OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gdb-7.1/] [gdb/] [lm32-tdep.c] - Diff between revs 227 and 816

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 227 Rev 816
/* Target-dependent code for Lattice Mico32 processor, for GDB.
/* Target-dependent code for Lattice Mico32 processor, for GDB.
   Contributed by Jon Beniston <jon@beniston.com>
   Contributed by Jon Beniston <jon@beniston.com>
 
 
   Copyright (C) 2009, 2010 Free Software Foundation, Inc.
   Copyright (C) 2009, 2010 Free Software Foundation, Inc.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
 
 
#include "defs.h"
#include "defs.h"
#include "frame.h"
#include "frame.h"
#include "frame-unwind.h"
#include "frame-unwind.h"
#include "frame-base.h"
#include "frame-base.h"
#include "inferior.h"
#include "inferior.h"
#include "dis-asm.h"
#include "dis-asm.h"
#include "symfile.h"
#include "symfile.h"
#include "remote.h"
#include "remote.h"
#include "gdbcore.h"
#include "gdbcore.h"
#include "gdb/sim-lm32.h"
#include "gdb/sim-lm32.h"
#include "gdb/callback.h"
#include "gdb/callback.h"
#include "gdb/remote-sim.h"
#include "gdb/remote-sim.h"
#include "sim-regno.h"
#include "sim-regno.h"
#include "arch-utils.h"
#include "arch-utils.h"
#include "regcache.h"
#include "regcache.h"
#include "trad-frame.h"
#include "trad-frame.h"
#include "reggroups.h"
#include "reggroups.h"
#include "opcodes/lm32-desc.h"
#include "opcodes/lm32-desc.h"
 
 
#include "gdb_string.h"
#include "gdb_string.h"
 
 
/* Macros to extract fields from an instruction.  */
/* Macros to extract fields from an instruction.  */
#define LM32_OPCODE(insn)       ((insn >> 26) & 0x3f)
#define LM32_OPCODE(insn)       ((insn >> 26) & 0x3f)
#define LM32_REG0(insn)         ((insn >> 21) & 0x1f)
#define LM32_REG0(insn)         ((insn >> 21) & 0x1f)
#define LM32_REG1(insn)         ((insn >> 16) & 0x1f)
#define LM32_REG1(insn)         ((insn >> 16) & 0x1f)
#define LM32_REG2(insn)         ((insn >> 11) & 0x1f)
#define LM32_REG2(insn)         ((insn >> 11) & 0x1f)
#define LM32_IMM16(insn)        ((((long)insn & 0xffff) << 16) >> 16)
#define LM32_IMM16(insn)        ((((long)insn & 0xffff) << 16) >> 16)
 
 
struct gdbarch_tdep
struct gdbarch_tdep
{
{
  /* gdbarch target dependent data here. Currently unused for LM32.  */
  /* gdbarch target dependent data here. Currently unused for LM32.  */
};
};
 
 
struct lm32_frame_cache
struct lm32_frame_cache
{
{
  /* The frame's base.  Used when constructing a frame ID.  */
  /* The frame's base.  Used when constructing a frame ID.  */
  CORE_ADDR base;
  CORE_ADDR base;
  CORE_ADDR pc;
  CORE_ADDR pc;
  /* Size of frame.  */
  /* Size of frame.  */
  int size;
  int size;
  /* Table indicating the location of each and every register.  */
  /* Table indicating the location of each and every register.  */
  struct trad_frame_saved_reg *saved_regs;
  struct trad_frame_saved_reg *saved_regs;
};
};
 
 
/* Add the available register groups.  */
/* Add the available register groups.  */
 
 
static void
static void
lm32_add_reggroups (struct gdbarch *gdbarch)
lm32_add_reggroups (struct gdbarch *gdbarch)
{
{
  reggroup_add (gdbarch, general_reggroup);
  reggroup_add (gdbarch, general_reggroup);
  reggroup_add (gdbarch, all_reggroup);
  reggroup_add (gdbarch, all_reggroup);
  reggroup_add (gdbarch, system_reggroup);
  reggroup_add (gdbarch, system_reggroup);
}
}
 
 
/* Return whether a given register is in a given group.  */
/* Return whether a given register is in a given group.  */
 
 
static int
static int
lm32_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
lm32_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
                          struct reggroup *group)
                          struct reggroup *group)
{
{
  if (group == general_reggroup)
  if (group == general_reggroup)
    return ((regnum >= SIM_LM32_R0_REGNUM) && (regnum <= SIM_LM32_RA_REGNUM))
    return ((regnum >= SIM_LM32_R0_REGNUM) && (regnum <= SIM_LM32_RA_REGNUM))
      || (regnum == SIM_LM32_PC_REGNUM);
      || (regnum == SIM_LM32_PC_REGNUM);
  else if (group == system_reggroup)
  else if (group == system_reggroup)
    return ((regnum >= SIM_LM32_EA_REGNUM) && (regnum <= SIM_LM32_BA_REGNUM))
    return ((regnum >= SIM_LM32_EA_REGNUM) && (regnum <= SIM_LM32_BA_REGNUM))
      || ((regnum >= SIM_LM32_EID_REGNUM) && (regnum <= SIM_LM32_IP_REGNUM));
      || ((regnum >= SIM_LM32_EID_REGNUM) && (regnum <= SIM_LM32_IP_REGNUM));
  return default_register_reggroup_p (gdbarch, regnum, group);
  return default_register_reggroup_p (gdbarch, regnum, group);
}
}
 
 
/* Return a name that corresponds to the given register number.  */
/* Return a name that corresponds to the given register number.  */
 
 
static const char *
static const char *
lm32_register_name (struct gdbarch *gdbarch, int reg_nr)
lm32_register_name (struct gdbarch *gdbarch, int reg_nr)
{
{
  static char *register_names[] = {
  static char *register_names[] = {
    "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
    "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
    "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
    "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
    "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
    "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
    "r24", "r25", "gp", "fp", "sp", "ra", "ea", "ba",
    "r24", "r25", "gp", "fp", "sp", "ra", "ea", "ba",
    "PC", "EID", "EBA", "DEBA", "IE", "IM", "IP"
    "PC", "EID", "EBA", "DEBA", "IE", "IM", "IP"
  };
  };
 
 
  if ((reg_nr < 0) || (reg_nr >= ARRAY_SIZE (register_names)))
  if ((reg_nr < 0) || (reg_nr >= ARRAY_SIZE (register_names)))
    return NULL;
    return NULL;
  else
  else
    return register_names[reg_nr];
    return register_names[reg_nr];
}
}
 
 
/* Return type of register.  */
/* Return type of register.  */
 
 
static struct type *
static struct type *
lm32_register_type (struct gdbarch *gdbarch, int reg_nr)
lm32_register_type (struct gdbarch *gdbarch, int reg_nr)
{
{
  return builtin_type (gdbarch)->builtin_int32;
  return builtin_type (gdbarch)->builtin_int32;
}
}
 
 
/* Return non-zero if a register can't be written.  */
/* Return non-zero if a register can't be written.  */
 
 
static int
static int
lm32_cannot_store_register (struct gdbarch *gdbarch, int regno)
lm32_cannot_store_register (struct gdbarch *gdbarch, int regno)
{
{
  return (regno == SIM_LM32_R0_REGNUM) || (regno == SIM_LM32_EID_REGNUM);
  return (regno == SIM_LM32_R0_REGNUM) || (regno == SIM_LM32_EID_REGNUM);
}
}
 
 
/* Analyze a function's prologue.  */
/* Analyze a function's prologue.  */
 
 
static CORE_ADDR
static CORE_ADDR
lm32_analyze_prologue (struct gdbarch *gdbarch,
lm32_analyze_prologue (struct gdbarch *gdbarch,
                       CORE_ADDR pc, CORE_ADDR limit,
                       CORE_ADDR pc, CORE_ADDR limit,
                       struct lm32_frame_cache *info)
                       struct lm32_frame_cache *info)
{
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  unsigned long instruction;
  unsigned long instruction;
 
 
  /* Keep reading though instructions, until we come across an instruction
  /* Keep reading though instructions, until we come across an instruction
     that isn't likely to be part of the prologue.  */
     that isn't likely to be part of the prologue.  */
  info->size = 0;
  info->size = 0;
  for (; pc < limit; pc += 4)
  for (; pc < limit; pc += 4)
    {
    {
 
 
      /* Read an instruction.  */
      /* Read an instruction.  */
      instruction = read_memory_integer (pc, 4, byte_order);
      instruction = read_memory_integer (pc, 4, byte_order);
 
 
      if ((LM32_OPCODE (instruction) == OP_SW)
      if ((LM32_OPCODE (instruction) == OP_SW)
          && (LM32_REG0 (instruction) == SIM_LM32_SP_REGNUM))
          && (LM32_REG0 (instruction) == SIM_LM32_SP_REGNUM))
        {
        {
          /* Any stack displaced store is likely part of the prologue.
          /* Any stack displaced store is likely part of the prologue.
             Record that the register is being saved, and the offset
             Record that the register is being saved, and the offset
             into the stack.  */
             into the stack.  */
          info->saved_regs[LM32_REG1 (instruction)].addr =
          info->saved_regs[LM32_REG1 (instruction)].addr =
            LM32_IMM16 (instruction);
            LM32_IMM16 (instruction);
        }
        }
      else if ((LM32_OPCODE (instruction) == OP_ADDI)
      else if ((LM32_OPCODE (instruction) == OP_ADDI)
               && (LM32_REG1 (instruction) == SIM_LM32_SP_REGNUM))
               && (LM32_REG1 (instruction) == SIM_LM32_SP_REGNUM))
        {
        {
          /* An add to the SP is likely to be part of the prologue.
          /* An add to the SP is likely to be part of the prologue.
             Adjust stack size by whatever the instruction adds to the sp.  */
             Adjust stack size by whatever the instruction adds to the sp.  */
          info->size -= LM32_IMM16 (instruction);
          info->size -= LM32_IMM16 (instruction);
        }
        }
      else if (                 /* add fp,fp,sp */
      else if (                 /* add fp,fp,sp */
                ((LM32_OPCODE (instruction) == OP_ADD)
                ((LM32_OPCODE (instruction) == OP_ADD)
                 && (LM32_REG2 (instruction) == SIM_LM32_FP_REGNUM)
                 && (LM32_REG2 (instruction) == SIM_LM32_FP_REGNUM)
                 && (LM32_REG0 (instruction) == SIM_LM32_FP_REGNUM)
                 && (LM32_REG0 (instruction) == SIM_LM32_FP_REGNUM)
                 && (LM32_REG1 (instruction) == SIM_LM32_SP_REGNUM))
                 && (LM32_REG1 (instruction) == SIM_LM32_SP_REGNUM))
                /* mv fp,imm */
                /* mv fp,imm */
                || ((LM32_OPCODE (instruction) == OP_ADDI)
                || ((LM32_OPCODE (instruction) == OP_ADDI)
                    && (LM32_REG1 (instruction) == SIM_LM32_FP_REGNUM)
                    && (LM32_REG1 (instruction) == SIM_LM32_FP_REGNUM)
                    && (LM32_REG0 (instruction) == SIM_LM32_R0_REGNUM)))
                    && (LM32_REG0 (instruction) == SIM_LM32_R0_REGNUM)))
        {
        {
          /* Likely to be in the prologue for functions that require
          /* Likely to be in the prologue for functions that require
             a frame pointer.  */
             a frame pointer.  */
        }
        }
      else
      else
        {
        {
          /* Any other instruction is likely not to be part of the prologue.  */
          /* Any other instruction is likely not to be part of the prologue.  */
          break;
          break;
        }
        }
    }
    }
 
 
  return pc;
  return pc;
}
}
 
 
/* Return PC of first non prologue instruction, for the function at the
/* Return PC of first non prologue instruction, for the function at the
   specified address.  */
   specified address.  */
 
 
static CORE_ADDR
static CORE_ADDR
lm32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
lm32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
{
  CORE_ADDR func_addr, limit_pc;
  CORE_ADDR func_addr, limit_pc;
  struct symtab_and_line sal;
  struct symtab_and_line sal;
  struct lm32_frame_cache frame_info;
  struct lm32_frame_cache frame_info;
  struct trad_frame_saved_reg saved_regs[SIM_LM32_NUM_REGS];
  struct trad_frame_saved_reg saved_regs[SIM_LM32_NUM_REGS];
 
 
  /* See if we can determine the end of the prologue via the symbol table.
  /* See if we can determine the end of the prologue via the symbol table.
     If so, then return either PC, or the PC after the prologue, whichever
     If so, then return either PC, or the PC after the prologue, whichever
     is greater.  */
     is greater.  */
  if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
  if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
    {
    {
      CORE_ADDR post_prologue_pc
      CORE_ADDR post_prologue_pc
        = skip_prologue_using_sal (gdbarch, func_addr);
        = skip_prologue_using_sal (gdbarch, func_addr);
      if (post_prologue_pc != 0)
      if (post_prologue_pc != 0)
        return max (pc, post_prologue_pc);
        return max (pc, post_prologue_pc);
    }
    }
 
 
  /* Can't determine prologue from the symbol table, need to examine
  /* Can't determine prologue from the symbol table, need to examine
     instructions.  */
     instructions.  */
 
 
  /* Find an upper limit on the function prologue using the debug
  /* Find an upper limit on the function prologue using the debug
     information.  If the debug information could not be used to provide
     information.  If the debug information could not be used to provide
     that bound, then use an arbitrary large number as the upper bound.  */
     that bound, then use an arbitrary large number as the upper bound.  */
  limit_pc = skip_prologue_using_sal (gdbarch, pc);
  limit_pc = skip_prologue_using_sal (gdbarch, pc);
  if (limit_pc == 0)
  if (limit_pc == 0)
    limit_pc = pc + 100;        /* Magic.  */
    limit_pc = pc + 100;        /* Magic.  */
 
 
  frame_info.saved_regs = saved_regs;
  frame_info.saved_regs = saved_regs;
  return lm32_analyze_prologue (gdbarch, pc, limit_pc, &frame_info);
  return lm32_analyze_prologue (gdbarch, pc, limit_pc, &frame_info);
}
}
 
 
/* Create a breakpoint instruction.  */
/* Create a breakpoint instruction.  */
 
 
static const gdb_byte *
static const gdb_byte *
lm32_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
lm32_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
                         int *lenptr)
                         int *lenptr)
{
{
  static const gdb_byte breakpoint[4] = { OP_RAISE << 2, 0, 0, 2 };
  static const gdb_byte breakpoint[4] = { OP_RAISE << 2, 0, 0, 2 };
 
 
  *lenptr = sizeof (breakpoint);
  *lenptr = sizeof (breakpoint);
  return breakpoint;
  return breakpoint;
}
}
 
 
/* Setup registers and stack for faking a call to a function in the
/* Setup registers and stack for faking a call to a function in the
   inferior.  */
   inferior.  */
 
 
static CORE_ADDR
static CORE_ADDR
lm32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
lm32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
                      struct regcache *regcache, CORE_ADDR bp_addr,
                      struct regcache *regcache, CORE_ADDR bp_addr,
                      int nargs, struct value **args, CORE_ADDR sp,
                      int nargs, struct value **args, CORE_ADDR sp,
                      int struct_return, CORE_ADDR struct_addr)
                      int struct_return, CORE_ADDR struct_addr)
{
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int first_arg_reg = SIM_LM32_R1_REGNUM;
  int first_arg_reg = SIM_LM32_R1_REGNUM;
  int num_arg_regs = 8;
  int num_arg_regs = 8;
  int i;
  int i;
 
 
  /* Set the return address.  */
  /* Set the return address.  */
  regcache_cooked_write_signed (regcache, SIM_LM32_RA_REGNUM, bp_addr);
  regcache_cooked_write_signed (regcache, SIM_LM32_RA_REGNUM, bp_addr);
 
 
  /* If we're returning a large struct, a pointer to the address to
  /* If we're returning a large struct, a pointer to the address to
     store it at is passed as a first hidden parameter.  */
     store it at is passed as a first hidden parameter.  */
  if (struct_return)
  if (struct_return)
    {
    {
      regcache_cooked_write_unsigned (regcache, first_arg_reg, struct_addr);
      regcache_cooked_write_unsigned (regcache, first_arg_reg, struct_addr);
      first_arg_reg++;
      first_arg_reg++;
      num_arg_regs--;
      num_arg_regs--;
      sp -= 4;
      sp -= 4;
    }
    }
 
 
  /* Setup parameters.  */
  /* Setup parameters.  */
  for (i = 0; i < nargs; i++)
  for (i = 0; i < nargs; i++)
    {
    {
      struct value *arg = args[i];
      struct value *arg = args[i];
      struct type *arg_type = check_typedef (value_type (arg));
      struct type *arg_type = check_typedef (value_type (arg));
      gdb_byte *contents;
      gdb_byte *contents;
      int len;
      int len;
      int j;
      int j;
      int reg;
      int reg;
      ULONGEST val;
      ULONGEST val;
 
 
      /* Promote small integer types to int.  */
      /* Promote small integer types to int.  */
      switch (TYPE_CODE (arg_type))
      switch (TYPE_CODE (arg_type))
        {
        {
        case TYPE_CODE_INT:
        case TYPE_CODE_INT:
        case TYPE_CODE_BOOL:
        case TYPE_CODE_BOOL:
        case TYPE_CODE_CHAR:
        case TYPE_CODE_CHAR:
        case TYPE_CODE_RANGE:
        case TYPE_CODE_RANGE:
        case TYPE_CODE_ENUM:
        case TYPE_CODE_ENUM:
          if (TYPE_LENGTH (arg_type) < 4)
          if (TYPE_LENGTH (arg_type) < 4)
            {
            {
              arg_type = builtin_type (gdbarch)->builtin_int32;
              arg_type = builtin_type (gdbarch)->builtin_int32;
              arg = value_cast (arg_type, arg);
              arg = value_cast (arg_type, arg);
            }
            }
          break;
          break;
        }
        }
 
 
      /* FIXME: Handle structures.  */
      /* FIXME: Handle structures.  */
 
 
      contents = (gdb_byte *) value_contents (arg);
      contents = (gdb_byte *) value_contents (arg);
      len = TYPE_LENGTH (arg_type);
      len = TYPE_LENGTH (arg_type);
      val = extract_unsigned_integer (contents, len, byte_order);
      val = extract_unsigned_integer (contents, len, byte_order);
 
 
      /* First num_arg_regs parameters are passed by registers,
      /* First num_arg_regs parameters are passed by registers,
         and the rest are passed on the stack.  */
         and the rest are passed on the stack.  */
      if (i < num_arg_regs)
      if (i < num_arg_regs)
        regcache_cooked_write_unsigned (regcache, first_arg_reg + i, val);
        regcache_cooked_write_unsigned (regcache, first_arg_reg + i, val);
      else
      else
        {
        {
          write_memory (sp, (void *) &val, len);
          write_memory (sp, (void *) &val, len);
          sp -= 4;
          sp -= 4;
        }
        }
    }
    }
 
 
  /* Update stack pointer.  */
  /* Update stack pointer.  */
  regcache_cooked_write_signed (regcache, SIM_LM32_SP_REGNUM, sp);
  regcache_cooked_write_signed (regcache, SIM_LM32_SP_REGNUM, sp);
 
 
  /* Return adjusted stack pointer.  */
  /* Return adjusted stack pointer.  */
  return sp;
  return sp;
}
}
 
 
/* Extract return value after calling a function in the inferior.  */
/* Extract return value after calling a function in the inferior.  */
 
 
static void
static void
lm32_extract_return_value (struct type *type, struct regcache *regcache,
lm32_extract_return_value (struct type *type, struct regcache *regcache,
                           gdb_byte *valbuf)
                           gdb_byte *valbuf)
{
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int offset;
  int offset;
  ULONGEST l;
  ULONGEST l;
  CORE_ADDR return_buffer;
  CORE_ADDR return_buffer;
 
 
  if (TYPE_CODE (type) != TYPE_CODE_STRUCT
  if (TYPE_CODE (type) != TYPE_CODE_STRUCT
      && TYPE_CODE (type) != TYPE_CODE_UNION
      && TYPE_CODE (type) != TYPE_CODE_UNION
      && TYPE_CODE (type) != TYPE_CODE_ARRAY && TYPE_LENGTH (type) <= 4)
      && TYPE_CODE (type) != TYPE_CODE_ARRAY && TYPE_LENGTH (type) <= 4)
    {
    {
      /* Return value is returned in a single register.  */
      /* Return value is returned in a single register.  */
      regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
      regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
      store_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order, l);
      store_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order, l);
    }
    }
  else if ((TYPE_CODE (type) == TYPE_CODE_INT) && (TYPE_LENGTH (type) == 8))
  else if ((TYPE_CODE (type) == TYPE_CODE_INT) && (TYPE_LENGTH (type) == 8))
    {
    {
      /* 64-bit values are returned in a register pair.  */
      /* 64-bit values are returned in a register pair.  */
      regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
      regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
      memcpy (valbuf, &l, 4);
      memcpy (valbuf, &l, 4);
      regcache_cooked_read_unsigned (regcache, SIM_LM32_R2_REGNUM, &l);
      regcache_cooked_read_unsigned (regcache, SIM_LM32_R2_REGNUM, &l);
      memcpy (valbuf + 4, &l, 4);
      memcpy (valbuf + 4, &l, 4);
    }
    }
  else
  else
    {
    {
      /* Aggregate types greater than a single register are returned in memory.
      /* Aggregate types greater than a single register are returned in memory.
         FIXME: Unless they are only 2 regs?.  */
         FIXME: Unless they are only 2 regs?.  */
      regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
      regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
      return_buffer = l;
      return_buffer = l;
      read_memory (return_buffer, valbuf, TYPE_LENGTH (type));
      read_memory (return_buffer, valbuf, TYPE_LENGTH (type));
    }
    }
}
}
 
 
/* Write into appropriate registers a function return value of type
/* Write into appropriate registers a function return value of type
   TYPE, given in virtual format.  */
   TYPE, given in virtual format.  */
static void
static void
lm32_store_return_value (struct type *type, struct regcache *regcache,
lm32_store_return_value (struct type *type, struct regcache *regcache,
                         const gdb_byte *valbuf)
                         const gdb_byte *valbuf)
{
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  ULONGEST val;
  ULONGEST val;
  int len = TYPE_LENGTH (type);
  int len = TYPE_LENGTH (type);
 
 
  if (len <= 4)
  if (len <= 4)
    {
    {
      val = extract_unsigned_integer (valbuf, len, byte_order);
      val = extract_unsigned_integer (valbuf, len, byte_order);
      regcache_cooked_write_unsigned (regcache, SIM_LM32_R1_REGNUM, val);
      regcache_cooked_write_unsigned (regcache, SIM_LM32_R1_REGNUM, val);
    }
    }
  else if (len <= 8)
  else if (len <= 8)
    {
    {
      val = extract_unsigned_integer (valbuf, 4, byte_order);
      val = extract_unsigned_integer (valbuf, 4, byte_order);
      regcache_cooked_write_unsigned (regcache, SIM_LM32_R1_REGNUM, val);
      regcache_cooked_write_unsigned (regcache, SIM_LM32_R1_REGNUM, val);
      val = extract_unsigned_integer (valbuf + 4, len - 4, byte_order);
      val = extract_unsigned_integer (valbuf + 4, len - 4, byte_order);
      regcache_cooked_write_unsigned (regcache, SIM_LM32_R2_REGNUM, val);
      regcache_cooked_write_unsigned (regcache, SIM_LM32_R2_REGNUM, val);
    }
    }
  else
  else
    error (_("lm32_store_return_value: type length too large."));
    error (_("lm32_store_return_value: type length too large."));
}
}
 
 
/* Determine whether a functions return value is in a register or memory.  */
/* Determine whether a functions return value is in a register or memory.  */
static enum return_value_convention
static enum return_value_convention
lm32_return_value (struct gdbarch *gdbarch, struct type *func_type,
lm32_return_value (struct gdbarch *gdbarch, struct type *func_type,
                   struct type *valtype, struct regcache *regcache,
                   struct type *valtype, struct regcache *regcache,
                   gdb_byte *readbuf, const gdb_byte *writebuf)
                   gdb_byte *readbuf, const gdb_byte *writebuf)
{
{
  enum type_code code = TYPE_CODE (valtype);
  enum type_code code = TYPE_CODE (valtype);
 
 
  if (code == TYPE_CODE_STRUCT
  if (code == TYPE_CODE_STRUCT
      || code == TYPE_CODE_UNION
      || code == TYPE_CODE_UNION
      || code == TYPE_CODE_ARRAY || TYPE_LENGTH (valtype) > 8)
      || code == TYPE_CODE_ARRAY || TYPE_LENGTH (valtype) > 8)
    return RETURN_VALUE_STRUCT_CONVENTION;
    return RETURN_VALUE_STRUCT_CONVENTION;
 
 
  if (readbuf)
  if (readbuf)
    lm32_extract_return_value (valtype, regcache, readbuf);
    lm32_extract_return_value (valtype, regcache, readbuf);
  if (writebuf)
  if (writebuf)
    lm32_store_return_value (valtype, regcache, writebuf);
    lm32_store_return_value (valtype, regcache, writebuf);
 
 
  return RETURN_VALUE_REGISTER_CONVENTION;
  return RETURN_VALUE_REGISTER_CONVENTION;
}
}
 
 
static CORE_ADDR
static CORE_ADDR
lm32_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
lm32_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
{
  return frame_unwind_register_unsigned (next_frame, SIM_LM32_PC_REGNUM);
  return frame_unwind_register_unsigned (next_frame, SIM_LM32_PC_REGNUM);
}
}
 
 
static CORE_ADDR
static CORE_ADDR
lm32_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
lm32_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
{
  return frame_unwind_register_unsigned (next_frame, SIM_LM32_SP_REGNUM);
  return frame_unwind_register_unsigned (next_frame, SIM_LM32_SP_REGNUM);
}
}
 
 
static struct frame_id
static struct frame_id
lm32_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
lm32_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
{
{
  CORE_ADDR sp = get_frame_register_unsigned (this_frame, SIM_LM32_SP_REGNUM);
  CORE_ADDR sp = get_frame_register_unsigned (this_frame, SIM_LM32_SP_REGNUM);
 
 
  return frame_id_build (sp, get_frame_pc (this_frame));
  return frame_id_build (sp, get_frame_pc (this_frame));
}
}
 
 
/* Put here the code to store, into fi->saved_regs, the addresses of
/* Put here the code to store, into fi->saved_regs, the addresses of
   the saved registers of frame described by FRAME_INFO.  This
   the saved registers of frame described by FRAME_INFO.  This
   includes special registers such as pc and fp saved in special ways
   includes special registers such as pc and fp saved in special ways
   in the stack frame.  sp is even more special: the address we return
   in the stack frame.  sp is even more special: the address we return
   for it IS the sp for the next frame.  */
   for it IS the sp for the next frame.  */
 
 
static struct lm32_frame_cache *
static struct lm32_frame_cache *
lm32_frame_cache (struct frame_info *this_frame, void **this_prologue_cache)
lm32_frame_cache (struct frame_info *this_frame, void **this_prologue_cache)
{
{
  CORE_ADDR prologue_pc;
  CORE_ADDR prologue_pc;
  CORE_ADDR current_pc;
  CORE_ADDR current_pc;
  ULONGEST prev_sp;
  ULONGEST prev_sp;
  ULONGEST this_base;
  ULONGEST this_base;
  struct lm32_frame_cache *info;
  struct lm32_frame_cache *info;
  int prefixed;
  int prefixed;
  unsigned long instruction;
  unsigned long instruction;
  int op;
  int op;
  int offsets[32];
  int offsets[32];
  int i;
  int i;
  long immediate;
  long immediate;
 
 
  if ((*this_prologue_cache))
  if ((*this_prologue_cache))
    return (*this_prologue_cache);
    return (*this_prologue_cache);
 
 
  info = FRAME_OBSTACK_ZALLOC (struct lm32_frame_cache);
  info = FRAME_OBSTACK_ZALLOC (struct lm32_frame_cache);
  (*this_prologue_cache) = info;
  (*this_prologue_cache) = info;
  info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
  info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
 
 
  info->pc = get_frame_func (this_frame);
  info->pc = get_frame_func (this_frame);
  current_pc = get_frame_pc (this_frame);
  current_pc = get_frame_pc (this_frame);
  lm32_analyze_prologue (get_frame_arch (this_frame),
  lm32_analyze_prologue (get_frame_arch (this_frame),
                         info->pc, current_pc, info);
                         info->pc, current_pc, info);
 
 
  /* Compute the frame's base, and the previous frame's SP.  */
  /* Compute the frame's base, and the previous frame's SP.  */
  this_base = get_frame_register_unsigned (this_frame, SIM_LM32_SP_REGNUM);
  this_base = get_frame_register_unsigned (this_frame, SIM_LM32_SP_REGNUM);
  prev_sp = this_base + info->size;
  prev_sp = this_base + info->size;
  info->base = this_base;
  info->base = this_base;
 
 
  /* Convert callee save offsets into addresses.  */
  /* Convert callee save offsets into addresses.  */
  for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++)
  for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++)
    {
    {
      if (trad_frame_addr_p (info->saved_regs, i))
      if (trad_frame_addr_p (info->saved_regs, i))
        info->saved_regs[i].addr = this_base + info->saved_regs[i].addr;
        info->saved_regs[i].addr = this_base + info->saved_regs[i].addr;
    }
    }
 
 
  /* The call instruction moves the caller's PC in the callee's RA register.
  /* The call instruction moves the caller's PC in the callee's RA register.
     Since this is an unwind, do the reverse.  Copy the location of RA register
     Since this is an unwind, do the reverse.  Copy the location of RA register
     into PC (the address / regnum) so that a request for PC will be
     into PC (the address / regnum) so that a request for PC will be
     converted into a request for the RA register.  */
     converted into a request for the RA register.  */
  info->saved_regs[SIM_LM32_PC_REGNUM] = info->saved_regs[SIM_LM32_RA_REGNUM];
  info->saved_regs[SIM_LM32_PC_REGNUM] = info->saved_regs[SIM_LM32_RA_REGNUM];
 
 
  /* The previous frame's SP needed to be computed.  Save the computed value. */
  /* The previous frame's SP needed to be computed.  Save the computed value. */
  trad_frame_set_value (info->saved_regs, SIM_LM32_SP_REGNUM, prev_sp);
  trad_frame_set_value (info->saved_regs, SIM_LM32_SP_REGNUM, prev_sp);
 
 
  return info;
  return info;
}
}
 
 
static void
static void
lm32_frame_this_id (struct frame_info *this_frame, void **this_cache,
lm32_frame_this_id (struct frame_info *this_frame, void **this_cache,
                    struct frame_id *this_id)
                    struct frame_id *this_id)
{
{
  struct lm32_frame_cache *cache = lm32_frame_cache (this_frame, this_cache);
  struct lm32_frame_cache *cache = lm32_frame_cache (this_frame, this_cache);
 
 
  /* This marks the outermost frame.  */
  /* This marks the outermost frame.  */
  if (cache->base == 0)
  if (cache->base == 0)
    return;
    return;
 
 
  (*this_id) = frame_id_build (cache->base, cache->pc);
  (*this_id) = frame_id_build (cache->base, cache->pc);
}
}
 
 
static struct value *
static struct value *
lm32_frame_prev_register (struct frame_info *this_frame,
lm32_frame_prev_register (struct frame_info *this_frame,
                          void **this_prologue_cache, int regnum)
                          void **this_prologue_cache, int regnum)
{
{
  struct lm32_frame_cache *info;
  struct lm32_frame_cache *info;
 
 
  info = lm32_frame_cache (this_frame, this_prologue_cache);
  info = lm32_frame_cache (this_frame, this_prologue_cache);
  return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
  return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
}
}
 
 
static const struct frame_unwind lm32_frame_unwind = {
static const struct frame_unwind lm32_frame_unwind = {
  NORMAL_FRAME,
  NORMAL_FRAME,
  lm32_frame_this_id,
  lm32_frame_this_id,
  lm32_frame_prev_register,
  lm32_frame_prev_register,
  NULL,
  NULL,
  default_frame_sniffer
  default_frame_sniffer
};
};
 
 
static CORE_ADDR
static CORE_ADDR
lm32_frame_base_address (struct frame_info *this_frame, void **this_cache)
lm32_frame_base_address (struct frame_info *this_frame, void **this_cache)
{
{
  struct lm32_frame_cache *info = lm32_frame_cache (this_frame, this_cache);
  struct lm32_frame_cache *info = lm32_frame_cache (this_frame, this_cache);
 
 
  return info->base;
  return info->base;
}
}
 
 
static const struct frame_base lm32_frame_base = {
static const struct frame_base lm32_frame_base = {
  &lm32_frame_unwind,
  &lm32_frame_unwind,
  lm32_frame_base_address,
  lm32_frame_base_address,
  lm32_frame_base_address,
  lm32_frame_base_address,
  lm32_frame_base_address
  lm32_frame_base_address
};
};
 
 
static CORE_ADDR
static CORE_ADDR
lm32_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
lm32_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
{
{
  /* Align to the size of an instruction (so that they can safely be
  /* Align to the size of an instruction (so that they can safely be
     pushed onto the stack.  */
     pushed onto the stack.  */
  return sp & ~3;
  return sp & ~3;
}
}
 
 
static struct gdbarch *
static struct gdbarch *
lm32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
lm32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
{
  struct gdbarch *gdbarch;
  struct gdbarch *gdbarch;
  struct gdbarch_tdep *tdep;
  struct gdbarch_tdep *tdep;
 
 
  /* If there is already a candidate, use it.  */
  /* If there is already a candidate, use it.  */
  arches = gdbarch_list_lookup_by_info (arches, &info);
  arches = gdbarch_list_lookup_by_info (arches, &info);
  if (arches != NULL)
  if (arches != NULL)
    return arches->gdbarch;
    return arches->gdbarch;
 
 
  /* None found, create a new architecture from the information provided.  */
  /* None found, create a new architecture from the information provided.  */
  tdep = XMALLOC (struct gdbarch_tdep);
  tdep = XMALLOC (struct gdbarch_tdep);
  gdbarch = gdbarch_alloc (&info, tdep);
  gdbarch = gdbarch_alloc (&info, tdep);
 
 
  /* Type sizes.  */
  /* Type sizes.  */
  set_gdbarch_short_bit (gdbarch, 16);
  set_gdbarch_short_bit (gdbarch, 16);
  set_gdbarch_int_bit (gdbarch, 32);
  set_gdbarch_int_bit (gdbarch, 32);
  set_gdbarch_long_bit (gdbarch, 32);
  set_gdbarch_long_bit (gdbarch, 32);
  set_gdbarch_long_long_bit (gdbarch, 64);
  set_gdbarch_long_long_bit (gdbarch, 64);
  set_gdbarch_float_bit (gdbarch, 32);
  set_gdbarch_float_bit (gdbarch, 32);
  set_gdbarch_double_bit (gdbarch, 64);
  set_gdbarch_double_bit (gdbarch, 64);
  set_gdbarch_long_double_bit (gdbarch, 64);
  set_gdbarch_long_double_bit (gdbarch, 64);
  set_gdbarch_ptr_bit (gdbarch, 32);
  set_gdbarch_ptr_bit (gdbarch, 32);
 
 
  /* Register info.  */
  /* Register info.  */
  set_gdbarch_num_regs (gdbarch, SIM_LM32_NUM_REGS);
  set_gdbarch_num_regs (gdbarch, SIM_LM32_NUM_REGS);
  set_gdbarch_sp_regnum (gdbarch, SIM_LM32_SP_REGNUM);
  set_gdbarch_sp_regnum (gdbarch, SIM_LM32_SP_REGNUM);
  set_gdbarch_pc_regnum (gdbarch, SIM_LM32_PC_REGNUM);
  set_gdbarch_pc_regnum (gdbarch, SIM_LM32_PC_REGNUM);
  set_gdbarch_register_name (gdbarch, lm32_register_name);
  set_gdbarch_register_name (gdbarch, lm32_register_name);
  set_gdbarch_register_type (gdbarch, lm32_register_type);
  set_gdbarch_register_type (gdbarch, lm32_register_type);
  set_gdbarch_cannot_store_register (gdbarch, lm32_cannot_store_register);
  set_gdbarch_cannot_store_register (gdbarch, lm32_cannot_store_register);
 
 
  /* Frame info.  */
  /* Frame info.  */
  set_gdbarch_skip_prologue (gdbarch, lm32_skip_prologue);
  set_gdbarch_skip_prologue (gdbarch, lm32_skip_prologue);
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
  set_gdbarch_decr_pc_after_break (gdbarch, 0);
  set_gdbarch_decr_pc_after_break (gdbarch, 0);
  set_gdbarch_frame_args_skip (gdbarch, 0);
  set_gdbarch_frame_args_skip (gdbarch, 0);
 
 
  /* Frame unwinding.  */
  /* Frame unwinding.  */
  set_gdbarch_frame_align (gdbarch, lm32_frame_align);
  set_gdbarch_frame_align (gdbarch, lm32_frame_align);
  frame_base_set_default (gdbarch, &lm32_frame_base);
  frame_base_set_default (gdbarch, &lm32_frame_base);
  set_gdbarch_unwind_pc (gdbarch, lm32_unwind_pc);
  set_gdbarch_unwind_pc (gdbarch, lm32_unwind_pc);
  set_gdbarch_unwind_sp (gdbarch, lm32_unwind_sp);
  set_gdbarch_unwind_sp (gdbarch, lm32_unwind_sp);
  set_gdbarch_dummy_id (gdbarch, lm32_dummy_id);
  set_gdbarch_dummy_id (gdbarch, lm32_dummy_id);
  frame_unwind_append_unwinder (gdbarch, &lm32_frame_unwind);
  frame_unwind_append_unwinder (gdbarch, &lm32_frame_unwind);
 
 
  /* Breakpoints.  */
  /* Breakpoints.  */
  set_gdbarch_breakpoint_from_pc (gdbarch, lm32_breakpoint_from_pc);
  set_gdbarch_breakpoint_from_pc (gdbarch, lm32_breakpoint_from_pc);
  set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
  set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
 
 
  /* Calling functions in the inferior.  */
  /* Calling functions in the inferior.  */
  set_gdbarch_push_dummy_call (gdbarch, lm32_push_dummy_call);
  set_gdbarch_push_dummy_call (gdbarch, lm32_push_dummy_call);
  set_gdbarch_return_value (gdbarch, lm32_return_value);
  set_gdbarch_return_value (gdbarch, lm32_return_value);
 
 
  /* Instruction disassembler.  */
  /* Instruction disassembler.  */
  set_gdbarch_print_insn (gdbarch, print_insn_lm32);
  set_gdbarch_print_insn (gdbarch, print_insn_lm32);
 
 
  lm32_add_reggroups (gdbarch);
  lm32_add_reggroups (gdbarch);
  set_gdbarch_register_reggroup_p (gdbarch, lm32_register_reggroup_p);
  set_gdbarch_register_reggroup_p (gdbarch, lm32_register_reggroup_p);
 
 
  return gdbarch;
  return gdbarch;
}
}
 
 
void
void
_initialize_lm32_tdep (void)
_initialize_lm32_tdep (void)
{
{
  register_gdbarch_init (bfd_arch_lm32, lm32_gdbarch_init);
  register_gdbarch_init (bfd_arch_lm32, lm32_gdbarch_init);
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.