OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gdb-7.1/] [gdb/] [gcore.c] - Diff between revs 834 and 842

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 834 Rev 842
/* Generate a core file for the inferior process.
/* Generate a core file for the inferior process.
 
 
   Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
   Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
 
 
#include "defs.h"
#include "defs.h"
#include "elf-bfd.h"
#include "elf-bfd.h"
#include "infcall.h"
#include "infcall.h"
#include "inferior.h"
#include "inferior.h"
#include "gdbcore.h"
#include "gdbcore.h"
#include "objfiles.h"
#include "objfiles.h"
#include "solib.h"
#include "solib.h"
#include "symfile.h"
#include "symfile.h"
#include "arch-utils.h"
#include "arch-utils.h"
#include "completer.h"
#include "completer.h"
#include "gcore.h"
#include "gcore.h"
#include "cli/cli-decode.h"
#include "cli/cli-decode.h"
#include "gdb_assert.h"
#include "gdb_assert.h"
#include <fcntl.h>
#include <fcntl.h>
#include "regcache.h"
#include "regcache.h"
#include "regset.h"
#include "regset.h"
 
 
/* The largest amount of memory to read from the target at once.  We
/* The largest amount of memory to read from the target at once.  We
   must throttle it to limit the amount of memory used by GDB during
   must throttle it to limit the amount of memory used by GDB during
   generate-core-file for programs with large resident data.  */
   generate-core-file for programs with large resident data.  */
#define MAX_COPY_BYTES (1024 * 1024)
#define MAX_COPY_BYTES (1024 * 1024)
 
 
static const char *default_gcore_target (void);
static const char *default_gcore_target (void);
static enum bfd_architecture default_gcore_arch (void);
static enum bfd_architecture default_gcore_arch (void);
static unsigned long default_gcore_mach (void);
static unsigned long default_gcore_mach (void);
static int gcore_memory_sections (bfd *);
static int gcore_memory_sections (bfd *);
 
 
/* create_gcore_bfd -- helper for gcore_command (exported).
/* create_gcore_bfd -- helper for gcore_command (exported).
   Open a new bfd core file for output, and return the handle.  */
   Open a new bfd core file for output, and return the handle.  */
 
 
bfd *
bfd *
create_gcore_bfd (char *filename)
create_gcore_bfd (char *filename)
{
{
  bfd *obfd = bfd_openw (filename, default_gcore_target ());
  bfd *obfd = bfd_openw (filename, default_gcore_target ());
  if (!obfd)
  if (!obfd)
    error (_("Failed to open '%s' for output."), filename);
    error (_("Failed to open '%s' for output."), filename);
  bfd_set_format (obfd, bfd_core);
  bfd_set_format (obfd, bfd_core);
  bfd_set_arch_mach (obfd, default_gcore_arch (), default_gcore_mach ());
  bfd_set_arch_mach (obfd, default_gcore_arch (), default_gcore_mach ());
  return obfd;
  return obfd;
}
}
 
 
/* write_gcore_file -- helper for gcore_command (exported).
/* write_gcore_file -- helper for gcore_command (exported).
   Compose and write the corefile data to the core file.  */
   Compose and write the corefile data to the core file.  */
 
 
 
 
void
void
write_gcore_file (bfd *obfd)
write_gcore_file (bfd *obfd)
{
{
  void *note_data = NULL;
  void *note_data = NULL;
  int note_size = 0;
  int note_size = 0;
  asection *note_sec = NULL;
  asection *note_sec = NULL;
 
 
  /* An external target method must build the notes section.  */
  /* An external target method must build the notes section.  */
  note_data = target_make_corefile_notes (obfd, &note_size);
  note_data = target_make_corefile_notes (obfd, &note_size);
 
 
  /* Create the note section.  */
  /* Create the note section.  */
  if (note_data != NULL && note_size != 0)
  if (note_data != NULL && note_size != 0)
    {
    {
      note_sec = bfd_make_section_anyway_with_flags (obfd, "note0",
      note_sec = bfd_make_section_anyway_with_flags (obfd, "note0",
                                                     SEC_HAS_CONTENTS
                                                     SEC_HAS_CONTENTS
                                                     | SEC_READONLY
                                                     | SEC_READONLY
                                                     | SEC_ALLOC);
                                                     | SEC_ALLOC);
      if (note_sec == NULL)
      if (note_sec == NULL)
        error (_("Failed to create 'note' section for corefile: %s"),
        error (_("Failed to create 'note' section for corefile: %s"),
               bfd_errmsg (bfd_get_error ()));
               bfd_errmsg (bfd_get_error ()));
 
 
      bfd_set_section_vma (obfd, note_sec, 0);
      bfd_set_section_vma (obfd, note_sec, 0);
      bfd_set_section_alignment (obfd, note_sec, 0);
      bfd_set_section_alignment (obfd, note_sec, 0);
      bfd_set_section_size (obfd, note_sec, note_size);
      bfd_set_section_size (obfd, note_sec, note_size);
    }
    }
 
 
  /* Now create the memory/load sections.  */
  /* Now create the memory/load sections.  */
  if (gcore_memory_sections (obfd) == 0)
  if (gcore_memory_sections (obfd) == 0)
    error (_("gcore: failed to get corefile memory sections from target."));
    error (_("gcore: failed to get corefile memory sections from target."));
 
 
  /* Write out the contents of the note section.  */
  /* Write out the contents of the note section.  */
  if (note_data != NULL && note_size != 0)
  if (note_data != NULL && note_size != 0)
    {
    {
      if (!bfd_set_section_contents (obfd, note_sec, note_data, 0, note_size))
      if (!bfd_set_section_contents (obfd, note_sec, note_data, 0, note_size))
        warning (_("writing note section (%s)"),
        warning (_("writing note section (%s)"),
                 bfd_errmsg (bfd_get_error ()));
                 bfd_errmsg (bfd_get_error ()));
    }
    }
}
}
 
 
static void
static void
do_bfd_delete_cleanup (void *arg)
do_bfd_delete_cleanup (void *arg)
{
{
  bfd *obfd = arg;
  bfd *obfd = arg;
  const char *filename = obfd->filename;
  const char *filename = obfd->filename;
 
 
  bfd_close (arg);
  bfd_close (arg);
  unlink (filename);
  unlink (filename);
}
}
 
 
/* gcore_command -- implements the 'gcore' command.
/* gcore_command -- implements the 'gcore' command.
   Generate a core file from the inferior process.  */
   Generate a core file from the inferior process.  */
 
 
static void
static void
gcore_command (char *args, int from_tty)
gcore_command (char *args, int from_tty)
{
{
  struct cleanup *old_chain;
  struct cleanup *old_chain;
  char *corefilename, corefilename_buffer[40];
  char *corefilename, corefilename_buffer[40];
  bfd *obfd;
  bfd *obfd;
 
 
  /* No use generating a corefile without a target process.  */
  /* No use generating a corefile without a target process.  */
  if (!target_has_execution)
  if (!target_has_execution)
    noprocess ();
    noprocess ();
 
 
  if (args && *args)
  if (args && *args)
    corefilename = args;
    corefilename = args;
  else
  else
    {
    {
      /* Default corefile name is "core.PID".  */
      /* Default corefile name is "core.PID".  */
      sprintf (corefilename_buffer, "core.%d", PIDGET (inferior_ptid));
      sprintf (corefilename_buffer, "core.%d", PIDGET (inferior_ptid));
      corefilename = corefilename_buffer;
      corefilename = corefilename_buffer;
    }
    }
 
 
  if (info_verbose)
  if (info_verbose)
    fprintf_filtered (gdb_stdout,
    fprintf_filtered (gdb_stdout,
                      "Opening corefile '%s' for output.\n", corefilename);
                      "Opening corefile '%s' for output.\n", corefilename);
 
 
  /* Open the output file.  */
  /* Open the output file.  */
  obfd = create_gcore_bfd (corefilename);
  obfd = create_gcore_bfd (corefilename);
 
 
  /* Need a cleanup that will close and delete the file.  */
  /* Need a cleanup that will close and delete the file.  */
  old_chain = make_cleanup (do_bfd_delete_cleanup, obfd);
  old_chain = make_cleanup (do_bfd_delete_cleanup, obfd);
 
 
  /* Call worker function.  */
  /* Call worker function.  */
  write_gcore_file (obfd);
  write_gcore_file (obfd);
 
 
  /* Succeeded.  */
  /* Succeeded.  */
  fprintf_filtered (gdb_stdout, "Saved corefile %s\n", corefilename);
  fprintf_filtered (gdb_stdout, "Saved corefile %s\n", corefilename);
 
 
  discard_cleanups (old_chain);
  discard_cleanups (old_chain);
  bfd_close (obfd);
  bfd_close (obfd);
}
}
 
 
static unsigned long
static unsigned long
default_gcore_mach (void)
default_gcore_mach (void)
{
{
#if 1   /* See if this even matters...  */
#if 1   /* See if this even matters...  */
  return 0;
  return 0;
#else
#else
 
 
  const struct bfd_arch_info *bfdarch = gdbarch_bfd_arch_info (target_gdbarch);
  const struct bfd_arch_info *bfdarch = gdbarch_bfd_arch_info (target_gdbarch);
 
 
  if (bfdarch != NULL)
  if (bfdarch != NULL)
    return bfdarch->mach;
    return bfdarch->mach;
  if (exec_bfd == NULL)
  if (exec_bfd == NULL)
    error (_("Can't find default bfd machine type (need execfile)."));
    error (_("Can't find default bfd machine type (need execfile)."));
 
 
  return bfd_get_mach (exec_bfd);
  return bfd_get_mach (exec_bfd);
#endif /* 1 */
#endif /* 1 */
}
}
 
 
static enum bfd_architecture
static enum bfd_architecture
default_gcore_arch (void)
default_gcore_arch (void)
{
{
  const struct bfd_arch_info *bfdarch = gdbarch_bfd_arch_info (target_gdbarch);
  const struct bfd_arch_info *bfdarch = gdbarch_bfd_arch_info (target_gdbarch);
 
 
  if (bfdarch != NULL)
  if (bfdarch != NULL)
    return bfdarch->arch;
    return bfdarch->arch;
  if (exec_bfd == NULL)
  if (exec_bfd == NULL)
    error (_("Can't find bfd architecture for corefile (need execfile)."));
    error (_("Can't find bfd architecture for corefile (need execfile)."));
 
 
  return bfd_get_arch (exec_bfd);
  return bfd_get_arch (exec_bfd);
}
}
 
 
static const char *
static const char *
default_gcore_target (void)
default_gcore_target (void)
{
{
  /* The gdbarch may define a target to use for core files.  */
  /* The gdbarch may define a target to use for core files.  */
  if (gdbarch_gcore_bfd_target_p (target_gdbarch))
  if (gdbarch_gcore_bfd_target_p (target_gdbarch))
    return gdbarch_gcore_bfd_target (target_gdbarch);
    return gdbarch_gcore_bfd_target (target_gdbarch);
 
 
  /* Otherwise, try to fall back to the exec_bfd target.  This will probably
  /* Otherwise, try to fall back to the exec_bfd target.  This will probably
     not work for non-ELF targets.  */
     not work for non-ELF targets.  */
  if (exec_bfd == NULL)
  if (exec_bfd == NULL)
    return NULL;
    return NULL;
  else
  else
    return bfd_get_target (exec_bfd);
    return bfd_get_target (exec_bfd);
}
}
 
 
/* Derive a reasonable stack segment by unwinding the target stack,
/* Derive a reasonable stack segment by unwinding the target stack,
   and store its limits in *BOTTOM and *TOP.  Return non-zero if
   and store its limits in *BOTTOM and *TOP.  Return non-zero if
   successful.  */
   successful.  */
 
 
static int
static int
derive_stack_segment (bfd_vma *bottom, bfd_vma *top)
derive_stack_segment (bfd_vma *bottom, bfd_vma *top)
{
{
  struct frame_info *fi, *tmp_fi;
  struct frame_info *fi, *tmp_fi;
 
 
  gdb_assert (bottom);
  gdb_assert (bottom);
  gdb_assert (top);
  gdb_assert (top);
 
 
  /* Can't succeed without stack and registers.  */
  /* Can't succeed without stack and registers.  */
  if (!target_has_stack || !target_has_registers)
  if (!target_has_stack || !target_has_registers)
    return 0;
    return 0;
 
 
  /* Can't succeed without current frame.  */
  /* Can't succeed without current frame.  */
  fi = get_current_frame ();
  fi = get_current_frame ();
  if (fi == NULL)
  if (fi == NULL)
    return 0;
    return 0;
 
 
  /* Save frame pointer of TOS frame.  */
  /* Save frame pointer of TOS frame.  */
  *top = get_frame_base (fi);
  *top = get_frame_base (fi);
  /* If current stack pointer is more "inner", use that instead.  */
  /* If current stack pointer is more "inner", use that instead.  */
  if (gdbarch_inner_than (get_frame_arch (fi), get_frame_sp (fi), *top))
  if (gdbarch_inner_than (get_frame_arch (fi), get_frame_sp (fi), *top))
    *top = get_frame_sp (fi);
    *top = get_frame_sp (fi);
 
 
  /* Find prev-most frame.  */
  /* Find prev-most frame.  */
  while ((tmp_fi = get_prev_frame (fi)) != NULL)
  while ((tmp_fi = get_prev_frame (fi)) != NULL)
    fi = tmp_fi;
    fi = tmp_fi;
 
 
  /* Save frame pointer of prev-most frame.  */
  /* Save frame pointer of prev-most frame.  */
  *bottom = get_frame_base (fi);
  *bottom = get_frame_base (fi);
 
 
  /* Now canonicalize their order, so that BOTTOM is a lower address
  /* Now canonicalize their order, so that BOTTOM is a lower address
     (as opposed to a lower stack frame).  */
     (as opposed to a lower stack frame).  */
  if (*bottom > *top)
  if (*bottom > *top)
    {
    {
      bfd_vma tmp_vma;
      bfd_vma tmp_vma;
 
 
      tmp_vma = *top;
      tmp_vma = *top;
      *top = *bottom;
      *top = *bottom;
      *bottom = tmp_vma;
      *bottom = tmp_vma;
    }
    }
 
 
  return 1;
  return 1;
}
}
 
 
/* call_target_sbrk --
/* call_target_sbrk --
   helper function for derive_heap_segment.  */
   helper function for derive_heap_segment.  */
 
 
static bfd_vma
static bfd_vma
call_target_sbrk (int sbrk_arg)
call_target_sbrk (int sbrk_arg)
{
{
  struct objfile *sbrk_objf;
  struct objfile *sbrk_objf;
  struct gdbarch *gdbarch;
  struct gdbarch *gdbarch;
  bfd_vma top_of_heap;
  bfd_vma top_of_heap;
  struct value *target_sbrk_arg;
  struct value *target_sbrk_arg;
  struct value *sbrk_fn, *ret;
  struct value *sbrk_fn, *ret;
  bfd_vma tmp;
  bfd_vma tmp;
 
 
  if (lookup_minimal_symbol ("sbrk", NULL, NULL) != NULL)
  if (lookup_minimal_symbol ("sbrk", NULL, NULL) != NULL)
    {
    {
      sbrk_fn = find_function_in_inferior ("sbrk", &sbrk_objf);
      sbrk_fn = find_function_in_inferior ("sbrk", &sbrk_objf);
      if (sbrk_fn == NULL)
      if (sbrk_fn == NULL)
        return (bfd_vma) 0;
        return (bfd_vma) 0;
    }
    }
  else if (lookup_minimal_symbol ("_sbrk", NULL, NULL) != NULL)
  else if (lookup_minimal_symbol ("_sbrk", NULL, NULL) != NULL)
    {
    {
      sbrk_fn = find_function_in_inferior ("_sbrk", &sbrk_objf);
      sbrk_fn = find_function_in_inferior ("_sbrk", &sbrk_objf);
      if (sbrk_fn == NULL)
      if (sbrk_fn == NULL)
        return (bfd_vma) 0;
        return (bfd_vma) 0;
    }
    }
  else
  else
    return (bfd_vma) 0;
    return (bfd_vma) 0;
 
 
  gdbarch = get_objfile_arch (sbrk_objf);
  gdbarch = get_objfile_arch (sbrk_objf);
  target_sbrk_arg = value_from_longest (builtin_type (gdbarch)->builtin_int,
  target_sbrk_arg = value_from_longest (builtin_type (gdbarch)->builtin_int,
                                        sbrk_arg);
                                        sbrk_arg);
  gdb_assert (target_sbrk_arg);
  gdb_assert (target_sbrk_arg);
  ret = call_function_by_hand (sbrk_fn, 1, &target_sbrk_arg);
  ret = call_function_by_hand (sbrk_fn, 1, &target_sbrk_arg);
  if (ret == NULL)
  if (ret == NULL)
    return (bfd_vma) 0;
    return (bfd_vma) 0;
 
 
  tmp = value_as_long (ret);
  tmp = value_as_long (ret);
  if ((LONGEST) tmp <= 0 || (LONGEST) tmp == 0xffffffff)
  if ((LONGEST) tmp <= 0 || (LONGEST) tmp == 0xffffffff)
    return (bfd_vma) 0;
    return (bfd_vma) 0;
 
 
  top_of_heap = tmp;
  top_of_heap = tmp;
  return top_of_heap;
  return top_of_heap;
}
}
 
 
/* Derive a reasonable heap segment for ABFD by looking at sbrk and
/* Derive a reasonable heap segment for ABFD by looking at sbrk and
   the static data sections.  Store its limits in *BOTTOM and *TOP.
   the static data sections.  Store its limits in *BOTTOM and *TOP.
   Return non-zero if successful.  */
   Return non-zero if successful.  */
 
 
static int
static int
derive_heap_segment (bfd *abfd, bfd_vma *bottom, bfd_vma *top)
derive_heap_segment (bfd *abfd, bfd_vma *bottom, bfd_vma *top)
{
{
  struct gdbarch *gdbarch;
  struct gdbarch *gdbarch;
  bfd_vma top_of_data_memory = 0;
  bfd_vma top_of_data_memory = 0;
  bfd_vma top_of_heap = 0;
  bfd_vma top_of_heap = 0;
  bfd_size_type sec_size;
  bfd_size_type sec_size;
  bfd_vma sec_vaddr;
  bfd_vma sec_vaddr;
  asection *sec;
  asection *sec;
 
 
  gdb_assert (bottom);
  gdb_assert (bottom);
  gdb_assert (top);
  gdb_assert (top);
 
 
  /* This function depends on being able to call a function in the
  /* This function depends on being able to call a function in the
     inferior.  */
     inferior.  */
  if (!target_has_execution)
  if (!target_has_execution)
    return 0;
    return 0;
 
 
  /* The following code assumes that the link map is arranged as
  /* The following code assumes that the link map is arranged as
     follows (low to high addresses):
     follows (low to high addresses):
 
 
     ---------------------------------
     ---------------------------------
     | text sections                 |
     | text sections                 |
     ---------------------------------
     ---------------------------------
     | data sections (including bss) |
     | data sections (including bss) |
     ---------------------------------
     ---------------------------------
     | heap                          |
     | heap                          |
     --------------------------------- */
     --------------------------------- */
 
 
  for (sec = abfd->sections; sec; sec = sec->next)
  for (sec = abfd->sections; sec; sec = sec->next)
    {
    {
      if (bfd_get_section_flags (abfd, sec) & SEC_DATA
      if (bfd_get_section_flags (abfd, sec) & SEC_DATA
          || strcmp (".bss", bfd_section_name (abfd, sec)) == 0)
          || strcmp (".bss", bfd_section_name (abfd, sec)) == 0)
        {
        {
          sec_vaddr = bfd_get_section_vma (abfd, sec);
          sec_vaddr = bfd_get_section_vma (abfd, sec);
          sec_size = bfd_get_section_size (sec);
          sec_size = bfd_get_section_size (sec);
          if (sec_vaddr + sec_size > top_of_data_memory)
          if (sec_vaddr + sec_size > top_of_data_memory)
            top_of_data_memory = sec_vaddr + sec_size;
            top_of_data_memory = sec_vaddr + sec_size;
        }
        }
    }
    }
 
 
  top_of_heap = call_target_sbrk (0);
  top_of_heap = call_target_sbrk (0);
  if (top_of_heap == (bfd_vma) 0)
  if (top_of_heap == (bfd_vma) 0)
    return 0;
    return 0;
 
 
  /* Return results.  */
  /* Return results.  */
  if (top_of_heap > top_of_data_memory)
  if (top_of_heap > top_of_data_memory)
    {
    {
      *bottom = top_of_data_memory;
      *bottom = top_of_data_memory;
      *top = top_of_heap;
      *top = top_of_heap;
      return 1;
      return 1;
    }
    }
 
 
  /* No additional heap space needs to be saved.  */
  /* No additional heap space needs to be saved.  */
  return 0;
  return 0;
}
}
 
 
static void
static void
make_output_phdrs (bfd *obfd, asection *osec, void *ignored)
make_output_phdrs (bfd *obfd, asection *osec, void *ignored)
{
{
  int p_flags = 0;
  int p_flags = 0;
  int p_type = 0;
  int p_type = 0;
 
 
  /* FIXME: these constants may only be applicable for ELF.  */
  /* FIXME: these constants may only be applicable for ELF.  */
  if (strncmp (bfd_section_name (obfd, osec), "load", 4) == 0)
  if (strncmp (bfd_section_name (obfd, osec), "load", 4) == 0)
    p_type = PT_LOAD;
    p_type = PT_LOAD;
  else if (strncmp (bfd_section_name (obfd, osec), "note", 4) == 0)
  else if (strncmp (bfd_section_name (obfd, osec), "note", 4) == 0)
    p_type = PT_NOTE;
    p_type = PT_NOTE;
  else
  else
    p_type = PT_NULL;
    p_type = PT_NULL;
 
 
  p_flags |= PF_R;      /* Segment is readable.  */
  p_flags |= PF_R;      /* Segment is readable.  */
  if (!(bfd_get_section_flags (obfd, osec) & SEC_READONLY))
  if (!(bfd_get_section_flags (obfd, osec) & SEC_READONLY))
    p_flags |= PF_W;    /* Segment is writable.  */
    p_flags |= PF_W;    /* Segment is writable.  */
  if (bfd_get_section_flags (obfd, osec) & SEC_CODE)
  if (bfd_get_section_flags (obfd, osec) & SEC_CODE)
    p_flags |= PF_X;    /* Segment is executable.  */
    p_flags |= PF_X;    /* Segment is executable.  */
 
 
  bfd_record_phdr (obfd, p_type, 1, p_flags, 0, 0, 0, 0, 1, &osec);
  bfd_record_phdr (obfd, p_type, 1, p_flags, 0, 0, 0, 0, 1, &osec);
}
}
 
 
static int
static int
gcore_create_callback (CORE_ADDR vaddr, unsigned long size,
gcore_create_callback (CORE_ADDR vaddr, unsigned long size,
                       int read, int write, int exec, void *data)
                       int read, int write, int exec, void *data)
{
{
  bfd *obfd = data;
  bfd *obfd = data;
  asection *osec;
  asection *osec;
  flagword flags = SEC_ALLOC | SEC_HAS_CONTENTS | SEC_LOAD;
  flagword flags = SEC_ALLOC | SEC_HAS_CONTENTS | SEC_LOAD;
 
 
  /* If the memory segment has no permissions set, ignore it, otherwise
  /* If the memory segment has no permissions set, ignore it, otherwise
     when we later try to access it for read/write, we'll get an error
     when we later try to access it for read/write, we'll get an error
     or jam the kernel.  */
     or jam the kernel.  */
  if (read == 0 && write == 0 && exec == 0)
  if (read == 0 && write == 0 && exec == 0)
    {
    {
      if (info_verbose)
      if (info_verbose)
        {
        {
          fprintf_filtered (gdb_stdout, "Ignore segment, %s bytes at %s\n",
          fprintf_filtered (gdb_stdout, "Ignore segment, %s bytes at %s\n",
                            plongest (size), paddress (target_gdbarch, vaddr));
                            plongest (size), paddress (target_gdbarch, vaddr));
        }
        }
 
 
      return 0;
      return 0;
    }
    }
 
 
  if (write == 0 && !solib_keep_data_in_core (vaddr, size))
  if (write == 0 && !solib_keep_data_in_core (vaddr, size))
    {
    {
      /* See if this region of memory lies inside a known file on disk.
      /* See if this region of memory lies inside a known file on disk.
         If so, we can avoid copying its contents by clearing SEC_LOAD.  */
         If so, we can avoid copying its contents by clearing SEC_LOAD.  */
      struct objfile *objfile;
      struct objfile *objfile;
      struct obj_section *objsec;
      struct obj_section *objsec;
 
 
      ALL_OBJSECTIONS (objfile, objsec)
      ALL_OBJSECTIONS (objfile, objsec)
        {
        {
          bfd *abfd = objfile->obfd;
          bfd *abfd = objfile->obfd;
          asection *asec = objsec->the_bfd_section;
          asection *asec = objsec->the_bfd_section;
          bfd_vma align = (bfd_vma) 1 << bfd_get_section_alignment (abfd,
          bfd_vma align = (bfd_vma) 1 << bfd_get_section_alignment (abfd,
                                                                    asec);
                                                                    asec);
          bfd_vma start = obj_section_addr (objsec) & -align;
          bfd_vma start = obj_section_addr (objsec) & -align;
          bfd_vma end = (obj_section_endaddr (objsec) + align - 1) & -align;
          bfd_vma end = (obj_section_endaddr (objsec) + align - 1) & -align;
          /* Match if either the entire memory region lies inside the
          /* Match if either the entire memory region lies inside the
             section (i.e. a mapping covering some pages of a large
             section (i.e. a mapping covering some pages of a large
             segment) or the entire section lies inside the memory region
             segment) or the entire section lies inside the memory region
             (i.e. a mapping covering multiple small sections).
             (i.e. a mapping covering multiple small sections).
 
 
             This BFD was synthesized from reading target memory,
             This BFD was synthesized from reading target memory,
             we don't want to omit that.  */
             we don't want to omit that.  */
          if (((vaddr >= start && vaddr + size <= end)
          if (((vaddr >= start && vaddr + size <= end)
               || (start >= vaddr && end <= vaddr + size))
               || (start >= vaddr && end <= vaddr + size))
              && !(bfd_get_file_flags (abfd) & BFD_IN_MEMORY))
              && !(bfd_get_file_flags (abfd) & BFD_IN_MEMORY))
            {
            {
              flags &= ~SEC_LOAD;
              flags &= ~SEC_LOAD;
              flags |= SEC_NEVER_LOAD;
              flags |= SEC_NEVER_LOAD;
              goto keep;        /* break out of two nested for loops */
              goto keep;        /* break out of two nested for loops */
            }
            }
        }
        }
 
 
    keep:
    keep:
      flags |= SEC_READONLY;
      flags |= SEC_READONLY;
    }
    }
 
 
  if (exec)
  if (exec)
    flags |= SEC_CODE;
    flags |= SEC_CODE;
  else
  else
    flags |= SEC_DATA;
    flags |= SEC_DATA;
 
 
  osec = bfd_make_section_anyway_with_flags (obfd, "load", flags);
  osec = bfd_make_section_anyway_with_flags (obfd, "load", flags);
  if (osec == NULL)
  if (osec == NULL)
    {
    {
      warning (_("Couldn't make gcore segment: %s"),
      warning (_("Couldn't make gcore segment: %s"),
               bfd_errmsg (bfd_get_error ()));
               bfd_errmsg (bfd_get_error ()));
      return 1;
      return 1;
    }
    }
 
 
  if (info_verbose)
  if (info_verbose)
    {
    {
      fprintf_filtered (gdb_stdout, "Save segment, %s bytes at %s\n",
      fprintf_filtered (gdb_stdout, "Save segment, %s bytes at %s\n",
                        plongest (size), paddress (target_gdbarch, vaddr));
                        plongest (size), paddress (target_gdbarch, vaddr));
    }
    }
 
 
  bfd_set_section_size (obfd, osec, size);
  bfd_set_section_size (obfd, osec, size);
  bfd_set_section_vma (obfd, osec, vaddr);
  bfd_set_section_vma (obfd, osec, vaddr);
  bfd_section_lma (obfd, osec) = 0; /* ??? bfd_set_section_lma?  */
  bfd_section_lma (obfd, osec) = 0; /* ??? bfd_set_section_lma?  */
  return 0;
  return 0;
}
}
 
 
static int
static int
objfile_find_memory_regions (int (*func) (CORE_ADDR, unsigned long,
objfile_find_memory_regions (int (*func) (CORE_ADDR, unsigned long,
                                          int, int, int, void *),
                                          int, int, int, void *),
                             void *obfd)
                             void *obfd)
{
{
  /* Use objfile data to create memory sections.  */
  /* Use objfile data to create memory sections.  */
  struct objfile *objfile;
  struct objfile *objfile;
  struct obj_section *objsec;
  struct obj_section *objsec;
  bfd_vma temp_bottom, temp_top;
  bfd_vma temp_bottom, temp_top;
 
 
  /* Call callback function for each objfile section.  */
  /* Call callback function for each objfile section.  */
  ALL_OBJSECTIONS (objfile, objsec)
  ALL_OBJSECTIONS (objfile, objsec)
    {
    {
      bfd *ibfd = objfile->obfd;
      bfd *ibfd = objfile->obfd;
      asection *isec = objsec->the_bfd_section;
      asection *isec = objsec->the_bfd_section;
      flagword flags = bfd_get_section_flags (ibfd, isec);
      flagword flags = bfd_get_section_flags (ibfd, isec);
      int ret;
      int ret;
 
 
      if ((flags & SEC_ALLOC) || (flags & SEC_LOAD))
      if ((flags & SEC_ALLOC) || (flags & SEC_LOAD))
        {
        {
          int size = bfd_section_size (ibfd, isec);
          int size = bfd_section_size (ibfd, isec);
          int ret;
          int ret;
 
 
          ret = (*func) (obj_section_addr (objsec), bfd_section_size (ibfd, isec),
          ret = (*func) (obj_section_addr (objsec), bfd_section_size (ibfd, isec),
                         1, /* All sections will be readable.  */
                         1, /* All sections will be readable.  */
                         (flags & SEC_READONLY) == 0, /* Writable.  */
                         (flags & SEC_READONLY) == 0, /* Writable.  */
                         (flags & SEC_CODE) != 0, /* Executable.  */
                         (flags & SEC_CODE) != 0, /* Executable.  */
                         obfd);
                         obfd);
          if (ret != 0)
          if (ret != 0)
            return ret;
            return ret;
        }
        }
    }
    }
 
 
  /* Make a stack segment.  */
  /* Make a stack segment.  */
  if (derive_stack_segment (&temp_bottom, &temp_top))
  if (derive_stack_segment (&temp_bottom, &temp_top))
    (*func) (temp_bottom, temp_top - temp_bottom,
    (*func) (temp_bottom, temp_top - temp_bottom,
             1, /* Stack section will be readable.  */
             1, /* Stack section will be readable.  */
             1, /* Stack section will be writable.  */
             1, /* Stack section will be writable.  */
             0, /* Stack section will not be executable.  */
             0, /* Stack section will not be executable.  */
             obfd);
             obfd);
 
 
  /* Make a heap segment. */
  /* Make a heap segment. */
  if (derive_heap_segment (exec_bfd, &temp_bottom, &temp_top))
  if (derive_heap_segment (exec_bfd, &temp_bottom, &temp_top))
    (*func) (temp_bottom, temp_top - temp_bottom,
    (*func) (temp_bottom, temp_top - temp_bottom,
             1, /* Heap section will be readable.  */
             1, /* Heap section will be readable.  */
             1, /* Heap section will be writable.  */
             1, /* Heap section will be writable.  */
             0, /* Heap section will not be executable.  */
             0, /* Heap section will not be executable.  */
             obfd);
             obfd);
 
 
  return 0;
  return 0;
}
}
 
 
static void
static void
gcore_copy_callback (bfd *obfd, asection *osec, void *ignored)
gcore_copy_callback (bfd *obfd, asection *osec, void *ignored)
{
{
  bfd_size_type size, total_size = bfd_section_size (obfd, osec);
  bfd_size_type size, total_size = bfd_section_size (obfd, osec);
  file_ptr offset = 0;
  file_ptr offset = 0;
  struct cleanup *old_chain = NULL;
  struct cleanup *old_chain = NULL;
  void *memhunk;
  void *memhunk;
 
 
  /* Read-only sections are marked; we don't have to copy their contents.  */
  /* Read-only sections are marked; we don't have to copy their contents.  */
  if ((bfd_get_section_flags (obfd, osec) & SEC_LOAD) == 0)
  if ((bfd_get_section_flags (obfd, osec) & SEC_LOAD) == 0)
    return;
    return;
 
 
  /* Only interested in "load" sections.  */
  /* Only interested in "load" sections.  */
  if (strncmp ("load", bfd_section_name (obfd, osec), 4) != 0)
  if (strncmp ("load", bfd_section_name (obfd, osec), 4) != 0)
    return;
    return;
 
 
  size = min (total_size, MAX_COPY_BYTES);
  size = min (total_size, MAX_COPY_BYTES);
  memhunk = xmalloc (size);
  memhunk = xmalloc (size);
  old_chain = make_cleanup (xfree, memhunk);
  old_chain = make_cleanup (xfree, memhunk);
 
 
  while (total_size > 0)
  while (total_size > 0)
    {
    {
      if (size > total_size)
      if (size > total_size)
        size = total_size;
        size = total_size;
 
 
      if (target_read_memory (bfd_section_vma (obfd, osec) + offset,
      if (target_read_memory (bfd_section_vma (obfd, osec) + offset,
                              memhunk, size) != 0)
                              memhunk, size) != 0)
        {
        {
          warning (_("Memory read failed for corefile section, %s bytes at %s."),
          warning (_("Memory read failed for corefile section, %s bytes at %s."),
                   plongest (size),
                   plongest (size),
                   paddress (target_gdbarch, bfd_section_vma (obfd, osec)));
                   paddress (target_gdbarch, bfd_section_vma (obfd, osec)));
          break;
          break;
        }
        }
      if (!bfd_set_section_contents (obfd, osec, memhunk, offset, size))
      if (!bfd_set_section_contents (obfd, osec, memhunk, offset, size))
        {
        {
          warning (_("Failed to write corefile contents (%s)."),
          warning (_("Failed to write corefile contents (%s)."),
                   bfd_errmsg (bfd_get_error ()));
                   bfd_errmsg (bfd_get_error ()));
          break;
          break;
        }
        }
 
 
      total_size -= size;
      total_size -= size;
      offset += size;
      offset += size;
    }
    }
 
 
  do_cleanups (old_chain);      /* Frees MEMHUNK.  */
  do_cleanups (old_chain);      /* Frees MEMHUNK.  */
}
}
 
 
static int
static int
gcore_memory_sections (bfd *obfd)
gcore_memory_sections (bfd *obfd)
{
{
  if (target_find_memory_regions (gcore_create_callback, obfd) != 0)
  if (target_find_memory_regions (gcore_create_callback, obfd) != 0)
    return 0;                    /* FIXME: error return/msg?  */
    return 0;                    /* FIXME: error return/msg?  */
 
 
  /* Record phdrs for section-to-segment mapping.  */
  /* Record phdrs for section-to-segment mapping.  */
  bfd_map_over_sections (obfd, make_output_phdrs, NULL);
  bfd_map_over_sections (obfd, make_output_phdrs, NULL);
 
 
  /* Copy memory region contents.  */
  /* Copy memory region contents.  */
  bfd_map_over_sections (obfd, gcore_copy_callback, NULL);
  bfd_map_over_sections (obfd, gcore_copy_callback, NULL);
 
 
  return 1;
  return 1;
}
}
 
 
/* Provide a prototype to silence -Wmissing-prototypes.  */
/* Provide a prototype to silence -Wmissing-prototypes.  */
extern initialize_file_ftype _initialize_gcore;
extern initialize_file_ftype _initialize_gcore;
 
 
void
void
_initialize_gcore (void)
_initialize_gcore (void)
{
{
  add_com ("generate-core-file", class_files, gcore_command, _("\
  add_com ("generate-core-file", class_files, gcore_command, _("\
Save a core file with the current state of the debugged process.\n\
Save a core file with the current state of the debugged process.\n\
Argument is optional filename.  Default filename is 'core.<process_id>'."));
Argument is optional filename.  Default filename is 'core.<process_id>'."));
 
 
  add_com_alias ("gcore", "generate-core-file", class_files, 1);
  add_com_alias ("gcore", "generate-core-file", class_files, 1);
  exec_set_find_memory_regions (objfile_find_memory_regions);
  exec_set_find_memory_regions (objfile_find_memory_regions);
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.