OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gdb-6.8/] [sim/] [mips/] [sim-main.c] - Diff between revs 827 and 840

Only display areas with differences | Details | Blame | View Log

Rev 827 Rev 840
/*  Copyright (C) 1998, Cygnus Solutions
/*  Copyright (C) 1998, Cygnus Solutions
 
 
    This program is free software; you can redistribute it and/or modify
    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.
    (at your option) any later version.
 
 
    This program is distributed in the hope that it will be useful,
    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.
    GNU General Public License for more details.
 
 
    You should have received a copy of the GNU General Public License
    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    along with this program; if not, write to the Free Software
    Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
    Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 
 
    */
    */
 
 
 
 
#ifndef SIM_MAIN_C
#ifndef SIM_MAIN_C
#define SIM_MAIN_C
#define SIM_MAIN_C
 
 
#include "sim-main.h"
#include "sim-main.h"
#include "sim-assert.h"
#include "sim-assert.h"
 
 
 
 
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/*-- simulator engine -------------------------------------------------------*/
/*-- simulator engine -------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
 
 
 
 
/* Description from page A-22 of the "MIPS IV Instruction Set" manual
/* Description from page A-22 of the "MIPS IV Instruction Set" manual
   (revision 3.1) */
   (revision 3.1) */
/* Translate a virtual address to a physical address and cache
/* Translate a virtual address to a physical address and cache
   coherence algorithm describing the mechanism used to resolve the
   coherence algorithm describing the mechanism used to resolve the
   memory reference. Given the virtual address vAddr, and whether the
   memory reference. Given the virtual address vAddr, and whether the
   reference is to Instructions ot Data (IorD), find the corresponding
   reference is to Instructions ot Data (IorD), find the corresponding
   physical address (pAddr) and the cache coherence algorithm (CCA)
   physical address (pAddr) and the cache coherence algorithm (CCA)
   used to resolve the reference. If the virtual address is in one of
   used to resolve the reference. If the virtual address is in one of
   the unmapped address spaces the physical address and the CCA are
   the unmapped address spaces the physical address and the CCA are
   determined directly by the virtual address. If the virtual address
   determined directly by the virtual address. If the virtual address
   is in one of the mapped address spaces then the TLB is used to
   is in one of the mapped address spaces then the TLB is used to
   determine the physical address and access type; if the required
   determine the physical address and access type; if the required
   translation is not present in the TLB or the desired access is not
   translation is not present in the TLB or the desired access is not
   permitted the function fails and an exception is taken.
   permitted the function fails and an exception is taken.
 
 
   NOTE: Normally (RAW == 0), when address translation fails, this
   NOTE: Normally (RAW == 0), when address translation fails, this
   function raises an exception and does not return. */
   function raises an exception and does not return. */
 
 
INLINE_SIM_MAIN
INLINE_SIM_MAIN
(int)
(int)
address_translation (SIM_DESC sd,
address_translation (SIM_DESC sd,
                     sim_cpu * cpu,
                     sim_cpu * cpu,
                     address_word cia,
                     address_word cia,
                     address_word vAddr,
                     address_word vAddr,
                     int IorD,
                     int IorD,
                     int LorS,
                     int LorS,
                     address_word * pAddr,
                     address_word * pAddr,
                     int *CCA,
                     int *CCA,
                     int raw)
                     int raw)
{
{
  int res = -1;                 /* TRUE : Assume good return */
  int res = -1;                 /* TRUE : Assume good return */
 
 
#ifdef DEBUG
#ifdef DEBUG
  sim_io_printf (sd, "AddressTranslation(0x%s,%s,%s,...);\n", pr_addr (vAddr), (IorD ? "isDATA" : "isINSTRUCTION"), (LorS ? "iSTORE" : "isLOAD"));
  sim_io_printf (sd, "AddressTranslation(0x%s,%s,%s,...);\n", pr_addr (vAddr), (IorD ? "isDATA" : "isINSTRUCTION"), (LorS ? "iSTORE" : "isLOAD"));
#endif
#endif
 
 
  /* Check that the address is valid for this memory model */
  /* Check that the address is valid for this memory model */
 
 
  /* For a simple (flat) memory model, we simply pass virtual
  /* For a simple (flat) memory model, we simply pass virtual
     addressess through (mostly) unchanged. */
     addressess through (mostly) unchanged. */
  vAddr &= 0xFFFFFFFF;
  vAddr &= 0xFFFFFFFF;
 
 
  *pAddr = vAddr;               /* default for isTARGET */
  *pAddr = vAddr;               /* default for isTARGET */
  *CCA = Uncached;              /* not used for isHOST */
  *CCA = Uncached;              /* not used for isHOST */
 
 
  return (res);
  return (res);
}
}
 
 
 
 
 
 
/* Description from page A-23 of the "MIPS IV Instruction Set" manual
/* Description from page A-23 of the "MIPS IV Instruction Set" manual
   (revision 3.1) */
   (revision 3.1) */
/* Prefetch data from memory. Prefetch is an advisory instruction for
/* Prefetch data from memory. Prefetch is an advisory instruction for
   which an implementation specific action is taken. The action taken
   which an implementation specific action is taken. The action taken
   may increase performance, but must not change the meaning of the
   may increase performance, but must not change the meaning of the
   program, or alter architecturally-visible state. */
   program, or alter architecturally-visible state. */
 
 
INLINE_SIM_MAIN (void)
INLINE_SIM_MAIN (void)
prefetch (SIM_DESC sd,
prefetch (SIM_DESC sd,
          sim_cpu *cpu,
          sim_cpu *cpu,
          address_word cia,
          address_word cia,
          int CCA,
          int CCA,
          address_word pAddr,
          address_word pAddr,
          address_word vAddr,
          address_word vAddr,
          int DATA,
          int DATA,
          int hint)
          int hint)
{
{
#ifdef DEBUG
#ifdef DEBUG
  sim_io_printf(sd,"Prefetch(%d,0x%s,0x%s,%d,%d);\n",CCA,pr_addr(pAddr),pr_addr(vAddr),DATA,hint);
  sim_io_printf(sd,"Prefetch(%d,0x%s,0x%s,%d,%d);\n",CCA,pr_addr(pAddr),pr_addr(vAddr),DATA,hint);
#endif /* DEBUG */
#endif /* DEBUG */
 
 
  /* For our simple memory model we do nothing */
  /* For our simple memory model we do nothing */
  return;
  return;
}
}
 
 
/* Description from page A-22 of the "MIPS IV Instruction Set" manual
/* Description from page A-22 of the "MIPS IV Instruction Set" manual
   (revision 3.1) */
   (revision 3.1) */
/* Load a value from memory. Use the cache and main memory as
/* Load a value from memory. Use the cache and main memory as
   specified in the Cache Coherence Algorithm (CCA) and the sort of
   specified in the Cache Coherence Algorithm (CCA) and the sort of
   access (IorD) to find the contents of AccessLength memory bytes
   access (IorD) to find the contents of AccessLength memory bytes
   starting at physical location pAddr. The data is returned in the
   starting at physical location pAddr. The data is returned in the
   fixed width naturally-aligned memory element (MemElem). The
   fixed width naturally-aligned memory element (MemElem). The
   low-order two (or three) bits of the address and the AccessLength
   low-order two (or three) bits of the address and the AccessLength
   indicate which of the bytes within MemElem needs to be given to the
   indicate which of the bytes within MemElem needs to be given to the
   processor. If the memory access type of the reference is uncached
   processor. If the memory access type of the reference is uncached
   then only the referenced bytes are read from memory and valid
   then only the referenced bytes are read from memory and valid
   within the memory element. If the access type is cached, and the
   within the memory element. If the access type is cached, and the
   data is not present in cache, an implementation specific size and
   data is not present in cache, an implementation specific size and
   alignment block of memory is read and loaded into the cache to
   alignment block of memory is read and loaded into the cache to
   satisfy a load reference. At a minimum, the block is the entire
   satisfy a load reference. At a minimum, the block is the entire
   memory element. */
   memory element. */
INLINE_SIM_MAIN (void)
INLINE_SIM_MAIN (void)
load_memory (SIM_DESC SD,
load_memory (SIM_DESC SD,
             sim_cpu *CPU,
             sim_cpu *CPU,
             address_word cia,
             address_word cia,
             uword64* memvalp,
             uword64* memvalp,
             uword64* memval1p,
             uword64* memval1p,
             int CCA,
             int CCA,
             unsigned int AccessLength,
             unsigned int AccessLength,
             address_word pAddr,
             address_word pAddr,
             address_word vAddr,
             address_word vAddr,
             int IorD)
             int IorD)
{
{
  uword64 value = 0;
  uword64 value = 0;
  uword64 value1 = 0;
  uword64 value1 = 0;
 
 
#ifdef DEBUG
#ifdef DEBUG
  sim_io_printf(sd,"DBG: LoadMemory(%p,%p,%d,%d,0x%s,0x%s,%s)\n",memvalp,memval1p,CCA,AccessLength,pr_addr(pAddr),pr_addr(vAddr),(IorD ? "isDATA" : "isINSTRUCTION"));
  sim_io_printf(sd,"DBG: LoadMemory(%p,%p,%d,%d,0x%s,0x%s,%s)\n",memvalp,memval1p,CCA,AccessLength,pr_addr(pAddr),pr_addr(vAddr),(IorD ? "isDATA" : "isINSTRUCTION"));
#endif /* DEBUG */
#endif /* DEBUG */
 
 
#if defined(WARN_MEM)
#if defined(WARN_MEM)
  if (CCA != uncached)
  if (CCA != uncached)
    sim_io_eprintf(sd,"LoadMemory CCA (%d) is not uncached (currently all accesses treated as cached)\n",CCA);
    sim_io_eprintf(sd,"LoadMemory CCA (%d) is not uncached (currently all accesses treated as cached)\n",CCA);
#endif /* WARN_MEM */
#endif /* WARN_MEM */
 
 
  if (((pAddr & LOADDRMASK) + AccessLength) > LOADDRMASK)
  if (((pAddr & LOADDRMASK) + AccessLength) > LOADDRMASK)
    {
    {
      /* In reality this should be a Bus Error */
      /* In reality this should be a Bus Error */
      sim_io_error (SD, "LOAD AccessLength of %d would extend over %d bit aligned boundary for physical address 0x%s\n",
      sim_io_error (SD, "LOAD AccessLength of %d would extend over %d bit aligned boundary for physical address 0x%s\n",
                    AccessLength,
                    AccessLength,
                    (LOADDRMASK + 1) << 3,
                    (LOADDRMASK + 1) << 3,
                    pr_addr (pAddr));
                    pr_addr (pAddr));
    }
    }
 
 
#if defined(TRACE)
#if defined(TRACE)
  dotrace (SD, CPU, tracefh,((IorD == isDATA) ? 0 : 2),(unsigned int)(pAddr&0xFFFFFFFF),(AccessLength + 1),"load%s",((IorD == isDATA) ? "" : " instruction"));
  dotrace (SD, CPU, tracefh,((IorD == isDATA) ? 0 : 2),(unsigned int)(pAddr&0xFFFFFFFF),(AccessLength + 1),"load%s",((IorD == isDATA) ? "" : " instruction"));
#endif /* TRACE */
#endif /* TRACE */
 
 
  /* Read the specified number of bytes from memory.  Adjust for
  /* Read the specified number of bytes from memory.  Adjust for
     host/target byte ordering/ Align the least significant byte
     host/target byte ordering/ Align the least significant byte
     read. */
     read. */
 
 
  switch (AccessLength)
  switch (AccessLength)
    {
    {
    case AccessLength_QUADWORD:
    case AccessLength_QUADWORD:
      {
      {
        unsigned_16 val = sim_core_read_aligned_16 (CPU, cia, read_map, pAddr);
        unsigned_16 val = sim_core_read_aligned_16 (CPU, cia, read_map, pAddr);
        value1 = VH8_16 (val);
        value1 = VH8_16 (val);
        value = VL8_16 (val);
        value = VL8_16 (val);
        break;
        break;
      }
      }
    case AccessLength_DOUBLEWORD:
    case AccessLength_DOUBLEWORD:
      value = sim_core_read_aligned_8 (CPU, cia, read_map, pAddr);
      value = sim_core_read_aligned_8 (CPU, cia, read_map, pAddr);
      break;
      break;
    case AccessLength_SEPTIBYTE:
    case AccessLength_SEPTIBYTE:
      value = sim_core_read_misaligned_7 (CPU, cia, read_map, pAddr);
      value = sim_core_read_misaligned_7 (CPU, cia, read_map, pAddr);
      break;
      break;
    case AccessLength_SEXTIBYTE:
    case AccessLength_SEXTIBYTE:
      value = sim_core_read_misaligned_6 (CPU, cia, read_map, pAddr);
      value = sim_core_read_misaligned_6 (CPU, cia, read_map, pAddr);
      break;
      break;
    case AccessLength_QUINTIBYTE:
    case AccessLength_QUINTIBYTE:
      value = sim_core_read_misaligned_5 (CPU, cia, read_map, pAddr);
      value = sim_core_read_misaligned_5 (CPU, cia, read_map, pAddr);
      break;
      break;
    case AccessLength_WORD:
    case AccessLength_WORD:
      value = sim_core_read_aligned_4 (CPU, cia, read_map, pAddr);
      value = sim_core_read_aligned_4 (CPU, cia, read_map, pAddr);
      break;
      break;
    case AccessLength_TRIPLEBYTE:
    case AccessLength_TRIPLEBYTE:
      value = sim_core_read_misaligned_3 (CPU, cia, read_map, pAddr);
      value = sim_core_read_misaligned_3 (CPU, cia, read_map, pAddr);
      break;
      break;
    case AccessLength_HALFWORD:
    case AccessLength_HALFWORD:
      value = sim_core_read_aligned_2 (CPU, cia, read_map, pAddr);
      value = sim_core_read_aligned_2 (CPU, cia, read_map, pAddr);
      break;
      break;
    case AccessLength_BYTE:
    case AccessLength_BYTE:
      value = sim_core_read_aligned_1 (CPU, cia, read_map, pAddr);
      value = sim_core_read_aligned_1 (CPU, cia, read_map, pAddr);
      break;
      break;
    default:
    default:
      abort ();
      abort ();
    }
    }
 
 
#ifdef DEBUG
#ifdef DEBUG
  printf("DBG: LoadMemory() : (offset %d) : value = 0x%s%s\n",
  printf("DBG: LoadMemory() : (offset %d) : value = 0x%s%s\n",
         (int)(pAddr & LOADDRMASK),pr_uword64(value1),pr_uword64(value));
         (int)(pAddr & LOADDRMASK),pr_uword64(value1),pr_uword64(value));
#endif /* DEBUG */
#endif /* DEBUG */
 
 
  /* See also store_memory. Position data in correct byte lanes. */
  /* See also store_memory. Position data in correct byte lanes. */
  if (AccessLength <= LOADDRMASK)
  if (AccessLength <= LOADDRMASK)
    {
    {
      if (BigEndianMem)
      if (BigEndianMem)
        /* for big endian target, byte (pAddr&LOADDRMASK == 0) is
        /* for big endian target, byte (pAddr&LOADDRMASK == 0) is
           shifted to the most significant byte position.  */
           shifted to the most significant byte position.  */
        value <<= (((LOADDRMASK - (pAddr & LOADDRMASK)) - AccessLength) * 8);
        value <<= (((LOADDRMASK - (pAddr & LOADDRMASK)) - AccessLength) * 8);
      else
      else
        /* For little endian target, byte (pAddr&LOADDRMASK == 0)
        /* For little endian target, byte (pAddr&LOADDRMASK == 0)
           is already in the correct postition. */
           is already in the correct postition. */
        value <<= ((pAddr & LOADDRMASK) * 8);
        value <<= ((pAddr & LOADDRMASK) * 8);
    }
    }
 
 
#ifdef DEBUG
#ifdef DEBUG
  printf("DBG: LoadMemory() : shifted value = 0x%s%s\n",
  printf("DBG: LoadMemory() : shifted value = 0x%s%s\n",
         pr_uword64(value1),pr_uword64(value));
         pr_uword64(value1),pr_uword64(value));
#endif /* DEBUG */
#endif /* DEBUG */
 
 
  *memvalp = value;
  *memvalp = value;
  if (memval1p) *memval1p = value1;
  if (memval1p) *memval1p = value1;
}
}
 
 
 
 
/* Description from page A-23 of the "MIPS IV Instruction Set" manual
/* Description from page A-23 of the "MIPS IV Instruction Set" manual
   (revision 3.1) */
   (revision 3.1) */
/* Store a value to memory. The specified data is stored into the
/* Store a value to memory. The specified data is stored into the
   physical location pAddr using the memory hierarchy (data caches and
   physical location pAddr using the memory hierarchy (data caches and
   main memory) as specified by the Cache Coherence Algorithm
   main memory) as specified by the Cache Coherence Algorithm
   (CCA). The MemElem contains the data for an aligned, fixed-width
   (CCA). The MemElem contains the data for an aligned, fixed-width
   memory element (word for 32-bit processors, doubleword for 64-bit
   memory element (word for 32-bit processors, doubleword for 64-bit
   processors), though only the bytes that will actually be stored to
   processors), though only the bytes that will actually be stored to
   memory need to be valid. The low-order two (or three) bits of pAddr
   memory need to be valid. The low-order two (or three) bits of pAddr
   and the AccessLength field indicates which of the bytes within the
   and the AccessLength field indicates which of the bytes within the
   MemElem data should actually be stored; only these bytes in memory
   MemElem data should actually be stored; only these bytes in memory
   will be changed. */
   will be changed. */
 
 
INLINE_SIM_MAIN (void)
INLINE_SIM_MAIN (void)
store_memory (SIM_DESC SD,
store_memory (SIM_DESC SD,
              sim_cpu *CPU,
              sim_cpu *CPU,
              address_word cia,
              address_word cia,
              int CCA,
              int CCA,
              unsigned int AccessLength,
              unsigned int AccessLength,
              uword64 MemElem,
              uword64 MemElem,
              uword64 MemElem1,   /* High order 64 bits */
              uword64 MemElem1,   /* High order 64 bits */
              address_word pAddr,
              address_word pAddr,
              address_word vAddr)
              address_word vAddr)
{
{
#ifdef DEBUG
#ifdef DEBUG
  sim_io_printf(sd,"DBG: StoreMemory(%d,%d,0x%s,0x%s,0x%s,0x%s)\n",CCA,AccessLength,pr_uword64(MemElem),pr_uword64(MemElem1),pr_addr(pAddr),pr_addr(vAddr));
  sim_io_printf(sd,"DBG: StoreMemory(%d,%d,0x%s,0x%s,0x%s,0x%s)\n",CCA,AccessLength,pr_uword64(MemElem),pr_uword64(MemElem1),pr_addr(pAddr),pr_addr(vAddr));
#endif /* DEBUG */
#endif /* DEBUG */
 
 
#if defined(WARN_MEM)
#if defined(WARN_MEM)
  if (CCA != uncached)
  if (CCA != uncached)
    sim_io_eprintf(sd,"StoreMemory CCA (%d) is not uncached (currently all accesses treated as cached)\n",CCA);
    sim_io_eprintf(sd,"StoreMemory CCA (%d) is not uncached (currently all accesses treated as cached)\n",CCA);
#endif /* WARN_MEM */
#endif /* WARN_MEM */
 
 
  if (((pAddr & LOADDRMASK) + AccessLength) > LOADDRMASK)
  if (((pAddr & LOADDRMASK) + AccessLength) > LOADDRMASK)
    sim_io_error (SD, "STORE AccessLength of %d would extend over %d bit aligned boundary for physical address 0x%s\n",
    sim_io_error (SD, "STORE AccessLength of %d would extend over %d bit aligned boundary for physical address 0x%s\n",
                  AccessLength,
                  AccessLength,
                  (LOADDRMASK + 1) << 3,
                  (LOADDRMASK + 1) << 3,
                  pr_addr(pAddr));
                  pr_addr(pAddr));
 
 
#if defined(TRACE)
#if defined(TRACE)
  dotrace (SD, CPU, tracefh,1,(unsigned int)(pAddr&0xFFFFFFFF),(AccessLength + 1),"store");
  dotrace (SD, CPU, tracefh,1,(unsigned int)(pAddr&0xFFFFFFFF),(AccessLength + 1),"store");
#endif /* TRACE */
#endif /* TRACE */
 
 
#ifdef DEBUG
#ifdef DEBUG
  printf("DBG: StoreMemory: offset = %d MemElem = 0x%s%s\n",(unsigned int)(pAddr & LOADDRMASK),pr_uword64(MemElem1),pr_uword64(MemElem));
  printf("DBG: StoreMemory: offset = %d MemElem = 0x%s%s\n",(unsigned int)(pAddr & LOADDRMASK),pr_uword64(MemElem1),pr_uword64(MemElem));
#endif /* DEBUG */
#endif /* DEBUG */
 
 
  /* See also load_memory. Position data in correct byte lanes. */
  /* See also load_memory. Position data in correct byte lanes. */
  if (AccessLength <= LOADDRMASK)
  if (AccessLength <= LOADDRMASK)
    {
    {
      if (BigEndianMem)
      if (BigEndianMem)
        /* for big endian target, byte (pAddr&LOADDRMASK == 0) is
        /* for big endian target, byte (pAddr&LOADDRMASK == 0) is
           shifted to the most significant byte position.  */
           shifted to the most significant byte position.  */
        MemElem >>= (((LOADDRMASK - (pAddr & LOADDRMASK)) - AccessLength) * 8);
        MemElem >>= (((LOADDRMASK - (pAddr & LOADDRMASK)) - AccessLength) * 8);
      else
      else
        /* For little endian target, byte (pAddr&LOADDRMASK == 0)
        /* For little endian target, byte (pAddr&LOADDRMASK == 0)
           is already in the correct postition. */
           is already in the correct postition. */
        MemElem >>= ((pAddr & LOADDRMASK) * 8);
        MemElem >>= ((pAddr & LOADDRMASK) * 8);
    }
    }
 
 
#ifdef DEBUG
#ifdef DEBUG
  printf("DBG: StoreMemory: shift = %d MemElem = 0x%s%s\n",shift,pr_uword64(MemElem1),pr_uword64(MemElem));
  printf("DBG: StoreMemory: shift = %d MemElem = 0x%s%s\n",shift,pr_uword64(MemElem1),pr_uword64(MemElem));
#endif /* DEBUG */
#endif /* DEBUG */
 
 
  switch (AccessLength)
  switch (AccessLength)
    {
    {
    case AccessLength_QUADWORD:
    case AccessLength_QUADWORD:
      {
      {
        unsigned_16 val = U16_8 (MemElem1, MemElem);
        unsigned_16 val = U16_8 (MemElem1, MemElem);
        sim_core_write_aligned_16 (CPU, cia, write_map, pAddr, val);
        sim_core_write_aligned_16 (CPU, cia, write_map, pAddr, val);
        break;
        break;
      }
      }
    case AccessLength_DOUBLEWORD:
    case AccessLength_DOUBLEWORD:
      sim_core_write_aligned_8 (CPU, cia, write_map, pAddr, MemElem);
      sim_core_write_aligned_8 (CPU, cia, write_map, pAddr, MemElem);
      break;
      break;
    case AccessLength_SEPTIBYTE:
    case AccessLength_SEPTIBYTE:
      sim_core_write_misaligned_7 (CPU, cia, write_map, pAddr, MemElem);
      sim_core_write_misaligned_7 (CPU, cia, write_map, pAddr, MemElem);
      break;
      break;
    case AccessLength_SEXTIBYTE:
    case AccessLength_SEXTIBYTE:
      sim_core_write_misaligned_6 (CPU, cia, write_map, pAddr, MemElem);
      sim_core_write_misaligned_6 (CPU, cia, write_map, pAddr, MemElem);
      break;
      break;
    case AccessLength_QUINTIBYTE:
    case AccessLength_QUINTIBYTE:
      sim_core_write_misaligned_5 (CPU, cia, write_map, pAddr, MemElem);
      sim_core_write_misaligned_5 (CPU, cia, write_map, pAddr, MemElem);
      break;
      break;
    case AccessLength_WORD:
    case AccessLength_WORD:
      sim_core_write_aligned_4 (CPU, cia, write_map, pAddr, MemElem);
      sim_core_write_aligned_4 (CPU, cia, write_map, pAddr, MemElem);
      break;
      break;
    case AccessLength_TRIPLEBYTE:
    case AccessLength_TRIPLEBYTE:
      sim_core_write_misaligned_3 (CPU, cia, write_map, pAddr, MemElem);
      sim_core_write_misaligned_3 (CPU, cia, write_map, pAddr, MemElem);
      break;
      break;
    case AccessLength_HALFWORD:
    case AccessLength_HALFWORD:
      sim_core_write_aligned_2 (CPU, cia, write_map, pAddr, MemElem);
      sim_core_write_aligned_2 (CPU, cia, write_map, pAddr, MemElem);
      break;
      break;
    case AccessLength_BYTE:
    case AccessLength_BYTE:
      sim_core_write_aligned_1 (CPU, cia, write_map, pAddr, MemElem);
      sim_core_write_aligned_1 (CPU, cia, write_map, pAddr, MemElem);
      break;
      break;
    default:
    default:
      abort ();
      abort ();
    }
    }
 
 
  return;
  return;
}
}
 
 
 
 
INLINE_SIM_MAIN (unsigned32)
INLINE_SIM_MAIN (unsigned32)
ifetch32 (SIM_DESC SD,
ifetch32 (SIM_DESC SD,
          sim_cpu *CPU,
          sim_cpu *CPU,
          address_word cia,
          address_word cia,
          address_word vaddr)
          address_word vaddr)
{
{
  /* Copy the action of the LW instruction */
  /* Copy the action of the LW instruction */
  address_word mask = LOADDRMASK;
  address_word mask = LOADDRMASK;
  address_word access = AccessLength_WORD;
  address_word access = AccessLength_WORD;
  address_word reverseendian = (ReverseEndian ? (mask ^ access) : 0);
  address_word reverseendian = (ReverseEndian ? (mask ^ access) : 0);
  address_word bigendiancpu = (BigEndianCPU ? (mask ^ access) : 0);
  address_word bigendiancpu = (BigEndianCPU ? (mask ^ access) : 0);
  unsigned int byte;
  unsigned int byte;
  address_word paddr;
  address_word paddr;
  int uncached;
  int uncached;
  unsigned64 memval;
  unsigned64 memval;
 
 
  if ((vaddr & access) != 0)
  if ((vaddr & access) != 0)
    SignalExceptionInstructionFetch ();
    SignalExceptionInstructionFetch ();
  AddressTranslation (vaddr, isINSTRUCTION, isLOAD, &paddr, &uncached, isTARGET, isREAL);
  AddressTranslation (vaddr, isINSTRUCTION, isLOAD, &paddr, &uncached, isTARGET, isREAL);
  paddr = ((paddr & ~mask) | ((paddr & mask) ^ reverseendian));
  paddr = ((paddr & ~mask) | ((paddr & mask) ^ reverseendian));
  LoadMemory (&memval, NULL, uncached, access, paddr, vaddr, isINSTRUCTION, isREAL);
  LoadMemory (&memval, NULL, uncached, access, paddr, vaddr, isINSTRUCTION, isREAL);
  byte = ((vaddr & mask) ^ bigendiancpu);
  byte = ((vaddr & mask) ^ bigendiancpu);
  return (memval >> (8 * byte));
  return (memval >> (8 * byte));
}
}
 
 
 
 
INLINE_SIM_MAIN (unsigned16)
INLINE_SIM_MAIN (unsigned16)
ifetch16 (SIM_DESC SD,
ifetch16 (SIM_DESC SD,
          sim_cpu *CPU,
          sim_cpu *CPU,
          address_word cia,
          address_word cia,
          address_word vaddr)
          address_word vaddr)
{
{
  /* Copy the action of the LH instruction */
  /* Copy the action of the LH instruction */
  address_word mask = LOADDRMASK;
  address_word mask = LOADDRMASK;
  address_word access = AccessLength_HALFWORD;
  address_word access = AccessLength_HALFWORD;
  address_word reverseendian = (ReverseEndian ? (mask ^ access) : 0);
  address_word reverseendian = (ReverseEndian ? (mask ^ access) : 0);
  address_word bigendiancpu = (BigEndianCPU ? (mask ^ access) : 0);
  address_word bigendiancpu = (BigEndianCPU ? (mask ^ access) : 0);
  unsigned int byte;
  unsigned int byte;
  address_word paddr;
  address_word paddr;
  int uncached;
  int uncached;
  unsigned64 memval;
  unsigned64 memval;
 
 
  if ((vaddr & access) != 0)
  if ((vaddr & access) != 0)
    SignalExceptionInstructionFetch ();
    SignalExceptionInstructionFetch ();
  AddressTranslation (vaddr, isINSTRUCTION, isLOAD, &paddr, &uncached, isTARGET, isREAL);
  AddressTranslation (vaddr, isINSTRUCTION, isLOAD, &paddr, &uncached, isTARGET, isREAL);
  paddr = ((paddr & ~mask) | ((paddr & mask) ^ reverseendian));
  paddr = ((paddr & ~mask) | ((paddr & mask) ^ reverseendian));
  LoadMemory (&memval, NULL, uncached, access, paddr, vaddr, isINSTRUCTION, isREAL);
  LoadMemory (&memval, NULL, uncached, access, paddr, vaddr, isINSTRUCTION, isREAL);
  byte = ((vaddr & mask) ^ bigendiancpu);
  byte = ((vaddr & mask) ^ bigendiancpu);
  return (memval >> (8 * byte));
  return (memval >> (8 * byte));
}
}
 
 
 
 
 
 
/* Description from page A-26 of the "MIPS IV Instruction Set" manual (revision 3.1) */
/* Description from page A-26 of the "MIPS IV Instruction Set" manual (revision 3.1) */
/* Order loads and stores to synchronise shared memory. Perform the
/* Order loads and stores to synchronise shared memory. Perform the
   action necessary to make the effects of groups of synchronizable
   action necessary to make the effects of groups of synchronizable
   loads and stores indicated by stype occur in the same order for all
   loads and stores indicated by stype occur in the same order for all
   processors. */
   processors. */
INLINE_SIM_MAIN (void)
INLINE_SIM_MAIN (void)
sync_operation (SIM_DESC sd,
sync_operation (SIM_DESC sd,
                sim_cpu *cpu,
                sim_cpu *cpu,
                address_word cia,
                address_word cia,
                int stype)
                int stype)
{
{
#ifdef DEBUG
#ifdef DEBUG
  sim_io_printf(sd,"SyncOperation(%d) : TODO\n",stype);
  sim_io_printf(sd,"SyncOperation(%d) : TODO\n",stype);
#endif /* DEBUG */
#endif /* DEBUG */
  return;
  return;
}
}
 
 
INLINE_SIM_MAIN (void)
INLINE_SIM_MAIN (void)
cache_op (SIM_DESC SD,
cache_op (SIM_DESC SD,
          sim_cpu *CPU,
          sim_cpu *CPU,
          address_word cia,
          address_word cia,
          int op,
          int op,
          address_word pAddr,
          address_word pAddr,
          address_word vAddr,
          address_word vAddr,
          unsigned int instruction)
          unsigned int instruction)
{
{
#if 1 /* stop warning message being displayed (we should really just remove the code) */
#if 1 /* stop warning message being displayed (we should really just remove the code) */
  static int icache_warning = 1;
  static int icache_warning = 1;
  static int dcache_warning = 1;
  static int dcache_warning = 1;
#else
#else
  static int icache_warning = 0;
  static int icache_warning = 0;
  static int dcache_warning = 0;
  static int dcache_warning = 0;
#endif
#endif
 
 
  /* If CP0 is not useable (User or Supervisor mode) and the CP0
  /* If CP0 is not useable (User or Supervisor mode) and the CP0
     enable bit in the Status Register is clear - a coprocessor
     enable bit in the Status Register is clear - a coprocessor
     unusable exception is taken. */
     unusable exception is taken. */
#if 0
#if 0
  sim_io_printf(SD,"TODO: Cache availability checking (PC = 0x%s)\n",pr_addr(cia));
  sim_io_printf(SD,"TODO: Cache availability checking (PC = 0x%s)\n",pr_addr(cia));
#endif
#endif
 
 
  switch (op & 0x3) {
  switch (op & 0x3) {
    case 0: /* instruction cache */
    case 0: /* instruction cache */
      switch (op >> 2) {
      switch (op >> 2) {
        case 0: /* Index Invalidate */
        case 0: /* Index Invalidate */
        case 1: /* Index Load Tag */
        case 1: /* Index Load Tag */
        case 2: /* Index Store Tag */
        case 2: /* Index Store Tag */
        case 4: /* Hit Invalidate */
        case 4: /* Hit Invalidate */
        case 5: /* Fill */
        case 5: /* Fill */
        case 6: /* Hit Writeback */
        case 6: /* Hit Writeback */
          if (!icache_warning)
          if (!icache_warning)
            {
            {
              sim_io_eprintf(SD,"Instruction CACHE operation %d to be coded\n",(op >> 2));
              sim_io_eprintf(SD,"Instruction CACHE operation %d to be coded\n",(op >> 2));
              icache_warning = 1;
              icache_warning = 1;
            }
            }
          break;
          break;
 
 
        default:
        default:
          SignalException(ReservedInstruction,instruction);
          SignalException(ReservedInstruction,instruction);
          break;
          break;
      }
      }
      break;
      break;
 
 
    case 1: /* data cache */
    case 1: /* data cache */
    case 3: /* secondary data cache */
    case 3: /* secondary data cache */
      switch (op >> 2) {
      switch (op >> 2) {
        case 0: /* Index Writeback Invalidate */
        case 0: /* Index Writeback Invalidate */
        case 1: /* Index Load Tag */
        case 1: /* Index Load Tag */
        case 2: /* Index Store Tag */
        case 2: /* Index Store Tag */
        case 3: /* Create Dirty */
        case 3: /* Create Dirty */
        case 4: /* Hit Invalidate */
        case 4: /* Hit Invalidate */
        case 5: /* Hit Writeback Invalidate */
        case 5: /* Hit Writeback Invalidate */
        case 6: /* Hit Writeback */
        case 6: /* Hit Writeback */
          if (!dcache_warning)
          if (!dcache_warning)
            {
            {
              sim_io_eprintf(SD,"Data CACHE operation %d to be coded\n",(op >> 2));
              sim_io_eprintf(SD,"Data CACHE operation %d to be coded\n",(op >> 2));
              dcache_warning = 1;
              dcache_warning = 1;
            }
            }
          break;
          break;
 
 
        default:
        default:
          SignalException(ReservedInstruction,instruction);
          SignalException(ReservedInstruction,instruction);
          break;
          break;
      }
      }
      break;
      break;
 
 
    default: /* unrecognised cache ID */
    default: /* unrecognised cache ID */
      SignalException(ReservedInstruction,instruction);
      SignalException(ReservedInstruction,instruction);
      break;
      break;
  }
  }
 
 
  return;
  return;
}
}
 
 
 
 
INLINE_SIM_MAIN (void)
INLINE_SIM_MAIN (void)
pending_tick (SIM_DESC SD,
pending_tick (SIM_DESC SD,
              sim_cpu *CPU,
              sim_cpu *CPU,
              address_word cia)
              address_word cia)
{
{
  if (PENDING_TRACE)
  if (PENDING_TRACE)
    sim_io_eprintf (SD, "PENDING_DRAIN - 0x%lx - pending_in = %d, pending_out = %d, pending_total = %d\n", (unsigned long) cia, PENDING_IN, PENDING_OUT, PENDING_TOTAL);
    sim_io_eprintf (SD, "PENDING_DRAIN - 0x%lx - pending_in = %d, pending_out = %d, pending_total = %d\n", (unsigned long) cia, PENDING_IN, PENDING_OUT, PENDING_TOTAL);
  if (PENDING_OUT != PENDING_IN)
  if (PENDING_OUT != PENDING_IN)
    {
    {
      int loop;
      int loop;
      int index = PENDING_OUT;
      int index = PENDING_OUT;
      int total = PENDING_TOTAL;
      int total = PENDING_TOTAL;
      if (PENDING_TOTAL == 0)
      if (PENDING_TOTAL == 0)
        sim_engine_abort (SD, CPU, cia, "PENDING_DRAIN - Mis-match on pending update pointers\n");
        sim_engine_abort (SD, CPU, cia, "PENDING_DRAIN - Mis-match on pending update pointers\n");
      for (loop = 0, index = PENDING_OUT;
      for (loop = 0, index = PENDING_OUT;
           (loop < total);
           (loop < total);
           loop++, index = (index + 1) % PSLOTS)
           loop++, index = (index + 1) % PSLOTS)
        {
        {
          if (PENDING_SLOT_DEST[index] != NULL)
          if (PENDING_SLOT_DEST[index] != NULL)
            {
            {
              PENDING_SLOT_DELAY[index] -= 1;
              PENDING_SLOT_DELAY[index] -= 1;
              if (PENDING_SLOT_DELAY[index] == 0)
              if (PENDING_SLOT_DELAY[index] == 0)
                {
                {
                  if (PENDING_TRACE)
                  if (PENDING_TRACE)
                    sim_io_eprintf (SD, "PENDING_DRAIN - drained - index %d, dest 0x%lx, bit %d, val 0x%lx, size %d\n",
                    sim_io_eprintf (SD, "PENDING_DRAIN - drained - index %d, dest 0x%lx, bit %d, val 0x%lx, size %d\n",
                                    index,
                                    index,
                                    (unsigned long) PENDING_SLOT_DEST[index],
                                    (unsigned long) PENDING_SLOT_DEST[index],
                                    PENDING_SLOT_BIT[index],
                                    PENDING_SLOT_BIT[index],
                                    (unsigned long) PENDING_SLOT_VALUE[index],
                                    (unsigned long) PENDING_SLOT_VALUE[index],
                                    PENDING_SLOT_SIZE[index]);
                                    PENDING_SLOT_SIZE[index]);
                  if (PENDING_SLOT_BIT[index] >= 0)
                  if (PENDING_SLOT_BIT[index] >= 0)
                    switch (PENDING_SLOT_SIZE[index])
                    switch (PENDING_SLOT_SIZE[index])
                      {
                      {
                      case 4:
                      case 4:
                        if (PENDING_SLOT_VALUE[index])
                        if (PENDING_SLOT_VALUE[index])
                          *(unsigned32*)PENDING_SLOT_DEST[index] |=
                          *(unsigned32*)PENDING_SLOT_DEST[index] |=
                            BIT32 (PENDING_SLOT_BIT[index]);
                            BIT32 (PENDING_SLOT_BIT[index]);
                        else
                        else
                          *(unsigned32*)PENDING_SLOT_DEST[index] &=
                          *(unsigned32*)PENDING_SLOT_DEST[index] &=
                            BIT32 (PENDING_SLOT_BIT[index]);
                            BIT32 (PENDING_SLOT_BIT[index]);
                        break;
                        break;
                      case 8:
                      case 8:
                        if (PENDING_SLOT_VALUE[index])
                        if (PENDING_SLOT_VALUE[index])
                          *(unsigned64*)PENDING_SLOT_DEST[index] |=
                          *(unsigned64*)PENDING_SLOT_DEST[index] |=
                            BIT64 (PENDING_SLOT_BIT[index]);
                            BIT64 (PENDING_SLOT_BIT[index]);
                        else
                        else
                          *(unsigned64*)PENDING_SLOT_DEST[index] &=
                          *(unsigned64*)PENDING_SLOT_DEST[index] &=
                            BIT64 (PENDING_SLOT_BIT[index]);
                            BIT64 (PENDING_SLOT_BIT[index]);
                        break;
                        break;
                      }
                      }
                  else
                  else
                    switch (PENDING_SLOT_SIZE[index])
                    switch (PENDING_SLOT_SIZE[index])
                      {
                      {
                      case 4:
                      case 4:
                        *(unsigned32*)PENDING_SLOT_DEST[index] =
                        *(unsigned32*)PENDING_SLOT_DEST[index] =
                          PENDING_SLOT_VALUE[index];
                          PENDING_SLOT_VALUE[index];
                        break;
                        break;
                      case 8:
                      case 8:
                        *(unsigned64*)PENDING_SLOT_DEST[index] =
                        *(unsigned64*)PENDING_SLOT_DEST[index] =
                          PENDING_SLOT_VALUE[index];
                          PENDING_SLOT_VALUE[index];
                        break;
                        break;
                      }
                      }
                  if (PENDING_OUT == index)
                  if (PENDING_OUT == index)
                    {
                    {
                      PENDING_SLOT_DEST[index] = NULL;
                      PENDING_SLOT_DEST[index] = NULL;
                      PENDING_OUT = (PENDING_OUT + 1) % PSLOTS;
                      PENDING_OUT = (PENDING_OUT + 1) % PSLOTS;
                      PENDING_TOTAL--;
                      PENDING_TOTAL--;
                    }
                    }
                }
                }
              else if (PENDING_TRACE && PENDING_SLOT_DELAY[index] > 0)
              else if (PENDING_TRACE && PENDING_SLOT_DELAY[index] > 0)
                sim_io_eprintf (SD, "PENDING_DRAIN - queued - index %d, delay %d, dest 0x%lx, bit %d, val 0x%lx, size %d\n",
                sim_io_eprintf (SD, "PENDING_DRAIN - queued - index %d, delay %d, dest 0x%lx, bit %d, val 0x%lx, size %d\n",
                                index, PENDING_SLOT_DELAY[index],
                                index, PENDING_SLOT_DELAY[index],
                                (unsigned long) PENDING_SLOT_DEST[index],
                                (unsigned long) PENDING_SLOT_DEST[index],
                                PENDING_SLOT_BIT[index],
                                PENDING_SLOT_BIT[index],
                                (unsigned long) PENDING_SLOT_VALUE[index],
                                (unsigned long) PENDING_SLOT_VALUE[index],
                                PENDING_SLOT_SIZE[index]);
                                PENDING_SLOT_SIZE[index]);
 
 
            }
            }
        }
        }
    }
    }
}
}
 
 
 
 
#endif
#endif
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.