OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gdb-6.8/] [gdb/] [xtensa-tdep.c] - Diff between revs 827 and 840

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 827 Rev 840
/* Target-dependent code for the Xtensa port of GDB, the GNU debugger.
/* Target-dependent code for the Xtensa port of GDB, the GNU debugger.
 
 
   Copyright (C) 2003, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
   Copyright (C) 2003, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
 
 
#include "defs.h"
#include "defs.h"
#include "frame.h"
#include "frame.h"
#include "symtab.h"
#include "symtab.h"
#include "symfile.h"
#include "symfile.h"
#include "objfiles.h"
#include "objfiles.h"
#include "gdbtypes.h"
#include "gdbtypes.h"
#include "gdbcore.h"
#include "gdbcore.h"
#include "value.h"
#include "value.h"
#include "dis-asm.h"
#include "dis-asm.h"
#include "inferior.h"
#include "inferior.h"
#include "floatformat.h"
#include "floatformat.h"
#include "regcache.h"
#include "regcache.h"
#include "reggroups.h"
#include "reggroups.h"
#include "regset.h"
#include "regset.h"
 
 
#include "dummy-frame.h"
#include "dummy-frame.h"
#include "elf/dwarf2.h"
#include "elf/dwarf2.h"
#include "dwarf2-frame.h"
#include "dwarf2-frame.h"
#include "dwarf2loc.h"
#include "dwarf2loc.h"
#include "frame.h"
#include "frame.h"
#include "frame-base.h"
#include "frame-base.h"
#include "frame-unwind.h"
#include "frame-unwind.h"
 
 
#include "arch-utils.h"
#include "arch-utils.h"
#include "gdbarch.h"
#include "gdbarch.h"
#include "remote.h"
#include "remote.h"
#include "serial.h"
#include "serial.h"
 
 
#include "command.h"
#include "command.h"
#include "gdbcmd.h"
#include "gdbcmd.h"
#include "gdb_assert.h"
#include "gdb_assert.h"
 
 
#include "xtensa-isa.h"
#include "xtensa-isa.h"
#include "xtensa-tdep.h"
#include "xtensa-tdep.h"
#include "xtensa-config.h"
#include "xtensa-config.h"
 
 
 
 
static int xtensa_debug_level = 0;
static int xtensa_debug_level = 0;
 
 
#define DEBUGWARN(args...) \
#define DEBUGWARN(args...) \
  if (xtensa_debug_level > 0) \
  if (xtensa_debug_level > 0) \
    fprintf_unfiltered (gdb_stdlog, "(warn ) " args)
    fprintf_unfiltered (gdb_stdlog, "(warn ) " args)
 
 
#define DEBUGINFO(args...) \
#define DEBUGINFO(args...) \
  if (xtensa_debug_level > 1) \
  if (xtensa_debug_level > 1) \
    fprintf_unfiltered (gdb_stdlog, "(info ) " args)
    fprintf_unfiltered (gdb_stdlog, "(info ) " args)
 
 
#define DEBUGTRACE(args...) \
#define DEBUGTRACE(args...) \
  if (xtensa_debug_level > 2) \
  if (xtensa_debug_level > 2) \
    fprintf_unfiltered (gdb_stdlog, "(trace) " args)
    fprintf_unfiltered (gdb_stdlog, "(trace) " args)
 
 
#define DEBUGVERB(args...) \
#define DEBUGVERB(args...) \
  if (xtensa_debug_level > 3) \
  if (xtensa_debug_level > 3) \
    fprintf_unfiltered (gdb_stdlog, "(verb ) " args)
    fprintf_unfiltered (gdb_stdlog, "(verb ) " args)
 
 
 
 
/* According to the ABI, the SP must be aligned to 16-byte boundaries.  */
/* According to the ABI, the SP must be aligned to 16-byte boundaries.  */
#define SP_ALIGNMENT 16
#define SP_ALIGNMENT 16
 
 
 
 
/* On Windowed ABI, we use a6 through a11 for passing arguments
/* On Windowed ABI, we use a6 through a11 for passing arguments
   to a function called by GDB because CALL4 is used.  */
   to a function called by GDB because CALL4 is used.  */
#define ARGS_NUM_REGS           6
#define ARGS_NUM_REGS           6
#define REGISTER_SIZE           4
#define REGISTER_SIZE           4
 
 
 
 
/* Extract the call size from the return address or PS register.  */
/* Extract the call size from the return address or PS register.  */
#define PS_CALLINC_SHIFT        16
#define PS_CALLINC_SHIFT        16
#define PS_CALLINC_MASK         0x00030000
#define PS_CALLINC_MASK         0x00030000
#define CALLINC(ps)             (((ps) & PS_CALLINC_MASK) >> PS_CALLINC_SHIFT)
#define CALLINC(ps)             (((ps) & PS_CALLINC_MASK) >> PS_CALLINC_SHIFT)
#define WINSIZE(ra)             (4 * (( (ra) >> 30) & 0x3))
#define WINSIZE(ra)             (4 * (( (ra) >> 30) & 0x3))
 
 
/* ABI-independent macros.  */
/* ABI-independent macros.  */
#define ARG_NOF(gdbarch) \
#define ARG_NOF(gdbarch) \
  (gdbarch_tdep (gdbarch)->call_abi \
  (gdbarch_tdep (gdbarch)->call_abi \
   == CallAbiCall0Only ? C0_NARGS : (ARGS_NUM_REGS))
   == CallAbiCall0Only ? C0_NARGS : (ARGS_NUM_REGS))
#define ARG_1ST(gdbarch) \
#define ARG_1ST(gdbarch) \
  (gdbarch_tdep (gdbarch)->call_abi  == CallAbiCall0Only \
  (gdbarch_tdep (gdbarch)->call_abi  == CallAbiCall0Only \
   ? (gdbarch_tdep (gdbarch)->a0_base + C0_ARGS) \
   ? (gdbarch_tdep (gdbarch)->a0_base + C0_ARGS) \
   : (gdbarch_tdep (gdbarch)->a0_base + 6))
   : (gdbarch_tdep (gdbarch)->a0_base + 6))
 
 
/* XTENSA_IS_ENTRY tests whether the first byte of an instruction
/* XTENSA_IS_ENTRY tests whether the first byte of an instruction
   indicates that the instruction is an ENTRY instruction.  */
   indicates that the instruction is an ENTRY instruction.  */
 
 
#define XTENSA_IS_ENTRY(gdbarch, op1) \
#define XTENSA_IS_ENTRY(gdbarch, op1) \
  ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) \
  ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) \
   ? ((op1) == 0x6c) : ((op1) == 0x36))
   ? ((op1) == 0x6c) : ((op1) == 0x36))
 
 
#define XTENSA_ENTRY_LENGTH     3
#define XTENSA_ENTRY_LENGTH     3
 
 
/* windowing_enabled() returns true, if windowing is enabled.
/* windowing_enabled() returns true, if windowing is enabled.
   WOE must be set to 1; EXCM to 0.
   WOE must be set to 1; EXCM to 0.
   Note: We assume that EXCM is always 0 for XEA1.  */
   Note: We assume that EXCM is always 0 for XEA1.  */
 
 
#define PS_WOE                  (1<<18)
#define PS_WOE                  (1<<18)
#define PS_EXC                  (1<<4)
#define PS_EXC                  (1<<4)
 
 
/* Convert a live Ax register number to the corresponding Areg number.  */
/* Convert a live Ax register number to the corresponding Areg number.  */
static int
static int
areg_number (struct gdbarch *gdbarch, int regnum, ULONGEST wb)
areg_number (struct gdbarch *gdbarch, int regnum, ULONGEST wb)
{
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int areg;
  int areg;
 
 
  areg = regnum - tdep->a0_base;
  areg = regnum - tdep->a0_base;
  areg += (wb & ((tdep->num_aregs - 1) >> 2)) << WB_SHIFT;
  areg += (wb & ((tdep->num_aregs - 1) >> 2)) << WB_SHIFT;
  areg &= tdep->num_aregs - 1;
  areg &= tdep->num_aregs - 1;
 
 
  return areg + tdep->ar_base;
  return areg + tdep->ar_base;
}
}
 
 
static inline int
static inline int
windowing_enabled (CORE_ADDR ps)
windowing_enabled (CORE_ADDR ps)
{
{
  return ((ps & PS_EXC) == 0 && (ps & PS_WOE) != 0);
  return ((ps & PS_EXC) == 0 && (ps & PS_WOE) != 0);
}
}
 
 
/* Return the window size of the previous call to the function from which we
/* Return the window size of the previous call to the function from which we
   have just returned.
   have just returned.
 
 
   This function is used to extract the return value after a called function
   This function is used to extract the return value after a called function
   has returned to the caller.  On Xtensa, the register that holds the return
   has returned to the caller.  On Xtensa, the register that holds the return
   value (from the perspective of the caller) depends on what call
   value (from the perspective of the caller) depends on what call
   instruction was used.  For now, we are assuming that the call instruction
   instruction was used.  For now, we are assuming that the call instruction
   precedes the current address, so we simply analyze the call instruction.
   precedes the current address, so we simply analyze the call instruction.
   If we are in a dummy frame, we simply return 4 as we used a 'pseudo-call4'
   If we are in a dummy frame, we simply return 4 as we used a 'pseudo-call4'
   method to call the inferior function.  */
   method to call the inferior function.  */
 
 
static int
static int
extract_call_winsize (struct gdbarch *gdbarch, CORE_ADDR pc)
extract_call_winsize (struct gdbarch *gdbarch, CORE_ADDR pc)
{
{
  int winsize = 4;
  int winsize = 4;
  int insn;
  int insn;
  gdb_byte buf[4];
  gdb_byte buf[4];
 
 
  DEBUGTRACE ("extract_call_winsize (pc = 0x%08x)\n", (int) pc);
  DEBUGTRACE ("extract_call_winsize (pc = 0x%08x)\n", (int) pc);
 
 
  /* Read the previous instruction (should be a call[x]{4|8|12}.  */
  /* Read the previous instruction (should be a call[x]{4|8|12}.  */
  read_memory (pc-3, buf, 3);
  read_memory (pc-3, buf, 3);
  insn = extract_unsigned_integer (buf, 3);
  insn = extract_unsigned_integer (buf, 3);
 
 
  /* Decode call instruction:
  /* Decode call instruction:
     Little Endian
     Little Endian
       call{0,4,8,12}   OFFSET || {00,01,10,11} || 0101
       call{0,4,8,12}   OFFSET || {00,01,10,11} || 0101
       callx{0,4,8,12}  OFFSET || 11 || {00,01,10,11} || 0000
       callx{0,4,8,12}  OFFSET || 11 || {00,01,10,11} || 0000
     Big Endian
     Big Endian
       call{0,4,8,12}   0101 || {00,01,10,11} || OFFSET
       call{0,4,8,12}   0101 || {00,01,10,11} || OFFSET
       callx{0,4,8,12}  0000 || {00,01,10,11} || 11 || OFFSET.  */
       callx{0,4,8,12}  0000 || {00,01,10,11} || 11 || OFFSET.  */
 
 
  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
    {
    {
      if (((insn & 0xf) == 0x5) || ((insn & 0xcf) == 0xc0))
      if (((insn & 0xf) == 0x5) || ((insn & 0xcf) == 0xc0))
        winsize = (insn & 0x30) >> 2;   /* 0, 4, 8, 12.  */
        winsize = (insn & 0x30) >> 2;   /* 0, 4, 8, 12.  */
    }
    }
  else
  else
    {
    {
      if (((insn >> 20) == 0x5) || (((insn >> 16) & 0xf3) == 0x03))
      if (((insn >> 20) == 0x5) || (((insn >> 16) & 0xf3) == 0x03))
        winsize = (insn >> 16) & 0xc;   /* 0, 4, 8, 12.  */
        winsize = (insn >> 16) & 0xc;   /* 0, 4, 8, 12.  */
    }
    }
  return winsize;
  return winsize;
}
}
 
 
 
 
/* REGISTER INFORMATION */
/* REGISTER INFORMATION */
 
 
/* Returns the name of a register.  */
/* Returns the name of a register.  */
static const char *
static const char *
xtensa_register_name (struct gdbarch *gdbarch, int regnum)
xtensa_register_name (struct gdbarch *gdbarch, int regnum)
{
{
  /* Return the name stored in the register map.  */
  /* Return the name stored in the register map.  */
  if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
  if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
                              + gdbarch_num_pseudo_regs (gdbarch))
                              + gdbarch_num_pseudo_regs (gdbarch))
    return gdbarch_tdep (gdbarch)->regmap[regnum].name;
    return gdbarch_tdep (gdbarch)->regmap[regnum].name;
 
 
  internal_error (__FILE__, __LINE__, _("invalid register %d"), regnum);
  internal_error (__FILE__, __LINE__, _("invalid register %d"), regnum);
  return 0;
  return 0;
}
}
 
 
static unsigned long
static unsigned long
xtensa_read_register (int regnum)
xtensa_read_register (int regnum)
{
{
  ULONGEST value;
  ULONGEST value;
 
 
  regcache_raw_read_unsigned (get_current_regcache (), regnum, &value);
  regcache_raw_read_unsigned (get_current_regcache (), regnum, &value);
  return (unsigned long) value;
  return (unsigned long) value;
}
}
 
 
/* Return the type of a register.  Create a new type, if necessary.  */
/* Return the type of a register.  Create a new type, if necessary.  */
 
 
static struct ctype_cache
static struct ctype_cache
{
{
  struct ctype_cache *next;
  struct ctype_cache *next;
  int size;
  int size;
  struct type *virtual_type;
  struct type *virtual_type;
} *type_entries = NULL;
} *type_entries = NULL;
 
 
static struct type *
static struct type *
xtensa_register_type (struct gdbarch *gdbarch, int regnum)
xtensa_register_type (struct gdbarch *gdbarch, int regnum)
{
{
  /* Return signed integer for ARx and Ax registers.  */
  /* Return signed integer for ARx and Ax registers.  */
  if ((regnum >= gdbarch_tdep (gdbarch)->ar_base
  if ((regnum >= gdbarch_tdep (gdbarch)->ar_base
      && regnum < gdbarch_tdep (gdbarch)->ar_base
      && regnum < gdbarch_tdep (gdbarch)->ar_base
                    + gdbarch_tdep (gdbarch)->num_aregs)
                    + gdbarch_tdep (gdbarch)->num_aregs)
      || (regnum >= gdbarch_tdep (gdbarch)->a0_base
      || (regnum >= gdbarch_tdep (gdbarch)->a0_base
      && regnum < gdbarch_tdep (gdbarch)->a0_base + 16))
      && regnum < gdbarch_tdep (gdbarch)->a0_base + 16))
    return builtin_type_int;
    return builtin_type_int;
 
 
  if (regnum == gdbarch_pc_regnum (gdbarch)
  if (regnum == gdbarch_pc_regnum (gdbarch)
      || regnum == gdbarch_tdep (gdbarch)->a0_base + 1)
      || regnum == gdbarch_tdep (gdbarch)->a0_base + 1)
    return lookup_pointer_type (builtin_type_void);
    return lookup_pointer_type (builtin_type_void);
 
 
  /* Return the stored type for all other registers.  */
  /* Return the stored type for all other registers.  */
  else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
  else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
                                   + gdbarch_num_pseudo_regs (gdbarch))
                                   + gdbarch_num_pseudo_regs (gdbarch))
    {
    {
      xtensa_register_t* reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
      xtensa_register_t* reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
 
 
      /* Set ctype for this register (only the first time).  */
      /* Set ctype for this register (only the first time).  */
 
 
      if (reg->ctype == 0)
      if (reg->ctype == 0)
        {
        {
          struct ctype_cache *tp;
          struct ctype_cache *tp;
          int size = reg->byte_size;
          int size = reg->byte_size;
 
 
          /* We always use the memory representation,
          /* We always use the memory representation,
             even if the register width is smaller.  */
             even if the register width is smaller.  */
          switch (size)
          switch (size)
            {
            {
            case 1:
            case 1:
              reg->ctype = builtin_type_uint8;
              reg->ctype = builtin_type_uint8;
              break;
              break;
 
 
            case 2:
            case 2:
              reg->ctype = builtin_type_uint16;
              reg->ctype = builtin_type_uint16;
              break;
              break;
 
 
            case 4:
            case 4:
              reg->ctype = builtin_type_uint32;
              reg->ctype = builtin_type_uint32;
              break;
              break;
 
 
            case 8:
            case 8:
              reg->ctype = builtin_type_uint64;
              reg->ctype = builtin_type_uint64;
              break;
              break;
 
 
            case 16:
            case 16:
              reg->ctype = builtin_type_uint128;
              reg->ctype = builtin_type_uint128;
              break;
              break;
 
 
            default:
            default:
              for (tp = type_entries; tp != NULL; tp = tp->next)
              for (tp = type_entries; tp != NULL; tp = tp->next)
                if (tp->size == size)
                if (tp->size == size)
                  break;
                  break;
 
 
              if (tp == NULL)
              if (tp == NULL)
                {
                {
                  char *name = xmalloc (16);
                  char *name = xmalloc (16);
                  tp = xmalloc (sizeof (struct ctype_cache));
                  tp = xmalloc (sizeof (struct ctype_cache));
                  tp->next = type_entries;
                  tp->next = type_entries;
                  type_entries = tp;
                  type_entries = tp;
                  tp->size = size;
                  tp->size = size;
 
 
                  sprintf (name, "int%d", size * 8);
                  sprintf (name, "int%d", size * 8);
                  tp->virtual_type = init_type (TYPE_CODE_INT, size,
                  tp->virtual_type = init_type (TYPE_CODE_INT, size,
                                                TYPE_FLAG_UNSIGNED, name,
                                                TYPE_FLAG_UNSIGNED, name,
                                                NULL);
                                                NULL);
                }
                }
 
 
              reg->ctype = tp->virtual_type;
              reg->ctype = tp->virtual_type;
            }
            }
        }
        }
      return reg->ctype;
      return reg->ctype;
    }
    }
 
 
  internal_error (__FILE__, __LINE__, _("invalid register number %d"), regnum);
  internal_error (__FILE__, __LINE__, _("invalid register number %d"), regnum);
  return 0;
  return 0;
}
}
 
 
 
 
/* Return the 'local' register number for stubs, dwarf2, etc.
/* Return the 'local' register number for stubs, dwarf2, etc.
   The debugging information enumerates registers starting from 0 for A0
   The debugging information enumerates registers starting from 0 for A0
   to n for An.  So, we only have to add the base number for A0.  */
   to n for An.  So, we only have to add the base number for A0.  */
 
 
static int
static int
xtensa_reg_to_regnum (struct gdbarch *gdbarch, int regnum)
xtensa_reg_to_regnum (struct gdbarch *gdbarch, int regnum)
{
{
  int i;
  int i;
 
 
  if (regnum >= 0 && regnum < 16)
  if (regnum >= 0 && regnum < 16)
    return gdbarch_tdep (gdbarch)->a0_base + regnum;
    return gdbarch_tdep (gdbarch)->a0_base + regnum;
 
 
  for (i = 0;
  for (i = 0;
       i < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
       i < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
       i++)
       i++)
    if (regnum == gdbarch_tdep (gdbarch)->regmap[i].target_number)
    if (regnum == gdbarch_tdep (gdbarch)->regmap[i].target_number)
      return i;
      return i;
 
 
  internal_error (__FILE__, __LINE__,
  internal_error (__FILE__, __LINE__,
                  _("invalid dwarf/stabs register number %d"), regnum);
                  _("invalid dwarf/stabs register number %d"), regnum);
  return 0;
  return 0;
}
}
 
 
 
 
/* Write the bits of a masked register to the various registers.
/* Write the bits of a masked register to the various registers.
   Only the masked areas of these registers are modified; the other
   Only the masked areas of these registers are modified; the other
   fields are untouched.  The size of masked registers is always less
   fields are untouched.  The size of masked registers is always less
   than or equal to 32 bits.  */
   than or equal to 32 bits.  */
 
 
static void
static void
xtensa_register_write_masked (struct regcache *regcache,
xtensa_register_write_masked (struct regcache *regcache,
                              xtensa_register_t *reg, const gdb_byte *buffer)
                              xtensa_register_t *reg, const gdb_byte *buffer)
{
{
  unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
  unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
  const xtensa_mask_t *mask = reg->mask;
  const xtensa_mask_t *mask = reg->mask;
 
 
  int shift = 0;         /* Shift for next mask (mod 32).  */
  int shift = 0;         /* Shift for next mask (mod 32).  */
  int start, size;              /* Start bit and size of current mask.  */
  int start, size;              /* Start bit and size of current mask.  */
 
 
  unsigned int *ptr = value;
  unsigned int *ptr = value;
  unsigned int regval, m, mem = 0;
  unsigned int regval, m, mem = 0;
 
 
  int bytesize = reg->byte_size;
  int bytesize = reg->byte_size;
  int bitsize = bytesize * 8;
  int bitsize = bytesize * 8;
  int i, r;
  int i, r;
 
 
  DEBUGTRACE ("xtensa_register_write_masked ()\n");
  DEBUGTRACE ("xtensa_register_write_masked ()\n");
 
 
  /* Copy the masked register to host byte-order.  */
  /* Copy the masked register to host byte-order.  */
  if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
  if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
    for (i = 0; i < bytesize; i++)
    for (i = 0; i < bytesize; i++)
      {
      {
        mem >>= 8;
        mem >>= 8;
        mem |= (buffer[bytesize - i - 1] << 24);
        mem |= (buffer[bytesize - i - 1] << 24);
        if ((i & 3) == 3)
        if ((i & 3) == 3)
          *ptr++ = mem;
          *ptr++ = mem;
      }
      }
  else
  else
    for (i = 0; i < bytesize; i++)
    for (i = 0; i < bytesize; i++)
      {
      {
        mem >>= 8;
        mem >>= 8;
        mem |= (buffer[i] << 24);
        mem |= (buffer[i] << 24);
        if ((i & 3) == 3)
        if ((i & 3) == 3)
          *ptr++ = mem;
          *ptr++ = mem;
      }
      }
 
 
  /* We might have to shift the final value:
  /* We might have to shift the final value:
     bytesize & 3 == 0 -> nothing to do, we use the full 32 bits,
     bytesize & 3 == 0 -> nothing to do, we use the full 32 bits,
     bytesize & 3 == x -> shift (4-x) * 8.  */
     bytesize & 3 == x -> shift (4-x) * 8.  */
 
 
  *ptr = mem >> (((0 - bytesize) & 3) * 8);
  *ptr = mem >> (((0 - bytesize) & 3) * 8);
  ptr = value;
  ptr = value;
  mem = *ptr;
  mem = *ptr;
 
 
  /* Write the bits to the masked areas of the other registers.  */
  /* Write the bits to the masked areas of the other registers.  */
  for (i = 0; i < mask->count; i++)
  for (i = 0; i < mask->count; i++)
    {
    {
      start = mask->mask[i].bit_start;
      start = mask->mask[i].bit_start;
      size = mask->mask[i].bit_size;
      size = mask->mask[i].bit_size;
      regval = mem >> shift;
      regval = mem >> shift;
 
 
      if ((shift += size) > bitsize)
      if ((shift += size) > bitsize)
        error (_("size of all masks is larger than the register"));
        error (_("size of all masks is larger than the register"));
 
 
      if (shift >= 32)
      if (shift >= 32)
        {
        {
          mem = *(++ptr);
          mem = *(++ptr);
          shift -= 32;
          shift -= 32;
          bitsize -= 32;
          bitsize -= 32;
 
 
          if (shift > 0)
          if (shift > 0)
            regval |= mem << (size - shift);
            regval |= mem << (size - shift);
        }
        }
 
 
      /* Make sure we have a valid register.  */
      /* Make sure we have a valid register.  */
      r = mask->mask[i].reg_num;
      r = mask->mask[i].reg_num;
      if (r >= 0 && size > 0)
      if (r >= 0 && size > 0)
        {
        {
          /* Don't overwrite the unmasked areas.  */
          /* Don't overwrite the unmasked areas.  */
          ULONGEST old_val;
          ULONGEST old_val;
          regcache_cooked_read_unsigned (regcache, r, &old_val);
          regcache_cooked_read_unsigned (regcache, r, &old_val);
          m = 0xffffffff >> (32 - size) << start;
          m = 0xffffffff >> (32 - size) << start;
          regval <<= start;
          regval <<= start;
          regval = (regval & m) | (old_val & ~m);
          regval = (regval & m) | (old_val & ~m);
          regcache_cooked_write_unsigned (regcache, r, regval);
          regcache_cooked_write_unsigned (regcache, r, regval);
        }
        }
    }
    }
}
}
 
 
 
 
/* Read a tie state or mapped registers.  Read the masked areas
/* Read a tie state or mapped registers.  Read the masked areas
   of the registers and assemble them into a single value.  */
   of the registers and assemble them into a single value.  */
 
 
static void
static void
xtensa_register_read_masked (struct regcache *regcache,
xtensa_register_read_masked (struct regcache *regcache,
                             xtensa_register_t *reg, gdb_byte *buffer)
                             xtensa_register_t *reg, gdb_byte *buffer)
{
{
  unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
  unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
  const xtensa_mask_t *mask = reg->mask;
  const xtensa_mask_t *mask = reg->mask;
 
 
  int shift = 0;
  int shift = 0;
  int start, size;
  int start, size;
 
 
  unsigned int *ptr = value;
  unsigned int *ptr = value;
  unsigned int regval, mem = 0;
  unsigned int regval, mem = 0;
 
 
  int bytesize = reg->byte_size;
  int bytesize = reg->byte_size;
  int bitsize = bytesize * 8;
  int bitsize = bytesize * 8;
  int i;
  int i;
 
 
  DEBUGTRACE ("xtensa_register_read_masked (reg \"%s\", ...)\n",
  DEBUGTRACE ("xtensa_register_read_masked (reg \"%s\", ...)\n",
              reg->name == 0 ? "" : reg->name);
              reg->name == 0 ? "" : reg->name);
 
 
  /* Assemble the register from the masked areas of other registers.  */
  /* Assemble the register from the masked areas of other registers.  */
  for (i = 0; i < mask->count; i++)
  for (i = 0; i < mask->count; i++)
    {
    {
      int r = mask->mask[i].reg_num;
      int r = mask->mask[i].reg_num;
      if (r >= 0)
      if (r >= 0)
        {
        {
          ULONGEST val;
          ULONGEST val;
          regcache_cooked_read_unsigned (regcache, r, &val);
          regcache_cooked_read_unsigned (regcache, r, &val);
          regval = (unsigned int) val;
          regval = (unsigned int) val;
        }
        }
      else
      else
        regval = 0;
        regval = 0;
 
 
      start = mask->mask[i].bit_start;
      start = mask->mask[i].bit_start;
      size = mask->mask[i].bit_size;
      size = mask->mask[i].bit_size;
 
 
      regval >>= start;
      regval >>= start;
 
 
      if (size < 32)
      if (size < 32)
        regval &= (0xffffffff >> (32 - size));
        regval &= (0xffffffff >> (32 - size));
 
 
      mem |= regval << shift;
      mem |= regval << shift;
 
 
      if ((shift += size) > bitsize)
      if ((shift += size) > bitsize)
        error (_("size of all masks is larger than the register"));
        error (_("size of all masks is larger than the register"));
 
 
      if (shift >= 32)
      if (shift >= 32)
        {
        {
          *ptr++ = mem;
          *ptr++ = mem;
          bitsize -= 32;
          bitsize -= 32;
          shift -= 32;
          shift -= 32;
 
 
          if (shift == 0)
          if (shift == 0)
            mem = 0;
            mem = 0;
          else
          else
            mem = regval >> (size - shift);
            mem = regval >> (size - shift);
        }
        }
    }
    }
 
 
  if (shift > 0)
  if (shift > 0)
    *ptr = mem;
    *ptr = mem;
 
 
  /* Copy value to target byte order.  */
  /* Copy value to target byte order.  */
  ptr = value;
  ptr = value;
  mem = *ptr;
  mem = *ptr;
 
 
  if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
  if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
    for (i = 0; i < bytesize; i++)
    for (i = 0; i < bytesize; i++)
      {
      {
        if ((i & 3) == 0)
        if ((i & 3) == 0)
          mem = *ptr++;
          mem = *ptr++;
        buffer[bytesize - i - 1] = mem & 0xff;
        buffer[bytesize - i - 1] = mem & 0xff;
        mem >>= 8;
        mem >>= 8;
      }
      }
  else
  else
    for (i = 0; i < bytesize; i++)
    for (i = 0; i < bytesize; i++)
      {
      {
        if ((i & 3) == 0)
        if ((i & 3) == 0)
          mem = *ptr++;
          mem = *ptr++;
        buffer[i] = mem & 0xff;
        buffer[i] = mem & 0xff;
        mem >>= 8;
        mem >>= 8;
      }
      }
}
}
 
 
 
 
/* Read pseudo registers.  */
/* Read pseudo registers.  */
 
 
static void
static void
xtensa_pseudo_register_read (struct gdbarch *gdbarch,
xtensa_pseudo_register_read (struct gdbarch *gdbarch,
                             struct regcache *regcache,
                             struct regcache *regcache,
                             int regnum,
                             int regnum,
                             gdb_byte *buffer)
                             gdb_byte *buffer)
{
{
  DEBUGTRACE ("xtensa_pseudo_register_read (... regnum = %d (%s) ...)\n",
  DEBUGTRACE ("xtensa_pseudo_register_read (... regnum = %d (%s) ...)\n",
              regnum, xtensa_register_name (gdbarch, regnum));
              regnum, xtensa_register_name (gdbarch, regnum));
 
 
  if (regnum == gdbarch_num_regs (gdbarch)
  if (regnum == gdbarch_num_regs (gdbarch)
                + gdbarch_num_pseudo_regs (gdbarch) - 1)
                + gdbarch_num_pseudo_regs (gdbarch) - 1)
     regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
     regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
 
 
  /* Read aliases a0..a15, if this is a Windowed ABI.  */
  /* Read aliases a0..a15, if this is a Windowed ABI.  */
  if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
  if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
      && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
      && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
      && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
      && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
    {
    {
      gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
      gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
 
 
      regcache_raw_read (regcache, gdbarch_tdep (gdbarch)->wb_regnum, buf);
      regcache_raw_read (regcache, gdbarch_tdep (gdbarch)->wb_regnum, buf);
      regnum = areg_number (gdbarch, regnum, extract_unsigned_integer (buf, 4));
      regnum = areg_number (gdbarch, regnum, extract_unsigned_integer (buf, 4));
    }
    }
 
 
  /* We can always read non-pseudo registers.  */
  /* We can always read non-pseudo registers.  */
  if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
  if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
    regcache_raw_read (regcache, regnum, buffer);
    regcache_raw_read (regcache, regnum, buffer);
 
 
 
 
  /* We have to find out how to deal with priveleged registers.
  /* We have to find out how to deal with priveleged registers.
     Let's treat them as pseudo-registers, but we cannot read/write them.  */
     Let's treat them as pseudo-registers, but we cannot read/write them.  */
 
 
  else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
  else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
    {
    {
      buffer[0] = (gdb_byte)0;
      buffer[0] = (gdb_byte)0;
      buffer[1] = (gdb_byte)0;
      buffer[1] = (gdb_byte)0;
      buffer[2] = (gdb_byte)0;
      buffer[2] = (gdb_byte)0;
      buffer[3] = (gdb_byte)0;
      buffer[3] = (gdb_byte)0;
    }
    }
  /* Pseudo registers.  */
  /* Pseudo registers.  */
  else if (regnum >= 0
  else if (regnum >= 0
            && regnum < gdbarch_num_regs (gdbarch)
            && regnum < gdbarch_num_regs (gdbarch)
                        + gdbarch_num_pseudo_regs (gdbarch))
                        + gdbarch_num_pseudo_regs (gdbarch))
    {
    {
      xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
      xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
      xtensa_register_type_t type = reg->type;
      xtensa_register_type_t type = reg->type;
      int flags = gdbarch_tdep (gdbarch)->target_flags;
      int flags = gdbarch_tdep (gdbarch)->target_flags;
 
 
      /* We cannot read Unknown or Unmapped registers.  */
      /* We cannot read Unknown or Unmapped registers.  */
      if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
      if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
        {
        {
          if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
          if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
            {
            {
              warning (_("cannot read register %s"),
              warning (_("cannot read register %s"),
                       xtensa_register_name (gdbarch, regnum));
                       xtensa_register_name (gdbarch, regnum));
              return;
              return;
            }
            }
        }
        }
 
 
      /* Some targets cannot read TIE register files.  */
      /* Some targets cannot read TIE register files.  */
      else if (type == xtRegisterTypeTieRegfile)
      else if (type == xtRegisterTypeTieRegfile)
        {
        {
          /* Use 'fetch' to get register?  */
          /* Use 'fetch' to get register?  */
          if (flags & xtTargetFlagsUseFetchStore)
          if (flags & xtTargetFlagsUseFetchStore)
            {
            {
              warning (_("cannot read register"));
              warning (_("cannot read register"));
              return;
              return;
            }
            }
 
 
          /* On some targets (esp. simulators), we can always read the reg.  */
          /* On some targets (esp. simulators), we can always read the reg.  */
          else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
          else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
            {
            {
              warning (_("cannot read register"));
              warning (_("cannot read register"));
              return;
              return;
            }
            }
        }
        }
 
 
      /* We can always read mapped registers.  */
      /* We can always read mapped registers.  */
      else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
      else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
        {
        {
          xtensa_register_read_masked (regcache, reg, buffer);
          xtensa_register_read_masked (regcache, reg, buffer);
          return;
          return;
        }
        }
 
 
      /* Assume that we can read the register.  */
      /* Assume that we can read the register.  */
      regcache_raw_read (regcache, regnum, buffer);
      regcache_raw_read (regcache, regnum, buffer);
    }
    }
  else
  else
    internal_error (__FILE__, __LINE__,
    internal_error (__FILE__, __LINE__,
                    _("invalid register number %d"), regnum);
                    _("invalid register number %d"), regnum);
}
}
 
 
 
 
/* Write pseudo registers.  */
/* Write pseudo registers.  */
 
 
static void
static void
xtensa_pseudo_register_write (struct gdbarch *gdbarch,
xtensa_pseudo_register_write (struct gdbarch *gdbarch,
                              struct regcache *regcache,
                              struct regcache *regcache,
                              int regnum,
                              int regnum,
                              const gdb_byte *buffer)
                              const gdb_byte *buffer)
{
{
  DEBUGTRACE ("xtensa_pseudo_register_write (... regnum = %d (%s) ...)\n",
  DEBUGTRACE ("xtensa_pseudo_register_write (... regnum = %d (%s) ...)\n",
              regnum, xtensa_register_name (gdbarch, regnum));
              regnum, xtensa_register_name (gdbarch, regnum));
 
 
  if (regnum == gdbarch_num_regs (gdbarch)
  if (regnum == gdbarch_num_regs (gdbarch)
                + gdbarch_num_pseudo_regs (gdbarch) -1)
                + gdbarch_num_pseudo_regs (gdbarch) -1)
     regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
     regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
 
 
  /* Renumber register, if aliase a0..a15 on Windowed ABI.  */
  /* Renumber register, if aliase a0..a15 on Windowed ABI.  */
  if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
  if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
      && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
      && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
      && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
      && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
    {
    {
      gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
      gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
      unsigned int wb;
      unsigned int wb;
 
 
      regcache_raw_read (regcache,
      regcache_raw_read (regcache,
                         gdbarch_tdep (gdbarch)->wb_regnum, buf);
                         gdbarch_tdep (gdbarch)->wb_regnum, buf);
      regnum = areg_number (gdbarch, regnum, extract_unsigned_integer (buf, 4));
      regnum = areg_number (gdbarch, regnum, extract_unsigned_integer (buf, 4));
    }
    }
 
 
  /* We can always write 'core' registers.
  /* We can always write 'core' registers.
     Note: We might have converted Ax->ARy.  */
     Note: We might have converted Ax->ARy.  */
  if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
  if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
    regcache_raw_write (regcache, regnum, buffer);
    regcache_raw_write (regcache, regnum, buffer);
 
 
  /* We have to find out how to deal with priveleged registers.
  /* We have to find out how to deal with priveleged registers.
     Let's treat them as pseudo-registers, but we cannot read/write them.  */
     Let's treat them as pseudo-registers, but we cannot read/write them.  */
 
 
  else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
  else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
    {
    {
      return;
      return;
    }
    }
  /* Pseudo registers.  */
  /* Pseudo registers.  */
  else if (regnum >= 0
  else if (regnum >= 0
           && regnum < gdbarch_num_regs (gdbarch)
           && regnum < gdbarch_num_regs (gdbarch)
                       + gdbarch_num_pseudo_regs (gdbarch))
                       + gdbarch_num_pseudo_regs (gdbarch))
    {
    {
      xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
      xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
      xtensa_register_type_t type = reg->type;
      xtensa_register_type_t type = reg->type;
      int flags = gdbarch_tdep (gdbarch)->target_flags;
      int flags = gdbarch_tdep (gdbarch)->target_flags;
 
 
      /* On most targets, we cannot write registers
      /* On most targets, we cannot write registers
         of type "Unknown" or "Unmapped".  */
         of type "Unknown" or "Unmapped".  */
      if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
      if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
        {
        {
          if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
          if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
            {
            {
              warning (_("cannot write register %s"),
              warning (_("cannot write register %s"),
                       xtensa_register_name (gdbarch, regnum));
                       xtensa_register_name (gdbarch, regnum));
              return;
              return;
            }
            }
        }
        }
 
 
      /* Some targets cannot read TIE register files.  */
      /* Some targets cannot read TIE register files.  */
      else if (type == xtRegisterTypeTieRegfile)
      else if (type == xtRegisterTypeTieRegfile)
        {
        {
          /* Use 'store' to get register?  */
          /* Use 'store' to get register?  */
          if (flags & xtTargetFlagsUseFetchStore)
          if (flags & xtTargetFlagsUseFetchStore)
            {
            {
              warning (_("cannot write register"));
              warning (_("cannot write register"));
              return;
              return;
            }
            }
 
 
          /* On some targets (esp. simulators), we can always write
          /* On some targets (esp. simulators), we can always write
             the register.  */
             the register.  */
          else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
          else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
            {
            {
              warning (_("cannot write register"));
              warning (_("cannot write register"));
              return;
              return;
            }
            }
        }
        }
 
 
      /* We can always write mapped registers.  */
      /* We can always write mapped registers.  */
      else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
      else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
        {
        {
          xtensa_register_write_masked (regcache, reg, buffer);
          xtensa_register_write_masked (regcache, reg, buffer);
          return;
          return;
        }
        }
 
 
      /* Assume that we can write the register.  */
      /* Assume that we can write the register.  */
      regcache_raw_write (regcache, regnum, buffer);
      regcache_raw_write (regcache, regnum, buffer);
    }
    }
  else
  else
    internal_error (__FILE__, __LINE__,
    internal_error (__FILE__, __LINE__,
                    _("invalid register number %d"), regnum);
                    _("invalid register number %d"), regnum);
}
}
 
 
static struct reggroup *xtensa_ar_reggroup;
static struct reggroup *xtensa_ar_reggroup;
static struct reggroup *xtensa_user_reggroup;
static struct reggroup *xtensa_user_reggroup;
static struct reggroup *xtensa_vectra_reggroup;
static struct reggroup *xtensa_vectra_reggroup;
static struct reggroup *xtensa_cp[XTENSA_MAX_COPROCESSOR];
static struct reggroup *xtensa_cp[XTENSA_MAX_COPROCESSOR];
 
 
static void
static void
xtensa_init_reggroups (void)
xtensa_init_reggroups (void)
{
{
  xtensa_ar_reggroup = reggroup_new ("ar", USER_REGGROUP);
  xtensa_ar_reggroup = reggroup_new ("ar", USER_REGGROUP);
  xtensa_user_reggroup = reggroup_new ("user", USER_REGGROUP);
  xtensa_user_reggroup = reggroup_new ("user", USER_REGGROUP);
  xtensa_vectra_reggroup = reggroup_new ("vectra", USER_REGGROUP);
  xtensa_vectra_reggroup = reggroup_new ("vectra", USER_REGGROUP);
 
 
  xtensa_cp[0] = reggroup_new ("cp0", USER_REGGROUP);
  xtensa_cp[0] = reggroup_new ("cp0", USER_REGGROUP);
  xtensa_cp[1] = reggroup_new ("cp1", USER_REGGROUP);
  xtensa_cp[1] = reggroup_new ("cp1", USER_REGGROUP);
  xtensa_cp[2] = reggroup_new ("cp2", USER_REGGROUP);
  xtensa_cp[2] = reggroup_new ("cp2", USER_REGGROUP);
  xtensa_cp[3] = reggroup_new ("cp3", USER_REGGROUP);
  xtensa_cp[3] = reggroup_new ("cp3", USER_REGGROUP);
  xtensa_cp[4] = reggroup_new ("cp4", USER_REGGROUP);
  xtensa_cp[4] = reggroup_new ("cp4", USER_REGGROUP);
  xtensa_cp[5] = reggroup_new ("cp5", USER_REGGROUP);
  xtensa_cp[5] = reggroup_new ("cp5", USER_REGGROUP);
  xtensa_cp[6] = reggroup_new ("cp6", USER_REGGROUP);
  xtensa_cp[6] = reggroup_new ("cp6", USER_REGGROUP);
  xtensa_cp[7] = reggroup_new ("cp7", USER_REGGROUP);
  xtensa_cp[7] = reggroup_new ("cp7", USER_REGGROUP);
}
}
 
 
static void
static void
xtensa_add_reggroups (struct gdbarch *gdbarch)
xtensa_add_reggroups (struct gdbarch *gdbarch)
{
{
  int i;
  int i;
 
 
  /* Predefined groups.  */
  /* Predefined groups.  */
  reggroup_add (gdbarch, all_reggroup);
  reggroup_add (gdbarch, all_reggroup);
  reggroup_add (gdbarch, save_reggroup);
  reggroup_add (gdbarch, save_reggroup);
  reggroup_add (gdbarch, restore_reggroup);
  reggroup_add (gdbarch, restore_reggroup);
  reggroup_add (gdbarch, system_reggroup);
  reggroup_add (gdbarch, system_reggroup);
  reggroup_add (gdbarch, vector_reggroup);
  reggroup_add (gdbarch, vector_reggroup);
  reggroup_add (gdbarch, general_reggroup);
  reggroup_add (gdbarch, general_reggroup);
  reggroup_add (gdbarch, float_reggroup);
  reggroup_add (gdbarch, float_reggroup);
 
 
  /* Xtensa-specific groups.  */
  /* Xtensa-specific groups.  */
  reggroup_add (gdbarch, xtensa_ar_reggroup);
  reggroup_add (gdbarch, xtensa_ar_reggroup);
  reggroup_add (gdbarch, xtensa_user_reggroup);
  reggroup_add (gdbarch, xtensa_user_reggroup);
  reggroup_add (gdbarch, xtensa_vectra_reggroup);
  reggroup_add (gdbarch, xtensa_vectra_reggroup);
 
 
  for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
  for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
    reggroup_add (gdbarch, xtensa_cp[i]);
    reggroup_add (gdbarch, xtensa_cp[i]);
}
}
 
 
static int
static int
xtensa_coprocessor_register_group (struct reggroup *group)
xtensa_coprocessor_register_group (struct reggroup *group)
{
{
  int i;
  int i;
 
 
  for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
  for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
    if (group == xtensa_cp[i])
    if (group == xtensa_cp[i])
      return i;
      return i;
 
 
  return -1;
  return -1;
}
}
 
 
#define SAVE_REST_FLAGS (XTENSA_REGISTER_FLAGS_READABLE \
#define SAVE_REST_FLAGS (XTENSA_REGISTER_FLAGS_READABLE \
                        | XTENSA_REGISTER_FLAGS_WRITABLE \
                        | XTENSA_REGISTER_FLAGS_WRITABLE \
                        | XTENSA_REGISTER_FLAGS_VOLATILE)
                        | XTENSA_REGISTER_FLAGS_VOLATILE)
 
 
#define SAVE_REST_VALID (XTENSA_REGISTER_FLAGS_READABLE \
#define SAVE_REST_VALID (XTENSA_REGISTER_FLAGS_READABLE \
                        | XTENSA_REGISTER_FLAGS_WRITABLE)
                        | XTENSA_REGISTER_FLAGS_WRITABLE)
 
 
static int
static int
xtensa_register_reggroup_p (struct gdbarch *gdbarch,
xtensa_register_reggroup_p (struct gdbarch *gdbarch,
                            int regnum,
                            int regnum,
                            struct reggroup *group)
                            struct reggroup *group)
{
{
  xtensa_register_t* reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
  xtensa_register_t* reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
  xtensa_register_type_t type = reg->type;
  xtensa_register_type_t type = reg->type;
  xtensa_register_group_t rg = reg->group;
  xtensa_register_group_t rg = reg->group;
  int cp_number;
  int cp_number;
 
 
  /* First, skip registers that are not visible to this target
  /* First, skip registers that are not visible to this target
     (unknown and unmapped registers when not using ISS).  */
     (unknown and unmapped registers when not using ISS).  */
 
 
  if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
  if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
    return 0;
    return 0;
  if (group == all_reggroup)
  if (group == all_reggroup)
    return 1;
    return 1;
  if (group == xtensa_ar_reggroup)
  if (group == xtensa_ar_reggroup)
    return rg & xtRegisterGroupAddrReg;
    return rg & xtRegisterGroupAddrReg;
  if (group == xtensa_user_reggroup)
  if (group == xtensa_user_reggroup)
    return rg & xtRegisterGroupUser;
    return rg & xtRegisterGroupUser;
  if (group == float_reggroup)
  if (group == float_reggroup)
    return rg & xtRegisterGroupFloat;
    return rg & xtRegisterGroupFloat;
  if (group == general_reggroup)
  if (group == general_reggroup)
    return rg & xtRegisterGroupGeneral;
    return rg & xtRegisterGroupGeneral;
  if (group == float_reggroup)
  if (group == float_reggroup)
    return rg & xtRegisterGroupFloat;
    return rg & xtRegisterGroupFloat;
  if (group == system_reggroup)
  if (group == system_reggroup)
    return rg & xtRegisterGroupState;
    return rg & xtRegisterGroupState;
  if (group == vector_reggroup || group == xtensa_vectra_reggroup)
  if (group == vector_reggroup || group == xtensa_vectra_reggroup)
    return rg & xtRegisterGroupVectra;
    return rg & xtRegisterGroupVectra;
  if (group == save_reggroup || group == restore_reggroup)
  if (group == save_reggroup || group == restore_reggroup)
    return (regnum < gdbarch_num_regs (gdbarch)
    return (regnum < gdbarch_num_regs (gdbarch)
            && (reg->flags & SAVE_REST_FLAGS) == SAVE_REST_VALID);
            && (reg->flags & SAVE_REST_FLAGS) == SAVE_REST_VALID);
  if ((cp_number = xtensa_coprocessor_register_group (group)) >= 0)
  if ((cp_number = xtensa_coprocessor_register_group (group)) >= 0)
    return rg & (xtRegisterGroupCP0 << cp_number);
    return rg & (xtRegisterGroupCP0 << cp_number);
  else
  else
    return 1;
    return 1;
}
}
 
 
 
 
/* Supply register REGNUM from the buffer specified by GREGS and LEN
/* Supply register REGNUM from the buffer specified by GREGS and LEN
   in the general-purpose register set REGSET to register cache
   in the general-purpose register set REGSET to register cache
   REGCACHE.  If REGNUM is -1 do this for all registers in REGSET.  */
   REGCACHE.  If REGNUM is -1 do this for all registers in REGSET.  */
 
 
static void
static void
xtensa_supply_gregset (const struct regset *regset,
xtensa_supply_gregset (const struct regset *regset,
                       struct regcache *rc,
                       struct regcache *rc,
                       int regnum,
                       int regnum,
                       const void *gregs,
                       const void *gregs,
                       size_t len)
                       size_t len)
{
{
  const xtensa_elf_gregset_t *regs = gregs;
  const xtensa_elf_gregset_t *regs = gregs;
  struct gdbarch *gdbarch = get_regcache_arch (rc);
  struct gdbarch *gdbarch = get_regcache_arch (rc);
  int i;
  int i;
 
 
  DEBUGTRACE ("xtensa_supply_gregset (..., regnum==%d, ...) \n", regnum);
  DEBUGTRACE ("xtensa_supply_gregset (..., regnum==%d, ...) \n", regnum);
 
 
  if (regnum == gdbarch_pc_regnum (gdbarch) || regnum == -1)
  if (regnum == gdbarch_pc_regnum (gdbarch) || regnum == -1)
    regcache_raw_supply (rc, gdbarch_pc_regnum (gdbarch), (char *) &regs->pc);
    regcache_raw_supply (rc, gdbarch_pc_regnum (gdbarch), (char *) &regs->pc);
  if (regnum == gdbarch_ps_regnum (gdbarch) || regnum == -1)
  if (regnum == gdbarch_ps_regnum (gdbarch) || regnum == -1)
    regcache_raw_supply (rc, gdbarch_ps_regnum (gdbarch), (char *) &regs->ps);
    regcache_raw_supply (rc, gdbarch_ps_regnum (gdbarch), (char *) &regs->ps);
  if (regnum == gdbarch_tdep (gdbarch)->wb_regnum || regnum == -1)
  if (regnum == gdbarch_tdep (gdbarch)->wb_regnum || regnum == -1)
    regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->wb_regnum,
    regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->wb_regnum,
                         (char *) &regs->windowbase);
                         (char *) &regs->windowbase);
  if (regnum == gdbarch_tdep (gdbarch)->ws_regnum || regnum == -1)
  if (regnum == gdbarch_tdep (gdbarch)->ws_regnum || regnum == -1)
    regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ws_regnum,
    regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ws_regnum,
                         (char *) &regs->windowstart);
                         (char *) &regs->windowstart);
  if (regnum == gdbarch_tdep (gdbarch)->lbeg_regnum || regnum == -1)
  if (regnum == gdbarch_tdep (gdbarch)->lbeg_regnum || regnum == -1)
    regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lbeg_regnum,
    regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lbeg_regnum,
                         (char *) &regs->lbeg);
                         (char *) &regs->lbeg);
  if (regnum == gdbarch_tdep (gdbarch)->lend_regnum || regnum == -1)
  if (regnum == gdbarch_tdep (gdbarch)->lend_regnum || regnum == -1)
    regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lend_regnum,
    regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lend_regnum,
                         (char *) &regs->lend);
                         (char *) &regs->lend);
  if (regnum == gdbarch_tdep (gdbarch)->lcount_regnum || regnum == -1)
  if (regnum == gdbarch_tdep (gdbarch)->lcount_regnum || regnum == -1)
    regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lcount_regnum,
    regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lcount_regnum,
                         (char *) &regs->lcount);
                         (char *) &regs->lcount);
  if (regnum == gdbarch_tdep (gdbarch)->sar_regnum || regnum == -1)
  if (regnum == gdbarch_tdep (gdbarch)->sar_regnum || regnum == -1)
    regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->sar_regnum,
    regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->sar_regnum,
                         (char *) &regs->sar);
                         (char *) &regs->sar);
  if (regnum >=gdbarch_tdep (gdbarch)->ar_base
  if (regnum >=gdbarch_tdep (gdbarch)->ar_base
      && regnum < gdbarch_tdep (gdbarch)->ar_base
      && regnum < gdbarch_tdep (gdbarch)->ar_base
                    + gdbarch_tdep (gdbarch)->num_aregs)
                    + gdbarch_tdep (gdbarch)->num_aregs)
    regcache_raw_supply (rc, regnum,
    regcache_raw_supply (rc, regnum,
                         (char *) &regs->ar[regnum - gdbarch_tdep
                         (char *) &regs->ar[regnum - gdbarch_tdep
                           (gdbarch)->ar_base]);
                           (gdbarch)->ar_base]);
  else if (regnum == -1)
  else if (regnum == -1)
    {
    {
      for (i = 0; i < gdbarch_tdep (gdbarch)->num_aregs; ++i)
      for (i = 0; i < gdbarch_tdep (gdbarch)->num_aregs; ++i)
        regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ar_base + i,
        regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ar_base + i,
                             (char *) &regs->ar[i]);
                             (char *) &regs->ar[i]);
    }
    }
}
}
 
 
 
 
/* Xtensa register set.  */
/* Xtensa register set.  */
 
 
static struct regset
static struct regset
xtensa_gregset =
xtensa_gregset =
{
{
  NULL,
  NULL,
  xtensa_supply_gregset
  xtensa_supply_gregset
};
};
 
 
 
 
/* Return the appropriate register set for the core
/* Return the appropriate register set for the core
   section identified by SECT_NAME and SECT_SIZE.  */
   section identified by SECT_NAME and SECT_SIZE.  */
 
 
static const struct regset *
static const struct regset *
xtensa_regset_from_core_section (struct gdbarch *core_arch,
xtensa_regset_from_core_section (struct gdbarch *core_arch,
                                 const char *sect_name,
                                 const char *sect_name,
                                 size_t sect_size)
                                 size_t sect_size)
{
{
  DEBUGTRACE ("xtensa_regset_from_core_section "
  DEBUGTRACE ("xtensa_regset_from_core_section "
              "(..., sect_name==\"%s\", sect_size==%x) \n",
              "(..., sect_name==\"%s\", sect_size==%x) \n",
              sect_name, (unsigned int) sect_size);
              sect_name, (unsigned int) sect_size);
 
 
  if (strcmp (sect_name, ".reg") == 0
  if (strcmp (sect_name, ".reg") == 0
      && sect_size >= sizeof(xtensa_elf_gregset_t))
      && sect_size >= sizeof(xtensa_elf_gregset_t))
    return &xtensa_gregset;
    return &xtensa_gregset;
 
 
  return NULL;
  return NULL;
}
}
 
 
 
 
/* Handling frames.  */
/* Handling frames.  */
 
 
/* Number of registers to save in case of Windowed ABI.  */
/* Number of registers to save in case of Windowed ABI.  */
#define XTENSA_NUM_SAVED_AREGS          12
#define XTENSA_NUM_SAVED_AREGS          12
 
 
/* Frame cache part for Windowed ABI.  */
/* Frame cache part for Windowed ABI.  */
typedef struct xtensa_windowed_frame_cache
typedef struct xtensa_windowed_frame_cache
{
{
  int wb;               /* Base for this frame; -1 if not in regfile.  */
  int wb;               /* Base for this frame; -1 if not in regfile.  */
  int callsize;         /* Call size to next frame.  */
  int callsize;         /* Call size to next frame.  */
  int ws;
  int ws;
  CORE_ADDR aregs[XTENSA_NUM_SAVED_AREGS];
  CORE_ADDR aregs[XTENSA_NUM_SAVED_AREGS];
} xtensa_windowed_frame_cache_t;
} xtensa_windowed_frame_cache_t;
 
 
/* Call0 ABI Definitions.  */
/* Call0 ABI Definitions.  */
 
 
#define C0_MAXOPDS  3   /* Maximum number of operands for prologue analysis.  */
#define C0_MAXOPDS  3   /* Maximum number of operands for prologue analysis.  */
#define C0_NREGS   16   /* Number of A-registers to track.  */
#define C0_NREGS   16   /* Number of A-registers to track.  */
#define C0_CLESV   12   /* Callee-saved registers are here and up.  */
#define C0_CLESV   12   /* Callee-saved registers are here and up.  */
#define C0_SP       1   /* Register used as SP.  */
#define C0_SP       1   /* Register used as SP.  */
#define C0_FP      15   /* Register used as FP.  */
#define C0_FP      15   /* Register used as FP.  */
#define C0_RA       0   /* Register used as return address.  */
#define C0_RA       0   /* Register used as return address.  */
#define C0_ARGS     2   /* Register used as first arg/retval.  */
#define C0_ARGS     2   /* Register used as first arg/retval.  */
#define C0_NARGS    6   /* Number of A-regs for args/retvals.  */
#define C0_NARGS    6   /* Number of A-regs for args/retvals.  */
 
 
/* Each element of xtensa_call0_frame_cache.c0_rt[] describes for each
/* Each element of xtensa_call0_frame_cache.c0_rt[] describes for each
   A-register where the current content of the reg came from (in terms
   A-register where the current content of the reg came from (in terms
   of an original reg and a constant).  Negative values of c0_rt[n].fp_reg
   of an original reg and a constant).  Negative values of c0_rt[n].fp_reg
   mean that the orignal content of the register was saved to the stack.
   mean that the orignal content of the register was saved to the stack.
   c0_rt[n].fr.ofs is NOT the offset from the frame base because we don't
   c0_rt[n].fr.ofs is NOT the offset from the frame base because we don't
   know where SP will end up until the entire prologue has been analyzed.  */
   know where SP will end up until the entire prologue has been analyzed.  */
 
 
#define C0_CONST   -1   /* fr_reg value if register contains a constant.  */
#define C0_CONST   -1   /* fr_reg value if register contains a constant.  */
#define C0_INEXP   -2   /* fr_reg value if inexpressible as reg + offset.  */
#define C0_INEXP   -2   /* fr_reg value if inexpressible as reg + offset.  */
#define C0_NOSTK   -1   /* to_stk value if register has not been stored.  */
#define C0_NOSTK   -1   /* to_stk value if register has not been stored.  */
 
 
extern xtensa_isa xtensa_default_isa;
extern xtensa_isa xtensa_default_isa;
 
 
typedef struct xtensa_c0reg
typedef struct xtensa_c0reg
{
{
    int     fr_reg;     /* original register from which register content
    int     fr_reg;     /* original register from which register content
                           is derived, or C0_CONST, or C0_INEXP.  */
                           is derived, or C0_CONST, or C0_INEXP.  */
    int     fr_ofs;     /* constant offset from reg, or immediate value.  */
    int     fr_ofs;     /* constant offset from reg, or immediate value.  */
    int     to_stk;     /* offset from original SP to register (4-byte aligned),
    int     to_stk;     /* offset from original SP to register (4-byte aligned),
                           or C0_NOSTK if register has not been saved.  */
                           or C0_NOSTK if register has not been saved.  */
} xtensa_c0reg_t;
} xtensa_c0reg_t;
 
 
 
 
/* Frame cache part for Call0 ABI.  */
/* Frame cache part for Call0 ABI.  */
typedef struct xtensa_call0_frame_cache
typedef struct xtensa_call0_frame_cache
{
{
  int c0_frmsz;                         /* Stack frame size.  */
  int c0_frmsz;                         /* Stack frame size.  */
  int c0_hasfp;                         /* Current frame uses frame pointer.  */
  int c0_hasfp;                         /* Current frame uses frame pointer.  */
  int fp_regnum;                        /* A-register used as FP.  */
  int fp_regnum;                        /* A-register used as FP.  */
  int c0_fp;                            /* Actual value of frame pointer.  */
  int c0_fp;                            /* Actual value of frame pointer.  */
  xtensa_c0reg_t c0_rt[C0_NREGS];       /* Register tracking information.  */
  xtensa_c0reg_t c0_rt[C0_NREGS];       /* Register tracking information.  */
} xtensa_call0_frame_cache_t;
} xtensa_call0_frame_cache_t;
 
 
typedef struct xtensa_frame_cache
typedef struct xtensa_frame_cache
{
{
  CORE_ADDR base;       /* Stack pointer of the next frame.  */
  CORE_ADDR base;       /* Stack pointer of the next frame.  */
  CORE_ADDR pc;         /* PC at the entry point to the function.  */
  CORE_ADDR pc;         /* PC at the entry point to the function.  */
  CORE_ADDR ra;         /* The raw return address.  */
  CORE_ADDR ra;         /* The raw return address.  */
  CORE_ADDR ps;         /* The PS register of the frame.  */
  CORE_ADDR ps;         /* The PS register of the frame.  */
  CORE_ADDR prev_sp;    /* Stack Pointer of the frame.  */
  CORE_ADDR prev_sp;    /* Stack Pointer of the frame.  */
  int call0;            /* It's a call0 framework (else windowed).  */
  int call0;            /* It's a call0 framework (else windowed).  */
  union
  union
    {
    {
      xtensa_windowed_frame_cache_t     wd;     /* call0 == false.  */
      xtensa_windowed_frame_cache_t     wd;     /* call0 == false.  */
      xtensa_call0_frame_cache_t        c0;     /* call0 == true.  */
      xtensa_call0_frame_cache_t        c0;     /* call0 == true.  */
    };
    };
} xtensa_frame_cache_t;
} xtensa_frame_cache_t;
 
 
 
 
static struct xtensa_frame_cache *
static struct xtensa_frame_cache *
xtensa_alloc_frame_cache (int windowed)
xtensa_alloc_frame_cache (int windowed)
{
{
  xtensa_frame_cache_t *cache;
  xtensa_frame_cache_t *cache;
  int i;
  int i;
 
 
  DEBUGTRACE ("xtensa_alloc_frame_cache ()\n");
  DEBUGTRACE ("xtensa_alloc_frame_cache ()\n");
 
 
  cache = FRAME_OBSTACK_ZALLOC (xtensa_frame_cache_t);
  cache = FRAME_OBSTACK_ZALLOC (xtensa_frame_cache_t);
 
 
  cache->base = 0;
  cache->base = 0;
  cache->pc = 0;
  cache->pc = 0;
  cache->ra = 0;
  cache->ra = 0;
  cache->ps = 0;
  cache->ps = 0;
  cache->prev_sp = 0;
  cache->prev_sp = 0;
  cache->call0 = !windowed;
  cache->call0 = !windowed;
  if (cache->call0)
  if (cache->call0)
    {
    {
      cache->c0.c0_frmsz  = -1;
      cache->c0.c0_frmsz  = -1;
      cache->c0.c0_hasfp  =  0;
      cache->c0.c0_hasfp  =  0;
      cache->c0.fp_regnum = -1;
      cache->c0.fp_regnum = -1;
      cache->c0.c0_fp     = -1;
      cache->c0.c0_fp     = -1;
 
 
      for (i = 0; i < C0_NREGS; i++)
      for (i = 0; i < C0_NREGS; i++)
        {
        {
          cache->c0.c0_rt[i].fr_reg = i;
          cache->c0.c0_rt[i].fr_reg = i;
          cache->c0.c0_rt[i].fr_ofs = 0;
          cache->c0.c0_rt[i].fr_ofs = 0;
          cache->c0.c0_rt[i].to_stk = C0_NOSTK;
          cache->c0.c0_rt[i].to_stk = C0_NOSTK;
        }
        }
    }
    }
  else
  else
    {
    {
      cache->wd.wb = 0;
      cache->wd.wb = 0;
      cache->wd.callsize = -1;
      cache->wd.callsize = -1;
 
 
      for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
      for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
        cache->wd.aregs[i] = -1;
        cache->wd.aregs[i] = -1;
    }
    }
  return cache;
  return cache;
}
}
 
 
 
 
static CORE_ADDR
static CORE_ADDR
xtensa_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
xtensa_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
{
{
  return address & ~15;
  return address & ~15;
}
}
 
 
 
 
static CORE_ADDR
static CORE_ADDR
xtensa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
xtensa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
{
  gdb_byte buf[8];
  gdb_byte buf[8];
 
 
  DEBUGTRACE ("xtensa_unwind_pc (next_frame = %p)\n", next_frame);
  DEBUGTRACE ("xtensa_unwind_pc (next_frame = %p)\n", next_frame);
 
 
  frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
  frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
 
 
  DEBUGINFO ("[xtensa_unwind_pc] pc = 0x%08x\n", (unsigned int)
  DEBUGINFO ("[xtensa_unwind_pc] pc = 0x%08x\n", (unsigned int)
             extract_typed_address (buf, builtin_type_void_func_ptr));
             extract_typed_address (buf, builtin_type_void_func_ptr));
 
 
  return extract_typed_address (buf, builtin_type_void_func_ptr);
  return extract_typed_address (buf, builtin_type_void_func_ptr);
}
}
 
 
 
 
static struct frame_id
static struct frame_id
xtensa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
xtensa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
{
  CORE_ADDR pc, fp;
  CORE_ADDR pc, fp;
 
 
  /* next_frame->prev is a dummy frame.  Return a frame ID of that frame.  */
  /* next_frame->prev is a dummy frame.  Return a frame ID of that frame.  */
 
 
  DEBUGTRACE ("xtensa_unwind_dummy_id ()\n");
  DEBUGTRACE ("xtensa_unwind_dummy_id ()\n");
 
 
  pc = frame_pc_unwind (next_frame);
  pc = frame_pc_unwind (next_frame);
  fp = frame_unwind_register_unsigned
  fp = frame_unwind_register_unsigned
         (next_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
         (next_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
 
 
  /* Make dummy frame ID unique by adding a constant.  */
  /* Make dummy frame ID unique by adding a constant.  */
  return frame_id_build (fp + SP_ALIGNMENT, pc);
  return frame_id_build (fp + SP_ALIGNMENT, pc);
}
}
 
 
/* The key values to identify the frame using "cache" are
/* The key values to identify the frame using "cache" are
 
 
        cache->base    = SP of this frame;
        cache->base    = SP of this frame;
        cache->pc      = entry-PC (entry point of the frame function);
        cache->pc      = entry-PC (entry point of the frame function);
        cache->prev_sp = SP of the previous frame.
        cache->prev_sp = SP of the previous frame.
*/
*/
 
 
static void
static void
call0_frame_cache (struct frame_info *next_frame,
call0_frame_cache (struct frame_info *next_frame,
                   xtensa_frame_cache_t *cache,
                   xtensa_frame_cache_t *cache,
                   CORE_ADDR pc);
                   CORE_ADDR pc);
 
 
static struct xtensa_frame_cache *
static struct xtensa_frame_cache *
xtensa_frame_cache (struct frame_info *next_frame, void **this_cache)
xtensa_frame_cache (struct frame_info *next_frame, void **this_cache)
{
{
  xtensa_frame_cache_t *cache;
  xtensa_frame_cache_t *cache;
  CORE_ADDR ra, wb, ws, pc, sp, ps;
  CORE_ADDR ra, wb, ws, pc, sp, ps;
  struct gdbarch *gdbarch = get_frame_arch (next_frame);
  struct gdbarch *gdbarch = get_frame_arch (next_frame);
  unsigned int ps_regnum = gdbarch_ps_regnum (gdbarch);
  unsigned int ps_regnum = gdbarch_ps_regnum (gdbarch);
  char op1;
  char op1;
  int  windowed;
  int  windowed;
 
 
  DEBUGTRACE ("xtensa_frame_cache (next_frame %p, *this_cache %p)\n",
  DEBUGTRACE ("xtensa_frame_cache (next_frame %p, *this_cache %p)\n",
              next_frame, this_cache ? *this_cache : (void*)0xdeadbeef);
              next_frame, this_cache ? *this_cache : (void*)0xdeadbeef);
 
 
  if (*this_cache)
  if (*this_cache)
    return *this_cache;
    return *this_cache;
 
 
  windowed = windowing_enabled (xtensa_read_register (ps_regnum));
  windowed = windowing_enabled (xtensa_read_register (ps_regnum));
 
 
  /* Get pristine xtensa-frame.  */
  /* Get pristine xtensa-frame.  */
  cache = xtensa_alloc_frame_cache (windowed);
  cache = xtensa_alloc_frame_cache (windowed);
  *this_cache = cache;
  *this_cache = cache;
 
 
  pc = frame_unwind_register_unsigned (next_frame,
  pc = frame_unwind_register_unsigned (next_frame,
                                       gdbarch_pc_regnum (gdbarch));
                                       gdbarch_pc_regnum (gdbarch));
 
 
  if (windowed)
  if (windowed)
    {
    {
      /* Get WINDOWBASE, WINDOWSTART, and PS registers.  */
      /* Get WINDOWBASE, WINDOWSTART, and PS registers.  */
      wb = frame_unwind_register_unsigned
      wb = frame_unwind_register_unsigned
             (next_frame, gdbarch_tdep (gdbarch)->wb_regnum);
             (next_frame, gdbarch_tdep (gdbarch)->wb_regnum);
      ws = frame_unwind_register_unsigned
      ws = frame_unwind_register_unsigned
             (next_frame, gdbarch_tdep (gdbarch)->ws_regnum);
             (next_frame, gdbarch_tdep (gdbarch)->ws_regnum);
      ps = frame_unwind_register_unsigned (next_frame, ps_regnum);
      ps = frame_unwind_register_unsigned (next_frame, ps_regnum);
 
 
      op1 = read_memory_integer (pc, 1);
      op1 = read_memory_integer (pc, 1);
      if (XTENSA_IS_ENTRY (gdbarch, op1))
      if (XTENSA_IS_ENTRY (gdbarch, op1))
        {
        {
          int callinc = CALLINC (ps);
          int callinc = CALLINC (ps);
          ra = frame_unwind_register_unsigned
          ra = frame_unwind_register_unsigned
            (next_frame, gdbarch_tdep (gdbarch)->a0_base + callinc * 4);
            (next_frame, gdbarch_tdep (gdbarch)->a0_base + callinc * 4);
 
 
          DEBUGINFO("[xtensa_frame_cache] 'entry' at 0x%08x\n (callinc = %d)",
          DEBUGINFO("[xtensa_frame_cache] 'entry' at 0x%08x\n (callinc = %d)",
                    (int)pc, callinc);
                    (int)pc, callinc);
 
 
          /* ENTRY hasn't been executed yet, therefore callsize is still 0.  */
          /* ENTRY hasn't been executed yet, therefore callsize is still 0.  */
          cache->wd.callsize = 0;
          cache->wd.callsize = 0;
          cache->wd.wb = wb;
          cache->wd.wb = wb;
          cache->wd.ws = ws;
          cache->wd.ws = ws;
          cache->prev_sp = frame_unwind_register_unsigned
          cache->prev_sp = frame_unwind_register_unsigned
                             (next_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
                             (next_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
        }
        }
      else
      else
        {
        {
          ra = frame_unwind_register_unsigned
          ra = frame_unwind_register_unsigned
                 (next_frame, gdbarch_tdep (gdbarch)->a0_base);
                 (next_frame, gdbarch_tdep (gdbarch)->a0_base);
          cache->wd.callsize = WINSIZE (ra);
          cache->wd.callsize = WINSIZE (ra);
          cache->wd.wb = (wb - cache->wd.callsize / 4)
          cache->wd.wb = (wb - cache->wd.callsize / 4)
                          & (gdbarch_tdep (gdbarch)->num_aregs / 4 - 1);
                          & (gdbarch_tdep (gdbarch)->num_aregs / 4 - 1);
          cache->wd.ws = ws & ~(1 << wb);
          cache->wd.ws = ws & ~(1 << wb);
        }
        }
 
 
      cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
      cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
      cache->ra = (cache->pc & 0xc0000000) | (ra & 0x3fffffff);
      cache->ra = (cache->pc & 0xc0000000) | (ra & 0x3fffffff);
      cache->ps = (ps & ~PS_CALLINC_MASK)
      cache->ps = (ps & ~PS_CALLINC_MASK)
        | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
        | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
 
 
      if (cache->wd.ws == 0)
      if (cache->wd.ws == 0)
        {
        {
          int i;
          int i;
 
 
          /* Set A0...A3.  */
          /* Set A0...A3.  */
          sp = frame_unwind_register_unsigned
          sp = frame_unwind_register_unsigned
                 (next_frame, gdbarch_tdep (gdbarch)->a0_base + 1) - 16;
                 (next_frame, gdbarch_tdep (gdbarch)->a0_base + 1) - 16;
 
 
          for (i = 0; i < 4; i++, sp += 4)
          for (i = 0; i < 4; i++, sp += 4)
            {
            {
              cache->wd.aregs[i] = sp;
              cache->wd.aregs[i] = sp;
            }
            }
 
 
          if (cache->wd.callsize > 4)
          if (cache->wd.callsize > 4)
            {
            {
              /* Set A4...A7/A11.  */
              /* Set A4...A7/A11.  */
              /* Read an SP of the previous frame.  */
              /* Read an SP of the previous frame.  */
              sp = (CORE_ADDR) read_memory_integer (sp - 12, 4);
              sp = (CORE_ADDR) read_memory_integer (sp - 12, 4);
              sp = (CORE_ADDR) read_memory_integer (sp - 12, 4);
              sp = (CORE_ADDR) read_memory_integer (sp - 12, 4);
              sp -= cache->wd.callsize * 4;
              sp -= cache->wd.callsize * 4;
 
 
              for ( /* i=4  */ ; i < cache->wd.callsize; i++, sp += 4)
              for ( /* i=4  */ ; i < cache->wd.callsize; i++, sp += 4)
                {
                {
                  cache->wd.aregs[i] = sp;
                  cache->wd.aregs[i] = sp;
                }
                }
            }
            }
        }
        }
 
 
      if ((cache->prev_sp == 0) && ( ra != 0 ))
      if ((cache->prev_sp == 0) && ( ra != 0 ))
        /* If RA is equal to 0 this frame is an outermost frame.  Leave
        /* If RA is equal to 0 this frame is an outermost frame.  Leave
           cache->prev_sp unchanged marking the boundary of the frame stack.  */
           cache->prev_sp unchanged marking the boundary of the frame stack.  */
        {
        {
          if (cache->wd.ws == 0)
          if (cache->wd.ws == 0)
            {
            {
              /* Register window overflow already happened.
              /* Register window overflow already happened.
                 We can read caller's SP from the proper spill loction.  */
                 We can read caller's SP from the proper spill loction.  */
              cache->prev_sp =
              cache->prev_sp =
                read_memory_integer (cache->wd.aregs[1],
                read_memory_integer (cache->wd.aregs[1],
                                     register_size (gdbarch,
                                     register_size (gdbarch,
                                       gdbarch_tdep (gdbarch)->a0_base + 1));
                                       gdbarch_tdep (gdbarch)->a0_base + 1));
            }
            }
          else
          else
            {
            {
              /* Read caller's frame SP directly from the previous window.  */
              /* Read caller's frame SP directly from the previous window.  */
              int regnum = areg_number
              int regnum = areg_number
                             (gdbarch, gdbarch_tdep (gdbarch)->a0_base + 1,
                             (gdbarch, gdbarch_tdep (gdbarch)->a0_base + 1,
                              cache->wd.wb);
                              cache->wd.wb);
 
 
              cache->prev_sp = xtensa_read_register (regnum);
              cache->prev_sp = xtensa_read_register (regnum);
            }
            }
        }
        }
    }
    }
  else  /* Call0 framework.  */
  else  /* Call0 framework.  */
    {
    {
      call0_frame_cache (next_frame, cache, pc);
      call0_frame_cache (next_frame, cache, pc);
    }
    }
 
 
  cache->base = frame_unwind_register_unsigned
  cache->base = frame_unwind_register_unsigned
                  (next_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
                  (next_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
 
 
  return cache;
  return cache;
}
}
 
 
static void
static void
xtensa_frame_this_id (struct frame_info *next_frame,
xtensa_frame_this_id (struct frame_info *next_frame,
                      void **this_cache,
                      void **this_cache,
                      struct frame_id *this_id)
                      struct frame_id *this_id)
{
{
  struct xtensa_frame_cache *cache =
  struct xtensa_frame_cache *cache =
    xtensa_frame_cache (next_frame, this_cache);
    xtensa_frame_cache (next_frame, this_cache);
  struct frame_id id;
  struct frame_id id;
 
 
  DEBUGTRACE ("xtensa_frame_this_id (next 0x%lx, *this 0x%lx)\n",
  DEBUGTRACE ("xtensa_frame_this_id (next 0x%lx, *this 0x%lx)\n",
              (unsigned long) next_frame, (unsigned long) *this_cache);
              (unsigned long) next_frame, (unsigned long) *this_cache);
 
 
  if (cache->prev_sp == 0)
  if (cache->prev_sp == 0)
    return;
    return;
 
 
  id = frame_id_build (cache->prev_sp, cache->pc);
  id = frame_id_build (cache->prev_sp, cache->pc);
  if (frame_id_eq (id, get_frame_id(next_frame)))
  if (frame_id_eq (id, get_frame_id(next_frame)))
    {
    {
      warning(_("\
      warning(_("\
Frame stack is corrupted. That could happen because of \
Frame stack is corrupted. That could happen because of \
setting register(s) from GDB or stopping execution \
setting register(s) from GDB or stopping execution \
inside exception handler. Frame backtracing has stopped. \
inside exception handler. Frame backtracing has stopped. \
It can make some GDB commands work inappropriately.\n"));
It can make some GDB commands work inappropriately.\n"));
      cache->prev_sp = 0;
      cache->prev_sp = 0;
      return;
      return;
    }
    }
  (*this_id) = id;
  (*this_id) = id;
}
}
 
 
static int
static int
call0_frame_get_reg_at_entry (struct frame_info *next_frame,
call0_frame_get_reg_at_entry (struct frame_info *next_frame,
                              struct xtensa_frame_cache *cache,
                              struct xtensa_frame_cache *cache,
                              int regnum,
                              int regnum,
                              CORE_ADDR *addrp,
                              CORE_ADDR *addrp,
                              enum lval_type *lval,
                              enum lval_type *lval,
                              gdb_byte *valuep)
                              gdb_byte *valuep)
{
{
  CORE_ADDR fp, spe;
  CORE_ADDR fp, spe;
  int stkofs;
  int stkofs;
  struct gdbarch *gdbarch = get_frame_arch (next_frame);
  struct gdbarch *gdbarch = get_frame_arch (next_frame);
  int reg = (regnum >= gdbarch_tdep (gdbarch)->ar_base
  int reg = (regnum >= gdbarch_tdep (gdbarch)->ar_base
            && regnum <= (gdbarch_tdep (gdbarch)->ar_base + C0_NREGS))
            && regnum <= (gdbarch_tdep (gdbarch)->ar_base + C0_NREGS))
              ? regnum - gdbarch_tdep (gdbarch)->ar_base : regnum;
              ? regnum - gdbarch_tdep (gdbarch)->ar_base : regnum;
 
 
  /* Determine stack pointer on entry to this function, based on FP.  */
  /* Determine stack pointer on entry to this function, based on FP.  */
  spe = cache->c0.c0_fp - cache->c0.c0_rt[cache->c0.fp_regnum].fr_ofs;
  spe = cache->c0.c0_fp - cache->c0.c0_rt[cache->c0.fp_regnum].fr_ofs;
 
 
  /* If register was saved to the stack frame in the prologue, retrieve it.  */
  /* If register was saved to the stack frame in the prologue, retrieve it.  */
  stkofs = cache->c0.c0_rt[reg].to_stk;
  stkofs = cache->c0.c0_rt[reg].to_stk;
  if (stkofs != C0_NOSTK)
  if (stkofs != C0_NOSTK)
    {
    {
      *lval = lval_memory;
      *lval = lval_memory;
      *addrp = spe + stkofs;
      *addrp = spe + stkofs;
 
 
      if (valuep)
      if (valuep)
        read_memory (*addrp, valuep, register_size (gdbarch, regnum));
        read_memory (*addrp, valuep, register_size (gdbarch, regnum));
 
 
      return 1;
      return 1;
    }
    }
 
 
  /* If not callee-saved or if known to have been overwritten, give up.  */
  /* If not callee-saved or if known to have been overwritten, give up.  */
  if (reg < C0_CLESV
  if (reg < C0_CLESV
      || cache->c0.c0_rt[reg].fr_reg != reg
      || cache->c0.c0_rt[reg].fr_reg != reg
      || cache->c0.c0_rt[reg].fr_ofs != 0)
      || cache->c0.c0_rt[reg].fr_ofs != 0)
    return 0;
    return 0;
 
 
  if (get_frame_type (next_frame) != NORMAL_FRAME)
  if (get_frame_type (next_frame) != NORMAL_FRAME)
    /* TODO: Do we need a special case for DUMMY_FRAME here?  */
    /* TODO: Do we need a special case for DUMMY_FRAME here?  */
    return 0;
    return 0;
 
 
  return call0_frame_get_reg_at_entry (get_next_frame(next_frame),
  return call0_frame_get_reg_at_entry (get_next_frame(next_frame),
                                       cache, regnum, addrp, lval, valuep);
                                       cache, regnum, addrp, lval, valuep);
}
}
 
 
static void
static void
xtensa_frame_prev_register (struct frame_info *next_frame,
xtensa_frame_prev_register (struct frame_info *next_frame,
                            void **this_cache,
                            void **this_cache,
                            int regnum,
                            int regnum,
                            int *optimizedp,
                            int *optimizedp,
                            enum lval_type *lvalp,
                            enum lval_type *lvalp,
                            CORE_ADDR *addrp,
                            CORE_ADDR *addrp,
                            int *realnump,
                            int *realnump,
                            gdb_byte *valuep)
                            gdb_byte *valuep)
{
{
  struct gdbarch *gdbarch = get_frame_arch (next_frame);
  struct gdbarch *gdbarch = get_frame_arch (next_frame);
  struct xtensa_frame_cache *cache =
  struct xtensa_frame_cache *cache =
    xtensa_frame_cache (next_frame, this_cache);
    xtensa_frame_cache (next_frame, this_cache);
  CORE_ADDR saved_reg = 0;
  CORE_ADDR saved_reg = 0;
  int done = 1;
  int done = 1;
 
 
  DEBUGTRACE ("xtensa_frame_prev_register (next 0x%lx, "
  DEBUGTRACE ("xtensa_frame_prev_register (next 0x%lx, "
              "*this 0x%lx, regnum %d (%s), ...)\n",
              "*this 0x%lx, regnum %d (%s), ...)\n",
              (unsigned long) next_frame,
              (unsigned long) next_frame,
              *this_cache ? (unsigned long) *this_cache : 0, regnum,
              *this_cache ? (unsigned long) *this_cache : 0, regnum,
              xtensa_register_name (gdbarch, regnum));
              xtensa_register_name (gdbarch, regnum));
 
 
  if (regnum ==gdbarch_pc_regnum (gdbarch))
  if (regnum ==gdbarch_pc_regnum (gdbarch))
    saved_reg = cache->ra;
    saved_reg = cache->ra;
  else if (regnum == gdbarch_tdep (gdbarch)->a0_base + 1)
  else if (regnum == gdbarch_tdep (gdbarch)->a0_base + 1)
    saved_reg = cache->prev_sp;
    saved_reg = cache->prev_sp;
  else if (!cache->call0)
  else if (!cache->call0)
    {
    {
      if (regnum == gdbarch_tdep (gdbarch)->ws_regnum)
      if (regnum == gdbarch_tdep (gdbarch)->ws_regnum)
        {
        {
          if (cache->wd.ws != 0)
          if (cache->wd.ws != 0)
            saved_reg = cache->wd.ws;
            saved_reg = cache->wd.ws;
          else
          else
            saved_reg = 1 << cache->wd.wb;
            saved_reg = 1 << cache->wd.wb;
        }
        }
      else if (regnum == gdbarch_tdep (gdbarch)->wb_regnum)
      else if (regnum == gdbarch_tdep (gdbarch)->wb_regnum)
        saved_reg = cache->wd.wb;
        saved_reg = cache->wd.wb;
      else if (regnum == gdbarch_ps_regnum (gdbarch))
      else if (regnum == gdbarch_ps_regnum (gdbarch))
        saved_reg = cache->ps;
        saved_reg = cache->ps;
      else
      else
        done = 0;
        done = 0;
    }
    }
  else
  else
    done = 0;
    done = 0;
 
 
  if (done)
  if (done)
    {
    {
      *optimizedp = 0;
      *optimizedp = 0;
      *lvalp = not_lval;
      *lvalp = not_lval;
      *addrp = 0;
      *addrp = 0;
      *realnump = -1;
      *realnump = -1;
      if (valuep)
      if (valuep)
        store_unsigned_integer (valuep, 4, saved_reg);
        store_unsigned_integer (valuep, 4, saved_reg);
 
 
      return;
      return;
    }
    }
 
 
  if (!cache->call0) /* Windowed ABI.  */
  if (!cache->call0) /* Windowed ABI.  */
    {
    {
      /* Convert A-register numbers to AR-register numbers.  */
      /* Convert A-register numbers to AR-register numbers.  */
      if (regnum >= gdbarch_tdep (gdbarch)->a0_base
      if (regnum >= gdbarch_tdep (gdbarch)->a0_base
          && regnum <= gdbarch_tdep (gdbarch)->a0_base + 15)
          && regnum <= gdbarch_tdep (gdbarch)->a0_base + 15)
        regnum = areg_number (gdbarch, regnum, cache->wd.wb);
        regnum = areg_number (gdbarch, regnum, cache->wd.wb);
 
 
      /* Check if AR-register has been saved to stack.  */
      /* Check if AR-register has been saved to stack.  */
      if (regnum >= gdbarch_tdep (gdbarch)->ar_base
      if (regnum >= gdbarch_tdep (gdbarch)->ar_base
          && regnum <= (gdbarch_tdep (gdbarch)->ar_base
          && regnum <= (gdbarch_tdep (gdbarch)->ar_base
                         + gdbarch_tdep (gdbarch)->num_aregs))
                         + gdbarch_tdep (gdbarch)->num_aregs))
        {
        {
          int areg = regnum - gdbarch_tdep (gdbarch)->ar_base
          int areg = regnum - gdbarch_tdep (gdbarch)->ar_base
                       - (cache->wd.wb * 4);
                       - (cache->wd.wb * 4);
 
 
          if (areg >= 0
          if (areg >= 0
              && areg < XTENSA_NUM_SAVED_AREGS
              && areg < XTENSA_NUM_SAVED_AREGS
              && cache->wd.aregs[areg] != -1)
              && cache->wd.aregs[areg] != -1)
            {
            {
              *optimizedp = 0;
              *optimizedp = 0;
              *lvalp = lval_memory;
              *lvalp = lval_memory;
              *addrp = cache->wd.aregs[areg];
              *addrp = cache->wd.aregs[areg];
              *realnump = -1;
              *realnump = -1;
 
 
              if (valuep)
              if (valuep)
                read_memory (*addrp, valuep,
                read_memory (*addrp, valuep,
                             register_size (gdbarch, regnum));
                             register_size (gdbarch, regnum));
 
 
              DEBUGINFO ("[xtensa_frame_prev_register] register on stack\n");
              DEBUGINFO ("[xtensa_frame_prev_register] register on stack\n");
              return;
              return;
            }
            }
        }
        }
    }
    }
  else /* Call0 ABI.  */
  else /* Call0 ABI.  */
    {
    {
      int reg = (regnum >= gdbarch_tdep (gdbarch)->ar_base
      int reg = (regnum >= gdbarch_tdep (gdbarch)->ar_base
                && regnum <= (gdbarch_tdep (gdbarch)->ar_base
                && regnum <= (gdbarch_tdep (gdbarch)->ar_base
                               + C0_NREGS))
                               + C0_NREGS))
                  ? regnum - gdbarch_tdep (gdbarch)->ar_base : regnum;
                  ? regnum - gdbarch_tdep (gdbarch)->ar_base : regnum;
 
 
      if (reg < C0_NREGS)
      if (reg < C0_NREGS)
        {
        {
          CORE_ADDR spe;
          CORE_ADDR spe;
          int stkofs;
          int stkofs;
 
 
          /* If register was saved in the prologue, retrieve it.  */
          /* If register was saved in the prologue, retrieve it.  */
          stkofs = cache->c0.c0_rt[reg].to_stk;
          stkofs = cache->c0.c0_rt[reg].to_stk;
          if (stkofs != C0_NOSTK)
          if (stkofs != C0_NOSTK)
            {
            {
              /* Determine SP on entry based on FP.  */
              /* Determine SP on entry based on FP.  */
              spe = cache->c0.c0_fp
              spe = cache->c0.c0_fp
                - cache->c0.c0_rt[cache->c0.fp_regnum].fr_ofs;
                - cache->c0.c0_rt[cache->c0.fp_regnum].fr_ofs;
              *optimizedp = 0;
              *optimizedp = 0;
              *lvalp = lval_memory;
              *lvalp = lval_memory;
              *addrp = spe + stkofs;
              *addrp = spe + stkofs;
              *realnump = -1;
              *realnump = -1;
 
 
              if (valuep)
              if (valuep)
                read_memory (*addrp, valuep,
                read_memory (*addrp, valuep,
                             register_size (gdbarch, regnum));
                             register_size (gdbarch, regnum));
 
 
              DEBUGINFO ("[xtensa_frame_prev_register] register on stack\n");
              DEBUGINFO ("[xtensa_frame_prev_register] register on stack\n");
              return;
              return;
            }
            }
        }
        }
    }
    }
 
 
  /* All other registers have been either saved to
  /* All other registers have been either saved to
     the stack or are still alive in the processor.  */
     the stack or are still alive in the processor.  */
 
 
  *optimizedp = 0;
  *optimizedp = 0;
  *lvalp = lval_register;
  *lvalp = lval_register;
  *addrp = 0;
  *addrp = 0;
  *realnump = regnum;
  *realnump = regnum;
  if (valuep)
  if (valuep)
    frame_unwind_register (next_frame, (*realnump), valuep);
    frame_unwind_register (next_frame, (*realnump), valuep);
}
}
 
 
 
 
static const struct frame_unwind
static const struct frame_unwind
xtensa_frame_unwind =
xtensa_frame_unwind =
{
{
  NORMAL_FRAME,
  NORMAL_FRAME,
  xtensa_frame_this_id,
  xtensa_frame_this_id,
  xtensa_frame_prev_register
  xtensa_frame_prev_register
};
};
 
 
static const struct frame_unwind *
static const struct frame_unwind *
xtensa_frame_sniffer (struct frame_info *next_frame)
xtensa_frame_sniffer (struct frame_info *next_frame)
{
{
  return &xtensa_frame_unwind;
  return &xtensa_frame_unwind;
}
}
 
 
static CORE_ADDR
static CORE_ADDR
xtensa_frame_base_address (struct frame_info *next_frame, void **this_cache)
xtensa_frame_base_address (struct frame_info *next_frame, void **this_cache)
{
{
  struct xtensa_frame_cache *cache =
  struct xtensa_frame_cache *cache =
    xtensa_frame_cache (next_frame, this_cache);
    xtensa_frame_cache (next_frame, this_cache);
 
 
  return cache->base;
  return cache->base;
}
}
 
 
static const struct frame_base
static const struct frame_base
xtensa_frame_base =
xtensa_frame_base =
{
{
  &xtensa_frame_unwind,
  &xtensa_frame_unwind,
  xtensa_frame_base_address,
  xtensa_frame_base_address,
  xtensa_frame_base_address,
  xtensa_frame_base_address,
  xtensa_frame_base_address
  xtensa_frame_base_address
};
};
 
 
 
 
static void
static void
xtensa_extract_return_value (struct type *type,
xtensa_extract_return_value (struct type *type,
                             struct regcache *regcache,
                             struct regcache *regcache,
                             void *dst)
                             void *dst)
{
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  bfd_byte *valbuf = dst;
  bfd_byte *valbuf = dst;
  int len = TYPE_LENGTH (type);
  int len = TYPE_LENGTH (type);
  ULONGEST pc, wb;
  ULONGEST pc, wb;
  int callsize, areg;
  int callsize, areg;
  int offset = 0;
  int offset = 0;
 
 
  DEBUGTRACE ("xtensa_extract_return_value (...)\n");
  DEBUGTRACE ("xtensa_extract_return_value (...)\n");
 
 
  gdb_assert(len > 0);
  gdb_assert(len > 0);
 
 
  if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
  if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
    {
    {
      /* First, we have to find the caller window in the register file.  */
      /* First, we have to find the caller window in the register file.  */
      regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
      regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
      callsize = extract_call_winsize (gdbarch, pc);
      callsize = extract_call_winsize (gdbarch, pc);
 
 
      /* On Xtensa, we can return up to 4 words (or 2 for call12).  */
      /* On Xtensa, we can return up to 4 words (or 2 for call12).  */
      if (len > (callsize > 8 ? 8 : 16))
      if (len > (callsize > 8 ? 8 : 16))
        internal_error (__FILE__, __LINE__,
        internal_error (__FILE__, __LINE__,
                        _("cannot extract return value of %d bytes long"), len);
                        _("cannot extract return value of %d bytes long"), len);
 
 
      /* Get the register offset of the return
      /* Get the register offset of the return
         register (A2) in the caller window.  */
         register (A2) in the caller window.  */
      regcache_raw_read_unsigned
      regcache_raw_read_unsigned
        (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
        (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
      areg = areg_number (gdbarch,
      areg = areg_number (gdbarch,
                          gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
                          gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
    }
    }
  else
  else
    {
    {
      /* No windowing hardware - Call0 ABI.  */
      /* No windowing hardware - Call0 ABI.  */
      areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
      areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
    }
    }
 
 
  DEBUGINFO ("[xtensa_extract_return_value] areg %d len %d\n", areg, len);
  DEBUGINFO ("[xtensa_extract_return_value] areg %d len %d\n", areg, len);
 
 
  if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
  if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
    offset = 4 - len;
    offset = 4 - len;
 
 
  for (; len > 0; len -= 4, areg++, valbuf += 4)
  for (; len > 0; len -= 4, areg++, valbuf += 4)
    {
    {
      if (len < 4)
      if (len < 4)
        regcache_raw_read_part (regcache, areg, offset, len, valbuf);
        regcache_raw_read_part (regcache, areg, offset, len, valbuf);
      else
      else
        regcache_raw_read (regcache, areg, valbuf);
        regcache_raw_read (regcache, areg, valbuf);
    }
    }
}
}
 
 
 
 
static void
static void
xtensa_store_return_value (struct type *type,
xtensa_store_return_value (struct type *type,
                           struct regcache *regcache,
                           struct regcache *regcache,
                           const void *dst)
                           const void *dst)
{
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  const bfd_byte *valbuf = dst;
  const bfd_byte *valbuf = dst;
  unsigned int areg;
  unsigned int areg;
  ULONGEST pc, wb;
  ULONGEST pc, wb;
  int callsize;
  int callsize;
  int len = TYPE_LENGTH (type);
  int len = TYPE_LENGTH (type);
  int offset = 0;
  int offset = 0;
 
 
  DEBUGTRACE ("xtensa_store_return_value (...)\n");
  DEBUGTRACE ("xtensa_store_return_value (...)\n");
 
 
  if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
  if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
    {
    {
      regcache_raw_read_unsigned
      regcache_raw_read_unsigned
        (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
        (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
      regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
      regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
      callsize = extract_call_winsize (gdbarch, pc);
      callsize = extract_call_winsize (gdbarch, pc);
 
 
      if (len > (callsize > 8 ? 8 : 16))
      if (len > (callsize > 8 ? 8 : 16))
        internal_error (__FILE__, __LINE__,
        internal_error (__FILE__, __LINE__,
                        _("unimplemented for this length: %d"),
                        _("unimplemented for this length: %d"),
                        TYPE_LENGTH (type));
                        TYPE_LENGTH (type));
      areg = areg_number (gdbarch,
      areg = areg_number (gdbarch,
                          gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
                          gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
 
 
      DEBUGTRACE ("[xtensa_store_return_value] callsize %d wb %d\n",
      DEBUGTRACE ("[xtensa_store_return_value] callsize %d wb %d\n",
              callsize, (int) wb);
              callsize, (int) wb);
    }
    }
  else
  else
    {
    {
      areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
      areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
    }
    }
 
 
  if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
  if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
    offset = 4 - len;
    offset = 4 - len;
 
 
  for (; len > 0; len -= 4, areg++, valbuf += 4)
  for (; len > 0; len -= 4, areg++, valbuf += 4)
    {
    {
      if (len < 4)
      if (len < 4)
        regcache_raw_write_part (regcache, areg, offset, len, valbuf);
        regcache_raw_write_part (regcache, areg, offset, len, valbuf);
      else
      else
        regcache_raw_write (regcache, areg, valbuf);
        regcache_raw_write (regcache, areg, valbuf);
    }
    }
}
}
 
 
 
 
static enum return_value_convention
static enum return_value_convention
xtensa_return_value (struct gdbarch *gdbarch,
xtensa_return_value (struct gdbarch *gdbarch,
                     struct type *valtype,
                     struct type *valtype,
                     struct regcache *regcache,
                     struct regcache *regcache,
                     gdb_byte *readbuf,
                     gdb_byte *readbuf,
                     const gdb_byte *writebuf)
                     const gdb_byte *writebuf)
{
{
  /* Structures up to 16 bytes are returned in registers.  */
  /* Structures up to 16 bytes are returned in registers.  */
 
 
  int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
  int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
                        || TYPE_CODE (valtype) == TYPE_CODE_UNION
                        || TYPE_CODE (valtype) == TYPE_CODE_UNION
                        || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
                        || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
                       && TYPE_LENGTH (valtype) > 16);
                       && TYPE_LENGTH (valtype) > 16);
 
 
  if (struct_return)
  if (struct_return)
    return RETURN_VALUE_STRUCT_CONVENTION;
    return RETURN_VALUE_STRUCT_CONVENTION;
 
 
  DEBUGTRACE ("xtensa_return_value(...)\n");
  DEBUGTRACE ("xtensa_return_value(...)\n");
 
 
  if (writebuf != NULL)
  if (writebuf != NULL)
    {
    {
      xtensa_store_return_value (valtype, regcache, writebuf);
      xtensa_store_return_value (valtype, regcache, writebuf);
    }
    }
 
 
  if (readbuf != NULL)
  if (readbuf != NULL)
    {
    {
      gdb_assert (!struct_return);
      gdb_assert (!struct_return);
      xtensa_extract_return_value (valtype, regcache, readbuf);
      xtensa_extract_return_value (valtype, regcache, readbuf);
    }
    }
  return RETURN_VALUE_REGISTER_CONVENTION;
  return RETURN_VALUE_REGISTER_CONVENTION;
}
}
 
 
 
 
/* DUMMY FRAME */
/* DUMMY FRAME */
 
 
static CORE_ADDR
static CORE_ADDR
xtensa_push_dummy_call (struct gdbarch *gdbarch,
xtensa_push_dummy_call (struct gdbarch *gdbarch,
                        struct value *function,
                        struct value *function,
                        struct regcache *regcache,
                        struct regcache *regcache,
                        CORE_ADDR bp_addr,
                        CORE_ADDR bp_addr,
                        int nargs,
                        int nargs,
                        struct value **args,
                        struct value **args,
                        CORE_ADDR sp,
                        CORE_ADDR sp,
                        int struct_return,
                        int struct_return,
                        CORE_ADDR struct_addr)
                        CORE_ADDR struct_addr)
{
{
  int i;
  int i;
  int size, onstack_size;
  int size, onstack_size;
  gdb_byte *buf = (gdb_byte *) alloca (16);
  gdb_byte *buf = (gdb_byte *) alloca (16);
  CORE_ADDR ra, ps;
  CORE_ADDR ra, ps;
  struct argument_info
  struct argument_info
  {
  {
    const bfd_byte *contents;
    const bfd_byte *contents;
    int length;
    int length;
    int onstack;                /* onstack == 0 => in reg */
    int onstack;                /* onstack == 0 => in reg */
    int align;                  /* alignment */
    int align;                  /* alignment */
    union
    union
    {
    {
      int offset;               /* stack offset if on stack */
      int offset;               /* stack offset if on stack */
      int regno;                /* regno if in register */
      int regno;                /* regno if in register */
    } u;
    } u;
  };
  };
 
 
  struct argument_info *arg_info =
  struct argument_info *arg_info =
    (struct argument_info *) alloca (nargs * sizeof (struct argument_info));
    (struct argument_info *) alloca (nargs * sizeof (struct argument_info));
 
 
  CORE_ADDR osp = sp;
  CORE_ADDR osp = sp;
 
 
  DEBUGTRACE ("xtensa_push_dummy_call (...)\n");
  DEBUGTRACE ("xtensa_push_dummy_call (...)\n");
 
 
  if (xtensa_debug_level > 3)
  if (xtensa_debug_level > 3)
    {
    {
      int i;
      int i;
      DEBUGINFO ("[xtensa_push_dummy_call] nargs = %d\n", nargs);
      DEBUGINFO ("[xtensa_push_dummy_call] nargs = %d\n", nargs);
      DEBUGINFO ("[xtensa_push_dummy_call] sp=0x%x, struct_return=%d, "
      DEBUGINFO ("[xtensa_push_dummy_call] sp=0x%x, struct_return=%d, "
                 "struct_addr=0x%x\n",
                 "struct_addr=0x%x\n",
                 (int) sp, (int) struct_return, (int) struct_addr);
                 (int) sp, (int) struct_return, (int) struct_addr);
 
 
      for (i = 0; i < nargs; i++)
      for (i = 0; i < nargs; i++)
        {
        {
          struct value *arg = args[i];
          struct value *arg = args[i];
          struct type *arg_type = check_typedef (value_type (arg));
          struct type *arg_type = check_typedef (value_type (arg));
          fprintf_unfiltered (gdb_stdlog, "%2d: 0x%lx %3d ",
          fprintf_unfiltered (gdb_stdlog, "%2d: 0x%lx %3d ",
                              i, (unsigned long) arg, TYPE_LENGTH (arg_type));
                              i, (unsigned long) arg, TYPE_LENGTH (arg_type));
          switch (TYPE_CODE (arg_type))
          switch (TYPE_CODE (arg_type))
            {
            {
            case TYPE_CODE_INT:
            case TYPE_CODE_INT:
              fprintf_unfiltered (gdb_stdlog, "int");
              fprintf_unfiltered (gdb_stdlog, "int");
              break;
              break;
            case TYPE_CODE_STRUCT:
            case TYPE_CODE_STRUCT:
              fprintf_unfiltered (gdb_stdlog, "struct");
              fprintf_unfiltered (gdb_stdlog, "struct");
              break;
              break;
            default:
            default:
              fprintf_unfiltered (gdb_stdlog, "%3d", TYPE_CODE (arg_type));
              fprintf_unfiltered (gdb_stdlog, "%3d", TYPE_CODE (arg_type));
              break;
              break;
            }
            }
          fprintf_unfiltered (gdb_stdlog, " 0x%lx\n",
          fprintf_unfiltered (gdb_stdlog, " 0x%lx\n",
                              (unsigned long) value_contents (arg));
                              (unsigned long) value_contents (arg));
        }
        }
    }
    }
 
 
  /* First loop: collect information.
  /* First loop: collect information.
     Cast into type_long.  (This shouldn't happen often for C because
     Cast into type_long.  (This shouldn't happen often for C because
     GDB already does this earlier.)  It's possible that GDB could
     GDB already does this earlier.)  It's possible that GDB could
     do it all the time but it's harmless to leave this code here.  */
     do it all the time but it's harmless to leave this code here.  */
 
 
  size = 0;
  size = 0;
  onstack_size = 0;
  onstack_size = 0;
  i = 0;
  i = 0;
 
 
  if (struct_return)
  if (struct_return)
    size = REGISTER_SIZE;
    size = REGISTER_SIZE;
 
 
  for (i = 0; i < nargs; i++)
  for (i = 0; i < nargs; i++)
    {
    {
      struct argument_info *info = &arg_info[i];
      struct argument_info *info = &arg_info[i];
      struct value *arg = args[i];
      struct value *arg = args[i];
      struct type *arg_type = check_typedef (value_type (arg));
      struct type *arg_type = check_typedef (value_type (arg));
 
 
      switch (TYPE_CODE (arg_type))
      switch (TYPE_CODE (arg_type))
        {
        {
        case TYPE_CODE_INT:
        case TYPE_CODE_INT:
        case TYPE_CODE_BOOL:
        case TYPE_CODE_BOOL:
        case TYPE_CODE_CHAR:
        case TYPE_CODE_CHAR:
        case TYPE_CODE_RANGE:
        case TYPE_CODE_RANGE:
        case TYPE_CODE_ENUM:
        case TYPE_CODE_ENUM:
 
 
          /* Cast argument to long if necessary as the mask does it too.  */
          /* Cast argument to long if necessary as the mask does it too.  */
          if (TYPE_LENGTH (arg_type) < TYPE_LENGTH (builtin_type_long))
          if (TYPE_LENGTH (arg_type) < TYPE_LENGTH (builtin_type_long))
            {
            {
              arg_type = builtin_type_long;
              arg_type = builtin_type_long;
              arg = value_cast (arg_type, arg);
              arg = value_cast (arg_type, arg);
            }
            }
          /* Aligment is equal to the type length for the basic types.  */
          /* Aligment is equal to the type length for the basic types.  */
          info->align = TYPE_LENGTH (arg_type);
          info->align = TYPE_LENGTH (arg_type);
          break;
          break;
 
 
        case TYPE_CODE_FLT:
        case TYPE_CODE_FLT:
 
 
          /* Align doubles correctly.  */
          /* Align doubles correctly.  */
          if (TYPE_LENGTH (arg_type) == TYPE_LENGTH (builtin_type_double))
          if (TYPE_LENGTH (arg_type) == TYPE_LENGTH (builtin_type_double))
            info->align = TYPE_LENGTH (builtin_type_double);
            info->align = TYPE_LENGTH (builtin_type_double);
          else
          else
            info->align = TYPE_LENGTH (builtin_type_long);
            info->align = TYPE_LENGTH (builtin_type_long);
          break;
          break;
 
 
        case TYPE_CODE_STRUCT:
        case TYPE_CODE_STRUCT:
        default:
        default:
          info->align = TYPE_LENGTH (builtin_type_long);
          info->align = TYPE_LENGTH (builtin_type_long);
          break;
          break;
        }
        }
      info->length = TYPE_LENGTH (arg_type);
      info->length = TYPE_LENGTH (arg_type);
      info->contents = value_contents (arg);
      info->contents = value_contents (arg);
 
 
      /* Align size and onstack_size.  */
      /* Align size and onstack_size.  */
      size = (size + info->align - 1) & ~(info->align - 1);
      size = (size + info->align - 1) & ~(info->align - 1);
      onstack_size = (onstack_size + info->align - 1) & ~(info->align - 1);
      onstack_size = (onstack_size + info->align - 1) & ~(info->align - 1);
 
 
      if (size + info->length > REGISTER_SIZE * ARG_NOF (gdbarch))
      if (size + info->length > REGISTER_SIZE * ARG_NOF (gdbarch))
        {
        {
          info->onstack = 1;
          info->onstack = 1;
          info->u.offset = onstack_size;
          info->u.offset = onstack_size;
          onstack_size += info->length;
          onstack_size += info->length;
        }
        }
      else
      else
        {
        {
          info->onstack = 0;
          info->onstack = 0;
          info->u.regno = ARG_1ST (gdbarch) + size / REGISTER_SIZE;
          info->u.regno = ARG_1ST (gdbarch) + size / REGISTER_SIZE;
        }
        }
      size += info->length;
      size += info->length;
    }
    }
 
 
  /* Adjust the stack pointer and align it.  */
  /* Adjust the stack pointer and align it.  */
  sp = align_down (sp - onstack_size, SP_ALIGNMENT);
  sp = align_down (sp - onstack_size, SP_ALIGNMENT);
 
 
  /* Simulate MOVSP, if Windowed ABI.  */
  /* Simulate MOVSP, if Windowed ABI.  */
  if ((gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
  if ((gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
      && (sp != osp))
      && (sp != osp))
    {
    {
      read_memory (osp - 16, buf, 16);
      read_memory (osp - 16, buf, 16);
      write_memory (sp - 16, buf, 16);
      write_memory (sp - 16, buf, 16);
    }
    }
 
 
  /* Second Loop: Load arguments.  */
  /* Second Loop: Load arguments.  */
 
 
  if (struct_return)
  if (struct_return)
    {
    {
      store_unsigned_integer (buf, REGISTER_SIZE, struct_addr);
      store_unsigned_integer (buf, REGISTER_SIZE, struct_addr);
      regcache_cooked_write (regcache, ARG_1ST (gdbarch), buf);
      regcache_cooked_write (regcache, ARG_1ST (gdbarch), buf);
    }
    }
 
 
  for (i = 0; i < nargs; i++)
  for (i = 0; i < nargs; i++)
    {
    {
      struct argument_info *info = &arg_info[i];
      struct argument_info *info = &arg_info[i];
 
 
      if (info->onstack)
      if (info->onstack)
        {
        {
          int n = info->length;
          int n = info->length;
          CORE_ADDR offset = sp + info->u.offset;
          CORE_ADDR offset = sp + info->u.offset;
 
 
          /* Odd-sized structs are aligned to the lower side of a memory
          /* Odd-sized structs are aligned to the lower side of a memory
             word in big-endian mode and require a shift.  This only
             word in big-endian mode and require a shift.  This only
             applies for structures smaller than one word.  */
             applies for structures smaller than one word.  */
 
 
          if (n < REGISTER_SIZE
          if (n < REGISTER_SIZE
              && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
              && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
            offset += (REGISTER_SIZE - n);
            offset += (REGISTER_SIZE - n);
 
 
          write_memory (offset, info->contents, info->length);
          write_memory (offset, info->contents, info->length);
 
 
        }
        }
      else
      else
        {
        {
          int n = info->length;
          int n = info->length;
          const bfd_byte *cp = info->contents;
          const bfd_byte *cp = info->contents;
          int r = info->u.regno;
          int r = info->u.regno;
 
 
          /* Odd-sized structs are aligned to the lower side of registers in
          /* Odd-sized structs are aligned to the lower side of registers in
             big-endian mode and require a shift.  The odd-sized leftover will
             big-endian mode and require a shift.  The odd-sized leftover will
             be at the end.  Note that this is only true for structures smaller
             be at the end.  Note that this is only true for structures smaller
             than REGISTER_SIZE; for larger odd-sized structures the excess
             than REGISTER_SIZE; for larger odd-sized structures the excess
             will be left-aligned in the register on both endiannesses.  */
             will be left-aligned in the register on both endiannesses.  */
 
 
          if (n < REGISTER_SIZE
          if (n < REGISTER_SIZE
              && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
              && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
            {
            {
              ULONGEST v = extract_unsigned_integer (cp, REGISTER_SIZE);
              ULONGEST v = extract_unsigned_integer (cp, REGISTER_SIZE);
              v = v >> ((REGISTER_SIZE - n) * TARGET_CHAR_BIT);
              v = v >> ((REGISTER_SIZE - n) * TARGET_CHAR_BIT);
 
 
              store_unsigned_integer (buf, REGISTER_SIZE, v);
              store_unsigned_integer (buf, REGISTER_SIZE, v);
              regcache_cooked_write (regcache, r, buf);
              regcache_cooked_write (regcache, r, buf);
 
 
              cp += REGISTER_SIZE;
              cp += REGISTER_SIZE;
              n -= REGISTER_SIZE;
              n -= REGISTER_SIZE;
              r++;
              r++;
            }
            }
          else
          else
            while (n > 0)
            while (n > 0)
              {
              {
                regcache_cooked_write (regcache, r, cp);
                regcache_cooked_write (regcache, r, cp);
 
 
                cp += REGISTER_SIZE;
                cp += REGISTER_SIZE;
                n -= REGISTER_SIZE;
                n -= REGISTER_SIZE;
                r++;
                r++;
              }
              }
        }
        }
    }
    }
 
 
  /* Set the return address of dummy frame to the dummy address.
  /* Set the return address of dummy frame to the dummy address.
     The return address for the current function (in A0) is
     The return address for the current function (in A0) is
     saved in the dummy frame, so we can savely overwrite A0 here.  */
     saved in the dummy frame, so we can savely overwrite A0 here.  */
 
 
  if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
  if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
    {
    {
      ra = (bp_addr & 0x3fffffff) | 0x40000000;
      ra = (bp_addr & 0x3fffffff) | 0x40000000;
      regcache_raw_read (regcache, gdbarch_ps_regnum (gdbarch), buf);
      regcache_raw_read (regcache, gdbarch_ps_regnum (gdbarch), buf);
      ps = extract_unsigned_integer (buf, 4) & ~0x00030000;
      ps = extract_unsigned_integer (buf, 4) & ~0x00030000;
      regcache_cooked_write_unsigned
      regcache_cooked_write_unsigned
        (regcache, gdbarch_tdep (gdbarch)->a0_base + 4, ra);
        (regcache, gdbarch_tdep (gdbarch)->a0_base + 4, ra);
      regcache_cooked_write_unsigned (regcache,
      regcache_cooked_write_unsigned (regcache,
                                      gdbarch_ps_regnum (gdbarch),
                                      gdbarch_ps_regnum (gdbarch),
                                      ps | 0x00010000);
                                      ps | 0x00010000);
 
 
      /* All the registers have been saved.  After executing
      /* All the registers have been saved.  After executing
         dummy call, they all will be restored.  So it's safe
         dummy call, they all will be restored.  So it's safe
         to modify WINDOWSTART register to make it look like there
         to modify WINDOWSTART register to make it look like there
         is only one register window corresponding to WINDOWEBASE.  */
         is only one register window corresponding to WINDOWEBASE.  */
 
 
      regcache_raw_read (regcache, gdbarch_tdep (gdbarch)->wb_regnum, buf);
      regcache_raw_read (regcache, gdbarch_tdep (gdbarch)->wb_regnum, buf);
      regcache_cooked_write_unsigned (regcache,
      regcache_cooked_write_unsigned (regcache,
                                      gdbarch_tdep (gdbarch)->ws_regnum,
                                      gdbarch_tdep (gdbarch)->ws_regnum,
                                      1 << extract_unsigned_integer (buf, 4));
                                      1 << extract_unsigned_integer (buf, 4));
    }
    }
  else
  else
    {
    {
      /* Simulate CALL0: write RA into A0 register.  */
      /* Simulate CALL0: write RA into A0 register.  */
      regcache_cooked_write_unsigned
      regcache_cooked_write_unsigned
        (regcache, gdbarch_tdep (gdbarch)->a0_base, bp_addr);
        (regcache, gdbarch_tdep (gdbarch)->a0_base, bp_addr);
    }
    }
 
 
  /* Set new stack pointer and return it.  */
  /* Set new stack pointer and return it.  */
  regcache_cooked_write_unsigned (regcache,
  regcache_cooked_write_unsigned (regcache,
                                  gdbarch_tdep (gdbarch)->a0_base + 1, sp);
                                  gdbarch_tdep (gdbarch)->a0_base + 1, sp);
  /* Make dummy frame ID unique by adding a constant.  */
  /* Make dummy frame ID unique by adding a constant.  */
  return sp + SP_ALIGNMENT;
  return sp + SP_ALIGNMENT;
}
}
 
 
 
 
/* Return a breakpoint for the current location of PC.  We always use
/* Return a breakpoint for the current location of PC.  We always use
   the density version if we have density instructions (regardless of the
   the density version if we have density instructions (regardless of the
   current instruction at PC), and use regular instructions otherwise.  */
   current instruction at PC), and use regular instructions otherwise.  */
 
 
#define BIG_BREAKPOINT { 0x00, 0x04, 0x00 }
#define BIG_BREAKPOINT { 0x00, 0x04, 0x00 }
#define LITTLE_BREAKPOINT { 0x00, 0x40, 0x00 }
#define LITTLE_BREAKPOINT { 0x00, 0x40, 0x00 }
#define DENSITY_BIG_BREAKPOINT { 0xd2, 0x0f }
#define DENSITY_BIG_BREAKPOINT { 0xd2, 0x0f }
#define DENSITY_LITTLE_BREAKPOINT { 0x2d, 0xf0 }
#define DENSITY_LITTLE_BREAKPOINT { 0x2d, 0xf0 }
 
 
static const unsigned char *
static const unsigned char *
xtensa_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
xtensa_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
                           int *lenptr)
                           int *lenptr)
{
{
  static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
  static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
  static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
  static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
  static unsigned char density_big_breakpoint[] = DENSITY_BIG_BREAKPOINT;
  static unsigned char density_big_breakpoint[] = DENSITY_BIG_BREAKPOINT;
  static unsigned char density_little_breakpoint[] = DENSITY_LITTLE_BREAKPOINT;
  static unsigned char density_little_breakpoint[] = DENSITY_LITTLE_BREAKPOINT;
 
 
  DEBUGTRACE ("xtensa_breakpoint_from_pc (pc = 0x%08x)\n", (int) *pcptr);
  DEBUGTRACE ("xtensa_breakpoint_from_pc (pc = 0x%08x)\n", (int) *pcptr);
 
 
  if (gdbarch_tdep (gdbarch)->isa_use_density_instructions)
  if (gdbarch_tdep (gdbarch)->isa_use_density_instructions)
    {
    {
      if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
      if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
        {
        {
          *lenptr = sizeof (density_big_breakpoint);
          *lenptr = sizeof (density_big_breakpoint);
          return density_big_breakpoint;
          return density_big_breakpoint;
        }
        }
      else
      else
        {
        {
          *lenptr = sizeof (density_little_breakpoint);
          *lenptr = sizeof (density_little_breakpoint);
          return density_little_breakpoint;
          return density_little_breakpoint;
        }
        }
    }
    }
  else
  else
    {
    {
      if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
      if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
        {
        {
          *lenptr = sizeof (big_breakpoint);
          *lenptr = sizeof (big_breakpoint);
          return big_breakpoint;
          return big_breakpoint;
        }
        }
      else
      else
        {
        {
          *lenptr = sizeof (little_breakpoint);
          *lenptr = sizeof (little_breakpoint);
          return little_breakpoint;
          return little_breakpoint;
        }
        }
    }
    }
}
}
 
 
/* Call0 ABI support routines.  */
/* Call0 ABI support routines.  */
 
 
/* Call0 opcode class.  Opcodes are preclassified according to what they
/* Call0 opcode class.  Opcodes are preclassified according to what they
   mean for Call0 prologue analysis, and their number of significant operands.
   mean for Call0 prologue analysis, and their number of significant operands.
   The purpose of this is to simplify prologue analysis by separating
   The purpose of this is to simplify prologue analysis by separating
   instruction decoding (libisa) from the semantics of prologue analysis.  */
   instruction decoding (libisa) from the semantics of prologue analysis.  */
 
 
typedef enum {
typedef enum {
  c0opc_illegal,       /* Unknown to libisa (invalid) or 'ill' opcode.  */
  c0opc_illegal,       /* Unknown to libisa (invalid) or 'ill' opcode.  */
  c0opc_uninteresting, /* Not interesting for Call0 prologue analysis.  */
  c0opc_uninteresting, /* Not interesting for Call0 prologue analysis.  */
  c0opc_flow,          /* Flow control insn.  */
  c0opc_flow,          /* Flow control insn.  */
  c0opc_entry,         /* ENTRY indicates non-Call0 prologue.  */
  c0opc_entry,         /* ENTRY indicates non-Call0 prologue.  */
  c0opc_break,         /* Debugger software breakpoints.  */
  c0opc_break,         /* Debugger software breakpoints.  */
  c0opc_add,           /* Adding two registers.  */
  c0opc_add,           /* Adding two registers.  */
  c0opc_addi,          /* Adding a register and an immediate.  */
  c0opc_addi,          /* Adding a register and an immediate.  */
  c0opc_sub,           /* Subtracting a register from a register.  */
  c0opc_sub,           /* Subtracting a register from a register.  */
  c0opc_mov,           /* Moving a register to a register.  */
  c0opc_mov,           /* Moving a register to a register.  */
  c0opc_movi,          /* Moving an immediate to a register.  */
  c0opc_movi,          /* Moving an immediate to a register.  */
  c0opc_l32r,          /* Loading a literal.  */
  c0opc_l32r,          /* Loading a literal.  */
  c0opc_s32i,          /* Storing word at fixed offset from a base register.  */
  c0opc_s32i,          /* Storing word at fixed offset from a base register.  */
  c0opc_NrOf           /* Number of opcode classifications.  */
  c0opc_NrOf           /* Number of opcode classifications.  */
} xtensa_insn_kind;
} xtensa_insn_kind;
 
 
 
 
/* Classify an opcode based on what it means for Call0 prologue analysis.  */
/* Classify an opcode based on what it means for Call0 prologue analysis.  */
 
 
static xtensa_insn_kind
static xtensa_insn_kind
call0_classify_opcode (xtensa_isa isa, xtensa_opcode opc)
call0_classify_opcode (xtensa_isa isa, xtensa_opcode opc)
{
{
  const char *opcname;
  const char *opcname;
  xtensa_insn_kind opclass = c0opc_uninteresting;
  xtensa_insn_kind opclass = c0opc_uninteresting;
 
 
  DEBUGTRACE ("call0_classify_opcode (..., opc = %d)\n", opc);
  DEBUGTRACE ("call0_classify_opcode (..., opc = %d)\n", opc);
 
 
  /* Get opcode name and handle special classifications.  */
  /* Get opcode name and handle special classifications.  */
 
 
  opcname = xtensa_opcode_name (isa, opc);
  opcname = xtensa_opcode_name (isa, opc);
 
 
  if (opcname == NULL
  if (opcname == NULL
      || strcasecmp (opcname, "ill") == 0
      || strcasecmp (opcname, "ill") == 0
      || strcasecmp (opcname, "ill.n") == 0)
      || strcasecmp (opcname, "ill.n") == 0)
    opclass = c0opc_illegal;
    opclass = c0opc_illegal;
  else if (strcasecmp (opcname, "break") == 0
  else if (strcasecmp (opcname, "break") == 0
           || strcasecmp (opcname, "break.n") == 0)
           || strcasecmp (opcname, "break.n") == 0)
     opclass = c0opc_break;
     opclass = c0opc_break;
  else if (strcasecmp (opcname, "entry") == 0)
  else if (strcasecmp (opcname, "entry") == 0)
    opclass = c0opc_entry;
    opclass = c0opc_entry;
  else if (xtensa_opcode_is_branch (isa, opc) > 0
  else if (xtensa_opcode_is_branch (isa, opc) > 0
           || xtensa_opcode_is_jump   (isa, opc) > 0
           || xtensa_opcode_is_jump   (isa, opc) > 0
           || xtensa_opcode_is_loop   (isa, opc) > 0
           || xtensa_opcode_is_loop   (isa, opc) > 0
           || xtensa_opcode_is_call   (isa, opc) > 0
           || xtensa_opcode_is_call   (isa, opc) > 0
           || strcasecmp (opcname, "simcall") == 0
           || strcasecmp (opcname, "simcall") == 0
           || strcasecmp (opcname, "syscall") == 0)
           || strcasecmp (opcname, "syscall") == 0)
    opclass = c0opc_flow;
    opclass = c0opc_flow;
 
 
  /* Also, classify specific opcodes that need to be tracked.  */
  /* Also, classify specific opcodes that need to be tracked.  */
  else if (strcasecmp (opcname, "add") == 0
  else if (strcasecmp (opcname, "add") == 0
           || strcasecmp (opcname, "add.n") == 0)
           || strcasecmp (opcname, "add.n") == 0)
    opclass = c0opc_add;
    opclass = c0opc_add;
  else if (strcasecmp (opcname, "addi") == 0
  else if (strcasecmp (opcname, "addi") == 0
           || strcasecmp (opcname, "addi.n") == 0
           || strcasecmp (opcname, "addi.n") == 0
           || strcasecmp (opcname, "addmi") == 0)
           || strcasecmp (opcname, "addmi") == 0)
    opclass = c0opc_addi;
    opclass = c0opc_addi;
  else if (strcasecmp (opcname, "sub") == 0)
  else if (strcasecmp (opcname, "sub") == 0)
    opclass = c0opc_sub;
    opclass = c0opc_sub;
  else if (strcasecmp (opcname, "mov.n") == 0
  else if (strcasecmp (opcname, "mov.n") == 0
           || strcasecmp (opcname, "or") == 0) /* Could be 'mov' asm macro.  */
           || strcasecmp (opcname, "or") == 0) /* Could be 'mov' asm macro.  */
    opclass = c0opc_mov;
    opclass = c0opc_mov;
  else if (strcasecmp (opcname, "movi") == 0
  else if (strcasecmp (opcname, "movi") == 0
           || strcasecmp (opcname, "movi.n") == 0)
           || strcasecmp (opcname, "movi.n") == 0)
    opclass = c0opc_movi;
    opclass = c0opc_movi;
  else if (strcasecmp (opcname, "l32r") == 0)
  else if (strcasecmp (opcname, "l32r") == 0)
    opclass = c0opc_l32r;
    opclass = c0opc_l32r;
  else if (strcasecmp (opcname, "s32i") == 0
  else if (strcasecmp (opcname, "s32i") == 0
           || strcasecmp (opcname, "s32i.n") == 0)
           || strcasecmp (opcname, "s32i.n") == 0)
    opclass = c0opc_s32i;
    opclass = c0opc_s32i;
 
 
  return opclass;
  return opclass;
}
}
 
 
/* Tracks register movement/mutation for a given operation, which may
/* Tracks register movement/mutation for a given operation, which may
   be within a bundle.  Updates the destination register tracking info
   be within a bundle.  Updates the destination register tracking info
   accordingly.  The pc is needed only for pc-relative load instructions
   accordingly.  The pc is needed only for pc-relative load instructions
   (eg. l32r).  The SP register number is needed to identify stores to
   (eg. l32r).  The SP register number is needed to identify stores to
   the stack frame.  */
   the stack frame.  */
 
 
static void
static void
call0_track_op (xtensa_c0reg_t dst[], xtensa_c0reg_t src[],
call0_track_op (xtensa_c0reg_t dst[], xtensa_c0reg_t src[],
                xtensa_insn_kind opclass, int nods, unsigned odv[],
                xtensa_insn_kind opclass, int nods, unsigned odv[],
                CORE_ADDR pc, int spreg)
                CORE_ADDR pc, int spreg)
{
{
  unsigned litbase, litaddr, litval;
  unsigned litbase, litaddr, litval;
 
 
  switch (opclass)
  switch (opclass)
    {
    {
    case c0opc_addi:
    case c0opc_addi:
      /* 3 operands: dst, src, imm.  */
      /* 3 operands: dst, src, imm.  */
      gdb_assert (nods == 3);
      gdb_assert (nods == 3);
      dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
      dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
      dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + odv[2];
      dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + odv[2];
      break;
      break;
    case c0opc_add:
    case c0opc_add:
      /* 3 operands: dst, src1, src2.  */
      /* 3 operands: dst, src1, src2.  */
      gdb_assert (nods == 3);
      gdb_assert (nods == 3);
      if      (src[odv[1]].fr_reg == C0_CONST)
      if      (src[odv[1]].fr_reg == C0_CONST)
        {
        {
          dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
          dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
          dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs + src[odv[1]].fr_ofs;
          dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs + src[odv[1]].fr_ofs;
        }
        }
      else if (src[odv[2]].fr_reg == C0_CONST)
      else if (src[odv[2]].fr_reg == C0_CONST)
        {
        {
          dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
          dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
          dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + src[odv[2]].fr_ofs;
          dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + src[odv[2]].fr_ofs;
        }
        }
      else dst[odv[0]].fr_reg = C0_INEXP;
      else dst[odv[0]].fr_reg = C0_INEXP;
      break;
      break;
    case c0opc_sub:
    case c0opc_sub:
      /* 3 operands: dst, src1, src2.  */
      /* 3 operands: dst, src1, src2.  */
      gdb_assert (nods == 3);
      gdb_assert (nods == 3);
      if      (src[odv[2]].fr_reg == C0_CONST)
      if      (src[odv[2]].fr_reg == C0_CONST)
        {
        {
          dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
          dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
          dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs - src[odv[2]].fr_ofs;
          dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs - src[odv[2]].fr_ofs;
        }
        }
      else dst[odv[0]].fr_reg = C0_INEXP;
      else dst[odv[0]].fr_reg = C0_INEXP;
      break;
      break;
    case c0opc_mov:
    case c0opc_mov:
      /* 2 operands: dst, src [, src].  */
      /* 2 operands: dst, src [, src].  */
      gdb_assert (nods == 2);
      gdb_assert (nods == 2);
      dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
      dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
      dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs;
      dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs;
      break;
      break;
    case c0opc_movi:
    case c0opc_movi:
      /* 2 operands: dst, imm.  */
      /* 2 operands: dst, imm.  */
      gdb_assert (nods == 2);
      gdb_assert (nods == 2);
      dst[odv[0]].fr_reg = C0_CONST;
      dst[odv[0]].fr_reg = C0_CONST;
      dst[odv[0]].fr_ofs = odv[1];
      dst[odv[0]].fr_ofs = odv[1];
      break;
      break;
    case c0opc_l32r:
    case c0opc_l32r:
      /* 2 operands: dst, literal offset.  */
      /* 2 operands: dst, literal offset.  */
      gdb_assert (nods == 2);
      gdb_assert (nods == 2);
      /* litbase = xtensa_get_litbase (pc); can be also used.  */
      /* litbase = xtensa_get_litbase (pc); can be also used.  */
      litbase = (gdbarch_tdep (current_gdbarch)->litbase_regnum == -1)
      litbase = (gdbarch_tdep (current_gdbarch)->litbase_regnum == -1)
        ? 0 : xtensa_read_register
        ? 0 : xtensa_read_register
                (gdbarch_tdep (current_gdbarch)->litbase_regnum);
                (gdbarch_tdep (current_gdbarch)->litbase_regnum);
      litaddr = litbase & 1
      litaddr = litbase & 1
                  ? (litbase & ~1) + (signed)odv[1]
                  ? (litbase & ~1) + (signed)odv[1]
                  : (pc + 3  + (signed)odv[1]) & ~3;
                  : (pc + 3  + (signed)odv[1]) & ~3;
      litval = read_memory_integer(litaddr, 4);
      litval = read_memory_integer(litaddr, 4);
      dst[odv[0]].fr_reg = C0_CONST;
      dst[odv[0]].fr_reg = C0_CONST;
      dst[odv[0]].fr_ofs = litval;
      dst[odv[0]].fr_ofs = litval;
      break;
      break;
    case c0opc_s32i:
    case c0opc_s32i:
      /* 3 operands: value, base, offset.  */
      /* 3 operands: value, base, offset.  */
      gdb_assert (nods == 3 && spreg >= 0 && spreg < C0_NREGS);
      gdb_assert (nods == 3 && spreg >= 0 && spreg < C0_NREGS);
      if (src[odv[1]].fr_reg == spreg        /* Store to stack frame.  */
      if (src[odv[1]].fr_reg == spreg        /* Store to stack frame.  */
          && (src[odv[1]].fr_ofs & 3) == 0   /* Alignment preserved.  */
          && (src[odv[1]].fr_ofs & 3) == 0   /* Alignment preserved.  */
          &&  src[odv[0]].fr_reg >= 0          /* Value is from a register.  */
          &&  src[odv[0]].fr_reg >= 0          /* Value is from a register.  */
          &&  src[odv[0]].fr_ofs == 0          /* Value hasn't been modified.  */
          &&  src[odv[0]].fr_ofs == 0          /* Value hasn't been modified.  */
          &&  src[src[odv[0]].fr_reg].to_stk == C0_NOSTK) /* First time.  */
          &&  src[src[odv[0]].fr_reg].to_stk == C0_NOSTK) /* First time.  */
        {
        {
          /* ISA encoding guarantees alignment.  But, check it anyway.  */
          /* ISA encoding guarantees alignment.  But, check it anyway.  */
          gdb_assert ((odv[2] & 3) == 0);
          gdb_assert ((odv[2] & 3) == 0);
          dst[src[odv[0]].fr_reg].to_stk = src[odv[1]].fr_ofs + odv[2];
          dst[src[odv[0]].fr_reg].to_stk = src[odv[1]].fr_ofs + odv[2];
        }
        }
      break;
      break;
    default:
    default:
        gdb_assert (0);
        gdb_assert (0);
    }
    }
}
}
 
 
/* Analyze prologue of the function at start address to determine if it uses
/* Analyze prologue of the function at start address to determine if it uses
   the Call0 ABI, and if so track register moves and linear modifications
   the Call0 ABI, and if so track register moves and linear modifications
   in the prologue up to the PC or just beyond the prologue, whichever is first.
   in the prologue up to the PC or just beyond the prologue, whichever is first.
   An 'entry' instruction indicates non-Call0 ABI and the end of the prologue.
   An 'entry' instruction indicates non-Call0 ABI and the end of the prologue.
   The prologue may overlap non-prologue instructions but is guaranteed to end
   The prologue may overlap non-prologue instructions but is guaranteed to end
   by the first flow-control instruction (jump, branch, call or return).
   by the first flow-control instruction (jump, branch, call or return).
   Since an optimized function may move information around and change the
   Since an optimized function may move information around and change the
   stack frame arbitrarily during the prologue, the information is guaranteed
   stack frame arbitrarily during the prologue, the information is guaranteed
   valid only at the point in the function indicated by the PC.
   valid only at the point in the function indicated by the PC.
   May be used to skip the prologue or identify the ABI, w/o tracking.
   May be used to skip the prologue or identify the ABI, w/o tracking.
 
 
   Returns:   Address of first instruction after prologue, or PC (whichever
   Returns:   Address of first instruction after prologue, or PC (whichever
              is first), or 0, if decoding failed (in libisa).
              is first), or 0, if decoding failed (in libisa).
   Input args:
   Input args:
      start   Start address of function/prologue.
      start   Start address of function/prologue.
      pc      Program counter to stop at.  Use 0 to continue to end of prologue.
      pc      Program counter to stop at.  Use 0 to continue to end of prologue.
              If 0, avoids infinite run-on in corrupt code memory by bounding
              If 0, avoids infinite run-on in corrupt code memory by bounding
              the scan to the end of the function if that can be determined.
              the scan to the end of the function if that can be determined.
      nregs   Number of general registers to track (size of rt[] array).
      nregs   Number of general registers to track (size of rt[] array).
   InOut args:
   InOut args:
      rt[]    Array[nregs] of xtensa_c0reg structures for register tracking info.
      rt[]    Array[nregs] of xtensa_c0reg structures for register tracking info.
              If NULL, registers are not tracked.
              If NULL, registers are not tracked.
   Output args:
   Output args:
      call0   If != NULL, *call0 is set non-zero if Call0 ABI used, else 0
      call0   If != NULL, *call0 is set non-zero if Call0 ABI used, else 0
              (more accurately, non-zero until 'entry' insn is encountered).
              (more accurately, non-zero until 'entry' insn is encountered).
 
 
      Note that these may produce useful results even if decoding fails
      Note that these may produce useful results even if decoding fails
      because they begin with default assumptions that analysis may change.  */
      because they begin with default assumptions that analysis may change.  */
 
 
static CORE_ADDR
static CORE_ADDR
call0_analyze_prologue (CORE_ADDR start, CORE_ADDR pc,
call0_analyze_prologue (CORE_ADDR start, CORE_ADDR pc,
                        int nregs, xtensa_c0reg_t rt[], int *call0)
                        int nregs, xtensa_c0reg_t rt[], int *call0)
{
{
  CORE_ADDR ia;             /* Current insn address in prologue.  */
  CORE_ADDR ia;             /* Current insn address in prologue.  */
  CORE_ADDR ba = 0;          /* Current address at base of insn buffer.  */
  CORE_ADDR ba = 0;          /* Current address at base of insn buffer.  */
  CORE_ADDR bt;             /* Current address at top+1 of insn buffer.  */
  CORE_ADDR bt;             /* Current address at top+1 of insn buffer.  */
  #define BSZ 32            /* Instruction buffer size.  */
  #define BSZ 32            /* Instruction buffer size.  */
  char ibuf[BSZ];           /* Instruction buffer for decoding prologue.  */
  char ibuf[BSZ];           /* Instruction buffer for decoding prologue.  */
  xtensa_isa isa;           /* libisa ISA handle.  */
  xtensa_isa isa;           /* libisa ISA handle.  */
  xtensa_insnbuf ins, slot; /* libisa handle to decoded insn, slot.  */
  xtensa_insnbuf ins, slot; /* libisa handle to decoded insn, slot.  */
  xtensa_format ifmt;       /* libisa instruction format.  */
  xtensa_format ifmt;       /* libisa instruction format.  */
  int ilen, islots, is;     /* Instruction length, nbr slots, current slot.  */
  int ilen, islots, is;     /* Instruction length, nbr slots, current slot.  */
  xtensa_opcode opc;        /* Opcode in current slot.  */
  xtensa_opcode opc;        /* Opcode in current slot.  */
  xtensa_insn_kind opclass; /* Opcode class for Call0 prologue analysis.  */
  xtensa_insn_kind opclass; /* Opcode class for Call0 prologue analysis.  */
  int nods;                 /* Opcode number of operands.  */
  int nods;                 /* Opcode number of operands.  */
  unsigned odv[C0_MAXOPDS]; /* Operand values in order provided by libisa.  */
  unsigned odv[C0_MAXOPDS]; /* Operand values in order provided by libisa.  */
  xtensa_c0reg_t *rtmp;     /* Register tracking info snapshot.  */
  xtensa_c0reg_t *rtmp;     /* Register tracking info snapshot.  */
  int j;                    /* General loop counter.  */
  int j;                    /* General loop counter.  */
  int fail = 0;              /* Set non-zero and exit, if decoding fails.  */
  int fail = 0;              /* Set non-zero and exit, if decoding fails.  */
  CORE_ADDR body_pc;        /* The PC for the first non-prologue insn.  */
  CORE_ADDR body_pc;        /* The PC for the first non-prologue insn.  */
  CORE_ADDR end_pc;         /* The PC for the lust function insn.  */
  CORE_ADDR end_pc;         /* The PC for the lust function insn.  */
 
 
  struct symtab_and_line prologue_sal;
  struct symtab_and_line prologue_sal;
 
 
  DEBUGTRACE ("call0_analyze_prologue (start = 0x%08x, pc = 0x%08x, ...)\n",
  DEBUGTRACE ("call0_analyze_prologue (start = 0x%08x, pc = 0x%08x, ...)\n",
              (int)start, (int)pc);
              (int)start, (int)pc);
 
 
  /* Try to limit the scan to the end of the function if a non-zero pc
  /* Try to limit the scan to the end of the function if a non-zero pc
     arg was not supplied to avoid probing beyond the end of valid memory.
     arg was not supplied to avoid probing beyond the end of valid memory.
     If memory is full of garbage that classifies as c0opc_uninteresting.
     If memory is full of garbage that classifies as c0opc_uninteresting.
     If this fails (eg. if no symbols) pc ends up 0 as it was.
     If this fails (eg. if no symbols) pc ends up 0 as it was.
     Intialize the Call0 frame and register tracking info.
     Intialize the Call0 frame and register tracking info.
     Assume it's Call0 until an 'entry' instruction is encountered.
     Assume it's Call0 until an 'entry' instruction is encountered.
     Assume we may be in the prologue until we hit a flow control instr.  */
     Assume we may be in the prologue until we hit a flow control instr.  */
 
 
  rtmp = NULL;
  rtmp = NULL;
  body_pc = INT_MAX;
  body_pc = INT_MAX;
  end_pc = 0;
  end_pc = 0;
 
 
  /* Find out, if we have an information about the prologue from DWARF.  */
  /* Find out, if we have an information about the prologue from DWARF.  */
  prologue_sal = find_pc_line (start, 0);
  prologue_sal = find_pc_line (start, 0);
  if (prologue_sal.line != 0) /* Found debug info.  */
  if (prologue_sal.line != 0) /* Found debug info.  */
    body_pc = prologue_sal.end;
    body_pc = prologue_sal.end;
 
 
  /* If we are going to analyze the prologue in general without knowing about
  /* If we are going to analyze the prologue in general without knowing about
     the current PC, make the best assumtion for the end of the prologue.  */
     the current PC, make the best assumtion for the end of the prologue.  */
  if (pc == 0)
  if (pc == 0)
    {
    {
      find_pc_partial_function (start, 0, NULL, &end_pc);
      find_pc_partial_function (start, 0, NULL, &end_pc);
      body_pc = min (end_pc, body_pc);
      body_pc = min (end_pc, body_pc);
    }
    }
  else
  else
    body_pc = min (pc, body_pc);
    body_pc = min (pc, body_pc);
 
 
  if (call0 != NULL)
  if (call0 != NULL)
      *call0 = 1;
      *call0 = 1;
 
 
  if (rt != NULL)
  if (rt != NULL)
    {
    {
      rtmp = (xtensa_c0reg_t*) alloca(nregs * sizeof(xtensa_c0reg_t));
      rtmp = (xtensa_c0reg_t*) alloca(nregs * sizeof(xtensa_c0reg_t));
      /* rt is already initialized in xtensa_alloc_frame_cache().  */
      /* rt is already initialized in xtensa_alloc_frame_cache().  */
    }
    }
  else nregs = 0;
  else nregs = 0;
 
 
  if (!xtensa_default_isa)
  if (!xtensa_default_isa)
    xtensa_default_isa = xtensa_isa_init (0, 0);
    xtensa_default_isa = xtensa_isa_init (0, 0);
  isa = xtensa_default_isa;
  isa = xtensa_default_isa;
  gdb_assert (BSZ >= xtensa_isa_maxlength (isa));
  gdb_assert (BSZ >= xtensa_isa_maxlength (isa));
  ins = xtensa_insnbuf_alloc (isa);
  ins = xtensa_insnbuf_alloc (isa);
  slot = xtensa_insnbuf_alloc (isa);
  slot = xtensa_insnbuf_alloc (isa);
 
 
  for (ia = start, bt = ia; ia < body_pc ; ia += ilen)
  for (ia = start, bt = ia; ia < body_pc ; ia += ilen)
    {
    {
      /* (Re)fill instruction buffer from memory if necessary, but do not
      /* (Re)fill instruction buffer from memory if necessary, but do not
         read memory beyond PC to be sure we stay within text section
         read memory beyond PC to be sure we stay within text section
         (this protection only works if a non-zero pc is supplied).  */
         (this protection only works if a non-zero pc is supplied).  */
 
 
      if (ia + xtensa_isa_maxlength (isa) > bt)
      if (ia + xtensa_isa_maxlength (isa) > bt)
        {
        {
          ba = ia;
          ba = ia;
          bt = (ba + BSZ) < body_pc ? ba + BSZ : body_pc;
          bt = (ba + BSZ) < body_pc ? ba + BSZ : body_pc;
          read_memory (ba, ibuf, bt - ba);
          read_memory (ba, ibuf, bt - ba);
        }
        }
 
 
      /* Decode format information.  */
      /* Decode format information.  */
 
 
      xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
      xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
      ifmt = xtensa_format_decode (isa, ins);
      ifmt = xtensa_format_decode (isa, ins);
      if (ifmt == XTENSA_UNDEFINED)
      if (ifmt == XTENSA_UNDEFINED)
        {
        {
          fail = 1;
          fail = 1;
          goto done;
          goto done;
        }
        }
      ilen = xtensa_format_length (isa, ifmt);
      ilen = xtensa_format_length (isa, ifmt);
      if (ilen == XTENSA_UNDEFINED)
      if (ilen == XTENSA_UNDEFINED)
        {
        {
          fail = 1;
          fail = 1;
          goto done;
          goto done;
        }
        }
      islots = xtensa_format_num_slots (isa, ifmt);
      islots = xtensa_format_num_slots (isa, ifmt);
      if (islots == XTENSA_UNDEFINED)
      if (islots == XTENSA_UNDEFINED)
        {
        {
          fail = 1;
          fail = 1;
          goto done;
          goto done;
        }
        }
 
 
      /* Analyze a bundle or a single instruction, using a snapshot of
      /* Analyze a bundle or a single instruction, using a snapshot of
         the register tracking info as input for the entire bundle so that
         the register tracking info as input for the entire bundle so that
         register changes do not take effect within this bundle.  */
         register changes do not take effect within this bundle.  */
 
 
      for (j = 0; j < nregs; ++j)
      for (j = 0; j < nregs; ++j)
        rtmp[j] = rt[j];
        rtmp[j] = rt[j];
 
 
      for (is = 0; is < islots; ++is)
      for (is = 0; is < islots; ++is)
        {
        {
          /* Decode a slot and classify the opcode.  */
          /* Decode a slot and classify the opcode.  */
 
 
          fail = xtensa_format_get_slot (isa, ifmt, is, ins, slot);
          fail = xtensa_format_get_slot (isa, ifmt, is, ins, slot);
          if (fail)
          if (fail)
            goto done;
            goto done;
 
 
          opc = xtensa_opcode_decode (isa, ifmt, is, slot);
          opc = xtensa_opcode_decode (isa, ifmt, is, slot);
          DEBUGVERB ("[call0_analyze_prologue] instr addr = 0x%08x, opc = %d\n",
          DEBUGVERB ("[call0_analyze_prologue] instr addr = 0x%08x, opc = %d\n",
                     (unsigned)ia, opc);
                     (unsigned)ia, opc);
          if (opc == XTENSA_UNDEFINED)
          if (opc == XTENSA_UNDEFINED)
            opclass = c0opc_illegal;
            opclass = c0opc_illegal;
          else
          else
            opclass = call0_classify_opcode (isa, opc);
            opclass = call0_classify_opcode (isa, opc);
 
 
          /* Decide whether to track this opcode, ignore it, or bail out.  */
          /* Decide whether to track this opcode, ignore it, or bail out.  */
 
 
          switch (opclass)
          switch (opclass)
            {
            {
            case c0opc_illegal:
            case c0opc_illegal:
            case c0opc_break:
            case c0opc_break:
              fail = 1;
              fail = 1;
              goto done;
              goto done;
 
 
            case c0opc_uninteresting:
            case c0opc_uninteresting:
              continue;
              continue;
 
 
            case c0opc_flow:
            case c0opc_flow:
              goto done;
              goto done;
 
 
            case c0opc_entry:
            case c0opc_entry:
              if (call0 != NULL)
              if (call0 != NULL)
                *call0 = 0;
                *call0 = 0;
              ia += ilen;               /* Skip over 'entry' insn.  */
              ia += ilen;               /* Skip over 'entry' insn.  */
              goto done;
              goto done;
 
 
            default:
            default:
              if (call0 != NULL)
              if (call0 != NULL)
                *call0 = 1;
                *call0 = 1;
            }
            }
 
 
          /* Only expected opcodes should get this far.  */
          /* Only expected opcodes should get this far.  */
          if (rt == NULL)
          if (rt == NULL)
            continue;
            continue;
 
 
          /* Extract and decode the operands.  */
          /* Extract and decode the operands.  */
          nods = xtensa_opcode_num_operands (isa, opc);
          nods = xtensa_opcode_num_operands (isa, opc);
          if (nods == XTENSA_UNDEFINED)
          if (nods == XTENSA_UNDEFINED)
            {
            {
              fail = 1;
              fail = 1;
              goto done;
              goto done;
            }
            }
 
 
          for (j = 0; j < nods && j < C0_MAXOPDS; ++j)
          for (j = 0; j < nods && j < C0_MAXOPDS; ++j)
            {
            {
              fail = xtensa_operand_get_field (isa, opc, j, ifmt,
              fail = xtensa_operand_get_field (isa, opc, j, ifmt,
                                               is, slot, &odv[j]);
                                               is, slot, &odv[j]);
              if (fail)
              if (fail)
                goto done;
                goto done;
 
 
              fail = xtensa_operand_decode (isa, opc, j, &odv[j]);
              fail = xtensa_operand_decode (isa, opc, j, &odv[j]);
              if (fail)
              if (fail)
                goto done;
                goto done;
            }
            }
 
 
          /* Check operands to verify use of 'mov' assembler macro.  */
          /* Check operands to verify use of 'mov' assembler macro.  */
          if (opclass == c0opc_mov && nods == 3)
          if (opclass == c0opc_mov && nods == 3)
            {
            {
              if (odv[2] == odv[1])
              if (odv[2] == odv[1])
                nods = 2;
                nods = 2;
              else
              else
                {
                {
                  opclass = c0opc_uninteresting;
                  opclass = c0opc_uninteresting;
                  continue;
                  continue;
                }
                }
            }
            }
 
 
          /* Track register movement and modification for this operation.  */
          /* Track register movement and modification for this operation.  */
          call0_track_op (rt, rtmp, opclass, nods, odv, ia, 1);
          call0_track_op (rt, rtmp, opclass, nods, odv, ia, 1);
        }
        }
    }
    }
done:
done:
  DEBUGVERB ("[call0_analyze_prologue] stopped at instr addr 0x%08x, %s\n",
  DEBUGVERB ("[call0_analyze_prologue] stopped at instr addr 0x%08x, %s\n",
             (unsigned)ia, fail ? "failed" : "succeeded");
             (unsigned)ia, fail ? "failed" : "succeeded");
  xtensa_insnbuf_free(isa, slot);
  xtensa_insnbuf_free(isa, slot);
  xtensa_insnbuf_free(isa, ins);
  xtensa_insnbuf_free(isa, ins);
  return fail ? 0 : ia;
  return fail ? 0 : ia;
}
}
 
 
/* Initialize frame cache for the current frame.  The "next_frame" is the next
/* Initialize frame cache for the current frame.  The "next_frame" is the next
   one relative to current frame.  "cache" is the pointer to the data structure
   one relative to current frame.  "cache" is the pointer to the data structure
   we have to initialize.  "pc" is curretnt PC.  */
   we have to initialize.  "pc" is curretnt PC.  */
 
 
static void
static void
call0_frame_cache (struct frame_info *next_frame,
call0_frame_cache (struct frame_info *next_frame,
                   xtensa_frame_cache_t *cache, CORE_ADDR pc)
                   xtensa_frame_cache_t *cache, CORE_ADDR pc)
{
{
  struct gdbarch *gdbarch = get_frame_arch (next_frame);
  struct gdbarch *gdbarch = get_frame_arch (next_frame);
  CORE_ADDR start_pc;           /* The beginning of the function.  */
  CORE_ADDR start_pc;           /* The beginning of the function.  */
  CORE_ADDR body_pc=UINT_MAX;   /* PC, where prologue analysis stopped.  */
  CORE_ADDR body_pc=UINT_MAX;   /* PC, where prologue analysis stopped.  */
  CORE_ADDR sp, fp, ra;
  CORE_ADDR sp, fp, ra;
  int fp_regnum, c0_hasfp, c0_frmsz, prev_sp, to_stk;
  int fp_regnum, c0_hasfp, c0_frmsz, prev_sp, to_stk;
 
 
  /* Find the beginning of the prologue of the function containing the PC
  /* Find the beginning of the prologue of the function containing the PC
     and analyze it up to the PC or the end of the prologue.  */
     and analyze it up to the PC or the end of the prologue.  */
 
 
  if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
  if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
    {
    {
      body_pc = call0_analyze_prologue (start_pc, pc, C0_NREGS,
      body_pc = call0_analyze_prologue (start_pc, pc, C0_NREGS,
                                        &cache->c0.c0_rt[0],
                                        &cache->c0.c0_rt[0],
                                        &cache->call0);
                                        &cache->call0);
    }
    }
 
 
  sp = frame_unwind_register_unsigned
  sp = frame_unwind_register_unsigned
         (next_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
         (next_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
  fp = sp; /* Assume FP == SP until proven otherwise.  */
  fp = sp; /* Assume FP == SP until proven otherwise.  */
 
 
  /* Get the frame information and FP (if used) at the current PC.
  /* Get the frame information and FP (if used) at the current PC.
     If PC is in the prologue, the prologue analysis is more reliable
     If PC is in the prologue, the prologue analysis is more reliable
     than DWARF info.  We don't not know for sure if PC is in the prologue,
     than DWARF info.  We don't not know for sure if PC is in the prologue,
     but we know no calls have yet taken place, so we can almost
     but we know no calls have yet taken place, so we can almost
     certainly rely on the prologue analysis.  */
     certainly rely on the prologue analysis.  */
 
 
  if (body_pc <= pc)
  if (body_pc <= pc)
    {
    {
      /* Prologue analysis was successful up to the PC.
      /* Prologue analysis was successful up to the PC.
         It includes the cases when PC == START_PC.  */
         It includes the cases when PC == START_PC.  */
      c0_hasfp = cache->c0.c0_rt[C0_FP].fr_reg == C0_SP;
      c0_hasfp = cache->c0.c0_rt[C0_FP].fr_reg == C0_SP;
      /* c0_hasfp == true means there is a frame pointer because
      /* c0_hasfp == true means there is a frame pointer because
         we analyzed the prologue and found that cache->c0.c0_rt[C0_FP]
         we analyzed the prologue and found that cache->c0.c0_rt[C0_FP]
         was derived from SP.  Otherwise, it would be C0_FP.  */
         was derived from SP.  Otherwise, it would be C0_FP.  */
      fp_regnum = c0_hasfp ? C0_FP : C0_SP;
      fp_regnum = c0_hasfp ? C0_FP : C0_SP;
      c0_frmsz = - cache->c0.c0_rt[fp_regnum].fr_ofs;
      c0_frmsz = - cache->c0.c0_rt[fp_regnum].fr_ofs;
      fp_regnum += gdbarch_tdep (gdbarch)->a0_base;
      fp_regnum += gdbarch_tdep (gdbarch)->a0_base;
    }
    }
  else  /* No data from the prologue analysis.  */
  else  /* No data from the prologue analysis.  */
    {
    {
      c0_hasfp = 0;
      c0_hasfp = 0;
      fp_regnum = gdbarch_tdep (gdbarch)->a0_base + C0_SP;
      fp_regnum = gdbarch_tdep (gdbarch)->a0_base + C0_SP;
      c0_frmsz = 0;
      c0_frmsz = 0;
      start_pc = pc;
      start_pc = pc;
   }
   }
 
 
  prev_sp = fp + c0_frmsz;
  prev_sp = fp + c0_frmsz;
 
 
  /* Frame size from debug info or prologue tracking does not account for
  /* Frame size from debug info or prologue tracking does not account for
     alloca() and other dynamic allocations.  Adjust frame size by FP - SP.  */
     alloca() and other dynamic allocations.  Adjust frame size by FP - SP.  */
  if (c0_hasfp)
  if (c0_hasfp)
    {
    {
      fp = frame_unwind_register_unsigned (next_frame, fp_regnum);
      fp = frame_unwind_register_unsigned (next_frame, fp_regnum);
 
 
      /* Recalculate previous SP.  */
      /* Recalculate previous SP.  */
      prev_sp = fp + c0_frmsz;
      prev_sp = fp + c0_frmsz;
      /* Update the stack frame size.  */
      /* Update the stack frame size.  */
      c0_frmsz += fp - sp;
      c0_frmsz += fp - sp;
    }
    }
 
 
  /* Get the return address (RA) from the stack if saved,
  /* Get the return address (RA) from the stack if saved,
     or try to get it from a register.  */
     or try to get it from a register.  */
 
 
  to_stk = cache->c0.c0_rt[C0_RA].to_stk;
  to_stk = cache->c0.c0_rt[C0_RA].to_stk;
  if (to_stk != C0_NOSTK)
  if (to_stk != C0_NOSTK)
    ra = (CORE_ADDR)
    ra = (CORE_ADDR)
      read_memory_integer (sp + c0_frmsz + cache->c0.c0_rt[C0_RA].to_stk, 4);
      read_memory_integer (sp + c0_frmsz + cache->c0.c0_rt[C0_RA].to_stk, 4);
 
 
  else if (cache->c0.c0_rt[C0_RA].fr_reg == C0_CONST
  else if (cache->c0.c0_rt[C0_RA].fr_reg == C0_CONST
           && cache->c0.c0_rt[C0_RA].fr_ofs == 0)
           && cache->c0.c0_rt[C0_RA].fr_ofs == 0)
    {
    {
      /* Special case for terminating backtrace at a function that wants to
      /* Special case for terminating backtrace at a function that wants to
         be seen as the outermost.  Such a function will clear it's RA (A0)
         be seen as the outermost.  Such a function will clear it's RA (A0)
         register to 0 in the prologue instead of saving its original value.  */
         register to 0 in the prologue instead of saving its original value.  */
      ra = 0;
      ra = 0;
    }
    }
  else
  else
    {
    {
      /* RA was copied to another register or (before any function call) may
      /* RA was copied to another register or (before any function call) may
         still be in the original RA register.  This is not always reliable:
         still be in the original RA register.  This is not always reliable:
         even in a leaf function, register tracking stops after prologue, and
         even in a leaf function, register tracking stops after prologue, and
         even in prologue, non-prologue instructions (not tracked) may overwrite
         even in prologue, non-prologue instructions (not tracked) may overwrite
         RA or any register it was copied to.  If likely in prologue or before
         RA or any register it was copied to.  If likely in prologue or before
         any call, use retracking info and hope for the best (compiler should
         any call, use retracking info and hope for the best (compiler should
         have saved RA in stack if not in a leaf function).  If not in prologue,
         have saved RA in stack if not in a leaf function).  If not in prologue,
         too bad.  */
         too bad.  */
 
 
      int i;
      int i;
      for (i = 0;
      for (i = 0;
           (i < C0_NREGS) &&
           (i < C0_NREGS) &&
             (i == C0_RA || cache->c0.c0_rt[i].fr_reg != C0_RA);
             (i == C0_RA || cache->c0.c0_rt[i].fr_reg != C0_RA);
           ++i);
           ++i);
      if (i >= C0_NREGS && cache->c0.c0_rt[C0_RA].fr_reg == C0_RA)
      if (i >= C0_NREGS && cache->c0.c0_rt[C0_RA].fr_reg == C0_RA)
        i = C0_RA;
        i = C0_RA;
      if (i < C0_NREGS) /* Read from the next_frame.  */
      if (i < C0_NREGS) /* Read from the next_frame.  */
        {
        {
          ra = frame_unwind_register_unsigned
          ra = frame_unwind_register_unsigned
                 (next_frame,
                 (next_frame,
                  gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_rt[i].fr_reg);
                  gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_rt[i].fr_reg);
        }
        }
      else ra = 0;
      else ra = 0;
    }
    }
 
 
  cache->pc = start_pc;
  cache->pc = start_pc;
  cache->ra = ra;
  cache->ra = ra;
  /* RA == 0 marks the outermost frame.  Do not go past it.  */
  /* RA == 0 marks the outermost frame.  Do not go past it.  */
  cache->prev_sp = (ra != 0) ?  prev_sp : 0;
  cache->prev_sp = (ra != 0) ?  prev_sp : 0;
  cache->c0.fp_regnum = fp_regnum;
  cache->c0.fp_regnum = fp_regnum;
  cache->c0.c0_frmsz = c0_frmsz;
  cache->c0.c0_frmsz = c0_frmsz;
  cache->c0.c0_hasfp = c0_hasfp;
  cache->c0.c0_hasfp = c0_hasfp;
  cache->c0.c0_fp = fp;
  cache->c0.c0_fp = fp;
}
}
 
 
 
 
/* Skip function prologue.
/* Skip function prologue.
 
 
   Return the pc of the first instruction after prologue.  GDB calls this to
   Return the pc of the first instruction after prologue.  GDB calls this to
   find the address of the first line of the function or (if there is no line
   find the address of the first line of the function or (if there is no line
   number information) to skip the prologue for planting breakpoints on
   number information) to skip the prologue for planting breakpoints on
   function entries.  Use debug info (if present) or prologue analysis to skip
   function entries.  Use debug info (if present) or prologue analysis to skip
   the prologue to achieve reliable debugging behavior.  For windowed ABI,
   the prologue to achieve reliable debugging behavior.  For windowed ABI,
   only the 'entry' instruction is skipped.  It is not strictly necessary to
   only the 'entry' instruction is skipped.  It is not strictly necessary to
   skip the prologue (Call0) or 'entry' (Windowed) because xt-gdb knows how to
   skip the prologue (Call0) or 'entry' (Windowed) because xt-gdb knows how to
   backtrace at any point in the prologue, however certain potential hazards
   backtrace at any point in the prologue, however certain potential hazards
   are avoided and a more "normal" debugging experience is ensured by
   are avoided and a more "normal" debugging experience is ensured by
   skipping the prologue (can be disabled by defining DONT_SKIP_PROLOG).
   skipping the prologue (can be disabled by defining DONT_SKIP_PROLOG).
   For example, if we don't skip the prologue:
   For example, if we don't skip the prologue:
   - Some args may not yet have been saved to the stack where the debug
   - Some args may not yet have been saved to the stack where the debug
     info expects to find them (true anyway when only 'entry' is skipped);
     info expects to find them (true anyway when only 'entry' is skipped);
   - Software breakpoints ('break' instrs) may not have been unplanted
   - Software breakpoints ('break' instrs) may not have been unplanted
     when the prologue analysis is done on initializing the frame cache,
     when the prologue analysis is done on initializing the frame cache,
     and breaks in the prologue will throw off the analysis.
     and breaks in the prologue will throw off the analysis.
 
 
   If we have debug info ( line-number info, in particular ) we simply skip
   If we have debug info ( line-number info, in particular ) we simply skip
   the code associated with the first function line effectively skipping
   the code associated with the first function line effectively skipping
   the prologue code.  It works even in cases like
   the prologue code.  It works even in cases like
 
 
   int main()
   int main()
   {    int local_var = 1;
   {    int local_var = 1;
        ....
        ....
   }
   }
 
 
   because, for this source code, both Xtensa compilers will generate two
   because, for this source code, both Xtensa compilers will generate two
   separate entries ( with the same line number ) in dwarf line-number
   separate entries ( with the same line number ) in dwarf line-number
   section to make sure there is a boundary between the prologue code and
   section to make sure there is a boundary between the prologue code and
   the rest of the function.
   the rest of the function.
 
 
   If there is no debug info, we need to analyze the code.  */
   If there is no debug info, we need to analyze the code.  */
 
 
/* #define DONT_SKIP_PROLOGUE  */
/* #define DONT_SKIP_PROLOGUE  */
 
 
CORE_ADDR
CORE_ADDR
xtensa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
xtensa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
{
{
  struct symtab_and_line prologue_sal;
  struct symtab_and_line prologue_sal;
  CORE_ADDR body_pc;
  CORE_ADDR body_pc;
 
 
  DEBUGTRACE ("xtensa_skip_prologue (start_pc = 0x%08x)\n", (int) start_pc);
  DEBUGTRACE ("xtensa_skip_prologue (start_pc = 0x%08x)\n", (int) start_pc);
 
 
#if DONT_SKIP_PROLOGUE
#if DONT_SKIP_PROLOGUE
  return start_pc;
  return start_pc;
#endif
#endif
 
 
 /* Try to find first body line from debug info.  */
 /* Try to find first body line from debug info.  */
 
 
  prologue_sal = find_pc_line (start_pc, 0);
  prologue_sal = find_pc_line (start_pc, 0);
  if (prologue_sal.line != 0) /* Found debug info.  */
  if (prologue_sal.line != 0) /* Found debug info.  */
    {
    {
      /* In Call0, it is possible to have a function with only one instruction
      /* In Call0, it is possible to have a function with only one instruction
         ('ret') resulting from a 1-line optimized function that does nothing.
         ('ret') resulting from a 1-line optimized function that does nothing.
         In that case, prologue_sal.end may actually point to the start of the
         In that case, prologue_sal.end may actually point to the start of the
         next function in the text section, causing a breakpoint to be set at
         next function in the text section, causing a breakpoint to be set at
         the wrong place.  Check if the end address is in a different function,
         the wrong place.  Check if the end address is in a different function,
         and if so return the start PC.  We know we have symbol info.  */
         and if so return the start PC.  We know we have symbol info.  */
 
 
      CORE_ADDR end_func;
      CORE_ADDR end_func;
 
 
      find_pc_partial_function (prologue_sal.end, NULL, &end_func, NULL);
      find_pc_partial_function (prologue_sal.end, NULL, &end_func, NULL);
      if (end_func != start_pc)
      if (end_func != start_pc)
        return start_pc;
        return start_pc;
 
 
      return prologue_sal.end;
      return prologue_sal.end;
    }
    }
 
 
  /* No debug line info.  Analyze prologue for Call0 or simply skip ENTRY.  */
  /* No debug line info.  Analyze prologue for Call0 or simply skip ENTRY.  */
  body_pc = call0_analyze_prologue(start_pc, 0, 0, NULL, NULL);
  body_pc = call0_analyze_prologue(start_pc, 0, 0, NULL, NULL);
  return body_pc != 0 ? body_pc : start_pc;
  return body_pc != 0 ? body_pc : start_pc;
}
}
 
 
/* Verify the current configuration.  */
/* Verify the current configuration.  */
static void
static void
xtensa_verify_config (struct gdbarch *gdbarch)
xtensa_verify_config (struct gdbarch *gdbarch)
{
{
  struct ui_file *log;
  struct ui_file *log;
  struct cleanup *cleanups;
  struct cleanup *cleanups;
  struct gdbarch_tdep *tdep;
  struct gdbarch_tdep *tdep;
  long dummy;
  long dummy;
  char *buf;
  char *buf;
 
 
  tdep = gdbarch_tdep (gdbarch);
  tdep = gdbarch_tdep (gdbarch);
  log = mem_fileopen ();
  log = mem_fileopen ();
  cleanups = make_cleanup_ui_file_delete (log);
  cleanups = make_cleanup_ui_file_delete (log);
 
 
  /* Verify that we got a reasonable number of AREGS.  */
  /* Verify that we got a reasonable number of AREGS.  */
  if ((tdep->num_aregs & -tdep->num_aregs) != tdep->num_aregs)
  if ((tdep->num_aregs & -tdep->num_aregs) != tdep->num_aregs)
    fprintf_unfiltered (log, _("\
    fprintf_unfiltered (log, _("\
\n\tnum_aregs: Number of AR registers (%d) is not a power of two!"),
\n\tnum_aregs: Number of AR registers (%d) is not a power of two!"),
                        tdep->num_aregs);
                        tdep->num_aregs);
 
 
  /* Verify that certain registers exist.  */
  /* Verify that certain registers exist.  */
 
 
  if (tdep->pc_regnum == -1)
  if (tdep->pc_regnum == -1)
    fprintf_unfiltered (log, _("\n\tpc_regnum: No PC register"));
    fprintf_unfiltered (log, _("\n\tpc_regnum: No PC register"));
  if (tdep->isa_use_exceptions && tdep->ps_regnum == -1)
  if (tdep->isa_use_exceptions && tdep->ps_regnum == -1)
    fprintf_unfiltered (log, _("\n\tps_regnum: No PS register"));
    fprintf_unfiltered (log, _("\n\tps_regnum: No PS register"));
 
 
  if (tdep->isa_use_windowed_registers)
  if (tdep->isa_use_windowed_registers)
    {
    {
      if (tdep->wb_regnum == -1)
      if (tdep->wb_regnum == -1)
        fprintf_unfiltered (log, _("\n\twb_regnum: No WB register"));
        fprintf_unfiltered (log, _("\n\twb_regnum: No WB register"));
      if (tdep->ws_regnum == -1)
      if (tdep->ws_regnum == -1)
        fprintf_unfiltered (log, _("\n\tws_regnum: No WS register"));
        fprintf_unfiltered (log, _("\n\tws_regnum: No WS register"));
      if (tdep->ar_base == -1)
      if (tdep->ar_base == -1)
        fprintf_unfiltered (log, _("\n\tar_base: No AR registers"));
        fprintf_unfiltered (log, _("\n\tar_base: No AR registers"));
    }
    }
 
 
  if (tdep->a0_base == -1)
  if (tdep->a0_base == -1)
    fprintf_unfiltered (log, _("\n\ta0_base: No Ax registers"));
    fprintf_unfiltered (log, _("\n\ta0_base: No Ax registers"));
 
 
  buf = ui_file_xstrdup (log, &dummy);
  buf = ui_file_xstrdup (log, &dummy);
  make_cleanup (xfree, buf);
  make_cleanup (xfree, buf);
  if (strlen (buf) > 0)
  if (strlen (buf) > 0)
    internal_error (__FILE__, __LINE__,
    internal_error (__FILE__, __LINE__,
                    _("the following are invalid: %s"), buf);
                    _("the following are invalid: %s"), buf);
  do_cleanups (cleanups);
  do_cleanups (cleanups);
}
}
 
 
 
 
/* Derive specific register numbers from the array of registers.  */
/* Derive specific register numbers from the array of registers.  */
 
 
void
void
xtensa_derive_tdep (struct gdbarch_tdep *tdep)
xtensa_derive_tdep (struct gdbarch_tdep *tdep)
{
{
  xtensa_register_t* rmap;
  xtensa_register_t* rmap;
  int n, max_size = 4;
  int n, max_size = 4;
 
 
  tdep->num_regs = 0;
  tdep->num_regs = 0;
  tdep->num_nopriv_regs = 0;
  tdep->num_nopriv_regs = 0;
 
 
/* Special registers 0..255 (core).  */
/* Special registers 0..255 (core).  */
#define XTENSA_DBREGN_SREG(n)  (0x0200+(n))
#define XTENSA_DBREGN_SREG(n)  (0x0200+(n))
 
 
  for (rmap = tdep->regmap, n = 0; rmap->target_number != -1; n++, rmap++)
  for (rmap = tdep->regmap, n = 0; rmap->target_number != -1; n++, rmap++)
    {
    {
      if (rmap->target_number == 0x0020)
      if (rmap->target_number == 0x0020)
        tdep->pc_regnum = n;
        tdep->pc_regnum = n;
      else if (rmap->target_number == 0x0100)
      else if (rmap->target_number == 0x0100)
        tdep->ar_base = n;
        tdep->ar_base = n;
      else if (rmap->target_number == 0x0000)
      else if (rmap->target_number == 0x0000)
        tdep->a0_base = n;
        tdep->a0_base = n;
      else if (rmap->target_number == XTENSA_DBREGN_SREG(72))
      else if (rmap->target_number == XTENSA_DBREGN_SREG(72))
        tdep->wb_regnum = n;
        tdep->wb_regnum = n;
      else if (rmap->target_number == XTENSA_DBREGN_SREG(73))
      else if (rmap->target_number == XTENSA_DBREGN_SREG(73))
        tdep->ws_regnum = n;
        tdep->ws_regnum = n;
      else if (rmap->target_number == XTENSA_DBREGN_SREG(233))
      else if (rmap->target_number == XTENSA_DBREGN_SREG(233))
        tdep->debugcause_regnum = n;
        tdep->debugcause_regnum = n;
      else if (rmap->target_number == XTENSA_DBREGN_SREG(232))
      else if (rmap->target_number == XTENSA_DBREGN_SREG(232))
        tdep->exccause_regnum = n;
        tdep->exccause_regnum = n;
      else if (rmap->target_number == XTENSA_DBREGN_SREG(238))
      else if (rmap->target_number == XTENSA_DBREGN_SREG(238))
        tdep->excvaddr_regnum = n;
        tdep->excvaddr_regnum = n;
      else if (rmap->target_number == XTENSA_DBREGN_SREG(0))
      else if (rmap->target_number == XTENSA_DBREGN_SREG(0))
        tdep->lbeg_regnum = n;
        tdep->lbeg_regnum = n;
      else if (rmap->target_number == XTENSA_DBREGN_SREG(1))
      else if (rmap->target_number == XTENSA_DBREGN_SREG(1))
        tdep->lend_regnum = n;
        tdep->lend_regnum = n;
      else if (rmap->target_number == XTENSA_DBREGN_SREG(2))
      else if (rmap->target_number == XTENSA_DBREGN_SREG(2))
        tdep->lcount_regnum = n;
        tdep->lcount_regnum = n;
      else if (rmap->target_number == XTENSA_DBREGN_SREG(3))
      else if (rmap->target_number == XTENSA_DBREGN_SREG(3))
        tdep->sar_regnum = n;
        tdep->sar_regnum = n;
      else if (rmap->target_number == XTENSA_DBREGN_SREG(5))
      else if (rmap->target_number == XTENSA_DBREGN_SREG(5))
        tdep->litbase_regnum = n;
        tdep->litbase_regnum = n;
      else if (rmap->target_number == XTENSA_DBREGN_SREG(230))
      else if (rmap->target_number == XTENSA_DBREGN_SREG(230))
        tdep->ps_regnum = n;
        tdep->ps_regnum = n;
#if 0
#if 0
      else if (rmap->target_number == XTENSA_DBREGN_SREG(226))
      else if (rmap->target_number == XTENSA_DBREGN_SREG(226))
        tdep->interrupt_regnum = n;
        tdep->interrupt_regnum = n;
      else if (rmap->target_number == XTENSA_DBREGN_SREG(227))
      else if (rmap->target_number == XTENSA_DBREGN_SREG(227))
        tdep->interrupt2_regnum = n;
        tdep->interrupt2_regnum = n;
      else if (rmap->target_number == XTENSA_DBREGN_SREG(224))
      else if (rmap->target_number == XTENSA_DBREGN_SREG(224))
        tdep->cpenable_regnum = n;
        tdep->cpenable_regnum = n;
#endif
#endif
 
 
      if (rmap->byte_size > max_size)
      if (rmap->byte_size > max_size)
        max_size = rmap->byte_size;
        max_size = rmap->byte_size;
      if (rmap->mask != 0 && tdep->num_regs == 0)
      if (rmap->mask != 0 && tdep->num_regs == 0)
        tdep->num_regs = n;
        tdep->num_regs = n;
      /* Find out out how to deal with priveleged registers.
      /* Find out out how to deal with priveleged registers.
 
 
         if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
         if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
              && tdep->num_nopriv_regs == 0)
              && tdep->num_nopriv_regs == 0)
           tdep->num_nopriv_regs = n;
           tdep->num_nopriv_regs = n;
      */
      */
      if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
      if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
          && tdep->num_regs == 0)
          && tdep->num_regs == 0)
        tdep->num_regs = n;
        tdep->num_regs = n;
    }
    }
 
 
  /* Number of pseudo registers.  */
  /* Number of pseudo registers.  */
  tdep->num_pseudo_regs = n - tdep->num_regs;
  tdep->num_pseudo_regs = n - tdep->num_regs;
 
 
  /* Empirically determined maximum sizes.  */
  /* Empirically determined maximum sizes.  */
  tdep->max_register_raw_size = max_size;
  tdep->max_register_raw_size = max_size;
  tdep->max_register_virtual_size = max_size;
  tdep->max_register_virtual_size = max_size;
}
}
 
 
/* Module "constructor" function.  */
/* Module "constructor" function.  */
 
 
extern struct gdbarch_tdep xtensa_tdep;
extern struct gdbarch_tdep xtensa_tdep;
 
 
static struct gdbarch *
static struct gdbarch *
xtensa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
xtensa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
{
  struct gdbarch_tdep *tdep;
  struct gdbarch_tdep *tdep;
  struct gdbarch *gdbarch;
  struct gdbarch *gdbarch;
  struct xtensa_abi_handler *abi_handler;
  struct xtensa_abi_handler *abi_handler;
 
 
  DEBUGTRACE ("gdbarch_init()\n");
  DEBUGTRACE ("gdbarch_init()\n");
 
 
  /* We have to set the byte order before we call gdbarch_alloc.  */
  /* We have to set the byte order before we call gdbarch_alloc.  */
  info.byte_order = XCHAL_HAVE_BE ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
  info.byte_order = XCHAL_HAVE_BE ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
 
 
  tdep = &xtensa_tdep;
  tdep = &xtensa_tdep;
  gdbarch = gdbarch_alloc (&info, tdep);
  gdbarch = gdbarch_alloc (&info, tdep);
  xtensa_derive_tdep (tdep);
  xtensa_derive_tdep (tdep);
 
 
  /* Verify our configuration.  */
  /* Verify our configuration.  */
  xtensa_verify_config (gdbarch);
  xtensa_verify_config (gdbarch);
 
 
  /* Pseudo-Register read/write.  */
  /* Pseudo-Register read/write.  */
  set_gdbarch_pseudo_register_read (gdbarch, xtensa_pseudo_register_read);
  set_gdbarch_pseudo_register_read (gdbarch, xtensa_pseudo_register_read);
  set_gdbarch_pseudo_register_write (gdbarch, xtensa_pseudo_register_write);
  set_gdbarch_pseudo_register_write (gdbarch, xtensa_pseudo_register_write);
 
 
  /* Set target information.  */
  /* Set target information.  */
  set_gdbarch_num_regs (gdbarch, tdep->num_regs);
  set_gdbarch_num_regs (gdbarch, tdep->num_regs);
  set_gdbarch_num_pseudo_regs (gdbarch, tdep->num_pseudo_regs);
  set_gdbarch_num_pseudo_regs (gdbarch, tdep->num_pseudo_regs);
  set_gdbarch_sp_regnum (gdbarch, tdep->a0_base + 1);
  set_gdbarch_sp_regnum (gdbarch, tdep->a0_base + 1);
  set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
  set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
  set_gdbarch_ps_regnum (gdbarch, tdep->ps_regnum);
  set_gdbarch_ps_regnum (gdbarch, tdep->ps_regnum);
 
 
  /* Renumber registers for known formats (stab, dwarf, and dwarf2).  */
  /* Renumber registers for known formats (stab, dwarf, and dwarf2).  */
  set_gdbarch_stab_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
  set_gdbarch_stab_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
  set_gdbarch_dwarf_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
  set_gdbarch_dwarf_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
  set_gdbarch_dwarf2_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
  set_gdbarch_dwarf2_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
 
 
  /* We provide our own function to get register information.  */
  /* We provide our own function to get register information.  */
  set_gdbarch_register_name (gdbarch, xtensa_register_name);
  set_gdbarch_register_name (gdbarch, xtensa_register_name);
  set_gdbarch_register_type (gdbarch, xtensa_register_type);
  set_gdbarch_register_type (gdbarch, xtensa_register_type);
 
 
  /* To call functions from GDB using dummy frame */
  /* To call functions from GDB using dummy frame */
  set_gdbarch_push_dummy_call (gdbarch, xtensa_push_dummy_call);
  set_gdbarch_push_dummy_call (gdbarch, xtensa_push_dummy_call);
 
 
  set_gdbarch_believe_pcc_promotion (gdbarch, 1);
  set_gdbarch_believe_pcc_promotion (gdbarch, 1);
 
 
  set_gdbarch_return_value (gdbarch, xtensa_return_value);
  set_gdbarch_return_value (gdbarch, xtensa_return_value);
 
 
  /* Advance PC across any prologue instructions to reach "real" code.  */
  /* Advance PC across any prologue instructions to reach "real" code.  */
  set_gdbarch_skip_prologue (gdbarch, xtensa_skip_prologue);
  set_gdbarch_skip_prologue (gdbarch, xtensa_skip_prologue);
 
 
  /* Stack grows downward.  */
  /* Stack grows downward.  */
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
 
 
  /* Set breakpoints.  */
  /* Set breakpoints.  */
  set_gdbarch_breakpoint_from_pc (gdbarch, xtensa_breakpoint_from_pc);
  set_gdbarch_breakpoint_from_pc (gdbarch, xtensa_breakpoint_from_pc);
 
 
  /* After breakpoint instruction or illegal instruction, pc still
  /* After breakpoint instruction or illegal instruction, pc still
     points at break instruction, so don't decrement.  */
     points at break instruction, so don't decrement.  */
  set_gdbarch_decr_pc_after_break (gdbarch, 0);
  set_gdbarch_decr_pc_after_break (gdbarch, 0);
 
 
  /* We don't skip args.  */
  /* We don't skip args.  */
  set_gdbarch_frame_args_skip (gdbarch, 0);
  set_gdbarch_frame_args_skip (gdbarch, 0);
 
 
  set_gdbarch_unwind_pc (gdbarch, xtensa_unwind_pc);
  set_gdbarch_unwind_pc (gdbarch, xtensa_unwind_pc);
 
 
  set_gdbarch_frame_align (gdbarch, xtensa_frame_align);
  set_gdbarch_frame_align (gdbarch, xtensa_frame_align);
 
 
  set_gdbarch_unwind_dummy_id (gdbarch, xtensa_unwind_dummy_id);
  set_gdbarch_unwind_dummy_id (gdbarch, xtensa_unwind_dummy_id);
 
 
  /* Frame handling.  */
  /* Frame handling.  */
  frame_base_set_default (gdbarch, &xtensa_frame_base);
  frame_base_set_default (gdbarch, &xtensa_frame_base);
  frame_unwind_append_sniffer (gdbarch, xtensa_frame_sniffer);
  frame_unwind_append_sniffer (gdbarch, xtensa_frame_sniffer);
 
 
  set_gdbarch_print_insn (gdbarch, print_insn_xtensa);
  set_gdbarch_print_insn (gdbarch, print_insn_xtensa);
 
 
  set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
  set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
 
 
  xtensa_add_reggroups (gdbarch);
  xtensa_add_reggroups (gdbarch);
  set_gdbarch_register_reggroup_p (gdbarch, xtensa_register_reggroup_p);
  set_gdbarch_register_reggroup_p (gdbarch, xtensa_register_reggroup_p);
 
 
  set_gdbarch_regset_from_core_section (gdbarch,
  set_gdbarch_regset_from_core_section (gdbarch,
                                        xtensa_regset_from_core_section);
                                        xtensa_regset_from_core_section);
 
 
  return gdbarch;
  return gdbarch;
}
}
 
 
static void
static void
xtensa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
xtensa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
{
{
  error (_("xtensa_dump_tdep(): not implemented"));
  error (_("xtensa_dump_tdep(): not implemented"));
}
}
 
 
void
void
_initialize_xtensa_tdep (void)
_initialize_xtensa_tdep (void)
{
{
  struct cmd_list_element *c;
  struct cmd_list_element *c;
 
 
  gdbarch_register (bfd_arch_xtensa, xtensa_gdbarch_init, xtensa_dump_tdep);
  gdbarch_register (bfd_arch_xtensa, xtensa_gdbarch_init, xtensa_dump_tdep);
  xtensa_init_reggroups ();
  xtensa_init_reggroups ();
 
 
  add_setshow_zinteger_cmd ("xtensa",
  add_setshow_zinteger_cmd ("xtensa",
                            class_maintenance,
                            class_maintenance,
                            &xtensa_debug_level, _("\
                            &xtensa_debug_level, _("\
Set Xtensa debugging."), _("\
Set Xtensa debugging."), _("\
Show Xtensa debugging."), _("\
Show Xtensa debugging."), _("\
When non-zero, Xtensa-specific debugging is enabled. \
When non-zero, Xtensa-specific debugging is enabled. \
Can be 1, 2, 3, or 4 indicating the level of debugging."),
Can be 1, 2, 3, or 4 indicating the level of debugging."),
                            NULL,
                            NULL,
                            NULL,
                            NULL,
                            &setdebuglist, &showdebuglist);
                            &setdebuglist, &showdebuglist);
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.