OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gdb-7.1/] [gdb/] [memattr.c] - Diff between revs 834 and 842

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 834 Rev 842
/* Memory attributes support, for GDB.
/* Memory attributes support, for GDB.
 
 
   Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
   Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
 
 
#include "defs.h"
#include "defs.h"
#include "command.h"
#include "command.h"
#include "gdbcmd.h"
#include "gdbcmd.h"
#include "memattr.h"
#include "memattr.h"
#include "target.h"
#include "target.h"
#include "value.h"
#include "value.h"
#include "language.h"
#include "language.h"
#include "vec.h"
#include "vec.h"
#include "gdb_string.h"
#include "gdb_string.h"
 
 
const struct mem_attrib default_mem_attrib =
const struct mem_attrib default_mem_attrib =
{
{
  MEM_RW,                       /* mode */
  MEM_RW,                       /* mode */
  MEM_WIDTH_UNSPECIFIED,
  MEM_WIDTH_UNSPECIFIED,
  0,                             /* hwbreak */
  0,                             /* hwbreak */
  0,                             /* cache */
  0,                             /* cache */
  0,                             /* verify */
  0,                             /* verify */
  -1 /* Flash blocksize not specified.  */
  -1 /* Flash blocksize not specified.  */
};
};
 
 
const struct mem_attrib unknown_mem_attrib =
const struct mem_attrib unknown_mem_attrib =
{
{
  MEM_NONE,                     /* mode */
  MEM_NONE,                     /* mode */
  MEM_WIDTH_UNSPECIFIED,
  MEM_WIDTH_UNSPECIFIED,
  0,                             /* hwbreak */
  0,                             /* hwbreak */
  0,                             /* cache */
  0,                             /* cache */
  0,                             /* verify */
  0,                             /* verify */
  -1 /* Flash blocksize not specified.  */
  -1 /* Flash blocksize not specified.  */
};
};
 
 
 
 
VEC(mem_region_s) *mem_region_list, *target_mem_region_list;
VEC(mem_region_s) *mem_region_list, *target_mem_region_list;
static int mem_number = 0;
static int mem_number = 0;
 
 
/* If this flag is set, the memory region list should be automatically
/* If this flag is set, the memory region list should be automatically
   updated from the target.  If it is clear, the list is user-controlled
   updated from the target.  If it is clear, the list is user-controlled
   and should be left alone.  */
   and should be left alone.  */
static int mem_use_target = 1;
static int mem_use_target = 1;
 
 
/* If this flag is set, we have tried to fetch the target memory regions
/* If this flag is set, we have tried to fetch the target memory regions
   since the last time it was invalidated.  If that list is still
   since the last time it was invalidated.  If that list is still
   empty, then the target can't supply memory regions.  */
   empty, then the target can't supply memory regions.  */
static int target_mem_regions_valid;
static int target_mem_regions_valid;
 
 
/* If this flag is set, gdb will assume that memory ranges not
/* If this flag is set, gdb will assume that memory ranges not
   specified by the memory map have type MEM_NONE, and will
   specified by the memory map have type MEM_NONE, and will
   emit errors on all accesses to that memory.  */
   emit errors on all accesses to that memory.  */
static int inaccessible_by_default = 1;
static int inaccessible_by_default = 1;
 
 
static void
static void
show_inaccessible_by_default (struct ui_file *file, int from_tty,
show_inaccessible_by_default (struct ui_file *file, int from_tty,
                              struct cmd_list_element *c,
                              struct cmd_list_element *c,
                              const char *value)
                              const char *value)
{
{
  if (inaccessible_by_default)
  if (inaccessible_by_default)
    fprintf_filtered (file, _("\
    fprintf_filtered (file, _("\
Unknown memory addresses will be treated as inaccessible.\n"));
Unknown memory addresses will be treated as inaccessible.\n"));
  else
  else
    fprintf_filtered (file, _("\
    fprintf_filtered (file, _("\
Unknown memory addresses will be treated as RAM.\n"));
Unknown memory addresses will be treated as RAM.\n"));
}
}
 
 
 
 
/* Predicate function which returns true if LHS should sort before RHS
/* Predicate function which returns true if LHS should sort before RHS
   in a list of memory regions, useful for VEC_lower_bound.  */
   in a list of memory regions, useful for VEC_lower_bound.  */
 
 
static int
static int
mem_region_lessthan (const struct mem_region *lhs,
mem_region_lessthan (const struct mem_region *lhs,
                     const struct mem_region *rhs)
                     const struct mem_region *rhs)
{
{
  return lhs->lo < rhs->lo;
  return lhs->lo < rhs->lo;
}
}
 
 
/* A helper function suitable for qsort, used to sort a
/* A helper function suitable for qsort, used to sort a
   VEC(mem_region_s) by starting address.  */
   VEC(mem_region_s) by starting address.  */
 
 
int
int
mem_region_cmp (const void *untyped_lhs, const void *untyped_rhs)
mem_region_cmp (const void *untyped_lhs, const void *untyped_rhs)
{
{
  const struct mem_region *lhs = untyped_lhs;
  const struct mem_region *lhs = untyped_lhs;
  const struct mem_region *rhs = untyped_rhs;
  const struct mem_region *rhs = untyped_rhs;
 
 
  if (lhs->lo < rhs->lo)
  if (lhs->lo < rhs->lo)
    return -1;
    return -1;
  else if (lhs->lo == rhs->lo)
  else if (lhs->lo == rhs->lo)
    return 0;
    return 0;
  else
  else
    return 1;
    return 1;
}
}
 
 
/* Allocate a new memory region, with default settings.  */
/* Allocate a new memory region, with default settings.  */
 
 
void
void
mem_region_init (struct mem_region *new)
mem_region_init (struct mem_region *new)
{
{
  memset (new, 0, sizeof (struct mem_region));
  memset (new, 0, sizeof (struct mem_region));
  new->enabled_p = 1;
  new->enabled_p = 1;
  new->attrib = default_mem_attrib;
  new->attrib = default_mem_attrib;
}
}
 
 
/* This function should be called before any command which would
/* This function should be called before any command which would
   modify the memory region list.  It will handle switching from
   modify the memory region list.  It will handle switching from
   a target-provided list to a local list, if necessary.  */
   a target-provided list to a local list, if necessary.  */
 
 
static void
static void
require_user_regions (int from_tty)
require_user_regions (int from_tty)
{
{
  struct mem_region *m;
  struct mem_region *m;
  int ix, length;
  int ix, length;
 
 
  /* If we're already using a user-provided list, nothing to do.  */
  /* If we're already using a user-provided list, nothing to do.  */
  if (!mem_use_target)
  if (!mem_use_target)
    return;
    return;
 
 
  /* Switch to a user-provided list (possibly a copy of the current
  /* Switch to a user-provided list (possibly a copy of the current
     one).  */
     one).  */
  mem_use_target = 0;
  mem_use_target = 0;
 
 
  /* If we don't have a target-provided region list yet, then
  /* If we don't have a target-provided region list yet, then
     no need to warn.  */
     no need to warn.  */
  if (mem_region_list == NULL)
  if (mem_region_list == NULL)
    return;
    return;
 
 
  /* Otherwise, let the user know how to get back.  */
  /* Otherwise, let the user know how to get back.  */
  if (from_tty)
  if (from_tty)
    warning (_("Switching to manual control of memory regions; use "
    warning (_("Switching to manual control of memory regions; use "
               "\"mem auto\" to fetch regions from the target again."));
               "\"mem auto\" to fetch regions from the target again."));
 
 
  /* And create a new list for the user to modify.  */
  /* And create a new list for the user to modify.  */
  length = VEC_length (mem_region_s, target_mem_region_list);
  length = VEC_length (mem_region_s, target_mem_region_list);
  mem_region_list = VEC_alloc (mem_region_s, length);
  mem_region_list = VEC_alloc (mem_region_s, length);
  for (ix = 0; VEC_iterate (mem_region_s, target_mem_region_list, ix, m); ix++)
  for (ix = 0; VEC_iterate (mem_region_s, target_mem_region_list, ix, m); ix++)
    VEC_quick_push (mem_region_s, mem_region_list, m);
    VEC_quick_push (mem_region_s, mem_region_list, m);
}
}
 
 
/* This function should be called before any command which would
/* This function should be called before any command which would
   read the memory region list, other than those which call
   read the memory region list, other than those which call
   require_user_regions.  It will handle fetching the
   require_user_regions.  It will handle fetching the
   target-provided list, if necessary.  */
   target-provided list, if necessary.  */
 
 
static void
static void
require_target_regions (void)
require_target_regions (void)
{
{
  if (mem_use_target && !target_mem_regions_valid)
  if (mem_use_target && !target_mem_regions_valid)
    {
    {
      target_mem_regions_valid = 1;
      target_mem_regions_valid = 1;
      target_mem_region_list = target_memory_map ();
      target_mem_region_list = target_memory_map ();
      mem_region_list = target_mem_region_list;
      mem_region_list = target_mem_region_list;
    }
    }
}
}
 
 
static void
static void
create_mem_region (CORE_ADDR lo, CORE_ADDR hi,
create_mem_region (CORE_ADDR lo, CORE_ADDR hi,
                   const struct mem_attrib *attrib)
                   const struct mem_attrib *attrib)
{
{
  struct mem_region new;
  struct mem_region new;
  int i, ix;
  int i, ix;
 
 
  /* lo == hi is a useless empty region */
  /* lo == hi is a useless empty region */
  if (lo >= hi && hi != 0)
  if (lo >= hi && hi != 0)
    {
    {
      printf_unfiltered (_("invalid memory region: low >= high\n"));
      printf_unfiltered (_("invalid memory region: low >= high\n"));
      return;
      return;
    }
    }
 
 
  mem_region_init (&new);
  mem_region_init (&new);
  new.lo = lo;
  new.lo = lo;
  new.hi = hi;
  new.hi = hi;
 
 
  ix = VEC_lower_bound (mem_region_s, mem_region_list, &new,
  ix = VEC_lower_bound (mem_region_s, mem_region_list, &new,
                        mem_region_lessthan);
                        mem_region_lessthan);
 
 
  /* Check for an overlapping memory region.  We only need to check
  /* Check for an overlapping memory region.  We only need to check
     in the vicinity - at most one before and one after the
     in the vicinity - at most one before and one after the
     insertion point.  */
     insertion point.  */
  for (i = ix - 1; i < ix + 1; i++)
  for (i = ix - 1; i < ix + 1; i++)
    {
    {
      struct mem_region *n;
      struct mem_region *n;
 
 
      if (i < 0)
      if (i < 0)
        continue;
        continue;
      if (i >= VEC_length (mem_region_s, mem_region_list))
      if (i >= VEC_length (mem_region_s, mem_region_list))
        continue;
        continue;
 
 
      n = VEC_index (mem_region_s, mem_region_list, i);
      n = VEC_index (mem_region_s, mem_region_list, i);
 
 
      if ((lo >= n->lo && (lo < n->hi || n->hi == 0))
      if ((lo >= n->lo && (lo < n->hi || n->hi == 0))
          || (hi > n->lo && (hi <= n->hi || n->hi == 0))
          || (hi > n->lo && (hi <= n->hi || n->hi == 0))
          || (lo <= n->lo && (hi >= n->hi || hi == 0)))
          || (lo <= n->lo && (hi >= n->hi || hi == 0)))
        {
        {
          printf_unfiltered (_("overlapping memory region\n"));
          printf_unfiltered (_("overlapping memory region\n"));
          return;
          return;
        }
        }
    }
    }
 
 
  new.number = ++mem_number;
  new.number = ++mem_number;
  new.attrib = *attrib;
  new.attrib = *attrib;
  VEC_safe_insert (mem_region_s, mem_region_list, ix, &new);
  VEC_safe_insert (mem_region_s, mem_region_list, ix, &new);
}
}
 
 
/*
/*
 * Look up the memory region cooresponding to ADDR.
 * Look up the memory region cooresponding to ADDR.
 */
 */
struct mem_region *
struct mem_region *
lookup_mem_region (CORE_ADDR addr)
lookup_mem_region (CORE_ADDR addr)
{
{
  static struct mem_region region;
  static struct mem_region region;
  struct mem_region *m;
  struct mem_region *m;
  CORE_ADDR lo;
  CORE_ADDR lo;
  CORE_ADDR hi;
  CORE_ADDR hi;
  int ix;
  int ix;
 
 
  require_target_regions ();
  require_target_regions ();
 
 
  /* First we initialize LO and HI so that they describe the entire
  /* First we initialize LO and HI so that they describe the entire
     memory space.  As we process the memory region chain, they are
     memory space.  As we process the memory region chain, they are
     redefined to describe the minimal region containing ADDR.  LO
     redefined to describe the minimal region containing ADDR.  LO
     and HI are used in the case where no memory region is defined
     and HI are used in the case where no memory region is defined
     that contains ADDR.  If a memory region is disabled, it is
     that contains ADDR.  If a memory region is disabled, it is
     treated as if it does not exist.  The initial values for LO
     treated as if it does not exist.  The initial values for LO
     and HI represent the bottom and top of memory.  */
     and HI represent the bottom and top of memory.  */
 
 
  lo = 0;
  lo = 0;
  hi = 0;
  hi = 0;
 
 
  /* Either find memory range containing ADDRESS, or set LO and HI
  /* Either find memory range containing ADDRESS, or set LO and HI
     to the nearest boundaries of an existing memory range.
     to the nearest boundaries of an existing memory range.
 
 
     If we ever want to support a huge list of memory regions, this
     If we ever want to support a huge list of memory regions, this
     check should be replaced with a binary search (probably using
     check should be replaced with a binary search (probably using
     VEC_lower_bound).  */
     VEC_lower_bound).  */
  for (ix = 0; VEC_iterate (mem_region_s, mem_region_list, ix, m); ix++)
  for (ix = 0; VEC_iterate (mem_region_s, mem_region_list, ix, m); ix++)
    {
    {
      if (m->enabled_p == 1)
      if (m->enabled_p == 1)
        {
        {
          /* If the address is in the memory region, return that memory range.  */
          /* If the address is in the memory region, return that memory range.  */
          if (addr >= m->lo && (addr < m->hi || m->hi == 0))
          if (addr >= m->lo && (addr < m->hi || m->hi == 0))
            return m;
            return m;
 
 
          /* This (correctly) won't match if m->hi == 0, representing
          /* This (correctly) won't match if m->hi == 0, representing
             the top of the address space, because CORE_ADDR is unsigned;
             the top of the address space, because CORE_ADDR is unsigned;
             no value of LO is less than zero.  */
             no value of LO is less than zero.  */
          if (addr >= m->hi && lo < m->hi)
          if (addr >= m->hi && lo < m->hi)
            lo = m->hi;
            lo = m->hi;
 
 
          /* This will never set HI to zero; if we're here and ADDR
          /* This will never set HI to zero; if we're here and ADDR
             is at or below M, and the region starts at zero, then ADDR
             is at or below M, and the region starts at zero, then ADDR
             would have been in the region.  */
             would have been in the region.  */
          if (addr <= m->lo && (hi == 0 || hi > m->lo))
          if (addr <= m->lo && (hi == 0 || hi > m->lo))
            hi = m->lo;
            hi = m->lo;
        }
        }
    }
    }
 
 
  /* Because no region was found, we must cons up one based on what
  /* Because no region was found, we must cons up one based on what
     was learned above.  */
     was learned above.  */
  region.lo = lo;
  region.lo = lo;
  region.hi = hi;
  region.hi = hi;
 
 
  /* When no memory map is defined at all, we always return
  /* When no memory map is defined at all, we always return
     'default_mem_attrib', so that we do not make all memory
     'default_mem_attrib', so that we do not make all memory
     inaccessible for targets that don't provide a memory map.  */
     inaccessible for targets that don't provide a memory map.  */
  if (inaccessible_by_default && !VEC_empty (mem_region_s, mem_region_list))
  if (inaccessible_by_default && !VEC_empty (mem_region_s, mem_region_list))
    region.attrib = unknown_mem_attrib;
    region.attrib = unknown_mem_attrib;
  else
  else
    region.attrib = default_mem_attrib;
    region.attrib = default_mem_attrib;
 
 
  return &region;
  return &region;
}
}
 
 
/* Invalidate any memory regions fetched from the target.  */
/* Invalidate any memory regions fetched from the target.  */
 
 
void
void
invalidate_target_mem_regions (void)
invalidate_target_mem_regions (void)
{
{
  struct mem_region *m;
  struct mem_region *m;
  int ix;
  int ix;
 
 
  if (!target_mem_regions_valid)
  if (!target_mem_regions_valid)
    return;
    return;
 
 
  target_mem_regions_valid = 0;
  target_mem_regions_valid = 0;
  VEC_free (mem_region_s, target_mem_region_list);
  VEC_free (mem_region_s, target_mem_region_list);
  if (mem_use_target)
  if (mem_use_target)
    mem_region_list = NULL;
    mem_region_list = NULL;
}
}
 
 
/* Clear memory region list */
/* Clear memory region list */
 
 
static void
static void
mem_clear (void)
mem_clear (void)
{
{
  VEC_free (mem_region_s, mem_region_list);
  VEC_free (mem_region_s, mem_region_list);
}
}


 
 
static void
static void
mem_command (char *args, int from_tty)
mem_command (char *args, int from_tty)
{
{
  CORE_ADDR lo, hi;
  CORE_ADDR lo, hi;
  char *tok;
  char *tok;
  struct mem_attrib attrib;
  struct mem_attrib attrib;
 
 
  if (!args)
  if (!args)
    error_no_arg (_("No mem"));
    error_no_arg (_("No mem"));
 
 
  /* For "mem auto", switch back to using a target provided list.  */
  /* For "mem auto", switch back to using a target provided list.  */
  if (strcmp (args, "auto") == 0)
  if (strcmp (args, "auto") == 0)
    {
    {
      if (mem_use_target)
      if (mem_use_target)
        return;
        return;
 
 
      if (mem_region_list != target_mem_region_list)
      if (mem_region_list != target_mem_region_list)
        {
        {
          mem_clear ();
          mem_clear ();
          mem_region_list = target_mem_region_list;
          mem_region_list = target_mem_region_list;
        }
        }
 
 
      mem_use_target = 1;
      mem_use_target = 1;
      return;
      return;
    }
    }
 
 
  require_user_regions (from_tty);
  require_user_regions (from_tty);
 
 
  tok = strtok (args, " \t");
  tok = strtok (args, " \t");
  if (!tok)
  if (!tok)
    error (_("no lo address"));
    error (_("no lo address"));
  lo = parse_and_eval_address (tok);
  lo = parse_and_eval_address (tok);
 
 
  tok = strtok (NULL, " \t");
  tok = strtok (NULL, " \t");
  if (!tok)
  if (!tok)
    error (_("no hi address"));
    error (_("no hi address"));
  hi = parse_and_eval_address (tok);
  hi = parse_and_eval_address (tok);
 
 
  attrib = default_mem_attrib;
  attrib = default_mem_attrib;
  while ((tok = strtok (NULL, " \t")) != NULL)
  while ((tok = strtok (NULL, " \t")) != NULL)
    {
    {
      if (strcmp (tok, "rw") == 0)
      if (strcmp (tok, "rw") == 0)
        attrib.mode = MEM_RW;
        attrib.mode = MEM_RW;
      else if (strcmp (tok, "ro") == 0)
      else if (strcmp (tok, "ro") == 0)
        attrib.mode = MEM_RO;
        attrib.mode = MEM_RO;
      else if (strcmp (tok, "wo") == 0)
      else if (strcmp (tok, "wo") == 0)
        attrib.mode = MEM_WO;
        attrib.mode = MEM_WO;
 
 
      else if (strcmp (tok, "8") == 0)
      else if (strcmp (tok, "8") == 0)
        attrib.width = MEM_WIDTH_8;
        attrib.width = MEM_WIDTH_8;
      else if (strcmp (tok, "16") == 0)
      else if (strcmp (tok, "16") == 0)
        {
        {
          if ((lo % 2 != 0) || (hi % 2 != 0))
          if ((lo % 2 != 0) || (hi % 2 != 0))
            error (_("region bounds not 16 bit aligned"));
            error (_("region bounds not 16 bit aligned"));
          attrib.width = MEM_WIDTH_16;
          attrib.width = MEM_WIDTH_16;
        }
        }
      else if (strcmp (tok, "32") == 0)
      else if (strcmp (tok, "32") == 0)
        {
        {
          if ((lo % 4 != 0) || (hi % 4 != 0))
          if ((lo % 4 != 0) || (hi % 4 != 0))
            error (_("region bounds not 32 bit aligned"));
            error (_("region bounds not 32 bit aligned"));
          attrib.width = MEM_WIDTH_32;
          attrib.width = MEM_WIDTH_32;
        }
        }
      else if (strcmp (tok, "64") == 0)
      else if (strcmp (tok, "64") == 0)
        {
        {
          if ((lo % 8 != 0) || (hi % 8 != 0))
          if ((lo % 8 != 0) || (hi % 8 != 0))
            error (_("region bounds not 64 bit aligned"));
            error (_("region bounds not 64 bit aligned"));
          attrib.width = MEM_WIDTH_64;
          attrib.width = MEM_WIDTH_64;
        }
        }
 
 
#if 0
#if 0
      else if (strcmp (tok, "hwbreak") == 0)
      else if (strcmp (tok, "hwbreak") == 0)
        attrib.hwbreak = 1;
        attrib.hwbreak = 1;
      else if (strcmp (tok, "swbreak") == 0)
      else if (strcmp (tok, "swbreak") == 0)
        attrib.hwbreak = 0;
        attrib.hwbreak = 0;
#endif
#endif
 
 
      else if (strcmp (tok, "cache") == 0)
      else if (strcmp (tok, "cache") == 0)
        attrib.cache = 1;
        attrib.cache = 1;
      else if (strcmp (tok, "nocache") == 0)
      else if (strcmp (tok, "nocache") == 0)
        attrib.cache = 0;
        attrib.cache = 0;
 
 
#if 0
#if 0
      else if (strcmp (tok, "verify") == 0)
      else if (strcmp (tok, "verify") == 0)
        attrib.verify = 1;
        attrib.verify = 1;
      else if (strcmp (tok, "noverify") == 0)
      else if (strcmp (tok, "noverify") == 0)
        attrib.verify = 0;
        attrib.verify = 0;
#endif
#endif
 
 
      else
      else
        error (_("unknown attribute: %s"), tok);
        error (_("unknown attribute: %s"), tok);
    }
    }
 
 
  create_mem_region (lo, hi, &attrib);
  create_mem_region (lo, hi, &attrib);
}
}


 
 
static void
static void
mem_info_command (char *args, int from_tty)
mem_info_command (char *args, int from_tty)
{
{
  struct mem_region *m;
  struct mem_region *m;
  struct mem_attrib *attrib;
  struct mem_attrib *attrib;
  int ix;
  int ix;
 
 
  if (mem_use_target)
  if (mem_use_target)
    printf_filtered (_("Using memory regions provided by the target.\n"));
    printf_filtered (_("Using memory regions provided by the target.\n"));
  else
  else
    printf_filtered (_("Using user-defined memory regions.\n"));
    printf_filtered (_("Using user-defined memory regions.\n"));
 
 
  require_target_regions ();
  require_target_regions ();
 
 
  if (!mem_region_list)
  if (!mem_region_list)
    {
    {
      printf_unfiltered (_("There are no memory regions defined.\n"));
      printf_unfiltered (_("There are no memory regions defined.\n"));
      return;
      return;
    }
    }
 
 
  printf_filtered ("Num ");
  printf_filtered ("Num ");
  printf_filtered ("Enb ");
  printf_filtered ("Enb ");
  printf_filtered ("Low Addr   ");
  printf_filtered ("Low Addr   ");
  if (gdbarch_addr_bit (target_gdbarch) > 32)
  if (gdbarch_addr_bit (target_gdbarch) > 32)
    printf_filtered ("        ");
    printf_filtered ("        ");
  printf_filtered ("High Addr  ");
  printf_filtered ("High Addr  ");
  if (gdbarch_addr_bit (target_gdbarch) > 32)
  if (gdbarch_addr_bit (target_gdbarch) > 32)
    printf_filtered ("        ");
    printf_filtered ("        ");
  printf_filtered ("Attrs ");
  printf_filtered ("Attrs ");
  printf_filtered ("\n");
  printf_filtered ("\n");
 
 
  for (ix = 0; VEC_iterate (mem_region_s, mem_region_list, ix, m); ix++)
  for (ix = 0; VEC_iterate (mem_region_s, mem_region_list, ix, m); ix++)
    {
    {
      char *tmp;
      char *tmp;
      printf_filtered ("%-3d %-3c\t",
      printf_filtered ("%-3d %-3c\t",
                       m->number,
                       m->number,
                       m->enabled_p ? 'y' : 'n');
                       m->enabled_p ? 'y' : 'n');
      if (gdbarch_addr_bit (target_gdbarch) <= 32)
      if (gdbarch_addr_bit (target_gdbarch) <= 32)
        tmp = hex_string_custom ((unsigned long) m->lo, 8);
        tmp = hex_string_custom ((unsigned long) m->lo, 8);
      else
      else
        tmp = hex_string_custom ((unsigned long) m->lo, 16);
        tmp = hex_string_custom ((unsigned long) m->lo, 16);
 
 
      printf_filtered ("%s ", tmp);
      printf_filtered ("%s ", tmp);
 
 
      if (gdbarch_addr_bit (target_gdbarch) <= 32)
      if (gdbarch_addr_bit (target_gdbarch) <= 32)
        {
        {
        if (m->hi == 0)
        if (m->hi == 0)
          tmp = "0x100000000";
          tmp = "0x100000000";
        else
        else
          tmp = hex_string_custom ((unsigned long) m->hi, 8);
          tmp = hex_string_custom ((unsigned long) m->hi, 8);
        }
        }
      else
      else
        {
        {
        if (m->hi == 0)
        if (m->hi == 0)
          tmp = "0x10000000000000000";
          tmp = "0x10000000000000000";
        else
        else
          tmp = hex_string_custom ((unsigned long) m->hi, 16);
          tmp = hex_string_custom ((unsigned long) m->hi, 16);
        }
        }
 
 
      printf_filtered ("%s ", tmp);
      printf_filtered ("%s ", tmp);
 
 
      /* Print a token for each attribute.
      /* Print a token for each attribute.
 
 
       * FIXME: Should we output a comma after each token?  It may
       * FIXME: Should we output a comma after each token?  It may
       * make it easier for users to read, but we'd lose the ability
       * make it easier for users to read, but we'd lose the ability
       * to cut-and-paste the list of attributes when defining a new
       * to cut-and-paste the list of attributes when defining a new
       * region.  Perhaps that is not important.
       * region.  Perhaps that is not important.
       *
       *
       * FIXME: If more attributes are added to GDB, the output may
       * FIXME: If more attributes are added to GDB, the output may
       * become cluttered and difficult for users to read.  At that
       * become cluttered and difficult for users to read.  At that
       * time, we may want to consider printing tokens only if they
       * time, we may want to consider printing tokens only if they
       * are different from the default attribute.  */
       * are different from the default attribute.  */
 
 
      attrib = &m->attrib;
      attrib = &m->attrib;
      switch (attrib->mode)
      switch (attrib->mode)
        {
        {
        case MEM_RW:
        case MEM_RW:
          printf_filtered ("rw ");
          printf_filtered ("rw ");
          break;
          break;
        case MEM_RO:
        case MEM_RO:
          printf_filtered ("ro ");
          printf_filtered ("ro ");
          break;
          break;
        case MEM_WO:
        case MEM_WO:
          printf_filtered ("wo ");
          printf_filtered ("wo ");
          break;
          break;
        case MEM_FLASH:
        case MEM_FLASH:
          printf_filtered ("flash blocksize 0x%x ", attrib->blocksize);
          printf_filtered ("flash blocksize 0x%x ", attrib->blocksize);
          break;
          break;
        }
        }
 
 
      switch (attrib->width)
      switch (attrib->width)
        {
        {
        case MEM_WIDTH_8:
        case MEM_WIDTH_8:
          printf_filtered ("8 ");
          printf_filtered ("8 ");
          break;
          break;
        case MEM_WIDTH_16:
        case MEM_WIDTH_16:
          printf_filtered ("16 ");
          printf_filtered ("16 ");
          break;
          break;
        case MEM_WIDTH_32:
        case MEM_WIDTH_32:
          printf_filtered ("32 ");
          printf_filtered ("32 ");
          break;
          break;
        case MEM_WIDTH_64:
        case MEM_WIDTH_64:
          printf_filtered ("64 ");
          printf_filtered ("64 ");
          break;
          break;
        case MEM_WIDTH_UNSPECIFIED:
        case MEM_WIDTH_UNSPECIFIED:
          break;
          break;
        }
        }
 
 
#if 0
#if 0
      if (attrib->hwbreak)
      if (attrib->hwbreak)
        printf_filtered ("hwbreak");
        printf_filtered ("hwbreak");
      else
      else
        printf_filtered ("swbreak");
        printf_filtered ("swbreak");
#endif
#endif
 
 
      if (attrib->cache)
      if (attrib->cache)
        printf_filtered ("cache ");
        printf_filtered ("cache ");
      else
      else
        printf_filtered ("nocache ");
        printf_filtered ("nocache ");
 
 
#if 0
#if 0
      if (attrib->verify)
      if (attrib->verify)
        printf_filtered ("verify ");
        printf_filtered ("verify ");
      else
      else
        printf_filtered ("noverify ");
        printf_filtered ("noverify ");
#endif
#endif
 
 
      printf_filtered ("\n");
      printf_filtered ("\n");
 
 
      gdb_flush (gdb_stdout);
      gdb_flush (gdb_stdout);
    }
    }
}
}


 
 
/* Enable the memory region number NUM. */
/* Enable the memory region number NUM. */
 
 
static void
static void
mem_enable (int num)
mem_enable (int num)
{
{
  struct mem_region *m;
  struct mem_region *m;
  int ix;
  int ix;
 
 
  for (ix = 0; VEC_iterate (mem_region_s, mem_region_list, ix, m); ix++)
  for (ix = 0; VEC_iterate (mem_region_s, mem_region_list, ix, m); ix++)
    if (m->number == num)
    if (m->number == num)
      {
      {
        m->enabled_p = 1;
        m->enabled_p = 1;
        return;
        return;
      }
      }
  printf_unfiltered (_("No memory region number %d.\n"), num);
  printf_unfiltered (_("No memory region number %d.\n"), num);
}
}
 
 
static void
static void
mem_enable_command (char *args, int from_tty)
mem_enable_command (char *args, int from_tty)
{
{
  char *p = args;
  char *p = args;
  char *p1;
  char *p1;
  int num;
  int num;
  struct mem_region *m;
  struct mem_region *m;
  int ix;
  int ix;
 
 
  require_user_regions (from_tty);
  require_user_regions (from_tty);
 
 
  target_dcache_invalidate ();
  target_dcache_invalidate ();
 
 
  if (p == 0)
  if (p == 0)
    {
    {
      for (ix = 0; VEC_iterate (mem_region_s, mem_region_list, ix, m); ix++)
      for (ix = 0; VEC_iterate (mem_region_s, mem_region_list, ix, m); ix++)
        m->enabled_p = 1;
        m->enabled_p = 1;
    }
    }
  else
  else
    while (*p)
    while (*p)
      {
      {
        p1 = p;
        p1 = p;
        while (*p1 >= '0' && *p1 <= '9')
        while (*p1 >= '0' && *p1 <= '9')
          p1++;
          p1++;
        if (*p1 && *p1 != ' ' && *p1 != '\t')
        if (*p1 && *p1 != ' ' && *p1 != '\t')
          error (_("Arguments must be memory region numbers."));
          error (_("Arguments must be memory region numbers."));
 
 
        num = atoi (p);
        num = atoi (p);
        mem_enable (num);
        mem_enable (num);
 
 
        p = p1;
        p = p1;
        while (*p == ' ' || *p == '\t')
        while (*p == ' ' || *p == '\t')
          p++;
          p++;
      }
      }
}
}


 
 
/* Disable the memory region number NUM. */
/* Disable the memory region number NUM. */
 
 
static void
static void
mem_disable (int num)
mem_disable (int num)
{
{
  struct mem_region *m;
  struct mem_region *m;
  int ix;
  int ix;
 
 
  for (ix = 0; VEC_iterate (mem_region_s, mem_region_list, ix, m); ix++)
  for (ix = 0; VEC_iterate (mem_region_s, mem_region_list, ix, m); ix++)
    if (m->number == num)
    if (m->number == num)
      {
      {
        m->enabled_p = 0;
        m->enabled_p = 0;
        return;
        return;
      }
      }
  printf_unfiltered (_("No memory region number %d.\n"), num);
  printf_unfiltered (_("No memory region number %d.\n"), num);
}
}
 
 
static void
static void
mem_disable_command (char *args, int from_tty)
mem_disable_command (char *args, int from_tty)
{
{
  char *p = args;
  char *p = args;
  char *p1;
  char *p1;
  int num;
  int num;
  struct mem_region *m;
  struct mem_region *m;
  int ix;
  int ix;
 
 
  require_user_regions (from_tty);
  require_user_regions (from_tty);
 
 
  target_dcache_invalidate ();
  target_dcache_invalidate ();
 
 
  if (p == 0)
  if (p == 0)
    {
    {
      for (ix = 0; VEC_iterate (mem_region_s, mem_region_list, ix, m); ix++)
      for (ix = 0; VEC_iterate (mem_region_s, mem_region_list, ix, m); ix++)
        m->enabled_p = 0;
        m->enabled_p = 0;
    }
    }
  else
  else
    while (*p)
    while (*p)
      {
      {
        p1 = p;
        p1 = p;
        while (*p1 >= '0' && *p1 <= '9')
        while (*p1 >= '0' && *p1 <= '9')
          p1++;
          p1++;
        if (*p1 && *p1 != ' ' && *p1 != '\t')
        if (*p1 && *p1 != ' ' && *p1 != '\t')
          error (_("Arguments must be memory region numbers."));
          error (_("Arguments must be memory region numbers."));
 
 
        num = atoi (p);
        num = atoi (p);
        mem_disable (num);
        mem_disable (num);
 
 
        p = p1;
        p = p1;
        while (*p == ' ' || *p == '\t')
        while (*p == ' ' || *p == '\t')
          p++;
          p++;
      }
      }
}
}
 
 
/* Delete the memory region number NUM. */
/* Delete the memory region number NUM. */
 
 
static void
static void
mem_delete (int num)
mem_delete (int num)
{
{
  struct mem_region *m1, *m;
  struct mem_region *m1, *m;
  int ix;
  int ix;
 
 
  if (!mem_region_list)
  if (!mem_region_list)
    {
    {
      printf_unfiltered (_("No memory region number %d.\n"), num);
      printf_unfiltered (_("No memory region number %d.\n"), num);
      return;
      return;
    }
    }
 
 
  for (ix = 0; VEC_iterate (mem_region_s, mem_region_list, ix, m); ix++)
  for (ix = 0; VEC_iterate (mem_region_s, mem_region_list, ix, m); ix++)
    if (m->number == num)
    if (m->number == num)
      break;
      break;
 
 
  if (m == NULL)
  if (m == NULL)
    {
    {
      printf_unfiltered (_("No memory region number %d.\n"), num);
      printf_unfiltered (_("No memory region number %d.\n"), num);
      return;
      return;
    }
    }
 
 
  VEC_ordered_remove (mem_region_s, mem_region_list, ix);
  VEC_ordered_remove (mem_region_s, mem_region_list, ix);
}
}
 
 
static void
static void
mem_delete_command (char *args, int from_tty)
mem_delete_command (char *args, int from_tty)
{
{
  char *p = args;
  char *p = args;
  char *p1;
  char *p1;
  int num;
  int num;
 
 
  require_user_regions (from_tty);
  require_user_regions (from_tty);
 
 
  target_dcache_invalidate ();
  target_dcache_invalidate ();
 
 
  if (p == 0)
  if (p == 0)
    {
    {
      if (query (_("Delete all memory regions? ")))
      if (query (_("Delete all memory regions? ")))
        mem_clear ();
        mem_clear ();
      dont_repeat ();
      dont_repeat ();
      return;
      return;
    }
    }
 
 
  while (*p)
  while (*p)
    {
    {
      p1 = p;
      p1 = p;
      while (*p1 >= '0' && *p1 <= '9')
      while (*p1 >= '0' && *p1 <= '9')
        p1++;
        p1++;
      if (*p1 && *p1 != ' ' && *p1 != '\t')
      if (*p1 && *p1 != ' ' && *p1 != '\t')
        error (_("Arguments must be memory region numbers."));
        error (_("Arguments must be memory region numbers."));
 
 
      num = atoi (p);
      num = atoi (p);
      mem_delete (num);
      mem_delete (num);
 
 
      p = p1;
      p = p1;
      while (*p == ' ' || *p == '\t')
      while (*p == ' ' || *p == '\t')
        p++;
        p++;
    }
    }
 
 
  dont_repeat ();
  dont_repeat ();
}
}
 
 
static void
static void
dummy_cmd (char *args, int from_tty)
dummy_cmd (char *args, int from_tty)
{
{
}
}


extern initialize_file_ftype _initialize_mem; /* -Wmissing-prototype */
extern initialize_file_ftype _initialize_mem; /* -Wmissing-prototype */
 
 
static struct cmd_list_element *mem_set_cmdlist;
static struct cmd_list_element *mem_set_cmdlist;
static struct cmd_list_element *mem_show_cmdlist;
static struct cmd_list_element *mem_show_cmdlist;
 
 
void
void
_initialize_mem (void)
_initialize_mem (void)
{
{
  add_com ("mem", class_vars, mem_command, _("\
  add_com ("mem", class_vars, mem_command, _("\
Define attributes for memory region or reset memory region handling to\n\
Define attributes for memory region or reset memory region handling to\n\
target-based.\n\
target-based.\n\
Usage: mem auto\n\
Usage: mem auto\n\
       mem <lo addr> <hi addr> [<mode> <width> <cache>], \n\
       mem <lo addr> <hi addr> [<mode> <width> <cache>], \n\
where <mode>  may be rw (read/write), ro (read-only) or wo (write-only), \n\
where <mode>  may be rw (read/write), ro (read-only) or wo (write-only), \n\
      <width> may be 8, 16, 32, or 64, and \n\
      <width> may be 8, 16, 32, or 64, and \n\
      <cache> may be cache or nocache"));
      <cache> may be cache or nocache"));
 
 
  add_cmd ("mem", class_vars, mem_enable_command, _("\
  add_cmd ("mem", class_vars, mem_enable_command, _("\
Enable memory region.\n\
Enable memory region.\n\
Arguments are the code numbers of the memory regions to enable.\n\
Arguments are the code numbers of the memory regions to enable.\n\
Usage: enable mem <code number>\n\
Usage: enable mem <code number>\n\
Do \"info mem\" to see current list of code numbers."), &enablelist);
Do \"info mem\" to see current list of code numbers."), &enablelist);
 
 
  add_cmd ("mem", class_vars, mem_disable_command, _("\
  add_cmd ("mem", class_vars, mem_disable_command, _("\
Disable memory region.\n\
Disable memory region.\n\
Arguments are the code numbers of the memory regions to disable.\n\
Arguments are the code numbers of the memory regions to disable.\n\
Usage: disable mem <code number>\n\
Usage: disable mem <code number>\n\
Do \"info mem\" to see current list of code numbers."), &disablelist);
Do \"info mem\" to see current list of code numbers."), &disablelist);
 
 
  add_cmd ("mem", class_vars, mem_delete_command, _("\
  add_cmd ("mem", class_vars, mem_delete_command, _("\
Delete memory region.\n\
Delete memory region.\n\
Arguments are the code numbers of the memory regions to delete.\n\
Arguments are the code numbers of the memory regions to delete.\n\
Usage: delete mem <code number>\n\
Usage: delete mem <code number>\n\
Do \"info mem\" to see current list of code numbers."), &deletelist);
Do \"info mem\" to see current list of code numbers."), &deletelist);
 
 
  add_info ("mem", mem_info_command,
  add_info ("mem", mem_info_command,
            _("Memory region attributes"));
            _("Memory region attributes"));
 
 
  add_prefix_cmd ("mem", class_vars, dummy_cmd, _("\
  add_prefix_cmd ("mem", class_vars, dummy_cmd, _("\
Memory regions settings"),
Memory regions settings"),
                  &mem_set_cmdlist, "set mem ",
                  &mem_set_cmdlist, "set mem ",
                  0/* allow-unknown */, &setlist);
                  0/* allow-unknown */, &setlist);
  add_prefix_cmd ("mem", class_vars, dummy_cmd, _("\
  add_prefix_cmd ("mem", class_vars, dummy_cmd, _("\
Memory regions settings"),
Memory regions settings"),
                  &mem_show_cmdlist, "show mem  ",
                  &mem_show_cmdlist, "show mem  ",
                  0/* allow-unknown */, &showlist);
                  0/* allow-unknown */, &showlist);
 
 
  add_setshow_boolean_cmd ("inaccessible-by-default", no_class,
  add_setshow_boolean_cmd ("inaccessible-by-default", no_class,
                                  &inaccessible_by_default, _("\
                                  &inaccessible_by_default, _("\
Set handling of unknown memory regions."), _("\
Set handling of unknown memory regions."), _("\
Show handling of unknown memory regions."), _("\
Show handling of unknown memory regions."), _("\
If on, and some memory map is defined, debugger will emit errors on\n\
If on, and some memory map is defined, debugger will emit errors on\n\
accesses to memory not defined in the memory map. If off, accesses to all\n\
accesses to memory not defined in the memory map. If off, accesses to all\n\
memory addresses will be allowed."),
memory addresses will be allowed."),
                                NULL,
                                NULL,
                                show_inaccessible_by_default,
                                show_inaccessible_by_default,
                                &mem_set_cmdlist,
                                &mem_set_cmdlist,
                                &mem_show_cmdlist);
                                &mem_show_cmdlist);
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.