/* GNU/Linux on ARM target support.
|
/* GNU/Linux on ARM target support.
|
|
|
Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
|
Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
|
2009, 2010 Free Software Foundation, Inc.
|
2009, 2010 Free Software Foundation, Inc.
|
|
|
This file is part of GDB.
|
This file is part of GDB.
|
|
|
This program is free software; you can redistribute it and/or modify
|
This program is free software; you can redistribute it and/or modify
|
it under the terms of the GNU General Public License as published by
|
it under the terms of the GNU General Public License as published by
|
the Free Software Foundation; either version 3 of the License, or
|
the Free Software Foundation; either version 3 of the License, or
|
(at your option) any later version.
|
(at your option) any later version.
|
|
|
This program is distributed in the hope that it will be useful,
|
This program is distributed in the hope that it will be useful,
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
GNU General Public License for more details.
|
GNU General Public License for more details.
|
|
|
You should have received a copy of the GNU General Public License
|
You should have received a copy of the GNU General Public License
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
#include "defs.h"
|
#include "defs.h"
|
#include "target.h"
|
#include "target.h"
|
#include "value.h"
|
#include "value.h"
|
#include "gdbtypes.h"
|
#include "gdbtypes.h"
|
#include "floatformat.h"
|
#include "floatformat.h"
|
#include "gdbcore.h"
|
#include "gdbcore.h"
|
#include "frame.h"
|
#include "frame.h"
|
#include "regcache.h"
|
#include "regcache.h"
|
#include "doublest.h"
|
#include "doublest.h"
|
#include "solib-svr4.h"
|
#include "solib-svr4.h"
|
#include "osabi.h"
|
#include "osabi.h"
|
#include "regset.h"
|
#include "regset.h"
|
#include "trad-frame.h"
|
#include "trad-frame.h"
|
#include "tramp-frame.h"
|
#include "tramp-frame.h"
|
#include "breakpoint.h"
|
#include "breakpoint.h"
|
|
|
#include "arm-tdep.h"
|
#include "arm-tdep.h"
|
#include "arm-linux-tdep.h"
|
#include "arm-linux-tdep.h"
|
#include "linux-tdep.h"
|
#include "linux-tdep.h"
|
#include "glibc-tdep.h"
|
#include "glibc-tdep.h"
|
#include "arch-utils.h"
|
#include "arch-utils.h"
|
#include "inferior.h"
|
#include "inferior.h"
|
#include "gdbthread.h"
|
#include "gdbthread.h"
|
#include "symfile.h"
|
#include "symfile.h"
|
|
|
#include "gdb_string.h"
|
#include "gdb_string.h"
|
|
|
extern int arm_apcs_32;
|
extern int arm_apcs_32;
|
|
|
/* Under ARM GNU/Linux the traditional way of performing a breakpoint
|
/* Under ARM GNU/Linux the traditional way of performing a breakpoint
|
is to execute a particular software interrupt, rather than use a
|
is to execute a particular software interrupt, rather than use a
|
particular undefined instruction to provoke a trap. Upon exection
|
particular undefined instruction to provoke a trap. Upon exection
|
of the software interrupt the kernel stops the inferior with a
|
of the software interrupt the kernel stops the inferior with a
|
SIGTRAP, and wakes the debugger. */
|
SIGTRAP, and wakes the debugger. */
|
|
|
static const char arm_linux_arm_le_breakpoint[] = { 0x01, 0x00, 0x9f, 0xef };
|
static const char arm_linux_arm_le_breakpoint[] = { 0x01, 0x00, 0x9f, 0xef };
|
|
|
static const char arm_linux_arm_be_breakpoint[] = { 0xef, 0x9f, 0x00, 0x01 };
|
static const char arm_linux_arm_be_breakpoint[] = { 0xef, 0x9f, 0x00, 0x01 };
|
|
|
/* However, the EABI syscall interface (new in Nov. 2005) does not look at
|
/* However, the EABI syscall interface (new in Nov. 2005) does not look at
|
the operand of the swi if old-ABI compatibility is disabled. Therefore,
|
the operand of the swi if old-ABI compatibility is disabled. Therefore,
|
use an undefined instruction instead. This is supported as of kernel
|
use an undefined instruction instead. This is supported as of kernel
|
version 2.5.70 (May 2003), so should be a safe assumption for EABI
|
version 2.5.70 (May 2003), so should be a safe assumption for EABI
|
binaries. */
|
binaries. */
|
|
|
static const char eabi_linux_arm_le_breakpoint[] = { 0xf0, 0x01, 0xf0, 0xe7 };
|
static const char eabi_linux_arm_le_breakpoint[] = { 0xf0, 0x01, 0xf0, 0xe7 };
|
|
|
static const char eabi_linux_arm_be_breakpoint[] = { 0xe7, 0xf0, 0x01, 0xf0 };
|
static const char eabi_linux_arm_be_breakpoint[] = { 0xe7, 0xf0, 0x01, 0xf0 };
|
|
|
/* All the kernels which support Thumb support using a specific undefined
|
/* All the kernels which support Thumb support using a specific undefined
|
instruction for the Thumb breakpoint. */
|
instruction for the Thumb breakpoint. */
|
|
|
static const char arm_linux_thumb_be_breakpoint[] = {0xde, 0x01};
|
static const char arm_linux_thumb_be_breakpoint[] = {0xde, 0x01};
|
|
|
static const char arm_linux_thumb_le_breakpoint[] = {0x01, 0xde};
|
static const char arm_linux_thumb_le_breakpoint[] = {0x01, 0xde};
|
|
|
/* Because the 16-bit Thumb breakpoint is affected by Thumb-2 IT blocks,
|
/* Because the 16-bit Thumb breakpoint is affected by Thumb-2 IT blocks,
|
we must use a length-appropriate breakpoint for 32-bit Thumb
|
we must use a length-appropriate breakpoint for 32-bit Thumb
|
instructions. See also thumb_get_next_pc. */
|
instructions. See also thumb_get_next_pc. */
|
|
|
static const char arm_linux_thumb2_be_breakpoint[] = { 0xf7, 0xf0, 0xa0, 0x00 };
|
static const char arm_linux_thumb2_be_breakpoint[] = { 0xf7, 0xf0, 0xa0, 0x00 };
|
|
|
static const char arm_linux_thumb2_le_breakpoint[] = { 0xf0, 0xf7, 0x00, 0xa0 };
|
static const char arm_linux_thumb2_le_breakpoint[] = { 0xf0, 0xf7, 0x00, 0xa0 };
|
|
|
/* Description of the longjmp buffer. */
|
/* Description of the longjmp buffer. */
|
#define ARM_LINUX_JB_ELEMENT_SIZE INT_REGISTER_SIZE
|
#define ARM_LINUX_JB_ELEMENT_SIZE INT_REGISTER_SIZE
|
#define ARM_LINUX_JB_PC 21
|
#define ARM_LINUX_JB_PC 21
|
|
|
/*
|
/*
|
Dynamic Linking on ARM GNU/Linux
|
Dynamic Linking on ARM GNU/Linux
|
--------------------------------
|
--------------------------------
|
|
|
Note: PLT = procedure linkage table
|
Note: PLT = procedure linkage table
|
GOT = global offset table
|
GOT = global offset table
|
|
|
As much as possible, ELF dynamic linking defers the resolution of
|
As much as possible, ELF dynamic linking defers the resolution of
|
jump/call addresses until the last minute. The technique used is
|
jump/call addresses until the last minute. The technique used is
|
inspired by the i386 ELF design, and is based on the following
|
inspired by the i386 ELF design, and is based on the following
|
constraints.
|
constraints.
|
|
|
1) The calling technique should not force a change in the assembly
|
1) The calling technique should not force a change in the assembly
|
code produced for apps; it MAY cause changes in the way assembly
|
code produced for apps; it MAY cause changes in the way assembly
|
code is produced for position independent code (i.e. shared
|
code is produced for position independent code (i.e. shared
|
libraries).
|
libraries).
|
|
|
2) The technique must be such that all executable areas must not be
|
2) The technique must be such that all executable areas must not be
|
modified; and any modified areas must not be executed.
|
modified; and any modified areas must not be executed.
|
|
|
To do this, there are three steps involved in a typical jump:
|
To do this, there are three steps involved in a typical jump:
|
|
|
1) in the code
|
1) in the code
|
2) through the PLT
|
2) through the PLT
|
3) using a pointer from the GOT
|
3) using a pointer from the GOT
|
|
|
When the executable or library is first loaded, each GOT entry is
|
When the executable or library is first loaded, each GOT entry is
|
initialized to point to the code which implements dynamic name
|
initialized to point to the code which implements dynamic name
|
resolution and code finding. This is normally a function in the
|
resolution and code finding. This is normally a function in the
|
program interpreter (on ARM GNU/Linux this is usually
|
program interpreter (on ARM GNU/Linux this is usually
|
ld-linux.so.2, but it does not have to be). On the first
|
ld-linux.so.2, but it does not have to be). On the first
|
invocation, the function is located and the GOT entry is replaced
|
invocation, the function is located and the GOT entry is replaced
|
with the real function address. Subsequent calls go through steps
|
with the real function address. Subsequent calls go through steps
|
1, 2 and 3 and end up calling the real code.
|
1, 2 and 3 and end up calling the real code.
|
|
|
1) In the code:
|
1) In the code:
|
|
|
b function_call
|
b function_call
|
bl function_call
|
bl function_call
|
|
|
This is typical ARM code using the 26 bit relative branch or branch
|
This is typical ARM code using the 26 bit relative branch or branch
|
and link instructions. The target of the instruction
|
and link instructions. The target of the instruction
|
(function_call is usually the address of the function to be called.
|
(function_call is usually the address of the function to be called.
|
In position independent code, the target of the instruction is
|
In position independent code, the target of the instruction is
|
actually an entry in the PLT when calling functions in a shared
|
actually an entry in the PLT when calling functions in a shared
|
library. Note that this call is identical to a normal function
|
library. Note that this call is identical to a normal function
|
call, only the target differs.
|
call, only the target differs.
|
|
|
2) In the PLT:
|
2) In the PLT:
|
|
|
The PLT is a synthetic area, created by the linker. It exists in
|
The PLT is a synthetic area, created by the linker. It exists in
|
both executables and libraries. It is an array of stubs, one per
|
both executables and libraries. It is an array of stubs, one per
|
imported function call. It looks like this:
|
imported function call. It looks like this:
|
|
|
PLT[0]:
|
PLT[0]:
|
str lr, [sp, #-4]! @push the return address (lr)
|
str lr, [sp, #-4]! @push the return address (lr)
|
ldr lr, [pc, #16] @load from 6 words ahead
|
ldr lr, [pc, #16] @load from 6 words ahead
|
add lr, pc, lr @form an address for GOT[0]
|
add lr, pc, lr @form an address for GOT[0]
|
ldr pc, [lr, #8]! @jump to the contents of that addr
|
ldr pc, [lr, #8]! @jump to the contents of that addr
|
|
|
The return address (lr) is pushed on the stack and used for
|
The return address (lr) is pushed on the stack and used for
|
calculations. The load on the second line loads the lr with
|
calculations. The load on the second line loads the lr with
|
&GOT[3] - . - 20. The addition on the third leaves:
|
&GOT[3] - . - 20. The addition on the third leaves:
|
|
|
lr = (&GOT[3] - . - 20) + (. + 8)
|
lr = (&GOT[3] - . - 20) + (. + 8)
|
lr = (&GOT[3] - 12)
|
lr = (&GOT[3] - 12)
|
lr = &GOT[0]
|
lr = &GOT[0]
|
|
|
On the fourth line, the pc and lr are both updated, so that:
|
On the fourth line, the pc and lr are both updated, so that:
|
|
|
pc = GOT[2]
|
pc = GOT[2]
|
lr = &GOT[0] + 8
|
lr = &GOT[0] + 8
|
= &GOT[2]
|
= &GOT[2]
|
|
|
NOTE: PLT[0] borrows an offset .word from PLT[1]. This is a little
|
NOTE: PLT[0] borrows an offset .word from PLT[1]. This is a little
|
"tight", but allows us to keep all the PLT entries the same size.
|
"tight", but allows us to keep all the PLT entries the same size.
|
|
|
PLT[n+1]:
|
PLT[n+1]:
|
ldr ip, [pc, #4] @load offset from gotoff
|
ldr ip, [pc, #4] @load offset from gotoff
|
add ip, pc, ip @add the offset to the pc
|
add ip, pc, ip @add the offset to the pc
|
ldr pc, [ip] @jump to that address
|
ldr pc, [ip] @jump to that address
|
gotoff: .word GOT[n+3] - .
|
gotoff: .word GOT[n+3] - .
|
|
|
The load on the first line, gets an offset from the fourth word of
|
The load on the first line, gets an offset from the fourth word of
|
the PLT entry. The add on the second line makes ip = &GOT[n+3],
|
the PLT entry. The add on the second line makes ip = &GOT[n+3],
|
which contains either a pointer to PLT[0] (the fixup trampoline) or
|
which contains either a pointer to PLT[0] (the fixup trampoline) or
|
a pointer to the actual code.
|
a pointer to the actual code.
|
|
|
3) In the GOT:
|
3) In the GOT:
|
|
|
The GOT contains helper pointers for both code (PLT) fixups and
|
The GOT contains helper pointers for both code (PLT) fixups and
|
data fixups. The first 3 entries of the GOT are special. The next
|
data fixups. The first 3 entries of the GOT are special. The next
|
M entries (where M is the number of entries in the PLT) belong to
|
M entries (where M is the number of entries in the PLT) belong to
|
the PLT fixups. The next D (all remaining) entries belong to
|
the PLT fixups. The next D (all remaining) entries belong to
|
various data fixups. The actual size of the GOT is 3 + M + D.
|
various data fixups. The actual size of the GOT is 3 + M + D.
|
|
|
The GOT is also a synthetic area, created by the linker. It exists
|
The GOT is also a synthetic area, created by the linker. It exists
|
in both executables and libraries. When the GOT is first
|
in both executables and libraries. When the GOT is first
|
initialized , all the GOT entries relating to PLT fixups are
|
initialized , all the GOT entries relating to PLT fixups are
|
pointing to code back at PLT[0].
|
pointing to code back at PLT[0].
|
|
|
The special entries in the GOT are:
|
The special entries in the GOT are:
|
|
|
GOT[0] = linked list pointer used by the dynamic loader
|
GOT[0] = linked list pointer used by the dynamic loader
|
GOT[1] = pointer to the reloc table for this module
|
GOT[1] = pointer to the reloc table for this module
|
GOT[2] = pointer to the fixup/resolver code
|
GOT[2] = pointer to the fixup/resolver code
|
|
|
The first invocation of function call comes through and uses the
|
The first invocation of function call comes through and uses the
|
fixup/resolver code. On the entry to the fixup/resolver code:
|
fixup/resolver code. On the entry to the fixup/resolver code:
|
|
|
ip = &GOT[n+3]
|
ip = &GOT[n+3]
|
lr = &GOT[2]
|
lr = &GOT[2]
|
stack[0] = return address (lr) of the function call
|
stack[0] = return address (lr) of the function call
|
[r0, r1, r2, r3] are still the arguments to the function call
|
[r0, r1, r2, r3] are still the arguments to the function call
|
|
|
This is enough information for the fixup/resolver code to work
|
This is enough information for the fixup/resolver code to work
|
with. Before the fixup/resolver code returns, it actually calls
|
with. Before the fixup/resolver code returns, it actually calls
|
the requested function and repairs &GOT[n+3]. */
|
the requested function and repairs &GOT[n+3]. */
|
|
|
/* The constants below were determined by examining the following files
|
/* The constants below were determined by examining the following files
|
in the linux kernel sources:
|
in the linux kernel sources:
|
|
|
arch/arm/kernel/signal.c
|
arch/arm/kernel/signal.c
|
- see SWI_SYS_SIGRETURN and SWI_SYS_RT_SIGRETURN
|
- see SWI_SYS_SIGRETURN and SWI_SYS_RT_SIGRETURN
|
include/asm-arm/unistd.h
|
include/asm-arm/unistd.h
|
- see __NR_sigreturn, __NR_rt_sigreturn, and __NR_SYSCALL_BASE */
|
- see __NR_sigreturn, __NR_rt_sigreturn, and __NR_SYSCALL_BASE */
|
|
|
#define ARM_LINUX_SIGRETURN_INSTR 0xef900077
|
#define ARM_LINUX_SIGRETURN_INSTR 0xef900077
|
#define ARM_LINUX_RT_SIGRETURN_INSTR 0xef9000ad
|
#define ARM_LINUX_RT_SIGRETURN_INSTR 0xef9000ad
|
|
|
/* For ARM EABI, the syscall number is not in the SWI instruction
|
/* For ARM EABI, the syscall number is not in the SWI instruction
|
(instead it is loaded into r7). We recognize the pattern that
|
(instead it is loaded into r7). We recognize the pattern that
|
glibc uses... alternatively, we could arrange to do this by
|
glibc uses... alternatively, we could arrange to do this by
|
function name, but they are not always exported. */
|
function name, but they are not always exported. */
|
#define ARM_SET_R7_SIGRETURN 0xe3a07077
|
#define ARM_SET_R7_SIGRETURN 0xe3a07077
|
#define ARM_SET_R7_RT_SIGRETURN 0xe3a070ad
|
#define ARM_SET_R7_RT_SIGRETURN 0xe3a070ad
|
#define ARM_EABI_SYSCALL 0xef000000
|
#define ARM_EABI_SYSCALL 0xef000000
|
|
|
/* OABI syscall restart trampoline, used for EABI executables too
|
/* OABI syscall restart trampoline, used for EABI executables too
|
whenever OABI support has been enabled in the kernel. */
|
whenever OABI support has been enabled in the kernel. */
|
#define ARM_OABI_SYSCALL_RESTART_SYSCALL 0xef900000
|
#define ARM_OABI_SYSCALL_RESTART_SYSCALL 0xef900000
|
#define ARM_LDR_PC_SP_12 0xe49df00c
|
#define ARM_LDR_PC_SP_12 0xe49df00c
|
|
|
static void
|
static void
|
arm_linux_sigtramp_cache (struct frame_info *this_frame,
|
arm_linux_sigtramp_cache (struct frame_info *this_frame,
|
struct trad_frame_cache *this_cache,
|
struct trad_frame_cache *this_cache,
|
CORE_ADDR func, int regs_offset)
|
CORE_ADDR func, int regs_offset)
|
{
|
{
|
CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
|
CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
|
CORE_ADDR base = sp + regs_offset;
|
CORE_ADDR base = sp + regs_offset;
|
int i;
|
int i;
|
|
|
for (i = 0; i < 16; i++)
|
for (i = 0; i < 16; i++)
|
trad_frame_set_reg_addr (this_cache, i, base + i * 4);
|
trad_frame_set_reg_addr (this_cache, i, base + i * 4);
|
|
|
trad_frame_set_reg_addr (this_cache, ARM_PS_REGNUM, base + 16 * 4);
|
trad_frame_set_reg_addr (this_cache, ARM_PS_REGNUM, base + 16 * 4);
|
|
|
/* The VFP or iWMMXt registers may be saved on the stack, but there's
|
/* The VFP or iWMMXt registers may be saved on the stack, but there's
|
no reliable way to restore them (yet). */
|
no reliable way to restore them (yet). */
|
|
|
/* Save a frame ID. */
|
/* Save a frame ID. */
|
trad_frame_set_id (this_cache, frame_id_build (sp, func));
|
trad_frame_set_id (this_cache, frame_id_build (sp, func));
|
}
|
}
|
|
|
/* There are a couple of different possible stack layouts that
|
/* There are a couple of different possible stack layouts that
|
we need to support.
|
we need to support.
|
|
|
Before version 2.6.18, the kernel used completely independent
|
Before version 2.6.18, the kernel used completely independent
|
layouts for non-RT and RT signals. For non-RT signals the stack
|
layouts for non-RT and RT signals. For non-RT signals the stack
|
began directly with a struct sigcontext. For RT signals the stack
|
began directly with a struct sigcontext. For RT signals the stack
|
began with two redundant pointers (to the siginfo and ucontext),
|
began with two redundant pointers (to the siginfo and ucontext),
|
and then the siginfo and ucontext.
|
and then the siginfo and ucontext.
|
|
|
As of version 2.6.18, the non-RT signal frame layout starts with
|
As of version 2.6.18, the non-RT signal frame layout starts with
|
a ucontext and the RT signal frame starts with a siginfo and then
|
a ucontext and the RT signal frame starts with a siginfo and then
|
a ucontext. Also, the ucontext now has a designated save area
|
a ucontext. Also, the ucontext now has a designated save area
|
for coprocessor registers.
|
for coprocessor registers.
|
|
|
For RT signals, it's easy to tell the difference: we look for
|
For RT signals, it's easy to tell the difference: we look for
|
pinfo, the pointer to the siginfo. If it has the expected
|
pinfo, the pointer to the siginfo. If it has the expected
|
value, we have an old layout. If it doesn't, we have the new
|
value, we have an old layout. If it doesn't, we have the new
|
layout.
|
layout.
|
|
|
For non-RT signals, it's a bit harder. We need something in one
|
For non-RT signals, it's a bit harder. We need something in one
|
layout or the other with a recognizable offset and value. We can't
|
layout or the other with a recognizable offset and value. We can't
|
use the return trampoline, because ARM usually uses SA_RESTORER,
|
use the return trampoline, because ARM usually uses SA_RESTORER,
|
in which case the stack return trampoline is not filled in.
|
in which case the stack return trampoline is not filled in.
|
We can't use the saved stack pointer, because sigaltstack might
|
We can't use the saved stack pointer, because sigaltstack might
|
be in use. So for now we guess the new layout... */
|
be in use. So for now we guess the new layout... */
|
|
|
/* There are three words (trap_no, error_code, oldmask) in
|
/* There are three words (trap_no, error_code, oldmask) in
|
struct sigcontext before r0. */
|
struct sigcontext before r0. */
|
#define ARM_SIGCONTEXT_R0 0xc
|
#define ARM_SIGCONTEXT_R0 0xc
|
|
|
/* There are five words (uc_flags, uc_link, and three for uc_stack)
|
/* There are five words (uc_flags, uc_link, and three for uc_stack)
|
in the ucontext_t before the sigcontext. */
|
in the ucontext_t before the sigcontext. */
|
#define ARM_UCONTEXT_SIGCONTEXT 0x14
|
#define ARM_UCONTEXT_SIGCONTEXT 0x14
|
|
|
/* There are three elements in an rt_sigframe before the ucontext:
|
/* There are three elements in an rt_sigframe before the ucontext:
|
pinfo, puc, and info. The first two are pointers and the third
|
pinfo, puc, and info. The first two are pointers and the third
|
is a struct siginfo, with size 128 bytes. We could follow puc
|
is a struct siginfo, with size 128 bytes. We could follow puc
|
to the ucontext, but it's simpler to skip the whole thing. */
|
to the ucontext, but it's simpler to skip the whole thing. */
|
#define ARM_OLD_RT_SIGFRAME_SIGINFO 0x8
|
#define ARM_OLD_RT_SIGFRAME_SIGINFO 0x8
|
#define ARM_OLD_RT_SIGFRAME_UCONTEXT 0x88
|
#define ARM_OLD_RT_SIGFRAME_UCONTEXT 0x88
|
|
|
#define ARM_NEW_RT_SIGFRAME_UCONTEXT 0x80
|
#define ARM_NEW_RT_SIGFRAME_UCONTEXT 0x80
|
|
|
#define ARM_NEW_SIGFRAME_MAGIC 0x5ac3c35a
|
#define ARM_NEW_SIGFRAME_MAGIC 0x5ac3c35a
|
|
|
static void
|
static void
|
arm_linux_sigreturn_init (const struct tramp_frame *self,
|
arm_linux_sigreturn_init (const struct tramp_frame *self,
|
struct frame_info *this_frame,
|
struct frame_info *this_frame,
|
struct trad_frame_cache *this_cache,
|
struct trad_frame_cache *this_cache,
|
CORE_ADDR func)
|
CORE_ADDR func)
|
{
|
{
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
|
CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
|
ULONGEST uc_flags = read_memory_unsigned_integer (sp, 4, byte_order);
|
ULONGEST uc_flags = read_memory_unsigned_integer (sp, 4, byte_order);
|
|
|
if (uc_flags == ARM_NEW_SIGFRAME_MAGIC)
|
if (uc_flags == ARM_NEW_SIGFRAME_MAGIC)
|
arm_linux_sigtramp_cache (this_frame, this_cache, func,
|
arm_linux_sigtramp_cache (this_frame, this_cache, func,
|
ARM_UCONTEXT_SIGCONTEXT
|
ARM_UCONTEXT_SIGCONTEXT
|
+ ARM_SIGCONTEXT_R0);
|
+ ARM_SIGCONTEXT_R0);
|
else
|
else
|
arm_linux_sigtramp_cache (this_frame, this_cache, func,
|
arm_linux_sigtramp_cache (this_frame, this_cache, func,
|
ARM_SIGCONTEXT_R0);
|
ARM_SIGCONTEXT_R0);
|
}
|
}
|
|
|
static void
|
static void
|
arm_linux_rt_sigreturn_init (const struct tramp_frame *self,
|
arm_linux_rt_sigreturn_init (const struct tramp_frame *self,
|
struct frame_info *this_frame,
|
struct frame_info *this_frame,
|
struct trad_frame_cache *this_cache,
|
struct trad_frame_cache *this_cache,
|
CORE_ADDR func)
|
CORE_ADDR func)
|
{
|
{
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
|
CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
|
ULONGEST pinfo = read_memory_unsigned_integer (sp, 4, byte_order);
|
ULONGEST pinfo = read_memory_unsigned_integer (sp, 4, byte_order);
|
|
|
if (pinfo == sp + ARM_OLD_RT_SIGFRAME_SIGINFO)
|
if (pinfo == sp + ARM_OLD_RT_SIGFRAME_SIGINFO)
|
arm_linux_sigtramp_cache (this_frame, this_cache, func,
|
arm_linux_sigtramp_cache (this_frame, this_cache, func,
|
ARM_OLD_RT_SIGFRAME_UCONTEXT
|
ARM_OLD_RT_SIGFRAME_UCONTEXT
|
+ ARM_UCONTEXT_SIGCONTEXT
|
+ ARM_UCONTEXT_SIGCONTEXT
|
+ ARM_SIGCONTEXT_R0);
|
+ ARM_SIGCONTEXT_R0);
|
else
|
else
|
arm_linux_sigtramp_cache (this_frame, this_cache, func,
|
arm_linux_sigtramp_cache (this_frame, this_cache, func,
|
ARM_NEW_RT_SIGFRAME_UCONTEXT
|
ARM_NEW_RT_SIGFRAME_UCONTEXT
|
+ ARM_UCONTEXT_SIGCONTEXT
|
+ ARM_UCONTEXT_SIGCONTEXT
|
+ ARM_SIGCONTEXT_R0);
|
+ ARM_SIGCONTEXT_R0);
|
}
|
}
|
|
|
static void
|
static void
|
arm_linux_restart_syscall_init (const struct tramp_frame *self,
|
arm_linux_restart_syscall_init (const struct tramp_frame *self,
|
struct frame_info *this_frame,
|
struct frame_info *this_frame,
|
struct trad_frame_cache *this_cache,
|
struct trad_frame_cache *this_cache,
|
CORE_ADDR func)
|
CORE_ADDR func)
|
{
|
{
|
CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
|
CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
|
|
|
trad_frame_set_reg_addr (this_cache, ARM_PC_REGNUM, sp);
|
trad_frame_set_reg_addr (this_cache, ARM_PC_REGNUM, sp);
|
trad_frame_set_reg_value (this_cache, ARM_SP_REGNUM, sp + 12);
|
trad_frame_set_reg_value (this_cache, ARM_SP_REGNUM, sp + 12);
|
|
|
/* Save a frame ID. */
|
/* Save a frame ID. */
|
trad_frame_set_id (this_cache, frame_id_build (sp, func));
|
trad_frame_set_id (this_cache, frame_id_build (sp, func));
|
}
|
}
|
|
|
static struct tramp_frame arm_linux_sigreturn_tramp_frame = {
|
static struct tramp_frame arm_linux_sigreturn_tramp_frame = {
|
SIGTRAMP_FRAME,
|
SIGTRAMP_FRAME,
|
4,
|
4,
|
{
|
{
|
{ ARM_LINUX_SIGRETURN_INSTR, -1 },
|
{ ARM_LINUX_SIGRETURN_INSTR, -1 },
|
{ TRAMP_SENTINEL_INSN }
|
{ TRAMP_SENTINEL_INSN }
|
},
|
},
|
arm_linux_sigreturn_init
|
arm_linux_sigreturn_init
|
};
|
};
|
|
|
static struct tramp_frame arm_linux_rt_sigreturn_tramp_frame = {
|
static struct tramp_frame arm_linux_rt_sigreturn_tramp_frame = {
|
SIGTRAMP_FRAME,
|
SIGTRAMP_FRAME,
|
4,
|
4,
|
{
|
{
|
{ ARM_LINUX_RT_SIGRETURN_INSTR, -1 },
|
{ ARM_LINUX_RT_SIGRETURN_INSTR, -1 },
|
{ TRAMP_SENTINEL_INSN }
|
{ TRAMP_SENTINEL_INSN }
|
},
|
},
|
arm_linux_rt_sigreturn_init
|
arm_linux_rt_sigreturn_init
|
};
|
};
|
|
|
static struct tramp_frame arm_eabi_linux_sigreturn_tramp_frame = {
|
static struct tramp_frame arm_eabi_linux_sigreturn_tramp_frame = {
|
SIGTRAMP_FRAME,
|
SIGTRAMP_FRAME,
|
4,
|
4,
|
{
|
{
|
{ ARM_SET_R7_SIGRETURN, -1 },
|
{ ARM_SET_R7_SIGRETURN, -1 },
|
{ ARM_EABI_SYSCALL, -1 },
|
{ ARM_EABI_SYSCALL, -1 },
|
{ TRAMP_SENTINEL_INSN }
|
{ TRAMP_SENTINEL_INSN }
|
},
|
},
|
arm_linux_sigreturn_init
|
arm_linux_sigreturn_init
|
};
|
};
|
|
|
static struct tramp_frame arm_eabi_linux_rt_sigreturn_tramp_frame = {
|
static struct tramp_frame arm_eabi_linux_rt_sigreturn_tramp_frame = {
|
SIGTRAMP_FRAME,
|
SIGTRAMP_FRAME,
|
4,
|
4,
|
{
|
{
|
{ ARM_SET_R7_RT_SIGRETURN, -1 },
|
{ ARM_SET_R7_RT_SIGRETURN, -1 },
|
{ ARM_EABI_SYSCALL, -1 },
|
{ ARM_EABI_SYSCALL, -1 },
|
{ TRAMP_SENTINEL_INSN }
|
{ TRAMP_SENTINEL_INSN }
|
},
|
},
|
arm_linux_rt_sigreturn_init
|
arm_linux_rt_sigreturn_init
|
};
|
};
|
|
|
static struct tramp_frame arm_linux_restart_syscall_tramp_frame = {
|
static struct tramp_frame arm_linux_restart_syscall_tramp_frame = {
|
NORMAL_FRAME,
|
NORMAL_FRAME,
|
4,
|
4,
|
{
|
{
|
{ ARM_OABI_SYSCALL_RESTART_SYSCALL, -1 },
|
{ ARM_OABI_SYSCALL_RESTART_SYSCALL, -1 },
|
{ ARM_LDR_PC_SP_12, -1 },
|
{ ARM_LDR_PC_SP_12, -1 },
|
{ TRAMP_SENTINEL_INSN }
|
{ TRAMP_SENTINEL_INSN }
|
},
|
},
|
arm_linux_restart_syscall_init
|
arm_linux_restart_syscall_init
|
};
|
};
|
|
|
/* Core file and register set support. */
|
/* Core file and register set support. */
|
|
|
#define ARM_LINUX_SIZEOF_GREGSET (18 * INT_REGISTER_SIZE)
|
#define ARM_LINUX_SIZEOF_GREGSET (18 * INT_REGISTER_SIZE)
|
|
|
void
|
void
|
arm_linux_supply_gregset (const struct regset *regset,
|
arm_linux_supply_gregset (const struct regset *regset,
|
struct regcache *regcache,
|
struct regcache *regcache,
|
int regnum, const void *gregs_buf, size_t len)
|
int regnum, const void *gregs_buf, size_t len)
|
{
|
{
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
const gdb_byte *gregs = gregs_buf;
|
const gdb_byte *gregs = gregs_buf;
|
int regno;
|
int regno;
|
CORE_ADDR reg_pc;
|
CORE_ADDR reg_pc;
|
gdb_byte pc_buf[INT_REGISTER_SIZE];
|
gdb_byte pc_buf[INT_REGISTER_SIZE];
|
|
|
for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
|
for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
|
if (regnum == -1 || regnum == regno)
|
if (regnum == -1 || regnum == regno)
|
regcache_raw_supply (regcache, regno,
|
regcache_raw_supply (regcache, regno,
|
gregs + INT_REGISTER_SIZE * regno);
|
gregs + INT_REGISTER_SIZE * regno);
|
|
|
if (regnum == ARM_PS_REGNUM || regnum == -1)
|
if (regnum == ARM_PS_REGNUM || regnum == -1)
|
{
|
{
|
if (arm_apcs_32)
|
if (arm_apcs_32)
|
regcache_raw_supply (regcache, ARM_PS_REGNUM,
|
regcache_raw_supply (regcache, ARM_PS_REGNUM,
|
gregs + INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
|
gregs + INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
|
else
|
else
|
regcache_raw_supply (regcache, ARM_PS_REGNUM,
|
regcache_raw_supply (regcache, ARM_PS_REGNUM,
|
gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
|
gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
|
}
|
}
|
|
|
if (regnum == ARM_PC_REGNUM || regnum == -1)
|
if (regnum == ARM_PC_REGNUM || regnum == -1)
|
{
|
{
|
reg_pc = extract_unsigned_integer (gregs
|
reg_pc = extract_unsigned_integer (gregs
|
+ INT_REGISTER_SIZE * ARM_PC_REGNUM,
|
+ INT_REGISTER_SIZE * ARM_PC_REGNUM,
|
INT_REGISTER_SIZE, byte_order);
|
INT_REGISTER_SIZE, byte_order);
|
reg_pc = gdbarch_addr_bits_remove (gdbarch, reg_pc);
|
reg_pc = gdbarch_addr_bits_remove (gdbarch, reg_pc);
|
store_unsigned_integer (pc_buf, INT_REGISTER_SIZE, byte_order, reg_pc);
|
store_unsigned_integer (pc_buf, INT_REGISTER_SIZE, byte_order, reg_pc);
|
regcache_raw_supply (regcache, ARM_PC_REGNUM, pc_buf);
|
regcache_raw_supply (regcache, ARM_PC_REGNUM, pc_buf);
|
}
|
}
|
}
|
}
|
|
|
void
|
void
|
arm_linux_collect_gregset (const struct regset *regset,
|
arm_linux_collect_gregset (const struct regset *regset,
|
const struct regcache *regcache,
|
const struct regcache *regcache,
|
int regnum, void *gregs_buf, size_t len)
|
int regnum, void *gregs_buf, size_t len)
|
{
|
{
|
gdb_byte *gregs = gregs_buf;
|
gdb_byte *gregs = gregs_buf;
|
int regno;
|
int regno;
|
|
|
for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
|
for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
|
if (regnum == -1 || regnum == regno)
|
if (regnum == -1 || regnum == regno)
|
regcache_raw_collect (regcache, regno,
|
regcache_raw_collect (regcache, regno,
|
gregs + INT_REGISTER_SIZE * regno);
|
gregs + INT_REGISTER_SIZE * regno);
|
|
|
if (regnum == ARM_PS_REGNUM || regnum == -1)
|
if (regnum == ARM_PS_REGNUM || regnum == -1)
|
{
|
{
|
if (arm_apcs_32)
|
if (arm_apcs_32)
|
regcache_raw_collect (regcache, ARM_PS_REGNUM,
|
regcache_raw_collect (regcache, ARM_PS_REGNUM,
|
gregs + INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
|
gregs + INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
|
else
|
else
|
regcache_raw_collect (regcache, ARM_PS_REGNUM,
|
regcache_raw_collect (regcache, ARM_PS_REGNUM,
|
gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
|
gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
|
}
|
}
|
|
|
if (regnum == ARM_PC_REGNUM || regnum == -1)
|
if (regnum == ARM_PC_REGNUM || regnum == -1)
|
regcache_raw_collect (regcache, ARM_PC_REGNUM,
|
regcache_raw_collect (regcache, ARM_PC_REGNUM,
|
gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
|
gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
|
}
|
}
|
|
|
/* Support for register format used by the NWFPE FPA emulator. */
|
/* Support for register format used by the NWFPE FPA emulator. */
|
|
|
#define typeNone 0x00
|
#define typeNone 0x00
|
#define typeSingle 0x01
|
#define typeSingle 0x01
|
#define typeDouble 0x02
|
#define typeDouble 0x02
|
#define typeExtended 0x03
|
#define typeExtended 0x03
|
|
|
void
|
void
|
supply_nwfpe_register (struct regcache *regcache, int regno,
|
supply_nwfpe_register (struct regcache *regcache, int regno,
|
const gdb_byte *regs)
|
const gdb_byte *regs)
|
{
|
{
|
const gdb_byte *reg_data;
|
const gdb_byte *reg_data;
|
gdb_byte reg_tag;
|
gdb_byte reg_tag;
|
gdb_byte buf[FP_REGISTER_SIZE];
|
gdb_byte buf[FP_REGISTER_SIZE];
|
|
|
reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
|
reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
|
reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
|
reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
|
memset (buf, 0, FP_REGISTER_SIZE);
|
memset (buf, 0, FP_REGISTER_SIZE);
|
|
|
switch (reg_tag)
|
switch (reg_tag)
|
{
|
{
|
case typeSingle:
|
case typeSingle:
|
memcpy (buf, reg_data, 4);
|
memcpy (buf, reg_data, 4);
|
break;
|
break;
|
case typeDouble:
|
case typeDouble:
|
memcpy (buf, reg_data + 4, 4);
|
memcpy (buf, reg_data + 4, 4);
|
memcpy (buf + 4, reg_data, 4);
|
memcpy (buf + 4, reg_data, 4);
|
break;
|
break;
|
case typeExtended:
|
case typeExtended:
|
/* We want sign and exponent, then least significant bits,
|
/* We want sign and exponent, then least significant bits,
|
then most significant. NWFPE does sign, most, least. */
|
then most significant. NWFPE does sign, most, least. */
|
memcpy (buf, reg_data, 4);
|
memcpy (buf, reg_data, 4);
|
memcpy (buf + 4, reg_data + 8, 4);
|
memcpy (buf + 4, reg_data + 8, 4);
|
memcpy (buf + 8, reg_data + 4, 4);
|
memcpy (buf + 8, reg_data + 4, 4);
|
break;
|
break;
|
default:
|
default:
|
break;
|
break;
|
}
|
}
|
|
|
regcache_raw_supply (regcache, regno, buf);
|
regcache_raw_supply (regcache, regno, buf);
|
}
|
}
|
|
|
void
|
void
|
collect_nwfpe_register (const struct regcache *regcache, int regno,
|
collect_nwfpe_register (const struct regcache *regcache, int regno,
|
gdb_byte *regs)
|
gdb_byte *regs)
|
{
|
{
|
gdb_byte *reg_data;
|
gdb_byte *reg_data;
|
gdb_byte reg_tag;
|
gdb_byte reg_tag;
|
gdb_byte buf[FP_REGISTER_SIZE];
|
gdb_byte buf[FP_REGISTER_SIZE];
|
|
|
regcache_raw_collect (regcache, regno, buf);
|
regcache_raw_collect (regcache, regno, buf);
|
|
|
/* NOTE drow/2006-06-07: This code uses the tag already in the
|
/* NOTE drow/2006-06-07: This code uses the tag already in the
|
register buffer. I've preserved that when moving the code
|
register buffer. I've preserved that when moving the code
|
from the native file to the target file. But this doesn't
|
from the native file to the target file. But this doesn't
|
always make sense. */
|
always make sense. */
|
|
|
reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
|
reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
|
reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
|
reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
|
|
|
switch (reg_tag)
|
switch (reg_tag)
|
{
|
{
|
case typeSingle:
|
case typeSingle:
|
memcpy (reg_data, buf, 4);
|
memcpy (reg_data, buf, 4);
|
break;
|
break;
|
case typeDouble:
|
case typeDouble:
|
memcpy (reg_data, buf + 4, 4);
|
memcpy (reg_data, buf + 4, 4);
|
memcpy (reg_data + 4, buf, 4);
|
memcpy (reg_data + 4, buf, 4);
|
break;
|
break;
|
case typeExtended:
|
case typeExtended:
|
memcpy (reg_data, buf, 4);
|
memcpy (reg_data, buf, 4);
|
memcpy (reg_data + 4, buf + 8, 4);
|
memcpy (reg_data + 4, buf + 8, 4);
|
memcpy (reg_data + 8, buf + 4, 4);
|
memcpy (reg_data + 8, buf + 4, 4);
|
break;
|
break;
|
default:
|
default:
|
break;
|
break;
|
}
|
}
|
}
|
}
|
|
|
void
|
void
|
arm_linux_supply_nwfpe (const struct regset *regset,
|
arm_linux_supply_nwfpe (const struct regset *regset,
|
struct regcache *regcache,
|
struct regcache *regcache,
|
int regnum, const void *regs_buf, size_t len)
|
int regnum, const void *regs_buf, size_t len)
|
{
|
{
|
const gdb_byte *regs = regs_buf;
|
const gdb_byte *regs = regs_buf;
|
int regno;
|
int regno;
|
|
|
if (regnum == ARM_FPS_REGNUM || regnum == -1)
|
if (regnum == ARM_FPS_REGNUM || regnum == -1)
|
regcache_raw_supply (regcache, ARM_FPS_REGNUM,
|
regcache_raw_supply (regcache, ARM_FPS_REGNUM,
|
regs + NWFPE_FPSR_OFFSET);
|
regs + NWFPE_FPSR_OFFSET);
|
|
|
for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
|
for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
|
if (regnum == -1 || regnum == regno)
|
if (regnum == -1 || regnum == regno)
|
supply_nwfpe_register (regcache, regno, regs);
|
supply_nwfpe_register (regcache, regno, regs);
|
}
|
}
|
|
|
void
|
void
|
arm_linux_collect_nwfpe (const struct regset *regset,
|
arm_linux_collect_nwfpe (const struct regset *regset,
|
const struct regcache *regcache,
|
const struct regcache *regcache,
|
int regnum, void *regs_buf, size_t len)
|
int regnum, void *regs_buf, size_t len)
|
{
|
{
|
gdb_byte *regs = regs_buf;
|
gdb_byte *regs = regs_buf;
|
int regno;
|
int regno;
|
|
|
for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
|
for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
|
if (regnum == -1 || regnum == regno)
|
if (regnum == -1 || regnum == regno)
|
collect_nwfpe_register (regcache, regno, regs);
|
collect_nwfpe_register (regcache, regno, regs);
|
|
|
if (regnum == ARM_FPS_REGNUM || regnum == -1)
|
if (regnum == ARM_FPS_REGNUM || regnum == -1)
|
regcache_raw_collect (regcache, ARM_FPS_REGNUM,
|
regcache_raw_collect (regcache, ARM_FPS_REGNUM,
|
regs + INT_REGISTER_SIZE * ARM_FPS_REGNUM);
|
regs + INT_REGISTER_SIZE * ARM_FPS_REGNUM);
|
}
|
}
|
|
|
/* Return the appropriate register set for the core section identified
|
/* Return the appropriate register set for the core section identified
|
by SECT_NAME and SECT_SIZE. */
|
by SECT_NAME and SECT_SIZE. */
|
|
|
static const struct regset *
|
static const struct regset *
|
arm_linux_regset_from_core_section (struct gdbarch *gdbarch,
|
arm_linux_regset_from_core_section (struct gdbarch *gdbarch,
|
const char *sect_name, size_t sect_size)
|
const char *sect_name, size_t sect_size)
|
{
|
{
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
|
if (strcmp (sect_name, ".reg") == 0
|
if (strcmp (sect_name, ".reg") == 0
|
&& sect_size == ARM_LINUX_SIZEOF_GREGSET)
|
&& sect_size == ARM_LINUX_SIZEOF_GREGSET)
|
{
|
{
|
if (tdep->gregset == NULL)
|
if (tdep->gregset == NULL)
|
tdep->gregset = regset_alloc (gdbarch, arm_linux_supply_gregset,
|
tdep->gregset = regset_alloc (gdbarch, arm_linux_supply_gregset,
|
arm_linux_collect_gregset);
|
arm_linux_collect_gregset);
|
return tdep->gregset;
|
return tdep->gregset;
|
}
|
}
|
|
|
if (strcmp (sect_name, ".reg2") == 0
|
if (strcmp (sect_name, ".reg2") == 0
|
&& sect_size == ARM_LINUX_SIZEOF_NWFPE)
|
&& sect_size == ARM_LINUX_SIZEOF_NWFPE)
|
{
|
{
|
if (tdep->fpregset == NULL)
|
if (tdep->fpregset == NULL)
|
tdep->fpregset = regset_alloc (gdbarch, arm_linux_supply_nwfpe,
|
tdep->fpregset = regset_alloc (gdbarch, arm_linux_supply_nwfpe,
|
arm_linux_collect_nwfpe);
|
arm_linux_collect_nwfpe);
|
return tdep->fpregset;
|
return tdep->fpregset;
|
}
|
}
|
|
|
return NULL;
|
return NULL;
|
}
|
}
|
|
|
/* Insert a single step breakpoint at the next executed instruction. */
|
/* Insert a single step breakpoint at the next executed instruction. */
|
|
|
static int
|
static int
|
arm_linux_software_single_step (struct frame_info *frame)
|
arm_linux_software_single_step (struct frame_info *frame)
|
{
|
{
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
struct address_space *aspace = get_frame_address_space (frame);
|
struct address_space *aspace = get_frame_address_space (frame);
|
CORE_ADDR next_pc = arm_get_next_pc (frame, get_frame_pc (frame));
|
CORE_ADDR next_pc = arm_get_next_pc (frame, get_frame_pc (frame));
|
|
|
/* The Linux kernel offers some user-mode helpers in a high page. We can
|
/* The Linux kernel offers some user-mode helpers in a high page. We can
|
not read this page (as of 2.6.23), and even if we could then we couldn't
|
not read this page (as of 2.6.23), and even if we could then we couldn't
|
set breakpoints in it, and even if we could then the atomic operations
|
set breakpoints in it, and even if we could then the atomic operations
|
would fail when interrupted. They are all called as functions and return
|
would fail when interrupted. They are all called as functions and return
|
to the address in LR, so step to there instead. */
|
to the address in LR, so step to there instead. */
|
if (next_pc > 0xffff0000)
|
if (next_pc > 0xffff0000)
|
next_pc = get_frame_register_unsigned (frame, ARM_LR_REGNUM);
|
next_pc = get_frame_register_unsigned (frame, ARM_LR_REGNUM);
|
|
|
insert_single_step_breakpoint (gdbarch, aspace, next_pc);
|
insert_single_step_breakpoint (gdbarch, aspace, next_pc);
|
|
|
return 1;
|
return 1;
|
}
|
}
|
|
|
/* Support for displaced stepping of Linux SVC instructions. */
|
/* Support for displaced stepping of Linux SVC instructions. */
|
|
|
static void
|
static void
|
arm_linux_cleanup_svc (struct gdbarch *gdbarch ATTRIBUTE_UNUSED,
|
arm_linux_cleanup_svc (struct gdbarch *gdbarch ATTRIBUTE_UNUSED,
|
struct regcache *regs,
|
struct regcache *regs,
|
struct displaced_step_closure *dsc)
|
struct displaced_step_closure *dsc)
|
{
|
{
|
CORE_ADDR from = dsc->insn_addr;
|
CORE_ADDR from = dsc->insn_addr;
|
ULONGEST apparent_pc;
|
ULONGEST apparent_pc;
|
int within_scratch;
|
int within_scratch;
|
|
|
regcache_cooked_read_unsigned (regs, ARM_PC_REGNUM, &apparent_pc);
|
regcache_cooked_read_unsigned (regs, ARM_PC_REGNUM, &apparent_pc);
|
|
|
within_scratch = (apparent_pc >= dsc->scratch_base
|
within_scratch = (apparent_pc >= dsc->scratch_base
|
&& apparent_pc < (dsc->scratch_base
|
&& apparent_pc < (dsc->scratch_base
|
+ DISPLACED_MODIFIED_INSNS * 4 + 4));
|
+ DISPLACED_MODIFIED_INSNS * 4 + 4));
|
|
|
if (debug_displaced)
|
if (debug_displaced)
|
{
|
{
|
fprintf_unfiltered (gdb_stdlog, "displaced: PC is apparently %.8lx after "
|
fprintf_unfiltered (gdb_stdlog, "displaced: PC is apparently %.8lx after "
|
"SVC step ", (unsigned long) apparent_pc);
|
"SVC step ", (unsigned long) apparent_pc);
|
if (within_scratch)
|
if (within_scratch)
|
fprintf_unfiltered (gdb_stdlog, "(within scratch space)\n");
|
fprintf_unfiltered (gdb_stdlog, "(within scratch space)\n");
|
else
|
else
|
fprintf_unfiltered (gdb_stdlog, "(outside scratch space)\n");
|
fprintf_unfiltered (gdb_stdlog, "(outside scratch space)\n");
|
}
|
}
|
|
|
if (within_scratch)
|
if (within_scratch)
|
displaced_write_reg (regs, dsc, ARM_PC_REGNUM, from + 4, BRANCH_WRITE_PC);
|
displaced_write_reg (regs, dsc, ARM_PC_REGNUM, from + 4, BRANCH_WRITE_PC);
|
}
|
}
|
|
|
static int
|
static int
|
arm_linux_copy_svc (struct gdbarch *gdbarch, uint32_t insn, CORE_ADDR to,
|
arm_linux_copy_svc (struct gdbarch *gdbarch, uint32_t insn, CORE_ADDR to,
|
struct regcache *regs, struct displaced_step_closure *dsc)
|
struct regcache *regs, struct displaced_step_closure *dsc)
|
{
|
{
|
CORE_ADDR from = dsc->insn_addr;
|
CORE_ADDR from = dsc->insn_addr;
|
struct frame_info *frame;
|
struct frame_info *frame;
|
unsigned int svc_number = displaced_read_reg (regs, from, 7);
|
unsigned int svc_number = displaced_read_reg (regs, from, 7);
|
|
|
if (debug_displaced)
|
if (debug_displaced)
|
fprintf_unfiltered (gdb_stdlog, "displaced: copying Linux svc insn %.8lx\n",
|
fprintf_unfiltered (gdb_stdlog, "displaced: copying Linux svc insn %.8lx\n",
|
(unsigned long) insn);
|
(unsigned long) insn);
|
|
|
frame = get_current_frame ();
|
frame = get_current_frame ();
|
|
|
/* Is this a sigreturn or rt_sigreturn syscall? Note: these are only useful
|
/* Is this a sigreturn or rt_sigreturn syscall? Note: these are only useful
|
for EABI. */
|
for EABI. */
|
if (svc_number == 119 || svc_number == 173)
|
if (svc_number == 119 || svc_number == 173)
|
{
|
{
|
if (get_frame_type (frame) == SIGTRAMP_FRAME)
|
if (get_frame_type (frame) == SIGTRAMP_FRAME)
|
{
|
{
|
CORE_ADDR return_to;
|
CORE_ADDR return_to;
|
struct symtab_and_line sal;
|
struct symtab_and_line sal;
|
|
|
if (debug_displaced)
|
if (debug_displaced)
|
fprintf_unfiltered (gdb_stdlog, "displaced: found "
|
fprintf_unfiltered (gdb_stdlog, "displaced: found "
|
"sigreturn/rt_sigreturn SVC call. PC in frame = %lx\n",
|
"sigreturn/rt_sigreturn SVC call. PC in frame = %lx\n",
|
(unsigned long) get_frame_pc (frame));
|
(unsigned long) get_frame_pc (frame));
|
|
|
return_to = frame_unwind_caller_pc (frame);
|
return_to = frame_unwind_caller_pc (frame);
|
if (debug_displaced)
|
if (debug_displaced)
|
fprintf_unfiltered (gdb_stdlog, "displaced: unwind pc = %lx. "
|
fprintf_unfiltered (gdb_stdlog, "displaced: unwind pc = %lx. "
|
"Setting momentary breakpoint.\n", (unsigned long) return_to);
|
"Setting momentary breakpoint.\n", (unsigned long) return_to);
|
|
|
gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
|
gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
|
|
|
sal = find_pc_line (return_to, 0);
|
sal = find_pc_line (return_to, 0);
|
sal.pc = return_to;
|
sal.pc = return_to;
|
sal.section = find_pc_overlay (return_to);
|
sal.section = find_pc_overlay (return_to);
|
sal.explicit_pc = 1;
|
sal.explicit_pc = 1;
|
|
|
frame = get_prev_frame (frame);
|
frame = get_prev_frame (frame);
|
|
|
if (frame)
|
if (frame)
|
{
|
{
|
inferior_thread ()->step_resume_breakpoint
|
inferior_thread ()->step_resume_breakpoint
|
= set_momentary_breakpoint (gdbarch, sal, get_frame_id (frame),
|
= set_momentary_breakpoint (gdbarch, sal, get_frame_id (frame),
|
bp_step_resume);
|
bp_step_resume);
|
|
|
/* We need to make sure we actually insert the momentary
|
/* We need to make sure we actually insert the momentary
|
breakpoint set above. */
|
breakpoint set above. */
|
insert_breakpoints ();
|
insert_breakpoints ();
|
}
|
}
|
else if (debug_displaced)
|
else if (debug_displaced)
|
fprintf_unfiltered (gdb_stderr, "displaced: couldn't find previous "
|
fprintf_unfiltered (gdb_stderr, "displaced: couldn't find previous "
|
"frame to set momentary breakpoint for "
|
"frame to set momentary breakpoint for "
|
"sigreturn/rt_sigreturn\n");
|
"sigreturn/rt_sigreturn\n");
|
}
|
}
|
else if (debug_displaced)
|
else if (debug_displaced)
|
fprintf_unfiltered (gdb_stdlog, "displaced: sigreturn/rt_sigreturn "
|
fprintf_unfiltered (gdb_stdlog, "displaced: sigreturn/rt_sigreturn "
|
"SVC call not in signal trampoline frame\n");
|
"SVC call not in signal trampoline frame\n");
|
}
|
}
|
|
|
/* Preparation: If we detect sigreturn, set momentary breakpoint at resume
|
/* Preparation: If we detect sigreturn, set momentary breakpoint at resume
|
location, else nothing.
|
location, else nothing.
|
Insn: unmodified svc.
|
Insn: unmodified svc.
|
Cleanup: if pc lands in scratch space, pc <- insn_addr + 4
|
Cleanup: if pc lands in scratch space, pc <- insn_addr + 4
|
else leave pc alone. */
|
else leave pc alone. */
|
|
|
dsc->modinsn[0] = insn;
|
dsc->modinsn[0] = insn;
|
|
|
dsc->cleanup = &arm_linux_cleanup_svc;
|
dsc->cleanup = &arm_linux_cleanup_svc;
|
/* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
|
/* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
|
instruction. */
|
instruction. */
|
dsc->wrote_to_pc = 1;
|
dsc->wrote_to_pc = 1;
|
|
|
return 0;
|
return 0;
|
}
|
}
|
|
|
|
|
/* The following two functions implement single-stepping over calls to Linux
|
/* The following two functions implement single-stepping over calls to Linux
|
kernel helper routines, which perform e.g. atomic operations on architecture
|
kernel helper routines, which perform e.g. atomic operations on architecture
|
variants which don't support them natively.
|
variants which don't support them natively.
|
|
|
When this function is called, the PC will be pointing at the kernel helper
|
When this function is called, the PC will be pointing at the kernel helper
|
(at an address inaccessible to GDB), and r14 will point to the return
|
(at an address inaccessible to GDB), and r14 will point to the return
|
address. Displaced stepping always executes code in the copy area:
|
address. Displaced stepping always executes code in the copy area:
|
so, make the copy-area instruction branch back to the kernel helper (the
|
so, make the copy-area instruction branch back to the kernel helper (the
|
"from" address), and make r14 point to the breakpoint in the copy area. In
|
"from" address), and make r14 point to the breakpoint in the copy area. In
|
that way, we regain control once the kernel helper returns, and can clean
|
that way, we regain control once the kernel helper returns, and can clean
|
up appropriately (as if we had just returned from the kernel helper as it
|
up appropriately (as if we had just returned from the kernel helper as it
|
would have been called from the non-displaced location). */
|
would have been called from the non-displaced location). */
|
|
|
static void
|
static void
|
cleanup_kernel_helper_return (struct gdbarch *gdbarch ATTRIBUTE_UNUSED,
|
cleanup_kernel_helper_return (struct gdbarch *gdbarch ATTRIBUTE_UNUSED,
|
struct regcache *regs,
|
struct regcache *regs,
|
struct displaced_step_closure *dsc)
|
struct displaced_step_closure *dsc)
|
{
|
{
|
displaced_write_reg (regs, dsc, ARM_LR_REGNUM, dsc->tmp[0], CANNOT_WRITE_PC);
|
displaced_write_reg (regs, dsc, ARM_LR_REGNUM, dsc->tmp[0], CANNOT_WRITE_PC);
|
displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->tmp[0], BRANCH_WRITE_PC);
|
displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->tmp[0], BRANCH_WRITE_PC);
|
}
|
}
|
|
|
static void
|
static void
|
arm_catch_kernel_helper_return (struct gdbarch *gdbarch, CORE_ADDR from,
|
arm_catch_kernel_helper_return (struct gdbarch *gdbarch, CORE_ADDR from,
|
CORE_ADDR to, struct regcache *regs,
|
CORE_ADDR to, struct regcache *regs,
|
struct displaced_step_closure *dsc)
|
struct displaced_step_closure *dsc)
|
{
|
{
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
|
dsc->numinsns = 1;
|
dsc->numinsns = 1;
|
dsc->insn_addr = from;
|
dsc->insn_addr = from;
|
dsc->cleanup = &cleanup_kernel_helper_return;
|
dsc->cleanup = &cleanup_kernel_helper_return;
|
/* Say we wrote to the PC, else cleanup will set PC to the next
|
/* Say we wrote to the PC, else cleanup will set PC to the next
|
instruction in the helper, which isn't helpful. */
|
instruction in the helper, which isn't helpful. */
|
dsc->wrote_to_pc = 1;
|
dsc->wrote_to_pc = 1;
|
|
|
/* Preparation: tmp[0] <- r14
|
/* Preparation: tmp[0] <- r14
|
r14 <- <scratch space>+4
|
r14 <- <scratch space>+4
|
*(<scratch space>+8) <- from
|
*(<scratch space>+8) <- from
|
Insn: ldr pc, [r14, #4]
|
Insn: ldr pc, [r14, #4]
|
Cleanup: r14 <- tmp[0], pc <- tmp[0]. */
|
Cleanup: r14 <- tmp[0], pc <- tmp[0]. */
|
|
|
dsc->tmp[0] = displaced_read_reg (regs, from, ARM_LR_REGNUM);
|
dsc->tmp[0] = displaced_read_reg (regs, from, ARM_LR_REGNUM);
|
displaced_write_reg (regs, dsc, ARM_LR_REGNUM, (ULONGEST) to + 4,
|
displaced_write_reg (regs, dsc, ARM_LR_REGNUM, (ULONGEST) to + 4,
|
CANNOT_WRITE_PC);
|
CANNOT_WRITE_PC);
|
write_memory_unsigned_integer (to + 8, 4, byte_order, from);
|
write_memory_unsigned_integer (to + 8, 4, byte_order, from);
|
|
|
dsc->modinsn[0] = 0xe59ef004; /* ldr pc, [lr, #4]. */
|
dsc->modinsn[0] = 0xe59ef004; /* ldr pc, [lr, #4]. */
|
}
|
}
|
|
|
/* Linux-specific displaced step instruction copying function. Detects when
|
/* Linux-specific displaced step instruction copying function. Detects when
|
the program has stepped into a Linux kernel helper routine (which must be
|
the program has stepped into a Linux kernel helper routine (which must be
|
handled as a special case), falling back to arm_displaced_step_copy_insn()
|
handled as a special case), falling back to arm_displaced_step_copy_insn()
|
if it hasn't. */
|
if it hasn't. */
|
|
|
static struct displaced_step_closure *
|
static struct displaced_step_closure *
|
arm_linux_displaced_step_copy_insn (struct gdbarch *gdbarch,
|
arm_linux_displaced_step_copy_insn (struct gdbarch *gdbarch,
|
CORE_ADDR from, CORE_ADDR to,
|
CORE_ADDR from, CORE_ADDR to,
|
struct regcache *regs)
|
struct regcache *regs)
|
{
|
{
|
struct displaced_step_closure *dsc
|
struct displaced_step_closure *dsc
|
= xmalloc (sizeof (struct displaced_step_closure));
|
= xmalloc (sizeof (struct displaced_step_closure));
|
|
|
/* Detect when we enter an (inaccessible by GDB) Linux kernel helper, and
|
/* Detect when we enter an (inaccessible by GDB) Linux kernel helper, and
|
stop at the return location. */
|
stop at the return location. */
|
if (from > 0xffff0000)
|
if (from > 0xffff0000)
|
{
|
{
|
if (debug_displaced)
|
if (debug_displaced)
|
fprintf_unfiltered (gdb_stdlog, "displaced: detected kernel helper "
|
fprintf_unfiltered (gdb_stdlog, "displaced: detected kernel helper "
|
"at %.8lx\n", (unsigned long) from);
|
"at %.8lx\n", (unsigned long) from);
|
|
|
arm_catch_kernel_helper_return (gdbarch, from, to, regs, dsc);
|
arm_catch_kernel_helper_return (gdbarch, from, to, regs, dsc);
|
}
|
}
|
else
|
else
|
{
|
{
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
uint32_t insn = read_memory_unsigned_integer (from, 4, byte_order);
|
uint32_t insn = read_memory_unsigned_integer (from, 4, byte_order);
|
|
|
if (debug_displaced)
|
if (debug_displaced)
|
fprintf_unfiltered (gdb_stdlog, "displaced: stepping insn %.8lx "
|
fprintf_unfiltered (gdb_stdlog, "displaced: stepping insn %.8lx "
|
"at %.8lx\n", (unsigned long) insn,
|
"at %.8lx\n", (unsigned long) insn,
|
(unsigned long) from);
|
(unsigned long) from);
|
|
|
/* Override the default handling of SVC instructions. */
|
/* Override the default handling of SVC instructions. */
|
dsc->u.svc.copy_svc_os = arm_linux_copy_svc;
|
dsc->u.svc.copy_svc_os = arm_linux_copy_svc;
|
|
|
arm_process_displaced_insn (gdbarch, insn, from, to, regs, dsc);
|
arm_process_displaced_insn (gdbarch, insn, from, to, regs, dsc);
|
}
|
}
|
|
|
arm_displaced_init_closure (gdbarch, from, to, dsc);
|
arm_displaced_init_closure (gdbarch, from, to, dsc);
|
|
|
return dsc;
|
return dsc;
|
}
|
}
|
|
|
static void
|
static void
|
arm_linux_init_abi (struct gdbarch_info info,
|
arm_linux_init_abi (struct gdbarch_info info,
|
struct gdbarch *gdbarch)
|
struct gdbarch *gdbarch)
|
{
|
{
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
|
tdep->lowest_pc = 0x8000;
|
tdep->lowest_pc = 0x8000;
|
if (info.byte_order == BFD_ENDIAN_BIG)
|
if (info.byte_order == BFD_ENDIAN_BIG)
|
{
|
{
|
if (tdep->arm_abi == ARM_ABI_AAPCS)
|
if (tdep->arm_abi == ARM_ABI_AAPCS)
|
tdep->arm_breakpoint = eabi_linux_arm_be_breakpoint;
|
tdep->arm_breakpoint = eabi_linux_arm_be_breakpoint;
|
else
|
else
|
tdep->arm_breakpoint = arm_linux_arm_be_breakpoint;
|
tdep->arm_breakpoint = arm_linux_arm_be_breakpoint;
|
tdep->thumb_breakpoint = arm_linux_thumb_be_breakpoint;
|
tdep->thumb_breakpoint = arm_linux_thumb_be_breakpoint;
|
tdep->thumb2_breakpoint = arm_linux_thumb2_be_breakpoint;
|
tdep->thumb2_breakpoint = arm_linux_thumb2_be_breakpoint;
|
}
|
}
|
else
|
else
|
{
|
{
|
if (tdep->arm_abi == ARM_ABI_AAPCS)
|
if (tdep->arm_abi == ARM_ABI_AAPCS)
|
tdep->arm_breakpoint = eabi_linux_arm_le_breakpoint;
|
tdep->arm_breakpoint = eabi_linux_arm_le_breakpoint;
|
else
|
else
|
tdep->arm_breakpoint = arm_linux_arm_le_breakpoint;
|
tdep->arm_breakpoint = arm_linux_arm_le_breakpoint;
|
tdep->thumb_breakpoint = arm_linux_thumb_le_breakpoint;
|
tdep->thumb_breakpoint = arm_linux_thumb_le_breakpoint;
|
tdep->thumb2_breakpoint = arm_linux_thumb2_le_breakpoint;
|
tdep->thumb2_breakpoint = arm_linux_thumb2_le_breakpoint;
|
}
|
}
|
tdep->arm_breakpoint_size = sizeof (arm_linux_arm_le_breakpoint);
|
tdep->arm_breakpoint_size = sizeof (arm_linux_arm_le_breakpoint);
|
tdep->thumb_breakpoint_size = sizeof (arm_linux_thumb_le_breakpoint);
|
tdep->thumb_breakpoint_size = sizeof (arm_linux_thumb_le_breakpoint);
|
tdep->thumb2_breakpoint_size = sizeof (arm_linux_thumb2_le_breakpoint);
|
tdep->thumb2_breakpoint_size = sizeof (arm_linux_thumb2_le_breakpoint);
|
|
|
if (tdep->fp_model == ARM_FLOAT_AUTO)
|
if (tdep->fp_model == ARM_FLOAT_AUTO)
|
tdep->fp_model = ARM_FLOAT_FPA;
|
tdep->fp_model = ARM_FLOAT_FPA;
|
|
|
tdep->jb_pc = ARM_LINUX_JB_PC;
|
tdep->jb_pc = ARM_LINUX_JB_PC;
|
tdep->jb_elt_size = ARM_LINUX_JB_ELEMENT_SIZE;
|
tdep->jb_elt_size = ARM_LINUX_JB_ELEMENT_SIZE;
|
|
|
set_solib_svr4_fetch_link_map_offsets
|
set_solib_svr4_fetch_link_map_offsets
|
(gdbarch, svr4_ilp32_fetch_link_map_offsets);
|
(gdbarch, svr4_ilp32_fetch_link_map_offsets);
|
|
|
/* Single stepping. */
|
/* Single stepping. */
|
set_gdbarch_software_single_step (gdbarch, arm_linux_software_single_step);
|
set_gdbarch_software_single_step (gdbarch, arm_linux_software_single_step);
|
|
|
/* Shared library handling. */
|
/* Shared library handling. */
|
set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
|
set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
|
set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
|
set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
|
|
|
/* Enable TLS support. */
|
/* Enable TLS support. */
|
set_gdbarch_fetch_tls_load_module_address (gdbarch,
|
set_gdbarch_fetch_tls_load_module_address (gdbarch,
|
svr4_fetch_objfile_link_map);
|
svr4_fetch_objfile_link_map);
|
|
|
tramp_frame_prepend_unwinder (gdbarch,
|
tramp_frame_prepend_unwinder (gdbarch,
|
&arm_linux_sigreturn_tramp_frame);
|
&arm_linux_sigreturn_tramp_frame);
|
tramp_frame_prepend_unwinder (gdbarch,
|
tramp_frame_prepend_unwinder (gdbarch,
|
&arm_linux_rt_sigreturn_tramp_frame);
|
&arm_linux_rt_sigreturn_tramp_frame);
|
tramp_frame_prepend_unwinder (gdbarch,
|
tramp_frame_prepend_unwinder (gdbarch,
|
&arm_eabi_linux_sigreturn_tramp_frame);
|
&arm_eabi_linux_sigreturn_tramp_frame);
|
tramp_frame_prepend_unwinder (gdbarch,
|
tramp_frame_prepend_unwinder (gdbarch,
|
&arm_eabi_linux_rt_sigreturn_tramp_frame);
|
&arm_eabi_linux_rt_sigreturn_tramp_frame);
|
tramp_frame_prepend_unwinder (gdbarch,
|
tramp_frame_prepend_unwinder (gdbarch,
|
&arm_linux_restart_syscall_tramp_frame);
|
&arm_linux_restart_syscall_tramp_frame);
|
|
|
/* Core file support. */
|
/* Core file support. */
|
set_gdbarch_regset_from_core_section (gdbarch,
|
set_gdbarch_regset_from_core_section (gdbarch,
|
arm_linux_regset_from_core_section);
|
arm_linux_regset_from_core_section);
|
|
|
set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
|
set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
|
|
|
/* Displaced stepping. */
|
/* Displaced stepping. */
|
set_gdbarch_displaced_step_copy_insn (gdbarch,
|
set_gdbarch_displaced_step_copy_insn (gdbarch,
|
arm_linux_displaced_step_copy_insn);
|
arm_linux_displaced_step_copy_insn);
|
set_gdbarch_displaced_step_fixup (gdbarch, arm_displaced_step_fixup);
|
set_gdbarch_displaced_step_fixup (gdbarch, arm_displaced_step_fixup);
|
set_gdbarch_displaced_step_free_closure (gdbarch,
|
set_gdbarch_displaced_step_free_closure (gdbarch,
|
simple_displaced_step_free_closure);
|
simple_displaced_step_free_closure);
|
set_gdbarch_displaced_step_location (gdbarch, displaced_step_at_entry_point);
|
set_gdbarch_displaced_step_location (gdbarch, displaced_step_at_entry_point);
|
}
|
}
|
|
|
/* Provide a prototype to silence -Wmissing-prototypes. */
|
/* Provide a prototype to silence -Wmissing-prototypes. */
|
extern initialize_file_ftype _initialize_arm_linux_tdep;
|
extern initialize_file_ftype _initialize_arm_linux_tdep;
|
|
|
void
|
void
|
_initialize_arm_linux_tdep (void)
|
_initialize_arm_linux_tdep (void)
|
{
|
{
|
gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_LINUX,
|
gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_LINUX,
|
arm_linux_init_abi);
|
arm_linux_init_abi);
|
}
|
}
|
|
|