OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gdb-7.1/] [gdb/] [gdbserver/] [server.c] - Diff between revs 834 and 842

Only display areas with differences | Details | Blame | View Log

Rev 834 Rev 842
/* Main code for remote server for GDB.
/* Main code for remote server for GDB.
   Copyright (C) 1989, 1993, 1994, 1995, 1997, 1998, 1999, 2000, 2002, 2003,
   Copyright (C) 1989, 1993, 1994, 1995, 1997, 1998, 1999, 2000, 2002, 2003,
   2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
   2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
 
 
#include "server.h"
#include "server.h"
 
 
#if HAVE_UNISTD_H
#if HAVE_UNISTD_H
#include <unistd.h>
#include <unistd.h>
#endif
#endif
#if HAVE_SIGNAL_H
#if HAVE_SIGNAL_H
#include <signal.h>
#include <signal.h>
#endif
#endif
#if HAVE_SYS_WAIT_H
#if HAVE_SYS_WAIT_H
#include <sys/wait.h>
#include <sys/wait.h>
#endif
#endif
#if HAVE_MALLOC_H
#if HAVE_MALLOC_H
#include <malloc.h>
#include <malloc.h>
#endif
#endif
 
 
ptid_t cont_thread;
ptid_t cont_thread;
ptid_t general_thread;
ptid_t general_thread;
ptid_t step_thread;
ptid_t step_thread;
 
 
int server_waiting;
int server_waiting;
 
 
static int extended_protocol;
static int extended_protocol;
static int response_needed;
static int response_needed;
static int exit_requested;
static int exit_requested;
 
 
int multi_process;
int multi_process;
int non_stop;
int non_stop;
 
 
static char **program_argv, **wrapper_argv;
static char **program_argv, **wrapper_argv;
 
 
/* Enable miscellaneous debugging output.  The name is historical - it
/* Enable miscellaneous debugging output.  The name is historical - it
   was originally used to debug LinuxThreads support.  */
   was originally used to debug LinuxThreads support.  */
int debug_threads;
int debug_threads;
 
 
/* Enable debugging of h/w breakpoint/watchpoint support.  */
/* Enable debugging of h/w breakpoint/watchpoint support.  */
int debug_hw_points;
int debug_hw_points;
 
 
int pass_signals[TARGET_SIGNAL_LAST];
int pass_signals[TARGET_SIGNAL_LAST];
 
 
jmp_buf toplevel;
jmp_buf toplevel;
 
 
const char *gdbserver_xmltarget;
const char *gdbserver_xmltarget;
 
 
/* The PID of the originally created or attached inferior.  Used to
/* The PID of the originally created or attached inferior.  Used to
   send signals to the process when GDB sends us an asynchronous interrupt
   send signals to the process when GDB sends us an asynchronous interrupt
   (user hitting Control-C in the client), and to wait for the child to exit
   (user hitting Control-C in the client), and to wait for the child to exit
   when no longer debugging it.  */
   when no longer debugging it.  */
 
 
unsigned long signal_pid;
unsigned long signal_pid;
 
 
#ifdef SIGTTOU
#ifdef SIGTTOU
/* A file descriptor for the controlling terminal.  */
/* A file descriptor for the controlling terminal.  */
int terminal_fd;
int terminal_fd;
 
 
/* TERMINAL_FD's original foreground group.  */
/* TERMINAL_FD's original foreground group.  */
pid_t old_foreground_pgrp;
pid_t old_foreground_pgrp;
 
 
/* Hand back terminal ownership to the original foreground group.  */
/* Hand back terminal ownership to the original foreground group.  */
 
 
static void
static void
restore_old_foreground_pgrp (void)
restore_old_foreground_pgrp (void)
{
{
  tcsetpgrp (terminal_fd, old_foreground_pgrp);
  tcsetpgrp (terminal_fd, old_foreground_pgrp);
}
}
#endif
#endif
 
 
/* Set if you want to disable optional thread related packets support
/* Set if you want to disable optional thread related packets support
   in gdbserver, for the sake of testing GDB against stubs that don't
   in gdbserver, for the sake of testing GDB against stubs that don't
   support them.  */
   support them.  */
int disable_packet_vCont;
int disable_packet_vCont;
int disable_packet_Tthread;
int disable_packet_Tthread;
int disable_packet_qC;
int disable_packet_qC;
int disable_packet_qfThreadInfo;
int disable_packet_qfThreadInfo;
 
 
/* Last status reported to GDB.  */
/* Last status reported to GDB.  */
static struct target_waitstatus last_status;
static struct target_waitstatus last_status;
static ptid_t last_ptid;
static ptid_t last_ptid;
 
 
static char *own_buf;
static char *own_buf;
static unsigned char *mem_buf;
static unsigned char *mem_buf;
 
 
/* Structure holding information relative to a single stop reply.  We
/* Structure holding information relative to a single stop reply.  We
   keep a queue of these (really a singly-linked list) to push to GDB
   keep a queue of these (really a singly-linked list) to push to GDB
   in non-stop mode.  */
   in non-stop mode.  */
struct vstop_notif
struct vstop_notif
{
{
  /* Pointer to next in list.  */
  /* Pointer to next in list.  */
  struct vstop_notif *next;
  struct vstop_notif *next;
 
 
  /* Thread or process that got the event.  */
  /* Thread or process that got the event.  */
  ptid_t ptid;
  ptid_t ptid;
 
 
  /* Event info.  */
  /* Event info.  */
  struct target_waitstatus status;
  struct target_waitstatus status;
};
};
 
 
/* The pending stop replies list head.  */
/* The pending stop replies list head.  */
static struct vstop_notif *notif_queue = NULL;
static struct vstop_notif *notif_queue = NULL;
 
 
/* Put a stop reply to the stop reply queue.  */
/* Put a stop reply to the stop reply queue.  */
 
 
static void
static void
queue_stop_reply (ptid_t ptid, struct target_waitstatus *status)
queue_stop_reply (ptid_t ptid, struct target_waitstatus *status)
{
{
  struct vstop_notif *new_notif;
  struct vstop_notif *new_notif;
 
 
  new_notif = malloc (sizeof (*new_notif));
  new_notif = malloc (sizeof (*new_notif));
  new_notif->next = NULL;
  new_notif->next = NULL;
  new_notif->ptid = ptid;
  new_notif->ptid = ptid;
  new_notif->status = *status;
  new_notif->status = *status;
 
 
  if (notif_queue)
  if (notif_queue)
    {
    {
      struct vstop_notif *tail;
      struct vstop_notif *tail;
      for (tail = notif_queue;
      for (tail = notif_queue;
           tail && tail->next;
           tail && tail->next;
           tail = tail->next)
           tail = tail->next)
        ;
        ;
      tail->next = new_notif;
      tail->next = new_notif;
    }
    }
  else
  else
    notif_queue = new_notif;
    notif_queue = new_notif;
 
 
  if (remote_debug)
  if (remote_debug)
    {
    {
      int i = 0;
      int i = 0;
      struct vstop_notif *n;
      struct vstop_notif *n;
 
 
      for (n = notif_queue; n; n = n->next)
      for (n = notif_queue; n; n = n->next)
        i++;
        i++;
 
 
      fprintf (stderr, "pending stop replies: %d\n", i);
      fprintf (stderr, "pending stop replies: %d\n", i);
    }
    }
}
}
 
 
/* Place an event in the stop reply queue, and push a notification if
/* Place an event in the stop reply queue, and push a notification if
   we aren't sending one yet.  */
   we aren't sending one yet.  */
 
 
void
void
push_event (ptid_t ptid, struct target_waitstatus *status)
push_event (ptid_t ptid, struct target_waitstatus *status)
{
{
  queue_stop_reply (ptid, status);
  queue_stop_reply (ptid, status);
 
 
  /* If this is the first stop reply in the queue, then inform GDB
  /* If this is the first stop reply in the queue, then inform GDB
     about it, by sending a Stop notification.  */
     about it, by sending a Stop notification.  */
  if (notif_queue->next == NULL)
  if (notif_queue->next == NULL)
    {
    {
      char *p = own_buf;
      char *p = own_buf;
      strcpy (p, "Stop:");
      strcpy (p, "Stop:");
      p += strlen (p);
      p += strlen (p);
      prepare_resume_reply (p,
      prepare_resume_reply (p,
                            notif_queue->ptid, &notif_queue->status);
                            notif_queue->ptid, &notif_queue->status);
      putpkt_notif (own_buf);
      putpkt_notif (own_buf);
    }
    }
}
}
 
 
/* Get rid of the currently pending stop replies for PID.  If PID is
/* Get rid of the currently pending stop replies for PID.  If PID is
   -1, then apply to all processes.  */
   -1, then apply to all processes.  */
 
 
static void
static void
discard_queued_stop_replies (int pid)
discard_queued_stop_replies (int pid)
{
{
  struct vstop_notif *prev = NULL, *reply, *next;
  struct vstop_notif *prev = NULL, *reply, *next;
 
 
  for (reply = notif_queue; reply; reply = next)
  for (reply = notif_queue; reply; reply = next)
    {
    {
      next = reply->next;
      next = reply->next;
 
 
      if (pid == -1
      if (pid == -1
          || ptid_get_pid (reply->ptid) == pid)
          || ptid_get_pid (reply->ptid) == pid)
        {
        {
          if (reply == notif_queue)
          if (reply == notif_queue)
            notif_queue = next;
            notif_queue = next;
          else
          else
            prev->next = reply->next;
            prev->next = reply->next;
 
 
          free (reply);
          free (reply);
        }
        }
      else
      else
        prev = reply;
        prev = reply;
    }
    }
}
}
 
 
/* If there are more stop replies to push, push one now.  */
/* If there are more stop replies to push, push one now.  */
 
 
static void
static void
send_next_stop_reply (char *own_buf)
send_next_stop_reply (char *own_buf)
{
{
  if (notif_queue)
  if (notif_queue)
    prepare_resume_reply (own_buf,
    prepare_resume_reply (own_buf,
                          notif_queue->ptid,
                          notif_queue->ptid,
                          &notif_queue->status);
                          &notif_queue->status);
  else
  else
    write_ok (own_buf);
    write_ok (own_buf);
}
}
 
 
static int
static int
target_running (void)
target_running (void)
{
{
  return all_threads.head != NULL;
  return all_threads.head != NULL;
}
}
 
 
static int
static int
start_inferior (char **argv)
start_inferior (char **argv)
{
{
  char **new_argv = argv;
  char **new_argv = argv;
 
 
  if (wrapper_argv != NULL)
  if (wrapper_argv != NULL)
    {
    {
      int i, count = 1;
      int i, count = 1;
 
 
      for (i = 0; wrapper_argv[i] != NULL; i++)
      for (i = 0; wrapper_argv[i] != NULL; i++)
        count++;
        count++;
      for (i = 0; argv[i] != NULL; i++)
      for (i = 0; argv[i] != NULL; i++)
        count++;
        count++;
      new_argv = alloca (sizeof (char *) * count);
      new_argv = alloca (sizeof (char *) * count);
      count = 0;
      count = 0;
      for (i = 0; wrapper_argv[i] != NULL; i++)
      for (i = 0; wrapper_argv[i] != NULL; i++)
        new_argv[count++] = wrapper_argv[i];
        new_argv[count++] = wrapper_argv[i];
      for (i = 0; argv[i] != NULL; i++)
      for (i = 0; argv[i] != NULL; i++)
        new_argv[count++] = argv[i];
        new_argv[count++] = argv[i];
      new_argv[count] = NULL;
      new_argv[count] = NULL;
    }
    }
 
 
#ifdef SIGTTOU
#ifdef SIGTTOU
  signal (SIGTTOU, SIG_DFL);
  signal (SIGTTOU, SIG_DFL);
  signal (SIGTTIN, SIG_DFL);
  signal (SIGTTIN, SIG_DFL);
#endif
#endif
 
 
  signal_pid = create_inferior (new_argv[0], new_argv);
  signal_pid = create_inferior (new_argv[0], new_argv);
 
 
  /* FIXME: we don't actually know at this point that the create
  /* FIXME: we don't actually know at this point that the create
     actually succeeded.  We won't know that until we wait.  */
     actually succeeded.  We won't know that until we wait.  */
  fprintf (stderr, "Process %s created; pid = %ld\n", argv[0],
  fprintf (stderr, "Process %s created; pid = %ld\n", argv[0],
           signal_pid);
           signal_pid);
  fflush (stderr);
  fflush (stderr);
 
 
#ifdef SIGTTOU
#ifdef SIGTTOU
  signal (SIGTTOU, SIG_IGN);
  signal (SIGTTOU, SIG_IGN);
  signal (SIGTTIN, SIG_IGN);
  signal (SIGTTIN, SIG_IGN);
  terminal_fd = fileno (stderr);
  terminal_fd = fileno (stderr);
  old_foreground_pgrp = tcgetpgrp (terminal_fd);
  old_foreground_pgrp = tcgetpgrp (terminal_fd);
  tcsetpgrp (terminal_fd, signal_pid);
  tcsetpgrp (terminal_fd, signal_pid);
  atexit (restore_old_foreground_pgrp);
  atexit (restore_old_foreground_pgrp);
#endif
#endif
 
 
  if (wrapper_argv != NULL)
  if (wrapper_argv != NULL)
    {
    {
      struct thread_resume resume_info;
      struct thread_resume resume_info;
      ptid_t ptid;
      ptid_t ptid;
 
 
      resume_info.thread = pid_to_ptid (signal_pid);
      resume_info.thread = pid_to_ptid (signal_pid);
      resume_info.kind = resume_continue;
      resume_info.kind = resume_continue;
      resume_info.sig = 0;
      resume_info.sig = 0;
 
 
      ptid = mywait (pid_to_ptid (signal_pid), &last_status, 0, 0);
      ptid = mywait (pid_to_ptid (signal_pid), &last_status, 0, 0);
 
 
      if (last_status.kind != TARGET_WAITKIND_STOPPED)
      if (last_status.kind != TARGET_WAITKIND_STOPPED)
        return signal_pid;
        return signal_pid;
 
 
      do
      do
        {
        {
          (*the_target->resume) (&resume_info, 1);
          (*the_target->resume) (&resume_info, 1);
 
 
          mywait (pid_to_ptid (signal_pid), &last_status, 0, 0);
          mywait (pid_to_ptid (signal_pid), &last_status, 0, 0);
          if (last_status.kind != TARGET_WAITKIND_STOPPED)
          if (last_status.kind != TARGET_WAITKIND_STOPPED)
            return signal_pid;
            return signal_pid;
        }
        }
      while (last_status.value.sig != TARGET_SIGNAL_TRAP);
      while (last_status.value.sig != TARGET_SIGNAL_TRAP);
 
 
      return signal_pid;
      return signal_pid;
    }
    }
 
 
  /* Wait till we are at 1st instruction in program, return new pid
  /* Wait till we are at 1st instruction in program, return new pid
     (assuming success).  */
     (assuming success).  */
  last_ptid = mywait (pid_to_ptid (signal_pid), &last_status, 0, 0);
  last_ptid = mywait (pid_to_ptid (signal_pid), &last_status, 0, 0);
 
 
  return signal_pid;
  return signal_pid;
}
}
 
 
static int
static int
attach_inferior (int pid)
attach_inferior (int pid)
{
{
  /* myattach should return -1 if attaching is unsupported,
  /* myattach should return -1 if attaching is unsupported,
     0 if it succeeded, and call error() otherwise.  */
     0 if it succeeded, and call error() otherwise.  */
 
 
  if (myattach (pid) != 0)
  if (myattach (pid) != 0)
    return -1;
    return -1;
 
 
  fprintf (stderr, "Attached; pid = %d\n", pid);
  fprintf (stderr, "Attached; pid = %d\n", pid);
  fflush (stderr);
  fflush (stderr);
 
 
  /* FIXME - It may be that we should get the SIGNAL_PID from the
  /* FIXME - It may be that we should get the SIGNAL_PID from the
     attach function, so that it can be the main thread instead of
     attach function, so that it can be the main thread instead of
     whichever we were told to attach to.  */
     whichever we were told to attach to.  */
  signal_pid = pid;
  signal_pid = pid;
 
 
  if (!non_stop)
  if (!non_stop)
    {
    {
      last_ptid = mywait (pid_to_ptid (pid), &last_status, 0, 0);
      last_ptid = mywait (pid_to_ptid (pid), &last_status, 0, 0);
 
 
      /* GDB knows to ignore the first SIGSTOP after attaching to a running
      /* GDB knows to ignore the first SIGSTOP after attaching to a running
         process using the "attach" command, but this is different; it's
         process using the "attach" command, but this is different; it's
         just using "target remote".  Pretend it's just starting up.  */
         just using "target remote".  Pretend it's just starting up.  */
      if (last_status.kind == TARGET_WAITKIND_STOPPED
      if (last_status.kind == TARGET_WAITKIND_STOPPED
          && last_status.value.sig == TARGET_SIGNAL_STOP)
          && last_status.value.sig == TARGET_SIGNAL_STOP)
        last_status.value.sig = TARGET_SIGNAL_TRAP;
        last_status.value.sig = TARGET_SIGNAL_TRAP;
    }
    }
 
 
  return 0;
  return 0;
}
}
 
 
extern int remote_debug;
extern int remote_debug;
 
 
/* Decode a qXfer read request.  Return 0 if everything looks OK,
/* Decode a qXfer read request.  Return 0 if everything looks OK,
   or -1 otherwise.  */
   or -1 otherwise.  */
 
 
static int
static int
decode_xfer_read (char *buf, char **annex, CORE_ADDR *ofs, unsigned int *len)
decode_xfer_read (char *buf, char **annex, CORE_ADDR *ofs, unsigned int *len)
{
{
  /* Extract and NUL-terminate the annex.  */
  /* Extract and NUL-terminate the annex.  */
  *annex = buf;
  *annex = buf;
  while (*buf && *buf != ':')
  while (*buf && *buf != ':')
    buf++;
    buf++;
  if (*buf == '\0')
  if (*buf == '\0')
    return -1;
    return -1;
  *buf++ = 0;
  *buf++ = 0;
 
 
  /* After the read marker and annex, qXfer looks like a
  /* After the read marker and annex, qXfer looks like a
     traditional 'm' packet.  */
     traditional 'm' packet.  */
  decode_m_packet (buf, ofs, len);
  decode_m_packet (buf, ofs, len);
 
 
  return 0;
  return 0;
}
}
 
 
/* Write the response to a successful qXfer read.  Returns the
/* Write the response to a successful qXfer read.  Returns the
   length of the (binary) data stored in BUF, corresponding
   length of the (binary) data stored in BUF, corresponding
   to as much of DATA/LEN as we could fit.  IS_MORE controls
   to as much of DATA/LEN as we could fit.  IS_MORE controls
   the first character of the response.  */
   the first character of the response.  */
static int
static int
write_qxfer_response (char *buf, const void *data, int len, int is_more)
write_qxfer_response (char *buf, const void *data, int len, int is_more)
{
{
  int out_len;
  int out_len;
 
 
  if (is_more)
  if (is_more)
    buf[0] = 'm';
    buf[0] = 'm';
  else
  else
    buf[0] = 'l';
    buf[0] = 'l';
 
 
  return remote_escape_output (data, len, (unsigned char *) buf + 1, &out_len,
  return remote_escape_output (data, len, (unsigned char *) buf + 1, &out_len,
                               PBUFSIZ - 2) + 1;
                               PBUFSIZ - 2) + 1;
}
}
 
 
/* Handle all of the extended 'Q' packets.  */
/* Handle all of the extended 'Q' packets.  */
void
void
handle_general_set (char *own_buf)
handle_general_set (char *own_buf)
{
{
  if (strncmp ("QPassSignals:", own_buf, strlen ("QPassSignals:")) == 0)
  if (strncmp ("QPassSignals:", own_buf, strlen ("QPassSignals:")) == 0)
    {
    {
      int numsigs = (int) TARGET_SIGNAL_LAST, i;
      int numsigs = (int) TARGET_SIGNAL_LAST, i;
      const char *p = own_buf + strlen ("QPassSignals:");
      const char *p = own_buf + strlen ("QPassSignals:");
      CORE_ADDR cursig;
      CORE_ADDR cursig;
 
 
      p = decode_address_to_semicolon (&cursig, p);
      p = decode_address_to_semicolon (&cursig, p);
      for (i = 0; i < numsigs; i++)
      for (i = 0; i < numsigs; i++)
        {
        {
          if (i == cursig)
          if (i == cursig)
            {
            {
              pass_signals[i] = 1;
              pass_signals[i] = 1;
              if (*p == '\0')
              if (*p == '\0')
                /* Keep looping, to clear the remaining signals.  */
                /* Keep looping, to clear the remaining signals.  */
                cursig = -1;
                cursig = -1;
              else
              else
                p = decode_address_to_semicolon (&cursig, p);
                p = decode_address_to_semicolon (&cursig, p);
            }
            }
          else
          else
            pass_signals[i] = 0;
            pass_signals[i] = 0;
        }
        }
      strcpy (own_buf, "OK");
      strcpy (own_buf, "OK");
      return;
      return;
    }
    }
 
 
  if (strcmp (own_buf, "QStartNoAckMode") == 0)
  if (strcmp (own_buf, "QStartNoAckMode") == 0)
    {
    {
      if (remote_debug)
      if (remote_debug)
        {
        {
          fprintf (stderr, "[noack mode enabled]\n");
          fprintf (stderr, "[noack mode enabled]\n");
          fflush (stderr);
          fflush (stderr);
        }
        }
 
 
      noack_mode = 1;
      noack_mode = 1;
      write_ok (own_buf);
      write_ok (own_buf);
      return;
      return;
    }
    }
 
 
  if (strncmp (own_buf, "QNonStop:", 9) == 0)
  if (strncmp (own_buf, "QNonStop:", 9) == 0)
    {
    {
      char *mode = own_buf + 9;
      char *mode = own_buf + 9;
      int req = -1;
      int req = -1;
      char *req_str;
      char *req_str;
 
 
      if (strcmp (mode, "0") == 0)
      if (strcmp (mode, "0") == 0)
        req = 0;
        req = 0;
      else if (strcmp (mode, "1") == 0)
      else if (strcmp (mode, "1") == 0)
        req = 1;
        req = 1;
      else
      else
        {
        {
          /* We don't know what this mode is, so complain to
          /* We don't know what this mode is, so complain to
             GDB.  */
             GDB.  */
          fprintf (stderr, "Unknown non-stop mode requested: %s\n",
          fprintf (stderr, "Unknown non-stop mode requested: %s\n",
                   own_buf);
                   own_buf);
          write_enn (own_buf);
          write_enn (own_buf);
          return;
          return;
        }
        }
 
 
      req_str = req ? "non-stop" : "all-stop";
      req_str = req ? "non-stop" : "all-stop";
      if (start_non_stop (req) != 0)
      if (start_non_stop (req) != 0)
        {
        {
          fprintf (stderr, "Setting %s mode failed\n", req_str);
          fprintf (stderr, "Setting %s mode failed\n", req_str);
          write_enn (own_buf);
          write_enn (own_buf);
          return;
          return;
        }
        }
 
 
      non_stop = req;
      non_stop = req;
 
 
      if (remote_debug)
      if (remote_debug)
        fprintf (stderr, "[%s mode enabled]\n", req_str);
        fprintf (stderr, "[%s mode enabled]\n", req_str);
 
 
      write_ok (own_buf);
      write_ok (own_buf);
      return;
      return;
    }
    }
 
 
  /* Otherwise we didn't know what packet it was.  Say we didn't
  /* Otherwise we didn't know what packet it was.  Say we didn't
     understand it.  */
     understand it.  */
  own_buf[0] = 0;
  own_buf[0] = 0;
}
}
 
 
static const char *
static const char *
get_features_xml (const char *annex)
get_features_xml (const char *annex)
{
{
  /* gdbserver_xmltarget defines what to return when looking
  /* gdbserver_xmltarget defines what to return when looking
     for the "target.xml" file.  Its contents can either be
     for the "target.xml" file.  Its contents can either be
     verbatim XML code (prefixed with a '@') or else the name
     verbatim XML code (prefixed with a '@') or else the name
     of the actual XML file to be used in place of "target.xml".
     of the actual XML file to be used in place of "target.xml".
 
 
     This variable is set up from the auto-generated
     This variable is set up from the auto-generated
     init_registers_... routine for the current target.  */
     init_registers_... routine for the current target.  */
 
 
  if (gdbserver_xmltarget
  if (gdbserver_xmltarget
      && strcmp (annex, "target.xml") == 0)
      && strcmp (annex, "target.xml") == 0)
    {
    {
      if (*gdbserver_xmltarget == '@')
      if (*gdbserver_xmltarget == '@')
        return gdbserver_xmltarget + 1;
        return gdbserver_xmltarget + 1;
      else
      else
        annex = gdbserver_xmltarget;
        annex = gdbserver_xmltarget;
    }
    }
 
 
#ifdef USE_XML
#ifdef USE_XML
  {
  {
    extern const char *const xml_builtin[][2];
    extern const char *const xml_builtin[][2];
    int i;
    int i;
 
 
    /* Look for the annex.  */
    /* Look for the annex.  */
    for (i = 0; xml_builtin[i][0] != NULL; i++)
    for (i = 0; xml_builtin[i][0] != NULL; i++)
      if (strcmp (annex, xml_builtin[i][0]) == 0)
      if (strcmp (annex, xml_builtin[i][0]) == 0)
        break;
        break;
 
 
    if (xml_builtin[i][0] != NULL)
    if (xml_builtin[i][0] != NULL)
      return xml_builtin[i][1];
      return xml_builtin[i][1];
  }
  }
#endif
#endif
 
 
  return NULL;
  return NULL;
}
}
 
 
void
void
monitor_show_help (void)
monitor_show_help (void)
{
{
  monitor_output ("The following monitor commands are supported:\n");
  monitor_output ("The following monitor commands are supported:\n");
  monitor_output ("  set debug <0|1>\n");
  monitor_output ("  set debug <0|1>\n");
  monitor_output ("    Enable general debugging messages\n");
  monitor_output ("    Enable general debugging messages\n");
  monitor_output ("  set debug-hw-points <0|1>\n");
  monitor_output ("  set debug-hw-points <0|1>\n");
  monitor_output ("    Enable h/w breakpoint/watchpoint debugging messages\n");
  monitor_output ("    Enable h/w breakpoint/watchpoint debugging messages\n");
  monitor_output ("  set remote-debug <0|1>\n");
  monitor_output ("  set remote-debug <0|1>\n");
  monitor_output ("    Enable remote protocol debugging messages\n");
  monitor_output ("    Enable remote protocol debugging messages\n");
  monitor_output ("  exit\n");
  monitor_output ("  exit\n");
  monitor_output ("    Quit GDBserver\n");
  monitor_output ("    Quit GDBserver\n");
}
}
 
 
/* Subroutine of handle_search_memory to simplify it.  */
/* Subroutine of handle_search_memory to simplify it.  */
 
 
static int
static int
handle_search_memory_1 (CORE_ADDR start_addr, CORE_ADDR search_space_len,
handle_search_memory_1 (CORE_ADDR start_addr, CORE_ADDR search_space_len,
                        gdb_byte *pattern, unsigned pattern_len,
                        gdb_byte *pattern, unsigned pattern_len,
                        gdb_byte *search_buf,
                        gdb_byte *search_buf,
                        unsigned chunk_size, unsigned search_buf_size,
                        unsigned chunk_size, unsigned search_buf_size,
                        CORE_ADDR *found_addrp)
                        CORE_ADDR *found_addrp)
{
{
  /* Prime the search buffer.  */
  /* Prime the search buffer.  */
 
 
  if (read_inferior_memory (start_addr, search_buf, search_buf_size) != 0)
  if (read_inferior_memory (start_addr, search_buf, search_buf_size) != 0)
    {
    {
      warning ("Unable to access target memory at 0x%lx, halting search.",
      warning ("Unable to access target memory at 0x%lx, halting search.",
               (long) start_addr);
               (long) start_addr);
      return -1;
      return -1;
    }
    }
 
 
  /* Perform the search.
  /* Perform the search.
 
 
     The loop is kept simple by allocating [N + pattern-length - 1] bytes.
     The loop is kept simple by allocating [N + pattern-length - 1] bytes.
     When we've scanned N bytes we copy the trailing bytes to the start and
     When we've scanned N bytes we copy the trailing bytes to the start and
     read in another N bytes.  */
     read in another N bytes.  */
 
 
  while (search_space_len >= pattern_len)
  while (search_space_len >= pattern_len)
    {
    {
      gdb_byte *found_ptr;
      gdb_byte *found_ptr;
      unsigned nr_search_bytes = (search_space_len < search_buf_size
      unsigned nr_search_bytes = (search_space_len < search_buf_size
                                  ? search_space_len
                                  ? search_space_len
                                  : search_buf_size);
                                  : search_buf_size);
 
 
      found_ptr = memmem (search_buf, nr_search_bytes, pattern, pattern_len);
      found_ptr = memmem (search_buf, nr_search_bytes, pattern, pattern_len);
 
 
      if (found_ptr != NULL)
      if (found_ptr != NULL)
        {
        {
          CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
          CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
          *found_addrp = found_addr;
          *found_addrp = found_addr;
          return 1;
          return 1;
        }
        }
 
 
      /* Not found in this chunk, skip to next chunk.  */
      /* Not found in this chunk, skip to next chunk.  */
 
 
      /* Don't let search_space_len wrap here, it's unsigned.  */
      /* Don't let search_space_len wrap here, it's unsigned.  */
      if (search_space_len >= chunk_size)
      if (search_space_len >= chunk_size)
        search_space_len -= chunk_size;
        search_space_len -= chunk_size;
      else
      else
        search_space_len = 0;
        search_space_len = 0;
 
 
      if (search_space_len >= pattern_len)
      if (search_space_len >= pattern_len)
        {
        {
          unsigned keep_len = search_buf_size - chunk_size;
          unsigned keep_len = search_buf_size - chunk_size;
          CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
          CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
          int nr_to_read;
          int nr_to_read;
 
 
          /* Copy the trailing part of the previous iteration to the front
          /* Copy the trailing part of the previous iteration to the front
             of the buffer for the next iteration.  */
             of the buffer for the next iteration.  */
          memcpy (search_buf, search_buf + chunk_size, keep_len);
          memcpy (search_buf, search_buf + chunk_size, keep_len);
 
 
          nr_to_read = (search_space_len - keep_len < chunk_size
          nr_to_read = (search_space_len - keep_len < chunk_size
                        ? search_space_len - keep_len
                        ? search_space_len - keep_len
                        : chunk_size);
                        : chunk_size);
 
 
          if (read_inferior_memory (read_addr, search_buf + keep_len,
          if (read_inferior_memory (read_addr, search_buf + keep_len,
                                    nr_to_read) != 0)
                                    nr_to_read) != 0)
            {
            {
              warning ("Unable to access target memory at 0x%lx, halting search.",
              warning ("Unable to access target memory at 0x%lx, halting search.",
                       (long) read_addr);
                       (long) read_addr);
              return -1;
              return -1;
            }
            }
 
 
          start_addr += chunk_size;
          start_addr += chunk_size;
        }
        }
    }
    }
 
 
  /* Not found.  */
  /* Not found.  */
 
 
  return 0;
  return 0;
}
}
 
 
/* Handle qSearch:memory packets.  */
/* Handle qSearch:memory packets.  */
 
 
static void
static void
handle_search_memory (char *own_buf, int packet_len)
handle_search_memory (char *own_buf, int packet_len)
{
{
  CORE_ADDR start_addr;
  CORE_ADDR start_addr;
  CORE_ADDR search_space_len;
  CORE_ADDR search_space_len;
  gdb_byte *pattern;
  gdb_byte *pattern;
  unsigned int pattern_len;
  unsigned int pattern_len;
  /* NOTE: also defined in find.c testcase.  */
  /* NOTE: also defined in find.c testcase.  */
#define SEARCH_CHUNK_SIZE 16000
#define SEARCH_CHUNK_SIZE 16000
  const unsigned chunk_size = SEARCH_CHUNK_SIZE;
  const unsigned chunk_size = SEARCH_CHUNK_SIZE;
  /* Buffer to hold memory contents for searching.  */
  /* Buffer to hold memory contents for searching.  */
  gdb_byte *search_buf;
  gdb_byte *search_buf;
  unsigned search_buf_size;
  unsigned search_buf_size;
  int found;
  int found;
  CORE_ADDR found_addr;
  CORE_ADDR found_addr;
  int cmd_name_len = sizeof ("qSearch:memory:") - 1;
  int cmd_name_len = sizeof ("qSearch:memory:") - 1;
 
 
  pattern = malloc (packet_len);
  pattern = malloc (packet_len);
  if (pattern == NULL)
  if (pattern == NULL)
    {
    {
      error ("Unable to allocate memory to perform the search");
      error ("Unable to allocate memory to perform the search");
      strcpy (own_buf, "E00");
      strcpy (own_buf, "E00");
      return;
      return;
    }
    }
  if (decode_search_memory_packet (own_buf + cmd_name_len,
  if (decode_search_memory_packet (own_buf + cmd_name_len,
                                   packet_len - cmd_name_len,
                                   packet_len - cmd_name_len,
                                   &start_addr, &search_space_len,
                                   &start_addr, &search_space_len,
                                   pattern, &pattern_len) < 0)
                                   pattern, &pattern_len) < 0)
    {
    {
      free (pattern);
      free (pattern);
      error ("Error in parsing qSearch:memory packet");
      error ("Error in parsing qSearch:memory packet");
      strcpy (own_buf, "E00");
      strcpy (own_buf, "E00");
      return;
      return;
    }
    }
 
 
  search_buf_size = chunk_size + pattern_len - 1;
  search_buf_size = chunk_size + pattern_len - 1;
 
 
  /* No point in trying to allocate a buffer larger than the search space.  */
  /* No point in trying to allocate a buffer larger than the search space.  */
  if (search_space_len < search_buf_size)
  if (search_space_len < search_buf_size)
    search_buf_size = search_space_len;
    search_buf_size = search_space_len;
 
 
  search_buf = malloc (search_buf_size);
  search_buf = malloc (search_buf_size);
  if (search_buf == NULL)
  if (search_buf == NULL)
    {
    {
      free (pattern);
      free (pattern);
      error ("Unable to allocate memory to perform the search");
      error ("Unable to allocate memory to perform the search");
      strcpy (own_buf, "E00");
      strcpy (own_buf, "E00");
      return;
      return;
    }
    }
 
 
  found = handle_search_memory_1 (start_addr, search_space_len,
  found = handle_search_memory_1 (start_addr, search_space_len,
                                  pattern, pattern_len,
                                  pattern, pattern_len,
                                  search_buf, chunk_size, search_buf_size,
                                  search_buf, chunk_size, search_buf_size,
                                  &found_addr);
                                  &found_addr);
 
 
  if (found > 0)
  if (found > 0)
    sprintf (own_buf, "1,%lx", (long) found_addr);
    sprintf (own_buf, "1,%lx", (long) found_addr);
  else if (found == 0)
  else if (found == 0)
    strcpy (own_buf, "0");
    strcpy (own_buf, "0");
  else
  else
    strcpy (own_buf, "E00");
    strcpy (own_buf, "E00");
 
 
  free (search_buf);
  free (search_buf);
  free (pattern);
  free (pattern);
}
}
 
 
#define require_running(BUF)                    \
#define require_running(BUF)                    \
  if (!target_running ())                       \
  if (!target_running ())                       \
    {                                           \
    {                                           \
      write_enn (BUF);                          \
      write_enn (BUF);                          \
      return;                                   \
      return;                                   \
    }
    }
 
 
/* Handle monitor commands not handled by target-specific handlers.  */
/* Handle monitor commands not handled by target-specific handlers.  */
 
 
static void
static void
handle_monitor_command (char *mon)
handle_monitor_command (char *mon)
{
{
  if (strcmp (mon, "set debug 1") == 0)
  if (strcmp (mon, "set debug 1") == 0)
    {
    {
      debug_threads = 1;
      debug_threads = 1;
      monitor_output ("Debug output enabled.\n");
      monitor_output ("Debug output enabled.\n");
    }
    }
  else if (strcmp (mon, "set debug 0") == 0)
  else if (strcmp (mon, "set debug 0") == 0)
    {
    {
      debug_threads = 0;
      debug_threads = 0;
      monitor_output ("Debug output disabled.\n");
      monitor_output ("Debug output disabled.\n");
    }
    }
  else if (strcmp (mon, "set debug-hw-points 1") == 0)
  else if (strcmp (mon, "set debug-hw-points 1") == 0)
    {
    {
      debug_hw_points = 1;
      debug_hw_points = 1;
      monitor_output ("H/W point debugging output enabled.\n");
      monitor_output ("H/W point debugging output enabled.\n");
    }
    }
  else if (strcmp (mon, "set debug-hw-points 0") == 0)
  else if (strcmp (mon, "set debug-hw-points 0") == 0)
    {
    {
      debug_hw_points = 0;
      debug_hw_points = 0;
      monitor_output ("H/W point debugging output disabled.\n");
      monitor_output ("H/W point debugging output disabled.\n");
    }
    }
  else if (strcmp (mon, "set remote-debug 1") == 0)
  else if (strcmp (mon, "set remote-debug 1") == 0)
    {
    {
      remote_debug = 1;
      remote_debug = 1;
      monitor_output ("Protocol debug output enabled.\n");
      monitor_output ("Protocol debug output enabled.\n");
    }
    }
  else if (strcmp (mon, "set remote-debug 0") == 0)
  else if (strcmp (mon, "set remote-debug 0") == 0)
    {
    {
      remote_debug = 0;
      remote_debug = 0;
      monitor_output ("Protocol debug output disabled.\n");
      monitor_output ("Protocol debug output disabled.\n");
    }
    }
  else if (strcmp (mon, "help") == 0)
  else if (strcmp (mon, "help") == 0)
    monitor_show_help ();
    monitor_show_help ();
  else if (strcmp (mon, "exit") == 0)
  else if (strcmp (mon, "exit") == 0)
    exit_requested = 1;
    exit_requested = 1;
  else
  else
    {
    {
      monitor_output ("Unknown monitor command.\n\n");
      monitor_output ("Unknown monitor command.\n\n");
      monitor_show_help ();
      monitor_show_help ();
      write_enn (own_buf);
      write_enn (own_buf);
    }
    }
}
}
 
 
static void
static void
handle_threads_qxfer_proper (struct buffer *buffer)
handle_threads_qxfer_proper (struct buffer *buffer)
{
{
  struct inferior_list_entry *thread;
  struct inferior_list_entry *thread;
 
 
  buffer_grow_str (buffer, "<threads>\n");
  buffer_grow_str (buffer, "<threads>\n");
 
 
  for (thread = all_threads.head; thread; thread = thread->next)
  for (thread = all_threads.head; thread; thread = thread->next)
    {
    {
      ptid_t ptid = thread_to_gdb_id ((struct thread_info *)thread);
      ptid_t ptid = thread_to_gdb_id ((struct thread_info *)thread);
      char ptid_s[100];
      char ptid_s[100];
      int core = -1;
      int core = -1;
      char core_s[21];
      char core_s[21];
 
 
      write_ptid (ptid_s, ptid);
      write_ptid (ptid_s, ptid);
 
 
      if (the_target->core_of_thread)
      if (the_target->core_of_thread)
        core = (*the_target->core_of_thread) (ptid);
        core = (*the_target->core_of_thread) (ptid);
 
 
      if (core != -1)
      if (core != -1)
        {
        {
          sprintf (core_s, "%d", core);
          sprintf (core_s, "%d", core);
          buffer_xml_printf (buffer, "<thread id=\"%s\" core=\"%s\"/>\n",
          buffer_xml_printf (buffer, "<thread id=\"%s\" core=\"%s\"/>\n",
                             ptid_s, core_s);
                             ptid_s, core_s);
        }
        }
      else
      else
        {
        {
          buffer_xml_printf (buffer, "<thread id=\"%s\"/>\n",
          buffer_xml_printf (buffer, "<thread id=\"%s\"/>\n",
                             ptid_s);
                             ptid_s);
        }
        }
    }
    }
 
 
  buffer_grow_str0 (buffer, "</threads>\n");
  buffer_grow_str0 (buffer, "</threads>\n");
}
}
 
 
static int
static int
handle_threads_qxfer (const char *annex,
handle_threads_qxfer (const char *annex,
                      unsigned char *readbuf,
                      unsigned char *readbuf,
                      CORE_ADDR offset, int length)
                      CORE_ADDR offset, int length)
{
{
  static char *result = 0;
  static char *result = 0;
  static unsigned int result_length = 0;
  static unsigned int result_length = 0;
 
 
  if (annex && strcmp (annex, "") != 0)
  if (annex && strcmp (annex, "") != 0)
    return 0;
    return 0;
 
 
  if (offset == 0)
  if (offset == 0)
    {
    {
      struct buffer buffer;
      struct buffer buffer;
      /* When asked for data at offset 0, generate everything and store into
      /* When asked for data at offset 0, generate everything and store into
         'result'.  Successive reads will be served off 'result'.  */
         'result'.  Successive reads will be served off 'result'.  */
      if (result)
      if (result)
        free (result);
        free (result);
 
 
      buffer_init (&buffer);
      buffer_init (&buffer);
 
 
      handle_threads_qxfer_proper (&buffer);
      handle_threads_qxfer_proper (&buffer);
 
 
      result = buffer_finish (&buffer);
      result = buffer_finish (&buffer);
      result_length = strlen (result);
      result_length = strlen (result);
      buffer_free (&buffer);
      buffer_free (&buffer);
    }
    }
 
 
  if (offset >= result_length)
  if (offset >= result_length)
    {
    {
      /* We're out of data.  */
      /* We're out of data.  */
      free (result);
      free (result);
      result = NULL;
      result = NULL;
      result_length = 0;
      result_length = 0;
      return 0;
      return 0;
    }
    }
 
 
  if (length > result_length - offset)
  if (length > result_length - offset)
    length = result_length - offset;
    length = result_length - offset;
 
 
  memcpy (readbuf, result + offset, length);
  memcpy (readbuf, result + offset, length);
 
 
  return length;
  return length;
 
 
}
}
 
 
/* Handle all of the extended 'q' packets.  */
/* Handle all of the extended 'q' packets.  */
void
void
handle_query (char *own_buf, int packet_len, int *new_packet_len_p)
handle_query (char *own_buf, int packet_len, int *new_packet_len_p)
{
{
  static struct inferior_list_entry *thread_ptr;
  static struct inferior_list_entry *thread_ptr;
 
 
  /* Reply the current thread id.  */
  /* Reply the current thread id.  */
  if (strcmp ("qC", own_buf) == 0 && !disable_packet_qC)
  if (strcmp ("qC", own_buf) == 0 && !disable_packet_qC)
    {
    {
      ptid_t gdb_id;
      ptid_t gdb_id;
      require_running (own_buf);
      require_running (own_buf);
 
 
      if (!ptid_equal (general_thread, null_ptid)
      if (!ptid_equal (general_thread, null_ptid)
          && !ptid_equal (general_thread, minus_one_ptid))
          && !ptid_equal (general_thread, minus_one_ptid))
        gdb_id = general_thread;
        gdb_id = general_thread;
      else
      else
        {
        {
          thread_ptr = all_threads.head;
          thread_ptr = all_threads.head;
          gdb_id = thread_to_gdb_id ((struct thread_info *)thread_ptr);
          gdb_id = thread_to_gdb_id ((struct thread_info *)thread_ptr);
        }
        }
 
 
      sprintf (own_buf, "QC");
      sprintf (own_buf, "QC");
      own_buf += 2;
      own_buf += 2;
      own_buf = write_ptid (own_buf, gdb_id);
      own_buf = write_ptid (own_buf, gdb_id);
      return;
      return;
    }
    }
 
 
  if (strcmp ("qSymbol::", own_buf) == 0)
  if (strcmp ("qSymbol::", own_buf) == 0)
    {
    {
      if (target_running () && the_target->look_up_symbols != NULL)
      if (target_running () && the_target->look_up_symbols != NULL)
        (*the_target->look_up_symbols) ();
        (*the_target->look_up_symbols) ();
 
 
      strcpy (own_buf, "OK");
      strcpy (own_buf, "OK");
      return;
      return;
    }
    }
 
 
  if (!disable_packet_qfThreadInfo)
  if (!disable_packet_qfThreadInfo)
    {
    {
      if (strcmp ("qfThreadInfo", own_buf) == 0)
      if (strcmp ("qfThreadInfo", own_buf) == 0)
        {
        {
          ptid_t gdb_id;
          ptid_t gdb_id;
 
 
          require_running (own_buf);
          require_running (own_buf);
          thread_ptr = all_threads.head;
          thread_ptr = all_threads.head;
 
 
          *own_buf++ = 'm';
          *own_buf++ = 'm';
          gdb_id = thread_to_gdb_id ((struct thread_info *)thread_ptr);
          gdb_id = thread_to_gdb_id ((struct thread_info *)thread_ptr);
          write_ptid (own_buf, gdb_id);
          write_ptid (own_buf, gdb_id);
          thread_ptr = thread_ptr->next;
          thread_ptr = thread_ptr->next;
          return;
          return;
        }
        }
 
 
      if (strcmp ("qsThreadInfo", own_buf) == 0)
      if (strcmp ("qsThreadInfo", own_buf) == 0)
        {
        {
          ptid_t gdb_id;
          ptid_t gdb_id;
 
 
          require_running (own_buf);
          require_running (own_buf);
          if (thread_ptr != NULL)
          if (thread_ptr != NULL)
            {
            {
              *own_buf++ = 'm';
              *own_buf++ = 'm';
              gdb_id = thread_to_gdb_id ((struct thread_info *)thread_ptr);
              gdb_id = thread_to_gdb_id ((struct thread_info *)thread_ptr);
              write_ptid (own_buf, gdb_id);
              write_ptid (own_buf, gdb_id);
              thread_ptr = thread_ptr->next;
              thread_ptr = thread_ptr->next;
              return;
              return;
            }
            }
          else
          else
            {
            {
              sprintf (own_buf, "l");
              sprintf (own_buf, "l");
              return;
              return;
            }
            }
        }
        }
    }
    }
 
 
  if (the_target->read_offsets != NULL
  if (the_target->read_offsets != NULL
      && strcmp ("qOffsets", own_buf) == 0)
      && strcmp ("qOffsets", own_buf) == 0)
    {
    {
      CORE_ADDR text, data;
      CORE_ADDR text, data;
 
 
      require_running (own_buf);
      require_running (own_buf);
      if (the_target->read_offsets (&text, &data))
      if (the_target->read_offsets (&text, &data))
        sprintf (own_buf, "Text=%lX;Data=%lX;Bss=%lX",
        sprintf (own_buf, "Text=%lX;Data=%lX;Bss=%lX",
                 (long)text, (long)data, (long)data);
                 (long)text, (long)data, (long)data);
      else
      else
        write_enn (own_buf);
        write_enn (own_buf);
 
 
      return;
      return;
    }
    }
 
 
  if (the_target->qxfer_spu != NULL
  if (the_target->qxfer_spu != NULL
      && strncmp ("qXfer:spu:read:", own_buf, 15) == 0)
      && strncmp ("qXfer:spu:read:", own_buf, 15) == 0)
    {
    {
      char *annex;
      char *annex;
      int n;
      int n;
      unsigned int len;
      unsigned int len;
      CORE_ADDR ofs;
      CORE_ADDR ofs;
      unsigned char *spu_buf;
      unsigned char *spu_buf;
 
 
      require_running (own_buf);
      require_running (own_buf);
      strcpy (own_buf, "E00");
      strcpy (own_buf, "E00");
      if (decode_xfer_read (own_buf + 15, &annex, &ofs, &len) < 0)
      if (decode_xfer_read (own_buf + 15, &annex, &ofs, &len) < 0)
        return;
        return;
      if (len > PBUFSIZ - 2)
      if (len > PBUFSIZ - 2)
        len = PBUFSIZ - 2;
        len = PBUFSIZ - 2;
      spu_buf = malloc (len + 1);
      spu_buf = malloc (len + 1);
      if (!spu_buf)
      if (!spu_buf)
        return;
        return;
 
 
      n = (*the_target->qxfer_spu) (annex, spu_buf, NULL, ofs, len + 1);
      n = (*the_target->qxfer_spu) (annex, spu_buf, NULL, ofs, len + 1);
      if (n < 0)
      if (n < 0)
        write_enn (own_buf);
        write_enn (own_buf);
      else if (n > len)
      else if (n > len)
        *new_packet_len_p = write_qxfer_response (own_buf, spu_buf, len, 1);
        *new_packet_len_p = write_qxfer_response (own_buf, spu_buf, len, 1);
      else
      else
        *new_packet_len_p = write_qxfer_response (own_buf, spu_buf, n, 0);
        *new_packet_len_p = write_qxfer_response (own_buf, spu_buf, n, 0);
 
 
      free (spu_buf);
      free (spu_buf);
      return;
      return;
    }
    }
 
 
  if (the_target->qxfer_spu != NULL
  if (the_target->qxfer_spu != NULL
      && strncmp ("qXfer:spu:write:", own_buf, 16) == 0)
      && strncmp ("qXfer:spu:write:", own_buf, 16) == 0)
    {
    {
      char *annex;
      char *annex;
      int n;
      int n;
      unsigned int len;
      unsigned int len;
      CORE_ADDR ofs;
      CORE_ADDR ofs;
      unsigned char *spu_buf;
      unsigned char *spu_buf;
 
 
      require_running (own_buf);
      require_running (own_buf);
      strcpy (own_buf, "E00");
      strcpy (own_buf, "E00");
      spu_buf = malloc (packet_len - 15);
      spu_buf = malloc (packet_len - 15);
      if (!spu_buf)
      if (!spu_buf)
        return;
        return;
      if (decode_xfer_write (own_buf + 16, packet_len - 16, &annex,
      if (decode_xfer_write (own_buf + 16, packet_len - 16, &annex,
                             &ofs, &len, spu_buf) < 0)
                             &ofs, &len, spu_buf) < 0)
        {
        {
          free (spu_buf);
          free (spu_buf);
          return;
          return;
        }
        }
 
 
      n = (*the_target->qxfer_spu)
      n = (*the_target->qxfer_spu)
        (annex, NULL, (unsigned const char *)spu_buf, ofs, len);
        (annex, NULL, (unsigned const char *)spu_buf, ofs, len);
      if (n < 0)
      if (n < 0)
        write_enn (own_buf);
        write_enn (own_buf);
      else
      else
        sprintf (own_buf, "%x", n);
        sprintf (own_buf, "%x", n);
 
 
      free (spu_buf);
      free (spu_buf);
      return;
      return;
    }
    }
 
 
  if (the_target->read_auxv != NULL
  if (the_target->read_auxv != NULL
      && strncmp ("qXfer:auxv:read:", own_buf, 16) == 0)
      && strncmp ("qXfer:auxv:read:", own_buf, 16) == 0)
    {
    {
      unsigned char *data;
      unsigned char *data;
      int n;
      int n;
      CORE_ADDR ofs;
      CORE_ADDR ofs;
      unsigned int len;
      unsigned int len;
      char *annex;
      char *annex;
 
 
      require_running (own_buf);
      require_running (own_buf);
 
 
      /* Reject any annex; grab the offset and length.  */
      /* Reject any annex; grab the offset and length.  */
      if (decode_xfer_read (own_buf + 16, &annex, &ofs, &len) < 0
      if (decode_xfer_read (own_buf + 16, &annex, &ofs, &len) < 0
          || annex[0] != '\0')
          || annex[0] != '\0')
        {
        {
          strcpy (own_buf, "E00");
          strcpy (own_buf, "E00");
          return;
          return;
        }
        }
 
 
      /* Read one extra byte, as an indicator of whether there is
      /* Read one extra byte, as an indicator of whether there is
         more.  */
         more.  */
      if (len > PBUFSIZ - 2)
      if (len > PBUFSIZ - 2)
        len = PBUFSIZ - 2;
        len = PBUFSIZ - 2;
      data = malloc (len + 1);
      data = malloc (len + 1);
      if (data == NULL)
      if (data == NULL)
        {
        {
          write_enn (own_buf);
          write_enn (own_buf);
          return;
          return;
        }
        }
      n = (*the_target->read_auxv) (ofs, data, len + 1);
      n = (*the_target->read_auxv) (ofs, data, len + 1);
      if (n < 0)
      if (n < 0)
        write_enn (own_buf);
        write_enn (own_buf);
      else if (n > len)
      else if (n > len)
        *new_packet_len_p = write_qxfer_response (own_buf, data, len, 1);
        *new_packet_len_p = write_qxfer_response (own_buf, data, len, 1);
      else
      else
        *new_packet_len_p = write_qxfer_response (own_buf, data, n, 0);
        *new_packet_len_p = write_qxfer_response (own_buf, data, n, 0);
 
 
      free (data);
      free (data);
 
 
      return;
      return;
    }
    }
 
 
  if (strncmp ("qXfer:features:read:", own_buf, 20) == 0)
  if (strncmp ("qXfer:features:read:", own_buf, 20) == 0)
    {
    {
      CORE_ADDR ofs;
      CORE_ADDR ofs;
      unsigned int len, total_len;
      unsigned int len, total_len;
      const char *document;
      const char *document;
      char *annex;
      char *annex;
 
 
      require_running (own_buf);
      require_running (own_buf);
 
 
      /* Grab the annex, offset, and length.  */
      /* Grab the annex, offset, and length.  */
      if (decode_xfer_read (own_buf + 20, &annex, &ofs, &len) < 0)
      if (decode_xfer_read (own_buf + 20, &annex, &ofs, &len) < 0)
        {
        {
          strcpy (own_buf, "E00");
          strcpy (own_buf, "E00");
          return;
          return;
        }
        }
 
 
      /* Now grab the correct annex.  */
      /* Now grab the correct annex.  */
      document = get_features_xml (annex);
      document = get_features_xml (annex);
      if (document == NULL)
      if (document == NULL)
        {
        {
          strcpy (own_buf, "E00");
          strcpy (own_buf, "E00");
          return;
          return;
        }
        }
 
 
      total_len = strlen (document);
      total_len = strlen (document);
      if (len > PBUFSIZ - 2)
      if (len > PBUFSIZ - 2)
        len = PBUFSIZ - 2;
        len = PBUFSIZ - 2;
 
 
      if (ofs > total_len)
      if (ofs > total_len)
        write_enn (own_buf);
        write_enn (own_buf);
      else if (len < total_len - ofs)
      else if (len < total_len - ofs)
        *new_packet_len_p = write_qxfer_response (own_buf, document + ofs,
        *new_packet_len_p = write_qxfer_response (own_buf, document + ofs,
                                                  len, 1);
                                                  len, 1);
      else
      else
        *new_packet_len_p = write_qxfer_response (own_buf, document + ofs,
        *new_packet_len_p = write_qxfer_response (own_buf, document + ofs,
                                                  total_len - ofs, 0);
                                                  total_len - ofs, 0);
 
 
      return;
      return;
    }
    }
 
 
  if (strncmp ("qXfer:libraries:read:", own_buf, 21) == 0)
  if (strncmp ("qXfer:libraries:read:", own_buf, 21) == 0)
    {
    {
      CORE_ADDR ofs;
      CORE_ADDR ofs;
      unsigned int len, total_len;
      unsigned int len, total_len;
      char *document, *p;
      char *document, *p;
      struct inferior_list_entry *dll_ptr;
      struct inferior_list_entry *dll_ptr;
      char *annex;
      char *annex;
 
 
      require_running (own_buf);
      require_running (own_buf);
 
 
      /* Reject any annex; grab the offset and length.  */
      /* Reject any annex; grab the offset and length.  */
      if (decode_xfer_read (own_buf + 21, &annex, &ofs, &len) < 0
      if (decode_xfer_read (own_buf + 21, &annex, &ofs, &len) < 0
          || annex[0] != '\0')
          || annex[0] != '\0')
        {
        {
          strcpy (own_buf, "E00");
          strcpy (own_buf, "E00");
          return;
          return;
        }
        }
 
 
      /* Over-estimate the necessary memory.  Assume that every character
      /* Over-estimate the necessary memory.  Assume that every character
         in the library name must be escaped.  */
         in the library name must be escaped.  */
      total_len = 64;
      total_len = 64;
      for (dll_ptr = all_dlls.head; dll_ptr != NULL; dll_ptr = dll_ptr->next)
      for (dll_ptr = all_dlls.head; dll_ptr != NULL; dll_ptr = dll_ptr->next)
        total_len += 128 + 6 * strlen (((struct dll_info *) dll_ptr)->name);
        total_len += 128 + 6 * strlen (((struct dll_info *) dll_ptr)->name);
 
 
      document = malloc (total_len);
      document = malloc (total_len);
      if (document == NULL)
      if (document == NULL)
        {
        {
          write_enn (own_buf);
          write_enn (own_buf);
          return;
          return;
        }
        }
      strcpy (document, "<library-list>\n");
      strcpy (document, "<library-list>\n");
      p = document + strlen (document);
      p = document + strlen (document);
 
 
      for (dll_ptr = all_dlls.head; dll_ptr != NULL; dll_ptr = dll_ptr->next)
      for (dll_ptr = all_dlls.head; dll_ptr != NULL; dll_ptr = dll_ptr->next)
        {
        {
          struct dll_info *dll = (struct dll_info *) dll_ptr;
          struct dll_info *dll = (struct dll_info *) dll_ptr;
          char *name;
          char *name;
 
 
          strcpy (p, "  <library name=\"");
          strcpy (p, "  <library name=\"");
          p = p + strlen (p);
          p = p + strlen (p);
          name = xml_escape_text (dll->name);
          name = xml_escape_text (dll->name);
          strcpy (p, name);
          strcpy (p, name);
          free (name);
          free (name);
          p = p + strlen (p);
          p = p + strlen (p);
          strcpy (p, "\"><segment address=\"");
          strcpy (p, "\"><segment address=\"");
          p = p + strlen (p);
          p = p + strlen (p);
          sprintf (p, "0x%lx", (long) dll->base_addr);
          sprintf (p, "0x%lx", (long) dll->base_addr);
          p = p + strlen (p);
          p = p + strlen (p);
          strcpy (p, "\"/></library>\n");
          strcpy (p, "\"/></library>\n");
          p = p + strlen (p);
          p = p + strlen (p);
        }
        }
 
 
      strcpy (p, "</library-list>\n");
      strcpy (p, "</library-list>\n");
 
 
      total_len = strlen (document);
      total_len = strlen (document);
      if (len > PBUFSIZ - 2)
      if (len > PBUFSIZ - 2)
        len = PBUFSIZ - 2;
        len = PBUFSIZ - 2;
 
 
      if (ofs > total_len)
      if (ofs > total_len)
        write_enn (own_buf);
        write_enn (own_buf);
      else if (len < total_len - ofs)
      else if (len < total_len - ofs)
        *new_packet_len_p = write_qxfer_response (own_buf, document + ofs,
        *new_packet_len_p = write_qxfer_response (own_buf, document + ofs,
                                                  len, 1);
                                                  len, 1);
      else
      else
        *new_packet_len_p = write_qxfer_response (own_buf, document + ofs,
        *new_packet_len_p = write_qxfer_response (own_buf, document + ofs,
                                                  total_len - ofs, 0);
                                                  total_len - ofs, 0);
 
 
      free (document);
      free (document);
      return;
      return;
    }
    }
 
 
  if (the_target->qxfer_osdata != NULL
  if (the_target->qxfer_osdata != NULL
      && strncmp ("qXfer:osdata:read:", own_buf, 18) == 0)
      && strncmp ("qXfer:osdata:read:", own_buf, 18) == 0)
    {
    {
      char *annex;
      char *annex;
      int n;
      int n;
      unsigned int len;
      unsigned int len;
      CORE_ADDR ofs;
      CORE_ADDR ofs;
      unsigned char *workbuf;
      unsigned char *workbuf;
 
 
      strcpy (own_buf, "E00");
      strcpy (own_buf, "E00");
      if (decode_xfer_read (own_buf + 18, &annex, &ofs, &len) < 0)
      if (decode_xfer_read (own_buf + 18, &annex, &ofs, &len) < 0)
        return;
        return;
      if (len > PBUFSIZ - 2)
      if (len > PBUFSIZ - 2)
        len = PBUFSIZ - 2;
        len = PBUFSIZ - 2;
      workbuf = malloc (len + 1);
      workbuf = malloc (len + 1);
      if (!workbuf)
      if (!workbuf)
        return;
        return;
 
 
      n = (*the_target->qxfer_osdata) (annex, workbuf, NULL, ofs, len + 1);
      n = (*the_target->qxfer_osdata) (annex, workbuf, NULL, ofs, len + 1);
      if (n < 0)
      if (n < 0)
        write_enn (own_buf);
        write_enn (own_buf);
      else if (n > len)
      else if (n > len)
        *new_packet_len_p = write_qxfer_response (own_buf, workbuf, len, 1);
        *new_packet_len_p = write_qxfer_response (own_buf, workbuf, len, 1);
      else
      else
        *new_packet_len_p = write_qxfer_response (own_buf, workbuf, n, 0);
        *new_packet_len_p = write_qxfer_response (own_buf, workbuf, n, 0);
 
 
      free (workbuf);
      free (workbuf);
      return;
      return;
    }
    }
 
 
  if (the_target->qxfer_siginfo != NULL
  if (the_target->qxfer_siginfo != NULL
      && strncmp ("qXfer:siginfo:read:", own_buf, 19) == 0)
      && strncmp ("qXfer:siginfo:read:", own_buf, 19) == 0)
    {
    {
      unsigned char *data;
      unsigned char *data;
      int n;
      int n;
      CORE_ADDR ofs;
      CORE_ADDR ofs;
      unsigned int len;
      unsigned int len;
      char *annex;
      char *annex;
 
 
      require_running (own_buf);
      require_running (own_buf);
 
 
      /* Reject any annex; grab the offset and length.  */
      /* Reject any annex; grab the offset and length.  */
      if (decode_xfer_read (own_buf + 19, &annex, &ofs, &len) < 0
      if (decode_xfer_read (own_buf + 19, &annex, &ofs, &len) < 0
          || annex[0] != '\0')
          || annex[0] != '\0')
        {
        {
          strcpy (own_buf, "E00");
          strcpy (own_buf, "E00");
          return;
          return;
        }
        }
 
 
      /* Read one extra byte, as an indicator of whether there is
      /* Read one extra byte, as an indicator of whether there is
         more.  */
         more.  */
      if (len > PBUFSIZ - 2)
      if (len > PBUFSIZ - 2)
        len = PBUFSIZ - 2;
        len = PBUFSIZ - 2;
      data = malloc (len + 1);
      data = malloc (len + 1);
      if (!data)
      if (!data)
        return;
        return;
      n = (*the_target->qxfer_siginfo) (annex, data, NULL, ofs, len + 1);
      n = (*the_target->qxfer_siginfo) (annex, data, NULL, ofs, len + 1);
      if (n < 0)
      if (n < 0)
        write_enn (own_buf);
        write_enn (own_buf);
      else if (n > len)
      else if (n > len)
        *new_packet_len_p = write_qxfer_response (own_buf, data, len, 1);
        *new_packet_len_p = write_qxfer_response (own_buf, data, len, 1);
      else
      else
        *new_packet_len_p = write_qxfer_response (own_buf, data, n, 0);
        *new_packet_len_p = write_qxfer_response (own_buf, data, n, 0);
 
 
      free (data);
      free (data);
      return;
      return;
    }
    }
 
 
  if (the_target->qxfer_siginfo != NULL
  if (the_target->qxfer_siginfo != NULL
      && strncmp ("qXfer:siginfo:write:", own_buf, 20) == 0)
      && strncmp ("qXfer:siginfo:write:", own_buf, 20) == 0)
    {
    {
      char *annex;
      char *annex;
      int n;
      int n;
      unsigned int len;
      unsigned int len;
      CORE_ADDR ofs;
      CORE_ADDR ofs;
      unsigned char *data;
      unsigned char *data;
 
 
      require_running (own_buf);
      require_running (own_buf);
 
 
      strcpy (own_buf, "E00");
      strcpy (own_buf, "E00");
      data = malloc (packet_len - 19);
      data = malloc (packet_len - 19);
      if (!data)
      if (!data)
        return;
        return;
      if (decode_xfer_write (own_buf + 20, packet_len - 20, &annex,
      if (decode_xfer_write (own_buf + 20, packet_len - 20, &annex,
                             &ofs, &len, data) < 0)
                             &ofs, &len, data) < 0)
        {
        {
          free (data);
          free (data);
          return;
          return;
        }
        }
 
 
      n = (*the_target->qxfer_siginfo)
      n = (*the_target->qxfer_siginfo)
        (annex, NULL, (unsigned const char *)data, ofs, len);
        (annex, NULL, (unsigned const char *)data, ofs, len);
      if (n < 0)
      if (n < 0)
        write_enn (own_buf);
        write_enn (own_buf);
      else
      else
        sprintf (own_buf, "%x", n);
        sprintf (own_buf, "%x", n);
 
 
      free (data);
      free (data);
      return;
      return;
    }
    }
 
 
  if (strncmp ("qXfer:threads:read:", own_buf, 19) == 0)
  if (strncmp ("qXfer:threads:read:", own_buf, 19) == 0)
    {
    {
      unsigned char *data;
      unsigned char *data;
      int n;
      int n;
      CORE_ADDR ofs;
      CORE_ADDR ofs;
      unsigned int len;
      unsigned int len;
      char *annex;
      char *annex;
 
 
      require_running (own_buf);
      require_running (own_buf);
 
 
      /* Reject any annex; grab the offset and length.  */
      /* Reject any annex; grab the offset and length.  */
      if (decode_xfer_read (own_buf + 19, &annex, &ofs, &len) < 0
      if (decode_xfer_read (own_buf + 19, &annex, &ofs, &len) < 0
          || annex[0] != '\0')
          || annex[0] != '\0')
        {
        {
          strcpy (own_buf, "E00");
          strcpy (own_buf, "E00");
          return;
          return;
        }
        }
 
 
      /* Read one extra byte, as an indicator of whether there is
      /* Read one extra byte, as an indicator of whether there is
         more.  */
         more.  */
      if (len > PBUFSIZ - 2)
      if (len > PBUFSIZ - 2)
        len = PBUFSIZ - 2;
        len = PBUFSIZ - 2;
      data = malloc (len + 1);
      data = malloc (len + 1);
      if (!data)
      if (!data)
        return;
        return;
      n = handle_threads_qxfer (annex, data, ofs, len + 1);
      n = handle_threads_qxfer (annex, data, ofs, len + 1);
      if (n < 0)
      if (n < 0)
        write_enn (own_buf);
        write_enn (own_buf);
      else if (n > len)
      else if (n > len)
        *new_packet_len_p = write_qxfer_response (own_buf, data, len, 1);
        *new_packet_len_p = write_qxfer_response (own_buf, data, len, 1);
      else
      else
        *new_packet_len_p = write_qxfer_response (own_buf, data, n, 0);
        *new_packet_len_p = write_qxfer_response (own_buf, data, n, 0);
 
 
      free (data);
      free (data);
      return;
      return;
    }
    }
 
 
  /* Protocol features query.  */
  /* Protocol features query.  */
  if (strncmp ("qSupported", own_buf, 10) == 0
  if (strncmp ("qSupported", own_buf, 10) == 0
      && (own_buf[10] == ':' || own_buf[10] == '\0'))
      && (own_buf[10] == ':' || own_buf[10] == '\0'))
    {
    {
      char *p = &own_buf[10];
      char *p = &own_buf[10];
 
 
      /* Process each feature being provided by GDB.  The first
      /* Process each feature being provided by GDB.  The first
         feature will follow a ':', and latter features will follow
         feature will follow a ':', and latter features will follow
         ';'.  */
         ';'.  */
      if (*p == ':')
      if (*p == ':')
        for (p = strtok (p + 1, ";");
        for (p = strtok (p + 1, ";");
             p != NULL;
             p != NULL;
             p = strtok (NULL, ";"))
             p = strtok (NULL, ";"))
          {
          {
            if (strcmp (p, "multiprocess+") == 0)
            if (strcmp (p, "multiprocess+") == 0)
              {
              {
                /* GDB supports and wants multi-process support if
                /* GDB supports and wants multi-process support if
                   possible.  */
                   possible.  */
                if (target_supports_multi_process ())
                if (target_supports_multi_process ())
                  multi_process = 1;
                  multi_process = 1;
              }
              }
          }
          }
 
 
      sprintf (own_buf, "PacketSize=%x;QPassSignals+", PBUFSIZ - 1);
      sprintf (own_buf, "PacketSize=%x;QPassSignals+", PBUFSIZ - 1);
 
 
      /* We do not have any hook to indicate whether the target backend
      /* We do not have any hook to indicate whether the target backend
         supports qXfer:libraries:read, so always report it.  */
         supports qXfer:libraries:read, so always report it.  */
      strcat (own_buf, ";qXfer:libraries:read+");
      strcat (own_buf, ";qXfer:libraries:read+");
 
 
      if (the_target->read_auxv != NULL)
      if (the_target->read_auxv != NULL)
        strcat (own_buf, ";qXfer:auxv:read+");
        strcat (own_buf, ";qXfer:auxv:read+");
 
 
      if (the_target->qxfer_spu != NULL)
      if (the_target->qxfer_spu != NULL)
        strcat (own_buf, ";qXfer:spu:read+;qXfer:spu:write+");
        strcat (own_buf, ";qXfer:spu:read+;qXfer:spu:write+");
 
 
      if (the_target->qxfer_siginfo != NULL)
      if (the_target->qxfer_siginfo != NULL)
        strcat (own_buf, ";qXfer:siginfo:read+;qXfer:siginfo:write+");
        strcat (own_buf, ";qXfer:siginfo:read+;qXfer:siginfo:write+");
 
 
      /* We always report qXfer:features:read, as targets may
      /* We always report qXfer:features:read, as targets may
         install XML files on a subsequent call to arch_setup.
         install XML files on a subsequent call to arch_setup.
         If we reported to GDB on startup that we don't support
         If we reported to GDB on startup that we don't support
         qXfer:feature:read at all, we will never be re-queried.  */
         qXfer:feature:read at all, we will never be re-queried.  */
      strcat (own_buf, ";qXfer:features:read+");
      strcat (own_buf, ";qXfer:features:read+");
 
 
      if (transport_is_reliable)
      if (transport_is_reliable)
        strcat (own_buf, ";QStartNoAckMode+");
        strcat (own_buf, ";QStartNoAckMode+");
 
 
      if (the_target->qxfer_osdata != NULL)
      if (the_target->qxfer_osdata != NULL)
        strcat (own_buf, ";qXfer:osdata:read+");
        strcat (own_buf, ";qXfer:osdata:read+");
 
 
      if (target_supports_multi_process ())
      if (target_supports_multi_process ())
        strcat (own_buf, ";multiprocess+");
        strcat (own_buf, ";multiprocess+");
 
 
      if (target_supports_non_stop ())
      if (target_supports_non_stop ())
        strcat (own_buf, ";QNonStop+");
        strcat (own_buf, ";QNonStop+");
 
 
      strcat (own_buf, ";qXfer:threads:read+");
      strcat (own_buf, ";qXfer:threads:read+");
 
 
      return;
      return;
    }
    }
 
 
  /* Thread-local storage support.  */
  /* Thread-local storage support.  */
  if (the_target->get_tls_address != NULL
  if (the_target->get_tls_address != NULL
      && strncmp ("qGetTLSAddr:", own_buf, 12) == 0)
      && strncmp ("qGetTLSAddr:", own_buf, 12) == 0)
    {
    {
      char *p = own_buf + 12;
      char *p = own_buf + 12;
      CORE_ADDR parts[2], address = 0;
      CORE_ADDR parts[2], address = 0;
      int i, err;
      int i, err;
      ptid_t ptid = null_ptid;
      ptid_t ptid = null_ptid;
 
 
      require_running (own_buf);
      require_running (own_buf);
 
 
      for (i = 0; i < 3; i++)
      for (i = 0; i < 3; i++)
        {
        {
          char *p2;
          char *p2;
          int len;
          int len;
 
 
          if (p == NULL)
          if (p == NULL)
            break;
            break;
 
 
          p2 = strchr (p, ',');
          p2 = strchr (p, ',');
          if (p2)
          if (p2)
            {
            {
              len = p2 - p;
              len = p2 - p;
              p2++;
              p2++;
            }
            }
          else
          else
            {
            {
              len = strlen (p);
              len = strlen (p);
              p2 = NULL;
              p2 = NULL;
            }
            }
 
 
          if (i == 0)
          if (i == 0)
            ptid = read_ptid (p, NULL);
            ptid = read_ptid (p, NULL);
          else
          else
            decode_address (&parts[i - 1], p, len);
            decode_address (&parts[i - 1], p, len);
          p = p2;
          p = p2;
        }
        }
 
 
      if (p != NULL || i < 3)
      if (p != NULL || i < 3)
        err = 1;
        err = 1;
      else
      else
        {
        {
          struct thread_info *thread = find_thread_ptid (ptid);
          struct thread_info *thread = find_thread_ptid (ptid);
 
 
          if (thread == NULL)
          if (thread == NULL)
            err = 2;
            err = 2;
          else
          else
            err = the_target->get_tls_address (thread, parts[0], parts[1],
            err = the_target->get_tls_address (thread, parts[0], parts[1],
                                               &address);
                                               &address);
        }
        }
 
 
      if (err == 0)
      if (err == 0)
        {
        {
          sprintf (own_buf, "%llx", address);
          sprintf (own_buf, "%llx", address);
          return;
          return;
        }
        }
      else if (err > 0)
      else if (err > 0)
        {
        {
          write_enn (own_buf);
          write_enn (own_buf);
          return;
          return;
        }
        }
 
 
      /* Otherwise, pretend we do not understand this packet.  */
      /* Otherwise, pretend we do not understand this packet.  */
    }
    }
 
 
  /* Handle "monitor" commands.  */
  /* Handle "monitor" commands.  */
  if (strncmp ("qRcmd,", own_buf, 6) == 0)
  if (strncmp ("qRcmd,", own_buf, 6) == 0)
    {
    {
      char *mon = malloc (PBUFSIZ);
      char *mon = malloc (PBUFSIZ);
      int len = strlen (own_buf + 6);
      int len = strlen (own_buf + 6);
 
 
      if (mon == NULL)
      if (mon == NULL)
        {
        {
          write_enn (own_buf);
          write_enn (own_buf);
          return;
          return;
        }
        }
 
 
      if ((len % 2) != 0 || unhexify (mon, own_buf + 6, len / 2) != len / 2)
      if ((len % 2) != 0 || unhexify (mon, own_buf + 6, len / 2) != len / 2)
        {
        {
          write_enn (own_buf);
          write_enn (own_buf);
          free (mon);
          free (mon);
          return;
          return;
        }
        }
      mon[len / 2] = '\0';
      mon[len / 2] = '\0';
 
 
      write_ok (own_buf);
      write_ok (own_buf);
 
 
      if (the_target->handle_monitor_command == NULL
      if (the_target->handle_monitor_command == NULL
          || (*the_target->handle_monitor_command) (mon) == 0)
          || (*the_target->handle_monitor_command) (mon) == 0)
        /* Default processing.  */
        /* Default processing.  */
        handle_monitor_command (mon);
        handle_monitor_command (mon);
 
 
      free (mon);
      free (mon);
      return;
      return;
    }
    }
 
 
  if (strncmp ("qSearch:memory:", own_buf, sizeof ("qSearch:memory:") - 1) == 0)
  if (strncmp ("qSearch:memory:", own_buf, sizeof ("qSearch:memory:") - 1) == 0)
    {
    {
      require_running (own_buf);
      require_running (own_buf);
      handle_search_memory (own_buf, packet_len);
      handle_search_memory (own_buf, packet_len);
      return;
      return;
    }
    }
 
 
  if (strcmp (own_buf, "qAttached") == 0
  if (strcmp (own_buf, "qAttached") == 0
      || strncmp (own_buf, "qAttached:", sizeof ("qAttached:") - 1) == 0)
      || strncmp (own_buf, "qAttached:", sizeof ("qAttached:") - 1) == 0)
    {
    {
      struct process_info *process;
      struct process_info *process;
 
 
      if (own_buf[sizeof ("qAttached") - 1])
      if (own_buf[sizeof ("qAttached") - 1])
        {
        {
          int pid = strtoul (own_buf + sizeof ("qAttached:") - 1, NULL, 16);
          int pid = strtoul (own_buf + sizeof ("qAttached:") - 1, NULL, 16);
          process = (struct process_info *)
          process = (struct process_info *)
            find_inferior_id (&all_processes, pid_to_ptid (pid));
            find_inferior_id (&all_processes, pid_to_ptid (pid));
        }
        }
      else
      else
        {
        {
          require_running (own_buf);
          require_running (own_buf);
          process = current_process ();
          process = current_process ();
        }
        }
 
 
      if (process == NULL)
      if (process == NULL)
        {
        {
          write_enn (own_buf);
          write_enn (own_buf);
          return;
          return;
        }
        }
 
 
      strcpy (own_buf, process->attached ? "1" : "0");
      strcpy (own_buf, process->attached ? "1" : "0");
      return;
      return;
    }
    }
 
 
  /* Otherwise we didn't know what packet it was.  Say we didn't
  /* Otherwise we didn't know what packet it was.  Say we didn't
     understand it.  */
     understand it.  */
  own_buf[0] = 0;
  own_buf[0] = 0;
}
}
 
 
/* Parse vCont packets.  */
/* Parse vCont packets.  */
void
void
handle_v_cont (char *own_buf)
handle_v_cont (char *own_buf)
{
{
  char *p, *q;
  char *p, *q;
  int n = 0, i = 0;
  int n = 0, i = 0;
  struct thread_resume *resume_info;
  struct thread_resume *resume_info;
  struct thread_resume default_action = {{0}};
  struct thread_resume default_action = {{0}};
 
 
  /* Count the number of semicolons in the packet.  There should be one
  /* Count the number of semicolons in the packet.  There should be one
     for every action.  */
     for every action.  */
  p = &own_buf[5];
  p = &own_buf[5];
  while (p)
  while (p)
    {
    {
      n++;
      n++;
      p++;
      p++;
      p = strchr (p, ';');
      p = strchr (p, ';');
    }
    }
 
 
  resume_info = malloc (n * sizeof (resume_info[0]));
  resume_info = malloc (n * sizeof (resume_info[0]));
  if (resume_info == NULL)
  if (resume_info == NULL)
    goto err;
    goto err;
 
 
  p = &own_buf[5];
  p = &own_buf[5];
  while (*p)
  while (*p)
    {
    {
      p++;
      p++;
 
 
      if (p[0] == 's' || p[0] == 'S')
      if (p[0] == 's' || p[0] == 'S')
        resume_info[i].kind = resume_step;
        resume_info[i].kind = resume_step;
      else if (p[0] == 'c' || p[0] == 'C')
      else if (p[0] == 'c' || p[0] == 'C')
        resume_info[i].kind = resume_continue;
        resume_info[i].kind = resume_continue;
      else if (p[0] == 't')
      else if (p[0] == 't')
        resume_info[i].kind = resume_stop;
        resume_info[i].kind = resume_stop;
      else
      else
        goto err;
        goto err;
 
 
      if (p[0] == 'S' || p[0] == 'C')
      if (p[0] == 'S' || p[0] == 'C')
        {
        {
          int sig;
          int sig;
          sig = strtol (p + 1, &q, 16);
          sig = strtol (p + 1, &q, 16);
          if (p == q)
          if (p == q)
            goto err;
            goto err;
          p = q;
          p = q;
 
 
          if (!target_signal_to_host_p (sig))
          if (!target_signal_to_host_p (sig))
            goto err;
            goto err;
          resume_info[i].sig = target_signal_to_host (sig);
          resume_info[i].sig = target_signal_to_host (sig);
        }
        }
      else
      else
        {
        {
          resume_info[i].sig = 0;
          resume_info[i].sig = 0;
          p = p + 1;
          p = p + 1;
        }
        }
 
 
      if (p[0] == 0)
      if (p[0] == 0)
        {
        {
          resume_info[i].thread = minus_one_ptid;
          resume_info[i].thread = minus_one_ptid;
          default_action = resume_info[i];
          default_action = resume_info[i];
 
 
          /* Note: we don't increment i here, we'll overwrite this entry
          /* Note: we don't increment i here, we'll overwrite this entry
             the next time through.  */
             the next time through.  */
        }
        }
      else if (p[0] == ':')
      else if (p[0] == ':')
        {
        {
          ptid_t ptid = read_ptid (p + 1, &q);
          ptid_t ptid = read_ptid (p + 1, &q);
 
 
          if (p == q)
          if (p == q)
            goto err;
            goto err;
          p = q;
          p = q;
          if (p[0] != ';' && p[0] != 0)
          if (p[0] != ';' && p[0] != 0)
            goto err;
            goto err;
 
 
          resume_info[i].thread = ptid;
          resume_info[i].thread = ptid;
 
 
          i++;
          i++;
        }
        }
    }
    }
 
 
  if (i < n)
  if (i < n)
    resume_info[i] = default_action;
    resume_info[i] = default_action;
 
 
  /* Still used in occasional places in the backend.  */
  /* Still used in occasional places in the backend.  */
  if (n == 1
  if (n == 1
      && !ptid_equal (resume_info[0].thread, minus_one_ptid)
      && !ptid_equal (resume_info[0].thread, minus_one_ptid)
      && resume_info[0].kind != resume_stop)
      && resume_info[0].kind != resume_stop)
    cont_thread = resume_info[0].thread;
    cont_thread = resume_info[0].thread;
  else
  else
    cont_thread = minus_one_ptid;
    cont_thread = minus_one_ptid;
  set_desired_inferior (0);
  set_desired_inferior (0);
 
 
  if (!non_stop)
  if (!non_stop)
    enable_async_io ();
    enable_async_io ();
 
 
  (*the_target->resume) (resume_info, n);
  (*the_target->resume) (resume_info, n);
 
 
  free (resume_info);
  free (resume_info);
 
 
  if (non_stop)
  if (non_stop)
    write_ok (own_buf);
    write_ok (own_buf);
  else
  else
    {
    {
      last_ptid = mywait (minus_one_ptid, &last_status, 0, 1);
      last_ptid = mywait (minus_one_ptid, &last_status, 0, 1);
      prepare_resume_reply (own_buf, last_ptid, &last_status);
      prepare_resume_reply (own_buf, last_ptid, &last_status);
      disable_async_io ();
      disable_async_io ();
    }
    }
  return;
  return;
 
 
err:
err:
  write_enn (own_buf);
  write_enn (own_buf);
  free (resume_info);
  free (resume_info);
  return;
  return;
}
}
 
 
/* Attach to a new program.  Return 1 if successful, 0 if failure.  */
/* Attach to a new program.  Return 1 if successful, 0 if failure.  */
int
int
handle_v_attach (char *own_buf)
handle_v_attach (char *own_buf)
{
{
  int pid;
  int pid;
 
 
  pid = strtol (own_buf + 8, NULL, 16);
  pid = strtol (own_buf + 8, NULL, 16);
  if (pid != 0 && attach_inferior (pid) == 0)
  if (pid != 0 && attach_inferior (pid) == 0)
    {
    {
      /* Don't report shared library events after attaching, even if
      /* Don't report shared library events after attaching, even if
         some libraries are preloaded.  GDB will always poll the
         some libraries are preloaded.  GDB will always poll the
         library list.  Avoids the "stopped by shared library event"
         library list.  Avoids the "stopped by shared library event"
         notice on the GDB side.  */
         notice on the GDB side.  */
      dlls_changed = 0;
      dlls_changed = 0;
 
 
      if (non_stop)
      if (non_stop)
        {
        {
          /* In non-stop, we don't send a resume reply.  Stop events
          /* In non-stop, we don't send a resume reply.  Stop events
             will follow up using the normal notification
             will follow up using the normal notification
             mechanism.  */
             mechanism.  */
          write_ok (own_buf);
          write_ok (own_buf);
        }
        }
      else
      else
        prepare_resume_reply (own_buf, last_ptid, &last_status);
        prepare_resume_reply (own_buf, last_ptid, &last_status);
 
 
      return 1;
      return 1;
    }
    }
  else
  else
    {
    {
      write_enn (own_buf);
      write_enn (own_buf);
      return 0;
      return 0;
    }
    }
}
}
 
 
/* Run a new program.  Return 1 if successful, 0 if failure.  */
/* Run a new program.  Return 1 if successful, 0 if failure.  */
static int
static int
handle_v_run (char *own_buf)
handle_v_run (char *own_buf)
{
{
  char *p, *next_p, **new_argv;
  char *p, *next_p, **new_argv;
  int i, new_argc;
  int i, new_argc;
 
 
  new_argc = 0;
  new_argc = 0;
  for (p = own_buf + strlen ("vRun;"); p && *p; p = strchr (p, ';'))
  for (p = own_buf + strlen ("vRun;"); p && *p; p = strchr (p, ';'))
    {
    {
      p++;
      p++;
      new_argc++;
      new_argc++;
    }
    }
 
 
  new_argv = calloc (new_argc + 2, sizeof (char *));
  new_argv = calloc (new_argc + 2, sizeof (char *));
  if (new_argv == NULL)
  if (new_argv == NULL)
    {
    {
      write_enn (own_buf);
      write_enn (own_buf);
      return 0;
      return 0;
    }
    }
 
 
  i = 0;
  i = 0;
  for (p = own_buf + strlen ("vRun;"); *p; p = next_p)
  for (p = own_buf + strlen ("vRun;"); *p; p = next_p)
    {
    {
      next_p = strchr (p, ';');
      next_p = strchr (p, ';');
      if (next_p == NULL)
      if (next_p == NULL)
        next_p = p + strlen (p);
        next_p = p + strlen (p);
 
 
      if (i == 0 && p == next_p)
      if (i == 0 && p == next_p)
        new_argv[i] = NULL;
        new_argv[i] = NULL;
      else
      else
        {
        {
          /* FIXME: Fail request if out of memory instead of dying.  */
          /* FIXME: Fail request if out of memory instead of dying.  */
          new_argv[i] = xmalloc (1 + (next_p - p) / 2);
          new_argv[i] = xmalloc (1 + (next_p - p) / 2);
          unhexify (new_argv[i], p, (next_p - p) / 2);
          unhexify (new_argv[i], p, (next_p - p) / 2);
          new_argv[i][(next_p - p) / 2] = '\0';
          new_argv[i][(next_p - p) / 2] = '\0';
        }
        }
 
 
      if (*next_p)
      if (*next_p)
        next_p++;
        next_p++;
      i++;
      i++;
    }
    }
  new_argv[i] = NULL;
  new_argv[i] = NULL;
 
 
  if (new_argv[0] == NULL)
  if (new_argv[0] == NULL)
    {
    {
      /* GDB didn't specify a program to run.  Use the program from the
      /* GDB didn't specify a program to run.  Use the program from the
         last run with the new argument list.  */
         last run with the new argument list.  */
 
 
      if (program_argv == NULL)
      if (program_argv == NULL)
        {
        {
          /* FIXME: new_argv memory leak */
          /* FIXME: new_argv memory leak */
          write_enn (own_buf);
          write_enn (own_buf);
          return 0;
          return 0;
        }
        }
 
 
      new_argv[0] = strdup (program_argv[0]);
      new_argv[0] = strdup (program_argv[0]);
      if (new_argv[0] == NULL)
      if (new_argv[0] == NULL)
        {
        {
          /* FIXME: new_argv memory leak */
          /* FIXME: new_argv memory leak */
          write_enn (own_buf);
          write_enn (own_buf);
          return 0;
          return 0;
        }
        }
    }
    }
 
 
  /* Free the old argv and install the new one.  */
  /* Free the old argv and install the new one.  */
  freeargv (program_argv);
  freeargv (program_argv);
  program_argv = new_argv;
  program_argv = new_argv;
 
 
  start_inferior (program_argv);
  start_inferior (program_argv);
  if (last_status.kind == TARGET_WAITKIND_STOPPED)
  if (last_status.kind == TARGET_WAITKIND_STOPPED)
    {
    {
      prepare_resume_reply (own_buf, last_ptid, &last_status);
      prepare_resume_reply (own_buf, last_ptid, &last_status);
 
 
      /* In non-stop, sending a resume reply doesn't set the general
      /* In non-stop, sending a resume reply doesn't set the general
         thread, but GDB assumes a vRun sets it (this is so GDB can
         thread, but GDB assumes a vRun sets it (this is so GDB can
         query which is the main thread of the new inferior.  */
         query which is the main thread of the new inferior.  */
      if (non_stop)
      if (non_stop)
        general_thread = last_ptid;
        general_thread = last_ptid;
 
 
      return 1;
      return 1;
    }
    }
  else
  else
    {
    {
      write_enn (own_buf);
      write_enn (own_buf);
      return 0;
      return 0;
    }
    }
}
}
 
 
/* Kill process.  Return 1 if successful, 0 if failure.  */
/* Kill process.  Return 1 if successful, 0 if failure.  */
int
int
handle_v_kill (char *own_buf)
handle_v_kill (char *own_buf)
{
{
  int pid;
  int pid;
  char *p = &own_buf[6];
  char *p = &own_buf[6];
  if (multi_process)
  if (multi_process)
    pid = strtol (p, NULL, 16);
    pid = strtol (p, NULL, 16);
  else
  else
    pid = signal_pid;
    pid = signal_pid;
  if (pid != 0 && kill_inferior (pid) == 0)
  if (pid != 0 && kill_inferior (pid) == 0)
    {
    {
      last_status.kind = TARGET_WAITKIND_SIGNALLED;
      last_status.kind = TARGET_WAITKIND_SIGNALLED;
      last_status.value.sig = TARGET_SIGNAL_KILL;
      last_status.value.sig = TARGET_SIGNAL_KILL;
      last_ptid = pid_to_ptid (pid);
      last_ptid = pid_to_ptid (pid);
      discard_queued_stop_replies (pid);
      discard_queued_stop_replies (pid);
      write_ok (own_buf);
      write_ok (own_buf);
      return 1;
      return 1;
    }
    }
  else
  else
    {
    {
      write_enn (own_buf);
      write_enn (own_buf);
      return 0;
      return 0;
    }
    }
}
}
 
 
/* Handle a 'vStopped' packet.  */
/* Handle a 'vStopped' packet.  */
static void
static void
handle_v_stopped (char *own_buf)
handle_v_stopped (char *own_buf)
{
{
  /* If we're waiting for GDB to acknowledge a pending stop reply,
  /* If we're waiting for GDB to acknowledge a pending stop reply,
     consider that done.  */
     consider that done.  */
  if (notif_queue)
  if (notif_queue)
    {
    {
      struct vstop_notif *head;
      struct vstop_notif *head;
 
 
      if (remote_debug)
      if (remote_debug)
        fprintf (stderr, "vStopped: acking %s\n",
        fprintf (stderr, "vStopped: acking %s\n",
                 target_pid_to_str (notif_queue->ptid));
                 target_pid_to_str (notif_queue->ptid));
 
 
      head = notif_queue;
      head = notif_queue;
      notif_queue = notif_queue->next;
      notif_queue = notif_queue->next;
      free (head);
      free (head);
    }
    }
 
 
  /* Push another stop reply, or if there are no more left, an OK.  */
  /* Push another stop reply, or if there are no more left, an OK.  */
  send_next_stop_reply (own_buf);
  send_next_stop_reply (own_buf);
}
}
 
 
/* Handle all of the extended 'v' packets.  */
/* Handle all of the extended 'v' packets.  */
void
void
handle_v_requests (char *own_buf, int packet_len, int *new_packet_len)
handle_v_requests (char *own_buf, int packet_len, int *new_packet_len)
{
{
  if (!disable_packet_vCont)
  if (!disable_packet_vCont)
    {
    {
      if (strncmp (own_buf, "vCont;", 6) == 0)
      if (strncmp (own_buf, "vCont;", 6) == 0)
        {
        {
          require_running (own_buf);
          require_running (own_buf);
          handle_v_cont (own_buf);
          handle_v_cont (own_buf);
          return;
          return;
        }
        }
 
 
      if (strncmp (own_buf, "vCont?", 6) == 0)
      if (strncmp (own_buf, "vCont?", 6) == 0)
        {
        {
          strcpy (own_buf, "vCont;c;C;s;S;t");
          strcpy (own_buf, "vCont;c;C;s;S;t");
          return;
          return;
        }
        }
    }
    }
 
 
  if (strncmp (own_buf, "vFile:", 6) == 0
  if (strncmp (own_buf, "vFile:", 6) == 0
      && handle_vFile (own_buf, packet_len, new_packet_len))
      && handle_vFile (own_buf, packet_len, new_packet_len))
    return;
    return;
 
 
  if (strncmp (own_buf, "vAttach;", 8) == 0)
  if (strncmp (own_buf, "vAttach;", 8) == 0)
    {
    {
      if (!multi_process && target_running ())
      if (!multi_process && target_running ())
        {
        {
          fprintf (stderr, "Already debugging a process\n");
          fprintf (stderr, "Already debugging a process\n");
          write_enn (own_buf);
          write_enn (own_buf);
          return;
          return;
        }
        }
      handle_v_attach (own_buf);
      handle_v_attach (own_buf);
      return;
      return;
    }
    }
 
 
  if (strncmp (own_buf, "vRun;", 5) == 0)
  if (strncmp (own_buf, "vRun;", 5) == 0)
    {
    {
      if (!multi_process && target_running ())
      if (!multi_process && target_running ())
        {
        {
          fprintf (stderr, "Already debugging a process\n");
          fprintf (stderr, "Already debugging a process\n");
          write_enn (own_buf);
          write_enn (own_buf);
          return;
          return;
        }
        }
      handle_v_run (own_buf);
      handle_v_run (own_buf);
      return;
      return;
    }
    }
 
 
  if (strncmp (own_buf, "vKill;", 6) == 0)
  if (strncmp (own_buf, "vKill;", 6) == 0)
    {
    {
      if (!target_running ())
      if (!target_running ())
        {
        {
          fprintf (stderr, "No process to kill\n");
          fprintf (stderr, "No process to kill\n");
          write_enn (own_buf);
          write_enn (own_buf);
          return;
          return;
        }
        }
      handle_v_kill (own_buf);
      handle_v_kill (own_buf);
      return;
      return;
    }
    }
 
 
  if (strncmp (own_buf, "vStopped", 8) == 0)
  if (strncmp (own_buf, "vStopped", 8) == 0)
    {
    {
      handle_v_stopped (own_buf);
      handle_v_stopped (own_buf);
      return;
      return;
    }
    }
 
 
  /* Otherwise we didn't know what packet it was.  Say we didn't
  /* Otherwise we didn't know what packet it was.  Say we didn't
     understand it.  */
     understand it.  */
  own_buf[0] = 0;
  own_buf[0] = 0;
  return;
  return;
}
}
 
 
/* Resume inferior and wait for another event.  In non-stop mode,
/* Resume inferior and wait for another event.  In non-stop mode,
   don't really wait here, but return immediatelly to the event
   don't really wait here, but return immediatelly to the event
   loop.  */
   loop.  */
void
void
myresume (char *own_buf, int step, int sig)
myresume (char *own_buf, int step, int sig)
{
{
  struct thread_resume resume_info[2];
  struct thread_resume resume_info[2];
  int n = 0;
  int n = 0;
  int valid_cont_thread;
  int valid_cont_thread;
 
 
  set_desired_inferior (0);
  set_desired_inferior (0);
 
 
  valid_cont_thread = (!ptid_equal (cont_thread, null_ptid)
  valid_cont_thread = (!ptid_equal (cont_thread, null_ptid)
                         && !ptid_equal (cont_thread, minus_one_ptid));
                         && !ptid_equal (cont_thread, minus_one_ptid));
 
 
  if (step || sig || valid_cont_thread)
  if (step || sig || valid_cont_thread)
    {
    {
      resume_info[0].thread
      resume_info[0].thread
        = ((struct inferior_list_entry *) current_inferior)->id;
        = ((struct inferior_list_entry *) current_inferior)->id;
      if (step)
      if (step)
        resume_info[0].kind = resume_step;
        resume_info[0].kind = resume_step;
      else
      else
        resume_info[0].kind = resume_continue;
        resume_info[0].kind = resume_continue;
      resume_info[0].sig = sig;
      resume_info[0].sig = sig;
      n++;
      n++;
    }
    }
 
 
  if (!valid_cont_thread)
  if (!valid_cont_thread)
    {
    {
      resume_info[n].thread = minus_one_ptid;
      resume_info[n].thread = minus_one_ptid;
      resume_info[n].kind = resume_continue;
      resume_info[n].kind = resume_continue;
      resume_info[n].sig = 0;
      resume_info[n].sig = 0;
      n++;
      n++;
    }
    }
 
 
  if (!non_stop)
  if (!non_stop)
    enable_async_io ();
    enable_async_io ();
 
 
  (*the_target->resume) (resume_info, n);
  (*the_target->resume) (resume_info, n);
 
 
  if (non_stop)
  if (non_stop)
    write_ok (own_buf);
    write_ok (own_buf);
  else
  else
    {
    {
      last_ptid = mywait (minus_one_ptid, &last_status, 0, 1);
      last_ptid = mywait (minus_one_ptid, &last_status, 0, 1);
      prepare_resume_reply (own_buf, last_ptid, &last_status);
      prepare_resume_reply (own_buf, last_ptid, &last_status);
      disable_async_io ();
      disable_async_io ();
    }
    }
}
}
 
 
/* Callback for for_each_inferior.  Make a new stop reply for each
/* Callback for for_each_inferior.  Make a new stop reply for each
   stopped thread.  */
   stopped thread.  */
 
 
static int
static int
queue_stop_reply_callback (struct inferior_list_entry *entry, void *arg)
queue_stop_reply_callback (struct inferior_list_entry *entry, void *arg)
{
{
  int pid = * (int *) arg;
  int pid = * (int *) arg;
 
 
  if (pid == -1
  if (pid == -1
      || ptid_get_pid (entry->id) == pid)
      || ptid_get_pid (entry->id) == pid)
    {
    {
      struct target_waitstatus status;
      struct target_waitstatus status;
 
 
      status.kind = TARGET_WAITKIND_STOPPED;
      status.kind = TARGET_WAITKIND_STOPPED;
      status.value.sig = TARGET_SIGNAL_TRAP;
      status.value.sig = TARGET_SIGNAL_TRAP;
 
 
      /* Pass the last stop reply back to GDB, but don't notify.  */
      /* Pass the last stop reply back to GDB, but don't notify.  */
      queue_stop_reply (entry->id, &status);
      queue_stop_reply (entry->id, &status);
    }
    }
 
 
  return 0;
  return 0;
}
}
 
 
/* Status handler for the '?' packet.  */
/* Status handler for the '?' packet.  */
 
 
static void
static void
handle_status (char *own_buf)
handle_status (char *own_buf)
{
{
  struct target_waitstatus status;
  struct target_waitstatus status;
  status.kind = TARGET_WAITKIND_STOPPED;
  status.kind = TARGET_WAITKIND_STOPPED;
  status.value.sig = TARGET_SIGNAL_TRAP;
  status.value.sig = TARGET_SIGNAL_TRAP;
 
 
  /* In non-stop mode, we must send a stop reply for each stopped
  /* In non-stop mode, we must send a stop reply for each stopped
     thread.  In all-stop mode, just send one for the first stopped
     thread.  In all-stop mode, just send one for the first stopped
     thread we find.  */
     thread we find.  */
 
 
  if (non_stop)
  if (non_stop)
    {
    {
      int pid = -1;
      int pid = -1;
      discard_queued_stop_replies (pid);
      discard_queued_stop_replies (pid);
      find_inferior (&all_threads, queue_stop_reply_callback, &pid);
      find_inferior (&all_threads, queue_stop_reply_callback, &pid);
 
 
      /* The first is sent immediatly.  OK is sent if there is no
      /* The first is sent immediatly.  OK is sent if there is no
         stopped thread, which is the same handling of the vStopped
         stopped thread, which is the same handling of the vStopped
         packet (by design).  */
         packet (by design).  */
      send_next_stop_reply (own_buf);
      send_next_stop_reply (own_buf);
    }
    }
  else
  else
    {
    {
      if (all_threads.head)
      if (all_threads.head)
        prepare_resume_reply (own_buf,
        prepare_resume_reply (own_buf,
                              all_threads.head->id, &status);
                              all_threads.head->id, &status);
      else
      else
        strcpy (own_buf, "W00");
        strcpy (own_buf, "W00");
    }
    }
}
}
 
 
static void
static void
gdbserver_version (void)
gdbserver_version (void)
{
{
  printf ("GNU gdbserver %s%s\n"
  printf ("GNU gdbserver %s%s\n"
          "Copyright (C) 2010 Free Software Foundation, Inc.\n"
          "Copyright (C) 2010 Free Software Foundation, Inc.\n"
          "gdbserver is free software, covered by the GNU General Public License.\n"
          "gdbserver is free software, covered by the GNU General Public License.\n"
          "This gdbserver was configured as \"%s\"\n",
          "This gdbserver was configured as \"%s\"\n",
          PKGVERSION, version, host_name);
          PKGVERSION, version, host_name);
}
}
 
 
static void
static void
gdbserver_usage (FILE *stream)
gdbserver_usage (FILE *stream)
{
{
  fprintf (stream, "Usage:\tgdbserver [OPTIONS] COMM PROG [ARGS ...]\n"
  fprintf (stream, "Usage:\tgdbserver [OPTIONS] COMM PROG [ARGS ...]\n"
           "\tgdbserver [OPTIONS] --attach COMM PID\n"
           "\tgdbserver [OPTIONS] --attach COMM PID\n"
           "\tgdbserver [OPTIONS] --multi COMM\n"
           "\tgdbserver [OPTIONS] --multi COMM\n"
           "\n"
           "\n"
           "COMM may either be a tty device (for serial debugging), or \n"
           "COMM may either be a tty device (for serial debugging), or \n"
           "HOST:PORT to listen for a TCP connection.\n"
           "HOST:PORT to listen for a TCP connection.\n"
           "\n"
           "\n"
           "Options:\n"
           "Options:\n"
           "  --debug               Enable general debugging output.\n"
           "  --debug               Enable general debugging output.\n"
           "  --remote-debug        Enable remote protocol debugging output.\n"
           "  --remote-debug        Enable remote protocol debugging output.\n"
           "  --version             Display version information and exit.\n"
           "  --version             Display version information and exit.\n"
           "  --wrapper WRAPPER --  Run WRAPPER to start new programs.\n");
           "  --wrapper WRAPPER --  Run WRAPPER to start new programs.\n");
  if (REPORT_BUGS_TO[0] && stream == stdout)
  if (REPORT_BUGS_TO[0] && stream == stdout)
    fprintf (stream, "Report bugs to \"%s\".\n", REPORT_BUGS_TO);
    fprintf (stream, "Report bugs to \"%s\".\n", REPORT_BUGS_TO);
}
}
 
 
static void
static void
gdbserver_show_disableable (FILE *stream)
gdbserver_show_disableable (FILE *stream)
{
{
  fprintf (stream, "Disableable packets:\n"
  fprintf (stream, "Disableable packets:\n"
           "  vCont       \tAll vCont packets\n"
           "  vCont       \tAll vCont packets\n"
           "  qC          \tQuerying the current thread\n"
           "  qC          \tQuerying the current thread\n"
           "  qfThreadInfo\tThread listing\n"
           "  qfThreadInfo\tThread listing\n"
           "  Tthread     \tPassing the thread specifier in the T stop reply packet\n"
           "  Tthread     \tPassing the thread specifier in the T stop reply packet\n"
           "  threads     \tAll of the above\n");
           "  threads     \tAll of the above\n");
}
}
 
 
 
 
#undef require_running
#undef require_running
#define require_running(BUF)                    \
#define require_running(BUF)                    \
  if (!target_running ())                       \
  if (!target_running ())                       \
    {                                           \
    {                                           \
      write_enn (BUF);                          \
      write_enn (BUF);                          \
      break;                                    \
      break;                                    \
    }
    }
 
 
static int
static int
first_thread_of (struct inferior_list_entry *entry, void *args)
first_thread_of (struct inferior_list_entry *entry, void *args)
{
{
  int pid = * (int *) args;
  int pid = * (int *) args;
 
 
  if (ptid_get_pid (entry->id) == pid)
  if (ptid_get_pid (entry->id) == pid)
    return 1;
    return 1;
 
 
  return 0;
  return 0;
}
}
 
 
static void
static void
kill_inferior_callback (struct inferior_list_entry *entry)
kill_inferior_callback (struct inferior_list_entry *entry)
{
{
  struct process_info *process = (struct process_info *) entry;
  struct process_info *process = (struct process_info *) entry;
  int pid = ptid_get_pid (process->head.id);
  int pid = ptid_get_pid (process->head.id);
 
 
  kill_inferior (pid);
  kill_inferior (pid);
  discard_queued_stop_replies (pid);
  discard_queued_stop_replies (pid);
}
}
 
 
/* Callback for for_each_inferior to detach or kill the inferior,
/* Callback for for_each_inferior to detach or kill the inferior,
   depending on whether we attached to it or not.
   depending on whether we attached to it or not.
   We inform the user whether we're detaching or killing the process
   We inform the user whether we're detaching or killing the process
   as this is only called when gdbserver is about to exit.  */
   as this is only called when gdbserver is about to exit.  */
 
 
static void
static void
detach_or_kill_inferior_callback (struct inferior_list_entry *entry)
detach_or_kill_inferior_callback (struct inferior_list_entry *entry)
{
{
  struct process_info *process = (struct process_info *) entry;
  struct process_info *process = (struct process_info *) entry;
  int pid = ptid_get_pid (process->head.id);
  int pid = ptid_get_pid (process->head.id);
 
 
  if (process->attached)
  if (process->attached)
    detach_inferior (pid);
    detach_inferior (pid);
  else
  else
    kill_inferior (pid);
    kill_inferior (pid);
 
 
  discard_queued_stop_replies (pid);
  discard_queued_stop_replies (pid);
}
}
 
 
/* for_each_inferior callback for detach_or_kill_for_exit to print
/* for_each_inferior callback for detach_or_kill_for_exit to print
   the pids of started inferiors.  */
   the pids of started inferiors.  */
 
 
static void
static void
print_started_pid (struct inferior_list_entry *entry)
print_started_pid (struct inferior_list_entry *entry)
{
{
  struct process_info *process = (struct process_info *) entry;
  struct process_info *process = (struct process_info *) entry;
 
 
  if (! process->attached)
  if (! process->attached)
    {
    {
      int pid = ptid_get_pid (process->head.id);
      int pid = ptid_get_pid (process->head.id);
      fprintf (stderr, " %d", pid);
      fprintf (stderr, " %d", pid);
    }
    }
}
}
 
 
/* for_each_inferior callback for detach_or_kill_for_exit to print
/* for_each_inferior callback for detach_or_kill_for_exit to print
   the pids of attached inferiors.  */
   the pids of attached inferiors.  */
 
 
static void
static void
print_attached_pid (struct inferior_list_entry *entry)
print_attached_pid (struct inferior_list_entry *entry)
{
{
  struct process_info *process = (struct process_info *) entry;
  struct process_info *process = (struct process_info *) entry;
 
 
  if (process->attached)
  if (process->attached)
    {
    {
      int pid = ptid_get_pid (process->head.id);
      int pid = ptid_get_pid (process->head.id);
      fprintf (stderr, " %d", pid);
      fprintf (stderr, " %d", pid);
    }
    }
}
}
 
 
/* Call this when exiting gdbserver with possible inferiors that need
/* Call this when exiting gdbserver with possible inferiors that need
   to be killed or detached from.  */
   to be killed or detached from.  */
 
 
static void
static void
detach_or_kill_for_exit (void)
detach_or_kill_for_exit (void)
{
{
  /* First print a list of the inferiors we will be killing/detaching.
  /* First print a list of the inferiors we will be killing/detaching.
     This is to assist the user, for example, in case the inferior unexpectedly
     This is to assist the user, for example, in case the inferior unexpectedly
     dies after we exit: did we screw up or did the inferior exit on its own?
     dies after we exit: did we screw up or did the inferior exit on its own?
     Having this info will save some head-scratching.  */
     Having this info will save some head-scratching.  */
 
 
  if (have_started_inferiors_p ())
  if (have_started_inferiors_p ())
    {
    {
      fprintf (stderr, "Killing process(es):");
      fprintf (stderr, "Killing process(es):");
      for_each_inferior (&all_processes, print_started_pid);
      for_each_inferior (&all_processes, print_started_pid);
      fprintf (stderr, "\n");
      fprintf (stderr, "\n");
    }
    }
  if (have_attached_inferiors_p ())
  if (have_attached_inferiors_p ())
    {
    {
      fprintf (stderr, "Detaching process(es):");
      fprintf (stderr, "Detaching process(es):");
      for_each_inferior (&all_processes, print_attached_pid);
      for_each_inferior (&all_processes, print_attached_pid);
      fprintf (stderr, "\n");
      fprintf (stderr, "\n");
    }
    }
 
 
  /* Now we can kill or detach the inferiors.  */
  /* Now we can kill or detach the inferiors.  */
 
 
  for_each_inferior (&all_processes, detach_or_kill_inferior_callback);
  for_each_inferior (&all_processes, detach_or_kill_inferior_callback);
}
}
 
 
static void
static void
join_inferiors_callback (struct inferior_list_entry *entry)
join_inferiors_callback (struct inferior_list_entry *entry)
{
{
  struct process_info *process = (struct process_info *) entry;
  struct process_info *process = (struct process_info *) entry;
 
 
  /* If we are attached, then we can exit.  Otherwise, we need to hang
  /* If we are attached, then we can exit.  Otherwise, we need to hang
     around doing nothing, until the child is gone.  */
     around doing nothing, until the child is gone.  */
  if (!process->attached)
  if (!process->attached)
    join_inferior (ptid_get_pid (process->head.id));
    join_inferior (ptid_get_pid (process->head.id));
}
}
 
 
int
int
main (int argc, char *argv[])
main (int argc, char *argv[])
{
{
  int bad_attach;
  int bad_attach;
  int pid;
  int pid;
  char *arg_end, *port;
  char *arg_end, *port;
  char **next_arg = &argv[1];
  char **next_arg = &argv[1];
  int multi_mode = 0;
  int multi_mode = 0;
  int attach = 0;
  int attach = 0;
  int was_running;
  int was_running;
 
 
  while (*next_arg != NULL && **next_arg == '-')
  while (*next_arg != NULL && **next_arg == '-')
    {
    {
      if (strcmp (*next_arg, "--version") == 0)
      if (strcmp (*next_arg, "--version") == 0)
        {
        {
          gdbserver_version ();
          gdbserver_version ();
          exit (0);
          exit (0);
        }
        }
      else if (strcmp (*next_arg, "--help") == 0)
      else if (strcmp (*next_arg, "--help") == 0)
        {
        {
          gdbserver_usage (stdout);
          gdbserver_usage (stdout);
          exit (0);
          exit (0);
        }
        }
      else if (strcmp (*next_arg, "--attach") == 0)
      else if (strcmp (*next_arg, "--attach") == 0)
        attach = 1;
        attach = 1;
      else if (strcmp (*next_arg, "--multi") == 0)
      else if (strcmp (*next_arg, "--multi") == 0)
        multi_mode = 1;
        multi_mode = 1;
      else if (strcmp (*next_arg, "--wrapper") == 0)
      else if (strcmp (*next_arg, "--wrapper") == 0)
        {
        {
          next_arg++;
          next_arg++;
 
 
          wrapper_argv = next_arg;
          wrapper_argv = next_arg;
          while (*next_arg != NULL && strcmp (*next_arg, "--") != 0)
          while (*next_arg != NULL && strcmp (*next_arg, "--") != 0)
            next_arg++;
            next_arg++;
 
 
          if (next_arg == wrapper_argv || *next_arg == NULL)
          if (next_arg == wrapper_argv || *next_arg == NULL)
            {
            {
              gdbserver_usage (stderr);
              gdbserver_usage (stderr);
              exit (1);
              exit (1);
            }
            }
 
 
          /* Consume the "--".  */
          /* Consume the "--".  */
          *next_arg = NULL;
          *next_arg = NULL;
        }
        }
      else if (strcmp (*next_arg, "--debug") == 0)
      else if (strcmp (*next_arg, "--debug") == 0)
        debug_threads = 1;
        debug_threads = 1;
      else if (strcmp (*next_arg, "--remote-debug") == 0)
      else if (strcmp (*next_arg, "--remote-debug") == 0)
        remote_debug = 1;
        remote_debug = 1;
      else if (strcmp (*next_arg, "--disable-packet") == 0)
      else if (strcmp (*next_arg, "--disable-packet") == 0)
        {
        {
          gdbserver_show_disableable (stdout);
          gdbserver_show_disableable (stdout);
          exit (0);
          exit (0);
        }
        }
      else if (strncmp (*next_arg,
      else if (strncmp (*next_arg,
                        "--disable-packet=",
                        "--disable-packet=",
                        sizeof ("--disable-packet=") - 1) == 0)
                        sizeof ("--disable-packet=") - 1) == 0)
        {
        {
          char *packets, *tok;
          char *packets, *tok;
 
 
          packets = *next_arg += sizeof ("--disable-packet=") - 1;
          packets = *next_arg += sizeof ("--disable-packet=") - 1;
          for (tok = strtok (packets, ",");
          for (tok = strtok (packets, ",");
               tok != NULL;
               tok != NULL;
               tok = strtok (NULL, ","))
               tok = strtok (NULL, ","))
            {
            {
              if (strcmp ("vCont", tok) == 0)
              if (strcmp ("vCont", tok) == 0)
                disable_packet_vCont = 1;
                disable_packet_vCont = 1;
              else if (strcmp ("Tthread", tok) == 0)
              else if (strcmp ("Tthread", tok) == 0)
                disable_packet_Tthread = 1;
                disable_packet_Tthread = 1;
              else if (strcmp ("qC", tok) == 0)
              else if (strcmp ("qC", tok) == 0)
                disable_packet_qC = 1;
                disable_packet_qC = 1;
              else if (strcmp ("qfThreadInfo", tok) == 0)
              else if (strcmp ("qfThreadInfo", tok) == 0)
                disable_packet_qfThreadInfo = 1;
                disable_packet_qfThreadInfo = 1;
              else if (strcmp ("threads", tok) == 0)
              else if (strcmp ("threads", tok) == 0)
                {
                {
                  disable_packet_vCont = 1;
                  disable_packet_vCont = 1;
                  disable_packet_Tthread = 1;
                  disable_packet_Tthread = 1;
                  disable_packet_qC = 1;
                  disable_packet_qC = 1;
                  disable_packet_qfThreadInfo = 1;
                  disable_packet_qfThreadInfo = 1;
                }
                }
              else
              else
                {
                {
                  fprintf (stderr, "Don't know how to disable \"%s\".\n\n",
                  fprintf (stderr, "Don't know how to disable \"%s\".\n\n",
                           tok);
                           tok);
                  gdbserver_show_disableable (stderr);
                  gdbserver_show_disableable (stderr);
                  exit (1);
                  exit (1);
                }
                }
            }
            }
        }
        }
      else
      else
        {
        {
          fprintf (stderr, "Unknown argument: %s\n", *next_arg);
          fprintf (stderr, "Unknown argument: %s\n", *next_arg);
          exit (1);
          exit (1);
        }
        }
 
 
      next_arg++;
      next_arg++;
      continue;
      continue;
    }
    }
 
 
  if (setjmp (toplevel))
  if (setjmp (toplevel))
    {
    {
      fprintf (stderr, "Exiting\n");
      fprintf (stderr, "Exiting\n");
      exit (1);
      exit (1);
    }
    }
 
 
  port = *next_arg;
  port = *next_arg;
  next_arg++;
  next_arg++;
  if (port == NULL || (!attach && !multi_mode && *next_arg == NULL))
  if (port == NULL || (!attach && !multi_mode && *next_arg == NULL))
    {
    {
      gdbserver_usage (stderr);
      gdbserver_usage (stderr);
      exit (1);
      exit (1);
    }
    }
 
 
  bad_attach = 0;
  bad_attach = 0;
  pid = 0;
  pid = 0;
 
 
  /* --attach used to come after PORT, so allow it there for
  /* --attach used to come after PORT, so allow it there for
       compatibility.  */
       compatibility.  */
  if (*next_arg != NULL && strcmp (*next_arg, "--attach") == 0)
  if (*next_arg != NULL && strcmp (*next_arg, "--attach") == 0)
    {
    {
      attach = 1;
      attach = 1;
      next_arg++;
      next_arg++;
    }
    }
 
 
  if (attach
  if (attach
      && (*next_arg == NULL
      && (*next_arg == NULL
          || (*next_arg)[0] == '\0'
          || (*next_arg)[0] == '\0'
          || (pid = strtoul (*next_arg, &arg_end, 0)) == 0
          || (pid = strtoul (*next_arg, &arg_end, 0)) == 0
          || *arg_end != '\0'
          || *arg_end != '\0'
          || next_arg[1] != NULL))
          || next_arg[1] != NULL))
    bad_attach = 1;
    bad_attach = 1;
 
 
  if (bad_attach)
  if (bad_attach)
    {
    {
      gdbserver_usage (stderr);
      gdbserver_usage (stderr);
      exit (1);
      exit (1);
    }
    }
 
 
  initialize_inferiors ();
  initialize_inferiors ();
  initialize_async_io ();
  initialize_async_io ();
  initialize_low ();
  initialize_low ();
 
 
  own_buf = xmalloc (PBUFSIZ + 1);
  own_buf = xmalloc (PBUFSIZ + 1);
  mem_buf = xmalloc (PBUFSIZ);
  mem_buf = xmalloc (PBUFSIZ);
 
 
  if (pid == 0 && *next_arg != NULL)
  if (pid == 0 && *next_arg != NULL)
    {
    {
      int i, n;
      int i, n;
 
 
      n = argc - (next_arg - argv);
      n = argc - (next_arg - argv);
      program_argv = xmalloc (sizeof (char *) * (n + 1));
      program_argv = xmalloc (sizeof (char *) * (n + 1));
      for (i = 0; i < n; i++)
      for (i = 0; i < n; i++)
        program_argv[i] = xstrdup (next_arg[i]);
        program_argv[i] = xstrdup (next_arg[i]);
      program_argv[i] = NULL;
      program_argv[i] = NULL;
 
 
      /* Wait till we are at first instruction in program.  */
      /* Wait till we are at first instruction in program.  */
      start_inferior (program_argv);
      start_inferior (program_argv);
 
 
      /* We are now (hopefully) stopped at the first instruction of
      /* We are now (hopefully) stopped at the first instruction of
         the target process.  This assumes that the target process was
         the target process.  This assumes that the target process was
         successfully created.  */
         successfully created.  */
    }
    }
  else if (pid != 0)
  else if (pid != 0)
    {
    {
      if (attach_inferior (pid) == -1)
      if (attach_inferior (pid) == -1)
        error ("Attaching not supported on this target");
        error ("Attaching not supported on this target");
 
 
      /* Otherwise succeeded.  */
      /* Otherwise succeeded.  */
    }
    }
  else
  else
    {
    {
      last_status.kind = TARGET_WAITKIND_EXITED;
      last_status.kind = TARGET_WAITKIND_EXITED;
      last_status.value.integer = 0;
      last_status.value.integer = 0;
      last_ptid = minus_one_ptid;
      last_ptid = minus_one_ptid;
    }
    }
 
 
  /* Don't report shared library events on the initial connection,
  /* Don't report shared library events on the initial connection,
     even if some libraries are preloaded.  Avoids the "stopped by
     even if some libraries are preloaded.  Avoids the "stopped by
     shared library event" notice on gdb side.  */
     shared library event" notice on gdb side.  */
  dlls_changed = 0;
  dlls_changed = 0;
 
 
  if (setjmp (toplevel))
  if (setjmp (toplevel))
    {
    {
      detach_or_kill_for_exit ();
      detach_or_kill_for_exit ();
      exit (1);
      exit (1);
    }
    }
 
 
  if (last_status.kind == TARGET_WAITKIND_EXITED
  if (last_status.kind == TARGET_WAITKIND_EXITED
      || last_status.kind == TARGET_WAITKIND_SIGNALLED)
      || last_status.kind == TARGET_WAITKIND_SIGNALLED)
    was_running = 0;
    was_running = 0;
  else
  else
    was_running = 1;
    was_running = 1;
 
 
  if (!was_running && !multi_mode)
  if (!was_running && !multi_mode)
    {
    {
      fprintf (stderr, "No program to debug.  GDBserver exiting.\n");
      fprintf (stderr, "No program to debug.  GDBserver exiting.\n");
      exit (1);
      exit (1);
    }
    }
 
 
  while (1)
  while (1)
    {
    {
      noack_mode = 0;
      noack_mode = 0;
      multi_process = 0;
      multi_process = 0;
      non_stop = 0;
      non_stop = 0;
 
 
      remote_open (port);
      remote_open (port);
 
 
      if (setjmp (toplevel) != 0)
      if (setjmp (toplevel) != 0)
        {
        {
          /* An error occurred.  */
          /* An error occurred.  */
          if (response_needed)
          if (response_needed)
            {
            {
              write_enn (own_buf);
              write_enn (own_buf);
              putpkt (own_buf);
              putpkt (own_buf);
            }
            }
        }
        }
 
 
      /* Wait for events.  This will return when all event sources are
      /* Wait for events.  This will return when all event sources are
         removed from the event loop. */
         removed from the event loop. */
      start_event_loop ();
      start_event_loop ();
 
 
      /* If an exit was requested (using the "monitor exit" command),
      /* If an exit was requested (using the "monitor exit" command),
         terminate now.  The only other way to get here is for
         terminate now.  The only other way to get here is for
         getpkt to fail; close the connection and reopen it at the
         getpkt to fail; close the connection and reopen it at the
         top of the loop.  */
         top of the loop.  */
 
 
      if (exit_requested)
      if (exit_requested)
        {
        {
          detach_or_kill_for_exit ();
          detach_or_kill_for_exit ();
          exit (0);
          exit (0);
        }
        }
      else
      else
        fprintf (stderr, "Remote side has terminated connection.  "
        fprintf (stderr, "Remote side has terminated connection.  "
                 "GDBserver will reopen the connection.\n");
                 "GDBserver will reopen the connection.\n");
    }
    }
}
}
 
 
/* Event loop callback that handles a serial event.  The first byte in
/* Event loop callback that handles a serial event.  The first byte in
   the serial buffer gets us here.  We expect characters to arrive at
   the serial buffer gets us here.  We expect characters to arrive at
   a brisk pace, so we read the rest of the packet with a blocking
   a brisk pace, so we read the rest of the packet with a blocking
   getpkt call.  */
   getpkt call.  */
 
 
static void
static void
process_serial_event (void)
process_serial_event (void)
{
{
  char ch;
  char ch;
  int i = 0;
  int i = 0;
  int signal;
  int signal;
  unsigned int len;
  unsigned int len;
  CORE_ADDR mem_addr;
  CORE_ADDR mem_addr;
  int pid;
  int pid;
  unsigned char sig;
  unsigned char sig;
  int packet_len;
  int packet_len;
  int new_packet_len = -1;
  int new_packet_len = -1;
 
 
  /* Used to decide when gdbserver should exit in
  /* Used to decide when gdbserver should exit in
     multi-mode/remote.  */
     multi-mode/remote.  */
  static int have_ran = 0;
  static int have_ran = 0;
 
 
  if (!have_ran)
  if (!have_ran)
    have_ran = target_running ();
    have_ran = target_running ();
 
 
  disable_async_io ();
  disable_async_io ();
 
 
  response_needed = 0;
  response_needed = 0;
  packet_len = getpkt (own_buf);
  packet_len = getpkt (own_buf);
  if (packet_len <= 0)
  if (packet_len <= 0)
    {
    {
      target_async (0);
      target_async (0);
      remote_close ();
      remote_close ();
      return;
      return;
    }
    }
  response_needed = 1;
  response_needed = 1;
 
 
  i = 0;
  i = 0;
  ch = own_buf[i++];
  ch = own_buf[i++];
  switch (ch)
  switch (ch)
    {
    {
    case 'q':
    case 'q':
      handle_query (own_buf, packet_len, &new_packet_len);
      handle_query (own_buf, packet_len, &new_packet_len);
      break;
      break;
    case 'Q':
    case 'Q':
      handle_general_set (own_buf);
      handle_general_set (own_buf);
      break;
      break;
    case 'D':
    case 'D':
      require_running (own_buf);
      require_running (own_buf);
 
 
      if (multi_process)
      if (multi_process)
        {
        {
          i++; /* skip ';' */
          i++; /* skip ';' */
          pid = strtol (&own_buf[i], NULL, 16);
          pid = strtol (&own_buf[i], NULL, 16);
        }
        }
      else
      else
        pid =
        pid =
          ptid_get_pid (((struct inferior_list_entry *) current_inferior)->id);
          ptid_get_pid (((struct inferior_list_entry *) current_inferior)->id);
 
 
      fprintf (stderr, "Detaching from process %d\n", pid);
      fprintf (stderr, "Detaching from process %d\n", pid);
      if (detach_inferior (pid) != 0)
      if (detach_inferior (pid) != 0)
        write_enn (own_buf);
        write_enn (own_buf);
      else
      else
        {
        {
          discard_queued_stop_replies (pid);
          discard_queued_stop_replies (pid);
          write_ok (own_buf);
          write_ok (own_buf);
 
 
          if (extended_protocol)
          if (extended_protocol)
            {
            {
              /* Treat this like a normal program exit.  */
              /* Treat this like a normal program exit.  */
              last_status.kind = TARGET_WAITKIND_EXITED;
              last_status.kind = TARGET_WAITKIND_EXITED;
              last_status.value.integer = 0;
              last_status.value.integer = 0;
              last_ptid = pid_to_ptid (pid);
              last_ptid = pid_to_ptid (pid);
 
 
              current_inferior = NULL;
              current_inferior = NULL;
            }
            }
          else
          else
            {
            {
              putpkt (own_buf);
              putpkt (own_buf);
              remote_close ();
              remote_close ();
 
 
              /* If we are attached, then we can exit.  Otherwise, we
              /* If we are attached, then we can exit.  Otherwise, we
                 need to hang around doing nothing, until the child is
                 need to hang around doing nothing, until the child is
                 gone.  */
                 gone.  */
              for_each_inferior (&all_processes,
              for_each_inferior (&all_processes,
                                 join_inferiors_callback);
                                 join_inferiors_callback);
              exit (0);
              exit (0);
            }
            }
        }
        }
      break;
      break;
    case '!':
    case '!':
      extended_protocol = 1;
      extended_protocol = 1;
      write_ok (own_buf);
      write_ok (own_buf);
      break;
      break;
    case '?':
    case '?':
      handle_status (own_buf);
      handle_status (own_buf);
      break;
      break;
    case 'H':
    case 'H':
      if (own_buf[1] == 'c' || own_buf[1] == 'g' || own_buf[1] == 's')
      if (own_buf[1] == 'c' || own_buf[1] == 'g' || own_buf[1] == 's')
        {
        {
          ptid_t gdb_id, thread_id;
          ptid_t gdb_id, thread_id;
          int pid;
          int pid;
 
 
          require_running (own_buf);
          require_running (own_buf);
 
 
          gdb_id = read_ptid (&own_buf[2], NULL);
          gdb_id = read_ptid (&own_buf[2], NULL);
 
 
          pid = ptid_get_pid (gdb_id);
          pid = ptid_get_pid (gdb_id);
 
 
          if (ptid_equal (gdb_id, null_ptid)
          if (ptid_equal (gdb_id, null_ptid)
              || ptid_equal (gdb_id, minus_one_ptid))
              || ptid_equal (gdb_id, minus_one_ptid))
            thread_id = null_ptid;
            thread_id = null_ptid;
          else if (pid != 0
          else if (pid != 0
                   && ptid_equal (pid_to_ptid (pid),
                   && ptid_equal (pid_to_ptid (pid),
                                  gdb_id))
                                  gdb_id))
            {
            {
              struct thread_info *thread =
              struct thread_info *thread =
                (struct thread_info *) find_inferior (&all_threads,
                (struct thread_info *) find_inferior (&all_threads,
                                                      first_thread_of,
                                                      first_thread_of,
                                                      &pid);
                                                      &pid);
              if (!thread)
              if (!thread)
                {
                {
                  write_enn (own_buf);
                  write_enn (own_buf);
                  break;
                  break;
                }
                }
 
 
              thread_id = ((struct inferior_list_entry *)thread)->id;
              thread_id = ((struct inferior_list_entry *)thread)->id;
            }
            }
          else
          else
            {
            {
              thread_id = gdb_id_to_thread_id (gdb_id);
              thread_id = gdb_id_to_thread_id (gdb_id);
              if (ptid_equal (thread_id, null_ptid))
              if (ptid_equal (thread_id, null_ptid))
                {
                {
                  write_enn (own_buf);
                  write_enn (own_buf);
                  break;
                  break;
                }
                }
            }
            }
 
 
          if (own_buf[1] == 'g')
          if (own_buf[1] == 'g')
            {
            {
              if (ptid_equal (thread_id, null_ptid))
              if (ptid_equal (thread_id, null_ptid))
                {
                {
                  /* GDB is telling us to choose any thread.  Check if
                  /* GDB is telling us to choose any thread.  Check if
                     the currently selected thread is still valid. If
                     the currently selected thread is still valid. If
                     it is not, select the first available.  */
                     it is not, select the first available.  */
                  struct thread_info *thread =
                  struct thread_info *thread =
                    (struct thread_info *) find_inferior_id (&all_threads,
                    (struct thread_info *) find_inferior_id (&all_threads,
                                                             general_thread);
                                                             general_thread);
                  if (thread == NULL)
                  if (thread == NULL)
                    thread_id = all_threads.head->id;
                    thread_id = all_threads.head->id;
                }
                }
 
 
              general_thread = thread_id;
              general_thread = thread_id;
              set_desired_inferior (1);
              set_desired_inferior (1);
            }
            }
          else if (own_buf[1] == 'c')
          else if (own_buf[1] == 'c')
            cont_thread = thread_id;
            cont_thread = thread_id;
          else if (own_buf[1] == 's')
          else if (own_buf[1] == 's')
            step_thread = thread_id;
            step_thread = thread_id;
 
 
          write_ok (own_buf);
          write_ok (own_buf);
        }
        }
      else
      else
        {
        {
          /* Silently ignore it so that gdb can extend the protocol
          /* Silently ignore it so that gdb can extend the protocol
             without compatibility headaches.  */
             without compatibility headaches.  */
          own_buf[0] = '\0';
          own_buf[0] = '\0';
        }
        }
      break;
      break;
    case 'g':
    case 'g':
      {
      {
        struct regcache *regcache;
        struct regcache *regcache;
 
 
        require_running (own_buf);
        require_running (own_buf);
        set_desired_inferior (1);
        set_desired_inferior (1);
        regcache = get_thread_regcache (current_inferior, 1);
        regcache = get_thread_regcache (current_inferior, 1);
        registers_to_string (regcache, own_buf);
        registers_to_string (regcache, own_buf);
      }
      }
      break;
      break;
    case 'G':
    case 'G':
        {
        {
          struct regcache *regcache;
          struct regcache *regcache;
 
 
          require_running (own_buf);
          require_running (own_buf);
          set_desired_inferior (1);
          set_desired_inferior (1);
          regcache = get_thread_regcache (current_inferior, 1);
          regcache = get_thread_regcache (current_inferior, 1);
          registers_from_string (regcache, &own_buf[1]);
          registers_from_string (regcache, &own_buf[1]);
          write_ok (own_buf);
          write_ok (own_buf);
        }
        }
      break;
      break;
    case 'm':
    case 'm':
      require_running (own_buf);
      require_running (own_buf);
      decode_m_packet (&own_buf[1], &mem_addr, &len);
      decode_m_packet (&own_buf[1], &mem_addr, &len);
      if (read_inferior_memory (mem_addr, mem_buf, len) == 0)
      if (read_inferior_memory (mem_addr, mem_buf, len) == 0)
        convert_int_to_ascii (mem_buf, own_buf, len);
        convert_int_to_ascii (mem_buf, own_buf, len);
      else
      else
        write_enn (own_buf);
        write_enn (own_buf);
      break;
      break;
    case 'M':
    case 'M':
      require_running (own_buf);
      require_running (own_buf);
      decode_M_packet (&own_buf[1], &mem_addr, &len, mem_buf);
      decode_M_packet (&own_buf[1], &mem_addr, &len, mem_buf);
      if (write_inferior_memory (mem_addr, mem_buf, len) == 0)
      if (write_inferior_memory (mem_addr, mem_buf, len) == 0)
        write_ok (own_buf);
        write_ok (own_buf);
      else
      else
        write_enn (own_buf);
        write_enn (own_buf);
      break;
      break;
    case 'X':
    case 'X':
      require_running (own_buf);
      require_running (own_buf);
      if (decode_X_packet (&own_buf[1], packet_len - 1,
      if (decode_X_packet (&own_buf[1], packet_len - 1,
                           &mem_addr, &len, mem_buf) < 0
                           &mem_addr, &len, mem_buf) < 0
          || write_inferior_memory (mem_addr, mem_buf, len) != 0)
          || write_inferior_memory (mem_addr, mem_buf, len) != 0)
        write_enn (own_buf);
        write_enn (own_buf);
      else
      else
        write_ok (own_buf);
        write_ok (own_buf);
      break;
      break;
    case 'C':
    case 'C':
      require_running (own_buf);
      require_running (own_buf);
      convert_ascii_to_int (own_buf + 1, &sig, 1);
      convert_ascii_to_int (own_buf + 1, &sig, 1);
      if (target_signal_to_host_p (sig))
      if (target_signal_to_host_p (sig))
        signal = target_signal_to_host (sig);
        signal = target_signal_to_host (sig);
      else
      else
        signal = 0;
        signal = 0;
      myresume (own_buf, 0, signal);
      myresume (own_buf, 0, signal);
      break;
      break;
    case 'S':
    case 'S':
      require_running (own_buf);
      require_running (own_buf);
      convert_ascii_to_int (own_buf + 1, &sig, 1);
      convert_ascii_to_int (own_buf + 1, &sig, 1);
      if (target_signal_to_host_p (sig))
      if (target_signal_to_host_p (sig))
        signal = target_signal_to_host (sig);
        signal = target_signal_to_host (sig);
      else
      else
        signal = 0;
        signal = 0;
      myresume (own_buf, 1, signal);
      myresume (own_buf, 1, signal);
      break;
      break;
    case 'c':
    case 'c':
      require_running (own_buf);
      require_running (own_buf);
      signal = 0;
      signal = 0;
      myresume (own_buf, 0, signal);
      myresume (own_buf, 0, signal);
      break;
      break;
    case 's':
    case 's':
      require_running (own_buf);
      require_running (own_buf);
      signal = 0;
      signal = 0;
      myresume (own_buf, 1, signal);
      myresume (own_buf, 1, signal);
      break;
      break;
    case 'Z':  /* insert_ ... */
    case 'Z':  /* insert_ ... */
      /* Fallthrough.  */
      /* Fallthrough.  */
    case 'z':  /* remove_ ... */
    case 'z':  /* remove_ ... */
      {
      {
        char *lenptr;
        char *lenptr;
        char *dataptr;
        char *dataptr;
        CORE_ADDR addr = strtoul (&own_buf[3], &lenptr, 16);
        CORE_ADDR addr = strtoul (&own_buf[3], &lenptr, 16);
        int len = strtol (lenptr + 1, &dataptr, 16);
        int len = strtol (lenptr + 1, &dataptr, 16);
        char type = own_buf[1];
        char type = own_buf[1];
        int res;
        int res;
        const int insert = ch == 'Z';
        const int insert = ch == 'Z';
 
 
        /* Default to unrecognized/unsupported.  */
        /* Default to unrecognized/unsupported.  */
        res = 1;
        res = 1;
        switch (type)
        switch (type)
          {
          {
          case '0': /* software-breakpoint */
          case '0': /* software-breakpoint */
          case '1': /* hardware-breakpoint */
          case '1': /* hardware-breakpoint */
          case '2': /* write watchpoint */
          case '2': /* write watchpoint */
          case '3': /* read watchpoint */
          case '3': /* read watchpoint */
          case '4': /* access watchpoint */
          case '4': /* access watchpoint */
            require_running (own_buf);
            require_running (own_buf);
            if (insert && the_target->insert_point != NULL)
            if (insert && the_target->insert_point != NULL)
              res = (*the_target->insert_point) (type, addr, len);
              res = (*the_target->insert_point) (type, addr, len);
            else if (!insert && the_target->remove_point != NULL)
            else if (!insert && the_target->remove_point != NULL)
              res = (*the_target->remove_point) (type, addr, len);
              res = (*the_target->remove_point) (type, addr, len);
            break;
            break;
          default:
          default:
            break;
            break;
          }
          }
 
 
        if (res == 0)
        if (res == 0)
          write_ok (own_buf);
          write_ok (own_buf);
        else if (res == 1)
        else if (res == 1)
          /* Unsupported.  */
          /* Unsupported.  */
          own_buf[0] = '\0';
          own_buf[0] = '\0';
        else
        else
          write_enn (own_buf);
          write_enn (own_buf);
        break;
        break;
      }
      }
    case 'k':
    case 'k':
      response_needed = 0;
      response_needed = 0;
      if (!target_running ())
      if (!target_running ())
        /* The packet we received doesn't make sense - but we can't
        /* The packet we received doesn't make sense - but we can't
           reply to it, either.  */
           reply to it, either.  */
        return;
        return;
 
 
      fprintf (stderr, "Killing all inferiors\n");
      fprintf (stderr, "Killing all inferiors\n");
      for_each_inferior (&all_processes, kill_inferior_callback);
      for_each_inferior (&all_processes, kill_inferior_callback);
 
 
      /* When using the extended protocol, we wait with no program
      /* When using the extended protocol, we wait with no program
         running.  The traditional protocol will exit instead.  */
         running.  The traditional protocol will exit instead.  */
      if (extended_protocol)
      if (extended_protocol)
        {
        {
          last_status.kind = TARGET_WAITKIND_EXITED;
          last_status.kind = TARGET_WAITKIND_EXITED;
          last_status.value.sig = TARGET_SIGNAL_KILL;
          last_status.value.sig = TARGET_SIGNAL_KILL;
          return;
          return;
        }
        }
      else
      else
        {
        {
          exit (0);
          exit (0);
          break;
          break;
        }
        }
    case 'T':
    case 'T':
      {
      {
        ptid_t gdb_id, thread_id;
        ptid_t gdb_id, thread_id;
 
 
        require_running (own_buf);
        require_running (own_buf);
 
 
        gdb_id = read_ptid (&own_buf[1], NULL);
        gdb_id = read_ptid (&own_buf[1], NULL);
        thread_id = gdb_id_to_thread_id (gdb_id);
        thread_id = gdb_id_to_thread_id (gdb_id);
        if (ptid_equal (thread_id, null_ptid))
        if (ptid_equal (thread_id, null_ptid))
          {
          {
            write_enn (own_buf);
            write_enn (own_buf);
            break;
            break;
          }
          }
 
 
        if (mythread_alive (thread_id))
        if (mythread_alive (thread_id))
          write_ok (own_buf);
          write_ok (own_buf);
        else
        else
          write_enn (own_buf);
          write_enn (own_buf);
      }
      }
      break;
      break;
    case 'R':
    case 'R':
      response_needed = 0;
      response_needed = 0;
 
 
      /* Restarting the inferior is only supported in the extended
      /* Restarting the inferior is only supported in the extended
         protocol.  */
         protocol.  */
      if (extended_protocol)
      if (extended_protocol)
        {
        {
          if (target_running ())
          if (target_running ())
            for_each_inferior (&all_processes,
            for_each_inferior (&all_processes,
                               kill_inferior_callback);
                               kill_inferior_callback);
          fprintf (stderr, "GDBserver restarting\n");
          fprintf (stderr, "GDBserver restarting\n");
 
 
          /* Wait till we are at 1st instruction in prog.  */
          /* Wait till we are at 1st instruction in prog.  */
          if (program_argv != NULL)
          if (program_argv != NULL)
            start_inferior (program_argv);
            start_inferior (program_argv);
          else
          else
            {
            {
              last_status.kind = TARGET_WAITKIND_EXITED;
              last_status.kind = TARGET_WAITKIND_EXITED;
              last_status.value.sig = TARGET_SIGNAL_KILL;
              last_status.value.sig = TARGET_SIGNAL_KILL;
            }
            }
          return;
          return;
        }
        }
      else
      else
        {
        {
          /* It is a request we don't understand.  Respond with an
          /* It is a request we don't understand.  Respond with an
             empty packet so that gdb knows that we don't support this
             empty packet so that gdb knows that we don't support this
             request.  */
             request.  */
          own_buf[0] = '\0';
          own_buf[0] = '\0';
          break;
          break;
        }
        }
    case 'v':
    case 'v':
      /* Extended (long) request.  */
      /* Extended (long) request.  */
      handle_v_requests (own_buf, packet_len, &new_packet_len);
      handle_v_requests (own_buf, packet_len, &new_packet_len);
      break;
      break;
 
 
    default:
    default:
      /* It is a request we don't understand.  Respond with an empty
      /* It is a request we don't understand.  Respond with an empty
         packet so that gdb knows that we don't support this
         packet so that gdb knows that we don't support this
         request.  */
         request.  */
      own_buf[0] = '\0';
      own_buf[0] = '\0';
      break;
      break;
    }
    }
 
 
  if (new_packet_len != -1)
  if (new_packet_len != -1)
    putpkt_binary (own_buf, new_packet_len);
    putpkt_binary (own_buf, new_packet_len);
  else
  else
    putpkt (own_buf);
    putpkt (own_buf);
 
 
  response_needed = 0;
  response_needed = 0;
 
 
  if (!extended_protocol && have_ran && !target_running ())
  if (!extended_protocol && have_ran && !target_running ())
    {
    {
      /* In non-stop, defer exiting until GDB had a chance to query
      /* In non-stop, defer exiting until GDB had a chance to query
         the whole vStopped list (until it gets an OK).  */
         the whole vStopped list (until it gets an OK).  */
      if (!notif_queue)
      if (!notif_queue)
        {
        {
          fprintf (stderr, "GDBserver exiting\n");
          fprintf (stderr, "GDBserver exiting\n");
          remote_close ();
          remote_close ();
          exit (0);
          exit (0);
        }
        }
    }
    }
}
}
 
 
/* Event-loop callback for serial events.  */
/* Event-loop callback for serial events.  */
 
 
void
void
handle_serial_event (int err, gdb_client_data client_data)
handle_serial_event (int err, gdb_client_data client_data)
{
{
  if (debug_threads)
  if (debug_threads)
    fprintf (stderr, "handling possible serial event\n");
    fprintf (stderr, "handling possible serial event\n");
 
 
  /* Really handle it.  */
  /* Really handle it.  */
  process_serial_event ();
  process_serial_event ();
 
 
  /* Be sure to not change the selected inferior behind GDB's back.
  /* Be sure to not change the selected inferior behind GDB's back.
     Important in the non-stop mode asynchronous protocol.  */
     Important in the non-stop mode asynchronous protocol.  */
  set_desired_inferior (1);
  set_desired_inferior (1);
}
}
 
 
/* Event-loop callback for target events.  */
/* Event-loop callback for target events.  */
 
 
void
void
handle_target_event (int err, gdb_client_data client_data)
handle_target_event (int err, gdb_client_data client_data)
{
{
  if (debug_threads)
  if (debug_threads)
    fprintf (stderr, "handling possible target event\n");
    fprintf (stderr, "handling possible target event\n");
 
 
  last_ptid = mywait (minus_one_ptid, &last_status,
  last_ptid = mywait (minus_one_ptid, &last_status,
                      TARGET_WNOHANG, 1);
                      TARGET_WNOHANG, 1);
 
 
  if (last_status.kind != TARGET_WAITKIND_IGNORE)
  if (last_status.kind != TARGET_WAITKIND_IGNORE)
    {
    {
      /* Something interesting.  Tell GDB about it.  */
      /* Something interesting.  Tell GDB about it.  */
      push_event (last_ptid, &last_status);
      push_event (last_ptid, &last_status);
    }
    }
 
 
  /* Be sure to not change the selected inferior behind GDB's back.
  /* Be sure to not change the selected inferior behind GDB's back.
     Important in the non-stop mode asynchronous protocol.  */
     Important in the non-stop mode asynchronous protocol.  */
  set_desired_inferior (1);
  set_desired_inferior (1);
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.