OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gdb-7.1/] [gdb/] [i387-tdep.c] - Diff between revs 227 and 816

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 227 Rev 816
/* Intel 387 floating point stuff.
/* Intel 387 floating point stuff.
 
 
   Copyright (C) 1988, 1989, 1991, 1992, 1993, 1994, 1998, 1999, 2000, 2001,
   Copyright (C) 1988, 1989, 1991, 1992, 1993, 1994, 1998, 1999, 2000, 2001,
   2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010
   2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
 
 
#include "defs.h"
#include "defs.h"
#include "doublest.h"
#include "doublest.h"
#include "floatformat.h"
#include "floatformat.h"
#include "frame.h"
#include "frame.h"
#include "gdbcore.h"
#include "gdbcore.h"
#include "inferior.h"
#include "inferior.h"
#include "language.h"
#include "language.h"
#include "regcache.h"
#include "regcache.h"
#include "value.h"
#include "value.h"
 
 
#include "gdb_assert.h"
#include "gdb_assert.h"
#include "gdb_string.h"
#include "gdb_string.h"
 
 
#include "i386-tdep.h"
#include "i386-tdep.h"
#include "i387-tdep.h"
#include "i387-tdep.h"
 
 
/* Print the floating point number specified by RAW.  */
/* Print the floating point number specified by RAW.  */
 
 
static void
static void
print_i387_value (struct gdbarch *gdbarch,
print_i387_value (struct gdbarch *gdbarch,
                  const gdb_byte *raw, struct ui_file *file)
                  const gdb_byte *raw, struct ui_file *file)
{
{
  DOUBLEST value;
  DOUBLEST value;
 
 
  /* Using extract_typed_floating here might affect the representation
  /* Using extract_typed_floating here might affect the representation
     of certain numbers such as NaNs, even if GDB is running natively.
     of certain numbers such as NaNs, even if GDB is running natively.
     This is fine since our caller already detects such special
     This is fine since our caller already detects such special
     numbers and we print the hexadecimal representation anyway.  */
     numbers and we print the hexadecimal representation anyway.  */
  value = extract_typed_floating (raw, i387_ext_type (gdbarch));
  value = extract_typed_floating (raw, i387_ext_type (gdbarch));
 
 
  /* We try to print 19 digits.  The last digit may or may not contain
  /* We try to print 19 digits.  The last digit may or may not contain
     garbage, but we'd better print one too many.  We need enough room
     garbage, but we'd better print one too many.  We need enough room
     to print the value, 1 position for the sign, 1 for the decimal
     to print the value, 1 position for the sign, 1 for the decimal
     point, 19 for the digits and 6 for the exponent adds up to 27.  */
     point, 19 for the digits and 6 for the exponent adds up to 27.  */
#ifdef PRINTF_HAS_LONG_DOUBLE
#ifdef PRINTF_HAS_LONG_DOUBLE
  fprintf_filtered (file, " %-+27.19Lg", (long double) value);
  fprintf_filtered (file, " %-+27.19Lg", (long double) value);
#else
#else
  fprintf_filtered (file, " %-+27.19g", (double) value);
  fprintf_filtered (file, " %-+27.19g", (double) value);
#endif
#endif
}
}
 
 
/* Print the classification for the register contents RAW.  */
/* Print the classification for the register contents RAW.  */
 
 
static void
static void
print_i387_ext (struct gdbarch *gdbarch,
print_i387_ext (struct gdbarch *gdbarch,
                const gdb_byte *raw, struct ui_file *file)
                const gdb_byte *raw, struct ui_file *file)
{
{
  int sign;
  int sign;
  int integer;
  int integer;
  unsigned int exponent;
  unsigned int exponent;
  unsigned long fraction[2];
  unsigned long fraction[2];
 
 
  sign = raw[9] & 0x80;
  sign = raw[9] & 0x80;
  integer = raw[7] & 0x80;
  integer = raw[7] & 0x80;
  exponent = (((raw[9] & 0x7f) << 8) | raw[8]);
  exponent = (((raw[9] & 0x7f) << 8) | raw[8]);
  fraction[0] = ((raw[3] << 24) | (raw[2] << 16) | (raw[1] << 8) | raw[0]);
  fraction[0] = ((raw[3] << 24) | (raw[2] << 16) | (raw[1] << 8) | raw[0]);
  fraction[1] = (((raw[7] & 0x7f) << 24) | (raw[6] << 16)
  fraction[1] = (((raw[7] & 0x7f) << 24) | (raw[6] << 16)
                 | (raw[5] << 8) | raw[4]);
                 | (raw[5] << 8) | raw[4]);
 
 
  if (exponent == 0x7fff && integer)
  if (exponent == 0x7fff && integer)
    {
    {
      if (fraction[0] == 0x00000000 && fraction[1] == 0x00000000)
      if (fraction[0] == 0x00000000 && fraction[1] == 0x00000000)
        /* Infinity.  */
        /* Infinity.  */
        fprintf_filtered (file, " %cInf", (sign ? '-' : '+'));
        fprintf_filtered (file, " %cInf", (sign ? '-' : '+'));
      else if (sign && fraction[0] == 0x00000000 && fraction[1] == 0x40000000)
      else if (sign && fraction[0] == 0x00000000 && fraction[1] == 0x40000000)
        /* Real Indefinite (QNaN).  */
        /* Real Indefinite (QNaN).  */
        fputs_unfiltered (" Real Indefinite (QNaN)", file);
        fputs_unfiltered (" Real Indefinite (QNaN)", file);
      else if (fraction[1] & 0x40000000)
      else if (fraction[1] & 0x40000000)
        /* QNaN.  */
        /* QNaN.  */
        fputs_filtered (" QNaN", file);
        fputs_filtered (" QNaN", file);
      else
      else
        /* SNaN.  */
        /* SNaN.  */
        fputs_filtered (" SNaN", file);
        fputs_filtered (" SNaN", file);
    }
    }
  else if (exponent < 0x7fff && exponent > 0x0000 && integer)
  else if (exponent < 0x7fff && exponent > 0x0000 && integer)
    /* Normal.  */
    /* Normal.  */
    print_i387_value (gdbarch, raw, file);
    print_i387_value (gdbarch, raw, file);
  else if (exponent == 0x0000)
  else if (exponent == 0x0000)
    {
    {
      /* Denormal or zero.  */
      /* Denormal or zero.  */
      print_i387_value (gdbarch, raw, file);
      print_i387_value (gdbarch, raw, file);
 
 
      if (integer)
      if (integer)
        /* Pseudo-denormal.  */
        /* Pseudo-denormal.  */
        fputs_filtered (" Pseudo-denormal", file);
        fputs_filtered (" Pseudo-denormal", file);
      else if (fraction[0] || fraction[1])
      else if (fraction[0] || fraction[1])
        /* Denormal.  */
        /* Denormal.  */
        fputs_filtered (" Denormal", file);
        fputs_filtered (" Denormal", file);
    }
    }
  else
  else
    /* Unsupported.  */
    /* Unsupported.  */
    fputs_filtered (" Unsupported", file);
    fputs_filtered (" Unsupported", file);
}
}
 
 
/* Print the status word STATUS.  */
/* Print the status word STATUS.  */
 
 
static void
static void
print_i387_status_word (unsigned int status, struct ui_file *file)
print_i387_status_word (unsigned int status, struct ui_file *file)
{
{
  fprintf_filtered (file, "Status Word:         %s",
  fprintf_filtered (file, "Status Word:         %s",
                    hex_string_custom (status, 4));
                    hex_string_custom (status, 4));
  fputs_filtered ("  ", file);
  fputs_filtered ("  ", file);
  fprintf_filtered (file, " %s", (status & 0x0001) ? "IE" : "  ");
  fprintf_filtered (file, " %s", (status & 0x0001) ? "IE" : "  ");
  fprintf_filtered (file, " %s", (status & 0x0002) ? "DE" : "  ");
  fprintf_filtered (file, " %s", (status & 0x0002) ? "DE" : "  ");
  fprintf_filtered (file, " %s", (status & 0x0004) ? "ZE" : "  ");
  fprintf_filtered (file, " %s", (status & 0x0004) ? "ZE" : "  ");
  fprintf_filtered (file, " %s", (status & 0x0008) ? "OE" : "  ");
  fprintf_filtered (file, " %s", (status & 0x0008) ? "OE" : "  ");
  fprintf_filtered (file, " %s", (status & 0x0010) ? "UE" : "  ");
  fprintf_filtered (file, " %s", (status & 0x0010) ? "UE" : "  ");
  fprintf_filtered (file, " %s", (status & 0x0020) ? "PE" : "  ");
  fprintf_filtered (file, " %s", (status & 0x0020) ? "PE" : "  ");
  fputs_filtered ("  ", file);
  fputs_filtered ("  ", file);
  fprintf_filtered (file, " %s", (status & 0x0080) ? "ES" : "  ");
  fprintf_filtered (file, " %s", (status & 0x0080) ? "ES" : "  ");
  fputs_filtered ("  ", file);
  fputs_filtered ("  ", file);
  fprintf_filtered (file, " %s", (status & 0x0040) ? "SF" : "  ");
  fprintf_filtered (file, " %s", (status & 0x0040) ? "SF" : "  ");
  fputs_filtered ("  ", file);
  fputs_filtered ("  ", file);
  fprintf_filtered (file, " %s", (status & 0x0100) ? "C0" : "  ");
  fprintf_filtered (file, " %s", (status & 0x0100) ? "C0" : "  ");
  fprintf_filtered (file, " %s", (status & 0x0200) ? "C1" : "  ");
  fprintf_filtered (file, " %s", (status & 0x0200) ? "C1" : "  ");
  fprintf_filtered (file, " %s", (status & 0x0400) ? "C2" : "  ");
  fprintf_filtered (file, " %s", (status & 0x0400) ? "C2" : "  ");
  fprintf_filtered (file, " %s", (status & 0x4000) ? "C3" : "  ");
  fprintf_filtered (file, " %s", (status & 0x4000) ? "C3" : "  ");
 
 
  fputs_filtered ("\n", file);
  fputs_filtered ("\n", file);
 
 
  fprintf_filtered (file,
  fprintf_filtered (file,
                    "                       TOP: %d\n", ((status >> 11) & 7));
                    "                       TOP: %d\n", ((status >> 11) & 7));
}
}
 
 
/* Print the control word CONTROL.  */
/* Print the control word CONTROL.  */
 
 
static void
static void
print_i387_control_word (unsigned int control, struct ui_file *file)
print_i387_control_word (unsigned int control, struct ui_file *file)
{
{
  fprintf_filtered (file, "Control Word:        %s",
  fprintf_filtered (file, "Control Word:        %s",
                    hex_string_custom (control, 4));
                    hex_string_custom (control, 4));
  fputs_filtered ("  ", file);
  fputs_filtered ("  ", file);
  fprintf_filtered (file, " %s", (control & 0x0001) ? "IM" : "  ");
  fprintf_filtered (file, " %s", (control & 0x0001) ? "IM" : "  ");
  fprintf_filtered (file, " %s", (control & 0x0002) ? "DM" : "  ");
  fprintf_filtered (file, " %s", (control & 0x0002) ? "DM" : "  ");
  fprintf_filtered (file, " %s", (control & 0x0004) ? "ZM" : "  ");
  fprintf_filtered (file, " %s", (control & 0x0004) ? "ZM" : "  ");
  fprintf_filtered (file, " %s", (control & 0x0008) ? "OM" : "  ");
  fprintf_filtered (file, " %s", (control & 0x0008) ? "OM" : "  ");
  fprintf_filtered (file, " %s", (control & 0x0010) ? "UM" : "  ");
  fprintf_filtered (file, " %s", (control & 0x0010) ? "UM" : "  ");
  fprintf_filtered (file, " %s", (control & 0x0020) ? "PM" : "  ");
  fprintf_filtered (file, " %s", (control & 0x0020) ? "PM" : "  ");
 
 
  fputs_filtered ("\n", file);
  fputs_filtered ("\n", file);
 
 
  fputs_filtered ("                       PC: ", file);
  fputs_filtered ("                       PC: ", file);
  switch ((control >> 8) & 3)
  switch ((control >> 8) & 3)
    {
    {
    case 0:
    case 0:
      fputs_filtered ("Single Precision (24-bits)\n", file);
      fputs_filtered ("Single Precision (24-bits)\n", file);
      break;
      break;
    case 1:
    case 1:
      fputs_filtered ("Reserved\n", file);
      fputs_filtered ("Reserved\n", file);
      break;
      break;
    case 2:
    case 2:
      fputs_filtered ("Double Precision (53-bits)\n", file);
      fputs_filtered ("Double Precision (53-bits)\n", file);
      break;
      break;
    case 3:
    case 3:
      fputs_filtered ("Extended Precision (64-bits)\n", file);
      fputs_filtered ("Extended Precision (64-bits)\n", file);
      break;
      break;
    }
    }
 
 
  fputs_filtered ("                       RC: ", file);
  fputs_filtered ("                       RC: ", file);
  switch ((control >> 10) & 3)
  switch ((control >> 10) & 3)
    {
    {
    case 0:
    case 0:
      fputs_filtered ("Round to nearest\n", file);
      fputs_filtered ("Round to nearest\n", file);
      break;
      break;
    case 1:
    case 1:
      fputs_filtered ("Round down\n", file);
      fputs_filtered ("Round down\n", file);
      break;
      break;
    case 2:
    case 2:
      fputs_filtered ("Round up\n", file);
      fputs_filtered ("Round up\n", file);
      break;
      break;
    case 3:
    case 3:
      fputs_filtered ("Round toward zero\n", file);
      fputs_filtered ("Round toward zero\n", file);
      break;
      break;
    }
    }
}
}
 
 
/* Print out the i387 floating point state.  Note that we ignore FRAME
/* Print out the i387 floating point state.  Note that we ignore FRAME
   in the code below.  That's OK since floating-point registers are
   in the code below.  That's OK since floating-point registers are
   never saved on the stack.  */
   never saved on the stack.  */
 
 
void
void
i387_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
i387_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
                       struct frame_info *frame, const char *args)
                       struct frame_info *frame, const char *args)
{
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
  struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
  gdb_byte buf[4];
  gdb_byte buf[4];
  ULONGEST fctrl;
  ULONGEST fctrl;
  ULONGEST fstat;
  ULONGEST fstat;
  ULONGEST ftag;
  ULONGEST ftag;
  ULONGEST fiseg;
  ULONGEST fiseg;
  ULONGEST fioff;
  ULONGEST fioff;
  ULONGEST foseg;
  ULONGEST foseg;
  ULONGEST fooff;
  ULONGEST fooff;
  ULONGEST fop;
  ULONGEST fop;
  int fpreg;
  int fpreg;
  int top;
  int top;
 
 
  gdb_assert (gdbarch == get_frame_arch (frame));
  gdb_assert (gdbarch == get_frame_arch (frame));
 
 
  fctrl = get_frame_register_unsigned (frame, I387_FCTRL_REGNUM (tdep));
  fctrl = get_frame_register_unsigned (frame, I387_FCTRL_REGNUM (tdep));
  fstat = get_frame_register_unsigned (frame, I387_FSTAT_REGNUM (tdep));
  fstat = get_frame_register_unsigned (frame, I387_FSTAT_REGNUM (tdep));
  ftag = get_frame_register_unsigned (frame, I387_FTAG_REGNUM (tdep));
  ftag = get_frame_register_unsigned (frame, I387_FTAG_REGNUM (tdep));
  fiseg = get_frame_register_unsigned (frame, I387_FISEG_REGNUM (tdep));
  fiseg = get_frame_register_unsigned (frame, I387_FISEG_REGNUM (tdep));
  fioff = get_frame_register_unsigned (frame, I387_FIOFF_REGNUM (tdep));
  fioff = get_frame_register_unsigned (frame, I387_FIOFF_REGNUM (tdep));
  foseg = get_frame_register_unsigned (frame, I387_FOSEG_REGNUM (tdep));
  foseg = get_frame_register_unsigned (frame, I387_FOSEG_REGNUM (tdep));
  fooff = get_frame_register_unsigned (frame, I387_FOOFF_REGNUM (tdep));
  fooff = get_frame_register_unsigned (frame, I387_FOOFF_REGNUM (tdep));
  fop = get_frame_register_unsigned (frame, I387_FOP_REGNUM (tdep));
  fop = get_frame_register_unsigned (frame, I387_FOP_REGNUM (tdep));
 
 
  top = ((fstat >> 11) & 7);
  top = ((fstat >> 11) & 7);
 
 
  for (fpreg = 7; fpreg >= 0; fpreg--)
  for (fpreg = 7; fpreg >= 0; fpreg--)
    {
    {
      gdb_byte raw[I386_MAX_REGISTER_SIZE];
      gdb_byte raw[I386_MAX_REGISTER_SIZE];
      int tag = (ftag >> (fpreg * 2)) & 3;
      int tag = (ftag >> (fpreg * 2)) & 3;
      int i;
      int i;
 
 
      fprintf_filtered (file, "%sR%d: ", fpreg == top ? "=>" : "  ", fpreg);
      fprintf_filtered (file, "%sR%d: ", fpreg == top ? "=>" : "  ", fpreg);
 
 
      switch (tag)
      switch (tag)
        {
        {
        case 0:
        case 0:
          fputs_filtered ("Valid   ", file);
          fputs_filtered ("Valid   ", file);
          break;
          break;
        case 1:
        case 1:
          fputs_filtered ("Zero    ", file);
          fputs_filtered ("Zero    ", file);
          break;
          break;
        case 2:
        case 2:
          fputs_filtered ("Special ", file);
          fputs_filtered ("Special ", file);
          break;
          break;
        case 3:
        case 3:
          fputs_filtered ("Empty   ", file);
          fputs_filtered ("Empty   ", file);
          break;
          break;
        }
        }
 
 
      get_frame_register (frame, (fpreg + 8 - top) % 8 + I387_ST0_REGNUM (tdep),
      get_frame_register (frame, (fpreg + 8 - top) % 8 + I387_ST0_REGNUM (tdep),
                          raw);
                          raw);
 
 
      fputs_filtered ("0x", file);
      fputs_filtered ("0x", file);
      for (i = 9; i >= 0; i--)
      for (i = 9; i >= 0; i--)
        fprintf_filtered (file, "%02x", raw[i]);
        fprintf_filtered (file, "%02x", raw[i]);
 
 
      if (tag != 3)
      if (tag != 3)
        print_i387_ext (gdbarch, raw, file);
        print_i387_ext (gdbarch, raw, file);
 
 
      fputs_filtered ("\n", file);
      fputs_filtered ("\n", file);
    }
    }
 
 
  fputs_filtered ("\n", file);
  fputs_filtered ("\n", file);
 
 
  print_i387_status_word (fstat, file);
  print_i387_status_word (fstat, file);
  print_i387_control_word (fctrl, file);
  print_i387_control_word (fctrl, file);
  fprintf_filtered (file, "Tag Word:            %s\n",
  fprintf_filtered (file, "Tag Word:            %s\n",
                    hex_string_custom (ftag, 4));
                    hex_string_custom (ftag, 4));
  fprintf_filtered (file, "Instruction Pointer: %s:",
  fprintf_filtered (file, "Instruction Pointer: %s:",
                    hex_string_custom (fiseg, 2));
                    hex_string_custom (fiseg, 2));
  fprintf_filtered (file, "%s\n", hex_string_custom (fioff, 8));
  fprintf_filtered (file, "%s\n", hex_string_custom (fioff, 8));
  fprintf_filtered (file, "Operand Pointer:     %s:",
  fprintf_filtered (file, "Operand Pointer:     %s:",
                    hex_string_custom (foseg, 2));
                    hex_string_custom (foseg, 2));
  fprintf_filtered (file, "%s\n", hex_string_custom (fooff, 8));
  fprintf_filtered (file, "%s\n", hex_string_custom (fooff, 8));
  fprintf_filtered (file, "Opcode:              %s\n",
  fprintf_filtered (file, "Opcode:              %s\n",
                    hex_string_custom (fop ? (fop | 0xd800) : 0, 4));
                    hex_string_custom (fop ? (fop | 0xd800) : 0, 4));
}
}


 
 
/* Return nonzero if a value of type TYPE stored in register REGNUM
/* Return nonzero if a value of type TYPE stored in register REGNUM
   needs any special handling.  */
   needs any special handling.  */
 
 
int
int
i387_convert_register_p (struct gdbarch *gdbarch, int regnum, struct type *type)
i387_convert_register_p (struct gdbarch *gdbarch, int regnum, struct type *type)
{
{
  if (i386_fp_regnum_p (gdbarch, regnum))
  if (i386_fp_regnum_p (gdbarch, regnum))
    {
    {
      /* Floating point registers must be converted unless we are
      /* Floating point registers must be converted unless we are
         accessing them in their hardware type.  */
         accessing them in their hardware type.  */
      if (type == i387_ext_type (gdbarch))
      if (type == i387_ext_type (gdbarch))
        return 0;
        return 0;
      else
      else
        return 1;
        return 1;
    }
    }
 
 
  return 0;
  return 0;
}
}
 
 
/* Read a value of type TYPE from register REGNUM in frame FRAME, and
/* Read a value of type TYPE from register REGNUM in frame FRAME, and
   return its contents in TO.  */
   return its contents in TO.  */
 
 
void
void
i387_register_to_value (struct frame_info *frame, int regnum,
i387_register_to_value (struct frame_info *frame, int regnum,
                        struct type *type, gdb_byte *to)
                        struct type *type, gdb_byte *to)
{
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  struct gdbarch *gdbarch = get_frame_arch (frame);
  gdb_byte from[I386_MAX_REGISTER_SIZE];
  gdb_byte from[I386_MAX_REGISTER_SIZE];
 
 
  gdb_assert (i386_fp_regnum_p (gdbarch, regnum));
  gdb_assert (i386_fp_regnum_p (gdbarch, regnum));
 
 
  /* We only support floating-point values.  */
  /* We only support floating-point values.  */
  if (TYPE_CODE (type) != TYPE_CODE_FLT)
  if (TYPE_CODE (type) != TYPE_CODE_FLT)
    {
    {
      warning (_("Cannot convert floating-point register value "
      warning (_("Cannot convert floating-point register value "
               "to non-floating-point type."));
               "to non-floating-point type."));
      return;
      return;
    }
    }
 
 
  /* Convert to TYPE.  */
  /* Convert to TYPE.  */
  get_frame_register (frame, regnum, from);
  get_frame_register (frame, regnum, from);
  convert_typed_floating (from, i387_ext_type (gdbarch), to, type);
  convert_typed_floating (from, i387_ext_type (gdbarch), to, type);
}
}
 
 
/* Write the contents FROM of a value of type TYPE into register
/* Write the contents FROM of a value of type TYPE into register
   REGNUM in frame FRAME.  */
   REGNUM in frame FRAME.  */
 
 
void
void
i387_value_to_register (struct frame_info *frame, int regnum,
i387_value_to_register (struct frame_info *frame, int regnum,
                        struct type *type, const gdb_byte *from)
                        struct type *type, const gdb_byte *from)
{
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  struct gdbarch *gdbarch = get_frame_arch (frame);
  gdb_byte to[I386_MAX_REGISTER_SIZE];
  gdb_byte to[I386_MAX_REGISTER_SIZE];
 
 
  gdb_assert (i386_fp_regnum_p (gdbarch, regnum));
  gdb_assert (i386_fp_regnum_p (gdbarch, regnum));
 
 
  /* We only support floating-point values.  */
  /* We only support floating-point values.  */
  if (TYPE_CODE (type) != TYPE_CODE_FLT)
  if (TYPE_CODE (type) != TYPE_CODE_FLT)
    {
    {
      warning (_("Cannot convert non-floating-point type "
      warning (_("Cannot convert non-floating-point type "
               "to floating-point register value."));
               "to floating-point register value."));
      return;
      return;
    }
    }
 
 
  /* Convert from TYPE.  */
  /* Convert from TYPE.  */
  convert_typed_floating (from, type, to, i387_ext_type (gdbarch));
  convert_typed_floating (from, type, to, i387_ext_type (gdbarch));
  put_frame_register (frame, regnum, to);
  put_frame_register (frame, regnum, to);
}
}


 
 
/* Handle FSAVE and FXSAVE formats.  */
/* Handle FSAVE and FXSAVE formats.  */
 
 
/* At fsave_offset[REGNUM] you'll find the offset to the location in
/* At fsave_offset[REGNUM] you'll find the offset to the location in
   the data structure used by the "fsave" instruction where GDB
   the data structure used by the "fsave" instruction where GDB
   register REGNUM is stored.  */
   register REGNUM is stored.  */
 
 
static int fsave_offset[] =
static int fsave_offset[] =
{
{
  28 + 0 * 10,                   /* %st(0) ...  */
  28 + 0 * 10,                   /* %st(0) ...  */
  28 + 1 * 10,
  28 + 1 * 10,
  28 + 2 * 10,
  28 + 2 * 10,
  28 + 3 * 10,
  28 + 3 * 10,
  28 + 4 * 10,
  28 + 4 * 10,
  28 + 5 * 10,
  28 + 5 * 10,
  28 + 6 * 10,
  28 + 6 * 10,
  28 + 7 * 10,                  /* ... %st(7).  */
  28 + 7 * 10,                  /* ... %st(7).  */
  0,                             /* `fctrl' (16 bits).  */
  0,                             /* `fctrl' (16 bits).  */
  4,                            /* `fstat' (16 bits).  */
  4,                            /* `fstat' (16 bits).  */
  8,                            /* `ftag' (16 bits).  */
  8,                            /* `ftag' (16 bits).  */
  16,                           /* `fiseg' (16 bits).  */
  16,                           /* `fiseg' (16 bits).  */
  12,                           /* `fioff'.  */
  12,                           /* `fioff'.  */
  24,                           /* `foseg' (16 bits).  */
  24,                           /* `foseg' (16 bits).  */
  20,                           /* `fooff'.  */
  20,                           /* `fooff'.  */
  18                            /* `fop' (bottom 11 bits).  */
  18                            /* `fop' (bottom 11 bits).  */
};
};
 
 
#define FSAVE_ADDR(tdep, fsave, regnum) \
#define FSAVE_ADDR(tdep, fsave, regnum) \
  (fsave + fsave_offset[regnum - I387_ST0_REGNUM (tdep)])
  (fsave + fsave_offset[regnum - I387_ST0_REGNUM (tdep)])


 
 
/* Fill register REGNUM in REGCACHE with the appropriate value from
/* Fill register REGNUM in REGCACHE with the appropriate value from
   *FSAVE.  This function masks off any of the reserved bits in
   *FSAVE.  This function masks off any of the reserved bits in
   *FSAVE.  */
   *FSAVE.  */
 
 
void
void
i387_supply_fsave (struct regcache *regcache, int regnum, const void *fsave)
i387_supply_fsave (struct regcache *regcache, int regnum, const void *fsave)
{
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  const gdb_byte *regs = fsave;
  const gdb_byte *regs = fsave;
  int i;
  int i;
 
 
  gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
  gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
 
 
  for (i = I387_ST0_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++)
  for (i = I387_ST0_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++)
    if (regnum == -1 || regnum == i)
    if (regnum == -1 || regnum == i)
      {
      {
        if (fsave == NULL)
        if (fsave == NULL)
          {
          {
            regcache_raw_supply (regcache, i, NULL);
            regcache_raw_supply (regcache, i, NULL);
            continue;
            continue;
          }
          }
 
 
        /* Most of the FPU control registers occupy only 16 bits in the
        /* Most of the FPU control registers occupy only 16 bits in the
           fsave area.  Give those a special treatment.  */
           fsave area.  Give those a special treatment.  */
        if (i >= I387_FCTRL_REGNUM (tdep)
        if (i >= I387_FCTRL_REGNUM (tdep)
            && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep))
            && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep))
          {
          {
            gdb_byte val[4];
            gdb_byte val[4];
 
 
            memcpy (val, FSAVE_ADDR (tdep, regs, i), 2);
            memcpy (val, FSAVE_ADDR (tdep, regs, i), 2);
            val[2] = val[3] = 0;
            val[2] = val[3] = 0;
            if (i == I387_FOP_REGNUM (tdep))
            if (i == I387_FOP_REGNUM (tdep))
              val[1] &= ((1 << 3) - 1);
              val[1] &= ((1 << 3) - 1);
            regcache_raw_supply (regcache, i, val);
            regcache_raw_supply (regcache, i, val);
          }
          }
        else
        else
          regcache_raw_supply (regcache, i, FSAVE_ADDR (tdep, regs, i));
          regcache_raw_supply (regcache, i, FSAVE_ADDR (tdep, regs, i));
      }
      }
 
 
  /* Provide dummy values for the SSE registers.  */
  /* Provide dummy values for the SSE registers.  */
  for (i = I387_XMM0_REGNUM (tdep); i < I387_MXCSR_REGNUM (tdep); i++)
  for (i = I387_XMM0_REGNUM (tdep); i < I387_MXCSR_REGNUM (tdep); i++)
    if (regnum == -1 || regnum == i)
    if (regnum == -1 || regnum == i)
      regcache_raw_supply (regcache, i, NULL);
      regcache_raw_supply (regcache, i, NULL);
  if (regnum == -1 || regnum == I387_MXCSR_REGNUM (tdep))
  if (regnum == -1 || regnum == I387_MXCSR_REGNUM (tdep))
    {
    {
      gdb_byte buf[4];
      gdb_byte buf[4];
 
 
      store_unsigned_integer (buf, 4, byte_order, 0x1f80);
      store_unsigned_integer (buf, 4, byte_order, 0x1f80);
      regcache_raw_supply (regcache, I387_MXCSR_REGNUM (tdep), buf);
      regcache_raw_supply (regcache, I387_MXCSR_REGNUM (tdep), buf);
    }
    }
}
}
 
 
/* Fill register REGNUM (if it is a floating-point register) in *FSAVE
/* Fill register REGNUM (if it is a floating-point register) in *FSAVE
   with the value from REGCACHE.  If REGNUM is -1, do this for all
   with the value from REGCACHE.  If REGNUM is -1, do this for all
   registers.  This function doesn't touch any of the reserved bits in
   registers.  This function doesn't touch any of the reserved bits in
   *FSAVE.  */
   *FSAVE.  */
 
 
void
void
i387_collect_fsave (const struct regcache *regcache, int regnum, void *fsave)
i387_collect_fsave (const struct regcache *regcache, int regnum, void *fsave)
{
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
  struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
  gdb_byte *regs = fsave;
  gdb_byte *regs = fsave;
  int i;
  int i;
 
 
  gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
  gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
 
 
  for (i = I387_ST0_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++)
  for (i = I387_ST0_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++)
    if (regnum == -1 || regnum == i)
    if (regnum == -1 || regnum == i)
      {
      {
        /* Most of the FPU control registers occupy only 16 bits in
        /* Most of the FPU control registers occupy only 16 bits in
           the fsave area.  Give those a special treatment.  */
           the fsave area.  Give those a special treatment.  */
        if (i >= I387_FCTRL_REGNUM (tdep)
        if (i >= I387_FCTRL_REGNUM (tdep)
            && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep))
            && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep))
          {
          {
            gdb_byte buf[4];
            gdb_byte buf[4];
 
 
            regcache_raw_collect (regcache, i, buf);
            regcache_raw_collect (regcache, i, buf);
 
 
            if (i == I387_FOP_REGNUM (tdep))
            if (i == I387_FOP_REGNUM (tdep))
              {
              {
                /* The opcode occupies only 11 bits.  Make sure we
                /* The opcode occupies only 11 bits.  Make sure we
                   don't touch the other bits.  */
                   don't touch the other bits.  */
                buf[1] &= ((1 << 3) - 1);
                buf[1] &= ((1 << 3) - 1);
                buf[1] |= ((FSAVE_ADDR (tdep, regs, i))[1] & ~((1 << 3) - 1));
                buf[1] |= ((FSAVE_ADDR (tdep, regs, i))[1] & ~((1 << 3) - 1));
              }
              }
            memcpy (FSAVE_ADDR (tdep, regs, i), buf, 2);
            memcpy (FSAVE_ADDR (tdep, regs, i), buf, 2);
          }
          }
        else
        else
          regcache_raw_collect (regcache, i, FSAVE_ADDR (tdep, regs, i));
          regcache_raw_collect (regcache, i, FSAVE_ADDR (tdep, regs, i));
      }
      }
}
}


 
 
/* At fxsave_offset[REGNUM] you'll find the offset to the location in
/* At fxsave_offset[REGNUM] you'll find the offset to the location in
   the data structure used by the "fxsave" instruction where GDB
   the data structure used by the "fxsave" instruction where GDB
   register REGNUM is stored.  */
   register REGNUM is stored.  */
 
 
static int fxsave_offset[] =
static int fxsave_offset[] =
{
{
  32,                           /* %st(0) through ...  */
  32,                           /* %st(0) through ...  */
  48,
  48,
  64,
  64,
  80,
  80,
  96,
  96,
  112,
  112,
  128,
  128,
  144,                          /* ... %st(7) (80 bits each).  */
  144,                          /* ... %st(7) (80 bits each).  */
  0,                             /* `fctrl' (16 bits).  */
  0,                             /* `fctrl' (16 bits).  */
  2,                            /* `fstat' (16 bits).  */
  2,                            /* `fstat' (16 bits).  */
  4,                            /* `ftag' (16 bits).  */
  4,                            /* `ftag' (16 bits).  */
  12,                           /* `fiseg' (16 bits).  */
  12,                           /* `fiseg' (16 bits).  */
  8,                            /* `fioff'.  */
  8,                            /* `fioff'.  */
  20,                           /* `foseg' (16 bits).  */
  20,                           /* `foseg' (16 bits).  */
  16,                           /* `fooff'.  */
  16,                           /* `fooff'.  */
  6,                            /* `fop' (bottom 11 bits).  */
  6,                            /* `fop' (bottom 11 bits).  */
  160 + 0 * 16,                  /* %xmm0 through ...  */
  160 + 0 * 16,                  /* %xmm0 through ...  */
  160 + 1 * 16,
  160 + 1 * 16,
  160 + 2 * 16,
  160 + 2 * 16,
  160 + 3 * 16,
  160 + 3 * 16,
  160 + 4 * 16,
  160 + 4 * 16,
  160 + 5 * 16,
  160 + 5 * 16,
  160 + 6 * 16,
  160 + 6 * 16,
  160 + 7 * 16,
  160 + 7 * 16,
  160 + 8 * 16,
  160 + 8 * 16,
  160 + 9 * 16,
  160 + 9 * 16,
  160 + 10 * 16,
  160 + 10 * 16,
  160 + 11 * 16,
  160 + 11 * 16,
  160 + 12 * 16,
  160 + 12 * 16,
  160 + 13 * 16,
  160 + 13 * 16,
  160 + 14 * 16,
  160 + 14 * 16,
  160 + 15 * 16,                /* ... %xmm15 (128 bits each).  */
  160 + 15 * 16,                /* ... %xmm15 (128 bits each).  */
};
};
 
 
#define FXSAVE_ADDR(tdep, fxsave, regnum) \
#define FXSAVE_ADDR(tdep, fxsave, regnum) \
  (fxsave + fxsave_offset[regnum - I387_ST0_REGNUM (tdep)])
  (fxsave + fxsave_offset[regnum - I387_ST0_REGNUM (tdep)])
 
 
/* We made an unfortunate choice in putting %mxcsr after the SSE
/* We made an unfortunate choice in putting %mxcsr after the SSE
   registers %xmm0-%xmm7 instead of before, since it makes supporting
   registers %xmm0-%xmm7 instead of before, since it makes supporting
   the registers %xmm8-%xmm15 on AMD64 a bit involved.  Therefore we
   the registers %xmm8-%xmm15 on AMD64 a bit involved.  Therefore we
   don't include the offset for %mxcsr here above.  */
   don't include the offset for %mxcsr here above.  */
 
 
#define FXSAVE_MXCSR_ADDR(fxsave) (fxsave + 24)
#define FXSAVE_MXCSR_ADDR(fxsave) (fxsave + 24)
 
 
static int i387_tag (const gdb_byte *raw);
static int i387_tag (const gdb_byte *raw);


 
 
/* Fill register REGNUM in REGCACHE with the appropriate
/* Fill register REGNUM in REGCACHE with the appropriate
   floating-point or SSE register value from *FXSAVE.  This function
   floating-point or SSE register value from *FXSAVE.  This function
   masks off any of the reserved bits in *FXSAVE.  */
   masks off any of the reserved bits in *FXSAVE.  */
 
 
void
void
i387_supply_fxsave (struct regcache *regcache, int regnum, const void *fxsave)
i387_supply_fxsave (struct regcache *regcache, int regnum, const void *fxsave)
{
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
  struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
  const gdb_byte *regs = fxsave;
  const gdb_byte *regs = fxsave;
  int i;
  int i;
 
 
  gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
  gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
  gdb_assert (tdep->num_xmm_regs > 0);
  gdb_assert (tdep->num_xmm_regs > 0);
 
 
  for (i = I387_ST0_REGNUM (tdep); i < I387_MXCSR_REGNUM (tdep); i++)
  for (i = I387_ST0_REGNUM (tdep); i < I387_MXCSR_REGNUM (tdep); i++)
    if (regnum == -1 || regnum == i)
    if (regnum == -1 || regnum == i)
      {
      {
        if (regs == NULL)
        if (regs == NULL)
          {
          {
            regcache_raw_supply (regcache, i, NULL);
            regcache_raw_supply (regcache, i, NULL);
            continue;
            continue;
          }
          }
 
 
        /* Most of the FPU control registers occupy only 16 bits in
        /* Most of the FPU control registers occupy only 16 bits in
           the fxsave area.  Give those a special treatment.  */
           the fxsave area.  Give those a special treatment.  */
        if (i >= I387_FCTRL_REGNUM (tdep) && i < I387_XMM0_REGNUM (tdep)
        if (i >= I387_FCTRL_REGNUM (tdep) && i < I387_XMM0_REGNUM (tdep)
            && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep))
            && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep))
          {
          {
            gdb_byte val[4];
            gdb_byte val[4];
 
 
            memcpy (val, FXSAVE_ADDR (tdep, regs, i), 2);
            memcpy (val, FXSAVE_ADDR (tdep, regs, i), 2);
            val[2] = val[3] = 0;
            val[2] = val[3] = 0;
            if (i == I387_FOP_REGNUM (tdep))
            if (i == I387_FOP_REGNUM (tdep))
              val[1] &= ((1 << 3) - 1);
              val[1] &= ((1 << 3) - 1);
            else if (i== I387_FTAG_REGNUM (tdep))
            else if (i== I387_FTAG_REGNUM (tdep))
              {
              {
                /* The fxsave area contains a simplified version of
                /* The fxsave area contains a simplified version of
                   the tag word.  We have to look at the actual 80-bit
                   the tag word.  We have to look at the actual 80-bit
                   FP data to recreate the traditional i387 tag word.  */
                   FP data to recreate the traditional i387 tag word.  */
 
 
                unsigned long ftag = 0;
                unsigned long ftag = 0;
                int fpreg;
                int fpreg;
                int top;
                int top;
 
 
                top = ((FXSAVE_ADDR (tdep, regs,
                top = ((FXSAVE_ADDR (tdep, regs,
                                     I387_FSTAT_REGNUM (tdep)))[1] >> 3);
                                     I387_FSTAT_REGNUM (tdep)))[1] >> 3);
                top &= 0x7;
                top &= 0x7;
 
 
                for (fpreg = 7; fpreg >= 0; fpreg--)
                for (fpreg = 7; fpreg >= 0; fpreg--)
                  {
                  {
                    int tag;
                    int tag;
 
 
                    if (val[0] & (1 << fpreg))
                    if (val[0] & (1 << fpreg))
                      {
                      {
                        int regnum = (fpreg + 8 - top) % 8
                        int regnum = (fpreg + 8 - top) % 8
                                       + I387_ST0_REGNUM (tdep);
                                       + I387_ST0_REGNUM (tdep);
                        tag = i387_tag (FXSAVE_ADDR (tdep, regs, regnum));
                        tag = i387_tag (FXSAVE_ADDR (tdep, regs, regnum));
                      }
                      }
                    else
                    else
                      tag = 3;          /* Empty */
                      tag = 3;          /* Empty */
 
 
                    ftag |= tag << (2 * fpreg);
                    ftag |= tag << (2 * fpreg);
                  }
                  }
                val[0] = ftag & 0xff;
                val[0] = ftag & 0xff;
                val[1] = (ftag >> 8) & 0xff;
                val[1] = (ftag >> 8) & 0xff;
              }
              }
            regcache_raw_supply (regcache, i, val);
            regcache_raw_supply (regcache, i, val);
          }
          }
        else
        else
          regcache_raw_supply (regcache, i, FXSAVE_ADDR (tdep, regs, i));
          regcache_raw_supply (regcache, i, FXSAVE_ADDR (tdep, regs, i));
      }
      }
 
 
  if (regnum == I387_MXCSR_REGNUM (tdep) || regnum == -1)
  if (regnum == I387_MXCSR_REGNUM (tdep) || regnum == -1)
    {
    {
      if (regs == NULL)
      if (regs == NULL)
        regcache_raw_supply (regcache, I387_MXCSR_REGNUM (tdep), NULL);
        regcache_raw_supply (regcache, I387_MXCSR_REGNUM (tdep), NULL);
      else
      else
        regcache_raw_supply (regcache, I387_MXCSR_REGNUM (tdep),
        regcache_raw_supply (regcache, I387_MXCSR_REGNUM (tdep),
                             FXSAVE_MXCSR_ADDR (regs));
                             FXSAVE_MXCSR_ADDR (regs));
    }
    }
}
}
 
 
/* Fill register REGNUM (if it is a floating-point or SSE register) in
/* Fill register REGNUM (if it is a floating-point or SSE register) in
   *FXSAVE with the value from REGCACHE.  If REGNUM is -1, do this for
   *FXSAVE with the value from REGCACHE.  If REGNUM is -1, do this for
   all registers.  This function doesn't touch any of the reserved
   all registers.  This function doesn't touch any of the reserved
   bits in *FXSAVE.  */
   bits in *FXSAVE.  */
 
 
void
void
i387_collect_fxsave (const struct regcache *regcache, int regnum, void *fxsave)
i387_collect_fxsave (const struct regcache *regcache, int regnum, void *fxsave)
{
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
  struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
  gdb_byte *regs = fxsave;
  gdb_byte *regs = fxsave;
  int i;
  int i;
 
 
  gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
  gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
  gdb_assert (tdep->num_xmm_regs > 0);
  gdb_assert (tdep->num_xmm_regs > 0);
 
 
  for (i = I387_ST0_REGNUM (tdep); i < I387_MXCSR_REGNUM (tdep); i++)
  for (i = I387_ST0_REGNUM (tdep); i < I387_MXCSR_REGNUM (tdep); i++)
    if (regnum == -1 || regnum == i)
    if (regnum == -1 || regnum == i)
      {
      {
        /* Most of the FPU control registers occupy only 16 bits in
        /* Most of the FPU control registers occupy only 16 bits in
           the fxsave area.  Give those a special treatment.  */
           the fxsave area.  Give those a special treatment.  */
        if (i >= I387_FCTRL_REGNUM (tdep) && i < I387_XMM0_REGNUM (tdep)
        if (i >= I387_FCTRL_REGNUM (tdep) && i < I387_XMM0_REGNUM (tdep)
            && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep))
            && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep))
          {
          {
            gdb_byte buf[4];
            gdb_byte buf[4];
 
 
            regcache_raw_collect (regcache, i, buf);
            regcache_raw_collect (regcache, i, buf);
 
 
            if (i == I387_FOP_REGNUM (tdep))
            if (i == I387_FOP_REGNUM (tdep))
              {
              {
                /* The opcode occupies only 11 bits.  Make sure we
                /* The opcode occupies only 11 bits.  Make sure we
                   don't touch the other bits.  */
                   don't touch the other bits.  */
                buf[1] &= ((1 << 3) - 1);
                buf[1] &= ((1 << 3) - 1);
                buf[1] |= ((FXSAVE_ADDR (tdep, regs, i))[1] & ~((1 << 3) - 1));
                buf[1] |= ((FXSAVE_ADDR (tdep, regs, i))[1] & ~((1 << 3) - 1));
              }
              }
            else if (i == I387_FTAG_REGNUM (tdep))
            else if (i == I387_FTAG_REGNUM (tdep))
              {
              {
                /* Converting back is much easier.  */
                /* Converting back is much easier.  */
 
 
                unsigned short ftag;
                unsigned short ftag;
                int fpreg;
                int fpreg;
 
 
                ftag = (buf[1] << 8) | buf[0];
                ftag = (buf[1] << 8) | buf[0];
                buf[0] = 0;
                buf[0] = 0;
                buf[1] = 0;
                buf[1] = 0;
 
 
                for (fpreg = 7; fpreg >= 0; fpreg--)
                for (fpreg = 7; fpreg >= 0; fpreg--)
                  {
                  {
                    int tag = (ftag >> (fpreg * 2)) & 3;
                    int tag = (ftag >> (fpreg * 2)) & 3;
 
 
                    if (tag != 3)
                    if (tag != 3)
                      buf[0] |= (1 << fpreg);
                      buf[0] |= (1 << fpreg);
                  }
                  }
              }
              }
            memcpy (FXSAVE_ADDR (tdep, regs, i), buf, 2);
            memcpy (FXSAVE_ADDR (tdep, regs, i), buf, 2);
          }
          }
        else
        else
          regcache_raw_collect (regcache, i, FXSAVE_ADDR (tdep, regs, i));
          regcache_raw_collect (regcache, i, FXSAVE_ADDR (tdep, regs, i));
      }
      }
 
 
  if (regnum == I387_MXCSR_REGNUM (tdep) || regnum == -1)
  if (regnum == I387_MXCSR_REGNUM (tdep) || regnum == -1)
    regcache_raw_collect (regcache, I387_MXCSR_REGNUM (tdep),
    regcache_raw_collect (regcache, I387_MXCSR_REGNUM (tdep),
                          FXSAVE_MXCSR_ADDR (regs));
                          FXSAVE_MXCSR_ADDR (regs));
}
}
 
 
/* Recreate the FTW (tag word) valid bits from the 80-bit FP data in
/* Recreate the FTW (tag word) valid bits from the 80-bit FP data in
   *RAW.  */
   *RAW.  */
 
 
static int
static int
i387_tag (const gdb_byte *raw)
i387_tag (const gdb_byte *raw)
{
{
  int integer;
  int integer;
  unsigned int exponent;
  unsigned int exponent;
  unsigned long fraction[2];
  unsigned long fraction[2];
 
 
  integer = raw[7] & 0x80;
  integer = raw[7] & 0x80;
  exponent = (((raw[9] & 0x7f) << 8) | raw[8]);
  exponent = (((raw[9] & 0x7f) << 8) | raw[8]);
  fraction[0] = ((raw[3] << 24) | (raw[2] << 16) | (raw[1] << 8) | raw[0]);
  fraction[0] = ((raw[3] << 24) | (raw[2] << 16) | (raw[1] << 8) | raw[0]);
  fraction[1] = (((raw[7] & 0x7f) << 24) | (raw[6] << 16)
  fraction[1] = (((raw[7] & 0x7f) << 24) | (raw[6] << 16)
                 | (raw[5] << 8) | raw[4]);
                 | (raw[5] << 8) | raw[4]);
 
 
  if (exponent == 0x7fff)
  if (exponent == 0x7fff)
    {
    {
      /* Special.  */
      /* Special.  */
      return (2);
      return (2);
    }
    }
  else if (exponent == 0x0000)
  else if (exponent == 0x0000)
    {
    {
      if (fraction[0] == 0x0000 && fraction[1] == 0x0000 && !integer)
      if (fraction[0] == 0x0000 && fraction[1] == 0x0000 && !integer)
        {
        {
          /* Zero.  */
          /* Zero.  */
          return (1);
          return (1);
        }
        }
      else
      else
        {
        {
          /* Special.  */
          /* Special.  */
          return (2);
          return (2);
        }
        }
    }
    }
  else
  else
    {
    {
      if (integer)
      if (integer)
        {
        {
          /* Valid.  */
          /* Valid.  */
          return (0);
          return (0);
        }
        }
      else
      else
        {
        {
          /* Special.  */
          /* Special.  */
          return (2);
          return (2);
        }
        }
    }
    }
}
}
 
 
/* Prepare the FPU stack in REGCACHE for a function return.  */
/* Prepare the FPU stack in REGCACHE for a function return.  */
 
 
void
void
i387_return_value (struct gdbarch *gdbarch, struct regcache *regcache)
i387_return_value (struct gdbarch *gdbarch, struct regcache *regcache)
{
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  ULONGEST fstat;
  ULONGEST fstat;
 
 
  /* Set the top of the floating-point register stack to 7.  The
  /* Set the top of the floating-point register stack to 7.  The
     actual value doesn't really matter, but 7 is what a normal
     actual value doesn't really matter, but 7 is what a normal
     function return would end up with if the program started out with
     function return would end up with if the program started out with
     a freshly initialized FPU.  */
     a freshly initialized FPU.  */
  regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
  regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
  fstat |= (7 << 11);
  fstat |= (7 << 11);
  regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
  regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
 
 
  /* Mark %st(1) through %st(7) as empty.  Since we set the top of the
  /* Mark %st(1) through %st(7) as empty.  Since we set the top of the
     floating-point register stack to 7, the appropriate value for the
     floating-point register stack to 7, the appropriate value for the
     tag word is 0x3fff.  */
     tag word is 0x3fff.  */
  regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
  regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
 
 
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.