OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gdb-7.1/] [gdb/] [linux-nat.c] - Diff between revs 834 and 842

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 834 Rev 842
/* GNU/Linux native-dependent code common to multiple platforms.
/* GNU/Linux native-dependent code common to multiple platforms.
 
 
   Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
   Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
 
 
#include "defs.h"
#include "defs.h"
#include "inferior.h"
#include "inferior.h"
#include "target.h"
#include "target.h"
#include "gdb_string.h"
#include "gdb_string.h"
#include "gdb_wait.h"
#include "gdb_wait.h"
#include "gdb_assert.h"
#include "gdb_assert.h"
#ifdef HAVE_TKILL_SYSCALL
#ifdef HAVE_TKILL_SYSCALL
#include <unistd.h>
#include <unistd.h>
#include <sys/syscall.h>
#include <sys/syscall.h>
#endif
#endif
#include <sys/ptrace.h>
#include <sys/ptrace.h>
#include "linux-nat.h"
#include "linux-nat.h"
#include "linux-fork.h"
#include "linux-fork.h"
#include "gdbthread.h"
#include "gdbthread.h"
#include "gdbcmd.h"
#include "gdbcmd.h"
#include "regcache.h"
#include "regcache.h"
#include "regset.h"
#include "regset.h"
#include "inf-ptrace.h"
#include "inf-ptrace.h"
#include "auxv.h"
#include "auxv.h"
#include <sys/param.h>          /* for MAXPATHLEN */
#include <sys/param.h>          /* for MAXPATHLEN */
#include <sys/procfs.h>         /* for elf_gregset etc. */
#include <sys/procfs.h>         /* for elf_gregset etc. */
#include "elf-bfd.h"            /* for elfcore_write_* */
#include "elf-bfd.h"            /* for elfcore_write_* */
#include "gregset.h"            /* for gregset */
#include "gregset.h"            /* for gregset */
#include "gdbcore.h"            /* for get_exec_file */
#include "gdbcore.h"            /* for get_exec_file */
#include <ctype.h>              /* for isdigit */
#include <ctype.h>              /* for isdigit */
#include "gdbthread.h"          /* for struct thread_info etc. */
#include "gdbthread.h"          /* for struct thread_info etc. */
#include "gdb_stat.h"           /* for struct stat */
#include "gdb_stat.h"           /* for struct stat */
#include <fcntl.h>              /* for O_RDONLY */
#include <fcntl.h>              /* for O_RDONLY */
#include "inf-loop.h"
#include "inf-loop.h"
#include "event-loop.h"
#include "event-loop.h"
#include "event-top.h"
#include "event-top.h"
#include <pwd.h>
#include <pwd.h>
#include <sys/types.h>
#include <sys/types.h>
#include "gdb_dirent.h"
#include "gdb_dirent.h"
#include "xml-support.h"
#include "xml-support.h"
#include "terminal.h"
#include "terminal.h"
#include <sys/vfs.h>
#include <sys/vfs.h>
#include "solib.h"
#include "solib.h"
 
 
#ifndef SPUFS_MAGIC
#ifndef SPUFS_MAGIC
#define SPUFS_MAGIC 0x23c9b64e
#define SPUFS_MAGIC 0x23c9b64e
#endif
#endif
 
 
#ifdef HAVE_PERSONALITY
#ifdef HAVE_PERSONALITY
# include <sys/personality.h>
# include <sys/personality.h>
# if !HAVE_DECL_ADDR_NO_RANDOMIZE
# if !HAVE_DECL_ADDR_NO_RANDOMIZE
#  define ADDR_NO_RANDOMIZE 0x0040000
#  define ADDR_NO_RANDOMIZE 0x0040000
# endif
# endif
#endif /* HAVE_PERSONALITY */
#endif /* HAVE_PERSONALITY */
 
 
/* This comment documents high-level logic of this file.
/* This comment documents high-level logic of this file.
 
 
Waiting for events in sync mode
Waiting for events in sync mode
===============================
===============================
 
 
When waiting for an event in a specific thread, we just use waitpid, passing
When waiting for an event in a specific thread, we just use waitpid, passing
the specific pid, and not passing WNOHANG.
the specific pid, and not passing WNOHANG.
 
 
When waiting for an event in all threads, waitpid is not quite good. Prior to
When waiting for an event in all threads, waitpid is not quite good. Prior to
version 2.4, Linux can either wait for event in main thread, or in secondary
version 2.4, Linux can either wait for event in main thread, or in secondary
threads. (2.4 has the __WALL flag).  So, if we use blocking waitpid, we might
threads. (2.4 has the __WALL flag).  So, if we use blocking waitpid, we might
miss an event.  The solution is to use non-blocking waitpid, together with
miss an event.  The solution is to use non-blocking waitpid, together with
sigsuspend.  First, we use non-blocking waitpid to get an event in the main
sigsuspend.  First, we use non-blocking waitpid to get an event in the main
process, if any. Second, we use non-blocking waitpid with the __WCLONED
process, if any. Second, we use non-blocking waitpid with the __WCLONED
flag to check for events in cloned processes.  If nothing is found, we use
flag to check for events in cloned processes.  If nothing is found, we use
sigsuspend to wait for SIGCHLD.  When SIGCHLD arrives, it means something
sigsuspend to wait for SIGCHLD.  When SIGCHLD arrives, it means something
happened to a child process -- and SIGCHLD will be delivered both for events
happened to a child process -- and SIGCHLD will be delivered both for events
in main debugged process and in cloned processes.  As soon as we know there's
in main debugged process and in cloned processes.  As soon as we know there's
an event, we get back to calling nonblocking waitpid with and without __WCLONED.
an event, we get back to calling nonblocking waitpid with and without __WCLONED.
 
 
Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
so that we don't miss a signal. If SIGCHLD arrives in between, when it's
so that we don't miss a signal. If SIGCHLD arrives in between, when it's
blocked, the signal becomes pending and sigsuspend immediately
blocked, the signal becomes pending and sigsuspend immediately
notices it and returns.
notices it and returns.
 
 
Waiting for events in async mode
Waiting for events in async mode
================================
================================
 
 
In async mode, GDB should always be ready to handle both user input
In async mode, GDB should always be ready to handle both user input
and target events, so neither blocking waitpid nor sigsuspend are
and target events, so neither blocking waitpid nor sigsuspend are
viable options.  Instead, we should asynchronously notify the GDB main
viable options.  Instead, we should asynchronously notify the GDB main
event loop whenever there's an unprocessed event from the target.  We
event loop whenever there's an unprocessed event from the target.  We
detect asynchronous target events by handling SIGCHLD signals.  To
detect asynchronous target events by handling SIGCHLD signals.  To
notify the event loop about target events, the self-pipe trick is used
notify the event loop about target events, the self-pipe trick is used
--- a pipe is registered as waitable event source in the event loop,
--- a pipe is registered as waitable event source in the event loop,
the event loop select/poll's on the read end of this pipe (as well on
the event loop select/poll's on the read end of this pipe (as well on
other event sources, e.g., stdin), and the SIGCHLD handler writes a
other event sources, e.g., stdin), and the SIGCHLD handler writes a
byte to this pipe.  This is more portable than relying on
byte to this pipe.  This is more portable than relying on
pselect/ppoll, since on kernels that lack those syscalls, libc
pselect/ppoll, since on kernels that lack those syscalls, libc
emulates them with select/poll+sigprocmask, and that is racy
emulates them with select/poll+sigprocmask, and that is racy
(a.k.a. plain broken).
(a.k.a. plain broken).
 
 
Obviously, if we fail to notify the event loop if there's a target
Obviously, if we fail to notify the event loop if there's a target
event, it's bad.  OTOH, if we notify the event loop when there's no
event, it's bad.  OTOH, if we notify the event loop when there's no
event from the target, linux_nat_wait will detect that there's no real
event from the target, linux_nat_wait will detect that there's no real
event to report, and return event of type TARGET_WAITKIND_IGNORE.
event to report, and return event of type TARGET_WAITKIND_IGNORE.
This is mostly harmless, but it will waste time and is better avoided.
This is mostly harmless, but it will waste time and is better avoided.
 
 
The main design point is that every time GDB is outside linux-nat.c,
The main design point is that every time GDB is outside linux-nat.c,
we have a SIGCHLD handler installed that is called when something
we have a SIGCHLD handler installed that is called when something
happens to the target and notifies the GDB event loop.  Whenever GDB
happens to the target and notifies the GDB event loop.  Whenever GDB
core decides to handle the event, and calls into linux-nat.c, we
core decides to handle the event, and calls into linux-nat.c, we
process things as in sync mode, except that the we never block in
process things as in sync mode, except that the we never block in
sigsuspend.
sigsuspend.
 
 
While processing an event, we may end up momentarily blocked in
While processing an event, we may end up momentarily blocked in
waitpid calls.  Those waitpid calls, while blocking, are guarantied to
waitpid calls.  Those waitpid calls, while blocking, are guarantied to
return quickly.  E.g., in all-stop mode, before reporting to the core
return quickly.  E.g., in all-stop mode, before reporting to the core
that an LWP hit a breakpoint, all LWPs are stopped by sending them
that an LWP hit a breakpoint, all LWPs are stopped by sending them
SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
Note that this is different from blocking indefinitely waiting for the
Note that this is different from blocking indefinitely waiting for the
next event --- here, we're already handling an event.
next event --- here, we're already handling an event.
 
 
Use of signals
Use of signals
==============
==============
 
 
We stop threads by sending a SIGSTOP.  The use of SIGSTOP instead of another
We stop threads by sending a SIGSTOP.  The use of SIGSTOP instead of another
signal is not entirely significant; we just need for a signal to be delivered,
signal is not entirely significant; we just need for a signal to be delivered,
so that we can intercept it.  SIGSTOP's advantage is that it can not be
so that we can intercept it.  SIGSTOP's advantage is that it can not be
blocked.  A disadvantage is that it is not a real-time signal, so it can only
blocked.  A disadvantage is that it is not a real-time signal, so it can only
be queued once; we do not keep track of other sources of SIGSTOP.
be queued once; we do not keep track of other sources of SIGSTOP.
 
 
Two other signals that can't be blocked are SIGCONT and SIGKILL.  But we can't
Two other signals that can't be blocked are SIGCONT and SIGKILL.  But we can't
use them, because they have special behavior when the signal is generated -
use them, because they have special behavior when the signal is generated -
not when it is delivered.  SIGCONT resumes the entire thread group and SIGKILL
not when it is delivered.  SIGCONT resumes the entire thread group and SIGKILL
kills the entire thread group.
kills the entire thread group.
 
 
A delivered SIGSTOP would stop the entire thread group, not just the thread we
A delivered SIGSTOP would stop the entire thread group, not just the thread we
tkill'd.  But we never let the SIGSTOP be delivered; we always intercept and
tkill'd.  But we never let the SIGSTOP be delivered; we always intercept and
cancel it (by PTRACE_CONT without passing SIGSTOP).
cancel it (by PTRACE_CONT without passing SIGSTOP).
 
 
We could use a real-time signal instead.  This would solve those problems; we
We could use a real-time signal instead.  This would solve those problems; we
could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
generates it, and there are races with trying to find a signal that is not
generates it, and there are races with trying to find a signal that is not
blocked.  */
blocked.  */
 
 
#ifndef O_LARGEFILE
#ifndef O_LARGEFILE
#define O_LARGEFILE 0
#define O_LARGEFILE 0
#endif
#endif
 
 
/* If the system headers did not provide the constants, hard-code the normal
/* If the system headers did not provide the constants, hard-code the normal
   values.  */
   values.  */
#ifndef PTRACE_EVENT_FORK
#ifndef PTRACE_EVENT_FORK
 
 
#define PTRACE_SETOPTIONS       0x4200
#define PTRACE_SETOPTIONS       0x4200
#define PTRACE_GETEVENTMSG      0x4201
#define PTRACE_GETEVENTMSG      0x4201
 
 
/* options set using PTRACE_SETOPTIONS */
/* options set using PTRACE_SETOPTIONS */
#define PTRACE_O_TRACESYSGOOD   0x00000001
#define PTRACE_O_TRACESYSGOOD   0x00000001
#define PTRACE_O_TRACEFORK      0x00000002
#define PTRACE_O_TRACEFORK      0x00000002
#define PTRACE_O_TRACEVFORK     0x00000004
#define PTRACE_O_TRACEVFORK     0x00000004
#define PTRACE_O_TRACECLONE     0x00000008
#define PTRACE_O_TRACECLONE     0x00000008
#define PTRACE_O_TRACEEXEC      0x00000010
#define PTRACE_O_TRACEEXEC      0x00000010
#define PTRACE_O_TRACEVFORKDONE 0x00000020
#define PTRACE_O_TRACEVFORKDONE 0x00000020
#define PTRACE_O_TRACEEXIT      0x00000040
#define PTRACE_O_TRACEEXIT      0x00000040
 
 
/* Wait extended result codes for the above trace options.  */
/* Wait extended result codes for the above trace options.  */
#define PTRACE_EVENT_FORK       1
#define PTRACE_EVENT_FORK       1
#define PTRACE_EVENT_VFORK      2
#define PTRACE_EVENT_VFORK      2
#define PTRACE_EVENT_CLONE      3
#define PTRACE_EVENT_CLONE      3
#define PTRACE_EVENT_EXEC       4
#define PTRACE_EVENT_EXEC       4
#define PTRACE_EVENT_VFORK_DONE 5
#define PTRACE_EVENT_VFORK_DONE 5
#define PTRACE_EVENT_EXIT       6
#define PTRACE_EVENT_EXIT       6
 
 
#endif /* PTRACE_EVENT_FORK */
#endif /* PTRACE_EVENT_FORK */
 
 
/* Unlike other extended result codes, WSTOPSIG (status) on
/* Unlike other extended result codes, WSTOPSIG (status) on
   PTRACE_O_TRACESYSGOOD syscall events doesn't return SIGTRAP, but
   PTRACE_O_TRACESYSGOOD syscall events doesn't return SIGTRAP, but
   instead SIGTRAP with bit 7 set.  */
   instead SIGTRAP with bit 7 set.  */
#define SYSCALL_SIGTRAP (SIGTRAP | 0x80)
#define SYSCALL_SIGTRAP (SIGTRAP | 0x80)
 
 
/* We can't always assume that this flag is available, but all systems
/* We can't always assume that this flag is available, but all systems
   with the ptrace event handlers also have __WALL, so it's safe to use
   with the ptrace event handlers also have __WALL, so it's safe to use
   here.  */
   here.  */
#ifndef __WALL
#ifndef __WALL
#define __WALL          0x40000000 /* Wait for any child.  */
#define __WALL          0x40000000 /* Wait for any child.  */
#endif
#endif
 
 
#ifndef PTRACE_GETSIGINFO
#ifndef PTRACE_GETSIGINFO
# define PTRACE_GETSIGINFO    0x4202
# define PTRACE_GETSIGINFO    0x4202
# define PTRACE_SETSIGINFO    0x4203
# define PTRACE_SETSIGINFO    0x4203
#endif
#endif
 
 
/* The single-threaded native GNU/Linux target_ops.  We save a pointer for
/* The single-threaded native GNU/Linux target_ops.  We save a pointer for
   the use of the multi-threaded target.  */
   the use of the multi-threaded target.  */
static struct target_ops *linux_ops;
static struct target_ops *linux_ops;
static struct target_ops linux_ops_saved;
static struct target_ops linux_ops_saved;
 
 
/* The method to call, if any, when a new thread is attached.  */
/* The method to call, if any, when a new thread is attached.  */
static void (*linux_nat_new_thread) (ptid_t);
static void (*linux_nat_new_thread) (ptid_t);
 
 
/* The method to call, if any, when the siginfo object needs to be
/* The method to call, if any, when the siginfo object needs to be
   converted between the layout returned by ptrace, and the layout in
   converted between the layout returned by ptrace, and the layout in
   the architecture of the inferior.  */
   the architecture of the inferior.  */
static int (*linux_nat_siginfo_fixup) (struct siginfo *,
static int (*linux_nat_siginfo_fixup) (struct siginfo *,
                                       gdb_byte *,
                                       gdb_byte *,
                                       int);
                                       int);
 
 
/* The saved to_xfer_partial method, inherited from inf-ptrace.c.
/* The saved to_xfer_partial method, inherited from inf-ptrace.c.
   Called by our to_xfer_partial.  */
   Called by our to_xfer_partial.  */
static LONGEST (*super_xfer_partial) (struct target_ops *,
static LONGEST (*super_xfer_partial) (struct target_ops *,
                                      enum target_object,
                                      enum target_object,
                                      const char *, gdb_byte *,
                                      const char *, gdb_byte *,
                                      const gdb_byte *,
                                      const gdb_byte *,
                                      ULONGEST, LONGEST);
                                      ULONGEST, LONGEST);
 
 
static int debug_linux_nat;
static int debug_linux_nat;
static void
static void
show_debug_linux_nat (struct ui_file *file, int from_tty,
show_debug_linux_nat (struct ui_file *file, int from_tty,
                      struct cmd_list_element *c, const char *value)
                      struct cmd_list_element *c, const char *value)
{
{
  fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
  fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
                    value);
                    value);
}
}
 
 
static int debug_linux_nat_async = 0;
static int debug_linux_nat_async = 0;
static void
static void
show_debug_linux_nat_async (struct ui_file *file, int from_tty,
show_debug_linux_nat_async (struct ui_file *file, int from_tty,
                            struct cmd_list_element *c, const char *value)
                            struct cmd_list_element *c, const char *value)
{
{
  fprintf_filtered (file, _("Debugging of GNU/Linux async lwp module is %s.\n"),
  fprintf_filtered (file, _("Debugging of GNU/Linux async lwp module is %s.\n"),
                    value);
                    value);
}
}
 
 
static int disable_randomization = 1;
static int disable_randomization = 1;
 
 
static void
static void
show_disable_randomization (struct ui_file *file, int from_tty,
show_disable_randomization (struct ui_file *file, int from_tty,
                            struct cmd_list_element *c, const char *value)
                            struct cmd_list_element *c, const char *value)
{
{
#ifdef HAVE_PERSONALITY
#ifdef HAVE_PERSONALITY
  fprintf_filtered (file, _("\
  fprintf_filtered (file, _("\
Disabling randomization of debuggee's virtual address space is %s.\n"),
Disabling randomization of debuggee's virtual address space is %s.\n"),
                    value);
                    value);
#else /* !HAVE_PERSONALITY */
#else /* !HAVE_PERSONALITY */
  fputs_filtered (_("\
  fputs_filtered (_("\
Disabling randomization of debuggee's virtual address space is unsupported on\n\
Disabling randomization of debuggee's virtual address space is unsupported on\n\
this platform.\n"), file);
this platform.\n"), file);
#endif /* !HAVE_PERSONALITY */
#endif /* !HAVE_PERSONALITY */
}
}
 
 
static void
static void
set_disable_randomization (char *args, int from_tty, struct cmd_list_element *c)
set_disable_randomization (char *args, int from_tty, struct cmd_list_element *c)
{
{
#ifndef HAVE_PERSONALITY
#ifndef HAVE_PERSONALITY
  error (_("\
  error (_("\
Disabling randomization of debuggee's virtual address space is unsupported on\n\
Disabling randomization of debuggee's virtual address space is unsupported on\n\
this platform."));
this platform."));
#endif /* !HAVE_PERSONALITY */
#endif /* !HAVE_PERSONALITY */
}
}
 
 
static int linux_parent_pid;
static int linux_parent_pid;
 
 
struct simple_pid_list
struct simple_pid_list
{
{
  int pid;
  int pid;
  int status;
  int status;
  struct simple_pid_list *next;
  struct simple_pid_list *next;
};
};
struct simple_pid_list *stopped_pids;
struct simple_pid_list *stopped_pids;
 
 
/* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
/* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
   can not be used, 1 if it can.  */
   can not be used, 1 if it can.  */
 
 
static int linux_supports_tracefork_flag = -1;
static int linux_supports_tracefork_flag = -1;
 
 
/* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACESYSGOOD
/* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACESYSGOOD
   can not be used, 1 if it can.  */
   can not be used, 1 if it can.  */
 
 
static int linux_supports_tracesysgood_flag = -1;
static int linux_supports_tracesysgood_flag = -1;
 
 
/* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
/* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
   PTRACE_O_TRACEVFORKDONE.  */
   PTRACE_O_TRACEVFORKDONE.  */
 
 
static int linux_supports_tracevforkdone_flag = -1;
static int linux_supports_tracevforkdone_flag = -1;
 
 
/* Async mode support */
/* Async mode support */
 
 
/* Zero if the async mode, although enabled, is masked, which means
/* Zero if the async mode, although enabled, is masked, which means
   linux_nat_wait should behave as if async mode was off.  */
   linux_nat_wait should behave as if async mode was off.  */
static int linux_nat_async_mask_value = 1;
static int linux_nat_async_mask_value = 1;
 
 
/* Stores the current used ptrace() options.  */
/* Stores the current used ptrace() options.  */
static int current_ptrace_options = 0;
static int current_ptrace_options = 0;
 
 
/* The read/write ends of the pipe registered as waitable file in the
/* The read/write ends of the pipe registered as waitable file in the
   event loop.  */
   event loop.  */
static int linux_nat_event_pipe[2] = { -1, -1 };
static int linux_nat_event_pipe[2] = { -1, -1 };
 
 
/* Flush the event pipe.  */
/* Flush the event pipe.  */
 
 
static void
static void
async_file_flush (void)
async_file_flush (void)
{
{
  int ret;
  int ret;
  char buf;
  char buf;
 
 
  do
  do
    {
    {
      ret = read (linux_nat_event_pipe[0], &buf, 1);
      ret = read (linux_nat_event_pipe[0], &buf, 1);
    }
    }
  while (ret >= 0 || (ret == -1 && errno == EINTR));
  while (ret >= 0 || (ret == -1 && errno == EINTR));
}
}
 
 
/* Put something (anything, doesn't matter what, or how much) in event
/* Put something (anything, doesn't matter what, or how much) in event
   pipe, so that the select/poll in the event-loop realizes we have
   pipe, so that the select/poll in the event-loop realizes we have
   something to process.  */
   something to process.  */
 
 
static void
static void
async_file_mark (void)
async_file_mark (void)
{
{
  int ret;
  int ret;
 
 
  /* It doesn't really matter what the pipe contains, as long we end
  /* It doesn't really matter what the pipe contains, as long we end
     up with something in it.  Might as well flush the previous
     up with something in it.  Might as well flush the previous
     left-overs.  */
     left-overs.  */
  async_file_flush ();
  async_file_flush ();
 
 
  do
  do
    {
    {
      ret = write (linux_nat_event_pipe[1], "+", 1);
      ret = write (linux_nat_event_pipe[1], "+", 1);
    }
    }
  while (ret == -1 && errno == EINTR);
  while (ret == -1 && errno == EINTR);
 
 
  /* Ignore EAGAIN.  If the pipe is full, the event loop will already
  /* Ignore EAGAIN.  If the pipe is full, the event loop will already
     be awakened anyway.  */
     be awakened anyway.  */
}
}
 
 
static void linux_nat_async (void (*callback)
static void linux_nat_async (void (*callback)
                             (enum inferior_event_type event_type, void *context),
                             (enum inferior_event_type event_type, void *context),
                             void *context);
                             void *context);
static int linux_nat_async_mask (int mask);
static int linux_nat_async_mask (int mask);
static int kill_lwp (int lwpid, int signo);
static int kill_lwp (int lwpid, int signo);
 
 
static int stop_callback (struct lwp_info *lp, void *data);
static int stop_callback (struct lwp_info *lp, void *data);
 
 
static void block_child_signals (sigset_t *prev_mask);
static void block_child_signals (sigset_t *prev_mask);
static void restore_child_signals_mask (sigset_t *prev_mask);
static void restore_child_signals_mask (sigset_t *prev_mask);
 
 
struct lwp_info;
struct lwp_info;
static struct lwp_info *add_lwp (ptid_t ptid);
static struct lwp_info *add_lwp (ptid_t ptid);
static void purge_lwp_list (int pid);
static void purge_lwp_list (int pid);
static struct lwp_info *find_lwp_pid (ptid_t ptid);
static struct lwp_info *find_lwp_pid (ptid_t ptid);
 
 


/* Trivial list manipulation functions to keep track of a list of
/* Trivial list manipulation functions to keep track of a list of
   new stopped processes.  */
   new stopped processes.  */
static void
static void
add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
{
{
  struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
  struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
  new_pid->pid = pid;
  new_pid->pid = pid;
  new_pid->status = status;
  new_pid->status = status;
  new_pid->next = *listp;
  new_pid->next = *listp;
  *listp = new_pid;
  *listp = new_pid;
}
}
 
 
static int
static int
pull_pid_from_list (struct simple_pid_list **listp, int pid, int *status)
pull_pid_from_list (struct simple_pid_list **listp, int pid, int *status)
{
{
  struct simple_pid_list **p;
  struct simple_pid_list **p;
 
 
  for (p = listp; *p != NULL; p = &(*p)->next)
  for (p = listp; *p != NULL; p = &(*p)->next)
    if ((*p)->pid == pid)
    if ((*p)->pid == pid)
      {
      {
        struct simple_pid_list *next = (*p)->next;
        struct simple_pid_list *next = (*p)->next;
        *status = (*p)->status;
        *status = (*p)->status;
        xfree (*p);
        xfree (*p);
        *p = next;
        *p = next;
        return 1;
        return 1;
      }
      }
  return 0;
  return 0;
}
}
 
 
static void
static void
linux_record_stopped_pid (int pid, int status)
linux_record_stopped_pid (int pid, int status)
{
{
  add_to_pid_list (&stopped_pids, pid, status);
  add_to_pid_list (&stopped_pids, pid, status);
}
}
 
 


/* A helper function for linux_test_for_tracefork, called after fork ().  */
/* A helper function for linux_test_for_tracefork, called after fork ().  */
 
 
static void
static void
linux_tracefork_child (void)
linux_tracefork_child (void)
{
{
  int ret;
  int ret;
 
 
  ptrace (PTRACE_TRACEME, 0, 0, 0);
  ptrace (PTRACE_TRACEME, 0, 0, 0);
  kill (getpid (), SIGSTOP);
  kill (getpid (), SIGSTOP);
  fork ();
  fork ();
  _exit (0);
  _exit (0);
}
}
 
 
/* Wrapper function for waitpid which handles EINTR.  */
/* Wrapper function for waitpid which handles EINTR.  */
 
 
static int
static int
my_waitpid (int pid, int *status, int flags)
my_waitpid (int pid, int *status, int flags)
{
{
  int ret;
  int ret;
 
 
  do
  do
    {
    {
      ret = waitpid (pid, status, flags);
      ret = waitpid (pid, status, flags);
    }
    }
  while (ret == -1 && errno == EINTR);
  while (ret == -1 && errno == EINTR);
 
 
  return ret;
  return ret;
}
}
 
 
/* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
/* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
 
 
   First, we try to enable fork tracing on ORIGINAL_PID.  If this fails,
   First, we try to enable fork tracing on ORIGINAL_PID.  If this fails,
   we know that the feature is not available.  This may change the tracing
   we know that the feature is not available.  This may change the tracing
   options for ORIGINAL_PID, but we'll be setting them shortly anyway.
   options for ORIGINAL_PID, but we'll be setting them shortly anyway.
 
 
   However, if it succeeds, we don't know for sure that the feature is
   However, if it succeeds, we don't know for sure that the feature is
   available; old versions of PTRACE_SETOPTIONS ignored unknown options.  We
   available; old versions of PTRACE_SETOPTIONS ignored unknown options.  We
   create a child process, attach to it, use PTRACE_SETOPTIONS to enable
   create a child process, attach to it, use PTRACE_SETOPTIONS to enable
   fork tracing, and let it fork.  If the process exits, we assume that we
   fork tracing, and let it fork.  If the process exits, we assume that we
   can't use TRACEFORK; if we get the fork notification, and we can extract
   can't use TRACEFORK; if we get the fork notification, and we can extract
   the new child's PID, then we assume that we can.  */
   the new child's PID, then we assume that we can.  */
 
 
static void
static void
linux_test_for_tracefork (int original_pid)
linux_test_for_tracefork (int original_pid)
{
{
  int child_pid, ret, status;
  int child_pid, ret, status;
  long second_pid;
  long second_pid;
  sigset_t prev_mask;
  sigset_t prev_mask;
 
 
  /* We don't want those ptrace calls to be interrupted.  */
  /* We don't want those ptrace calls to be interrupted.  */
  block_child_signals (&prev_mask);
  block_child_signals (&prev_mask);
 
 
  linux_supports_tracefork_flag = 0;
  linux_supports_tracefork_flag = 0;
  linux_supports_tracevforkdone_flag = 0;
  linux_supports_tracevforkdone_flag = 0;
 
 
  ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
  ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
  if (ret != 0)
  if (ret != 0)
    {
    {
      restore_child_signals_mask (&prev_mask);
      restore_child_signals_mask (&prev_mask);
      return;
      return;
    }
    }
 
 
  child_pid = fork ();
  child_pid = fork ();
  if (child_pid == -1)
  if (child_pid == -1)
    perror_with_name (("fork"));
    perror_with_name (("fork"));
 
 
  if (child_pid == 0)
  if (child_pid == 0)
    linux_tracefork_child ();
    linux_tracefork_child ();
 
 
  ret = my_waitpid (child_pid, &status, 0);
  ret = my_waitpid (child_pid, &status, 0);
  if (ret == -1)
  if (ret == -1)
    perror_with_name (("waitpid"));
    perror_with_name (("waitpid"));
  else if (ret != child_pid)
  else if (ret != child_pid)
    error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
    error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
  if (! WIFSTOPPED (status))
  if (! WIFSTOPPED (status))
    error (_("linux_test_for_tracefork: waitpid: unexpected status %d."), status);
    error (_("linux_test_for_tracefork: waitpid: unexpected status %d."), status);
 
 
  ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
  ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
  if (ret != 0)
  if (ret != 0)
    {
    {
      ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
      ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
      if (ret != 0)
      if (ret != 0)
        {
        {
          warning (_("linux_test_for_tracefork: failed to kill child"));
          warning (_("linux_test_for_tracefork: failed to kill child"));
          restore_child_signals_mask (&prev_mask);
          restore_child_signals_mask (&prev_mask);
          return;
          return;
        }
        }
 
 
      ret = my_waitpid (child_pid, &status, 0);
      ret = my_waitpid (child_pid, &status, 0);
      if (ret != child_pid)
      if (ret != child_pid)
        warning (_("linux_test_for_tracefork: failed to wait for killed child"));
        warning (_("linux_test_for_tracefork: failed to wait for killed child"));
      else if (!WIFSIGNALED (status))
      else if (!WIFSIGNALED (status))
        warning (_("linux_test_for_tracefork: unexpected wait status 0x%x from "
        warning (_("linux_test_for_tracefork: unexpected wait status 0x%x from "
                 "killed child"), status);
                 "killed child"), status);
 
 
      restore_child_signals_mask (&prev_mask);
      restore_child_signals_mask (&prev_mask);
      return;
      return;
    }
    }
 
 
  /* Check whether PTRACE_O_TRACEVFORKDONE is available.  */
  /* Check whether PTRACE_O_TRACEVFORKDONE is available.  */
  ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
  ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
                PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
                PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
  linux_supports_tracevforkdone_flag = (ret == 0);
  linux_supports_tracevforkdone_flag = (ret == 0);
 
 
  ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
  ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
  if (ret != 0)
  if (ret != 0)
    warning (_("linux_test_for_tracefork: failed to resume child"));
    warning (_("linux_test_for_tracefork: failed to resume child"));
 
 
  ret = my_waitpid (child_pid, &status, 0);
  ret = my_waitpid (child_pid, &status, 0);
 
 
  if (ret == child_pid && WIFSTOPPED (status)
  if (ret == child_pid && WIFSTOPPED (status)
      && status >> 16 == PTRACE_EVENT_FORK)
      && status >> 16 == PTRACE_EVENT_FORK)
    {
    {
      second_pid = 0;
      second_pid = 0;
      ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
      ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
      if (ret == 0 && second_pid != 0)
      if (ret == 0 && second_pid != 0)
        {
        {
          int second_status;
          int second_status;
 
 
          linux_supports_tracefork_flag = 1;
          linux_supports_tracefork_flag = 1;
          my_waitpid (second_pid, &second_status, 0);
          my_waitpid (second_pid, &second_status, 0);
          ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
          ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
          if (ret != 0)
          if (ret != 0)
            warning (_("linux_test_for_tracefork: failed to kill second child"));
            warning (_("linux_test_for_tracefork: failed to kill second child"));
          my_waitpid (second_pid, &status, 0);
          my_waitpid (second_pid, &status, 0);
        }
        }
    }
    }
  else
  else
    warning (_("linux_test_for_tracefork: unexpected result from waitpid "
    warning (_("linux_test_for_tracefork: unexpected result from waitpid "
             "(%d, status 0x%x)"), ret, status);
             "(%d, status 0x%x)"), ret, status);
 
 
  ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
  ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
  if (ret != 0)
  if (ret != 0)
    warning (_("linux_test_for_tracefork: failed to kill child"));
    warning (_("linux_test_for_tracefork: failed to kill child"));
  my_waitpid (child_pid, &status, 0);
  my_waitpid (child_pid, &status, 0);
 
 
  restore_child_signals_mask (&prev_mask);
  restore_child_signals_mask (&prev_mask);
}
}
 
 
/* Determine if PTRACE_O_TRACESYSGOOD can be used to follow syscalls.
/* Determine if PTRACE_O_TRACESYSGOOD can be used to follow syscalls.
 
 
   We try to enable syscall tracing on ORIGINAL_PID.  If this fails,
   We try to enable syscall tracing on ORIGINAL_PID.  If this fails,
   we know that the feature is not available.  This may change the tracing
   we know that the feature is not available.  This may change the tracing
   options for ORIGINAL_PID, but we'll be setting them shortly anyway.  */
   options for ORIGINAL_PID, but we'll be setting them shortly anyway.  */
 
 
static void
static void
linux_test_for_tracesysgood (int original_pid)
linux_test_for_tracesysgood (int original_pid)
{
{
  int ret;
  int ret;
  sigset_t prev_mask;
  sigset_t prev_mask;
 
 
  /* We don't want those ptrace calls to be interrupted.  */
  /* We don't want those ptrace calls to be interrupted.  */
  block_child_signals (&prev_mask);
  block_child_signals (&prev_mask);
 
 
  linux_supports_tracesysgood_flag = 0;
  linux_supports_tracesysgood_flag = 0;
 
 
  ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACESYSGOOD);
  ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACESYSGOOD);
  if (ret != 0)
  if (ret != 0)
    goto out;
    goto out;
 
 
  linux_supports_tracesysgood_flag = 1;
  linux_supports_tracesysgood_flag = 1;
out:
out:
  restore_child_signals_mask (&prev_mask);
  restore_child_signals_mask (&prev_mask);
}
}
 
 
/* Determine wether we support PTRACE_O_TRACESYSGOOD option available.
/* Determine wether we support PTRACE_O_TRACESYSGOOD option available.
   This function also sets linux_supports_tracesysgood_flag.  */
   This function also sets linux_supports_tracesysgood_flag.  */
 
 
static int
static int
linux_supports_tracesysgood (int pid)
linux_supports_tracesysgood (int pid)
{
{
  if (linux_supports_tracesysgood_flag == -1)
  if (linux_supports_tracesysgood_flag == -1)
    linux_test_for_tracesysgood (pid);
    linux_test_for_tracesysgood (pid);
  return linux_supports_tracesysgood_flag;
  return linux_supports_tracesysgood_flag;
}
}
 
 
/* Return non-zero iff we have tracefork functionality available.
/* Return non-zero iff we have tracefork functionality available.
   This function also sets linux_supports_tracefork_flag.  */
   This function also sets linux_supports_tracefork_flag.  */
 
 
static int
static int
linux_supports_tracefork (int pid)
linux_supports_tracefork (int pid)
{
{
  if (linux_supports_tracefork_flag == -1)
  if (linux_supports_tracefork_flag == -1)
    linux_test_for_tracefork (pid);
    linux_test_for_tracefork (pid);
  return linux_supports_tracefork_flag;
  return linux_supports_tracefork_flag;
}
}
 
 
static int
static int
linux_supports_tracevforkdone (int pid)
linux_supports_tracevforkdone (int pid)
{
{
  if (linux_supports_tracefork_flag == -1)
  if (linux_supports_tracefork_flag == -1)
    linux_test_for_tracefork (pid);
    linux_test_for_tracefork (pid);
  return linux_supports_tracevforkdone_flag;
  return linux_supports_tracevforkdone_flag;
}
}
 
 
static void
static void
linux_enable_tracesysgood (ptid_t ptid)
linux_enable_tracesysgood (ptid_t ptid)
{
{
  int pid = ptid_get_lwp (ptid);
  int pid = ptid_get_lwp (ptid);
 
 
  if (pid == 0)
  if (pid == 0)
    pid = ptid_get_pid (ptid);
    pid = ptid_get_pid (ptid);
 
 
  if (linux_supports_tracesysgood (pid) == 0)
  if (linux_supports_tracesysgood (pid) == 0)
    return;
    return;
 
 
  current_ptrace_options |= PTRACE_O_TRACESYSGOOD;
  current_ptrace_options |= PTRACE_O_TRACESYSGOOD;
 
 
  ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
  ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
}
}
 
 


void
void
linux_enable_event_reporting (ptid_t ptid)
linux_enable_event_reporting (ptid_t ptid)
{
{
  int pid = ptid_get_lwp (ptid);
  int pid = ptid_get_lwp (ptid);
 
 
  if (pid == 0)
  if (pid == 0)
    pid = ptid_get_pid (ptid);
    pid = ptid_get_pid (ptid);
 
 
  if (! linux_supports_tracefork (pid))
  if (! linux_supports_tracefork (pid))
    return;
    return;
 
 
  current_ptrace_options |= PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK
  current_ptrace_options |= PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK
    | PTRACE_O_TRACEEXEC | PTRACE_O_TRACECLONE;
    | PTRACE_O_TRACEEXEC | PTRACE_O_TRACECLONE;
 
 
  if (linux_supports_tracevforkdone (pid))
  if (linux_supports_tracevforkdone (pid))
    current_ptrace_options |= PTRACE_O_TRACEVFORKDONE;
    current_ptrace_options |= PTRACE_O_TRACEVFORKDONE;
 
 
  /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
  /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
     read-only process state.  */
     read-only process state.  */
 
 
  ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
  ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
}
}
 
 
static void
static void
linux_child_post_attach (int pid)
linux_child_post_attach (int pid)
{
{
  linux_enable_event_reporting (pid_to_ptid (pid));
  linux_enable_event_reporting (pid_to_ptid (pid));
  check_for_thread_db ();
  check_for_thread_db ();
  linux_enable_tracesysgood (pid_to_ptid (pid));
  linux_enable_tracesysgood (pid_to_ptid (pid));
}
}
 
 
static void
static void
linux_child_post_startup_inferior (ptid_t ptid)
linux_child_post_startup_inferior (ptid_t ptid)
{
{
  linux_enable_event_reporting (ptid);
  linux_enable_event_reporting (ptid);
  check_for_thread_db ();
  check_for_thread_db ();
  linux_enable_tracesysgood (ptid);
  linux_enable_tracesysgood (ptid);
}
}
 
 
static int
static int
linux_child_follow_fork (struct target_ops *ops, int follow_child)
linux_child_follow_fork (struct target_ops *ops, int follow_child)
{
{
  sigset_t prev_mask;
  sigset_t prev_mask;
  int has_vforked;
  int has_vforked;
  int parent_pid, child_pid;
  int parent_pid, child_pid;
 
 
  block_child_signals (&prev_mask);
  block_child_signals (&prev_mask);
 
 
  has_vforked = (inferior_thread ()->pending_follow.kind
  has_vforked = (inferior_thread ()->pending_follow.kind
                 == TARGET_WAITKIND_VFORKED);
                 == TARGET_WAITKIND_VFORKED);
  parent_pid = ptid_get_lwp (inferior_ptid);
  parent_pid = ptid_get_lwp (inferior_ptid);
  if (parent_pid == 0)
  if (parent_pid == 0)
    parent_pid = ptid_get_pid (inferior_ptid);
    parent_pid = ptid_get_pid (inferior_ptid);
  child_pid = PIDGET (inferior_thread ()->pending_follow.value.related_pid);
  child_pid = PIDGET (inferior_thread ()->pending_follow.value.related_pid);
 
 
  if (!detach_fork)
  if (!detach_fork)
    linux_enable_event_reporting (pid_to_ptid (child_pid));
    linux_enable_event_reporting (pid_to_ptid (child_pid));
 
 
  if (has_vforked
  if (has_vforked
      && !non_stop /* Non-stop always resumes both branches.  */
      && !non_stop /* Non-stop always resumes both branches.  */
      && (!target_is_async_p () || sync_execution)
      && (!target_is_async_p () || sync_execution)
      && !(follow_child || detach_fork || sched_multi))
      && !(follow_child || detach_fork || sched_multi))
    {
    {
      /* The parent stays blocked inside the vfork syscall until the
      /* The parent stays blocked inside the vfork syscall until the
         child execs or exits.  If we don't let the child run, then
         child execs or exits.  If we don't let the child run, then
         the parent stays blocked.  If we're telling the parent to run
         the parent stays blocked.  If we're telling the parent to run
         in the foreground, the user will not be able to ctrl-c to get
         in the foreground, the user will not be able to ctrl-c to get
         back the terminal, effectively hanging the debug session.  */
         back the terminal, effectively hanging the debug session.  */
      fprintf_filtered (gdb_stderr, _("\
      fprintf_filtered (gdb_stderr, _("\
Can not resume the parent process over vfork in the foreground while \n\
Can not resume the parent process over vfork in the foreground while \n\
holding the child stopped.  Try \"set detach-on-fork\" or \
holding the child stopped.  Try \"set detach-on-fork\" or \
\"set schedule-multiple\".\n"));
\"set schedule-multiple\".\n"));
      return 1;
      return 1;
    }
    }
 
 
  if (! follow_child)
  if (! follow_child)
    {
    {
      struct lwp_info *child_lp = NULL;
      struct lwp_info *child_lp = NULL;
 
 
      /* We're already attached to the parent, by default. */
      /* We're already attached to the parent, by default. */
 
 
      /* Detach new forked process?  */
      /* Detach new forked process?  */
      if (detach_fork)
      if (detach_fork)
        {
        {
          /* Before detaching from the child, remove all breakpoints
          /* Before detaching from the child, remove all breakpoints
             from it.  If we forked, then this has already been taken
             from it.  If we forked, then this has already been taken
             care of by infrun.c.  If we vforked however, any
             care of by infrun.c.  If we vforked however, any
             breakpoint inserted in the parent is visible in the
             breakpoint inserted in the parent is visible in the
             child, even those added while stopped in a vfork
             child, even those added while stopped in a vfork
             catchpoint.  This will remove the breakpoints from the
             catchpoint.  This will remove the breakpoints from the
             parent also, but they'll be reinserted below.  */
             parent also, but they'll be reinserted below.  */
          if (has_vforked)
          if (has_vforked)
            {
            {
              /* keep breakpoints list in sync.  */
              /* keep breakpoints list in sync.  */
              remove_breakpoints_pid (GET_PID (inferior_ptid));
              remove_breakpoints_pid (GET_PID (inferior_ptid));
            }
            }
 
 
          if (info_verbose || debug_linux_nat)
          if (info_verbose || debug_linux_nat)
            {
            {
              target_terminal_ours ();
              target_terminal_ours ();
              fprintf_filtered (gdb_stdlog,
              fprintf_filtered (gdb_stdlog,
                                "Detaching after fork from child process %d.\n",
                                "Detaching after fork from child process %d.\n",
                                child_pid);
                                child_pid);
            }
            }
 
 
          ptrace (PTRACE_DETACH, child_pid, 0, 0);
          ptrace (PTRACE_DETACH, child_pid, 0, 0);
        }
        }
      else
      else
        {
        {
          struct inferior *parent_inf, *child_inf;
          struct inferior *parent_inf, *child_inf;
          struct cleanup *old_chain;
          struct cleanup *old_chain;
 
 
          /* Add process to GDB's tables.  */
          /* Add process to GDB's tables.  */
          child_inf = add_inferior (child_pid);
          child_inf = add_inferior (child_pid);
 
 
          parent_inf = current_inferior ();
          parent_inf = current_inferior ();
          child_inf->attach_flag = parent_inf->attach_flag;
          child_inf->attach_flag = parent_inf->attach_flag;
          copy_terminal_info (child_inf, parent_inf);
          copy_terminal_info (child_inf, parent_inf);
 
 
          old_chain = save_inferior_ptid ();
          old_chain = save_inferior_ptid ();
          save_current_program_space ();
          save_current_program_space ();
 
 
          inferior_ptid = ptid_build (child_pid, child_pid, 0);
          inferior_ptid = ptid_build (child_pid, child_pid, 0);
          add_thread (inferior_ptid);
          add_thread (inferior_ptid);
          child_lp = add_lwp (inferior_ptid);
          child_lp = add_lwp (inferior_ptid);
          child_lp->stopped = 1;
          child_lp->stopped = 1;
          child_lp->resumed = 1;
          child_lp->resumed = 1;
 
 
          /* If this is a vfork child, then the address-space is
          /* If this is a vfork child, then the address-space is
             shared with the parent.  */
             shared with the parent.  */
          if (has_vforked)
          if (has_vforked)
            {
            {
              child_inf->pspace = parent_inf->pspace;
              child_inf->pspace = parent_inf->pspace;
              child_inf->aspace = parent_inf->aspace;
              child_inf->aspace = parent_inf->aspace;
 
 
              /* The parent will be frozen until the child is done
              /* The parent will be frozen until the child is done
                 with the shared region.  Keep track of the
                 with the shared region.  Keep track of the
                 parent.  */
                 parent.  */
              child_inf->vfork_parent = parent_inf;
              child_inf->vfork_parent = parent_inf;
              child_inf->pending_detach = 0;
              child_inf->pending_detach = 0;
              parent_inf->vfork_child = child_inf;
              parent_inf->vfork_child = child_inf;
              parent_inf->pending_detach = 0;
              parent_inf->pending_detach = 0;
            }
            }
          else
          else
            {
            {
              child_inf->aspace = new_address_space ();
              child_inf->aspace = new_address_space ();
              child_inf->pspace = add_program_space (child_inf->aspace);
              child_inf->pspace = add_program_space (child_inf->aspace);
              child_inf->removable = 1;
              child_inf->removable = 1;
              set_current_program_space (child_inf->pspace);
              set_current_program_space (child_inf->pspace);
              clone_program_space (child_inf->pspace, parent_inf->pspace);
              clone_program_space (child_inf->pspace, parent_inf->pspace);
 
 
              /* Let the shared library layer (solib-svr4) learn about
              /* Let the shared library layer (solib-svr4) learn about
                 this new process, relocate the cloned exec, pull in
                 this new process, relocate the cloned exec, pull in
                 shared libraries, and install the solib event
                 shared libraries, and install the solib event
                 breakpoint.  If a "cloned-VM" event was propagated
                 breakpoint.  If a "cloned-VM" event was propagated
                 better throughout the core, this wouldn't be
                 better throughout the core, this wouldn't be
                 required.  */
                 required.  */
              solib_create_inferior_hook (0);
              solib_create_inferior_hook (0);
            }
            }
 
 
          /* Let the thread_db layer learn about this new process.  */
          /* Let the thread_db layer learn about this new process.  */
          check_for_thread_db ();
          check_for_thread_db ();
 
 
          do_cleanups (old_chain);
          do_cleanups (old_chain);
        }
        }
 
 
      if (has_vforked)
      if (has_vforked)
        {
        {
          struct lwp_info *lp;
          struct lwp_info *lp;
          struct inferior *parent_inf;
          struct inferior *parent_inf;
 
 
          parent_inf = current_inferior ();
          parent_inf = current_inferior ();
 
 
          /* If we detached from the child, then we have to be careful
          /* If we detached from the child, then we have to be careful
             to not insert breakpoints in the parent until the child
             to not insert breakpoints in the parent until the child
             is done with the shared memory region.  However, if we're
             is done with the shared memory region.  However, if we're
             staying attached to the child, then we can and should
             staying attached to the child, then we can and should
             insert breakpoints, so that we can debug it.  A
             insert breakpoints, so that we can debug it.  A
             subsequent child exec or exit is enough to know when does
             subsequent child exec or exit is enough to know when does
             the child stops using the parent's address space.  */
             the child stops using the parent's address space.  */
          parent_inf->waiting_for_vfork_done = detach_fork;
          parent_inf->waiting_for_vfork_done = detach_fork;
          parent_inf->pspace->breakpoints_not_allowed = detach_fork;
          parent_inf->pspace->breakpoints_not_allowed = detach_fork;
 
 
          lp = find_lwp_pid (pid_to_ptid (parent_pid));
          lp = find_lwp_pid (pid_to_ptid (parent_pid));
          gdb_assert (linux_supports_tracefork_flag >= 0);
          gdb_assert (linux_supports_tracefork_flag >= 0);
          if (linux_supports_tracevforkdone (0))
          if (linux_supports_tracevforkdone (0))
            {
            {
              if (debug_linux_nat)
              if (debug_linux_nat)
                fprintf_unfiltered (gdb_stdlog,
                fprintf_unfiltered (gdb_stdlog,
                                    "LCFF: waiting for VFORK_DONE on %d\n",
                                    "LCFF: waiting for VFORK_DONE on %d\n",
                                    parent_pid);
                                    parent_pid);
 
 
              lp->stopped = 1;
              lp->stopped = 1;
              lp->resumed = 1;
              lp->resumed = 1;
 
 
              /* We'll handle the VFORK_DONE event like any other
              /* We'll handle the VFORK_DONE event like any other
                 event, in target_wait.  */
                 event, in target_wait.  */
            }
            }
          else
          else
            {
            {
              /* We can't insert breakpoints until the child has
              /* We can't insert breakpoints until the child has
                 finished with the shared memory region.  We need to
                 finished with the shared memory region.  We need to
                 wait until that happens.  Ideal would be to just
                 wait until that happens.  Ideal would be to just
                 call:
                 call:
                 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
                 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
                 - waitpid (parent_pid, &status, __WALL);
                 - waitpid (parent_pid, &status, __WALL);
                 However, most architectures can't handle a syscall
                 However, most architectures can't handle a syscall
                 being traced on the way out if it wasn't traced on
                 being traced on the way out if it wasn't traced on
                 the way in.
                 the way in.
 
 
                 We might also think to loop, continuing the child
                 We might also think to loop, continuing the child
                 until it exits or gets a SIGTRAP.  One problem is
                 until it exits or gets a SIGTRAP.  One problem is
                 that the child might call ptrace with PTRACE_TRACEME.
                 that the child might call ptrace with PTRACE_TRACEME.
 
 
                 There's no simple and reliable way to figure out when
                 There's no simple and reliable way to figure out when
                 the vforked child will be done with its copy of the
                 the vforked child will be done with its copy of the
                 shared memory.  We could step it out of the syscall,
                 shared memory.  We could step it out of the syscall,
                 two instructions, let it go, and then single-step the
                 two instructions, let it go, and then single-step the
                 parent once.  When we have hardware single-step, this
                 parent once.  When we have hardware single-step, this
                 would work; with software single-step it could still
                 would work; with software single-step it could still
                 be made to work but we'd have to be able to insert
                 be made to work but we'd have to be able to insert
                 single-step breakpoints in the child, and we'd have
                 single-step breakpoints in the child, and we'd have
                 to insert -just- the single-step breakpoint in the
                 to insert -just- the single-step breakpoint in the
                 parent.  Very awkward.
                 parent.  Very awkward.
 
 
                 In the end, the best we can do is to make sure it
                 In the end, the best we can do is to make sure it
                 runs for a little while.  Hopefully it will be out of
                 runs for a little while.  Hopefully it will be out of
                 range of any breakpoints we reinsert.  Usually this
                 range of any breakpoints we reinsert.  Usually this
                 is only the single-step breakpoint at vfork's return
                 is only the single-step breakpoint at vfork's return
                 point.  */
                 point.  */
 
 
              if (debug_linux_nat)
              if (debug_linux_nat)
                fprintf_unfiltered (gdb_stdlog,
                fprintf_unfiltered (gdb_stdlog,
                                    "LCFF: no VFORK_DONE support, sleeping a bit\n");
                                    "LCFF: no VFORK_DONE support, sleeping a bit\n");
 
 
              usleep (10000);
              usleep (10000);
 
 
              /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
              /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
                 and leave it pending.  The next linux_nat_resume call
                 and leave it pending.  The next linux_nat_resume call
                 will notice a pending event, and bypasses actually
                 will notice a pending event, and bypasses actually
                 resuming the inferior.  */
                 resuming the inferior.  */
              lp->status = 0;
              lp->status = 0;
              lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
              lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
              lp->stopped = 0;
              lp->stopped = 0;
              lp->resumed = 1;
              lp->resumed = 1;
 
 
              /* If we're in async mode, need to tell the event loop
              /* If we're in async mode, need to tell the event loop
                 there's something here to process.  */
                 there's something here to process.  */
              if (target_can_async_p ())
              if (target_can_async_p ())
                async_file_mark ();
                async_file_mark ();
            }
            }
        }
        }
    }
    }
  else
  else
    {
    {
      struct thread_info *tp;
      struct thread_info *tp;
      struct inferior *parent_inf, *child_inf;
      struct inferior *parent_inf, *child_inf;
      struct lwp_info *lp;
      struct lwp_info *lp;
      struct program_space *parent_pspace;
      struct program_space *parent_pspace;
 
 
      if (info_verbose || debug_linux_nat)
      if (info_verbose || debug_linux_nat)
        {
        {
          target_terminal_ours ();
          target_terminal_ours ();
          if (has_vforked)
          if (has_vforked)
            fprintf_filtered (gdb_stdlog, _("\
            fprintf_filtered (gdb_stdlog, _("\
Attaching after process %d vfork to child process %d.\n"),
Attaching after process %d vfork to child process %d.\n"),
                              parent_pid, child_pid);
                              parent_pid, child_pid);
          else
          else
            fprintf_filtered (gdb_stdlog, _("\
            fprintf_filtered (gdb_stdlog, _("\
Attaching after process %d fork to child process %d.\n"),
Attaching after process %d fork to child process %d.\n"),
                              parent_pid, child_pid);
                              parent_pid, child_pid);
        }
        }
 
 
      /* Add the new inferior first, so that the target_detach below
      /* Add the new inferior first, so that the target_detach below
         doesn't unpush the target.  */
         doesn't unpush the target.  */
 
 
      child_inf = add_inferior (child_pid);
      child_inf = add_inferior (child_pid);
 
 
      parent_inf = current_inferior ();
      parent_inf = current_inferior ();
      child_inf->attach_flag = parent_inf->attach_flag;
      child_inf->attach_flag = parent_inf->attach_flag;
      copy_terminal_info (child_inf, parent_inf);
      copy_terminal_info (child_inf, parent_inf);
 
 
      parent_pspace = parent_inf->pspace;
      parent_pspace = parent_inf->pspace;
 
 
      /* If we're vforking, we want to hold on to the parent until the
      /* If we're vforking, we want to hold on to the parent until the
         child exits or execs.  At child exec or exit time we can
         child exits or execs.  At child exec or exit time we can
         remove the old breakpoints from the parent and detach or
         remove the old breakpoints from the parent and detach or
         resume debugging it.  Otherwise, detach the parent now; we'll
         resume debugging it.  Otherwise, detach the parent now; we'll
         want to reuse it's program/address spaces, but we can't set
         want to reuse it's program/address spaces, but we can't set
         them to the child before removing breakpoints from the
         them to the child before removing breakpoints from the
         parent, otherwise, the breakpoints module could decide to
         parent, otherwise, the breakpoints module could decide to
         remove breakpoints from the wrong process (since they'd be
         remove breakpoints from the wrong process (since they'd be
         assigned to the same address space).  */
         assigned to the same address space).  */
 
 
      if (has_vforked)
      if (has_vforked)
        {
        {
          gdb_assert (child_inf->vfork_parent == NULL);
          gdb_assert (child_inf->vfork_parent == NULL);
          gdb_assert (parent_inf->vfork_child == NULL);
          gdb_assert (parent_inf->vfork_child == NULL);
          child_inf->vfork_parent = parent_inf;
          child_inf->vfork_parent = parent_inf;
          child_inf->pending_detach = 0;
          child_inf->pending_detach = 0;
          parent_inf->vfork_child = child_inf;
          parent_inf->vfork_child = child_inf;
          parent_inf->pending_detach = detach_fork;
          parent_inf->pending_detach = detach_fork;
          parent_inf->waiting_for_vfork_done = 0;
          parent_inf->waiting_for_vfork_done = 0;
        }
        }
      else if (detach_fork)
      else if (detach_fork)
        target_detach (NULL, 0);
        target_detach (NULL, 0);
 
 
      /* Note that the detach above makes PARENT_INF dangling.  */
      /* Note that the detach above makes PARENT_INF dangling.  */
 
 
      /* Add the child thread to the appropriate lists, and switch to
      /* Add the child thread to the appropriate lists, and switch to
         this new thread, before cloning the program space, and
         this new thread, before cloning the program space, and
         informing the solib layer about this new process.  */
         informing the solib layer about this new process.  */
 
 
      inferior_ptid = ptid_build (child_pid, child_pid, 0);
      inferior_ptid = ptid_build (child_pid, child_pid, 0);
      add_thread (inferior_ptid);
      add_thread (inferior_ptid);
      lp = add_lwp (inferior_ptid);
      lp = add_lwp (inferior_ptid);
      lp->stopped = 1;
      lp->stopped = 1;
      lp->resumed = 1;
      lp->resumed = 1;
 
 
      /* If this is a vfork child, then the address-space is shared
      /* If this is a vfork child, then the address-space is shared
         with the parent.  If we detached from the parent, then we can
         with the parent.  If we detached from the parent, then we can
         reuse the parent's program/address spaces.  */
         reuse the parent's program/address spaces.  */
      if (has_vforked || detach_fork)
      if (has_vforked || detach_fork)
        {
        {
          child_inf->pspace = parent_pspace;
          child_inf->pspace = parent_pspace;
          child_inf->aspace = child_inf->pspace->aspace;
          child_inf->aspace = child_inf->pspace->aspace;
        }
        }
      else
      else
        {
        {
          child_inf->aspace = new_address_space ();
          child_inf->aspace = new_address_space ();
          child_inf->pspace = add_program_space (child_inf->aspace);
          child_inf->pspace = add_program_space (child_inf->aspace);
          child_inf->removable = 1;
          child_inf->removable = 1;
          set_current_program_space (child_inf->pspace);
          set_current_program_space (child_inf->pspace);
          clone_program_space (child_inf->pspace, parent_pspace);
          clone_program_space (child_inf->pspace, parent_pspace);
 
 
          /* Let the shared library layer (solib-svr4) learn about
          /* Let the shared library layer (solib-svr4) learn about
             this new process, relocate the cloned exec, pull in
             this new process, relocate the cloned exec, pull in
             shared libraries, and install the solib event breakpoint.
             shared libraries, and install the solib event breakpoint.
             If a "cloned-VM" event was propagated better throughout
             If a "cloned-VM" event was propagated better throughout
             the core, this wouldn't be required.  */
             the core, this wouldn't be required.  */
          solib_create_inferior_hook (0);
          solib_create_inferior_hook (0);
        }
        }
 
 
      /* Let the thread_db layer learn about this new process.  */
      /* Let the thread_db layer learn about this new process.  */
      check_for_thread_db ();
      check_for_thread_db ();
    }
    }
 
 
  restore_child_signals_mask (&prev_mask);
  restore_child_signals_mask (&prev_mask);
  return 0;
  return 0;
}
}
 
 


static void
static void
linux_child_insert_fork_catchpoint (int pid)
linux_child_insert_fork_catchpoint (int pid)
{
{
  if (! linux_supports_tracefork (pid))
  if (! linux_supports_tracefork (pid))
    error (_("Your system does not support fork catchpoints."));
    error (_("Your system does not support fork catchpoints."));
}
}
 
 
static void
static void
linux_child_insert_vfork_catchpoint (int pid)
linux_child_insert_vfork_catchpoint (int pid)
{
{
  if (!linux_supports_tracefork (pid))
  if (!linux_supports_tracefork (pid))
    error (_("Your system does not support vfork catchpoints."));
    error (_("Your system does not support vfork catchpoints."));
}
}
 
 
static void
static void
linux_child_insert_exec_catchpoint (int pid)
linux_child_insert_exec_catchpoint (int pid)
{
{
  if (!linux_supports_tracefork (pid))
  if (!linux_supports_tracefork (pid))
    error (_("Your system does not support exec catchpoints."));
    error (_("Your system does not support exec catchpoints."));
}
}
 
 
static int
static int
linux_child_set_syscall_catchpoint (int pid, int needed, int any_count,
linux_child_set_syscall_catchpoint (int pid, int needed, int any_count,
                                    int table_size, int *table)
                                    int table_size, int *table)
{
{
  if (! linux_supports_tracesysgood (pid))
  if (! linux_supports_tracesysgood (pid))
    error (_("Your system does not support syscall catchpoints."));
    error (_("Your system does not support syscall catchpoints."));
  /* On GNU/Linux, we ignore the arguments.  It means that we only
  /* On GNU/Linux, we ignore the arguments.  It means that we only
     enable the syscall catchpoints, but do not disable them.
     enable the syscall catchpoints, but do not disable them.
 
 
     Also, we do not use the `table' information because we do not
     Also, we do not use the `table' information because we do not
     filter system calls here.  We let GDB do the logic for us.  */
     filter system calls here.  We let GDB do the logic for us.  */
  return 0;
  return 0;
}
}
 
 
/* On GNU/Linux there are no real LWP's.  The closest thing to LWP's
/* On GNU/Linux there are no real LWP's.  The closest thing to LWP's
   are processes sharing the same VM space.  A multi-threaded process
   are processes sharing the same VM space.  A multi-threaded process
   is basically a group of such processes.  However, such a grouping
   is basically a group of such processes.  However, such a grouping
   is almost entirely a user-space issue; the kernel doesn't enforce
   is almost entirely a user-space issue; the kernel doesn't enforce
   such a grouping at all (this might change in the future).  In
   such a grouping at all (this might change in the future).  In
   general, we'll rely on the threads library (i.e. the GNU/Linux
   general, we'll rely on the threads library (i.e. the GNU/Linux
   Threads library) to provide such a grouping.
   Threads library) to provide such a grouping.
 
 
   It is perfectly well possible to write a multi-threaded application
   It is perfectly well possible to write a multi-threaded application
   without the assistance of a threads library, by using the clone
   without the assistance of a threads library, by using the clone
   system call directly.  This module should be able to give some
   system call directly.  This module should be able to give some
   rudimentary support for debugging such applications if developers
   rudimentary support for debugging such applications if developers
   specify the CLONE_PTRACE flag in the clone system call, and are
   specify the CLONE_PTRACE flag in the clone system call, and are
   using the Linux kernel 2.4 or above.
   using the Linux kernel 2.4 or above.
 
 
   Note that there are some peculiarities in GNU/Linux that affect
   Note that there are some peculiarities in GNU/Linux that affect
   this code:
   this code:
 
 
   - In general one should specify the __WCLONE flag to waitpid in
   - In general one should specify the __WCLONE flag to waitpid in
     order to make it report events for any of the cloned processes
     order to make it report events for any of the cloned processes
     (and leave it out for the initial process).  However, if a cloned
     (and leave it out for the initial process).  However, if a cloned
     process has exited the exit status is only reported if the
     process has exited the exit status is only reported if the
     __WCLONE flag is absent.  Linux kernel 2.4 has a __WALL flag, but
     __WCLONE flag is absent.  Linux kernel 2.4 has a __WALL flag, but
     we cannot use it since GDB must work on older systems too.
     we cannot use it since GDB must work on older systems too.
 
 
   - When a traced, cloned process exits and is waited for by the
   - When a traced, cloned process exits and is waited for by the
     debugger, the kernel reassigns it to the original parent and
     debugger, the kernel reassigns it to the original parent and
     keeps it around as a "zombie".  Somehow, the GNU/Linux Threads
     keeps it around as a "zombie".  Somehow, the GNU/Linux Threads
     library doesn't notice this, which leads to the "zombie problem":
     library doesn't notice this, which leads to the "zombie problem":
     When debugged a multi-threaded process that spawns a lot of
     When debugged a multi-threaded process that spawns a lot of
     threads will run out of processes, even if the threads exit,
     threads will run out of processes, even if the threads exit,
     because the "zombies" stay around.  */
     because the "zombies" stay around.  */
 
 
/* List of known LWPs.  */
/* List of known LWPs.  */
struct lwp_info *lwp_list;
struct lwp_info *lwp_list;


 
 
/* Original signal mask.  */
/* Original signal mask.  */
static sigset_t normal_mask;
static sigset_t normal_mask;
 
 
/* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
/* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
   _initialize_linux_nat.  */
   _initialize_linux_nat.  */
static sigset_t suspend_mask;
static sigset_t suspend_mask;
 
 
/* Signals to block to make that sigsuspend work.  */
/* Signals to block to make that sigsuspend work.  */
static sigset_t blocked_mask;
static sigset_t blocked_mask;
 
 
/* SIGCHLD action.  */
/* SIGCHLD action.  */
struct sigaction sigchld_action;
struct sigaction sigchld_action;
 
 
/* Block child signals (SIGCHLD and linux threads signals), and store
/* Block child signals (SIGCHLD and linux threads signals), and store
   the previous mask in PREV_MASK.  */
   the previous mask in PREV_MASK.  */
 
 
static void
static void
block_child_signals (sigset_t *prev_mask)
block_child_signals (sigset_t *prev_mask)
{
{
  /* Make sure SIGCHLD is blocked.  */
  /* Make sure SIGCHLD is blocked.  */
  if (!sigismember (&blocked_mask, SIGCHLD))
  if (!sigismember (&blocked_mask, SIGCHLD))
    sigaddset (&blocked_mask, SIGCHLD);
    sigaddset (&blocked_mask, SIGCHLD);
 
 
  sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
  sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
}
}
 
 
/* Restore child signals mask, previously returned by
/* Restore child signals mask, previously returned by
   block_child_signals.  */
   block_child_signals.  */
 
 
static void
static void
restore_child_signals_mask (sigset_t *prev_mask)
restore_child_signals_mask (sigset_t *prev_mask)
{
{
  sigprocmask (SIG_SETMASK, prev_mask, NULL);
  sigprocmask (SIG_SETMASK, prev_mask, NULL);
}
}


 
 
/* Prototypes for local functions.  */
/* Prototypes for local functions.  */
static int stop_wait_callback (struct lwp_info *lp, void *data);
static int stop_wait_callback (struct lwp_info *lp, void *data);
static int linux_thread_alive (ptid_t ptid);
static int linux_thread_alive (ptid_t ptid);
static char *linux_child_pid_to_exec_file (int pid);
static char *linux_child_pid_to_exec_file (int pid);
static int cancel_breakpoint (struct lwp_info *lp);
static int cancel_breakpoint (struct lwp_info *lp);
 
 


/* Convert wait status STATUS to a string.  Used for printing debug
/* Convert wait status STATUS to a string.  Used for printing debug
   messages only.  */
   messages only.  */
 
 
static char *
static char *
status_to_str (int status)
status_to_str (int status)
{
{
  static char buf[64];
  static char buf[64];
 
 
  if (WIFSTOPPED (status))
  if (WIFSTOPPED (status))
    {
    {
      if (WSTOPSIG (status) == SYSCALL_SIGTRAP)
      if (WSTOPSIG (status) == SYSCALL_SIGTRAP)
        snprintf (buf, sizeof (buf), "%s (stopped at syscall)",
        snprintf (buf, sizeof (buf), "%s (stopped at syscall)",
                  strsignal (SIGTRAP));
                  strsignal (SIGTRAP));
      else
      else
        snprintf (buf, sizeof (buf), "%s (stopped)",
        snprintf (buf, sizeof (buf), "%s (stopped)",
                  strsignal (WSTOPSIG (status)));
                  strsignal (WSTOPSIG (status)));
    }
    }
  else if (WIFSIGNALED (status))
  else if (WIFSIGNALED (status))
    snprintf (buf, sizeof (buf), "%s (terminated)",
    snprintf (buf, sizeof (buf), "%s (terminated)",
              strsignal (WSTOPSIG (status)));
              strsignal (WSTOPSIG (status)));
  else
  else
    snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
    snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
 
 
  return buf;
  return buf;
}
}
 
 
/* Remove all LWPs belong to PID from the lwp list.  */
/* Remove all LWPs belong to PID from the lwp list.  */
 
 
static void
static void
purge_lwp_list (int pid)
purge_lwp_list (int pid)
{
{
  struct lwp_info *lp, *lpprev, *lpnext;
  struct lwp_info *lp, *lpprev, *lpnext;
 
 
  lpprev = NULL;
  lpprev = NULL;
 
 
  for (lp = lwp_list; lp; lp = lpnext)
  for (lp = lwp_list; lp; lp = lpnext)
    {
    {
      lpnext = lp->next;
      lpnext = lp->next;
 
 
      if (ptid_get_pid (lp->ptid) == pid)
      if (ptid_get_pid (lp->ptid) == pid)
        {
        {
          if (lp == lwp_list)
          if (lp == lwp_list)
            lwp_list = lp->next;
            lwp_list = lp->next;
          else
          else
            lpprev->next = lp->next;
            lpprev->next = lp->next;
 
 
          xfree (lp);
          xfree (lp);
        }
        }
      else
      else
        lpprev = lp;
        lpprev = lp;
    }
    }
}
}
 
 
/* Return the number of known LWPs in the tgid given by PID.  */
/* Return the number of known LWPs in the tgid given by PID.  */
 
 
static int
static int
num_lwps (int pid)
num_lwps (int pid)
{
{
  int count = 0;
  int count = 0;
  struct lwp_info *lp;
  struct lwp_info *lp;
 
 
  for (lp = lwp_list; lp; lp = lp->next)
  for (lp = lwp_list; lp; lp = lp->next)
    if (ptid_get_pid (lp->ptid) == pid)
    if (ptid_get_pid (lp->ptid) == pid)
      count++;
      count++;
 
 
  return count;
  return count;
}
}
 
 
/* Add the LWP specified by PID to the list.  Return a pointer to the
/* Add the LWP specified by PID to the list.  Return a pointer to the
   structure describing the new LWP.  The LWP should already be stopped
   structure describing the new LWP.  The LWP should already be stopped
   (with an exception for the very first LWP).  */
   (with an exception for the very first LWP).  */
 
 
static struct lwp_info *
static struct lwp_info *
add_lwp (ptid_t ptid)
add_lwp (ptid_t ptid)
{
{
  struct lwp_info *lp;
  struct lwp_info *lp;
 
 
  gdb_assert (is_lwp (ptid));
  gdb_assert (is_lwp (ptid));
 
 
  lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
  lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
 
 
  memset (lp, 0, sizeof (struct lwp_info));
  memset (lp, 0, sizeof (struct lwp_info));
 
 
  lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
  lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
 
 
  lp->ptid = ptid;
  lp->ptid = ptid;
  lp->core = -1;
  lp->core = -1;
 
 
  lp->next = lwp_list;
  lp->next = lwp_list;
  lwp_list = lp;
  lwp_list = lp;
 
 
  if (num_lwps (GET_PID (ptid)) > 1 && linux_nat_new_thread != NULL)
  if (num_lwps (GET_PID (ptid)) > 1 && linux_nat_new_thread != NULL)
    linux_nat_new_thread (ptid);
    linux_nat_new_thread (ptid);
 
 
  return lp;
  return lp;
}
}
 
 
/* Remove the LWP specified by PID from the list.  */
/* Remove the LWP specified by PID from the list.  */
 
 
static void
static void
delete_lwp (ptid_t ptid)
delete_lwp (ptid_t ptid)
{
{
  struct lwp_info *lp, *lpprev;
  struct lwp_info *lp, *lpprev;
 
 
  lpprev = NULL;
  lpprev = NULL;
 
 
  for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
  for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
    if (ptid_equal (lp->ptid, ptid))
    if (ptid_equal (lp->ptid, ptid))
      break;
      break;
 
 
  if (!lp)
  if (!lp)
    return;
    return;
 
 
  if (lpprev)
  if (lpprev)
    lpprev->next = lp->next;
    lpprev->next = lp->next;
  else
  else
    lwp_list = lp->next;
    lwp_list = lp->next;
 
 
  xfree (lp);
  xfree (lp);
}
}
 
 
/* Return a pointer to the structure describing the LWP corresponding
/* Return a pointer to the structure describing the LWP corresponding
   to PID.  If no corresponding LWP could be found, return NULL.  */
   to PID.  If no corresponding LWP could be found, return NULL.  */
 
 
static struct lwp_info *
static struct lwp_info *
find_lwp_pid (ptid_t ptid)
find_lwp_pid (ptid_t ptid)
{
{
  struct lwp_info *lp;
  struct lwp_info *lp;
  int lwp;
  int lwp;
 
 
  if (is_lwp (ptid))
  if (is_lwp (ptid))
    lwp = GET_LWP (ptid);
    lwp = GET_LWP (ptid);
  else
  else
    lwp = GET_PID (ptid);
    lwp = GET_PID (ptid);
 
 
  for (lp = lwp_list; lp; lp = lp->next)
  for (lp = lwp_list; lp; lp = lp->next)
    if (lwp == GET_LWP (lp->ptid))
    if (lwp == GET_LWP (lp->ptid))
      return lp;
      return lp;
 
 
  return NULL;
  return NULL;
}
}
 
 
/* Returns true if PTID matches filter FILTER.  FILTER can be the wild
/* Returns true if PTID matches filter FILTER.  FILTER can be the wild
   card MINUS_ONE_PTID (all ptid match it); can be a ptid representing
   card MINUS_ONE_PTID (all ptid match it); can be a ptid representing
   a process (ptid_is_pid returns true), in which case, all lwps of
   a process (ptid_is_pid returns true), in which case, all lwps of
   that give process match, lwps of other process do not; or, it can
   that give process match, lwps of other process do not; or, it can
   represent a specific thread, in which case, only that thread will
   represent a specific thread, in which case, only that thread will
   match true.  PTID must represent an LWP, it can never be a wild
   match true.  PTID must represent an LWP, it can never be a wild
   card.  */
   card.  */
 
 
static int
static int
ptid_match (ptid_t ptid, ptid_t filter)
ptid_match (ptid_t ptid, ptid_t filter)
{
{
  /* Since both parameters have the same type, prevent easy mistakes
  /* Since both parameters have the same type, prevent easy mistakes
     from happening.  */
     from happening.  */
  gdb_assert (!ptid_equal (ptid, minus_one_ptid)
  gdb_assert (!ptid_equal (ptid, minus_one_ptid)
              && !ptid_equal (ptid, null_ptid));
              && !ptid_equal (ptid, null_ptid));
 
 
  if (ptid_equal (filter, minus_one_ptid))
  if (ptid_equal (filter, minus_one_ptid))
    return 1;
    return 1;
  if (ptid_is_pid (filter)
  if (ptid_is_pid (filter)
      && ptid_get_pid (ptid) == ptid_get_pid (filter))
      && ptid_get_pid (ptid) == ptid_get_pid (filter))
    return 1;
    return 1;
  else if (ptid_equal (ptid, filter))
  else if (ptid_equal (ptid, filter))
    return 1;
    return 1;
 
 
  return 0;
  return 0;
}
}
 
 
/* Call CALLBACK with its second argument set to DATA for every LWP in
/* Call CALLBACK with its second argument set to DATA for every LWP in
   the list.  If CALLBACK returns 1 for a particular LWP, return a
   the list.  If CALLBACK returns 1 for a particular LWP, return a
   pointer to the structure describing that LWP immediately.
   pointer to the structure describing that LWP immediately.
   Otherwise return NULL.  */
   Otherwise return NULL.  */
 
 
struct lwp_info *
struct lwp_info *
iterate_over_lwps (ptid_t filter,
iterate_over_lwps (ptid_t filter,
                   int (*callback) (struct lwp_info *, void *),
                   int (*callback) (struct lwp_info *, void *),
                   void *data)
                   void *data)
{
{
  struct lwp_info *lp, *lpnext;
  struct lwp_info *lp, *lpnext;
 
 
  for (lp = lwp_list; lp; lp = lpnext)
  for (lp = lwp_list; lp; lp = lpnext)
    {
    {
      lpnext = lp->next;
      lpnext = lp->next;
 
 
      if (ptid_match (lp->ptid, filter))
      if (ptid_match (lp->ptid, filter))
        {
        {
          if ((*callback) (lp, data))
          if ((*callback) (lp, data))
            return lp;
            return lp;
        }
        }
    }
    }
 
 
  return NULL;
  return NULL;
}
}
 
 
/* Update our internal state when changing from one checkpoint to
/* Update our internal state when changing from one checkpoint to
   another indicated by NEW_PTID.  We can only switch single-threaded
   another indicated by NEW_PTID.  We can only switch single-threaded
   applications, so we only create one new LWP, and the previous list
   applications, so we only create one new LWP, and the previous list
   is discarded.  */
   is discarded.  */
 
 
void
void
linux_nat_switch_fork (ptid_t new_ptid)
linux_nat_switch_fork (ptid_t new_ptid)
{
{
  struct lwp_info *lp;
  struct lwp_info *lp;
 
 
  purge_lwp_list (GET_PID (inferior_ptid));
  purge_lwp_list (GET_PID (inferior_ptid));
 
 
  lp = add_lwp (new_ptid);
  lp = add_lwp (new_ptid);
  lp->stopped = 1;
  lp->stopped = 1;
 
 
  /* This changes the thread's ptid while preserving the gdb thread
  /* This changes the thread's ptid while preserving the gdb thread
     num.  Also changes the inferior pid, while preserving the
     num.  Also changes the inferior pid, while preserving the
     inferior num.  */
     inferior num.  */
  thread_change_ptid (inferior_ptid, new_ptid);
  thread_change_ptid (inferior_ptid, new_ptid);
 
 
  /* We've just told GDB core that the thread changed target id, but,
  /* We've just told GDB core that the thread changed target id, but,
     in fact, it really is a different thread, with different register
     in fact, it really is a different thread, with different register
     contents.  */
     contents.  */
  registers_changed ();
  registers_changed ();
}
}
 
 
/* Handle the exit of a single thread LP.  */
/* Handle the exit of a single thread LP.  */
 
 
static void
static void
exit_lwp (struct lwp_info *lp)
exit_lwp (struct lwp_info *lp)
{
{
  struct thread_info *th = find_thread_ptid (lp->ptid);
  struct thread_info *th = find_thread_ptid (lp->ptid);
 
 
  if (th)
  if (th)
    {
    {
      if (print_thread_events)
      if (print_thread_events)
        printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
        printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
 
 
      delete_thread (lp->ptid);
      delete_thread (lp->ptid);
    }
    }
 
 
  delete_lwp (lp->ptid);
  delete_lwp (lp->ptid);
}
}
 
 
/* Return an lwp's tgid, found in `/proc/PID/status'.  */
/* Return an lwp's tgid, found in `/proc/PID/status'.  */
 
 
int
int
linux_proc_get_tgid (int lwpid)
linux_proc_get_tgid (int lwpid)
{
{
  FILE *status_file;
  FILE *status_file;
  char buf[100];
  char buf[100];
  int tgid = -1;
  int tgid = -1;
 
 
  snprintf (buf, sizeof (buf), "/proc/%d/status", (int) lwpid);
  snprintf (buf, sizeof (buf), "/proc/%d/status", (int) lwpid);
  status_file = fopen (buf, "r");
  status_file = fopen (buf, "r");
  if (status_file != NULL)
  if (status_file != NULL)
    {
    {
      while (fgets (buf, sizeof (buf), status_file))
      while (fgets (buf, sizeof (buf), status_file))
        {
        {
          if (strncmp (buf, "Tgid:", 5) == 0)
          if (strncmp (buf, "Tgid:", 5) == 0)
            {
            {
              tgid = strtoul (buf + strlen ("Tgid:"), NULL, 10);
              tgid = strtoul (buf + strlen ("Tgid:"), NULL, 10);
              break;
              break;
            }
            }
        }
        }
 
 
      fclose (status_file);
      fclose (status_file);
    }
    }
 
 
  return tgid;
  return tgid;
}
}
 
 
/* Detect `T (stopped)' in `/proc/PID/status'.
/* Detect `T (stopped)' in `/proc/PID/status'.
   Other states including `T (tracing stop)' are reported as false.  */
   Other states including `T (tracing stop)' are reported as false.  */
 
 
static int
static int
pid_is_stopped (pid_t pid)
pid_is_stopped (pid_t pid)
{
{
  FILE *status_file;
  FILE *status_file;
  char buf[100];
  char buf[100];
  int retval = 0;
  int retval = 0;
 
 
  snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
  snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
  status_file = fopen (buf, "r");
  status_file = fopen (buf, "r");
  if (status_file != NULL)
  if (status_file != NULL)
    {
    {
      int have_state = 0;
      int have_state = 0;
 
 
      while (fgets (buf, sizeof (buf), status_file))
      while (fgets (buf, sizeof (buf), status_file))
        {
        {
          if (strncmp (buf, "State:", 6) == 0)
          if (strncmp (buf, "State:", 6) == 0)
            {
            {
              have_state = 1;
              have_state = 1;
              break;
              break;
            }
            }
        }
        }
      if (have_state && strstr (buf, "T (stopped)") != NULL)
      if (have_state && strstr (buf, "T (stopped)") != NULL)
        retval = 1;
        retval = 1;
      fclose (status_file);
      fclose (status_file);
    }
    }
  return retval;
  return retval;
}
}
 
 
/* Wait for the LWP specified by LP, which we have just attached to.
/* Wait for the LWP specified by LP, which we have just attached to.
   Returns a wait status for that LWP, to cache.  */
   Returns a wait status for that LWP, to cache.  */
 
 
static int
static int
linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
                            int *signalled)
                            int *signalled)
{
{
  pid_t new_pid, pid = GET_LWP (ptid);
  pid_t new_pid, pid = GET_LWP (ptid);
  int status;
  int status;
 
 
  if (pid_is_stopped (pid))
  if (pid_is_stopped (pid))
    {
    {
      if (debug_linux_nat)
      if (debug_linux_nat)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "LNPAW: Attaching to a stopped process\n");
                            "LNPAW: Attaching to a stopped process\n");
 
 
      /* The process is definitely stopped.  It is in a job control
      /* The process is definitely stopped.  It is in a job control
         stop, unless the kernel predates the TASK_STOPPED /
         stop, unless the kernel predates the TASK_STOPPED /
         TASK_TRACED distinction, in which case it might be in a
         TASK_TRACED distinction, in which case it might be in a
         ptrace stop.  Make sure it is in a ptrace stop; from there we
         ptrace stop.  Make sure it is in a ptrace stop; from there we
         can kill it, signal it, et cetera.
         can kill it, signal it, et cetera.
 
 
         First make sure there is a pending SIGSTOP.  Since we are
         First make sure there is a pending SIGSTOP.  Since we are
         already attached, the process can not transition from stopped
         already attached, the process can not transition from stopped
         to running without a PTRACE_CONT; so we know this signal will
         to running without a PTRACE_CONT; so we know this signal will
         go into the queue.  The SIGSTOP generated by PTRACE_ATTACH is
         go into the queue.  The SIGSTOP generated by PTRACE_ATTACH is
         probably already in the queue (unless this kernel is old
         probably already in the queue (unless this kernel is old
         enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
         enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
         is not an RT signal, it can only be queued once.  */
         is not an RT signal, it can only be queued once.  */
      kill_lwp (pid, SIGSTOP);
      kill_lwp (pid, SIGSTOP);
 
 
      /* Finally, resume the stopped process.  This will deliver the SIGSTOP
      /* Finally, resume the stopped process.  This will deliver the SIGSTOP
         (or a higher priority signal, just like normal PTRACE_ATTACH).  */
         (or a higher priority signal, just like normal PTRACE_ATTACH).  */
      ptrace (PTRACE_CONT, pid, 0, 0);
      ptrace (PTRACE_CONT, pid, 0, 0);
    }
    }
 
 
  /* Make sure the initial process is stopped.  The user-level threads
  /* Make sure the initial process is stopped.  The user-level threads
     layer might want to poke around in the inferior, and that won't
     layer might want to poke around in the inferior, and that won't
     work if things haven't stabilized yet.  */
     work if things haven't stabilized yet.  */
  new_pid = my_waitpid (pid, &status, 0);
  new_pid = my_waitpid (pid, &status, 0);
  if (new_pid == -1 && errno == ECHILD)
  if (new_pid == -1 && errno == ECHILD)
    {
    {
      if (first)
      if (first)
        warning (_("%s is a cloned process"), target_pid_to_str (ptid));
        warning (_("%s is a cloned process"), target_pid_to_str (ptid));
 
 
      /* Try again with __WCLONE to check cloned processes.  */
      /* Try again with __WCLONE to check cloned processes.  */
      new_pid = my_waitpid (pid, &status, __WCLONE);
      new_pid = my_waitpid (pid, &status, __WCLONE);
      *cloned = 1;
      *cloned = 1;
    }
    }
 
 
  gdb_assert (pid == new_pid);
  gdb_assert (pid == new_pid);
 
 
  if (!WIFSTOPPED (status))
  if (!WIFSTOPPED (status))
    {
    {
      /* The pid we tried to attach has apparently just exited.  */
      /* The pid we tried to attach has apparently just exited.  */
      if (debug_linux_nat)
      if (debug_linux_nat)
        fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
        fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
                            pid, status_to_str (status));
                            pid, status_to_str (status));
      return status;
      return status;
    }
    }
 
 
  if (WSTOPSIG (status) != SIGSTOP)
  if (WSTOPSIG (status) != SIGSTOP)
    {
    {
      *signalled = 1;
      *signalled = 1;
      if (debug_linux_nat)
      if (debug_linux_nat)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "LNPAW: Received %s after attaching\n",
                            "LNPAW: Received %s after attaching\n",
                            status_to_str (status));
                            status_to_str (status));
    }
    }
 
 
  return status;
  return status;
}
}
 
 
/* Attach to the LWP specified by PID.  Return 0 if successful or -1
/* Attach to the LWP specified by PID.  Return 0 if successful or -1
   if the new LWP could not be attached.  */
   if the new LWP could not be attached.  */
 
 
int
int
lin_lwp_attach_lwp (ptid_t ptid)
lin_lwp_attach_lwp (ptid_t ptid)
{
{
  struct lwp_info *lp;
  struct lwp_info *lp;
  sigset_t prev_mask;
  sigset_t prev_mask;
 
 
  gdb_assert (is_lwp (ptid));
  gdb_assert (is_lwp (ptid));
 
 
  block_child_signals (&prev_mask);
  block_child_signals (&prev_mask);
 
 
  lp = find_lwp_pid (ptid);
  lp = find_lwp_pid (ptid);
 
 
  /* We assume that we're already attached to any LWP that has an id
  /* We assume that we're already attached to any LWP that has an id
     equal to the overall process id, and to any LWP that is already
     equal to the overall process id, and to any LWP that is already
     in our list of LWPs.  If we're not seeing exit events from threads
     in our list of LWPs.  If we're not seeing exit events from threads
     and we've had PID wraparound since we last tried to stop all threads,
     and we've had PID wraparound since we last tried to stop all threads,
     this assumption might be wrong; fortunately, this is very unlikely
     this assumption might be wrong; fortunately, this is very unlikely
     to happen.  */
     to happen.  */
  if (GET_LWP (ptid) != GET_PID (ptid) && lp == NULL)
  if (GET_LWP (ptid) != GET_PID (ptid) && lp == NULL)
    {
    {
      int status, cloned = 0, signalled = 0;
      int status, cloned = 0, signalled = 0;
 
 
      if (ptrace (PTRACE_ATTACH, GET_LWP (ptid), 0, 0) < 0)
      if (ptrace (PTRACE_ATTACH, GET_LWP (ptid), 0, 0) < 0)
        {
        {
          /* If we fail to attach to the thread, issue a warning,
          /* If we fail to attach to the thread, issue a warning,
             but continue.  One way this can happen is if thread
             but continue.  One way this can happen is if thread
             creation is interrupted; as of Linux kernel 2.6.19, a
             creation is interrupted; as of Linux kernel 2.6.19, a
             bug may place threads in the thread list and then fail
             bug may place threads in the thread list and then fail
             to create them.  */
             to create them.  */
          warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
          warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
                   safe_strerror (errno));
                   safe_strerror (errno));
          restore_child_signals_mask (&prev_mask);
          restore_child_signals_mask (&prev_mask);
          return -1;
          return -1;
        }
        }
 
 
      if (debug_linux_nat)
      if (debug_linux_nat)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
                            "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
                            target_pid_to_str (ptid));
                            target_pid_to_str (ptid));
 
 
      status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
      status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
      if (!WIFSTOPPED (status))
      if (!WIFSTOPPED (status))
        return -1;
        return -1;
 
 
      lp = add_lwp (ptid);
      lp = add_lwp (ptid);
      lp->stopped = 1;
      lp->stopped = 1;
      lp->cloned = cloned;
      lp->cloned = cloned;
      lp->signalled = signalled;
      lp->signalled = signalled;
      if (WSTOPSIG (status) != SIGSTOP)
      if (WSTOPSIG (status) != SIGSTOP)
        {
        {
          lp->resumed = 1;
          lp->resumed = 1;
          lp->status = status;
          lp->status = status;
        }
        }
 
 
      target_post_attach (GET_LWP (lp->ptid));
      target_post_attach (GET_LWP (lp->ptid));
 
 
      if (debug_linux_nat)
      if (debug_linux_nat)
        {
        {
          fprintf_unfiltered (gdb_stdlog,
          fprintf_unfiltered (gdb_stdlog,
                              "LLAL: waitpid %s received %s\n",
                              "LLAL: waitpid %s received %s\n",
                              target_pid_to_str (ptid),
                              target_pid_to_str (ptid),
                              status_to_str (status));
                              status_to_str (status));
        }
        }
    }
    }
  else
  else
    {
    {
      /* We assume that the LWP representing the original process is
      /* We assume that the LWP representing the original process is
         already stopped.  Mark it as stopped in the data structure
         already stopped.  Mark it as stopped in the data structure
         that the GNU/linux ptrace layer uses to keep track of
         that the GNU/linux ptrace layer uses to keep track of
         threads.  Note that this won't have already been done since
         threads.  Note that this won't have already been done since
         the main thread will have, we assume, been stopped by an
         the main thread will have, we assume, been stopped by an
         attach from a different layer.  */
         attach from a different layer.  */
      if (lp == NULL)
      if (lp == NULL)
        lp = add_lwp (ptid);
        lp = add_lwp (ptid);
      lp->stopped = 1;
      lp->stopped = 1;
    }
    }
 
 
  restore_child_signals_mask (&prev_mask);
  restore_child_signals_mask (&prev_mask);
  return 0;
  return 0;
}
}
 
 
static void
static void
linux_nat_create_inferior (struct target_ops *ops,
linux_nat_create_inferior (struct target_ops *ops,
                           char *exec_file, char *allargs, char **env,
                           char *exec_file, char *allargs, char **env,
                           int from_tty)
                           int from_tty)
{
{
#ifdef HAVE_PERSONALITY
#ifdef HAVE_PERSONALITY
  int personality_orig = 0, personality_set = 0;
  int personality_orig = 0, personality_set = 0;
#endif /* HAVE_PERSONALITY */
#endif /* HAVE_PERSONALITY */
 
 
  /* The fork_child mechanism is synchronous and calls target_wait, so
  /* The fork_child mechanism is synchronous and calls target_wait, so
     we have to mask the async mode.  */
     we have to mask the async mode.  */
 
 
#ifdef HAVE_PERSONALITY
#ifdef HAVE_PERSONALITY
  if (disable_randomization)
  if (disable_randomization)
    {
    {
      errno = 0;
      errno = 0;
      personality_orig = personality (0xffffffff);
      personality_orig = personality (0xffffffff);
      if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
      if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
        {
        {
          personality_set = 1;
          personality_set = 1;
          personality (personality_orig | ADDR_NO_RANDOMIZE);
          personality (personality_orig | ADDR_NO_RANDOMIZE);
        }
        }
      if (errno != 0 || (personality_set
      if (errno != 0 || (personality_set
                         && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
                         && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
        warning (_("Error disabling address space randomization: %s"),
        warning (_("Error disabling address space randomization: %s"),
                 safe_strerror (errno));
                 safe_strerror (errno));
    }
    }
#endif /* HAVE_PERSONALITY */
#endif /* HAVE_PERSONALITY */
 
 
  linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
  linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
 
 
#ifdef HAVE_PERSONALITY
#ifdef HAVE_PERSONALITY
  if (personality_set)
  if (personality_set)
    {
    {
      errno = 0;
      errno = 0;
      personality (personality_orig);
      personality (personality_orig);
      if (errno != 0)
      if (errno != 0)
        warning (_("Error restoring address space randomization: %s"),
        warning (_("Error restoring address space randomization: %s"),
                 safe_strerror (errno));
                 safe_strerror (errno));
    }
    }
#endif /* HAVE_PERSONALITY */
#endif /* HAVE_PERSONALITY */
}
}
 
 
static void
static void
linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
{
{
  struct lwp_info *lp;
  struct lwp_info *lp;
  int status;
  int status;
  ptid_t ptid;
  ptid_t ptid;
 
 
  linux_ops->to_attach (ops, args, from_tty);
  linux_ops->to_attach (ops, args, from_tty);
 
 
  /* The ptrace base target adds the main thread with (pid,0,0)
  /* The ptrace base target adds the main thread with (pid,0,0)
     format.  Decorate it with lwp info.  */
     format.  Decorate it with lwp info.  */
  ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
  ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
  thread_change_ptid (inferior_ptid, ptid);
  thread_change_ptid (inferior_ptid, ptid);
 
 
  /* Add the initial process as the first LWP to the list.  */
  /* Add the initial process as the first LWP to the list.  */
  lp = add_lwp (ptid);
  lp = add_lwp (ptid);
 
 
  status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
  status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
                                       &lp->signalled);
                                       &lp->signalled);
  if (!WIFSTOPPED (status))
  if (!WIFSTOPPED (status))
    {
    {
      if (WIFEXITED (status))
      if (WIFEXITED (status))
        {
        {
          int exit_code = WEXITSTATUS (status);
          int exit_code = WEXITSTATUS (status);
 
 
          target_terminal_ours ();
          target_terminal_ours ();
          target_mourn_inferior ();
          target_mourn_inferior ();
          if (exit_code == 0)
          if (exit_code == 0)
            error (_("Unable to attach: program exited normally."));
            error (_("Unable to attach: program exited normally."));
          else
          else
            error (_("Unable to attach: program exited with code %d."),
            error (_("Unable to attach: program exited with code %d."),
                   exit_code);
                   exit_code);
        }
        }
      else if (WIFSIGNALED (status))
      else if (WIFSIGNALED (status))
        {
        {
          enum target_signal signo;
          enum target_signal signo;
 
 
          target_terminal_ours ();
          target_terminal_ours ();
          target_mourn_inferior ();
          target_mourn_inferior ();
 
 
          signo = target_signal_from_host (WTERMSIG (status));
          signo = target_signal_from_host (WTERMSIG (status));
          error (_("Unable to attach: program terminated with signal "
          error (_("Unable to attach: program terminated with signal "
                   "%s, %s."),
                   "%s, %s."),
                 target_signal_to_name (signo),
                 target_signal_to_name (signo),
                 target_signal_to_string (signo));
                 target_signal_to_string (signo));
        }
        }
 
 
      internal_error (__FILE__, __LINE__,
      internal_error (__FILE__, __LINE__,
                      _("unexpected status %d for PID %ld"),
                      _("unexpected status %d for PID %ld"),
                      status, (long) GET_LWP (ptid));
                      status, (long) GET_LWP (ptid));
    }
    }
 
 
  lp->stopped = 1;
  lp->stopped = 1;
 
 
  /* Save the wait status to report later.  */
  /* Save the wait status to report later.  */
  lp->resumed = 1;
  lp->resumed = 1;
  if (debug_linux_nat)
  if (debug_linux_nat)
    fprintf_unfiltered (gdb_stdlog,
    fprintf_unfiltered (gdb_stdlog,
                        "LNA: waitpid %ld, saving status %s\n",
                        "LNA: waitpid %ld, saving status %s\n",
                        (long) GET_PID (lp->ptid), status_to_str (status));
                        (long) GET_PID (lp->ptid), status_to_str (status));
 
 
  lp->status = status;
  lp->status = status;
 
 
  if (target_can_async_p ())
  if (target_can_async_p ())
    target_async (inferior_event_handler, 0);
    target_async (inferior_event_handler, 0);
}
}
 
 
/* Get pending status of LP.  */
/* Get pending status of LP.  */
static int
static int
get_pending_status (struct lwp_info *lp, int *status)
get_pending_status (struct lwp_info *lp, int *status)
{
{
  enum target_signal signo = TARGET_SIGNAL_0;
  enum target_signal signo = TARGET_SIGNAL_0;
 
 
  /* If we paused threads momentarily, we may have stored pending
  /* If we paused threads momentarily, we may have stored pending
     events in lp->status or lp->waitstatus (see stop_wait_callback),
     events in lp->status or lp->waitstatus (see stop_wait_callback),
     and GDB core hasn't seen any signal for those threads.
     and GDB core hasn't seen any signal for those threads.
     Otherwise, the last signal reported to the core is found in the
     Otherwise, the last signal reported to the core is found in the
     thread object's stop_signal.
     thread object's stop_signal.
 
 
     There's a corner case that isn't handled here at present.  Only
     There's a corner case that isn't handled here at present.  Only
     if the thread stopped with a TARGET_WAITKIND_STOPPED does
     if the thread stopped with a TARGET_WAITKIND_STOPPED does
     stop_signal make sense as a real signal to pass to the inferior.
     stop_signal make sense as a real signal to pass to the inferior.
     Some catchpoint related events, like
     Some catchpoint related events, like
     TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
     TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
     to TARGET_SIGNAL_SIGTRAP when the catchpoint triggers.  But,
     to TARGET_SIGNAL_SIGTRAP when the catchpoint triggers.  But,
     those traps are debug API (ptrace in our case) related and
     those traps are debug API (ptrace in our case) related and
     induced; the inferior wouldn't see them if it wasn't being
     induced; the inferior wouldn't see them if it wasn't being
     traced.  Hence, we should never pass them to the inferior, even
     traced.  Hence, we should never pass them to the inferior, even
     when set to pass state.  Since this corner case isn't handled by
     when set to pass state.  Since this corner case isn't handled by
     infrun.c when proceeding with a signal, for consistency, neither
     infrun.c when proceeding with a signal, for consistency, neither
     do we handle it here (or elsewhere in the file we check for
     do we handle it here (or elsewhere in the file we check for
     signal pass state).  Normally SIGTRAP isn't set to pass state, so
     signal pass state).  Normally SIGTRAP isn't set to pass state, so
     this is really a corner case.  */
     this is really a corner case.  */
 
 
  if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
  if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
    signo = TARGET_SIGNAL_0; /* a pending ptrace event, not a real signal.  */
    signo = TARGET_SIGNAL_0; /* a pending ptrace event, not a real signal.  */
  else if (lp->status)
  else if (lp->status)
    signo = target_signal_from_host (WSTOPSIG (lp->status));
    signo = target_signal_from_host (WSTOPSIG (lp->status));
  else if (non_stop && !is_executing (lp->ptid))
  else if (non_stop && !is_executing (lp->ptid))
    {
    {
      struct thread_info *tp = find_thread_ptid (lp->ptid);
      struct thread_info *tp = find_thread_ptid (lp->ptid);
      signo = tp->stop_signal;
      signo = tp->stop_signal;
    }
    }
  else if (!non_stop)
  else if (!non_stop)
    {
    {
      struct target_waitstatus last;
      struct target_waitstatus last;
      ptid_t last_ptid;
      ptid_t last_ptid;
 
 
      get_last_target_status (&last_ptid, &last);
      get_last_target_status (&last_ptid, &last);
 
 
      if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
      if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
        {
        {
          struct thread_info *tp = find_thread_ptid (lp->ptid);
          struct thread_info *tp = find_thread_ptid (lp->ptid);
          signo = tp->stop_signal;
          signo = tp->stop_signal;
        }
        }
    }
    }
 
 
  *status = 0;
  *status = 0;
 
 
  if (signo == TARGET_SIGNAL_0)
  if (signo == TARGET_SIGNAL_0)
    {
    {
      if (debug_linux_nat)
      if (debug_linux_nat)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "GPT: lwp %s has no pending signal\n",
                            "GPT: lwp %s has no pending signal\n",
                            target_pid_to_str (lp->ptid));
                            target_pid_to_str (lp->ptid));
    }
    }
  else if (!signal_pass_state (signo))
  else if (!signal_pass_state (signo))
    {
    {
      if (debug_linux_nat)
      if (debug_linux_nat)
        fprintf_unfiltered (gdb_stdlog, "\
        fprintf_unfiltered (gdb_stdlog, "\
GPT: lwp %s had signal %s, but it is in no pass state\n",
GPT: lwp %s had signal %s, but it is in no pass state\n",
                            target_pid_to_str (lp->ptid),
                            target_pid_to_str (lp->ptid),
                            target_signal_to_string (signo));
                            target_signal_to_string (signo));
    }
    }
  else
  else
    {
    {
      *status = W_STOPCODE (target_signal_to_host (signo));
      *status = W_STOPCODE (target_signal_to_host (signo));
 
 
      if (debug_linux_nat)
      if (debug_linux_nat)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "GPT: lwp %s has pending signal %s\n",
                            "GPT: lwp %s has pending signal %s\n",
                            target_pid_to_str (lp->ptid),
                            target_pid_to_str (lp->ptid),
                            target_signal_to_string (signo));
                            target_signal_to_string (signo));
    }
    }
 
 
  return 0;
  return 0;
}
}
 
 
static int
static int
detach_callback (struct lwp_info *lp, void *data)
detach_callback (struct lwp_info *lp, void *data)
{
{
  gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
  gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
 
 
  if (debug_linux_nat && lp->status)
  if (debug_linux_nat && lp->status)
    fprintf_unfiltered (gdb_stdlog, "DC:  Pending %s for %s on detach.\n",
    fprintf_unfiltered (gdb_stdlog, "DC:  Pending %s for %s on detach.\n",
                        strsignal (WSTOPSIG (lp->status)),
                        strsignal (WSTOPSIG (lp->status)),
                        target_pid_to_str (lp->ptid));
                        target_pid_to_str (lp->ptid));
 
 
  /* If there is a pending SIGSTOP, get rid of it.  */
  /* If there is a pending SIGSTOP, get rid of it.  */
  if (lp->signalled)
  if (lp->signalled)
    {
    {
      if (debug_linux_nat)
      if (debug_linux_nat)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "DC: Sending SIGCONT to %s\n",
                            "DC: Sending SIGCONT to %s\n",
                            target_pid_to_str (lp->ptid));
                            target_pid_to_str (lp->ptid));
 
 
      kill_lwp (GET_LWP (lp->ptid), SIGCONT);
      kill_lwp (GET_LWP (lp->ptid), SIGCONT);
      lp->signalled = 0;
      lp->signalled = 0;
    }
    }
 
 
  /* We don't actually detach from the LWP that has an id equal to the
  /* We don't actually detach from the LWP that has an id equal to the
     overall process id just yet.  */
     overall process id just yet.  */
  if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
  if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
    {
    {
      int status = 0;
      int status = 0;
 
 
      /* Pass on any pending signal for this LWP.  */
      /* Pass on any pending signal for this LWP.  */
      get_pending_status (lp, &status);
      get_pending_status (lp, &status);
 
 
      errno = 0;
      errno = 0;
      if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
      if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
                  WSTOPSIG (status)) < 0)
                  WSTOPSIG (status)) < 0)
        error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
        error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
               safe_strerror (errno));
               safe_strerror (errno));
 
 
      if (debug_linux_nat)
      if (debug_linux_nat)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "PTRACE_DETACH (%s, %s, 0) (OK)\n",
                            "PTRACE_DETACH (%s, %s, 0) (OK)\n",
                            target_pid_to_str (lp->ptid),
                            target_pid_to_str (lp->ptid),
                            strsignal (WSTOPSIG (status)));
                            strsignal (WSTOPSIG (status)));
 
 
      delete_lwp (lp->ptid);
      delete_lwp (lp->ptid);
    }
    }
 
 
  return 0;
  return 0;
}
}
 
 
static void
static void
linux_nat_detach (struct target_ops *ops, char *args, int from_tty)
linux_nat_detach (struct target_ops *ops, char *args, int from_tty)
{
{
  int pid;
  int pid;
  int status;
  int status;
  enum target_signal sig;
  enum target_signal sig;
  struct lwp_info *main_lwp;
  struct lwp_info *main_lwp;
 
 
  pid = GET_PID (inferior_ptid);
  pid = GET_PID (inferior_ptid);
 
 
  if (target_can_async_p ())
  if (target_can_async_p ())
    linux_nat_async (NULL, 0);
    linux_nat_async (NULL, 0);
 
 
  /* Stop all threads before detaching.  ptrace requires that the
  /* Stop all threads before detaching.  ptrace requires that the
     thread is stopped to sucessfully detach.  */
     thread is stopped to sucessfully detach.  */
  iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
  iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
  /* ... and wait until all of them have reported back that
  /* ... and wait until all of them have reported back that
     they're no longer running.  */
     they're no longer running.  */
  iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
  iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
 
 
  iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
  iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
 
 
  /* Only the initial process should be left right now.  */
  /* Only the initial process should be left right now.  */
  gdb_assert (num_lwps (GET_PID (inferior_ptid)) == 1);
  gdb_assert (num_lwps (GET_PID (inferior_ptid)) == 1);
 
 
  main_lwp = find_lwp_pid (pid_to_ptid (pid));
  main_lwp = find_lwp_pid (pid_to_ptid (pid));
 
 
  /* Pass on any pending signal for the last LWP.  */
  /* Pass on any pending signal for the last LWP.  */
  if ((args == NULL || *args == '\0')
  if ((args == NULL || *args == '\0')
      && get_pending_status (main_lwp, &status) != -1
      && get_pending_status (main_lwp, &status) != -1
      && WIFSTOPPED (status))
      && WIFSTOPPED (status))
    {
    {
      /* Put the signal number in ARGS so that inf_ptrace_detach will
      /* Put the signal number in ARGS so that inf_ptrace_detach will
         pass it along with PTRACE_DETACH.  */
         pass it along with PTRACE_DETACH.  */
      args = alloca (8);
      args = alloca (8);
      sprintf (args, "%d", (int) WSTOPSIG (status));
      sprintf (args, "%d", (int) WSTOPSIG (status));
      if (debug_linux_nat)
      if (debug_linux_nat)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "LND: Sending signal %s to %s\n",
                            "LND: Sending signal %s to %s\n",
                            args,
                            args,
                            target_pid_to_str (main_lwp->ptid));
                            target_pid_to_str (main_lwp->ptid));
    }
    }
 
 
  delete_lwp (main_lwp->ptid);
  delete_lwp (main_lwp->ptid);
 
 
  if (forks_exist_p ())
  if (forks_exist_p ())
    {
    {
      /* Multi-fork case.  The current inferior_ptid is being detached
      /* Multi-fork case.  The current inferior_ptid is being detached
         from, but there are other viable forks to debug.  Detach from
         from, but there are other viable forks to debug.  Detach from
         the current fork, and context-switch to the first
         the current fork, and context-switch to the first
         available.  */
         available.  */
      linux_fork_detach (args, from_tty);
      linux_fork_detach (args, from_tty);
 
 
      if (non_stop && target_can_async_p ())
      if (non_stop && target_can_async_p ())
        target_async (inferior_event_handler, 0);
        target_async (inferior_event_handler, 0);
    }
    }
  else
  else
    linux_ops->to_detach (ops, args, from_tty);
    linux_ops->to_detach (ops, args, from_tty);
}
}
 
 
/* Resume LP.  */
/* Resume LP.  */
 
 
static int
static int
resume_callback (struct lwp_info *lp, void *data)
resume_callback (struct lwp_info *lp, void *data)
{
{
  struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
  struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
 
 
  if (lp->stopped && inf->vfork_child != NULL)
  if (lp->stopped && inf->vfork_child != NULL)
    {
    {
      if (debug_linux_nat)
      if (debug_linux_nat)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "RC: Not resuming %s (vfork parent)\n",
                            "RC: Not resuming %s (vfork parent)\n",
                            target_pid_to_str (lp->ptid));
                            target_pid_to_str (lp->ptid));
    }
    }
  else if (lp->stopped && lp->status == 0)
  else if (lp->stopped && lp->status == 0)
    {
    {
      if (debug_linux_nat)
      if (debug_linux_nat)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "RC:  PTRACE_CONT %s, 0, 0 (resuming sibling)\n",
                            "RC:  PTRACE_CONT %s, 0, 0 (resuming sibling)\n",
                            target_pid_to_str (lp->ptid));
                            target_pid_to_str (lp->ptid));
 
 
      linux_ops->to_resume (linux_ops,
      linux_ops->to_resume (linux_ops,
                            pid_to_ptid (GET_LWP (lp->ptid)),
                            pid_to_ptid (GET_LWP (lp->ptid)),
                            0, TARGET_SIGNAL_0);
                            0, TARGET_SIGNAL_0);
      if (debug_linux_nat)
      if (debug_linux_nat)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "RC:  PTRACE_CONT %s, 0, 0 (resume sibling)\n",
                            "RC:  PTRACE_CONT %s, 0, 0 (resume sibling)\n",
                            target_pid_to_str (lp->ptid));
                            target_pid_to_str (lp->ptid));
      lp->stopped = 0;
      lp->stopped = 0;
      lp->step = 0;
      lp->step = 0;
      memset (&lp->siginfo, 0, sizeof (lp->siginfo));
      memset (&lp->siginfo, 0, sizeof (lp->siginfo));
      lp->stopped_by_watchpoint = 0;
      lp->stopped_by_watchpoint = 0;
    }
    }
  else if (lp->stopped && debug_linux_nat)
  else if (lp->stopped && debug_linux_nat)
    fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (has pending)\n",
    fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (has pending)\n",
                        target_pid_to_str (lp->ptid));
                        target_pid_to_str (lp->ptid));
  else if (debug_linux_nat)
  else if (debug_linux_nat)
    fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (not stopped)\n",
    fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (not stopped)\n",
                        target_pid_to_str (lp->ptid));
                        target_pid_to_str (lp->ptid));
 
 
  return 0;
  return 0;
}
}
 
 
static int
static int
resume_clear_callback (struct lwp_info *lp, void *data)
resume_clear_callback (struct lwp_info *lp, void *data)
{
{
  lp->resumed = 0;
  lp->resumed = 0;
  return 0;
  return 0;
}
}
 
 
static int
static int
resume_set_callback (struct lwp_info *lp, void *data)
resume_set_callback (struct lwp_info *lp, void *data)
{
{
  lp->resumed = 1;
  lp->resumed = 1;
  return 0;
  return 0;
}
}
 
 
static void
static void
linux_nat_resume (struct target_ops *ops,
linux_nat_resume (struct target_ops *ops,
                  ptid_t ptid, int step, enum target_signal signo)
                  ptid_t ptid, int step, enum target_signal signo)
{
{
  sigset_t prev_mask;
  sigset_t prev_mask;
  struct lwp_info *lp;
  struct lwp_info *lp;
  int resume_many;
  int resume_many;
 
 
  if (debug_linux_nat)
  if (debug_linux_nat)
    fprintf_unfiltered (gdb_stdlog,
    fprintf_unfiltered (gdb_stdlog,
                        "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
                        "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
                        step ? "step" : "resume",
                        step ? "step" : "resume",
                        target_pid_to_str (ptid),
                        target_pid_to_str (ptid),
                        signo ? strsignal (signo) : "0",
                        signo ? strsignal (signo) : "0",
                        target_pid_to_str (inferior_ptid));
                        target_pid_to_str (inferior_ptid));
 
 
  block_child_signals (&prev_mask);
  block_child_signals (&prev_mask);
 
 
  /* A specific PTID means `step only this process id'.  */
  /* A specific PTID means `step only this process id'.  */
  resume_many = (ptid_equal (minus_one_ptid, ptid)
  resume_many = (ptid_equal (minus_one_ptid, ptid)
                 || ptid_is_pid (ptid));
                 || ptid_is_pid (ptid));
 
 
  /* Mark the lwps we're resuming as resumed.  */
  /* Mark the lwps we're resuming as resumed.  */
  iterate_over_lwps (ptid, resume_set_callback, NULL);
  iterate_over_lwps (ptid, resume_set_callback, NULL);
 
 
  /* See if it's the current inferior that should be handled
  /* See if it's the current inferior that should be handled
     specially.  */
     specially.  */
  if (resume_many)
  if (resume_many)
    lp = find_lwp_pid (inferior_ptid);
    lp = find_lwp_pid (inferior_ptid);
  else
  else
    lp = find_lwp_pid (ptid);
    lp = find_lwp_pid (ptid);
  gdb_assert (lp != NULL);
  gdb_assert (lp != NULL);
 
 
  /* Remember if we're stepping.  */
  /* Remember if we're stepping.  */
  lp->step = step;
  lp->step = step;
 
 
  /* If we have a pending wait status for this thread, there is no
  /* If we have a pending wait status for this thread, there is no
     point in resuming the process.  But first make sure that
     point in resuming the process.  But first make sure that
     linux_nat_wait won't preemptively handle the event - we
     linux_nat_wait won't preemptively handle the event - we
     should never take this short-circuit if we are going to
     should never take this short-circuit if we are going to
     leave LP running, since we have skipped resuming all the
     leave LP running, since we have skipped resuming all the
     other threads.  This bit of code needs to be synchronized
     other threads.  This bit of code needs to be synchronized
     with linux_nat_wait.  */
     with linux_nat_wait.  */
 
 
  if (lp->status && WIFSTOPPED (lp->status))
  if (lp->status && WIFSTOPPED (lp->status))
    {
    {
      int saved_signo;
      int saved_signo;
      struct inferior *inf;
      struct inferior *inf;
 
 
      inf = find_inferior_pid (ptid_get_pid (lp->ptid));
      inf = find_inferior_pid (ptid_get_pid (lp->ptid));
      gdb_assert (inf);
      gdb_assert (inf);
      saved_signo = target_signal_from_host (WSTOPSIG (lp->status));
      saved_signo = target_signal_from_host (WSTOPSIG (lp->status));
 
 
      /* Defer to common code if we're gaining control of the
      /* Defer to common code if we're gaining control of the
         inferior.  */
         inferior.  */
      if (inf->stop_soon == NO_STOP_QUIETLY
      if (inf->stop_soon == NO_STOP_QUIETLY
          && signal_stop_state (saved_signo) == 0
          && signal_stop_state (saved_signo) == 0
          && signal_print_state (saved_signo) == 0
          && signal_print_state (saved_signo) == 0
          && signal_pass_state (saved_signo) == 1)
          && signal_pass_state (saved_signo) == 1)
        {
        {
          if (debug_linux_nat)
          if (debug_linux_nat)
            fprintf_unfiltered (gdb_stdlog,
            fprintf_unfiltered (gdb_stdlog,
                                "LLR: Not short circuiting for ignored "
                                "LLR: Not short circuiting for ignored "
                                "status 0x%x\n", lp->status);
                                "status 0x%x\n", lp->status);
 
 
          /* FIXME: What should we do if we are supposed to continue
          /* FIXME: What should we do if we are supposed to continue
             this thread with a signal?  */
             this thread with a signal?  */
          gdb_assert (signo == TARGET_SIGNAL_0);
          gdb_assert (signo == TARGET_SIGNAL_0);
          signo = saved_signo;
          signo = saved_signo;
          lp->status = 0;
          lp->status = 0;
        }
        }
    }
    }
 
 
  if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
  if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
    {
    {
      /* FIXME: What should we do if we are supposed to continue
      /* FIXME: What should we do if we are supposed to continue
         this thread with a signal?  */
         this thread with a signal?  */
      gdb_assert (signo == TARGET_SIGNAL_0);
      gdb_assert (signo == TARGET_SIGNAL_0);
 
 
      if (debug_linux_nat)
      if (debug_linux_nat)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "LLR: Short circuiting for status 0x%x\n",
                            "LLR: Short circuiting for status 0x%x\n",
                            lp->status);
                            lp->status);
 
 
      restore_child_signals_mask (&prev_mask);
      restore_child_signals_mask (&prev_mask);
      if (target_can_async_p ())
      if (target_can_async_p ())
        {
        {
          target_async (inferior_event_handler, 0);
          target_async (inferior_event_handler, 0);
          /* Tell the event loop we have something to process.  */
          /* Tell the event loop we have something to process.  */
          async_file_mark ();
          async_file_mark ();
        }
        }
      return;
      return;
    }
    }
 
 
  /* Mark LWP as not stopped to prevent it from being continued by
  /* Mark LWP as not stopped to prevent it from being continued by
     resume_callback.  */
     resume_callback.  */
  lp->stopped = 0;
  lp->stopped = 0;
 
 
  if (resume_many)
  if (resume_many)
    iterate_over_lwps (ptid, resume_callback, NULL);
    iterate_over_lwps (ptid, resume_callback, NULL);
 
 
  /* Convert to something the lower layer understands.  */
  /* Convert to something the lower layer understands.  */
  ptid = pid_to_ptid (GET_LWP (lp->ptid));
  ptid = pid_to_ptid (GET_LWP (lp->ptid));
 
 
  linux_ops->to_resume (linux_ops, ptid, step, signo);
  linux_ops->to_resume (linux_ops, ptid, step, signo);
  memset (&lp->siginfo, 0, sizeof (lp->siginfo));
  memset (&lp->siginfo, 0, sizeof (lp->siginfo));
  lp->stopped_by_watchpoint = 0;
  lp->stopped_by_watchpoint = 0;
 
 
  if (debug_linux_nat)
  if (debug_linux_nat)
    fprintf_unfiltered (gdb_stdlog,
    fprintf_unfiltered (gdb_stdlog,
                        "LLR: %s %s, %s (resume event thread)\n",
                        "LLR: %s %s, %s (resume event thread)\n",
                        step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
                        step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
                        target_pid_to_str (ptid),
                        target_pid_to_str (ptid),
                        signo ? strsignal (signo) : "0");
                        signo ? strsignal (signo) : "0");
 
 
  restore_child_signals_mask (&prev_mask);
  restore_child_signals_mask (&prev_mask);
  if (target_can_async_p ())
  if (target_can_async_p ())
    target_async (inferior_event_handler, 0);
    target_async (inferior_event_handler, 0);
}
}
 
 
/* Send a signal to an LWP.  */
/* Send a signal to an LWP.  */
 
 
static int
static int
kill_lwp (int lwpid, int signo)
kill_lwp (int lwpid, int signo)
{
{
  /* Use tkill, if possible, in case we are using nptl threads.  If tkill
  /* Use tkill, if possible, in case we are using nptl threads.  If tkill
     fails, then we are not using nptl threads and we should be using kill.  */
     fails, then we are not using nptl threads and we should be using kill.  */
 
 
#ifdef HAVE_TKILL_SYSCALL
#ifdef HAVE_TKILL_SYSCALL
  {
  {
    static int tkill_failed;
    static int tkill_failed;
 
 
    if (!tkill_failed)
    if (!tkill_failed)
      {
      {
        int ret;
        int ret;
 
 
        errno = 0;
        errno = 0;
        ret = syscall (__NR_tkill, lwpid, signo);
        ret = syscall (__NR_tkill, lwpid, signo);
        if (errno != ENOSYS)
        if (errno != ENOSYS)
          return ret;
          return ret;
        tkill_failed = 1;
        tkill_failed = 1;
      }
      }
  }
  }
#endif
#endif
 
 
  return kill (lwpid, signo);
  return kill (lwpid, signo);
}
}
 
 
/* Handle a GNU/Linux syscall trap wait response.  If we see a syscall
/* Handle a GNU/Linux syscall trap wait response.  If we see a syscall
   event, check if the core is interested in it: if not, ignore the
   event, check if the core is interested in it: if not, ignore the
   event, and keep waiting; otherwise, we need to toggle the LWP's
   event, and keep waiting; otherwise, we need to toggle the LWP's
   syscall entry/exit status, since the ptrace event itself doesn't
   syscall entry/exit status, since the ptrace event itself doesn't
   indicate it, and report the trap to higher layers.  */
   indicate it, and report the trap to higher layers.  */
 
 
static int
static int
linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
{
{
  struct target_waitstatus *ourstatus = &lp->waitstatus;
  struct target_waitstatus *ourstatus = &lp->waitstatus;
  struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
  struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
  int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
  int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
 
 
  if (stopping)
  if (stopping)
    {
    {
      /* If we're stopping threads, there's a SIGSTOP pending, which
      /* If we're stopping threads, there's a SIGSTOP pending, which
         makes it so that the LWP reports an immediate syscall return,
         makes it so that the LWP reports an immediate syscall return,
         followed by the SIGSTOP.  Skip seeing that "return" using
         followed by the SIGSTOP.  Skip seeing that "return" using
         PTRACE_CONT directly, and let stop_wait_callback collect the
         PTRACE_CONT directly, and let stop_wait_callback collect the
         SIGSTOP.  Later when the thread is resumed, a new syscall
         SIGSTOP.  Later when the thread is resumed, a new syscall
         entry event.  If we didn't do this (and returned 0), we'd
         entry event.  If we didn't do this (and returned 0), we'd
         leave a syscall entry pending, and our caller, by using
         leave a syscall entry pending, and our caller, by using
         PTRACE_CONT to collect the SIGSTOP, skips the syscall return
         PTRACE_CONT to collect the SIGSTOP, skips the syscall return
         itself.  Later, when the user re-resumes this LWP, we'd see
         itself.  Later, when the user re-resumes this LWP, we'd see
         another syscall entry event and we'd mistake it for a return.
         another syscall entry event and we'd mistake it for a return.
 
 
         If stop_wait_callback didn't force the SIGSTOP out of the LWP
         If stop_wait_callback didn't force the SIGSTOP out of the LWP
         (leaving immediately with LWP->signalled set, without issuing
         (leaving immediately with LWP->signalled set, without issuing
         a PTRACE_CONT), it would still be problematic to leave this
         a PTRACE_CONT), it would still be problematic to leave this
         syscall enter pending, as later when the thread is resumed,
         syscall enter pending, as later when the thread is resumed,
         it would then see the same syscall exit mentioned above,
         it would then see the same syscall exit mentioned above,
         followed by the delayed SIGSTOP, while the syscall didn't
         followed by the delayed SIGSTOP, while the syscall didn't
         actually get to execute.  It seems it would be even more
         actually get to execute.  It seems it would be even more
         confusing to the user.  */
         confusing to the user.  */
 
 
      if (debug_linux_nat)
      if (debug_linux_nat)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "LHST: ignoring syscall %d "
                            "LHST: ignoring syscall %d "
                            "for LWP %ld (stopping threads), "
                            "for LWP %ld (stopping threads), "
                            "resuming with PTRACE_CONT for SIGSTOP\n",
                            "resuming with PTRACE_CONT for SIGSTOP\n",
                            syscall_number,
                            syscall_number,
                            GET_LWP (lp->ptid));
                            GET_LWP (lp->ptid));
 
 
      lp->syscall_state = TARGET_WAITKIND_IGNORE;
      lp->syscall_state = TARGET_WAITKIND_IGNORE;
      ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
      ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
      return 1;
      return 1;
    }
    }
 
 
  if (catch_syscall_enabled ())
  if (catch_syscall_enabled ())
    {
    {
      /* Always update the entry/return state, even if this particular
      /* Always update the entry/return state, even if this particular
         syscall isn't interesting to the core now.  In async mode,
         syscall isn't interesting to the core now.  In async mode,
         the user could install a new catchpoint for this syscall
         the user could install a new catchpoint for this syscall
         between syscall enter/return, and we'll need to know to
         between syscall enter/return, and we'll need to know to
         report a syscall return if that happens.  */
         report a syscall return if that happens.  */
      lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
      lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
                           ? TARGET_WAITKIND_SYSCALL_RETURN
                           ? TARGET_WAITKIND_SYSCALL_RETURN
                           : TARGET_WAITKIND_SYSCALL_ENTRY);
                           : TARGET_WAITKIND_SYSCALL_ENTRY);
 
 
      if (catching_syscall_number (syscall_number))
      if (catching_syscall_number (syscall_number))
        {
        {
          /* Alright, an event to report.  */
          /* Alright, an event to report.  */
          ourstatus->kind = lp->syscall_state;
          ourstatus->kind = lp->syscall_state;
          ourstatus->value.syscall_number = syscall_number;
          ourstatus->value.syscall_number = syscall_number;
 
 
          if (debug_linux_nat)
          if (debug_linux_nat)
            fprintf_unfiltered (gdb_stdlog,
            fprintf_unfiltered (gdb_stdlog,
                                "LHST: stopping for %s of syscall %d"
                                "LHST: stopping for %s of syscall %d"
                                " for LWP %ld\n",
                                " for LWP %ld\n",
                                lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
                                lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
                                ? "entry" : "return",
                                ? "entry" : "return",
                                syscall_number,
                                syscall_number,
                                GET_LWP (lp->ptid));
                                GET_LWP (lp->ptid));
          return 0;
          return 0;
        }
        }
 
 
      if (debug_linux_nat)
      if (debug_linux_nat)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "LHST: ignoring %s of syscall %d "
                            "LHST: ignoring %s of syscall %d "
                            "for LWP %ld\n",
                            "for LWP %ld\n",
                            lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
                            lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
                            ? "entry" : "return",
                            ? "entry" : "return",
                            syscall_number,
                            syscall_number,
                            GET_LWP (lp->ptid));
                            GET_LWP (lp->ptid));
    }
    }
  else
  else
    {
    {
      /* If we had been syscall tracing, and hence used PT_SYSCALL
      /* If we had been syscall tracing, and hence used PT_SYSCALL
         before on this LWP, it could happen that the user removes all
         before on this LWP, it could happen that the user removes all
         syscall catchpoints before we get to process this event.
         syscall catchpoints before we get to process this event.
         There are two noteworthy issues here:
         There are two noteworthy issues here:
 
 
         - When stopped at a syscall entry event, resuming with
         - When stopped at a syscall entry event, resuming with
           PT_STEP still resumes executing the syscall and reports a
           PT_STEP still resumes executing the syscall and reports a
           syscall return.
           syscall return.
 
 
         - Only PT_SYSCALL catches syscall enters.  If we last
         - Only PT_SYSCALL catches syscall enters.  If we last
           single-stepped this thread, then this event can't be a
           single-stepped this thread, then this event can't be a
           syscall enter.  If we last single-stepped this thread, this
           syscall enter.  If we last single-stepped this thread, this
           has to be a syscall exit.
           has to be a syscall exit.
 
 
         The points above mean that the next resume, be it PT_STEP or
         The points above mean that the next resume, be it PT_STEP or
         PT_CONTINUE, can not trigger a syscall trace event.  */
         PT_CONTINUE, can not trigger a syscall trace event.  */
      if (debug_linux_nat)
      if (debug_linux_nat)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "LHST: caught syscall event with no syscall catchpoints."
                            "LHST: caught syscall event with no syscall catchpoints."
                            " %d for LWP %ld, ignoring\n",
                            " %d for LWP %ld, ignoring\n",
                            syscall_number,
                            syscall_number,
                            GET_LWP (lp->ptid));
                            GET_LWP (lp->ptid));
      lp->syscall_state = TARGET_WAITKIND_IGNORE;
      lp->syscall_state = TARGET_WAITKIND_IGNORE;
    }
    }
 
 
  /* The core isn't interested in this event.  For efficiency, avoid
  /* The core isn't interested in this event.  For efficiency, avoid
     stopping all threads only to have the core resume them all again.
     stopping all threads only to have the core resume them all again.
     Since we're not stopping threads, if we're still syscall tracing
     Since we're not stopping threads, if we're still syscall tracing
     and not stepping, we can't use PTRACE_CONT here, as we'd miss any
     and not stepping, we can't use PTRACE_CONT here, as we'd miss any
     subsequent syscall.  Simply resume using the inf-ptrace layer,
     subsequent syscall.  Simply resume using the inf-ptrace layer,
     which knows when to use PT_SYSCALL or PT_CONTINUE.  */
     which knows when to use PT_SYSCALL or PT_CONTINUE.  */
 
 
  /* Note that gdbarch_get_syscall_number may access registers, hence
  /* Note that gdbarch_get_syscall_number may access registers, hence
     fill a regcache.  */
     fill a regcache.  */
  registers_changed ();
  registers_changed ();
  linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
  linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
                        lp->step, TARGET_SIGNAL_0);
                        lp->step, TARGET_SIGNAL_0);
  return 1;
  return 1;
}
}
 
 
/* Handle a GNU/Linux extended wait response.  If we see a clone
/* Handle a GNU/Linux extended wait response.  If we see a clone
   event, we need to add the new LWP to our list (and not report the
   event, we need to add the new LWP to our list (and not report the
   trap to higher layers).  This function returns non-zero if the
   trap to higher layers).  This function returns non-zero if the
   event should be ignored and we should wait again.  If STOPPING is
   event should be ignored and we should wait again.  If STOPPING is
   true, the new LWP remains stopped, otherwise it is continued.  */
   true, the new LWP remains stopped, otherwise it is continued.  */
 
 
static int
static int
linux_handle_extended_wait (struct lwp_info *lp, int status,
linux_handle_extended_wait (struct lwp_info *lp, int status,
                            int stopping)
                            int stopping)
{
{
  int pid = GET_LWP (lp->ptid);
  int pid = GET_LWP (lp->ptid);
  struct target_waitstatus *ourstatus = &lp->waitstatus;
  struct target_waitstatus *ourstatus = &lp->waitstatus;
  struct lwp_info *new_lp = NULL;
  struct lwp_info *new_lp = NULL;
  int event = status >> 16;
  int event = status >> 16;
 
 
  if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
  if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
      || event == PTRACE_EVENT_CLONE)
      || event == PTRACE_EVENT_CLONE)
    {
    {
      unsigned long new_pid;
      unsigned long new_pid;
      int ret;
      int ret;
 
 
      ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
      ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
 
 
      /* If we haven't already seen the new PID stop, wait for it now.  */
      /* If we haven't already seen the new PID stop, wait for it now.  */
      if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
      if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
        {
        {
          /* The new child has a pending SIGSTOP.  We can't affect it until it
          /* The new child has a pending SIGSTOP.  We can't affect it until it
             hits the SIGSTOP, but we're already attached.  */
             hits the SIGSTOP, but we're already attached.  */
          ret = my_waitpid (new_pid, &status,
          ret = my_waitpid (new_pid, &status,
                            (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
                            (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
          if (ret == -1)
          if (ret == -1)
            perror_with_name (_("waiting for new child"));
            perror_with_name (_("waiting for new child"));
          else if (ret != new_pid)
          else if (ret != new_pid)
            internal_error (__FILE__, __LINE__,
            internal_error (__FILE__, __LINE__,
                            _("wait returned unexpected PID %d"), ret);
                            _("wait returned unexpected PID %d"), ret);
          else if (!WIFSTOPPED (status))
          else if (!WIFSTOPPED (status))
            internal_error (__FILE__, __LINE__,
            internal_error (__FILE__, __LINE__,
                            _("wait returned unexpected status 0x%x"), status);
                            _("wait returned unexpected status 0x%x"), status);
        }
        }
 
 
      ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
      ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
 
 
      if (event == PTRACE_EVENT_FORK
      if (event == PTRACE_EVENT_FORK
          && linux_fork_checkpointing_p (GET_PID (lp->ptid)))
          && linux_fork_checkpointing_p (GET_PID (lp->ptid)))
        {
        {
          struct fork_info *fp;
          struct fork_info *fp;
 
 
          /* Handle checkpointing by linux-fork.c here as a special
          /* Handle checkpointing by linux-fork.c here as a special
             case.  We don't want the follow-fork-mode or 'catch fork'
             case.  We don't want the follow-fork-mode or 'catch fork'
             to interfere with this.  */
             to interfere with this.  */
 
 
          /* This won't actually modify the breakpoint list, but will
          /* This won't actually modify the breakpoint list, but will
             physically remove the breakpoints from the child.  */
             physically remove the breakpoints from the child.  */
          detach_breakpoints (new_pid);
          detach_breakpoints (new_pid);
 
 
          /* Retain child fork in ptrace (stopped) state.  */
          /* Retain child fork in ptrace (stopped) state.  */
          fp = find_fork_pid (new_pid);
          fp = find_fork_pid (new_pid);
          if (!fp)
          if (!fp)
            fp = add_fork (new_pid);
            fp = add_fork (new_pid);
 
 
          /* Report as spurious, so that infrun doesn't want to follow
          /* Report as spurious, so that infrun doesn't want to follow
             this fork.  We're actually doing an infcall in
             this fork.  We're actually doing an infcall in
             linux-fork.c.  */
             linux-fork.c.  */
          ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
          ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
          linux_enable_event_reporting (pid_to_ptid (new_pid));
          linux_enable_event_reporting (pid_to_ptid (new_pid));
 
 
          /* Report the stop to the core.  */
          /* Report the stop to the core.  */
          return 0;
          return 0;
        }
        }
 
 
      if (event == PTRACE_EVENT_FORK)
      if (event == PTRACE_EVENT_FORK)
        ourstatus->kind = TARGET_WAITKIND_FORKED;
        ourstatus->kind = TARGET_WAITKIND_FORKED;
      else if (event == PTRACE_EVENT_VFORK)
      else if (event == PTRACE_EVENT_VFORK)
        ourstatus->kind = TARGET_WAITKIND_VFORKED;
        ourstatus->kind = TARGET_WAITKIND_VFORKED;
      else
      else
        {
        {
          struct cleanup *old_chain;
          struct cleanup *old_chain;
 
 
          ourstatus->kind = TARGET_WAITKIND_IGNORE;
          ourstatus->kind = TARGET_WAITKIND_IGNORE;
          new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (lp->ptid)));
          new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (lp->ptid)));
          new_lp->cloned = 1;
          new_lp->cloned = 1;
          new_lp->stopped = 1;
          new_lp->stopped = 1;
 
 
          if (WSTOPSIG (status) != SIGSTOP)
          if (WSTOPSIG (status) != SIGSTOP)
            {
            {
              /* This can happen if someone starts sending signals to
              /* This can happen if someone starts sending signals to
                 the new thread before it gets a chance to run, which
                 the new thread before it gets a chance to run, which
                 have a lower number than SIGSTOP (e.g. SIGUSR1).
                 have a lower number than SIGSTOP (e.g. SIGUSR1).
                 This is an unlikely case, and harder to handle for
                 This is an unlikely case, and harder to handle for
                 fork / vfork than for clone, so we do not try - but
                 fork / vfork than for clone, so we do not try - but
                 we handle it for clone events here.  We'll send
                 we handle it for clone events here.  We'll send
                 the other signal on to the thread below.  */
                 the other signal on to the thread below.  */
 
 
              new_lp->signalled = 1;
              new_lp->signalled = 1;
            }
            }
          else
          else
            status = 0;
            status = 0;
 
 
          if (non_stop)
          if (non_stop)
            {
            {
              /* Add the new thread to GDB's lists as soon as possible
              /* Add the new thread to GDB's lists as soon as possible
                 so that:
                 so that:
 
 
                 1) the frontend doesn't have to wait for a stop to
                 1) the frontend doesn't have to wait for a stop to
                 display them, and,
                 display them, and,
 
 
                 2) we tag it with the correct running state.  */
                 2) we tag it with the correct running state.  */
 
 
              /* If the thread_db layer is active, let it know about
              /* If the thread_db layer is active, let it know about
                 this new thread, and add it to GDB's list.  */
                 this new thread, and add it to GDB's list.  */
              if (!thread_db_attach_lwp (new_lp->ptid))
              if (!thread_db_attach_lwp (new_lp->ptid))
                {
                {
                  /* We're not using thread_db.  Add it to GDB's
                  /* We're not using thread_db.  Add it to GDB's
                     list.  */
                     list.  */
                  target_post_attach (GET_LWP (new_lp->ptid));
                  target_post_attach (GET_LWP (new_lp->ptid));
                  add_thread (new_lp->ptid);
                  add_thread (new_lp->ptid);
                }
                }
 
 
              if (!stopping)
              if (!stopping)
                {
                {
                  set_running (new_lp->ptid, 1);
                  set_running (new_lp->ptid, 1);
                  set_executing (new_lp->ptid, 1);
                  set_executing (new_lp->ptid, 1);
                }
                }
            }
            }
 
 
          /* Note the need to use the low target ops to resume, to
          /* Note the need to use the low target ops to resume, to
             handle resuming with PT_SYSCALL if we have syscall
             handle resuming with PT_SYSCALL if we have syscall
             catchpoints.  */
             catchpoints.  */
          if (!stopping)
          if (!stopping)
            {
            {
              int signo;
              int signo;
 
 
              new_lp->stopped = 0;
              new_lp->stopped = 0;
              new_lp->resumed = 1;
              new_lp->resumed = 1;
 
 
              signo = (status
              signo = (status
                       ? target_signal_from_host (WSTOPSIG (status))
                       ? target_signal_from_host (WSTOPSIG (status))
                       : TARGET_SIGNAL_0);
                       : TARGET_SIGNAL_0);
 
 
              linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
              linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
                                    0, signo);
                                    0, signo);
            }
            }
 
 
          if (debug_linux_nat)
          if (debug_linux_nat)
            fprintf_unfiltered (gdb_stdlog,
            fprintf_unfiltered (gdb_stdlog,
                                "LHEW: Got clone event from LWP %ld, resuming\n",
                                "LHEW: Got clone event from LWP %ld, resuming\n",
                                GET_LWP (lp->ptid));
                                GET_LWP (lp->ptid));
          linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
          linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
                                0, TARGET_SIGNAL_0);
                                0, TARGET_SIGNAL_0);
 
 
          return 1;
          return 1;
        }
        }
 
 
      return 0;
      return 0;
    }
    }
 
 
  if (event == PTRACE_EVENT_EXEC)
  if (event == PTRACE_EVENT_EXEC)
    {
    {
      if (debug_linux_nat)
      if (debug_linux_nat)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "LHEW: Got exec event from LWP %ld\n",
                            "LHEW: Got exec event from LWP %ld\n",
                            GET_LWP (lp->ptid));
                            GET_LWP (lp->ptid));
 
 
      ourstatus->kind = TARGET_WAITKIND_EXECD;
      ourstatus->kind = TARGET_WAITKIND_EXECD;
      ourstatus->value.execd_pathname
      ourstatus->value.execd_pathname
        = xstrdup (linux_child_pid_to_exec_file (pid));
        = xstrdup (linux_child_pid_to_exec_file (pid));
 
 
      return 0;
      return 0;
    }
    }
 
 
  if (event == PTRACE_EVENT_VFORK_DONE)
  if (event == PTRACE_EVENT_VFORK_DONE)
    {
    {
      if (current_inferior ()->waiting_for_vfork_done)
      if (current_inferior ()->waiting_for_vfork_done)
        {
        {
          if (debug_linux_nat)
          if (debug_linux_nat)
            fprintf_unfiltered (gdb_stdlog, "\
            fprintf_unfiltered (gdb_stdlog, "\
LHEW: Got expected PTRACE_EVENT_VFORK_DONE from LWP %ld: stopping\n",
LHEW: Got expected PTRACE_EVENT_VFORK_DONE from LWP %ld: stopping\n",
                                GET_LWP (lp->ptid));
                                GET_LWP (lp->ptid));
 
 
          ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
          ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
          return 0;
          return 0;
        }
        }
 
 
      if (debug_linux_nat)
      if (debug_linux_nat)
        fprintf_unfiltered (gdb_stdlog, "\
        fprintf_unfiltered (gdb_stdlog, "\
LHEW: Got PTRACE_EVENT_VFORK_DONE from LWP %ld: resuming\n",
LHEW: Got PTRACE_EVENT_VFORK_DONE from LWP %ld: resuming\n",
                            GET_LWP (lp->ptid));
                            GET_LWP (lp->ptid));
      ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
      ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
      return 1;
      return 1;
    }
    }
 
 
  internal_error (__FILE__, __LINE__,
  internal_error (__FILE__, __LINE__,
                  _("unknown ptrace event %d"), event);
                  _("unknown ptrace event %d"), event);
}
}
 
 
/* Wait for LP to stop.  Returns the wait status, or 0 if the LWP has
/* Wait for LP to stop.  Returns the wait status, or 0 if the LWP has
   exited.  */
   exited.  */
 
 
static int
static int
wait_lwp (struct lwp_info *lp)
wait_lwp (struct lwp_info *lp)
{
{
  pid_t pid;
  pid_t pid;
  int status;
  int status;
  int thread_dead = 0;
  int thread_dead = 0;
 
 
  gdb_assert (!lp->stopped);
  gdb_assert (!lp->stopped);
  gdb_assert (lp->status == 0);
  gdb_assert (lp->status == 0);
 
 
  pid = my_waitpid (GET_LWP (lp->ptid), &status, 0);
  pid = my_waitpid (GET_LWP (lp->ptid), &status, 0);
  if (pid == -1 && errno == ECHILD)
  if (pid == -1 && errno == ECHILD)
    {
    {
      pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE);
      pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE);
      if (pid == -1 && errno == ECHILD)
      if (pid == -1 && errno == ECHILD)
        {
        {
          /* The thread has previously exited.  We need to delete it
          /* The thread has previously exited.  We need to delete it
             now because, for some vendor 2.4 kernels with NPTL
             now because, for some vendor 2.4 kernels with NPTL
             support backported, there won't be an exit event unless
             support backported, there won't be an exit event unless
             it is the main thread.  2.6 kernels will report an exit
             it is the main thread.  2.6 kernels will report an exit
             event for each thread that exits, as expected.  */
             event for each thread that exits, as expected.  */
          thread_dead = 1;
          thread_dead = 1;
          if (debug_linux_nat)
          if (debug_linux_nat)
            fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
            fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
                                target_pid_to_str (lp->ptid));
                                target_pid_to_str (lp->ptid));
        }
        }
    }
    }
 
 
  if (!thread_dead)
  if (!thread_dead)
    {
    {
      gdb_assert (pid == GET_LWP (lp->ptid));
      gdb_assert (pid == GET_LWP (lp->ptid));
 
 
      if (debug_linux_nat)
      if (debug_linux_nat)
        {
        {
          fprintf_unfiltered (gdb_stdlog,
          fprintf_unfiltered (gdb_stdlog,
                              "WL: waitpid %s received %s\n",
                              "WL: waitpid %s received %s\n",
                              target_pid_to_str (lp->ptid),
                              target_pid_to_str (lp->ptid),
                              status_to_str (status));
                              status_to_str (status));
        }
        }
    }
    }
 
 
  /* Check if the thread has exited.  */
  /* Check if the thread has exited.  */
  if (WIFEXITED (status) || WIFSIGNALED (status))
  if (WIFEXITED (status) || WIFSIGNALED (status))
    {
    {
      thread_dead = 1;
      thread_dead = 1;
      if (debug_linux_nat)
      if (debug_linux_nat)
        fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
        fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
                            target_pid_to_str (lp->ptid));
                            target_pid_to_str (lp->ptid));
    }
    }
 
 
  if (thread_dead)
  if (thread_dead)
    {
    {
      exit_lwp (lp);
      exit_lwp (lp);
      return 0;
      return 0;
    }
    }
 
 
  gdb_assert (WIFSTOPPED (status));
  gdb_assert (WIFSTOPPED (status));
 
 
  /* Handle GNU/Linux's syscall SIGTRAPs.  */
  /* Handle GNU/Linux's syscall SIGTRAPs.  */
  if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
  if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
    {
    {
      /* No longer need the sysgood bit.  The ptrace event ends up
      /* No longer need the sysgood bit.  The ptrace event ends up
         recorded in lp->waitstatus if we care for it.  We can carry
         recorded in lp->waitstatus if we care for it.  We can carry
         on handling the event like a regular SIGTRAP from here
         on handling the event like a regular SIGTRAP from here
         on.  */
         on.  */
      status = W_STOPCODE (SIGTRAP);
      status = W_STOPCODE (SIGTRAP);
      if (linux_handle_syscall_trap (lp, 1))
      if (linux_handle_syscall_trap (lp, 1))
        return wait_lwp (lp);
        return wait_lwp (lp);
    }
    }
 
 
  /* Handle GNU/Linux's extended waitstatus for trace events.  */
  /* Handle GNU/Linux's extended waitstatus for trace events.  */
  if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
  if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
    {
    {
      if (debug_linux_nat)
      if (debug_linux_nat)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "WL: Handling extended status 0x%06x\n",
                            "WL: Handling extended status 0x%06x\n",
                            status);
                            status);
      if (linux_handle_extended_wait (lp, status, 1))
      if (linux_handle_extended_wait (lp, status, 1))
        return wait_lwp (lp);
        return wait_lwp (lp);
    }
    }
 
 
  return status;
  return status;
}
}
 
 
/* Save the most recent siginfo for LP.  This is currently only called
/* Save the most recent siginfo for LP.  This is currently only called
   for SIGTRAP; some ports use the si_addr field for
   for SIGTRAP; some ports use the si_addr field for
   target_stopped_data_address.  In the future, it may also be used to
   target_stopped_data_address.  In the future, it may also be used to
   restore the siginfo of requeued signals.  */
   restore the siginfo of requeued signals.  */
 
 
static void
static void
save_siginfo (struct lwp_info *lp)
save_siginfo (struct lwp_info *lp)
{
{
  errno = 0;
  errno = 0;
  ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
  ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
          (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
          (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
 
 
  if (errno != 0)
  if (errno != 0)
    memset (&lp->siginfo, 0, sizeof (lp->siginfo));
    memset (&lp->siginfo, 0, sizeof (lp->siginfo));
}
}
 
 
/* Send a SIGSTOP to LP.  */
/* Send a SIGSTOP to LP.  */
 
 
static int
static int
stop_callback (struct lwp_info *lp, void *data)
stop_callback (struct lwp_info *lp, void *data)
{
{
  if (!lp->stopped && !lp->signalled)
  if (!lp->stopped && !lp->signalled)
    {
    {
      int ret;
      int ret;
 
 
      if (debug_linux_nat)
      if (debug_linux_nat)
        {
        {
          fprintf_unfiltered (gdb_stdlog,
          fprintf_unfiltered (gdb_stdlog,
                              "SC:  kill %s **<SIGSTOP>**\n",
                              "SC:  kill %s **<SIGSTOP>**\n",
                              target_pid_to_str (lp->ptid));
                              target_pid_to_str (lp->ptid));
        }
        }
      errno = 0;
      errno = 0;
      ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
      ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
      if (debug_linux_nat)
      if (debug_linux_nat)
        {
        {
          fprintf_unfiltered (gdb_stdlog,
          fprintf_unfiltered (gdb_stdlog,
                              "SC:  lwp kill %d %s\n",
                              "SC:  lwp kill %d %s\n",
                              ret,
                              ret,
                              errno ? safe_strerror (errno) : "ERRNO-OK");
                              errno ? safe_strerror (errno) : "ERRNO-OK");
        }
        }
 
 
      lp->signalled = 1;
      lp->signalled = 1;
      gdb_assert (lp->status == 0);
      gdb_assert (lp->status == 0);
    }
    }
 
 
  return 0;
  return 0;
}
}
 
 
/* Return non-zero if LWP PID has a pending SIGINT.  */
/* Return non-zero if LWP PID has a pending SIGINT.  */
 
 
static int
static int
linux_nat_has_pending_sigint (int pid)
linux_nat_has_pending_sigint (int pid)
{
{
  sigset_t pending, blocked, ignored;
  sigset_t pending, blocked, ignored;
  int i;
  int i;
 
 
  linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
  linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
 
 
  if (sigismember (&pending, SIGINT)
  if (sigismember (&pending, SIGINT)
      && !sigismember (&ignored, SIGINT))
      && !sigismember (&ignored, SIGINT))
    return 1;
    return 1;
 
 
  return 0;
  return 0;
}
}
 
 
/* Set a flag in LP indicating that we should ignore its next SIGINT.  */
/* Set a flag in LP indicating that we should ignore its next SIGINT.  */
 
 
static int
static int
set_ignore_sigint (struct lwp_info *lp, void *data)
set_ignore_sigint (struct lwp_info *lp, void *data)
{
{
  /* If a thread has a pending SIGINT, consume it; otherwise, set a
  /* If a thread has a pending SIGINT, consume it; otherwise, set a
     flag to consume the next one.  */
     flag to consume the next one.  */
  if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
  if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
      && WSTOPSIG (lp->status) == SIGINT)
      && WSTOPSIG (lp->status) == SIGINT)
    lp->status = 0;
    lp->status = 0;
  else
  else
    lp->ignore_sigint = 1;
    lp->ignore_sigint = 1;
 
 
  return 0;
  return 0;
}
}
 
 
/* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
/* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
   This function is called after we know the LWP has stopped; if the LWP
   This function is called after we know the LWP has stopped; if the LWP
   stopped before the expected SIGINT was delivered, then it will never have
   stopped before the expected SIGINT was delivered, then it will never have
   arrived.  Also, if the signal was delivered to a shared queue and consumed
   arrived.  Also, if the signal was delivered to a shared queue and consumed
   by a different thread, it will never be delivered to this LWP.  */
   by a different thread, it will never be delivered to this LWP.  */
 
 
static void
static void
maybe_clear_ignore_sigint (struct lwp_info *lp)
maybe_clear_ignore_sigint (struct lwp_info *lp)
{
{
  if (!lp->ignore_sigint)
  if (!lp->ignore_sigint)
    return;
    return;
 
 
  if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
  if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
    {
    {
      if (debug_linux_nat)
      if (debug_linux_nat)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "MCIS: Clearing bogus flag for %s\n",
                            "MCIS: Clearing bogus flag for %s\n",
                            target_pid_to_str (lp->ptid));
                            target_pid_to_str (lp->ptid));
      lp->ignore_sigint = 0;
      lp->ignore_sigint = 0;
    }
    }
}
}
 
 
/* Fetch the possible triggered data watchpoint info and store it in
/* Fetch the possible triggered data watchpoint info and store it in
   LP.
   LP.
 
 
   On some archs, like x86, that use debug registers to set
   On some archs, like x86, that use debug registers to set
   watchpoints, it's possible that the way to know which watched
   watchpoints, it's possible that the way to know which watched
   address trapped, is to check the register that is used to select
   address trapped, is to check the register that is used to select
   which address to watch.  Problem is, between setting the watchpoint
   which address to watch.  Problem is, between setting the watchpoint
   and reading back which data address trapped, the user may change
   and reading back which data address trapped, the user may change
   the set of watchpoints, and, as a consequence, GDB changes the
   the set of watchpoints, and, as a consequence, GDB changes the
   debug registers in the inferior.  To avoid reading back a stale
   debug registers in the inferior.  To avoid reading back a stale
   stopped-data-address when that happens, we cache in LP the fact
   stopped-data-address when that happens, we cache in LP the fact
   that a watchpoint trapped, and the corresponding data address, as
   that a watchpoint trapped, and the corresponding data address, as
   soon as we see LP stop with a SIGTRAP.  If GDB changes the debug
   soon as we see LP stop with a SIGTRAP.  If GDB changes the debug
   registers meanwhile, we have the cached data we can rely on.  */
   registers meanwhile, we have the cached data we can rely on.  */
 
 
static void
static void
save_sigtrap (struct lwp_info *lp)
save_sigtrap (struct lwp_info *lp)
{
{
  struct cleanup *old_chain;
  struct cleanup *old_chain;
 
 
  if (linux_ops->to_stopped_by_watchpoint == NULL)
  if (linux_ops->to_stopped_by_watchpoint == NULL)
    {
    {
      lp->stopped_by_watchpoint = 0;
      lp->stopped_by_watchpoint = 0;
      return;
      return;
    }
    }
 
 
  old_chain = save_inferior_ptid ();
  old_chain = save_inferior_ptid ();
  inferior_ptid = lp->ptid;
  inferior_ptid = lp->ptid;
 
 
  lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint ();
  lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint ();
 
 
  if (lp->stopped_by_watchpoint)
  if (lp->stopped_by_watchpoint)
    {
    {
      if (linux_ops->to_stopped_data_address != NULL)
      if (linux_ops->to_stopped_data_address != NULL)
        lp->stopped_data_address_p =
        lp->stopped_data_address_p =
          linux_ops->to_stopped_data_address (&current_target,
          linux_ops->to_stopped_data_address (&current_target,
                                              &lp->stopped_data_address);
                                              &lp->stopped_data_address);
      else
      else
        lp->stopped_data_address_p = 0;
        lp->stopped_data_address_p = 0;
    }
    }
 
 
  do_cleanups (old_chain);
  do_cleanups (old_chain);
}
}
 
 
/* See save_sigtrap.  */
/* See save_sigtrap.  */
 
 
static int
static int
linux_nat_stopped_by_watchpoint (void)
linux_nat_stopped_by_watchpoint (void)
{
{
  struct lwp_info *lp = find_lwp_pid (inferior_ptid);
  struct lwp_info *lp = find_lwp_pid (inferior_ptid);
 
 
  gdb_assert (lp != NULL);
  gdb_assert (lp != NULL);
 
 
  return lp->stopped_by_watchpoint;
  return lp->stopped_by_watchpoint;
}
}
 
 
static int
static int
linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
{
{
  struct lwp_info *lp = find_lwp_pid (inferior_ptid);
  struct lwp_info *lp = find_lwp_pid (inferior_ptid);
 
 
  gdb_assert (lp != NULL);
  gdb_assert (lp != NULL);
 
 
  *addr_p = lp->stopped_data_address;
  *addr_p = lp->stopped_data_address;
 
 
  return lp->stopped_data_address_p;
  return lp->stopped_data_address_p;
}
}
 
 
/* Wait until LP is stopped.  */
/* Wait until LP is stopped.  */
 
 
static int
static int
stop_wait_callback (struct lwp_info *lp, void *data)
stop_wait_callback (struct lwp_info *lp, void *data)
{
{
  struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
  struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
 
 
  /* If this is a vfork parent, bail out, it is not going to report
  /* If this is a vfork parent, bail out, it is not going to report
     any SIGSTOP until the vfork is done with.  */
     any SIGSTOP until the vfork is done with.  */
  if (inf->vfork_child != NULL)
  if (inf->vfork_child != NULL)
    return 0;
    return 0;
 
 
  if (!lp->stopped)
  if (!lp->stopped)
    {
    {
      int status;
      int status;
 
 
      status = wait_lwp (lp);
      status = wait_lwp (lp);
      if (status == 0)
      if (status == 0)
        return 0;
        return 0;
 
 
      if (lp->ignore_sigint && WIFSTOPPED (status)
      if (lp->ignore_sigint && WIFSTOPPED (status)
          && WSTOPSIG (status) == SIGINT)
          && WSTOPSIG (status) == SIGINT)
        {
        {
          lp->ignore_sigint = 0;
          lp->ignore_sigint = 0;
 
 
          errno = 0;
          errno = 0;
          ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
          ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
          if (debug_linux_nat)
          if (debug_linux_nat)
            fprintf_unfiltered (gdb_stdlog,
            fprintf_unfiltered (gdb_stdlog,
                                "PTRACE_CONT %s, 0, 0 (%s) (discarding SIGINT)\n",
                                "PTRACE_CONT %s, 0, 0 (%s) (discarding SIGINT)\n",
                                target_pid_to_str (lp->ptid),
                                target_pid_to_str (lp->ptid),
                                errno ? safe_strerror (errno) : "OK");
                                errno ? safe_strerror (errno) : "OK");
 
 
          return stop_wait_callback (lp, NULL);
          return stop_wait_callback (lp, NULL);
        }
        }
 
 
      maybe_clear_ignore_sigint (lp);
      maybe_clear_ignore_sigint (lp);
 
 
      if (WSTOPSIG (status) != SIGSTOP)
      if (WSTOPSIG (status) != SIGSTOP)
        {
        {
          if (WSTOPSIG (status) == SIGTRAP)
          if (WSTOPSIG (status) == SIGTRAP)
            {
            {
              /* If a LWP other than the LWP that we're reporting an
              /* If a LWP other than the LWP that we're reporting an
                 event for has hit a GDB breakpoint (as opposed to
                 event for has hit a GDB breakpoint (as opposed to
                 some random trap signal), then just arrange for it to
                 some random trap signal), then just arrange for it to
                 hit it again later.  We don't keep the SIGTRAP status
                 hit it again later.  We don't keep the SIGTRAP status
                 and don't forward the SIGTRAP signal to the LWP.  We
                 and don't forward the SIGTRAP signal to the LWP.  We
                 will handle the current event, eventually we will
                 will handle the current event, eventually we will
                 resume all LWPs, and this one will get its breakpoint
                 resume all LWPs, and this one will get its breakpoint
                 trap again.
                 trap again.
 
 
                 If we do not do this, then we run the risk that the
                 If we do not do this, then we run the risk that the
                 user will delete or disable the breakpoint, but the
                 user will delete or disable the breakpoint, but the
                 thread will have already tripped on it.  */
                 thread will have already tripped on it.  */
 
 
              /* Save the trap's siginfo in case we need it later.  */
              /* Save the trap's siginfo in case we need it later.  */
              save_siginfo (lp);
              save_siginfo (lp);
 
 
              save_sigtrap (lp);
              save_sigtrap (lp);
 
 
              /* Now resume this LWP and get the SIGSTOP event. */
              /* Now resume this LWP and get the SIGSTOP event. */
              errno = 0;
              errno = 0;
              ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
              ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
              if (debug_linux_nat)
              if (debug_linux_nat)
                {
                {
                  fprintf_unfiltered (gdb_stdlog,
                  fprintf_unfiltered (gdb_stdlog,
                                      "PTRACE_CONT %s, 0, 0 (%s)\n",
                                      "PTRACE_CONT %s, 0, 0 (%s)\n",
                                      target_pid_to_str (lp->ptid),
                                      target_pid_to_str (lp->ptid),
                                      errno ? safe_strerror (errno) : "OK");
                                      errno ? safe_strerror (errno) : "OK");
 
 
                  fprintf_unfiltered (gdb_stdlog,
                  fprintf_unfiltered (gdb_stdlog,
                                      "SWC: Candidate SIGTRAP event in %s\n",
                                      "SWC: Candidate SIGTRAP event in %s\n",
                                      target_pid_to_str (lp->ptid));
                                      target_pid_to_str (lp->ptid));
                }
                }
              /* Hold this event/waitstatus while we check to see if
              /* Hold this event/waitstatus while we check to see if
                 there are any more (we still want to get that SIGSTOP). */
                 there are any more (we still want to get that SIGSTOP). */
              stop_wait_callback (lp, NULL);
              stop_wait_callback (lp, NULL);
 
 
              /* Hold the SIGTRAP for handling by linux_nat_wait.  If
              /* Hold the SIGTRAP for handling by linux_nat_wait.  If
                 there's another event, throw it back into the
                 there's another event, throw it back into the
                 queue. */
                 queue. */
              if (lp->status)
              if (lp->status)
                {
                {
                  if (debug_linux_nat)
                  if (debug_linux_nat)
                    fprintf_unfiltered (gdb_stdlog,
                    fprintf_unfiltered (gdb_stdlog,
                                        "SWC: kill %s, %s\n",
                                        "SWC: kill %s, %s\n",
                                        target_pid_to_str (lp->ptid),
                                        target_pid_to_str (lp->ptid),
                                        status_to_str ((int) status));
                                        status_to_str ((int) status));
                  kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
                  kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
                }
                }
 
 
              /* Save the sigtrap event. */
              /* Save the sigtrap event. */
              lp->status = status;
              lp->status = status;
              return 0;
              return 0;
            }
            }
          else
          else
            {
            {
              /* The thread was stopped with a signal other than
              /* The thread was stopped with a signal other than
                 SIGSTOP, and didn't accidentally trip a breakpoint. */
                 SIGSTOP, and didn't accidentally trip a breakpoint. */
 
 
              if (debug_linux_nat)
              if (debug_linux_nat)
                {
                {
                  fprintf_unfiltered (gdb_stdlog,
                  fprintf_unfiltered (gdb_stdlog,
                                      "SWC: Pending event %s in %s\n",
                                      "SWC: Pending event %s in %s\n",
                                      status_to_str ((int) status),
                                      status_to_str ((int) status),
                                      target_pid_to_str (lp->ptid));
                                      target_pid_to_str (lp->ptid));
                }
                }
              /* Now resume this LWP and get the SIGSTOP event. */
              /* Now resume this LWP and get the SIGSTOP event. */
              errno = 0;
              errno = 0;
              ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
              ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
              if (debug_linux_nat)
              if (debug_linux_nat)
                fprintf_unfiltered (gdb_stdlog,
                fprintf_unfiltered (gdb_stdlog,
                                    "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
                                    "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
                                    target_pid_to_str (lp->ptid),
                                    target_pid_to_str (lp->ptid),
                                    errno ? safe_strerror (errno) : "OK");
                                    errno ? safe_strerror (errno) : "OK");
 
 
              /* Hold this event/waitstatus while we check to see if
              /* Hold this event/waitstatus while we check to see if
                 there are any more (we still want to get that SIGSTOP). */
                 there are any more (we still want to get that SIGSTOP). */
              stop_wait_callback (lp, NULL);
              stop_wait_callback (lp, NULL);
 
 
              /* If the lp->status field is still empty, use it to
              /* If the lp->status field is still empty, use it to
                 hold this event.  If not, then this event must be
                 hold this event.  If not, then this event must be
                 returned to the event queue of the LWP.  */
                 returned to the event queue of the LWP.  */
              if (lp->status)
              if (lp->status)
                {
                {
                  if (debug_linux_nat)
                  if (debug_linux_nat)
                    {
                    {
                      fprintf_unfiltered (gdb_stdlog,
                      fprintf_unfiltered (gdb_stdlog,
                                          "SWC: kill %s, %s\n",
                                          "SWC: kill %s, %s\n",
                                          target_pid_to_str (lp->ptid),
                                          target_pid_to_str (lp->ptid),
                                          status_to_str ((int) status));
                                          status_to_str ((int) status));
                    }
                    }
                  kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
                  kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
                }
                }
              else
              else
                lp->status = status;
                lp->status = status;
              return 0;
              return 0;
            }
            }
        }
        }
      else
      else
        {
        {
          /* We caught the SIGSTOP that we intended to catch, so
          /* We caught the SIGSTOP that we intended to catch, so
             there's no SIGSTOP pending.  */
             there's no SIGSTOP pending.  */
          lp->stopped = 1;
          lp->stopped = 1;
          lp->signalled = 0;
          lp->signalled = 0;
        }
        }
    }
    }
 
 
  return 0;
  return 0;
}
}
 
 
/* Return non-zero if LP has a wait status pending.  */
/* Return non-zero if LP has a wait status pending.  */
 
 
static int
static int
status_callback (struct lwp_info *lp, void *data)
status_callback (struct lwp_info *lp, void *data)
{
{
  /* Only report a pending wait status if we pretend that this has
  /* Only report a pending wait status if we pretend that this has
     indeed been resumed.  */
     indeed been resumed.  */
  if (!lp->resumed)
  if (!lp->resumed)
    return 0;
    return 0;
 
 
  if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
  if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
    {
    {
      /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
      /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
         or a a pending process exit.  Note that `W_EXITCODE(0,0) ==
         or a a pending process exit.  Note that `W_EXITCODE(0,0) ==
         0', so a clean process exit can not be stored pending in
         0', so a clean process exit can not be stored pending in
         lp->status, it is indistinguishable from
         lp->status, it is indistinguishable from
         no-pending-status.  */
         no-pending-status.  */
      return 1;
      return 1;
    }
    }
 
 
  if (lp->status != 0)
  if (lp->status != 0)
    return 1;
    return 1;
 
 
  return 0;
  return 0;
}
}
 
 
/* Return non-zero if LP isn't stopped.  */
/* Return non-zero if LP isn't stopped.  */
 
 
static int
static int
running_callback (struct lwp_info *lp, void *data)
running_callback (struct lwp_info *lp, void *data)
{
{
  return (lp->stopped == 0 || (lp->status != 0 && lp->resumed));
  return (lp->stopped == 0 || (lp->status != 0 && lp->resumed));
}
}
 
 
/* Count the LWP's that have had events.  */
/* Count the LWP's that have had events.  */
 
 
static int
static int
count_events_callback (struct lwp_info *lp, void *data)
count_events_callback (struct lwp_info *lp, void *data)
{
{
  int *count = data;
  int *count = data;
 
 
  gdb_assert (count != NULL);
  gdb_assert (count != NULL);
 
 
  /* Count only resumed LWPs that have a SIGTRAP event pending.  */
  /* Count only resumed LWPs that have a SIGTRAP event pending.  */
  if (lp->status != 0 && lp->resumed
  if (lp->status != 0 && lp->resumed
      && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
      && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
    (*count)++;
    (*count)++;
 
 
  return 0;
  return 0;
}
}
 
 
/* Select the LWP (if any) that is currently being single-stepped.  */
/* Select the LWP (if any) that is currently being single-stepped.  */
 
 
static int
static int
select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
{
{
  if (lp->step && lp->status != 0)
  if (lp->step && lp->status != 0)
    return 1;
    return 1;
  else
  else
    return 0;
    return 0;
}
}
 
 
/* Select the Nth LWP that has had a SIGTRAP event.  */
/* Select the Nth LWP that has had a SIGTRAP event.  */
 
 
static int
static int
select_event_lwp_callback (struct lwp_info *lp, void *data)
select_event_lwp_callback (struct lwp_info *lp, void *data)
{
{
  int *selector = data;
  int *selector = data;
 
 
  gdb_assert (selector != NULL);
  gdb_assert (selector != NULL);
 
 
  /* Select only resumed LWPs that have a SIGTRAP event pending. */
  /* Select only resumed LWPs that have a SIGTRAP event pending. */
  if (lp->status != 0 && lp->resumed
  if (lp->status != 0 && lp->resumed
      && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
      && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
    if ((*selector)-- == 0)
    if ((*selector)-- == 0)
      return 1;
      return 1;
 
 
  return 0;
  return 0;
}
}
 
 
static int
static int
cancel_breakpoint (struct lwp_info *lp)
cancel_breakpoint (struct lwp_info *lp)
{
{
  /* Arrange for a breakpoint to be hit again later.  We don't keep
  /* Arrange for a breakpoint to be hit again later.  We don't keep
     the SIGTRAP status and don't forward the SIGTRAP signal to the
     the SIGTRAP status and don't forward the SIGTRAP signal to the
     LWP.  We will handle the current event, eventually we will resume
     LWP.  We will handle the current event, eventually we will resume
     this LWP, and this breakpoint will trap again.
     this LWP, and this breakpoint will trap again.
 
 
     If we do not do this, then we run the risk that the user will
     If we do not do this, then we run the risk that the user will
     delete or disable the breakpoint, but the LWP will have already
     delete or disable the breakpoint, but the LWP will have already
     tripped on it.  */
     tripped on it.  */
 
 
  struct regcache *regcache = get_thread_regcache (lp->ptid);
  struct regcache *regcache = get_thread_regcache (lp->ptid);
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  CORE_ADDR pc;
  CORE_ADDR pc;
 
 
  pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
  pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
  if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
  if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
    {
    {
      if (debug_linux_nat)
      if (debug_linux_nat)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "CB: Push back breakpoint for %s\n",
                            "CB: Push back breakpoint for %s\n",
                            target_pid_to_str (lp->ptid));
                            target_pid_to_str (lp->ptid));
 
 
      /* Back up the PC if necessary.  */
      /* Back up the PC if necessary.  */
      if (gdbarch_decr_pc_after_break (gdbarch))
      if (gdbarch_decr_pc_after_break (gdbarch))
        regcache_write_pc (regcache, pc);
        regcache_write_pc (regcache, pc);
 
 
      return 1;
      return 1;
    }
    }
  return 0;
  return 0;
}
}
 
 
static int
static int
cancel_breakpoints_callback (struct lwp_info *lp, void *data)
cancel_breakpoints_callback (struct lwp_info *lp, void *data)
{
{
  struct lwp_info *event_lp = data;
  struct lwp_info *event_lp = data;
 
 
  /* Leave the LWP that has been elected to receive a SIGTRAP alone.  */
  /* Leave the LWP that has been elected to receive a SIGTRAP alone.  */
  if (lp == event_lp)
  if (lp == event_lp)
    return 0;
    return 0;
 
 
  /* If a LWP other than the LWP that we're reporting an event for has
  /* If a LWP other than the LWP that we're reporting an event for has
     hit a GDB breakpoint (as opposed to some random trap signal),
     hit a GDB breakpoint (as opposed to some random trap signal),
     then just arrange for it to hit it again later.  We don't keep
     then just arrange for it to hit it again later.  We don't keep
     the SIGTRAP status and don't forward the SIGTRAP signal to the
     the SIGTRAP status and don't forward the SIGTRAP signal to the
     LWP.  We will handle the current event, eventually we will resume
     LWP.  We will handle the current event, eventually we will resume
     all LWPs, and this one will get its breakpoint trap again.
     all LWPs, and this one will get its breakpoint trap again.
 
 
     If we do not do this, then we run the risk that the user will
     If we do not do this, then we run the risk that the user will
     delete or disable the breakpoint, but the LWP will have already
     delete or disable the breakpoint, but the LWP will have already
     tripped on it.  */
     tripped on it.  */
 
 
  if (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
  if (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
      && lp->status != 0
      && lp->status != 0
      && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP
      && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP
      && cancel_breakpoint (lp))
      && cancel_breakpoint (lp))
    /* Throw away the SIGTRAP.  */
    /* Throw away the SIGTRAP.  */
    lp->status = 0;
    lp->status = 0;
 
 
  return 0;
  return 0;
}
}
 
 
/* Select one LWP out of those that have events pending.  */
/* Select one LWP out of those that have events pending.  */
 
 
static void
static void
select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
{
{
  int num_events = 0;
  int num_events = 0;
  int random_selector;
  int random_selector;
  struct lwp_info *event_lp;
  struct lwp_info *event_lp;
 
 
  /* Record the wait status for the original LWP.  */
  /* Record the wait status for the original LWP.  */
  (*orig_lp)->status = *status;
  (*orig_lp)->status = *status;
 
 
  /* Give preference to any LWP that is being single-stepped.  */
  /* Give preference to any LWP that is being single-stepped.  */
  event_lp = iterate_over_lwps (filter,
  event_lp = iterate_over_lwps (filter,
                                select_singlestep_lwp_callback, NULL);
                                select_singlestep_lwp_callback, NULL);
  if (event_lp != NULL)
  if (event_lp != NULL)
    {
    {
      if (debug_linux_nat)
      if (debug_linux_nat)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "SEL: Select single-step %s\n",
                            "SEL: Select single-step %s\n",
                            target_pid_to_str (event_lp->ptid));
                            target_pid_to_str (event_lp->ptid));
    }
    }
  else
  else
    {
    {
      /* No single-stepping LWP.  Select one at random, out of those
      /* No single-stepping LWP.  Select one at random, out of those
         which have had SIGTRAP events.  */
         which have had SIGTRAP events.  */
 
 
      /* First see how many SIGTRAP events we have.  */
      /* First see how many SIGTRAP events we have.  */
      iterate_over_lwps (filter, count_events_callback, &num_events);
      iterate_over_lwps (filter, count_events_callback, &num_events);
 
 
      /* Now randomly pick a LWP out of those that have had a SIGTRAP.  */
      /* Now randomly pick a LWP out of those that have had a SIGTRAP.  */
      random_selector = (int)
      random_selector = (int)
        ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
        ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
 
 
      if (debug_linux_nat && num_events > 1)
      if (debug_linux_nat && num_events > 1)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "SEL: Found %d SIGTRAP events, selecting #%d\n",
                            "SEL: Found %d SIGTRAP events, selecting #%d\n",
                            num_events, random_selector);
                            num_events, random_selector);
 
 
      event_lp = iterate_over_lwps (filter,
      event_lp = iterate_over_lwps (filter,
                                    select_event_lwp_callback,
                                    select_event_lwp_callback,
                                    &random_selector);
                                    &random_selector);
    }
    }
 
 
  if (event_lp != NULL)
  if (event_lp != NULL)
    {
    {
      /* Switch the event LWP.  */
      /* Switch the event LWP.  */
      *orig_lp = event_lp;
      *orig_lp = event_lp;
      *status = event_lp->status;
      *status = event_lp->status;
    }
    }
 
 
  /* Flush the wait status for the event LWP.  */
  /* Flush the wait status for the event LWP.  */
  (*orig_lp)->status = 0;
  (*orig_lp)->status = 0;
}
}
 
 
/* Return non-zero if LP has been resumed.  */
/* Return non-zero if LP has been resumed.  */
 
 
static int
static int
resumed_callback (struct lwp_info *lp, void *data)
resumed_callback (struct lwp_info *lp, void *data)
{
{
  return lp->resumed;
  return lp->resumed;
}
}
 
 
/* Stop an active thread, verify it still exists, then resume it.  */
/* Stop an active thread, verify it still exists, then resume it.  */
 
 
static int
static int
stop_and_resume_callback (struct lwp_info *lp, void *data)
stop_and_resume_callback (struct lwp_info *lp, void *data)
{
{
  struct lwp_info *ptr;
  struct lwp_info *ptr;
 
 
  if (!lp->stopped && !lp->signalled)
  if (!lp->stopped && !lp->signalled)
    {
    {
      stop_callback (lp, NULL);
      stop_callback (lp, NULL);
      stop_wait_callback (lp, NULL);
      stop_wait_callback (lp, NULL);
      /* Resume if the lwp still exists.  */
      /* Resume if the lwp still exists.  */
      for (ptr = lwp_list; ptr; ptr = ptr->next)
      for (ptr = lwp_list; ptr; ptr = ptr->next)
        if (lp == ptr)
        if (lp == ptr)
          {
          {
            resume_callback (lp, NULL);
            resume_callback (lp, NULL);
            resume_set_callback (lp, NULL);
            resume_set_callback (lp, NULL);
          }
          }
    }
    }
  return 0;
  return 0;
}
}
 
 
/* Check if we should go on and pass this event to common code.
/* Check if we should go on and pass this event to common code.
   Return the affected lwp if we are, or NULL otherwise.  */
   Return the affected lwp if we are, or NULL otherwise.  */
static struct lwp_info *
static struct lwp_info *
linux_nat_filter_event (int lwpid, int status, int options)
linux_nat_filter_event (int lwpid, int status, int options)
{
{
  struct lwp_info *lp;
  struct lwp_info *lp;
 
 
  lp = find_lwp_pid (pid_to_ptid (lwpid));
  lp = find_lwp_pid (pid_to_ptid (lwpid));
 
 
  /* Check for stop events reported by a process we didn't already
  /* Check for stop events reported by a process we didn't already
     know about - anything not already in our LWP list.
     know about - anything not already in our LWP list.
 
 
     If we're expecting to receive stopped processes after
     If we're expecting to receive stopped processes after
     fork, vfork, and clone events, then we'll just add the
     fork, vfork, and clone events, then we'll just add the
     new one to our list and go back to waiting for the event
     new one to our list and go back to waiting for the event
     to be reported - the stopped process might be returned
     to be reported - the stopped process might be returned
     from waitpid before or after the event is.  */
     from waitpid before or after the event is.  */
  if (WIFSTOPPED (status) && !lp)
  if (WIFSTOPPED (status) && !lp)
    {
    {
      linux_record_stopped_pid (lwpid, status);
      linux_record_stopped_pid (lwpid, status);
      return NULL;
      return NULL;
    }
    }
 
 
  /* Make sure we don't report an event for the exit of an LWP not in
  /* Make sure we don't report an event for the exit of an LWP not in
     our list, i.e.  not part of the current process.  This can happen
     our list, i.e.  not part of the current process.  This can happen
     if we detach from a program we original forked and then it
     if we detach from a program we original forked and then it
     exits.  */
     exits.  */
  if (!WIFSTOPPED (status) && !lp)
  if (!WIFSTOPPED (status) && !lp)
    return NULL;
    return NULL;
 
 
  /* NOTE drow/2003-06-17: This code seems to be meant for debugging
  /* NOTE drow/2003-06-17: This code seems to be meant for debugging
     CLONE_PTRACE processes which do not use the thread library -
     CLONE_PTRACE processes which do not use the thread library -
     otherwise we wouldn't find the new LWP this way.  That doesn't
     otherwise we wouldn't find the new LWP this way.  That doesn't
     currently work, and the following code is currently unreachable
     currently work, and the following code is currently unreachable
     due to the two blocks above.  If it's fixed some day, this code
     due to the two blocks above.  If it's fixed some day, this code
     should be broken out into a function so that we can also pick up
     should be broken out into a function so that we can also pick up
     LWPs from the new interface.  */
     LWPs from the new interface.  */
  if (!lp)
  if (!lp)
    {
    {
      lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
      lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
      if (options & __WCLONE)
      if (options & __WCLONE)
        lp->cloned = 1;
        lp->cloned = 1;
 
 
      gdb_assert (WIFSTOPPED (status)
      gdb_assert (WIFSTOPPED (status)
                  && WSTOPSIG (status) == SIGSTOP);
                  && WSTOPSIG (status) == SIGSTOP);
      lp->signalled = 1;
      lp->signalled = 1;
 
 
      if (!in_thread_list (inferior_ptid))
      if (!in_thread_list (inferior_ptid))
        {
        {
          inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
          inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
                                     GET_PID (inferior_ptid));
                                     GET_PID (inferior_ptid));
          add_thread (inferior_ptid);
          add_thread (inferior_ptid);
        }
        }
 
 
      add_thread (lp->ptid);
      add_thread (lp->ptid);
    }
    }
 
 
  /* Handle GNU/Linux's syscall SIGTRAPs.  */
  /* Handle GNU/Linux's syscall SIGTRAPs.  */
  if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
  if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
    {
    {
      /* No longer need the sysgood bit.  The ptrace event ends up
      /* No longer need the sysgood bit.  The ptrace event ends up
         recorded in lp->waitstatus if we care for it.  We can carry
         recorded in lp->waitstatus if we care for it.  We can carry
         on handling the event like a regular SIGTRAP from here
         on handling the event like a regular SIGTRAP from here
         on.  */
         on.  */
      status = W_STOPCODE (SIGTRAP);
      status = W_STOPCODE (SIGTRAP);
      if (linux_handle_syscall_trap (lp, 0))
      if (linux_handle_syscall_trap (lp, 0))
        return NULL;
        return NULL;
    }
    }
 
 
  /* Handle GNU/Linux's extended waitstatus for trace events.  */
  /* Handle GNU/Linux's extended waitstatus for trace events.  */
  if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
  if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
    {
    {
      if (debug_linux_nat)
      if (debug_linux_nat)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "LLW: Handling extended status 0x%06x\n",
                            "LLW: Handling extended status 0x%06x\n",
                            status);
                            status);
      if (linux_handle_extended_wait (lp, status, 0))
      if (linux_handle_extended_wait (lp, status, 0))
        return NULL;
        return NULL;
    }
    }
 
 
  if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
  if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
    {
    {
      /* Save the trap's siginfo in case we need it later.  */
      /* Save the trap's siginfo in case we need it later.  */
      save_siginfo (lp);
      save_siginfo (lp);
 
 
      save_sigtrap (lp);
      save_sigtrap (lp);
    }
    }
 
 
  /* Check if the thread has exited.  */
  /* Check if the thread has exited.  */
  if ((WIFEXITED (status) || WIFSIGNALED (status))
  if ((WIFEXITED (status) || WIFSIGNALED (status))
      && num_lwps (GET_PID (lp->ptid)) > 1)
      && num_lwps (GET_PID (lp->ptid)) > 1)
    {
    {
      /* If this is the main thread, we must stop all threads and verify
      /* If this is the main thread, we must stop all threads and verify
         if they are still alive.  This is because in the nptl thread model
         if they are still alive.  This is because in the nptl thread model
         on Linux 2.4, there is no signal issued for exiting LWPs
         on Linux 2.4, there is no signal issued for exiting LWPs
         other than the main thread.  We only get the main thread exit
         other than the main thread.  We only get the main thread exit
         signal once all child threads have already exited.  If we
         signal once all child threads have already exited.  If we
         stop all the threads and use the stop_wait_callback to check
         stop all the threads and use the stop_wait_callback to check
         if they have exited we can determine whether this signal
         if they have exited we can determine whether this signal
         should be ignored or whether it means the end of the debugged
         should be ignored or whether it means the end of the debugged
         application, regardless of which threading model is being
         application, regardless of which threading model is being
         used.  */
         used.  */
      if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
      if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
        {
        {
          lp->stopped = 1;
          lp->stopped = 1;
          iterate_over_lwps (pid_to_ptid (GET_PID (lp->ptid)),
          iterate_over_lwps (pid_to_ptid (GET_PID (lp->ptid)),
                             stop_and_resume_callback, NULL);
                             stop_and_resume_callback, NULL);
        }
        }
 
 
      if (debug_linux_nat)
      if (debug_linux_nat)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "LLW: %s exited.\n",
                            "LLW: %s exited.\n",
                            target_pid_to_str (lp->ptid));
                            target_pid_to_str (lp->ptid));
 
 
      if (num_lwps (GET_PID (lp->ptid)) > 1)
      if (num_lwps (GET_PID (lp->ptid)) > 1)
       {
       {
         /* If there is at least one more LWP, then the exit signal
         /* If there is at least one more LWP, then the exit signal
            was not the end of the debugged application and should be
            was not the end of the debugged application and should be
            ignored.  */
            ignored.  */
         exit_lwp (lp);
         exit_lwp (lp);
         return NULL;
         return NULL;
       }
       }
    }
    }
 
 
  /* Check if the current LWP has previously exited.  In the nptl
  /* Check if the current LWP has previously exited.  In the nptl
     thread model, LWPs other than the main thread do not issue
     thread model, LWPs other than the main thread do not issue
     signals when they exit so we must check whenever the thread has
     signals when they exit so we must check whenever the thread has
     stopped.  A similar check is made in stop_wait_callback().  */
     stopped.  A similar check is made in stop_wait_callback().  */
  if (num_lwps (GET_PID (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
  if (num_lwps (GET_PID (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
    {
    {
      ptid_t ptid = pid_to_ptid (GET_PID (lp->ptid));
      ptid_t ptid = pid_to_ptid (GET_PID (lp->ptid));
 
 
      if (debug_linux_nat)
      if (debug_linux_nat)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "LLW: %s exited.\n",
                            "LLW: %s exited.\n",
                            target_pid_to_str (lp->ptid));
                            target_pid_to_str (lp->ptid));
 
 
      exit_lwp (lp);
      exit_lwp (lp);
 
 
      /* Make sure there is at least one thread running.  */
      /* Make sure there is at least one thread running.  */
      gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
      gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
 
 
      /* Discard the event.  */
      /* Discard the event.  */
      return NULL;
      return NULL;
    }
    }
 
 
  /* Make sure we don't report a SIGSTOP that we sent ourselves in
  /* Make sure we don't report a SIGSTOP that we sent ourselves in
     an attempt to stop an LWP.  */
     an attempt to stop an LWP.  */
  if (lp->signalled
  if (lp->signalled
      && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
      && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
    {
    {
      if (debug_linux_nat)
      if (debug_linux_nat)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "LLW: Delayed SIGSTOP caught for %s.\n",
                            "LLW: Delayed SIGSTOP caught for %s.\n",
                            target_pid_to_str (lp->ptid));
                            target_pid_to_str (lp->ptid));
 
 
      /* This is a delayed SIGSTOP.  */
      /* This is a delayed SIGSTOP.  */
      lp->signalled = 0;
      lp->signalled = 0;
 
 
      registers_changed ();
      registers_changed ();
 
 
      linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
      linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
                            lp->step, TARGET_SIGNAL_0);
                            lp->step, TARGET_SIGNAL_0);
      if (debug_linux_nat)
      if (debug_linux_nat)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
                            "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
                            lp->step ?
                            lp->step ?
                            "PTRACE_SINGLESTEP" : "PTRACE_CONT",
                            "PTRACE_SINGLESTEP" : "PTRACE_CONT",
                            target_pid_to_str (lp->ptid));
                            target_pid_to_str (lp->ptid));
 
 
      lp->stopped = 0;
      lp->stopped = 0;
      gdb_assert (lp->resumed);
      gdb_assert (lp->resumed);
 
 
      /* Discard the event.  */
      /* Discard the event.  */
      return NULL;
      return NULL;
    }
    }
 
 
  /* Make sure we don't report a SIGINT that we have already displayed
  /* Make sure we don't report a SIGINT that we have already displayed
     for another thread.  */
     for another thread.  */
  if (lp->ignore_sigint
  if (lp->ignore_sigint
      && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
      && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
    {
    {
      if (debug_linux_nat)
      if (debug_linux_nat)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "LLW: Delayed SIGINT caught for %s.\n",
                            "LLW: Delayed SIGINT caught for %s.\n",
                            target_pid_to_str (lp->ptid));
                            target_pid_to_str (lp->ptid));
 
 
      /* This is a delayed SIGINT.  */
      /* This is a delayed SIGINT.  */
      lp->ignore_sigint = 0;
      lp->ignore_sigint = 0;
 
 
      registers_changed ();
      registers_changed ();
      linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
      linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
                            lp->step, TARGET_SIGNAL_0);
                            lp->step, TARGET_SIGNAL_0);
      if (debug_linux_nat)
      if (debug_linux_nat)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "LLW: %s %s, 0, 0 (discard SIGINT)\n",
                            "LLW: %s %s, 0, 0 (discard SIGINT)\n",
                            lp->step ?
                            lp->step ?
                            "PTRACE_SINGLESTEP" : "PTRACE_CONT",
                            "PTRACE_SINGLESTEP" : "PTRACE_CONT",
                            target_pid_to_str (lp->ptid));
                            target_pid_to_str (lp->ptid));
 
 
      lp->stopped = 0;
      lp->stopped = 0;
      gdb_assert (lp->resumed);
      gdb_assert (lp->resumed);
 
 
      /* Discard the event.  */
      /* Discard the event.  */
      return NULL;
      return NULL;
    }
    }
 
 
  /* An interesting event.  */
  /* An interesting event.  */
  gdb_assert (lp);
  gdb_assert (lp);
  lp->status = status;
  lp->status = status;
  return lp;
  return lp;
}
}
 
 
static ptid_t
static ptid_t
linux_nat_wait_1 (struct target_ops *ops,
linux_nat_wait_1 (struct target_ops *ops,
                  ptid_t ptid, struct target_waitstatus *ourstatus,
                  ptid_t ptid, struct target_waitstatus *ourstatus,
                  int target_options)
                  int target_options)
{
{
  static sigset_t prev_mask;
  static sigset_t prev_mask;
  struct lwp_info *lp = NULL;
  struct lwp_info *lp = NULL;
  int options = 0;
  int options = 0;
  int status = 0;
  int status = 0;
  pid_t pid;
  pid_t pid;
 
 
  if (debug_linux_nat_async)
  if (debug_linux_nat_async)
    fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
    fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
 
 
  /* The first time we get here after starting a new inferior, we may
  /* The first time we get here after starting a new inferior, we may
     not have added it to the LWP list yet - this is the earliest
     not have added it to the LWP list yet - this is the earliest
     moment at which we know its PID.  */
     moment at which we know its PID.  */
  if (ptid_is_pid (inferior_ptid))
  if (ptid_is_pid (inferior_ptid))
    {
    {
      /* Upgrade the main thread's ptid.  */
      /* Upgrade the main thread's ptid.  */
      thread_change_ptid (inferior_ptid,
      thread_change_ptid (inferior_ptid,
                          BUILD_LWP (GET_PID (inferior_ptid),
                          BUILD_LWP (GET_PID (inferior_ptid),
                                     GET_PID (inferior_ptid)));
                                     GET_PID (inferior_ptid)));
 
 
      lp = add_lwp (inferior_ptid);
      lp = add_lwp (inferior_ptid);
      lp->resumed = 1;
      lp->resumed = 1;
    }
    }
 
 
  /* Make sure SIGCHLD is blocked.  */
  /* Make sure SIGCHLD is blocked.  */
  block_child_signals (&prev_mask);
  block_child_signals (&prev_mask);
 
 
  if (ptid_equal (ptid, minus_one_ptid))
  if (ptid_equal (ptid, minus_one_ptid))
    pid = -1;
    pid = -1;
  else if (ptid_is_pid (ptid))
  else if (ptid_is_pid (ptid))
    /* A request to wait for a specific tgid.  This is not possible
    /* A request to wait for a specific tgid.  This is not possible
       with waitpid, so instead, we wait for any child, and leave
       with waitpid, so instead, we wait for any child, and leave
       children we're not interested in right now with a pending
       children we're not interested in right now with a pending
       status to report later.  */
       status to report later.  */
    pid = -1;
    pid = -1;
  else
  else
    pid = GET_LWP (ptid);
    pid = GET_LWP (ptid);
 
 
retry:
retry:
  lp = NULL;
  lp = NULL;
  status = 0;
  status = 0;
 
 
  /* Make sure that of those LWPs we want to get an event from, there
  /* Make sure that of those LWPs we want to get an event from, there
     is at least one LWP that has been resumed.  If there's none, just
     is at least one LWP that has been resumed.  If there's none, just
     bail out.  The core may just be flushing asynchronously all
     bail out.  The core may just be flushing asynchronously all
     events.  */
     events.  */
  if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
  if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
    {
    {
      ourstatus->kind = TARGET_WAITKIND_IGNORE;
      ourstatus->kind = TARGET_WAITKIND_IGNORE;
 
 
      if (debug_linux_nat_async)
      if (debug_linux_nat_async)
        fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
        fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
 
 
      restore_child_signals_mask (&prev_mask);
      restore_child_signals_mask (&prev_mask);
      return minus_one_ptid;
      return minus_one_ptid;
    }
    }
 
 
  /* First check if there is a LWP with a wait status pending.  */
  /* First check if there is a LWP with a wait status pending.  */
  if (pid == -1)
  if (pid == -1)
    {
    {
      /* Any LWP that's been resumed will do.  */
      /* Any LWP that's been resumed will do.  */
      lp = iterate_over_lwps (ptid, status_callback, NULL);
      lp = iterate_over_lwps (ptid, status_callback, NULL);
      if (lp)
      if (lp)
        {
        {
          if (debug_linux_nat && lp->status)
          if (debug_linux_nat && lp->status)
            fprintf_unfiltered (gdb_stdlog,
            fprintf_unfiltered (gdb_stdlog,
                                "LLW: Using pending wait status %s for %s.\n",
                                "LLW: Using pending wait status %s for %s.\n",
                                status_to_str (lp->status),
                                status_to_str (lp->status),
                                target_pid_to_str (lp->ptid));
                                target_pid_to_str (lp->ptid));
        }
        }
 
 
      /* But if we don't find one, we'll have to wait, and check both
      /* But if we don't find one, we'll have to wait, and check both
         cloned and uncloned processes.  We start with the cloned
         cloned and uncloned processes.  We start with the cloned
         processes.  */
         processes.  */
      options = __WCLONE | WNOHANG;
      options = __WCLONE | WNOHANG;
    }
    }
  else if (is_lwp (ptid))
  else if (is_lwp (ptid))
    {
    {
      if (debug_linux_nat)
      if (debug_linux_nat)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "LLW: Waiting for specific LWP %s.\n",
                            "LLW: Waiting for specific LWP %s.\n",
                            target_pid_to_str (ptid));
                            target_pid_to_str (ptid));
 
 
      /* We have a specific LWP to check.  */
      /* We have a specific LWP to check.  */
      lp = find_lwp_pid (ptid);
      lp = find_lwp_pid (ptid);
      gdb_assert (lp);
      gdb_assert (lp);
 
 
      if (debug_linux_nat && lp->status)
      if (debug_linux_nat && lp->status)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "LLW: Using pending wait status %s for %s.\n",
                            "LLW: Using pending wait status %s for %s.\n",
                            status_to_str (lp->status),
                            status_to_str (lp->status),
                            target_pid_to_str (lp->ptid));
                            target_pid_to_str (lp->ptid));
 
 
      /* If we have to wait, take into account whether PID is a cloned
      /* If we have to wait, take into account whether PID is a cloned
         process or not.  And we have to convert it to something that
         process or not.  And we have to convert it to something that
         the layer beneath us can understand.  */
         the layer beneath us can understand.  */
      options = lp->cloned ? __WCLONE : 0;
      options = lp->cloned ? __WCLONE : 0;
      pid = GET_LWP (ptid);
      pid = GET_LWP (ptid);
 
 
      /* We check for lp->waitstatus in addition to lp->status,
      /* We check for lp->waitstatus in addition to lp->status,
         because we can have pending process exits recorded in
         because we can have pending process exits recorded in
         lp->status and W_EXITCODE(0,0) == 0.  We should probably have
         lp->status and W_EXITCODE(0,0) == 0.  We should probably have
         an additional lp->status_p flag.  */
         an additional lp->status_p flag.  */
      if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
      if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
        lp = NULL;
        lp = NULL;
    }
    }
 
 
  if (lp && lp->signalled)
  if (lp && lp->signalled)
    {
    {
      /* A pending SIGSTOP may interfere with the normal stream of
      /* A pending SIGSTOP may interfere with the normal stream of
         events.  In a typical case where interference is a problem,
         events.  In a typical case where interference is a problem,
         we have a SIGSTOP signal pending for LWP A while
         we have a SIGSTOP signal pending for LWP A while
         single-stepping it, encounter an event in LWP B, and take the
         single-stepping it, encounter an event in LWP B, and take the
         pending SIGSTOP while trying to stop LWP A.  After processing
         pending SIGSTOP while trying to stop LWP A.  After processing
         the event in LWP B, LWP A is continued, and we'll never see
         the event in LWP B, LWP A is continued, and we'll never see
         the SIGTRAP associated with the last time we were
         the SIGTRAP associated with the last time we were
         single-stepping LWP A.  */
         single-stepping LWP A.  */
 
 
      /* Resume the thread.  It should halt immediately returning the
      /* Resume the thread.  It should halt immediately returning the
         pending SIGSTOP.  */
         pending SIGSTOP.  */
      registers_changed ();
      registers_changed ();
      linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
      linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
                            lp->step, TARGET_SIGNAL_0);
                            lp->step, TARGET_SIGNAL_0);
      if (debug_linux_nat)
      if (debug_linux_nat)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
                            "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
                            lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
                            lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
                            target_pid_to_str (lp->ptid));
                            target_pid_to_str (lp->ptid));
      lp->stopped = 0;
      lp->stopped = 0;
      gdb_assert (lp->resumed);
      gdb_assert (lp->resumed);
 
 
      /* Catch the pending SIGSTOP.  */
      /* Catch the pending SIGSTOP.  */
      status = lp->status;
      status = lp->status;
      lp->status = 0;
      lp->status = 0;
 
 
      stop_wait_callback (lp, NULL);
      stop_wait_callback (lp, NULL);
 
 
      /* If the lp->status field isn't empty, we caught another signal
      /* If the lp->status field isn't empty, we caught another signal
         while flushing the SIGSTOP.  Return it back to the event
         while flushing the SIGSTOP.  Return it back to the event
         queue of the LWP, as we already have an event to handle.  */
         queue of the LWP, as we already have an event to handle.  */
      if (lp->status)
      if (lp->status)
        {
        {
          if (debug_linux_nat)
          if (debug_linux_nat)
            fprintf_unfiltered (gdb_stdlog,
            fprintf_unfiltered (gdb_stdlog,
                                "LLW: kill %s, %s\n",
                                "LLW: kill %s, %s\n",
                                target_pid_to_str (lp->ptid),
                                target_pid_to_str (lp->ptid),
                                status_to_str (lp->status));
                                status_to_str (lp->status));
          kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
          kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
        }
        }
 
 
      lp->status = status;
      lp->status = status;
    }
    }
 
 
  if (!target_can_async_p ())
  if (!target_can_async_p ())
    {
    {
      /* Causes SIGINT to be passed on to the attached process.  */
      /* Causes SIGINT to be passed on to the attached process.  */
      set_sigint_trap ();
      set_sigint_trap ();
    }
    }
 
 
  /* Translate generic target_wait options into waitpid options.  */
  /* Translate generic target_wait options into waitpid options.  */
  if (target_options & TARGET_WNOHANG)
  if (target_options & TARGET_WNOHANG)
    options |= WNOHANG;
    options |= WNOHANG;
 
 
  while (lp == NULL)
  while (lp == NULL)
    {
    {
      pid_t lwpid;
      pid_t lwpid;
 
 
      lwpid = my_waitpid (pid, &status, options);
      lwpid = my_waitpid (pid, &status, options);
 
 
      if (lwpid > 0)
      if (lwpid > 0)
        {
        {
          gdb_assert (pid == -1 || lwpid == pid);
          gdb_assert (pid == -1 || lwpid == pid);
 
 
          if (debug_linux_nat)
          if (debug_linux_nat)
            {
            {
              fprintf_unfiltered (gdb_stdlog,
              fprintf_unfiltered (gdb_stdlog,
                                  "LLW: waitpid %ld received %s\n",
                                  "LLW: waitpid %ld received %s\n",
                                  (long) lwpid, status_to_str (status));
                                  (long) lwpid, status_to_str (status));
            }
            }
 
 
          lp = linux_nat_filter_event (lwpid, status, options);
          lp = linux_nat_filter_event (lwpid, status, options);
 
 
          if (lp
          if (lp
              && ptid_is_pid (ptid)
              && ptid_is_pid (ptid)
              && ptid_get_pid (lp->ptid) != ptid_get_pid (ptid))
              && ptid_get_pid (lp->ptid) != ptid_get_pid (ptid))
            {
            {
              gdb_assert (lp->resumed);
              gdb_assert (lp->resumed);
 
 
              if (debug_linux_nat)
              if (debug_linux_nat)
                fprintf (stderr, "LWP %ld got an event %06x, leaving pending.\n",
                fprintf (stderr, "LWP %ld got an event %06x, leaving pending.\n",
                         ptid_get_lwp (lp->ptid), status);
                         ptid_get_lwp (lp->ptid), status);
 
 
              if (WIFSTOPPED (lp->status))
              if (WIFSTOPPED (lp->status))
                {
                {
                  if (WSTOPSIG (lp->status) != SIGSTOP)
                  if (WSTOPSIG (lp->status) != SIGSTOP)
                    {
                    {
                      /* Cancel breakpoint hits.  The breakpoint may
                      /* Cancel breakpoint hits.  The breakpoint may
                         be removed before we fetch events from this
                         be removed before we fetch events from this
                         process to report to the core.  It is best
                         process to report to the core.  It is best
                         not to assume the moribund breakpoints
                         not to assume the moribund breakpoints
                         heuristic always handles these cases --- it
                         heuristic always handles these cases --- it
                         could be too many events go through to the
                         could be too many events go through to the
                         core before this one is handled.  All-stop
                         core before this one is handled.  All-stop
                         always cancels breakpoint hits in all
                         always cancels breakpoint hits in all
                         threads.  */
                         threads.  */
                      if (non_stop
                      if (non_stop
                          && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
                          && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
                          && WSTOPSIG (lp->status) == SIGTRAP
                          && WSTOPSIG (lp->status) == SIGTRAP
                          && cancel_breakpoint (lp))
                          && cancel_breakpoint (lp))
                        {
                        {
                          /* Throw away the SIGTRAP.  */
                          /* Throw away the SIGTRAP.  */
                          lp->status = 0;
                          lp->status = 0;
 
 
                          if (debug_linux_nat)
                          if (debug_linux_nat)
                            fprintf (stderr,
                            fprintf (stderr,
                                     "LLW: LWP %ld hit a breakpoint while waiting "
                                     "LLW: LWP %ld hit a breakpoint while waiting "
                                     "for another process; cancelled it\n",
                                     "for another process; cancelled it\n",
                                     ptid_get_lwp (lp->ptid));
                                     ptid_get_lwp (lp->ptid));
                        }
                        }
                      lp->stopped = 1;
                      lp->stopped = 1;
                    }
                    }
                  else
                  else
                    {
                    {
                      lp->stopped = 1;
                      lp->stopped = 1;
                      lp->signalled = 0;
                      lp->signalled = 0;
                    }
                    }
                }
                }
              else if (WIFEXITED (status) || WIFSIGNALED (status))
              else if (WIFEXITED (status) || WIFSIGNALED (status))
                {
                {
                  if (debug_linux_nat)
                  if (debug_linux_nat)
                    fprintf (stderr, "Process %ld exited while stopping LWPs\n",
                    fprintf (stderr, "Process %ld exited while stopping LWPs\n",
                             ptid_get_lwp (lp->ptid));
                             ptid_get_lwp (lp->ptid));
 
 
                  /* This was the last lwp in the process.  Since
                  /* This was the last lwp in the process.  Since
                     events are serialized to GDB core, and we can't
                     events are serialized to GDB core, and we can't
                     report this one right now, but GDB core and the
                     report this one right now, but GDB core and the
                     other target layers will want to be notified
                     other target layers will want to be notified
                     about the exit code/signal, leave the status
                     about the exit code/signal, leave the status
                     pending for the next time we're able to report
                     pending for the next time we're able to report
                     it.  */
                     it.  */
 
 
                  /* Prevent trying to stop this thread again.  We'll
                  /* Prevent trying to stop this thread again.  We'll
                     never try to resume it because it has a pending
                     never try to resume it because it has a pending
                     status.  */
                     status.  */
                  lp->stopped = 1;
                  lp->stopped = 1;
 
 
                  /* Dead LWP's aren't expected to reported a pending
                  /* Dead LWP's aren't expected to reported a pending
                     sigstop.  */
                     sigstop.  */
                  lp->signalled = 0;
                  lp->signalled = 0;
 
 
                  /* Store the pending event in the waitstatus as
                  /* Store the pending event in the waitstatus as
                     well, because W_EXITCODE(0,0) == 0.  */
                     well, because W_EXITCODE(0,0) == 0.  */
                  store_waitstatus (&lp->waitstatus, lp->status);
                  store_waitstatus (&lp->waitstatus, lp->status);
                }
                }
 
 
              /* Keep looking.  */
              /* Keep looking.  */
              lp = NULL;
              lp = NULL;
              continue;
              continue;
            }
            }
 
 
          if (lp)
          if (lp)
            break;
            break;
          else
          else
            {
            {
              if (pid == -1)
              if (pid == -1)
                {
                {
                  /* waitpid did return something.  Restart over.  */
                  /* waitpid did return something.  Restart over.  */
                  options |= __WCLONE;
                  options |= __WCLONE;
                }
                }
              continue;
              continue;
            }
            }
        }
        }
 
 
      if (pid == -1)
      if (pid == -1)
        {
        {
          /* Alternate between checking cloned and uncloned processes.  */
          /* Alternate between checking cloned and uncloned processes.  */
          options ^= __WCLONE;
          options ^= __WCLONE;
 
 
          /* And every time we have checked both:
          /* And every time we have checked both:
             In async mode, return to event loop;
             In async mode, return to event loop;
             In sync mode, suspend waiting for a SIGCHLD signal.  */
             In sync mode, suspend waiting for a SIGCHLD signal.  */
          if (options & __WCLONE)
          if (options & __WCLONE)
            {
            {
              if (target_options & TARGET_WNOHANG)
              if (target_options & TARGET_WNOHANG)
                {
                {
                  /* No interesting event.  */
                  /* No interesting event.  */
                  ourstatus->kind = TARGET_WAITKIND_IGNORE;
                  ourstatus->kind = TARGET_WAITKIND_IGNORE;
 
 
                  if (debug_linux_nat_async)
                  if (debug_linux_nat_async)
                    fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
                    fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
 
 
                  restore_child_signals_mask (&prev_mask);
                  restore_child_signals_mask (&prev_mask);
                  return minus_one_ptid;
                  return minus_one_ptid;
                }
                }
 
 
              sigsuspend (&suspend_mask);
              sigsuspend (&suspend_mask);
            }
            }
        }
        }
      else if (target_options & TARGET_WNOHANG)
      else if (target_options & TARGET_WNOHANG)
        {
        {
          /* No interesting event for PID yet.  */
          /* No interesting event for PID yet.  */
          ourstatus->kind = TARGET_WAITKIND_IGNORE;
          ourstatus->kind = TARGET_WAITKIND_IGNORE;
 
 
          if (debug_linux_nat_async)
          if (debug_linux_nat_async)
            fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
            fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
 
 
          restore_child_signals_mask (&prev_mask);
          restore_child_signals_mask (&prev_mask);
          return minus_one_ptid;
          return minus_one_ptid;
        }
        }
 
 
      /* We shouldn't end up here unless we want to try again.  */
      /* We shouldn't end up here unless we want to try again.  */
      gdb_assert (lp == NULL);
      gdb_assert (lp == NULL);
    }
    }
 
 
  if (!target_can_async_p ())
  if (!target_can_async_p ())
    clear_sigint_trap ();
    clear_sigint_trap ();
 
 
  gdb_assert (lp);
  gdb_assert (lp);
 
 
  status = lp->status;
  status = lp->status;
  lp->status = 0;
  lp->status = 0;
 
 
  /* Don't report signals that GDB isn't interested in, such as
  /* Don't report signals that GDB isn't interested in, such as
     signals that are neither printed nor stopped upon.  Stopping all
     signals that are neither printed nor stopped upon.  Stopping all
     threads can be a bit time-consuming so if we want decent
     threads can be a bit time-consuming so if we want decent
     performance with heavily multi-threaded programs, especially when
     performance with heavily multi-threaded programs, especially when
     they're using a high frequency timer, we'd better avoid it if we
     they're using a high frequency timer, we'd better avoid it if we
     can.  */
     can.  */
 
 
  if (WIFSTOPPED (status))
  if (WIFSTOPPED (status))
    {
    {
      int signo = target_signal_from_host (WSTOPSIG (status));
      int signo = target_signal_from_host (WSTOPSIG (status));
      struct inferior *inf;
      struct inferior *inf;
 
 
      inf = find_inferior_pid (ptid_get_pid (lp->ptid));
      inf = find_inferior_pid (ptid_get_pid (lp->ptid));
      gdb_assert (inf);
      gdb_assert (inf);
 
 
      /* Defer to common code if we get a signal while
      /* Defer to common code if we get a signal while
         single-stepping, since that may need special care, e.g. to
         single-stepping, since that may need special care, e.g. to
         skip the signal handler, or, if we're gaining control of the
         skip the signal handler, or, if we're gaining control of the
         inferior.  */
         inferior.  */
      if (!lp->step
      if (!lp->step
          && inf->stop_soon == NO_STOP_QUIETLY
          && inf->stop_soon == NO_STOP_QUIETLY
          && signal_stop_state (signo) == 0
          && signal_stop_state (signo) == 0
          && signal_print_state (signo) == 0
          && signal_print_state (signo) == 0
          && signal_pass_state (signo) == 1)
          && signal_pass_state (signo) == 1)
        {
        {
          /* FIMXE: kettenis/2001-06-06: Should we resume all threads
          /* FIMXE: kettenis/2001-06-06: Should we resume all threads
             here?  It is not clear we should.  GDB may not expect
             here?  It is not clear we should.  GDB may not expect
             other threads to run.  On the other hand, not resuming
             other threads to run.  On the other hand, not resuming
             newly attached threads may cause an unwanted delay in
             newly attached threads may cause an unwanted delay in
             getting them running.  */
             getting them running.  */
          registers_changed ();
          registers_changed ();
          linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
          linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
                                lp->step, signo);
                                lp->step, signo);
          if (debug_linux_nat)
          if (debug_linux_nat)
            fprintf_unfiltered (gdb_stdlog,
            fprintf_unfiltered (gdb_stdlog,
                                "LLW: %s %s, %s (preempt 'handle')\n",
                                "LLW: %s %s, %s (preempt 'handle')\n",
                                lp->step ?
                                lp->step ?
                                "PTRACE_SINGLESTEP" : "PTRACE_CONT",
                                "PTRACE_SINGLESTEP" : "PTRACE_CONT",
                                target_pid_to_str (lp->ptid),
                                target_pid_to_str (lp->ptid),
                                signo ? strsignal (signo) : "0");
                                signo ? strsignal (signo) : "0");
          lp->stopped = 0;
          lp->stopped = 0;
          goto retry;
          goto retry;
        }
        }
 
 
      if (!non_stop)
      if (!non_stop)
        {
        {
          /* Only do the below in all-stop, as we currently use SIGINT
          /* Only do the below in all-stop, as we currently use SIGINT
             to implement target_stop (see linux_nat_stop) in
             to implement target_stop (see linux_nat_stop) in
             non-stop.  */
             non-stop.  */
          if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
          if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
            {
            {
              /* If ^C/BREAK is typed at the tty/console, SIGINT gets
              /* If ^C/BREAK is typed at the tty/console, SIGINT gets
                 forwarded to the entire process group, that is, all LWPs
                 forwarded to the entire process group, that is, all LWPs
                 will receive it - unless they're using CLONE_THREAD to
                 will receive it - unless they're using CLONE_THREAD to
                 share signals.  Since we only want to report it once, we
                 share signals.  Since we only want to report it once, we
                 mark it as ignored for all LWPs except this one.  */
                 mark it as ignored for all LWPs except this one.  */
              iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
              iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
                                              set_ignore_sigint, NULL);
                                              set_ignore_sigint, NULL);
              lp->ignore_sigint = 0;
              lp->ignore_sigint = 0;
            }
            }
          else
          else
            maybe_clear_ignore_sigint (lp);
            maybe_clear_ignore_sigint (lp);
        }
        }
    }
    }
 
 
  /* This LWP is stopped now.  */
  /* This LWP is stopped now.  */
  lp->stopped = 1;
  lp->stopped = 1;
 
 
  if (debug_linux_nat)
  if (debug_linux_nat)
    fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
    fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
                        status_to_str (status), target_pid_to_str (lp->ptid));
                        status_to_str (status), target_pid_to_str (lp->ptid));
 
 
  if (!non_stop)
  if (!non_stop)
    {
    {
      /* Now stop all other LWP's ...  */
      /* Now stop all other LWP's ...  */
      iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
      iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
 
 
      /* ... and wait until all of them have reported back that
      /* ... and wait until all of them have reported back that
         they're no longer running.  */
         they're no longer running.  */
      iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
      iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
 
 
      /* If we're not waiting for a specific LWP, choose an event LWP
      /* If we're not waiting for a specific LWP, choose an event LWP
         from among those that have had events.  Giving equal priority
         from among those that have had events.  Giving equal priority
         to all LWPs that have had events helps prevent
         to all LWPs that have had events helps prevent
         starvation.  */
         starvation.  */
      if (pid == -1)
      if (pid == -1)
        select_event_lwp (ptid, &lp, &status);
        select_event_lwp (ptid, &lp, &status);
 
 
      /* Now that we've selected our final event LWP, cancel any
      /* Now that we've selected our final event LWP, cancel any
         breakpoints in other LWPs that have hit a GDB breakpoint.
         breakpoints in other LWPs that have hit a GDB breakpoint.
         See the comment in cancel_breakpoints_callback to find out
         See the comment in cancel_breakpoints_callback to find out
         why.  */
         why.  */
      iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
      iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
 
 
      /* In all-stop, from the core's perspective, all LWPs are now
      /* In all-stop, from the core's perspective, all LWPs are now
         stopped until a new resume action is sent over.  */
         stopped until a new resume action is sent over.  */
      iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
      iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
    }
    }
  else
  else
    lp->resumed = 0;
    lp->resumed = 0;
 
 
  if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
  if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
    {
    {
      if (debug_linux_nat)
      if (debug_linux_nat)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "LLW: trap ptid is %s.\n",
                            "LLW: trap ptid is %s.\n",
                            target_pid_to_str (lp->ptid));
                            target_pid_to_str (lp->ptid));
    }
    }
 
 
  if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
  if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
    {
    {
      *ourstatus = lp->waitstatus;
      *ourstatus = lp->waitstatus;
      lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
      lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
    }
    }
  else
  else
    store_waitstatus (ourstatus, status);
    store_waitstatus (ourstatus, status);
 
 
  if (debug_linux_nat_async)
  if (debug_linux_nat_async)
    fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
    fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
 
 
  restore_child_signals_mask (&prev_mask);
  restore_child_signals_mask (&prev_mask);
  lp->core = linux_nat_core_of_thread_1 (lp->ptid);
  lp->core = linux_nat_core_of_thread_1 (lp->ptid);
  return lp->ptid;
  return lp->ptid;
}
}
 
 
/* Resume LWPs that are currently stopped without any pending status
/* Resume LWPs that are currently stopped without any pending status
   to report, but are resumed from the core's perspective.  */
   to report, but are resumed from the core's perspective.  */
 
 
static int
static int
resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
{
{
  ptid_t *wait_ptid_p = data;
  ptid_t *wait_ptid_p = data;
 
 
  if (lp->stopped
  if (lp->stopped
      && lp->resumed
      && lp->resumed
      && lp->status == 0
      && lp->status == 0
      && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
      && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
    {
    {
      gdb_assert (is_executing (lp->ptid));
      gdb_assert (is_executing (lp->ptid));
 
 
      /* Don't bother if there's a breakpoint at PC that we'd hit
      /* Don't bother if there's a breakpoint at PC that we'd hit
         immediately, and we're not waiting for this LWP.  */
         immediately, and we're not waiting for this LWP.  */
      if (!ptid_match (lp->ptid, *wait_ptid_p))
      if (!ptid_match (lp->ptid, *wait_ptid_p))
        {
        {
          struct regcache *regcache = get_thread_regcache (lp->ptid);
          struct regcache *regcache = get_thread_regcache (lp->ptid);
          CORE_ADDR pc = regcache_read_pc (regcache);
          CORE_ADDR pc = regcache_read_pc (regcache);
 
 
          if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
          if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
            return 0;
            return 0;
        }
        }
 
 
      if (debug_linux_nat)
      if (debug_linux_nat)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "RSRL: resuming stopped-resumed LWP %s\n",
                            "RSRL: resuming stopped-resumed LWP %s\n",
                            target_pid_to_str (lp->ptid));
                            target_pid_to_str (lp->ptid));
 
 
      linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
      linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
                            lp->step, TARGET_SIGNAL_0);
                            lp->step, TARGET_SIGNAL_0);
      lp->stopped = 0;
      lp->stopped = 0;
      memset (&lp->siginfo, 0, sizeof (lp->siginfo));
      memset (&lp->siginfo, 0, sizeof (lp->siginfo));
      lp->stopped_by_watchpoint = 0;
      lp->stopped_by_watchpoint = 0;
    }
    }
 
 
  return 0;
  return 0;
}
}
 
 
static ptid_t
static ptid_t
linux_nat_wait (struct target_ops *ops,
linux_nat_wait (struct target_ops *ops,
                ptid_t ptid, struct target_waitstatus *ourstatus,
                ptid_t ptid, struct target_waitstatus *ourstatus,
                int target_options)
                int target_options)
{
{
  ptid_t event_ptid;
  ptid_t event_ptid;
 
 
  if (debug_linux_nat)
  if (debug_linux_nat)
    fprintf_unfiltered (gdb_stdlog, "linux_nat_wait: [%s]\n", target_pid_to_str (ptid));
    fprintf_unfiltered (gdb_stdlog, "linux_nat_wait: [%s]\n", target_pid_to_str (ptid));
 
 
  /* Flush the async file first.  */
  /* Flush the async file first.  */
  if (target_can_async_p ())
  if (target_can_async_p ())
    async_file_flush ();
    async_file_flush ();
 
 
  /* Resume LWPs that are currently stopped without any pending status
  /* Resume LWPs that are currently stopped without any pending status
     to report, but are resumed from the core's perspective.  LWPs get
     to report, but are resumed from the core's perspective.  LWPs get
     in this state if we find them stopping at a time we're not
     in this state if we find them stopping at a time we're not
     interested in reporting the event (target_wait on a
     interested in reporting the event (target_wait on a
     specific_process, for example, see linux_nat_wait_1), and
     specific_process, for example, see linux_nat_wait_1), and
     meanwhile the event became uninteresting.  Don't bother resuming
     meanwhile the event became uninteresting.  Don't bother resuming
     LWPs we're not going to wait for if they'd stop immediately.  */
     LWPs we're not going to wait for if they'd stop immediately.  */
  if (non_stop)
  if (non_stop)
    iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
    iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
 
 
  event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
  event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
 
 
  /* If we requested any event, and something came out, assume there
  /* If we requested any event, and something came out, assume there
     may be more.  If we requested a specific lwp or process, also
     may be more.  If we requested a specific lwp or process, also
     assume there may be more.  */
     assume there may be more.  */
  if (target_can_async_p ()
  if (target_can_async_p ()
      && (ourstatus->kind != TARGET_WAITKIND_IGNORE
      && (ourstatus->kind != TARGET_WAITKIND_IGNORE
          || !ptid_equal (ptid, minus_one_ptid)))
          || !ptid_equal (ptid, minus_one_ptid)))
    async_file_mark ();
    async_file_mark ();
 
 
  /* Get ready for the next event.  */
  /* Get ready for the next event.  */
  if (target_can_async_p ())
  if (target_can_async_p ())
    target_async (inferior_event_handler, 0);
    target_async (inferior_event_handler, 0);
 
 
  return event_ptid;
  return event_ptid;
}
}
 
 
static int
static int
kill_callback (struct lwp_info *lp, void *data)
kill_callback (struct lwp_info *lp, void *data)
{
{
  errno = 0;
  errno = 0;
  ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
  ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
  if (debug_linux_nat)
  if (debug_linux_nat)
    fprintf_unfiltered (gdb_stdlog,
    fprintf_unfiltered (gdb_stdlog,
                        "KC:  PTRACE_KILL %s, 0, 0 (%s)\n",
                        "KC:  PTRACE_KILL %s, 0, 0 (%s)\n",
                        target_pid_to_str (lp->ptid),
                        target_pid_to_str (lp->ptid),
                        errno ? safe_strerror (errno) : "OK");
                        errno ? safe_strerror (errno) : "OK");
 
 
  return 0;
  return 0;
}
}
 
 
static int
static int
kill_wait_callback (struct lwp_info *lp, void *data)
kill_wait_callback (struct lwp_info *lp, void *data)
{
{
  pid_t pid;
  pid_t pid;
 
 
  /* We must make sure that there are no pending events (delayed
  /* We must make sure that there are no pending events (delayed
     SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
     SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
     program doesn't interfere with any following debugging session.  */
     program doesn't interfere with any following debugging session.  */
 
 
  /* For cloned processes we must check both with __WCLONE and
  /* For cloned processes we must check both with __WCLONE and
     without, since the exit status of a cloned process isn't reported
     without, since the exit status of a cloned process isn't reported
     with __WCLONE.  */
     with __WCLONE.  */
  if (lp->cloned)
  if (lp->cloned)
    {
    {
      do
      do
        {
        {
          pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
          pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
          if (pid != (pid_t) -1)
          if (pid != (pid_t) -1)
            {
            {
              if (debug_linux_nat)
              if (debug_linux_nat)
                fprintf_unfiltered (gdb_stdlog,
                fprintf_unfiltered (gdb_stdlog,
                                    "KWC: wait %s received unknown.\n",
                                    "KWC: wait %s received unknown.\n",
                                    target_pid_to_str (lp->ptid));
                                    target_pid_to_str (lp->ptid));
              /* The Linux kernel sometimes fails to kill a thread
              /* The Linux kernel sometimes fails to kill a thread
                 completely after PTRACE_KILL; that goes from the stop
                 completely after PTRACE_KILL; that goes from the stop
                 point in do_fork out to the one in
                 point in do_fork out to the one in
                 get_signal_to_deliever and waits again.  So kill it
                 get_signal_to_deliever and waits again.  So kill it
                 again.  */
                 again.  */
              kill_callback (lp, NULL);
              kill_callback (lp, NULL);
            }
            }
        }
        }
      while (pid == GET_LWP (lp->ptid));
      while (pid == GET_LWP (lp->ptid));
 
 
      gdb_assert (pid == -1 && errno == ECHILD);
      gdb_assert (pid == -1 && errno == ECHILD);
    }
    }
 
 
  do
  do
    {
    {
      pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
      pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
      if (pid != (pid_t) -1)
      if (pid != (pid_t) -1)
        {
        {
          if (debug_linux_nat)
          if (debug_linux_nat)
            fprintf_unfiltered (gdb_stdlog,
            fprintf_unfiltered (gdb_stdlog,
                                "KWC: wait %s received unk.\n",
                                "KWC: wait %s received unk.\n",
                                target_pid_to_str (lp->ptid));
                                target_pid_to_str (lp->ptid));
          /* See the call to kill_callback above.  */
          /* See the call to kill_callback above.  */
          kill_callback (lp, NULL);
          kill_callback (lp, NULL);
        }
        }
    }
    }
  while (pid == GET_LWP (lp->ptid));
  while (pid == GET_LWP (lp->ptid));
 
 
  gdb_assert (pid == -1 && errno == ECHILD);
  gdb_assert (pid == -1 && errno == ECHILD);
  return 0;
  return 0;
}
}
 
 
static void
static void
linux_nat_kill (struct target_ops *ops)
linux_nat_kill (struct target_ops *ops)
{
{
  struct target_waitstatus last;
  struct target_waitstatus last;
  ptid_t last_ptid;
  ptid_t last_ptid;
  int status;
  int status;
 
 
  /* If we're stopped while forking and we haven't followed yet,
  /* If we're stopped while forking and we haven't followed yet,
     kill the other task.  We need to do this first because the
     kill the other task.  We need to do this first because the
     parent will be sleeping if this is a vfork.  */
     parent will be sleeping if this is a vfork.  */
 
 
  get_last_target_status (&last_ptid, &last);
  get_last_target_status (&last_ptid, &last);
 
 
  if (last.kind == TARGET_WAITKIND_FORKED
  if (last.kind == TARGET_WAITKIND_FORKED
      || last.kind == TARGET_WAITKIND_VFORKED)
      || last.kind == TARGET_WAITKIND_VFORKED)
    {
    {
      ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
      ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
      wait (&status);
      wait (&status);
    }
    }
 
 
  if (forks_exist_p ())
  if (forks_exist_p ())
    linux_fork_killall ();
    linux_fork_killall ();
  else
  else
    {
    {
      ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
      ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
      /* Stop all threads before killing them, since ptrace requires
      /* Stop all threads before killing them, since ptrace requires
         that the thread is stopped to sucessfully PTRACE_KILL.  */
         that the thread is stopped to sucessfully PTRACE_KILL.  */
      iterate_over_lwps (ptid, stop_callback, NULL);
      iterate_over_lwps (ptid, stop_callback, NULL);
      /* ... and wait until all of them have reported back that
      /* ... and wait until all of them have reported back that
         they're no longer running.  */
         they're no longer running.  */
      iterate_over_lwps (ptid, stop_wait_callback, NULL);
      iterate_over_lwps (ptid, stop_wait_callback, NULL);
 
 
      /* Kill all LWP's ...  */
      /* Kill all LWP's ...  */
      iterate_over_lwps (ptid, kill_callback, NULL);
      iterate_over_lwps (ptid, kill_callback, NULL);
 
 
      /* ... and wait until we've flushed all events.  */
      /* ... and wait until we've flushed all events.  */
      iterate_over_lwps (ptid, kill_wait_callback, NULL);
      iterate_over_lwps (ptid, kill_wait_callback, NULL);
    }
    }
 
 
  target_mourn_inferior ();
  target_mourn_inferior ();
}
}
 
 
static void
static void
linux_nat_mourn_inferior (struct target_ops *ops)
linux_nat_mourn_inferior (struct target_ops *ops)
{
{
  purge_lwp_list (ptid_get_pid (inferior_ptid));
  purge_lwp_list (ptid_get_pid (inferior_ptid));
 
 
  if (! forks_exist_p ())
  if (! forks_exist_p ())
    /* Normal case, no other forks available.  */
    /* Normal case, no other forks available.  */
    linux_ops->to_mourn_inferior (ops);
    linux_ops->to_mourn_inferior (ops);
  else
  else
    /* Multi-fork case.  The current inferior_ptid has exited, but
    /* Multi-fork case.  The current inferior_ptid has exited, but
       there are other viable forks to debug.  Delete the exiting
       there are other viable forks to debug.  Delete the exiting
       one and context-switch to the first available.  */
       one and context-switch to the first available.  */
    linux_fork_mourn_inferior ();
    linux_fork_mourn_inferior ();
}
}
 
 
/* Convert a native/host siginfo object, into/from the siginfo in the
/* Convert a native/host siginfo object, into/from the siginfo in the
   layout of the inferiors' architecture.  */
   layout of the inferiors' architecture.  */
 
 
static void
static void
siginfo_fixup (struct siginfo *siginfo, gdb_byte *inf_siginfo, int direction)
siginfo_fixup (struct siginfo *siginfo, gdb_byte *inf_siginfo, int direction)
{
{
  int done = 0;
  int done = 0;
 
 
  if (linux_nat_siginfo_fixup != NULL)
  if (linux_nat_siginfo_fixup != NULL)
    done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
    done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
 
 
  /* If there was no callback, or the callback didn't do anything,
  /* If there was no callback, or the callback didn't do anything,
     then just do a straight memcpy.  */
     then just do a straight memcpy.  */
  if (!done)
  if (!done)
    {
    {
      if (direction == 1)
      if (direction == 1)
        memcpy (siginfo, inf_siginfo, sizeof (struct siginfo));
        memcpy (siginfo, inf_siginfo, sizeof (struct siginfo));
      else
      else
        memcpy (inf_siginfo, siginfo, sizeof (struct siginfo));
        memcpy (inf_siginfo, siginfo, sizeof (struct siginfo));
    }
    }
}
}
 
 
static LONGEST
static LONGEST
linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
                    const char *annex, gdb_byte *readbuf,
                    const char *annex, gdb_byte *readbuf,
                    const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
                    const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
{
{
  int pid;
  int pid;
  struct siginfo siginfo;
  struct siginfo siginfo;
  gdb_byte inf_siginfo[sizeof (struct siginfo)];
  gdb_byte inf_siginfo[sizeof (struct siginfo)];
 
 
  gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
  gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
  gdb_assert (readbuf || writebuf);
  gdb_assert (readbuf || writebuf);
 
 
  pid = GET_LWP (inferior_ptid);
  pid = GET_LWP (inferior_ptid);
  if (pid == 0)
  if (pid == 0)
    pid = GET_PID (inferior_ptid);
    pid = GET_PID (inferior_ptid);
 
 
  if (offset > sizeof (siginfo))
  if (offset > sizeof (siginfo))
    return -1;
    return -1;
 
 
  errno = 0;
  errno = 0;
  ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
  ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
  if (errno != 0)
  if (errno != 0)
    return -1;
    return -1;
 
 
  /* When GDB is built as a 64-bit application, ptrace writes into
  /* When GDB is built as a 64-bit application, ptrace writes into
     SIGINFO an object with 64-bit layout.  Since debugging a 32-bit
     SIGINFO an object with 64-bit layout.  Since debugging a 32-bit
     inferior with a 64-bit GDB should look the same as debugging it
     inferior with a 64-bit GDB should look the same as debugging it
     with a 32-bit GDB, we need to convert it.  GDB core always sees
     with a 32-bit GDB, we need to convert it.  GDB core always sees
     the converted layout, so any read/write will have to be done
     the converted layout, so any read/write will have to be done
     post-conversion.  */
     post-conversion.  */
  siginfo_fixup (&siginfo, inf_siginfo, 0);
  siginfo_fixup (&siginfo, inf_siginfo, 0);
 
 
  if (offset + len > sizeof (siginfo))
  if (offset + len > sizeof (siginfo))
    len = sizeof (siginfo) - offset;
    len = sizeof (siginfo) - offset;
 
 
  if (readbuf != NULL)
  if (readbuf != NULL)
    memcpy (readbuf, inf_siginfo + offset, len);
    memcpy (readbuf, inf_siginfo + offset, len);
  else
  else
    {
    {
      memcpy (inf_siginfo + offset, writebuf, len);
      memcpy (inf_siginfo + offset, writebuf, len);
 
 
      /* Convert back to ptrace layout before flushing it out.  */
      /* Convert back to ptrace layout before flushing it out.  */
      siginfo_fixup (&siginfo, inf_siginfo, 1);
      siginfo_fixup (&siginfo, inf_siginfo, 1);
 
 
      errno = 0;
      errno = 0;
      ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
      ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
      if (errno != 0)
      if (errno != 0)
        return -1;
        return -1;
    }
    }
 
 
  return len;
  return len;
}
}
 
 
static LONGEST
static LONGEST
linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
                        const char *annex, gdb_byte *readbuf,
                        const char *annex, gdb_byte *readbuf,
                        const gdb_byte *writebuf,
                        const gdb_byte *writebuf,
                        ULONGEST offset, LONGEST len)
                        ULONGEST offset, LONGEST len)
{
{
  struct cleanup *old_chain;
  struct cleanup *old_chain;
  LONGEST xfer;
  LONGEST xfer;
 
 
  if (object == TARGET_OBJECT_SIGNAL_INFO)
  if (object == TARGET_OBJECT_SIGNAL_INFO)
    return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
    return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
                               offset, len);
                               offset, len);
 
 
  /* The target is connected but no live inferior is selected.  Pass
  /* The target is connected but no live inferior is selected.  Pass
     this request down to a lower stratum (e.g., the executable
     this request down to a lower stratum (e.g., the executable
     file).  */
     file).  */
  if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
  if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
    return 0;
    return 0;
 
 
  old_chain = save_inferior_ptid ();
  old_chain = save_inferior_ptid ();
 
 
  if (is_lwp (inferior_ptid))
  if (is_lwp (inferior_ptid))
    inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
    inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
 
 
  xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
  xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
                                     offset, len);
                                     offset, len);
 
 
  do_cleanups (old_chain);
  do_cleanups (old_chain);
  return xfer;
  return xfer;
}
}
 
 
static int
static int
linux_thread_alive (ptid_t ptid)
linux_thread_alive (ptid_t ptid)
{
{
  int err;
  int err;
 
 
  gdb_assert (is_lwp (ptid));
  gdb_assert (is_lwp (ptid));
 
 
  /* Send signal 0 instead of anything ptrace, because ptracing a
  /* Send signal 0 instead of anything ptrace, because ptracing a
     running thread errors out claiming that the thread doesn't
     running thread errors out claiming that the thread doesn't
     exist.  */
     exist.  */
  err = kill_lwp (GET_LWP (ptid), 0);
  err = kill_lwp (GET_LWP (ptid), 0);
 
 
  if (debug_linux_nat)
  if (debug_linux_nat)
    fprintf_unfiltered (gdb_stdlog,
    fprintf_unfiltered (gdb_stdlog,
                        "LLTA: KILL(SIG0) %s (%s)\n",
                        "LLTA: KILL(SIG0) %s (%s)\n",
                        target_pid_to_str (ptid),
                        target_pid_to_str (ptid),
                        err ? safe_strerror (err) : "OK");
                        err ? safe_strerror (err) : "OK");
 
 
  if (err != 0)
  if (err != 0)
    return 0;
    return 0;
 
 
  return 1;
  return 1;
}
}
 
 
static int
static int
linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
{
{
  return linux_thread_alive (ptid);
  return linux_thread_alive (ptid);
}
}
 
 
static char *
static char *
linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
{
{
  static char buf[64];
  static char buf[64];
 
 
  if (is_lwp (ptid)
  if (is_lwp (ptid)
      && (GET_PID (ptid) != GET_LWP (ptid)
      && (GET_PID (ptid) != GET_LWP (ptid)
          || num_lwps (GET_PID (ptid)) > 1))
          || num_lwps (GET_PID (ptid)) > 1))
    {
    {
      snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
      snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
      return buf;
      return buf;
    }
    }
 
 
  return normal_pid_to_str (ptid);
  return normal_pid_to_str (ptid);
}
}
 
 
/* Accepts an integer PID; Returns a string representing a file that
/* Accepts an integer PID; Returns a string representing a file that
   can be opened to get the symbols for the child process.  */
   can be opened to get the symbols for the child process.  */
 
 
static char *
static char *
linux_child_pid_to_exec_file (int pid)
linux_child_pid_to_exec_file (int pid)
{
{
  char *name1, *name2;
  char *name1, *name2;
 
 
  name1 = xmalloc (MAXPATHLEN);
  name1 = xmalloc (MAXPATHLEN);
  name2 = xmalloc (MAXPATHLEN);
  name2 = xmalloc (MAXPATHLEN);
  make_cleanup (xfree, name1);
  make_cleanup (xfree, name1);
  make_cleanup (xfree, name2);
  make_cleanup (xfree, name2);
  memset (name2, 0, MAXPATHLEN);
  memset (name2, 0, MAXPATHLEN);
 
 
  sprintf (name1, "/proc/%d/exe", pid);
  sprintf (name1, "/proc/%d/exe", pid);
  if (readlink (name1, name2, MAXPATHLEN) > 0)
  if (readlink (name1, name2, MAXPATHLEN) > 0)
    return name2;
    return name2;
  else
  else
    return name1;
    return name1;
}
}
 
 
/* Service function for corefiles and info proc.  */
/* Service function for corefiles and info proc.  */
 
 
static int
static int
read_mapping (FILE *mapfile,
read_mapping (FILE *mapfile,
              long long *addr,
              long long *addr,
              long long *endaddr,
              long long *endaddr,
              char *permissions,
              char *permissions,
              long long *offset,
              long long *offset,
              char *device, long long *inode, char *filename)
              char *device, long long *inode, char *filename)
{
{
  int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
  int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
                    addr, endaddr, permissions, offset, device, inode);
                    addr, endaddr, permissions, offset, device, inode);
 
 
  filename[0] = '\0';
  filename[0] = '\0';
  if (ret > 0 && ret != EOF)
  if (ret > 0 && ret != EOF)
    {
    {
      /* Eat everything up to EOL for the filename.  This will prevent
      /* Eat everything up to EOL for the filename.  This will prevent
         weird filenames (such as one with embedded whitespace) from
         weird filenames (such as one with embedded whitespace) from
         confusing this code.  It also makes this code more robust in
         confusing this code.  It also makes this code more robust in
         respect to annotations the kernel may add after the filename.
         respect to annotations the kernel may add after the filename.
 
 
         Note the filename is used for informational purposes
         Note the filename is used for informational purposes
         only.  */
         only.  */
      ret += fscanf (mapfile, "%[^\n]\n", filename);
      ret += fscanf (mapfile, "%[^\n]\n", filename);
    }
    }
 
 
  return (ret != 0 && ret != EOF);
  return (ret != 0 && ret != EOF);
}
}
 
 
/* Fills the "to_find_memory_regions" target vector.  Lists the memory
/* Fills the "to_find_memory_regions" target vector.  Lists the memory
   regions in the inferior for a corefile.  */
   regions in the inferior for a corefile.  */
 
 
static int
static int
linux_nat_find_memory_regions (int (*func) (CORE_ADDR,
linux_nat_find_memory_regions (int (*func) (CORE_ADDR,
                                            unsigned long,
                                            unsigned long,
                                            int, int, int, void *), void *obfd)
                                            int, int, int, void *), void *obfd)
{
{
  int pid = PIDGET (inferior_ptid);
  int pid = PIDGET (inferior_ptid);
  char mapsfilename[MAXPATHLEN];
  char mapsfilename[MAXPATHLEN];
  FILE *mapsfile;
  FILE *mapsfile;
  long long addr, endaddr, size, offset, inode;
  long long addr, endaddr, size, offset, inode;
  char permissions[8], device[8], filename[MAXPATHLEN];
  char permissions[8], device[8], filename[MAXPATHLEN];
  int read, write, exec;
  int read, write, exec;
  int ret;
  int ret;
  struct cleanup *cleanup;
  struct cleanup *cleanup;
 
 
  /* Compose the filename for the /proc memory map, and open it.  */
  /* Compose the filename for the /proc memory map, and open it.  */
  sprintf (mapsfilename, "/proc/%d/maps", pid);
  sprintf (mapsfilename, "/proc/%d/maps", pid);
  if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
  if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
    error (_("Could not open %s."), mapsfilename);
    error (_("Could not open %s."), mapsfilename);
  cleanup = make_cleanup_fclose (mapsfile);
  cleanup = make_cleanup_fclose (mapsfile);
 
 
  if (info_verbose)
  if (info_verbose)
    fprintf_filtered (gdb_stdout,
    fprintf_filtered (gdb_stdout,
                      "Reading memory regions from %s\n", mapsfilename);
                      "Reading memory regions from %s\n", mapsfilename);
 
 
  /* Now iterate until end-of-file.  */
  /* Now iterate until end-of-file.  */
  while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
  while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
                       &offset, &device[0], &inode, &filename[0]))
                       &offset, &device[0], &inode, &filename[0]))
    {
    {
      size = endaddr - addr;
      size = endaddr - addr;
 
 
      /* Get the segment's permissions.  */
      /* Get the segment's permissions.  */
      read = (strchr (permissions, 'r') != 0);
      read = (strchr (permissions, 'r') != 0);
      write = (strchr (permissions, 'w') != 0);
      write = (strchr (permissions, 'w') != 0);
      exec = (strchr (permissions, 'x') != 0);
      exec = (strchr (permissions, 'x') != 0);
 
 
      if (info_verbose)
      if (info_verbose)
        {
        {
          fprintf_filtered (gdb_stdout,
          fprintf_filtered (gdb_stdout,
                            "Save segment, %lld bytes at %s (%c%c%c)",
                            "Save segment, %lld bytes at %s (%c%c%c)",
                            size, paddress (target_gdbarch, addr),
                            size, paddress (target_gdbarch, addr),
                            read ? 'r' : ' ',
                            read ? 'r' : ' ',
                            write ? 'w' : ' ', exec ? 'x' : ' ');
                            write ? 'w' : ' ', exec ? 'x' : ' ');
          if (filename[0])
          if (filename[0])
            fprintf_filtered (gdb_stdout, " for %s", filename);
            fprintf_filtered (gdb_stdout, " for %s", filename);
          fprintf_filtered (gdb_stdout, "\n");
          fprintf_filtered (gdb_stdout, "\n");
        }
        }
 
 
      /* Invoke the callback function to create the corefile
      /* Invoke the callback function to create the corefile
         segment.  */
         segment.  */
      func (addr, size, read, write, exec, obfd);
      func (addr, size, read, write, exec, obfd);
    }
    }
  do_cleanups (cleanup);
  do_cleanups (cleanup);
  return 0;
  return 0;
}
}
 
 
static int
static int
find_signalled_thread (struct thread_info *info, void *data)
find_signalled_thread (struct thread_info *info, void *data)
{
{
  if (info->stop_signal != TARGET_SIGNAL_0
  if (info->stop_signal != TARGET_SIGNAL_0
      && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
      && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
    return 1;
    return 1;
 
 
  return 0;
  return 0;
}
}
 
 
static enum target_signal
static enum target_signal
find_stop_signal (void)
find_stop_signal (void)
{
{
  struct thread_info *info =
  struct thread_info *info =
    iterate_over_threads (find_signalled_thread, NULL);
    iterate_over_threads (find_signalled_thread, NULL);
 
 
  if (info)
  if (info)
    return info->stop_signal;
    return info->stop_signal;
  else
  else
    return TARGET_SIGNAL_0;
    return TARGET_SIGNAL_0;
}
}
 
 
/* Records the thread's register state for the corefile note
/* Records the thread's register state for the corefile note
   section.  */
   section.  */
 
 
static char *
static char *
linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
                               char *note_data, int *note_size,
                               char *note_data, int *note_size,
                               enum target_signal stop_signal)
                               enum target_signal stop_signal)
{
{
  gdb_gregset_t gregs;
  gdb_gregset_t gregs;
  gdb_fpregset_t fpregs;
  gdb_fpregset_t fpregs;
  unsigned long lwp = ptid_get_lwp (ptid);
  unsigned long lwp = ptid_get_lwp (ptid);
  struct gdbarch *gdbarch = target_gdbarch;
  struct gdbarch *gdbarch = target_gdbarch;
  struct regcache *regcache = get_thread_arch_regcache (ptid, gdbarch);
  struct regcache *regcache = get_thread_arch_regcache (ptid, gdbarch);
  const struct regset *regset;
  const struct regset *regset;
  int core_regset_p;
  int core_regset_p;
  struct cleanup *old_chain;
  struct cleanup *old_chain;
  struct core_regset_section *sect_list;
  struct core_regset_section *sect_list;
  char *gdb_regset;
  char *gdb_regset;
 
 
  old_chain = save_inferior_ptid ();
  old_chain = save_inferior_ptid ();
  inferior_ptid = ptid;
  inferior_ptid = ptid;
  target_fetch_registers (regcache, -1);
  target_fetch_registers (regcache, -1);
  do_cleanups (old_chain);
  do_cleanups (old_chain);
 
 
  core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
  core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
  sect_list = gdbarch_core_regset_sections (gdbarch);
  sect_list = gdbarch_core_regset_sections (gdbarch);
 
 
  if (core_regset_p
  if (core_regset_p
      && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
      && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
                                                     sizeof (gregs))) != NULL
                                                     sizeof (gregs))) != NULL
      && regset->collect_regset != NULL)
      && regset->collect_regset != NULL)
    regset->collect_regset (regset, regcache, -1,
    regset->collect_regset (regset, regcache, -1,
                            &gregs, sizeof (gregs));
                            &gregs, sizeof (gregs));
  else
  else
    fill_gregset (regcache, &gregs, -1);
    fill_gregset (regcache, &gregs, -1);
 
 
  note_data = (char *) elfcore_write_prstatus (obfd,
  note_data = (char *) elfcore_write_prstatus (obfd,
                                               note_data,
                                               note_data,
                                               note_size,
                                               note_size,
                                               lwp,
                                               lwp,
                                               stop_signal, &gregs);
                                               stop_signal, &gregs);
 
 
  /* The loop below uses the new struct core_regset_section, which stores
  /* The loop below uses the new struct core_regset_section, which stores
     the supported section names and sizes for the core file.  Note that
     the supported section names and sizes for the core file.  Note that
     note PRSTATUS needs to be treated specially.  But the other notes are
     note PRSTATUS needs to be treated specially.  But the other notes are
     structurally the same, so they can benefit from the new struct.  */
     structurally the same, so they can benefit from the new struct.  */
  if (core_regset_p && sect_list != NULL)
  if (core_regset_p && sect_list != NULL)
    while (sect_list->sect_name != NULL)
    while (sect_list->sect_name != NULL)
      {
      {
        /* .reg was already handled above.  */
        /* .reg was already handled above.  */
        if (strcmp (sect_list->sect_name, ".reg") == 0)
        if (strcmp (sect_list->sect_name, ".reg") == 0)
          {
          {
            sect_list++;
            sect_list++;
            continue;
            continue;
          }
          }
        regset = gdbarch_regset_from_core_section (gdbarch,
        regset = gdbarch_regset_from_core_section (gdbarch,
                                                   sect_list->sect_name,
                                                   sect_list->sect_name,
                                                   sect_list->size);
                                                   sect_list->size);
        gdb_assert (regset && regset->collect_regset);
        gdb_assert (regset && regset->collect_regset);
        gdb_regset = xmalloc (sect_list->size);
        gdb_regset = xmalloc (sect_list->size);
        regset->collect_regset (regset, regcache, -1,
        regset->collect_regset (regset, regcache, -1,
                                gdb_regset, sect_list->size);
                                gdb_regset, sect_list->size);
        note_data = (char *) elfcore_write_register_note (obfd,
        note_data = (char *) elfcore_write_register_note (obfd,
                                                          note_data,
                                                          note_data,
                                                          note_size,
                                                          note_size,
                                                          sect_list->sect_name,
                                                          sect_list->sect_name,
                                                          gdb_regset,
                                                          gdb_regset,
                                                          sect_list->size);
                                                          sect_list->size);
        xfree (gdb_regset);
        xfree (gdb_regset);
        sect_list++;
        sect_list++;
      }
      }
 
 
  /* For architectures that does not have the struct core_regset_section
  /* For architectures that does not have the struct core_regset_section
     implemented, we use the old method.  When all the architectures have
     implemented, we use the old method.  When all the architectures have
     the new support, the code below should be deleted.  */
     the new support, the code below should be deleted.  */
  else
  else
    {
    {
      if (core_regset_p
      if (core_regset_p
          && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
          && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
                                                         sizeof (fpregs))) != NULL
                                                         sizeof (fpregs))) != NULL
          && regset->collect_regset != NULL)
          && regset->collect_regset != NULL)
        regset->collect_regset (regset, regcache, -1,
        regset->collect_regset (regset, regcache, -1,
                                &fpregs, sizeof (fpregs));
                                &fpregs, sizeof (fpregs));
      else
      else
        fill_fpregset (regcache, &fpregs, -1);
        fill_fpregset (regcache, &fpregs, -1);
 
 
      note_data = (char *) elfcore_write_prfpreg (obfd,
      note_data = (char *) elfcore_write_prfpreg (obfd,
                                                  note_data,
                                                  note_data,
                                                  note_size,
                                                  note_size,
                                                  &fpregs, sizeof (fpregs));
                                                  &fpregs, sizeof (fpregs));
    }
    }
 
 
  return note_data;
  return note_data;
}
}
 
 
struct linux_nat_corefile_thread_data
struct linux_nat_corefile_thread_data
{
{
  bfd *obfd;
  bfd *obfd;
  char *note_data;
  char *note_data;
  int *note_size;
  int *note_size;
  int num_notes;
  int num_notes;
  enum target_signal stop_signal;
  enum target_signal stop_signal;
};
};
 
 
/* Called by gdbthread.c once per thread.  Records the thread's
/* Called by gdbthread.c once per thread.  Records the thread's
   register state for the corefile note section.  */
   register state for the corefile note section.  */
 
 
static int
static int
linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
{
{
  struct linux_nat_corefile_thread_data *args = data;
  struct linux_nat_corefile_thread_data *args = data;
 
 
  args->note_data = linux_nat_do_thread_registers (args->obfd,
  args->note_data = linux_nat_do_thread_registers (args->obfd,
                                                   ti->ptid,
                                                   ti->ptid,
                                                   args->note_data,
                                                   args->note_data,
                                                   args->note_size,
                                                   args->note_size,
                                                   args->stop_signal);
                                                   args->stop_signal);
  args->num_notes++;
  args->num_notes++;
 
 
  return 0;
  return 0;
}
}
 
 
/* Enumerate spufs IDs for process PID.  */
/* Enumerate spufs IDs for process PID.  */
 
 
static void
static void
iterate_over_spus (int pid, void (*callback) (void *, int), void *data)
iterate_over_spus (int pid, void (*callback) (void *, int), void *data)
{
{
  char path[128];
  char path[128];
  DIR *dir;
  DIR *dir;
  struct dirent *entry;
  struct dirent *entry;
 
 
  xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
  xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
  dir = opendir (path);
  dir = opendir (path);
  if (!dir)
  if (!dir)
    return;
    return;
 
 
  rewinddir (dir);
  rewinddir (dir);
  while ((entry = readdir (dir)) != NULL)
  while ((entry = readdir (dir)) != NULL)
    {
    {
      struct stat st;
      struct stat st;
      struct statfs stfs;
      struct statfs stfs;
      int fd;
      int fd;
 
 
      fd = atoi (entry->d_name);
      fd = atoi (entry->d_name);
      if (!fd)
      if (!fd)
        continue;
        continue;
 
 
      xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
      xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
      if (stat (path, &st) != 0)
      if (stat (path, &st) != 0)
        continue;
        continue;
      if (!S_ISDIR (st.st_mode))
      if (!S_ISDIR (st.st_mode))
        continue;
        continue;
 
 
      if (statfs (path, &stfs) != 0)
      if (statfs (path, &stfs) != 0)
        continue;
        continue;
      if (stfs.f_type != SPUFS_MAGIC)
      if (stfs.f_type != SPUFS_MAGIC)
        continue;
        continue;
 
 
      callback (data, fd);
      callback (data, fd);
    }
    }
 
 
  closedir (dir);
  closedir (dir);
}
}
 
 
/* Generate corefile notes for SPU contexts.  */
/* Generate corefile notes for SPU contexts.  */
 
 
struct linux_spu_corefile_data
struct linux_spu_corefile_data
{
{
  bfd *obfd;
  bfd *obfd;
  char *note_data;
  char *note_data;
  int *note_size;
  int *note_size;
};
};
 
 
static void
static void
linux_spu_corefile_callback (void *data, int fd)
linux_spu_corefile_callback (void *data, int fd)
{
{
  struct linux_spu_corefile_data *args = data;
  struct linux_spu_corefile_data *args = data;
  int i;
  int i;
 
 
  static const char *spu_files[] =
  static const char *spu_files[] =
    {
    {
      "object-id",
      "object-id",
      "mem",
      "mem",
      "regs",
      "regs",
      "fpcr",
      "fpcr",
      "lslr",
      "lslr",
      "decr",
      "decr",
      "decr_status",
      "decr_status",
      "signal1",
      "signal1",
      "signal1_type",
      "signal1_type",
      "signal2",
      "signal2",
      "signal2_type",
      "signal2_type",
      "event_mask",
      "event_mask",
      "event_status",
      "event_status",
      "mbox_info",
      "mbox_info",
      "ibox_info",
      "ibox_info",
      "wbox_info",
      "wbox_info",
      "dma_info",
      "dma_info",
      "proxydma_info",
      "proxydma_info",
   };
   };
 
 
  for (i = 0; i < sizeof (spu_files) / sizeof (spu_files[0]); i++)
  for (i = 0; i < sizeof (spu_files) / sizeof (spu_files[0]); i++)
    {
    {
      char annex[32], note_name[32];
      char annex[32], note_name[32];
      gdb_byte *spu_data;
      gdb_byte *spu_data;
      LONGEST spu_len;
      LONGEST spu_len;
 
 
      xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[i]);
      xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[i]);
      spu_len = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
      spu_len = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
                                   annex, &spu_data);
                                   annex, &spu_data);
      if (spu_len > 0)
      if (spu_len > 0)
        {
        {
          xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
          xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
          args->note_data = elfcore_write_note (args->obfd, args->note_data,
          args->note_data = elfcore_write_note (args->obfd, args->note_data,
                                                args->note_size, note_name,
                                                args->note_size, note_name,
                                                NT_SPU, spu_data, spu_len);
                                                NT_SPU, spu_data, spu_len);
          xfree (spu_data);
          xfree (spu_data);
        }
        }
    }
    }
}
}
 
 
static char *
static char *
linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
{
{
  struct linux_spu_corefile_data args;
  struct linux_spu_corefile_data args;
  args.obfd = obfd;
  args.obfd = obfd;
  args.note_data = note_data;
  args.note_data = note_data;
  args.note_size = note_size;
  args.note_size = note_size;
 
 
  iterate_over_spus (PIDGET (inferior_ptid),
  iterate_over_spus (PIDGET (inferior_ptid),
                     linux_spu_corefile_callback, &args);
                     linux_spu_corefile_callback, &args);
 
 
  return args.note_data;
  return args.note_data;
}
}
 
 
/* Fills the "to_make_corefile_note" target vector.  Builds the note
/* Fills the "to_make_corefile_note" target vector.  Builds the note
   section for a corefile, and returns it in a malloc buffer.  */
   section for a corefile, and returns it in a malloc buffer.  */
 
 
static char *
static char *
linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
{
{
  struct linux_nat_corefile_thread_data thread_args;
  struct linux_nat_corefile_thread_data thread_args;
  struct cleanup *old_chain;
  struct cleanup *old_chain;
  /* The variable size must be >= sizeof (prpsinfo_t.pr_fname).  */
  /* The variable size must be >= sizeof (prpsinfo_t.pr_fname).  */
  char fname[16] = { '\0' };
  char fname[16] = { '\0' };
  /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs).  */
  /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs).  */
  char psargs[80] = { '\0' };
  char psargs[80] = { '\0' };
  char *note_data = NULL;
  char *note_data = NULL;
  ptid_t current_ptid = inferior_ptid;
  ptid_t current_ptid = inferior_ptid;
  ptid_t filter = pid_to_ptid (ptid_get_pid (inferior_ptid));
  ptid_t filter = pid_to_ptid (ptid_get_pid (inferior_ptid));
  gdb_byte *auxv;
  gdb_byte *auxv;
  int auxv_len;
  int auxv_len;
 
 
  if (get_exec_file (0))
  if (get_exec_file (0))
    {
    {
      strncpy (fname, strrchr (get_exec_file (0), '/') + 1, sizeof (fname));
      strncpy (fname, strrchr (get_exec_file (0), '/') + 1, sizeof (fname));
      strncpy (psargs, get_exec_file (0), sizeof (psargs));
      strncpy (psargs, get_exec_file (0), sizeof (psargs));
      if (get_inferior_args ())
      if (get_inferior_args ())
        {
        {
          char *string_end;
          char *string_end;
          char *psargs_end = psargs + sizeof (psargs);
          char *psargs_end = psargs + sizeof (psargs);
 
 
          /* linux_elfcore_write_prpsinfo () handles zero unterminated
          /* linux_elfcore_write_prpsinfo () handles zero unterminated
             strings fine.  */
             strings fine.  */
          string_end = memchr (psargs, 0, sizeof (psargs));
          string_end = memchr (psargs, 0, sizeof (psargs));
          if (string_end != NULL)
          if (string_end != NULL)
            {
            {
              *string_end++ = ' ';
              *string_end++ = ' ';
              strncpy (string_end, get_inferior_args (),
              strncpy (string_end, get_inferior_args (),
                       psargs_end - string_end);
                       psargs_end - string_end);
            }
            }
        }
        }
      note_data = (char *) elfcore_write_prpsinfo (obfd,
      note_data = (char *) elfcore_write_prpsinfo (obfd,
                                                   note_data,
                                                   note_data,
                                                   note_size, fname, psargs);
                                                   note_size, fname, psargs);
    }
    }
 
 
  /* Dump information for threads.  */
  /* Dump information for threads.  */
  thread_args.obfd = obfd;
  thread_args.obfd = obfd;
  thread_args.note_data = note_data;
  thread_args.note_data = note_data;
  thread_args.note_size = note_size;
  thread_args.note_size = note_size;
  thread_args.num_notes = 0;
  thread_args.num_notes = 0;
  thread_args.stop_signal = find_stop_signal ();
  thread_args.stop_signal = find_stop_signal ();
  iterate_over_lwps (filter, linux_nat_corefile_thread_callback, &thread_args);
  iterate_over_lwps (filter, linux_nat_corefile_thread_callback, &thread_args);
  gdb_assert (thread_args.num_notes != 0);
  gdb_assert (thread_args.num_notes != 0);
  note_data = thread_args.note_data;
  note_data = thread_args.note_data;
 
 
  auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
  auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
                                NULL, &auxv);
                                NULL, &auxv);
  if (auxv_len > 0)
  if (auxv_len > 0)
    {
    {
      note_data = elfcore_write_note (obfd, note_data, note_size,
      note_data = elfcore_write_note (obfd, note_data, note_size,
                                      "CORE", NT_AUXV, auxv, auxv_len);
                                      "CORE", NT_AUXV, auxv, auxv_len);
      xfree (auxv);
      xfree (auxv);
    }
    }
 
 
  note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
  note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
 
 
  make_cleanup (xfree, note_data);
  make_cleanup (xfree, note_data);
  return note_data;
  return note_data;
}
}
 
 
/* Implement the "info proc" command.  */
/* Implement the "info proc" command.  */
 
 
static void
static void
linux_nat_info_proc_cmd (char *args, int from_tty)
linux_nat_info_proc_cmd (char *args, int from_tty)
{
{
  /* A long is used for pid instead of an int to avoid a loss of precision
  /* A long is used for pid instead of an int to avoid a loss of precision
     compiler warning from the output of strtoul.  */
     compiler warning from the output of strtoul.  */
  long pid = PIDGET (inferior_ptid);
  long pid = PIDGET (inferior_ptid);
  FILE *procfile;
  FILE *procfile;
  char **argv = NULL;
  char **argv = NULL;
  char buffer[MAXPATHLEN];
  char buffer[MAXPATHLEN];
  char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
  char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
  int cmdline_f = 1;
  int cmdline_f = 1;
  int cwd_f = 1;
  int cwd_f = 1;
  int exe_f = 1;
  int exe_f = 1;
  int mappings_f = 0;
  int mappings_f = 0;
  int environ_f = 0;
  int environ_f = 0;
  int status_f = 0;
  int status_f = 0;
  int stat_f = 0;
  int stat_f = 0;
  int all = 0;
  int all = 0;
  struct stat dummy;
  struct stat dummy;
 
 
  if (args)
  if (args)
    {
    {
      /* Break up 'args' into an argv array.  */
      /* Break up 'args' into an argv array.  */
      argv = gdb_buildargv (args);
      argv = gdb_buildargv (args);
      make_cleanup_freeargv (argv);
      make_cleanup_freeargv (argv);
    }
    }
  while (argv != NULL && *argv != NULL)
  while (argv != NULL && *argv != NULL)
    {
    {
      if (isdigit (argv[0][0]))
      if (isdigit (argv[0][0]))
        {
        {
          pid = strtoul (argv[0], NULL, 10);
          pid = strtoul (argv[0], NULL, 10);
        }
        }
      else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
      else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
        {
        {
          mappings_f = 1;
          mappings_f = 1;
        }
        }
      else if (strcmp (argv[0], "status") == 0)
      else if (strcmp (argv[0], "status") == 0)
        {
        {
          status_f = 1;
          status_f = 1;
        }
        }
      else if (strcmp (argv[0], "stat") == 0)
      else if (strcmp (argv[0], "stat") == 0)
        {
        {
          stat_f = 1;
          stat_f = 1;
        }
        }
      else if (strcmp (argv[0], "cmd") == 0)
      else if (strcmp (argv[0], "cmd") == 0)
        {
        {
          cmdline_f = 1;
          cmdline_f = 1;
        }
        }
      else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
      else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
        {
        {
          exe_f = 1;
          exe_f = 1;
        }
        }
      else if (strcmp (argv[0], "cwd") == 0)
      else if (strcmp (argv[0], "cwd") == 0)
        {
        {
          cwd_f = 1;
          cwd_f = 1;
        }
        }
      else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
      else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
        {
        {
          all = 1;
          all = 1;
        }
        }
      else
      else
        {
        {
          /* [...] (future options here) */
          /* [...] (future options here) */
        }
        }
      argv++;
      argv++;
    }
    }
  if (pid == 0)
  if (pid == 0)
    error (_("No current process: you must name one."));
    error (_("No current process: you must name one."));
 
 
  sprintf (fname1, "/proc/%ld", pid);
  sprintf (fname1, "/proc/%ld", pid);
  if (stat (fname1, &dummy) != 0)
  if (stat (fname1, &dummy) != 0)
    error (_("No /proc directory: '%s'"), fname1);
    error (_("No /proc directory: '%s'"), fname1);
 
 
  printf_filtered (_("process %ld\n"), pid);
  printf_filtered (_("process %ld\n"), pid);
  if (cmdline_f || all)
  if (cmdline_f || all)
    {
    {
      sprintf (fname1, "/proc/%ld/cmdline", pid);
      sprintf (fname1, "/proc/%ld/cmdline", pid);
      if ((procfile = fopen (fname1, "r")) != NULL)
      if ((procfile = fopen (fname1, "r")) != NULL)
        {
        {
          struct cleanup *cleanup = make_cleanup_fclose (procfile);
          struct cleanup *cleanup = make_cleanup_fclose (procfile);
          if (fgets (buffer, sizeof (buffer), procfile))
          if (fgets (buffer, sizeof (buffer), procfile))
            printf_filtered ("cmdline = '%s'\n", buffer);
            printf_filtered ("cmdline = '%s'\n", buffer);
          else
          else
            warning (_("unable to read '%s'"), fname1);
            warning (_("unable to read '%s'"), fname1);
          do_cleanups (cleanup);
          do_cleanups (cleanup);
        }
        }
      else
      else
        warning (_("unable to open /proc file '%s'"), fname1);
        warning (_("unable to open /proc file '%s'"), fname1);
    }
    }
  if (cwd_f || all)
  if (cwd_f || all)
    {
    {
      sprintf (fname1, "/proc/%ld/cwd", pid);
      sprintf (fname1, "/proc/%ld/cwd", pid);
      memset (fname2, 0, sizeof (fname2));
      memset (fname2, 0, sizeof (fname2));
      if (readlink (fname1, fname2, sizeof (fname2)) > 0)
      if (readlink (fname1, fname2, sizeof (fname2)) > 0)
        printf_filtered ("cwd = '%s'\n", fname2);
        printf_filtered ("cwd = '%s'\n", fname2);
      else
      else
        warning (_("unable to read link '%s'"), fname1);
        warning (_("unable to read link '%s'"), fname1);
    }
    }
  if (exe_f || all)
  if (exe_f || all)
    {
    {
      sprintf (fname1, "/proc/%ld/exe", pid);
      sprintf (fname1, "/proc/%ld/exe", pid);
      memset (fname2, 0, sizeof (fname2));
      memset (fname2, 0, sizeof (fname2));
      if (readlink (fname1, fname2, sizeof (fname2)) > 0)
      if (readlink (fname1, fname2, sizeof (fname2)) > 0)
        printf_filtered ("exe = '%s'\n", fname2);
        printf_filtered ("exe = '%s'\n", fname2);
      else
      else
        warning (_("unable to read link '%s'"), fname1);
        warning (_("unable to read link '%s'"), fname1);
    }
    }
  if (mappings_f || all)
  if (mappings_f || all)
    {
    {
      sprintf (fname1, "/proc/%ld/maps", pid);
      sprintf (fname1, "/proc/%ld/maps", pid);
      if ((procfile = fopen (fname1, "r")) != NULL)
      if ((procfile = fopen (fname1, "r")) != NULL)
        {
        {
          long long addr, endaddr, size, offset, inode;
          long long addr, endaddr, size, offset, inode;
          char permissions[8], device[8], filename[MAXPATHLEN];
          char permissions[8], device[8], filename[MAXPATHLEN];
          struct cleanup *cleanup;
          struct cleanup *cleanup;
 
 
          cleanup = make_cleanup_fclose (procfile);
          cleanup = make_cleanup_fclose (procfile);
          printf_filtered (_("Mapped address spaces:\n\n"));
          printf_filtered (_("Mapped address spaces:\n\n"));
          if (gdbarch_addr_bit (target_gdbarch) == 32)
          if (gdbarch_addr_bit (target_gdbarch) == 32)
            {
            {
              printf_filtered ("\t%10s %10s %10s %10s %7s\n",
              printf_filtered ("\t%10s %10s %10s %10s %7s\n",
                           "Start Addr",
                           "Start Addr",
                           "  End Addr",
                           "  End Addr",
                           "      Size", "    Offset", "objfile");
                           "      Size", "    Offset", "objfile");
            }
            }
          else
          else
            {
            {
              printf_filtered ("  %18s %18s %10s %10s %7s\n",
              printf_filtered ("  %18s %18s %10s %10s %7s\n",
                           "Start Addr",
                           "Start Addr",
                           "  End Addr",
                           "  End Addr",
                           "      Size", "    Offset", "objfile");
                           "      Size", "    Offset", "objfile");
            }
            }
 
 
          while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
          while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
                               &offset, &device[0], &inode, &filename[0]))
                               &offset, &device[0], &inode, &filename[0]))
            {
            {
              size = endaddr - addr;
              size = endaddr - addr;
 
 
              /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
              /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
                 calls here (and possibly above) should be abstracted
                 calls here (and possibly above) should be abstracted
                 out into their own functions?  Andrew suggests using
                 out into their own functions?  Andrew suggests using
                 a generic local_address_string instead to print out
                 a generic local_address_string instead to print out
                 the addresses; that makes sense to me, too.  */
                 the addresses; that makes sense to me, too.  */
 
 
              if (gdbarch_addr_bit (target_gdbarch) == 32)
              if (gdbarch_addr_bit (target_gdbarch) == 32)
                {
                {
                  printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
                  printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
                               (unsigned long) addr,    /* FIXME: pr_addr */
                               (unsigned long) addr,    /* FIXME: pr_addr */
                               (unsigned long) endaddr,
                               (unsigned long) endaddr,
                               (int) size,
                               (int) size,
                               (unsigned int) offset,
                               (unsigned int) offset,
                               filename[0] ? filename : "");
                               filename[0] ? filename : "");
                }
                }
              else
              else
                {
                {
                  printf_filtered ("  %#18lx %#18lx %#10x %#10x %7s\n",
                  printf_filtered ("  %#18lx %#18lx %#10x %#10x %7s\n",
                               (unsigned long) addr,    /* FIXME: pr_addr */
                               (unsigned long) addr,    /* FIXME: pr_addr */
                               (unsigned long) endaddr,
                               (unsigned long) endaddr,
                               (int) size,
                               (int) size,
                               (unsigned int) offset,
                               (unsigned int) offset,
                               filename[0] ? filename : "");
                               filename[0] ? filename : "");
                }
                }
            }
            }
 
 
          do_cleanups (cleanup);
          do_cleanups (cleanup);
        }
        }
      else
      else
        warning (_("unable to open /proc file '%s'"), fname1);
        warning (_("unable to open /proc file '%s'"), fname1);
    }
    }
  if (status_f || all)
  if (status_f || all)
    {
    {
      sprintf (fname1, "/proc/%ld/status", pid);
      sprintf (fname1, "/proc/%ld/status", pid);
      if ((procfile = fopen (fname1, "r")) != NULL)
      if ((procfile = fopen (fname1, "r")) != NULL)
        {
        {
          struct cleanup *cleanup = make_cleanup_fclose (procfile);
          struct cleanup *cleanup = make_cleanup_fclose (procfile);
          while (fgets (buffer, sizeof (buffer), procfile) != NULL)
          while (fgets (buffer, sizeof (buffer), procfile) != NULL)
            puts_filtered (buffer);
            puts_filtered (buffer);
          do_cleanups (cleanup);
          do_cleanups (cleanup);
        }
        }
      else
      else
        warning (_("unable to open /proc file '%s'"), fname1);
        warning (_("unable to open /proc file '%s'"), fname1);
    }
    }
  if (stat_f || all)
  if (stat_f || all)
    {
    {
      sprintf (fname1, "/proc/%ld/stat", pid);
      sprintf (fname1, "/proc/%ld/stat", pid);
      if ((procfile = fopen (fname1, "r")) != NULL)
      if ((procfile = fopen (fname1, "r")) != NULL)
        {
        {
          int itmp;
          int itmp;
          char ctmp;
          char ctmp;
          long ltmp;
          long ltmp;
          struct cleanup *cleanup = make_cleanup_fclose (procfile);
          struct cleanup *cleanup = make_cleanup_fclose (procfile);
 
 
          if (fscanf (procfile, "%d ", &itmp) > 0)
          if (fscanf (procfile, "%d ", &itmp) > 0)
            printf_filtered (_("Process: %d\n"), itmp);
            printf_filtered (_("Process: %d\n"), itmp);
          if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
          if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
            printf_filtered (_("Exec file: %s\n"), buffer);
            printf_filtered (_("Exec file: %s\n"), buffer);
          if (fscanf (procfile, "%c ", &ctmp) > 0)
          if (fscanf (procfile, "%c ", &ctmp) > 0)
            printf_filtered (_("State: %c\n"), ctmp);
            printf_filtered (_("State: %c\n"), ctmp);
          if (fscanf (procfile, "%d ", &itmp) > 0)
          if (fscanf (procfile, "%d ", &itmp) > 0)
            printf_filtered (_("Parent process: %d\n"), itmp);
            printf_filtered (_("Parent process: %d\n"), itmp);
          if (fscanf (procfile, "%d ", &itmp) > 0)
          if (fscanf (procfile, "%d ", &itmp) > 0)
            printf_filtered (_("Process group: %d\n"), itmp);
            printf_filtered (_("Process group: %d\n"), itmp);
          if (fscanf (procfile, "%d ", &itmp) > 0)
          if (fscanf (procfile, "%d ", &itmp) > 0)
            printf_filtered (_("Session id: %d\n"), itmp);
            printf_filtered (_("Session id: %d\n"), itmp);
          if (fscanf (procfile, "%d ", &itmp) > 0)
          if (fscanf (procfile, "%d ", &itmp) > 0)
            printf_filtered (_("TTY: %d\n"), itmp);
            printf_filtered (_("TTY: %d\n"), itmp);
          if (fscanf (procfile, "%d ", &itmp) > 0)
          if (fscanf (procfile, "%d ", &itmp) > 0)
            printf_filtered (_("TTY owner process group: %d\n"), itmp);
            printf_filtered (_("TTY owner process group: %d\n"), itmp);
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
            printf_filtered (_("Flags: 0x%lx\n"), ltmp);
            printf_filtered (_("Flags: 0x%lx\n"), ltmp);
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
            printf_filtered (_("Minor faults (no memory page): %lu\n"),
            printf_filtered (_("Minor faults (no memory page): %lu\n"),
                             (unsigned long) ltmp);
                             (unsigned long) ltmp);
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
            printf_filtered (_("Minor faults, children: %lu\n"),
            printf_filtered (_("Minor faults, children: %lu\n"),
                             (unsigned long) ltmp);
                             (unsigned long) ltmp);
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
            printf_filtered (_("Major faults (memory page faults): %lu\n"),
            printf_filtered (_("Major faults (memory page faults): %lu\n"),
                             (unsigned long) ltmp);
                             (unsigned long) ltmp);
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
            printf_filtered (_("Major faults, children: %lu\n"),
            printf_filtered (_("Major faults, children: %lu\n"),
                             (unsigned long) ltmp);
                             (unsigned long) ltmp);
          if (fscanf (procfile, "%ld ", &ltmp) > 0)
          if (fscanf (procfile, "%ld ", &ltmp) > 0)
            printf_filtered (_("utime: %ld\n"), ltmp);
            printf_filtered (_("utime: %ld\n"), ltmp);
          if (fscanf (procfile, "%ld ", &ltmp) > 0)
          if (fscanf (procfile, "%ld ", &ltmp) > 0)
            printf_filtered (_("stime: %ld\n"), ltmp);
            printf_filtered (_("stime: %ld\n"), ltmp);
          if (fscanf (procfile, "%ld ", &ltmp) > 0)
          if (fscanf (procfile, "%ld ", &ltmp) > 0)
            printf_filtered (_("utime, children: %ld\n"), ltmp);
            printf_filtered (_("utime, children: %ld\n"), ltmp);
          if (fscanf (procfile, "%ld ", &ltmp) > 0)
          if (fscanf (procfile, "%ld ", &ltmp) > 0)
            printf_filtered (_("stime, children: %ld\n"), ltmp);
            printf_filtered (_("stime, children: %ld\n"), ltmp);
          if (fscanf (procfile, "%ld ", &ltmp) > 0)
          if (fscanf (procfile, "%ld ", &ltmp) > 0)
            printf_filtered (_("jiffies remaining in current time slice: %ld\n"),
            printf_filtered (_("jiffies remaining in current time slice: %ld\n"),
                             ltmp);
                             ltmp);
          if (fscanf (procfile, "%ld ", &ltmp) > 0)
          if (fscanf (procfile, "%ld ", &ltmp) > 0)
            printf_filtered (_("'nice' value: %ld\n"), ltmp);
            printf_filtered (_("'nice' value: %ld\n"), ltmp);
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
            printf_filtered (_("jiffies until next timeout: %lu\n"),
            printf_filtered (_("jiffies until next timeout: %lu\n"),
                             (unsigned long) ltmp);
                             (unsigned long) ltmp);
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
            printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
            printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
                             (unsigned long) ltmp);
                             (unsigned long) ltmp);
          if (fscanf (procfile, "%ld ", &ltmp) > 0)
          if (fscanf (procfile, "%ld ", &ltmp) > 0)
            printf_filtered (_("start time (jiffies since system boot): %ld\n"),
            printf_filtered (_("start time (jiffies since system boot): %ld\n"),
                             ltmp);
                             ltmp);
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
            printf_filtered (_("Virtual memory size: %lu\n"),
            printf_filtered (_("Virtual memory size: %lu\n"),
                             (unsigned long) ltmp);
                             (unsigned long) ltmp);
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
            printf_filtered (_("Resident set size: %lu\n"), (unsigned long) ltmp);
            printf_filtered (_("Resident set size: %lu\n"), (unsigned long) ltmp);
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
            printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
            printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
            printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
            printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
            printf_filtered (_("End of text: 0x%lx\n"), ltmp);
            printf_filtered (_("End of text: 0x%lx\n"), ltmp);
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
          if (fscanf (procfile, "%lu ", &ltmp) > 0)
            printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
            printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
#if 0                           /* Don't know how architecture-dependent the rest is...
#if 0                           /* Don't know how architecture-dependent the rest is...
                                   Anyway the signal bitmap info is available from "status".  */
                                   Anyway the signal bitmap info is available from "status".  */
          if (fscanf (procfile, "%lu ", &ltmp) > 0)      /* FIXME arch? */
          if (fscanf (procfile, "%lu ", &ltmp) > 0)      /* FIXME arch? */
            printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
            printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
          if (fscanf (procfile, "%lu ", &ltmp) > 0)      /* FIXME arch? */
          if (fscanf (procfile, "%lu ", &ltmp) > 0)      /* FIXME arch? */
            printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
            printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
          if (fscanf (procfile, "%ld ", &ltmp) > 0)
          if (fscanf (procfile, "%ld ", &ltmp) > 0)
            printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
            printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
          if (fscanf (procfile, "%ld ", &ltmp) > 0)
          if (fscanf (procfile, "%ld ", &ltmp) > 0)
            printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
            printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
          if (fscanf (procfile, "%ld ", &ltmp) > 0)
          if (fscanf (procfile, "%ld ", &ltmp) > 0)
            printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
            printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
          if (fscanf (procfile, "%ld ", &ltmp) > 0)
          if (fscanf (procfile, "%ld ", &ltmp) > 0)
            printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
            printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
          if (fscanf (procfile, "%lu ", &ltmp) > 0)      /* FIXME arch? */
          if (fscanf (procfile, "%lu ", &ltmp) > 0)      /* FIXME arch? */
            printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
            printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
#endif
#endif
          do_cleanups (cleanup);
          do_cleanups (cleanup);
        }
        }
      else
      else
        warning (_("unable to open /proc file '%s'"), fname1);
        warning (_("unable to open /proc file '%s'"), fname1);
    }
    }
}
}
 
 
/* Implement the to_xfer_partial interface for memory reads using the /proc
/* Implement the to_xfer_partial interface for memory reads using the /proc
   filesystem.  Because we can use a single read() call for /proc, this
   filesystem.  Because we can use a single read() call for /proc, this
   can be much more efficient than banging away at PTRACE_PEEKTEXT,
   can be much more efficient than banging away at PTRACE_PEEKTEXT,
   but it doesn't support writes.  */
   but it doesn't support writes.  */
 
 
static LONGEST
static LONGEST
linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
                         const char *annex, gdb_byte *readbuf,
                         const char *annex, gdb_byte *readbuf,
                         const gdb_byte *writebuf,
                         const gdb_byte *writebuf,
                         ULONGEST offset, LONGEST len)
                         ULONGEST offset, LONGEST len)
{
{
  LONGEST ret;
  LONGEST ret;
  int fd;
  int fd;
  char filename[64];
  char filename[64];
 
 
  if (object != TARGET_OBJECT_MEMORY || !readbuf)
  if (object != TARGET_OBJECT_MEMORY || !readbuf)
    return 0;
    return 0;
 
 
  /* Don't bother for one word.  */
  /* Don't bother for one word.  */
  if (len < 3 * sizeof (long))
  if (len < 3 * sizeof (long))
    return 0;
    return 0;
 
 
  /* We could keep this file open and cache it - possibly one per
  /* We could keep this file open and cache it - possibly one per
     thread.  That requires some juggling, but is even faster.  */
     thread.  That requires some juggling, but is even faster.  */
  sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
  sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
  fd = open (filename, O_RDONLY | O_LARGEFILE);
  fd = open (filename, O_RDONLY | O_LARGEFILE);
  if (fd == -1)
  if (fd == -1)
    return 0;
    return 0;
 
 
  /* If pread64 is available, use it.  It's faster if the kernel
  /* If pread64 is available, use it.  It's faster if the kernel
     supports it (only one syscall), and it's 64-bit safe even on
     supports it (only one syscall), and it's 64-bit safe even on
     32-bit platforms (for instance, SPARC debugging a SPARC64
     32-bit platforms (for instance, SPARC debugging a SPARC64
     application).  */
     application).  */
#ifdef HAVE_PREAD64
#ifdef HAVE_PREAD64
  if (pread64 (fd, readbuf, len, offset) != len)
  if (pread64 (fd, readbuf, len, offset) != len)
#else
#else
  if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
  if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
#endif
#endif
    ret = 0;
    ret = 0;
  else
  else
    ret = len;
    ret = len;
 
 
  close (fd);
  close (fd);
  return ret;
  return ret;
}
}
 
 
 
 
/* Enumerate spufs IDs for process PID.  */
/* Enumerate spufs IDs for process PID.  */
static LONGEST
static LONGEST
spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, LONGEST len)
spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, LONGEST len)
{
{
  enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
  LONGEST pos = 0;
  LONGEST pos = 0;
  LONGEST written = 0;
  LONGEST written = 0;
  char path[128];
  char path[128];
  DIR *dir;
  DIR *dir;
  struct dirent *entry;
  struct dirent *entry;
 
 
  xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
  xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
  dir = opendir (path);
  dir = opendir (path);
  if (!dir)
  if (!dir)
    return -1;
    return -1;
 
 
  rewinddir (dir);
  rewinddir (dir);
  while ((entry = readdir (dir)) != NULL)
  while ((entry = readdir (dir)) != NULL)
    {
    {
      struct stat st;
      struct stat st;
      struct statfs stfs;
      struct statfs stfs;
      int fd;
      int fd;
 
 
      fd = atoi (entry->d_name);
      fd = atoi (entry->d_name);
      if (!fd)
      if (!fd)
        continue;
        continue;
 
 
      xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
      xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
      if (stat (path, &st) != 0)
      if (stat (path, &st) != 0)
        continue;
        continue;
      if (!S_ISDIR (st.st_mode))
      if (!S_ISDIR (st.st_mode))
        continue;
        continue;
 
 
      if (statfs (path, &stfs) != 0)
      if (statfs (path, &stfs) != 0)
        continue;
        continue;
      if (stfs.f_type != SPUFS_MAGIC)
      if (stfs.f_type != SPUFS_MAGIC)
        continue;
        continue;
 
 
      if (pos >= offset && pos + 4 <= offset + len)
      if (pos >= offset && pos + 4 <= offset + len)
        {
        {
          store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
          store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
          written += 4;
          written += 4;
        }
        }
      pos += 4;
      pos += 4;
    }
    }
 
 
  closedir (dir);
  closedir (dir);
  return written;
  return written;
}
}
 
 
/* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
/* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
   object type, using the /proc file system.  */
   object type, using the /proc file system.  */
static LONGEST
static LONGEST
linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
                     const char *annex, gdb_byte *readbuf,
                     const char *annex, gdb_byte *readbuf,
                     const gdb_byte *writebuf,
                     const gdb_byte *writebuf,
                     ULONGEST offset, LONGEST len)
                     ULONGEST offset, LONGEST len)
{
{
  char buf[128];
  char buf[128];
  int fd = 0;
  int fd = 0;
  int ret = -1;
  int ret = -1;
  int pid = PIDGET (inferior_ptid);
  int pid = PIDGET (inferior_ptid);
 
 
  if (!annex)
  if (!annex)
    {
    {
      if (!readbuf)
      if (!readbuf)
        return -1;
        return -1;
      else
      else
        return spu_enumerate_spu_ids (pid, readbuf, offset, len);
        return spu_enumerate_spu_ids (pid, readbuf, offset, len);
    }
    }
 
 
  xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
  xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
  fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
  fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
  if (fd <= 0)
  if (fd <= 0)
    return -1;
    return -1;
 
 
  if (offset != 0
  if (offset != 0
      && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
      && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
    {
    {
      close (fd);
      close (fd);
      return 0;
      return 0;
    }
    }
 
 
  if (writebuf)
  if (writebuf)
    ret = write (fd, writebuf, (size_t) len);
    ret = write (fd, writebuf, (size_t) len);
  else if (readbuf)
  else if (readbuf)
    ret = read (fd, readbuf, (size_t) len);
    ret = read (fd, readbuf, (size_t) len);
 
 
  close (fd);
  close (fd);
  return ret;
  return ret;
}
}
 
 
 
 
/* Parse LINE as a signal set and add its set bits to SIGS.  */
/* Parse LINE as a signal set and add its set bits to SIGS.  */
 
 
static void
static void
add_line_to_sigset (const char *line, sigset_t *sigs)
add_line_to_sigset (const char *line, sigset_t *sigs)
{
{
  int len = strlen (line) - 1;
  int len = strlen (line) - 1;
  const char *p;
  const char *p;
  int signum;
  int signum;
 
 
  if (line[len] != '\n')
  if (line[len] != '\n')
    error (_("Could not parse signal set: %s"), line);
    error (_("Could not parse signal set: %s"), line);
 
 
  p = line;
  p = line;
  signum = len * 4;
  signum = len * 4;
  while (len-- > 0)
  while (len-- > 0)
    {
    {
      int digit;
      int digit;
 
 
      if (*p >= '0' && *p <= '9')
      if (*p >= '0' && *p <= '9')
        digit = *p - '0';
        digit = *p - '0';
      else if (*p >= 'a' && *p <= 'f')
      else if (*p >= 'a' && *p <= 'f')
        digit = *p - 'a' + 10;
        digit = *p - 'a' + 10;
      else
      else
        error (_("Could not parse signal set: %s"), line);
        error (_("Could not parse signal set: %s"), line);
 
 
      signum -= 4;
      signum -= 4;
 
 
      if (digit & 1)
      if (digit & 1)
        sigaddset (sigs, signum + 1);
        sigaddset (sigs, signum + 1);
      if (digit & 2)
      if (digit & 2)
        sigaddset (sigs, signum + 2);
        sigaddset (sigs, signum + 2);
      if (digit & 4)
      if (digit & 4)
        sigaddset (sigs, signum + 3);
        sigaddset (sigs, signum + 3);
      if (digit & 8)
      if (digit & 8)
        sigaddset (sigs, signum + 4);
        sigaddset (sigs, signum + 4);
 
 
      p++;
      p++;
    }
    }
}
}
 
 
/* Find process PID's pending signals from /proc/pid/status and set
/* Find process PID's pending signals from /proc/pid/status and set
   SIGS to match.  */
   SIGS to match.  */
 
 
void
void
linux_proc_pending_signals (int pid, sigset_t *pending, sigset_t *blocked, sigset_t *ignored)
linux_proc_pending_signals (int pid, sigset_t *pending, sigset_t *blocked, sigset_t *ignored)
{
{
  FILE *procfile;
  FILE *procfile;
  char buffer[MAXPATHLEN], fname[MAXPATHLEN];
  char buffer[MAXPATHLEN], fname[MAXPATHLEN];
  int signum;
  int signum;
  struct cleanup *cleanup;
  struct cleanup *cleanup;
 
 
  sigemptyset (pending);
  sigemptyset (pending);
  sigemptyset (blocked);
  sigemptyset (blocked);
  sigemptyset (ignored);
  sigemptyset (ignored);
  sprintf (fname, "/proc/%d/status", pid);
  sprintf (fname, "/proc/%d/status", pid);
  procfile = fopen (fname, "r");
  procfile = fopen (fname, "r");
  if (procfile == NULL)
  if (procfile == NULL)
    error (_("Could not open %s"), fname);
    error (_("Could not open %s"), fname);
  cleanup = make_cleanup_fclose (procfile);
  cleanup = make_cleanup_fclose (procfile);
 
 
  while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
  while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
    {
    {
      /* Normal queued signals are on the SigPnd line in the status
      /* Normal queued signals are on the SigPnd line in the status
         file.  However, 2.6 kernels also have a "shared" pending
         file.  However, 2.6 kernels also have a "shared" pending
         queue for delivering signals to a thread group, so check for
         queue for delivering signals to a thread group, so check for
         a ShdPnd line also.
         a ShdPnd line also.
 
 
         Unfortunately some Red Hat kernels include the shared pending
         Unfortunately some Red Hat kernels include the shared pending
         queue but not the ShdPnd status field.  */
         queue but not the ShdPnd status field.  */
 
 
      if (strncmp (buffer, "SigPnd:\t", 8) == 0)
      if (strncmp (buffer, "SigPnd:\t", 8) == 0)
        add_line_to_sigset (buffer + 8, pending);
        add_line_to_sigset (buffer + 8, pending);
      else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
      else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
        add_line_to_sigset (buffer + 8, pending);
        add_line_to_sigset (buffer + 8, pending);
      else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
      else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
        add_line_to_sigset (buffer + 8, blocked);
        add_line_to_sigset (buffer + 8, blocked);
      else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
      else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
        add_line_to_sigset (buffer + 8, ignored);
        add_line_to_sigset (buffer + 8, ignored);
    }
    }
 
 
  do_cleanups (cleanup);
  do_cleanups (cleanup);
}
}
 
 
static LONGEST
static LONGEST
linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
                    const char *annex, gdb_byte *readbuf,
                    const char *annex, gdb_byte *readbuf,
                    const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
                    const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
{
{
  /* We make the process list snapshot when the object starts to be
  /* We make the process list snapshot when the object starts to be
     read.  */
     read.  */
  static const char *buf;
  static const char *buf;
  static LONGEST len_avail = -1;
  static LONGEST len_avail = -1;
  static struct obstack obstack;
  static struct obstack obstack;
 
 
  DIR *dirp;
  DIR *dirp;
 
 
  gdb_assert (object == TARGET_OBJECT_OSDATA);
  gdb_assert (object == TARGET_OBJECT_OSDATA);
 
 
  if (strcmp (annex, "processes") != 0)
  if (strcmp (annex, "processes") != 0)
    return 0;
    return 0;
 
 
  gdb_assert (readbuf && !writebuf);
  gdb_assert (readbuf && !writebuf);
 
 
  if (offset == 0)
  if (offset == 0)
    {
    {
      if (len_avail != -1 && len_avail != 0)
      if (len_avail != -1 && len_avail != 0)
       obstack_free (&obstack, NULL);
       obstack_free (&obstack, NULL);
      len_avail = 0;
      len_avail = 0;
      buf = NULL;
      buf = NULL;
      obstack_init (&obstack);
      obstack_init (&obstack);
      obstack_grow_str (&obstack, "<osdata type=\"processes\">\n");
      obstack_grow_str (&obstack, "<osdata type=\"processes\">\n");
 
 
      dirp = opendir ("/proc");
      dirp = opendir ("/proc");
      if (dirp)
      if (dirp)
       {
       {
         struct dirent *dp;
         struct dirent *dp;
         while ((dp = readdir (dirp)) != NULL)
         while ((dp = readdir (dirp)) != NULL)
           {
           {
             struct stat statbuf;
             struct stat statbuf;
             char procentry[sizeof ("/proc/4294967295")];
             char procentry[sizeof ("/proc/4294967295")];
 
 
             if (!isdigit (dp->d_name[0])
             if (!isdigit (dp->d_name[0])
                 || NAMELEN (dp) > sizeof ("4294967295") - 1)
                 || NAMELEN (dp) > sizeof ("4294967295") - 1)
               continue;
               continue;
 
 
             sprintf (procentry, "/proc/%s", dp->d_name);
             sprintf (procentry, "/proc/%s", dp->d_name);
             if (stat (procentry, &statbuf) == 0
             if (stat (procentry, &statbuf) == 0
                 && S_ISDIR (statbuf.st_mode))
                 && S_ISDIR (statbuf.st_mode))
               {
               {
                 char *pathname;
                 char *pathname;
                 FILE *f;
                 FILE *f;
                 char cmd[MAXPATHLEN + 1];
                 char cmd[MAXPATHLEN + 1];
                 struct passwd *entry;
                 struct passwd *entry;
 
 
                 pathname = xstrprintf ("/proc/%s/cmdline", dp->d_name);
                 pathname = xstrprintf ("/proc/%s/cmdline", dp->d_name);
                 entry = getpwuid (statbuf.st_uid);
                 entry = getpwuid (statbuf.st_uid);
 
 
                 if ((f = fopen (pathname, "r")) != NULL)
                 if ((f = fopen (pathname, "r")) != NULL)
                   {
                   {
                     size_t len = fread (cmd, 1, sizeof (cmd) - 1, f);
                     size_t len = fread (cmd, 1, sizeof (cmd) - 1, f);
                     if (len > 0)
                     if (len > 0)
                       {
                       {
                         int i;
                         int i;
                         for (i = 0; i < len; i++)
                         for (i = 0; i < len; i++)
                           if (cmd[i] == '\0')
                           if (cmd[i] == '\0')
                             cmd[i] = ' ';
                             cmd[i] = ' ';
                         cmd[len] = '\0';
                         cmd[len] = '\0';
 
 
                         obstack_xml_printf (
                         obstack_xml_printf (
                           &obstack,
                           &obstack,
                           "<item>"
                           "<item>"
                           "<column name=\"pid\">%s</column>"
                           "<column name=\"pid\">%s</column>"
                           "<column name=\"user\">%s</column>"
                           "<column name=\"user\">%s</column>"
                           "<column name=\"command\">%s</column>"
                           "<column name=\"command\">%s</column>"
                           "</item>",
                           "</item>",
                           dp->d_name,
                           dp->d_name,
                           entry ? entry->pw_name : "?",
                           entry ? entry->pw_name : "?",
                           cmd);
                           cmd);
                       }
                       }
                     fclose (f);
                     fclose (f);
                   }
                   }
 
 
                 xfree (pathname);
                 xfree (pathname);
               }
               }
           }
           }
 
 
         closedir (dirp);
         closedir (dirp);
       }
       }
 
 
      obstack_grow_str0 (&obstack, "</osdata>\n");
      obstack_grow_str0 (&obstack, "</osdata>\n");
      buf = obstack_finish (&obstack);
      buf = obstack_finish (&obstack);
      len_avail = strlen (buf);
      len_avail = strlen (buf);
    }
    }
 
 
  if (offset >= len_avail)
  if (offset >= len_avail)
    {
    {
      /* Done.  Get rid of the obstack.  */
      /* Done.  Get rid of the obstack.  */
      obstack_free (&obstack, NULL);
      obstack_free (&obstack, NULL);
      buf = NULL;
      buf = NULL;
      len_avail = 0;
      len_avail = 0;
      return 0;
      return 0;
    }
    }
 
 
  if (len > len_avail - offset)
  if (len > len_avail - offset)
    len = len_avail - offset;
    len = len_avail - offset;
  memcpy (readbuf, buf + offset, len);
  memcpy (readbuf, buf + offset, len);
 
 
  return len;
  return len;
}
}
 
 
static LONGEST
static LONGEST
linux_xfer_partial (struct target_ops *ops, enum target_object object,
linux_xfer_partial (struct target_ops *ops, enum target_object object,
                    const char *annex, gdb_byte *readbuf,
                    const char *annex, gdb_byte *readbuf,
                    const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
                    const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
{
{
  LONGEST xfer;
  LONGEST xfer;
 
 
  if (object == TARGET_OBJECT_AUXV)
  if (object == TARGET_OBJECT_AUXV)
    return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
    return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
                             offset, len);
                             offset, len);
 
 
  if (object == TARGET_OBJECT_OSDATA)
  if (object == TARGET_OBJECT_OSDATA)
    return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
    return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
                               offset, len);
                               offset, len);
 
 
  if (object == TARGET_OBJECT_SPU)
  if (object == TARGET_OBJECT_SPU)
    return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
    return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
                                offset, len);
                                offset, len);
 
 
  /* GDB calculates all the addresses in possibly larget width of the address.
  /* GDB calculates all the addresses in possibly larget width of the address.
     Address width needs to be masked before its final use - either by
     Address width needs to be masked before its final use - either by
     linux_proc_xfer_partial or inf_ptrace_xfer_partial.
     linux_proc_xfer_partial or inf_ptrace_xfer_partial.
 
 
     Compare ADDR_BIT first to avoid a compiler warning on shift overflow.  */
     Compare ADDR_BIT first to avoid a compiler warning on shift overflow.  */
 
 
  if (object == TARGET_OBJECT_MEMORY)
  if (object == TARGET_OBJECT_MEMORY)
    {
    {
      int addr_bit = gdbarch_addr_bit (target_gdbarch);
      int addr_bit = gdbarch_addr_bit (target_gdbarch);
 
 
      if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
      if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
        offset &= ((ULONGEST) 1 << addr_bit) - 1;
        offset &= ((ULONGEST) 1 << addr_bit) - 1;
    }
    }
 
 
  xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
  xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
                                  offset, len);
                                  offset, len);
  if (xfer != 0)
  if (xfer != 0)
    return xfer;
    return xfer;
 
 
  return super_xfer_partial (ops, object, annex, readbuf, writebuf,
  return super_xfer_partial (ops, object, annex, readbuf, writebuf,
                             offset, len);
                             offset, len);
}
}
 
 
/* Create a prototype generic GNU/Linux target.  The client can override
/* Create a prototype generic GNU/Linux target.  The client can override
   it with local methods.  */
   it with local methods.  */
 
 
static void
static void
linux_target_install_ops (struct target_ops *t)
linux_target_install_ops (struct target_ops *t)
{
{
  t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
  t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
  t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
  t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
  t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
  t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
  t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
  t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
  t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
  t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
  t->to_post_startup_inferior = linux_child_post_startup_inferior;
  t->to_post_startup_inferior = linux_child_post_startup_inferior;
  t->to_post_attach = linux_child_post_attach;
  t->to_post_attach = linux_child_post_attach;
  t->to_follow_fork = linux_child_follow_fork;
  t->to_follow_fork = linux_child_follow_fork;
  t->to_find_memory_regions = linux_nat_find_memory_regions;
  t->to_find_memory_regions = linux_nat_find_memory_regions;
  t->to_make_corefile_notes = linux_nat_make_corefile_notes;
  t->to_make_corefile_notes = linux_nat_make_corefile_notes;
 
 
  super_xfer_partial = t->to_xfer_partial;
  super_xfer_partial = t->to_xfer_partial;
  t->to_xfer_partial = linux_xfer_partial;
  t->to_xfer_partial = linux_xfer_partial;
}
}
 
 
struct target_ops *
struct target_ops *
linux_target (void)
linux_target (void)
{
{
  struct target_ops *t;
  struct target_ops *t;
 
 
  t = inf_ptrace_target ();
  t = inf_ptrace_target ();
  linux_target_install_ops (t);
  linux_target_install_ops (t);
 
 
  return t;
  return t;
}
}
 
 
struct target_ops *
struct target_ops *
linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
{
{
  struct target_ops *t;
  struct target_ops *t;
 
 
  t = inf_ptrace_trad_target (register_u_offset);
  t = inf_ptrace_trad_target (register_u_offset);
  linux_target_install_ops (t);
  linux_target_install_ops (t);
 
 
  return t;
  return t;
}
}
 
 
/* target_is_async_p implementation.  */
/* target_is_async_p implementation.  */
 
 
static int
static int
linux_nat_is_async_p (void)
linux_nat_is_async_p (void)
{
{
  /* NOTE: palves 2008-03-21: We're only async when the user requests
  /* NOTE: palves 2008-03-21: We're only async when the user requests
     it explicitly with the "set target-async" command.
     it explicitly with the "set target-async" command.
     Someday, linux will always be async.  */
     Someday, linux will always be async.  */
  if (!target_async_permitted)
  if (!target_async_permitted)
    return 0;
    return 0;
 
 
  /* See target.h/target_async_mask.  */
  /* See target.h/target_async_mask.  */
  return linux_nat_async_mask_value;
  return linux_nat_async_mask_value;
}
}
 
 
/* target_can_async_p implementation.  */
/* target_can_async_p implementation.  */
 
 
static int
static int
linux_nat_can_async_p (void)
linux_nat_can_async_p (void)
{
{
  /* NOTE: palves 2008-03-21: We're only async when the user requests
  /* NOTE: palves 2008-03-21: We're only async when the user requests
     it explicitly with the "set target-async" command.
     it explicitly with the "set target-async" command.
     Someday, linux will always be async.  */
     Someday, linux will always be async.  */
  if (!target_async_permitted)
  if (!target_async_permitted)
    return 0;
    return 0;
 
 
  /* See target.h/target_async_mask.  */
  /* See target.h/target_async_mask.  */
  return linux_nat_async_mask_value;
  return linux_nat_async_mask_value;
}
}
 
 
static int
static int
linux_nat_supports_non_stop (void)
linux_nat_supports_non_stop (void)
{
{
  return 1;
  return 1;
}
}
 
 
/* True if we want to support multi-process.  To be removed when GDB
/* True if we want to support multi-process.  To be removed when GDB
   supports multi-exec.  */
   supports multi-exec.  */
 
 
int linux_multi_process = 1;
int linux_multi_process = 1;
 
 
static int
static int
linux_nat_supports_multi_process (void)
linux_nat_supports_multi_process (void)
{
{
  return linux_multi_process;
  return linux_multi_process;
}
}
 
 
/* target_async_mask implementation.  */
/* target_async_mask implementation.  */
 
 
static int
static int
linux_nat_async_mask (int new_mask)
linux_nat_async_mask (int new_mask)
{
{
  int curr_mask = linux_nat_async_mask_value;
  int curr_mask = linux_nat_async_mask_value;
 
 
  if (curr_mask != new_mask)
  if (curr_mask != new_mask)
    {
    {
      if (new_mask == 0)
      if (new_mask == 0)
        {
        {
          linux_nat_async (NULL, 0);
          linux_nat_async (NULL, 0);
          linux_nat_async_mask_value = new_mask;
          linux_nat_async_mask_value = new_mask;
        }
        }
      else
      else
        {
        {
          linux_nat_async_mask_value = new_mask;
          linux_nat_async_mask_value = new_mask;
 
 
          /* If we're going out of async-mask in all-stop, then the
          /* If we're going out of async-mask in all-stop, then the
             inferior is stopped.  The next resume will call
             inferior is stopped.  The next resume will call
             target_async.  In non-stop, the target event source
             target_async.  In non-stop, the target event source
             should be always registered in the event loop.  Do so
             should be always registered in the event loop.  Do so
             now.  */
             now.  */
          if (non_stop)
          if (non_stop)
            linux_nat_async (inferior_event_handler, 0);
            linux_nat_async (inferior_event_handler, 0);
        }
        }
    }
    }
 
 
  return curr_mask;
  return curr_mask;
}
}
 
 
static int async_terminal_is_ours = 1;
static int async_terminal_is_ours = 1;
 
 
/* target_terminal_inferior implementation.  */
/* target_terminal_inferior implementation.  */
 
 
static void
static void
linux_nat_terminal_inferior (void)
linux_nat_terminal_inferior (void)
{
{
  if (!target_is_async_p ())
  if (!target_is_async_p ())
    {
    {
      /* Async mode is disabled.  */
      /* Async mode is disabled.  */
      terminal_inferior ();
      terminal_inferior ();
      return;
      return;
    }
    }
 
 
  terminal_inferior ();
  terminal_inferior ();
 
 
  /* Calls to target_terminal_*() are meant to be idempotent.  */
  /* Calls to target_terminal_*() are meant to be idempotent.  */
  if (!async_terminal_is_ours)
  if (!async_terminal_is_ours)
    return;
    return;
 
 
  delete_file_handler (input_fd);
  delete_file_handler (input_fd);
  async_terminal_is_ours = 0;
  async_terminal_is_ours = 0;
  set_sigint_trap ();
  set_sigint_trap ();
}
}
 
 
/* target_terminal_ours implementation.  */
/* target_terminal_ours implementation.  */
 
 
static void
static void
linux_nat_terminal_ours (void)
linux_nat_terminal_ours (void)
{
{
  if (!target_is_async_p ())
  if (!target_is_async_p ())
    {
    {
      /* Async mode is disabled.  */
      /* Async mode is disabled.  */
      terminal_ours ();
      terminal_ours ();
      return;
      return;
    }
    }
 
 
  /* GDB should never give the terminal to the inferior if the
  /* GDB should never give the terminal to the inferior if the
     inferior is running in the background (run&, continue&, etc.),
     inferior is running in the background (run&, continue&, etc.),
     but claiming it sure should.  */
     but claiming it sure should.  */
  terminal_ours ();
  terminal_ours ();
 
 
  if (async_terminal_is_ours)
  if (async_terminal_is_ours)
    return;
    return;
 
 
  clear_sigint_trap ();
  clear_sigint_trap ();
  add_file_handler (input_fd, stdin_event_handler, 0);
  add_file_handler (input_fd, stdin_event_handler, 0);
  async_terminal_is_ours = 1;
  async_terminal_is_ours = 1;
}
}
 
 
static void (*async_client_callback) (enum inferior_event_type event_type,
static void (*async_client_callback) (enum inferior_event_type event_type,
                                      void *context);
                                      void *context);
static void *async_client_context;
static void *async_client_context;
 
 
/* SIGCHLD handler that serves two purposes: In non-stop/async mode,
/* SIGCHLD handler that serves two purposes: In non-stop/async mode,
   so we notice when any child changes state, and notify the
   so we notice when any child changes state, and notify the
   event-loop; it allows us to use sigsuspend in linux_nat_wait_1
   event-loop; it allows us to use sigsuspend in linux_nat_wait_1
   above to wait for the arrival of a SIGCHLD.  */
   above to wait for the arrival of a SIGCHLD.  */
 
 
static void
static void
sigchld_handler (int signo)
sigchld_handler (int signo)
{
{
  int old_errno = errno;
  int old_errno = errno;
 
 
  if (debug_linux_nat_async)
  if (debug_linux_nat_async)
    fprintf_unfiltered (gdb_stdlog, "sigchld\n");
    fprintf_unfiltered (gdb_stdlog, "sigchld\n");
 
 
  if (signo == SIGCHLD
  if (signo == SIGCHLD
      && linux_nat_event_pipe[0] != -1)
      && linux_nat_event_pipe[0] != -1)
    async_file_mark (); /* Let the event loop know that there are
    async_file_mark (); /* Let the event loop know that there are
                           events to handle.  */
                           events to handle.  */
 
 
  errno = old_errno;
  errno = old_errno;
}
}
 
 
/* Callback registered with the target events file descriptor.  */
/* Callback registered with the target events file descriptor.  */
 
 
static void
static void
handle_target_event (int error, gdb_client_data client_data)
handle_target_event (int error, gdb_client_data client_data)
{
{
  (*async_client_callback) (INF_REG_EVENT, async_client_context);
  (*async_client_callback) (INF_REG_EVENT, async_client_context);
}
}
 
 
/* Create/destroy the target events pipe.  Returns previous state.  */
/* Create/destroy the target events pipe.  Returns previous state.  */
 
 
static int
static int
linux_async_pipe (int enable)
linux_async_pipe (int enable)
{
{
  int previous = (linux_nat_event_pipe[0] != -1);
  int previous = (linux_nat_event_pipe[0] != -1);
 
 
  if (previous != enable)
  if (previous != enable)
    {
    {
      sigset_t prev_mask;
      sigset_t prev_mask;
 
 
      block_child_signals (&prev_mask);
      block_child_signals (&prev_mask);
 
 
      if (enable)
      if (enable)
        {
        {
          if (pipe (linux_nat_event_pipe) == -1)
          if (pipe (linux_nat_event_pipe) == -1)
            internal_error (__FILE__, __LINE__,
            internal_error (__FILE__, __LINE__,
                            "creating event pipe failed.");
                            "creating event pipe failed.");
 
 
          fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
          fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
          fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
          fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
        }
        }
      else
      else
        {
        {
          close (linux_nat_event_pipe[0]);
          close (linux_nat_event_pipe[0]);
          close (linux_nat_event_pipe[1]);
          close (linux_nat_event_pipe[1]);
          linux_nat_event_pipe[0] = -1;
          linux_nat_event_pipe[0] = -1;
          linux_nat_event_pipe[1] = -1;
          linux_nat_event_pipe[1] = -1;
        }
        }
 
 
      restore_child_signals_mask (&prev_mask);
      restore_child_signals_mask (&prev_mask);
    }
    }
 
 
  return previous;
  return previous;
}
}
 
 
/* target_async implementation.  */
/* target_async implementation.  */
 
 
static void
static void
linux_nat_async (void (*callback) (enum inferior_event_type event_type,
linux_nat_async (void (*callback) (enum inferior_event_type event_type,
                                   void *context), void *context)
                                   void *context), void *context)
{
{
  if (linux_nat_async_mask_value == 0 || !target_async_permitted)
  if (linux_nat_async_mask_value == 0 || !target_async_permitted)
    internal_error (__FILE__, __LINE__,
    internal_error (__FILE__, __LINE__,
                    "Calling target_async when async is masked");
                    "Calling target_async when async is masked");
 
 
  if (callback != NULL)
  if (callback != NULL)
    {
    {
      async_client_callback = callback;
      async_client_callback = callback;
      async_client_context = context;
      async_client_context = context;
      if (!linux_async_pipe (1))
      if (!linux_async_pipe (1))
        {
        {
          add_file_handler (linux_nat_event_pipe[0],
          add_file_handler (linux_nat_event_pipe[0],
                            handle_target_event, NULL);
                            handle_target_event, NULL);
          /* There may be pending events to handle.  Tell the event loop
          /* There may be pending events to handle.  Tell the event loop
             to poll them.  */
             to poll them.  */
          async_file_mark ();
          async_file_mark ();
        }
        }
    }
    }
  else
  else
    {
    {
      async_client_callback = callback;
      async_client_callback = callback;
      async_client_context = context;
      async_client_context = context;
      delete_file_handler (linux_nat_event_pipe[0]);
      delete_file_handler (linux_nat_event_pipe[0]);
      linux_async_pipe (0);
      linux_async_pipe (0);
    }
    }
  return;
  return;
}
}
 
 
/* Stop an LWP, and push a TARGET_SIGNAL_0 stop status if no other
/* Stop an LWP, and push a TARGET_SIGNAL_0 stop status if no other
   event came out.  */
   event came out.  */
 
 
static int
static int
linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
{
{
  if (!lwp->stopped)
  if (!lwp->stopped)
    {
    {
      int pid, status;
      int pid, status;
      ptid_t ptid = lwp->ptid;
      ptid_t ptid = lwp->ptid;
 
 
      if (debug_linux_nat)
      if (debug_linux_nat)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "LNSL: running -> suspending %s\n",
                            "LNSL: running -> suspending %s\n",
                            target_pid_to_str (lwp->ptid));
                            target_pid_to_str (lwp->ptid));
 
 
 
 
      stop_callback (lwp, NULL);
      stop_callback (lwp, NULL);
      stop_wait_callback (lwp, NULL);
      stop_wait_callback (lwp, NULL);
 
 
      /* If the lwp exits while we try to stop it, there's nothing
      /* If the lwp exits while we try to stop it, there's nothing
         else to do.  */
         else to do.  */
      lwp = find_lwp_pid (ptid);
      lwp = find_lwp_pid (ptid);
      if (lwp == NULL)
      if (lwp == NULL)
        return 0;
        return 0;
 
 
      /* If we didn't collect any signal other than SIGSTOP while
      /* If we didn't collect any signal other than SIGSTOP while
         stopping the LWP, push a SIGNAL_0 event.  In either case, the
         stopping the LWP, push a SIGNAL_0 event.  In either case, the
         event-loop will end up calling target_wait which will collect
         event-loop will end up calling target_wait which will collect
         these.  */
         these.  */
      if (lwp->status == 0)
      if (lwp->status == 0)
        lwp->status = W_STOPCODE (0);
        lwp->status = W_STOPCODE (0);
      async_file_mark ();
      async_file_mark ();
    }
    }
  else
  else
    {
    {
      /* Already known to be stopped; do nothing.  */
      /* Already known to be stopped; do nothing.  */
 
 
      if (debug_linux_nat)
      if (debug_linux_nat)
        {
        {
          if (find_thread_ptid (lwp->ptid)->stop_requested)
          if (find_thread_ptid (lwp->ptid)->stop_requested)
            fprintf_unfiltered (gdb_stdlog, "\
            fprintf_unfiltered (gdb_stdlog, "\
LNSL: already stopped/stop_requested %s\n",
LNSL: already stopped/stop_requested %s\n",
                                target_pid_to_str (lwp->ptid));
                                target_pid_to_str (lwp->ptid));
          else
          else
            fprintf_unfiltered (gdb_stdlog, "\
            fprintf_unfiltered (gdb_stdlog, "\
LNSL: already stopped/no stop_requested yet %s\n",
LNSL: already stopped/no stop_requested yet %s\n",
                                target_pid_to_str (lwp->ptid));
                                target_pid_to_str (lwp->ptid));
        }
        }
    }
    }
  return 0;
  return 0;
}
}
 
 
static void
static void
linux_nat_stop (ptid_t ptid)
linux_nat_stop (ptid_t ptid)
{
{
  if (non_stop)
  if (non_stop)
    iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
    iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
  else
  else
    linux_ops->to_stop (ptid);
    linux_ops->to_stop (ptid);
}
}
 
 
static void
static void
linux_nat_close (int quitting)
linux_nat_close (int quitting)
{
{
  /* Unregister from the event loop.  */
  /* Unregister from the event loop.  */
  if (target_is_async_p ())
  if (target_is_async_p ())
    target_async (NULL, 0);
    target_async (NULL, 0);
 
 
  /* Reset the async_masking.  */
  /* Reset the async_masking.  */
  linux_nat_async_mask_value = 1;
  linux_nat_async_mask_value = 1;
 
 
  if (linux_ops->to_close)
  if (linux_ops->to_close)
    linux_ops->to_close (quitting);
    linux_ops->to_close (quitting);
}
}
 
 
/* When requests are passed down from the linux-nat layer to the
/* When requests are passed down from the linux-nat layer to the
   single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
   single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
   used.  The address space pointer is stored in the inferior object,
   used.  The address space pointer is stored in the inferior object,
   but the common code that is passed such ptid can't tell whether
   but the common code that is passed such ptid can't tell whether
   lwpid is a "main" process id or not (it assumes so).  We reverse
   lwpid is a "main" process id or not (it assumes so).  We reverse
   look up the "main" process id from the lwp here.  */
   look up the "main" process id from the lwp here.  */
 
 
struct address_space *
struct address_space *
linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
{
{
  struct lwp_info *lwp;
  struct lwp_info *lwp;
  struct inferior *inf;
  struct inferior *inf;
  int pid;
  int pid;
 
 
  pid = GET_LWP (ptid);
  pid = GET_LWP (ptid);
  if (GET_LWP (ptid) == 0)
  if (GET_LWP (ptid) == 0)
    {
    {
      /* An (lwpid,0,0) ptid.  Look up the lwp object to get at the
      /* An (lwpid,0,0) ptid.  Look up the lwp object to get at the
         tgid.  */
         tgid.  */
      lwp = find_lwp_pid (ptid);
      lwp = find_lwp_pid (ptid);
      pid = GET_PID (lwp->ptid);
      pid = GET_PID (lwp->ptid);
    }
    }
  else
  else
    {
    {
      /* A (pid,lwpid,0) ptid.  */
      /* A (pid,lwpid,0) ptid.  */
      pid = GET_PID (ptid);
      pid = GET_PID (ptid);
    }
    }
 
 
  inf = find_inferior_pid (pid);
  inf = find_inferior_pid (pid);
  gdb_assert (inf != NULL);
  gdb_assert (inf != NULL);
  return inf->aspace;
  return inf->aspace;
}
}
 
 
int
int
linux_nat_core_of_thread_1 (ptid_t ptid)
linux_nat_core_of_thread_1 (ptid_t ptid)
{
{
  struct cleanup *back_to;
  struct cleanup *back_to;
  char *filename;
  char *filename;
  FILE *f;
  FILE *f;
  char *content = NULL;
  char *content = NULL;
  char *p;
  char *p;
  char *ts = 0;
  char *ts = 0;
  int content_read = 0;
  int content_read = 0;
  int i;
  int i;
  int core;
  int core;
 
 
  filename = xstrprintf ("/proc/%d/task/%ld/stat",
  filename = xstrprintf ("/proc/%d/task/%ld/stat",
                         GET_PID (ptid), GET_LWP (ptid));
                         GET_PID (ptid), GET_LWP (ptid));
  back_to = make_cleanup (xfree, filename);
  back_to = make_cleanup (xfree, filename);
 
 
  f = fopen (filename, "r");
  f = fopen (filename, "r");
  if (!f)
  if (!f)
    {
    {
      do_cleanups (back_to);
      do_cleanups (back_to);
      return -1;
      return -1;
    }
    }
 
 
  make_cleanup_fclose (f);
  make_cleanup_fclose (f);
 
 
  for (;;)
  for (;;)
    {
    {
      int n;
      int n;
      content = xrealloc (content, content_read + 1024);
      content = xrealloc (content, content_read + 1024);
      n = fread (content + content_read, 1, 1024, f);
      n = fread (content + content_read, 1, 1024, f);
      content_read += n;
      content_read += n;
      if (n < 1024)
      if (n < 1024)
        {
        {
          content[content_read] = '\0';
          content[content_read] = '\0';
          break;
          break;
        }
        }
    }
    }
 
 
  make_cleanup (xfree, content);
  make_cleanup (xfree, content);
 
 
  p = strchr (content, '(');
  p = strchr (content, '(');
  p = strchr (p, ')') + 2; /* skip ")" and a whitespace. */
  p = strchr (p, ')') + 2; /* skip ")" and a whitespace. */
 
 
  /* If the first field after program name has index 0, then core number is
  /* If the first field after program name has index 0, then core number is
     the field with index 36.  There's no constant for that anywhere.  */
     the field with index 36.  There's no constant for that anywhere.  */
  p = strtok_r (p, " ", &ts);
  p = strtok_r (p, " ", &ts);
  for (i = 0; i != 36; ++i)
  for (i = 0; i != 36; ++i)
    p = strtok_r (NULL, " ", &ts);
    p = strtok_r (NULL, " ", &ts);
 
 
  if (sscanf (p, "%d", &core) == 0)
  if (sscanf (p, "%d", &core) == 0)
    core = -1;
    core = -1;
 
 
  do_cleanups (back_to);
  do_cleanups (back_to);
 
 
  return core;
  return core;
}
}
 
 
/* Return the cached value of the processor core for thread PTID.  */
/* Return the cached value of the processor core for thread PTID.  */
 
 
int
int
linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
{
{
  struct lwp_info *info = find_lwp_pid (ptid);
  struct lwp_info *info = find_lwp_pid (ptid);
  if (info)
  if (info)
    return info->core;
    return info->core;
  return -1;
  return -1;
}
}
 
 
void
void
linux_nat_add_target (struct target_ops *t)
linux_nat_add_target (struct target_ops *t)
{
{
  /* Save the provided single-threaded target.  We save this in a separate
  /* Save the provided single-threaded target.  We save this in a separate
     variable because another target we've inherited from (e.g. inf-ptrace)
     variable because another target we've inherited from (e.g. inf-ptrace)
     may have saved a pointer to T; we want to use it for the final
     may have saved a pointer to T; we want to use it for the final
     process stratum target.  */
     process stratum target.  */
  linux_ops_saved = *t;
  linux_ops_saved = *t;
  linux_ops = &linux_ops_saved;
  linux_ops = &linux_ops_saved;
 
 
  /* Override some methods for multithreading.  */
  /* Override some methods for multithreading.  */
  t->to_create_inferior = linux_nat_create_inferior;
  t->to_create_inferior = linux_nat_create_inferior;
  t->to_attach = linux_nat_attach;
  t->to_attach = linux_nat_attach;
  t->to_detach = linux_nat_detach;
  t->to_detach = linux_nat_detach;
  t->to_resume = linux_nat_resume;
  t->to_resume = linux_nat_resume;
  t->to_wait = linux_nat_wait;
  t->to_wait = linux_nat_wait;
  t->to_xfer_partial = linux_nat_xfer_partial;
  t->to_xfer_partial = linux_nat_xfer_partial;
  t->to_kill = linux_nat_kill;
  t->to_kill = linux_nat_kill;
  t->to_mourn_inferior = linux_nat_mourn_inferior;
  t->to_mourn_inferior = linux_nat_mourn_inferior;
  t->to_thread_alive = linux_nat_thread_alive;
  t->to_thread_alive = linux_nat_thread_alive;
  t->to_pid_to_str = linux_nat_pid_to_str;
  t->to_pid_to_str = linux_nat_pid_to_str;
  t->to_has_thread_control = tc_schedlock;
  t->to_has_thread_control = tc_schedlock;
  t->to_thread_address_space = linux_nat_thread_address_space;
  t->to_thread_address_space = linux_nat_thread_address_space;
  t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
  t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
  t->to_stopped_data_address = linux_nat_stopped_data_address;
  t->to_stopped_data_address = linux_nat_stopped_data_address;
 
 
  t->to_can_async_p = linux_nat_can_async_p;
  t->to_can_async_p = linux_nat_can_async_p;
  t->to_is_async_p = linux_nat_is_async_p;
  t->to_is_async_p = linux_nat_is_async_p;
  t->to_supports_non_stop = linux_nat_supports_non_stop;
  t->to_supports_non_stop = linux_nat_supports_non_stop;
  t->to_async = linux_nat_async;
  t->to_async = linux_nat_async;
  t->to_async_mask = linux_nat_async_mask;
  t->to_async_mask = linux_nat_async_mask;
  t->to_terminal_inferior = linux_nat_terminal_inferior;
  t->to_terminal_inferior = linux_nat_terminal_inferior;
  t->to_terminal_ours = linux_nat_terminal_ours;
  t->to_terminal_ours = linux_nat_terminal_ours;
  t->to_close = linux_nat_close;
  t->to_close = linux_nat_close;
 
 
  /* Methods for non-stop support.  */
  /* Methods for non-stop support.  */
  t->to_stop = linux_nat_stop;
  t->to_stop = linux_nat_stop;
 
 
  t->to_supports_multi_process = linux_nat_supports_multi_process;
  t->to_supports_multi_process = linux_nat_supports_multi_process;
 
 
  t->to_core_of_thread = linux_nat_core_of_thread;
  t->to_core_of_thread = linux_nat_core_of_thread;
 
 
  /* We don't change the stratum; this target will sit at
  /* We don't change the stratum; this target will sit at
     process_stratum and thread_db will set at thread_stratum.  This
     process_stratum and thread_db will set at thread_stratum.  This
     is a little strange, since this is a multi-threaded-capable
     is a little strange, since this is a multi-threaded-capable
     target, but we want to be on the stack below thread_db, and we
     target, but we want to be on the stack below thread_db, and we
     also want to be used for single-threaded processes.  */
     also want to be used for single-threaded processes.  */
 
 
  add_target (t);
  add_target (t);
}
}
 
 
/* Register a method to call whenever a new thread is attached.  */
/* Register a method to call whenever a new thread is attached.  */
void
void
linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
{
{
  /* Save the pointer.  We only support a single registered instance
  /* Save the pointer.  We only support a single registered instance
     of the GNU/Linux native target, so we do not need to map this to
     of the GNU/Linux native target, so we do not need to map this to
     T.  */
     T.  */
  linux_nat_new_thread = new_thread;
  linux_nat_new_thread = new_thread;
}
}
 
 
/* Register a method that converts a siginfo object between the layout
/* Register a method that converts a siginfo object between the layout
   that ptrace returns, and the layout in the architecture of the
   that ptrace returns, and the layout in the architecture of the
   inferior.  */
   inferior.  */
void
void
linux_nat_set_siginfo_fixup (struct target_ops *t,
linux_nat_set_siginfo_fixup (struct target_ops *t,
                             int (*siginfo_fixup) (struct siginfo *,
                             int (*siginfo_fixup) (struct siginfo *,
                                                   gdb_byte *,
                                                   gdb_byte *,
                                                   int))
                                                   int))
{
{
  /* Save the pointer.  */
  /* Save the pointer.  */
  linux_nat_siginfo_fixup = siginfo_fixup;
  linux_nat_siginfo_fixup = siginfo_fixup;
}
}
 
 
/* Return the saved siginfo associated with PTID.  */
/* Return the saved siginfo associated with PTID.  */
struct siginfo *
struct siginfo *
linux_nat_get_siginfo (ptid_t ptid)
linux_nat_get_siginfo (ptid_t ptid)
{
{
  struct lwp_info *lp = find_lwp_pid (ptid);
  struct lwp_info *lp = find_lwp_pid (ptid);
 
 
  gdb_assert (lp != NULL);
  gdb_assert (lp != NULL);
 
 
  return &lp->siginfo;
  return &lp->siginfo;
}
}
 
 
/* Provide a prototype to silence -Wmissing-prototypes.  */
/* Provide a prototype to silence -Wmissing-prototypes.  */
extern initialize_file_ftype _initialize_linux_nat;
extern initialize_file_ftype _initialize_linux_nat;
 
 
void
void
_initialize_linux_nat (void)
_initialize_linux_nat (void)
{
{
  sigset_t mask;
  sigset_t mask;
 
 
  add_info ("proc", linux_nat_info_proc_cmd, _("\
  add_info ("proc", linux_nat_info_proc_cmd, _("\
Show /proc process information about any running process.\n\
Show /proc process information about any running process.\n\
Specify any process id, or use the program being debugged by default.\n\
Specify any process id, or use the program being debugged by default.\n\
Specify any of the following keywords for detailed info:\n\
Specify any of the following keywords for detailed info:\n\
  mappings -- list of mapped memory regions.\n\
  mappings -- list of mapped memory regions.\n\
  stat     -- list a bunch of random process info.\n\
  stat     -- list a bunch of random process info.\n\
  status   -- list a different bunch of random process info.\n\
  status   -- list a different bunch of random process info.\n\
  all      -- list all available /proc info."));
  all      -- list all available /proc info."));
 
 
  add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
  add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
                            &debug_linux_nat, _("\
                            &debug_linux_nat, _("\
Set debugging of GNU/Linux lwp module."), _("\
Set debugging of GNU/Linux lwp module."), _("\
Show debugging of GNU/Linux lwp module."), _("\
Show debugging of GNU/Linux lwp module."), _("\
Enables printf debugging output."),
Enables printf debugging output."),
                            NULL,
                            NULL,
                            show_debug_linux_nat,
                            show_debug_linux_nat,
                            &setdebuglist, &showdebuglist);
                            &setdebuglist, &showdebuglist);
 
 
  add_setshow_zinteger_cmd ("lin-lwp-async", class_maintenance,
  add_setshow_zinteger_cmd ("lin-lwp-async", class_maintenance,
                            &debug_linux_nat_async, _("\
                            &debug_linux_nat_async, _("\
Set debugging of GNU/Linux async lwp module."), _("\
Set debugging of GNU/Linux async lwp module."), _("\
Show debugging of GNU/Linux async lwp module."), _("\
Show debugging of GNU/Linux async lwp module."), _("\
Enables printf debugging output."),
Enables printf debugging output."),
                            NULL,
                            NULL,
                            show_debug_linux_nat_async,
                            show_debug_linux_nat_async,
                            &setdebuglist, &showdebuglist);
                            &setdebuglist, &showdebuglist);
 
 
  /* Save this mask as the default.  */
  /* Save this mask as the default.  */
  sigprocmask (SIG_SETMASK, NULL, &normal_mask);
  sigprocmask (SIG_SETMASK, NULL, &normal_mask);
 
 
  /* Install a SIGCHLD handler.  */
  /* Install a SIGCHLD handler.  */
  sigchld_action.sa_handler = sigchld_handler;
  sigchld_action.sa_handler = sigchld_handler;
  sigemptyset (&sigchld_action.sa_mask);
  sigemptyset (&sigchld_action.sa_mask);
  sigchld_action.sa_flags = SA_RESTART;
  sigchld_action.sa_flags = SA_RESTART;
 
 
  /* Make it the default.  */
  /* Make it the default.  */
  sigaction (SIGCHLD, &sigchld_action, NULL);
  sigaction (SIGCHLD, &sigchld_action, NULL);
 
 
  /* Make sure we don't block SIGCHLD during a sigsuspend.  */
  /* Make sure we don't block SIGCHLD during a sigsuspend.  */
  sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
  sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
  sigdelset (&suspend_mask, SIGCHLD);
  sigdelset (&suspend_mask, SIGCHLD);
 
 
  sigemptyset (&blocked_mask);
  sigemptyset (&blocked_mask);
 
 
  add_setshow_boolean_cmd ("disable-randomization", class_support,
  add_setshow_boolean_cmd ("disable-randomization", class_support,
                           &disable_randomization, _("\
                           &disable_randomization, _("\
Set disabling of debuggee's virtual address space randomization."), _("\
Set disabling of debuggee's virtual address space randomization."), _("\
Show disabling of debuggee's virtual address space randomization."), _("\
Show disabling of debuggee's virtual address space randomization."), _("\
When this mode is on (which is the default), randomization of the virtual\n\
When this mode is on (which is the default), randomization of the virtual\n\
address space is disabled.  Standalone programs run with the randomization\n\
address space is disabled.  Standalone programs run with the randomization\n\
enabled by default on some platforms."),
enabled by default on some platforms."),
                           &set_disable_randomization,
                           &set_disable_randomization,
                           &show_disable_randomization,
                           &show_disable_randomization,
                           &setlist, &showlist);
                           &setlist, &showlist);
}
}


 
 
/* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
/* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
   the GNU/Linux Threads library and therefore doesn't really belong
   the GNU/Linux Threads library and therefore doesn't really belong
   here.  */
   here.  */
 
 
/* Read variable NAME in the target and return its value if found.
/* Read variable NAME in the target and return its value if found.
   Otherwise return zero.  It is assumed that the type of the variable
   Otherwise return zero.  It is assumed that the type of the variable
   is `int'.  */
   is `int'.  */
 
 
static int
static int
get_signo (const char *name)
get_signo (const char *name)
{
{
  struct minimal_symbol *ms;
  struct minimal_symbol *ms;
  int signo;
  int signo;
 
 
  ms = lookup_minimal_symbol (name, NULL, NULL);
  ms = lookup_minimal_symbol (name, NULL, NULL);
  if (ms == NULL)
  if (ms == NULL)
    return 0;
    return 0;
 
 
  if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
  if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
                          sizeof (signo)) != 0)
                          sizeof (signo)) != 0)
    return 0;
    return 0;
 
 
  return signo;
  return signo;
}
}
 
 
/* Return the set of signals used by the threads library in *SET.  */
/* Return the set of signals used by the threads library in *SET.  */
 
 
void
void
lin_thread_get_thread_signals (sigset_t *set)
lin_thread_get_thread_signals (sigset_t *set)
{
{
  struct sigaction action;
  struct sigaction action;
  int restart, cancel;
  int restart, cancel;
 
 
  sigemptyset (&blocked_mask);
  sigemptyset (&blocked_mask);
  sigemptyset (set);
  sigemptyset (set);
 
 
  restart = get_signo ("__pthread_sig_restart");
  restart = get_signo ("__pthread_sig_restart");
  cancel = get_signo ("__pthread_sig_cancel");
  cancel = get_signo ("__pthread_sig_cancel");
 
 
  /* LinuxThreads normally uses the first two RT signals, but in some legacy
  /* LinuxThreads normally uses the first two RT signals, but in some legacy
     cases may use SIGUSR1/SIGUSR2.  NPTL always uses RT signals, but does
     cases may use SIGUSR1/SIGUSR2.  NPTL always uses RT signals, but does
     not provide any way for the debugger to query the signal numbers -
     not provide any way for the debugger to query the signal numbers -
     fortunately they don't change!  */
     fortunately they don't change!  */
 
 
  if (restart == 0)
  if (restart == 0)
    restart = __SIGRTMIN;
    restart = __SIGRTMIN;
 
 
  if (cancel == 0)
  if (cancel == 0)
    cancel = __SIGRTMIN + 1;
    cancel = __SIGRTMIN + 1;
 
 
  sigaddset (set, restart);
  sigaddset (set, restart);
  sigaddset (set, cancel);
  sigaddset (set, cancel);
 
 
  /* The GNU/Linux Threads library makes terminating threads send a
  /* The GNU/Linux Threads library makes terminating threads send a
     special "cancel" signal instead of SIGCHLD.  Make sure we catch
     special "cancel" signal instead of SIGCHLD.  Make sure we catch
     those (to prevent them from terminating GDB itself, which is
     those (to prevent them from terminating GDB itself, which is
     likely to be their default action) and treat them the same way as
     likely to be their default action) and treat them the same way as
     SIGCHLD.  */
     SIGCHLD.  */
 
 
  action.sa_handler = sigchld_handler;
  action.sa_handler = sigchld_handler;
  sigemptyset (&action.sa_mask);
  sigemptyset (&action.sa_mask);
  action.sa_flags = SA_RESTART;
  action.sa_flags = SA_RESTART;
  sigaction (cancel, &action, NULL);
  sigaction (cancel, &action, NULL);
 
 
  /* We block the "cancel" signal throughout this code ...  */
  /* We block the "cancel" signal throughout this code ...  */
  sigaddset (&blocked_mask, cancel);
  sigaddset (&blocked_mask, cancel);
  sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
  sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
 
 
  /* ... except during a sigsuspend.  */
  /* ... except during a sigsuspend.  */
  sigdelset (&suspend_mask, cancel);
  sigdelset (&suspend_mask, cancel);
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.