OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gdb-7.1/] [gdb/] [m68k-tdep.c] - Diff between revs 834 and 842

Only display areas with differences | Details | Blame | View Log

Rev 834 Rev 842
/* Target-dependent code for the Motorola 68000 series.
/* Target-dependent code for the Motorola 68000 series.
 
 
   Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
   Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
   2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
   2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
 
 
#include "defs.h"
#include "defs.h"
#include "dwarf2-frame.h"
#include "dwarf2-frame.h"
#include "frame.h"
#include "frame.h"
#include "frame-base.h"
#include "frame-base.h"
#include "frame-unwind.h"
#include "frame-unwind.h"
#include "gdbtypes.h"
#include "gdbtypes.h"
#include "symtab.h"
#include "symtab.h"
#include "gdbcore.h"
#include "gdbcore.h"
#include "value.h"
#include "value.h"
#include "gdb_string.h"
#include "gdb_string.h"
#include "gdb_assert.h"
#include "gdb_assert.h"
#include "inferior.h"
#include "inferior.h"
#include "regcache.h"
#include "regcache.h"
#include "arch-utils.h"
#include "arch-utils.h"
#include "osabi.h"
#include "osabi.h"
#include "dis-asm.h"
#include "dis-asm.h"
#include "target-descriptions.h"
#include "target-descriptions.h"
 
 
#include "m68k-tdep.h"
#include "m68k-tdep.h"


 
 
#define P_LINKL_FP      0x480e
#define P_LINKL_FP      0x480e
#define P_LINKW_FP      0x4e56
#define P_LINKW_FP      0x4e56
#define P_PEA_FP        0x4856
#define P_PEA_FP        0x4856
#define P_MOVEAL_SP_FP  0x2c4f
#define P_MOVEAL_SP_FP  0x2c4f
#define P_ADDAW_SP      0xdefc
#define P_ADDAW_SP      0xdefc
#define P_ADDAL_SP      0xdffc
#define P_ADDAL_SP      0xdffc
#define P_SUBQW_SP      0x514f
#define P_SUBQW_SP      0x514f
#define P_SUBQL_SP      0x518f
#define P_SUBQL_SP      0x518f
#define P_LEA_SP_SP     0x4fef
#define P_LEA_SP_SP     0x4fef
#define P_LEA_PC_A5     0x4bfb0170
#define P_LEA_PC_A5     0x4bfb0170
#define P_FMOVEMX_SP    0xf227
#define P_FMOVEMX_SP    0xf227
#define P_MOVEL_SP      0x2f00
#define P_MOVEL_SP      0x2f00
#define P_MOVEML_SP     0x48e7
#define P_MOVEML_SP     0x48e7
 
 
/* Offset from SP to first arg on stack at first instruction of a function */
/* Offset from SP to first arg on stack at first instruction of a function */
#define SP_ARG0 (1 * 4)
#define SP_ARG0 (1 * 4)
 
 
#if !defined (BPT_VECTOR)
#if !defined (BPT_VECTOR)
#define BPT_VECTOR 0xf
#define BPT_VECTOR 0xf
#endif
#endif
 
 
static const gdb_byte *
static const gdb_byte *
m68k_local_breakpoint_from_pc (struct gdbarch *gdbarch,
m68k_local_breakpoint_from_pc (struct gdbarch *gdbarch,
                               CORE_ADDR *pcptr, int *lenptr)
                               CORE_ADDR *pcptr, int *lenptr)
{
{
  static gdb_byte break_insn[] = {0x4e, (0x40 | BPT_VECTOR)};
  static gdb_byte break_insn[] = {0x4e, (0x40 | BPT_VECTOR)};
  *lenptr = sizeof (break_insn);
  *lenptr = sizeof (break_insn);
  return break_insn;
  return break_insn;
}
}


 
 
/* Construct types for ISA-specific registers.  */
/* Construct types for ISA-specific registers.  */
static struct type *
static struct type *
m68k_ps_type (struct gdbarch *gdbarch)
m68k_ps_type (struct gdbarch *gdbarch)
{
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
 
 
  if (!tdep->m68k_ps_type)
  if (!tdep->m68k_ps_type)
    {
    {
      struct type *type;
      struct type *type;
 
 
      type = arch_flags_type (gdbarch, "builtin_type_m68k_ps", 4);
      type = arch_flags_type (gdbarch, "builtin_type_m68k_ps", 4);
      append_flags_type_flag (type, 0, "C");
      append_flags_type_flag (type, 0, "C");
      append_flags_type_flag (type, 1, "V");
      append_flags_type_flag (type, 1, "V");
      append_flags_type_flag (type, 2, "Z");
      append_flags_type_flag (type, 2, "Z");
      append_flags_type_flag (type, 3, "N");
      append_flags_type_flag (type, 3, "N");
      append_flags_type_flag (type, 4, "X");
      append_flags_type_flag (type, 4, "X");
      append_flags_type_flag (type, 8, "I0");
      append_flags_type_flag (type, 8, "I0");
      append_flags_type_flag (type, 9, "I1");
      append_flags_type_flag (type, 9, "I1");
      append_flags_type_flag (type, 10, "I2");
      append_flags_type_flag (type, 10, "I2");
      append_flags_type_flag (type, 12, "M");
      append_flags_type_flag (type, 12, "M");
      append_flags_type_flag (type, 13, "S");
      append_flags_type_flag (type, 13, "S");
      append_flags_type_flag (type, 14, "T0");
      append_flags_type_flag (type, 14, "T0");
      append_flags_type_flag (type, 15, "T1");
      append_flags_type_flag (type, 15, "T1");
 
 
      tdep->m68k_ps_type = type;
      tdep->m68k_ps_type = type;
    }
    }
 
 
  return tdep->m68k_ps_type;
  return tdep->m68k_ps_type;
}
}
 
 
static struct type *
static struct type *
m68881_ext_type (struct gdbarch *gdbarch)
m68881_ext_type (struct gdbarch *gdbarch)
{
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
 
 
  if (!tdep->m68881_ext_type)
  if (!tdep->m68881_ext_type)
    tdep->m68881_ext_type
    tdep->m68881_ext_type
      = arch_float_type (gdbarch, -1, "builtin_type_m68881_ext",
      = arch_float_type (gdbarch, -1, "builtin_type_m68881_ext",
                         floatformats_m68881_ext);
                         floatformats_m68881_ext);
 
 
  return tdep->m68881_ext_type;
  return tdep->m68881_ext_type;
}
}
 
 
/* Return the GDB type object for the "standard" data type of data in
/* Return the GDB type object for the "standard" data type of data in
   register N.  This should be int for D0-D7, SR, FPCONTROL and
   register N.  This should be int for D0-D7, SR, FPCONTROL and
   FPSTATUS, long double for FP0-FP7, and void pointer for all others
   FPSTATUS, long double for FP0-FP7, and void pointer for all others
   (A0-A7, PC, FPIADDR).  Note, for registers which contain
   (A0-A7, PC, FPIADDR).  Note, for registers which contain
   addresses return pointer to void, not pointer to char, because we
   addresses return pointer to void, not pointer to char, because we
   don't want to attempt to print the string after printing the
   don't want to attempt to print the string after printing the
   address.  */
   address.  */
 
 
static struct type *
static struct type *
m68k_register_type (struct gdbarch *gdbarch, int regnum)
m68k_register_type (struct gdbarch *gdbarch, int regnum)
{
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
 
 
  if (tdep->fpregs_present)
  if (tdep->fpregs_present)
    {
    {
      if (regnum >= gdbarch_fp0_regnum (gdbarch)
      if (regnum >= gdbarch_fp0_regnum (gdbarch)
          && regnum <= gdbarch_fp0_regnum (gdbarch) + 7)
          && regnum <= gdbarch_fp0_regnum (gdbarch) + 7)
        {
        {
          if (tdep->flavour == m68k_coldfire_flavour)
          if (tdep->flavour == m68k_coldfire_flavour)
            return builtin_type (gdbarch)->builtin_double;
            return builtin_type (gdbarch)->builtin_double;
          else
          else
            return m68881_ext_type (gdbarch);
            return m68881_ext_type (gdbarch);
        }
        }
 
 
      if (regnum == M68K_FPI_REGNUM)
      if (regnum == M68K_FPI_REGNUM)
        return builtin_type (gdbarch)->builtin_func_ptr;
        return builtin_type (gdbarch)->builtin_func_ptr;
 
 
      if (regnum == M68K_FPC_REGNUM || regnum == M68K_FPS_REGNUM)
      if (regnum == M68K_FPC_REGNUM || regnum == M68K_FPS_REGNUM)
        return builtin_type (gdbarch)->builtin_int32;
        return builtin_type (gdbarch)->builtin_int32;
    }
    }
  else
  else
    {
    {
      if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM)
      if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM)
        return builtin_type (gdbarch)->builtin_int0;
        return builtin_type (gdbarch)->builtin_int0;
    }
    }
 
 
  if (regnum == gdbarch_pc_regnum (gdbarch))
  if (regnum == gdbarch_pc_regnum (gdbarch))
    return builtin_type (gdbarch)->builtin_func_ptr;
    return builtin_type (gdbarch)->builtin_func_ptr;
 
 
  if (regnum >= M68K_A0_REGNUM && regnum <= M68K_A0_REGNUM + 7)
  if (regnum >= M68K_A0_REGNUM && regnum <= M68K_A0_REGNUM + 7)
    return builtin_type (gdbarch)->builtin_data_ptr;
    return builtin_type (gdbarch)->builtin_data_ptr;
 
 
  if (regnum == M68K_PS_REGNUM)
  if (regnum == M68K_PS_REGNUM)
    return m68k_ps_type (gdbarch);
    return m68k_ps_type (gdbarch);
 
 
  return builtin_type (gdbarch)->builtin_int32;
  return builtin_type (gdbarch)->builtin_int32;
}
}
 
 
static const char *m68k_register_names[] = {
static const char *m68k_register_names[] = {
    "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
    "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
    "a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp",
    "a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp",
    "ps", "pc",
    "ps", "pc",
    "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7",
    "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7",
    "fpcontrol", "fpstatus", "fpiaddr"
    "fpcontrol", "fpstatus", "fpiaddr"
  };
  };
 
 
/* Function: m68k_register_name
/* Function: m68k_register_name
   Returns the name of the standard m68k register regnum. */
   Returns the name of the standard m68k register regnum. */
 
 
static const char *
static const char *
m68k_register_name (struct gdbarch *gdbarch, int regnum)
m68k_register_name (struct gdbarch *gdbarch, int regnum)
{
{
  if (regnum < 0 || regnum >= ARRAY_SIZE (m68k_register_names))
  if (regnum < 0 || regnum >= ARRAY_SIZE (m68k_register_names))
    internal_error (__FILE__, __LINE__,
    internal_error (__FILE__, __LINE__,
                    _("m68k_register_name: illegal register number %d"), regnum);
                    _("m68k_register_name: illegal register number %d"), regnum);
  else if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM
  else if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM
           && gdbarch_tdep (gdbarch)->fpregs_present == 0)
           && gdbarch_tdep (gdbarch)->fpregs_present == 0)
    return "";
    return "";
  else
  else
    return m68k_register_names[regnum];
    return m68k_register_names[regnum];
}
}


/* Return nonzero if a value of type TYPE stored in register REGNUM
/* Return nonzero if a value of type TYPE stored in register REGNUM
   needs any special handling.  */
   needs any special handling.  */
 
 
static int
static int
m68k_convert_register_p (struct gdbarch *gdbarch, int regnum, struct type *type)
m68k_convert_register_p (struct gdbarch *gdbarch, int regnum, struct type *type)
{
{
  if (!gdbarch_tdep (gdbarch)->fpregs_present)
  if (!gdbarch_tdep (gdbarch)->fpregs_present)
    return 0;
    return 0;
  return (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FP0_REGNUM + 7
  return (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FP0_REGNUM + 7
          && type != register_type (gdbarch, M68K_FP0_REGNUM));
          && type != register_type (gdbarch, M68K_FP0_REGNUM));
}
}
 
 
/* Read a value of type TYPE from register REGNUM in frame FRAME, and
/* Read a value of type TYPE from register REGNUM in frame FRAME, and
   return its contents in TO.  */
   return its contents in TO.  */
 
 
static void
static void
m68k_register_to_value (struct frame_info *frame, int regnum,
m68k_register_to_value (struct frame_info *frame, int regnum,
                        struct type *type, gdb_byte *to)
                        struct type *type, gdb_byte *to)
{
{
  gdb_byte from[M68K_MAX_REGISTER_SIZE];
  gdb_byte from[M68K_MAX_REGISTER_SIZE];
  struct type *fpreg_type = register_type (get_frame_arch (frame),
  struct type *fpreg_type = register_type (get_frame_arch (frame),
                                           M68K_FP0_REGNUM);
                                           M68K_FP0_REGNUM);
 
 
  /* We only support floating-point values.  */
  /* We only support floating-point values.  */
  if (TYPE_CODE (type) != TYPE_CODE_FLT)
  if (TYPE_CODE (type) != TYPE_CODE_FLT)
    {
    {
      warning (_("Cannot convert floating-point register value "
      warning (_("Cannot convert floating-point register value "
               "to non-floating-point type."));
               "to non-floating-point type."));
      return;
      return;
    }
    }
 
 
  /* Convert to TYPE.  */
  /* Convert to TYPE.  */
  get_frame_register (frame, regnum, from);
  get_frame_register (frame, regnum, from);
  convert_typed_floating (from, fpreg_type, to, type);
  convert_typed_floating (from, fpreg_type, to, type);
}
}
 
 
/* Write the contents FROM of a value of type TYPE into register
/* Write the contents FROM of a value of type TYPE into register
   REGNUM in frame FRAME.  */
   REGNUM in frame FRAME.  */
 
 
static void
static void
m68k_value_to_register (struct frame_info *frame, int regnum,
m68k_value_to_register (struct frame_info *frame, int regnum,
                        struct type *type, const gdb_byte *from)
                        struct type *type, const gdb_byte *from)
{
{
  gdb_byte to[M68K_MAX_REGISTER_SIZE];
  gdb_byte to[M68K_MAX_REGISTER_SIZE];
  struct type *fpreg_type = register_type (get_frame_arch (frame),
  struct type *fpreg_type = register_type (get_frame_arch (frame),
                                           M68K_FP0_REGNUM);
                                           M68K_FP0_REGNUM);
 
 
  /* We only support floating-point values.  */
  /* We only support floating-point values.  */
  if (TYPE_CODE (type) != TYPE_CODE_FLT)
  if (TYPE_CODE (type) != TYPE_CODE_FLT)
    {
    {
      warning (_("Cannot convert non-floating-point type "
      warning (_("Cannot convert non-floating-point type "
               "to floating-point register value."));
               "to floating-point register value."));
      return;
      return;
    }
    }
 
 
  /* Convert from TYPE.  */
  /* Convert from TYPE.  */
  convert_typed_floating (from, type, to, fpreg_type);
  convert_typed_floating (from, type, to, fpreg_type);
  put_frame_register (frame, regnum, to);
  put_frame_register (frame, regnum, to);
}
}
 
 


/* There is a fair number of calling conventions that are in somewhat
/* There is a fair number of calling conventions that are in somewhat
   wide use.  The 68000/08/10 don't support an FPU, not even as a
   wide use.  The 68000/08/10 don't support an FPU, not even as a
   coprocessor.  All function return values are stored in %d0/%d1.
   coprocessor.  All function return values are stored in %d0/%d1.
   Structures are returned in a static buffer, a pointer to which is
   Structures are returned in a static buffer, a pointer to which is
   returned in %d0.  This means that functions returning a structure
   returned in %d0.  This means that functions returning a structure
   are not re-entrant.  To avoid this problem some systems use a
   are not re-entrant.  To avoid this problem some systems use a
   convention where the caller passes a pointer to a buffer in %a1
   convention where the caller passes a pointer to a buffer in %a1
   where the return values is to be stored.  This convention is the
   where the return values is to be stored.  This convention is the
   default, and is implemented in the function m68k_return_value.
   default, and is implemented in the function m68k_return_value.
 
 
   The 68020/030/040/060 do support an FPU, either as a coprocessor
   The 68020/030/040/060 do support an FPU, either as a coprocessor
   (68881/2) or built-in (68040/68060).  That's why System V release 4
   (68881/2) or built-in (68040/68060).  That's why System V release 4
   (SVR4) instroduces a new calling convention specified by the SVR4
   (SVR4) instroduces a new calling convention specified by the SVR4
   psABI.  Integer values are returned in %d0/%d1, pointer return
   psABI.  Integer values are returned in %d0/%d1, pointer return
   values in %a0 and floating values in %fp0.  When calling functions
   values in %a0 and floating values in %fp0.  When calling functions
   returning a structure the caller should pass a pointer to a buffer
   returning a structure the caller should pass a pointer to a buffer
   for the return value in %a0.  This convention is implemented in the
   for the return value in %a0.  This convention is implemented in the
   function m68k_svr4_return_value, and by appropriately setting the
   function m68k_svr4_return_value, and by appropriately setting the
   struct_value_regnum member of `struct gdbarch_tdep'.
   struct_value_regnum member of `struct gdbarch_tdep'.
 
 
   GNU/Linux returns values in the same way as SVR4 does, but uses %a1
   GNU/Linux returns values in the same way as SVR4 does, but uses %a1
   for passing the structure return value buffer.
   for passing the structure return value buffer.
 
 
   GCC can also generate code where small structures are returned in
   GCC can also generate code where small structures are returned in
   %d0/%d1 instead of in memory by using -freg-struct-return.  This is
   %d0/%d1 instead of in memory by using -freg-struct-return.  This is
   the default on NetBSD a.out, OpenBSD and GNU/Linux and several
   the default on NetBSD a.out, OpenBSD and GNU/Linux and several
   embedded systems.  This convention is implemented by setting the
   embedded systems.  This convention is implemented by setting the
   struct_return member of `struct gdbarch_tdep' to reg_struct_return.  */
   struct_return member of `struct gdbarch_tdep' to reg_struct_return.  */
 
 
/* Read a function return value of TYPE from REGCACHE, and copy that
/* Read a function return value of TYPE from REGCACHE, and copy that
   into VALBUF.  */
   into VALBUF.  */
 
 
static void
static void
m68k_extract_return_value (struct type *type, struct regcache *regcache,
m68k_extract_return_value (struct type *type, struct regcache *regcache,
                           gdb_byte *valbuf)
                           gdb_byte *valbuf)
{
{
  int len = TYPE_LENGTH (type);
  int len = TYPE_LENGTH (type);
  gdb_byte buf[M68K_MAX_REGISTER_SIZE];
  gdb_byte buf[M68K_MAX_REGISTER_SIZE];
 
 
  if (len <= 4)
  if (len <= 4)
    {
    {
      regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
      regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
      memcpy (valbuf, buf + (4 - len), len);
      memcpy (valbuf, buf + (4 - len), len);
    }
    }
  else if (len <= 8)
  else if (len <= 8)
    {
    {
      regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
      regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
      memcpy (valbuf, buf + (8 - len), len - 4);
      memcpy (valbuf, buf + (8 - len), len - 4);
      regcache_raw_read (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
      regcache_raw_read (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
    }
    }
  else
  else
    internal_error (__FILE__, __LINE__,
    internal_error (__FILE__, __LINE__,
                    _("Cannot extract return value of %d bytes long."), len);
                    _("Cannot extract return value of %d bytes long."), len);
}
}
 
 
static void
static void
m68k_svr4_extract_return_value (struct type *type, struct regcache *regcache,
m68k_svr4_extract_return_value (struct type *type, struct regcache *regcache,
                                gdb_byte *valbuf)
                                gdb_byte *valbuf)
{
{
  int len = TYPE_LENGTH (type);
  int len = TYPE_LENGTH (type);
  gdb_byte buf[M68K_MAX_REGISTER_SIZE];
  gdb_byte buf[M68K_MAX_REGISTER_SIZE];
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
 
 
  if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
  if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
    {
    {
      struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
      struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
      regcache_raw_read (regcache, M68K_FP0_REGNUM, buf);
      regcache_raw_read (regcache, M68K_FP0_REGNUM, buf);
      convert_typed_floating (buf, fpreg_type, valbuf, type);
      convert_typed_floating (buf, fpreg_type, valbuf, type);
    }
    }
  else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
  else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
    regcache_raw_read (regcache, M68K_A0_REGNUM, valbuf);
    regcache_raw_read (regcache, M68K_A0_REGNUM, valbuf);
  else
  else
    m68k_extract_return_value (type, regcache, valbuf);
    m68k_extract_return_value (type, regcache, valbuf);
}
}
 
 
/* Write a function return value of TYPE from VALBUF into REGCACHE.  */
/* Write a function return value of TYPE from VALBUF into REGCACHE.  */
 
 
static void
static void
m68k_store_return_value (struct type *type, struct regcache *regcache,
m68k_store_return_value (struct type *type, struct regcache *regcache,
                         const gdb_byte *valbuf)
                         const gdb_byte *valbuf)
{
{
  int len = TYPE_LENGTH (type);
  int len = TYPE_LENGTH (type);
 
 
  if (len <= 4)
  if (len <= 4)
    regcache_raw_write_part (regcache, M68K_D0_REGNUM, 4 - len, len, valbuf);
    regcache_raw_write_part (regcache, M68K_D0_REGNUM, 4 - len, len, valbuf);
  else if (len <= 8)
  else if (len <= 8)
    {
    {
      regcache_raw_write_part (regcache, M68K_D0_REGNUM, 8 - len,
      regcache_raw_write_part (regcache, M68K_D0_REGNUM, 8 - len,
                               len - 4, valbuf);
                               len - 4, valbuf);
      regcache_raw_write (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
      regcache_raw_write (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
    }
    }
  else
  else
    internal_error (__FILE__, __LINE__,
    internal_error (__FILE__, __LINE__,
                    _("Cannot store return value of %d bytes long."), len);
                    _("Cannot store return value of %d bytes long."), len);
}
}
 
 
static void
static void
m68k_svr4_store_return_value (struct type *type, struct regcache *regcache,
m68k_svr4_store_return_value (struct type *type, struct regcache *regcache,
                              const gdb_byte *valbuf)
                              const gdb_byte *valbuf)
{
{
  int len = TYPE_LENGTH (type);
  int len = TYPE_LENGTH (type);
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
 
 
  if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
  if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
    {
    {
      struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
      struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
      gdb_byte buf[M68K_MAX_REGISTER_SIZE];
      gdb_byte buf[M68K_MAX_REGISTER_SIZE];
      convert_typed_floating (valbuf, type, buf, fpreg_type);
      convert_typed_floating (valbuf, type, buf, fpreg_type);
      regcache_raw_write (regcache, M68K_FP0_REGNUM, buf);
      regcache_raw_write (regcache, M68K_FP0_REGNUM, buf);
    }
    }
  else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
  else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
    {
    {
      regcache_raw_write (regcache, M68K_A0_REGNUM, valbuf);
      regcache_raw_write (regcache, M68K_A0_REGNUM, valbuf);
      regcache_raw_write (regcache, M68K_D0_REGNUM, valbuf);
      regcache_raw_write (regcache, M68K_D0_REGNUM, valbuf);
    }
    }
  else
  else
    m68k_store_return_value (type, regcache, valbuf);
    m68k_store_return_value (type, regcache, valbuf);
}
}
 
 
/* Return non-zero if TYPE, which is assumed to be a structure or
/* Return non-zero if TYPE, which is assumed to be a structure or
   union type, should be returned in registers for architecture
   union type, should be returned in registers for architecture
   GDBARCH.  */
   GDBARCH.  */
 
 
static int
static int
m68k_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
m68k_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
{
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum type_code code = TYPE_CODE (type);
  enum type_code code = TYPE_CODE (type);
  int len = TYPE_LENGTH (type);
  int len = TYPE_LENGTH (type);
 
 
  gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
  gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
 
 
  if (tdep->struct_return == pcc_struct_return)
  if (tdep->struct_return == pcc_struct_return)
    return 0;
    return 0;
 
 
  return (len == 1 || len == 2 || len == 4 || len == 8);
  return (len == 1 || len == 2 || len == 4 || len == 8);
}
}
 
 
/* Determine, for architecture GDBARCH, how a return value of TYPE
/* Determine, for architecture GDBARCH, how a return value of TYPE
   should be returned.  If it is supposed to be returned in registers,
   should be returned.  If it is supposed to be returned in registers,
   and READBUF is non-zero, read the appropriate value from REGCACHE,
   and READBUF is non-zero, read the appropriate value from REGCACHE,
   and copy it into READBUF.  If WRITEBUF is non-zero, write the value
   and copy it into READBUF.  If WRITEBUF is non-zero, write the value
   from WRITEBUF into REGCACHE.  */
   from WRITEBUF into REGCACHE.  */
 
 
static enum return_value_convention
static enum return_value_convention
m68k_return_value (struct gdbarch *gdbarch, struct type *func_type,
m68k_return_value (struct gdbarch *gdbarch, struct type *func_type,
                   struct type *type, struct regcache *regcache,
                   struct type *type, struct regcache *regcache,
                   gdb_byte *readbuf, const gdb_byte *writebuf)
                   gdb_byte *readbuf, const gdb_byte *writebuf)
{
{
  enum type_code code = TYPE_CODE (type);
  enum type_code code = TYPE_CODE (type);
 
 
  /* GCC returns a `long double' in memory too.  */
  /* GCC returns a `long double' in memory too.  */
  if (((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
  if (((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
       && !m68k_reg_struct_return_p (gdbarch, type))
       && !m68k_reg_struct_return_p (gdbarch, type))
      || (code == TYPE_CODE_FLT && TYPE_LENGTH (type) == 12))
      || (code == TYPE_CODE_FLT && TYPE_LENGTH (type) == 12))
    {
    {
      /* The default on m68k is to return structures in static memory.
      /* The default on m68k is to return structures in static memory.
         Consequently a function must return the address where we can
         Consequently a function must return the address where we can
         find the return value.  */
         find the return value.  */
 
 
      if (readbuf)
      if (readbuf)
        {
        {
          ULONGEST addr;
          ULONGEST addr;
 
 
          regcache_raw_read_unsigned (regcache, M68K_D0_REGNUM, &addr);
          regcache_raw_read_unsigned (regcache, M68K_D0_REGNUM, &addr);
          read_memory (addr, readbuf, TYPE_LENGTH (type));
          read_memory (addr, readbuf, TYPE_LENGTH (type));
        }
        }
 
 
      return RETURN_VALUE_ABI_RETURNS_ADDRESS;
      return RETURN_VALUE_ABI_RETURNS_ADDRESS;
    }
    }
 
 
  if (readbuf)
  if (readbuf)
    m68k_extract_return_value (type, regcache, readbuf);
    m68k_extract_return_value (type, regcache, readbuf);
  if (writebuf)
  if (writebuf)
    m68k_store_return_value (type, regcache, writebuf);
    m68k_store_return_value (type, regcache, writebuf);
 
 
  return RETURN_VALUE_REGISTER_CONVENTION;
  return RETURN_VALUE_REGISTER_CONVENTION;
}
}
 
 
static enum return_value_convention
static enum return_value_convention
m68k_svr4_return_value (struct gdbarch *gdbarch, struct type *func_type,
m68k_svr4_return_value (struct gdbarch *gdbarch, struct type *func_type,
                        struct type *type, struct regcache *regcache,
                        struct type *type, struct regcache *regcache,
                        gdb_byte *readbuf, const gdb_byte *writebuf)
                        gdb_byte *readbuf, const gdb_byte *writebuf)
{
{
  enum type_code code = TYPE_CODE (type);
  enum type_code code = TYPE_CODE (type);
 
 
  if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
  if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
      && !m68k_reg_struct_return_p (gdbarch, type))
      && !m68k_reg_struct_return_p (gdbarch, type))
    {
    {
      /* The System V ABI says that:
      /* The System V ABI says that:
 
 
         "A function returning a structure or union also sets %a0 to
         "A function returning a structure or union also sets %a0 to
         the value it finds in %a0.  Thus when the caller receives
         the value it finds in %a0.  Thus when the caller receives
         control again, the address of the returned object resides in
         control again, the address of the returned object resides in
         register %a0."
         register %a0."
 
 
         So the ABI guarantees that we can always find the return
         So the ABI guarantees that we can always find the return
         value just after the function has returned.  */
         value just after the function has returned.  */
 
 
      if (readbuf)
      if (readbuf)
        {
        {
          ULONGEST addr;
          ULONGEST addr;
 
 
          regcache_raw_read_unsigned (regcache, M68K_A0_REGNUM, &addr);
          regcache_raw_read_unsigned (regcache, M68K_A0_REGNUM, &addr);
          read_memory (addr, readbuf, TYPE_LENGTH (type));
          read_memory (addr, readbuf, TYPE_LENGTH (type));
        }
        }
 
 
      return RETURN_VALUE_ABI_RETURNS_ADDRESS;
      return RETURN_VALUE_ABI_RETURNS_ADDRESS;
    }
    }
 
 
  /* This special case is for structures consisting of a single
  /* This special case is for structures consisting of a single
     `float' or `double' member.  These structures are returned in
     `float' or `double' member.  These structures are returned in
     %fp0.  For these structures, we call ourselves recursively,
     %fp0.  For these structures, we call ourselves recursively,
     changing TYPE into the type of the first member of the structure.
     changing TYPE into the type of the first member of the structure.
     Since that should work for all structures that have only one
     Since that should work for all structures that have only one
     member, we don't bother to check the member's type here.  */
     member, we don't bother to check the member's type here.  */
  if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
  if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
    {
    {
      type = check_typedef (TYPE_FIELD_TYPE (type, 0));
      type = check_typedef (TYPE_FIELD_TYPE (type, 0));
      return m68k_svr4_return_value (gdbarch, func_type, type, regcache,
      return m68k_svr4_return_value (gdbarch, func_type, type, regcache,
                                     readbuf, writebuf);
                                     readbuf, writebuf);
    }
    }
 
 
  if (readbuf)
  if (readbuf)
    m68k_svr4_extract_return_value (type, regcache, readbuf);
    m68k_svr4_extract_return_value (type, regcache, readbuf);
  if (writebuf)
  if (writebuf)
    m68k_svr4_store_return_value (type, regcache, writebuf);
    m68k_svr4_store_return_value (type, regcache, writebuf);
 
 
  return RETURN_VALUE_REGISTER_CONVENTION;
  return RETURN_VALUE_REGISTER_CONVENTION;
}
}


 
 
/* Always align the frame to a 4-byte boundary.  This is required on
/* Always align the frame to a 4-byte boundary.  This is required on
   coldfire and harmless on the rest.  */
   coldfire and harmless on the rest.  */
 
 
static CORE_ADDR
static CORE_ADDR
m68k_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
m68k_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
{
{
  /* Align the stack to four bytes.  */
  /* Align the stack to four bytes.  */
  return sp & ~3;
  return sp & ~3;
}
}
 
 
static CORE_ADDR
static CORE_ADDR
m68k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
m68k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
                      struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
                      struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
                      struct value **args, CORE_ADDR sp, int struct_return,
                      struct value **args, CORE_ADDR sp, int struct_return,
                      CORE_ADDR struct_addr)
                      CORE_ADDR struct_addr)
{
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  gdb_byte buf[4];
  gdb_byte buf[4];
  int i;
  int i;
 
 
  /* Push arguments in reverse order.  */
  /* Push arguments in reverse order.  */
  for (i = nargs - 1; i >= 0; i--)
  for (i = nargs - 1; i >= 0; i--)
    {
    {
      struct type *value_type = value_enclosing_type (args[i]);
      struct type *value_type = value_enclosing_type (args[i]);
      int len = TYPE_LENGTH (value_type);
      int len = TYPE_LENGTH (value_type);
      int container_len = (len + 3) & ~3;
      int container_len = (len + 3) & ~3;
      int offset;
      int offset;
 
 
      /* Non-scalars bigger than 4 bytes are left aligned, others are
      /* Non-scalars bigger than 4 bytes are left aligned, others are
         right aligned.  */
         right aligned.  */
      if ((TYPE_CODE (value_type) == TYPE_CODE_STRUCT
      if ((TYPE_CODE (value_type) == TYPE_CODE_STRUCT
           || TYPE_CODE (value_type) == TYPE_CODE_UNION
           || TYPE_CODE (value_type) == TYPE_CODE_UNION
           || TYPE_CODE (value_type) == TYPE_CODE_ARRAY)
           || TYPE_CODE (value_type) == TYPE_CODE_ARRAY)
          && len > 4)
          && len > 4)
        offset = 0;
        offset = 0;
      else
      else
        offset = container_len - len;
        offset = container_len - len;
      sp -= container_len;
      sp -= container_len;
      write_memory (sp + offset, value_contents_all (args[i]), len);
      write_memory (sp + offset, value_contents_all (args[i]), len);
    }
    }
 
 
  /* Store struct value address.  */
  /* Store struct value address.  */
  if (struct_return)
  if (struct_return)
    {
    {
      store_unsigned_integer (buf, 4, byte_order, struct_addr);
      store_unsigned_integer (buf, 4, byte_order, struct_addr);
      regcache_cooked_write (regcache, tdep->struct_value_regnum, buf);
      regcache_cooked_write (regcache, tdep->struct_value_regnum, buf);
    }
    }
 
 
  /* Store return address.  */
  /* Store return address.  */
  sp -= 4;
  sp -= 4;
  store_unsigned_integer (buf, 4, byte_order, bp_addr);
  store_unsigned_integer (buf, 4, byte_order, bp_addr);
  write_memory (sp, buf, 4);
  write_memory (sp, buf, 4);
 
 
  /* Finally, update the stack pointer...  */
  /* Finally, update the stack pointer...  */
  store_unsigned_integer (buf, 4, byte_order, sp);
  store_unsigned_integer (buf, 4, byte_order, sp);
  regcache_cooked_write (regcache, M68K_SP_REGNUM, buf);
  regcache_cooked_write (regcache, M68K_SP_REGNUM, buf);
 
 
  /* ...and fake a frame pointer.  */
  /* ...and fake a frame pointer.  */
  regcache_cooked_write (regcache, M68K_FP_REGNUM, buf);
  regcache_cooked_write (regcache, M68K_FP_REGNUM, buf);
 
 
  /* DWARF2/GCC uses the stack address *before* the function call as a
  /* DWARF2/GCC uses the stack address *before* the function call as a
     frame's CFA.  */
     frame's CFA.  */
  return sp + 8;
  return sp + 8;
}
}
 
 
/* Convert a dwarf or dwarf2 regnumber to a GDB regnum.  */
/* Convert a dwarf or dwarf2 regnumber to a GDB regnum.  */
 
 
static int
static int
m68k_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int num)
m68k_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int num)
{
{
  if (num < 8)
  if (num < 8)
    /* d0..7 */
    /* d0..7 */
    return (num - 0) + M68K_D0_REGNUM;
    return (num - 0) + M68K_D0_REGNUM;
  else if (num < 16)
  else if (num < 16)
    /* a0..7 */
    /* a0..7 */
    return (num - 8) + M68K_A0_REGNUM;
    return (num - 8) + M68K_A0_REGNUM;
  else if (num < 24 && gdbarch_tdep (gdbarch)->fpregs_present)
  else if (num < 24 && gdbarch_tdep (gdbarch)->fpregs_present)
    /* fp0..7 */
    /* fp0..7 */
    return (num - 16) + M68K_FP0_REGNUM;
    return (num - 16) + M68K_FP0_REGNUM;
  else if (num == 25)
  else if (num == 25)
    /* pc */
    /* pc */
    return M68K_PC_REGNUM;
    return M68K_PC_REGNUM;
  else
  else
    return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
    return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
}
}
 
 


struct m68k_frame_cache
struct m68k_frame_cache
{
{
  /* Base address.  */
  /* Base address.  */
  CORE_ADDR base;
  CORE_ADDR base;
  CORE_ADDR sp_offset;
  CORE_ADDR sp_offset;
  CORE_ADDR pc;
  CORE_ADDR pc;
 
 
  /* Saved registers.  */
  /* Saved registers.  */
  CORE_ADDR saved_regs[M68K_NUM_REGS];
  CORE_ADDR saved_regs[M68K_NUM_REGS];
  CORE_ADDR saved_sp;
  CORE_ADDR saved_sp;
 
 
  /* Stack space reserved for local variables.  */
  /* Stack space reserved for local variables.  */
  long locals;
  long locals;
};
};
 
 
/* Allocate and initialize a frame cache.  */
/* Allocate and initialize a frame cache.  */
 
 
static struct m68k_frame_cache *
static struct m68k_frame_cache *
m68k_alloc_frame_cache (void)
m68k_alloc_frame_cache (void)
{
{
  struct m68k_frame_cache *cache;
  struct m68k_frame_cache *cache;
  int i;
  int i;
 
 
  cache = FRAME_OBSTACK_ZALLOC (struct m68k_frame_cache);
  cache = FRAME_OBSTACK_ZALLOC (struct m68k_frame_cache);
 
 
  /* Base address.  */
  /* Base address.  */
  cache->base = 0;
  cache->base = 0;
  cache->sp_offset = -4;
  cache->sp_offset = -4;
  cache->pc = 0;
  cache->pc = 0;
 
 
  /* Saved registers.  We initialize these to -1 since zero is a valid
  /* Saved registers.  We initialize these to -1 since zero is a valid
     offset (that's where %fp is supposed to be stored).  */
     offset (that's where %fp is supposed to be stored).  */
  for (i = 0; i < M68K_NUM_REGS; i++)
  for (i = 0; i < M68K_NUM_REGS; i++)
    cache->saved_regs[i] = -1;
    cache->saved_regs[i] = -1;
 
 
  /* Frameless until proven otherwise.  */
  /* Frameless until proven otherwise.  */
  cache->locals = -1;
  cache->locals = -1;
 
 
  return cache;
  return cache;
}
}
 
 
/* Check whether PC points at a code that sets up a new stack frame.
/* Check whether PC points at a code that sets up a new stack frame.
   If so, it updates CACHE and returns the address of the first
   If so, it updates CACHE and returns the address of the first
   instruction after the sequence that sets removes the "hidden"
   instruction after the sequence that sets removes the "hidden"
   argument from the stack or CURRENT_PC, whichever is smaller.
   argument from the stack or CURRENT_PC, whichever is smaller.
   Otherwise, return PC.  */
   Otherwise, return PC.  */
 
 
static CORE_ADDR
static CORE_ADDR
m68k_analyze_frame_setup (struct gdbarch *gdbarch,
m68k_analyze_frame_setup (struct gdbarch *gdbarch,
                          CORE_ADDR pc, CORE_ADDR current_pc,
                          CORE_ADDR pc, CORE_ADDR current_pc,
                          struct m68k_frame_cache *cache)
                          struct m68k_frame_cache *cache)
{
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int op;
  int op;
 
 
  if (pc >= current_pc)
  if (pc >= current_pc)
    return current_pc;
    return current_pc;
 
 
  op = read_memory_unsigned_integer (pc, 2, byte_order);
  op = read_memory_unsigned_integer (pc, 2, byte_order);
 
 
  if (op == P_LINKW_FP || op == P_LINKL_FP || op == P_PEA_FP)
  if (op == P_LINKW_FP || op == P_LINKL_FP || op == P_PEA_FP)
    {
    {
      cache->saved_regs[M68K_FP_REGNUM] = 0;
      cache->saved_regs[M68K_FP_REGNUM] = 0;
      cache->sp_offset += 4;
      cache->sp_offset += 4;
      if (op == P_LINKW_FP)
      if (op == P_LINKW_FP)
        {
        {
          /* link.w %fp, #-N */
          /* link.w %fp, #-N */
          /* link.w %fp, #0; adda.l #-N, %sp */
          /* link.w %fp, #0; adda.l #-N, %sp */
          cache->locals = -read_memory_integer (pc + 2, 2, byte_order);
          cache->locals = -read_memory_integer (pc + 2, 2, byte_order);
 
 
          if (pc + 4 < current_pc && cache->locals == 0)
          if (pc + 4 < current_pc && cache->locals == 0)
            {
            {
              op = read_memory_unsigned_integer (pc + 4, 2, byte_order);
              op = read_memory_unsigned_integer (pc + 4, 2, byte_order);
              if (op == P_ADDAL_SP)
              if (op == P_ADDAL_SP)
                {
                {
                  cache->locals = read_memory_integer (pc + 6, 4, byte_order);
                  cache->locals = read_memory_integer (pc + 6, 4, byte_order);
                  return pc + 10;
                  return pc + 10;
                }
                }
            }
            }
 
 
          return pc + 4;
          return pc + 4;
        }
        }
      else if (op == P_LINKL_FP)
      else if (op == P_LINKL_FP)
        {
        {
          /* link.l %fp, #-N */
          /* link.l %fp, #-N */
          cache->locals = -read_memory_integer (pc + 2, 4, byte_order);
          cache->locals = -read_memory_integer (pc + 2, 4, byte_order);
          return pc + 6;
          return pc + 6;
        }
        }
      else
      else
        {
        {
          /* pea (%fp); movea.l %sp, %fp */
          /* pea (%fp); movea.l %sp, %fp */
          cache->locals = 0;
          cache->locals = 0;
 
 
          if (pc + 2 < current_pc)
          if (pc + 2 < current_pc)
            {
            {
              op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
              op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
 
 
              if (op == P_MOVEAL_SP_FP)
              if (op == P_MOVEAL_SP_FP)
                {
                {
                  /* move.l %sp, %fp */
                  /* move.l %sp, %fp */
                  return pc + 4;
                  return pc + 4;
                }
                }
            }
            }
 
 
          return pc + 2;
          return pc + 2;
        }
        }
    }
    }
  else if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
  else if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
    {
    {
      /* subq.[wl] #N,%sp */
      /* subq.[wl] #N,%sp */
      /* subq.[wl] #8,%sp; subq.[wl] #N,%sp */
      /* subq.[wl] #8,%sp; subq.[wl] #N,%sp */
      cache->locals = (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
      cache->locals = (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
      if (pc + 2 < current_pc)
      if (pc + 2 < current_pc)
        {
        {
          op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
          op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
          if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
          if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
            {
            {
              cache->locals += (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
              cache->locals += (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
              return pc + 4;
              return pc + 4;
            }
            }
        }
        }
      return pc + 2;
      return pc + 2;
    }
    }
  else if (op == P_ADDAW_SP || op == P_LEA_SP_SP)
  else if (op == P_ADDAW_SP || op == P_LEA_SP_SP)
    {
    {
      /* adda.w #-N,%sp */
      /* adda.w #-N,%sp */
      /* lea (-N,%sp),%sp */
      /* lea (-N,%sp),%sp */
      cache->locals = -read_memory_integer (pc + 2, 2, byte_order);
      cache->locals = -read_memory_integer (pc + 2, 2, byte_order);
      return pc + 4;
      return pc + 4;
    }
    }
  else if (op == P_ADDAL_SP)
  else if (op == P_ADDAL_SP)
    {
    {
      /* adda.l #-N,%sp */
      /* adda.l #-N,%sp */
      cache->locals = -read_memory_integer (pc + 2, 4, byte_order);
      cache->locals = -read_memory_integer (pc + 2, 4, byte_order);
      return pc + 6;
      return pc + 6;
    }
    }
 
 
  return pc;
  return pc;
}
}
 
 
/* Check whether PC points at code that saves registers on the stack.
/* Check whether PC points at code that saves registers on the stack.
   If so, it updates CACHE and returns the address of the first
   If so, it updates CACHE and returns the address of the first
   instruction after the register saves or CURRENT_PC, whichever is
   instruction after the register saves or CURRENT_PC, whichever is
   smaller.  Otherwise, return PC.  */
   smaller.  Otherwise, return PC.  */
 
 
static CORE_ADDR
static CORE_ADDR
m68k_analyze_register_saves (struct gdbarch *gdbarch, CORE_ADDR pc,
m68k_analyze_register_saves (struct gdbarch *gdbarch, CORE_ADDR pc,
                             CORE_ADDR current_pc,
                             CORE_ADDR current_pc,
                             struct m68k_frame_cache *cache)
                             struct m68k_frame_cache *cache)
{
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
 
 
  if (cache->locals >= 0)
  if (cache->locals >= 0)
    {
    {
      CORE_ADDR offset;
      CORE_ADDR offset;
      int op;
      int op;
      int i, mask, regno;
      int i, mask, regno;
 
 
      offset = -4 - cache->locals;
      offset = -4 - cache->locals;
      while (pc < current_pc)
      while (pc < current_pc)
        {
        {
          op = read_memory_unsigned_integer (pc, 2, byte_order);
          op = read_memory_unsigned_integer (pc, 2, byte_order);
          if (op == P_FMOVEMX_SP
          if (op == P_FMOVEMX_SP
              && gdbarch_tdep (gdbarch)->fpregs_present)
              && gdbarch_tdep (gdbarch)->fpregs_present)
            {
            {
              /* fmovem.x REGS,-(%sp) */
              /* fmovem.x REGS,-(%sp) */
              op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
              op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
              if ((op & 0xff00) == 0xe000)
              if ((op & 0xff00) == 0xe000)
                {
                {
                  mask = op & 0xff;
                  mask = op & 0xff;
                  for (i = 0; i < 16; i++, mask >>= 1)
                  for (i = 0; i < 16; i++, mask >>= 1)
                    {
                    {
                      if (mask & 1)
                      if (mask & 1)
                        {
                        {
                          cache->saved_regs[i + M68K_FP0_REGNUM] = offset;
                          cache->saved_regs[i + M68K_FP0_REGNUM] = offset;
                          offset -= 12;
                          offset -= 12;
                        }
                        }
                    }
                    }
                  pc += 4;
                  pc += 4;
                }
                }
              else
              else
                break;
                break;
            }
            }
          else if ((op & 0177760) == P_MOVEL_SP)
          else if ((op & 0177760) == P_MOVEL_SP)
            {
            {
              /* move.l %R,-(%sp) */
              /* move.l %R,-(%sp) */
              regno = op & 017;
              regno = op & 017;
              cache->saved_regs[regno] = offset;
              cache->saved_regs[regno] = offset;
              offset -= 4;
              offset -= 4;
              pc += 2;
              pc += 2;
            }
            }
          else if (op == P_MOVEML_SP)
          else if (op == P_MOVEML_SP)
            {
            {
              /* movem.l REGS,-(%sp) */
              /* movem.l REGS,-(%sp) */
              mask = read_memory_unsigned_integer (pc + 2, 2, byte_order);
              mask = read_memory_unsigned_integer (pc + 2, 2, byte_order);
              for (i = 0; i < 16; i++, mask >>= 1)
              for (i = 0; i < 16; i++, mask >>= 1)
                {
                {
                  if (mask & 1)
                  if (mask & 1)
                    {
                    {
                      cache->saved_regs[15 - i] = offset;
                      cache->saved_regs[15 - i] = offset;
                      offset -= 4;
                      offset -= 4;
                    }
                    }
                }
                }
              pc += 4;
              pc += 4;
            }
            }
          else
          else
            break;
            break;
        }
        }
    }
    }
 
 
  return pc;
  return pc;
}
}
 
 
 
 
/* Do a full analysis of the prologue at PC and update CACHE
/* Do a full analysis of the prologue at PC and update CACHE
   accordingly.  Bail out early if CURRENT_PC is reached.  Return the
   accordingly.  Bail out early if CURRENT_PC is reached.  Return the
   address where the analysis stopped.
   address where the analysis stopped.
 
 
   We handle all cases that can be generated by gcc.
   We handle all cases that can be generated by gcc.
 
 
   For allocating a stack frame:
   For allocating a stack frame:
 
 
   link.w %a6,#-N
   link.w %a6,#-N
   link.l %a6,#-N
   link.l %a6,#-N
   pea (%fp); move.l %sp,%fp
   pea (%fp); move.l %sp,%fp
   link.w %a6,#0; add.l #-N,%sp
   link.w %a6,#0; add.l #-N,%sp
   subq.l #N,%sp
   subq.l #N,%sp
   subq.w #N,%sp
   subq.w #N,%sp
   subq.w #8,%sp; subq.w #N-8,%sp
   subq.w #8,%sp; subq.w #N-8,%sp
   add.w #-N,%sp
   add.w #-N,%sp
   lea (-N,%sp),%sp
   lea (-N,%sp),%sp
   add.l #-N,%sp
   add.l #-N,%sp
 
 
   For saving registers:
   For saving registers:
 
 
   fmovem.x REGS,-(%sp)
   fmovem.x REGS,-(%sp)
   move.l R1,-(%sp)
   move.l R1,-(%sp)
   move.l R1,-(%sp); move.l R2,-(%sp)
   move.l R1,-(%sp); move.l R2,-(%sp)
   movem.l REGS,-(%sp)
   movem.l REGS,-(%sp)
 
 
   For setting up the PIC register:
   For setting up the PIC register:
 
 
   lea (%pc,N),%a5
   lea (%pc,N),%a5
 
 
   */
   */
 
 
static CORE_ADDR
static CORE_ADDR
m68k_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
m68k_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
                       CORE_ADDR current_pc, struct m68k_frame_cache *cache)
                       CORE_ADDR current_pc, struct m68k_frame_cache *cache)
{
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  unsigned int op;
  unsigned int op;
 
 
  pc = m68k_analyze_frame_setup (gdbarch, pc, current_pc, cache);
  pc = m68k_analyze_frame_setup (gdbarch, pc, current_pc, cache);
  pc = m68k_analyze_register_saves (gdbarch, pc, current_pc, cache);
  pc = m68k_analyze_register_saves (gdbarch, pc, current_pc, cache);
  if (pc >= current_pc)
  if (pc >= current_pc)
    return current_pc;
    return current_pc;
 
 
  /* Check for GOT setup.  */
  /* Check for GOT setup.  */
  op = read_memory_unsigned_integer (pc, 4, byte_order);
  op = read_memory_unsigned_integer (pc, 4, byte_order);
  if (op == P_LEA_PC_A5)
  if (op == P_LEA_PC_A5)
    {
    {
      /* lea (%pc,N),%a5 */
      /* lea (%pc,N),%a5 */
      return pc + 8;
      return pc + 8;
    }
    }
 
 
  return pc;
  return pc;
}
}
 
 
/* Return PC of first real instruction.  */
/* Return PC of first real instruction.  */
 
 
static CORE_ADDR
static CORE_ADDR
m68k_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
m68k_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
{
{
  struct m68k_frame_cache cache;
  struct m68k_frame_cache cache;
  CORE_ADDR pc;
  CORE_ADDR pc;
  int op;
  int op;
 
 
  cache.locals = -1;
  cache.locals = -1;
  pc = m68k_analyze_prologue (gdbarch, start_pc, (CORE_ADDR) -1, &cache);
  pc = m68k_analyze_prologue (gdbarch, start_pc, (CORE_ADDR) -1, &cache);
  if (cache.locals < 0)
  if (cache.locals < 0)
    return start_pc;
    return start_pc;
  return pc;
  return pc;
}
}
 
 
static CORE_ADDR
static CORE_ADDR
m68k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
m68k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
{
  gdb_byte buf[8];
  gdb_byte buf[8];
 
 
  frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
  frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
  return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
  return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
}
}


/* Normal frames.  */
/* Normal frames.  */
 
 
static struct m68k_frame_cache *
static struct m68k_frame_cache *
m68k_frame_cache (struct frame_info *this_frame, void **this_cache)
m68k_frame_cache (struct frame_info *this_frame, void **this_cache)
{
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  struct m68k_frame_cache *cache;
  struct m68k_frame_cache *cache;
  gdb_byte buf[4];
  gdb_byte buf[4];
  int i;
  int i;
 
 
  if (*this_cache)
  if (*this_cache)
    return *this_cache;
    return *this_cache;
 
 
  cache = m68k_alloc_frame_cache ();
  cache = m68k_alloc_frame_cache ();
  *this_cache = cache;
  *this_cache = cache;
 
 
  /* In principle, for normal frames, %fp holds the frame pointer,
  /* In principle, for normal frames, %fp holds the frame pointer,
     which holds the base address for the current stack frame.
     which holds the base address for the current stack frame.
     However, for functions that don't need it, the frame pointer is
     However, for functions that don't need it, the frame pointer is
     optional.  For these "frameless" functions the frame pointer is
     optional.  For these "frameless" functions the frame pointer is
     actually the frame pointer of the calling frame.  Signal
     actually the frame pointer of the calling frame.  Signal
     trampolines are just a special case of a "frameless" function.
     trampolines are just a special case of a "frameless" function.
     They (usually) share their frame pointer with the frame that was
     They (usually) share their frame pointer with the frame that was
     in progress when the signal occurred.  */
     in progress when the signal occurred.  */
 
 
  get_frame_register (this_frame, M68K_FP_REGNUM, buf);
  get_frame_register (this_frame, M68K_FP_REGNUM, buf);
  cache->base = extract_unsigned_integer (buf, 4, byte_order);
  cache->base = extract_unsigned_integer (buf, 4, byte_order);
  if (cache->base == 0)
  if (cache->base == 0)
    return cache;
    return cache;
 
 
  /* For normal frames, %pc is stored at 4(%fp).  */
  /* For normal frames, %pc is stored at 4(%fp).  */
  cache->saved_regs[M68K_PC_REGNUM] = 4;
  cache->saved_regs[M68K_PC_REGNUM] = 4;
 
 
  cache->pc = get_frame_func (this_frame);
  cache->pc = get_frame_func (this_frame);
  if (cache->pc != 0)
  if (cache->pc != 0)
    m68k_analyze_prologue (get_frame_arch (this_frame), cache->pc,
    m68k_analyze_prologue (get_frame_arch (this_frame), cache->pc,
                           get_frame_pc (this_frame), cache);
                           get_frame_pc (this_frame), cache);
 
 
  if (cache->locals < 0)
  if (cache->locals < 0)
    {
    {
      /* We didn't find a valid frame, which means that CACHE->base
      /* We didn't find a valid frame, which means that CACHE->base
         currently holds the frame pointer for our calling frame.  If
         currently holds the frame pointer for our calling frame.  If
         we're at the start of a function, or somewhere half-way its
         we're at the start of a function, or somewhere half-way its
         prologue, the function's frame probably hasn't been fully
         prologue, the function's frame probably hasn't been fully
         setup yet.  Try to reconstruct the base address for the stack
         setup yet.  Try to reconstruct the base address for the stack
         frame by looking at the stack pointer.  For truly "frameless"
         frame by looking at the stack pointer.  For truly "frameless"
         functions this might work too.  */
         functions this might work too.  */
 
 
      get_frame_register (this_frame, M68K_SP_REGNUM, buf);
      get_frame_register (this_frame, M68K_SP_REGNUM, buf);
      cache->base = extract_unsigned_integer (buf, 4, byte_order)
      cache->base = extract_unsigned_integer (buf, 4, byte_order)
                    + cache->sp_offset;
                    + cache->sp_offset;
    }
    }
 
 
  /* Now that we have the base address for the stack frame we can
  /* Now that we have the base address for the stack frame we can
     calculate the value of %sp in the calling frame.  */
     calculate the value of %sp in the calling frame.  */
  cache->saved_sp = cache->base + 8;
  cache->saved_sp = cache->base + 8;
 
 
  /* Adjust all the saved registers such that they contain addresses
  /* Adjust all the saved registers such that they contain addresses
     instead of offsets.  */
     instead of offsets.  */
  for (i = 0; i < M68K_NUM_REGS; i++)
  for (i = 0; i < M68K_NUM_REGS; i++)
    if (cache->saved_regs[i] != -1)
    if (cache->saved_regs[i] != -1)
      cache->saved_regs[i] += cache->base;
      cache->saved_regs[i] += cache->base;
 
 
  return cache;
  return cache;
}
}
 
 
static void
static void
m68k_frame_this_id (struct frame_info *this_frame, void **this_cache,
m68k_frame_this_id (struct frame_info *this_frame, void **this_cache,
                    struct frame_id *this_id)
                    struct frame_id *this_id)
{
{
  struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
  struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
 
 
  /* This marks the outermost frame.  */
  /* This marks the outermost frame.  */
  if (cache->base == 0)
  if (cache->base == 0)
    return;
    return;
 
 
  /* See the end of m68k_push_dummy_call.  */
  /* See the end of m68k_push_dummy_call.  */
  *this_id = frame_id_build (cache->base + 8, cache->pc);
  *this_id = frame_id_build (cache->base + 8, cache->pc);
}
}
 
 
static struct value *
static struct value *
m68k_frame_prev_register (struct frame_info *this_frame, void **this_cache,
m68k_frame_prev_register (struct frame_info *this_frame, void **this_cache,
                          int regnum)
                          int regnum)
{
{
  struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
  struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
 
 
  gdb_assert (regnum >= 0);
  gdb_assert (regnum >= 0);
 
 
  if (regnum == M68K_SP_REGNUM && cache->saved_sp)
  if (regnum == M68K_SP_REGNUM && cache->saved_sp)
    return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
    return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
 
 
  if (regnum < M68K_NUM_REGS && cache->saved_regs[regnum] != -1)
  if (regnum < M68K_NUM_REGS && cache->saved_regs[regnum] != -1)
    return frame_unwind_got_memory (this_frame, regnum,
    return frame_unwind_got_memory (this_frame, regnum,
                                    cache->saved_regs[regnum]);
                                    cache->saved_regs[regnum]);
 
 
  return frame_unwind_got_register (this_frame, regnum, regnum);
  return frame_unwind_got_register (this_frame, regnum, regnum);
}
}
 
 
static const struct frame_unwind m68k_frame_unwind =
static const struct frame_unwind m68k_frame_unwind =
{
{
  NORMAL_FRAME,
  NORMAL_FRAME,
  m68k_frame_this_id,
  m68k_frame_this_id,
  m68k_frame_prev_register,
  m68k_frame_prev_register,
  NULL,
  NULL,
  default_frame_sniffer
  default_frame_sniffer
};
};


static CORE_ADDR
static CORE_ADDR
m68k_frame_base_address (struct frame_info *this_frame, void **this_cache)
m68k_frame_base_address (struct frame_info *this_frame, void **this_cache)
{
{
  struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
  struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
 
 
  return cache->base;
  return cache->base;
}
}
 
 
static const struct frame_base m68k_frame_base =
static const struct frame_base m68k_frame_base =
{
{
  &m68k_frame_unwind,
  &m68k_frame_unwind,
  m68k_frame_base_address,
  m68k_frame_base_address,
  m68k_frame_base_address,
  m68k_frame_base_address,
  m68k_frame_base_address
  m68k_frame_base_address
};
};
 
 
static struct frame_id
static struct frame_id
m68k_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
m68k_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
{
{
  CORE_ADDR fp;
  CORE_ADDR fp;
 
 
  fp = get_frame_register_unsigned (this_frame, M68K_FP_REGNUM);
  fp = get_frame_register_unsigned (this_frame, M68K_FP_REGNUM);
 
 
  /* See the end of m68k_push_dummy_call.  */
  /* See the end of m68k_push_dummy_call.  */
  return frame_id_build (fp + 8, get_frame_pc (this_frame));
  return frame_id_build (fp + 8, get_frame_pc (this_frame));
}
}


 
 
/* Figure out where the longjmp will land.  Slurp the args out of the stack.
/* Figure out where the longjmp will land.  Slurp the args out of the stack.
   We expect the first arg to be a pointer to the jmp_buf structure from which
   We expect the first arg to be a pointer to the jmp_buf structure from which
   we extract the pc (JB_PC) that we will land at.  The pc is copied into PC.
   we extract the pc (JB_PC) that we will land at.  The pc is copied into PC.
   This routine returns true on success. */
   This routine returns true on success. */
 
 
static int
static int
m68k_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
m68k_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
{
{
  gdb_byte *buf;
  gdb_byte *buf;
  CORE_ADDR sp, jb_addr;
  CORE_ADDR sp, jb_addr;
  struct gdbarch *gdbarch = get_frame_arch (frame);
  struct gdbarch *gdbarch = get_frame_arch (frame);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
 
 
  if (tdep->jb_pc < 0)
  if (tdep->jb_pc < 0)
    {
    {
      internal_error (__FILE__, __LINE__,
      internal_error (__FILE__, __LINE__,
                      _("m68k_get_longjmp_target: not implemented"));
                      _("m68k_get_longjmp_target: not implemented"));
      return 0;
      return 0;
    }
    }
 
 
  buf = alloca (gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT);
  buf = alloca (gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT);
  sp = get_frame_register_unsigned (frame, gdbarch_sp_regnum (gdbarch));
  sp = get_frame_register_unsigned (frame, gdbarch_sp_regnum (gdbarch));
 
 
  if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack */
  if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack */
                          buf, gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
                          buf, gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
    return 0;
    return 0;
 
 
  jb_addr = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
  jb_addr = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
                                             / TARGET_CHAR_BIT, byte_order);
                                             / TARGET_CHAR_BIT, byte_order);
 
 
  if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
  if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
                          gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT),
                          gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT),
                          byte_order)
                          byte_order)
    return 0;
    return 0;
 
 
  *pc = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
  *pc = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
                                         / TARGET_CHAR_BIT, byte_order);
                                         / TARGET_CHAR_BIT, byte_order);
  return 1;
  return 1;
}
}


 
 
/* System V Release 4 (SVR4).  */
/* System V Release 4 (SVR4).  */
 
 
void
void
m68k_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
m68k_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
{
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
 
 
  /* SVR4 uses a different calling convention.  */
  /* SVR4 uses a different calling convention.  */
  set_gdbarch_return_value (gdbarch, m68k_svr4_return_value);
  set_gdbarch_return_value (gdbarch, m68k_svr4_return_value);
 
 
  /* SVR4 uses %a0 instead of %a1.  */
  /* SVR4 uses %a0 instead of %a1.  */
  tdep->struct_value_regnum = M68K_A0_REGNUM;
  tdep->struct_value_regnum = M68K_A0_REGNUM;
}
}


 
 
/* Function: m68k_gdbarch_init
/* Function: m68k_gdbarch_init
   Initializer function for the m68k gdbarch vector.
   Initializer function for the m68k gdbarch vector.
   Called by gdbarch.  Sets up the gdbarch vector(s) for this target. */
   Called by gdbarch.  Sets up the gdbarch vector(s) for this target. */
 
 
static struct gdbarch *
static struct gdbarch *
m68k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
m68k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
{
  struct gdbarch_tdep *tdep = NULL;
  struct gdbarch_tdep *tdep = NULL;
  struct gdbarch *gdbarch;
  struct gdbarch *gdbarch;
  struct gdbarch_list *best_arch;
  struct gdbarch_list *best_arch;
  struct tdesc_arch_data *tdesc_data = NULL;
  struct tdesc_arch_data *tdesc_data = NULL;
  int i;
  int i;
  enum m68k_flavour flavour = m68k_no_flavour;
  enum m68k_flavour flavour = m68k_no_flavour;
  int has_fp = 1;
  int has_fp = 1;
  const struct floatformat **long_double_format = floatformats_m68881_ext;
  const struct floatformat **long_double_format = floatformats_m68881_ext;
 
 
  /* Check any target description for validity.  */
  /* Check any target description for validity.  */
  if (tdesc_has_registers (info.target_desc))
  if (tdesc_has_registers (info.target_desc))
    {
    {
      const struct tdesc_feature *feature;
      const struct tdesc_feature *feature;
      int valid_p;
      int valid_p;
 
 
      feature = tdesc_find_feature (info.target_desc,
      feature = tdesc_find_feature (info.target_desc,
                                    "org.gnu.gdb.m68k.core");
                                    "org.gnu.gdb.m68k.core");
      if (feature != NULL)
      if (feature != NULL)
        /* Do nothing.  */
        /* Do nothing.  */
        ;
        ;
 
 
      if (feature == NULL)
      if (feature == NULL)
        {
        {
          feature = tdesc_find_feature (info.target_desc,
          feature = tdesc_find_feature (info.target_desc,
                                        "org.gnu.gdb.coldfire.core");
                                        "org.gnu.gdb.coldfire.core");
          if (feature != NULL)
          if (feature != NULL)
            flavour = m68k_coldfire_flavour;
            flavour = m68k_coldfire_flavour;
        }
        }
 
 
      if (feature == NULL)
      if (feature == NULL)
        {
        {
          feature = tdesc_find_feature (info.target_desc,
          feature = tdesc_find_feature (info.target_desc,
                                        "org.gnu.gdb.fido.core");
                                        "org.gnu.gdb.fido.core");
          if (feature != NULL)
          if (feature != NULL)
            flavour = m68k_fido_flavour;
            flavour = m68k_fido_flavour;
        }
        }
 
 
      if (feature == NULL)
      if (feature == NULL)
        return NULL;
        return NULL;
 
 
      tdesc_data = tdesc_data_alloc ();
      tdesc_data = tdesc_data_alloc ();
 
 
      valid_p = 1;
      valid_p = 1;
      for (i = 0; i <= M68K_PC_REGNUM; i++)
      for (i = 0; i <= M68K_PC_REGNUM; i++)
        valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
        valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
                                            m68k_register_names[i]);
                                            m68k_register_names[i]);
 
 
      if (!valid_p)
      if (!valid_p)
        {
        {
          tdesc_data_cleanup (tdesc_data);
          tdesc_data_cleanup (tdesc_data);
          return NULL;
          return NULL;
        }
        }
 
 
      feature = tdesc_find_feature (info.target_desc,
      feature = tdesc_find_feature (info.target_desc,
                                    "org.gnu.gdb.coldfire.fp");
                                    "org.gnu.gdb.coldfire.fp");
      if (feature != NULL)
      if (feature != NULL)
        {
        {
          valid_p = 1;
          valid_p = 1;
          for (i = M68K_FP0_REGNUM; i <= M68K_FPI_REGNUM; i++)
          for (i = M68K_FP0_REGNUM; i <= M68K_FPI_REGNUM; i++)
            valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
            valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
                                                m68k_register_names[i]);
                                                m68k_register_names[i]);
          if (!valid_p)
          if (!valid_p)
            {
            {
              tdesc_data_cleanup (tdesc_data);
              tdesc_data_cleanup (tdesc_data);
              return NULL;
              return NULL;
            }
            }
        }
        }
      else
      else
        has_fp = 0;
        has_fp = 0;
    }
    }
 
 
  /* The mechanism for returning floating values from function
  /* The mechanism for returning floating values from function
     and the type of long double depend on whether we're
     and the type of long double depend on whether we're
     on ColdFire or standard m68k. */
     on ColdFire or standard m68k. */
 
 
  if (info.bfd_arch_info && info.bfd_arch_info->mach != 0)
  if (info.bfd_arch_info && info.bfd_arch_info->mach != 0)
    {
    {
      const bfd_arch_info_type *coldfire_arch =
      const bfd_arch_info_type *coldfire_arch =
        bfd_lookup_arch (bfd_arch_m68k, bfd_mach_mcf_isa_a_nodiv);
        bfd_lookup_arch (bfd_arch_m68k, bfd_mach_mcf_isa_a_nodiv);
 
 
      if (coldfire_arch
      if (coldfire_arch
          && ((*info.bfd_arch_info->compatible)
          && ((*info.bfd_arch_info->compatible)
              (info.bfd_arch_info, coldfire_arch)))
              (info.bfd_arch_info, coldfire_arch)))
        flavour = m68k_coldfire_flavour;
        flavour = m68k_coldfire_flavour;
    }
    }
 
 
  /* If there is already a candidate, use it.  */
  /* If there is already a candidate, use it.  */
  for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
  for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
       best_arch != NULL;
       best_arch != NULL;
       best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
       best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
    {
    {
      if (flavour != gdbarch_tdep (best_arch->gdbarch)->flavour)
      if (flavour != gdbarch_tdep (best_arch->gdbarch)->flavour)
        continue;
        continue;
 
 
      if (has_fp != gdbarch_tdep (best_arch->gdbarch)->fpregs_present)
      if (has_fp != gdbarch_tdep (best_arch->gdbarch)->fpregs_present)
        continue;
        continue;
 
 
      break;
      break;
    }
    }
 
 
  if (best_arch != NULL)
  if (best_arch != NULL)
    {
    {
      if (tdesc_data != NULL)
      if (tdesc_data != NULL)
        tdesc_data_cleanup (tdesc_data);
        tdesc_data_cleanup (tdesc_data);
      return best_arch->gdbarch;
      return best_arch->gdbarch;
    }
    }
 
 
  tdep = xzalloc (sizeof (struct gdbarch_tdep));
  tdep = xzalloc (sizeof (struct gdbarch_tdep));
  gdbarch = gdbarch_alloc (&info, tdep);
  gdbarch = gdbarch_alloc (&info, tdep);
  tdep->fpregs_present = has_fp;
  tdep->fpregs_present = has_fp;
  tdep->flavour = flavour;
  tdep->flavour = flavour;
 
 
  if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
  if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
    long_double_format = floatformats_ieee_double;
    long_double_format = floatformats_ieee_double;
  set_gdbarch_long_double_format (gdbarch, long_double_format);
  set_gdbarch_long_double_format (gdbarch, long_double_format);
  set_gdbarch_long_double_bit (gdbarch, long_double_format[0]->totalsize);
  set_gdbarch_long_double_bit (gdbarch, long_double_format[0]->totalsize);
 
 
  set_gdbarch_skip_prologue (gdbarch, m68k_skip_prologue);
  set_gdbarch_skip_prologue (gdbarch, m68k_skip_prologue);
  set_gdbarch_breakpoint_from_pc (gdbarch, m68k_local_breakpoint_from_pc);
  set_gdbarch_breakpoint_from_pc (gdbarch, m68k_local_breakpoint_from_pc);
 
 
  /* Stack grows down. */
  /* Stack grows down. */
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
  set_gdbarch_frame_align (gdbarch, m68k_frame_align);
  set_gdbarch_frame_align (gdbarch, m68k_frame_align);
 
 
  set_gdbarch_believe_pcc_promotion (gdbarch, 1);
  set_gdbarch_believe_pcc_promotion (gdbarch, 1);
  if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
  if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
    set_gdbarch_decr_pc_after_break (gdbarch, 2);
    set_gdbarch_decr_pc_after_break (gdbarch, 2);
 
 
  set_gdbarch_frame_args_skip (gdbarch, 8);
  set_gdbarch_frame_args_skip (gdbarch, 8);
  set_gdbarch_dwarf2_reg_to_regnum (gdbarch, m68k_dwarf_reg_to_regnum);
  set_gdbarch_dwarf2_reg_to_regnum (gdbarch, m68k_dwarf_reg_to_regnum);
 
 
  set_gdbarch_register_type (gdbarch, m68k_register_type);
  set_gdbarch_register_type (gdbarch, m68k_register_type);
  set_gdbarch_register_name (gdbarch, m68k_register_name);
  set_gdbarch_register_name (gdbarch, m68k_register_name);
  set_gdbarch_num_regs (gdbarch, M68K_NUM_REGS);
  set_gdbarch_num_regs (gdbarch, M68K_NUM_REGS);
  set_gdbarch_sp_regnum (gdbarch, M68K_SP_REGNUM);
  set_gdbarch_sp_regnum (gdbarch, M68K_SP_REGNUM);
  set_gdbarch_pc_regnum (gdbarch, M68K_PC_REGNUM);
  set_gdbarch_pc_regnum (gdbarch, M68K_PC_REGNUM);
  set_gdbarch_ps_regnum (gdbarch, M68K_PS_REGNUM);
  set_gdbarch_ps_regnum (gdbarch, M68K_PS_REGNUM);
  set_gdbarch_convert_register_p (gdbarch, m68k_convert_register_p);
  set_gdbarch_convert_register_p (gdbarch, m68k_convert_register_p);
  set_gdbarch_register_to_value (gdbarch,  m68k_register_to_value);
  set_gdbarch_register_to_value (gdbarch,  m68k_register_to_value);
  set_gdbarch_value_to_register (gdbarch, m68k_value_to_register);
  set_gdbarch_value_to_register (gdbarch, m68k_value_to_register);
 
 
  if (has_fp)
  if (has_fp)
    set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
    set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
 
 
  /* Try to figure out if the arch uses floating registers to return
  /* Try to figure out if the arch uses floating registers to return
     floating point values from functions.  */
     floating point values from functions.  */
  if (has_fp)
  if (has_fp)
    {
    {
      /* On ColdFire, floating point values are returned in D0.  */
      /* On ColdFire, floating point values are returned in D0.  */
      if (flavour == m68k_coldfire_flavour)
      if (flavour == m68k_coldfire_flavour)
        tdep->float_return = 0;
        tdep->float_return = 0;
      else
      else
        tdep->float_return = 1;
        tdep->float_return = 1;
    }
    }
  else
  else
    {
    {
      /* No floating registers, so can't use them for returning values.  */
      /* No floating registers, so can't use them for returning values.  */
      tdep->float_return = 0;
      tdep->float_return = 0;
    }
    }
 
 
  /* Function call & return */
  /* Function call & return */
  set_gdbarch_push_dummy_call (gdbarch, m68k_push_dummy_call);
  set_gdbarch_push_dummy_call (gdbarch, m68k_push_dummy_call);
  set_gdbarch_return_value (gdbarch, m68k_return_value);
  set_gdbarch_return_value (gdbarch, m68k_return_value);
 
 
 
 
  /* Disassembler.  */
  /* Disassembler.  */
  set_gdbarch_print_insn (gdbarch, print_insn_m68k);
  set_gdbarch_print_insn (gdbarch, print_insn_m68k);
 
 
#if defined JB_PC && defined JB_ELEMENT_SIZE
#if defined JB_PC && defined JB_ELEMENT_SIZE
  tdep->jb_pc = JB_PC;
  tdep->jb_pc = JB_PC;
  tdep->jb_elt_size = JB_ELEMENT_SIZE;
  tdep->jb_elt_size = JB_ELEMENT_SIZE;
#else
#else
  tdep->jb_pc = -1;
  tdep->jb_pc = -1;
#endif
#endif
  tdep->struct_value_regnum = M68K_A1_REGNUM;
  tdep->struct_value_regnum = M68K_A1_REGNUM;
  tdep->struct_return = reg_struct_return;
  tdep->struct_return = reg_struct_return;
 
 
  /* Frame unwinder.  */
  /* Frame unwinder.  */
  set_gdbarch_dummy_id (gdbarch, m68k_dummy_id);
  set_gdbarch_dummy_id (gdbarch, m68k_dummy_id);
  set_gdbarch_unwind_pc (gdbarch, m68k_unwind_pc);
  set_gdbarch_unwind_pc (gdbarch, m68k_unwind_pc);
 
 
  /* Hook in the DWARF CFI frame unwinder.  */
  /* Hook in the DWARF CFI frame unwinder.  */
  dwarf2_append_unwinders (gdbarch);
  dwarf2_append_unwinders (gdbarch);
 
 
  frame_base_set_default (gdbarch, &m68k_frame_base);
  frame_base_set_default (gdbarch, &m68k_frame_base);
 
 
  /* Hook in ABI-specific overrides, if they have been registered.  */
  /* Hook in ABI-specific overrides, if they have been registered.  */
  gdbarch_init_osabi (info, gdbarch);
  gdbarch_init_osabi (info, gdbarch);
 
 
  /* Now we have tuned the configuration, set a few final things,
  /* Now we have tuned the configuration, set a few final things,
     based on what the OS ABI has told us.  */
     based on what the OS ABI has told us.  */
 
 
  if (tdep->jb_pc >= 0)
  if (tdep->jb_pc >= 0)
    set_gdbarch_get_longjmp_target (gdbarch, m68k_get_longjmp_target);
    set_gdbarch_get_longjmp_target (gdbarch, m68k_get_longjmp_target);
 
 
  frame_unwind_append_unwinder (gdbarch, &m68k_frame_unwind);
  frame_unwind_append_unwinder (gdbarch, &m68k_frame_unwind);
 
 
  if (tdesc_data)
  if (tdesc_data)
    tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
    tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
 
 
  return gdbarch;
  return gdbarch;
}
}
 
 
 
 
static void
static void
m68k_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
m68k_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
{
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
 
 
  if (tdep == NULL)
  if (tdep == NULL)
    return;
    return;
}
}
 
 
extern initialize_file_ftype _initialize_m68k_tdep; /* -Wmissing-prototypes */
extern initialize_file_ftype _initialize_m68k_tdep; /* -Wmissing-prototypes */
 
 
void
void
_initialize_m68k_tdep (void)
_initialize_m68k_tdep (void)
{
{
  gdbarch_register (bfd_arch_m68k, m68k_gdbarch_init, m68k_dump_tdep);
  gdbarch_register (bfd_arch_m68k, m68k_gdbarch_init, m68k_dump_tdep);
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.