtype,
                   struct regcache *regcache, gdb_byte *readbuf,
                   struct regcache *regcache, gdb_byte *readbuf,
                   const gdb_byte *writebuf)
                   const gdb_byte *writebuf)
{
{
  if (TYPE_LENGTH (valtype) > 8)
  if (TYPE_LENGTH (valtype) > 8)
    return RETURN_VALUE_STRUCT_CONVENTION;
    return RETURN_VALUE_STRUCT_CONVENTION;
  else
  else
    {
    {
      if (readbuf != NULL)
      if (readbuf != NULL)
        m32r_extract_return_value (valtype, regcache, readbuf);
        m32r_extract_return_value (valtype, regcache, readbuf);
      if (writebuf != NULL)
      if (writebuf != NULL)
        m32r_store_return_value (valtype, regcache, writebuf);
        m32r_store_return_value (valtype, regcache, writebuf);
      return RETURN_VALUE_REGISTER_CONVENTION;
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
    }
}
}
 
 
 
 
 
 
static CORE_ADDR
static CORE_ADDR
m32r_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
m32r_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
{
  return frame_unwind_register_unsigned (next_frame, M32R_PC_REGNUM);
  return frame_unwind_register_unsigned (next_frame, M32R_PC_REGNUM);
}
}
 
 
/* Given a GDB frame, determine the address of the calling function's
/* Given a GDB frame, determine the address of the calling function's
   frame.  This will be used to create a new GDB frame struct.  */
   frame.  This will be used to create a new GDB frame struct.  */
 
 
static void
static void
m32r_frame_this_id (struct frame_info *next_frame,
m32r_frame_this_id (struct frame_info *next_frame,
                    void **this_prologue_cache, struct frame_id *this_id)
                    void **this_prologue_cache, struct frame_id *this_id)
{
{
  struct m32r_unwind_cache *info
  struct m32r_unwind_cache *info
    = m32r_frame_unwind_cache (next_frame, this_prologue_cache);
    = m32r_frame_unwind_cache (next_frame, this_prologue_cache);
  CORE_ADDR base;
  CORE_ADDR base;
  CORE_ADDR func;
  CORE_ADDR func;
  struct minimal_symbol *msym_stack;
  struct minimal_symbol *msym_stack;
  struct frame_id id;
  struct frame_id id;
 
 
  /* The FUNC is easy.  */
  /* The FUNC is easy.  */
  func = frame_func_unwind (next_frame, NORMAL_FRAME);
  func = frame_func_unwind (next_frame, NORMAL_FRAME);
 
 
  /* Check if the stack is empty.  */
  /* Check if the stack is empty.  */
  msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
  msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
  if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
  if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
    return;
    return;
 
 
  /* Hopefully the prologue analysis either correctly determined the
  /* Hopefully the prologue analysis either correctly determined the
     frame's base (which is the SP from the previous frame), or set
     frame's base (which is the SP from the previous frame), or set
     that base to "NULL".  */
     that base to "NULL".  */
  base = info->prev_sp;
  base = info->prev_sp;
  if (base == 0)
  if (base == 0)
    return;
    return;
 
 
  id = frame_id_build (base, func);
  id = frame_id_build (base, func);
  (*this_id) = id;
  (*this_id) = id;
}
}
 
 
static void
static void
m32r_frame_prev_register (struct frame_info *next_frame,
m32r_frame_prev_register (struct frame_info *next_frame,
                          void **this_prologue_cache,
                          void **this_prologue_cache,
                          int regnum, int *optimizedp,
                          int regnum, int *optimizedp,
                          enum lval_type *lvalp, CORE_ADDR *addrp,
                          enum lval_type *lvalp, CORE_ADDR *addrp,
                          int *realnump, gdb_byte *bufferp)
                          int *realnump, gdb_byte *bufferp)
{
{
  struct m32r_unwind_cache *info
  struct m32r_unwind_cache *info
    = m32r_frame_unwind_cache (next_frame, this_prologue_cache);
    = m32r_frame_unwind_cache (next_frame, this_prologue_cache);
  trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
  trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
                                optimizedp, lvalp, addrp, realnump, bufferp);
                                optimizedp, lvalp, addrp, realnump, bufferp);
}
}
 
 
static const struct frame_unwind m32r_frame_unwind = {
static const struct frame_unwind m32r_frame_unwind = {
  NORMAL_FRAME,
  NORMAL_FRAME,
  m32r_frame_this_id,
  m32r_frame_this_id,
  m32r_frame_prev_register
  m32r_frame_prev_register
};
};
 
 
static const struct frame_unwind *
static const struct frame_unwind *
m32r_frame_sniffer (struct frame_info *next_frame)
m32r_frame_sniffer (struct frame_info *next_frame)
{
{
  return &m32r_frame_unwind;
  return &m32r_frame_unwind;
}
}
 
 
static CORE_ADDR
static CORE_ADDR
m32r_frame_base_address (struct frame_info *next_frame, void **this_cache)
m32r_frame_base_address (struct frame_info *next_frame, void **this_cache)
{
{
  struct m32r_unwind_cache *info
  struct m32r_unwind_cache *info
    = m32r_frame_unwind_cache (next_frame, this_cache);
    = m32r_frame_unwind_cache (next_frame, this_cache);
  return info->base;
  return info->base;
}
}
 
 
static const struct frame_base m32r_frame_base = {
static const struct frame_base m32r_frame_base = {
  &m32r_frame_unwind,
  &m32r_frame_unwind,
  m32r_frame_base_address,
  m32r_frame_base_address,
  m32r_frame_base_address,
  m32r_frame_base_address,
  m32r_frame_base_address
  m32r_frame_base_address
};
};
 
 
/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
   dummy frame.  The frame ID's base needs to match the TOS value
   dummy frame.  The frame ID's base needs to match the TOS value
   saved by save_dummy_frame_tos(), and the PC match the dummy frame's
   saved by save_dummy_frame_tos(), and the PC match the dummy frame's
   breakpoint.  */
   breakpoint.  */
 
 
static struct frame_id
static struct frame_id
m32r_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
m32r_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
{
  return frame_id_build (m32r_unwind_sp (gdbarch, next_frame),
  return frame_id_build (m32r_unwind_sp (gdbarch, next_frame),
                         frame_pc_unwind (next_frame));
                         frame_pc_unwind (next_frame));
}
}
 
 
 
 
static gdbarch_init_ftype m32r_gdbarch_init;
static gdbarch_init_ftype m32r_gdbarch_init;
 
 
static struct gdbarch *
static struct gdbarch *
m32r_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
m32r_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
{
  struct gdbarch *gdbarch;
  struct gdbarch *gdbarch;
  struct gdbarch_tdep *tdep;
  struct gdbarch_tdep *tdep;
 
 
  /* If there is already a candidate, use it.  */
  /* If there is already a candidate, use it.  */
  arches = gdbarch_list_lookup_by_info (arches, &info);
  arches = gdbarch_list_lookup_by_info (arches, &info);
  if (arches != NULL)
  if (arches != NULL)
    return arches->gdbarch;
    return arches->gdbarch;
 
 
  /* Allocate space for the new architecture.  */
  /* Allocate space for the new architecture.  */
  tdep = XMALLOC (struct gdbarch_tdep);
  tdep = XMALLOC (struct gdbarch_tdep);
  gdbarch = gdbarch_alloc (&info, tdep);
  gdbarch = gdbarch_alloc (&info, tdep);
 
 
  set_gdbarch_read_pc (gdbarch, m32r_read_pc);
  set_gdbarch_read_pc (gdbarch, m32r_read_pc);
  set_gdbarch_write_pc (gdbarch, m32r_write_pc);
  set_gdbarch_write_pc (gdbarch, m32r_write_pc);
  set_gdbarch_unwind_sp (gdbarch, m32r_unwind_sp);
  set_gdbarch_unwind_sp (gdbarch, m32r_unwind_sp);
 
 
  set_gdbarch_num_regs (gdbarch, M32R_NUM_REGS);
  set_gdbarch_num_regs (gdbarch, M32R_NUM_REGS);
  set_gdbarch_sp_regnum (gdbarch, M32R_SP_REGNUM);
  set_gdbarch_sp_regnum (gdbarch, M32R_SP_REGNUM);
  set_gdbarch_register_name (gdbarch, m32r_register_name);
  set_gdbarch_register_name (gdbarch, m32r_register_name);
  set_gdbarch_register_type (gdbarch, m32r_register_type);
  set_gdbarch_register_type (gdbarch, m32r_register_type);
 
 
  set_gdbarch_push_dummy_call (gdbarch, m32r_push_dummy_call);
  set_gdbarch_push_dummy_call (gdbarch, m32r_push_dummy_call);
  set_gdbarch_return_value (gdbarch, m32r_return_value);
  set_gdbarch_return_value (gdbarch, m32r_return_value);
 
 
  set_gdbarch_skip_prologue (gdbarch, m32r_skip_prologue);
  set_gdbarch_skip_prologue (gdbarch, m32r_skip_prologue);
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
  set_gdbarch_breakpoint_from_pc (gdbarch, m32r_breakpoint_from_pc);
  set_gdbarch_breakpoint_from_pc (gdbarch, m32r_breakpoint_from_pc);
  set_gdbarch_memory_insert_breakpoint (gdbarch,
  set_gdbarch_memory_insert_breakpoint (gdbarch,
                                        m32r_memory_insert_breakpoint);
                                        m32r_memory_insert_breakpoint);
  set_gdbarch_memory_remove_breakpoint (gdbarch,
  set_gdbarch_memory_remove_breakpoint (gdbarch,
                                        m32r_memory_remove_breakpoint);
                                        m32r_memory_remove_breakpoint);
 
 
  set_gdbarch_frame_align (gdbarch, m32r_frame_align);
  set_gdbarch_frame_align (gdbarch, m32r_frame_align);
 
 
  frame_base_set_default (gdbarch, &m32r_frame_base);
  frame_base_set_default (gdbarch, &m32r_frame_base);
 
 
  /* Methods for saving / extracting a dummy frame's ID.  The ID's
  /* Methods for saving / extracting a dummy frame's ID.  The ID's
     stack address must match the SP value returned by
     stack address must match the SP value returned by
     PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos.  */
     PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos.  */
  set_gdbarch_unwind_dummy_id (gdbarch, m32r_unwind_dummy_id);
  set_gdbarch_unwind_dummy_id (gdbarch, m32r_unwind_dummy_id);
 
 
  /* Return the unwound PC value.  */
  /* Return the unwound PC value.  */
  set_gdbarch_unwind_pc (gdbarch, m32r_unwind_pc);
  set_gdbarch_unwind_pc (gdbarch, m32r_unwind_pc);
 
 
  set_gdbarch_print_insn (gdbarch, print_insn_m32r);
  set_gdbarch_print_insn (gdbarch, print_insn_m32r);
 
 
  /* Hook in ABI-specific overrides, if they have been registered.  */
  /* Hook in ABI-specific overrides, if they have been registered.  */
  gdbarch_init_osabi (info, gdbarch);
  gdbarch_init_osabi (info, gdbarch);
 
 
  /* Hook in the default unwinders.  */
  /* Hook in the default unwinders.  */
  frame_unwind_append_sniffer (gdbarch, m32r_frame_sniffer);
  frame_unwind_append_sniffer (gdbarch, m32r_frame_sniffer);
 
 
  /* Support simple overlay manager.  */
  /* Support simple overlay manager.  */
  set_gdbarch_overlay_update (gdbarch, simple_overlay_update);
  set_gdbarch_overlay_update (gdbarch, simple_overlay_update);
 
 
  return gdbarch;
  return gdbarch;
}
}
 
 
void
void
_initialize_m32r_tdep (void)
_initialize_m32r_tdep (void)
{
{
  register_gdbarch_init (bfd_arch_m32r, m32r_gdbarch_init);
  register_gdbarch_init (bfd_arch_m32r, m32r_gdbarch_init);
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.