OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gdb-6.8/] [gdb/] [target.c] - Diff between revs 827 and 840

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 827 Rev 840
/* Select target systems and architectures at runtime for GDB.
/* Select target systems and architectures at runtime for GDB.
 
 
   Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
   Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
   2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
   2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
   Contributed by Cygnus Support.
   Contributed by Cygnus Support.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
 
 
#include "defs.h"
#include "defs.h"
#include <errno.h>
#include <errno.h>
#include "gdb_string.h"
#include "gdb_string.h"
#include "target.h"
#include "target.h"
#include "gdbcmd.h"
#include "gdbcmd.h"
#include "symtab.h"
#include "symtab.h"
#include "inferior.h"
#include "inferior.h"
#include "bfd.h"
#include "bfd.h"
#include "symfile.h"
#include "symfile.h"
#include "objfiles.h"
#include "objfiles.h"
#include "gdb_wait.h"
#include "gdb_wait.h"
#include "dcache.h"
#include "dcache.h"
#include <signal.h>
#include <signal.h>
#include "regcache.h"
#include "regcache.h"
#include "gdb_assert.h"
#include "gdb_assert.h"
#include "gdbcore.h"
#include "gdbcore.h"
#include "exceptions.h"
#include "exceptions.h"
#include "target-descriptions.h"
#include "target-descriptions.h"
 
 
static void target_info (char *, int);
static void target_info (char *, int);
 
 
static void maybe_kill_then_attach (char *, int);
static void maybe_kill_then_attach (char *, int);
 
 
static void kill_or_be_killed (int);
static void kill_or_be_killed (int);
 
 
static void default_terminal_info (char *, int);
static void default_terminal_info (char *, int);
 
 
static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
 
 
static int nosymbol (char *, CORE_ADDR *);
static int nosymbol (char *, CORE_ADDR *);
 
 
static void tcomplain (void) ATTR_NORETURN;
static void tcomplain (void) ATTR_NORETURN;
 
 
static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
 
 
static int return_zero (void);
static int return_zero (void);
 
 
static int return_one (void);
static int return_one (void);
 
 
static int return_minus_one (void);
static int return_minus_one (void);
 
 
void target_ignore (void);
void target_ignore (void);
 
 
static void target_command (char *, int);
static void target_command (char *, int);
 
 
static struct target_ops *find_default_run_target (char *);
static struct target_ops *find_default_run_target (char *);
 
 
static void nosupport_runtime (void);
static void nosupport_runtime (void);
 
 
static LONGEST default_xfer_partial (struct target_ops *ops,
static LONGEST default_xfer_partial (struct target_ops *ops,
                                     enum target_object object,
                                     enum target_object object,
                                     const char *annex, gdb_byte *readbuf,
                                     const char *annex, gdb_byte *readbuf,
                                     const gdb_byte *writebuf,
                                     const gdb_byte *writebuf,
                                     ULONGEST offset, LONGEST len);
                                     ULONGEST offset, LONGEST len);
 
 
static LONGEST current_xfer_partial (struct target_ops *ops,
static LONGEST current_xfer_partial (struct target_ops *ops,
                                     enum target_object object,
                                     enum target_object object,
                                     const char *annex, gdb_byte *readbuf,
                                     const char *annex, gdb_byte *readbuf,
                                     const gdb_byte *writebuf,
                                     const gdb_byte *writebuf,
                                     ULONGEST offset, LONGEST len);
                                     ULONGEST offset, LONGEST len);
 
 
static LONGEST target_xfer_partial (struct target_ops *ops,
static LONGEST target_xfer_partial (struct target_ops *ops,
                                    enum target_object object,
                                    enum target_object object,
                                    const char *annex,
                                    const char *annex,
                                    void *readbuf, const void *writebuf,
                                    void *readbuf, const void *writebuf,
                                    ULONGEST offset, LONGEST len);
                                    ULONGEST offset, LONGEST len);
 
 
static void init_dummy_target (void);
static void init_dummy_target (void);
 
 
static struct target_ops debug_target;
static struct target_ops debug_target;
 
 
static void debug_to_open (char *, int);
static void debug_to_open (char *, int);
 
 
static void debug_to_close (int);
static void debug_to_close (int);
 
 
static void debug_to_attach (char *, int);
static void debug_to_attach (char *, int);
 
 
static void debug_to_detach (char *, int);
static void debug_to_detach (char *, int);
 
 
static void debug_to_resume (ptid_t, int, enum target_signal);
static void debug_to_resume (ptid_t, int, enum target_signal);
 
 
static ptid_t debug_to_wait (ptid_t, struct target_waitstatus *);
static ptid_t debug_to_wait (ptid_t, struct target_waitstatus *);
 
 
static void debug_to_fetch_registers (struct regcache *, int);
static void debug_to_fetch_registers (struct regcache *, int);
 
 
static void debug_to_store_registers (struct regcache *, int);
static void debug_to_store_registers (struct regcache *, int);
 
 
static void debug_to_prepare_to_store (struct regcache *);
static void debug_to_prepare_to_store (struct regcache *);
 
 
static void debug_to_files_info (struct target_ops *);
static void debug_to_files_info (struct target_ops *);
 
 
static int debug_to_insert_breakpoint (struct bp_target_info *);
static int debug_to_insert_breakpoint (struct bp_target_info *);
 
 
static int debug_to_remove_breakpoint (struct bp_target_info *);
static int debug_to_remove_breakpoint (struct bp_target_info *);
 
 
static int debug_to_can_use_hw_breakpoint (int, int, int);
static int debug_to_can_use_hw_breakpoint (int, int, int);
 
 
static int debug_to_insert_hw_breakpoint (struct bp_target_info *);
static int debug_to_insert_hw_breakpoint (struct bp_target_info *);
 
 
static int debug_to_remove_hw_breakpoint (struct bp_target_info *);
static int debug_to_remove_hw_breakpoint (struct bp_target_info *);
 
 
static int debug_to_insert_watchpoint (CORE_ADDR, int, int);
static int debug_to_insert_watchpoint (CORE_ADDR, int, int);
 
 
static int debug_to_remove_watchpoint (CORE_ADDR, int, int);
static int debug_to_remove_watchpoint (CORE_ADDR, int, int);
 
 
static int debug_to_stopped_by_watchpoint (void);
static int debug_to_stopped_by_watchpoint (void);
 
 
static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
 
 
static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
 
 
static void debug_to_terminal_init (void);
static void debug_to_terminal_init (void);
 
 
static void debug_to_terminal_inferior (void);
static void debug_to_terminal_inferior (void);
 
 
static void debug_to_terminal_ours_for_output (void);
static void debug_to_terminal_ours_for_output (void);
 
 
static void debug_to_terminal_save_ours (void);
static void debug_to_terminal_save_ours (void);
 
 
static void debug_to_terminal_ours (void);
static void debug_to_terminal_ours (void);
 
 
static void debug_to_terminal_info (char *, int);
static void debug_to_terminal_info (char *, int);
 
 
static void debug_to_kill (void);
static void debug_to_kill (void);
 
 
static void debug_to_load (char *, int);
static void debug_to_load (char *, int);
 
 
static int debug_to_lookup_symbol (char *, CORE_ADDR *);
static int debug_to_lookup_symbol (char *, CORE_ADDR *);
 
 
static void debug_to_mourn_inferior (void);
static void debug_to_mourn_inferior (void);
 
 
static int debug_to_can_run (void);
static int debug_to_can_run (void);
 
 
static void debug_to_notice_signals (ptid_t);
static void debug_to_notice_signals (ptid_t);
 
 
static int debug_to_thread_alive (ptid_t);
static int debug_to_thread_alive (ptid_t);
 
 
static void debug_to_stop (void);
static void debug_to_stop (void);
 
 
/* NOTE: cagney/2004-09-29: Many targets reference this variable in
/* NOTE: cagney/2004-09-29: Many targets reference this variable in
   wierd and mysterious ways.  Putting the variable here lets those
   wierd and mysterious ways.  Putting the variable here lets those
   wierd and mysterious ways keep building while they are being
   wierd and mysterious ways keep building while they are being
   converted to the inferior inheritance structure.  */
   converted to the inferior inheritance structure.  */
struct target_ops deprecated_child_ops;
struct target_ops deprecated_child_ops;
 
 
/* Pointer to array of target architecture structures; the size of the
/* Pointer to array of target architecture structures; the size of the
   array; the current index into the array; the allocated size of the
   array; the current index into the array; the allocated size of the
   array.  */
   array.  */
struct target_ops **target_structs;
struct target_ops **target_structs;
unsigned target_struct_size;
unsigned target_struct_size;
unsigned target_struct_index;
unsigned target_struct_index;
unsigned target_struct_allocsize;
unsigned target_struct_allocsize;
#define DEFAULT_ALLOCSIZE       10
#define DEFAULT_ALLOCSIZE       10
 
 
/* The initial current target, so that there is always a semi-valid
/* The initial current target, so that there is always a semi-valid
   current target.  */
   current target.  */
 
 
static struct target_ops dummy_target;
static struct target_ops dummy_target;
 
 
/* Top of target stack.  */
/* Top of target stack.  */
 
 
static struct target_ops *target_stack;
static struct target_ops *target_stack;
 
 
/* The target structure we are currently using to talk to a process
/* The target structure we are currently using to talk to a process
   or file or whatever "inferior" we have.  */
   or file or whatever "inferior" we have.  */
 
 
struct target_ops current_target;
struct target_ops current_target;
 
 
/* Command list for target.  */
/* Command list for target.  */
 
 
static struct cmd_list_element *targetlist = NULL;
static struct cmd_list_element *targetlist = NULL;
 
 
/* Nonzero if we are debugging an attached outside process
/* Nonzero if we are debugging an attached outside process
   rather than an inferior.  */
   rather than an inferior.  */
 
 
int attach_flag;
int attach_flag;
 
 
/* Nonzero if we should trust readonly sections from the
/* Nonzero if we should trust readonly sections from the
   executable when reading memory.  */
   executable when reading memory.  */
 
 
static int trust_readonly = 0;
static int trust_readonly = 0;
 
 
/* Non-zero if we want to see trace of target level stuff.  */
/* Non-zero if we want to see trace of target level stuff.  */
 
 
static int targetdebug = 0;
static int targetdebug = 0;
static void
static void
show_targetdebug (struct ui_file *file, int from_tty,
show_targetdebug (struct ui_file *file, int from_tty,
                  struct cmd_list_element *c, const char *value)
                  struct cmd_list_element *c, const char *value)
{
{
  fprintf_filtered (file, _("Target debugging is %s.\n"), value);
  fprintf_filtered (file, _("Target debugging is %s.\n"), value);
}
}
 
 
static void setup_target_debug (void);
static void setup_target_debug (void);
 
 
DCACHE *target_dcache;
DCACHE *target_dcache;
 
 
/* The user just typed 'target' without the name of a target.  */
/* The user just typed 'target' without the name of a target.  */
 
 
static void
static void
target_command (char *arg, int from_tty)
target_command (char *arg, int from_tty)
{
{
  fputs_filtered ("Argument required (target name).  Try `help target'\n",
  fputs_filtered ("Argument required (target name).  Try `help target'\n",
                  gdb_stdout);
                  gdb_stdout);
}
}
 
 
/* Add a possible target architecture to the list.  */
/* Add a possible target architecture to the list.  */
 
 
void
void
add_target (struct target_ops *t)
add_target (struct target_ops *t)
{
{
  /* Provide default values for all "must have" methods.  */
  /* Provide default values for all "must have" methods.  */
  if (t->to_xfer_partial == NULL)
  if (t->to_xfer_partial == NULL)
    t->to_xfer_partial = default_xfer_partial;
    t->to_xfer_partial = default_xfer_partial;
 
 
  if (!target_structs)
  if (!target_structs)
    {
    {
      target_struct_allocsize = DEFAULT_ALLOCSIZE;
      target_struct_allocsize = DEFAULT_ALLOCSIZE;
      target_structs = (struct target_ops **) xmalloc
      target_structs = (struct target_ops **) xmalloc
        (target_struct_allocsize * sizeof (*target_structs));
        (target_struct_allocsize * sizeof (*target_structs));
    }
    }
  if (target_struct_size >= target_struct_allocsize)
  if (target_struct_size >= target_struct_allocsize)
    {
    {
      target_struct_allocsize *= 2;
      target_struct_allocsize *= 2;
      target_structs = (struct target_ops **)
      target_structs = (struct target_ops **)
        xrealloc ((char *) target_structs,
        xrealloc ((char *) target_structs,
                  target_struct_allocsize * sizeof (*target_structs));
                  target_struct_allocsize * sizeof (*target_structs));
    }
    }
  target_structs[target_struct_size++] = t;
  target_structs[target_struct_size++] = t;
 
 
  if (targetlist == NULL)
  if (targetlist == NULL)
    add_prefix_cmd ("target", class_run, target_command, _("\
    add_prefix_cmd ("target", class_run, target_command, _("\
Connect to a target machine or process.\n\
Connect to a target machine or process.\n\
The first argument is the type or protocol of the target machine.\n\
The first argument is the type or protocol of the target machine.\n\
Remaining arguments are interpreted by the target protocol.  For more\n\
Remaining arguments are interpreted by the target protocol.  For more\n\
information on the arguments for a particular protocol, type\n\
information on the arguments for a particular protocol, type\n\
`help target ' followed by the protocol name."),
`help target ' followed by the protocol name."),
                    &targetlist, "target ", 0, &cmdlist);
                    &targetlist, "target ", 0, &cmdlist);
  add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
  add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
}
}
 
 
/* Stub functions */
/* Stub functions */
 
 
void
void
target_ignore (void)
target_ignore (void)
{
{
}
}
 
 
void
void
target_load (char *arg, int from_tty)
target_load (char *arg, int from_tty)
{
{
  dcache_invalidate (target_dcache);
  dcache_invalidate (target_dcache);
  (*current_target.to_load) (arg, from_tty);
  (*current_target.to_load) (arg, from_tty);
}
}
 
 
static int
static int
nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
          struct target_ops *t)
          struct target_ops *t)
{
{
  errno = EIO;                  /* Can't read/write this location */
  errno = EIO;                  /* Can't read/write this location */
  return 0;                      /* No bytes handled */
  return 0;                      /* No bytes handled */
}
}
 
 
static void
static void
tcomplain (void)
tcomplain (void)
{
{
  error (_("You can't do that when your target is `%s'"),
  error (_("You can't do that when your target is `%s'"),
         current_target.to_shortname);
         current_target.to_shortname);
}
}
 
 
void
void
noprocess (void)
noprocess (void)
{
{
  error (_("You can't do that without a process to debug."));
  error (_("You can't do that without a process to debug."));
}
}
 
 
static int
static int
nosymbol (char *name, CORE_ADDR *addrp)
nosymbol (char *name, CORE_ADDR *addrp)
{
{
  return 1;                     /* Symbol does not exist in target env */
  return 1;                     /* Symbol does not exist in target env */
}
}
 
 
static void
static void
nosupport_runtime (void)
nosupport_runtime (void)
{
{
  if (ptid_equal (inferior_ptid, null_ptid))
  if (ptid_equal (inferior_ptid, null_ptid))
    noprocess ();
    noprocess ();
  else
  else
    error (_("No run-time support for this"));
    error (_("No run-time support for this"));
}
}
 
 
 
 
static void
static void
default_terminal_info (char *args, int from_tty)
default_terminal_info (char *args, int from_tty)
{
{
  printf_unfiltered (_("No saved terminal information.\n"));
  printf_unfiltered (_("No saved terminal information.\n"));
}
}
 
 
/* This is the default target_create_inferior and target_attach function.
/* This is the default target_create_inferior and target_attach function.
   If the current target is executing, it asks whether to kill it off.
   If the current target is executing, it asks whether to kill it off.
   If this function returns without calling error(), it has killed off
   If this function returns without calling error(), it has killed off
   the target, and the operation should be attempted.  */
   the target, and the operation should be attempted.  */
 
 
static void
static void
kill_or_be_killed (int from_tty)
kill_or_be_killed (int from_tty)
{
{
  if (target_has_execution)
  if (target_has_execution)
    {
    {
      printf_unfiltered (_("You are already running a program:\n"));
      printf_unfiltered (_("You are already running a program:\n"));
      target_files_info ();
      target_files_info ();
      if (query ("Kill it? "))
      if (query ("Kill it? "))
        {
        {
          target_kill ();
          target_kill ();
          if (target_has_execution)
          if (target_has_execution)
            error (_("Killing the program did not help."));
            error (_("Killing the program did not help."));
          return;
          return;
        }
        }
      else
      else
        {
        {
          error (_("Program not killed."));
          error (_("Program not killed."));
        }
        }
    }
    }
  tcomplain ();
  tcomplain ();
}
}
 
 
static void
static void
maybe_kill_then_attach (char *args, int from_tty)
maybe_kill_then_attach (char *args, int from_tty)
{
{
  kill_or_be_killed (from_tty);
  kill_or_be_killed (from_tty);
  target_attach (args, from_tty);
  target_attach (args, from_tty);
}
}
 
 
static void
static void
maybe_kill_then_create_inferior (char *exec, char *args, char **env,
maybe_kill_then_create_inferior (char *exec, char *args, char **env,
                                 int from_tty)
                                 int from_tty)
{
{
  kill_or_be_killed (0);
  kill_or_be_killed (0);
  target_create_inferior (exec, args, env, from_tty);
  target_create_inferior (exec, args, env, from_tty);
}
}
 
 
/* Go through the target stack from top to bottom, copying over zero
/* Go through the target stack from top to bottom, copying over zero
   entries in current_target, then filling in still empty entries.  In
   entries in current_target, then filling in still empty entries.  In
   effect, we are doing class inheritance through the pushed target
   effect, we are doing class inheritance through the pushed target
   vectors.
   vectors.
 
 
   NOTE: cagney/2003-10-17: The problem with this inheritance, as it
   NOTE: cagney/2003-10-17: The problem with this inheritance, as it
   is currently implemented, is that it discards any knowledge of
   is currently implemented, is that it discards any knowledge of
   which target an inherited method originally belonged to.
   which target an inherited method originally belonged to.
   Consequently, new new target methods should instead explicitly and
   Consequently, new new target methods should instead explicitly and
   locally search the target stack for the target that can handle the
   locally search the target stack for the target that can handle the
   request.  */
   request.  */
 
 
static void
static void
update_current_target (void)
update_current_target (void)
{
{
  struct target_ops *t;
  struct target_ops *t;
 
 
  /* First, reset current's contents.  */
  /* First, reset current's contents.  */
  memset (&current_target, 0, sizeof (current_target));
  memset (&current_target, 0, sizeof (current_target));
 
 
#define INHERIT(FIELD, TARGET) \
#define INHERIT(FIELD, TARGET) \
      if (!current_target.FIELD) \
      if (!current_target.FIELD) \
        current_target.FIELD = (TARGET)->FIELD
        current_target.FIELD = (TARGET)->FIELD
 
 
  for (t = target_stack; t; t = t->beneath)
  for (t = target_stack; t; t = t->beneath)
    {
    {
      INHERIT (to_shortname, t);
      INHERIT (to_shortname, t);
      INHERIT (to_longname, t);
      INHERIT (to_longname, t);
      INHERIT (to_doc, t);
      INHERIT (to_doc, t);
      INHERIT (to_open, t);
      INHERIT (to_open, t);
      INHERIT (to_close, t);
      INHERIT (to_close, t);
      INHERIT (to_attach, t);
      INHERIT (to_attach, t);
      INHERIT (to_post_attach, t);
      INHERIT (to_post_attach, t);
      INHERIT (to_detach, t);
      INHERIT (to_detach, t);
      /* Do not inherit to_disconnect.  */
      /* Do not inherit to_disconnect.  */
      INHERIT (to_resume, t);
      INHERIT (to_resume, t);
      INHERIT (to_wait, t);
      INHERIT (to_wait, t);
      INHERIT (to_fetch_registers, t);
      INHERIT (to_fetch_registers, t);
      INHERIT (to_store_registers, t);
      INHERIT (to_store_registers, t);
      INHERIT (to_prepare_to_store, t);
      INHERIT (to_prepare_to_store, t);
      INHERIT (deprecated_xfer_memory, t);
      INHERIT (deprecated_xfer_memory, t);
      INHERIT (to_files_info, t);
      INHERIT (to_files_info, t);
      INHERIT (to_insert_breakpoint, t);
      INHERIT (to_insert_breakpoint, t);
      INHERIT (to_remove_breakpoint, t);
      INHERIT (to_remove_breakpoint, t);
      INHERIT (to_can_use_hw_breakpoint, t);
      INHERIT (to_can_use_hw_breakpoint, t);
      INHERIT (to_insert_hw_breakpoint, t);
      INHERIT (to_insert_hw_breakpoint, t);
      INHERIT (to_remove_hw_breakpoint, t);
      INHERIT (to_remove_hw_breakpoint, t);
      INHERIT (to_insert_watchpoint, t);
      INHERIT (to_insert_watchpoint, t);
      INHERIT (to_remove_watchpoint, t);
      INHERIT (to_remove_watchpoint, t);
      INHERIT (to_stopped_data_address, t);
      INHERIT (to_stopped_data_address, t);
      INHERIT (to_stopped_by_watchpoint, t);
      INHERIT (to_stopped_by_watchpoint, t);
      INHERIT (to_have_steppable_watchpoint, t);
      INHERIT (to_have_steppable_watchpoint, t);
      INHERIT (to_have_continuable_watchpoint, t);
      INHERIT (to_have_continuable_watchpoint, t);
      INHERIT (to_region_ok_for_hw_watchpoint, t);
      INHERIT (to_region_ok_for_hw_watchpoint, t);
      INHERIT (to_terminal_init, t);
      INHERIT (to_terminal_init, t);
      INHERIT (to_terminal_inferior, t);
      INHERIT (to_terminal_inferior, t);
      INHERIT (to_terminal_ours_for_output, t);
      INHERIT (to_terminal_ours_for_output, t);
      INHERIT (to_terminal_ours, t);
      INHERIT (to_terminal_ours, t);
      INHERIT (to_terminal_save_ours, t);
      INHERIT (to_terminal_save_ours, t);
      INHERIT (to_terminal_info, t);
      INHERIT (to_terminal_info, t);
      INHERIT (to_kill, t);
      INHERIT (to_kill, t);
      INHERIT (to_load, t);
      INHERIT (to_load, t);
      INHERIT (to_lookup_symbol, t);
      INHERIT (to_lookup_symbol, t);
      INHERIT (to_create_inferior, t);
      INHERIT (to_create_inferior, t);
      INHERIT (to_post_startup_inferior, t);
      INHERIT (to_post_startup_inferior, t);
      INHERIT (to_acknowledge_created_inferior, t);
      INHERIT (to_acknowledge_created_inferior, t);
      INHERIT (to_insert_fork_catchpoint, t);
      INHERIT (to_insert_fork_catchpoint, t);
      INHERIT (to_remove_fork_catchpoint, t);
      INHERIT (to_remove_fork_catchpoint, t);
      INHERIT (to_insert_vfork_catchpoint, t);
      INHERIT (to_insert_vfork_catchpoint, t);
      INHERIT (to_remove_vfork_catchpoint, t);
      INHERIT (to_remove_vfork_catchpoint, t);
      /* Do not inherit to_follow_fork.  */
      /* Do not inherit to_follow_fork.  */
      INHERIT (to_insert_exec_catchpoint, t);
      INHERIT (to_insert_exec_catchpoint, t);
      INHERIT (to_remove_exec_catchpoint, t);
      INHERIT (to_remove_exec_catchpoint, t);
      INHERIT (to_reported_exec_events_per_exec_call, t);
      INHERIT (to_reported_exec_events_per_exec_call, t);
      INHERIT (to_has_exited, t);
      INHERIT (to_has_exited, t);
      INHERIT (to_mourn_inferior, t);
      INHERIT (to_mourn_inferior, t);
      INHERIT (to_can_run, t);
      INHERIT (to_can_run, t);
      INHERIT (to_notice_signals, t);
      INHERIT (to_notice_signals, t);
      INHERIT (to_thread_alive, t);
      INHERIT (to_thread_alive, t);
      INHERIT (to_find_new_threads, t);
      INHERIT (to_find_new_threads, t);
      INHERIT (to_pid_to_str, t);
      INHERIT (to_pid_to_str, t);
      INHERIT (to_extra_thread_info, t);
      INHERIT (to_extra_thread_info, t);
      INHERIT (to_stop, t);
      INHERIT (to_stop, t);
      /* Do not inherit to_xfer_partial.  */
      /* Do not inherit to_xfer_partial.  */
      INHERIT (to_rcmd, t);
      INHERIT (to_rcmd, t);
      INHERIT (to_pid_to_exec_file, t);
      INHERIT (to_pid_to_exec_file, t);
      INHERIT (to_log_command, t);
      INHERIT (to_log_command, t);
      INHERIT (to_stratum, t);
      INHERIT (to_stratum, t);
      INHERIT (to_has_all_memory, t);
      INHERIT (to_has_all_memory, t);
      INHERIT (to_has_memory, t);
      INHERIT (to_has_memory, t);
      INHERIT (to_has_stack, t);
      INHERIT (to_has_stack, t);
      INHERIT (to_has_registers, t);
      INHERIT (to_has_registers, t);
      INHERIT (to_has_execution, t);
      INHERIT (to_has_execution, t);
      INHERIT (to_has_thread_control, t);
      INHERIT (to_has_thread_control, t);
      INHERIT (to_sections, t);
      INHERIT (to_sections, t);
      INHERIT (to_sections_end, t);
      INHERIT (to_sections_end, t);
      INHERIT (to_can_async_p, t);
      INHERIT (to_can_async_p, t);
      INHERIT (to_is_async_p, t);
      INHERIT (to_is_async_p, t);
      INHERIT (to_async, t);
      INHERIT (to_async, t);
      INHERIT (to_async_mask_value, t);
      INHERIT (to_async_mask_value, t);
      INHERIT (to_find_memory_regions, t);
      INHERIT (to_find_memory_regions, t);
      INHERIT (to_make_corefile_notes, t);
      INHERIT (to_make_corefile_notes, t);
      INHERIT (to_get_thread_local_address, t);
      INHERIT (to_get_thread_local_address, t);
      /* Do not inherit to_read_description.  */
      /* Do not inherit to_read_description.  */
      INHERIT (to_magic, t);
      INHERIT (to_magic, t);
      /* Do not inherit to_memory_map.  */
      /* Do not inherit to_memory_map.  */
      /* Do not inherit to_flash_erase.  */
      /* Do not inherit to_flash_erase.  */
      /* Do not inherit to_flash_done.  */
      /* Do not inherit to_flash_done.  */
    }
    }
#undef INHERIT
#undef INHERIT
 
 
  /* Clean up a target struct so it no longer has any zero pointers in
  /* Clean up a target struct so it no longer has any zero pointers in
     it.  Some entries are defaulted to a method that print an error,
     it.  Some entries are defaulted to a method that print an error,
     others are hard-wired to a standard recursive default.  */
     others are hard-wired to a standard recursive default.  */
 
 
#define de_fault(field, value) \
#define de_fault(field, value) \
  if (!current_target.field)               \
  if (!current_target.field)               \
    current_target.field = value
    current_target.field = value
 
 
  de_fault (to_open,
  de_fault (to_open,
            (void (*) (char *, int))
            (void (*) (char *, int))
            tcomplain);
            tcomplain);
  de_fault (to_close,
  de_fault (to_close,
            (void (*) (int))
            (void (*) (int))
            target_ignore);
            target_ignore);
  de_fault (to_attach,
  de_fault (to_attach,
            maybe_kill_then_attach);
            maybe_kill_then_attach);
  de_fault (to_post_attach,
  de_fault (to_post_attach,
            (void (*) (int))
            (void (*) (int))
            target_ignore);
            target_ignore);
  de_fault (to_detach,
  de_fault (to_detach,
            (void (*) (char *, int))
            (void (*) (char *, int))
            target_ignore);
            target_ignore);
  de_fault (to_resume,
  de_fault (to_resume,
            (void (*) (ptid_t, int, enum target_signal))
            (void (*) (ptid_t, int, enum target_signal))
            noprocess);
            noprocess);
  de_fault (to_wait,
  de_fault (to_wait,
            (ptid_t (*) (ptid_t, struct target_waitstatus *))
            (ptid_t (*) (ptid_t, struct target_waitstatus *))
            noprocess);
            noprocess);
  de_fault (to_fetch_registers,
  de_fault (to_fetch_registers,
            (void (*) (struct regcache *, int))
            (void (*) (struct regcache *, int))
            target_ignore);
            target_ignore);
  de_fault (to_store_registers,
  de_fault (to_store_registers,
            (void (*) (struct regcache *, int))
            (void (*) (struct regcache *, int))
            noprocess);
            noprocess);
  de_fault (to_prepare_to_store,
  de_fault (to_prepare_to_store,
            (void (*) (struct regcache *))
            (void (*) (struct regcache *))
            noprocess);
            noprocess);
  de_fault (deprecated_xfer_memory,
  de_fault (deprecated_xfer_memory,
            (int (*) (CORE_ADDR, gdb_byte *, int, int, struct mem_attrib *, struct target_ops *))
            (int (*) (CORE_ADDR, gdb_byte *, int, int, struct mem_attrib *, struct target_ops *))
            nomemory);
            nomemory);
  de_fault (to_files_info,
  de_fault (to_files_info,
            (void (*) (struct target_ops *))
            (void (*) (struct target_ops *))
            target_ignore);
            target_ignore);
  de_fault (to_insert_breakpoint,
  de_fault (to_insert_breakpoint,
            memory_insert_breakpoint);
            memory_insert_breakpoint);
  de_fault (to_remove_breakpoint,
  de_fault (to_remove_breakpoint,
            memory_remove_breakpoint);
            memory_remove_breakpoint);
  de_fault (to_can_use_hw_breakpoint,
  de_fault (to_can_use_hw_breakpoint,
            (int (*) (int, int, int))
            (int (*) (int, int, int))
            return_zero);
            return_zero);
  de_fault (to_insert_hw_breakpoint,
  de_fault (to_insert_hw_breakpoint,
            (int (*) (struct bp_target_info *))
            (int (*) (struct bp_target_info *))
            return_minus_one);
            return_minus_one);
  de_fault (to_remove_hw_breakpoint,
  de_fault (to_remove_hw_breakpoint,
            (int (*) (struct bp_target_info *))
            (int (*) (struct bp_target_info *))
            return_minus_one);
            return_minus_one);
  de_fault (to_insert_watchpoint,
  de_fault (to_insert_watchpoint,
            (int (*) (CORE_ADDR, int, int))
            (int (*) (CORE_ADDR, int, int))
            return_minus_one);
            return_minus_one);
  de_fault (to_remove_watchpoint,
  de_fault (to_remove_watchpoint,
            (int (*) (CORE_ADDR, int, int))
            (int (*) (CORE_ADDR, int, int))
            return_minus_one);
            return_minus_one);
  de_fault (to_stopped_by_watchpoint,
  de_fault (to_stopped_by_watchpoint,
            (int (*) (void))
            (int (*) (void))
            return_zero);
            return_zero);
  de_fault (to_stopped_data_address,
  de_fault (to_stopped_data_address,
            (int (*) (struct target_ops *, CORE_ADDR *))
            (int (*) (struct target_ops *, CORE_ADDR *))
            return_zero);
            return_zero);
  de_fault (to_region_ok_for_hw_watchpoint,
  de_fault (to_region_ok_for_hw_watchpoint,
            default_region_ok_for_hw_watchpoint);
            default_region_ok_for_hw_watchpoint);
  de_fault (to_terminal_init,
  de_fault (to_terminal_init,
            (void (*) (void))
            (void (*) (void))
            target_ignore);
            target_ignore);
  de_fault (to_terminal_inferior,
  de_fault (to_terminal_inferior,
            (void (*) (void))
            (void (*) (void))
            target_ignore);
            target_ignore);
  de_fault (to_terminal_ours_for_output,
  de_fault (to_terminal_ours_for_output,
            (void (*) (void))
            (void (*) (void))
            target_ignore);
            target_ignore);
  de_fault (to_terminal_ours,
  de_fault (to_terminal_ours,
            (void (*) (void))
            (void (*) (void))
            target_ignore);
            target_ignore);
  de_fault (to_terminal_save_ours,
  de_fault (to_terminal_save_ours,
            (void (*) (void))
            (void (*) (void))
            target_ignore);
            target_ignore);
  de_fault (to_terminal_info,
  de_fault (to_terminal_info,
            default_terminal_info);
            default_terminal_info);
  de_fault (to_kill,
  de_fault (to_kill,
            (void (*) (void))
            (void (*) (void))
            noprocess);
            noprocess);
  de_fault (to_load,
  de_fault (to_load,
            (void (*) (char *, int))
            (void (*) (char *, int))
            tcomplain);
            tcomplain);
  de_fault (to_lookup_symbol,
  de_fault (to_lookup_symbol,
            (int (*) (char *, CORE_ADDR *))
            (int (*) (char *, CORE_ADDR *))
            nosymbol);
            nosymbol);
  de_fault (to_create_inferior,
  de_fault (to_create_inferior,
            maybe_kill_then_create_inferior);
            maybe_kill_then_create_inferior);
  de_fault (to_post_startup_inferior,
  de_fault (to_post_startup_inferior,
            (void (*) (ptid_t))
            (void (*) (ptid_t))
            target_ignore);
            target_ignore);
  de_fault (to_acknowledge_created_inferior,
  de_fault (to_acknowledge_created_inferior,
            (void (*) (int))
            (void (*) (int))
            target_ignore);
            target_ignore);
  de_fault (to_insert_fork_catchpoint,
  de_fault (to_insert_fork_catchpoint,
            (void (*) (int))
            (void (*) (int))
            tcomplain);
            tcomplain);
  de_fault (to_remove_fork_catchpoint,
  de_fault (to_remove_fork_catchpoint,
            (int (*) (int))
            (int (*) (int))
            tcomplain);
            tcomplain);
  de_fault (to_insert_vfork_catchpoint,
  de_fault (to_insert_vfork_catchpoint,
            (void (*) (int))
            (void (*) (int))
            tcomplain);
            tcomplain);
  de_fault (to_remove_vfork_catchpoint,
  de_fault (to_remove_vfork_catchpoint,
            (int (*) (int))
            (int (*) (int))
            tcomplain);
            tcomplain);
  de_fault (to_insert_exec_catchpoint,
  de_fault (to_insert_exec_catchpoint,
            (void (*) (int))
            (void (*) (int))
            tcomplain);
            tcomplain);
  de_fault (to_remove_exec_catchpoint,
  de_fault (to_remove_exec_catchpoint,
            (int (*) (int))
            (int (*) (int))
            tcomplain);
            tcomplain);
  de_fault (to_reported_exec_events_per_exec_call,
  de_fault (to_reported_exec_events_per_exec_call,
            (int (*) (void))
            (int (*) (void))
            return_one);
            return_one);
  de_fault (to_has_exited,
  de_fault (to_has_exited,
            (int (*) (int, int, int *))
            (int (*) (int, int, int *))
            return_zero);
            return_zero);
  de_fault (to_mourn_inferior,
  de_fault (to_mourn_inferior,
            (void (*) (void))
            (void (*) (void))
            noprocess);
            noprocess);
  de_fault (to_can_run,
  de_fault (to_can_run,
            return_zero);
            return_zero);
  de_fault (to_notice_signals,
  de_fault (to_notice_signals,
            (void (*) (ptid_t))
            (void (*) (ptid_t))
            target_ignore);
            target_ignore);
  de_fault (to_thread_alive,
  de_fault (to_thread_alive,
            (int (*) (ptid_t))
            (int (*) (ptid_t))
            return_zero);
            return_zero);
  de_fault (to_find_new_threads,
  de_fault (to_find_new_threads,
            (void (*) (void))
            (void (*) (void))
            target_ignore);
            target_ignore);
  de_fault (to_extra_thread_info,
  de_fault (to_extra_thread_info,
            (char *(*) (struct thread_info *))
            (char *(*) (struct thread_info *))
            return_zero);
            return_zero);
  de_fault (to_stop,
  de_fault (to_stop,
            (void (*) (void))
            (void (*) (void))
            target_ignore);
            target_ignore);
  current_target.to_xfer_partial = current_xfer_partial;
  current_target.to_xfer_partial = current_xfer_partial;
  de_fault (to_rcmd,
  de_fault (to_rcmd,
            (void (*) (char *, struct ui_file *))
            (void (*) (char *, struct ui_file *))
            tcomplain);
            tcomplain);
  de_fault (to_pid_to_exec_file,
  de_fault (to_pid_to_exec_file,
            (char *(*) (int))
            (char *(*) (int))
            return_zero);
            return_zero);
  de_fault (to_can_async_p,
  de_fault (to_can_async_p,
            (int (*) (void))
            (int (*) (void))
            return_zero);
            return_zero);
  de_fault (to_is_async_p,
  de_fault (to_is_async_p,
            (int (*) (void))
            (int (*) (void))
            return_zero);
            return_zero);
  de_fault (to_async,
  de_fault (to_async,
            (void (*) (void (*) (enum inferior_event_type, void*), void*))
            (void (*) (void (*) (enum inferior_event_type, void*), void*))
            tcomplain);
            tcomplain);
  current_target.to_read_description = NULL;
  current_target.to_read_description = NULL;
#undef de_fault
#undef de_fault
 
 
  /* Finally, position the target-stack beneath the squashed
  /* Finally, position the target-stack beneath the squashed
     "current_target".  That way code looking for a non-inherited
     "current_target".  That way code looking for a non-inherited
     target method can quickly and simply find it.  */
     target method can quickly and simply find it.  */
  current_target.beneath = target_stack;
  current_target.beneath = target_stack;
 
 
  if (targetdebug)
  if (targetdebug)
    setup_target_debug ();
    setup_target_debug ();
}
}
 
 
/* Mark OPS as a running target.  This reverses the effect
/* Mark OPS as a running target.  This reverses the effect
   of target_mark_exited.  */
   of target_mark_exited.  */
 
 
void
void
target_mark_running (struct target_ops *ops)
target_mark_running (struct target_ops *ops)
{
{
  struct target_ops *t;
  struct target_ops *t;
 
 
  for (t = target_stack; t != NULL; t = t->beneath)
  for (t = target_stack; t != NULL; t = t->beneath)
    if (t == ops)
    if (t == ops)
      break;
      break;
  if (t == NULL)
  if (t == NULL)
    internal_error (__FILE__, __LINE__,
    internal_error (__FILE__, __LINE__,
                    "Attempted to mark unpushed target \"%s\" as running",
                    "Attempted to mark unpushed target \"%s\" as running",
                    ops->to_shortname);
                    ops->to_shortname);
 
 
  ops->to_has_execution = 1;
  ops->to_has_execution = 1;
  ops->to_has_all_memory = 1;
  ops->to_has_all_memory = 1;
  ops->to_has_memory = 1;
  ops->to_has_memory = 1;
  ops->to_has_stack = 1;
  ops->to_has_stack = 1;
  ops->to_has_registers = 1;
  ops->to_has_registers = 1;
 
 
  update_current_target ();
  update_current_target ();
}
}
 
 
/* Mark OPS as a non-running target.  This reverses the effect
/* Mark OPS as a non-running target.  This reverses the effect
   of target_mark_running.  */
   of target_mark_running.  */
 
 
void
void
target_mark_exited (struct target_ops *ops)
target_mark_exited (struct target_ops *ops)
{
{
  struct target_ops *t;
  struct target_ops *t;
 
 
  for (t = target_stack; t != NULL; t = t->beneath)
  for (t = target_stack; t != NULL; t = t->beneath)
    if (t == ops)
    if (t == ops)
      break;
      break;
  if (t == NULL)
  if (t == NULL)
    internal_error (__FILE__, __LINE__,
    internal_error (__FILE__, __LINE__,
                    "Attempted to mark unpushed target \"%s\" as running",
                    "Attempted to mark unpushed target \"%s\" as running",
                    ops->to_shortname);
                    ops->to_shortname);
 
 
  ops->to_has_execution = 0;
  ops->to_has_execution = 0;
  ops->to_has_all_memory = 0;
  ops->to_has_all_memory = 0;
  ops->to_has_memory = 0;
  ops->to_has_memory = 0;
  ops->to_has_stack = 0;
  ops->to_has_stack = 0;
  ops->to_has_registers = 0;
  ops->to_has_registers = 0;
 
 
  update_current_target ();
  update_current_target ();
}
}
 
 
/* Push a new target type into the stack of the existing target accessors,
/* Push a new target type into the stack of the existing target accessors,
   possibly superseding some of the existing accessors.
   possibly superseding some of the existing accessors.
 
 
   Result is zero if the pushed target ended up on top of the stack,
   Result is zero if the pushed target ended up on top of the stack,
   nonzero if at least one target is on top of it.
   nonzero if at least one target is on top of it.
 
 
   Rather than allow an empty stack, we always have the dummy target at
   Rather than allow an empty stack, we always have the dummy target at
   the bottom stratum, so we can call the function vectors without
   the bottom stratum, so we can call the function vectors without
   checking them.  */
   checking them.  */
 
 
int
int
push_target (struct target_ops *t)
push_target (struct target_ops *t)
{
{
  struct target_ops **cur;
  struct target_ops **cur;
 
 
  /* Check magic number.  If wrong, it probably means someone changed
  /* Check magic number.  If wrong, it probably means someone changed
     the struct definition, but not all the places that initialize one.  */
     the struct definition, but not all the places that initialize one.  */
  if (t->to_magic != OPS_MAGIC)
  if (t->to_magic != OPS_MAGIC)
    {
    {
      fprintf_unfiltered (gdb_stderr,
      fprintf_unfiltered (gdb_stderr,
                          "Magic number of %s target struct wrong\n",
                          "Magic number of %s target struct wrong\n",
                          t->to_shortname);
                          t->to_shortname);
      internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
      internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
    }
    }
 
 
  /* Find the proper stratum to install this target in.  */
  /* Find the proper stratum to install this target in.  */
  for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
  for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
    {
    {
      if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
      if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
        break;
        break;
    }
    }
 
 
  /* If there's already targets at this stratum, remove them.  */
  /* If there's already targets at this stratum, remove them.  */
  /* FIXME: cagney/2003-10-15: I think this should be popping all
  /* FIXME: cagney/2003-10-15: I think this should be popping all
     targets to CUR, and not just those at this stratum level.  */
     targets to CUR, and not just those at this stratum level.  */
  while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
  while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
    {
    {
      /* There's already something at this stratum level.  Close it,
      /* There's already something at this stratum level.  Close it,
         and un-hook it from the stack.  */
         and un-hook it from the stack.  */
      struct target_ops *tmp = (*cur);
      struct target_ops *tmp = (*cur);
      (*cur) = (*cur)->beneath;
      (*cur) = (*cur)->beneath;
      tmp->beneath = NULL;
      tmp->beneath = NULL;
      target_close (tmp, 0);
      target_close (tmp, 0);
    }
    }
 
 
  /* We have removed all targets in our stratum, now add the new one.  */
  /* We have removed all targets in our stratum, now add the new one.  */
  t->beneath = (*cur);
  t->beneath = (*cur);
  (*cur) = t;
  (*cur) = t;
 
 
  update_current_target ();
  update_current_target ();
 
 
  /* Not on top?  */
  /* Not on top?  */
  return (t != target_stack);
  return (t != target_stack);
}
}
 
 
/* Remove a target_ops vector from the stack, wherever it may be.
/* Remove a target_ops vector from the stack, wherever it may be.
   Return how many times it was removed (0 or 1).  */
   Return how many times it was removed (0 or 1).  */
 
 
int
int
unpush_target (struct target_ops *t)
unpush_target (struct target_ops *t)
{
{
  struct target_ops **cur;
  struct target_ops **cur;
  struct target_ops *tmp;
  struct target_ops *tmp;
 
 
  /* Look for the specified target.  Note that we assume that a target
  /* Look for the specified target.  Note that we assume that a target
     can only occur once in the target stack. */
     can only occur once in the target stack. */
 
 
  for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
  for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
    {
    {
      if ((*cur) == t)
      if ((*cur) == t)
        break;
        break;
    }
    }
 
 
  if ((*cur) == NULL)
  if ((*cur) == NULL)
    return 0;                    /* Didn't find target_ops, quit now */
    return 0;                    /* Didn't find target_ops, quit now */
 
 
  /* NOTE: cagney/2003-12-06: In '94 the close call was made
  /* NOTE: cagney/2003-12-06: In '94 the close call was made
     unconditional by moving it to before the above check that the
     unconditional by moving it to before the above check that the
     target was in the target stack (something about "Change the way
     target was in the target stack (something about "Change the way
     pushing and popping of targets work to support target overlays
     pushing and popping of targets work to support target overlays
     and inheritance").  This doesn't make much sense - only open
     and inheritance").  This doesn't make much sense - only open
     targets should be closed.  */
     targets should be closed.  */
  target_close (t, 0);
  target_close (t, 0);
 
 
  /* Unchain the target */
  /* Unchain the target */
  tmp = (*cur);
  tmp = (*cur);
  (*cur) = (*cur)->beneath;
  (*cur) = (*cur)->beneath;
  tmp->beneath = NULL;
  tmp->beneath = NULL;
 
 
  update_current_target ();
  update_current_target ();
 
 
  return 1;
  return 1;
}
}
 
 
void
void
pop_target (void)
pop_target (void)
{
{
  target_close (&current_target, 0);     /* Let it clean up */
  target_close (&current_target, 0);     /* Let it clean up */
  if (unpush_target (target_stack) == 1)
  if (unpush_target (target_stack) == 1)
    return;
    return;
 
 
  fprintf_unfiltered (gdb_stderr,
  fprintf_unfiltered (gdb_stderr,
                      "pop_target couldn't find target %s\n",
                      "pop_target couldn't find target %s\n",
                      current_target.to_shortname);
                      current_target.to_shortname);
  internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
  internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
}
}
 
 
/* Using the objfile specified in OBJFILE, find the address for the
/* Using the objfile specified in OBJFILE, find the address for the
   current thread's thread-local storage with offset OFFSET.  */
   current thread's thread-local storage with offset OFFSET.  */
CORE_ADDR
CORE_ADDR
target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
{
{
  volatile CORE_ADDR addr = 0;
  volatile CORE_ADDR addr = 0;
 
 
  if (target_get_thread_local_address_p ()
  if (target_get_thread_local_address_p ()
      && gdbarch_fetch_tls_load_module_address_p (current_gdbarch))
      && gdbarch_fetch_tls_load_module_address_p (current_gdbarch))
    {
    {
      ptid_t ptid = inferior_ptid;
      ptid_t ptid = inferior_ptid;
      volatile struct gdb_exception ex;
      volatile struct gdb_exception ex;
 
 
      TRY_CATCH (ex, RETURN_MASK_ALL)
      TRY_CATCH (ex, RETURN_MASK_ALL)
        {
        {
          CORE_ADDR lm_addr;
          CORE_ADDR lm_addr;
 
 
          /* Fetch the load module address for this objfile.  */
          /* Fetch the load module address for this objfile.  */
          lm_addr = gdbarch_fetch_tls_load_module_address (current_gdbarch,
          lm_addr = gdbarch_fetch_tls_load_module_address (current_gdbarch,
                                                           objfile);
                                                           objfile);
          /* If it's 0, throw the appropriate exception.  */
          /* If it's 0, throw the appropriate exception.  */
          if (lm_addr == 0)
          if (lm_addr == 0)
            throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
            throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
                         _("TLS load module not found"));
                         _("TLS load module not found"));
 
 
          addr = target_get_thread_local_address (ptid, lm_addr, offset);
          addr = target_get_thread_local_address (ptid, lm_addr, offset);
        }
        }
      /* If an error occurred, print TLS related messages here.  Otherwise,
      /* If an error occurred, print TLS related messages here.  Otherwise,
         throw the error to some higher catcher.  */
         throw the error to some higher catcher.  */
      if (ex.reason < 0)
      if (ex.reason < 0)
        {
        {
          int objfile_is_library = (objfile->flags & OBJF_SHARED);
          int objfile_is_library = (objfile->flags & OBJF_SHARED);
 
 
          switch (ex.error)
          switch (ex.error)
            {
            {
            case TLS_NO_LIBRARY_SUPPORT_ERROR:
            case TLS_NO_LIBRARY_SUPPORT_ERROR:
              error (_("Cannot find thread-local variables in this thread library."));
              error (_("Cannot find thread-local variables in this thread library."));
              break;
              break;
            case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
            case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
              if (objfile_is_library)
              if (objfile_is_library)
                error (_("Cannot find shared library `%s' in dynamic"
                error (_("Cannot find shared library `%s' in dynamic"
                         " linker's load module list"), objfile->name);
                         " linker's load module list"), objfile->name);
              else
              else
                error (_("Cannot find executable file `%s' in dynamic"
                error (_("Cannot find executable file `%s' in dynamic"
                         " linker's load module list"), objfile->name);
                         " linker's load module list"), objfile->name);
              break;
              break;
            case TLS_NOT_ALLOCATED_YET_ERROR:
            case TLS_NOT_ALLOCATED_YET_ERROR:
              if (objfile_is_library)
              if (objfile_is_library)
                error (_("The inferior has not yet allocated storage for"
                error (_("The inferior has not yet allocated storage for"
                         " thread-local variables in\n"
                         " thread-local variables in\n"
                         "the shared library `%s'\n"
                         "the shared library `%s'\n"
                         "for %s"),
                         "for %s"),
                       objfile->name, target_pid_to_str (ptid));
                       objfile->name, target_pid_to_str (ptid));
              else
              else
                error (_("The inferior has not yet allocated storage for"
                error (_("The inferior has not yet allocated storage for"
                         " thread-local variables in\n"
                         " thread-local variables in\n"
                         "the executable `%s'\n"
                         "the executable `%s'\n"
                         "for %s"),
                         "for %s"),
                       objfile->name, target_pid_to_str (ptid));
                       objfile->name, target_pid_to_str (ptid));
              break;
              break;
            case TLS_GENERIC_ERROR:
            case TLS_GENERIC_ERROR:
              if (objfile_is_library)
              if (objfile_is_library)
                error (_("Cannot find thread-local storage for %s, "
                error (_("Cannot find thread-local storage for %s, "
                         "shared library %s:\n%s"),
                         "shared library %s:\n%s"),
                       target_pid_to_str (ptid),
                       target_pid_to_str (ptid),
                       objfile->name, ex.message);
                       objfile->name, ex.message);
              else
              else
                error (_("Cannot find thread-local storage for %s, "
                error (_("Cannot find thread-local storage for %s, "
                         "executable file %s:\n%s"),
                         "executable file %s:\n%s"),
                       target_pid_to_str (ptid),
                       target_pid_to_str (ptid),
                       objfile->name, ex.message);
                       objfile->name, ex.message);
              break;
              break;
            default:
            default:
              throw_exception (ex);
              throw_exception (ex);
              break;
              break;
            }
            }
        }
        }
    }
    }
  /* It wouldn't be wrong here to try a gdbarch method, too; finding
  /* It wouldn't be wrong here to try a gdbarch method, too; finding
     TLS is an ABI-specific thing.  But we don't do that yet.  */
     TLS is an ABI-specific thing.  But we don't do that yet.  */
  else
  else
    error (_("Cannot find thread-local variables on this target"));
    error (_("Cannot find thread-local variables on this target"));
 
 
  return addr;
  return addr;
}
}
 
 
#undef  MIN
#undef  MIN
#define MIN(A, B) (((A) <= (B)) ? (A) : (B))
#define MIN(A, B) (((A) <= (B)) ? (A) : (B))
 
 
/* target_read_string -- read a null terminated string, up to LEN bytes,
/* target_read_string -- read a null terminated string, up to LEN bytes,
   from MEMADDR in target.  Set *ERRNOP to the errno code, or 0 if successful.
   from MEMADDR in target.  Set *ERRNOP to the errno code, or 0 if successful.
   Set *STRING to a pointer to malloc'd memory containing the data; the caller
   Set *STRING to a pointer to malloc'd memory containing the data; the caller
   is responsible for freeing it.  Return the number of bytes successfully
   is responsible for freeing it.  Return the number of bytes successfully
   read.  */
   read.  */
 
 
int
int
target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
{
{
  int tlen, origlen, offset, i;
  int tlen, origlen, offset, i;
  gdb_byte buf[4];
  gdb_byte buf[4];
  int errcode = 0;
  int errcode = 0;
  char *buffer;
  char *buffer;
  int buffer_allocated;
  int buffer_allocated;
  char *bufptr;
  char *bufptr;
  unsigned int nbytes_read = 0;
  unsigned int nbytes_read = 0;
 
 
  gdb_assert (string);
  gdb_assert (string);
 
 
  /* Small for testing.  */
  /* Small for testing.  */
  buffer_allocated = 4;
  buffer_allocated = 4;
  buffer = xmalloc (buffer_allocated);
  buffer = xmalloc (buffer_allocated);
  bufptr = buffer;
  bufptr = buffer;
 
 
  origlen = len;
  origlen = len;
 
 
  while (len > 0)
  while (len > 0)
    {
    {
      tlen = MIN (len, 4 - (memaddr & 3));
      tlen = MIN (len, 4 - (memaddr & 3));
      offset = memaddr & 3;
      offset = memaddr & 3;
 
 
      errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
      errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
      if (errcode != 0)
      if (errcode != 0)
        {
        {
          /* The transfer request might have crossed the boundary to an
          /* The transfer request might have crossed the boundary to an
             unallocated region of memory. Retry the transfer, requesting
             unallocated region of memory. Retry the transfer, requesting
             a single byte.  */
             a single byte.  */
          tlen = 1;
          tlen = 1;
          offset = 0;
          offset = 0;
          errcode = target_read_memory (memaddr, buf, 1);
          errcode = target_read_memory (memaddr, buf, 1);
          if (errcode != 0)
          if (errcode != 0)
            goto done;
            goto done;
        }
        }
 
 
      if (bufptr - buffer + tlen > buffer_allocated)
      if (bufptr - buffer + tlen > buffer_allocated)
        {
        {
          unsigned int bytes;
          unsigned int bytes;
          bytes = bufptr - buffer;
          bytes = bufptr - buffer;
          buffer_allocated *= 2;
          buffer_allocated *= 2;
          buffer = xrealloc (buffer, buffer_allocated);
          buffer = xrealloc (buffer, buffer_allocated);
          bufptr = buffer + bytes;
          bufptr = buffer + bytes;
        }
        }
 
 
      for (i = 0; i < tlen; i++)
      for (i = 0; i < tlen; i++)
        {
        {
          *bufptr++ = buf[i + offset];
          *bufptr++ = buf[i + offset];
          if (buf[i + offset] == '\000')
          if (buf[i + offset] == '\000')
            {
            {
              nbytes_read += i + 1;
              nbytes_read += i + 1;
              goto done;
              goto done;
            }
            }
        }
        }
 
 
      memaddr += tlen;
      memaddr += tlen;
      len -= tlen;
      len -= tlen;
      nbytes_read += tlen;
      nbytes_read += tlen;
    }
    }
done:
done:
  *string = buffer;
  *string = buffer;
  if (errnop != NULL)
  if (errnop != NULL)
    *errnop = errcode;
    *errnop = errcode;
  return nbytes_read;
  return nbytes_read;
}
}
 
 
/* Find a section containing ADDR.  */
/* Find a section containing ADDR.  */
struct section_table *
struct section_table *
target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
{
{
  struct section_table *secp;
  struct section_table *secp;
  for (secp = target->to_sections;
  for (secp = target->to_sections;
       secp < target->to_sections_end;
       secp < target->to_sections_end;
       secp++)
       secp++)
    {
    {
      if (addr >= secp->addr && addr < secp->endaddr)
      if (addr >= secp->addr && addr < secp->endaddr)
        return secp;
        return secp;
    }
    }
  return NULL;
  return NULL;
}
}
 
 
/* Perform a partial memory transfer.  The arguments and return
/* Perform a partial memory transfer.  The arguments and return
   value are just as for target_xfer_partial.  */
   value are just as for target_xfer_partial.  */
 
 
static LONGEST
static LONGEST
memory_xfer_partial (struct target_ops *ops, void *readbuf, const void *writebuf,
memory_xfer_partial (struct target_ops *ops, void *readbuf, const void *writebuf,
                     ULONGEST memaddr, LONGEST len)
                     ULONGEST memaddr, LONGEST len)
{
{
  LONGEST res;
  LONGEST res;
  int reg_len;
  int reg_len;
  struct mem_region *region;
  struct mem_region *region;
 
 
  /* Zero length requests are ok and require no work.  */
  /* Zero length requests are ok and require no work.  */
  if (len == 0)
  if (len == 0)
    return 0;
    return 0;
 
 
  /* Try the executable file, if "trust-readonly-sections" is set.  */
  /* Try the executable file, if "trust-readonly-sections" is set.  */
  if (readbuf != NULL && trust_readonly)
  if (readbuf != NULL && trust_readonly)
    {
    {
      struct section_table *secp;
      struct section_table *secp;
 
 
      secp = target_section_by_addr (ops, memaddr);
      secp = target_section_by_addr (ops, memaddr);
      if (secp != NULL
      if (secp != NULL
          && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
          && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
              & SEC_READONLY))
              & SEC_READONLY))
        return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
        return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
    }
    }
 
 
  /* Likewise for accesses to unmapped overlay sections.  */
  /* Likewise for accesses to unmapped overlay sections.  */
  if (readbuf != NULL && overlay_debugging)
  if (readbuf != NULL && overlay_debugging)
    {
    {
      asection *section = find_pc_overlay (memaddr);
      asection *section = find_pc_overlay (memaddr);
      if (pc_in_unmapped_range (memaddr, section))
      if (pc_in_unmapped_range (memaddr, section))
        return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
        return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
    }
    }
 
 
  /* Try GDB's internal data cache.  */
  /* Try GDB's internal data cache.  */
  region = lookup_mem_region (memaddr);
  region = lookup_mem_region (memaddr);
  /* region->hi == 0 means there's no upper bound.  */
  /* region->hi == 0 means there's no upper bound.  */
  if (memaddr + len < region->hi || region->hi == 0)
  if (memaddr + len < region->hi || region->hi == 0)
    reg_len = len;
    reg_len = len;
  else
  else
    reg_len = region->hi - memaddr;
    reg_len = region->hi - memaddr;
 
 
  switch (region->attrib.mode)
  switch (region->attrib.mode)
    {
    {
    case MEM_RO:
    case MEM_RO:
      if (writebuf != NULL)
      if (writebuf != NULL)
        return -1;
        return -1;
      break;
      break;
 
 
    case MEM_WO:
    case MEM_WO:
      if (readbuf != NULL)
      if (readbuf != NULL)
        return -1;
        return -1;
      break;
      break;
 
 
    case MEM_FLASH:
    case MEM_FLASH:
      /* We only support writing to flash during "load" for now.  */
      /* We only support writing to flash during "load" for now.  */
      if (writebuf != NULL)
      if (writebuf != NULL)
        error (_("Writing to flash memory forbidden in this context"));
        error (_("Writing to flash memory forbidden in this context"));
      break;
      break;
 
 
    case MEM_NONE:
    case MEM_NONE:
      return -1;
      return -1;
    }
    }
 
 
  if (region->attrib.cache)
  if (region->attrib.cache)
    {
    {
      /* FIXME drow/2006-08-09: This call discards OPS, so the raw
      /* FIXME drow/2006-08-09: This call discards OPS, so the raw
         memory request will start back at current_target.  */
         memory request will start back at current_target.  */
      if (readbuf != NULL)
      if (readbuf != NULL)
        res = dcache_xfer_memory (target_dcache, memaddr, readbuf,
        res = dcache_xfer_memory (target_dcache, memaddr, readbuf,
                                  reg_len, 0);
                                  reg_len, 0);
      else
      else
        /* FIXME drow/2006-08-09: If we're going to preserve const
        /* FIXME drow/2006-08-09: If we're going to preserve const
           correctness dcache_xfer_memory should take readbuf and
           correctness dcache_xfer_memory should take readbuf and
           writebuf.  */
           writebuf.  */
        res = dcache_xfer_memory (target_dcache, memaddr,
        res = dcache_xfer_memory (target_dcache, memaddr,
                                  (void *) writebuf,
                                  (void *) writebuf,
                                  reg_len, 1);
                                  reg_len, 1);
      if (res <= 0)
      if (res <= 0)
        return -1;
        return -1;
      else
      else
        return res;
        return res;
    }
    }
 
 
  /* If none of those methods found the memory we wanted, fall back
  /* If none of those methods found the memory we wanted, fall back
     to a target partial transfer.  Normally a single call to
     to a target partial transfer.  Normally a single call to
     to_xfer_partial is enough; if it doesn't recognize an object
     to_xfer_partial is enough; if it doesn't recognize an object
     it will call the to_xfer_partial of the next target down.
     it will call the to_xfer_partial of the next target down.
     But for memory this won't do.  Memory is the only target
     But for memory this won't do.  Memory is the only target
     object which can be read from more than one valid target.
     object which can be read from more than one valid target.
     A core file, for instance, could have some of memory but
     A core file, for instance, could have some of memory but
     delegate other bits to the target below it.  So, we must
     delegate other bits to the target below it.  So, we must
     manually try all targets.  */
     manually try all targets.  */
 
 
  do
  do
    {
    {
      res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
      res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
                                  readbuf, writebuf, memaddr, reg_len);
                                  readbuf, writebuf, memaddr, reg_len);
      if (res > 0)
      if (res > 0)
        return res;
        return res;
 
 
      /* We want to continue past core files to executables, but not
      /* We want to continue past core files to executables, but not
         past a running target's memory.  */
         past a running target's memory.  */
      if (ops->to_has_all_memory)
      if (ops->to_has_all_memory)
        return res;
        return res;
 
 
      ops = ops->beneath;
      ops = ops->beneath;
    }
    }
  while (ops != NULL);
  while (ops != NULL);
 
 
  /* If we still haven't got anything, return the last error.  We
  /* If we still haven't got anything, return the last error.  We
     give up.  */
     give up.  */
  return res;
  return res;
}
}
 
 
static LONGEST
static LONGEST
target_xfer_partial (struct target_ops *ops,
target_xfer_partial (struct target_ops *ops,
                     enum target_object object, const char *annex,
                     enum target_object object, const char *annex,
                     void *readbuf, const void *writebuf,
                     void *readbuf, const void *writebuf,
                     ULONGEST offset, LONGEST len)
                     ULONGEST offset, LONGEST len)
{
{
  LONGEST retval;
  LONGEST retval;
 
 
  gdb_assert (ops->to_xfer_partial != NULL);
  gdb_assert (ops->to_xfer_partial != NULL);
 
 
  /* If this is a memory transfer, let the memory-specific code
  /* If this is a memory transfer, let the memory-specific code
     have a look at it instead.  Memory transfers are more
     have a look at it instead.  Memory transfers are more
     complicated.  */
     complicated.  */
  if (object == TARGET_OBJECT_MEMORY)
  if (object == TARGET_OBJECT_MEMORY)
    retval = memory_xfer_partial (ops, readbuf, writebuf, offset, len);
    retval = memory_xfer_partial (ops, readbuf, writebuf, offset, len);
  else
  else
    {
    {
      enum target_object raw_object = object;
      enum target_object raw_object = object;
 
 
      /* If this is a raw memory transfer, request the normal
      /* If this is a raw memory transfer, request the normal
         memory object from other layers.  */
         memory object from other layers.  */
      if (raw_object == TARGET_OBJECT_RAW_MEMORY)
      if (raw_object == TARGET_OBJECT_RAW_MEMORY)
        raw_object = TARGET_OBJECT_MEMORY;
        raw_object = TARGET_OBJECT_MEMORY;
 
 
      retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
      retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
                                     writebuf, offset, len);
                                     writebuf, offset, len);
    }
    }
 
 
  if (targetdebug)
  if (targetdebug)
    {
    {
      const unsigned char *myaddr = NULL;
      const unsigned char *myaddr = NULL;
 
 
      fprintf_unfiltered (gdb_stdlog,
      fprintf_unfiltered (gdb_stdlog,
                          "%s:target_xfer_partial (%d, %s, 0x%lx,  0x%lx,  0x%s, %s) = %s",
                          "%s:target_xfer_partial (%d, %s, 0x%lx,  0x%lx,  0x%s, %s) = %s",
                          ops->to_shortname,
                          ops->to_shortname,
                          (int) object,
                          (int) object,
                          (annex ? annex : "(null)"),
                          (annex ? annex : "(null)"),
                          (long) readbuf, (long) writebuf,
                          (long) readbuf, (long) writebuf,
                          paddr_nz (offset), paddr_d (len), paddr_d (retval));
                          paddr_nz (offset), paddr_d (len), paddr_d (retval));
 
 
      if (readbuf)
      if (readbuf)
        myaddr = readbuf;
        myaddr = readbuf;
      if (writebuf)
      if (writebuf)
        myaddr = writebuf;
        myaddr = writebuf;
      if (retval > 0 && myaddr != NULL)
      if (retval > 0 && myaddr != NULL)
        {
        {
          int i;
          int i;
 
 
          fputs_unfiltered (", bytes =", gdb_stdlog);
          fputs_unfiltered (", bytes =", gdb_stdlog);
          for (i = 0; i < retval; i++)
          for (i = 0; i < retval; i++)
            {
            {
              if ((((long) &(myaddr[i])) & 0xf) == 0)
              if ((((long) &(myaddr[i])) & 0xf) == 0)
                {
                {
                  if (targetdebug < 2 && i > 0)
                  if (targetdebug < 2 && i > 0)
                    {
                    {
                      fprintf_unfiltered (gdb_stdlog, " ...");
                      fprintf_unfiltered (gdb_stdlog, " ...");
                      break;
                      break;
                    }
                    }
                  fprintf_unfiltered (gdb_stdlog, "\n");
                  fprintf_unfiltered (gdb_stdlog, "\n");
                }
                }
 
 
              fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
              fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
            }
            }
        }
        }
 
 
      fputc_unfiltered ('\n', gdb_stdlog);
      fputc_unfiltered ('\n', gdb_stdlog);
    }
    }
  return retval;
  return retval;
}
}
 
 
/* Read LEN bytes of target memory at address MEMADDR, placing the results in
/* Read LEN bytes of target memory at address MEMADDR, placing the results in
   GDB's memory at MYADDR.  Returns either 0 for success or an errno value
   GDB's memory at MYADDR.  Returns either 0 for success or an errno value
   if any error occurs.
   if any error occurs.
 
 
   If an error occurs, no guarantee is made about the contents of the data at
   If an error occurs, no guarantee is made about the contents of the data at
   MYADDR.  In particular, the caller should not depend upon partial reads
   MYADDR.  In particular, the caller should not depend upon partial reads
   filling the buffer with good data.  There is no way for the caller to know
   filling the buffer with good data.  There is no way for the caller to know
   how much good data might have been transfered anyway.  Callers that can
   how much good data might have been transfered anyway.  Callers that can
   deal with partial reads should call target_read (which will retry until
   deal with partial reads should call target_read (which will retry until
   it makes no progress, and then return how much was transferred). */
   it makes no progress, and then return how much was transferred). */
 
 
int
int
target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
{
{
  if (target_read (&current_target, TARGET_OBJECT_MEMORY, NULL,
  if (target_read (&current_target, TARGET_OBJECT_MEMORY, NULL,
                   myaddr, memaddr, len) == len)
                   myaddr, memaddr, len) == len)
    return 0;
    return 0;
  else
  else
    return EIO;
    return EIO;
}
}
 
 
int
int
target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
{
{
  if (target_write (&current_target, TARGET_OBJECT_MEMORY, NULL,
  if (target_write (&current_target, TARGET_OBJECT_MEMORY, NULL,
                    myaddr, memaddr, len) == len)
                    myaddr, memaddr, len) == len)
    return 0;
    return 0;
  else
  else
    return EIO;
    return EIO;
}
}
 
 
/* Fetch the target's memory map.  */
/* Fetch the target's memory map.  */
 
 
VEC(mem_region_s) *
VEC(mem_region_s) *
target_memory_map (void)
target_memory_map (void)
{
{
  VEC(mem_region_s) *result;
  VEC(mem_region_s) *result;
  struct mem_region *last_one, *this_one;
  struct mem_region *last_one, *this_one;
  int ix;
  int ix;
  struct target_ops *t;
  struct target_ops *t;
 
 
  if (targetdebug)
  if (targetdebug)
    fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
    fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
 
 
  for (t = current_target.beneath; t != NULL; t = t->beneath)
  for (t = current_target.beneath; t != NULL; t = t->beneath)
    if (t->to_memory_map != NULL)
    if (t->to_memory_map != NULL)
      break;
      break;
 
 
  if (t == NULL)
  if (t == NULL)
    return NULL;
    return NULL;
 
 
  result = t->to_memory_map (t);
  result = t->to_memory_map (t);
  if (result == NULL)
  if (result == NULL)
    return NULL;
    return NULL;
 
 
  qsort (VEC_address (mem_region_s, result),
  qsort (VEC_address (mem_region_s, result),
         VEC_length (mem_region_s, result),
         VEC_length (mem_region_s, result),
         sizeof (struct mem_region), mem_region_cmp);
         sizeof (struct mem_region), mem_region_cmp);
 
 
  /* Check that regions do not overlap.  Simultaneously assign
  /* Check that regions do not overlap.  Simultaneously assign
     a numbering for the "mem" commands to use to refer to
     a numbering for the "mem" commands to use to refer to
     each region.  */
     each region.  */
  last_one = NULL;
  last_one = NULL;
  for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
  for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
    {
    {
      this_one->number = ix;
      this_one->number = ix;
 
 
      if (last_one && last_one->hi > this_one->lo)
      if (last_one && last_one->hi > this_one->lo)
        {
        {
          warning (_("Overlapping regions in memory map: ignoring"));
          warning (_("Overlapping regions in memory map: ignoring"));
          VEC_free (mem_region_s, result);
          VEC_free (mem_region_s, result);
          return NULL;
          return NULL;
        }
        }
      last_one = this_one;
      last_one = this_one;
    }
    }
 
 
  return result;
  return result;
}
}
 
 
void
void
target_flash_erase (ULONGEST address, LONGEST length)
target_flash_erase (ULONGEST address, LONGEST length)
{
{
  struct target_ops *t;
  struct target_ops *t;
 
 
  for (t = current_target.beneath; t != NULL; t = t->beneath)
  for (t = current_target.beneath; t != NULL; t = t->beneath)
    if (t->to_flash_erase != NULL)
    if (t->to_flash_erase != NULL)
        {
        {
          if (targetdebug)
          if (targetdebug)
            fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
            fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
                                paddr (address), phex (length, 0));
                                paddr (address), phex (length, 0));
          t->to_flash_erase (t, address, length);
          t->to_flash_erase (t, address, length);
          return;
          return;
        }
        }
 
 
  tcomplain ();
  tcomplain ();
}
}
 
 
void
void
target_flash_done (void)
target_flash_done (void)
{
{
  struct target_ops *t;
  struct target_ops *t;
 
 
  for (t = current_target.beneath; t != NULL; t = t->beneath)
  for (t = current_target.beneath; t != NULL; t = t->beneath)
    if (t->to_flash_done != NULL)
    if (t->to_flash_done != NULL)
        {
        {
          if (targetdebug)
          if (targetdebug)
            fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
            fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
          t->to_flash_done (t);
          t->to_flash_done (t);
          return;
          return;
        }
        }
 
 
  tcomplain ();
  tcomplain ();
}
}
 
 
#ifndef target_stopped_data_address_p
#ifndef target_stopped_data_address_p
int
int
target_stopped_data_address_p (struct target_ops *target)
target_stopped_data_address_p (struct target_ops *target)
{
{
  if (target->to_stopped_data_address
  if (target->to_stopped_data_address
      == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero)
      == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero)
    return 0;
    return 0;
  if (target->to_stopped_data_address == debug_to_stopped_data_address
  if (target->to_stopped_data_address == debug_to_stopped_data_address
      && (debug_target.to_stopped_data_address
      && (debug_target.to_stopped_data_address
          == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero))
          == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero))
    return 0;
    return 0;
  return 1;
  return 1;
}
}
#endif
#endif
 
 
static void
static void
show_trust_readonly (struct ui_file *file, int from_tty,
show_trust_readonly (struct ui_file *file, int from_tty,
                     struct cmd_list_element *c, const char *value)
                     struct cmd_list_element *c, const char *value)
{
{
  fprintf_filtered (file, _("\
  fprintf_filtered (file, _("\
Mode for reading from readonly sections is %s.\n"),
Mode for reading from readonly sections is %s.\n"),
                    value);
                    value);
}
}
 
 
/* More generic transfers.  */
/* More generic transfers.  */
 
 
static LONGEST
static LONGEST
default_xfer_partial (struct target_ops *ops, enum target_object object,
default_xfer_partial (struct target_ops *ops, enum target_object object,
                      const char *annex, gdb_byte *readbuf,
                      const char *annex, gdb_byte *readbuf,
                      const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
                      const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
{
{
  if (object == TARGET_OBJECT_MEMORY
  if (object == TARGET_OBJECT_MEMORY
      && ops->deprecated_xfer_memory != NULL)
      && ops->deprecated_xfer_memory != NULL)
    /* If available, fall back to the target's
    /* If available, fall back to the target's
       "deprecated_xfer_memory" method.  */
       "deprecated_xfer_memory" method.  */
    {
    {
      int xfered = -1;
      int xfered = -1;
      errno = 0;
      errno = 0;
      if (writebuf != NULL)
      if (writebuf != NULL)
        {
        {
          void *buffer = xmalloc (len);
          void *buffer = xmalloc (len);
          struct cleanup *cleanup = make_cleanup (xfree, buffer);
          struct cleanup *cleanup = make_cleanup (xfree, buffer);
          memcpy (buffer, writebuf, len);
          memcpy (buffer, writebuf, len);
          xfered = ops->deprecated_xfer_memory (offset, buffer, len,
          xfered = ops->deprecated_xfer_memory (offset, buffer, len,
                                                1/*write*/, NULL, ops);
                                                1/*write*/, NULL, ops);
          do_cleanups (cleanup);
          do_cleanups (cleanup);
        }
        }
      if (readbuf != NULL)
      if (readbuf != NULL)
        xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
        xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
                                              0/*read*/, NULL, ops);
                                              0/*read*/, NULL, ops);
      if (xfered > 0)
      if (xfered > 0)
        return xfered;
        return xfered;
      else if (xfered == 0 && errno == 0)
      else if (xfered == 0 && errno == 0)
        /* "deprecated_xfer_memory" uses 0, cross checked against
        /* "deprecated_xfer_memory" uses 0, cross checked against
           ERRNO as one indication of an error.  */
           ERRNO as one indication of an error.  */
        return 0;
        return 0;
      else
      else
        return -1;
        return -1;
    }
    }
  else if (ops->beneath != NULL)
  else if (ops->beneath != NULL)
    return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
    return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
                                          readbuf, writebuf, offset, len);
                                          readbuf, writebuf, offset, len);
  else
  else
    return -1;
    return -1;
}
}
 
 
/* The xfer_partial handler for the topmost target.  Unlike the default,
/* The xfer_partial handler for the topmost target.  Unlike the default,
   it does not need to handle memory specially; it just passes all
   it does not need to handle memory specially; it just passes all
   requests down the stack.  */
   requests down the stack.  */
 
 
static LONGEST
static LONGEST
current_xfer_partial (struct target_ops *ops, enum target_object object,
current_xfer_partial (struct target_ops *ops, enum target_object object,
                      const char *annex, gdb_byte *readbuf,
                      const char *annex, gdb_byte *readbuf,
                      const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
                      const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
{
{
  if (ops->beneath != NULL)
  if (ops->beneath != NULL)
    return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
    return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
                                          readbuf, writebuf, offset, len);
                                          readbuf, writebuf, offset, len);
  else
  else
    return -1;
    return -1;
}
}
 
 
/* Target vector read/write partial wrapper functions.
/* Target vector read/write partial wrapper functions.
 
 
   NOTE: cagney/2003-10-21: I wonder if having "to_xfer_partial
   NOTE: cagney/2003-10-21: I wonder if having "to_xfer_partial
   (inbuf, outbuf)", instead of separate read/write methods, make life
   (inbuf, outbuf)", instead of separate read/write methods, make life
   easier.  */
   easier.  */
 
 
static LONGEST
static LONGEST
target_read_partial (struct target_ops *ops,
target_read_partial (struct target_ops *ops,
                     enum target_object object,
                     enum target_object object,
                     const char *annex, gdb_byte *buf,
                     const char *annex, gdb_byte *buf,
                     ULONGEST offset, LONGEST len)
                     ULONGEST offset, LONGEST len)
{
{
  return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
  return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
}
}
 
 
static LONGEST
static LONGEST
target_write_partial (struct target_ops *ops,
target_write_partial (struct target_ops *ops,
                      enum target_object object,
                      enum target_object object,
                      const char *annex, const gdb_byte *buf,
                      const char *annex, const gdb_byte *buf,
                      ULONGEST offset, LONGEST len)
                      ULONGEST offset, LONGEST len)
{
{
  return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
  return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
}
}
 
 
/* Wrappers to perform the full transfer.  */
/* Wrappers to perform the full transfer.  */
LONGEST
LONGEST
target_read (struct target_ops *ops,
target_read (struct target_ops *ops,
             enum target_object object,
             enum target_object object,
             const char *annex, gdb_byte *buf,
             const char *annex, gdb_byte *buf,
             ULONGEST offset, LONGEST len)
             ULONGEST offset, LONGEST len)
{
{
  LONGEST xfered = 0;
  LONGEST xfered = 0;
  while (xfered < len)
  while (xfered < len)
    {
    {
      LONGEST xfer = target_read_partial (ops, object, annex,
      LONGEST xfer = target_read_partial (ops, object, annex,
                                          (gdb_byte *) buf + xfered,
                                          (gdb_byte *) buf + xfered,
                                          offset + xfered, len - xfered);
                                          offset + xfered, len - xfered);
      /* Call an observer, notifying them of the xfer progress?  */
      /* Call an observer, notifying them of the xfer progress?  */
      if (xfer == 0)
      if (xfer == 0)
        return xfered;
        return xfered;
      if (xfer < 0)
      if (xfer < 0)
        return -1;
        return -1;
      xfered += xfer;
      xfered += xfer;
      QUIT;
      QUIT;
    }
    }
  return len;
  return len;
}
}
 
 
/* An alternative to target_write with progress callbacks.  */
/* An alternative to target_write with progress callbacks.  */
 
 
LONGEST
LONGEST
target_write_with_progress (struct target_ops *ops,
target_write_with_progress (struct target_ops *ops,
                            enum target_object object,
                            enum target_object object,
                            const char *annex, const gdb_byte *buf,
                            const char *annex, const gdb_byte *buf,
                            ULONGEST offset, LONGEST len,
                            ULONGEST offset, LONGEST len,
                            void (*progress) (ULONGEST, void *), void *baton)
                            void (*progress) (ULONGEST, void *), void *baton)
{
{
  LONGEST xfered = 0;
  LONGEST xfered = 0;
 
 
  /* Give the progress callback a chance to set up.  */
  /* Give the progress callback a chance to set up.  */
  if (progress)
  if (progress)
    (*progress) (0, baton);
    (*progress) (0, baton);
 
 
  while (xfered < len)
  while (xfered < len)
    {
    {
      LONGEST xfer = target_write_partial (ops, object, annex,
      LONGEST xfer = target_write_partial (ops, object, annex,
                                           (gdb_byte *) buf + xfered,
                                           (gdb_byte *) buf + xfered,
                                           offset + xfered, len - xfered);
                                           offset + xfered, len - xfered);
 
 
      if (xfer == 0)
      if (xfer == 0)
        return xfered;
        return xfered;
      if (xfer < 0)
      if (xfer < 0)
        return -1;
        return -1;
 
 
      if (progress)
      if (progress)
        (*progress) (xfer, baton);
        (*progress) (xfer, baton);
 
 
      xfered += xfer;
      xfered += xfer;
      QUIT;
      QUIT;
    }
    }
  return len;
  return len;
}
}
 
 
LONGEST
LONGEST
target_write (struct target_ops *ops,
target_write (struct target_ops *ops,
              enum target_object object,
              enum target_object object,
              const char *annex, const gdb_byte *buf,
              const char *annex, const gdb_byte *buf,
              ULONGEST offset, LONGEST len)
              ULONGEST offset, LONGEST len)
{
{
  return target_write_with_progress (ops, object, annex, buf, offset, len,
  return target_write_with_progress (ops, object, annex, buf, offset, len,
                                     NULL, NULL);
                                     NULL, NULL);
}
}
 
 
/* Read OBJECT/ANNEX using OPS.  Store the result in *BUF_P and return
/* Read OBJECT/ANNEX using OPS.  Store the result in *BUF_P and return
   the size of the transferred data.  PADDING additional bytes are
   the size of the transferred data.  PADDING additional bytes are
   available in *BUF_P.  This is a helper function for
   available in *BUF_P.  This is a helper function for
   target_read_alloc; see the declaration of that function for more
   target_read_alloc; see the declaration of that function for more
   information.  */
   information.  */
 
 
static LONGEST
static LONGEST
target_read_alloc_1 (struct target_ops *ops, enum target_object object,
target_read_alloc_1 (struct target_ops *ops, enum target_object object,
                     const char *annex, gdb_byte **buf_p, int padding)
                     const char *annex, gdb_byte **buf_p, int padding)
{
{
  size_t buf_alloc, buf_pos;
  size_t buf_alloc, buf_pos;
  gdb_byte *buf;
  gdb_byte *buf;
  LONGEST n;
  LONGEST n;
 
 
  /* This function does not have a length parameter; it reads the
  /* This function does not have a length parameter; it reads the
     entire OBJECT).  Also, it doesn't support objects fetched partly
     entire OBJECT).  Also, it doesn't support objects fetched partly
     from one target and partly from another (in a different stratum,
     from one target and partly from another (in a different stratum,
     e.g. a core file and an executable).  Both reasons make it
     e.g. a core file and an executable).  Both reasons make it
     unsuitable for reading memory.  */
     unsuitable for reading memory.  */
  gdb_assert (object != TARGET_OBJECT_MEMORY);
  gdb_assert (object != TARGET_OBJECT_MEMORY);
 
 
  /* Start by reading up to 4K at a time.  The target will throttle
  /* Start by reading up to 4K at a time.  The target will throttle
     this number down if necessary.  */
     this number down if necessary.  */
  buf_alloc = 4096;
  buf_alloc = 4096;
  buf = xmalloc (buf_alloc);
  buf = xmalloc (buf_alloc);
  buf_pos = 0;
  buf_pos = 0;
  while (1)
  while (1)
    {
    {
      n = target_read_partial (ops, object, annex, &buf[buf_pos],
      n = target_read_partial (ops, object, annex, &buf[buf_pos],
                               buf_pos, buf_alloc - buf_pos - padding);
                               buf_pos, buf_alloc - buf_pos - padding);
      if (n < 0)
      if (n < 0)
        {
        {
          /* An error occurred.  */
          /* An error occurred.  */
          xfree (buf);
          xfree (buf);
          return -1;
          return -1;
        }
        }
      else if (n == 0)
      else if (n == 0)
        {
        {
          /* Read all there was.  */
          /* Read all there was.  */
          if (buf_pos == 0)
          if (buf_pos == 0)
            xfree (buf);
            xfree (buf);
          else
          else
            *buf_p = buf;
            *buf_p = buf;
          return buf_pos;
          return buf_pos;
        }
        }
 
 
      buf_pos += n;
      buf_pos += n;
 
 
      /* If the buffer is filling up, expand it.  */
      /* If the buffer is filling up, expand it.  */
      if (buf_alloc < buf_pos * 2)
      if (buf_alloc < buf_pos * 2)
        {
        {
          buf_alloc *= 2;
          buf_alloc *= 2;
          buf = xrealloc (buf, buf_alloc);
          buf = xrealloc (buf, buf_alloc);
        }
        }
 
 
      QUIT;
      QUIT;
    }
    }
}
}
 
 
/* Read OBJECT/ANNEX using OPS.  Store the result in *BUF_P and return
/* Read OBJECT/ANNEX using OPS.  Store the result in *BUF_P and return
   the size of the transferred data.  See the declaration in "target.h"
   the size of the transferred data.  See the declaration in "target.h"
   function for more information about the return value.  */
   function for more information about the return value.  */
 
 
LONGEST
LONGEST
target_read_alloc (struct target_ops *ops, enum target_object object,
target_read_alloc (struct target_ops *ops, enum target_object object,
                   const char *annex, gdb_byte **buf_p)
                   const char *annex, gdb_byte **buf_p)
{
{
  return target_read_alloc_1 (ops, object, annex, buf_p, 0);
  return target_read_alloc_1 (ops, object, annex, buf_p, 0);
}
}
 
 
/* Read OBJECT/ANNEX using OPS.  The result is NUL-terminated and
/* Read OBJECT/ANNEX using OPS.  The result is NUL-terminated and
   returned as a string, allocated using xmalloc.  If an error occurs
   returned as a string, allocated using xmalloc.  If an error occurs
   or the transfer is unsupported, NULL is returned.  Empty objects
   or the transfer is unsupported, NULL is returned.  Empty objects
   are returned as allocated but empty strings.  A warning is issued
   are returned as allocated but empty strings.  A warning is issued
   if the result contains any embedded NUL bytes.  */
   if the result contains any embedded NUL bytes.  */
 
 
char *
char *
target_read_stralloc (struct target_ops *ops, enum target_object object,
target_read_stralloc (struct target_ops *ops, enum target_object object,
                      const char *annex)
                      const char *annex)
{
{
  gdb_byte *buffer;
  gdb_byte *buffer;
  LONGEST transferred;
  LONGEST transferred;
 
 
  transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
  transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
 
 
  if (transferred < 0)
  if (transferred < 0)
    return NULL;
    return NULL;
 
 
  if (transferred == 0)
  if (transferred == 0)
    return xstrdup ("");
    return xstrdup ("");
 
 
  buffer[transferred] = 0;
  buffer[transferred] = 0;
  if (strlen (buffer) < transferred)
  if (strlen (buffer) < transferred)
    warning (_("target object %d, annex %s, "
    warning (_("target object %d, annex %s, "
               "contained unexpected null characters"),
               "contained unexpected null characters"),
             (int) object, annex ? annex : "(none)");
             (int) object, annex ? annex : "(none)");
 
 
  return (char *) buffer;
  return (char *) buffer;
}
}
 
 
/* Memory transfer methods.  */
/* Memory transfer methods.  */
 
 
void
void
get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
                   LONGEST len)
                   LONGEST len)
{
{
  if (target_read (ops, TARGET_OBJECT_MEMORY, NULL, buf, addr, len)
  if (target_read (ops, TARGET_OBJECT_MEMORY, NULL, buf, addr, len)
      != len)
      != len)
    memory_error (EIO, addr);
    memory_error (EIO, addr);
}
}
 
 
ULONGEST
ULONGEST
get_target_memory_unsigned (struct target_ops *ops,
get_target_memory_unsigned (struct target_ops *ops,
                            CORE_ADDR addr, int len)
                            CORE_ADDR addr, int len)
{
{
  gdb_byte buf[sizeof (ULONGEST)];
  gdb_byte buf[sizeof (ULONGEST)];
 
 
  gdb_assert (len <= sizeof (buf));
  gdb_assert (len <= sizeof (buf));
  get_target_memory (ops, addr, buf, len);
  get_target_memory (ops, addr, buf, len);
  return extract_unsigned_integer (buf, len);
  return extract_unsigned_integer (buf, len);
}
}
 
 
static void
static void
target_info (char *args, int from_tty)
target_info (char *args, int from_tty)
{
{
  struct target_ops *t;
  struct target_ops *t;
  int has_all_mem = 0;
  int has_all_mem = 0;
 
 
  if (symfile_objfile != NULL)
  if (symfile_objfile != NULL)
    printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
    printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
 
 
  for (t = target_stack; t != NULL; t = t->beneath)
  for (t = target_stack; t != NULL; t = t->beneath)
    {
    {
      if (!t->to_has_memory)
      if (!t->to_has_memory)
        continue;
        continue;
 
 
      if ((int) (t->to_stratum) <= (int) dummy_stratum)
      if ((int) (t->to_stratum) <= (int) dummy_stratum)
        continue;
        continue;
      if (has_all_mem)
      if (has_all_mem)
        printf_unfiltered (_("\tWhile running this, GDB does not access memory from...\n"));
        printf_unfiltered (_("\tWhile running this, GDB does not access memory from...\n"));
      printf_unfiltered ("%s:\n", t->to_longname);
      printf_unfiltered ("%s:\n", t->to_longname);
      (t->to_files_info) (t);
      (t->to_files_info) (t);
      has_all_mem = t->to_has_all_memory;
      has_all_mem = t->to_has_all_memory;
    }
    }
}
}
 
 
/* This function is called before any new inferior is created, e.g.
/* This function is called before any new inferior is created, e.g.
   by running a program, attaching, or connecting to a target.
   by running a program, attaching, or connecting to a target.
   It cleans up any state from previous invocations which might
   It cleans up any state from previous invocations which might
   change between runs.  This is a subset of what target_preopen
   change between runs.  This is a subset of what target_preopen
   resets (things which might change between targets).  */
   resets (things which might change between targets).  */
 
 
void
void
target_pre_inferior (int from_tty)
target_pre_inferior (int from_tty)
{
{
  invalidate_target_mem_regions ();
  invalidate_target_mem_regions ();
 
 
  target_clear_description ();
  target_clear_description ();
}
}
 
 
/* This is to be called by the open routine before it does
/* This is to be called by the open routine before it does
   anything.  */
   anything.  */
 
 
void
void
target_preopen (int from_tty)
target_preopen (int from_tty)
{
{
  dont_repeat ();
  dont_repeat ();
 
 
  if (target_has_execution)
  if (target_has_execution)
    {
    {
      if (!from_tty
      if (!from_tty
          || query (_("A program is being debugged already.  Kill it? ")))
          || query (_("A program is being debugged already.  Kill it? ")))
        target_kill ();
        target_kill ();
      else
      else
        error (_("Program not killed."));
        error (_("Program not killed."));
    }
    }
 
 
  /* Calling target_kill may remove the target from the stack.  But if
  /* Calling target_kill may remove the target from the stack.  But if
     it doesn't (which seems like a win for UDI), remove it now.  */
     it doesn't (which seems like a win for UDI), remove it now.  */
 
 
  if (target_has_execution)
  if (target_has_execution)
    pop_target ();
    pop_target ();
 
 
  target_pre_inferior (from_tty);
  target_pre_inferior (from_tty);
}
}
 
 
/* Detach a target after doing deferred register stores.  */
/* Detach a target after doing deferred register stores.  */
 
 
void
void
target_detach (char *args, int from_tty)
target_detach (char *args, int from_tty)
{
{
  (current_target.to_detach) (args, from_tty);
  (current_target.to_detach) (args, from_tty);
}
}
 
 
void
void
target_disconnect (char *args, int from_tty)
target_disconnect (char *args, int from_tty)
{
{
  struct target_ops *t;
  struct target_ops *t;
 
 
  for (t = current_target.beneath; t != NULL; t = t->beneath)
  for (t = current_target.beneath; t != NULL; t = t->beneath)
    if (t->to_disconnect != NULL)
    if (t->to_disconnect != NULL)
        {
        {
          if (targetdebug)
          if (targetdebug)
            fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
            fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
                                args, from_tty);
                                args, from_tty);
          t->to_disconnect (t, args, from_tty);
          t->to_disconnect (t, args, from_tty);
          return;
          return;
        }
        }
 
 
  tcomplain ();
  tcomplain ();
}
}
 
 
int
int
target_async_mask (int mask)
target_async_mask (int mask)
{
{
  int saved_async_masked_status = target_async_mask_value;
  int saved_async_masked_status = target_async_mask_value;
  target_async_mask_value = mask;
  target_async_mask_value = mask;
  return saved_async_masked_status;
  return saved_async_masked_status;
}
}
 
 
/* Look through the list of possible targets for a target that can
/* Look through the list of possible targets for a target that can
   follow forks.  */
   follow forks.  */
 
 
int
int
target_follow_fork (int follow_child)
target_follow_fork (int follow_child)
{
{
  struct target_ops *t;
  struct target_ops *t;
 
 
  for (t = current_target.beneath; t != NULL; t = t->beneath)
  for (t = current_target.beneath; t != NULL; t = t->beneath)
    {
    {
      if (t->to_follow_fork != NULL)
      if (t->to_follow_fork != NULL)
        {
        {
          int retval = t->to_follow_fork (t, follow_child);
          int retval = t->to_follow_fork (t, follow_child);
          if (targetdebug)
          if (targetdebug)
            fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
            fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
                                follow_child, retval);
                                follow_child, retval);
          return retval;
          return retval;
        }
        }
    }
    }
 
 
  /* Some target returned a fork event, but did not know how to follow it.  */
  /* Some target returned a fork event, but did not know how to follow it.  */
  internal_error (__FILE__, __LINE__,
  internal_error (__FILE__, __LINE__,
                  "could not find a target to follow fork");
                  "could not find a target to follow fork");
}
}
 
 
/* Look for a target which can describe architectural features, starting
/* Look for a target which can describe architectural features, starting
   from TARGET.  If we find one, return its description.  */
   from TARGET.  If we find one, return its description.  */
 
 
const struct target_desc *
const struct target_desc *
target_read_description (struct target_ops *target)
target_read_description (struct target_ops *target)
{
{
  struct target_ops *t;
  struct target_ops *t;
 
 
  for (t = target; t != NULL; t = t->beneath)
  for (t = target; t != NULL; t = t->beneath)
    if (t->to_read_description != NULL)
    if (t->to_read_description != NULL)
      {
      {
        const struct target_desc *tdesc;
        const struct target_desc *tdesc;
 
 
        tdesc = t->to_read_description (t);
        tdesc = t->to_read_description (t);
        if (tdesc)
        if (tdesc)
          return tdesc;
          return tdesc;
      }
      }
 
 
  return NULL;
  return NULL;
}
}
 
 
/* Look through the list of possible targets for a target that can
/* Look through the list of possible targets for a target that can
   execute a run or attach command without any other data.  This is
   execute a run or attach command without any other data.  This is
   used to locate the default process stratum.
   used to locate the default process stratum.
 
 
   Result is always valid (error() is called for errors).  */
   Result is always valid (error() is called for errors).  */
 
 
static struct target_ops *
static struct target_ops *
find_default_run_target (char *do_mesg)
find_default_run_target (char *do_mesg)
{
{
  struct target_ops **t;
  struct target_ops **t;
  struct target_ops *runable = NULL;
  struct target_ops *runable = NULL;
  int count;
  int count;
 
 
  count = 0;
  count = 0;
 
 
  for (t = target_structs; t < target_structs + target_struct_size;
  for (t = target_structs; t < target_structs + target_struct_size;
       ++t)
       ++t)
    {
    {
      if ((*t)->to_can_run && target_can_run (*t))
      if ((*t)->to_can_run && target_can_run (*t))
        {
        {
          runable = *t;
          runable = *t;
          ++count;
          ++count;
        }
        }
    }
    }
 
 
  if (count != 1)
  if (count != 1)
    error (_("Don't know how to %s.  Try \"help target\"."), do_mesg);
    error (_("Don't know how to %s.  Try \"help target\"."), do_mesg);
 
 
  return runable;
  return runable;
}
}
 
 
void
void
find_default_attach (char *args, int from_tty)
find_default_attach (char *args, int from_tty)
{
{
  struct target_ops *t;
  struct target_ops *t;
 
 
  t = find_default_run_target ("attach");
  t = find_default_run_target ("attach");
  (t->to_attach) (args, from_tty);
  (t->to_attach) (args, from_tty);
  return;
  return;
}
}
 
 
void
void
find_default_create_inferior (char *exec_file, char *allargs, char **env,
find_default_create_inferior (char *exec_file, char *allargs, char **env,
                              int from_tty)
                              int from_tty)
{
{
  struct target_ops *t;
  struct target_ops *t;
 
 
  t = find_default_run_target ("run");
  t = find_default_run_target ("run");
  (t->to_create_inferior) (exec_file, allargs, env, from_tty);
  (t->to_create_inferior) (exec_file, allargs, env, from_tty);
  return;
  return;
}
}
 
 
static int
static int
default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
{
{
  return (len <= TYPE_LENGTH (builtin_type_void_data_ptr));
  return (len <= TYPE_LENGTH (builtin_type_void_data_ptr));
}
}
 
 
static int
static int
return_zero (void)
return_zero (void)
{
{
  return 0;
  return 0;
}
}
 
 
static int
static int
return_one (void)
return_one (void)
{
{
  return 1;
  return 1;
}
}
 
 
static int
static int
return_minus_one (void)
return_minus_one (void)
{
{
  return -1;
  return -1;
}
}
 
 
/*
/*
 * Resize the to_sections pointer.  Also make sure that anyone that
 * Resize the to_sections pointer.  Also make sure that anyone that
 * was holding on to an old value of it gets updated.
 * was holding on to an old value of it gets updated.
 * Returns the old size.
 * Returns the old size.
 */
 */
 
 
int
int
target_resize_to_sections (struct target_ops *target, int num_added)
target_resize_to_sections (struct target_ops *target, int num_added)
{
{
  struct target_ops **t;
  struct target_ops **t;
  struct section_table *old_value;
  struct section_table *old_value;
  int old_count;
  int old_count;
 
 
  old_value = target->to_sections;
  old_value = target->to_sections;
 
 
  if (target->to_sections)
  if (target->to_sections)
    {
    {
      old_count = target->to_sections_end - target->to_sections;
      old_count = target->to_sections_end - target->to_sections;
      target->to_sections = (struct section_table *)
      target->to_sections = (struct section_table *)
        xrealloc ((char *) target->to_sections,
        xrealloc ((char *) target->to_sections,
                  (sizeof (struct section_table)) * (num_added + old_count));
                  (sizeof (struct section_table)) * (num_added + old_count));
    }
    }
  else
  else
    {
    {
      old_count = 0;
      old_count = 0;
      target->to_sections = (struct section_table *)
      target->to_sections = (struct section_table *)
        xmalloc ((sizeof (struct section_table)) * num_added);
        xmalloc ((sizeof (struct section_table)) * num_added);
    }
    }
  target->to_sections_end = target->to_sections + (num_added + old_count);
  target->to_sections_end = target->to_sections + (num_added + old_count);
 
 
  /* Check to see if anyone else was pointing to this structure.
  /* Check to see if anyone else was pointing to this structure.
     If old_value was null, then no one was. */
     If old_value was null, then no one was. */
 
 
  if (old_value)
  if (old_value)
    {
    {
      for (t = target_structs; t < target_structs + target_struct_size;
      for (t = target_structs; t < target_structs + target_struct_size;
           ++t)
           ++t)
        {
        {
          if ((*t)->to_sections == old_value)
          if ((*t)->to_sections == old_value)
            {
            {
              (*t)->to_sections = target->to_sections;
              (*t)->to_sections = target->to_sections;
              (*t)->to_sections_end = target->to_sections_end;
              (*t)->to_sections_end = target->to_sections_end;
            }
            }
        }
        }
      /* There is a flattened view of the target stack in current_target,
      /* There is a flattened view of the target stack in current_target,
         so its to_sections pointer might also need updating. */
         so its to_sections pointer might also need updating. */
      if (current_target.to_sections == old_value)
      if (current_target.to_sections == old_value)
        {
        {
          current_target.to_sections = target->to_sections;
          current_target.to_sections = target->to_sections;
          current_target.to_sections_end = target->to_sections_end;
          current_target.to_sections_end = target->to_sections_end;
        }
        }
    }
    }
 
 
  return old_count;
  return old_count;
 
 
}
}
 
 
/* Remove all target sections taken from ABFD.
/* Remove all target sections taken from ABFD.
 
 
   Scan the current target stack for targets whose section tables
   Scan the current target stack for targets whose section tables
   refer to sections from BFD, and remove those sections.  We use this
   refer to sections from BFD, and remove those sections.  We use this
   when we notice that the inferior has unloaded a shared object, for
   when we notice that the inferior has unloaded a shared object, for
   example.  */
   example.  */
void
void
remove_target_sections (bfd *abfd)
remove_target_sections (bfd *abfd)
{
{
  struct target_ops **t;
  struct target_ops **t;
 
 
  for (t = target_structs; t < target_structs + target_struct_size; t++)
  for (t = target_structs; t < target_structs + target_struct_size; t++)
    {
    {
      struct section_table *src, *dest;
      struct section_table *src, *dest;
 
 
      dest = (*t)->to_sections;
      dest = (*t)->to_sections;
      for (src = (*t)->to_sections; src < (*t)->to_sections_end; src++)
      for (src = (*t)->to_sections; src < (*t)->to_sections_end; src++)
        if (src->bfd != abfd)
        if (src->bfd != abfd)
          {
          {
            /* Keep this section.  */
            /* Keep this section.  */
            if (dest < src) *dest = *src;
            if (dest < src) *dest = *src;
            dest++;
            dest++;
          }
          }
 
 
      /* If we've dropped any sections, resize the section table.  */
      /* If we've dropped any sections, resize the section table.  */
      if (dest < src)
      if (dest < src)
        target_resize_to_sections (*t, dest - src);
        target_resize_to_sections (*t, dest - src);
    }
    }
}
}
 
 
 
 
 
 
 
 
/* Find a single runnable target in the stack and return it.  If for
/* Find a single runnable target in the stack and return it.  If for
   some reason there is more than one, return NULL.  */
   some reason there is more than one, return NULL.  */
 
 
struct target_ops *
struct target_ops *
find_run_target (void)
find_run_target (void)
{
{
  struct target_ops **t;
  struct target_ops **t;
  struct target_ops *runable = NULL;
  struct target_ops *runable = NULL;
  int count;
  int count;
 
 
  count = 0;
  count = 0;
 
 
  for (t = target_structs; t < target_structs + target_struct_size; ++t)
  for (t = target_structs; t < target_structs + target_struct_size; ++t)
    {
    {
      if ((*t)->to_can_run && target_can_run (*t))
      if ((*t)->to_can_run && target_can_run (*t))
        {
        {
          runable = *t;
          runable = *t;
          ++count;
          ++count;
        }
        }
    }
    }
 
 
  return (count == 1 ? runable : NULL);
  return (count == 1 ? runable : NULL);
}
}
 
 
/* Find a single core_stratum target in the list of targets and return it.
/* Find a single core_stratum target in the list of targets and return it.
   If for some reason there is more than one, return NULL.  */
   If for some reason there is more than one, return NULL.  */
 
 
struct target_ops *
struct target_ops *
find_core_target (void)
find_core_target (void)
{
{
  struct target_ops **t;
  struct target_ops **t;
  struct target_ops *runable = NULL;
  struct target_ops *runable = NULL;
  int count;
  int count;
 
 
  count = 0;
  count = 0;
 
 
  for (t = target_structs; t < target_structs + target_struct_size;
  for (t = target_structs; t < target_structs + target_struct_size;
       ++t)
       ++t)
    {
    {
      if ((*t)->to_stratum == core_stratum)
      if ((*t)->to_stratum == core_stratum)
        {
        {
          runable = *t;
          runable = *t;
          ++count;
          ++count;
        }
        }
    }
    }
 
 
  return (count == 1 ? runable : NULL);
  return (count == 1 ? runable : NULL);
}
}
 
 
/*
/*
 * Find the next target down the stack from the specified target.
 * Find the next target down the stack from the specified target.
 */
 */
 
 
struct target_ops *
struct target_ops *
find_target_beneath (struct target_ops *t)
find_target_beneath (struct target_ops *t)
{
{
  return t->beneath;
  return t->beneath;
}
}
 
 


/* The inferior process has died.  Long live the inferior!  */
/* The inferior process has died.  Long live the inferior!  */
 
 
void
void
generic_mourn_inferior (void)
generic_mourn_inferior (void)
{
{
  extern int show_breakpoint_hit_counts;
  extern int show_breakpoint_hit_counts;
 
 
  inferior_ptid = null_ptid;
  inferior_ptid = null_ptid;
  attach_flag = 0;
  attach_flag = 0;
  breakpoint_init_inferior (inf_exited);
  breakpoint_init_inferior (inf_exited);
  registers_changed ();
  registers_changed ();
 
 
  reopen_exec_file ();
  reopen_exec_file ();
  reinit_frame_cache ();
  reinit_frame_cache ();
 
 
  /* It is confusing to the user for ignore counts to stick around
  /* It is confusing to the user for ignore counts to stick around
     from previous runs of the inferior.  So clear them.  */
     from previous runs of the inferior.  So clear them.  */
  /* However, it is more confusing for the ignore counts to disappear when
  /* However, it is more confusing for the ignore counts to disappear when
     using hit counts.  So don't clear them if we're counting hits.  */
     using hit counts.  So don't clear them if we're counting hits.  */
  if (!show_breakpoint_hit_counts)
  if (!show_breakpoint_hit_counts)
    breakpoint_clear_ignore_counts ();
    breakpoint_clear_ignore_counts ();
 
 
  if (deprecated_detach_hook)
  if (deprecated_detach_hook)
    deprecated_detach_hook ();
    deprecated_detach_hook ();
}
}


/* Helper function for child_wait and the derivatives of child_wait.
/* Helper function for child_wait and the derivatives of child_wait.
   HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
   HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
   translation of that in OURSTATUS.  */
   translation of that in OURSTATUS.  */
void
void
store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
{
{
  if (WIFEXITED (hoststatus))
  if (WIFEXITED (hoststatus))
    {
    {
      ourstatus->kind = TARGET_WAITKIND_EXITED;
      ourstatus->kind = TARGET_WAITKIND_EXITED;
      ourstatus->value.integer = WEXITSTATUS (hoststatus);
      ourstatus->value.integer = WEXITSTATUS (hoststatus);
    }
    }
  else if (!WIFSTOPPED (hoststatus))
  else if (!WIFSTOPPED (hoststatus))
    {
    {
      ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
      ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
      ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
      ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
    }
    }
  else
  else
    {
    {
      ourstatus->kind = TARGET_WAITKIND_STOPPED;
      ourstatus->kind = TARGET_WAITKIND_STOPPED;
      ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
      ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
    }
    }
}
}


/* Returns zero to leave the inferior alone, one to interrupt it.  */
/* Returns zero to leave the inferior alone, one to interrupt it.  */
int (*target_activity_function) (void);
int (*target_activity_function) (void);
int target_activity_fd;
int target_activity_fd;


/* Convert a normal process ID to a string.  Returns the string in a
/* Convert a normal process ID to a string.  Returns the string in a
   static buffer.  */
   static buffer.  */
 
 
char *
char *
normal_pid_to_str (ptid_t ptid)
normal_pid_to_str (ptid_t ptid)
{
{
  static char buf[32];
  static char buf[32];
 
 
  xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
  xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
  return buf;
  return buf;
}
}
 
 
/* Error-catcher for target_find_memory_regions */
/* Error-catcher for target_find_memory_regions */
static int dummy_find_memory_regions (int (*ignore1) (), void *ignore2)
static int dummy_find_memory_regions (int (*ignore1) (), void *ignore2)
{
{
  error (_("No target."));
  error (_("No target."));
  return 0;
  return 0;
}
}
 
 
/* Error-catcher for target_make_corefile_notes */
/* Error-catcher for target_make_corefile_notes */
static char * dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
static char * dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
{
{
  error (_("No target."));
  error (_("No target."));
  return NULL;
  return NULL;
}
}
 
 
/* Set up the handful of non-empty slots needed by the dummy target
/* Set up the handful of non-empty slots needed by the dummy target
   vector.  */
   vector.  */
 
 
static void
static void
init_dummy_target (void)
init_dummy_target (void)
{
{
  dummy_target.to_shortname = "None";
  dummy_target.to_shortname = "None";
  dummy_target.to_longname = "None";
  dummy_target.to_longname = "None";
  dummy_target.to_doc = "";
  dummy_target.to_doc = "";
  dummy_target.to_attach = find_default_attach;
  dummy_target.to_attach = find_default_attach;
  dummy_target.to_create_inferior = find_default_create_inferior;
  dummy_target.to_create_inferior = find_default_create_inferior;
  dummy_target.to_pid_to_str = normal_pid_to_str;
  dummy_target.to_pid_to_str = normal_pid_to_str;
  dummy_target.to_stratum = dummy_stratum;
  dummy_target.to_stratum = dummy_stratum;
  dummy_target.to_find_memory_regions = dummy_find_memory_regions;
  dummy_target.to_find_memory_regions = dummy_find_memory_regions;
  dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
  dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
  dummy_target.to_xfer_partial = default_xfer_partial;
  dummy_target.to_xfer_partial = default_xfer_partial;
  dummy_target.to_magic = OPS_MAGIC;
  dummy_target.to_magic = OPS_MAGIC;
}
}


static void
static void
debug_to_open (char *args, int from_tty)
debug_to_open (char *args, int from_tty)
{
{
  debug_target.to_open (args, from_tty);
  debug_target.to_open (args, from_tty);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
  fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
}
}
 
 
static void
static void
debug_to_close (int quitting)
debug_to_close (int quitting)
{
{
  target_close (&debug_target, quitting);
  target_close (&debug_target, quitting);
  fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
  fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
}
}
 
 
void
void
target_close (struct target_ops *targ, int quitting)
target_close (struct target_ops *targ, int quitting)
{
{
  if (targ->to_xclose != NULL)
  if (targ->to_xclose != NULL)
    targ->to_xclose (targ, quitting);
    targ->to_xclose (targ, quitting);
  else if (targ->to_close != NULL)
  else if (targ->to_close != NULL)
    targ->to_close (quitting);
    targ->to_close (quitting);
}
}
 
 
static void
static void
debug_to_attach (char *args, int from_tty)
debug_to_attach (char *args, int from_tty)
{
{
  debug_target.to_attach (args, from_tty);
  debug_target.to_attach (args, from_tty);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n", args, from_tty);
  fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n", args, from_tty);
}
}
 
 
 
 
static void
static void
debug_to_post_attach (int pid)
debug_to_post_attach (int pid)
{
{
  debug_target.to_post_attach (pid);
  debug_target.to_post_attach (pid);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
  fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
}
}
 
 
static void
static void
debug_to_detach (char *args, int from_tty)
debug_to_detach (char *args, int from_tty)
{
{
  debug_target.to_detach (args, from_tty);
  debug_target.to_detach (args, from_tty);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n", args, from_tty);
  fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n", args, from_tty);
}
}
 
 
static void
static void
debug_to_resume (ptid_t ptid, int step, enum target_signal siggnal)
debug_to_resume (ptid_t ptid, int step, enum target_signal siggnal)
{
{
  debug_target.to_resume (ptid, step, siggnal);
  debug_target.to_resume (ptid, step, siggnal);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n", PIDGET (ptid),
  fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n", PIDGET (ptid),
                      step ? "step" : "continue",
                      step ? "step" : "continue",
                      target_signal_to_name (siggnal));
                      target_signal_to_name (siggnal));
}
}
 
 
static ptid_t
static ptid_t
debug_to_wait (ptid_t ptid, struct target_waitstatus *status)
debug_to_wait (ptid_t ptid, struct target_waitstatus *status)
{
{
  ptid_t retval;
  ptid_t retval;
 
 
  retval = debug_target.to_wait (ptid, status);
  retval = debug_target.to_wait (ptid, status);
 
 
  fprintf_unfiltered (gdb_stdlog,
  fprintf_unfiltered (gdb_stdlog,
                      "target_wait (%d, status) = %d,   ", PIDGET (ptid),
                      "target_wait (%d, status) = %d,   ", PIDGET (ptid),
                      PIDGET (retval));
                      PIDGET (retval));
  fprintf_unfiltered (gdb_stdlog, "status->kind = ");
  fprintf_unfiltered (gdb_stdlog, "status->kind = ");
  switch (status->kind)
  switch (status->kind)
    {
    {
    case TARGET_WAITKIND_EXITED:
    case TARGET_WAITKIND_EXITED:
      fprintf_unfiltered (gdb_stdlog, "exited, status = %d\n",
      fprintf_unfiltered (gdb_stdlog, "exited, status = %d\n",
                          status->value.integer);
                          status->value.integer);
      break;
      break;
    case TARGET_WAITKIND_STOPPED:
    case TARGET_WAITKIND_STOPPED:
      fprintf_unfiltered (gdb_stdlog, "stopped, signal = %s\n",
      fprintf_unfiltered (gdb_stdlog, "stopped, signal = %s\n",
                          target_signal_to_name (status->value.sig));
                          target_signal_to_name (status->value.sig));
      break;
      break;
    case TARGET_WAITKIND_SIGNALLED:
    case TARGET_WAITKIND_SIGNALLED:
      fprintf_unfiltered (gdb_stdlog, "signalled, signal = %s\n",
      fprintf_unfiltered (gdb_stdlog, "signalled, signal = %s\n",
                          target_signal_to_name (status->value.sig));
                          target_signal_to_name (status->value.sig));
      break;
      break;
    case TARGET_WAITKIND_LOADED:
    case TARGET_WAITKIND_LOADED:
      fprintf_unfiltered (gdb_stdlog, "loaded\n");
      fprintf_unfiltered (gdb_stdlog, "loaded\n");
      break;
      break;
    case TARGET_WAITKIND_FORKED:
    case TARGET_WAITKIND_FORKED:
      fprintf_unfiltered (gdb_stdlog, "forked\n");
      fprintf_unfiltered (gdb_stdlog, "forked\n");
      break;
      break;
    case TARGET_WAITKIND_VFORKED:
    case TARGET_WAITKIND_VFORKED:
      fprintf_unfiltered (gdb_stdlog, "vforked\n");
      fprintf_unfiltered (gdb_stdlog, "vforked\n");
      break;
      break;
    case TARGET_WAITKIND_EXECD:
    case TARGET_WAITKIND_EXECD:
      fprintf_unfiltered (gdb_stdlog, "execd\n");
      fprintf_unfiltered (gdb_stdlog, "execd\n");
      break;
      break;
    case TARGET_WAITKIND_SPURIOUS:
    case TARGET_WAITKIND_SPURIOUS:
      fprintf_unfiltered (gdb_stdlog, "spurious\n");
      fprintf_unfiltered (gdb_stdlog, "spurious\n");
      break;
      break;
    default:
    default:
      fprintf_unfiltered (gdb_stdlog, "unknown???\n");
      fprintf_unfiltered (gdb_stdlog, "unknown???\n");
      break;
      break;
    }
    }
 
 
  return retval;
  return retval;
}
}
 
 
static void
static void
debug_print_register (const char * func,
debug_print_register (const char * func,
                      struct regcache *regcache, int regno)
                      struct regcache *regcache, int regno)
{
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  fprintf_unfiltered (gdb_stdlog, "%s ", func);
  fprintf_unfiltered (gdb_stdlog, "%s ", func);
  if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
  if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
                            + gdbarch_num_pseudo_regs (gdbarch)
                            + gdbarch_num_pseudo_regs (gdbarch)
      && gdbarch_register_name (gdbarch, regno) != NULL
      && gdbarch_register_name (gdbarch, regno) != NULL
      && gdbarch_register_name (gdbarch, regno)[0] != '\0')
      && gdbarch_register_name (gdbarch, regno)[0] != '\0')
    fprintf_unfiltered (gdb_stdlog, "(%s)",
    fprintf_unfiltered (gdb_stdlog, "(%s)",
                        gdbarch_register_name (gdbarch, regno));
                        gdbarch_register_name (gdbarch, regno));
  else
  else
    fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
    fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
  if (regno >= 0)
  if (regno >= 0)
    {
    {
      int i, size = register_size (gdbarch, regno);
      int i, size = register_size (gdbarch, regno);
      unsigned char buf[MAX_REGISTER_SIZE];
      unsigned char buf[MAX_REGISTER_SIZE];
      regcache_cooked_read (regcache, regno, buf);
      regcache_cooked_read (regcache, regno, buf);
      fprintf_unfiltered (gdb_stdlog, " = ");
      fprintf_unfiltered (gdb_stdlog, " = ");
      for (i = 0; i < size; i++)
      for (i = 0; i < size; i++)
        {
        {
          fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
          fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
        }
        }
      if (size <= sizeof (LONGEST))
      if (size <= sizeof (LONGEST))
        {
        {
          ULONGEST val = extract_unsigned_integer (buf, size);
          ULONGEST val = extract_unsigned_integer (buf, size);
          fprintf_unfiltered (gdb_stdlog, " 0x%s %s",
          fprintf_unfiltered (gdb_stdlog, " 0x%s %s",
                              paddr_nz (val), paddr_d (val));
                              paddr_nz (val), paddr_d (val));
        }
        }
    }
    }
  fprintf_unfiltered (gdb_stdlog, "\n");
  fprintf_unfiltered (gdb_stdlog, "\n");
}
}
 
 
static void
static void
debug_to_fetch_registers (struct regcache *regcache, int regno)
debug_to_fetch_registers (struct regcache *regcache, int regno)
{
{
  debug_target.to_fetch_registers (regcache, regno);
  debug_target.to_fetch_registers (regcache, regno);
  debug_print_register ("target_fetch_registers", regcache, regno);
  debug_print_register ("target_fetch_registers", regcache, regno);
}
}
 
 
static void
static void
debug_to_store_registers (struct regcache *regcache, int regno)
debug_to_store_registers (struct regcache *regcache, int regno)
{
{
  debug_target.to_store_registers (regcache, regno);
  debug_target.to_store_registers (regcache, regno);
  debug_print_register ("target_store_registers", regcache, regno);
  debug_print_register ("target_store_registers", regcache, regno);
  fprintf_unfiltered (gdb_stdlog, "\n");
  fprintf_unfiltered (gdb_stdlog, "\n");
}
}
 
 
static void
static void
debug_to_prepare_to_store (struct regcache *regcache)
debug_to_prepare_to_store (struct regcache *regcache)
{
{
  debug_target.to_prepare_to_store (regcache);
  debug_target.to_prepare_to_store (regcache);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
  fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
}
}
 
 
static int
static int
deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
                              int write, struct mem_attrib *attrib,
                              int write, struct mem_attrib *attrib,
                              struct target_ops *target)
                              struct target_ops *target)
{
{
  int retval;
  int retval;
 
 
  retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
  retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
                                                attrib, target);
                                                attrib, target);
 
 
  fprintf_unfiltered (gdb_stdlog,
  fprintf_unfiltered (gdb_stdlog,
                      "target_xfer_memory (0x%x, xxx, %d, %s, xxx) = %d",
                      "target_xfer_memory (0x%x, xxx, %d, %s, xxx) = %d",
                      (unsigned int) memaddr,   /* possable truncate long long */
                      (unsigned int) memaddr,   /* possable truncate long long */
                      len, write ? "write" : "read", retval);
                      len, write ? "write" : "read", retval);
 
 
  if (retval > 0)
  if (retval > 0)
    {
    {
      int i;
      int i;
 
 
      fputs_unfiltered (", bytes =", gdb_stdlog);
      fputs_unfiltered (", bytes =", gdb_stdlog);
      for (i = 0; i < retval; i++)
      for (i = 0; i < retval; i++)
        {
        {
          if ((((long) &(myaddr[i])) & 0xf) == 0)
          if ((((long) &(myaddr[i])) & 0xf) == 0)
            {
            {
              if (targetdebug < 2 && i > 0)
              if (targetdebug < 2 && i > 0)
                {
                {
                  fprintf_unfiltered (gdb_stdlog, " ...");
                  fprintf_unfiltered (gdb_stdlog, " ...");
                  break;
                  break;
                }
                }
              fprintf_unfiltered (gdb_stdlog, "\n");
              fprintf_unfiltered (gdb_stdlog, "\n");
            }
            }
 
 
          fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
          fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
        }
        }
    }
    }
 
 
  fputc_unfiltered ('\n', gdb_stdlog);
  fputc_unfiltered ('\n', gdb_stdlog);
 
 
  return retval;
  return retval;
}
}
 
 
static void
static void
debug_to_files_info (struct target_ops *target)
debug_to_files_info (struct target_ops *target)
{
{
  debug_target.to_files_info (target);
  debug_target.to_files_info (target);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
  fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
}
}
 
 
static int
static int
debug_to_insert_breakpoint (struct bp_target_info *bp_tgt)
debug_to_insert_breakpoint (struct bp_target_info *bp_tgt)
{
{
  int retval;
  int retval;
 
 
  retval = debug_target.to_insert_breakpoint (bp_tgt);
  retval = debug_target.to_insert_breakpoint (bp_tgt);
 
 
  fprintf_unfiltered (gdb_stdlog,
  fprintf_unfiltered (gdb_stdlog,
                      "target_insert_breakpoint (0x%lx, xxx) = %ld\n",
                      "target_insert_breakpoint (0x%lx, xxx) = %ld\n",
                      (unsigned long) bp_tgt->placed_address,
                      (unsigned long) bp_tgt->placed_address,
                      (unsigned long) retval);
                      (unsigned long) retval);
  return retval;
  return retval;
}
}
 
 
static int
static int
debug_to_remove_breakpoint (struct bp_target_info *bp_tgt)
debug_to_remove_breakpoint (struct bp_target_info *bp_tgt)
{
{
  int retval;
  int retval;
 
 
  retval = debug_target.to_remove_breakpoint (bp_tgt);
  retval = debug_target.to_remove_breakpoint (bp_tgt);
 
 
  fprintf_unfiltered (gdb_stdlog,
  fprintf_unfiltered (gdb_stdlog,
                      "target_remove_breakpoint (0x%lx, xxx) = %ld\n",
                      "target_remove_breakpoint (0x%lx, xxx) = %ld\n",
                      (unsigned long) bp_tgt->placed_address,
                      (unsigned long) bp_tgt->placed_address,
                      (unsigned long) retval);
                      (unsigned long) retval);
  return retval;
  return retval;
}
}
 
 
static int
static int
debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
{
{
  int retval;
  int retval;
 
 
  retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
  retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
 
 
  fprintf_unfiltered (gdb_stdlog,
  fprintf_unfiltered (gdb_stdlog,
                      "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
                      "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
                      (unsigned long) type,
                      (unsigned long) type,
                      (unsigned long) cnt,
                      (unsigned long) cnt,
                      (unsigned long) from_tty,
                      (unsigned long) from_tty,
                      (unsigned long) retval);
                      (unsigned long) retval);
  return retval;
  return retval;
}
}
 
 
static int
static int
debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
{
{
  CORE_ADDR retval;
  CORE_ADDR retval;
 
 
  retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
  retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
 
 
  fprintf_unfiltered (gdb_stdlog,
  fprintf_unfiltered (gdb_stdlog,
                      "TARGET_REGION_OK_FOR_HW_WATCHPOINT (%ld, %ld) = 0x%lx\n",
                      "TARGET_REGION_OK_FOR_HW_WATCHPOINT (%ld, %ld) = 0x%lx\n",
                      (unsigned long) addr,
                      (unsigned long) addr,
                      (unsigned long) len,
                      (unsigned long) len,
                      (unsigned long) retval);
                      (unsigned long) retval);
  return retval;
  return retval;
}
}
 
 
static int
static int
debug_to_stopped_by_watchpoint (void)
debug_to_stopped_by_watchpoint (void)
{
{
  int retval;
  int retval;
 
 
  retval = debug_target.to_stopped_by_watchpoint ();
  retval = debug_target.to_stopped_by_watchpoint ();
 
 
  fprintf_unfiltered (gdb_stdlog,
  fprintf_unfiltered (gdb_stdlog,
                      "STOPPED_BY_WATCHPOINT () = %ld\n",
                      "STOPPED_BY_WATCHPOINT () = %ld\n",
                      (unsigned long) retval);
                      (unsigned long) retval);
  return retval;
  return retval;
}
}
 
 
static int
static int
debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
{
{
  int retval;
  int retval;
 
 
  retval = debug_target.to_stopped_data_address (target, addr);
  retval = debug_target.to_stopped_data_address (target, addr);
 
 
  fprintf_unfiltered (gdb_stdlog,
  fprintf_unfiltered (gdb_stdlog,
                      "target_stopped_data_address ([0x%lx]) = %ld\n",
                      "target_stopped_data_address ([0x%lx]) = %ld\n",
                      (unsigned long)*addr,
                      (unsigned long)*addr,
                      (unsigned long)retval);
                      (unsigned long)retval);
  return retval;
  return retval;
}
}
 
 
static int
static int
debug_to_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
debug_to_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
{
{
  int retval;
  int retval;
 
 
  retval = debug_target.to_insert_hw_breakpoint (bp_tgt);
  retval = debug_target.to_insert_hw_breakpoint (bp_tgt);
 
 
  fprintf_unfiltered (gdb_stdlog,
  fprintf_unfiltered (gdb_stdlog,
                      "target_insert_hw_breakpoint (0x%lx, xxx) = %ld\n",
                      "target_insert_hw_breakpoint (0x%lx, xxx) = %ld\n",
                      (unsigned long) bp_tgt->placed_address,
                      (unsigned long) bp_tgt->placed_address,
                      (unsigned long) retval);
                      (unsigned long) retval);
  return retval;
  return retval;
}
}
 
 
static int
static int
debug_to_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
debug_to_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
{
{
  int retval;
  int retval;
 
 
  retval = debug_target.to_remove_hw_breakpoint (bp_tgt);
  retval = debug_target.to_remove_hw_breakpoint (bp_tgt);
 
 
  fprintf_unfiltered (gdb_stdlog,
  fprintf_unfiltered (gdb_stdlog,
                      "target_remove_hw_breakpoint (0x%lx, xxx) = %ld\n",
                      "target_remove_hw_breakpoint (0x%lx, xxx) = %ld\n",
                      (unsigned long) bp_tgt->placed_address,
                      (unsigned long) bp_tgt->placed_address,
                      (unsigned long) retval);
                      (unsigned long) retval);
  return retval;
  return retval;
}
}
 
 
static int
static int
debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type)
debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type)
{
{
  int retval;
  int retval;
 
 
  retval = debug_target.to_insert_watchpoint (addr, len, type);
  retval = debug_target.to_insert_watchpoint (addr, len, type);
 
 
  fprintf_unfiltered (gdb_stdlog,
  fprintf_unfiltered (gdb_stdlog,
                      "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
                      "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
                      (unsigned long) addr, len, type, (unsigned long) retval);
                      (unsigned long) addr, len, type, (unsigned long) retval);
  return retval;
  return retval;
}
}
 
 
static int
static int
debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type)
debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type)
{
{
  int retval;
  int retval;
 
 
  retval = debug_target.to_remove_watchpoint (addr, len, type);
  retval = debug_target.to_remove_watchpoint (addr, len, type);
 
 
  fprintf_unfiltered (gdb_stdlog,
  fprintf_unfiltered (gdb_stdlog,
                      "target_remove_watchpoint (0x%lx, %d, %d) = %ld\n",
                      "target_remove_watchpoint (0x%lx, %d, %d) = %ld\n",
                      (unsigned long) addr, len, type, (unsigned long) retval);
                      (unsigned long) addr, len, type, (unsigned long) retval);
  return retval;
  return retval;
}
}
 
 
static void
static void
debug_to_terminal_init (void)
debug_to_terminal_init (void)
{
{
  debug_target.to_terminal_init ();
  debug_target.to_terminal_init ();
 
 
  fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
  fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
}
}
 
 
static void
static void
debug_to_terminal_inferior (void)
debug_to_terminal_inferior (void)
{
{
  debug_target.to_terminal_inferior ();
  debug_target.to_terminal_inferior ();
 
 
  fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
  fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
}
}
 
 
static void
static void
debug_to_terminal_ours_for_output (void)
debug_to_terminal_ours_for_output (void)
{
{
  debug_target.to_terminal_ours_for_output ();
  debug_target.to_terminal_ours_for_output ();
 
 
  fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
  fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
}
}
 
 
static void
static void
debug_to_terminal_ours (void)
debug_to_terminal_ours (void)
{
{
  debug_target.to_terminal_ours ();
  debug_target.to_terminal_ours ();
 
 
  fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
  fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
}
}
 
 
static void
static void
debug_to_terminal_save_ours (void)
debug_to_terminal_save_ours (void)
{
{
  debug_target.to_terminal_save_ours ();
  debug_target.to_terminal_save_ours ();
 
 
  fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
  fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
}
}
 
 
static void
static void
debug_to_terminal_info (char *arg, int from_tty)
debug_to_terminal_info (char *arg, int from_tty)
{
{
  debug_target.to_terminal_info (arg, from_tty);
  debug_target.to_terminal_info (arg, from_tty);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
  fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
                      from_tty);
                      from_tty);
}
}
 
 
static void
static void
debug_to_kill (void)
debug_to_kill (void)
{
{
  debug_target.to_kill ();
  debug_target.to_kill ();
 
 
  fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
  fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
}
}
 
 
static void
static void
debug_to_load (char *args, int from_tty)
debug_to_load (char *args, int from_tty)
{
{
  debug_target.to_load (args, from_tty);
  debug_target.to_load (args, from_tty);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
  fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
}
}
 
 
static int
static int
debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
{
{
  int retval;
  int retval;
 
 
  retval = debug_target.to_lookup_symbol (name, addrp);
  retval = debug_target.to_lookup_symbol (name, addrp);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
  fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
 
 
  return retval;
  return retval;
}
}
 
 
static void
static void
debug_to_create_inferior (char *exec_file, char *args, char **env,
debug_to_create_inferior (char *exec_file, char *args, char **env,
                          int from_tty)
                          int from_tty)
{
{
  debug_target.to_create_inferior (exec_file, args, env, from_tty);
  debug_target.to_create_inferior (exec_file, args, env, from_tty);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_create_inferior (%s, %s, xxx, %d)\n",
  fprintf_unfiltered (gdb_stdlog, "target_create_inferior (%s, %s, xxx, %d)\n",
                      exec_file, args, from_tty);
                      exec_file, args, from_tty);
}
}
 
 
static void
static void
debug_to_post_startup_inferior (ptid_t ptid)
debug_to_post_startup_inferior (ptid_t ptid)
{
{
  debug_target.to_post_startup_inferior (ptid);
  debug_target.to_post_startup_inferior (ptid);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
  fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
                      PIDGET (ptid));
                      PIDGET (ptid));
}
}
 
 
static void
static void
debug_to_acknowledge_created_inferior (int pid)
debug_to_acknowledge_created_inferior (int pid)
{
{
  debug_target.to_acknowledge_created_inferior (pid);
  debug_target.to_acknowledge_created_inferior (pid);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
  fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
                      pid);
                      pid);
}
}
 
 
static void
static void
debug_to_insert_fork_catchpoint (int pid)
debug_to_insert_fork_catchpoint (int pid)
{
{
  debug_target.to_insert_fork_catchpoint (pid);
  debug_target.to_insert_fork_catchpoint (pid);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d)\n",
  fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d)\n",
                      pid);
                      pid);
}
}
 
 
static int
static int
debug_to_remove_fork_catchpoint (int pid)
debug_to_remove_fork_catchpoint (int pid)
{
{
  int retval;
  int retval;
 
 
  retval = debug_target.to_remove_fork_catchpoint (pid);
  retval = debug_target.to_remove_fork_catchpoint (pid);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
  fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
                      pid, retval);
                      pid, retval);
 
 
  return retval;
  return retval;
}
}
 
 
static void
static void
debug_to_insert_vfork_catchpoint (int pid)
debug_to_insert_vfork_catchpoint (int pid)
{
{
  debug_target.to_insert_vfork_catchpoint (pid);
  debug_target.to_insert_vfork_catchpoint (pid);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)\n",
  fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)\n",
                      pid);
                      pid);
}
}
 
 
static int
static int
debug_to_remove_vfork_catchpoint (int pid)
debug_to_remove_vfork_catchpoint (int pid)
{
{
  int retval;
  int retval;
 
 
  retval = debug_target.to_remove_vfork_catchpoint (pid);
  retval = debug_target.to_remove_vfork_catchpoint (pid);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
  fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
                      pid, retval);
                      pid, retval);
 
 
  return retval;
  return retval;
}
}
 
 
static void
static void
debug_to_insert_exec_catchpoint (int pid)
debug_to_insert_exec_catchpoint (int pid)
{
{
  debug_target.to_insert_exec_catchpoint (pid);
  debug_target.to_insert_exec_catchpoint (pid);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d)\n",
  fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d)\n",
                      pid);
                      pid);
}
}
 
 
static int
static int
debug_to_remove_exec_catchpoint (int pid)
debug_to_remove_exec_catchpoint (int pid)
{
{
  int retval;
  int retval;
 
 
  retval = debug_target.to_remove_exec_catchpoint (pid);
  retval = debug_target.to_remove_exec_catchpoint (pid);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
  fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
                      pid, retval);
                      pid, retval);
 
 
  return retval;
  return retval;
}
}
 
 
static int
static int
debug_to_reported_exec_events_per_exec_call (void)
debug_to_reported_exec_events_per_exec_call (void)
{
{
  int reported_exec_events;
  int reported_exec_events;
 
 
  reported_exec_events = debug_target.to_reported_exec_events_per_exec_call ();
  reported_exec_events = debug_target.to_reported_exec_events_per_exec_call ();
 
 
  fprintf_unfiltered (gdb_stdlog,
  fprintf_unfiltered (gdb_stdlog,
                      "target_reported_exec_events_per_exec_call () = %d\n",
                      "target_reported_exec_events_per_exec_call () = %d\n",
                      reported_exec_events);
                      reported_exec_events);
 
 
  return reported_exec_events;
  return reported_exec_events;
}
}
 
 
static int
static int
debug_to_has_exited (int pid, int wait_status, int *exit_status)
debug_to_has_exited (int pid, int wait_status, int *exit_status)
{
{
  int has_exited;
  int has_exited;
 
 
  has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
  has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
  fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
                      pid, wait_status, *exit_status, has_exited);
                      pid, wait_status, *exit_status, has_exited);
 
 
  return has_exited;
  return has_exited;
}
}
 
 
static void
static void
debug_to_mourn_inferior (void)
debug_to_mourn_inferior (void)
{
{
  debug_target.to_mourn_inferior ();
  debug_target.to_mourn_inferior ();
 
 
  fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
  fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
}
}
 
 
static int
static int
debug_to_can_run (void)
debug_to_can_run (void)
{
{
  int retval;
  int retval;
 
 
  retval = debug_target.to_can_run ();
  retval = debug_target.to_can_run ();
 
 
  fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
  fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
 
 
  return retval;
  return retval;
}
}
 
 
static void
static void
debug_to_notice_signals (ptid_t ptid)
debug_to_notice_signals (ptid_t ptid)
{
{
  debug_target.to_notice_signals (ptid);
  debug_target.to_notice_signals (ptid);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
  fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
                      PIDGET (ptid));
                      PIDGET (ptid));
}
}
 
 
static int
static int
debug_to_thread_alive (ptid_t ptid)
debug_to_thread_alive (ptid_t ptid)
{
{
  int retval;
  int retval;
 
 
  retval = debug_target.to_thread_alive (ptid);
  retval = debug_target.to_thread_alive (ptid);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
  fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
                      PIDGET (ptid), retval);
                      PIDGET (ptid), retval);
 
 
  return retval;
  return retval;
}
}
 
 
static void
static void
debug_to_find_new_threads (void)
debug_to_find_new_threads (void)
{
{
  debug_target.to_find_new_threads ();
  debug_target.to_find_new_threads ();
 
 
  fputs_unfiltered ("target_find_new_threads ()\n", gdb_stdlog);
  fputs_unfiltered ("target_find_new_threads ()\n", gdb_stdlog);
}
}
 
 
static void
static void
debug_to_stop (void)
debug_to_stop (void)
{
{
  debug_target.to_stop ();
  debug_target.to_stop ();
 
 
  fprintf_unfiltered (gdb_stdlog, "target_stop ()\n");
  fprintf_unfiltered (gdb_stdlog, "target_stop ()\n");
}
}
 
 
static void
static void
debug_to_rcmd (char *command,
debug_to_rcmd (char *command,
               struct ui_file *outbuf)
               struct ui_file *outbuf)
{
{
  debug_target.to_rcmd (command, outbuf);
  debug_target.to_rcmd (command, outbuf);
  fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
  fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
}
}
 
 
static char *
static char *
debug_to_pid_to_exec_file (int pid)
debug_to_pid_to_exec_file (int pid)
{
{
  char *exec_file;
  char *exec_file;
 
 
  exec_file = debug_target.to_pid_to_exec_file (pid);
  exec_file = debug_target.to_pid_to_exec_file (pid);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
  fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
                      pid, exec_file);
                      pid, exec_file);
 
 
  return exec_file;
  return exec_file;
}
}
 
 
static void
static void
setup_target_debug (void)
setup_target_debug (void)
{
{
  memcpy (&debug_target, &current_target, sizeof debug_target);
  memcpy (&debug_target, &current_target, sizeof debug_target);
 
 
  current_target.to_open = debug_to_open;
  current_target.to_open = debug_to_open;
  current_target.to_close = debug_to_close;
  current_target.to_close = debug_to_close;
  current_target.to_attach = debug_to_attach;
  current_target.to_attach = debug_to_attach;
  current_target.to_post_attach = debug_to_post_attach;
  current_target.to_post_attach = debug_to_post_attach;
  current_target.to_detach = debug_to_detach;
  current_target.to_detach = debug_to_detach;
  current_target.to_resume = debug_to_resume;
  current_target.to_resume = debug_to_resume;
  current_target.to_wait = debug_to_wait;
  current_target.to_wait = debug_to_wait;
  current_target.to_fetch_registers = debug_to_fetch_registers;
  current_target.to_fetch_registers = debug_to_fetch_registers;
  current_target.to_store_registers = debug_to_store_registers;
  current_target.to_store_registers = debug_to_store_registers;
  current_target.to_prepare_to_store = debug_to_prepare_to_store;
  current_target.to_prepare_to_store = debug_to_prepare_to_store;
  current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
  current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
  current_target.to_files_info = debug_to_files_info;
  current_target.to_files_info = debug_to_files_info;
  current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
  current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
  current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
  current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
  current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
  current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
  current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
  current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
  current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
  current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
  current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
  current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
  current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
  current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
  current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
  current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
  current_target.to_stopped_data_address = debug_to_stopped_data_address;
  current_target.to_stopped_data_address = debug_to_stopped_data_address;
  current_target.to_region_ok_for_hw_watchpoint = debug_to_region_ok_for_hw_watchpoint;
  current_target.to_region_ok_for_hw_watchpoint = debug_to_region_ok_for_hw_watchpoint;
  current_target.to_terminal_init = debug_to_terminal_init;
  current_target.to_terminal_init = debug_to_terminal_init;
  current_target.to_terminal_inferior = debug_to_terminal_inferior;
  current_target.to_terminal_inferior = debug_to_terminal_inferior;
  current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
  current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
  current_target.to_terminal_ours = debug_to_terminal_ours;
  current_target.to_terminal_ours = debug_to_terminal_ours;
  current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
  current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
  current_target.to_terminal_info = debug_to_terminal_info;
  current_target.to_terminal_info = debug_to_terminal_info;
  current_target.to_kill = debug_to_kill;
  current_target.to_kill = debug_to_kill;
  current_target.to_load = debug_to_load;
  current_target.to_load = debug_to_load;
  current_target.to_lookup_symbol = debug_to_lookup_symbol;
  current_target.to_lookup_symbol = debug_to_lookup_symbol;
  current_target.to_create_inferior = debug_to_create_inferior;
  current_target.to_create_inferior = debug_to_create_inferior;
  current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
  current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
  current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
  current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
  current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
  current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
  current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
  current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
  current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
  current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
  current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
  current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
  current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
  current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
  current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
  current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
  current_target.to_reported_exec_events_per_exec_call = debug_to_reported_exec_events_per_exec_call;
  current_target.to_reported_exec_events_per_exec_call = debug_to_reported_exec_events_per_exec_call;
  current_target.to_has_exited = debug_to_has_exited;
  current_target.to_has_exited = debug_to_has_exited;
  current_target.to_mourn_inferior = debug_to_mourn_inferior;
  current_target.to_mourn_inferior = debug_to_mourn_inferior;
  current_target.to_can_run = debug_to_can_run;
  current_target.to_can_run = debug_to_can_run;
  current_target.to_notice_signals = debug_to_notice_signals;
  current_target.to_notice_signals = debug_to_notice_signals;
  current_target.to_thread_alive = debug_to_thread_alive;
  current_target.to_thread_alive = debug_to_thread_alive;
  current_target.to_find_new_threads = debug_to_find_new_threads;
  current_target.to_find_new_threads = debug_to_find_new_threads;
  current_target.to_stop = debug_to_stop;
  current_target.to_stop = debug_to_stop;
  current_target.to_rcmd = debug_to_rcmd;
  current_target.to_rcmd = debug_to_rcmd;
  current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
  current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
}
}


 
 
static char targ_desc[] =
static char targ_desc[] =
"Names of targets and files being debugged.\n\
"Names of targets and files being debugged.\n\
Shows the entire stack of targets currently in use (including the exec-file,\n\
Shows the entire stack of targets currently in use (including the exec-file,\n\
core-file, and process, if any), as well as the symbol file name.";
core-file, and process, if any), as well as the symbol file name.";
 
 
static void
static void
do_monitor_command (char *cmd,
do_monitor_command (char *cmd,
                 int from_tty)
                 int from_tty)
{
{
  if ((current_target.to_rcmd
  if ((current_target.to_rcmd
       == (void (*) (char *, struct ui_file *)) tcomplain)
       == (void (*) (char *, struct ui_file *)) tcomplain)
      || (current_target.to_rcmd == debug_to_rcmd
      || (current_target.to_rcmd == debug_to_rcmd
          && (debug_target.to_rcmd
          && (debug_target.to_rcmd
              == (void (*) (char *, struct ui_file *)) tcomplain)))
              == (void (*) (char *, struct ui_file *)) tcomplain)))
    error (_("\"monitor\" command not supported by this target."));
    error (_("\"monitor\" command not supported by this target."));
  target_rcmd (cmd, gdb_stdtarg);
  target_rcmd (cmd, gdb_stdtarg);
}
}
 
 
/* Print the name of each layers of our target stack.  */
/* Print the name of each layers of our target stack.  */
 
 
static void
static void
maintenance_print_target_stack (char *cmd, int from_tty)
maintenance_print_target_stack (char *cmd, int from_tty)
{
{
  struct target_ops *t;
  struct target_ops *t;
 
 
  printf_filtered (_("The current target stack is:\n"));
  printf_filtered (_("The current target stack is:\n"));
 
 
  for (t = target_stack; t != NULL; t = t->beneath)
  for (t = target_stack; t != NULL; t = t->beneath)
    {
    {
      printf_filtered ("  - %s (%s)\n", t->to_shortname, t->to_longname);
      printf_filtered ("  - %s (%s)\n", t->to_shortname, t->to_longname);
    }
    }
}
}
 
 
void
void
initialize_targets (void)
initialize_targets (void)
{
{
  init_dummy_target ();
  init_dummy_target ();
  push_target (&dummy_target);
  push_target (&dummy_target);
 
 
  add_info ("target", target_info, targ_desc);
  add_info ("target", target_info, targ_desc);
  add_info ("files", target_info, targ_desc);
  add_info ("files", target_info, targ_desc);
 
 
  add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
  add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
Set target debugging."), _("\
Set target debugging."), _("\
Show target debugging."), _("\
Show target debugging."), _("\
When non-zero, target debugging is enabled.  Higher numbers are more\n\
When non-zero, target debugging is enabled.  Higher numbers are more\n\
verbose.  Changes do not take effect until the next \"run\" or \"target\"\n\
verbose.  Changes do not take effect until the next \"run\" or \"target\"\n\
command."),
command."),
                            NULL,
                            NULL,
                            show_targetdebug,
                            show_targetdebug,
                            &setdebuglist, &showdebuglist);
                            &setdebuglist, &showdebuglist);
 
 
  add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
  add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
                           &trust_readonly, _("\
                           &trust_readonly, _("\
Set mode for reading from readonly sections."), _("\
Set mode for reading from readonly sections."), _("\
Show mode for reading from readonly sections."), _("\
Show mode for reading from readonly sections."), _("\
When this mode is on, memory reads from readonly sections (such as .text)\n\
When this mode is on, memory reads from readonly sections (such as .text)\n\
will be read from the object file instead of from the target.  This will\n\
will be read from the object file instead of from the target.  This will\n\
result in significant performance improvement for remote targets."),
result in significant performance improvement for remote targets."),
                           NULL,
                           NULL,
                           show_trust_readonly,
                           show_trust_readonly,
                           &setlist, &showlist);
                           &setlist, &showlist);
 
 
  add_com ("monitor", class_obscure, do_monitor_command,
  add_com ("monitor", class_obscure, do_monitor_command,
           _("Send a command to the remote monitor (remote targets only)."));
           _("Send a command to the remote monitor (remote targets only)."));
 
 
  add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
  add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
           _("Print the name of each layer of the internal target stack."),
           _("Print the name of each layer of the internal target stack."),
           &maintenanceprintlist);
           &maintenanceprintlist);
 
 
  target_dcache = dcache_init ();
  target_dcache = dcache_init ();
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.